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Preface

The Proceedings of the International Congress of Mathematicians 1998, held in
Berlin, are published – electronically and in print – in three volumes. Volume I
contains information on the organization of the Congress including the list of
participants, reports on the opening and closing ceremonies, the Laudationes on
the Fields Medalists and the Nevanlinna Prize Winner, and the Plenary Lectures.
Volumes II and III contain the Invited Lectures.

For the first time, the Proceedings of an ICM have been produced complete-
ly electronically – without any commercial assistance. Using the facilities of
Documenta Mathematica, the contents of the Plenary and Invited Lectures
were made available without charge on the Internet, already before the Congress
started, at http://www.mathematik.uni-bielefeld.de/documenta/.

The printed versions of Volumes II and III were distributed to the participants
at the beginning of the Congress. Volume I, containing material which had to be
gathered during the Congress, was printed about three months after the Congress.

We want to thank all the speakers and organizers for their cooperation which
made such fast publication possible.

October 1998 Gerd Fischer
Ulf Rehmann
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1936 Oslo
1950 Cambridge, USA

1954 Amsterdam
1958 Edinburgh
1962 Stockholm
1966 Moskva
1970 Nice
1974 Vancouver
1978 Helsinki
1982 Warszawa (held in 1983)
1986 Berkeley
1990 Kyoto
1994 Zürich
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Organization of the Congress

Martin Grötschel

President of the ICM’98

In 1992 the German Mathematical Society
(DMV) invited the International Mathemati-
cal Union (IMU) to hold the 1998 International
Congress of Mathematicians in Berlin. The in-
vitation was accepted by the 1994 General As-
sembly of the IMU in Luzern, the decision an-
nounced at the 1994 Congress in Zürich.

In January 1995 the Council (Präsidium)
of the DMV and the representatives of the
mathematical institutions in Berlin appointed
the Board of Directors of the ICM’98 Or-
ganizing Committee (Martin Grötschel (TU
and ZIB Berlin), President; Friedrich Hirze-
bruch (MPI Bonn), Honorary President; Mar-
tin Aigner (FU Berlin), Vice President; Jürgen
Sprekels (HU and WIAS Berlin), Treasurer;
Jörg Winkler (TU Berlin), Secretary) and also
founded the Verein zur Durchführung des In-
ternational Congress of Mathematicians 1998
in Berlin (VICM) to form a legal umbrella for the organization. In the course
of the preparations, the Board of Directors asked many colleagues to join the
organizing team. A list of its members can be found on the next pages.

Initial financial support came from the Bundesministerium für Bildung, Wis-
senschaft, Forschung und Technologie and from the Senat von Berlin. Without
the substantial backing from these two institutions an application would have been
impossible. Other public and academic bodies, private corporations and founda-
tions, individuals and mathematical institutes supported the Congress significantly
as well. A list of donors can be found in this volume. The registration fee was DM
450 for early and DM 600 for late registration, there was no fee for accompanying
persons. The registration fees accounted for about one third of the total budget.

The scientific program of the Congress was in the hands of a Program Com-
mittee appointed by the IMU. Its members were Phillip Griffiths (Chairman), Luis
Caffarelli, Ingrid Daubechies, Gerd Faltings, Hans Föllmer, Michio Jimbo, John
Milnor, Sergei Novikov, and Jacques Tits. The committee divided the program of
the Congress into 19 sections and appointed, for each section, a panel to nominate
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speakers. In early summer of 1997 the Program Committee selected 21 mathemati-
cians to give one-hour plenary addresses and 169 colleagues to present 45-minute
invited lectures. Five invited lecturers cancelled their talks at short notice due
to personal reasons. Two of them, however, submitted written versions of their
lectures to these Proceedings.

The Fields Medal Committee consisted of Yuri Manin (Chairman), John
Ball, John Coates, J. J. Duistermaat, Michael Freedman, Jürg Fröhlich, Robert
MacPherson, Kyoji Saito, and Steve Smale. The members of the Nevanlinna Prize
Committee were David Mumford (Chairman), Bjorn Engquist, Tom Leighton, and
Alexander Razborov. Both committees arrived at their decisions in spring 1998.

The Organizing Committee was responsible for all other activities of the
Congress. Der-Congress handled accommodation, registration and related ar-
rangements as the official travel agent of the Organizing Committee.

The first day of the Congress, including the opening ceremony, took place at
the International Congress Center (ICC) of Berlin. During the opening ceremony,
attended by about 3,000 persons, the Fields Medals and the Nevanlinna Prize were
awarded. Moreover, Andrew Wiles received an IMU silver plaque in recognition
of his proof of “Fermat’s Last Theorem”. The opening ceremony was transmitted
worldwide in the Internet via MBone. In the afternoon of August 18, the work
of the Fields Medalists and the Nevanlinna Prize winner was presented in five
lectures. The manuscripts of these lectures can be found in this volume. Jürgen
Moser concluded the first day with a plenary lecture.

All further sessions of the Congress took place on the campus of the Technische
Universität Berlin. The plenary lectures were held in morning sessions in the
Audimax of the TU Berlin. They were transmitted via closed-circuit television
to another large lecture hall. The 45-minute invited lectures were given in six
parallel sessions from 2 pm to 6 pm each afternoon, from August 19 to 26, except
for Sunday, August 23, which was kept free for excursions etc. The last day of the
Congress, August 27, consisted of four plenary addresses and the closing ceremony.

In addition to the invited and plenary lectures, 1,098 short 15-minute contri-
butions and 236 poster presentations were given. Moreover, 235 ad-hoc talks of
15 minutes length were scheduled during the Congress. Thus, ICM’98 had a total
of 1569 contributed presentations.

The organization of the Congress was, to a large extent, based on electronic
communication. Already in 1994, a World Wide Web Server on the International
Congress was set up at the Konrad-Zuse-Zentrum in Berlin. This server was con-
tinuously extended to contain up-to-date material so that every mathematician
interested in ICM’98 could look up most recent information. In addition to this,
circular letters were e-mailed to all those who preregistered for the Congress elec-
tronically. These circular letters complemented the printed First and Second An-
nouncements that were mailed out in August 1997 and January 1998, respectively,
to thousands of mathematicians worldwide.

The Organizing Committee also offered the possibility of electronic registra-
tion. Two thirds of the ICM’98 members took advantage of this facility; 95% of
the abstracts of the invited and contributed presentations were submitted elec-
tronically. Moreover, all but one of the plenary and invited speakers submitted
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their paper for the proceedings volume electronically. This made it possible to
produce Volumes II and III before the Congress, to make them available in the
Internet, and to deliver them to the participants in printed form at registration in
Berlin.

In all, 3,346 mathematicians from 98 countries participated in the Congress
together with an estimated number of 800 accompanying persons; 31 exhibitors
were present.

The Organizing Committee made significant efforts, together with the In-
ternational Mathematical Union, to give financial support for participants from
developing countries and Eastern Europe. A fund of more than DM 900,000 made
it possible to sponsor the attendance of approximately 450 mathematicians. About
510 colleagues were invited, around 60 were unfortunately unable to attend; 93
young and 37 mature colleagues from developing countries received grants from
the IMU and the local organization, 305 persons from the support program of the
local Organizing Committee for mathematicians from Eastern Europe. Special
grants from mathematical institutions and other support programs complemented
these efforts.

The social events included a buffet lunch after the opening ceremony, an opera
performance of the Magic Flute in the Deutsche Oper on August 23, and an ICM
party on August 26. To convey some of the many facets of Berlin to the ICM’98
participants, and in particular to accompanying persons, many Berlin mathemati-
cians, their friends and spouses offered informal tours, so called footloose tours, to
points of special interest in Berlin. About 1,200 ICM’98 members and accompa-
nying persons participated in these tours.

In accordance with the Program Committee and the IMU, the Organizing
Committee opened a Section of Special Activities to cover topics of mathematical
relevance that would not fit elsewhere in the official scientific program. These
special activities included an afternoon session on electronic publishing with three
talks and a panel discussion on “The Future of Electronic Communication, Infor-
mation, and Publishing”; presentations of mathematical software on three after-
noons; several special activities related to women in mathematics including the
Emmy Noether Lecture given by Cathleen Synge Morawetz, and a panel discus-
sion “Events and Policies: Effects on Women in Mathematics”; an afternoon on
“Berlin as Centre of Mathematical Activity” (this workshop was suggested by the
International Commission on the History of Mathematics); a roundtable discus-
sion on “International Comparison of Mathematical Studies, University Degrees,
and Professional Perspectives”.

The exhibition “Terror and Exile” honored the memory of 53 Berlin mathe-
maticians who suffered under the Nazi terror; this topic was also addressed in a
special session “Mathematics in the Third Reich and Racial and Political Perse-
cution”.

Other events enhanced the scope of the ICM’98 activities. The special evening
lecture of Andrew Wiles on “Twenty Years of Number Theory” on August 19
attracted an audience of about 2,300. Olli Lehto’s book on the International
Mathematical Union was presented and an exhibition of mathematical cartoons
was shown at the TU Mathematics Library.
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A major attempt to reach out to the non-mathematical public during the
Congress were the activities in the Urania, an institution with a long tradition in
the popularization of science. These included 11 lectures on mathematics for a gen-
eral audience, the VideoMath Festival in which the VideoMath Reel, a composition
of selected short videos on mathematics, and several other mathematical films were
shown. Exhibitions on “Hands-on Mathematics” (addressing high-school students
and teachers in particular), “Mathematical Stone Sculptures”, “Mathematics and
Ceramics”, and works by high-school students on “Mathematics and the Art”
complemented the Urania activities. An additional exhibition featuring paintings
and sculptures related to mathematical objects (Innovation3) was shown at the
Ludwig-Erhard-Haus. More than 5,000 persons attended the Urania lectures and
video performances, about 10,000 visited the exhibitions in the Urania.
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The Committees of the Congress

Program Committee (appointed by the IMU)

Phillip Griffiths, Chairman Institute for Advanced Study, Princeton, USA;
Luis Caffarelli University of Texas, Austin, USA
Ingrid Daubechies Princeton University, Princeton, USA
Gerd Faltings Max-Planck-Institut, Bonn, Germany
Hans Föllmer Humboldt-Universität, Berlin, Germany
Michio Jimbo Kyoto Universtity, Kyoto, Japan
John Milnor SUNY at Stony Brook, Stony Brook, USA
Sergei Novikow Landau Institute, Moscow, Russia,

and University of Maryland, USA
Jacques Tits Collège de France, Paris, France

The German Mathematical Society together with representatives of the mathe-
matical institutions of Berlin appointed the President, Honorary President, Vice
President, Treasurer and Secretary (Board of Directors) of the Local Organizing
Committee, who in turn appointed the members of all further committees.

Organizing Committee

Martin Grötschel President ZIB and TU Berlin
Friedrich Hirzebruch Honorary President Bonn
Martin Aigner Vice President FU Berlin
Jürgen Sprekels Finances WIAS and HU Berlin
Jörg Winkler Secretary TU Berlin
Rolf Möhring Local Arrangements TU Berlin

Ehrhard Behrends FU Berlin
Gerhard Berendt FU Berlin
A. Beutelspacher Giessen
Jochen Brüning HU Berlin
Wolfgang Dalitz ZIB Berlin
Gerd Fischer Düsseldorf
Gerd Frey Essen
Ulrich Fuchs FU Berlin
Stephan Hartmann TU Berlin
Christian Hege ZIB Berlin
Christoph Helmberg ZIB Berlin
Karl-Heinz Hoffmann TU München
Bettina Kasse ZIB Berlin
Herbert Kurke HU Berlin
Eberhard Letzner FU Berlin
Jutta Lohse WIAS Berlin

Sabine Marcus TU Berlin
Sybille Mattrisch ZIB Berlin
Hans-Otfried Müller Dresden
Winfried Neun ZIB Berlin
Volker Nollau Dresden
Konrad Polthier TU Berlin
Elke Pose TU Berlin
Ulf Rehmann Bielefeld
Werner Römisch HU Berlin
Vasco Schmidt FU Berlin
Renate Schubert TU Berlin
Ralph-Hardo Schulz FU Berlin
Margitta Teuchert WIAS Berlin
Michael Walter ZIB Berlin
Christiane Weber Dresden
Günter M. Ziegler TU Berlin
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Local Scientific Committee

Michael E. Pohst, TU Berlin
Chairman

Günter Albinus WIAS Berlin
Helmut Alt FU Berlin
Klaus Dieter Bierstedt Paderborn
Alexander Bobenko TU Berlin
Peter Deuflhard ZIB and

FU Berlin
Jean-Dominique

Deuschel TU Berlin
Frank Duzaar HU Berlin
Dirk Ferus TU Berlin
Bernold Fiedler TU Berlin
Karl-Heinz Förster TU Berlin
Herbert Gajewski WIAS Berlin
Joachim Gräter Potsdam
Jens Gustedt TU Berlin
Klaus Hulek Hannover
Heinz Adolf Jung TU Berlin
Markus Klein Potsdam
Eberhard Knobloch TU Berlin
Helmut Koch HU Berlin
Hermann König Kiel
Sabine Koppelberg FU Berlin

Ralf Kornhuber FU Berlin
Jürg Kramer HU Berlin
Herbert Kurke HU Berlin
Joachim Naumann HU Berlin
Michael Nussbaum WIAS Berlin
Erich Ossa Wuppertal
Christian Pommerenke TU Berlin
Hans-Jürgen Prömel HU Berlin
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Registration of the participants
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List of Donors

The Organizing Committee is greatly indebted to all those who have supported
the congress either by monetary contributions or by donating goods and services.
Without these generous donations it would have been impossible to launch ICM’98.
We would like to thank the following sponsors cordially:

Public and Academic Bodies

Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie
Senat von Berlin
Deutsche Forschungsgemeinschaft
Sächsisches Staatsministerium für Wissenschaft und Kunst
Alexander von Humboldt-Stiftung
Berlin-Brandenburgische Akademie der Wissenschaften

International Mathematical Union
Deutsche Mathematiker-Vereinigung
European Mathematical Society
Deutsche Gesellschaft für Versicherungsmathematik
Berliner Mathematische Gesellschaft

Private Corporations and Foundations

Allianz Lebensversicherungs-AG
Siemens AG
Stemmler-Stiftung
Möllgaard-Stiftung
Silicon Graphics
Deutsche Telekom
Storage Tek
Herlitz AG
Deutsche Bank AG
Springer-Verlag
Nikkei Culture
Walter und Eva Andrejewski-Stiftung
Minolta
Sender Freies Berlin
SUN Microsystems
Berliner Verkehrsbetriebe
Daimler-Benz-Stiftung
T-Mobil
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Closing Ceremony

The closing ceremony was held on Thurday, August 27, 1998, starting at
15.00 in the main lecture hall of the TU Berlin

David Mumford, President of the International Mathematical Union,
addressed the audience as follows:

We have come to the end now of what I believe was a remarkable and very suc-
cessful Congress. As President of the IMU, it is my very pleasant duty first to
congratulate the local organizing committee for their role in this.

I would like to underline several aspects of the Congress which I felt were
especially successful. Firstly, in the entire pre-congress stage, the organizers have
used email most effectively, putting on virtually everyone’s desk the current plans,
events, speakers as soon as announced and the registration form. Moreover, their
ability to produce two thirds of the Proceedings before the Congress and one third
immediately after (held back only by those like me who didn’t write their speeches
beforehand) is a remarkable demonstration of the potential to publish a major
book at minimal cost with no commercial assistance.

Another great success is the quality of the presentations. I want to congrat-
ulate the Program Committee for their selections, the speakers on the clarity of
their talks and the Organizing Committee for their instructions and suggestions
to the speakers (that I’m sure were listened to from my own conversations with
many of the speakers).

Still another area in which the organizers have succeeded beyond all expec-
tations is in public relations. Both with unprecedented press coverage and with a
beautiful array of programs at Urania, they have reached major groups of Berlin-
ers, of Germans and of the World. (My wife reports reading of the Fields Medals
in the Boston Globe.)

Finally, I’d like to say that the physical arrangements seem to me to have
been near ideal: many large lecture rooms in close proximity, transport passes,
etc. Underlying all this, invisible but obviously vital, is probably the largest sum
of money ever raised for an ICM. Its use in helping hundreds attend the Congress
will be detailed later.

For this great job, I want now to propose a round of applause for the Orga-
nizers. BUT, as in all human activities, an institution cannot rest on its laurels.
The Congress is really for you and we want your feedback. Taking our clue from
the Organizers, we would like everyone who wishes to send us electronically their
comments, suggestions and proposals. You can reach the IMU at “imu@impa.br.”

My second duty is to report to you on the General Assembly (G. A.) of the
IMU that took place in Dresden over the weekend preceding the Congress. Many
of you may be unaware of the institutional infrastructure that supports the stately
procession of International Congresses, so let me quickly sketch this. The IMU is
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an organization whose members are countries – about 60 of them – which are repre-
sented by ‘adhering organizations’, National Academies or Mathematical Societies.
Each of them sends delegates to the G. A. which precedes each Congress and here
the whole chain of committees starts and the control rests. The G. A. elects
the President, Secretary and Executive Committee, which in turn appoints the
Program Committee (which appoints panels in every subfield), Fields Medal and
Nevanlinna Prize Committees and works with the Organizing Committee of the
next Congress. The goal, I should add, is to spread decision making over as large
and as representative a group as possible.

At this point, I want to report to you the decisons taken at the Dresden
G. A. The first decision is that:

ICM 2002 will be held in Beijing, China.
The President of the Chinese Mathematical Society, Professor K. C. Chang, will
give further information in a few minutes.
Secondly, the G. A. passed a resolution in support of diversity:
Building on the resolutions adopted at the 1986 and 1990 General Assemblies, the
IMU shall continue to endeavour to attract the participation of all mathematicians.
Subfields of mathematics and traditionally underrepresented groups should not be
overlooked in IMU activities.
Thirdly, the G. A. adopted an ‘enabling resolution’ to form a Committee on Elec-
tronic Information and Communication. This resolution reads:
1. In the last decade, the internet has been transforming our communication and
commerce. In the world of science, the internet is radically changing the modes
of information transfer at all levels. Communication on hand-written and printed
paper, distribution via postal mail and libraries is a system which has been stable
for many centuries. We cannot foresee clearly the new system which is evolving
except that it will involve electronic media and it will radically alter the economics
of communication. This transformation will certainly be global and will affect
mathematical research on all continents.
2. We strongly believe that the IMU can play several important roles during this
transition. Among these are:

i) it can provide a forum where all parties, i. e., all countries and all inter-
est groups (individual researchers, professional societies, publishers, and li-
braries) can discuss the issues and it can publish proceedings to increase
general understanding of all the issues involved,

ii) it can recommend and promote international standards on electronic com-
munication among mathematicians, when needed,

iii) it can act as a liaison between regional, national and local groups, coordinat-
ing their initiatives and discussions.

3. We therefore propose that the GA establish a
Committee on Electronic Information and Communication (CEIC)

to accomplish its objectives whose terms of reference and initial additional mem-
bership will be decided by the ad hoc committee consisting of John Ewing, Martin
Grötschel, Peter Michor, David Mumford and Jacob Palis and sent by mail ballot
to the adhering organizations for approval.
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I am happy to report that this Committee is nearly in place and that Peter Michor
has agreed to be its chairman for the next four years.

Fourthly, the G. A. elected as the next President of the IMU Professor Jacob
Palis and as Secretary Professor Phillip Griffiths and I wish to congratulate them
and wish them great success. The following are the full slates which were elected
for various Committees and Commissions of the Union:

IMU Executive Committee

President: J. Palis Brazil
Vice-Presidents: S. Donaldson United Kingdom

S. Mori Japan
Secretary: P. Griffiths USA
Members: V. Arnold Russia

J. M. Bismut France
B. Engquist Sweden
M. Grötschel Germany
M. Raghunathan India

ex-officio: D. Mumford, Past President USA
International Commission on Mathematicial Instruction (ICMI)

President: Hyman Bass USA
Vice-Presidents: M. Artigue France

N. Aguilera Argentina
Secretary: B. Hodgson Canada
Members: G. Leder Australia

Y. Namikawa Japan
I. Scharygin Russia
J. P. Wang China

ex-officio: Miguel de Guzman, Past President Spain
President of IMU
Secretary of IMU

Commission on Development and Exchange (CDE)

Chairman: Rolando Rebolledo Chile
Secretary: Herb Clemens USA
Members: A. A. Ashour Egypt

K. C. Chang China
P. Cordaro Brazil
J.-P. Gossez Belgium
O. Nakoulima Guadeloupe
T. Sumada Japan

ex-officio: M. S. Narasimhan, Past Chairman India
President of IMU
Secretary of IMU

International Commission of the History of Mathematics (ICHM)

Jan P. Hogendijk (Netherlands) and Karen Parshall (USA)

I would now like to call on Jacob Palis to say a few words.
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Jacob Palis, President of the IMU for 1999–2002, addressed the audi-
ence as follows:

Dear colleagues,
ladies and gentlemen:
It’s a great honor for me to become the next
President of the International Mathematical
Union, a fundamental institution for the devel-
opment of mathematics in the world. To have
good mathematics in all regions, in all coun-
tries, is precisely a main goal of the Union: we
shall pursue and achieve it together.

The Executive Committee and the Commissions of the Union will be engaged
in this major goal. As part of such an effort, IMU members, through their math-
ematical societies and research agencies, have been contributing to our Special
Development Fund; especially the US, Brazil, UK, Japan and France. Through
the Fund and Local Organizing Committee, we were able to finance the partic-
ipation at the ICM of about 100 young and 40 senior mathematicians from the
Developing World. Actually, the Local Organizing Committee did more: it also
made possible the presence of more than 300 mathematicians from the former So-
viet Union and Eastern Europe. To talk about this, I wish to call to the podium
Prof. Anatoly M. Vershik (President of St. Petersburg Mathematical Society,
Head of the Laboratury of the Mathematical Institute of the Russian Academy of
Sciences).

Anatoly M. Vershik addressed the audience as follows:

Dear Colleagues:
More than three hundred participants of our
congress have arrived from Russia and the for-
mer Soviet Union (fSU). Almost all of them
have obtained the special grants or partial fi-
nancial support from the Organization Com-
mittee or other funds which that Committee
was able to use. These are the results of the ef-
forts of the Committee and all of us thank the
organizers of the congress and the International
Mathematical Union for this support.

This Congress is the second International Congress of Mathematicians (of
course except Moscow Congress in ’66) with such a wide presence of mathemati-
cians from Russia and the fSU. It was impossible to imagine such a big group from
those countries at a congress even 10 years ago. Everybody understands how im-
portant it is, especially for young mathematicians, to have the possibility to take
part in a meeting of such a high scientific level, to listen to the talks of prominent
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scientists about recent studies, to present their own achievements, to obtain new
information and to look for new problems.

Those over 40 perhaps remember how limited the attendance of Soviet math-
ematics at the international congresses in the sixties, seventies and eighties was.
Even invited speakers could not obtain the permission from “very high scientific”
organizations for going abroad, e. g., I was an invited speaker at the Congress ’74
in Vancouver but approximately 15 other invited speakers from Russia could not
visit that congress. It was common at that time to have a gap in the schedule
instead of the lectures of Soviet mathematicians or to entrust the reading of the
lecture to some of the foreign colleagues. Moreover, even Fields Medalists from
Russia (Novikov – Nice ’70, Margulis – Helsinki ’78) did not visit these congresses
and did not receive the medal during the ceremony because they had not obtained
permission for that!

The international mathematical community tried to help our mathematics
and mathematicians in those days many times but it was impossible and hopeless.
Indeed, the reasons for such stupid behaviour of Soviet authority were political or
something similar to that. The result of that policy was the separation between
the remarkable mathematical schools which had developed in the Soviet Union
and in the worldwide mathematical community.

Now fortunately we do not need any permissions of authorities and there
are no obstacles for going abroad, for having contact with our colleagues, for
collaboration with them and for visiting the conferences and congresses. But we
face completely new problems which are more understandable – for all that we need
financial support. For that matter the International Mathematical Community has
shown very deep and clear understanding of our problems, in this situation they
can help and they do help. There are many examples of such help and two excellent
ones are our visit to the Congress in Berlin and the previous Congress in Zürich.

Thank you very much. Needless to say how important this help is for us!
Especially nowadays when the sole existence of the mathematics in our countries
is in such a danger.

In a rather solemn way I can say that our mathematics must survive and will
survive and the international solidarity of mathematicians is a guarantee for that.

Jacob Palis continued his speech as follows:

Also as part of our strategy to achieve the goal of having good mathematics
throughout the world, we have proposed, and the General Assembly has approved
unanimously, a change in our statutes, to have multinational mathematical soci-
eties and unions to be affiliated with IMU in order to facilitate joint actions in
their respective region. The same applies to professional associations and in this
respect emerges our second main objective: the unity of mathematics in its diver-
sity of themes. We should have good mathematics, beyond being pure or applied
and this should reflect in the ICMs, as in the present one.

Finally, I wish to ask the mathematicians of the world to participate in our
multiple activities of the World Mathematical Year 2000.

Thank you.
Now I’m very pleased to invite K. C. Chang.
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Kung Chin Chang, President of the Chinese Mathematical Society,
addressed the audience as follows:

Ladies and gentlemen:
It is a great pleasure and honor for me to invite all of
you, on behalf of the Chinese Mathematical Society, to
the next ICM at Beijing, a city interweaving historical
tradition with modern fascination.

All the past congresses were held in developed coun-
tries. Now, the next congress, the first in the new century,
will be held for the first time in a developing country.
This will add a new chapter to Prof. Olli Lehto’s book
“Mathematics Without Borders.”

We are grateful to the Executive Committee and the
General Assembly of IMU for the decision on the site of
Beijing. To host such an important congress is not only a great chance, but also
a big challenge. However, the successful experience of the previous congresses, in
particular, of the Berlin congress with such high levels of hospitality and efficiency,
will be very useful for us.

In the past two decades, many mathematicians all over the world, and most
of the members of the Executive Committee of IMU have visited China. Their
suggestions and ideas in organizing the congress are warmly welcome. With the
help of IMU and the cooperation of mathematicians throughout the world, the
Chinese mathematicians, who are eager to make the congress a success, will do
their best to make your attendance fruitful and enjoyable.

I am looking forward to seeing you all in Beijing in the year 2002.

The last speaker was Martin Grötschel, President of the ICM’98:

At the first International Congresses it has been a tradition to commemorate
the mathematicians who have deceased in the previous years. We would like to
resume this tradition today. Following a German custom, I would like to ask you
to stand up for a few moments and remain in silence while I read some words of
remembrance.

It is impossible to list here all mathematicians who have died in the last four
years, even if we restrict the list to the most prominent ones. I have chosen six
colleagues who, I believe, represent all those who we will miss in the future:

Hansgeorg Jeggle. Jeggle has been a professor at TU Berlin since 1971 and
has been dean of the Faculty of Mathematics for many years. He was killed in a
car crash on August 22, 1998.

François Jaeger. Jaeger, an expert in combinatorics and combinatorial knot
theory, had been selected by the ICM’98 Program Committee as an Invited Speaker
in Section 13 “Combinatorics”. He died on August 18, 1997 on the day when the
ICM’98 invitation was mailed to him.
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André Weil, a towering figure of our field, whose name came up in many of the
plenary and invited presentations of this Congress. Weil died on August 6, 1998.
Paul Erdös. Erdös was among the most productive mathematicians of all time
and probably the most highly connected individual of us all. He died at a confer-
ence in Warsaw on September 22, 1996.
Finally, I would like to mention that two Fields medalists have deceased within
the last four years.
Lars Ahlfors, the first recipient of a Fields Medal in 1936, died on October 11,
1996.
Kunihiko Kodaira, who received a Fields Medal in 1954, died on July 26, 1997.
Thank you for paying respect to the deceased colleagues. Please sit down again.

Ladies and Gentlemen, dear Colleagues:
One of the last sentences of my Opening Speech was:

“We would like to make ICM’98 an exceptional event. Let us hope that
our dreams come true.”

I think our dreams came true.
However, not everything went exactly as planned. For instance, last night’s

ICM party was going to be staged as an open air party on the greens behind the
Math Building. Bad weather made a rescue operation necessary. The available
facilities were, unfortunately, not really optimal for good queue management. I
apologize for these inconveniences and a few others that came up during the last 10
days. Some participants, in fact, told me that they were happy that misfortunes
such as these occured. In their opinion, they made the ICM organization look
more human.

I consider this as a compliment and would like to thank again all my colleagues
in the Organizing Committee, our students, secretaries, spouses, children, and
friends who have helped to run ICM’98 smoothly.

I have received a lot of additional requests. Participants would like to buy
videos of the Opening Ceremony, of some of the Plenary Presentations, etc. We
will consider all these issues in the near future, and I will write to you another
Circular Letter to let you know what we can do and offer. One offer will be made
right after the end of this Ceremony. We will show in the lecture hall H 104
the ICM’98 Special produced by channel B1 of Sender Freies Berlin which was
broadcast on TV last week.

The ICM’98 Proceedings will be sold and distributed after the Congress by
Documenta Mathematica and the American Mathematical Society.

This is the right occasion to thank the many mathematical societies around
the world who have generously helped the ICM’98 Organizing Committee dis-
tribute information about ICM’98 and advertise the Congress. This has been a
very promising sign of international cooperation. I also consider it very positive
that the IMU has decided to integrate the regional mathematical unions, such as
the European Mathematical Society or the currently forming Asian Mathematical
Union, into its activities. And I believe that electronic information and communi-
cation, another topic taken up by the IMU, will considerably foster joint work of
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mathematicians from around the world, so that we can also reach those groups and
countries that seem somewhat isolated. Additional efforts, however, are necessary
on all sides.

It was somewhat difficult for me to attend lectures. But I managed to partici-
pate in most of the Plenary Addresses. I am grateful to all speakers that they have
made efforts, in some cases really remarkable efforts, to address a broad mathe-
matical audience. These lectures certainly formed the scientific backbone of our
Congress. I would also like to thank those who have presented posters or gave
short presentations. That’s where most of the communication and discussion took
place.

Many words of thanks have been said. I believe that only one word of thanks is
left. No congress, however well organized, can be successful without enthusiastic
participants. That is what you all have been. When officials of this university
noticed that on Saturday at 6 p.m. there were still 1500 persons attending lectures
they were really convinced that this Congress is an unusual event. I think that
the participants of this Congress found the right mixture between leisure, fun, and
hard work, and that many of us go home with a lot of new ideas and new friends.

Thank you very much for coming to Berlin and participating in ICM’98.
I declare the 23rd International Congress of Mathematicians closed.

Members of the organization teams:
Grötschel, Behrends, Brüning, Sprekels, Hartmann, Winkler, Aigner,

Mumford, Palis, Hirzebruch, Möhring, Rehmann, Teuchert
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Grüter, Michael (Germany)
Grzanna, Jürgen (Germany)
Grzaslewicz, Ryszard (Poland)
Grzymkowski, Radoslaw (Poland)
Gu, Weiqing (USA)
Guccione, Linda (USA)
Guddat, Jürgen (Germany)
Guillaume, Anne (United Kingdom)
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Höhn, Gerald (Germany)
Holm, Thorsten (Germany)
Holmann, Harald R. A. (Switzerland)
Holme, Audun (Norway)
Holopainen, Ilkka (Finland)
Holst, Stefan (Germany)
Holt, Fred B. (USA)
Holte, John M. (USA)
Holtkamp, Ralf (Germany)
Holtmanns, Silke (Germany)
Holz, Martin (Germany)
Holzapfel, Rolf-Peter (Germany)
Hömberg, Dietmar (Germany)
Homburg, Ale Jan (Germany)
Hooke, Nigel (Australia)
Hoppensteadt, Frank (USA)
Hora, Akihito (Japan)
Horiuchi, Kiyomitsu (Japan)

Documenta Mathematica · Extra Volume ICM 1998 · I



List of Participants 73

Horiuchi, Ryutaro (Japan)
Horiuchi, Toshio (Japan)
Horn, Dietmar (Germany)
Hornbostel, Jens (France)
Hornor, William E. (USA)
Horst, Ulrich (Germany)
Horstmann, Dirk (Germany)
Hotje, Herbert (Germany)
Hou, Thomas Yizhao (USA)
Hou, Zhanyuan (United Kingdom)
Houh, Chorng Shi (USA)
Houssni, Mohamed (Morocco)
Hovhannisyan, Gro (Armenia)
Hric, Roman (Slovakia)
Hrushovski, Ehud (Israel)
Hryniv, Ostap (Germany)
Hu, Po (USA)
Huang, Jing-Song (P. R. China)
Huber, Arla M. (USA)

Huebner, Friedrich-Karl
(Germany)

Huebner, Marianne (USA)
Hughes, Kenneth R. (South Africa)
Huisinga, Wilhelm (Germany)
Huisken, Barbara (Germany)
Huisken, Gerhard (Germany)
Huisman, Johannes (France)
Hulek, Klaus W. (Germany)
Hullet, Eduardo G. (Germany)
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Möhring, Rolf H. (Germany)
Moklyachuk, Mikhail (Ukraine)
Moldavskaya, Elina M. (Ukraine)
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Nörenberg, Rainer (Germany)
Norkin, Vladimir (Ukraine)
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Nüsken, Michael (Germany)
Nussbaum, Michael (Germany)
Nusser, Harald (Germany)

Oakes, Susan M. (United Kingdom)
Oberschelp, Arnold (Germany)

Obukhovskii, Valeri V. (Russian
Federation)

Odai, Yoshitaka (Japan)
Odell, Edward (USA)
Oevel, Walter (Germany)
Oeverdieck, Lars (Germany)
Ogata, Hayao (Japan)

Documenta Mathematica · Extra Volume ICM 1998 · I



List of Participants 83

Ogata, Shoetsu (Japan)
Ohba, Kiyoshi (Japan)
Ohmiya, Mayumi,EM. (Japan)
Ohno, Hiloshi (Japan)
Ohno, Masahiro (Japan)
Ohno, Shuichi (Japan)
Ohta, Minolu (Japan)
Ohtsuki, Tomotada (Japan)
Oja, Eve (Estonia)
Oja, Peeter (Estonia)
Oka, Hiro-e (Japan)
Okada, Tatsuya (Japan)
Okamoto, Hisashi (Japan)
Okayasu, Takashi (Japan)
Okikiolu, Kate (USA)
Okoya, Samuel S. (Nigeria)
Olbrich, Martin (Germany)
Oleinik, Vladimir L. (Russian Federation)
Olenko, Andrew Ya. (Ukraine)
Oliver, Robert A. (France)

Olshanskii, Maxim A. (Russian
Federation)

Olsson, Jorn B. (Denmark)
Omarjee, Moubinool (France)
O’Neill, Bruce (Egypt)
Onishi, Yoshihiro (Japan)
Ono, Kaoru (Japan)
Ono, Ken (USA)
Ontaneda, Pedro (Brazil)
Opfer, Gerhard (Germany)
Opozda, Barbara (Poland)
Orazov, Mered (Turkmenistan)
Orman, Gabriel V. (Romania)
O’Shea, Donal B. (USA)
Osilike, Micah O. (Nigeria)
Osipenko, George (Russian Federation)
Ostermann, Alexander (Austria)
Osthus, Deryk (Germany)
Otachel, Zdzislaw (Poland)
Otsuka, Kayo (Japan)
Otsuka, Kenichi (Japan)

Ovchinnikov, Vladimir I. (Russian
Federation)

Oversteegen, Lex G. (USA)
Owa, Shigeyoshi (Japan)
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Poldvere, Märt (Estonia)
Polterovich, Leonid (Israel)
Polthier, Konrad (Germany)
Polyakova, Katerina (Russian Federation)
Polzehl, Jörg (Germany)

Pomazanov, Michael V. (Russian
Federation)

Ponce, Gustavo Alberto (USA)
Ponge, Raphael S. (France)
Ponomarenko, Andrej (Germany)
Ponomarev, Paul (USA)
Popa, Anca (Romania)
Popescu, Dorin-Mihail (Romania)
Popov, Igor Yu. (Russian Federation)
Popova, Elena V. (Russian Federation)
Porteous, Hugh L. (United Kingdom)
Poschadel, Norbert (Germany)
Pöschel, Reinhard (Germany)
Post, Katharina D. E. (Germany)
Postelnicu, Tiberiu V. (Romania)

Postnikov, Mihkail M. (Russian
Federation)

Potapov, Vadim D. (Russian Federation)
Potthast, John (USA)
Potthast, Roland (Germany)
Pourkazemi, Mohammad H. (Iran)
Pragarauskas, Henrikas (Lithuania)
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Söllner, Hildegard (Germany)
Solodkyy, Sergiy Georgievich (Ukraine)
Sologuren, Santiago (Bolivia)
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The Work of Richard Ewen Borcherds

Peter Goddard

1 Introduction

Richard Borcherds has used the study of certain exceptional and exotic algebraic
structures to motivate the introduction of important new algebraic concepts: ver-
tex algebras and generalized Kac-Moody algebras, and he has demonstrated their
power by using them to prove the “moonshine conjectures” of Conway and Norton
about the Monster Group and to find whole new families of automorphic forms.

A central thread in his research has been a particular Lie algebra, now known
as the Fake Monster Lie algebra, which is, in a certain sense, the simplest known
example of a generalized Kac-Moody algebra which is not finite-dimensional or
affine (or a sum of such algebras). As the name might suggest, this algebra appears
to have something to do with the Monster group, i.e. the largest sporadic finite
simple group.

The story starts with the observation that the Leech lattice can be interpreted
as the Dynkin diagram for a Kac-Moody algebra, L∞. But L∞ is difficult to
handle; its root multiplicities are not known explicitly. Borcherds showed how to
enlarge it to obtain the more amenable Fake Monster Lie algebra. In order to
construct this algebra, Borcherds introduced the concept of a vertex algebra, in
the process establishing a comprehensive algebraic approach to (two-dimensional)
conformal field theory, a subject of major importance in theoretical physics in the
last thirty years.

To provide a general context for the Fake Monster Lie algebra, Borcherds has
developed the theory of generalized Kac-Moody algebras, proving, in particular,
generalizations of the Kac-Weyl character and denominator formulae. The denom-
inator formula for the Fake Monster Lie algebra motivated Borcherds to construct
a “real” Monster Lie algebra, which he used to prove the moonshine conjectures.
The results for the Fake Monster Lie algebra also motivated Borcherds to explore
the properties of the denominator formula for other generalized Kac-Moody alge-
bras, obtaining remarkable product expressions for modular functions, results on
the moduli spaces of certain complex surfaces and much else besides.

2 The Leech Lattice and the Kac-Moody Algebra L∞
We start by recalling that a finite-dimensional simple complex Lie algebra, L,
can be expressed in terms of generators and relations as follows. There is a non-
singular invariant bilinear form ( , ) on L which induces such a form on the rankL
dimensional space spanned by the roots of L. Suppose {αi : 1 ≤ i ≤ rankL} is a
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basis of simple roots for L. Then the numbers aij = (αi, αj) have the following
properties:

aii > 0 , (1)
aij = aji , (2)
aij ≤ 0 if i 6= j , (3)

2aij/aii ∈ Z . (4)

The symmetric matrix A = (aij) obtained in this way is positive definite.
The algebra L can be reconstructed from the matrix A by the system of

generators and relations used to define L∞,

[ei, fi] = hi, [ei, fj ] = 0 for i 6= j, (5)
[hi, ej ] = aijej , [hi, fj ] = −aijfj , (6)

Ad(ei)nij (ej) = Ad(fi)nij (fj) = 0, for nij = 1− 2aij/aii. (7)

These relations can be used to define a Lie algebra, LA, for any matrix A satisfying
the conditions (1-4). LA is called a (symmetrizable) Kac-Moody algebra. If A is
positive definite, LA is semi-simple and, if A is positive semi-definite, LA is a sum
of affine and finite-dimensional algebras.

Although Kac and Moody only explicitly considered the situation in which
the number of simple roots was finite, the theory of Kac-Moody algebras applies
to algebras which have a infinite number of simple roots. Borcherds and others [1]
showed how to construct such an algebra with simple roots labelled by the points
of the Leech lattice, ΛL. We can conveniently describe ΛL as a subset of the unique
even self-dual lattice, II25,1, in 26-dimensional Lorentzian space, R25,1. II25,1 is the
set of points whose coordinates are all either integers or half odd integers which
have integral inner product with the vector (1

2 , . . . , 1
2 ; 1

2 ) ∈ R25,1, where the norm
of x = (x1, x2, . . . , x25; x0) is x2 = x2

1 + x2
2 + . . . + x2

25 − x2
0.

The vector ρ = (0, 1, 2, . . . , 24; 70) ∈ II25,1 has zero norm, ρ2 = 0; the Leech
lattice can be shown to be isomorphic to the set {x ∈ II25,1 : x · ρ = −1} modulo
displacements by ρ. We can take the representative points for the Leech lattice to
have norm 2 and so obtain an isometric correspondence between ΛL and

{r ∈ II25,1 : r · ρ = −1, r2 = 2}. (8)

Then, with each point r of the Leech lattice, we can associate a reflection
x 7→ σr(x) = x − (r · x)r which is an automorphism of II25,1. Indeed these
reflections σr generate a Weyl group, W , and the whole automorphism group of
II25,1 is the semi-direct product of W and the automorphism group of the affine
Leech lattice, which is the Dynkin/Coxeter diagram of the Weyl group W . To
this Dynkin diagram can be associated an infinite-dimensional Kac-Moody alge-
bra, L∞, generated by elements {er, fr, hr : r ∈ ΛL} subject to the relations (5-7).
Dividing by the linear combinations of the hr which are in the centre reduces its
rank to 26.

The point about Kac-Moody algebras is that they share many of the properties
enjoyed by semi-simple Lie algebras. In particular, we can define a Weyl group,
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W , and for suitable (i.e. lowest weight) representations, there is a straightforward
generalization of the Weyl character formula. For a representation with lowest
weight λ, this generalization, the Weyl-Kac character formula, states

χλ =
∑

w∈W

det(w)w(eρ+λ)

/
eρ

∏
α>0

(1− eα)mα , (9)

where ρ is the Weyl vector, with ρ · r = −r2/2 for all simple roots r, mα is the
multiplicity of the root α, the sum is over the elements w of the Weyl group W ,
and the product is over positive roots α, that is roots which can be expressed as
the sum of a subset of the simple roots with positive integral coefficients.

Considering even just the trivial representation, for which λ = 0 and χ0 = 1,
yields a potentially interesting relation from (9),

∑

w∈W

det(w)w(eρ) = eρ
∏
α>0

(1− eα)mα . (10)

Kac showed that this denominator identity produces the Macdonald identities in
the affine case. Kac-Moody algebras, other than the finite-dimensional and affine
ones, would seem to offer the prospect of new identities generalizing these but the
problem is that in other cases of Kac-Moody algebras, although the simple roots
are known (as for L∞), which effectively enables the sum over the Weyl group to
be evaluated, the root multiplicities, mα, are not known, so that the product over
positive roots cannot be evaluated.

No general simple explicit formula is known for the root multiplicities of L∞
but, using the “no-ghost” theorem of string theory, I. Frenkel established the bound

mα ≤ p24(1− 1
2
α2), (11)

where pk(n) is the number of partitions of n using k colours. This bound is
saturated for some of the roots of L∞ and, where it is not, there is the impression
that that is because something is missing. What seems to be missing are some
simple roots of zero or negative norm. In Kac-Moody algebras all the simple roots
are specified by (1) to be of positive norm, even though some of the other roots
they generate may not be.

3 Vertex Algebras

Motivated by Frenkel’s work, Borcherds introduced in [3] the definition of a vertex
algebra, which could in turn be used to define Lie algebras with root multiplicities
which are explicitly calculable. A vertex algebra is a graded complex vector space,
V =

⊕
n∈Z Vn, together with a “vertex operator”, a(z), for each a ∈ V , which is a

formal power series in the complex variable z,

a(z) =
∑

m∈Z
amz−m−n, for a ∈ Vn, (12)

where the operators am map Vn → Vn−m and satisfy the following properties:
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1. anb = 0 for n > N for some integer N dependent on a and b;
2. there is an operator (derivation) D : V → V such that [D, a(z)] = d

dz a(z);
3. there is a vector 1 ∈ V0 such that 1(z) = 1, D1 = 0;
4. a(0)1 = a;
5. (z− ζ)N (a(z)b(ζ)− b(ζ)a(z)) = 0 for some integer N dependent on a and b.

[We may define vertex operators over other fields or over the integers with more
effort if we wish but the essential features are brought out in the complex case.]

The motivation for these axioms comes from string theory, where the vertex
operators describe the interactions of “strings” (which are to be interpreted as
models for elementary particles). Condition (5) states that a(z) and b(ζ) commute
apart from a possible pole at z = ζ, i.e. they are local fields in the sense of quantum
field theory. A key result is that, in an appropriate sense,

(a(z − ζ)b)(ζ) = a(z)b(ζ) = b(ζ)a(z). (13)

More precisely
∫

0

dζ

∫

ζ

dz (a(z − ζ)b)(ζ)f =
∫

0

dz

∫

0

dζ a(z)b(ζ)f −
∫

0

dζ

∫

0

dz b(ζ)a(z)f.
(14)

where f is a polynomial in z, ζ, z − ζ and their inverses, and the integral over z
is a circle about ζ in the first integral, one about ζ and the origin in the second
integral and a circle about the origin excluding the ζ in the third integral. The
axioms originally proposed by Borcherds [2] were somewhat more complicated in
form and follow from those given here from the conditions generated by (14).

We can associate a vertex algebra to any even lattice Λ, the space V then
having the structure of the tensor product of the complex group ring C(Λ) with
the symmetric algebra of a sum

⊕
n>0 Λn of copies Λn, n ∈ Z, of Λ. In terms

of string theory, this is the Fock space describing the (chiral) states of a string
moving in a space-time compactified into a torus by imposing perodicity under
displacements by the lattice Λ.

The first triumph of vertex algebras was to provide a natural setting for the
Monster group, M . M acts on a graded infinite-dimensional space V \, constructed
by Frenkel, Lepowsky and Meurman, where V \ = ⊕n≥−1V

\
n , and the dimensions

of dim V \
n is the coefficent, c(n) of qn in the elliptic modular function,

j(τ)− 744 =
∞∑

n=−1

c(n)qn = q−1 + 196884q + 21493760q2 + . . . , q = e2πiτ .
(15)

A first thought might have been that the Monster group should be related to the
space VΛL

, the vertex algebra directly associated with the Leech lattice, but VΛL

has a grade 0 piece of dimension 24 and the lowest non-trivial representation of
the Monster is of dimension 196883. V \ is related to VΛL

but is a sort of twisted
version of it; in string theory terms it corresponds to the string moving on an
orbifold rather than a torus.
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The Monster group is precisely the group of automorphisms of the vertex
algebra V \,

ga(z)g−1 = (ga)(z), g ∈ M. (16)

This characterizes M in a way similar to the way that two other sporadic simple
finite groups, Conway’s group Co1 and the Mathieu group M24, can be character-
ized as the automorphism groups of the Leech lattice (modulo −1) and the Golay
Code, respectively.

4 Generalized Kac-Moody Algebras

In their famous moonshine conjectures, Conway and Norton went far beyond the
existence of the graded representation V \ with dimension given by j. Their main
conjecture was that, for each element g ∈ M , the Thompson series

Tg(q) =
∞∑

n=−1

Trace(g|V \
n)qn (17)

is a Hauptmodul for some genus zero subgroup, G, of SL2(R), i.e., if

H = {τ : Im(τ) > 0} (18)

denotes the upper half complex plane, G is such that the closure of H/G is a
compact Riemann surface, H/G, of genus zero with a finite number of points
removed and Tg(q) defines an isomorphism of H/G onto the Riemann sphere.

To attack the moonshine conjectures it is necessary to introduce some Lie
algebraic structure. For any vertex algebra, V , we can introduce [2, 4] a Lie
algebra of operators

L(a) =
1

2πi

∮
a(z)dz = a−h+1, a ∈ Vh . (19)

Closure [L(a), L(b)] = L(L(a)b) follows from (14), but this does not define a Lie
algebra structure directly on V because L(a)b is not itself antisymmetric in a and
b. However, DV is in the kernel of the map a 7→ L(a) and L(a)b = −L(b)a in
V/DV , so it does define a Lie algebra L0(V ) on this quotient [2], but this is not
the most interesting Lie algebra associated with V .

Vertex algebras of interest come with an additional structure, an action of the
Virasoro algebra, a central extension of the Lie algebra of polynomial vector fields
on the circle, spanned by Ln, n ∈ Z and 1,

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm,−n, [Ln, c] = 0, (20)

with L−1 = D and L0a = ha for a ∈ Vh. For VΛ, c = dimΛ, and for V \, c = 24.
The Virasoro algebra plays a central role in string theory. The space of “physical
states” of the string is defined by the Virasoro conditions: let

P k(V ) = {a ∈ V : L0a = ka; Lna = 0, n > 0}, (21)
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the space of physical states is P 1(V ). The space P 1(V )/L−1P
0(V ) has a Lie

algebra structure defined on it (because L−1V ∩ P 1(V ) ⊂ L−1P
0(V )). This can

be reduced in size further using a contravariant form (which it possesses naturally
for lattice theories). The “no-ghost” theorem states that the space of physical
states P 1(V ) has lots of null states and is positive semi-definite for VΛ, where Λ
is a Lorentzian lattice with dim Λ ≤ 26. So we can quotient P 1(V )/L−1P

0(V )
further by its null space with the respect to the contravariant form to obtain a Lie
algebra L(V ).

The results of factoring by the null space are most dramatic when c = 26.
The vertex algebra VL has a natural grading by the lattice L and the “no-
ghost” theorem states that the dimension of the subspace of L(V ) of non-
zero grade α is p24(1 − 1

2α2) if Λ is a Lorentzian lattice of dimension 26 but
pk−1(1 − α2/2) − pk−1(α2/2) if dim Λ = k 6= 26, k > 2. Thus the algebra
L′M = L(VII25,1) saturates Frenkel’s bound, and Borcherds initially named it the
“Monster Lie algebra” because it appeared to be directly connected to the Mon-
ster; it is now known as the “Fake Monster Lie algebra.”

Borcherds [4] had the great insight not only to construct the Fake Monster Lie
algebra, but also to see how to generalize the definition of a Kac-Moody algebra
effectively in order to bring L′M within the fold. What was required was to relax
the condition (1), requiring roots to have positive norm, and to allow them to be
either zero or negative norm. The condition (4) then needs modification to apply
only in the space-like case aii > 0 and the same applies to the condition (7) on
the generators. The only condition which needs to be added is that

[ei, ej ] = [fi, fj ] = 0 if aij = 0. (22)

The closeness of these conditions to those for Kac-Moody algebras means
that most of the important structural results carry over; in particular there is a
generalization of the Weyl-Kac character formula for representations with highest
weight λ,

χλ =
∑

w∈W

det(w)w

(
eρ

∑
µ

ελ(µ)eµ+λ

)/
eρ

∏
α>0

(1− eα)mα , (23)

where the second sum in the numerator is over vectors µ and ελ(µ) = (−1)n if
µ can be expressed as the sum of n pairwise orthogonal simple roots with non-
positive norm, all orthogonal to λ, and 0 otherwise. Of course, putting λ = 0 and
χλ = 1 again gives a denominator formula.

The description of generalized Kac-Moody algebras in terms of generators
and relations enables the theory to be taken over rather simply from that of Kac-
Moody algebras but it is not so convenient as a method of recognising them in prac-
tice, e.g. from amongst the algebras L(V ) previously constructed by Borcherds.
But Borcherds [3] gave an alternative characterization of them as graded algebras
with an “almost postitive definite” contravariant bilinear form. More precisely,
he showed that a graded Lie algebra, L =

⊕
n∈Z Ln, is a generalized Kac-Moody

algebra if the following conditions are satisfied:
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1. L0 is abelian and dimLn is finite if n 6= 0;
2. L possesses an invariant bilinear form such that (Lm,Ln) = 0 if m 6= n;
3. L possesses an involution ω which is −1 on L0 and such that ω(Lm) ⊂ L−m;
4. the contravariant bilinear form 〈L,M〉 = −(L, ω(M)) is positive definite on
Lm for m 6= 0 ;

5. L0 ⊂ [L,L].

This characterization shows that the Fake Monster Lie algebra, L′M , is a
generalised Kac-Moody algebra, and its root multiplicities are known to be given
by p24(1 − 1

2α2), but Borcherds’ theorem establishing the equivalence of his two
definitions does not give a constructive method of finding the simple roots. As
we remarked in the context of Kac-Moody algebras, if we knew both the root
multiplicities and the simple roots, the denominator formula

∑

w∈W

det(w)w

(
eρ

∑
µ

εµ(α)eµ

)
= eρ

∏
α>0

(1− eα)mα (24)

might provide an interesting identity. Borcherds solved [4] the problem of finding
the simple roots, or rather proving that the obvious ones were all that there were,
by inverting this argument. The positive norm simple roots can be identified with
the Leech lattice as for L∞. Writing II25,1 = ΛL⊕II1,1, which follows by uniqueness
or the earlier comments, the ‘real’ or space-like simple roots are {(λ, 1, 1

2λ2 − 1) :
λ ∈ ΛL}. (Here we are using we are writing II1,1 = {(m,n) : m,n ∈ Z} with
(m,n) having norm −2mn.) Light-like simple roots are quite easily seen to be nρ,
where n is a positive integer and ρ = (0, 0, 1). The denominator identity is then
used to prove that there are no other light-like and that there are no time-like
simple roots.

The denominator identity provides a remarkable relation between modular
functions (apparently already known to some of the experts in the subject) which
is the precursor of other even more remarkable identities. If we restrict attention
to vectors (0, σ, τ) ∈ II25,1 ⊗ C, with Im(σ) > 0, Im(τ) > 0, it reads

p−1
∏

m>0,n∈Z
(1− pmqn)c′(mn) = ∆(σ)∆(τ)(j(σ)− j(τ)) (25)

where c′(0) = 24, c′(n) = c(n) if n 6= 0, p = e2πiσ, q = e2πiτ , and

∆(τ)−1 = q−1
∏
n>1

(1− qn)−24 =
∑

n≥0

p24(n)qn−1. (26)

5 Moonshine, the Monster Lie Algebra and Automorphic Forms

The presence of j(σ) in (25) suggests a relationship to the moonshine conjectures
and Borcherds used [5, 6] this as motivation to construct the “real” Monster Lie
Algebra, LM as one with denominator identity obtained by multiplying each side
of (25) by ∆(σ)∆(τ), to obtain the simpler formula

p−1
∏

m>0,n∈Z
(1− pmqn)c(mn) = j(σ)− j(τ). (27)
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This looks like the denominator formula for a generalised Kac-Moody algebra
which is graded by II1,1 and is such that the dimension of the subspace of grade
(m,n) 6= (0, 0) is c(mn), the dimension of V \

mn. It is not difficult to see that
this can be constructed by using the vertex algebra which is the tensor product
V \ ⊗ VII1,1 and defining LM to be the generalised Lie algebra, L(V \ ⊗ VII1,1),
constructed from the physical states.

Borcherds used [5, 6] twisted forms of the denominator identity for LM to
prove the moonshine conjectures. The action of M on V \ provides an action on
V = V \ ⊗ VII1,1 induces an action on the physical state space P 1(V ) and on its
quotient, LM = L(V ), by its null space. The “no-ghost” theorem implies that the
part of LM of grade (m, n), (LM )(m,n), is isomorphic to V \

mn as an M module.
Borcherds adapted the argument he used to establish the denominator identity to
prove the twisted relation

p−1exp
(
−∑

N>0

∑
m>0,n∈Z Tr(gN |V \

mn)pmNqnN/N
)

=
∑

m∈Z Tr(g|V \
m)pm −∑

n∈ZTr(g|V \
n)qn. (28)

These relations on the Thompson series are sufficient to determine them from their
first few terms and to establish that they are modular functions of genus 0.

Returning to the Fake Monster Lie Algebra, the denominator formula given
in (25) was restricted to vectors of the form v = (0, σ, τ) but we consider it for
more general v ∈ II25,1 ⊗ C, giving the denominator function

Φ(v) =
∑

w∈W

det(w)e2πi(w(ρ),v)
∏
n>0

(
1− e2πin(w(ρ),v)

)24

. (29)

This expression converges for Im(v) inside a certain cone (the positive light cone).
Using the explicit form for Φ(v) when v = (0, σ, τ), the known properties of j and
∆ and the fact that Φ(v) manifestly satisfies the wave equation, Borcherds [6, 7, 9]
establishes that Φ(v) satisfies the functional equation

Φ(2v/(v, v)) = −((v, v)/2)12Φ(v). (30)

It also has the properties that

Φ(v + λ) = Φ(v) for λ ∈ II25,1 (31)

and

Φ(w(v)) = det(w)Φ(v) for w ∈ Aut(II25,1)+, (32)

the group of automorphisms of the lattice II25,1 which preserve the time direction.
These transformations generate a discrete subgroup of the group of conformal
transformations on R25,1, which is itself isomorphic to O26,2(R); in fact the dis-
crete group is isomorphic to Aut(II26,2)+. The denominator function for the Fake
Monster Lie algebra defines in this way an automorphic form of weight 12 for the
discrete subgroup Aut(II26,2)+ of O26,2(R)+. This result once obtained is seen not
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to depend essentially on the dimension 26 and Borcherds has developed this ap-
proach of obtaining representations of modular functions as infinite products from
denominator formulae for generalized Kac-Moody algebras to obtain a plethora of
beautiful formulae [7, 9, 11], e.g.

j(τ) = q−1
∏
n>0

(1− qn)c0(n
2) = q−1(1− q)−744(1− q2)80256(1− q3)−12288744 . . . ,

(33)

where f0(τ) =
∑

n c0(n)qn is the unique modular form of weight 1
2 for the group

Γ0(4) which is such that f0(τ) = 3q−3 +O(q) at q = 0 and c0(n) = 0 if n ≡ 2 or
3 mod 4. He has also used these denominator functions to establish results about
the moduli spaces of Enriques surfaces and and families of K3 surfaces [8, 10].

Displaying penetrating insight, formidable technique and brilliant originality,
Richard Borcherds has used the beautiful properties of some exceptional structures
to motiviate new algebraic theories of great power with profound connections with
other areas of mathematics and physics. He has used them to establish outstanding
conjectures and to find new deep results in classical areas of mathematics. This is
surely just the beginning of what we have to learn from what he has created.
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The Work of William Timothy Gowers

Béla Bollobás

It gives me great pleasure to report on the beautiful mathematics of William
Timothy Gowers that earned him a Fields Medal at ICM’98.

Gowers has made spectacular contributions to the theory of Banach spaces,
pure combinatorics, and combinatorial number theory. His hallmark is his excep-
tional ability to attack difficult and fundamental problems the right way: a way
that with hindsight is very natural but a priori is novel and extremely daring.

In functional analysis Gowers has solved many of the best-known and most
important problems, several of which originated with Banach in the early 1930s.
The shock-waves from these results will reverberate for many years to come, and
will dramatically change the theory of Banach spaces. The great success of Gowers
is due to his exceptional talent for combining techniques of analysis with involved
and ingenious combinatorial arguments.

In combinatorics, Gowers has made fundamental contributions to the study of
randomness: his tower type lower bound for Szemerédi’s lemma is a tour de force.
In combinatorial number theory, he has worked on the notoriously difficult problem
of finding arithmetic progressions in sparse sets of integers. The ultimate aim is to
prove Szemerédi’s theorem with the optimal bound on the density that suffices to
ensure long arithmetic progressions. Gowers proved a deep result for progressions
of length four, thereby hugely improving the previous bound. The difficult and
beautiful proof, which greatly extends Roth’s argument, and makes clever use of
Freiman’s theorem, amply demonstrates Gowers’ amazing mathematical power.

1 Banach Spaces

A major aim of functional analysis is to understand the connection between the
geometry of a Banach space X and the algebra L(X) of bounded linear operators
from the space X into itself. In particular, what conditions imply that a space X
contains ‘nice’ subspaces, and that L(X) has a rich structure?

In order to start this global project, over the past sixty years numerous major
concrete questions had to be answered. As Hilbert said almost one hundred years
ago, “Wie überhaupt jedes menschliche Unternehmen Ziele verfolgt, so braucht
die mathematische Forschung Probleme. Durch die Lösung von Problemen stählt
sich die Kraft des Forschers; er findet neue Methoden und Ausblicke, er gewinnt
einen weiteren und freieren Horizont.”

In this spirit, the theory of Banach spaces has been driven by a handful of
fundamental problems, like the basis problem, the unconditional basic sequence
problem, Banach’s hyperplane problem, the invariant subspace problem, the dis-
tortion problem, and the Schröder-Bernstein problem. For over half a century,
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progress with these major problems had been very slow: it is due to Gowers more
than to anybody else that a few years ago the floodgates opened, and with the
solutions of many of these problems the subject now has a ‘spacious, free horizon’.

If a space (infinite-dimensional separable Banch space) X can be represented
as a sequence space then an operator T ∈ L(X) is simply given by an infinite
matrix, so it is desirable to find a basis of the space. A Schauder basis or simply
basis of a space X is a sequence (en)∞n=1 ⊂ X such that every vector x ∈ X has a
unique representation as a norm-convergent sum x =

∑∞
n=1 anen. In 1973, solving

a forty year old problem, Enflo [4] proved that not every separable Banach space
has a basis, so our operators cannot always be given in this simple way. On the
other hand, it is almost trivial that every Banach space contains a basic sequence:
a sequence (xn)∞n=1 that is a basis of its closed linear span.

The relationship between an operator T ∈ L(X) and closed subspaces of X
can also be very involved. In the 1980s Enflo [5] and Read [22] solved in the nega-
tive the invariant subspace problem for Banach spaces, and a little later Read [23]
showed that this phenomenon can arise on a ‘nice’ space as well: he constructed
a bounded linear operator on `1 that has only trivial invariant subspaces.

Although a basis (en)∞n=1 of a space X leads to a representation of the oper-
ators on X as matrices, it does not guarantee that L(X) has a rich structure. For
example, it does not guarantee that L(X) contains many non-trivial projections.
Thus, if x =

∑∞
n=1 anen and εn = 0, 1, then

∑∞
n=1 εnanen need not even converge.

Similarly, a permutation of a basis need not be a basis, and if
∑∞

n=1 anen is con-
vergent and π : N→ N is a permutation then

∑∞
n=1 aπ(n)eπ(n) need not converge.

A basis is said to be unconditional if it does have these very pleasant properties;
equivalently, a basis (en)∞n=1 is unconditional if there is a constant C > 0 such
that, if (an)m

n=1 and (λn)m
n=1 are scalar sequences with |λn| ≤ 1 for all n, then

||
m∑

n=1

λnanen|| ≤ C||
m∑

n=1

anen||.

Also, a sequence (xn)∞n=1 is an unconditional basic sequence if it is an unconditional
basis of its closed linear span. The standard bases of c0 and `p, 1 ≤ p < ∞, are
all unconditional (and symmetric).

An unconditional basis guarantees much more structure than a basis, so it is
not surprising that even classical spaces like C([0, 1]) and L1 fail to have uncon-
ditional bases. However, the fundamental question of whether every space has a
subspace with an unconditional basis (or, equivalently, whether every space con-
tains an unconditional basic sequence) was open for many years, even after Enflo’s
result.

The search for a subspace with an unconditional basis is closely related to the
search for other ‘nice’ subspaces. For example, it is trivial that not every space
contains a Hilbert space, but it is far from clear whether every space contains c0

or `p for some 1 ≤ p < ∞. Indeed, this question was answered only in 1974, when
Tsirelson [28] constructed a counterexample by a clever inductive procedure. This
development greatly enhanced the prominence of the unconditional basic sequence
problem.
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The breakthrough came in the summer of 1991, when Gowers and Maurey [17]
independently constructed spaces without unconditional basic sequences. As the
constructions and proofs were almost identical, they joined forces to simplify the
proofs and to exploit the consequences of the result. The Gowers-Maurey space
XGM is based on a construction of Schlumprecht [25] that eventually enabled
Odell and Schlumprecht [21] to solve the famous distortion problem. Odell and
Schlumprecht constructed a space isomorphic to `2 that contains no subspace al-
most isometric to `2. The main difficulty Gowers and Maurey had to overcome in
order to make use of Schlumprecht’s space XS was that XS itself had an uncon-
ditional basis.

Johnson observed that the proofs could be modified to show that the Gowers-
Maurey space not only has no unconditional basic sequence, but it does not even
have a decomposable subspace either: no subspace of XGM can be written as a topo-
logical direct sum of two (infinite-dimensional) subspaces. Thus the space XGM is
not only the first example of a non-decomposable infinite-dimensional space, but
it is also hereditarily indecomposable. Equivalently, every closed subspace Y of
XGM is such that every projection in L(Y ) is essentially trivial: either its rank or
its corank is finite. To appreciate how exotic a hereditarily indecomposable space
is, note that a space X is hereditarily indecomposable if and only if the distance
between the unit spheres of any two infinite-dimensional subspaces is 0: if Y and
Z are infinite-dimensional subspaces then

inf{||y − z|| : y ∈ Y, z ∈ Z, ||y|| = ||z|| = 1} = 0.

In fact, Gowers and Maurey [16] showed that if X is a complex hereditarily
indecomposable space then the algebra L(X) is rather small. An operator S ∈
L(X) is said to be strictly singular if there is no subspace Y ⊂ X such that the
restriction of S to Y is an isomorphism. Equivalently, S ∈ L(X) is strictly singular
if for every (infinite-dimensional) subspace Y ⊂ X and every ε > 0 there is a vector
y ∈ Y with ||Sy|| < ε||y||.

Theorem. Let X be a complex hereditarily indecomposable space. Then every
operator T ∈ L(X) is a linear combination of the identity and a strictly singular
operator.

Gowers [9] was the first to solve Banach’s hyperplane problem when he constructed
a space with an unconditional basis that is not isomorphic to any of its hyperplanes
or even proper subspaces. The theorem above implies that every complex heredi-
tarily indecomposable space answers Banach’s hyperplane problem since it is not
isomorphic to any of its proper subspaces. In fact, Ferenczi [7] showed that a
complex Banach space X is hereditarily indecomposable if and only if for every
subspace Y ⊂ X, every bounded linear operator from Y into X is a linear com-
bination of the inclusion map and a strictly singular operator. Recently, Argyros
and Felouzis [1] showed that every Banach space contains either `1 or a subspace
that is a quotient of a hereditarily indecomposable space.

It was not by chance that in order to construct a space without an uncondi-
tional basis, Gowers and Maurey constructed a hereditarily indecomposable space.
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112 Béla Bollobás

As shown by the following stunning dichotomy theorem of Gowers [12], having an
unconditional basis or being hereditarily indecomposable are the only two ‘pure
states’ for a space.

Theorem. Every infinite-dimensional Banach space contains an infinite-dimen-
sional subspace that either has an unconditional basis or is hereditarily indecom-
posable.

Gowers based his proof of the dichotomy theorem on a combinatorial game played
on sequences and subspaces. In order to describe this game, we need some
definitions. Given a space X with a basis (en)∞n=1, the support of a vector
a =

∑∞
n=1 anen ∈ X is supp(a) = {n : an 6= 0}. A vector a =

∑∞
n=1 anen

precedes a vector b =
∑∞

n=1 bnen if n < m for all n ∈ supp(a) and m ∈ supp(b). A
block basis is a sequence x1 < x2 < . . . of non-zero vectors, and a block subspace
is the closed linear span of a block basis. For a subspace Y ⊂ X, write

∑
(Y )

for the set of all sequences (xi)n
1 of non-zero vectors of norm at most 1 in Y with

x1 < · · · < xn. Call a set σ ⊂ ∑
(X) large if σ ∩ ∑

(Y ) 6= ∅ for every (infinite-
dimensional) block subspace Y . For a set σ ⊂ ∑

(X) and a sequence ∆ = (δi)∞i=1

of positive reals, the enlargement of σ by ∆ is

σ∆ = {(xi)n
1 ∈

∑
(X) : ||xi − yi|| < δi, 1 ≤ i ≤ n, for some (yi)n

1 ∈ σ}.

And now for the two-player game (σ, Y ) defined by a set σ ⊂ ∑
(X) and a

block subspace Y ⊂ X. The first player, Hider, chooses a block subspace Y1 ⊂ Y ;
the second player, Seeker, replies by picking a finitely supported vector y1 ∈ Y1.
Then Hider chooses a block subspace Y2 ⊂ Y , and Seeker picks a finitely supported
vector y2 ∈ Y2. Proceeding in this way, Seeker wins the (σ, Y )-game if, at any
stage, the sequence (yi)n

1 is in σ. Hider wins if he manages to make the game go
on for ever. Clearly, Seeker has a winning strategy for the (σ, Y ) game if σ is big
when measured by Y .

The combinatorial foundation of Gowers’ dichotomy theorem is then the fol-
lowing result [12].

Theorem. Let X be a Banach space with a basis and let σ ⊂ ∑
(X) be large.

Then for every positive sequence ∆ there is a block subspace Y ⊂ X such that
Seeker has a winning strategy for the (σ∆, Y )-game.

The beautiful proof of this result bears some resemblence to arguments of Galvin
and Prikry [8] and Ellentuck [3] concerning Ramsey-type results for sequences.

Gowers’ dichotomy theorem has been the starting point of much new research
on Banach spaces. For example, it can be used to tackle the still open problem
of classifying minimal Banach spaces. A Banach space is minimal if it embeds
into all of its infinite-dimensional subspaces. Casazza et al [2] used the dichotomy
theorem to show that every minimal Banach space embeds into a minimal Banach
space with an unconditional basis. Hence, a minimal space is either reflexive or
embeds into c0 or `1.

Documenta Mathematica · Extra Volume ICM 1998 · I · 109–118



The Work of William Timothy Gowers 113

The Schröder-Bernstein problem asks whether two Banach spaces are neces-
sarily isomorphic if each is a complemented subspace of the other. In [13] Gowers
gaver the first counterexample, and later with Maurey [16] constucted the following
further examples with even stronger paradoxical properties.

Theorem. For every n ≥ 1 there is a Banach space Xn such that two finite-
codimensional subspaces of Xn are isomorphic if and only if they have the same
codimension modulo n. Also, there is a Banach space Zn such that two product
spaces Zr

n and Zs
n are isomorphic if and only if r and s are equal modulo n.

For n ≥ 2, the space Zn can be used to solve the Schröder-Bernstein problem;
even more, with X = Z3 and Y = Z3 ⊕ Z3 we have Y ⊕ Y = Z4

3
∼= Z3 = X. Thus

not only are X and Y complemented subspaces of each other, but X ∼= Y ⊕Y and
Y ∼= X ⊕X. However, X = Z3 and Y = Z2

3 are not isomorphic.
The last result we shall discuss here is Gowers’ solution of Banach’s homo-

geneous spaces problem. A space is homogeneous if it is isomorphic to all of its
subspaces. Banach asked whether there were any examples other than `2. Gowers
proved the striking result that homogeneity, in fact, characterizes Hilbert space
[12].

Theorem. The Hilbert space `2 is the only homogeneous space.

To prove this, Gowers could make use of results of Szankowski [25], and Ko-
morowski and Tomczak-Jaegermann [19] that imply that a homogeneous space
with an unconditional basis is isomorphic to `2. What happens if X is homoge-
neous but does not have an unconditional basis? By the dichotomy theorem, X has
a subspace Y that either has an unconditional basis or is hereditarily indecompos-
able. Since X ∼= Y and X does not have an unconditional basis, Y is hereditarily
indecomposable. But this is impossible, since a hereditarily indecomposable space
is not isomorphic to any of its proper subspaces, let alone all of them!

2 Arithmetic progressions

In 1936 Erdős and Turán [6] conjectured that, for every positive integer k and
δ > 0, there is an integer N such that every subset of {1, . . . , N} of size at least
δN numbers contains an arithmetic progression of length k. In 1953 Roth [24] used
exponential sums to prove the conjecture in the special case k = 3: this was one of
the results Davenport highlighted in 1958 when Roth was awarded a Fields Medal.
In 1969 Szemerédi found an entirely combinatorial proof for the case k = 4, and
six years later he proved the full Erdős-Turán conjecture. Szemerédi’s theorem
trivially implies van der Waerden’s theorem.

In 1977 Fürstenberg [7] used techniques of ergodic theory to prove not only
the full theorem of Szemerédi, but also a number of substantial extensions of it.
This proof revolutionized ergodic theory.

In spite of these beautiful results, there is still much work to be done on the
Erdős-Turán problem. Write f(k, δ) for the minimal value of N that will do in
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Szemerédi’s theorem. The proofs of Szemerédi and Fürstenberg give extremely
weak bounds for f(k, δ), even in the case k = 4. In order to improve these bounds,
and to make it possible to attack some considerable extensions of Szemerédi’s
theorem, it would be desirable to use exponential sums to prove the general case.

Recently, Gowers [15] set out to do exactly this. He introduced a new notion of
pseudorandomness, called quadratic uniformity and, using techniques of harmonic
analysis, showed that a quadratically uniform set contains about the expected
number of arithmetic progressions of length four. In order to find arithmetic
progressions in a set that is not quadratically uniform, Gowers avoided the use of
Szemerédi’s uniformity lemma or van der Waerden’s theorem, and instead made
use of Weyl’s inequality and, more importantly, Freiman’s theorem. This theorem
states that if for some finite set A ⊂ Z the sum A + A = {a + b : a, b ∈ A} is not
much larger than A then A is not far from a generalized arithmetic progression.
By ingenious and involved arguments Gowers proved the following result [14].

Theorem. There is an absolute constant C such that

f(4, δ) ≤ exp exp exp((1/δ)C).

In other words, if A ⊂ {1, . . . , N} has size at least |A| = δN > 0 and
N ≥ exp exp exp((1/δ)C), then A contains an arithmetic progression of length
4.

The bound in this theorem is imcomparably better than the previous best bounds.
The entirely new approach of Gowers raises the hope that one could prove

the full theorem of Szemerédi with good bounds on f(k, δ). In fact, there is even
hope that Gowers’ method could lead to a proof of the Erdős conjecture that if
A ⊂ N is such that

∑
a∈A 1/a = ∞ then A contains arbitrarily long arithmetic

progressions. The most famous special case of this conjecture is that the primes
contain arbitrarily long arithmetic progressions.

3 Combinatorics

The basis of Szemerédi’s original proof of his theorem on arithmetic progressions
was a deep lemma that has become an extremely important tool in the study of the
structure of graphs. This result, Szemerédi’s uniformity lemma, states that the
vertex set of every graph can be partitioned into boundedly many pieces V1, . . . , Vk

such that ‘most’ pairs (Vi, Vj) are ‘uniform’. In order to state this lemma precisely,
recall that, for a graph G = (V, E), and sets U,W ⊂ V , the density d(U,W ) is
the proportion of the elements (u,w) of U ×W such that uw is an edge of G. For
ε, δ > 0 a pair (U,W ) is called (ε, δ)-uniform if for any U ′ ⊂ U and W ′ ⊂ W with
|U ′| ≥ δ|U | and |W ′| ≥ δ|W |, the densities d(U ′, W ′) and d(U,W ) differ by at
most ε/2.

Szemerédi’s uniformity lemma [27] claims that for all ε, δ, η > 0 there is a
K = K(ε, δ, η) such that the vertex set of any graph G can be partitioned into at
most K sets U1, . . . , Uk of sizes differing by at most 1, such that at least (1− η)k2

of the pairs (Ui, Uj) are (ε, δ)-uniform.
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Loosely speaking, a ‘Szemerédi partition’ V (G) =
⋃k

i=1 Ui is one such that
for most pairs (Ui, Uj) there are constants αij such that if U ′

i ⊂ Ui and U ′
j ⊂ Uj

are not too small then G contains about αij |U ′
i ||U ′

j | edges from U ′
i to U ′

j . In some
sense, Szemerédi’s uniformity lemma gives a classification of all graphs. The main
drawback of the lemma is that the bound K(ε, δ, η) is extremely large: in the case
ε = δ = η, all we know about K(ε, ε, ε) is that it is at most a tower of 2s of
height proportional to ε−5. This is an enormous bound, and in many applications
a smaller bound, say of the type eε−100

would be significantly more useful. As the
lemma is rather easy to prove, it was not unreasonable to expect a bound like this.

It was a great surprise when Gowers [14] proved the deep result that K(ε, δ, η)
is of tower type in 1/δ, even if ε and η are kept large.

Theorem. There are constants c0, δ0 > 0 such that for 0 < δ < δ0 there is a
graph G that does not have a (1/2, δ, 1/2)-uniform partition into K sets, where K
is a tower of 2s of height at most c0δ

−1/16.

It is well known that even exponential lower bounds are hard to come by, let
alone tower type lower bounds, so this is a stunning result indeed! The proof,
which makes use of clever random choices to construct graphs whose small sets
of vertices do not behave like subsets of random graphs, goes some way towards
clarifying the nature of randomness. It also indicates that any proof of an upper
bound for K(ε, δ, η) must involve a long sequence of refinements of partitions, each
exponentially larger than the previous one.

This sketch has been all too brief, and a deeper study of Gowers’ work would
be needed to properly appreciate his clarity of thought and mastery of elaborate
structures. However, I hope that enough has been said to give some taste of
his remarkable mathematical achievements. In the theory of Banach spaces, not
only has he solved many of the main classical problems of the century, but he
has also opened up exciting new directions. In combinatorics, too, he has tackled
some of the most notorious questions, bringing about their solution with the same
exceptional blend of combinatorial power and technical skill. Hilbert would surely
agree that Gowers has given us wider and freer horizons.
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The Work of Maxim Kontsevich

Clifford Henry Taubes

Maxim Kontsevich is known principally for his work on four major problems in
geometry. In each case, it is fair to say that Kontsevich’s work and his view of the
issues has been tremendously influential to subsequent developments. These four
problems are:

• Kontsevich presented a proof of a conjecture of Witten to the effect that a cer-
tain, natural formal power series whose coefficients are intersection numbers
of moduli spaces of complex curves satisfies the Korteweg-de Vries hierarchy
of ordinary, differential equations.

• Kontsevich gave a construction for the universal Vassiliev invariant for knots
in 3-space, and generalized this construction to give a definition of pertuba-
tive Chern-Simons invariants for three dimensional manifolds. In so doing,
he introduced the notion of Graph Cohomology which succinctly summarizes
the algebraic side of the invariants. His constructions also vastly simplified
the analytic aspects of the definitions.

• Kontsevich used the notion of stable maps of complex curves with marked
points to compute the number of rational, algebraic curves of a given degree
in various complex projective varieties. Moreover, Kontsevich’s techniques
here have greatly affected this branch of algebraic geometry. Kontsevich’s
formulation with Manin of the related Mirror Conjecture about Calabi-Yau
3-folds has also proved to be highly influential.

• Kontsevich proved that every Poisson structure can be formally quantized
by exhibiting an explicit formula for the quantization.

What follows is a brief introduction for the non-expert to these four areas of
Kontsevich’s work. Here, I focus almost solely on the contributions of Kontsevich
to the essential exclusion of many others; and I ask to be pardonned for my many
and glaring omissions.

1 Intersection Theory on the Moduli Space of Curves and the Ma-
trix Airy Function [1]

To start the story, fix integers g ≥ 0 and n > 0 which are constrained so
2g + n ≥ 2. That is, the compact surface of genus g with n punctures has neg-
ative Euler characteristic. Introduce the moduli space Mg,n of smooth, compact,
complex curves of genus g with n distinct marked points. This is to say that a

Documenta Mathematica · Extra Volume ICM 1998 · I · 119–126



120 Clifford Henry Taubes

point in Mg,n consists of an equivalence class of tuple consisting of a complex
structure j on a compact surface C of genus g, together with an ordered set
Λ ≡ {x1, . . . , xn} ⊂ C of n points. The equivalence is under the action of the
diffeomorphism group of the surface. This Mg,n has a natural compactification
(known as the Deligne-Mumford compactification) which will not be notationally
distinguished. Suffice it to say that the compactification has a natural fundamen-
tal class, as well as an n-tuple of distinguished, complex line bundles. Here, the
i’th such line bundle, Li, at the point (j, Λ) ∈ Mg,n is the holomorphic cotangent
space at xi ∈ Λ.

With the preceding understood, note that when {d1, . . . , dn} are non-negative
integers which sum to the dimension of Mg,n (which is 3g−3+n). Then, a number
is obtained by pairing the cohomology class

∏

1≤i≤n

ci(Li)di

with the afore-mentioned fundamental class of Mg,n. (Think of representing these
Chern classes by closed 2-forms and then integrating the appropriate wedge prod-
uct over the smooth part of Mg,n.) Using Poincaré duality, such numbers can be
viewed as intersection numbers of varieties on Mg,n and hence the use of this term
in the title of Kontsevich’s article.

As g, n and the integers {d1, . . . , dn} vary, one obtains in this way a slew of
intersection numbers from the set of spaces {Mg,n}. In this regard, it proved con-
venient to keep track of all these numbers with a generating functional. The latter
is a formal power series in indeterminants t0, t1, . . . which is written schematically
as

F (t0, t1, . . . ) =
∑

(k)

〈τk0
0 τk1

1 · · · 〉
∏

i≥0

tki
i

ki!
, (1)

where, (k) signifies the multi-index (k0, k1, . . . ) consisting of non-negative integers
where only finitely many are non-zero. Here, the expression 〈τk0

0 τk1
1 · · · 〉 is the

number which is obtained as follows: Let

n = k1 + k2 + . . . , and g = 1
3 (2(k1 + 2k2 + 3k3 + . . . )− n) + 1 .

If g is not a positive integer, set 〈τk0
0 τk1

1 · · · 〉 = 0. If g is a positive integer, construct
on Mg,n the product of c1(Lj) for 1 ≤ j ≤ k1 times the product of c1(Lj)2 for
k1 + 1 ≤ j ≤ k1 + k2 times . . . etc.; and thus construct a form whose dimension is
3g− 3 + n, which is that of Mg,n. Finally, pair this class on the fundamental class
of Mg,n to obtain 〈τk0

0 τk1
1 · · · 〉.

By comparing formal properties of two hypothetical quantum field theories,
E. Witten was led to conjecture that the formal series U ≡ ∂2F/∂t20 obeys the
classical KdV equation,

∂U

∂t1
= U

∂U

∂t0
+

1
12

∂3U

∂t30
. (2)
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(As U is a formal power series, this last formula can be viewed as a conjectural
set of relations among the intersection numbers which appear in the definition of
F in (1).)

Kontsevich gave the proof that U obeys this KdV equation. His proof of
Equation (2) is remarkable if nothing else then for the fact that he gives what is
essentially an explicit calculation of the intersection numbers {〈τk0

0 τk1
1 · · · 〉}. To

this end, Kontsevich first introduces a model for Mg,n based on what he calls
ribbon graphs with metrics. (A ribbon graph is obtained from a 3-valent graph by
more or less thickening the edges to bands. They are related to Riemann surfaces
through the classical theory of quadratic differentials.) With an explicit, almost
combinatorial model for Mg,n in hand, Kontsevich proceeds to identify the classes
c1(Lj) directly in terms of his model. Moreover, this identification is sufficiently
direct to allow for the explicit computation of the integrals for {〈τk0

0 τk1
1 · · · 〉}. It

should be stressed here that this last step involves some extremely high powered
combinatorics. Indeed, many of the steps in this proof exhibit Kontsevich’s unique
talent for combinatorical calculations. In any event, once the coefficients of U are
obtained, the proof ends with an identification of the expression for U with a
novel expansion for certain functions which arises in the KdV story. (These are
the matrix Airy functions referred to at the very start of this section.)

2 Feynman diagrams and low dimensional topology [2]

From formal quantum field theory arguments, E. Witten suggested that there
should exist a family of knot invariants and three manifolds invariants which can
be computed via multiple integrals over configuration spaces. Kontsevich gave an
essentially complete mathematical definition of these invariants, and his ideas have
profoundly affected subsequent developments.

In order to explain, it proves useful to first digress to introduce some basic
terminology. First of all, the three dimensional manifolds here will be all taken
to be smooth, compact and oriented, or else Euclidean space. A knot in a three
manifold is a connected, 1-dimensional submanifold, which is to say, the embedded
image of the circle. A link is a finite, disjoint collection of knots. A knot or link
invariant is an assignment of some algebraic data to each knot or link (for example,
a real number), where the assignments to a pair of knots (or links) agree when one
member of the pair is the image of the other under a diffeomorphism of the ambient
manifold. (One might also restrict to diffeomorphisms which can be connected by
a path of diffeomorphisms to the identity map.)

A simple example is provided by the Gauss linking number an invariant of
links with two components which can be computed as follows: Label the compo-
nents as K1 and K2. A point in K1 together with one in K2 provides the directed
vector from the former to the latter, and thus a point in the 2-sphere. Since both
K1 and K2 are copies of the circle, this construction provides a map from the
2-torus (the product of two circles) to the 2-sphere. The Gauss linking number is
the degree of this map. (The invariance of the degree under homotopies implies
that this number is an invariant of the link.) Alternately, one can introduce the
standard, oriented volume form ω on the 2-sphere, and then the Gauss linking
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number is the integral over the K1 ×K2 of the pull-back of the form ω.
Witten conjectured the existence of a vast number of knot, link and 3-manifold

invariants of a form which generalizes this last formula for the Gauss linking num-
ber. Independently of Kontsevich, significant work towards constructing these in-
variants for knots and links had been carried out by Bar-Natan, Birman, Garoufa-
lidis, Lin, and Guadagnini-Martinelli-Mintchev. Meanwhile, Axelrod and Singer
had developed a formulation of the three-manifold invariants.

In any event, what follows is a three step sketch of Kontsevich’s formulation
for an invariant of a three-manifold M with vanishing first Betti number.

Step 1: The invariants in question will land in a certain graded, abelian group
which is constructed from graphs. Kontsevich calls these groups “graph cohomol-
ogy groups.” To describe the groups, introduce the set G0 of pairs consisting of a
compact graph Γ with only three-valent vertices and a certain kind of orientation
o for Γ. To be precise, o is an orientation for

(
⊕

edges(Γ)

R)⊗H1(Γ) .

Note that isomorphisms between such graphs pull back the given o. Thus, one can
think of G0 as a set of isomorphism classes. Next, think of the elements of G0 as
defining a basis for a vector space over Z where consistency forces the identification
of (Γ,−o) with −(Γ, o).

One can make a similar definition for graphs where all vertices are three valent
save for one four valent vertex. The resulting Z-module is called G1. In fact, for
each n ≥ 0 there is a Z-module Gn which is constructed from graphs with all
vertices being at least 3-valent, and with the sum over the vertices of (valence −3)
equal to n.

With the set {Gn}n≥0 more or less understood, remark that there are nat-
ural homomorphisms ∂ : Gn → Gn+1 which obey ∂2 = 0. Indeed, ∂ is defined
schematically as follows:

∂(Γ, o) =
∑

e∈edges(Γ)

(Γ/e, induced orientation from o) .

Here, Γ/e is the graph which is obtained from Γ by contracting e to a point. The
induced orientation is quite natural and left to the reader to work out. In any
event, with ∂ in hand, the modules {Gn} define a differential complex, whose
cohomology groups are

GC∗ ≡ kernel(∂ : G∗ → G∗+1)/ Image(∂ : G∗−1 → G∗) . (3)

This is ‘graph cohomology’. For the purpose of defining 3-manifold invariants,
only GC0 is required.

Step 2: Fix a point p ∈ M and introduce in M ×M the subvariety

Σ = (p×M) ∪ (M × p) ∪∆ ,

where ∆ denotes the diagonal. A simple Meyer-Vietoris argument finds closed
2-forms on M × M − Σ which integrate to 1 on any linking 2-sphere of any of
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the three components of Σ. Moreover, there is such a form ω with ω ∧ ω = 0
near Σ. In fact, near Σ, this ω can be specified almost canonically with the choice
of a framing for the tangent bundle of M . (The tangent bundle of an oriented
3-manifold can always be framed. Furthermore, Atiyah essentially determined a
canonical frame for TM .) Away from Σ, the precise details of ω are immaterial.
In any event, fix ω using the canonical framing for TM .

With ω chosen, consider a pair (Γ, o) from G0. Associate to each vertex of
Γ a copy of M , and to each oriented edge e of Γ, the copy of M ×M where the
first factor of M is labeled by the staring vertex of e, and the second factor by the
ending vertex. Associate to this copy of M ×M the form ω, and in this way, the
edge e labels a (singular) 2-form ωe on ×vertices(Γ)M .

Step 3: At least away from all versions of the subvariety Σ, the
forms {ωe}e∈edges(Γ) can be wedged together to give a top dimensional form∏

e∈edges(Γ) ωe, on ×v∈vertices(Γ)M . It is a non-trivial task to prove that this form
is integrable. In any event, the assignment of this integral to the pair (Γ, o) gives
a Z-linear map from G0 to R. The latter map does not define an invariant of
M from the pair (Γ, o) as there are choices involved in the definition of ω, and
these choices effect the value of the integral. However, Kontsevich found a Stokes
theorem argument which shows that this map from G0 to R descends to the kernel
of ∂ as an invariant of M . That is, these graph-parameterized integrals define a
3-manifold invariant with values in the dual space (GC0)∗. (A recent paper by
Bott and Cattaneo has an exceptionally elegant discussion of these points.)

Kontsevich’s construction of 3-manifold invariants completely separates the
analytic issues from the algebraic ones. Indeed, the module GC0 encapsulates all
of the algebra; while the analysis, as it were, is confined to issues which surround
the integrals over products of M . In particular, much is known about GC0; for
example, it is known to be highly non-trivial.

Kontsevich has a similar story for knots which involves integrals over con-
figuration spaces that consist of points on the knot and points in the ambient
space. Here, there is a somewhat more complicated analog of graph cohomology.
In the case of knots in 3-sphere, Kontsevich’s construction is now known to give
all Vassiliev invariant of knots.

In closing this section, it should be said that Kontsevich has a deep un-
derstanding of these and related graph cohomology in terms of certain infinite
dimensional algebras [3].

3 Enumeration of rational curves via torus actions [4]

The general problem here is as follows: Suppose X is a compact, complex algebraic
variety in some complex projective space. Fix a 2-dimensional homology class
on X and ‘count’ the number of holomorphic maps from the projective line P1

into X which represent the given homology class. To make this a well posed
problem, maps should be identified when they have the same image in X. The
use of quotes around the word count signifies that further restrictions are typically
necessary in order to make the problem well posed. For example, a common
additional restriction fixes some finite number of points in X and requires the
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maps in question to hit the given points.
These algebro-geometric enumeration problems were considered very difficult.

Indeed, for the case where X = P2, the answer was well understood prior to
Kontsevich’s work only for the lowest multiples of the generator of H2(P2;Z).
Kontsevich synthesized an approach to this counting problem which has been
quickly adopted by algebraic geometers as the method of choice. Of particular
interest are the counts made by Kontsevich for the simplest case of X = P2 and
for the case where X is the zero locus in P4 of a homogeneous, degree 5 polynomial.
(The latter has trivial canonical class which is the characterization of a Calabi-Yau
manifold.)

There are two parts to Kontsevich’s approach to the counting problem. The
first is fairly general and is roughly as follows: Let V be a compact, algebraic vari-
ety and let β denote a 2-dimensional homology class on V . Kontsevich introduces
a certain space M of triples (C, x, f) where C is a connected, compact, reduced
complex curve, while x = (x1, . . . , xk) is a k-tuple of pairwise distinct points on
C and f : C → V is a holomorphic map which sends the fundamental class of C
to β. Moreover, the associated automorphism group of f is suitably constrained.
(Here, k could be zero.) This space M is designed so that its compactification is a
reasonable, complex algebraic space with a well defined fundamental class. (This
compactification covers, in a sense, the oft used Deligne-Mumford compactification
of the space of complex curves with marked points.) The utilization of this space
M with its compactification is one key to Kontsevich’s approach. In particular,
suppose X ⊂ V is an algebraic subvariety. Under certain circumstances, the prob-
lem of counting holomorphic maps from C into X can be computed by translating
the latter problem into that of evaluating the pairing of M ’s fundamental class
with certain products of Chern classes on M . The point here is that the condition
that a map f : C → V lie in X can be reinterpreted as the condition that the
corresponding points in M lie in the zero locus of a certain section of a certain
bundle over M .

With these last points understood, Part 2 of Kontsevich’s approach exploits
the observation that V = Pn has a non-trivial torus action. Such an action in-
duces one on M and its compactification. Then, in the manner of Ellingsrud and
Stromme, Kontsevich uses one of Bott’s fixed point formulas to obtain a formula
for the appropriate Chern numbers in various interesting examples.

4 Deformation quantization of Poisson manifolds

This last subject comes from very recent work of Kontsevich, so the discussion here
will necessarily be brief. A ‘Poisson structure’ on a manifold X can be thought of
as a bilinear map

B1 : C∞(X)⊗ C∞(X) → C∞(X)

which gives a Lie algebra structure to C∞(X). In particular, B1 sends a pair
(f, g) to 〈α, df ∧dg〉 where α is a non-degenerate section of Λ2TX which satisfies a
certain quadratic differential constraint. The problem of quantizing such a Poisson
structure can be phrased as follows: Let h be a formal parameter (think Planck’s
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constant). Find a set of bi-differential operators B2, B3, . . . so that

f ∗ g ≡ fg + h ·B1(f, g) + h2 ·B2(f, g) + . . .

defines an associative product taking pairs of functions on X and returning a
formal power series with C∞(X) valued coefficients. (A bi-differential operator
acts as a differential operator on each entry separately.) Kontsevich solves this
problem by providing a formula for {B2, B3, . . . } in terms of B1. The solution has
the following remarkable form

f ∗ g =
∑

0≤n≤∞
hn

∑

Γ∈G[n]

ωΓBΓ,α(f, g) ,

where

• G[n] is a certain set of (n(n + 1))n labeled graphs with n + 2 vertices and n
edges.

• BΓ,α is a bi-differential operator whose coefficients are constructed from mul-
tiple order derivatives of the given α by a rules which come from the graph
Γ.

• ωΓ is a number which is obtained from Γ by integrating a certain Γ-dependent
differential form over the configuration space of n distinct points in the upper
half plane.

The details can be found in [5].
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The Work of Curtis T. McMullen

Steve Smale

Curtis T. McMullen has been awarded the Fields Medal for his work in dynamics
as well as for his contributions to the theory of computation, complex variables,
geometry of three manifolds, and other areas of mathematics. I limit myself here
to a brief discussion of some of his results.

The search for understanding of solutions of a polynomial equation has had a
central and glorious place in the history of mathematics. Already the ancient Greek
mathematicians had approximated the square root of two, i.e., the solution of
x2 = 2 by what is now called Newton’s Method. Providing a solution for equations
such as x2 + 1 = 0 led to the introduction of complex numbers in mathematics.
Group theory was introduced to understand which polynomial equations could be
solved in terms of radicals. Earlier there had been such formulas for degrees 2
(the quadratic formula taught in high school), 3 and 4. For degrees greater than
4 there are no such formulae.

Instead of formulae, algorithms have been developed which produce (perhaps
by complex routines) a sequence of better and better approximations to a solution
of a general polynomial equation. In the most satisfactory case, iteration of a
single map, Newton’s Method, converges to a zero for almost all quadratic poly-
nomials and initial points; it is a “generally convergent algorithm.” But for degree
3 polynomials it converges too infrequently.

Thus I was led to raise the question as to whether there existed for each degree
such a generally convergent algorithm which succeeds for all polynomial equations
of that degree.

McMullen answers this question in his thesis, under Dennis Sullivan, where
he shows that no such algorithm exists for polynomials of degree greater than 3,
and for polynomials of degree 3 he produces a new algorithm which does converge
to a solution for almost all polynomials and initial points.

Thus McMullen “finished the job” since this work answers, in degree 3, “yes,”
and degree greater than three, “no;” it is complete. This indicates his depth of
understanding of the situation and is characteristic of his later work.

For the proof of his result McMullen establishes a rigidity theorem for full
families of rational maps of C into C with no attracting cycles other than fixed
points. Members of such families are conjugate by a linear fractional (Moebius)
transformation. The attracting cycles condition is implied by the general conver-
gence.

One obtains radicals by Newton’s method applied to the polynomial

f(x) = xd − a ,
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starting from any initial point. In this way solution by radicals can be seen as a
special case of solution by generally convergent algorithms. This fact led Doyle and
McMullen to extend Galois Theory for finding zeros of polynomials. This exten-
sion uses McMullen’s thesis together with the composition of generally convergent
algorithms (a “tower”) and the introduction of finite Moebius groups.

They showed that the zeros of a polynomial could be found by a tower if and
only if its Galois group is nearly solvable, extending the notion of solvable with
the inclusion of the Moebius group A5 (the alternating group). As a consequence,
for polynomials of degree bigger than 5 no tower will succeed.

For degree 5, Doyle and McMullen construct an algorithm following some
ideas dating to Felix Klein’s famous lectures on the quintic and the icosahedron,
and using the classical theory of invariant polynomials. Thus the power of the
tower of generally convergent algorithms is found. Quite beautiful!

T. Y. Li and Jim Yorke introduced the word “chaos” into dynamics in con-
nection with the map of population biology,

Lr : [0, 1] → [0, 1] , Lr(x) = rx(1− x) .

Bob May had been intrigued by this map because there was an infinite sequence
of period doubling parameters ri converging to s = 3.57....

Soon thereafter, Mitch Feigenbaum’s work (with similar results due to Coullet-
Tresser) demonstrating the universality properties of this map, helped establish the
acceptance by physicists of the new discipline of dynamical systems. The sequence
(ri − ri−1)/(ri+1 − ri) has a limit, a number which is independent of the period
doubling map! Key to Feigenbaum’s work was the concept of renormalization and
the convergence of the renormalizations of an iterate of the Feigenbaum map Ls

to a fixed point F of the renormalization operator.
Let us see what renormalization means for the second iterate L2 of L = Lr

for some 2 < r < 4. So L([0, 1]) ⊂ [0, 1] as above, and L has a second fixed point
q = (r − 1)/r. Define p by the conditions 0 < p < q and L(p) = q. Thus L2 acts
on [p, q] (with a sign reversal) something like L on [0, 1]. If L2([p, q]) ⊂ [p, q] the
conditions for renormalization are present. Let A be the map Ax = (x−q)/(p−q),
sending [p, q] onto [0, 1]. The renormalized L2 is given by RL(x) = AL2A−1(x),
where R is the renormalization operator acting on L.

For certain r one may be able to repeat this process. If one can do it indef-
initely then L is called infinitely renormalizable. This is a very special situation
but occurs for the Feigenbaum map Ls above.

Lanford found computer assisted proofs of the conjectures of Feigenbaum and
subsequently Sullivan put them into a broader, detailed, conceptual framework,
finding important relations between 1-dimensional dynamics and parts of classical
function theory as Kleinian groups.

Yet the proof of fast (exponential) convergence of the renormalizations, a
basic ingredient in this program, was missing until McMullen’s beautiful work
was published in the second of his two Annals of Math Studies in 1996. The
fast convergence was necessary to yield the crucial rigidity of the theory (“C1+α

conjugacy”).
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With the notation as above, McMullen’s result for the Feigenbaum map may
be expressed by the estimate:

∣∣RkLs(x)− F (x)
∣∣ < cβk , β < 1 .

Complex one dimensional dynamics is the study of the iterates of a polynomial
map P : C → C . This has become the most advanced and the most technical part
of dynamics. Yet one simple problem may be singled out as giving some focus to
this subject.

Among polynomial maps of a given degree d, are the hyperbolic ones dense?
A polynomial is called hyberbolic (sometimes axiom A), if the orbits of its critical
points tend under time to an attracting cycle (“including infinity”).

I naively gave this as a thesis problem in the 1960’s. Today it is still unsolved
even for d = 2, but there are a number of partial results.

Quadratic dynamics may be studied for polynomials in the normalized form

Pc(z) = z2 + c

with parameter c ∈ C . The unique critical point is zero and if it tends to ∞ under
iteration, the dynamics is well understood in terms of symbolic dynamics. The
Mandelbrot set M is defined as the set of c ∈ C for which this is not the case.
This often pictured set can be thought of as a “tree with fruit,” the fruit being
the components of its interior. McMullen proves in the first of his Annals of Math
Studies:

If c is in a component of the interior of the Mandelbrot set which meets the
real axis, then Pc is hyperbolic.

As McMullen writes, “if one runs the real axis through M , then all the fruit
which is skewered is good.”

Earlier Yoccoz had done an important special case, and I am ignoring here
much other earlier fundamental work in complex (and real) dynamics such as
Fatou, Julia, Douady and Hubbard. I am also ignoring the later work of Lyubich
and Graczyk-Swiatek.

Again the ideas of renormalization play a big role in the proof but now in the
context of complex maps.

To describe more precisely these ideas, the idea of a quadratic-like map is
useful. A quadratic polynomial map C → C is a proper map of degree 2. A
holomorphic proper map f : U → V of degree 2, with the closure of U a compact
subset of V , and having a critical point q in U , is called quadratic-like. Here U, V
are supposed simply connected open sets of the complex numbers. For example,
an iterate of a quadratic polynomial restricted to an appropriate neighborhood of
its critical point is often quadratic like. If moreover, the critical point of f doesn’t
escape (all the iterates of q are well defined), then according to Douady-Hubbard,
this map is topologically conjugate to a quadratic map of the form Pc(z) = z2 + c,
for some c in the Mandelbrot set M .

The map Pc(z) = z2 + c with c ∈ M is said to be renormalizable if Pn
c is

quadratic-like, the critical point 0 ∈ U and 0 doesn’t escape. Pc is called infinitely
renormalizable if there are infinitely many values of such n. For the problem of
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density of hyperbolic polynomials in degree two, the case of finitely renormalizable
points had been dealt with earlier by Yoccoz. McMullen’s work is on the problem
of infinitely renormalizable points in M . It contains an intricate analysis of the
dynamics of these maps.

Moreover in these two books McMullen establishes new results in complex
function theory and the geometry of 3-manifolds.

Another important result of McMullen is his proof of Kra’s “Theta conjec-
ture.” Let X be a compact Riemann surface with a finite number of points re-
moved and its associated Riemannian curvature constant at −1, in other words
a hyperbolic surface. Its universal covering, ∆ → X, has as its group of cover-
ing transformation, G, the fundamental group of X. Let Q(∆) be the space of
holomorphic quadratic differentials φ with finite norm given by ||φ|| =

∫ |φ| and
similarly define Q(X). To φ ∈ Q(∆) one may associate Θφ ∈ Q(X) by the formula
Θφ =

∑
g∗φ, the sum being over the elements g of G. This is well defined since

the sum is G-invariant. The sum is the Poincaré series.
It is easily shown that the norm of this operator Θ is less than or equal to

one. Kra’s conjecture and McMullen’s theorem asserts that in fact ||Θ|| is strictly
less than one. But McMullen proves much more. For a general class of coverings
Y → X of Riemann surfaces he characterizes those for which his conclusion is true
(in terms of “amenable” covers).

Armed with this work on Kra’s conjecture, he is able to make a substantial
contribution to Thurston’s program of introducing hyperbolic structures for a large
class of 3-manifolds.

I have given a brief glimpse of what Curt McMullen has accomplished, but
would like to emphasize that his work has encompassed a large realm of the kind
of mathematics that lies at the cross-section of many paths of our rich culture.
McMullen is not a dynamicist, not an analyst nor a geometer. He is a mathemati-
cian.
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The Work of Peter W. Shor

Ronald Graham

Much of the work of Peter Shor has a strong geometrical flavor, typically coupled
with deep ideas from probability, complexity theory or combinatorics, and always
woven together with brilliance and insight of the first magnitude. Due to the space
limitations of this note, I will restrict myself to brief descriptions of just four of
his remarkable achievements, (unfortunately) omitting discussions of his seminal
work [8] on randomized incremental algorithms (of fundamental importance in
computational geometry) and his provocative results in computational biology on
self-assembling virus shells.

1 Two-dimensional discrepancy, minimax grid matchings and online
bin packing

The minimax grid matching problem is a fundamental combinatorial problem aris-
ing the the average case analysis of algorithms. To state it, we consider a square S
of area N in the plane, and a regularly spaced

√
N×√N array G (=grid) of points

in S. Let P be a set of N points selected independently and uniformly in S. By a
perfect matching of P to G we mean a 1 - 1 map λ : P → G. For each selection P ,
define L(P ) = minλ maxp⊂P d(p, λ(p)), where λ ranges over all perfect matchings
of P to G, and d denotes Euclidean distance.

Theorem [Shor [24], Leighton/Shor [21]]
With very high probability,

E(L(P )) = Θ((logN)3/4)

The proof is very intricate and ingenious, and contains a wealth in new ideas which
have spawned a variety of extensions and generalizations, notably in the work of
M. Talagrand [30] on majorizing measures and discrepancy.

A classical paradigm in the analysis of algorithms is the so-called bin packing
problem [10], in which a list W = (w1, w2, . . . , wn) of “weights” is given, and
we are to required to pack all the wi into “bins” with the constraint that no bin
can contain a weight total of more than 1. Since it is NP-hard to determine the
minimum number of bins which W requires for a successful packing
( or even to decide if this minimum number is 2!), extensive efforts have been made
for finding good approximation algorithms for producing near-optimal packings.

In the Best Fit algorithm, after the first i weights are packed, the next weight
wi+1 is placed into the bin in which it fits best, i.e., so that the unused space
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in that bin is less than it would be in any other bin. (This is actually an online
algorithm). In his thesis [23] , Shor proved the very surprising (and deep) result
that when the wi are chosen uniformly at random from [0, 1], then with very high
probability, the amount of wasted space has size Θ(n1/2(log n)3/4) .

An “up-right” region R = R(f) of the square S is defined as the region in S
lying above some continuous monotonically non-increasing function f (e.g., S is
itself up-right). If P is a set of N points chosen uniformly and independently at
random in S, we can define the discrepancy ∆(R) = || R∩P | − area(R) | . An old
problem in mathematical statistics (from the 1950’s; see [5]) was the estimation of
supR ∆(R) over all up-right regions of S. This was finally answered by Leighton
and Shor in [24, 21], and it is now known that

sup
R

∆(R) = Θ(N1/2(log N)3/4)).

The preceding results give just a hint of the numerous applications these
fertile techniques have found to such diverse areas as pseudo-random number gen-
eration, dynamic storage allocation, wafer-scale integration and two-dimensional
bin packing (see [9, 20, 17]).

2 Davenport-Schinzel Sequences

A Davenport-Schinzel sequence DS(n, s) is a sequence U = (u1, u2, ..., um) com-
posed of n distinct symbols such that ui 6= ui+1 for all i, and such that U con-
tains no alternating subsequence of length s + 2, i.e., there do not exist indices
i1 < i2 < . . . < is+2 such that ui1 = ui3 = ui5 = . . . = a 6= b = ui2 = ui4 = . . . .
We define

λS(n) = max{m : (u1, . . . , um) is a DS(n, s)− sequence}.

Davenport-Schinzel sequences have turned out to be of central importance in com-
putational and combinatorial geometry, and have found many applications in such
areas as motion planning, visibility, Voronoi diagrams and shortest path algo-
rithms. It is known that DS(n, s)-sequences provide a combinatorial character-
ization of the lower envelope of n continuous univariate functions, each pair of
which intersect in at most s points. Hence, λs(n) is just the maximum number of
connected components of the graphs of such functions, and accurate estimates of
λs(n) can often be translated into sharp bounds for algorithms which depend on
function minimization. It is trivial to show that λ1(n) = n and λ2(n) = 2n − 1.
The first surprise came when it was shown [15] that λ3(n) = Θ(nα(n)) where
α(n) is defined to be the functional inverse of the Ackermann function A(t), i.e.,
α(n) := min{t : A(t) ≥ n}. Note that α(n) is an extremely slowly growing function
of n since A is defined as follows:

A1(t) = 2t, t ≥ 1 , and Ak(t) = Ak−1(Ak(t− 1)) , k ≥ 2, t ≥ 2 .

Thus, A2(t) = 2t, A3(t) is an exponential tower of n 2’s, and so on. Then A(t)
is defined to be At(t). The best bounds for λs(n), s > 3 in [15] were rather
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weak. This was remedied in [1] where Shor and his coauthors managed to show by
extremely delicate and clever techniques that λ4(n) = Θ(n2α(n)). Thus, DS(n, 4)-
sequences can be much longer than DS(n, 3)-sequences (but are still only slightly
non-linear). In addition, they also obtained almost tight bounds on all other
λs(n), s > 4.

3 Tiling Rn with cubes

In 1907, Minkowski made the conjecture (in connection with his work on extremal
lattices) that in any lattice tiling of Rn with unit n-cubes, there must be two cubes
having a complete facet ( = (n − 1)-face) in common. This was generalized by
O. Keller [18] in 1930 to the conjecture that any tiling of Rn by unit n-cubes
must have this property. This was confirmed by Perron [22] in 1940 for n ≤ 6,
and shortly thereafter, Hajós [14] proved Minkowski’s original conjecture for all
n. However, in spite of repeated efforts, no further progress was made in proving
Keller’s conjecture for the next 50 years. Then in 1992, Shor struck. He showed
(with his colleague J. Lagarias) that in fact Keller’s conjecture is false for all
dimensions n ≥ 10. They managed to do this with an very ingenious argument
showing that certain special graphs suggested by Corrádi and Szabó [11] of size 4n,
must always have cliques of size 2n (contrary to the prevailing opinions then), from
which it followed that Keller’s conjecture must fail for Rn . The reader is referred
to [19] for the details of this combinatorial gem, and to [29] for a fascinating history
of this problem. I might point out that this is another example of an old conjecture
in geometry being shattered by a subtle combinatorial construction, an earlier one
being the recent disproof of the Borsuk conjecture by Kahn and Kalai [16]. It is
still not known what the truth for Keller’s conjecture is when n = 7, 8, or 9.

4 Quantum computation

It has been generally believed that a digital computer (or more abstractly, a Turing
machine) can simulate any physically realizable computational device. This, in
fact is the thrust of the celebrated Church - Turing thesis. Moreover, it was also
assumed that this could always be done in an efficient way, i.e., involving at most
a polynomial expansion in the time required. However, it was first pointed out by
Feynman [13] that certain quantum mechanical systems seemed to be extremely
difficult (in fact, impossible) to simulate efficiently on a standard (von Neumann)
computer. This led him to suggest that it might be possible to take advantage of
the quantum mechanical behavior of nature itself in designing a computer which
overcame these difficulties. In fact, in doing so, such a “quantum” computer might
be able to solve some of the classical difficult problems much more efficiently as
well. These ideas were pursued by Benioff [4], Deutsch [12], Bennett [2] and
others, and slowly, a model of quantum computation began to evolve. However,
the first bombshell in this embryonic field occurred when Peter Shor [25, 26] in
1994 announced the first significant algorithm for such a hypothetical quantum
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computer, namely a method for factoring an arbitrary composite integer N in

c(log N)2 log log N log log log N

steps. This should be contrasted with the best current algorithm on (classical)
digital computers whose best running time estimates grow like

exp(cN1/3(log N)2/3).

Of course, no one has yet ruled out the possibility that a polynomial-time factoring
algorithm exists for classical computers (cf. the infamous P vs. NP problem), but
it is felt by most knowledgeable people that this is extremely unlikely. In the
same paper, Shor also gives a polynomial-time algorithm for a quantum computer
for computing discrete logarithms, another (apparently) intractable problem for
classical computers.

There is not space here to describe these algorithms in any detail, but a few
remarks may be in order. In a classical computer, information is represented by
binary symbols 0 and 1 (bits). An n-bit memory can exist in any of 2n logical
states. Such computers also manipulate this binary data using functions like the
Boolean AND and NOT. By contrast, a quantum bit or “qubit” is typically a
microscopic system such as an electron (with its spin) or a polarized photon. The
Boolean states 0 and 1 are represented by (reliably) distinguishable states of the
qubit, e.g., |0〉 ↔ spin 1

2 and |1〉 ↔ spin − 1
2 . However, according to the laws of

quantum mechanics, the qubit can also exist in a continuum of intermediate states,
or “superpositions”, α|0〉 + β|1〉 where α and β are complex numbers satisfying
|α|2 + |β|2 = 1.

More generally, a string of n qubits can exist in any state of the form

ψ =
11...1∑

x=00...0

ψx|x〉

where the ψx are complex numbers such that
∑

x |ψx|2 = 1. In other words, a quan-
tum state of n qubits is represented by a unit vector in a 2n-dimensional complex
Hilbert space, defined as the tensor product of the n copies of the 2-dimensional
Hilbert space representing the state of a single qubit. It is the exponentially large
dimensionality of this space which distinguishes quantum computers from classical
computers. Whereas the state of a classical system can be completely described by
separately specifying the state of each part, the overwhelming majority of states
in a quantum computer are “entangled,” i.e., not representable as a direct product
of the states of its individual qubits. As stated in [3], “the ability to preserve and
manipulate entangled states is the distinguishing feature of quantum computers,
responsible both for their power and for the difficulty in building them.”

The crux of Shor’s factoring algorithm (after reducing the problem of factoring
N to that of determining for a random X coprime to N , the order of X(modulo N),
is a brilliant application of the discrete Fourier transform in such a way as to have
all the incorrect candidate orders (quantum mechanically) cancel out, leaving only
(multiples) of the correct order of X appearing (with high probability) when the
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output is finally measured. I heartily recommend that the reader consult the paper
of Shor in this Volume, or [26, 31] for more details.

Of course, complicated quantum systems are delicate creatures and any sub-
stantial interaction with the external environment can cause rapid “decoherence,”
which then can result in the system collapsing to some classical state, thereby
prematurely terminating the ongoing computation. This was the basis for the
strong initial skepticism that any serious quantum computer could actually ever
be built. However, Shor’s subsequent contributions changed this situation substan-
tially. His paper [27] in 1995 announced the discovery of quantum error-correcting
codes, cutting through some widely held misconceptions about quantum informa-
tion, and showing that suitable measurements of a quantum system can acquire
sufficient information for detecting and correcting errors without disturbing any of
the encoded information. These ideas were further developed in [6, 7] to produce
a new theory of quantum error-correcting codes for protection against multiple
errors, using clever ideas from orthogonal geometry and properties of the recently
discovered ordinary (as opposed to quantum) codes over GF (4).

Finally, any quantum computer which is actually built will be composed of
components which are not completely reliable. Thus, it will be essential to create
algorithms which are “fault-tolerant” on such computers. In yet another path-
breaking paper [28], Shor in 1996 showed how this indeed could be done.

Not only does Peter Shor’s work on quantum computation during the past
four years represent scientific achievements of the first rank, but in my mind it
holds out the first real promise that non-trivial quantum computers may actually
exist in our lifetimes.
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[29] S. Stein and S. Szabó, Algebra and Tiling, Carus Math. Monograph no. 25,
Math. Assoc. America, Washington, 1994.

[30] M. Talagrand, Matching theorems and empirical discrepancy computations
using majorizing measures, J. Amer. Math. Soc. 7 (1994), 455-537.

[31] C. Williams and S. Clearwater, Explorations in Quantum Computing,
Springer-Verlag, Santa Clara, CA, 1998.

Ronald Graham
AT&T Labs
Florham Park, NJ
and
UCSD
La Jolla, CA
USA

Documenta Mathematica · Extra Volume ICM 1998 · I · 133–140



140 Ronald Graham

Peter W. Shor

Information Sciences Center, AT&T Labs–Research, Florham Park, NJ, USA

Born: August 14, 1959, New York City, USA
Nationality: US Citizen
Marital Status: married, one daughter

1977–1981 Undergraduate at California Institute of Technology,
Pasadena

1981–1985 Ph.D. in Mathematics,
Massachusetts Institute of Technology

1985–1986 Postdoctoral Fellow at Mathematical Sciences
Research Institute, Berkeley

1986–1996 Member of Technical Staff, AT&T Bell Labs, Murray Hill
1996 Principal Research Staff Member, AT&T Labs,

Florham Park

Fields of Interest: Theoretical Computer Science, Combinatorics

Ronald Graham and Peter W. Shor

Documenta Mathematica · Extra Volume ICM 1998 · I · 133–140



Doc. Math. J. DMV 143

Local Index Theory and Higher Analytic Torsion

Jean-Michel Bismut1

Abstract. In this paper, we report on the construction of secondary
invariants in connection with the Atiyah-Singer index theorem for fami-
lies, and the theorem of Riemann-Roch-Grothendieck. The local families
index theorem plays an important role in the construction.

In complex geometry, the corresponding objects are the analytic torsion
forms and the analytic torsion currents. These objects exhibit natu-
ral functorial properties with respect to composition of maps. Gillet
and Soulé have used these objects to prove a Riemann-Roch theorem in
Arakelov geometry.

Also we state a Riemann-Roch theorem for flat vector bundles, and report
on the construction of corresponding higher analytic torsion forms.

1991 Mathematics Subject Classification: 32L10,57R20,58G10
Keywords and Phrases: Sheaves and cohomology of sections of holomor-
phic vector bundles. Characteristic classes and numbers. Index theory
and related fixed point theory.

The purpose of this paper is to report on the construction of certain secondary
invariants which appear in connection with the families index theorem of Atiyah-
Singer [4] and the Riemann-Roch-Grothendieck theorem [7]. These invariants are
refinements of the η invariant of Atiyah-Patodi-Singer [2], and of the Ray-Singer
analytic torsion for de Rham and Dolbeault complexes [50], [51], which are spectral
invariants of the considered manifolds.

Progress in this area was made possible by the development of several related
tools:

• The discovery by Quillen [48] of superconnections.
• A better understanding of local index theory (Getzler [31]) and the proof of

a local families index theorem by the author [9], and of related results by
Berline-Vergne [6], Berline-Getzler-Vergne [5].

• Progress on the theory of determinant bundles, by Quillen [49], Freed and
the author [16], and Gillet, Soulé and the author [17].

• The development of adiabatic limit techniques to study the behaviour of
certain spectral invariants (like the η-invariants of Atiyah-Patodi-Singer [2])
under degenerations, by Cheeger and the author [15], Mazzeo-Melrose [44],
and Dai [29].

1Supported by the Institut Universitaire de France (I.U.F.) and by
C.N.R.S., URA 1169.
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Algebraic geometry gave an essential impetus to the above developments. Ex-
tending earlier work by Arakelov and Faltings, Gillet and Soulé [33],[34] developed
an algebraic formalism which could use as an input results coming from analysis,
and invented the adequate Riemann-Roch-Grothendieck theorem.

Our starting point is the local families index theorem [9], [5]. Let π : X → S
be a fibration with compact even dimensional oriented Riemannian spin fibre Z.
Let E be a complex vector bundle on X . Let (DZ

s )s∈S be the associated family
of Dirac operators [3] acting along the fibres Z. Let Ind(DZ

+) ∈ K(S) be the
corresponding index bundle. In [4], Atiyah and Singer proved the index theorem
for families,

ch(Ind(DZ
+)) = π∗

[
Â(TZ)ch(E)

]
in H(S,Q).(0.1)

In [9], starting from natural geometric data, connections were introduced
on the vector bundles appearing in (0.1), so that by Chern-Weil theory, we can
represent the cohomology classes in (0.1) by differential forms. Using a special case
of a Quillen superconnection [48], the Levi-Civita superconnection [9], a “natural”
family of closed differential forms αt|t∈R+ on S was produced, which interpolates
between the differential forms representing the right-hand side of (0.1) (for t → 0)
and the left-hand side of (0.1) (for t → +∞, by [6], [5]). Moreover, following
earlier work by Quillen [49], Freed and the author [16] proved a curvature theorem
for smooth determinant bundles associated to a family of Dirac operators. Also
extending earlier work in [16], [27], Cheeger and the author [15] constructed an
odd form on S, η̃, which transgresses equation (0.1) at the level of differential
forms. These forms η̃ were used to evaluate the “adiabatic” limit of η-invariants
[16], [27], [15].

Let f : X → S be a proper holomorphic map of complex quasiprojective
manifolds, and let E be a holomorphic vector bundle on X. By Riemann-Roch-
Grothendieck [7],

Td(TS)ch(f∗E) = f∗[Td(TX)ch(E)] in H(S,Q).(0.2)

Assume that π : X → S is a holomorphic fibration with compact fibre Z. Let
E be a holomorphic vector bundle on X. Let (Ω(Z, E|Z), ∂

Z
) be the family of

relative Dolbeault complexes along the fibres Z. Let ωX be a closed (1,1)-form on
X restricting to a Kähler metric gTZ along the fibres Z, and let gE be a Hermitian
metric on E. Recall that a holomorphic Hermitian vector bundle is naturally
equipped with a unitary connection, which can be used to calculate Chern-Weil
forms. Assume that Rπ∗E is locally free. Let gRπ∗E be the L2 metric on Rπ∗E
one obtains via Hodge theory. In work by Gillet, Soulé and the author [17], and
by Köhler and the author [20], a sum of real (p, p) forms on S was constructed,
the analytic torsion forms T (ωX , gE), such that the following refinement of (0.2)
holds,

∂∂

2iπ
T (ωX , gE) = ch(Rπ∗E, gRπ∗E)− π∗

[
Td(TZ, gTZ)ch(E, gE)

]
.(0.3)

The forms T (ωX , gE) also refine the forms η̃ of [15]. The component of degree 0 of
T (ωX , gE) is the fibrewise holomorphic Ray-Singer torsion [51] of the considered
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Dolbeault complex, a spectral invariant of the Hodge Laplacians along the fibres. It
was used by Quillen [49] to construct a metric on (det(Rπ∗E))−1, whose properties
were studied by Quillen [49], and by Gillet, Soulé and the author [17].

At the same time, Gillet and Soulé were pursuing their effort to construct
an intersection theory on arithmetic varieties, in order to formulate a Riemann-
Roch-Grothendieck in Arakelov geometry. In [33], [34], they constructed refined
Chow groups ĈH, and Hermitian K-theory groups K̂. They used the analytic
torsion forms T (ωX , gE) to define a direct image in K̂. From a computation with
Zagier [35] of the analytic torsion of PN equipped with the Fubini-Study metric,
they conjectured a Riemann-Roch-Grothendieck theorem in Arakelov geometry,
where the additive genus associated to an exotic power series R(x) appears as a
correction to the Todd genus T̂d.

In [11], a secondary characteristic class for short exact sequences of holomor-
phic vector bundles was constructed, which was evaluated in terms of the R class.

In [10], [18], the analogue of the above construction for submersions was car-
ried out for immersions. Namely, let i : Y → X be an embedding of complex
manifolds, let F be a holomorphic vector bundle on Y , and let (E, v) be a reso-
lution of i∗F by a complex of holomorphic vector bundles on X. Under natural
compatibility assumptions on Hermitian metrics gE , gF , gNY/X , analytic torsion
currents T (E, gE) were constructed on X, such that

∂∂

2iπ
T (E, gE) = Td−1(NY/X , gNY/X )ch(F, gF )δY − ch(E, gE).(0.4)

Again, (0.4) refines (0.2) at the level of currents. The functoriality of these con-
structions was established in work by Gillet, Soulé and the author [19].

In [21], using [11], Lebeau and the author calculated the behaviour of Quillen
metrics under resolutions. Then Gillet and Soulé [36] gave a proof of their
Riemann-Roch formula for the first Chern class. In [30], Faltings provided an
alternative strategy to a proof of the Riemann-Roch theorem of Gillet-Soulé, by
using deformation to the normal cone. In [13], the author extended his previous
result with Lebeau [21]. Namely, in the case of the composition of an embedding
and a submersion, a natural combination of analytic torsion forms is expressed in
terms of analytic torsion currents. When combined with the arguments of Gillet
and Soulé [36], this leads to a proof of the Riemann-Roch-Grothendieck theorem
of Gillet and Soulé in the general case. A remaining mystery of the theory was the
fact that the genus R seemed to appear twice in the theory: through the explicit
spectral computations in [35] of the analytic torsion of Pn, and also in the eval-
uation of certain characteristic classes in [11]. The mystery was solved by Bost
[24] and Roessler [53]. They show in particular that the evaluation in [35] of the
analytic torsion of Pn can be obtained as a consequence of [11],[21].

In [22], Lott and the author extended the formalism of higher analytic torsion
to de Rham theory. Assume that π : X → S is a fibration of real manifolds
with compact fibre Z. Let F be a complex flat vector bundle on X. Then Rπ∗F
is a flat vector bundle on S. The differential characters of Cheeger-Simons [28]
produce Chern classes of flat vector bundles on a manifold M , with values in
Hodd(M,C/Z). In [22], a Riemann-Roch-Grothendieck formula was established
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for the real part of these classes, and corresponding real higher analytic torsion
forms were introduced, whose part of degree 0 is just the Ray-Singer torsion of
[50]. From these torsion forms, one can produce certain even cohomology classes
on S. In degree 0, the Ray-Singer conjecture, proved by Cheeger [26] and Müller
[45], shows that, for unitarily flat vector bundles, the Ray-Singer torsion coincides
with the Reidemeister torsion [52]. In positive degree, the evaluation of the higher
analytic torsion forms of [22] is still mysterious, although some evidence suggests
they might possibly be related to constructions by Igusa and Klein [39] using Borel
regulators.

This paper is organized as follows. In Section 1, we state the local families
index theorem. In Section 2, we introduce the higher analytic torsion forms.
In Section 3, we describe the analytic torsion currents. In Section 4, we give a
compatibility result between analytic torsion forms and analytic torsion currents,
and we state the Riemann-Roch theorem of Gillet-Soulé. Finally, in Section 5, we
state a Riemann-Roch theorem for flat vector bundles.

For a more detailed survey on the analytic aspects of this paper, we refer the
reader to [14].

1. The local families index theorem

1.1. The local index theorem. Let Z be a compact even dimensional oriented
spin manifold. Let gTZ be a Riemannian metric on TZ. Let STZ = STZ

+ ⊕STZ
− be

the Z2-graded hermitian vector bundle of (TZ, gTZ) spinors. Let ∇TZ be the Levi-
Civita connection on (TZ, gTZ). Let ∇ST Z

= ∇ST Z
+ ⊕∇ST Z

− be the corresponding
unitary connection on STZ = STZ

+ ⊕STZ
− . Let (E, gE ,∇E) be a complex Hermitian

vector bundle on Z, equipped with a unitary connection ∇E .
Let c(TZ) be the bundle of Clifford algebras of (TZ, gTZ). Then STZ ⊗E is

a Clifford module for the Clifford algebra c(TZ). If X ∈ TZ, let c(X) denote the
action of X ∈ c(TZ) on STZ ⊗ E. Put

H = C∞(Z, STZ ⊗ E), H± = C∞(Z, STZ
± ⊗ E).(1.1)

Let e1, · · · , en be an orthonormal basis of TZ.
Let DZ be the Dirac operator acting on H,

DZ =
n∑
1

c(ei)∇ST Z⊗E
ei

.(1.2)

Let DZ
± be the restriction of DZ to H±, so that

DZ =
[

0 DZ
−

DZ
+ 0

]
.(1.3)

The elliptic operator DZ
+ is Fredholm. Its index Ind(DZ

+) ∈ Z is given by

Ind(DZ
+) = dim(ker DZ

+)− dim(ker DZ
−).(1.4)

Let Â be the multiplicative genus associated to the power series

Â(x) =
x/2

sinh(x/2)
.(1.5)
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The Atiyah-Singer index theorem [3] asserts that

Ind(DZ
+) =

∫

Z

Â(TZ)ch(E).(1.6)

If F = F+ ⊕ F− is a Z2-graded vector space, let τ = ±1 on F± define the
grading. If A ∈ End(F ), let Trs[A] be the supertrace of A, i.e. Trs[A] = Tr[τA].
Now we state the McKean-Singer formula [42].

Proposition 1.1. For any t > 0,

Ind(DZ
+) = Trs[exp(−tDZ,2)].(1.7)

Let Pt(x, y) be the smooth kernel of exp(−tDZ,2) with respect to the volume
element dy, so that (1.7) can be written as

Ind(DZ
+) =

∫

Z

Trs[Pt(x, x)]dx.(1.8)

In Patodi [46], Gilkey [32], Atiyah-Bott-Patodi [1], it was proved that, as con-
jectured in [42], “fantastic cancellations” occur in the asymptotic expansion of
Trs[Pt(x, x)] , so that as t → 0,

Trs[Pt(x, x)] → {Â(TZ,∇TZ)ch(E,∇E)}max.(1.9)

Another proof of (1.9) by Getzler [31] has considerably improved our geometric
understanding of the above cancellations. Equation (1.9) is known as a local index
theorem. From (1.8), (1.9), one recovers the index formula (1.6).

1.2. Quillen’s superconnections. Here we follow Quillen [48]. Let E = E+⊕
E− be a Z2-graded vector bundle on a manifold S.

Definition 1.2. A superconnection is an odd first order differential operator A
acting on C∞(S, Λ(T ∗S)⊗̂E) such that if ω ∈ C∞(S, Λ(T ∗S)), s ∈ C∞(S, E),

A(ωs) = dωs + (−1)deg ωωAs.(1.10)

By definition, the curvature of A is A2 ∈ C∞(S, (Λ(T ∗S)⊗̂End(E))even). Let
ϕ : ω ∈ Λ(T ∗S) → ϕω = (2iπ)− deg ω/2ω ∈ Λ(T ∗S).

Definition 1.3. Let ch(E, A) be the even form on S,

ch(E, A) = ϕTrs[exp(−A2)].(1.11)

Theorem 1.4. The even form ch(E, A) is closed, and its cohomology class
[ch(E,A)] is given by

[ch(E, A)] = ch(E+)− ch(E−).(1.12)

Remark 1.5. Observe the striking algebraic similarity of the right-hand sides of
(1.7) and (1.11) with the density exp(−x2) of the gaussian distribution on R.
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1.3. Local families index theorem and adiabatic limits. Let π : X → S
be a submersion of smooth manifolds with even dimensional compact fibre Z. We
assume that TZ is oriented and spin. Let gTZ be a Riemannian metric on TZ.
Let (E, gE ,∇E) be a Hermitian vector bundle on X with unitary connection. Let
(DZ

s )s∈S be the family of Dirac operators acting fibrewise along the fibres Z on
Hs = H+s ⊕H−s. Then to the family of Fredholm operators (DZ

+,s)s∈S , there is
an associated virtual vector bundle Ind(DZ

+) ∈ K(S). The families index theorem
of Atiyah-Singer [4] asserts in particular that

ch(Ind(DZ
+)) = π∗[Â(TZ)ch(E)] in Heven(S,Q).(1.13)

Assume temporarily that X and S are even dimensional oriented compact
spin manifolds. Let gTX , gTS be Riemannian metrics on TX, TS. For ε > 0, put

gTX
ε = gTX +

1
ε
π∗gTS .(1.14)

Letting ε tend to 0 is often described as taking an adiabatic limit. Let DX
ε be the

Dirac operator associated to (gTX
ε ,∇E).

Let ∇TX
ε and ∇TS be the Levi-Civita connections on (TX, gTX

ε ) and
(TS, gTS). Let THX be the orthogonal bundle to TZ in TX with respect to
gTX . If U ∈ TS, let UH ∈ THX be the lift of U in THX. Let PTZ be the
projection TX = THX ⊕ TZ → TZ. Let ∇TZ be the connection on (TZ, gTZ),

∇TZ = PTZ∇TX
ε ,(1.15)

which does not depend on ε > 0. A trivial calculation shows that as ε → 0,

Â(TX,∇TX
ε ) → π∗[Â(TS,∇TS)]Â(TZ,∇TZ).(1.16)

Let P ε
t (x, y) be the smooth kernel of exp(−tDX,2

ε ). Then by (1.9),

Trs[P ε
t (x, x)] → {Â(TX,∇TX

ε )ch(E,∇)}max.(1.17)

We change our notation slightly, and temporarily assume that gTX
ε is given

by gTX
ε = π∗ gT S

ε ⊕ gTZ . If U, V ∈ TS, put

T (U, V ) = −PTZ [UH , V H ].(1.18)

If U ∈ TS, let divZ(UH) be the divergence of UH with respect to the vertical vol-
ume form dvZ . Let (e1, . . . , en) and (f1, . . . , fm) be orthogonal bases of (TZ, gTZ)
and (TS, gTS). If STX

ε is the vector bundle of (TX, gTX
ε ) spinors,

STX
ε = π∗STS⊗̂STZ .(1.19)

Put

DH =
m∑
1

c(fα)(∇π∗ST S⊗̂ST Z⊗E
fα +

1
2
divZ(fH

α )).(1.20)

Then by [15],

DX,ε =
√

εDH + DZ − ε

8
c(fα)c(fβ)c(T (fα, fβ)).(1.21)
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Put

H = C∞(Z, (STZ ⊗ E)|Z).(1.22)

Then H = H+⊕H− is an infinite dimensional Z2-graded vector bundle on S, and
C∞(M, π∗STS ⊗ E) = C∞(S, STS⊗̂H).

Definition 1.6. Let ∇H be the connection on H, such if U ∈ TS, s ∈ C∞(S,H),

∇H
U s = ∇ST Z⊗E

UH s +
1
2
divZ(UH)s(1.23)

Then DH is the Dirac operator action on C∞(S, STS⊗̂H) associated to
(gTS ,∇H). Following [9], we formally replace c(fα) by fα ∧ . in (1.21).

Definition 1.7. For t > 0, put

At = ∇H +
√

tDZ − 1
8
√

t
fαfβc(T (fα, fβ)).(1.24)

Then At is a superconnection on H, the Levi-Civita superconnection associ-
ated to (THX, gTZ ,∇E).

For t > 0, let αt be the even form on S

αt = ϕTrs[exp(−A2
t )].(1.25)

Now we state the local families index theorem [9], [6], [5].

Theorem 1.8. The form αt is real, even and closed. Moreover

[αt] = ch(IndDZ
+) ∈ Heven(B,Q).(1.26)

As t → 0,

αt = π∗[Â(TZ,∇TZ)ch(E,∇E)] +O(t).(1.27)

If kerDZ ⊂ H is a vector bundle, and ∇ker DZ

is the orthogonal projection of ∇H

on kerDZ , as t → +∞,

αt = ch(kerDZ ,∇ker DZ

) +O(
1√
t
).(1.28)

Remark 1.9. Equations (1.26) and (1.27) were proved by the author in [9], and
equation (1.28) by Berline-Vergne [6], Berline-Getzler-Vergne [5]. Equation (1.27)
is known as the local families index theorem. It extends the local index formula
given in (1.9).

2. Complex geometry and higher analytic torsion forms

2.1. The analytic torsion forms of a holomorphic complex. Here we
follow [17]. Let S be a complex manifold, and let

(E, v) : 0 → Em
v→ Em−1 . . .

v→ E0 → 0(2.1)

be a holomorphic complex of vector bundles on S. Put

E+ =
⊕

i even

Ei, E− =
⊕

i odd

Ei.(2.2)
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Then E = E+ ⊕ E− is Z2-graded. Let gE =
⊕m

i=0 gEi be a Hermitian metric on
E =

⊕m
i=0 Ei. Let ∇E =

⊕m
i=0∇Ei be the corresponding holomorphic Hermitian

connection. Let v∗ be the adjoint of v. Set

V = v + v∗.(2.3)

For t > 0, set

C
′′
t = ∇E′′ +

√
tv, C

′
t = ∇E′ +

√
tv∗,(2.4)

Ct = C ′′t + C ′t.

Let N be the number operator of E, which acts on Ek by multiplication by k.

Proposition 2.1. The following identities hold

C ′′2t = 0, C ′2t = 0,(2.5)
∂C′′t
∂t = 1

2t [C
′′
t , N ], ∂C′

∂t = − 1
2t [C

′
t, N ].

Definition 2.2. Let PS be the set of smooth real forms on S, which are sums
of forms of type (p, p). Let PS,0 be the set of α ∈ PS which can be written as
α = ∂β + ∂γ, with β and γ smooth.

Definition 2.3. For t > 0, put

αt = ϕTrs[exp(−C2
t )], γt = ϕTrs[N exp(−C2

t )].(2.6)

The following result is obtained in [17] as an easy consequence of Proposition
2.1.

Proposition 2.4. The forms αt and γt lie in PS. Also

∂αt

∂t
=

∂∂

2iπ

γt

t
.(2.7)

Assume now that H(E, v) is of locally constant dimension. Then H(E, v)
is a holomorphic Z-graded vector bundle. By finite dimensional Hodge theory,
H(E, v) ' kerV inherits a Hermitian metric gH(E,v). Set

ch′(E, gE) =
m∑

i=0

(−1)ii ch(E, gE).(2.8)

By [6], [5], as t → +∞,

αt = ch(H(E, v), gH(E,v))) +O( 1√
t
),(2.9)

γt = ch′(H(E, v), gH(E,v)) +O( 1√
t
).

Definition 2.5. For s ∈ C, 0 < Re(s) < 1/2, set

R(E, g)E)(s) =
1

Γ(s)

∫ +∞

0

ts−1(γt − γ∞)dt,(2.10)

T (E, gE) =
∂

∂s
R(E, gE)(0).

As the notation suggests, by (2.9), R(E, gE)(s) extends to a holomorphic
function of s near s = 0, so that T (E, gE) is well defined.
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Proposition 2.6. The form T (E, gE) lies in PS,0, and

∂∂

2iπ
T (E, gE) = ch(H(E, v), gH(E,v))− ch(E, gE).(2.11)

2.2. Bott-Chern classes. Let E be a holomorphic vector bundle on a complex
manifold S. Let gE , g′E be two Hermitian metrics on E. Then by Bott and Chern
[25], and by [17], there is a uniquely defined class c̃h(E, gE , g′E) ∈ PS/PS,0 such
that

• If gE = g′E , c̃h(E, gE , g′E) = 0.
• The class c̃h(E, gE , g′E) is functorial.
• The following equation holds

∂∂

2iπ
c̃h(E, gE , g′E) = ch(E, g′E)− ch(E, gE).(2.12)

The above classes are called Bott-Chern classes. The same construction applies to
classes like T̃d(E, gE , g′E). The class of forms T (E, gE) ∈ PS/PS,0 constructed
in Definition 2.5 is also a Bott-Chern class.

2.3. The higher analytic torsion forms associated to a holomorphic
submersion. Following work by Gillet, Soulé and the author [17], we will extend
the arguments of Section 2.1 to an infinite dimensional situation.

Let π : X → S be a holomorphic submersion with compact fibre Z. Let E
be a holomorphic vector bundle on X, and let Rπ∗E be the direct image of E.
In the sequel TX, TZ = TX/S . . . denote the corresponding holomorphic tangent
bundles. Let ωX be a real closed (1, 1) form on X which restricts to a fibrewise
Kähler form on TZ = TX/S, so that if JTRZ is the complex structure of TRZ,
ω(JTRZ ., .) is a Hermitian product gTZ on TZ . Let gE be a Hermitian metric
on E. Let THX be the orthogonal bundle to TZ in TX with respect to ωX . Let
(Ω(Z,E|Z), ∂

Z
) be the family of relative Dolbeault complexes along the fibres Z.

Then Ω(Z, E|Z) can be equipped with the L2 metric

< s, s′ >=
∫

Z

< s, s′ >Λ(T∗(0,1)Z)⊗E

dvZ

(2π)dimZ
.(2.13)

Let ∂
Z∗

be the adjoint of ∂
Z
. Put

DZ = ∂
Z

+ ∂
Z∗

.(2.14)

Definition 2.7. Let ∇Ω(Z,E|Z) be the connection on Ω(Z,E|Z), such that if U ∈
TRS, if s is a smooth section of Λ(T ∗(0,1)Z)⊗ E,

∇Ω(Z,E|Z)

U s = ∇Λ(T∗(0,1)Z)⊗E

UH s.(2.15)

Let T be the tensor defined in (1.18) associated to (gTZ , THX). Then T is
of type (1, 1). Let N be the number operator of Ω(Z, E|Z). Let ωX,H be the
restriction of ωX to TH

R X. Then ωX,H is a smooth section of π∗Λ(1,1)(T ∗RS).
Finally recall that Λ(T ∗(0,1)S)⊗E is a Clifford module for the Clifford algebra of
(TRZ, gTRZ).
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Definition 2.8. For t > 0, put

B
′′
t =

√
t∂

Z
+∇Ω(Z,E|Z)” − c(T (1,0))

2
√

2t
,(2.16)

B
′
t =

√
t∂

Z∗
+∇Ω(Z,E|Z)′ − c(T (0,1))

2
√

2t)
,

Bt = B
′′
t + B

′
t, Nt = N + i

ωX,H

t
.

Then one can show that, in (2.16), the superconnection Bt is a form of the
Levi-Civita superconnection At/2 considered in (1.24). Also, by [17], an obvious
analogue of Proposition 2.1 holds, with C ′′t , C ′t replaced by B′′

t , B′
t, and N replaced

by Nt.

Definition 2.9. For t > 0, set

αt = ϕTrs[exp(−B2
t )], γt = ϕTrs[Nt exp(−B2

t )].(2.17)

Theorem 2.10. For t > 0, the form αt and γt lie in PS, the form αt is closed
and

[αt] = ch(Rπ∗E) in Heven(S,Q),(2.18)

∂αt

∂t
= − ∂∂

2iπ

γt

t
.

Furthermore, as t → 0, there are forms C−1, C0 ∈ PS such that

αt = π∗[Td(TZ, gTZ)ch(E, gE)] +O(t),(2.19)

γt =
C−1

t
+ C0 +O(t).

Observe that the first equation in (2.19) is a consequence of the local families
index theorem of [9] stated in (1.27)

Assume that Rπ∗E is locally free. Then the holomorphic vector bundle
Rπ∗E ' kerDZ inherits a metric gRπ∗E . By [5], as t → +∞,

αt = ch(Rπ∗E, gRπ∗E) +O(
1√
t
),(2.20)

γt = ch′(Rπ∗E, gRπ∗E) +O(
1√
t
).

Definition 2.11. For s ∈ C, 0 < Re(s) < 1/2, put

R(ωX , gE)(s) = − 1
Γ(s)

∫ +∞

0

ts−1(γt − γ∞)dt,(2.21)

T (ωX , gE) =
∂

∂s
R(ωX , gE)(0).

In fact, by equations (2.19), (2.20), R(ωX , gE)(s) extends to a holomorphic
function of s near s = 0, so that T (ωX , gE) is well-defined. The forms T (ωX , gE)
are called higher analytic torsion forms. The following result was established in
work by Gillet-Soulé and the author [17], and Köhler and the author [20].
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Theorem 2.12. The form T (ωX , gE) lies in PS. Moreover

∂∂

2iπ
T (ωX , gE) = ch(Rπ∗E, gRπ∗E)− π∗[Td(TZ, gTZ)ch(E, gE)].(2.22)

Remark 2.13. Clearly (2.22) refines (0.2) at the level of differential forms. Köhler
and the author [20] showed that T (ωX , gE) ∈ PS/PS,0 depends on ωX , gE

via Bott-Chern classes. This result was proved before in degree 0 in [17]. A
consequence of [20] is that T (ωX , gE) ∈ PS/PS,0 depends on ωX only via
gTZ . Let P kerDZ

be the orthogonal projection of Ω(Z,E|Z) on kerDZ . Set
P ker DZ ,⊥ = 1− P ker DZ

. For s ∈ C, Re(s) >> 0, put

θ(s) = −Trs[N(DZ,2)−sP ker DZ ,⊥](2.23)

Then

T (ωX , gE)(0) =
∂θ

∂s
(0).(2.24)

Also exp(− 1
2

∂θ
∂s (0)) is called the Ray-Singer analytic torsion [51] of the complex

Ω(Z, E|Z). The Ray-Singer torsion is an alternate product of generalized determi-
nants of Laplacians.

By [17], the odd form η̃ = 1
4iπ (∂ − ∂)T (ωX , gE) coincides with the form

constructed by Cheeger and the author in [15].

2.4. Quillen metrics. Assume temporarily that S is a point. Put

λ = (detH .(Z, E|Z))−1.(2.25)

Then λ is a complex line, the inverse of the determinant of the cohomology of
E. Let | |λ be the metric on λ induced by the fibrewise L2 metric on gH(Z,E|Z),
which we obtain by identifying H(Z, E|Z) to the corresponding harmonic forms.

Definition 2.14. The Quillen metric ‖ ‖λ on λ is defined by

‖ ‖λ = | |λ exp(−1
2

∂θ

∂s
(0)).(2.26)

In the general case where S is not a point, we still assume the existence of a
form ωX taken as in Section 2.3. Let gTZ be an arbitrary fibrewise Kähler metric
on TZ. Let gE be a Hermitian metric on E. We no longer assume Rπ∗E to be
locally free. Put

λ(E) = (det Rπ∗E)−1.(2.27)

Then by Knudsen-Mumford [40], λ(E) is a holomorphic line bundle on S, and for
any s ∈ S, there is a canonical isomorphism.

λ(E)s ' (det(H(Zs, E|Zs
)))−1.(2.28)

By Definition 2.14, the fibres λ(E)s are equipped with the Quillen metric
‖ ‖λ(E)s

. The following result was established by Quillen [49] in the case where
the fibres Z are a fixed Riemann surface, and by Gillet, Soulé and the author
[17], following earlier work by Freed and the author [16] on smooth determinant
bundles.
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Theorem 2.15. The Quillen metric is smooth on λ(E). Moreover

c1(λ(E), ‖ ‖λ(E)) = −π∗[Td(TZ, gTZ)ch(E, gE)](2).(2.29)

Remark 2.16. Theorem 2.15 is a consequence of (2.22), and also of anomaly formu-
las [17], describing the variation of Quillen metrics when gTZ , gE themselves vary.
These anomaly formulas extend the Polyakov anomaly formulas for generalized
determinants on Riemann surfaces [47].

2.5. Functoriality of the analytic torsion forms with respect to
composition of submersions. Let

Z //

πZ/Y

²²

W

πW/V

²²

πW/S

ÃÃA
AA

AA
AA

A

Y // V πV/S

// S

(2.30)

be a diagram of submersions πW/S , πV/S , πW/V , with compact fibres Z, Y,X.
Let ωW , ωV be closed (1,1) forms on W,V as in Section 2.3 . Let (E, gE) be
a holomorphic Hermitian vector bundle on W , such that RπW/S∗E, RπW/V ∗E,
RπW/S∗RπW/V ∗E are locally free. Let TW/V (ωW , gE), TW/S(ωW , gE), TV/S(ωV ,
gRπW/V ∗E) be the analytic torsion forms which are associated to the maps in the
above diagram. Then in work by Berthomieu and the author [8] and by Ma [41], us-
ing the adiabatic limit techniques of Cheeger and the author [15], Mazzeo-Melrose
[44] and Dai [29], these forms were shown to be naturally compatible, i.e. they
verify a relation which refines the functoriality of Riemann-Roch with respect to
the composition of submersions. Namely, let T̃d(TZ, TY, gTZ , gTY ) ∈ PW /PW,0

be the Bott-Chern class such that

∂∂

2iπ
T̃d(TZ, TY, gTZ , gTY ) = Td(TZ, gTZ)− π∗W/V

[
Td(TY, gTY )

]
Td(TX, gTX).

(2.31)

Under suitable assumptions, Ma [41] has constructed a Bott-Chern class α ∈
PS/PS,0 such that

∂∂
2iπ α = ch(RπV/S∗RπW/V ∗E, gRπV/S∗RπW/V ∗E)(2.32)

−ch(RπW/S∗E, gRπW/S∗E),

for which the following result holds.

Theorem 2.17. The following identity holds

TW/S(ωW , gE) = TV/S(ωV , gRπW/V ∗E) + πW/S∗[Td(TY, gTY )TW/V (ωW , gE)]

+α− πW/S∗[T̃d(TZ, TY, gTZ , gTY )ch(E, gE)] inPS/PS,0.(2.33)

Remark 2.18. The case where S is a point was considered in [8].
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3. The analytic torsion currents associated to an embedding

3.1. Construction of the analytic torsion currents. Let i : Y → X be
an embedding of complex manifolds. Let NY/X be the normal bundle to Y in X.
Let F be a holomorphic vector bundle on Y . Let

(E, v) : 0 → Em
v→ Em−1 . . .

v→ E0 → 0(3.1)

be a holomorphic complex of vector bundles on X, which, together with a holomor-
phic restriction map: r : E0|Y → F , provides a resolution of the sheaf i∗OY (F ).
In particular (E, v) is acyclic on X \Y. By [10], H(E, v)|Y is a holomorphic vector
bundle on Y . Move precisely, if U ∈ TX|Y , let ∂Uv be the derivative of v in
any holomorphic trivialization of (E, v) near Y . Then by ∂Uv only depends on
the image z ∈ NY/X of U , and (∂zv)2 = 0. Let π : NY/X → Y be the canonical
projection. Then there is a canonical isomorphism

(π∗H((E, v)|Y ), ∂zv) ' (π∗(Λ(NY/X)⊗ F ),
√−1iz).(3.2)

Let gE = ⊕m
i=0g

Ei , gNY/X , gF be Hermitian metrics on E = ⊕m
i=0Ei, NY/X , F . As

in (2.3), put V = v + v∗. Then H(E, v)|Y ' kerV|Y ⊂ E|Y . Let gH(E,v) be the
corresponding metric on H(E, v).

We will say that gE verifies assumption (A) with respect to gNY/X , gF if (3.2)
is an isometry. By [10], given gNY/X , gF , there exists gE = ⊕m

i=0g
Ei such that

assumption (A) is verified. From now on, we assume that (A) holds. For t > 0,
we define αt, γt ∈ PX as in (2.6). Let δY be the current of integration on Y . The
following result was proved in [10], using formulas of Mathai and Quillen [43].

Theorem 3.1. As t → +∞,

αt = Td−1(NY/X , gNY/X )ch(F, gF )δY +O(
1√
t
),(3.3)

where O( 1√
t
) is taken in the suitable Sobolev space.

Remark 3.2. Using (1.12), we find that (3.3) refines the theorem of Riemann-Roch-
Grothendieck [7] stated in (0.2) at the level of currents.

By (3.3), one can construct a current T (E, gE) on X as in (2.10). Let PX
Y be

the set of real currents which are sum of currents of type (p, p), whose front set
is included in N∗

Y/X,R. We define PX,0
Y as in Definition 2.2. The following result

was proved in [18].

Theorem 3.3. The current T (E, gE) lies in PX
Y . Moreover

∂∂

2iπ
T (E, gE) = Td−1(NY/X , gNY/X )ch(F, gF )δY − ch(E, gE).(3.4)

Remark 3.4. Harvey and Lawson [38] have also constructed currents related to
smooth versions of Riemann-Roch-Grothendieck for embeddings.
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3.2. Functoriality of the analytic torsion currents with respect to
the composition of embeddings. Let i′:Y ′ → X,F ′, (E′, v′) be another set of
data similar to the above data. Assume that Y and Y ′ intersect transversally. Put
Y ′′ = Y ∩ Y ′. Then (E⊗̂E′, v⊗̂1 + 1⊗̂v′) is a resolution of (F|Y ′′⊗̂F ′|Y ′′).

Let (gE , gNY/X , gF ) and (gE′ , gNY ′/X , gF ′) be metrics verifying (A). Recall
that NY ′′/X = NY/X|Y ′′⊕NY ′/X|Y ′′ . Then (gE⊗̂gE′ , g

NY/X

|Y ′′ ⊕g
NY ′/X

|Y ′′ , (gF
Y ′′⊗̂gF ′

Y ′′))

also verify (A). Let PX
Y ∪Y ′ , P

X,0
Y ∪Y ′ be the obvious analogues of PX

Y , PX,0
Y , when

replacing Y by Y ∪ Y ′. The following result was proved by Gillet, Soulé and the
author in [19].

Theorem 3.5. The following identity holds

T (E⊗̂E′, gE⊗̂E′) = T (E, gE)ch(E′, gE′) +(3.5)

Td−1(NY/X , gNY/X )ch(F, gF )T (E′, gE′)δY

in PX
Y ∪Y ′/PX,0

Y ∪Y ′ .

Remark 3.6. In [19], Theorem 3.5 is used to evaluate the currents T (E, gE) in
terms of the arithmetic characteristic classes of Gillet and Soulé [33], [34].

4. Analytic torsion forms and analytic torsion currents

4.1. Composition of an embedding and a submersion. Let i : W → V be an
embedding of complex manifolds, and let S be a complex manifold. Let πW/S , πV/S

be holomorphic submersions of W,V onto S, with compact fibres X, Y , so that
πV/Si = πW/S . Then we have the diagram

Y //

i

²²

W

i

²²

πW/S

ÃÃA
AA

AA
AA

A

X // V πV/S

// S

(4.1)

Let F be a holomorphic vector bundle on W . Let (E, v) be a complex of holo-
morphic vector bundles on V as in (3.1), which together with a restriction map
r : E0|V → F , provides a resolution of i∗F . In the sequel we assume that
RπW/S∗F is locally free. Let RπV/S∗E be the direct image of E. Tautologically,
RπV/S∗E ' RπW/S∗F . Let ωV , ωW be (1,1) closed forms on V, W which restrict
to Kähler forms on the fibres X, Y . Note that NW/V ' NY/X . Let gNY/X , gF

be Hermitian metrics on NY/X , F . Let gE = ⊕m
i=0g

Ei be a Hermitian metric on
E = ⊕m

i=0Ei, which verifies (A) with respect to gNY/X , gF .

4.2. Functoriality of the analytic torsion objects with respect to

the composition of an embedding and a submersion. Let ζ(s) =
+∞∑
n=1

1
ns

be

the Riemann zeta function. Now we introduce the power series R of Gillet-Soulé
[35].
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Definition 4.1. Let R be the formal power series

R(x) =
∑
n≥1

n odd


2

ζ ′(−n)
ζ(−n)

+
n∑

j=1

1
j


 ζ(−n)

xn

n!
.(4.2)

We identify R(x) with the corresponding additive genus. The power series
R was obtained by Gillet-Soulé and Zagier by an explicit computation of the
analytic torsion of Pn, as a correction to the Todd genus T̂d of Gillet-Soulé’s
theory, which would fit into a conjectural form of Riemann-Roch-Grothendieck in
Arakelov geometry.

Let T̃d(TX|Y , gTY , gTX
|Y , gNY/X ) ∈ PW /PW,0 be the Bott-Chern class such

that

∂∂

2iπ
T̃d(TX|Y , gTY , gTX|Y , gNY/X ) = Td(TX|Y , gTX|Y )(4.3)

−Td(TY, gTY )Td(NY/X , gNY/X ).

Let T (ωV , gE) ∈ PS be the analytic torsion forms associated to the family of
double complexes (Ω(X,E|X), (∂

X
+ v)). Observe that RπV/S∗E ' RπW/S∗F is

now equipped with twoL2 metrics gRπV/S∗E and gRπW/S∗F . The following result
was proved by Lebeau and the author [21] in the case where S is a point, and
extended by the author in [13] to the general case.

Theorem 4.2. The following identity holds

c̃h(RπW/S∗F, gRπW/S∗E , gRπV/S∗F )− T (ωW , gF ) + T (ωV , gE)(4.4)

−πV/S∗[Td(TX, gTX)T (E, gE)] + πW/S∗

[
T̃d(TX|W ,gT Y ,g

T X|W ,g
NY/X )

Td(NY/X ,g
NY/X )

ch(F, gF )
]

−πV/S∗ [Td(TX)R(TX)ch(E)] + πW/S∗[Td(TY )R(TY )ch(F )] = 0 in PS/PS,0.

Remark 4.3. The main result of [21] is formulated as a formula of comparison of
Quillen metrics on the determinant lines λ(E) ' λ(F ). An important idea in
[21],[13] is to replace v by Tv, with T > 0, and to study the behaviour of the
corresponding analytic torsion forms as T → +∞. Then one has to describe the
behaviour of the associated harmonic forms, and also the full spectrum of the
corresponding Laplacians In [21], [13], the appearance of the additive genus R
is related to the evaluation in [11] of a characteristic class, the higher analytic
torsion forms associated to a short exact sequence of holomorphic vector bundles.
The evaluation of this class involves computations on a harmonic oscillator. The
coincidence of this class of forms with the genus evaluated by Gillet and Soulé [35]
remained unexplained until Bost [24] and Roessler [53] showed that the evaluation
of the analytic torsion of Pn given in [35] can be obtained as a consequence of [21].
Of course, Theorems 2.17, 3.5 and 4.2 are compatible. In [12], the main result of
[21] was interpreted as an excess intersection formula for Bott-Chern currents in
infinite dimensions.
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4.3. The Riemann-Roch theorem of Gillet and Soulé. Let X be an arith-
metic variety, i.e. a regular flat scheme over Spec(Z). In [33], [34], Gillet-
Soulé constructed an arithmetic Chow group ĈH(X). By definition, ĈH(X) =
Ẑ(X)/R̂(X), where Ẑ(X) is the group of arithmetic cycles (Z, gZ) , with Z an
algebraic cycle, and gZ is a Green current on XC, i.e. it is a sum of real currents
of type (p, p), smooth on XC\ZC, such that ∂∂

2iπ gZ + δZ = ωZ is a smooth form
on X, and R̂(X) is an equivalence relation which refines linear equivalence.

Let (E, gE) be an arithmetic vector bundle on X. Namely E is an algebraic
vector bundle on X, gE is a Hermitian metric on XC. Then Gillet and Soulé con-
structed arithmetic characteristic classes of (E, gE) with values in ĈH(X)Q. More
precisely they constructed a Grothendieck group K̂0(X) with contains equivalence
classes of vector bundles (E, gE), and also classes of forms of the type PX/PX,0,
and a Chern character map ĉh : K̂0(X) → ĈH(X)Q.

Let now π : X → S be a projective flat morphism of arithmetic varieties.
Suppose that π : XQ → YQ is smooth. Let ωX be a smooth real (1, 1) form on
XQ as in Section 2.3. Let (E, gE) ∈ K̂0(X) be such that Riπ∗E = 0 for i > 0. In
[35], Gillet and Soulé defined π!(E, gE) ∈ K̂0(S) by the formula

π!(E, gE) = (Rπ∗E, gRπ∗E)− T (ωX , gE).(4.5)

This definition is then extended to arbitrary (E, gE)) ∈ K̂0(X). Put

TdA(TX/S, gTX/S) = T̂d(TX/S, gTX/S)(1−R(TX/S)).(4.6)

The following result was conjectured by Gillet and Soulé in [35] and proved in [36],
[37], using Theorem 4.2.

Theorem 4.4. The following identity holds

ĉh(π!(E, gE)) = π∗[TdA(TX/S, gTX/S)ĉh(E, gE)] in ĈH(S)Q.(4.7)

Remark 4.5. Assume that S = Spec(Z). Then (4.7) is an equality in R. It ex-
presses the Arakelov degree of det(Rπ∗E) in terms of arithmetic characteristic
classes.

In [30], Faltings has indicated an alternative strategy to the proof of the Gillet-
Soulé theorem, based on the technique of deformation to the normal cone. Then
one has to study the behaviour of the analytic torsion forms, as smooth fibres are
deformed to the union of two smooth fibres intersecting transversally.

5. Higher analytic torsion and flat vector bundles

Let X be a smooth manifold, and let F be a complex flat vector bundle
on X. Then by [28], the bundle F has Chern classes c(F ) ∈ Hodd(X,C/Z).
For Re(c)(F ) ∈ H(X,R), there is a corresponding Chern-Weil theory. In fact
let ∇F be the flat connection on F . Let gF be a Hermitian metric on F . Put
θ = (gF )−1∇F gF . Then for k odd, Re(ck)(F, gF ) = (2iπ)−(k−1)/22−kTr[θk] is a
closed form which represents Re(ck)(F ) ∈ Hk(X,R).

Let π : X → S be a submersion of smooth manifolds, with compact fibre Z.
Then Rπ∗F is a Z-graded flat vector bundle on S. Let e(TZ) ∈ H(X,Q) be the
Euler class of TZ.
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Now we state a result by Lott and the author [22], which was proved using
flat superconnections.

Theorem 5.1. For any k ∈ N, k odd,

Re(ck)(Rπ∗F ) = π∗[e(TZ)Re(ck)(F )].(5.1)

Given a metric gF and a Euclidean connection ∇TZ , let gRπ∗F be the L2

Hermitian metric on Rπ∗F which is obtained via fibrewise Hodge theory. In [22],
higher analytic torsion forms T (gF ,∇TZ) are constructed such that

dT (gF ,∇TZ) = π∗[e(TZ,∇TZ)Re(c.)(F, gF )]− Re(c.)(Rπ∗F, gRπ∗F ).(5.2)

In degree 0, T (gF ,∇TZ) is the Ray-Singer analytic torsion of [50]. The Ray-
Singer conjecture, proved by Cheeger [26] and Müller [45] says that for unitarily
flat vector bundles, the Ray-Singer analytic torsion coincides with a geometrically
defined invariant of the manifold, the Reidemeister torsion [52]. In higher degree,
the interpretation of T (gF ,∇TZ) is still mysterious. There is a possible link with
work by Igusa and Klein [39] on Borel regulators. For related results in an algebraic
context, we refer to Bloch and Esnault [23].
Acknowledgements The author is indebted to J.-B. Bost, E. Getzler and C.
Soulé for their comments and suggestions on a preliminary version of this paper.
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[18] Bismut, J.-M., Gillet, H., Soulé, C. : Bott-Chern currents and complex im-
mersions. Duke Math. Journal 60, 255-284 (1990).
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Some Analogies Between Number Theory

and Dynamical Systems

on Foliated Spaces

Christopher Deninger1

Abstract. In this article we describe what a cohomology theory related
to zeta and L-functions for algebraic schemes over the integers should look
like. We then point out some striking analogies with the leafwise reduced
cohomology of certain foliated dynamical systems.

1991 Mathematics Subject Classification: Primary 14A20; Secondary
14G10, 14F99, 58F18, 58F20.
Keywords and Phrases: L-functions of motives, leafwise cohomology, dy-
namical systems, foliations.

1 Introduction

For the arithmetic study of varieties over finite fields powerful cohomological meth-
ods are available which in particular shed much light on the nature of the corre-
sponding zeta functions. These investigations culminated in Deligne’s proof of
an analogue of the Riemann conjecture for such zeta functions. This had been
the hardest part of the Weil conjectures. For algebraic schemes over SpecZ and
in particular for the Riemann zeta function no cohomology theory has yet been
developed that could serve similar purposes. For a long time it had even been a
mystery how such a theory could look like even formally. In this article following
[D1–D4] we first describe the shape that a cohomological formalism for algebraic
schemes over the integers should take. We then discuss how it would relate to
the many conjectures on arithmetic zeta- and L-functions and indicate a couple
of consequences of the formalism that can be proved using standard methods.
As it turns out there is a large class of dynamical systems on foliated manifolds
whose reduced leafwise cohomology has many of the expected structural proper-
ties of the desired cohomology for algebraic schemes. Comparing the arithmetic
and dynamical pictures leads to some insight into the basic geometric structures

1Supported by TMR “Arithmetic Algebraic Geometry”
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that dynamical systems relevant for L-functions of varieties over number fields
should have. There is also a very interesting recent approach by Connes [C] to
the Riemann conjecture for Hecke L-series which bears some formal similarities
to the preceding considerations. It seems to be closer in spirit to the theory of
automorphic L-functions though.

I would like to thank the Newton Institute in Cambridge for its hospitality
during the preparation of part of this article.

2 Geometric zeta- and L-functions

Consider the Riemann zeta function

ζ(s) =
∏
p

(1− p−s)−1 =
∞∑

n=1

n−s for Re s > 1 .

It has a holomorphic continuation to C \ {1} with a simple pole at s = 1. To its
finite Euler factors

ζp(s) = (1− p−s)−1

we add an Euler factor corresponding to the archimedian place p = ∞ of Q

ζ∞(s) = 2−1/2 π−s/2 Γ(s/2)

and introduce the completed zeta function

ζ̂(s) = ζ(s)ζ∞(s) .

It is holomorphic in C \ {0, 1} with simple poles at s = 0, 1 and satisfies the
functional equation:

ζ̂(1− s) = ζ̂(s) .

Its zeroes are the so called non-trivial zeroes of ζ(s), i.e. those in the critical strip
0 < Re s < 1. The famous Riemann conjecture asserts that they all lie on the line
Re s = 1/2.
Apart from its zeroes, the special values of ζ(s), i.e. the numbers ζ(n) for integers
n ≥ 2, have received a great deal of attention. Recently, as a special case of the
Bloch–Kato conjectures, it has been possible to express them entirely in terms
of cohomological invariants of Q; c.f. [BK], [HW]. Together with the theory of
ζ-functions of curves over finite fields this suggests that the Riemann zeta function
should be cohomological in nature. The rest of this article will be devoted to a
thorough discussion of this hypothesis in a broader context.

A natural generalization of the Riemann zeta function to the context of arith-
metic geometry is the Hasse–Weil zeta function ζX (s) of an algebraic scheme X/Z

ζX (s) =
∏

x∈|X|
(1−N(x)−s)−1 , Re s > dimX
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where |X | is the set of closed points of X and N(x) is the number of elements in
the residue field of x. For X = SpecZ we recover ζ(s), and for X = Spec ok, where
ok is the ring of integers in a number field k, the Dedekind zeta function of k. It
is expected that ζX (s) has a meromorphic continuation to C and, if X is regular,
that

ζ̂X (s) = ζX (s)ζX∞(s)

has a simple functional equation with respect to the substitution of s by dimX −s.
Here ζX∞(s) is a certain product of Γ-factors depending on the Hodge structure on
the cohomology of X∞ = X ⊗ R. This is known if X is equicharacteristic, i.e. an
Fp-scheme for some p, by using the Lefschetz trace formula and Poincaré duality
for l-adic cohomology.
The present strategy for approaching ζX (s) was first systematically formulated by
Langlands. He conjectured that every Hasse–Weil zeta function is up to finitely
many Euler factors the product of automorphic L-functions. One could then apply
the theory of these L-functions which is quite well developed in important cases
although by no means in general. For X with generic fibre related to Shimura
varieties this Langlands program has been achieved in very interesting examples.
Another spectacular instance was Wiles’ proof with Taylor of modularity for most
elliptic curves over Q.
The strategy outlined in section 3 of the present article is completely different and
much closer to the cohomological methods in characteristic p.
By the work of Deligne [De], it is known that for proper regular X/Fp the zeroes
(resp. poles) of ζ̂X (s) = ζX (s) have real parts equal to ν/2 for odd (resp. even)
integers 0 ≤ ν ≤ 2 dimX , and one may expect the same for the completed Hasse
Weil zeta function ζ̂X (s) of an arbitrary proper and regular scheme X/Z.
As for the orders of vanishing at the integers, a conjecture of Soulé [So] asserts
that for X/Z regular, quasiprojective connected and of dimension d, we have the
formula

ords=d−nζX (s) =
2n∑

i=0

(−1)i+1 dimGr n
γ (K2n−i(X )⊗Q) . (1)

Here the associated graded spaces are taken with respect to the γ-filtration on
algebraic K-theory. Unfortunately it is not even known, except in special cases,
whether the dimensions on the right hand side are finite.

For a (mixed) motive M over Q – intuitively a “piece” in the total cohomology
of a variety X, such as Hw(X) – analogy with the function field case leads to the
following definition of the L-function:

L(M, s) =
∏
p

Lp(M, s) where Lp(M, s) = detQl
(1− p−sFr∗p |M Ip

l )−1 .

Here Ml is the l-adic realization of M for any l 6= p and Frp, Ip are the inverse of
a Frobenius automorphism in Gal(Q/Q) and an inertia group at p, respectively.
For example, the l-adic realization of M = Hw(X) is the w-th l-adic cohomology
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of X ⊗ Q. Rationality and independence of l of the characteristic polynomial of
Fr∗p are expected for all p, known in many cases and assumed in the following.

If X is proper and flat over SpecZ with smooth generic fibre X = X ⊗ Q,
then up to finitely many Euler factors we have:

ζX (s) =
2 dim X∏

w=0

L(Hw(X), s)(−1)w

Adding a suitable product of Γ-factors L∞(M, s) defined in [Se] and [F-PR] III
which depends only on the real Hodge realization MB over R we obtain the com-
pleted L-function of the motive

L̂(M, s) = L(M, s)L∞(M, s) .

In terms of the filtration V on MB introduced in [D3] § 6, we have

L∞(M, s) =
∏

n∈Z
ζ∞(s− n)dn

where dn = dimGr n
VMB .

Define L̂S(M, s) by omitting the Euler factors corresponding to a finite set of
places S.
For later purposes we recall the following definition due to Scholl. A motive over
Q is called integral at p if the weight filtration on the l-adic realization for l 6= p
splits as a module under the inertia group at p. For a finite set S of prime numbers
let MZS be the category of motives over Q which are integral at all p /∈ S.

The following conjectures are a great challenge to arithmetic geometry. Ex-
cept for the fourth they have been confirmed in many cases after first identifying
the L-function of a motive with a product of automorphic L-functions.

Conjectures 2.1 Let M be a (mixed) motive over Q.

1. L(M, s) and hence L̂(M, s) have a meromorphic continuation to C and there is
a functional equation

L̂(M, s) = ε(M, s)L̂(M∗, 1− s)

where ε(M, s) = a ebs for some real a, b.

2. L̂(M, s) = L̂1(M, s)L̂02(M, s)−1

where L̂1(M, s) is entire of genus one and L̂02(M, s) is a polynomial in s whose
zeroes are integers.

3. (Artin) If M is simple and not a Tate motive Q(n), the L-function L(M, s) has
no poles.

4. (Riemann) If M is pure of weight w, e.g. M = Hw(X) for a smooth proper
variety X/Q, then the zeroes of L̂(M, s) lie on the line Re s = w+1

2 .

5. (Deligne, Beilinson, Scholl) For M in MZ

ords=0L(M, s) = dim Ext1MZ(Q(0),M∗(1))− dimHomMZ(Q(0),M∗(1)) .
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3 The conjectural cohomological formalism

In this section we interpret many of the conjectures about zeta- and L-functions
in terms of an as yet speculative infinite dimensional cohomology theory. We
also describe a number of consequences of this very rigid formalism that can be
proved directly. Among these there is a formula which expresses the Riemann
ζ-function as a zeta-regularized product. After giving the definition of regularized
determinants in a simple algebraic setting we first discuss the formalism in the case
of the Riemann zeta function and then generalize to Hasse–Weil zeta functions and
motivic L-series.

Given a C-vector space H with an endomorphism Θ such that H is the count-
able sum of finite dimensional Θ-invariant subspaces Hα, the spectrum sp (Θ) is
defined as the union of the spectra of Θ on Hα, the eigenvalues being counted with
their algebraic multiplicities. The (zeta-)regularized determinant det∞(Θ |H) of
Θ is defined to be zero if 0 ∈ sp (Θ), and by the formula

det∞(Θ |H) :=
∏

α∈sp (Θ)

α := exp(−ζ ′Θ(0)) (2)

if 0 /∈ sp (Θ). Here

ζΘ(z) =
∑

0 6=α∈sp (Θ)

α−z , where − π < arg α ≤ π ,

is the spectral zeta function of Θ. For (2) to make sense we require that ζΘ be
convergent in some right half plane, with meromorphic continuation to Re z > −ε,
for some ε > 0, holomorphic at z = 0. For an endomorphism Θ0 on a real vector
space H0, such that Θ = Θ0⊗ id on H = H0⊗C satisfies the above requirements,
we set

det∞(Θ0 |H0) = det∞(Θ |H) .

On a finite dimensional vector space H we obtain the ordinary determinant of Θ.
As an example of a regularized determinant, consider an endomorphism Θ whose
spectrum consists of the number 1, 2, 3, . . . with multiplicities one. Then

det∞(Θ |H) =
∞∏

ν=1

ν =
√

2π since ζ ′(0) = − log
√

2π .

The regularized determinant plays a role for example in Arakelov theory and in
string theory. In our context it allows us to write the different Euler factors of
zeta- and L-functions in a uniform way as we will first explain for the Riemann
zeta function.

Let Rp for p 6= ∞ be the R-vector space of real valued finite Fourier series on
R/(log p)Z and set

R∞ = R[exp(−2y)] for p = ∞ .
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These spaces carry a natural R-action σt via (σtf)(y) = f(y+ t) with infinitesimal
generator Θ = d/dy. The eigenvalues of Θ on Cp = Rp ⊗ C are just the poles of
ζp(s).

Proposition 3.1 We have ζp(s) = det∞
(

1
2π (s−Θ) |Rp

)−1 for p ≤ ∞.

This is easily proved by applying a classical formula of Lerch for the derivative
of the Hurwitz zeta function at zero [D3] 2.7.
In a sense SpecZ = SpecZ ∪ ∞ is analogous to a projective curve over a finite
field. The Grothendieck Lefschetz trace formula in characteristic p together with
the proposition, suggest that a formula of the following type might hold:

ζ̂(s) =
2∏

i=0

det∞
(

1
2π (s−Θ) |Hi(“SpecZ”,R)

)(−1)i+1

. (3)

Here Hi(“SpecZ”,R) would be some real cohomology vector space equipped with
a canonical endomorphism Θ associated to some space “SpecZ” corresponding to
SpecZ. As recalled earlier ζ̂(s) has poles only at s = 0, 1 and these are of first
order. Moreover the zeroes of ζ̂(s) are just the non-trivial zeroes of ζ(s). If we
assume that the eigenvalues of Θ on Hi(“SpecZ”,R) are distinct for i = 0, 1, 2 it
follows therefore that

• H0(“SpecZ”,R) = R with trivial action of Θ, i.e. Θ = 0,

• H1(“SpecZ”,R) is infinite dimensional, the spectrum of Θ consisting of the
non-trivial zeroes ρ of ζ(s) with their multiplicities,

• H2(“SpecZ”,R) ∼= R but with Θ = id.

• For i > 2 the cohomologies Hi(“SpecZ”,R) should vanish.

Formula (3) implies that

ξ(s) :=
s

2π

(s− 1)
2π

ζ̂(s) =
∏
ρ

1
2π

(s− ρ) .

This formula turned out to be true [D2], [SchS]. Earlier a related formula had
been observed in [K].
If H is some space with an endomorphism Θ let us write H(α) for H equipped
with the twisted endomorphism ΘH(α) = Θ− α id. With this notation we expect
a canonical “trace”-isomorphism:

tr : H2(“SpecZ”,R) ∼−→ R(−1) .

In our setting the cup product pairing

∪ : Hi(“SpecZ”,R)×H2−i(“SpecZ”,R) −→ H2(“SpecZ”,R) ∼= R(−1)

induces a pairing for every α in C:

∪ : Hi(“SpecZ”, C)Θ∼α ×H2−i(“SpecZ”, C)Θ∼1−α −→ H2(“SpecZ”, C)Θ∼1 ∼= C .
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Here Θ ∼ α denotes the subspace of

Hi(“SpecZ”, C) = Hi(“SpecZ”,R)⊗ C
of elements annihilated by some power of Θ−α. We expect Poincaré duality in the
sense that these pairings should be non-degenerate for all α. This is compatible
with the functional equation of ζ̂(s). For the precise relation see [D3] 7.19.
In the next section we will have more to say on the type of cohomology theory that
might be expected for Hi(“SpecZ”,R). But first let us note a nice consequence our
approach would have. Consider the linear flow λt = exp tΘ on Hi(“SpecZ”,R).
It is natural to expect that it is the flow induced on cohomology by a flow φt on
the underlying space “SpecZ”, i.e. λt = (φt)∗. This implies that λt would respect
cup product and that Θ would behave as a derivation. Now assume that as in the
case of compact Riemann surfaces there is a Hodge ∗-operator:

∗ : H1(“SpecZ”,R) ∼−→ H1(“SpecZ”,R) ,

such that

〈f, f ′〉 = tr(f ∪ (∗f ′)) for f, f ′ in H1(“SpecZ”,R) ,

is positive definite, i.e. a scalar product on H1(“SpecZ”,R). It is natural to
assume that (φt)∗ and hence Θ commutes with ∗ on H1(“SpecZ”,R). From the
equality:

f1 ∪ f2 = Θ(f1 ∪ f2) = Θf1 ∪ f2 + f1 ∪Θf2

for f1, f2 in H1(“SpecZ”,R) we would thus obtain the formula

〈f1, f2〉 = 〈Θf1, f2〉+ 〈f1,Θf2〉 ,

and hence that Θ = 1
2 + A where A is a skew-symmetric endomorphism of

H1(“SpecZ”,R). Hence the Riemann conjecture would follow.
The formula Θ = 1

2 + A is also in accordance with numerical investigations on
the fluctuations of the spacings between consecutive non-trivial zeroes of ζ(s). It
was found that their statistics resembles that of the fluctuations in the spacings
of consecutive eigenvalues of random real skew symmetric matrices, as opposed
to the different statistics for random real symmetric matrices; see [Sa] for a full
account of this story. In fact the comparison was made between hermitian and
symmetric matrices, but as pointed out to me by M. Kontsevich, the statistics in
the hermitian and real skew symmetric cases agree.
The completion of H1(“SpecZ”,R) with respect to 〈, 〉, together with the un-
bounded operator Θ would be the space that Hilbert was looking for, and that
Berry [B] suggested to realize in a quantum physical setting.

The following considerations are necessary for comparison with the dynamical
picture.
Formula (3) is closely related to a reformulation of the explicit formulas in analytic
number theory using the conjectural cohomology theory above, see [I] Kap. 3 and
[JL] for the precise relationship. Set R+ = (0,∞).
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Proposition 3.2 For a test function ϕ ∈ D(R+) = C∞0 (R+) define an entire
function Φ(s) by the formula

Φ(s) =
∫

R
ϕ(t)ets dt .

Then we have the “explicit formula”:

Φ(0)−
∑

ζ̂(ρ)=0

Φ(ρ) + Φ(1) =
∑

p

log p
∞∑

k=1

ϕ(k log p) +
∫ ∞

0

ϕ(t)
1− e−2t

dt .

We wish to interpret this well known formula along the lines of [P] § 3. For this
we require the following elementary notion of a distributional trace. Consider a
real or complex vector space H with a linear R-action

λ : R×H → H , λ(t, h) = λt(h) ,

which decomposes into a countable direct sum of finite dimensional invariant sub-
spaces Hn. Let Tr(λ |Hn)dis be the distribution on R+ associated to the function
t 7→ Tr(λt |Hn), and set

Tr(λ |H)dis =
∑

n

Tr(λ |Hn)dis (4)

if the sum converges in the space of distributions D′(R+). By assumption λ can
be written as λt = exp tΘ with an endomorphism Θ of H, and we have

Tr(λ |H)dis =
∑

α∈sp (Θ)

〈etα〉 in D′(R+)

if the series converges. Here 〈f〉 ∈ D′(R+) denotes the distribution associated to
a locally integrable function f on R+. Thus

〈Tr(λ |H)dis, ϕ〉 =
∑

α∈sp (Θ)

∫

R
ϕ(t)etα dt =

∑

α∈sp (Θ)

Φ(α)

for any test function ϕ in the Schwartz space D(R+). Conjecturally (3.2) can thus
be reformulated as the following identity of distributions

∑

i

(−1)iTr(φ∗ |Hi(“SpecZ”,R))dis =
∑

p

log p
∞∑

k=1

δk log p + 〈(1− e−2t)−1〉 . (5)

Using the Poisson summation formula one sees that

Tr(σ |Rp)dis = log p
∞∑

k=1

δk log p for finite p .

A direct calculation shows that

Tr(σ |R∞)dis = 〈(1− e−2t)−1〉 .
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Hence (5) can be rewritten as a sheaf theoretic Lefschetz trace formula
∑

i

(−1)iTr(φ∗ |Hi(“SpecZ”,R))dis =
∑

p≤∞
Tr(φ∗ |Rp)dis . (6)

For more on this see [D5], [DSch].

We now turn to Hasse–Weil zeta functions of algebraic schemes X/Z. A
similar argument as for the Riemann zeta function suggests that

ζX (s) =
2d∏

i=0

det∞

(
1
2π

(s−Θ) |Hi
c(“X”,R)

)(−1)i+1

(7)

where Hi
c(“X”,R) is some real cohomology with compact supports associated to

a dynamical system “X” attached to X and d = dimX . Here Θ should be the
infinitesimal generator of the induced flow on cohomology. In particular we would
have

ords=α ζX (s) =
2d∑

i=0

(−1)i+1 dim Hi
c(“X”, C)Θ∼α .

For a regular connected X the Poincaré duality pairing

∪ : Hi
c(“X”,R)×H2d−i(“X”,R) −→ H2d

c (“X”,R) ∼−→ R(−d) (8)

should identify

Hi
c(“X”, C)Θ∼α with the dual of H2d−i(“X”, C)Θ∼d−α .

In particular we would get:

ords=d−n ζX (s) =
2d∑

i=0

(−1)i+1 dim Hi(“X”, C(n))Θ∼0 ,

where C(α) is the sheaf C on “X” with action of the flow twisted by e−αt. Thus

Hi(“X”, C(n))Θ∼0 = Hi(“X”, C)Θ∼n .

For a regular X we expect formal analogues of Tate’s conjecture

Hi
M(X ,C(n)) := Gr n

γK2n−i(X )⊗ C ∼−→ Hi(“X”, C(n))Θ∼0 , (9)

and in particular that

Hi(“X”, C(n))Θ∼0 = 0 for i > 2n .

Note that the latter assertion says that the weights of Θ on Hi(“X”, C), i.e. twice
the real parts of its eigenvalues, should be ≥ i. This would imply Soulé’s conjecture
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(2.1).
Again the explicit formulas could be expressed in terms of cohomology in the form

∑

i

(−1)iTr(φ∗ |Hi
c(“X”,R))dis =

∑

x∈|X|
log N(x)

∞∑

k=1

δk log N(x) . (10)

In support of these ideas we have the following result.

Theorem 3.3 On the category of algebraic Fp-schemes X there is a cohomology
theory in C-vector spaces with a linear flow such that (7) holds. For a regular
connected X of dimension d it satisfies Poincaré duality (8). Moreover (9) reduces
to the Tate conjecture for l-adic cohomology.

See [D3] § 4, [D4] § 2 for more precise statements and the simple construc-
tion based on l-adic cohomology. This approach cannot be generalized to non-
equicharacteristic X/Z.

If there were a dynamical cohomology theory Hi(“X”,R) attached to some
Arakelov compactification X of X such that

ζ̂X (s) =
2d∏

i=0

det∞

(
1
2π

(s−Θ) |Hi(“X”,R)
)(−1)i+1

,

then as above Poincaré duality for Hi(“X”,R) would be in accordance with the
expected functional equation for ζ̂X (s). A Hodge ∗-operator

∗ : Hi(“X”,R) −→ H2d−i(“X”,R)

defining a scalar product via 〈f, f ′〉 = tr(f ∪ (∗f ′)) and for which

φt∗ ◦∗ = (et)d−i ∗ ◦φt∗ , i.e. Θ ◦∗ = ∗ ◦ (d− i + Θ) ,

holds, would imply that Θ−i/2 is skew symmetric, hence the Riemann hypotheses
for ζ̂X (s). The last equation means that the flow changes the metric defining the
∗-operator by the conformal factor et.

As we mentioned above the zeta function ζX (s) is up to finitely many Euler
factors the alternating product of the L-functions of the motives Hi(X). In [D1]
we constructed cohomology R-vector spaces Hw

ar with a linear flow on the category
of varieties over R or C such that

ζX∞(s) =
2 dimX∞∏

i=0

det∞

(
1
2π

(s−Θ) |Hi
ar(X∞)

)(−1)i+1

.

Cup product and functoriality turn the spaces Hi
ar(X∞) into modules under

H0
ar(X∞) = H0

ar(SpecR) = R∞ of rank equal to dim Hi(X∞,Q). Philosophically
the scheme X should have bad semistable “reduction” at infinity. In accordance
with this idea Consani [Cons] has refined the theory Hi

ar to a cohomology theory
with a linear flow and a monodromy operator N which contains Hi

ar as the kernel
of N .
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We now turn our attention to motivic L-series. The first task is to express the
local Euler factors Lp(M, s) in terms of regularized determinants on some spaces
functorially attached to M .

Theorem 3.4 For every p ≤ ∞, there is a left exact additive functor Fp from
motives over Q to the category of C-vector spaces with a linear flow such that

Lp(M, s) = det∞

(
1
2π

(s−Θ) | Fp(M)
)−1

.

The functor Fp commutes with Tate twists, and there are natural flow equivariant
maps

Fp(M)⊗Fp(M ′) −→ Fp(M ⊗M ′) (11)

turning Fp(M) into an Fp(Q(0)) = Cp-module of rank equal to dim M
Ip

l for finite
p and equal to rkM for p = ∞. On the category of motives integral at p the functor
Fp is exact. On motives with good reduction at p the map (11) is an isomorphism
and Fp commutes with duals. For p = ∞ it has a real structure FR∞ and there is
a natural perfect pairing:

FR∞(M)Θ=0 × Ext1MHR(R(0), M∗
B(1)) −→ R ,

where MHR is the category of real mixed Hodge structures over R. For varieties
X/R we have

Hw
ar(X) = FR∞(Hw(X)) .

The proofs – which are quite formal – can be found in [D3]. The functor F∞ is
constructed from MB by a construction á la Fontaine using a simple Barsotti–Tate
ring. For finite p, the construction applies an elementary case of the Riemann–
Hilbert correspondence to M

Ip

l ⊗Ql
C with the Frobenius action. It can also be

viewed as an association of Fontaine’s type.
By the theorem

L̂(M, s) =
∏

p≤∞
det∞

(
1
2π

(s−Θ) | Fp(M)
)−1

,

and this suggests that

L̂(M, s) =
2∏

i=0

det∞

(
1
2π

(s−Θ) |Hi(“SpecZ”,F(M))
)(−1)i+1

(12)

for some sheaf with action of the flow F(M) on “SpecZ” whose stalks “at the
points p” should be isomorphic to Fp(M). It should be thought of as an analogue
of the sheaf F(M) = j∗M for a Ql-sheaf M on the generic point η of a curve Y
over a finite field, where j : η ↪→ Y is the inclusion.
Formula (12) would represent L̂(M, s) as a quotient of entire functions – at least
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if the regularized determinants are of the Cartier–Voros type [CV].
This together with Poincaré duality for the sheaf cohomologies
Hi(“SpecZ”,F(M)) would explain the first part of conjecture 2.1 c.f. [D3]
7.19.
The assertion about L̂02(M, s) in the second part of 2.1 means that
H0(“SpecZ”,F(M)) and H2(“SpecZ”,F(M)) should be finite dimensional
with Θ having only integer eigenvalues.
The Riemann conjecture would follow from purity: For a pure motive M of weight
w the eigenvalues of Θ on Hi(“SpecZ”,F(M)) should have real part w+i

2 . As
before there is a Hodge ∗-argument for this c.f. [D3] 7.11.
For L(M, s) we expect the formula

L(M, s) =
2∏

i=0

det∞

(
1
2π

(s−Θ) |Hi
c(“SpecZ”,F(M))

)(−1)i+1

(13)

and by Poincaré duality

L(M, s) =
2∏

i=0

det∞

(
1
2π

(s + Θ) |Hi(“SpecZ”,F(M∗(1)))
)(−1)i+1

. (14)

See [D3] (7.19.1). This implies that

ords=0L(M, s) =
2∑

i=0

(−1)i+1 dim Hi(“SpecZ”,F(M∗(1)))Θ∼0 .

On the category MZ all functors Fp are exact by the theorem. Hence F should
be exact and therefore induce maps for all N in MZ

(15)

F : Exti
MZ(Q(0), N)⊗ C −→ Exti

“Spec Z”(C(0),F(N))Θ∼0 = Hi(“SpecZ”,F(N))Θ∼0 .

If these are isomorphisms (2.1) part 5. follows. Note that because SpecZ is
an affine curve it is reasonable to expect Hi(“SpecZ”,F(N)) to vanish for i ≥ 2.
Similarly (15) with Z replaced by ZS ought to be an isomorphism. The eigenvalues
of Θ on

H0(“SpecZ”,F(N)) = H0(“SpecZ”,F(N)) (c.f. [D4] § 4)

being integers, we have

H0(“SpecZ”,F(N)) =
⊕

n∈Z
Hom(Q(0), N(n))⊗ C

by (15) applied to all twists N(n). Together with (14) we would get the Artin
conjecture (2.1) part 3. Further conjectures on L-functions and extensions of
motives by Deligne, Scholl and Selberg are related to the cohomological formalism
in [D4] §§ 4, 9.
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Let us now turn to certain consequences of the formalism that have been
proved. As for the Riemann zeta function we must have

ξ(M, s) := L̂(M, s)
∏
τ

1
2π

(s− τ) =
∏
ρ

1
2π

(s− ρ) (16)

where ρ runs over the zeroes of L̂(M, s) and τ over its finitely many poles. This
follows from the theory of [JL] or [I] assuming standard conjectures on the analytic
behaviour of L-series. For example for L(E, s), where E is a modular elliptic curve,
formula (16) is a theorem.

As explained above there should be a trace isomorphism

tr : H2(“SpecZ”,R(1)) = H2(“SpecZ”,R(1))Θ=0 ∼−→ R .

Comparing this with (15) we are led to search for a category of (mixed) motives
MZ over SpecZ equipped with a non-trivial map

Ext2MZ
(Q(0),Q(1)) −→ R .

Integrality at a finite prime p can be expressed in terms of the functor Fp, c.f.
[DN] appendix. For F∞ this condition means that the real Hodge structure MB

be split. Taking this as our definition of integrality at p = ∞ we define MZ to be
the subcategory of motives in MQ which are integral at all primes p ≤ ∞. Under
the natural injection [Sch] 2.7

Q∗ ↪→ Ext1MQ(Q(0),Q(1)) , (17)

the motive corresponding to α is integral at p ≤ ∞ iff |α|p = 1. In [DN]
it was shown that if (17) is an isomorphism rationally then Ext2MZ

(Q(0),Q(1))
is non-zero. If MZ is replaced by the category (1-motives /SpecZ) ⊗ Q then
Ext2(Q(0),Q(1)) is non-zero unconditionally, [J] Cor. 5.5. Furthermore it was
shown that the motivic height pairing of [Sch] could be interpreted as a Yoneda
pairing followed by the degree map

Ext1MZ
(Q(0), M)× Ext1MZ

(Q(0), M∗(1)) −→ Ext2MZ
(Q(0),Q(1)) −→ R .

This is in accordance with the idea that under a suitable extension of the isomor-
phism (15) to SpecZ, (c.f. [D4] (2.4)), the motivic height pairing will correspond
to Poincaré duality

H1(“SpecZ”,F(M))×H1(“SpecZ”,F(M∗(1))) −→ H2(“SpecZ”, C) tr∼= C

restricted to the Θ ∼ 0 parts.
Apart from local L-factors there are also local ε-factors attached to motives.

In [D6] the functors Fp and a notion of regularized super-dimension were used
among other things to give a comparatively uniform description of these factors
at all places.
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A motive M of weight w with coefficients in a number field T is called or-
thogonal if there is a symmetric morphism M ⊗ M → T (−w) which induces an
isomorphism M∗ ∼= M(w). For example the Artin motive attached to a represen-
tation ρ : Gal(Q/Q) → GL N (T ) is orthogonal if and only if ρ is orthogonal. Our
formalism implies that for orthogonal M the cup product induces a symplectic
form on H1(“SpecZ”,F(M))Θ∼

w+1
2 which must therefore be of even dimension.

Hence the order of vanishing of L(M, s) at the central point w+1
2 must be even

and the sign in the functional equation therefore be +1 c.f. [D4] § 6. For Artin
motives this is a theorem of Fröhlich and Queyrut which was extended to more
general motives by T. Saito in [S] using crystalline methods.

We close this section with some remarks on trace formulas. If the L-functions
of motives satisfy the expected analytic properties, one can easily extend the ex-
plicit formulas of analytic number theory for the L̂S-function to this context, see
for example [DSch] or [JL]. In terms of our conjectural cohomology theory these
can be reformulated – as for the Riemann zeta function – as the following equalities
of distributions on R+:

∑
i

(−1)iTr(ψ∗ |Hi
c(“SpecZ \ S”,F(M)))dis =

∑

p/∈S

log p

∞∑

k=1

Tr(Frk
p |MIp

l )δk log p

+α(S)

〈
Tr(e•t |Gr •VMB)

1− e−2t

〉 (18)

and
∑

i

(−1)iTr(ψ∗ |Hi
c(“SpecZ \ S”,F(M)))dis =

∑

p≤∞,p/∈S

Tr(ψ∗ | Fp)dis .

Here “SpecZ \ S” is the dynamical system corresponding to SpecZ \ S and we
have written ψt∗ for the induced flow on cohomology with sheaf coefficients in
accordance with notations in the next section. Moreover e•t is the map ent on
Gr n

VMB and α(S) is zero or one according to whether S contains p = ∞ or not.
In the next section we consider trace formulas for dynamical systems on foli-

ated spaces which bear striking formal similarities with (5) and its generalization
(18).

4 Dynamical systems on foliated spaces

We begin by recalling a formula due to Guillemin and Sternberg [GS] VI § 2.
Consider a smooth compact manifold X with a flow φt, i.e. a smooth action

φ : X × R→ X , φt(x) = φ(x, t) .

The compact orbits are assumed to be non-degenerate in the following sense. If
x is a fixed point of the flow, i.e. φt(x) = x for all t, then the tangent map
Txφt : TxX → TxX should not have 1 as an eigenvalue for any t > 0. The vector
field Yφ generated by the flow is φ-invariant in the sense that Txφt(Yφ,x) = Yφ,φt(x)

for all points x in X. Thus for any point x on a periodic orbit γ of length l(γ)
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and any positive integer k the endomorphism Txφk·l(γ) of TxX has Yφ,x as an
eigenvector of eigenvalue 1. Non-degeneracy of γ means that the eigenvalue 1 does
not occur on TxX/T 0

x where T 0
x = R · Yφ,x.

Let E be a smooth vector bundle on X with an action opposite to φ, i.e. a family
of maps

ψt : φt∗E −→ E

satisfying an obvious cocycle condition. Note that for any x ∈ γ we get maps

ψkl(γ)
x : Eφkl(γ)(x) = Ex −→ Ex ,

and that the traces Tr(ψkl(γ)
x |Ex) are independent of the choice of x on γ. For a

fixed point x the traces Tr(ψt
x |Ex) are defined for all t.

Consider the endomorphisms

ψt∗ : Γ(X, E)
φt∗
−→ Γ(X, φt∗E)

ψt

−→ Γ(X, E)

of the Fréchet space Γ(X,E). In order to define a distributional trace

Tr(ψ∗ |Γ(X,E)) in D′(R+) ,

Guillemin and Sternberg proceed as follows. Consider the restriction φ : X×R+ →
X, the diagonal map ∆ : X × R+ → X × X × R+, ∆(x, t) = (x, x, t) and the
projections p : X ×R+ → X,π : X ×R+ → R+. View ψ as a map ψ : φ∗E → p∗E
and let Kψ∗ be the Schwartz kernel of the composite map:

ψ∗ : Γ(X,E)
φ∗−→ Γ(X × R+, φ∗E)

ψ−→ Γ(X × R+, p∗E) .

Thus Kψ∗ is a generalized density on X×X×R+. The non-degeneracy assumptions
above are equivalent to the image of ∆ and the graph of φ intersecting transversally.
Thus by the theory of the wave front set one can pull back Kψ∗ via ∆ and define

Tr(ψ∗ |Γ(X,E)) = π∗∆∗Kψ∗ in D′(R+) .

Intuitively,

Tr(ψ∗ |Γ(X, E)) =
∫

X

Kψ∗(x, x, t) dx

as a distribution in t.
With this definition of a trace the following result becomes almost a tautology:

Proposition 4.1 (Guillemin, Sternberg) Under the assumptions above, the
following formula holds in D′(R+):

Tr(ψ∗ |Γ(X, E)) =
∑

γ

l(γ)
∞∑

k=1

Tr(ψkl(γ)
x |Ex)

|det(1− Txφkl(γ) |TxX/T 0
x )|δkl(γ)

+
∑

x

〈
Tr(ψt

x |Ex)
| det(1− Txφt |TxX)|

〉
.
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Here γ runs over the periodic orbits and in the first sum x denotes any point on
γ. In the second sum x runs over the stationary points of the flow.

In order to get a formula that is closer in appearance to (5) and (18) we now
apply a basic idea which Guillemin [G] and independently Patterson [P] used in the
context of Selberg and Ruelle zeta functions. It involves the theory of foliations
for which we refer e.g. to [Go]. Assume that X carries a smooth foliation of
codimension one such that φt maps leaves to leaves. By a theorem of Frobenius
this is equivalent to specifying an integrable codimension one subbundle T0 ⊂ TX
with Tφt(T0) = T0 for all t, the bundle of tangents to the leaves. Let U ⊂ X be
the open φt-invariant subset of points x where the flow line through x intersects
the leaf through x transversally, i.e. where

T0x ⊕ T 0
x = TxX .

We assume that U contains all periodic orbits.
If x is a fixed point of φ there exists some real constant κx such that Txφt acts on
the one dimensional space TxX/T0x by multiplication with eκxt. We set

εγ(k) = sgn det(1− Txφkl(γ) |T0x) and εx = sgn det(1− Txφt |TxX)

the latter being independent of t > 0. From the proposition applied to ΛiT ∗0 ⊗ E
we get the following formula in D′(R+):

∑

i

(−1)iTr(ψ∗ |Γ(X, ΛiT ∗0 ⊗ E)) (19)

=
∑

γ

l(γ)
∞∑

k=1

εγ(k)Tr(ψkl(γ)
x |Ex)δkl(γ) +

∑
x

εx

〈
Tr(ψt

x |Ex)
1− eκxt

〉
.

Here an action ψt : φt∗T ∗0 → T ∗0 is given by ψt
x = (Txφt)∗ : T ∗0φt(x) → T ∗0x.

Together with the action on E we get an action opposite to φ on every ΛiT ∗0 ⊗E.
In order to proceed we next assume that E carries a flat connection along the
leaves

δ0 : E −→ T ∗0 ⊗ E ,

where E and T0 are the sheaves of smooth sections of E and T0. It gives rise to a
fine resolution

E δ0−→ T ∗0 ⊗ E δ0−→ Λ2T ∗0 ⊗ E −→ . . .

of the sheaf

F = Ker (δ0 : E −→ T ∗0 ⊗ E)

of smooth sections of E which are constant along the leaves of the foliation. For
the trivial bundle E = X×R with its canonical T0-connection we obtain the sheaf
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R of smooth real valued functions on X which are constant along the leaves.
Note that F carries a canonical action

ψt : (φt)−1F −→ F

opposite to φt which is used to define a map on cohomology by composition:

ψt∗ : Hi(X,F)
(φt)−1

−→ Hi(X, (φt)−1F)
ψt

−→ Hi(X,F) .

Then the canonical isomorphism:

Hi(X,F) = Hi((Γ(X, Λ•T ∗0 ⊗ E), δ0))

becomes equivariant under the induced action of the flow and one might hope to
replace the alternating sum in (19) by an alternating sum over traces on cohomol-
ogy.
On the other hand the differential δ0 will not have closed image in general, so
that the cohomology spaces will not even be Hausdorff [H] 2.1. Let H

i
(X,F) be

the maximal Hausdorff quotient of Hi(X,F), the reduced leafwise cohomology. It
seems reasonable to expect a dynamical trace formula of the form

∑

i

(−1)iTr(ψ∗ |Hi
(X,F)) (20)

=
∑

γ

l(γ)
∞∑

k=1

εγ(k)Tr(ψkl(γ)
x |Ex)δkl(γ) +

∑
x

εx

〈
Tr(ψt

x |Ex)
1− eκxt

〉
.

Note that for the trivial bundle E = X × R we would get
(21)

∑

i

(−1)iTr(ψ∗ |Hi
(X,R)) =

∑
γ

l(γ)
∞∑

k=1

εγ(k)δkl(γ) +
∑

x

εx〈(1− eκxt)−1〉 .

For the geodesic flow on the sphere bundle of cocompact quotients of rank one
symmetric spaces and the stable foliation, analogous formulas are consistent with
the Selberg trace formula, as has been shown by Guillemin [G], Patterson [P] and
later workers, e.g. Juhl, Schubert, Bunke, Olbrich and Deitmar. Strictly speaking
in these investigations H

i
(X,F) is replaced by a sum of representations suggested

by this cohomology.
If X is the suspension of a diffeomorphism on a compact manifold M , the leafwise
cohomologies turn out to be Hausdorff and hence Fréchet spaces, and (20) holds
with the straightforward definition of a distributional trace given in (4). This
consequence of the ordinary Lefschetz trace formula seems to be well known. A
proof is written up in [D7] § 3.
Apart from these cases which do not involve stationary points the formula (20) does
not seem to be established. One of the main problems is of course the definition of
a good trace on the cohomology spaces H

i
(X,F) these being infinite dimensional
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in general [AH]. Even if all of the H
i
(X,F) are finite dimensional, (20) does not

seem to be known. However it appears that at least for Riemannian foliations
something can be done using the recent Hodge theorem of Alvarez-Gomez and
Kordyukov for leafwise cohomology. In this case there is also a Hodge ∗-operator
on cohomology which is induced by the metrics on the leaves.

Let U be the dynamical system obtained by removing all the leaves containing
stationary points. Then a trace formula of the form

∑

i

(−1)iTr(ψ∗ |Hi

c(U,F)) =
∑

γ

l(γ)
∞∑

k=1

εγ(k)Tr(ψkl(γ)
x |Ex)δkl(γ)

is expected. For E = U × R in particular we should have

∑

i

(−1)iTr(ψ∗ |Hi

c(U,R)) =
∑

γ

l(γ)
∞∑

k=1

εγ(k)δkl(γ) . (22)

It seems to be quite a challenge to establish such dynamical trace formulas in
any generality and also for more general foliations. This would also be a major
contribution to the theory of periodic solutions of ordinary differential equations.

Given a closed orbit γ and a point x on γ consider the isomorphism

γ = (γ, x) : R/l(γ)Z ∼−→ γ , t 7−→ φt(x) .

The functor

F 7→ Fγ = Γ(R/l(γ)Z, γ −1F)

from R-modules to C∞(R/l(γ)Z)-modules is exact [D7] 3.22. We view Fγ as the
stalk of F in the “geometric point” x of γ. The Poisson summation formula implies
that

Tr(ψ∗ | Fγ)dis = l(γ)
∞∑

k=1

Tr(ψkl(γ)
x |Ex)δkl(γ) .

For a stationary point x a suitable interpretation of the trace on Fx gives:

Tr(ψ∗ | Fx)dis =
〈

Tr(ψt
x |Ex)

1− eκxt

〉
c.f. [D8].

Thus the right hand side of the trace formulas can be rewritten in more sheaf
theoretical terms as the sum of distributional traces of the flow on the stalks of F
in the compact orbits of the flow. Incidentially, note that our former ring Rp is
just the dense subalgebra of finite Fourier series in C∞(R/(log p)Z).

Formula (21) resp. (22) resembles the cohomological version of the explicit
formulas for the Riemann zeta function (5) resp. for the Hasse Weil zeta func-
tion (10). However, as we will see, the setting of this section and in particular
the assumption that we are dealing with compact manifolds is too restrictive for
the goal of realizing (5) and (10) as special cases of (21) and (22). Nonetheless
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we are led to expect the following structures on the searched for dynamical sys-
tems (“SpecZ”, φt) and (“X”, φt) corresponding to SpecZ resp. the algebraic
scheme X/Z. The space “SpecZ”, whatever its nature, infinite dimensional, a
Grothendieck topology, ..., should have some compactness property. The closed
orbits γ should correspond to the prime numbers such that l(γ) = log p if γ =̂ p.
More generally on “X” they should correspond to the closed points of X with
l(γ) = log N(x) if γ =̂ x. On “SpecZ” there should be a stationary point x∞
corresponding to the infinite prime p = ∞. All these compact orbits must appear
with positive sign in the dynamical trace formulas. Of course there could also
be more periodic orbits and stationary points if their contributions in the trace
formula vanish because of opposite signs.
There are to be one-codimensional foliations on “SpecZ” and “X” such that the
open subset of points where the leaf is transversal to the flow contains all periodic
orbits. Moreover κx∞ = −2, i.e. Tx∞φt operates on Tx∞/T0x∞ by multiplication
with e−2t.
The cohomologies conjectured in section two should be the dense spaces of smooth
vectors in the corresponding reduced leafwise cohomologies. Here a vector is
smooth if it is contained in the sum of generalized eigenspaces of the induced
flow on cohomology.
The leaves on “SpecZ” (resp. “X”) should be two (resp. 2 dimX ) dimensional in
a suitable sense since for foliated manifolds Hi(X,R) = 0 for i > d where d is the
dimension of the leaves, and H

d
(X,R) 6= 0 if there exists a non trivial holonomy

invariant current on X. Thus “SpecZ” (resp. “X”) should have dimension three
(resp. 2 dimX + 1) in that sense. These dimensions agree with the étale cohomo-
logical dimensions of SpecZ (resp. X ).
As for the structure of “X” \ “X” possibly the set of stationary points of the flow
on “X” is X∞(C)/〈F∞〉, where F∞ is complex conjugation. This would generalize
what we expect for X = SpecZ and more generally for X = Spec ok. Note also
that the set of closed points of X over p can be identified with the set Xp(Fp)/〈Frp〉
of Frobenius orbits on Xp(Fp), where Xp = X ⊗ Fp.

We now discuss the basic theory of flows with an integrable invariant comple-
ment. This is relevant for us since they appear as subsystems in the above. Let us
define an F -flow φt to consist of a (Banach-)manifold U with a flow generated by
a smooth vector field which exists for all positive but possibly not for all negative
times. By definition an F -system is an F -flow with a one-codimensional foliation
T0 which is everywhere transversal to the flow. In particular there are no fixed
points. These systems form a category in an obvious way. Their theory is essen-
tially well known and recalled for example in [D7] § 3. The foliation corresponds
uniquely to a closed flow-invariant one form ωφ with 〈ωφ, Yφ〉 = 1, via kerωφ = T0.
The period group Λ ⊂ R is defined as the image of the length homomorphism

l : πab
1 (U) −→ R , l(c) =

∫

c

ωφ .

If there is a morphism U → U ′ of F -systems then ΛU ⊂ ΛU ′ . Periodic orbits γ
give well defined elements [γ] of πab

1 (U) and one has l([γ]) = l(γ), the length of γ.
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For a variety V/Fq there is an analogous map

l : π̂ab
1 (V ) −→ π̂1(SpecFq) = Ẑ

induced by the projection V → SpecFq. Closed points x of V give Frobenius
conjugacy classes and hence well defined elements [Fx] of π̂ab

1 (V ). They satisfy
the equation l([Fx]) = deg x = logq N(x).
On an F -system the following three categories are equivalent:

• vector bundles E with a flat T0-connection δ0 and a compatible action ψ
which is opposite to φ;

• locally free R-modules F with an action ψ opposite to φ;

• local systems F of R-vector spaces.

Here E ↔ F = Ker (δ0 : E → T ∗0 ⊗ E) ↔ F = Ker (ΘF : F → F),
where ΘF : F → F is the derivative of ψ at t = 0. Let α be a real number. To the
twist F(α), defined as F with action ψt

F(α) = e−tαψt
F , there corresponds a local

system F (α). For F = R it is denoted R(α). Its monodromy representation is
exp(αl). Hence Λ ⊂ logQ∗+ if and only if there is a local system Q(1) of Q-vector
spaces such that R(1) = Q(1)⊗ R.
If we complexify we get analogous equivalences of categories.
There is an exact sequence

0 −→ Hi−1(U,F)/Im Θ −→ Hi(U,F ) −→ Hi(U,F)Θ=0 −→ 0

where Θ = (ΘF )∗. This is analogous to the exact sequence

0 −→ Hi−1(V , F )Frq −→ Hi(V, F ) −→ Hi(V , F )Frq −→ 0

for a Ql-sheaf F on V where V = V ⊗Fq. In the language of arithmetic geometry,
H∗(U,F ) is the arithmetic cohomology and H∗(U,F) with its action of the flow
the geometric cohomology. As usual the latter commutes with twists but not the
former.

There is a classification theorem: Every F -system is canonically contained as
an open subsystem in a complete such system, i.e. one where the flow exists for all
times in R; c.f. [D8]. All complete connected F -systems are obtained as follows:
Let M be any leaf of U . Then M is connected and Λ = {t ∈ R |φt(M) = M}
so that Λ operates on M . The system U is then isomorphic to the suspension
M ×Λ R where Λ acts on R by translation and the foliation is by the images of
M × {t} for t in R.

5 Further comparison

For “SpecZ” the period group Λ must contain the numbers log p as they should
be lengths of closed orbits. Hence Λ ⊃ logQ∗+. On the other hand R(1) will have a
rational structure (see below) and hence Λ ⊂ logQ∗+, so that Λ = logQ∗+. Writing
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the flow multiplicatively we therefore expect “SpecZ”, if its flow is complete, to
have the form M ×Q∗+ R∗+ for some “space” with Q∗+-action M reminiscent of the
idèlic picture. A similar argument for varieties V/Fq with a rational point suggests
that “V ” ∼= N ×qZ R∗+.
As mentioned above, the leafwise cohomology of “V ” should be isomorphic to a
theory constructed from the Ql-cohomology of V after the choice of an embedding
Ql ⊂ C. Comparing the kernels of Θ, it follows on combining [D3] (2.4) and § 4
with [D7] (3.19) that the singular cohomology of N with C-coefficients, endowed
with the automorphism q∗, must be isomorphic to H∗(V ,Ql)⊗C with Fr∗q-action.
It follows that Hd(N,Z), where d = dim N , must be a Z[q−1]-module, since Fr∗q
acts by multiplication with qd on Hd(V ,Ql).
The natural way to obtain such N is to take a compact manifold Ñ with a finite
map q : Ñ → Ñ of degree q and set N = lim

←
(. . . → Ñ

q→ Ñ → . . . ). Note the

continuity theorems for cohomology in this regard, c.f. [Br] II.14. The most naive
way to obtain (Ñ , q) would be by lifting (V, Frq) to C. For cellular varieties and
ordinary abelian varieties over Fq this is possible but of course not in general.
It seems possible that in the above isomorphism “SpecZ” ∼= M×Q∗+R∗+ the leaf M

is obtained from a “space” M̃ with commuting operators for every prime number
p, by an analogous projective limit. This puts M ×Q∗+ R∗+ even closer to the idèlic
view point.

Allowing such more general spaces removes a difference between dynamical
trace formulas and explicit formulas in cohomological form: Both can be extended
to test functions on R∗, but whereas for compact manifolds the former become
symmetric under t ↔ −t, the latter exhibit a twisted symmetry. A closely related
point is this: For a finite dimensional F -system the flow acts with weight zero
on the top leafwise reduced cohomology with compact supports. This follows by
looking at the invariant currents and noting that automorphisms act by ±1 on
top compactly supported cohomology with Z-coefficients. Since we want weights
different from zero, e.g. equal to one for SpecZ, we are forced to allow more general
spaces than finite dimensional manifolds as leaves. For ordinary abelian varieties
over Fp the theory of the zeta function can in fact be established dynamically using
pro-manifolds but in general – at least in characteristic p – even pro-manifolds as
leaves are not the right kind of space.

If the association from schemes to foliated dynamical systems is functorial
one has a natural construction of sheaves F(M) for any motive M . For a variety
π : X0 → SpecQ let π = “π” : X = “X0” → “SpecQ” be the associated morphism
of foliated dynamical systems. The functors

X0 7−→ Riπ∗(RX) and X0 7−→ Riπ∗(RX)

define cohomology theories which by universality factor over the category of
motives. They are denoted M 7→ G(M) and M 7→ G(M). The morphism
j0 : SpecQ → SpecZ will induce a morphism j = “j0” of dynamical systems
and we get functors F = j∗ ◦G and F = j∗ ◦G. The two constructions are related
by F = Ker (Θ : F → F). Moreover F has a natural Q-structure FQ obtained by
starting with rational coefficients. In fact over “SpecZS”, where S is a finite or
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cofinite set of prime numbers, we should get a Z[l−1 | l /∈ S]-structure on F by tak-
ing ZX -coefficients2 above. For n ∈ Z, we get F(Q(n)) = R(n), F (Q(n)) = R(n)
and FQ(Q(1)) provides the rational structure on R(1) alluded to above.

Comparing formulas (18) and (20) over “SpecZS”, we see that the semisim-
plifications of (M Ip

l ,Frp) and (Ex, ψlog p
x ) for x ∈ γ =̂ p /∈ S should be isomorphic.

Since E is a vector bundle the dimensions of M
Ip

l must be constant, i.e. M must
have good reduction at the finite primes p /∈ S. Note that via the equivalence of
categories above, (Ex, ψlog p

x ) is isomorphic to Fx with its monodromy representa-
tion along γ. The rational structure FQ,x on Fx thus implies that the characteristic
polynomial of the monodromy representation has rational coefficients. The same
must therefore hold for the Frobenius action on Ml if our picture is correct. This
is well known for many motives by the work of Deligne and conjectured in general.

We now reinterpret part of (2.1) 5. as a fully faithfulness assertion. For finite S
consider a motive M over Q with good reduction outside of S. Using the expected
isomorphism (15) over SpecZS we get a commutative diagram

H0(“SpecZS”, F (M)) ∼−→ H0(“SpecZS”,F(M))Θ=0,

Hom(Q(0),M)⊗ R
F∼−→ H0(“SpecZS”,F(M))Θ∼0

F
y £ ¢

x

noting that H0 is Hausdorff. Hence all arrows must be isomorphisms. Replacing
M by M∗

1 ⊗ M2, it follows that the exact tensor functor FQ from motives with
good reduction on SpecZS to Q-local systems on “SpecZS”, must be fully faithful.
The map induced by Tannakian duality fits very nicely into a diagram comparing
topological fundamental groups and Galois groups of number fields, see [D7] (42).

The constructions in the real manifold setting of section three, even if we allow
infinite-dimensional or pro-manifolds, always lead to sheaves of real vector spaces
F . On the other hand the spaces Fp(M) are by construction ([D3] § 3) complex
vector spaces with no evident real structure. For motives over Q this is not a
contradiction, but the analogue for motives over finite fields is impossible. This is
so because the functors Fx would give exact faithful tensor functors into R-vector
spaces which are known not to exist. On the other hand on the subcategory of
ordinary motives over finite fields the predictions of the dynamical formalism work
out correctly by a result of Deligne, see [D7] 4.7.

Conclusion

Apart from stating his famous conjectures on zeta functions, A. Weil also explained
how they could be attacked given a cohomology theory for varieties in characteristic
p with properties similar to those of singular cohomology. For varieties over number
fields the analogues of the Weil conjectures and further conjectures have by now
been checked in numerous cases except for the Riemann conjecture 2.1 part 4
of course. In this article we have outlined a strategy to approach them. This
program requires a cohomology theory for algebraic schemes over the integers

2This is not a misprint.
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with properties similar to those of the reduced leafwise cohomology of a class of
dynamical systems with one-codimensional foliations by pro-manifolds.
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[DSch] C. Deninger, M. Schröter, A distribution theoretic interpretation of
Guinand’s functional equation for Cramér’s V –function and generalizations.
J. London Math. Soc. (2) 52 (1995) 48–60

[F-PR] J-M. Fontaine, B. Perrin-Riou, Autour des conjectures de Bloch et Kato,
cohomologie galoisienne et valeurs de fonctions L, Proc. Symp. Pure Math.
55, 1 (1994), 599–706

[Go] C. Godbillon, Feuilletages, Etudes géométriques. Progress in Math. 98,
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From Shuffling Cards

to Walking Around the Building:

An Introduction to Modern Markov Chain Theory

Persi Diaconis

Abstract. This paper surveys recent progress in the classical subject of
Markov chains. Sharp rates of convergence are available for many chains.
Examples include shuffling cards, a variety of simulation procedures used
in physics and statistical work, and random walk on the chambers of a
building. The techniques used are a combination of tools from geometry,
PDE, group theory and probability.

0 Introduction

The classical subject of Markov chains has seen spectacular progress in the past
ten years. Progress is seen through theoretical advances and practical applications.
These may be roughly depicted as the interactions between:

SCIENCE

STATISTICAL
MECHANICS

MATHEMATICS

COMPUTER
COMPUTING
STATISTICAL

Briefly, Markov chain Monte Carlo is a mainstay of the computational side of
statistical mechanics. There, one wants to draw samples from probability mea-
sures on high dimensional state spaces (e.g., the Ising model). One practical way
to proceed is to run a fancy kind of random walk (the Metropolis algorithm or
Glauber dynamics) [50] which reaches equilibrium at the desired measure. Similar
procedures have created a revolution in the computational side of statistics (the
Gibbs sampler)[22], [40]. In theoretical computer science, a slew of intractable
problems (#-p–complete) problems like computing the permanent of a matrix or
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the volume of a convex polyhedron) have provably accurate approximations in
polynomial time because simple Markov chains can be constructed and proved to
converge rapidly [58]. All of this rests on new mathematical developments.

The new mathematics uses ideas from diverse areas.

PDE

PROBABILITYGROUP
THEORY

GEOMETRY

Probabilistically, new ideas like coupling [48] and stopping time techniques [3],
[19] give ‘pure thought’ solutions to previously intractable problems. Techniques
from PDE and spectral geometry allow bounds on the eigenvalues of the basic
operators in terms of the geometry of the underlying chain (bottleneck measures,
discrete curvatures, and volume growth). Comparison techniques allow study of a
chain of interst by comparison with a neat chain which can be analyzed through
group representations. The various areas interact so there are probabilistic proofs
of results in classical geometry and group theory and vice versa.

The present paper offers a thread through this maze by following the devel-
opment of a single example: mixing n cards by repeatedly removing the top card
and inserting it at random.

The example is studied in Section 1 which introduces basic notation, shows
what a theorem in the subject looks like, and proves that n log n shuffles suffice to
mix up n cards. Thus, when n = 52, about 200 shuffles are necessary and suffice.
The argument introduces coupling arguments and shows that the underlying non
self adjoint operators are explicitly diagonalizable. Section 2 offers a variety of
extensions where a similar analysis obtains. These include the usual method of
shuffling cards. Section 3 extends things to random walk on the chambers of a
hyperplane arrangement and then to walks on the chambers of a building. These
examples show an intimate connection between probability, algebra, and geometry.

Section 4 gives pointers to many topics not covered, a brief example of the
geometric theory of Markov chains (again applied to shuffling cards), some open
problems, and a beginner’s guide to the literature.

1 Some Markov chains on permutations.

1.1 The Tsetlin library.

Picture a pile of file-folders which are used from time to time. The ith folder
is used with weight wi with wi > 0, w1 + · · · + wn = 1. It is natural to want
frequently used folders near the top. A scheme which achieves this, even if the
wi are unknown, is simply to replace the most recently used folder on top. To
put this into a mathematical framework, label the folders 1, 2, · · · , n and let an
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arrangement of these labels be denoted by a permutation σ say with σ(i) the label
at position i. Moving folder i to the top changes σ by a cycle

(
1, 2 · · ·σ−1(i)

)
. The

chance of moving from σ to ζ in one step is

K(σ, ζ) =

{
wi if ζ =

(
1, 2 · · ·σ−1(i)

)
σ

0 otherwise.
(1.1)

It helps some of us to think of K(σ, ζ) as the (σ, ζ) entry of an n! by n! matrix.
Then, making repeated moves is represented by matrix multiplication. Thus, the
chance of going from σ to ζ in two steps is

K2(σ, ζ) =
∑

η

K(σ, η) K(η, ζ)

After all, to get from σ to ζ, one must go to some possible η and then from η to
ζ. Similarly, Kl(σ, ζ) is defined.

A matrix of form (1.1) with K(σ, ζ) ≥ 0,
∑

ζ

K(σ, ζ) = 1 is called a stochastic

matrix and the process of successive arrangements is called a Markov chain. The
Peron-Frobenious theorem implies that under mild regularity conditions (connect-
edness and aperiodicity, satisfied in all examples here), such a Markov chain has a
unique stationary distribution π(σ) > 0,

∑

σεSn

π(σ) = 1. This is characterized as

the unique left eigenvector of K with eigenvalue 1 (so
∑

σεSn

π(σ)K(σ, ζ) = π(ζ)).

It is also characterized by the limiting result as l tends to infinity

limKl(σ, ζ) = π(ζ) for all σ (1.2)

Algebraically, this says that if the matrix K is raised to a high power, all the rows
are approximately equal to π. Probabilistically, this says that for any starting
state σ, after many steps, the chance that the chain is in state ζ is approximately
equal to π(ζ), no matter what the starting state is.

For the Tsetlin Library (1.1), the stationary distribution π is easy to describe.
One description is “sample from the weights {wi} without replacement.” That is,
form a random permutation σ by choosing σ(1) = j with probability wj . This first
choice being made, delete weight wσ(1), renormalize the remaining weights to sum
to one, and sample from these to determine σ(2). Continuing in this way gives σ.
Formally:

π(σ) =
wσ1

1− wσ1

wσ2

1− wσ1 − wσ2

· · · wσn−1

1− wσ1 − · · · − wσn−2

. (1.3)

This natural probability measure arises in dozens of applied contexts from psycho-
physical experiments (as the Luce model) to oil and gas exploration [17].
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The standard way of quantifying the rate of convergence of Kl to π is to use
the total variation distance; let Kl

σ(A) =
∑

ζεA

Kl(σ, ζ),

||Kl
σ − π|| = max

A∈Sn

|Kl
σ(A)− π(A)| = 1

2

∑

ζεSn

|Kl(σ, ζ)− π(ζ)|

These equalities are easily proved.
As an example of the kind of theorem that emerges, we show

Theorem 1.1. For the Tsetlin library chain (1.1)

||Kl
σ − π|| ≤

n∑

i=1

(1− wi)l (1.4)

Remark 1. Consider the simple case where all wi = 1
n . This gives a simple shuffling

scheme: Cards are repeatedly removed at random and placed on top. This is the
inverse of top to random described before (the rates are the same). The bound
on the right side of (1.4) becomes n(1 − 1

n )l. Using 1 − x ≤ e−x, we see that
when l = n(log n + c) with c > 0, ||Kl

σ − π|| ≤ e−c. It is not hard to see this is
sharp: If l = n(log n − c) with c > 0 the distance to stationarity is essentially at
its maximum value of 1. A graph of the distance to stationarity versus l appears
in Figure 1. The limiting shape of this graph is derived in [19]. This shows an
example of the cutoff phenomenon [17]. While the distance ||Kl−π|| is monotone
decreasing in l, the transition from one to zero happens in a short interval centered
at n log n. In [17] similar cutoffs are proved for many other choices of weights, e.g.,
wi = c

(i+1)s .

||P
k x
−

π
||

Figure 1: Distance to stationarity for top to random shuffle

Proof of Theorem 1.1 The proof uses a coupling argument. Picture two decks
of cards. The first starts in order 1, 2, · · · , n. The second starts in random order
drawn from the stationary distribution (1.2). At each time t = 1, 2, 3 · · · choose a
label i with probability wi and move card i to the top of both decks. Note that
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this forces the two decks to be in the same order in the top positions. Once cards
labeled i are in the same position in the two decks, they stay that way under
further moves. It follows that the first time T that all indices have been chosen
at least once, the two decks are in the same order. The second deck began in
stationarity, and repeated moves preserve stationarity. Thus at time T the first
deck is distributed in the stationary distribution.

The time T is called a coupling time [48]. It is easy to prove the formal bound

||Kl
σ − π|| ≤ P{T > l}.

A further simple argument shows P{T > l} ≤ ∑
(1− wi)l.

Remark 2. There is a large literature on the move to front scheme as a method of
dynamic storage allocation. See [36].

Remark 3. The Markov chain (1.1) is not self-adjoint. Nonetheless, Phaterfod
[52] shows that the matrix K has real eigenvalues βs =

∑

iεs

wi with multiplicity

the number of permutations with fixed-point set S. Here S runs over subsets
of [n] = {1, 2, · · · , n}. It is curious that we have no analytic tools to use these
eigenvalues for deriving bounds such as (1.3).

2 More vigorous shuffles.

The Tsetlin library scheme can be varied by choosing a subset S ⊂ [N ] with weight
ws and moving the folders with labels in S to the top, keeping them in the same
relative order.

Theorem 2.1. Suppose the weights ws separate in the sense that for every i and
j, ws > 0 for some s with i ∈ S, j /∈ S or i /∈ S, j ∈ S. Then the subset to top
chain has a unique stationary distribution π and

||Kl
σ − π|| ≤

∑

i∈s,j /∈s
j∈s,i/∈s

(1− ws)l

Proof. Theorem 2.1 is proved by the following coupling: Let T be the first time
every pair of labels, i, j have been separated at least once. This is a coupling time
and theorem 1.2 follows.

Remark 4. Again, all the eigenvalues are real, known, and useless [9].

There is a special case of Theorem (2.1) that is of general interest. Suppose
that all the weights {ws}s are equal to 1

2n . The shuffling scheme amounts to choos-
ing a random subset and moving these labels to the top. The inverse process is
the Gilbert-Shannon-Reeds (G-S-R) distribution for riffle shuffling ordinary play-
ing cards. Here, one cuts off the top j cards with probability

(
n
j

)
/2n. The top and
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l 1 2 3 4 5 6 7 8 9 10

||Kl − π|| 1.000 1.000 1.000 1.000 .924 .614 .334 .167 .085 .043

Table 1: Total variation distance after riffling 52 cards l times

bottom halves are riffled together according to the following scheme: At a given
time, if one half has A cards, the second half has B cards, drop the next card
from the first half with probability A

A+B . It is not hard to see these are inverse
descriptions. The G-S-R distribution is quite a realistic description of the way
real people shuffle real cards. Of course, in this case π(σ) = 1/n! is the uniform
distribution.

The chance of separating i and j in one shuffle is evidently 1/2. Thus the
bound of theorem (1.2) is

||Kl
σ − π|| ≤

(
n

2

)
(
1
2
)l

The right side of this bound is small when l is larger than 2 log2 n.
In joint work with David Bayer [8], more accurate estimates of the distance

are derived. We prove the sharp result that 3
2 log2 n shuffles are necessary and

suffice:

Theorem 2.2. For the G-S-R model of riffle shuffles, let l =
3
2

log2 n + c. Then

||Kl
σ − π|| = 1− 2Φ

(−2−c

4
√

3

)
+ 0

(
1√
n

)
.

with Φ(x) = 1√
2π

∫ x

−∞ e−x2/2 dt.

When n = 52 we derive the following exact result shown in Table 1 above.
Theory shows that the total variation distance continues to decrease by a power
of 2 for larger l. Evidently, there is a sharp threshold centered at about seven
shuffles. Theorem 2.2 says that for large n, a graph of total variation versus l
looks like Figure 1 with a cutoff at 3/2 log2 n.
Table 1 is derived from a simple closed form expression: The chance that the

deck is in position σ after l shuffles equals
(

2l + n− d

n

)
/2nl with d the number

of descents in σ−1. This close connection between descents and shuffling lends
to new formulae in combinatorics—enumeration of permutations by descents and
cycle structure [40], [23]. It is also closely connected to Hodge type decompositions
for Hochschild homology [42]. This rich circle of interconnections feeds back into
probability: While it takes 3

2 log2 n shuffles to make all aspects of a permutation
match the uniform distribution, features depending on long cycles are essentially
random after one shuffle.

As a final generalization, consider shuffling driven by a block ordered partition
[B1, B2, · · · , Bk]. To shuffle, remove cards with labels in B1, and place them on
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top, keeping them in their same relative order. These are followed by cards with
labels in B2, and so on. Choosing weights for each block ordered partition leads
to a shuffling scheme that includes the Tsetlin library (weight wi on [i, [n]\i])
and the G-S-R model (weight 1/2n on [s, [n]\s]). These general shuffling schemes
were suggested by Bidigare, Hanlon and Rockmore [9]. They permit an essentially
complete analysis [12], [13]. As will be seen next, these shuffles too are a very
special case of random walk on a hyperplane arrangement.

3 Random walks on the chambers of a hyperplane arrangement.

We work in Rd. Let A = {H1, · · · ,Hk} be a finite collection of affine hyperplanes.
These divide space into chambers C and faces F . For example, Fig. 2 shows three
hyperplanes in R2.

Figure 2: 3 lines in the plane

There are seven chambers, nine half-line faces (one labeled F ), and three point
faces. There is a natural action of faces on chambers denoted F ∗ C: This is the
unique chamber adjacent to F and closest to C (in the sense of crossing the fewest
number of hyperplanes). For example, in Figure 2 the product of the chamber C,
with the face F is the chamber F ∗ C. This has distance two from C, while the
other chamber adjacent to F is at distance three.

Bidigare, Hanlon, and Rockmore (B-H-R) [9] suggested choosing weights
{wF } and defining a random walk defined on C by repeatedly multiplying by
faces drawn from these weights. They found the eigenvalues of these chains were
positive sums of the weights. Brown and Diaconis [13] showed the chains are di-
agonalizable, determined the stationary distribution, and gave reasonably sharp
coupling bounds for convergence to stationarity.

The B-H-R results extend the shuffling results of Section 2 above: In Rn, the
braid arrangement has hyperplanes {Hij}i<j with Hij = {(x1 · · ·xn) : xi = xj}.
The chambers of the braid arrangement are naturally labeled by the n! permuta-
tions (the relative order of the coordinates inside the chamber). The faces of the
braid arrangements are determined by various equalities among coordinates. They
are easily seen to be labeled by block ordered partitions discussed in Section 2.

Documenta Mathematica · Extra Volume ICM 1998 · I · 187–204



194 Persi Diaconis

Moreover, the action of faces on chambers is just the shuffling scheme described
in Section 2.

There are many hyperplane arrangements where the chambers can be labeled
with natural combinatorial objects such as trees or tilings of various regions [13]
[59]. The face walks give natural Markov chains on these spaces which permit a
complete analysis. There is a useful description of the stationary distribution, the
operators are diagonalizable with positive eigenvalues which are partial sums of the
weights. Finally, there are good rates of convergence using a coupling argument.

For this expository account, I content myself with a single geometric example
drawn from joint work with Louis Billera and Ken Brown [11]. Consider n planes
(through zero) in R3. These are most easily pictured by their intersection with
the unit sphere. For example, Figure 2 shows the northern hemisphere cut into
chambers or regions by 4 planes—one being the plane of the picture.

The projection of C on v.

Figure 3: 4 planes in R3.

The chambers are the open regions shown together with a matching set “under”
the sphere. There are 14 chambers altogether (

(
n
2

)
+ 2 for n planes in general

position). Consider the random walk on chambers generated by picking a random
vertex of the arrangement uniformly. The walk moves from its current chamber to
the chamber adjacent to the chosen vertex. It is intuitively clear that the chance
of winding up in a given region c depends on the number i(c) of sides of the re-
gion, regions with large values of i(c) being more likely. In [11] we showed that
π(c) = (i(c)−2)/2(f0−2) with f0 the total number of vertices in the arrangement.
Thus in Fig. 2 f0 = 14 and the 8 triangular regions have π = 1/14 while the 6
quadrilaterals have π = 1/7. We have no intuitive explanation for this; we just
observed it was true in small cases and proved it beginning with a rather indi-
rect description of the stationary distribution given by sampling from the vertices
without replacement. We find the result surprising; for example, there are four
essentially different configurations of six planes in R3. These are shown in Table 2
together with their vital statistics. In all cases, the stationary distribution for
an i-gon is proportional to i − 2. Note that some configurations don’t have any
i-gons. The eigenvalues and coupling for this example show that the walk reaches
stationarity after two steps!

These examples show that hyperplane walks have some remarkable properties.
They do not yet explain what makes things tick. The next two sections give
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i A B C D
3 20 14 12 12
4 0 12 16 18
5 12 6 4 0
6 0 0 0 2

Figure 4: Table 2: Six great circles in general position with number of i-gons

random walks on buildings where things start to break and random walks on
semi-groups, the current ultimate generalization.

4 Random walks on the chambers of a building.

There is a natural extension of the walks of a hyperplane arrangement generated
by a reflexion group such as the braid arrangement. This gives random walks on
the chambers of a building; we will work with finite objects (spherical buildings).
This section reports work of Ken Brown.

A building is a simplicial complex given with a set of subcomplexes called
apartments. These apartments must be (isomorphic to) the chambers of a eu-
clidean hyperplane arrangement generated by a finite reflexion group. The top
dimensional cells of the complex are called chambers. As an example, the follow-
ing complex is a building.

Figure 5: An A2 building
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The vertices (one-cells) are numbered a, b, c, d, e, f, x, y. The two-cells are the edges
shown; these are the chambers. There are three apartments

Each of these may be identified with the braid arrangement in R3.
There is a natural action of a face of a building on the chambers. One of

the building axioms says that any two faces are in an apartment. Thus any face
and chamber are in an apartment and it makes sense to multiply them using the
procedure described in Section 3. In the A2 building pictured in Fig. 5, consider
the chamber {a, b} and the vertex d; d∗{a, b} = {d, c} because {c, d} is the closest
chamber to {a, b} adjacent to d (distance 2). Any finite tree is a building, and the
product of an edge with a vertex may be similarly defined.

A Markov chain on the chambers of a building may be defined by choosing
an arbitrary system of weights on the lower dimensional simplicies. This gener-
alizes the shuffling scheme of Section B but does not include general hyperplane
arrangements.

For the A2 building pictured in Figure 5, the walk may be pictured as a
service discipline where a single server occupies an edge. Customers arrive at
vertices with given propensities and the server slides over to the edge closest to
the next customer. One may ask how much time the server spends on a given edge
in the long run.

This class of examples introduces some new behavior: It is no longer true that
the eigenvalues are positive or even sums of the weights. As an example, consider
Figure 5 with equal weights on b, f, x. The eigenvalues are real and the matrix
is diagonalizable, but the eigenvalues are algebraic numbers which are no longer
linear in the weights. It is an open problem to find examples of random walks
on buildings where the eigenvalues are complex. Despite all this, the following
example shows that these walks have some elegant special cases where everything
works out neatly:

Consider a vector space V which is n-dimensional over a finite field Fq with
q = pa elements for some prime p. A flag is a maximal increasing sequence of
subspaces. Thus it consists of a line in a plane in a three-space and so on up to an
n−1 space. We will describe a simple random walk on the space of flags which is a
direct analog of the random to top chains in Section 1 above. The walk is driven by
a system of weights for each line l : {wl}l ∈ Pn−1. Here wl ≥ 0,

∑

l

wl = 1. The
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walk proceeds as follows: Suppose it is currently at the flag v1 ⊂ v2 · · · ⊂ vn−1.
Choose a line with probability wl. Modify the flag to begin with l:

l ⊂ l + v1 ⊂ l + v2 · · · ⊂ l + vn

If l /∈ vi−1 but l ∈ vi, the chain of subspaces repeats since l + vi−1 = l + vi. Strike
out this repetition to get a new maximal flag. This defines a random walk in
maximal flags which “moves a random vector to the front.” As q → 1; a subspace
becomes a subset and a flag becomes a permutation; the walk becomes move to
front.

Brown [12] gives an elegant analysis of these chains which perfectly parallels
the analysis of Section 3.

Theorem 4.1. [Brown] For the random line to front with weights {wl}, there is
an eigenvalue for each subspace x (including φ,Pn)

λx =
∑

lεx

wl.

This has multiplicity mj(q) =
∑

qMAJ(π) = [j]!
j∑

k=0

(−1)kq(
k
2)

[k]!
, with j =

codim(x), and the first sum over derangements π in Sj. If wj is uniform

‖Km
x − π‖ ≤ (qn − 1)(qn−1 − 1)

(q2 + 1)(q − 1)

(
qn−2 − 1
qn − 1

)m

.

Remark 5. The last bound shows that m = n− 1 steps suffice to achieve random-
ness when n is large and q is fixed. This is clearly the minimum by dimension
arguments so the bound is sharp in this case.

4.1 What is the ultimate generalization?

The results in Sections 1–4 have a marked similarity; it is natural to try to derive a
common generalization. In all cases one is “multiplying something” by an associa-
tive product (the one case where things went wrong for the A2 building of Fig. 5,
it turns out the product isn’t associative). This suggests random walk on a semi-
group as a possible general setting. Let X be a semigroup and wx a probability on
X . Let ρ be an ideal in X (so xc ∈ ρ for all x ∈ X , cερ). Then generate a random
walk by repeatedly choosing elements from {wx} and multiplying. While there is
some general theory for these random walks [53] [20], they are too general to hope
that results such as real eigenvalues go through. Indeed, any Markov chain on a
set S can be represented as a random walk on the set of all functions from S to S.

Ken Brown [12] has shown that results of Sections 1–4 above and many others
are captured by semigroups which have all elements idempotent (x2 = x) and
further satisfy the cancellation property xyx = xy for all x, y. These are called
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“left regular bands” in the semigroup business. Brown’s proof introduces the
semigroup algebra and studies its representations. The irreducible representations
of a left regular band turn out to be one-dimensional, and this leads to a complete
description of the eigenvalues and multiplicities. The coupling bound had been
carried out earlier. [13]

Are these semigroup walks the ultimate generalization? It seems too early to
tell. Further, the tools available for hyperplane, building, and semigroup walks
are still not sharp enough to prove the cutoff phenomenon as in Theorems 1.1 and
2.2. These seem to need the more refined setting of the descent algebra. There is
much yet to understand, but the above developments give a flavor of some exciting
mathematics in progress.

5 Topics not covered

The results in Sections 1–5 show the developments of a single theme. There
are many other themes that have led to exciting developments. This
brief section gives pointers to the literature. It may be supplemented
by browsing through the preprint service for Monte Carlo Markov chains:
http://www.stats.bris.ac.uk/˜maspb/mcmc. Throughout, X is a finite set,
K(x, y) is a stochastic matrix, and π is the stationary distribution.

5.1 Coupling

Coupling techniques are available in some generality. In principle there is a maxi-
mal couping which is sharp in the sense the ‖Kl−π‖ = P{T > l} for l = 1, 2, 3, · · · .
These are usually impossible to find. At present, finding useful couplings is an art.
Lindvall [48] is a book-length introduction to coupling. Examples can be found
in Aldous [1] and in [16]. Recently, couplings have been used to solve extremely
tough problems. Finally, the coupling from the past method of Propp-Wilson [60]
has been used to allow exact generation for several distributions of interest. There
is a useful bound on the spectral gap given a coupling bound [43], [2]. All of this
said, it is still quite difficult to generate useful bounds for many chains of inter-
est using coupling. This is why the geometric theory of Markov chains has been
actively developed.

5.2 The geometric theory of Markov chains

Suppose that the underlying chain is reversible: π(x)K(x, y) = π(y)K(y, x) for
all x, y. Form a graph with vertex set X and an undirected edge from x to y if
K(x, y) > 0. The geometric theory relates geometric properties of this graph such
as diameter, volume growth and various measures of bottlenecks (curvature) to
the convergence rates of the chain. This borrows tools from spectral geometry and
PDE such as the following inequalities

Poincaré, Cheeger, Nash, Sobolev, Log Sobolev.
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Useful introductions to these ideas with many examples may be found in [5], [56],
[58]. Along with others, I have written about these things in [35], [27], [29], [30].
Expositions in graph theoretic language appear in [10][15]. The computer science
community has also written about such geometric bounds with [49], [46] being
surveys with extensive references.

The theory has been adapted to nonreversible chains [38][29]. Here is a simple
example which illustrates the geometric tools. Consider X = Sn all permutations.
Let n be odd. Let S = {(1, 2), (1, 2, · · · , n)}: A transposition and an n- cycle.

Define K(σ, η) =

{
1
2 if ησ−1 ∈ S

0
. This is the Markov chain described informally

as “either transpose the top two cards or move the top card to the bottom.” This
simple chain should be easy to analyze , but no coupling bound is known. The
results show that there are universal constants A1, A, B such that

Ae−Bl/n3 log n ≤ ‖Kl − π‖ ≤ Ae−Bl/n3 log n

Roughly, this says order n3 log n shuffles suffice. When n = 52, n3 log n is more
than half a million. Thus, this shuffling scheme is much slower than “top to
random.” Here is a brief outline of the argument:

Let L2 = {f : X → R with (f, g) =
∑

x f(x)g(x)π(x)}. For this example
π(x) = 1

n! . Let K operate linearly on L2 by Kf(x) =
∑

y

K(x, y)f(y). If K,π were

reversible, K would be self-adjoint. In the present example, K is not self-adjoint.
We first symmetrize K, forming K̃ = KK∗. This is a self-adjoint operator with
a simple description: Set T = {(1, 2)(1 · · ·n)−1, (1 · · ·n)(1, 2)}. Then K̃(σ, σ) =
1
2 , K̃(σ, ζ) = 1

4 if ζσ−1εT, K̂(σ, ζ) = 0 otherwise.
The eigenvalues β̃i of K̃ can be characterized through the quadratic form

Ẽ(f, g) =< (I − K̃)f, g >. As shown in [29], Section 2, convergence rates for the
original chain K can be expressed in terms of β̃.

‖Kl − π‖2 ≤ 1
4

n!−1∑

β=1

β̃2l

Here β̃0 = 1 does not appear in the sum.
Finally, one can get good bounds on the eigenvalues β̃i by comparison with

a third chain: random transpositions. ˜̃K(σ, ζ) =
1
n

if σ = ζ, 2/n2 if σζ−1 is a
transposition and zero otherwise.
For this third chain, a formula for the eigenvalues and their multiplicities is avail-
able using character theory [33]. To compare K̃ and ˜̃K one shows ˜̃E ≤ An2Ẽ
for universal A. This in turn is accomplished by writing (1, 2)(1, · · · , n)−1 and
(1 · · ·n)(1, 2) in terms of transpositions. Many examples of this sort appear in
[25]. Details for the present example can be found in [29], Section 2.
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The argument sketched above shows the interactions between probability,
geometry, group theory, and PDE. More sophisticated examples appear in [37],
[47], [55].

5.3 General state spaces

I have principally been involved with bounding Markov chains on finite state
spaces. There has also been much work on general state spaces. At present
writing very little of this is quantitative and what is available is often too crude to
be useful to practitioners. Meyn and Tweedie [51] is a book-length development of
the asymptotic theory, and Rosenthal [54] is a recent example of the quantitative
theory with references to related work.

5.4 Some open problems

The present article does not do justice to perhaps the most exciting develop-
ment; the infinite variety of tricks and techniques that practitioners develop to
give believable answers in practical problems. Even the most basic techniques in
widespread use—the Metropolis algorithm [32] and the Gibbs sampler are beyond
current theoretical understanding. There has been spectacular progress in special
cases such as the Ising model (work of Stroock-Zegarlinski, Martinelli, Schoneman,
and others). However, the following kind of problem is completely open: On the
symmetric group consider π(σ) = Z(θ)θd(σ,σ0). Here 0 < θ ≤ 1, d is a metric on
permutations such as

∑ |σ0(i)− σ(i)|, σ0 is a fixed, known permutation, and Z is
a normalization factor. The problem is to generate from π. One simple method:
Use the Metropolis algorithm with base chain random transpositions. Analysis of
the time to stationarity is beyond theory at present writing. It seems natural to
conjecture that order n log n steps are necessary and suffice to reach stationarity.
See [21] for such a result for a special choice of metric.

In a similar vein; trying to make mathematical sense out of any widely used
Monte Carlo Markov chain procedure from umbrella sampling to hybrid Monte
Carlo offers very challenging mathematics problems.

5.5 More open problems.

Section 5.2 showed how to bound the rate of convergence of a non-reversible chain
in terms of the eigenvalues of its multiplicative reversibalization. These in turn
were bounded by comparison with a random transpositions chain. Comparison
only works for reversible chains. The problem is, find a way of using the explicit
eigenvalues of the chains in Sections 2-4 above. Here are three explicit questions.
First, is there any way of using the eigenvalues to derive explicit bounds on total
variation. There are useful bounds for reversible chains [35]. Second, can one relate
the eigenvalues of a non-reversible chain K to the eigenvalues of its multiplicative
reversibilitization? For example, for random to top, the reversibilization becomes
random to random. For riffle shuffles, the reversibilization becomes ’remove a
random subset and shuffle it back at random.’ This is a natural model of traffic
where two lanes merge into one and then split into two. Third, in the hyperplane
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setting of Section 3 a local walk can be defined on the chambers. Choose a weight
wi for each hyperplane. From a region C choose one of its bounding hyperplanes
with probability proportional to its weight and reflect to the adjacent chamber.
This gives a reversible Markov chain with stationary distribution proportional to
the sum of the weights of hyperplanes bounding a chamber. Such walks are used
to generate random tilings and elsewhere. Is there any way to use the known
eigenvalues of the chamber walks of Section 3 to analyze the local walks? These
questions go through as stated for buildings.
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Chaotic Hypothesis and Universal

Large Deviations Properties

Giovanni Gallavotti

Abstract. Chaotic systems arise naturally in Statistical Mechanics
and in Fluid Dynamics. A paradigm for their modelization are smooth
hyperbolic systems. Are there consequences that can be drawn simply
by assuming that a system is hyperbolic? here we present a few model
independent general consequences which may have some relevance for the
Physics of chaotic systems.

Keywords and Phrases: Chaotic hypothesis, Anosov maps, Reversibility,
Large deviations, Chaos

§1. Chaotic motions.∗

A typical system exhibiting chaotic motions is a gas in a box whose particles
interact via short range forces with a repulsive core, e.g. a hard core. No hope to
ever be able to solve the evolution equations.

In the very simple case of pure hard cores it has been possible to prove,
mathematically at least in some cases, that the system is ergodic, [Si1], [Sz], but
ergodicity in itself is only a beginning of the qualitative theory of the motion. A
similar situation arises in Fluid Mechanics: is a qualitative theory of Turbulence
possible as, clearly, there are hopes to be able, in the near future, to prove an
existence–uniqueness theorem but there is no hope for exact solutions of Navier
Stokes equations?

Equilibrium Statistical Mechanics is a brilliant example of a very successful
quantitative theory derived from a comprehensive qualitative hypothesis, the er-
godic hypothesis. The key to its success is a general expression for the probability
distribution µ on phase space M providing us with the statistics of the motions
corresponding to given values of the macroscopic parameters determining the state
of the system.

The statistics µ is defined in terms of the time evolution map S via the
relation:

lim
T→∞

1
T

T−1∑

j=0

F (Sjx) =
∫

M

F (y)µ(dy) (1.1)

∗ Expanded text of the talk at the ICM98 in Berlin, 26 August 1998.
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for all smooth observables F and for almost all, in the sense of volume measure
on M , initial data x ∈ M . In Equilibrium Statistical Mechanics the distribution
µ is identified with the uniform distribution on the surface of constant energy
(the macroscopic state of the system being detemined by the volume V of the
container box and by the energy U), which is an obviously invariant distribution
by Liouville’s theorem of Hamiltonian Mechanics: this is a necessary consequence
of the ergodic hypothesis.

The success of Equilibrium Statistical Mechanics can be traced back to the fact
that the ergodic hypothesis provides us with a concrete general, model independent,
expression for the statistics of the motions. An expression that can be used to
derive relations among time averages of various observables without even dreaming
of ever being able to actually compute any of such averages.

The Boltzmann’s heat theorem, the positivity of compressibility and specific
heat are simple, but great, examples of such relations. They are relations which
hold for any model, provided one makes the ergodicity hypothesis, see [Ga1]. A
classical argument that can be used to derive the heat theorem (i.e. the second law
of Thermodynamics) from ergodicity is provided us by Boltzmann, see Appendix
A2 and [Ga2].

Consider a mechanical system: viewing its phase space as a discrete set of
points the ergodic hypothesis says that motion is a one cycle permutation of the
points. Given a initial datum with energy U and with volume V we define temper-
ature the time average of kinetic energy T = 〈K〉 and pressure the time average of
the derivative of the potential ϕ with respect to the volume V (note that the force
acting on the particles consists of the internal pair forces and of the force that the
walls exercize upon the particles which depends on the position of the walls, hence
it does change when the volume varies). Here and below 〈F 〉 will denote the time
average of the observable F .

A general elementary property of a system whose motion on each energy
surface is a single periodic motion is that if one calls p = 〈∂V ϕ〉 then:

dU + p dV

T
= exact (1.2)

which means that if the energy U and a parameter V on which the potential
depends (it will be the volume in our case) are varied by dU and dV respectively
then the differential in (1.2) is exact.

An elementary classical calculation shows that p, see Appendix A2, in the
case of a gas in a box, has the meaning of average force exercized per unit surface
on the walls of the container as a consequence of the particles collisions: thus we
see that the ergodic hypothesis plus a general, trivial, identity among the averages
of suitable mechanical quantities yields a relation (“equality of cross derivatives”)
holding without free parameters.

The reason why such relation is physically relevant for macroscopic systems
is that the time necessary for the averages defining T, p to be reached within a
good approximation by the finite time averages of K, ∂V ϕ is not the unobservable
recurrence time (i.e. the superastronomic time for the system to complete a single
tour of the energy surface U) but it is a much shorter physically observable time
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(whose theory is also due to Boltzmann being the essence of the Boltzmann’s
equation) because the quantities K, ∂V ϕ have an essentially constant value on
the energy surface if the number of particles is large (so that the average of such
observables “stabilizes” very rapidly compared to the recurrence times).

To summarize: a simple hypothesis allows us to find the statistics of the
motions of an equilibrium system: this implies simple parmeterless relations among
averages of physically relevant quantities (i.e. ∂V

1
T = ∂U

p
T ) which are observable

in large systems because such quantities average very quickly compared to the
recurrence times (being practically constant on the surface of given energy if the
system is large).

Thus a natural question arises: is there anything analogous in Non Equilib-
rium Statistical Mechanics? and in developed Turbulence?

The first problem is “what is the analogue of the uniform Liouville’s distri-
bution?”. This is a really non trivial question that, once answered, will possibly
allow us to try to find relations between time averages of mechanical quantities.
The nontriviality is due to the fact that as soon as a system is out of equilibrium,
i.e. nonconservative forces act upon it, dissipation is necessary in order to be able
to reach a stationary state. But this means that any model used will be necessar-
ily described by an evolution equation which will have a nonzero divergence: so
that phase space will necessarily contract, in the average, and the statistics of the
motion will be concentrated on a set of zero Lebesgue volume, see [Ru3].

Ruelle’s proposal in the early 1970’s was that one should regard such systems
as hyperbolic so that there would be a unique stationary distribution describing the
statistics of almost all initial data (chosen with the uniform distribution on phase
space), [Ru1]. The ideas of Krylov, [Kr79], inspired Sinai in his development of
the theory of Anosov systems via Markov partitions and, see [Si2], in conceiving
complex mechanical systems as hyperbolic, and Ruelle’s new ideas and his principle
emerged, profiting of the important technical and conceptual achievements of Sinai.

This principle has been interpreted in [GC] as the following:

Chaotic hypothesis: A chaotic mechanical system can be regarded for practical
purposes as a topologically mixing Anosov system.

This means that the closure of the attractor is a smooth surface on which
the evolution is a Anosov system: of course assuming Axiom A instead of Anosov
would be more natural, particularly in few degrees of freedom systems, [Ru1].
However I prefer to formulate the hypothesis in terms of Anosov system as frac-
tality of the closure of the attractor seems to be of little relevance in systems with
large number of degrees of freedom occurring in Statistical Mechanics.

The locution practical purposes is deliberately ambiguous as we know that
even in Equilibrium Statistical Mechanics the corresponding ergodic hypothesis
may fail while its consequences, at least some of them, will not (like the heat
theorem in a free gas or in a harmonic chain).

The above physical discussion serves as a quick motivation of the mathemat-
ical question: are there general properties shared by mechanical systems that are
transitive or mixing Anosov systems?.
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In the next sections I provide some affirmative answer in the class of time
reversible Anosov maps and of weakly interacting chains of Anosov maps. Re-
call: a time reversal symmetry for a dynamical system (M,S) is any isometric
diffeomorphism I such that:

I2 = 1, I S = S−1 I (1.3)

Examples in Hamiltonian mechanical systems are the velocity reversal, or the
composition of the velocity reversal and the parity symmetry, or the composition
of the velocity reversal, parity symmetry and charge conjugation symmetry. In
general a time reversal may be a symmetry quite different from the naive one that
can be imagined, see [BG].

Hamiltonian systems on which further anholonomic constraints are imposed
via Gauss’ principle of least constraint often generate systems which show a time
reversal symmetry, see Appendix A1, thus providing the simplest examples.

§2. Time reversible dissipative Anosov systems. Fluctuation theorem.

We now study a C∞, topologically mixing, Anosov system (M, S) on a compact
manifold M .

Let M be a d–dimensional, C∞, compact manifold and let S be a C∞, mixing
(transitive would suffice) Anosov diffeomorphism, [AA], [Si1]. If Wu

x ,W s
x denote

the unstable or stable manifold at x ∈ M , we call Wu,δ
x ,W s,δ

x the connected parts
of Wu

x ,W s
x containing x and contained in the sphere with center x and radius δ.

Let du, ds be the dimensions of Wu
x ,W s

x : d = du + ds. We shall take δ always
smaller than the smallest curvature radius of Wu

x ,W s
x for x ∈ M . Transitivity

implies that Wu
x ,W s

x are dense in M for all x ∈ M .
The map S can be regarded, locally near x, either as a map of M to M or of

Wu
x to Wu

Sx, or of W s
x to W s

Sx. The Jacobian matrices of the ”three” maps will be
d× d, du × du and ds × ds matrices denoted respectively ∂S(x), ∂S(x)u, ∂S(x)s.
The absolute values of the respective determinants will be denoted Λ(x), Λu(x),
Λs(x) and are Hölder continuous functions, strictly positive (in fact Λ(x) is C∞),
[Si1], [AA], [Ru4]. Likewise one can define the Jacobians of the n–th iterate of S;
they are denoted by appending a label n to Λ,Λu,Λs and are related to the latter
by the differentiation chain rule:

Λn(x) =
n−1∏

j=0

Λ(Sjx), Λu,n(x) =
n−1∏

j=0

Λu(Sjx),

Λs,n(Sjx) =
n−1∏

j=0

Λs,n(Sjx), Λn(x) = Λu,n(x) Λs,n(x)χn(x)

(2.1)

and χn(x) = sin α(Snx)
sin α(x) is the ratio of the sines of the angles α(Snx) and α(x)

between Wu and W s at the points Snx and x. Hence χn(x) is bounded above
and below in terms of a constant B > 0: B−1 ≤ χn(x) ≤ B, for all x (by the
transversality of Wu and W s).
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We can define the forward and backward statistics or “SRB distributions”
µ+, µ− of the volume measure µ0 via the limits:

lim
T→∞

1
T

T−1∑

k=0

F (S±kx) =
∫

C
µ±(dy)F (y) ≡ µ±(F ) (2.2)

which exist for all smooth functions F on M and for all but a set of zero volume
of initial points x, see [Si1].

Therefore it is the probability distribution µ+ that is the statistics µ of the
motions (almost surely with respect to the volume measure µ0 on M), see (1.1):
it plays the role of the Gibbs distribution, or microcanoncial ensemble, of equilib-
rium Statistical Mechanics. Hence we are looking for general properties of µ+,
independent of the system considered, if possible.

Let Λ(x) = | det ∂S(x)|; let µ± be the forward and backward statistics of the
volume measure µ0 (i.e. the SRB distributions for S and S −1).

Definition: The system (M, S) is dissipative if:

−
∫

M

µ±(dx) log Λ±1(x) = η± > 0 (2.3)

Remarks: 1) Existence of a time reversal symmetry I, see (1.3), implies η+ = η−
and Λ(x) = Λ−1(I x); furthermore I Wu

x = W s
I x and the dimensions of the stable

and unstable manifolds ds, du are equal: du = ds and d = du + ds is even.
2) if Λu(x), Λs(x) denote the absolute values of the Jacobian determinants of S as
a map of Wu

x to Wu
Sx and of W s

x to W s
Sx, then Λu(x) = Λs(I x)−1.

3) If a system (M,S) is dissipative then the system (M ′, S′) with M ′ = M ×M
and S′(x, y) = (Sx, S−1y) provides us with an example, setting I(x, y) = (y, x), of
a dynamical system in the general class of “reversible” Anosov maps considered
in §1. It is remarkable that for Anosov systems it is η± ≥ 0, see [Ru3].

From now on only reversible dissipative Anosov dynamical systems (M, S) will
be considered: it is for such systems that it will be possible to derive general model
independent properties.

Definition: The “dimensionless entropy production rate” or the “phase space con-
traction rate” at x ∈ M and over a time τ is the function ετ (x):

x → ετ (x) =
1

η+τ

τ/2−1∑

j=−τ/2

log Λ−1(Sjx) =
1

η+τ
log Λ

−1

τ (x) (2.4)

with Λτ (x)
def
=

∏τ/2−1
−τ/2 Λ(Sjx). Hence (see (2.2)) it is, with µ0–probability 1:

〈ετ 〉+ = lim
T→+∞

1
T

T−1∑

j=0

ετ (Sjx) ≡
∫

M

µ+(dy)ετ (y) = 1 (2.5)
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From the general theory of Anosov systems, [Si1], it follows that the µ+–
probability that p = ετ (x) is in the interval [p − δ, p + δ] can be written as
maxq∈[p−δ,p+δ] e

τζ(q) for some suitably chosen function ζ(p) and up to a factor
bounded by B±1 with 0 < B < +∞. This is a deep result of Sinai that holds
because the statistics µ+ can be regarded as a Gibbs distribution and one can
use the large deviation theory for such distributions: see Appendix A3 below for
details. Then the following theorem holds, see [GC]:

Fluctuation theorem: The “large deviation function” ζ(p) is analytic in an interval
(−p∗, +p∗) with p∗ ≥ 1 and verifies the relation:

ζ(p)− ζ(−p)
pη+

= 1 |p| < p∗ (2.6)

i.e. the odd part of ζ(p) is in general linear and its slope is equal to the average
entropy creation rate.

What one really checks, see [Ga3], is the existence of p∗ ≥ 1 such that the
SRB distribution µ+ verifies:

p− δ ≤ lim
τ→∞

1
η+τ

log
µ+({ετ (x) ∈ [p− δ, p + δ]})

µ+({ετ (x) ∈ −[p− δ, p + δ]}) ≤ p + δ (2.7)

for all p, |p| < p∗ and for any δ > 0.

The above theorem was first informally proved in [GC] where its interest
for nonequilibrium statistical mechanics was pointed out. The theorem can be
regarded as a large deviation result for the probability distribution µ+. Although
I think that the physical interest of the theorem far outweighs its mathematical
aspects it is useful to see a formal proof. A proof is reproduced in Appendix A3
below: it is taken from [Ga3].

The relation (2.6) has been tested numerically in several cases: it was in fact
discovered in a numerical experiment, see [ECM2], and tested in other experiments,
see [BGG], [BCL], [LLP]. Why does one need to test a theorem? the reason is that
in concrete cases not only it is not known whether the system is Anosov but, in
fact, it is usually clear that it is not, see [RT]. Hence the test is necessary to check
the Chaotic Hypothesis which says that the failure of the Anosov property should
be irrelevant for “practical purposes”.

Another interesting aspect, that cannot be treated here for limitations of
time, of the above theorem is that it can be interpreted as an extension to non
zero forcing (i.e. η+ > 0) of the Green–Kubo relations: see [Ga6].

§3. Fluctuations in large systems.

An important drawback of the above fluctuation theorem, besides the reversibility
assumption which is not verified in many important cases, is that it can be prac-
tically verified, for physical as well as mathematical reasons, only in (relatively)
small systems.
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In fact the logarithm of the entropy creation rate distribution τ ζ(p) is, usually,
not only proportional to τ , i.e. to the time interval over which the entropy creation
fluctuation is observed, but also to the spatial extension of the system, i.e. to the
number of degrees of freedom; so that it is extremely unlikely that observing p in
a large system one can see a value p which is appreciably different from 1 (note
that the normalizing constant η+ in (2.4) is so chosen that the average of p in the
stationary state is 1).

For this reason in macroscopic (or just “large”) systems the phase space con-
traction rate is essentially constant (and its physical interpretation is of strength
of the friction) much as the density is constant in gases at equilibrium. Therefore
one can hope to see entropy creation rate fluctuations only if one can define a local
entropy creation rate ηV0(x) associated with a microscopic region V0 of space.

I now discuss, heuristically, why one should expect that a local entropy creation
rate can be defined, at least in some cases, and verifies a local version of the
fluctuation law (2.6). This is discussed in a special example, see [Ga7], as in
general one can doubt that a local version of the fluctuation law holds, see [BCL].

The special example that we select is the chain of weakly coupled Anosov
maps, well studied in the literature, [PS]. The system has a translation invari-
ant spatial structure, i.e. it is a chain (or a lattice) of weakly interacting chaotic
(mixing Anosov) system. This can be described as follows.

Let (M ′, S′) be a dynamical system whose phase space M ′ is a product of
2N + 1 identical analytic manifolds M0: M ′ = M

2N+1

0 and S′ : M ′ → M ′ is a

small perturbation of a product map S0 × . . .× S0
def
= S̃0 on M ′. We assume that

(M0, S0) is a mixing Anosov systems. The size N (an integer) will be called the
“spatial size” of the system.

For x, y, z ∈ M0 let Fε(x, z, y) be analytic and such that z → Fε(x, z, y) is a
map, of M0 into itself, ε–close to the identity and ε–analytic for |ε| small enough.
We suppose that, if x = (x−N , . . . , xN ) ∈ M ′:

(S′ x )i = Fε(xi−1, xi, xi+1) ◦ S0xi (3.1)

where x±(N+1) is identified with x∓N (i.e. we regard the chain as periodic); we call
such a dynamical system a chain of interacting Anosov maps coupled by nearest
neighbors. It is a special example of the class of maps considered in [PS].1

It is difficult, maybe even impossible, to construct a (non trivial) reversible
system of the above form: we therefore (see [Ga3]) consider the system (M, S)

where M = M ′ ×M ′ and define S0
def
= S̃0 × (S̃0)−1 and S

def
= S′ × (S′)−1, called

hereafter the free evolution and the interacting evolution, respectively. So that the
system can be considered as time reversible with a time reversal map I( x , y ) =
( y , x ). Note that the inverse map to (3.1) does not have the same form. The
map S is, however, still in the class considered in [PS] because it can be written

1 In the paper [PS] it is assumed that also S0 (hence S0) is close to the identity, e.g. within
ε: such condition does not seem necessary for the purposes of the present paper, hence it
will not be assumed.
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as S( x , y )i =
(
S(x , y )i1, S(x , y )i2

)
with:

S(x , y )i1 =Fε(xi−1, xi, xi+1) ◦ S0 xi

S(x , y )i2 =Gε,i( y ) ◦ S−1
0 yi

(3.2)

where G has “short range”, i.e. |Gε( y )i−Gε( y ′)i| is of order εk if y and y ′ coin-
cide on the sites j with |j− i| ≤ k. By definition the system (M,S) is “reversible”,
i.e. the volume preserving diffeomorphism I verifies (1.3) above.

Therefore the points of the phase space M will be ( x , y ) =
(x−N , y−N , . . . , xN , yN ): however, to simplify notations, we shall denote them by
x = (x−N , . . . , xN ), with xj denoting, of course, a pair of points in M0.

If ε is small enough the interacting system will still be hyperbolic, i.e. for every
point x it will be possible to define a stable and an unstable manifolds W s

x , Wu
x ,

[PS], so that the key notion of “Markov partition”, [Si1], will make sense and it
will allow us to transform, following the work [PS], the problem of studying the
statistical properties of the dynamics of the system into an equivalent, but much
more familiar, problem in equilibrium statistical mechanics of lattice spin systems
interacting with short range forces. The reader will recognize below that this
method is the natural extension to chains of the method used in Appendix A3 to
study a single Anosov system.

The main notion that we want to introduce for our chain is the notion of local
entropy creation rate ηV0(x ), the entropy creation rate inside a fixed finite set
V0 ⊂ [−N, N ] of Anosov systems among the 2N + 1 composing the chain.

Definition: Fixed a point x = (. . . , x`−1, x`, x`+1, . . .) consider the map (3.1) as

a map of x V0

def
= (xj)j∈V0 = (x−`, . . . , x`) into:

x ′V0
= S(. . . , x−`−1, x V0

, x`+1, . . .)V0 (3.3)

defined by (3.1) for i ∈ [−`, `]. We call “local entropy production rate” as-
sociated with the “space like box” V0 = [−`, `] at the phase space point x =
(. . . , x`−1, x`, x`+1, . . .) the quantity ηV0(x ) equal to minus the logarithm of the
determinant of the 2(2` + 1)× 2(2` + 1) Jacobian matrix of the map (3.3).

Given a finite region V0 centered at the origin and a time interval
T0, let η+ denote the average density of entropy creation rate, i.e. η+ =
limV0,T0→∞

1
|T0|

1
|V0|

∑|T0|−1
j=0 ηV0(S

jx), then we set:

p =
1

η+|V |

1
2 |T0|∑

j=− 1
2 |T0|

ηV0(S
jx), V = V0 × T0 (3.4)

where ηV0(x) denotes the entropy creation rate in the region V0.
Calling πV (p) the probability distribution of p in the stationary state µ+,

i.e. in the SRB distribution, and assuming that the system is a weakly coupled
chain of Anosov systems I shall show, heristically, that:
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Proposition: It is πV (p) = eζ(p)|V |+O(|∂V |) where |∂V | denotes the size of the
boundary of the space–time region V and ζ(p) is a function analyticin p ∈ (−p∗, p∗)
for some p∗ ≥ 1. And:

ζ(p)− ζ(−p)
p η+

= 1, |p| < p∗

ζ(p) = r ζ(p), η+ = r η+

(3.5)

where r is the total “volume” (2N + 1) of the system, i.e. the “global” and “local”
distributions are trivially related if appropriately normalized.

Note that this implies that if V0 is an interval of length L = |V0| and if
H = |T0| then the relative size of the error and of the leading term will be, for
some length R, of order (L + H)R compared to order LH. Hence a relative error
O(H−1 + L−1) is made by using simply ζ(p) to evaluate the logarithm of the
probability of p as defined by (3.4)).

The interest of the above statements lies in their independence on the total
size 2N + 1 of the systems and the relevance of the above proposition for concrete
applications should be clear.

It means that the fluctuation theorem leads to observable consequences if one
looks at the far more probable microscopic fluctuations of the local entropy creation
rate. One can test the relation (3.5) in a small region V0 even when the system is
very large: in such regions the entropy creation rate fluctuations will be frequent
enough to be observable and carefully measurable. These fluctuations behave,
therefore, just as ordinary density fluctuations at equilibrium: also the latter are
not macroscopically observable but they are easily observable in small volumes.

The key results for the analysis leading to the above proposition are the papers
[GC], [Ga3] and, mainly, [PS]: the latter paper provides us with a deep analysis of
chains of Anosov systems and it contains, I believe, all the ingredients necessary
to make the analysis mathematically rigorous: however I do not attempt at a
mathematical proof here. The analysis is presented in Appendix A4 below.

Other types of fluctuation theorems (concerning non SRB distributions) had
been previously found, see [ES]; extensions to stochastic systems have been recently
discussed, see [Ku], [LS].

Acknowledgments: I have profited of stimulating discussions with F. Perroni,
who also helped with numerical tests of the above ideas, with F. Bonetto and D.
Ruelle. This work is part of the research program of the European Network on:
“Stability and Universality in Classical Mechanics”, # ERBCHRXCT940460; par-
tially supported also by Rutgers University and CNR-GNFM.
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Appendix A1:The Gauss’ minimal constraint principle.

Let ϕ( ẋ , x ) = 0, x = { ẋ j , x j} be a constraint and let R ( ẋ , x ) be the con-
straint reaction and F ( ẋ , x ) the active force, see also Appendix A1 of [Ga3].

Consider all the possible accelerations a compatible with the constraints and
a given initial state ẋ , x . Then R is ideal or verifies the principle of minimal
constraint if the actual accelerations a i = 1

mi
( F i + R i) minimize the effort:

N∑

i=1

1
mi

( F i −mi a i)
2 ←→

N∑

i=1

(F i −mi a i) · δ a i = 0 (A1.1)

for all possible variations δ a i compatible with the constraint ϕ. Since all possible
accelerations following ẋ , x are such that

∑N
i=1 ∂ ẋ i

ϕ( ẋ , x ) · δ a i = 0 we can
write:

F i −mi a i − α ∂ ẋ i
ϕ( ẋ , x ) = 0 (A1.2)

with α such that d
dtϕ( ẋ , x ) = 0, i.e. :

α =

∑
i ( ẋ i · ∂ x

i
ϕ + 1

mi
F i · ∂ ẋ

i
ϕ)

∑
i m−1

i (∂ ẋ i
ϕ)2

(A1.3)

which is the analytic expression of the Gauss’ principle, see [LA].
Note that if the constraint is even in the ẋ i then α is odd in the velocities:

therefore if the constraint is imposed on a system with Hamiltonian H = K + V ,
with K quadratic in the velocities and V depending only on the positions, and
if on the system act other purely positional forces (conservative or not) then the
resulting equations of motion are reversible if time reversal is simply defined as
velocity reversal.

The gaussian principle has been somewhat overlooked in the Physics literature
in Statistical Mechanics: its importance has been only recently brought again to
the attention, see the review [HHP]. A notable, though ancient by now, exception
is a paper of Gibbs, [Gi], which develops variational formulas which he relates to
the Gauss principle of least constraint.

Appendix A2. Heat theorem for monocyclic systems. Evaluation of
the average 〈∂V ϕ〉.
Consider a 1–dimensional system with potential ϕ(x) such that |ϕ′(x)| > 0 for
|x| > 0, ϕ′′(0) > 0 and ϕ(x) −−−→x→∞ +∞ (in other words a 1–dimensional system
in a confining potential). There is only one motion per energy value (up to a shift
of the initial datum along its trajectory) and all motions are periodic so that the
system is monocyclic. Assume also that the potential ϕ(x) depends on a parameter
V .

One defines state a motion with given energy E and given V . And:

U = total energy of the system ≡ K + ϕ
T = time average of the kinetic energy K
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V = the parameter on which ϕ is suposed to depend
p = − time average of ∂V ϕ

A state is parameterized by U, V and if such parameters change by dU, dV respec-
tively we define:

dL = −pdV, dQ = dU + pdV (A2.1)

then:

Theorem (Helmholtz): the differential (dU + pdV )/T is exact.

In fact let:

S = 2 log
∫ x+(U,V )

x−(U,V )

√
K(x;U, V )dx = 2 log

∫ x+(U,V )

x−(U,V )

√
U − ϕ(x)dx (A2.2)

( 1
2S is the logarithm of the action), so that:

S =

∫
(dU − ∂V ϕ(x)dV ) dx√

K∫
K dx√

K

(A2.3)

and, noting that dx√
K

=
√

2
mdt, we see that the time averages are given by inte-

grating with respect to dx√
K

and dividing by the integral of 1√
K

. We find therefore:

dS =
dU + pdV

T
(A2.4)

Boltzmann saw that this was not a simple coincidence: his interesting (and
healthy) view of the continuum (which he probably never really considered more
than a convenient artifact, useful for computing quantities describing a discrete
world) led him to think that in some sense monocyclicity was not a strong assump-
tion.

In general one can call monocyclic a system with the property that there is a
curve ` → x(`), parameterized by its curvilinear abscissa `, varying in an interval
0 < ` < L(E), closed and such that x(`) covers all the positions compatible with
the given energy E.

Let x = x(`) be the parametric equations so that the energy conservation can
be written:

1
2
m ˙̀2 + ϕ(x(`)) = E (A2.5)

then if we suppose that the potential energy ϕ depends on a parameter V and if
T is the average kinetic energy, p = −〈∂V ϕ〉 it is, for some S:

dS =
dE + pdV

T
, p = −〈∂V ϕ〉, T = 〈K〉 (A2.6)
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where 〈·〉 denotes time average.
The above can be applied to a gas in a box. Imagine the box containing the

gas to be covered by a piston of section A and located to the right of the origin at
distance L: so that V = AL.

The microscopic model for the pistion will be a potential ϕ(L − ξ) if x =
(ξ, η, ζ) are the coordinates of a particle. The function ϕ(r) will vanish for r > r0,
for some r0, and diverge to +∞ at r = 0. Thus r0 is the width of the layer near
the piston where the force of the wall is felt by the particles that happen to roam
there.

Noting that the potential energy due to the walls is ϕ =
∑

j ϕ(L − ξj) and
that ∂V ϕ = A−1∂Lϕ we must evaluate the time average of:

∂Lϕ(x) = −
∑

j

ϕ′(L− ξj) (A2.7)

As time evolves the particles with ξj in the layer within r0 of the wall will feel the
force exercized by the wall and bounce back. Fixing the attention on one particle
in the layer we see that it will contribute to the average of ∂Lϕ(x) the amount:

1
total time

2
∫ t1

t0

−ϕ′(L− ξj)dt (A2.8)

if t0 is the first instant when the point j enters the layer and t1 is the instante when
the ξ–compoent of the velocity vanishes “against the wall”. Since −ϕ′(L − ξj) is
the ξ–component of the force, the integral is −2m|ξ̇j | (by Newton’s law), provided
ξ̇j > 0 of course.

The number of such contributions to the average per unit time are therefore
given by ρwall A

∫
v>0

2mv f(v) v dv if ρwall is the density (average) of the gas
near the wall and f(v) is the fraction of particles with velocity between v and
v + dv. Using the ergodic hypothesis (i.e. the microcanonical ensemble) and the
equivalence of the ensembles to evaluate f(v) it follows that:

p
def
= 〈∂V ϕ〉 = ρwallβ

−1 (A2.9)

where β−1 = kBT with T the absolute temperature and kB the Boltmann’s con-
stant. That the (A2.9) yields the correct value of the pressure is well known, see
[MP], in Classical Statistical Mechanics; in fact often it is even taken as microscopic
definition of the pressure.

Appendix A3. A proof of the fluctuation theorem.

(A) Description of the SRB statistics.

A set E is a rectangle with center x and axes ∆u, ∆s if:
1) ∆u, ∆s are two connected surface elements of Wu

x ,W s
x containing x.

2) for any choice of ξ ∈ ∆u and η ∈ ∆s the local manifolds W s,δ
ξ and Wu,δ

η intersect
in one and only one point x(ξ, η) = W s,δ

ξ ∩Wu,δ
η . The point x(ξ, η) will also be

denoted ξ × η.
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3) the boundaries ∂∆u and ∂∆s (regarding the latter sets as subsets of Wu
x and

W s
x) have zero surface area on Wu

x and W s
x .

4) E is the set of points ∆u ×∆s.
Note that any x′ ∈ E can be regarded as the center of E because there are

∆′u,∆′s both containing x′ and such that ∆u × ∆s ≡ ∆′u × ∆′s. Hence each E
can be regarded as a rectangle centered at any x′ ∈ E (with suitable axes). See
figure.

x

∆s

∆u
ξ

η

ξ × η
E

The circle is a small neighborhood of x; the first picture shows the axes; the intermediate picture

shows the × operation and W
u,δ
η , W

s,δ
ξ

; the third picture shows the rectangle E with the axes

and the four marked points are the boundaries ∂∆u and ∂∆s. The picture refers to a two
dimensional case and the stable and unstable manifolds are drawn as flat, i.e. the ∆’s are very
small compared to the curvature of the manifolds. The center x is drawn in a central position,
but it can be any other point of E provided ∆u and ∆s are correspondingly redefined. One
should meditate on the symbolic nature of the drawing in the cases of higher dimension.

The unstable boundary of a rectangle E will be the set ∂uE = ∆u × ∂∆s; the
stable boundary will be ∂sE = ∂∆u × ∆s. The boundary ∂E is therefore ∂E =
∂sE ∪ ∂uE. The set of the interior points of E will be denoted E0. A pavement
of M will be a covering E = (E1, . . . , EN ) of M by N rectangles with pairwise
disjoint interiors. The stable (or unstable) boundary ∂sE (or ∂uE) of E is the union
of the stable (or unstable) boundaries of the rectangles Ej : ∂uE = ∪j∂uEj and
∂sE = ∪j∂sEj .

A pavement E is called markovian if its stable boundary ∂sE retracts on itself
under the action of S and its unstable boundary retracts on itself under the action
of S−1, [Si1], [Bo], [Ru1]; this means:

S∂sE ⊆ ∂sE , S−1∂uE ⊆ ∂uE (A3.1)

Setting Mj,j′ = 0, j, j′ ∈ {1, . . . ,N}, if SE0
j ∩E0

j′ = ∅ and Mj,j′ = 1 otherwise we
call C the set of sequences j = (jk)∞k=−∞, jk ∈ {1, . . . ,N} such that Mjk,jk+1 ≡ 1.
The transitivity of the system (M,S) implies that M is transitive: i.e. there is a
power of the matrix M with all entries positive. The space C will be called the
space of the compatible symbolic sequences. If E is a markovian pavement and δ is
small enough the map:

X : j ∈ C → x =
∞⋂

k=−∞
S−kEjk

∈ M (A3.2)

is continuous and 1 − 1 between the complement M0 ⊂ M of the set N =
∪∞k=−∞Sk∂E and the complement C0 ⊂ C of X−1(N). This map is called the
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symbolic code of the points of M : it is a code that associates with each x 6∈ N a
sequence of symbols j which are the labels of the rectangles of the pavement that
are successively visited by the motion Sjx.

The symbolic code X transforms the action of S into the left shift ϑ on C:
SX( j ) = X(ϑ j ). A key result, [Si1], is that it transforms the volume measure µ0

on M into a Gibbs distribution, [LR], [Ru2], µ0 on C with formal Hamiltonian:

H( j ) =
−1∑

k=−∞
h−(ϑk j ) + h0( j ) +

∞∑

k=0

h+(ϑk j ) (A3.3)

where, see (2.1):

h−( j ) =− log Λs(X( j )), h+( j ) = log Λu(X( j )),

h0( j ) =− log sin α(X( j ))
(A3.4)

If F is Hölder continuous on M the function F ( j ) = F (X( j )) can be repre-
sented in terms of suitable functions Φk(j−k, . . . , jk) as:

F ( j ) =
∞∑

k=1

Φk(j−k, . . . , jk), |Φk(j−k, . . . , jk)| ≤ ϕe−λk (A3.5)

where ϕ > 0, λ > 0. In particular h± (and h0) enjoy the property (A3.5) (short
range).

If µ+, µ− are the Gibbs states with formal Hamiltonians:

∞∑

k=−∞
h+(ϑk j ),

∞∑

k=−∞
h−(ϑk j ) (A3.6)

the distributions µ± on M , images of µ± via the code X in (A3.2), will be the
forward and backward statistics of the volume distribution µ0 (corresponding to
µ0 via the code X), [Si1]. This means that:

lim
T→∞

1
T

T−1∑

k=0

F (S±kx) =
∫

M

µ±(dy)F (y) ≡ µ±(F ) (A3.7)

for all smooth F and for µ0–almost all x ∈ M . The distributions µ± are often called
the SRB distributions, [ER]; the above statements and (A3.6),(A3.7) constitute the
content of a well known theorem by Sinai, [Si1].

An approximation theorem for µ+ can be given in terms of the coarse
graining of M generated by the markovian pavement ET =

∨T
k=−T S−kE .3 If

Ej−T ,...,jT ≡ ∩T
k=−T S−kEjk

and xj−T ,...,jT is a point chosen in the coarse grain
set Ej−T ,...,jT

, so that its symbolic sequence is obtained by attaching to the right

3 Where ∨ denotes the operation which, given two pavements E, E′ generates a new pavement
E ∨ E′: the rectangles of E ∨ E′ simply consist of all the intersections E ∩ E′ of pairs of
rectangles E ∈ E and E′ ∈ E′.

Documenta Mathematica · Extra Volume ICM 1998 · I · 205–233



Chaotic Hypothesis . . . 219

and to the left of j−T , . . . , jT arbitrary compatible sequences depending only on
the symbols j±T respectively. We define the distribution µT,τ by setting:

µT,τ (F ) ≡
∫

M

µT,τ (dx)F (x) =

∑
j−T ,...,jT

Λ
−1

u,τ (xj−T ,...,jT )F (xj−T ,...,jT )
∑

j−T ,...,jT
Λ
−1

u,τ (xj−T ,...,jT
)

Λu,τ (x)
def
=

τ/2−1∏

k=−τ/2

Λu(Skx)

(A3.8)

Then for all smooth F we have: limT≥τ/2, τ→∞ µT,τ (F ) = µ+(F ). Note that
equation (A3.8) can also be written:

µT,τ (F ) =

∑
j−T ,...,jT

e
−

∑τ/2−1

k=−τ/2
h+(ϑk j 0)

F (X( j 0))
∑

j−T ,...,jT
e
−

∑τ/2−1

k=−τ/2
h+(ϑk j 0)

(A3.9)

where j 0 ∈ C is the compatible sequence agreeing with j−T , . . . , jT between −T

and T (i.e. X( j 0) = xj−T ,...,jT ∈ Ej−T ,...,jT ) and continued outside as above.

Notation: to simplify the notations we shall write, when T is regarded as having a
fixed value, q for the elements q = (j−T , . . . , jT ) of {1, . . . ,N}2T+1; and E q will
denote Ej−T ,...,jT

and x q the above point of E q .

Remark: Note that the weights in (A3.9) depend on the special choices of the
centers x q (i.e. of j 0); but if x q varies in E q the weight of x q changes by at
most a factor, bounded above by some B < ∞ and below by B−1, for all T ≥ 0,
and essentially depending only on the symbols corresponding to the sites close to
±T .

The last formula shows that the forward statistics of µ0 can be regarded as a
Gibbs state for a short range one dimensional spin chain with a hard core interac-
tion. The spin at k is the value of jk ∈ {1, . . . ,N}; the short range refers to the fact
that the function h+( j ) ≡ log Λu(X( j )), (Λu(x) being Hölder continuous), can
be represented as in (A3.5) where the Φk play the role of ”many spins” interaction
potentials and the hard core refers to the fact that the only spin configurations j
allowed are those with Mjk,jk+1 ≡ 1 for all integers k.

(B) A Legendre transform.

First the function (2.4) is converted to a function on the spin configurations
j ∈ C:

ε̃τ ( j ) = ετ (X( j )) =
1
τ

τ/2−1∑

k=−τ/2

L(ϑk j ) (A3.10)
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where L( j ) ≡ 1
η+

log Λ±1(X( j )) has a short range representation of the type
(A3.5).

The SRB distribution µ+ is regarded (see above) as a Gibbs state µ+ with
short range potential on the space C of the compatible symbolic sequences, associ-
ated with a Markov partition E , [Si1], [Ru2]. Therefore, by general large deviations
properties of short range Ising systems ([La], [El], [Ol], there is a function ζ(s) real
analytic in s for s ∈ (−p∗, p∗) for a suitable p∗ > 0, strictly convex and such that
if p < p∗ and [p− δ, p + δ] ⊂ (−p∗, p∗) we have:

1
τ

log µ+({ε̃τ ( j ) ∈ [p− δ, p + δ]})−−−→τ→∞ max
s∈[p−δ,p+δ]

ζ(s) (A3.11)

and the difference between the r.h.s. and the l.h.s. tends to 0 bounded by Dτ −1

for a suitable constant D. The function ζ(s) is the Legendre transform of the
function λ(β) defined as:

λ(β) = lim
τ→∞

1
τ

log
∫

eτβε̃τ ( j ) µ+(d j ) (A3.12)

i.e. λ(β) = maxs∈(−p∗,p∗)(βs + ζ(s)), where the quantity p∗ can be taken p∗ =
limβ→+∞ gβ−1λ(β) and the function λ(β) is a real analytic, [CO], strictly convex
function of β ∈ (−∞,∞) and β−1λ(β)−−−−−→

β→±∞ ±p∗, i.e. it is asymptotically linear.
The above (A3.11) is a ”large deviations theorem” for one dimensional spin

chains with short range interactions, [La].
Hence it will be sufficient to prove the following; if Ip,δ = [p− δ, p + δ]:

1
η+τ

log
µ+({ε̃τ ( j ) ∈ Ip,δ∓η(τ)})
µ+({ε̃τ ( j ) ∈ I−p,δ±η(τ)})

{
< p + δ + η′(τ)
> p− δ − η′(τ) (A3.13)

with η(τ), η′(τ)−−−→τ→∞ 0.

(C) Thermodynamic formalism informations.

In this section X will denote a lattice interval, i.e. a set of consecutive integers
X = (x, x + 1, . . . , x + n− 1): hence it should not be confused with the code X of
(A3.2).

Let j
X

= (jx, jx+1, . . . , jx+n−1) if X = (x, x + 1, . . . , x + n− 1) and n is
odd, and call X = x + (n − 1)/2 the center of X. If j ∈ C is an infinite spin
configuration we also denote j

X
the set of the spins with labels x ∈ X. The left

shift of the interval X will be denoted by ϑ; i.e. by the same symbol of the left
shift of a (infinite) spin configuration j .

Let lX( j
X

) = l(n)(jx, jx+1, . . . , jx+n−1), and h+
X( j

X
) =

h
(n)
+ (jx, jx+1, . . . , jx+n−1) be translation invariant, i.e. functions such that

lϑX( j ) ≡ lX( j ) and h+
ϑX( j )= h+

X( j ), and such that the functions h+( j ),
see (2.4), and L( j ), see (A3.10), can be written for suitably chosen constants
b1, b2, b, b

′:
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L( j ) =
∑

X=0

lX( j
X

), h+( j ) =
∑

X=0

h+
X( j

X
)

|lX( j
X

)| ≤b1e
−b2n, |h+

X( j
X

)| ≤ be−b′n

(A3.14)

Then τ ε̃τ ( j ) can be written as
∑

X∈[−τ/2,τ/2−1] lX( j
X

).

Hence τ ε̃τ ( j ) can be approximated by τ ε̃M
τ ( j ) =

∑(M)
lX( j

X
) where

∑(M)

means summation over the sets X ⊆ [− 1
2τ−M, 1

2τ+M ], while X is in [− 1
2τ, 1

2τ−1].
The approximation is described by:

|τ ε̃M
τ ( j )− τ ε̃τ ( j )| ≤ b3e

−b4M (A3.15)

for suitable4 b3, b4 and for all M ≥ 0. Therefore if Ip,δ = [p− δ, p + δ] and M = 0
we have:

µ+({ετ (x) ∈ Ip,δ})
{≤ µ+({ε̃0

τ ∈ Ip,δ+b3/τ})
≥ µ+({ε̃0

τ ∈ Ip,δ−b3/τ}) (A3.16)

It follows from the general theory of 1–dimensional Gibbs distributions, [Ru2],
that the µ+–probability of a spin configuration which coincides with j

[−τ/2,τ/2]

in the interval [− 1
2τ, 1

2τ ],5 is:
[
e−

∑∗
h+

X
( j

X
)
]

∑
j ′

[−τ/2,τ/2]

[
·
] P ( j

[−τ/2,τ/2]
) (A3.17)

where
∑∗ denotes summation over all the X ⊆ [−τ/2, τ/2− 1]; the denominator

is just the sum of terms like the numerator, evaluated at a generic (compatible)
spin configuration j ′

[−τ/2,τ/2]
; finally P verifies the bound, [Ru2]:

B−1
1 < P ( j

[−τ/2,τ/2]
) < B1 (A3.18)

with B1 a suitable constant independent of j
[−τ/2,τ/2]

and of τ (B1 can be explic-
itly estimated in terms of b, b′). Therefore from (A3.16) and (A3.17) we deduce
for any T ≥ τ/2:

µ+({ετ (x) ∈ Ip,δ}) ≤ µ+({ε̃0
τ ∈ Ip,δ+b3/τ}) ≤

≤ B2 µT,τ ({ε̃0
τ ∈ Ip,δ+b3/τ}) ≤ B2 µT,τ ({ε̃τ ∈ Ip,δ+2b3/τ})

(A3.19)

for some constant B2 > 0; and likewise a lower bound is obtained by replacing B2

by B−1
2 and b3 by −b3.

4 One can check from (A3.14), that the constants b3, b4 can be expressed as simple functions
of b1, b2.

5 i.e. the spin configurations j ′ such that j′x = jx, x ∈ [− 1
2 τ, 1

2 τ ].
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Then if p < p∗ and Ip,δ ⊂ (−p∗, p∗) the set of the rectangles E ∈ ∨T
−T S−kE

with center x such that ετ (x) ∈ Ip,δ is not empty, as it follows from the strict
convexity and the asymptotic linearity of the function λ(β) in (A3.12).

We immediately deduce the lemma:

Lemma 1: the distributions µ+ and µT,τ , T ≥ 1
2τ , verify:

1
τη+

log
µ+({ετ (x) ∈ Ip,δ∓2b3/τ})

µ+({ετ (x) ∈ −Ip,δ±2b3/τ})





<
log B2

2
τη+

+ 1
τη+

log µT,τ ({ε̃τ∈Ip,δ})
µT,τ ({ε̃τ∈−Ip,δ})

> − log B2
2

τη+
+ 1

τη+
log µT,τ ({ε̃τ∈Ip,δ})

µT,τ ({ε̃τ∈−Ip,δ})
(A3.20)

for Ip,δ ⊂ [−p∗, p∗] and for τ so large that p + δ + 2b3/τ < p∗.

Hence (A3.13) will follow if we can prove:

Lemma 2: there is a constant b such that the approximate SRB distribution µT,τ

verifies:

1
η+τ

log
µT,τ ({ε̃τ ∈ Ip,δ})

µT,τ ({ε̃τ ∈ −Ip,δ})
{
≤ p + δ + b/τ
≥ p− δ − b/τ

(A3.21)

for τ large enough (so that δ + b/τ < p∗ − p) and for all T ≥ τ/2.

The latter lemma will be proved in §4 and it is the only statement that does
not follow from the already existing literature.

(D) Time reversal symmetry implications

The relation (A3.20) holds for any choice of the Markov partition E . Note
that if E is a Markov pavement so is iE (because iS = S−1i and iWu

x = W s
ix);

furthermore if E1 and E2 are Markov pavements then E = E1∨E2 is also markovian.
Therefore:

Lemma 3: there exists a time reversal Markov pavement E, i.e. a Markov pavement
such that E = iE.

This can be seen by taking any Markov pavement E0 and setting E = E0∨ iE0.
Alternatively one could construct the Markov pavement in such a way that it
verifies automatically the symmetry [G2]. Since the center of a rectangle E q ∈ ET

can be taken to be any point x q in the rectangle E q we can and shall suppose
that the centers of the rectangles in ET have been so chosen that the center of iE q

is ix q , i.e. the time reversal of the center x q of E q .
For τ large enough the set of configurations q = j

[−T,T ]
such that ετ (x) ∈

Ip,δ for all x ∈ E q is not empty6 and the ratio in (A3.21) can be written, if x q is
the center of E q ∈ ET , as:

6 Note that p∗ = supx lim supτ→+∞ ετ (Sτ/2x) and let p ∈ (−p∗ + δ, p∗ − δ); furthermore

ζ(s) is smooth, hence > −∞, for all |s| < p∗.
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∑
ετ (x q )∈Ip,δ

Λ
−1

u,τ (x q )
∑

ετ (x q )∈−Ip,δ
Λ
−1

u,τ (x q )
=

∑
ετ (x q )∈Ip,δ

Λ
−1

u,τ (x q )
∑

ετ (x q )∈Ip,δ
Λ
−1

u,τ (i x q )
(A3.22)

Define Λs,τ (x) as in (A3.8) with s replacing u: then the time reversal sym-
metry implies that Λu,τ (x) = Λ

−1

s,τ (ix), see remark 2) following definition (B), §2.7

This permits us to change (A3.22) into:

∑
ετ (x q )∈Ip,δ

Λ
−1

u,τ (x q )
∑

ετ (x q )∈Ip,δ
Λs,τ (x q )

{
< max q Λ

−1

u,τ (x q )Λ
−1

s,τ (x q )

> min q Λ
−1

u,τ (x q )Λ
−1

s,τ (x q )
(A3.23)

where the maxima are evaluated as q varies with ετ (x q ) ∈ Ip,δ.

By (2.1) we can replace Λ
−1

u,τ (x)Λ
−1

s,τ (x) with Λ
−1

τ (x)B±1, see (A3.8), (2.4); thus
noting that by definition of the set of q ’s in the maximum in (A3.23) we have

1
η+τ log Λ

−1

τ (x q ) ∈ Ip,δ, we see that (A3.21) follows with b = 1
η+

log B.

Corollary: the above analysis gives us a concrete bound on the speed at which the
limits in (2.6) are approached. Namely the error has order O(τ−1).

This is so because the limit (A3.11) is reached at speed O(τ−1); furthermore the
regularity of λ(s) in (A3.11) and the size of η(τ), η′(τ) and the error term in
(A3.21) have all order O(τ−1).

The above analysis proves a large deviation result for the probability distribu-
tion µ+: since µ+ is a Gibbs distribution, see (A3.6), various other large deviations
theorems hold for it, [DV], [El], [Ol], but unlike the above they are not related to
the time reversal symmetry.

Appendix A4: Heuristic proof of the local fluctuation theorem.

(A) Markov partitions and symbolic dynamics for the chain.

The reduction of the dynamical nonequilibrium problem of a weakly interact-
ing chain of Anosov maps, see §3, to a short range lattice spin system equilibrium
problem is the content of (A), (B) of this appendix, see [Ga7]. This is an extension
of the corresponding analysis in Appendix A3 for the case of a single Anosov map:
it is necessary to discuss it again in order to exploit the short range nature of the
coupling and its weakness in order to obtain results independent on the size N of
the chain.

Let P0 = (E0
1 , . . . , E0

N0
) be a Markov partition, see [Si1], for the unper-

turbed “single site” system (M0 × M0, S0 × S
−1

0 ). Then P2N+1

0 = {Eα},

7 Here it is essential that Λu,τ (x) is the expansion of the unstable manifold between the initial

point S−τ/2x and the final point Sτ/2x: i.e. it is a trajectory of time length τ , which at
its central time is in x.
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α = (ρ−N , . . . , ρN ) with Eα = E0
ρ−N

× E0
ρ−N+1

× . . . × E0
ρN

is a Markov parti-

tion of (M
2(2N+1)

0 , S0).
The perturbation, if small enough, will deform the partition P2N+1

0 into a
Markov partition P for (M, S) changing only “slightly” the partition P2N+1

0 . The
work [PS] shows that the above “ε small enough” mean that ε has to be chosen
small but that it can be chosen N–independent, as we shall always suppose in what
follows.

Under such circumstances we can establish a correspondence between points of
M that have the same “symbolic history” (or “symbolic dynamics”) along P2N+1

0

under S0 and along P under S; we shall denote it by h; see [PS].
The Markov partition P2N+1

0 for S0 associates with each point x =
(x−N , . . . , xN ) a sequence (σi,j), i ∈ [−N, N ], j ∈ (−∞,∞) of symbols so that
(σi,j)∞j=−∞ is the free symbolic dynamics of the point xi. We call the first label
i of σi,j a “space–label” and the second a “time–label”. Not all sequences can
arise as histories of points: however (by the definition of h, see above) precisely
the same sequences arise as histories of points along P0 under the free evolution
S0 or along P under the interacting evolution S.

The map h is Hölder continuous and “short ranged”:

|h( x )i − h(x ′)i| ≤ C
∑

j

ε|i−j|γ′ |xj − x′j |γ (A4.1)

for some γ, γ′, C > 0, [PS], if |x− y| denotes the distance in M0 ×M0 (i.e. in the
single site phase space).

Furthermore the code x ←→ σ associating with x its “history” or “symbolic
dynamics” σ (x ) along the partition P under the map S is such that, fixed j:

σ ( x )i = σ ( x ′)i for |i− j| ≤ ` ⇒ |xj − x′j | ≤ Cεγ` (A4.2)

The inverse code associating with a history σ a point with such history will be
denoted x (σ ).

If x = (x−N , . . . , xN ) is coded into σ (x ) = ( σ −N , . . . , σ N ) = (σi,j), with
i = −N, . . . , N , and j ∈ (−∞,+∞), the short range property holds also in the
time direction. This means that, fixed i0:

σi,j = σ′i,j for |i− i0| < k, |j| < p ⇒ |x (σ )i0 − x ( σ ′)i0 | ≤ Cεγke−κp

(A4.3)
for some κ, γ, C > 0, see lemma 1 of [PS]. The constants κ, γ, C,C ′, B,B′ > 0
above and below should not be thought to be the same even when denoted by the
same symbol: however they could be a posteriori fixed so that to equal symbols
correspond equal values.

By construction the codes x ←→ σ ( x ) commute with time evolution.
The sequences (σi,j) which arise as symbolic dynamics along P0 under the free

single site evolution of a point xi are subject to constraints, that we call “vertical”,
imposing that T 0

σi,j ,σi,j+1
≡ 1 for all j, if T 0

σ,σ′ denotes the “compatibility matrix”
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of the “free single site evolution” (i.e. T 0
σ,σ′ = 1 if the S0 × S

−1

0 image of Eσ

intersects the interior of Eσ′ and T 0
σ,σ′ = 0 otherwise). We call the latter condition

a “compatibility condition” for the spins in the i–th column.
The mixing property of the free evolution immediately implies that a large

enough power of the compatibility matrix T 0 has all entries positive. This means
that for each symbol σ we can find semiinfinite sequences:

σB(σ) =(. . . , σ−1, σ0 ≡ σ), T 0
σi−1,σi

= 1, for all i ≤ 0

σT (σ) =(σ ≡ σ0, σ1, . . .), T 0
σi,σi+1

= 1, for all i ≥ 0
(A4.4)

and defines two functions σB , σT , called “compatible extensions”, defined on the
set {1, . . . ,N0} of labels of the single site Markov partition P0, with values in the
compatible semiinfinite sequences.

In fact there are (uncountably) many ways of performing such compatible
extensions “from the bottom” and “from the top” of the symbol σ into semiinfinite
compatible sequences of symbols. We imagine to select one pair σB , σT arbitrarily,
once and for all, and call such a selection a “choice of boundary conditions” or “of
extensions”, on symbolic dynamics, for reasons that should become clear shortly.
All this seems unavoidable and it is closely parallel to the corresponding discussion
in the analysis of the simpler case of a single Anosov system discussed in Appendix
A3, see the discussion preceding (A3.8).

We shall therefore be able to “extend in a standard way” any finite compatible
block8 Q of spins:

σ Q = (σi,j)i∈L,j∈K , L = (a− `, a + `), K = (b−m, b + m) (A4.5)

by setting σi,j = σB(σi,b−n)b−n−j for j < b − n and σi,j = σT (σi,b+n)j−b−n for
j > b + n. Here a, b, `,m are integers.

In the free evolution there are no “horizontal” compatibility constraints; hence
it is always possible to extend the finite block σ Q = (σi,j)i∈L,j∈K to a “full
spin configuration” sequence (σi,j)i∈[−N,N ],j∈(−∞,∞), obtained by continuing the
columns in the just described standard way, using the boundary extensions σB , σT ,
above the top and below the bottom, into a biinfinite sequence and also by extend-
ing the spin configuration to the right and to the left to a sequence with spatial
labels running over the full spatial range [−N, N ]. One simply defines σi,j for i 6∈ L
as any (but prefixed once and for all) compatible biinfinite sequence of symbols
(the same for each column).

The allowed symbolic dynamics sequences for the free dynamics (on P0) and
for the interacting dynamics (on P) coincide because the free and the interacting
dynamics are conjugated by the map h, [PS]. Therefore the above operations make
sense also if the sequences are regarded as symbolic sequences of the interacting
dynamics, as we shall do from now on.

To conclude: given a “block” σ Q of symbols, with space–time labels (i, j) ∈
Q = L × K, we can associate with it a point x ∈ M whose symbolic dynamics

8 A block (σi,j), (i, j) ∈ Q, is naturally said to be “compatible” if T0
σi,j ,σi,j+1 = 1 for all

(i, j) ∈ Q such that (i, j + 1) is also in Q.
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is the above described standard extension of σ Q. The latter depends only on the
values of σi,j for j at the top or at the bottom of Q and, of course, on the boundary
conditions σB , σT chosen to begin with.

(B) Expansion and contraction rates.

Consider the rates of variation of the phase space volume, λ0(x ), or, respec-
tively, of the surface elements of the stable and unstable manifolds λs(x ) and
λu(x ) at the point x : they are the logarithms of the Jacobian determinants
∂S( x ), ∂(α)S(x ), α = s, u, where ∂(α) denotes the Jacobian of S as a map of Wα

x

to Wα
S x where α = u, s distinguishes the unstable manifold Wu

x of x or the stable
manifold Wσ

x of x :

λα(x ) = − log | det ∂(α)S(x )|, α = 0, u, s (A4.6)

where ∂(0)S(x )
def
= ∂S(x ).

A hard technical problem is to represent λα(x ) in terms of the “symbolic
history” of x along P, i.e. in terms of compatible sequences σ = (σi,j) with
i ∈ (−N,N), j ∈ (−∞,∞). The rates λα( x ) can be expressed as:

λα( x ) = − log
∣∣ det

∂S

∂ x

∣∣
W α( x )

=
∑

L⊂[−N,N ]

δ̃
(α)
L (x L) (A4.7)

where L is an interval in [−N,N ] (with ±(N + 1) identified with ∓N), [PS].
For α = 0 this can be done by noting that the matrix J = ∂S

∂x has an al-
most diagonal structure: J(x ) = J0(x )(1 + ∆( x )) where J0( x ) is the Jaco-
bian matrix of the free motion J0(x ) = J0(x−N ) × J0(x−N+1) × . . . × J0(xN ) if
x = (x−N , . . . , xN ) and if D =

( ∏N
j=−N det J0(xj)

)
:

detJ = D · eTr log(1+∆( x )) = D · e
∑∞

k=1
(−1)k−1

k Tr ∆( x )k

(A4.8)

which leads to (A4.7) if one uses that the matrix elements ∆p,q =
J−1

0 (x )∂xp∂xqJ(x ) are essentially local, i.e. bounded by B (Cε)|p−q|γ for some
γ, C, B > 0 (see (3.1),(3.2), (A4.3)).

For α = u, s (A4.7) can be derived in a similar way using also that:

(1) the stable and unstable manifolds of x consist of points y which have
eventually, respectively towards the future or towards the past, the same history
of x ,
(2) they are described in a local system of coordinates around x =
(. . . , x−1, x0, x1, . . .) by smooth “short range” functions. Suppose, in fact,
that on each factor M0 we introduce a local system of coordinates (α, β) around
the point xi ∈ M0, such that the unperturbed stable and unstable manifolds are
described locally by graphs (α, fs(α)) or (fu(β), β).

The unperturbed stable and unstable manifolds will be smooth graphs
(αi, fs(αi)) or (fu(βi), βi) with αi varying close to αi and βi close to βi, with
(αi, βi) being the coordinates of xi.
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Fixed a point x = (x−N , . . . , xN ) with coordinates (αi, βi)i=−N,...,N the per-
turbed manifolds of the point x will be described by smooth (at least C2 and in
fact of any prefixed smoothness if ε is sufficiently small) functions W s(α ), Wu(β )
of α = (αi)i=−N,N or of β = (βi)i=−N,N which are “local”; i.e. if α and α ′ agree
on the sites i− `, i + ` or if β and β ′ agree on the sites i− `, i + ` then:

||Wu( β )i − fu(βi)||C2 < Cε, ||Wu(β )i −Wu(β ′)i||C2 < Cε`

||W s( α )i − fs(αi)||C2 < Cε, ||W s( α )i −W s(α ′)i||C2 < Cε`
(A4.9)

for some C > 0, see [PS] lemmata 1,2. Here the norms in the first column are
the norms in C2 as functions of the arguments β or respectively α , while the
norms in the second column are C2 norms evaluated (of course) after identifying
the arguments of β (or α ) and β ′ (or α ′) with labels j such that |i− j| ≤ `.
(3) If we consider the dependence of the planes tangent to the stable and unstable
manifolds W s

x , Wu
x at x we find that they are Hölder continuous as functions of

x :
|(dWα

x )i − (dWα
y )i| < C

∑

j

ε|i−j|κ|xj − yj |γ , α = u, s (A4.10)

where (dWα
x )i denoted the components relative to the i–th coordinate of x of the

tangent plane to Wα
x and C, κ, γ > 0.

The above properties and the Hölder continuity (A4.1), (A4.2), (A4.3) imply
that the “horizontal potentials” δ̃

( α)
L (x L) in (A4.7) are “short ranged”:

| δ̃( α)
L ( x L)| ≤ B (Cε)(|L|−1)γ , α = u, s (A4.11)

for some B,C, γ > 0; we denote |L| the number of points in the set L.
We shall use the symbolic representation of x ∈ M to express the rates

λ(α)( x ). For this purpose let x = (xi)i=−N,N and suppose that such x cor-
responds to the symbolic dynamics sequence σ = ( σ j)

∞
j=−∞ where σ j =

(σ−N,j , . . . , σN,j). We denote σ L the sequence σ L = (σi,j)i∈L,j=−∞,∞.
Then σ L does not determine x L (unless there is no interaction, i.e. ε = 0):

however the short range property, (A4.3), of the symbolic codes and of the map
h conjugating the free evolution and the interacting evolution shows that, if L′

is a larger interval containing L and centered around L, then the sequence σ L′

determines each point of x L within an approximation ≤ (Cε)(|L
′|−|L|)γ . Hence

we can define δ̂
( α)
L ( σ L) so that:

δ̃
(α)
L (x L) =

∑

L′⊃L

δ̂
( α)
L′ ( σ L′), |δ̂( α)

L ( σ L)| < B′ (C ′εγ)|L|−1

λα(x ) =
∑

L

2|L|δ̂( α)
L (σ L)

(A4.12)

for some B′, C ′, γ. This leads to expressing λα(x ) in terms of the symbolic dy-
namics of x and of the “space–localized” potentials δ̂

( α)
L (σ L).
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Let Qn = L×K where K = [−n, n] is a “time–interval” and set

Lα
Qn

( σ Qn
)

def
= δ̂

( α)
L ([ σ Qn

])− δ̂
( α)
L ([ σ Qn−1

]) (A4.13)

if n ≥ 1 and [ σ Qn
] denotes a standard extension (in the sense of §3) of σ Qn

; or

just set Lα
Q0

def
= δ̂

( α)
L ([ σ Q0

]) for n = 0. We define Lα
Q(σ Q) for Q = L × K and

K not centered (i.e. K = (a− n, a + n), a 6= 0) so that it is translation invariant
with respect to space time translations (of course the horizontal translation invari-
ance is already implied by the above definitions and the corresponding translation
invariance of δ̃

( α)
L ).

The remarkable property, consequence of the Hölder continuity of the functions
in (A4.6) and of the (A4.3),(A4.12), see [PS], is that for some γ, κ, B, C > 0:

|Lα
Q( σ Q)| ≤ B (Cεγ)i e−κj (A4.14)

if i, j are the horizontal and vertical dimensions of Q.
In this way we define a “space–time local potential” L(α)

Q which is, by
construction, translation invariant and such that, if Λ denotes the box Λ =
[−N,N ]× [−M,M ] the following representations for the rates in (A4.6) hold:

− log | det ∂( α)S
2M+1(S−M x )| =

∑

Q⊂Λ

Lα
Q(σ Q) + O(|∂Λ|) (A4.15)

where O(|∂Λ|) is a “boundary correction” due to the fact that in (A4.15) one
should really extend the sum over the Q’s centered at height ≤ M and contained
in the infinite strip [−N, N ]× [−∞,∞] rather than restricting Q to the region Λ.
Hence the remainder in (A4.15) can, in principle, be explicitly written, in terms
of the potentials L( α)

Q , in the boundary term form usual in Statistical Mechanics
of the 2–dimensional short range Ising model and it can be estimated to be of
O(|∂Λ|) by using (A4.14).

(C) Symmetries. SRB states and fluctuations.

Besides the obvious translation invariance symmetry the dynamical system
has a time reversal symmetry; this is the diffeomorphism I, see (1.3), which anti-
commutes with S and S0:

IS = S−1I, IS0 = S0I
−1, I2 = 1 (A4.16)

We can suppose that the Markov partition is time reversible, i.e. to each element
Eσ of the partition P one can associate an element Eσ ′ = IEσ which is also an
element of the partition. Here we simply use the invariance of the Markov partition
property under maps that either commute or anticommute with the evolution S:
hence it is not restrictive, see [Ga5],[Ga3], to suppose that for each σ one can
define a σ ′ so that Eσ ′ = IEσ . We shall denote such σ ′ as I σ or also −σ . For
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ε = 0, i.e. for vanishing perturbation, the map I will act independently on each
column of spins of σ . This property remains valid for small perturbations; hence:

I σ = {σ′i,j} = {−σi,−j} def
= − σ I (A4.17)

i.e. time reversal simply reflects the spin configuration corresponding to a phase
space point and changes “sign” of each spin.

The functions λα(x ) and their “potentials” Lα
Q(σ Q) verify, as a consequence,

if Q = [−`, `]× [−k, k] is a centered rectangle:

λα(I x ) = −λα′(x ), Lα
Q( σ Q) = −Lα′

Q (−σ I
Q) (A4.18)

where α′ = s if α = u and α′ = u if α = s, α′ = 0 if α = 0. The above symmetries
will be translated into remarkable properties of the SRB distribution.

The “local entropy production rate” associated with the “space like box” V0 =
[−`, `] at the phase space point x = (. . . , x`−1, x`, x`+1, . . .) has been defined in
§3 in therms of the Jacobian matrix of the map S. We can likewise consider the
corresponding Jacobian determinants of the restriction of the map S to the stable
and unstable manifolds of x . Such determinants will depend not only from xi,
i ∈ V0, and on the nearest neighbors variables x±` but also on the other ones xk

with |k| > ` + 1: however their dependence from the variables with labels |k| > `
is exponentially damped as ε(|k|−`)γ , by (A4.14). Thus we can define ηs

V0
, ηu

V0
in a

way completely analogous to η0
V0

in (3.3).
If we look at the average phase space variation rates η0

V0
, ηs

V0
, ηu

V0
between the

time −ϑ and ϑ we can find, via a power expansion like the one in (A4.8) along the
lines leading from (A4.8) to (A4.15), a mathematical expression as:

ηα
V0

(x ) '
∑

Q

∗Lα
Q( σ Q) (A4.19)

where the
∑∗

Q Q runs over rectangles Q centered at 0–time Q = [a−`, a+`]×[−k, k]
with [a− `, a + `] ⊆ V0. This could be taken as an alternative definition of ηα

V0
, as

it is a rather natural expression. For our purposes, if V = V0 × [−ϑ, ϑ], one needs
to note that (A4.19) holds at least in the sense that:

1
V0 · (2ϑ + 1)

ϑ∑

j=−ϑ

η
( α)
V0

(Sj x ) =
1

V0 · (2ϑ + 1)

∑

Q⊂V

Lα
Q(σ Q) +

O(|∂V |)
|V | (A4.20)

i.e. expression (A4.19) can be used to compute the average local entropy creation
rate in the space–time region V up to boundary corrections O(|∂V |) (that can be
neglected for the purposes of the following discussion).

We now study the SRB distribution µ: denoting by 〈F 〉+ the average value
with respect to µ of the observable F we can say, see [Si1], [PS], that if Λ =
[−N,N ]× [−T, T ]:

〈F 〉+ = lim
T→∞

∑
σ F (σ )e

∑
Q⊂Λ

Lu
Q( σ

Q)

∑
σ e

∑
Q⊂Λ

Lu
Q

( σ
Q)

(A4.21)
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We want to study the properties of the fluctuations of:

p =
1

V η+

∑

Q⊂V

Lu
Q(σ Q), if η+ = lim

V→∞
1
V

∑

Q⊂V

〈Lu
Q〉+ (A4.22)

for which we expect a distribution of the form πV (p) = const eV ζ(p)+O(∂V ). The
SRB distribution gives to the event that p is in the interval dp the probability
πV (p)dp with:

πV (p) = const
∑

at fixed p

e

∑
Q⊂Λ

Lu
Q( σ Q) (A4.23)

and (defining implicitly Uu):

∑

Q⊂Λ

Lu
Q(σ Q) =

∑

Q⊂V

Lu
Q(σ Q) +

∑

Q⊂Λ/V

Lu
Q(σ Q) + O(|∂V |κ−1)

def
=

def
= Uu

V (σ V ) + Uu
Λ/V (σ Λ/V ) + O(|∂V |κ−1)

(A4.24)

with κ > 0, having used the “short range” properties (A4.14) of the potential.
In the sums in (A4.21) we would like to sum over σ V and over σ Λ/V as if

such spins were independent labels. This is not possible because of the vertical
compatibility constraints. However the mixing property supposed on the free
evolution implies that the compatibility matrix T 0 raised to a large power R has
positive entries. Hence if we leave a gap of width R above and below V we can
regard as independent labels the labels σi,j with i in the space part V0 of the region
V = V0 × [−ϑ, ϑ] and with |j| > ϑ + R, by a distance ≥ R above or below the

region V . Denoted V + R
def
= V0 × [−ϑ−R, ϑ + R] remark that:

∑

Q⊂Λ

Lu
Q(σ Q) = Uu

V (σ V ) + Uu
Λ/(V +R)(σ Λ/(V +R)) + O(|∂V | (R + κ−1)) (A4.25)

Hence, proceeding as in [GC1], we change the sum over (the dummy label) σ in
the denominator to a sum over −σ I and using Lu

QI (−σ I
Q) = −Ls

Q(σ Q):

πV (p)
πV (−p)

=

∑
at fixed p e

∑
Q⊂V

Lu
Q( σ Q)

eUu
Λ/(V +R)( σ Λ/(V +R))

∑
at fixed p e

∑
Q⊂V

−Ls
Q

( σ Q)
e
Uu

Λ/(V +R)((−σ I)Λ/(V +R))
eO(|∂V |) (A4.26)

with the summation being over the spin configurations in the “whole space–time”
Λ, subject to the specified constraint of having the same value for p, i.e. the
same average local entropy creation rate in the space–time region V . The latter
expression becomes, since the labels σ ,−σ I (respectively in the numerator and
denominator of (A4.26)) are independent dummy labels:

∑
at fixed p e

∑
Q⊂V

Lu
Q( σ Q)

Z(Λ/(V + R))
∑

at fixed p e

∑
Q⊂V

−Ls
Q

( σ Q)
Z(Λ/(V + R))

eO(|∂V |) (A4.27)
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so that by the (A4.20), (A4.22) and since the symmetry relations above im-
ply the relation

∑
Q⊂V (Lu

Q(σ Q) +Ls
Q(σ Q)) = V η+ p, up to corrections of size

O(|∂V |κ−1) we find, (note the repetition of the comparison argument given in
[GC]):

πV (p)
πV (−p)

= eη+ V p eO(|∂V |) (A4.28)

yielding a local fluctuation law, i.e. the first of (3.5). The second line of (3.5) is a
(simple) consequence of the above analysis but we do not discuss it here.
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From Classical Numerical Mathematics

to Scientific Computing

Wolfgang Hackbusch

Abstract. The challenge of Numerical Mathematics by the fast devel-
opment of the computer technology has changed this field continuously.
The need of efficient algorithms is described. Their development is sup-
ported by certain principles as “hierarchical structures”, and “adaptivi-
ty”, “decomposition”. These principles and their interactions are demon-
strated in the lecture.

1991 Mathematics Subject Classification: AMS 65N, 65R, 65Y, 35A40,
45L10
Keywords and Phrases: Scientific Computing, Algorithms, pde, bound-
ary value problems, Adaptivity, Decomposition

1 Introduction

This papers tries to sketch the structural changes in Numerical Mathematics. Due
to the pages restrictions, the illustrating examples must be omitted.

1.1 The Scope of Numerical Mathematics

First, we characterise the typical topics which already appeared in Numerical
Mathematics when this field developed in the mid of this century. Two essential
keywords are the approximation (or discretisation) and the algorithm.

The algorithm1 establishes the constructive part of Numerical Mathematics.
In the following, we will often refer to the solution of the linear system

Ax = b (x, b ∈ Rn) (1)

as a standard example of a problem to be solved. A possible (but slow) algorithm
would be the Gauß elimination performing the mapping b 7→ x.

Since, in general, the mathematical problems are not solvable by finitely many
elementary operations, one needs some kind of approximation. The following
examples are chosen from the field of partial differential equations (pde). Since
the solution is sought in infinitely dimensional spaces, a ‘discretisation’ is needed

1Formally, an algorithm is a function, which maps input data x ∈ X into the desired output
data y ∈ Y and which is explicitly described by a finite product of elementary operations.
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before an algorithm can be applied. The usual discretisation of a (linear) partial
differential equation is a linear system (1).2

We obtain the following picture:

original problem, e.g., pde (2a)

↓ discretisation process (2b)

discrete problem, e.g., system of equations (2c)

↓ solution algorithm (2d)

discrete solution (2e)

In the classical form of Numerical Mathematics the processes (2b) and (2d)
are well separated.

Finally, the discretisation process (2b) as well as the solution algorithm (2d)
are subjects of a Mathematical Analysis. The analysis of the discretisation pro-
cess concerns, e.g., the discretisation error. The analysis of an algorithm may
investigate its stability or its convergence speed (for iterative algorithms) etc.

1.2 Challenge by Large Scale Problems

Large scale computations are those which are almost too large to be computed
on present machines.3 Then, improvements are required to make the problem
feasible. In the field of pde’s it is always possible to pose larger and more complex
problems than those treated at present. The increasing demands concern not
only the problem dimension but also the mathematical complexity. One source of
mathematical complexity is the fact that simplified models are replaced by more
and more realistic ones. This may, e.g., lead to

- nonlinear problems (in the simplest case this requires a series of linear aux-
iliary problems to be solved, in more complicated situations the solution structure
may cause further difficulties and needs respective strategies),

- complicated geometries (although the mathematical analysis of a pde for
a simple two-dimensional and a complicated three-dimensional domain may be
similar from a theoretical point of view, the implementation of the algorithm is by
far much more involved).

Often the solution of a (discretised) pde is only a small part of the whole
computation. This happens for inverse problems which may be well-posed or ill-
posed. Examples are

- parameter identification problems,
- optimisation of various parameters (coefficients, shape, etc.).

2Another kind of approximation occurs on a lower level: the exact arithmetical operation
with real number must be replaced by approximate operations in the set of machine numbers.

3Here, ‘large scale’ is to be understood in a relative sense: large compared with the computer
capacity available today. In this sense, all present large scale computations will become small
under future conditions.
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1.3 Scientific Computing

It is the challenge by large scale problems which have changed Numerical Mathe-
matics continuously into its present form. The changes cannot be described only
by great strides made in the algorithms and in the discretisation techniques. The
modern approach is characterised by a combined design of both, discretisations
and algorithms. Even the modelling is more and more involved in the whole pro-
cess. Computer Science is involved, e.g., by the modern computer architecture but
also by the implementation process, which more and more becomes the bottleneck.

This paper tries to show the main strategies which have been developed and
led to the present structure. In particular, we name the

- hierarchical structures,
- adaptive approaches,
- (de)composition techniques.
Hierarchies are very successful for algorithms (see §2.3), but also important for

the discretisation and modelling process. Adaptive techniques are indispensable
for large scale problems (see §3.2). The composition and decomposition techniques
have theoretical aspects in mathematics as well as quite practical aspects as the
use of parallel computers (see §4.1).

2 Efficient Algorithms

It may be self-evident that we would like the algorithms to be as efficient as
possible, i.e., they should yield the desired results for lowest computational costs.
This vague request can be made more precise. Below, we explain why in the case
of large scale computations, the development of the computer technology leads
to the need of algorithms with linear complexity. The notation of complexity is
recalled below.

2.1 Algorithms and Their Complexity

In the following, we fix the discretisation (2b) and discuss the algorithm (2d).
While the structural properties of algorithms are quite similar to those of

proofs in mathematics, two algorithms α, β : X → Y mapping the input x into
the same output α(x) = β(x) are not considered to be equal but are valuated
according to their costs. Typical cost criteria are the required computer time
and storage. Since the time needed for the computation depends on the speed
of the computer, we may take the number of elementary arithmetical operations
as a measure.4 Since, by definition, each algorithm α : X → Y is a well-defined
product α = αk ◦ . . . ◦α1 of elementary operations αi, the arithmetical costs C(α)
of an algorithm is well-defined, too.

Usually, the data sets X,Y are not fixed but can be parametrised (e.g., X =
Rn). Let n be the maximum of the number of input and output data. The
complexity of an algorithm α is O(ϕ(n)), if C(α) = O(ϕ(n)) as n →∞.

4This is a simplifying assumption. In fact, on modern computers the relation between the
number of arithmetical operations and the computer time is no more linear, e.g., because of
pipelining effects.
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There are difficult problems, for which it is considered as a success if the
complexity is polynomial (i.e., ϕ(n) = np for some p). To this respect, problems
from Linear Algebra are simple. For instance, the n× n system (1) can be solved
by Gauß elimination with complexity O(n3). But as we will see below, the O(n3)
complexity is quite unsatisfactory.

Since, except trivial counter-examples, n data require at least one operation
per datum, the linear complexity O(n) is the best possible (as a lower bound).
Whether linear complexity can be achieved is often an open problem.

Instead of the polynomial complexity behaviour O(np), one often finds the
asymptotic behaviour5 O(np logq n). Because of the slow increase6 of the loga-
rithm, the logarithmic factor is considered as less important. We say that the
complexity is almost linear if p = 1, while q > 0 is allowed.

To simplify the discussion, we have concentrated on the number of arithmeti-
cal operations (computer time) and have not mentioned the storage requirements.
If nothing else is said, we suppose that the storage requirement is (almost) linear
in n.

2.2 Why Linear Complexity is Necessary

The asymptotic description of the algorithmic complexity is uninteresting as long
as we are not forced to increase n. This need is caused by the computer technology.
In the former times of hand calculations or mechanical calculators, there were
obvious reasons why n was rather small. This is why Numerical Mathematics did
not appear as a discipline of its own before the help of electronic computers was
available.

As pointed out in §1.2, we would like to compute problems as large as the
computer resources allow. Assuming a storage requirement of O(n), we conclude
that the dimension n of the largest problem we can handle increases directly with
the storage of the computer.

The steady improvement of the computer technology can be described quan-
titatively. In spite of the technological jumps, the improvement of the storage size
is rather uniform over the past decades. One observes an improvement by a factor
about 100 over 10 years. A similar factor can be found for the increase in speed.
The only interesting fact from these data is that storage and speed increase by
almost the same factor per time. This has an immediate impact on the computer
time for the problems to be solved.

Suppose an algorithm with complexity O(np) ≈ Cnp. Replacing the old
computer by a new one with storage and speed improved by the factor c > 1, we
want to solve problems of dimension cn instead of n (due to the increased storage).
This requires C(cn)p operations. Because of the improved speed, the computer
time is now C(cn)p/c = Ccp−1np instead of Cnp previously. We conclude that an
improvement of the computer facilities by c increases the computer time by cp−1.
Hence, only if the algorithm has (almost) linear complexity, the run time does not
deteriorate.

5Or more general O(nq+ε) for any ε > 0.
6In fact, the constants in two O(np logq n) terms can be more important than the logarithm.
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The conclusion for algorithms with complexities worse than the linear one is
that either the algorithm can only be used for small size problems or one has to
tolerate larger and larger computational times.

2.3 Hierarchical Structures

One basic principle that may lead to efficient algorithms it the use of hierarchies.
A typical advantage of a hierarchical structure is the possibility of recursive algo-
rithms. Below, we give a well-known example.

2.3.1 Example: FFT

Consider Eq. (1) with matrix entries ajk = ωjk (0 ≤ j, k ≤ n − 1), where ω =
exp(±2πi/n). Then the matrix-vector multiplication x 7−→ b = Ax describes the
mapping from the vector coefficients x into the Fourier coefficients of b = Fn(x)
(or vice versa, depending on the ± sign).

The standard matrix-vector multiplication algorithm has O(n2) complexity.
Let n = 2q. The idea of the Fast Fourier Transform (FFT), which can be traced
back to Gauß, is to split the unknown Fourier coefficients b = (b0, b1, . . . , bn−1)
into bodd = (b1, b3, . . . , bn−1) and beven = (b0, b2, . . . , bn−2) and to construct the
related xodd, xeven with bodd = Fn/2(xodd), beven = Fn/2(xeven). This allows a
recursive application: One problem of dimension n = 2q (level q) is transferred
into 2 problems of dimension n/2 = 2q−1 (level q − 1), etc. until it is reduced to
n = 2q problems of the trivial dimension 1 (level 0). The costs per step are O(n).
Since q = log2 n is the number of levels, we result in the almost linear complexity
O(n log n).

Here, the vector spaces X` = Rn` of dimension n` = 2` (` = 0, 1, . . . ) form the
hierarchy. The typical characteristics of the FFT algorithm are: (i) The problem
is trivial at level 0, while (ii) it is easy (and cheap) to reformulate the problem of
level ` by those of level ` − 1. In more general cases, (ii) takes the form that an
essential part of the algorithm is the solution of problems on the lower level.

2.3.2 Example: Wavelets

The fact that the number of involved hierarchy levels grows like log2 n does not
necessarily imply that this logarithmical factor must appear in the complexity.
The wavelet transformation, which is quite close to the Fourier Transform, relies
much stronger on the hierarchical structure (functions f of level7 ` define functions
f(2·) of level ` + 1 and vice versa). Supposing a finite filter length, the wavelet
transform and its back transform have exactly linear complexity.

The hierarchy for wavelets defined on R is the family {G` = {x = k2−` :
k ∈ Z} : ` ∈ Z} of uniform grids. Since the wavelets are a part of Mathematical
Analysis and a tool for the approximation, we see that the concept of hierarchies
is also essential for the discretisation process.

7In wavelet terminology ‘level’ is called ‘scale’.
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2.3.3 Example: Solution of Sparse Systems by Multi-Grid

Most of the discretisation methods for pde produce a so-called sparse matrix A in
(1), i.e., the number of non-zero entries is much smaller than n2; in the following,
we assume that there are O(n) non-zero entries. A trivial consequence is that the
matrix-vector multiplication x 7→ Ax is cheap (linear complexity). Therefore, the
hope is to approximate8 the solution by an iterative process using only a fixed
(n-independent) number of such matrix-vector multiplications.

Although A is sparse, the inverse A−1 is, in general, a full matrix. This
allows the following illustration of the difficulty about linear complexity. Even if
we would be able to get the inverse matrix A−1 for free, the computation of x by
x := A−1b involves the multiplication of a full matrix by a vector and is therefore
of complexity O(n2).

Linear iterations for solving Ax = b are of the form9

xm+1 = Φ(xm, b) := Mxm + Nb = xm −N(Axm − b)

with the iteration matrix M = I − NA (N arbitrary). The iteration converges,
xm → x = A−1b, if the convergence speed which equals the spectral radius ρ(M)
of the matrix M is < 1. In order to get the best results for minimal costs, one has
to minimise the effective work

Eff(Φ) :=
cost per iteration step

− log ρ(M)
= min

over all linear iterations Φ. It turns out that Φ leads to an almost O(np) complexity
for the solution of (1) if Eff(Φ) = O(np). Due to the sparsity, we may assume
‘cost per iteration step’= O(n); hence, Eff(Φ) = O(np) is equivalent to ρ(M) =
1−O(n1−p). In particular, linear complexity requires ρ(M) ≤ ρ̄ < 1 for all n.

Unfortunately, there is no iteration known so far which ensures linear com-
plexity for all sparse matrices A. Instead one looks for fast iterations that work
for certain classes of matrices.

Such a class are the sparse matrices resulting from the discretisation of el-
liptic partial differential equations, where the multi-grid iteration leads to linear
complexity. The characteristic structure of the multi-grid method is the use of
a hierarchy of discrete problems. The standard hierarchy parameter is the grid
size h. Denote the discrete problem on hierarchy level ` by A`x` = b` for decreas-
ing mesh sizes h0 > h1 > . . . > h` > . . . . The iteration for solving a discrete
problem of level ` involves the lower levels 0, 1, . . . , ` − 1 as auxiliary problems.
A brief explanation of the fast convergence is as follows: Standard classical it-
erations have a local range and reduce very well the oscillatory iteration errors.
Long range errors need long range corrections which can be performed efficiently

8There is no need to compute the discrete solution too accurate, since we are interested in
the solution of the problem (2a). The discrete solution is affected with the discretisation error
in any way. Hence, an additional approximation error of the size of the discretisation error is
acceptable.

9For details see Hackbusch: Iterative solution of large sparse systems of equations. Springer,
New York 1994.
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only by coarser grids corresponding to lower levels. Algebraic properties of A like
positive definiteness, symmetry, etc. are less important10. The main properties
needed in the convergence proof is the fact that the family of matrices A` stems
from a discretisation of an elliptic pde.

2.3.4 Difficulties due to Complicated Geometries

Large scale problems involve possibly an increasingly detailed geometry, since now
more and more data are available for the geometric description. While technical
objects have a comparably simple shape, problems from medicine or geography
etc. may be rather complicated.

We recall that the multi-grid method requires a hierarchy of grids of size h`

starting with a quite coarse grid size h0. Although these grids can be constructed by
the very flexible finite elements, the existence of such a grid hierarchy seems to be
in conflict with a detailed geometry, since a complicated geometry requires that all
describing grids are small enough. Here, a progress can be reported. Independent
of the smallness of the geometrical details, one can construct a hierarchy of nested
(conforming) finite element spaces

V0 ⊂ V1 ⊂ . . . ⊂ V`−1 ⊂ V` ⊂ . . . ⊂ H1(Ω)

(so-called composite finite elements11) so that dim V0 can be a small number
(equivalently, the corresponding mesh size h0 can be rather larger, e.g., h0 can
be of the diameter of the domain). Although the size h` may be much larger
than the size of the geometrical details, one can prove the standard approxima-
tion inf{‖u− u`‖H1(Ω) : u` ∈ V`} ≤ Ch` ‖u‖H2(Ω) for all u ∈ H2(Ω), which is
fundamental for the error estimation and multi-grid convergence.

2.4 Robustness versus Efficiency

The example of the multi-grid method has shown that, in order to obtain efficiency,
one has to make use of the special properties of the considered subclass of problems.
In the case of multi-grid, the strength of ellipticity is one of these properties. In
singular perturbation problems, ellipticity is fading out. Furthermore, there are
other problem parameters which can have a negative influence on the convergence
speed of the iteration. As soon as convergence can turn into divergence, the
method becomes unreliable.

We call an algorithm robust (with respect to a certain set and range of param-
eters) if its performance does not fail when the problem parameters vary. Often,

10This is underlined by the fact that even nonlinear systems can be solved by (nonlinear)
multi-grid iterations with asymptotically the same speed.

11Details in a) Hackbusch, Sauter: Composite finite elements for the approximation of PDEs on
domains with complicated mirco-structures. Numer. Math. 75 (1997) 447-472; b) Hackbusch,
Sauter: Composite finite elements for problems containing small geometrical details. Part II:
Implementation and numerical results. Computing and Vizualization in Science 1 (1997) 15-25;
c) Sauter: Composite finite elements for problems with complicated boundary. Part III: Essential
boundary conditions. Report 97-16, Universität zu Kiel.

Documenta Mathematica · Extra Volume ICM 1998 · I · 235–254



242 W. Hackbusch

one has to find a compromise between quite efficient but non-robust and very ro-
bust but inefficient methods. There are various approaches to robust multi-grid
variants, e.g., the ‘algebraic multi-grid method’. The term ‘algebraic’ indicates
that the method uses only the information of the algebraic data in (1) and does
not require details about the underlying pde and the discretisation process. Such
a method comes closer to a ‘black-box method’, but is has to be emphasised that
the algebraic multi-grid methods are still restricted to a subclass of systems.12

The preference for robust or for very efficient but more specialised methods
also depends on the kind of user. While the numerical mathematician likes highly
efficient algorithms for a special application, other users prefer robust methods
since either the mathematical background is not well-understood or not available.

3 Efficient Discretisation Methods

It is not enough that the solution method is efficient. Also the discretisation of the
partial differential equation must be considered. In academic situations, the order
of the discretisation is essential and new kinds of approximations can be proposed
(see next Subsection). Nevertheless, in general, one needs adaptive methods. The
reasons for adaptivity and the tools for its implementation are considered in §3.2.

3.1 Comparison of Different Discretisation Methods

So far, we have taken the discrete problem as given and were looking for an effi-
cient solution algorithm. Hence, the discretisation process in (2b) was considered
to be fixed. Instead, one should also compare different discretisation methods.
The success of an discretisation can be judged by the discretisation error, the dif-
ference13 between the exact and approximate solution, or a suitable norm of the
discretisation error. Here, it is to be emphasised that the discretisation method
does not produce only one particular discrete problem, but at least a sequence (or
as we shall see later, even a larger set) of discrete problems. Using the dimension n
as an index, we may write the discretisation method D as the sequence (Pn)n∈N′⊂N
of discrete problems Pn with solution xn and discretisation error εn.

Usually, the aim is to reach the best accuracy for minimal costs. To be more
precise, two particular strategies are of interest:

• Accuracy oriented choice: Let an accuracy ε > 0 be given. For a fixed dis-
cretisation choose the minimal dimension n = nε such that the discretisation
error is - ε. The arithmetical costs are denoted by Costs(Pnε

). Choose that
discretisation method for which Costs(Pnε) is minimal.14

12The scope of the method is not easy to describe, since one observes that it performs well
even for situations where convergence proofs are still missing.

13The definition of this ‘difference’ is not quite unique since the discrete and the continuous
solution are elements from different sets.

14If the discrete problems of the different discretisations are of the same kind (hence, the costs
depend only on n), the discretisation with minimal nε is sought.
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• Memory oriented choice: Let a maximal data size N be given (e.g., the whole
memory of the computer). Choose that discretisation method which yields
a discrete solution xN (for the particular N) with best accuracy εN .

The accuracy oriented choice is the more advanced one. The difficulty in
practice is twofold. The first difficulty concerns the prediction of ε. Often it is
not easy to tell how accurate (with respect to what – global or weighted – norm)
the solution should be. Second, it is not trivial to judge the error of the discrete
solution, i.e., to check whether error - ε.

The memory oriented choice is a lazy choice. The whole computer capacity
may be used although the result will be much too accurate for the purpose in
mind.

These alternatives can be illustrated for two discretisation methods of different
order. Let DI be a first discretisation of order α, i.e., the discretisation error εI,N

behaves like15 O(n−α), when the dimension n varies. Similarly, let DII be a second
discretisation method of order β. For the accuracy oriented choice, ε = O(n−α

I ) =
O(n−β

II ) yields nI = O(ε−1/α) and nII = O(ε−1/β). Hence, α < β implies that
(at least asymptotically) nII < nI and therefore the higher order discretisation is
more efficient. For the memory oriented choice, n = N is fixed. Again, the higher
order β > α is preferred, since the accuracy εI = O(N−β) is (asymptotically)
smaller than εII = O(N−α).

Attempts have be made to improve the polynomial behaviour ε = O(n−p).
One approach is the p-finite element method, where the step size h remains fixed,
while the order p = p(n) is increasing. Under perfect conditions, an exponential
behaviour ε = O(exp(−cnα) (c, α > 0) is obtained.16

Another approach are the sparse grids, where the discretisation error is almost
of the order εh = O(hp), whereas the grid has only n = O(h−1) grid points even
if the domain is a subset of Rd. Then, the discretisation error equals εh = O(n−p)
instead of O(n−p/d). Since d = 3 is the standard spatial dimension, this approach
promises a much better accuracy for the same dimension n.

In practice, both of the methods mentioned above cannot be applied to general
boundary value problems, but only to local parts. In the case of the p-method, the
solution must be very smooth, which may happen in the interior of the domain with
a fixed distance from the boundary but is in general not true at the boundary. This
gives rise to the hp-method which combines the standard finite element method
with the p-method in an adaptive manner. In the case of sparse grids, these grids
correspond to a special domain (square, cube etc. or their smooth image), which
is usually only a part of the whole domain. Therefore, in general, the use of p- and
sparse-grid methods require in addition adaptive techniques as they are explained
below.

15This definition is simplified. Usually the order is defined by O(h−α), where h is the mesh
size. h and n are connected by n = O(h−d), where d is the dimension of the domain Ω ⊂ Rd.

16To be precise, one has also to take into account that the p-method requires much more
accurate quadratures for the system matrix entries and that the resulting linear system is harder
to solve than standard finite element systems.
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3.2 Adaptivity

3.2.1 Abstract Setting

To be precise, the result of a discretisation is a family of discrete problems P =
{Pi : i ∈ I}, where the index set I usually coincides with N or an infinite subset
of N. If xi is the solution of Pi, we expect a certain of convergence of xi to the
solution x of the continuous problem, i.e., the discretisation error εi should tend
to 0. In the case of the ‘accuracy oriented choice’ from §3.1, we want to find
the minimiser Piopt of min{costs(Pi) : i ∈ I and εi ≤ ε}. The trivial strategy for
finding iopt is to test the solution xi and to proceed to index i + 1 (this can, e.g.,
mean a halving of the mesh size) if εi > ε.

In the adaptive case, the index set I has a much more general structure, e.g.,
it may be a graph. Then, given a discrete problem Pi, there are several next
finer discrete problems {pj : j successors of i}. The solution of the minimisation
problem min{Costs(Pi) : i ∈ I and εi ≤ ε} must be avoided.17 Instead, one needs
a heuristic H selecting a convergent subsequence {Pik

: k ∈ N}, ik = H(xik−1).
If, in the Galerkin case, adaptation is understood more generally as the op-

timal approximation by any kind of function spaces, the theoretical background
traces back to the n-widths introduced by Kolmogorov.

3.2.2 What Parameters can be Adapted?

The finite element discretisation decomposes the whole domain into triangles
(tetrahedra) or other geometric elements. Starting with a given (coarse) finite
element triangulation of a domain with step size h0, we can consider a uniform
refinement (e.g., each triangle is regularly divided into four smaller ones). This
yields a sequence of discrete problems with the uniform step size h` = 2−`h0.
On the other hand, the finite element discretisation allows to choose different el-
ement sizes at different locations, i.e., the mesh size may become a function h(x).
Among all finite element discretisations one has to select a sequence satisfying
lim maxx h(x) = 0. Usually, the triangulations τi of this sequence are not chosen
independently, but given a triangulation τi the next one, τi+1, is obtained by local
refinement. The question arises where to refine the grid.

The adaptation by local grid refinement is the most important example which
we shall discuss below. For completeness, also other subjects of adaptation are
mentioned. (i) Another possibility is to adapt the order of the finite element
functions (hp-method). (ii) Usually, one avoids flat (almost degenerated) triangles.
However, under certain circumstances, flat triangles with a prescribed direction of
the longest side are desired. Therefore, the orientation and degree of degeneration
is a possible subject of adaptation. (iii) The kind of discretisation technique may
change in different subregions of the boundary value problem.

17The minimisation over certain discretisation parameters is a problem of a much higher com-
plexity than the original task. Hence, the final costs is not Costs(pi) for a suitable i, but Costs(pi)
plus a large overhead for the minimisation.
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3.2.3 Why should be Adapted?

A uniform step size is (almost) optimal, if the function to be approximated is
uniformly smooth. In practice, one has to approximate functions with different
smoothness in different parts, e.g., (i) very smooth in one part Ω(i) of the domain
and (ii) less smooth in another part Ω(ii). Then the mesh size might be constant
(= h∗(i)) in Ω(i) and constant (= h∗(ii)) in Ω(ii) but with h∗(i) À h∗(ii). Choosing the
uniform but coarse mesh size h = h∗(i) everywhere, we result in a large discretisation
error because of the bad approximation in Ω(ii). On the other hand, the uniform
choice h = h∗(ii) gives (by definition) a satisfactory discretisation error, but because
of h∗(ii) ¿ h∗(i), this grid is much too fine in Ω(i) and leads to a total dimension
much larger than necessary.

Often, a further situation arises: (iii) The function has singular derivatives at
a certain point x0. Then, one needs a mesh with h∗(x) decaying in a certain way
as x approaches x0. Note that h∗(x) takes very small values only in very smalls
parts of the domain. Choosing such a fine grid everywhere would be a huge waste
of computer time.

Altogether, one has to construct a mesh with local mesh width h(x) ≤
h∗(i), h

∗
(ii), h

∗(x) in the respective parts.

3.2.4 What makes Adaptation Difficult?

The reason for the different choices of h(x) is the smoothness of the function u(x)
to be approximated. In simple cases like quadrature, the function u and possibly
its derivatives are explicitly available. A different situation occurs in the case of
differential equations. Here, the function u is the quantity we are looking for. The
question arises whether we can get the information about the smoothness of u
before we have computed the approximation of u.

The answer to the latter question is that an iterative approach is used. Start-
ing with a rough approximation of u0, one tries to find informations for adapting
the mesh from which the next approximation u1 is computed, etc.

This iteration combines the discretisation process and the solution process,
since they are performed in a cyclic manner.

3.2.5 How to Control the Adaptation?

There are cases, where the adaptation to the problem can be designed a priori,
but, usually, the adaptation process is done a posteriori, more precisely, during
the computational process. For the a posteriori adaptation, we have to describe
the control mechanism steering the details of the adaptation.

A general strategy to this respect consists of two fundamental considerations:

• The discretisation error is to be described as a sum of local errors. Usually,
the local residuum is such a tool.

• The desired situation is the equidistribution of the local errors. That means,
one tries to adapt the mesh so that all local errors are equally sized. The
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argument is that a locally small error is a waste of computation without
improving the global error essentially.

The control mechanism is first explained for the ‘memory oriented choice’ ex-
plained in §3.1. In this case, one refines as long as further storage is available. The
only critical decision is where to refine the finite element grid. For this purpose, a
lot of ‘error indicators’ exist which indicate where (possibly) the error is dominat-
ing. Many of these criteria are heuristic. The theory-based error estimators are
explained below.

The ‘accuracy oriented choice’ from §3.1 requires two decisions. First, we need
an indication that the discretisation error is below the required accuracy ε. In the
negative case, we have to decide where to refine locally (as discussed above). Both
decisions are supported by the error estimators explained in the next Subsection.

In particular in time dependent problems, not only an adaptive refinement
but also a coarsening may be necessary.

3.3 Error Indicators and Estimators

The a posteriori error estimators, first introduced by Babuška and Rheinboldt18,
are a fundamental tool for the adaptive refinement. Let τ be a triangulation of the
domain Ω, i.e., Ω is the disjoint union of the elements ∆ ∈ τ. The finite element
solution for the triangulation τ is denoted by uτ . Then, the error estimator has
the form

Φ(uτ ) =
√∑

∆∈τϕ∆(uτ ),

where ϕ∆ is a computable19 function depending only on the data restricted to ∆
(or its neighbourhood). Denoting the error of uτ by e(uτ ) (e.g., e(uτ ) = ‖u− uτ‖
for a suitable norm ‖·‖), we would like to have constants A, B such that

AΦ(uτ ) ≤ e(uτ ) ≤ BΦ(uτ ).

If e(uτ ) ≤ BΦ(uτ ) holds, Φ is called reliable since knowing its value we can
guarantee an error estimate. If AΦ(uτ ) ≤ e(uτ ), Φ is called efficient since we
avoid overestimation.

3.4 Combination of the Discretisation and Solution Process

In the beginning, we said that in the classical form of Numerical Mathematics
the discretisation of the continuous problem and the algorithm for the discrete

18See Babuška-Rheinboldt: A posteriori error estimates for the finite element method. Int. J.
Numer. Meth. Engrg. 12 (1978) 1597-1615. For a recent survey see Verfürth: A review of a
posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner 1996.

19To be quite precise, there are two alternatives to be considered. 1) If ϕ∆ is a mathematical
expression including integration, we can obtain reliable error estimates. 2) For computational
purposes, such a ϕ∆ (e.g., the integration contained in ϕ∆) must be discretised and yields an
algorithm ϕ̃∆. Then, Φ cannot be reliable in general without (a priori) assumptions on the
smoothness of the integrands.
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problem were well separated. With the adaptive approach we have reached a new
level, where a new kind of algorithm is directly applied to the continuous problem,
i.e., the design of the discretisation has become a part of the solution algorithm
itself.

The reason for this development is not only the efficacy we want to obtain, but
also the huge amount of data. As long as we compute only few numbers, we may
be able to judge their quality and possibly improve the discretisation. However,
when we compute a massive set of data corresponding, e.g., to a relative dense
three-dimensional grid, we have already problems to perceive the data. We need
special visualisation tools to interpret the computed results. The judgement of
their accuracy is even more difficult. Therefore, it is an obvious consequence that
the control over the discretisation process is given to the algorithm itself.

The new kind of algorithm can be considered as a triple (D,A,H), where
D is the discretisation method (offering a large variety of discrete problems, e.g.,
all finite element triangulations), A are the algorithms for solving the discrete
problems produced by D, while the heuristic H is the adaptive strategy controlling
the discretisation process.

3.5 Hierarchy plus Adaptivity

In the following, we discuss the hierarchy of grids used by the multi-grid method.
Then adaptive approaches can be realised in two ways.

1) Global grids. Let {G` : ` = 0, 1, . . . } be the sequence of grids (finite element
meshes etc.), where G`+1 is constructed adaptively from the solution x` in grid
G`.

2) Local grids. Let G′0 = G0 be a starting grid and denote by G′` the regular
refinement (` partitioning steps in all elements). An adaptive (local) refinement
G1 of G0 can be considered as a union of G10 := G′0 and of a subset G11 ⊂ G′1. In
general, a local refinement G` is a union of subsets G`,k ⊂ G′k (0 ≤ k ≤ `).

The second approach works also for the wavelet hierarchy: There the local
refinement is replaced by adding the wavelet functions ψ(2`x − k) of level ` for
only few shifts k.

So far, the hierarchical structure does allow adaptivity. Of course, extra
overhead occurs to administrate the additional description of the local grid details.

4 Parallelism

The costs of an algorithm are not determined by mathematics but by kind of
computing tools. If the technology is changing also the valuation of algorithms
might change. For instance, on a vector computers Costs(AI)<Costs(AII) may
hold, although algorithm AI requires more scalar operations than AII , provided
that AI exploits the vector operations.

In the last decade, the parallel computer became available which allows to
perform the computation in parallel on a number of processors, provided the com-
putations are independent. In the optimal case (optimal balance, no overhead) the
computation time decreases by the factor p=number of processors. Another effect
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is the enlarged storage (p times the storage of each processor), provided that the
algorithm can use the distributed memory. Since, in the optimal case, speed and
storage increases by the same factor, the considerations of §2.1 show that also the
parallel algorithms must be of linear complexity.

Let a sequential algorithm As be given. One can try to construct a parallel
algorithm Ap which yields identical results. For its construction, one needs at least
a data decomposition.

Usually, one tries to construct a special parallel algorithm. One strategy for
its construction is the problem decomposition of the full problem into subtasks.

4.1 Composition, Decomposition

4.1.1 Composition

Often, large scale problem are obtained by composing subproblems. Difficulties in
the decomposition process may possibly arise from

a) different kinds of differential equations and/or integral equations in the
subproblems,

b) different coordinate systems in the subproblems,
c) different discretisations in the subproblems,
d) non-fitting meshes even when all subproblems are discretised by the same

kind of finite elements.
The coupling conditions, which are similar to the boundary conditions, must

be integrated into the complete problem. If the meshes do not fit, one has to
ensure the connection in a weak sense, e.g., by Lagrange multipliers (so-called
‘mortar element method’).

4.1.2 Decomposition

The decomposition of the whole problem into subproblems can have different rea-
sons:

1) software is available for the specific subproblems,
2) the iterative scheme makes use of the solution of the subproblems,
3) the problem must be decomposed to use a parallel computer.
Another question is how the complete problem can be divided. Two different

approaches are relevant:
a) The given problem is already a composed problem, then the obvious can-

didates for the subproblems are the basic components.
b) If the given problem is uniform, a partitioning must be defined. Differently

from a), the number of subtasks can be chosen according to the number of available
processors.

Reason 1) is, in particular, important for large scale problems which are im-
plemented by a team where each expert is responsible for a particular subtask.

Reason 2): For iterative schemes20, it is a standard approach to correct the

20Details in Chapter 11 of Hackbusch: Iterative solution of large sparse systems of equations.
Springer, New York 1994.

Documenta Mathematica · Extra Volume ICM 1998 · I · 235–254



From Classical Numerical Mathematics . . . 249

actual approximation by a solution of a simpler problem21, where the ‘simpler
problem’ is obtained by neglecting the coupling of subproblems. The simplest
subproblems of a system (1) are the separate n scalar equations. Solving the
ith scalar equations with respect to xi yields the classical Jacobi and Gauß-Seidel
iteration. Since a partitioning according to Approach a) is obvious, we consider the
Approach b). In the context of elliptic pde’s discretised over a mesh in the domain
Ω, one can partition Ω into subdomains Ωi (together with their meshes) such that
∪Ω̄i = Ω̄. This leads to the domain decomposition method. The decomposition
may also use overlapping domains. Since the first domain decomposition method
(with two overlapping domains) was used by H. A. Schwarz (1870) to prove the
existence of a holomorphic function in a composed domain, these iterations are
also called Schwarz iteration.

The use of parallel computers for domain decomposition methods is obvious:
The solution of the ith subproblem on Ωi involves intensive computations on the
ith processor. Afterwards communication is needed to initialise the next iteration
step, but the communication concerns only the overlapping region or in the sim-
plest case only the common interior boundary. Since the communication involves
only a rather small part of all unknowns, there is a hope for a good speed-up
factor.

However, the use of the domain decomposition principle only cannot be suc-
cessful. If p is the number of subdomains (and parallel processors), the overlapping
Schwarz method does lead to a speed-up by p, but the convergence speed of the
iteration slows down by the same factor. Therefore, in the meantime it is well-
accepted that one has to add a coarse-grid subspace.22 This makes the domain
decomposition approach very similar to the multi-grid method: The coarse-grid
correction has a larger step size ratio hfine/hcoarse, while the subspace solutions
form the smoothing process of the two-grid iteration.

The addition of the coarse-grid subspace leads to a generalisation of the do-
main decomposition principle: The decomposition of the vector space into sub-
spaces. The resulting notation of a subspace iteration is general enough to describe
the domain decomposition methods as well as the multi-grid iterations. The the-
ory developed so far23 is more or less restricted to positive definite system matrices
A. Applied to multi-grid iterations, the results use weaker assumptions but yield
also weaker convergence results.

4.2 Interaction of these Principles

4.2.1 Hierarchy plus Decomposition

The hierarchy can be considered as a vertical structure providing problems of differ-
ent discretisation levels, whereas the decomposition yields an horizontal structure.

21Let W be ‘close’ to A but such that Wy = d is easy to solve. Then the iterative scheme
xnew = xold −W−1(Axold − b) requires the solution of Wy = d with d = Axold − b.

22Divide the domain Ω into pieces Ωi of size H and introduce a global mesh of size h. Then
the coarse-grid mesh has size H.

23Survey in Xu: Iterative methods by space decompositions and subspace correction. SIAM
Review 34 (1992) 581-613.
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These structures are essentially orthogonal and do not conflict with each other.
The traditional domain decomposition method has two hierarchy levels, the

global problem and many local subproblems. It is possible to repeat the domain
decomposition principle for each subproblem. Another possibility is to use the
same decomposition structure over all levels on the hierarchy. This is the standard
approach for data decomposition for the purpose of parallel computations.

Hierarchy plus parallelism may create a specific problem. Usually, the algo-
rithm works sequentially over the hierarchy levels. If the lower levels are connected
with coarser grids and therefore less computational work, the communication part
may predominate.

4.2.2 Decomposition plus Adaptivity

When using the decomposition for parallelising, the idea is to associate each sub-
problem with one of the processors. At the starting time of each iteration step,
all processors must get the new (boundary and right-hand side) data for the sub-
problems. Since the iteration cannot proceed before all results are collected, one
should ensure that all subtask computations need almost the same time. This
requirement can be satisfied by creating subdomains with nearly the same number
of unknowns.

In this case, adaptivity leads to a severe conflict. By definition, the adaptive
refinement yields locally different changes. One subdomain may be strongly re-
fined, whereas another one remains unchanged. Obviously, even if the dimensions
of the subtasks are equidistributed initially, the subproblems may lose their bal-
ance. Without a rearrangement of the subdomains, the parallel algorithm becomes
poor.

The rearrangement process is called load balancing. On the one hand side,
the load balancing must be cheap in order not to spoil the overall performance
time. On the other hand, the load balancing is a very delicate task because a) the
optimal decomposition is NP-hard, b) the subdomain data to be rearranged on one
processor are distributed over different processors. It becomes even more difficult
in the multi-grid case where also the vertical level structure is to be considered.24

If the load balancing is successfully implemented, the algorithm decides not
only about the termination (when the accuracy is reached) and local refinement,
but also about the decomposition structure.

5 Modelling and Implementational Aspects

5.1 Modelling

We started with an approximation (discretisation) separated from the algorithm
for the discrete problem. As shown in §3.4, both have become more and more
intertwined. However, the mathematical problem from (2a) is not really fixed.
Usually, it is the result of a modelling process for some problem from outside

24See Bastian: Parallele adaptive Mehrgitterverfahren. Teubner, Stuttgart 1996.
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mathematics (e.g., mechanics; see (3a)). The modelling process may be an ap-
proximation25 by itself. The model might be more or less involved, certain aspects
may be neglected or simplified or represented in full detail. Often, the details of
the modelling process should be related to the accuracy required for the discrete
problem. This gives rise to a hierarchy of models.

physical (chemical etc.) problem (3a)

↓ modelling process (3b)

mathematical problem, e.g., pde (3c)

↓ discretisation process (3d)

discrete problem, e.g., system of equations (3e)

computer ←→ ↓ solution algorithm (3f)

discrete solution (3g)

From the mathematical point of view it is very interesting when the model
hierarchy leads to different scales in the solution. Such different scales may be time
scales for time-dependent problem: Certain processes are much faster than others
(e.g., mechanical changes faster than thermal ones or chemical reactions faster than
the flow dynamics). This gives rise to interesting discretisation techniques. The
consideration of scales in the discretisation can also be regarded as an adaptation
process (using the smallest time scale for all components would be a waste of
computer time).

Details in a model may also lead to geometric scales. The diameter of the do-
main (of the boundary value problem Lu = f) is the coarsest scale. The coefficient
function of L may be oscillatory giving rise to the wavelength as next geometric
scale. In regular cases, the homogenisation technique offers a tool to split the true
solution into a sum of a homogenised part and the details.

5.2 Implementation

In (3f) the box ‘computer’ should indicate the interaction of the solution algorithm
with the computer. This includes that the algorithm depends on the computer
architecture. Another important software aspect is mentioned next.

The steadily increasing volume of the data and the increasing problem com-
plexity on the one hand and the development in the computer architecture on the
other hand have made the implementation more and more involved. Although al-
gorithms and computers have become faster, the act of implementation consumes
an increasing time of work. Since Scientific Computing needs extensive software,
its production (i.e., the implementation process) must become a scientific topic of
Scientific Computing by its own.26

25This approximation process is meant when engineers speak about a simulation.
26For a positive example see Bastian et al.: UG - A flexible software toolbox for solving partial

differential equations. Computing and Visualization in Science 1 (1997) 27-40.
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6 Treatment of Non-Sparse Matrices

The request of linear complexity is very restrictive and seems to exclude, e.g., the
treatment of linear systems with a full matrix, since then even simple operations
like the matrix-vector multiplication are of quadratic complexity. The survey is
concluded by a discussion of this problem.

6.1 Boundary Integral Equations

A linear and homogeneous boundary value problem Lu = 0 in a domain Ω ⊂ Rd

can be reformulated as an integral equation of the form λu(x) = (Ku)(x) + g(x)
for x ∈ Γ with the boundary integral operator

(Ku)(x) :=
∫

Γ

k(x, y)u(y)dΓy

defined on the boundary Γ = ∂Ω. The kernel k is the fundamental solution of L
or some derivative.

The advantage of the boundary integral representation is due to the fact that
the domain Ω with spatial dimension d is replaced by a manifold of dimension
d− 1. Using elements of size h, the discretisation of Ω requires O(h−d) elements,
whereas Γ leads to only n = O(h1−d) elements. In particular for exterior problems
(where Ω is infinite), the integral equation is much simpler.

The disadvantage of the integral equation is caused by the fact that a dis-
cretisation of an integral operator (the so-called boundary element method) leads
to full matrices (instead of the sparse ones for the local differential operators).
For the interesting case d = 3, one finds that the boundary element method with
dimension n = O(h1−d) is cheaper than the standard finite element method only
if the complexity is better than O(n3/2). In particular, O(n2) complexity cannot
be accepted.

This is a typical situation, where the full matrix A with its n2 entries seems to
prevent any algorithm from better complexity than O(n2). Indeed, yet the compu-
tation of the system matrix A consumes O(n2) operations where the constant may
be rather large. Hence, first of all the use of the full matrix A must be avoided
and replaced by a matrix (linear mapping) which can be described by (almost)
O(n) data. One might ask why this should be possible. The reason is that the
pseudo-differential operator K has quite similar properties as standard differential
operators. The latter ones can be approximated by sparse matrices depending on
only O(n) data.

Essentially, there are two different approaches for a realisation:

• Matrix compression. One can look for a special discretisation of K such that
most of the entries of A are extremely small so that their replacement by zero
yields an (almost) sparse matrix Ã. Such a discretisation can be obtained by
a Galerkin approach based on suitable wavelet functions.27

27The delicate requirement is that the entries which should be suppressed must be known before
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• Panel clustering. Given any discretisation of K with system matrix A, one
can try to approximate A by another matrix Ã which is easily describable
by almost O(n) data. This ensures that only almost O(n) data are to be
stored. Furthermore, the matrix-vector multiplication x 7→ Ãx must be per-
formable by almost O(n) operations. This is achieved by the panel clustering
method.28 The main idea is the replacement of the (smooth) kernel func-
tion k in the far-field. Different from the wavelet matrix compression, the
panel clustering method is not a discretisation by itself but can be combined
with any collocation or Galerkin method. Further, it is independent of the
smoothness of the boundary Γ.

In both cases, one can prove that the replacement of A by Ã yields an addi-
tional error which is of the same size as the discretisation error or even smaller.

6.2 General Non-Sparse Systems

Recently, L. N. Trefethen (Oxford) posed a number of maxims of which the twenty
first one reads as follows:

• Is there an O(n2+ε) algorithm29 for solving an n×n system Ax = b? This is
the biggest unsolved problem in numerical analysis, but nobody is working
on it.30

Since the multiplication of a full matrix times a vector costs O(n2) opera-
tions, a sufficient condition would be that the inverse A−1 can be computed by an
O(n2+ε) algorithms. Unfortunately, I cannot offer such an algorithm. Instead, I
would like to ask whether for a restricted (but interesting) subclass of problems,
the following related question can be answered:

• Is it possible to compute a good approximate B of the inverse A−1 by almost
O(n) operations such that B requires a storage of almost O(n) and such that
the multiplication of B by an n-vector b costs almost O(n)?

At first sight, this seems impossible, since in general A−1 is a full matrix with
n2 entries. Indeed, for the exact inverse B = A−1 we find only very few positive
examples. However, as in the panel clustering method mentioned above, it may
be possible to find an approximation B ≈ A−1 with this property.

In fact, it is possible to give a positive answer to the latter question if A
is a discretisation of an elliptic operator including pseudo-differential operators.
Because of the hierarchical structure of the applied matrix representation, we call
the set of approximating matrices H-matrices.31 The precise results are as follows:

their computation. For details see, e.g., Schneider: Multiskalen- und Wavelet-Matrixkompression.
Teubner, Stuttgart 1998.

28See, e.g., §9.7 in Hackbusch: Integral equations. ISNM 120, Birkhäuser, Basel 1995.
29Obviously, it is meant that ε may be any positive number. For a system with a full matrix

A, which cannot be represented by less than n2 data, N = n2 + n is the data size of the input
data (A, b). Therefore, an O(n2) = O(N) complexity for solving Ax = b is linear complexity!

30SIAM News, vol 31, No 1 (1998) page 4.
31Details will be in a forthcoming paper.
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- the storage of the H-matrix data is of the size O(n log n),
- the (approximate) sum of two H-matrices costs O(n log n),
- the (approximate) product of two H-matrices costs O(n log2 n),
- the (approximate) product of an H-matrix with an n-vector costs O(n log n).
Since the inverse can be obtained by multiplications (by suitable transforma-

tion matrices), also the (approximate) inversion of an H-matrix costs O(n log2 n)
operations.

Even if one wants to perform the usual iterative techniques, often a Schur
complement occurs which is of the form S = D − BA−1C. Since the Schur com-
plement contains the inverse matrix A−1, S is usually a full matrix. Therefore,
one can neither represent the matrix S nor its inverse in the standard form. Up to
now, the only remedy is to know a good preconditioner for S. Then it is enough to
have an efficient algorithm for the matrix-vector multiplication x 7→ Sx which can
make use of the representation S = D −BA−1C. The H-matrix algorithm opens
new possibilities, since the explicit approximate computation of S = D −BA−1C
can be performed, provided that A,B, C, D are H-matrices.

Wolfgang Hackbusch
Universität zu Kiel
Olshausenstr. 40
D-24098 Kiel, Germany
wh@numerik.uni-kiel.de
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Dynamics, Topology, and Holomorphic Curves

Helmut H. W. Hofer

Abstract. In this paper we describe the intimate interplay between cer-
tain classes of dynamical systems and a holomorphic curve theory. There
are many aspects touching areas like Gromov-Witten invariants, quantum
cohomology, symplectic homology, Seiberg-Witten invariants, Hamilto-
nian dynamics and more. Emphasized is this interplay in real dimension
three. In this case the methods give a tool to construct global surfaces
of section and generalizations thereof for the large class of Reeb vector
fields. This class of vector fields, includes, in particular, all geodesic flows
on surfaces.

1991 Mathematics Subject Classification: 32, 34, 35, 49, 58, 70
Keywords and Phrases: Hamiltonian dynamics, contact forms, Reeb vec-
tor fields, quantum cohomology, Gromov-Witten invariants, Arnold con-
jecture, Weinstein conjecture, holomorphic curves, symplectic homology,
surfaces of section.

1 Periodic orbits of dynamical systems

Symplectic and contact geometry as well as Hamiltonian dynamics experienced in
the last decade a tremendous growth. In order to cover some aspects in a certain
depth one faces the serious dilemma of making a selection. Rather than touching
many areas, it seems more appropriate to focus only on a few aspects. The choice
made here was to describe the subtle relationship between Hamiltonian dynamics,
topology and a theory of holomorphic curves. So many aspects are only briefly
mentioned or even ignored. However, they are being dealt with in other papers
contained in the proceedings of the ICM Berlin. In particular the contributions by
S. Donaldson, Y. Eliashberg, K. Kuperberg, D. McDuff, J. Moser, L. Polterovich,
Y. Ruan and C. Taubes.

The aim of this paper is to explain some of the recent progress at the interface
of Hamiltonian dynamics and symplectic geometry. In order to appreciate the
special features of (certain) Hamiltonian dynamics versus general dynamics we
begin with the following classical problem.

In 1950 Seifert, [79], raised the question if a given non-singular vector field X
on the three-sphere admits a periodic orbit:

ẋ = X(x) and x(0) = x(T ), T > 0.
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As it turned out this is a subtle problem. In higher dimensions Wilson, [87],
provided in 1966 examples of non-singular vector fields on S2n−1, n ≥ 3, without
periodic orbits. However, dimension three poses more difficulties due to lack of
room in order to make some of the higher dimensional ideas work. After all,
destroying periodic orbits, which are 1-dimensional sets, should be easier in higher
dimensions.

In 1974 Schweizer, [77], showed that there exist non-singular C1-vector fields
on S3 without any periodic orbits. The regularity of the counterexample was
strengthened to C2 in [36]. In 1994 the question was finally settled by K. Kuper-
berg, [59], who constructed a real analytic counterexample.

Theorem 1.1 (K. Kuperberg) There exists a nowhere vanishing real analytic
vector field on S3 without any periodic orbit.

So, asking for periodic orbits, given an arbitrary smooth vector field on S3

(and as the method shows on any three-manifold) is not a good question if we only
know little about the dynamical system. On the other hand, at the end of the
seventies most notably by Rabinowitz, [74, 75], and Weinstein, [85], there were
some positive results concerning special vector fields coming from Hamiltonian
systems. Rabinowitz’s somewhat more general result is the following:

Theorem 1.2 (Rabinowitz) A regular energy surface of an autonomous Hamil-
tonian system in R2n, which bounds a star-shaped domain, carries a periodic orbit.

Weinstein proved a slightly weaker result assuming that the energy surface bounds
a convex domain.

Figure 1: A starshaped energy surface is diffeomorphic to a sphere centered at
some point via radial transformation.

We note that from a symplectic purist’s point of view the results are not sat-
isfactory, since the assumptions are not invariant under symplectic (or canonical)
transformations.

Abstractly speaking we have here an existence result for certain non-singular
vector fields on spheres S2n−1. What is interesting now, of course, is the cut-off
line between “Guaranteed Existence” and “Possible Non-Existence”.

Based on the above mentioned results by Rabinowitz and his own contribu-
tion, Weinstein made in 1978 a conjecture, [86], which together with the earlier
Arnold conjectures, [2], in symplectic fixed point theory had a tremendous impact.

Rabinowitz’s result were extremely important, in particular psychologically,
since the degenerate and indefinite classical Hamiltonian variational principle was
used for the first time to study existence problem of periodic orbits in Hamiltonian
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dynamics. One should keep in mind that this variational principle was thought to
be only formal and completely useless for existence questions.

There were a certain number of difficulties to overcome. First of all one
had to find a suitable functional analytic set-up, secondly one had to deal with
the problem that apriori the Morse indices of the critical points of the functional
had infinite Morse-index and co-index, so that (Palais-Smale type) Morse-theory
in infinite-dimensional spaces would indicate that there is no relationship between
the critical points and the topology of the underlying space, which in our case is the
free loop space of the underlying symplectic manifold. Shortly afterwards Conley
and Zehnder, [15], showed how the action principle by means of the Conley-index
theory could be used to do symplectic fixed point theory, by proving a symplectic
fixed point theorem for tori. Extensions of the methods for more general manifolds
were however obstructed by immense technical difficulties. In 1985, Gromov, [34],
introduced PDE-methods to symplectic geometry (the theory of pseudoholomor-
phic curves), “ignoring” however the underlying variational structure. (The word
“ignoring” might be somewhat too strong here. The variational structure enters
in the theory in the disguise of area bounds, which are of course extremely (in fact
intrinsically) important in Gromov’s theory.)

Then in 1987, Floer, [25], brought together the Conley-Zehnder variational
point of view and Gromov’s PDE methods and constructed his famous (symplec-
tic) Floer homology theory. After that there were still some serious obstacles to
overcome. For example, that the symplectic fixed point problem is not variational
in general, but rather comparable with doing Morse-theory for a closed 1-form.
(This calls for a Novikov-type Floer-theory, which was carried out in [43].) Besides
that, the notorious difficulty of understanding holomorphic spheres in symplectic
manifolds and in particular multiple covered spheres hindered progress for quite a
while. Recently these difficulties were overcome, see in particular [30, 64, 63].

After this historical excursion let us state the Weinstein conjecture.

Conjecture 1.3 (Weinstein) Let M2n−1 be a (2n−1)-dimensional closed man-
ifold and X a non-singular smooth vector field. Assume there exists a 1-form λ
having the following properties:

λ ∧ dλn−1 is a volume form,
dλ(X, ·) = 0,

λ(X) > 0.

Then X has a periodic orbit.

We call a 1-form λ a contact form if λ∧ dλn−1 is a volume form. We observe
that a contact form defines a non-singular vector field X by

iXdλ = 0 and iXλ = 1. (1)

This uniquely determined vector field X is called the Reeb vector field associated
with the contact form λ. Clearly, if f : M → (0,∞) is a smooth function, then the
vector field X admits a periodic orbit if and only if fX admits a periodic orbit.
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Therefore there is no loss of generality assuming in the Weinstein conjecture that
X is a Reeb vector field. Note that λ defines a hyperplane distribution ξ → M by

ξ = kern(λ).

This plane field distribution is completely non-integrable. It is called a contact
structure. We refer the reader to Arnold’s book, [3], appendix 4, for more basic
information about contact structures.

For our purposes we note here, that given a contact form on a three-
dimensional manifold, there can always be introduced local coordinates (x, y, z) in
which the contact form λ is given by λ = dz + xdy.

Figure 2: The local model for a contact structure in dimension three

At first glance the hypothesis in the Weinstein conjecture seems mysterious.
However, some work reveals that it is has a geometrically compelling meaning.
Namely M may be viewed as an element of a smooth 1-parameter family of mu-
tually different Hamiltonian energy surfaces Mδ, δ ∈ [−δ0, δ0] (with M0 = M) in
[−δ0, δ0]×M equipped with a suitable symplectic structure, so that flows on two
different energy surfaces are conformally symplectically the same. In particular
the flows on any two such energy surfaces are conjugated.

So, for example, if one of these energy surfaces contains a periodic orbit, so
do the others. One can reformulate the Weinstein conjecture as follows.

Conjecture 1.4 (Weinstein) Assume (W,ω) is a symplectic manifold and H :
W → R a smooth Hamiltonian, so that M := H−1(E) is a compact regular
energy surface (for some energy E). If there exists a 1-form λ on M such that
λ(XH(x)) 6= 0 for x ∈ M and dλ = ω|M , then there exists a periodic orbit on M .

Here XH is the Hamiltonian vector field defined by

iXH
ω = −dH.

Both formulations of the Weinstein conjecture are equivalent.
Having this in mind one can appreciate the following result. Consider the

symplectic vector space (R2n, ω). The symplectic form is defined by

ω =
n∑

j=1

dqj ∧ dpj .
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Recall, that given an autonomous Hamiltonian H : R2n → R we have the associ-
ated Hamiltonian system

ż = XH(z). (2)

Denote by ΣH the set of all E ∈ image(H) such that there exists no periodic
solution (z, T ) of (2) with H(z) = E. Now the following almost existence result
holds, which tells us that periodic orbits are a common phenomenon and that
there are usually many of them.

Theorem 1.5 Let H : R2n → R be a smooth Hamiltonian satisfying H(z) → ∞
if |z| → ∞. Then measure(ΣH) = 0.

This theorem was essentially proved by Hofer and Zehnder, [54], where it was
shown that the complement of ΣH is dense. The same approach was then pushed
to its limits by Struwe, [81], showing that measure(ΣH) = 0.

This almost existence phenomenon can be understood best within the sym-
plectic capacity theory, see [56]. It holds for more general symplectic manifolds.
However, not for all manifolds, see [37] for some very interesting phenomena.

Nevertheless one might ask if a regular compact energy surface necessarily
carries a periodic orbit. We begin with a positive application. Using Theorem
1.5 we can recover Viterbo’s landmark result, namely the proof of the Weinstein
conjecture in R2n, [84]:

Corollary 1.6 (Viterbo) Given a closed, connected hypersurface M in
(R2n, ω), admitting a contact form λ such that dλ = ω|M , any Hamiltonian
system having M as a regular energy surface admits a periodic orbit on M .

The proof, based on Theorem 1.5 is obvious. Foliate the neighborhood of M
by conformally symplectic images Mδ, δ ∈ [−1, 1] by using the contact hypothesis.
Assume that M−1 is contained in the bounded component B of R2n \M .

Now define a Hamiltonian H having the property that H−1(δ) = Mδ for
δ ∈ [− 1

2 , 1
2 ], so that these Mδ are regular energy surfaces. In addition H(z) →∞

for |z| → ∞.

Figure 3: The level sets for the constructed Hamiltonian H. The Hamiltonian is
constant between a big sphere S and M1.
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An application of Theorem 1.5 shows that for some δ ∈ [− 1
2 , 1

2 ] there exists a
periodic orbit. Since all these hypersurfaces are conformally symplectically equiv-
alent there is also one on M0 = M . So the theorem can be used to prove existence
results. But is the theorem optimal?

By results of Ginzburg, [31, 32], and Herman, [38, 39] the following holds.

Theorem 1.7 For n ≥ 3 there exists a smooth embedding Φ of [−1, 1]×S2n−1 into
(R2n, ω), such that M0 = Φ({0} × S2n−1) does not contain any periodic solution.

By the almost existence theorem, of course,

measure{δ ∈ [−1, 1] | Mδ contains a periodic orbit} = 2.

So, in some sense, in R2n, for n ≥ 3, the almost existence result is the best possible.
Nevertheless it is still an open question if Theorem 1.7 holds for n = 2.

At this point we have almost existence results and non-existence results and
an existence result for closed contact type hypersurfaces in R2n.

Are there manifolds for which one can say that every Reeb vector field on
them has a periodic orbit?

Theorem 1.8 (Hofer) Assume that X is a Reeb vector field on a closed three-
manifold M . Then X admits a periodic orbit if either M is finitely covered by S3,
or if π2(M) 6= {0}, or if the underlying contact structure is overtwisted.

The notion of an overtwisted contact structure is important in three-dimensional
contact geometry.

Definition 1.9 Let λ be a contact structure on the three-manifold M with un-
derlying contact structure ξ = kern(λ). The contact structure ξ is said to be
overtwisted if there exists an embedded disk D ⊂ M , such that

T (∂D) ⊂ ξ|(∂D) (3)
TzD 6⊂ ξz for all z ∈ ∂D.

(4)

We call a contact structure tight if it is not overtwisted. (Figure 4 gives an example
of an overtwisted disk).

It is a fundamental result by Bennequin, [6], that the so-called standard con-
tact structure on S3

λ0 =
1
2
[q · dp− p · dq]|S3

is tight.1

In a deep paper (which stunned many of the experts), [20], Eliashberg classi-
fied all overtwisted contact structures for a closed three-manifold M . This classi-
fication can be done in purely homotopy theoretic terms.2 In addition he showed

1Here S3 is viewed as the unit sphere in C2, where the latter is equipped with the coordinates
z = q + ip, q, p ∈ R2.

2There is an “h-principle” in the background.
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Figure 4: An overtwisted contact structure on R3.

that up to diffeomorphism there is only one (positive) tight contact structure on
S3 but a countable number of overtwisted contact structures and also classified
the contact structures on R3, see [22, 23]. One should also mention the work by
Giroux, most notably [33], which had a great impact on contact geometry.

2 Periodic orbits in Hamiltonian dynamics and rigidity

As the preceding discussion shows, finding periodic orbits is an “ill-posed” problem
in general, but well-posed” for a certain class of dynamical systems.

From a dynamical systems point of view periodic orbits allow to study the flow
in a neighborhood by means of a return map. In the case of a Hamiltonian system
one can expect already very striking phenomena as Figure 5 shows. The fixed
point 0 in the middle is surrounded by smooth curves, which are invariant under
the return map. These curves where discovered by Moser, [71]. Between these
curves there are orbits of elliptic and hyperbolic periodic points. The stable and
unstable manifolds starting from these hyperbolic points intersect transversally
in so-called homoclinic points. Due to these homoclinic points we have invariant
hyperbolic sets on which the iterates of the return map behave like a Bernoulli
shift. The dotted lines represent the recently discovered Mather-sets, [66]. The
generic existence of the homoclinic orbits was rigorously established by Zehnder,
[90].

Particularly interesting are hyperbolic periodic orbits if they come together
with a (global) homoclinic orbit. Then, if the stable and unstable manifold inter-
sect transversally, a very rich dynamics unfolds near the union of the periodic and
the homoclinic orbit.

Surprisingly, there is an additional dimension to the periodic orbits, which
only in the last ten years has become apparent . Namely the importance of periodic
orbits in a symplectic rigidity theory. They are the objects which carry important
symplectic information. Let us mention two of these constructions. The first is a
symplectic capacity introduced by Hofer and Zehnder, [55]. Consider the category
S2n consisting of all of all 2n-dimensional symplectic manifolds (with or without
boundary) as objects and the symplectic embeddings as morphisms.

For every symplectic manifold (W,ω) in S2n we consider the collection

Documenta Mathematica · Extra Volume ICM 1998 · I · 255–280



262 Helmut H. W. Hofer

Figure 5: The dynamical complexity near a generic elliptic periodic orbit, as seen
for the return map of a transversal section.

H(W,ω) of all smooth maps H : W → (−∞, 0] with compact support supp(H)
such that:

• supp(H) ∩ ∂W = ∅.
• There exists a nonempty open set U with H|U ≡ const. = infx∈W H(x).

• Every periodic orbit of the Hamiltonian system ẋ = XH(x) with period
T ∈ (0, 1] is constant.

Then define a number c(W,ω) ∈ [0,∞) ∪ {∞} by

c(W,ω) := supH∈H(W,ω) ‖ H ‖C0 .

These numbers are new symplectic invariants called symplectic capacities and are
by their very nature 2-dimensional invariants of the symplectic manifold (W,ω).
Of course the volume vol(W,ω) =

∫
W

ωn is a 2n-dimensional invariant. The formal
properties of c are:

• If (W,ω) → (V, τ) then c(W,ω) ≤ c(V, τ).

• c(W,αω) = |α| · c(W,ω) for α ∈ R \ {0}.
• c(B2n) = c(Z2n) = π.

Here B2n is the Euclidean unit ball in R2n and Z2n the unit-cylinder B2×R2n−2,
both equipped with the induced symplectic structure. 3

If (φt) is a Hamiltonian flow on some symplectic manifold and U is an open
subset then not only the volume of vol(φt(U)) is independent of t but also the
symplectic capacity c(φt(U)).

3The definition of a symplectic capacity is motivated by Gromov’s celebrated (non-)squeezing
theorem, [34, 35]. His theorem leads to a capacity called “Gromov’s width”.
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As it turns out there are many different constructions for symplectic capac-
ities. Some involve the theory of pseudoholomorphic curves, [34], some the least
action principle in Hamiltonian dynamics, [18], and there is even one using a sym-
plectic homology theory, [27]. In reference [18] symplectic rigidity phenomena were
shown for the first time to be related to periodic orbit problems.

Symplectic homology is a realization of the following idea. Assume that we
consider the usual homology theory, but restricted to the category S2n. Since the
spaces have an additional symplectic structure and the morphisms are symplectic
embeddings it seems plausible that the restricted standard (topological) homol-
ogy functor is obtained by composing a forgetful functor with some (much more
complex) symplectic homology functor. Indeed, along these lines a symplectic
homology functor can be constructed depending on three parameters, namely an
integer k and a pair of real numbers a ≤ b. As it turns out the symplectic homol-
ogy for sufficiently nice symplectic manifolds W with boundary is constructed out
of the topology of M and the periodic orbits for the Hamiltonian flow on ∂W . The
action of the periodic orbits gives a real filtration (leading to the a, b-dependence)
and the Conley-Zehnder indices of the periodic orbits (a substitute for the Morse
index, when seeing periodic orbits as critical points of some Morse function on a
suitable loop space) lead to the integer grading. For more details the reader is
referred to [27], or to [56] for a short overview.

3 Holomorphic curves and the Weinstein conjecture

As it turns out there is a subtle relationship between the dynamics of Reeb vector
fields and an holomorphic curve theory. In order to explain this “holomorphic
connection” we start with a specific example. View S2n−1 as the unit sphere in
Cn. We write the coordinates in Cn as

z = (z1, ..., zn) = (q1 + ip1, ..., qn + ipn)

with zj ∈ C and qj , pj ∈ R. The standard contact form λ0 on S2n−1 is defined
by:

λ0 =
1
2

n∑

j=1

[qjdpj − pjdqj ]|S3.

The Reeb vector field is given by X0(z) = 2iz, which generates the Hopf fibration
and the contact structure ξ0 is the bundle of complex (n− 1)-planes in TS2n−1.

The idea, which is difficult to motivate apriori, is now the following. Introduce
on R× S2n−1 the complex structure J̃ by requiring that the diffeomorphism

Φ : Cn \ {0} → R× S2n−1, z → (
1
2
`n|z|, z

|z| )

is biholomorphic, i.e.
TΦ ◦ i = J̃ ◦ TΦ.

Then, one easily verifies that J̃ is given by

J̃(a, u)(h, k) = (−λ0(u)(k), iπ0k + hX0(u)), (5)
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where π0 : TS2n−1 → ξ0 is the projection along X0. Of course under Φ the study
of holomorphic curves in Cn, which avoid the origin is equivalent to studying
holomorphic curves in R×S2n−1. In Cn there is a very nice class of holomorphic
curves, namely the affine algebraic curves. In which way are they distinguished
from an arbitrary holomorphic curve? Denote by Σ the collection of all smooth
maps R → [0, 1] having non-negative derivative and associate to ϕ ∈ Σ the 2-form
on R× S2n−1 defined by

ωϕ = d(ϕλ0),

where (ϕλ0)(a, u)(h, k) = ϕ(a)λ0(u)(k).
The interesting observation is now, [42]:

Proposition 3.1 Assume that A is a connected closed subset of Cn \ {0}. Then
the following statements are equivalent:

1. The closure of A in Cn is an irreducible 1-dimensional affine algebraic curve.

2. There exists a connected closed Riemann surface (S, j), and a finite subset
Γ ⊂ S, and a smooth map ũ : S \ Γ → R× S2n−1 such that

J̃ ◦ T ũ = T ũ ◦ j, (6)
0 < E(ũ) := supϕ∈Σ

∫
S\Γ ũ∗ωϕ < ∞,

ũ cannot be smoothly extended over any point in Γ,

Φ(S) = ũ(S \ Γ).

Clearly T ũ ◦ j = J̃ ◦ T ũ is a non-linear Cauchy-Riemann type equation. If ũ is a
solution, then necessarily ũ∗ωϕ is a non-negative integrand, so that the definition of
E(ũ) makes sense. The estimate E(ũ) > 0 implies that ũ 6≡ const.. The finiteness
of the energy means analytically that given a solution ũ of the Cauchy-Riemann
equation and an R-invariant metric on R × S2n−1, the area of the image of ũ in
any set [c, c + 1] × S2n−1 is uniformly bounded independent of c ∈ R. This, of
course, corresponds to polynomial growth if we view the corresponding curve in
Cn. What is the behavior near the points in Γ (the punctures)?

Near a (non-removable) puncture z0 the image of a tiny punctured disk around
z0 is approximately a half-cylinder [R,∞) × P , where P is a Hopf circle. There
is a suggestive way to generalize the above situation. Namely, consider a closed
manifold M of dimension 2n−1, equipped with a contact form λ. Make one choice,
by taking a complex multiplication J : ξ → ξ, where ξ = kern(λ), so that

gJ(u)(k, k′) = dλ(u)(k, J(u)k′)

defines fibre-wise a positive inner product for the bundle ξ → M . Then define an
R-invariant almost complex structure on R×M by

J̃(a, u)(h, k) = (−λ(u)(k), J(u)πk + hX(u)),

where X is the Reeb vector field associated to λ and π : TM → ξ the projection
along X. The definition of E generalizes by replacing ϕλ0 by ϕλ. So our new
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equation becomes

ũ : S \ Γ → R×M (7)
T ũ ◦ j = J̃ ◦ T ũ

0 < E(ũ) < ∞.

What is the behavior near a puncture z0 ∈ Γ? There are three mutually exclusive
possibilities.

1. Positive puncture: limz→z0 a(z) = ∞
2. Negative puncture: limz→z0 a(z) = −∞
3. Removable puncture: limz→z0 a(z) =: a0 ∈ R

In the last case the map ũ can be smoothly extended over z0. Let us assume
that for the following ũ has been extended over all removable punctures. We note
that for a solution of (7) the set Γ cannot be empty. Indeed, otherwise by Stokes’
theorem E(ũ) = 0.

The relationship between the solutions of (7) and the periodic orbits of X is
contained in

Theorem 3.2 (Hofer) Let λ be a contact form on the closed (2n − 1)-dimen-
sional manifold M and J be an admissible complex multiplication for the under-
lying contact structure ξ. If (7) has a solution, then there exists a periodic orbit
for the Reeb vector field with period T ≤ E(ũ).

For generic λ the finite energy surface approximates near a puncture a cylinder
over a periodic orbit. Figure 6 on the next page shows a finite energy surface with
two positive punctures and one negative puncture.

In order to use that theorem, one needs to develop methods to find holomor-
phic curves solving (7). Whereas the first existence results were based on adhoc
methods it meanwhile became clear for specialists that there is a (Floer-type)
homology theory in the background. It has already been christened “Contact Ho-
mology”, but doesn’t yet exist as “hard copy”. This theory was envisioned by
Eliashberg and the author in 1993 after the paper [40], and some talks about
special cases were given at various places, in particular at the IAS/Park City sum-
mer institute on symplectic geometry, [24]. To create such a homology theory for
general closed contact manifolds, one encounters certain analytical problems in
counting holomorphic curves, quite familiar from the Arnold conjectures. How-
ever, since the recent solution of the Arnold conjectures overcomes these difficulties
one should be able deal with these problems.

By the previous discussion the Weinstein conjecture has been reduced to find-
ing nontrivial holomorphic curves. The following theorem is the first, dealing with
the solvability of (7). The method used is an Eliashberg-type disk-filling, [21],
based on Gromov’s pseudoholomorphic curve theory. These type of methods are
familiar in the theory of several complex variables, where they are used to study
envelopes of holomorphy, see [5]. The main point here is, however, that it is apriori
known that the analysis involved in the disk-filling has to fail.
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Figure 6: A finite energy surface with 2 positive punctures and one negative punc-
ture

Theorem 3.3 (Hofer) Assume M is a closed three-manifold and λ a contact
form. Let J : ξ → ξ be an admissible complex multiplication for the underlying
contact structure and denote by J̃ the associated almost complex structure on R×
M . If either M = S3, or π2(M) 6= 0, or ξ is overtwisted there exists a solution
ũ of (7) with S = S2 and Γ = {∞}. In other words there exists a finite energy
plane.

We note that Theorem 3.3 implies Theorem 1.8. The proof is based on a care-
ful analysis of certain nonlinear boundary value problems involving a non-linear
Cauchy-Riemann type operator on the disk. One knows for topological reasons
that there cannot be apriori estimates and studies carefully how the estimates fail.
A bubbling-off analysis making extensive use of the R-invariance of J̃ then allows
via reparametrizations to construct these solutions. We refer the reader to the up-
coming book [1] for a very detailed description of the methods, and to [40, 41, 42]
for the original proof and some discussion of the underlying ideas.

In dimension three we can sometimes say more about the nature of the pe-
riodic orbits to which the holomorphic curves are asymptotic. For example, for
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every Reeb vector field on S3 there exists an unknotted periodic orbit, see [52].
Many interesting and surprising examples illustrating how bad arbitrary

Hamiltonian flows can behave in contrast to Reeb flows can be found in [11].

4 Global systems of surfaces of section

On might wonder, if one can say more about the dynamics. Here we restrict our-
selves to the three-dimensional cases for the sole reason that the methods cannot
be employed in higher dimensions.

Assume we are given a closed three-manifold M and a nowhere vanishing
vector field X. We would like to understand the dynamics. A successful idea
going back to Poincaré and Birkhoff, [7], is to find a global surface of section,
reducing the understanding of the dynamics to the problem of understanding a
self-map of a surface. Of course there are topological and dynamical obstructions
in finding such a surface.

Definition 4.1 A global surface of section for (M,X) is a compact surface
(perhaps with boundary) Σ ⊂ M , such that ∂Σ consists of periodic orbits and
Σ̇ = Σ \ ∂Σ is transversal to X, so that in addition every orbit other than those
in ∂Σ hit Σ̇ in forward and backward time.

The surface of section allows to define a return map ψ : Σ̇ → Σ̇. Then the
dynamics is encoded in ψ. Of course, having in mind how complicated flows are,
one really doesn’t expect the existence of such a surface of section. For example,
any surface of section for (S3, X) must necessarily have a boundary. Indeed, if
there is no boundary component, S3 would necessarily fiber over S1, which by the
exact homotopy sequence for a fibration would imply that π1(S3) 6= {1}. On the
other hand if there is a boundary component there has to be a periodic orbit, which
however need not to exist by Kuperberg’s result. Also, in the volume-preserving
case it is doubtful if something sensible can be said. However, as it turns out, for
Reeb flows on three-dimensional manifolds, a whole theory of surfaces of section
almost intrinsically exists. This theory, which will be discussed now, should be
possible for every (or at least many) three-manifold. However, details have only
been carried out so far for S3.

Let us begin with S3 equipped with the standard structure λ0. Again we let
ourselves be inspired by the model problem. Denote by

Φ : C2 \ {0} → R× S3

the diffeomorphism

z → (
1
2
`n|z|, z

|z| )

previously defined.
Consider the sets Φ(C×{c}), where c ∈ C\{0}, and Φ((C\{0})×{0}). The

union of these sets is a smooth foliation F of R × S3 consisting of finite energy
surfaces. Observe that we have a natural R-action:

R×F → F , (a, F ) → a + F,

Documenta Mathematica · Extra Volume ICM 1998 · I · 255–280



268 Helmut H. W. Hofer

Figure 7: The collection of projected surfaces establishes an open book decomposi-
tion of S3

where
a + F := {(a + b,m) | (b,m) ∈ F}.

There is one fixed point F0 of this action corresponding to a cylinder over the
periodic orbit P = S1 × {0}:

F0 = R× P.

If the surfaces are projected into S3 the fixed point F0 projects onto the Hopf
circle P and all other surfaces onto open disks bounded by P . The collection
of projected surfaces in fact establishes an open book decomposition of S3 with
disk-like pages, see Figure 7.

What happens if we modify the contact form, but keep the contact structure,
i.e. replace λ0 by λ = fλ0?

In order to study this question it is useful to make the following definition.

Definition 4.2 Let M be a closed three-manifold, λ a contact form on M and
J a complex multiplication for the associated contact structure. A finite energy
foliation F for (M, λ, J) is a 2-dimensional smooth foliation for R×M such that
the following holds:

• There exists a universal constant C > 0 such that for every leaf F ∈ F there
exists an embedded finite energy curve (S, Γ, ũ) for (M, λ, J) satisfying

F = ũ(S \ Γ)

and E(ũ) ≤ C. All punctures Γ are assumed to be non-removable.

• For every a ∈ R and F ∈ F also a + F belongs to F . In particular either
F = Fa or F ∩ (a + F ) = ∅.

Let us call a contact form λ non-degenerate if all the periodic orbits (x, T ) for
Xλ are non-degenerate in the following sense. Denote by ηt the flow associated to
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X and observe that it preserves λ, so that the tangent map Tηt(x(0)) induces a
map

L(x,t) := Tηt(x(0))|ξx(0) : ξx(0) → ξx(T ).

For every period T > 0 we therefore obtain a self map of xξ(0), which is symplectic
with respect to the structure dλ(x(0)). We say (x, T ) is non-degenerate if 1 does
not belong to the spectrum of L(x,T ).

We assume that we are given a closed three-manifold M and a contact form
λ with associated Reeb vector field X and contact structure ξ. Assuming that
the contact form λ is non-degenerate is a generic condition. Indeed, the following
holds.

Proposition 4.3 Fix a contact form τ on the closed three manifold M . Consider
the subset Ξ1 ⊂ C∞(M, (0,∞)) consisting of all those f such that λ = fτ is non-
degenerate. Let Ξ2 consist of all those f ∈ Ξ1 such in addition the stable and
unstable manifold of hyperbolic orbits intersect transversally. Then Ξ1 and Ξ2 are
Baire subsets of C∞(M, (0,∞)).

The question is now if finite energy foliations exist for given data (M, λ, J). The
answer to this question in general is not known. However, as we will see, we have
existence for M = S3 and generic contact forms λ = fλ0, where λ0 is the standard
contact form and f ∈ Ξ1, provided J is generic as well. In the S3-case it makes
sense to impose more conditions on the finite energy foliation.

First of all one needs to define some index µ(x, T ) for a non-degenerate pe-
riodic solutions (x, T ). This index, the so-called Conley-Zehnder index, [14], is
some kind of Morse index for a periodic orbit of a Hamiltonian system. In our
low-dimensional case the Conley-Zehnder index can be interpreted as an integer-
measure of how orbits infinitesimally close to a periodic orbit twist around it with
respect to some natural framing, see [42] for a detailed discussion.

Next one defines another index for a finite energy surface by

ind(ũ) = µ(ũ)− χ(S) + ]Γ,

where χ(S) is the Euler characteristic of the underlying closed Riemann surface, ]Γ
is the number of punctures, and µ(ũ) = µ+−µ− is the total Conley-Zehnder index,
which is computed as follows. The number µ± is the sum of the Conley-Zehnder
indices of the periodic orbits associated to the positive and negative punctures,
respectively.

The index ind(ũ) has an interpretation as a Fredholm index, describing the
dimension of the moduli space of nearby finite energy surfaces, having the same
topological type and number of punctures, which are allowed to move as well as
the complex structure on S in Teichmüller space, see [49]. In the following we
shall call a solution

ũ : S2 \ Γ → R×M

of the non-linear Cauchy-Riemann equation with finite (but nontrivial) energy
having only non-removable punctures a finite energy sphere. If Γ = {∞} we call
it a finite energy plane.
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Definition 4.4 Let λ = fλ0 be a non-degenerate contact form on S3 and J a
complex multiplication for ξ0. A stable finite energy foliation for (S3, λ, J) is a
finite energy foliation with the following properties:

1. Every leaf of the foliation is the image of an embedded finite energy sphere.

2. For every leaf the asymptotic limits are simply covered, their Conley-Zehnder
indices are contained in {1, 2, 3} and they have self-linking number −1. 4

3. Every leaf has precisely one positive puncture, but an arbitrary number of
negative punctures.

4. For every leaf F , parametrized by a finite energy sphere ũ, which is not a
fixed point for the R-action, we have ind(ũ) ∈ {1, 2}.

Figure 8 on the next page shows an example.
The following result gives the existence of finite energy foliations.

Theorem 4.5 For every choice of f ∈ Ξ1 there exists a Baire set of admis-
sible complex multiplications J admitting a stable finite energy foliation F of
(S3, fλ0, J).

We shall not give a proof of the results concerning finite energy foliations in
this overview, but refer the reader to the forthcoming paper [53].

Given a stable finite energy foliation of S3, one can show that the projected
surfaces establish a singular foliation of S3 which gives a smooth foliation trans-
verse to the flow in the complement of a finite number of distinguished periodic
orbits.

Using this system of surfaces one can prove, [53]:

Theorem 4.6 Let f ∈ Ξ2. Then the Reeb flow of Xλ on S3 associated to λ = fλ0

has the following properties.

• Either Xλ has precisely two geometrically distinct periodic orbits or infinitely
many.

• If Xλ does not admit a disk-like global surface of section there exists a hy-
perbolic periodic orbit with orientable stable manifold and a homoclinic orbit
converging in forward and backward time to the hyperbolic orbit. In partic-
ular there are infinitely many geometrically distinct periodic orbits and the
topological entropy of the flow is positive.

This gives the following corollary.

Corollary 4.7 Let f ∈ Ξ2. If the associated Reeb flow admits a periodic orbit
(x, T ), with T the minimal period, so that xT : R/(TZ) → S3 is knotted, then
there exist infinitely many geometrically distinct periodic orbits.

4Presumably one can also require the asymptotic limits to be unknotted. However, our
existence result Theorem 4.5 so far does not give this additional property.
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Figure 8: The figure shows the trace of the projection of a finite energy foliation
on a two-dimensional plane. Here we have two spanning orbits E1 and E2 which
are elliptic and a hyperbolic one denoted by H. Moreover the foliation contains
planes and cylinders. The dashed lines are the traces of the stable and unstable
manifold of the hyperbolic orbit H. We assume the non-generic situation that they
precisely match up creating several invariant sets. The dotted lines are periodic
orbits for the Reeb vector field. The fat lines represent rigid pieces of the finite
energy foliation. Namely two cylinders and two planes. The three-sphere is viewed
as R3 ∪ {∞}.

It is worthwhile to give some ideas about the proof of Corollary 4.7. Given
λ = fλ0 take a generic J and the associated stable finite energy foliation F for
(S3, λ, J). Assume that the R-action has precisely one fixed point. In this case
we have a disk-like surface of section D and a return map

Ψ : Ḋ → Ḋ,

which preserves the area form dλ|D. This map has a fixed point as a consequence
of Brouwer’s translation theorem. Recall that the translation theorem asserts that
an orientation preserving homeomorphism h of R2 either has a fixed point or
there exists a non-empty open set U such that U ∩hj(U) = ∅ for all j ∈ {1, 2, . . .}.
Clearly all hj(U) and hk(U) are mutually disjoint for j 6= k. If in our case Ψ does
not have a fixed point we immediately obtain a contradiction to the fact that Ψ
preserves area. Removing this fixed point we obtain an area preserving self-map of
the open annulus, which by a striking result due to Franks, [29], has the following
property:

Theorem 4.8 (Franks) Let Ψ be an area- and orientation-preserving self-map
of the open annulus. If Ψ admits a periodic point, then it admits infinitely many
periodic points.

In order to finish the argument for the corollary we may assume arguing indi-
rectly that there are precisely two periodic orbits. In that case both are unknotted
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Figure 9: The figure shows the situation if there is a disk-like surface of section,
but only two periodic orbits.

and mutually linked, as depicted in Figure 9. However, since we have one knotted
orbit this is impossible.

There are also results without any genericity assumption. If M ⊂ R4 is a
compact energy surface enclosing a strictly convex domain, then one can show by
methods similar to those outlined above that there exists a global disk-like surface
of section. More precisely, see [48],

Theorem 4.9 The Hamiltonian flow on a a sphere-like energy surface in R4,
bounding a strictly convex domain admits a global disk-like surface of section. In
particular it has precisely two geometrically distinct periodic orbits or infinitely
many.

5 Topology and Reeb dynamics

After the previous results and discussions one might wonder, if it is possible to use
the theory of finite energy surfaces and some knowlegde of the Reeb dynamics in
order to learn something about the topology of the underlying manifold. There
has been not much research in that direction, but the results so far indicate that
there are some nontrivial connections.

We begin by showing that tight contact forms feel the topology. Let M be a
closed three manifold. For every tight contact form λ denote by [λ] the infimum of
all periods T of contractible periodic orbits (x, T ) for Xλ. 5 For a closed oriented
surface F ⊂ M denote by vλ(M) the number

vλ(F ) =
1
2

∫
F
|dλ|

[λ]
.

This is the normalized positive area of F .6 Then define the virtual area of F by

v(F ) = infλ∈T vλ(F ).
5If there are no contractible periodic orbits we take the infimum over the empty set leading

to [λ] = ∞. For simple geometrical reasons we always have [λ] > 0.
6Obviously

∫
F

dλ = 0, so that the positive area and the negative area cancel each other.
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Here T is the collection of all tight contact forms on M .
One has the following result, see [40].

Theorem 5.1 Assume M is a closed orientable three-manifold and F an embed-
ded sphere. If v(F ) < 1 then F is contractible in M .

If the Poincaré conjecture holds one can show that v(F ) < 1 implies v(F ) = 0
and even that v(F ) = 0 if and only if F is contractible. The criterion is extremely
sharp. For F = {point} × S2 in M = S1 × S2 we have v(F ) = 1.7

The next result shows that we are even sometimes able to recover the topology
of the space. For more general results see [46, 47].

Theorem 5.2 Assume that λ is a contact form on the closed three-manifold M ,
so that the periodic orbits of the associated Reeb vector field are all non-degenerate.
Assume that there exists an embedded disk D in M so that the boundary ∂D is
a periodic orbit of minimal period T0, say, and D \ ∂D is transverse to the flow.
Then, if all periodic orbits with periods T ≤ T0 are elliptic or hyperbolic with non-
orientable stable manifold, necessarily M is diffeomorphic to S3 and the contact
form λ is tight.

Now leaving firm grounds one might foresee some of the possible developments
in contact geometry and topology as follows. Assume a contact form λ on a closed
three-manifold M is given. Fixing an admissible complex multiplication for the
underlying contact structure ξ gives an almost complex struxcture J̃ for R×M .
Studying the finite energy surfaces for J̃ will lead8 to some Floer type homology
theory, called contact homology, build on a Z2-graded algebra generated by the
periodic orbits. The analytical difficulties comprise those familiar in the Arnold
conjectures, [30, 63, 64]. The underlying techniques are those from [40, 50, 49,
51, 48, 52]. As it turns out, contact homology only depends on the underlying
co-oriented contact structure ξ. This theory can be carried out in any (odd)
dimension. Symplectic cobordisms compatible with the contact structures induce
morphisms in this theory.

Focusing now on dimension three the following can be said. The contact
homology for overtwisted contact structures is presumably trivial, and, if ξ is
tight, an interesting invariant for (M, ξ). Given a Legendrian knot, i.e. a knot
with tangent space contained in ξ, certain surgeries are possible to lead to new
tight contact manifolds. It is important to understand how the contact groups
change. Of course, it is necessary to introduce a contact homology group for

7As a parenthetical remark we observe that for every tight contact form

v(F ) · [λ] ≤ 1

2

∫

F

|dλ|.

In case, there exists an embedded non-contractible sphere, which always holds if π2(M) 6= {0}
by the sphere theorem, we have that v(F ) ≥ 1. Therefore the inequality implies the existence of
a contractible periodic orbit.

8The details for such a theory are formidable and are just being carried out by Y. Eliashberg
and H. Hofer.
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Legendrian knots, [24], which would be based on Arnold’s chord problem, [4] and
would have to generalize [13].

Since the contact homology for (M, ξ) should be computable for every generic
contact form inducing ξ it will be important to develop methods to simplify the
contact form by eliminating short periodic orbits for the Reeb vector field, which
algebraically should not be there.

Thirdly, some of the finite energy surfaces occurring for a given contact form,
might be used for finite energy foliations, which lead to generalizations of open
book decompositions, but indeed carrying more structure.

It is feasible that some program as out-lined above will be useful for studying
the topology of three-dimensional manifolds. There is, of course, no doubt that
this program leads in any case to a deeper understanding of the dynamics of Reeb
vector fields. This is particularly interesting, since we also obtain new tools for
studying geodesic flows on surfaces.

6 Relationship to other areas

In a nutshell one can say that study of the Reeb dynamics or certain aspects
of it is closely related to be able to count and handle holomorphic curves. How
to use holomorphic spheres in order to prove cases of the Weinstein conjecture
was shown by Hofer and Viterbo, [45]. Of course meanwhile there are very well-
developed methods for counting holomorphic curves in a systematic way, leading to
the Gromov-Witten invariants, see [30, 63]. That these invariants can be effectively
used for proving certain cases of the Weinstein conjecture has been shown recently
in [65].

Theorem 6.1 Let (V, ω) be any compact symplectic manifold. Then the Wein-
stein conjecture holds for every hypersurface of contact type in (C× V, ωC ⊕ ω).

In dimension four Gromov-Witten invariants are closely related to Seiberg-Witten
theory by the important results of Taubes, see [82, 83]. These results guarantee
that in a four-dimensional symplectic manifold certain two-dimensional cohomol-
ogy classes can be represented by a holomorphic curve.

How one can bring all these theories nicely together has been demonstrated
by Weimin Chen, [10].

Theorem 6.2 (Weimin Chen) Let M ⊂ (V, ω) be a compact hypersurface of
contact type in a closed symplectic four-manifold with b+

2 (V ) ≥ 2. Let λ be a
contact form on M , so that dλ = ω|M . Assume M carries the orientation induced
by λ∧ dλ. Then the first Chern class of the induced contact structure ξ = kern(λ)
equipped with a complex structure compatible with dλ is Poincaré dual to a finite
union of periodic orbits on M oriented by −λ. In particular if c1(ξ) 6= 0 there has
to be a periodic orbit.

The key ingredient is a the following theorem of Taubes.

Theorem 6.3 (Taubes) Let (V, ω) be a closed symplectic four-manifold with
b+
2 (V ) ≥ 2 and a nontrivial canonical bundle K. Then for a generic ω-compatible
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almost complex structure J , the Poincaré dual to c1(K) is represented by the fun-
damental class of an embedded J-holomorphic curve Σ in V (not necessarily con-
nected).

This result follows from the relationship between Seiberg-Witten and Gromov-
Witten invariants and the nontriviality of the Seiberg-Witten invariants for closed
symplectic manifolds, see [82, 83].

The proof of Theorem 6.2 has a certain number of technical ingredients. Nev-
ertheless a proof by pictures gives an idea.

Figure 10: Stretching of a holomorphic curve

The compact hypersurface M sits inside V and has an open neigborhood
[−ε, ε] ×M with symplectic structure d(etλ). We take an almost complex struc-
ture ĴN compatible with ω, which behaves on [−ε, ε] ×M in such a way that in
suitable coordinates the neigbhorhhood looks like [−N,N ]×M equipped with J̃9

Taubes’ result guarantees for every N a holomorphic curve CN . The additional
information guarantees certain bounds on the area as well as on the genus. In the
limit N → ∞ the curve converges near {0} ×M to some cylinders over periodic
orbits.
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“Contemporary symbolic logic can produce useful tools – though by no means
omnipotent ones – for the development of actual mathematics, more particularly
for the development of algebra, and it would appear, of algebraic geometry.” This
statement (with a reference to still older roots) was made by Abraham Robinson in
his 1950 address to the ICM. Instances of such uses of logic include the correction
and proof by Ax-Kochen of a p-adic conjecture of Artin’s ([1]), and the Denef -
Van den Dries proof of a p-adic analytic conjecture of Serre ([13]). The internal
development of model theory since the 70’s has led to entirely new techniques,
that, combined with the older ones, have begun to find applications to diophantine
geometry. It is the purpose of this talk to explain these methods and connections.

The present applications use only the finite-dimensional part of model theory
(in a sense to be explained). Shelah and his followers created a theory of much
greater generality (superstability, supersimplicity) incorporating many of the fea-
tures of the finite dimensional case. One hopes that future applications will use
this power. This exposition will limit itself to the finite-dimensional heartland
(finite Morley rank, S1-rank).

Instead of defining the abstract context for the theory, I will present some of
its results in a number of special, and hopefully more familiar, guises: compact
complex manifolds, ordinary differential equations, difference equations, highly
homogeneous finite structures. Each of these has features of its own, and the
transcription of the general results is not routine; they are nonetheless readily rec-
ognizable as instances of a single theory. The current applications to dipohantine
geometry arise by way of the difference and differential “examples”. §2 and §6 will
describe the model theory behind these results, and the prospects and difficulties
lying ahead.

1 Example 1: compact analytic spaces

A complex manifold is a space obtained by gluing open discs in C n, using complex
analytic gluing maps. A closed analytic subset of a complex manifold M is a closed
subset, cut out locally by the vanishing of finitely many analytic functions. This
defines a topology on M . An analytic subvariety is an irreducible closed analytic
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set, i.e. one that is not the union of closed proper subsets. Every closed subset in
this topology has dimension strictly less than dim(M), and is the union of finitely
many analytic subvarieties. By a (complex analytic) space we will mean, in this
section, the complement of a closed analytic U ′ in a closed analytic subvariety V
of a compact complex manifold. ( Let C denote the class of such spaces.) We do
not however wish to remember the construction of V , nor the sheaf of analytic
functions or even the topology on V . Instead we are interested in describing the
family Z(V ), Z(V n) of analytic subvarieties of M and of its Cartesian powers;
and the interaction of V with other spaces W by means of Z(V ×W ).

We would like to map out the category of analytic spaces X, with a view to
the internal geometry of the subvarieties of X and of X × Z for other Z. We
will that this category is not at all homogeneous: some spaces have a very rich
internal geometry, others a very poor one; some interact with each other, some do
not. The different features can be well differentiated by a close look at products
of minimal varieties X, those that have no proper infinite subvarieties. This is the
case though it is very far from being true that every variety can be decomposed
as such a product.

Among the minimal varieties, we will find very sharp dividing lines. The
algebraic curves lie in a class of their own. The non-algebraic complex tori fall into
another distinct class; their geometry is essentially linear. The third class, about
which model theory says least, consists of the minimal varieties whose geometry
is trivial (at least generically) from our “subvarieties of Cartesian powers” point
of view. These three classes exemplify a deep and general trichotomy, and in the
present category has decisive influence on the geometry of all varieties (not just
on products of minimal ones.)

Algebraic varieties Among the analytic spaces are those with the struc-
ture of algebraic varieties. These have a very rich geometry of subvarieties. In
particular, in dimension > 1, they have algebraic families of subvarieties, having
arbitrarily large dimension.

A general model theoretic principle, to be discussed later, shows that this
richness characterizes algebraic varieties.

The complex projective space P n , for example, contains the family Fd of
hypersurfaces cut out by homogeneous polynomials of degree d in n + 1 variables;
this family is parameterized by

(
n+d
d−1

)
-dimensional projective space.

Intersecting the elements of Fd with a projective variety - a subvariety V
of P n - yields large families of subvarieties on V . We thus see in passing that
any projective variety is “rich” (V or V 2 have many subvarieties.) By the model
theoretic characterization alluded to above, it follows that projective varieties are
algebraic. This indeed fits in with a classical theorem of Chow’s, asserting in
more detail that projective varieties are automatically defined by finitely many
homogeneous polynomials.

1.1 Minimal spaces and the semi-minimal analysis M is called minimal if
it has no proper analytic subvarieties, other than points.
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Every one-dimensional (connected) complex manifold is minimal, but there
are also many others. For example, if Λ is the subgroup of C n generated by a
sufficiently general R -basis, the torus T = C /Λ is minimal.

Given a minimal M , a subgroup G of Sym(n), one can form the space Mn/G.
Such spaces, as well as subspaces of their finite products, will be called semi-
minimal. We will later (1.6) obtain a good description of semi-minimal spaces (in
terms of minimal ones.)

The following theorem is an instance of Shelah’s theory of “regular types”
(adapted to minimal types using a contribution of Lascar’s.)

Theorem 1.1 Let V ∈ C. There exists a minimal space Y ∈ C and a F ∈
Z(V × Y ), inducing a morphism from the complement of an analytic subset V ′ in
V , onto a subspace of Y [k].

The theorem provides a proper closed subvariety V0 of V , and a map f :
(V \ V0) → L1 with L1 semi-minimal. (f is defined by: f(a) = {b : (a, b) ∈ F}.)
Once f is found, the theorem can be re-applied to V0 and to each fiber of f . This
process, “the semi-minimal analysis”, terminates after a finite number of steps.

Remark 1.1 There is a largest semi-minimal image Vsm of V (in the sense of
1.1); it is unique at least up to “birational isomorphism” (or even a constructible
bijection).

1.2 Orthogonality Let X,Y be a variety. We say that X dominates Y if there
exists a subvariety Z of X×Y , such that the projection of Z to X has finite fibers,
while the projection to Y is surjective (or it may miss a proper closed subset.) For
algebraic varieties, X dominates Y iff dim(X) ≥ dim(Y ). However this is far from
being true in general.

Two varieties X,Y are called orthogonal if every proper subvariety T ⊂ Xm×
Y n is contained in U × Y n or in Xm × V for some closed analytic U, V of smaller
dimension. When X,Y are minimal, this implies that every closed subvariety of
Xm × Y n is a rectangle U × V .

Theorem 1.2 [Shelah]

1. For minimal X,Y , X dominates Y iff they are not orthogonal. Domination
is an equivalence relation on minimal spaces.

2. Each X dominates a finite number of minimal Y (up to domination equiv-
alence.) For each such Y , there exists a maximal integer m such that X
dominates Y m.

3. Two varieties are not orthogonal iff they dominate a common minimal.
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1.3 Non-orthogonality and liaison groups If a minimal, occurring beyond
the first level of the semi-minimal analysis is non-orthogonal to an earlier one, their
interaction must be mediated by a group action. For example:

Theorem 1.3 Let X be a space, f : X → Xsm the maximal semi-minimal quo-
tient, and a ∈ Xsm, X(a) = f−1(a), and let g : X(a) → X(a)sm be the semi-
minimal quotient of X(a). If X(a)sm is an algebraic variety, it is a homogeneous
space for an algebraic group.

1.4 Dimensions Each compact complex manifold has a complex analytic dimen-
sion, the number of complex parameters needed locally to determine a point. A
more intrinsic dimension from our point of view assigns each minimal space dimen-
sion 1. More generally, we say inductively that X has (Morley) dimension d + 1 if
it does not have dimension ≤ d, and contains an infinite collection of subvarieties
Xi of dimension d, with dim(Xi ∩Xj) < d for i 6= j.

It can be shown that for minimal X, for any Y ⊂ Xn, dimMorley(Y ) =
e dimC (Y ) where e = dimC (X) does not depend on Y . (This resembles the
relation between complex and real dimension, with e = 2. ) When working sys-
tematically with the geometry of Xn and its subvarieties, the intrinsic dimension
is helpful even if one is already aware of the complex analytic dimension. For
instance, subspace of dimension one are treated as curves; it is useful to know in
advance that the intersection of two such curves must be finite (as does not follow
directly from the analytic dimension.)

1.5 Classification of minimal spaces: ampleness vs. modularity

Families of varieties Given X ∈ Z(M × P ), and a ∈ P , let

X(a) = {b ∈ M : (b, a) ∈ X}

Then X(a) ∈ Z(M). As a varies through P , (or perhaps through the complement
in P of a proper closed analytic subvariety), we will say that the varieties X(a)
form a uniform family of subvarieties of M . Without changing the family of sets
X(a), it is possible to replace X and P in such a way that the sets X(a) are
distinct for distinct elements a ∈ P . The dimension of the family is then dim(P ).

A space is called geometrically modular if, for each k, there exists an absolute
bound to the dimension of any uniform family of subvarieties of V k. The signifi-
cance of this condition will be explained later; for now we view it as an expression
of a sharp difference between algebraic curves and the other minimal varieties. For
minimal V , it can be shown that the bound is k − l, where l = dim X(a).

The terms “locally modular” and “1-based” are also used in the literature.
The first refers to a condition on the lattice of algebraically closed subsets, that
we will not enter into here. The latter refers to the following:

Definition 1.2 A space V is 1-based if for any k, through a sufficiently general
point a ∈ V k, there pass only countably many subvarieties of V k.
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Equivalently, no uniformly definable family of subvarieties intersects in that
point. A dimension - counting argument shows that geometric modularity is equiv-
alent to 1-basedness.

Example: non-algebraic tori Some complex tori can be embedded in
projective space; the embedding is then an algebraic subvariety of projective space
(defined by the vanishing of finitely many homogeneous polynomials.) These are
called Abelian varieties, and have a rich structure of subvarieties; they are not
geometrically modular. We will see later however that any minimal complex torus
that is not an Abelian variety is geometrically modular. For a sufficiently general
torus, the subvarieties of Tn passing through a point a = (a1, ..., an) are not only
countable in number but completely explicit: they are defined by equations of the
form

∑
ni(xi − ai) = 0.

Theorem 1.4 Let V ∈ C be minimal, and not algebraic. Then V is geometrically
modular.

1.6 Classification of minimal spaces: geometric triviality If V is a
geometrically modular minimal space, through a typical point of V k there pass
at most countably many curves. There are always at least k curves through a =
(a1, . . . , ak), namely those “parallel to the axes”: (a1, . . . , ak−1) × V, . . . , (a1) ×
V × (a3, . . . , ak), V × (a2, . . . , ak).

Call V geometrically trivial if for every a ∈ V k,(except perhaps for a finite
union of proper subvarieties), these k curves are the only ones passing through
a. (This condition implies equally strong constraints on subvarieties of higher
dimension passing through a general point.)

A complex torus T can never be geometrically trivial. For example, for each
rational a

b ((a, b) = 1) and any point c = (c1, c2) ∈ T 2, one has the subvariety

{(y1, y2) : ay1 + by2 = ac1 + bc2}

passing through c.
It can be shown more generally that a subvariety of a group variety can never

be geometrically trivial.

Theorem 1.5 ([15]) Let V be minimal, modular, and not geometrically trivial.
Then there exists a minimal U equivalent to V and admitting a group structure,
whose graph is a subvariety of U3.

Putting together Theorems 1.4, 1.5, we obtain

Corollary 1.3 (Trichotomy) Every minimal variety X is geometrically triv-
ial, or equivalent to a geometrically modular group variety, or is algebraic.

It can be shown, from modularity, that a geometrically modular group variety
U must be commutative ([19]). It is very likely that U must be a complex torus;
this requires proof, and provides an example of the kind of work needed to adapt
the general theory to a special context.
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1.7 Internal structure of semi-minimal sets

Theorem 1.6 Let X be a minimal variety. Let Y be a subvariety of Xn.

1. If X is algebraic, then Y is algebraic.

2. If X is a geometrically modular group, then Y is defined by linear equa-
tions

∑
aijXi = bj, with respect to the group structure, and certain analytic

endomorphisms aij.

3. If X is geometrically trivial, then Y is a direct product of minimal varieties
Yj

Item (1) (with X = P 1 or P n) is a classical theorem of Chow’s. In model
theoretic language, the induced structure on the complex analytic X is precisely
that given by algebraic geometry. Here the result is derived from a general model-
theoretic recognition theorem for algebraic geometry, ([23]). Having recognized
algebraic geometry, the model theory hands the variety over to methods best
suited to it.

Item (2) (taken from [19]) shows that the induced structure on complex tori
is given by linear algebra (over the endomorphism ring.) The linearity is relative
to the group structure; it is not comparable within the category we work in to the
additive group of C .

In (3), each Yj is a subvariety of X l(j), a certain product of l(j) of the n
factors of Xn. The statement is a fairly direct consequence of the definition of
geometric triviality. Note that (3) gives no information in the case dim(Y ) = 1.
In this respect the information concerning geometrically trivial varieties is less
decisive than in the other cases.

Corollary 1.4 (to (3) ) Let A be a geometrically modular group variety, min-
imal as a group variety. Then A is a minimal variety.

Thus if a non-algebraic torus has no proper nontrivial sub-tori ( a condition
easily verified), then it has no proper analytic subvarieties of any kind (other than
points.)

Combining Theorem 1.6 with the theory of orthogonality, we see that a sub-
variety of a product of geometrically modular group varieties, geometrically trivial
varieties, and algebraic varieties, is itself a product of the same form. Any semi-
minimal variety is domination-equivalent to such a product.

1.8 Local-global principles The above theory of minimal and semi-minimal
varieties is useful to the extent that global properties of arbitrary varieties can be
reduced to properties of their minimal components. This happens often; we give
just one example here.

Theorem 1.7 ([5]) Let V ∈ C, and assume every minimal variety occurring in
the semi-minimal decomposition of V is geometrically modular. Then so is V .
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In view of 1.4, this expresses the idea that Z(V ) can be “large” only as an
effect of algebraic varieties within V . As a corollary, one can globalize also 1.4(2):

Theorem 1.8 Let X be a complex torus. Assume X has a maximal chain (0) =
V0 ⊂ V1 ⊂ . . . ⊂ Vn = X of sub-tori, and no quotient Vi+1/Vi is an Abelian
variety. Then the conclusion of 1.6 (3) holds for X.

Sometimes just one layer in the semi-minimal analysis controls the situation.
Shelah’s Theorem 1.2 (3) is an example of this, using the first layer alone. Here
is an example where only the last layer matters. It is a local-global principle for
the notion of geometric triviality.

Theorem 1.9 Let g : X → Y be the last stage of the canonical semi-minimal
analysis. Assume the minimal varieties associated with the semi-minimal fibers
Xb (b ∈ Y ) are all geometrically trivial, of dimension ≤ n say. Then through any
a ∈ Xm (outside some proper subvariety) there pass at most mn distinct curves
(one dimensional spaces.)

2 Model theoretic inputs: finite Morley rank theory

The theory described in the last section was in reality developed in a more general
context. We stated it for compact complex manifolds essentially as a device of
exposition, hoping to illuminate the general theory without plunging immediately
into abstraction. We will now make some comments on the model theoretic setting.

2.1 Quantifier elimination A first-order structure in the sense of model the-
ory has many “universes”, called sorts. The sorts are assumed to be closed under
finite Cartesian products; if a structure with a single universe M is presented, the
other sorts will be the Cartesian powers Mn; it is there that the model theory will
take place. One is given a family of subsets of the various sorts, the basic relations.
One considers not only the given subsets, but also others formed from them using
the “first-order operations”: pullbacks and pushforwards under projections and
diagonal maps, finite unions and intersections, and complements. Any hope for a
useful model theory depends on some control over the outcome of the first-order
operations. The strongest form of this control is:

Quantifier-elimination: Every projection of a Boolean combination of basic
relations, is itself a basic relation.

(cf.[7]). This must be achieved separately in each application, and is rarely
trivial.

In the example presented in §1, the sorts are the complex manifolds; the basic
relations are the complex analytic subvarieties. Quantifier elimination was proved
by Boris Zil’ber; the main ingredient is the theorem (Remmert, Grauert) that
images of analytic subvarieties under proper maps are analytic.

Zil’ber also proved that the structure consisting of compact complex manifolds
satisfies the appropriate axioms of dimension theory, so that the general results
on structures of finite Morley rank, and on Zariski geometries [23], apply.
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2.2 Structures with dimension §1 is a simple transcription of a part of the
theory of structures of finite Morley dimension. These are first order structures,
with a non-negative integer-valued function on the definable sets, satisfying the
condition in §1.3. The same dimension theory will work for differential algebra. For
our difference and quasi-finite examples, we will use a modification, S1-dimension,
defined in the same way but with Xi = X(ai) assumed to be taken from a uniform
family.

The theory of semi-minimal reduction, and the theory of orthogonality, are
due to Shelah ([37]). They are instances of his much more general theory of regular
types in superstable theories. A part of the theory, in the finite dimensional case,
appeared in the work of Morley and of Baldwin-Lachlan on categoricity. The books
[34], [4],[35] are general references for this section, and contain further references.

Modularity is the most important concept of geometric model theory. It ap-
peared first in work of Lachlan’s [28] on the ℵ0-categorical theories, and of Zilber’s
in the ℵ1-categorical and totally categorical theories ([40]). There are many equiv-
alent definitions of modularity; Lachlan’s original definition involved the absence
of pseudo-planes, structures modeled roughly on plane geometry. The idea is the
existence of a sharp dividing line between the combinatorial and linear worlds
(modularity), and between nonlinear, geometric complexity, as found in algebraic
geometry. This was successfully generalized from the categorical cases to the su-
perstable and general stable frameworks, and beyond that (perhaps not yet in
full) to simple theories. It is clear that the idea continues to be meaningful and
important in much wider domains, not yet technically developed.

Theorem 1.4 follows from the main theorem of [23]. It states that structures
with a dimension theory having the basic properties of the dimension theory of
algebraic varieties, and with large uniform families of subvarieties, must arise from
algebraic geometry. It is not assumed there that the structure arises from analytic
geometry or from any other specific geometry. The “basic properties” are here
understood to include the “dimension theorem”: intersection with a codimension
- one variety lowers dimension by at most one, in every component. This is the
only general result used in §1 that requires assumptions beyond that of finite
Morley rank. This was originally conceived as a foundational result, showing that
algebraic geometry is sui generis.

The proof of [23] involves geometric constructions in powers Xn, using the
intrinsic dimension. One-dimensional sets are viewed as curves, and one constructs
tangent spaces to them synthetically. (Note that this is applied, in §1, to com-
plex analytic spaces, where Morley dimension one translates to higher complex
dimension!)

The analogous theorem is now known ([33]) for structures with a dimension
theory analogous to that of the reals (called “O-minimal” to recall the ordering; cf.
[38].) A similar result may well be true for much more general types of geometries,
including in particular p-adic geometries, and it would be valuable to develop it.
The rest of the theory in §1 has not been developed even for the O-minimal context
(where “semi-minimality” is in effect built into the assumptions.)
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3 Differential equations

(General reference: [31]) A theory fully parallel to that of §1 exists for algebraic
ordinary differential equations. The most interesting difference is the identifica-
tion of the nontrivial, geometrically modular objects; the non-algebraic tori of §1
are replaced with certain equations, discovered by Manin and deeply studied by
Buium, associated to any algebraic family of Abelian varieties. It is at first surpris-
ing that such a preliminary model-theoretic investigation of the basic geography of
algebraic differential equations should discover Abelian varieties in a special role.

The results apply more generally to systems of (nonlinear) algebraic partial
differential equations whose set of solutions is finite-dimensional in an appropriate
sense. (In classical language, “the general solution involves only finitely many
arbitrary constants”.) Technically, we fix a field k, and let k{X} be the ring of
differential polynomials over k in variables X = (X1, . . . , Xm). We use ODE’s or
PDE’s; in positive characteristic, we use Hasse- Witt derivatives. We assume the
equations generate a differential ideal J such that for every prime p ⊃ J , k{X}/p
has finite transcendence degree over k. This condition is automatic for a nontrivial
ODE in one variable. In characteristic p > 0, on the other hand, infinitely many
equations are required.

An important open problem is the extension of the theory to less constrained
systems of PDE’s; Shelah’s theory of superstability is available, but not the re-
quired generalization of the trichotomy theorem [23] (analog of 1.6(1)).

The necessary quantifier elimination was achieved by A. Robinson in char-
acteristic 0, Delon, Ershov, Wood in positive characteristic; (cf. [12]). Certain
verifications concerning the dimension theory, and the identification of the geo-
metrically nontrivial minimal modular sets, are from [20]. (The approach we take
here will make both of these essentially immediate, for finite dimensional systems.)

It is here that applications to diophantine geometry first arose, using a con-
nection discovered by Buium, [6]. The model theory handles all characteristics
with equal ease. It provides the only known proof of the Mordell-Lang conjecture
in characteristic p > 0; cf. [17], [18] [2]. We will not go into details here, but will
discuss a related result in §4.

There are several possible ways to describe the first order structure associated
with such differential equations.
1) The standard model theoretic approach defines a universal domains for differ-
ential algebra. These are differential fields, in which every consistent, countable
set of differential equations has a solution. The sorts can be taken to be the so-
lution sets in this universal domain, to given equations; the basic relations, called
Kolchin-closed sets, are defined by further equations.
2) One can define the category using the differential equations themselves, disre-
garding the sets of solutions.
3) The variant we will use will is a purely geometric representation of the differ-

ential equations. (It uses points again, but these are related to the points of the
sorts of (1) only indirectly, via (2)). We will restrict attention to characteristic
0, and to ODE’s, and work over an algebraically closed base field k with a trivial
derivation.
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The sorts will be smooth algebraic varieties endowed with algebraic vector
fields; i.e. of of pairs (V, s) where V is a smooth variety over k, and s : V → TV
is a section of the tangent bundle. The product of two sorts (V, s) and (V ′, s′) is
naturally defined. The basic relations are now the integral subvarieties, i.e. the
algebraic subvarieties U of V such that s restricts to a section of TU . (Formally
or analytically, we can define a flow corresponding to s; the integral subvarieties
are then those fixed by the flow, and it is not surprising that their Boolean com-
binations are closed under projections.)

We will be interested in algebraic families {U} of algebraic subvarieties V , that
are left invariant by the flow corresponding to s. Such a family can be obtained
by first taking the product of (V, s) with another object (P, t), fixing an integral
subvariety R of (V × P, (s, t)), and then letting

{U} = {R(p) : p ∈ P}

with
R(p) = {a ∈ V : (a, p) ∈ R}

Any element of an invariant family will be called s-coherent. Z(V ) is the set of s-
coherent subvarieties of V . Thus every point is s-coherent, as well as every integral
subvariety of s. We will refer to refer to these as differential -algebraic varieties.

As in §1, we are interested in criteria for the abundance or scarcity of subva-
rieties of a given flow; the geometry of such subvarieties; and of the reducibility of
one vector field to another by algebraic or algebraic differential transformations.
The theory of §1 has a perfect analog here. Here, V is minimal iff V has no
s-coherent subvarieties, except for points and all of V .

In particular, the trichotomy is true in this context. We must however identify
the analogs of algebraic varieties, and the geometrically modular groups.

If the vector field is trivial, s = 0, every subvariety is an integral subvariety,
and the geometry on V is ordinary algebraic geometry. It can be shown con-
versely (Ph.D. theses of Mesmer, Sokolovic; cf. [2]) that a minimal set, abstractly
bi-interpretable with an algebraically closed field, must be isomorphic to a curve
C endowed with the zero vector field. Let us call such minimal differential vari-
eties algebraic. The corresponding semi-minimal sets are closely connected to the
algebraically integrable flows. Part of the theory will thus take the form, in the
present context, of recognition results for algebraically integrable vector fields.

The analog of non-algebraic complex tori is interesting. We are looking for the
minimal coherent sets, possessing a group structure, and satisfying the conclusion
of 1.4. The right equations were discovered by Manin, [30], and by Buium in a
role closer to their status here. (A quick description, essentially following Buium:
Let A → U be a family of Abelian varieties. For v ∈ U , let Mv be the maximal
extension of Av by a vector group. We have M → A → U , and now any vector
field t on V canonically lifts to a vector field s on M : we have TM → TV ; the
group structure on Mv can be prolonged to one on Nv = (TM)(v,t(v)), so that Nv

becomes an extension of Mv by the vector group TMv; since Mv is the universal
vector extension of A, there exists a unique section of Nv → Mv. This gives s.)
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Theorem 3.1 There is a 1-1 correspondence between non-isotrivial families of
Abelian varieties over k, up to isogeny, and families of geometrically modular
minimal differential varieties. up to equivalence

“Non-isotrivial” means essentially that the different Abelian varieties in the
family are not isomorphic to each other. The equivalence of minimal sets is that
of non-orthogonality, §1.2. This recognition theorem ([20]) allows us to state the
trichotomy of [23] thus:

Theorem 3.2 Every minimal differential algebraic variety is either geometrically
trivial, algebraic, or equivalent to a Manin-Buium variety

We also obtain a theorem on the internal structure of Manin-Buium varieties
similar to 1.6, in particular 1.6 (3). This result was reproved by Buium and Pillay
by analytic methods. The trichotomy has no analytic proof at present.

Geometrically trivial equations Geometric triviality severely limits
the possible complexity of the internal geometry on a minimal differential variety
V , but leaves open the question of its precise structure. For ODE’s of differential
order one, we have a complete answer. It is essentially the simplest possible one, of
no structure at all. A differential variety V has trivial internal structure if the only
subvarieties of V m are the coordinate subvarieties V l (defined by equations Xi =
ai.) Equations defining such varieties can have only a finite number of algebraic
solutions; indeed over a differential field of transcendence degree k, they can have
at most k solutions. Conversely the condition of finitely many algebraic solutions
over a finitely generated field, characterizes geometrically trivial equations, up to
equivalence.

Theorem 3.3 • Let X be a geometrically trivial ODE of order 1. There exists
a finite map g : X → Y , Y another ODE of order 1, such that Y has trivial
internal structure.

• X = {Xa : a ∈ T} be a family of geometrically trivial ODE’s of order 1, and
assume the generic Xa is geometrically trivial. Then there exist differential
rational maps b : T → T ′ , another family Y of order 1 ODE’S, AND
g : X → Y , such that (for generic a, with b = b(a)) Xa is equivalent to Yb,
Yb is trivial, and such that Yb, Yb′ are equivalent only if b = b′.

This kind of control over the internal structure and the variation of arbitrary
minimal ODE’s would make for a much more powerful theory (about arbitrary
algebraic ODE’s).

(1) is proved ([26]) by a slight modification of [25], while (2) is proved by
a combination of model-theoretic and geometric methods (see [22] for the case
of positive genus.) Further results would presumably be proved geometrically,
perhaps by extensions of the method of [25]; the model theory may be helpful
in suggesting the correct higher dimensional version (the Manin-Buium equations
must be taken into account.)

Documenta Mathematica · Extra Volume ICM 1998 · I · 281–302



292 Ehud Hrushovski

We note that Jouanolou’s theorem [25] was used directly by Vojta, to bound
the number of rational points on curves over function fields. The model theoretic
method uses Buium-Manin equations for similar results applying to subvarieties
of Abelian varieties. These results use only one part of the trichotomy, the gap
between geometrically modular and algebraic. This state of affairs suggests that
the gap between geometrically trivial minimal varieties, and between geometri-
cally modular groups (1.5, here 3.2) may be used for results on rational points on
varieties of general type. A higher-dimensional version of 3.3 would be one of the
missing ingredients for such an attempt.

Here is a statement of the trichotomy that does not mention minimality. The
proof combines the trichotomy and the analogs of 1.9 and 1.3. (The statement of
this theorem in the abstract contained an inaccurate mixture of the languages of
approaches (2) and (3).)

Theorem 3.4 Assume V = (V, s) is not geometrically trivial. After possibly re-
moving from V a finite number of lower dimensional integral subvarieties, and
possibly pushing forward by an s - equivariant map with finite fibers, one of the
following occurs:

a. There exists a map f : V → W , W an algebraic variety of dimension ≥ 1,
such that the vector field s is parallel to the fibers of f .

b. There exists an equivariant map f : V → V ′, V ′ an algebraic variety of smaller
dimension carrying a vector field s′, such that the fibers of f are principal
homogeneous spaces for algebraic groups; and the action respects the vector
field.

c. There exists a map f : V → V ′ as in (3) such that s is the pullback over V ′

of a Buium-Manin family.

4 Difference equations

A difference equation is analogous to a differential equation, but involves a discrete
difference operator σ in place of a differential operator. Classically one thinks of
the field of rational or meromorphic functions, and defines fσ(z) = f(z + 1), or
fσ(z) = f(qz). The Leibnitz rule is replaced by the fact that σ is an automorphism
: σ(fg) = σ(f)σ(g). Thus a difference domain is defined to be an integral domain
with a distinguished field endomorphism. (See [11]).

There are also arithmetic sources of difference equations: the Galois group of
Q , and the Frobenius endomorphisms x 7→ xpm

in characteristic p > 0. The latter
play a fundamental role among all difference domains; for instance it can be shown
that a simple, finitely generated difference domain (L, σ) always has σ(x) = xpm

for some p and m. We will not enter here into this story.
The theory described in §1, §2 is available in full, though a great deal more

work is needed to access the model theoretic inputs or reprove them in suitable
form ([8]). In particular a semi-minimal analysis and a trichotomy theorem exist.
Here we will just highlight two of the places where the theory complements rather
than merely parallels the differential case.
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4.1 Fixed fields It can be shown that the equation xσ = x, defining the fixed
field, is one-dimensional for an appropriate dimension theory; it is an analog of
the minimal varieties encountered before. It corresponds to Dx = 0 in the dif-
ferential case and in characteristic 0, it is the only non-geometrically modular
minimal difference variety. (In characteristic p > 0, one must add equations such
as xσ2

= xp.) The situation is more interesting however in that the fixed field is
not algebraically closed, even in a universal domain for difference fields.

For example, in the differential case, it can be shown either by means of
differential Lie theory (Phyllis Cassidy) or of model theory (Sokolovic) that every
simple group defined by differential equations, and finite-dimensional in our sense,
is isomorphic to an algebraic group over the field of constants. In the difference
case, twisted groups arise. Let G be a simple algebraic group, and let h : G → G
be a graph isomorphism of G. Then one can use difference equations to define a
subgroup of G:

G(h;σ) = {a ∈ G : h(a) = σ(a)}
For instance, if G = GLn, and h(M) = M t−1 for a matrix M , then G(h;σ)

is the unitary group Un over the fixed field of σ2, with respect to the conjugation
σ of that field.

While the classification up to isomorphism is possible, we will only discuss the
classification up to virtual isogeny (G1,G2 are virtually isogenous if there exists
G and homomorphisms hi : G → Gi with finite kernel, and image of finite index.)
It can be shown that G(h; σ) defines (in the universal domain) a group virtually
isogenous to a simple one.

Theorem 4.1 A simple group definable by difference equations is virtually isoge-
nous to some G(h; σ)

This gives a connection to finite simple groups, more precisely to “horizon-
tal” families of finite simple groups (e.g. PSL(n, q) with fixed n and varying q.)
One obtains an infinite family of (almost) simple groups from G(h; σ) by letting
G(h, q) be the solutions to G(h; σ) in the “Frobenius difference field”, the differ-
ence field consisting of an algebraically closed field of characteristic p > 0, and the
automorphism σ(x) = xq. All the families occur (including the Ree and Suzuki
groups) making the statement of the classification very natural in this context.
See [HP 94], [21]

4.2 Geometrically modular, nontrivial equations. In the case of dif-
ferential algebra, they corresponded to non-isotrivial simple Abelian varieties. In
characteristic 0 difference algebra, they still lie on simple Abelian varieties, but
precisely on those whose isogeny class is defined over a finite extension of the
fixed field (as well as on the multiplicative group Gm). They correspond to non-
cyclotomic irreducible equations over the endomorphism group. For example, let
f(T ) =

∑
aiT

i be a polynomial over Z . Let Ef be the subgroup of the multi-
plicative group defined by Xf (σ) = 1, or more precisely

Πai>0σ
ai(X) = Πaj<0σ

−aj (X)
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Theorem 4.2 Ef is minimal iff f is irreducible over Z . Whether or not it is
minimal, Ef is geometrically modular iff Ef has no cyclotomic factors. In this
case, every subset of (Ef )n defined using difference equations is a Boolean combi-
nation of subgroups and their cosets. In particular this is true for the intersection
of any algebraic variety with (Ef )n.

A similar result is true for Abelian varieties. For the multiplicative group, at
least for the simple equation we will consider below, it is easy to prove directly.
The proof in [16] uses the trichotomy, proved for difference equations in [8]: non-
linearity inside a group implies non-modularity; this implies the presence of a field;
one recognizes the field as a finite extension of the fixed field, thus involving the
equation σn(X) = X, or ET n−1; the non-orthogonality of Ef to this equation
implies that f is cyclotomic.

4.3 Finiteness for torsion points In [16], the above was used to give a new
proof of the Manin-Mumford conjecture on torsion points on semi-Abelian vari-
eties, proved originally in (for curves on Abelian varieties) in [36]. The conjecture
states that the number of torsion points on a curve of genus > 1 is finite; more
generally, any variety intersects the torsion points in a finite union of translates of
group varieties. The new proof gives effective and indeed explicit (though doubly
exponential) bounds; this is automatic from the difference-algebra nature of the
proof, more precisely from the fact that one bounds the number of points of a
certain difference equation in any difference field and not only in number fields.

Here is the proof for the case of curves on powers of the multiplicative group
(where the result goes back at least to Lang.) Let a be an even-order root of unity.
Then a3 is a root of unity of the same order. So there exists an automorphism σ
of Q (a) with σ(a) = a3. Similarly if an = 1, n odd, there exists an automorphism
σ with σ(a) = a2. Putting these together, and letting f(T ) = (T − 3)(T − 2), we
can find an automorphism σ such that Ef = Ef (σ) contains all roots of 1. Now
by 4.2, the intersection of any curve with (Ef )n, in any difference domain, is finite
unless the curve is a multiplicative translate of a subgroup of (Gm)n, i.e. it is
defined by a purely multiplicative equation. A fortiori this holds for the smaller
set consisting of the roots of unity.

4.4 Tate-Voloch conjecture

Conjecture 4.3 (Tate-Voloch) Let A be an Abelian variety over C p, the
completion of the algebraic closure of Q p. Let C ⊂ A be a curve of genus > 1,
and let T be the group of torsion points of A. Then there exists a finite F ⊂ T
and a p-adic open neighborhood of T \ F , that meets C in a finite set.

Certain cases were proved by Buium, Silverman, Tate-Voloch. When A is
an Abelian variety over Q p with good reduction, and one considers only torsion
points Tp of order prime to p, the proof of the Manin-Mumford conjecture above
– combined with a standard idea of nonstandard analysis – immediately yields a
proof of Tate-Voloch. A sketch:
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The assumptions are used to find a geometrically modular difference equation
Ef , and an automorphism σ of Q̄ p, such that Tp ⊂ Ef in the difference field
(Q̄ p, σ).

By 4.2, F = C ∩ Ef is finite in any difference field.
Assume Ef \F has points arbitrarily close to C. Then, using the compactness

theorem of model theory, or nonstandard analysis, one can find a field L extending
Q p with a nonstandard p-adic valuation, and a point a on Ef whose distance to
C is infinitesimal. Modifying the field by identifying sufficiently near elements, we
obtain a residue difference field L̄ and a point ā on Ef \ F , whose distance to C
is zero. Then ā ∈ (C ∩ EF ) = F , a contradiction.

Note that this proof could not work directly with T or Tp in place of Ef ; a
“nonstandard torsion point” is just not torsion, nor has any other immediately
obvious properties; whereas Ef is defined by an equation, so is respected by ultra-
products.

This proof was improved by Thomas Scanlon, both in the number theory part
(obtaining the automorphism f under less restrictive conditions) and the model
theory (using orthogonality as well as geometric modularity.) He proved:

Theorem 4.4 The Tate-Voloch conjecture is true when A is over a finite exten-
sion of Q p.

5 Quasi-finite structures

5.1 Lie-coordinatized structures

In the previous examples, a first-order structure was given; the existence of a
dimension theory, a semi-minimal decomposition, and a structure theory for the
minimal geometries was proved. Here we will go in the opposite direction. A
certain class of linear geometries ( “basic Lie geometries”) is explicitly defined,
and one considers structures having a semi-minimal analysis in terms of these
geometries. (“Lie- coordinatizable structures”.) One then proves the existence of a
global dimension theory, global modularity, a structure theory for definable groups,
existence of good finite approximations, axiomatizability, and other properties.
The results of this section are from [10].

5.1.1 The basic geometries The full list includes all the “classical geome-
tries” (Weyl): linear, unitary, orthogonal, symplectic; over an arbitrary finite
field. (There are also some slightly less classical variants.) For definiteness, we
take them to be ℵ0-dimensional (later finite dimensional ones will be considered
too.)

The simplest three examples:

1. A pure set X. (The only relations on Xn are the diagonals.)

2. A vector space V over GF (3). (The basic relations:
∑

aiXi = 0.)

3. A vector space V over GF (3) with a symmetric bilinear form V×V → GF (3).
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4. A pair (V, V ∗) of vector spaces over GF (2). (Basic relations: addition on V
and on V ∗; a pairing ( , ) : V × V ∗ → GF (2).)

We will be interested in these geometries when they are embedded in a struc-
ture M . This means (e.g. in case (2) above:) V coincides with a sort in M , or
with a definable subset of a sort in M ; and a subset of V n is definable in M if and
only if it is definable in the vector space V . (In case (2), iff it is a finite Boolean
combination of relations

∑
aiXi = 0.)

When more than one geometry is involved, say two geometries J1, J2, we will
assume they are jointly embedded: the disjoint union of J1,J2 as structures, is
embedded. This is equivalent to an orthogonality condition on J1,J2 as embedded
in M .

This condition is more complicated when a family of geometries is involved,
and we will omit it. If a geometry is embedded in M , it is automatically minimal
in the sense that it has S1-dimension 1 (cf. §2.2)

5.1.2 Definition of Lie-coordinatizable structures Let M be a first-
order structure (§2). We assume a class of basic geometries is jointly embedded
in M (for simplicity, consider a finite class.) We consider the class M of basic
geometries, and principal homogeneous spaces over groups associated with the
basic geometries. (Essentially, affine spaces corresponding to the vector spaces.)
We assume §1.1 - Theorem 1.1 and the remark following it - are true in M with
respect to the class M. Thus for each definable D ⊂ M , there exist J1, ..., Jn ∈M
and a nontrivial definable map f : D → (∪iJi)[n].

We also assume that M is ℵ0-categorical, or that Aut(M) has finitely many
orbits on Mn, for any n. (Note that this is the case for each of the basic geome-
tries.) It follows that the process of semi-minimal analysis - finding a function on
each fiber of f above into other semi-basic geometries, and iterating - terminates
after finitely many steps. (Cf. [10] for details.)

5.1.3 Example Let M be a free Abelian group of exponent 4. M contains
V = 2M = {x ∈ M : 2x = 0}. This can be shown to be an embedded geometry
(of type (2) on our short list.) The map f : M → V is given by: f(x) = 2x. For
a ∈ V , f−1(a) is a homogeneous space over V itself.

The following theorem lifts to a Lie coordinatizable structure, some easy but
important properties of the basic geometries themselves.

Theorem 5.1 Let M be Lie-coordinatizable.

1. M has finite S1-dimension.

2. M is geometrically modular.

3. M has the finite model property: every finite set of first order sentences true
in M , is true in a finite structure.

4. In fact M is the union of finite homogeneous substructures: finite substruc-
tures N , such every partial map from N to N extending to an automorphism
of M , extends to an automorphism of N .
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5. M is relatively finitely axiomatizable, over the Lie geometries in M .

This type of theorem was first proved by Zilber: he showed that a totally
categorical structure is Lie- coordinatizable, by a single basic geometry of type
(1) or (2), and proceeded to conclude 5.1 (2) and (3). (The assumption of total
categoricity was in effect: finite Morley dimension, and a single unknown minimal
set, satisfying 5.1 (3). Zilber globalized this last assumption, but his proof went
by way of a classification of the geometry involved; no direct proof of a local-global
principle for 5.1(3) is known.) [9] extended this to the case of many geometries.
It follows from (3), and this was Zilber’s original motivation, that totally categor-
ical structures are not finitely axiomatizable. (4) means that a single first order
sentence, together with the isomorphism type of the basic geometries embedded
in M , determines the isomorphism type of M . Now each of the basic geometries
is itself determined by a single sentence together with their dimension. Thus (4)
is equivalent to the statement that M is axiomatized by finitely many sentences,
together with finitely many axiom schemes asserting that certain sets are infinite.
It follows in particular that only countably many Lie coordinatizable structures
exist.

5.2 Highly symmetric finite graphs

Our subject here is the class C(β) of all finite graphs M , whose automorphism
group has ≤ β orbits on four-tuples of vertices.

To say that a large graph has a bounded number of orbits on vertices already
implies it has some symmetries; but an arbitrary finite graph is easily coded in a
(not much larger) graph whose automorphism group is transitive on vertices, or
even pairs or triples of vertices. At k = 4 something new happens; the symmetry
condition permeates all parts of the graph, and becomes stable under the naming
of boundedly many parameters.

The following remark shows the first connection between a single, infinite, Lie-
coordinatizable structure, and a class of finite , highly homogeneous structures.

Remark 5.1 Let M be a Lie - coordinatizable structure. Let Γ be a definable
graph in M . Let β be the number of orbits of Aut(M) on Γ4. Let C(M) be the
class of finite homogeneous substructures of M , and

C(M, Γ) = {N ∩ Γ : N ∈ C(M)}

Then C(M ; Γ) ⊂ C(β).

The proof is immediate from the definition of homogeneous substructure.
If M has k Lie geometries (for simplicity), J1, ..., Jk then a homogeneous

substructure N of M can be assigned k “dimensions”: dim(Ji ∩N), . . . , dim(Jk ∩
N). It can be shown that N is determined up to isomorphism by these dimensions.
The remark thus provides some very orderly subfamilies of C(β).
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Example Let V (n) be an n-dimensional vector space over a fixed finite field
F , say GF (5). As any eight elements of V (n) are contained in a copy of V (8), the
automorphism group GL(n, F ) has no more orbits on V (n)8 than GL(8, 5) has on
V (8)8 ; this number is bounded by 564). Let Γ(n) be the graph whose vertices are
2-dimensional subspaces of V (n), with an edge between two subspaces contained
in the same 3-dimensional space. Then GL(n, F ) acts on Γ(n) by automorphisms,
and has ≤ 564 orbits on Γ(n)4. So Γ(n) ∈ C(564). Similarly, any class of graphs
formed uniformly out of the V (n) falls into a single C(β).

We show that C(β) consists entirely of such graphs:

Theorem 5.2 There exist finitely many Lie-coordinatizable structures
M1, . . . , Mr, such that C(β) = ∪1≤i≤rC(Mi).

The entire theory applies to finite structures of any “signature”, e.g. hyper-
graphs, and not only to graphs (and the “4” remains 4.) The theorem was proved
by Lachlan for certain subclasses of C(β): the graphs (or hypergraphs) that are
homogeneous in the sense that every partial automorphism extends to an automor-
phism. In this case, only the trivial geometry (1) occurs in the Lie coordinatized
structure.

We will not have time to bring out the power of 5.2, but will list some con-
sequences that can be stated without further definitions, in the language of group
theory, combinatorics and complexity, respectively.

Corollary 5.2 There exists a bound h = h(b) such that for any M ∈ C(β),
Aut(M) has at most h distinct non-Abelian Jordan-Holder components. The iso-
morphism type of M is determined by the set of ≤ h simple components of Aut(M),
up to a bounded number of possibilities.

Each of these simple components typically occurs unboundedly often in
Aut(M); in addition very large Abelian groups occur. The corollary hinges on
a correspondence between the basic geometries embedded in a Lie-coordinatizable
structure, and the simple components of the finite approximations to the structure.

The next corollary is a a version of the global modularity principle. Consider
bipartite graphs Γ = (P, L, I ⊂ (P × L)). Let I(b) = {a ∈ P : (a, b) ∈ I}. Let
π, λ, lb denote the sizes of P, L, I(b) respectively. Let l = min{lb : b ∈ L}.

Theorem 5.3 Let Γ vary through a family of bipartite graphs in C(β). Assume
that for b 6= b′ ∈ L, |I(b) ∩ I(b′)| = o(l). Then

λl ≤ O(p)

By contrast, if (P, L, I) is a projective plane, then π = λ ∼ l2, while
|I(b) ∩ I(b′)| = 1. The theorem thus says that no bipartite graph in C(β) is
combinatorially similar to a projective plane; this is rather close to Lachlan’s orig-
inal formulation in the stable ℵ0-categorical framework.

The theorem is obtained from a local-global principle for modularity; the mod-
ularity of the basic geometries themselves is a consequence of the classification of
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the finite simple groups. It would be interesting to know if the above combinato-
rial statement can be obtained without the heavy group theory. (In [10] a number
of principles of a roughly similar nature are formulated; if all are assumed, one
obtains a direct proof of the relevant part of the classification (classification of the
large finite simple groups having highly symmetric permutation representations in
the above sense, or occurring as components in groups that do.)

Finally,

Corollary 5.3 Membership of a graph in C(k) is decidable in polynomial time.
So is the problem of deciding isomorphism between two graphs in C(k)

This is analogous to a famous result of Luks (Proc. 21 FOCS), concerning
graphs of bounded valency, but here the graphs are at the opposite extreme (and
in particular have bounded diameter.)

5.3 Proof of 5.2 In [27], the primitive permutation groups with few orbits
on 4-tuples are analyzed group-theoretically. The conclusion is an almost precise
classification of the possibilities. The proof relies massively on the classification of
the finite simple groups, and on related methods.

It follows from this result that to each Γ ∈ C(β) one can associate a finite
approximation MΓ to a Lie coordinatized structure, such that Γ, MΓ have the
same automorphism group.

A very soft translation into model theory shows that MΓ and Γ interpret each
other; Γ can be viewed as a sort in a structure, built out of MΓ. A formula φΓ

describes the construction of Γ from MΓ.
The difficulty is that the soft connection between automorphism groups and

formulas says nothing of the length of the formula. It may be as large as the finite
structure it describes. Take for instance the class {Pn = (Vn, V ∗

n )} of dual pairs (Vn

is an n-dimensional GF (2)-vector space; V ∗
n is the dual.) The pair Pn = (Vn, V ∗

n )
(or a suitable graph formed from it) has the same automorphism group as Vn. So
we may have MPn = Vn. Yet there is no formula of bounded length that constructs
V ∗ from V . In this case, we were given the wrong basic geometry, and we have to
find another that does have a construction of bounded length. (In this case, it is
just Pn itself.)

We take an ultraproduct of the structures Γ, and MΓ , obtaining infinite
structures Γ∗, M∗ = (MΓ)∗. In a language with formulas of nonstandard size,
M∗ interprets Γ∗, so Γ∗, in this rich language, is Lie coordinatizable. We now
prove that the class of Lie coordinatizable structures is closed under interpretations.
This is nontrivial and lengthy; the interpreted structure will no longer have the
original coordinatizing geometries, and one must go via more global properties
(such as geometric modularity) that are inherited when the language is reduced.
We apply this theorem to the reduct Γ∗ in the graph language, obtaining a new
Lie coordinatization. If done appropriately, it can now be shown that the original
Γ are homogeneous substructures of Γ∗.

Robinson dreamed of rewriting number theory using nonstandard analysis.
The hope is that ultrapowers will smooth out the finite irregularities and help

Documenta Mathematica · Extra Volume ICM 1998 · I · 281–302



300 Ehud Hrushovski

to bring out the uniform behavior behind the undecidability. Some theorems of
number theory (some treated by Robinson, and Robinson - Roquette) are very
naturally stated in nonstandard language. The trouble is that when only one
road leads from standard to nonstandard territory, a direct nonstandard proof
is homotopic to a standard one. Only if two distinct paths lead to the same
point can we get a truly new proof. In both uses of nonstandard ideas reported
on here, the second road is provided by an axiomatization (difference fields, Lie-
coordinatized structures) together with a method of analysis of abstract models
of these axioms (In both these cases, finite S1-dimension and related concepts
of definable groups.) To extend the scope of such results in number theoretic
directions, one must develop both new quantifier-elimination results, beyond local
fields, and corresponding generalizations of stability capable of dealing with them.
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Constant Term Identities,

Orthogonal Polynomials,

and Affine Hecke Algebras

I. G. Macdonald

The main aim of this lecture is to survey a theory of orthogonal polynomials in
several variables which has developed over the last ten years or so. We shall
concentrate on the purely algebraic aspects of the theory, and for lack of time
and competence we shall say nothing about its physical applications (completely
integrable systems, KZ equations, etc.)

These polynomials include as special cases, on the one hand all the classical
orthogonal polynomials in one variable (Legendre, Jacobi, Hermite, · · · ), and on
the other hand polynomials that arise in the representation theory of Lie groups
(characters of compact Lie groups, spherical functions on real and p-adic symmetric
spaces and their quantum analogues). The underlying notion is that of a root
system, to which I shall turn first.

1 Root systems

Root systems and their Weyl groups constitute the combinatorial infrastructure
of much of the theory of Lie groups and Lie algebras. Thus a complex semisimple
Lie algebra or a compact connected Lie group with trivial centre, is determined
up to isomorphism by its root system. Moreover, and quite apart from their Lie-
theoretic origin, the geometry and algebra of root systems presents an apparently
inexhaustible source of beautiful combinatorics.

It is time for definitions and examples. Let V be a real vector space of finite
dimension, endowed with a positive definite scalar product 〈u, v〉. For each non-
zero α ∈ V let sα denote the orthogonal reflection in the hyperplane Hα through
the origin perpendicular to α. Explicitly,

(1.1) sα(v) = v − 〈v, α∨〉α

for v ∈ V , where α∨ = 2α/〈α, α〉.
A root system R in V is a finite non-empty set of non-zero vectors (called

roots) that span V and are such that for each pair α, β ∈ R we have

(1.2) 〈α∨, β〉 ∈ Z,
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(1.3) sα(β) ∈ R.

Thus each reflection sα(α ∈ R) permutes R, and the group of orthogonal trans-
formations of V generated by the sα is a finite group W0, called the Weyl group
of R.

We may remark straightaway that the integrality condition (1.2) by itself is
extremely restrictive. Let α, β ∈ R and let Θ be the angle between the vectors α
and β. Then

4 cos2 Θ =
4〈α, β〉2

〈α, α〉〈β, β〉 = 〈α∨, β〉〈α, β∨〉

is an integer, hence can only take the values 0, 1, 2, 3, 4. It follows that the only
possibilities for Θ are π/m or π − (π/m), where m = 1, 2, 3, 4 or 6.

The vectors α∨ for α ∈ R form a root system R∨, the dual of R. If α ∈ R, then
also −α ∈ R (because −α = sα(α)). The root system R is said to be reduced if the
only scalar multiples of α in R are ±α. Furthermore, R is said to be irreducible
if it is not possible to partition R into two non-empty subsets R1 and R2 such
that each root in R1 is orthogonal to each root in R2 (which would imply that R1

and R2 are themselves root systems). We shall assume throughout that R is both
reduced and irreducible.

For those to whom these notions are unfamiliar, some examples to bear in
mind are the following. Let ε1, · · · , εn be the standard basis of Rn(n ≥ 2), with
the usual scalar product, for which 〈εi, εj〉 = δij . Then the vectors

(An−1) ± εi − εj

where i 6= j, form a root system (and V is the hyperplane in Rn orthogonal
to ε1 + · · · + εn). The Weyl group is the symmetric group Sn, acting on V by
permuting the εi.

Moreover, each of the sets of vectors

(Bn) ± εi (1 ≤ i ≤ n), ±εi ± εj (1 ≤ i < j ≤ n),

(Cn) ±2εi (1 ≤ i ≤ n), ±εi ± εj (1 ≤ i < j ≤ n),

(Dn) εi ± εj (1 ≤ i < j ≤ n)

is a root system. For Bn and Cn, the Weyl group is the group of all signed
permutations of the εi, of order 2nn! (the hyperoctahedral group). For Dn, it is a
subgroup of index 2 in this group. The root systems Bn and Cn are duals of each
other, and An−1, Dn are each self-dual.

In fact, the root systems An(n ≥ 1), Bn(n ≥ 2), Cn(n ≥ 3) and Dn(n ≥ 4)
almost exhaust the catalogue of reduced irreducible root systems (up to isomor-
phism). Apart from these, there are just five others, the “exceptional” root sys-
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tems, denoted by E6, E7, E8, F4 and G2. (In each case the numerical suffix is the
dimension of the space V spanned by R, which is also called the rank of R.)

Let R be any (reduced, irreducible) root system in V and consider the com-
plement

X = V −
⋃

α∈R

Hα

of the union of the reflecting hyperplanes Hα, α ∈ R. The connected components
of X are open simplicial cones which are permuted simply transitively by the Weyl
group W0. Let Γ be one of these components, chosen once and for all; it is bounded
by n = dim V hyperplanes Hαi(1 ≤ i ≤ n), and

Γ = {x ∈ V : 〈αi, x〉 > 0 (1 ≤ i ≤ n)}.

The αi are the simple roots determined by Γ, and each root α ∈ R is of the
form

(1.4) α =
r∑
1

riαi

with integral coefficients ri all of the same sign. A root α ∈ R is positive (resp.
negative) relative to Γ if 〈α, x〉 > 0(resp. < 0) for all x ∈ Γ. Equivalently, α ∈ R
is positive (resp. negative) if the coefficients ri in (1.4) are all ≥ 0(resp. ≤ 0). Let
R+ (resp. R−) denote the set of positive (resp. negative) roots. Then R− = −R+,
and R = R+ ∪ R−. Moreover, there is a unique root ϕ ∈ R+, called the highest
root, for which the sum of the coefficients

∑
ri in (1.4) is maximal. In An−1, for

example, we may take the simple roots to be αi = εi − εi+1(1 ≤ i ≤ n − 1); the
positive roots are then εi − εj with i < j, and the highest root is ε1 − εn.

The abelian group Q generated by R, whose elements are the integral linear
combinations of the roots, is a lattice in V (i. e. a free abelian group of rank
n = dim V ) called the root lattice. Clearly the simple roots α1, · · ·αn form a basis
of Q. We denote by Q+ the subsemigroup of Q consisting of all sums

∑
riαi where

the coefficients are non negative integers.

Next, the set P of all λ ∈ V such that 〈λ, α∨〉 ∈ Z for all α ∈ R is another
lattice, called the weight lattice. It has a basis consisting of the fundamental weights
π1, · · · , πn, defined by the equations 〈πi, α

∨
j 〉 = δij . We denote by P+ the set of

dominant weights (i. e. λ ∈ P such that 〈λ, α∨〉 ≥ 0 for all α ∈ R+). We have
P ⊃ Q (by (1.2)) but P+ 6⊃ Q+ (unless n = 1, i. e. R = A1). The quotient P/Q is
a finite group, since both P and G are lattices of the same rank n. Clearly, both
P and Q are stable under the action of the Weyl group W0. Each W0-orbit in P
contains exactly one dominant weight, i. e. P+ is a fundamental region for the
action of W0 on P .

Finally, the Weyl group W0 acts on V and therefore also on the algebra
S(V ) of polynomial functions on V . It can be shown that the subring S(V )W0

of W0-invariant polynomial functions in generated by n = dim V algebraically
independent homogeneous polynomial functions, of degrees say d1, · · · , dn. The
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functions themselves are not uniquely determined, but their degrees are: they are
called the degrees of W0. For example, if R is An−1, so that W0 is the symmetric
group Sn, we may take as generators of S(V )W0 the power sums

xr
1 + · · ·+ xr

n (2 ≤ r ≤ n)

where x1, · · · , xn are coordinates in Rn. Thus in this case the degrees are
2, 3, · · · , n.

2 Constant term identities

Let F be a field of characteristic zero and let A = F [P ] be the group algebra over
F of the weight lattice P . Since the group operation in P is addition, we shall use
an exponential notation in A, and denote by eλ the element of A corresponding to
λ ∈ P . These “formal exponentials” eλ form an F -basis of A, such that eλ · eµ =
eλ+µ and (eλ)−1 = e−λ. In particular, e0 = 1 is the identity element of A. The
ring A is an algebra of Laurent polynomials, namely A = F

[
u±1

1 , · · ·u±1
n

]
where

ui = eπi (πi the fundamental weights).

If
f =

∑

λ∈P

fλeλ

is an element of A, with coefficients fλ ∈ F , the constant term of f is f0, the
coefficient of e0 = 1 in f . We can now state two constant term identities that
generalize those of Dyson and Andrews described in the abstract to this lecture.
As before, R is a reduced irreducible root system and k a non negative integer.

(2.1) The constant term in ∏

α∈R

(1− eα)k

is equal to
n∏

i=1

(
kdi

k

)

where d1, · · · dn are the degrees of the Weyl group of R.

When R is An−1, the roots are α = εi − εj where i 6= j, so that eα = xix
−1
j

where xi = eεi . Moreover, as we have seen, the degrees of the Weyl group in this
case are 2, 3, · · · , n; and (

2k

k

)(
3k

k

)
· · ·

(
nk

k

)
=

(nk)!
k!n

Thus we recover Dyson’s original conjecture [5].

Next, in order to state the generalization of Andrew’s conjecture we introduce

the q-analogue of the binomial coefficient
(

r

s

)
, namely the Gaussian polynomial

[
r
s

]
=

(1− qr)(1− qr−1) · · · (1− qr−s+1)
(1− q)(1− q2) · · · (1− qs)
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which tends to
(

r

s

)
as q → 1.

(2.2) The constant term in

∏

α∈R+

k−1∏

i=0

(
1− qieα

) (
1− qi+1e−α

)

is equal to
n∏

i=1

[
kdi

k

]
.

When R is An−1, the positive roots are α = εi − εj with i < j, so that
we recover Andrews’ conjecture. Clearly, also, (2.2) reduces to (2.1) when we let
q → 1.

When these conjectures and others like them were first put forward ([12],
[18]), they appeared as isolated curiosities, and it was not clear what, if anything,
lay behind them. Later [13] it became clear that they could be considered as a
special case of a conjectured norm fomula for orthogonal polynomials, as we shall
explain in the next section.

The identity (2.1) was first proved uniformly for all R by Opdam [20], using
the technique of shift operators developed by Heckman and Opdam in the context
of their theory of hypergeometric functions and Jacobi polynomials [8]. The q-
version (2.2) took longer to resolve, and was finally proved in full generality by
Cherednik [3], although by that time all the root systems with the exception of
E6, E7 and E8 has been dealt with one by one ([2], [9], [6], [7]).

3 Orthogonal polynomials

As in §2, let A be the group algebra F [P ] where F is a field of characteristic 0. The
Weyl group W0 acts on P and therefore also on A : w(eλ) = ewλ(λ ∈ P, w ∈ W0).
Let A0 denote the subalgebra of W0-invariants.

Since each W0-orbit in P meets P+ exactly once, it follows that the orbit-sums

(3.1) mλ =
∑

µ∈W0λ

eµ

where λ ∈ P+ and W0λ is the W0-orbit of λ, form an F -basis of A. Another basis
of A0 is obtained as follows. Let

(3.2 p =
1
2

∑

α∈R+

α

and let

(3.3) δ =
∏

α∈R+

(eα/2 − e−α/2).
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In fact, p ∈ P+ and δ ∈ A : we have

(3.4) δ =
∑

w∈W0

ε(w)ewp

where ε(w) = det(w) = ±1. Thus δ is skew-symmetric for W0, i. e. we have
wδ = ε(w)δ for each w ∈ W0. For each λ ∈ P+, the sum

∑

w∈W0

ε(w)ew(λ+p)

is likewise skew-symmetric, and is divisible by δ in A. The quotient

(3.5) Xλ = δ−1
∑

w∈W0

ε(w)ew(λ+p)

is an element of A0 called the Weyl character corresponding to λ. In terms of the
orbit-sums we have

(3.6) Xλ = mλ +
∑

µ<λ

Kλµmµ

where the coefficients Kλµ are integers (indeed positive integers) and µ < λ means
that λ− µ ∈ Q+ and λ 6= µ.

From (3.6) it follows that the χλ form another F -basis of A0. From now on
we shall take F to be the field Q(q, t) of rational functions in two indeterminates
q, t. Let

(3.7) ∆ = ∆(q, t) =
∏

α∈R+

∞∏
r=0

(1− qreα)(1− qr+1e−α)
(1− qrteα)(1− qr+1te−α)

.

Suppose first that t = qk where k is a non-negative integer. Then ∆ is a finite
product, namely the polynomial whose constant term was the subject of (2.2). (In
the general case, ∆ can be expanded as a formal power series in the n+1 variables
u0, u1, · · · , un, where ui = eαi(1 ≤ i ≤ n) and u0 = qe−ϕ, ϕ the highest root of
R.

We shall use ∆ to define a scalar product on A, as follows. If f ∈ A, say

f =
∑

λ∈P

fλeλ,

let

(3.8) f∗ =
∑

λ∈P f∗λe−λ

where f∗λ is the image of fλ under the automorphism (q, t) 7→ (q−1, t−1) of F . We
now define, for f, g ∈ A,

(3.9) (f, g) = constant term in fg∗∆.
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We can now state

(3.10) There is a unique F -basis (Pλ)λ∈P+ of A0 such that

(i) Pλ = mλ +
∑

µ<λ uλµmµ with coefficients uλµ ∈ F ;

(ii) (Pλ, Pµ) = 0 if λ 6= µ.

It is easy to see that the Pλ, if they exist, are uniquely determined by (i) and
(ii). Their existence, however, requires proof. If the partial order λ > µ on P+

were a total ordering, existence would follow directly from the Gram-Schmidt
orthogonalization process. But it is not a total ordering (unless R = A1) and we
should therefore have to extend it to a total ordering before applying the Gram-
Schmidt mechanism. Thus the content of (3.10) is that however we extend the
partial order λ > µ to a total order, we always obtain the same basis.

We shall not reproduce the original proof ([13] [16]) of (3.10) here, since if
will arise more naturally later in the context of affine Hecke algebras. Instead, let
us look at some special cases:

(1) When t = 1, we have ∆ = 1 and Pλ is the orbit-sum mλ (3.1).

(2) When t = q, Pλ is the Weyl character Xλ (3.5).

(3) When q → 0, t being arbitrary, the Pλ (suitably normalized) occur as the
values of spherical functions on a p-adic symmetric space, when t−1 is a
prime power.

(4) Let t = qk and fix k (which need not be an integer) and let q → 1, so that
t → 1 also. In the limit we have ∆ =

∏
α∈R(1 − eα)k. In this limiting case

the polynomials Pλ are the “Jacobi polynomials” of Heckman and Opdam
[8]. For particular values of k these polynomials occur as values of spherical
functions, but this time on a real symmetric space.

(5) Finally, when R is An−1, the Pλ are the symmetric functions of ([15], chapter
VI), restricted to n variables x1, · · · , xn such that x1 · · ·xn = 1.

To conclude this section, we shall record some properties of the polynomials
Pλ. For simplicity of statement, we shall assume that t = qk where k is a positive
integer.

a.) Norms
The squared norm of Pλ is given by the formula

(3.11) (Pλ, Pλ) = W0(t)
∏

α∈R+

k−1∏

i=0

1− q〈λ+kp,α∨〉+i

1− q〈λ+kp,α∨〉−i

where p is given by (3.2) and W0(t) is the Poincaré polynomial of the Weyl group
W0:

W0(t) =
∑

w∈W0

t`(w)
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where l(w) is the length of w, i. e. the number of α ∈ R+ such that wα ∈ R−.

Notice that when λ = 0 we have Pλ = 1, so that in this case (3.11) gives
the constant term of ∆, i. e. it gives the constant term identity (2.2) (though a
little work is required to recast it in that form). The formula (3.11) was originally
conjectured in [13], and verified there in some cases. In the limiting case q → 1, it
was first proved for all root systems R by Opdam [20], and then in full generality
by Cherednik [3]. We shall indicate a proof later, in §5.

b.) Specialization
Let P∨ be the weight lattice of the dual root system R∨: it consists of all λ ∈ V
such that 〈λ, α〉 ∈ Z for all α ∈ R. It will be convenient to regard each f ∈ A as
a function on P∨, as follows: if µ ∈ P∨ and f =

∑
fλeλ, then

f(µ) =
∑

fλq〈λ,µ〉.

Then we have

(3.12) Pλ(kp∨) = q−〈λ,kp∨〉 ∏

α∈R+

k−1∏

i=0

1− q〈λ+kp,α∨〉+i

1− q〈kp,α∨〉+i

where
p∨ =

1
2

∑

α∈R+

α∨

(warning: p∨ 6= 2p/〈p, p〉).
When k = 1 and q → 1, this reduces to Weyl’s formula for the dimension

of an irreducible representation of a compact Lie group. The formula (3.12) was
originally conjectured in [13]. As with (3.11), it was first proved for all R in the
limiting case q → 1 by Opdam [20], and then in full generality by Cherednik [4].

c.) Symmetry
For λ ∈ P let

P̃λ = Pλ/Pλ(kp∨).

Then we have

(3.13) P̃λ(µ + kp∨) = P̃µ(λ + kp)

for all λ ∈ P+ and µ ∈ (P∨)+, and on the right-hand side of (3.13), Pµ is an
orthogonal polynomial for R∨, so that P̃µ = Pµ/Pµ(kp). When R is of type An−1,
(3.13) is due to Koornwinder ([15], chapter VI, §6). The general case is due to
Cherednik [4].

4 The affine root system and the extended affine Weyl group

The root systems and Weyl groups of §1 have affine counterparts, to which we now
turn. As before, R is a reduced, irreducible root system spanning a real vector
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space V of dimension n ≥ 1. Let Q∨, P∨ respectively denote the root lattice and
the weight lattice of the dual root system R∨.

We shall regard each α ∈ R as a linear function on V : α(x) = 〈α, x〉 for
x ∈ V . Let c denote the constant function 1 on V . Then

(4.1) S = S(R) = {α + nc : α ∈ R, n ∈ Z}

is the affine root system associated with R. The elements of S are affine-linear
functions on V , called affine roots, and we shall denote them by italic letters,
a, b, . . . .

For each a ∈ S, let Ha denote the affine hyperplane in V on which a vanishes,
and let sa denote the orthogonal reflection in this hyperplane. The affine Weyl
group WS is the group of affine isometries of V generated by these reflections. For
each α ∈ R, the mapping sα ◦ sα+c takes x ∈ V to x + α∨, so that

τ(α∨) = sα ◦ sα+c

is translation by α∨. It follows that WS contains a subgroup of translations iso-
morphic to Q∨, and we have

(4.2) WS = W0 n τ(Q∨)

(semidirect product).

The extended affine Weyl group is

(4.3) W = W0 n τ(P∨).

It acts on V as a discrete group of isometries, and hence by transposition on
functions on V . As such, it permutes the affine roots a ∈ S.

As in §1, let R+ be a system of positive roots in R and α1, · · · , αn the simple
roots, ϕ the highest root. Correspondingly, the affine roots a0, a1, · · · , an, where
a0 = −ϕ + c and αi = αi (1 ≤ i ≤ n) form a set of simple roots for S : each a ∈ S
is of the form

(4.4) a =
n∑

i=0

riai

where the ri are integers, all of the same sign. Let

C = {x ∈ V : ai(x) > 0 (0 ≤ i ≤ n)}

so that C is an open n-simplex bounded by the hyperplanes Hai (0 ≤ i ≤ n).
The group WS is generated by the reflections si = sai

(0 ≤ i ≤ n), subject to the
relations

(4.5) s2
i = 1,
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(4.6) sisjsi · · · = sjsisj · · ·

whenever i 6= j and sisj has finite order mij in WS , there being mij terms on
either side of (4.6). In other words, WS is a Coxeter group on the generators
s0.s1, · · · , sn.

The connected components of V − ⋃
a∈S

Ha are open simplexes, each congruent

to C, and each component is of the form wC for a unique element w ∈ WS .
Thus, for example, when R is of type A2 we obtain the familiar tessellation of the
Euclidean plane by congruent equilateral triangles.

An affine root a ∈ S is positive (resp. negative) relative to C if a(x) > 0 (resp.
a(x) < 0) for x ∈ C. Equivalently, a ∈ S is positive or negative according as the
coefficients ri in (4.4) are all ≥ 0 or all ≤ 0. Let S+ (resp. S−) denote the set of
positive (resp. negative) affine roots. Then S− = −S+, and S = S+ ∪ S−.

Explicitly, the positive affine roots are α + rc where r ≥ 0 if α ∈ R+, and
r ≥ 1 if α ∈ R−. It follows that the product ∆ (3.7) may be written in the form

(4.7) ∆ =
∏

a∈S+

1− ea

1− tea

where for a = α + rc ∈ S, ea = eα+rc = qreα (i. e. we define ec = q).

We shall now define a length function on the extended group W . If w ∈ W , let

`(w) = card(S+ ∩ wS−),

the number of positive affine roots made negative by w. Equivalently, `(w) is the
number of hyperplanes Ha, a ∈ S, that separate C from wC.

Now W , unlike WS , is not in general a Coxeter group (unless P∨ = Q∨) and
may contain elements 6= 1 of length zero. Let

Ω = {w ∈ W : `(w) = 0}
The elements of Ω stabilize the simplex C, and hence permute the simple affine
roots. For each w ∈ W there is a unique w′ ∈ WS such that wC = w′C, and
hence w factorizes uniquely as w = w′v, with w′ ∈ WS and v ∈ Ω. Consequently
we have

(4.8) W = WS o Ω

(semidirect product). From (4.2), (4.3) and (4.8) it follows that Ω ∼= W/WS
∼=

P∨/Q∨, hence is a finite abelian group.

Next, the braid group B of W is the group with generators T (w), w ∈ W , and
relations

T (v)T (w) = T (vw)
whenever `(vw) = `(v) + `(w). We shall denote T (si) by Ti (0 ≤ i ≤ n) and
T (ω) (ω ∈ Ω) simply by ω. Then B is generated by T0, T1, · · · , Tn and Ω subject
to the following relations:
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(a) the counterparts of (4.6), namely the braid relations

(4.9) TiTjTi · · · = TjTiTj · · ·

where i 6= j and there are mij terms on either side;

(b) the relations

(4.10) ωTiω
−1 = Tj

for ω ∈ Ω, where ω(ai) = aj .

Let λ ∈ (P∨)+ be a dominant weight for R∨, and define

Y λ = T (τ(λ))

where τ(λ) is translation by λ. If λ and µ are both dominant, we have

(4.11) Y λ · Y µ = Y λ+µ

in B. If now λ is any element in P∨, we can write λ = µ− ν where µ, ν are both
dominant, and we define

(4.12) Y λ = Y µ(Y ν)−1.

In view of (4.10), this definition is unambiguous. The elements Y λ, λ ∈ P∨, form
a commutative subgroup of B, isomorphic to P∨.

5 The affine Hecke algebra

The Hecke algebra H of W is the quotient of the group algebra F [B] of the braid
group by the ideal generated by the elements (Ti − t1/2)(Ti + t−1/2) (0 ≤ i ≤ n).
(The field F should now include t1/2 as well as q and t.) For each w ∈ W , we
denote the image of T (w) in H by the same symbol T (w): these elements form an
F -basis of H. Thus H is generated over F by T0, T1, · · · , Tn and Ω subject to the
relations (4.9), (4.10), together with the Hecke relations

(5.1) (Ti − t1/2)(Ti + t−1/2) = 0.

When t = 1, H is the group algebra of W .

The following proposition is due to Cherednik [3].

(5.2) The Hecke algebra H acts on A = F [P ] as follows:

Tie
µ = t1/2esiµ +

(
t1/2 − t−1/2

)
(1− eai)−1 (eµ − esiµ) ,

ωeµ = eωµ.

where 0 ≤ i ≤ n and ω ∈ Ω. Moreover, this representation is faithful.
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A proof of (5.2) is sketched in [14]. (In the formulas above, recall that ea0 =
e−ϕ+c = qe−ϕ.)

The elements Y λ, λ ∈ P∨, span a commutative subalgebra of H, isomorphic
to A∨ = F [P∨]. If u ∈ A∨, say

u =
∑

uλeλ

let
u(Y ) =

∑
uλY λ ∈ H.

(5.3) For each w ∈ W , the adjoint of T (w) for the scalar product (3.9) on A is
T (w)−1, i. e., we have

(T (w)f, g) = (f, T (w)−1g)

for all f, g ∈ A. In particular, the adjoint of Y λ is Y −λ, and the adjoint of u(Y ),
where u ∈ A∨, is u∗(Y ) (3.8).

It is enough to show that the adjoint of Ti (resp. ω ∈ Ω) is T−1
i (resp. ω−1),

and this may be verified directly from the definitions.

From (5.2) we have an action of A∨ on A, with u ∈ A acting as u(Y ). One
shows that A0 = AW0 is stable under the action of A∨0 = (A∨)W0 , so that we have
an action of A∨0 on A0. It turns out (see, e.g. [16] chapter III) that this action is
diagonalized by the polynomials Pλ(λ ∈ P+), and more precisely that

(5.4) u(Y )Pλ = u(−λ− kp)Pλ

for all u ∈ A∨. The pairwise orthogonality of the Pλ then follows immediately
from (5.3) and (5.4).

Likewise, the action of A∨ on A can be diagonalized, and this gives rise to a
family of non-symmetric orthogonal polynomials:

(5.5) There is a unique F -basis (Eλ)λ∈P of A such that

(i) Eλ = eλ+ lower terms,

(ii) (Eλ, Eµ) = 0 if λ 6= µ.

(By “lower terms” is meant a linear combination of exponentials eµ where µ < λ
in a certain partial ordering on P .)

The polynomials Eλ are simultaneous eigenfunctions of all operators u(Y ),
u ∈ A∨. (See [19] or [16], Ch. III.)

Consider now the operators

U+ =
∑

w∈W0

t`(w)/2T (w),

U− =
∑

w∈W0

ε(w)t−`(w)/2T (w),
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on A. The operator U+ maps A onto A0, and in particular if λ ∈ P+ then U+Eλ

is a scalar multiple of Pλ.

Next consider, again for λ ∈ P+,

Qλ = U−Eλ.

If λ is not regular (i. e. if 〈λ, αi〉 = 0 for some i) then Qλ = 0.

Both Pλ and Qλ are linear combinations of the Eµ, µ ∈ W0λ, with coeffi-
cients that can be computed explicitly. Hence both (Pλ, Pλ) and (Qλ, Qλ) can be
expressed in terms of (Eλ, Eλ). In this way we obtain [14]

(5.6)
(Qλ, Qλ)
(Pλ, Pλ)

= q−Nk
∏

α∈R+

1− q〈λ+kp,α∨〉+k

1− q〈λ+kp,α∨〉−k

where as usual t = qk, and N = card(R+).

To conclude, we shall sketch a proof of Cherednik’s norm formula (3.1). The
proof will be by induction on k, the cases k = 0 and k = 1 being trivial. From now
on we shall write Pλ,k and Qλ,k in place of Pλ and Qλ, to stress the dependence
on the parameter k, and likewise for the scalar product: (f, g)k in place of (f, g).
Let

πk =
∏

α∈R+

(eα/2 − q−ke−α/2).

Then the P ’s and Q’s are related as follows:

(5.7) For all λ ∈ P+, we have

Pλ,k+1 = π−1
k Qλ+p,k.

Taking λ = 0, it follows that Qp,k = πk. The formula (5.7) may be regarded
as a generalization of Weyl’s character formula (3.5), which is the case k = 0.

From (5.7) we obtain

(5.8)
(Pλ,k+1, Pλ,k+1)k+1

(Qλ+p,k, Qλ+p,k)k
= qNk W0(qk+1)

W0(qk)
.

Coupled with (5.6) (with λ replaced by λ + p) this gives

(Pλ,k+1, Pλ,k+1)k+1

(Pλ+p,k, Pκ+p,k)k
=

W0(qk+1)
W0(qk)

∏

α∈R+

1− q〈λ+(k+1)p,α∨〉+k

1− q〈λ+(k+1)p,α∨〉−k

and (3.11) follows by induction on k.

For simplicity of exposition we have restricted ourselves in this survey to affine
root systems of the type S(R) (4.1). The general picture is that one can attach
to any irreducible affine root system S, reduced or not, families of orthogonal

Documenta Mathematica · Extra Volume ICM 1998 · I · 303–317



316 I. G. Macdonald

polynomials Pλ, Qλ and Eλ as above. These depend (apart from q) on as many
parameters ti as there are orbits in S under the affine Weyl group WS , and the
whole theory can be developed in this more general context. For an irreducible
S, the maximum number of orbits is 5, and is attained by the (non-reduced)
affine root systems denoted by C∨Cn(n ≥ 2) in the tables at the end of [11].
Correspondingly, we have orthogonal polynomials Pλ, Qλ and Eλ depending on
q and five parameters ti. These Pλ are the orthogonal polynomials defined by
Koornwinder [10], which are therefore amenable to the Hecke algebra techniques
described here. A full account will (eventually) appear in the book [17].
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1 Beyond Fourier

The Fourier transform has long ruled over signal processing, leaving little space
for new challenging mathematics. Until the 70’s, signals were mostly speech and
other sounds, which were modeled as realizations of Gaussian processes. As a
result, linear algorithms were considered optimal over all procedures. With a
hypothesis of stationarity, we end-up restricting ourselves to the exclusive class of
convolution operators that are diagonalized by the Fourier transform.

The situation has completely changed with the development of image process-
ing in the 1980’s. Images are poorly modeled by Gaussian processes, and transient
structures such as edges are often more important than stationary properties. Non-
linear algorithms were suddenly unavoidable, opening signal processing to modern
mathematics. Beyond classical applications to transmission, coding and restora-
tion, signal processing also entered the field of information analysis, whose main
branches are speech understanding and computer vision. This interface with per-
ception raised a rich body of new mathematical problems.

The construction of sparse representations for signals (functions), processes,
and operators is at the root of many signal and information processing problems.
A sparse representation characterizes an approximation with few parameters, that
may be obtained from an expansion in a basis or in a more redundant “dictio-
nary”. Complex non-linear processings can often be reduced to simpler and faster
algorithms over such representations. Sparse representations are also powerful
tools which radiate in many branches of mathematics. At ICM’90, Coifman and
Meyer gave a harmonic analysis point view, followed at ICM’94 by Daubechies
and Donoho who explained the impact of wavelet bases in numerical analysis and
statistics. Signal processing is now a driving force that has regrouped a community
of mathematicians and engineers sharing representation techniques. Applications
to signal compression, noise removal, and stochastic modeling lead us through re-
cent developments in approximation theory, harmonic analysis, operator theory,
probability, and statistics.
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2 Sparse Representations

Sparse representations have direct applications to data compression, but are also
necessary to reduce the complexity of classification and identification problems for
large size signals. This section begins with an approximation theory point of view,
and progresses towards signal compression.

2.1 Image Models

A Bayesian view of the world interprets a signal f(x) as a realization of a process
F (x) and the error of a processing is measured in expected value with respect to
the probability distribution of F . Natural images are realizations of non-Gaussian
processes, and there is yet no stochastic model that incorporates the diversity of
complex scenes with edges and textures, such as the Image 1(a). This motivates
the use of poorer but more realistic deterministic models that consider signals
as functions f(x) in a subset S of L2[0, 1]d, with no prior information on their
probability distribution in this set. For a particular processing, one then tries to
minimize the maximum error for signals in S, which is the minimax framework.
The discretization of a signal f with N samples raises no difficulty since it is
equivalent to a projection in a subspace of dimension N .

Large class of images, including Image 1(a), have bounded total variation.
Over [0, 1] the total variation of f(x) measures the sum of the amplitudes of its
oscillations

‖f‖TV =
∫
|f ′(x)| dx < +∞ .

The total variation of an image over [0, 1]2 is defined by

‖f‖TV =
∫ ∫

|~∇f(x)| dx ≤ C .

This norm has a simple geometrical interpretation based on the level-sets

Ωt = {(x, y) ∈ R2 : f(x, y) > t} .

If H1(∂Ωt) is the one-dimensional Hausdorff measure of the boundary of Ωt then

‖f‖TV =
∫ +∞

−∞
H1(∂Ωt) dt. (1)

A bounded variation model for images also incorporates a bounded amplitude

SBV = {f : ‖f‖TV =
∫ ∫

|~∇f(x)| dx ≤ C , ‖f‖∞ = sup
x∈[0,1]2

|f(x)| ≤ C} . (2)

Such images typically have level sets and thus “contours” of finite length. Al-
though simple, this model is sufficient to illustrate the central ideas and difficulties
of signal representations. More restricted classes of images, such as homogeneous
textures, are better represented by Markov random fields over sparse representa-
tions, introduced in Section 4.
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2.2 Representations are Approximations

A sparse representation of f ∈ L2[0, 1]d can be obtained by truncating its decom-
position in an orthonormal basis B = {gm}m∈N

f =
+∞∑
m=0

〈f, gm〉 gm .

Understanding the performance of sparse representations in a basis is a central
topic of approximation theory. A quick overview motivates the use of non-linear
representations, but a more complete tutorial is found in [13].

A linear approximation of f from M inner products 〈f, gm〉 is an orthogonal
projection on a space VM generated from M vectors of B, say the first M

fM = PVM
f =

M−1∑
m=0

〈f, gm〉 gm .

The maximum approximation error over a signal set S is

εl(S,M) = sup
f∈S

‖f − fM‖2 = sup
f∈S

+∞∑

m=M

|〈f, gm〉|2.

Such a representation is efficient if εl(S,M) has fast decay as M decreases, and
hence if |〈f, gm〉| has fast decay as m increases. This depends upon the choice of
B relative to S. For example, uniformly regular functions are well approximated
by M low-frequency vectors of a Fourier basis {ei2πmx}m∈Z of L2[0, 1]. If S is
included in a ball of a Sobolev space Ws[0, 1] of functions of period 1 then the
decay of Fourier coefficients at high frequencies implies that εl(S,M) = O(M−2s)
[13]. Bounded variation functions may have discontinuities, and are thus not well
approximated in a Fourier basis. Using the concept of M-width introduced by
Kolmogorov, one can prove that for a ball SBV of bounded variation functions,
the most rapid error decay in a basis B is εl(SBV,M) ∼ M−1 [13].

To improve this result, a more adaptive representation is constructed by pro-
jecting f over M basis vectors selected depending upon f

fM =
∑

m∈IM

〈f, gm〉 gm . (3)

Since ‖f−fM‖2 =
∑

m∈/IM
|〈f, gm〉|2, the best approximation is obtained by select-

ing in IM the M vectors which yield coefficients |〈f, gm〉| of maximum amplitude.
This approximation depends upon 2M parameters, the M indexes in IM and the
values {〈f, gm〉}m∈IM

. Let us sort the inner products of f in decreasing order. We
denote ck = 〈f, gmk

〉 such that |ck| ≥ |ck+1| for k ≥ 1. The non-linear approxima-
tion error is

‖f − fM‖2 =
+∞∑

k=M+1

|ck|2 and εn(S, M) = sup
f∈S

‖f − fM‖2 .
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It depends upon the decay rate of the sorted amplitudes |ck|. In the basis B, a
wlp ball of radius C is defined by

Swlp = {f : |ck| = |〈f, gmk
〉| ≤ C k−1/p} . (4)

We easily verify that S ⊂ Swlp for some C > 0 and p < 2 if and only if
εn(S,M) = O(M1− 2

p ). The main difficulty of non-linear approximations is to
find the minimum p and a corresponding basis B such that S ⊂ Swlp . Such a basis
is said to be optimal for the non-linear approximation of S. Unconditional bases
are examples of optimal bases.

An orthonormal basis B is an unconditional basis of a Banach subspace B ⊂
L2[0, 1]d if there exists A such that for any sign sequence sm ∈ {−1, 1} and f ∈ B

∥∥∥∥∥
+∞∑
m=0

sm 〈f, gm〉 gm

∥∥∥∥∥
B

≤ A

∥∥∥∥∥
+∞∑
m=0

〈f, gm〉 gm

∥∥∥∥∥
B

.

The fact that ‖f‖B < +∞ can thus be characterized from the amplitudes |〈f, gm〉|,
and related to a decay condition of the sorted coefficients. One can prove [13] that
if B is an unconditional basis of B then it is an optimal basis for the non-linear
approximation of a ball S = {f : ‖f‖B ≤ C} of B.

2.3 Wavelet Adaptive Grid

Wavelet bases have important applications in mathematics and signal processing
because of their ability to build sparse representations for large classes of functions.
The first orthonormal wavelet bases of L2(R) were introduced by Strömberg and
Meyer [25]. A multiresolution interpretation of wavelet bases gives a general frame-
work for constructing nearly all wavelets that generate a wavelet basis of L2(R)
[19]. It also leads to a fast discrete algorithm that requires O(N) calculations
to compute N wavelet coefficients [22]. Daubechies [9] discovered wavelets with
compact support, and the resulting bases have been adapted to L2[0, 1]d. Her pre-
sentation at ICM’94 [10] introduces the main results, that we quickly summarize.

An orthonormal wavelet basis of L2[0, 1] is a family of functions

B =
(
{φl,n}0≤n<2l ∪ {ψj,n}j≥l,0≤n<2j

)
.

At resolution 2l, the scaling functions {φl,n}0≤n<2l generate a space Vl which
includes all polynomials of degree q, for some q ≥ 0. The wavelets ψj,n at higher
resolutions 2j > 2l are thus orthogonal to all polynomials of degree q. Wavelets
ψj,n whose support lie inside (0, 1) are obtained by dilating and translating a single
“mother” wavelet ψ

ψj,n(t) =
√

2j ψ(2jt− n) .

Boundary wavelets are modified to keep the support inside [0, 1].
A linear approximation of f from M = 2J > 2l wavelets and scaling functions

is calculated by keeping all coefficients at resolutions 2j < 2J :

fM =
2l∑

n=0

〈f, φl,n〉φl,n +
J−1∑

j=l

2j∑
n=0

〈f, ψj,n〉ψj,n.

Documenta Mathematica · Extra Volume ICM 1998 · I · 319–338



Applied Mathematics Meets Signal Processing 323

The first sum provides a coarse approximation of f at resolution 2l, and each par-
tial sum

∑2j

n=0 〈f, ψj,n〉ψj,n brings “details” that improve this approximation from
resolution 2j to resolution 2j+1. If f is continuous, this linear approximation at
resolution 2J is essentially equivalent to a uniform grid approximation calculated
by interpolating the samples {f(2−Jn)}0≤n<2J . Like a linear Fourier approxima-
tion, this uniform grid approximation is efficient only if f is uniformly regular.
It provides poor approximations of functions with singularities, such as bounded
variation functions.

A non-linear wavelet approximation keeps the M wavelet coefficients of largest
amplitude. The amplitude of |〈f, ψj,n〉| depends upon the local regularity of f .
Suppose that the mother wavelet ψ is Cq+1 and orthogonal to polynomials of
degree q. One can prove [25] that f is uniformly Lipschitz α < q + 1 over an
interval [a, b] if and only if there exists A > 0 such that for all ψj,n whose support
are included in [a, b] (modulo boundary issues)

|〈f, ψj,n〉| ≤ A 2−(α+1/2)j .

In the domains where the Lipschitz regularity α is large, |〈f, ψj,n〉| decays quickly
as the resolution 2j increases. At high resolution 2j , large coefficients appear in
the neighborhood of singularities, where 0 ≤ α < 1. More wavelet coefficients are
kept in the neighborhood of singularities, so a non-linear wavelet approximation
is equivalent to an adaptive grid whose resolution is refined in the neighborhood
of singularities.

The impact of wavelet bases in functional analysis comes from the fact that
they are unconditional bases of a large family of smoothness spaces (Besov spaces)
[25], and are thus optimal for non-linear approximations in balls of these spaces.
Although the space BV of bounded variation functions admits no unconditional
basis, it can be embedded in two Besov spaces. This allows one to prove that
wavelet bases are optimal to approximate a ball SBV of bounded variation func-
tions. A ball SBV is included in a wlp ball (4) for p = 2/3 but not for p < 2/3 [12].
Hence εn(SBV,M) = O(M1−2/p) = O(M−2). When M increases, the asymptotic
decay of εn(SBV, M) is thus faster than any linear approximation using M pa-
rameters, which decays at most like M−1.

In two dimensions, wavelet bases are constructed with three “mother”
wavelets ψk for 1 ≤ k ≤ 3, which are dilated and translated

ψk
j,n(x1, x2) = ψk

j,n(x) = 2j ψk(2jx1 − n1, 2jx2 − n2) .

Appropriate modifications are made at the boundary so that supports stay in
[0, 1]2. A wavelet ψk

j,n has a square support of size proportional to 2−j , and
centered near 2−jn = (2−jn1, 2−jn2). An orthonormal wavelet basis of L2[0, 1]2

is obtained by adding orthonormal scaling functions that define a lower resolution
space

B =
(
{φl,n}2−ln∈[0,1)2 ∪ {ψk

j,n}j≥l , 2−jn∈[0,1)2 , 1≤k≤3

)
. (5)

A discrete image is a square array of N2 points (pixels), with N = 512 in
Image 1(a). The wavelet basis (5) can be discretized to define an orthonormal basis
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of images of N2 pixels. The wavelet coefficients of the image 1(a) are shown in 1(b).
Each sub-image gives the values of {|〈f, ψk

j,n〉|}2−jn∈[0,1)2 for a fixed j and a fixed
k. The number of wavelet coefficients in each sub-image is 22j . White and black
points correspond respectively to nearly zero or large coefficients |〈f, ψk

j,n〉|. These
sub-images go by triplets corresponding to the index 1 ≤ k ≤ 3. The wavelets
for k = 1, 2, 3 are sensitive to image variations along different orientations. Most
points are white, meaning that the majority of wavelet coefficients are nearly zero.
The few large ones are located in the domains where the image intensity has a
sharp variation due to an “edge” or a “texture”.

(a) (b)

Figure 1: (a): Original image f . (b): Amplitude of coefficients |〈f, ψk
j,n〉| in a

wavelet orthonormal basis. Each sub-image corresponds to a different resolution
2j and different orientation k (see text).

A linear approximation from M = 22J wavelets is calculated by keeping all
coefficients at resolutions 2j < 2J . This uniform grid approximation is particularly
ineffective for images including discontinuities. For a ball of bounded variation
images (2), one can prove that εl(SBV,M) = A > 0. The maximum approximation
error does not decay to zero as M increases.

Non-linear approximations are much more effective because they keep wavelet
coefficients near the singularities and (1) indicates that the lengths of “edges”
remains finite. More formally, one can prove that SBV is included in a wl1 ball
[4] and as a consequence εn(SBV,M) = O(M−1). The wavelet adaptive grid gives
much better image approximation than a uniform grid, and no other orthonormal
basis can improve the approximation rate of an orthonormal wavelet basis.

2.4 Signal Compression

Economic storage and fast transmission of large signals through channels of limited
bandwidth (such as Internet) are major applications of signal compression. Coding
efficiently a signal with as few bits as possible requires to build a sparse represen-
tation. Signal processing engineers did not wait for a mathematical analysis of
non-linear approximations in order to develop compressed audio or image codes in
orthonormal bases. The first wavelet image coder was implemented in 1986 [34],
before wavelet orthonormal bases had truly been studied in mathematics. The fast
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orthogonal wavelet transform is indeed computed with a “filter bank” algorithm,
which was initially introduced in signal processing to multiplex signals (aggregate
several signals into one) [7]. A discrete filter bank theory has been developed
in signal processing [33], but only later the connection with wavelet orthonormal
bases was established [19]. Although the mathematics came late, analyzing the
performance of image coders requires use of recent approximation theory results,
and these open directions for potential improvements.

The signals in S are now discretized and approximated at resolution N , which
means that they belong to a space of dimension N . A transform code decomposes
f in an orthonormal basis B = {gm}0≤m<N

f =
N−1∑
m=0

〈f, gm〉 gm ,

and approximates each coefficient 〈f, gm〉 with a quantized value, which is coded
with as few bits as possible. A uniform quantizer with bin size ∆ approximates
x ∈ R by Q(x) = k∆ with k ∈ Z and |x−Q(x)| ≤ ∆/2. The resulting quantized
signal is

f̃ =
N−1∑
m=0

Q(〈f, gm〉) gm .

The problem is to minimize the maximum distortion d(S, R) = supf∈S ‖f − f̃‖2
for a maximum number of bits R allocated to code f̃ .

(a) (b)

Figure 2: (a): Image coded with 0.25 bits/pixel, by quantizing the wavelet coef-
ficients of the original image displayed in Figure 1. (b): Image coded with 0.125
bits/pixel.

The distortion of a transform code is first related to a non-linear approxi-
mation. Let M be the number of coefficients above ∆/2 and fM the non-linear
approximation of f from these M largest coefficients

fM =
∑

|〈f,gm〉|>∆/2

〈f, gm〉 gm .
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Since Q(x) = 0 when |x| < ∆/2, and |x−Q(x)| ≤ ∆/2, the distortion is

d(f, R) = ‖f − f̃‖2 ≤ ‖f − fM‖2 + M
∆2

4
. (6)

This connects us with non-linear approximations. Suppose that S is in a wlp

ball Swlp (4) of radius C, with p < 2. Denote by M0 = Cp(∆/2)−p. Since
|ck| = |〈f, gmk

〉| ≤ C k−1/p, necessarily M ≤ M0. We also verify that

d(S, R) = sup
f∈S

d(f, R) ≤ sup
f∈S

‖f − fM0‖2 + M0
∆2

4
= O(M−2/p+1

0 ) . (7)

The total distortion is thus driven by the non-linear approximation error.
To optimize the transform code, we must minimize the maximum number

of bits R required to code the N values {Q(〈f, gm〉)}0≤m<N for f ∈ S. For
high compression rates N À M0 ≥ M , in which case a large proportion N−M

N
of coefficients quantized to zero. An entropy code takes advantage of this, by
allocating fewer bits to code coefficients that occur more frequently than others.
Knowing that S ⊂ Swlp , one can construct an arithmetic code which requires a
maximum number of bits R ∼ M0 log2

M0
N [22]. We thus derive from (7) that

d(S, R) = O(R1−2/q) for any q > p.
The decay rate of d(S, R) is maximized in a basis B which is optimal for

non-linear approximations in S, because it minimizes the exponent p such that
S ⊂ Swlp In particular, wavelet bases are optimal for bounded variation images
and the minimum is p = 1. The Figures 2(a,b) are compressed images f̃ calculated
by quantizing the wavelet coefficients in Figure 1(b). They are coded respectively
with R

N = 0.25 bits/pixel and 0.125 bits/pixel, with an optimized coder for zero
coefficients [30]. The original image 1(a) is coded with 8 bits/pixel, so this cor-
responds to compression factors of 32 and 64. For 0.25 bits/pixel, the distortions
are hardly visible but become apparent for 0.125 bits/pixel.

Let us emphasize that the choice of basis depends entirely on the nature of
the signals in S. For sounds, totally different bases must be chosen in order to
approximate efficiently complex oscillatory waveforms of varying durations. Figure
3 shows the recording of the word “greasy”. Current compression audio standard
for Compact Disk quality, such as the AC-system of Dolby, are calculated in bases
that are similar to a local cosine basis. Such a basis is constructed with an even
function w(t), called a window, which has a support [−2l, 2l] and is translated to
cover the real axis uniformly:

+∞∑
p=−∞

|w(t− p l)|2 = 1.

Malvar [23], Coifman and Meyer [5] proved that if further symmetry properties
are imposed on w(t) then multiplications by cosine functions yield an orthonormal
basis of L2(R)

{
gp,k(t) =

1√
l
w(t− p l) cos

(
πk (l−1t− p)

)}

k∈N,p∈Z
. (8)
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As in the image case, the performance of an audio code in this basis depends
on being able to approximate the recorded sound with few local cosine vectors.
However, the most relevant audio distortions measures are not L2 norms. Sophis-
ticated masking techniques are used by engineers to introduce quantization errors
which are below our hearing sensitivity threshold [22], and above our mathematical
understanding.

Figure 3: Speech recording of the word “greasy” sampled at 16kHz.

2.5 Geometry and More Adaptivity

Wavelet bases are optimal for representing general bounded variation images, but
better approximations can be obtained by taking advantage of the geometrical
regularity of most images. The total variation formula (1) shows that the level
sets of bounded variation images typically have a finite length. However, this
imposes no condition on the regularity of these level sets. In the Image 1(a), the
“contours” are mostly piecewise regular geometrical curves in the image plane,
with small curvature at most locations. Understanding how to take advantage of
this regularity is fundamental for image processing. This has motivated the use
of non-linear partial differential equations to modify the curvature of level sets in
images [1, 28, 31]. This important new branch of mathematical image processing
leads to interesting applications for noise removal and image segmentation. Yet,
we shall not follow this line of thought, which is not based on explicit sparse
representations.

To understand the importance of geometrical regularity, let us consider a
simple “image” f = 1Ω, which is the indicator function of a set Ω. The boundary
∂Ω of Ω is a differentiable curve of finite length with bounded curvature. If the
square support of ψk

j,n does not intersect ∂Ω then 〈f, ψk
j,n〉 = 0. The wavelets

ψk
j,n are translated on a square grid with step sizes 2−j and have square support

proportional to 2−j , as illustrated in Figure 4(a). At resolution 2j , there are
O(2j) wavelets ψk

j,n whose supports intersect ∂Ω. The M larger amplitude wavelet
coefficients selected by a non-linear approximation are at resolutions 2j ≤ 2J ∼ M
and the non-selected wavelets produce an error ‖f − fM‖2 ∼ M−2, like for any
bounded variation image.

A better piecewise linear approximation is calculated with an adaptive trian-
gulation of [0, 1]2 having M triangles [16]. Since the curvature of ∂Ω is bounded,
this boundary can be covered by M/2 triangles, which have a narrow width pro-
portional to M−2 along the normal to ∂Ω, and which are elongated along the
tangent to ∂Ω. The interior and exterior of Ω are covered by M/2 larger triangles,
as illustrated in Figure 4(b). A function fM which is linear on each triangle can
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(a) (b)

Figure 4: (a): Wavelets ψj,n are translated on a square grid of interval 2−j , and
have a square support proportional to 2−j . For f = 1Ω, the darker points locate
the wavelets ψj,n such that 〈f, ψj,n〉 6= 0. (b): A piecewise linear approximation
of f = 1Ω is optimized by choosing narrow triangles that are elongated along the
boundary where f is discontinuous.

approximate f = 1Ω with ‖f − fM‖2 = O(M−4). The approximation error is con-
centrated on the triangles along the border and the small width of these triangles
yields a smaller error than with wavelets of square support. The error is reduced
because the triangles are adapted to the geometry of ∂Ω.

Building a bridge between geometrical constraints and adaptive approxima-
tions is a fundamental issue for image processing. The human visual system takes
great notice of geometrical “features” such as “corners” or the regularity of “edges”
[24, 26]. The Kanizsa illusion shown in Figure 5 illustrates this fact. We perceive
a triangular “edge” although the image has no grey level variation in the center.
Such illusions are explained by imposing geometrical constraints on the interpre-
tation (models) of images. It is also known [11] that simple cells in the visual
cortex perform an image decomposition over a family of functions that have close
similarities to wavelets, but which is more redundant that a basis and thus of-
fers more flexibility. This indicates that our brain constantly crosses this bridge
between functional analysis and geometry.

(a) (b)

Figure 5: The illusory edges of a straight and of a curved triangle are perceived
in domains where the images are uniformly white.

Adapting to geometry in images can be interpreted as a particular instance of

Documenta Mathematica · Extra Volume ICM 1998 · I · 319–338



Applied Mathematics Meets Signal Processing 329

a more general adaptive approximation problem. A basis is a complete family in
our functional space, but it is often too small to fully utilize all of the structures
included in complex signals. More precise approximations are obtained with M
vectors selected from a much larger dictionary D = {gγ}γ∈Γ, that may include an
infinite number of bases. This follows the same idea that motivates someone to
enlarge his vocabulary to build more concise and precise sentences. For recognition,
is also often important to construct representations that have invariant properties,
with respect to translation or affine transformations. This imposes some further
conditions on the dictionary [20]. A dictionary for images can be constructed
with wavelets whose supports have a parameterized elongation and an arbitrary
orientation. Like the elongated triangles in Figure 4(b), the chosen wavelets can
be adapted to the geometry of the level sets in the image. Audio signals are also
more efficiently approximated with a dictionary of local cosine vectors such as (8),
but where the window length l may be freely adapted to the duration of waveforms
produced by attacks, harmonics or other transient events.

An adaptive representation is constructed from a dictionary D by selecting
M vectors {gγk

}1≤k≤M to approximate f with a partial sum

fM =
M∑

k=1

αk gγk
.

In the absence of orthogonality, finding the M vectors that minimize ‖f − fM‖
leads to a combinatorial explosion. Greedy pursuit algorithms have been devel-
oped to avoid this explosion [20], by selecting the vectors gγk

one by one from the
dictionary, but their approximation performance is far from optimal [3, 13]. In
structured dictionaries composed of orthonormal bases embedded in a tree, Coif-
man and Wickerhauser [6] have introduced dynamical programming algorithm
that selects M vectors which define a “reasonable” but non optimal approxima-
tion. There is yet no approximation theory that can analyze the performance of
these highly non-linear approximations and improve their performance.

Let us finally mention that enlarging the dictionary has a cost. In a larger dic-
tionary, more parameters are needed to characterize the index γk of each selected
vector. For a fixed approximation error, making the dictionary too large can in-
crease the total number of parameters that characterize the signal approximation
fM . Finding dictionaries of optimal size is thus another open issue.

3 Noise Removal by Thresholding

The removal of noise, added when measuring the signal or during its transmission,
is an important problem where sparse representations play a crucial role. In a basis
that transforms the signal into few large amplitude values plus a small remainder,
most of the noise is easily suppressed by a thresholding which sets to zero the
smallest coefficients. A similar version of this simple idea has been used to remove
noise from television images since the 1960’s. However, it is only recently that
Donoho and Johnstone [14] were able to develop the mathematics proving that
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thresholding estimators are nearly optimal in sparse representations, which opened
new signal processing applications.

A discrete approximation of f(x) defined over [0, 1]d is characterized by N
coefficients, denoted f [n], for 0 ≤ n < N . The measured noisy data are

D[n] = f [n] + W [n] , (9)

where the noise values W [n] are modeled by independent Gaussian random vari-
ables, and thus define a white noise. Figure 6(a) gives an example. An estimator
F of f is calculated by applying an operator L on the data, F = LD. The risk of
this estimation is

r(L, f) = E{‖f − LD‖2}.
We want to minimize the maximum risk over a signal set S

r(L,S) = sup
f∈S

r(L, f) .

The goal is to find an operator L which approaches the optimal minimax risk

ro(S) = inf
All L

r(L,S).

There is a considerable body of literature in mathematical statistics for evaluation
of minimax risk [15].

A new approach to minimax estimation is to separate the representation from
the estimation problem. The first step is to construct an appropriate representa-
tion by decomposing D = f + W in an orthogonal basis B = {gm}0≤m<N :

〈D, gm〉 = 〈f, gm〉+ 〈W, gm〉.

A thresholding estimator is then simply defined by

F = LtD =
N−1∑
m=0

θT (〈D, gm〉) gm, (10)

where θT (x) = x1|x|>T . It sets to zero all coefficients below T and keeps the
others. The threshold T is chosen to be just above max0≤m<N |〈W, gm〉|, with a
high probability, so that θT (〈D, gm〉) = 0 if 〈f, gm〉 ≈ 0.

Since W is a Gaussian white noise of variance σ2, in any basis B, the noise
coefficients 〈W, gm〉 are independent Gaussian random variables of same variance
σ2. Let M be the number of coefficients such that |〈f, gm〉| ≥ σ, and fM be the
non-linear approximation (3) of f from these M largest vectors. If T = σ

√
2 loge N

then Donoho and Johnstone proved [14] that

r(Lt, f) ≤ (2 loge N + 1)
(
‖f − fM‖2 + (M + 1) σ2

)
.

The right part of the upper bound is similar to the distortion (6) of a transform
code. The risk is thus reduced by choosing a basis where there is a small number
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(a) (b)

Figure 6: (a): Image contaminated by an additive Gaussian white noise. (b):
Thresholding estimation calculated in a wavelet basis.

M of large amplitude coefficients above σ, which yield a small approximation
error ‖f − fM‖. Once more we face the problem of finding a sparse but precise
representation. Figure 6(b) is an estimation calculated by thresholding the wavelet
coefficients of the noisy image shown in (a).

The asymptotic performance of tresholding estimators is calculated as the
resolution N of the measurements increases to +∞. For a given set S0 of signals
f(x), we look for an orthonormal basis B0 which is optimal for non-linear approx-
imations. Suppose that S0 is a ball of a space B, then we can choose B0 to be
an unconditional basis of B. The set S of discretized signals is obtained with a
projection in dimension N . These signals are decomposed in the basis B derived
from B0 through the same projection. As N increases, one can prove [15] that the
thresholding estimator is nearly optimal in the sense that

r(Lt,S) ≤ O(log N) ro(S) . (11)

This result applies to discretized signals from Besov spaces, decomposed in a dis-
crete wavelet basis. It is also valid for a set SBV of bounded variation signals
decomposed in a wavelet basis, because BV is embedded in two Besov spaces
which are close enough. In this case, the tresholding risk has faster asymptotic
decay than the risk of any linear estimator as N increases.

The efficiency of thresholding estimators depends crucially on the approxi-
mation performance of the representation. To take advantage of complex signal
structures, such as the geometrical regularity of some images, the thresholding
must be calculated in more adaptive representations, as explained in Section 2.5.
However, the minimax optimality of these highly adaptive estimators remains to
be understood.

4 Sparse Interaction Processes

In many classification problems, including speech recognition and visual texture
discrimination, the observed signal is modeled as the realization of a process that
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we need to characterize. This is difficult because the underlying process is often
non Gaussian or non-stationary, and a single realization provides little data to
identify it. It is therefore necessary to characterize these processes with few pa-
rameters in an appropriate representation, that can be estimated and used for the
classification. After studying non stationary Gaussian processes, we consider more
general Markov random field models.

4.1 Non Stationary Gaussian Processes

Gaussians processes provide resonable models for large class of signals, includ-
ing speech recordings. A zero-mean Gaussian process X(t) for t ∈ R is entirely
characterized by its covariance k(t, s) = E{X(t)X(s)}, which is the kernel of the
covariance operator K:

Kf(t) =
∫ +∞

−∞
k(t, s) f(s) ds. (12)

To estimate this covariance from few realizations, it is necessary to reduce the
number of coefficients describing the kernel. This can be done by finding an
orthonormal basis B = {gm}m∈Z in which the matrix coefficients

〈Kgm, gn〉 =
∫ +∞

−∞

∫ +∞

−∞
k(t, s) gm(s) gn(t) ds dt (13)

have fast off-diagonal decay. These matrix values are the decomposition coeffi-
cients of the kernel k(t, s) in a separable orthonormal basis {gn(t) gm(s)}(n,m)∈Z2

of L2(R2). Finding a sparse matrix represention is thus equivalent to approxi-
mating k(t, s) with few non-zero coefficients in a separable basis. If the matrix
coefficients have a sufficiently fast off-diagonal decay, then K is closely approxi-
mated (with a sup or a Hilbert Schmidt norm) by a narrow band matrix K̃ in B,
which is the covariance of a Gaussian process X̃ that approximates X [21]. Since
K̃ has a band-matrix representation, for each m ∈ N there exists a neighborhood
Nm which is a finite set of integers such that if n∈/ Nm then

〈K̃gm, gn〉 = E{〈X̃, gm〉 〈X̃, gn〉} = 0.

Since 〈X̃, gm〉 and 〈X̃, gn〉 are jointly Gaussian random variables, they are inde-
pendent because uncorrelated. The model X̃ of X has therefore a representation
in B with coefficients that are dependent only in small neighborhoods, which is a
particular case of Markov random field.

Writing the covariance operator K as a pseudo-differential operators is a pow-
erful approach to find bases where the matrix coefficients have fast off-diagonal
decay [25]. Let f̂(ω) =

∫ +∞
−∞ f(s) e−iωs ds be the Fourier transform of f . The

symbol of the operator K is

β(t, ω) = p.v.

∫ +∞

−∞
k(t, t− s) e−iωs ds .
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Applying the Parseval formula to (12) yields

Kf(t) =
1
2π

∫ +∞

−∞
β(t, ω) f̂(ω) eiωt dω.

For example, if β(t, ω) =
∑P

p=0 ap(t) (iω)p then K =
∑P

p=0 ap(t) ( d
dt )

p is a dif-
ferential operator with time varying coefficients. The process X is stationary if
k(t, s) = k(t− s), in which case β(t, ω) = β(ω) is the spectrum of K. The Fourier
transform is therefore an ideal tool to characterize stationary Gaussian processes.
For non-stationary processes, one needs to relate the properties of X(t) to the
properties of β(t, ω), and derive a basis where K is approximated by a narrow
band matrix.

Locally stationary processes X(t) appear in many physical systems in which
the mechanisms that produce random fluctuations change slowly in time or space
[29]. Over short time intervals l, such processes can be approximated by a station-
ary one. This is the case for many components of speech or audio signals. Over a
sufficiently short time interval, the throat behaves like a steady resonator which is
excited by a stationary noise source. A simple class of locally stationary processes
is obtained by imposing that there exists A > 0 such that for all k, j ≥ 0

|∂k
t ∂j

ωβ(t, ω)| ≤ A lj−k .

We derive [21] the existence of a local cosine basis (8) in which the operator K
is closely approximated by a narrow band matrix. The size l of each window
is adapted to the interval of stationarity. When the length l(t) of the interval of
stationarity varies strongly in time, which is the case of audio signals, the resulting
covariance operator has more complex properties and often does not belong to a
classical family of pseudo-differential operators. Depending upon the regularity
of l(t), adapted local cosine bases can still provide sparse representations of such
operators [21].

Multifractals provide useful models for signals having some self-similarity
properties [27]. Among the many examples, let us mention economic records
like the Dow Jones industrial average, physiological data including heart records,
electromagnetic fluctuations in galactic radiation noise, some image textures, vari-
ations of traffic flow... A fractional Brownian motion X(t) of Hurst exponent H is
a canonical example of fractal Gaussian processes, whose increments are station-
ary and which is self-similar in the sense that s−HX(st) has the same probability
distribution as X(t), for all s > 0. The symbol of the covariance K of X is
β(t, ω) = λ |ω|−2H−1. This corresponds to a Calderón-Zygmund operator of the
first generation [25], which is known to have fast off-diagonal decay in a wavelet
basis. In signal processing, fractional Brownian motions are often approximated
by a process X̃ whose covariance K̃ is diagonal in a wavelet basis, which leads
to fast synthesis algorithms [27]. General conditions on ∂k

t ∂j
ωβ(t, ω) can be es-

tablished to guarantee that K has fast off-diagonal decay in a wavelet basis [2].
Multifractional Brownian motions are examples with Hurst exponents that vary
in time: β(t, ω) = β0(t) |ω|−2H(t)−1. Accurate estimations of β0(t) and H(t) are
obtained in wavelet bases.
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When the process is uniformly locally stationary or multifractal, the basis
which compresses the covariance matrix is known beforehand. For more complex
non-stationary processes, this basis must also be estimated, given some prior infor-
mation. This is an adaptive approximation problem, similar to the ones described
in Section 2.5, although we approximate operators as opposed to functions. Best
basis search algorithms have been introduced to perform such adaptive approxi-
mation of covariance operators [21], but these techniques are still in their infancy,
and more work is needed to understand the properties of the resulting statistical
estimators.

4.2 Markov Random Fields in Sparse Representations

The characterization and synthesis of visual textures is one of the most challenging
low-level vision problem. Homogeneous visual textures such as images of woods,
carpets or marbles, can be considered as stationary, but they are not Gaussian.
Figure 7 gives two examples. It is necessary to model these processes with few
parameters to hope identify them from a single realization. This is feasible since
the human visual system can do it. The importance of this problem goes well
beyond texture discrimination. Indeed, providing a general framework to model
non-Gaussian processes is necessary to analyze the properties of various classes of
signals such as financial time series or the velocity of turbulent fluids.

Markov random field models of textures have been proposed by Cross and
Jain [8], but such models became computationally and mathematically attractive
through the work of Geman and Geman [17], who introduced a stochastic relax-
ation algorithm for sampling Gibbs distributions. To simplify the presentation,
we restrict ourselves to a random vector X(n), where n ∈ Zd varies over a grid G
of size N . We define a neighborhood system N = {Nn}n∈G such that n∈/ Nn and
m ∈ Nn if and only if n ∈ Nm. For any G0 ⊂ G, let X(G0) denote the set of values
taken by X over G0. We say that p(X) is a Markov random field distribution with
respect to N if

p
(
X(n) | X(G − {n})

)
= p

(
X(n) | X(Nn)

)
.

A subset C of G is called a clique if every pair of elements in C are neighbors of
each other. Let C be the set of all cliques. If X takes its values in a finite alphabet
then the Hammersley-Clifford theorem proves that p(X) is a Markov random field
if and only if it can be written as a Gibbs distribution with respect to N

p(X) =
1
Z

exp
[
−

∑

C∈C
φC(X)

]
,

where Z is a normalization constant and φC is a potential function which depends
only of the values of X in the clique C. Markov random field models have inter-
esting applications to texture discrimination and image restoration, but limited
success due to the difficulty to incorporate the long range interactions of image
pixels. Several approaches have been introduced to circumvent this problem, in-
cluding renormalization techniques [18].
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Mumford and Zhu [35] introduced a different point of view by creating Markov
random field models on a sparse representation of X, rather than on the sample
values X(n). Let D = {gγ}γ∈Γ be a dictionary of vectors, which can be an
orthogonal basis or be more redundant. Let Xγ = 〈X, gγ〉. A neighborhood
system N = {Nγ}γ∈Γ is defined over Γ. For example, if D = {ψk

j,n}k,j,n is a
wavelet basis in two dimensions, the index γ = (k, j, n) specifies the orientation k,
the resolution 2j and the position 2−jn of the wavelet. The neighborhood N(k,j,n)

includes wavelets ψk′
j′,n′ with |j − j′| ≤ 1 and a position 2−j′n′ which is close to

2−jn. The multiresolution aspect of wavelet bases allows one to construct Markov
random field models that incorporate short range and long range interactions.

To construct a Markov random field model X from observed signals
{Xobs

p }0≤p<P , we compute average measurements over M cliques {Cm}0≤m<M

with potential functions φCm

µobs
Cm

=
1
P

P∑
p=1

φCm(Xobs
p ) .

If X is stationary then a spatial averaging is done over all φCm that perform
identical calculations but at translated locations. These empirical averages are
estimates of E{φCm(X)} for the model X that we construct. Most often, the cliques
have at most two elements C = {γ, γ′}. Covariance measurements correspond to
φC(X) = Xγ Xγ′ . However, different potential functions may be useful such as
pth order moments

φC(X) = |Xγ |p |Xγ′ |p for p > 0 . (14)

(a) (b) (c) (d)

Figure 7: (a): Observation of a uniform texture. (b): Realization of the wavelet
Markov random field model calculated from (a). (c): The center shows an example
of texture. (d): The center is identical to (c) whereas the periphery is a realization
of a wavelet Markov random field model calculated from (c).

The maximum entropy principle suggests choosing p(X) that achieves the
maximum entropy

p(X) = arg max{−
∫

p(X) log p(X) dX} .

under the constraints

E{φCm
(X)} =

∫
φCm

(X) p(X) dX = µobs
Cm

for 1 ≤ m ≤ M . (15)
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By maximizing the entropy, the resulting p(X) is the “most uniform” distribution
given the prior knowledge provided by the observation µobs

Cm
. It thus does not

include more “information” than what is available. The solution is calculated
with Lagrange multipliers

p(X, Λ) =
1

Z(Λ)
exp

(
−

M∑
m=1

λm φCm(X)

)
. (16)

The parameter vector Λ = {λm}1≤m≤M is uniquely characterized by the con-
straints (15), if the potential functions satisfy a linear independence property.

If φCm(X) are covariance measurements then (16) is the probability distribu-
tion of a Gaussian process, and if D is an orthonormal basis then Λ is calculated
by inverting a band covariance matrix. The entropy maximization is a convex
problem [17], but for general potential functions φCm the vector Λ can not be cal-
culated analytically. Numerical procedures compute Λ iteratively by estimating
Ep(X,Λ){φCm(X)}, while updating Λ with a gradient descent to reach the condi-
tions (15). Let us mention that the estimation of Ep(X,Λ){φCm(X)} is performed
with a Gibbs sampler or other Markov chain Monte Carlo methods, which are
computationally expensive.

Mumford and Zhu [35], as well as Simoncelli and Portilla [32], use such Markov
random fields to construct a model from a single observation of a texture. The
Markov model of Simoncelli and Portilla is calculated in a wavelet basis, with
constraints on covariance values and on moments (14) with p = 1. The textured
image 7(a) is the only observation used to compute the parameters Λ of the model,
with a stationarity assumption. The Figure 7(b) shows a realization of the resulting
wavelet Markov model. It is remarkably close to the original texture, in the sense
that visually it can not be distinguished preattentively, in less than 10−1 seconds.
A similar wavelet Markov model is calculated from the “text” texture of Figure
7(c). The image 7(d) is obtained by adding a realization of this Markov model at
the periphery, which is preattentively not discriminable from the center.

Markov random fields provide a general framework to construct processes
with sparse interactions over appropriate representations. The validity of such
models depends on the choice of representation and on the potential functions φC .
Understanding how to optimize these two components and analyzing the properties
of such Markov random fields over functional spaces is an open problem.
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Fibrations in Symplectic Topology

Dusa McDuff1

Abstract. Every symplectic form on a 2n-dimensional manifold is lo-
cally the Cartesian product of n area forms. This local product structure
has global implications in symplectic topology. After briefly reviewing the
most important achievements in symplectic topology of the past 4 years,
the talk will discuss several different situations in which one can see this
influence: for example, the use of fibered mappings in the construction
of efficient symplectic embeddings of fat ellipsoids into small balls, and
the theory of Hamiltonian fibrations (work of Lalonde, Polterovich, Sala-
mon and the speaker). The most spectacular example is Donaldson’s
recent work, showing that every compact symplectic manifold admits a
symplectic Lefschetz pencil.

1991 Mathematics Subject Classification: 53 C 15
Keywords and Phrases: symplectic topology, J-holomorphic curves,
Hamiltonian fibration, nonsqueezing theorem, symplectic embeddings,
Hamiltonian group

1 Introduction

In this talk I will give an overview of what has been achieved in symplectic topology
in the past 4 years and then will discuss the relevance of symplectic fibrations.
First, I will review some basic facts.

A symplectic manifold (M, ω) is a pair consisting of a smooth 2n-dimensional
manifold M together with a closed 2-form ω that is nondegenerate, i.e. the top
power ωn never vanishes. By Darboux’s theorem such a form ω can always be
expressed locally as the sum

ω =
n∑

i=1

dxi ∧ dyi.

Thus the only invariants of a symplectic manifold are global. The other essential
feature of symplectic geometry is its connection with dynamics. Every function
H : M → R has a symplectic gradient XH , which is the vector field defined by the
equation ω(XH , · ) = dH. Because ω is closed, the flow of XH is a family φH

t of
1Partially supported by NSF grant DMS 9704825.
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symplectomorphisms, i.e. diffeomorphisms that preserve the symplectic structure.
Thus (φH

t )∗(ω) = ω for all t.
One can think that these flows are built into the local structure of a symplectic

manifold. Any (local) hypersurface Q in (M,ω) is a regular level set H = const of
some function H. Since dH(XH) = ω(XH , XH) = 0, the vector field XH is tangent
to Q and so induces a flow on it. The corresponding flow lines are independent
of the choice of H and so give rise to a 1-dimensional foliation on Q called the
characteristic foliation. As we shall see in §4.1, these foliations give rise to a good
theory of symplectic connections on symplectic fibrations.

Another more global consequence is that each symplectic manifold gives rise
to an interesting infinite-dimensional group, namely the group of symplectomor-
phisms Symp(M,ω). Its identity component contains a connected subgroup of
finite codimension, called the Hamiltonian subgroup Ham(M, ω). This consists of
all symplectomorphisms that are the time-1 map of some Hamiltonian flow φH

t ,
where here one allows the Hamiltonian Ht : M → R to depend on time t ∈ [0, 1].
I shall say more about these groups in §2.6 and §4.2 below.

A basic theme in symplectic topology is that properties that hold locally are
often valid more globally. One example is Darboux’s theorem. Here the local state-
ment is that there is a unique symplectic structure at a point (i.e. on the tangent
space), and this extends to the fact that there is a unique structure in a neighbor-
hood of each point. Another example is Arnold’s conjecture. The local statement
here is that when M is compact every Hamiltonian symplectomorphism that is
sufficiently close to the identity in the C1-topology has at least

∑
i dim Hi(M,R)

distinct fixed points, provided that these are all nondegenerate.2 The global state-
ment is that this remains true for all elements of Ham(M, ω). This has now been
proved: see §2.2.

One further example of this phenomenon that I want to mention here concerns
the fact that a symplectic form ω is a local product: by Darboux’s theorem ω can
always be expressed locally as the Cartesian product of n area forms dx∧dy on R2.
Observe that a general symplectomorphism does not preserve this local product
structure. For example, the linear map

L : (x1, y1, x2, y2) 7→ (x1 + x2, y1, x2, y2 − y1)

preserves ω but neither preserves nor interchanges its individual summands dxi ∧
dyi, i = 1, 2. Nevertheless, I hope to show in this talk that the existence of this
local product structure is reflected globally in various important ways, both in the
“semi-local” properties that are discussed in §3 and in the theory of symplectic
fibrations that is presented in §4. The best evidence is, of course, Donaldson’s
theorem on the existence of symplectic Lefschetz pencils that is discussed in §2.3
below.

2A fixed point x of φ is said to be nondegenerate if the graph of φ in M ×M intersects the
diagonal transversally at the point (x, x). There are other versions of Arnold’s conjecture that
allow degenerate fixed points and/or make homotopy theoretic rather than homological estimates
of the number of fixed points, but these have not yet been established in full generality.
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1.1 Analytic techniques in symplectic topology

Until Donaldson’s recent work, there were two main sources of analytic techniques
in symplectic geometry, variational methods (that relate to the above mentioned
flows) and elliptic methods. These have been combined to create powerful tools
such as Floer theory. Since Hofer who is one of the main exponents of the vari-
ational method is also talking at this I.C.M. I will not say anything more about
this here, and will concentrate on more purely elliptic methods that exploit the
close relation of symplectic geometry with complex geometry.

One important kind of symplectic manifold is a Kähler manifold. This is a
complex manifold M that admits a Riemannian metric g that is well adapted to
the induced almost complex structure J on the tangent bundle TM .3 One way of
expressing the Kähler condition is that the bilinear form ω defined by

ω(v, w) = g(Jv, w)

is skew-symmetric and closed. Since the nondegeneracy of g implies that of ω, the
form ω is symplectic. As a kind of converse, observe that a symplectic manifold
always supports an almost complex structure J on the tangent bundle TM that
is compatible with ω in the sense that the bilinear form g defined by the above
equation is a positive definite inner product. In fact, for any symplectic manifold
M there is a contractible set J (ω) of such almost complex structures. In most
cases, these will not be integrable. It was Gromov who first realised (in 1985) how
to use these almost complex structures to get information about the underlying
symplectic structure: see [G1], [G2].

Gromov’s fundamental idea was to look at spaces of J-holomorphic curves in
(M,ω, J). These are maps u from a Riemann surface (Σ, j) to the almost complex
manifold (M,J) that satisfy the generalized Cauchy–Riemann equation

du ◦ j = J ◦ du.

If J is integrable, u is a (parametrized) holomorphic curve of the usual kind. Even
if J is not integrable, these curves behave very much as one would expect, ba-
sically because every almost complex structure on a 2-manifold is integrable. In
particular, the ellipticity of the Cauchy–Riemann equation implies that the set
M(A, J) of all such curves that represent the homology class A ∈ H2(M ;Z) is a
finite-dimensional manifold for generic J in J (ω). The other essential ingredient
comes from the existence of the symplectic form ω. This gives an a priori bound
to the energy (or W 1,2-norm) of the elements in M(A, J), which in turn implies
that this space has a well-behaved compactification. Hence it makes sense to try
to count the number of these curves that intersect certain homology classes in
M . In general, one gets a finite number that is independent of J . This gives rise
to symplectic invariants, that in various contexts are called Gromov invariants,
Gromov–Witten invariants, or Gromov–Taubes invariants and so on. Many foun-
dational results in symplectic topology can be proved using J-holomorphic curves,

3An almost complex structure is an automorphism of the tangent bundle TM with square
equal to −Id. If it is induced from an underlying complex structure on M it is said to be
integrable.
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for example the nonsqueezing theorem that we discuss below. They are also an
essential ingredient in symplectic versions of Floer homology.

2 Recent advances

In this section I will list some of the most significant advances in symplectic geom-
etry of the past 4 years. I will be very brief (and in particular do not attempt to
give full references) since in many cases other people will be giving talks on these
subjects at this I.C.M.

2.1 Taubes–Seiberg–Witten theory

A few months after the Seiberg–Witten equations were first formulated in Fall
1993, Taubes realised that the methods used by Witten to calculate the associated
invariants for Kähler manifolds could be adapted to the symplectic case. This was
the first time that methods of gauge theory were found to interact significantly
with symplectic geometry. His first results [T1,2] from Spring 1994 established
a structure theorem for the Seiberg–Witten invariants of symplectic 4-manifolds,
that implied in particular that they do not vanish. He then wrote a series of deep
papers that showed that these invariants coincide with a certain kind of Gromov
invariant that counts J-holomorphic curves in an appropriate way: see [T3–6] and
also Ionel–Parker [IP1].

This has opened the door to the construction of many interesting examples
of symplectic 4-manifolds as well as to a much better understanding of the rela-
tion of smooth 4-manifolds to symplectic ones: cf. the I.C.M. talks of Taubes
and Fintushel–Stern. For example, Taubes gave the first examples of mani-
folds that satisfy the necessary topological preconditions for being symplectic
(namely they support an almost complex stucture and also have a cohomology
class a ∈ H2(M,R) whose top power does not vanish) but nevertheless have no
symplectic structure. One such example is the connected sum CP 2#CP 2#CP 2

of three copies of the projective plane, which cannot be symplectic because its
Seiberg–Witten invariants vanish. Another consequence is a proof that there is
only one symplectic structure on the complex projective plane (up to rescaling) (see
[G1] and [T2]) and a complete classification of symplectic structures on blow-ups of
rational and ruled surfaces. This last is a combination of work by Li–Liu [LL1,LL2],
Ohta–Ono [OO] and Liu [Liu] on Seiberg–Witten theory for symplectic manifolds
with b+ = 1, work by Lalonde–McDuff [LM4] classifying symplectic structures on
ruled surfaces and work on blow-ups by McDuff [Mc1] and Biran [Bi].

2.2 General Gromov–Witten invariants

The theory of J-holomorphic curves outlined above was unsatisfactory for many
years because there was a basic technical problem (the “multiply-covered curve
problem”) that meant that it worked only in a very restricted class of manifolds.
In 1994 Kontsevich suggested a way to get around this difficulty using the concept
of stable maps and other ideas from algebraic geometry, and subsequently several
teams have made this a reality. Among them are Fukaya–Ono [FO], Li–Tian [LiT],
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Liu–Tian [LiuT], Ruan [R], and Siebert [Sieb], who have all completed substantial
papers on this subject in the past two years. (See also Hofer–Salamon [HS].)
This important foundational work shows that methods that one might think are
intrinsically algebraic can be extended to the smooth symplectic context. Another
consequence is a proof that the nondegenerate case of Arnold’s conjecture holds
on all symplectic manifolds: see [FO], [LiuT].

One of the recent insights that has come from string theory and quantum
physics is that Gromov–Witten invariants have very interesting formal properties:
for example they give rise to a deformation of the cup product on the cohomology
ring of a symplectic manifold. This is known as quantum cohomology: see Ruan–
Tian [RT]. These invariants have been also used to solve long-standing problems
in enumerative geometry and have many other applications: cf. the I.C.M. talks
by Vafa and Ruan.

2.3 Donaldson theory

In the past two years Donaldson has developed a completely new way to use
the existence of almost complex structures on symplectic manifolds, taking the
manifold (M,J) to be not the target space but rather the domain of the maps
considered. He has developed a theory of “almost holomorphic” sections of certain
“almost ample” line bundles that imitates the usual theory in the Kähler case
so faithfully that he can prove that every closed symplectic manifold admits a
symplectic Lefschetz pencil: see [D1,D2] and also the Bourbaki seminar [Sik]. I
will state a version of the theorem here because of its relevance to the theme of
this talk. For a much fuller discussion, see Donaldson’s I.C.M. talk.

Theorem 2.1 Let (M, ω) be a closed symplectic manifold such that the cohomol-
ogy class [ω] is integral. Then for each sufficiently large k there is a symplectic
submanifold Bk of codimension 4 and a smooth map p : M − Bk → CP 1 that
has only finitely many singular points. Each fiber of p is symplectically embedded
except at its singular points, and near these p has the form (z1, . . . , zn) 7→ ∑

i z2
i

in suitable local coordinates (z1, . . . , zn) ∈ Cn. Finally, p extends smoothly to the
blow-up M̃ of M along Bk.

The induced map p : M̃ → CP 1 is usually called a Lefschetz fibration. It
is constructed so that its general fiber Fk represents the Poincaré dual PD(k[ω])
of a suitably large integral multiple of the symplectic cohomology class [ω]. Au-
roux [Au] has shown that for sufficiently large k the codimension-2 symplectic
submanifold Fk is unique up to isotopy. Similarly, it can be shown that the whole
structure of the Lefschetz pencil is unique up to isotopy for sufficiently large k.
Moreover the symplectic form on such a pencil is determined up to deformation4

by the symplectic form on the fiber Fk. Hence, in principle, the classification of
symplectic 2n-manifolds can be reduced to that of symplectic (2n− 2)-manifolds,
and hence to the complicated world of symplectic 4-manifolds. This, in turn, is

4Two closed symplectic manifolds (V, ωV ), (W, ωW ) are said to be deformation equivalent if
there is a diffeomorphism φ : V → W and a family of not necessarily cohomologous symplectic
forms ωt, t ∈ [0, 1] on V such that ω0 = ωV , ω1 = φ∗(ωW ).
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reduced to data concerning Riemann surfaces. Many very interesting questions
arise here, and I refer you to the I.C.M. talks by Donaldson and Fintushel–Stern
for further discussion. One important point is that it is not known whether the
classification of symplectic 4-manifolds is more complicated than that of smooth
4-manifolds. For example, I do not know any example of a smooth 4-manifold that
supports two symplectic structures which are not deformation equivalent.

2.4 Contact geometry

Contact geometry is the odd-dimensional analog of symplectic geometry. It is
now particularly well understood in dimension 3 because there are two ways to
get geometric information about a contact 3-manifold M . One can reduce to 2-
dimensions by looking at the intersection of the contact structure with families of
surfaces in M , an approach pioneered by Eliashberg [E3] and Giroux [Gi], and one
can also use elliptic techniques in the 4-dimensional symplectization M ×R. For
new developments in this area I refer you to the I.C.M. talks by Eliashberg and
Hofer.

2.5 Hofer geometry

Hofer [H] pointed out in 1990 that the group of Hamiltonian symplectomorphisms
carries a biinvariant metric, that is now called the Hofer metric. There have
been significant advances in understanding the properties of this metric and its
geometric and dynamic implications, notably by Bialy–Polterovich [BP], a series
of papers by Polterovich (see [P]) and Lalonde–McDuff [LM1–3]. In particular,
the papers [LM1–3] develop a new elliptic approach to Hofer geometry, and show
that the energy-capacity inequality that is basic to the whole theory is equivalent
to the nonsqueezing theorem discussed in §3 below. There also is an interesting
connection between the Hofer length of an element in π1(Ham(M)) and properties
of the associated symplectic fibration over S2 with fiber M : see [P] §7, and §4.2
below. For further details, see the I.C.M. talk by Polterovich [P].

2.6 The topology of the group of symplectomorphisms

There has been quite a bit of recent progress in understanding the relations be-
tween the groups

Ham(M, ω) ↪→ Symp(M, ω) ↪→ Diff(M)

for closed symplectic manifolds (M, ω). Observe that the inclusion Ham(M,ω) →
Symp(M,ω) induces an isomorphism on all homotopy groups except for π0 and
π1. As far as concerns π0, the Hamiltonian group is path-connected by definition,
while Symp(M, ω) often is not. As for π1, there is an exact sequence

0 → π1(Ham(M, ω)) → π1(Symp(M,ω)) → Γω → 0,

where Γω is a countable subgroup of H1(M,R) that is called the Flux group:
see [MS] or [LMP1]. It is not hard to show that Ham(M, ω) coincides with the
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identity component of Symp(M,ω) in the case when b1(M) = rk H1(M,R) = 0,
in particular if M itself is simply connected.

Perhaps the most surprising recent result is that of the stability of Hamiltonian
loops, i.e if {φt}t∈[0,1] represents an element of π1(Ham(M, ω)) then any pertur-
bation {φ′t} of the loop {φt} that preserves some nearby symplectic form ω′ rep-
resents an element of π1(Symp(M,ω′)) that lies in the image of π1(Ham(M, ω′)):
see Lalonde–McDuff–Polterovich [LMP2]. Another way of saying this is that if
φ ∈ π1(Symp(M, ω)) and φ′ ∈ π1(Symp(M, ω′)) map to the same element of
π1(Diff(M)) and if φ maps to zero in Γω then φ′ must map to zero in Γω′ . It
follows fairly easily that the Flux subgroup Γω never has more than b1(M) gener-
ators. It is still not known whether it is always discrete. This would be the case
if and only if the group Ham(M,ω) is closed in Symp(M, ω) with respect to the
C1-topology: see [LMP1].

Otherwise the theory is at the stage of computing interesting examples. Sei-
del [Seid1] has found a very nice construction that shows that for many symplec-
tic 4-manifolds that contain a Lagrangian 2-sphere5 the map π0(Symp(M, ω)) →
π0(Diff(M)) is not injective. This work is based on an analysis of the Floer ho-
mology of the generalized Dehn twists that occur as monodromy in Lefschetz
fibrations: see Donaldson’s I.C.M. talk. Seidel has also shown that when M
is the product of two projective spaces CPm × CPn, where m ≤ n, the map
πk(Symp(M, ω)) → πk(Diff(M)) is not surjective for odd k ≤ 2n − 1. Many of
the above results are proved by considering properties of appropriate fibrations:
see §4.2 below.

We end this section by mentioning an example where the rational cohomology
of the groups Symp(M,ω) has been fully worked out. Here (M, ω) is the product
S2×S2 equipped with the symplectic form ωλ = (1+λ)σ0⊕σ1, where σi, i = 0, 1,
is an area form on S2 of total area 1. Let Gλ, λ ≥ 0 denote the corresponding
group of symplectomorphisms. Gromov showed in [G1] that, when λ = 0, Gλ is
deformation equivalent to the extension of the Lie group SO(3) × SO(3) by the
involution that interchanges the two factors. Abreu showed in [Ab] that when
0 < λ ≤ 1 the group Gλ no longer has the homotopy type of a Lie group since its
rational cohomology ring has an even-dimensional generator. Abreu–McDuff [AM]
have completed this calculation, showing that when k − 1 < λ ≤ k

H∗(Gλ,Q) = Λ(x1, x3, x
′
3)⊗ S(x4k),

where xi, x
′
i denote generators in dimension i, Λ is an exterior algebra and S is

a polynomial algebra. One can give a meaning to the “limit” of these groups Gλ

as λ →∞ and show that this is homotopy equivalent to the group D of fiberwise
orientation-preserving diffeomorphisms of the trivial fibration S2×S2 → S2. Since
Diff(S2) is homotopy equivalent to the Lie group O(3), the group D is homotopy
equivalent to a group D′ that fits in the exact sequence

0 → Map(S2, SO(3)) → D′ → SO(3) → 0.

The cohomology ring of D is isomorphic to Λ(x1, x3, x
′
3) and restricts onto this

part of H∗(Gλ), while the “jumping generator” x4k dies in the limit.
5i.e. a sphere on which the symplectic form vanishes.
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2.7 Symplectic fibrations

A unifying theme that is relevant to several of the areas mentioned above is that of
symplectic fibration. This concept occurs in symplectic topology in several closely
related variants, but one essential ingredient is a fibration (possibly local and/or
singular) with a family of cohomologous symplectic forms on its fibers. Moreover,
these fiberwise forms should be induced by the ambient symplectic form, if there
is one. (A precise definition is given in §4.)

I pointed out in various places above that the proofs use properties of symplec-
tic fibrations. It is also worth noting that the use of (local) fibrations is ubiquitous
in 4-dimensional symplectic topology. This is obvious in so far as Donaldson’s
theory goes. However, this remark applies also to the kinds of symplectic surg-
eries that have been recently developed and explored. For instance, almost all the
new examples of symplectic 4-manifolds are constructed using the fiber connect
sum (see Gompf [Go], and McCarthy–Wolfson [MW]) which exploits the local
fibered structure of a symplectic manifold near a symplectic submanifold with
trivial normal bundle. This construction is also known as the symplectic sum.
It has good formal properties: see for example Ionel–Parker [IP2] and McDuff–
Symington [MSy]. Other symplectic surgeries developed by Luttinger [Lu], Eliash-
berg and Polterovich [EP] and Symington [Sym] also use the canonical local fibered
structure of a symplectic manifold near a symplectic or Lagrangian submanifold.

As another example, observe that the knot surgeries used by Fintushel and
Stern in [FS] to construct a family XK of homotopy K3-surfaces are only known
to yield symplectic manifolds when the knot K is fibered. To some extent this is a
matter of expedience: the presence of a suitable fibration allows one to construct
a symplectic form out of forms on the base and the fibers. However, Donaldson’s
theorem shows that fibrations are intrinsic to the structure of symplectic manifolds,
and it is quite possible that it will eventually be shown that Fintushel and Stern’s
manifolds XK are symplectic if and only if the knot K is fibered.

3 Symplectic rigidity

In this section we will discuss “semi-local” symplectic topology, which I take to
mean properties of open subsets of Euclidean space and of the symplectomorphisms
between them. To emphasize that we are dealing with the standard symplectic
form here, I will denote it by ω0 =

∑
i dxi∧dyi. We will begin with a discussion of

Gromov’s nonsqueezing theorem, which is the basis of all symplectic topology, and
then in §3.2 will talk about some more specialised problems concerning symplectic
embeddings.

3.1 The nonsqueezing theorem

Gromov’s nonsqueezing theorem [G1] answers the question of when a ball can be
symplectically embedded in a cylinder. To emphasize the relation with fibrations
we will think of the cylinder

Z2n(λ) = B2(λ)×R2n−2
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as the inverse image of the 2-disc B2(λ) of radius λ by the projection

p : R2n → R2, (x1, . . . , yn) 7→ (x1, y1).

Then, if B2n(r) denotes the (closed) standard ball of radius r in Euclidean space
R2n the nonsqueezing theorem can be stated as follows.

Theorem 3.1 For all (local) symplectomorphisms φ of R2n

area
(
p ◦ φ(B2n(r))

) ≥ πr2.

In other words, it is impossible to embed a standard ball of radius r into the
cylinder Z2n(λ) of radius λ when λ < r.

This property of symplectomorphisms is fundamental. Indeed it characterises
symplectomorphisms in the following sense. Suppose that ψ is a diffeomorphism
such that

area
(
p ◦ L ◦ ψ(B2n(x; r))

) ≥ πr2

for all linear symplectomorphisms L and all sufficiently small balls B2n(x; r) in
R2n. Then ψ∗(ω0) = ±ω0. If in addition ψ is orientation preserving we must
have the + sign when n is odd. Applying this to the diffeomorphism ψ × Id of
R2n ×R2, one also can characterize symplectomorphisms in this way when n is
even. This is the essential ingredient of the proof by Eliashberg [E1] (see also
Ekeland–Hofer [EH]) that the group of symplectomorphisms is C0-closed in the
group of diffeomorphisms.6 As Gromov pointed out in his 1986 ICM talk [G2],
without this there would be no interesting theory of symplectic topology. This
result is also the foundation of the theory of symplectic measurements such as
the Gromov width of sets7 and the Hofer norm on the group of Hamiltonian
symplectomorphisms that is discussed in Polterovich’s talk [P].

I will consider two aspects of this theorem in more detail below. Firstly, if one
thinks of it as a statement about symplectic embeddings, the question obviously
arises as to what other symplectic embeddings are possible between standard ob-
jects such as ellipsoids and polydiscs. Secondly, one can view this theorem as a
fact about the trivial fibration

p : Z2n(λ) → B2(λ),

and ask whether general symplectic fibrations have similar properties.
To end this section, I’d like to say one more thing concerning the relation of

the C0 (or uniform) topology to the symplectic world. Using the above ideas it is
possible to define the notion of a symplectic homeomorphism between two smooth
symplectic manifolds, though very little is known about the properties of such
maps. For example, as in [EH] one can define the notion of a symplectic capacity
such as the Gromov width and then say that a homeomorphism is symplectic if
it preserves the capacity of sufficiently small open sets. Here I want to mention

6The C0-topology is the topology of uniform convergence on compact subsets.
7The Gromov width wG(U) of an open subset U of (M2n, ω) is defined to be the supremum

of the numbers πr2 such that the ball B2n(r) embeds symplectically in U .
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a slightly different question. Colin [C] has recently shown that contact structures
are C0-stable in dimension 3 though not in higher dimensions. In other words,
two plane fields ξ, ξ′ on a closed 3-manifold that are sufficiently C0-close and that
both satisfy the contact condition are isotopic through a family of contact plane
fields.

Question 3.2 Is there a symplectic analog of this result?

It is not even clear what is the appropriate notion of “C0-close” in this context.
In the contact case the condition for a hyperplane field ξ to be contact involves the
first derivative of the defining form α. In other words, if ξ = ker α and the manifold
has dimension 2n+1 then one requires that α∧dαn 6= 0. It follows that one can get
a sensible C0-topology by using the C0-topology on the defining forms α (which
is, of course, equivalent to using the C0-topology on the plane fields themselves).
However, any two symplectic forms ω and ω′ that are cohomologous and sufficiently
C0-close may be joined by the symplectic isotopy tω + (1− t)ω′, t ∈ [0, 1], and so
are diffeomorphic by Moser’s theorem. Hence this is not the right analog. The
question is whether there is an intrinsic C0 notion of a symplectic structure for
which the above stability result would hold at least in dimension 4. One might,
for example, say that two symplectic structures are ε-close on a compact domain
K if

|wG(U, ω)− wG(U, ω′)| ≤ ε

for all open subsets U ⊂ K, where wG is the Gromov width defined above. It is
not known what the consequences of such a definition would be.

This raises the whole question of what a symplectic structure “really is”. I
do not think that it is just a structure that allows certain analytic techniques
(such as those of Gromov, Taubes and Donaldson) to work. As the nonsqueezing
theorem shows there is a geometric flavor to the theory that does not seem to be
captured this way. I would argue that one important geometric element is the
presence of the local characteristic foliations mentioned in §1 and that another is
the local product structure. An idea of what one might expect is suggested by
the Eliashberg–Thurston [ET] paper on confoliations, where the authors work out
the relation between foliations and contact structures and show that an essential
ingredient of a contact structure is a “positive twist” condition.

3.2 Symplectic embeddings and folding

Let us write E(a1, . . . , an) for the ellipsoid

E(a1, . . . , an) = {z ∈ R2n :
∑

i

x2
i + y2

i

ai
≤ 1 }.

It is well known that every ellipsoid in R2n is linearly symplectomorphic to one
of the form E(a1, . . . , an), where a1 ≤ . . . ≤ an. Consider the question of when
E(a1, . . . , an) embeds symplectically into the unit ball B2n(1) =E(1, . . . , 1). Floer,
Hofer and Wysocki [FHW] looked at the 4-dimensional case and showed using
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symplectic homology that when the ellipsoid is “round”, that is when the ratio
a2/a1 is ≤ 2, there is such an embedding only if the ellipsoid is a subset of the
ball. Recently Schlenk [Sch] extended this result to higher dimensions, basing his
argument on Ekeland–Hofer capacities.

Theorem 3.3 If an ≤ 2a1 then E(a1, . . . , an) embeds symplectically in B2n(1)
only if an ≤ 1.

He has also shown that this result is sharp in the sense that as soon as an > 2a1

it is possible to construct symplectic embeddings of E(a1, . . . , an) into a ball with
radius r, where r2 < an. To be precise, he proved:

Theorem 3.4 Given any ν > ε > 0 there is a symplectic embedding

E(1, . . . , 1, 2 + 2ν) ↪→ E(2 + ν + ε, . . . , 2 + ν + ε) = B2n(
√

2 + ν + ε).

The proof constructs explicit embeddings by a technique known as symplectic
folding. This is based on an idea of Traynor [Tr], who realised that in these
embedding questions it is useful to think of a ball or ellipsoid as fibered over the
2-disc E(a1) via the projection

p : E(a1, . . . , an) → E(a1).

Observe that the fiber of p at a point x ∈ E(a1) is simply the ellipsoid E(a′2, . . . a
′
n)

where a′i = ai(a1− |x|2)/a1. The idea is to construct embeddings of E(a1, . . . , an)
into R2n = R2×R2n−2 of the form f×g where f : E(r1) → R2 is area-preserving
and g : E(a2, . . . an) → R2n−2 is symplectic. In doing this one just has to control
the image of f × g on the “partial product” E(a1, . . . , an). This technique was
developed further by Lalonde–McDuff [LM1], who incorporated the idea of folding.

For simplicity, we explain this in the case n = 2. The idea is that what is
really important about the fibration p : E(a1, a2) → E(a1) is:

(i) the fact that the subset Bc of the base E(a1) over which the fiber has area ≥ c
is connected;
(ii) the fact that the fibers are nested, i.e. if we identify the fibers with subsets of
R2, then fibers of equal area are identical and lie inside the fibers of greater area;
and
(iii) the precise function A(c) = area Bc.

It is shown in [LM2] that any other smoothly triangulable set TY of R4 that
fibers over a smoothly triangulable set Y in R2 of area πa1 and has properties
(i), (ii) and the same function A(c) is equivalent to the ellipsoid E(a1, a2) in the
following sense: for any ε > 0, one can symplectically embed E(a1, a2) into an
ε-neighborhood of T and also symplectically embed T into an ε-neighborhood of
E(a1, a2). These embeddings are also fibered, i.e. of the form (z, w) 7→ f(z)×g(w).
In particular we can take Y to be a set consisting of two rectangles of total area
a1 joined by a line segment I, and then map TY by embeddings into the product
space R2 ×R2 that are fibered over each rectangle and “folded” over the interval
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I. The set in TY that lies over I is a product I × F and the folding map has the
form

I × F → U ×R2 ⊂ R×R×R2, (t, x) 7→ (t,H(t, x), φt(x)).

The minimum amount of room needed to make this fold (i.e. the minimum area of
U) is closely related to the Hofer norm of the embedding φ1 ◦ φ−1

0 : φ0(F ) → R2.
In this construction one can see the relevance of local symplectic fibrations and
the close connection between embedding problems and Hofer geometry that was
exhibited in [LM1].

Here is a problem suggested by Schlenk [Sch]. Define s(a) for a ≥ 1 to be
the infimum of the numbers s such that there is a symplectic embedding of the
ellipsoid E(1, a) into the ball E(s, s). Schlenk has shown that as a →∞ the image
of E(1, a) fills up an arbitrarily large percentage of the volume of the ball. Thus
s(a)2/a converges to 1 as a →∞.

Question 3.5 Find sharp estimates for s(a), in particular as a ↘ 2.

By Theorem 3.3 s(a) = a for a ≤ 2, but otherwise this function is unknown.
Schlenk has made some computer calculations of the best upper bound for s(a)
that can be obtained by (multiple) folding but it is not clear whether his estimate
is even asymptotically sharp as a ↘ 2. To improve this estimate one would need
a new way to construct symplectic embeddings. It would be interesting to know
if there is another way to construct such embeddings that is not so closely tied to
the local product structure as is the method of folding.

Here is another embedding problem that involves understanding the interac-
tion of an embedded ball with a fibration. The nonsqueezing theorem gives an
obstruction for a ball B to embed in a cylinder. But when this obstruction van-
ishes we do not yet know much about the space of all symplectic embeddings φ of
the ball into the cylinder, except that it is path-connected when n = 2. Consider
the slicing of the cylinder Z2n(1) by the flat discs Dx = B2(1)× {x}, x ∈ R2n−2,
that intersect the boundary ∂Z2n(1) along the leaves of its characteristic foliation.
Each disc Dx has an area form given by the restriction of the standard symplectic
form ω0.

Question 3.6 Find a lower bound for

cr = min
φ

max
x

area φ(B) ∩Dx,

where φ varies over all symplectic embeddings of the ball B of radius r. In partic-
ular, does limr→1 cr/πr2 = 1?

Polterovich pointed out8 that the ratio cr/πr2 → 0 as r → 0. One can see
this by beginning with a slicing (or foliation) of R2n by parallel isotropic 2-planes
(i.e. planes on which ω0 vanishes) and then slightly perturbing it to a slicing by
parallel symplectic planes whose intersections with the standard ball B = B2n(r)

8Private communication
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have ω0-area ≤ επr2 for some ε. There is a symplectomorphism ψ of R2n that
takes the slicing R2×{x} to this new one, and, provided that r is sufficiently small,
we can arrange that the restriction ψ−1|B extends to a symplectomorphism φ of
R2n with support in the cylinder Z2n(1). Hence, for these r, we find cr/πr2 ≤ ε.
On the other hand, we showed in [LM3] that when r = 1 any embedding φ of the
unit ball B into the cylinder B2(1) ×R2n−2 must intersect the boundary of the
cylinder in a set that contains some flat circle ∂B2(1)×{x}. Hence one could say
that c1 = π.

4 Symplectic fibrations

We will begin by describing the general theory of (nonsingular) symplectic fibra-
tions that originated in work of Guillemin, Lerman and Sternberg [GLS], and then
will discuss some of the recent results about their structure.

4.1 Symplectic connections and Hamiltonian fibrations

A (nonsingular) fibration p : P → B is said to be symplectic if its fiber is a sym-
plectic manifold (M, ω) and the structural group of the fibration is Symp(M,ω).
It follows that every fiber Mb = p−1(b) carries a well defined symplectic form ωb.
However, neither the base B nor the total space P need have a symplectic form.
(In fact, here we may take the base to be any CW complex.)

There is an especially nice theory when all spaces involved are manifolds and
p is smooth. (In this case we will say that the fibration is smooth.) A 2-form τ
on P that restricts to ωb on each fiber Mb is called a connection 2-form. Note
that τ need not be either closed or nondegenerate. Nevertheless, the fact that
it is nondegenerate on the fibers implies that its restriction to the inverse image
p−1(γ) of any smooth path γ : [0, 1] → B in the base has a one-dimensional kernel9

that is everywhere transverse to the fibers. Hence the integral lines of this kernel
are horizontal lifts of γ that define parallel translation of the fibers along γ. It is
easy to see from this description that parallel translation preserves the symplectic
forms on the fibers precisely when the restriction of τ to any submanifold of the
form p−1(γ) is closed. Thus one needs

dτ(v1, v2, · ) = 0

whenever the vectors v1, v2 are vertical, i.e. tangent to a fiber. In this case the
connection form τ is said to be symplectic.

It is not hard to see that every symplectic fibration has a symplectic con-
nection τ . However, one cannot always choose τ to be closed. For example, if
p : S3 → S2 is the Hopf map, the composite map S3 × S1 → S3 p→ S2 can be
given the structure of a symplectic fibration, but clearly does not support a closed
connection 2-form.

9The kernel is spanned by vectors v such that τ(v, w) = 0 for all vectors w tangent to p−1(γ).
This is a generalization of the characteristic foliation on a hypersurface in the sense that if τ
were a symplectic form on P then this kernel would consist precisely of the vectors tangent to
the characteristic foliation of τ on the hypersurface p−1(γ).
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Thurston showed in [Th] that there is a closed connection form if and only if
there is a cohomology class a ∈ H2(P,R) that restricts to the symplectic class [ωb]
in each fiber. There are some obvious situations in which such a class a always
exists, for example if [ωb] is the first Chern class of the tangent bundle to the
fibers.10 In [GLS] Guillemin, Lerman and Sternberg prove that if the manifold
M is simply connected every symplectic fibration with fiber M supports a closed
connection 2-form. They give a beautiful construction of this form (that they call
the coupling form) from the curvature of a symplectic connection on P . This result
was extended by McDuff–Salamon, who prove the following result in [MS].

Theorem 4.1 Suppose that M → P → B is a smooth symplectic fibration with
fiber (M, ω). Then the following conditions are equivalent:
(i) The structural group of the fibration can be reduced to Ham(M, ω);
(ii) The fibration is symplectically trivial over the 1-skeleton of B and supports a
closed connection 2-form.

Note One needs to assume triviality over the 1-skeleton of B because the group
Ham(M, ω) is path-connected. It should be possible to define a subgroup H of
Symp(M,ω) such that fibrations with structural group H are precisely those with
closed connection 2-form: see [LMP3]. This group H would have to be discon-
nected and have identity component equal to Ham(M, ω).

Definition 4.2 A smooth symplectic fibration p : M → B is said to be Hamil-
tonian if it satisfies one of the equivalent conditions in the above theorem. A
symplectic form Ω on the total space of a symplectic fibration p : P → B is said
to be compatible with the fibration if restricts to ωb on each fiber Mb of p.

Proposition 4.3 Let p : P → B be a Hamiltonian fibration and suppose that
B has a symplectic form σB. Then there is a symplectic form Ω on P that is
compatible with p and is unique up to deformation.

Proof: Take Ω = τ + κp∗(σB), where τ is some closed connection form and
κ > 0 is sufficiently large. For more details see [Th] (or [MS]).

4.2 The topology of symplectic fibrations

One way to construct symplectic fibrations is to start with an element φ ∈
πk(Symp(M, ω)) and use it as a clutching function to construct a bundle over
Sk+1:

p : Pφ =
(
Dk+1

+ ×M
) ∪φ

(
Dk+1
− ×M

) → Sk+1.

When k > 1 the resulting fibrations are Hamiltonian, but this may not be so when
k = 1 since π1(Ham(M,ω)) is often different from π1(Symp(M, ω)): see § 2.6.
Since S2 is symplectic, it follows from Proposition 4.3 above that the loop φ is
Hamiltonian precisely when the total space Pφ carries a symplectic form Ω that is
compatible with the fibration p : Pφ → S2.

10Note that this bundle has a well defined complex structure since the space J (ωb) of fiberwise
compatible almost complex structures is contractible for all b ∈ B.
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Seidel pointed out in [Seid2] that every element of π1(Ham(M,ω)) gives rise
to an automorphism of the quantum cohomology of M (cf. § 2.2). By interpreting
this automorphism in terms of the geometry of the bundle Pφ → S2, Lalonde–
McDuff–Polterovich showed in [LMP2] that the Leray spectral sequence for the
rational cohomology of the total space Pφ degenerates. To do this it is enough to
show that every rational homology class α ∈ H∗(M,Q) is the intersection with
[M ] of a homology class α̃ ∈ H∗+2(P ). Roughly speaking, one constructs α̃ as
the set of points in P that lie on a suitable family of J-holomorphic sections of
p : P → S2 that intersect a cycle representing α.

This argument generalizes significantly, for example to Hamiltonian fibrations
over any sphere: see [LMP3].

Question 4.4 If (M,ω) → P → B is a fibration with structural group
Ham(M, ω), is the rational cohomology H∗(P,Q) of P isomorphic as a vector
space to H∗(B;Q)⊗H∗(M,Q)?

The answer is known to be “yes” when the hard Lefschetz theorem holds for
H∗(M,Q): see [B]. However, it is “no” if one drops the Hamiltonian condition. For
example, the Kodaira–Thurston manifold in [Th] that is symplectic but nonKähler
is the total space of a symplectic fibration X → T 2 with fiber T 2. Here

X = T 2 × S1 × [0, 1]/ ∼, (x, y, s, 0) ∼ (x, x + y, s, 1),

and it is easily seen that b1(X) = 3 rather than 4.
The story concerning the multiplicative structure of H∗(P,Q) is more compli-

cated. Here one can consider both the standard cup product and also versions of
the quantum (or deformed) cup product. Seidel exploits properties of the quantum
product in his work on Symp(CPm ×CPn) that was mentioned in 2.6 above. He
also pointed out11 that if (M,ω) admits no J-holomorphic spheres at all and if P
is a fibration over S2 then H∗(P,Q) is isomorphic as a ring (under cup product)
with the product of the rings H∗(S2,Q) and H∗(M,Q). The following general-
ization looks very plausible, but the full details of the proof are not yet worked
out: see [Mc2]. We say that the quantum product is trivial if it equals the usual
cup product.

Claim 4.5 Let (M, ω) → P → S2 be a fibration with structural group Ham(M, ω),
and suppose that the quantum product on M is trivial. Then H∗(P,Q) is isomor-
phic as a ring (under cup product) with the product of the rings H∗(S2,Q) and
H∗(M,Q).

If the quantum product on M is nontrivial, no general statement about the
ring structure of H∗(P ) has yet been found. Nor is it yet clear what happens with
bases other than S2.

In view of Donaldson’s work mentioned in §2.3 above, it would be interesting
to have an answer to the following question.

11Private communication
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Question 4.6 To what extent do these results carry over to Lefschetz (i.e. sin-
gular) fibrations?

In the algebraic case there is a good understanding of the cohomology of
Lefschetz pencils: see Looijenga [L] for example. However, this is closely related
to the fact that the hard Lefschetz theorem holds for algebraic manifolds, and so
it is not clear what, if anything, will carry over to the symplectic case.

Finally, we remark that these ideas allow one to decide when the nonsqueezing
theorem holds for the fibration P → S2: see [Mc2]. By this we mean the following.
Let (P, Ω) be a symplectic (2n+2)-dimensional manifold such that Ω is compatible
with the fibration P → S2, and define the area of (P, Ω) to be the number A such
that

1
(n + 1)!

∫

P

Ωn+1 =
A

n!

∫

M

ωn.

Thus, if the fibration P → S2 is symplectically trivial so that (P, Ω) is the product
(S2 ×M, σ ⊕ ω), A is simply the area of the base (S2, σ). Then we will say that
the nonsqueezing theorem holds for the fibration p : (P, Ω) → S2 if the area A
constrains the size of the balls that embed into (P, Ω), i.e. if πr2 ≤ A whenever
B2n+2(r) embeds symplectically in (P, Ω). By considering the case when P is CP 2

blown up at a point, it is not hard to see that some condition is needed in order for
the nonsqueezing theorem to hold. It looks very likely that by studying properties
of J-holomorphic sections one can establish the following claim: see [Mc2].

Claim 4.7 Let p : P → S2 be a symplectic fibration whose fiber (M, ω) has trivial
quantum product, and let Ω be a symplectic form on P compatible with p. Then
the nonsqueezing theorem holds for the fibration p : (P, Ω) → S2.
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1 The XXZ model: a solvable system of infinite degrees of freedom

The aim of this talk is to review some recent (in 90’s) progress in solvable lattice
models. I will, in particular, stress the connection with the representation theory
of the quantum affine algebras. In this section, I introduce the XXZ model and
the six-vertex model, state the problems we wish to solve and give the clue to the
solvability of these models. I also give some results in prehistoric ages (i.e., before
’85, the birth of Quantum Groups) which led us to this connection.

1.1 The XXZ Hamiltonian

Consider the one-dimensional quantum Hamiltonian with a real parameter ∆,

H = −1
2

∑

k

(σx
kσx

k+1 + σy
kσy

k+1 + ∆σz
kσz

k+1). (1)

Here σx, σy, σz are the Pauli matrices, and the index k signifies the k-th component
of the tensor product ⊗kVk of the two-dimensional spaces Vk ' V = Cv0 ⊕Cv1.
The Hamiltonian (1) is called the XXZ Hamiltonian.

Here we have not specified the range of the index k. If the range is finite, e.g.,
an interval 0 ≤ k ≤ N − 1 or a periodic chain k ∈ Z/NZ, both the space ⊗kVk

and the operator H are well-defined. However, in physics, we are interested in the
large volume limit, i.e., N = ∞, where the number of degrees of freedom of the
system becomes infinite. There is no apriori meaning of these expressions in this
limit. In fact, some physical quantities are divergent (e.g., the trace of e−H/kT ).
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We say a model is solved if we can extract finite quantities and give them closed
expressions.

The problems we are interested in, in general, are
(A) the diagonalization of the Hamiltonian; and
(B) the computation of the matrix elements of the local operators;

a particular case of (B) is
(C) the computation of the correlation functions.

1.2 Vacuum states as infinite linear combinations of paths

Our consideration is restricted to the T = 0 case. In this case, we are interested in
the lowest eigenvalue of the Hamiltonian and the corresponding eigenvectors (the
vacuum states). We are also interested in those eigenvectors whose eigenvalues
have finite differences to the lowest one in the large volume limit (the excited
states).

If ∆ → ±∞, the Hamiltonian effectively approaches a diagonal one H ∼
∓ 1

2

∑
k σz

kσz
k+1. If ∆ = ∞, there are two vacuums (i = 0, 1),

|p̄(i)〉 = ⊗kvp̄(i)(k) where p̄(i)(k) = 1
2 (1− (−1)i). (2)

All the spins are equal in the vacuum states. The corresponding eigenvalue is
−]{k}, and therefore divergent in the large volume limit. However, we renormalize
the Hamiltonian by replacing σz

kσz
k+1 by σz

kσz
k+1 − 1 so that its lowest eigenvalue

is 0. On the other hand, if ∆ = −∞, the vacuums (i = 0, 1) are

|p(i)〉 = ⊗kvp(i)(k) where p(i)(k) = 1
2 (1− (−1)k+i). (3)

The spins are alternating in the vacuum states. The renormalization of the Hamil-
tonian is such that σz

nσz
n+1 + 1.

If ∆ is finite we must take account of the interaction terms σx
kσx

k+1 +σy
kσy

k+1.
These terms are non-diagonal and mix the vectors of the form |p〉 = ⊗kvp(k). How-
ever, they preserve the total spin of the vectors, i.e., 1

2

∑
k(1− 2p(k)). Therefore,

if |∆| is sufficiently large, it is natural to expect that the vacuum states are con-
tained in the same subspace of total spin as |p̄(i)〉 or |p(i)〉. In fact, this is true.
For ∆ ∼ ∞, this implies that |p̄(i)〉 remains as the vacuum.

The case ∆ ∼ −∞ is more interesting because the vacuum states are linear
combinations of (3) and other vectors of total spin 0 (we assume N is even). If N is
infinite, infinitely many terms appear in the linear combination. Mathematically,
this is a serious problem because it is not clear if we can introduce a suitable
topology in order to deal with this infinite sum.

One can make a perturbation expansion of the vacuum state in the form

|vac〉i =
∑

p

c(p)|p〉 where |p〉 = ⊗k∈Zvp(k). (4)

Note that N = ∞ in this formula. We set c(p(i)) = 1 and the other coefficients are
of the form c(p) =

∑
j≥1 cj(p)εj with ε = ∆−1. In principle, one can determine
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each coefficient cj(p) recursively by solving the equation Hre|vac〉i = 0. Here the
renormalized Hamiltonian Hre is given in the form

Hre = −1
2

∑

k

(
σx

kσx
k+1 + σy

kσy
k+1 + ∆(σz

kσz
k+1 + 1 +

∑

j≥1

rjε
j)

)
, (5)

in which the coefficients rj are determined in each step of the recursion to remove
the divergence and to make the eigenvalue 0.

An important feature of this expansion is that c(p) is zero unless p(k) = p(i)(k)
for all but finite k. We call such p a path belonging to the i-th ground-state.

1.3 Phases of the XXZ model

If we vary ∆ from −∞ to ∞, the eigenvalues cross each other. The vacuum states
change from one region to another when the eigenvalues cross. In the infinite
volume limit, it is known that there are three different phases (see, e.g., [1]),

(i) ∆ < −1, (ii) − 1 ≤ ∆ ≤ 1, (iii) ∆ > 1. (6)

We have already mentioned (i) and (iii). The phase (ii) is such that the
vacuum state belongs to the subspace of the total spin 0. In this phase, there
is a unique vacuum state, which belongs to the space of total spin 0. Nothing
like the path expansion (4) is available because there is no special limit where
the Hamiltonian is diagonal. I will discuss that this difference between phase
(i) and (ii) causes an essential difference in our treatment of the model in the
representation theory. As for the phase (iii), where the vacuum states are trivial,
there is nothing to say about from the representation theory, and I will not discuss
this phase any further.

1.4 Excited states and particles

The method invented by Bethe when he solved the XXX model is called the Bethe
Ansatz. It starts with finite periodic N , and consider the infinite volume limit
in the second step. The key idea in this method is to introduce the notion of
quasi-particles borrowed from the quantum field theory.

For finite N , there exist only finitely many eigenvectors of the Hamiltonian.
It has only discrete eigenvalues. However, in the infinite volume limit, continuous
spectra appear. To parametrize the eigenvectors belonging to the continuous spec-
tra we need continuous parameters. The Bethe Ansatz uses a set of continuous
parameters β1, . . . , βn, called the rapidity variables, to parametrize the eigenvec-
tors in the finite volume. An eigenstate parametrized by n continuous parameters
is called an n quasi-particle state. Since there are only finitely many eigenvec-
tors, only some discrete values of the quasi-momenta are allowed to give actual
eigenvectors.

The vector |p(0)〉 = ⊗kv0 is the 0 quasi-particle state. One quasi-particle
state is a linear combination of |p〉 such that p(k) = 1 for one and only one k, and
so on for two and more quasi-particle states. This picture is not appropriate in

Documenta Mathematica · Extra Volume ICM 1998 · I · 359–379



362 Tetsuji Miwa

the phases (i) and (ii), and, in particular, in the large volume limit, because the
vacuum states in this terminology are N

2 particle states. In these phases, n(> 0)
quasi-particle states may have lower ‘energies’ (=eigenvalues of the Hamiltonian)
than the 0 quasi-particle state. There is a trick to reparametrize the vacuum and
the excited states in such a way that the vacuum states are the 0 particle states
and the excited states are the n(> 0) particle states. This is possible only in
the infinite volume limit. I stress this point because in many cases something
good happens only in the infinite volume limit. The remarkable thing in this
parametrization is that the renormalized energy of an n-particle state with the
rapidities βj(1 ≤ j ≤ n) is given by an additive formula

∑
j ε(βj). The function

ε(β) is a simple function, e.g., if ∆ = −1, we have ε(β) = π
ch β . Each particle with

the rapidity βj carries the energy ε(βj). This is the reason why these states are
called the n-particle states.

Note that, if ∆ = −1 the above formula tells that there is no energy gap
between the vacuum and the excited states: The energy difference ε(β) approches
0 if |β| → ∞. This property is called ‘massless’ by using the language of quantum
field theory. In statistical mechanics, this is called ‘critical’. In the phase (ii) the
particles are massless, while in the phase (i) they are massive.

A further remarkable fact about the particle structure, valid both in the mas-
sive and the massless phases, is the degeneracy of the n-particle states ([15, 6]).
A clear view of this fact was given in [6] for ∆ = −1. I write their formula in
the form adapted to our notation. Denote the space of the eigenvectors of the
Hamiltonian by F . We call it the physical space. We have the decomposition

F = ⊕n≥0,even
n∏

j=1

∫ ∞

−∞

dβj

2π

[⊗n
j=1(C

2)βj

]
sym (7)

It means that the n-particle states with a fixed set of rapidities (β1, . . . , βn) have
2n-fold degeneracy. This degeneracy is identified with the tensor product ⊗nC2.

Here is a key to the connection with the representation theory. The Hamil-
tonian (1) with ∆ = −1 has a global sl2 symmetry, i.e., there exists an sl2 action
on ⊗kVk which commutes with the Hamiltonian. The formula (7) claims that the
vector space of the n-particle states with rapidities (β1, . . . , βn) is isomorphic to

⊗nC2 = ⊕ε1,...,εn=0,1Cvε1 ⊗ · · · ⊗Cvεn . (8)

as sl2-module. In other words, we have a complete parameterization of the excited
states by the rapidities (β1, . . . , βn) and the isospins (ε1, . . . , εn). Let us denote
this state by |βn, . . . , β1〉εn,...,ε1 .

There is a further symmetry of the n-particle states that is indicated by the
symbol

[ ]
sym

in (7): There exists a matrix S(β) depending on the rapidity

variable β, which acts on C2 ⊗ C2. This is called the S-matrix. The S-matrix
exchanges the rapidities of n-particle states.

|βn, . . . , βj , βj+1, . . . , β1〉εn,...,εj ,εj+1,...,ε1 (9)

=
∑

ε′
j
,ε′

j+1

S(βj − βj+1)
ε′j ,ε′j+1
εj ,εj+1 |βn, . . . , βj+1, βj , . . . , β1〉εn,...,ε′

j+1,ε′
j
,...,ε1 .
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I will give the explicit formula of the S-matrix only later when I discuss the
sine-Gordon theory.

The meaning of the rapidity variables in the representation theory is unclear
at this stage because a larger symmetry is still hidden behind. In Section 2, I will
show that the hidden symmetry distinguishes the rapidities. The particles with
different rapidities correspond to different (i.e., non-isomorphic) representations.

1.5 Correlation functions

Now, I will explain what (B) and (C) mean. We call a linear operator acting on
⊗k∈ZVk local if its action is restricted to a finite interval of the one-dimensional
lattice Z where the index k runs. The Hamiltonian is not local though each
summand in (1) is local.

The correlation functions are the vacuum-to-vacuum matrix element of local
operators. If we take a local operator acting on n sites of the lattice, its correlation
function is called an n-point function. Quantities of physical interest are often
given in terms of the correlation functions. For example, the one point function

P (i)(k) = i〈vac|σz
k|vac〉i

i〈vac|vac〉i (10)

gives the magnetization.
Introduce a new parameter q by ∆ = 1

2 (q + q−1). The massive phase is
−1 < q < 0 and, the massless phase is |q| = 1. Here we are considering the
one-point function in the massive phase.

By obvious reasons, the one-point function satisfies P (1−i)(k + 1) = P (i)(k)
and P (0)(0) + P (1)(0) = 0. The function P (0)(0) was computed by Baxter ([2]):

P (0)(0) =
∞∏

k=1

(
1− q2k

1 + q2k

)2

. (11)

The above q is identified with the q in the affine quantum algebra Uq(ŝl2). The
representation theory of Uq(ŝl2) provides us with the scheme for computing the
general correlation functions, and the general matrix elements of local operators
with respect to the excited states. I will explain this in Section 4.

2 Quantum affine algebras: the structure underlying the solvabil-
ity

An operator which commutes with the Hamiltonian is called its symmetry. In
this section I discuss the symmetries of the XXZ Hamiltonian. There are two
kinds of symmetries, abelian and non-abelian. The latter is the symmetry of the
quantum affine algebra Uq(ŝl2). This algebra underlies the solvability of the XXZ
Hamiltonian.
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2.1 Integrability and the transfer matrix

What I have described in the previous section is heavily dependent on the special
choice of the Hamiltonian (1). In the infinite volume limit, in general, Hamiltonians
have infinitely degenerate eigenvalues. This is an obstacle for the diagonalization.
In the XXZ case, this infinite degeneracy is decomposed into finite degenaracy in
the particle structure: If the number of particles and their rapidities are fixed, the
degeneracy reduces to finite. The decomposition is explained as follows.

The XXZ Hamiltonian on the finite N -periodic lattice has an abelian (i.e.,
mutually commuting) family of symmetries. The simultaneous eigenspaces of this
commuting family of operators give rise to the decomposition into the particles in
the infinite volume limit.

Let us discuss the commuting family. There exists a family of operators T (ζ)
parametrized by a complex parameter ζ

T (ζ)(⊗kvεk
) =

∑

{ε′
k
}k∈Z/NZ

T (ζ){εk}
{ε′

k
}(⊗kvε′

k
). (12)

We have

[T (ζ1), T (ζ2)] = 0, (13)

T (1) is the shift operator, i.e., T (1){εk}
{ε′

k
} =

∏

k

δεk+1,ε′
k
, (14)

T (1)−1T (ζ) = 1 + (c1H + c2)(ζ − 1) + O((ζ − 1)2). (15)

This operator naturally appears in the study of a statistical mechanical model of
a different kind, which I will explain in the next section.

2.2 The six-vertex model

The operator T (ζ) appears in the six-vertex model, a model in classical statistical
mechanics on the two dimensional lattice. Consider a ‘lattice’ consisting of lines
in the two dimensional plane. The lines are either horizontal or vertical. We call
an intersection of two lines a vertex. We associate a local variable εk to each edge
k, which is a line segment between two neighboring vertices. The variable εk takes
values 0 or 1.

A configuration C is an assignment of values 0 or 1 to all the local variables.
Consider a vertex v, and a local configuration around the vertex, say ε′1 and ε1 for
the upper and the lower edges on the vertical line, and ε′2 and ε2 for the right and
the left edges on the horizontal line. We associate a local weight, Rε1,ε2

ε′1,ε′2
, called

the Boltzmann weight, to each local configuration. We consider these weights as
the matrix elements of an matirx R acting on V ⊗ V :

R(vε1 ⊗ vε2) =
∑

ε′1,ε′2

Rε1,ε2
ε′1,ε′2

vε′1 ⊗ vε′2 . (16)

The most basic quantity in classical statistical mechanics is the partition
function Z. This is the sum of the product of the local Boltzmann weights; the
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sum is taken over all the configurations and the product is taken over all the
vertices.

Z =
∑

C

∏
v

R
ε1(v,C),ε2(v,C)
ε′1(v,C),ε′2(v,C). (17)

Sometimes it is necessary to consider similar configuration sums for a different
arrangement of lines, e.g., by introducing lines with different angles.

Now, consider a vertical slice of the whole lattice, i.e., a vertical line and the
two sets of horizontal edges in the right and left sides of the vertical line. Let us
denote the local variables on the right edges by {ε′k} and those on the left by {εk}.
One can associate a matrix T acting on ⊗kVk. This is called the transfer matrix:

T
{εk}
{ε′

k
} =

∑

Cs

∏
vs

R
ε1(vs,Cs),ε2(vs,Cs)
ε′1(vs,Cs),ε′2(vs,Cs). (18)

Here the subscript s is put to indicate the restriction to the slice. The configuration
Cs is fixed to {ε′k} and {εk} on the horizontal edges.

The transfer matrix is convenient in the calculation of the partition function.
For a finite lattice on the torus Z = tr TN where N is the number of the vertical
lines on the torus.

So far, I have discussed general setting for a type of models called vertex
models. Now, I introduce the six-vertex model whose transfer matrix gives the
commuting family of operators satisfying (13-15).

We associate a rapidity variable βj to each line j in the lattice. We set

ζj = e
πβj

ξ , where ξ and q are related by q = −e−
π2i

ξ . In the massive phase, ξ is
purely imaginary (Im ξ < 0), and in the massless phase, ξ > 0.

Consider the following R̄ depending on the parameters q and ζ.

R̄ε,ε
ε,ε = 1, R̄ε,1−ε

ε,1−ε =
q(1− ζ2)
1− q2ζ2

, R̄ε,1−ε
1−ε,ε =

ζ(1− q2)
1− q2ζ2

(ε = 0, 1), (19)

all the other weights are zero.

The vertex model given by this R-matrix is called the six-vertex model. Note that
only 6 out of 16 local configurations have a non-zero weight.

In general, we choose the Boltzmann weights at a vertex v to be R̄(ζ1/ζ2) if
the vertical line passing thorough v carries the parameter β1 and the horizontal line
β2. With this special choice of the Boltzmann weights, the partition function has
a large symmetry, i.e., it is invariant under deformation of the arrangement of the
lines. This is called the Z-invariance. General Z-invariance is a straightforward
consequesnce of the simplest case where only three lines are involved. The equation
of the Z-invariance in this case is called the Yang-Baxter equation.

Suppose we define the transfer matrix T by choosing the parameter ζ for
the vertical line, and 1 commonly for the horizontal lines. With this choice the
transfer matrix T (ζ) satisfies (13-15). Note, in particular, that (13) follows from
the Z-invariance.

The origin of the Z-invariance, or the Yang-Baxter equation, is clarified in
the theory of quantum groups. I will explain this in the particular context of the
six-vertex model.
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2.3 R-matrices as intertwiners [5, 9]

The quantum affine algebra Uq(ŝl2) is a q-deformation of the universal enveloping
algebra U(ŝl2) of the affine Lie algebra ŝl2. The structure and the representation
theory of the former for a generic value of q is not very far from those of the latter
which I will recall partly.

The Lie algebra ŝl2 is a central extension of the infinite dimensional Lie algebra
sl2 ⊗C[t, t−1]. The last one contains two subalgebras that are isomorphic to sl2:
(sl2)i = Cei ⊕Cfi ⊕Chi (i = 0, 1) where

e0 =
(

0 0
1 0

)
⊗ t, f0 =

(
0 1
0 0

)
⊗ t−1, h0 =

(−1 0
0 1

)
⊗ 1 + c, (20)

e1 =
(

0 1
0 0

)
⊗ 1, f1 =

(
0 0
1 0

)
⊗ 1, h1 =

(
1 0
0 −1

)
⊗ 1.

Here, c is the central element.
There are two important categories of representations of ŝl2:

the affinization of finite dimensional representations; (21)

and

the integrable highest weight representations (IHWR). (22)

There exists one-parameter family of automorphisms Aζ : U(ŝl2) → U(ŝl2)
sending the generators ei, fi, hi to ζei, ζ

−1fi, hi. Given a finite dimensional repere-
sentation M , i.e., an algebra map ρ : U(ŝl2) → End (M), one can define a new
representation by ρ ◦ Aζ . This representation is called the affinization of M . For
example, there is a natural action of ŝl2 on V ' C2 given by the matrix part of
(20). The affinization of V is denoted by Vζ .

The value of c is called the level of representation. The level of Vζ , as well as
the affinizations of all the finite dimensional representations, is zero.

I will say a few words on IHWR. A representation of ŝl2 is called integrable
if M is decomposed into a direct sum of finite dimensional modules by the action
of each subalgebra (sl2)i. Let λ ∈ (Ch0 ⊕Ch1)

∗ be an ŝl2-weight. A vector uλ is
called a highest weight vector with the highest weight λ if eiuλ = 0, hiuλ = λ(hi)uλ

(i = 0, 1). A representation M is called a highest weight representation if it
is generated by a highest weight vector: M = U(ŝl2)uλ. There exists (and, in
fact, uniquely exists) an integrable highest weight representation with the highest
weight λ if and only if λi = λ(hi) is non-negative integer for each i. We denote it
by V (λ). The level of this representation is equal to l = λ0 + λ1.

The above story of the representation theory of ŝl2 is ‘deformed’ to that of
Uq(ŝl2). There is, however, one significant difference in the two theories. The
tensor product of two representations is defined in both theories. The action is
given by the canonical algebra map ∆ : U → U ⊗U (U = U(ŝl2) or U = Uq(ŝl2)).
This map (unfortunately, there is a conflict in the notation ‘∆’) is called the
coproduct. For U = U(ŝl2) the coproduct is given by ∆(X) = X ⊗ 1 + 1⊗X for
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X ∈ sl2. It is invariant with respect to the transposition σ : U ⊗ U → U ⊗ U ,
σ(x ⊗ y) = y ⊗ x. Namely, we have σ ◦∆ = ∆. This is no longer true after the
deformation: ∆ and ∆′ = σ ◦∆ are differennt.

A question arises. Are the two actions on the tensor product, one given by ∆
and the other given by ∆′, isomorphic? The answer is ‘no’ in general. However,
it is ‘yes’ in certain situation including the tensor product of two representations
from the union of the categories (21) and (22).

I recall the notion of intertwiner, which plays the central role in the following
story. Consider two actions of an algebra A, Mi with the action given by ρi

(i = 1, 2). A map F : M1 → M2 is called an intertwiner if the following diagram
commutes:

M1
F−→ M2

ρ1(a) ↓ ρ2(a) ↓
M1

F−→ M2

(x ∈ A). (23)

Consider the tensor product of two affinizations Vζi(i = 1, 2) of the two di-
mensional representation V of Uq(ŝl2). The R-matrix R̄(ζ1/ζ2) ∈ End (Vζ1 ⊗ Vζ2),
which gives the Boltzmann weights of the six-vertex model, is the intertwiner of
the two representations, one given by ∆ and the other given by ∆′. Namely, we
have an equality R̄(ζ1/ζ2)∆(x) = ∆′(x)R̄(ζ1/ζ2) for all x ∈ Uq(ŝl2).

2.4 Uq(ŝl2) symmetry of the XXZ model

After these preparation from the representation thoery, it is high time that I told
the main idea of this talk: the Uq(ŝl2) symmetry of the XXZ Hamiltonian and the
transfer matrix of the six-vertex model. It exists only for the massive phase and
only in the infinite volume limit. This limitation makes a clear distinction of this
symmetry from the abelian symmetry given by the transfer matrix itself.

Formally speaking, the space on which these operators act is the infinite tensor
product ⊗k∈ZVk of the two dimensional spaces Vk ' C2. We consider these spaces
as the two dimensional Uq(ŝl2) module with the following actions of the generators.

e0 = f1 =
(

0 0
1 0

)
, e1 = f0 =

(
0 1
0 0

)
, t−1

0 = t1 =
(

q 0
0 q−1

)
. (24)

Formally speaking again, an action ρ∞ on ⊗k∈ZVk is given by the coproduct,
∆(ei) = ei⊗ 1+ ti⊗ ei, ∆(fi) = fi⊗ t−1

i +1⊗ fi,∆(ti) = ti⊗ ti. Namely, we have,

∆∞(e0) =
∑

k

· · · ⊗
(

q−1 0
0 q

)
⊗

k−th(
0 0
1 0

)
⊗

(
1 0
0 1

)
⊗ · · · , (25)

∆∞(f0) =
∑

k

· · · ⊗
(

1 0
0 1

)
⊗

k−th(
0 1
0 0

)
⊗

(
q 0
0 q−1

)
⊗ · · · ,

∆∞(e1) =
∑

k

· · · ⊗
(

q 0
0 q−1

)
⊗

k−th(
0 1
0 0

)
⊗

(
1 0
0 1

)
⊗ · · · ,
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∆∞(f1) =
∑

k

· · · ⊗
(

1 0
0 1

)
⊗

k−th(
0 0
1 0

)
⊗

(
q−1 0
0 q

)
⊗ · · · ,

∆∞(t−1
0 ) = ∆∞(t1) = · · · ⊗

(
q 0
0 q−1

)
⊗

(
q 0
0 q−1

)
⊗ · · · .

This action is obviously not well-defined on arbitrary vectors of the form
⊗k∈Zvεk

because ∆∞(t1) counts the total spin q
∑

k∈Z

1
2 (1+(−1)εk ). The total spin

is finite if we restrict to the vectors |p〉 considered in Section 1. Hopefully, if
−1 < q < 0, the formal expressions (25) define actions on certain vectors of the
form (4). One can check this idea in the small q expansion. For example, one can
seek for a singlet, i.e., a vector annihilated by all ρ∞(ei) and ρ∞(fi) (i = 0, 1)
starting from the ground state vector |p(0)〉 of (3). The result is remarkable. We
get the same expansion as the vector |vac〉0.

Denote the physical space corresponding to the i-th ground state by Fi. We
postulate that there is an action ρ(i) of Uq(ŝl2) on Fi, and that the transfer matrix
T (ζ) intertwines ρ(0) with ρ(1). In other words, the transfer matrix, and in partic-
ular, the XXZ hamiltonian, has the Uq(ŝl2) symmetry. If this is true, the Uq(ŝl2)
module Fi must be highly reducible because the space of the intertwiners, con-
taining all T (ζ), is infinite dimensional. Recall the decomposition (7) for ∆ = −1.
This result suggests how the space Fi for ∆ < −1 decomposes with respect to the
Uq(ŝl2) action. The rapidity variables βj in (7) should be the parameters of the

affinization ζj = e
πβj

ξ .
This ia a nice picture. However, its mathematical content is still unclear be-

cause we have no means to make a rigorous meaning of the infinite tensor product.
In the following sections, I will give a different picture to the space Fi which en-
ables us to formulate everything in the representation theory without using the
infinite tensor product.

3 CFT and the SG model:integrable quantum field theories

Quantum field theory and statistical mechanics are twins. They share similar ideas
in many aspects. Integrable QFT and solvable lattice models, in particular, have
a common algebraic structure. In this section, I review a few results of the former,
from which we learn how to solve the models by using the symmetry algebras.

3.1 Lattice theory and continuum limit

In Section 1, I have described the structure of the eigenvectors of the XXZ model
by using the language of QFT. This is possible because of the similarlity between
QFT and statistical mechanics. In fact, the connection between these two theories
is more than a mere analogy because in the continuum limit, lattice theories are
described by QFT. The correlation functions of local variables in the former are
scaled to those of local fields in the latter. For example, take the two dimen-
sional Ising model. This is a model in classical statistical mechanics on the two
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dimensional lattice. We have the scaling identity (see [21, 18])

〈ϕ(0)ϕ(x)〉 = lim
ε→0, m,n→∞

x=(mε,nε)

〈σ0,0σm,n〉. (26)

Here, ε is a parameter in the Ising model such that the system becomes massless
at ε = 0. This identity along with the n point generalization defines a massive
QFT with the local field ϕ(x).

In general, it is rather difficult to carry out the computation in the right hand
side. Instead one can study the left hand side by using some other principle, and
then identify it with the continuum limit of some statistical mechanical system.
This idea was fully developed and extremely successful in the two dimensional
conformal field theory, which deals with the short distance behavior of massive
QFT.

The success of CFT came from the principle of conformal invariance. The
conformal invariance forces the theory to be massless. Therefore, it has no power
to say something about the scaling limit of off-critical (massive) models except in
the short distance limit. My interest in CFT in this talk lies not in taking the
scaling limit like (26) for critical models but in seeking for an algebraic machinery
applicable to off-critical models.

3.2 Primary fields and vertex operators [3, 16, 20]

The local fields in CFT have the conformal invariance. This is a symmetry of
the Virasoro algebra, which is a central extension of the Lie algebra of vector
fields on the unit circle. (I restrict the discussion to the so-called chiral CFT.)
This symmetry is a little bit different from the symmetry of the XXZ Hamitonian
discussed in Section 2. The action of Uq(ŝl2) commutes with the XXZ Hamiltonian.
The action of Virasoro algebra does not commute with the loacl fields. However,
it induces an adjoint action on the set of local fields, and this action is identified
with a highest weight representation.

The operators serving as a highest weight vector in this representation are
called the primary fields. It is important to know the primary fields as an operator
acting on the physical space of the conformal field theory. The operators in this
context is called the vertex operators.

Let us consider the conformal field theory with the symmetry of the affine
Lie algebra ŝl2. We fix a positive integer l. The physical space of this theory is
the direct sum of the level l integrable highest weight representations: FCFT,l =
⊕λV (λ).

Let V
(j)
ζ be the affinization of the 2j + 1 dimensional representation of ŝl2.

We considered a special case, j = 1
2 in Section 2. The intertwiner of the form

φ(j)(ζ) : FCFT,l → FCFT,l ⊗ V
(j)
ζ (27)

exists if and only if 0 ≤ j ≤ l
2 . It is called the vertex operator of level l and spin

j. This is identified with the primary field which generates the highest weight
module with the highest weight λ such that λ(h1) = 2j.
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3.3 The KZ equation

The two-point scaling funtion of the Ising model (26) is expressed in a closed
form by using a solution of the non-linear ordinary differential equation called
the Painleve equation. No such result is known for other solvable lattice models
that are essentially different from the Ising model. In CFT, the correlation func-
tions satisfy a system of linear partial equations which is a generalization of the
hypergeometric differential equation.

Let us consider a particular example, the operator φ( 1
2 )(ζ) in (27). For sim-

plicity we denote it by φ(ζ). This operator has two components φ0(ζ), φ1(ζ) cor-
responding to v0, v1 ∈ Vζ , each of which acts on FCFT,l. Denote by |0〉 the highest
weight vector in the spin 0 highest weight module. Set

f(ζ1, . . . , ζn) =
∑

ε1,...,εn

fε1,...,εn(ζ1, . . . , ζn)vε1 ⊗ · · · ⊗ vεn ∈ Vζ1 ⊗ · · · ⊗ Vζn (28)

where

fε1,...,εn(ζ1, . . . , ζn) = 〈0|φε1(ζ1) · · ·φεn(ζn)|0〉. (29)

Let Pjk be the transposition of the j-th and the k-th components in the tensor
product Vζ1 ⊗ · · · ⊗ Vζn . After some trivial modification the function f satisfy
the following system of linear partial differential equations called the Knizhnik-
Zamolodchikov equation.

∂

∂ζj
f(ζ1, . . . , ζn) =

1
l + 2

∑

k 6=j

Pjk

ζj − ζk
f(ζ1, . . . , ζn). (30)

3.4 Form factors of the SG model [19]

The two-point functions in CFT are simple power functions. This is clearly seen
from the equation (30). The quantum field theory in the scaling limit of the
Ising model is not conformally invariant. The two-point function is already highly
non-trivial. There are a variety of quantum field theories obtained as the scaling
limit of the off-critical solvable lattice models. These are massive field theories.
Their correlation functions are, in general, not known. However, these theories
have the integrability inherited from the lattice models. They have the factorized
S-matrix and their form factors satisfy the q-deformation of the KZ equation. I
will explain these points in the sine-Gordon model which are the scaling limit of
the eight-vertex model (a generalization of the six-vertex model).

One way to compute the two-point function is to put a complete set of inter-
midiate states.

〈vac|φ(0)φ(x)|vac〉 =
∑

n≥0,even

n∏

j=1

∫ ∞

−∞

dβj

2π

1
n!

∑
ε1,...,εn

(31)

× 〈vac|φ(0)|βn, . . . , β1〉εn,...,ε1 ε1,...,εn〈β1, . . . , βn|φ(x)|vac〉.
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The matrix elements 〈vac|φ(0)|βn, . . . , β1〉εn,...,ε1 are called the form factors.
For the Ising model, the form factors are given by the Pfaffian of the two-particle
one, which is tanh β1−β2

2 .
There is a redundancy of the vectors 〈vac|φ(0)|βn, . . . , β1〉εn,...,ε1 . Only those

with the restriction β1 < · · · < βn are independent. The assumption of the
factorized S-matrix is such that the linear relations among the vectors are given
by the two-particle S-matrix in the form (9). For example, the two-particle S-
matrix of the Ising model is −1.

The S-matrix of the sine-Gordon theory is given by (19) with a real parameter
ξ, as S = S0R̄. The scalar factor S0 is given by

S0 = −e

−i

∫
sinκβsh π−ξ

2 κ

ch π
2 κsh ξ

2κ

dκ

κ
. (32)

This function is expressed by means of the double gamma functions ([22, 13]).
Note that S0 depends on β, ξ in such a way that it is not single-valued in ζ, q as
opposed to the matrix part R̄.

In the limit ξ →∞, the double gamma function reduces to the usual gamma
function, and the S0 is given by

S0(β) =
Γ( 1

2 + β
2πi )Γ(− β

2πi )

Γ( 1
2 − β

2πi )Γ( β
2πi )

. (33)

The R̄ reduces to β−πiP
β−πi where P is the transposition.

The S-matrix of the SG theory is identical with the S-matrix of the six-vertex
model in the massless phase. This is because the SG theory is the continuum limit
of the eight-vertex model as I have already mentioned. The continuum limit is
taken at the critical region of the eight-vertex model. This is nothing but the six-
vertex model in the massless phase. The case discussed in Section 1 is a special
case of this story where ξ = ∞.

Set

Fε1,...,εn(β1, . . . , βn) = 〈vac|φ(0)|βn, . . . , β1〉εn,...,ε1 . (34)

Because of (9) it satisfies

Fε1,...,εj+1,εj ,...,εn
(β1, . . . , βj+1, βj , . . . , βn)

=
∑

ε′
j
,ε′

j+1

S(βj − βj+1)
ε′j ,ε′j+1
εj ,εj+1Fε1,...,ε′

j
,ε′

j+1,...,εn
(β1, . . . , βj , βj+1, . . . , βn).(35)

There is another equation for the form factor. It gives the analytic continua-
tion of the form factor in the last variable βn:

Fε1,...,εn
(β1, . . . , βn + 2πi) = Fεn,ε1,...,εn−1(βn, β1, . . . , βn−1). (36)

I will not explain why this is valid. In Section 4, however, its origin in the
representation theory is given in the case of the XXZ model with ∆ < −1.
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3.5 The quantum KZ equation [8]

Set

F (β1, . . . , βn) =
∑

ε1,...,εn

Fε1,...,εn(β1, . . . , βn)vε1 ⊗ · · · ⊗ vεn . (37)

Combination of (9) and (36) gives the following difference equation for the form
factor.

F (β1, . . . , βj + 2πi, . . . , βn) = Sj+1,j(βj+1 − βj − 2πi) · · ·Sn,j(βn − βj − 2πi)
×S1,j(β1 − βj) · · ·Sj−1,j(βj−1 − βj)F (β1, . . . , βj , . . . , βn). (38)

Here, I denote by Sj,k the action of S on the j-th and k-th components. In the
limit where ξ, β1, . . . , βn → ∞, this equation scales to the differential equation
(30) with the level l equal to 0.

One can repeat the story in 3.2 and 3.3 for Uq(ŝl2). Vertex operators are
defined as the intertwiners between the highest weight representations with and
without the tensor product by the affinization of a finite dimensional representa-
tion. The matrix elements of the product of vertex operators between the highest
weight vectors satisfy a system of difference equation. This is called the quantum
KZ equation. The above equation is a special case with level 0.

A question arises: Are these matrix elements representing the correlation
functions of some integrable models? The answer is NO BUT. I will come back to
this question later.

4 CTM and HTM: the key words in the dictionary

I present the algebraic structure of the XXZ and the six-vertex models in the lan-
guage of representation theory. Two kinds of transfer matrices, that are acting on
the half-infinite tensor product, play the central roles in the symmetry of Uq(ŝl2).
I will explain how to identify these operators in the representation theory. This
identification brings us the solutions to the problems mentioned before: the diag-
onalization of the XXZ Hamiltonian, and the computation of the form factors and
the correlation functions.

4.1 CTM [1]

Our goal is to understand the infinite tensor product ⊗k∈ZVk as a Uq(ŝl2) module.
It is rather a big representation, of course not irreducible. The half infinite tensor
product is also a representation space of Uq(ŝl2). It is much smaller than the
infinite tensor product in both directions. The idea is to study the content of this
representation first, There are two operators which naturally act on this space.
They are the corner transfer matrix (CTM) and the half transfer matrix (HTM).

I start from the CTM. Recall the Boltzmann weights given by (19). There
are three different ones. Let us call them the a, b and c weights, respectively, from
the left to the right. We restrict to the region

−1 < q < 0, 1 < ζ < −q−1. (39)
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In this region, the c weight dominates the others.
The XXZ Hamiltonian and the transfer matrix of the six-vertex model act

formaly on the vectors parametrized by the paths, which satisfy certain boundary
conditions. We consider similar boundary conditions for the configurations on the
two-dimensional lattice. A configuration is called the ground state if it consists
of the c weight only. There are two such configurations. The local variables
take constant values 0 or 1 along the NE-to-SW diagonal lines, and these values
alternates over the diagonal lines. Choose two vertical lines, and consider the
set of horizontal edges between these two lines. We number these edges by Z
(increasingly from S to N). The configuration of a ground state on these edges is
equal to p(0) or p(1). Accordingly, we call it the i-th ground state.

Consider the half infinite tensor product ⊗∞k=1Vk. We denote by Hi the space
spanned by the vector of the form ⊗∞k=1vp(k) where the half infinite path p satisfies
p(k) = 1

2 (1 − (−1)k+i) for sufficiently large k. The corner transfer matrix A(ζ)
formally acts on the space Hi. Its matrix element is given as follows.

Consider the center of the plaquet in the lattice between the edges 0 and
1. Divide the whole lattice into four quadrants at this point making cuts in the
N,E,W,S directions. Take the NW quadrant. Fix the local variables of the edges
on the N-cut to {p′(k)}k∈Z≥1, and those on the W-cut to {p(k)}k∈Z≥1. Consider
the configuration sum for this quadrant with this restriction on the N and W
boundaries. We also restrict the sum to those configurations which belong to the
i-th ground state, i.e., different from the i-th ground state at finitely many places.
We define the matrix element A(ζ){p

′(k)}
{p(k)} to be the configuration sum under these

restrictions.
This is only a formal definition, and it is divergent. In the region (39), the

CTM can be renormalized to a ‘finite’ operator with discrete (and, in fact, equally
spaced) eigenvalues, while if |q| = 1, the renormalized operator has a continuum
spectrum. This difference comes from the difference in the analytic structure of
the free energy.

Consider a finite lattice with N sites (i.e., N = ]{vertex}). The limit κ =
limN→∞ Z

1
N is called the partition function per site. (The free energy is given by

its logarithm.) In the massive region, it is given by

κ = ζ
(q4ζ2; q4)∞(q2ζ−2; q4)∞
(q4ζ−2; q4)∞(q2ζ2; q4)∞

(40)

where (z; p)∞ =
∏∞

n=0(1− pnz).
The above κ is a single-valued meromorphic function in ζ. It has a natural

boundary at |q| = 1. If |q| = 1, the partition function per site has an different
expression: it is given by −S−1

0 (see (32)) with a real value of ξ and an imaginary
value of β. (Note that in the sine-Gordon theory, β is real.) This is not single-
valued in ζ, nor in q.

Physical intuition tells that the renormalization of CTM and HTM is done
by choosing the overall factor of the Boltzmann weight in such a way that the
partition function per site is 1. Therefore, the structure of the physical space and
the renormalized operators acting on it differs in the massive and the massless
phases.
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In the region (39), we have

Are(ζ) = ζ−D. (41)

The operator D is independent of ζ and has the spectrum {0, 1, 2, . . .}. This
remarkable (however, no rigorous proof is available) property is a consequence of
the single-valuedness of κ.

Let Λi be the affine sl2 weight such that 〈Λi, hj〉 = δij (i, j = 0, 1). I state
the main postulate:

the space of the eigenvectors of the CTM in the i-th ground state is isomorphic to
the integrable and irreducible highest weight representation V (Λi) of Uq(ŝl2).

Namely, the half infinite tensor product Hi is interpreted as the highest weight
module ([7])

Hi ' V (Λi). (42)

I give the evidence for this statement: The character of the space Hi and that
of V (Λi) are equal. The former can be computed in the the crystal limit q → 0
because we have

D = −1
2

∞∑

k=1

k(σx
kσx

k+1 + σy
kσy

k+1 + ∆σz
kσz

k+1), (43)

and this is diagonal in the limit. The equality of the characters is equivalent to
the combinatorial identity

∑

p∈Hi,m

q

∑∞
k=1

(
(−1)p(k)+p(k+1)−(−1)p(i)(k)+p(i)(k+1)

)
=

q(m−i)(m−i+1)

(q2; q2)∞
, (44)

where Hi,m = {p ∈ Hi; 2
∑∞

k=1(p(k)− p(i)(k)) = m}.

4.2 HTM [4, 14, 13]

The matrix element of the transfer matrix is formally given by the configuration
sum (18) for a slice of the lattice consisting of one vertical line and horizontal lines
indexed by k ∈ Z which intersect the vertical one. Cut the vertical edge between
the k = 0, 1 horizontal lines. The matrix element of the half transfer matrix Φ(i)

ε (ζ)
(ε = 0, 1) is given by the configuration sum for the upper half of the slice where
the local variables on the right and left edges are fixed to {ε′k} and {εk}, and the
one on the cut edge is fixed to ε. The superscript i indicates the restriction of the
sum to those configurations which belong to the i-th ground state.

The half transfer matrix acts as

· · · ⊗ V ⊗ V ⊗ V → (· · · ⊗ V ⊗ V )⊗ Vζ . (45)

The components described by V corresponds to the horizontal lines and the one
denoted by Vζ corresponds to the vertical line.

Documenta Mathematica · Extra Volume ICM 1998 · I · 359–379



Solvable Lattice Models 375

In the dictionary, the half transfer matrix (45) is translated into the unique
(up to the normalization) intertwiner

Φ(i)(ζ) =
∑

ε=0,1

Φ(i)
ε (ζ)⊗ vε : V (Λi) → V (Λ1−i)⊗ Vζ . (46)

If ζ = 1 in (45), the mapping is nothing but the identity operator. However, its
translation (46) is a highly non-trivial operator even if ζ = 1.

I list some properties of the intertwiners.

ξDΦ(i)
ε (ζ) = Φ(i)

ε (ξζ)ξD, (47)

Φ(1−i)
ε2

(ζ2)Φ(i)
ε1

(ζ1) =
∑

ε′1,ε′2=0,1

R
ε′1ε′2
ε1ε2(ζ1/ζ2)Φ

(1−i)
ε′1

(ζ1)Φ
(i)
ε′2

(ζ2), (48)

∑
ε

Φ(1−i)
1−ε (−q−1ζ)Φ(i)

ε (ζ) = idHi (49)

The R-matrix in (48) is normalized as R(ζ) = 1
κ(ζ) R̄(ζ) (see (40)).

4.3 Space of the physical states

The identification of the physical space follows from (42) by a simple functorial
argument.

Consider the inner product of V , 〈vi, vj〉 = δi+j,1. The Uq(ŝl2) action (24) on
V satisfies 〈xv, v′〉 = 〈v, b(x)v′〉 where b is the anti-automorphism of Uq(ŝl2) given
by b(ei) = qtiei, b(fi) = qt−1

i fi, b(ti) = t−1
i . Since the left half · · · ⊗ V ⊗ V ⊗ V

is equal to ⊕i=0,1V (Λi), the right half V ⊗ V ⊗ V ⊗ · · · is equal to the dual space
⊕i=0,1V (Λi)∗. The action on the dual space is given by the transposed action
b(x)t. The infinite tensor product F is identified with End(H) = H ⊗ H∗. The
action on F is given by the adjont action.

F = End(H) = ⊕i,j=0,1Hom(V (Λi), V (Λj)), (50)

x.f =
∑

x(1) ◦ f ◦ b(x(2)) for x ∈ Uq(ŝl2), f ∈ End(H). (51)

Here ∆(x) =
∑

x(1) ⊗ x(2) is the coproduct of x.
The inner product on F is given by

〈f, g〉 = traceHf ◦ g for f, g ∈ End(H). (52)

The transfer matrix in the dictionary reads as

T (ζ)f =
∑

ε

Φε(ζ) ◦ f ◦ Φ1−ε(ζ). (53)

Now, I will diagonalize this operator.
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4.4 Vacuum and excited states

The vacuum state (4) is given by the iteration of the transfer matrix, because it
is the largest eigenvector. Namely, the coefficient c(p) in (4) is (up to a divergent
scalar) written as c(p) ∼ limN→∞〈p|T (ζ)N |p(N+i)〉 where p(i) = p(i+2) is the
ground state path.

Thr right hand side is nothing but the partition function for the one half of the
lattice, or equivalently, is equal to the matrix element (A(ζ)B(ζ)){1−p(1−k)}k≥1

{p(k)}k≥1
of

the product of the CTMs corresponding to the NW and the SW quadrants. Using
the symmetry property of R(ζ), R

ε′2ε1

ε2ε′1
(ζ2/ζ1) = R

1−ε′1,ε′2
1−ε1,ε2

(−q−1ζ1/ζ2), we obtain
Bre(ζ) = Are(−q−1ζ−1), and therefore Are(ζ)Bre(ζ) = (−q)D.

We reached the conclusion.

|vac〉i = χ−
1
2 (−q)D ∈ End (Hi). (54)

Here χ = traceHiq
2D =

∏∞
n=1

1
1−q2n is the normailzation factor such that

i〈vac|vac〉i = 1. One can easily check T (ζ)|vac〉i = |vac〉1−i by using (48) and
(49).

To find particles in F is equivalent to find submodules isomorphic to Vξn ⊗
· · · ⊗ Vξ1 in End (H). This problem is also solved by using intertwiners, but of a
different kind:

Ψ∗(i)(ξ) : Vξ ⊗ V (Λi) → V (Λ1−i). (55)

The essential difference of this intertwiner from Φ(i)(ζ) is that Vξ is placed in the
left of V (Λi). In the CFT case, there are no such difference because the coproduct
is symmetric.

We have

ξDΨ∗(i)ε (ζ) = Ψ∗(i)ε (ξζ)ξD, (56)

Ψ∗(1−i)
ε1

(ξ1)Ψ∗(i)ε2
(ξ2) = −

∑

ε′1,ε′2

Rε1,ε2
ε′1,ε′2

(ξ1/ξ2)Ψ
∗(1−i)
ε′2

(ξ2)Ψ
∗(i)
ε′1

(ξ1), (57)

Φ(1−i)
ε1

(ζ)Ψ∗(i)ε2
(ξ) = τ(ζ/ξ)Ψ∗(1−i)

ε2
(ξ)Φ(i)

ε1
(ζ). (58)

Here, we set

τ(ζ) = ζ−1 (qζ2; q4)∞(q3ζ−2; q4)∞
(qζ−2; q4)∞(q3ζ2; q4)∞

. (59)

Using these relations, one can show that the n-particle states is given by

|ξn, . . . , ξ1〉εn,...,ε1,i = Ψ∗(n−1+i)
εn

(ξn) · · ·Ψ∗(i)ε1
(ξ1)(−q)D. (60)

The eigenvalue of the transfer matrix on this states is given by
∏n

j=1 τ(ζ/ξj).
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4.5 Correlation functions and form factors [11]

The correlation functions of the XXZ model are by definition i〈vac|O|vac〉i where
O is some local operators. This expression is immediately written as the trace
χ−1traceHiq

2DO.
For example, let us consider the simplest case σz

1 ∈ End (F) = End (H⊗H∗).
This operator, in fact, acts only on H. Recall the half transfer matrix (we now
abbreviate the notation by dropping the superscript i)

Φ(1) = Φ0(1)⊗ v0 + Φ1(1)⊗ v1 : · · · ⊗ V ⊗ V ⊗ V
∼→(· · · ⊗ V ⊗ V )⊗ V. (61)

The relation (49) gives the inverse map

Φ1(−q−1)⊗ v∗0 + Φ0(−q−1)⊗ v∗1 : (· · · ⊗ V ⊗ V )⊗ V
∼→· · · ⊗ V ⊗ V ⊗ V, (62)

where v∗0 , v∗1 are the dual basis of v0, v1. Therefore, we have

σz
1 = Φ1(−q−1)Φ0(1)− Φ0(−q−1)Φ1(1). (63)

In general, the correlation functions belong to the family of functions of the
form

traceHiq
2DΦε1(ζ1) · · · ,Φεn(ζn). (64)

In CFT, the correlation functions are the matrix elements of the product of
vertex operators between the highest weight vectors. The q-analogues of such
matrix elements do not contain the lattice correlation functions. Instead, the
trace functions (64) give the lattice correlation functions. The trace functions also
contain the form factors of the local operators in the form

traceHiq
2DΦε1(ζ1) · · · ,Φεn(ζn)Ψ∗κm

(ξm) · · · ,Ψ∗κ1
(ξ1). (65)

This is because the excited states are given by (60).
I finish this talk with several remarks on the formula (65).
A direct computation of the trace is not practical because the trace is taken

on the infinite dimensional space Hi. However, it is possible to realize Hi as the
Fock space of free bosons. In this realization, the operators Φ(ζ) and Ψ∗(ξ) are
explicitly expressed in terms of bosonic currents. The integral formula for the
trace functions follows from this.

The exchange relations (47-49) for the half transfer matrices induce a set
of equations similar to (35) and (36) for the trace functions (64). Solving these
equations under a certain analyticity condition which follows from the integral
formula, we have

traceH0q
2D (Φ0(ζ1)Φ1(ζ2) + Φ1(ζ1)Φ0(ζ2))

traceH0q
2D (Φ0(ζ1)Φ1(ζ2)− Φ1(ζ1)Φ0(ζ2))

=
(−q3ζ−1; q2)∞(−qζ; q2)∞

(q3ζ−1; q2)∞(qζ; q2)∞
(66)

where ζ = ζ2/ζ1. Baxter’s result (11) follows from this.
Suppose that an operatorO commutes with Ψ∗(ξ) (in fact, the local operators,

e.g., (63), do commute), then the trace functions traceHiOΨ∗κm
(ξm) · · · , Ψ∗κ1

(ξ1)
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satisfy exactly the same equations as (35) and (36) with pure imaginary ξ. Note,
in particular, that the shift β → β + 2πi corresponds to the shift ζ → q2ζ. The
relation (36) follows from q2DΨ∗(ξ) = Ψ∗(q2ξ)q2D and the cyclicity of the trace.
The relation (58) tells that the operators Φ(ζ) and Ψ∗(ξ) commute up to a simple
factor τ(ζ/ξ). With a suitable modification to cancel the factors τ(ζi/ξj), the trace
function (65), in general, gives a solution of the qKZ equation with level 0.

The connection between the XXZ model and the representaiton theory of
Uq(ŝl2) fails in the massless phase. The reason for this is that the latter is singular
when |q| = 1. The product of the intertwiners exhibit singularities there. However,
the bosonic construction of the vertex operators satisfying the relevant exchange
relations is possible ([17, 13, 10]). The integral formulas for the correlation func-
tions and the form factors are, thus, available (so far, without a firm basis of the
representation theory).
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Dynamical Systems { Past and Present

Jürgen Moser

Introduction

It is a great honor for me to be invited to present a lecture at this International
Congress of Mathematicians here in Berlin. This town (and its Academy) brings
to mind a distinguished mathematical tradition in the last century, and I want to
mention the names of Jacobi, Dirichlet and Weierstraß; they all contributed to the
beginning of the topic of this lecture.

It was 94 years ago that the last ICM took place in Germany. This was in
1904 in Heidelberg (where, incidentally, the anniversary of Jacobi’s 100th birthday
was celebrated).

This long hiatus is, of course, not an accident, if one remembers that Germany
was the scene of World War I , World War II and the Nazi terror. It was the time
when Germany spread devastation and fear over the world. It was the time when
– in the words of my friend Stefan Hildebrandt – Germany stepped out of the
community of civilized countries. Even though these events lie more than half
a century back I feel compelled to recall these terrible times since I myself lived
through this dark period, having been born in this country.

During these times also science was trampled, and many eminent scientists
were kicked out of their positions which caused irreparable damage. More than
one third of the faculty of German universities was dismissed between 1933 and
1938! This reminds me of the Hilbert story, which I learned from my teacher Franz
Rellich in Göttingen: When Hilbert – who was old and retired – was asked at a
party by the newly appointed Nazi-minister of education: “Herr Geheimrat, how
is mathematics in Göttingen, now that it has been freed of the Jewish influences”
he replied: “Mathematics in Göttingen? That does not exist anymore!”

We must never forget this low point of German history – yet we also must put
it behind us and look ahead. It is gratifying to see so many mathematicians who
have come to Berlin to partake in this Congress. Let us celebrate this occasion as
a new beginning at the end of this century.

* * * * * * * * * * * * * * * * * *

In this lecture I will present what I consider significant advances in the field of
dynamical systems during the last 50 years. This field had a tremendous expansion
in this time and my task would be impossible without severe restrictions. I will
restrict myself to Hamiltonian systems – just as Birkhoff understood the concept
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in his book “Dynamical Systems” in 1927! Even there I will not attempt a survey,
but rather select some topics, which in my view illustrate the dramatic changes
that occurred during the past half century in this field. Clearly this lecture is not
meant for experts, but for a wide audience.

As guide line I will use the stability problem for Hamiltonian systems, which
still holds many fascinating problems. After some historical remarks I will discuss
some applications of Kolmogorov’s theorem on invariant tori (1954), then in Sec-
tion 3 Xia’s solution of the Painlevé problem, in Section 4 completely integrable
systems, and, if time permits, in Section 5 the role of minimizers in the Aubry–
Mather theory. Because of the limited time, I will omit many related topics, even
some of great interest. The activity in symplectic geometry, which grew partially
out of the Poincaré–Birkhoff fixed point theorem and led to most remarkable re-
sults will be discussed in other lectures at this meeting. Also ergodic theory and
hyperbolic systems are active fields which I will not touch at all.

I Historical Remarks

a) The stability problem for Hamiltonian systems is an old unsolved problem
which fascinated many mathematicians in the past. It was motivated by celestial
mechanics and the stability problem for the planetary system. This is modeled
by the N -body problem where N masspoints (of positive masses mj) move in
Euclidean space R2 or R3. One asks for bounded orbits avoiding collisions. More
precisely, if rij is the distance between the ith and jth masspoints we require that
along the orbits the expression

∆ = max1≤i<j≤N {rij ,
1
rij
}

is bounded for all times!

The simplest solutions of this kind are the periodic solutions, represented by
closed curves in the phase space. Therefore there was a great interest in establish-
ing the existence of periodic solutions, and Poincaré devised perturbation methods
as well as topological arguments for this purpose. However, the periodic solutions
forms an exceptional set in phase space and therefore are of limited interest for the
understanding of the dynamical behavior – unless one can prove their stability.

The question of stability requires not only finding single orbits with bounded
∆ but an open set in phase space of such solutions, accounting for the imprecise
knowledge of the initial values. In other words, one is interested in an open set
in phase space in which ∆ is bounded and to which the orbits are confined for all
times!

In spite of the modern advances in this field this is still an open problem! It is
conceivable that (for N ≥ 3) the complement of all orbits which exist for all time
and with ∆ bounded forms a dense set in phase space. This would mean that by
arbitrary small changes of the initial states one would find orbits which ultimately
escape or end up in collisions!
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In this connection it is interesting to read a statement of Charlier from the
year 1907 about the question of the stability of the planetary system: “It still has
to be considered as an open problem, although one would hardly be considered as
a phantastic prophet if one expresses the conjecture that one does not have to wait
for many decades for its solution.” So much for prediction about open problems!

b) To proceed more constructively one replaced the quest for periodic solutions
by that for quasi-periodic ones. These are given by generalized Fourier series of
the form

(∗) x(t) = Re(
∑

j∈Zd

cje
i(j,ω)t), ω = (ω1, ω2, ..., ωd)

where the frequencies ω1, ω2, ..., ωd are rationally independent real numbers. Per-
turbation theory of classical mechanics led to such series expansions for the solu-
tions already in the last century. However, the convergence of these series became
a notorious problem. The difficulty is due to the so-called small divisors – pow-
ers of terms of the form (j, ω), j ∈ Zd\(0) – entering the coefficients. Since the
frequencies are rationally independent these expressions are not zero, but they
become arbitrarily small. This convergence problem – which would lead to the
existence of quasi-periodic solutions – has been of central interest at the end of
the last century, particularly to Dirichlet, Weierstraß (here in Berlin), Poincaré
and others.

c) This problem has been solved half a century later! We turn to the fun-
damental theorem of Kolmogorov, which assures precisely the existence of such
solutions, for Hamiltonian systems:

q̇k = Hpk
, ṗk = −Hqk

, (k = 1, 2, ...n)

or , combining q, p to a vector x ∈ Ω ⊆ R2n we write this in the form

ẋ = JHx, J =
(

0 I
−I 0

)
, x ∈ Ω.

The corresponding flow will be denoted by ϕt.

A more geometrical formulation for quasi-periodic solutions is given by an
embedding of a torus T d = Rd/Zd,

u : T d → Ω

such that the “Kronecker flow” κt : θ → θ + ωt on T d is mapped into the flow ϕt

restricted to the torus u(T d), i. e.

u ◦ κt = ϕt ◦ u.
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Torus embedding

Then u(T d) is an invariant torus of the flow, and the orbits on it are indeed
quasi-periodic. Moreover, by Kronecker’s theorem, each of these orbits is dense
on this torus; that means that this torus is a minimal set for the flow ϕt.

At the International Congress ICM 1954 in Amsterdam Kolmogorov an-
nounced the remarkable theorem: For a Hamiltonian system with Hamiltonian
H of n degrees of freedom, close to an “integrable” one with Hamiltonian H0 and
compact energy surfaces, there exists a set of such invariant tori of dimension
d = n. Moreover, they form a set of positive measure in phase space.

We will come to the concept of integrable systems in Section 4; here it is suffi-
cient to know that these are Hamiltonian systems with sufficiently many integrals
whose level sets are (if they are compact) invariant tori carrying quasi-periodic
orbits. The theorem asserts that under small perturbations many of these quasi-
periodic orbits persist.

Here is not the place to give the precise formulation of this basic result. But
we want to point out some important consequences:

1) The union of these tori, generally, does not form an open set. Since it forms
a set of positive measure, these tori are not exceptional!
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2) The union of these tori is generally nowhere dense, so that a nearby orbit
may not be bounded and may escape if n ≥ 3, while for n = 2 the 2-dimensional
tori can be used as boundaries of a domain on the three-dimensional energy surface,
providing genuine stability results (some of which we will mention below).

Since the set of the constructed invariant tori have a relatively large measure
one is led to a modified concept of stability: Instead of requiring that all orbits of
a certain neighborhood are bounded for all times, one asks that most (in measure)
orbits are bounded. This could be called “stability in measure”, a concept which
in applications is often sufficient, and which can be assured also for systems of
three or more degrees of freedom.

3) This theorem provides a proof of the convergence of the series (∗) provided
the frequencies ω satisfy some Diophantine condition, thus answering the question
of the last century.

The proof of Kolmogorov’s theorem was published in 1963 by V. I. Arnold.
The proof of a related theorem in a simpler situation, namely about the existence
of invariant curves of area-preserving mappings in the plane had been published in
1962 by the speaker. It has become customary to refer to this technique as KAM
theory.

For the plane three body problem the existence of a set of positive measure of
quasi-periodic orbits has been established (Arnold 1963) but even for this problem
in R3 one encounters difficulties which have not yet been overcome.

d) To return to the exciting history of this problem, we want to mention
that Weierstraß had a keen interest in this topic. In the Wintersemester 1880/81
he taught a course “Über die Störungen in der Astronomie” hier in Berlin. In his
correspondence with S. Kovalevskaya (1878) (Acta Math. 35, 30) he asserts that he
found a series expansion for the solutions of the 3-body-problem, and tried, though
in vain, to prove its convergence. He was aware of a remark made by Dirichlet
to Kronecker in 1858 that he had found a method to approximate solutions of
the N -body problem successively. Dirichlet died soon afterwards, and no written
records were found. Later Weierstraß suggested this problem to Mittag–Leffler
as a prize question. This prize, sponsored by the Swedish king, was awarded to
Poincaré, although actually he did not solve this problem. But his famous prize-
paper contained so many new ideas that there was unanimity in awarding the prize
to him. This story can be read in many places now; here I wanted to point out
the little known connection of this problem with the mathematicians in Berlin of
the last century!

II Applications, Mappings

a) There are many applications of KAM theory to old problems of celestial me-
chanics. Most interesting are the stability results for systems of two degrees of
freedom. We want to single out the stability proof of the periodic solutions in
Hill’s lunar theory.
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These problems have more historical interest, and nowadays are at most of
academic interest to astronomers. However, since many physical phenomena can
be described by Hamiltonian systems it is not surprising that the stability theory
has a multitude of other applications. I want to mention just two.

b) The early 1950’s was the time of the construction of high energy accelerators
in the USA, Europe at CERN and other places. In these machines charged particles
are accelerated in a huge circular tube to tremendous velocities. This tube is
brought to near vacuum state, so as to avoid any slow-down of the particles by
the gas. For the successful working of the acceleration process one has to keep the
(majority of the) particles from hitting the wall of the vacuum chamber for a long
time. This is to be achieved by an appropriate magnetic field which allows to the
particles to be trapped in the interior of the vacuum chamber. Since the motion
of charged particles in a magnetic field is governed by Hamiltonian systems we are
dealing with the stability in question.

At that time a new principle was introduced to improve this stability behavior,
which led to the “Alternating Gradient Synchrotron” (AGS) which was built in
Brookhaven, NY. This was a “true” application, since the stability behavior was
one essential factor for the decision whether such a machine could be built.

Since the theory was not yet so well developed, one resorted to numerical
experiments. If I may include some personal experiences: When I first visited the
Courant Institute in 1953, there was a lot of activity in calculating the iterates
of section maps to decide about the stability of the fixed points. This was done
in connection with the AGS machine. These computations were carried out on
a UNIVAC still using punch cards! Nowadays everybody can do the same thing
on a PC using MATLAB in a few minutes. Let me illustrate to you what such
computer pictures yielded: At least in the two-dimensional case the calculations
showed much more optimistic results than could be true!

c) By a standard procedure one can reduce the study of a flow to that of
a mapping, the so-called “Poincaré mapping”. In particular one is interested in
studying the stability of a fixed point of an area-preserving mapping, say ϕ, in the
plane.

Poincaré section map
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A necessary condition for stability under iteration of ϕ is that the linearized
mapping is similar to a rotation. One speaks of an elliptic fixed point. In the
following I show you some pictures of some 1000 iterates of points under a nonlinear
area-preserving map. Near the fixed point the iterates of a point seem to organize
themselves on a smooth curve, if one is close enough to the fixed point, indicating
stability. The mapping chosen is a simple polynomial mapping, but the output is
typical for such mappings.
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The computations show that the iterates of a point fall on curves, surrounding
the fixed point, making its stability evident. At some distance this curve patterns
breaks up, leaving a certain stability region. The problem at the time was: Find
a method to construct these curves and the stability region!

What one should have known even then was that there could not be a fam-
ily of closed curves, and that the calculations were oversimplifying. If one uses
more accurate computations and applies a microscope to them one will discover
that between such curves there are regions with complicated dynamics (regions of
instability in the terminology of G. D. Birkhoff).

Nevertheless, the set of invariant curves form a set of relatively large measure,
as follows from KAM theory, so that stability of the fixed point is guaranteed.
The orbit structure is amazingly complex for such simple mappings, as here for
a polynomial map! Incidentally the region of instability contains “Mather sets”
and complicated motions which nowadays would be called “chaotic”. That these
phenomena really occur for the typical area-preserving mapping, even in the case
of real analytic mappings, has been established by Zehnder (1973) and in a sharper
form by Genecand (1990).

Thus in this case the early calculations gave a misleading simplification of the
situation. Still they were of great importance for stimulating this activity.

d) The Störmer problem.

Another large scale confinement region is known in the magnetic field of the earth.
With the advent in 1957 of satellites it was soon discovered that the earth was
surrounded by (two) belts of charged particles caused by its magnetic field. Since
the beginning of the century it was known that such charged particles were present
above the atmosphere and were responsible for the aurora borealis (and australis).
It was Störmer (incidentally president of the ICM 1936 in Oslo) who made cal-
culations of the orbits of these charged particles moving in the magnetic field of
the earth, which he modelled as a magnetic dipole field. This is an interesting
nonlinear Hamiltonian system.

The satellite measurements led to the discovery of two regions surrounding the
earth, the so-called van Allan belts, in which the charged particles were trapped.
It turns out that it is an example of a magnetic bottle to which the stability theory
is applicable (M. Braun 1970).

It is interesting to realize the dimensions involved: For electrons the “cy-
clotron radius” is of the order of a few kilometers and the corresponding period of
oscillation about one millionth of a second! The “bounce period” of travel from
the north pole to the south pole and back is a fraction of a second.

In addition to the natural van Allan belts several artificial radiation belts have
been made by the explosion of high-altitude nuclear bombs since 1958. Some of
these so created belts had a life time up to several years – which shows the long
stability of these experiments as well as the irresponsibility for carrying them out!
Some 30 years ago these tests have been stopped.
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Störmer problem

Van Allan belt
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e) Hill’s lunar problem.

In 1878 Hill developed a theory for the motion of the moon, which attracted
great attention and impressed also Poincaré deeply. Later G. D. Birkhoff wrote:
“A highly important chapter in theoretical dynamics began to unfold with the
appearance in 1878 of G. H. Hill’s researches on the lunar theory”. He established
the existence of 2 periodic solutions on the energy surface

1
2
(u̇2 + v̇2)− 1

r
− 3

2
u2 = const < 0

of the model equation of the equations of the moon:

{ ü− 2v̇ = − u

r3
+ 3u

v̈ + 2u̇ = − v

r3

where r =
√

u2 + v2. Nowadays this result has, of course, been derived in much
simpler ways. But it took nearly a century till it was possible to prove the stability
of Hill’s orbits. This is an application of KAM theory in a rather singular situation.
(see Conley, Kummer).

III Painlevé Problem

a) Besides the stable behavior we find, of course, unstable motions in Hamiltonian
systems, in particular, in the N -body problem. Here we want to discuss a recently
discovered, most extreme form of instability, namly a motion of the N -body prob-
lem in which the greatest mutual distance became unbounded in finite time! This
is rather unexpected and hard to visualize, and seems to contradict (naive) energy
considerations!

b) Actually this is related to an old problem raised by Painlevé in his lectures
on celestial mechanics in 1895. (Incidentally, later in 1904, Painlevé was one of the
four plenary speakers at the ICM in Heidelberg). What led to the quest for such
strange solutions? Originally Painlevé was interested in the study of all possible
singularities of the solutions of the N -body. It is obvious that collisions of two
or more masspoints give rise to singularities, the so-called “collision singularities”.
They can be characterized by the property that the positions of the masspoint
approach a definite position in configuration space. Such singularities, especially
double and triple collisions have been studied extensively (Levi–Civita, C. L. Siegel
et al).

Painlevé asked whether also other noncollision singularities could possibly
exist, and the title of this Section refers to this question. Obviously they do not
exist for the Kepler problem, and it was known to Painlevé that also for the three-
body problem such singularities can not occur. So the problem referred to the
N -body problem for N ≥ 4 only.
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To describe the situation briefly we denote by qj ∈ R3, j = 1, 2, .., N the
position of the masspoints of mass mj , and by rij = |qi − qj | > 0 their distances.
The Newton potential is given by

−U =
∑

i<j

mimj

rij
.

If at t = T a singularity occurs then one has U → −∞, hence min rij → 0 as
t → T − 0. In 1908 von Zeipel discovered that a noncollision singularity can occur
only if in addition also

max
i<j

rij →∞ for t → T ;

as a matter of fact this property characterizes a noncollision singularity! Thus
the quest for noncollision singularities is the same as that for the extreme form of
instability we started with!

c) This makes the situation clearly very unlikely! Nevertheless, J. Xia was
able to construct such a weird solution for the 5-body problem in R3. Here is a
schematic view of the solution discovered by Jeff Xia in 1992: We consider two
doublestars (P1, P2) and (Q1, Q2), both of equal masses, moving symmetrically on
two planes perpendicularly to the z-axis. These approximately elliptical orbits are
chosen so that the angular momentum is zero. Now we add a fifth masspoint, a
“shuttle”, traveling back and forth on the z-axis between these double stars.

Xia’s model

Documenta Mathematica · Extra Volume ICM 1998 · I · 381–402



392 Jürgen Moser

Choosing the parameters appropriately one can achieve that the shuttle expe-
riences a huge acceleration at each near-encounter (near triple collision!) so that
the return times decrease so fast that they add up to a finite number.

d) Now the history of this solution is not so straight-forward; it came from
quite independent investigations, based on work of Conley, McGehee and Mather
some 25 years ago. It originated in the investigation of the neighborhood of triple
collisions by Conley and McGehee around 1974, which revealed hyperbolic behav-
ior near such a triple collision, which for an individual solution had already been
observed by Siegel. Using this hyperbolic behavior Mather and McGehee suc-
ceeded (1974) in constructing a noncollision singularity even for the colinear four
body problem! However, their solution had a shortcoming: It involved infintely
many double collisions, which were unavoidable in the one-dimensional situation.
Nevertheless, it was the first breakthrough for this problem. To find a solution free
from this blemish took 18 more years! In 1992 Jeff Xia succeeded in constructing
a noncollision solution for the five-body problem, thus solving the almost 100 year
old problem! The proof is very intricate and subtle, but the underlying principle
is to pass close to a sequence of triple collisions, and to use their instability at each
step to reverse the shuttle with tremendous acceleration. It is an extra difficulty
to verify that one can avoid collisions on the way.

An earlier attempt is due to Gerver (1984), who constructed another con-
figuration for the five-body problem leading to non-collision singularity, but the
details for a complete proof have not yet published.

Clearly this solution is not of any astronomical significance. Why do I present
it: It shows, in one example, the progress gained from the study of hyperbolical
dynamical systems which provided the understanding and the tools for the solu-
tion of this problem. It also reminds us of the efforts that go in the studies of
singularities in partial differential equations, e. g. of the Navier-Stokes equation,
provided they exist! One usually thinks of singularities as a local phenomenon,
but even this (simple!) classical example of ordinary differential equations exhibits
such complicated singularities of nonlocal type, whose existence was doubted for
a long time.

IV Integrable Systems

a) All stability results for Hamiltonian systems – aside from trivial exceptions –
depend on how well a given system can be approximated by an integrable one!
Since these integrable systems are very rare this seems a hopeless proposition.

In the last 30 years, this topic has received immense attention from mathe-
maticians and physicists alike. Its rapid development has affected many branches
of mathematics, such as PDE, scattering theory, differential geometry, even alge-
braic geometry and others. Moreover, it has led to technical applications, as for
example in transmission of optical pulses in fibers.

It is one of the fields which attained a certain popularity. Most scientists have
heard the catch words “solitons”, “Korteweg–de Vries equations”.
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This is all the more surprising as this subject is a very old one having its
origin in the last century! At the time of Euler and Jacobi integrable system
were of great interest since they could be solved “by quadrature”, i. e. more or
less explicitly which was of great importance, since existence theorems were not
available then. Roughly speaking a Hamiltonian system of n degrees of freedom
is called “completely integrable” if it possesses n integrals of the motion, whose
mutual Poisson brackets vanish. In view of E. Noether’s theorem this means that
the systems admit an n-dimensional commutative group action (via symplectic
transformations). In the compact case this would be a torus action. In short,
these are particularly simple systems, and the structure of the flow can be described
fairly easily. For 2 degrees of freedom rotational symmetric systems are completely
integrable since they admit the angular momentum and the energy as integrals.
In this case the “integrability” is obvious.

Now there are a number of integrable systems whose integrals and whose
symmetries are not at all obvious and one speaks loosely of “hidden symmetries”.
Who would expect the geodesic flow on an ellipsoid with different axes to be in-
tegrable! This was discovered by Jacobi in 1838. He wrote to Bessel: “Yesterday
I solved the equations for the geodesic lines on an ellipsoid with three different
axes by quadrature. These are the simplest formulae of the world, Abelian inte-
grals, which turn into elliptic integrals if two of the axes become equal”. Today
we would say that the solutions lie on a 2-dimensional torus, which is the real
part of the Jacobian variety of a hyperelliptic curve of genus 2. They are with
the exceptions of the geodesics passing through the focal points quasi-periodic.
This statement can be generalized to ellipsoids of any dimension, which was done
already in Jacobi’s lectures. There are many other such examples, such as Eu-
ler’s two fixed center problem, where one studies the motion of a masspoint un-
der the Newton attraction of two fixed mass points, or the Kovalevskaya top.

Geodesics on an ellipsoid Lift to the unit tangent bundle

The symmetry in these example certainly is “hidden”. It was revealed only by
analytical methods, namly by solving the Hamilton–Jacobi equation by separation
of variables. Later this became a favorite topic for tricky exercises in mechanics.
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No wonder that the topic became dormant.
The interest in integrable systems waned when Poincaré showed that, generi-

cally, Hamiltonian systems do not possess integrals besides the Hamiltonian itself.
The field became obsolete.

b) The revival, or rediscovery, of this dormant field is most surprising. It
is no exaggeration to say that this subject was initiated by a computer experi-
ment! In 1965 Kruskal and Zabusky investigated a partial differential equation
obtained by replacing the viscosity term in the Burgers equation by a third order
derivative(dispersion)-term to see what it does to the shock solutions:

ut + uux + uxxx = 0
The equation was known in the literature as the Korteweg–de Vries equation,

and it played a role in the theory of water waves, but the discoveries of Kruskal et
al was absolutely new and totally unexpected. They found a strange phenomenon
about the interaction of wave solutions:

The equation admits a family of wave solutions of different velocities, and
the interaction between them appeared to be absolutely clean, so that after the
interaction the waves reappeared in the same form and shape as before.1

In general, for other evolution equations, one would expect a scattering and a
loss of the waves after the interaction. Kruskal coined the term “soliton” for these
waves because they seemed to retain their identity.

After this observation, based on the numerical calculations, the search for
an explanation of this extraordinary phenomenon began. I can not describe here
the dramatic development that ensued. Here just some stages: The first guess
was that the equation must possess more conserved quantities than the standard 3
(energy, mass and momentum), and after some efforts of a group some 10 integrals
were found by laborious hand calculation. Ultimately one could extend these to
an infinite number, and a method for solving these equations by inverse scattering
methods was devised by Kruskal and his coworkers (1968).

It did not take long until C. Gardner discovered a Poisson bracket in func-
tion space, with respect to which the Korteweg–de Vries equation is Hamiltonian.
Moreover the Poisson bracket of the integrals vanished, in short the KdV turned
out to be the first example of an integrable Hamiltonian system of infinite de-
grees of freedom! This was the start of an intense activity. One was the discovery
that the integrals, in fluid dynamics called conservation laws, could be viewed

1 A video demonstrating this was presented at the lecture. It can be seen in the abstract of
this manuscript in the electronic version of these Proceedings.
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as eigenvalues of a simple operator, the one-dimensional Schrödinger operator
L = −D2 + q(x) , with q = −u/6, in which the solution of the KdV figures as
the potential. In other words the flow defined by the KdV defines a deformation
of this operator which leaves the spectrum unchanged. The observation of the
iso-spectral deformations by P. D. Lax fruitfully led to many other discoveries, in
particular, of several other integrable partial differential equations, as well as to
further new insights.

c) By analogy with the finite-dimensional case one would expect that this
partial differential equation can be solved explicitly! What are the (hidden) sym-
metries. Here are some highpoints which I want to single out:

i) If one subjects the KdV to the periodic boundary condition u(x + 1, t) =
u(x, t), i. e. if one considers the solutions on the circle, then all the solutions are
almost periodic in t. (McKean and Trubowitz 1976) This is a most unexpected
property for a nonlinear partial differential equation. It is the reflection of the
integrability of the equation. For the geodesics on an ellipsoid, for example, all
solutions are quasi-periodic, with the exception of the orbits through the focal
points. In the case of the KdV such exceptions do not exist! The proof is based on
the fact that the isospectral manifolds are infinite-dimensional tori, which can be
interpreted as the real part of the Jacobian variety of a Riemann surface (complex
curve) of infinite genus, on which the flow is linear. This curve is obtained as
follows. It has been known for a long time that the spectrum of the one-dimensional
Schrödinger operator with periodic potential has a “band” spectrum, that is, it
consists, in general, of infinitely many intervals clustering at +∞. Now consider
the double covering of the complex plane and glue the 2 sheets along these intervals,
in the customary fashion. This gives the desired complex hyperelliptic curve whose
genus is equal to the number of intervals — if it is finite.

ii) Inverse spectral theory: In spectral theory it is an old question to construct
the potential of an operator from the spectrum, which is the inverse of the usual
question of spectral theory. The answer is usually too hard, or the solution not
unique. But the question for all the potentials having a “finite gap” potential has
been answered by S. Novikov and his coworkers in 1976:

Given a set of finitely many disjoint intervals, one of which is half-infinite
stretching to +∞, find all potentials having these intervals as spectrum. The
answer is given in terms of the hyperelliptic functions on the above mentioned
hyperelliptic curve. In case of a single (half-infinite) intervall the potential is a
constant, for 2 intervals (genus 1) the potentials is an elliptic function (Lamé
equation) etc.

d) It is another startling fact that the soliton theory has down-to-earth ap-
plications to communication theory. Here the underlying equation is not the KdV
but the nonlinear Schrödinger equation

iut + uxx + |u|2 u = 0

which also was recognized as an integrable system (Zakharov, Shabat 1971) using
ideas of P. Lax. This equation also possesses “solitons” with extraordinary stability
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properties. This fact was used by physicists (Hazegewa (1973), Mollenauer (1980))
for signal transmission in optical fibres. Here the solitions describe the envelope
of a wave train.

This approach has been used with success to transmit ultrashort pulses over
large distance (∼10’000 km) with less loss than one encounters with standard
methods.

e) It is impossible to even touch on the many ramifications that have evolved
from the study of integrable system. The question why iso-spectral deformation
gives rise to systems respecting a symplectic form has led to interesting applications
of Kac–Moody algebras. The old Schottky problem asks for the characterization
of those Abelian tori which are Jacobian varieties of an algebraic curve. In 1986
Shiota found an answer in terms of the solutions of the “KP-equation”, a partial
differential equation, generalizing the Korteweg-de Vries equation, thus connecting
this problem of algebraic geometry with integrable partial differential equations.

On the side of analysis the question has been raised and answered whether
the KAM technique can be applied to partial differential equations, e. g. can
one establish the existence of quasi-periodic solutions for the perturbed KdV:
ut + uux + uxxx = ε(g(x, u))x where g is a real analytic function, periodic in
x. For small values one finds indeed quasi-periodic solutions of this equation.
The necessary theory is highly technical. It has been developed by Kuksin, and
subsequently by Pöschel, Craig and Wayne and Bourgain. However, one has to
point that in this case the solutions so obtained form a “small” subset in the phase
space.

V Breakdown of Stability

a) What happens when the perturbation from the integrable system gets larger
and larger? It turns out that the structure of the invariant tori and the stability
of the system breaks down! However, the invariant tori degenerate into some
invariant sets, generally Cantor sets, the so-called Aubry–Mather sets. This is the
object of a theory discovered independently by the physicist Aubry and by John
Mather. They were motivated by entirely different questions: Aubry by stable
states in a simple model for one-dimensional crystals in solid state physics, while
Mather studied invariant sets for area-preserving mappings. Both theories were
ultimately recognized to be the same. This (Aubry–Mather) theory (1982) brought
a significant advance to dynamical systems, but is also related to an interesting
development in differential geometry.

The underlying idea of this theory can be illustrated with the simple model
problem of the geodesic flow on a two-dimensional torus T 2 = R2/Z2. We give
a Z2-periodic metric, say g on R2. The corresponding geodesic flow gives rise
to a Hamiltonian system on the cotangent bundle T ∗(T 2) and the unit-cotangent
bundle E = T ∗(T 2

1 ) as three-dimensional energy surface. For the flat metric,
denoted by g0, all geodesics are straight lines, and a family of parallel lines lift to
an invariant torus on E . According to the KAM theory many of these tori persist
under perturbation, namly those for which the slope is an irrational number which
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is badly approximable by rationals. In particular, the orbits between two such tori
are trapped, and the flow on E is certainly not ergodic.

On the other hand, about 10 years ago V. Donnay found smooth metrics,
say g1 on the 2-torus for which the geodesic flow is ergodic. Consequently the
structure of invariant tori must break down if we deform g0 to g1.

b) To understand the situation we project the flow on such an invariant torus
into the configuration space, i. e. R2. One finds that the orbits on such an
invariant torus project into a Z2-invariant foliation made up of geodesics.

In the terminology of the Calculus of Variations this is a “field of extremals”.
It is classical result, going back to Weierstraß, that the geodesics belonging to an
extremal field are “minimizers”, i. e. any segment of such a geodesic minimizes
the length between its endpoints. In other words, all orbits belonging to an in-
variant torus project into minimizers. This is — or can be taken as — the clue
to the Aubry-Mather theory. The goal then is to study the minimizers among all
geodesics. This is generally a strict subset of the set of all geodesics. As a matter
of fact, by a classical theorem of E. Hopf, a metric for which all geodesics are
minimizers, is necessarily flat (K = 0). The minimizers on a torus had already
been studied by Hedlund, after earlier work by his teacher M. Morse (1924), who
called them “geodesics of class A”.

Projection of an invariant torus into a minimal foliation

c) These minimizers (or geodesics of class A) intersect each other at most
once, as do straight lines. Moreover, they have the crucial property that they are
trapped in a strip bounded by two straight lines whose distance D depends only
on the metric, not on the individual minimizer.
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“Trapping” of minimizers

In particular, one can associate with any minimizer a direction, say θ(mod2π).
Moreover, for each value of α = θ/2π(mod2π) the set of these minimizers, Mα

can be shown to be non-empty. Now at least if α is irrational one can put together
the corresponding extremal field from these not intersecting minimizers of Mα

to obtain a minimial foliation, provided these minimizers are dense on the torus,
and the lift of this foliation recovers the invariant torus. However, it is possible,
as simple examples of “bumpy” metrics show, that these minimizers may not be
dense, if projects on the torus. In that case these minimizers provide only a
“lamination”, covering only a part of the torus.

Bumpy metric (after Bangart)

In this case these recurrent elements of Mα lift to an invariant set, in fact, a
unique invariant set, which turns out to be a minimal set associated with any value
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of α. This is the Mather set in question, to which the invariant torus deteriorate
under deformation of the metric.

I want to show with this indication, that Mather sets are obtained in a very
natural way by selecting out of all orbits only those which are minimizers (and not
just stationary).

d) This selection principle of minimizers out of the class of all solutions of
the Euler equations is a very useful priniciple, also for elliptic partial differential
equation derived from a variational problem, satisfying a Legendre condition. It
has proved useful in differential geometry. It is possible to extend the Mather
theory to minimal foliations on a higher dimensional torus, where the orbits are
replaced by minimal surfaces of codimension 1. It is even more interesting to
study such minimizers of codimension 1 on manifolds where the reference metric
has negative curvature. The crucial trapping property mentioned above holds also
in this situation and leads to most interesting new results. This development is
due to Gromov, who introduced the term “trapping”. I can not and need not enter
into this field since it has been presented in an ICM 1994 lecture by V. Bangert.
Since then he and Urs Lang have obtained very general results about the so-called
asymptotic Plateau problem.

VI Concluding Remarks

I hope to have shown to you that the subject of dynamical systems holds a vast
number of connections to other fields — even with the restrictions I imposed on
myself.

Most striking to me is the development of integrable systems (some 30 years
ago) which did not grow out of any given problem, but out of a phenomenon which
was discovered by numerical experiments in a problem of fluid dynamics. Intelli-
gent studies and deep insight opened up to a novel field impinging on differential
geometry, algebraic geometry and mathematical physics, including applications in
communication of fiber optics. This illustrates that one is ill-advised to try to
direct or predict the development of mathematics. In a time of dangerous spe-
cialization we should feel free to use all tools available to us, and use them with
proper taste. To me, it seems idle to argue whether to prefer solving of challeng-
ing problems, building abstract structures, or working on applications. Rather we
should keep an open mind when we approach new problems, and not forget the
unity of mathematics. In the words of Birkhoff: “It is fortunate that the world of
mathematics is as large as it is”.
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1 Introduction

1.1 Why geophysical wave propagation

In deciding what to present as a plenary lecture in applied mathematics and prob-
ability at ICM-98, I considered several areas with which I am familiar and decided
to focus on geophysical wave propagation for a couple of reasons. One, a technical
one, is that inhomogeneities are strong and highly anisotropic so that the modeling
and analysis of wave propagation in the earth’s crust is mathematically interesting
and quite difficult. The other reason is closely related to what my view of modern
applied mathematics is: the creation and development of a mathematical environ-
ment for physical, economic, biological or other phenomena. This involves active
participation of the mathematician in the quantitative modeling, in the analysis,
in the computations, as well as in the interpretation of results and assessment of
the effectiveness of the modeling.

The resulting mathematical methodology will be uneven, from routine off-
the-shelf toolbox applications to entirely uncharted problems that need new ideas
and techniques, and it is up to the mathematician to decide what the right mix
of mathematical sophistication and rough heuristics should be. An overly math-
ematical approach will impede communication with nonmathematical specialists
who value results and do not care much for mathematical generality. Accepting
the conventional wisdom in a field, and concentrating on technical mathematical
issues, is not a good idea either. Geophysical wave propagation is a case in point.
It is fair to say that wave localization is virtually unknown to geophysicists. But,
as I will try to explain in this lecture, wave localization is quite important in ex-
ploration geophysics because, among other things, it influences the resolution of
seismic imaging and the effective depth penetration of seismic probes. What is
the best way to approach these problems mathematically?

A few years ago, K. Aki, a distinguished seismologist whose ideas about the
role of crustal inhomogeneities in seismic wave propagation have been very influ-
ential, heard a seminar that I gave on wave localization and asked this question:
How can one tell from seismic observations that wave localization has taken place?
Electronic wave localization in semiconductors goes back forty years [1], with the
strong participation of mathematicians during the last twenty years, so we should
be able to say quite a bit, as I will try to explain in this lecture. But Aki’s question
is a profound one that leads to the most complex and least understood issue in
geophysical wave propagation, the localization-transport transition. It is a prag-
matic, operational question which reminds us that great intellectual challenges
can have humble, unpretentious origins. I think that it takes a mathematician to
answer Aki’s question and perhaps it will be one that does it.

1.2 Random media or environments in general

I will treat the earth’s crust as a random medium, that is, as an elastic medium
with density and Lame parameters that are random functions of space. The equa-
tions of linear elastic wave propagation become now stochastic partial differential
equations. Initial and boundary conditions must also be specified and they could
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bring in additional randomness, from modeling the rough surface of the earth. At
this level of generality the randomness is nothing more than variable coefficients
and non-flat boundaries, so general linear PDE methods can deal with everything
(symmetric hyperbolic systems). If dissipation is important, and it is in some
contexts, it can be put into the equations in different ways. There is no general
agreement on how to best model dissipation analytically and this is an interesting
issue that I will not address here.

But even this much is somewhat grudgingly accepted by geophysicists. I reg-
ularly hear comments like: there is only one earth and it is not changing all that
fast, so where is the statistical ensemble of realizations coming from? If stochas-
tic modeling is to be criticized along such lines then why are we modeling the
Dow Jones Industrial Average, or some other index or asset price, as a stochastic
process? There is only one realization of the DJIA just as there is only one real-
ization of the earth. What the stochastic processes model is uncertainty, lack of
information and its consequences when only imperfect and sparse observations or
measurements are available, and even desirable. The notion of ‘effective’ medium
is very much part of the mathematical physics of the 19th century, of Maxwell,
Rayleigh and others, which is why equations with constant coefficients have any
relevance at all in modeling. The conceptual barrier seems to come up when one
thinks of fluctuations.

It is not an accident, therefore, that in one of the first instances of wave
propagation in random media, natural light propagation through a turbulent at-
mosphere, astrophysicists at the turn of the 20th century did not go to Maxwell’s
equations (or the wave equation if the vector nature of light waves can be ne-
glected) but developed a new, phenomenological theory, the radiative transport
theory, to interpret observed phenomena. There are a few isolated attempts to
consider random media, with fluctuations, during the first half of the 20th century
but it is with the advent of radar and sonar during in the forties that random
waves emerge as a subject. Keller’s papers in the sixties [2] where very influential
because they were the first ones written by a mathematician, who thought about
the conceptual foundations and separated heuristics from legitimate calculations.
It was also in the sixties that the connection between radiative transport theory
and stochastic wave equations was clarified, as I will discuss in section 3.1.

Atmospheric wave propagation, from radio to radar to optical frequencies,
and underwater sound propagation, from 20 hertz to kilohertz, were the main ap-
plications driving the theory of wave propagation in random media in the seventies
and are discussed in Ishimaru’s book [3]. It is interesting to note that the notion
of wave localization is nowhere to be found in this book. Random media in seis-
mology appeared first in the mid eighties in a simple version of radiative transport
[4]. Transport theory is now just beginning to become mainstream in seismology
as is seen from the recent book of Fehler and Sato [5]. But wave localization is not
discussed in this book either. A treatment of waves in random media that deals
extensively with wave localization is given by Ping Sheng [6].

What is wave localization anyway? I will explain it in some detail in section
4.3 but, roughly, it is when random inhomogeneities trap wave energy in a finite
region and do not allow it to spread as it would normally. Random media behave
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then like periodic media that have band-gap spectra, allowing wave propagation
in some frequency ranges but not in others. It is remarkable that this happens for
random media that are not close to periodic ones at all. Mathematically, it is shown
that wave or wave-like operators with stationary (translation invariant) random
coefficients in unbounded regions have discrete spectra [7]. Discrete spectra means
that the wave energy in each mode initially will remain there for ever, oscillating
in time but not propagating out to infinity. In three dimensional wave propagation
this can happen only when parameter fluctuations are very large. This is not the
case for electromagnetic waves in the atmosphere or sound waves in the ocean.
The fluctuations are weak, a few percent, and when they are important they lead
to radiative transport, which allows spreading of wave energy in diffusive rather
than wave-like manner.

Where then do we see wave localization in classical wave propagation? We see
it when wave energy is channeled, by a waveguide, by a transmission line, by an
optical fiber, by strong anisotropy due to layering in the lithosphere, etc. We also
see it in nearly periodic structures. Waves in an one dimensional random medium
will localize, even if the fluctuations in the medium parameters are weak. In geo-
physical wave propagation and elsewhere (in optical localization) a key issue is the
identification of structures, more complicated than simple channeling or periodic-
ity, that tend to enhance the onset of wave localization by random fluctuations.
This is the localization-transport transition problem.

1.3 Acknowledgements

I would like to thank several friends and colleagues with whom I worked in the
past: R. Burridge, J.B. Keller, W. Kohler and B.S. White with whom I have
been associated for a long time, and my more recent collaborators: M. Asch, G.
Bal, J. Berryman, J. Bronski, O. Dorn, J.P. Fouque, F. Herrmann, R. Knapp, P.
Lewicki, A. Nachbin, M. Postel, L. Ryzhik, Y. Samuelides, P. Sheng, K. Solna and
S. Weinryb.

2 General notions about waves in random media

2.1 Scales

There are three basic length scales in wave propagation phenomena:

• The typical wavelength λ

• The typical propagation distance L

• The typical size of the inhomogeneities l

In geophysical wave propagation it is difficult to associate a ‘typical’ scale that is
characteristic of the inhomogeneities. The density and local speed of propagation
of waves vary on many scales. We may think of l as a typical correlation length.
When the standard deviation of the fluctuations is small then the most effective
interaction of the waves with the random medium will occur when l ∼ λ, that
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is, the wavelength is comparable to the correlation length. And this interaction
will not be observable unless the propagation distance is large (L >> λ). If
propagation distances are short, a few wavelengths or correlation lengths, then
effective medium theories will work fine. There will be a deterministic propagation
speed (for scalar waves), the effective speed, with which energy will propagate as
if the medium were deterministic. The effective medium theory will be valid
also when the wavelength is long compared to propagation distances, even if the
correlation length is short (l << L) and the fluctuations have a large standard
deviation. This is the homogenization limit.

Of course this rough way of thinking with scales does not capture the effect of
a waveguide geometry, or the effective dimension of the propagation phenomenon.
But thinking with scales is very useful and, with some experience, it can become
a very good heuristic tool.

2.2 Types of waves

It is classical waves, solutions of the wave equation or more general symmetric
hyperbolic systems, that we want consider, rather than electronic waves which are
solutions of the Schrödinger equation. The waves are vector fields in general, as
with electromagnetic waves which are solutions of Maxwell’s equations or elastic
waves where the elastic displacement field is a solution of the elastic wave equa-
tions. Mode conversion, the transfer of energy from compression to shear waves
for example, is an important effect in random media. So is polarization, which is
associated with vector waves all of whose components travel with the same speed.
Polarization tends to get lost in a random medium and the way this happens is
an important way to make inferences about the nature of the propagation envi-
ronment.

2.3 Coherent and incoherent fields

When the random fluctuations of the medium parameters are small then the ran-
dom fluctuations in the solutions will be small, if the propagation distances are not
too big. The mean solution, the coherent field, will carry most of the energy. As
the waves propagate their fluctuating component, the incoherent field, gets more
energy. The total energy is conserved, if there is no dissipation, but the coherent
field loses energy and slows down. This behavior of the coherent field is something
that can be calculated easily and is well established in the engineering literature.

2.4 Localization and transport

If fluctuations are weak and propagation distances large, most of the wave en-
ergy will be incoherent. In seismology, for example, after the first arrival from
a disturbance far away the seismogram is dominated by strong fluctuations from
multiple scattering. The later part, the coda of a seismogram is mostly incoherent
field measurement. It is in this regime that radiative transport is a good ap-
proximation. It allows accurate calculation of the envelopes of the seismograms
without resolving the detailed fluctuations. A new scale enters the description of
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propagation phenomena: the mean free path. This is a length scale that gives
an indication of the importance of multiple scattering and is much more relevant
than the correlation length of the inhomogeneities.

Wave localization is total trapping of the wave energy by scattering from the
random inhomogeneities. It is the regime where fluctuation phenomena dominate
so we have little intuition for what should happen. For one thing the random fluc-
tuations must be very strong and the structure of the propagating medium must
be special (a channeling medium or an ordered, periodic structure). In the litho-
sphere fluctuations in the speeds of propagation of elastic waves can be as large as
15% and they can be highly anisotropic, with horizontal correlation lengths much
larger than vertical ones. Localization manifests itself in fat codas of seismograms,
or codas with envelopes that decay slowly. This is a clear indication that there
is a lot of multiple scattering going on. Moreover, radiative transport would tend
to underestimate the size of the codas indicating that a different analytical the-
ory is needed. What is missing at present is a robust and effective criterion for
discriminating between these two situations.

2.5 Nonlinearity and randomness

Nonlinearity and randomness interact significantly only in very special situations,
as in soliton propagation in optical fibers or when high intensity laser beams
interact with material inhomogeneities. Nonlinearity is rarely an issue in seismic
wave propagation except very near sources. In one dimensional wave propagation
both nonlinearity and randomness are strongly felt and a long-standing problem is
the analysis of their interaction. Is there, for example, wave localization when we
have nonlinearities? This is a very difficult question that cannot be answered by a
yes or no. The phenomena depend sensitively on the exact setup of the problem:
the form of the nonlinearity, the various scales associated with the inhomogeneities
and the propagation phenomenon, and the form of the excitation [8, 9, 10, 11, 12,
13].

2.6 Numerical simulations

At the dawn of the 21st century, when computational power is doubling every
two years or so, and computational cost is dropping to the point where a good
laptop computer today is more powerful than the Cray I supercomputer of the
late seventies, why is anybody interested in analytical methods? We have the
computational power to simulate anything we want and we have the ability to
make detailed and extensive measurements, which in seismology result in huge
data sets. What could mathematical analysis contribute in this context?

Being skeptical about the utility of mathematical analysis and believing that
we can compute or simulate everything we need may appear naive to a mathe-
matician but it is increasingly the dominant view in many fields, in geophysical
wave propagation for example.

The fact is that if we want to understand the behavior of seismic codas we
cannot rely on direct numerical simulations. If the typical wavelength is of the
order of 3-5 km and we want to calculate a synthetic seismogram 1000 km from
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the source we need a spatial grid that has at least five points per wavelength, and
more if we want to simulate accurately random fluctuations in the parameters. In
a realistic three dimensional setup it is impossible to generate numerical solutions
that will yield a 3 second synthetic seismogram with millisecond resolution. What
is even more important to realize is that we should not really want to do this
because with radiative transport theory seismic coda envelopes can be calculated.
What is holding up realistic numerical computations is not computing power but
analysis: we do not have good enough transport theoretic boundary conditions
on the earth’s surface and at interfaces. The mean free path may be as large
as 20-30 km and Monte Carlo methods can give reasonably accurate solutions
using a high-end workstation. Transport theory does what is called ‘sub-grid’
modeling in computational fluid dynamics. We do not have to resolve the small
scale inhomogeneities if we can do some analysis, which is in fact difficult but
doable.

2.7 Parameter estimation and imaging

Imaging of the earth’s interior is a challenge that will be with us for a very long time
because the inhomogeneities are so strong. In exploration seismology, where seis-
mic probing can generate huge data sets, the issue is not so much good algorithms
for imaging but low complexity algorithms. Efficient compression of geophysical
data sets is perhaps the most urgent problem that exploration seismology faces at
present.

It appears at first that this has nothing to do with waves. Wavelets or other
tools for compression from signal processing come to mind, and they are being
used. If noise effects are ignored and if the typical wave length of a probing
pulse is 100-150 m (for shorter wavelengths dissipation effects are much stronger),
we cannot expect image resolution better that 25 m or so at a depth of a few
kilometers. And if noise and multiple scattering are to be taken into consideration
it is not at all clear what the achievable resolutions are without some compensation.
Noise reducing methods (stacking) that are used in imaging are not so effective.
Much more needs to be done analytically here. Imaging itself, without noise, is
based on variants of a backward wave propagation method (migration) that has
now a substantial theoretical basis [14, 15, 16].

The best compression method is to go from the seismic data to the image
itself, of course, so good compression has to be adapted to the specific data set
and its structure. But there must be interesting algorithms, yet to be found, that
are somewhere between know-nothing methods like wavelet decomposition and
thresholding, and know-all full imaging.

3 The transport regime

Radiative transport is a phenomenological theory that was introduced to describe
the propagation of light intensity through the Earth’s atmosphere. It has been
applied successfully to many other problems of wave propagation in a complex
medium. In its simplest form, let a(t,x,k) denote the angularly resolved energy
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density defined for all wave vectors k, position x and time t. Because of interaction
with the inhomogeneous medium through which it propagates, a wave with wave

vector k may be scattered into any other direction k̂′, where k̂ =
k
|k| . The

transport equation gives the energy balance

∂a(t,x,k)
∂t

+ ∇kω(x,k) · ∇xa(t,x,k)−∇xω(x,k) · ∇ka(t,x,k) (1)

=
∫

Rn

σ(x,k,k′)a(t,x,k′)dk′ − Σ(x,k)a(t,x,k).

Here n is the dimension of space (n = 2 or 3), ω(x,k) is the local frequency at
position x of the wave with wave vector k, the differential scattering cross-section
σ(x,k,k′) is the rate at which energy with wave vector k′ is converted to wave
energy with wave vector k at position x, and

∫
σ(x,k′,k)dk′ = Σ(x,k) (2)

is the total scattering cross-section. The function σ(x,k,k′) is nonnegative and
usually symmetric in k and k′. The left side of (1) is the total time derivative of
a(t,x,k) at a point moving along a trajectory in phase space (x,k) and may be
written as a Liouville equation

∂a

∂t
= {ω, a} , (3)

where {f, g} =
n∑

i=1

(
∂f

∂xi

∂g

∂ki
− ∂f

∂ki

∂g

∂xi

)
is the Poisson bracket. The right side of

(1) represents the effects of scattering.
The transport equation (1) is conservative when (2) holds because then

∫ ∫
a(t,x,k)dxdk = const

independent of time. Absorption may be accounted for easily by letting the total
scattering cross-section be the sum of two terms

Σ(x,k) = Σsc(x,k) + Σab(x,k)

where Σsc(x,k) is the total scattering cross-section given by (2) and Σab(x,k) is
the absorption rate.

The radiative transport equation (1) was derived from the microscopic equa-
tions in the sixties and seventies by many authors (see [17] for references). A nice
overview of these methods and results is presented in a recent review [18]. We
have recently considered scattering of high frequency waves in a random medium
[17] and established validity of the radiative transport theory for scalar and vector
waves, including mode conversion and polarization in the following regime:

• Distances of propagation L are much larger than the wave length λ,
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• The medium parameters vary on the scale comparable to the wave length,

• The mismatch between the inhomogeneities and the background medium is
small,

• Absorption is small.

This regime arises in many physically important situations. In seismic wave prop-
agation, teleseismic events can be modeled by radiative transport equations [4, 5].

3.1 Waves to transport

Transport equations for the phase space wave energy densities are constructed
[17, 19, 20] as follows. We assume here that the space domain is R3 (n = 3) and
deal with acoustic waves. The acoustic equations for the velocity v and pressure
p are

ρ
∂v
∂t

+∇p = 0 (4)

κ
∂p

∂t
+∇ · v = 0.

This system may be written in a general form of a symmetric hyperbolic system
(with convention of summation over repeated indices):

A(x)
∂u
∂t

+ Dj ∂u
∂xj

= 0, (5)

where u = (v, p), and x ∈ Rn. The matrix A(x) = diag(ρ, ρ, ρ, κ) is symmetric
and positive definite and the matrices Dj are symmetric and independent of x
and t. We consider high frequency solutions of (5). Physically this means that
the typical wave length λ of the initial data is much smaller than the overall

propagation distance L with ε =
λ

L
¿ 1. The spatial energy density for the

solutions of (5) is given by

E(t,x) =
ρv2

2
+

κp2

2
=

1
2
(A(x)u(t,x) · u(t,x)) =

1
2
Aij(x)ui(t,x)ūj(t,x) (6)

and the flux F(x) by

F i(t,x) = pv =
1
2
(Diu(t,x) · u(t,x)). (7)

We have the energy conservation law

∂E
∂t

+∇ ·F = 0. (8)

and thus the total energy is conserved:

d

dt

∫
E(t,x)dx = 0. (9)
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The high frequency limit ε → 0 of the energy density E(t,x) is described in
terms of the Wigner transform, which is defined by

Wε(t,x,k) =
(

1
2π

)n ∫
eik·yuε(t,x− εy/2)u∗ε(x + εy/2)dy, (10)

where uε(t,x) is the solution of (5). The Wigner transform Wε is a 4× 4 Hermi-
tian matrix. Its limit as ε → 0 is called the Wigner distribution and is denoted
by W (t,x,k). The limit Wigner matrix is not only Hermitian but also positive
definite. The limit energy density and flux are expressed in terms of W (t,x,k) by

E(t,x) =
1
2

∫
Tr(A(x)W (t,x,k))dk

and

Fi(t,x,k) =
1
2

∫
Tr(DiW (t,x,k))dk.

The limit Wigner distribution may be decomposed over different wave modes
in a way that generalizes the plane wave decomposition in a homogeneous medium.
The dispersion matrix of the system (5) is defined by

L(x,k) = A−1(x)kiD
i =




0 0 0 k1/ρ
0 0 0 k2/ρ
0 0 0 k3/ρ

k1/κ k2/κ k3/κ 0


 . (11)

It has one double eigenvalue ω1 = ω2 = 0 and two simple eigenvalues

ωf = v|k| , ωb = −v|k| , (12)

where |k| =
√

k2
1 + k2

2 + k2
3 and v is the sound speed

v =
1√
κρ

. (13)

The corresponding basis of eigenvectors is

b1 =
1√
ρ
(z(1)(k), 0)t, b2 =

1√
ρ
(z(2)(k), 0)t,

bf = (
k̂√
2ρ

,
1√
2κ

)t, bb = (
k̂√
2ρ

,− 1√
2κ

)t, (14)

where the vectors k̂, z(1)(k) and z(2)(k) form an orthonormal triplet. The eigen-
vectors b1(k) and b2(k) correspond to transverse advection modes, orthogonal to
the direction of propagation. These modes do not propagate because ω1,2 = 0.
The eigenvectors bf (k) and bb(k) represent forward and backward acoustic waves,
which are longitudinal , and which propagate with the sound speed v given by (13).

Documenta Mathematica · Extra Volume ICM 1998 · I · 403–427



Mathematical Problems in Geophysical Wave Propagation 413

The limit Wigner distribution matrix W (t,x,k) has the form [17]:

W (t,x,k) =
2∑

τ=1

W τ
ij(t,x,k)bi(k)bj∗(k)

+af (t,x,k)bf (k)b∗f (k) + ab(t,x,k)bb(k)b∗b(k). (15)

The first term corresponds to the non-propagating modes and may be set to zero
here without any loss of generality. The last two terms correspond to forward
and backward propagating sound waves. The scalar functions af,b are related by
af (t,x,k) = ab(t,x,−k), and af satisfies the Liouville equation

∂a

∂t
+∇kω · ∇xa−∇xω · ∇ka = 0. (16)

They may be interpreted as phase space energy densities since they are non-
negative (because the matrix W (t,x,k) is non-negative) and

E(x) =
1
2

∫
dk[af (t,x,k) + ab(t,x,k)] =

∫
dkaf (t,x,k).

The flux is given by

F =
v

2

∫
dk[k̂af (t,x,k)− k̂ab(t,x,k)] = v

∫
dkk̂af (t,x,k). (17)

The radiative transport equation (1) arises when the density ρ and compress-
ibility κ are random and oscillating on the scale of the wave length, so we assume
they have the form

ρ → ρ(1 +
√

ερ1(
x
ε
)), κ → κ(1 +

√
εκ1(

x
ε
)).

The random processes ρ1 and κ1 are mean zero space homogeneous with power
spectral densities R̂ρρ, R̂κκ, and cross spectral density R̂κρ. The limit ε → 0 is the
high frequency limit since the parameter ε is the ratio of wave length to propagation
distance. In (3.1) we take the ratio of correlation length to propagation distance
to be of order ε also, and we take the standard deviation of the fluctuations to be
of order

√
ε. It is in this scaled limit that radiative transport theory emerges. The

radiative transport equation for a(t,x,k) = af (t,x,k) is

∂a

∂t
+vk̂ · ∇xa− |k|∇xv · ∇ka =

πv2|k|2
2

∫
δ(v|k| − v|k′|)[a(k′)− a(k)]

·
{

(k̂ · k̂′)2R̂ρρ(k− k′) + 2(k̂ · k̂′)R̂ρκ(k− k′) + R̂κκ(k− k′)
}

dk′. (18)

This equation is of the form (1). The mean free path is a typical value of the
ratio v

Σ , the speed over the total scattering cross-section. It can be thought of
as the distance over which scattering by the inhomogeneities is effective. It is a
length scale that can be estimated from seismic data while correlation lengths and
standard deviations of parameter fluctuations are usually not observable.
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The radiative transport equation (1) has been derived from equations gov-
erning particular wave motions by various authors, such as Stott [21], Watson
et.al. [22], [23], [24], Barabanenkov et.al. [25], Besieris and Tappert [26], Howe
[27], Ishimaru [3] and Besieris et. al. [28] with a recent survey presented in [29].
These derivations also determine the functions ω(x,k) and σ(x,k,k′) and show
how a is related to the wave field. In [17], (1) and these functions are derived as a
special case of a more general theory using the Wigner distribution and symmetric
hyperbolic systems.

There is not a lot of mathematical work on the wave-to-transport limit, and
most of it is for the Schrödinger equation with random potential. We cite here the
work of Martin and Emch [30], of Spohn [31], of Dell’Antonio [32] and the recent
extensive study of Ho, Landau and Wilkins [33] as well as [34]. They treat only
spatially homogeneous problems but it is known how to extend the analysis to the
spatially inhomogeneous case (slow x-dependent initial data and potential) [35].
A really satisfactory mathematical treatment of radiative transport asymptotics
from random wave equations is lacking at present.

3.2 Transport for electromagnetic and elastic waves

Transport theory for electromagnetic and elastic waves is interesting because of
wave polarization. This is important in astrophysics and is analyzed in great detail
in Chandrasekhar’s treatise [36]. Coherence of polarized light persists and must
be tracked, leading to a system of transport equations for the Stokes parameters
that fix the state of polarization. The derivation of this system from Maxwell’s
equations was first done in the early seventies, and using symmetric hyperbolic
systems and Wigner distributions in [17], where the earlier papers are cited.

The main reason we wanted a general derivation of transport equations for
general waves was so that we could deal with elastic waves. One can, of course,
write down phenomenological equations for the transport of elastic wave energy
and this was done often in the last 10-15 years [5]. The problem is that shear waves
were treated like acoustic waves and the role of polarization was not accounted
for correctly in the geophysics literature, even though the similarity with electro-
magnetic waves (Chandrasekhar’s work) should be clear. In [17] it is shown that
elastic wave transport is like E&M for shear and like acoustics for compressional
waves, and the two wave modes are coupled.

A simple but interesting consequence of the general derivation is the symme-
try (self-adjointness) of the transport equations. This implies immediately that
the only equilibrium phase space energy densities are the uniform ones (over the
support of the energy surface). The spatial energy densities for the compressional
P waves and the shear S waves must be in a fixed ratio to each other, which turns
out to be

EP =
v3

S

2v3
P

ES

Here vS is the shear speed (about 3km/sec) and vP is the compressional speed
(about 5km/sec). This makes the P wave energy about one tenth of the S wave
energy deep in the coda of seismograms, assuming surface effects are not important
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so that the free space theory can be used. This is independent of what the source
is and of the details of the scattering medium, as long as there is effective scat-
tering. The asymptotic energy law is well known empirically but it did not have
an explanation from first principles so we presented it in detail and related it to
the seismological literature in [37]. It turns out that this kind of long time P-to-S
energy equilibrium was known in connection with remote sensing with ultrasound
[41].

3.3 Boundary conditions

Finding appropriate transport theoretic boundary conditions for wave propaga-
tion in the transport regime is perhaps the most pressing issue both theoretically
and for the applications, in geophysics, in electromagnetics, in ultrasound and
elsewhere. The problems are analytically difficult as can be seen from [20] where
the relatively simple case of inhomogeneous, slowly varying deterministic media
with a flat interface is considered and transport theoretic boundary conditions are
derived in the high frequency limit.

There is a lot of physical and applied literature on scattering form random
rough surfaces [38, 39]. The issue is to determine what is appropriate as a bound-
ary or interface condition for radiative transport equations. As with polarization,
interfaces are a source of coherence in an otherwise incoherent scattering process.
So they must be treated carefully to avoid oversimplifications. In [40] we con-
sider acoustic reflection and transmission by a flat interface and derive transport
theoretic boundary conditions, but a lot more has to be done here, including the
derivation of boundary conditions for E&M and elastic wave transport.

3.4 The diffusive regime

It is well known, primarily from studies that originated in neutron scattering and
reactor theory, that when the propagation distance in the transport regime is
large compared to the mean free path a simpler diffusion theory emerges. In some
seismic propagation problems the mean free path is 20-30 km but propagation is
over 1000 km and more. So it is quite clear that a diffusion approximation for
the transport equations is called for. We know how to do this when there are no
boundaries present [17], even with polarization for E&M and elastic waves.

The problem is that the crustal wave guide is 30-40 km deep and it is not
clear how to use the diffusion approximation, or even how to decide if it should be
used at all. But the mathematical problem of finding asymptotic boundary and
interface conditions in the diffusive regime is interesting, quite delicate analytically
and potentially very useful [42]. In radar scattering from clutter, the diffusive
transport theory is very likely the most appropriate one to use for wavelengths in
the 10 cm to 1 m range, for example.

3.5 Parameter identification and inverse problems

Parameter identification for radiative transport has received relatively little atten-
tion in geophysics [5]. In light propagation through the atmosphere the situation
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is, of course, very different if only because the measurements that can be made
are very different. The recent activity in diffusive tomography [43] should eventu-
ally find applications in geophysics as well, but there are many difficult problems
that must be settled along the way, such as getting the right transport theoretic
boundary conditions.

4 The localization regime

I will review briefly reflection of acoustic plane wave pulses normally incident
on a randomly layered half space, z < 0, with z the direction of the layering
[45, 46]. A good reference for deterministic wave propagation in layered media is
Brekhovskikh’s book [44]. It is in randomly layered media that wave localization
is dominant. I will describe it in the time domain, for pulses, because this is the
most interesting case in geophysical wave propagation, in reflection seismology and
elsewhere. It is also not treated much in the mathematical or physical literature
specialized to localization problems, and the simple intuition that most specialists
have for time harmonic, one dimensional wave localization is not quite adequate
for pulses. This was pointed out some time ago [50].

Radiative transport theory is not, of course, valid for randomly layered media.
This was also considered long ago in connection with wave guides and optical fibers
[47]. But it is not well understood in applied fields, even today, and papers appear
occasionally that attempt to ‘derive’ radiative transport equations for propagation
in layered media. I do not mean here three dimensional radiative transport in
plane parallel structures. I mean random layering. If radiative transport were
valid in this case, then the differential scattering cross-section would be singular,
concentrated in only two (in the simplest case) directions, up and down or forwards
and backwards propagation.

In the long paper [48] we deal in detail with the point source case, that is,
the propagation of an acoustic pulse generated by a point source over a layered
random medium. Here I will describe only the reflection of acoustic plane wave
pulses.

4.1 Pulse reflection from randomly layered media

The acoustic pressure p(t, z) and velocity u(t, z) satisfy the continuity and mo-
mentum equations

1
K

pt + uz = 0

ρut + pz = 0 (19)

Here ρ is the material density and K the bulk modulus. As in [48] we assume for
simplicity that the density has no random variation

ρ(z) =
{

ρ0, z > 0,
ρ1, z < 0 (20)
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with ρ0 and ρ1 constants. For the bulk modulus we assume that

K−1(z) =
{

K−1
0 , z > 0,

K−1
1 (z)

(
1 + ν( z

ε2 )
)
, z < 0

(21)

with K0 a constant, K1(z) a smooth deterministic function of z and ν(s) a bounded
stationary random function with mean zero, representing the fluctuations in K−1.
Note that they vary on the scale ε2, where ε is a small parameter. If z is measured
in kilometers and the fluctuations vary on the scale of a few meters then a value of
ε around 0.05 captures the scale separation we wish to model. We assume that the
random function ν(s) has a correlation length of order one so that the correlation
length of ν(z/ε2) is of order ε2 in kilometers (about 2.5 meters for ε = 0.05). The
mean sound speed c is given by

c(z) =





c0 =
√

K0
ρ0

, z > 0

c̄(z) =
√

K1(z)
ρ1

, z < 0
(22)

Note that the fluctuations in the sound speed are not assumed to be small. The es-
timation of the vertical correlation length of the inhomogeneities in the lithosphere
from well-log data is considered in [51]. They found that 2-3 m is a reasonable
estimate of the correlation length of the fluctuations in sound speed.

For t < 0 a normally incident plane wave solution in z > 0 has the form

u(t, z) =
1√
ε

1√
ρ0c0

f

(
t + z/c0

ε

)

p(t, z) = − 1√
ε

√
ρ0c0f

(
t + z/c0

ε

)
(23)

Here f is the pulse shape function which is assumed to vanish for negative
arguments and to have support that is of order one in the macroscopic t units that
are seconds. With ε = 0.05, the pulse width is about 50 msec or, with a speed
of 3 km/sec, 150 meters. The multiplicative factor 1/

√
ε in (23) makes the total

energy of the incident plane wave pulse independent of ε. Continuity of p and u
at the interface z = 0 makes (19) and (23) a complete problem. We are interested
in p(t, 0) or u(t, 0) for t > 0, the pressure or velocity at the interface, and this
involves the solution of a complicated random scattering problem because of the
form (21) of K−1.

4.2 Scale separation

The scaling that we have chosen, and the asymptotic limit ε → 0 that we will
consider, models well problems in reflection seismology and is quite different from
transport theoretic scaling. The main differences are that the fluctuations are not
assumed to be small and the typical wavelength of the probing pulse (150 m) is
small with respect to the probing depth (5 km, say) but large compared to the
correlation length (2-3 m). The parameter ε is then the ratio of the (typical) wave
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length to propagation depth, as well as the ratio of correlation length to wave
length. This is a particularly interesting scaling limit mathematically because it is
a high frequency limit with respect to the large scale variations of the medium that
we want to detect, but it is a low frequency limit with respect to the fluctuations,
whose effect acquires a canonical form independent of details.

Is this model realistic and can it be used effectively? One argument that
can be made against it is this: There is no real scale separation in sound speed
fluctuations, as one can see from well-logs [52], so this neat way of dealing with
fluctuations, background and probing pulse cannot possibly be right, even if it can
handle large fluctuations. Another is that perfectly layered random media are an
unacceptable idealization.

Regarding scale separation, it is fair to say that the scope of the analytical
theory that has been developed, and is described briefly here, is well beyond any-
thing that could be expected from any theory that deals with strong fluctuations
in a serious way. Radiative transport theory is more robust because the fluctua-
tions are assumed to be small, and then it is not necessary to have scale separation
(correlation lengths and wave lengths are comparable). Moreover, the analytical
tools that emerge from the asymptotic scale separation theory are far more flexible
and robust than the crude thinking with scales implies. Discontinuities and imper-
fections that are comparable to the pulse width can be handled by the theory and
do not make it unusable. The problem is that the theory is not easy to follow, it
is analytically difficult to implement and not nearly enough has been done to test
it in situations that push against the scale separation assumptions. The statistical
analysis of well-log data that was done in [51], that produced the estimate of 2-3
m for the correlation length of the sound speed fluctuations, is quite thorough, but
perhaps more can be done here also.

The modifications to the theory that are needed to account for imperfect
layering are far more important than anything missed by scale separation asymp-
totics. This goes back to the localization-delocalization transition that I have
mentioned several times already. It remains a big gap in our understanding of
wave propagation in random media.

4.3 Localization regime asymptotics

We will consider the reflected pressure prefl(t, 0), at z = 0 and t > 0, which is
the total pressure minus the incident pressure (23). After a time of order ε, the
duration of the incident pulse, the two are the same. Of particular interest is the
two-time reflected average pressure intensity.

I(t, t̄) =
1

ρ0c0
< prefl(t +

εt̄

2
, 0)prefl(t− εt̄

2
, 0) > (24)

with the angular brackets denoting statistical average. The factor 1/ρ0c0 is a
normalization.

For simplicity, we will assume in the sequel that there is no macroscopic
discontinuity at z = 0 so that ρ0 = ρ1 and K−1

0 = K−1
1 (0).
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Note that the time offset in (24) is proportional to the pulse width ε. The
reason for this is that for time offsets of more than a few pulse widths the reflected
signals are essentially uncorrelated. Moreover, in the absence of discontinuities in
the medium, < prefl(t, 0) > is essentially zero except for a time of order ε near
t = 0 when the reflection from the interface z = 0 is felt.
That is, there is no coherent backscattering. We formulated a scattering problem
where the quantity of interest is as directly related to the medium fluctuations as
is possible.

Fix a t > 0, not close to zero, and a small ε. Since I(t, t̄) is essentially zero
for large t̄ we can introduce its (essentially local) Fourier transform

Λ(t, ω)|f̂(ω)|2 =
∫

eiωt̄I(t, t̄)dt̄ (25)

in which Λ is the normalized local power spectral density. The normalization is
|f̂(ω)|2 with f̂(ω) the Fourier transform of the pulse shape function f(t). The
two-time intensity function can be written as

I(t, t̄) =
1
2π

∫
|f̂(ω)|2Λ(t, ω) e−iωt̄dω (26)

The main thrust of our theoretical work in [45, 48, 46] is that in the limit
ε → 0 the local power spectral density can be calculated by solving a system of
partial differential equations where

Λ(t, ω) = W 1(0, t, ω) (27)

and the WN (z, t, ω), N ≥ 0 satisfy the equations

∂WN

∂z
+

2N

c̄(z)
∂WN

∂t
− 2αω2N2

c̄2(z)
{
WN+1 − 2WN + WN−1

}
= 0 (28)

for −L < z ≤ 0, with

WN (−L, t, ω) = δ(t)δN,0 (29)

Here the mean sound speed c̄(z) is given by (22) and α > 0 is the noise intensity
level of the fluctuations

α =
1
4

∫ ∞

0

< ν(s)ν(0) > ds (30)

The length L is arbitrary, provided that for any given t > 0 for which we want to
calculate Λ(t, ω) it satisfies

L > cmax
t

2
(31)

with cmax the maximum speed c̄(z) in z ≤ 0. Because of the hyperbolic nature
of the equations (28) it is easy to see (and explained in the references) that the
choice of L satisfying (31) does not affect Λ(t, ω) given by (27).
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4.4 Time domain localization

There is no quick and simple way to explain the result (27)-(31) that relates the
local power spectral density Λ(t, ω; c̄(.)), the mean sound speed profile c̄(z) and
the noise intensity level α. But we will now make several remarks that will help
explain the nature of this relationship.

From the definition (24) and (25) it is clear that Λ(t, ω) is a local Fourier
transform but it is not necessarily positive as it would have to be if prefl(t, 0), the
reflected pressure, were a stationary process in t so that I(t, t̄) were independent
of t. However, in the limit ε → 0, and hence when ε is small, Λ(t, ω) given by (27)-
(31) is indeed positive. For a general profile c̄(z) it cannot be computed explicitly
but for c̄(z) = c̄, a constant, it has the form

Λ(t, ω) =
αω2

c̄(
1 + αω2

c̄ t
)2 (32)

In terms of the localization length [49] at frequency ω

l(ω) =
c̄2

2αω2
(33)

we can write (32) in the form

Λ(t, ω) =
1
2

c̄l(ω)(
l(ω) + c̄t

2

)2 (34)

As shown in [49] and the many references cited there, the localization length
at frequency ω is a measure of the depth of penetration of a time harmonic wave
with this frequency into a randomly layered medium with uniform sound speed
c̄ and noise level α for the fluctuations. Wave energy does not penetrate much
below this length. If T (L, ω) is the time harmonic transmission coefficient for a
randomly layered medium of width L, with ω the frequency of the incident plane
wave, then

lim
L→∞

1
L

log |T (L, ω)| = −1
l(ω)

with probability one. This defines the localization length l(ω) > 0, which is always
positive for a large class of random media. It cannot be computed explicitly but in
the low frequency limit it has the form (33). The lower the frequency the deeper
the penetration of the waves into the randomly layered medium.

In the time domain, the normalized local power spectral density of the re-
flected signal at a fixed time t, Λ(t, ω) in (34), has a maximum ωmax = ωmax(t)
that depends on time. From (34) the maximum is calculated to be

ωmax =

√
c̄

αt
(35)

In a more physical way [49] we can say that the maximum of the local power
spectral density at time t occurs for that ω = ωmax for which

l(ωmax) =
c̄t

2
(36)
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Thus, for the frequency for which the localization length equals the mean distance
traveled into the medium, we have the maximum contribution to the noise spec-
trum of the reflected signal. This is a stochastic resonance relation that identifies
precisely the main source of noise in the reflected signals.

It is because of wave localization and its manifestations in the time domain
described above that signals reflected by randomly layered media are so noisy.
From (32) we find, by integrating over ω, that the envelope of the root mean
square of the reflected pulse is of the form constant× t−3/4. Thus, the fluctuations
in the reflected signal decay very slowly, indicating that a great deal of multiple
scattering is taking place and that wave localization is dominant.

We can interpret (28) as a hierarchy of equations for moments associated with
the scattering problem [48]. The infinite hierarchy (N ≥ 0 in (28)) indicates that
the second moment that we are interested in (I of (24) or Λ of (25)) cannot be
computed separately from all higher moments (the WN , N > 2 in (28)). This is
another manifestation of localization.

When we use the parameters of section 4.2 that are typical in reflection seis-
mology we find that the minimum localization length occurs in the 20-30 Hz regime
and is about 15-20 km [51]. This means that random inhomogeneities will effec-
tively prevent probing below this depth because all the wave energy is reflected to
the surface by multiple scattering.

What is missing at present is a more general theory that allows us to compute
the changes in the one dimensional theory that occur when small three dimensional
inhomogeneities are introduced into the model. We need a more general theory
that lets us go from localization to transport as the random layering is reduced
and isotropic inhomogeneities replace it.

4.5 Statistical inverse problems

I will describe briefly how the mean sound speed profile c̄(z) can be estimated
from observations of prefl(t, 0) or

Rf (t) =
1√
ρ0c0

prefl(t, 0) (37)

in which dependence of the pulse shape function f is indicated. The inversion
strategy is based on one more fact about the reflected signal Rf (t), in addition
to (27)-(31). It is that as ε tends to zero Rf (t) becomes approximately a Gaus-
sian process. It has not been possible to prove this so far but there are some
good heuristic indications that it is true [45] and extensive numerical simulations
corroborate it very well [48]. From the Gaussian property of Rf (t) we conclude
that

1

|f̂(ω)|2
∫

eiωt̄Rf

(
t +

εt̄

2

)
Rf

(
t− εt̄

2

)
dt̄ = Λ̂(t, ω) (38)

is approximately, when ε is small, an exponential random variable with mean
Λ(t, ω) given by (27)-(31), when c̄(z) is known. Moreover, for distinct 0 < t1 <
t2 < ... < tNt and 0 < ω1 < ω2 < ... < ωNf

, where Nt and Nf are integers,
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the random variables
{

Λ̂(tj , ωl)
}

are independent with exponential distribution
having mean {Λ(tj , ωl)} .

The inversion strategy is now this: Depending on the available data, fix a
set of time points {tj} and frequencies points {ωl} as above. For each realization
of Rf (t) that is available, estimate Λ̂(tj , ωl) from (38). This is actually a very
delicate step that must be done carefully as we discuss in [48], Appendix E. Then
form

O(c̄) =
∏

realiz

Nt∏

j=1

Nf∏

l=1

e−Λ̂(tj ,ωl)/Λ(tj ,ωl;c̄(.))

Λ(tj , ωl; c̄(.))
(39)

where the first product is over different independent realizations. This is the
likelihood functional for the estimates Λ̂, given a known mean speed profile c̄(z).
We now choose c̄(z) in order to maximize this functional. This is a rather usual
maximum likelihood estimation except that now the maximization must be done
over the profiles c̄(.) which in turn determine Λ(t, ω; c̄(.)) in (39) via the partial
differential equations (28)-(29) and the relation (27).

The most convenient way to solve the maximization problem for (39), and thus
estimate c̄(z), is to assume that it is piece-wise linear over a few macroscopically
large layers and then maximize O over a finite set of speeds c̄1, c̄2, ..., c̄Nz . These
speeds are approximations of c̄(z) at successively larger depths numbered from 1
to Nz. Moreover, because of the hyperbolic nature of (28)-(29) the maximization
can be done one layer at a time with increasing depth. This avoids the difficult
problem of finding the maximum of a complicated function of several variables.
Physically this layer peeling process makes sense because there is a direct relation
between the sound speed profile up to a certain depth and the smallest time before
which the rest of the medium is not felt in the reflected signal Rf (t).

Of course we need a lot of independent realizations to get reasonable results
and this is unrealistic in a geophysical context. But it is important in principle to
make this strategy work and amazingly enough it does [50], [48]). It is amazing
because we are trying to determine the smooth, mean speed profile from the re-
flected signals that are swamped by fluctuations due to multiple scattering. The
computational and other implementation details are described in [48]).

Could we do this kind of inversion from extremely noisy reflections if we only
had one realization? Yes, if we have reflection measurements at different offsets
(distances from the source) on the interface, generated by a point source over a
randomly layered medium [53]. This is a very difficult problem that requires a
great deal of numerical computation. The inversion is not as good as in the plane
wave case (with many realizations) but it is reasonably good and, in any case, it
shows that the strategy does work. But improving the results requires very careful
attention to a host of implementation issues that can be settled only empirically,
by trial and adjustment, at present.

An interesting discussion of reflections from time reversed reflections, their
statistical properties and their relation in turn to the hierarchy of moments equa-
tions (28) is given by Clouet and Fouque [54]. This work should have important
applications in statistical inverse problems of geophysical interest.
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Another application of time domain localization asymptotics is to surface
water waves over a rough bottom [55].

4.6 Reflection and transmission of time harmonic plane elastic
waves

We have described a variety of results for acoustic pulse reflection from randomly
layered media, emphasizing time domain effects. For geophysical applications
we must also consider elastic waves in randomly layered media. The analytical
difficulties in extending the theory that we briefly described above to the elastic
case are enormous, mainly because there are two wave modes, P and S waves,
that are coupled by the inhomogeneities. In [56] we extended the scale-separation
asymptotic theory to time harmonic, obliquely incident elastic plane waves. We
calculate in detail mode coupling in reflection and transmission, with various kinds
of interfacial discontinuities. It is surprising that so many things can be calculated
analytically and in such detail, given the complexity of the problem.

However, despite considerable efforts we have not been able to extend the
results to the time domain. The hierarchy of moment equations that we used in
the analysis of acoustic pulse reflection does not seem to work for elastic wave
pulse reflection. The analysis of reflections for elastic wave pulses generated by
a point source, the analog of the analysis carried out in [48] for acoustic waves,
seems to be out of reach at present.

4.7 Pulse stabilization and imaging

We have focused mostly on reflection in the time domain because the bulk of the
measurements that can be made in geophysics, in nondestructive testing with ul-
trasound and elsewhere are surface measurements. However, transmission is also
important as is the analysis of reflections from imbedded discontinuities in a ran-
domly layered medium. The vicinity of the front of the pulse, or the vicinity of
first arrival from the discontinuity, has an interesting structure that can be ana-
lyzed in considerable detail. This is called the O’Doherty-Anstey theory because
it was first discussed by these two geophysicists in the early seventies [57]. The
main point is that if the fluctuations are weak and the pulse is followed with its
random speed, then it will appear to stabilize (not fluctuate) and become broader
as it advances into the medium. This is discussed in detail in [48] where many
other papers are cited.

What if the fluctuations are not weak, and we have scale separation as de-
scribed above? Do we have an O’Doherty-Anstey theory? This question was
answered in [58, 59] by overcoming what was the main obstacle before: finding
the right random speed with which to center the advancing pulse. The fact that
the advancing pulse spreads and loses energy (to fluctuations in its coda) is not so
surprising and is true for general random media, not only layered media, although
the fluctuations must be weak. What is surprising, and not generally known or
anticipated in the geophysics literature, is that in the case of large fluctuations
the centering speed is not the local random speed but a function of it, and the
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centered pulse stabilizes with probability one with minimal spreading (relative to
other centerings).

In [60], Solna shows how this theory can be used to improve the resolution of
discontinuity identification in a random medium. He also extends the O’Doherty-
Anstey theory to a class of locally layered random media, that is, he allows for
slow horizontal variations.
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Operator Spaces and Similarity Problems

Gilles Pisier

Abstract. We present an overview of the theory of “Operator Spaces”
(sometimes called “non-commutative Banach spaces”), recently devel-
oped by Effros, Ruan, Blecher, Paulsen and others. We describe several
applications of this new ideology to operator algebras and to various
similarity problems.
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bounded, similar to a contraction, uniform algebra, amenable group

1 The Theory of Operator Spaces

The notion of “operator space” is intermediate between “Banach space” and “C∗-
algebra”. An operator space (o.s. in short) is simply a Banach space E (or a
normed space before completion) given with an isometric embedding j : E →
B(H) into the space B(H) of bounded operators on some Hilbert space H. By
a slight abuse, we will often identify E with j(E). We can then say that an o.s.
is simply a (closed) subspace of B(H), or equivalently a (closed) subspace of a
C∗-algebra (since, by Gelfand’s theorem, C∗-algebras are themselves embedded
into some B(H)).

Although this notion had appeared earlier, the theory itself really took off
only after Z.J. Ruan’s thesis [Ru1] circulated. His “abstract” characterization of
operator spaces (see below) plays a crucial rôle to construct new operator spaces
from known ones. In particular, immediately after this, Blecher-Paulsen [BP1]
and Effros-Ruan [ER3] independently discovered that the latter characterization
allows to introduce a duality in the category of operator spaces (see §1.4 below)
and they developed the theory much further (cf. [ER2]–[ER6], [B1, B3, P2]).

The definition of operator spaces is a bit disappointing: every Banach space
E embeds isometrically into B(H) for a suitable H, hence every such space can be
viewed (in at least one way, and actually in many) as an operator space. But the
novelty is in the morphisms (or the isomorphisms) which are no longer those of
the category of Banach spaces: instead of bounded linear maps, we use completely
bounded (in short c.b.) ones, defined in §1.1 below. Those emerged as a powerful
tool in the early 80’s in works of Haagerup, Wittstock, Paulsen (see [P1]). Their
definition was somewhat implicit in the earlier works of Stinespring (1955) and
Arveson (1969) on completely positive maps.
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Actually, the theory has been also considerably influenced by several contri-
butions made before Ruan’s thesis, as will be seen below. We should also mention
that operator spaces were preceded by “operator systems” (these are self-adjoint
operator spaces containing the unit): inspired by Kadison’s ideas on “function
systems” and by Arveson’s extension theorem (1969), Choi and Effros developed
in the 70’s an extensive program to study operator systems with unital completely
positive maps as morphisms. In particular, the ideas of duality and quotient spaces
already appeared in this context (see [CE]). There, the additional order structure
dims the parallelism with Banach spaces, but the overall influence of this program
can still be seen throughout the theory.

One of the great advantages of operator spaces over C∗-algebras is that they
allow the use of finite dimensional tools and isomorphic invariants (as in the so-
called “local theory” of Banach spaces) in operator algebra theory (see §1.9 below):
we can work with a distance dcb(E, F ) which measures the degree of isomorphism
of two isomorphic operator spaces E,F (see §1.1 below). In sharp contrast, C∗-
algebras are much more rigid: there, all morphisms are automatically contractive,
all isomorphisms are isometric and C∗-algebras have unique C∗-norms. As illus-
trated below, operator space theory has opened the door to a massive transfer of
technology coming from Banach space theory. This process (the “quantization”
of Banach space theory, according to the terminology in [E]) is bound to find
applications for Banach spaces too. Up to now however, this has mostly benefit-
ted operator algebra theory by leading to the solutions of some old problems (for
instance, the Halmos similarity problem for polynomially bounded operators, see
Example 2.1) while opening broad new directions of research, making many points
of contact with other fields.

The main motivation for operator space theory is roughly this: very often,
a C∗-algebra A comes equipped with a distinguished system of generators, some-
times finite. Call E the linear span of these generators. Then, while the normed
space structure of E reveals little about A, it turns out that the operator space
structure of E carries a lot of information about A, and the specific morphisms
of o.s. theory allow to keep track of the correspondence E ↔ A. However, many
constructions which are natural within operator spaces (such as duality or inter-
polation) do not make sense for C∗-algebras, yet the systematic investigation of
properties of E leads to a “new” frame of mind, say a new intuition which ulti-
mately can be applied to A. A good illustration of the fruitfulness of this approach
is furnished by the main result in [JP]: by producing an uncountable collection
of finite dimensional operator spaces (Ei) which are mutually separated, i.e. such
that inf{dcb(Ei, Ej) | i 6= j} > 1, one obtains as a corollary that the tensor prod-
uct B(`2)⊗B(`2) admits more than one C∗-norm, thus answering a long standing
open question (see §1.10). This is a good case study: an investigation that the
“new ideology” would surely pursue for its own sake (whether the set of finite
dimensional operator spaces is separable), for which the best estimates turn out
to depend on deep results of number theory (“Ramanujan graphs”) and which
happens to lead to the solution of a well known C∗-algebraic problem, a priori not
involving operator spaces. Of course, it is the firm belief that more situations like
this one will come up which keeps the field blooming.
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Much of the research from the intensive development of the last ten years is
surveyed below. However, we found the directions currently being explored too
diverse to be all duly recorded here, for lack of space. For instance, the reader
should consult other sources for an account of Effros and Ruan’s work on quantum
groups (see [ER8]) and Ruan’s work on amenability and Kac algebras ([Ru3, Ru4]).

Notation. We denote by `n
2 the n-dimensional complex Hilbert space. The space

B(`n
2 ) can be identified with the space Mn of all n × n matrices with complex

entries. Let H1,H2 be two Hilbert spaces. We denote by H1⊗2H2 their Hilbertian
tensor product. We denote by B(H1,H2) the space of all bounded operators
T : H1 → H2, equipped with its usual norm. When H1 = H2 = H we denote
it simply by B(H). The same notation is used below when H1,H2 or H are
Banach spaces. When T has ‖T‖ ≤ 1, we call it “contractive” and refer to it as “a
contraction”. Given two vector spaces V1, V2, we denote by V1⊗V2 their algebraic
tensor product. All the vector spaces considered here are over the complex scalars.
We will denote by H the complex conjugate of a (complex) Hilbert space H and by
h → h the canonical antilinear isometry from H to H. We will use the abbreviation
o.s. either for “operator space” or for “operator spaces” depending on the context.

1.1 The “norm” of an operator space. Complete boundedness

Let E ⊂ B(H) be an operator space. Then Mn⊗E can be identified with the space
of all n × n matrices with entries in E, which we will denote by Mn(E). Clearly
Mn(E) can be viewed as an operator space naturally embedded into B(Hn), where
Hn = H ⊕ · · · ⊕ H (n times). Let us denote by ‖ ‖n the norm of Mn(E) (i.e.
the norm induced by B(Hn)). Of course, when n = 1, we recover the ordinary
norm of E. We have a natural embedding Mn(E) → Mn+1(E) taking x to ( x 0

0 0 ) ,
with which we can view Mn(E) as included in Mn+1(E), and ‖ ‖n as induced by
‖ ‖n+1. Thus, we may consider the union

⋃
n Mn(E) as a normed space equipped

with its natural norm denoted by ‖ ‖∞ and we denote by K[E] its completion.
We also denote K0 =

⋃
Mn. Our notation here is motivated by the fact that if

E = C, the completion of K0 =
⋃

Mn coincides isometrically with the C∗-algebra
K of all compact operators on the Hilbert space `2. It is easy to check that the
union

⋃
n Mn(E) can be identified isometrically with K0 ⊗ E, and if we denote

by {eij} the classical system of matrix units in K, then any matrix x = (xij) in
Mn(E) can be identified with

∑n
ij=1 eij ⊗ xij ∈ K ⊗ E ⊂ K[E]. The basic idea of

o.s. theory is that the Banach space norm on E should be replaced by the sequence
of norms (‖ ‖n) on the spaces (Mn(E)), or better by the single norm ‖ ‖∞ on
the space K[E] (we sometimes refer to the latter as the o.s.-norm of E), so that the
unit ball of E should be replaced by that of K[E], as illustrated in the following.

Definition. Let E1 ⊂ B(H1) and E2 ⊂ B(H2) be operator spaces, let u : E1 →
E2 be a linear map, and let un : Mn(E1) → Mn(E2) be the mapping taking (xij)
to (u(xij)). Then u is called completely bounded (c.b. in short) if supn ‖un‖ < ∞
and we define ‖u‖cb = supn ‖un‖. Equivalently, u is c.b. iff the mappings un

extend to a single bounded map u∞ : K[E1] → K[E2] and we have ‖u‖cb = ‖u∞‖.
We denote by cb(E1, E2) the space of all c.b. maps u : E1 → E2, equipped with
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the cb-norm. Thus, the o.s. analog of the identity ‖u‖ = sup{‖u(x)‖ | ‖x‖ ≤ 1}
can be written as

‖u‖cb = sup{‖u∞(x)‖ | x ∈ K[E], ‖x‖ ≤ 1}.
Now that we have the “right” morphisms, of course we also have the isomor-

phisms: we say that two operator spaces E1, E2 are completely isomorphic (resp.
completely isometric) if there is an isomorphism u : E1 → E2 which is c.b. as well
as its inverse (resp. and moreover such that ‖u‖cb = ‖u−1‖cb = 1). We say that an
isometry u : E1 → E2 is a complete isometry if ‖u‖cb = ‖u−1

|u(E)‖cb = 1. We say
that u is a complete contraction (or is completely contractive) if ‖u‖cb ≤ 1. Note
that the preceding properties correspond respectively to the cases when u∞ is an
isomorphism, an isometry or a contraction.

Let E1, E2 be two completely isomorphic operator spaces, we define

dcb(E1, E2) = inf{‖u‖cb ‖u−1‖cb}
where the infimum runs over all possible complete isomorphisms u : E1 → E2.

This is of course analogous to the “Banach-Mazur distance” between two Banach
spaces E1, E2 defined classically by d(E1, E2) = inf{‖u‖ ‖u−1‖}, the infimum being
this time over all isomorphisms u : E1 → E2. By convention, we set d(E1, E2) = ∞
(or dcb(E1, E2) = ∞) when no (complete) isomorphism exists.

We take this opportunity to correct a slight abuse in the definition of
an operator space: consider two (isometric) embeddings j1 : E → B(H1) and
j2 : E → B(H2) of the same Banach space into some B(H). We will say (ac-
tually we rarely use this) that these are “equivalent” (or define “equivalent o.s.
structures”) if j2(j1)−1 : j1(E) → j2(E) is a complete isometry. Then, by an o.s.
structure on a Banach space B what we really mean is an equivalence class with
respect to this relation. As often, we will frequently abusively identify an equiva-
lence class with one of its representative, i.e. with a “concrete” operator subspace
E ⊂ B(H).

Consider for instance a C∗-algebra A. Then any two isometric ∗-
representations j1 : A → B(H1) and j2 : A → B(H2) are necessarily “equivalent”
in the above sense. (Recall that C∗-algebras such as A and Mn(A) have unique
C∗-norms). We will call the resulting operator space structure on A the “natural”
one, (this applies a fortiori to von Neumann algebras). Note that, throughout this
text, whenever a C∗-algebra is viewed as an o.s., it always means in the “natural”
way (unless explicitly stated otherwise).

We end this section by a brief review of the factorization properties of c.b. (or
c.p.) maps. The following statement (due to Wittstock, Haagerup and Paulsen
independently) plays a very important role throughout the theory.
Fundamental Factorization Theorem of c.b. maps. For any c.b. map
u : E1 → E2 (Ei ⊂ B(Hi), i = 1, 2) between operator spaces, there are a Hilbert
space H, a ∗-representation π : B(H1) → B(H) and operators V : H → H2

and W : H2 → H with ‖V ‖ ‖W‖ ≤ ‖u‖cb such that, for any x in E1, we have
u(x) = V π(x)W.
We say that u : E1 → E2 is completely positive (c.p. in short) if for any n and
any x in Mn(E1)∩Mn(B(H1))+ we have un(x) ∈ Mn(E2)∩Mn(B(H2))+. (Here
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Mn(B(H))+ denotes the positive cone of the C∗-algebra Mn(B(H)).) Actually,
c.p. maps are of interest only when E1 is a C∗-algebra or an operator system.
When, say, E1 is a C∗-algebra, E2 = B(H2), then u is c.p. iff the above fac-
torization actually holds with V = W ∗ (Stinespring). In that case, it is known
(Hadwin-Wittstock) that a map u : E1 → B(H2) is c.b. iff it is a linear combi-
nation of c.p. maps. Moreover, when E2 = B(H2), any c.b. map u : E1 → E2,
defined on an arbitrary o.s. E1 ⊂ B(H1), extends with the same c.b. norm to
the whole of B(H1). This property of B(H) plays the same role for o.s. as the
Hahn-Banach extension theorem for Banach spaces. The o.s. which possess this
extension property (like E2 = B(H2) above) are called injective, they are all of
the form E = pAq, where A is an injective C∗-algebra and p, q are two projections
in A ([Ru2]), moreover (R. Smith, unpublished) when E is finite dimensional, A
also can be chosen finite dimensional. In the isomorphic theory of Banach spaces,
the separable injectivity of c0 is classical (Sobczyk), and Zippin proved the deep
fact that this characterizes c0 up to isomorphism; the analogous o.s. questions are
studied in [Ro]. Of course, there is a parallel notion of projective o.s. in terms of
lifting property, see [B2, ER9] for more on this theme.

We refer the reader to [P1] for more information and for precise references on
c.b. maps. See the last chapter in [Pi7] for the notion of p-complete boundedness
in the case when H1, H2 are replaced by two Banach spaces; see also [LM1] for the
multilinear case.

1.2 Minimal tensor product. Examples

Let E1 ⊂ B(H1) and E2 ⊂ B(H2) be two operator spaces. There is an obvious
embedding j : E1⊗E2 → B(H1⊗2H2) characterized by the identity j(x1⊗x2)(h1⊗
h2) = x1(h1) ⊗ x2(h2). We denote by E1 ⊗min E2 the completion of E1 ⊗ E2 for
the norm x → ‖j(x)‖. Clearly j extends to an isometric embedding, which allows
us to view E1 ⊗min E2 as an operator space embedded into B(H1 ⊗2 H2). This
is called the minimal (= spatial) tensor product of E1 and E2. For example, let
E ⊂ B(H) be an operator space. Then Mn⊗minE can be identified with the space
Mn(E), and K[E] can be identified isometrically with K ⊗min E. Thus, for any
linear map u : E1 → E2, we have ‖u‖cb = ‖I ⊗ u : K ⊗min E1 → K⊗min E2‖ =
‖I ⊗ u : K ⊗min E1 → K⊗min E2‖cb. More generally, it can be shown that, for
any operator space F ⊂ B(K) (K Hilbert), we have ‖IF ⊗ u : F ⊗min E1 →
F ⊗min E2‖ ≤ ‖u‖cb. Consequently, if v : F1 → F2 is another c.b. map between
operator spaces, we have ‖v⊗u : F1⊗min E1 → F2⊗min E2‖cb ≤ ‖v‖cb‖u‖cb. Thus
c.b. maps can also be characterized as the ones which “tensorize” with respect to
the minimal tensor product.

Remark. When E1, E2 are C∗-subalgebras in B(H1) and B(H2), then E1⊗min E2

is a C∗-subalgebra of B(H1 ⊗2 H2). By a classical theorem of Takesaki (see also
§1.10 below), the norm ‖ ‖min is the smallest C∗-norm on the tensor product of
two C∗-algebras (and it does not depend on the particular realizations Ei ⊂ B(Hi),
i = 1, 2). For Banach spaces, Grothendieck [G] showed that the injective tensor
product of two Banach spaces corresponds to the smallest reasonable tensor norm
on B1⊗B2. The analogous result for operator spaces is proved in [BP1]: E1⊗minE2
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is indeed characterized by a certain minimality among the “reasonable” operator
space structures on E1 ⊗ E2.

Just like in the C∗-case, the minimal tensor product is “injective” in the o.s.
category: this means that, given o.s. E1, E2, if Fi ⊂ Ei (i = 1, 2) are further closed
subspaces, then F1⊗min F2 can be identified with a closed subspace of E1⊗min E2.
Moreover, this tensor product is “commutative” (this means that E1⊗minE2 can be
identified with E2⊗min E1) and “associative” (this means that given Ei i = 1, 2, 3,
we have

(E1 ⊗min E2)⊗min E3 ' E1 ⊗min (E2 ⊗min E3)).

We will meet below several other tensor products enjoying these properties.

1.3 Ruan’s theorem. Examples

It is customary to describe a Banach space before completion, simply as a vector
space equipped with a norm. Ruan’s theorem allows to take a similar viewpoint
for operator spaces. Let V be a (complex) vector space and, for each n ≥ 1, let
‖ ‖n be a norm on Mn(V ) = Mn ⊗ V . For convenience, if x ∈ Mn(V ), a, b ∈ Mn

we denote by a · x · b the “matrix product” defined in the obvious way. Consider
the following two properties:

(R1) ∀n ≥ 1 ∀a, b ∈ Mn ∀x ∈ Mn(V ) ‖a · x · b‖n ≤ ‖a‖Mn‖x‖n‖b‖Mn

(R2) ∀n,m ≥ 1∀x ∈ Mn(V )∀y ∈ Mm(V )
∥∥∥∥
(

x 0
0 y

)∥∥∥∥
n+m

= max{‖x‖n, ‖y‖m}.

It is easy to check that the sequence of norms associated to any operator space
structure on V does satisfy this. We can now state Ruan’s theorem, which is
precisely the converse (a simplified proof appears in [ER5]).

Theorem ([Ru1]). Let V be a complex vector space equipped with a sequence
of norms (‖ ‖n)n≥1, where, for each n ≥ 1, ‖ ‖n is a norm on Mn(V ).
Then this sequence of norms satisfies (R1) and (R2) iff there is a Hilbert space
H and a linear embedding j : V → B(H) such that, for each n ≥ 1, the map
IMn

⊗ j : Mn(V ) → Mn(B(H)) is isometric, in other words, iff the sequence
(‖ ‖n) “comes” from an operator space structure on V .

Some examples. Let C ⊂ B(`2) and R ⊂ B(`2) be the “column” and “row”
Hilbert spaces defined by C = span[ei1 | i ≥ 1] and R = span[e1j | j ≥ 1]. Then,
we have (completely isometrically) K ' C ⊗min R. Moreover, the o.s.-norm for
these two examples can be easily computed as follows: for any finitely supported
sequence (ai)i≥1 of elements of K we have:

∥∥∥
∑

ai ⊗ ei1

∥∥∥
K[C]

=
∥∥∥
∑

a∗i ai

∥∥∥
1/2

K
and

∥∥∥
∑

aj ⊗ e1j

∥∥∥
K[R]

=
∥∥∥
∑

aja
∗
j

∥∥∥
1/2

K
.

Thus even though these spaces are clearly isometric (as Banach spaces) to `2, their
(o.s. sense)-norm is quite different, and actually it can be shown that R and C
are not completely isomorphic. More precisely, let Cn = span[ei1 | 1 ≤ i ≤ n]
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and Rn = span[e1j | 1 ≤ j ≤ n]. Then it can be shown that dcb(Rn, Cn) = n,
which is the maximum value of dcb(E,F ) over all pairs E,F of n-dimensional op-
erator spaces (see §1.9 below). Thus Rn, Cn (although they are mutually isometric
and isometric to `n

2 ) are “extremally” far apart as operator spaces. Some simple
questions about them can be quite tricky. For instance, consider the direct sum
R ⊕ C ⊂ B(`2 ⊕ `2) (with the induced o.s. structure) and an operator subspace
E ⊂ R ⊕ C such that there is a c.b. projection from R ⊕ C onto E. By [Oi], we
have then E ' E1 ⊕ E2 (completely isomorphically) with E1 ⊂ R and E2 ⊂ C.

Another source of basic but very useful examples is given by the operator
spaces min(B) and max(B) associated to a given Banach space B (cf. [BP1, P3]).
These can be described as follows: consider the set of all norms α on K0 ⊗ B
satisfying (R1) and (R2) and respecting the norm of B, i.e. such that α(e11⊗x) =
‖x‖ ∀x ∈ B. Then this set admits a minimal element αmin and a maximal one
αmax, corresponding to the two o.s. min(B) and max(B). If B is given to us
as an operator space, then min(B) or max(B) is the same Banach space but in
general a different o.s. The space min(B) can be realized completely isometrically
by any isometric embedding of B into a commutative C∗-algebra. While the spaces
min(B) are rather simple, they explain why operator spaces are viewed as “non-
commutative Banach spaces”.

1.4 Duality. Quotient. Interpolation

Let E ⊂ B(H) be an operator space. The dual E∗ is a quotient of B(H)∗, so,
a priori, it does not seem to be an o.s. However, it admits a very fruitful o.s.
structure introduced (independently) in [BP1] and [ER3] as follows.

Let F be another operator space and let V = cb(E, F ). By identifying Mn(V )
with cb(E,Mn(F )) equipped with its c.b. norm, we obtain a sequence of norms
satisfying (R1) and (R2). Therefore there is a specific operator space structure
on cb(E,F ) for which the identification Mn(cb(E, F )) = cb(E, Mn(F )) becomes
isometric for all n ≥ 1. We call this the “natural” o.s. structure on cb(E, F ). In
particular, when F = C we obtain an operator space structure on E∗ = cb(E,C)
(it is easy to see that for any linear form ξ ∈ E∗ we have ‖ξ‖ = ‖ξ‖cb and as
mentioned above there is only one reasonable way to equip C with an operator
space structure). Thus, the dual Banach space E∗ is now equipped with an o.s.
structure which we call the “dual o.s. structure” (the resulting o.s. is called the
standard dual in [BP1]). It is characterized by the property that for any o.s. F ,
the natural mapping u → ũ from F ⊗ E∗ (resp. E∗ ⊗ F ) into cb(E, F ) defines an
isometry from F ⊗min E∗ (resp. E∗ ⊗min F ) into cb(E, F ). When dim(F ) < ∞,
this is onto, whence an isometric identity F ⊗min E∗ = cb(E,F )(= E∗ ⊗min F ).
Note that, for any o.s. F and any u : E → F we have ‖u‖cb = ‖u∗‖cb. Moreover,
the inclusion E ⊂ E∗∗ = (E∗)∗ is completely isometric ([B2]) and E is the o.s.
dual of an o.s. iff it admits a completely isometric “realization” as a weak-∗ closed
subspace of B(H) (cf. [ER2, B2]). To illustrate this with some examples, we
have completely isometric identities (cf. [BP1, ER4, B2]) R∗ ' C, C∗ ' R and
min(B)∗ ' max(B∗), max(B)∗ ' min(B∗) for any Banach space B.

Let M be a von Neumann algebra with predual M∗. The “natural” o.s. struc-
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ture just defined on M∗ induces a fortiori an o.s. structure on M∗ ⊂ M∗ which,
once more, we call the “natural” one. At this point, a problem of “coherence”
of the various duals of M∗ arises, but (fortunately) Blecher [B2] showed that ev-
erything “ticks”: if we equip M∗ with the o.s. structure just defined, its o.s. dual
coincides completely isometrically with M equipped with its natural o.s. structure.
In sharp contrast, this is no longer true for general operator spaces: Le Merdy (cf.
[LM1]) has shown that there is an o.s. structure on B(H)∗ which is not the dual
of any o.s. structure on B(H).

The principle we just used to define the o.s. duality is valid in numerous other
situations, such as quotients ([Ru1]) or interpolation spaces [Pi1]. Let E2 ⊂ E1 ⊂
B(H) be operator spaces and let ‖ ‖n be the norm on Mn(E1/E2) naturally
associated to Mn(E1)/Mn(E2) equipped with the quotient norm. Again it turns
out that these norms verify (R1) and (R2), whence they yield an o.s. structure
on E1/E2, characterized by the isometric identity K[E1/E2] = K[E1]/K[E2]. We
thus obtain a notion of quotient of operator spaces satisfying the usual rules of
the Banach space duality, namely (E1/E2)∗ ' E⊥

2 and E∗
2 ' E∗

1/E⊥
2 (completely

isometrically). We will say that a surjective linear map u : E → F is a complete
surjection (resp. a complete metric surjection) if the associated map E/ker(u) → F
is a complete (resp. a completely isometric) isomorphism. Equivalently, that means
that u∗ is a completely isomorphic (resp. completely isometric) embedding of F ∗

into E∗.
We now turn briefly to the complex interpolation method, introduced for Ba-

nach spaces around 1960 by A. Calderón and J. L. Lions independently, cf. [BL].
Assume given a pair of operator spaces E0, E1 together with continuous linear
injections E0 → X , E1 → X into a topological vector space (actually a Banach
space if we wish). Then, for any 0 < θ < 1, the complex interpolation method
produces an “intermediate Banach space” (E0, E1)θ. Then again Ruan’s theorem
allows us to equip (E0, E1)θ with an o.s. structure characterized by the isometric
identity K[(E0, E1)θ] = (K[E0],K[E1])θ. The fact that the functor of interpola-
tion essentially commutes with duality, which is well known for Banach spaces,
is extended to o.s. in [Pi1], but the proof requires rather delicate factorization
properties of operator valued analytic functions.

1.5 Projective tensor product. Approximation property (OAP)

Since the minimal tensor product is the o.s. analog of Grothendieck’s injective
tensor product, it is tempting to look for the o.s. analog of the projective tensor
product. This question is treated independently in [BP1] and [ER3]. Effros and
Ruan pursued further: they introduced analogs of Grothendieck’s approximation
property ([ER2]), of integral or nuclear operators, of the Dvoretzky-Rogers theo-
rem (characterizing finite dimensional spaces by the coincidence of unconditional
and absolute convergence of series) and more. Their program meets several in-
teresting obstacles (due mainly to the lack of local reflexivity, see §1.11 below),
but roughly goes through (see [ER6, ER7]). For related work, see also [EWi] on
“non-commutative convexity” and a paper by E. Effros and C. Webster in [Ka]
devoted to “Operator analogues of locally convex spaces”.
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For lack of space, we refer to the original papers for precise definitions, and merely
summarize the main results. Let us denote by E1⊗ ∧E2 the o.s. version of
the projective tensor product. Note that the norm of this o.s. is different from
Grothendieck’s projective tensor norm ‖ ‖∧ and the Banach space projective
tensor product E1⊗̂E2 is not the underlying Banach space to E1⊗ ∧E2. Never-
theless, it is shown in [BP1] that, in some sense, this corresponds to the largest
o.s.-norm on K0 ⊗ E1 ⊗ E2.
The projective operator space tensor product E1⊗ ∧E2 is characterized by the
isometric (actually completely isometric) identities (E1⊗ ∧E2)∗ ' cb(E1, E

∗
2 ) '

cb(E2, E
∗
1 ). Moreover, the natural map E1⊗ ∧E2 → E1 ⊗min E2 is a complete

contraction. The projective tensor product is commutative and associative, but in
general not injective. However, it is, of course “projective”, i.e. if u1 : E1 → F1 and
u2 : E2 → F2 are complete metric surjections then u1⊗u2 also defines a complete
metric surjection from E1⊗ ∧E2 onto F1⊗ ∧F2. Another important property from
[ER2] is as follows: let M, N be two von Neumann algebras with preduals M∗, N∗.
Let M⊗N denote their von Neumann algebra tensor product. Then we have a
completely isometric identity (M⊗N)∗ ' M∗⊗ ∧N∗. This is a non-commutative
analog of Grothendieck’s classical isometric identity L1(µ′)⊗̂L1(µ′′) ' L1(µ′×µ′′)
relative to a pair of measure spaces (Ω′, µ′), (Ω′′, µ′′).

Following [ER2], an o.s. E is said to have the OAP if there is a net of finite
rank (c.b.) maps ui : E → E such that the net I ⊗ ui converges pointwise to the
identity on K[E]. This is the o.s. analog of Grothendieck’s approximation property
(AP) for Banach spaces. When the net (ui) is bounded in cb(E, E), we say that E
has the CBAP (this is analogous to the BAP for Banach spaces). To quote a sample
result from [ER2]: E has the OAP iff the natural map E∗⊗ ∧E → E∗ ⊗min E is
injective. The class of groups G for which the reduced C∗-algebra of G has the
OAP is studied in [HK] (see also §9 in [Ki1]). The ideas revolving around the OAP
or the CBAP are likely to lead to a simpler and more conceptual proof of the main
result of [Sz], but unfortunately this challenge has resisted all attempts so far.

1.6 The Haagerup tensor product

Curiously, the category of operator spaces admits a tensor product which (at least
in the author’s opinion) has no true counterpart for Banach spaces, namely the
Haagerup tensor product introduced by Effros and Kishimoto (inspired by some
unpublished work of Haagerup). But, while these authors originally considered
only the resulting Banach space, it is the operator space case which turned out to
be the most fruitful, through the fundamental works of Christensen and Sinclair
[CS1] (see also [CS2]) and its extension by Paulsen and Smith [PS]. See also [BS]
for the “weak-∗ Haagerup tensor product” of dual o.s.

Let E1, E2 be two operator spaces. Consider xi ∈ K⊗Ei (i = 1, 2). We denote
by (x1, x2) → x1¯x2 the bilinear form from K⊗E1×K⊗E2 to K⊗(E1⊗E2) defined
on elementary tensors by setting (k1⊗ e1)¯ (k2⊗ e2) = (k1k2)⊗ (e1⊗ e2). We set
αi(xi) = ‖xi‖K⊗minEi (i = 1, 2). Then, for any x ∈ K⊗E1⊗E2, we define αh(x) =
inf{α1(x1)α2(x2)}, where the infimum runs over all possible decompositions of x
of the form x = x1 ¯ x2 with x1 ∈ K ⊗ E1, x2 ∈ K ⊗ E2. Once again it can be
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shown (by Ruan’s theorem) that this defines an o.s. structure on E1⊗E2, so that
we obtain, after completion, an operator space denoted by E1 ⊗h E2 and called
the Haagerup tensor product.

This definition can be extended to an arbitrary number of factors
E1, E2, . . . , EN and the result is denoted by E1 ⊗h · · · ⊗h EN . In [CES],
the following very useful “realization” of E1⊗h · · · ⊗h EN is presented: assume Ei

given as a subspace of a C∗-algebra Ai, then E1 ⊗h · · · ⊗h EN can be identified
with a subspace of the (C∗-algebraic) “free product” A1 ∗ A2 ∗ · · · ∗ AN . More
precisely the linear mapping j : E1 ⊗h · · · ⊗h EN → A1 ∗ · · · ∗ AN defined by
j(x1 ⊗ · · · ⊗ xN ) = x1x2 . . . xN is a completely isometric embedding. This is
closely related to the fundamental factorization of c.b. multilinear maps, obtained
in [CS1] for C∗-algebras and in [PS] in full generality, as follows:
An N -linear map ϕ : E1×E2× · · · ×EN → B(H) defines a complete contraction
from E1 ⊗h · · · ⊗h EN to B(H) iff there are a Hilbert space Ĥ, completely con-
tractive maps σi : Ei → B(Ĥ) and operators V : Ĥ → H and W : H → Ĥ with
‖V ‖ ‖W‖ ≤ 1 such that ϕ(x1, . . . , xN ) = V σ1(x1) . . . σN (xN )W.

The preceding result has many important applications notably to the
Hochschild cohomology of operator algebras (see [E] [CES] and [SSm]).

The Haagerup tensor product enjoys unusually nice properties: it is associa-
tive, and both injective and projective (which is quite rare!), but it is not commu-
tative: the spaces E1⊗h E2 and E2⊗h E1 can be very different. However, there is a
symmetrized version of the Haagerup tensor product, introduced recently in [OiP]
and denoted there by E1 ⊗µ E2, which has proved fruitful. For instance, in the
situation of the preceding theorem, the paper [OiP] contains a characterization (up
to a numerical factor when N > 2) of the N -linear maps ϕ : E1×· · ·×EN → B(H)
which admit a factorization as above but with the additional condition that the
ranges of σ1, . . . , σN mutually commute.

Another very striking property of the Haagerup tensor product is its self-
duality (which explains of course its being both injective and projective), for which
we refer to [ER4] (according to [ER4], the first point below is due to Blecher):
Let E1, E2 be operator spaces. Then if E1 and E2 are finite dimensional we have
(E1 ⊗h E2)∗ ' E∗

1 ⊗h E∗
2 completely isometrically. Moreover, in the general case

we have a completely isometric embedding E∗
1 ⊗h E∗

2 ⊂ (E1 ⊗h E2)∗.
Here are sample results from [ER4] or [B1]. For every operator space E, we

have a completely isometric isomorphism Mn(E) ' Cn⊗h E⊗h Rn taking (xij) to∑
ei1 ⊗ xij ⊗ e1j . In particular Cn ⊗h Rn ' Mn and C ⊗h R ' K, R⊗h C ' K∗.

If H is an arbitrary Hilbert space, let Hr and Hc be the o.s. defined by setting
Hr = B(H,C) and Hc = B(C, H). Then if K is another Hilbert space, we have
(completely isometrically) Hc ⊗h Kc = (H ⊗2 K)c and Hr ⊗h Kr = (H ⊗2 K)r.

1.7 Characterizations of operator algebras and operator modules

In the Banach algebra literature, an operator algebra is defined as a closed subal-
gebra of B(H), for some Hilbert space H, or equivalently a closed subalgebra of
a C∗-algebra C ⊂ B(H). When C is commutative, A is called a uniform algebra.
Now consider an operator algebra A ⊂ B(H) and let I ⊂ A be a closed (two-
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sided) ideal. Then, curiously, the quotient A/I is still an operator algebra (due to
B. Cole for uniform algebras and to G. Lumer and A. Bernard in general): there
is (for some suitable H) an isometric homomorphism j : A/I → B(H). In the
70’s several authors (Craw, Davie, Varopoulos, Charpentier, Tonge, Carne) tried
to characterize operator algebras by certain continuity properties of the product
map p : A⊗A → A. Although this chain of thoughts lead to a negative result (see
[Ca]), it turns out that, in the operator space framework, the same things work!
More precisely:

Theorem ([BRS]). Let A be a Banach algebra with a normalized unit element
and equipped with an o.s. structure. Then the product map p : A⊗A → A extends
completely contractively to A ⊗h A iff there exists, for H suitable, a unital and
completely isometric homomorphism j : A → B(H). Equivalently, this holds iff
the natural matrix product f.g of any two elements f, g in K[A] satisfies ‖f.g‖ ≤
‖f‖‖g‖. In other words, A is an operator algebra (completely isometrically) iff
K[A] is a Banach algebra.

Of course it is natural to wonder whether the mere complete boundedness
of the product p : A ⊗h A → A characterizes operator algebras up to complete
isomorphism. This resisted for a few years, until Blecher [B3] proved that indeed
this is true. The original proofs of [BRS, B3] did not use the earlier Cole-Lumer-
Bernard results (and actually obtained them as corollaries), but it is also possible
to go in the converse direction, with some extra work (see [Pi5]). We refer the
reader to [LM2] for an extension of the Cole-Lumer-Bernard theorem to quotients
of subalgebras of B(X) when X is a Banach space, and to [BLM] and [LM5]
for a detailed study of the operator algebra structures on `p, or the Schatten p-
classes. See also [LM6] for a version of the above theorem adapted to dual operator
algebras.

Operator spaces which are also modules over an operator algebra (in other
words “operator modules”) can also be characterized in a similar way (see [CES]
and [ER1], see also [Ma] for dual modules) and suitably modified versions of the
Haagerup tensor product are available for them. Operator modules play a cen-
tral rôle in [BMP] where the foundations of a Morita theory for non self-adjoint
operator algebras are laid. There Blecher, Muhly and Paulsen show that opera-
tor modules are an appropriate “metric” context for the C∗-algebraic theory of
strong Morita equivalence, and the related theory of C∗-modules. For example,
Rieffel’s C∗-module tensor product is exactly the Haagerup module tensor product
of the C∗-modules with their natural operator space structures. See [BMP], [B4],
Blecher’s survey in [Ka] and references contained therein for more on this.

1.8 The operator Hilbert space OH and non-commutative Lp-spaces

Let us say that an operator space is Hilbertian if the underlying Banach space is
isometric to a Hilbert space. Examples of this are in abundance, but apparently
none of them is self-dual, which induces one to believe that operator spaces do not
admit a true analog of Hilbert spaces. Therefore, the next result which contradicts
this impression, comes somewhat as a surprise. (Notation: if E is an operator
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space, say E ⊂ B(H), then E is the complex conjugate of E equipped with the
o.s. structure corresponding to the embedding E ⊂ B(H) = B(H).)

Theorem ([Pi1]). Let H be an arbitrary Hilbert space. There exists, for a suitable
H, a Hilbertian operator space EH ⊂ B(H) such that the canonical identification
(derived from the scalar product) E∗

H → EH is completely isometric. Moreover,
the space EH is unique up to complete isometry. Let (Ti)i∈I be an orthonor-
mal basis in EH . Then, for any finitely supported family (ai)i∈I in K, we have

‖∑
ai ⊗ Ti‖K[EH ] = ‖∑

ai ⊗ ai‖1/2
min.

When H = `2, we denote the space EH by OH and we call it the “operator
Hilbert space”. Similarly, we denote it by OHn when H = `n

2 and by OH(I)
when H = `2(I). The preceding result suggests to systematically explore all the
situations of Banach space theory where Hilbert space plays a central rôle (there
are many!) and to investigate their analog for operator spaces. This program
is pursued in [Pi1, Pi6]. The space OH has rather striking complex interpola-
tion properties (see [Pi1]). For instance, we have completely isometric identities
(min(`2), max(`2)) 1

2
' OH and (R, C) 1

2
' OH. (In the latter case, we should

mention that the pair (R, C) is viewed as “compatible” using the transposition
map x → tx from R to C which allows to view both R and C as continuously
injected into X = C.) Concerning the Haagerup tensor product, for any sets I
and J , we have a completely isometric identity OH(I)⊗h OH(J) ' OH(I × J).

Finally, we should mention that OH is “homogeneous” (an o.s. E is called
homogeneous if any linear map u : E → E satisfies ‖u‖ = ‖u‖cb). While OH is
unique, the class of homogeneous Hilbertian operator spaces (which also includes
R, C, min(`2) and max(`2)) is very rich and provides a very fruitful source of
examples (see e.g. [Pi1, Pi6, Oi, Z]).

Since operator spaces behave well under interpolation (see §1.4), it is natural
to investigate what happens to Lp-spaces, either scalar or vector valued. While
in classical Lebesgue-Bochner theory, the Banach space valued Lp-spaces have
been around for a long time, in the non-commutative case there seemed to be no
systematic analogous “vector valued” theory. It turns out that operator spaces
provide apparently the “right” framework for such a theory and a large part of
[Pi2] tries to demonstrate it. Note however that the space of “values” E has to be
an operator space, (not “only” a Banach space) and moreover we need to assume
M hyperfinite for this theory to run “smoothly”.

Many natural questions arise when one tries to “transfer” the Banach space
theory of Lp-spaces to the o.s. framework. For instance, it is open whether OH
embeds completely isomorphically into the predual of a von Neumann algebra
(i.e. into a so-called “non-commutative L1-space”). The natural candidates (ei-
ther Gaussian variables, Rademacher functions or free semi-circular systems in
Voiculescu’s sense) span in L1 (commutative or not) an operator space denoted by
R + C in [Pi1, Pi2] and extensively studied there. Note that, in sharp contrast to
the Banach analogue, the o.s. spanned by the Rademacher functions in Lp([0, 1])
(meaning classical Lp with the “interpolated” o.s. structure) depends on p and it
coincides with OH only when p = 2. Its dependence on p is entirely elucidated by
F. Lust-Piquard’s non-commutative Khintchine inequalities (see [Pi2]).
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In another direction, very recently Marius Junge found a notion of “non-
commutative p-stable process”, which allowed him to prove that if 1 < p < 2
any space Lp(ϕ) (relative to a von Neumann algebra M equipped with a faithful
normal semi-finite trace ϕ) embeds isometrically into a non-commutative L1-space.
This striking result was clearly inspired by o.s. considerations, even though the
completely isomorphic version is still unclear.

1.9 Local theory. Exactness. Finite dimensional operator spaces

Let E, F be two Banach (resp. operator) spaces. Recall that their “distance”
d(E, F ) (resp. dcb(E,F )) has been defined in §1.1. These are not really distances
in the usual sense, but we can replace them if we wish by δ(E,F ) = Log d(E, F )
(resp. δcb(E, F ) = Log dcb(E, F )). Still however it is customary to use d and
dcb instead of δ and δcb. Let n ≥ 1. Let OSn (resp. Bn) be the set of all n-
dimensional operator (resp. Banach) spaces, in which we agree to identify two
spaces whenever they are completely isometric (resp. isometric). Then, it is an
exercise to check that OSn (resp. Bn) equipped with the distance δcb (resp. δ) is
a complete metric space. In the Banach (= normed) space case, (Bn, δ) is even
compact , this is the celebrated “Banach-Mazur compactum”! However, (OSn, δcb)
is not compact, and furthermore (in answer to a question of Kirchberg, see [Ki2]) it
was proved in [JP] that it is not separable if n > 2 (n = 2 remains open). The paper
[JP] actually gives three different approaches to this fact. The best asymptotic
estimate uses Lubotzky-Phillips-Sarnak’s work (see [Lu]) on “Ramanujan graphs”.
(This improvement over our two other approaches was pointed out by A. Valette,
see his paper [Va] for more on this theme.) To state this estimate precisely, we
need the following notation: let δ(n) be the infimum of the numbers ε > 0 such
that (OSn, δcb) admits a countable Log(ε)-net. Then, the non-separability of OS3

means that δ(3) > 1. Moreover, if n = p + 1 with p prime ≥ 3 (or p equal to a
prime power, see [Va]), we have δ(n) ≥ n(2

√
n− 1)−1 ≥ √

n/2. On the other hand
we have δ(n) ≤ √

n for all n. Indeed, it can be shown (see [Pi1]) that for any E
in OSn we have dcb(E, OHn) ≤ √

n, from which δ(n) ≤ √
n follows trivially. Note

that the space OHn appears thus as a “center” for (OSn, δcb), in analogy with `n
2

in the Banach space case. As a consequence we can estimate the “diameter” of
OSn: for any pair (E,F ) in OSn, we have dcb(E, F ) ≤ dcb(E, OHn)dcb(OHn, F ) ≤
n. These estimates are optimal since dcb(Rn, OHn) = dcb(Cn, OHn) = n1/2 and
dcb(Cn, Rn) = n. As in the “local theory” of Banach spaces (see e.g. [DJT]),
these ideas can be used to study an infinite dimensional C∗-algebra through the
collection of its finite dimensional subspaces. To illustrate this, let X be an o.s.
For any (finite dimensional) operator space E, we define dSX(E) = inf{dcb(E, F )}
where the infimum runs over all the subspaces F ⊂ X isomorphic to E (and
dSX(E) = ∞, say, if there is no such F ). In the Banach space case, if we take
X = c0 and replace dcb by d, then the resulting number is equal to 1 for any E in⋃

n Bn. In sharp contrast, there is no separable o.s. X such that dSX(E) = 1 for
any E in OS3, since this would contradict the non-separability of OS3.

Various choices of X lead to interesting estimates of the “growth” of dSX(E).
For instance, taking X = K we find, for any E in OSn, dSK(E) ≤ √

n (see Th.
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9.6 in [Pi1]), but on the other hand if E = `n
1 (= o.s. dual of `n

∞) equipped with
its “natural” structure, we have dSK(`n

1 ) ≥ an where an = n(2
√

n− 1)−1/2 ≥√
n/2. We also have n1/4 ≥ dSK(OHn) ≥ (an)1/2, for all n > 1. Inspired by

Kirchberg’s results on the C∗-case (cf. [Ki1, Wa]), we study in [Pi4] the notion of
“exact operator space”: an o.s. Y ⊂ B(H) is called exact if sup{dSK(E) | E ⊂
Y, dim(E) < ∞} < ∞. A C∗-algebra is exact in Kirchberg’s sense iff it is exact in
the preceding sense, so the reader can use this as the definition of an “exact C∗-
algebra” (but actually Kirchberg proved that a C∗-algebra is exact iff it embeds
into a nuclear one, see [Ki1]). Exact o.s. have surprisingly strong properties:
if E,F are both exact, then any c.b. map u : E → F ∗ factors boundedly through
a Hilbert space ([JP]). Although this is reminiscent of Grothendieck’s classical
factorization theorem, actually such a result has no Banach space counterpart!

Another very useful choice is X = C∗(F∞) the “full” C∗-algebra of the free
group on countably infinitely many generators; for lack of space, we refer the
reader to [JP] for more information on dSX(.) in this case.

1.10 Application to tensor products of C∗C∗C∗-algebras

Let A1, A2 be C∗-algebras. By classical results due respectively to Takesaki (1958)
and Guichardet (1965), there is a minimal C∗-norm and a maximal one, denoted
respectively by ‖ ‖min and ‖ ‖max on A1⊗A2. The resulting C∗-algebras (after
completion) are denoted respectively by A1 ⊗min A2 and A1 ⊗max A2. Thus, the
tensor product A1 ⊗ A2 admits a unique C∗-norm iff A1 ⊗min A2 = A1 ⊗max A2.
(Note: this holds for all A2 iff A1 is nuclear, or iff A∗∗1 is injective, see [CE] for
precise references.) Kirchberg’s work [Ki2] highlights pairs A1, A2 satisfying this
unicity. In particular, he proved this holds if A1 = B(`2) and A2 = C∗(F∞) (see
[Pi3] for a simple proof using o.s. theory). However, the results of the preceding
section imply that this does not hold when A1 = A2 = B(`2) (see [JP]), thus
answering a long standing open question. Here is a brief sketch: let (Ei)i∈I be a
family of n-dimensional operator spaces and let ui ∈ E∗

i ⊗Ei be associated to the
identity map Ii on Ei. Using the dual o.s. structure on E∗

i , we have embeddings
Ei ⊂ B(`2), E∗

i ⊂ B(`2) so that we may consider ui as an element of B(`2)⊗B(`2)
and (by definition of the o.s. structure of E∗

i ) we have ‖ui‖min = ‖Ii‖cb = 1 ∀i ∈ I.
Then, (see [JP] for a proof) if ‖ui‖max = ‖ui‖min ∀i ∈ I, the family {Ei | i ∈ I} is
necessarily separable in (OSn, δcb). Thus the non-separability of (say) OS3 (see the
preceding section) implies B(`2)⊗min B(`2) 6= B(`2)⊗max B(`2). More precisely,
let λ(n) = sup{‖u‖max} where the supremum runs over all u ∈ B(`2)⊗B(`2) with
‖u‖min = 1 and rank ≤ n. Then, the same idea (see [JP]) leads to δ(n) ≤ λ(n) ≤√

n for all n ≥ 1, hence, by the estimates of δ(n) given in §1.9, λ(n) grows like
√

n
(up to a constant factor) when n →∞.

In sharp contrast, the question whether there is a unique C∗-norm on A1⊗A2

when A1 = A2 = C∗(F∞) remains an outstanding open problem, equivalent to
a number of fundamental questions, for instance this holds iff every separable
II1-factor embeds in a (von Neumann) ultraproduct of the hyperfinite II1 factor
or equivalently iff every non-commutative L1-space is finitely representable (see
below for the definition) in the Banach space of all trace class operators on `2.
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(See the fascinating discussion at the end of [Ki2].)

Let X, Y be Banach spaces. We say that Y is finitely representable in X
if for every ε > 0 and every finite dimensional subspace E ⊂ Y there is a finite
dimensional subspace F ⊂ X such that d(E, F ) < 1 + ε. This notion was used
extensively by R. C. James in his theory of “super-reflexivity” (see e.g. [DJT]),
(but actually Grothendieck already considered it explicitly in the appendix to
his famous “Résumé”, see [G] page 108-109; his terminology was “Y a un type
métrique inférieur à celui de X”). Of course, this immediately extends to the o.s.
setting: when X, Y are o.s. we say that Y is o.s.-finitely representable in X if the
preceding property holds with dcb(E,F ) instead of d(E, F ). Equivalently, we have
dSX(E) = 1 for any finite dimensional E ⊂ Y .

1.11 Local reflexivity

In Banach space theory, the “principle of local reflexivity” says that every Banach
space B satisfies B(F,B)∗∗ = B(F, B∗∗) isometrically for any finite dimensional
(normed) space F . Consequently, B∗∗ is always finitely representable in B. This
useful principle goes back to Lindenstrauss-Rosenthal with roots in Grothendieck’s
and Schatten’s early work (see [DJT] p. 178 and references there). Similarly, an
o.s. E is called “locally reflexive” if we have cb(F,E)∗∗ = cb(F, E∗∗) isometrically
for any finite dimensional o.s. F (and when this holds for all F , it actually holds
completely isometrically). This property was “exported” first to C∗-algebra theory
by Archbold-Batty, then for operator spaces in [EH]. As the reader can guess, not
every o.s. is locally reflexive, so the “principle” now fails to be universal: as shown
in [EH], C∗(F∞) is not locally reflexive. Local reflexivity passes to subspaces (but
not to quotients) and is trivially satisfied by all reflexive o.s. (a puzzling fact since
reflexivity is a property of the underlying Banach space only!). It is known that
all nuclear C∗-algebras are locally reflexive (essentially due to Archbold-Batty, see
[EH]). More generally, by Kirchberg’s results, exactness ⇒ local reflexivity for
C∗-algebras (see [Ki1] or [Wa]), but the converse remains open. Actually, it might
be true that exact ⇒ locally reflexive for all o.s. but the converse is certainly false
since there are reflexive but non-exact o.s. (such as OH). All this shows that local
reflexivity is a rather rare property. Therefore, it came as a big surprise (at least
to the author) when, in 97, Effros, Junge and Ruan [EJR] managed to prove that
every predual of a von Neumann algebra (a fortiori the dual of any C∗-algebra) is
locally reflexive. This striking result is proved using a non standard application of
Kaplansky’s classical density theorem, together with a careful comparison of the
various notions of “integral operators” relevant to o.s. theory (see a very recent
preprint by M. Junge and C. Le Merdy for an alternate proof). Actually, [EJR]
contains a remarkable strengthening: for any von Neumann algebra M , the dual
M∗ = (M∗)∗∗ is o.s.-finitely representable in M∗. This is already nontrivial when
M = B(H)!
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2 Similarity problems

Let A,B be unital Banach algebras. By a “morphism” u : A → B, we mean a
unital homomorphism (i.e. u is a linear map satisfying u(1) = 1 and u(xy) =
u(x)u(y) for all x, y in A). Note that, since u(1) = 1, u contractive means here
‖u‖ = 1 (and of course u bounded means 1 ≤ ‖u‖ < ∞). We will be concerned
mainly with the case B = B(H) with H Hilbert. We then say that u is similar to
a contractive morphism (in short s.c.) if there is an invertible operator ξ : H → H
such that the “conjugate” morphism uξ defined by uξ(x) = ξ−1u(x)ξ is contractive.
Moreover, we denote Sim(u) = inf{‖ξ‖ ‖ξ−1‖ | ‖uξ‖ = 1}. For simplicity, we
discuss only the unital case, we denote by K1 the unitization of K and we set
K1[A] = K1 ⊗min A, so that K1[A] is a unital operator algebra whenever A is one.
We will be interested in the following.
General problem. Which unital Banach algebras A have the following similarity
property: (SP) Every bounded morphism u : A → B(H) (H being here an
arbitrary Hilbert space) is similar to a contractive one (in short s.c.).

Complete boundedness is the key modern notion behind the advances made
recently on several instances of this general problem, some of them formulated
about fifty years ago. In most cases of interest, the above problem is equivalent
to the following. When is it true that all bounded morphisms u : A → B(H) are
“automatically” completely bounded? Before stating this precisely in Theorem
2.5, we prefer to discuss some examples.

Example 2.1 (Uniform algebras). Let A be the disc algebra A(D), formed
of all bounded analytic functions f : D → C on the open unit disc D ⊂ C which
extend continuously to D, equipped with the norm ‖f‖∞ = sup{|f(z)| | z ∈ D}.
Note that the set of all polynomials is dense in A(D). Let ϕ0 ∈ A(D) be the
element such that ϕ0(z) = z. Since this algebra is singly generated (by ϕ0) a
morphism u : A(D) → B(H) is entirely determined by the single operator T =
u(ϕ0). Moreover, u is bounded iff T is “polynomially bounded” which means that
there is a constant C such that for any polynomial P we have ‖P (T )‖ ≤ C‖P‖∞,
and in addition ‖u‖ is the best possible constant C. On the other hand, by a famous
1951 inequality of von Neumann, any contraction T satisfies ‖P (T )‖ ≤ ‖P‖∞
for any P , i.e. we have polynomial boundedness with C = 1. Therefore, u is
similar to a contractive morphism iff T = u(ϕ0) is similar to a contraction, i.e.
iff there is ξ invertible such that ‖ξ−1Tξ‖ ≤ 1. Thus, the problem whether the
disc algebra satisfies (SP ) coincides with a question raised in 1970 by Halmos:
is every polynomially bounded operator T : H → H similar to a contraction?
A counterexample was recently given in [Pi8]. The original proof of polynomial
boundedness in [Pi8] was rather technical but shortly afterwards simpler proofs
have been found by Kislyakov [Kis] and Davidson-Paulsen [DP]. They lead to the
same class of examples. Since the disc algebra fails (SP), it is now conceivable that
the same is true for any proper uniform algebra, but this remains open in general
(even though the case of the polydisc algebra or the ball algebra over Cn follows
easily from the disc case).
Of course, the similarity problem for continuous semi-groups of operators (Tt)t≥0

is also quite natural, see [LM7] and the references there for more on this topic.
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Example 2.2 (C∗C∗C∗-algebras). Let A be a unital C∗-algebra. Then it is easy
to check that a morphism u : A → B(H) is contractive (i.e. has ‖u‖ = 1) iff u
is a ∗-representation (i.e. u(x∗) = u(x)∗ for all x). We then have automatically
‖u‖cb = 1. It is an outstanding conjecture of Kadison (1955) that all C∗-algebras
have (SP ). is equivalent to the (open) problem whether, for any C∗-subalgebra
A ⊂ B(H), every bounded derivation δ : A → B(H) is inner. Many partial results
(mainly due to E. Christensen and U. Haagerup) are known (see Remark 2.10
below). In particular, it is known ([C1, H]) that if a bounded morphism has a
cyclic vector (or admits a finite cyclic set), then it is similar to a ∗-representation.
However, the general case remains open (and the author doubts its validity). The
reduced C∗-algebra of the free group with countably infinitely many generators
might be a counterexample, but actually even the von Neumann algebra A =⊕

n Mn (`∞-direct sum) is not known to satisfy (SP ).

Example 2.3 (Group representations). Let G be a discrete group and let
A = `1(G) be its group algebra under the convolution product. Then A has (SP )
iff every uniformly bounded representation π : G → B(H) is unitarizable. When
this holds, we will say that “G is unitarizable”. Note that we mainly restrict below
to the discrete case, but otherwise all representations are implicitly assumed to
be continuous on G with respect to the strong operator topology on B(H). Here,
we allow non-unitary representations (= homomorphisms from G to GL(H)), and
we set |π| = sup{‖π(t)‖ | t ∈ G}. We say that π is uniformly bounded (u.b. in
short) if |π| < ∞, and we call π unitarizable if there is an invertible ξ : H → H
such that t → ξ−1π(t)ξ is a unitary representation. (Note: There is a one to
one correspondence between the bounded morphisms u : `1(G) → B(H) and the
u.b. representations π : G → B(H). An operator T is unitary iff T ∈ B(H) is
invertible and both T, T−1 are contractions. Hence u is s.c. iff π is unitarizable.)

Sz.-Nagy proved in 1947 that Z is unitarizable. Shortly afterwards (1950),
Dixmier and Day independently proved that, for any discrete (actually any lo-
cally compact) group G, amenable implies unitarizable and Dixmier [Di] asked
whether the converse also holds. This is still open in full generality. However,
in 1955, Ehrenpreis and Mautner showed that SL2(R) is not unitarizable. Since
“unitarizable” passes to quotients, it follows (implicitly) that non-commutative
free groups are not unitarizable, but very explicit constructions by many authors
(see [MP]) are now known for this, and, by induction, the same is true for any dis-
crete group containing a copy of F2 (the free group on 2 generators). This suggests
there might be a counterexample to Dixmier’s question (i.e. a unitarizable group
which is not amenable) among the Burnside groups which are the main examples
of non-amenable groups without free subgroups (see Olshanskii’s book [Ol], and
see also §5.5 in Gromov’s [Gr] for examples of infinite discrete groups with Kazh-
dan’s property T and without any free subgroup). Nevertheless, if one takes into
account the estimate in Dixmier’s argument for amenable ⇒ unitarizable, then a
converse result can be proved (see Theorem 2.11 below).

We now explain the intimate connection of the property (SP ) with dilation
theory and complete boundedness. For convenience, we first discuss the completely
contractive case. Consider a morphism u : A → B(H) on a unital operator algebra
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A ⊂ B(H). Then, since u is assumed unital, u is completely contractive (this
means ‖u‖cb = 1) iff u extends completely positively to B(H) (Arveson) or iff there
is a Hilbert space K containing H and a C∗-representation π : B(H) → B(K)
such that, for any x in A, we have u(x) = PHπ(x)|H . (One then says that π
restricted to A “dilates” u, or that u is a “compression” of it.) Moreover, the
subspace H ⊂ K is necessarily semi-invariant (in Sarason’s sense) for π(A), which
means that there is a pair of π(A)-invariant (closed) subspaces E2 ⊂ E1 ⊂ K such
that H = E1 ª E2. Thus ‖u‖cb = 1 iff u can be “dilated” to a ∗-representation.
All this is well known, see Theorem 4.8 in [Pi7] for details. For convenience, we
will use the following definition (we prefer to avoid the term “maximal algebras”
used in [BP2], which might lead to some confusion with “maximal o.s.”).

Definition 2.4. Let A ⊂ B(H) be a unital operator algebra. We say that A
satisfies condition (CC) if, for any morphism u : A → B(H) (H arbitrary Hilbert),
the implication ‖u‖ = 1 ⇒ ‖u‖cb = 1 holds.

The precise class of algebras which satisfy (CC) is not clear (see [DoP]).
However, it is satisfied by A(D), A(D2) (but not by A(Dn) for n > 2 by an
example of S. Parrott, see [P1]), by all C∗-algebras and also by K1[A] for any
unital operator algebra A. Thus the next result, provides a characterization of
the morphisms which are s.c. for a broad class of algebras. The C∗-case is due to
Haagerup [H] and the general one to Paulsen (see [P1]).

Theorem 2.5. Let A be a unital operator algebra and let u : A → B(H) be a
morphism. If u is c.b. then u is s.c. and, if A satisfies (CC), the converse holds.
We have then ‖u‖cb = Sim(u). Thus, assuming (CC), A satisfies (SP) iff for every
morphism u : A → B(H), ‖u‖ < ∞ implies ‖u‖cb < ∞.

Remark 2.6. Applying this to the disc algebra, we get Paulsen’s useful criterion:
an operator T : H → H is similar to a contraction iff it is completely polynomi-
ally bounded, which means that there is a constant C such that, for any N and
any N × N matrix (Pij) with polynomial entries we have ‖(Pij(T ))‖MN (B(H)) ≤
C supz∈D ‖(Pij(z))‖MN

. Now fix an integer N and denote by CN (T ) the smallest
C such that this holds for all N × N matrices (Pij). Then the above question
of Halmos is the same as asking whether C1(T ) < ∞ ⇒ supN≥1 CN (T ) < ∞,
and Theorem 2.5 implies that supN≥1 CN (T ) = inf{‖ξ−1‖ ‖ξ‖ | ‖ξ−1Tξ‖ ≤ 1}.
It can be shown (see [Pi8, Bo]) that there is a numerical constant β such that
CN (T ) ≤ β

√
N C1(T ) for all T and N ≥ 1. However, the counterexamples in

[Pi8] show that this cannot be improved: there is a numerical constant δ > 0 such
that for any N ≥ 1 and ε > 0, there is a T = TN,ε such that C1(T ) < 1 + ε but
still CN (T ) ≥ δε

√
N .

We now turn to a sufficient condition for the property (SP ).

Definition 2.7. We say that an operator algebra A has length ≤ d if there
is a constant K ≥ 0 such that, for any x in K[A], there are α0, α1, . . . , αd in
K[C] and D1, . . . , Dd diagonal in K[A] such that x = α0D1α1D2 . . . Ddαd and∏ ‖αi‖

∏ ‖Di‖ ≤ K‖x‖.
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We will denote by `(A) the smallest d such that this holds. Equivalently,
`(A) ≤ d iff every x in K[A] can be factorized as above (the constant K then exists
by the open mapping theorem).

Remark. This notion from [Pi9] was inspired by the remarkable paper [BP2].
There, Blecher and Paulsen prove that a unital operator algebra A satisfies (CC)
iff any x in K[A] with ‖x‖ ≤ 1 lies in the norm closure of the set of all (arbitrarily
long) products of the form α0D1α1 . . . Ddαd with Π‖αi‖Π‖Di‖ ≤ 1 and d ≥ 1.

Proposition 2.8. If an operator algebra A has length ≤ d, then A satisfies (SP )
and more precisely any morphism u : A → B(H) satisfies (with the notation of
Definitions 2.7) ‖u‖cb ≤ K‖u‖d.

Proof. Using the notation in §1.1 and Definition 2.7, we have u∞(x) =
α0u∞(D1)α1 . . . u∞(Dd)αd hence ‖u∞(x)‖ ≤ Π‖αi‖Π‖u∞(Di)‖, but since each
Di is diagonal , we have ‖u∞(Di)‖ ≤ ‖u‖ ‖Di‖, whence ‖u∞(x)‖ ≤ K‖u‖d‖x‖,
and therefore ‖u‖cb ≤ K‖u‖d.

Let A be a unital Banach algebra. For any c ≥ 1, let ΦA(c) = sup{Sim(u)}
where the supremum runs over all morphisms u : A → B(H) (H arbitrary Hilbert)
with ‖u‖ ≤ c, and let d(A) = inf{α ≥ 0 | ∃K ∀c ≥ 1 ΦA(c) ≤ Kcα}.
Although the preceding criterion seems too restrictive at first glance, it turns out
that bounded “length” is essentially the only way that an operator algebra can
have (SP ), as the next result from [Pi9] shows.

Theorem 2.9. Let A be a unital operator algebra satisfying condition (CC). Then
A satisfies (SP ) iff there is a d such that A has length ≤ d. More precisely,
`(A) = d(A) and the infimum defining d(A) is a minimum attained when α = `(A).

Remark. One surprising feature of this result is that there is apparently no direct a
priori argument showing that d(A) is an integer. Note that even when A fails (CC),
the preceding result can be applied to a suitably defined “enveloping algebra” of
A satisfying (CC) (see [Pi9]).

Warning. Until progress is made, the really weak point (embarrassing for the
author) of the preceding statement is that, up to now, no example is known of A
with 3 < `(A) < ∞. However, an analog of the equality `(A) = d(A) is proved in
[Pi9] in the more general framework of an operator space generating an operator
algebra; in this generalized framework, it is easy to produce the desired examples.
We refer the reader to [LM4] for a version of Theorem 2.9 adapted to dual operator
algebras and weak-∗ continuous morphisms.

Remark 2.10. Here is a short list of the C∗-algebras which are known to have
(SP ): if A is a nuclear C∗-algebra (due to Bunce-Christensen, see [C1]) then
d(A) ≤ 2 (and actually d(A) = 2 unless dim(A) < ∞), if A = B(H) and dim(H) =
∞ we have (SP ) and d(B(H)) = 3 (see [H] for ≤ 3 and [Pi9] for ≥ 3). More
generally if A has no tracial state, it has (SP ) and d(A) ≤ 3, in particular this
holds if A = K1[B] with B an arbitrary unital C∗-algebra ([H]). (Note: if B is a
non-self-adjoint unital operator algebra, A = K1[B] satisfies (SP ) with d(A) ≤ 5.)
Let A be a C∗-algebra generating a semi-finite von Neumann algebra M , then
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d(A) ≤ 2 implies that M is injective ([Pi9]); in particular, if A is the reduced
C∗-algebra of a discrete group G, we conclude that G is amenable. Finally, if A
is a II1-factor with property Γ (in particular if it is hyperfinite), it has (SP ) with
d(A) ≤ 44 (see [C2], the latter estimate can presumably be improved significantly.)

Let us return to the group case (Example 2.3). Then we define d(G) =
d(`1(G)). The following partial answer to Dixmier’s question holds:

Theorem 2.11 ([Pi9]). A discrete group G is amenable iff d(G) ≤ 2. More
precisely, G is amenable iff there is a constant K and α < 3 such that, for any
u.b. representation π : G → B(H), there is an invertible ξ with ‖ξ−1‖ ‖ξ‖ ≤ K|π|α
such that ξ−1π(·)ξ is a unitary representation. (When G is amenable, Dixmier [Di]
and Day proved that the latter holds with K = 1 and α = 2).

Warning: We know of no example of G such that 2 < d(G) < ∞!
See [Pi9] for an analog of Theorem 2.9 in the group case: the relevant notion of
length is like in Definition 2.7 with A = C∗(G), but the diagonal matrices Di are
now restricted to have their entries in the set of scalar multiples of elements of G
viewed, as usual, as embedded into A = C∗(G). The notion of length can also
be studied in the more general framework of a Banach algebra B generated by a
subset B of its unit ball, [Pi9, Pi10].
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L-Functions

Peter Sarnak

Section 1. The Fundamental Conjectures

Since Hecke’s work [0], the theories of L-functions and of automorphic forms have
been closely interwoven. In this talk, we review some recent developments concern-
ing the analytic aspects of these topics. In the case of the Riemann Zeta Function
ζ(s) and Dirichlet’s L-functions L(s, χ) (that is “GL1 over Q” L-functions) de-
velopments during the 1960’s and 1970’s see [1,2] offer a large body of techniques
and results with many striking applications to classical number theory. Today the
same can be said about L-functions of modular forms on the upper half plane H
(that is “GL2 L-functions”) these being the main concern below. We begin how-
ever with the general L-function which in any case has important impact on GL2

L-functions.
Fix m ≥ 1 and let π be an automorphic cusp form (or representation) for

GLm(Q) (later in connection with Conjecture II below we also allow GLm(K),
where K is a number field). That is π is an irreducible unitary representation of
GLm(A) (which we assume has a unitary central character) which appears in its
regular representation on GLm(Q)\GLm(A), A being the adele ring of Q. Then
π ∼= ⊗πp, where πp is an irreducible unitary representation of GLm(Qp) if p < ∞
and of GLm(R) if p = ∞. Moreover, for all but a finite number of places p, πp

is unramified. The (standard) L-function, L(s, π) associated with such a π is an
Euler product of degree m:

L(s, π) =
∏

p<∞
L(s, πp) (1)

where

L(s, πp) =
m∏

j=1

(1− αj,π(p)p−s)−1 (2)

The numbers {αj,π(p)}m
j=1 are determined from the local representation πp. At

the place ∞ the local factor L(s, π∞) is a product of Gamma functions which if
π∞ is unramified takes the form

L(s, π∞) =
m∏

j=1

(
π−s/2 Γ

(
s− µj,π(∞)

2

))
(3)

As with ζ(s) and L(s, χ) the key analytic properties of L(s, π) are known [3]. These
being the analytic continuation and functional equation:

L(s, π∞)L(s, π) = επqs−1/2
π L(1− s, π̃∞)L(1− s, π̃) (4)
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where qπ ∈ N is the conductor of π, επ is of modulus 1 and is the “sign” of the
functional equation and π̃ is the contragredient of π [4]. We let λπ be the quantity
(
∑m

j=1 |µj,π(∞)|2)1/2 and call it the archimedean size of π.
General philosophies and conjectures [5] (which among other things encom-

pass the Artin conjectures) assert that any L-function (from automorphic forms
on more general groups over number fields or from varieties defined over number
fields) are products of these L(s, π)’s. These are therefore the primitive objects in
the theory of L-functions. Undoubtedly the two central analytic problems in the
theory are:

I. The Grand Riemann Hypothesis (GRH), which asserts that the zeroes of the
completed L-function ξ(s, π) = L(s, π∞)L(s, π) all lie on Re(s) = 1/2.

II. The (generalized) Ramanujan conjectures [100]: if πp is unramified then

|αj,π(p)| = 1

while if π∞ is unramified

Re (µj,π(∞)) = 0.

There are no known direct relations between Conjectures I for these different
primitive L-functions and it is of course possible that the original RH [6] is true
for ζ(s) but that it fails for some general L(s, π). This however seems unlikely and
the theme of this report is the role played by families of L-functions which may
often be employed to analyze a given L(s, π).

Conjectures I and II have many far reaching implications. The most inter-
esting applications of Conjecture I follow from its use for a family of L-functions
rather than for a single function such as ζ(s). While these Conjectures remain
out of reach at present, the approximations to them, some of which are described
below, lead in many cases to the resolution of the problem at hand. Conjecture II
for m = 1 is trivial. For m = 2 there are some important special cases (including
Ramanujan’s original one) known [7,96,8] (interestingly, the proof in these cases
involves reducing Conjecture II to function field generalizations of Conjecture I).
The case when m = 2 for the place at ∞ is equivalent to the conjecture that the
first eigenvalue of the Laplacian on the hyperbolic quotient Γ(N)\H, Γ(N) being

the congruence subgroup

{(
a b
c d

)
≡ I(N); a, b, c, d ∈ Z, ad − bc = 1

}
, is at

least 1/4 [9]. The local bounds towards II which use only that πp and π∞ are
generic [10] assert that

p−1/2 < |αj,π(p)| < p1/2

and ∣∣Re (µj,π(∞))
∣∣ < 1

2

(5)

To go beyond this basic bound one uses global methods. In particular, the use of
families of L-functions as described below lead to the best known results.
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Associated with π as above are other L-functions which have conjectured
analytic continuations and functional equations. First and foremost is L(s, π⊗ π̃)
[11], [12], [13] whose analytic properties are completely understood [14], [15]. The
local factor L(s, πp ⊗ π̃p) at a prime p at which π is unramified is given by

L(s, πp ⊗ π̃p) =
∏

j,k

(
1− αj,π(p) αk,π(p) p−s

)−1

(6)

There are other important cases which are partially understood such as
L(s, sym2π) where sym2π is the symmetric square representation [16], [17]. In
fact, for π on GL2 the analytic theory of the symmetric square L-function is com-
plete [18], [19] and recently the same has been achieved for the symmetric cube [20].
For a survey of these techniques, results and their limitations see [21], [22],[23].
We note that establishing the expected analytic properties of L(s, symkπ) for all
k would lead to a proof of Conjecture II, as well as the conjecture about the
distribution of the {αj,π(p)}m

j=1 as p →∞.
The basic result towards I, which in the case of ζ(s) is the key ingredient in

the proof of the prime number theorem and is based on the non-negativity of the
coefficients of associated Dirichlet series, is that L(s, π) 6= 0 for Re(s) = 1. This
general result may be proven by this 100 year old technique together with the
analytic properties of L(s, π ⊗ π̃) (or one may use the Eisenstein series directly
[24] which yields the same zero-free region). The quality of the lower bound for
L(1+ it, π) (or equivalently a zero-free region) in terms of the parameters t, λπ, qπ

is more or less the same in all cases except for one major (and tantalizing) lacuna
- the possible “Landau-Siegel Zero.” That is in the case that χ is a quadratic
(χ2 = 1) Dirichlet character, then instead of an effective lower bound for L(1, χ)
of the form À (log qχ)−1 which is established for the other χ’s, only the lower

bounds of (log qχ)/√qχ when χ(−1) = 1 [25] and of log qχ√
qχ

∏
p\qχ
p6=qχ

(
1− [2

√
p]

p + 1

)
when

χ(−1) = −1 [26], [27], are known (the latter has striking applications to class
numbers of imaginary quadratic fields and is a prime example of an application
of GL2 theory to GL1). Put another way, there may be an L(s, χ) with a real
zero very close to 1 (in terms of the conductor), which we call a Landau-Siegel
Zero [28], [29]. Interestingly, it appears that only such a χ (χ2 = 1) can have such
an extreme violation of I. In [30] and [32] it is shown (using the positivity of the
coefficients of an appropriate Dirichlet series) that for any GL2 form π as well as
its symmetric square (if it is not of “CM” type) there are no Landau-Siegel zeroes.
The last is technically very useful especially when applying the Petersson formula
[31] and its generalization [33], see for example [34].

Section 2. Sub-convexity

A consequence of Conjectures I and II which is used in many of their applications
is the “Lindelof Hypothesis” which asserts that for any π on GLm (m fixed) and
ε > 0 there is Cε < ∞ such that

∣∣∣∣L
(

1
2

+ it, π

) ∣∣∣∣ ≤ Cε ((|t|+ 1)m (λπ + 1) qπ)ε (7)
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The functional equation (4) together with II and a standard convexity argument
in complex analysis imply that

∣∣∣∣L
(

1
2

+ it, π

) ∣∣∣∣ ≤ Cε ((|t|+ 1)m (λπ + 1) qπ)1/4+ε (8)

Some of the most interesting applications of (7), (for example, to estimation of
Fourier coefficients of 1/2-integral weight modular forms [35] or to problems in
Quantum Chaos [36]) require only a sub-convexity bound in (8) - that is, in one
of the t, λ or q aspects an exponent δ < 1/4 in (8). In GL1 the first such bound
is essentially due to Weyl [37] in the t-aspect while [38] is still the best known in
the q-aspect. For GL2, the series of papers [39], [40], [41], [42], [43] establish sub-
convexity bounds in each of the λ, q and t-aspects. An application of this in the
t-aspect to quantum unique ergodicity is given in [34] while when applied in the q-
aspect to L( 1

2 , π⊗χq), χ2
q = 1 (π fixed), it yields a solution (albeit ineffective due to

the possible Landau-Siegel zero) of the long standing problem of determining which
large integers are represented by a positive definite integral ternary quadratic form
[44]. The novel technique leading to the sub-convexity estimate is “amplification”
which proceeds by embedding L(s, π) in a suitable family F of L-functions. See
[45] for a description of the method and [46] and [47] for some other instances of
its use. An interesting and basic problem is to develop sub-convexity bounds in
the various aspects for π’s on GLm, m ≥ 3.

Section 3. Local Distribution of Zeroes

The asymptotics of the number of zeroes ρπ of ξ(s, π) is well known. As T →∞

#{ρπ|0 ≤ Im (ρπ) ≤ T} ∼ mT log T

2π
(9)

For GL1 L-functions, it is shown in [48] that a positive proportion of these zeroes
are on the line, Re(s) = 1/2. The proof is based on a technique called “mollifica-
tion” and it has been used to establish a similar result for GL2 L-functions [49].
Another approach to this type of result was introduced in [50]. It has the advan-
tage of producing simple zeroes and in [51] this method was developed further to
show that at least 40% of the zeroes of ζ(s) are on Re(s) = 1/2 and are simple.

For the rest of this section we will assume Conjecture I and discuss the fine
structure of the distribution of the zeroes. This is of interest both in arithmetic
applications as well as giving insight into the nature (eg spectral) of the zeroes.
Write the zeroes ρπ as 1

2 + iγπ and order them:

. . . ≤ γ(−2)
π ≤ γ(−1)

π ≤ 0 ≤ γ(1)
π ≤ γ(2)

π . . . (10)

In view of (9), in order to examine the distribution of the local spacings between the
zeroes we re-normalize and consider the numbers γ̂

(j)
π = (mγ

(j)
π log γ

(j)
π )

/
2π, j ≥

1. Their consecutive spacings are the numbers γ̂
(j+1)
π − γ̂

(j)
π . The pair correlation

is the local density of the numbers γ̂
(j)
π − γ̂

(k)
π , j 6= k ≤ N (as N → ∞). The

k-th (k ≥ 2) consecutive spacings and n ≥ 3 correlations are defined similarly

Documenta Mathematica · Extra Volume ICM 1998 · I · 453–465



L-Functions 457

[58]. For the zeroes of ζ(s) it was shown in [52] that for a restricted class of test
functions the pair-correlation density approaches the density

(
1− (

sin πx
πx

)2
)

dx, as
N →∞. It was further noted there that this density is the same as the known [53]
pair-correlation density for the eigenvalues of a typical (for Haar measure) large
unitary matrix [54]. This ensemble of random matrices has been much studied
by Physicists [55] (for example in connection with models for the spectral lines
of heavy nuclii) and goes by the name the Circular Unitary Ensemble, (CUE).
All the local spacing statistics for the eigenvalues of a random matrix in this
ensemble are the same as for the related Gaussian Unitary Ensemble (GUE) [54].
In [56] a detailed numerical investigation of the hypothesis that the local spacing
distributions of the high zeroes of ζ(s) follow CUE laws, has been carried out.
In particular, the local spacing distributions for the 70 million zeroes near the
1020−th zero follow the CUE predictions (almost perfectly!). In [57], the n = 3 and
in [58] all the n-level correlations are determined analytically (again in restricted
ranges). The results being precisely the CUE n-level correlation densities. At the
phenomenological level, this CUE feature is perhaps the most interesting discovery
about ζ(s) since Riemann’s Conjecture I and it points to the spectral nature of the
zeroes. In [58] the n ≥ 2 correlations are determined for any L(s, π) and are found
to be universally CUE. Numerical experiments for various π’s in GL1 [59] and
GL2 [60] strongly confirm this CUE phenomenon. Thus, unlike the distributions
of the {αj,π(p)}m

j=1 as p →∞, which depend on the symmetry type of π, the local
distributions of the high zeroes of any L(s, π) appear to be universally CUE.

The function field analogues of ζ(s) offer much insight into the above. Re-
placing the rational numbers Q by a finite extension k of Fq(t), Fq being a finite
field with q-elements, one obtains an analogue of ζ(s) due to Artin [61]. If C is a
curve over Fq with function field k then the associated zeta function ζ(T, C/Fq)
is a rational function with 2g zeroes, where g is the genus of C. The analogue of
Conjecture I in this setting has been known for over 50 years [97]. The Frobenius
morphism on C is intimately related to ζ(T, C/Fq) and is crucial in the proofs of
I. In [62] the local spacings between the zeroes of ζ(T, C/Fq) is examined. It is
shown that as q and g(C) go to infinity the zeroes of the typical (but not every!)
ζ(T,C/Fq) obey the CUE spacing laws. The sources of this law are clearly identi-
fied as: (A) The monodromy of the representation of π1 of the family of curves of
genus g on H1 of a given curve is “big,” it being Sp(2g). (B) The equidistribution
of the Frobenius conjugacy classes in the monodromy [8]. (C) The (universal) law
for the eigenvalue spacings for the typical matrix in any large compact classical
group being CUE [62].

In this function field setting, one can also determine the distributions of the
zeroes near the point of symmetry (for the functional equation), for a family of zeta
or L-functions. Again, this follows from the calculation of these distributions for
the scaling limits of the monodromy groups of the family and unlike the universality
above, these are found to be sensitive to the symmetry of the family [62]. The
analogous questions in the rational number case, for various families F of L(s, π)’s,
has been investigated recently [63]. Ordering the π ∈ F by their conductors qπ one
examines the distribution of the (scaled) low-lying zeroes. That is, for j ≥ 1 fixed,
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the distribution in [0,∞) of the numbers (γ(j)
π log qπ)/2π, as π varies over F 1, and

the densities of the numbers (γπ log qπ)/2π again as π varies over F . It is found
[63], [64] that these follow the distributions predicted by the symmetry of the
family F , when the latter can be determined from the function field analogue.
For example, for the family FI of L(s, χ)’s where χ is a quadratic (χ2 = 1)
Dirichlet character, the distribution of the low-lying zeroes follows the symplectic
Sp(∞) scaling distributions [62]. This is convincingly confirmed by numerical
experiments [60] for qχ’s of size 1012. Further confirmation is given by the analytic
determination (in restricted ranges) of the densities of the low-lying zeroes for this
family [65], [63], [60]. Another example is the family FII of holomorphic cusp
forms π of weight 2 for the congruence subgroups Γ0(N) of the modular group.
The symmetry type of FII is orthogonal ie O(∞), at least as far as the analytic
computations of the densities of the low-lying zeroes [64].

The above densities of the low-lying zeroes in a family determine in particular
the percentages of π ∈ F for which L(1/2, π) = 0 (or it’s derivative if L(1/2, π) = 0
for the trivial reason of the sign of the functional equation). For certain families
such as FII above this together with the Birch and Swinnerton-Dyer Conjectures
[94] give information about the ranks of the group of rational points on elliptic
curves and abelian varieties over Q. In particular, for FII above one obtains from
the analytic results on the densities [66], [67], [64], sharp estimations for the ranks
of the Jacobian J0(N)/Q of the curves X0(N)/Q (which analytically is Γ0(N)\H)
as well as for the dimension of largest quotient M0(N)/Q ([68], [69]) of J0(N)
which is of rank zero.

While for the above families F as well as for numerous others [63], [64] the
proposed symmetry “G(F)” is compelling, it is premature to guess whether it is
appropriate for all families. The reason being, that numerical experiments (for
moderate size conductors) with certain families of elliptic curves [70], [71] indicate
that their ranks are persistently larger than the symmetry (as well as the func-
tion field) predicts. Whether this “excess rank” is a consequence of too small a
range of computation or whether it is truly there, is a fascinating question whose
understanding will no doubt be very instructive.

Section 4. Non-vanishing for Families

The question of the number of π’s in F (ordered by conductor) for which L(s, π)
is non-zero at a special point arises in a number of contexts. In the basic problem
of existence of cusp forms for general subgroups of SL2(R) [72], in the correspon-
dence between forms of 1/2-integral weight and integral weight [73], [74] and in
connection with the Birch and Swinnerton-Dyer Conjecture. There are many re-
sults asserting that infinitely many π ∈ F have their L-function not zero at a
specific point and in some cases even good lower bounds for the number of such
π’s. For example, for the family π1⊗ π with π1 fixed on GL2 and π varying (with
fixed conductor) by increasing λπ, non-vanishing at special points on the critical
line are established in [75], [76]. These have applications to the problem of ex-
istence of cusp forms mentioned above. For the family of quadratic twists χ of

1We apologize for the bad notation and hope the reader does not get too confused between π
the number and π the representation.
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a given (modular) elliptic curve E/Q it is shown in [77] and [78] that infinitely
many of the values L( 1

2 , E⊗χ) are not zero and also infinitely many of the values
L′( 1

2 , E ⊗ χ) are not zero for χ’s with εE⊗χ = −1. This, when combined with [79]
has applications to the B-S conjecture for elliptic curves. A challenging unsolved
problem which as yet is at the limit of the analytic methods [80] is to show that
a positive proportion of the values L( 1

2 , E ⊗ χ) are not zero. The results on the
densities of low-lying zeroes for this family (of Section 3) imply this, however, they
appeal to Conjecture I. For special E’s a positive proportion of non-vanishing has
been established by algebraic methods [81], [82]. In the “vertical” case of twisting
such L-functions by χ’s of high order, non-vanishing results are proven in [91].

For the family FII of Section 3, it is shown in [83] that at least 50% of the
L( 1

2 , π)’s are non-zero, where π varies over cusp forms of (say) weight 2 for Γ0(N)
and with επ = 1, as N →∞. (Based on numerical calculations [66] it is conjectured
that 100% of these should be non-zero). This result when combined with [79]
implies that the dimension of M0(N) is at least 1/4 of the dimension of J0(N), as
N →∞. The number 50% above is of fundamental significance (for this as well as
for a number of other families [83]) since any improvement of the percentage (in
the quantitative form in which the 50% is established) would lead to a proof that
there are no Landau-Siegel zeroes! This type of relation, that the distribution of
the low-lying zeroes of a family are controlled by the zeroes of other L-functions,
is not surprising from the function field analysis mentioned in Section 3, see [62].
The proof of this 50% result uses amongst many things an appropriate method of
mollification. The proof of the implication to Landau-Siegel zeroes makes use of
the following result which is proven either using forms of 1/2-integral weight or
the relative trace formula [74], [84]: Let π be a (self-dual) cusp form with trivial
central character for GL2/K, K a number field, then L( 1

2 , π) ≥ 0. Note that since
L(s, π) is real for s ∈ R this inequality is an immediate consequence of Conjecture I
for L(s, π). That it can be proven unconditionally is quite striking especially since
the GL1 analogue - that is L( 1

2 , χ) ≥ 0, χ quadratic, is not known. Returning
J0(N), in [85] and [86] non-vanishing results are established which together with
[27] imply that the rank of J0(N) is at least 7/16 of dim J0(N).

The non-vanishing in a family is also a very powerful tool in attacking Con-
jecture II. The approach via the family of L-functions, L(s, π⊗ π̃⊗ χ) as χ varies
over Dirichlet characters was initiated in [87]. It was convincingly applied in [88]
to give estimates for απ(p), p finite, where π is a Maass cusp form on GL2/Q. In
[89] a general approach via non-vanishing of partial L-functions at special points
in such a family, was introduced. It leads to the best known bounds towards Con-
jecture II [90]. If π is an automorphic cusp form for GLm(K) and π is unramified
at a place v of K, then

∣∣∣∣ logN(v) |αj,π(v)|
∣∣∣∣ ≤

1
2
− 1

m2 + 1
, if v is finite and N(v) its norm (11)

∣∣∣∣Re(µj,π(v))
∣∣∣∣ ≤

1
2
− 1

m2 + 1
for v archimedean (12)

This result for GL3 combined with the symmetric square correspondence from
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GL2 → GL3 [19] leads to the bounds on GL2:
∣∣∣∣ logN(v) |αj,π(v)|

∣∣∣∣ ≤
1
5
, if v is finite (13)

∣∣∣∣Re(µj,π(v))
∣∣∣∣ ≤

1
5
, v archimedean (14)

Interestingly (13) was derived earlier in [92] by special use of the exceptional
group F4. (14) implies a lower bound of 21/100 for the first eigenvalue of the
Laplacian on Γ0(N)\H. This goes beyond the 3/16 bound [9] which was based on
estimating sums of Kloosterman sums using [93]. Thus (14) provides for the first
time cancellations in sums of Kloosterman sums on arithmetic progressions [89].

Section 5. Final Comments

We note that numerical experimentation played a key role in the discoveries and
(or) confirmations of Conjecture I by Riemann, of Conjecture II by Ramanujan,
of the Conjecture of Artin [61] and that of Birch and Swinnerton-Dyer [94].

While we may still have to wait for some time for the complete resolutions
of Conjectures I and II, these like other fundamental problems have generated
marvellous mathematics. Various things are falling into place. The function field
analogues are very suggestive and the evidence for there being a natural spectral
interpretation of the zeroes 2 as well as a symmetry group for families is rather
convincing. The last bodes well since in the function field the proof of the general
cases of Conjecture I make essential use of monodromy of families [8]. Similarly
at the present time the most powerful techniques (in the number field case) have
emerged from considerations of families. Averaging over families in GL2 theory is
usually achieved by the trace formula [95] but often and more profitably, it can be
gotten from the older Petersson formula [31]. The approximations to Conjectures
I and II that have been established are good enough in many instances to resolve
completely some classical problems.
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7. M. Eichler, “Quaternäre quadratische Formen und die Riemannsche Vermu-
tung für die Kongruenzzetafunktion”, Ark. de Math., 5, 355–366, (1954).

8. P. Deligne, “La Conjecture de Weil I and II” Publ. I.H.E.S., 43, 273–307,
(1974), 52, 313–428, (1981).

9. A. Selberg “On the Estimation of Fourier Co-efficients of Modular Forms”,
Proc. Sym. Pure Math., 8, 1–15, (1965).

10. H. Jacquet and J. Shalika, “On Euler Products and the Classification of
Automorphic Representations”, I, II, Amer. J. Math., 103, 499–557, 777–
815, (1981).

11. R. Rankin, “Contributions to the Theory of Ramanujan’s Function τ(n)”,
Proc. Camb. Phil. Soc., 35, 351–356, (1939).

12. A. Selberg, “Bemerkungen über eine Dirchletsche Reihe, die mit der Theorie
der Modulformen nahe verbunden ist”, Arch. Math. Naturvid, 43, 47–50,
(1940).

13. H. Jacquet, I. Piatetski-Shapiro, J. Shalika, “Rankin-Selberg Convolutions”,
Amer. J. Math., 105, 367–464, (1983).

14. F. Shahidi, “On Certain L-functions”, Amer. J. Math., 103, 297–355, (1981).

15. C. Moeglin, J. Waldspurger, “Le Spectre Residuel de GL(n)”,
Ann. Sci. Ecole Norm., Sup (4), 22, 605–674, (1989).

16. S. Patterson, I. Piatetski-Shapiro, “The Symmetric-Square L-function At-
tached to a Cuspidal Automorphic Representation of GL(3)”, Math. Ann.,
283, No. 4, 1–72, (1989).

17. D. Bump, D. Ginsburg, “Symmetric Square L-functions on GL(r)”,
Ann. Math. 136, 137–205, (1992).

18. G. Shimura, “On the Holomorphy of Certain Dirichlet Series”, Proc. London
Math. Soc., Soc. (3), 31, 79–98, (1975).

19. S. Gelbart, H. Jacquet, “A relation Between Automorphic Representations
of GL(2) and GL(3)”, Ann. Sci. Ecole Norm. Sup 4, 11, 471–542, (1978).

20. H. Kim, F. Shahidi, “Symmetric Cube L-functions for GL2 are Entire”,
(preprint, 1998).

21. D. Bump, “The Rankin-Selberg Method: A Survey”, in Number Theory,
Trace Formulas and Discrete Groups, Editors, Aubert, Bombieri, Goldfeld,
Academic Press, 49–109, (1988).

22. F. Shahidi, “Automorphic L-functions: A Survey”, in Automorphic Forms,
Shimura Varieties and L-functions, Editors, Clozel, Milne, Academic Press,
415–437, (1990).

Documenta Mathematica · Extra Volume ICM 1998 · I · 453–465



462 Peter Sarnak

23. D. Ginzburg, S. Rallis, “A Tower of Rankin-Selberg Integrals”, IMRN, Vol. 5,
201–208, (1994).

24. H. Jacquet, J. Shalika, “A Non-vanishing Theorem for Zeta Functions on
GLn”, Inv. Math., 38, 1–16, (1976).

25. G. Lejeune Dirichlet, “Dirichlet Werke”, Berlin, (1889).

26. D. Goldfeld, “Gauss Class Number Problem for Imaginary Quadratic Field-
s”, B.A.M.S. Vol. 13, 1, 23–37, (1985).

27. B. Gross, D. Zagier, “Heegner Points and Derivatives of L-series”, Inv. Math.,
84, 225–320, (1986).

28. E. Landau, “Bemerkungen zum Heilbronnschen Satz”, Acta Arith., 1, 1–18,
(1935).
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Quantum Computing

Peter W. Shor

Abstract. The Church-Turing thesis says that a digital computer is a
universal computational device; that is, it is able to simulate any physi-
cally realizable computational device. It has generally been believed that
this simulation can be made efficient so that it entails at most a poly-
nomial increase in computation time. This may not be true if quantum
mechanics is taken into consideration. A quantum computer is a hy-
pothetical machine based on quantum mechanics. We explain quantum
computing, and give an algorithm for prime factorization on a quantum
computer that runs asymptotically much faster than the best known al-
gorithm on a digital computer. It is not clear whether it will ever be
possible to build large-scale quantum computers. One of the main diffi-
culties is in manipulating coherent quantum states without introducing
errors or losing coherence. We discuss quantum error-correcting codes
and fault-tolerant quantum computing, which can guarantee highly re-
liable quantum computation, given only moderately reliable quantum
computing hardware.

1991 Mathematics Subject Classification: Primary 68Q05; Secondary
11Y05, 81P99.
Keywords and Phrases: Quantum computer, computational complexity,
prime factorization.

1 Introduction.

Quantum computers are hypothetical machines that use principles of quantum
mechanics for their basic operations. They will be very difficult to build; currently
experimental physicists are working on two- and three-bit quantum computers, and
useful quantum computers would require hundreds to thousands of bits. However,
there seem to be no fundamental physical laws that would preclude their construc-
tion. In 1994, I showed that a quantum computer could factor large numbers in
time polynomial in the length of the numbers, a nearly exponential speed-up over
classical algorithms. This factoring result was surprising for a number of different
reasons. First, the connection of quantum mechanics with number theory was it-
self surprising. For cryptographers, the result was surprising because the difficulty
of factoring is the basis of the RSA cryptosystem [27], and nobody had anticipated
the possibility of an attack via quantum physics. For many theoretical computer
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scientists, it was surprising because they had more or less convinced themselves
that no type of computing machine could offer this large a speed-up over a clas-
sical digital computer. In retrospect, several results [7, 30] should have led them
to question this; however, not much attention was paid to these results until they
led to the development of the factoring algorithm,

A question that has generated much discussion is where the extra power of
quantum computers comes from. There are a number of differences between quan-
tum and classical computers, and most appear to be required for the extra power.
In particular, quantum interference is needed; one high-level way to describe the
quantum factoring algorithm is that the computation is arranged so that compu-
tational paths giving the wrong answer interfere to cancel each other out, leaving
a high probability of obtaining the right answer. Another property of quantum
systems that plays a crucial role is entanglement, or non-classical correlation,
between quantum systems. Many non-quantum physical systems such as waves
exhibit interference, but none of these systems exhibits entanglement, and they do
not appear usable for quantum computation. Finally, a third property required
is the high dimensionality of quantum systems; the dimension of the joint quan-
tum state space of n objects grows exponentially with n, whereas classically the
dimension of the joint state space of n objects only grows linearly. The factoring
algorithm makes critical use of this extra dimensionality.

In the rest of the paper, I describe these results in more detail. In section 2, I
start by discussing Church’s thesis, which still appears to hold, and an extension
of it, to which quantum computers now appear to be a counterexample. In the
following section, I describe the quantum circuit model for quantum computation.
This is not laid out particularly well anywhere else, so I spend a reasonable amount
of space on it. In section 4, I describe the differences between the quantum circuit
model and possible physical realizations of quantum computers, and say a little
about why the model appears to give the right definition of what is efficiently
computable using quantum mechanics. Section 5 describes the factoring algorithm.
Section 6 discusses error-correcting codes and fault-tolerant quantum computing.
In the final section, I mention some related results.

2 The Polynomial Church’s Thesis.

Church’s thesis says that any computable function can be computed on a Turing
machine, which is essentially a mathematical abstraction of a digital computer.
This thesis arose in the 1930’s, and was motivated by the realization that three
apparently quite distinct definitions of computable functions were all equivalent.
It is well known that Church’s thesis is not a theorem, because it does not specify
a rigorous mathematical definition of “computable”; specifying such a definition
would lead to a provable theorem (and in many cases has), but would also detract
from the generality of the thesis. What is somewhat less commonly realized is
that this thesis can be viewed as a statement about the laws of physics, simply
by interpreting computable to mean computable in the physical world. For this
interpretation, if the laws of physics are computable by a Turing machine, then
Church’s thesis is true.
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The development of digital computers rendered the distinction between com-
putable and uncomputable functions too coarse in practice, as it does not take
into account the time required for computation. What was needed for the the-
ory of computation was some characterization of efficiently computable functions.
In the early 1970’s, theoretical computer scientists reached a good compromise
between theory and practice with the definition of polynomial-time computable
functions. These are functions whose value can be computed in a number of steps
polynomial in the input size. The corresponding set of languages—functions whose
range is {0, 1}—is known as P (or PTIME). While nobody claims that a function
computable in time n100 is efficiently computable in practice, the set of polyno-
mial time computable functions is structurally nice enough to use in proofs, and
for functions arising in practice it appears to include most of the efficiently com-
putable ones and exclude most of those not efficiently computable. This definition
naturally gave rise to a “folk thesis,” the polynomial Church’s thesis, which says
that any function physically computable in time t on some machine X can be
computed on a Turing machine in time p(t), where p is a polynomial depending
only on the machine X.

Is this folk thesis valid? One good place to start looking for counterexamples
is with physical systems which seem to require large amounts of computer time to
simulate. Two obvious such candidates are turbulence and quantum mechanics. I
will have nothing further to say about turbulence, except that I think the compu-
tational complexity of turbulence is a question worthy of serious study. Richard
Feynman, in 1982, was the first to consider the case of quantum mechanics [16].
He gave arguments for why quantum mechanical systems should inherently re-
quire an exponential overhead to simulate on digital computers. In a lengthy
“side remark,” he proposed using quantum computers, operating on quantum me-
chanical principles, to circumvent this problem. David Deutsch [15] followed up on
Feynman’s proposal by defining quantum Turing machines, and suggesting that
if quantum computers could solve quantum mechanical problems more quickly
than digital computers, they might also solve classical problems more quickly. It
currently appears that this is indeed the case. One piece of evidence for this is
that quantum computers can solve certain “oracle problems” faster than classical
computers [7, 30]; here an oracle problem is one where the computer is given a
subroutine (oracle) which must be treated as a black box. The behavior of com-
putational complexity with respect to oracles, however, has not proved a reliable
guide to its true behavior. Another piece of evidence that quantum computers
are a counterexample to the polynomial Church’s thesis is that they can factor
integers and find discrete logarithms in polynomial time, something which it is
not known how to do on classical computers despite many years of study. The
factorization algorithm is discussed later in this paper.

3 The Quantum Circuit Model.

In this section we discuss the quantum circuit model [32] for quantum computation.
This is a rigorous mathematical model for a quantum computer. It is not the only
mathematical model for quantum computation; there are also the quantum Turing
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machine model [7, 32] and the quantum cellular automata model. All these models
result in the same class of polynomial-time quantum computable functions. Of
these, the quantum circuit model is possibly the simplest to describe. It is also
easier to connect with possible physical implementations of quantum computers
than the quantum Turing machine model. The disadvantage of this model is that
it is not naturally a uniform model. Uniformity is a technical condition arising
in complexity theory, and to make the quantum circuit model uniform, additional
constraints must be imposed on it. This issue is discussed later in this section.

In analogy with a classical bit, a two-state quantum system is called a qubit,
or quantum bit. Mathematically, a qubit takes a value in the vector space C2. We
single out two orthogonal basis vectors in this space, and label these V0 and V1.
In “ket” notation, which is commonly used in this field, these are represented as
|0〉 and |1〉. More precisely, quantum states are invariant under multiplication by
scalars, so a qubit lives in two-dimensional complex projective space; for simplicity,
we work in complex Euclidean space C2. To conform with physics usage, we treat
qubits as column vectors and operate on them by left multiplication.

One of the fundamental principles of quantum mechanics is that the joint
quantum state space of two systems is the tensor product of their individual quan-
tum state spaces. Thus, the quantum state space of n qubits is the space C2n

. The
basis vectors of this space are parameterized by binary strings of length n. We
make extensive use of the tensor decomposition of this space into n copies of C2,
where Vb1b2···bn = Vb1 ⊗ Vb2 ⊗ . . .⊗ Vbn . Generally, we use position to distinguish
the n different qubits. Occasionally we need some other notation for distinguishing
them, in which case we denote the i’th qubit by V [i]. Since quantum states are
invariant under multiplication by scalars, they can be normalized to be unit length
vectors; except where otherwise noted, quantum states in this paper are normal-
ized. Quantum computation takes place in the quantum state space of n qubits
C2n

, and obtains extra computational power from its exponential dimensionality.
In a usable computer, we need some means of giving it the problem we want

solved (input), some means of extracting the answer from it (output), and some
means of manipulating the state of the computer to transform the input into the
desired output (computation). We next briefly describe input and output for the
quantum circuit model. We then take a brief detour to describe the classical circuit
model; this will motivate the rules for performing the computation on a quantum
computer.

Since we are comparing quantum computers to classical computers, the input
to a quantum computer will be classical information. It can thus can be expressed
as a binary string S of some length k. We need to encode this in the initial
quantum state of the computer, which must be a vector in C2n

. The way we do
this is to concatenate the bit string S with n− k 0’s to obtain the length n string
S0 . . . 0. We then initialize the quantum computer in the state VS0...0. Note that
the number of qubits is in general larger than the input. These extra qubits are
often required as workspace in implementing quantum algorithms.

At the end of a computation, the quantum computer is in a state which is a
unit vector in C2n

. This state can be written explicitly as W =
∑

s αsVs where
s ranges over binary strings of length n, αs ∈ C, and

∑
s |αs|2 = 1. These αs
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Figure 1: Construction of a Toffoli gate using the classical gates AND, OR and
NOT. The input is on the left and the output on the right.

are called probability amplitudes, and we say that W is a superposition of basis
vectors Vs. In quantum mechanics, the Heisenberg uncertainty principle tells us
that we cannot measure the complete quantum state of this system. There are a
large number of permissible measurements; for example, any orthogonal basis of
C2n

defines a measurement whose possible outcomes are the elements of this basis.
However, we assume that the output is obtained by projecting each qubit onto the
basis {V0, V1}. When applied to a state

∑
s αsVs, this projection produces the

string s with probability |αs|2. The quantum measurement process is inherently
probabilistic. Thus we do not require that the computation gives the right answer
all the time; but that we obtain the right answer at least 2/3 of the time. Here, the
probability 2/3 can be replaced by any number strictly between 1/2 and 1 without
altering what can be computed in polynomial time by quantum computers—if the
probability of obtaining the right answer is strictly larger than 1/2, it can be
amplified by running the computation several times and taking the majority vote
of the results of these separate computations.

In order to motivate the rules for state manipulation in a quantum circuit,
we now take a brief detour and describe the classical circuit model. Recall that
a classical circuit can always be written solely with the three gates AND (∧),
OR (∨) and NOT (¬). These three gates are thus said to form a universal set of
gates. Figure 1 gives an example circuit for a computation called a Toffoli gate
using these three types of gates. Besides these three gates, note that we also need
elements which duplicate the values on wires. These duplicating “gates” are not
possible in the domain of quantum computing.

A quantum circuit is similarly built out of logical quantum wires carrying
qubits, and quantum gates acting on these qubits. Each wire corresponds to one
of the n qubits. We assume each gate acts on either one or two wires. The possible
physical transformations of a quantum system are unitary transformations, so each
quantum gate can be described by a unitary matrix. A quantum gate on one
qubit is then described by a 2× 2 matrix, and a quantum gate on two qubits by a
4× 4 matrix. Note that since unitary matrices are invertible, the computation is
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reversible; thus starting with the output and working backwards one obtains the
input. Further note that for quantum gates, the dimension of the output space is
equal to that of the input space, so at all times during the computation we have
n qubits carried on n quantum wires. Figure 2 contains an example of a quantum
circuit for computing a Toffoli gate.

Quantum gates acting on one or two qubits (C2 or C4) naturally induce a
transformation on the state space of the entire quantum computer (C2n

). For
example, if A is a 4× 4 matrix acting on qubits i and j, the induced action on a
basis vector of C2n

is

A[i,j] Vb1b2···bn =
1∑

s=0

1∑
t=0

Abibj st Vb1b2···bi−1sbi+1···bj−1tbj+1···bn . (1)

This is a tensor product of A (acting on qubits i and j) with the identity matrix
(acting on the remaining qubits). When we multiply a general vector by a quantum
gate, it can have negative and positive coefficients which cancel out, leading to
quantum interference.

As there are for classical circuits, there are also universal sets of gates for
quantum circuits; such a universal set of gates is sufficient to build circuits for any
quantum computation. One particularly useful universal set of gates is the set of
all one-bit gates and a specific two-bit gate called the Controlled NOT (CNOT).
These gates can efficiently simulate any quantum circuits whose gates act on only
a constant number of qubits [2]. On basis vectors, the CNOT gate negates the
second (target) qubit if and only if the first (control) qubit is 1. In other words,
it takes VXY to VXZ where Z = X + Y (mod 2). This corresponds to the unitary
matrix 



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 (2)

Note that the CNOT is a classical reversible gate. To obtain a universal set
of classical reversible gates, you need at least one reversible three-bit gate, such
as a Toffoli gate; otherwise you can only perform linear Boolean computations.
A Toffoli gate is a doubly controlled NOT, which negates the 3rd bit if and only
if the first two are both 1. By itself the Toffoli gate is universal for reversible
classical computation, as it can simulate both AND and NOT gates [17]. Thus, if
you can make a Toffoli gate, you can perform any reversible classical computation.
Further, as long as the input is not erased, any classical computation can be
efficiently performed reversibly [3], and thus implemented efficiently by Toffoli
gates.

Because of the extra possibilities allowed by quantum interference, for quan-
tum circuits the CNOT together with all quantum one-bit gates forms a universal
set of gates. Figure 2 gives a construction of a Toffoli gate out of CNOT gates and
one-bit gates [2], showing that this set is at least universal for classical computa-
tion. This particular construction does not result in a Toffoli gate with all positive

Documenta Mathematica · Extra Volume ICM 1998 · I · 467–486



Quantum Computing 473

Figure 2: Construction of a Toffoli gate using quantum gates. The gates repre-
sented by ⊕ are CNOT’s, where the circle identifies the target qubit. The gate R

is
(

cos θ sin θ
− sin θ cos θ

)
, and R† is the Hermitian transpose of R. In this construction,

the phase on V101 is −1, and all the other phases are +1; the phases can all be
made +1 by a somewhat more complicated quantum circuit.

phases—multiplying the corresponding matrices in Figure 2 produces the matrix



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0




(3)

which is the classical Toffoli gate with a phase of −1 on one of its outcomes.
This still acts classically as a Toffoli gate, since phases are irrelevant to classical
computation. In quantum computation, however, we must keep careful track of
phases. A more complicated circuit can be constructed which eliminates this phase
of −1 [2].

We now define the complexity class BQP, which stands for bounded-error
quantum polynomial time. This is the class of languages which can be computed
on a quantum computer in polynomial time, with the computer giving the correct
answer at least 2/3 of the time. To give a rigorous definition of this complexity
class using quantum circuits, we need to consider uniformity conditions. Any
specific quantum circuit can only compute a function whose domain (input) is
binary strings of a specific length. To use the quantum circuit model to implement
functions taking arbitrary length binary strings as input, we take a family of
quantum circuits, containing one circuit for inputs of each length. Without any
further conditions on the family of circuits, the designer of this circuit family could
hide an uncomputable function in the design of the circuits for each input length.
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This definition would thus result in the unfortunate inclusion of uncomputable
functions in the complexity class BQP. To exclude this possibility, we require
uniformity conditions on the circuit family. The easiest way of doing this is to
require a classical Turing machine that on input n outputs a description of the
circuit for length n inputs, and which runs in time polynomial in n. For quantum
computing, we need an additional uniformity condition on the circuits. It would
be possible for the circuit designer to hide uncomputable (or hard-to-compute)
information in the unitary matrices corresponding to quantum gates. We thus
require that the k’th digit of the entries of these matrices can be computed by a
second Turing machine in time polynomial in k. Although we do not have space
to discuss this fully, the power of the machines designing the circuit family can
actually be varied over a wide range; this helps us convince ourselves that we have
the right definition of BQP.

The definition of polynomial time computable functions on a quantum com-
puter is thus those functions computable by a uniform family of circuits whose
size (number of gates) is polynomial in the length of the input, and which for any
input gives the right answer at least 2/3 of the time. The corresponding set of
languages (functions with values in {0, 1}) is called BQP.

4 Relation of the Model to Quantum Physics.

The quantum circuit model of the previous section is much simplified from the
realities of quantum physics. There are operations possible in physical quantum
systems which do not correspond to any simple operation allowable in the quantum
circuit model, and complexities that occur when performing experiments that are
not reflected in the quantum circuit model. This section contains a brief discussion
of these issues, some of which are discussed more thoroughly in [7].

In everyday life, objects behave very classically, and on large scales we do
not see any quantum mechanical behavior. This is due to a phenomenon called
decoherence, which makes superpositions of states decay, and makes large-scale
superpositions of states decay very quickly. A thorough discussion of decoherence
can be found in [35]; one reason it occurs is that we are dealing with open systems
rather than closed ones. Although closed systems quantum mechanically undergo
unitary evolution, open systems need not. They are subsystems of systems under-
going unitary evolution, and the process of taking subsystems does not preserve
unitarity.

However hard we may try to isolate quantum computers from the environ-
ment, they will still undergo some decoherence and errors. We need to know that
these processes do not fundamentally change their behavior. Using no error cor-
rection, if each gate results in an amount of decoherence and error of order 1/t,
then O(t) operations can be performed before the quantum state becomes so noisy
as to usually give the wrong answer [7]. Active error correction can improve this
situation substantially, and is discussed in section 6.

In some proposed physical architectures for quantum computers, there are
restrictions that are more severe than the quantum computing model. Many of
these restrictions do not change the class BQP. For example, it could easily be
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the case that a gate could only be applied to a pair of adjacent qubits. We can
still operate on a pair of arbitrary qubits: by repeatedly exchanging one of these
qubits with a neighbor we can bring this pair together. If there are n qubits in the
computer, this can only increase the computation time by a factor of n, preserving
the complexity class BQP.

The quantum circuit model described in the previous section postpones all
measurements to the end, and assumes that we are not allowed to use probabilistic
steps. Both of these possibilities are allowed in general by quantum mechanics, but
neither possibility makes the complexity class BQP larger [7]. For fault-tolerant
quantum computing, however, it is very useful to permit measurements in the
middle of the computation, in order to measure and correct errors.

The quantum circuit model also assumes that we only operate on a constant
number of qubits at a time. In general quantum systems, all the qubits evolve
simultaneously according to some Hamiltonian describing the system. This si-
multaneous evolution of many qubits cannot be described by a single gate in our
model, which only operates on two qubits at once. In a realistic model of quantum
computation, we cannot allow general Hamiltonians, since they are not experimen-
tally realizable. Some Hamiltonians that act on all the qubits at once, however,
are experimentally realizable. It would be nice to know that even though these
Hamiltonians cannot be directly described by our model, they cannot be used to
compute functions not in BQP in polynomial time. This could be accomplished
by showing that systems with such Hamiltonians can be efficiently simulated by
a quantum computer. Some work has been done on simulating Hamiltonians on
quantum computers [1, 24, 33], but I do not believe this question has been com-
pletely addressed yet.

An important aspect of quantum mechanics not used in the quantum circuit
model is that identical particles are indistinguishable; in general they must obey
either Fermi-Dirac or Einstein-Bose statistics when they are interchanged. Particle
statistics do not appear to add any power to the quantum computing model, but
I do not believe this has been rigorously proved.

From the view of the current state of experimental physics, quantum com-
puters appear to be extremely difficult to build, but do not seem to violate any
fundamental physical laws. As qubits, we need to use quantum systems which are
relatively stable, which interact strongly with each other (to carry out quantum
gates quickly), but which interact weakly with everything else (to avoid errors
caused by interaction with the environment). Since the discovery of the factor-
ing algorithm, a variety of proposals for experimental implementation of quantum
computers have been made. One of these proposals is to use the electronic states
of ions in an electromagnetic ion trap as the qubits, to manipulate them using
lasers, and to communicate between different ions using a vibrational mode of
the ions, or phonon [12]. Another is to use nuclear spins of atoms in a complex
molecule as the qubits, and to manipulate them using nuclear magnetic resonance
spectroscopy [14, 18]. A quite recent proposal is to use nuclear spins of impurities
embedded in a silicon chip as the qubits, and to manipulate them using electronics
on the same chip [23]. None of these proposals has been experimentally realized
for more than a handful of qubits, but they all have proponents who believe that
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they may be scaled up to obtain much larger working quantum computers.

5 The Factoring Algorithm.

For factoring an L-bit number N , the best classical algorithm known is the
number field sieve, which asymptotically takes time O(exp(cL1/3 log2/3 L)). On
a quantum computer, the quantum factoring algorithm takes asymptotically
O(L2 log L log log L) steps. The key idea of the quantum factoring algorithm is
the use of a Fourier transform to find the period of the sequence ui = xi (mod N),
from which period a factorization of N can be obtained. The period of this se-
quence is exponential in L, so this approach is not practical on a digital computer.
On a quantum computer, however, we can find the period in polynomial time
by exploiting the 22L-dimensional state space of 2L qubits, and taking a Fourier
transform over this space. The exponential dimensionality of this space permits us
to take the Fourier transform of an exponential length sequence. How this works
should be clearer from the following sketch of the algorithm, the full details of
which are in [28], along with a quantum algorithm for finding discrete logarithms.

The idea behind all the fast factoring algorithms (classical or quantum) is
fairly simple. To factor N , find two residues mod N such that

s2 ≡ t2 (mod N) (4)

but s 6≡ ±t (mod N). We now have

(s + t)(s− t) ≡ 0 (mod N) (5)

and neither of these two factors is 0 (mod N). Thus, s + t must contain one
factor of N (and s− t another). We can extract this factor by finding the greatest
common divisor of s + t and N ; this computation can be done in polynomial time
using Euclid’s algorithm.

In the quantum factoring algorithm, we find the multiplicative period r of
a residue x (mod N). This period r satisfies xr ≡ 1 (mod N); if we are lucky
then r is even, so both sides of this congruence are squares, and we can try the
above factorization method. If we have just a little bit more luck, then xr/2 6≡
−1 (mod N), so we obtain a factor by computing gcd(xr/2 + 1, N). It is a fairly
simple exercise in number theory to show that for large N with two or more prime
factors, at least half the residues x (mod N) produce prime factors using this
technique, and that for most large N , the fraction of good residues x is much
higher; thus, if we try several different values for x, we have to be particularly
unlucky not to obtain a factorization using this method.

We now need to explain what the quantum Fourier transform is. The quantum
Fourier transform on k qubits maps the state Va, where a is considered as an integer
between 0 and 2k − 1, to a superposition of the states Vb as follows:

Va → 1
2k/2

2k−1∑

b=0

exp(2πiab/2k)Vb (6)
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It is easy to check that this transformation defines a unitary matrix. It is not
as straightforward to implement this Fourier transform as a sequence of one- and
two-bit quantum gates. However, an adaption of the Cooley-Tukey algorithm
decomposes this transformation into a sequence of k(k − 1)/2 one- and two-bit
gates. More generally, the discrete Fourier transform over any product Q of small
primes (of size at most log Q) can be performed in polynomial time on a quantum
computer.

We are now ready to give the quantum algorithm for factoring. What we do
is design a polynomial-size circuit which starts in the quantum state V00...0 and
whose output, with reasonable probability, lets us factor an L-bit number N in
polynomial time using a digital computer. This circuit has two main registers, the
first of which is composed of 2L qubits and the second of L qubits. It also requires
a few extra qubits of work space, which we do not mention in the summary below
but which are required for implementing the step (8) below.

We start by putting the computer into the state representing the superposition
of all possible values of the first register:

1
2L

22L−1∑
a=0

Va ⊗ V0. (7)

This can easily be done using 2L gates by putting each of the qubits in the first
register into the state 1√

2
(V0 + V1).

We next use the value of a in the first register to compute the value
xa (mod N) in the second register. This can be done using a reversible classi-
cal circuit for computing xa (mod N) from a. Computing xa (mod N) using re-
peated squaring takes asymptotically O(L3) quantum gates using the grade school
multiplication algorithm, and O(L2 log L log log L) gates using fast integer multi-
plication (which is actually faster only for relatively large values of L). This leaves
the computer in the state

1
2L

22L−1∑
a=0

Va ⊗ Vxa(mod N). (8)

The next step is to take the discrete Fourier transform of the first register, as
in Equation (6). This puts the computer into the state

1
22L

22L−1∑
a=0

22L−1∑

b=0

exp(2πiab/22L)Vb ⊗ Vxa(mod N). (9)

Finally, we measure the state. This will give the output Vb⊗ Vxj(mod N) with
probability equal to the square of the coefficient on this vector in the sum (9).
Since many values of xa (mod N) are equal, many terms in this sum contribute
to each coefficient. Explicitly, this probability is:

1
24L

∣∣∣∣∣∣∣

∑
a≡j(mod r)
0≤a<22L

22L−1∑

b=0

exp(2πiab/22L)

∣∣∣∣∣∣∣

2

. (10)
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This is a geometric sum, and it is straightforward to check that this sum is very
small except when

rb ≈ d22L (11)

for some integer d. We thus are likely to observe only values of b satisfying (11).
Rewriting this equation, we obtain

b

22L
≈ d

r
. (12)

We know b and 22L, and we want to find r. We chose 2L as the size of the
first register in order to make d/r likely to be the closest fraction to b/22L with
denominator at most N . Thus, all we need do to find r is to round b/22L to a
fraction with denominator less than N . This can be done in polynomial time using
a continued fraction expansion.

More details of this algorithm can be found in [28]. Recently, Zalka [34] has
analyzed the resources required by this algorithm much more thoroughly, improv-
ing upon their original values in many respects. For example, he shows that you
can use only 3L + o(L) qubits, whereas the original algorithm required 2L extra
qubits for workspace, giving a total of 5L qubits. He also shows how to efficiently
parallelize the algorithm to run on a parallel quantum computer.

6 Quantum Error Correcting Codes.

One of the reactions to the quantum factoring paper was that quantum computers
would be impossible to build because it would be impossible to reduce decoher-
ence and errors to levels low enough to ensure reliable quantum computation.
Indeed, without error correction, it would probably be an impossible task to build
quantum computers large enough to factor 100-digit numbers—factoring such a
number requires billions of steps, so each step would need to be accurate to bet-
ter than one part in a billion, a virtually impossible challenge in experimental
physics. Fortunately, it is possible to design fault-tolerant circuits for quantum
computers, which allow computations of arbitrary length to be performed with
gates having accuracy of only some constant c. Current estimates using known
methods for constructing fault-tolerant quantum circuits put this constant in the
range of 10−4 [25]; improved techniques could increase this value.

For some time after the factoring algorithm was discovered, however, it was
believed that making quantum computers fault-tolerant was impossible. There
were a number of plausible arguments for why this should be true. One argument
for the impossibility of quantum error correction was based on the theorem, related
to the Heisenberg uncertainty principle, that an unknown quantum state cannot
be duplicated. The argument was that since you cannot duplicate quantum infor-
mation, you cannot have more than one copy of a qubit around at any given time,
and thus that it was impossible to protect a qubit from errors. Indeed, the simplest
classical error correcting code is the 3-repetition code, which triplicates each bit,
and other classical error correcting codes also appear to be based on repetition.
Despite this pessimistic argument, quantum error correcting codes do exist, and
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are generalizations of classical error-correcting codes. The codes protect quantum
information from error and decoherence not by duplicating it, but by hiding it in
subspaces of C2n

which are affected very little by decoherence and errors that act
on only one qubit, or only a small number of qubits.

Before we discuss quantum error correcting codes in detail, we need to say
more about the measurement process. For every set of orthogonal subspaces of C2n

which span the entire space, there is a measurement which outputs one of these
subspaces as classical data, and which projects the original quantum state onto
this subspace. For example, if our quantum state is

∑2n−1
s=0 αsVs and we measure

the first qubit, we obtain the (not normalized) quantum state

2n−1−1∑

s′=0

α0s′V0s′ with probability
2n−1−1∑

s′=0

|α0s′ |2, (13)

and the state

2n−1−1∑

s′=0

α1s′V1s′ with probability
2n−1−1∑

s′=0

|α1s′ |2. (14)

This measurement corresponds to the partition of C2n

into the two subspaces
generated by {V0s′} and by {V1s′}.

To illustrate how quantum error correcting codes work, we first explain what
goes wrong when we try to extend the straightforward repetition code to the
quantum realm. The obvious thing to do is to take

V0 → V000 (15)
V1 → V111

This indeed does protect against value errors in our qubits. Suppose we apply the

error transformation
(

0 1
1 0

)
to the first qubit. Then the encodings of V0 and V1

get taken to the states V100 and V011, respectively. The subspace generated by these
two quantum states is orthogonal to that generated by the original codewords V000

and V111. We can thus make a measurement which reveals that there was an bit flip
in the first qubit without measuring (and thus disturbing) the encoded quantum
state. It is easily seen that bit flips applied to each of the three qubits create
subspaces that are orthogonal to each other, so there is a quantum measurement
which identifies on which qubit a bit flip error occurred without disturbing the
encoded state. It is then straightforward to fix the bit flip error by applying a
quantum gate to the qubit in error.

However, a phase error on one the qubits is disastrous in this code. What

happens when the error transformation
(

1 0

0 eiφ

)
is applied to one of the qubit

is that it takes an encoded V0 to an encoded V0, and takes an encoded V1 to an
encoded eiφV1. Thus, a phase error an any of the three qubits translates to a
phase error on the encoded qubit, making the encoding three times as vulnerable
to phase errors.
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We now explain the above difficulty another way which illuminates the con-
struction of quantum error-correcting codes. We consider phase flip errors, which
are phase errors with φ = π. There is a transformation that takes phase flips to
bit flips and vice versa. This is the Hadamard transform, which is

1√
2

(
1 1
1 −1

)
. (16)

When this is applied to all the qubits in the code above, as well as the encoded
qubits, we get the code

V0 → 1
2
(V000 + V110 + V101 + V011) (17)

V1 → 1
2
(V111 + V001 + V010 + V100)

Notice that for this code, a single bit flip interchanges V0 and V1, so this code
cannot correct bit flips, again showing that code (15) cannot correct phase flips.

What we need to make a good quantum error correcting code is a code having
the property that bit flips can be corrected both before and after the application
of the Hadamard transformation. Such a code can be found by generalizing the
codes (15) and (17), and it was discovered independently by two groups [11, 31].
It is based on the classical 7-bit Hamming code, and is defined as follows:

V0 → 1√
8

(
V0000000 + V1110100 + V0111010 + V0011101

+V1001110 + V0100111 + V1010011 + V1101001

)
(18)

V1 → 1√
8

(
V1111111 + V0001011 + V1000101 + V1100010

+V0110001 + V1011000 + V0101100 + V0010110

)
.

The indices of the basis vectors in the support of the encoded states are exactly the
classical 7-bit Hamming code. The fact that the classical Hamming code corrects
one error means this code can correct one bit flip. This quantum code is taken to
itself under the application of the Hadamard transform (16) both to the encoded
qubit and to each encoding qubit, showing that it is also able to correct one phase
flip. In fact, it can correct a simultaneous bit flip and phase flip.

We now have a seven bit code that can corrects a phase and/or a bit flip
applied to one of its qubits. This is by no means the complete set of possible
quantum mechanical errors on one qubit; this set is parameterized by several con-
tinuous variables. However, the ability of a quantum code to correct the following
set of four one-bit errors confers on it the ability to correct any possible one-bit
quantum error:

1 =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
, σz =

(
1 0
0 −1

)
, σy =

(
0 −i
i 0

)
. (19)

These four errors correspond to no error, a bit flip, a phase flip, and a simultaneous
bit and phase flip, respectively. We do not have enough space to explain this in
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detail, but the fact that these form a basis for the set of 2× 2 matrices is enough
to imply they can correct any one-bit quantum error. The rigorous details of this
implication are in [11]; a more intuitive explanation is in [6].

This quantum Hamming code is the smallest nontrivial example of a set of
codes based on linear binary codes named CSS codes after their discoverers [11, 31],
and which contains codes that are much more efficient than this first one. For fault
tolerance, which will be discussed next, we only need to use CSS codes. However,
a more general framework that includes these codes was discovered simultaneously
by two groups [19, 20, 10]. Substantial work on quantum error correcting codes
has occurred since their discovery, much of it referenced in [10].

In classical computers, error correcting codes have been found to be very
useful for storing and transmitting information, but not for providing fault-tolerant
computing. It is difficult to perform gates on encoded qubits, and once the qubits
have been decoded, they are no longer protected from error. Theoretically, the best
way to provide high levels of fault tolerance for classical circuits was discovered by
von Neumann, who discovered it after reasoning that some means of protection
from error had to exist in biological systems. This method involves the use of
massive redundancy. If you plan to run your computer for t steps, you make c log t
copies of every bit, and during the computation, you continually compare them in
order to catch any errors you have made. The drawback of this method is that
it requires c log t overhead, which is too expensive for use in practice, given the
remarkably low levels of error obtainable by current computer hardware. On the
other hand, it can be shown that if you must use unreliable gates, O(log t) overhead
is required to achieve reliable computation, so von Neumann’s construction is up
to a constant factor best possible.

As in classical computers, quantum error correcting codes should work well
for protecting qubits while they are being stored and transmitted. However, be-
cause quantum data cannot be cloned, fault tolerance using massive redundancy
cannot work in quantum computers. We thus need another method. The methods
currently known for providing fault tolerance in quantum computers are based on
quantum error correcting codes [25, 29]. To use quantum error correcting codes
for reliable computation, we need to show how to do two additional things with
them, neither of which is at first glance obviously possible. These are:

1. correct errors using noisy gates so that errors are corrected faster than new
errors are introduced;

2. perform quantum gates on encoded bits without decoding them, while mak-
ing sure that any errors cannot propagate too widely during the computation.

We do not have much space to discuss how to accomplish these tasks, so we say
nothing about the first task, and give only a very broad sketch of how the second
task can be accomplished.

In order to compute on encoded qubits without decoding, we need fault-
tolerant implementations of a universal set of quantum gates on the encoded
qubits. What we need are circuits having the property that if errors occur in
only a few quantum gates, or are present in a few of the inputs, these errors can-
not affect too many of the qubits in the output of the gate (otherwise, there will
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Figure 3: Implementation of a CNOT gate on qubits encoded using the quantum
Hamming code (18). This circuit can be used in fault-tolerant quantum circuits,
since an error in the i’th wire of an encoded qubit (or in the i’th gate) can only
propagate to the i’th wire of each of the output qubits. Gates that are imple-
mentable on encoded qubits in this fashion are called transversal gates.

be more errors than the quantum error-correcting codes we are using can correct).
It turns out that certain gates are easy to implement this way. Figure 3 shows
how to perform a CNOT on two encoded qubits by performing it on each pair of
encoding wires. Similarly, if a Hadamard gate (16) is applied to each quantum
wire, a Hadamard gate is performed on the encoded qubit. Implementations of
this type are called transversal gates, and these do not form a universal set of
quantum gates. We need to supplement the set of transversal gates with an extra
gate implemented using another method. It was shown how to perform the Toffoli
gate fault-tolerantly on encoded qubits in [29], and the set of transversal gates
augmented by this gate is a universal set of gates.

To implement a circuit of size t fault-tolerantly, the techniques of [29] required
gates with error rate at most O(1/(log t)c). To obtain fault tolerance using gates
with constant error rate requires a further idea: the use of concatenated codes.
These are nested codes, where each layer catches most of the errors missed by the
previous layer. Judicious use of concatenated codes and careful analysis shows that
gates with some constant error rate are able to produce fault-tolerant quantum
circuits; this constant is currently estimated at around 10−4. For more details, see
the excellent survey of fault-tolerance in quantum computing [25].

7 Other Work.

This section discusses areas related to quantum computing; it is not intended to
be a complete survey, but a somewhat idiosyncratic view of some results I find in-
teresting. I have tried to mention survey articles when they exist, so the interested
reader can find pointers to the literature. One excellent resource is the quant-ph
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preprint archive, at http://xxx.lanl.gov/, containing preprints of many recent
research articles in this field. John Preskill, at Caltech, recently taught a course
on quantum computing and quantum information, and his excellent set of lecture
notes is available on the web [26].

As Feynman suggested, it appears that quantum computing is good at com-
puting simulations of quantum mechanical dynamics. Some work has already
appeared showing this [1, 24, 33], but much remains to be done.

A significant algorithm in quantum computing is L. K. Grover’s search algo-
rithm, which searches an unordered list of N items (or the range of an efficiently
computable function) for a specific item in time O(

√
N), an improvement on the

optimal classical algorithm, which must look at N/2 items on average before find-
ing a specific item [21]. The technique used in this algorithm can be applied to a
number of other problems to also obtain a square root speed-up [22].

One of the earliest applications of quantum mechanics to areas related to
computing is quantum cryptography, more specifically quantum key distribution.
Consider two people trying to share some secret information which they can then
use as a key for a cryptosystem. If they can only communicate over a phone
line possibly open to eavesdroppers, they have no choice but to use public key
cryptography [27], which may be open to attack by a quantum computer or (say)
discovery of a fast factoring algorithm on a classical computer. However, if they in
addition have access to an optical fiber which they can use to transmit quantum
states, they can use quantum cryptography [4]. One of them (the sender) transmits
states chosen at random from a set of non-orthogonal quantum states (e.g. V0,
V1, 1√

2
(V0 + V1), 1√

2
(V0 − V1)) The receiver then reads the states in either the

basis {V0, V1} or { 1√
2
(V0 ± V1)}, again chosen at random. Communicating over

a classical channel using a special protocol, they can figure out the states for
which they agree on the measurement basis; they should agree on about half the
states, each of which supplies a bit towards a secret key. If an eavesdropper was
listening, she cannot have gained too much information—since she does not know
in which basis the states were transmitted, any information she gains must cause
a disturbance in the states, which the sender and receiver can detect by measuring
some of their states instead of using them for the secret key. They can also
further sacrifice some of their bits to ensure that the eavesdropper gains virtually
no information about the remaining bits of their key, and that they agree on all
the bits of this key. Since the original quantum cryptography papers, there have
been many articles either proposing other schemes or working towards rigorous
proofs that the scheme is secure against all possible quantum attacks (i.e., when
the eavesdropper has access to a quantum computer). A good bibliography on
quantum cryptography is [8].

Quantum cryptography is but one aspect of a rapidly burgeoning subject,
quantum information theory. A startling result in this field, the interest in which
helped contribute to its recent rapid growth, was the discovery of quantum tele-
portation [5]. It is not possible to transmit an unknown quantum state using only
classical information (say, over a telephone line). However, if two people share
an EPR pair, such as the quantum state 1√

2
(V01 − V10), with the sender holding
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the first qubit and the receiver holding the second, then they can transmit an
unknown quantum bit using a classical channel. The sender performs a combined
measurement on the unknown state and the EPR pair, and transmits the classical
two-bit outcome to the receiver, who then uses this information to reconstruct
the unknown state from his half of the EPR pair. The act of teleportation thus
uses up the resource of entanglement between the sender and the receiver, which
is present in the EPR pair. One research direction in quantum information theory
is quantifying the amount of entanglement in a quantum state. Another direc-
tion is measuring the classical and the quantum capacities of a quantum channel.
More information on quantum information theory can be found in Preskill’s course
notes [26] and in the survey article [6].

Another recent development is the study of quantum communication com-
plexity. If two people share quantum entanglement, as well as a classical commu-
nications channel, this permits them to send each other qubits, but does not reduce
the number of bits required for transmission of classical information. However, if
they both have some classical data, and they wish to compute some classical func-
tion of this data, shared quantum entanglement may help reduce the amount of
purely classical communication required to compute this function. This was first
shown by Cleve and Burhman [13]. More results on communication complexity
have since been shown, and some of these were recently used to give lower bounds
on the power of quantum computers in the black-box (oracle) model [9].

There has been a substantial amount of recent work on both quantum error
correcting codes and quantum fault tolerance. Many results on quantum error
correcting codes are reviewed in [10], and Preskill has written an excellent survey
of fault tolerant quantum computing [25].
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The Population Dynamics

of Conflict and Cooperation

Karl Sigmund

Keywords and Phrases: Lotka Volterra equations, replicator dynamics,
permanence, heteroclinic cycles, iterated games.

1. Introduction The last decades have seen an explosive growth in biosciences,
and astonishing progress in the mathematical modelling of fields as diverse as
neurobiology, membrane formation, biomechanics, embryology, etc (see e.g. J.
Murray, 1990). The sequencing of biomolecules produces such a vast wealth of data
on proteins and polynucleotides that the mere handling of the stored information
becomes a computational challenge, let alone the analysis of phylogenetic trees
and functional networks which is the main task of bioinformatics.

The recent advances in our understanding of the chemical mechanisms de-
scribing the interactions of specific molecules – how virus, for example, use binding
proteins to attack and penetrate hosts cells – are spectacular, but do not suffice to
tackle basic problems like disease progression or the co-evolution of hosts and par-
asites. It is populations of virus particles, or immune cells, or hosts, that regulate
each other’s frequencies. The feedback loops of these ecosystems are too complex
to be understood by verbal arguments alone. The biological community has come
to accept that basic aspects of immunology and evolutionary ecology can only be
analysed by mathematical means.

This has not always been the case. The pioneering work in genetics due to
Fisher, Haldane, Wright, and Kimura, as well as the epidemiological models of
Kermack and McKendrick occupied a marginal position in biology for the most
part of this century, while at the same time motivating important mathematical
advances in statistics, stochastic processes and dynamical systems (Fisher (1918)
on correlation, Kolmogoroff (1937) on travelling waves in a gene pool, May (1976)
on chaos). The models of evolutionary biology cannot compete in mathematical
depth and sophistication with those of theoretical physics, but they offer a wide
range of questions of great intuitive appeal.

This lecture surveys mathematical models in ecology and evolution, empha-
sising the major feedback mechanisms regulating the population densities of the
interacting self-replicating units – be they genes, virus particles, immune cells or
host organisms. The great variety of biological examples made it necessary to
economise on mathematical diversity, by keeping to the framework of ordinary dif-
ferential equations. This is certainly not meant to imply that time delays, spatial
heterogeneities and stochastic fluctuations are secondary effects. In fact, they have
a major impact in many applications (see, e.g., the survey by Levin et al., 1997)
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2. Population ecology If we assume that n species live in an ecosystem, that
xi is the density of species i and that its per capita growth rate ẋi/xi depends on
the densities of the interacting populations, then we obtain the ecological equation

ẋi = xifi(x). (1)

The state space Rn
+ is invariant; so are its boundary faces, where one or several

of the densities are 0; and the restriction of (1) to a face is again an ecological
equation. If the fi are affine linear, we obtain – as simplest example – the Lotka-
Volterra equation

ẋi = xi(ri +
∑

aijxj) (2)

(i = 1, ..., n). It should be stated right at the outset that many ecological interac-
tions display more complex interaction terms; but often, (2) offers a first approx-
imation which is flexible enough to embody the main aspects of the community
structure (Hofbauer and Sigmund, 1998). For instance, if 1 is a prey species and
2 its predator, we obtain

ẋ1 = x1(a− bx2) (3)

ẋ2 = x2(−c + dx1). (4)

where a, b, c, d > 0. In intR2
+ there exists a unique fixed point (c/d, a/b) which

is surrounded by periodic orbits. If we add a self-limitation of the prey, i.e. set
f1 = a − ex1 − bx2 in (3), we obtain damped oscillations around the fixed point,
or (if e > 0 is large) extinction of the predator (see fig. 1).

Fig. 1: Predator-prey equations

On the other hand, if 1 and 2 are species competing for the same resources,
we have to assume that the intrinsic growth rates satisfy ri > 0 and the interaction
terms aij < 0 (i, j ∈ {1, 2}). On each positive half-axis, there is one fixed point
Fi corresponding to equilibrium of species i in the absence of the other species.
Generically, there are three possible outcomes (see fig. 2):

(a) dominance: all orbits in intR2
+ converge to Fi; species i is said to dominate

the other species;
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(b) coexistence: there exists a fixed point F12 ∈ intR2
+ which is globally stable

(i.e. attracts all orbits in intR2
+);

(c) bistability: F12 is a saddle; almost all orbits in intR2
+ converge to F1 or

F2, depending on the initial condition.

Fig. 2: Competition equations

Because two-dimensional Lotka-Volterra equations admit no limit cycles, their
dynamics can be easily classified; for three or more species, this is no longer the
case. Systems with two competing species and one prey exhibit chaos and systems
with three competing species (which are monotonic and hence admit no chaos,
see Hirsch, 1988) have not been classified yet, in spite of impressive progress (van
den Driessche and Zeeman, 1998). One of the reasons is the existence of hete-
roclinic cycles, see fig. 3(a) (May and Leonard, 1975). If, in the absence of the
third species, species 1 dominates 2, 2 dominates 3 and 3, in turn, dominates 1,
then the boundary of R3

+ contains a heteroclinic cycle consisting of three saddle
points Fi (with only species i present) and three connecting orbits (orbit o1 has
F2 as α- and F1 as ω-limit etc). Depending on the products of the eigenvalues
in the stable and unstable directions, this heteroclinic cycle can attract or repel
the neighbouring orbits in intR3

+. Three competing species with heteroclinic cy-
cles have been found in laboratory populations. In higher dimensional ecological
models, heteroclinic cycles become common. Such cycles are non-generic features
for general dynamical systems, since saddle-connections can be destroyed by ar-
bitrarily small perturbations. Within the class of ecological equations, however,
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which leave the boundary faces of Rn
+ invariant, heteroclinic cycles and networks

(where several cycles issue from one saddle) are usually robust. Such attractors
offer a new brand of nonlinear dynamics: orbits approach saddle points ever more
closely, and remain there for increasingly long times; furthermore, the sequence of
saddles visited by an orbit can switch in arbitrary order from one cycle to another
(Chawanya, 1995).

Fig. 3: Heteroclinic orbits and networks

3. Permanence If the orbit of an ecosystem reaches the neighborhood of a
heteroclinic attractor on the boundary, some species are doomed. The ecosystem,
in that case, is unstable: this notion of stability has nothing to do, however, with
the usual asymptotic stability of a fixed point, which is a local notion. A more
suitable stability notion in this context is that of permanence: (1) is said to be
permanent if the boundary (including infinity) is a repellor, i.e. if there exists a
compact set K ⊂ intRn

+ such that whenever initially x ∈ intRn
+, then x(t) ∈ K for

t sufficiently large. (After a transient phase, all densities are uniformly bounded
away from 0). This notion has been extensively explored (see the survey by Hutson
and Schmitt, 1992). Permanence implies the existence of a fixed point in intRn

+,
but this point need not be locally stable; and indeed ecologists view an ecosystem
as stable even if it exhibits violent oscillations, as long as its species remain safe
from extinction.

For a dissipative system (all orbits uniformly bounded from above), the most
useful sufficient condition for permanence is the existence of an average Lyapunov
function. This is a function P vanishing on the boundary and positive on the
interior such that the continuous extension Ψ of the logarithmic derivative of P
has the property that for every ω-limit point x on bdRn

+ there is a T > 0 with

∫ T

0

Ψ(x(t))dt > 0. (5)
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Then P grows (in the long run) along every interior orbit sufficiently close to the
boundary. In particular (2) is permanent if all orbits are uniformly bounded and
the set

N := {x ∈ Rn
+ : ri +

∑
aijxj < 0, i = 1, ..., n} (6)

is disjoint from the convex hull of the fixed points on the boundary. The condition
is not necessary for permanence if n > 3. But if (2) is permanent, then there
is a unique equilibrium x̂ with all species present, and it is the limit of all time-
averages of orbits in the interior of the state-space. If D is the Jacobian at x̂, then
(−1)n detD > 0, and trace D < 0. Furthermore, (−1)n det A > 0, where A is the
matrix of the interaction terms aij (Hofbauer and Sigmund, 1998).

4. Invasion Many studies have considered the assembly of ecological communities
by sequential invasion (i.e. adding one species at a time). Will species n + 1
grow when introduced in small numbers? If the resident system is in equilibrium
z = (z1, ..., zn), this simply means to check whether the growth rate fn+1(z, 0)
is positive. If the competition between two species is bistable, for instance, none
can invade the other. If there is coexistence, each can invade, etc. Invasion is
a question of transversal stability, which, if the resident system admits a chaotic
attractor, offers subtle ergodic twists involving riddled basins of attraction etc
(Ferriere and Gatto, 1995, Ashwin et al, 1996).

If the resident species obey a permanent Lotka-Volterra equation with fixed
point z ∈ intSn, the condition fn+1(z, 0) > 0 implies that the lim sup of the in-
vading species’ density is positive, but tells nothing about the lim inf. The new
attractor need not be close to the former one; the invading species can drive others
to extinction, and even ultimately itself. Hofbauer (1998) has found conditions in
terms of spatial or temporal averages of the initial growth rate which guarantee
that the invasion of a permanent Lotka-Volterra community succeeds. His bifur-
cation analysis allows to decide whether, if a parameter changes so that invasion
becomes possible, the new attractor is contained in a neighborhood of the resident
attractor or not. The invasion of a heteroclinic cycle is a particularly arduous
problem.

Evidence from field studies and numerical simulations suggest that ecosys-
tems become increasingly harder to invade as time goes on, and that there is an
upper limit to how ‘closely packed’ species can be; but so far, this has only been
demonstrated under restrictive assumptions. Interestingly, predators can stabilise
ecosystems: if a ‘keystone’ predator is removed from a permanent system, the
remaining system is no longer permanent. For instance, if species 1 dominates
species 2, or if the competition between species 1, 2 and 3 results in a heteroclinic
attractor, then a suitable predator can mediate co-existence; Schreiber (1998) has
produced systems with n competing prey, each with its specialised predator, such
that removal of any predator species results in only one prey species surviving.
Such ecosystems cannot be obtained by simply adding one species at a time; se-
quential assembly has to proceed in a more roundabout way, using species that
are later eliminated like a scaffolding. These results agree well with the current
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emphasis of biologists on the role of contingency and history dependence in real
ecological succession chronicles, and highlight the fact that a successful invasion
can initiate a surprising sequence of changes in the ecosystem (see Mylius et al,
1998).

5. Replicator Dynamics Competition between conspecifics drives natural se-
lection. The basic mechanism is simple: an inheritable trait which allows for a
higher reproductive success spreads in the population. This can lead to extraordi-
nary feats of adaptation due to relentless optimisation under constraint. In fact,
some computational approaches to optimisation problems are mimicking the mas-
sively parallel algorithm of Darwinian evolution. Within ‘populations’ of possible
solutions to a given problem (for instance in aerodynamics), those which perform
better are allowed to multiply at the expense of the others. Occasionally, some
‘offspring’ is randomly altered, corresponding to the mutation or recombination of
existing solutions. Such genetic algorithms allow to explore the space of solutions
and often to home in on some optima (Forrest, 1993).

But in biology, it is the population itself that is often the problem. The
efficiency of a wing shape may be independent on what the other birds are doing,
but the success of a sex ratio or of a given degree of aggressivity is not. In a
population with a surplus of males, it pays to produce females; it pays to escalate
a conflict if the others are unlikely to escalate, but otherwise it is better to avoid
escalating, etc. Game theory, rather than optimisation, is appropriate to deal with
problems where the success depends on what the others are doing.

Assume that xi is the frequency of the individuals using strategy i (i =
1, ..., n). A strategy, in this context, is simply a trait (behavioural, physiologi-
cal, morphological) whose payoff, i.e. average reproductive success, depends on
the frequencies x of the competing types. If the traits are inherited, the frequen-
cies will evolve in time, depending on their success. If individuals breed true, the
per capita rate of increase ẋi/xi is given by the difference fi − f̄ , where fi(x) is
the average payoff for using i if the population is in state x, and f̄ =

∑
xjfj is

the average success in the population. This yields the replicator equation

ẋi = xi(fi(x)− f̄) i = 1, ..., n (7)

on the simplex Sn = {x ∈ Rn
+ :

∑
xi = 1}. This simplex is invariant, and so are

its faces. The replicator equation is closely related to the ecological equation (1),
of course. It introduces an ecological viewpoint into game theory.

Let us consider a conflict between pairs of individuals, for instance some
contest over a resource, and assume that the strategies i correspond to different
types of fighting behaviour, and that aij is the average payoff for using i if the
co-player uses j. Then the payoff matrix A = (aij) determines the average pay-
off (Ax)i = ai1x1 + ... + ainxn for strategy i in the population (assuming that
individuals meet randomly) and (7) turns into

ẋi = xi((Ax)i − xT Ax). (8)
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This equation is not only similar, but actually equivalent to a Lotka-Volterra
equation for n − 1 species: a diffeomorphism from Sn (minus one face) to Rn−1

+

maps orbits of one dynamical system onto the other, and vice versa. For n = 2, we
obtain the same generic behaviour as for two competitors: dominance, coexistence
or bistability. For n = 3, heteroclinic cycles show up (not just as a theoretic
possibility: the mate guarding strategies of male lizards form a rock-scissors-paper
cycle). With n > 3, limit cycles and chaotic attractors occur. (8) is permanent if
there exists a p = (p1, ..., pn) with pi > 0 for all i such that for every equilibrium
z on the boundary,

pT Az > zT Az (9)

(a conditions that can easily be checked by linear programming), etc.
Frequency-dependent selection will not optimise, in general. Only for very

special interaction do replicator equations become gradients: if the game is
symmetric, for instance (A = AT ) or more generally if the partial derivatives
fi,j = ∂fi/∂xj obey

fi,j + fj,k + fk,l = fl,k + fk,j + fj,i (10)

for all i, j, k (one has to use a suitable Riemannian metric on Sn, cf. Hofbauer and
Sigmund, 1998).

6. Other Game Dynamics Among higher animals, and in particular humans,
strategies can also spread by learning and imitation. Depending on the details of
transmission, this leads to a large number of game dynamics for the frequencies xi,
often based on underlying stochastic processes. Again, the replicator dynamics is
a kind of benchmark. Another example is the best reply dynamics (a differential
inclusion)

ẋi ∈ β(x)− xi (11)

where β(x) is the set of strategies whose payoff (in a population where strategy i
occurs with frequency xi) is maximal. The idea is that in every short time interval,
a small fraction of the players updates their strategy: these players know how to
optimise, but do not anticipate that others will also update. The orbits of (11)
are piecewise linear. Intriguingly, their asymptotic behaviour is often that of the
time averages of the solutions of the replicator equation (8).

This brings one closer to classical game theory. Let us consider a game with
payoff matrix A and assume that points p ∈ Sn are mixed strategies (pi being the
probability for a player to use strategy i). Then p is a best reply to q ∈ Sn if
pT Aq ≥ xT Aq for all x ∈ Sn. A point p is a (symmetric) Nash equilibrium if it is
a best reply against itself. A Nash equilibrium is a fixed point for (8) (and every
other decent game dynamics), but the converse need not hold. In fact, the Nash
equilibria are precisely the fixed points of (8) which are saturated – missing pure
strategies have no selective advantage. Every game with finitely many strategies
has a Nash equilibrium, but there are games such that almost no solution, under
any reasonable adjustment dynamics, converges to a Nash equilibrium.
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Evolutionary game theory has originated with the concept of evolutionarily
stable strategies (ESS). Intuititively, a strategy q is said to be an ESS if, whenever
all members of the population adopt it, an invading (and sufficiently small) minor-
ity using a different strategy has no selective advantage (Maynard Smith, 1982).
This means that q is Nash, and that whenever p is an alternative best reply to q,
then qT Ap > pT Ap. Equivalently, q is an ESS if

qT Ax > xT Ax (12)

for all x 6= q in a neighborhood of q. Not every game has an ESS. The connexion
with the replicator equation is given by the following characterisation: q ∈ Sn is
an ESS if and only if, whenever q is a convex combination of the (possibly mixed)
strategies p1, ...,pm, the mean population strategy

∑
xip

i converges (under the
replicator dynamics) towards q if initially it was close to q (Cressman, 1992). The
idea that evolution always results in an ESS is not justified, however. There exist
considerably more complex outcomes, as captured in the notion of an evolutionarily
stable attractor, for instance (Rand et al, 1994).

7. Long-term Evolution So far we have assumed that offspring are clones of
their parent: ‘like begets like’. The machinery of Mendelian inheritance is much
more complex, and we have to follow the frequencies of genes in the gene pool of the
population. As long as the instruction is contained in one genetic locus (an address
in the genome, housing two genes – one from the father and the other from the
mother), the corresponding dynamics for the gene frequencies in the population
is still of replicator type (7). But in general, the trait depends on several genetic
loci, which can be recombined during reproduction, and the dynamics becomes
challenging.

The state x of the gene pool determines the frequencies of the different types
of individuals, who use different (pure or mixed) strategies. This determines the
frequencies p(x) of the strategies in the population, and hence the reproductive
success of each type, and therefore the rate of change in the gene frequencies x.
If the trait is determined by one genetic locus only, and if there are at most two
pure strategies, or three types of genes which can occur on that locus, then an
ESS q which is feasible is strategically stable in the sense that if a state x̂ of
the gene pool satisfies p(x̂) = q, then every near-by state x remains close to x̂
and p(x) converges back to q (Cressman et al 1996). For more complex genetic
mechanisms, the relation between evolutionary stability and long-term stability
(i.e. strategic stability against every invasion attempt) remains unclear, and offers
a wealth of problems on normal forms and center manifold theory. The replicator
dynamics can be used as a first approximation in the absence of more specific
information on the genetic background. That kind of information is likely to be
provided soon, and will act as a motivational booster for the population genetics
of frequency-dependent selection.

At the present state, the best prospects for studying long-term evolution are
offered by adaptive dynamics. It is based on the assumption that replication is
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only almost exact, and that occasional mistakes – mutations – occur so rarely
that the fate of one mutation (its extinction or fixation under selection) is settled
before the next mutation occurs (Metz et al, 1996). The population is thereby
assumed to consist of one type only, which can be substituted by another type
etc. This describes a dynamics in trait space which seems utterly remote from the
description of population frequencies given by replicator dynamics but which, in
important cases, reduces to it. In particular, if the trait space is a simplex (for
instance, probabilities for certain types of behaviour) with a suitable Riemannian
metric, one obtains (7) again. But this should not obscure the fact that replicator
dynamics and adaptive dynamics adress fundamentally different processes operat-
ing on distinct time-scales. One describes short-term evolution – the population
dynamics of the frequencies of a given set of genes, or traits; the other describes
long-term evolution, the repeated introduction of new mutations (Eshel, 1996).

If the invader’s reproductive success is a linear function of its trait, then an
ESS is locally stable for each adaptive dynamics; but for many examples, this
assumption does not hold, and the evolution in trait space may well lead away
from an ESS.

Often, two players engaged in a biological ‘game’ belong to different popula-
tions, with different sets of strategies. Most of the previous results carry over to
such two-role games, but the general tendency is that there is still less stability: for
instance, no mixed strategy can be an ESS; there exists an incompressible volume
form; heteroclinic cycles become more frequent, etc.

The interacting populations can be different species – for instance, predators
and their prey – and in this case adaptive dynamics leads to models of co-evolution.
A typical question in this context is whether co-evolution may lead to interaction
parameters such that the population numbers oscillate chaotically – a question
on which the jury is still out. The interacting populations can also belong to the
same species: males and females have conflicting interests about their amount of
parental investment, owners and intruders about territorial issues, etc. In that
case, role-specific strategies are likely to evolve, for example ‘if owner, be prepared
to fight to the end; if intruder, avoid escalation’.

Before turning to some applications, it should be emphasised again that es-
sential aspects can change completely if supplementary effects are included, for
instance spatial distribution (Takeuchi, 1996), genetic or physiological heterogene-
ity, stochastic fluctuations (Durrett, 1991) or time lags (Gopalsamy, 1992).

8. Population Dynamics of Infectious Diseases Applications of mathe-
matical modelling to epidemiology, immunology and virology are of increasing
biomedical relevance. They help to understand the course of infectious diseases
both within organisms and within populations, and suggest guidelines for treat-
ment and vaccination.

Within a population, the interactions of infected, susceptible and immune
organisms lead to endemic or epidemic spread of the disease. In a commonly used
epidemiological model (Anderson and May, 1991), if frequencies of uninfected and
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infected hosts are denoted by x and y, this becomes

ẋ = k − dx + cy − βxy (13)

ẏ = y(βx− d− v − c) (14)

where k is a constant birth (or immigration) term, d the mortality of uninfected,
v the extra mortality due to the infection, i.e. the virulence, and c the rate
of recovery (which in this simple model does not confer immunity). The model
assumes that new infections occur through random contacts between infected and
susceptibles. An infection can only spread if the frequency x of uninfected exceeds
(d + c + v)/β. This threshold principle, a cornerstone of epidemiology, holds
for most of the variants of the model (including immunity, other transmission
mechanisms, periodic oscillations in susceptiblity, other birth and death rates,
etc). For many diseases, one has to consider several classes of hosts (different risk
groups, for instance, in the case of AIDS, see Dietz and Hadeler, 1986). Some of
these extensions lead to chaotic dynamics (Grenfell and Dobson, 1995, Olsen and
Schaffer, 1990).

Infections are caused by pathogens (virus, bacteria, protozoa), which can all
be subsumed as parasites. In (13-14), the pathogen can invade only if the disease-
free equilibrium x = k/d is not saturated, i.e. if the basic reproductive rate

R0 =
kβ

d(d + v + c)
(15)

(the number of secondary infections produced by an infected in a population of
susceptibles) exceeds 1.

The population dynamics of disease-carrying parasites, and their impact on
the population dynamics of the host, is an area of rapid growth. Even the simplest
models display oscillations. The relation between parasites and their host resem-
bles that between predators and prey, of course: parasites can mediate permanent
co-existence between competing strains of hosts, etc. Heteroclinic cycles are likely
to occur, for instance when two strains of a host engaged in a bistable competition
are beset by two suitably specialised strains of parasites: a resident population of
host 1 can be invaded by parasite 1, the resulting equilibrium can be invaded by
host 2 (eliminating hosts and parasites of type 1), which in turn allows parasite 2
to invade, etc.

The dynamics described so far deal with the course of an infection within a
population. Its development within an individual host is no less dramatic, and con-
stitutes a new chapter in biomathematics, dealing with the population dynamics
and evolution of the ‘biosphere’ beneath the skin of the host organism. These eco-
logical systems are ideally suited for modelling, since they involve huge populations
and short generations, and are subject of intensive clinical tests.

HIV offers the most studied example. As is well-known, the full-blown symp-
toms of AIDS develop only after a latency period of some ten years. But this
quietness is misleading. Clinial tests based on simple dynamical models have re-
vealed a fierce battle between the virus and the immune system of the HIV-infected
patient. The average rate of HIV production exceeds 1010 particles a day. Free
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virus particles are cleared within a few hours. Virus infected cells live on average
two days.

HIV needs human cells (the ‘target cells’) to reproduce. In doing so, it kills
these cells. Hence virus and target cells interact in much the same way as preda-
tors and their prey. But HIV is not only a predator, it is also a prey. The immune
system contains a vast repertoire of possible responses (different types of antibod-
ies, killer cells, etc), whose production is stimulated by specific pathogens. The
immune responses attack and destroy the pathogens. Thus killer cells and virus
also interact like predators and prey. Much clinical research has recently gone into
finding out which role – prey or predator – has more relevance for HIV dynamics.
At present, it appears that target cell limitation and immune control are of the
same magnitude. This leads to prey-predator-superpredator systems which, as
known from ecology (e.g. Hastings and Powell, 1991), exhibit complex dynamics.
In our case, the simplest model reduces to

ẋ = k − dx− βxv

ẏ = βxv − ay − pyz

v̇ = ry − sv (16)

ż = cyz − bz

Here x (resp. y) are the frequencies of uninfected (resp. infected) cells, v that
of free virus particles and z the abundance of the killer cells produced by the
immune response (Nowak and Bangham 1996, DeBoer and Perelson 1998). There
is a minimum threshold of infected cells to activate an immune response (y >
b/c). The frequencies oscillate around an equilibrium value which can be stable
or unstable, i.e. subject to a Hopf bifurcation. The model shows that increasing
the responsiveness c of the immune system decreases the abundance y of infected
cells, but not necessarily the density z of the killer cells; in other words, there is no
simple correlation between virus load and the magnitude of the immune response.

9. The Evolution of Virulence Most pathogens evolve very quickly, due to
their short generation time, their high mutation rate and the intensive selection
pressure acting on them. HIV, for instance, spends on average 1500 generations
within the body of a patient. During this time, its genetic diversity increases
relentlessly, due to copying errors, so that the immune system is faced with ever
new challenges.

Mathematical models of the interaction between virus replication and immune
response led to completely new interpretations of disease progression in HIV in-
fection (Nowak et al., 1991). HIV evolution can shift the steady state within an
infected individual, and lead to escape from immune responses. Such immune
responses are triggered by specific parts (so-called epitopes) of the virus. In the
simplest model, the virus has two epitopes with two variants each, yielding an
eight-dimensional predator-prey equation:

v̇ij = vij(rij − xi − yj)
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ẋi = xi(ci(vi1 + vi2)− b) (17)

ẏj = yj(kj(v1j + v2j)− b)

where vij is the concentration of the virus with sequence i at the first and j at the
second epitope (1 ≤ i, j ≤ 2), and xi and yj are the concentrations of antibodies
directed at sequence i of the first resp. j of the second epitope. Generically, one
or two of the four viral species and the same number of antibody species have to
vanish, and the remaining densities oscillate (Nowak et al, 1995). A homogenous
virus population induces an ‘immunodominant’ response against a single epitope,
but a new variant at this epitope can cause the immune response to shift to the
other epitope. Heterogenous virus population stimulate complicated fluctuating
responses.

This dynamic picture of HIV infection was confirmed by detailed analysis of
virus decay slopes in drug treated patients. Again mathematical models were at
the core of this newly developing demography of virus infection.

The extreme mutability of HIV explains also why drug-resistant forms emerge
so rapidly. Resistance against combinations of drugs requires several mutations.
Mathematical models help in devising optimum treatment schedules based on com-
bination therapy.

This is one chapter of a ‘Darwinian medicine’ grounded in evolutionary biol-
ogy. In this domain, the evolution of virulence (i.e. the parasite-induced mortality
of host organisms) is of particular importance (Levin and Pimentel, 1981, Frank,
1996). Pathogens use the bodies of their hosts both as resource and as vehicle.
Textbook knowledge presumed that parasites would always evolve towards de-
creased virulence, since it is better to milk the host rather than butcher it. If
parasites become too virulent, they face extinction by depleting their reservoir of
susceptibles. It was concluded that successful parasites all become benign. The
most impressive example of such an evolution towards harmlessness is the myx-
oma virus, released in Australia to kill rabbits: within few years, the death rate
of infected rabbits dropped from more than 99 percent to less than 25 percent.
Similar trends have been observed in many human diseases. Adaptive dynamics
shows that evolution can actually turn parasites into mutualists necessary for the
survival of their hosts (Law and Dieckmann, 1998).

But not all parasites become harmless. Selection for a higher basic repro-
ductive rate R0 often leads to conflicting demands on infectivity and long-term
exploitation. If in (15), for instance, the virulence v is an increasing function of
the transmission rate β, then R0 need not necessarily decrease in v. And in the
case of super-infection, i.e. when several strains compete within a host, selection
on parasites does not optimise R0. Roughly speaking, more virulent strains will
have a selective advantage in the intra-host competition, and less virulent in the
inter-host competition. Parasites face a so-called tragedy of the commons: the
need to outgrow their rivals forces them to over-exploit the host, thus possibly
driving their common resource to extinction. Game theoretical arguments help in
analysing such situations. In general, there will be no evolutionarily stable strain
(Nowak and May, 1994).

Of particular interest is the adaptive dynamics of viral particles which can
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spread either by horizontal transmission, i.e. by infecting of new hosts, or by ver-
tical transmission, in the form of provirus integrated into the host’s genome. Even
if we assume that two strains cannot co-exist within one host (no superinfection),
they can coexist within the population if one is favoured by vertical and the other
by horizontal transmission (Lipsitch et al, 1996).

10. From the Red Queen to the Major Transitions The parasite’s ecol-
ogy is further complicated by countermeasures of the hosts which tend to reduce
virulence. Due to their short generation time, parasites can quickly adapt to pre-
vailing host defenses, but sexual reproduction allows host organisms to recombine
their genes and thus to present shifting targets to the pathogens trying to enter
the cells.

Many evolutionary biologists view this as the main reason for the prevalence
of sexual reproduction (Hamilton, 1980). Indeed, the host faces a peculiar prob-
lem of frequency dependent selection. Gene combinations for successful immune
systems tend to spread, but if they become too widespread, they cannot remain
successful, since parasites will adapt. Sexual host species keep reshuffling their
gene combinations, thus providing them with the advantage of being rare.

This is the so-called Red Queen theory of sex, named after a figure from the
sequel of Alice in Wonderland in whose realm ‘you have to run with all your speed’
just to stay in place – a familiar feature in co-evolution. A species can never stop
adapting since the other species do not stop either. Mathematical models for the
resulting arms races display a profusion of limit cycles, irregular oscillations and
heteroclinic attractors.

The Red Queen metapher makes evolution look like a treadmill rather than
a ladder to progress. Nevertheless, evolution has come up with increasingly com-
plex structures, through a sequence of major transitions (Maynard Smith and
Szathmary, 1996). Cell differentiation, immune systems, or neural networks are
examples of breakthrough inventions. Understanding these major transitions nec-
essarily requires thought experiments and mathematical modelling. A major issue
for evolutionary biology is sex – a cooperative activity causing an endless series of
conflicts. In the wake of the primary question – why should an organism transmit
only half of its genes to its offspring? – many other problems surface: Why do
sexually reproducing species have two sexes, rather than three, or one? Why are
their roles asymmetrical (males producing tiny sperm cells and females large egg
cells)? Why is the sex ratio close to one? Why are males fighting for females, and
why are females choosier than males? And, since this is biology: why are there
exceptions to all these rules? All these questions have been adressed by evolution-
ary game theory (see e.g. Hutson and Law, 1993, Karlin and Lessard, 1986, or
Iwasa and Sasaki, 1987).

Some of the major transitions in evolution led to new levels of organisation, for
instance self-replicating molecules, chromosomes, cells, multi-cellular organisms,
colonies and societies. In most cases, this emergence of nested hierarchies was due
to the fusion of formerly independent units into entities of higher order. These
remain threatened by exploitation through mutinies of ’selfish’ elements improving
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their own propagation at a heavy cost to the larger unit. Cancer cells grow without
restraint; within a genome, so-called ‘outlaw genes’ subvert the segregation of
chromosomes in a cell division; etc. Each instance of cooperation is riddled with
internal conflicts.

Selfishness may have been an issue since the dawn of life, when several types of
self-replicating RNA molecules must have ‘ganged up’ in order to code for chemical
functions. How could they co-exist? As one possible solution, Eigen and Schuster
(1975) suggested the ‘hypercycle’, a closed feedback loop of chemical kinetics, with
RNA of type Mi catalysing the replication of RNA of type Mi+1 (counting the
indices i mod n). The equation for the relative densities xi of Mi is given by
the replicator equation (7), with fi = xi−1Fi(x) and Fi > 0 for all i. (If the Fi

are constants, there exists a globally stable fixed point in intSn for n < 5, and a
stable periodic orbit for n ≥ 5, see Hofbauer et al, 1991.) This dynamics is always
permanent, so that hypercyclic coupling does indeed guarantee the coexistence of
all RNA types. But if there occurs an RNA type M which profits from Mi more
than Mi+1 does, then M will displace Mi+1, even if it confers no catalytic benefits
to the other RNA; such a molecular parasite destroys the whole cycle.

11. The Evolution of Cooperation Evolutionary history began with molec-
ular networks and led to tightly-knit societies acting as coherently as single or-
ganisms do. Bee hives and termite states furnish striking examples. Their ex-
traordinary degree of cooperation is due to the close kinship between all members
of a society: a gene for helping one’s sister is helping copies of itself. The close
relatedness within a bee hive is due to the fact that only very few of its members
reproduce. This type of cooperation can be explained by kinship theory. It is
based on the rule that an altruistic act costing c to the donor (in terms of repro-
ductive success) and benefitting b to the recipient has a selective advantage if the
relatedness between donor and recipient exceeds the cost-to-benefit ratio c/b.

In human societies, kinship accounts only for a small part of the cooperation:
the larger part is due to economic rather than genetic factors. The simplest mech-
anism is direct reciprocation: as long as c < b it pays to help others if they will
return the help. This creates new opportunities for parasitism, by not returning
help. Game theory provides a ready-made model succintely capturing this aspect.
The Prisoner’s Dilemma (PD) is a symmetric game between two players who can
opt between the moves C (to cooperate) and D (to defect). The payoff matrix is

C D
C
D

(
R S
T P

)
(18)

with
T > R > P > S and 2R > T + S (19)

(the first condition means that the reward R for mutual cooperation is larger than
the punishment P for mutual defection, but that the temptation T for unilateral
defection is still larger, and the sucker’s payoff S for being exploited ranks lowest.
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In our case, R = b − c, P = 0, T = b and S = −c). Obviously, it is best to play
D, no matter what the other is doing.

This changes if we assume that there is always a probability w for a further
round, which is larger than (T − R)/(T − P ), i.e. c/b. The iterated PD game
has a random number of rounds with mean (1 − w)−1 and admits a huge set
of strategies. This model led to a vast amount of investigations, often based on
computer tournaments simulating populations of players meeting randomly and
engaging in an iterated PD game. In Axelrod’s first tournaments, (see Axelrod
and Hamilton, 1981) the Tit For Tat strategy TFT (play C in the first round
and from then on repeat the co-player’s previous move) performed extremely well,
despite its simplicity. But TFT is not evolutionarily stable: indeed, the strategy
of always cooperating can spread by neutral drift in a population of TFT players,
and defectors can subsequently invade. Moreover, errors between TFT players
lead to costly runs of alternating defections.

To analyse the iterated PD under noise (i.e. with a small probability of genetic
or strategic errors), let us first consider memory-one strategies only. Such strategies
are given by the probability to play C in the first round, and a quadruple p =
(pR, pS , pT , pP ), where pi denotes the player’s propensity for move C after having
experienced outcome i ∈ {R,S, T, P} in the previous round. Due to ocasional
mistakes, the initial move plays almost no role in long interactions (w close to
1). The dynamics becomes extremely complex: for instance, restriction to the
following four strategies leads to a heteroclinic network as attractor (see fig. 3b):
(1) Tit For Tat (1, 0, 1, 0), (2) the more tolerant Firm But Fair (1, 0, 1, 1) which
forgives an opponent’s defection if it was matched by an own defection, (3) the
parasitic Bully (0, 0, 0, 1) which cooperates only after punishment and (4) the
strategy (0, 0, 0, 0) which always defects.

But if we introduce occasional mutants, then long-term evolution leads (for
2R > T +P , i.e. b > 2c) to the so-called Pavlov strategy (1, 0, 0, 1) which coperates
only if the co-player, in the previous round, acted like oneself (Nowak and Sigmund,
1993). This strategy embodies the simplest learning rule, called ‘win-stay, lose-
shift’ by experimental psychologists. It consists in repeating the previous move
if the payoff was high (R or T ) and in switching to the other option if it was
low (P or S). Pavlov players cooperate with each other; an erroneous defection
leads in the next round to both players defecting, and then to a resumption of
mutual cooperation. Furthermore, Pavlov populations cannot be invaded by other
strategies, and in particular not by indiscriminate cooperators who pave the way
for defectors. On the other hand, Pavlov cannot invade a strategy of defectors:
this needs a small cluster of strongly retaliatory strategies like TFT, who eliminate
unconditional defectors and then yield to Pavlov.
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Fig. 4: Dynamics of indirect reciprocity

What about strategies with longer memory, or yet more general finite-state
automata? Such strategies are defined by a finite set Ω of inner states, some
(possibly stochastic) rule specifying which move to play when in state ω, and a
rule specifying the transition to the next state as a function of the previous state
and of the outcome of the current round (R,S, T or P ). Together with the initial
state, this defines a strategy for the iterated PD. An example is given by the
following table.

R S T P
1 1 2 3 1
2 1 2 1 2
3 1 1 3 3

It is easy to check that this example satisfies a variant of evolutionary stability: if
all co-players use that strategy, it is best, at every stage of the game, to follow the
same strategy. This defines a social norm. There are many such norms (including
Pavlov, if 2R > T +P ), and it is not easy to decide which will get selected. But this
example seems particularly successful, and it has an intuitive appeal, if we interpret
state 2 as ‘provoked’ and state 3 as ‘contrite’: indeed, an erroneous defection by one
player makes that player feel contrite, and the co-player provoked: the retaliation
redresses the balance. Such inner states may correspond to emotions, which are
increasingly seen as tools for handling the complexities of social life.

Indirect Reciprocity Obviously, the iterated PD captures only a part of the
cooperative interactions in human societies. There is another, indirect reciprocity,
whereby an altruistic act is returned, not by the recipient (as with direct reci-
procity), but by someone else. Indirect reciprocity involves reputation. A simple
model assumes that a score is attached to each player, which increases (or de-
creases) whenever the player provides (or witholds) help. Players help whenever
the score of the potential recipient exceeds some threshold. This threshold is sub-
ject to selection. Punishing a low-scorer is costly, as it decreases one’s own score;
but if defectors are not punished, they take over. Assuming that each player is
engaged in a few rounds, both as potential donor and recipient (but never meeting
the same co-player twice), one finds that mutation-selection chronicles lead toward

Documenta Mathematica · Extra Volume ICM 1998 · I · 487–506



The Population Dynamics of Conflict and Cooperation 503

cooperation, provided players know their co-players’ score sufficiently well (Nowak
and Sigmund, 1998).

Occasionally, waves of defection sweep through the population: they are pro-
voked by an excessive frequency of indiscriminate altruists (who are too ready to
help low-scorers). Cooperation is more robust if the society is challenged more
frequently by invasion attempts of defectors (an intriguing parallel to immune sys-
tems). This can be nicely captured by an even simpler model involving only three
types of players, with frequencies x1, x2, x3, namely (a) indiscriminate altruists,
(b) defectors, and (c) discriminate altruists who help except if the co-player with-
eld help. If we assume two rounds per player, for instance, both as a donor and
as a recipient, the payoffs are

f1 = 2(b− c− bx2)

f2 = 2bx1 + bx3 (20)

f3 = 2(b− c)− cx2.

If discriminating altruists are too rare, i.e. if x3 < c/(b − c), defectors take over.
But all orbits with x3 > c/(b − c) lead from the edge x2=0 (no defectors) back
to itself. A mixture of altruists gets established. We may expect that random
drift makes the state fluctuate along this edge, which consists of fixed points only,
and that occasionally, mutation introduces a small quantity x2 of defectors. What
happens? If x3 > 2c/b, defectors cannot invade. If

2c

b
> x3 >

c

b− c
, (21)

the invading defectors thrive at first, but are subsequently eliminated by discrim-
inating altruists. After such an abortive invasion, the ratio of discriminators is so
large that defectors can no longer invade. Only when random fluctuations cross
the interval given by (21), will defectors take over. But this takes time. If defectors
try too often to invade, they will not succeed (see fig. 4).

Such models show how cooperation emerges through the selection of learning
rules, moralistic emotions, social norms and reputation. Thus evolutionary models
explain the ceaseless give and take prevailing in human societies, and lead game
theory back towards its original economic motivation.

References
Anderson, A.M. and R.M. May (1991), Infectious Diseases of Humans: Dynamics
and Control, Oxford Univ. Press, Oxford.
Ashwin, P., J. Buescu and I.N. Stewart (1996) From attractor to chaotic saddle:
a tale of transverse instability. Nonlinearity 9, 703-37.
Axelrod, R. and Hamilton, W.D. (1981), The evolution of cooperation, Science
211, 1390-6.
Chawanya, T. (1995) A new type of irregular motion in a class of game dynamics
systems. Progress Theor. Phys. 94, 163-79.

Documenta Mathematica · Extra Volume ICM 1998 · I · 487–506



504 Karl Sigmund

Cressman, R. (1992) The stability concept of evolutionary game theory, Springer,
Berlin.
Cressman, R., J. Hofbauer and W.G.S. Hines (1996), Evolutionary stability in
strategic models of single-locus frequency dependent viability selection, J. Math.
Biol.,34, 707-733.
DeBoer, R.J. and A.S. Perelson (1998) Target cell limited and immune control
models of HIV infection: a comparison, Journ. Theor. Biol 190 201-14.
Dietz, K. and K.P. Hadeler (1986) Epidemiological models for sexually transmitted
diseases, J. Math. Biol. 26, 1-25.
Durrett, R. (1991) Stochastic models of growth and competition, Proc. Int. Cong.
Math. Kyoto, Vol. II, 1049–1056.
Eigen, M. and P. Schuster (1979), The hypercycle: a principle of natural self-
organisation. Springer, Berlin-Heidelberg.
Eshel, I. (1996): On the changing concept of evolutionary population stability as
a reflection of a changing point of view in the quantitative theory of evolution, J.
Math. Biol. 34, 485-510.
Ferriere, R. and M. Gatto (1995), Lyapunov exponents and the mathematics of
invasion in oscillatory or chaotic populations, Theor. Pop. Biol. 48, 126-71.
Fisher, R.A. (1918), The correlation between relatives on the supposition of
Mendelian inheritance, Trans. Roy. Soc. Edinburgh 52, 399-433.
Forrest, S. (1993) Genetic algorithms: Principles of natural selection applied to
computation, Science 261, 872-9.
Frank, S.A. (1996) Models of parasite virulence, Quart. Rev. Biol. 71, 37-78.
Gopalsamy, K. (1992), Stability and Oscillations in Delay Differential Equations
of Population Dynamics, Dordrecht, Kluwer.
Grenfell, B.T. and A.P. Dobson (1995), Ecology of Infectious Diseases in Natural
Populations, Cambridge Univ. Press, Cambridge.
Hamilton, W.D. (1980) Sex versus non-sex versus parasites, Oikos 35, 282-90.
Hastings. A. and Powell, T. (1991) Chaos in a three-species food chain, Ecology
72, 896-930.
Hirsch, M.W. (1988) Systems of differential equations which are competitive or
cooperative III: Competing species. Nonlinearity 1, 51-71
Hofbauer, J. (1998) Invasion, permanence and heteroclinic cycles. To appear.
Hofbauer, J., J. Mallet-Paret and H.L. Smith (1991), Stable periodic solutions for
the hypercycle system, J. Dynamics and Diff. Equs. 3, 423-36.
J. Hofbauer and K. Sigmund, (1998) Evolutionary games and population dynamics,
Cambridge UP
Hutson, V. and R. Law (1993), Four steps to two sexes, Proc. Roy. Soc. London
B, 253, 43-51.
V. Hutson and K. Schmitt, (1992) Permanence and the dynamics of biological
systems, Math Biosci. 111, 1-71
Iwasa, Y. and A. Sasaki (1987), Evolution of the number of sexes, Evolution 41,
49-65.
Karlin, S. and S. Lessard (1986) Sex Ratio Evolution, Monographs in Population
Biology, 22, Princeton UP.

Documenta Mathematica · Extra Volume ICM 1998 · I · 487–506



The Population Dynamics of Conflict and Cooperation 505

Kolmogorov, A.N. (1937) (with I.G. Petrovskij and N.S. Piskunov) Studies of
the diffusion equation, combined with increase in the amount of matter and its
application to a problem in biology, Bul. Mosk. Gos. Univ. Mat. Mekh. 1, 1-26.
Law, R. and U. Dieckmann (1998), Symbiosis through exploitation and the merger
of lineages in evolution, Proc. Roy. Soc. London B, 265, to appear
Levin, S.A. and D. Pimentel (1981) Selection of intermediate rates of increase in
parasite-host systems, Amer. Nat. 117 308-1.
Levin, S.A., Grenfell, B., Hastings, A. and Perelson, A.S. (1997), Mathematical
and computational challenges in population biology and ecosystems science, Sci-
ence 275, 334-343
Lipsitch, M.S., S. Siller and M.A. Nowak (1996) The evolution of virulence in
pathogens with vertical and horizontal transmission, Evolution 50, 1729-41.
May, R.M. (1976) Simple mathematical models with very complicated dynamics,
Nature 261, 459-467.
May, R.M. and W.J. Leonard (1975) Nonlinear aspects of competition between
three species, SIAM J. Appl. Math. 29, 243-253.
Maynard Smith, J. (1982) Evolution and the Theory of Games, Cambridge UP.
Maynard Smith, J. and Szathmary, E. (1995), The Major Transitions in Evolution,
Freeman, Oxford.
Metz, J.A.J., S.A. Geritz , G. Meszena, F.J.A. Jacobs and J.S. van Heerwarden
(1996), Adaptive dynamics: a geometrical study of the consequences of nearly
faithful replication. In S.J. Van Strien and S.M.Verduyn Lunel (eds), Stochastic
and spatial structures of dynamical systems, 183-231. Amsterdam, North Holland.
Mylius, S.D., Doebeli, M. and Diekmann, O. (1998) Can initial invasion dynamics
correctly predict phenotypic substitution?, to appear.
Nowak, M.A., R.M. Anderson, A.R. McLean, T. Wolfs, J. Goudsmit and R.M.
May (1991), Antigenic diversity thresholds and the development of AIDS, Science
254, 963-9.
Nowak, M.A. and R.M. May (1994), Superinfection and the evolution of parasitic
virulence, Proc. R. Soc. London B 255, 81-89.
Nowak, M.A. and Bangham, C.R. (1996), Population dynamics of immune re-
sponses to persistent viruses, Science 272, 74-9.
Nowak, M.A. and Sigmund, K. (1993), Win-stay, lose-shift outperforms tit-for-tat,
Nature, 364, 56-8.
Nowak, M.A. and Sigmund, K. (1998), Evolution of indirect reciprocity by image
scoring, Nature 393, 573-577.
Nowak, M.A., R.M. May and K. Sigmund (1995), Immune response against mul-
tiple epitopes, Jour. Theor. Biol. 175, 325-53.
Murray, J. (1990), Mathematical Biology, Springer, Heidelberg.
Olsen, L.F. and Schaffer, W.M. (1990) Chaos in infections? Science 249, 499.
Rand, D., Wilson, H.B. and McGlade, J.M. (1994): Dynamics and evolution:
evolutionarily stable attractors, invasion exponents and phenotype dynamics, Phil.
Trans. Roy. Soc. London B 24, 261-283.
Schreiber, S. (1998) On the stabilizing effect of predators on founder-controlled
communities, to appear in Canad. Appl. Math. Quarterly.

Documenta Mathematica · Extra Volume ICM 1998 · I · 487–506



506 Karl Sigmund

Takeuchi, Y. (1996), Global dynamical properties of Lotka-Volterra systems, World
Scientific, Singapore.
van den Driessche, P. and Zeeman, M.L. (1997), Three dimensional competitive
Lotka-Volterra systems with no periodic orbits, SIAM J. Appl. Math 280, 227-34.

Karl Sigmund
Institut für Mathematik
Universität Wien
Strudlhofgasse 4, A-1090 Wien
and:
IIASA, Laxenburg
Austria
ksigmund@esi.ac.at

Documenta Mathematica · Extra Volume ICM 1998 · I · 487–506



Doc. Math. J. DMV 507

Huge Random Structures and Mean Field Models

for Spin Glasses

Michel Talagrand

Abstract. To explain (at least qualitatively) the unconventional magnetic
behavior of certain materials, the physicists have been led to formulate and
to study simple mathematical models. The concepts and methods they de-
veloped in this process appear to apply to a number of important random
combinatorial optimization problems, for which they have proposed remark-
able formulas. Their discoveries point towards a new branch of probability
theory. Finding rigorous arguments to support their conjectures is a formi-
dable challenge and a long range program, some steps of which are described
in the present paper.

Introduction

The research presented in this paper has largely been influenced by the book of M.
Mézard, G. Parisi, M. A. Virosoro “Spin glass theory and beyond” [M-P-V]. This
book is remarkable in many respects, and first of all its topic, which is the study
of what are canonical, and even fundamental mathematical objects by physicist’s
methods. The book is an attempt by physicists to explain to other physicists the
new concepts they have discovered about “spin glasses” and their relevance to a
number of fundamental random structures. This could make difficult (and did in
the case of the author) for an unprepared mathematician to get any idea of what
this is all about. The book contains no rigorous results, and it is not obvious at
all to even give a precise mathematical content to many of the statements made
there. The existence of the topic of spin glasses appears to be known to quite
a few mathematicians (see e.g. the recent book [B-P]), but overall it has been
considered as an area where rigorous results are notoriously difficult to obtain. One
must keep in mind however that it is rather unreasonable to attempt to directly
attack the problems that the physicists (who use much less stringent methods) find
challenging themselves (see however [N-S 2, 3]). We believe that there is no chance
to make advances on the difficult issues until the easier ones have been clarified,
and that only a systematic program to investigate the entire circle of ideas can
lead to progress. The present paper reports the current status of this program.
Beside attempting to provide an introduction to the topic, its main objective is
to explain the author’s contributions and point of view, and it should be kept in
mind that some of the opinions expressed below are personal and might not be
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shared by others. All the results presented are fully rigorous; complete proofs can
be found in [T5] to [T13].

There seems to be no better way to introduce the topic than to mimic the
introduction of [M-P-V]. Consider a large population of individuals, numbered
from 1 to N . Consider independent identically distributed (i.i.d) random variables
(r.v.) (gij)1≤i<j≤N . (The choice of Gaussian distribution is the simplest one, and
is not believed to be essential). The variables gij represents the interaction of
individuals i < j (so, the larger gij , the more friendly i and j are towards each
other). The independence requirement implies that for many (actually about 1/2)
of the triples i, j, k, then gijgjkgik < 0, so that we have unpleasant situations
such as i friend of j and k (gij , gik > 0) but j and k enemies (gjk < 0). In
order to improve upon this tense situation, one tries to split the population in two
parts, putting as far as possible friends together and enemies apart. This is done
by assigning to each individual a number σi ∈ {−1, 1}, and each configuration
σσσ = (σi)i≤N defines a splitting of the population in two. How successful this
splitting is can be measured by the quantity

∑

1≤i<j≤N

gijσiσj .(1.1)

This adds the interactions between each pair of individuals in the same group,
and subtracts the interactions between different groups. We are interested in the
maximum of (1.1) over all σσσ.

The reason why this maximum is very hard to find is that, for a given typical
realization of the (gij), the function of σσσ given by (1.1) has apparently very many
“near maxima” at locations that are not simply related to each other. Computer
simulations seem to show that for large N

N−3/2 max
σσσ

∑

1≤i<j≤N

gijσiσj ' 0.7366(1.2)

with overwhelming probability. It is simple to prove that N3/2 is the correct
normalization factor and that the left hand side of (1.2) is essentially independent
of the realization of the randomness (more precisely has random fluctuations of
order N−1/2); but the proof of the existence of the limit as N →∞, or its rigorous
computation are nowhere in sight.

Faced with a very difficult optimization problem such as (1.2), the answer of
statistical mechanics is to introduce a parameter T ≥ 0 called temperature, and
try to recover the case T = 0 as a limit case T → 0. We consider the Hamiltonian
(i.e. energy function)

HN (σσσ) = − 1√
N

∑

1≤i<j≤N

gijσiσj − h
∑

i≤N

σi.(1.3)

The factor
√

N is the correct normalization to ensure that HN/N remains
bounded; The minus sign follows physics convention (the system is attracted to
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low energy configurations) and h is an “external field” that favors the choice σi = 1
over σi = −1. The previous optimization problem was the search (when h = 0) for
the ground state (configuration with lowest energy) of HN (σσσ), which is the Hamil-
tonian of the famous Sherrington-Kirkpatrick (SK) model for spin glasses. This
Hamiltonian was introduced to model disordered interaction between magnetic
impurities (“spins”) in metals. As a first approximation (mean field approxima-
tion), the geometric location of atoms is forgotten, and it is assumed that all pairs
interact in the same way. The disorder of the system is then modeled by the
random interactions gij . If the system is in thermal equilibrium at inverse tem-
perature β = 1/T , statistical mechanics asserts that the probability of observing
the system in configuration σσσ is given by Gibbs’ measure

GN (σσσ) =
1

ZN
exp−βHN (σσσ)(1.4)

where ZN is the normalization factor (called the partition function)

ZN = ZN (β, h) =
∑

exp−βHN (ρρρ)(1.5)

for a summation over all configurations. The problem is then to understand the
structure of Gibbs’ measure for the typical realization of the disorder (that is, of
the r.v. gij). The mathematical difficulty is that it is very unclear what is the
value of ZN , which is a sum of 2N quantities of wildly different orders of magnitude
(the more so at large β, i.e. low temperature). Of particular interest is the “free
energy”

FN = FN (β, h) = log ZN(1.6)

(a physicist would rather use − 1
β log ZN ) the importance of which can be under-

stood by the fact that its derivation with respect to the various parameters are
physically measurable quantities, e.g.

1
β

∂FN

∂h
= 〈

∑

i≤N

σi〉(1.7)

is the global magnetization. In (1.7), as well as in the rest of the paper 〈 · 〉 denotes
thermal average, that is integration with respect to Gibbs’ measure. Of course FN

is a random quantity (it depends of the disorder). However, it follows from general
principles (the “concentration of measure phenomenon” [I-S-T]) that the random
fluctuations of FN are of order N1/2, while FN is of order N , so that much of the
information about FN is captured by EFN . There and throughout the paper we
denote by E the average with respect to the disorder. The main difficulty is that
the typical value of ZN is very different from (and of course smaller than) EZN ,
and that the bound E log ZN ≤ log EZN given by Jensen’s inequality is not an
equality in the interesting cases.

It was soon realized that the first attempt to study the SK model [S-K] had
serious flaws, and that the solution proposed there was correct only at high tem-
perature. After several trials G. Parisi has proposed a very intricate picture (“the
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Parisi solution”) that is believed to be correct. The remarkable objects invented
by Parisi start to draw attention from mathematicians [R], [B-S], [A-C1], [A-C2].
Unfortunately, the mathematical study of structures related to Parisi’s solution is
distinct from the more important issue as to whether these structures are really
relevant to the SK model, and at the present time there is very little rigorous evi-
dence that this is the case. It is of course fascinating that a simple and canonical
energy function such as (1.3) can give rise to such extreme subtlety. But, beside
the intrinsic interest of the SK model, the great discovery made by the physicists
is that the behavior exhibited by this system appears to be rather universal, and
to be present in a number of other situations involving random structures, several
typical examples of which will be considered here.

Let us now try to draw a very rough picture of the situation. A main feature of
the physicist’s prediction is that given h, above a certain temperature, the system
“ is in a pure state” while below this temperature it spontaneously decomposes in
many “pure states”. The later statement can intuitively be understood by saying
that if one studies the system at (extremely) long intervals, it looks like different
objects. As we work in a disordered mean field model, it is unfortunately not
obvious a priori how to formulate a meaningful definition of a pure state, and even
less how to decompose a system in pure states. In standard statistical mechanics,
say, on a finite subset SN of an infinite lattice S, this is done by taking “infinite
volume limit”, N → ∞. The set of configurations is then {−1, 1}S . The set
of Gibbs’ measures form a convex compact set, the extreme points of which are
the pure states. In the present case, if one selects a sequence (gi,j)i,j∈N, then
the structure of the Gibbs’ measure of the N -spin system defined using (gij)i,j≤N

varies wildly with N , the chaotic size dependence of [N-S1]. Despite the many
statements of [M-P-V] starting by “in the thermodynamical limit...”, it is not clear
how to define a useful limit of the system as N →∞, that is, a satisfactory set of
Gibbs’ measures on {−1, 1}N . (See [AW],[N-S2] for the most interesting tentatives
towards infinite volume limits in the lattice case. These attempts unfortunately
still require taking subsequences, an operation that goes somewhat against the
very goal of the theory, which is the ability to describe finite samples of matter.)
This absence of infinite volume limit makes the topic of spin glasses distinctively
different from main stream classical statistical mechanics. In Section 2, we will
present a set of equivalent conditions that mean that the system is in a pure state,
and for all the systems that we shall study we will define the high temperature
region as the set of parameters where these conditions hold. (By definition the low
temperature region consists of the other values.) The high temperature region is
much simpler than the low temperature region and thereby is the natural starting
point of a rigorous investigation. The results of Section 3 to 6 of the present
paper assert that for four rather different models, the physicists magic formulas
are indeed correct at high enough temperature, and a look at these formulas (such
as (3.11)) should convince the reader that non trivial phenomenon occur there.

The author is keenly aware that it is a very risky endeavor to attempt rigorous
proofs of results that are “known” by another community, in particular when most
of his results bear on situations considered easy (if not trivial) by the physicists. It
is thereby necessary to say a few words about the physicists methods, even though
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this might spoil some of the excitement the reader might otherwise have felt when
discovering them in [M-P-V]. These methods are extremely creative and brilliant,
but their purpose is very different from ours. It is not to provide proofs, but
rather to discover what happens with reasonable certainty. The favorite method,
the replica method, attempts to compute directly the limiting expected free energy
density lim

N→∞
N−1EFN , which, as we mentioned, captures much information about

FN . The annoying logarithm is disposed of by the formula

log x = lim
n→0

xn − 1
n

(1.8)

and the issue is then to compute EZn
N , which can be done for n integer using

n copies (“replicas”) of the system. One then makes an analytic continuation at
n → 0. Besides a few lesser problems, the computation of EZn

N in the case of the
SK model is done by a saddle point method requiring to minimize a function of
n(n− 1)/2 variables. To quote [M-P-V], p. 12, “n(n− 1)/2 becomes negative for
0 < n < 1, and it is not clear how to give a precise definition of the minimum of a
function which depends on a negative number of variables”. As G. Parisi so nicely
puts it “the replica method is yet to be put on firm mathematical ground”.

The computations using the replica method involve a tricky issue (the real
meaning of which is not clear to me) as to whether the n (0 < n < 1) replicas
involved can be assumed to be equivalent (“replica-symmetry”, the easiest case) or
not (“replica symmetry breaking”). It seems that the case where the system is in
a pure state (as defined in Section 2) corresponds to the case of replica-symmetry.
The physicists seem to have absolute faith in the replica method, at least in the
replica symmetric case. Typing the words “replica symmetry” on a data base such
as INSPEC brings in dozens of papers that rely upon this method. More often
than not, these papers “solve” a problem by writing down formulas provided by
the replica method (sometimes using Parisi’s scheme of replica-symmetry break-
ing) and optimizing over the various parameters. These theoretical results are then
supplemented by computer studies for large N , where (due to extreme computa-
tional difficulties), “large” means typically of order 100. But despite the fact that
it is not clear what the replica method really does (even in the replica symmetric
case) it is an amazing tool to discover complicated formulas in a very compact
way.

As the mathematical and even the physical contents of the replica method
are obscure, physicists have developed an alternative method, the cavity method,
which is essentially induction upon N . (This is the method we will use, even though
our computations are very different). A possible reason why the physicists find the
high temperature case easy is that they assume from the start “on natural physical
grounds” that at high temperature the system is in a pure state (see eg. [M]). At
the philosophical level, it requires some faith to believe that a mathematical object
such as (1.3), that has very little claim to be a realistic model for matter will obey
physical principles. At the mathematical level, once one assumes that the system
is in a pure state, the magical formula (2.9) below allows all kinds of computations
that readily lead to a rather complete picture of the system. On the other hand
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the mathematician, when faced with the system with no a priori information has
at first great difficulties to prove anything at all.

Even though the high temperature phase of disordered systems is considered
easy in physics, it still has some interest even at this level, in particular because
in some important cases (such as that of Section 4) the high temperature region is
believed to extend all the way to zero temperature. The real long term challenge
is however the low temperature region. The very complicated structure of the
predicted low temperature behavior of the SK model does not make it a good
place to start from, so we have rather considered the p-spin interaction model, a
model closely related to the SK model and for which the predicted low temperature
behavior is much simpler (and, actually the simplest possible). We did succeed in
this case to prove (at the “edge” of the low temperature region) the main feature
of the Parisi’s prediction, the spontaneous decomposition of the system in pure
states “far from each other”. This is the content of Section 7.
Acknowledgment The author will be forever grateful to Erwin Bolthausen for
having introduced him to such an immensely enjoyable topic. The author thanks
G. Choquet, M. Mézard and many others for useful comments.

2. Systems in a pure state

We denote throughout the paper the set {−1, 1}N of all configurations by ΣN .
Since (ΣN , GN ) is a probability space it is natural to consider powers of it,
(Σm

N , G⊗m
N ) (often m ≤ 4). These are called replicas. The word “replicas” sim-

ply means that we consider several copies of (ΣN , GN ). Then copies are taken
for the same realization of the disorder. A generic point in Σm

N is denoted by
(σσσ1, · · · ,σσσm). These replicas are often called in physics “real replicas” to distin-
guish them for the n replicas (n → 0) of the replica formalism (would these be
unreal?) and needless to say that we will use only “real” replicas. Replicas are
very useful to transform product of integrals for the Gibbs measure into multiple
integrals, such as in the formula

〈f1(σσσ)〉〈f2(σσσ)〉 = 〈f1(σσσ1)f2(σσσ2)〉.

There, as well as in the rest of the paper, 〈 · 〉 denotes thermal average in Σn
N as

well as in ΣN , so that the bracket on the right is a double integral with respect to
Gibbs measure.

The overlap between two configurations σσσ1,σσσ2 is defined by

1
N

σσσ1 · σσσ2 =
1
N

∑

i≤N

σ1
i σ2

i ,(2.1)

a good measure of their distance. The simplest (although not the most intuitive)
way to define a system in a pure state is to say that the function σσσ1,σσσ2 → 1

N σσσ1 ·σσσ2

is nearly constant on Σ2
N , as is formalized in (2.2) below. This idea is apparent in

[M-V-P]. It is likely that, at least at the intuitive level, many other ideas of this
section can also be found there, but of course the point was to identify precise
statements that are amenable to proof.
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Consider a sequence (GN )N≥1, where GN is an exchangeable random proba-
bility measure on ΣN , that is, such that its distribution is invariant under any
permutation of the coordinates (a crucial assumption). Typically (GN ) will be a
sequence of Gibbs’ measures such as (1.4), at a given value of the parameters β, h,
so it should be self evident what we mean by 〈 · 〉, replicas, etc. Of course E will
denote expectation with respect to the randomness of GN . In the next theorem,
all brackets 〈 · 〉 are for GN . This seemingly complicated statement is a result of
the author’s (unreasonable?) attempt not only to give a description of the results,
but also some ideas of what are the obstacles to reach them. The reader who is
interested only in getting an overview of the results should only read conditions
(2.2), (2.7), (2.8). After reading the comments next to Definition 2.2, he should
then skip the sketch of proof of Theorem 2.1.

Theorem 2.1. For a sequence GN of exchangeable random probability measures
the following properties are equivalent.

lim
N→∞

E〈 1
N
|σσσ1 · σσσ2 − 〈σσσ1 · σσσ2〉|〉 = 0(2.2)

lim
N→∞

E〈( 1
N

(σσσ1 − σσσ2) · (σσσ3 − σσσ4))2〉 = 0(2.3)

lim
N→∞

E〈( 1
N

(σσσ1 − σσσ2) · σσσ3)2〉 = 0(2.4)

lim
N→∞

E(〈σ1σ2〉 − 〈σ1〉〈σ2〉)2 = 0(2.5)

lim
N→∞

E〈(σ1
1 − σ2

1)(σ1
2 − σ2

2)〉〈σ3
1σ3

2〉 = 0(2.6)

∀n, lim
N→∞

E(〈σ1 · · ·σn〉 − 〈σ1〉 · · · 〈σn〉)2 = 0(2.7)

(2.8) For each n, the expected total variation distance of the law of (σ1, · · · , σn)
under GN to the set of a product measures on {−1, 1}n goes to zero.
(2.9) For any continuous bounded function f on Rn×m, independent N(0, 1) vari-
ables (ξj

i )i≤N,j≤n, (hj`)j≤n,`≤m that are independent of the variables gij, we have

lim
N→∞

E|〈f((
ξξξj · σσσ`

√
N

)j≤n
`≤m

)〉 − Ehf((
ξξξj · bbb√

N
+ hj`

√
1− ‖bbb‖2/N)j≤n

`≤m
)| = 0

where ξξξj ·σσσ` =
∑

i≤N

ξj
i σ

`
i , bbb = (〈σi〉)i≤N = (〈σ`

i 〉)i≤N ; and where Eh denotes expec-

tation in (hj`)j≤n
`≤m

only.

Definition 2.2. We say that the sequence GN of random measures is in a pure
state if the equivalent conditions of Theorem 2.1 hold.

Conditions (2.2) to (2.4) are global “geometric” conditions. The idea of (2.3)
and (2.4) is that the centering in (2.2) is better replaced by symmetrization. The
reason for considering these two similar but different expressions will be apparent
when we try to prove them. Conditions (2.5) and (2.6) are “local” reformulations
of (2.3), (2.4) respectively, that involve only two spins, and are better adapted to
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induction over N . The least expected, and the most useful fact is (2.9), which
means that in practice integral 〈f(

ξξξj ·σσσ`

√
N

)〉 depends upon GN only through bbb, a fact
that is at the root of the magic formulas of Sections 3 to 5.

Theorem 2.1 provides conceptual clarification, and is very easy to prove, because
we do not relate the rates at which the various quantities go to zero and need only
“soft” estimates. This is why, when a physicist assumes “on physical grounds”
that, say (2.5) holds, he then correctly feels that the problem is easy. On the
other hand, proving that the conditions of Theorem 2.1 hold require much more
precise estimates.

To sketch the proof of Theorem 2.1 let us set ai = (σ1
i − σ2

i )(σ3
i − σ4

i ) so
|ai| ≤ 4, and (2.3) means that E(〈(N−1

∑
ai)2〉) → 0, which, by symmetry among

the coordinates, is equivalent to E〈a1a2〉 → 0. Now, by independence of the
replicas

〈a1a2〉 = 〈(σ1
1 − σ2

1)(σ1
2 − σ2

2)〉2(2.10)
= 4(〈σ1σ2〉 − 〈σ1〉〈σ2〉)2,

which proves the equivalence of (2.3) and (2.5). The equivalence of (2.4) and
(2.6) is similar. It is obvious that (2.4)⇒(2.3) and (2.5)⇒(2.6), using (2.10) and
Cauchy-Schwarz. The equivalence of (2.2) and (2.4) is easy, since |(σσσ1 − σσσ2) ·
σσσ3| ≤ 2N . It is obvious that (2.6)⇒(2.8)⇒(2.5). To prove the more surprising
fact that (2.5)⇒(2.7), we observe that, since | ∑

i≤N

ai| ≤ 4N , then (2.5) implies

E〈(N−1
∑

i≤N ai)n〉 → 0, and proceeding as before lim
N→∞

E〈a1 · · · an〉 → 0, which

means lim
N→∞

E〈∏
i≤n

(σ1
i − σ2

i )〉2 = 0, from which (2.7) follows easily. Thus we have

the equivalence of (2.2) to (2.8). We will not use that (2.9) implies the other
conditions, so we just prove that it is a consequence of (2.2). Setting

X = 〈f((
ξξξj · σσσ`

√
N

))〉; Y = Ehf((
ξξξj · bbb√

N
+ hj`

√
1− ‖bbb‖2/N)),

the proof consists of showing that E(X−Y )2 → 0, by showing that EX2−EY 2 →
0 and EXY −EY 2 → 0. We will (to avoid complicated notations) prove only that
EX − EY → 0. The argument to prove that (2.2) implies (2.9) is the same.
If (wj`) is a jointly gaussian family, the quantity Ef((wj`)) is determined by
the joint law of (wj`), that is by the numbers E(wj`wj′`′), and this dependence
is of course continuous. Denoting by Eξ expectation in the variables ξξξj only,

Eξξξf((ξξξj ·σσσ`

√
N

)) depends only upon the numbers E(ξξξj ·σσσ`

√
N

ξξξj′ ·σσσ`′
√

N
) = δjj′(σσσ` · σσσ`′/N).

For the generic point σσσ1, · · · ,σσσm of the m-replica, (2.2) says that all products
σσσ` · σσσ`′/N(` 6= `′) are about 〈σσσ` · σσσ`′〉/N = ‖bbb‖2/N (and 1 if ` = `′). Now if we
set wj` = ξξξj ·bbb√

N
+ hj`

√
1− ‖bbb‖2/N we see that this jointly gaussian family of r.v.

satisfies E(wj`wj′`′) = δjj′‖bbb‖2/N for ` 6= `′ and δjj′ for ` = `′. Thus, for the
generic point σσσ1, · · · ,σσσm we have Eξf((ξξξj ·σσσ`

√
N

)) ' EξY , and the result follows. ¤
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The reader has observed that Theorem 2.1 does not say that “GN resembles
GN+1” or that quantities such as E〈σσσ1 ·σσσ2〉/N converge as N →∞. Proving this
is a different question.

In the situation of Theorem 2.1, since the law of (σ1, · · · , σn) under Gibbs’
measure is asymptotically close to a product measure, it is close to the product
measure ν on {−1, 1}n such that

∫
σidν(σ1, · · · , σn) = 〈σi〉. In the cases we will

consider, the quantities 〈σi〉 are asymptotically i.i.d. r.v. (and converge in law),
thereby providing a precise picture of the finite projections of Gibbs’ measure.

3. The Sherrington-Kirkpatrick model

The most studied case is when h = 0. It was proved in [A-L-R] that the system
is in a pure state if β < 1. An easy consequence of the result of [C] is that there
exists values of β > 1, arbitrarily close to one, for which this is not the case (one
expects that this is never the case if β > 1). There is a very special phenomenon
happening in the case β < 1, namely that

lim
N→∞

E
1
N

log ZN = lim
N→∞

1
N

log EZN (=
β2

4
)(3.1)

(by Jensen’s inequality there is always inequality ≤). This apparently makes things
much simpler. There are several very interesting methods (such as use of stochastic
calculus to prove central limit theorems [C-N]) that seem to work for this case only.
Even though some nagging questions remain, there is a rather complete picture of
this case ([T5 Section 2]). Unfortunately, a behavior such as (3.1) is exceptional
and we will concentrate upon the more challenging case h > 0. The formula
corresponding to (3.1) is then given by (3.13) below, and is remarkable enough to
make one wonder how such a formula is possible, and moreover can be proved. It
turns out that the proof of (3.13) for small β is rather easy. This proof is also
very instructive because the other cases considered in Theorem 3.1 below, as well
as the results of Sections 4 to 6, although technically very much more involved
do follow the same global strategy, so we will outline the main steps. The central
issue is always to prove that the system is in a pure state (after which use of (2.9)
allows all kinds of computations). In the present case at high enough temperature,
that was actually done in [F-Z] as a special case of a powerful (and complicated)
approach that handles much more general cases (such as finite range interactions),
but it is very instructive to give here a simple direct argument.

We start with the inequality (implicitly proved in Section 2 by expansion of
(σ̃σσ · σσσ∗)2)

CN = CN (β, h) := E〈( 1
N

σ̃σσ · σσσ∗)2)〉 ≤ 4
N

+ E〈σ̃Nσ∗N σ̃N−1σ
∗
N−1〉

where σ̃σσ = σσσ1 − σσσ2,σσσ∗ = σσσ3 − σσσ4. To compute the last term we use the cavity
method; we compute the bracket by regrouping in the Hamiltonian the terms not
containing σN or σN−1 and we find

E〈σ̃Nσ∗N σ̃N−1σ
∗
N−1〉 ≈ E

1
Z
〈Avσ̃Nσ∗N σ̃N−1σ

∗
N−1E〉N−2.(3.2)
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There 〈 · 〉N−2 denotes Gibbs measure for an (N − 2) spin system at inverse
temperature β′ = β

√
1− 2/N , external field h′ = h(1 − 2/N)−1/2, and Av the

average over all values of σ`
N , σ`

N−1(` ≤ 4) = ±1,

E = exp β
∑

`≤4

∑

0≤j≤1

σ`
N−j

( 1√
N

∑

i≤N−2

σ`
igi,N−j + h

)

and Z = 〈AvE〉N−2. The formidable looking formula (3.2) is actually almost an
algebraic identity, except that we have neglected the lower order interaction terms
between σ`

N and σ`
N−1 (hence the small error acknowledged by the ≈). The slight

change of parameters β, h into β′, h′ turns out to be a secondary detail, and will
be ignored from now on. The difficulty with the cavity method is that we do not
know more about 〈 · 〉N−2 than about 〈 · 〉, so that it is hard to use (3.2). An
easy way out is provided by the observation that Z ≥ 1 by Jensen’s inequality and
that 〈Avσ̃Nσ∗N σ̃2

N−1σ
∗
N−1E〉N−2 ≥ 0, because it can be written (using thermal

independence of the variables with a ∗ from those with a )̃ as a square. Then
the right hand side of (3.2) can be bounded by E〈Avσ̃nσ∗N σ̃N−1σ̃

∗
N−1E〉0. (This

argument to dispose of the denominator will be referred to later as the positivity
argument). This later quantity is much easier to evaluate. Integrating first in
the gi,N−j(j = 0, 1) one obtains after a few lines of straightforward estimates
a bound β2L(β)CN−2(β′, h′), where L(β) remains bounded with β. This yields
the relation CN (β, h) ≤ 1

2CN−2(β′, h′) + o(1) if β is small enough, which implies
lim

N→∞
CN (β, h) = 0.

The positivity argument used above does not take advantage of the fact that
often the denominator is much larger than 1, and as the result of this loss of a
constant factor, we cannot expect to reach this way the entire high temperature
region. The merit of the positivity argument is that it is the simplest approach we
know, and thus it is particularly useful in complicated situations. Unfortunately
this argument itself often runs into a serious difficulty (which does not exist in the
case of the SK model) namely that the estimation of CN usually involves DN−2 (at
slightly different parameters), where DN = E〈( 1

N σ̃σσ · σσσ3)2〉. It seems a posteriori
true that CN and DN are of the same order, but unfortunately we do not see a
priori how to prove better than CN ≤ √

DN (almost proved in Section 2), and
this leads to useless relations such as CN ≤ θ

√
CN−2 + o(1) where θ < 1. Because

of this a priori difficulty in relating CN and DN , one sees that a better strategy
is to study DN . But then, in the right hand side of (3.2) the numerator has to
be replaced by 〈Avσ̃N σ̃N−1σ

3
Nσ3

N−1E〉N−2 which has no reason to be positive,
and the positivity argument does not work. This unfortunate state of affairs is
largely responsible for the great technicality of many proofs, even at a very high
temperature.

Now that we have proved that for small β the system is in a pure state, we
observe that brackets involving E resemble the brackets of (2.9). The requirement
there that f was bounded was made only to avoid a technical statement; reason-
able growth suffices. This means that we can now use (2.9) to make all sorts of
computations, of which we now give a typical example. Proceeding as in 3.2, we
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have
〈σN 〉 =

1
Z
〈AvσNE〉N−1

where Z = 〈AvE〉N−1 and E = expβσN (N−1/2
∑

i≤N−1

σigi,N + h). It follows from

(2.9) (used for m = n = 1, f(x) = exp βσNx) that

〈σN 〉 ' th β
(
N−1/2

∑

i≤N−1

gi,N 〈σi〉N−1 + h
)
.(3.3)

If we set rN−1 = N−1
∑

i≤N−1

〈σi〉2N−1, we then have

ErN ' E〈σN 〉2 ' E th2 β(g
√

rN−1 + h)(3.4)

where g is standard normal independent of rN−1.
To make full use of this, it would be very nice to know that rN is essentially

non random, which amounts to show that (E〈σN 〉2)2 ' E〈σN 〉2〈σN−1〉2. The
right-hand side can be estimated as in (3.4) using cavity and (2.9), and only a
few lines of computations are required to get a relation of the type Var rN ≤
β2L(β)Var rN−2 + o(1), so that for small β we have Var rN → 0, and (3.4) leads
to qN ' E th2 β(g√qN−1 +h) where qN = E〈σN 〉2 and to qN → q where q satisfies
(3.10) below. To calculate FN , we fix hβ = h′ and we write

∂Fn

∂β
=

1√
N

∑

i<j

gij〈σiσj〉.(3.5)

We then (following [A-L-R]) apply the (extremely useful) integration by parts
formula

E(gf(g)) = Ef ′(g)(3.6)

valid when g is standard normal and f smooth enough, to obtain

E
1
N

∂FN

∂β
= β

N − 1
2N

(1− E〈σNσN−1〉2) ' β

2
(1− q2

N )(3.7)

where we use that E〈σNσN−1〉2 ' E〈σN 〉2〈σN−1〉2 ' (E〈σN 〉2)2 = q2
N .

To prove (3.13), one simply checks that it is true for β = 0, and the (miraculous)
fact that ∂SK

∂β = β
2 (1− q2). Concerning the structure of the r.v. 〈σi〉, we proceed

as in (3.3) to obtain that, for any fixed n, as N →∞, for 0 ≤ k ≤ n− 1

〈σN−k〉 ' thβ(gk
√

qN−n + h)

where (gk)k≤n−1 are i.i.d. N(0, 1), so that (3.12) below is obvious.
To go beyond this first round of results, that is to be able to handle cases where

the positivity argument does not work, and to perform the previous computations
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with a better control of the error terms, we need to develop another technique to
estimate EU/Z, when Z is a quantity such as in (3.2). The basic procedure is to
replace Z by the quantity Ẑ provided by (2.9) (even when we have not yet proved
that the system is in a pure state) and to write

U

Z
=

2U

Ẑ
− UZ

Ẑ2
+

U(Z − Ẑ)2

ZẐ2
.(3.8)

The idea is that the last term has a tendency to be small because of the factor
(Z − Ẑ)2, factor which is not affected when one takes bounds and uses absolute
values. On the other hand, the first two terms on the right have a denominator
where the dependence in the gggj is only through gggj ·bbb, so that they can be evaluated
by conditioning upon these. Carrying out that program results in extremely long
computations but once the arguments are properly organized these allow to gain
a very precise picture of the model. The largest domain in which we know how to
control the model is

D = {(β, h) : either β < β0, or h ≥ h1(β) or 0 < β < 1 and h ≤ h2(β)}(3.9)

where h1(β), h2(β) are certain specific positive functions. We consider q = q(β, h),
the root of the equation

q = E th2 β(g
√

q + h)(3.10)

(that is well defined on D) and the function

SK(β, h) =
β2

4
(1− q)2 + E log chβ(g

√
q + h).(3.11)

In the following statement, K denotes a number depending upon β, h only.

Theorem 3.1. If (β, h) belongs to D, the following occurs

E〈exp
1

KN
(σσσ1 · σσσ2 − q)2〉 ≤ K(3.12)

lim
N→∞

N−1EFN = SK(β, h)(3.13)

(3.14) Given any n, the r.v. 〈σ1〉, · · · , 〈σn〉 are asymptotically i.i.d., and their
limiting law is the law of thβ(g

√
q + h) where g is N(0, 1)

(3.15) Given replicas σσσ1, · · · ,σσσp, for any expression f that is the product of k

quantities of the type σσσ` · σσσ`′ − E〈σσσ1 · σσσ2〉(` 6= `′) then lim
N→∞

N−k/2E〈f〉 exists.

Comment 1. The validity of (3.13) was also investigated by M. Shcherbina. In
her remarkable recent paper [Sh2] she proves in particular that it holds whenever
β < 1.
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Comment 2. Condition (3.12) is a very precise improvement of (2.1) and moreover
it contains the information that 〈σσσ1 · σσσ2〉 is nearly q. In the case h = 0, (β < 1)
it is much easier to prove [T5, Section 2]. We feel that the greatest importance
of exponential equalities such as (3.12) is that they carry information that can be
transferred (with loss) to different (but close) values of the parameters. Specifi-
cally, one can show that given ε > 0, if β′, h′ are close enough (depending upon
ε) of β, h, then, if (3.12) holds at β, h, then at β′, h′ the overlap N−1σσσ1 · σσσ2 will
essentially take values only in an interval of length ≤ ε. This is shown in [T10],
and this is how the part 0 < β < 1 and h < h(β) of D is controlled, building upon
the case 0 < β < 1, h = 0 that is obtained through special arguments. We believe
that such a “transfer principle” has to be a part of a proof that would extend
Theorem 3.1 to the entire region (3.12).

Comment 3. The limits of (3.15) contain in principle all the information on the
(random) joint law under Gibb’s measure of the maps (σσσ1, · · · ,σσσp) → N−1/2(σσσ` ·
σσσ`′−E〈σσσ1 ·σσσ2〉), and (3.15) is obtained by an explicit method, allowing in principle
computation of the limits. We did check that asymptotically, the law under Gibbs
measure of the “symmetrized overlaps” N−1/2(σσσ1−σσσ2)·(σσσ3−σσσ4) is asymptotically
gaussian (independent of the disorder) of variance A/(1− θ), where

A = 4E
1

ch2 β(g
√

q + h)
(3.16)

and where θ is the quantity (3.17) below. It seems to us that the joint laws
under Gibbs measure of the maps N−1/2(σσσ` ·σσσ`′ − 〈σσσ` ·σσσ`′〉) should be asymptot-
ically gaussian, independent of the disorder, and that the joint laws of the maps
N−1/2〈σσσ` · σσσ`′〉 should also be gaussian. Checking this is in principle elementary,
but the algebraic formalism needed to write nicely such a result remains to be
found.

What is the high temperature region? The physicists believe that it is the
region defined by

θ = β2E
1

ch4 β(g
√

q + h)
< 1(3.17)

(where q is as in (3.10)). This conclusion was first obtained in [A-T], literally, by
analyzing the eigenvalues of matrices of dimension 0× 0. In order to estimate the
size of the cultural gap (and, in particular why the notion of “triviality” is very
relative) it is instructive to outline the derivation of this using the cavity method
from [M-P-V]. After conducting some computations that seem based upon the
a priori assumption that most of the conclusions of Theorem 2.1 are valid the
authors reach the relation CN = θCN + A/N where A is given by (3.16) and θ
by (3.17) and conclude “thus we must have θ < 1 to have CN positive”. In other
words physicists do not mind purely formal computations, and what is amazing is
how well this works.

The predicted structure of the low temperature region involves the myste-
rious phenomenon of “replica-symmetry breaking’ and I am much grateful to
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M. Mézard for having explained it to me outside the replica formalism (see
[To]). The idea is simply that an arbitrarily small coupling between two repli-
cas has big consequences. Consider, on Σ2

N , the Hamiltonian HN given by
HN (σσσ1)+HN (σσσ2)+ tσσσ1 ·σσσ2/N , and the corresponding Gibbs measure 〈 · 〉t on Σ2

N

(which is NOT a product measure). Consider the function ϕN,β,h(t) = ϕN (t) =
〈N−1σσσ1 ·σσσ2〉t. Replica symmetry breaking means that “lim

N
ϕN (t) is discontinuous

at zero”, which, as we cannot prove the existence of the limit, we formulate as
follows.

Definition 3.2. We say that there is replica symmetry breaking (RSB) for the
parameters (β, h) if the sequence ϕN is not uniformly equicontinuous as N → ∞
at the point t = 0.

This means that there is an ε > 0 such that there are arbitrarily large values of
N and arbitrarily small values of t for which |ϕN (t)− ϕN (0)| ≥ ε.

Theorem 3.3. There is replica symmetry breaking at the generic point (in the
sense of Baire category) of the region θ > 1.

One of course expects that there is RSB at each point of the region θ > 1. It
is a simple consequence of (3.8) that there is no RSB in the region D of Theorem
3.1. The status of the other points of the region (3.9) is unknown.

The proof of Theorem 3.3 relies upon the basic observation that if there is no
RSB, then (2.2) holds. We then know how to make computations and we can
make the physicist’s relation CN

∼= θCN + A/N rigorous. It is worthwhile to
detail a bit what happens here, as this touches what seems to us to be the central
obstacle in proving that under (3.17) the system is in a pure state. If there is no
RSB, one shows that for any ε > 0, when N is large, we essentially always have
|(σσσ1−σσσ2) ·σσσ3| ≤ εN . This implies that if we set Dn,N = E〈(N−1(σσσ1−σσσ2) ·σσσ3)2n〉
then for large N, D2,N ¿ D1,N . This is extremely valuable because when one tries
to compute DN = D1,N by the cavity method using an order 2 expansion, we find
terms involving D2,N , and we now know that these are indeed smaller order terms.
In contrast, when we try to prove that D1,N is small under (3.17) we do not know
a priori that D2,N ¿ D1,N . This is not a trivial issue. For a related model (to be
considered in Section 7) we did prove rigorously that there exist situations where
D2,N and D1,N are of the same order (and of order at most 1/

√
N). Moreover,

this issue does not seem to have been considered by the physicists. They seem to
ignore it when using either the cavity method or the “stability analysis” of the
replica formalism (a personal impression based on the fact that, in particular for
the model of Section 7 a wrong solution, that roughly speaking “would be true if
D2,N ¿ D1,N”, is found to be stable in this sense.) To control D1,N close enough
to the low temperature region without a priori assumptions, the most natural way
seems to control D2,N ; but this in turn requires to control D3,N , etc., leading
naturally to the consideration of exponential inequalities such as in Theorem 3.1.

One of the striking and easily formulated predictions of the Parisi solution is that
at low temperature certain quantities depend upon the realization of randomness.
For different Hamiltonians (that make matters easier) it is shown in [P-S], [Sh1]
that the quantity qN = N−1

∑
i≤N

〈σi〉2 essentially depends upon the randomness
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when β is large enough (its variance does not go to zero as N → ∞). For the
Hamiltonian (1.3) it is shown in [T5] that when h = 0 and β is large enough
the quantity q′ = N−2

∑
i<j

〈σiσj〉2 must essentially depend upon the randomness.

(In contrast, in the region D, this quantity is asymptotically close to q2/2.) The
basis for the argument is the fact that the random convex function FN/N has
fluctuations of order N−1/2, so that for most values of β, F ′N (β)/N has only small
fluctuations. One then computes the variance of this quantity using integration by
parts, assuming that q′ has vanishing fluctuations, and this yields the information
that E〈|(σσσ1·σσσ2

N )2 − 〈(σσσ1·σσσ2

N )2〉|〉 → 0. This is not as good as (2.2), but is sufficient
to prove that (3.13) would hold, which is known to be wrong for large β as proved
in [C].

The idea for the first part of the above argument is in germ in [A-L-R] . This line
of arguments is exquisitely developed by F. Guerra [Gu2]. Using only integration
by parts and the fact that EF ′′N (β)/N is non negative and of order 1 for most β,
he shows that for most values of β,

E〈(σσσ
1 · σσσ2

N
)4〉 − 4E〈(σσσ

1 · σσσ2

N
)2(

σσσ1 · σσσ3

N
)2〉+ 3E〈(σσσ

1 · σσσ2

N
)2〉2 ' 0.(3.18)

It is explained in [A-C1] why this is less miraculous than it seems at first sight.

4. The Hopfield Model

The Hopfield model was introduced by Pastur and Figotin [P-F] in the spin glass
context, but became famous only after Hopfield interpreted it as a model for
memory. We will refer the reader to [H1], [H2], [H-K-P], [T-D-C] for this aspect
of the model, and we will directly turn towards the underlying mathematics. The
model involves N spins, and M configurations “to be memorized” (ηηηk)k≤M , where
ηηηk = (ηi,k)i≤N . These configurations are called the prototypes and are chosen
at random in the simplest possible manner, independently, with P (ηi,k = 1) =
P (ηi,k = −1) = 1

2 . The object of interest is the function on ΣN defined by

HN,M (σσσ) = −N

2

∑

k≤M

mk(σσσ)2(4.1)

where

mk(σσσ) =
1
N

∑

i≤N

σiηi,k(4.2)

is the overlap between σσσ and ηηηk. The normalizing factor N/2 will be pleasant when
we will use a temperature; one way to look at HN is that it is among the simplest
functions one can write that is a candidate to take a large negative value when
σσσ = ηηηk (since mk(ηηηk) = 1). We will study the Hopfield model only at N → ∞.
There are different regimes of growth of M = M(N) that are of interest; we will
consider here only the most challenging one, when M = [αN ] is a proportion of
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N . (We consider α as fixed and no longer write the dependence in M .) Not
surprisingly, the smaller α is, the easier the model is.

Even though this is not our main line of interest, we will say a few words about
the “zero temperature case”, that is the study of the function HN itself. The
rigorous results concerning that case are not sharp, and often obtained by ad-hoc
methods that cannot yield optimal results; but at least they exist.

It is believed that for large N (and with an overwhelming probability) for α ≤
.13 there is an “energy barrier” around each prototype; that is, for some δ > 0,
ε > 0

inf
d(σσσ,ηηηk)=δN

HN (σσσ) > HN (ηηηk) + ΣN

where d(σσσ,ηηηk) is the number of indexes i ≤ N such that σi 6= ηi,k. This was
proved for α ≤ 0.05 by C. Newman [N], α ≤ 0.07 by D. Loukianova [Lou 1] and
can be further improved [T6, Section 9]. Let us say that a configuration σσσ is
a local minimum if the value of HN,M (σσσ) cannot be decreased by changing the
sign of one single spin. (The importance of these is that they can be thought as
the configurations “memorized” by HN,M .) Possibly the prettiest proof is due to
Loukianova [Lou 2], who shows, that, as α →∞, the function HN cannot have a
local minimum anywhere close to a prototype. However, nagging questions remain.
In particular, it is believed that for α = .1, HN,M has a local minimum near each
prototype, but a lower global minimum. (This lower global minimum is believed
not to be simply related to any prototype, and does not seem to be accessible by
any explicit algorithm.) Our inability to deal rigorously with this question takes
its root in the fact that, while we know, at least in principle, how to calculate the
order of (the expected value of) the supremum of a gaussian process (see [T1]) we
do not know how to do this, say, within 10% (or even a factor 2).

It is natural to study the function HN through the introduction of a tempera-
ture T = 1/β, and to study the corresponding Gibbs measure (that gives weight
Z−1 exp−βHN (σσσ) to σσσ, where Z is the normalizing factor). The results of the
study through the replica formalism are presented in [A-G-S].

The region β(1 +
√

α) < 1 corresponds to the case h = 0, β < 1 of the SK
model. In that region we have

lim
N→∞

1
N

E log ZN = lim
1
N

log EZN (=
α

2
log

1
1− β

).(4.3)

As we already mentioned, this seems to make things simpler and this region is
rather well understood [T6, Section 2]. The situation can be physically described
by saying that the temperature is so high that nothing can be learned about the
prototypes by studying Gibbs measure.

At β = 1, there seems to be an instability that has yet to be analyzed, so we
will consider directly the case β > 1. Important rigorous work has been done
in that case by A. Bovier and V. Gayrard (sometimes jointly with P. Picco) [B],
[B-G1, 2, 3, 4], B-G-P1, 2]. These authors have in particular been interested in the
image of G on RM of Gibbs measure under the map σσσ → (mk(σσσ)k≤M . It is very
natural to consider this measure since HN (σσσ) is defined in function of the overlaps
mk(σσσ) only. They proved that if α ≤ L−1 min(1, (β − 1)2) (where L is a universal
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constant) then G is essentially supported by the union of 2M disjoint balls of RM .
These balls are centered at the points m∗eeek, where (eeek) is the canonical basis of
RM and m∗ = th βm∗. This spontaneous decomposition of G into “states” simply
reflects the strong influence of each prototype on the Hamiltonian. Much more
precise information on the structure of G is contained in Theorem 4.1 below, so
we will not state the results of [B-G1] in detail, but beside the intrinsic interest of
these results, it must be pointed out that this a priori information of G is essential
for the use of the cavity method.

Since G (and hence G) breaks into rather unrelated pieces, it is quite natural
to study these separately. One way (introduced in [A-G-S]) to do this is to replace
the Hamiltonian (4.1) by

HN (σσσ) = −N

2

∑

k≤M

mk(σσσ)2 − hNm1(σσσ)(4.4)

where h > 0 (and small). The effect of the extra term is to favor the part of G
close to eee1m

∗ over the parts close to −eee1m
∗ or ±eeekm∗, k ≥ 2.

To state our main result, we consider the domain

D = {(α, β, h); β > 1, α ≤ 1
L

min((β − 1)2,
1

log β
); 0 < h < h(α, β)}(4.5)

where L is a (suitably large) number and h(α, β) is positive (and suitably small).
The condition upon h means that we are interested only in the case of h very
small; the results can be extended to the case of any h > 0 with some extra
effort; on the other hand the requirement on α is essentially the best possible.
It should be pointed out that the region D is a part of what is usually called
the low temperature region, but the behavior there is typically high temperature
(“replica-symmetry”).

We consider the system of equations

µ = E th β(g
√

r + µ + h)(4.6)

q = E th2 β(g
√

r + µ + h)(4.7)
r = αq(1− β(1− q))−2(4.8)

It can be shown that if (α, β, h) ∈ D (and the constant L of (4.5) is large
enough), this system of equations has a unique solution. We consider the function
ϕ(x) = min(x, x2). The somewhat complicated inequalities (4.9) to (4.13) mostly
intend to convey the message that great accuracy can be reached, and need not
be understood in detail by the casual reader.

Theorem 4.1. For each value of (α, β, h) in D there exists a number K indepen-

Documenta Mathematica · Extra Volume ICM 1998 · I · 507–536



524 M. Talagrand

dent of N with the following properties

E〈exp
1

KN
(σσσ1 · σσσ2 −Nq)2〉 ≤ K(4.9)

E〈exp
N

K
ϕ
( ∑

2≤k≤M

mk(σσσ1)mk(σσσ2)− r)〉 ≤ K(4.10)

E〈exp
N

K
(m1(σσσ)− µ)2〉 ≤ K(4.11)

∀k ≥ 2, E〈exp
N

K
m2

k(σσσ)〉 ≤ K(4.12)

E〈exp
N

K
ϕ
( ∑

2≤k≤M

m2
k(σσσ)− 1− β(1− q)2

(1− β(1− q))2
)〉 ≤ K(4.13)

E〈exp
N

K
ϕ
( ∑

2≤k≤M

(mk(σσσ)− 〈mk(σσσ)〉)2 − α(1− q)
(1− β(1− q))2

)〉 ≤ K(4.14)

Moreover, for any n > 0, the r.v. 〈σ1〉, · · · , 〈σn〉 are asymptotically independent;
their limit law is the law of th β(g

√
q + µ + h) where g is standard normal.

The use of the function ϕ rather than x2 is motivated by problems with the
very large values; the reason why m1(σσσ) plays a special role should be obvious
from (4.4). The meaning of (4.9) is that the measure G

′
image of Gibbs’ measure

under the map σσσ → (mk))2≤k≤M “is in a pure state”. The meaning of (4.14) is
that this measure is nearly carried by a small shell around the sphere of center
bbb = (〈mk(σσσ)〉)2≤k≤M and of radius (α(1− q))1/2/1− β(1− q); and (4.13) implies
that ‖bbb‖2 is nearly r. We thus have very accurate information on G

′
. We consider

now the function

RS(α, β, h) = −µ2β

2
+

α

2
( βq

1− β(1− q)
− log(1− β(1− q))(4.15)

− β2 r

2
(1− q) + E log chβ(g

√
r + µ + h)

where of course r, q, µ are solutions of (4.6) to (4.8).

Theorem 4.2. If the parameters (α, β, h) belong to D, then

lim
N→∞

N−1EFN (α, β, h) = RS(α, β, h).(4.16)

Theorem 4.2 was first proved in [T6] in the smaller domain D1 ⊂ D where,
for β ≥ 2, the condition Lα log β ≤ 1 is replaced by the stronger constraint
Lαβ ≤ 1. Equality (4.16) extends by continuity to the case h = 0. The proof of
[T6] uses the (somewhat unsatisfactory) technique of adding an appropriate small
perturbation term to the Hamiltonian (4.4), a trick that produces magical and
mysterious results. This perturbation term is γϕ(N)

∑
k≤M

gkNmk(σσσ), where ϕ(N)

goes to zero but not too fast (say ϕ(N) = N−1/3), where gk are i.i.d. N(0, 1), and
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where 0 ≤ γ ≤ 1 (say). As N → ∞, for fixed γ the extra term has a vanishing
influence on the expected free energy density (because ϕ(N) → 0). On the other
hand, differentiation of N−1FN with respect to γ as in [Gu2] leads to precious
information. This information comes essentially “for free”, a miraculous fact that
it would be nice to really understand. Upon reading [T6], Bovier and Gayrard
[B-G3] discovered a very beautiful approach (in the same smaller domain D1) that
deals directly with the Hamiltonian (4.4), and where the fact that the system is
in a pure state follows from a transparent geometric property. Unfortunately this
property is not true in the entire domain D of (4.5). One can only hope that their
approach can be modified to cover the correct domain D and is not specific to this
particular model.

It is possible to explain some of the mystery of the formula (4.15). If we consider
the right-hand side of (4.15) as a function of independent variables α, β, h, q, r, µ,
equations (4.6) to (4.8) mean that the partial derivatives of this function with
respect to µ, q, r respectively are zero, so that even though these depend upon α,
the partial derivative of RS(α, β, h) with respect to α can be computed as if it
were not the case. One simply has to check that this partial derivative coincides
with the increase of expected free energy when M is replaced by M + 1, that is

E log〈expβ
( ∑

i≤N

ηi,M+1σi

)2〉

which is calculated with (2.9) showing first that the variables ηi,M+1 can be re-
placed by independent gaussian (although non trivial technicalities arise due to
lack of boundedness).

Theorem 4.3. If a function W on a p replica is a product of finitely many ex-
pressions of one of the following types:

N−1/2(σσσ` · σσσ`′ − E〈σσσ` · σσσ`′〉)(4.17)

N1/2
( ∑

2≤k≤M

mk(σσσ`)mk(σσσ`′)− E〈
∑

2≤k≤M

mk(σσσ`)mk(σσσ`′)〉)(4.18)

N1/2(mk(σσσ`)−E〈mk(σσσ`)〉)(k ≥ 1)(4.19)

then lim
N→∞

E〈W 〉 exists.

This theorem is proved by an explicit method allowing in principle explicit com-
putation of the limits. Only remains the uninspiring (and in principle elementary)
task to clarify the underlying algebraic structure. Motivated by [B-G4] (that con-
siders the case α = α(N) → 0) we did check that given any n, the laws under
Gibbs measure of the maps σσσ → N1/2mk(σσσ)(2 ≤ k ≤ n) are asymptotically i.i.d.
gaussian centered, of variance (1− β(1− q)2)(1− β(1− q))−2.

Let us now outline the main aspect in which the proofs differ from the case
of the SK model. When one tries to compute a quantity such as DN = E〈(σ̃σσ ·
σσσ3)2〉 in function of DN−2, by regrouping in the Hamiltonian the terms containing
σ`

N , σ`
N−1(` ≤ 3) one rather finds terms such as AN−2, where

AN = E〈(
∑

2≤k≤M

m̃mmk ·mmm3
k

)2〉(4.20)
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(again with a small change of temperature) where m̃mmk = mk(σσσ1)−mk(σσσ2),mmm3
k =

mk(σσσ3), and to obtain a useful relation one would have to relate such terms to
terms such as DN−2. Since it is not obvious how to do this, we chose the alternate
strategy to show first that AN is small. To relate AN with AN−1, the first step is to
isolate in m̃k,m3

k the contribution of σ̃N , σ3
N . After expansion, one faces dangerous

sums of the type E
∑
k

ηk,N 〈fk〉. In these terms fk is not small, but does not depend

upon ηk,N . Cancellation occurs because the bracket 〈 · 〉 depends only weakly upon
ηk,N ; this is expressed by an extension of the integration by parts formula (3.6)
to Bernoulli r.v. (with now an error term). After integration by parts the various
terms can then be related to a N −1 spin situation via the scheme (3.8). The only
drawback of this approach is that integration by parts creates numerous terms,
and from each of these (3.8) creates numerous new terms, so that the computations
soon reach gargantuan proportions; but once one has learned how to identify the
leading terms, all it really takes to go through them is a few weeks of patience.

5. Intersecting random half spaces:
The capacity of the Perceptron

The problem to be discussed in this section originates in the theory of neural
networks. Its basic nature makes it however of interest well beyond this theory,
and the reader interested in neural networks is referred to [G2], [H-K-P]. We will
consider random half spaces in RN that are at a given distance from the origin.
The random direction will be modeled by a sequence ξξξ = (ξi)i≤N of r.v. with
P (ξi = 1) = P (ξi = −1) = 1/2. This choice (rather than the most canonical
choice of gaussian r.v.) is motivated by the origin of the problem. The same result
(often quite easier) can be obtained in the Gaussian case. Given a number κ,
we consider the half space H(ξξξ) = {xxx ∈ RN ;ξξξ · xxx ≥ κ

√
N}: Given independent

choices ξξξ1, · · · , ξξξM of random directions, we would like to know whether typically⋂
k≤M

H(ξξξk) meets ΣN . If λN denotes the homogeneous probability on ΣN , when

κ = 0 (the most important case) and (to avoid minor complications) N is odd, it
is trivial that EλN (

⋂
k≤M

H(ξξξk)) = 2−M , and this shows that if M > (1 + ε)N the

answer is no. It is proved in [K-R] that there is ε > 0 such that for large N the set⋂
k≤M

H(ξξξk) typically meets ΣN if M ≤ εN , but not if M ≥ (1− ε)N , a result that

is somewhat streamlined and improved in [T13]. It is conjectured in [K-M] that
the critical value of M is about M = .83N . One would like to compute exactly (in
the limit) the “typical value” of N−1 log λN (

⋂
k≤M

H(ξξξk)) (the mean is not defined

since
⋂

k≤M

H(ξξξk) can be empty). There is an obstacle to the study of a quantity

such as
⋂

k≤M

H(ξξξk), namely that the size of this set is extremely dependent upon

each direction ξξξk (e.g. the set is empty if ξξξM = −ξξξ1, κ > 0). Of course one
expects that “in general configurations” this is not the case, but showing this
requires works. It does not seem even trivial to show that the random quantity
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N−1 log λN (
⋂

k≤M

H(ξξξk)) has small fluctuations around its median value, and this

despite a well developed machinery that has been constructed to handle such
problems [T2], [T4]. It is currently not known how to show that these fluctuations
are of order N−1/2, as one should expect (see [T9] for a weaker result). It is thus
natural to study first a version of the problem “with temperature”, by considering
the Hamiltonian

HN,M (σσσ) = −
∑

k≤M

θ
(ξξξk · σσσ√

N

)
(5.1)

where θ(x) = 1{x≥κ}. One will then consider the corresponding Gibbs measure
GN at inverse temperature β. When θ(x) = x2/2 (5.1) is the Hamiltonian of
the Hopfield model; but the fact that θ is now bounded suppresses the strong
attraction of the system towards the configurations ξξξk.

Given a function θ, and β > 0, we consider the function (defined for y < 1 )

Φ(x, y) =
1√

1− y

Eg expβθ(x + g
√

1− y)
E exp βθ(x + g

√
1− y)

(5.2)

where g is N(0, 1). In the next statement, z also denotes a N(0, 1) variable inde-
pendent of g, and Eg denotes integration in g only.

Theorem 5.1. Given β > 0, there exists a number α0(β) > 0 with the following
property. Consider a nondecreasing function θ : R → [−1, 1], and the function Φ
given by (5.2). Then, if α ≤ α0(β) the system of equations

q = E th2(z
√

q̂); q̂ = αEΦ2(z
√

q, q)(5.3)

has a unique solution q = q(α, θ, β), q̂ = q̂(α, θ, β). Moreover, if ZN,M denotes
the partition function of the system governed by the Hamiltonian (5.1) at inverse
temperature β, we have

lim
N→∞

1
N

E log ZN,M = RS(α, β)(5.4)

when M = [αN ] and

RS(α, β) = −1
2
q̂(1− q) + E log 2 ch z

√
q̂(5.5)

+ αE log Eg exp βθ(z
√

q + g
√

1− q).

It is of interest to compare this formula with the corresponding formula for the
Hopfield model. When θ(x) = x2, Φ is well defined for β(1 − y) < 1, and the
second equation of (5.3) becomes q̂ = αβ2q(1− β(1− q))−2. Then (5.5) gives the
formula (4.15) in the case µ = h = 0.

The reader has noted that Theorem 5.1 does not require that θ be smooth.
On the other hand, we do not know how to relate an N spin system with an
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(N − 1) spin system unless θ is smooth and we can make power expansions. To
prove Theorem 5.1, we first assume that θ is smooth, and we use the monotonicity
of ZN,M in θ. With this approach, it is not clear how to prove (2.2), or even
whether this is true when θ is an indicator function. The difficulty is a problem
of interversion of limits. The useful estimates when θ is smooth require N large,
where “large” seems to depend on how large the derivative of θ can be.

When relating an N spin system with an (N − 1) spin system, the role
that was played by the quantities mk in the case of the Hopfield model is now
played by θ′(sk)/

√
N , where sk = N−1/2

∑
i≤N

ξk
i σi. A first observation is that

∑
k≤M

(θ′(sk)/
√

N)2 (among other quantities) will not be bounded by a quantity

depending upon ‖θ‖∞ = sup |θ| only. In order to be able to prove Theorem 5.1,
we must make estimates that (for large N) do not depend on ‖θ′‖∞ but only on
‖θ‖∞; not surprisingly, the main tool for that purpose is integration by parts. A
second observation is that we no longer benefit as in the Hopfield case from the
fact that θ′(x) = βx is a very simple function. This made possible (through in-
tegration by parts) to relate quantities such (4.20) (quantifying that the image of
Gibbs measure under the map σσσ → (θ′(sk)/

√
N)k≤M is nearly in a pure state) with

quantities such as E〈( 1
N σ̃σσ ·σσσ3)2〉 that involve only configurations. As a substitute

to these explicit evaluations, we use another version of the cavity method (that
we learned in [M]), which relies on the simple observation that for any function f ,

〈f(sk)〉 =
〈f(sk) exp βθ(sk)〉1
〈expβθ(sk)〉1(5.6)

where 〈 · 〉1 denotes Gibbs relative to the Hamiltonian HN,M−1 of (5.1) (thus the
summation is over k ≤ M − 1). In order to compute expectation of the right hand
side of (5.6) (and of the similar quantities required to work with several replicas)
one first integrates in ξξξk = (ξk

i )i≤N . To do this one shows first that we can replace
the ξk

i by i.i.d. N(0, 1) variables. One then uses a decomposition of the type (3.8),
where now Z = 〈expβθ(sk)〉1 and where Ẑ (motivated by (2.9)) is

Ẑ = Eg exp βθ(ξξξk · bbb + g
√

1− ‖bbb‖2)

for bbb = (〈σi〉1/
√

N)i≤N . In these computations, we are not dealing with explicit
functions (and thus cannot make explicit computations); instead we obtain esti-
mates through comparison theorems for Gaussian processes.

6. The random p-sat problem

Consider independent Boolean variables x1, · · · , xN . A p-clause is a Boolean func-
tion yi1 ∨ yi2 ∨ · · · ∨ yip where i1 < · · · < ip, and where, for each ` ≤ p, either
yi`

= xi`
or yi`

= xi`
. Thus there is exactly one truth assignment of the variables

(xi`
)`≤p that does not satisfy the clause. Given M clauses, the satisfiability prob-

lem is the question of whether or not there is a truth assignment of the variables
that satisfies them all. It is a fundamental problem of computer science. In the
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random model of the p-sat problem the set of M clauses is chosen independently
uniformly among all sets of Mp-clauses. The question is then to decide whether
in the typical case these M random clauses can be simultaneously satisfied, and,
more generally, what is the typical proportion of truth assignments that will sat-
isfy them all. To see the relation with previous sections, we replace “true” by 1
and “false” by −1. We denote by [N ]p the collection of subsets of {1, · · · , N} of
cardinal p. Given I ∈ [N ]p and ρρρ ∈ ΣN , we consider the set

AI,ρρρ = {σσσ ∈ ΣN ; ∃i ∈ I, σi 6= ρi}(6.1)

and the problem is now to find the typical proportion of configurations that belong
to M random sets AI,ρρρ. This problem is formally very close to the perceptron
capacity problem of Section 6. The big difference is that the random sets depend
only upon finitely many coordinates; but as previously the important case is when
M = bαNc.

In order to introduce a temperature, we consider (following [M-Z]) the Hamil-
tonian

HN (σσσ) = −
∑

k≤M

1{σσσ∈Ak}(6.2)

where Ak, k = 1, · · · , M are M sets of the type (6.1) chosen uniformly among all
possibilities.

In order not to be hypnotized by the specific form of (6.2), we consider a more
general setting, as follows. Consider a function f : [0, 1]× {−1, 1}p → [−1, 1]. For
each set I ∈ [N ]p consider the random function fI(σσσ) = f(XI , σi1 , · · · , σip) where
I = {i1 < · · · < ip} and where the collection (XI)I∈[N ]p is independently uniform
over [0, 1]. We then consider the more general form of (6.2)

HN (σσσ) = −
∑

k≤M

fIk
(σσσ)(6.3)

and the corresponding random Gibbs measure GN on ΣN . The expected number
of intervals Ik that contain N is pM/N , so that the conditional distribution of σN

(for Gibbs’ measure) given σ1, · · · , σN−1 depends of (σ1, · · · , σN−1) through only
finitely many components, a fact that is expressed in physics by saying that the
N th site interacts with finitely many other sites. We cannot expect the central
limit theorem to come into effect, and the gaussian r.v. that were ubiquitous
in the previous sections will not appear here. This makes the situation more
complicated. The formal computations of the physicists that lead then to (e.g.)
(4.15) make it natural for them to think of the Hopfield model as depending upon
these parameters (µ, q, r), that are determined by the relations (4.6) to (4.8). They
say that the system “depends on the order parameters µ, q, r”. The situation is
more complex here, and the central object is the limiting distribution of 〈σ1〉, a
fact expressed in physics by saying that “the order parameter of the system is a
function”. (In that case the replica formalism involves yet another arbitrary step.
Namely, one has to look for the extremum of a certain functional over a very large
function space, and one restricts a priori the search to a more manageable very
small subspace.)
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Theorem 6.1. Given the integer p, and α > 0, there exists a number β(p, α) > 0
with the following property. Whenever β < β(p, α), the system governed by (6.3) at
inverse temperature β is in a pure state. Given any n, the r.v. 〈σ1〉, · · · , 〈σn〉 are
asymptotically identically distributed and the expected free energy density converges
as N →∞.

The limit law ν = ν(f, β, α) of 〈σ1〉 appears as the fixed point of a certain
operator (in the spirit of the previous sections). The limiting expected free energy
density can be in principle computed in function of ν (see [M-Z] for a rather formal
expression, obtained through the replica formalism, in the case of (6.2)).

To prove Theorem 6.1, the main difficulty is to prove the conditions of Theorem
2.1. The positivity argument is very precious here because, if one tries an approach
along the lines of (3.8), the natural candidate for Ẑ is complicated enough so that
it is not clear how to estimate simply EU/Ẑ. The statement about the limiting
behavior of 〈σ1〉, · · · , 〈σn〉, which, as we explained, is an essentially obvious conse-
quence of the conditions of Theorem 1.2 in the previous examples lies somewhat
deeper here. The basic idea is however simple. The last spin σN interacts with
only finitely many other spins. Each of these in turn interacts only with finitely
many other spins, etc. The key point is that the (global) influence upon σN of the
finitely many spins obtained at the k-stage decreases with k, so that the behavior
of σN is essentially controlled by a finite set of other spins. When applying the
same principle to σN−1, another finite set of spins is involved, that is generically
disjoint of the previous one, and this creates independence. The reader has noticed
that the role of α and β are reversed in Theorem 6.1 compared to Theorem 5.1.
It is true that given f, β, the conclusion of Theorem 6.1 does hold for small α,
but for uninteresting reasons. In fact if α(p − 1) < 1, with high probability the
interactions “die out” and the set {1, · · · , N} decomposes in small pieces that do
not interact with each other.

We have given Theorem 6.1 as an illustration of the fact that even the case
of “functional order parameter” is amenable to rigorous results because it relates
to a known famous problem. There are, however, simpler situations of the same
nature. One of them is the diluted SK model, where the Hamiltonian (1.3) is
replaced by

HN (σσσ) = −
∑

i<j

ηijgijσiσj − h
∑

i<j

σi.(6.4)

There, the r.v. ηij are independent among themselves and of the gij , and satisfy
P (ηij = 1) = γ/N , P (ηij = 0) = 1 − γ/N so that each spin interacts with an
average number of γ other spins. A result similar to Theorem 6.1 can be proved at
high temperature. The proof is much easier because (2.2) can be obtained through
an immediate adaptation of the argument we outlined in Section 3.

7. The p-spin interaction model: low temperature

The p-spin model is a generalization of the SK model. If p is an integer ≥ 2, the
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Hamiltonian is

H(σσσ) = −( p!
2Np−1

)1/2 ∑

1≤i1<···<ip≤N

gi1···ipσi1 · · ·σip .(7.1)

The summation is over all possible choices of i1, · · · , ip and the gi1···ip are i.i.d.
standard normal. A basic observation is that (neglecting terms of order one)

2EH(σσσ)H(σσσ′) =
p!

Np−1

∑

i1<···<ip

σi1 · · ·σipσ′i1 · · ·σ′ip
' N(

σσσ · σσσ′
N

)p.(7.2)

Thus the complicated covariance structure of the gaussian variables (H(σσσ))σσσ (that
is responsible for the difficulty of the problem) simplifies as p → ∞ and the r.v.
(H(σσσ))σσσ become independent, a situation that can be analyzed in great detail [D].
We are however not interested in having N fixed, p → ∞, but rather p fixed,
N → ∞. Still, (7.2) indicates that the larger p, the easier the model should be.
Physics predicts that for low (but not too low) temperature, the behavior of the
model is non trivial, yet much simpler than the conjectured behavior of the SK
model [G-M], [G1]. The different behavior starts at p = 3 for reasons that will
soon be obvious.

The basic idea to obtain information about the low temperature region is to use
the “transfer principle” outlined in Section 3. This principle allows only a small
change of inverse temperature, so that in order to reach the low temperature region
we must first be able to control most of the high temperature region, which we
know best how to do when there is no external field (our results can be extended
to small external field, say h of order 2−p, but we do not see how to handle the
case where h is not small, say, h = 1). But what is the high temperature region?
Let us define the critical number βp as the supremum of the numbers β for which

lim
N→∞

1
N

E log ZN = lim
N→∞

1
N

log EZN (=
β2

4
).(7.3)

We do not know the exact value of βp if p > 2, but we proved that 2
√

log 2−2−p <
βp < 2

√
log 2 for large p. To obtain information about the range of the overlaps

at high temperature, the idea is as follows. We write, for an interval I,

G2
N ({(σσσ1,σσσ2);σσσ1 · σσσ2/N ∈ I}) = Z−2

N

∑

σσσ1,σσσ2

exp−β(HN (σσσ1) + HN (σσσ2))

where the summation is over σσσ1 · σσσ2/N ∈ I. We control EZN from (6.3), and
we use that from general principles (concentration of measure [I-S-T]) ZN is very
close from its expectation so that it can be controlled from below. To control the
summation from above, we then estimate

E
∑

exp−β(H(σσσ1) + H(σσσ2)) =
∑

exp
β2

2
E(H(σσσ1) + H(σσσ2))2

using (7.2), where now appears the importance of the exponent p, contrasted with
the fact that the proportion of configurations σσσ1,σσσ2 for which σσσ1 · σσσ2 = Nt is
about exp−Nt2/2. (In practice some technicalities like truncation are required).
To avoid complications, let us give a typical result (which is not the best we can
prove).
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Theorem 7.1. There exists a number L with the following property. If p ≥ L, x ≤
1/L and if β ≤ βp +x/L, then the overlap of two replicas essentially never belongs
to the set J ∪ −J where J = [x, 1− (x + 2−p/L)].

There (and below) “essentially never belongs” means

EG2
N ({σσσ1,σσσ2;σσσ1 · σσσ2/N ∈ J ∪ −J}) ≤ exp−N/K

where K does not depend upon N .
Let us now consider a probability ν on the sphere SN of RN of radius

√
N (so

that ΣN ⊂ SN ) such that the overlap σσσ1 ·σσσ2/N of two independent configurations
belong to J ∪ −J only with very small probability where J is, say, the interval
[.01, .99]. (Thus, for p large enough and β ≤ βp + 1/L,GN has this property with
overwhelming probability). Then it is intuitively clear, and easy to prove, that
almost all the mass ν must be carried by a union

⋃
α≥1

Cα of sets Cα such that each

Cα is the union of two opposite small caps. The decomposition is finite (Cα = ∅
for α large enough). It is such that when σσσ and σσσ′ belong to two different sets Cα,
then |σσσ · σσσ′/N | is small (say, ≤ 1/10). The fact that Cα has to be the union of
two pieces is clear when ν is invariant by symmetry about zero, as is the case for
Gibbs measure when p is even. Moreover, the decomposition is essentially unique
“within sets of small measure”.

Thus, Theorem 7.1 proves that if β ≤ βp + β0 (where β0 is a fixed number)
and p is large enough, the Gibbs measure is supported by a union of small sets
(Cα)α≥1 that are far apart. The remarkable feature here is that this decomposition
is not(in contrast with the case of the Hopfield model) apparent from the form of
the Hamiltonian. We will call the sets Cα the lumps, to avoid the overused word
“state”. (We will consider later the question of whether they are “pure states”.)

Theorem 7.2. There exists a number L such that if p ≥ L and β ≤ βp + 1/L,
then

lim
N→∞

E〈(σσσ1 · σσσ2

N

)21{|σσσ1·σσσ2|≤N/2}〉 → 0.

This means that two configurations in different lumps have generically a zero
overlap, so that the lumps are as far from each other as they can possibly be. They
are also small, since σσσ1 · σσσ2/N is close to 1 for σσσ1,σσσ2 in the same lump, so they
are well separated from each other, which of course greatly helped us to construct
them. Theorem 7.2 is proved by the cavity method; due to the restriction to
integration over the region where overlaps are ≤ 1/2, it does not seem possible to
use a positivity argument, but here again gaussian processes are very useful.

Let us now denote by wα the weight GN (Cα) of lump α, and assume that the
numbering is such that w1 ≥ w2 ≥ · · · . The random sequence (wα)α≥1 is obviously
crucial for the understanding of the model; it is unfortunately not easy to obtain
information about it. From Theorem 7.2, we have

E〈(σσσ1 · σσσ2

N

)p〉 ≤
∑

w2
α + o(1)

where o(1) → 0 as N →∞.
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Combining with the relation

E
1
N

∂

∂β
log ZN =

β

2
(1− 〈(σσσ1 · σσσ2

N

)p〉)

(that is obtained as the first equality of (3.7)) one can prove that for β > 2
√

log 2
and large N we have E

∑
w2

α > ε(p) > 0 where ε(p) does not depend upon N .
(This ought to be true for all β > βp but we do not know how to show this. Note
however that the restriction β ≤ βp + 1/L does allow values of β > 2

√
log 2). The

condition E
∑

w2
α > ε(p), together with

∑
wα = 1, shows that at least some of

the weights wα are “macroscopic”, i.e. of order 1.
The distribution predicted (and reinvented) by the physicists for the weights

(wα) is of interest (see [P-Y] for a modern view and earlier references). Consider
a number m ∈ (0, 1) and a Poisson point process on R+ such that its intensity
measure has density mx−m−1 with respect to Lebesgue measure. Consider a re-
alization (xα)α≥1 of this process. Then S =

∑
xβ < ∞. a.s, and it is believed

that as N → ∞, the distribution of the weights wα converges to the distribution
of vα = xα/S, where the parameter m = m(p, β) is such that (1 − m) is about
(β− βp)/βp for β− βp small and p large. There would be some hope to prove this
conjecture [A-C2] if we knew that the distribution of the weights wα has a limit
as N → ∞; but, unfortunately, the best argument to date towards the existence
of such a limit seems to be that there is no reason why it should not exist!

In this situation, it makes sense to try to go forward and examine the funda-
mental question of whether the lumps are “pure states” by assuming as weak as
possible unproven properties of the weight distribution. One particularly useful
such condition is as follows.
(H) There exists δ > 0, p0 > 0 such that, if p ≥ p0, we have for each ε > 0

lim sup
N→∞

P
( ∑

α≤200

wα ≥ 1− ε) ≤ εδ.

The number 200 is of course somewhat arbitrary. This condition simply means
that it is rare that a few weights carry almost all the mass, and is (of course)
satisfied by the conjectured distribution. To simplify the statement of the following
result, we consider only the case p even.

Theorem 7.3. (informal version). There exists a constant L with the following
property. If (H) is true, then for p large enough, and β ≤ βp + 1/pL, the lumps
(Cα) are in the limit the union of two pure states related by a global symmetry
around zero.

Thus, we will have Cα = Σα ∪ (−Σα), where Σα is a “pure state ”. A physicist
would define a pure state by saying that the overlap of two independent configu-
rations belonging to Σα are generically constant (which is a way to express that
(2.2) holds for the restriction of GN to Σα). How to express this mathematically
is a bit more tricky. One way to do this is to introduce the quantity

EN = E〈(N−1(σσσ1 − σσσ2) · (σσσ3 − σσσ4))21A〉(7.4)
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where A = {σσσ1,σσσ2,σσσ3,σσσ4; ∀i, j ≤ 4,σσσi · σσσj ≥ N/2}. Restricting the thermal
integral to A essentially means that we force σσσ1,σσσ2,σσσ3,σσσ4 to belong simultaneously
to a set of the type Σα or to a set of the type −Σα. The final statement of Theorem
7.3 is that lim

N→∞
EN = 0, which essentially means that “(2.3) holds in each Σα”.

The proof again relies upon relating EN and EN−1 via the cavity method.
Thus Theorem 7.3 asserts that if σσσ1,σσσ2 ∈ Σα then (generically) σσσ1 · σσσ2 =

±Nqα, where qα is a certain (possibly random) quantity depending possibly upon
α. Physicists believe that for each α, qα = q, where q is non random; but it
unfortunately seems to be difficult to gather evidence in this direction unless one
has a much better control of the weights distribution.
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Geometric Physics

Cumrun Vafa

Abstract. Over the past two decades there has been growing interac-
tion between theoretical physics and pure mathematics. Many of these
connections have led to profound improvement in our understanding of
physics as well as of mathematics. The aim of my talk is to give a non-
technical review of some of these developments connected with string
theory. The central phenomenon in many of these links involves the no-
tion of duality, which in some sense is a non-linear infinite dimensional
generalization of the Fourier transform. It suggests that two physical
systems with completely different looking properties are nevertheless iso-
morphic if one takes into account “quantum geometry” on both sides.
For many questions one side is simple (quantum geometry is isomorphic
to classical one) and the other is hard (quantum geometry deforms the
classical one). The equivalence of the systems gives rise to a rich set
of mathematical identities. One of the best known examples of dual-
ity is known as “mirror symmetry” which relates topologically distinct
pairs of Calabi-Yau manifolds and has applications in enumerative ge-
ometry. Other examples involve highly non-trivial “S-dualities” which
among other things have found application to the study of smooth four
manifold invariants. There have also been applications to questions of
quantum gravity. In particular certain properties (the area of the hori-
zon) of black hole solutions to Einstein equations have been related to
growth of the cohomology of the moduli space of certain minimal sub-
manifolds in a Calabi-Yau threefold. A central theme in applications of
dualities is a physical interpretation of singularities of manifolds. The
most well known example is the A−D−E singularities of the K3 man-
ifold which lead to A − D − E gauge symmetry in the physical setup.
The geometry of contracting cycles is a key ingredient in the physical
interpretation of singularities. More generally, singularities of manifolds
encode universality classes of quantum field theories. This leads not only
to a deeper understanding of the singularities of manifolds but can also be
used to “geometrically engineer” new quantum field theories for physics.
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1. Introduction

The history of physics and mathematics is greatly interconnected. Sometimes new
mathematics gets developed in connection with understanding physical questions
(for example the development of Calculus was not independent of the questions
raised by classical mechanics). Sometimes new physics gets developed from known
mathematics (for example general theory of relativity found its natural setting in
the context of Riemannian geometry). I believe we are now witnessing perhaps an
unprecedented depth in this interaction between the two disciplines. It is thus a
great pleasure to explain some of the recent progress which has been made in our
understanding of quantum field theories, string theory and quantum gravity to a
mathematical audience. The works I will be explaining here is a result of the work
of many physicists and mathematicians.1

Many of the key elements in these recent advances have a deep mathematical
content. These involve new predictions for answers to some very difficult mathe-
matical questions as well as new interpretations of some old mathematical results.
It also sometimes hints at the existence of whole new branches of mathematics
which does not exist yet.

In preparing this talk, I have had to make some choices. First of all I have had
to decide which topics to cover and which ones to leave out. This has been very
difficult because there are many interesting interaction points between theoretical
physics and pure mathematics today, and unfortunately I only have a very limited
time here. My choice was motivated by the degree of my familiarity with the
subject as well as by attempts at trying to give a unified exposition of the seemingly
unrelated topics. Secondly I have had to assume a certain level of familiarity of
this mathematical audience with physics. This is also unavoidable, if we are to
make any connection to interesting new developments. However, I have tried to
make this assumption in the weakest possible sense. Thirdly I have chosen a list
of questions which I find interesting for physics which I hope the mathematicians
will help us solve.

The organization of my talk is as follows: In section 2 I will describe the basic
notion of duality which is the key notion in recent advances. In sections 3-5 I give
examples of dualities. Section 3 is devoted to a review of what mirror symmetry is.
Section 4 explains the physical interpretation of singularities of certain manifolds.
Section 5 is devoted to the notion of black hole entropy and what duality predicts
about that. Section 6 is devoted to a list of questions which I raise in connection
with the topics discussed.

2. What is meant by Duality?

I will try to define a very general notion of duality first, a priori nothing to do
with physics, and then try to be a little more particular in what it means in the
physical context.

1 I will not make any attempts to present a complete list of references to all
the relevant literature, though some illustrative references, in the spirit of the
presentation here will be given.
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Suppose we have two classes of objects. Moreover suppose these two objects
satisfy identical properties. Then in a mathematical context they usually will
be called isomorphic. Very often this is a trivial isomorphism. For example if a
property of geometry on a 2 dimensional plane is true, it will also be true for the
mirror reflection of the same geometry (Fig. 1).

Fig.1: Reflection on the plane is an example of a “trivial” duality.

However there are times where the fact that the objects and operations are
isomorphic is less trivial, because the maps between these two classes of objects
is not so trivial. As an example, suppose we wish to solve a linear differential
equation of the form

F =
∑

k

ak
dk

dxk
ψ(x) = 0

with constant coefficients ak. Consider instead the polynomial equation in one
variable p:

G =
∑

ak(ip)k = 0

Apriori the two problems seem unrelated. In fact the second problem on the face
of it sounds much simpler. However, as is well known the two problems are related
by Fourier transform, and the general solution to the first problem is given by

ψ(x) =
∫

dpφ(p)exp(ipx)δ(G(p))

This isomorphism of functions in x and functions in p with the map between them
being Fourier transform allows us to solve a ‘hard’ problem in the x space setup
in terms of an easy problem in the p space setup. Isomorphisms of this type which
are non-trivial we will call dualities. As it is clear from this example dualities
will be very useful in solving problems. Dualities very often transform a difficult
problem in one setup to an easy problem in the other. In some sense very often
the very act of ‘solving’ a non-trivial problem is finding the right ‘dual’ viewpoint.

Now I come to specializing this idea in the context of a physical system.
Consider a physical system Q (which I will not attempt to define). And suppose
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this system depends on a number of parameters [λi]. Collectively we denote the
space of the parameters λi by M which is usually called the moduli space of the
coupling constants of the theory. The parameters λi could for example define
the geometry of the space the particles propagate in, the charges and masses of
particles, etc. Among these parameters there is a parameter λ0 which controls
how close the system is to being a classical system (the analog of what we call
h̄ in quantum mechanics). For λ0 near zero we have a classical system and for
λ0 ≥ 1 quantum effects typically dominate the description of the physical system.
Typically physical systems have many observables which we could measure. Let
us denote the observables by Oα. Then we would be interested in their correlation
functions which we denote by2

〈Oα1 ...Oαn〉 = fα1...αn(λi)

Note that the correlation functions will depend on the parameters defining Q.
The totality of such observables and their correlation functions determine a phys-
ical system. Two physical systems Q[M,Oα],Q̃[M̃, Õα] are dual to one another
if there is an isomorphism between M and M̃ and O ↔ Õ respecting all the
correlation functions. Sometimes this isomorphism is trivial and in some cases it
is not. We are interested in the cases where this isomorphism is non-trivial. In
such cases typically what happens is that a parameter which controls quantum
corrections λ0 on one side gets transformed to a parameter λ̃k with k 6= 0 de-
scribing some classical aspects of the dual side. This in particular implies that
quantum corrections on one side has the interpretation on the dual side as to how
correlations vary with some classical concept such as geometry. This allows one
to solve difficult questions involved in quantum corrections in one theory in terms
of simple geometrical concepts on the dual theory. This is the power of duality
in the physical setup. Mathematics parallels the physics in that it turns out that
the mathematical questions involved in computing quantum corrections in certain
cases is also very difficult and the questions involved on the dual side are math-
ematically simple. Thus non-trivial duality statements often lead to methods of
solving certain difficult mathematical problems.

One should note, however, that very rarely can one actually prove (even in
the physics sense of this word) that two given physical systems are dual to one
another. Often the existence of dualities between two systems is guessed at based
on some physical consistency arguments. Testing many non-trivial consequences
of duality conjectures leads us to believe in their validity. In fact we have observed
that duality occurs very generically, for reasons we do not fully understand. This
lack of deep understanding of duality is not unrelated to the fact that it leads
to solutions of otherwise very difficult problems. At the mathematical level, ev-
idence for duality conjectures amounts to checking validity of proposed solutions
to certain difficult mathematical problems.

2 One could attempt to define a physical system by an infinite dimensional
bundle over M where the fiber space is identified with the space of observables
Oα, together with a rank n multi-linear map from the fiber to C, for each n,
satisfying some compatibility conditions.
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In the next three sections I will consider examples of duality and some of its
mathematical consequences. In section 3 we will start with the best understood
duality known as mirror symmetry, which relates string theory on one target man-
ifold with another. In section 4 we discuss how singularities of the geometry get
related to gauge bundles for the dual theory. In section 5 we discuss a dual descrip-
tion of black hole geometry which is intimately related to properties of minimal
submanifolds in Calabi-Yau manifolds.

3. Mirror Symmetry

String theory, which is the only known consistent framework for a quantum theory
of gravity, involves the study of quantum properties of one dimensional extended
objects. The spacetime picture corresponds to a two dimensional Riemann surface
Σ mapped to a target spacetime Riemannian manifold M . The sliced Riemann
surfaces give the picture of strings propagating in time (Fig. 2).

Fig.2: Strings propagating in spacetime span a Riemann surface known
as the worldsheet.

In string theory we are instructed to “sum” over all such maps

φ : Σ → M

weighted with exp(−S(φ)) where S(φ) denotes the integral

S(φ) =
∫

Σ

|dφ|2

where we use the metric on M to define |dφ|2. (For superstrings which is the
case of most interest, there are also some fermionic fields, which I suppress in this
discussion.)

One of the most amazing properties of string theory is that strings moving on
one manifold may behave identically with strings moving on a different manifold.
Any pair of manifolds M1 and M2 which behave in this way are called mirror
pairs. Of course this would be a trivial duality if M1 and M2 are isomorphic Rie-
mannian manifolds. The interesting dualities arise when M1 and M2 are distinct
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Riemannian manifolds. In some cases M1 and M2 are topologically the same, but
in some cases they are distinct even topologically. In such cases the equivalence
of the two manifolds for string theory will be only a statement about correlation
functions after summing over all maps φ. The act of summing over all maps φ is
what we mean by the quantum theory. So only in the quantum theory, i.e. after
summing over all φ the two computations would be related (i.e. we should not
try to compare individual maps). The parameter controlling the significance of
quantum corrections, for a fixed genus surface Σ, is the volume of M , V (M). In
particular, the parameter we called λ0 in the previous discussion in this case is
λ0 = 1/V (M) (and thus in the large volume limit the quantum corrections are
suppressed).

The simplest example of mirror symmetry corresponds to choosing M1 to be
a circle of circumference L and M2 to be a circle of circumference 1/L. This is
a case of mirror symmetry which can be rigorously proven (see [1] for a review).
However here we will just illustrate why such a statement is not unreasonable.

This statement would definitely be unreasonable for point particle theories:
If we consider a particle in a circle of size L, the momentum states are quantized
as the allowed wave functions

ψn(x) = exp(2πinx/L)
compatible with the invariance under x → x + L gives the spectrum of allowed
momenta (which for massless particles is the same as energy) to be n/L, where
n ∈ Z. If we consider the circle of circumference 1/L the allowed energies are
now nL. Thus the energy spectrum of the two theories do not match. The story
changes dramatically for strings: We will still have the same excitations as in the
point particle case, after all the string mapped to a point looks like a point particle.
However we have in addition other states corresponding to winding states of the
string around the circle. Consider the first circle of circumference L and assume
a string wraps around it m times, then its energy is mL (I am working in units
where the string tension is one). Now the full spectrum of momentum and winding
states does have L → 1/L symmetry where in the process momentum states get
exchanged with winding states (Fig. 3).

Fig.3: Momentum modes, with energy n/L get exchanged with winding
modes with energy mL under mirror symmetry L → 1/L.
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There is one context in which a similar duality is already well known math-
ematically: Consider a U(1) bundle on a circle. Then the choice of the bundle
(i.e. the choice of the holonomy of U(1) around the circle) is equivalent to the
choice of a point on the dual circle. This also turns out to have a very important
physical analog [2]. If we consider open strings, in addition to closed strings, we
would be considering Riemann surfaces with boundaries. In such a case in addition
to specifying the target geometry M where the closed strings are mapped to, we
have to specify where the boundaries are mapped to. In general they could map
to some subspaces of M of various dimensions p. Such a p-dimensional subspace
of M is called a p − brane or Dp − brane (D signifying the fact that the maps
from the Riemann surface have Dirichlet conditions in codimension p, and “brane”
generalizing the terminology of membranes which are 2-branes, to the higher di-
mensional objects). Moreover it turns out that a Dp-brane will carry a U(1) gauge
field and so can be viewed as a sheaf in M . Physically a Dp-brane corresponds to
some charged matter localized in a p-dimensional subspace of M . From the string
viewpoint D-branes are regions where an open string can end on (Fig. 4).

Fig.4: A Dp brane is a subspace of the target manifold M where a string
can end on.

Returning to the case of a circle, if we consider a D1 brane which includes the
entire circle of circumference L, we can ask what happens under mirror symmetry
to the D-brane. The answer is that it gets transformed to a D0 brane on the
mirror. This is in accord with the mathematical fact mentioned before (where the
holonomy of a U(1) bundle gets transformed to the choice of a point on the dual
circle). This has also a natural generalization to the case where we consider N
D1 branes wrapping the S1 which in physics leads to a U(N) bundle on S1 and
choosing a flat U(N) connection on S1 amounts to choosing N points on the dual
circle, i.e. it is transformed to N D0 branes on the mirror.
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It is natural to ask how mirror symmetry extends in cases where the target
manifold is more complicated than S1. One simple example consists of taking a d-
dimensional torus T d = (S1)d and doing inversion on each of the S1’s. The action
of this on the Dp branes, viewed as subspaces T p ⊂ T d is also clear where they
get transformed to a dual T ∗d−p ⊂ T ∗d. However for more interesting examples
we need the following idea 3.

1. The Adiabatic Principle

Consider a family of flat d-dimensional tori T d varying slowly, i.e. adiabat-
ically over some base space B. Consider the total space M1 over B with T d as
the fiber. Consider another space consisting of the same base space B, where over
each point we replace the fiber T d with the mirror torus where all lengths are
inverted. Call the total space M2. Then it is natural to believe that the spaces M1

and M2 are mirror to one another. However the interesting examples arise when
the assumption of adiabaticity is violated over some subspaces of B. For example
the T d may degenerate over some loci. If the category of objects we are dealing
with is sufficiently nice one may hope that the mirror property will continue to
hold. One nice category4 seems to be when the base B is also d-dimensional and
the total space is a Calabi-Yau d-fold (a Kähler manifold of complex dimension d
whose bundle of holomorphic d-forms is trivial) where the fibers T d are viewed as
Lagrangian submanifolds relative to the Kähler form. In fact the non-trivial data
specifying the geometry of the Calabi-Yau is precisely how the degeneration of T d

over B takes place. This construction corresponds to describing a hypersurface in
a toric variety, in a degenerate limit. In a singular limit the Calabi-Yau may be
viewed as a T d fiber space over the base being a boundary of some simplex (in
the sense of toric geometry), where T d degenerates to T k over d − k dimensional
subspaces of B. The data defining the mirror, after suitably rescaling the metric
on B looks like the dual geometry where the regions where the T d shrinks to T k

is replaced by the dual k-dimensional subspaces where the T d−k ⊂ T d shrinks and
the dual survives, this being consistent with the small/large radius exchange (Fig.
5). This gives what is known as Batyrev’s construction of mirror pairs using the
toric description.

3 The presentation here of the mirror symmetry for more complicated target
spaces does not follow the historical order of its discovery. Mirror symmetry was
first conjectured to exist for Calabi-Yau manifolds in [3][4], with the concrete
examples being found in [5] followed by a concrete application to counting holo-
morphic curves in [6]. The construction of mirror pairs was systematized by [7].
The presentation here follows the approach in [8] developed further in [9] which
explains the construction of [7] from this viewpoint.

4 There may well be other categories, such as the category of manifolds of
Sp(n), Spin(7) or G2 holonomy.
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Fig.5: An application of inversion duality of tori when tori are varying
leads to an explanation of mirror symmetry in more complicated exam-
ples.

2. Kähler-Complex Deformation Exchange

It would be nice to examine some of the consequences of the existence of
mirror geometries. To get a feeling for this it is useful to start at the level of S1

fibered trivially over B = S1. This is a simple case, as a constant fibration admits
the flat metric. Let Rf , Rb denote the radii of the fiber and a section respectively.
Note that the complex structure (shape) of the torus is determined by

C = Rb/Rf

and its Kähler class (size) is determined by

K = RbRf

Now if we do mirror transform on the fiber S1 it again leads to a torus. However
since Rf → 1/Rf but Rb → Rb the parameters controlling the complex and Kähler
deformations get exchanged:

C ↔ K under mirror transform

This turns out to be the general feature of mirror symmetry for Calabi-Yau man-
ifolds, and the Kähler and complex structures always get exchanged. In the case
of Calabi-Yau manifold of complex dimension d the number of complex moduli
is determined by h1,d−1 (where hp,q denotes the dimension of the cohomology
of p-holomorphic and q anti-holomorphic forms). Thus if M and W are mirror
Calabi-Yau manifolds we learn in particular that

h1,1(M) = h1,d−1(W ) h1,d−1(M) = h1,1(W ).

This in particular implies that the topology of the manifold and the mirror will in
general be very different. In fact it turns out that hp,q(M) = hp,d−q(W ) for all p, q.
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Moreover, as mentioned before, the parameter controlling quantum corrections is
the Kähler class of the Calabi-Yau, which gets transformed under mirror transform
to complex deformation parameter of the mirror. Thus the question of quantum
corrections for one manifold get transformed to the question involving the variation
of complex structure on the other, which is classical. This leads to some very non-
trivial implications of mirror symmetry.

The most concrete prediction this leads to is to the question of counting
the “number” of holomorphic curves mapped from a Riemann surface of genus g
to the threefold. For example the intersection numbers of cycles in the Calabi-
Yau receives a quantum correction coming from holomorphic curves (recall this
is natural from the string theory viewpoint, where the worldsheet is a Riemann
surface) (Fig. 6). This “quantum intersection theory” for triple intersections
allows, in addition to the classical intersection, the possibility that the three cycles
meet a holomorphic curve weighted by the quantum deformation parameter q =
e−A where A is the area of the holomorphic curve5.

Fig.6: Quantum intersection of three cycles A,B, C in addition to the
classical piece has corrections where A,B,C meet on a holomorphic ra-
tional curve.

This very difficult mathematical problem, i.e. counting holmorphic curves
in Calabi-Yau manifolds, gets transformed on the mirror to a question involving
the variation of Hodge structures (in this case it is the study of how the middle
dimensional Hp,d−p cohomology elements vary as we vary the complex structure
on the mirror). This is a well studied mathematical subject 6. The genus 0 version
of the prediction has been confirmed recently [11][12]. The higher genus version

5 The fact that classical cohomology ring is deformed by instantons and gives
rise to a quantum cohomology ring was pointed out in [3]. The precise definition
of this deformation was given in [10].

6 To be precise, the counting of genus 0 curves gets transformed to this question.
The higher genus version gets transformed to a quantum version of variation of
Hodge structure known as Kodaira-Spencer theory of gravity which is only slightly
more complicated.
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[13] has not been proven yet (except in some special cases), but there is little doubt
that it is generally valid.

3. Extension to Bundles

It is clear from the discussion of D-branes in the context of circles that we
can extend mirror symmetry to Calabi-Yau manifolds with bundles. In particu-
lar let c ∈ ⊕pH

p,p(M) denote the chern class of a holomorphic vector bundle on
Calabi-Yau manifold M . Represent this by a collection of Poincaré dual holomor-
phic cycles. Consider D-branes wrapped over them. This is a D-brane made up of
various even dimensional branes. Each (p, p) cycle projects to a p real dimensional
subspace of B with typical fiber a p dimensional subtorus. On the mirror, the p
dimensional subspace of T d gets transformed to the dual torus T d−p. Thus on the
mirror Calabi-Yau, the whole bundle representated by the collection of D-branes
is mirror to a submanifold C of real dimension d.7 The condition that the original
bundle be holomorphic translates to the condition that C is Lagrangian relative
to the Kähler form on the mirror. If we further impose that the original bundle
be stable, this translates to the cycle C being of minimal area. This extension
of mirror symmetry to include bundles conjectured in [18] (see also related works
[19][20][21][22]) has only recently been made and checks on its prediction are un-
derway. It makes certain predictions for the enumerative geometry of holomorphic
maps from Riemann surfaces with boundaries being mapped holomorphically to
Calabi-Yau, with boundaries being mapped to Lagrangian cycles on it.8. For exam-
ple the Ray-Singer Torsion associated to the bundle V is transformed to counting
holomorphic maps from the annulus to the Calabi-Yau whose boundary is on the
mirror minimal cycle.

4. Physical Interpretation of Geometric Singularities

One of the remarkable aspects of string theory is the existence of a few different
types of consistent theories (5 in 10 dimensions and one in 11 dimensions) which
are dual to one another. This is known as S-duality. For example, Type IIA
strings in a 10 dimensional space having a K3 fibration (K3 being a Calabi-Yau
manifold of complex dimension 2) is dual to heterotic strings in a space admitting
a T 4 fibration. This is very surprising because in particular the two string theories
and the two target spaces look very different. Moreover on the heterotic side one
has to choose flat bundles of rank 16. Moreover as we change the size of the T 4

and the choice of the flat bundle (and some choice of a constant field belonging to

7 This leads to a new application of mirror symmetry: For example consider a
rational elliptic surface inside a 3-fold. Then the study of rank N stable bundles
on it gets transformed to the study of spectral curves on the dual rational elliptic
surface (by viewing the bundle as D4 brane wrapped the rational elliptic surface
and doing mirror symmetry along T 2 fiber)[14][15]. The Euler class of the moduli
space can be computed using mirror symmetry techniques [16] (this prediction has
been recently confirmed for the rank 2 case [17]).

8 For this to make sense beyond Disc one should restrict to the category of
stable bundles on one side and minimal Lagrangian submanifolds on the mirror.
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H2(T 4)) one can get various different gauge groups. For example one can obtain
SU(N), SO(2N) (for small enough N) and E6,7,8. The question is how all this is
reflected on the K3 geometry? It is well known that K3 can have singularities
corresponding to contracting 2 spheres. Moreover the intersection matrix of the
contracting 2 spheres is given by the Cartan matrix of the A-D-E groups. The ap-
pearance of the Dynkin structure for the K3 singularities appears mathematically
as purely “accidental”. However this accident gets explained in this duality con-
text: One identifies the singular K3 geometries with A-D-E singularities with the
points on the heterotic side with enhanced A-D-E gauge symmetry. The physical
explanation of enhanced symmetries on the K3 side has to do with the existence of
D2 branes, which can wrap around the contracting 2-cycles, and give rise to mass-
less particles. The wrapped D2 branes encode in a beautiful way the connection
of the bundle anticipated from the heterotic dual (Fig. 7). Thus the non-abelian
enhancement of gauge symmetry on heterotic side is transformed to appearance
of geometric singularities on the type IIA side.

Fig.7: A wrapped D2-brane over a sphere of blown up A-D-E- singularity
is the origin of gauge symmetry enhancement when the spheres shrink.

Similar considerations suggest interesting physical interpretations whenever
one has geometric singularities. For example if one considers a Calabi-Yau 3-fold,
one has sometimes contracting S3’s. In this context there are two ways to get
rid of the singularity. One either deforms the polynomial equations defining the
manifold (which effectively gives a finite size to the contracting S3’s) or replaces
the singular point by a higher dimensional geometry (in this case S2’s) which is
known as blowing up the singularities, changing the geometry of the 3-fold in the
process. The singular manifold can thus be viewed as belonging to two distinct
families of Calabi-Yau manifolds. The physical interpretation of this is that there
are two ways to get rid of the extra massless fields, one is by preserving a U(1)k

gauge symmetry which is called the “Coulomb branch” (corresponding in type
IIA string to blowing up S2’s) the other is going to the “Higgs branch” (which
corresponds to making S3’s have finite volume)[23][24].

One can use these ideas to construct the geometric versions of quantum field
theories with desired properties. This is called geometric engineering of quantum
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field theories. For example, if we have a shrinking CP 1 in K3 we already mentioned
that this gives rise to SU(2) gauge symmetry. If we fiber this over a complex
curve, depending on what curve we choose we get different theories in the 4 left-
over dimensions. For example if we consider the simple product with T 2, then we
obtain a theory in four dimensions with N = 4 supersymmetric SU(2) Yang-Mills
theory. Moreover the coupling constant of the gauge theory 1/g2 (which appears
in the action in 4 dimensions in the form 1

g2 TrF ∧ ∗F ) gets identified with the
volume of T 2. As discussed before string theory has volume inversion symmetry for
T 2. This implies, therefore, that N = 4 Yang-Mills should have g → 1/g inversion
symmetry as well. This in fact was anticipated long ago [25]. This duality has
interesting consequences for four-manifolds: Consider taking as the four left-over
dimensions a smooth four manifold K. Then the (topological) partition function
of N = 4 Yang-Mills is given by

FG,K(q) =
∑

instantons

qnχ(Mn)

where q = exp(−1/g2) and χ(Mn) denotes the Euler characteristic of the moduli
space of instantons of gauge group G (in the case at hand G = SU(2)) with
instanton number n on K. The duality just discussed implies that this is a modular
form (after shifting by an overall coefficient qa for some constant a). This has
been tested in some cases (see [26] and references therein). This modular form is
a smooth invariant of K, for each group G.9

If we fiber the A1 singularity instead of T 2 over a CP 1 we obtain an N = 2
supersymmetric gauge theory in 4 dimensions with SU(2) gauge symmetry. If
different singularities exist over different curves which intersect (what is sometimes
called colliding singularities) we typically get “matter” in the physical language
transforming according to a representation of the product of the two groups (Fig.
8) [27].

Fig.8: Matter arises where two loci of singularities intersect. The matter
is localized at the intersection.

9 The subgroup of SL(2, Z) for which this is a modular form depends on G.
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This geometric construction of quantum field theories allows us to have a new
viewpoint in solving aspects of them. For example consider the N = 2 supersym-
metric SU(2) gauge theory in 4 dimensions. As just mentioned this can be viewed
as fibering a contracting CP 1 over a base CP 1. The instantons of this theory in
four dimensions, which are relevant to questions involving Donaldson invariants of
four manifolds, correspond to holomorphic curves mapped to a Calabi-Yau 3-fold
whose local geometry is a line bundle over a CP 1 fibered over CP 1. In particu-
lar the instanton class in four dimension gets identified with the number of times
the curve gets wrapped around the base CP 1. These can be counted thanks to
mirror symmetry discussed before. Thus Donaldson invariants [28] through this
geometric construction and by an applications of mirror symmetry can be reduced
to Seiberg-Witten invariants [29][30].

Sometimes the physics of the singularities are unconventional. For example
when a 4-cycle (say a CP 2) shrinks in a Calabi-Yau threefold, it gives rise to very
interesting unconventional new physical theories which were not anticipated! This
is thus a great source of insight into new physics. In particular what types of
singularities occur as well as what are the ways to resolve them will be of extreme
importance for unravelling aspects of this new physics. It is tempting to speculate
that these singularities may also lead to new invariants for four manifolds.

5. Black Holes and Minimal Cycles

Black holes are solutions to the Einstein equations which represent matter with
sufficient concentration in some region.10 Consider a d dimensional spacetime.
The idealized version of a black hole would correspond to a spherically symmetric
distribution of possibly charged matter. This would correspond to solving Euler-
Lagrange equations for the action of the form (suppressing all constants)

S =
∫

(R +
∑

i

Fi ∧ ∗Fi)

where R denotes the scalar curvature of the metric and Fi denote the curvature
of some U(1)k gauge fields. One solves these equation with the assumption of
spherical symmetry with some asymptotic condition imposed on the metric which
corresponds to a total mass M black hole and on the gauge fields with charge
Qi =

∫
Sd−2 ∗Fi.11

Black holes have a causal structure which separates it into two parts by a
“horizon” H = Sd−2, for which the future light cone of points inside the sphere
does not include exterior points (Fig. 9).

10 The following discussion is somewhat oversimplified to make the essential
point more clear.

11 If d=4 we can also consider having magnetic charges Mi =
∫

S2 Fi.
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Fig.9: From the regions interior to the horizon no light can come out.

By some semiclassical arguments one expects that black hole carry entropy
S, which is the logarithm of the number of its states, is given by

S =
A(H)

4

where A(H) denotes the d− 2 dimensional “area” of the horizon H. For the black
hole solution to make physical sense one finds a lower bound on mass for a fixed
set of charges Qi, namely M2 ≥ ∑

i Q2
i . Physically what will happen is that if the

mass is above this bound the black hole radiates and loses mass until it reaches
this bound, at which point it becomes a stable stationary state. These are known
as extremal black holes. The entropy, which is defined as a quarter of the horizon
area now becomes

S = cdM
d−2
d−3

where cd is some universal constant, depending on d. It has been a challenge
of quantum gravity to explain the microscopic origin of this entropy, i.e. what
counting do we do to get this entropy.

In string theory, for large enough charges Qi, the charged black holes are
realized as branes wrapped around cycles of the Calabi-Yau, and the condition
for extremality of the black hole is that the corresponding cycle be minimal in
the given class. Thus the charge lattice corresponds to H∗(M) where the target
space is Rd ×M .12. Thus the question of black hole entropy gets transformed to
counting of the “number” of minimal submanifolds for a fixed class Q ∈ H∗(M).
In case there are moduli for such cycles, what is meant by the “number” is the
number of cohomology elements of the moduli space. The non-minimal surfaces
correspond to non-extremal black holes which “decay” to the extremal ones.

I will now discuss one concrete example to illustrate how the counting works.
Consider the 11 dimensional supergravity theory (“M-theory”) on target space
R5 × T 6 (which is closely related to type IIA on R4 × T 6), which I will use to

12 The homology dimensions which are allowed charges correspond to the al-
lowed dimensions of the branes in the corresponding theory.
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count the number of black holes in 5 dimensions, with charges given by an element
in H2(T 6, Z) (this is related to black hole count in [31]). Let us think of T 6 = (T 2)3

and consider the 2-class of each T 2 being represented by ei where i = 1, 2, 3. Let us
consider an extremal black hole made of 2-branes whose class is Ne1 +Me2 +Pe3.
We will consider the regime of parameters where N >> M,P >> 1. Let Σ denote
a holomorphic curve in the class [Σ] = Me2 + Pe3 (being holomorphic guarantees
being minimal in that class). To construct a 2-surface in the class Ne1+Me2+Pe3

we choose N points on Σ and attach a copy of the first T 2 on each of those points
(Fig. 10).

Fig.10: A 2-brane constructed out of Σ and the attachment of N copies
of T 2 at N points.

This gives rise to a degenerate minimal 2-cycle. The moduli of this D2 brane
will in addition correspond to choosing a flat connection on it, which for each T 2

corresponds to choosing a point on the dual T 2. Thus this surface together with
the choice of a flat connection is specified by N points in T̂ 2×Σ where T̂ 2 denotes
the dual torus. Of course the choice of N points has no ordering so that the moduli
space of this minimal cycle, for a fixed Σ is given by

MN = SymN (T 2 × Σ)

Since we are interested in the regime where N is much larger than the other two
parameters, we can treat Σ as fixed (i.e. the moduli degrees of freedom coming
from it are negligible in comparison). We are thus interested in the growth for
the cohomology of MN for large N . This space is singular and this cohomology
should be understood in the sense of the Hilbert Scheme. The answer is well known
[32][33] and is given by the coefficient dN of qN in

F =
∏

n(1 + qn)bodd

∏
n(1− qn)beven

where bodd = beven = 4(MP +2) denote the odd and even betti numbers of T 2×Σ.
F has modular properties which allows one to estimate the growth of the coefficient
of qN , following Hardy-Ramanujan, to be

dN ∼ exp(2π
√

N(MP + 2))
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Thus we obtain a prediction for the entropy to be

S = 2π
√

N(MP + 2)

The computation of the area of this 5 dimensional black hole by solving the
Einstein’s equations in this case gives

SBH =
A(H)

4
= 2π

√
NMP

which agrees with what we have found in the range of validity of the parameters
N >> M,P >> 1.

6. A List of Questions

I will list a number of questions which I believe would be interesting to understand
further.

1- I have discussed some aspects of mirror symmetry. The physical and math-
ematical properties of mirror symmetry without including the D-branes is more or
less understood. The case involving the D-branes, which is mirror symmetry for
(stable) sheaves on Calabi-Yau and is transformed to (minimal) Lagrangian mid-
dimensional cycles on the mirror is stated in this note. However the prediction this
entails has not been checked yet. In particular both sides of the mirror transform
in this case, regardless of the relationship between the two, deserve further study.
Even though some aspects of stable bundles on Calabi-Yau are known, it is rather
far from a complete understanding. The properties of minimal Lagrangian cycles
and enumerative questions in that context are even less understood. Thus the ex-
istence of mirror symmetry in this case may lead to many valuable mathematical
insights into both questions.

2-We have mentioned that A−D−E singularities of K3 lead to the appearance
of the corresponding gauge group in physics. We have also noted that some other
singularities, such as a contraction of CP 2 in a Calabi-Yau threefold leads to novel
physics, not described by a conventional gauge theory. It is thus a pretty exciting
link to develop further. To what extent can one classify singularity types of Calabi-
Yau (and other Kähler) manifolds, for three and fourfolds? How about transitions
among manifolds mediated through singularity types? What is a general way to
think about all manifolds at once, having in mind their connectivity by passing
through singular ones? Among all singularities is the appearance of A − D − E
singularity a rare phenomenon? If so, what explains the fact that we seem to live
in a world with gauge symmetries?

3-Another issue we discussed was the counting of minimal submanifolds. This
has some applications in the context of counting black hole states. There are many
puzzles still to resolve in this context. In the context of minimal 2 dimensional
submanifolds mirror symmetry gives us a way to count them in many cases of
interest. However even here there are some puzzles: We consider a fixed class
Q ∈ H2(M, Z) in a Calabi-Yau threefold M and ask how many black holes exist
in that class. The predicted answer from solving the Einstein equations is given
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as follows. Consider an arbitrary Kähler metric k with volume 1 on Calabi-Yau
M . Find the Kähler metric which minimizes the area of Q

V = k[Q]

Call the minimum value Vmin, and assume this is achieved for a non-degenerate
Kähler metric. Then the prediction for the entropy of the black hole [34], and thus
the growth of moduli of holomorphic curves in the class Q is that it goes as

S = exp(cV 3/2
min)

where c is a universal constant independent of Calabi-Yau. Note that the exponent
picks up a factor of λ3/2 once we rescale Q → λQ. Mirror symmetry allows us to
compute the Euler class (of an appropriate bundle) on the moduli space of curves
and that has typical growth which upon the same rescaling of Q picks up only a
λ in the exponent. The discrepancy of this growth with that obtained in mirror
computation is presumably because the number that mirror symmetry computes
is an Euler class, whereas the number the black hole degeneracy predicts is the
growth of cohomologies of the moduli space. It also suggests there must be an
enormous cancellation among even and odd cohomology states for such a dramatic
change in the growth of states. It would be interesting to verify this.

For other types of black holes other counting problems arise. For example, for
type IIB strings with target space being a Calabi-Yau threefold times R4 we need
to count the growth in the cohomology of the moduli space of minimal Lagrangian
3-submanifolds in a given class Q ∈ H3(M). The prediction from the black hole
side is that if we denote by Ω the holomorphic 3-form on the Calabi-Yau and
minimize

V =
|Ω(Q)|√∫
M

Ω ∧ Ω
(1)

over the moduli space of complex structure of the Calabi-Yau, assuming that the
minimum exists and does not correspond to a degenerate Calabi-Yau, then the
growth in the cohomology of moduli space of the minimal submanifold in that
class (together with a flat connection) is given by

S = exp(c′V 2
min)

where c′ is a universal constant. In order to verify such predictions we need to
be able to count minimal Lagrangian submanifolds. The basic question is how to
enumerate them and check this prediction? What is the analog of “mirror symme-
try” which allows counting p branes with p > 2? In fact I would conjecture, based
on a few examples (not predicted from physics) that for a Calabi-Yau of complex
dimension d, if we consider real minimal Lagrangian submanifolds of dimension d
and minimize V again as given by (1) then the growth of the cohomology of their
moduli space (together with a flat connection) is given by

S = exp(c(d)V d−1
min )
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where c(d) is a universal constant depending only on d. This formula is true for
d = 2, 1 (in the d = 1 case it is vacuous and in the d = 2 case it can be verified)
and is predicted to be true as discussed above for d = 3, and I am conjecturing it
to be true for all d. Is this true? (Note that by mirror symmetry, this conjecture
gets transformed to counting the growth of the cohomology of moduli of stable
bundles on the mirror Calabi-Yau.)

4-We have seen many instances of dualities in physical systems and we have
explained here some of its mathematical implications. We do not have a deep
understanding of why these dualities even exist. Does studying the mathematical
consequences of it shed any light on this question? In other words, why should
seemingly difficult mathematical questions find answers in terms of very simple
dual mathematical problems? What is the mathematical meaning of duality?

Given all this relation between physics and mathematics one recalls Wigner’s
thoughts on this relationship and in particular the “unreasonable effectiveness of
mathematics” in solving physical problems. With recent developments in physics
and its mathematical implications one may also reverse the arrow and wonder
about the unreasonable effectiveness of physics in solving mathematical problems.

I would like to thank the many collaborators I have worked with over the
years, who have greatly influenced my understanding of the subject presented here.
I would also like to thank Sheldon Katz for a careful reading of this manuscript
and for his suggestions for improvement.
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1 Introduction

In general terms, Dynamics is concerned with describing for the majority of sys-
tems how the majority of orbits behave, specially as time goes to infinity. And
with understanding when and in which sense this behaviour is robust under small
modifications of the system. For instance, most gradient flows on a compact man-
ifold have finitely many singularities, with almost every orbit converging to some
of the attracting ones (stable equilibria). And the same is true about any nearby
flow, with the same number of attractors. General systems can behave in much
more complicated ways, though. Here I consider both discrete time systems –
smooth transformations f : M → M , possibly invertible – and continuous time
systems – smooth flows or semi-flows Xt : M → M , t ∈ R – on manifolds M .

In the early sixties, Smale was proposing the notion of uniformly hyperbolic
system, a broad class that includes the diffeomorphisms and flows named after
Anosov [4], most gradient-like systems, and the “horseshoe” map. See [101]. A
hyperbolic set , or generalized horseshoe, is an invariant subset Λ ⊂ M such that
the tangent space over it splits into two invariant subbundles TΛM = Es ⊕ Eu

so that Es is uniformly contracted by future iterates, and similarly for Eu in
past iterates. The system is uniformly hyperbolic, or Axiom A, if its limit set –
the closure of all future and past accumulation sets of orbits – is hyperbolic. A
prototype is the diffeomorphism induced on the 2-torus by (x, y) 7→ (2x+y, x+y),
with Es and Eu corresponding to the eigenspaces of this linear map. This, just
as many other uniformly hyperbolic systems, is also an example of “chaotic” (or
sensitive) behaviour: orbits of typical nearby points move away from each other
exponentially fast, under forward and backward iterations.

1Partially supported by PRONEX - Dynamical Systems, Brazil
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Nevertheless, uniformly hyperbolic systems admit a very precise description of
their behaviour: there are compact invariant subsets Λ1, . . . , ΛN that are transitive
(dense orbits) and such that almost every forward orbit of the system accumulates
on one of them [101]. And, though the dynamics near these attractors Λj may
be quite “chaotic”, it is strikingly well behaved from a statistical point of view:
there exists a physical probability measure µj supported on Λj , such that the time
average (δp stands for Dirac measure at p)

lim
n→+∞

1
n

n−1∑

j=0

δfj(z) , or lim
T→+∞

1
T

∫ T

0

δXt(z) dt,

exists and coincides with µj for Lebesgue almost every point z whose orbit accu-
mulates on Λj . Cf. Sinai, Ruelle, Bowen [100], [95], [20], [19].

Another major breakthrough was the proof that uniformly hyperbolic sys-
tems are, essentially, the structurally stable ones. This was completed by Mañé
[63], and Hayashi [43] for flows, in the C1 setting, after crucial contributions from
several mathematicians, specially Anosov, Palis, Smale, Robbin, de Melo, Robin-
son. See [84] for an extended list of references. The notion of structural stability ,
introduced by Andronov-Pontryagin in the thirties, means that all nearby systems
are equivalent up to continuous global change of coordinates.

On the other hand, striking examples like Newhouse’s maps with infinitely
many periodic attractors [74], or the “strange” attractors of Lorenz [56] and
Hénon [44], showed that uniform hyperbolicity is too strong a condition for a
general description of dynamics: systems can be persistently non-hyperbolic (per-
sistently unstable). As the hope to describe generic dynamical systems in a uni-
formly hyperbolic scope was gradually abandoned, still other important develop-
ments were taking place concerning enlarged settings of dynamics.

Starting from Oseledets [78], Pesin [87] developed a theory of non-uniform
hyperbolicity , dealing with general systems endowed with an invariant probability
measure with respect to which almost every point exhibits asymptotic contraction
and expansion along complementary directions (non-zero Lyapunov exponents).
Then almost every point has a stable and an unstable manifold, whose points are
exponentially asymptotic to it, respectively, in the future and in the past. See
Katok-Hasselblatt [48] for an account of the theory and references.

There was also considerable progress in studying the modifications (bifurca-
tions) through which a system may cease to be stable. Global bifurcations like
homoclinic tangencies and heteroclinic cycles, that affect the system’s behaviour
on large regions of the ambient M , are accompanied by such a wealth of dynam-
ical changes that one must aim at describing the main phenomena occurring for
most nearby systems, specially in terms of probability in parameter space. See
Palis-Takens [84] and Section 5 below.

And one could attain substantial understanding of some “chaotic” systems,
such as Lorenz-like flows, quadratic maps of the interval, period-doubling cascades,
and Hénon-like attractors. Since orbits are sensitive to initial conditions, and
so essentially unpredictable over long periods of time, one focus on statistical
properties of large sets of trajectories, a point of view pioneerly advocated by
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Sinai and by Ruelle back in the seventies. See [106] and Sections 3, 4, 6 below.
Building on this, we are again trying to develop a global picture of Dynamics

recovering, in a new and more probabilistic formulation, much of the paradigm of
finitude and stability for most systems that inspired Smale’s proposal about four
decades ago. Palis conjectured that every dynamical system can be approximated
by another having only finitely many attractors, supporting physical measures
that describe the time averages of Lebesgue almost all points. This is at the core
of a program [81] that also predicts that statistical properties of such systems are
stable, namely under small random perturbations.

In this note I survey some of the recent, rather exciting progress in the general
direction of such a program, as well as related open problems and conjectures,
mostly in the context of general dissipative systems.

2 Setting the scenario

In what follows I refer mostly to transformations, since the definitions and results
for flows are often similar. Except where otherwise stated, manifolds are smooth,
compact, without boundary, and measures are probabilities on the Borel σ-algebra.
Lebesgue measure means any measure generated by a smooth volume form.

Time averages of continuous functions ϕ : M → R

lim
n→+∞

1
n

n−1∑

j=0

ϕ(f j(z))

are the most basic statistical data on the system’s asymptotic behaviour. An
invariant measure µ is a physical measure if the time average of every ϕ coincides
with the spatial µ-average

∫
ϕ dµ, for a positive Lebesgue measure subset of points

z ∈ M . And the basin of µ is the set B(µ) of points z for which this happens.
Physical measures are often called SRB measures, after Sinai, Ruelle, Bowen,

who first constructed them for Anosov systems [100] and then for general uniformly
hyperbolic diffeomorphisms [95] and flows [20]. For these systems there are finitely
many SRB measures µ1, . . . , µN , and their basins cover Lebesgue almost all of
the phase space M . Each support Λi = supp µi is an attractor , meaning that
it is an invariant transitive set whose basin of attraction has positive Lebesgue
measure. An invariant set Λ is transitive if there exists z ∈ Λ whose forward
orbit {fn(z) : n ≥ 0} is dense in Λ. The basin of attraction (or stable set) B(Λ)
is the set of points whose forward orbits accumulate in Λ. In this hyperbolic
setting, as well as in all known cases that are relevant here, the basin contains a
full neighbourhood of the attractor.

For systems preserving a smooth measure, Birkhoff’s ergodic theorem ensures
that time averages are defined Lebesgue almost everywhere. It is widely believed
that the same should be true for most non-conservative systems, but this is not
known, and there are examples showing that it is not the case for all systems. For
instance, Bowen exhibited a simple flow on the plane where time averages fail to
exist on a whole open region bounded by two saddle connections; see e.g. [106].
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On the other hand, existence results for SRB measures are now available for some
large classes of systems, as we shall see.

SRB measures are sometimes defined differently, by a property of absolute
continuity of their conditional measures on unstable manifolds; see e.g. Eckmann-
Ruelle [37]. The definition adopted above is a bit more general, but all the SRB
measures we meet in the present paper also have this absolute continuity property.

Palis proposed a few years ago that, for a dense subset of all systems statistical
properties should be essentially as nice as in the Axiom A case. In more precise
terms, he conjectured that every system can be approximated by another having
only finitely many attractors (approximation in the Ck topology, any k ≥ 1)
supporting SRB measures whose basins cover a full Lebesgue measure subset of the
manifold ; see [81]. He also conjectured that those properties should be very stable
under small perturbations of the system. Here one thinks of modifications of the
system along generic parametrized families, i.e. finite-dimensional submanifolds in
the space of systems. For Lebesgue almost all parameters there should be finitely
many attractors, supporting SRB measures whose basins cover nearly all of M ,
also in terms of Lebesgue measure. Moreover, time averages should not be much
affected if small random errors in parameter space are introduced at each iteration:
stochastic stability.

This last notion is most relevant when dealing with concrete situations mod-
eled by mathematical systems (which are always only approximately correct): in
many cases, features of the actual system that are unaccounted for by the model
are well represented by random fluctuations around it. For a definition, let us con-
sider first the situation where the initial map f has some attractor Λ supporting
a unique SRB measure µ, and whose basin contains a trapping open region U :
the closure of f(U) is contained in U . One considers sequences xj , j ≥ 0, with
x0 ∈ U and xj+1 = gj(xj) for j ≥ 0, where the maps gj are chosen at random
(independently) in the ε-neighbourhood of f , according to some probability Pε.
Here ε should not be too large, to ensure that these sequences xj do not escape U .
Then f is stochastically stable on the basin of Λ if for each continuous function ϕ

lim
n→+∞

1
n

n−1∑

j=0

ϕ(xj) is close to
∫

ϕdµ,

for almost every random orbit (xj)j (Lebesgue almost every x0 ∈ U and Pε almost
every gj , j ≥ 0) if ε is small. More concretely, I propose to take these small
random perturbations along generic parametrized families through f : Pε is given
by Lebesgue measure in the corresponding parameter space.

There are other perturbation schemes, for instance, random orbits may be
formed by choosing each xj+1 at random close to f(xj), following some probability
measure Pε(xj , ·). The random noise Pε(x, ·) is usually taken absolutely continuous
with respect to Lebesgue measure, and supported on the ε-neighbourhood of f(x)
or, more generally, converging to Dirac measure at f(x) as ε → 0. See Kifer [52],
[53]. Stochastic stability with respect to this perturbation scheme is defined as
before. Although it is not logically related to the notion in the previous paragraph,
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which corresponds to

Pε(x,A) = Pε({g : g(x) ∈ A}),

the two definitions agree for the systems known to be stable, such as uniformly
hyperbolic attractors Kifer [53], Young [108], and other cases mentioned below.

So far, I restricted to attractors with a unique SRB measure and whose basin
contains some trapping region: this is true for essentially all known cases, although
it is not yet clear in which generality it holds. If the basin of attraction is just
a positive Lebesgue measure set (or if one considers random noise which is not
supported on small neighbourhoods), then random orbits may escape from it. In
such cases, as well as for transitive attractors supporting several SRB measures,
a more global notion of stochastic stability can be applied: denoting µi the SRB
measures of f , time averages of each continuous ϕ along almost all random orbits
should be close to the convex hull of the

∫
ϕ dµi when ε is small.

The main random perturbation scheme for flows Xt is by diffusion. That is,
letting X be the corresponding vector field, one considers the flow ξt associated to
the stochastic equation (for simplicity, pretend M = Rd)

dξt = X(ξt) dt + εA(ξt) dwt (1)

where A(·) is matrix-valued and dwt is the standard Brownian motion. See e. g.
Friedman [38]. Then stochastic stability is defined essentially as before, if Xt has
a unique SRB measure µ: the time averages of each continuous ϕ over almost all
stochastic orbits ξt should be close to

∫
ϕdµ if ε is small. More generally, since

solutions of (1) usually spread over the whole ambient manifold M , one should
use a global notion of stability as in the previous paragraph.

Before proceeding, let me recall another probabilistic notion, expressing sen-
sitivity of the dynamics, that plays an important role in the characterization of
complex systems: decay of correlations. The definition applies to general maps f
(or flows) endowed with some invariant measure µ, though the most interesting
case is when µ is a physical measure. Informally, this notion can be motivated as
follows. Sensitiveness means that orbits, in some sense, forget their initial state
as time increases to infinity. So, given real functions ϕ and ψ on M , knowledge of
ϕ(z) should provide little information about ψ(fn(z)) for large n ≥ 1. This may
be expressed in terms of their correlations

Cn(ϕ,ψ) =
∫

ϕ (ψ ◦ fn) dµ−
∫

ϕdµ

∫
ψ dµ,

that should converge rapidly to zero as time increases to infinity. In general, one
must restrict to some subspace F of functions ϕ, ψ with a minimum amount of
regularity. This is because the systems we deal with are actually deterministic
(and, in many cases, reversible): loss of memory resulting from sensitiveness ap-
pears only at a coarse level of observation of the system, through quantities ϕ,ψ
that do not distinguish nearby points well. One speaks of (exponential) decay of
correlations in the space F if Cn(ϕ,ψ) goes to zero (exponentially fast) as n goes
to infinity, for all ϕ,ψ ∈ F .
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3 One-dimensional maps

Let fa be the real quadratic map given by fa(x) = x2 + a. If a /∈ [−1/4, 2] then
the orbit fn(0) of the critical point goes to infinity as n → +∞, and so does
the orbit of Lebesgue almost every point x. Let us look at the more interesting
case a ∈ [−1/4, 2]. Then there exists a maximal compact interval Ia containing
x = 0 and invariant under fa, in the sense that fa(Ia) ⊂ Ia. Two main types of
behaviour are known, depending on the value of the parameter a.

A first type (periodic, uniformly hyperbolic, regular) corresponds to fa having
a periodic attractor, i.e. a point p such that fk

a (p) = p and |(fk
a )′(p)| < 1 for some

k ≥ 1. Then, the orbit of Lebesgue almost every x ∈ Ia converges to the orbit of
p. It is easy to see that this behaviour corresponds to an open set of parameters,
and it was conjectured for a long time that this set is also dense in [−1/4, 2].
This statement, known as the hyperbolicity conjecture, was eventually settled
affirmatively by Swiatek with the aid of Graczyk [40], and by Lyubich [60].

A second kind of behaviour (chaotic, non-uniformly hyperbolic, stochastic) is
displayed by maps fa that admit an invariant measure µa absolutely continuous
with respect to Lebesgue measure. It is a theorem of Jakobson [46] that this occurs
for a set of parameters with positive Lebesgue measure. When it exists, such a
measure µa is unique and ergodic, and it gives the time average of Lebesgue almost
every x ∈ Ia, Blokh-Lyubich [13].

Do these cases exhaust all the possibilities for a full Lebesgue measure set of
parameters? Remarkably, the answer is affirmative, as shown by Lyubich:

Theorem 1 ([59]). For Lebesgue almost every a ∈ [−1/4, 2], the quadratic map
fa has either a periodic attractor or an absolutely continuous invariant measure.

In particular, Palis’ finitude conjecture in Section 2 holds in this context:
Lebesgue almost every quadratic map admits a unique SRB measure (either a
Dirac measure on a periodic orbit or an absolutely continuous measure), whose
basin contains Lebesgue almost every bounded orbit. It is interesting to point out
that quadratic maps without SRB measures do exist, cf. Hofbauer-Keller [45].

Most of this holds for general unimodal or multimodal maps of the interval
or the circle, though the extension may be far from trivial. A proof of the hy-
perbolicity conjecture in a general setting of unimodal maps was announced by
Kozlovski [54]. An analog of Theorem 1 is also conjectured for general families of
one-dimensional maps, but this has not yet been proved.

Jakobson’s theorem does extend beyond quadratic maps, and many general
criteria for the existence of absolutely continuous invariant measures were ob-
tained since then. This is the most interesting case from an ergodic point of view,
and there are several works concerning statistical properties of non-uniformly hy-
perbolic maps in dimension one, such as the results of Keller-Nowicki [51] and
Young [109] on exponential decay of correlations, and those of Collet [28], Katok-
Kifer [49], Benedicks-Young [10], and Baladi-Viana [6] on stochastic stability.

Infinite-modal maps – one-dimensional maps with infinitely many maxima and
minima – come up in many natural contexts of Dynamics, but they are mostly
unexplored. Recently, Pacifico-Rovella-Viana [80] proved that non-uniform hyper-
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bolicity is persistent – positive Lebesgue measure set of parameters – in a large
class of parametrized families of infinite-modal maps, thus setting a way to a more
complete study of such maps and their statistical properties. It is an interesting
problem to carry out such a study.

4 Hénon-like attractors

This class of systems is modeled by the Hénon map [44]

(x, y) 7→ f(x, y) = (1− ax2 + y, bx),

where a, b are real parameters. A main feature is the coexistence of hyperbolic and
folding behaviour: at points away from the line x = 0 one may find complementary
directions that are geometrically contracted and expanded by the derivative of the
map; but these directions do not extend across the critical region {x ≈ 0}, where
the phase space is “folded” by the map.

For a large domain in parameter space, e.g. 1 < a < 2 and b not too large,
one may find some rectangle R which is positively invariant – f maps R to its
interior – and this is the most interesting case. Computer pictures of the “strange
attractor”, where orbits of points inside R seem to accumulate, were produced by
Hénon [44] for parameters a ≈ 1.4, b ≈ 0.3. But it was only some ten years ago that
Benedicks-Carleson could prove that there is indeed a non-trivial (non-periodic)
attractor, with positive probability in parameter space:

Theorem 2 ([7]). For every sufficiently small b > 0 there exists a positive
Lebesgue measure subset E ⊂ R so that for all a ∈ E there exists a compact invari-
ant subset Λ ⊂ R such that B(Λ) has non-empty interior, and ‖Dfn(z)‖ → +∞
exponentially fast when n → +∞, for some z with forward orbit dense in Λ.

This was a major achievement, opening the way to a theory of Hénon-like
maps, which are the first class of genuinely non-uniformly hyperbolic systems in
dimension larger than 1 to be understood specially from an ergodic point of view
(Lorenz-like flows can be reduced to hyperbolic maps, cf. Section 6).

On the one hand, it was shown that attractors combining hyperbolic and crit-
ical behaviour are a very general phenomenon occurring, with positive probability
in parameter space, in many bifurcations of diffeomorphisms or flows: homoclinic
tangencies Mora-Viana [64], saddle-node cycles Dı́az-Rocha-Viana [35], Costa [31],
saddle-focus connections Pumariño-Rodriguez [92]. Colli [30] proved that infinitely
many of these attractors may coexist, for many parameter values, in the unfolding
of homoclinic tangencies. Henceforth, I refer to all these attractors as Hénon-like.

On the other hand, Benedicks-Young proved that these non-hyperbolic at-
tractors have, nevertheless, well defined statistical properties:

Theorem 3 ([11], [12]). Let Λ be a Hénon-like attractor of a surface diffeomor-
phism f , as above. Then there exists a unique SRB measure µ supported on Λ, and
(f, µ) is equivalent to a Bernoulli shift. Moreover, (f, µ) has exponential decay of
correlations in the space of Hölder continuous functions.
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Their strategy in [11] was to find an ergodic invariant measure µ supported on
Λ, with absolutely continuous conditional measures along Pesin’s unstable man-
ifolds. Then, the basin of µ must contain a positive Lebesgue measure set, cf.
Pugh-Shub [90]. This construction of the SRB measure could not decide whether
Lebesgue almost every point that is attracted to Λ is in B(µ) or, on the contrary,
there are sizable sets (“holes”) of points in B(Λ) whose time average is not given
by µ. This basin problem was raised by Sinai and by Ruelle back in the seventies,
and is also related to the following question: is Lebesgue almost every orbit in the
basin of attraction asymptotic to some orbit inside the attractor? For uniformly
hyperbolic attractors the answers are well-known and affirmative, see Bowen [19].

Then, Benedicks and I solved both questions for Hénon-like attractors: there
are no “holes” in their basins. More recently, we also proved that these attractors
are stochastically stable, thus bringing the ergodic theory of these systems close
to completion.

Theorem 4 ([9], [8]). Let Λ be a Hénon-like attractor of a surface diffeomor-
phism f , as before, and µ be the SRB measure. Then

B(Λ) =
⋃

ξ∈Λ

W s(ξ) = B(µ), up to zero Lebesgue measure sets.

Moreover, (f, µ) is stochastically stable under small random perturbations.

The proofs of these results depend on an assumption of strong area dissipative-
ness, e.g. in Theorem 2 the Jacobian of f must be very small (much smaller than
Hénon’s b ≈ 0.3). In particular, we are still far from understanding non-uniformly
hyperbolic behaviour in area-preserving systems such as the conservative Hénon
family (x, y) 7→ (1− ax2 + y,±x), or the standard family of maps on the 2-torus

fk(x, y) = (−y + 2x + k sin(2πx), x)

For the latter, Duarte [36] proved abundance of KAM islands for generic (Baire
second category) large parameters k. But the standing conjecture is that, from a
measure-theoretical point of view, non-uniform hyperbolicity – non-zero Lyapunov
exponents on a positive Lebesgue measure subset, possibly even non-existence of
elliptic islands – should prevail in parameter space. To settle this is a major
challenge in Dynamics nowadays.

5 Homoclinic tangencies - Fractal dimensions

A homoclinic tangency is a non-transverse intersection between the stable mani-
fold and the unstable manifold of some periodic point p. In this section I want to
explain why this phenomenon is a main ingredient for non-hyperbolic dynamics:
homoclinic tangencies are always an obstruction to hyperbolicity and, for low di-
mensional systems such as surface diffeomorphisms, this is likely to be the essential
obstruction.

Palis conjectured that every surface diffeomorphism can be Ck approximated
by another which either is uniformly hyperbolic or has a homoclinic tangency.
This was recently established by Pujals-Sambarino, for k = 1:
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Theorem 5 ([91]). The set of diffeomorphisms on a surface M which are either
uniformly hyperbolic or have a homoclinic tangency is dense in Diff1(M).

Their arguments, inspired by Mañé’s proof of the C1 stability conjecture [61],
[62], [63], have other important consequences, including the following corollary of
Theorem 5 that gives a partial converse to Newhouse’s theorem [75]: C1 open
sets where coexistence of infinitely many periodic attractors occurs densely must
contain diffeomorphisms with homoclinic tangencies.

There are other results showing that specific phenomena of complicated dy-
namics, such as saddle-node cycles, cascades of bifurcations, or Hénon-like attrac-
tors, can be approximated by maps with homoclinic tangencies; see Newhouse-
Palis-Takens [77], Catsigeras [25], Ures [103]. Conversely, surface diffeomorphisms
with homoclinic tangencies are approximated by others exhibiting any of these
phenomena; see Newhouse [75], Yorke-Alligood [107], Mora-Viana [64], Colli [30].
In these situations one gets approximation in the Ck sense, any k ≥ 1, and so
these results indicate that the space of non-hyperbolic Ck surface diffeomorphisms
should be rather homogeneous, even if there is little hope to settle the general case
k ≥ 2 of the conjecture above in a near future.

Let fµ, µ ∈ R, be a generic parametrized families of diffeomorphisms on a
surface M , such that f = f0 has a homoclinic tangency. What can one say about
the dynamics of fµ, for the majority of parameters µ close to zero? In some
cases fµ turns out to be uniformly hyperbolic for a set of parameters H with full
Lebesgue density at µ = 0:

lim
ε→0

Leb(H ∩ [−ε, ε])
2ε

= 1.

This is due to Palis-Takens [82], [83], extending Newhouse-Palis [76], where a main
assumption is that the periodic point p is in a hyperbolic set Λ whose Hausdorff
dimension HD(Λ) is less than 1. On the other hand, Palis-Yoccoz [86] showed
that this is generically not true if the Hausdorff dimension is larger than 1.

These works, as well as Newhouse [74], displayed a crucial role played by
fractal dimensions and related geometric invariants in the theory of bifurcations,
and inspired some general problems about Cantor subsets of the real line with
important consequences in the dynamical setting. Another conjecture of Palis
claimed that for generic regular Cantor sets K1, K2 ⊂ R, the arithmetic difference
K2 − K1 = {a2 − a1 : a1 ∈ K1, a2 ∈ K2} either has zero Lebesgue measure or
contains an interval. A regular Cantor set is one which is generated by a smooth
expanding map defined on a finite union of intervals. The space of regular Cantor
sets inherits a topology from the space of such expanding maps, and the word
generic refers to a residual (Baire second category) subset in this topology. The
arithmetic difference always has measure zero if HD(K1) + HD(K2) < 1, so the
interesting case of the conjecture corresponds to the sum being larger than 1.
This was achieved a couple of years ago by Moreira-Yoccoz who, in fact, proved a
stronger statement:

Theorem 6 ([73]). There exists an open and dense subset of the space of pairs of
regular Cantor sets (K1,K2) with HD(K1)+HD(K2) > 1, such that K1 intersects
stably some translate K2 + t.
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Partial results had been obtained by Moreira [71], who introduced the notion
of stable intersection: given any K̃1 close to K1 and K̃2 close to K2+t, then K̃1∩K̃2

is non-empty. In particular, K2 − K1 contains an interval around t. Theorem 6
has the following important translation in the dynamical setting [72]: for a generic
family of diffeomorphisms fµ unfolding a homoclinic tangency the set of parameters
for which fµ is either uniformly hyperbolic or has persistent homoclinic tangencies
has full density at µ = 0. This second possibility corresponds to intervals in
parameter space where densely one observes homoclinic tangencies, cf. [75].

Of course, one also wants to describe the structure of the limit set L(fµ), for
most small values of µ, specially when it is not uniformly hyperbolic. Palis-Yoccoz
announced recently that L(fµ) does have a property of weak hyperbolicity for a set
of parameters with full density at zero, if the Hausdorff dimension of the horseshoe
Λ involved in the tangency is not too large, e.g. HD(Λ) < 3/2. Roughly, the part
of the limit set that is related to the unfolding of the tangency looks like a saddle-
type version of the Hénon attractor: in particular, its stable and unstable sets
have zero Lebesgue measure.

Several of these results hold in any dimension, or have been subsequently
extended to that generality, see Viana [104], Palis-Viana [85], Romero [93],
Gonchenko-Shil’nikov-Turaev [39], and references therein. As a rule, results in-
volving fractal dimensions are much harder in higher dimensions, and this is a
subject of current research. On the other hand, for high dimensional diffeomor-
phisms and flows, new key phenomena enter the scene, besides homoclinic tangen-
cies, and problems and conjectures must be restated accordingly. This I discuss
in the next sections.

6 Singular flows

In the early sixties, Lorenz [56] observed that the solutions of a simple differential
equation in dimension 3,

ẋ = −10x + 10y, ẏ = 28x− y − xz, ż = −8
3
z + xy (2)

related to a model of atmospheric convection, seemed to depend sensitively on the
initial point. Thus, in practice, their behaviour over long periods of time can not
be effectively predicted (and so neither can the weather, according to Lorenz): one
would need to know the initial point with infinite precision.

Geometric models were proposed by Afraimovich-Bykov-Shil’nikov [1] and
Guckenheimer-Williams [42], to interpret the behaviour observed by Lorenz in the
equation (2). These are smooth flows Xt in three dimensions, admitting a trapping
region U – the closure of Xt(U) is contained in U for every t > 0 – such that the
maximal invariant set Λ = ∩t>0X

t(U) contains both a singularity (equilibrium
point) and regular orbits dense in Λ. The flow leaves invariant a foliation of U , a
key property that permits to reduce the dynamics to that of an expanding map of
the interval. Moreover, these attractors are robust: the maximal invariant set in
U of any nearby flow Y t also has all these properties.
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These Lorenz models attracted a lot of attention, and their geometric, dynam-
ical, and ergodic properties are now well understood: in particular, they support a
unique SRB measure and they are stochastically stable. See e.g. Bunimovich [22],
Collet-Tresser [29], Kifer [52], Pesin [88], Sataev [97], and references therein. On
the other hand, Lorenz’ original conjecture that a sensitive attractor Λ exists in
the specific system (2) remained an open problem for more than three decades.
Remarkably, a positive solution has just been announced by Tucker [102].

With these examples in mind, let us call a compact invariant set Λ of a flow
Xt a singular transitive set if it is the maximal invariant set Λ =

⋂
t∈RXt(U) in

some open neighbourhood U , and contains both singularities and dense regular
orbits. We also call Λ a singular (or Lorenz-like) attractor if U can be taken
positively invariant (trapping), and a singular repeller if it is a singular attractor
for the flow X−t obtained from Xt by reversing the direction of time. In general,
we say that the singular transitive set Λ is C1 robust if ΛY = ∩t∈RY t(U) is also a
singular transitive set for any flow Y t in a C1 neighbourhood of Xt.

Robust singular transitive sets are a main novelty in the dynamics of flows,
relative to discrete time systems. In the last few years, Morales-Pacifico-Pujals
have been developing a general theory of such sets, specially in the 3-dimensional
case. A related goal is to characterize the flows whose singularities and periodic
orbits are robustly hyperbolic, meaning that they remain so for every C1 nearby
flow, see [66]. Morales-Pacifico-Pujals construct new types of flows with singular
attractors, some of which can be obtained from hyperbolic flows through a single
bifurcation [65], [70], [67]. Most specially, they prove that a C1 robust singular
transitive set Λ must have the following hyperbolicity property [68]. A compact
invariant set Λ is singular hyperbolic for the flow Xt if there exists a decomposition
of the tangent space

TΛM = E1 ⊕ E2

invariant under every DXt, where E1 is 1-dimensional and (norm) contracting, and
E2 is 2-dimensional and volume expanding. The latter may contain directions that
are contracted, but the decomposition must be dominated : possible contraction
along E2 is weaker than the contraction along E1. We also say that Λ is singular
hyperbolic for Xt if it is singular hyperbolic for the dual flow X−t.

Theorem 7 ([68]). Let Λ be a C1 robust singular transitive set of a flow on a
3-dimensional manifold M . Then all the singularities in Λ have the same stable
dimension, either 1 or 2. In the first case Λ is a singular repeller, in the second
one it is a singular attractor. In either case, Λ is a singular hyperbolic set.

A key tool in Theorem 7, and in other important results in this area, is
Hayashi’s connecting lemma [43]: a system exhibiting some unstable manifold
accumulating on a stable manifold may be C1 perturbed to have the two invariant
manifolds intersect.

A next step is to understand the structure of singular hyperbolic sets. In this
direction, Morales-Pacifico-Pujals can give a pseudo Markov description reminis-
cent of [20], and they also have made progress towards a converse to Theorem 7,
characterizing when a singular hyperbolic set is C1 robustly transitive. In the
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proof of the theorem they also get that in the attractor case the eigenvalues at the
singularities λ1 < λ2 < 0 < λ3 must satisfy λ2 + λ3 > 0, just as in the classical
Lorenz models. A dual fact holds in the repeller case.

Rovella [94] had given the first examples of singular transitive attractors that,
although not robust, are persistent in a probabilistic sense: positive probability
in parameter space, in generic parametrized families of flows through the initial
one. For this he considered a modification of the geometric Lorenz flows where
the eigenvalues at the singularity satisfy λ2 + λ3 < 0 instead. New examples are
provided by the extended model for the behaviour of the Lorenz equations over a
large parameter range proposed by Luzzatto-Viana [58], [57]: a main novelty with
respect to the usual geometric models and Rovella’s flows is that these systems
admit no invariant foliation. Moreover, Pacifico-Rovella-Viana [80], [79] proved
that global spiral attractors exist, as conjectured by Sinai, in fact they occur
persistently in many families of flows. These are attractors containing a saddle-
focus singularity (two contracting complex and one real expanding eigenvalue),
which forces an extremely complicated spiraling geometry.

The theory of singular flows in dimension larger than 3 is mostly open. Until
very recently it was not even known whether robust transitive attractors can con-
tain singularities with unstable dimension larger than 1, an old problem posed by
the introduction of the geometric Lorenz models in the seventies. This was solved
by Bonatti-Pumariño-Viana [17] who proved that such multidimensional Lorenz-
like attractors do exist, with arbitrary unstable dimension k ≥ 1. Moreover, they
support a unique SRB measure. Examples persisting in codimension 2 subsets of
flows were found by Morales-Pujals [69].

Let me also briefly comment on piecewise smooth maps, an important class of
systems including e.g. Poincaré maps of flows with singularities, some Markov or
non-Markov extensions of smooth maps, and billiards. See [50]. Liverani [55]
proved exponential decay of correlations for area-preserving uniformly hyper-
bolic piecewise smooth maps. Young [110] extended this to the dissipative case,
and also proved exponential decay of correlations for planar Sinai billiards [99].
Chernov [26], [27] extended these results to arbitrary dimension. Alves [2] con-
structed absolutely continuous invariant measures for piecewise expanding maps
with countably many domains of smoothness, in any dimension.

7 Cycles - partial hyperbolicity

For high dimensional maps and flows, more generally than homoclinic tangencies
one must take into account heteroclinic cycles: periodic points with variable stable
dimensions cyclic related through intersections between their invariant manifolds.
A general version of the conjecture at the beginning of Section 5 was also proposed
by Palis: every diffeomorphism can be Ck approximated by another which either
is uniformly hyperbolic or has a homoclinic tangency or a heteroclinic cycle.

A key fact about uniformly hyperbolic diffeomorphisms (or flows), is that the
limit set L(f) can be partitioned into finitely many basic pieces Λ1, . . . , ΛK (among
which are the attractors of f) that are invariant, transitive, and isolated : each Λi

is the maximal invariant set in a neighbourhood Ui. In fact, Λi is C1 robustly
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transitive: the continuation Λi(g) = ∩n∈Zgn(Ui) of Λi is also transitive, for any
diffeomorphism g C1 close to f . See [101]. Can one find something on the way
of such a decomposition for general diffeomorphisms? Recently, there has been
some remarkable progress towards understanding how the building blocks could
look like. Let Λ be an isolated C1 robustly transitive set of a diffeomorphism f .
What can be said about Λ?

For surface diffeomorphisms, Mañé [61] proved that Λ must be a hyperbolic
set. He also observed that this can not be true in higher dimensions: there exist
open sets of C1 diffeomorphisms of the 3-torus which are transitive in the whole
ambient, and yet have periodic saddles with different stable dimensions (so they
can not be Anosov diffeomorphisms). Notice that C1 robustly transitive diffeomor-
phisms that are not uniformly hyperbolic had been exhibited before by Shub [98],
in dimension 4 or higher. In both constructions, the diffeomorphisms admit a
continuous invariant splitting TM = Es ⊕ Ec ⊕ Eu such that Es is contracting,
Eu is expanding, and they dominate Ec. Bonatti-Dı́az [14], building on Dı́az[32],
gave the first examples of robustly transitive diffeomorphism with central bundle
Ec having dimension larger than 1.

Next, Dı́az-Pujals-Ures [33] proved that C1 robustly transitive sets of diffeo-
morphisms in dimension 3 must be partially hyperbolic. A compact set Λ invariant
under a diffeomorphism f is partially hyperbolic if there are C > 0, λ < 1, and an
invariant splitting of the tangent space TΛM = E1 ⊕ E2 which is dominated

‖Dfn|E1
z‖ ‖(Dfn|E2

z )−1‖ ≤ Cλn for all z ∈ M and n ≥ 1

and such that either E1 is contracting or E2 is expanding: either

‖Dfn|E1‖ ≤ Cλn for all n ≥ 1, or ‖(Dfn|E2)−1‖ ≤ Cλn for all n ≥ 1.

It is common to write the splitting E1 ⊕ E2 as Es ⊕ Ec in the first case, and
as Ec ⊕ Eu in the second one, and I shall keep this convention in what follows.
Still in dimension 3, Bonatti observed that C1 robustly transitive sets need not
be strongly partially hyperbolic (three invariant subbundles), see [18] for other
examples. Also related to this, Dı́az-Rocha [34] prove that near a diffeomorphism
with a heteroclinic cycle there are others with either homoclinic tangencies or
robustly transitive sets that are strongly partially hyperbolic.

In [18], Bonatti and I also constructed the first examples of robustly transi-
tive diffeomorphisms having neither contracting nor expanding subbundles. Our
examples, e.g. in the 4-torus, do admit a dominated splitting, though, with E1

volume contracting and E2 volume expanding. Then, Bonatti-Dı́az-Pujals [16]
rounded off this series of results, by proving that a dominated splitting is indeed
a necessary condition for robust transitivity, in any dimension. Summarizing:

Theorem 8. Let Λ be a C1 robustly transitive set of f : M → M .

1. ([61]) If dim M = 2 then Λ is a hyperbolic set.

2. ([33]) If dim M = 3 then Λ is a partially hyperbolic set.

3. ([16]) If dim M ≥ 4 then Λ admits a dominated splitting.

Documenta Mathematica · Extra Volume ICM 1998 · I · 557–578



570 Marcelo Viana

Actually, Mañé [61] had proved a stronger fact than 1 above, implying that
a transitive isolated set of a surface diffeomorphism either is hyperbolic or its
continuation for some C1 near map contains infinitely many periodic attractors
or repellers. This is also extended to any dimension in [16], with hyperbolicity
replaced by existence of a dominated splitting.

Diffeomorphisms with infinitely many periodic attractors or repellers are still
a mystery: little is known apart from the fact that they are generic in some open
sets of Diff2(M), cf. [74], [75], [85], and of Diff1(M) if dim M ≥ 3, cf. [15].
Pujals-Sambarino report some progress in the direction of proving that such dif-
feomorphisms can be approximated by others having (codimension 1) homoclinic
tangencies, in the C1 topology. This would be an important step towards incor-
porating this phenomenon into the theory. Another point of view is to try to
show that it is negligible from a probabilistic point of view. It is not yet known if
coexistence of infinitely many attractors or repellers corresponds to zero Lebesgue
probability sets in parameter space, for generic families of maps. But Araújo [5]
proves that some general maps with random noise have only finitely many at-
tractors, including one-parameter families of diffeomorphisms through homoclinic
tangencies (as originally considered in [74]) with small random errors in parameter
space.

8 Ergodic properties of partially hyperbolic systems

Then, a central problem is to understand the structure and properties of partially
hyperbolic transitive sets or, more generally, invariant transitive sets supporting
a dominated splitting. Here is a couple of my favourite questions: Do these sets
have some shadowing property (approximation of pseudo-orbits by actual orbits)?
Can one give some description of the dynamics in symbolic terms (semi-conjugacy
to a shift map)?

In general, these questions are wide open, but for C2 diffeomorphisms on a
surface Pujals-Sambarino [91] provide a rather precise description of sets Λ with
a dominated splitting: if all the periodic points in Λ are hyperbolic saddles, then
it is the union of a hyperbolic set and finitely many invariant closed curves which
are normally hyperbolic and support an irrational rotation.

On the other hand, there is substantial progress in the ergodic theory of par-
tially hyperbolic systems. Much of the foundations concerning invariant foliations
were set by Brin-Pesin [21], and they investigated the relations between topological
properties of these foliations and ergodic properties of the system, specially when
it preserves volume. This was pursued more recently by Grayson-Pugh-Shub [41],
leading to several other results providing conditions for a diffeomorphism to be
stably ergodic: every volume preserving diffeomorphism in a C1 neighbourhood is
ergodic with respect to Lebesgue measure.

For general partially hyperbolic attractors Λ, Pesin-Sinai [89] constructed
Gibbs u-states: invariant measures with absolutely continuous conditional mea-
sures along strong-unstable leaves (leaves of the unique integral foliation of Eu).
Then Carvalho [23] proved that in some cases, e.g. diffeomorphisms derived from
Anosov ones, these Gibbs u-states are SRB measures. Kan [47] gave examples of
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transitive partially hyperbolic diffeomorphisms having more than one SRB mea-
sure, with the basin of each of these measures dense in the ambient.

In [105], I introduced a class of maps exhibiting non-hyperbolic attractors
with a multidimensional character: there are several expanding directions (positive
Lyapunov exponents) at Lebesgue almost every point in the basin of attraction.
The simplest case corresponds to cylinder maps like

ϕ : S1 × R→ S1 × R, ϕ(θ, x) = (g(θ), a(θ)− x2)

where g is strongly expanding, and a(·) is a convenient Morse function (diffeo-
morphisms in compact manifolds and/or higher dimensions may be constructed
along similar lines). They present some notable differences with respect to low
dimensional non-hyperbolic systems such as unimodal or Hénon maps, in partic-
ular they are robust (not just metrically persistent): chaotic behaviour – several
positive Lyapunov exponents – occurs for a full open set of perturbations. In
this context, Alves obtained the first examples of SRB measures with non-uniform
multidimensional expansion:

Theorem 9 ([2]). Every map in a neighbourhood of ϕ in the space of C3 self
maps of S1 × R admits an absolutely continuous invariant measure µ. Moreover,
this measure is unique and ergodic.

These last results inspired two general statements of existence and finitude of
SRB measures for partially hyperbolic attractors that I condense in the following
theorem. They concern partially hyperbolic diffeomorphisms whose central direc-
tion is either mostly contracting – negative Lyapunov exponents along Ec – or
mostly expanding – positive Lyapunov exponents along Ec. Without going into
technicalities (nor maximum generality) let me say that, given a diffeomorphism
f partially hyperbolic over the whole M with invariant splitting TM = Ec ⊕ Eu,
then Ec is mostly contracting if ‖Dfn(z)v‖ → 0 exponentially fast as n → +∞,
for every v ∈ Ec

z and Lebesgue almost every z ∈ M . And, given f with invariant
splitting TM = Es ⊕ Ec, we say that Ec is mostly expanding if ‖Dfn(z)v‖ → ∞
exponentially fast as n → +∞, for every v ∈ Ec

z and Lebesgue almost every z ∈ M ,
like in (3) below.

Theorem 10. Let f be a partially hyperbolic C2 diffeomorphism on a manifold
M . We have

1. ([18]) If the central direction is mostly contracting, then the Gibbs u-states
of f are SRB measures, there are finitely many of them, and their basins
cover a full Lebesgue measure subset of M .

2. ([3]) If the central direction is mostly expanding, then Lebesgue almost every
point is in the basin of some SRB measure. If the central Lyapunov exponents
are bounded away from zero then there are finitely many SRB measures.

Pushing part 1 of the theorem further on, Castro [24] has just proved expo-
nential decay of correlations for a large class of partially hyperbolic attractors.
Related to the examples of Kan [47] I mentioned before, which also fit in this
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setting, it is interesting to mention that if all the leaves of the strong-unstable
foliation are dense in M then there is a unique SRB measure [18]. Is this generic
among the transitive diffeomorphisms satisfying the assumptions of part 1?

The proof of part 2 includes a generalization of Ruelle’s theorem [96] on
the existence of absolutely continuous invariant measures for uniformly expanding
maps. Let f : M → M be any C2 covering map which is non-uniformly expanding
in the sense that (m(L) = 1/‖L−1‖ is the minimum expansion of a linear map L)

lim inf
n→+∞

1
n

log
n−1∏

j=0

m(Df(f j(z))) > 0 (3)

Lebesgue almost everywhere. Then f has some ergodic invariant measure abso-
lutely continuous with respect to Lebesgue measure and, indeed, the basins of such
measures cover almost all of M . There is a version of this last result for piecewise
smooth maps, assuming that most points do not visit the singular set (where the
map fails to be smooth, or the derivative fails to be surjective) too close too often;
see [3].

Such results suggest that non-uniform hyperbolicity may suffice for a system
to have good statistical properties. In this spirit, I state the following

Conjecture: If a smooth map has only non-zero Lyapunov exponents at Lebesgue
almost every point, then it admits some SRB measure.

References

[1] V. S. Afraimovich, V. V. Bykov, and L. P. Shil’nikov. On the appearence
and structure of the Lorenz attractor. Dokl. Acad. Sci. USSR, 234:336–339,
1977.

[2] J. Alves. SRB measures for nonhyperbolic systems with multidimensional
expansion. PhD thesis, IMPA, 1997.

[3] J. Alves, C. Bonatti, and M. Viana. SRB measures for partially hyperbolic
systems whose central direction is mostly expanding. In preparation.

[4] D. V. Anosov. Geodesic flows on closed Riemannian manifolds of negative
curvature. Proc. Steklov Math. Inst., 90:1–235, 1967.
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[53] Yu. Kifer. Random perturbations of dynamical systems. Birkhäuser, Basel,
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A1-Homotopy Theory

Vladimir Voevodsky

Abstract. A1-homotopy theory is the homotopy theory for algebraic
varieties and schemes which uses the affine line as a replacement for the
unit interval. In the paper I present in detail the basic constructions
of the theory following the sequence familiar from standard texbooks on
algebraic topology. At the end I define motivic cohomology and algebraic
cobordisms and describe algebraic K-theory in terms of this theory.
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1 Introduction

In my talk I will outline the foundations of the A1-homotopy theory. This theory
is based on the idea that one can define homotopies in the algebro-geometrical
context using the affine line A1 instead of the unit interval. My exposition will
follow the sequence familiar from the standard textbooks on topological homotopy
theory which roughly looks as follows.

Let C be a category which we want to study by means of homotopy theory.
Usually C itself is not “good enough” and first one has to choose a convenient
category of “spaces” Spc which contains C and has good categorical properties (in
particular has internal Hom-objects and all small limits and colimits). In topol-
ogy C may be the category of CW-complexes and Spc the category of compactly
generated spaces ([8, §6.1]). Then one defines the class of weak equivalences on
Spc. The localization of the category of spaces with respect to this class is then
the (unstable) homotopy category H. To make the localization procedure effective
one usually chooses in addition classes of cofibrations and fibrations such as to get
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a closed model structure in the sense of Quillen (see [8, Def. 3.2.3] for the modern
formulation of Quillen’s axioms).

Next one considers suspension functors. Stabilizing with respect to these
functors in the naive way one obtains a new category SW called the Spanier-
Whitehead category. If the suspensions satisfy some natural conditions this new
category is additive and triangulated. As a result it is more accessible to study
than the original unstable category. One of the necessary conditions for this to
work is that the category H should be pointed i.e. its initial and final object should
coincide. Thus one always applies the stabilization construction to the homotopy
category of pointed spaces.

The Spanier-Whitehead categories lack an important property - they do not
have infinite coproducts (= infinite direct sums). This is a result of the naive
procedure used to invert the suspension functors. To obtain a category where
suspensions are inverted and which still has infinite direct sums one uses the idea
of spectra. This approach produces another triangulated category which is called
the stable homotopy category SH. The reason infinite direct sums are so important
lies in the fact that once we have them we can apply to SH the representability
theory of in [16], [17] and [18].

Thus the standard sequence of constructions in homotopy theory leads to a
sequence of categories and functors of the form

C → Spc → H → SW → SH

In what follows I will construct such a sequence starting with the category Sm/S
of smooth schemes over a Noetherian base scheme S. A reader who is more
comfortable with the language of algebraic varieties may always assume that S =
Spec(k) for a field k in which case C is the category of smooth algebraic varieties
over k. At the end I will define three cohomology theories on Spc(S) for any
S - algebraic K-theory, motivic cohomology and algebraic cobordism. In each
case one defines the theory by giving an explicit description on the spectrum
which represents it. Algebraic K-theory defined this way coincides on Sm/S with
homotopy algebraic K-theory of Chuck Weibel [27], motivic cohomology coincide
for smooth varieties over a field of characteristic zero with higher Chow groups of
S. Bloch [2] and algebraic cobordism is a new theory originally introduced in [26].

Modulo the general nonsense of the abstract homotopy theory all the state-
ments of this paper except for Theorem 6.2 have simple proofs. The hard part
of the work which was needed to develop the theory presented here consisted in
choosing among many different plausible variants of the main definitions. I believe
that in its present form the A1-homotopy theory gives a solid foundation for the
study of cohomology theories on the category of Noetherian schemes.

Individual constructions which remind of A1-homotopy theory go back to the
work of Karoubi-Villamayor on K-theory and more recently to the work of Rick
Jardine [9],[10] and Chuck Weibel [27]. For me the starting point is [21] where
the first nontrivial theorem showing that this theory works was proven. The first
definition of the unstable A1-homotopy category equivalent to the one presented
here was given by Fabien Morel. A1-homotopy theory for varieties over a field of
characteristic zero was the main tool in the proof of the Milnor conjecture given
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in [26]. The current work on the Bloch-Kato conjecture which is a generalization
of Milnor conjecture to odd primes uses even more of it.

This text was written during my stay at FIM which is a part of ETH in Zurich.
I am very glad to be able to use this opportunity to say that this was a very nice
place to work. My special thanks go to Ruth Ebel for her help with all kinds of
everyday problems.

2 Spaces

The main problem which prevents one from applying the constructions of abstract
homotopy theory directly to the category Sm/S of smooth schemes over a base
S is nonexistence of colimits. In classical algebraic geometry this is known as
nonexistence of “contractions”. One can solve this problem for particular types of
contractions by extending the category to include nonsmooth varieties, algebraic
spaces etc. For our purposes it is important to have all colimits which is not
possible in any of these extended categories.

There is a standard way to formally add colimits of all small diagrams to a
category C. Consider the category of contravariant functors from C to the category
of sets. Following Grothendieck one calls such functors presheaves on C. We
denote the category of all presheaves by PreShv(C). Any object X of C defines
a presheaf RX : Y 7→ HomC(Y, X) which is called the presheaf representable
by X. By Yoneda Lemma the correspondence X 7→ RX identifies C with the
subcategory of representable presheaves on C. The category PreShv(C) has all
small colimits (and limits). Moreover any presheaf is the colimit of a canonical
diagram of representable presheaves. Thus PreShv(C) is in a sense the category
obtained from C by formal addition of all small colimits.

It is quite possible to develop homotopy theory for algebraic varieties taking
the category PreShv(Sm/S) as the category Spc of spaces. However this approach
has a disadvantage which can be illustrated by the following example. For two
subspaces A,B of a space X denote by A ∪B the colimit of the diagram

A ∩B → A
↓
B

(1)

where A ∩ B = A ×X B is the fiber product of A and B over X. This is the
categorical definition of union which makes sense in any category with limits and
colimits. Consider now a covering X = U ∪ V of a scheme X by two Zariski open
subsets U and V . The square

U ∩ V → U
↓ ↓
V → X

(2)

is a pushforward square in Sm/S and thus X is the categorical union of U and V
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in Sm/S. However the corresponding square of representable presheaves

RU∩V → RU

↓ ↓
RV → RX

(3)

is not a pushforward square in PreShv(Sm/S) unless U = X or V = X. Thus if
we define spaces as presheaves the union U ∪PreShv V of U and V as spaces is not
the same as X. There is a morphism jU,V : U ∪PreShv V → X but it is not an
isomorphism.

Definition 2.1 An elementary distinguished square in Sm/S is a square of the
form

p−1(U) → V
↓ ↓ p

U
j→ X

(4)

such that p is an etale morphism, j is an open embedding and p−1(X−U) → X−U
is an isomorphism (here X −U is the maximal reduced subscheme with support in
the closed subset X − U).

An important class of elementary distinguished squares is provided by coverings
X = U ∪V by two Zariski open subsets. In this case p = jV is an open embedding
and the condition that p−1(X−U) → X−U is an isomorphism is equivalent to the
condition that U ∪ V = X. One can easily see that an elementary distinguished
square is a pushforward square in Sm/S i.e. X is the colimit of the diagram

p−1(U) → V
↓
U

(5)

We want to define our category of spaces in such a way that elementary distin-
guished squares remain pushforward squares when considered in this category of
spaces. The technique which allows one to add new colimits taking into account
already existing ones is the theory of sheaves on Grothendieck topologies.

Definition 2.2 A contravariant functor F : Sm/S → Sets (= a presheaf on
Sm/S) is called a sheaf in Nisnevich topology if the following two conditions hold

1. F (∅) = pt

2. for any elementary distinguished square as in Definition 2.1 the square of
sets

F (X) → F (V )
↓ ↓

F (U) → F (p−1(U))
(6)

is Cartesian i.e. F (X) = F (U)×F (p−1(U)) F (V ).
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Denote the full subcategory of PreShv(Sm/S) which consists of sheaves in Nis-
nevich topology by ShvNis(Sm/S). This is our category of spaces. Because
elementary distinguished squares are pushforward squares in Sm/S any repre-
sentable presheaf belongs to ShvNis(Sm/S). Thus the functor X 7→ RX fac-
tors through an embedding Sm/S → ShvNis(Sm/S). We will use this embed-
ding to identify smooth schemes with the corresponding spaces (= representable
sheaves). By Yoneda Lemma and our definition the square of representable sheaves
corresponding to an elementary distinguished square is a pushforward square in
ShvNis(Sm/S). The following result is a corollary of the general theory of sheaves
on Grothendieck topologies.

Theorem 2.3 The category ShvNis(Sm/S) has all small limits and colimits. The
inclusion functor ShvNis(Sm/S) → PreShv(Sm/S) has a left adjoint aNis :
PreShv(Sm/S) → ShvNis(Sm/S) which commutes with both limits and colim-
its.

The functor aNis is called the functor of associated sheaf. To compute a colimit in
ShvNis(Sm/S) one first computes it in PreShv(Sm/S) and then applies functor
aNis. Starting from this point we denote the category ShvNis(Sm/S) by Spc or
Spc(S) and its final object i.e. the space corresponding to the base scheme S by
pt.

We will need a definition of a subcategory Spcft of spaces of finite type in
Spc whose objects play the role of compact spaces in topology. We define Spcft

as the smallest subcategory in Spc which satisfies the following two conditions

1. spaces corresponding to smooth schemes over S belong to Spcft

2. if in a pushforward square
A

i→ X
↓ ↓
B → Y

spaces A, X and B belong to Spcft

and i is a monomorphism then Y belongs to Spcft.

The following proposition shows that spaces of finite type are compact objects of
Spc in the sense of the categorical definition of compactness.

Proposition 2.4 For any space of finite type X and any filtered system of spaces
Xα the canonical map colimα Hom(X,Xα) → Hom(X, colimα Xα) is a bijection.

A pointed space (X,x) is a space togther with a morphism x : pt → X.
We will also denote by x the subspace x(pt) = Im x of X. For a space X and
a subspace A ⊂ X denote by X/A the “quotient space” i.e. the colimit of the
diagram

A → X
↓
pt

(7)

We always consider X/A as a pointed space with the distinguished point given by
the canonical morphism pt → X/A. For two pointed spaces (X, x), (Y, y) define
their smash product as (X,x) ∧ (Y, y) = X × Y/(X × y) ∪ (x× Y ).
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As an example of how all these definitions work consider Thom spaces of
vector bundles. For a vector bundle E → U over a smooth scheme U over S set
Th(E) = E/(E − s(U)) where s : U → E is the zero section. For two vector
bundles E → X and F → Y we have

Th(E × F ) = E × F/(E × F − s(X × Y )) = Th(E) ∧ Th(F )

Note that in order to have this equality we need to know that

E × F − s(X × Y ) = ((E − s(X))× F ) ∪ (E × (F − s(Y )))

i.e. that the square

(E − s(X))× (F − s(Y )) → (E − s(X))× F
↓ ↓

E × (F − s(Y )) → E × F − s(X × Y )
(8)

is a pushforward square. It is true in our case because this is the elementary
distinguished square associated to a Zariski open covering.

3 Unstable homotopy category

To do homotopy theory in Spc we have to define classes of weak equivalences,
fibrations and cofibrations. We start with the class of weak equivalences. We shall
proceed in the same way as one does in homotopy theory of simplicial sets. We
first define an analog of Kan simplicial sets and Kan completion functor. Then
the analog of homotopy groups and then define weak equivalences as morphisms
inducing isomorphisms on homotopy groups. Theorem 3.6 below shows that this
definition is equivalent to another, more technical one, given in [14].

Denote by ∆n
S the closed subscheme in An+1

S given by the equation
∑n

i=0 xi =
1. Clearly ∆n

S is a smooth scheme over S which is noncanonically isomorphic
to An

S . For any map of sets φ : {0, . . . , n} → {0, . . . , m} define a morphism
φS : ∆n

S → ∆m
S setting φ∗S(xi) =

∑
j∈φ−1(i) xj . This gives us a functor from

the standard simplicial category ∆ to Sm/S and thus to Spc. Since Spc has all
colimits this functor has the right Kan extension | − |S : ∆opSets → Spc which is
characterized by the properties that it commutes with colimits and |∆n|S = ∆n

S .

Example 3.1 Let ∂∆2 be the boundary of the standard 2-simplex i.e. the sim-
plicial set whose geometrical realization looks like the boundary of an equilateral
triangle. Then |∂∆2|S is the space which is a union of three affine lines in the form
of a triangle with sides extended to infinity. Similarly |∂∆3|S is the union of four
affine planes in the form of a tetrahedra.

For a space X and a smooth scheme U consider the sets Singn(X)(U) =
Hom(U × ∆n

S , X). Since ∆•
S is a cosimplicial space these sets form a simpli-

cial set Sing∗(X)(U) which is a direct analog of the singular simplicial set of a
topological space in the A1-theory.
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Definition 3.2 A space X is called almost fibrant if for any open embedding
j : V → U of smooth schemes over S the associated morphism of simplicial sets
Sing∗(X)(U) → Sing∗(X)(V ) is a Kan fibration.

Note in particular that for any almost fibrant space X and any smooth scheme U
the simplicial set Sing∗(X)(U) is a Kan simplicial set.

Let ink : Λn
k → ∆n be the inclusion of the “hat” simplicial set to the standard

simplex and let j : V → U be an open embedding of smooth schemes over S.
Consider the following embedding of spaces

in,k,j : U × |Λn
k |S ∪V×|Λn

k
|S V × |∆n|S → U × |∆n|S

These embeddings for all n, k and j : V → U form the set of elementary “anodyne”
morphisms which we can use to define our analog of Kan completion functor. For
a space X let AX be the set of all triples of the form (Λn

k → ∆n, j : V → U, f :
U × |Λn

k |S ∪V×|Λn
k
|S V × |∆n|S → X). We have a canonical diagram

∐
AX

U × |Λn
k |S ∪V×|Λn

k
|S V × |∆n|S → X

↓∐
AX

U ×∆n
S

(9)

and we define Ex1(X) as the colimit of this diagram. Clearly Ex1(X) is func-
torial in X and there is a canonical morphism X → Ex1(X). Set Exn(X) =
Ex1(Exn−1(X)) and Ex∞(X) = colimnExn(X). Proposition 2.4 immediately
implies the following fact.

Lemma 3.3 The space Ex∞(X) is almost fibrant for any space X.

Let X be a space, U a smooth scheme and x an element in Sing0(X)(U) =
Hom(U,X). Define homotopy “groups” πA1

i,U (X, x) as homotopy groups of the
Kan simplicial set C∗(Ex∞(X))(U) with respect to the base point x.

Definition 3.4 A morphism of spaces f : X → Y is called an A1-weak equiva-
lence (or just weak equivalence) if for any smooth scheme U , any x ∈ Hom(U,X)
and any i ≥ 0 the corresponding map of homotopy groups

πA1

i,U (X, x) → πA1

i,U (Y, f(x))

is a bijection.

Definition 3.5 The A1-homotopy category HA1
(S) of smooth schemes over S is

the localization of the category of spaces over S with respect to the class of weak
equivalences.

The following is the list of basic properties of weak equivalences. They can either
be deduced from [14] using Theorem 3.6 or proven directly.

1. the canonical morphism ∆1
S → pt is a weak equivalence
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2. if f : X → Y and f ′ : X ′ → Y ′ are weak equivalences then f×f ′ : X×X ′ →
Y × Y ′ is a weak equivalence

3. if in a pushforward square
X

f→ Y
g ↓ ↓ g′

X ′ f ′→ Y ′
f is a weak equivalence and

either f or g is a monomorphism then f ′ is a weak equivalence

4. let (Xα, fαβ : Xα → Xβ) be a filtered system of spaces such that the mor-
phisms fαβ are weak equivalences. Then the morphisms Xγ → colim Xα are
weak equivalences.

Another approach to homotopy theory of spaces over S based on the use of
homotopy theory of simplicial sheaves is developed in [14]. The following result
shows that these two approaches are equivalent and therefore we can use the
techical results of [14] in the context of definitions given above.

Theorem 3.6 A morphism of spaces is a weak equivalence in the sense of defi-
nition 3.4 if and only if its is an A1-weak equivalence in the sense of [14]. The
category HA1

(S) defined above is equivalent to the category HA1
(S) defined in

[14].

Let W be the class of weak equivalences. Define the class of cofibrations C
in Spc as the class of all monomorphisms and the class of fibrations F as the class
of morphisms having the rigtht lifting property with respect to morphisms from
C ∩W (see [8, p.26]). As a corollary of Theorem 3.6 we have.

Theorem 3.7 The classes (W,F,C) form a proper closed model structure on
Spc.

Once we know the notions of weak equivalences, fibrations and cofibrations for
spaces we can define them for pointed spaces. A morphism of pointed spaces is
called a weak equivalence, fibration or cofibration if it is a weak equivalence, fibra-
tion or cofibration as a morphism of spaces with forgotten distinguished points.
Standard reasoning shows that so defined classes form a proper closed model struc-
ture on the category Spc• of pointed spaces. We denote the pointed homotopy cat-
egory by HA1

• (S). Properties 2 and 3 of weak equivalences from the list given above
imply that the smash product gives a symmetric monoidal structure ([11, p.180])
on HA1

• (S). The unit object of this monoidal structure is the space (S
∐

S, iS)
which one denotes S0 and calles 0-sphere.

The functor | − |S from simplicial sets to spaces takes weak equivalences of
simplicial sets to weak equivalences of spaces and thus defines a functor from the
ordinary homotopy category Htop to HA1

(and from Htop
• to HA1

• ). For any
two simplicial sets X,Y one has a canonical morphism |X × Y |S → |X|S × |Y |S
which is not an isomorphism but always a weak equivalence. Therefore the functor
from Htop to HA1

commutes with products and the functor from Htop
• to HA1

•
commutes with smash products.
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Define the simplicial circle S1
s as |∆1/∂∆1|S . Geometrically S1

s is the space
obtained from the affine line A1 by identification of points 0 and 1. The smash
product with S1

s is the simplicial suspension functor. We denote (S1
s )∧n by Sn

s .
This is the space obtained from An

S by contraction of the union of hyperplanes
xi = 1, xi = 0, i = 1, . . . , n to the point. One can use the simplicial suspension
to describe homotopy groups πA1

i,U (X, x) in terms of morphisms in the pointed
homotopy category as follows.

Lemma 3.8 For any pointed space (X, x), smooth scheme U and i ≥ 0 one has

πA1

i,U (X, x) = Hom
HA1
•

(Si
s ∧ U+, (X, x))

where U+ is the pointed space (U
∐

S, iS).

The notion of almost fibrant space turns out to be too restrictive in concrete
applications. For example the Eilenberg-MacLane spaces used in Section 6.1 to
build the Eilenberg-MacLane spectrum representing motivic cohomology are not
almost fibrant. A wider class of quasi-fibrant spaces defined below turns out to be
more useful.

Definition 3.9 A space X is called quasi-fibrant if for any smooth scheme U over
S which is quasi-projective over an affine open subset in S the map of simplicial
sets Sing∗(X)(U) → Sing∗(Ex∞(X))(U) is a weak equivalence.

The role of quasi-fibrant spaces in the theory is partly explained by the following
corollary of Lemma 3.8.

Proposition 3.10 Let (X,x) be a pointed quasi-fibrant space and U be a smooth
scheme over S which is quasi-projective over an affine open subset in S. Then for
any i ≥ 0 one has HomHA1 (Si

s ∧ U+, (X,x)) = πi(Sing∗(X)(U), x).

4 Spanier-Whitehead category

One of the fundamental differences between H = HA1
and the ordinary homotopy

category Htop lies in the fact that besides the simplicial circle S1
s there is another

circle S1
t which we call Tate circle and which is defined as the space A1 − {0}

pointed by 1. The following lemma shows how different types of “spheres” can be
expressed in H• in terms of Sn

t and Sn
s .

Lemma 4.1 There are canonical isomorphisms in H• of the form

(An − {0},1) ∼= Sn
t ∧ Sn−1

s ; Pn/Pn−1 ∼= An/An − {0} ∼= Sn
t ∧ Sn

s ;

The Spanier-Whitehead category SW = SWA1
(S) is the category obtained from

H• by stabilization with respect to the suspensions associated to the circles S1
s and

S1
t . For technical reasons it is more convenient to talk about stabilization with

respect to one suspension associated with S1
s ∧ S1

t which leads to an equivalent
category. Note that by Lemma 4.1 S1

t ∧ S1
s is canonically weakly equivalent to

A1/A1 − {0} and to (P1,∞).
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The construction of SW from H• is an example of a very simple general
construction which allows one to “invert” an object in a symmetric monoidal
category. Let (C,∧,1) be a symmetric monoidal category (here ∧ denotes the
monoidal structure and 1 is the unit object) and T an object in C ([11, p.157,180]).
Denote by C[T−1] the category whose objects are pairs of the form (X,n), X ∈
ob(C), n ∈ Z and morphisms are given by

Hom((X,n), (X ′, n′)) = colimm≥−n,−n′HomC(T∧(m+n) ∧X,T∧(m+n′) ∧X ′)

One can easily define composition of morphisms and check that C[T−1] is indeed
a category. The assigment X 7→ (X, 0) gives us a functor from C to C[T−1].

Definition 4.2 SW = H•[(S1
s ∧ S1

t )−1].

The next step is to define a symmetric monoidal structure on C[T−1] such that the
canonical functor from C is a symmetric monoidal functor and the object (T, 0)
is invertible in C[T−1]. It turns out that there is an obvious obstruction to the
existence of such a structure. Indeed, the group of automorphisms of an invertible
object in a symmetric monoidal category is necessarily abelian. Thus the cyclic
permutation on T ∧ T ∧ T being in the commutatnt of Σ3 must become identity
in AutC[T−1]((T, 0)). If one tries to extend directly the monoidal structure from C
to C[T−1] one discovers that this condition is indeed necessary and sufficient for
the obvious constructions to be well defined. Thus one gets the following general
result.

Theorem 4.3 Let (C,∧,1) be a symmetric monoidal category and T an object
such that the cyclic permutation on T ∧T ∧T equals identity in C[T−1]. Then there
exists a symmetric monoidal structure ∧ on C[T−1] such that (X,n) ∧ (Y, m) =
(X ∧ Y, n + m).

The canonical functor C → C[T−1] is then a symmetric monoidal functor
and the object T = (T, 0) is invertible with the canonical inverse given by T−1 =
(1,−1).

Lemma 4.4 The cyclic permutation on (S1
s ∧ S1

t )∧3 equals identity in H•.

Combining Theorem 4.3 and Lemma 4.4 we get:

Proposition 4.5 The category SW has a structure of a symmetric monoidal cat-
egory (∧, S0) such that the canonical functor (H•,∧, S0) → (SW,∧, S0) is sym-
metric monoidal and ((X, x), n) ∧ ((Y, y),m) = ((X, x) ∧ (Y, y), n + m).

Denote the object (S0, n) of SW by Tn and objects of the form ((X, x), 0) simply
by (X, x). Then for any n ∈ Z one has a canonical isomorphism ((X,x), n) =
Tn ∧ (X, x) which we will use to avoid notations of the form ((X,x), n) below.

Proposition 4.6 The category SW is an additive category.

To get the abelian group structures on the Hom-sets in SW one observes that the
image of S2

s in SW is an abelian cogroup object which is invertible with respect
to the monoidal structure.
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The last structure on SW which we want to describe is a structure of a tri-
angulated category ([6, ch.IV]). To specify a triangulated structure on an additive
category D one has to describe two things. One is an additive autoequivalence
S : D → D which is called the shift functor and denoted by X 7→ X[1]. Another
one is a class of diagrams of the form X → Y → Z → X[1] called distinguished
triangles (all such diagrams are called triangles). These data should satisfy some
conditions listed for example in [6, p.239]. These conditions have the following fun-
damental corollary which makes triangulated structure into a surprisingly effective
tool to produce long exact sequences and, more generally, spectral sequences.

Lemma 4.7 Let X → Y → Z → X[1] be a distinguished triangle in a triangulated
category and U be any object of this category. Then the sequences of abelian groups

→ Hom(U,X[n]) → Hom(U, Y [n]) → Hom(U,Z[n]) → Hom(U,X[n + 1]) →

→ Hom(Z[n], U) → Hom(Y [n], U) → Hom(X[n], U) → Hom(Z[n− 1], U) →
are exact.

All known long exact sequences can be traced back to this lemma applied to
distinguished triangles in different triangulated categories. In our case we will
construct the Mayer-Vietoris, Gysin and blow-up long exact sequences in homology
and cohomology as the long exact sequences associated with distinguished triangles
in the Spanier-Whitehead category SW (see Propositions 4.11-4.13).

Let us describe now the triangulated structure on SW . We define the shift
functor by X[1] = X ∧ S1

s . To define distinguished triangles we have to recall
the notion of cofibration sequences in our context. Let f : (X, x) → (Y, y) be a
morphism of pointed spaces. Define cone(f) as the colimit of the diagram

(X, x) Id∧1−→ (X,x) ∧∆1
S

↓
(Y, y)

(10)

where the vertical arrow is f and ∆1
S
∼= A1

S is considered as a pointed space with
the distinguished point 0. We have a canonical morphism (Y, y) → cone(f) which
we denote ηf . For any commutative square

(X, x)
f→ (Y, y)

↓ ↓
(X ′, x′)

f ′→ (Y ′, y′)

(11)

we have a canonical morphism cone(f) → cone(f ′) which makes the diagram

(Y, y)
ηf→ cone(f)

↓ ↓
(Y ′, y′)

ηf′→ cone(f ′)
(12)
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commutative. In particular for any f we have a canonical morphism cone(f) →
cone((X,x) → pt). The space on the right hand side is canonically isomorphic to
(X, x) ∧ S1

s and therefore to any f we assigned in a canonical way a sequence

(X, x)
f→ (Y, y)

ηf→ cone(f)
εf→ (X,x) ∧ S1

s

which is called the cofibration sequence of f . The idea of the following definition
is that the distinguished triangles in SW are exactly the triangles isomorphic to
suspensions of images of cofibration sequences from Spc•.

Definition 4.8 A sequence of morphisms of the form A → B → C → A[1] in
SW is called a distinguished triangle if there exist a morphism f : X → Y in Spc•,
an integer n and isomorphisms

φ1 : Tn ∧X → A; φ2 : Tn ∧ Y → B; φ3 : Tn ∧ cone(f) → C

in SW such that the following diagram commutes

Tn ∧X
Id∧f→ Tn ∧ Y

Id∧ηf→ Tn ∧ cone(f)
α◦(T n∧εf )→ (Tn ∧X)[1]

φ1↓ φ2↓ φ3↓ φ1[1]↓
A → B → C → A[1]

(13)

(here α = αT n,X is the canonical isomorphism Tn ∧X[1] → (Tn ∧X)[1]).

Theorem 4.9 The category SW with the shift functor and the class of distin-
guished triangles defined above is a triangulated category.

The main application of Theorem 4.9 is that in combination with Lemma 4.7
it implies that any distinguished triangle in SW generates two long exact sequences
of Hom-groups. To take advantage of this fact one has to have a way to produce
interesting distinguished triangles. At the moment we know of three main types of
such triangles which generate correspondingly Mayer-Vietoris, Gysin and blow-up
long exact sequences. They are described in Propositions 4.11-4.13 below. In all
three cases the proof is based on an unstable result from [14] combined with the
following general lemma.

Lemma 4.10 Consider a commutative square in Spc•

(A, a) i→ (X, x)
p ↓ ↓ p′

(Y, y) i′→ (Z, z)

(14)

such that i is a monomorphism (= cofibration) and the canonical morphism
(X, x) ∪(A,a) (Y, y) → (Z, z) is a weak equivalence. Then there is a canonical
morphism (Z, z) → (A, a) ∧ S1

s in H• such that the sequence

(A, a)
p⊕i→ (Y, y)⊕ (X,x)

i′⊕p′→ (Z, z) → (A, a)[1]

is a distinguished triangle in SW .

Documenta Mathematica · Extra Volume ICM 1998 · I · 579–604



A1-Homotopy Theory 591

In the propositions below we denote by X+ the pointed space (X
∐

pt, ipt) asso-
ciated with a space X.

Proposition 4.11 For any elementary distinguished square as in Definition 2.1
there is a canonical distinguished triangle in SW of the form

p−1(U)+ → U+ ⊕ V+ → X+ → p−1(U)+[1]

In particular for the distinguished square associated to a Zariski open covering
X = U ∪ V we get the Mayer-Vietoris distinguished triangle

(U ∩ V )+ → U+ ⊕ V+ → X+ → (U ∩ V )+[1]

Proposition 4.12 Let i : Z → X be a closed embedding of smooth schemes
over S and N the normal bundle to Z in X. Then there is a canonical Gysin
distinguished triangle of the form (X − Z)+ → X+ → Th(N) → (X − Z)+[1].

Proposition 4.13 Let i : Z → X be a closed embedding of smooth schemes over
S and p : XZ → X the blow-up of Z in X. Then there is a canonical blow-up
distinguished triangle of the form

p−1(Z)+ → Z+ ⊕ (XZ)+ → X+ → p−1(Z)+[1]

The following Connectivity Theorem is the basis for the proof of convergence
results for spectral sequences in the homotopy theory of algebraic varieties.

Theorem 4.14 Let (X,x) be a pointed smooth scheme over S, (Y, y) a pointed
space and m ∈ Z an integer. Then one has

HomSW ((X, x), Sn
s ∧ Sm

t ∧ (Y, y)) = 0

for any n > dim(X) where dim(X) is the absolute dimension of X

Denote by SW ft the full subcategory in SW which consists of objects iso-
morphic to objects of the form Tn ∧ (X, x) for (X,x) ∈ Spcft. By definition of
cofibration sequences and spaces of finite type this is a triangulated subcategory
of SW . Lemma 4.10 implies that it coincides with the triangulated subcategory
generated by objects of the form Tn ∧ (X, x) for smooth schemes X over S. This
category actually plays more important role in the theory than the category SW
itself which is a wrong category to work with if we are interested in spaces not
of finite type. The correct replacement for SW is the stable homotopy category
SH = SHA1

(S) discussed in the following section.

5 Spectra and the stable homotopy category

The stabilization construction used to define the Spanier-Whitehead category in
the previous section has a serious drawback. One of the good properties of the
homotopy category H = HA1

• (S) is the existence of infinite coproducts. For
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any collection of pointed spaces (Xα, xα) the space ∨α(Xα, xα) represents the
coproduct of (Xα, xα)’s in H i.e. for any (Y, y) one has

HomH(∨α(Xα, xα), (Y, y)) =
∏
α

HomH((Xα, xα), (Y, y))

When we invert S1
s ∧S1

t to get the Spanier-Whitehead category we lose this prop-
erty. For a family of objects like {T−i}i≥0 there is clearly no coproduct (= direct
sum) in SW . Moreover for an infinite family of pointed spaces (Xα, xα) the space
∨α(Xα, xα) considered as an object of SW is not the coproduct of (Xα, xα)’s in
this category because infinite colimits do not commute with infinite products.

There is another way to stabilize H with respect to the suspension functor
(X, x) 7→ T ∧ (X, x) associated to any pointed space T . The resulting category
which we denote by H[[T−1]] is called the stable homotopy category of T -spectra
or just the T -stable homotopy category. It has all coproducts and the canonical
functor Σ∞T : H → H[[T−1]] takes ∨α(Xα, xα) to the direct sum of (Xα, xα)’s in
H[[T−1]]. Unfortunately no one knows how to construct a category H[[T−1]] with
properties described above from H. Instead we will have to build it directly from
spaces.

Let T be a pointed space of finite type. A T-spectrum E is a sequence of
pointed spaces Ei, i ≥ 0 which are called terms of E and morphisms ei : T ∧Ei →
Ei+1 which are called the assembly morphisms of E. A morphism of T-spectra
E → F is a collection of morphisms of pointed spaces Ei → Fi which commute
with the assembly morphisms. Denote the category of T-spectra by Sp(Spc•, T ).
For a T-spectrum E define a family of functor En : Spcft

• → Sets, n ∈ Z setting

En(X,x) = colimi≥max{0,−n}HomH(T∧i ∧ (X,x), T∧(i+n) ∧ Ei)

where the maps in the inductive system are defined by the assembly morphisms of
E. A morphism of T-spectra E → F is called a stable weak equivalence if the cor-
responding natural transformations of functors En(−) → Fn(−) are isomorphisms
for all n ∈ Z.

Definition 5.1 The category H[[T−1]] is the localization of Sp(Spc•, T ) with re-
spect to the class of weak equivalences.

The category of T-spectra has all small limits and colimits which are defined
termwise. In particular for a collection of spectra Eα = (Ei,α, ei,α) their coproduct
in Sp(Spc•, T ) is given by ⊕αEα = (∨αEi,α, (δi◦(∨ei,α))) where δi is the canonical
isomorphism T ∧ (∨αEi,α) → ∨α(T ∧ Ei,α). One can verify easily that it is also
the direct sum in H[[T−1]] i.e. that for any spectrum F one has

HomH[[T−1]](⊕αEα,F) =
∏
α

HomH[[T−1]](Eα,F)

For a pointed space (X, x) denote by Σ∞T (X,x) the T-spectrum (T∧n ∧
(X, x), Id). The functor Σ∞T takes weak equivalences to stable weak equiv-
alences and for any collection of spaces we have a canonical isomorphism
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Σ∞T (∨α(Xα, xα)) → ⊕αΣ∞T (Xα, xα). One can also verify easily that the func-
tor H → H[[T−1]] admits a canonical decomposition of the form H → H[T−1] →
H[[T−1]] where the second functor takes ((X,x), n) to the spectrum

Σ∞((X, x), n)i =
{

pt for i < −n
T∧(i+n) for i ≥ −n

(15)

The following result is the main technical thing one needs to know to be able to
use the construction described above.

Theorem 5.2 For any space of finite type (X,x) and any T-spectrum E one has

HomH[[T−1]](Σ∞T (X, x),E) = colimn HomH(T∧n ∧ (X,x), En)

where the maps in the inductive system are defined by the assembly morphisms of
E.

Corollary 5.3 Let (X, x), (Y, y) be spaces of finite type. Then one has

HomH[[T−1]](Σ∞T (X, x),Σ∞T (Y, y)) = colim
n

HomH(T∧n ∧ (X,x), T∧n ∧ (Y, y))

For a T-spectrum E define E[1] to be the spectrum (Ei ∧ S1
s , ei ∧ IdS1

s
). For a

morphism of T-spectra f : E → F define the associated cofibration sequence

E → F → cone(f) → E[1]

in exactly the same way as we did for morphisms of pointed spaces in the previous
section setting E ∧ ∆1

S to be the spectrum of the form (Ei ∧ ∆1
S , ei ∧ Id∆1

S
).

A sequence of morphisms in H[[T−1]] is called a distinguished triangle if it is
isomorphic to the image of the cofibration sequence for a morphism in Sp(Spc•, T ).

Proposition 5.4 For any pointed space T of finite type the category H[[(S1
s ∧

T ′)−1]] is additive and the shift functor and the class of distinguished triangles
defined above satisfy the axioms of a triangulated structure.

The following technical result allows one to apply the general representablility
theorems proven in [16], [17], [18] to the stable homotopy category of algebraic
varieties.

Proposition 5.5 For any space of finite type T and any Noetherian base scheme
S the category H[[T−1]] is compactly generated and suspension spectra of spaces
of finite type are compact. If in addition S can be covered by affine open subsets
Ui = Spec(Ri) such that Ri are countable rings then the subcategory of compact
objects in H[[T−1]] is equivalent to a countable category.

Theorem 5.6 Let T be a space of finite type such that the cyclic permutation
on T∧3 equals identity in H[T−1]. Then the category H[[T−1]] has a symmetric
monoidal structure (∧,1) such that:
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1. for a spectrum E and a pointed space (X,x) the spectrum E ∧ Σ∞T (X,x) is
canonically isomorphic to (Ei ∧ (X, x), ei ∧ Id(X,x))

2. for a collection of spectra Eα and a spectrum F there is a canonicall isomor-
phism

(⊕αEα) ∧ F → ⊕α(Eα ∧ F)

3. for a cofibration sequence E → F → cone(f) ε→ E[1] and a spectrum G the
sequence E∧G → F∧G → cone(f)∧G → E∧G[1] where the last morphism
is the composition of ε ∧ IdG with the canonical isomorphism E[1] ∧G →
(E ∧G)[1] is isomorphic to a cofibration sequence.

All the results of this section except for Theorem 5.6 have simple proofs. I
know of two ways to prove Theorem 5.6. One is to explicitly construct the sym-
metric monoidal structure on H[[T−1]] starting with the obvious badly defined
smash product in Sp(Spc•, T ) and checking that all the ambiguities disappear
when one passes to the homotopy category. In the case of the ordinary topological
stable category a detailed exposition of this approach is given for example in [1,
pp. 158-190]. It takes Adams thirty pages to verify that nothing goes wrong and
it is terrible. Also it is hard to see that the cyclic permutation condition is indeed
the key. Another way to prove Theorem 5.6 is to use the idea of symmetric spectra
introduced recently by Jeff Smith (see [8] for an exposition in the context of sim-
plicial sets and topological spaces). In this approach one defines first the category
SpΣ(Spc•, T ) of so called symmetric T-spectra and the associated stable homotopy
category which I denote H[[T−1, Σ]]. These categories have symmetric monoidal
structures for any T and one can construct a functor H[[T−1]] → H[[T−1, Σ]]
which commutes in the obvious sense with the suspension spectrum functors. The
cyclic permutation condition is then necessary and sufficient for this functor to be
an equivalence [19].

This ends our discussion of the general stabilization construction H 7→
H[[T−1]]. Now we specialize to the only case which we are really interested in
namely T = S1

s ∧ S1
t . For the reasons which will become clear in the next section

when we consider concrete examples of spectra we choose (P1,∞) as the model
for S1

s ∧ S1
t used in the definition of SH.

Definition 5.7 The stable A1-homotopy category over S is the category

SH (S) = HA1

• (S)[[(P1,∞)−1]]

We denote SH (S) simply by SH and the suspension spectrum functor Σ∞(P1,∞) by
Σ∞. The canonical functor SW → SH described on objects by (15) respects both
the symmetric monoidal and the triangulated structures. In particular Proposi-
tions 4.11-4.13 have straightforward analogs in SH and in view of Theorem 5.2
the same is true for the Connectivity Theorem 4.14.

According to Theorem 5.6(1) and Lemma 4.1 for any n ≥ 0 we have canonical
isomorphisms

Σ∞(Sn
s ) ∧ Σ∞(Sn

t ,−n) ∼= 1; Σ∞(Sn
t ) ∧ Σ∞(Sn

s ,−n) ∼= 1
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and therefore we can define objects Sn
s and Sn

t of SH for all n ∈ Z as follows

Sn
s =

{
Σ∞(Sn

s ) for n ≥ 0
Σ∞(Sn

t ,−n) for n ≤ 0 Sn
t =

{
Σ∞(Sn

t ) for n ≥ 0
Σ∞(Sn

s ,−n) for n ≤ 0 (16)

6 Three cohomology theories

To any object E of SH we assign a cohomology theory Ep,q(−) and a homology
theory Ep,q(−) on Spc• given by

Ep,q(X, x) = HomSH(Σ∞(X,x), Sp−q
s ∧ Sq

t ∧E)

Ep,q(X, x) = HomSH(Sp−q
s ∧ Sq

t ,E ∧ Σ∞(X, x))

The reason for this somewhat strange indexing is hidden in connections with the
theory of motives. Propositions 4.11-4.13 together with Lemma 4.7 imply that
any cohomology or homology theory constructed in this way has three types of
long exact sequences called respectively Mayer-Vietoris, Gysin and blow-up exact
sequences.

One can give a formal definition of a cohomology theory as a collection of
functors Spc• → Ab satisfying some simple axioms and use Theorem 5.5 together
with [16, Th. 3.1] to prove that any such theory is of the form Ep,q for an ob-
ject E of SH. Usefulness of this construction is restricted by the fact that in
any formulation I know one has to start with a family of functors defined on the
category of all spaces or, at least, on the subcategory of spaces of finite type and
not just on the category of smooth schemes over S. On the other hand as the
example of algebraic cobordism considered below shows the direct correspondence
E 7→ (Ep,q(−))p,q∈Z allows one to give simple definition for theories which would
otherwise be hard to construct. The possibility to use the stable homotopy cat-
egory to produce theories with desired properties is one of the key ingredients in
the proof of the Milnor conjecture given in [26].

6.1 Motivic cohomology

Let us first define the Eilenberg-MacLane spectrum HZ which represents a theory
Hp,q

Z (−) = Hp,q(−,Z) called motivic cohomology (with integral coefficients). It
is an analog of ordinary cohomology in the A1-homotopy theory. The theory
of motivic cohomology described here was developed in [5] and [25] before the
A1-homotopy theory was introduced. The first definition in terms of the stable
homotopy category was given in [26]. The only technical result about motivic
cohomology which we can not obtain as a specialization of general results in A1-
homotopy theory is Theorem 6.2. If we knew how to prove this theorem without
going through all the moves of [24] and [5] a major part of these papers would
become obsolete at least as far as the theory of motivic cohomology is concerned.
But we do not.

The tricky part in getting the A1-analog of the topological Eilenberg-MacLane
spectrum is to guess what the Eilenberg-MacLane spaces in Spc• are. The obvious
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idea to take a space K(Z, n) which has the property that for any connected U

πi,U (K(Z, n)) =
{

0 for i 6= n
Z for i = n

(17)

does not work. To build a spectrum out of K(Z, n)’s we would have to specify
assembly morphisms (P1,∞) ∧ K(Z, n) → K(Z, n + 1) but a simple computa-
tion shows that any morphism of the form (P1,∞) ∧ (X,x) → K(Z, n + 1) is
trivial in the A1-homotopy category. The correct approach was discovered by
A. Suslin around 1987. The idea is to define the A1-analogs of the Eilenberg-
MacLane spaces through the Dold-Thom Theorem. For a pointed topological
space (T, ∗) let Symm∞(T, ∗) be its infinite symmetric product Symm∞(T, ∗) =
colimn Symmn(T, ∗) where Symmn(T, ∗) = (T, ∗)×n/Σn and the maps Symmn →
Symmn+1 send (x1, . . . , xn) to (x1, . . . , xn, ∗). The Dold-Thom Theorem [4] says
that for a connected pointed CW-complex (T, ∗) the space Symm∞(T, ∗) is weakly
equivalent to the product

∏
i>0 K(Hi(T ), i) where Hi(T ) are the integral homol-

ogy of T . To formulate Dold-Thom Theorem for spaces which are not necessarily
connected one considers Symm∞(T, ∗) as a topological monoid with respect to the
obvious addition and takes its group completion (Symm∞(T, ∗))+. The general
Dold-Thom theorem then says that

(Symm∞(T, ∗))+ ∼=
∏

i≥0

K(Hi(T ), i)

for any T and that in the case of a connected T the group completion does not
change the homotopy type of Symm∞(T, ∗). In particular one way to define
K(Z, n) for all n ≥ 0 is to set

K(Z, n) = (Symm∞(Sn))+

Once we understand the correct analog of the symmetric product construc-
tion in the A1-context this definition works perfectly well and gives us Eilenberg-
MacLane spaces which fit together into the Eilenberg-MacLane spectrum repre-
senting motivic cohomology.

Assume for a moment that the base scheme S is regular. For a smooth
scheme X over S and a smooth connected scheme U define c(U,X) as the free
abelian group generated by closed irreducible subsets Z of U ×X which are finite
and surjective over U . For any morphism U1 → U2 over S one can define the
base change homomorphism c(U2, X) → c(U1, X) which makes c(−, X) into a
contravariant functor from Sm/S to abelian groups. One can verify easily that
this functor takes elementary distinguished squares to Cartesian squares i.e. that
it is a space in the sense of our definition. We consider it as a pointed space with
the distinguished point given by zero and denote by L(X). If S is not regular the
correct definition of c(U,X) and L(X) becomes more technical and requires the
theory of realtive equidimensional cycles developed in [22]. In the notations of that
paper c(U,X) = c(U ×S X/U, 0) ([22, p.30]). The graph of any morphism U → X
is an element of c(U,X) which gives us canonical maps Hom(U,X) → c(U,X) i.e.
a morphism of spaces X → L(X).
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It turns out that the space L(X) plays the role of (Symm∞(X+))+ in our
context. Intuitively one can see this as follows. Assume S = Spec(k) and X is a
smooth variety over k. Consider first the subspace Leff (X) in L(X) which consists
of formal linear combinations of closed subsets with nonnegative coefficients. A
point in Leff (X) i.e. an element in HomSpc(pt, Leff (X)) = ceff (Spec(k), X) is,
by definition, a formal linear combination of closed points of X with nonnegative
coefficients which is exatly what one would expect from points of the infinite
symmetric product. The whole space L(X) is clearly obtained from Leff (X) by the
naive group completion with respect to the obvious abelian monoid structure on
Leff (X). A detailed discussion of how L(X) relates to usual symmetric products
for quasi-projective varieties over a field k can be found in [21, §6] and especially
in [21, Th. 6.8] where

zeff
0 (Z) =

{
L(Z) if char(k) = 0
L(Z)[1/char(k)] if char(k) > 0 (18)

To define Eilenberg-MacLane spaces we should apply this construction to our
spheres Sn

s ∧Sm
t . To do it we have to say what L(X) is for a space which is not a

smooth scheme. Instead of giving a general definition we only consider spaces of
the form X/(∪n

i=1Zi) where X is a smooth scheme and Zi’s are smooth subschemes
in X such that all the intersections of Zi’s are also smooth over S. We call such
spaces scheme-like. This class includes in particular the spaces Sn

s ∧ Sm
t for all

n,m ≥ 0 and it is closed under smash products. We set

L(X/(∪n
i=1Zi)) = (L(X)/(

n∑

i=1

L(Zi)))ab

where the subscript ab indicates that we take the quotient in the category of
abelian group spaces and then forget the abelian group structure. It can be shown
that any morphism of scheme-like spaces f : X → Y induces homomorphism
L(f) : L(X) → L(Y ) and that for an A1-weak equivalence f the morphism L(f)
is also an A1-weak equivalence.

Definition 6.1 K(Z(n), 2n) = L((P1,∞)∧n)

The notation K(Z(n), 2n) has the same origin as the indexing in the definition of
Ep,q’s and as Theorem 6.3 below shows is consistent with this indexing. In view
of Lemma 4.1 and previous discussion this definition reads

K(Z(n), 2n) ∼= (Symm∞((S1
s ∧ S1

t )∧n))+

One can show that the “wrong” Eilenberg-MacLane space K(Z, n) specified by
(17) is weakly equivalent to L(Sn

s ).
For any smooth schemes X, Y over S there is a billinear morphism L(X) ×

L(Y ) → L(X × Y ) defined by external product of relative cycles (see [22, p. 54])
which is natural in X and Y . This implies that for scheme-like spaces X, Y we
have a canonical morphism L(X) ∧ L(Y ) → L(X ∧ Y ). In particular we have
canonical morphisms

mm,n : K(Z(m), 2m) ∧K(Z(n), 2n) → K(Z(n + m), 2n + 2m)
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Composing m1,n with the morphism i ∧ Id where i is the canonical morphism
(P1,∞) → L(P1,∞) we get the assembly morphisms of the Eilenberg-MacLane
spectrum HZ

en : (P1,∞) ∧K(Z(n), 2n) → K(Z(n + 1), 2n + 2)

The main thechnical result about the motivic cohomology spectrum is the
following theorem. This is the only theorem in the paper for which we do not
know a good proof.

Theorem 6.2 Let S be a smooth variety over a field k of characteristic zero.
Then the spaces K(Z(n), 2n) are quasi-fibrant (Definition 3.9) and the morphisms

ẽn : K(Z(n), 2n) → Ω1
(P1,∞)K(Z(n + 1), 2n + 2)

adjoint to the assembly morphisms are A1-weak equivalences.

Conjecturally the statement of Theorem 6.2 should be true for any regular base
scheme S. There is an example of a normal surface over C with an isolated
nonrational singularity for which the second half of the theorem does not hold.
The only reason the condition on the characteristic of the base field appears in
the theorem is because the proof is based on techniques developed in [5] and in
particular requires [5, Lemma 5.4] which in turn uses Hironaka’s resolution of
singularities. Theorem 6.3 has the following corollary.

Theorem 6.3 Let U be a smooth quasi-projective variety over a field of charac-
teristic zero. Then for any n, i ≥ 0 there is a canonical isomorphism

H2n−i,n
Z (U+) = πi(Sing∗(K(Z(n), 2n)(U), ∗))

The groups on the right hand side can be easily identified with the motivic co-
homology groups defined in [5, Definition 9.2] where the notation Hp(−,Z(q)) is
used instead of Hp,q

Z (−). Together with [5, Th. 8.2, Th. 8.3(1)] and [25, Prop.
4.2.9] this gives the following comparison between our motivic cohomology and
higher Chow groups introduced by S. Bloch in [2].

Theorem 6.4 Let U be a smooth quasi-projective variety over a field of charac-
teristic zero. Then there are canonical isomorphisms

Hp,q
Z (U+) = CHq(U, 2q − p)

6.2 Algebraic K-theory

The next cohomology theory which we are going to discuss is algebraic K-theory.
This theory is the best known one of the three theories considered here and it is
also the least convenient one to define in terms of the stable homotopy category.
The first definition of higher K-groups which works properly for all Noetherian
schemes was given by B. Thomason in [23]. An A1-homotopy invariant version
of algebraic K-theory which agrees with Thomason K-theory for regular schemes
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was defined by C. Weibel in [27]. What follows gives a description of a spectrum
BGL which represents a theory which after reindexing coincides on Sm/S with
Weibel’s homotopy K-theory. The construction given here is very ugly and I am
sure that there exists a better way to do it.

Denote by BGL(d) the infinite Grassmannian BGL(d) = colimN≥dG(d,N)
where G(d, N) is the Grassmannian of linear subspaces of dimension d in the
standard linear space of dimension N which we denote by ON . The maps
G(d,N) → G(d,N + 1) take L ⊂ ON to L ⊕ {0} ⊂ ON ⊕ O. We have canonical
monomorphisms BGL(d) → BGL(1+ d) which take L ⊂ ON to O⊕L ⊂ O⊕ON

and we denote by BGL the colimit colimd≥0BGL(d). The spectrum representing
algebraic K-theory is defined as follows

BGL = (ExA1
(BGL× Z), e : (P1,∞) ∧ ExA1

(BGL× Z) → ExA1
(BGL× Z))

where BGL × Z =
∐

i∈Z BGL and ExA1
(BGL × Z) is a fibrant replacement

of BGL × Z in the sense of the closed model structure of Theorem 3.7. The
reason we have to take ExA1

(BGL × Z) instead of BGL × Z itself is that the
only way I know to define the assembly morphism is to define first a morphism
ē : (P1,∞) ∧ (BGL × Z) → BGL × Z in the homotopy category and then say
that any morphism in the homotopy category with values in a fibrant object can
be lifted to the category of spaces. It is a little ugly but it works. To specify e we
will use the following result proven in [14].

Theorem 6.5 For any smooth scheme X over S and any i ≥ 0 there is a canonical
map

Ki(X) → HomH•(S
i
s ∧X+, BGL× Z)

which is a bijection if S is regular (the K-groups on the left are Thomason K-groups
[23]).

For a pointed scheme (X, x) denote by Kn(X,x) the subgroup of Kn(X) which
consists of elements vanishing on x. For a pair of pointed smooth schemes (X, x),
(Y, y) denote by Ki((X, x) ∧ (Y, y)) the subgroup in Ki(X × Y ) which consists of
elements vanishing on X × {y} ⊂ X × Y and on {x} × Y ⊂ X × Y . Note that
this is always a direct summand in Ki(X × Y ). Theorem 6.5 has the following
corollary.

Corollary 6.6 Let (X, x), (Y, y) be pointed smooth schemes over S. Then for
any i ≥ 0 there is a canonical map

Ki((X, x) ∧ (Y, y)) → HomH•(S
i
s ∧ (X, x) ∧ (Y, y), BGL× Z)

which is a bijection if S is regular.

To define the assembly morphism of the spectrum BGL we want to use Corollary
6.6 to compute the set of morphisms (P1,∞) ∧ (BGL × Z) → BGL × Z in the
A1-homotopy category. Unfortunately BGL is not a smooth scheme but a colimit
of filtered system of such schemes which makes us to use the following lemma.
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Lemma 6.7 Let (Xn, in : (Xn, xn) → (Xn+1, xn+1)) be an inductive system of
pointed spaces such that all the morphisms in are monomorphisms and (Y, y) be a
pointed space such that all the maps

HomH(S1
s ∧ (Xn+1, xn+1), (Y, y)) → HomH(S1

s ∧ (Xn, xn), (Y, y))

induced by Id ∧ in are surjective. Then the canonical map

HomH(colimn (Xn, xn), (Y, y)) → limn HomH((Xn, xn), (Y, y))

is bijective.

Projective bundle theorem for algebraic K-theory together with standard geomet-
rical constructions imply that the embeddings of Grassmannians G(d,N) → G(1+
d, 1+N+1) induce surjections of K-groups Kn(G(1+d, 1+N+1)) → Kn(G(d,N))
for all n ∈ Z. The same projective bundle theorem appplied to the trivial bundle
of dimension one implies that Kn((P1,∞) ∧ (X,x)) = Kn(X, x) for any pointed
smooth scheme (X,x) over S. Thus Lemma 6.7 implies that for a regular scheme
S one has

HomH((P1,∞) ∧ (BGL× Z), BGL× Z) =

= limd HomH((P1,∞) ∧ (
d∐

i=−d

G(d, 2d)), BGL× Z) =

limd K0((P1,∞) ∧ (
d∐

i=−d

G(d, 2d))) = lim
d

K0(
d∐

i=−d

G(d, 2d)) =

lim
d

HomH(
d∐

i=−d

G(d, 2d), BGL× Z) = HomH(BGL× Z, BGL× Z)

Denote by e the morphism (P1,∞)∧(BGL×Z) → BGL×Z corresponding under
these identifications to the identity morphism of BGL×Z and define the assembly
morphism of the spectrum BGL as a morphism of spaces which projects to e in
the homotopy category. This defines BGL for regular base schemes S. To get
BGL for any S one uses the inverse image functor on the homotopy categories
associated with the canonical morphism S → Spec(Z). As an easy corollary of
this construction of BGL we get the following periodicity theorem.

Theorem 6.8 There is a canonical isomorphism BGL = S1
s ∧ S1

t ∧BGL.

Thus from the point of view of the A1-theory algebraic K-theory is periodic with
period (2, 1) which is why it is usually written with only one index instead of two.
While the construction of BGL presented here is not very nice it is actually easy
to prove comparison theorems with it.

Theorem 6.9 For any Noetherian base scheme S and any smooth scheme X over
S one has canonical isomorphisms

BGLp,q(X+) = KH2q−p(X)
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where KH is the homotopy K-theory of [27]. In particular for a regular base S
one has

BGLp,q(X+) = K2q−p(X)

where K is the K-theory of [23].

6.3 Algebraic cobordism

Algebraic cobordism was introduced in [26] as one of the tools necessary for the
proof of the Milnor conjecture. According to our current understanding it is
the universal cohomology theory which has direct image homomorphisms for all
smooth proper morphisms. It is represented by a spectrum MGL = (MGL(n), en)
completely analogous to the Thom spectrum representing complex cobordism in
the topological homotopy theory.

Recall that for a vector bundle E over X we defined its Thom space as
Th(E) = E/(E − s(X)) where s : X → E is the zero section. For any mor-
phism f : X → Y and a vector bundle E over Y we have a canonical morphism
of spaces Th(f∗E) → Th(E). Let En,N be the universal bundle over the Grass-
mannian G(n,N). The embeddings G(n, N) → G(n,N + 1) induce morphisms
Th(En,N ) → Th(En,N+1) and we define MGL(n) as colimN Th(En,N ). To define
assembly morphisms note that if O is the trivial bundle of dimension one then
Th(O⊕E) = (A1/A1 − {0}) ∧ Th(E). For the embeddings f : G(n,N) → G(1 +
n, 1+N) we have canonical isomorphisms f∗(E1+n,1+N ) = O⊕En,N which implies
that we have canonical morphisms e′n : (A1/A1−{0})∧MGL(n) → MGL(n+1).
Since the elementary distinguished square corresponding to the standard cover-
ing P1 = A1 ∪ A1 is a pushforward square the morphism of quotient spaces
A1/(A1 − {0}) → P1/(P1 − {0}) is an isomorphism. The inverse gives us a mor-
phism φ : (P1,∞) → A1/(A1 − {0}). We define the assembly morphisms of the
Thom spectrum MGL as compositions en = e′n ◦ (φ ∧ Id).

Since algebraic cobordism is a new theory we can not formulate here a com-
parison theorem as we have done with motivic cohomology and algebraic K-theory.
Instead I will end this section with a conjecture which describes a part of algebraic
cobordisms in terms of the usual complex cobordism ring MU∗.

Conjecture 1 For any S there is a natural homomorphism ⊕∞i=−∞MU2i →
⊕∞i=−∞MGL2i,i(S) which is an isomorphism if S is local and regular.

7 Concluding remarks

This paper outlines the very basics of the A1-homotopy theory. One reason I did
not say more about concrete computations such as the description of the motivic
Steenrod algebra is that at the moment these computations can only be done in
the case when S is a variety over a field of characteristic zero. This is partly due
to the conditions of Theorem 6.2 and partly to technical difficulties in the proof
of Spanier-Whitehead duality.

One of the two major directions of current work on the theory is to eliminate
this restriction. There are two sources of new techniques which I believe will allow
us to do it. One is related to the study of functoriality of the stable homotopy
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categories with respect to S. There is a theory here which is largely parallel to
the functoriality for the constructible sheaves in the etale topology [13, Ch.VI].
It allows in particular to prove the Spanier-Whitehead duality for smooth proper
schemes over any base. However, just as in the etale theory there are certain
statements which apparently require some kind of resolution of singularities (in the
etale case this is for example the theorem saying that Rp∗(Z/n) is constructible for
any morphism p of finite type [13, VI.5.7]). Surprisingly the same kind of problems
comes up when one tries to generalize Theorem 6.2. I am rather optimistic about
these problems at the moment. My optimism is mostly based on the amazing proof
which Spencer Bloch gave for his localization theorem for higher Chow groups in
[3]. It seems that he found a way to use Spivakovsky’s solution of Hironaka’s
polyhedra game ([20]) instead of resolution of singularities to deal with problems
essentially similar to the ones mentioned above.

The second main direction of current work can be described as an attempt to
find an algebro-combinatorial description of A1-homotopy types. We do have a
very hypothetical theory of rational homotopy type. The rational homotopy type
of a scheme S is a differential graded Hopf algebra (commutative, not cocommu-
tative) HQ(S) over Q such that the derived category of modules over HQ(S) is
equivalent to the triangulated subcategory DM lc(S,Q) of local systems in the de-
rived category DM(S,Q) of modules over the Eilenberg-MacLane spectrum HQ

over S.
In topological context HQ(T ) is the differential graded Hopf algebra associ-

ated with the cosimplicial Hopf algebra C∗(Ω1T ) of singular cochains on the first
loop space of T and DM lc(T,Q) is the full subcategory of complexes with locally
constant cohomology sheaves in the derived category of consructible sheaves of
Q-vector spaces on T .

In the particular case S = Spec(k) the (weak) K(π, 1)-conjecture says that
HQ(S) is the Hopf algebra of functions on a proalgebraic group GalM,Q(k) (in
particular it sits entirely in grading zero). This group is called the motivic Galois
group of k. The category DM lc(S,Q) is in this case equivalent to the whole cat-
egory DM(S,Q) and the equivalence of the derived categories mentioned above
becomes the known hypothetical correspondence between motives and represen-
tations of the motivic Galois group [15]. This wonderful picture whose origins go
back to Grothendieck’s idea of motives ([7], [12], [15]) must have an analog for
integral homotopy types. All my attempts to find such an analog even in the case
when S is the spectrum of an algebraically closed field of characteristic zero so far
failed. We have a lot of knowledge about torison effects in the motivic category
and this knowledge does not want to fit into any nice scheme.
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What is Moonshine?

Richard E. Borcherds1

This is an informal write up of my talk at the ICM in Berlin. It gives some
background to Goddard’s talk [Go] about the moonshine conjectures. For other
survey talks about similar topics see [B94], [B98], [LZ], [J], [Ge], [Y].

The classification of finite simple groups shows that every finite simple group
either fits into one of about 20 infinite families, or is one of 26 exceptions, called
sporadic simple groups. The monster simple group is the largest of the sporadic
finite simple groups, and was discovered by Fischer and Griess [G]. Its order is

8080, 17424, 79451, 28758, 86459, 90496, 17107, 57005, 75436, 80000, 00000
= 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

(which is roughly the number of elementary particles in the earth). The smallest
irreducible representations have dimensions 1, 196883, 21296876, . . . . The elliptic
modular function j(τ) has the power series expansion

j(τ) = q−1 + 744 + 196884q + 21493760q2 + . . . ,

where q = e2πiτ , and is in some sense the simplest nonconstant function satisfying
the functional equations j(τ) = j(τ + 1) = j(−1/τ). John McKay noticed some
rather weird relations between coefficients of the elliptic modular function and the
representations of the monster as follows:

1 = 1 ,

196884 = 196883 + 1 ,

21493760 = 21296876 + 196883 + 1 ,

where the numbers on the left are coefficients of j(τ) and the numbers on the
right are dimensions of irreducible representations of the monster. At the time he
discovered these relations, several people thought it so unlikely that there could be
a relation between the monster and the elliptic modular function that they politely
told McKay that he was talking nonsense. The term “monstrous moonshine”
(coined by Conway) refers to various extensions of McKay’s observation, and in
particular to relations between sporadic simple groups and modular functions.

For the benefit of readers who are not native English speakers, I had better
point out that “moonshine” is not a poetic terms referring to light from the moon.
It means foolish or crazy ideas. (Quatsch in German.) A typical example of its

1Supported by a Royal Society professorship.
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use is the following quotation from E. Rutherford (the discoverer of the nucleus of
the atom): “The energy produced by the breaking down of the atom is a very poor
kind of thing. Anyone who expects a source of power from the transformations of
these atoms is talking moonshine.” (Moonshine is also a name for corn whiskey,
especially if it has been smuggled or distilled illegally.)

We recall the definition of the elliptic modular function j(τ). The group
SL2(Z) acts on the upper half plane H by

(
a b
c d

)
(τ) =

aτ + b

cτ + d
.

A modular function (of level 1) is a function f on H such that
f((aτ + b)/(cτ + d)) = f(τ) for all

(
ab
cd

) ∈ SL2(Z). It is sufficient to as-
sume that f is invariant under the generators τ 7→ τ +1 and τ 7→ −1/τ of SL2(Z).
The elliptic modular function j is the simplest nonconstant example, in the sense
that any other modular function can be written as a function of j. It can be
defined as follows:

j(τ) =
E4(τ)3

∆(τ)
= q−1 + 744 + 196884q + 21493760q2 + · · · ,

E4(τ) = 1 + 240
∑
n>0

σ3(n)qn

= 1 + 240q + 2160q2 + · · ·
(σ3(n) =

∑

d|n
d3) ,

∆(τ) = q
∏
n>0

(1− qn)24

= q − 24q + 252q2 + · · · .

A modular form of weight k is a holomorphic function

f(τ) =
∑

n≥0

c(n)qn

on the upper half plane satisfying the functional equation f((aτ + b)/(cτ + d)) =
(cτ + d)kf(τ) for all

(
a b
c d

) ∈ SL2(Z). The function E4(τ) is an Eisenstein series
and is a modular form of weight 4, while ∆(τ) is a modular form of weight 12.

The function j(τ) is an isomorphism from the quotient SL2(Z)\H to C, and
is uniquely defined by this up to multiplication by a constant or addition of a
constant. In particular any other modular function is a function of j, so j is in
some sense the simplest nonconstant modular function.

An amusing property of j (which so far seems to have no relation with moon-
shine) is that j(τ) is an algebraic integer whenever τ is an imaginary quadratic
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irrational number. A well known consequence of this is that

exp(π
√

163) = 262537412640768743.99999999999925 . . .

is very nearly an integer. The explanation of this is that j((1+i
√

163)/2) is exactly
the integer

−262537412640768000 = −2183353233293 ,

and

j((1 + i
√

163)/2) = q−1 + 744 + 196884q + · · ·
= −eπ

√
163 + 744 + (something very small).

McKay and Thompson suggested that there should be a graded represen-
tation V = ⊕n∈ZVn of the monster, such that dim(Vn) = c(n − 1), where j(τ) −
744 =

∑
n c(n)qn = q−1 + 196884q + · · ·. Obviously this is a vacuous statement

if interpreted literally, as we could for example just take each Vn to be a trivial
representation. To characterize V , Thompson suggested looking at the McKay-
Thompson series

Tg(τ) =
∑

n

Tr(g|Vn)qn−1

for each element g of the monster. For example, T1(τ) should be the elliptic
modular function. Conway and Norton [C-N] calculated the first few terms of each
McKay-Thomson series by making a reasonable guess for the decomposition of the
first few Vn’s into irreducible representations of the monster. They discovered the
astonishing fact that all the McKay-Thomson series appeared to be Hauptmoduls
for certain genus 0 subgroups of SL2(R). (A Hauptmodul for a subgroup Γ is
an isomorphism from Γ\H to C, normalized so that its Fourier series expansion
starts off q−1 + O(1).)

As an example of some Hauptmoduls of elements of the monster, we will look
at the elements of order 2. There are 2 conjugacy classes of elements of order
2, usually called the elements of types 2A and 2B. The corresponding McKay-
Thompson series start off

T2B(τ) = q−1 + 276q − 2048q2 + · · · Hauptmodul for Γ0(2)
T2A(τ) = q−1 + 4372q + 96256q2 + · · · Hauptmodul for Γ0(2)+

The group Γ0(2) is {(ab
cd

) ∈ SL2(Z)|c is even}, and the group Γ0(2)+ is the
normalizer of Γ0(2) in SL2(R). Ogg had earlier commented on the fact that the
full normalizer Γ0(p)+ of Γ0(p) for p prime is a genus 0 group if and only if p is
one of the primes 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, or 71 dividing
the order of the monster.

Conway and Norton’s conjectures were soon proved by A. O. L. Atkin, P.
Fong, and S. D. Smith. The point is that to prove something is a virtual charac-
ter of a finite group it is only necessary to prove a finite number of congruences.
In the case of the moonshine module V , proving the existence of an infinite di-
mensional representation of the monster whose McKay-Thompson series are give
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Hauptmoduls requires checking a finite number of congruences and positivity con-
ditions for modular functions, which can be done by computer.

This does not give an explicit construction of V , or an explanation about why
the conjectures are true. Frenkel, Lepowsky, and Meurman managed to find an
explicit construction of a monster representation V = ⊕Vn, such that dim(Vn) =
c(n−1), and this module had the advantage that it came with some extra algebraic
structure preserved by the monster. However it was not obvious that V satisfied
the Conway-Norton conjectures. So the main problem in moonshine was to show
that the monster modules constructed by Frenkel, Lepowsky and Meurman on the
one hand, and by Atkin, Fong, and Smith on the other hand, were in fact the same
representation of the monster.

Peter Goddard [Go] has given a description of the proof of this in his talk in
this volume, so I will only give a quick sketch of this. The main steps of the proof
are as follows:

• 1. The module V constructed by Frenkel, Lepowsky, and Meurman has an
algebraic structure making it into a “vertex algebra”. A detailed proof of
this is given in [F-L-M].

• 2. Use the vertex algebra structure on V and the Goddard-Thorn no-ghost
theorem [G-T] from string theory to construct a Lie algebra acted on by the
monster, called the monster Lie algebra.

• 3. The monster Lie algebra is a “generalized Kac-Moody algebra” ([K90]);
use the (twisted) Weyl-Kac denominator formula to show that Tg(τ) is a
“completely replicable function”.

• 4. Y. Martin [M], C. Cummins, and T. Gannon [C-G] proved several theo-
rems showing that completely replicable functions were modular functions of
Hauptmoduls for genus 0 groups. By using these theorems it follows that Tg

is a Hauptmodul for a genus 0 subgroup of SL2(Z), and hence V satisfies the
moonshine conjectures. (The original proof used an earlier result by Koike
[Ko] showing that the appropriate Hauptmoduls were completely replicable,
together with a boring case by case check and the fact that a completely
replicable function is characterized by its first few coefficients.)

We will now give a brief description of some of the terms above, starting with
vertex algebras. The best reference for finding out more about vertex algebras is
Kac’s book [K]. In this paragraph we give a rather vague description. Suppose
that V is a commutative ring acted on by a group G. We can form expressions
like

u(x)v(y)w(z) ,

where u, v, w ∈ V and x, y, z ∈ G, and the action of x ∈ G on u ∈ V is denoted
rather confusingly by u(x). (This is not a misprint for x(u); the reason for this
strange notation is to make the formulas compatible with those in quantum field
theory, where u would be a quantum field and x a point of space-time.) For each
fixed u, v, . . . ∈ V , we can think of u(x)v(y) · · · as a function from Gn to V . We
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can rewrite the axioms for a commutative ring acted on by G in terms of these
functions. We can now think of a vertex algebra roughly as follows: we are given
lots of functions from Gn to V satisfying the axioms mentioned above, with the
difference that these functions are allowed to have certain sorts of singularities. In
other words a vertex algebra is a sort of commutative ring acted on by a group G,
except that the multiplication is not defined everywhere but has singularities. In
particular we cannot recover an underlying ring by defining the product of u and v
to be u(0)v(0), because the function u(x)v(y) might happen to have a singularity
at u = v = 0.

It is easy to write down examples of vertex algebras: any commutative ring
acted on by a group G is an example. (Actually this is not quite correct: for
technical reasons we should use a formal group G instead of a group G.) Con-
versely any vertex algebra “without singularities” can be constructed in this way.
Unfortunately there are no easy examples of vertex algebras that are not really
commutative rings. One reason for this is that nontrivial vertex algebras must be
infinite dimensional; the point is that if a vertex algebra has a nontrivial singular-
ity, then by differentiating it we can make the singularity worse and worse, so we
must have an infinite dimensional space of singularities. This is only possible if
the vertex algebra is infinite dimensional. However there are plenty of important
infinite dimensional examples; see for example Kac’s book for a construction of
the most important examples, and [FLM] for a construction of the monster vertex
algebra.

Next we give a brief description of generalized Kac-Moody algebras. The
best way to think of these is as infinite dimensional Lie algebras which have most
of the good properties of finite dimensional reductive Lie algebras. Consider a
typical finite dimensional reductive Lie algebra G, (for example the Lie algebra
G = Mn(R) of n× n real matrices). This has the following properties:

• 1. G has an invariant symmetric bilinear form ( , ) (for example (a, b) =
−Tr(a, b)).

• 2. G has a (Cartan) involution ω (for example, ω(a) = −at).

• 3. G is graded as G = ⊕n∈ZGn with Gn finite dimensional and with ω acting
as −1 on the “Cartan subalgebra” G0. (For example, we could put the basis
element ei,j of Mn(R) in Gi−j .)

• 4. (a, ω(a)) > 0 if g ∈ Gn, g 6= 0.

Conversely any Lie algebra satisfying the conditions above is essentially a sum of
finite dimensional and affine Lie algebras. Generalized Kac-Moody algebras are
defined by the same conditions with one small change: we replace condition 4 by

• 4’. (a, ω(a)) > 0 if g ∈ Gn, g 6= 0 and n 6= 0.

This has the effect of allowing an enormous number of new examples, such as all
Kac-Moody algebras and the Heisenberg Lie algebra (which behaves like a sort
of degenerate affine Lie algebra). Generalized Kac-Moody algebras have many of
the properties of finite dimensional semisimple Lie algebras, and in particular they
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have an analogue of the Weyl character formula for some of their representations,
and an analogue of the Weyl denominator formula. An example of the Weyl-Kac
denominator formula for the algebra G = SL2[z, z−1] is

∏
n>0

(1− q2n)(1− q2n−1z)(1− q2n−1z−1) =
∑

n∈Z

(−1)nqn2
zn.

This is the Jacobi triple product identity, and is also the Macdonald identity for
the affine Lie root system corresponding to A1.

Dyson described Macdonald’s discovery of the Macdonald identities in [D].
Dyson found identities for η(τ)m = qm/24

∏
n>0(1− qn)m for the following values

of m:
3, 8, 10, 14, 15, 21, 24, 26, 28, . . .

and wondered where this strange sequence of numbers came from. (The case
m = 3 is just the Jacobi triple product identity with z = 1.) Macdonald found
his identities corresponding to affine root systems, which gave an explanation for
the sequence above: with one exception, the numbers are the dimensions of simple
finite dimensional complex Lie algebras. The exception is the number 26 (found
by Atkin), which as far as I know has not been explained in terms of Lie algebras.
It seems possible that it is somehow related to the fake monster Lie algebra and
the special dimension 26 in string theory.

Next we give a quick explanation of “completely replicable” functions. A
function is called completely replicable if its coefficients satisfy certain relations.
As an example of a completely replicable function, we will look at the elliptic
modular function j(τ)− 744 =

∑
c(n)qn. This satisfies the identity

j(σ)− j(τ) = p−1
∏
m>0
n∈Z

(1− pmqn)c(mn) ,

where p = e2πiσ, q = e2πiτ . (This formula was proved independently in the 80’s
by Koike, Norton, and Zagier, none of whom seem to have published their proofs.)
Comparing coefficients of pmqn on both sides gives many relations between the
coefficients of j whenever we have a solution of m1n1 = m2n2 in positive integers,
which are more or less the relations needed to show that j is completely replicable.
For example, from the relation 2× 2 = 1× 4 we get the relation

c(4) = c(3) +
c(1)2 − c(1)

2
,

or equivalently

20245856256 = 864299970 +
1968842 − 196884

2
.

In the rest of this paper we will discuss various extensions of the original
moonshine conjectures, some of which are still unproved. The first are Norton’s
“generalized moonshine” conjectures [N]. If we look at the Hauptmodul T2A(τ) =
q−1 + 4372q + . . . we notice that one of the coefficients is almost the same as the
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dimension 4371 of the smallest non-trivial irreducible representation of the baby
monster simple group, and the centralizer of an element of type 2A in the monster
is a double cover of the baby monster. Similar things happen for other elements
of the monster, suggesting that for each element g of the monster there should
be some sort of graded moonshine module Vg = ⊕nVg,n acted on by a central
extension of the centralizer ZM (g). In particular we would get series Tg,h(τ) =∑

n Tr(h|Vg,n)qn satisfying certain conditions. Some progress has been made on
this by Dong, Li, and Mason [D-L-M], who proved the generalized moonshine
conjectures in the case when g and h generate a cyclic group by reducing to the
case when g = 1 (the ordinary moonshine conjectures). G. Höhn [H] has made
some progress in the harder case when g and h do not generate a cyclic group
by constructing the required modules for the baby monster (when g is of type
2A). It seems likely that his methods would also work for the Fischer group Fi24,
but it is not clear how to go further than this. There might be some relation to
elliptic cohomology (see [Hi]for more discussion of this), as this also involves pairs
of commuting elements in a finite group and modular forms.

The space Vg mentioned above does not always have an invariant vertex al-
gebra structure on it. Ryba discovered that a vertex algebra structure sometimes
magically reappears when we reduce Vg modulo the prime p equal to the order of g.
In fact Vg/pVg can often be described as the Tate cohomology group Ĥ0(g, V ) for
a suitable integral form V of the monster vertex algebra. This gives natural exam-
ples of vertex algebras over finite fields which do not lift naturally to characteristic
0. (Note that most books and papers on vertex algebras make the assumption
that we work over a field of characteristic 0; this assumption is often unnecessary
and excludes many interesting examples such as the one above.)

We will finish by describing some more of McKay’s observations about the
monster, which so far are completely unexplained. The monster has 9 conjugacy
classes of elements that can be written as the product of two involutions of type
2A, and their orders are 1, 2, 3, 4, 5, 6, 2, 3, 4. McKay pointed out that these are
exactly the numbers appearing on an affine E8 Dynkin diagram giving the linear
relation between the simple roots. They are also the degrees of the irreducible
representations of the binary icosahedral group. A similar thing happens for the
baby monster: this time there are 5 classes of elements that are the product of
two involutions of type 2A and their orders are 2, 4, 3, 2, 1. (This is connected
with the fact that the baby monster is a “3,4-transposition group”.) These are
the numbers on an affine F4 Dynkin diagram, and if we take the “double cover”
of an F4 Dynkin diagram we get an E7 Dynkin diagram. The number on an
E7 Dynkin diagram are 1, 1, 2, 2, 3, 3, 4, 2 which are the dimensions of the
irreducible representations of the binary octahedral group. The double cover of
the baby monster is the centralizer of an element of order 2 in the monster. Finally
a similar thing happens for Fi24.2: this time there are 3 classes of elements that
are the product of two involutions of type 2A and their orders are 2, 3, 1. (This
is connected with the fact that F24.2 is a “3-transposition group”.) These are
the numbers on an affine G2 Dynkin diagram, and if we take the “triple cover”
of an G2 Dynkin diagram we get an E6 Dynkin diagram. The number on an E6

Dynkin diagram are 1, 1, 1, 2, 2, 2, 3, which are the dimensions of the irreducible
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representations of the binary tetrahedral group. The triple cover of Fi24.2 is the
centralizer of an element of order 3 in the monster.

The connection between Dynkin diagrams and 3-dimensional rotation groups
is well understood (and is called the McKay correspondence), but there is no
known explanation for the connection with the monster.
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Fourier Analysis and Szemer�edi's Theorem

W. T. Gowers

Abstract. The famous theorem of Szemerédi asserts that for every
positive integer k and every positive real number δ > 0 there is a positive
integer N such that every subset of {1, 2, . . . , N} of cardinality at least
δN contains an arithmetic progression of length k. A second proof of the
theorem was given by Furstenberg using ergodic theory, but neither this
proof nor Szemerédi’s gave anything other than extremely weak informa-
tion about the dependence of N on k and δ. In this article we describe a
new, more quantitative approach to Szemerédi’s theorem which greatly
improves the best known bound when k = 4, and which will probably do
the same for general k.

1991 Mathematics Subject Classification: 11P99
Keywords and Phrases: Arithmetic progressions, Fourier analysis

§1. Introduction.

A well known result of van der Waerden [vdW], published in 1927, is the following.

Theorem 1A. Let the natural numbers be partitioned into finitely many sets.
Then one of the sets contains arbitrarily long arithmetic progressions.

A straightforward compactness argument allows this statement to be rephrased as
follows.

Theorem 1B. For every pair of positive integers k, r there exists a positive in-
teger M such that, whenever the set {1, 2, . . . , M} is partitioned into r subsets
C1, . . . , Cr, at least one of the subsets contains an arithmetic progression of length
k.

This is one of the classic results of Ramsey theory: it is customary to call the
cells of the partition colours, the partition itself an r-colouring and the resulting
arithmetic progression monochromatic.

Let us define M(k, r) to be the minimal M for which the conclusion of The-
orem 1B holds. A compactness argument proves that M(k, r) is finite but does
not give any bound for it. As it happens, though, van der Waerden proved the
second version of his theorem directly, and it is possible to extract from his proof
an explicit estimate for M(k, r). However, the estimate is enormously large, as we
shall see later, and barely qualifies as a quantitative bound.

In 1936, Erdős and Turán [ET] made a conjecture which significantly strength-
ened van der Waerden’s theorem. It soon became clear that their conjecture was
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very difficult, and it took almost forty years before it was solved, by Szemerédi
[Sz2]. The statement is the following.

Theorem 2A. Any subset of the natural numbers with positive upper density con-
tains arithmetic progressions of arbitrary length.

Again, there is a finite version.

Theorem 2B. For every natural number k and positive real number δ there exists
a natural number N such that every subset of {1, 2, . . . , N} of cardinality at least
δN contains an arithmetic progression of length k.
This certainly implies van der Waerden’s theorem, as one can take δ = r−1 and
consider the most frequently occurring colour. For this reason, the result is of-
ten called the density version of van der Waerden’s theorem (as opposed to the
colouring version).

It is interesting to consider why Erdős and Turán made their conjecture, and
to compare it with other results in Ramsey theory. Ramsey’s theorem itself states
that for every k and r there exists N such that if the edges of the complete graph
on N vertices are coloured with r colours, then a complete subgraph on k vertices
can be found with all its edges the same colour. However, it is absolutely not true
that one can do this with the most frequently occurring colour. (For example,
consider a complete bipartite graph on two sets of equal size.) A theorem of Schur
states that if N is sufficiently large and the set {1, 2, . . . , N} is coloured with r
colours, then one of the colours contains a triple (x, y, z) with x + y = z. Again,
there is no density version of the statement – just consider the set of all odd
numbers less than N . The most important difference between van der Waerden’s
theorem and Schur’s theorem in this respect is that van der Waerden’s theorem is
affine-invariant. This property rules out simple counterexamples such as the set
of all integers satisfying some congruence.

This shows why the conjecture had a chance of being true, but the motivation
for it was stronger than that. In particular, it was reasonable to think that it would
not be possible to prove the conjecture using the sorts of inefficient combinatorial
arguments that yielded poor bounds for van der Waerden’s theorem. In that case,
a proof of the conjecture would give new quantitative information even for the
colouring statement. Moreover, if the bounds turned out to be good enough, one
could obtain an important number-theoretic result purely combinatorially. To be
precise, Erdős went on to give the following conjecture, which was possibly his
favourite of all problems.

Conjecture 3. Let A be a set of natural numbers such that
∑

n∈A n−1 = ∞.
Then A contains arithmetic progressions of arbitrary length.

This conjecture, if true, would imply that the primes contained arbitrarily long
arithmetic progressions, and the proof would use very little about the distribution
of primes – Chebyshev’s theorem would suffice. However, Szemerédi’s proof used
van der Waerden’s theorem, so, although it was a major breakthrough, it did not
after all provide improved bounds, and indeed Conjecture 3 is still wide open, even
for progressions of length three.
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A different sort of breakthrough was made by Furstenberg [Fu] in 1977, who
gave a second proof of Szemerédi’s theorem, which used ergodic theory (much
of which was new, fascinating and specially developed by Furstenberg for the
purpose). Furstenberg’s methods have since been extended, and there are now
several purely combinatorial results for which the only known proofs use ergodic
theory. Some of these will be discussed later in this paper. However, the ergodic
theory method as it stands does not give any estimates and so in particular gives
no information about Conjecture 3.

Let us now consider in more detail the best known bounds for this class of
problems. In order to state them, it will be necessary to remind the reader of
the Ackermann hierarchy of rapidly-growing functions, defined as follows. Let
A1(n) = 2 + n, A2(n) = 2n and A3(n) = 2n. In general one obtains Ak(n) by
starting with the number 2 and applying the function Ak−1 n− 1 times. In other
words, each function iterates the previous one. A concise definition is

A1(n) = 2 + n; Ak(1) = 2 (k > 1); Ak(n) = Ak−1(Ak(n− 1)) (n > 1).

Note in particular that A4(n) is given by a tower of twos of height n, while A5(n)
is given by a tower of twos of height A5(n− 1).

The Ackermann function itself is defined as A(n) ≡ An(n). Thus, it grows
faster than any individual function Ak. In fact, it is known to grow faster than any
primitive recursive function, which very roughly means any function that can be
defined starting with the successor function and using a finite sequence of single
inductive definitions (rather than the double induction we needed above). Nev-
ertheless, this function does from time to time appear naturally (for a very good
example see Ron Graham’s account in this volume of the work of Peter Shor) and
was the upper bound obtained by van der Waerden for the function M(k, 2), that
is, the smallest M such that every 2-colouring of {1, 2, . . . , M} yields a monochro-
matic arithmetic progression of length k. (One might reasonably suppose that
this was about the worst bound that could arise from any sensible proof of a nat-
ural combinatorial statement. If you believe this, then see [PH] or [GRS Section
6.3].) This remained the best known upper bound until 1987, by which time some
people had even been tempted to wonder whether there was a comparable lower
bound, although the best known lower bound was only exponential in k. Then
Shelah [Sh] found a primitive recursive upper bound for M(k, 2) of A5(k). To
everybody’s surprise, his argument was very natural, not especially difficult and
in much the same spirit as that of van der Waerden. This, needless to say, did not
stop it being highly ingenious.

Since Szemerédi used van der Waerden’s theorem in the middle of an inductive
step, one can guess that his argument, when combined with Shelah’s later bound,
gave an upper bound for N(k, δ) of the general form of A6(k) (for fixed δ), but
this has not been checked. Despite this bound being a huge improvement on the
Ackermann function, it still had the flavour of a bound that just happened to come
out of a not particularly quantitative argument. Moreover, to improve it, it was
clear that a substantially new proof would be necessary, one which avoided the use
of van der Waerden’s theorem. (Another important tool in Szemerédi’s proof, his
so-called uniformity lemma, also makes a big contribution. See [G1] for a proof
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that the function A4 can occur in nature.)
Fortunately, there was one result in the area which was undeniably quantita-

tive, a proof in 1953 by Roth [R1] that N(3, δ) is at most exp exp(C/δ) for some
absolute constant C. This result was proved using Fourier analysis, and the proof
will be sketched below. On the other hand, the argument did not seem to gener-
alize to progressions of length greater than three, for reasons which will also be
sketched below. Indeed, Szemerédi was able to make further progress only after he
had found a different proof for progressions of length three. Even so, the existence
of Roth’s proof suggested that Fourier analysis (or exponential sums – they are the
same in this context) ought to be used as the basis for any significant improvement
to the bounds in Szemerédi’s theorem. In this paper, we shall indicate how to use
it for progressions of length four. More details can be found in [G2]. (It should
be remarked that Roth [R2], using ideas of Szemerédi, found a proof in this case
which used exponential sums, but this proof was not purely analytic. In particular
it still required van der Waerden’s theorem.)

§2. Roth’s argument.

Let N be a prime (for convenience) and write ZN for Z/NZ, the integers mod
N . Let ω be the primitive N th root of unity exp(2πi/N). Given a function
f : ZN → C, one can define a discrete Fourier transform f̃ by the formula

f̃(r) =
∑

s∈ZN

f(s)ω−rs .

One then has the inversion formula

f(s) = N−1
∑

r∈ZN

f̃(r)ωrs ,

while Parseval’s identity takes the form
∑

r∈ZN

|f̃(r)|2 = N
∑

s∈ZN

|f(s)|2 .

Since the Fourier transform is in some sense measuring periodicity, it is not sur-
prising that it should be useful for problems to do with arithmetic progressions.
Roth’s argument starts with the observation (standard to analytic number theo-
rists) that it gives a neat way of counting arithmetic progressions of length three.
Consider three subsets A, B,C of ZN , and identify these sets with their character-
istic functions. Then the number of triples (x, y, z) such that x ∈ A, y ∈ B, z ∈ C
and x+z = 2y (this last condition states that (x, y, z) is an arithmetic progression
mod N) is

N−1
∑

r

∑
x,y,z

A(x)B(y)C(z)ω−r(x−2y+z) .

(Here, and from now on, all sums where the range is unspecified are over the whole
of ZN .) To see this, notice that

∑
r ω−r(x−2y+z) is zero when x− 2y + z 6= 0, and
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otherwise N , while A(x)B(y)C(z) is 1 if x ∈ A, y ∈ B and z ∈ C, and otherwise
zero.

Now ω−r(x−2y+z) = ω−rxω2ryω−rz, so the expression above is nothing other
than

N−1
∑

r

Ã(r)B̃(−2r)C̃(r) .

Notice that Ã(0) is just the cardinality of the set A, and similarly for B and C, so
we can split this up as

N−1|A||B||C|+
∑

r 6=0

Ã(r)B̃(−2r)C̃(r) . (∗)

If A, B and C have cardinalities αN , βN and γN respectively, then the first
term equals αβγN2. Notice that this is exactly the number of triples one would
expect to have satisfying the conditions above if the sets A, B and C had been
chosen randomly with their given cardinalities, since there are N2 triples (x, y, z)
in arithmetic progression mod N , and the probability that an individual one lies
in A×B ×C is αβγ. Of course, in general A, B and C are not chosen randomly,
and A × B × C may well contain no arithmetic progression mod N , but this can
happen only if the first term is cancelled out by the second, and this can happen
only if some of the non-zero Fourier coefficients of A, B and C are large.

One applies this argument as follows. Let A ⊂ {0, 1, 2, . . . , N − 1} be a set of
cardinality αN containing no arithmetic progression of length three. Let B and C
both equal {x ∈ A : N/3 < x < 2N/3}. Now regard A, B and C as subsets of ZN

in the obvious way. Notice that if (x, y, z) ∈ A×B×C and x+z = 2y mod N , then
either x = y = z or (x, y, z) corresponds to an arithmetic progression in the original
set A when it was not regarded as a subset of ZN . As explained in the previous
paragraph, the fact that A × B × C contains no arithmetic progressions mod N
(apart from the degenerate ones of the form (x, x, x), but there are too few of these
to be significant) implies that A, B and C have large non-zero Fourier coefficients.
More precisely, it is not hard to deduce from (∗) that if B = C has cardinality at
least αN/4, then there must exist a non-zero r such that |Ã(r)| ≥ α2N/20. (If
|B| < αN/4, then A is not uniformly distributed inside ZN , and a similar but
stronger conclusion is true.)

A good way to view the argument so far is to regard the size of the largest non-
zero Fourier coefficient of A as a measure of non-randomness. Then what we have
shown (or rather sketched) is that either A is random, in which case it contains
plenty of arithmetic progressions of length three, just as one would expect, or it
is non-random, in which case it has a non-zero Fourier coefficient which is large,
where “large” means exceeding γN for some constant γ > 0 that depends only on
the density α of the set A.

We must now deal with the second case, so suppose that r 6= 0 and |Ã(r)| ≥
γN . Let m be a sufficiently large integer (depending on α only) and define, for
1 ≤ j ≤ m, the set Pj to be {s ∈ ZN : (j − 1)N/m ≤ rs < jN/m}. The sets Pj

have been chosen so that the function s 7→ ω−rs is roughly constant on each Pj .
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Let sj be an arbitrary element of Pj . Then

Ã(r) =
∑

s

A(s)ω−rs =
m∑

j=1

∑

s∈Pj

A(s)ω−rs

is well approximated by

m∑

j=1

∑

s∈Pj

A(s)ω−rsj =
m∑

j=1

|A ∩ Pj |ω−rsj .

Since the numbers ω−rsj are evenly spread around the unit circle, this sum cannot
be large unless the sets |A ∩ Pj | have widely differing sizes, and because we know
that

∑m
j=1 |A ∩ Pj | = αN , this implies that there exists j such that |A ∩ Pj | ≥

(α + γ′)|Pj |, where γ′ again depends on α only.
Now Pj is nothing other than an arithmetic progression mod N with common

difference r−1. If the argument above is done carefully, then the size of Pj can be
made proportional to N (with a constant depending on α only) and |A ∩ Pj | ≥
(α + cα2)|Pj |, where c is an absolute constant. The final ingredient is a simple
and standard argument, based on Dirichlet’s pigeonhole principle, which shows
that the set Pj can be partitioned into r sets, with r proportional to

√
N , which

are not only arithmetic progressions mod N but are still arithmetic progressions
when regarded as subsets of {0, 1, . . . , N − 1}. Then, by an averaging argument,
we can find one of these, Q say, such that |A ∩Q| ≥ (α + cα2)|Q| and Q has size
proportional to

√
N .

The proof is now over, because we have managed to find a subprogression
of {0, 1, . . . , N − 1} inside which the density of the set A has gone up from α to
α(1 + cα). We can then repeat the argument. A small calculation shows that
we cannot repeat it more than C/α times, where C is another absolute constant,
and another small calculation gives the bound N(3, δ) ≤ exp exp(C/δ), the double
exponential coming from the fact that at each iteration we are taking the square
root of N .

§3. Progressions of length four.

One could summarize Roth’s proof as follows. If a set A ⊂ ZN (or more accurately
its characteristic function) has no large non-trivial Fourier coefficients, then it
behaves randomly in a useful sense. In particular, it contains roughly the right
number of arithmetic progressions of length three. On the other hand, if it has a
large non-trivial Fourier coefficient, then it is not uniformly distributed inside mod-
N arithmetic progressions of size proportional to N . It follows by a pigeonhole
argument that there is a genuine arithmetic progression P of size proportional to√

N such that the density of A∩P inside P is significantly larger than the density
of A inside ZN . This allows us to iterate.

It is now natural to wonder whether the “random behaviour” of the set A
implies anything about the number of arithmetic progressions it contains of length
four. However, it turns out that merely having small Fourier coefficients is not
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enough. An example to illustrate this is the set A = {x ∈ ZN : −N/1000 < x2 <
N/1000} (where, for the purposes of the inequality, x2 stands for the representative
of x2 that lies between −N/2 and N/2). It can be shown, using estimates due to
Weyl [We] for exponential sums involving quadratic functions, that all the non-
zero Fourier coefficients of this set are very small. We now give a very rough
argument (which can easily be made rigorous) to show that A contains more mod-
N arithmetic progressions of length four than one would expect. (If A has size
αN and is chosen randomly, then one expects about α4N2 quadruples of the form
(a, a+d, a+2d, a+3d) to belong to A4.) Suppose we know that a−d, a and a+d
all belong to A. Then (a − d)2, a2 and (a + d)2 are all “small” mod N . Taking
differences, this implies that 2ad− d2 and 2ad + d2 are both small, which implies
that 4ad and 2d2 are both small. But then (a + 2d)2 = a2 + 4ad + 2.2d2 must be
small. In other words, once we have an arithmetic progression of length three in A
(and of these we have about the expected number) there is a greater chance than
there should be that the next term in the progression also belongs to A. Therefore
A contains more progressions of length four than it should.

With a bit more effort, one can use similar ideas to construct a set A with
small Fourier coefficients and fewer arithmetic progressions of length four than a
random set of the same cardinality. This seems to indicate that, beautiful as Roth’s
argument is, there is a fundamental limitation to Fourier methods which stops it
generalizing. On the other hand, it is difficult to find examples to illustrate this
that are fundamentally different from the set A above. That is, they all seem to
involve quadratic polynomials and work for basically the same reason. It turns out
that this is necessary, and can be proved to be necessary using Fourier methods.
We now give a very brief outline of the argument.

The first step is to define a stronger notion of randomness, which we call
quadratic uniformity. Let us define a set A to be δ-uniform if |Ã(r)| ≤ δN for
every non-zero r. Write A + k for {x ∈ ZN : x − k ∈ A}. Define A to be δ-
quadratically uniform if A ∩ (A + k) is δ-uniform for all but at most δN values of
k. In loose terms, A is quadratically uniform if there are almost no translates of
A (meaning sets of the form A + k) for which the intersection A ∩ (A + k) has a
non-trivial large Fourier coefficient.

It can be shown that if A has size αN and is δ-quadratically uniform for
sufficiently small δ (depending on α only) then A contains approximately the
correct number of arithmetic progressions of length four, and in particular at
least one such progression. (The proof is similar to the weak mixing case in
Furstenberg’s argument. I am grateful to Gil Kalai for pointing this out to me.) We
therefore have an appropriate generalization of the first step of Roth’s argument,
and in fact it can be generalized further, without much difficulty, to deal with
arithmetic progressions of arbitrary length.

However, it is not at all obvious what to do if A is not quadratically uniform.
From the definition we can say that there is a set B ⊂ ZN of size at least δN and a
function φ : B → ZN never taking the value zero such that

∣∣A∩ (A+k)∼(φ(k))
∣∣ ≥

δN for every k ∈ B, but this fact on its own does not seem particularly helpful. In
order to get any further, it is useful to examine the set A = {x ∈ ZN : −N/1000 <
x2 < N/1000} mentioned earlier. This is an example of a set which is uniform but
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not quadratically uniform. A number x belongs to A∩ (A+k) only if both x2 and
(x− k)2 are small, which implies that 2kx− k2 is small. It follows (from an easy
calculation) that A ∩ (A + k)∼(2k) is large. Thus, the quadratic nature of the set
A leads to linear behaviour of the function φ.

This suggests that perhaps φ cannot be an entirely arbitrary function, and
the suggestion is correct. The rest of our proof consists in showing first that
φ must always have a certain weakish linearity property, and then (reversing the
implication from quadratic to linear above) that the linearity of φ implies some sort
of quadratic bias to the set A. Finally, this quadratic bias implies (using Weyl’s
estimates for exponential sums mentioned earlier) the existence of an arithmetic
progression P of size N c such that |A ∩ P | ≥ (α + γ)|P | (where c and γ depend
on α only).

The most interesting of the steps is finding the linearity of the function φ,
which is itself done in two stages. The first is a somewhat algebraic argument which
shows that, for a constant γ depending on α only, B4 contains γN3 quadruples
(a, b, c, d) such that a + b = c + d and φ(a) + φ(b) = φ(c) + φ(d). Let us call such
a quadruple φ-additive. Notice that there are only N3 quadruples (a, b, c, d) ∈ Z4

N

such that a+ b = c+d, so this is potentially a strong restriction on the function φ,
and seems to put pressure on φ to be linear, or at least to be linear when restricted
to some large subset of B.

After a little thought, however, one realizes that there are definitely non-linear
examples of functions φ for which there are many φ-additive quadruples. A typical
one is the following. Let m be an integer much larger than 1 and much smaller
than N and let B = ZN . Given 0 ≤ x < N , write it as qm + r with 0 ≤ r < m,
and define φ(x) to be r. It can be checked easily that there are many φ-additive
quadruples, and also that there is no large subset of ZN on which φ is linear.

On the other hand, if one thinks of the numbers 1 and m as being something
like a basis of ZN , then φ is something like a linear function defined on a two-
dimensional set. It turns out, and this is of enormous importance for the proof,
that this sort of quasi-linear behaviour is typical. That is, if there are many φ-
additive quadruples, then there must be a large subset B′ of B such that the
restriction of φ to B′ resembles a linear function defined on a space of not too high
a dimension. The proof of this fact is not at all easy, because it relies on a deep
theorem of Freiman [F1,2] which we now describe, and in particular a recent proof
of Freiman’s theorem due to Ruzsa [Ru].

Let X be a subset of Z of size n. The sumset of X, written X + X, is simply
{x + y : x, y ∈ X}. Suppose that we know that the sumset of X has cardinality
at most Cn (where we think of n as large and C as fixed). What does this tell us
about the set X? This question is not unlike the question we have just asked about
φ, and one can make similar remarks. The most obvious example of a set X with
small sumset is an arithmetic progression. The next most obvious is a large subset
of an arithmetic progression. However, these do not exhaust all possibilities. For
example, if X = {a1r1 + a2r2 : 0 ≤ ai < si} then it is an easy exercise to show
that |X + X| < 4|X|. Such a set is called, for obvious reasons, a two-dimensional
arithmetic progression, and it is not hard to guess the definition of a d-dimensional
arithmetic progression for arbitrary d. It is another (similar) easy exercise to show
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that a large subset of a low-dimensional arithmetic progression will have a small
sumset. Remarkably, the converse is also true, and this is Freiman’s theorem.

Theorem 4. Let X be a subset of Z such that |X + X| ≤ C|X|. Then X is a
subset of a d-dimensional arithmetic progression of size at most D|X|, where d
and D depend on C only.

To relate Freiman’s theorem to our problem, we consider the graph of the function
φ, which we shall call Γ. This is a subset of Z2

N of size at most N which contains at
least γN3 quadruples (x, y, z, w) such that x+y = z +w. A theorem of Balog and
Szemerédi [BS] now tells us that Γ contains a subset X of size at least ηN such
that |X+X| ≤ C|X|, with η and C constants that depend on γ (and hence α) only.
It is an easy exercise to formulate an appropriate version of Freiman’s theorem for
subsets of Z2 (as we may regard X) and prove that it is equivalent to Freiman’s
theorem in Z. Applying such a version of Freiman’s theorem to X, we find that X
is a subset of a d-dimensional arithmetic progression P of size at most D|X|. An
easy averaging argument shows that P must contain a one-dimensional arithmetic
progression Q of size proportional to N1/d such that |X ∩Q| ≥ D−1|Q|. Now X is
the graph of the restriction of φ to some subset B′ of B, and Q is the restriction
of a linear function ψ to an arithmetic progression R ⊂ Z (of size proportional to
N1/d). The estimate for |X ∩ Q| tells us that φ(x) = ψ(x) for at least D−1|R|
values of x ∈ R. We have shown that φ has at least some linear behaviour, and it
turns out to be enough.

We shall now be even more brief. (The reader wishing for more details of the
proof should consult [G2].) The linear behaviour of φ implies the existence of an
arithmetic progression S of size proportional to N1/d and a quadratic function q
such that, writing f(s) for A(s)− α, we have the inequality

∑

s∈S

f(s) +
∣∣∣
∑

s∈S

f(s)ωq(s)
∣∣∣ ≥ ζ|S|

with ζ depending on α only. It can be shown, using Weyl’s estimates again, that
S can be partitioned into arithmetic progressions T1, . . . , Tm with m ≤ N1−ε such
that the restriction of ωq(s) to any Tj is approximately constant. (For Roth’s
theorem we needed the corresponding result for linear functions, which is much
easier.) When this is done, we have that

∣∣∣
∑

s∈S

f(s)ωq(s)
∣∣∣ ≤

m∑

j=1

∣∣∣
∑

s∈Tj

f(s)ωq(s)
∣∣∣ ≈

m∑

j=1

∣∣∣
∑

s∈Tj

f(s)
∣∣∣ .

An averaging argument then yields some j such that |Tj | ≥ N ε and
∑

s∈Tj
f(s) ≥

ζ ′|Tj |. The second condition is equivalent to the statement that |A ∩ Tj | ≥ (α +
ζ ′)|Tj |. Finally, we can iterate, just as in the proof of Roth’s theorem.

A small modification of the above argument (which uses Ruzsa’s proof of
Freiman’s theorem rather than quoting the theorem directly) leads to an upper
bound of exp exp(δ−C) for N(4, δ). Equivalently, if A ⊂ {1, 2, . . . , N} has cardi-
nality at least N(log log N)−c, then it must contain an arithmetic progression of
length four. Here, C and c are absolute constants. Let us state this result formally.
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Theorem 5. Let δ > 0 and let N be a natural number greater than or equal
to exp exp(δ−C), where C is an absolute constant. Then every subset of the set
{1, 2, . . . , N} of size at least δN contains an arithmetic progression of length four.

Corollary 6. Let r and N be natural numbers such that N ≥ exp exp(rC), where
C is an absolute constant. Then, however the set {1, 2, . . . , N} is coloured with r
colours, there is a monochromatic arithmetic progression of length four.

In terms of our previous notation, Corollary 6 states that M(4, r) ≤ exp exp(rC).
The bound given by Shelah’s argument is more like A4(A4(r)), or in other words
a tower of twos of height a tower of twos of height r. The previous best known
bound for Theorem 5 was even larger, since the full strength of van der Waerden’s
theorem was used by Szemerédi even in this special case [Sz1]. So, as we remarked
earlier, the bound was probably something like A6(δ−1).

§4. Further results and questions.

The first question to deal with is whether the above argument generalizes to pro-
gressions of arbitrary length. The answer is that most of it does with no difficulty
at all. However, one part involves significant extra difficulty. Let us define a set
A to be δ-cubically uniform if the intersection

A ∩ (A + k) ∩ (A + l) ∩ (A + k + l)

is δ-uniform for all but at most δN2 pairs (k, l). Then if A is not δ-cubically
uniform, one obtains a set B ⊂ Z2

N of cardinality at least δN2 and a function
φ : B → ZN , such that, for every (k, l) ∈ B, the Fourier coefficient of the above
intersection at φ(k, l) has size at least (k, l). The arguments for progressions of
length four tell us a great deal about the behaviour of φ in each variable separately,
but to prove results for longer progressions one must relate these restrictions in
order to show that φ has some sort of bilinear property, and this is not easy to do.
At the time of writing, I have a long preprint which deals with the general case
and which is still being checked thoroughly. If it stands up to scrutiny, it will give
an upper bound for N(k, δ) of exp exp

(
δ− exp exp(k+10)

)
.

This estimate is still far from best possible. In fact, for fixed k, the best
known lower bound for N(k, δ) is exp

(
c(log(1/δ))2

)
[Be]. (This bound may seem

unimpressive, but it demonstrates the interesting fact that randomly chosen sets
are not the worst, and thereby partly explains the difficulty of Szemerédi’s the-
orem.) The main obstacle to further progress on bounds is that progressions of
length three are not fully understood. There is now a development of Roth’s
argument due to Heath-Brown [H-B] and Szemerédi [Sz3], which gives an upper
bound for N(3, δ) of exp(δ−C), but this still greatly exceeds the lower bound just
mentioned. In particular, the value of C that comes from the argument exceeds
1, which means that it does not prove the first non-trivial case of Conjecture 3.
Finding the correct asymptotic behaviour of N(3, δ) is a fascinating problem, not
just for its own sake, but because any methods used to solve it are almost certain
to have important further applications.

As mentioned in the introduction, several generalizations of Szemerédi’s theo-
rem have been proved using ergodic theory and do not (yet) have any other proofs.
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Thus, the question of obtaining any bounds for them, not just reasonable ones,
is open. We mention three such results. The first is the density version, due to
Furstenberg, of a theorem of Gallai.

Theorem 7. Let X ⊂ Zd and let δ > 0. If N is sufficiently large then every set
A ⊂ {1, 2, . . . , N}d of size at least δNd has a subset homothetic to X.

It seems likely that our methods can be used to give a quantitative version of
Theorem 7, but so far this has not been done.

The next result is the density version of the Hales-Jewett theorem, which itself
is one of the central results of Ramsey theory. To state it, we need a small amount
of notation. Let Q(k,N) be the N -dimensional grid {1, 2, . . . , k}N . (One can think
of elements of Q(k, N) as words of length N in the alphabet {1, 2, . . . , k}.) Given
x = (x1, . . . , xN ) ∈ Q(k, N), r ∈ {1, 2, . . . , k} and a set W ⊂ {1, 2, . . . , N}, define
x⊕ rW to be the sequence obtained from x by replacing xj by r whenever j ∈ W
and otherwise leaving it unchanged. A Hales-Jewett line in Q(k, N) is a set of the
form {x ⊕ rW : 1 ≤ r ≤ k}. The density version of the Hales-Jewett theorem,
proved by Furstenberg and Katznelson [FK], is the following result. (The original
theorem of Hales and Jewett [HJ] is of course the colouring version.)

Theorem 8. Let δ > 0 and k ∈ N. If N is sufficiently large, then every set
A ⊂ Q(k, N) of cardinality at least δkN contains a Hales-Jewett line.

One can easily deduce Szemerédi’s theorem by projecting Q(k, N) to Z in a sensible
way. Even the case k = 3 of the Furstenberg-Katznelson theorem is very hard and
was open for a long time. In fact, unlike with Szemerédi’s theorem, the case k = 2
is not quite obvious either, but it follows easily from a lemma of Sperner [Sp].

Because of the difficulty of the case k = 3, there seems to be no immedi-
ate prospect of a quantitative version of Theorem 8. If one could somehow find a
reasonably simple analytic argument when k = 3, then our methods might conceiv-
ably suggest a way of extending this to the general case. I would guess, however,
that the problem will remain open for a long time.

Finally, we mention a beautiful generalization of Szemerédi’s theorem due to
Bergelson and Leibman [BL], which solved a problem that had attracted a great
deal of interest for several years.

Theorem 9. Let δ > 0 and let p1, . . . , pk be polynomials with integer coefficients
such that pi(0) = 0 for every i. If N is sufficiently large, then for every set
A ⊂ {1, 2, . . . , N} of size at least δN there exist integers a and d (with d 6= 0) such
that a + pi(d) ∈ A for every i.

Interestingly, the main obstacle for Bergelson and Leibman was obtaining a proof
of the colouring version of Theorem 6. They could then use Furstenberg’s methods
to deduce the density version. Their proof of the colouring version also used ergodic
theory, but it can be done purely combinatorially (see [M] or [W]).

The most elementary case of Theorem 9 that does not follow from Szemerédi’s
theorem is when k = 2, p1(x) = 0 and p2(x) = x2. Then the result states
that A contains a pair of the form (a, a + d2). This result was first proved by
Furstenberg [Fu] and Sárközy [S]. Sárközy’s argument used exponential sums and
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gave a sensible bound, which has subsequently been improved by Pintz, Steiger
and Szemerédi [PSS] so that it is now known that a density of C(log N)−c(N)

will suffice, where c(N) = log log log log N/12. (It is still not known whether
one can get away with a density of N−ε for some ε > 0.) It is quite possible,
therefore, that some sort of mixture of our methods and other existing methods
would give a quantitative version of Theorem 9. This would undoubtedly be a
difficult project to carry out, not least because the methods to be mixed are all
individually complicated. However, I expect it will be done by somebody in the
next ten or fifteen years, if not sooner.

Let me close by saying that in this paper I have concentrated on my recent
work because most of the rest is described in the proceedings of the 1994 Congress
[G3], and also by Bollobás in this volume.
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630 Curtis T. McMullen

Editor's Remark:

Due to a failure of the printing device, Figure 1 in the article of Curtis T. McMullen
on page 841 of Volume II of these Proceedings is slightly scrambled. We therefore
reproduce it here in correct form:

Figure 1. Dynamical systems with deep points: a totally degenerate Kleinian group,
the Feigenbaum polynomial, a critical circle map and the golden mean Siegel disk.
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Rigidity and Inflexibility in Conformal Dynamics

Curtis T. McMullen1

1 Introduction

This paper presents a connection between the rigidity of hyperbolic 3-manifolds
and universal scaling phenomena in dynamics.

We begin by stating an inflexibility theorem for 3-manifolds of infinite volume,
generalizing Mostow rigidity (§2). We then connect this inflexibility to dynamics
and discuss:

• The geometrization of 3-manifolds which fiber over the circle (§2);

• The renormalization of unimodal maps f : [0, 1] → [0, 1] (§4),

• Real-analytic circle homeomorphisms with critical points (§5), and

• The self-similarity of Siegel disks (§6).

Chaotic sets for these four examples are shown in Figure 1. The snowflake
in the first frame is the limit set Λ of a Kleinian group Γ acting on the Riemann
sphere S2

∞ = ∂H3. Its center c is a deep point of Λ, meaning the limit set is very
dense at microscopic scales near c. Because of the inflexibility and combinatorial
periodicity of M = H3/Γ, the limit set is also self-similar at c with a universal
scaling factor.

The remaining three frames show deep points of the (filled) Julia set for other
conformal dynamical systems: the Feigenbaum polynomial, a critical circle map
and the golden ratio Siegel disk. Our goal is to explain an inflexibility theory that
leads to universal scaling factors and convergence of renormalization for these
examples as well.

The qualitative theory of dynamical systems, initiated by Poincaré in his
study of celestial mechanics, seeks to model and classify stable regimes, where the
topological form of the dynamics is locally constant. In the late 1970s physicists
discovered a rich, universal structure in the onset of instability. One-dimensional
dynamical systems emerged as elementary models for critical phenomena, phase
transitions and renormalization.

In pure mathematics, Mostow and others have developed a rigidity theory for
compact manifolds Mn of constant negative curvature, n ≥ 3, and other quotients
of symmetric spaces. This theory shows M is determined up to isometry by π1(M)

1Research supported in part by the NSF.
1991 Mathematics Subject Classification: 30D05, 30F40, 58F11, 58F23
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842 C. McMullen

Figure 1. Dynamical systems with deep points: a totally degenerate Kleinian group,
the Feigenbaum polynomial, a critical circle map and the golden mean Siegel disk.

as an abstract, finitely-presented group. Remarkably, rigidity of M is established
via the ergodic theory of π1(M) acting on the boundary of the universal cover of
M .

In our case, M = H3/Γ is a hyperbolic 3-manifold, the boundary of its uni-
versal cover H3 is isomorphic to S2, and the action of π1(M) ⊂ Isom+(H3) =
PSL2(C) on S2 is conformal. Similarly, upon complexification, 1-dimensional dy-
namical systems give rise to holomorphic maps on the Riemann sphere Ĉ ∼= S2.
Hyperbolic space H3 enters the dynamical picture as a means to organize geomet-
ric limits under rescaling (§3). The universality observed by physicists can then
be understood, as in the case of 3-manifolds, in terms of rigidity of these geometric
limits.

We conclude with progress towards the classification of hyperbolic manifolds
(§7), where geometric limits also play a central role.

2 Hyperbolic 3-manifolds and fibrations

A hyperbolic manifold is a complete Riemannian manifold with a metric of constant
curvature −1. Mostow rigidity states that any two closed, homotopy equivalent
hyperbolic 3-manifolds are actually isometric.

In this section we discuss a remnant of rigidity for open manifolds. Let
core(M) ⊂ M denote the convex core of M , defined as the closure of the set
of geodesic loops in M . The manifold M satisfies [r,R]-injectivity bounds, r > 0, if
for any p ∈ core(M), the largest embedded ball B(p, s) ⊂ M has radius s ∈ [r,R].
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Let f : M → N be a homotopy equivalence between a pair of hyperbolic
3-manifolds. Then f is a K-quasi-isometry if, when lifted to the universal covers,

diam(f̃(B)) ≤ K(diamB + 1) ∀B ⊂ M̃, and

diam(f̃−1(B)) ≤ K(diamB + 1) ∀B ⊂ Ñ .

A diffeomorphism f : M → N is an asymptotic isometry if f is exponentially close
to an isometry deep in the convex core. That is, there is an A > 1 such that for
any nonzero vector v ∈ TpM , p ∈ core(M), we have

∣∣∣∣log
|Df(v)|
|v|

∣∣∣∣ ≤ CA−d(p,∂ core(M)).

In [Mc2] we show:

Theorem 2.1 (Geometric Inflexibility) Let M and N be quasi-isometric
hyperbolic 3-manifolds with injectivity bounds. Then M and N are asymptotically
isometric.

Mostow rigidity is a special case: if M and N are closed, then any homotopy
equivalence M ∼ N is a quasi-isometry, injectivity bounds are automatic, and
∂ core(M) = ∅, so an asymptotic isometry is an isometry.

To sketch the proof of Theorem 2.1, recall any hyperbolic 3-manifold M deter-
mines a conformal dynamical system, namely the action of its fundamental group
π1(M) on the sphere at infinity S2

∞ = ∂H3 for the universal cover M̃ ∼= H3. The
limit set Λ ⊂ S2

∞ is the chaotic locus for this action; its convex hull covers the
core of M . The action is properly discontinuously on the rest of the sphere, and
the quotient ∂M = (S2

∞ − Λ)/π1(M) gives a natural Riemann surface at infinity
for M .

p
γ

∂M
∂KK = core(M)

Figure 2. An observer deep in the convex core sees a kaleidoscopic view of ∂M .

A quasi-isometric deformation of M determines a quasiconformal deformation
v of ∂M , which in turn admits a (harmonic) visual extension V to an equivalent
deformation of M . The strain SV (p) is the average of the ellipse field Sv = ∂v
over all visual rays γ from p to ∂M . By our injectivity bounds, γ corkscrews
chaotically before exiting the convex core. Thus the ellipses of Sv on ∂M appear
in random orientations as seen from p (Figure 2). This randomness provides
abundant cancellation in the visual average, and we find the metric distortion
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844 C. McMullen

‖SV (p)‖ is exponentially small compared to ‖Sv‖∞. Thus V is an infinitesimal
asymptotic isometry.

In dimension 3, any two quasi-isometric hyperbolic manifolds are connected
by a smooth path in the deformation space, so the global theorem follows from
the infinitesimal version.

Inflexibility is also manifest on the sphere at infinity. Let us say a local
homeomorphism φ on S2

∞ ∼= Ĉ is C1+α-conformal at z if the complex derivative
φ′(z) exists and

φ(z + t) = φ(z) + φ′(z) · t + O(|t|1+α).

We say x ∈ Λ ⊂ S2
∞ is a deep point if Λ is so dense at x that for some β > 0,

B(y, s) ⊂ B(x, r)− Λ =⇒ s = O(r1+β).

It is easy to see that a geodesic ray γ ⊂ H3 terminating at a deep point in the
limit set penetrates the convex hull of Λ at a linear rate. ¿From the inflexibility
theorem we find:

Corollary 2.2 Let M and N satisfy injectivity bounds, and let φ : S2
∞ → S2

∞ be
a quasiconformal conjugacy between π1(M) and π1(N). Then φ is C1+α-conformal
at every deep point of the limit set of π1(M).

The inflexibility theorem is motivated by the following application to 3-
manifolds that fiber over the circle. Let S be a closed surface of genus g ≥ 2
and let ψ ∈ Mod(S) be a pseudo-Anosov mapping class. Let

Tψ = S × [0, 1]/{(x, 0) ∼ (ψ(x), 1)}

be the 3-manifold fibering over the circle with fiber S and monodromy ψ. By a
deep theorem of Thurston, Tψ is hyperbolic. To find its hyperbolic structure, let
V (S) denote the variety of representations ρ : π1(S) → Isom(H3), and define

R : V (S) → V (S)

by R(ρ) = ρ ◦ ψ−1
∗ . We refer to R as a renormalization operator, because it does

not change the group action on H3, only its marking by π1(S).

Let QF (S)
Q∼= Teich(S)× Teich(S) ⊂ V (S) denote the space of quasifuchsian

groups, and define

M(X, ψ) = lim
n→∞

Q(X, ψ−nY ), for any (X, Y ) ∈ Teich(S)× Teich(S).

Then M = M(X,ψ) has injectivity bounds, its convex core is homeomorphic
to S× [0,∞), and the manifolds M and R(M) are quasi-isometric. By the inflexi-
bility theorem there is an asymptotic isometry Ψ : M → M in the homotopy class
of ψ, so the convex core of M is asymptotically periodic. As n tends to ∞, the
marking of Rn(M) moves into the convex core at a linear rate, and we find:
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Theorem 2.3 The renormalizations Rn(M(X, ψ)) converge exponentially fast to
a fixed-point Mψ of R.

Since R(Mψ) = Mψ, the map ψ is realized by an isometry α on Mψ, and the
quotient Tψ = Mψ/〈α〉 gives the desired hyperbolic structure on the mapping
cylinder of ψ.

This iterative construction of Tψ hints at a dynamical theory of the action of
Mod(S) on the variety V (S), as does the following result [Kap]:

Theorem 2.4 (Kapovich) The derivative DRψ is hyperbolic on the tangent
space to V (S) at Mψ for all pseudo-Anosov mapping classes on closed surfaces.

The snowflake in the first frame of Figure 1 is a concrete example of the limit
set Λ for a Kleinian group Γ = π1(M(X, ψ)) as above. In this example S is a
torus, made hyperbolic by introducing a single orbifold point p ∈ S of order 3;
and ψ = ( 1 1

1 2 ) ∈ SL2(Z) ∼= Mod(S) is the simplest pseudo-Anosov map. The
suspension of p ∈ S gives a singular geodesic γ ⊂ Tψ forming the orbifold locus of
the mapping torus of ψ.

The picture is centered at a deep point c ∈ Λ fixed by an elliptic element
of order 3 in Γ. The limit set Λ is a nowhere dense but very furry tree, with
six limbs meeting at c. By general results, Λ is a locally connected dendrite,
with Hausdorff dimension two but measure zero [CaTh], [Th1, Ch. 8], [Sul1],
[BJ1]; in fact by [BJ2] we have 0 < µh(Λ) < ∞ for the gauge function h(r) =
r2| log r log log log r|1/2.

One can easily construct a quasiconformal automorphism φ of Γ, with φ(c) = c
and φ ◦ γ = ψ∗(γ) ◦ φ for all γ ∈ Γ. By Corollary 2.2, φ is C1+α-conformal at c,
and we find:

Theorem 2.5 The limit set Λ is self-similar at each elliptic fixed-point in Λ, with
scaling factor φ′(c) = eL. Here L is the complex length of the singular geodesic γ
on Tψ.

In particular the self-similarity factor eL is inherited from the geometry of
the rigid manifold Tψ, and it is universal across all manifolds M(X,ψ) attracted
to Mψ under renormalization.

3 Geometric limits in dynamics

In this section we extend the inflexibility of Kleinian groups and their limit sets
to certain other conformal dynamical systems F and their Julia sets J , where we
will find:

The conformal structure at the deep points of J is determined by the
topological dynamics of F .

Consider the space H of all holomorphic maps f : U(f) → V (f) between
domains in Ĉ. Introduce a (non-Hausdorff) topology on H such that fn → f if
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for any compact K ⊂ U(f), we have K ⊂ U(fn) for all n À 0 and fn|K → f |K
uniformly.

A holomorphic dynamical system is a subset F ⊂ H. Given a sequence of
dynamical systems Fn ⊂ H, the geometric limit F = lim supFn consists of all
maps f = lim fni obtained as limits of subsequences fni ∈ Fni .

To bring hyperbolic space into the picture, identify Ĉ with the boundary of
the Poincaré ball model for H3, let FH3 be its frame bundle, and let ω0 ∈ FH3 be
a standard frame at the center of the ball. Given any other ω ∈ FH3, there is a
unique Möbius transformation g sending ω0 to ω, and we define

(F , ω) = g∗(F) = {g−1 ◦ f ◦ g : f ∈ F}.
In other words, (F , ω) is F as ‘seen from’ ω.

We say F is twisting if it is essentially nonlinear — for example, if there
exists an f ∈ F with a critical point, or if F contains a free group of Möbius
transformations.

Given a closed set J ⊂ Ĉ, we say (F , J) is uniformly twisting if lim sup(F , ωn)
is twisting for any sequence ωn ∈ F(hull(J)), the frame bundle over the convex
hull of J in H3. Informally, uniform twisting means F is quite nonlinear at every
scale around every point of J .

For a Kleinian group, the pair (Γ,Λ(Γ)) is uniformly twisting iff M = H3/Γ
has injectivity bounds. Thus geometric inflexibility, Corollary 2.2, is a special case
of [Mc2]:

Theorem 3.1 (Dynamic Inflexibility) Let (F , J) be uniformly twisting, and
let φ be a quasiconformal conjugacy from F to another holomorphic dynamical
system F ′. Then φ is C1+α-conformal at all deep points of J .

The next three sections illustrate how such inflexibility helps explain universal
scaling in dynamics.

4 Renormalization of interval maps

Let f : I → I be a real-analytic map on an interval. The map f is quadratic-like
if f(∂I) ⊂ ∂I and f has a single quadratic critical point c0(f) ∈ int(I). The basic
example is f(x) = x2 + c on [−a, a] with f(a) = a. We implicitly identify maps
that are linearly conjugate.

If an iterate fp|L is also quadratic-like for some interval L, with c0(f) ∈ L ⊂ I,
then we can take the least such p > 1 and define the renormalization of f by

R(f) = fp|L.

The order of the intervals L, f(L), . . . , fp(L) = L ⊂ I determines a permutation
σ(f) on p symbols.

The map f is infinitely renormalizable if the sequence Rn(f) is defined for all
n > 0. The combinatorics of f is then recorded by the sequence of permutations
τ(f) = 〈σ(Rn(f))〉. We say f has bounded combinatorics if only finitely many
permutations occur, and periodic combinatorics if τ(Rqf) = τ(f) for some q ≥ 1.
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Theorem 4.1 Let f : I → I be infinitely renormalizable, with combinatorics of
period q. Then Rqn(f) → F exponentially fast as n →∞, where F is the unique
fixed-point of the renormalization operator Rq with the same combinatorics as f .

For example, the Feigenbaum polynomial f(x) = x2 − 1.4101155 · · · , arising
at the end of the cascade of period doublings in the quadratic family, has τ(f) =
〈(12), (12), (12), . . .〉. Under renormalization, Rn(f) converges exponentially fast
to a solution of the functional equation

F ◦ F (x) = α−1F (αx).

To formulate the speed of convergence more completely, extend f : I → I to
a complex analytic map on a neighborhood of I ⊂ C, and let F : W → C denote
the maximal analytic continuation of the renormalization fixed-point. Then we
find there is an A > 1 such that for any compact K ⊂ W , we have

sup
z∈K

|Rn(f)(z)− F (z)| = O(A−n),

where Rn(f) is suitably rescaled.
Now suppose only that f has bounded combinatorics. Under iteration of f ,

all but countably many points in I are attracted to the postcritical Cantor set

P (f) =
⋃
n>0

fn(c0(f)) ⊂ I.

Theorem 4.2 Let f and g be infinitely renormalizable maps with the same
bounded combinatorics. Then f |P (f) and g|P (g) are C1+α-conjugate.

Thus quantitative features of the attractor P (f) (such as its Hausdorff di-
mension) are determined by the combinatorics τ(f).

These universal properties of quadratic-like maps were observed experimen-
tally and linked to renormalization by Feigenbaum and Coullet-Tresser in the late
1970s. A program for applying complex quadratic-like maps to renormalization
was formulated by Douady and Hubbard in the early 1980s. Sullivan introduced
a wealth of new ideas and established the convergence Rnq(f) → F [Sul3], [Sul4].
The inflexibility theory gives a new proof yielding, in addition, exponential speed
of convergence and C1+α-smoothness of conjugacies.

Our approach to renormalization is via towers [Mc2]. For simplicity we
treat the case of the Feigenbaum polynomial f . By Sullivan’s a priori bounds,
the sequence of renormalizations 〈Rn(f)〉 is compact, and all limits are complex
quadratic-like maps with definite moduli. Passing to a subsequence we can arrange
that Rn+i(f) → fi and obtain a tower

T = 〈fi : i ∈ Z〉 such that fi+1 = fi ◦ fi ∀i.

The Julia set J(T ) =
⋃

J(fi) is dense in C, and we deduce that T is rigid
— it admits no quasiconformal deformations. Convergence of renormalization,
Rn(f) → F , then easily follows.
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The rapid speed of convergence of renormalization comes from inflexibility
of the one-sided tower T = 〈f, f2, f4, . . .〉. To establish this inflexibility, we first
show the full dynamical system F(f) = {f−i ◦ f j} contains copies of f2n

near
every z ∈ J(f) and at every scale. Thus (F(f), J(f)) is uniformly twisting. Next
we use expansion in the hyperbolic metric on C − P (f) to show c0(f) is a deep
point of J(f). Finally by Theorem 3.1, a quasiconformal conjugacy φ from f to
R(f) = f ◦ f is actually C1+α-conformal at the critical point. At small scales
φ provides a nearly linear conjugacy from Rn(f) to Rn+1(f), and exponential
convergence follows.

The second frame of Figure 1 depicts the Julia set of the infinitely renormal-
izable Feigenbaum polynomial f , centered at its critical point. The Julia set J(f)
is locally connected [JH], [LS]; it is still unknown if area(J(f)) = 0.

Milnor has observed that the Mandelbrot set M is quite dense at the Feigen-
baum point c = −1.4101155 . . . ∈ ∂M and at other fixed-points of tuning [Mil],
and it is reasonable to expect that c is a deep point of M . Lyubich has recently
given an elegant proof of the hyperbolicity of renormalization at its fixed-points,
including a new proof of exponential convergence of Rn(f) via the Banach space
Schwarz lemma, and a proof of Milnor’s conjecture that blowups of M around the
Feigenbaum point converge to the whole plane in the Hausdorff topology [Lyu].

5 Critical circle maps

A critical circle map f : S1 → S1 is a real-analytic homeomorphism with a single
cubic critical point c0(f) ∈ S1. A typical example is the standard map

f(x) = x + Ω + K sin(x), x ∈ R/2πZ, Ω ∈ R

with K = −1 and c0 = 0. These maps arise in KAM theory and model the
disappearance of invariant circles [FKS], [Lan], [Rand], [Mak], [DGK]. Another
class of examples are the rational maps

f(z) = λz2 z − 3
1− 3z

, |λ| = 1, (5.1)

acting on S1 = {z : |z| = 1} with c0(f) = 1.
If f : S1 → S1 has no periodic points, then it is topologically conjugate to a

rigid rotation by angle 2πρ(f), where the rotation number ρ(f) is irrational [Y].
The behavior of f is strongly influenced by the continued fraction of its rotation
number,

ρ(f) = 1/(a1 + 1/(a2 + 1/(a3 + · · · ))), ai ∈ N.

By truncating the continued fraction we obtain rational numbers pn/qn → ρ(f).
We say ρ(f) is of bounded type if sup ai < ∞.

Theorem 5.1 (de Faria-de Melo) Let f1, f2 be two critical circle maps with
equal irrational rotation numbers of bounded type. Then f1 and f2 are C1+α-
conjugate.
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We sketch the proof from [dFdM]. Consider a complex analytic extension of
f(z) to a neighborhood of S1. Let the Julia set J(f) be the closure of the set of
periodic points of f . As for maps of the interval, one finds the critical point c0(f)
is a deep point of J(f), and the full dynamical system (F(f), J(f)) is uniformly
twisting. Because of the good arithmetic of ρ(f), the forward orbit of the critical
point is spread evenly along S1, so in fact the Julia set is deep at every point
on the circle. To complete the proof, one constructs a quasiconformal conjugacy
between f1 and f2, and then applies the inflexibility Theorem 3.1 to deduce that
φ|S1 is C1+α.

To bring renormalization into the picture, it is useful to work on the universal
cover R of S1 = R/2πZ. One can then treat the lifted map f : R → R and the
deck transformation g(x) = x + 2π on an equal footing. The maps (f, g) form a
basis for a subgroup Z2 ⊂ Diff(R), and any matrix

(
a b
c d

) ∈ GL2(Z) determines a
renormalization operator by

R(f, g) = (fagb, f cgd).

When the continued fraction of ρ(f) is periodic, one can choose R such that
Rn(f, g) converges exponentially fast to a fixed-point of renormalization (F, G).
For the more general case where ρ(f) is of bounded type, a finite number of
renormalization operators suffice to relate any two adjacent levels of the tower
T = 〈fqn〉.

The third frame in Figure 1 depicts the Julia set of the rational map f(z) given
by equation (5.1), with λ ≈ −0.7557− 0.6549i chosen so ρ(f) is the golden ratio.
The picture is centered at the deep point c0(f) ∈ J(f). Petersen has shown J(f)
is locally connected [Pet]; it is an open problem to determine if area(J(f)) = 0.

Levin has proposed a similar theory for critical circle endomorphisms such as
f(z) = λz3(z − 2)/(1− 2z) [Lev].

6 The golden-ratio Siegel disk

Let f(z) = λz + z2, where λ = e2πiθ.
Siegel showed that f is analytically conjugate to the rotation z 7→ λz on a

neighborhood of the origin when θ is Diophantine (|θ − p/q| > C/qn). The Siegel
disk D for f is the maximal domain on which f can be linearized. For θ of bounded
type, Herman and Świa̧tek proved that ∂D is a quasicircle passing through the
critical point c0(f) = −λ/2 [Dou1], [Sw]. In particular, the critical point provides
the only obstruction to linearization.

Now suppose θ is a quadratic rational such as the golden ratio:

θ =
√

5− 1
2

= 1/(1 + 1/(1 + 1/(1 + · · · ))).

Then the continued fraction of θ is preperiodic; there is an s > 0 such that an+s =
an for all n À 0. Experimentally, a universal structure emerges at the transition
from linear to nonlinear behavior at ∂D [MN] [Wid]. In [Mc4] we prove:
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Theorem 6.1 If θ is a quadratic irrational, then the boundary of the Siegel disk
D for f is self-similar about the critical point c0(f) ∈ ∂D.

More precisely, there is a map φ : (D, c0) → (D, c0) which is a C1+α-conformal
contraction at the critical point, and locally conjugates fqn to fqn+s .

Theorem 6.2 Let f and g be quadratic-like maps with Siegel disks having the
same rotation number of bounded type. Then f |Df and g|Dg are C1+α conjugate.

For instance, let Da be the Siegel disk for fa(z) = λz + z2 + az3. Then the
Hausdorff dimension of ∂Da is constant for small values of a. As for the Julia set
we have:

Theorem 6.3 If θ has bounded type, then the Hausdorff dimension of the Julia
set of f(z) = e2πiθz + z2 is strictly less than two.

A blowup of the golden ratio Siegel disk, centered at the critical point c0(f) ∈
∂D, is shown in the final frame of Figure 1. The picture is self-similar with a
universal scaling factor 1.8166 . . . depending only on the rotation number. The
Julia set of f is locally connected [Pet]. Recently Buff and Henriksen have shown
that the golden Siegel disk contains a Euclidean triangle with vertex resting on
the critical point [BH]; empirically, an angle of approximately 120◦ will fit.

The mechanism of rigidity for Siegel disks is visible in the geometry of the filled
Julia set K(f) = {z : fn(z) remains bounded for all n > 0}. Under iteration,
every point in the interior of K(f) eventually lands in the Siegel disk, and ∂K(f) =
J(f). The gray cauliflower forming the interior of K(f) in Figure 1 is visibly dense
at the critical point. In fact c0(f) is a measurable deep point of K(f), meaning

area(K(f) ∩B(c0, r))
area(B(c0, r))

= 1−O(rβ), β > 0. (6.1)

For the proof of Theorem 6.2, one starts with a quasiconformal conjugacy φ
from f to g furnished by the theory of polynomial-like maps [DH]. Since f and g
have the same linearization on their Siegel disks, we can assume φ is conformal on
Df . But then φ is conformal throughout intK(f). By (6.1) the conformal behavior
dominates near c0(f), and we conclude φ is C1+α-conformal at the critical point.
This smoothness is spread to all points of ∂Df using the good arithmetic of θ.

The self-similarity of ∂D is established similarly, using a conjugacy from fqn

to fqn+s .

The dictionary. Table 3 summarizes the parallels which emerge between hyper-
bolic manifolds, quadratic-like maps on the interval, critical circle maps and Siegel
disks. This table can be seen as a contribution to Sullivan’s dictionary between
conformal dynamical systems [Sul2], [Mc1].

7 Surface groups and their geometric limits

For a complete classification of conformal dynamical systems, one must go beyond
the bounded geometry of the preceding examples, and confront short geodesics,
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Siegel disks/

Hyperbolic manifolds Interval maps Circle maps

Discrete surface group R-quadratic polynomial Nonlinear rotation

Γ ⊂ PSL2(C) f(z) = z2 + c f(z) = λz + z2 or

M = H3/Γ λz2(z − 3)/(1− 3z)

Representation Quadratic-like map Holomorphic commuting

ρ : π1(S) → Γ f : U → V pair (f, g)

Ending lamination Tuning invariant Continued fraction

ε(M) ∈ GL(S) τ(f) = 〈σ(Rn(f))〉 θ = [a1, a2, · · · ], λ = e2πiθ

Inj. radius(M) > r > 0 Bounded combinatorics Bounded type

Cut points in Λ Postcritical set P (f) =
⋃

fn(c), f ′(c) = 0

=
⋃∞

1 (Cantor sets) = (Cantor set) = (circle or quasi-circle)

(R-tree of ε(M), π1(S)) (proj limZ/pi, x 7→ x + 1) (R/Z, x 7→ x + θ)

Λ(Γ) is locally connected J(f) is locally connected J(f) is locally connected

area Λ(Γ) = 0 area(J(f)) = 0?

Inj. radius ∈ [r, R] in core(M) (F(f), J(f)) is uniformly twisting

Mapping class ψ ∈ Mod(S) Kneading permutation Automorphism
(

a b
c d

)
of Z2

Renormalization Operators

R(ρ) = ρ ◦ ψ−1 R(f) = fp(z) R(f, g) = (fagb, fcgd)

Stable Manifold of Renormalization

M = asymptotic fiber f = limit of doublings θ = golden ratio

Elliptic points deep in Λ(Γ) Critical point c0(f) deep in J(f) or K(f)

ρ ◦ ψ−n, n = 1, 2, 3 . . . fn, n = 1, 2, 4, 8, 16, . . . fn, n = 1, 2, 3, 5, 8, . . .

Geometric limit of Rn(ρ) Quadratic-like tower Tower of commuting pairs

〈fi : i ∈ Z〉; fi+1 = fi ◦ fi

Hyperbolic 3-manifold S × [0, 1]/ψ Fixed-points of

fibering over the circle Renormalization

Conformal structure is C1+α-rigid at deep points =⇒

Renormalization converges exponentially fast

M is asymptotically rigid J(f) is self-similar at the critical point c0(f)

Table 3.
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unbounded renormalization periods and Liouville rotation numbers. We conclude
with an example of such a complete classification in the setting of hyperbolic
geometry.

Let S be the compact surface obtained by removing a disk from a torus. Let
AH(S) ⊂ V (S) be the set of discrete faithful representations such that ρ(π1(∂S))
is parabolic. A representation ρ : π1(S) → Γ in AH(S) gives a hyperbolic manifold
M = H3/Γ homeomorphic to int(S)× R. To each end of M one can associate an
end invariant

E±(M) =

{
∂±(M) ∈ Teich(S) or
ε±(M) ∈ PML(S).

In the first case the end is naturally completed by a hyperbolic punctured torus
∂±(M); in the second case the end is pinched along a simple curve or lamination
ε±(M).

Identifying Teich(S) ∪ PML(S) with H = H ∪ R ∪∞, we may now state:

Theorem 7.1 (Minsky) The pair of end invariants establishes a bijection

E : AH(S) → H×H− R× R
with E−1 continuous.

Corollary 7.2 Each Bers’ slice of AH(S) is bounded by a Jordan curve natu-
rally parameterized by R ∪∞, with rational points corresponding to cusps.

Corollary 7.3 Geometrically finite manifolds are dense in AH(S).

Theorem 7.1 establishes a special case of Thurston’s ending lamination
conjecture [Mc1, §4]. We remark that E is not a homeomorphism, and indeed
AH(S) is not even a topological manifold with boundary [Mc3, Appendix].

The proof of Theorem 7.1 from [Min] can be illustrated in the case E(M) =
(τ, λ), with τ ∈ H and λ ∈ R an irrational number with continued fraction
[a1, a2, . . . ]. By rigidity of manifolds in ∂AH(S), it suffices to construct a quasi-
isometry

φ : M → M(a1, a2, . . . )

from M to a model Riemannian manifold explicitly constructed from the ending
invariant. The quasi-isometry is constructed piece by piece, over blocks Mi of M
corresponding to terms ai in the continued fraction.

The construction yields a description not only of manifolds in AH(S), but
also of their geometric limits, which we formulate as follows.

Theorem 7.4 Every geometric limit M = lim Mn, Mn ∈ AH(S), is determined
up to isometry by a sequence 〈ai, i ∈ I〉, where

• I ⊂ Z is a possibly infinite interval,

• ai ∈ Teich(S) ∪ {∗} if i is an endpoint of I; and

• ai ∈ {1, 2, 3, . . . ,∞} otherwise.
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Here 〈ai〉 should be thought of as a generalized continued fraction, augmented
by Riemann surface data for the geometrically finite ends of M . (The special point
{∗} is used for the triply-punctured sphere.)

For example, the sequence 〈ai〉 = 〈. . . ,∞,∞,∞, . . .〉 determines the periodic
manifold

M∞ ∼= int(S)× R−
(⋃

Z
γi × {i}

)
,

where γi ⊂ S are simple closed curves and i(γi, γi+1) = 1. These curves enumerate
the rank two cusps of M∞. Geometrically, M∞ is obtained from the Borromean
rings complement S3 − B (itself a hyperbolic manifold) by taking the Z-covering
induced by the linking number with one component of B.

In general the coefficients 〈ai〉 in Theorem 7.4 specify how to obtain M by
Dehn filling the cusps of M∞. Compare [Th2, §7].

Corollaries 7.2 and 7.3 are reminiscent of two open conjectures in dynamics:
the local connectivity of the Mandelbrot set, and the density of hyperbolicity for
complex quadratic polynomials.

Quadratic polynomials, however, present an infinite variety of parabolic bi-
furcations, in contrast to the single basic type occurring for punctured tori. This
extra diversity is reflected in the topological complexity of the boundary of the
Mandelbrot set, versus the simple Jordan curve bounding a Bers slice.

Parabolic bifurcations can be analyzed by Ecalle cylinders [Dou2] and
parabolic towers [Hin], both instances of geometric limits as in §3. A complete
understanding of complex quadratic polynomials will likely entail a classification
of all their geometric limits as well.
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Bourbaki, 1986/87, pages 151–172. Astérisque, volume 152-153, 1987.
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Quantum Computing

Peter W. Shor

Abstract. The Church-Turing thesis says that a digital computer is a
universal computational device; that is, it is able to simulate any physi-
cally realizable computational device. It has generally been believed that
this simulation can be made efficient so that it entails at most a poly-
nomial increase in computation time. This may not be true if quantum
mechanics is taken into consideration. A quantum computer is a hy-
pothetical machine based on quantum mechanics. We explain quantum
computing, and give an algorithm for prime factorization on a quantum
computer that runs asymptotically much faster than the best known al-
gorithm on a digital computer. It is not clear whether it will ever be
possible to build large-scale quantum computers. One of the main diffi-
culties is in manipulating coherent quantum states without introducing
errors or losing coherence. We discuss quantum error-correcting codes
and fault-tolerant quantum computing, which can guarantee highly re-
liable quantum computation, given only moderately reliable quantum
computing hardware.

1991 Mathematics Subject Classification: Primary 68Q05; Secondary
11Y05, 81P99.
Keywords and Phrases: Quantum computer, computational complexity,
prime factorization.

1 Introduction.

Quantum computers are hypothetical machines that use principles of quantum
mechanics for their basic operations. They will be very difficult to build; currently
experimental physicists are working on two- and three-bit quantum computers, and
useful quantum computers would require hundreds to thousands of bits. However,
there seem to be no fundamental physical laws that would preclude their construc-
tion. In 1994, I showed that a quantum computer could factor large numbers in
time polynomial in the length of the numbers, a nearly exponential speed-up over
classical algorithms. This factoring result was surprising for a number of different
reasons. First, the connection of quantum mechanics with number theory was it-
self surprising. For cryptographers, the result was surprising because the difficulty
of factoring is the basis of the RSA cryptosystem [27], and nobody had anticipated
the possibility of an attack via quantum physics. For many theoretical computer
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scientists, it was surprising because they had more or less convinced themselves
that no type of computing machine could offer this large a speed-up over a clas-
sical digital computer. In retrospect, several results [7, 30] should have led them
to question this; however, not much attention was paid to these results until they
led to the development of the factoring algorithm,

A question that has generated much discussion is where the extra power of
quantum computers comes from. There are a number of differences between quan-
tum and classical computers, and most appear to be required for the extra power.
In particular, quantum interference is needed; one high-level way to describe the
quantum factoring algorithm is that the computation is arranged so that compu-
tational paths giving the wrong answer interfere to cancel each other out, leaving
a high probability of obtaining the right answer. Another property of quantum
systems that plays a crucial role is entanglement, or non-classical correlation,
between quantum systems. Many non-quantum physical systems such as waves
exhibit interference, but none of these systems exhibits entanglement, and they do
not appear usable for quantum computation. Finally, a third property required
is the high dimensionality of quantum systems; the dimension of the joint quan-
tum state space of n objects grows exponentially with n, whereas classically the
dimension of the joint state space of n objects only grows linearly. The factoring
algorithm makes critical use of this extra dimensionality.

In the rest of the paper, I describe these results in more detail. In section 2, I
start by discussing Church’s thesis, which still appears to hold, and an extension
of it, to which quantum computers now appear to be a counterexample. In the
following section, I describe the quantum circuit model for quantum computation.
This is not laid out particularly well anywhere else, so I spend a reasonable amount
of space on it. In section 4, I describe the differences between the quantum circuit
model and possible physical realizations of quantum computers, and say a little
about why the model appears to give the right definition of what is efficiently
computable using quantum mechanics. Section 5 describes the factoring algorithm.
Section 6 discusses error-correcting codes and fault-tolerant quantum computing.
In the final section, I mention some related results.

2 The Polynomial Church’s Thesis.

Church’s thesis says that any computable function can be computed on a Turing
machine, which is essentially a mathematical abstraction of a digital computer.
This thesis arose in the 1930’s, and was motivated by the realization that three
apparently quite distinct definitions of computable functions were all equivalent.
It is well known that Church’s thesis is not a theorem, because it does not specify
a rigorous mathematical definition of “computable”; specifying such a definition
would lead to a provable theorem (and in many cases has), but would also detract
from the generality of the thesis. What is somewhat less commonly realized is
that this thesis can be viewed as a statement about the laws of physics, simply
by interpreting computable to mean computable in the physical world. For this
interpretation, if the laws of physics are computable by a Turing machine, then
Church’s thesis is true.
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The development of digital computers rendered the distinction between com-
putable and uncomputable functions too coarse in practice, as it does not take
into account the time required for computation. What was needed for the the-
ory of computation was some characterization of efficiently computable functions.
In the early 1970’s, theoretical computer scientists reached a good compromise
between theory and practice with the definition of polynomial-time computable
functions. These are functions whose value can be computed in a number of steps
polynomial in the input size. The corresponding set of languages—functions whose
range is {0, 1}—is known as P (or PTIME). While nobody claims that a function
computable in time n100 is efficiently computable in practice, the set of polyno-
mial time computable functions is structurally nice enough to use in proofs, and
for functions arising in practice it appears to include most of the efficiently com-
putable ones and exclude most of those not efficiently computable. This definition
naturally gave rise to a “folk thesis,” the polynomial Church’s thesis, which says
that any function physically computable in time t on some machine X can be
computed on a Turing machine in time p(t), where p is a polynomial depending
only on the machine X.

Is this folk thesis valid? One good place to start looking for counterexamples
is with physical systems which seem to require large amounts of computer time to
simulate. Two obvious such candidates are turbulence and quantum mechanics. I
will have nothing further to say about turbulence, except that I think the compu-
tational complexity of turbulence is a question worthy of serious study. Richard
Feynman, in 1982, was the first to consider the case of quantum mechanics [16].
He gave arguments for why quantum mechanical systems should inherently re-
quire an exponential overhead to simulate on digital computers. In a lengthy
“side remark,” he proposed using quantum computers, operating on quantum me-
chanical principles, to circumvent this problem. David Deutsch [15] followed up on
Feynman’s proposal by defining quantum Turing machines, and suggesting that
if quantum computers could solve quantum mechanical problems more quickly
than digital computers, they might also solve classical problems more quickly. It
currently appears that this is indeed the case. One piece of evidence for this is
that quantum computers can solve certain “oracle problems” faster than classical
computers [7, 30]; here an oracle problem is one where the computer is given a
subroutine (oracle) which must be treated as a black box. The behavior of com-
putational complexity with respect to oracles, however, has not proved a reliable
guide to its true behavior. Another piece of evidence that quantum computers
are a counterexample to the polynomial Church’s thesis is that they can factor
integers and find discrete logarithms in polynomial time, something which it is
not known how to do on classical computers despite many years of study. The
factorization algorithm is discussed later in this paper.

3 The Quantum Circuit Model.

In this section we discuss the quantum circuit model [32] for quantum computation.
This is a rigorous mathematical model for a quantum computer. It is not the only
mathematical model for quantum computation; there are also the quantum Turing
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machine model [7, 32] and the quantum cellular automata model. All these models
result in the same class of polynomial-time quantum computable functions. Of
these, the quantum circuit model is possibly the simplest to describe. It is also
easier to connect with possible physical implementations of quantum computers
than the quantum Turing machine model. The disadvantage of this model is that
it is not naturally a uniform model. Uniformity is a technical condition arising
in complexity theory, and to make the quantum circuit model uniform, additional
constraints must be imposed on it. This issue is discussed later in this section.

In analogy with a classical bit, a two-state quantum system is called a qubit,
or quantum bit. Mathematically, a qubit takes a value in the vector space C2. We
single out two orthogonal basis vectors in this space, and label these V0 and V1.
In “ket” notation, which is commonly used in this field, these are represented as
|0〉 and |1〉. More precisely, quantum states are invariant under multiplication by
scalars, so a qubit lives in two-dimensional complex projective space; for simplicity,
we work in complex Euclidean space C2. To conform with physics usage, we treat
qubits as column vectors and operate on them by left multiplication.

One of the fundamental principles of quantum mechanics is that the joint
quantum state space of two systems is the tensor product of their individual quan-
tum state spaces. Thus, the quantum state space of n qubits is the space C2n

. The
basis vectors of this space are parameterized by binary strings of length n. We
make extensive use of the tensor decomposition of this space into n copies of C2,
where Vb1b2···bn = Vb1 ⊗ Vb2 ⊗ . . .⊗ Vbn . Generally, we use position to distinguish
the n different qubits. Occasionally we need some other notation for distinguishing
them, in which case we denote the i’th qubit by V [i]. Since quantum states are
invariant under multiplication by scalars, they can be normalized to be unit length
vectors; except where otherwise noted, quantum states in this paper are normal-
ized. Quantum computation takes place in the quantum state space of n qubits
C2n

, and obtains extra computational power from its exponential dimensionality.
In a usable computer, we need some means of giving it the problem we want

solved (input), some means of extracting the answer from it (output), and some
means of manipulating the state of the computer to transform the input into the
desired output (computation). We next briefly describe input and output for the
quantum circuit model. We then take a brief detour to describe the classical circuit
model; this will motivate the rules for performing the computation on a quantum
computer.

Since we are comparing quantum computers to classical computers, the input
to a quantum computer will be classical information. It can thus can be expressed
as a binary string S of some length k. We need to encode this in the initial
quantum state of the computer, which must be a vector in C2n

. The way we do
this is to concatenate the bit string S with n− k 0’s to obtain the length n string
S0 . . . 0. We then initialize the quantum computer in the state VS0...0. Note that
the number of qubits is in general larger than the input. These extra qubits are
often required as workspace in implementing quantum algorithms.

At the end of a computation, the quantum computer is in a state which is a
unit vector in C2n

. This state can be written explicitly as W =
∑

s αsVs where
s ranges over binary strings of length n, αs ∈ C, and

∑
s |αs|2 = 1. These αs

Documenta Mathematica · Extra Volume ICM 1998 · I · 467–486



Quantum Computing 471

Figure 1: Construction of a Toffoli gate using the classical gates AND, OR and
NOT. The input is on the left and the output on the right.

are called probability amplitudes, and we say that W is a superposition of basis
vectors Vs. In quantum mechanics, the Heisenberg uncertainty principle tells us
that we cannot measure the complete quantum state of this system. There are a
large number of permissible measurements; for example, any orthogonal basis of
C2n

defines a measurement whose possible outcomes are the elements of this basis.
However, we assume that the output is obtained by projecting each qubit onto the
basis {V0, V1}. When applied to a state

∑
s αsVs, this projection produces the

string s with probability |αs|2. The quantum measurement process is inherently
probabilistic. Thus we do not require that the computation gives the right answer
all the time; but that we obtain the right answer at least 2/3 of the time. Here, the
probability 2/3 can be replaced by any number strictly between 1/2 and 1 without
altering what can be computed in polynomial time by quantum computers—if the
probability of obtaining the right answer is strictly larger than 1/2, it can be
amplified by running the computation several times and taking the majority vote
of the results of these separate computations.

In order to motivate the rules for state manipulation in a quantum circuit,
we now take a brief detour and describe the classical circuit model. Recall that
a classical circuit can always be written solely with the three gates AND (∧),
OR (∨) and NOT (¬). These three gates are thus said to form a universal set of
gates. Figure 1 gives an example circuit for a computation called a Toffoli gate
using these three types of gates. Besides these three gates, note that we also need
elements which duplicate the values on wires. These duplicating “gates” are not
possible in the domain of quantum computing.

A quantum circuit is similarly built out of logical quantum wires carrying
qubits, and quantum gates acting on these qubits. Each wire corresponds to one
of the n qubits. We assume each gate acts on either one or two wires. The possible
physical transformations of a quantum system are unitary transformations, so each
quantum gate can be described by a unitary matrix. A quantum gate on one
qubit is then described by a 2× 2 matrix, and a quantum gate on two qubits by a
4× 4 matrix. Note that since unitary matrices are invertible, the computation is
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reversible; thus starting with the output and working backwards one obtains the
input. Further note that for quantum gates, the dimension of the output space is
equal to that of the input space, so at all times during the computation we have
n qubits carried on n quantum wires. Figure 2 contains an example of a quantum
circuit for computing a Toffoli gate.

Quantum gates acting on one or two qubits (C2 or C4) naturally induce a
transformation on the state space of the entire quantum computer (C2n

). For
example, if A is a 4× 4 matrix acting on qubits i and j, the induced action on a
basis vector of C2n

is

A[i,j] Vb1b2···bn =
1∑

s=0

1∑
t=0

Abibj st Vb1b2···bi−1sbi+1···bj−1tbj+1···bn . (1)

This is a tensor product of A (acting on qubits i and j) with the identity matrix
(acting on the remaining qubits). When we multiply a general vector by a quantum
gate, it can have negative and positive coefficients which cancel out, leading to
quantum interference.

As there are for classical circuits, there are also universal sets of gates for
quantum circuits; such a universal set of gates is sufficient to build circuits for any
quantum computation. One particularly useful universal set of gates is the set of
all one-bit gates and a specific two-bit gate called the Controlled NOT (CNOT).
These gates can efficiently simulate any quantum circuits whose gates act on only
a constant number of qubits [2]. On basis vectors, the CNOT gate negates the
second (target) qubit if and only if the first (control) qubit is 1. In other words,
it takes VXY to VXZ where Z = X + Y (mod 2). This corresponds to the unitary
matrix 



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 (2)

Note that the CNOT is a classical reversible gate. To obtain a universal set
of classical reversible gates, you need at least one reversible three-bit gate, such
as a Toffoli gate; otherwise you can only perform linear Boolean computations.
A Toffoli gate is a doubly controlled NOT, which negates the 3rd bit if and only
if the first two are both 1. By itself the Toffoli gate is universal for reversible
classical computation, as it can simulate both AND and NOT gates [17]. Thus, if
you can make a Toffoli gate, you can perform any reversible classical computation.
Further, as long as the input is not erased, any classical computation can be
efficiently performed reversibly [3], and thus implemented efficiently by Toffoli
gates.

Because of the extra possibilities allowed by quantum interference, for quan-
tum circuits the CNOT together with all quantum one-bit gates forms a universal
set of gates. Figure 2 gives a construction of a Toffoli gate out of CNOT gates and
one-bit gates [2], showing that this set is at least universal for classical computa-
tion. This particular construction does not result in a Toffoli gate with all positive
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Figure 2: Construction of a Toffoli gate using quantum gates. The gates repre-
sented by ⊕ are CNOT’s, where the circle identifies the target qubit. The gate R

is
(

cos θ sin θ
− sin θ cos θ

)
, and R† is the Hermitian transpose of R. In this construction,

the phase on V101 is −1, and all the other phases are +1; the phases can all be
made +1 by a somewhat more complicated quantum circuit.

phases—multiplying the corresponding matrices in Figure 2 produces the matrix



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0




(3)

which is the classical Toffoli gate with a phase of −1 on one of its outcomes.
This still acts classically as a Toffoli gate, since phases are irrelevant to classical
computation. In quantum computation, however, we must keep careful track of
phases. A more complicated circuit can be constructed which eliminates this phase
of −1 [2].

We now define the complexity class BQP, which stands for bounded-error
quantum polynomial time. This is the class of languages which can be computed
on a quantum computer in polynomial time, with the computer giving the correct
answer at least 2/3 of the time. To give a rigorous definition of this complexity
class using quantum circuits, we need to consider uniformity conditions. Any
specific quantum circuit can only compute a function whose domain (input) is
binary strings of a specific length. To use the quantum circuit model to implement
functions taking arbitrary length binary strings as input, we take a family of
quantum circuits, containing one circuit for inputs of each length. Without any
further conditions on the family of circuits, the designer of this circuit family could
hide an uncomputable function in the design of the circuits for each input length.
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This definition would thus result in the unfortunate inclusion of uncomputable
functions in the complexity class BQP. To exclude this possibility, we require
uniformity conditions on the circuit family. The easiest way of doing this is to
require a classical Turing machine that on input n outputs a description of the
circuit for length n inputs, and which runs in time polynomial in n. For quantum
computing, we need an additional uniformity condition on the circuits. It would
be possible for the circuit designer to hide uncomputable (or hard-to-compute)
information in the unitary matrices corresponding to quantum gates. We thus
require that the k’th digit of the entries of these matrices can be computed by a
second Turing machine in time polynomial in k. Although we do not have space
to discuss this fully, the power of the machines designing the circuit family can
actually be varied over a wide range; this helps us convince ourselves that we have
the right definition of BQP.

The definition of polynomial time computable functions on a quantum com-
puter is thus those functions computable by a uniform family of circuits whose
size (number of gates) is polynomial in the length of the input, and which for any
input gives the right answer at least 2/3 of the time. The corresponding set of
languages (functions with values in {0, 1}) is called BQP.

4 Relation of the Model to Quantum Physics.

The quantum circuit model of the previous section is much simplified from the
realities of quantum physics. There are operations possible in physical quantum
systems which do not correspond to any simple operation allowable in the quantum
circuit model, and complexities that occur when performing experiments that are
not reflected in the quantum circuit model. This section contains a brief discussion
of these issues, some of which are discussed more thoroughly in [7].

In everyday life, objects behave very classically, and on large scales we do
not see any quantum mechanical behavior. This is due to a phenomenon called
decoherence, which makes superpositions of states decay, and makes large-scale
superpositions of states decay very quickly. A thorough discussion of decoherence
can be found in [35]; one reason it occurs is that we are dealing with open systems
rather than closed ones. Although closed systems quantum mechanically undergo
unitary evolution, open systems need not. They are subsystems of systems under-
going unitary evolution, and the process of taking subsystems does not preserve
unitarity.

However hard we may try to isolate quantum computers from the environ-
ment, they will still undergo some decoherence and errors. We need to know that
these processes do not fundamentally change their behavior. Using no error cor-
rection, if each gate results in an amount of decoherence and error of order 1/t,
then O(t) operations can be performed before the quantum state becomes so noisy
as to usually give the wrong answer [7]. Active error correction can improve this
situation substantially, and is discussed in section 6.

In some proposed physical architectures for quantum computers, there are
restrictions that are more severe than the quantum computing model. Many of
these restrictions do not change the class BQP. For example, it could easily be
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the case that a gate could only be applied to a pair of adjacent qubits. We can
still operate on a pair of arbitrary qubits: by repeatedly exchanging one of these
qubits with a neighbor we can bring this pair together. If there are n qubits in the
computer, this can only increase the computation time by a factor of n, preserving
the complexity class BQP.

The quantum circuit model described in the previous section postpones all
measurements to the end, and assumes that we are not allowed to use probabilistic
steps. Both of these possibilities are allowed in general by quantum mechanics, but
neither possibility makes the complexity class BQP larger [7]. For fault-tolerant
quantum computing, however, it is very useful to permit measurements in the
middle of the computation, in order to measure and correct errors.

The quantum circuit model also assumes that we only operate on a constant
number of qubits at a time. In general quantum systems, all the qubits evolve
simultaneously according to some Hamiltonian describing the system. This si-
multaneous evolution of many qubits cannot be described by a single gate in our
model, which only operates on two qubits at once. In a realistic model of quantum
computation, we cannot allow general Hamiltonians, since they are not experimen-
tally realizable. Some Hamiltonians that act on all the qubits at once, however,
are experimentally realizable. It would be nice to know that even though these
Hamiltonians cannot be directly described by our model, they cannot be used to
compute functions not in BQP in polynomial time. This could be accomplished
by showing that systems with such Hamiltonians can be efficiently simulated by
a quantum computer. Some work has been done on simulating Hamiltonians on
quantum computers [1, 24, 33], but I do not believe this question has been com-
pletely addressed yet.

An important aspect of quantum mechanics not used in the quantum circuit
model is that identical particles are indistinguishable; in general they must obey
either Fermi-Dirac or Einstein-Bose statistics when they are interchanged. Particle
statistics do not appear to add any power to the quantum computing model, but
I do not believe this has been rigorously proved.

From the view of the current state of experimental physics, quantum com-
puters appear to be extremely difficult to build, but do not seem to violate any
fundamental physical laws. As qubits, we need to use quantum systems which are
relatively stable, which interact strongly with each other (to carry out quantum
gates quickly), but which interact weakly with everything else (to avoid errors
caused by interaction with the environment). Since the discovery of the factor-
ing algorithm, a variety of proposals for experimental implementation of quantum
computers have been made. One of these proposals is to use the electronic states
of ions in an electromagnetic ion trap as the qubits, to manipulate them using
lasers, and to communicate between different ions using a vibrational mode of
the ions, or phonon [12]. Another is to use nuclear spins of atoms in a complex
molecule as the qubits, and to manipulate them using nuclear magnetic resonance
spectroscopy [14, 18]. A quite recent proposal is to use nuclear spins of impurities
embedded in a silicon chip as the qubits, and to manipulate them using electronics
on the same chip [23]. None of these proposals has been experimentally realized
for more than a handful of qubits, but they all have proponents who believe that
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they may be scaled up to obtain much larger working quantum computers.

5 The Factoring Algorithm.

For factoring an L-bit number N , the best classical algorithm known is the
number field sieve, which asymptotically takes time O(exp(cL1/3 log2/3 L)). On
a quantum computer, the quantum factoring algorithm takes asymptotically
O(L2 log L log log L) steps. The key idea of the quantum factoring algorithm is
the use of a Fourier transform to find the period of the sequence ui = xi (mod N),
from which period a factorization of N can be obtained. The period of this se-
quence is exponential in L, so this approach is not practical on a digital computer.
On a quantum computer, however, we can find the period in polynomial time
by exploiting the 22L-dimensional state space of 2L qubits, and taking a Fourier
transform over this space. The exponential dimensionality of this space permits us
to take the Fourier transform of an exponential length sequence. How this works
should be clearer from the following sketch of the algorithm, the full details of
which are in [28], along with a quantum algorithm for finding discrete logarithms.

The idea behind all the fast factoring algorithms (classical or quantum) is
fairly simple. To factor N , find two residues mod N such that

s2 ≡ t2 (mod N) (4)

but s 6≡ ±t (mod N). We now have

(s + t)(s− t) ≡ 0 (mod N) (5)

and neither of these two factors is 0 (mod N). Thus, s + t must contain one
factor of N (and s− t another). We can extract this factor by finding the greatest
common divisor of s + t and N ; this computation can be done in polynomial time
using Euclid’s algorithm.

In the quantum factoring algorithm, we find the multiplicative period r of
a residue x (mod N). This period r satisfies xr ≡ 1 (mod N); if we are lucky
then r is even, so both sides of this congruence are squares, and we can try the
above factorization method. If we have just a little bit more luck, then xr/2 6≡
−1 (mod N), so we obtain a factor by computing gcd(xr/2 + 1, N). It is a fairly
simple exercise in number theory to show that for large N with two or more prime
factors, at least half the residues x (mod N) produce prime factors using this
technique, and that for most large N , the fraction of good residues x is much
higher; thus, if we try several different values for x, we have to be particularly
unlucky not to obtain a factorization using this method.

We now need to explain what the quantum Fourier transform is. The quantum
Fourier transform on k qubits maps the state Va, where a is considered as an integer
between 0 and 2k − 1, to a superposition of the states Vb as follows:

Va → 1
2k/2

2k−1∑

b=0

exp(2πiab/2k)Vb (6)
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It is easy to check that this transformation defines a unitary matrix. It is not
as straightforward to implement this Fourier transform as a sequence of one- and
two-bit quantum gates. However, an adaption of the Cooley-Tukey algorithm
decomposes this transformation into a sequence of k(k − 1)/2 one- and two-bit
gates. More generally, the discrete Fourier transform over any product Q of small
primes (of size at most log Q) can be performed in polynomial time on a quantum
computer.

We are now ready to give the quantum algorithm for factoring. What we do
is design a polynomial-size circuit which starts in the quantum state V00...0 and
whose output, with reasonable probability, lets us factor an L-bit number N in
polynomial time using a digital computer. This circuit has two main registers, the
first of which is composed of 2L qubits and the second of L qubits. It also requires
a few extra qubits of work space, which we do not mention in the summary below
but which are required for implementing the step (8) below.

We start by putting the computer into the state representing the superposition
of all possible values of the first register:

1
2L

22L−1∑
a=0

Va ⊗ V0. (7)

This can easily be done using 2L gates by putting each of the qubits in the first
register into the state 1√

2
(V0 + V1).

We next use the value of a in the first register to compute the value
xa (mod N) in the second register. This can be done using a reversible classi-
cal circuit for computing xa (mod N) from a. Computing xa (mod N) using re-
peated squaring takes asymptotically O(L3) quantum gates using the grade school
multiplication algorithm, and O(L2 log L log log L) gates using fast integer multi-
plication (which is actually faster only for relatively large values of L). This leaves
the computer in the state

1
2L

22L−1∑
a=0

Va ⊗ Vxa(mod N). (8)

The next step is to take the discrete Fourier transform of the first register, as
in Equation (6). This puts the computer into the state

1
22L

22L−1∑
a=0

22L−1∑

b=0

exp(2πiab/22L)Vb ⊗ Vxa(mod N). (9)

Finally, we measure the state. This will give the output Vb⊗ Vxj(mod N) with
probability equal to the square of the coefficient on this vector in the sum (9).
Since many values of xa (mod N) are equal, many terms in this sum contribute
to each coefficient. Explicitly, this probability is:

1
24L

∣∣∣∣∣∣∣

∑
a≡j(mod r)
0≤a<22L

22L−1∑

b=0

exp(2πiab/22L)

∣∣∣∣∣∣∣

2

. (10)
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This is a geometric sum, and it is straightforward to check that this sum is very
small except when

rb ≈ d22L (11)

for some integer d. We thus are likely to observe only values of b satisfying (11).
Rewriting this equation, we obtain

b

22L
≈ d

r
. (12)

We know b and 22L, and we want to find r. We chose 2L as the size of the
first register in order to make d/r likely to be the closest fraction to b/22L with
denominator at most N . Thus, all we need do to find r is to round b/22L to a
fraction with denominator less than N . This can be done in polynomial time using
a continued fraction expansion.

More details of this algorithm can be found in [28]. Recently, Zalka [34] has
analyzed the resources required by this algorithm much more thoroughly, improv-
ing upon their original values in many respects. For example, he shows that you
can use only 3L + o(L) qubits, whereas the original algorithm required 2L extra
qubits for workspace, giving a total of 5L qubits. He also shows how to efficiently
parallelize the algorithm to run on a parallel quantum computer.

6 Quantum Error Correcting Codes.

One of the reactions to the quantum factoring paper was that quantum computers
would be impossible to build because it would be impossible to reduce decoher-
ence and errors to levels low enough to ensure reliable quantum computation.
Indeed, without error correction, it would probably be an impossible task to build
quantum computers large enough to factor 100-digit numbers—factoring such a
number requires billions of steps, so each step would need to be accurate to bet-
ter than one part in a billion, a virtually impossible challenge in experimental
physics. Fortunately, it is possible to design fault-tolerant circuits for quantum
computers, which allow computations of arbitrary length to be performed with
gates having accuracy of only some constant c. Current estimates using known
methods for constructing fault-tolerant quantum circuits put this constant in the
range of 10−4 [25]; improved techniques could increase this value.

For some time after the factoring algorithm was discovered, however, it was
believed that making quantum computers fault-tolerant was impossible. There
were a number of plausible arguments for why this should be true. One argument
for the impossibility of quantum error correction was based on the theorem, related
to the Heisenberg uncertainty principle, that an unknown quantum state cannot
be duplicated. The argument was that since you cannot duplicate quantum infor-
mation, you cannot have more than one copy of a qubit around at any given time,
and thus that it was impossible to protect a qubit from errors. Indeed, the simplest
classical error correcting code is the 3-repetition code, which triplicates each bit,
and other classical error correcting codes also appear to be based on repetition.
Despite this pessimistic argument, quantum error correcting codes do exist, and
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are generalizations of classical error-correcting codes. The codes protect quantum
information from error and decoherence not by duplicating it, but by hiding it in
subspaces of C2n

which are affected very little by decoherence and errors that act
on only one qubit, or only a small number of qubits.

Before we discuss quantum error correcting codes in detail, we need to say
more about the measurement process. For every set of orthogonal subspaces of C2n

which span the entire space, there is a measurement which outputs one of these
subspaces as classical data, and which projects the original quantum state onto
this subspace. For example, if our quantum state is

∑2n−1
s=0 αsVs and we measure

the first qubit, we obtain the (not normalized) quantum state

2n−1−1∑

s′=0

α0s′V0s′ with probability
2n−1−1∑

s′=0

|α0s′ |2, (13)

and the state

2n−1−1∑

s′=0

α1s′V1s′ with probability
2n−1−1∑

s′=0

|α1s′ |2. (14)

This measurement corresponds to the partition of C2n

into the two subspaces
generated by {V0s′} and by {V1s′}.

To illustrate how quantum error correcting codes work, we first explain what
goes wrong when we try to extend the straightforward repetition code to the
quantum realm. The obvious thing to do is to take

V0 → V000 (15)
V1 → V111

This indeed does protect against value errors in our qubits. Suppose we apply the

error transformation
(

0 1
1 0

)
to the first qubit. Then the encodings of V0 and V1

get taken to the states V100 and V011, respectively. The subspace generated by these
two quantum states is orthogonal to that generated by the original codewords V000

and V111. We can thus make a measurement which reveals that there was an bit flip
in the first qubit without measuring (and thus disturbing) the encoded quantum
state. It is easily seen that bit flips applied to each of the three qubits create
subspaces that are orthogonal to each other, so there is a quantum measurement
which identifies on which qubit a bit flip error occurred without disturbing the
encoded state. It is then straightforward to fix the bit flip error by applying a
quantum gate to the qubit in error.

However, a phase error on one the qubits is disastrous in this code. What

happens when the error transformation
(

1 0

0 eiφ

)
is applied to one of the qubit

is that it takes an encoded V0 to an encoded V0, and takes an encoded V1 to an
encoded eiφV1. Thus, a phase error an any of the three qubits translates to a
phase error on the encoded qubit, making the encoding three times as vulnerable
to phase errors.
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We now explain the above difficulty another way which illuminates the con-
struction of quantum error-correcting codes. We consider phase flip errors, which
are phase errors with φ = π. There is a transformation that takes phase flips to
bit flips and vice versa. This is the Hadamard transform, which is

1√
2

(
1 1
1 −1

)
. (16)

When this is applied to all the qubits in the code above, as well as the encoded
qubits, we get the code

V0 → 1
2
(V000 + V110 + V101 + V011) (17)

V1 → 1
2
(V111 + V001 + V010 + V100)

Notice that for this code, a single bit flip interchanges V0 and V1, so this code
cannot correct bit flips, again showing that code (15) cannot correct phase flips.

What we need to make a good quantum error correcting code is a code having
the property that bit flips can be corrected both before and after the application
of the Hadamard transformation. Such a code can be found by generalizing the
codes (15) and (17), and it was discovered independently by two groups [11, 31].
It is based on the classical 7-bit Hamming code, and is defined as follows:

V0 → 1√
8

(
V0000000 + V1110100 + V0111010 + V0011101

+V1001110 + V0100111 + V1010011 + V1101001

)
(18)

V1 → 1√
8

(
V1111111 + V0001011 + V1000101 + V1100010

+V0110001 + V1011000 + V0101100 + V0010110

)
.

The indices of the basis vectors in the support of the encoded states are exactly the
classical 7-bit Hamming code. The fact that the classical Hamming code corrects
one error means this code can correct one bit flip. This quantum code is taken to
itself under the application of the Hadamard transform (16) both to the encoded
qubit and to each encoding qubit, showing that it is also able to correct one phase
flip. In fact, it can correct a simultaneous bit flip and phase flip.

We now have a seven bit code that can corrects a phase and/or a bit flip
applied to one of its qubits. This is by no means the complete set of possible
quantum mechanical errors on one qubit; this set is parameterized by several con-
tinuous variables. However, the ability of a quantum code to correct the following
set of four one-bit errors confers on it the ability to correct any possible one-bit
quantum error:

1 =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
, σz =

(
1 0
0 −1

)
, σy =

(
0 −i
i 0

)
. (19)

These four errors correspond to no error, a bit flip, a phase flip, and a simultaneous
bit and phase flip, respectively. We do not have enough space to explain this in
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detail, but the fact that these form a basis for the set of 2× 2 matrices is enough
to imply they can correct any one-bit quantum error. The rigorous details of this
implication are in [11]; a more intuitive explanation is in [6].

This quantum Hamming code is the smallest nontrivial example of a set of
codes based on linear binary codes named CSS codes after their discoverers [11, 31],
and which contains codes that are much more efficient than this first one. For fault
tolerance, which will be discussed next, we only need to use CSS codes. However,
a more general framework that includes these codes was discovered simultaneously
by two groups [19, 20, 10]. Substantial work on quantum error correcting codes
has occurred since their discovery, much of it referenced in [10].

In classical computers, error correcting codes have been found to be very
useful for storing and transmitting information, but not for providing fault-tolerant
computing. It is difficult to perform gates on encoded qubits, and once the qubits
have been decoded, they are no longer protected from error. Theoretically, the best
way to provide high levels of fault tolerance for classical circuits was discovered by
von Neumann, who discovered it after reasoning that some means of protection
from error had to exist in biological systems. This method involves the use of
massive redundancy. If you plan to run your computer for t steps, you make c log t
copies of every bit, and during the computation, you continually compare them in
order to catch any errors you have made. The drawback of this method is that
it requires c log t overhead, which is too expensive for use in practice, given the
remarkably low levels of error obtainable by current computer hardware. On the
other hand, it can be shown that if you must use unreliable gates, O(log t) overhead
is required to achieve reliable computation, so von Neumann’s construction is up
to a constant factor best possible.

As in classical computers, quantum error correcting codes should work well
for protecting qubits while they are being stored and transmitted. However, be-
cause quantum data cannot be cloned, fault tolerance using massive redundancy
cannot work in quantum computers. We thus need another method. The methods
currently known for providing fault tolerance in quantum computers are based on
quantum error correcting codes [25, 29]. To use quantum error correcting codes
for reliable computation, we need to show how to do two additional things with
them, neither of which is at first glance obviously possible. These are:

1. correct errors using noisy gates so that errors are corrected faster than new
errors are introduced;

2. perform quantum gates on encoded bits without decoding them, while mak-
ing sure that any errors cannot propagate too widely during the computation.

We do not have much space to discuss how to accomplish these tasks, so we say
nothing about the first task, and give only a very broad sketch of how the second
task can be accomplished.

In order to compute on encoded qubits without decoding, we need fault-
tolerant implementations of a universal set of quantum gates on the encoded
qubits. What we need are circuits having the property that if errors occur in
only a few quantum gates, or are present in a few of the inputs, these errors can-
not affect too many of the qubits in the output of the gate (otherwise, there will
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Figure 3: Implementation of a CNOT gate on qubits encoded using the quantum
Hamming code (18). This circuit can be used in fault-tolerant quantum circuits,
since an error in the i’th wire of an encoded qubit (or in the i’th gate) can only
propagate to the i’th wire of each of the output qubits. Gates that are imple-
mentable on encoded qubits in this fashion are called transversal gates.

be more errors than the quantum error-correcting codes we are using can correct).
It turns out that certain gates are easy to implement this way. Figure 3 shows
how to perform a CNOT on two encoded qubits by performing it on each pair of
encoding wires. Similarly, if a Hadamard gate (16) is applied to each quantum
wire, a Hadamard gate is performed on the encoded qubit. Implementations of
this type are called transversal gates, and these do not form a universal set of
quantum gates. We need to supplement the set of transversal gates with an extra
gate implemented using another method. It was shown how to perform the Toffoli
gate fault-tolerantly on encoded qubits in [29], and the set of transversal gates
augmented by this gate is a universal set of gates.

To implement a circuit of size t fault-tolerantly, the techniques of [29] required
gates with error rate at most O(1/(log t)c). To obtain fault tolerance using gates
with constant error rate requires a further idea: the use of concatenated codes.
These are nested codes, where each layer catches most of the errors missed by the
previous layer. Judicious use of concatenated codes and careful analysis shows that
gates with some constant error rate are able to produce fault-tolerant quantum
circuits; this constant is currently estimated at around 10−4. For more details, see
the excellent survey of fault-tolerance in quantum computing [25].

7 Other Work.

This section discusses areas related to quantum computing; it is not intended to
be a complete survey, but a somewhat idiosyncratic view of some results I find in-
teresting. I have tried to mention survey articles when they exist, so the interested
reader can find pointers to the literature. One excellent resource is the quant-ph
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preprint archive, at http://xxx.lanl.gov/, containing preprints of many recent
research articles in this field. John Preskill, at Caltech, recently taught a course
on quantum computing and quantum information, and his excellent set of lecture
notes is available on the web [26].

As Feynman suggested, it appears that quantum computing is good at com-
puting simulations of quantum mechanical dynamics. Some work has already
appeared showing this [1, 24, 33], but much remains to be done.

A significant algorithm in quantum computing is L. K. Grover’s search algo-
rithm, which searches an unordered list of N items (or the range of an efficiently
computable function) for a specific item in time O(

√
N), an improvement on the

optimal classical algorithm, which must look at N/2 items on average before find-
ing a specific item [21]. The technique used in this algorithm can be applied to a
number of other problems to also obtain a square root speed-up [22].

One of the earliest applications of quantum mechanics to areas related to
computing is quantum cryptography, more specifically quantum key distribution.
Consider two people trying to share some secret information which they can then
use as a key for a cryptosystem. If they can only communicate over a phone
line possibly open to eavesdroppers, they have no choice but to use public key
cryptography [27], which may be open to attack by a quantum computer or (say)
discovery of a fast factoring algorithm on a classical computer. However, if they in
addition have access to an optical fiber which they can use to transmit quantum
states, they can use quantum cryptography [4]. One of them (the sender) transmits
states chosen at random from a set of non-orthogonal quantum states (e.g. V0,
V1, 1√

2
(V0 + V1), 1√

2
(V0 − V1)) The receiver then reads the states in either the

basis {V0, V1} or { 1√
2
(V0 ± V1)}, again chosen at random. Communicating over

a classical channel using a special protocol, they can figure out the states for
which they agree on the measurement basis; they should agree on about half the
states, each of which supplies a bit towards a secret key. If an eavesdropper was
listening, she cannot have gained too much information—since she does not know
in which basis the states were transmitted, any information she gains must cause
a disturbance in the states, which the sender and receiver can detect by measuring
some of their states instead of using them for the secret key. They can also
further sacrifice some of their bits to ensure that the eavesdropper gains virtually
no information about the remaining bits of their key, and that they agree on all
the bits of this key. Since the original quantum cryptography papers, there have
been many articles either proposing other schemes or working towards rigorous
proofs that the scheme is secure against all possible quantum attacks (i.e., when
the eavesdropper has access to a quantum computer). A good bibliography on
quantum cryptography is [8].

Quantum cryptography is but one aspect of a rapidly burgeoning subject,
quantum information theory. A startling result in this field, the interest in which
helped contribute to its recent rapid growth, was the discovery of quantum tele-
portation [5]. It is not possible to transmit an unknown quantum state using only
classical information (say, over a telephone line). However, if two people share
an EPR pair, such as the quantum state 1√

2
(V01 − V10), with the sender holding
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the first qubit and the receiver holding the second, then they can transmit an
unknown quantum bit using a classical channel. The sender performs a combined
measurement on the unknown state and the EPR pair, and transmits the classical
two-bit outcome to the receiver, who then uses this information to reconstruct
the unknown state from his half of the EPR pair. The act of teleportation thus
uses up the resource of entanglement between the sender and the receiver, which
is present in the EPR pair. One research direction in quantum information theory
is quantifying the amount of entanglement in a quantum state. Another direc-
tion is measuring the classical and the quantum capacities of a quantum channel.
More information on quantum information theory can be found in Preskill’s course
notes [26] and in the survey article [6].

Another recent development is the study of quantum communication com-
plexity. If two people share quantum entanglement, as well as a classical commu-
nications channel, this permits them to send each other qubits, but does not reduce
the number of bits required for transmission of classical information. However, if
they both have some classical data, and they wish to compute some classical func-
tion of this data, shared quantum entanglement may help reduce the amount of
purely classical communication required to compute this function. This was first
shown by Cleve and Burhman [13]. More results on communication complexity
have since been shown, and some of these were recently used to give lower bounds
on the power of quantum computers in the black-box (oracle) model [9].

There has been a substantial amount of recent work on both quantum error
correcting codes and quantum fault tolerance. Many results on quantum error
correcting codes are reviewed in [10], and Preskill has written an excellent survey
of fault tolerant quantum computing [25].
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Section 1. Logic

O-Minimality

A. J. Wilkie

In the paper [11] Tarski makes the following observation: every subset of the set of
real numbers R definable in the ordered ring 〈R; +,. , 0, 1, <〉 (which I shall hence-
forth denote by R̄) is a finite union of open intervals and points. This is certainly
an easy consequence of his famous quantifier elimination theorem ([12]) - that
every subset of Rn definable in R̄ is semi-algebraic, i.e. definable by a quantifier
free formula - and must have seemed a relatively unimportant one at the time.
However, it turned out to be a remarkable insight. For in the 1980’s van den Dries
showed that most of the qualitative geometric and topological finiteness properties
enjoyed by the class of semi-algebraic sets actually follow from this observation
alone. Indeed, many such properties, e.g. finite cell-decomposition theorems in
the continuous category, do not even require the ring structure, although some
do, e.g. finite cell-decomposition theorems in the differentiable category and finite
triangulation theorems.

The property described in Tarski’s observation is now known as o-minimality and,
as was shown by Knight, Pillay and Steinhorn in [7] and [10], it can be fruitfully
considered in quite general situations: a structure M = 〈M,<, ...〉, where < is a
dense, linear order (without endpoints) of the domain M, is called o-minimal if
every definable (without parameters) subset of M is a finite union of points and
open intervals (with endpoints in M ∪ {±∞}).
It is a suprising and non-obvious fact that o-minimality is preserved under el-
ementary equivalence. This is one of the main results of [7] and is typical
of the ”uniformity-in-parameters” that crops up frequently in this subject: it
is equivalent to the statement that for any formula φ(x1, ..., xn, y) of the lan-
guage of M, there is a natural number N depending only on φ such that the set
{bεM : M |= φ[a1, ..., an, b]} is the union of at most N open intervals and points
for any choice of parameters a1, .., anεM .

More generally, one can also deduce from the assumption of o-minimality that
there are only finitely many homeomorphism types amongst sets of the form {<
b1, ..., br >}εMr : M |= ψ[a1, ..., an, b1, ..., br]} as < a1, .., an > varies over Mn,
where ψ(x1, ..., xn, y1, .., yr) is a formula of the language of M. (Here, Mr is
equipped with the product topology and M with the order topology.) Similar
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results and, indeed, a definitive account of the foundations of the general theory
of o-minimality can be found in van den Dries’ recent book [3].

Of course, this general theory is only worthwhile if there are interesting examples
(other than R̄ and its reducts) and it is my main aim in this short note to state a
result that provides a rich source of o-minimal expansions of R̄.

Let R̃ be any expansion of the real ordered field R̄ with language L̃ say. Call a
formula ψ of L̃ tame if there exists a natural number N (depending only on ψ)
such that whenever the free variables of ψ are partitioned into two classes, say ψ =
ψ(x1, ..., xm, y1, ., yr), then the set {< b1, ..., br > εRr : M |= ψ[a1, ..., an, b1, .., br]}
has at most N connected components for any choice of < a1, ..., an > εRn. Then I
know of no counterexample to the following

Conjecture

With R̃ as above, if every quantifier free formula of L̃ is tame then R̃ is o-minimal
(which, in fact, implies that every formula of L̃ is tame - see [7] again).

I am, however, rather sceptical.

In order to state my result in this direction it is convenient to introduce a unary
connective, denoted C, to our language, with truth condition:-

R̃ |= (Cφ)[a1,
. .., an] if and only if < a1,

. .., an > lies in the closure (in Rn) of the
set {< b1, ..., bn > εRn : R̃ |= φ[b1, ..., bn]}.

Clearly C is already definable in L̃ (for interpretations expanding R̄) but the point
is that we have the following

Theorem (Wilkie, [14]).

Let R̃ be as above and suppose that every quantifier free formula is tame. Then
so is any formula that can be obtained from quantifier free formulas by finitely
many applications of conjunction, disjunction, existential quantification and the
connective C. Further, if we also assume that R̃ has the form < R̄,F > where F
is a collection of infinitely differentiable functions from Rn to R (for various n’s),
then any formula of L̃ is equivalent (in R̃) to one of this type, and hence (since a
connected subset of R is an interval) R̃ is o-minimal.

The reason for proving a theorem of this type was that the tameness condition
on the quantifier free definable sets was established for a wide class of examples
through the work of Khovanskii ([6], but see also [5] in conjunction with [8]). He
showed that it holds for structures of the form < R̄, f1, ..., fp > where f1, ..., fp :
Rn → R are infinitely differentiable functions (actually, the following implies they
are analytic) satisfying a system of partial differential equations of the form

∂fi

∂xj
= Pi,j (x1, ..., xn, f1, ..., fi), 1 ≤ i ≤ p, 1 ≤ j ≤ p,
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where each Pi,j (x1, .., xn, y1, ..., yi) is a polynomial with real coefficients. (The
sequence f1, ..., fp is then called a Pfaffian chain on Rn).

Thus, by the theorem, these structures are o-minimal.

In particular, 〈R̄, exp〉 is o-minimal, where exp(x) = ex is the exponential funtion
(take p = n = 1, P1,1 (x1, y1) = y1). In fact, this result appears in [1] although
some of the arguments in that paper are, to my mind, incomplete. However, the
main idea there is fundamentally sound and was studied extensively by my student
S. Maxwell (see[9]) before I finally adapted it to establish the theorem above.
Perhaps I should also mention that in the case of 〈R̄, exp〉 we now have better
information (see[13]): every definable set is existentially definable (from which
o-minimality follows very easily from Khovanskii’s result). However, nothing like
this is known for expansion of R̄ by general Pfaffian chains.
I conclude with an application of the general uniformity result mentioned earlier.
Clearly, if we take M = R̄ then we can deduce that for any n, k there is N =
N(n, k) such that there are at most N homeomorphism types of sets of the form
P−1(0) where P : Rn → R is a real polynomial of total degree at most k. This
was actually proved by Hardt (see[4]) before o-minimality came on the scene. Now
van den Dries noticed that if we take M = 〈R̄, exp〉 then Hardt’s result may be
improved by using a trick of Khovanskii’s. Namely, we take the exponents of the
variables in P, as well as the coefficients, as parameters - which we can do as long
as we bound the number of monomial terms in P. We then obtain the result that
for any n, k there is N = N(n, k) such that there are at most N homeomorphism
types of sets of the forms P−1(0) where P : Rn → R is a real polynomial (of
arbitray degree but) which is the sum of at most k monomials (i.e. terms of the
form axq1

1 · · ·xqn
n for aεR and q1, ..., qnεN, although, in fact, we could also allow

q1, ..., qnεR). (Remark: for n = 1 this is usually attributed to Descartes).

More recently Coste ([2]) has proved a uniformity result for the homeomorphism
types of definable functions in o-minimal structures and this gives a corresponding
result for the homeomorphism types of polynomials with a restricted number of
monomial terms.
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Section 12. Probability and Statistics

Lattice Point Problems

and the Central Limit Theorem

in Euclidean Spaces

cf. Vol. III, p. 245–255

F. Götze

Errata

1) Replace in formula (1.2) exp{− v

2
} by Γ( d

2
+ 1)( v

2
)

d

2 exp{− v

2
}.

2) On the same page replace line 14–16 from bottom by:
... values in the interval [0, n − 1] with probability c > χ(1)/2, n > n0. Thus

there exists an integer j such that

P {Tn = j n−1} ≥ c n−1.

3) In the display formula after (5.6) replace κ = c2δ
−4/d by κ = c2δ

4/d.
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Section 10. Partial Differential Equations

Estimates Near the Boundary for Solutions

of Second Order Parabolic Equations

Mikhail Safonov

Abstract. We discuss different forms of the Harnack inequality for
second order, linear, uniformly parabolic differential equations, and their
applications to the estimates of solutions near the boundary. These appli-
cations include some Gaussian estimates and doubling properties for the
caloric measure, and estimates for the quotient of two positive solutions
vanishing on a portion of the boundary of a Lipschitz cylinder. A genera
approach to all these problems is demonstrated, which works for both
the divergence and non-divergence equations and is based only on the
“standard” Harnack inequality and elementary comparison arguments.

1991 Mathematics Subject Classification: Primary 35K
Keywords and Phrases: Harnack inequality, Caloric measure, Doubling
property

1 Introduction. Preliminary results

In this paper, we deal with the estimates of solutions to second order parabolic
equations, which do not depend on the smoothness of coefficients. Such estimates
have many important applications, especially in the theory of nonlinear equations
(see [K], [LSU], [T], [PE]). Here we treat simulteneously the equations in the
divergence form

Lu =
n∑

i,j=1

Di(aijDju)− ut = 0, (D)

and in the non-divergence form

Lu =
n∑

i,j=1

aijDiju− ut = 0, (ND)
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where Dj = ∂/∂xj , Dij = DiDj . We assume that the functions u = u(X) and the
coefficients aij = aij(X) are defined and smooth for all X = (x, t) ∈ Rn+1, and
the operators L are uniformly parabolic, i.e. aij satisfy

ν|ξ|2 ≤
∑

i,j

aijξiξj for all ξ = (ξ1, · · · , ξn) ∈ Rn, max
i,j

|aij(X)| ≤ ν−1, (1.1)

with a constant ν ∈ (0, 1]. However, our estimates do not depend on the extra
smoothness of u and aij , and by standard approximation procedures, they are
extended to measurable aij in the divergence case (D) and to continuous aij in
the non-divergence case (ND).

At present, the equation (D) are investigated much better than (ND). For
example, under natural boundary conditions, the solution u of the equations (D)
with measurable aij are well approximated by the solutions uε of equations with
smooth aε

ij → aij as ε → 0 (a.e.) A recent striking example by Nicolai Nadirashvili
[N] (see also [S]) shows that this procedure fails to give a unique solution even
for elliptic equations

∑
aijDiju = 0 with measurable aij in the unit ball B1 ⊂

Rn, n ≥ 3: different subsequences {uεk} may converge to different functions.
Nevertheless, some properties of solutions look similar for the equations (D)

and (ND), though their proofs are essentially different in these two cases. It
turns out that two such statements, the comparison principle (Theorem 1.1) and
the interior Harnack inequality (Theorem 1.2), provide the background for many
others. From this “unifying ” point of view, we present different versions of the
Harnack inequality, estimates of quotients of positive solutions, doubling properties
for L−caloric measure, and other related results. The proofs of these results are
very “compressed”, for some statements we only give an outline of the main ideas.
In the elliptic case, i.e. when aij and u in (D) or (ND) do not depend on t, most
of these results are known from [CFMS], [B], [FGMS]. They were extended to the
parabolic equation with time-independent coefficients in [S], [G], [FGS] , and to
general parabolic equations (D), (ND) in recent papers [FS], [FSY], [SY].

For an arbitrary domain V ⊂ Rn+1, we define its parabolic boundary ∂pV
as the set of all the points Y = (y, s) ∈ ∂V , such that there is a continuous
curve X(t) = (x(t), t) lying in V ∪ {Y } with initial point Y , along which t is
non-decreasing. In particular, for Q = Ω× (t0, T ) we have

∂pQ = ∂xQ ∪ ∂tQ, where ∂xQ = ∂Ω× (t0, T), ∂tQ = Ω× {t0} . (1.2)

For y ∈ Rn, r > 0, Y = (y, s), Q = Ω× (t0, T ), and small δ > 0, we denote

Br = Br(y) = {x ∈ Rn : |x− y| < r}, Cr = Cr(Y ) = Br(y)× (s− r2, s + r2),
Qr = Qr(Y ) = Q ∩ Cr(Y ), ∆r = ∆r(Y ) = (∂pQ) ∩ Cr(Y ),
Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ}, Qδ = Ωδ × (t0 + δ2, T ).

Theorem 1. (Comparison principle). Let V be a bounded domain in Rn+1,
functions u, v ∈ C2(V ) ∩ C(V ) and satisfy Lu ≤ Lv in V, u ≥ v on ∂pV .
Then u ≥ v on V .
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This theorem is well-known and its proof is elementary. The next one is far
from obvious. In the divergence case, it was discovered by Moser [M] in 1964. In in
the non-divergence case, it was proved in [KS] in 1978-79, see also [K], Chapter 4.

Theorem 2. (Interior Harnack inequality). Let u be a nonnegative solution of
Lu = 0 in a bounded cylinder Q = Ω × (t0, T ), and let positive constants δ, λ
be such that Ωδ is a connected set, and diamΩ +

√
T − t0 ≤ λδ. Then for all

x, y ∈ Ωδ and s, t satisfying t0 + δ2 ≤ s < s + δ2 ≤ t < T , we have

u(y, s) ≤ Nu(x, t) (1.3)

with a constant N = N(n, ν, λ).

From now on we assume that Ω is a bounded domain in Rn satisfying the
following Lipschitz condition with some positive constants r0, m : for each y ∈
∂Ω, there is an orthonormal coordinate system (centered at y), with coordinates
x = (x1, · · · , xn−1, xn) = (x′, xn), such that

Ω ∩ {|x′| < r0, |xn| < (m + 1)r0} = {|x′| < r0, ϕ(x′) < xn < (m + 1)r0}, (1.4)

and |∇ϕ| ≤ m on the ball {|x′| < r0} ⊂ Rn−1. Then for any continuous function g
on Rn+1, there exists a unique solution u ∈ C2(Q) ∩ C(Q) of the boundary value
problem

Lu = 0 in Q = Ω× (t0, T), u = g on ∂pQ. (1.5)

This is a well-known fact for smooth Ω, and it is easily extended to Lipschitz
domains Ω by their approximation with smooth domains Ωj ↘ Ω. From Theorem
1.1 it follows that g −→ u(X) is a linear continuous functional on C(∂pQ). By
the Riesz representation theorem, there exists of a unique probability measure
(L-caloric measure) ωX = ωX

Q on ∂pQ, such that the solution of the problem (1.5)
has the form

u(X) = u(x, t) =
∫

∂pQ

g(Y )dωX(Y ). (1.6)

The above representation is also valid for unbounded domains Q under some
natural restrictions on the growth of solutions for |x| → ∞. For example, if the
function g is bounded, we restrict ourselves to the bounded solutions u.

Lemma 3. Let Ω be a bounded Lipschitz domain in Rn with constants r0

and m, and let Q = Ω × (t0,∞). Then for any Y = (y, s) ∈ ∂xQ = ∂Ω × (t0,∞),
and r ∈ (0, r0], we have

ωX(4r) ≥ N−1 on Qr/2 (1.7)

with a constant N = N(n, ν,m) > 1. If Y = (y, t0) ∈ ∂tQ = Ω × {t0} , then the
estimate (1.7) holds for all r > 0 with a constant N = N(n, ν) > 1.
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Proof. Without loss of generality, we may assume t0 = 0. First we consider a
simpler case Y = (y, 0) ∈ ∂tQ. In this case,

C = Cr(Y ) = Br(y)× (−r2, r2) ⊃ C+ = Br(y)× (0, r2) ⊃ Qr = Q ∩ C.

The function

u(X) = ωX
C+(∂tC

+) on C+, u ≡ 1 on C \ C+

can be treated as a solution of the problem (1.5) in the cylinder C with g ≡ 1 for
t ≤ 0, g ≡ 0 for t > 0. Therefore, applying Theorem 1.1 in Qr = Q ∩ C and then
Theorem 1.2 in C, we obtain the desired estimate with a constant N = N(n, ν) >
1 :

ωX(4r) ≥ u(X) ≥ N−1u(y,−r2/2) = N−1 on Qr/2.

Now it remains to consider the case Y = (y, s) ∈ ∂xQ, i.e. y ∈ ∂Ω, s ∈
(t0,∞). By the Lipschitz condition, the set Br(y) \Ω contains a ball Bµr(z) with
µ = µ(m) > 0. Then

Z = (z, s− r2/2) ∈ C ′ = Bµr(z)× (s− r2, s + r2) ⊂ C \Q,

where C = Cr(Y ). We can apply Theorem 1.2 to the function u(X) = ωX
C (∂tC

′)
in C and to u′(X) = ωX

C′(∂tC
′) in C ′ extended as u′ ≡ 1 across ∂tC

′. This gives
us

ωX(4r) ≥ u(X) ≥ N−1
1 u(Z) ≥ N−1

1 u′(Z) ≥ N−1
2 on Qr/2,

where the constants N1 and N2 depend only on n, ν, m. Lemma 1.1 is proved.

Corollary 4. Let Lu = 0, u > 0 in Q, and u = 0 on ∆R(Y ) = (∂pQ) ∩ CR(Y )
for some Y ∈ ∂xQ and R ∈ (0, r0]. Then

sup
QR/2

u ≤ θ sup
QR

u, (1.8)

sup
Qr

u ≤ (2r/R)α sup
QR

u for all r ∈ (0, R] (1.9)

with constant θ = θ(n, ν, m) ∈ (0, 1), α = − log2 θ > 0. If Y ∈ ∂tQ, then (1.8) and
(1.9) hold for all R > 0 with θ, α depending only on n, ν.

Proof. Let ωX denote the L-caloric measure on ∂pQR. Then

ωX((∂pQR) \∆R) = 1− ωX(∆R) ≤ 1−N−1 = θ on QR/2,

and since u = 0 on ∆R(Y ),

sup
QR/2

u = sup
QR/2

∫

∂pQR

udωX ≤ sup
QR/2

ωX((∂pQR) \∆R) · sup
∂pQR

u ≤ θ sup
QR

u.

The estimate (1.8) is proved. Iterating this estimate, we also get (1.9).
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2 Gaussian Estimates for L-caloric Measure

For given cylinder Q = Ω × (t0, T ) ⊂ Rn+1, introduce the functions d(x) =
dist(x, ∂Ω) on Ω, and

ρ(X) = ρQ(X) = ρ(x, t) = d(x)/
√

t− t0 on Q, (2.1)

Theorem 5. There exist positive constants N, β, depending only on n and ν, such
that

ωX(∂xQ) ≤ Ne−βρ2(X) on Q. (2.2)

Proof. We fix Y0 = (0, 1) ∈ Rn+1, and for ρ > 0 define M(ρ) = supωY0
C (∂xC),

where C = Bρ(0)× (0, 1), and the supremum is taken with respect to all parabolic
operators L with coefficients aij satisfying (1.1). It is easy to see that M(ρ)
decreases on (0,∞), and moreover, applying Corollary 1.1 to u(X) = ωX

C (∂xC),
we have M(ρ) ↘ 0 as ρ ↗ ∞. This allows us to fix a constant A = A(n, ν) such
that M(A) ≤ 1/3. By substitution x → (x − y)/

√
h, t → 1 + (t − s)/h, we also

have ωY
C (∂xC) ≤ M(ρ) for all Y = (y, s) ∈ Rn+1 and C = Bd(y)× (s− h, s) with

d/
√

h ≥ ρ. If we take Y = X = (x, t) ∈ Q = Ω× (t0, T ), d = d(x), and h = t− t0,
then C = Bd(x)× (t0, t) ⊂ Q and ∂tC ⊂ ∂tQ, hence

ωX
Q (∂xQ) ≤ ωX

C (∂xC) ≤ M(d/
√

t− t0) = M(ρ(X)). (2.3)

Further, for natural j ≥ 5, set ρj = 4A
√

j, εj = 2/
√

j, Mj = M(ρj), and
consider the cylinders

Qj = Bρj (0)× (0, 1) ⊃ Q′
j = BεjA(0)× (1− ε2

j , 1).

The function ρ = ρ(X) = ρ(x, t) = (ρj −|x|)/
√

t corresponds by the equality (2.1)
to Q = Qj . One can easily verify the inequalities ρ ≥ ρj−1 on ∂xQ′j and ρ ≥ ρj+1

on ∂tQ
′
j . Therefore, the caloric measure ωX for L in Qj satisfies

ωX(∂xQj) =
∫

∂pQ′j

ωY (∂xQj)dωX(Y ) ≤ Mj−1 · ωX(∂xQ′
j) + Mj+1 · ωX(∂tQ

′
j)

for all X ∈ Q′j . By the choice of A, we have ωY0(∂xQ′
j) = 1 − ωY0(∂tQ

′
j) ≤ 1/3,

and the previous estimate yields

Mj ≤ 1
3
Mj−1 +

2
3
Mj+1,

Mj −Mj+1 ≤ 2−1(Mj−1 −Mj) ≤ · · · ≤ 25−j(M5 −M6) ≤ 25−j .

For arbitrary ρ ≥ ρ5, we choose j ≥ 5 such that ρj ≤ ρ < ρj+1, so that

M(ρ) ≤ M(ρj) = Mj =
∑

k≥j

(Mk −Mk+1) ≤ 26−j ≤ Ne−βρ2
j+1 ≤ Ne−βρ2

,
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by appropriate choice of constants N, β, depending only on n and ν. If N is chosen
large enough, the estimate M(ρ) ≤ Ne−βρ2

also holds for 0 < ρ < ρ5. Together
with (2.3), these estimates imply the desired estimate (2.2).

Remark 2.1. From Theorem 2.1 it follows immediately the uniqueness of
the Cauchy problem

Lu = 0 in Rn × (0, T ), u(x, 0) ≡ g(x) (2.4)

in the class of functions satisfying |u(x, t)| ≤ NeN |x|2 , and the proof does not
depend on the structure (divergence or non-divergence) of the operator L. Using
some arguments in the papers by Moser [M] and Aronson [A1], one can prove a
stronger statement: there is at most one solution of the problem (2.4) satisfying a
one-sided inequality u(x, t) ≥ −NeN |x|2 for all (x, t) ∈ Rn × (0, T ).

Remark 2.2. In the divergence case, from Moser’s Harnack inequality it
follows the Hölder continuity of solutions, which was proved ealier by Nash [Ns].
Aronson [A2] also essentially used the Harnack inequality in the proof of the Gaus-
sian estimates for the fundamental solution Γ(x, t; y, s) of the divergence operator
L: for s < t,

1
N

(t− s)−n/2 exp
(
−N |x− y|2

t− s

)

≤ Γ(x, t; y, s) ≤ N(t− s)−n/2 exp
(
− |x− y|2

N(t− s)

)
,

(2.5)

with a constant N = N(n, ν). Fabes and Stroock [FS] gave another proof of the
estimates (2.5) which is based on some ideas of Nash instead of the Harnack
inequality, and they also showed that the Harnack inequality follows easily from
(2.5). Thus all these facts are mutually related.

3 Harnack Inequalities

As before, let Ω be a bounded domain in Rn satisfying the Lipschitz condition
with constants r0,m, and let Q = Ω × (t0,∞). For y ∈ Ω and r ∈ (0, r0], the set
Ωr(y) = Ω ∩ Br(y) contains a ball Bµr(yr), where µ = µ(m) ∈ (0, 1/2]. We fix
such yr depending on y and r, and for Y = (y, s), denote Y ±

r = (yr, s± 2r2). The
following result is often referred to as a boundary Harnack inequality, or Carleson
type estimate. For parabolic equations, it was first proved by Salsa [S] (in the
divergence case) and Garofalo [G] (in the non-divergence case), see also [FSY].

Theorem 6. Let Q = Ω × (t0,∞), Y ∈ ∂pQ, 0 < r ≤ r0/2, and let u be a
nonnegative solution of Lu = 0 in Q, satisfying u = 0 on ∆2r(Y ) = (∂pQ)∩C2r(Y ).
Then

u ≤ N(n, ν, m)u(Y +
r ) on Qr = Qr(Y ). (3.1)
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In the elliptic case, when aij and u do not depend on t, the interior Harnack
inequality (1.3) is equivalent to

sup
Ωδ

u ≤ N(n, ν, λ) inf
Ωδ

u, (3.2)

provided u ≥ 0, Lu = 0 in Ω, Ωδ is a connected set, and (diam Ω)/δ ≤ λ. An easy
example of the function

u(x, t) = t−1/2 exp[−(x− 2)2/4t] for t > 0, u(x, t) ≡ 0 for t ≤ 0,

which satisfies u ≥ 0, Lu = uxx − ut = 0 in Q = (−1, 1)× (−1, 1), shows that we
cannot simply replace Ωδ by Qδ in the parabolic case. However, this is possible
under the additional assumption u = 0 on ∂xQ. As in [G], [FGS], Theorem 3.1
yields the following interior elliptic-type Harnack inequality.

Theorem 7. Let Lu = 0, u > 0 in Q = Ω × (t0, T ), u = 0 on ∂xQ = ∂Ω ×
(t0, T ), and let positive constants δ ∈ (0, r0) and λ > 1 be such that (diamΩ +√

T − t0)/δ ≤ λ. Then

sup
Qδ

u ≤ N(n, ν, m, λ) inf
Qδ

u. (3.3)

Proof follows from Theorems 1.2 and 3.1 and the maximum principle:

sup
Qδ

u ≤ sup
x∈Ω

u(x, δ2/4) ≤ N1 sup
x∈Ωµδ

u(x, δ2/2) ≤ N inf
Qδ

u,

where N1 = N1(n, ν, m), µ = µ(m) > 0.

The next theorem is called a boundary elliptic-type Harnack inequality, be-
cause the constant N in (3.4) does not depend on the distance between Cr(Y ) and
∂xQ. In equivalent forms, this result is contained in [FS], [FSY].

Theorem 8. Under the assumptions of the previous theorem, let Y = (y, s) ∈ Q
and r > 0 be such that s− t0 ≥ 4δ2 > 0 and Cr(Y ) ⊂ C2r(Y ) ⊂ Q. Then

sup
Cr(Y )

u ≤ N(n, ν,m, λ) inf
Cr(Y )

u. (3.4)

Proof. If r > δ, from C2r(Y ) ⊂ Q it follows Cr = Cr(Y ) ⊂ Qδ, and (3.4)
follows from the previous theorem. Therefore, we may restrict ourselves to the
case 0 < r ≤ δ. Iterating the interior Harnack inequality, one can get the estimate

u(Y −
R ) ≤ N0(R/r)γ inf

Cr

u for 0 < r ≤ R ≤ δ (3.5)

with positive constants N0, γ, depending only on n, ν, m. We take

R = max{ρ : r ≤ ρ ≤ δ, sup
Cr

u ≤ (r/ρ)γ sup
Qρ

u},
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where Qρ = Qρ(Y ) = Q ∩ Cρ(Y ). By this choice of R and (3.5), the proof of the
desired estimate (3.4) is now reduced to the following one:

MR = sup
QR

u ≤ Nu(Y −
R ). (3.6)

For the proof of (3.6), we first consider the case R ≤ δ/K, where K = const ≥
2. Introduce the cylinders

C ′ = BKR(y)× (s− 4R2, s + 4R2) ⊂ CKR(Y ), Q′ = Q ∩ C ′ ⊂ QKR.

By definition of R,

sup
∂xQ′

u ≤ MKR < (KR/r)γMr = KγMR.

Moreover, by Theorem 2.1, ωX
C′(∂xQ′) ≤ K−γ/2 on QR,provided K = K(n, ν,m)

is large enough. Using the representation (1.6) in Q′, we have

MR = sup
QR

∫

∂pQ′
udωX ≤ sup

∂xQ′
u · sup

QR

ωX
C′(∂xQ′) + sup

∂tQ′
u ≤ 1

2
MR + sup

∂tQ′
u,

and MR ≤ 2u(Z) for some point Z = (z, s− 4R2) ∈ ∂tQ
′, which lies strictly below

Y −
R . By Theorems 1.2 and 3.1, we get the estimate (3.6) in the case R ≤ δ/K.

If δ/K < R ≤ δ, then by the maximum principle MR ≤ u(Z) for some point
Z = (z, s − δ2), and since diam Ω ≤ λδ < KλR, the previous argument is still
valid. Thus we have (3.6) in any case, and so Theorem 3.3 is proved.

4 Estimates for Quotients of Solutions

Let Ω be a bounded Lipschitz domain, and let y ∈ ∂Ω and Y = (y, s) be fixed.
We will use a local coordinate system which provides the representation (1.4) of
a portion of Ω in r0-neighborhood of y = 0. In this neighborhood, the distance
function d = d(x) = dist{x, ∂Ω} is equivalent to d′ = d′(x) = d′(x′, xn) = xn −
ϕ(x′). For r ∈ (0, r0] and K > 1, we introduce the sets

Dr = {x = (x′, xn) : |x′| < r, 0 < d′(x) < r} × (s− r2, s + r2),
Sr = (∂pDr) ∩ {d′ = r}, Γr = (∂pDr) ∩ {0 < d′ < r},

D+
r = Dr ∩ {d′ ≥ r/K}, D−

r = Dr ∩ {0 < d′ < r/K},
S′r = Dr ∩ {d′ = r/K}, Γ′r = (∂pDr) ∩ {0 < d′ < r/K}.

For K À 1, S′r is a “wide” portion of ∂pD
′
r lying in {d′ > 0}, Γ′r is a “narrow”

portion of ∂pD
′
r. Using Lemma 1.1 and Corollary 1.1, one can obtain the estimates

inf
D+

r/K

ωX
D−r

(S′r) ≥ pK =
1
N

K−γ , sup
Dr/K

ωX
D−

r
(Γ′r) ≤ qK = Ne−βK (4.1)

with some positive constants N, γ, β depending only on n, ν, m. The bounds pK

and qK have different decay rates as K → ∞, because one needs to apply the
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estimate (1.7) O(lnK) times in order to get the first inequality in (4.1), while the
second one is obtained by application of the estimate (1.8) O(K) times. We will
fix K = K(n, ν, m) ≥ 1 large enough to guarantee the inequality pK ≥ 2qK . These
inequality helps to prove the following results.

Lemma 9. Let ωX be L-caloric measure in the domain D2r for some r ∈ (0, r0/2].
Then there exists a constant N = N(n, ν,m) ≥ 1, such that

N−1ωX(S2r) ≤ ωX(Γ2r) ≤ NωX(S2r) on Dr. (4.2)

Theorem 10. Let Q = Ω× (t0,∞) and Y = (y, s) ∈ ∂xQ be fixed. Let u1 and u2

be two positive solutions of Lu = 0 in Q, and u1 = 0 on ∆4r(Y ) = (∂pQ)∩C4r(Y ),
where 0 < 4r ≤ min(r0,

√
s− t0). Then

u1

u2
≤ N(n, ν, m)

u1(Y +
r )

u2(Y −
r )

on Qr = Qr(Y ). (4.3)

If also u2 = 0 on ∆4r(Y ), we can interchange u1 and u2 in (4.3), and this
yields a lower estimate for u1/u2 on Qr. If u2 = 0 on ∂xQ, we can also use the
elliptic-type Harnack inequality, which gives the estimate of oscillation and the
Hölder continuity of u1/u2. For more details, see [FSY].

5 Doubling Properties

The following doubling property in the divergence case follows easily from Aron-
son’s estimate (2.3). In the non-divergence case, this estimate is not valid. Our
methods work for both the divergence and non-divergence cases.

Theorem 11. Let a constant ε ∈ (0, 1/2) be given. Then for all r > 0, we have

ωX(∆r) ≤ NωX(∆r/2) on P = {ε|x|2 ≤ t} (5.1)

with a constant N = N(n, ν, ε), where ∆r = Br(0) × {0} ⊂ Rn × {0}, and ωX is
the L-caloric measure for Q = Rn × (0,∞).

Theorem 12. Let Q = Ω × (t0,∞), Y = (y, s) ∈ ∂pQ, and constants ε ∈
(0, 1/2), λ ≥ 1 be given. Then the estimate (5.1) holds for ∆r = ∆r(Y ) for all
r ∈ (0, λr0/4] and X = (x, t) ∈ Q satisfying ε|x− y|2 ≤ t− s, 4r ≤ √

t− s ≤ λr0.

These theorems are proved in [SY]. One of its applications is the Fatou theorem
which states that any positive solution of Lu = 0 in Q has finite non-tangential
limits at almost every (with respect to the L-caloric measure) point Y ∈ ∂pQ. In
the time-independent case, this result was proved in [FGS].
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Section 16. Applications

The Invited Speaker, Bonnie Berger, was not able to attend the Congress.

Recent Developments

in Computational Gene Recognition

Serafim Batzoglou, Bonnie Berger, Daniel J. Kleitman,
Eric S. Lander, and Lior Pachter

Abstract. We survey recent mathematical and computational work in
the field of gene recognition, focusing on the techniques that have been
developed to tackle the problem of identifying protein coding regions in
genes. We also present a new approach to gene recognition which is based
on a variety of tools we have developed.

1 Introduction

1.1 What do you do with 100KB of human genomic DNA?

Recent advances in DNA sequencing technology have led to rapid progress in the
Human Genome Project. Within a few years, the entire human genome will be
sequenced. The rapid accumulation of data has opened up new possibilities for
biologists, while at the same time unprecedented computational challenges have
emerged due to the mass of data. The questions of what to do with all the
new information, how to store it, retrieve it, and analyze it, have only begun to
be tackled by researchers [11]. These problems are distinguished from classical
problems in biology, in that their solution requires an understanding not only of
biology, but also of mathematics and computer science. Of the many problems, it
is clear that the following tasks are of importance:

• Finding genes in large regions of DNA.

• Identifying protein coding regions within these genes.

• Understanding the function of the proteins encoded by the genes.

The important third problem, namely understanding the function of a newly
sequenced gene, requires the solution of the second problem, identification of criti-
cal subregions which code for protein. Protein coding regions have different statis-
tical characteristics from noncoding regions, and it is primarily this feature which
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Figure 1: A schematic view of the transcription-translation process: During trans-
lation the T nucleotide becomes a U (Uracil). In this example, the boxed UAA
triplet is not a codon and therefore does not end translation. Rather, the in-
frame codons are “...GAC GAG AUA...”. These are translated into “...D E I...”
(D=Aspartic Acid, E=Glutamic acid, I=Isoleucine). Splicing occurs before trans-
lation. The translated amino acid sequence is folded into a protein.

enables us to distinguish them. An important aspect of work on the problem is the
need to characterize these statistical differences and possibly explain their biolog-
ical underpinnings. This paper surveys recent mathematical and computational
approaches to developing algorithms for identifying protein coding regions within
genes, and discusses some new methods we have recently developed.

1.2 Biological Background

For the purposes of our discussion, we will define a gene (see Figure 1) to be
a single, contiguous region of genomic DNA that encodes for one protein (along
with the 5′ and 3′ flanking regions that contain promoter signals, etc.) There are
four different nucleotides that make up a sequence of DNA. These are Adenine
(A), Cytosine (C), Guanine (G) and Thymine (T). For our purposes, we
will think of DNA as being a string on an alphabet of size 4 (A,C,G,T). When a
gene is expressed, it is first copied in a process known as transcription. This
forms a product known as RNA, which is a working template from which a pro-
tein is produced in a process known as translation. Before translation, the
RNA undergoes a splicing operation [14] conducted by certain enzymes, which
typically delete most of it, leaving certain blocks of the original strand of RNA
intact. These blocks are called exons and the parts that are removed are called
introns. The result of this pruning is the “mature” RNA, which is used during
translation to make the protein. The protein consists of a sequence of amino acids
linked together. During translation, each amino acid is produced by a triplet of
consecutive nucleotides, known as a codon, according to a known map that is
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called the genetic code. This defines the coding frame of the gene.
The gene actually has a “start” translation signal (ATG) and a stop trans-

lation sequence (TAA, TAG or TGA) both within exons; the sequence within
exons between these forms the coding part of the sequence which contains all the
information used to make the protein. The rest of the gene consists of introns,
initial and final “non-coding exons” (these are exons that are glued together with
the coding exons, but that are not used for making protein), as well as flanking
regions containing biological signals of various sorts.

The splicing process is partially understood, and various SnRNP’s (these are
RNA-protein complexes involved in splicing) have been identified that are involved
in the splicing mechanism. These SnRNP’s (or spliceosomes) recognize various
DNA sequences during splicing, and information about the consensus sites they
recognize can be used to identify splice sites. Unfortunately, the biology is not
understood to an extent that makes gene recognition possible on this basis alone
[4]. Indeed, one of the main challenges for mathematicians and computer scientists
working on these problems is to help biologists learn about splicing by detecting
biologically significant signals in genomic databases.

1.3 The computational task

The computational task we are concerned with is that of determining from an ex-
perimentally determined sequence of nucleotides, of length on the order of 100,000,
where the genes are, and what proteins these genes produce. This endeavor has
two parts, though in practice one handles them together: determining where each
gene is, and determining which parts of its sequence are exons and which are
introns. Here we focus on the latter of these two problems.

Nature uses a variety of biological signals, many of which remain to be identi-
fied. Fortunately (in view of our ignorance of the actual biological mechanism), we
are not restricted to using only biological signals used by the cell. First, we know
quite a bit about the constitution of intergenic and intronic sequences in humans.
On the order of 30 percent of these sequences consist of certain repeats of various
standard patterns or variations thereof [15]. Thus there are several hundred thou-
sand copies of one or another variation of a sequence of length about 300 called
Alu in the human genome, and many copies of other sequences as well. Due to the
migratory nature of these repeats, and the mechanisms by which they occur, they
are rare in exons. Secondly, the codons (and consequently amino acids) that code
for protein, are not uniformly distributed, and their distribution differs from that
of triplets in introns. This can help in distinguishing introns from exons. Other
restrictions such as consistency in coding frame between exons greatly reduces the
number of possible parses in a given gene. Indeed, even though in principle the
number of parses is exponential in the number of potential splice sites identified,
in practice many genes exhibit only a few possible parses after these numerous
constraints are introduced.

The data available to us comes from a number of data bases, which contain
examples of various kinds of biological sequences, as follows:

• The protein data base; it contains proteins whose amino acid sequences have
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been determined.

• The cDNA data base; it consists of what are essentially the DNA sequences
of the exons of a gene only, and fragments thereof.

• Data bases of genes whose splicings into introns and exons are known.

• Data bases of genes of various species without such information.

There are numerous complications in this problem, perhaps the most signif-
icant of which is the unreliable nature of the annotated data. There are also
examples of genes which have “alternate splicings” so that under different circum-
stances the same gene can produce different proteins by being spliced differently
into introns and exons. Finally there are introns whose splice sites are very dif-
ferent from the common consensus, not to mention numerous other exceptions to
“the rules.”

2 Previous Work

Current methods can be broadly categorized as learning, or homology based.
While we cannot attempt to discuss in detail the myriad of approaches avail-
able, we will briefly comment on two methods currently in use, namely the HMM
(Hidden Markov Model) approach (used by GENSCAN [2] , GENEMARK [12] and GENIE
[10]) and the homology based method (e.g. PROCRUSTES [6] and AAT [9]).

2.1 Learning based methods

Many of the most popular learning methods are based on a Hidden Markov Model
approach [13] (although there are some notable exceptions to this, for example the
language based system used in GENLANG [5]). It is assumed that the gene structure
of a certain organism can be modeled probabilistically, with certain probabilities
associated with being in certain “states,” and transition probabilities associated
with these states. The states usually model functional units of a gene, for example
exons (in the three different reading frames), introns (sometimes also in three
different flavors depending on the frame of the exon preceding them), as well as
terminal and initial exons, etc. The exact true model to be used is “learned”
from the data. Coding and non-coding exons are usually modeled using 3-periodic
fifth-order Markov Models. The exact methods used to model the various other
biological signals (splice sites, etc.) vary greatly between the different programs.

The main drawback of many of these approaches is that performance is very
dependent on the learning sets used [7]. Generally, only a single data set, developed
by Haussler, Kulp and Reese [8], has been used for training. Overtraining of the
Markov Models leads to poor results when new genes are encountered. This is
especially true in genomics because early sequencing efforts tended to focus on
gene rich areas in the genome, leading to an overabundance of short, GC rich
genes. Some programs such as GENSCAN have begun to deal with this issue by
separately handling GC rich and GC poor gene candidates.
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Another drawback to learning methods is that homology information is not
used for the predictions (this is starting to change with the advent of homology
integration in programs such as GENIE). The user of the program is responsible for
performing his/her own homology searches using BLAST [1] or another program.

Despite these drawbacks, the utility of the programs mentioned cannot
be overlooked. Indeed, the GENSCAN package is becoming increasingly popular
amongst biologists, and other programs such as GRAIL [16] (based on neural net-
works) have been in use for years.

2.2 Homology Based Methods

The PROCRUSTES program [6] approaches gene recognition in a new, interesting
way. The basic idea is that given a protein that is a homolog of the protein
produced by the gene to be solved, one can determine the best way to parse the
gene so that the resulting translated union of coding exons most closely resembles
the target protein. This procedure can effectively be carried out using dynamic
programming. Of course, the method is useless unless one can find a “good” match
to the gene in question in a protein database (the PROCRUSTES program requires
the user to find this input). Recently, cDNA databases are being used in analogous
ways [9]. Exact estimates of how often these methods can be employed on new
genes vary. Guesses range from 30-50 percent, with optimists arguing that these
numbers will improve as the size of the databases increases.

2.3 Previous Results

The analysis and benchmarking of gene recognition tools has become a science in
and of itself. Of the many articles addressing these issues, we mention the excellent
surveys of Burset and Guigó [3, 7]. The non-homology based algorithms are not
sufficiently accurate to be relied on. Accuracy claims range from 60-90 percent per
nucleotide, and 30-80 percent per entire exon with exact numbers dependent on
who is making the claim. In practice these numbers are probably very optimistic
[7]. Indeed, on a new sequence set, the programs identified about 1 in 6 genes
correctly and completely missed the exons in 25 percent of the sequences.

The alarming aspect of the current state of the field is that these programs
perform much worse when tested on new data, namely genes that have been se-
quenced, whose intron/exon structure is known experimentally. This poor perfor-
mance is probably due to a number of factors, the most significant of which is that
current “learning” takes place on small data sets which are often filled with errors
since they have been annotated by the very same programs that are learning from
them!

In practice, those who find genes use a very different approach. They hope
that the cDNA or protein (or a good part of these) that are produced by the gene
lie in one of the corresponding data bases. They then submit their sequences to
BLAST [1], a program that finds best matches to members of the data base. When
it is possible to match parts of the gene with an entire protein, then one has the
answer to our problem, either by examining the alignments by eye, or submitting
the matches to a program such as PROCRUSTES [6]. As the databases grow, the
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likelihood of good matches to new genes increases. When this approach fails,
they turn to the algorithms mentioned, and seek consensus results from them.
The process is tedious, time consuming and does not necessarily produce correct
results.

3 Innovations

We have developed a program (unpublished manuscript) based on the following
ideas:

• Use of larger data bases such as the protein data base as a data source not
only for homology, but for methods based on frequencies of k-tuples of nu-
cleotides and amino acids. This greatly extends the amount of data available,
and therefore allows consideration of k-tuples of much greater length than
have been used heretofore.

• Use of a dictionary approach for finding matches as well as computing k-
tuple frequencies from the databases. The idea of a dictionary has potential
applications that go well beyond this particular problem.

• Attempt to use many separate indicators to distinguish exons, rather than
integrating them immediately into one overall statistic.

• Use of not necessarily consecutive subsequences of nucleotides in our analysis.

• Distinguishing relatively long and not necessarily consecutive sequences of
nucleotides and amino acids that occur unusually often in introns or exons,
but not both, as markers for the same.

• Use of frame differentiation as an indicator for exons.

• Development of a visual program, which allows a user to see and evaluate
predicted introns and exons, and experiment with alternative splicings, as
well as predictions based on homology.

• Use of expected number of hits, rank statistics and other indicators in place
of single maximal likelihood estimates.

• Use of gene data bases for homology-based identification of exons.

• Integration of repeat masking into the gene recognition process.

• Integration of homology-based and statistical approaches in the same pro-
gram.

• Fast predictions using the above techniques, allowing for multiple homologs
to be used in an automated fashion.

We briefly elaborate on two of these ideas below.
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3.1 A Frame Test

Exons can be distinguished from introns in several ways. First, the nature of
the translation code along with the nature of most proteins implies that the three
possible reading frames (the first, second or third positions among the triplets that
go to produce an amino acid) exhibit behavior that is usually quite different from
one another. That is, if one examines a sequence of length 3 or more of nucleotides,
one often finds that this sequence occurs much more often in one frame than
another. This phenomenon becomes much more pronounced as the length of the
sequence increases. Thus, most sequences of length 12 seem to have a pronounced
bias toward a particular frame. The reason for this bias has to do with the genetic
code. Mutations in the third position of a codon have much less effect on the
resulting amino acid than, say, a mutation in the first position. Furthermore,
an exon that is subject to an insertion or deletion of a single nucleotide will be
translated into a completely different protein. Such changes are usually for the
worse because natural selection has selected against them. There is much less
of such strict conservation in introns. A single deletion or insertion appears to
have little effect in an intron on anything, unless it occurs in a rare crucial place
that will prevent the enzymes from splicing the intron. Perhaps for such reasons,
introns tend not to show the frame bias seen in exons. In consequence, examining
the presence or absence of consistent frame bias provides a good first reading of
where the larger exons of the gene are. Furthermore some DNA subsequences look
much more like exons than introns or vice versa, and detecting the presence of
such can also help distinguish introns from exons.

Indeed, the problem of determining the frame of an exon is essentially resolved
using such frame differential methods. Using the above mentioned techniques,
and examining rare subsequences, we can identify the frames of exons correctly 98
percent of the time.

Since the frame information is heavily dependent on the subsequence length
used, the information becomes more definitive as the subsequence gets longer. It
is valuable to use as large a data set as possible for determining which sequences
look like what. The data sets usually used on this problem provide only enough
data to consider 6-tuples of nucleotides, whose length is that of two amino acids in
the resulting protein. The data has more intron information, and provides useful
frequency data for sequences of length up to 9 in introns. Much larger data sets
can be exploited by using protein and cDNA databases. We discuss this idea next.

3.2 Dictionary Approaches

The protein and cDNA data bases contain information derived exclusively from
exons. However the latter is complicated because it contains both fragments of
coding exons, and also fragments which include non-coding exons. The latter tend
to look very different from the coding exons we wish to find, and in fact look
much more like introns than like coding exons, in general. (As always there are
exceptions.) The cDNA data base is also complicated by the fact that the gene
can lie on either strand of the DNA, so that the cDNA can represent the reverse
complement of the original DNA sequence (where complementation interchanges
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C with G and T with A.) Our approach to utilizing these data bases is to compile
dictionaries of fragments of protein script and of cDNA script. These differ from
ordinary dictionaries since we really do not know how to distinguish words. This
means we can define wordlets to be sequences of any kind we choose. Instead
of giving the meaning of such wordlets, which we would dearly love to do, the
dictionary provides for each wordlet in it, a list of all members of the corresponding
data base that contain it. We have compiled such dictionaries, and it is not difficult
to do so on not very expensive computing machines both for cDNA data bases and
the protein data base. In the former we have done so for nucleotide sequences of
length 11, and also for sequences having 11 significant places with every third
place skipped (hence length 16.) In the protein data base we have constructed
a dictionary of amino acid sequences of length 4. We have used these numbers
because they are convenient; furthermore they permit conclusions to be drawn
about longer sequences as well, so that we have not yet encountered a need for a
dictionary with longer wordlets.

Such dictionaries have immediate application to finding homologies where
they exist in these data bases, that is, to finding members of them which are the
product of the gene in question or share one or more of its exons, or resemble the
products of these exons. For by looking up each wordlet of appropriate kind that
occurs in the gene under consideration, one can compute how many wordlets each
entry in the data base shares with the gene in question. One can, furthermore,
use the protein data base dictionary with wordlets of length 4 to find how many
wordlets of length 5 or 6 or etc., each entry shares with the gene in question. In our
case there is little noise for length 5, and by ordering the entries according to the
number of wordlets of length 5 in common with our gene, and examining the top
segment of the ordered list, we can see which proteins share exons with our gene,
and can quickly identify any proteins homologous to any parts of it. The cDNA
data base and appropriate dictionaries can be used for the same purpose. It is also
possible to use the wordlet frequency information contained in the protein data
base dictionary as an intron/exon indicator. We suggest ordering the wordlets
according to frequency of occurrence in the data base, and summing the ranks in
a moving window of 25 successive wordlets for each frame to indicate exons. Tests
suggest that this method is an improvement over the use of raw frequency data.
In particular, some false positive exon signals are removed. The use of ranks also
limits the sensitivity of the prediction methods to the learning data.

4 Discussion

This problem we have discussed can be viewed, in part, as follows: we have a script
that is written in interspersed parts in two “languages”; there are characteristic
transitions between one and the other, and these are helpful for identification
purposes, but only up to a point. (Subsequences that resemble transitions between
intron and exon occur fairly often inside introns and sometimes inside exons). Our
task is to distinguish the parts in each language. The natural hope is that one
can identify introns by the mechanism through which they are spliced out in the
process of protein making. These mechanisms involve enzymes which interact

Documenta Mathematica · Extra Volume ICM 1998 · I · 649–658



Computational Gene Recognition 657

with both end segments of the intron that is cut out. If we could understand how
the RNA strand arranges itself in the presence of these enzymes, understanding
of the splicing process could allow us to predict what will be spliced. However,
while we can extract some clues as to how good a potential splice site looks, such
clues are not enough to solve the problem. The major clues which seem to help
the most come from recognizing which parts of the gene appear to be written in
“exon script”. By “exon script” we mean subsequences that can be translated into
sequences of amino acids which “make sense” as protein parts. As discussed in
the previous section, various tests designed to extract distinguishing features can
prove to be very useful. The dictionaries we have created also add a large range
of sources from which we can obtain data for the various tests.

The dictionary idea has many potential applications in understanding protein
secondary structure and function as well. Most approaches to understanding how
proteins fold together and what they do have been based on global considerations.
However, it is known that perhaps half of proteins on the average consist of certain
specific structures, in particular alpha helices, beta sheets, loops, etc. We cannot
expect to understand a paragraph merely by identifying the presence of words
that we do not understand, and these may occur in paragraphs with entirely
different meanings. Nevertheless linguists have obtained remarkable conclusions
by examining word frequencies in texts (such as the claim that certain books of
the bible were actually written by several different authors.) It may well be that
protein wordlets that often occur in alpha helices, for example can provide clues
as to the folding of other proteins that contain them, so that it may be possible
after all to assign meaning to at least some of the wordlets in these dictionaries.

There is insufficient space left for us in this paper or on its margins, so that
results will be reported elsewhere.

5 Acknowledgments

We thank Eric Banks, William Beebee, John Dunagan, Nick Feamster, Aram
Harrow, Julia Lipman, Valentin Spitkovsky, Tina Tyan and Bill Wallis for helping
in countless ways with the implementation of the ideas outlined in this paper.
This project has been supported by Merck. Pachter has been partially supported
by an NIH training grant and a Program in Mathematics and Molecular Biology
graduate fellowship.

References

[1] S. F. Altschul, S. F. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic
local alignment search tool. Journal of Molecular Biology, 215:403–410, 1990.

[2] C. Burge and S. Karlin. Prediction of complete gene structures in human
genomic DNA. Journal of Molecular Biology, 268:78–94, 1997.
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Świa̧tek, G. . . . . . . . . . . . . . . II 857
Sznitman, A. S. . . . . . . . . . . III 301

Talagrand, M. . . . . . . . . . . . I 507
Taubes, C. H. . . . . . . . . . . . . II 493
Taubes, C. H. . . . . . . . . . . . . I 119
Terhalle, W. . . . . . . . . . . . . . III 565
Thas, J. A. . . . . . . . . . . . . . . III 397
Todorcevic, S. . . . . . . . . . . . II 43
Trefethen, L. N. . . . . . . . . . III 533
Tsirelson, B. . . . . . . . . . . . . . III 311
Tsuji, T. . . . . . . . . . . . . . . . . . II 207
Uhlmann, G. . . . . . . . . . . . . III 77
Vafa, C. . . . . . . . . . . . . . . . . . I 537
Venakides, S. . . . . . . . . . . . . III 491
Viana, M. . . . . . . . . . . . . . . . I 557
Villani, V. . . . . . . . . . . . . . . . III 747
Vilonen, K. . . . . . . . . . . . . . . II 595
Voevodsky, V. . . . . . . . . . . . I 579
Wainger, S. . . . . . . . . . . . . . . II 743
Wakimoto, M. . . . . . . . . . . . II 605
Welzl, E. . . . . . . . . . . . . . . . . III 471
Wilkie, A. J. . . . . . . . . . . . . . I 633
Willems, J. C. . . . . . . . . . . . III 697
Williams, R. J. . . . . . . . . . . III 321
Wolff, T. . . . . . . . . . . . . . . . . II 755
Xia, Z. . . . . . . . . . . . . . . . . . . II 867
Yafaev, D. . . . . . . . . . . . . . . . III 87
Yau, H. T. . . . . . . . . . . . . . . . III 193
Zelevinsky, A. . . . . . . . . . . . III 409
Zhang, S. W. . . . . . . . . . . . . II 217
Zhou, X. . . . . . . . . . . . . . . . . .III 491
Zowe, J. . . . . . . . . . . . . . . . . . III 707

Documenta Mathematica · Extra Volume ICM 1998




