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PREFACE

The Thirteenth General Meeting of Furopean Women in Mathematics
(EWMO7) was held at the University of Cambridge, UK, 3-6 September,
2007. The present volume contains the texts of most of the invited talks
delivered at the conference and a selection of the contributed papers. All
have been peer-reviewed. The volume also contains some articles on women
in mathematics, such as historical accounts, which were presented during
the meeting.

The EWM meetings have been taking place since 1989. They feature
prominent women mathematicians as speakers, and generally have two or
three main mathematical themes as well as sessions on issues affecting
women in mathematics. Many have been amazed and encouraged by the
experience of attending an EWM conference, never having previously been
part of a group of over 100 women listening intently to a talk on state-of-
the-art mathematical research, or had the opportunity to meet and talk to
women mathematicians in a variety of fields. The conferences have sparked
collaborations, follow-on meetings on related themes and, most importantly,
have inspired many women from graduate students to professors as they de-
velop their careers as working mathematicians.

The conference was supported by grants from the London Mathematical
Society, EPSRC, the University of Cambridge and Schlumberger. Springer
and Google also supported the conference with prizes for best contributed
paper.

The Local Organizing and Scientific Committees are to be thanked for
creating a well-run and productive meeting, with an exciting programme
of talks and poster presentations. We especially thank Ms. Amanda Stagg
for all her administrative support before and during the conference.

S. Paycha Université Blaise Pascal, France
C. A. Hobbs Oxford Brookes University, UK
(Editors) 30 June 2009
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DEFORMATION QUANTISATION AND CONNECTIONS

S. GUTT

Université Libre de Bruzelles
Campus Plaine, CP 218
bd du Triomphe
1050 Brussels, Belgium
and
Université P. Verlaine, Metz
Ile du Saulcy
57045 Metz Cedex 01, France
sgutt@Qulb.ac.be

After a brief introduction to the concept of formal Deformation Quantisation,
we shall focus on general konwn constructions of star products, enhancing links
with linear connections.

We first consider the symplectic context: we recall how any natural star
product on a symplectic manifold determines a unique symplectic connection
and we recall Fedosov’s construction which yields a star product, given a sym-
plectic connection.

In the more general context, we consider universal star products, which
are defined by bidifferential operators expressed by universal formulas for any
choice of a linear torsionfree connection and of a Poisson structure. We recall
how formality implies the existence (and classification) of star products on a
Poisson manifold. We present Kontsevich formality on R? and we recall how
Cattaneo-Felder-Tomassini globalisation of this result proves the existence of
a universal star product.

Keywords: Deformation quantisation; star product; symplectic connection; uni-
versal star product.

1. Quantization

Quantisation of a classical system is a way to pass from classical to quantum
results.

Classical mechanics is considered in its Hamiltonian formulation on the
motion space, which is the quotient of the evolution space (usually the
product of the phase space and the real line) by the trajectories. Thus the
framework is a symplectic manifold (or, more generally, when one deals
with constraints, a Poisson manifold).
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In this setting a point represents a motion, so that an observable is
represented by a family of smooth functions on that manifold M. The
dynamics is defined in terms of a Hamiltonian H € C°°(M) and the time
evolution of an observable f; € C°°(M x R) is governed by the equation:

G o= {1,

Quantum mechanics is considered in its usual Heisenberg’s formulation.
The framework is a Hilbert space (states are rays in that space). An ob-
servables is described by a one parameter family of selfadjoint operators on
that Hilbert space. The dynamics is defined in terms of a Hamiltonian H,
which is a selfadjoint operator, and the time evolution of an observable A;
is governed by the equation:

dAy i
dt ok

A natural suggestion for quantisation is a correspondence Q: f — Q(f)
mapping a function f to a self adjoint operator Q(f) on a Hilbert space H
in such a way that Q(1) = Id and

[Q(f), Q)] = ihQ({f, g}).

There is no such correspondence defined on all smooth functions on M when

[H, Aq].

one puts an irreducibility requirement which is necessary not to violate
Heisenberg’s principle.

To deal with this problem, various mathematical theories of quantization
were proposed. Deformation Quantisation was introduced in the seventies
by Flato, Lichnerowicz and Sternheimer in [10] and developed in [3]; they
“suggest that quantisation be understood as a deformation of the structure
of the algebra of classical observables rather than a radical change in the
nature of the observables.”

One stresses here the fundamental aspect of the space of observables
rather than the set of states; observables behave indeed in a nicer way when
one deels with composed systems: both in the classical and in the quantum
picture, the space of observables for combined systems is the tensor product
of the spaces of observables.

The algebraic structure of classical observables that one deforms is the
algebraic structure of the space of smooth functions on a Poisson manifold:
the associative structure given by the usual product of functions and the Lie
structure given by the Poisson bracket. Formal deformation quantisation is
defined in terms of a formal deformation of that structure called a star
product.
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2. Basic definitions

Definition 2.1. A Poisson bracket defined on the space of smooth func-
tions on a manifold M, is a R- bilinear skewsymmetric map:

C¥(M) x CF(M) — C(M) (u,v) = {u, v}

satisfying Jacobi’s identity ({{u, v}, w}+{{v,w}, u} +{{w,u},v} = 0) and
Leibniz rule ({u,vw} = {u,v}w + {u, w}v Yu,v,w € C>*(M)).

Leibniz rule says that bracketing with a given function u is a derivation
of the associative algebra of smooth functions on M, hence is given by a
vector field X,, on M. By skewsymmetry, a Poisson bracket is thus given
in terms of a contravariant skew symmetric 2-tensor P on M, called the
Poisson tensor, by

{u,v} = P(du A dv). (1)

The Jacobi identity for the Poisson bracket Lie algebra is equivalent to the
vanishing of the Schouten bracket:

[P,P] =0.

(The Schouten bracket is the extension -as a graded derivation for the exte-
rior product- of the bracket of vector fields to skewsymmetric contravariant
tensor fields; it will be developed further in section 4.1.)

A Poisson manifold, denoted (M, P), is a manifold M with a Poisson
bracket defined by the Poisson tensor P.

A particular class of Poisson manifolds, essential in classical mechanics,
is the class of symplectic manifolds.

Definition 2.2. A symplectic manifold, denoted by (M,w), is a mani-
fold M endowed with is a closed nondegenerate 2-form w. The corresponding
Poisson bracket of two functions u,v € C*°(M) is defined by

{u,v} := X, (v) = w(Xy, Xu), (2)

where X, denotes the Hamiltonian vector field corresponding to the
function w, i.e. such that i(X,)w = du. In coordinates, the components
of the corresponding Poisson tensor P¥ form the inverse matrix of the
components w;; of w.

Examples of symplectic manifolds are given by cotangent bundles;
if N is a manifold, its cotangent bundle T*N 5 N is endowed with a
canonical 1-form A\ defined by

Ae(Y) = (6,mY)  E€T*N,Y € Te(T*N),
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where (-, -) denotes the pairing between the tangent space T, N at a point
x =m(§) € N and its dual space, the cotangent space at =, T, N.
Then (T*N,d\) is a symplectic manifold.

Duals of Lie algebras form the class of linear Poisson manifolds. If g is a
Lie algebra then its dual g* is endowed with the Poisson tensor P defined
by
Pe(X,Y) = ¢([X,Y])
for X,V € g =(g")" ~ (Teg™)".
Definition 2.3. [3] A star product on (M, P) is a bilinear map
C®(M) x C*(M) — C*(M)[v] (u,v)Hu*v=ZurCr(u,v)
r>0
such that
(1) extending the map R[v]-bilinearly to C*°(M)[v] x C=*(M)[v], it is
formally associative:
(uxv)*w=ux(v*w);
(2) (a) CO(U7U) = uv, (b) Ol (u,v) - Ol (v,u) = {u,v};
3) lxu=ux*xl=u.
When the C,’s are bidifferential operators on M, one speaks of a differ-
ential star product. When, furthermore, each bidifferential operator C,

is of order maximum 7 in each argument, one speaks of a natural star
product.

Given any star product * on (M, P) and any series T =Id+ Y v T,
of linear operators on C°°(M), one can build a new star product ' defined
by f+ g=T(T~'f*T~'g). Remark that any such series T' can be written
in the form 7' = Exp E where E = Y | v"E, with the E, linear operators
on C°(M) and where Exp denotes the exponential series. This motivates
the following definition of equivalence:

Definition 2.4. Two star products * and ' on (M, P) are equivalent if
and only if there is a series

oo
E=) V'E,
r=1
where the E, are linear operators on C*°(M), such that

[+ g=ExpE((Exp—FE) f* (Exp—FE)g)). (3)
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Remark 2.1. Two differential star products * and +’ on (M, P) are equiv-
alent iff there is a series E = Z:i1 V" E, where the E, are differential op-
erators , giving the equivalence [i.e. such that f*' g = Exp E ((Exp —FE) f *
(Exp—FE) g))]-

Two natural star products * and %' on (M, P) are equivalent iff there is
a series £ = Zfil V" E, where the F, are differential operators of order at
most r 4 1, giving the equivalence.

An example: Moyal star product on R™

Consider a vector space V = R™ with a Poisson structure P with constant
coefficients:
P=> PY9;N0;, PY=—-P'cR
(2]
where 9; = 0/0x" is the partial derivative in the direction of the coordinate

)

z', i=1,...,n. Moyal star product is defined by

(wsrr v)(2) = exp (2 ) P”azrays) (u(x)o(y)) (4)

T=y==z

Associativity follows from the fact that
8
Ope (w s pg V) (t) = (Dpr + Oyr ) exp (§P768xrays) (u(z)v(y))
so that
/ v TS
(wear v) ar w) (') = exp (5 P00z ) (wrar v) ()w(2))|

)
r=y=t

t=z=ua'

= oxp (5P (0 + 0r) 020 ) exp (5 P,y ) (ulw)oly))uw(2)|

= exp (gP”(aﬂazs + 0yr0.s + aﬂays)) (u(z)v(y))w(z))

’

T=y=z=T

r=y=z=x'
= (uxp (v*p w)(2)).
Remark that one can define by an analogous formula a Moyal star product
on a Poisson manifold (M, P) as soon as the Poisson tensor writes
P=> PYX;NX;, PY=-Pl'eR
i,J
where the X;’s form a set of commuting vector fields on M.
Definition 2.5. When the constant Poisson structure P is non degenerate

(which implies V' = R?"), the space of polynomials in v whose coefficients
are polynomials on V with Moyal product is called the Weyl algebra

SV, *ar)-
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Moyal star product on (R*",w = Y, dp; Adg;) is related to the composition
of operators via Weyl’s quantisation. This associates to a polynomial f
on R?" a differential operator Qw (f) on R™ in the following way: to the
classical observables ¢* and p;, one associates the quantum operators Q* =
¢ and P; = —iha%i
P; do no longer commute, one has to specify which operator is associated

acting on functions depending on ¢’’s. Since @’ and

to a higher degree polynomial in ¢* and p;. The Weyl ordering associates
the corresponding totally symmetrized polynomial in Q* and P, e.g.

Qw(ql(pl)Q) — %(Ql(Pl)Z T PlQIPI 4 (Pl)QQl).

Then
Qw(f)oQwl(g) = Qw(f *m g) (for v=ih).

Remark that another ordering, such as the standard ordering, which asso-
ciates to a polynomial f in ¢* and p; the operator Qs:q(f) with all the Q%’s
on the left and the P7’s on the right, gives another isomorphism between
the space of differential operators on R™ and the space of polynomials on
R2". This yields another star product #4 on R?" so that

Qstd(f) o Qstd(g> = Qstd(f *std g) (fOY v = Zh)
One can show that Qw (f) = Qsta(exp %Df) where D = %;q so that
exprD(f #ar g) = expvD(f) *sta exprD(g).

One can show more generally that any two differential star products on R?"
are equivalent.

3. Symplectic case: star products and symplectic connections

A linear connection on a manifold M is a way to differentiate a vector field
along a vector field:

Definition 3.1. Let x(M) = I'(TM) be the space of smooth vector fields
on M. A linear connection on M is a bilinear map

Vix(M) x x(M) — x(M) (X,Y)— VxY

such that VyxY = fVxY and Vx fY = X(f)Y + fVxY, VXY € x(M)
and Vf € C°(M). Equivalently, it is a C'°°(M)-linear map

V:D(TM) - D(IT*"M@TM) Y+ VY
so that VfY =df @ Y + fVY.
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The torsion of a linear connection is the (3)-tensor 7V on M defined
by

TV(X,Y):=VxY - VyX — [X,Y],
and its curvature is the (})-tensor RV defined by
RY(X,Y)Z =VxVyZ—-VyVxZ—VixyZ.

A linear connection gives a way to differentiate any tensor field on M along
a vector field X: for a smooth function f, one defines Vx f = X f and for
a covariant p-tensor field o one defines

(Vxa)(V1,...,Yp) = X(a(V1,...,Yp) = > _a(¥i,...,VxYi,...,Y,).

i=1

Multidifferential operators on a manifold can be written in a global manner
through the use of a linear connection : given a torsionfree linear connection
V on a manifold M (torsionfree meaning that 7V = 0), any multidifferential
operator Op : (C®(M))* — C°°(M) writes in a unique way as

Op(fh---;fk) _ Z OpJ17...,ka311/mf1...viimfk (5>
J1yeense Jr
where the Ji,...,J; are multiindices and V%™ f is the symmetrised co-

variant derivative of order |J| of f:

sym ]' m . .
VT = Z mvim)mig(m)f for J = (ig,...,im),

cESm

where VI, f:=V"f(0,,...,0;,) with V™ f defined inductively by
Vfi=df and V" f(X1,...,Xm) = (Vx, (V")) (Xay ..., Xon).

The tensors Op”*/* are covariant tensors of order |Ji| + . .. 4 |Ji| which
are symmetric within each block of J,. indices; they are called the tensors

associated to Op for the given connection.

Star products in the symplectic context are strongly linked to symplectic
connections.

Definition 3.2. A symplectic connection on a symplectic manifold
(M,w) is a torsionfree linear connection V which is torsionfree and such
that the symplectic form w is parallel, Vw = 0 (ie. X(w(Y,Z)) =
w(VXY, Z) + w(Y, V_)(Z))
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It is well known that such connections exist; to see this take VO to be
any torsionfree linear connection (for instance, the Levi Civita connection
associated to a metric g on M), and define

VxY = V&Y + %N(X, Y)+ %N(Y, X).
where V4 w(Y, Z) =: w(N(X,Y), Z). Then V is symplectic.

Unlike in the Riemann case, symplectic connections are not unique. Take
V symplectic; then V4Y := VxY + S(X,Y) is symplectic if and only if
w(S(X,Y), Z) is totally symmetric, so the set of symplectic connections is
an affine space modelled on the space of contravariant symmetric 3-tensor
fields on M.

A first result concerning the link between a star product and a connec-
tion is the observation in 1978, in the seminal paper about deformation
quantisation [3] by Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer
that Moyal star product can be defined on any symplectic manifold (M, w)
which admits a symplectic connection V with no curvature.

Lichnerowicz [13] showed that some star products on a symplectic mani-
fold determine a unique symplecic connection; this we generalised as follows

Proposition 3.1. [11] A star product * = ) ., v"C, at order 2 (i.e.
satisfying associativity up to terms in v* ) on a symplectic manifold (M,w),
such that C1 is a bidifferential operator of order 1 in each argument and
Cs of order at most 2 in each argument, determines a unique symplectic
connection V = V(x) such that

01 :{ y }+ad El m CQ = %(ad E1)2 er((ad El) { , })+%P2(V2, V2)+A2
(6)

where m is the usual multiplication of functions, where
(ad EC)(u,v) = E(C(u,v)) — C(Eu,v) — C(u, Ev)

for any 1-diefferential operator E and any bidifferential operaotor C, where
As is a skewsymmetric bidifferential operator of order 1 in each argument,
and where P%(V?.,V2.) denotes the bidifferential operator which is given
by >4 PP V2,u V3,0 in a chart.

In particular, any natural star product x = Zrzo v"C. on a symplectic
manifold (M,w) determines a unique symplectic connection.

Reciprocally, Fedosov gave in 1985 (but appearing only in the West in
the nineties [9]), a recursive construction of a star product on a symplectic
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manifold endowed with a symplectic connection. The first proof of the exis-
tence of a star product on any symplectic manifold had been given in 1983
by De Wilde and Lecomte [7]; this was obtained by building at the same
time the star product and a special derivation of it. Fedosov’s construction
yields a star product such that the bidifferential operators defining it are
given by universal formulas in terms of the symplectic 2-form, the curvature
of the connection and all its covariant derivatives.

3.1. Fedosov’s construction

Fedosov’s construction [9] gives a star product on a symplectic manifold
(M,w), when one has chosen a symplectic connection and a sequence of
closed 2-forms on M. The star product is obtained by identifying the space
C>(M)[[v]] with an algebra of flat sections of the so-called Weyl bundle
endowed with a flat connection.

Definition 3.3. Let (V,) be a symplectic vector space. We endow the
space of polynomials in v whose coefficients are polynomials on V' with
Moyal star product (this is the Weyl algebra S(V*)[v]). This algebra is
isomorphic to the universal enveloping algebra of the Heisenberg Lie algebra
h = V*® Ry with Lie bracket

W'yl =@ )
[Indeed both associative algebras U(h) and S(V*)[v] are generated by V*
and v and the map sending an element of V* C h to the corresponding

element in V* C S(V*) viewed as a linear function on V and mapping
v ebhonveRy CS(V*)[v] has the universal property:

Exm & —&xn=1[5¢] V& eh=V"6Ry
so extends to a morphism of associative algebras.]
One defines a grading on U(h) assigning the degree 1 to each y* € V*
and the degree 2 to v. The formal Weyl algebra W is the completion in

that grading of the above algebra. An element of the formal Weyl algebra
is of the form

o0
aly,v) = Z ( Z Ahiy. i VoY y“) .
m=0 \2k+Il=m

The product in U(h) is given by the Moyal star product and is extended to
W:

(a0 b)(y,v) = (exp (’;Piﬂ‘ 6‘; 6‘;) aly, v)b(z, V))
with P = Q1)

y=2
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The symplectic group
Sp(V,Q) :={A:V — V linear | Q(Au, Av) = Q(u,v) Yu,v € V}

acts as automorphisms of h by A- f = fo A=l for f € V*and A-v = 0,
and this action extends to both U(h) and W; on the latter we denote it by
p. It respects the multiplication p(A)(aob) = p(A)(a) o p(A)(b). Explicitly,
we have:
Y ki Yy = D ak e (AT (AT
2k+l=m 2k+l=m

To an element B in the Lie algebra sp(V, ) we associate the quadratic
element B = 3 Dijr Q,;Bjy'y’ € W. The natural action p.(B) is given by:
p«(B)y' = =L[B,y'] where [a,b] := (aob) — (boa) for any a,b € W. Since
both sides act as derivations this extends to all of W as

p«(B)a = —[B,ad]. (7)

Definition 3.4. If (M,w) is a symplectic manifold, we can form its bundle
Foymp(M) of symplectic frames. A symplectic frame at the point z € M
is a linear symplectic isomorphism &, : (V,Q) — (T, M,w,). The bundle
Foymp(M) is a principal Sp(V,)-bundle over M (the action on the right
of an element A € Sp(V,Q) on a frame &, is given by &, o A).

The associated bundle W = Fiypmp(M) Xgpv,0),, W is a bundle of
algebras on M called the bundle of formal Weyl algebras, or, more simply,
the Weyl bundle. Its sections have the form of formal series

alwyv) = Y Fag, @)yt g (8)
2k+1>0

where the coefficients ay 4, ... ;, define (in the ¢’s) symmetric covariant -
tensor fields on M. We denote by I'(W) the space of those sections.

The product of two sections taken pointwise makes I'(W) into an algebra
with multiplication

_ vaig 0 9
(aob)(w,y,v) = (exp <2A Ay ay) a(%yw)b(x,zw))

The center of this algebra coincide with C*°(M)][[v]].

(9)

Y=z

A symplectic connection defines a connection 1-form in the symplectic
frame bundle and so a connection in all associated bundles (i.e. a covariant
derivative of sections). In particular we obtain a connection in W which we
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denote by 9; it can be viewed as a map 9: (W) — I'(W @ A'T* M) where
sections of the bundle W ® A*T*M are W-valued forms on M and have
locally the form

— —_ k. o ot 2 J1 J
a= E Opq = E Vi iy, iy grsege¥ e YT AT N A da
p>0,q>0 2k+p>0,g>0
with coefficients which are again covariant tensors, symmetric in iy, ...,1%,
and anti-symmetric in ji,...,Jj,. [In particular ago = Y, vFax with aj, €

C*(M).] Such sections can be multiplied using the product in W and
simultaneously exterior multiplication a @ wob®w’ = (a0b) ® (wAw’) and
bracketed

[s,8] =808 — (=1)1""5" 0 s

if s, e TOW @ A“T*M).

Let T'%, be the Christoffel symbols of the chosen symplectic connection
V and let T := %Zijkr wkifijiyjd:c’"; then the connection in W is given
by

O0a = da — l[f,a].
v

For any vector field X on M, the covariant derivative Jx is a derivation of
the algebra I'(W).

As usual, the connection 0 in W extends to a covariant exterior deriva-
tive on all of T(W ® A*T*M), also denoted by 9, by using the Leibniz
rule:

da®@w)=0(a) N\w+a® dw.

The curvature of 9 is then given by 0,0 which is a 2-form with values in
End(W). If R denotes the curvature of the symplectic connection V:

9,90 = L[, a]
14

where R = 1 > ijkir wrlRéjkyryk dxt A da?.

The idea is to try to modify d to have zero curvature; we look for a
connection D on W, so that Dy is a derivation af the algebra I'(W) for
any vectorfield X on M, and so that D is flat in the sense that D,D = 0.
Such a connection can be written as a sum of 9 and a End(W)-valued
1-form. The latter is taken in a particular form:

Da = 0a — 6(a) — %[7’, a) (10)
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with §(a) = >, da® A % =1 [Zij —wijyidxj,a} , so that 62 = 0, 95 +

v

00 =0 and ¢ is a graded derivation of ' ® A*T*M). Then
1 (= 1
D.Da = — [R —Or+or+ [r,r],a}
v 2v

and [r,7] = 2r o r. So we will have a flat connection D provided we can
make the first term in the bracket be a central 2-form. Introducing

5_1(a ) = r}rqzkyki(%)apq if p+q>0;
e Olf p+q:0.

Then (67 1)2 =0 and (661 + 5719)(a) = a — ago.
Theorem 3.1. (Fedosov [9]) The equation
5r:fﬁ+8r7lr2+fl (11)
v

for a given formal series Q = Y o>t hiw; of closed 2-forms w; on M, has a
unique solution r € T(W ® AlT*M) satisfying the normalization condition
0~'r =0 and such that the W-degree of the leading term of r is at least 3.
It is inductively defined by

_ 1 -
r=—0"'R+61or— =5+ 571Q. (12)

v
Since Dx acts as a derivation of the pointwise multiplication of sections,

the space Wp of flat sections will be a subalgebra of the space of sections
of W:

Wp = {a € T(W)|Da = 0}.

The importance of this space of sections comes from the fact that there is
a bijection between this space Wp and the space of formal power series of
smooth functions on M.

Theorem 3.2. [9] Given a flat connection D, for any as € C°(M)[[V]]
there is a unique a € Wp such that a(z,0,v) = ao(x,v). It is defined
inductively by

1
a=0"%a+a,=6" <8a—y[r,a]) + ao. (13)
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One defines the symbol map o : T(W) — C°(M)[[v]], by o(a) =
a(x,0,v). Theorem 3.2 tells us that o is a linear isomorphism when re-
stricted to Wp. So it can be used to transport the algebra structure of Wp
to C°(M)[[v]]. Fedosov’s star product is defined by :

axY b =c(c (a) oo (b)), a,be C(M)[[v]). (14)

Remark that its construction depends only on the choice of a symplectic
connection V and the choice of a series €2 of closed 2-forms on M. If the
curvature and the €2 vanish, one gets back the Moyal *-product.

4. Star products on Poisson manifolds

In the Poisson context, generally speaking one cannot find a “Poisson con-
nection”. Indeed, if one looks for a linear connection such that VP = 0,
then the rank of the Poisson structure must be constant. So the best we
can do in general is to consider a torsionfree linear connection.

We consider star products on a manifold M which are given by universal
formulas when one has chosen any Poisson structure and any connection
on M. By universal, we mean the following:

Definition 4.1. [2] A universal star product * =m+ ) ., v"C, will
be the association to any manifold M, any torsionfree connection V on M
and any Poisson tensor P on M, of a differential star product

MV.P) m+Z’/ C(M.V,P)
r>1
where each C). is a universal Poisson-related bidifferential operator, i.e.
so that, the tensors associated to CMYVFE) for ¥ are given by universal
polynomials, involving concatenations, in P, the curvature tensor R and
their covariant multiderivatives.

Kontsevich proved in 1997 the existence of a star product on any Poisson
manifold as a consequence of his formality theorem. He gave an explicit
formula for a formality and thus for a star product on R? endowed with
any Poisson structure. We shall now present this result.

4.1. Star products on Poisson manifolds and formality

Kontsevich in [12] showed that the set of equivalence classes of star products
is the same as the set of equivalence classes of formal Poisson structure. A
differential star product on M is defined by a series of bidifferential opera-
tors satisfying some identities; a formal Poisson structure on a manifold M
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is completely defined by a series of bivector fields P satisfying certain prop-
erties. To describe a correspondence between these objects, one introduces
the algebras they belong to.

Definition 4.2. A differential graded Lie algebra (briefly DGLA) is a
Z-graded vector space g = D, g’ endowed with
e a structure of graded Lie algebra, i.e. a graded bilinear map

[, ]: 9®g — g such that [a, b] C g*™*

which is graded skewsymmetric ([a, b] = —(—1)*%[b, a]) and which
satisfies the graded Jacobi identities: [a, [b,c]] = [[a,b],c] +
(-=1)*8[b, [a, c]] for any a € g%, b € g’ and c € g7,

e together with a differential, d: g — g, i.e. a linear operator of degree 1
(d: g* — g'*1) which squares to zero (d o d = 0)

e satisfying the compatibility condition (Leibniz rule)

dla,b]=[da,b]+ (-1)*[a, db] acg®beg’

Star products and the DGLA of polydifferential operators

Let A be an associative algebra with unit on a field K; consider the complex
of multilinear maps from A to itself:

C:i=)» € C':=Homg(A®*) A)

1=—1

remark that the degree |A] of a (p 4+ 1)-linear map A is equal to p.
One extends the composition of linear operators to multilinear opera-
tors; if A1 € C™, Ay € C™2, then:

(Al o AQ)(fla ceey fm1+m2+1) =

mi

Z(_l)(mz)(j_l)Al(fb ceey fj*l; AQ(fj? ceey fj+m2)7 fj+m2+17 C) fm1+m2+1)

j=1

for any (my +msa+1)- tuple of elements of A. The Gerstenhaber bracket
is defined by

[Ah A2]G = A1 o AQ - (_1)m1m2A2 o Al-
The differential dp is defined by
dpA=—[u, Al = —po A+ (-1)" Ao p

where g is the usual product in the algebra A.
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Proposition 4.1. The graded Lie algebra C together with the differential
dp s a differential graded Lie algebra.

Here we consider the algebra A = C*°(M), and we deal with the subalge—
bra of C consisting of multidifferential operators Dyoy, (M) := D D, Oly( )
with Dpoly(M ) consisting of multi differential operators acting on i + 1
smooth functions on M and vanishing on constants. It is easy to check that
Dpoiy(M) is closed under the Gerstenhaber bracket and under the differen-

tial dp, so that it is a DGLA.

Proposition 4.2. An element C € vD}, (M)[[V]] (i-e. a series of bid-
ifferential operator on the manifold M) yields a deformation of the usual
associative pointwise product of functions :

x=pu+C
which defines a differential star product on M if and only if

1
dpC - 3[C.Cle =

Formal Poisson structures and the DGLA of multivector fields

A k-multivector field is a section of the k-th exterior power AFT'M of
the tangent space T'M; the bracket of multivectorfields is the Schouten-
Nijenhuis bracket which extends the usual Lie bracket of vector fields

[X1/\ /\Xk7Y1/\ -/\Yl]S

—ZZ D™ X XIXIA X A AXEAYIA LY AL AYL
r=1s=1
Since the bracket of an - and an s-multivector fields on M is an r 4+ s —
1- multivector field, we define a structure of graded Lie algebra on the
space Tpory (M) of multivector fields on M by setting ’J;foly( ) the set of
skewsymmetric contravariant ¢ 4+ 1-tensorfields on M (observe again a shift
in the grading). We shall consider here

[Ty, Ty := —[T», Th]s.

Then 7po1y (M) is turned into a differential graded Lie algebra setting the
differential dp to be identically zero.

Proposition 4.3. An element P € V’Z;loly( )M[V]] (i-e. a series of bivec-
torfields on the manifold M) defines a formal Poisson structure on M if
and only if

1
drP — 3[P. Pl =0.
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Loo-algebras and Lo.-morphisms

If one could construct an isomorphism of DGLA (i.e. a linear bijection
which commute with the differentials and the brackets) between the algebra
Tpoty (M) of multivector fields and the algebra D,y (M) of multidifferential
operators, this would give a correspondence between a formal Poisson tensor
on M and a formal differential star product on M. The natural map

Up: T (M) —

poly

(M)

;
poly
which extends the usual identification between vector fields and first order
differential operators, is defined by:

1 ! Z 6(0)XO(fU(O))"‘Xn(fg(n)).

Ul(Xo/\. . /\Xn)(fo, ey fn) = (nTl)

0ESnt1

Unfortunately this map fails to preserve the Lie structure.

One extends the notion of morphism between two DGLA to construct
a morphism whose first order approximation is this map U;. To do this one
introduces the notion of L,,-morphism.

A toy picture of our situation (finding a correspondence between a for-
mal Poisson tensor P on M and a formal differential star product * = u+C
on M) is the following. If C' and P were elements in neighborhoods of
zero V7 and V5 of finite dimensional vector spaces, one could consider
analytic vector fields X; on Vi, Xs on Vs, vanishing at zero, given by
(X1)c = dpC — 1[C,Cla, (X2)p = drP — 3[P, P]s and one would be
interested in finding a correspondence between zeros of Xs and zeros of
X;. An idea would be to construct an analytic map ¢ : Vo — V; so that
#(0) = 0 and ¢. X2 = X;. Such a map can be viewed as an algebra mor-
phism ¢* : A; — As where A; is the algebra of analytic functions on V;
vanishing at zero. The vector field X; can be seen as a derivation of the
algebra A;. A real analytic function being determined by its Taylor expan-
sion at zero, one can look at C(V;) := > -, S™(V;) as the dual space to
Aj; it is a coalgebra. One view the derivation of A; corresponding to the
vector field X; dually as a coderivation @; of C(V;). One is then looking
for a coalgebra morphism F' : C(V3) — C(V1) so that F'o Q2 = Qo F.

This is generalized to the framework of graded algebras with the notion
of Lo-morphism between L, -algebras.

Definition 4.3. A graded coalgebra on the base ring K is a Z—graded
vector space C = @, _, C* with a comultiplication, i.e. a graded linear map

A:C—-CxC

1€EZ
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such that A(C?) C D, r—i C7 ® C* and such that (coassociativity):
(A ®id)A(z) = (id ®A)A(z)
for every z € C.

Additional structures that can be put on an algebra can be dualized to
give a dual version on coalgebras.

Definition 4.4 (The coalgebra C(V)). Let V is a graded vector space
over K, V- = @,, V" and let |v| denote the degree of v € V. The tensor
algebra is T(V) = @, , VE" with V¥ = K. It has the two quotients:

the symmetric algebra S(V) =T(V)/ <z @y — (—1)*Wy @ 2 >, and the
exterior algebra A(V)=T(V)/ <z @y + (-1)*¥y @z >;

these spaces are naturally graded associative algebras. They can be given a
structure of coalgebras with comultiplication A defined on a homogeneous

element v € V by
Av=1®v+v®1

and extended as algebra homomorphism.

The reduced symmetric space is C(V):=ST(V):=,.,5"(V).

n>0

Definition 4.5. A coderivation of degree d on a graded coalgebra C'is a
graded linear map §: C* — C*+? which satisfies the (co—)Leibniz identity:

AS(v) =60’ @ v + (=)W1 @ dv”

if Av => v ®v”. This can be rewritten with the usual Koszul sign con-
ventions Ad = (0 ® id +id ®4)A.

Definition 4.6. A L.,—algebra is a graded vector space V over K and a
degree 1 coderivation @ defined on the reduced symmetric space C(V1])
so that

QoQ=0. (15)
[Given any graded vector space V, a new graded vector space V[k] is defined
by shifting the grading of the elements of V' by k, i.e. V[k] = @, VI[K]'
where V[k]! := Vitk

Definition 4.7. A L,—morphism between two L, —algebras,
F: (V,Q)— (V',Q"), is a morphism

F:C(V[1]) — C(V'[1])
of graded coalgebras, so that o Q = Q' o F.
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In the same way that any algebra morphism from S*(V) to ST (V') is
determined by its restriction to V and any derivation of ST (V) is deter-
mined by its restriction to V', a coalgebra—morphism F' from the coalgebra
C(V) to the coalgebra C(V’) is uniquely determined by the composition
of F and the projection 7’ : C(V') — V’ and any coderivation @ of C(V)
is determined by the composition F' o 7w where 7 is the projection of C(V)
on V.

Definition 4.8. We call Taylor coefficients of a coalgebra-morphism
F: C(V) — C(V') the sequence of maps Fy,: S"(V) — V' and Tay-
lor coefficients of a coderivation @ of C(V) the sequence of maps

Qn: S™(V) = V.

Given V and V' two graded vector spaces, any sequence of linear maps
F,: S"(V) — V' of degree zero determines a unique coalgebra morphism
F: C(V)— C(V') for which the F,, are the Taylor coefficients. Explicitely

1

F(l‘ll‘n):Zﬁ Z 6(17(117'"7Ij)F|II‘(xIl)...F“Ij‘(ij)
7>1 {1,...,n}=IU...UI;

where the sum is taken over I...I; partition of {1,...,n} and

€z(I1,...,I;) is the signature of the effect on the odd z;’s of the unshuffle

associated to the partition (I1,...,1I;) of {1,...,n}.

Similarly, if V' is a graded vector space, any sequence @, : S™(V) —
V,n > 1 of linear maps of degree i determines a unique coderivation @ of
C (V) of degree i whose Taylor coefficients are the @,,. Explicitly

Qr...an)= Y e, ))Qu=),.

The first conditions on the Taylor coefficients @, to have Q? = 0 are:

e Q? =0 and Q is a linear map of degree 1 on V;

o Q2(Qury+ (=) 12.Q1y) + Q1Q2(zy) = 0;

e 0 = Q3(Qzy.z + (- 12.Qiyz + (—1)EHWI22.9.Q,2) +
Q:1Q3(z.y.2) + Q2(Qa(zy).z) + (—D)W=DU=DQy(z.2)y +
Fl)(\r%l)(\y\ﬂz\72)Q2(y_z)_x.

Defining

de = (-)FIQiz  [z,y] == Qa(z Ay) = (=)W= Qy(z,y), (16)
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the above relations show that d is a differential on V, and [, | is a graded
skewsymmetric bilinear map from V' x V' — V satisfying

(=)= [l y], 2] + (1)1 [y, 2], ] (= 1)1z, 2], ] + terms in Q3 =0
and d[z,y] = [dz,y] + (=1)"®[z, dy]. In particular, we get:

Lemma 4.1. Any L, —algebra (V, Q) so that all the Taylor coefficients Qy,
of Q vanish for n > 2 yields a differential graded Lie algebra and vice versa.

The first conditions for a sequence of linear maps F,, : S"(V[1]) — V'[1]
to be the Taylor coefficients of a L,,—morphism between two L..—algebras
(V,Q) and (V',Q’), i.e. so that F o Q = Q' o F are

e F1oQ; =QyoFyso Fy : V — V' is a morphism of complexes from
(V,d) to (V',d)
o Fi([z,y]) — [Fiz, F1y]' = expression involving Fb

so there exist L,,—morphisms between two DGLA’s which are not DGLA-
morphisms.

The equations for F' to be a Lo—morphism between two DGLA’s (V, Q)
and (V', Q" (with @, =0,Q), =0Vn > 2) are

QFalwr o)ty Y @l D)QbFn () F(e)

ULJ={1,ldots,n}
I,J#0
= ekl ko ) Fo(Qulak) -y T 2) (%)
k=1
1 ~ o
+5;@;(]4:,[,1,...kl...,n)Fn_l(Qg(xk SLy) Xy ARL e Ty).

Formality, formal Poisson structures, and star products

Definition 4.9. Let m = vR[[v]]. A m— point in a L, algebra (V,Q)
(over a field of characteristic zero) is an element p € vC(V)[[v]] so that
Ap = p ® p; equivalently, it is an element p=¢" — 1 =v + % + -+ where
v is an even element in V[1] @ m = vV [1][[V]].

A solution of the generalized Maurer-Cartan equation is a m—point
p where @ vanishes; equivalently, it is an odd element v € vV|[v]] so that

Ql(v)+%Q2(v-v)+~--:0. (17)

If g is a DGLA, it is thus an element v € g so that dv — [v,v] = 0.



22 S. Gutt

The image under a L., morphism of a solution of the generalised Maurer-
Cartan equation is again such a solution. In particular, if one builds a
Lo morphism F betwwen the two DGLA we consider, F' : Tpo (M) —
Dpory (M), the image under F of the point e* —1 corresponding to a formal
Poisson tensor,

a€ VTOly( )[[¥]] so that [a,als =0, (18)
yields a star product on M,

= p+ Y Fala™. (19)

Definition 4.10. Two Ly,—-algebras (V,Q) and (V',Q’) are quasi-
isomorphic if there is a L.,—morphism F so that F; : V — V' induces an
isomorphism in cohomology.

Kontsevich has proven that if F'is a L,,—morphism between two L..—
algebras (V,Q) and (V’,Q’) so that Fy : V — V’ induces an isomorphism
in cohomology, then there exists a Lo—morphism G between (V/,Q’) and
(V,Q) so that G; : V! — V is a quasi inverse for Fj .

Definition 4.11. Kontsevich’s formality is a quasi isomorphism between
the (Loo—algebra structure associated to the) DGLA of multidifferential
operators, Dy, (M), and its cohomology, which is the DGLA of multivector
fields Zpory (M).

Such a formality induces a bijective correspondence between equivalence
classes of formal Poisson structures and equivalence classes of star products.

4.2. Kontsevich’s formality for R?

Kontsevich gave an explicit formula for the Taylor coefficients of a formality
for R, i.e. the Taylor coefficients F}, of an L.,—morphism between the two
DGLA’s

F: (%oly(Rd); Q) - (DPOly(Rd)7 Q/)

where @) corresponds to the DGLA of (’Z;Oly(]R ), [, s, Dr=0)and Q'
corresponds to the DGLA (Dpoiy(R?) , [, |a , dp), with the first coefficient
B =U: %Oly(R ) — Dpoly(Rd)
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Ur(Xo A oo A Xp)(foseoos fn) = ﬁ Y vesn €0) Xo(fo()
Xn(fo(n))- The formula writes

Fo=> Y WBsg

m2>0 feGn,rn

o where Gy, ,,, is a set of oriented admissible graphs;

[An admissible graph e Gn,m has n aerial vertices labelled p1,...,pn, and
m ground vertices labelled q1, ..., ¢m. From each aerial vertex p;, a numer
k; of arrows are issued; each of them can end on any vertex except p; but
there can not be multiple arrows. There are no arrows issued from the ground
vertices. One gives an order to the vertices:(p1,...,Pn,q1,...,qm) and one
gives a compatible order to the arrows, labeling those issued from p; with
(k1+...+ki—1+1,...,k1+...+ki—1 + k;). The arrows issued from p; are
named Star(p;) = {p;ai, ..., piax, } With Vg, 1 1% 4, = Dia; ]

e where By associates a m—differential operator to an n—tuple of multi-

vectorfields;
[Given a graph I' € Gpn,m and given n multivectorfields (a1, ...,an) on R,
one defines a m— differential operator Bﬁ(al -...+ap); it vanishes unless ag
is a ki—tensor, ag is a ko—tensor,..., ap is a knp—tensor and in that case it is
given by:
010k Gk 41---Tky+k
Bf(a1~...-an)(f1,...,fm): Dy, ay ' Dpyoy! 12
01,00 K
Uy 4otk _q 410K
w.Dp,an' ! Dy, f1...Dq,, fm
where K := k1 + -+ + kyn and where D, := Hj\u__;:i’aij ]

e where Wrg is the integral of a form wg over the compactification of a

configuration space C{J;l o ]

[Consider the upper half plane H = {z € C|Im(z) > 0}; define

+ . zj € H;2; # zjfori # j;
Conf{zl7"'ﬂzn}{t17"'1tm} T {Z17. H’Z”,tl’ o .7tm tj S R7t] < t2 e < tm

+
and C{m7~~,pn}{q17~.,qm}

2-dimensional group G of all transformations of the form

to be the quotient of this space by the action of the

zj > azj+0b ti—at; +b a>0,beR.

+
{p17"'3p7b}{q1a"')an}
has an orientation induced on the quotient by

The configuration space C' has dimension 2n +m — 2 and

Qo znity ot} = AT ANdYL AL odon Adyn AdEL AL A dEm

if Zj =&y +iyj.
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+
{p1,--spn a1,
image of the configuration space C'

The compactification C g} is defined as the closure of the

(Drrpn s am} into the product of

a torus and the product of real projective spaces p? (R) under the map ¥
induced from a map 1 defined on Conf;_zl,‘..,zn}{tl..“,tm} in the following
way: to any pair of distinct points A, B taken amongst the {z;,Z;,t5} ¥
associates the angle arg(B — A) and to any triple of distinct points A, B,C
in that set, 1 associates the element of p? (R) which is the equivalence class
of the triple of real numbers (|A — B|,|B — C|, |C — A|).

Given a graph I' € Gn,m, one defines a form on C{p17~--7pn,}{q11~~7Q"m} induced
by
1
wf = (277)]91+'~~+kn(k1)! - (kn)'dq)m VAIAN dq)ﬁ
where ®5— :Arg(gi—%j).]

We give here a sketch of the proof; a detailed proof can be found in [1].
Remark that Wx # 0 implies that the dimension of the configuration
space 2n+m—2 is equal to the degree of the form = k1 +...+k, = K(=the
number of arrows in the graph).
We shall write

F, = Z Z Wfo = ZF(kl,...,kn)

m20Tfeq,, ,,

where Fi, . ,) corresponds to the graphs e Gn,m with k; arrows start-
ing from p;. The formality equation reads:

0=Fg, goylar- an)op— (D)= "poFy 4 y(e1- -an)
+ Y e, () FIEYIRIEL S o Fiy ()

UuJ={1,ldots,n}

I,J5#0
— Z Feg(i, 7,1, "%}“’n)F(ki+kj—1,k1,Aléik}.,kn,)((ai eqj)-ay-..didj.. an)
i#£]
where
ky i1y —1 J1---Jky
al.ag—mal aTOZQ 611/\/\8“6171/\8] /\/\3“2

so that [a1, as]s = (—1)""1ag @ ap — (—1)F1*2= D, e . The right hand
side of the formality equation can be written as

Z:CFBF(al C )
1—\/

N
for graphs I with n aerial vertices, m ground vertices and 2n + m — 3
arrows.



Deformation Quantisation and Connections 25

To a face G of codimension 1 in the boundary of C{p1 o}

and an oriented graph F’ as above, one associates one term in the formality
equation (or 0).

_ + . . .
e G = a{pi1,~»7pinl}{qz+1,..,qz+m1}C{pl,,,S)pn}{qh”,qm} if the aerial points
{pi,,-pi, } and the ground points {qi41,..,q1+m,} all collapse into a
ground point q. We associate to G the operator B_> (041 - -ay) which

is the term in the formality equation of the form B—» obtamed from
Bﬂ(ajl 'O‘jnz)(fh 7fla (Oz“~ 'ainl)(fl+1a'~;fl+m1)afl+m1+17'-;fm)

where 1"1 is the restriction of I’ to {Piyy - Pin, Y U{@41,5 5 Qim, }, Where

N
F_é is obtained from I by collapsing {pi,, ..., pi,, } U{@+1;- -, q4m, } into
g and where {j1 < ... <jn,} ={1,...,n}\{i1, ... in, }.

oG = (“){php?}C{ph o i} if the aerial pcints {pi,p;j} collapse into
an aerial point p. If the arrow ng; belongs to I, we associate to G the
operator BL, G(a1 -y, ) which is the term in the formality equation of

the form B—> obtained from

BF-;(oz,; o) - did; - Qy)

_
where F_; is obtained from I by collapsing {p;,p;} into p, discarding the
arrow }Tp; .

s A ,
If p;p; is not an arrow in I, we set BF; G(al - ap) =0.
oG = a{mp---,pml }Caly--qpn}{[Ilp»-qu} if the aerial points {p;,,...,p;,, } all

collapse with n; > 2. We associate to such a face GG, the operator B{?; o= 0.

Looking at the coefficients of BF; in each of the B/F7 & the right hand

side of the formality equation now writes

ZCFBF(O”' -an):Z Z B%;_’G(al- Q)

o Gcac+
E / F/ / : an) = O
+
F EG’”/ m GC@C

by Stokes theorem on the manifold with corners which is the compactifica-
tion of CT.
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Observe that the explicit formula for the Taylor’s coefficients F; of Kont-
sevich L., morphism from the differential graded Lie algebra of polyvec-
torfields on R to the differential graded Lie algebra of polydifferential
operators on R? shows that the coefficients of the multidifferential operator
Fj(ai,...,a;) are given by multilinear universal expressions in the partial
derivatives of the coefficients of the multivectorfields ay, ..., a;.

Hence the corresponding star product

Fefg=Fg+ 3 LR P)(, g) = fg + vP(df,dg) + O62) (20)
n=1 :

is natural and defined by bidifferential operator whose coefficients are uni-
versal polynomials of degree n in the partial derivatives of the coeflicients
of the tensor P.

4.3. Universal star product and universal formality

Kontsevich also obtained the existence of star products on a general Pois-
son manifold using abstract arguments. A more direct construction of a
star product on a d-dimensional Poisson manifold (M, P), using Kontse-
vich’s formality on R?, was given by Cattaneo, Felder and Tomassini in [6].
Using a linear torsionfree connection V on the manifold M, the construction
starts with the identification of the commutative algebra C*° (M) of smooth
functions on M with the algebra of flat sections of the jet bundle £ — M,
for the Grothendieck connection D%. Let us recall this construction.

The jet bundle and Grothendieck connection

Let M be a d-dimensional manifold and consider the jet bundle £ —
M (the bundle of infinite jet of functions) with fibers R[[y?,. .., y4]] (i.e.
formal power series in y € R? with real coefficients) and transition functions
induced from the transition functions of the tangent bundle T'M:

E=F(M) Xgiar) RHylv e ade (21)

where F(M) is the frame bundle. A section s € I'(E) can be written in the
form

oo
s=s(xyy) = Zsil...ip (z)y" eyt
p=0

where the s;,..;, are components of symmetric covariant tensors on M.
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The exponential map for the connection V gives an identification
exp, : UNT,M — M ywr— exp,(y) (22)

at each point x, of the intersection of the tangent space T, M with a neigh-
borhood U of the zero section of the tangent bundle T'M with a neighbor-
hood of = in M.

To a function f € C°° (M), one associates the section fg4 of the jet bundle
E — M given, for any x € M, by the Taylor expansion at 0 € T, M of the
pullback f oexp,; it is given by:

folzsy) )+ Z Vo f@) Yty (23)
n>0
The Grothendieck connection D% on F is defined by:
d _
DSs(ary) = 5 (o) 0, (o0, () (24
t=0

for any curve t — x(t) € M representing X € T, M and for any s € I'(E).
From the definition, it is clear that DY is flat and that D¢ fe = 0 for any
feC>(M).

Introducing 6 = Y, da'5 “ and V' = . daf (8961- — 2k Lk o7 (’“)yk->

one can write
C=—64+V +4, (25)

where A is a 1-form on M with values in the fiberwize vectorfields on E,

=: Z dz' A¥(z;y) 0, = Z da’ ( Z Rk (x (y3)> Oy
ik ik
(26)
One extends D¢ to the space Q(M, E) of E-valued forms on M:

C=—04V' +A withV' =d—Y_ da'TF 1’ 9. (27)
ijk

Introducing (as in Fedosov”s construction) §* =3, yi ((MJ) on Q(M, E),
we have (6*)> = 0,02 = 0 and for any w € Q4(M, E,), i.e. a g-form of
degree p in y, we have (§6* + §*0)w = (p + ¢)w. Hence, defining, for any
w e QI(M,E,)

w=—%w when p+¢q #0

=0 when p=¢q¢ =10
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we see that any d-closed ¢-form w of degree p in y, when p + ¢ > 0, writes
uniquely as w = §¢ with §*c = 0; ¢ is given by ¢ = §lw.

One proceeds by induction on the degree in y to see that the cohomoly of
D€ is concentrated in degree 0 and that any flat section of E is determined
by its part of degree 0 in y. Remark that given any section s of E then
s(z;y = 0) determines a smooth function f on M. If DYs = 0, then s — f;
is still D closed. By the above, Its terms of lowest order in y must be of
the form do hence must vanish since we have a 0-form. Hence we have:

Lemma 4.2. [5] Any section of the jet bundle s € T'(E) is the Taylor
expansion of the pullback of a smooth function f on M via the exponential
map of the connection V if and only if it is horizontal for the Grothendieck-
connection DY :

s=fyfora fecC®M)esclh,(E):={s cT(E)| D =0}. (28)
Furthermore, the cohomology of DY is concentrated in degree 0.

Lemma 4.3. [2] The 1-form A on M with values in the fiberwize vector-
fields on E is given by A(x;y) =: Y., dz* A¥(z;y) d,, where the AF are
universal polynomials given by concatenations of iterative covariant deriva-

tives of the curvature. This 1-form A is uniquely characterized by the fact
that 6~ *A = 0. and the fact that D€ = —§ + V' + A is flat.

Universal star product

The construction of a star product on any Poisson manifold by Cattaneo,
Felder and Tomassini proceeds as follows: one quantize the identification of
the commutative algebra of smooth fuctions on M with the algebra of flat
sections of E in the following way.

A deformed algebra stucture on I'(E)[[v]] is obtained through fiberwize
quantization of the jet bundle using Kontsevich star product on R?.

Consider the fiberwize Poisson structure on E, Py, which is given, at
a point x € M, by the Taylor expansion (infinite jet) at y = 0 of the
push-forward (exp,); ' P(exp, v)-

One then considers fiberwize Kontsevich star product on I'(E)[[v]]:

0 n
oL T =0T+ Y %Fn(qu, Py (o, T).

n=1

The operator Dg is not a derivation of this deformed product; one con-
structs a flat covariant derivative of the sections of E, D, which is a deriva-
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tion of % K One defines first the derivation
0o ]/j R
DY :X+Z?Fj+1(X,P¢,...,P¢) (29)
i=0 7"

where X := D§ — X is a vertical vectorfield on E. The connection D! is
not flat so one deforms it by

D:= D'+ [, R
K

so that D is flat. The 1-form ~ is constructed inductively using the fact
that the cohomology of D vanishes.

The next point is to identify series of functions on M with the algebra of
flat sections of this quantized bundle of algebras to define the star product
on M.

This is done by buildind a map p : T'(E)[[v]] — T'(E)[[v]] so that poD% =
D o p. This map is again constructed by induction using the vanishing of
the cohomology.

It results [2] from the explicit expression of the form A and the operator
d~! that the star product constructed in this way is universal.

Universal formality

Similarly, Dolgushev [8] constructs a L., morphism from the differential
graded Lie algebra of polyvectorfields on M to the differential graded Lie
algebra of polydifferential operators on M.

He defines a resolution of polydifferential operators and polyvectorfields
on M using the complexes (Q(M, Dpouy), D?”ozy) and (UM, Tpoiy), DIZ’“’“J)
where 7Ty, is the bundle of formal fiberwize polyvectorfields on E and
Dpoty is the bundle of formal fiberwize polydifferential operators on E. A
section of ’Z;koly is of the form

oo
- D )
. _ J1---Jk+1 7 in
Flzyy) = Z}—’lln (@)y™ -y Oy A A Oyir+1’ (30)
n=0
where Fgf::i "+ () are coefficients of tensors, symmetric in the covariant in-
dices i1, ..., 4, and antisymmetric in the contravariant indices ji, ..., jgt1-
A section of DE . is of the form

poly

Hlaky1

- Glaal
ak+1
ZO y 8ya1 ®...® ({)yo‘k‘*'l’ (31)
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where the oy are multi-indices and O] ";**** (z) are coefficients of tensors
symmetric in the covariant indices i1, . . zn. and symmetric in each block
of «; contravariant indices.

The spaces Q(M, T,o1,) and Q(M, Dyery) have a formal fiberwise DGLA
structure: the degree of an element in Q(M, o) ( resp. Q(M, Dpory) )
is defined by the sum of the degree of the exterior form and the degree
of the polyvector field (resp. the polydifferential operator), the bracket
on QM,Tpop,) is defined by [w1 ® Fi,ws ® Folsy = (=1)"%w; A
wy @ [F1,Falgy for w; a ¢; form and F; a section in ’Z;’Z"ly and sim-
ilarly for Q(M,Dpory) using the Gerstenhaber bracket. The differential
on Q(M,7poy) is 0 and the differential on Q(M, Dpey) is defined by
0 = [mpy,.]¢ where mps is the fiberwize multiplication of formal power
series in y of F.

The differential Dg”‘”y is defined on Q(M, T,01y) by

DI F = VT F — 57w F 4 [A, Flsy (32)

with  VTrewF = dF - [Zijk dz'TY; 7 O, ]'—} SN’ §Trev F =
>, dat By“ ]—'] o Similarly D?”“J is defined on Q(M, Dpery) by

D?polyo — VDpolyO — §Prov + [A, O}G (33)

with VPretv and 6Pretv defined as above with the Gerstenhaber bracket.
Again the cohomology is concentrated in degree 0 and a flat section
F € Tpoty or O € Dpyyy is determined by its terms Fy or Og of order 0 in y.
T}, (M) asection Fy € T(Tpory) :
for a point x € M one considers the Taylor expansion (infinite jet) Fy(z;y)

We associate to a polyvector field F' €
at y = 0 of the push-forward (exp,);!F(exp, y). Clearly this definition

implies that X,(fs) = (X[), so that Fy is uniquely determined by the
fact that

Fy(fhoon [ = (F(fY o f5TY), Ve C=(M). (34)

Similarly we associate to a differential operator O € D
Oy € T'(Dpoiy) determined by the fact that

poly(M) a section

Op(fhr - [T = (O(fl,...7f’“+1))¢ Y fi e C™(M). (35)
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Tpoly s Doty
Observe that DY Fyy = 0 and similarly D~**"* Oy = 0, hence:

Lemma 4.4. [2, 8] A section of Tpory is D;—”"’yfhorizontal if and only if
is a Taylor expansion of a polyvectorfield on M, i.e. iff it is of the form Fy

for some F € T]foly(M); a section of Dpory 15 D?“"“’—hom’zontal if and only

if is of the form Oy for some O € Dt (M).

poly

Dolgushev constructs his L.,-morphism in two steps from the fiberwize
Kontsevich formality from Q(M, Tpoi,) to Q(M, Dporyy) building first a twist
which depends only on the curvature and its covariant derivatives, then
building a contraction using the vanishing of the Dg cohomology. Hence
the Taylor coefficients of this L..,-morphism, which are. a collection of maps
FjD associating to j multivectorfields oy on M a multidifferential operator
FjD (a1, ..., ;) are such that the tensors defining this operator are given by
universal polynomials in the tensors defining the «;’s, the curvature tensor
and their iterated cavariant derivatives.
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In this article we explain the elements of symplectic geometry, and sketch the
proof of one of its foundational results — Gromov’s nonsqueezing theorem —
using J-holomorphic curves. The work presented here was partially supported
by NSF grant DMS 0604769.

1. First notions

Symplectic geometry is an even dimensional geometry. It lives on even di-
mensional spaces, and measures the sizes of 2-dimensional objects rather
than the 1-dimensional lengths and angles that are familiar from Euclidean
and Riemannian geometry. It is naturally associated with the field of com-
plex rather than real numbers. However, it is not as rigid as complex ge-
ometry: one of its most intriguing aspects is its curious mixture of rigidity
(structure) and flabbiness (lack of structure). In this talk I will try to de-
scribe some of the new kinds of structure that emerge.

First of all, what is a symplectic structure? The concept arose in the
study of classical mechanical systems, such as a planet orbiting the sun,
an oscillating pendulum or a falling apple. The trajectory of such a system
is determined if one knows its position and velocity (speed and direction
of motion) at any one time. Thus for an object of unit mass moving in a
given straight line one needs two pieces of information, the position ¢ and
velocity (or more correctly momentum) p := ¢. This pair of real numbers
(x1,72) := (p, q) gives a point in the plane R2. In this case the symplectic
structure w is an area form (written dp A dq) in the plane. Thus it measures
the area of each open region S in the plane, where we think of this region
as oriented, i.e. we choose a direction in which to traverse its boundary
0S. This means that the area is signed, i.e. as in Figure 1.1 it can be
positive or negative depending on the orientation. By Stokes’ theorem, this
is equivalent to measuring the integral of the action p dq round the boundary

08S.
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Fig. 1.1. The area of the region S; is positive, while that of Sa is negative.

This might seem a rather arbitrary measurement. However, mathemati-
cians in the nineteenth century proved that it is preserved under time evo-
lution. In other words, if a set of particles have positions and velocities
in the region S; at the time ¢; then at any later time t5 their positions
and velocities will form a region S; with the same area. Area also has
an interpretation in modern particle (i.e. quantum) physics. Heisenberg’s
Uncertainty Principle says that we can no longer know both position and
velocity to an arbitrary degree of accuracy. Thus we should not think of
a particle as occupying a single point of the plane, but rather lying in a
region of the plane. The Bohr-Sommerfeld quantization principle says that
the area of this region is quantized, i.e. it has to be an integral multiple of
a number called Planck’s constant. Thus one can think of the symplectic
area as a measure of the entanglement of position and velocity.

An object moving in the plane has two position coordinates ¢i, g2 and
correspondingly two velocity coordinates p1 = ¢1,p2 = ¢» that measure its
speed in each direction. So it is described by a point

(21,72, 23,24) = (P1,q1,P2,2) € R?

in the 4-dimensional space R*. The symplectic form w now measures the
(signed) area of 2-dimensional surfaces S in R* by adding the areas of the
projections of S to the (x1,x9)-plane and the (x3,x4)-plane. Thus, as is
illustrated in Figure 1.2,

w(S) = area(pr12(S)) + area(prsa(9)).

Notice that w(S) can be zero: for example S might be a little rectangle in
the x1, x3 directions which projects to a line under both pris and prz4.
More technically, w is a differential 2-form written as

w =dxri ANdry + drs Adry,
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Fig. 1.2. The symplectic area w(S) is the sum of the area of its projection pri2(S) to
the plane (z1,z2) = (p1,q1) given by the velocity and position in the first direction
together with the area of the corresponding projection prs4(S) for the two coordinates
in the second direction. I have drawn the first 3 coordinates; the fourth is left to your
imagination.

and we evaluate the area w(S) = |, gw by integrating this form over the
surface S. A similar definition is made for particles moving in n-dimensions.
The symplectic area form w is again the sum of contributions from each of
the n pairs of directions:

wo :dl'l/\d.’E2+d£L'3/\d£L'4+"'+d£L'2n,1 /\dl’gn. (1)

We call this form wg because it is the standard symplectic form on Euclidean
space. The letter w is used to designate any symplectic form.

To be even more technical, one can define a symplectic form w on any
even dimensional smooth (i.e. infinitely differentiable) manifold M as a
closed, nondegenerate 2-form, where the nondegeneracy condition is that
for each nonzero tangent direction v there is another direction w such that
the area w(v, w) of the little (infinitesimal) parallelogram spanned by these
vectors is nonzero. (For a geometric interpretation of these conditions on w
see Figure 1.3.) A manifold is said to be symplectic or to have a symplectic
structure if it is provided with a symplectic form.

The first important theorem in symplectic geometry is that locally® all
symplectic forms are the same.

2This means “on suitably small open sets”.
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Fig. 1.3. The fact that w is closed means that the symplectic area of a surface S with
boundary does not change as S moves, provided that the boundary is fixed. Thus in (I)
the surfaces S and S’ have the same area. Diagram (II) illustrates the nondegeneracy
condition: for any direction v at least one of the family of 2-planes spanned by v and a
varying other direction w has non zero area.

Darboux’s Theorem: Given a symplectic form w on a manifold M and
any point on M one can always find coordinates (1, ..., Tay,) defined in an
open neighborhood U of this point such that in this coordinate system w is
given on the whole open set U by formula (1).

This is very different from the situation in the usual (Riemannian) ge-
ometry where one can make many local measurements (for example in-
volving curvature) that distinguish among different structures. Darboux’s
theorem says that all symplectic structures are locally indistinguishable.
Of course, as mathematicians have been discovering in the past 20 years,
there are many very interesting global invariants that distinguish different
symplectic structures. But most of these are quite difficult to define, often
involving deep analytic concepts such as the Seiberg—Witten equations or
J-holomorphic curves.

A symplectic form w has an important invariant, called its cohomology
class [w]. This class is determined by the areas w(S) of all closed® surfaces S
in M. In fact, for compact M the class [w] is determined by a finite number
of these areas w(.S;) and so contains only a finite amount of information.
Cf. Figure 1.3 where we pointed out that the area w(S) does not change if
we move S around.

There is a similar flabbiness in the symplectic structure itself. A funda-
mental theorem due to Moser says that one cannot change the symplectic

b A closed surface is something like the surface of a sphere or donut; it has no edges and
no holes.
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form in any important way by deforming it, provided that the cohomol-
ogy class is unchanged. More precisely, if w;,t € [0,1], is a smooth path
of symplectic forms such that [wp] = [w;] for all ¢, then all these forms are
“the same” in the sense that one can make them coincide by moving the
points of M appropriately.© The important point here is that we cannot find
new structures by deforming the old ones, provided that we fix the inte-
grals of our forms over all closed surfaces. This result is known as Moser’s

Stability Theorem, and is an indication of robustness of structure.4

2. Symplectomorphisms

Another consequence of the lack of local features that distinguish between
different symplectic structures is that there are many ways to move the
points of the underlying space M without changing the symplectic structure
w. Such a movement is called a symplectomorphism. This means first that

e ¢ is a diffeomorphism, that is, it is a bijective (one to one and onto)
and smooth (infinitely differentiable) map ¢ : M — M, giving rise to the
movement = — ¢(x) of the points x of the space M;

and second that

o it preserves symplectic area, i.e. w(S) = w(¢(S)) for all little pieces of
surface S. The important point here is that this holds for all S, no matter
how small or large. (Technically it is better to work on the infinitesimal
level, looking at the properties of the derivative d¢ of ¢ at each point.)

In 2-dimensions, a symplectomorphism ¢ is simply an area preserving
transformation. For example the map v in Figure 2.1 is given by the formula
Y(x1,x2) = (221, %1'2) Since it multiplies one coordinate by two and divides
the other by two it does not change area. More generally, one form of
Moser’s theorem says the following:

Characterization of plane symplectomorphisms: Suppose that S is a
region in the plane R? that is diffeomorphic to a disc D and has the same
area as D. Then there is a symplectomorphism ¢ : D — S.

The above statement means that we can choose the diffeomorphism
¢ : D — S so that it preserves the area of every subset of D not just of D
itself.

°In technical language we say that these forms are all diffeomorphic.

dFor precise statements, many proofs, and a list of references on all the topics mentioned
here see [9]. There are also other more elementary books such as Cannas [2]. For sim-
plicity, we shall only work here in dimensions 2 and 4. But all the results have higher
dimensional analogs.
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Fig. 2.1. Symplectomorphisms in dimension 2.

In 4-dimensions the situation is rather different. Gromov was the first
to try to answer the question:

What are the possible shapes of a symplectic ball?
More precisely, let B be the round ball of radius one in R*. Thus
B={(z1,...,24) s 2] + 25 + 23 + 2] < 1}

consists of all points whose (Euclidean) distance from the origin {0} is
at most one. What can one say about the set ¢(B) where ¢ is any sym-
plectomorphism? Can ¢(B) be long and thin? Can its shape be completely
arbitrary? The analog of the 2-dimensional result would be that ¢(B) could
be any set that is diffeomorphic to B and also has the same volume.®

It is possible for ¢(B) to be long and thin. For example one can stretch
out the coordinates x1, x3 while shrinking the pair xs,z4 as in the map

(w1, w2, w3, 34)) = (221, 322, 223, $24).

But the map
/lz[}((xh T2,T3, ‘T4)) = (%xh %‘T27 21’3, 2’1:4)

will not do since the area of rectangles in the z1,x2 plane are divided
by 4. Note that ¢ preserves the pairs (z1,z2) and (z3,z4) and is made
by combining area preserving transformations in each of these 2-planes.
One might ask if there is a symplectomorphism that mixes these pairs, for
example rotates in the x1, x3 direction. There certainly are such maps. For
example

¢((1’1,I2,I3,I4)) = %(iﬁ — I3, Ty — X4, T1 + T3, T2+ T4)

¢Since w A w is a volume form, any symplectomorphism preserves volume. The fact that
it is impossible to give a completely elementary proof of this (e.g. one that does not
involve the concept of a differential form) reflects the fact that to nineteenth century
mathematicians this was a nontrivial result; cf. [1].
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Fig. 2.2. Can the unit ball B be squeezed into the cylinder Z(r)?

is a symplectomorphism that rotates anticlockwise by 45 degrees in both
the x1,x3 plane and the x5, x4 plane.

Nevertheless, Gromov in his nonsqueezing theorem showed that as far as
the large geometric features of the space are concerned one can still see this
splitting of R* into the product of the (1, 22) plane and the (x3,x4) plane.
He described this in terms of maps of the unit ball B into the cylinder

Z(r):==D*(r) x R* = {(21,...,24) 12} + 25 <r*} C R? (1)

of radius r, showing that one cannot squeeze a large ball into a thin cylinder
of this form.

Gromov’s Nonsqueezing Theorem: If r < 1 there is no symplectomor-
phism ¢ such that ¢(B) C Z(r).

Although the nonsqueezing theorem might seem quite special and there-
fore unimportant (though perhaps cute), the property expressed here, that
symplectomorphisms cannot squeeze a set in a pair of “symplectic direc-
tions” such as 1, x2, turns out to be absolutely fundamental: when properly
formulated it gives a necessary and sufficient condition for a diffeomor-
phism to preserve the symplectic structure. Thus this theorem should be
understood as a geometric manifestation of the very nature of a symplectic
structure.
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Fig. 2.3. Can the ball go through the hole?

Another similar problem is that of the Symplectic Camelf Here the
camel is represented by a round 4-dimensional ball of radius 1 say, and
the eye of the needle is represented by a “hole in a wall”. That is to say,
the wall with a hole removed is given by

W = {(wl,x27x3,x4) eR* : 2y =0,23 + 25 + 23> 1}

and we ask whether a (closed) round ball B of radius 1 can be moved
from one side of the wall to the other in such a way as to preserve the
symplectic form. (Note that because the ball is closed and the 2-sphere
{23 + 2% + 27 = 1,21 = 0} is contained in the wall, the ball will get stuck
half way if one just tries moving it by a translation.)

It is possible to do this if one just wants to preserve volume. This is
easy to see if one restricts to the three-dimensional case (by forgetting the
last coordinate x4); one can imagine squeezing a sufficiently flexible balloon
through any small hole while preserving its volume. However, as Gromov
showed, the symplectic case is more rigid.

The Symplectic Camel: It is impossible to move a ball of radius > 1
symplectically from one side of the wall to the other.

Both these results show that there is some rigidity in symplectic geom-
etry. Exactly how this is expressed is still not fully understood, especially

(3]

fThe name of this problem is a somewhat “in” joke, of the kind appreciated by many
mathematicians. The reference is to the saying that it would be easier for a camel to go
through the eye of needle than for a rich man to get into heaven. (This saying is probably
a mistranslation of a sentence in the bible.)
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in dimensions > 4. However, recently progress has been made on another
fundamental embedding problem in dimension 4. The question here is to
understand the conditions under which one ellipsoid embeds symplectically®
in another. Here, by the ellipsoid E(a,b) we mean the set

:v%—i—x% n x%—i—xi < 1}.
a b
In this language, the ball B(r) of radius r is E(r?, r?); in other words,
the numbers a, b are proportional to areas, not lengths. Thus the question
is: when does E(a,b) embed symplectically in E(a’,b’)? Here we will fix
notation by assuming that ¢ < b and a’ < V'.
If the first ellipsoid is a ball F(a,a) then the answer is given by the
Nonsqueezing Theorem:

E(a,b) := {(xl,...,m) :

a necessary and sufficient condition for embedding E(a,a) into
E(d',V) (where o’ <V') is that a < a’.

(This condition is obviously sufficient since E(a,b) is a subset of E(a’,d’)
when a < o’ and b < b'. On the other hand, it is necessary because if
FE(a,a) embeds in E(a’,b’) then, since E(a/,V') C Z(v/d'), it also embeds
in Z(v/a'), so that by the nonsqueezing theorem we must have a < a'.)

But if the target is a ball E(a’, a’) and the domain E(a,b) is an arbitrary
ellipsoid the answer is not so easy. It was proved in the 90s that when
a < b < 2a the situation is rigid: to embed F(a,b) into E(d’,a’) it is
necessary and sufficient that b < a’. In other words, the ellipsoid does not
bend in this case. However, as soon as b > 2a some flexibility appears
and it is possible to embed E(a,b) into E(a’,a’) for some o’ < b. Then
of course one wants to know how much flexibility there is. What other
obstructions are there to performing such an embedding besides the obvious
one of volume? Notice that because a, b, a’ are areas the volume obstruction
to the existence of an embedding is that ab < (a’)?.

This question was nicely formulated in a paper by Cieliebak, Hofer,
Latschev and Schlenk [3] called Quantitative Symplectic Geometry in terms
of the following function: define c(a) for a > 1 by"

c(a) := inf{c : E(a,b) embeds symplectically in F(c’,c')}.

g8We say that the set U embeds symplectically in V' if there is a symplectomorphism ¢
such that ¢(U) C V.

bNote that E(a,b) may not embed in E(c(a),c(a)) itself — one usually needs a little
extra room so that the boundary of E(a,b) does not fold up on itself. However, one can
show that the interior of E(a,b) does embed in E(c(a),c(a)).
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37

F(16,25) F(20,20)

Fig. 2.4. Does E(a,b) embed symplectically in E(a’,b')? In the case illustrated here,
ab = a’b’, so there is no volume obstruction to the embedding, but the embedding does
not exist because 25 > 20. In fact, if we rescale by dividing all areas by 16, the problem
is equivalent to embedding E(1, %) into E(?—g, %2) But this is impossible by Equation
(2) below.

When [3] was written, this function was largely a mystery except that one
knew that ¢(a) = a for a < 2 (rigidity). Now methods have been developed
to understand it, and it should be fully known soon for all a: see McDuff
and Schlenk [12] and also [11]. As a first step, work of Opshtein [14] can be
used to evaluate c¢(a) in the range 1 < a < 4. Surprisingly, it turns out that

cla)=a, f1<a<2, cla)=2 if2<a<4. (2)

In other words the graph is constant in the range a € [2,4]. To prove
this one only needs to show that ¢(4) = 2. Because ¢ is nondecreasing, if
¢(2) = ¢(4) = 2 then ¢ must be constant on this interval. On the other
hand, the statement c(4) = 2 implies that we can fill the volume of the
ball E(2,2) by the interior of the ellipsoid E(1,4), which is a somewhat
paradoxical state of affairs. Why can you fill all the volume of F(2,2) by
the interior of E(1,4) when you cannot fill E(v/2,/2) by the interior of
E(1,2)?

It turns out to be important that 4 is a perfect square. For any posi-
tive integer k, Opshtein discovered an explicit way to embed E(1,k?) into
E(k, k) that embeds the ellipsoid F(1,k?) into a neighborhood of a degree
k curve such as z5 + 2¥ + 25 = 0 in the complex projective plane. Thus
there is a clear geometric reason why the case a = k? is different from
the general case. Many more things are now known about the function c:
Figure 2.5 gives an idea of its graph. Here I would just like to point out that
its behavior on the interval [1,4] is typical in symplectic geometry: either
the situation is rigid (for a € [1, 2], the ellipse does not bend at all) or it is
as flexible as it could possibly be (for a € [2,4], the ellipsoid bends as much
as is consistent with the obvious constraints coming from volume and the
constraint at a = 2).



What is Symplectic Geometry? 43

3 L ] (T4T2) e
o (18310
2366
2 »
l »
4
T\
o)

1 2 3 4 5 B 7 8 g9

Fig. 2.5. The graph of c¢: it appears to have an infinite staircase that converges to the

point (7%4,72), where 7 is the golden ratio, and it equals v/a for a > %. The graph

between the points 7¢ < a < % is not yet completely known.

3. Almost complex structures and J-holomorphic curves

The remainder of this note tries to give a rough idea of how Gromov proved
his results. Nowadays there are many possible approaches to the proof. But
we shall explain Gromov’s original idea that uses J-holomorphic curves.
These provide a special way of cutting the cylinder into 2-dimensional slices
2 as in Figure 3.5, and we shall see that these provide an obstruc-
tion to embedding a ball of radius 1. Similarly, because one can fill the hole
in the wall by these slices, the size of a ball that can be moved through the
hole is constrained to be < 1.

of area 7r

The concept of J-holomorphic curves has turned out to be enormously
fruitful. Gromov’s introduction of this idea in 1985 was one of the main
events that initiated the modern study of symplectic geometry.

Gromov’s key idea was to exploit the connection between symplectic
geometry and the complex numbers.

A differentiable manifold M is a space in which one can do calculus: lo-
cally it looks like Euclidean space, but it can have interesting global struc-
ture.! As in calculus, one often approximates curves or surfaces near a given

iFor a wonderful introduction to this subject see Milnor [13].
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point x € M by the closest linear objects, tangent lines or planes as the
case may be. The collection of all possible tangent directions at a point x
is called the tangent space T, M to M at x. It is a linear (or vector) space
of the same dimension as M. As the point x varies over M the collection
Uzem T M of all these planes forms what is called the tangent bundle of
M. If M = R?" is Euclidean space itself, then one can identify each of its
tangent spaces T,R?" with R?", but most manifolds (such as the sphere)
curve around and do not contain their tangent spaces.

Fig. 3.1. Some curves and tangent vectors on the two-sphere, together with some tan-
gent spaces T M.

An almost complex structure at a point x of a manifold M is a linear
transformation J, of the tangent space T, M at x whose square is —1.
Geometrically, J, rotates by a quarter turn (with respect to a suitable
coordinate system at x.) Thus the tangent space T,, M becomes a complex
vector space (with the action of J, playing the role of multiplication by
V/—1.) An almost complex structure J on M is a collection J, of such
transformations, one for each point of x, that varies smoothly as a function
of x. If M has dimension 2 one can always choose local coordinates on M
to make the function x — J, constant. However in higher dimensions this
is usually impossible. If such coordinates exist J is said to be integrable.
What this means is explained more fully in Equation (2).

Rather few manifolds have integrable almost complex structures. (To be
technical for a minute, this happens if and only if M has a complex struc-
ture, i.e. if and only if one can glue M together from its locally Euclidean



What is Symplectic Geometry? 45
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; iy
k‘/—J’U: I

Fig. 3.2. (I) pictures J = J; as a (skew) rotation; (II) shows the complex line spanned
by v, Juv.

pieces U C C™ by using holomorphic functions.) However, many manifolds
have almost complex structures.]

In particular, symplectic manifolds always do. In fact, in this case one
can choose J to be compatible with the symplectic form w, i.e. so that at
all points z € M

w(Jpv, Jw) =w(v,w), and w(v, Jyv) >0, (1)

for all nonzero tangent vectors v, w € T, M.X

The first equation here says that rotation by J, preserves symplectic
area, while the inequality (called the taming condition) says that every
complex line has positive symplectic area. Note that complex lines have 2
real dimensions; they are spanned over R by two vectors of the form v and
Jpv = “v7.

For any given w there are many compatible almost complex structures;
in fact there is a contractible set of such structures. Associated to each such
J there is a Riemannian metric, i.e. a symmetric inner product g; on the

tangent space T, M. It is given by the formula
gs(v,w) :=w(v,Jw), v,weT,M.

As with any metric, this gives a way of measuring lengths and angles.
However, it depends on the choice of J and so is not determined by w

IFor example the 6-dimensional sphere S% has an almost complex structure. It is a famous
unsolved problem to decide whether it has a complex structure.

KHere T have used the language of differential 2-forms; but readers can think of w(v,w)
as the symplectic area of a small (infinitesimal) parallelogram spanned by the vectors
v, W.
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alone. Nevertheless, because via J it has a very geometric relationship to w
it is often useful to consider it.!

As an example that will be useful later, observe that the usual (inte-
grable!) complex structure Jy on C2 = R* is compatible with the standard
symplectic form wy and the associated metric gg is the usual Euclidean
distance function.

J-holomorphic curves: A (real) curve in a manifold M is a path in M;
that is, it is the image of a map f : U — M where U is a subinterval of the
real line R. A J-holomorphic curve in an almost complex manifold (M, J)
is the complex analog of this. It has one complex dimension (but 2 real
dimensions) and is the image of a “complex” map f : ¥ — M from some
complex curve ¥ into (M, J). Here we shall take the domain ¥ to be either
a 2-dimensional disc D (consisting of a circle in the plane together with
its interior) or the 2-sphere S? = C U {oo}, which we shall think of as the
complex plane C completed by adding a point at co; see Figure 3.3.

Fig. 3.3. The 2-sphere S? as the completion of the complex plane C. Often one puts co
at the north pole of the 2-sphere and identifies S?~{oo} with the plane via stereographic
projection.

If J is integrable, we can choose local complex coordinates on the target

space M of the form z; = x1 + ixzo, 29 = x3 + iz4 So that at each point

z the linear transformation J = J, acts on the tangent vectors % by

“multiplication by ¢”: namely,
%) _ 0 1%} _ 1%} 1%} _ 0 ) _ 1o}
J(aTl) = Bun> J(%) = " Bar J(aTg,) = Bur> J(Tm) = ~5a; (2)

IFor example, the associated metric on the loop space of M leads to a very natural
interpretation for gradient flows on this loop space. This is the basis of Floer theory;
see [8].
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Then there is an obvious notion of “complex” map: in terms of a local
coordinate z = x + iy on the domain and this coordinate system on the
target, f is given by two power series f1(z), f2(z) with complex coefficients
ag, bk:

1) = (1), f2(2) = (s, 3o bt
k>0 k>0

i.e. f is holomorphic. Such functions can be characterized by the behavior
of their derivatives: these must satisfy the Cauchy—Riemann equation
of | ;of _
or dy
This equation still makes sense even if J is not integrable, and so given

such J we say that f: ¥ — (M, J) is J-holomorphic if it satisfies the above
equations.

+J 0.

J-holomorphic curves as minimal surfaces: The images f(X) of such
maps have very nice properties. In particular, their area with respect to the
associated metric gy equals their symplectic area. We saw earlier that the
symplectic area of a surface is invariant under deformations of the surface
that fix its boundary. (Cf. Figure 1.3 (I).) It follows easily that their metric
area can only increase under such deformations, i.e. J-holomorphic curves
are so-called g ;-minimal surfaces. Thus we can think of them as the complex
analog of a real geodesic.™

Minimal surfaces have the following very important property that we
will use later. Let go be the usual Euclidean metric on R* (or, in fact, on
any Euclidean space R?). Suppose that S is a go-minimal surface in the ball
B of radius 1 that goes through the center of the ball and has the property
that its boundary lies on the surface of the ball. (Technically, we say that
S is properly embedded in B.) Then

the gp-area of S is > . (3)

In fact the go-minimal surface of least area that goes through the center of
a unit ball is a flat disc of area w. All others have nonpositive curvature,
which means that at each point they bend in opposite directions like a

MmRemember that a geodesic in a Riemannian manifold (M, ¢g) is a path that minimizes
the length between any two of its points (provided these are sufficiently close.) The
metric area of a surface is a measure of its energy. Thus a minimal surface has minimal
energy and is, for example, the shape taken up by a soap film in 3-space that spans a
wire frame.
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Fig. 3.4. Any go-minimal surface S through 0 has area > .

saddle and so, unless they are completely flat, have area greater than that
of the flat disc.

Families of J-holomorphic curves: Holomorphic (or complex) objects
are much more rigid than real ones. For example there are huge numbers of
differentiable real valued functions on the 2-sphere S2, but the only complex
(or holomorphic) functions on S? are constant.®

There are infinitely many holomorphic functions if one just asks that
they be defined in some small open subset of S$2, but the condition that
they be globally defined is very strong. Something very similar happens
with complex curves.

If one fixes a point x € M there are infinitely many real curves through
x. In fact there is an infinite dimensional family of such curves, i.e. the
set of all such curves can be given the topology of an infinite dimensional
space. For real curves it does not matter if we look at little pieces of curves
or the whole of a closed curve (e.g. the image of a circle). In the complex
case, there still are infinite dimensional families of curves through z if we
just look at little pieces of curves. But if we look at closed curves, e.g.
maps whose domain is the whole of the 2-sphere, then there is at most a
finite dimensional family of such curves. Moreover, Gromov discovered that
under many circumstances the most important features of the behavior of
these curves does not depend on the precise almost complex structure we
are looking at.

" A well known result in elementary complex analysis is that every bounded holomorphic
function that is defined on the whole of the complex plane C is constant. (These are
known as entire functions.) Since the Riemann sphere S? = C U {cco} contains C, the
same is true for S2.
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For example, if (M,w) is the complex projective plane with its usual
complex structure Jy, then a complex line can be parametrized by a (lin-
ear) holomorphic map f : S? — (M, Jy) and so can be thought of as a
Jo-holomorphic curve. If we perturb Jy to some other w-compatible almost
complex structure J, then each complex line perturbs to a J-holomorphic
curve. Gromov showed that, just as there is exactly one complex line
through each pair of distinct points x,y, there is exactly one of these J-
holomorphic curves through each z,y.°

Fig. 3.5. Slicing the cylinder Z(r) with J-holomorphic discs of symplectic area mr?2.

In dimension 4, provided that we put on suitable boundary conditions, or better still
compactify as explained below, there is precisely one such disc through each point. In
higher dimensions, with Z(r) := D?(r) x R2?~2, there is at least one.

What we need to prove the nonsqueezing theorem is a related result
about cylinders Z(r) as defined in Equation (1).

Slicing cylinders: Let (Z(r),wo) be the cylinder in (R* wp), and let J
be any wo-tame almost complex structure on Z(r) that equals the usual
structure outside a compact subset of the interior of Z(r). Then there is
a J-holomorphic disc f : (D?,0D?) — (Z(r),0Z) of symplectic area mr>
through every point of Z(r).

Note that here we are interested in discs whose boundary circle 9D? is
taken by f to the boundary 0Z of the cylinder. The above statement is true

°This very sharp result uses the fact that the complex projective plane has 4 real di-
mensions. In higher dimensional complex projective spaces, Gromov showed that one
can count these curves with appropriate signs and that the resulting sum is one. But
now there may be more than one actual curve through two points. Thus the theory is no
longer so geometric. The effect is that we know much more about symplectic geometry
in 4-dimensions than we do in higher dimensions. However, results like the nonsqueezing
theorem are known in all dimensions.
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for the usual complex structure Jo. In fact if wy = (20,%0) € D?*(r) x R?
then the map

f(z) = (;,yo) € D*(r) x R?

goes through the point wy. Because there is essentially one map of this
kind (modulo reparametrizations of f), a deformation argument implies
that there always is at least one such map no matter what J we choose.?

3.1. Sketch proof of the nonsqueezing theorem
Suppose that there is a symplectic embedding
¢: B*(1) — Z(r) = D*(r) x R%.

We need to show that » > 1. Equivalently, by slightly increasing r, we may
suppose that the image of the ball lies inside the cylinder, and then we
need to show that r > 1. We shall do this by using J-holomorphic slices
as described above, but where J is chosen very carefully. (Really the whole
point of this argument is to choose a J that is related to the geometry of
the problem.)

This is how we manage it. In order to make the slicing arguments work
we need our J to equal the standard Euclidean structure Jy near the bound-
ary of Z(r) and also outside a compact subset of Z(r).4

But because the image ¢(B) of the ball is strictly inside the cylinder, we
can also make J equal to any specified wy-tame almost complex structure
on ¢(B). In particular, we may assume that J equals the pushforward of the
standard structure ¢.(Jy) on ¢(B). In other words, inside the embedded
ball J is “standard”.

Then, the statement above about slicing cylinders says that there is a
J-holomorphic disc

f:D*—=Z(r), [f(0)=¢(0),
that goes through the image ¢(0) of the center of the ball and also has

boundary on the boundary of the cylinder. Further, the symplectic area of
the slice C = f(D?) is 7r2.

PTo make this argument precise we should partially compactify the target by identifying
each boundary circle 9D?(r) x {y},y € R2, to a point. The target then becomes S2 x R2.
Correspondingly we should look at maps with domain S? = D?/9D?. Then the count of
J-holomorphic curves through wg can be rephrased in terms of the degree of a certain
map.

AThis technical condition is needed so that we can compactify the domain and target as
explained earlier.
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Fig. 3.6. The go-minimal surface S is taken by the embedding ¢ into the intersection
(outlined in heavy dots) of the slice C' with the image ¢(B) of the ball.

Now consider the intersection Cp := C N ¢(B) of the slice with the
embedded ball ¢(B). By construction, this goes though the image ¢(0) of
the center 0 of the ball B. We now look at this situation from the vantage
point of the original ball B. In other words, we look at the inverse image
S := ¢~1(Cp) of the curve Cp under ¢ as in Figure 3.6. This consists of all
points in the ball that are taken by ¢ into Cg and forms a curve in B that
goes through its center. The rest of our argument involves understanding
the properties of this curve S in B.

One very important fact is that S is holomorphic in the usual sense of
this word, i.e. it is holomorphic with respect to the usual complex structure
Jo on R* = C2. This follows from our choice of J: by construction, J equals
the pushforward of Jy on the image ¢(B) of the ball, and so, because Cg lies
in ¢(B) and is J-holomorphic, it pulls back to a curve S that is holomorphic
with respect to the pullback structure Jy.

As we remarked above, this means that S is a minimal surface with
respect to the standard metric gy on R* associated to wg and Jy. So by
Equation (3) the area of S with respect to go is at least m. But because S
is holomorphic, this metric area is the same as its symplectic area wg(S).
This, in turn, equals the wyp-area of the image curve ¢(S) = Cg, because ¢
preserves wy.

Finally note that, by construction, Cp is just part of the J-holomorphic
slice C' through ¢(0). It follows that Cp has strictly smaller wp-area than
C'. (This follows from the taming condition wg(v, Jv) > 0 of Equation (1),
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which, because it is a pointwise inequality, implies that every little piece of
a J-holomorphic curve — such as C\.C'p — has strictly positive symplectic
area.) But our basic theorem about slices says that wy(C) = 7r?. Putting
this all together, we have the following string of inequalities and equalities:

m < go-area S = wp-area S = wp-area ¢(S) < wp-area C = 7r.
Thus 7 < 7r2. This means that » > 1, which is precisely what we wanted
to prove.
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Regular permutation groups are the ‘smallest’ transitive groups of permuta-
tions, and have been studied for more than a century. They occur, in particular,
as subgroups of automorphisms of Cayley graphs, and their applications range
from obvious graph theoretic ones through to studying word growth in groups
and modeling random selection for group computation. Recent work, using the
finite simple group classification, has focused on the problem of classifying the
finite primitive permutation groups that contain regular permutation groups
as subgroups, and classifying various classes of vertex-primitive Cayley graphs.
Both old and very recent work on regular permutation groups are discussed.

Keywords: Permutation groups; Cayley graphs.

1. Introduction

Finite primitive permutation groups containing a regular subgroup have
been studied for more than one hundred years, while the theory of per-
mutation groups is even older, going back to the origins of Group Theory
in the early nineteenth century. Cayley graphs encode the structure of a
group, and are a central tool in combinatorial and geometric group theory.
In this chapter I will introduce these concepts, discuss some of their his-
tory and applications, and summarise some very recent classification results
concerning finite regular permutation groups and Cayley graphs the proofs
of which rely on the finite simple group classification.

1.1. Permutation groups and regularity

A permutation of a set Q is a bijection g : Q@ — , and the set of all
permutations of {2 forms the symmetric group Sym(Q2) under composition.
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For example, performing the permutation g = (1,2) of Q = {1,2,3}, fol-
lowed by h = (2, 3), yields the permutation gh = (1, 3,2). By a permutation
group on 2 we mean an arbitrary subgroup of Sym(2). Permutation groups
provide a basic measure of symmetry of a system and so have many impor-
tant applications, for example in Graph Theory (as automorphism groups),
Geometry (as groups of collineations), in Number Theory and Cryptogra-
phy (as Galois groups and groups associated with elliptic curves), and in
Differential Equations (where the nature of the solutions depends on the
symmetries of the equation).

A permutation group G < Sym(QQ) is said to be transitive if all points
of Q0 are equivalent under elements of G, that is, for any «,( € €2, some
element of G maps a to 8. If G is finite then the number of permutations
in G that fix any given point of € is equal to |G|/|Q| (where |G|, |€2| denote
the cardinality of G and Q respectively). A transitive group G on  is
regular if only the identity element fixes a point of 2. In the finite case
this is equivalent to |G| = ||, and thus regular permutation groups are the
‘smallest possible transitive’ groups. Here is a small concrete example.

Example 1.1. Let G = ((0,1,2,3,4)) on Q = {0,1,2,3,4}; or alterna-
tively, regarding €2 as the set of integers modulo 5, then G is the group
Zs acting by addition modulo 5. The group G is transitive on 2 and
|G| = 9| = 5. Thus G is regular.

This is an example of the following general construction.

Example 1.2. Let G be a group, and set €2 := G. For each g € G define
pg : 8 = Q by v — zg for x € Q, and note that p, is a bijection so
pg € Sym(Q). The set Gr = {py|g € G} is a regular permutation group on
Q and is isomorphic to G. It is called the right reqular representation of G
(since elements act by multiplication on the right).

1.2. Cayley graphs

A natural way to view diagramatically the right regular representation of
a group G described in Example 1.2 is by representating the elements of
2 = G as vertices of a graph, so that the action of p, for an element g € G
is represented by a collection of directed edges, one for each b € G drawn
from b to bg, see Figure 1.2.

The collection of directed edges representing p,-1 is the same as that
for py but with the arrows going in the opposite direction on each edge. We
can represent on the same diagram the edges corresponding to the maps p;
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dgg

Fig. 1.1.  Action of py for Example 1.2.

for all s in a subset S of GG, and if S is closed under inverses we can remove
the arrows indicating direction and obtain an undirected ‘Cayley graph’ of
G relative to S. This graph is connected provided the subset S generates
the group G, a condition we will assume in the definition.

Definition 1.1. For a generating set S of a group G such that s € S if
and only if s7! € S, the Cayley graph for G relative to S is the graph
with vertex set Q = G, and edges {g,sg} for g € G,s € S. It is denoted
Cay(G, 9).

Each p, leaves the edge set of Cay(G,S) invariant (as a set), and so
is an automorphism of this Cayley graph. Thus G is a subgroup of the
automorphism group Aut(Cay(G,S)), and is regular on the vertex set. In
particular Cay(G, S) is vertex-transitive.

Example 1.3. For G = Zs, and S = {1,4}, we obtain T' = Cay(G, S) =
C5, with automorphism group Aut(I') = Djg, see Figure 1.2.

Cayley graphs are named after the nineteenth century English mathe-
matician Arthur Cayley (1821-1895). They are important in combinatorics,
statistical designs, and computation. For example, the special type of Cay-
ley graphs called circulant graphs are used in experimental layouts for
statistical experiments and for many constructions in combinatorics. An
important early explicit construction of an infininte family of ‘expander
graphs’ by Lubotzky, Phillips, and Sarnak [20] in 1988 (the Ramanujan
graphs) produced Cayley graphs for a family of simple groups. Cayley
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3 2

Fig. 1.2. Cayley graphs for Example 1.3.

graphs are also used as models to analyse the construction of approximately
random group elements in randomised group algorithms, see [1].

In the remainder of the chapter we discuss various aspects of regular
permutation groups and Cayley graphs:

*

Recognising Cayley graphs
Primitive Cayley graphs
B-groups

Exact group factorisations

*
*

*

2. A recognition problem for Cayley graphs

Some Cayley graphs possess many additional automorphisms, and admit
constructions that give no hint that they are in fact Cayley graphs. A
famous example of this is the Higman—Sims graph T = T'(H.S) which has 100
vertices and valency 22. A construction of this graph by D. G. Higman and
C. C. Sims in 1967 was instrumental in their discovery of the sporadic simple
group now called the Higman—Sims simple group HS. The automorphism
group of the graph is A := Aut(T") = HS.2, and its construction by Higman
and Sims used the important fact that a vertex stabiliser is the sporadic
almost simple Mathieu group A, = M25.2, and has orbits related to the
associated Steiner system S(3,6,22). From its construction it is not obvious
that T'(HS) = Cay(G, S) for the G = (Z5 x Z5) : [4]. The graph HS was
constructed before the work of Higman and Sims by Dale Mesner [24] in
his PhD thesis, but Mesner did not examine the automorphism group of
this graph.
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[

22 1 21 6

Points Blocks

Fig. 2.1. Distance diagram for the Higman—Sims graph.

Fig. 2.2. The Petersen graph.

Although all Cayley graphs are vertex-transitive, not all vertex-
transitive graphs are Cayley graphs. The smallest such example is the Pe-
tersen graph P shown in Figure 2.2. The crucial property, that determines
whether a given vertex-transitive graph is a Cayley graph, is the presence
of a regular subgroup of automorphisms.

Theorem 2.1. A graph T is a Cayley graph if and only if there exists a
subgroup R < Aut(T) with R regular on vertices. In this case ' = Cay(R, S)
for some S.

In the case of the Petersen graph I' = P, the automorphism group is
Aut(T") = S5, and this has no regular subgroup of order 10, since every
involution (element of order 2) in Aut(T") fixes a vertex, while an involution
in a regular subgroup would have no fixed points. Theorem 2.1 suggests
that, in order to decide if I" is a Cayley graph, one should first determine
Aut(T), and then search for a regular subgroup R. Both of these steps are
difficult to carry out in general.
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On the other hand, exhaustive enumeration of vertex-transitive graphs
of small orders suggests that Cayley graphs are ‘common’ among vertex-
transitive graphs. For example, there are 15,506 vertex-transitive graphs
with 24 vertices, and of these, 15,394 are Cayley graphs [26]. Based on the
evidence of such enumerations it has been conjectured, see [21, 22|, that
most finite vertex-transitive graphs are indeed Cayley graphs.

Conjecture 2.1 (McKay-Praeger). Asn — oo

Number of Cayley graphs on < n wvertices

Number of vertex-transitive graphs on < n vertices

Various suggestions have been made regarding a way forward to un-
derstand the ‘vertex-transitive/Cayley graph question’. One of these is
the Non-Cayley Project: determine all positive integers n such that all
vertex-transitive graphs on n vertices are Cayley graphs. Examples include
all prime powers p’ for i = 1,2,3. This problem was posed by Dragan
Marusic [23] in 1983, and much progress has been made, see for exam-
ple [21, 22]. A second suggestion, by Ming Yao Xu [29] in 1998 was to
study normal Cayley graphs, that is, Cayley graphs I' = Cay(G,S) for
which Gg < Aut(T'); for these graphs it is easy to recognise that they are
Cayley graphs since the regular subgroup Gpg is normal in the full auto-
morphism group.

A third strand of research, and the one which I will discuss in this
chapter, is to study the primitive Cayley graphs. These are the Cayley
graphs I' = Cay(G, S) for which the full automorphism group is vertex-
primitive, that is to say, the only vertex-partitions invariant under Aut(T")
are the trivial ones with either just one part, or all parts of size one. To give
a context for this condition, note that each subgroup H < G corresponds
to a Gr-invariant vertex-partition of I', namely the set of right H-cosets in
G, and each G g-invariant vertex-partition has this form. Thus in order for
I" to be vertex-primitive, we need, for each proper non-trivial subgroup H
of G, some additional automorphism not preserving the H-coset partition.
In other words, if G has many subgroups, we need correspondingly many
additional partition-breaking automorphisms for a primitive Cayley graph.

Nevertheless, for each group G there is at least one Cayley graph for
G that is vertex-primitive: take S = G \ {1g}, and then Cay(G,S) is the
complete graph K, on n = |G| vertices with automorphism group the sym-
metric group S, which is primitive on the n vertices. We are interested
to know about non-complete primitive Cayley graphs. One example is the
Higman-Sims graph discussed above.
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3. Cayley graphs and B-groups

In a purely group-theoretic setting, in 1911, the English mathematician
W. Burnside discovered that the presence of a cyclic regular subgroup of
non-prime, prime power order, in a primitive permutation group forces the
group to be doubly transitive, a very strong condition (namely, all ordered
point-pairs are equivalent under the group action). Burnside believed, but
did not prove, that the same was true for all regular abelian groups other
than the elementary abelian ones. The eminent German mathematician Is-
sai Schur published a paper on this problem in 1933, generalising Burnside’s
results significantly. Developments of Schur’s methods led to the theory of
Schur rings that in turn led to Hecke algebras, which are important in
representation theory.

In the language of Cayley graphs, Burnside’s result is equivalent to the
statement: the only primitive Cayley graphs for cyclic groups of non-prime,
prime power, order are complete graphs. This is because a 2-transitive ac-
tion by a graph automorphism group on the vertices of a connected graph
is possible only if the graph is a complete graph. Schur’s work yielded a
generalisation of this assertion, namely his work showed that the adjective
‘prime power’ could be removed. Further generalisations of Burnside’s re-
sult were obtained in 1935 and 1950 by Helmut Wielandt for abelian groups,
and dihedral groups, respectively (see [28, Section 25] for a short account).

In 1955, Wielandt coined the term B-group for a group G of order n if
(using the language of Cayley graphs) the only primitive Cayley graph for
G is K. (See [28, Section 25].) Thus many abelian groups, and in particular
most cyclic groups, as well as all dihedral groups, were at that time known
to be B-groups. Moreover, 2-transitive permutation groups were of great
interest in the succeeding decades, as several families of simple groups were
discovered as 2-transitive permutation groups (the Suzuki groups and the
Ree groups). Indeed various studies during the 1960’s and 1970’s focused
on identifying further families of B-groups.

Recent work on primitive Cayley graphs produces results relying on very
deep mathematics, in the sense that the proofs rely on the classification of
the finite simple groups. Modern work in the permutation group setting
focuses on the following problem.

Problem 3.1. Find all pairs (G, H), such that G < H < Sym(Q?), with G
reqular and H primitive (and not 2-transitive) on the finite set Q2.

In this context, we may identify 2 with the set G in such a way that
G acts by right multiplication, and then, taking S to be any self-inverse
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proper subset of G\ {1}, we have H a vertex-primitive subgroup of Aut(T)
where I' = Cay(G, S) is a primitive Cayley graph for G, not a complete
graph. The aims of these investigations are to understand which primitive
groups H arise, and to understand better the associated primitive Cayley
graphs T'.

One reason for this shift of focus is that, as a consequence of the finite
simple group classification, all the finite 2-transitive permutation groups
are now known, (see for example [6, Chapter 7.7] for a description of the
examples).

4. A fascinating density result

The following beautiful theorem of Cameron, Neumann, and Teague [5]
provides some important information on the possible orders of B-groups.
The theorem dates from 1982, soon after the announcement of the finite
simple group classification, and Theorem 4.1 gives an informal version of it.
In Theorem 4.1, a certain property associated with a positive integer n is
asserted to hold for ‘almost all n’. This phrase is used in a number-theoretic
sense, namely, as a real number = approaches infinity, the proportion of
integers n < x for which the property holds approaches the limit 1.

Theorem 4.1. For almost all positive integers n, the only primitive per-
mutation groups on a set of size n are A, and Sy.

Here S,, denotes the finite symmetric group Sym(f2) consisting of all per-
mutations of the set Q := {1,...,n}, and A, is the alternating group com-
prising all even permutations of £2; A, has index 2 in S,,. To give a more
precise version of Theorem 4.1, for a positive real number z, let N(z) de-
note the number of positive integers n < x such that there exists a primitive
subgroup H of S,, with H # A,,,S,,. It is proved in [5] that

N(z) =2n(z) + O(Jcl/z)

where 7(x) is the number of primes less than z. Thus N(z)/x ~ 2z/log(x)
and in particular N(x)/z — 0 as x — 0.

This implies in particular that for ‘almost all’ positive integers n and for
each group G of order n, if G < H < §,, with G regular and H primitive,
then H = A,, or S,, and hence H is 2-transitive. For every integer n with
this property, every group of order n is a B-group, as defined in Section 3.

We are interested in primitive Cayley graphs that are not complete
graphs, or equivalently, in primitive permutation groups on n points that
are not 2-transitive and that contain a regular subgroup. By Theorem 4.1,
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the subset of all such integers n has density zero in the natural numbers.
Thus perhaps there may be something special about the groups that are
not B-groups.

5. Exact factorisations of groups

Each Cayley graph for G admtting a vertex-primitive subgroup H of au-
tomorphisms gives rise to a special kind of group factorisation. Wielandt’s
condition involves a group inclusion G < H < Aut(T") with G regular and
H primitive on vertices, where I' = Cay(G, S) for some S. Setting K to be
the stabiliser in H of a vertex of I', we have

H =GK and GN K =1 with K a maximal core-free subgroup of H. (1)

An expression H = GK with GN K = 1 is called an ezact factorisation
of H. The subgroup K is core-free, that is its core Npe g K" is the identity
subgroup, since Ny K" fixes all the vertices of I'. Also the maximality of
K in H holds because H is vertex-primitive. On the other hand, for each
exact factorisation H = GK with K a maximal core-free subgroup, we may
take I' to be any graph with vertices the right cosets of K in H, and with
edges the pairs {Kz, Ky} for which zy~? lies in a specified inverse-closed
union of K-double cosets (that is, subsets of the form Kg¢gK). Such a graph
admits H, acting by right multiplication, as a vertex-primitive group of
automorphisms. Moreover, since G N K = 1, G acts regularly on vertices,
and it follows from Theorem 2.1 that I' & Cay(G,S) for some S. Every
finite group G occurs at least twice with appropriate groups H, K in (1),
namely with H = A,, or S,, and K = A,,_1 or S,,_1 respectively, where
|G| = n, taking G to act regularly. However in these cases the only possible
Cayley graph is the complete graph K, (see the last paragraph of Section 2).
Problem 3.1 at the end of Section 3 is equivalent to the following.

Problem 5.1. For a finite group H, find all exact factorisations H = GK
with K mazimal and core-free in H, and such that (H, K) # (An, An—1) or
(S, Sn—1), where n = |G|.

This group factorisation problem is not new, but modern methods have
led to almost complete solutions for some classes of primitive groups H,
and some classes of regular groups G. As an example, consider exact fac-
torisations of the finite alternating and symmetric groups. In 1935, G.
A. Miller [25] studied exact factorisations H = GK of H = A,. He
gave interesting examples of exact factorisations for some values of n,
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and also he gave examples of integers n for which the only exact factori-
sations have K = A,_;. More than forty years later in 1980, Wiegold
and Williamson [27] were able to classify all factorisations H = GK with
H = A, or S,, and we can deduce from their work an explicit list of all
triples (H, K, G) satisfying the conditions of Problem 5.1 with H = A,, or
Sy, for some n, (see [3] or [19] for details).

Similarly complete classifications of exact factorisations were obtained
for the other non-classical almost simple groups H by examining classi-
fications of all factorisations H = GK of such groups H. A finite group
H is almost simple if H has a unique minimal normal subgroup, denoted
Soc(H), and Soc(H) is a finite nonabelian simple group. The factorisations
of the finite exceptional almost simple groups of Lie type were classified in
1987 by Hering, Liebeck and Saxl [11], and it is clear from the short list of
these factorisations that none of them is exact. More recently the factorisa-
tions of the 26 sporadic almost simple groups were classified by Giudici [9],
building on the classification of the maximal factorisations of these groups
in [16]. Working from this list one can obtain the list of exact factorisations
for the sporadic groups. Thus, as with many problems about finite simple
groups, solving Problem 5.1 in the case of almost simple groups is reduced
quickly to the case of finite classical groups (provided we invoke the finite
simple group classification that says that the classical groups are the only
remaining cases). We discuss the resolution of this case in Section 7.

We have expressed the ‘primitive Cayley graph problem’ in the language
of permutation groups (as Problem 3.1) and abstract groups (as Prob-
lem 5.1). This repeated articulation of the problem has not been merely a
translation exercise. It has led to applications beyond the realms of groups
and graphs. For example, exact factorisations have been used for construct-
ing semisimple Hopf algebras, see [7], though the construction given there
using bicrossproducts goes back to Kac and Takeuchi.

6. Primitive Cayley graphs for various groups G

As soon as the finite simple group classification seemed imminent. many
accounts appeared exploring its far-reaching consequences. As part of a
very interesting paper [8] of this type, in 1980, Walter Feit recorded the
list of all finite 2-transitive permutation groups on n points, other than
the alternating and symmetric groups A, and S,,, that contain a regular
cyclic subgroup. The degrees n that occur are 11,23 and numbers of the
form (¢¥ —1)/(q—1) for prime powers ¢. This gave further insight into the
situation considered by Burnside and discussed in Section 3.
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Some twenty years later in [12] Gareth Jones classified all the finite prim-
itive permutation groups H containing a regular cyclic subgroup. Extending
this classification in [13, 14], Cai Heng Li classified all the finite primitive
permutation groups H containing a regular abelian or dihedral subgroup.
These three classifications had important consequences for studying various
classes of graphs and in particular of embeddings of Cayley graphs in ori-
entable and non-orientable surfaces. For example, the work in [13, 14] led to
a determination of all 2-arc-transitive Cayley graphs of abelian groups, all
symmetric circulant graphs, and all rotary Cayley maps of simple groups.

Other families of groups G have been studied recently. For example, sig-
nificant inroads into solving Problem 5.1 have been made for groups G of
square-free order by Li and Seress in [15]. Perhaps the most interesting fam-
ily of insoluble groups G for which a complete solution to Problem 5.1 has
been achieved is the family of finite almost simple groups. The solution for
the the alternating, sporadic, and exceptional Lie type cases was discussed
in Section 5, leaving the classical groups as the major class outstanding.
Some infinite families of classical groups were dealt with by Baumeister
in [2, 3], and a complete classification has been achieved in work yet to be
published by Liebeck, Saxl and the author in [19]. The most important re-
source used in the analysis is the classification of the maximal factorisations
of the finite almost simple groups in [16, 17].

We describe briefly the results in [19] for almost simple groups G. Every
finite nonabelian simple group G occurs as a regular subgroup of a finite
primitive group H of diagonal type, and hence the finite simple groups are
not B-groups. For the primitive Cayley graphs Cay(G,S) corresponding
to such ‘diagonal embeddings’ of G, the generating set S is a union of
conjugacy classes of G. It turns out, see [19, Theorem 1.6], that the only
simple groups G that embed into primitive groups H which are not of
diagonal type and are not 2-transitive, are certain of the alternating groups.
Thus the primitive Cayley graphs for finite nonabelian simple groups are
essentially well understood.

Theorem 6.1. Let Cay(G, S) be a primitive Cayley graph for a finite non-
abelian simple group G. Then either S is a union of conjugacy classes of
G, or G = Ap2_y for some prime p =3 (mod 4).

In contrast to this (see [19, Theorem 1.4 and Corollary 1.5]), if G is
almost simple but not simple, that is, if G # Soc(G), then there are very few
possibilities for both the almost simple regular group G and the primitive
permutation group H in Problem 5.1. In particular, the non-simple almost
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simple groups are all B-groups, except for S,_o (p prime), L2(16).4, and
L3(4).2.

Theorem 6.2. Suppose that G, H, K are as in Problem 5.1 with G almost
simple and G # Soc(G). Then also H is almost simple, and G,Soc(H), and
Soc(H) N K are as in one of the rows of Table 6.1.

Table 6.1. Almost simple regular subgroups.

G Soc(H) Soc(H)NK
Sp—2 Ap, Ap+1 p.(pgl), L2 (p) (resp.)
(p > 7 prime)
Ss Ag Lo (8).3

Spa(4) 12(16).2

Spe(2) Ga(2)

0{ (2) 07(2)

Spg(2) 05 (2)
L2(16).4 Spg(4), OF (4) | G2(4), O7(4) (vesp.)
L3 (4).2 Mas, Moy 23.11, L2(23) (resp.)

7. Types of finite primitive groups

When studying almost any problem concerning finite primitive permuta-
tion groups these days, one usually considers the problem separately for the
various ‘types’ of primitive groups described by the O’Nan Scott Theorem,
see for example [6, Chapter 4]. There are several versions of the subdivi-
sion of primitive groups provided by this theorem, and each has its uses
in appropriate applications. For several types of finite primitive groups, a
regular subgroup is evident from the type definition, but even for groups
of these types there may exist other regular subgroups that are not at all
obvious. For other primitive types, it is not clear at all when groups of these
types contain regular subgroups.

For example, each finite primitive group of affine type is a group of affine
transformations of a finite vector space, and the subgroup of translations
acts regularly. However there are sometimes additional regular subgroups
in these groups, and examples are given in [10]. Similarly, groups of di-
agonal type always contain regular subgroups that are products of simple
subnormal subgroups. They also may contain additional regular subgroups



Regular Permutation Groups and Cayley Graphs 67

provided their simple subnormal subgroups admit a nontrivial factorisation.
A thorough study of this issue was conducted in 2000 by Liebeck, Sax] and
the author [18]. It gave a satisfactory description of the regular subgroups
of primitive permutation groups for all but two of the types of primitive
groups. For one of these types, the product action type, the problem re-
mains unsolved.

The other primitve type consists of the almost simple primitive groups
H. In Section 5 we described briefly how the regular subgroups were clas-
sified in all the almost simple primitive groups H except the case where H
is a finite classical group.

8. Exact factorisations of finite classical groups

A finite almost simple classical group H either contains a projective group
PSL(n, g), or is an n-dimensional symplectic, unitary or orthogonal group
defined over a finite field F, of order ¢q. Exact factorisations for the prim-
itive representations of unitary groups and the 8-dimensional orthogonal
groups were classified by Baumeister in [2, 3]. A complete solution for all
finite classical groups is given by Liebeck, Saxl and the author in the mono-
graph [19]. Finding all the exact factorisations for the finite classical groups
is indeed the heart of Problems 3.1 and 5.1 for almost simple groups H.

The full classification of regular subgroups of finite primitive classical
groups is given in [19, Theorem 1.1], and is summarised in a whole-of-page
table in [19, Section 16]. The detailed analysis required to obtain this re-
sult produced subsidiary results of independent interest. To explain why
this might be a natural outcome, consider the (primitive) action of a finite
classical group H on, say, totally isotropic or non-singular subspaces, of
a given dimension, of the underlying vector space, and let K be the sta-
biliser in H of such a subspace. For a subgroup G of H, a factorisation
H = GK occurs if and only if G is transitive on the set of such subspaces.
The approach in [19, Section 4] is to produce several detailed results de-
termining the subgroups of classical groups which are transitive on these
types of subspaces. These results should have useful applications in fu-
ture geometrical and combinatorial investigations. For the current problem,
these lists of transitive subgroups, for subspace actions of classical groups,
were examined in detail to decide which of them corresponded to an exact
factorisation.

Another kind of primitive action of finite classical groups is on so-called
antiflags of the underlying geometry, and as preparation for handling the
cases where the action of H is on antiflags, the work in [19, Section 3]
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gives a classification of antiflag transitive linear groups. This updates and
slightly generalizes the famous theorem of Cameron and Kantor [4] about
such groups.

Despite the fairly long lists of examples of almost simple primitive per-
mutation groups with a regular subgroup, there are essentially only four
infinite families of groups that occur as regular subgroups. As recorded
in [19, Corollary 1.2], if n > 3 - 29! to avoid the finitely many exceptions,
and if G is a regular subgroup of a primitive group H on {1,...,n}, such
that H # A,,S,, then one of the following holds.

(i) G is metacyclic, of order (¢" —1)/(g — 1) for some prime power g;
(ii) G is a subgroup of odd order ¢(q¢—1)/2 of a 1-dimensional affine group
AT'L4(q) for some prime power ¢ = 3 (mod 4);
(i) G = A,_o or S,_2 (p prime), or A,_o X 2 (p prime, p =1 (mod 4));
(iv) G = Ap2_5 (p prime, p =3 (mod 4)).

It would be very interesting to solve the remaining problem of deter-
mining the regular subgroups of finite primitive groups in product action,
as this would give us a complete picture of the infinite families of groups
G that occur as regular subgroups of finite primitive permutation groups.
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This expository article is based on a talk that was given at the EWM Sym-
posium held at Cambridge, U.K., in October 2007. The talk was aimed at a
broad and general audience and I have tried to retain the flavour of the original
lecture while converting it to its present text version. I have also attempted
to make the bibliography as comprehensive as possible, but given the vastness
of the subject, apologise for any inadvertent omissions. I would like to thank
the organisers of the EWM conference for the invitation to speak, and John
Coates for helpful discussions and comments. It is a pleasure to thank Chennai
Mathematical Institute for hospitality accorded both at the time of preparing
the talk, and later, while writing the article.

1. Introduction

The human mind has long contemplated the problem of solving cubic equa-
tions. A Babylonian clay tablet from around 1700 B.C., presently exhibited
at the Berlin museum is perhaps the oldest piece of evidence in this direc-
tion. It lists many problems, some of which can be translated in modern
mathematical language, to solving degree three polynomial equations in one
variable [19]. Many centuries later, the Greeks, especially Diophantus, were
concerned with rational and integral solutions of these equations. While
the problem of solving cubic equations in one variable was settled by the
16th century, due to the efforts of del Ferro, Cardano, Tartaglia, Viete and
others, mathematicians like Fermat, Euler, Lagrange began to uncover the
deep arithmetical mysteries of cubic curves in the 17th and 18th century. In
another direction, elliptic integrals arose from the study of the arc lengths
of an ellipse, and the theory of elliptic equations grew out of this. We owe to
Fermat the discovery of the procedure of infinite descent (see [32]), which
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he used to prove that 2* +4* = 1 has no solution in the field Q of rational
numbers with xy # 0. He also pondered, leaving no written traces of any
success, about the rational solutions of the equation 2% + y*> = 1. Non-
singular cubic curves are the first non-trivial examples of projective curves.
For an excellent historical survey of these subjects, see Weil [37]. In more
recent times, the study of elliptic curves (see §2) has connections with areas
as diverse as complex topology, algebraic geometry and of course, number
theory. Some of the most striking unsolved problems of number theory are
concerned with the study of rational points (that is, points with coordinates
in Q) on elliptic curves. One of our broad aims in this article is to give an
idea of how they provide a common ground for ancient and modern themes
in number theory.

2. Elliptic curves and number theory

Algebraic curves are the simplest objects of study in algebraic geometry.
Projective algebraic curves are classified, upto birational transformations,
by a basic birational invariant, called the genus (see [17]). If the curve is
a non-singular plane curve of degree d, then the genus is given by (d —
1)(d — 2)/2. An elliptic curve over a field F' is a curve of genus 1 defined
over F'| together with a given F-rational point on the curve. When F' has
characteristic different from 2, we can always find an affine equation for F
of the form

E : g’ = f(x),

where f(z) in F[X] is a cubic equation with distinct roots. Assuming that
F has characteristic different from 2 and 3, the Weierstrass equation for F
takes the form (see [32])

> =234+ Az + B
with coefficients in F'. The discriminant A of F is defined by
A = —16(44% + 27B?)

and is a fundamental invariant associated to the elliptic curve. Another
important invariant is the conductor of an elliptic curve, which has the
same prime divisors as the discriminant. The interested reader is referred
to [32] and [33] for details on the basic arithmetic theory of elliptic curves.

We denote by E(F) the set of solutions of E over F' together with the
“point at infinity” [32]. This set then has an abelian group structure. When
F is a number field (i.e. a finite extension of Q), it is further a celebrated
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result of Mordell and Weil that E(F) is a finitely generated abelian group.
Thus we define an important arithmetic invariant, called the algebraic rank
of F, as

gp/r = rank of E(F).

For example, the curve E; over Q defined by 42 = 23 — z has algebraic rank
zero while the curve Ey over Q given by y? = 23 — 172 has algebraic rank
2. The curve Fj has discriminant 64, and conductor equal to 32, while for
E5 the discriminant is 26 x 172 and the conductor is 2° x 172. Cremona’s
tables [15] gives a list of elliptic curves of small conductor along with their
basic arithmetic data.

The primary reason for an abiding interest in this invariant is the im-
portant conjecture of Birch and Swinnerton-Dyer, formulated in the 1960’s,
based on very strong numerical data. For simplicity, we assume that the
curve F is defined over Q. Then the Hasse- Weil L-function of E, denoted
L(E,s) is a function of the complex variable s and is a vast generalisa-
tion of the classical Riemann-zeta function. It is defined using the integers
ap :=1+p—#E(F,) as p varies over the prime numbers; here #E(F),) de-
notes the number of points on the reduction modulo p of the elliptic curve
with coordinates in F,,, with p a prime of good reduction (see [30], [32] for
more details on reduction of elliptic curves). It was classically known that
it converges when the real part of s is strictly greater than 3/2. Let Ag
denote the minimal discriminant of a generalised Weierstrass equation for
the curve E [32, Chap. VII|. The Euler product expression for L(FE,s) is
given by

LEs)=[] Q=awp+ @) ] 0 —apq)"

MAE p‘AE

here for primes ¢ dividing the discriminant of E, a, = 0,41 or —1 according
as the singularity of the reduced elliptic curve over F, is a node, or a cusp
with rational or irrational tangents over IF,. Further, it has a Dirichlet series
expansion given by

L(E,s) = ;10%/”5’

where the integers a,, are those defined above when n equals a prime p. The
interested reader is referred to [32] and [15] for the explicit computation of
the integers a,.

The deep modularity results due to Wiles, Breuil et al. ( [38], [4]) imply
that the L-function has an analytic continuation for the entire complex
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plane. We remark that the L-function of E over a number field F', denoted
L(E/F,s) may be defined more generally for elliptic curves E/F, and it
too is conjectured to have an analytic continuation over the entire complex
plane. An elliptic curve E/Q is said to have complex multiplication if the
endomorphism ring of E over an algebraic closure Q of Q is strictly larger
than the ring of integers. Both the curves F; and E5 considered above are
elliptic curves with complex multiplication as their endomorphism rings
are given by the ring Z[i] of Gaussian integers. The element 7 acts as an
endomorphism of the elliptic curve by sending a point (z,y) on the curve
to (—x,iy). At present the analytic continuation of the L-function is only
known for elliptic curves with complex multiplication, thanks to work of
Deuring and Weil. The analytic rank of E, denoted rg,p is defined to be
the order of vanishing of L(E/F,s) at s = 1. The Birch and Swinnerton-
Dyer conjecture, in its weakest form, asserts that the analytic rank rg,p
and the algebraic rank gg,r are equal.

Another important group associated to an elliptic curve defined over a
number field F' is the Tate-Shafarevich group, denoted II(E/F'). For any
field K, and a discrete module M over the Galois group Gk = Gal(K /K),
the first Galois cohomology group H'(G g, M) is denoted by H'(K, M).
For a place v of F', we denote the completion of F' at v by F,. The Tate-
Shafarevich group of E/F is defined as the kernel

III(E/F) := Ker (H( E(F) —>HH (F,, E(F ))) (1)

of the natural restriction map, where the product on the right is taken
over all places v of F. The Tate-Shafarevich group is analogous to the
class group occurring in algebraic number theory (see §3). This group has
an interesting geometric description in that it describes the defect of the
‘local-global principle’ for cubic curves. Thus, the non-trivial elements in
it are classified by isomorphism classes of curves X defined over F which
have the property that X becomes isomorphic to E over an algebraic clo-
sure I of F and X(F) = () while X(F,) # 0 for all the completions. The
Tate-Shafarevich group is one of the most mysterious groups occurring in
arithmetic and is always conjectured to be finite. The exact formulae of the
Birch and Swinnerton-Dyer conjecture even predicts its order, and surpris-
ingly predicts that this order is usually, but not always, one.

The above discussion places elliptic curves at the heart of one of the
deepest conjectures in modern number theory. We now turn to an ancient
problem in number theory which has been illuminated by the conjecture
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of Birch and Swinnerton-Dyer. An integer N > 1 is said to be a congruent
number if N is the area of a right angled triangle all of whose sides have
rational length (see [5] for an excellent survey on this subject). The study
of congruent numbers is over a thousand years old and a list of examples
of congruent numbers occurs in Arab manuscripts from the 10th century
A.D. A later folklore conjecture asserts that

Any positive integer N =5, 6, 7 mod 8 is a congruent number. (2)

This conjecture turns out to be closely related to the study of elliptic curves.
Specifically, it is easily seen that an integer N is congruent if and only if
the elliptic curve

Ey:y?=2°—N%z (3)

defined over Q has the property that En(Q) is infinite, or equivalently,
9Ey /0 > 0. If one accepts the Birch and Swinnerton-Dyer conjecture, then
it means that the analytic rank rp,g > 0, in other words, that the L-
function L(Ey,s) vanishes at s = 1. The theory of root numbers ( [3], see
also §6), shows that in fact L(Ey, s) always has a zero of odd multiplicity
precisely for the integers N congruent to 5, 6, 7 modulo 8.

3. Iwasawa theory

Iwasawa theory is a relatively new area, owing its origins to the work of
Iwasawa on cyclotomic Z,-extensions from the 1960’s (see [20]). Henceforth,
p will denote an odd prime. For a number field F, recall that the class group
of F'is the group of fractional ideals modulo the principal ideals, and is well-
known to finite. The order of the class group is called the class number of F
(cf. [26]). For s a complex variable, recall that ((s) is the classical Riemann-
zeta function ((s) = ioj 1/n°. Let p, denote the group of p-th roots of

n=1
unity. The philosophy emerging from Iwasawa’s work initially provided an

explanation for the link between special values of the Riemann zeta function
and the class numbers of Q(u,), as stated by Kummer’s criterion (cf. [36])
below:

Theorem 3.1. (Kummer’s criterion) Let K = Q(u,) and let hi denote
the class number of K. Then p divides hx if and only if p divides the
numerator of at least one of the values of ((—1), ((=2),...,((4 — p).

Coates and Wiles recognised that techniques from Iwasawa theory could
be used to attack the Birch and Swinnerton-Dyer conjecture. Recall that
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an elliptic curve £/Q is said to have complex multiplication if Z C Endg(F)
[32]. Coates and Wiles proved the first major general result about the Birch
and Swinnerton-Dyer conjecture in [14] for elliptic curves with complex
multiplication. A special case of their result is the following:

Theorem 3.2. (Coates-Wiles) [14] Let E/Q be an elliptic curve with com-
plex multiplication. Then L(E,1) = 0 whenever E(Q) is infinite. In other
words, gr/q > 0 implies that rgg > 0.

At present, Iwasawa theory has emerged as a systematic tool to attack
the Birch and Swinnerton-Dyer conjecture using p-adic techniques. Let E
be an elliptic curve over Q, and let Z,, (resp. Q,) denote the ring of p-adic
integers (resp. the field of p-adic numbers). In the complex world, no general
connection between the behaviour of the complex L-function L(E,s) at
s =1, and E(Q) or III(F/Q) has ever been proven (there are some deep
results due to Gross-Zagier-Kolyvagin, but they only apply to curves for
which L(FE,s) has a zero at s = 1 of order at most 1). In the p-adic world
however, such a link can be derived from the so-called “main conjectures”
of Iwasawa theory, provided one replaces the complex L-function L(E,s)
by one of its p-adic avatars, at least when E has good ordinary reduction at
the prime p. In particular, these main conjectures show that certain p-adic
L-functions attached to E do have a zero at the point s = 1 in Z,, of order
at least the rank of E(Q) plus the number of copies of Q,/Z, occurring in
the p-primary subgroup III(E/Q)(p) of III(E/Q). We stress again that no
result of this kind has ever been proven for the complex L-function. Here
is an example of the type of result one can prove using these techniques:

Theorem 3.3. (Coates, Liang, Sujatha) [10] Let E/Q be an elliptic curve
with complex multiplication. For all sufficiently large good ordinary primes
p, the number of copies of Qp/Z, occurring in II(E/Q)(p) is at most

2p — gi/0-

The basic idea of Iwasawa theory is to seek a simple connection between
special values of L-functions and arithmetic of elliptic curves over certain
infinite Galois extensions F, of Q. Viewed from this perspective, the Birch
and Swinnerton-Dyer conjecture seems natural, as it elucidates how points
of infinite order on E give rise to zeros of multiplicity at least gg,q of a
p-adic L-function. Of course, it is beyond the scope of this article to develop
the theory of p-adic L-functions in full detail and with greater precision.
These are vast generalisations of the p-adic zeta functions that were studied
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by Kubota, Leopoldt and Iwasawa. We refer the interested reader to [6] for
a detailed introduction to p-adic L-functions.

In the remaining sections, we shall outline how Iwasawa theory brings
together three different strands viz. the conjecture (2) on congruent num-
bers, special values of L-functions, and algebraic questions on modules over
Iwasawa algebras associated to compact p-adic Lie groups, with elliptic
curves occurring as a common motif.

For an introduction to the Iwasawa theory of elliptic curves with com-
plex multiplication, see [7]. The simplest elliptic curves without complex
multiplication are the three curves of conductor 11 (see [15]). For a de-
tailed study of their Iwasawa theory over the abelian extension Q(gpe),
see [11].

4. Iwasawa algebras

Let G be a profinite group, and p be an odd prime. The Twasawa algebra
of G, denoted A(G) or Zy[[G]], is the completed group algebra

A(G) = limZ,[G/U;

here U varies over the open normal subgroups of G, Z,[G/U] is the ordinary
group ring over the finite group G/U and the inverse limit is taken with
respect to the natural maps. Of special interest to us is the case when G
is a compact p-adic Lie group. These groups were systematically studied
by Lazard in his seminal work [24]. The simplest example is when G is
isomorphic to Z,, in which case A(G) is (non-canonically) isomorphic to
the power series ring Z,[[T]] in one variable. In classical cyclotomic theory,
as considered by Iwasawa, one works with modules over this algebra (see
[20], [12]). More generally, if G ~ Z¢, then A(G) is isomorphic to the power
series ring Z,[[T1, -+ , Ty]] in d variables. If G is commutative, then A(G)
is a commutative Z,-algebra.

In classical Iwasawa theory, the infinite Galois extensions Fi, that were
considered were mostly abelian with Galois group G a commutative p-adic
Lie group. As a specific example, consider the extension Fo, = F'(ppe) in
which case G is open in Z,, and isomorphic to Z; if F' = Q. The Iwasawa
algebra A(G) is isomorphic to Z,[A][[T]], where A is cyclic of order dividing
p — 1. Suppose E/F is an elliptic curve. For an odd prime p, consider the
Galois extension

Foo = F(By=) = |J F(Epn(F)), (4)

n>1
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of F obtained by adjoining the coordinates of all the p-power division points
of E. The module Ep~ has a natural action of the Galois group G(F/F).
If E has complex multiplication defined over F, i.e. Endp(E) % Z, then G
is abelian and contains an open subgroup isomorphic to Zg.

It is important to consider elliptic curves over Q (or more generally
over a number field) without complex multiplication. Indeed, elliptic curves
with complex multiplication are rather special and those without complex
multiplication are more abundant. For such curves, the elements in the en-
domorphism ring correspond to multiplication by an integer n, given by
the group law and hence the endomorphism ring is isomorphic to the ring
of integers. It is a deep result of Serre [31] that the extension (4) is a
non-commutative p-adic Lie extension. In fact, Serre also proved that the
Galois group G := G(F/F) for such elliptic curves is an open subgroup
of GLy(Z,) and is equal to it for almost all primes p. The Iwasawa al-
gebra A(G) is thus highly non-commutative. Another natural example of
a non-commutative p-adic Lie extension is given by the so-called “False
Tate extension”, obtained by adjoining all p-power roots of unity and the
p-power roots of an integer m which is p-power free, i.e.

Fuo i= F(jye,m"/?™). (5)

In this case the Galois group G is an open subgroup of the semi-direct
product Z; X Zy.

Lazard proved that for any compact p-adic Lie group G, the Iwasawa
algebra is a left and right noetherian ring. Further, if G is pro-p and has no
elements of order p, then A(G) is a local domain, in the sense that it has no
zero divisors, and the set of non-units form a (unique) two-sided maximal
ideal. In particular for G = Gal(F/F) with Fy as in (4), the Iwasawa
algebra A(G) is a left and right noetherian, local domain whenever p > 5. In
the last decade, these algebras have been investigated more thoroughly (see
[35]). The analogue in the non-commutative setting, of classical regular local
rings in commutative algebra, is that of ‘Auslander-regular’ rings (see [35])
and in all the cases of non-commutative p-adic Lie extensions mentioned
above, the corresponding rings are Auslander regular. More precisely, we
have:

Theorem 4.1. (Venjakob) [35] Let G be a compact p-adic analytic group
without p-torsion, and of dimension d when considered as an analytic mani-
fold. Then A(G) is an Auslander regular local domain of injective dimension
equal to d.
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The main advantage in having this nice extra structure on A(G) is that it
provides a ‘dimension theory’ on the category of finitely generated modules
over A(G). The dimension of A(G) itself is d + 1. This in turn, affords the
definition of pseudonull modules. Asssume that G is as in Theorem 4.1, and
let M be a finitely generated module over A(G). Then M is pseudonull if the
dimension of M is less than or equal to d— 1. There is an equivalent charac-
terisation of pseudonull modules using homological algebra (see [35]), and
it coincides with the classical notion of pseudonull modules in commuta-
tive algebra. Note that in the simple case when A(G) ~ Z,[[T]], pseudonull
modules are precisely the finite modules.

In the commutative case, there is also a well-known classical structure
theorem for finitely generated modules over A(G), due to Iwasawa and Serre
(see [2], [12, Appendix]). We say that two finitely generated modules M
and N over A(G) are pseudoisomorphic if there is a A(G) homomorphism
between them whose kernel and cokernel are pseudonull.

Theorem 4.2. Suppose G is a commutative p-adic Lie group with no ele-
ments of order p and let A(G) be its Twasawa algebra. Let M be a finitely
generated torsion module over A(G). Then there is a pseudoisomorphism

k
M~ & AG)/p
i=
where the p; are prime ideas of height one and n; are positive integers.

It is well-known [2] that the prime ideals of height one in A(G), for G as
in the theorem above, are principal. Let I denote the ideal defined as the
product I := [[p;*. It is called the characteristic ideal of M (this is well-

defined, see [2]) and denoted by charp;. A generator of the characteristic
ideal is the characteristic power series of M and is well-defined up to a unit
in the Iwasawa algebra. The characteristic power series plays a central role
in the formulation of the main conjecture, and will be discussed in the next
section.

In the non-commutative case, the fact that the Iwasawa algebra A(G) is
Auslander regular can be exploited to prove a more rudimentary structure
theorem. A module over A(G) will be assumed to be a left module. A
finitely generated A(G)-module M is said to be torsion, if every element
of M is annihilated by a non-zero divisor of A(G). A module M is said to
be reflexive if the natural map M — M™T is an isomorphism; here M™
denotes the dual module Hom () (M, A(G)).
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Theorem 4.3. (Coates-Schneider-Sujatha) [13] Suppose G is a compact
p-adic analytic Lie group of dimension d with no element of order p. Let
M be a finitely generated torsion module over A(G). Then there is a homo-
morphism

FoM— §1A(G) /Ji

K2

where the J; are reflexive ideals and f has pseudonull kernel and cokernel.

5. Main conjectures

The aim of this section is to outline the philosophy and the fomulation of
the “main conjectures” in Iwasawa theory for elliptic curves. We do not even
pretend to attempt a discussion of the steps involved in the formulation of
these conjectures in full detail. Our goal shall be largely confined to giving
the reader a flavour of what goes under the rubric of main conjectures. The
basic idea is to first attach an algebraic invariant and an analytic invariant
to certain canonically defined arithmetic modules over the Iwasawa algebra
A(G) of the Galois group G of an infinite p-adic Lie extension Fi,. The
analytic invariant has the property of interpolating special values of the
complex L-function, with the interpolation formula being explicit. The main
conjecture asserts the equality of these invariants. We discuss a few concrete
examples below.

Iwasawa in his classic study of Z,-extensions [20] studied the growth of
ideal class groups in the cyclotomic Z,-extensions, and was the first to for-
mulate the main conjecture for the field Q(upe- ). Here is a brief explanation
of one version of his main conjecture. He related the arithmetic of the “Tate
motive” over the extension Fo, = Q(pupe)" (here 4+ denotes the maximal
real subfield of Q(gpe)) to special values of the Riemann-zeta function, via
the Kubota-Leopoldt p-adic zeta function. This element (, is viewed as a
pseudo-measure on the p-adic Lie group G = Gal(F»/Q), and also as be-
longing to an explicit localisation of the Iwasawa algebra A(G). It has the
following interpolation property, where x is the cyclotomic character giving
the action of Galois on fipes:-

/ x(@)Fdéy = (1—p*1)c(1 - k)
G

for all even integers k > 2. The corresponding arithmetic module is as
follows. Let X, denote the maximal abelian extension of F,, that is un-
ramified outside p. Then X, has a natural structure of a finitely generated
A(G)-module and it is a deep result of Iwasawa that is is a torsion module
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over A(G). The main conjecture asserts that the characteristic ideal of X
is equal to the ideal (,.Ig, where I is the augmentation ideal of A(G),
i.e. the kernel of the natural quotient map A(G) — Z,. Iwasawa himself
proved a remarkable general theorem about the arithmetic of the field F.,
involving a module formed out of cyclotomic units, which is closely related
to Xo. In particular, this theorem implies his main conjecture when the
class number of Q(u,)" is prime to p. The first unconditional proof of the
main conjecture was given by Mazur-Wiles [25] and Wiles gave a second
proof in [39], beautifully extending ideas of Ribet. A simpler proof using
Iwasawa’s original approach, along with work of Thaine, Kolyvagin and
Rubin on Euler systems [34], [23], [28], is given in [12].

To formulate these main conjectures for elliptic curves, one studies the
arithmetic of E over infinite p-adic Lie extensions of a number field F'. The
p-adic L-functions then seem to mysteriously arise from some natural G-
modules describing the arithmetic of E over these p-adic Lie extensions. We
shall sketch the formulation of the main conjecture in the important case
of elliptic curves with complex multiplication, which was first considered
by Coates-Wiles. Of course, the general case of elliptic curves without com-
plex multiplication lies much deeper and is more technical. Let E/Q be an
elliptic curve with complex multiplication by the ring of integers Ok of an
imaginary quadratic field K of class number one. Suppose p is a prime such
that p splits as p = pp* in Ok, and assume that E has good ordinary reduc-
tion at p and p*. By the classical theory of complex multiplication due to
Deuring and Weil, it is well-known that the complex L-function L(E/Q, s)
is the Hecke L-function L(¢g,s) where ¥ g is a certain Grossencharacter
(see [32]).

The p-adic Lie extension that we consider is the extension

Fo = J K(EB}) (6)

n>1

obtained by adjoining all the p-division points of the elliptic curve to K.
The Galois group of Fi over K is isomorphic to Z; and we denote by
K the unique Z,-extension contained in Fi,. Let I' = Gal(K/K), then
the Iwasawa algebra A(T') is isomorphic to Z,[[T]] (see §4). The p-adic L-
function is then an element H,(T') in Z[[T]], where Z denotes the ring of
integers in the completion of the maximal unramified extension of Q,. It
interpolates the values of the complex L-function in that we have

O Hy(14+ )" = 1) = 02 = D) (1 PEP ),
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for appropriate complex and p-adic periods Q. and €, respectively, of the
elliptic curve (see [7] for a detailed exposition).

Classical descent theory [32] already points to the arithmetic module
that one should consider. This is the Selmer group which we define be-
low. Let M be any Galois extension of a number field F. For each non-
archimedean place w of M, let M,, be the union of the completions at u of
all finite extensions of F' contained in M. The p°°-Selmer group of E over
M is defined by

Sel,,(E/M)

= Ker <H1(Gal(/\/l//\/l), Epe) — HHl(Gal(Mu,/Mw), E(./\/lw))> , (1)
where w runs over all non-archimedean places of M, and the map is given by
natural restriction. The Galois group of M over F' operates on Sel, (E/M)
and we have an exact sequence

0 — EM) @z, Qp/Zy — Selp(E/ M) — TI(E/M)(p) — 0. (8)

Here II(E /M) denotes the Tate-Shafarevich group of E over M, which is
the inductive limit of III(E/L) as L varies over all finite extensions of F'
in M, and for any abelian group A, A(p) is the submodule consisting of
all elements annihilated by a power of p. We shall consider the Pontryagin
dual

X,(E/M) = Hom(Sel,(E/M, Qy /). (9)

which is a compact module over the Galois group Gal(M/K). The dual
Selmer group considered as a module over the Iwasawa algebra, simultane-
ously reflects both the arithmetic of the elliptic curve and the special values
of the complex L-function. Further, by virtue of the additional Galois mod-
ule structure, it encodes information about E(L) and III(E/L) for all finite
extensions L of F'in M.

Suppose now that E/Q is an elliptic curve with complex multiplication
such that Endg (E) ~ Ok, and let Ko, be the Z,-extension of K contained
in Foo (cf. (6)). The Selmer group Sel,(E/K,) is similarly defined as the
kernel of the restriction map

Ker (Hl Gal(Q/Kw), Epes) — HHl(Gal(f(oo,w/Koo,w),E(I_(oo,w)>

where w runs over all the non-archimedean places of K. Clearly the Ga-
lois group of Ko, over K operates on Sel,(E/K.) and we have an exact
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sequence
0= E(Ke) @0k (Kp/Op) = Sely(E/Koo) — MI(E/ Koo )(p) — 0.

Here II(E/K) denotes the Tate-Shafarevich group of E over K, and
for any Og-module A, A(p) denotes the submodule consisting of elements
annihilated by some power of a generator of p. As before (cf. (9)), we con-
sider the compact dual, which we denote by X,(E/K ). This is a finitely
generated module over A(T"), which is torsion, thanks to a result of Coates-
Wiles [14]. By the structure theorem described in §4, we can define the
characteristic power series of the dual Selmer group, which we denote by
By(T) € Z,[[T]]. The one variable main conjecture, proved by Rubin [29],
is the following deep result:

Theorem 5.1. (One variable main conjecture) [29] We have
Hy(1+p)(1+T) = DI[[T]] = By(T)Z[[T]).

Let E/Q be an elliptic curve without complex multiplication, and let
p be a prime of good ordinary reduction. In this case, the formulation of
the main conjecture over the cyclotomic Z,-extension can be found in [18].
For the algebraic invariant, a deep result of Kato [22] proves that the dual
Selmer group is a finitely generated torsion module over the corresponding
Iwasawa algebra, and hence the characteristic ideal can be defined as be-
fore. Moreover, Kato proves that the p-adic L-function is divisible by this
characteristic ideal. Completing the proof of the main conjecture is how-
ever considerably harder, and to date, a full proof has not been published,
(Skinner and Urban have announced results in this direction).

For nonabelian p-adic Lie extensions as in the division field extension
(4) or the false Tate extension (5), even the precise formulation of the main
conjecture is far from obvious. Let G be the corresponding Galois group
and A(G) the associated Iwasawa algebra. Though the dual Selmer group
is known to be finitely generated as a (left) module over the corresponding
Iwasawa algebra A(G), and is even conjectured to be torsion (in fact, there
is even a stronger conjecture, see [9]), there is no well-defined analogue
of the characteristic ideal. A main conjecture in this set-up is formulated
in [9], and the principal novelty in these non-commutative examples is the
use of algebraic K-theory [1]. The algebraic and analytic invariants are
elements of the group K;(R), where R is an explicit localisation of the Iwa-
sawa algebra A(G). The existence of a canonical Ore set in A(G) makes this
explicit localisation possible. Furthermore, this formulation can be intrin-
sically linked to Iwasawa theory of the elliptic curve over the cyclotomic
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extension, which is a quotient of F, in the examples considered above.
For a commutative ring R, K;(R) may be identified with the units in R
and therefore, the occurrence of K7 in the non-commutative set-up may be
viewed as a natural extension of the commutative context. The main con-
jecture then predicts the equality of the analytic and algebraic invariants,
as elements in the K-group. We do not go into any further details but state
that the non-commutative phenomenon is vastly different in one other as-
pect. Namely, it has infinite families of self-dual Artin representations of G
(these are representations that factor through a finite quotient of G) and
thus gives rise to twists of complex L-functions. The interpolation prop-
erty of the p-adic L-function then has to take into account these twisted
L-values, in the formulation of the main conjecture. This in turn leads to
interesting connections with root numbers, which we shall touch upon in
the next section. When F has supersingular reduction at p [32], we still
have no idea how to formulate a non-commutative main conjecture.

6. Applications and examples

In this final section, we mention a few theorems that are proved using
Iwasawa theory. We remark that even though the main conjecture has only
been established in a few cases, it provides great insights into the Birch and
Swinnerton-Dyer conjecture. Kakde [K] has recently proven the existence
of the p-adic L-function and made important progress towards the main
conjecture in the non-commutative case for the Tate motive over p-adic Lie
extensions of totally real number fields. Another interesting phenomenon
is the connection between root numbers and non-commutative Iwasawa
theory which is studied in [8]. In particular, these results give information
on the growth of the Mordell-Weil ranks along finite layers of the false Tate
extension and the division field extension. We first recall the definition of
the root number.

Let E/Q be an elliptic curve. The modified L-function denoted A(E, s),
s a complex variable, is defined by

A(E,s) = (2m)"°T(s)L(E, s).

By the modularity result of Wiles et al., this function is entire and satisfies
the functional equation

A(E,s) = wENéfsA(E, 2—s),

where wg = %1 is the root number and Ng is the conductor of E [32]. We
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have
wg = (—=1)"#/e (10)

where 7 /g is the analytic rank of E. Root numbers can also be defined
over finite extensions of Q. The study of root numbers by Rohrlich [27]
along the cyclotomic extension, combined with the deep result of Kato that
the dual Selmer group of E is torsion over the Iwasawa algebra [22] yields
the following result:

Theorem 6.1. [22, 27] For every prime p, E(Q(upe)) is a finitely gener-
ated abelian group.

We next consider a false Tate extension tower. Fix an integer m > 1,
which is assumed to be p-power free. Define

Ly = Q") Ko = QUuipn). Fo = Qg m"?"),

and consider the false Tate extension

Fy = UFn

n>0
with Galois group G. Let H be the normal subgroup
H = Gal(Foo /Q(pp)) =~ Zp.

Then G is isomorphic to the semi-direct product of Z; and Z,. The ex-
tensions L,, are not Galois, while F;, are nonabelian Galois extensions, and
the Artin representations of G can be fully described. Put

Y(E/Fe) = Xp(E/Fu)/Xp(E/Foo)(p),

where X,(E/Fs)(p) is the p-primary submodule of the dual Selmer group
(9). For any finite extension M of Q, we define

sp/M,p = Zp — corank of the Selmer group of E over M. (11)

The study of root numbers, combined with results from Iwasawa theory,
yields the following theorem:

Theorem 6.2. [8, Theorem 4.8] Assume that E has good ordinary reduction
at p and that Y(E/Fy) is finitely generated as a A(H)-module, with A(H)-
rank 1. Then for alln > 1, we have

SE/Lnp = N+ SE/Qps  SE/Fup = P — 14 SE/K, p-
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As a specific numerical example where the above theory can be applied, we
consider the elliptic curve E/Q of conductor 11 defined by

By’ 4y=a®—2% (12)
and the prime p = 7.

Theorem 6.3. Let F, be a false Tate extension. For the elliptic curve E
as in (12), and p = 7, we have the algebraic rank

gE/anny (n:17273)
provided I(E/L,)(7) is finite.

We remark that even for n = 1, it is numerically very difficult to find points
of infinite order in F(L;). Surprisingly, Iwasawa theory also provides lower
bounds in some cases.

Theorem 6.4. Assume that m is any T-power free integer with prime fac-
tors in the set {2,3,7}. Then for E as in (12), and all integersn = 2,3,...,
we have

9g/L, <N
with equality if and only if IL(E/Ly)(7) is finite.

A natural question that arises in light of (10) and the Birch and
Swinnerton-Dyer conjecture is whether the root number and the algebraic
rank have the same parity. Assuming that the Tate-Shafarevich group is
finite, this is equivalent to the question whether sg /g, (cf. (8), (11)) and
the root number have the same parity. An important general result in this
direction has been proved by T. Dokchitser and V. Dokchitser [16]:

Theorem 6.5. (1. Dokchitser and V. Dokchitser [16]) Let E/Q be an
elliptic curve. Then for any prime p, the root number wg and sg/q, have
the same parity.

We end this article by showing how these results enable us to go consid-
erably closer to proving the folklore conjecture (2) on congruent numbers.

Theorem 6.6. Assume N =5, 6, 7 mod 8, and let E be the elliptic curve
defined by (3). If the p-primary torsion part II(EN /Q)(p) is finite for some
prime p, then N is congruent.
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Proof. As remarked earlier, it is known from the theory of L-functions
that L(Ey,s) vanishes to odd order at s = 1 for N as in the theorem. By
the parity theorem 6.5, we therefore see that sp, /q,, is odd for all primes
p. Suppose there exists a prime p such that III(Ey/Q)(p) is finite. Then
by the exact sequence (8), we have gg, /o > 1 and hence Ey has a point

of infinite order. By our remarks at the end of §2, this implies that IV is a

congruent number. O
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TRICRITICAL POINTS AND LIQUID-SOLID
CRITICAL LINES

ANNELI AITTA

Institute of Theoretical Geophysics
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Cambridge, CB3 OWA, UK

Tricritical points separate continuous and discontinuous symmetry breaking
transitions. They occur in a variety of physical systems and their mathematical
models. A tricritical point is used to determine a liquid-solid phase transition
line in the pressure-temperature plane [12]. Excellent experimental agreement
has been obtained for iron, the material having the most high pressure data.
This allows extrapolation to much higher pressures and temperatures than
available experimentally. One can predict the temperature at the liquid-solid
boundary in the Earth’s core where the pressure is 329 GPa. Light matter,
present as impurities in the core fluid, is found to generate about a 600 K
reduction of this temperature.

Keywords: Tricritical point; phase transitions; critical phenomena; iron melting
curve; temperature in the Earth’s core.

1. Introduction

Melting or solidification is a first order phase transition since the order
changes discontinuously from liquid to solid. Landau (1937) gave a the-
oretical description for first order phase transitions and the point where
they change to second order phase transitions (with a continuous change
of order) [1]. Such a point was later named a tricritical point by Griffiths
(1970) [2]. Tricritical points occur in a variety of physical systems. Exam-
ples of tricritical points are presented in Table 1.1 with the corresponding
adjustable variables. Experimentally they were first found in fluid mixtures,
compressed single crystals and magnetic and ferroelectric systems (see old
reviews in [3] and [4]). Paper [11] is an example of two-dimensional melting.

The rest of this paper provides bifurcation theoretical analysis for the
solidification/melting problem for iron [12], following the earlier work in
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Table 1.1. Examples of tricritical points.

Physical system Variable 1 Variable 2
3He-4He mixtures [2] Density or concentration = Temperature
Vortex-lattice melting [5]  Magnetic field Temperature
Liquid crystals [6] Concentration Temperature
Cold Fermi gas [7] Spin polarization Temperature
Ferroelectrics [8] Pressure or electric field Temperature
Metamagnets [9] Pressure or magnetic field = Temperature
Structural transition [10]  Pressure Temperature
Melting on graphite [11] Coverage Temperature
Solidification [12] Pressure Temperature
Taylor-Couette  vortex  Aspect ratio Rotation rate
pair [13]

Paper [13] which presents the symmetry breaking analysis in the first ex-
perimentally studied nonequilibrium tricritical point.

2. Landau theory

Following Landau [1], an order parameter z can be used to describe first
order phase transitions which change to be second order at a tricritical
point. Here = = 0 for the more ordered solid phase which occurs at lower
temperature, and in the less ordered liquid phase,  # 0. The Gibbs free
energy density is proportional to the Landau potential, which needs to be
a sixth order polynomial in x:

® = 2%/6 4 gat /4 4 ex? /2 + Dy. (1)

A set of examples of ® — @ is shown in Fig. 2.1. No higher order terms in z
appear in ® since they can be eliminated using coordinate transformations
as in bifurcation theory [14]. This method also scales out any dependence
on physical parameters of the coefficient of the z6 term. Generally ®q,
and g depend on the physical parameters and for solidification they are
pressure P and temperature T. In equilibrium, the order parameter takes
a value where the potential ® has a local or global minimum. The minima
of ®, the solutions of

2+ g3 +ex =0 (2)

at which d?®/dz? is positive, give three stable equilibrium states provided
0 < e < g?/4 and g<0. They are at

x:Oandx:i\/—g/2+\/g2/4—g. (3)
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Fig. 2.1. Order parameter z dependent part of the Landau potential (1) for a fixed
g < 0 and various values of ¢.

The thermodynamic transition from liquid to solid occurs when all three
minima of the potential are equally deep: ® — &y = 0 at those three values
of z. This happens when

e =39°/16 (4)

corresponding to the middle dash-dotted curve in Fig. 2.1. The liquid phase
is then in thermal equilibrium with the solid phase. If £ > 3¢2/16 the solid
is preferred, and if ¢ < 3g%/16 the liquid. There are also two other critical
conditions: Liquid phase exists as an unfavoured state until the potential
changes from having three minima to one minimum (the highest dash-
dotted curve in Fig. 2.1), that is, at

e=g°/4. (5)

The solid phase exists as an unfavoured state until € = 0 where the potential
changes from having three to two minima (the lowest dash-dotted curve in
Fig. 2.1).

These liquid-solid phase transitions can be presented using simple bi-
furcation diagrams as in Fig. 2.2. In the direction where T increases (see
Fig. 2.2a), for T < Tg the solid state (having x=0) is the only possible
state of the system. At higher temperatures solid state is preferred but
liquid state is possible as an unfavoured stable state until 7" = T); where
the melting occurs. At higher temperatures the liquid state is preferred but
solid state can occur as an unfavoured stable state until T = T}, beyond
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Fig. 2.2. Bifurcation diagrams for non-negative orderparameter z as function of (a)
temperature and (b) pressure. Symbols show the values of the critical conditions: down-
ward triangle, diamond and triangle correspond to subindex s, m and 1, respectively.

which only liquid exists because the solid state is unstable. Now consider
the direction where P increases (see Fig. 2.2b which has T" > Tp). For
P < Py, only liquid state is stable. There solid state is unstable and thus
not a possible state of the system. At P = P the unstable solid state
bifurcates to a stable solid state and two unstable liquid states (only the
branch with positive z is shown) which turn backward to be stable states
at P = Pg. For P;, < P < Py liquid state is still preferred but solid state
is possible as an unfavoured stable state. At P = P); solidification occurs.
At higher pressures solid state is preferred but liquid state can occur as an
unfavoured stable state until Pg beyond which only solid state is stable and
thus the only possible state of the system.

These simple backward bifurcations in two separate physical parameter
directions can be expressed in a combined way by using bifurcation theory.
The relevant normal form (see Table 5.1, form (8) in [14]) for this tricritical
bifurcation is Hy = 2® + 2mAz® — A2z and its universal unfolding is

H = 2° + 2mA\z® — Nz + az + p2® (6)

where [ is the bifurcation parameter, a and b are the unfolding parameters
and m the modal parameter. Bifurcations are assumed to be perfect. The
equation H=0 is equivalent to Eq. (2) if one identifies

g=2m\+ [ (7)
and
e=-\+o. (8)

For some materials melting curve in the (P, T) plane is expected to have
a horizontal tangent at high P. Here the starting point of this tangent is
identified as the tricritical point P, T}.. Thus g axis in the Landau theory



Tricritical Points and Liquid-Solid Critical Lines 97

can be identified to be parallel to P axis. In [12] e axis was assumed to
be parallel to T axis. Here e is allowed to depend on both T and P. This
dependence can be found by taking the critical temperatures to depend
quadratically on P since that is the highest power relationship between e
and g on the critical lines in the Landau theory. Then all three critical lines
can be expressed as

Tie — T = a;(P — P.)?i=123. (9)

When i=1 we have the curve where ¢ = 0 and T' = T (P). Denoting by
T10 the value of Ty, at P = 0, one finds a; so that

Tic — TL(P) = (Tie — Ti0) (P/Pic — 1)*. (10)
Moving all the terms to one side allows one to write generally
e =T — T — (Tic — Tio) (P/Prc — 1) (11)
which is in the form (8) a = Ti. — T and
A= VT = Tuo(P/Pic = 1) (12)
since A < 0. Now one can simplify (7) to
g =2m\ (13)

since g = 0 at P = P,.. For first order transitions g needs to be negative.
So for A\ as above, m needs to be positive.

When i = 2 we have the melting curve: T = Ty (p). At P =0, Ty = Tp
gives as. Thus the equation of the melting curve is

Tai(P) = Tie — (Tie — Tp) (P/Pic — 1)°. (14)
Inserting this in Eq. (11) one obtains
em = (Tro — To) (P/Poe —1)°. (15)
Combining this with (4) and (13) one can find
m = 2\/(Tro — To)/B(Tic — Tro)]- (16)

When ¢ = 3 we have the third critical curve marking the end of the
hysteresis, the condition for the lowest possible liquid phase temperature
Ts. The liquid state must vanish at T = 0, so at P = 0,75 = 0 gives
az = Ty./P2. Thus the equation of the hysteresis curve is

Ts(P) = Tye — Tie (P/Pye — 1)? (17)
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and inserting this in (11) one finds
es = Tio (P/Prc — 1)%. (18)

Using this with (5) one obtains Tpo = 47, allowing to write the equation
(10) as

Ti(P) = Tie — (Tie — 4Tp) (P/Ppc — 1)°. (19)
Thus one finds
9=4VTy (P/P,. — 1) (20)
and
e =T — T — (Tye — ATy) (P/Pic — 1)* (21)

and

x = Oorz = i\/2\/TT)(1 — P/P.) + \/T —Tye + Tie (P/Pe — 1)%. (22)

These values of z are drawn in Fig. 2.2 using the iron tricritical point
obtained from the experimental data as discussed next. In Fig. 2.2a z(T)
is shown for P=329 GPa (corresponding to the pressure on Earth’s inner
core boundary [15] which is a solidification front in iron-rich core melt). In
Fig. 2.2b the bifurcation structure of z(P) is shown for T=7500 K which is
greater than 770, thus exhibiting all three critical transitions. The critical
curves (14), (17) and (19) are drawn in Fig. 3.1 with iron melting data and
ab initio calculations.

3. Experimental evidence for iron

Iron is the dominant element in terrestrial planetary cores. For instance,
the Earth has an iron-rich core at depths below about half of the Earth’s
radius. The outer core is molten but the inner core is close to pure iron
which is solidifying out from the outer core melt. Owing to its significant
geophysical interest, iron is the most studied high pressure material. In
Fig. 3.1, data since 1986 is presented with the ab initio calculations for iron
melting. For discussion, see [12]. Overall, the data has a large scatter, and
all shock wave results as well as the older static measurements have very
large error bars. However, selecting (details in [12]) the most reliable static
results combined with all supporting high pressure shock results allows one
to find an excellent fit to Eq. (14) giving the tricritical point as (793 GPa,
8632 K) with a correlated uncertainty of about £ (100 GPa, 800 K). The
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Fig. 3.1. Iron melting experimental data, with ab initio calculations without (dash-
dotted) and with (dash-triple-dotted) a free energy correction [16] and three theoretical
critical lines T's, Ty and T, from this work. The most reliable static data (open symbols:
squares [17], diamond [18] and triangle [19]) with consistent shock wave data (filled
symbols: square [20], diamond [21], triangles [22] and inverted triangles [23]) are used to
find the theoretical curve for Ths (solid line) and thus the coordinates of the tricritical
point (Pyc, Tte) (cross). Other data (see discussion in [12]) are also shown: short dashed
[24] and dashed [25] lines and open inverted triangle [26] are for static data, filled symbols
are for shock data (lower right corner triangles [27], lower left corner triangle [28]), but
the long dashed line [29] represents static data extrapolated to high pressures using shock
data. The vertical lines show the pressures at the Earth’s core mantle boundary (CMB)
and inner core boundary (ICB).

theoretical melting curve (14) is drawn in Fig. 3 and it goes approximately
through the middle of the data. In addition, the curves for T, from Eq. (19)
and Tg from Eq. (17) are also drawn showing the limits of the range where
unfavoured liquid or solid stable states can occur. All the experimental data
are in this range.

The pressure at the Earth’s core-mantle boundary (CMB) is about 136
GPa [15]. The iron melting temperature is at that pressure 3945 + 12 K
using Eq. (14). This temperature is very similar to the seismic estimate
39504200 K [30] for temperature there implying the melt is rather close to
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pure iron. This agrees very well with the result that experimentally, pure
iron compressional wave velocities are very similar to seismic velocities in
the Earth’s core melt close to the CMB (see Fig. 2 in [31]). However, the
mantle solid at the CMB has density of about 56 % of the core melt density
there [15]. Thus it is the light matter in the core melt which is solidifying
out there, presumably with some iron. This solidification temperature stays
very close to pure iron for small concentrations of light matter in the iron-
rich melt. Solidification at CMB has been suggested previously [32-34].

The iron melting temperature at the pressure of the Earth’s inner core
boundary (ICB) is 6290 + 80 K. This is very close to the ab initio result
without free energy correction (see Fig. 3.1). However, the inner core is
solidifying from the molten iron-rich outer core, which owing to the seismic
density estimates [15] there is concluded to have also some light elements.
These light impurities are lowering the temperature from the pure iron
melting temperature. From this work we can conclude from Eq. (17) that
in the real Earth the temperature at the ICB is possible to be as low as
Ts, about 5670 K, but not lower. Since the fluid in the outer core has
been convecting for billions of years it has been able to adjust its fluid
concentration and temperature profiles so that the temperature and density
gradients inside the fluid are minimized. Thus the temperature at the ICB
is expected to take this limiting value of about 5670 K. This estimate agrees
very well with the value of 5700 K as inferred for the temperature at the
ICB from ab initio calculations on the elasticity properties of the inner
core [35] and is consistent with the range 5400 K — 5700 K reported in [36].
The temperature difference Thy — Tg = 621 K at ICB also agrees with the
estimate 600 K to 700 K in [36] but is more than twice the 300 K used in
the rather recent energy budget calculations of the core [37].

4. Conclusions

The concept of tricritical point seems to be very useful in considering liquid-
solid phase transitions as a function of pressure and temperature. Landau
theory gives a quadratic, general formula for the solidification/melting curve
Ty (P) if it ends at a tricritical point where dTh;/dP = 0. The structure
of the coefficients is definite, but the tricritical point needs to be estimated
from good solidification or melting data. For pure iron, the temperature for-
mula and data agree very well in the whole range 0-250 GPa where we have
good experimental data. The tricritical point is estimated to be at (800£100
GPa, 8600+800 K), with the signs of the errors correlated. The prediction
for the iron melting temperature at the core-mantle boundary is 3945412
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K, very similar to the seismic estimate for temperature of 3950+200 K at
the CMB implying the melt there is rather close to pure iron. The impuri-
ties present in the outer core decrease the inner core boundary temperature
from 6290480 K found for pure iron to about 5670 K for the real Earth, in
agreement with ab initio predictions.
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ELASTIC WAVES IN RODS OF
RECTANGULAR CROSS SECTION
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This article presents an analytical solution for harmonic waves in a rectangular
elastic rod of arbitrary aspect ratio. The solution is obtained as a sum of two
series, each term of which identically satisfies equations of motion, and has
sufficient arbitrariness for fulfilment of any assigned boundary conditions on
the rod surface. Because of interdependency of the series coefficients, dispersion
relation is obtained in the form of an infinite determinant. Correct reduction
of the determinant permits to establish the edge effect on the wave dispersion
distinguishing a rectangular rod from an infinite plate and a circular cylinder.
Calculated results excellently agree with Morse’s experimental data (1948).

Keywords: Rectangular rod; longitudinal waves; dispersion.

1. Introduction

Ultrasonic volume and surface waves in elastic rods of various cross-section
are extensively used to solve a number of important practical problems.
Originally their applications included delay lines, frequency filters, and flaw
detection. Recently tremendous potential has been uncovered by applica-
tion of these waves for nondestructive material evaluation [1], theoretical
modeling of transport phenomena in nanometre-scale wires [2], and mixing
of viscous solutions in microchannels at low Reynolds number [3].

Exact solutions of the equations of motion can be derived, however,
only for isotropic infinite plates and circular cylinders due to two-dimensio-
nality of the wave field in such simple geometries. For rods of other cross-
section, the problem becomes substantially three-dimensional. The presence
of breaks at the elastic rod surface causes considerable complication of the
wave field structure owing to additional reflections of compressional and
shear waves forming normal modes. To analyze the surface effect on the
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wave propagation process, it is advisable to study dispersion characteristics
for a rod of rectangular cross-section, which is also the base element for rods
of arbitrary cross-section [2].

Two sets of the exact solutions for a rectangular rod were discovered
by Lamé (1852) and Mindlin & Fox (1960) for certain discrete frequencies
and cross-sectional aspect ratio. Numerous attempts were made to obtain
general solution of the problem for rods with arbitrary aspect ratio. They
resulted in development of different approximate theories based on simpli-
fied hypothesis for a rod stress-strain state (for relevant literature, see, for
example, [4, 5]). Most of them are valid only in a low frequency range and
for rods of either large aspect ratio or square cross-section. Therefore, these
theories fail to interpret extensive experimental data on the elastic wave
dispersion in a wide range of rectangular cross-sectional rods presented by
Giebe & Blechshmidt [6] and Morse [7, 8]. To the author’s knowledge, so
far there are no reliable solutions to model this data.

In this paper, a complete analytical solution to the problem is presented
for rectangular rods with arbitrary aspect ratio. The solution consists of
two infinite sets of partial solutions for equations of motion, which are able
to satisfy any assigned boundary conditions at the rod surface. Dispersion
equation is established in terms of an infinite determinant. Reduction of the
determinant is based on the knowledge of asymptotic behavior of unknown
coefficients in the system. Excellent agreement of theoretical predictions on
wave dispersion for two lowest longitudinal modes with experimental data
described by Morse [7] proves a high accuracy of the results obtained. Cal-
culations performed in a high frequency range reveal the edge effect on the
wave field that results in decrease of the limiting values for phase velocities
and redistribution of wave motions towards the rod edges. Characteristics
established substantially distinguish a rectangular rod from an infinite plate
and a cylinder, and are of great importance for many practical applications.

2. Formulation of the problem

Small motions of an isotropic elastic solid characterized by density p and
Lamé constants A, p are described by vector equation of motion

V20U + A+ p)V(V - U) = pd*U ot (1)

where t is time, U (z,y, z,t) is displacement vector.

The vector equation (1) has a disadvantageous feature in that it couples
the three displacement components. It is far more convenient to express the
components of the displacement vector in terms of the scalar ® and vector
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U potentials as follows [9)]
U=V®+(Vx¥), V-U=0 (2)

The potential introduced satisfy uncoupled Helmholtz wave equations.
To determine a set of normal waves appropriate to a rectangular rod
—a <z <a, —b <y < b infinite along z axis, potential functions should
also satisfy the boundary conditions

Op =Tgy =Tz =0 at 1z = a,

Oy =Tys =Ty =0 at y==£b. (3)

Substitution of Eq.(2) into Hooke’s law provides expressions for normal o;
and shear 7;; stresses in terms of the potential functions.

In case of progressive harmonic waves, the potential functions are as-
sumed to be given in the form {®, U}(z,y, z,t) = {¢, ¥ }(z, y) expi(yz—wt),
where w is the frequency, v is the propagation constant (v = 2w/, A is the
wavelength). In what follows, the factor expi(yz — wt) will be omitted.

3. Method of solution

For longitudinal waves symmetric relative to the middle planes of the rod,
consider following expressions for the potentials as solutions of Egs. (1),

(2)
¢ = Acoshpiycosax, 1, = Bsinhpoy cos ax,
Yy = Ccoshpaysinax, 1, = Dsinhpoysinax, (4)

with the notation

=+ -0, p3=a®+4> -, R
C1 C2

c1 and co are velocities of compressional and shear waves, respectively.
Here A, B, C, D are unknown constants determined from boundary con-
ditions (3) and related as Diy + Cpy — aB = 0 according to the second
equation in (2). When p? < 0 or p3 < 0, hyperbolic functions in (4) are
replaced by trigonometric ones.

The values of « are chosen in such a way that trigonometric functions
{sinax,cosax} constitute complete and orthogonal sets of functions at
—a < z < a, for example,

nmw
anp=—, n=012....
a
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Therefore, from function representations (4) we obtain an infinite set of
partial solution of Egs. (1) that enables satisfying any assigned bound-
ary conditions on the faces y = +b by means of matching the values of
A,, By, and C,. Another infinite set of partial solutions for fulfilment the
boundary conditions at z = +a is obtained from the condition of complete-
ness and orthogonality for sets of trigonometric functions {sin Sy, cos Sy}
at —b<y<b:

oo oo
¢ = Z FEy coshgizcos Bry, Y, = Z Fy, cosh gox sin Gy,

k=0 k=0
Wy = ZGk sinh gox cos Bry, ¢, = ZH"? sinh gz sin By,  (5)
k=0 k=0
where
km 2 2 2 2 2 2 2 2
ﬁZT, G =0+ -, @=0+7 Q.

A sum of the two infinite sets provides general solution to the problem for
longitudinal waves in a rod of arbitrary rectangular cross section. Corre-
sponding expressions for displacements and stresses are rather cumbersome
and not cited here to save space.

Fulfilment of conditions (3) for shear stresses leads to the relations

ps+ ol +7°
2
a3+ B ++2

iyAppy sinhpib — B, sinhpsb=0, C, =0;

1yErqy sinh gra + Gy, sinhga =0, Fy =0.

It is easily seen that there remain two sets of arbitrary constants, for ex-
ample, B, and Gj. While satisfying boundary conditions (3) for normal
stresses, we obtain two functional equations for determining these con-
stants. Taking into account the Fourier expansions for hyperbolic functions
into the trigonometric series, after some computations those equations are
converted into the infinite system of linear algebraic equations

(o9}
20232 222B%  QF (297 —3)
YkaAk(q)—Fak. X,b nlk o _ nk o _ =0,
,;) B R al +qi
> 20237 20237 Q% (29% - 03)
X, bA p) t+én Yick nlk nlk =0,
) ke ) Ve | G A R

kon=01,2.... (6
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Here new coefficients X,,, Y, are related to B,,, G as follows

B, . _
Xp = (=) sinhpyb, Vi = (=1)"!

inh gya,
17ybby, ivyacy S 24
and the notations
2 2 22
7+ Bkt a
Ak(q) = ek {Q2 (v* + B7) coth gea — (4(’;2) Cothqla} ,
1
2 2 22
+ oy +
An(p) = by {p2 (v’ + o) coth pab — (74—]?2) Cothplb} ;
D1
% s ’L = s 1 5 k == 07 b 1 9 n= O?
Ei = . C = n =
1, i>0; b L kE>0; L. n>0;
Bk an

02 =v03/(1 —2v), v =X/2(\ + p) are introduced.

The only non-trivial solutions for X,,, Y} are those, for which the deter-
minant of system (6) is equal to zero. The equation formed by expansion
of the determinant is a dispersion equation, which for a given value of a/b
relates frequency w to propagation constant v with Poisson’s ratio v as a
parameter. For any positive real values of w, roots of the dispersion equa-
tion are real, imaginary and complex values of =y corresponding to normal
modes in the rectangular rod.

For proper reduction of the infinite system to a finite one, an important
role plays the law of asymptotic behavior of the unknowns for large values
of indices [10]

lim X, = lim Y, = A, (7)

n— o0 k—oo
where A is an unknown constant; its value depends on frequency w. On a
basis of law (7), the improved reduction method, according to which a finite
system consists of N 4+ K + 3 equations for the same number of unknown co-
efficients X,, (n=0,1,...,N), Y, (k=0,1,...,K), and A, was suggested.
An equation for determining A can be easily obtained after some transfor-
mations of the infinite system. Detailed description of this procedure and
its mathematical background are given in [10]. It is important to note that
the application of the improved reduction method permits to considerably
increase the accuracy in finding dispersion characteristics of normal waves
compared to a simple reduction method, when the value of A is supposed
to be zero.



108 A. A. Bondarenko

4. Results and discussion

Since the dispersion equation is a transcendental one, it has an infinite
number of roots 7y for each value of w. Roots constitute dispersion curves in
the (w, y) space corresponding to propagating (real v) and non-propagating
(imaginary and complex ) normal modes in the rod. Propagating modes
are characterized by phase ¢,/ca = w/7 and group ¢, /ca = dw/dry velocities.

Fig. 4.1. Two lowest longitudinal modes in rectangular brass rods of various aspect
ratio observed experimentally by Morse (reproduced from Fig. 5 in paper [7]).
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Fig. 4.2. Two lowest longitudinal modes in rectangular rods of various aspect ratio
calculated theoretically by means of the theory developed, v = 0.35.
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Morse observed experimentally phase velocities of two lowest longitu-
dinal waves on seven brass rods of various aspect ratio [7]. All of the rods
have one common lateral dimension, 2b = 0.318 cm. Fig. 4.1 summarizes
Morse’s results as the larger side of the rod, 2a, is varied. Theoretical pre-
dictions are presented in Fig. 4.2 on the same scale as experimental data.
Calculations were implemented for Poisson’s ratio ¥ = 0.35, and shear wave
velocity co = 2160 m/s as suggested in [7].

The first longitudinal mode extends the zero frequency and is almost
non-dispersion at low frequencies, 0 < f < 100 kHz. Regardless of aspect
ratio, its phase velocity equals bar velocity ¢co = E/p = 3651 m/s. This be-
havior was not observed by Morse, because the lower end of the frequency
range was limited by the oscillator employed [7]. As frequency is increased,
the phase velocity monotonically decreases and approaches, according to
Morse’s prediction, Rayleigh’s surface wave velocity cg = 2019 m/s. Obser-
vations in a high frequency range were limited by difficulty in distinguishing
the nodal lines when the wavelength was less than 3 mm.

The second mode has a non-zero cut-off frequency, at which the motion
is independent of the z coordinate. Morse’s measurements show that at
the cut-off frequency the half-wavelength is approximately equal to the
larger side 2a. This conclusion is also valid for the calculated values of
cut-off frequencies that exceed less than 0.5% the values of frequencies, at
which the half-wavelength equals the side 2a. With increasing frequency,
the phase velocity of this mode drops from infinity to a certain finite value
in monotone fashion. All the curves describing the second mode have a
common point at frequency fr = 484 kHz, at which the half-wave-length
equals the smaller side 2b. Theoretically this frequency corresponds to the
exact Lamé solution, and its location is independent of Poisson’s ratio v
and aspect ratio a/b.

Comparison of calculated results with experimental data shows an ex-
cellent agreement in the whole frequency range that confirms the efficiency
of the theory developed. The solution obtained permits also to evaluate
the high frequency limits for phase velocities of the two modes under con-
sideration. The knowledge of those limits is of importance both from the
practical point of view and for theoretical interpretation of the wave prop-
agation process in rectangular rods.

Calculations show that phase velocity of the lowest longitudinal mode
regardless of the aspect ratio asymptotically approaches the velocity of edge
angular mode cy = 1957 m/s for a right wedge [11] as frequency is increased.
At these frequencies wave motions are concentrated near the edges of the
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Table 4.1. Forms of rod cross section for the first longitudinal mode (a/b =1, v = 0.35).

A =12.23 mm A =248 mm A=1.18 mm A =0.63 mm

Table 4.2. Phase-velocities for two lowest longitudinal
waves in a rectangular rod (a/b =2, v = 0.35).

Simple reduction Improved reduction

A, mm c;U, m/s céz), m/s cél), m/s cg), m/s
1.272 1960 2032 1957 2032
0.636 1962 2022 1958 2022
0.424 1961 2021 1958 2020
0.318 1962 2020 1957 2019

rod (see Table 4.1). This fact essentially distinguishes a rectangular rod
from an infinite plate or a cylinder, for which a high frequency limiting value
for phase velocity of the first mode is cr, and wave motions are distributed
along the surfaces like a Rayleigh wave. Similarly, with increasing frequency,
phase velocity of the second longitudinal mode approaches the value of cg,
rather than co as in the case of the plate or cylinder. This behavior can be
explained by the presence of breaks on the rod surface, since wave motions
are located near the edges when the wavelength becomes much smaller than
any of the rod dimension.

Table 4.2 presents a comparison between the two reduction approaches
to the solution of system (6). Calculations in both cases were performed
for the brass rod with aspect ratio a/b = 2 when N = 20, K = 10 in corre-
sponding finite systems. It is easily seen that the simple reduction method
gives slightly conservative values for phase velocity compared to the im-
proved reduction. This small difference could hardly be observed experi-
mentally. Nevertheless, the improved reduction method permits to establish
more accurate limiting values and to catch distinctive features in the wave
field distribution shown in Table 1.
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5. Conclusion

An analytical solution for normal waves in rectangular rods of arbitrary
cross section is presented. Dispersion equation obtained in terms of an in-
finite determinant is solved taking into account asymptotic behavior of
unknowns in the system. The improvement of the reduction method for the
infinite system results in establishing more accurate high-frequency limiting
values for phase velocities of two lowest longitudinal modes. Whereas these
values are slightly smaller than those for an infinite plate or a circular cylin-
der, wave motion distribution differs significantly. These results could be
of great importance for many practical applications, especially, for spacing
exciting and receiving transducers by nondestructive material evaluation.
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We give two versions of the natural extension of a specific greedy (-
transformation with arbitrary digits. We use the natural extension to obtain
an explicit expression for the invariant measure, equivalent to the Lebesgue
measure, of this S-transformation.

Keywords: Greedy expansion; natural extension; equivalent invariant measure.

1. Introduction

Real numbers can be represented in many different ways. Famous exam-
ples are the integer base expansions and the continued fraction expansions.
Another well-studied example is given by the g-expansion, which is an ex-
o0 1 bn/B™, where 3 > 1is a real number and the
digits b,, are integers between 0 and the largest integer smaller than 3. In
1957 Rényi [1] introduced the transformation T = Bz (mod 1), that gen-
erates such expansions by iteration. The introduction of this transformation

made it possible to use ergodic theory to study (-expansions.

pression of the form z = )

In this article we consider a specific piecewise linear transformation with
constant slope, which falls into the class of greedy [-transformations with
arbitrary digits as defined in (D.,K. 07) [2]. The transformation T, as given
by Rényi, is also contained in this class. We can use this more general class
of transformations to obtain [-expansions with digits in arbitrary sets of
real numbers, satisfying a mild condition. A recursive algorithm to produce
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B-expansions with general digit sets was first given by Pedicini [3] and some
properties of the greedy [-transformations with arbitrary digits are given
in (D., K. 09) [4]. In the next section, we consider the case 3 = (1++/5)/2,
the golden mean, and show how one can obtain (3-expansions with digits 0,
2 and 3. These methods can be generalized to arbitrary 5 > 1 [2].

As said before, the advantage of having a transformation to generate
expansions, is that we can use ergodic theory as a tool. For that, we first
need an invariant measure for the underlying transformation. In general, a
[O-transformation is not invertible. A way to obtain an invariant measure is
by constructing an invertible dynamical system that contains the dynamics
of T and is minimal from a measure theoretical point of view. Such an
invertible system is called a natural extension. It is a basic object in ergodic
theory and can be used to obtain many properties of the transformation
and the expansions it generates. An invariant measure of T' can be found
through an invariant measure of a natural extension. A precise definition
of a natural extension is given by the conditions (i)-(iv) from Section 3.

There is a canonical way to construct natural extensions [5] [6]. In gen-
eral, there are many ways to construct such an invertible system, but it is
proven by Rohlin [5] that any two such systems are isomorphic. So, we can
speak of the natural extension of a dynamical system up to isomorphism. If
we want to use the natural extension to prove properties of a transforma-
tion, then the success of the whole process depends heavily on the version
of the natural extension that we choose to work with.

In this paper, we consider a special transformation T, generating (-
expansions with § the golden mean and digits 0, 2 and 3. We give two
versions of the natural extension of T'. The first version that we define, will
prove to be invariant with respect to the Lebesgue measure. This allows
us to give an invariant measure for T, equivalent to the Lebesgue measure,
by simply projecting the measure of the natural extension. The second
version of the natural extension is a planar one and thus easier to visualize.
Versions of the natural extension for similar transformations are given by
Dajani et al. [7] and by Brown and Yin [8]. The first version we give is a
generalization of the natural extension defined in (Dajani et al., 1996) [7]. In
the next section of this paper we define the transformation 7" and give some
of its properties. In the third section we give a first version of the natural
extension and the density of the invariant measure. The fourth section is
used to give the planar version of the natural extension and to establish an
isomorphism between the two versions.
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2. Expansions and fundamental intervals

Let 3 be the golden mean, i.e. the positive solution of the equation =2 —

z —1 = 0. Consider the partition A = {A(0), A(2),A(3)} of the interval
[0,2), given by A(0) = [0,2/5), A(2) = [2/8,3/8) and A(3) = [3/6,2).
The transformation T : [0,2) — [0,2) is defined by

Tx = pz—j, ifze A(j). (1)

To each = € [0,2) we assign a digit sequence {d,(z)},>1 as follows. Let
d1 (33) be
0,if z €[0,2/5),
di(z) =< 2,ifz € [2/5,3/0),
3,if z € [3/3,2),
and for n > 2, set d,,(z) = di (T 'z). We can write Tx = Bz — d;(x) and
inverting this, we get « = dy(z)/8+Tx /(. By iteration we get for all n > 1,
d d dp(x T x
B B B B
Since T"z € [0,2) for all n > 1, we get that z = >~ d,(x)/B"™. So,
we can write each x as a (-expansion with digits in {0,2,3}. For ease of
notation we sometimes identify = with the infinite sequence d;(z)dz(z). . ..

The transformation 7' generates expansions of all points in the interval
[0,2). Two expansions that will play an important role in what follows are
the expansions of the points 1 and 873. Notice that 573 = 25 — 3 would be
the image of 2 under T if T were defined on the closed interval [0,2]. We
have

8

d? 2 2 2 2 .
g TR E T E

1 4P 2 2 9 _
E:ZW:@JFWJFWJF...:OOOOZ (3)
n=1

where the bars on the right hand sides indicate repeating blocks of digits.
With the orbit of a point x under T we mean the set {T"z : n > 0}. In
Figure 2.1, you can see the graph of 7" and the orbits of the points 1 and
B3

Using T and A, we can define a sequence of partitions {A(n)}n21 of
[0,2) by setting A = \/?;01 T—*A. We call the elements of A funda-
mental intervals of rank n. Since they have the form A(by) N T~1A(b2) N
... .NT~=DA(b,) for some by, by, ..., b, €{0,2,3}, we will denote them
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Fig. 2.1. The transformation T and the orbits of 1 and 1/83.

by A(b; ...by). Notice that a fundamental interval of rank n specifies the
first n digits of the expansion of the elements it contains. Let A denote
the one-dimensional Lebesgue measure. We will call A(by...b,) € A
full it \(T™A(by ...b,)) = 2 and non-full otherwise. A(0) is full and A(2)
and A(3) are non-full. By looking at Figure 2.1, we get that after two
steps, A(2) splits into a full and a non-full piece, i.e. A(200) is full and
A(202) is non-full. The same holds for A(3) after five steps, i.e. A(300000)
is full and A(300002) is non-full. After that, each remaining non-full funda-
mental interval splits into a full and a non-full piece after each three steps:
A(300002000) is full, A(300002002) is non-full, A(202000) is full, A(202002)
is non-full, etc. For full fundamental intervals, we have the following obvious
lemma.

Lemma 2.1. Let A(ay...ap) and A(by...by) be two full fundamental in-
tervals of rank p and q respectively. Then the set A(ai...apbi...bg) is a
full fundamental interval of rank p + q.

A full fundamental interval of rank n has Lebesgue measure 2/8™. A non-
full fundamental interval of the same rank has measure smaller than 2/5".
From the next lemma, it follows that the full fundamental intervals generate
the Borel o-algebra on [0, 2).

Lemma 2.2. For eachn > 1, let D,, be the union of those full fundamental
intervals of rank n that are not subsets of any full fundamental interval of
lower rank. Then Y > AN(D,,) = 2.
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Proof. Notice that D; = A(0), D3 = A(200) and for k > 1, Dgj4q is the
union of two intervals. For all the other values of n, D,, = 0. So

. 2 4 1
2P = 5 ﬂ3+zﬂ““> St o 2

O

Remark 2.1. The fact that A(0) is a full fundamental interval of rank 1
allows us to construct full fundamental intervals of arbitrary small Lebesgue
measure. This together with the previous lemma guarantees that we can
write each interval in [0, 2) as a countable union of these full intervals. Thus,
the full fundamental intervals generate the Borel o-algebra on [0, 2).

3. Two rows of rectangles

To find an expression for the T-invariant measure, equivalent to Lebesgue,
we define two versions of the natural extension of the dynamical system
([0,2),B(]0,2)), p, T). Here T is the transformation as defined in (1). For
the definition of the first version, we use a subcollection of the collection
of fundamental intervals. For n > 1, let B,, denote the collection of all
non-full fundamental intervals of rank n that are not a subset of any full
fundamental interval of lower rank. The elements of B,, can be explicitly
given as follows. By = {A(2),A(3)}, B2 = {A(20),A(30)} and for k > 1,

Bs = {A(202002...002), A(300002...002)},
— —

k—1 times k—1 times

Baes1 = {A(202002...0020), A(300002...0020)},
k—1 times k—1 times

Baiyo = {A(202002...00200), A(300002. ..00200)}.
k—1 times k—1 times

For each element A(by...b,) of B, T"A(by ...b,) is one of the intervals
[0,1/8%), [0,1/8%), [0,1/8), [0,1) or [0,3). The domain of the natural ex-
tension will consist of two sequences of sets {R(2 ) }n>1 and {R(3.n) fn>1,
that represent the images of the elements of B, under T". We will order

them in two rows by assigning two extra parameters to each rectangle. Let
Ry =[0,2) x[0,2) x {0} x {0} and for each n > 1, j € {2,3} define the sets

Rijmy = T"AGdY .. .dP ) x A0...0) x {j} x {n},
n times

where the digits dg ) are the digits from the expansions of 1 and Bg, as given
in (2) and (3). Then R = Ry U, _1(R2.n) U R(3,n))- Let By denote the
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Borel o-algebra on Ry and on each of the rectangles R(; ), let By; ,,) denote
the Borel o-algebra defined on it. We can define a o-algebra on R as the
disjoint union of all these o-algebras, B = Hj,n Bjny I By. Let X be the
measure on (R, B), given by the Lebesgue measure on each rectangle. Then
AMR) = 32—143. If we set v = 5 14ﬁ)\ then (R, B,v) will be a probability
space. The transformation 7 is defined piecewise on the sets of R. On Ry,
let

(Tz,%,0,0) € Ry, if ze A(0),
T = )
(x7y’070) { (Txv ﬁa]v ) € R(j-,l)’ if z € A(])’ ‘7 € {273}

and for (z,y,7,n) € R(jn), let

(Tx,y),0,0) € Ry, if AGGdY) ... d7),0) is full
) and z € A(0),
T(x,y,j4,n) = , ) o .
(@9, 5,m) (T2, %,j,n+1) € Rjusy. if AGdY ... dS,0)
is non-full or = ¢ A(0),
where
; (4) (7) (4)

j J d d dn—l Yy
y(J)—B—Fﬁ—FW—i— +ﬁ" +E

Figure 3.1 shows the space R.

Remark 3.1. Notice that for k > 1, 7 maps all rectangles R ,,y for which
n # 3k — 1 and all rectangles R(3 ,,y for which n # 3k + 2 bijectively onto
R2,ny1) and R(3,,41) respectively. The rectangles R(33x—1) and R(33x42)
are partly mapped onto R 3x) and R(33k43) and partly into Rp. From
Lemma 2.2 it follows that 7 is bijective.

Let 7 : R — [0,2) be the projection onto the first coordinate. To show that
(R,B,v,T) is a version of the natural extension with 7 as a factor map, we
need to prove all of the following.

(i) = is surjective, measurable and measure preserving from R to [0,2).

(ii) For all x € R, we have (T om)(x) = (mo T)(x).

(ili) 7 : R — R is an invertible transformation.

(iv) B=V,_ o T Y(B([0,2))), where \/o— , T" _1( ([0,2))) is the small-
est o-algebra containing the o-algebras T"m~1(B([0,2))) for all n > 1.

The only thing that remains to prove is (iv). For this, we need to have
a closer look at the structure of the fundamental intervals and we will
introduce some more notation.
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2 2y 28
/
D ﬁ — e—_— > == >
01/,8 o 1 0 B 01/

\
b —

2
0 2 2P [l 2P 2B _
0yg Oy 0B 0 1 0 B 018

Fig. 3.1. The space R consists of all these rectangles.

For a fundamental interval, A(by ...b,), we can make a subdivision of
the block of digits b; ... by into several subblocks, each of which corresponds
to a full fundamental interval, except for possibly the last subblock. This
last subblock will form a full fundamental interval if A(by...b,) is full
and it will form a non-full fundamental interval otherwise. To make this
subdivision more precise, we need the notion of return time. For points
(z,y) € Ry define the first return time to Ry by

ri(z,y) =inf{n >1:7"(x,y,0,0) € Ry}
and for k > 1, let the k-th return time to Ry be given recursively by
re(z,y) = inf{n > ry_1(z,y) : T"(z,9,0,0) € Ry}.

Notice that this notion depends only on =z, i.e. for all y,3’ € Ry and all
k> 1, rp(z,y) = re(z,y'). So we can write ri(z) instead of rg(z,y). If
A(by...b,) € A then for all n < g, 7™ maps the whole set A(b; ...b,) x
[0,2) x {0} x {0} to the same rectangle in R. So the first several return times
to Ro, r1,...,7x, are equal for all z € A(by ...b,). Then thereisa x > 1 and
there are numbers r;, 1 <4 < k such that r; = r;(x) for all z € A(b1...b,).
IfA(by...0g) € A ig a full fundamental interval, then r,. = ¢. Put ro = 1,
then we can divide the block of digits b; ... b, into k subblocks C1, ..., Cy,
where C; = by, , ...br,—1. S0 A(b1...by) = A(Ch ... Cy). These subblocks,
C}, have the following properties.

(i) If |C;] denotes the length of block C;, then |C;| = r; — r;—1 for all
1€{1,2,...,Kk}.

(11) If bri = 0, then Ty ="Ti—1+ 1.

(iii) If b,., = j € {2,3}, then the block C;11 is equal to j followed by the
first part of the expansion of 1if j = 2 and that of 1/3% if j = 3. So
Cip1 = jd .. d|]c

(iv) Forallie {1,.. /<;} A( ;) is a full fundamental interval of rank |C;|.
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The above procedure gives for each full fundamental interval A(b; ...b,),
a subdivision of the block of digits b; ... b, into subblocks C4, ..., C\, such
that A(C;) is a full fundamental interval of rank |C;| and A(by...by) =
A(Cy...Cy). The next lemma is the last step in proving that the system
(R,B,v,T) is a version of the natural extension

Lemma  3.1. The o-algebra B on R and the o-algebra
Vol o Tma1(B([0,2))) are equal.

Proof. First notice that by Lemma 2.2, each of the o-algebras B, ) is
generated by the direct products of the full fundamental intervals, contained
in the rectangle R(; ). Also, By is generated by the direct products of the
full fundamental intervals. It is clear that \/ -, 7"7(B([0,2))) C B. For
the other inclusion, first take a generating rectangle in Ry:

Afar...ap) X Albr ... bg) x {0} x {0},

where A(ay...ap) and A(by...b,) are full fundamental intervals. For
the set A(by...b,) construct the subblocks Ci,...,Ck. By Lemma 2.1
A(CxCx1...Craq ...ap) is a full fundamental interval of rank p+ ¢. Then

T4 (W_I(A(C,{Cnfl .Chaq ... ap)) n Ro)
— Aar...ap) x Aby ... by) x {0} x {0} € V=, T (B([0,2))).

Now let A(ay ...ap) X A(br...bg) x {j} x {n} be a generating rectangle for
B(jn), for j € {2,3} and n > 1. So A(ay...a,) and A(b; ...b,) are again
full fundamental intervals. Notice that

Aby...by) € A(0...0),

n times

which means that ¢ > n. Also b; = 0 and thus r,417 = i+ 1 for all ¢ €
{0,...,n —1}. So, if we divide by ...by—1 into subblocks C; as before, we
get that Cp = Cy = = C, =0, that k > n and that |Cp,11]|+...+|Ck| =
q—mn. Consider the set C A(CChk—y...C +1]d(J d(Jllal ap). This
set is a fundamental interval of rank p 4+ ¢ and T9C = A(ay . ..ap). Let
D =7"YC)NRy. Then 79D = A(ay ...ap) X A(by ...by) x {j} x {n}. So,

oo

Aar...ap) x Alby...bg) x {j} x {n} € \/ T"7 1 (B([0,2))).

n=0

O

This leads to the following theorem, the proof of which follows from Re-
mark 2.1, the properties of 7 and Lemma 3.1.
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Theorem 3.1. The dynamical system (R,B,v,T) is a version of the
natural extension of the dynamical system ([0,2),B([0,2)),u,T), where
p = vomn ! is an invariant probability measure of T, equivalent to the
Lebesgue measure on [0,2), whose density function, h : [0,2) — [0,2), is
given by

W) = ——

16751+ 2000./m0) (#) + 2+ B)1p60.1/8%) (2)

+ 2811152 1/8)(2) + 5211/5.0) () + Bl gy (@) + 1is.2) ().

4. Towering the orbits

For the second version of the natural extension, we will define a transfor-
mation on a certain subset of [0,2) x [0,203), using the transformation 7,
defined in the previous section. Define for n > 1 the following intervals:

n—1

2021 21 9 I 1
1(2’"):{52;_:05?’62;63‘)’1(3’”) [2+ﬁ2zﬁﬂ 52;@>’

where Z?Zl B0 = 0. Let Iy = [0, 522) Notice that all of these rectangles
are disjoint and that (J;—; I(2,n) = [2672,2) and ;" I(3,n) = [2,28), so
that these intervals together with Iy form a partition of [0,203). Now define
the subset I C [0,2) x [0,203) by

oo

n— n— 1
= ([0,2) x Io) U [ J(([0, 7" "1) x I1z,)) U ([0, T '5) < dism))
n=1
and let the function ¢ : I — R be given by
(0,820 = s = e 250 35)s 2im), iy € Lo,
¢(I]S‘,y) - (l‘762(y e % Z;Lfo ﬁi) 3, n) if Yy e I(S,n)a
(x,ﬂzy,0,0), if ye IO'

So ¢ maps Ip to Ry and for all n > 1, j € {2,3}, ¢ maps I(j,) to R )
Clearly, ¢ is a measurable bijection. Define the transformation 7 : I —
I, by T(z,y) = ¢~ YT (4(x,y))). It is straightforward to check that 7 is
invertible. In Figure 4.1 we see this transformation.

Let Z be the collection of Borel sets on I. If Ay is the 2-dimensional
Lebesgue measure, then \y(I) = 78 — 463 = A\(R)/3?. Define a measure ¥
on (I,Z) by setting 0(E) = (v o ¢)(E), for all E € Z. Then ¢ is measure
preserving and the systems (R, B, u, T) and (I,Z,7,7T) are isomorphic. No-
tice that 7 is the normalized 2-dimensional Lebesgue measure on (I,Z) and
that the projection of 7 on the first coordinate gives p again. The following
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28 28 :
2 T - 2
2/B* = 38
= 2B}

0 /B 0 s 1 B2

Fig. 4.1. The transformation T maps the regions on the left to the regions on the right.

lemma is now enough to show that (I,Z,7, ’j’) is a version of the natural
extension of ([0,2),B([0,2)),u,T).

Lemma 4.1. The o-algebras T and \/2", T"7~*(B([0,2))) are equal.

Proof. It is easy to see that \/°° 777~ (B([0,2))) C Z. For the other
inclusion, notice that the direct products of full fundamental intervals con-
tained in

(@

([0’2) X IO) U ([Oanill) X I(2,n))7

n=1

generate the restriction of Z to this set. If A(by...b,_1) € A is full
in [0, %), then the set 2 + A(bg...b,—_1) is a subset of [2,23). So the di-
rect products of full fundamental intervals in [0,3) and sets of the form
2+ A(bg...by—1) contained in Uzo:l([O,T"_lﬂ—lg) X I(3.)), generate the
restriction of Z to this set. Since 7 is isomorphic to 7, the fact that

zc\/ T (B([0,2)))

n=0
now can be proven in a way similar to the proof of Lemma 3.1. O
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AN EQUIVARIANT TIETZE EXTENSION THEOREM FOR
PROPER ACTIONS OF LOCALLY COMPACT GROUPS*

AASA FERAGEN

Department of Mathematics and Statistics
University of Helsinki
Finland

The classical Tietze extension theorem asserts that any continuous map f: A —
R™ from a closed subset A of a normal space X admits a continuous extension
F': X — R™. The Tietze-Gleason theorem is an equivariant version of the same
theorem for spaces with actions of compact groups, proved by A. Gleason in
the 1950s. Here we prove the following version of the theorem for proper actions
of locally compact groups: let G be a locally compact group acting properly on
a completely normal space X such that X/G is paracompact, and let A be a
closed G-invariant subset of X. Suppose p: G — GL(n,R) is a representation;
now any continuous G-equivariant map f: A — R™(p) admits a continuous
G-equivariant extension F': X — R™(p).

Keywords: Proper actions; equivariant extension; Tietze.

1. Introduction

The Tietze extension theorem is one of the most basic, and perhaps the
most well-known, continuous extension theorems. An equivariant version
of it for compact groups was proven by A. Gleason in the 1950s [3], using
the Haar integral to “average” over the group. The same technique does
not work for non-compact groups since the Haar integral does not generally
converge over non-compact groups. However, for proper actions of locally
compact groups, we can use slices to pass from a solution for a compact
subgroup on a slice, to a solution for the whole group on the corresponding
tubular neighborhood.

*The research leading to this article was financed by Helsingin Yliopiston Tiedesdatio
and the Magnus Ehrnrooth Foundation.
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2. Prerequisites

Throughout the article, we define locally compact spaces to be Hausdorff.

Let G be a locally compact topological group, and let X be a topological
space. An action of G on X is a continuous map ®: G x X — X such that
®(e,z) = x for all z € X, where e is the neutral element of the group, and
such that ®(¢’, ®(g,x)) = ®(¢'g,x). We usually denote ®(g,x) = gz.

A topological space with a G-action on it is abbreviated as a G-space,
and a subset A C X is called a G-subset if GA = A. Similarly we say that a
covering of a G-space is a G-covering if consists of G-sets, and a refinement
by G-sets called a G-refinement.

We reserve the word map for continuous mappings. A map f: X — Y
between G-spaces X and Y is G-equivariant if f(gz) = gf(z) forall g € G
and x € X, and for short, such maps are called G-maps.

Two subsets A and B of a topological space X are said to be separated in
case ANB = () = AN B. A topological space X is completely normal if any
two separated subsets A and B of X are contained in disjoint neighborhoods
V4 and Vg. A topological space X is completely normal if and only if any
subspace of X is normal [4, Theorem IL.5.1].

The action of G on a completely regular space X is a Cartan action if,
for any « € X, there exists a neighborhood V of x in X such that the set
{g € G|gV NV # (I} is relatively compact in G. The action is proper if for
any pair of points z,y € X we can find neighborhoods V,, and Vj, of x and
y respectively, such that the set {g € G|gV, NV, # 0} is relatively compact
in G.

Obviously, any proper action is a Cartan action.

Let H be a closed subgroup of G. A subset S of a G-space X is an
H-slice if GS is open in X and there exists a G-map f: GS — G/H such
that S = f~(eH).

Lemma 2.1. Suppose that S C X is an H-slice. Then

i) gS NS # 0 implies that g € H, and
it) S is closed.

Proof. To prove i), suppose that ¢S NS # 0, and let f: GS — G/H
be such that S = f~1(eH). Then for some s € S, also gs € S and thus
gH =g(eH) =gf(s) = f(gs) € f(S) = eH. But this implies g € H.
Claim ii) is trivial since f is continuous and eH is a closed point in
G/H, since H is closed in G. m|
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Given a closed subgroup H of G and an H-space S, there is an action
of H on the product G x S given by h(g,s) = (gh~!, hs). We denote by
G x g S the quotient space (G x S)/H, which is called the twisted product
of G and S with respect to H. There is an action of G on G x g S defined
by the formula g[g, s] = [gg, s]-

Proposition 2.1. Let H be a closed subgroup of G and let S be an H-
inwvariant subset of X. Then S is an H-slice if and only if GS is an open
subset of X and

GxgS=~qgGS.
Proof. See [1, Proposition 3.2]. |

We say that the open set GS is a tubular neighborhood (of x) if S is an
H-slice (aslice at x). A tubular covering of a G-space X is a covering of X
by tubular neighborhoods.

Lemma 2.2. Suppose that x € X, that GS is a tubular neighborhood of x
in G, and that U is a G-invariant open neighborhood of x in GS. Then U
can be given the structure of a tubular neighborhood as well.

Proof. Let f: GS — G/H be a G-map such that f~1(eH) = S, then
fl: U — G/H is a G-map and f|"!(eH) = SNU =: §', making S’ a slice.
Then U = G5’ is the corresponding tubular neighborhood. O

There are many theorems on existence of tubular coverings, the original
ones due to Palais; however, we shall use a very general version by H. Biller.

Theorem 2.1. [2, Theorem 2.5] A continuous action of a locally compact
group G on a completely reqular space X is a Cartan action if and only if
X admits a tubular covering, where each tubular neighborhood corresponds
to an H-slice for some compact subgroup H of G.

3. The equivariant Tietze extension theorem

Theorem 3.1. Let G be a locally compact group and let X be a completely
normal proper G-space such that X/G is paracompact. Let A C X be a
closed G-subset. Let p: G — GL(n,R) be a representation and let f: A —
R™(p) be a G-map. Then there exists a continuous G-extension F: X —
R™(p).
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Before proving the theorem, we need a couple of short lemmas.

Lemma 3.1. Let G be a locally compact group, let X and Y be G-spaces,
let S be an H-slice for a compact subgroup H of G, and let V' be an H-
invariant subset of S. Let f: V — Y be an H-map. Then there exists a
unique continuous G-map f: GV — 'Y which extends f.

Proof. The only possible G-function GV — Y which extends f is f defined
by
flgv)=gf(v) Vg€ G, veV.

We show that the function f is well-defined. If gv = ¢/v’ for some ¢,¢' € G
and v,v" € V C S then v = g~1¢g/v/, implying S N (g71¢')S # 0. Since
S is an H-slice, we get by Lemma 2.1 that ¢g~'¢’ € H. Since f is an H-
map, then f(v) = f(g~'g'v") = g~ ¢/ f(v') giving gf(v) = ¢’ f(v'). Hence
f(gv) = f(g'v") and f is well defined.

Equivariance is clear from the definition, and f is continuous since the
diagram below commutes and the left vertical projection is a quotient map
because it is the projection G x V — (G x V))/H ~ GV to the orbit space
of a compact group action.

(9.v) GxV 2L gxy
\L quotient \L l action
gv GV —f> Y |

Lemma 3.2. Suppose that X admits a global slice; then the statement of
Theorem 3.1 holds for X.

Proof. Assume that X = GS where S is an H-slice for a compact subgroup
H of G. By [3] the map

FiANS =R (o)),
where p|: H — GL(n,R), admits an H-equivariant extension
F: 8 —R"(p)),
and by Lemma 3.1 there exists a G-equivariant continuous extension
F:GS — R"(p)

given by F(gs) = gF(s), where we easily see that F|A = f. |
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Proof of Theorem 3.1. By Theorem 2.1, any Cartan G-space has a tubu-
lar covering; hence, in particular, our G-space X admits a tubular covering
{GS;}icr where each S; is an H;-slice for some compact subgroup H; of G.

Since X/G is paracompact, the covering {GS;};cr has a locally fi-
nite open G-refinement {U]’-}je 7. Because Hausdorff paracompact spaces
are normal and {U]’-}je J is, in particular, point-finite, we may find a G-
refinement {U; }jes of {U]};es such that U; C U7 for all j € J by [4, Chap-
ter II, Thm 4.2]. (U; = clxU;.) Now the coverings {U;},cs and {U;};es
are locally finite as well.

Well-order the index set J, and let 7 € J. Suppose that for all & < j we
have G-extensions Fy: Uy — Y of f|ANUy, such that all F}, agree on their
common domain. We claim that there exists a G-extension F;: U; — Y of
flIANU;, which agrees with every Fy, k < j, on their common domain.

The maps Fy, for k < j, combine to a function Fy: Uk<; U, — Y, given
by F;|Uy = Fj. This function F} is continuous because the family {Uy }r<;
is locally finite. For the same reason, the union |J, . j Up U A is a closed
subset of X.

By Lemma 3.2 the map F;|U; N (Uk<; Up U A) has a G-extension
F;: U; = Y; obviously F; agrees with each Fy (k < j) on their common
domain.

Hence, by transfinite construction, there exist, for every j € J, a G-
extension F}: Uj — Y of fl[AN Uj such that F; agrees with any Fj, on their
common domain.

Using the above we obtain a G-map F': X — Y by setting

F(z) = F;(z) when z € Uj;.

The map is well-defined, and it is continuous by local finiteness and closed-
ness of the Uj. Thus F' is the wanted extension. O
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ON UNIFORM TANGENTIAL APPROXIMATION BY
LACUNARY POWER SERIES
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Let 2 C C be a simple connected domain with 0 € Q, E C 2 a set of tangential
approximation with interior points. We consider the following problem: under
what assumptions about E can each function continuous on E and holomorphic
in E° be tangential approximated on F by functions holomorphic in  and
having power series at 0 with caps of density 0. Some sufficient conditions are
obtained.

Keywords: Uniform tangential approximation; lacunary approximation.

Notation and Introduction

For an arbitrary set £ C C we denote by E°,0E, E and E° the interior,
boundary, closure and complement of FE in C, respectively. Let C(E) be
the set of all functions continuous on E and A(F) the subspace of C(E)
consisting of the functions holomorphic in E°. Finally, for a domain 2 C C
we denote by H(Q) the set of all functions holomorphic in €.

Let Q C C be a domain and E C Q a relatively closed subset of €.
The problem of describing the relatively closed sets £ C € of uniform
and tangential approximation by functions holomorphic in €2 are studied in
papers [1], [2] and [10], respectively.

In connection with this it is natural to consider the following question:
Under what assumptions on E and a subsequence () of natural numbers can
each function f € A(FE) be tangential approximated by functions g € H(2)
having expansions

o0
g(z) = Zgnz” with g, =0 for n¢ QU{0}?
n00

The paper consists of two parts. In Section 1 we define the sets of uni-
form and tangential approximation and give their descriptions using the
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corresponding results from [1], [2] and [10]. In Section 2 we consider lacu-
nary approximation; more precisely, Section 2.1 is about a result on uniform
approximation by polynomials with caps of density 0 (more details in [8]),
in Section 2.2 we prove an auxiliary proposition and in Section 2.3 we give
and prove the main result (more details in [6]).

1. Uniform and tangential approximation by holomorphic
functions

Let 2 C C be a domain and E C 2 a relatively closed subset in €).
Definition 1.1.

(1) E is called a set of uniform approximation, if for any f € A(FE) and
any € > 0 there exists an g € H(2) such that

If(z) —g(z)|<e, z€E.

(2) E is called a set of tangential approximation, if for any f € A(FE) and
any € € C(E),e > 0, there exists an g € H(2) such that

|f(2) —g(z)| <e(z), z€E.
Remark 1.1.

(1) Any set of tangential approximation is a set of uniform approximation.
(2) Let E C Q be compact. Then F is a set of tangential approximation if
and only if E is a set of uniform approximation.
(3) Without loss of generality by tangential approximation we can assume
that
lim e(z) = 0.

z—C

cean
(4) Let E° = (. Then F is a set of tangential approximation if and only if

FE is a set of uniform approximation.

The assertions i)-iii) are trivial. To show iv) let us first prove the fol-
lowing Lemma ( [4], Ch. IV, 3, Lemma 3).

Lemma 1.1. Suppose E C Q) is a set of uniform approzimation and ¢ €
A(E). Then for every function f € A(E) and for e(z) = |e¥®)| there is an
g € H(Q) such that

If(2) —g(2)| < e(z), z€E.
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Proof. There is an § € H(2) such that

lW(z) —g(2)| <1, z€E.
Let h(z) := €9*)~1 and consider the function % € A(E). There is an § €

H(S) such that
(§)@-ie)

Set g(z) := h(2)g(2). It follows that

[£(2) = 9(2)| < |h(2)] = exp{Reg(z) — 1}
< exp{Re¢(2)} =[], 2 € E,

which completes the proof. O

Let now £ C Q,E° = (), be a set of uniform approximation and € €
C(FE),e > 0. Then loge € A(E) and by Lemma 1.1 for any f € A(E) there
is an g € H(Q) such that

1/(2) = g(2)] < €5 = (2).

This proves iv) of Remark 1.1. O

According to Remark 1.1 we see a difference between two kinds of ap-
proximation only in the case if F is an “exact relative” closed subset of €2
and e(z) — 0 as z — ¢ € O

The first example of a set of tangential approximation: R is a
set of tangential approximation in C (see [3]).

The next point of this section is to describe the sets of uni-
form/tangential approximation.

We denote the one-point compactification of Q by Q* = QN {oo}.

Definition 1.2.

(1) (K-condition) We say that E C € satisfies the K-condition, if for
any neighbourhood U of oo in € there is a neighbourhood U C U of
oo such that any z € E°N U can be connected to oo by an arc v, in
EnU.

(2) (A-condition) We say that E C () satisfies the A-condition, if for any
neighbourhood U of oo in © there is a neighbourhood U € U of oo such
that no component of E° meets both U and Q* \ U.

Theorem 1.1.

(1) (Arakelian [1] and [2]) A (relative) closed subset E C Q is a set of
uniform approximation if and only if E satisfies the K -condition.
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(2) (Nersesian [10]) A (relative) closed subset E C Q is a set of tangen-
tial approximation if and only if E satisfies the K -condition and A-
condition.

The first result about the A-condition is given by P. Gauthier (see [5]).

2. Lacunary approximation
2.1. Uniform approximation by lacunary polynomsials

The classical result of Mergelyan, proved in 1951, solved the problem about
approximation by polynomials: the system of functions {2"}°2 ; is complete
in A(E) if and only if E° is connected (see [5], Ch. II, 2, Theorem 1). The
natural question is: under what assumptions about compact FE and subse-
quence {p, 1524, po = 0, the system of powers in Theorem of Mergelyan can
be replaced by the system of functions {zP»}22 ; i.e., when any function
f € A(FE) can be uniformly approximated on F by polynomials

m
p(z) = Z Cn 2P ?
n=0

It is obvious that if {p,}52; # N the position of 0 with respect to the
interior of F is essentiali.e., in general the condition 0 ¢ E° is necessary.

The case of 0 € E° is studied by J. Korevaar in [7]. Here we assume that
0¢ E°.

Theorem 2.1. (Martirosian [8]) Let E C C be a compact and {p,}5; C N
a subsequence with the following properties

(1) il) E° is connected;
i2) 0 ¢ E°;
i3) 0 ¢ OF, forn = 1,2,..., where {E,}22, are the components of
E°;

(2) lim 2 = 1.

Then the system of functions
{z"" }nlo:po =0, (1)
is complete in A(E).

Concerning the strength of the assumptions note that il) and i2) are
necessary if we (in general) consider lacunary approximation by polynomi-
als. The next theorem shows the essentiality of the condition i3).
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Theorem 2.2. [8] Let {p,}52; C N be a subsequence such that

1

IR
e dn
with {gn 1521 := N\{pn }52,. Then there is a compact E C C with connected
complement E¢,0 € OE, E = E° and such that the system (1) is no complete
in A(E).

Since a subsequence {g,}>2 ; can satisfy the both conditions

o0

n 1
lim — = 0, — =0
S Vs
(for example g, = n[logn]), from Theorem 2.2 (in general) follows the

condition i3).
Finally, we give an example to show the necessity of the condition ii).

Example 2.1. Set
E = (U Eq> J{0} with E,={2eC:2727=1}.
q=2

It is not difficult to prove that for any §,0 < § < 1, there is a subsequence
{pn}22; C N with density ¢ and such that the system {zP~}°2; U{1} is no
complete in A(E). More details see in [§].

2.2. Awuxiliary Proposition
We set
D,:={z:|z| <r} for 0<r<oo; Dgy=0.

Let p be a complex Borel measure on the compact E C C; by |u| we denote
its variation. We denote by G the Cauchy transform

G(t):/dL(z) teT\E.

t—z’
B
We have G € H(C\ E) and G(00) = 0.

Lemma 2.1. Let E C C be a compact set with connected complement E€,
D, the mazimal disk containing in E°, u a complex Borel measure on OF
and let G be its Cauchy transform. If there exists a function G1 € H(C\D,.)
such that

G(t) = Gi(t) for teT\E, (2)
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then the equation (2) holds for every t € OE \ D,. for which converges the

integral
/dlu\(Z)
t—z|
OF

In the following lemma E C C is a compact set with connected com-
plement E€, D, the maximal disk contained in E°, ¢ any component of the
interior E° for which d¢ N dD, = () and pu a complex Borel measure con-
centrated on OF. Let G be the Cauchy transform of y. We decompose p
into a sum of measures p = h. + 0., where h. is absolutely continuous and
0. singular with respect to every harmonic measure A\, defined on OF for
a € c.

Lemma 2.2. Suppose that the Cauchy transform of p satisfies (2) where
G1 € H(C\ D,). Then

do. —
/ t“ @) _ i) for te(@\E)Ue (3)
—z
OE
We say that a compact set E C C satisfies condition (C) if
(1) the complement E€ of E is connected;
(2) 0 belongs to the interior E° of E. By E; we denote the components of
E° and assume that 0 € Ey;
(3) OF; is a smooth curve and E; N D, = () for i = 2,3,..., where D, is
the maximal disk contained in E;

Proposition 2.1. Let {g,}32, = @ C N be a subsequence with density
1 and a compact set E C C satisfies (C). Then every function f € A(E)
having a representation

)= faz", fa=0 for n¢QU{0} (4)
n=0
can be approximated uniformly on E by polynomials of the form
p(Z) :anzny pn =0 for TL%QU{O}
n=0

Proof. Let for an arbitrary complex Borel measure pu on OF the
relations

/zq"'du(z) =0 for n=0,1,...(qo=0) (5)
OF
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are satisfied. By virtue of Hahn-Banach and Riesz theorems it is sufficient to
prove that any function f € A(FE) possessing a representation (4) satisfies
the condition

[ fGrautz) =0, (6)
OFE
For each fixed t € E° with [t| sufficiently large the power series

i(i)n:1i§

n=0

converges uniformly for z € OF. Integrating this series with respect to pu
and using (5) we get

G(t)y=> tr! / 2Prdp(z),

(o)

where {p,}52; = N\ Q. Since G € H(C'\ E), E¢ is connected and {p,, }>° ,
has zero density, by Fabry’s theorem the series of powers of % in the above
equation defines a function G; € H(C'\ D,.). Consequently by the unique-
ness theorem for analytic functions we obtain (2).

Now we decompose pt = hg, + 0g,, where hg, is absolutely continuous
and op, is singular with respect to any harmonic measure on JF; we take
a € F;. By Lemma 2.2 we have

/z"dhEl(z):O for n=0,1,...
OF
and
d _
/%S):Gl(t) for teC\ E,t€F.
OF

Similarly, g, = hg, + 0g,, where hg, is absolutely continuous and og,
is singular with respect to any harmonic measure on OF; we take a € Fj.
Again by Lemma 2.2 we have

/z"dhEz(z)zO for n=0,1,...
OF
and
/M:Gl(t) for teC\ E,t€ E;UE;,.

t—=z
OF
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Continuing this process we finally obtain:
o0
H= Z hEk + o, (7)
k=1

where the series of measures converges in the total variation norm, and we
have

/z"dhEk(z)zo for n=0,1,...,k=1,2,... (8)
OF
and
W) _ 1) for teT\Bte|E 9)
PR = 1 or s k- (
OF k=1

By Mergelyan’s Theorem it follows from (8) that

/f(z)dhEk(z):O for k=1,2,.... (10)
OFE

Further from (5) and (8) we find
/zq”da(z) =0 for n=0,1,....
OF

By virtue of Lemma 2.1, Lemmas 1,4 from [8] and (9) it follows that o is
concentrated on OF;. Therefore

/zq"da(z)zo for n=0,1,....
dE,

However, since JF; is a smooth curve and the sequence @ is of density 1,
applying the result of Korevaar and Dixon [7] we obtain:

/ f(z)do(z) = 0.
Gyl

Now (6) follows from (7) and (10). This completes the proof of the
proposition. O
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2.3. The main result

Theorem 2.3. Harutyunyan and Martirosian [6] Let Q = {g,} C N be

a subsequence with density 1, lim qﬂ =1, Q C C be a simply connected
n—oo 4n

domain with 0 € Q and let E C Q be a set of tangential approximation,
satisfying the conditions:

(1) 0 ¢ E° and 0 ¢ OF,, forn =1,2,..., where {E,}>2 are the compo-
nents of E°;

(2) for every compact F C §) the set of indices n for which F N E, # 0 is
finite.

Then for arbitrary functions f € A(E) and € € C(E),e > 0, there exists a
g € H(Q) having an expansion

9(z) = gnz", gn=0 for n¢QU{0} (11)
n=0
and such that
|f(z) —g(2)| <e(z), z€E. (12)

Proof. We denote by p(z,09Q) the spherical distance between z € Q
and 90 and

Vo(09):={z€Q:p(2,00) <r}, 0<r<oo.

As noted in Section 1, without loss of generality we may suppose that the
function e depends solely on p(z, 9€2) and decreases to zero as p(z, 9) — 0.
Since E is a set of tangential approximation, to each r» € (0, p(0,09))
corresponds an r* € (0,r) such that any point z € E° N V,«(9Q) can be
joined to 092 by a continuous curve v, C E°N V,(0N). From ii) it follows
that no component of the set E° intersects both curves o, := {z € Q :
p(z,0Q) = r} and ap == {z € Q: p(z,0Q) = r*}. For r > 0 we denote
A, = Q\ V,.(0Q) and by B, we denote the set of points in E° N A which
can be joined to 9 by continuous curves hitting A. We set H, := A, UB,
and denote by E; »,i =1,2,...,s(r), all components of the set E° for which
E; N H, # (; by ii) they are finite in number. Note that the complement
QS of

s(r)

SZT = li}wL‘J L_J Z?Lr
i=1

is connected (see [5]).
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We choose a sequence of positive numbers {r,}52, (ro < p(0,09)) de-
creasing to zero and such that r, = (r}_;)*,n=1,2,.... We set Q,, := .
and

Fo:=ENQy, F,: =0 1UFENQ,\Q-1)) for n=1,2,....

Evidently, F;,, C C is compact and F) connected; the latter follows from
the equality

Fi=(Qp (NEUQ, n=12....
We consider the set
ﬁm(gn\gn—l)- (13)

Applying the reasoning used in [5] we obtain that each component K of
the interior of (13) is a component of E° contained in €2,,; the intersection
K NQ,_; contains not more than one point; the components K are finite in
number. The components of the interior of (13) whose closures hit €,,_; we
denote by Kj,,7 =1,2,...,1(n), and set p; , := K, N Q1. Let us show
that p;, ¢ 0D,, where D, is the aximal disk contained in €,,_;. Indeed,
on one hand from the definition of €,,_1; we have ijn NH. 1 =10, =

e s(rn—1)
1,2,...,1(n), and on the other, K, U Eir, .| =0 It remain to
i=1

note that the definition of ,,_; and the condition ii) imply

$(rn—1)

oo, cH,_\J| U Eir._,
i=1

Let us construct by induction a suitable sequence {p; 52 of polynomials
of the form

p(z) = anz”, pn=0 for né¢QuU{0}. (14)
n=0

We denote ¢, := min{p(z,00Q) : z € Q,,}. We start by setting fo(z) = f(2)
for z € Fy. By Theorem 2.1 there is a polynomial pg of the form (14)
satisfying

1o(2) ~ po(2)] < S92,

Suppose that polynomials p; of the form (14) have been constructed for

z € Fp.

7=0,1,...,n — 1, satisfying

i) for e EN(Q\ Q1)
1£(2) = pi(2)| < $ 27 S
s for ze€ ENoQ;
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and

£(tj+2)
|pj(z> _pj71(2>| < 2]'-]+5 , Z€ ijl-

Here we set Q_1 = () and p_; = po.
Now we define the polynomial p,,. First note that for the points p; ,,j =

1,2,...,1(n), there exists a simply connected domain G,,_1(G,—1 C 2) with
smooth boundary 0G,,_1, such that

Qn—l C Gn—l U {pj,n : ] = 17 27 ceey l(n)}a

Gr1 N (E N (Qn \ Q,H)) = {pjn i =12,...,1(n)}

and p; ., ¢ 0D,, where D, is the maximal disk contained in G,,_1. We set
fn(2) = pn_1(2) for z € G,,_1. Applying the method used in [5] we extend
the function f, on ©,,\Q,_1 in a way to have f,, € A(G,U(EN(Q,\Q-1)))
and

Uil for z€ EN (2 \ Q1)

2)—=JInl?)]| <
|f(2) = fu(2)] {s(;sr;) for ze€ ENoQ,

By Proposition 2.1 there is a polynomial p,, of the form (14) satisfying

Ful2) —pal@)] < B2l G U (B0 (00 20)).

Hence it follows

at))  for 2 e BN (Q, \ Qe
) —pala) < { 20 @A) )
siaas  for ze€ ENOQ,
and
e(t,
pul2) ~pa ()] < S e (16)

The desired sequence of polynomials {p,}52 is constructed.

oo
n=0

It follows from (16) that the sequence {p,, converges locally uniform
in © to some function g € H(Q2). Evidently in a neighbourhood of the origin
g has the representation (11). If z € E then z € Q,, \ Q,,,—1 for some m.
For every n > m we have
() =g < 1F(2) = P+ Y [pi(2) = pjma(2)] + [pal2) — 9(2)].
Jj=m+1

Therefore taking into account (15), (16) and choosing n sufficiently large
we obtain (12). This completes the proof of theorem. O
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This paper aims at giving an introduction on space-time (ST) coding and on
how cyclic division algebras (CDAs) fit into the picture. First, we describe the
typical radio transmission model and then proceed to the notion of space-time
coding and further on to multiple-input multiple-output (MIMO) channels.
Cyclic division algebras provide us with a useful tool for designing codes for
MIMO channels. The theory of their noncommutative orders allows us to build
denser lattices, i.e. to pack more codewords in a given signal space. Finally,
we establish a congenial connection between the density and the discriminant
of an order. The theory is supported by illuminating examples. The mate-
rial presented here is mainly reviewed from our (Vehkalahti-Hollanti-Lahtonen-
Ranto) recent submission “On the densest MIMO lattices from cyclic division
algebras” [1].

Keywords: Cyclic division algebras (CDAs); dense lattices; discriminants; max-
imal orders; multiple-input multiple-output (MIMO) channels; nonvanishing
determinant (NVD).

1. Space-time coding: Idea and design criteria

Multiple-antenna wireless communication promises very high data rates, in
particular when we have perfect channel state information (CSI) available
at the receiver. In [2] the design criteria for such systems were developed,
and further on the evolution of space-time (ST) codes took two directions:
trellis codes and block codes. Our work concentrates on the latter branch.

Radio signals are typically modeled as vectors x = (z1,...,z,) with
either complex or real components. In a classical radio channel the signals
are spread in time only, and a distorted version y = (y1, ..., yn) = hx +n of
the transmitted vector x is received. Here h is the channel coefficient and
n is the noise vector, both modeled as random variables subject to some
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statistics. Occasionally, h becomes very small and problems are met at the
receiving end.

In order to fight fading, the notion of space-time coding was brought into
the playground, and the very first space-time code called Alamouti code (see
Example 1) was derived using the ring of Hamiltonian quaternions. Space-
time coding seeks to add diversity by spreading the signal also in space, i.e.
the transmission happens simultaneously from several spatially separated
antennas. Signals (= codewords) now become matrices X = (X7 -+ X,,)7
so that the ¢th antenna transmits the ith row X;. The columns represent
time; the jth column is transmitted in the jth time slot. The received signal
is a linear combination y = (hq, ..., hx)X + n of the signals transmitted by
the various antennas, each multiplied by its own channel coefficient h;.
Assuming that the channel coefficients are independent random variables,
it is very rare that they would all be small simultaneously.

Basic definitions and notions A space-time (ST) code C is a finite
set of complex matrices of the same type. In our work, we only consider
matrices coming from a lattice, as the discrete structure of a lattice will
help us to meet the code design criteria presented below.

A lattice for us is a discrete finitely generated free abelian subgroup L
of a real or complex finite dimensional vector space V', called the ambi-
ent space. In the space-time setting a natural ambient space is the space
M., (C) of complex n x n matrices. In order to transmit a maximal possible
amount of information, we only consider full rank lattices that have a basis
T1,%2,...,To,2 consisting of matrices that are linearly independent over
the field of real numbers. It is well known that the measure, or hypervol-
ume, m(L) of the fundamental parallelotope of the lattice equals the square
root of the determinant of the Gram matriz G(L) = (%tr(wlaﬁf))

where # indicates the complex conjugate transpose of a matrix.

From the pairwise error probability (PEP) point of view [3], the per-
formance of a space-time code is dependent on two parameters: diversity
gain and coding gain. Diversity gain is the minimum of the rank of the
difference matrix X — X’ taken over all distinct code matrices X, X’ € C,
also called the rank of the code C. For non-zero square matrices, being full-
rank coincides with being invertible. When C is full-rank, the coding gain
is proportional to the determinant of the matrix (X — X’)(X — X")#. The
minimum of this determinant taken over all distinct code matrices is called
the minimum determinant of the code C. If it is bounded away from zero
even when the code size increases unlimitedly, the ST code is said to have
the nonvanishing determinant (NVD) property.

1<i,j<2n?’
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One has to note that the determinant criterion is asymptotic in nature.
For practical signal-to-noise ratios (SNR) also individual singular values
play a role. Thus, simulations are necessary when deciding the better code.

The energy required for transmitting a certain code matrix equals the
Frobenius norm of the matrix. Therefore if one wishes to save energy, dense
lattices should be searched for. The natural task henceforth is to minimize
m(L) for a fixed determinant. E.g. to compare different lattices, we nor-
malize them in such a way that the minimum determinant of each lattice is
one, and only then compute m(L). The smaller the measure the better the
lattice for ST-coding purposes. Alternatively, we may compare the mini-
mum determinants of different lattices after normalizing them all to have
a unit measure. Once we have fixed the infinite lattice to be used, then
in order to minimize the transmission energy, the finite code is formed by
taking the desired number of matrices with the smallest Frobenius norms.

Forming such dense lattices with the NVD property is surprisingly dif-
ficult. It has turned out that tools from class field theory are needed in
order to find the densest lattices. By using cyclic division algebras and
their maximal orders, one has a complete control over the density of the
resulting lattices.

Example 1. The Hamiltonian quaternions form a neat set for illustrating
the above. Let 2 = j2 = k? = —1, and ij = k. If a,b, ¢, and d range over
R, we define the set H of Hamiltonian quaternions as the one containing
the elements ¢ = a + bi + ¢j + dk. This set becomes a ring by extending
the above multiplication rules linearly. It might be helpful for the reader
to note that H ~ C & Cj. The conjugate quaternion § = a — bi — ¢j — dk
tells us that ¢g = a® + b? + ¢ + d?> € R\ {0}, whenever g # 0. Thus, the
quaternions form a division algebra.

The quaternions can be conveniently represented either by complex 2 x 2-
matrices or by real 4 x 4-matrices with respect to a suitable basis. Write
now z; = a + bi and zo = ¢+ di. The left regular representation of the
element ¢ = z; + jzo with respect to the basis {1,j} gives us (with the

ok
abuse of notation) ¢ = (21 % ) .

z2 2]

The aforementioned Alamouti code is obtained by selecting complex in-
teger vectors (z1, z2) and mapping them to words of 2-antenna ST-code as
above. The rank criterion is automatically met, and the minimum determi-

nant of ¢ is the squared minimum Euclidean distance.

In the above example, two gaussian symbols z; and 29 are transmitted
in two time slots, i.e. the code rate is one (symbols per time slot). Sin-
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gle antenna receiver can only deal with one complex information symbol
(e.g. a gaussian integer) per unit of time, so in order to increase the code
rate one needs to use more than one receiving antenna. In this multiple-
input multiple-output (MIMO) setting the received signal becomes a ma-
trix Yo, x¢ = Hp, xn, Xn,x¢ + Nn,.x¢, where ng, n,, and ¢ denote the num-
ber of transmitting antennas, receiving antennas, and the block length
respectively.

2. Cyeclic division algebras and orders

The NVD property can be achieved by using suitable orders of a cyclic
division algebra. It has been shown that CDA based square ST codes with
the NVD property achieve the diversity-multiplexing tradeoff (DMT) intro-
duced by Zheng and Tse. This result raised an enormous amount of interest
in cyclic division algebras. The DMT (again asymptotically) describes the
maximum amount of information that can be transmitted at a given error
rate, or similarly it can be thought of as the best possible performance a
fixed size code can have. Do note that DMT is defined as a function of
SNR, i.e. a family of codes (one for each SNR) is considered, not just a
single code.

The theory of cyclic algebras and their representations as matrices are
thoroughly considered in [4] and [5]. We are only going to recapitulate the
essential facts here. A good introduction to class field theory is provided
in [6].

In the following, we consider number field extensions E/F, where F
denotes the base field and F* (resp. E*) denotes the set of the non-zero
elements of F (resp. E). The rings of algebraic integers are denoted by
Op and Of respectively. Let E/F be a cyclic field extension of degree n
with Galois group Gal(E/F) = (o), where o is the generator of the cyclic
group. Let A = (E/F,0,7) be the corresponding cyclic algebra of degree n
(n is also called the index of A and in practice it determines the number
of transmitters), that is A = E®uE @ u’E @ --- @ u" 'E, with u € A
such that eu = uo(e) for all e € F and u™ = v € F*. An element = =
ro+uxry+---+u""tz, 1 € Ahas the following left regular representation

zo Y0 (Tn—1) Y02 (Tn_2) -+ Yo (z1)

1 o(xo) Y0 (Tno1) 0" (22)

as a matrix A = z2 o) o (o) o' (x3)
Tpno1 0(¥p_2) X (Tn_3) -+ " (z0)
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We often identify an element x with its representation A. All algebras
considered here are finite dimensional associative algebras over a field.

Definition 2.1. An algebra A is called simple if it has no nontrivial
ideals. An F-algebra A is central if its center Z(A) = {a € Alad’ =
aaVa € A} =F.

Definition 2.2. The determinant (resp. trace) of the matrix A is called
the reduced norm (resp. reduced trace) of an element a € A and is denoted

by nr(a) (resp. tr(a)).

The next proposition tells us when an algebra is a division algebra.
Having a division algebra is crucial in order to satisfy the rank criterion.

Proposition 2.1. ([7, Theorem 11.12, p. 184]) The algebra A=(E/F,0,~)
of degree n is a division algebra if and only if the smallest factort € Z, of
n such that v' is the norm of some element in E* is n.

We are now ready to present some of the basic definitions and results
from the theory of maximal orders. The general theory of maximal orders
can be found in [8].

Let R denote a Noetherian integral domain with a quotient field F,
and let A be a finite dimensional F-algebra. Due to practical reasons, R
is usually chosen to be either Z[i] or Z[w] (w® = 1), with the respective
quotient field Q(7) or Q(w).

Definition 2.3. An R-orderin the F-algebra A is a subring A of A, having
the same identity element as A, and such that A is a finitely generated
module over R and generates A as a linear space over F.

As usual, an R-order in A is said to be mazimal, if it is not properly
contained in any other R-order in A. If the integral closure (cf. [8]) R of R
in A happens to be an R-order in A, then R is automatically the unique
maximal R-order in A.

Proposition 2.2. ([8, Theorem 10.1, p. 125]) Let A be an R-order in A.
For each a € A we have nr(a) € R, tr(a) € R. Especially, if R is the ring
of integers or an imaginary quadratic number field, then nr(a) > 1, and
hence the NVD property is achieved.

Next we describe an order from where the elements are drawn in a
typical CDA based MIMO space-time block code. Some optimization to
this can be done e.g. with the aid of ideals as in [9] or by using a maximal
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order [1]. Already in [10, 11] maximal orders were successfully used for
designing single receiver (MISO) space-time codes.

Definition 2.4. In any cyclic algebra where the element v € F** determin-
ing the 2-cocycle in H?(E/F) (cf. [5]) happens to be an algebraic integer,
we define the following natural order Ay = Op @uOr @ - - Gu" 0. It is
easy to show that the element 7 can always be chosen (up to isomorphism
of the resulting algebras) to be an algebraic integer.

Later on Theorems 2.1 and 2.3 will show us that replacing a natural
order by a maximal one will result in a denser lattice with no penalty in
the minimum determinant. Hence, using a maximal order is desirable.

Hereafter, F' will be an algebraic number field and R a Dedekind ring
with F' as a field of fractions.

Proposition 2.3. Let T be a subring of A containing R such that FT' = A,
and suppose that each a € T is integral over R. Then T' is an R-order in
A. Conversely, every R-order in A has these properties.

Corollary 2.1. Every R-order in A is contained in a mazimal R-order in
A. There exists at least one maximal R-order in A.

Proposition 2.4. Let A be a finite dimensional semisimple algebra over
F and A be a Z-order in A. Let O stand for the ring of algebraic integers
of F. Then T' = OpA is an Op-order containing A. As a consequence, a
mazimal Z-order in A is a mazimal Op-order as well.

Definition 2.5. Let m = dimp.A. The discriminant of the R-order A is the
ideal d(A/R) in R generated by the set {det(tr(ziz;)){_1 | (z1, ..., 7m) €
A™}. Tt is clear that if A C T then d(I'/R)|d(A/R). Moreover, in this case
A =T if and only if d(I'/R) = d(A/R). As maximal orders all share the
same discriminant, we can conclude that within a fixed algebra, maximal
orders have the smallest discriminant. We will call this the discriminant d 4
of the algebra A.

If R is a principal ideal domain, then d(A/R) = det(tr(c;c;))R, where
{c1,...,cm} is a basis of A over R. In this case, d(A/R) can be identified
with an element § € R, which generates the principal ideal d(A/R). Clearly,
[ is unique up to multiplication by a unit of R.

In [1], we proved the following convenient connection between the dis-
criminant of an order and the measure of the fundamental parallelotope
of the corresponding lattice. The result is somewhat unsurprising, as the
definition of the discriminant closely resembles that of the Gram matrix.
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Theorem 2.1. Assume that F' is an imaginary quadratic number field and
that 1 and 0 form a Z-basis of its ring of integers R. Assume further that
the order A is a free R-module (an assumption automatically satisfied, when
R is a principal ideal domain). Then the measure of the fundamental par-
allelotope equals m(A) = |36|"" |d(A/R)|.

In the respective cases F = Q(i) and F = Q(v/—3) we have 6§ = i and
0 = (=1 + v/—3)/2. Whence, the following two corollaries are immediate.

Corollary 2.2. Let F = Q(i), R = Z[i], and assume that A C (E/F,0,7)
is an R-order. Then the measure of the fundamental parallelotope equals

m(A) = |d(A/Z[i])]-

Corollary 2.3. Letw = (—1++/-3)/2, F = Q(w), R = Z[w], and assume
that A C (E/F,0,v) is an R-order. Then the measure of the fundamental
parallelotope equals m(A) = (v/3/2)™" |d(A/Z[w))].

3. The discriminant bound

In this section, we review some useful results from [1]. Again let F' be an
algebraic number field that is finite dimensional over Q, Op its ring of
integers, P a prime ideal of O and Fp the completion. In what follows we
discuss the size of ideals of Op. By this we mean that ideals are ordered by
the absolute values of their norms to Q, so e.g. in the case Op = Z[i] we
say that the prime ideal generated by 2 + ¢ is smaller than the prime ideal
generated by 3 as they have norms 5 and 9, respectively.

The following relatively deep result from class field theory is the key
for deriving the discriminant bound. Assume that the field F' is totally
complex. Then we have the fundamental exact sequence of Brauer groups
(see e.g. [8] or [6]) 0 — Br(F) — @Br(Fp) — Q/Z — 0.

Here, the first nontrivial map is obtained by mapping the similarity class
of a central division F-algebra D to a vector consisting of the similarity
classes of all the simple algebras Dp obtained from D by extending the
scalars from F' to Fp, where P ranges over all the prime ideals of Op.
Observe that Dp is not necessarily a division algebra, but by Wedderburn’s
theorem [5, p. 203] it can be written in the form Dp = M, . (Ap), where Ap
is a division algebra with a center Fp, and kp is a natural number called the
local capacity. The second nontrivial map of the fundamental exact sequence
is then simply the sum of the Hasse invariants of the division algebras Ap
representing elements of the Brauer groups Br(F p).
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This exact sequence tacitly contains the piece of information that for
all but finitely many primes P the resulting algebra Dp is actually in the
trivial similarity class of F 'p-algebras. In other words Dp is isomorphic to
a matrix algebra over Fp. More importantly, the sequence tells us that
the sum of the nontrivial Hasse invariants of any central division algebras
must be an integer. Furthermore, this is the only constraint for the Hasse
invariants, i.e. any combination of Hasse invariants (a/mp) such that only
finitely many of them are non-zero, and that they sum up to an integer,
is realized as a collection of the Hasse invariants of some central division
algebra D over F.

Let us now suppose that with a given number field F we would like to
produce a division algebra A of a given index n, having F' as its center
and the smallest possible discriminant. We proceed to show that while we
cannot give an explicit description of the algebra A in all the cases, we can
derive an explicit formula for its discriminant. For the proof, see [1].

Theorem 3.1. Assume that the field F is totally complex and that

Py, ..., P, are some prime ideals of Op. Assume further that a sequence
of rational numbers ai/mp;, ..., an/mp, satisfies Y1) ;=0 (mod 1),

1 <a; <mp,, and (a;,mp,) = 1. Then there exists a central division F-
algebra A that has local indices mp, and the least common multiple (LCM)

of the numbers {mp,} as an index. Further, if A is a mazimal Op-order in
(mp,—1) [A:F]

A, then the discriminant of A is d(A/OF) =11, P; e

At this point, it is clear that the discriminant d 4 of a division algebra
only depends on its local indices mp,.

Now we have an optimization problem to solve. Given the center F' and
an integer n we should decide how to choose the local indices and the Hasse
invariants so that the LCM of the local indices is n, the sum of the Hasse
invariants is an integer, and that the resulting discriminant is as small as
possible. We immediately observe that at least two of the Hasse invariants
must be non-integral.

Observe that the exponent d(P) of the prime ideal P in the discriminant

formula d(P) = (mp — 1)% =n? (1 - n%:) . As for the nontrivial Hasse

invariants n > mp > 2, we see that n?/2 < d(P) < n(n — 1). Therefore
the nontrivial exponents are roughly of the same size. E.g. when n = 6,
d(P) will be either 18, 24 or 30 according to whether mp is 2, 3 or 6. Not
surprisingly, it turns out that the optimal choice is to have only two non-zero
Hasse invariants and to associate these with the two smallest prime ideals of
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Op. The following discriminant bound [12] thanks to Dr. Roope Vehkalahti
now gives us a great insight to the minimization of the discriminant, i.e.
maximization of the minimum determinant.

Theorem 3.2 ( [1] Discriminant bound). Assume that F is a totally
complex number field, and that Py and Py are the two smallest prime ide-
als in Op. Then the smallest possible discriminant of all central division
algebras over F of index n is (P, Py)™"=1).

We remark that in the most interesting (for MIMO) cases n = 2 and
n = 3, the proof of Theorem 3.2 is more or less an immediate corollary of
Theorem 3.1. We also remark that the division algebra achieving our bound
is by no means unique. E.g. any pair of Hasse invariants a/n, (n — a)/n,
where 0 < a < n, and (a,n) = 1, leads to a division algebra with the same
discriminant.

The smallest primes of the ring Z[i] are 14¢ and 2+4. They have norms
2 and 5 respectively. The smallest primes of the ring Z[w] are v/—3 and 2
with respective norms 3 and 4. Together with Corollaries 2.2 and 2.3 we
have arrived at the following bounds.

Corollary 3.1 (Discriminant bound). Let A be an order of a central
division algebra of index n over the field Q(i). Then the measure of a fun-
damental parallelotope of the corresponding lattice m(A) > 10(n=1)/2,

Corollary 3.2 (Discriminant bound). Let A be an order of a central
division algebra of index n over the field Q(w), w = (—1++/=3)/2. Then the
measure of a fundamental parallelotope of the corresponding lattice m(A) >
(v/3/2)"" 12n(n=1)/2,

Example 2. In the so-called Golden division algebra [9], i.e. the cyclic
algebra GA = (E/F,0,v) obtained from the data E = Q(i,/5), F = Q(i),
v =1i,n=2,0(v5) = —V/5, the natural order Ay is already maximal [11].
Therefore, within the algebra G.A, no further optimization can be done when
dealing with orders. Instead, the authors of [9] do the optimization by using
an ideal Z of norm 5 generated by the Z[i]-basis {«, a8}, where § = (1 4+
V/5)/2 and a = 1+4i—i6. The ideal does not affect the density, but improves
the shape of the lattice as it gives an orthogonal basis. The code matrices of

the Golden code are then of the form o(a +b6) yo(ala +b0)) , Where

alc+db) o(a(c+ dh))
a,b,c,d € Z[i]. The Golden code is a special case of the so-called perfect
codes, see [9]. The Z[i] discriminant of the Golden code is 25, whereas the
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minimal possible discriminant (cf. Corollary 3.1) would be 10. Thus, the
Golden code is not optimal with respect to density.

Example 3. On the other hand, in the Golden+ division algebra [1], i.e.
the cyclic algebra GA+ = (E/F,0,7) obtained from the data E = Q(s =
V2+i), F=Q®),y=1i,n=2, o(s) = —s, the natural order Ay is not
maximal. A maximal order can be produced by hand, following a construc-
tion algorithm due to Ivanyos and Rnyai. The algorithm is implemented
in the MAGMA computer algebra software, so alternatively one can use
the free online calculator to more easily produce the basis for a maximal
order. See [1] for a detailed description of the Golden+ code, which is built
from a maximal order of GA+. The Golden+ code does have the minimal
discriminant = 10. Thanks to its higher (optimal) density, the Golden+
code performs better than the celebrated Golden code.
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This article is about the lives of three women, Philippa Fawcett, Charlotte
Scott and Grace Young, who studied mathematics in Cambridge University
in the period 1875-1895. It was first published in Mathematical Spectrum in
1997.* It was written in response to an earlier article in the same magazine
entitled What became of the Senior Wranglers?, in which only one woman
was mentioned. The ‘Senior Wrangler’ was the person achieving top marks in
the final mathematics examinations, known as ‘The Mathematics Tripos’, at
Cambridge.
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Hail the triumph of the corset
Hail the fair Philippa Fawcett.
Victress in the fray.
Crown her queen of hydrostatics
And the other Mathematics
Wreathe her brow in bay.

“.... the University would think the examination of
young ladies a matter altogether beyond its sphere of duty.”

Ouford Local Ezamination Delegacy, 1863.

*Reprinted by permission of The Applied Probability Trust. First published in Mathe-
matical Spectrum 380, 1997/8, 49-52. Copyright ©Applied Probability Trust 1997.
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Introduction

The September 1996 issue of Mathematical Spectrum contained an article
“What became of the Senior Wranglers?” by D. O. Forfar. In that article,
only one woman, Philippa Fawcett, is mentioned. Since during the period
covered by the article, 1753-1909, women were not allowed to take degrees
at Cambridge, and since the women’s colleges at Girton and Newnham were
only established in 1869 and 1871 respectively, this omission is scarcely
surprising. When one considers the lamentable state of women’s education
up till the late years of the nineteenth century, and the enormous public
prejudice which existed against women studying science or mathematics, it
is really much more surprising that, towards the end of that period, there
were several women who, morally at least, did attain Wranglerhood. At the
time their achievements were hailed as turning points in the struggle for
women’s education. Today their stories can still inspire.

At Cambridge

In 1890, Philippa Fawcett scored the highest mark of all candidates in Part
1 of the Mathematical Tripos. She was placed “above the Senior Wrangler”.
Her triumph, in mathematics, that last bastion of superiority of the male
mind, was spectacular. There was lengthy discussion and comment in na-
tional papers in England and abroad. It would have been hard to think of
a more effective or timely challenge to popular prejudice. Women’s powers
of reasoning could no longer be said to be inferior to men’s.

Shortly before Philippa’s birth in 1868, the pressure for some provision
for education of women at Oxford and Cambridge was growing. Henry
Sidgwick, Professor of Moral Philosophy at Cambridge, and one of the
driving forces in this movement, started a series of meetings, often held in
the Fawcetts’ drawing room, to make plans. Her mother’s diary records:
“Philippa was aged about two at this time, old enough to be brought in at
the tea-drinking stage at the end of the proceedings and to toddle about in
her white frock and blue sash amongst the guests.”

Anne Jemima Clough, born in 1820 and brought into contact with the
campaign for women’s education by her brother the poet Arthur Clough,
had been running a scheme of lectures for senior girls which by 1869 had
spread to some 25 centres in the north of England. At a momentous meeting
held in the Fawcetts’ house in December 1869, it was decided to set up
a similar scheme of lectures in Cambridge, and in the spring of 1870 a
series of lectures was attended by 70-80 women. Provision needed to be
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made for a “hall or lodging” for women wishing to attend from outside
Cambridge. Proceeding with the utmost discretion, the following summer
Sidgwick rented and furnished a house at his own expense and invited Miss
Clough to take charge with the first five students. This was the beginning
of Newnham College.

Emily Davies, born in 1830, had been a tireless campaigner for women’s
education for many years. It was she who inspired Philippa’s aunt Eliza-
beth Garrett Anderson to study medicine seriously and who stood by her
side through ten years of struggle which paved the way for the admission
of women into the medical profession. Described by a contemporary as “a
rather dim little person with mouse coloured hair and conventional man-
ners”, she was single-minded and ruthless, inflexible in her view that women
could only challenge men’s intellectual dominance if they matched them at
their own tests. It was Emily Davies who persuaded the Cambridge Local
Examination Syndicate to agree to a trial examination for girls. Despite
having only six weeks to prepare, the performance of the 83 girls was found
comparable to that of the boys in all subjects except arithmetic. (The qual-
ity of teaching improved so much as result of this embarrassing discovery
that within three years no inferiority could be detected!)

As a result of Emily Davies’ efforts, Girton College for women opened
in 1869 at Hitchin, midway between Cambridge and London, also with five
students. One of the first scholars, Miss Woodhead, daughter of a Quaker
grocer, studied mathematics. She was tutored by Mr. Stuart, later Cam-
bridge Professor of Mechanics, and Mr. J. L. Moulton, Senior Wrangler and
Smith’s prizeman, later Lord Justice Moulton, who, it is recorded, poured
“amazing illuminations on elementary mathematics”.

Notwithstanding Miss Davies’ efforts, the University Council refused to
admit Girton students to University examinations, although they “carefully
abstained from expressing any disapproval of the Examiners’ examining the
students in their private capacity and in a clandestine way.” Thus in 1872
the first three candidates for the Tripos, including Miss Woodhead, were
chaperoned into Cambridge by Miss Davies and took the examination in
the sitting room of the University Arms. Despite the papers arriving an
hour late (the runner was given the wrong address), the three passed with
flying colours. When the news reached Hitchin, elated young women climbed
onto the roof and rang the alarm bell so loudly that fire engines were
got out.

In 1873 Girton College moved to its present location on the edge of
Cambridge, where already more than half the professors admitted women
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to their lectures. Special lectures were still given under the Sidgwick ar-
rangement, and other lecturers cycled out to Girton to coach. In a very
short time, Newnham and Girton students began to challenge old preju-
dices and in particular to challenge men in the examinations. Selected girls
were allowed to take the University examinations, but this was only by
special permission, not by right, nor were their names to be included in
the lists of results. Nevertheless, between 1874 and 1881, 21 students had
entered for a Tripos examination and all had succeeded, four having been
placed in the first class.

In 1876, the 18 year old Charlotte Angas Scott was awarded a schol-
arship to Girton to study mathematics “on the basis of home tutoring.”
Charlotte had had no formal schooling but her father, Caleb Scott, a dy-
namic man and president of a nonconformist college near Manchester, had
doubtless encouraged his daughter’s studies. The entering class contained
11 girls.

Charlotte took the Mathematics Tripos in January 1880. Campaigning
by Emily Davies had gained the girls permission to sit the same exami-
nations as the men (in different rooms, of course). Their results would be
read out after the men’s, but in mathematics each candidate would be as-
signed a place relative to the ordered list of male candidates. The news
leaked out that Charlotte had been placed eigth. Women were not allowed
at the ceremony at which the results were read out, but when it came to the
eighth on the list the undergraduates called out “Scott of Girton, Scott of
Girton” and there was such an uproar that the poor man’s name could not
be heard.

Charlotte Scott was the first woman Wrangler. Her achievement, and
“in a man’s subject” at that, made a deep public impression. Recalling the
event at her retirement celebrations 45 years later Professor Harkness, who
at the time had been a schoolboy in Cambridge, said that he believed her
achievement marked the turning point in England from “the theoretical
feminism of Mill and others to the practical educational and political ad-
vances of the present time.” So strongly was public opinion aroused that
a petition with over 10,000 signatures to grant women the right to sit ex-
aminations and be admitted to degrees was presented to the Cambridge
authorities. Arthur Cayley, a leading Cambridge mathematician, was one
of the main supporters and Charlotte’s triumph cited as one of the main
grounds. After a year of public pressure, the University voted in 1881 to
grant women the right to be examined and to have their names on the offi-
cial class lists, though in a separate table from the men. The other request
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in the petition fared worse: women were not eligible for Cambridge degrees
until 1948.

Despite Charlotte’s achievement, it was still widely believed that math-
ematics was peculiarly incompatible with female thought processes. In fact
34 out of the 40 girls who entered the first preliminary trial for the Cam-
bridge Local examination in arithmetic failed. As Henry Fawcett reputedly
remarked: “he did not imagine if the Universities were opened to women
they would produce any Senior Wranglers.” He had not reckoned with his
own daughter.

Philippa Fawcett came of a distinguished family. Her father Henry rose
to be Postmaster General under Gladstone and was the man responsible for
introducing the parcel post. Her mother Millicent, later Dame Millicent, was
one of the leaders of the non-violent campaign for women’s votes. Philippa
herself was, in the words of one her Newnham contemporaries, “modest and
retiring almost to a fault”. She lived a very regular and quiet life and was
coached by Mr E. W. Hobson of Christ’s, a Senior Wrangler himself and
judged to be the second best coach. She also played hockey. Philippa did
outstandingly well in the exams she sat in the second year, with 75 more
marks than the top Trinity man. Everyone anticipated a brilliant result in

the Tripos.
The scene in the Senate when the results were to be announced is
recorded in a letter written by Philippa’s second cousin Marion: “...the

gallery was crowded with girls and a few men...The floor was thronged by
undergraduates... All the men’s names were read first, the Senior Wran-
gler was much cheered... At last the man who had been reading shouted
‘Women’. The undergraduates yelled ‘Ladies’ and for some moments there
was a great uproar. A fearfully agitating moment for Philippa it must have
been; the examiner could not attempt to read the names until there was a
lull. Again and again he raised his cap, but he would not say ‘ladies’ instead
of ‘women’ and quite right I think... At last he read Philippa’s name, and
announced she was ‘above the Senior Wrangler’. There was great and pro-
longed cheering; many of the men turned towards Philippa, who was sitting
in the gallery with Miss Clough, and raised their hats. When the examiner
went on with the other names there were cries of ‘Read Miss Fawcett’s name
again’ but no attention was paid to this. I don’t think any other women’s
names were heard, for the men were making such a tremendous noise...”
On her arrival back at College, Philippa was greeted by a crowd of
fellow students and carried into Hall. Flowers, letters and telegrams poured
in throughout the day. That evening there was an impromptu college feast
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and she was carried three times round a bonfire on the hockey pitch. The
triumphal lay, whose first verse heads this article, was composed in her
honour. The story made the lead in the Telegraph the next day: “Once
again has woman demonstrated her superiority in the face of an incredulous
and somewhat unsympathetic world... And now the last trench has been
carried by Amazonian assault, and the whole citadel of learning lies open
and defenceless before the victorious students of Newnham and Girton.
There is no longer any field of learning in which the lady student does
not excel.”

The last (moral) Wrangler of this period, Grace Chisholm Young, was
born in 1868. Her father, a distiguished civil servant but already almost
sixty when she was born, retired when Grace was only seven, and took
an active role in supervising her education at home. Grace won a schol-
arship to Girton 1889. She became a Wrangler in Part 1 of the Tripos in
1892. Immediately afterwards she and a friend Isabel Maddison went to
Oxford and sat for the final honours school in Mathematics, according to
Dame Mary Cartwright (see postscript), “just to show”. Grace obtained
the highest marks of all students that year and became the first person of
either sex to obtain a First in any subject at both Oxford and Cambridge.
Grace and Isabel were the first women to take finals in Mathematics at
Oxford, and it seems that no woman did so again until Dame Mary herself
in 1923.

What did these three women do afterwards?

Charlotte Scott began lecturing at Girton and began work on a doctorate
under Cayley. Since Cambridge did not grant advanced degrees to women,
she took a B.Sc. from the University of London by external examination
in 1882, and a Ph. D. by the same route in 1885. By a great stroke of
good fortune, she was almost immediately offered the job of Head of the
Mathematics department at the newly founded American women’s college
Bryn Mawr, where she remained until her retirement in 1925. Scott came
to be widely recognised as a mathematician. A first edition of American
Men of Science shows her name starred. Her text on analytic geometry
was reprinted after thirty years. She never married, but supported and
encouraged generations of women mathematicians, many of whom went on
to teach all over the United States. She played a leading role in American
mathematical life and was widely respected as a scholar and teacher, a wise
and gifted administrator, and a rock of integrity. On her retirement she
returned to England and is buried in St. Giles Churchyard, Cambridge.
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In 1891, Philippa Fawcett, together with the Senior Wrangler, G.T. Ben-
nett, was placed in the top division of the first class of Part II. Philippa was
awarded a scholarship at Newnham which gave her a further year of study.
During this year she made her only contribution to research, a long paper
on the motion of helical bodies in liquid. For the next 14 years she was a
Newnham College lecturer. Then, following a trip to South Africa, she was
invited to take up a post as a lecturer in a normal school in Johannesburg
where she trained mathematics teachers. In 1905 she returned to England as
principal assistant to the Director of Education in the newly formed London
County Council. (She was, remarkably, offered this job without interview
and at the same salary as a man.) She continued in this post till her re-
tirement in 1934. She died in 1948, two months after her eightieth birthday
and one month after Cambridge women were finally granted degrees.

After Oxford finals, Grace Chisholm returned to Cambridge and com-
pleted Part II of the Tripos. There was no possibility of a woman getting a
Fellowship at Cambridge. However at just that time, as part of an experi-
ment, a small group of women were to be recruited to study at Gottingen
under Felix Klein, one of the leading mathematicians of the day. So as to
be on the safe side and so as to establish no unwelcome precedents, the
women were to be foreigners, and, just to be sure, their subject would be
mathematics. As Klein explained later : “Mathematics had here rendered
a pioneering service to the other disciplines. With it matters are, indeed,
most straightforward. In mathematics, deception as to whether real under-
standing is present or not is least possible.”

Thus Grace Chisholm became one of three women admitted to
Gottingen in 1893. They had to behave very discretely: “We are to go
to Prof. Klein’s private office before the regular time for changing classes
so as not to meet the students in the halls and from there we are to go into
the class.”

All went smoothly and Grace became the first woman in East Prussia
to gain a Ph.D., which she did magna cum laude in 1895. She returned to
England and married one of her former tutors, W. H. Young. Following a
visit of Klein in 1897, they decided to “throw up filthy lucre, go abroad,
and devote ourselves to research.” Until their marriage, Young seems not
to have done any research. Together, however, they began to publish many
papers, and it seems probable that Grace’s contributions, even to those
written under her husband’s name alone, were considerable. Their work
was strongly influenced by the new ideas with which Grace had come into
contact in Germany, and had in turn had a strong influence in England,
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helping to establish the new standard of rigour which was the foundation
of Cambridge’s reputation as a world centre of pure mathematics.

Grace had very many interests outside mathematics and even found time
to achieve her ambition of studying medicine. She brought up six children,
two of whom themselves became mathematicians. Her husband died in 1942
two years before Grace herself.

Postscript

In the second half of the 20th century, education for women has become
the norm. There is now a good sprinkling of women mathematicians in
university posts although not so many in the senior ranks. Only two have
achieved the distinction of being an Fellow of the Royal Society: Dame
Lucy Mary Cartwright (1900- )*, Mistress of Girton 1949-68, whose work
straddles the 20th century and was foundational for the modern theory of
chaos and, much more recently, Dusa McDuff (1945- ), elected an FRS in
1994 in recognition of her work on symplectic geometry.?

Sources

The main sources for this article are listed below.
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Girton was the first Cambridge college to be established for women, and for
just over the first hundred years of its existence, it remained a women’s college.
Throughout its history, it has had a number of distinguished women mathe-
maticians, and this article looks briefly at three whose lives spanned almost
the whole of the twentieth century, and whose interests were in three different
areas of mathematics.
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Dame Mary Cartwright, F.R.S.

Born on December 17, 1900 in Aynho, Northamptonshire, where her father
was curate and later rector, Mary Lucy Cartwright was at first educated by
governesses and then sent away to a variety of schools. In 1919, she went up
to St. Hugh’s College, Oxford, to read mathematics. She felt ill-prepared for
this because of gaps in her schooling and after two years when she obtained a
Second in “Mods”, she considered changing to history, but decided against
it because it seemed to entail longer hours of work. Instrumental in her
mathematical career was a chance meeting at a party on a barge on the
Thames in her third year, when V. C. Morton (later to become Professor
of Mathematics at Aberystwyth) suggested she start attending the evening
classes of the distinguished mathematician G. H. Hardy. Quite outside the
normal syllabus, these classes met on Mondays after dinner, beginning with
a talk and continuing with mathematical discussions until late. Stimulated
by the classes, Mary went on to obtain a First in her Finals in 1923.

On graduation, not wishing to impose further on her father for money to
support her as a research student, Mary went into school teaching. However,
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after a few years she could no longer resist the attractions of mathematical
research and returned to Oxford early in 1928 to work as a student of
Hardy, who was soon very impressed with her work on complex analysis.
Again there was an influential evening class, this time on Fridays, though
all the research students went to the Monday class as well. She first met J.
E. Littlewood (who with Hardy dominated British mathematics for much of
the twentieth century) as the external examiner for her D.Phil. He records
that the first question asked by the other examiner was so silly and unreal
as to make her blush but “I was able to get in a wink, and I think it restored
her nerve”.

In 1930, after obtaining her D.Phil., Mary moved to Cambridge to a
Yarrow Research Fellowship at Girton College, continuing to work on the
theory of functions. The important results that she obtained, published in
1935 in the Mathematische Annalen, prompted Hardy (who had moved to
Cambridge in 1931) and Littlewood to recommend her for an Assistant Lec-
tureship in the Faculty of Mathematics. She became Lecturer in 1935 and
Reader in the Theory of Functions in 1959. In the meantime, at Girton, she
was a College Lecturer and Director of Studies in Mathematics until 1949.
Her undergraduate pupils were at first apt to find her rather fragile and
timid, an impression which was rapidly dispelled on closer acquaintance -
and perhaps also on seeing her figure-skating on the college pond in severe
winters. Her research students, initially in awe of her intellectual reputa-
tion, soon thawed in the warmth of her friendship and understanding. She,
who in her first year in Oxford had apparently found difficulty in her own
mathematical studies, sympathised with her students’ weaknesses.

Mary’s research career took an interesting turn in 1939 with a request
from the Department of Scientific and Industrial Research to pure math-
ematicians for help with problems connected with defence, in particular
solving “certain very objectionable-looking differential equations occuring
in connection with radar”. Mary who was in the habit of showing Little-
wood anything which she thought would interest him, described to him the
relevant work of van der Pol, and soon they were translating problems in-
volving radio waves and oscillations into problems in dynamics. This work
was a major part of what became a long, highly fruitful and harmonious
collaboration, conducted mainly by letter. Littlewood once described her
as “the only woman in my life to whom I have written twice in one day!”.
Their ground-breaking results on the periodicity and stability of solutions
of non-linear differential equations form the basis for the modern theory of
dynamical systems and chaos.
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During this particularly creative period of work with Littlewood, Mary
carried a heavy load of teaching. She was an excellent supervisor of research
students, taking great care in reading and criticising their work, both in
content and in form, and giving due encouragement.

In 1947, after the Statutes of the Royal Society were amended to make
it explicit that women were eligible as Fellows, Mary was the fourth to
be elected (and the first woman mathematician). Soon afterwards, at the
height of her mathematical research career, the focus of her life changed
dramatically when in October 1949 she became Mistress of Girton. She
provided quiet, unassuming, clear-headed and shrewd leadership in a time
of many changes; Girton, as a women’s college at that time, had only just
become fully incorporated into the University. Inevitably she was no longer
able to devote so much time to mathematics, but she did not seem to regret
this, believing the subject to be predominantly a younger person’s game.
Even so, honours continued to be heaped upon her, including honorary
doctorates from many universities. The Royal Society bestowed its Sylvester
Medal in 1964, and four years later, the London Mathematical Society, of
which she had been President from 1961 to 1963, awarded her its De Morgan
Medal. She was made a Dame of the British Empire in 1969.

Throughout her high-powered academic career, Mary took a great in-
terest in mathematical teaching in schools and was President of the Math-
ematical Association in 1951-2. Although her published work is nearly all
severely technical, she could also appeal to a wider public as she showed in
her James Bryce Memorial Lecture, “The Mathematical Mind”, given at
Somerville College in 1955.

When she retired from being Mistress of Girton in 1968, she held vis-
iting professorships at universities in the United States and Europe before
returning to Cambridge where she was one of the editors of “The Collected
Papers of G. H. Hardy”. The apparent shyness and austerity of her days as
Mistress disappeared in her retirement; she became much more gregarious
and was often to be found eating lunch with the younger Girton Fellows.
She had a wry sense of humour and the television documentary “Our Bril-
liant Careers”, made when she was in her mid-nineties, captured the sharp
sparkle of her wit. She was no narrow specialist, being exceptionally well-
informed on a wide variety of subjects, among them painting and music.
She had a great sense of fun and a capacity for sympathy which perhaps
only her friends knew. In human affairs, as in mathematics, she had a gift
for going to the heart of a matter and for seeing what was really important.
In her later years, she had a number of falls resulting in broken bones, but
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took her long spells in hospital very philosophically. On one occasion, af-
ter she fell while visiting her brother in Wales, she had to be transported
by helicopter to hospital in Cambridge and she did the map-reading for
the pilot during the journey. In her nineties, she moved to a local nursing
home. Frail in body but not in mind, she fascinated her visitors with remi-
niscences of her travels and the many distinguished mathematicians whom
she had known. Many of the more than ninety mathematical papers which
she published are of seminal importance. She died on April 3, 1998.

Bertha Swirles, Lady Jeffreys

Bertha Swirles was born in Northampton on 22 May 1903. The earliest
surviving photograph shows her sitting up in her pram, wearing glasses, at
the age of six months. Her father, a leather salesman, died when she was
still a toddler, but, although she had no siblings, her childhood was far
from solitary. She grew up in a large extended family, dominated by school
teachers (her mother and seven of her nine aunts) so she was involved with
the world of education from her earliest days. In fact, she claimed that she
learned as much from her self-educated grandfather and from another aunt
as she did from the professionally trained teachers. There was no scientific
background in her family, but her mother subscribed to Scientific American
for her; that, coupled with the fact that she was brought up mainly by
women, meant that it never occurred to her that there was anything strange
for a woman to want to become a mathematician or a physicist.

From the primary school where her mother taught and her aunt was
headmistress, Bertha went to the newly established Northampton School
for Girls, where she was taught by three Cambridge women mathemati-
cians. Mathematics soon became her main interest, although she also liked
learning languages and was apparently furious when told by a boy who was
learning Russian that it was not a suitable language for a girl.

In 1921, Bertha went as a major scholar to Girton to read mathematics,
obtaining a first in both parts of the Tripos and graduating in 1924. Her
interest in physics had been encouraged by a woman research student of
Appleton, Mary Taylor, who was to become an important role model for her,
and she spent the next academic year studying Part II Physics, attending
lectures by J. J. Thompson and Rutherford, among others. Having found
financial support for research through a Yarrow Studentship from Girton
and a DSIR grant, she became a research student of Fowler in 1925, but
in fact her first research problem came from Douglas Hartree. When she
was shown into a room with two pianos, she thought to herself “This is
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the place for me!” and it was indeed the beginning of a life-long friendship
with the Hartrees. Soon she became involved in research in the new and
very exciting field of quantum theory. The physics societies which met in
the evenings were not open to women, but she did read a paper in 1927 at
a joint meeting of St John’s Mathematical Society, the Adams Society, and
the Girton Mathematical Society (which, she was quick to point out, was
much older!).

In 1927, Girton elected Bertha to a Hertha Ayrton Research Fellowship,
and, encouraged by Fowler and Mary Taylor, she spent the winter semester
of 1927-8 in Gottingen, which was then the epicentre of research in quantum
theory. It was a tremendously stimulating time to be there; she studied
under Born and Heisenberg, and interacted with many of the other leading
continental workers in the field. She returned to Cambridge for the Easter
Term 1928 to finish her thesis, “On some applications of the theory of
perturbations in quantum mechanics”, and by the time she was awarded
her Ph.D. in 1929, she was already an Assistant Lecturer in Manchester. She
held similar posts briefly at Bristol and Imperial College before returning
to Manchester in 1933 as a Lecturer in Applied Mathematics, and perhaps
her most important research was done at this time. It was prompted by a
remark by Hartree during an encounter on Euston Station in 1934, which
led to a series of papers on multi-electron atoms, with increasingly good
approximations, culminating in a classic paper, published in 1939, with
Douglas Hartree and his father, who did the numerical work on a Brunsviga
hand calculating machine. Bertha returned to Cambridge in 1938, to an
Official Fellowship and Lectureship in Mathematics at Girton, where she
remained a Fellow for the rest of her life.

Although much of Bertha’s energy went into teaching, she continued
with her research in quantum theory. However her most widely-known and
influential publication was the book “Methods of Mathematical Physics”,
written with the distinguished mathematician and geophysicist, Harold Jef-
freys, whom she had married in 1940. MM P, or Jx.J’ as it is affectionately
known, was first published in 1946, and after many editions and revisions,
it was reprinted shortly before she died. It has educated generations of stu-
dents and is still a recommended text for courses on mathematical methods
in universities all over the world. Harold was knighted in 1953 for services
to science, and Bertha became Lady Jeffreys (or Lady J as she was known
to her students). Theirs was a long and happy marriage. Harold died in
1989 when he was almost 98.

Bertha always played a very active role at Girton, holding a large variety
of offices at various times. She will probably be remembered most in her
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capacity of Director of Studies in Mathematics, a post she held from 1949
to 1969. The generations of women mathematicians she selected, advised
and taught have gone on to propagate her influence to ever wider circles.
She took a warm personal interest in all her students, and they were often
invited to ‘open house’ on Sunday evenings at the Jeffreys residence.

It seemed inevitable that Bertha should be drawn into Harold’s research
interests. She was fluent in Russian and translated the book “Nutation and
Forced Motion of the Earth” by E. P. Fedorov. In the 1970s she worked with
Harold on editing his collected papers; these were very important pieces
of work, for Harold was a pioneer not only of geophysics and seismology,
but also of hydrodynamics, celestial mechanics and probability. Typical of
Bertha’s sense of humour, and of her desire to understand the origins of
scientific knowledge, even down to the matter of notation, were two papers
she wrote in her eighties, “A Q-rious tale ...”, about the origins of the
parameter ) used in electromagnetism.

Never a narrow specialist, Bertha was a skilful linguist, with a wide
knowledge of literature, and music played a very important part in her life.
She was an accomplished pianist and ’cellist. Her advice, on both profes-
sional and personal matters, was never stereotyped; she approached each

”

problem with an open mind and an enormous amount of common sense.
(One of her many gifts to College was the first washing machine for under-
graduate use.)

In recognition of her leading role in education in the twentieth century,
Bertha was awarded honorary doctorates by the University of Saskatchewan
in 1995 and the Open University in 1996. During her retirement, she con-
tinued to be very involved in Girton, as a Life Fellow. After Harold’s death,
she travelled extensively, visiting friends as far away as Australia. She main-
tained a very active correspondence world-wide, often sorting out details
of scientific history which she remembered better than most. Her ninetieth
birthday lunch was attended by about 140 of her former pupils from several
continents, a wonderful tribute to a very special teacher and friend. After
her ninety-sixth birthday, her health, which had been amazingly good for
a nonagenarian, gradually declined and she became less and less mobile.
Right to the end, her mind was as sharp as ever; she died at home on 18
December 1999.

Olga Taussky-Todd

The daughter of an industrial chemist, Olga Taussky was born on August
30, 1906, in Olmutz in the Austro-Hungarian Empire (now Olomouc in the
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Czech Republic). While she was still a child, the family moved to Vienna,
and then, in the middle of the First World War, to Linz, where her father
was director of a vinegar factory. Although her father would have preferred
Olga and her sisters to go into the arts, he recognised Olga’s mathematical
ability and set her the task of working out how much water to add to
various vinegars to attain the acidity level required by law. She rose to the
challenge and her solution was put into daily use in the factory.

In 1925, Olga entered the University of Vienna to study mathematics.
Godel was a fellow student and friend there. She solved an important prob-
lem in number theory and obtained her doctorate in 1930. She then moved
to Gottingen where she had a temporary position editing the volume of
papers on number theory in Hilbert’s Collected Works. Her job was very
demanding and she regretted not having more time to interact with the
large number of top mathematicians gathered there, who included Lan-
dau, Courant and, of course, Hilbert. By speaking out in her defence on
one occasion, she became friends with Emmy Noether, one of the founders
of modern algebra, who then ran a seminar in class field theory because of
Olga’s presence that year. Courant advised Olga not to return to Géttingen
in the autumn of 1932, because of the growing political tension at the Uni-
versity, so she spent the next two academic years back at the University of
Vienna, supplementing her small salary by tutoring.

While in Vienna, Olga applied for a research fellowship at Girton, which
she had seen advertised in the newsletter of the International Federation
of University Women. After sending in the application, she received an
invitation to spend a year at Bryn Mawr, a particularly attractive offer
because Emmy Noether was to be there. She accepted it, and then received
the offer of a fellowship at Girton with “a very generous stipend of 330
pounds a year” and with “great freedom” to do what she liked. She was
very pleased that Girton allowed her to spend that first year at Bryn Mawr.
She chose to travel to the United States on a boat from Liverpool, thinking
that the proportion of native English-speakers would be higher than on
a boat from a port in southern England. She claimed that she acquired
most of her English on that journey. The year at Bryn Mawr was a happy
and stimulating one. She often accompanied Emmy Noether on her weekly
trips to Princeton, making many friends and mathematical contacts there.
Princeton was a “dream place” for her.

In June 1935, Olga arrived at Girton. She enjoyed the privileges of
being a don, after student status at Bryn Mawr, but found it hard to fit
into Cambridge mathematically; at the time, she was very interested in
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topological algebra and nobody in Cambridge was working in that area
then. Nevertheless, she did some satisfying research in her first year, but
then seemed to spend most of her second year applying for jobs, going to
interviews and supervising students, partly to gain experience of teaching
in English.

The next year saw Olga in London, with a junior position at one of the
women’s colleges in London University. This was not a particularly easy
time: her teaching load was extremely heavy, her boss was unsympathetic
and not all of her colleagues were very friendly. She wrote “They saw me as
a foreigner. This had not been the case at Girton College where people had
quite a liking for my foreign accent. Girton also had a scholarly attitude
in everything...”. However there was one overwhelmingly positive outcome
of this time in London; at an inter-collegiate seminar, she met John (Jack)
Todd, who had a similar position at another London college. They were
soon working together on a mathematical problem and were married in
1938, the start of a very long and happy partnership.

The Todds moved eighteen times during the war. At first they lived with
Jack’s family in Belfast, while teaching at Queen’s University. There Olga
started working on matrix theory which subsequently formed a large part
of her research activity. She then resumed teaching at her London college
which had moved to Oxford to be safer from air raids. Then, on leave
of absence from London University, she worked at the National Physical
Laboratory at Teddington from 1943 to 1946.

In September 1947, Olga and Jack went to the United States as a re-
sult of an invitation to Jack to work on the exploitation of high speed
computers at the National Bureau of Standards at its new field station
in Los Angeles. While waiting for the facilities there to be finished, they
spent time at the Institute for Advanced Study in Princeton in the group
headed by von Neumann. Olga was very happy to be back in Princeton
and the visit did much to restore her after the difficult war years. After
a spell in Los Angeles and another year in London, the Todds moved to
the National Bureau of Standards in Washington DC. Olga had the posi-
tion of “consultant in mathematics”, which involved a multitude of activi-
ties. These included refereeing papers, responding to cranks, inviting distin-
guished visitors and recruiting promising graduate students and postdocs
as N.B.S. employees. She contributed number theory problems for the com-
puters, and has been described as a “computer pioneer who provided signif-
icant contributions to solutions of problems associated with applications of
computers”.
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Olga was ready to return to academic life when in 1957 she and Jack
were both offered positions by California Institute of Technology, he a full
professorship and she “a research position of equal academic rank ... with
the permission but not the obligation to teach”. The awkwardness of this
position was probably a result of the fact that no woman had ever taught
at Caltech before. Olga was pleased when she was given tenure in 1963,
and even more pleased to be made a full professor in 1971, the first woman
at Caltech with this academic rank. Her years at Caltech were extremely
active and productive. She taught many graduate courses and established
common research interests with many younger colleagues at Caltech and
elsewhere, as well as with the more senior ones. She supervised more than a
dozen Ph.D. students; one of them, Charles Johnson, wrote: “Olga Taussky-
Todd often said that number theory was her first love, but in many ways
she had the greater impact on her second love: matrix theory. She was
involved with many of the major themes of twentieth century research in
matrix theory, and the vast majority of her Ph.D. students were in matrix
theory, several being major developers of the field in the latter half of the
century. Perhaps most important she had an aesthetic sense and taste for
topics that served to elevate the subject from a descriptive tool of applied
mathematics or a by-product of other parts of mathematics to full status
as a branch of mathematics laden with some of the deepest problems and
emblematic of the interconnectedness of all of mathematics. Her influence
on what people do and how well they do it will continue to be felt for some
time” [1].

After retiring at the mandatory age of 70, Olga received the title of
Professor Emeritus of Mathematics. She still supervised Ph.D. students for
several years after this, continuing with her research and attending seminars
until well into her eighties. Her death on October 7, 1995, at the age of 89,
was a consequence of a broken hip from which she never fully recovered.

Olga wrote about 300 papers and her influence on many areas of math-
ematics is profound and long-lasting. She received many honours including
the Gold Cross of Honour, First Class, the highest recognition given by the
Austrian Government. She was a “Woman of the Year” for the Los Angeles
Times in 1963; this gave her pleasure because it made Jack happy and could
not make her (then all male) colleagues jealous.

Conclusion

Why were these women so effective and successful in their careers, with their
varying backgrounds, two from the same English county, and one from far
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away in the Austro-Hungarian Empire? Their families had in common their
understanding of the importance of education for women, and it seems to
have been taken for granted that they would go to university and have ca-
reers. They were all very much in the minority as women mathematicians,
but only Bertha Jeffreys found that she was excluded from some student
societies because she was female. Two of them had supportive partners,
while the third was free of domestic chores for most of her academic ca-
reer because she lived in college. The only one to encounter the “two-body
problem” was Olga Taussky-Todd, who for a while had to accept somewhat
unsatisfactory positions in order to work in the same place as her husband.
All three had a real love for mathematics and continued to take an active
interest well into their retirements. They all maintained clear minds until
the end, living until 89, 96 and 97; maybe mathematics really is a healthy
occupation.
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Introduction

The high-achieving women, described in the articles “And what became
of the women?” [1] and “Three great Girton mathematicians” [2] seem far
removed from the more typical Cambridge woman mathematics student,
and a natural question to ask is how the milieu changed during the twenti-
eth century, the lifetimes of the three Girtonians in focus. The percentage
of women students did increase, but not by as much as one might have
expected, given the fact that all the formerly all-male colleges started ad-
mitting women in the 1970’s and 1980’s. Girton, the oldest women’s college
in Cambridge, started admitting men in the late 1970’s, and soon they were
in the majority among the mathematics students. All the mixed colleges
were eager to admit women mathematicians, but the numbers were usually
rather small, and the new set-up sometimes led to problems of isolation
and intimidation, which had not existed before in the generally supportive
atmosphere of the women’s colleges.

This article focuses particularly on the experience of Cambridge women
mathematicians in the last decade of the twentieth century, as described
in three reports. In the first case a university initiative gave impetus to
a movement which, in some senses, was waiting to happen, in that a
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number of women in the Department of Applied Mathematics and The-
oretical Physics (DAMTP) were feeling frustrated and undervalued, and
they were encouraged to give voice to their concerns. In the second case, a
mathematics teacher was given the opportunity to spend a term in Cam-
bridge and see for herself how the mathematics course was functioning.
The third case came again from a university initiative, this time bringing
in investigators who worked in many faculties to try to understand the un-
derperformance in women in examinations. The section of their report on
the mathematics faculty is discussed in detail here.

As with all surveys which obtain material from a group of volunteers,
there may be a bias in the comments made by a self-selected group. I quote
a number of statements which give a rather extreme, and often negative,
account, not because they are likely to be representative, but because they
highlight the problems experienced by a small minority, and concern issues
which still need to be addressed.

Women in DAMTP report

In 1991, heads of departments in Cambridge University received a circular
from the Secretary General about equal opportunities for women, prompted
by, amongst other things, the facts that 38.7 percent of undergraduates were
women, whereas there were less than 10 percent of women in academic
posts. With the encouragement of the Head of Department of DAMTP,
the late David Crighton, a group of women in DAMTP, including research
students, postdocs and staff, met a number of times and produced a re-
port [3], which was also a reply to a University report of August 1991
on sexual harrassment. The report was not merely a response to the two
university initiatives, but more an expression of the difficulties which the
women felt in their professional lives, partly as a result of having to work
in a predominately male environment.

The report first considered numbers. Cambridge was far out of line
with other British universities over the number of women mathematicians
admitted - only 16 percent in 1985-7, and increasing only very slowly
since then, whereas most other universities admitted more than 25 per-
cent women. Then once it had admitted them, Cambridge mathematics
was losing women at every step of the academic ladder faster than it was
losing men. This began with the disproportionately low number of firsts
obtained by women which effectively disqualified most from going on to do
research. The proportion of women research students was 12 percent, and
women postdocs, college lecturers and temporary lecturers less than 10 per-
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cent. There was no woman with an established university post in DAMTP.
The report pointed out that these dismal numbers were not an inevitable
fact of life; for example, in 1991, over 20 percent of the two most senior
grades of mathematician in the CNRS in France were women.

The next item of discussion was attitudes. Discounting the men who
were always supportive and those who were so tiresome as to be lost causes,
the women felt that amongst the majority of men, there were those who
assumed wrongly that their customs and perceptions were held by women;
in seminars questions tended to be more aggressive and confrontational,
and men interrupted others much more than women did. Many women
found this behaviour off-putting, and were intimidated by the pressure they
felt to make any contribution intellectually fire-proof. The small amount
of mainly mild sexual harrassment was felt by the women to be partly a
consequence of their percived inferior status, and in some respects was seen
to be less upsetting than being put down intellectually. Women who had
been through the Cambridge system felt that, as undergraduates, they had
sometimes been made to feel stupid by their male supervisors,* more than
in the experience of their male peers.

A large number of suggestions of remedies formed the remaining, most
substantial, part of the report. It was felt that a policy statement needed to
be made, saying that the gender imbalance in the department was unsatis-
factory and that action needed to be taken. The first arena for this was in
undergraduate admissions; the reformed Tripos (the name of the Cambridge
mathematics course) made it unnecessary for applicants to have Further
Mathematics, a second mathematics A-level or school-leaving examination
(its requirement previously had seemed to be a stumbling block for girls
as only about 15 percent had been obtaining grade-A passes in it). It was
also very important for women applicants to be interviewed appropriately.
Secondly, in undergraduate teaching, some women should be giving lecture
courses, partly as role models; there was a bold suggestion that there should
be at least one woman lecturing a course in each year of the undergraduate
Tripos. Women students should be encouraged to speak out if they were
having problems with unsympathetic male supervisors. Thirdly, at the post-
graduate level, able women should be strongly encouraged to do Part III
Mathematics, an intensive year of preparation for research, which is essen-
tially a prerequisite for being accepted as a research student in Cambridge.
It was suggested that there should be at least two courses given by women

2In Cambridge, tutorials are called supervisions.
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in Part III. Once they have been accepted to do research, women research
students should be introduced into the department by someone supportive,
and should be made to realise that they should seek help, rather than bat-
tling on in silence, if things were to go wrong in their research or in their
relationship with their supervisor. Finally, at the postdoc level and beyond,
the DAMTP women were not in favour of positive discrimination, but felt
that women candidates should be actively encouraged to apply for posts.
As a matter of good practice, there should be at least one woman on any
appointments committtee, and consideration should be given to the effect
that years of childbearing and raising have had on the careers of women
applicants. Senior women in the department would feel less marginalised
if they were more involved in both teaching and committee work, in spite
of not being amongst the tenured staff. It was suggested that a mentor
be appointed for each new postdoc (male or female) and subsequently a
mentoring scheme for women was introduced, whereby a number of women
staff, postdocs and research students were available to talk to any woman
undergraduate or postgraduate about any matter of concern.

After the Women in DAMTP report was produced, the Head of Depart-
ment sent it out to all members of DAMTP, with a letter emphasising his
support and pointing out that problems were sometimes caused for women
by careless speech or inappropriate jokes. An open meeting of the depart-
ment to discuss the report took place in March 1993 and there was general
support for the recommendations made. Subsequently, David Crighton fa-
cilitated the appointment of some women (and men) to posts of Assistant
Director of Research.” Holders of such posts were eligible for promotion to
established university positions, and such promotions did indeed happen in
some cases.

The DAMTP women continued to meet until the middle of 1994 to
discuss the implementation of the suggestions in their report. On a number
of fronts, there was very little progress (for example, raising the number
of women students), but there were some positive signs. For instance, a
colloquium for school teachers had been geared more towards girls’ schools;
a booklet of welcome to the department had been prepared and was being
used to help all newcomers to find their feet; several of the senior women
had given lecture courses. The mentoring scheme had helped some research
students, but had been used very little by undergraduates, perhaps because
of lack of effective publicity.

bThis was only possible because in most cases the colleges employing these people agreed
to contribute substantially to the costs of their salaries.
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Although it is not strictly relevant to the situation in Cambridge, it is
perhaps appropriate to mention the founding of the Women in Mathematics
Day, which is now held annually under the auspices of the London Math-
ematical Society. A speaker at one of the early meetings for the women in
DAMTP was Dusa McDuff (mentioned in the article “And what became
of the women?” [1] as one of the few women mathematician Fellows of the
Royal Society). Dusa is now based in the USA, but was a research student in
Cambridge, and had not found it at all easy to feel part of the Faculty. She
not only encouraged the DAMTP women in their efforts but also suggested
organising a meeting for women mathematicians from other universities, for
mutual encouragement and also as an opportunity for women to give talks
about their research in a supportive environment. It was originally called
the “British Women in Mathematics Day” and took place in a number of
different locations before being adopted by the LMS. It has been a source
of inspiration and friendship for many women, particularly those who feel
rather isolated in their departments.

Women and the Mathematical Tripos: Myth and Reality;
the Salter Report

At around the time when DAMTP was considering the report by the
women, another report was being written by Ruth Salter, who had spent
the Michaelmas Term, 1993, as a School Teacher Fellow Commoner at Cor-
pus Christi College. She had gone to Girton to read mathematics in 1950,
and then taught mathematics in a variety of schools, including, at that
time, an independent girls’ school in London. During her term based in
Cambridge, her aim was to investigate the transition from school to univer-
sity mathematics, focusing particularly on the experience of women, and
to see whether there was any truth in the myth that Cambridge was not a
good place for young women to study mathematics. She proceeded in two
ways, firstly by trying to put herself in the place of a first year student,
attending lectures, doing problem sheets and sitting in on supervisions,
and secondly by talking with mathematicians at all levels, undergraduates,
postgraduates and teaching staff. Her report “Women and the Mathemat-
ical Tripos: Myth and Reality” [4] summarised what she had discovered
and experienced.

Ruth attended the full set of first year lectures, attempting all the exam-
ple sheets, and found the standard very high. She felt that great effort had
been made to make the material accessible to students from weak school
backgrounds, and that the view that the Cambridge course caters mainly
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for those who will get firsts is unfounded. She commented that some stu-
dents from independent schools, who had been spoonfed, were finding the
transition more difficult than some from state schools who had already had
to learn how to organise their time. By the second year, there was a hint
that for some people a concentration on learning how to do well in exams
was overriding an earlier desire to understand and question.

The supervisions which Ruth attended seemed relaxed, with students
willing to ask questions and responding well to stimulating teaching. How-
ever she met people whose experiences had been less positive, and, in par-
ticular, a number of women who had changed to another subject blamed
unapproachable supervisors, who had made them feel inadequate and in-
timidated. Some suggested that women supervisors are sometimes more
sensitive and confidence-inspiring to weaker students.

The encouragement, at that time, of applications to Cambridge from
those who had studied only single subject mathematics A-level has already
been mentioned in the context of the DAMTP report, and Ruth was inter-
ested in investigating how this was working. She found that the number of
successful applicants was very small, and one woman student found that
her supervisors and fellow students assumed that she could not possibly do
well with such a limited background; she proved them wrong.

More generally, the attitudes met by women mathematics students were
not always helpful, and were sometimes damaging. A male undergraduate
told Ruth that the number of women mathematics students was quite good
considering that “mathematics is not a girls’ subject”, and she found “more
than a vague impression that some men assume that women are less able
mathematically”. She remarked that “women were more likely to be intim-
idated than stimulated by the male combative quality”. Since the number
of women overall was low, and Newnham, New Hall and Lucy Cavendish
College (the only colleges taking only women students) had quite a num-
ber of them, the rest were spread quite thinly over the other colleges, and
Ruth found sixteen cases of a sole women mathematician in her year in
her college. Some thrived, but others felt uncomfortable and became more
and more reticent. Not being confident enough to ask questions in super-
visions made the situation even more difficult. If the number of women
students were to increase, problems of isolation would not apply and gen-
der issues would become less important. A number of women changed to
other subjects because they felt undermined and discouraged in their first
year. Ruth pointed out the need for more women supervisors and lecturers,
both to avoid such problems and to provide positive role models.
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Ruth left Cambridge convinced that, as a teacher, she should encourage
able young women (and men) to apply to Cambridge, provided that they not
only enjoyed mathematics, but also had real commitment and enthusiasm.
The gender problems were not insurmountable, and she was reassured by
the mentoring scheme which the women in DAMTP (as described earlier)
were putting into place.

Indicators of Academic Performance

The continuing disquiet in the University of Cambridge about the discrep-
ancy between the percentages of men and women obtaining first class results
in the Tripos led to the establishment in 1996 of the Joint Committee on
Academic Performance. The Committee recognised that although much re-
search on this had already been done in faculties and departments, and by
the Education Sub-Committee of the Senior Tutors’ Committee, a more
general university-wide investigation would be appropriate. Funding was
obtained for a project entitled “Indicators of Academic Performance”, to
take place between April 1997 and October 2001. The qualitative research
was done by Dr. Christine Mann and the quantitative work by Dr. Patrick
Leman, together with a team of statisticians, and the final report [5], sub-
mitted in November 2001, was written by Chris Mann.

Although the project was initially set up to investigate the under-
representation of women amongst those awarded firsts, its brief was then
widened to a general study of the factors affecting examination perfor-
mance. The method adopted was to look at the differences between groups
categorized in different ways (gender, ethnicity etc) and then explore the
reasons for the differences. The focus was on the cohort of students who
started their undergraduate careers in 1997, and graduated in 2000 or 2001
(the so-called “millenium cohort”), and the factors considered were gender,
social class, ethnicity, type of school attended and A-level results. (The
A-level results were subsequently ignored because it turned out that over
90 per cent of the students had at least 3 A-grades at A-level.) In the co-
hort, the numbers were dividedly roughly evenly between men and women,
and between independent school and state school background. The overall
finding was that the class of degree awarded was correlated with subject
studied, gender and ethnicity, but not with social class or type of school
attended. Details of these findings are given in a report by Leman [6].

Even though the most significant factor affecting the percentage of firsts
was the subject studied, I shall now focus on the conclusions about gender
in the report; not unexpectedly, it was found that, proportionately, men get
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more firsts than women, and also more lower seconds and thirds. This was
true even in subjects like English where women were not in the minority.

After collecting the initial data, the team of investigators interviewed
students and staff in a number of subjects, to try to find out why there
were such differences in performance. Chris Mann then continued in email
contact with the 200 or so students from the cohort who were willing to
be involved; this entailed questions asked by Chris and also spontaneous
comments by the students.

Chris Mann’s main conclusion from the general investigation concerned
gender differences in the approach to learning, which seemed particularly
strong in the physical sciences and mathematics. Women tended to see their
course as an opportunity to increase their understanding and to focus on
the subject area “in itself”, so examination performance was a by-product
of learning and personal development. On the other hand, men tended to
be alert to “performance” aspects early on, with examination performance
often the main target of learning. These differences affected preparation
for examinations, with men concentrating more on examination technique,
and women working hard to try to show the extent of their understanding.
Women could suffer from trying too hard to do well, on the one hand, and
from fear of failure on the other. Men tended to have more confidence in
their innate ability and their skill in using examination techniques to good
effect. These different attitudes could produce problems in supervisions
when men wanted to move through all the problems, while women wanted
to understand fundamental principles and could become inhibited if their
questions were seen to hold up proceedings.

I now turn to the (rather substantial) part of the report addressing is-
sues in the Mathematics Faculty. During the years 1990-2000, 35-40 percent
of men had been awarded firsts, compared with 20-25 percent of women.
These numbers already led to problems in fulfilment of the stated aim of
the Cambridge Mathematical Tripos, to provide a challenging course suit-
able for students aiming to do research and those going into other careers.
Possible reasons for the failure to do this included the fact that success in
Tripos examinations was not necessarily good preparation for research, and,
what is more relevant here, some potential researchers, women in particu-
lar, did not obtain high enough examination grades to be able to continue
in mathematics.

At the undergraduate level, the intake in mathematics was roughly 25
percent women; just over 20 percent of the Part III students were women,
and about 10 per cent of the research students. About 45 percent of the
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women were from single sex schools, and very few were from a lower middle
class or working class background. The women who had taken STEP® as
part of their entry requirement had, on average, significantly lower grades
than the men. In fact STEP was seen as a deterrent for women, both because
of a lower level of preparation and because of a reluctance to hold an offer
for fear of failure.

In the millenium cohort of students, only a quarter of the mathematics
students agreed to take part; of those, 40 percent were women, so women
were actually over-represented. The students were asked to define excel-
lence in mathematics, and the really able ones inderstood that this was not
the same as excellence in Tripos examinations. For the first class students,
the Tripos was seen as a sort of competition involving solving problems
under time pressure, rather than showing other mathematical skills which
they valued, in particular the creative reflective research mode. Those less
successful at examinations included those who wanted to understand more
deeply and not focus on problem solving techniques (with women often
falling into this category). An “excellent” mathematics student was felt to
be one with confidence, motivation, persistence and resilience. One male
staff member viewed mathematics at research level as a very macho activ-
ity: “getting in there” and doing hard calculations, with success usually
associated with men. One woman commented that “the expectation here is
that you'll go at problems like a guided missile. I don’t do that! I sit down
and say ‘oh, what a lovely problem!” And spread out feelers. That may be
completely wrong here but doesn’t diminish my mathematical ability. No -
it does not.” Some male staff members had no concept of what it would be
like to be a good female mathematician; they had different expectations of
what constituted good work by males and females.

The report high-lighted the effect of cultural context on achievement.
The “maleness” of the Faculty, and the “unsettling thrill of being taught
by the very best” sometimes proved overwhelming for the female minority.
Some staff seemed overly concerned with their status outside the institute,
and with indicators like college league tables, and so were distanced from
students’ real concerns. The gender imbalance meant that the Faculty was

®Most colleges in Cambridge make conditional offers in mathematics based not only
on A-level grades but also on the Sixth Term Examination Papers (STEP), which are
designed to differentiate between the large number of applicants who have A-grades in
their A-levels. The STEP questions are intended to be more challenging than A-level
ones, and to rely less on how well the student has been taught, but more on innate
ability and potential.
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dominated by a competitive ethos, in which some lecturers seemed to be
trying to prove that they were cleverer than anyone else. The brusqueness
of interactions with some male staff members and the lack of role models for
women had negative effects. The attitude of male undergraduates to female
lecturers was sometimes very critical; one commented that “there are two
ways of thinking about women on the staff. Either they are there due to
discrimination against men (and so may not be of the same standard) or
they are there because they were better than men at the selection process.
We have no way of telling which is which but when we are given step-by-step
solutions to straightforward equations on a handout (so that she doesn’t
have to try to do it in front of us on the OHP) you do begin to wonder”. It
was very hard for women students to see a female role model treated in a
demeaning way by male students. In the face of this type of behaviour, it
was sometimes tempting for women to “go native” and try to function in
a more male way, which could cause further problems.

To make a successful transition from school mathematics to the subject
at university, students needed ability, love of the subject and, in most cases,
hard work. Those not in the inner circle of participants in the Mathematical
Olympiads (British and International) sometimes felt left out, and this
could be particularly off-putting to women. Sometimes the very able were
less mature, and established a working and social atmosphere which was
inimical to women, who used words like arrogant, childish and competitive
to describe it, and suffered from remarks that appeared to be made to
put them down. Amongst the staff, there seemed to be an attitude that
mathematical ability compensated for social ineptitute.

The gender balance meant that most supervisors were men and this
sometimes contributed to the negative learning environment for those
women who were less able, less well-prepared, lacked confidence or saw
supervisions as a forum for asking questions. While there were many ex-
cellent male supervisors, there were still some who become aggressive or
sarcastic when women got problems wrong. Women were sometimes humil-
iated when they make a mistake - one supervisor said “You may be doing
mathematics but you are a girl - just a girl”. One woman reported that
she had asked a question in a supervision and was told that the answer
was trivial; her male supervision partner asked an identical question some
months later and was praised for his enquiring mind!

For students who lacked confidence, specific feedback could be very help-
ful. This could be from a supervisor or Director of Studies (the college
official overseeing the academic aspects of a student’s life) but was per-
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haps even more useful when it arose from a group of peers discussing their
work. In this context, it was interesting that although women in their first
year were sometimes anxious not to be singled out by being supervised with
other women, by their third year women often admitted to being more com-
fortable having a female supervision partner. The withholding of feedback,
sometimes as a protective measure, could make women feel that the col-
lege thought they did not really fit into the system. Support mechanisms
for students who were really struggling were not well-developed in some
colleges.

So who was thriving in the Mathematics Tripos? The course was very
effective at stretching the brightest to their full potential, but maybe not
so good at meeting the needs of a wider range of students, some of whom
eventually decided to change subjects. Of course some who changed had
come to Cambridge with the intention of going on to study computer sci-
ence, physics, or economics, say, but others changed because they realised
that Cambridge mathematics was not for them, and a larger proportion
of women than men were in this category. The reasons for this included
the expectation in some quarters that women were no good at mathemat-
ics, bad preparation for the course and the pace of teaching in the first
year, which could make it seem too hard straightaway and give rise to
a fear of mathematics. Struggling women sometimes tried to work even
harder and this soon reached a point of being counter-productive. Even
able women sometimes left before Part III, often because they did not en-
joy the highly competitive atmosphere, an “alien environment” according
to one staff member. Women often wanted to feel that the socially able
and those with wider interests were as welcome in the Faculty as the more
typical mathematics student. However it was pointed out that it was a
self-perpetuating system, with no incentive to change.

The Report concluded with a number of specific recommendations.
Firstly, there should be more senior women employed in the Faculty, to
provide positive role models for women students, to give women colleagues
the opportunity to experience a culture where women’s achievements are
encouraged and celebrated, and to give access to an alternative learning
environment with which women students might feel more comfortable. Sec-
ondly, the school-university transition should be made easier by a system of
mentoring starting even before students’ arrival in Cambridge, regular peer
group meetings within colleges to discuss work, ‘drop-in’ academic help cen-
tres run by established students and finally the availability of sessions with
lecturers for students finding the material difficult. On the teaching front,
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there should be training in basic lecturing skills and compulsory training
for supervisors which should include material on gender dynamics. Finally,
the Faculty should make it clear in all advertising material whether it in-
tends to continue with its current gender balance, competitive ethos and
its focus on the top 30 percent of students admitted.

The Report was discussed in detail by the Mathematics Faculty Board,
and comments were sent to the relevant university committees. It was felt
that the final recommendation in the report was rather unfair, as the Fac-
ulty was constantly reviewing and sometimes reforming the Tripos in an
attempt to cater for the wide range of ability of the students. There were
also continuing efforts to try to improve the gender balance, and steps were
being taken to try to make women students feel comfortable in the Faculty.
This revolved mainly round social events where students could interact with
senior women and with their female peers. The Faculty Board questioned
the implication of the report that the underperformance of women was a
result of the teaching environment in Cambridge, when in fact the Tripos
results were consistent with the STEP results, indicating that the problems
existed before the women students even reached Cambridge. A great deal of
self-study material for STEP preparation was provided by the Faculty and
there were plans to start a short residential course in the Easter vacation
for students with no access to help with STEP preparation at their schools.
It was felt that the different styles of learning discussed in the report were
not so clearly divided along gender lines, but were more a function of con-
fidence levels in both men and women, and that the examinations were
appropriate for both styles. The negative comments on supervisions were
obviously a cause for concern, but it was felt strongly that they were not
typical, because of the self-selecting nature of the group of students moni-
tored. Supervision training sessions were now run jointly with the University
Staff Development team, and attendance was compulsory for new research
students.

Conclusions

In these three reports, the same points have been made repeatedly: the
problems for women mathematicians of being a minority in a predomi-
nantly male culture, the lack of role models, and the difficulties caused
by insensitive attitudes and remarks, often leading to the undermining
of confidence. It is useful, and perhaps alarming, to ask how much has
changed in Cambridge mathematics as a result, directly or indirectly, of
these reports.
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The numbers have improved at the senior level in DAMTP, where there
are now one woman Professor, two Readers, one Lecturer and an Assis-
tant Director of Research. In the Department of Pure Mathematics and
Mathematical Statistics (DPMMS), there is currently no woman with an
established post in Pure Mathematics but there is one Senior Lecturer in
the Statistical Laboratory. There are at least eight women College Teach-
ing Officers in mathematics. In DAMTP, the proportion of women postdocs
and research associates is about 18 percent, of research students 20 percent
and of Part III students 17 percent. These represent improvements over
the figures in the early nineties, apart from in the case of Part IIT students
(where the percentage in DPMMS is even lower). The proportion of women
undergraduates in the Faculty has not changed significantly in the last ten
years.

The activities arranged specifically for women students have fallen off
since the days when the DAMTP women were meeting regularly; the atten-
dance at parties for women undergraduates became rather low, and Part
ITI women did not seem very interested in organised lunches after the early
days of their course, but the senior women still meet occasionally. The men-
toring scheme has lapsed. On the positive side, partly as a result of all the
work of Marj Batchelor to create a more supportive environment for Part
IIT students, the general atmosphere among the graduates is much more
friendly and the women seem to feel more confident and much less iso-
lated. There is now a Graduate Mathematics Society, which organises very
successful events, academic and social, and the women are mainly very
well-integrated into this.

Even though there are more women giving lectures, there are not enough
for all students to be lectured to by at least one women each year, when
sabbaticals and other commitments are taken into account. The compul-
sory supervision training for research students is very worth-while, but the
problems of insensitivity and inappropriate teaching style sometimes arise
with supervisors who are well-established and very unlikely to be willing
to go to a training session. Many students still find the transition to uni-
versity mathematics vey challenging, and although there are certainly male
students who lack confidence, this does seem to be a more common problem
with women.

Overall, there has been a lot of progress, but while there are still women
(and men) students whose experience of Cambridge mathematics is difficult
and unnecessarily uncomfortable, there need to be support systems in place,
even if they are used infrequently. In particular, a mentoring system could
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provide a lifeline in some circumstances. Gatherings arranged specifically
for women mathematicians may be felt by many to be unnecessary or even
offensive to men, but can be an invaluable opportunity to share experiences
and a source of encouragement, particularly for those feeling vulnerable in
the predominantly male culture of mathematics.
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We report on a one-semester course with the same title taught at the Humboldt
University to Berlin in the winter semester 2006/2007. We believe that the
mixture of topics of this course as well as the teaching methods are a good
and very efficient way to fill some gaps in many universities mathematics (and
mathematics education) curricula. Since many of the inner capacities (psycho-
social skills) cannot be taught as subjects, they must rather be modelled and
promoted as part of learning.
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1. Introduction

What is mathematics? A student of mathematics should deliberate about
mathematics, e.g. about questions like:

What are my beliefs about mathematics?
What is the role of mathematics in society?
Why should people learn mathematics?
Where is mathematics used and for what?

We report on a one-semester course taught at the Humboldt University to
Berlin in the winter semester 2006/2007. We believe that the mixture of
topics of this course as well as the teaching methods are a good and very
efficient way to fill some gaps in many universities mathematics (and math-
ematics education) curricula. Since many of the inner capacities (psycho-
social skills) cannot be taught as subjects, they must rather be modelled
and promoted as part of learning (UNESCO, Education for All) [1]. The
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main goal of the course is to start and support a process of reflection. The
students were supposed to get a look on mathematics ‘from above’ and to
reflect upon their beliefs [2] about mathematics. Topics were for example:
maths as a profession, maths between the humanities and sciences, maths
and gender or maths in history, philosophy and politics. Only a small part
consisted of lectures, a bigger part was organized as a seminar, also we had
professional mathematicians as guests for interviews or as co-lecturers, and
we went on excursions. The seminar was led together with a graduate stu-
dent in gender studies. Accompanying to the course were exercise groups to
impart the necessary working skills (in part from the humanities). We had
14 participating students, 9 female and 5 male. Eight of them were diploma
students in the 2nd year, three were (advanced) teacher students and three
had a background in gender studies. Six seminar talks were presented.

2. Studying math at German universities - the current
situation

We mainly describe the bachelor (and master) program [3] at the TU Berlin,
which is best known to us. Since we taught at the HU Berlin, we know
the mathematics diploma program (and the program for teacher students)
there. Furthermore we compared with bachelor and master programs at TU
Miinchen and U Hamburg. Because of the Bologna process the situation at
other German universities should be comparable.

Since the start of the Bologna process in 1999 the German Higher Edu-
cation system changed to match the performance of the best performing sys-
tems in the world, notably the United States and Asia. One of the priorities
of the Bologna process is the introduction of the three cycle system (bach-
elor/master/doctorate) [4]. In comparison with the former diploma system
the curriculum is tightly organised and students (and teachers) have less
freedom of choice. A student who studies mathematics at a German mathe-
matics department takes classes in mathematics (about 75-80 % ot the total
credit points), some classes in a second subject (about 10-15 %), usually
some field of application of mathematics like computer science, physics or
economics. Due to the way universities are organized there is often little
exchange between the different subjects, and even between the different
special fields of mathematics. Thus a student gets highly specialized knowl-
edge, but it is difficult to get a broader picture, a look on mathematics
“from above”. We cite from the introduction of the script “Geschichte der
Mathematik I” (History of mathematics I) of W. Hein [5]:
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“An der Universitdt lernt man Mathematik, indem man
verschiedene logisch strukturierte und sorgfiltig organisierte
einzelne mathematische Theorien kennenlernt, die zudem meistens
beziehungslos nebeneinander stehen.”

(At the university one learns mathematics by getting introduced
to different logically structured and carefully organized separate
mathematical theories, which are moreover mainly not connected
to each other.)

To prepare the students for a professional life students have to take
some additional classes. The focus hereby is different in the mathematics
departments, but commonly there are hardly any offers made directly by
the mathematics departments [6-8]. At the TU Berlin, students can choose
from all classes offered at the university (about 5 % of the total amount
of credit points in bachelor and specialised master programs, 23 % in the
general mathematics master program). This seems to be similar at the TU
Miinchen, here is a choice provided which is called “iiberfachliche Grund-
lagen” (interdisciplinary basics). Bachelor students at the U Hamburg
can choose classes from a selection “general professional qualifying skills”
(15 %), so far there is no master program.

3. The one-semester course at HU Berlin
3.1. Mathematics as a profession

First we studied mathematics as a profession by reading and present-
ing parts of the first chapter of “Viewegs Berufs- und Karriereplaner” [9]
(profession and career planner). The first chapter “Warum Mathematik
studieren?” (Why study mathematics?) gives a broad overview over differ-
ent areas of mathematics which are relevant for professional careers as a
mathematician. The other chapters of the book are informative, too. We
left it to the students to continue after having them introduced to the book.
To study the subject in a broader perspective, including historical devel-
opments in the last century and the gender aspect, we continued with the
book “Traumjob Mathematik! Berufswege von Frauen und Ménnern in der
Mathematik” [10] (Dream job Mathematics! Career paths of women and
men in mathematics) by Abele, Neunzert and Tobies. This book is inter-
esting in several aspects, we will mention only some of them. In the intro-
duction the authors state eight opinions of preconceptions about male and
female mathematicians, which they investigate in the following chapters.
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Examples are:

Vorurteil 1: Mathematiker sind weltfremd und wenig sozial, sie
beziehen ihre Zufriedenheit aus der Arbeit und schépfen nicht aus
sozialen Beziehungen. Mathematik ist “unweiblich” und “wider die
Natur der Frau”.

(Preconception 1: Mathematicians are ivory-tower and unso-
cial, they draw their satisfaction out of work and not from so-
cial relations. Mathematics is “unwomanly” and “against female
nature”.)

This preconception takes up some stereotypes about mathematicians.
To reflect upon these stereotypes and more general the beliefs about math-
ematics is a main goal of the course and was treated in several ways later
on.

Vorurteil 6: Wenn Frauen sich fiir Mathematik interessieren, dann
wahlen sie in erster Linie einen Lehramtsstudiengang.

(Preconception 6: If women are interested in mathematics, then
they choose to study the teaching profession.)

It is easier to test this preconception for truth since it can be analysed
by quantitative methods (which is done in the book, cp. p. 162f.). Anyhow
we did not resolve the question about the content of truth in these precon-
ceptions directly. At this point of the class it just was a way to start the
reflection process.

To gain more knowledge about the career paths of women and men in
mathematics we continued with the historical part: For the first half of 20th
century there are both quantitative and qualitative (biographical) studies
about alumni of teacher training (Chap. 3.1), of graduate studies (Chap.
6.1) and of diploma programs (only qualitative, Chap. 4.1). Again, we did
not study the whole book, which treats in detail the current situation.
Further studies were left to the interested students. Only Chapter 8, in
which the preconceptions stated at the beginning are analysed, was content
of the class, as part of the evaluation process at the end of the semester.
(In a further course we gave a report on the data in Chap. 2 which gives an
overview on the quantitative development of the studies of mathematics in
Germany from 1925 resp. 1970 to 2000. This seemed to be overwhelming
for the students and we recommend to present just some current data from
the own university or country. Often students are not aware of the fact that
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still there are remarkable differences in the participation of women and men
in mathematics.)

It turned out that the diploma students had only vague ideas about
their professional goals after leaving university. This is rather typical for
German students in mathematics. Their decision to study mathematics is
led by their interest (and talent) in mathematics and the many different
professional opportunities. Often this is different for teacher students, their
professional goal is set. Anyhow, mathematics as a profession should be
part of their professional knowledge to counsel their students. Another way
to reflect about mathematics as a profession is to meet mathematicians.

3.2. Interviews with mathematicians

The course was accompanied by a series of interviews with mathemati-
cians. The main purpose is the presentation of role models. But obviously
there is a lot more about getting to know some mathematicians, their work
and their professional life, and to talk with them about their beliefs about
mathematics. We either visited them at their working place or they visited
us. Beforehand the students got some information, usually the vita of the
interviewed persons and some material about their work (their homepage
or the homepage of their company, articles presenting them and their work,
articles written by themselves about their work or mathematics in general;
cp. the web presentation of the course [11]). The interview partners were
informed beforehand about the special interests of the students (the sub-
jects they presented in the seminar part) and were asked to prepare for
questions about their personal experiences concerning:

role models (family, teacher, others),
career path (school, university, others),
beliefs about mathematics,

importance of mathematics and their math education in their current
life,

mathematics in the society,

e who does how mathematics,

e mathematics and gender.

We were lucky that a wide variety of mathematicians (people with a univer-
sity degree in mathematics) accepted our invitation. Four of our interview
partners are female and the other four are male, all of them established
in their professional fields. We had guests from all three Berlin universi-
ties, active in mathematics and mathematics education. Three of them are
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professors, one is a scientific assistant on a permanent position and one a
women’s representative. Also from the educational professions, a high school
teacher (Studiendirektor) visited us. Furthermore we visited a project man-
ager of Siemens and an officer of the “Gesamtverband der Deutschen Ver-
sicherungswirtschaft (GDV)” (German Insurance Association). Most of the
interviews were led by the teacher of the course, but also the students asked
many questions. One of the interviews started with a presentation given by
the interviewed person. The small group made a very open and personal
atmosphere possible. Another interview was special, consisting mainly of a
lecture about the analysis of a mathematical text [12] (by Emmy Noether),
presented in two parts by the interview partners. The idea and the main
contents of this lecture came from the interviewed person. That we had a
balanced number of female and male guests for the interviews partially was
luck, but the gender issue was present in most parts of the course and also
a topic by itself.

3.3. History and philosophy of mathematics

Questions about the foundations of mathematics, about the truth/proof-
problem (are proof and truth the same in mathematics?) or the existence of
mathematical objects are not treated in a standard mathematics curricu-
lum. Most people believe that mathematical knowledge is independent of
experience (a priori by Kant) and therefore absolutly reliable. It is based on
proofs and thus one can not argue about mathematical results. These be-
liefs are rarely challenged at the university. Thus we had planned in advance
that the fundamental controversies over the epistemology of mathematics
(Grundlagenkrise) at the beginning of the 20th century should be treated
in the course. An easy introduction can be given by the SWR2-radio play
“Eine Menge stelle ich mir vor wie einen Abgrund” [13] (I imagine a set
as an abyss) by Kai Petersen. But it is difficult to give a short overview.
It turned out that two students had studied these problems before and
were willing to present an introductional overview into the philosophy of
mathematics as a workshop in the seminar part of the course. Another
student already had some knowledge about Godel and his incompleteness
theorems and gave a presentation in which he included the radio play men-
tioned before. To round this up we organized the last seminar session as a
“role-playing game”, a fictive conference meeting about “Perspektiven der
Grundlagenforschung der Mathematik” (Perspectives of the research on the
foundations of mathematics). The students assumed the historical roles of
Godel and Quine (platonism), Hilbert (formalism), Brouwer (intuitionism),
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Russell (logicism) and due to the lack of a historical role model Pieper-
Seier (mathematics and gender). The students prepared for the conference
with parts of Chap. 2 of Bettina Heintz, “Die Innenwelt der Mathematik”
[14], in particular pp. 38-41 (Platonismus, Chap. 2.1.1), pp. 47-52 (For-
malismus), pp. 52-55 (Chap. 2.2), pp. 5560 (Platonismus, Chap. 2.2.1),
pp. 60—69 (Grundlagenkrise); and an interview with Irene Pieper-Seier, “So
ist es, so macht man das und das ist objektiv und ganz genau?” [15], by
Klupsch and Giinzel. Furthermore we suggested to them an overview arti-
cle by Gerald Walti, “Eine kurze Einfithrung in die Philosophie der Math-
ematik” [16].

3.4. Gender meets Mathematics

Part of the course (the “seminar”, two hours per week) was developed and
taught in team work with Daniela Doéring® (MSc in cultural sciences), a
PhD-student in Gender studies. Since only three students had a background
in gender studies (no student was enrolled in gender studies) we introduced
the subject with two articles:

(1) “Warum Gender-Studies?” [17] (Why gender studies?) by Christina von
Braun,

(2) “Feministische Naturwissenschaftskritik. Eine Einfithrung” [18] (Femi-
nist natural science criticism. An introduction) by Dorit Heinsohn.

The first article gives an introduction to gender studies (Geschlechter-
forschung, in Germany) in general. Our focus for the course was

e on the definition of “Geschlecht” (in the German language this is the
only word for gender and sex) and its relation to “Natur” (nature),

e on the change of gender roles and models at the beginning of the 20th
century,

e reasons for this change,

e the definition of “Gemeinschaftskorper”.

The second article describes the development of the research area “Feminis-
tische Naturwissenschaftskritik (FNWK)”, its main questions and problems
and how they can be sorted as three dimensions of FNWK (following E. Fox
Keller [19]: Women in Science, Science of Gender and Gender in Science).

2http://www2.hu-berlin.de/gkgeschlecht/kolleg/ddoering. php
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Here the focus was

the goals and questions of FNWK,

the meaning of “Gender”,

the three dimensions of FNWK,

the meaning of “soziale Unternehmen”,

how can natural science and science criticism meet and what might be
the problems,
e are long lasting intensive controversies in natural sciences possible.

Before we discussed the articles in class, the students had to read (part
of) them, led by the questions (see above) we gave them. It turned out
that most of the students found the articles interesting but hard to read.
Part of the reason might be that as students of mathematics they are not
used to this type of reading (which is from our point of view an argu-
ment against early specialisation). What we had not expected was that the
article of Heinsohn let to an intensive argument about how to acchieve gen-
der equity in the use of German language. Even though there are official
regulations and recommendations since at least 1990 (cp. the collection of
links on a website [20] of the GenderKompetenzZentrum), they still have
not reached academic life (and daily life). Daniela Doring, the co-lecturer,
took the opportunity to spontaneously include a newspaper article (“Das
Eva-Braun-Prinzip” von Thea Dorn, TAZ, 29.11.2006) to further stimulate
the discussion. This part of the course ended with excerpts of the book
“Die Innenwelt der Mathematik” [14] (The inner world of mathematics)
by Bettina Heintz (Introduction, Chap. 1 and Chap. 7.4). Based on this
text we mainly discussed the question if a mathematician must anchor her
or his work in society. Before we continue by describing some contents of
the course curricula concerning the scientific community in mathematics,
we would like to state a view point on mathematics which the students
newly formulated at the end of the “Gender meets mathematic”— sessions.
The students said that one could see mathematicians as members of a faith
community i.e. mathematics is a form of religion.

3.5. The scientific community in mathematics

We had two main strategies to introduce the students to the scientific com-
munity in mathematics (apart from the interviews already mentioned). The
practical one consisted of visits of scientific talks/events. Having made sev-
eral suggestions we agreed with the students on the following ones:
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o “Was zihlt. Présenz und Ordnungsangebote von Zahlen im Mittelal-
ter”? (What counts. The Presence and Medial Functions of Numbers
in the Middle Ages), Internationale Arbeitstagung, Berlin, Helmholtz-
Zentrum fr Kulturtechnik, November 2006.

e Berlin Mathematical School (BMS), Kovalevskaya-Lecture, “Congru-
ences for the number of rational points of varieties defined over finite
fields”¢ by Hélene Esnault,

e (voluntarily) BMS Friday colloquium, “Gédel’s Vienna’d by Karl
Sigmund,

e Ringvorlesung “Geschlecht in Wissenskulturen”, HU Berlin, “Das
Geschlecht natiirlicher Zahlen. Zum Zusammenhang von Zéhlen und
Zeugen”¢ (The gender of natural numbers) by Ellen Harlizius-Kliick,

e (voluntarily) Ringvorlesung “Literarische Inszenierungen naturwis-
senschaftlichen Wissens”, TU Berlin, “Ein Jahrhundert der Math-
ematik. Dilettantische Betrachtungen {iiber Harsdorffer/Schwenters
‘Deliciae Physico-Mathematicae’ ” ¥ by Martin Disselkamp.

On a more theoretical level we studied the question “Was ist ein mathe-
matischer Beweis? (Konkurrenz unter Mathematikern)” (What is a math-
ematical proof? (Competition between mathematicians)) by reading and
discussing the article “Manifold Destiny. A legendary problem and the
battle over who solved it” [21] by Sylvia Nasar and David Gruber. In
addition two students presented the biografies of Grigori Perelman and
Shing-Tung Yau. (As an exercise one student looked for the stereotypes
about mathematicians presented in the article, another one summed up
what is said about the proof-validation-process. The lecturer sketched the
relations between the mathematicians mentioned in the article.) More in-
formation about the mathematical background can be found in an article of
the sciences magazine “Breakthrough ot the year: The Poincaré Conjecture—
Proved” [22] by Dana Mackenzie.

3.6. What is mathematics?

We used more techniques to deliberate about mathematics and our ques-
tions asked in the beginning. Creative techniques like mind mapping,

Phttp://wuw2.hu-berlin.de/kulturtechnik/bsz.php?show=veranstaltungengwhich=
waszaehlt&page=expose&lang=en

Chttp://www.math-berlin.de/BMS-Friday3.pdf
dhttp://www.math-berlin.de/BMS-Friday5.pdf
®http://www2.hu-berlin.de/gkgeschlecht/downloads/rv_wise0607 .pdf
fhttp://www.literaturbaum.de/index10.html
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vernissage, visualisation or autobiographies were used. We watched the
movie 7, USA 1998, Darren Aronofsky (author and director). And scientific
methods like seminar talks, presentations and work shops given by students
were used. To complete this report we will state the subjects the students
chose:

Introduction to Philosophy of Mathematics,

Two Cultures, Math between sciences and the humanities,
Foundational crisis of mathematics and Godel,

The roman and the sumerian numbers,

Mathematics and politics: “German mathematics”,
Mathematics as a profession.
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