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16 Hervé Jacquet, Erez Lapid, and Stephen Rallis, A spectral identity for skew
symmetric matrices 421

v



P1: MRM/FYX P2: MRM/UKS QC: MRM/UKS T1: MRM

PB440/HIDA-FM HIDA-0662G PB440-Hida-v4.cls December 12, 2003 9:47

contentsvi

17 Dihua Jiang and David Soudry, Generic representations and local
Langlands reciprocity law for p-adic SO2n+1 457

18 Nicholas M. Katz, Larsen’s alternative, moments, and the monodromy
of Lefschetz pencils 521

19 Henry H. Kim and Freydoon Shahidi, On the holomorphy of
certain L-functions 561

20 Victor Kreiman and V. Lakshmibai, Richardson varieties
in the Grassmannian 573

21 Philip Kutzko, Types and covers for SL(2) 599

22 Robert P. Langlands, Beyond endoscopy 611

23 Dipendra Prasad, An analogue of a conjecture of Mazur: A question in
Diophantine approximation on tori 699

24 Dinakar Ramakrishnan, Existence of Ramanujan primes for GL(3) 711

25 Peter Sarnak, Nonvanishing of L-functions on "(s) = 1 719

26 Joseph A. Shalika, Ramin Takloo-Bighash, and Yuri Tschinkel, Rational
points and automorphic forms 733

27 Joseph A. Shalika and Yuri Tschinkel, Height zeta functions of equivariant
compactifications of the Heisenberg group 743
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PREFACE

Joseph Shalika is the author of some of the most important basic results in the mod-
ern theory of automorphic forms and representations. To comprehend the extent of his
contributions, one can do no better than to peruse his articles, and also read his thesis,
published for the first time here.

A sixtieth birthday conference for Shalika was held at the Johns Hopkins Univer-
sity during May 14–17, 2002. Among the participants were Jeffrey Adams, William
Casselman, James Cogdell, Sol Friedberg, Masaki Furusawa, Stephen Gelbart, Thomas
Hales, Hervé Jacquet, Dihua Jiang, Nicholas Katz, Henry Kim, Stephen Kudla, Philip
Kutzko, V. Lakshmibai, Erez Lapid, Stephen Rallis, Dinakar Ramakrishnan, Paul Sally,
Peter Sarnak, Freydoon Shahidi, Ramin Takloo-Bighash, and Yuri Tschinkel. We thank
the Johns Hopkins math department, the NSF, and the Clay Math Foundation for pro-
viding financial support for the conference.

But this volume is more than a collection of articles by the participants of the con-
ference. It contains, in addition, papers (written alone or jointly) by the following math-
ematicians: Jeffrey Adler, James Arthur, Don Blasius, Siegfried Böcherer, Laurent
Clozel, Lawrence Corwin, Benedict Gross, Joe Harris, Michael Harris, Viktor Kreiman,
Robert Langlands, Ilya Piatetski-Shapiro, Dipendra Prasad, Rainer Schulze-Pillot,
Joseph Shalika, David Soudry, Emmanuel Ullmo, Marie-France Vignéras, and Jean-Loup
Waldspurger.

All the articles in this volume were thoroughly refereed, and we thank the unnamed
referees for their careful and timely job. All articles, except for the one by S. Gelbart, are
research articles. We thank all the authors, first for contributing to the volume, and then
for putting up with our demands for revision. We also thank Joseph Shalika for allowing
us to publish his thesis here.

Finally, we thank the Johns Hopkins math department, especially Steve Zelditch and
Christina Stanger, several people at the American Journal of Mathematics, including
Bernard Shiffman and Mike Smith, and the Johns Hopkins University Press, for without
their help this volume would not have seen the light of day.
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JOE SHALIKA AND THE FINE HALL DAYS, 1968–1971

By Stephen Gelbart

I remember first meeting Joe in 1968. He was an assistant professor at Princeton, and I
was a graduate student there working under Eli Stein. Below, I shall tell about how, in
three years, I slowly moved from Eli Stein’s field of harmonic analysis to the subject of
automorphic forms in the style of Joe Shalika.

In 1968, being a graduate student was a complicated business. During my first year
of graduate work, in 1967–68, graduate students received student deferments from the
draft. But as the war in Vietnam reached its peak, it was announced in 1968 that graduate
students would no longer be considered deferable. Rather than go and fight, most of
the students in my year at Princeton had left the university to find acceptably deferable
employment elsewhere. I was lucky enough to become an Instructor at Rutgers–Newark,
where I taught three undergraduate courses a week, Monday, Wednesday, and Friday.
That left me able to return to Princeton on Tuesdays and Thursdays and to finish up my
Ph.D thesis as soon as possible.

My thesis was to carry out for the real numbers some of the analysis of the additive
Fourier transform on matrix space. In general, that was to be similar to the analysis over
the complex numbers that Stein had developed in his important paper on the missing
unitary irreducible representations of GL (n, C). For GL (n, R), there would not be any
new complementary series produced. But once again, the slightly modified Fourier op-
erator F∗ led to a central operator which on the representation side was multiplication
by a function that I had just been able to compute. That is, if " is the parameteriz-
ing space of irreducible unitary representations of G = GL (n, R), f is in L2(G), and
T ( f )(λ) =

∫
G f (g)T λ(g) d∗g for λ in ", then

T (F∗ f )(λ) = m(λ)T ( f )(λ),

with m(λ) explicitly computable.
Eli Stein was as helpful to me as an advisor could be. The completion of my thesis also

owed a great deal to Joe Shalika. Let me explain how this happened. One prerequisite for
this work was the infinite dimensional representation theory of real reductive Lie groups,
a subject I liked very much. But as the thesis progressed and the problem was solved,
Stein decided that I could work on certain aspects of the theory over p-adic fields. These
were completely new fields of numbers for an analyst to deal with. As a matter of fact,
until 1968, I would scan Mathematical Reviews by looking over the relevant sections on

Manuscript received October 18, 2002.
Research supported by the Minerva Foundation, Germany.
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joe shalika and the fine hall days, 1968–1971x

(real) Fourier and Functional Analysis: after 1968, my attention was focused uniformly
on Algebraic Number Theory.

This transition took place in three steps. First, Stein had shown me a letter he received
from Godement in 1968, just after Stein’s paper was published in the Annals of Math-
ematics. The letter proposed a plan for p-adic groups which would do precisely what
some of Stein’s paper had done for the complex linear groups. Second, 1969 marked the
publication of the English translation of the Group Representations and Automorphic
Forms, by Gelfand, Graev, and Piatetski-Shapiro. (I have now admired and enjoyed this
work for over thirty years.) I first looked at the book with Stein in the old Fine Hall
common room. Together, we read the introduction in which the three authors thanked
Godement for his help and mentioned Langlands for his new theory of Eisenstein series.
Although I had been in graduate school for two years, this was the first time I had heard
of Langlands. So I was impressed that Stein took him very seriously. What I learned
quickly was that Joe had had an intense interest in Langlands’ work for several years, as
I shall now explain.

The combination of the two events above probably made me jump into the p-adic
theory of my thesis. But the third factor was even more important: talking with (or rather
listening to) Joe on the contents of the soon to be completed “Automorphic Forms On
GL(2),” by Herve Jacquet and Robert Langlands. This monumental work was finished
in 1969, and Joe had been learning of its contents from Jacquet, with the help of talking
it over with Bill Casselman. Joe had already published several outstanding papers on
p-adic and adelic harmonic analysis, and was one of the few masters who could readily
appreciate the novelties of “the Book.” I, on the other hand, was a complete novice, even
being ill-prepared for the number theory involved.

In fact, I had never even taken a course in number theory. My original motivation for
reading Jacquet and Langlands was purely local representation theoretic. I saw that a
small part of their (local) representation theory was more or less equivalent to the major
problem in my thesis for GL (2, R). For the sake of definiteness, take G = GL(2, R),
and suppose π is an irreducible unitary representation in the discrete series. For nice f
on matrix space, the function f (x)|det(x)|s belongs to L1(G) whenever Re(s) > 1, and
the zeta-integral

ζ ( f, π, s) =
∫

G
f (x)π (x)|det(x)|sdx

defines a holomorphic function of s in this range; the same analysis can be given for
the integrals ζ ( f ∗, π∗, s), where f ∗ is essentially the modified Fourier transform F∗

mentioned above, and π∗ denotes the representation π (x−1). So using the arguments in
my book “Automorphic Forms on Adele Groups” (chapter 4, Further Notes), one indeed
shows that the analytic continuation and functional equations for ζ ( f, π, s) (just as in
chapter 13, say, of Jacquet and Langlands’ book) follow from the computation of m of
the modified Fourier operator F∗.

But Joe was interested in all of the Jacquet-Langlands GL (2) program, especially the
adelic analysis, and it didn’t take much of his lecturing to convince me of its importance.
So I went into the adelic area by really studying the GL (1) analysis due to Tate in his
thesis. I remember that I followed the treatment of this in the book by Gelfand, Graev, and
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Piatetski-Shapiro, which I thought was particularly beautiful. Joe taught me to consider
the local and global theories as equally important: in this case, the global theory handed
us an abstract functional equation, whereas the local theory led to knowledge of the
concrete Dirichlet L-functions. (Once, at about this time, I was taking the elevator down
to the third floor of [new] Fine Hall with Bernie Dwork, and he bluntly put it this way:
“Tate’s main theorem was the adelic, i.e., proved by global means; he included the local
computations so that his global theory wouldn’t be trivial!”)

Anyway, after this, Joe many times used the blackboard of Princeton’s Colloquium
room to lecture me on Jacquet-Langlands’ GL (2) mysteries.

I was particularly lucky to have Joe’s paper “Class Field Theory,” which he had
prepared for the 1969 Stony Brook Conference (Proceedings of Symposia in Pure Math-
ematics, AMS 20 [1971]). In it, Joe discusses some evidence for certain conjectures
concerning class field theory that are further considered in Jacquet-Langlands’ book. In
particular, he surveys his work with Tannaka explicitly concerning the construction of
dihedral forms on GL (2).

I got my Ph.D degree in 1970 and enjoyed a year as an instructor at Princeton Uni-
versity, with more time to talk with Joe, while I also finished several projects with Eli
Stein in real analysis.

Looking back on these years, the fact is that the number of people who really under-
stood Jacquet-Langlands or even grasped the general concept of the Langlands program
was incredibly small. And Joe was one of the few that really counted; some idea of the
greatness of his work, particularly with Jacquet in the 70s and 80s, but also alone, shows
itself in the many articles of this 60th “Anniversary” volume.
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CHAPTER 1

REPRESENTATION OF THE TWO BY TWO UNIMODULAR GROUP
OVER LOCAL FIELDS

By Joseph A. Shalika

Abstract. Let ! be a local field, i.e., a finite extension of the p-adic rational Qp . We assume throughout
that p is different from two. Let Op denote the ring of integers in !. The field ! has the topology
induced by the essentially unique extension of the valuation from Qp to !. With that topology ! is a
locally compact field. If V is any finite-dimensional vector space over !, then V has a unique topology
for which it is a topological vector space, and with that topology V is locally compact. If M2(!)
denotes the algebra of two by two matrices over !, then with the above topology M2(!) becomes a
topological ring. The closed subgroup G = SL(2, !) of the group of units in M2(!) then becomes a
locally compact group. K = SL(2,Op) is a maximal compact subgroup which is open in G and every
maximal compact subgroup of G is the image of K under some automorphism of G.

In this paper I will consider three problems basic to Fourier analysis on G. They are:

i. Construction of irreducible unitary representations D of G
ii. Construction of irreducible unitary representations D of K

iii. Comparison of (i) and (ii), namely the decomposition of the representation, indK↑GD, in-
duced on G by the representation D of K into irreducible components

I will begin by studying a certain family of projective representations defined by Weil in [16]. By
taking tensor products I will obtain a family of unitary representations of G that I will decompose into
irreducible components D. In certain cases I will pick out from the restriction of D to K irreducible
representations D of K and show that we can recover D by inducing D from K .

The purpose of the fourth paragraph is to obtain all irreducible unitary representations of
SL(2,Op). (In §4.1 and §4.2, ! may also be taken as the completion of a function field.) In §4.1
and §4.2 of this paper, I will construct a series of representations of SL(2,Op) as monomial represen-
tations. In §4.3, I show that these together with certain explicit matrix representations considered by
Hecke [6], Kloosterman [8], Maass [9] and also in the first three sections yield all irreducible unitary
representations of SL(2,Op).

I remark that some of the results of §4 are general and may by used to construct some irreducible
representations of the compact p-adic groups (e.g., integral forms of non-compact semi-simple alge-
braic groups) provided they satisfy a certain criterion of semi-simplicity (namely the Lie-algebra of
the integral form reduced mod pn has a nondegenerate Killing form) and also an analogue of Hensel’s
Lemma (the analogue of Lemma 4.2.3). Finally the combined results of the paragraph and §3 show
that some of the discrete series of SL(2, !) are monomial representations, i.e., induced from one-
dimensional representations of open compact subgroups. It seems possible that one can construct some
of the discrete series in higher dimensions in an analogous way.

1. Introduction. The discovery that Weil representation [16] (or the oscilla-
tor representation) of SL(2, !) has the group O(n) as a group of symmetries was
essentially discovered by Kloosterman, who actually considered the analogous
groups over Z/pn , in his work on theta-series [8]. The fact that O(n) is exactly
the group of symmetries, in the situation of local fields, appears, I believe, for the
first time in this paper. This observation was, soon after, extensively developed
by R. Howe [7] in his theory of dual reductive pairs. Howe’s theory was to prove
fundamental in the modern theory of theta-functions.

1
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This paper also owes much to the book of Gelfand, Graev, and Piatetskii-
Shapiro [4].

F. I. Mautner surely deserves recognition as one of the founders of the theory
of representations of p-adic groups. We note in particular his paper [11], in which
the existence of what later came to be called supercuspidal representations, by
Harish-Chandra, [5] appear for the first time.

Finally, I would like to say that the appearance of my paper led to a fruitful
collaboration and lifelong friendship with P. J. Sally.

Acknowledgment. I would like to acknowledge my appreciation to Professors
Mautner and Yoshizawa for the many hours of discussions we had together.

1.1. Projective representations. The purpose of this paragraph is to make
the formal process of passing from projective representations to representations of
a given group clear, hence I will ignore all continuity considerations.

Let G be an abstract group, U the group of unitary operators on a Hilbert space
h, and C1 the complex numbers of absolute value one.

By a projective representation of G is meant a homomorphism P of G into
U/C. For each g in G, let Ug be an element of U belonging to the class of P(g),
then the operators Ug satisfy

Ug0g1 = ω̃(g0, g1)Ug0Ug1(1)

for all g0, g1 in G, where ω̃ is a map of G × G to C1. From the associative law of
G, one sees immediately that ω̃ is a two-cocycle on G, i.e.,

ω̃(g0g1, g2)ω̃(g0, g1) = ω̃(g0, g1g2)ω̃(g1, g2).(2)

A map of G into U satisfying (1) for some map ω̃ from G × G to C1 (which is then
necessarily a two-cocycle) will be called a multi-valued representation of G with
associated two-cocycle ω̃.

Two multi-valued representations on G in the same Hilbert space, defined
respectively by g #−→ Ug and g #−→ U ′

g, are called equivalent if they come from
the same projective representation of G, i.e., if there exists a map φ of G to C1 such
that

Ug = φ(g)U ′
g.(3)

If ω̃ and ω̃′ are the two-cocycles associated respectively to these multi-valued
representations, then (3) implies

ω̃(g0, g1) = ω̃′(g0, g1)φ(g0)φ(g1)/φ(g0g1),(4)

i.e., ω̃ and ω̃′ differ by the coboundary of the one cochain φ, or ω̃ and ω̃′ are
cohomologous.
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Hence to each projective representation P of G is associated a unique cohomol-
ogy class and P may be factored by a representation of G (i.e., a homomorphism
from G to U ) if and only if that class is trivial.

Suppose g #−→ U0,g and g #−→ U1,g are two multi-valued representations of
G with associated two cocycles given respectively ω̃0 and ω̃1, then the map g #−→
U0,g ⊗ U1,g is another multi-valued representation of G with associated two cocycle
ω̃0 · ω̃1.

In the following I will construct a family of multi-valued representations of
SL(2, !), all with the same associated cohomology class, and will prove that the
square of that class is trivial (in fact these multi-valued representations will have
the same associated two-cocycle whose square will be trivial). Hence, any 2n-
fold tensor product of these multi-valued representations will have an associated
cohomology class which will be trivial, and consequently that tensor product will
be equivalent to a representation of G.

1.2. Generating relations for SL(2,Ω). Let !∗ denote the multiplicative
group of non-zero elements in !.

In the construction of multi-valued representations of SL(2, !), I will need the
following theorem.

Theorem 1.2.1. G = SL(2, !) is generated by elements of the form u(b) =
( 1 b

0 1 ), for b ∈ !, and the element w = ( 0 1
−1 0 ). Further, for b ∈ !∗, if we put

s(b) =
(

b 0
0 b−1

)

= wu(b−1) wu(b) wu(b−1),

then the relations between u(b) and w are given by
(i) w2 = s(−1)

(ii) u(b) u(b′) = u(b + b′) for b and b′ in !

(iii) s(a) s(a′) = s(aa′) for a and a′ in !∗

(iv) s(a) u(b) s(a−1) = u(ba2) for b ∈ ! and a ∈ !∗.

Proof. One easily checks that these four relations are satisfied by w, u(b) and
s(a).

I claim that SL(2, !) is isomorphic to the group, which I will denote by G ′,
generated by the symbols U ′(b), for b ∈ !, and w ′, subject to the above four
relations (with u′, w ′, s ′ instead of u, w, s).

For ( a b
c d ) ∈ G, put ψ( a b

c d ) = s ′(−c−1) u′(ac) w ′ u′(dc−1), if c belongs to !∗,

and ψ( a b
0 d ) = s ′(a) u′(ba−1). Since indeed

(

a b
c d

)

=
(

−c−1 0
0 − c

) (

1 ac
0 1

) (

0 1
−1 0

) (

1 dc−1

0 1

)

,
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for c ∈ !∗, and
(

a b
0 a−1

) (

a 0
0 a−1

) (

1 ba−1

0 1

)

,

it follows that G is generated by ( 1 b
0 1 ), for b ∈ !, and ( 0 1

−1 0 ). Hence in order
to prove that ψ defines an isomorphism of G into G ′ it suffices to prove the two
statements:

• ψ( a
c

b
d ) ψ( 1

0
x
a ) = ψ( a

c
ax+b
cx+d )

• ψ( a
c

b
d ) ψ( 0

−1
1
0 ) = ψ( −b

−d
a
c ),

for all x ∈ ! and ( a
c

b
d ) ∈ G. The first statement follows immediately from (ii). The

second follows easily when either c or d is zero. Hence it remains to prove

s ′(−c−1) u′(ac) w ′ u′(dc−1) w ′ = s ′(d−1) u′(bd) w ′ u′(−cd−1).

Using the definition of s ′(d) and the fact that s ′(−1) commutes with w ′ by (i) and
with u′(b) by (ii) and hence lies in the center of G ′, we have

w ′ u′(dc−1) w ′ = s ′(−d−1c) u′(−dc−1) w ′ u′(−d−1c).

Hence it suffices to prove

s ′(−c−1) u′(ac) s ′(−d−1c) u′(−dc−1) = s ′(d−1) u′(bd),

a relation which follows easily from (ii) to (iv). This proves the theorem. !

N.B. The previous proof makes no assumption on the field ! and Theorem 1.2.1
is true for the group SL(2, k) for any field k.

1.3. Computation of Gaussian sums. As before let Op denote the ring of
integers in !. Let p be the maximal ideal of Op and O∗

p the group of units in Op.
Let π be a prime element, i.e., a generator of the principal ideal p. Every non-zero
element x ∈ !∗ may be written uniquely in the form

x = πω(x)η,

where ω(x) is an integer and η belongs to O∗
p. It follows that every (fractional) ideal

(a non-zero proper Op-submodule of !) of ! has the form pν for some integer ν.
Let ( be a fixed non-trivial character of the additive group !+ of !. For any

ideal a, let a∗ denote the set of all x ∈ ! satisfying ((xy) = 1 for all y ∈ a. a∗ is
again an ideal. Let pω(() be the conductor of (, i.e., the largest ideal a for which (

restricted to a is trivial.

Lemma 1.3.1. Let a = pν, ω = ω((), then a∗ = pω−ν .
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Proof. An element x ∈ ! belongs to a∗ if and only if πνx belongs toO∗
p. Hence

a∗ = p−νO∗
p. By definition of the conductor of (, pω is the largest ideal contained

in O∗
p. !

Let µ be a Haar measure on !+. If we put N (pν) = qν , where q is the number
of elements in the residue class field Op/p, it is well known that every ideal a has
finite measure given by

µ(a) = N (a)−1µ(Op).

The additive Fourier transform. The group !+ is self-dual, i.e., for any x ∈ !

and any non-trivial character ( of !+, let (x denote the character defined by

(x (y) = ((xy).

Then the map x #−→ (x defines an isomorphism of !+ with its dual group. Hence
we may define the Fourier transform of an element h in L2(!+) by the integral

ĥ(x) =
∫

h(y)((2xy) dy,

which is defined for continuous functions h of compact support on !+ and extends
by continuity to L2(!+).

If we normalize the measure µ so that µ(Op) = qω(()/2, then it is easily verified
that

ˆ̂f (x) = f (−x).

Denote this normalized measure by d(x . Finally we recall that for a ∈ !∗,

d((ax) = |a|d(x,

where |a| = q−ω(a).

Lemma 1.3.2. If ( is a non-trivial character of !+, then the limit

H(() = lim
m→−∞

∫

pm
((x2) d(x,

which we will denote by
∫

((x2) d(x, exists and is equal to 1 if ω = ω(() is even
and is equal to

G(() = (
√

q)−1
∑

t mod p
((πω−1t2),

if ω = ω(() is odd.
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Proof. For any subset E of !, let χ (E) denote the characteristic function of E .
First, suppose ω ≥ 0. Choose m ≤ ω, then

I =
∫

pm
((x2) d(x =

∑

x0∈pm/pω

∫

((x2)χ (x0 + pω)(x) d(x,

or, writing x = x0 + πωλ, where λ belongs to Op,

I = dπωλ

dλ

∑

x0∈pm/pω

∫

Op

((2x0π
ωλ) dλ.

Since the residual characteristic p is not two, we have
∫

Op

((2x0π
ωλ) dλ = χ ((pω)∗).

Hence

I = |πω|µ(Op)
∑

x0∈pm/pω

((x2)χ (Op)(x0) = q−ω/2
∑

x0∈Op/pω

(
(

x2
0

)

.

Hence the lemma is true if ω = 0 or 1.
Now suppose ω is odd, put

ξ (x) = ((πω−1x).

Then ξ is a character of !+ with conductor p, hence by the above H(ξ ) = G(ξ ).
On the other hand

∫

pm
ξ (x2) dξ x =

∫

pm
((πω−1x2) dξ (x) =

∣

∣x−(ω−1)/2
∣

∣

∫

pm+(ω−1)/2
((x2) dξ x,

and, since dξ x q (ω−1)/2 = d(x , the limit limm→−∞
∫

m ((x2) d(x exists and is equal
to (

√
q)−1 ∑

t mod p((πω−1t2).
If ω is even put ξ (x) = ((πωx)—a similar computation then proves the

lemma. !

An immediate corollary to this lemma is the fact that, for b ∈ !∗ of the form
πω(b)η, the limit

H((, b) = lim
m→−∞

∫

pm
((bx2) d(x

exists and is equal to qω(b)/2H((b). It now follows that H((b) is 1, if ω(() − ω(b)
is even and, is equal to G((b) = G((η), if ω(() − ω(b) is odd.

For η ∈ O∗
p, put ( η

p) = 1, if η is the square of an element in !, and ( η
p) = −1

otherwise. The following facts are well-known:

i. H(()2 = (−1
p )ω((),

ii. G((η) = ( η
p) G(() for η ∈ O∗

p.
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A transformation law. Let S be the Schwartz-Bruhat space attached to !. S is
by definition the space of locally constant continuous complex-valued functions on
! of compact support.

S may be also characterized as the space of continuous complex-valued func-
tions h on ! such that h and ĥ are of compact support. Finally S with the L2

topology is dense in L2(!+).

Theorem 1.3.3. Let h belong to S. For b ∈ !∗, put fb(x) = ((bx2). Then
fb · h and fb ∗ h also belong toS. The Fourier transform of fb · h is given explicitly
by

f̂b · h = H((, b) f−1/b ∗ ĥ.

Proof. Formally we have

f̂b · h = f̂b ∗ ĥ,

and

f̂ b(x) =
∫

((by2 + 2xy) dy =
∫

(

(

b
(

(

y + x
b

)2
− x2

b2

))

dy

= (

(

− x2

b

)
∫

((by2) dy.

This formal argument can be made precise as follows:
Given h and b an element of !∗, choose m so that the support of h lies in pm

and the support of ĥ lies in pmb. Then we have

f̂b · h = ( fbχ (pm) · h)∧ = ( fb · χ (pm))∧ ∗ ĥ,

or the same, f̂b · h(x) =
∫

( fb · χ (pm))∧(y)ĥ(x − y) dy.

If we restrict x to lie in pmb, since the support of ĥ is contained in pmb, this last
integral becomes

∫

pmb
( fb · χ (pm))∧(y)ĥ(x − y) dy.

However, for y ∈ pmb, our initial argument shows that

( fb · χ (pm))∧(y) = f−1/b(y)
∫

pm
((yz2) dz.
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Hence, for x ∈ pmb,

f̂b · h(x) =
∫

pm
((bz2) dz

∫

pmb
f−1/b(y)ĥ(x − y) dy

=
∫

pm
((bz2) dz

∫

f−1/b(y)ĥ(x − y) dy.

Taking the limit as m → −∞, proves the theorem. !

1.4. Construction of multi-valued representations of SL(2,Ω). Let h de-
note the Hilbert space L2(!+). For h ∈ h and for each non-trivial character ( of
!+, let

Tw h = H(()ĥ,

and, for b ∈ !, let

Mbh = fb · h.

Since | fb| = |H(()| = 1, the operators Tw and Mb are unitary.

Theorem 1.4.1. The maps ( 0
−1

1
0 ) #−→ Tw and ( 1

0
b
1 ) #−→ Mb may be extended

to a multi-valued representation of SL(2, !) on the Hilbert space h. Let ω̃(()
denote the associated two-cocycle. Then

(i) ω̃(() is independent of (.
(ii) [ω̃(()]2 = 1.

Proof. For b ∈ !∗, put Tw Mb−1 Tw MbTw Mb−1 = Db. We shall prove in the fol-
lowing that there exists a two-cocycle ζ and a one-cocycle ϕ defined on O∗

p, both
independent of ( and satisfying ζ 2 = ϕ2 = 1, such that

i. T 2
w = D−1

ii. Mb Mb′ = Mb+b′ for b, b′ in !

iii. Da Da′ = ζ (a, a′) Daa′ for a, a′ in !∗

iv. Da Mb Da−1 = ϕ(a) Mba2 for b ∈ ! and a ∈ !∗.

This together with §1.2 will prove the theorem.
First of all, in the proof, it suffices to consider the restriction of the operators

Tw and Mb to S, which by previous lemmas is left stable by these unitary operators.
An easy computation using theorem 1.3.3 then shows that, for h ∈ S and a ∈ !∗,

(Dah)(x) = |a|[H(()]−1H((, a)h(ax).

Hence a #−→ Da is a projective representation of !∗. If we put

X (a) = H((, a)[H(()]−1|a|1/2,
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then the two-cocycle ζ (on !∗) associated to this projective representation is given
by

ζ (a, a′) = X (aa′)/X (a)X (a′).

Writing a = πω(a)η, a′ = πω(a′)η′, we have by §1.3

X (a) = H((a)[H(()]−1 =
(

η

p

)ω(()−ω(a)

θ (a),

where θ (a) is equal to one if ω(() and ω(() − ω(a) have the same parity, to G(()
if ω(() is even and ω(() − ω(a) is odd, and to [G(()]−1 if ω(() is odd and
ω(() − ω(a) is even. Hence, since η #−→ ( η

p) is a multiplicative character,

ζ (a, a′) =
(

η

p

)ω(a′)(
η′

p

)ω(a)

θ (a, a′)/θ (a)θ (a′).

Since θ (a, a′)/θ (a)θ (a′) is equal to one if ω(a) and ω(a′) are even or of opposite
parity, and to [G(()]2 = (−1

p ) if ω(a) and ω(a′) are odd, ζ has the required property.
Hence

(

T 2
w h

)

(x) = [H(()]2 ˆ̂h(x) =
(−1

p

)ω(()

h(−x) = X (−1)h(−x) = (D−1h)(x).

Clearly, D1 = M0 = 1. Finally

Da Mb Da−1 h = X (x)X (a−1) · Mba2 h = [θ (a)]2 Mba2 h =
(−1

p

)ω(a)

Mba2 h.

!

1.5. Construction of unitary representations of SL(2,Ω). In this section I
will obtain unitary representations of SL(2, !) by taking tensor products of the
projective representations defined in §1.4.

Let V be a metric vector space over !, i.e., a finite-dimensional topological
vector space over ! together with a nondegenerate quadratic form Q. As in the
case of !+, the additive group V + of V is self-dual; in fact every character of V +

has the form

x #−→ ((B(x, y)),

where y is a fixed element of V and B is the bilinear form associated with Q:

B(x, y) = Q(x + y) − Q(x) − Q(y).

For h in the Hilbert space L2(V +) = hV , the Fourier transform is defined by

ĥ(x) =
∫

V
h(y)((B(x, y)) dy.
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The Haar measure dy on V + may again be normalized so that

ˆ̂h(x) = h(−x).

Denote the normalized measure by d(y.
By a lattice / in V is meant an open compact Op submodule of V .

Lemma 1.5.1. Let V be a metric vector space over ! and / a lattice in V .
Then / is an orthogonal direct sum of cyclic Op submodules, i.e., if dim! V = n,
there exists an orthogonal basis x1, . . . , xn of V such that / is the Op-submodule
of V generated by x1, . . . , xn.

Proof. Let a be the subset of ! consisting of all elements of the form B(x, y)
where x and y belong to /. Since B is continuous, a is compact. Let ay be the subset
of ! consisting of all elements of the form B(x, y), where x belongs to / and y is
a fixed element of /. Since / is open in V , / generates V over !, hence ay and
consequently a are proper non-zero ideals in !. Let a = pν . Then there exists an
x1 ∈ / such that

B(x1, x1) = πνη,

where η belongs to O∗
p; since otherwise

B(x, y) = 1
2

[B(x + y, x + y) − B(x, x) − B(y, y)]

would belong to pν+1 for all x, y in /.
If 〈x1〉⊥ is the orthogonal complement of the space generated by x1, let /′ =

〈x1〉⊥ ∩ /. Then /′ is an open compact Op submodule (lattice) in 〈x1〉⊥, and for
x ∈ /, we have

x = B(x1, x)
B(x1, x1)

x1 +
(

x − B(x1, x)
B(x1, x1)

x1

)

,

i.e., / = (〈x1〉 ∩ /) + (〈x1〉⊥ ∩ /) and, since B is nondegenerate, this decomposi-
tion is unique. Obviously 〈x1〉 ∩ / is cyclic. The lemma now follows by induction
on the dimension of V . !

Introducing a metric vector space of dimension n over !, we may describe any
n-fold tensor product of the projective representations described in §1.4 as follow:

Let x1, . . . , xn be any orthogonal basis of V of the type described in the previous
lemma. If li = B(xi , xi )/2, then we have

Q(x) = l1x2
1 + · · · lnx2

n ,
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for any x = x1x1 + · · · xnxn in V . If dx denotes the unique Haar measure on V +

whose restriction to 〈xi 〉 induces d(li
x on !+, then

L2(V +, dx) ∼=
n

⊗

i=1

L2(!+, d(li
x),

the isomorphism being uniquely determined by the relation

(h1 ⊗ · · · ⊗ hn)(x1, . . . , xn) = h1(x1) · · · hn(xn),

for hi ∈ S.
Also, we have

(h1 ⊗ · · · ⊗ hn)∧ = ĥ1 ⊗ · · · ⊗ ĥn,

the Fourier transform on the left being with respect to dx and the Fourier transform
of hi being with respect to d(li

x . Hence dx = d(x.
Further, if pm/ denotes the lattice in V consisting of elements of the form xλ

for x ∈ pm and λ ∈ /, then
∫

pm/

((Q(x)) d(x =
n

∏

i=1

∫

pm
(li (x

2) d(li
x .

Hence the limit

H((, Q) = lim
m→−∞

∫

pm/

((Q(x)) d(x

exists and is equal to

lim
m→−∞

n
∏

i=1

∫

pm
(li (x

2) d(li
x =

n
∏

i=1

H((li ).

Lemma 1.5.2. The constant H((, Q) is independent of the choice of the
lattice /.

Proof. Let S(V ) denote the Schwartz-Bruhat space for V ; namely, the space
of complex-valued functions h on V such that h and ĥ are of compact support.

Put fb(x) = ((bA(x)).
Then proceeding as in §1.4, one can show that, for h ∈ S(V ),

f̂b · h = H((, b, Q) f−1/b ∗ ĥ,

whereH((, b, Q) = limm→−∞
∫

pm/
((bQ(x)) d(x. Choosing a non-zero h proves

the lemma. !

The preceding results of this section and §1.4 demonstrate the following
theorem.
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Theorem 1.5.3. Let V be a metric vector space over !. For h ∈ hV and for
each non-trivial character ( of !+, let

Tw h = H((, Q)ĥ,

and for b ∈ !,

Mbh = fb · h.

The maps
(

0 1
−1 0

)

#−→ Tw , and
(

1 b
0 1

)

#−→ Mb

may be extended to a projective representation of SL(2, !). If the dimension of V
over ! is even that representation is single-valued.

Denote this representation defined by theorem 1.5.3 by D((, V ).

1.6. Explicit kernel for D(Φ, V) on S(V). Let V be an even-dimensional
metric vector space over !: dim! V = n = 2m. For h ∈ hV and a ∈ !∗ put

(Uah)(x) = |a|mh(ax).

Then, a #−→ Ua is a unitary representation of !∗. From §1.4 and §1.5 we know
that, if

(U ′
ah)(x) = H((, a, Q)[H((, Q)]−1|a|nh(ax),

then a #−→ U ′
a is also a unitary representation of !∗. Hence

a #−→ H((, a, Q)[H((, Q)]−1|a|m

defines a one-dimensional unitary representation on a character of !∗. Denote this
character by sign.

If Ug denotes the unitary operator on hV corresponding to the element g =
( a

c
b
d ) ∈ SL(2, !) under the representation D((, V ), then one may easily derive

from §1.1, §1.4 and §1.5 that Ug is given by the following kernel on S(V ):

(Ugh)(x) =
∫

K (g; x, y)h(y) dy,

where for c ∈ !∗

K (g; x, y) = sign(−1)H((,Q)
sign(c)
|c|m

(

(

aQ(x) + dQ(y) − B (x, y)
c

)

,

and for c = 0,

K (g; x, y) = |a|m sign(a)((baQ(x))0(ax − y),

where 0 denote the Dirac delta “function.”
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1.7. Continuity of D(Φ, V).

Theorem 1.7.1 (Cartier). The representation D((, V ) is continuous.

Proof. To prove the continuity of g #−→ Vg, it suffices to prove that gn is a
sequence of elements of G converging to the identity, then Ugn converges to the
identity operator on hV (in the strong topology).

For g = ( a
c

b
d ) with a 4= 0, we have the identity

Ug = Tw Ma−1−ca−1 Tw Ma Tw Ma−1+a−1b.

Hence it suffices to show that, for b ∈ !, b #−→ Mb is continuous.
Since S(V ) is stable under Mb and is dense in hV , it is enough to show that

b #−→ Mbh is continuous at zero for h ∈ S(V ). However we can choose b so small
that ((bQ(x)) = 1 for all x in the support of h. For such b, Mbh = h. !

1.8. Decomposition of D(Φ, V) into irreducible components. Let V be
an even-dimensional metric vector space over ! and D((, V ) the corresponding
representation of SL(2, !). Let A = A(V ) denote the group of automorphisms of
V , i.e., the orthogonal group of the quadratic form Q.

Theorem 1.8.1. Let C denote the algebra (with the weak topology) of all
bounded operators on hV which commute with D((, V ). Then there is a continuous
homomorphism of the group algebra L1(A) of A into C. (A completely analogous
procedure is used by Kloosterman in [8].)

Proof. For a ∈ A and h ∈ hV , put (Lah)(x) = h(ax). I claim that La is a unitary
operator on hV belonging to C .

Let µ be a Haar measure on V +. For E a measurable subset of V +, put µa(E) =
µ(aE). Then µa is also a Haar measure on V +; hence µa = c(a)µ where c(a)
is a positive real-valued function on A satisfying c(a1a2) = c(a1)c(a2). Since A is
generated by elements of order two, c(a) = 1 for all a ∈ A. This proves that La

is unitary. On the other hand, it follows easily from the definitions that

LaTw = Tw La

La Mb = Mb La, for b ∈ !,

i.e., La belongs to C .
For F ∈ L1(A), put

L F =
∫

F(a)La da.

Clearly L F commutes with D((, V ) and F #−→ L F is continuous in the weak
topology. !
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In the remainder of this section we restrict ourselves to two-dimensional metric
vector spaces V . If the quadratic form Q on V has a non-trivial zero, then, as in the
case of SL(2, R) [1], the representation D((, V ) is unitary equivalent to the usual
action of SL(2, !) on L2(! ⊕ !), which (as in the case of SL(2, R)) is a direct
integral of the Principal Series of representations.

Hence we may assume that Q is a non-zero form in which case V may be
realized as a quadratic extension field of !—the quadratic form becoming the
norm N = NV/! from that field to !.

Structure of the orthogonal group A(V ) of NV/!. Let V be a quadratic extension
field of !. Let N 1 denote the elements of relative norm one in V ∗ and 1 the
Galois group of V/!. An element σ ∈ 1 operates on N 1 by sending ε ∈ N 1

to εσ .
Let OP denote the ring of integers in V with unique maximal ideal P. The

following facts about A(V ) and N 1 are well-known.

(i) With the above action of 1 on N 1, A(V ) is the semi-direct product of 1

and N 1.

(ii) N 1 is the direct product of a finite subgroup G0 (isomorphic to the elements
of relative norm one in the residue class field of V ) with N 1 ∩ (1 + P).

(iii) N 1 ∩ (1 + P) has a natural filtration:

N 1 ∩ (1 + P) = N1 " N2 " · · · " Nm " · · · , where Nm = N 1 ∩ (1 + Pm).

(iv) There is a unique character ρ0 of N 1 of order two. ρ0 is determined by its
restriction to G0.

Let δ = δV/! denote the different of V/!. If ρ belongs to N̂ 1 and if m is the
smallest integer for which ρ|Nm = 1, we define the conductor ρ to be the ideal pmδ

of OP.

Definition and elementary facts about Kloosterman sums. We say that an ideal
B in OP lies over an ideal b of Op if B ∩ Op = b.

The norm N = NV/! (respectively trace Tr = TrV/!) from V to ! maps OP
to Op and induces a norm N (respectively trace Sp) from OP/B to Op/b such that
the following diagram is commutative:

OP −−−→ OP/B

|
↓ N ,Tr

|
↓ N,Sp

Op −−−→ Op/b.

We will denote the image of an element x ∈ OP in OP/B by x̃.
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Given a proper ideal b in Op, there exists a unique ideal B lying over b for
which the bilinear form on OP/B defined by

(x̃, ỹ) #−→ Sp(x̃ · ỹ)

is nondegenerate, namely, B = δ−1b. From now on given b in Op, B will denote
this unique ideal ofOP. If ( is a character ofOpwith conductor b, we may consider
( as a character of Op/b. In that case every character of OP/B has the form (ỹ,
where

(ỹ(x̃) = ((Sp(x̃ · ỹ)).

Let ρ be a character of N 1 of conductor B. This is possible since B is the
product of an ideal in Op by δ. One easily sees that the map from N 1 to N1, the
elements of norm one in OP/B, is surjective; hence ρ may be considered as a
character of N1.

Definition. A Kloosterman sum is a map of OP to the complex numbers of the
form

K ((, ρ)(x) =
∑

ε∈N 1

εmodB

ρ(ε) ((Tr(εx)),

where ( is a character of OP with conductor b and ρ is a character of N 1 with
conductor B = δ−1b. If b = p (B = P), we also include in the definition the case
ρ = 1.

Since K ((, ρ)(x) depends only on x mod B, we may view K ((, ρ) as a func-
tion on OP/B:

K ((, ρ)(x̃) =
∑

ε∈N1

ρ(ε)((Sp(ε · x̃)).

Let e denote the ramification index of V/!.

Lemma 1.8.2. If ρ is not identically one, K ((, ρ) vanishes on the ideal p = Pe

of OP.

Proof. The group N 1 operates on OPby multiplication and hence operates on
OP/B by reduction mod B. If x belongs to p, it is readily seen that the stabilizer
of the action of N 1 at x̃ is a subgroup of N 1 of the form Nm which contains
N 1 ∩ (1 + δ−2b) as a proper subgroup. Breaking up the sum overN1 in the definition
of K ((, ρ) into cosets mod Nm and using the fact that ρ has conductor B gives the
proof. !
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Let N (V ∗) denote the subgroup of !∗ consisting of norms from V ∗. One has
(!∗)2 ⊂ N (V ∗) and it is well-known that [N (V ∗) : (!∗)2] = 2. Hence N (V ∗) has
a unique character, denoted by (p), of order two. Let S+ = S+(V ) (respectively,
S− = S−(V )) denote those x in V ∗ for which ( N (x)

p ) = 1 (respectively, ( N (x)
p ) = −1).

Clearly, V ∗ is the disjoint union of the (open) sets S+ and S−.
I will need the following lemma to prove the irreducibility of the representations

that I will discuss in the next section.

Lemma 1.8.3. Let ρ0 be the unique character of order 2 of N 1.
(i) If ρ 4= ρ0, then there exists an x ∈ S− ∩ OP such that K ((, ρ)(x) 4= 0.

(ii) K ((, ρ0)(x) = 0 for all x ∈ S− ∩ OP.

Proof. Suppose that ρ 4= ρ0 and that K ((, ρ)(x) = 0 for all x ∈ S−.
With this assumption I claim that K ((, ρ)(x) is zero unless x belongs to O∗

P,
the unit group of OP. In the unramified case (e = 1), this is obvious from lemma
1.8.2. If 6 is a prime element for V , in the ramified case (e = 2), we know, again
by lemma 1.8.2, that K ((, ρ)(x) = 0 unless x belongs to O∗

P∪ 6O∗
P. However,

for x ∈ 6O∗
P, we have ( N (x)

p ) = −1. Hence the claim.
For x̃ ∈ OP/B, put ρ̃(x̃) = ρ(x̃), if x̃ belongs to N1, and ρ̃(x̃) = 0 otherwise.

Since Sp is nondegenerate, we have a Fourier expansion for ρ̃:

ρ̃ =
∑

ỹ∈OP/B

aỹ (ỹ,

where

aỹ = 1
N (B)

∑

ε∈N1

ρ(ε)((Sp(εỹ)) = 1
N (B)

K ((, ρ)(−ỹ).

Hence by the preceding aỹ = 0 unless ỹ belongs to S+ ∩ O∗
P. For such ỹ we may

write uniquely ỹ = λε0, where λ belongs to the unit group (Op/b)∗ of Op/b and ε0

is an element of N1, taken mod ±1. Using lemma 1.8.2, an easy calculation then
gives

ρ̃(x̃) = −0ρ,1
n2

2N (B)
+ 1

N (B)

∑

ε∈N1

λ∈Op/b
ε0∈N1 mod±1

ρ(ε) ((λSp(ε0(x̃ − ε))),

where 0ρ,1 = 1 if ρ = 1 and is zero otherwise, and where n is the order of N1.
Assume x̃ is in N1. Then

∑

λ∈Op/b

((λSp(ε0(x̃ − ε))) = N (b),
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if Sp(ε0x̃) = Sp(ε0ε) and is zero otherwise. Since Sp(ε0x̃) = Sp(ε0ε) if and only if
either ε = x̃ or ε = ε−2

0 x̃−1, we obtain

N (B)ρ̃(x̃) = −0ρ,1
n2

2
+

∑

ε∈N1

λ∈Op/b

ρ(ε)(λSp(1 − x̃−1ε))

+
∑

ε∈N1

λ∈Op/b
ε0∈N1 mod ± 1

ε0 4=x̃−1

ρ(ε)((λSp(ε0(x̃ − ε)))

= −0ρ,1
n2

2
+ N (b)ρ(x̃)

+
∑

ε0∈N1 mod ± 1
ε0 4=x̃−1

N (b)
∑

ε

ρ(ε)
(

0(ε − x̃) + 0
(

ε − ε−2
0 x̃−1))

= −0ρ,1
n2

2
+ N (b)

n
2
ρ(x̃) + N (b)

∑

ε0∈N1

ε0 4=x̃−1

ρ
(

ε−2
0 x̃−1) .

This readily leads to a contradiction involving the orders of the various groups if
ρ 4= ρ0.

If ρ = ρ0, the above expression reduces to the identity

N (B) = N (b)(n − 1).

Reversing the steps and using the uniqueness of the Fourier expansion proves the
lemma. !

We are now in a position to prove

Theorem 1.8.4. Let V be a quadratic extension field of !. Let A denote the
orthogonal group of the quadratic form NV/!. Then the image of the group algebra,
L1(A), in the commuting algebra C of the representation D((, V ) is dense. The
kernel of the homomorphism L1(A) −→ C is one-dimensional. (An analogous
theorem appears in Kloosterman [8].)

Proof. The proof will be divided into two parts:
(A) Decomposition of D((, V ) into irreducible components
(B) Classification of those components according to unitary equivalence

For h ∈ hV and ρ ∈ N̂ 1, let (Lρh)(x) =
∫

N 1 ρ−1(ε)h(εx) dε. The operators Lρ

are orthogonal projections on hV (with a suitable normalization of the Haar measure
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dε on the compact group N 1) which commute with the action of D((, V ). Since
∑

ρ∈N̂ 1 Lρ is the identity operator on hV , we obtain an orthogonal direct sum of hV

into stable subspaces:

hV =
∑

ρ∈N̂ 1

hρ,

where hρ consists of those h ∈ hV satisfying h(εx) = ρ(ε)h(x). Denote the restric-
tion of D((, V ) to hρ by D(ρ). Then I claim:

(i) D(ρ) is irreducible if ρ is not of order two.
(ii) D(ρ0) splits into two inequivalent representations, which I will denote by

D+ and D−; D(ρ0) = D+ ⊕ D−.
(iii) D(ρ) and D(ρ ′) interwine if and only if there exists σ ∈ 1 such that

ρ ′ = ρσ , i.e., ρ ′(ε) = ρ(εσ ) for all ε ∈ N 1.

Proof of (i). Let T be a bounded operator on hρ commuting with D(ρ). Then T
must commute with the operators Mb on the subspace hρ . Since the representation
of ! defined by b #−→ Mb on the Hilbert space hρ has a simple spectrum, T must
be given by multiplication by a function fρ on that space:

T h = fρh,

for h ∈ hρ , where fρ is a function on V satisfying fρ(εx) > fρ(u) for all ε ∈ N1.
Since DaT = T Da for all a ∈ !∗, we must also have fρ(ax) = fρ(x). Hence fρ
may be regarded as a function f ′

ρ on N (V ∗):

fρ(x) = f ′
ρ(N (x)),

where f ′
ρ satisfies f ′

ρ(a2x) = f ′
ρ(x), i.e., fρ is constant on S+ and S−.

Since T commutes with Tw , we must also have

fρ · Tw (Lρh) = Tw ( fρ · Lρh),

for h ∈ hV . This condition is easily seen to be equivalent to
∫

V
fρ(y)Kρ(x, y) h(y) dy = fρ(x)

∫

V
Kρ(x, y)h(y) dy,

where Kρ(x, y) =
∫

N 1 ρ−1(ε)((Tr(xεy)) dε. Hence fρ(y)K (x, y) = fρ(x)K (x, y)
for x, y outside a set of measure zero in V × V . (A similar argument is used in
Gelfand and Graev in [3].)

On the other hand, if B denotes the conductor of ρ, we may choose y ∈ !∗ so
that the conductor of (y is B ∩ Op. In that case,

Kρ(x, y) =
∫

N 1
ρ−1(ε)(y(Tr(εx)) dε = c · K ((y, ρ)(x).
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Hence, if ρ 4= ρ0, from Lemma 1.8.3 we have the existence of a pair (x, y) in
S− × S+ such that Kρ(x, y) 4= 0. Hence, in this case, the commuting algebra Cρ of
D(ρ) is one-dimensional. Since D(ρ) is unitary this proves (i).

In any case we have shown that dim Cρ ≤ 2. !

Proof of (ii). For σ ∈ 1 and h ∈ hV , let Lσ denote the unitary operator on hV

defined by (Lσ h)(x) = h(xσ ). If h belongs to hρ ,

(Lσ h)(εx) = h(εσ xσ ) = ρ0(ε)(Lσ h)(x),

because ρ0(εσ ) = ρ0(ε), i.e., Lσ leaves hρ0 stable. On the other hand, for x ∈ V ∗,

h(xσ ) = h(xσ x−1x) = ρ0(xσ x−1)h(x).

Hence, by Hilbert’s Theorem 90, for σ non-trivial, Lσ |hρo is not a scalar multiple
of the identity. Thus dim Cρ0 = 2. Hence hρ0 decomposes into two stable subspaces

hρ0 = h+ ⊕ h−,

and correspondingly D(ρ0) splits into two inequivalent representations:

D(ρ0) = D+ ⊕ D−.

h+ (resp. h−) consists of those h ∈ hV whose support is contained in S+ (resp. S−).
!

Proof of (iii). Clearly Lσ maps hρ to hρ0 . Since Lσ belongs to C , the represen-
tations D(ρ) and D(ρσ ) are unitary equivalent. The converse may be proven as in
the proof of (i).

Hence the operators Lσ and Lρ generate (in the topological sense) C. This
proves that the image of L1(A) in C is dense.

Denote the restriction of D((, V ) to hρ by D((, ρ, V ). !

Computation of the kernel of L1(A) −→ C. Let σ0 denote the non-trivial ele-
ment of 1. A is the disjoint union of the cosets N 1 and N 1σ0.

Let F belong to L1(A). Suppose L F is identically zero, i.e.,
∫

A
F(a)Lah da = 0,

for all h ∈ hV . We may write this integral as
∫

N 1
F1(ε)h(εx) dε +

∫

N 1
F2(ε)h(εxσ0 ) dε,

where F1(ε) = F(ε) and F2(ε) = F(εσ0). Taking h ∈ hρ we obtain

h(x)
∫

N 1
F1(ε)ρ(ε) dε + h(xσ0 )

∫

N 1
F2(ε)ρ(ε) dε = 0,
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for all x ∈ V . For x ∈ V ∗, we have as before h(xσ ) = h(x)ρ(xσ x−1). Hence, by
Hilbert’s Theorem 90,

∫

N 1
F1(ε)ρ(ε) dε =

∫

N 1
F2(ε)ρ(ε) dε = 0,

provided ρ is non-trivial. Therefore, F1 = c1, F2 = c2 are constant functions on
N 1 and putting ρ = 1 we obtain c1 + c2 = 0. Conversely, if F1 = −F2 is constant,
L F is zero. This completes the proof of the theorem. !

1.9. Further classification of the representations D(Φ, V). Let G be a
locally compact group, and D and D′ be unitary representations of G on a Hilbert
space h. For g ∈ G, Let Ug and U ′

g be the corresponding unitary operators on h. If
ϕ is a (continuous) automorphism of G, we say that D and D′ are conjugate with
respect to ϕ if U ′

g = Uϕ(g) for all g ∈ G.

Theorem 1.9.1. Let ϕ denote the automorphism of SL(2, !) defined by

g #−→
(

a 0
0 d

)

g
(

a−1 0
0 d−1

)

,

where ad−1 = r belongs to !∗. Then the representations D((, V ) and D((r , V )
are conjugate with respect to ϕ.

Proof. Let Mb and Tw be the operators on hV corresponding to ( 1
0

b
1 ) and ( 0

−1
1
0 )

with respect to D((, V ). Then for h ∈ hV , by an explicit computation, we have

(Mϕ(b)h)(x) = (r (bN (x))h(x)
and

(Tϕ(w)h)(x) = (Dr Tw h)(x)

= |r |2H((, r )H(()−1(Tw h)(rx)

= H((r )
∫

h(y)(r (Tr(xyσ0 )) d(r y.

Hence Mϕ(b) and Tϕ(w) are precisely the operators on hV corresponding to ( 1
0

b
1 ) and

( 0
−1

1
0 ) with respect to D((r , V ). !

For any subset S of V ∗, let N (S) denote its image in !∗ under the map NV/!.
We will denote the relation of unitary equivalence by ∼.

Theorem 1.9.2. Let r belong to !∗, then
(i) For ρ 4= ρ0, one has D((, ρ, V ) ∼ D((r , ρ, V ) if and only if r ∈ N (V ∗).

(ii) D+((, V ) ∼ D+((r , V ) if and only if r ∈ N (S+), i.e., r is a square in !∗.
(iii) D+((, V ) ∼ D−((r , V ) if and only if r ∈ N (S−), i.e., r is in N (V ∗) but

not a square.
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Proof. For h ∈ hV put (Lxh)(y) = h(xy). Then Lx is an isometry from
L2(V, d(x) to L2(V, d(N (x)x). An explicit computation shows that

(

Lx Mb L−1
x h

)

(y) = (N (x)(bN (y))h(y),

(

LxTw L−1
x h

)

(y) = H((N (x)) ×
∫

h(z)(N (x)(Tr(zyσ0 )) d(N (x)z.

Lx maps to hρ to hρ ; it maps to h+ to h+ if and only if x ∈ S+ and h+ to h− if and
only if x ∈ S−. This proves the “if” part of the theorem.

Conversely, if D((, ρ, V ) ∼ D((r , ρ, V ), then their restrictions to B, the sub-
group of G consisting of elements the form ( 1

0
b
1 ) for b ∈ !, are also unitary equiv-

alent:

D((, ρ, V )
∣

∣

∣

(

1 b
0 1

)

=
∫

V ∗/N 1
((bN (x)) dx.

Hence, if ρ 4= ρ0, since these restrictions have a simple spectrum, the open sets
N (V ∗) and r N (V ∗) must coincide up to a set of measure zero (the measure being
the Haar measure of !+). Hence r must belong to N (V ∗). Similarly in the other
cases. !

Theorem 1.9.3. (i) For ρ 4= ρ0, we have D((, ρ, V ) ∼ D((, ρ, V ′) if and
only if V = V ′.

(ii) D+((, V ) ∼ D+((, V ′) for any pair of quadratic extension fields V and
V ′ of !.

Proof. (i) follows as in the proof of Theorem 1.9.2 using the fact that N (V ∗) =
N (V ′∗) if and only if V = V ′. I will postpone the proof of (ii) until the conclusion
of §3. !

2.1. Representations of SL(2,Op). In this section I will obtain irreducible
representations of K = SL(2,Op) by restricting the representations of G =
SL(2, !) to that subgroup. Some of these representations appear in a series of
papers of Kloosterman [8].

K -stable subspaces of D((, V ). For the moment, I return to the case when
V is an even-dimensional metric vector space over !. For a lattice / in V and a
sublattice /′ of /, let H/,/′ denote the Hilbert subspace of hV consisting of those
complex-valued functions h on V satisfying

(i) the support of h is contained in /,

(ii) h(x + λ′) = h(x) for all λ′ ∈ /.

For any lattice / in V , let δ(/) denote the set of x ∈ V such that B(x, z) ∈ OP
for all z ∈ /. δ(/) is again a lattice in V .
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Let D((, V )|K denote the restriction of D((, V ) to K and as before let b
denote the conductor of (.

Theorem 2.1.1. H/,/′ is stable under the operators of D((, V )|K if and only
if / = δ(/′) · b.

Proof. For fixed (, and any lattice / in V , let /∗ denote the set of x in V such
that ((B(x, z)) = 1 for all z ∈ /. If χ (/) denotes the characteristic function of /,
we have as in §1.3.

(i) χ̂ (/) = µ(/)χ (/∗),
(ii) /∗ = b · δ(/).

Since K is generated by w = ( 0
−1

1
0 ) and B ∩ K , H/,/′ is stable under

D((, V )|K if and only if it is stable under Tw and Mb for b ∈ Op.

Tw condition. For ξ ∈ /, let χξ denote the characteristic function of ξ + /′.
Clearly H/,/′ is spanned by the χξ . We have

χ̂ξ (x) = ψ(B(x, ξ )) µ(/′)χ (/
′∗).

Assume H/,/′ is stable under Tw , then we must have

(A) /
′∗ ⊂ /,

(B) ((B(x + λ′, ξ ))χ (/
′∗)(x + λ′) = ((B(x, ξ ))χ (/

′∗)(x) for x ∈ V , λ′ ∈
/′, ξ ∈ /.

Condition (B) is easily seen to be equivalent to the two conditions

(B1) /′ ⊂ /
′∗,

(B2) ((B(λ′, ξ )) = 1 for all λ′ ∈ /′, ξ ∈ /.
Hence, by (B2), / ⊂ /

′∗ and hence / = /
′∗. Conversely if / = /

′∗, Tw leaves
H/,/′ stable.

Mb condition. I claim that if / = /
′∗, then for b ∈ Op, Mb leaves H/,/′ stable:

For x ∈ V , λ′ ∈ /′, and ξ ∈ /,

(Mbχξ )(x + λ′) = ((b(Q(x + λ′))) χξ (x + λ′)

= ((b(Q(x) + Q(λ′) + B(x, λ′))) χξ (x),

which by (B2) is equal to ((bQ(x)) χξ (x), since Q(λ′) = (1/2)B(λ′, λ′). !

I will now study the representation of K on the space H/,/′ in more detail when
V is quadratic extension field of !. In that case I take / = OP. Then one sees that
the unique sublattice /′ of / defined by Theorem 2.1.1 becomes δ−1b, the ideal in
OP which I have denoted by B. In this case I will denote the Hilbert space H/,/′

by H ((, V ).
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Since N 1 ⊂ O∗
P, the operators Lρ defined in §1.8 leave H ((, V ) stable, (see

also [8]) and thus we have an orthogonal direct sum decomposition of H ((, V )
into K stable subspaces:

H ((, V ) =
⊕

ρ∈N̂ 1

H ((, ρ, V ),

where H ((, ρ, V ) consists of those h in H ((, V ) satisfying h(εx) = ρ(ε)h(x), for
all ε ∈ N 1. Denote the representation of K on H ((, ρ, V ) by D((, ρ, V ). In what
follows I restrict ρ to be either the trivial character on N 1, or a character of N 1 with
conductor B.

By an explicit computation (as in the proof of Lemma 1.8.2) one may conclude
that for h ∈ H ((, ρ, V ):

i. If V/! is unramified and if ρ 4= 1, then h vanishes outside O∗
P and the

spectrum of D((, ρ, V ) restricted to B ∩ K is given by:

D((, ρ, V )
∣

∣

∣

(

1 b
0 1

)

=
⊕

x̃ ∈ (OP/B)∗

x̃ mod N 1

((bN (x̃))

=
⊕

x ∈ (Op/b)∗
((bx).

If ρ = 1 and if b = p, then

D((, ρ, V )
∣

∣

∣

(

1 b
0 1

)

=
⊕

x̃ ∈OP/P
x̃ mod N 1

((bN (x̃))

=
⊕

x ∈Op/p

((bx).

ii. If V/! is ramified, ρ2 4= 1 and 6 is a prime element in V with NV/!(6) = π

a prime element in !, then h vanishes outside O∗
P∪ 6O∗

P and

D((, ρ, V )
∣

∣

∣

(

1 b
0 1

)

=
⊕

x̃∈(OP/B)∗∪6(OP/B)∗

x̃ mod N 1

((bN (x̃))

=
⊕

x∈[(Op/b)∗]2∪π [(Op/b)∗]2

((bx).

If b = p, ρ = ρ0, then h vanishes outside O∗
P and

D((, ρ, V )
∣

∣

∣

(

1 b
0 1

)

=
⊕

x̃ ∈ (OP/P)∗
((bN (x̃))

=
⊕

x ∈ [(Op/p)∗]2

((bx).
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If b = p, ρ = 1, then

D((, ρ, V )
∣

∣

∣

(

1 b
0 1

)

=
⊕

x̃ ∈OP/P
x̃ mod N 1

((bN (x̃))

= 1 ⊕
⊕

x ∈ [(Op/p)∗]2

((bx).

In each case, the spectrum of D((, ρ, V )
∣

∣B ∩ K is simple and the commuting
algebra of D((, ρ, V ) may be computed as in §1.8. This yields

Theorem 2.1.2. (i) For ρ 4= ρ0, D((, ρ, V ) is irreducible.
(ii) For ρ = ρ0 and V/! ramified, D((, ρ, V ) is irreducible.
(iii) For ρ = ρ0 and V/! unramified, H ((, ρ0, V ) splits into two subspaces

stable under D((, ρ0, V ):

H ((, ρ0, V ) = H+((, V ) ⊕ H−((, V ),

where H+((, V ) (resp. H−((, V )) consists of those h ∈ H ((, ρ0, V ) whose sup-
port is contained in S+ (resp. in S−).

Denote the corresponding representations respectively by D+((, V ) and
D−((, V ). Then

D+((, V )
∣

∣

∣

(

1 b
0 1

)

=
⊕

x∈[(Op/p)∗]2

((bx),

D−((, V )
∣

∣

∣

(

1 b
0 1

)

=
⊕

x∈ζ [(Op/p)∗]2

((bx),

where ζ is a non-square unit in Op/p.

Degree of D((, ρ, V ). Let N (b) = qm .

ρ2 4= 1 qm−1(q − 1) qm−2 · (q2 − 1)/2

ρ = ρ0 q − 1 (q − 1)/2

ρ = 1 q (q + 1)/2

Degree of D+((, V ) = Degree of D−((, V ) = q − 1
2

.

Theorem 2.1.3. If V ′/! is ramified, then D+((, V ) ∼ D((, ρ0, V ′).
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Proof. For b = p, ρ of conductor P, one easily sees that the representations
D((, ρ, V ) are identically one on the subgroup of K consisting of elements con-
gruent to ( 1

0
0
1 ) mod p.

Hence these representations may be considered as representations of
SL(2,Op/p). It is well known [8] that there are exactly two inequivalent repre-
sentations of SL(2,Op/p) of degree (q − 1)/2. Since D+((, V ) and D−((, V )
have inequivalent restriction to B ∩ K , whereas D+((, V ) and D((, ρ0, V ′) have
the same restrictions, the theorem is proved. !

Inclusions.

i. For conductor of ( = b, conductor of ρ = δ−1b; or for conductor of ( = p,
ρ = 1, we have

H ((, ρ, V ) ⊂ h((, ρ, V ).

ii. For V/! unramified, conductor of ( = p, we have

H+((, V ) ⊂ h+((, V ),

H−((, V ) ⊂ h−((, V ).

iii. For V/! ramified, conductor of ( = p, we have

H ((, ρ0, V ) ⊂ h+((, V ),

since in the ramified case O∗
P ⊂ S+.

I remark (see also the above-cited work of Kloosterman) that it follows from
[14], that the representations D((, ρ, V ),D+((, V ),D−((, V ) for ρ of conductor
P and ( of conductor p considered as representations of SL(2,Op/p), together
with the principal series of representations of that group [11] exhaust (up to unitary
equivalence) all irreducible representations of SL(2,Op/p).

3.1. Induced representations. Let D be a unitary representation of K acting
on a finite-dimensional Hilbert space H . Let M(H ) denote the complex vector space
of linear transformations of H . Let D denote the representation indK↑GD which D
induces on G. Let SD denote the complex vector space of continuous functions of
compact support on G with values in M(H ) satisfying

(i) F(kgk ′) = UkF(g)Uk ′ , where Uk is the unitary operator on H correspond-
ing to k under the representation D.

For F1,F2 in SD, put

(ii) (F1 ∗ F2)(g0) =
∫

G F1(g)F2(g−1g0) dg.
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SD with the product defined by (ii) is a complex algebra. It is known that SD is
dense in the commuting algebra of the induced representation D.

Now let D be one of the following irreducible unitary representations of K :
D((, ρ, V ) for ρ2 4= 1, D+((, V ), or D−((, V ) when V/! is unramified, and

D((, ρ0, V ) when V/! is ramified. With this restriction we have:

Theorem 3.1.1. The algebras SD have complex dimension one. (This theorem
is a generalization of a theorem of Mautner [10].)

Proof. Let F belong to SD. Since (say, by elementary divisors)

G =
⋃

m≥0

K τm K , where τ =
(

π 0
0 π−1

)

,

F is determined by its value on τm for m ≥ 0. Choose a basis in H for which the
operators Mb for b ∈ Op are represented by diagonal matrices:

Mb ∼









. . . 0
(x (b)

0
. . .









,

where in each case x runs over a certain subset, say, B(D), of Op as described in
§2. Let (Fm

x,y) denote the matrix of F(τm) in this basis. Then, since
(

πm 0
0 π−m

) (

1 b
0 1

)

=
(

1 bπ2m

0 1

) (

πm 0
0 π−m

)

,

we have F(τm)Mb = Mbπ2mF(τm), or in matrix form

Fm
x,z((zb) = ((xbπ2m)Fm

x,z.

Suppose that there exists an F in SD such that F(τm) is non-zero, then we have
z ≡ xπ2m mod b for all z and x in B(D). Since any element in B(D) is either a
unit or π times a unit, we derive a contradiction if m ≥ 1. Hence F must have its
support on K . In any case

F(1 · k) = F(1)Uk = UkF(1);

since D is irreducible, F(1) must be a scalar multiple of the identity. !

It follows from Theorem 3.1.1 that each of the induced representations indK↑GD
is irreducible. Combining this with the inclusion relations of §2 and Theorem 1.8.4
proves the following statements:

i. For ( of conductor b, ρ of conductor δ−1b, ρ2 4= 1,

indK↑GD((, ρ, V ) ∼ D((, ρ, V ).
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ii. For V/! unramified,

indK↑GD+((, V ) ∼ D+((, V ),

indK↑GD−((, V ) ∼ D−((, V ).

iii. For V/! unramified

indK↑GD((, ρ0, V ) ∼ D((, V ).

Since ! is self-dual, given any ideal b in Op and any non-trivial character (

of !+, there exists an r ∈ !∗ such that (r has conductor b, combining the above
statements with Theorem 1.9.1 yields:

Theorem 3.1.2. For V a quadratic extension field of !, each of the repre-
sentations D((, ρ, V ) for ρ2 4= 1, D+((, V ) and D−((, V ) is induced from an
irreducible representation of some maximal compact subgroup of G.

It follows from [10] that there exists an orthonormal basis in the Hilbert space
corresponding respectively to each of the representations of Theorem 3.1.2 for
which the corresponding matrix coefficients are of compact support on G.

Finally it now follows from Theorem 2.1.3 that for ( of conductor p, we have
D+((, V ) ∼ D−((, V ′) for any pair of quadratic extension fields V and V ′. Hence
by Theorem 1.9.1 this equivalence holds for any non-trivial (. This completes the
proof of Theorem 1.9.

4 . The purpose of the present paragraph is to obtain all irreducible unitary rep-
resentations of SL(2,Op). (In §4.1 and §4.2, ! may also be taken as the completion
of a function field.) In sections §4.1 and §4.2 I will construct a series of repre-
sentations of SL(2,Op) as monomial representations. In section §4.3 I show that
these, together with certain explicit matrix representations considered by Hecke [6],
Kloosterman [8], Maass [9] and also in the preceding, yield all irreducible unitary
representations of SL(2,Op).

4.1. General facts about induced representations. In this paragraph I will
prove a number of lemmas which I will use to obtain and classify irreducible
representations of SL(2,Op).

Let G be a finite group, H a subgroup, u and u′ complex-valued irreducible
representations of H operating respectively on the complex vector spaces V and
V ′. Let indH↑Gu and indH↑Gu′ respectively denote the representations which u and
u′ induce on G. Let Su,u′ be the space of maps F of G into Hom(V′, V) satisfying

F(hgh′) = u(h)F(g)u′(h′),

for all g ∈ G and h, h′ ∈ H .
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It is well known that Su,u′ is isomorphic to the space of intertwining operators
(i.e., G-module homomorphisms) from indH↑Gu to indH↑Gu′. Further if V = V ′,
u = u′, and for F1,F2 in Su,u = Su , we put

(F1 ∗ F2)(g0) =
∑

g∈G

F1(g)F2(g−1g0),(5)

then, with product defined by (5), Su is a complex algebra isomorphic to the com-
muting algebra of indH↑Gu.

In what follows if U is a representation of G, I will denote by U |H its restriction
to H , and if U1 is a component of U , I will write U1 ⊂ U .

I shall now apply these facts to the case when H = N is normal in G. Let
N ∗ denote the set of equivalence classes of irreducible representations of N . G
operates on N ∗ in an obvious fashion, namely for u ∈ N ∗, g ∈ G, n ∈ N , put
ug(n) = u(g−1ng) then ug is an irreducible representation of N ,

ug1·g2 = (ug1 )g2,

and the map u #−→ ug obviously preserves equivalence.
For u ∈ N ∗, let N (u) be the subgroup of G fixing the class of u, i.e., if

∼ denotes equivalence, N (u) consists of those elements g in G for which u ∼ ug.

Lemma 4.1.1. Let Ui be any irreducible representation of N (u) such
that Ui |N ⊃ u. Then the representations indN (u)↑GUi are irreducible, and
indN (u)↑GUi ∼ indN (u)↑GU j if and only if Ui ∼ U j .

Proof. As above, let Su be the commuting algebra of indN↑Gu. Let F belong
to Su . Since N is normal in G, we have

u(n)F(g) = F(ng) = F(gg−1ng) = F(g)ug(n).

Hence if F(g) is not zero, then u and ug interwine; or, since u is irreducible, we
have u ∼ ug, i.e., g belongs to N (u). Hence if F belongs to Su , then F vanishes
outside N (u). This immediately implies that Su is isomorphic to the commuting
algebra of the representation indN↑N (u)u of N (u).

Decompose indN↑N (u)u into irreducible representations:

indN↑N (u)u =
r

⊕

i=1

niUi ,

where ni > 0, Ui is irreducible and Ui ∼ U j if and only if i = j . Then by the
preceding,

dim Su =
r

∑

i=1

n2
i .
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On the other hand, by transitivity of inducing representations, we have

indN↑Gu =
r

⊕

i=1

ni indN (u)↑GUi .

If χ is the character of indN↑Gu and χi is the character of indN (u)↑GUi , then
χ =

∑r
i=1 niχi . Define the scalar product 〈 , 〉 as usual: If f1 and f2 are complex-

valued functions on G, we put 〈 f1, f2〉 = (1/[G : 1])
∑

g∈G f1(g) f2(g). We have
then

dim Su = 〈χ , χ〉 =
∑

1≤i≤r
1≤ j≤r

ni n j 〈χi , χ j 〉

=
r

∑

i=1

n2
i 〈χi , χ j 〉 +

∑

1≤i≤r
1≤ j≤r

i 4= j

ni n j 〈χi , χ j 〉.

Therefore we must have 〈χi , χ j 〉 = δi j . Since the Ui are exactly those representa-
tions of N (u) whose restriction to N contains u (Frobenius reciprocity), the theorem
is proved. !

Lemma 4.1.2. Let u and u′ belong to N ∗. Then the following conditions are
equivalent:

(i) indN↑Gu and indN↑Gu′ interwine
(ii) indN↑Gu ∼ indN↑Gu′

(iii) u and u′ lie in the same orbit of G in N ∗, i.e., there exists g ∈ G such that
ug = u′.

Proof. indN↑Gu and indN↑Gu′ interwine if and only if dim Su,u′ > 0. Suppose
that F belongs to Su,u′ and F(g0) 4= 0 for some g ∈ G. Then

u(n)F(g0) = F(ng0) = F(g0g−1
0 ng0)

= F(g0)u
′g0 (n),

for n ∈ N . Hence, the irreducible representations u and u
′g0 interwine, which im-

plies u ∼ u
′g0 . If u ∼ u

′g0 , then it follows easily from the definitions that

indN↑Gu ∼ indN↑Gu′g ∼ indN↑Gu′.

Clearly (ii) implies (i). !

In the application (§4.2) I will obtain irreducible representations of SL(2,Op) =
K be decomposing representations of Kn = SL(2,Op/p

n) of the form indN↑Kn(,
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where N is normal in Kn and ( is a one-dimensional representation of N . For
suitable (, N (() is generated by N and an auxiliary subgroup A:

N (() = A · N .

The irreducible representations U of N (() satisfying U |N ⊃ u are then obtained
by the following Lemma.

Lemma 4.1.3. Let G be a finite group generated by a subgroup A and a normal
subgroup N: G = AN, ( a one-dimensional representation of N invariant under
G: (g = ( for all g ∈ G, then

(i) the irreducible representations U of G satisfying U |N ⊃ ( are in one-
to-one correspondence with the irreducible representations u of A satisfying
u|(A ∩ N ) ⊃ (|(A ∩ N ).

(ii) the multiplicity of U in indN↑G( = the degree of U.

Proof. Take U ∈ G∗ satisfying U |N ⊃ (. Let U |N =
⊕r

i=1 ni ui , where ni >

0, ui ∈ N ∗, ui ∼ u j if and only if i = j and, say, u1 = (. Then ni is the mul-
tiplicity of U in indN↑Gui , hence indN↑Gui and indN↑G( interwine; thus by
Lemma 4.1.2 there exists g ∈ G such that ui ∼ (g = (. Hence U |N = (deg U )(,
which proves (ii). Let U |A = u, then U (an) = u(a)((n). Clearly a #−→ u(a)
is an irreducible representation of A and u|(A ∩ N ) = (|(A ∩ N ). Conversely,
the same reasoning shows that if u ∈ A∗ satisfies u|(A ∩ N ) ⊃ (|(A ∩ N ), then
u|(A ∩ N ) = (deg u)(|(A ∩ N ). Hence, if we put U (g) = U (an) = u(a)((n),
then U is well defined, and since (g = ( for g ∈ G, g #−→ U (g) is a representation
of G, which is clearly irreducible. !

4.2. Construction of the irreducible unitary representations of SL(2,Op).
Let Kn = SL(2,Op/p

n). It is easily verified that the natural map from K to Kn

(namely reduction mod pn) is surjective. Thus K is totally disconnected every
finite-dimensional (unitary) representation of K factors through a representation of
Kn . An irreducible representation of Kn will be called primitive if it does not factor
through a representation of Kn−1.

I will begin by describing the primitive representations of Kn for n even. For n
odd, n 4= 1 a similar method yields at present part of the primitive representations
of Kn; these however together with certain representations of Kn constructed in
the earlier part of this paper and, also constructed by Kloosterman in [8] give
all primitive representations of Kn . The method does not apply to the group K1;
however the representations of this group are well known.

Let Nν denote the subgroup of Kn consisting of all n ∈ Kn satisfying n ≡ 1 mod
pν . Suppose first that n = 2k is even. Let ( be a one-dimensional representation
of Nk . Since Nk is abelian, we obtain all irreducible representations of Kn by
decomposing indNk↑Kn(, as ( varies over (Nk)∗.
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Call ( primitive if ( is non-trivial on Nn−1. It is easy to see that, if ( is
primitive, then each irreducible representation D of G occurring in indNk↑Kn( is
primitive and that otherwise each such D is not primitive.

In what follows I will show that, for ( primitive, (n even) the group Nk(() is
generated by an abelian group T (() and Nk :

Nk(() = T (()Nk .

Assuming this for the moment, by Lemma 4.1.3, the irreducible representations U
of Nk(() satisfying U |Nk ⊃ ( are of the form 8ρ,(:

8ρ,((tn) = ρ(t)((n),

for t ∈ T ((), n ∈ Nk where ρ ∈ T (()∗ and satisfies ρ|T (() ∩ Nk = (|T (() ∩
Nk . Thus we have

Theorem 4.2.1. For n = 2k even,
(i) the primitive representations of Kn are exactly of the form

indNk (()↑Kn8ρ,( = D(ρ, ().

(ii) D(ρ, () ∼ D(ρ ′, (′) implies (′ = (g, for some g ∈ Kn in which case
indNk↑Kn( and indNk↑Kn(

′ are equivalent.
(iii) D(ρ, () ∼ D(ρ ′, () if and only if ρ = ρ ′.

Proof. For ( primitive, we have

indNk↑Kn( = indNk (()↑Kn

(

indNk↑Nk (()(
)

=
⊕

ρ∈T (()∗
ρ|T (()∩Nk=(|T (()∩Nk

indNk (()↑K 8ρ,(;

(i) and (iii) follow from Lemma 4.1.1. If D(ρ, () ∼ D(ρ ′, (′) then, by the
Frobenius reciprocity, indNk↑Kn( and indNk↑Kn(

′ interwine. Thus (ii) follows from
Lemmas 4.1.2. !

We will return to the case n odd below.

Structure of Nk((). Let g denote the Lie algebra overOpconsisting of all 2 × 2
matrices X of trace zero with coefficients in Op. We will call an element X of g
primitive if X 4∈ pg. K operates on g by the “adjoint representation”

k ◦ X = k Xk−1 for k ∈ K and X ∈ g,

and clearly leaves invariant the primitive elements. In order to find the structure of
Nk((), I need the following lemmas:
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Lemma 4.2.2. Each primitive element of g is in the K -orbit of one and only
one of the following elements:

(i) (λ 0
0 −λ); λ ∈ O∗

p, λ mod ±1.

(ii) (0 1
ω̃ 0); ω̃ ∈ p,

(0 ζ
ω̃ 0); ζ a fixed element of O∗

p satisfying ( ζ
p) = −1.

(iii) (0 1
ω̃ 0); ω̃ ∈ O∗

p, (ω
p) = −1.

Proof. Let X = (µ
τ

σ
−µ

). There are several cases.
(A) If σ ∈ O∗

p, then
(

1 0
µσ−1 1

) (

µ σ

τ −µ

) (

1 0
−µσ−1 1

)

=
(

0 σ

τ + µ2σ−1 0

)

.

(B) If τ ∈ O∗
p, then

(

1 −µτ−1

0 1

) (

µ σ

τ −µ

) (

1 µτ−1

0 1

)

=
(

0 µ2τ−1 + σ

τ 0

)

.

(C) If σ ∈ p, τ ∈ p, µ ∈ O∗
p, choose λ so that λ2 = µ2 + σ .

If µ + λ ∈ O∗
p, then

(

1 σ/(λ + µ)
−τ/2λ (λ + µ)/2λ

) (

µ σ

τ −µ

) (

(λ + µ)/2λ −σ/(λ + µ)
τ/2λ 1

)

=
(

λ 0
0 −λ

)

.

If µ − λ ∈ O∗
p, then

(

1 σ/(µ − λ)
−τ/2λ (µ − λ)/2λ

) (

µ σ

τ −µ

) (

(µ − λ)/2λ −σ/(µ − λ)
τ/2λ 1

)

=
(

λ 0
0 −λ

)

.

(D) If X = ( 0
τ

σ
0 ) where σ ∈ O∗

p, τ ∈ O∗
p and (στ

p ) = 1, choose λ ∈ O∗
p such

that λ2 = στ , then
(

1/2 λ/2τ

−λ/σ 1

) (

0 σ

τ 0

) (

1 −λ/2τ

λ/σ 1/2

)

=
(

λ 0
0 −λ

)

.

(E) If X = ( 0
τ

σ
0 ) with σ ∈ O∗

p, τ ∈ O∗
p and (στ

p ) = −1, choose a, b ∈ ! so
that a2 − b2τ/σ = σ−1. Since in that case a, b ∈ Opand (a, b) = 1 we may choose
c, d ∈ Op so that ad − bc = 1, in that case

(

a b
bτ aσ

) (

0 σ

τ 0

) (

aσ −b
−bτ a

)

=
(

0 1
στ 0

)

.

Finally, by using k = ( 0
−1

1
0 ) and k = ( a

0
0

a−1 ), where a ∈ O∗
p, it follows from

(A)–(E) that each primitive X ∈ g lies in the K -orbit of one of the elements of
the lemma. The fact that these elements lie in distinct K -orbits follows easily by
computation. !
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Let gn denote the Lie algebra over Op/p
n consisting of 2 × 2 matrices of trace

zero with coefficients in Op/p
n . Kn operates on gn as before: k ◦ x = kxk−1 for

k ∈ Kn and x ∈ gn; and, as before, we call an element x ∈ gn primitive if x 4∈ pgn .
The natural map (namely reduction mod pn) from g to gn is surjective. For X ∈ g,
let X̃ denote its image in gn .

Let TX denote the subgroup of K consisting of those g ∈ K such that gXg−1 =
X , and TX̃ ,n the subgroup of Kn consisting of those g ∈ Kn such that gX̃g−1 = X .
Then we have

Lemma 4.2.3. For X primitive, the natural map from K to Kn induces a sur-
jection from TX to TX̃ ,n.

Proof. It suffices to prove the lemma for the special representatives of Lemma
4.2.2 (since Tk◦X = kTX k−1 . . . ). For X = (λ

0
0

−λ
):

TX =
{(

a 0
0 a−1

)

; a ∈ O∗
p

}

,

TX̃ ,n =
{(

a 0
0 a−1

)

; a ∈ (Op/p
n)∗

}

.

For X = ( 0
τ

σ
0 ):

TX =
{(

a b
bτσ−1 a

)

; a, b ∈ Op, a2 − b2τσ−1 = 1
}

,

TX̃ ,n =
{(

a b
bτσ−1 a

)

; a, b ∈ Op/p
n, a2 − b2τσ−1 = 1

}

.

The lemma now follows from the usual inductive and compactness arguments of
Hensel’s lemma. We remark that in each case TX is abelian. !

Let B denote the “Killing form” of gn , i.e., B(x, y) = Tr(x · y) for x, y in gn .
Let η be a primitive character of Op/p

n , i.e., η ∈ (Op/p
n)∗ and η is non-trivial on

pn−1, then

Lemma 4.2.4. (i) B is nondegenerate Op/p
n-valued bilinear form on gn × gn

i.e., B(x, y) = 0 for all x ∈ gn implies y = 0.
(ii) If we put ηy(x) = η(B(x, y)), then y #−→ ηy is a Kn-module isomorphism

of gn to g∗
n.

(iii) ηy is primitive (i.e., non-trivial on pn−1gn) if and only if y is primitive.

Proof. A simple computation shows that B is nondegenerate. As x runs over
gn , the elements of Op/p

n of the form B(x, y) (y fixed) form an ideal in Op/p
n;
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hence y #−→ ηy is an injection and hence an isomorphism (of abelian groups) since
gn and g∗

n have the same number of elements. The fact that this isomorphism is an
isomorphism of Kn-modules follows from the invariance of B, i.e.,

B(k ◦ x, k ◦ y) = B(x, y) for k ∈ Kn,

where x, y ∈ gn . (iii) follows from (i) and the definitions. !

For n even, n = 2k, each n ∈ Nk may be written uniquely in the form 1 + /π k

where / is taken mod pk and Tr(/) ≡ 0 mod pk . The map n #−→ / mod pk is an
isomorphism of Nk and gk considered as Kn-modules. Hence, by Lemma 4.2.4, we
may identify (Nk)∗ with gk . Thus, if x ∈ gk and ηx is the corresponding element in
(Nk)∗ we have Nk(ηx) = {g ∈ Kn; gxg−1 ≡ x mod pk}. Let X be a pre-image of x
in g, then by Lemma 4.2.3 we have

Nk(ηx) = TX̃ ,n Nk .

This completes the result for even n.
For n odd, n = 2k + 1 we may write n ∈ Nk+1 uniquely in the form n = 1 +

/π k+1 (again, / is taken mod pk), Tr(/) ≡ 0 mod pk . As before, Nk+1, gk and g∗
k

are isomorphic as Kn-modules. In this case however for x ∈ gk , x primitive, X a
pre-image in g,

Nk+1(ηx) = TX̃ ,n Nk .

In what follows X will denote an element of g of the form (λ
0

0
−λ

), where λ ∈ O∗
p,

or one of the form ( 0
ω̃

ζ
0 ), where ζ ∈ O∗

p and ω̃ ∈ p. In particular X is primitive.
Let ηX be the corresponding character of Nk+1: if ξ is the character of pk+1 in
Op/p

n defined by ξ (π k+1λ) = η(λ) (λ mod pk), then ηX (n) = ξ (π k+1Tr(X̃/)) =
η(Tr(X/))(/ mod pk). Let Bn denote the subgroup of Kn consisting of elements
of the form

b =
(

1 + µπ k π kσ

π k+1τ 1 + µ′π k

)

(µ, µ′, σ, τ ∈ Op/p
n).

By using the explicit form of TX , one sees that Bn is a normal subgroup of TX̃ ,n Nk .
Let ξ̃ be any extension of ξ to a character of pk .

For b ∈ Bn , put

ηX,ξ̃ (b) = ξ̃ (Tr(X̃ · log b)),

i.e., if X = (λ
0

0
−λ

),

ηX,ξ̃

(

1 + µπ k π kσ

π k+1τ 1 + µ′π k

)

= ξ̃ (2λπ k(µ − π kµ2/2)),
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and, if X = ( 0
ω̃

ζ
0 ),

ηX,ξ̃

(

1 + µπ k π kσ

π k+1τ 1 + µ′π k

)

= ξ̃ (π k(σ ω̃ + ζπτ )).

One checks immediately in each case that ηX,ξ̃ defines a one-dimensional repre-
sentation of Bn . It is clear that ηX,ξ̃ is invariant under the action of TX̃ ,n .

By Lemma 4.1.3 the irreducible representations U of TX̃ ,n Bn , such that U |Bn ⊃
ηX,ξ̃ , are of the form 8ρ,X,ξ̃ :

8ρ,X,ξ̃ (t · b) = ρ(t)ηX,ξ̃ (b),

for t ∈ TX̃ ,n, b ∈ Bn , where ρ ∈ (TX̃ ,n)∗ satisfies ρ|TX,n ∩ Bn = ηX,ξ̃ |TX,n ∩ Bn .

Theorem 4.2.5. (i) The representations indTX̃ ,n Bn↑Kn8ρ,X,ξ̃ = D(ρ, X, ξ̃ ) are
primitive representations of Kn.

(ii) D(ρ, X, ξ̃ ) ∼ D(ρ ′, X ′, ξ̃ ′) implies X̃ and X̃ ′ lie in the same orbit in gk ,
i.e., there exists k ∈ Kk such that k ◦ X̃ = X̃ ′; in that case indNk+1↑KnηX and
indNk+1↑KnηX ′ are equivalent.

(iii) D(ρ, X, ξ̃ ) ∼ D(ρ ′, X, ξ̃ ′) implies ξ̃ = ξ̃ ′.
(iv) D(ρ, X, ξ̃ ) ∼ D(ρ ′, X, ξ̃ ) if and only if ρ = ρ ′.

Proof. Let M denote the subset of Kn consisting of all elements k ∈ TX̃ ,n Nk

such that ηk
X,ξ̃

= ηX,ξ̃ .

normal

!

"

normal

!

"
TX̃ ,n · Nk

TX̃ ,n · Bn

Bn

Nk+1 ηX ∈ (Nk+1)∗

ηX,ξ̃ ∈ (Bn)∗

8ρ,X,ξ̃ ∈ (TX̃ ,n · Bn)∗

I claim that M = TX̃ ,n Bn if ξ = ξ ′ and that otherwise M is empty. In any case
the characters ηX,ξ̃ and η′

X,ξ̃
are fixed by the action of TX̃ ,n Bn . Hence M is closed

under (right and left) multiplication by elements of TX̃ ,n Bn . Hence it suffices to show
that M ∩ Nk = Bn , and for this it suffices to consider a system of representatives
of Nk/Bn . Such a system of representatives may be chosen from elements of the
form ( 1

π k z
0
1 ) = Z .
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In the first case (X = (λ 0
0 λ); λ ∈ O∗

p), if Z ∈ M , we must have

ηX,ξ̃

((

1 π kσ

π k+1τ 1

))

= ηX,ξ̃

(

Z−1
(

1 π kσ

π k+1τ 1

)

Z
)

= ηX,ξ̃

((

1 + π2kσ z π kσ

π k+1τ 1 − π2kσ z

))

,

i.e., ξ̃ (2λπ2kσ z) = 1 for all σ ∈ Op/p
n . Hence z ∈ p. In the second case, (X =

(0 ζ
ω̃ 0); ζ ∈ O∗

p, ω̃ ∈ p) if Z ∈ M , we must have, for A ≡ 1 mod pk ,

ηX,ξ̃

((

A 0
0 A−1

))

= ηX,ξ̃

(

Z−1
(

A 0
0 A−1

)

Z
)

= ηX,ξ̃

((

A 0
π k z

(

A−1 − A
)

A−1

))

,

i.e., ξ̃ (ζ (A−1 − A)π k z) = 1 for all A ≡ 1 mod pk which implies z ∈ p. Hence in
either case Z ∈ Bn . This shows that M ⊂ TX̃ ,n Bn . Hence the claim. Hence, by
Lemma 4.1.2 for ξ̃ 4= ξ̃ ′, indBn↑TX,n Nk ηX,ξ̃ and indBn↑TX,n Nk ηX,ξ̃ ′ have no irreducible
components in common; and by Lemma 4.1.1

indBn↑TX̃ ,n Nk ηX,ξ̃ =
⊕

ρ∈(TX̃ ,n)∗

ρ|TX,n∩Bn=ηX,ξ̃ |TX,n∩Bn

indTX̃ ,n Bn↑TX̃ ,n Nk 8ρ,X,ξ̃

is a decomposition of indBn↑TX̃ ,n Nk ηX,ξ̃ into irreducible representations of TX̃ ,n Nk

which are inequivalent for varying ρ and ξ̃ . Since, for ρ ∈ (TX̃ ,n)∗ satisfying
ρ|TX̃ ,n ∩ Bn = ηX,ξ̃ |TX̃ ,n ∩ Bn , the representations indTX̃ ,n Bn↑TX̃ ,n Nk 8ρ,X,ξ̃ Nk+1 ⊃
ηX , the representations indTX̃ ,n Bn↑Kn8ρ,X,ξ̃ are primitive, and again by Lemma 4.1.1
and the above, they are irreducible and inequivalent for varying ρ and ξ̃ . This proves
(i), (iii), and (iv). (ii) follows from the fact that D(ρ, X, ξ )|Nk+1 ⊃ ηX and a similar
argument. !

4.3. Counting. Let X be a regular element in g, i.e., X is primitive and has
distinct eigenvalues. Let T be a torus in K , i.e., the centralizer in K of a regular
element in g. By Lemma 4.2.2, each torus of K is conjugate to one of the form

(i)
{(

a 0
0 a−1

)

; a ∈ O∗
p

}

,

(ii)
{(

a b
ω̃b a

)

; ω̃ ∈ O∗
p,

(

ω

p

)

= −1
}

,

(iii)
{(

a b
ω̃b a

)

; ω̃ ∈ p, ω̃ = πνζ, π > 0, ζ mod p, ζ ∈ O∗
p/(O∗

p)2
}

.
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I shall refer to these as the split, unramified, and ramified cases respectively. I have
shown in §4 and in the preceding sections, that to each T is associated a series of
representations of K parametrized by T ∗ together with certain additive characters.
In this paragraph, I will show that these representations exhaust all representations
of SL(2,Op). First I recall the pertinent results of §2.1.

In the notation of §2.1, if V/! is unramified, ( ∈ !̂ of conductor pn , ρ ∈ N̂ 1

of conductor pn (N 1 may of course be identified with a torus of K ), then, by
Theorem 4.2.2, D((, ρ, V ) is irreducible and (analogous to the proof of Theorem
1.8.4) D((, ρ, V ) ∼ D((, ρ ′, V ) if and only if ρ ′ = ρ±1. Further, by (i) of page 23
the representations D((, ρ, V ) are primitive representations of Kn having degree
qn−1(q − 1), (q = N (p)). Hence the number of inequivalent irreducible represen-
tations of Kn of the form D((, ρ, V ) (V/! unramified, ( and ρ of conductor pn)
is

1
2

(

[N 1 : Nn] − [N 1 : Nn−1]
)

= 1
2

qn−2(q2 − 1).

Returning to §4.1 and §4.2, an easy computation, using Theorems 4.2.1 and
4.2.5 and the degrees of the various groups involved, shows that in the split
case (X = (λ

0
0

−λ
); λ ∈ O∗

p) the number of primitive representations of Kn (n ≥ 2)
constructed there = (1/2)qn−2(q − 1)2 and that they have degree = qn−1(q + 1),
in the unramified case (n even and X = ( 0

ω̃
1
0 ); ω̃ ∈ O∗

p, ( ω̃
p) = −1) the num-

ber is (1/2)qn−2(q2 − 1) and their degree is qn−1(q − 1), and in the ramified
case (n ≥ 2, X = ( 0

ω̃
ζ
0 ); ζ ∈ O∗

p, ω̃ ∈ p) the number is 4qn−1 and their degree is
qn−2(q2 − 1)/2. Thus (comparing degrees) I have constructed

1
2

qn−2(q − 1)2 + 1
2

qn−2(q2 − 1) + 4qn−1 = qn + 3qn−1

inequivalent primitive representations of Kn . However, by [12] the number of conju-
gacy classes of Kn minus the number of conjugacy classes of Kn−1 (n ≥ 2) =
qn + 3qn−1. Finally the representations of K1 are well known. See [2], [14]. Thus
I have obtained all irreducible (unitary) representations of SL(2,Op).
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[2] G. F. Frobenius, Über gruppencharactere, Berliner Sitzungsberichte, 1896, pp. 985–1021.
[3] I. M. Gelfand and M. I. Graev, The group of matrices of second order with coefficients in a locally compact

fields, Uspehi Mati. Nauk, 1963, pp. 29–99.
[4] I. M. Gelfand, M. I. Graev and I. I. Pyatetskii-Shapiro, Representation theory and automorphic functions,

Translated from the Russian by K. A. Hirsch, W. B. Saunders Co., Philadelphia, Pa., 1969.



P1: GIG

PB440-01 HIDA-0662G PB440-Hida-v4.cls December 10, 2003 7:5

joseph a. shalika38

[5] Harish-Chandra, Harmonic analysis on reductive p-adic groups, Springer-Verlag, Berlin, 1970, Notes by
G. van Dijk, Lecture Notes in Mathematics, vol. 162.

[6] E. Hecke, Zur Theorie der elliptischen Modulfunktionen, Math. Ann. 97 (1926), 210–242.
[7] R. Howe, θ -series and invariant theory Automorphic forms, representations and L-functions (Proc. Sympos.

Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII,
275–285, Amer. Math. Soc., Providence, R.I., 1979.

[8] H. D. Kloosterman, The behaviour of general theta functions under the modular group and the characters
of binary modular congruence groups, i–ii, Annals of Mathematics, 47 (1949), 317–447.
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CHAPTER 2

THETA-10

By Jeffrey Adams

It is a pleasure to dedicate this paper to Joe Shalika, my freshman
number theory professor.

1. Introduction. The symplectic group Sp(4, F) has a particular interesting
unitary representation for F a finite or local field. When F is finite this represen-
tation was denoted !10 [30], and somehow the name has stuck. We discuss this
representation in some detail in the case of R.

This material is mostly well known, at least to the experts, and this paper is
intended as a reference for non-specialists. It also serves as an introduction to some
of the machinery of the Arthur conjectures as discussed in [5]. It has existed since
1990 as an informal set of notes.

2. Background. Here are some references for the basic material under dis-
cussion: admissible representations of real reductive groups, Harish-Chandra mod-
ules, reductive dual pairs, the Langlands classification, and L and Arthur packets.
The references are chosen for their accessibility rather than being the primary
sources.

A good introduction to representation theory of real groups is A. Knapp’s
Representation Theory of Semisimple Groups, An Overview Based on Examples
[21]. A quicker guide to the subject is a set of lecture notes by A. Knapp and
P. Trapa from the 1998 Park City Conference [24]. The proceedings of the 1996
Edinburgh Conference [8] include a number of expository articles, including one
on the Langlands program by A. Knapp [22].

We make repeated use of the Langlands classification (sometimes referred to
as the Langlands–Knapp–Zuckerman classification) and its equivalent form, the
Vogan classification. A summary of the statements, with references to more details,
may be found in Sections 3 and 4 of D. Vogan’s “The unitary dual of G2” [34].
Some of the methods used here are discussed in “The Kazhdan-Lusztig conjecture
for real reductive groups” by D. Vogan [36].

For more details on some of the technology used, the basic references are
Representations of Real Reductive Groups by D. Vogan [32] and Cohomological
Induction and Unitary Representations by A. Knapp and D. Vogan [25]. The intro-
duction to [25] has an overview of the cohomological construction.

Manuscript received October 9, 2002
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For the Langlands program, in addition to [22] cited above, see the article by
A. Borel [9, Volume 2] in the proceedings of the 1977 Corvallis Conference [10].
The real case is explained in Section 11, pages 46–48. For Arthur’s conjectures
see The Langlands Classification and Irreducible Characters for Real Reductive
Groups by J. Adams, D. Barbasch, and D. Vogan [5], especially the Introduction.

For basics of reductive dual pairs see “θ -series and Invariant Theory” by
R. Howe [15] and “Examples of dual reductive pairs” by S. Gelbart [13]. For
the relationship with θ10 see “A counterexample to the ‘generalized Ramanujan
conjecture’ for (quasi-) split groups” by R. Howe and I. Piatetski–Shapiro [16].
Another good reference is “A brief survey on the theta correspondence” by D.
Prasad [28]. For the connection between dual pairs and L and Arthur packets see
“L-Functoriality for Dual Pairs” by J. Adams [1].

The representation θ10 over a finite field is discussed in [30]. It is one of the first
examples of a cuspidal unipotent representation [27]. By a standard construction
this also gives θ10 over a p-adic field and a corresponding cuspidal automorphic
representation. Alternatively θ10 over any local field may be constructed via the
dual pair correspondence with an anisotropic orthogonal group of rank 2. All of
this is discussed in [16, §1].

3. Notation. In this section we establish some notation and conventions to
be used throughout. Much of this is standard and the reader may want to skip ahead
to Section 4 and refer back to this when necessary.

Let V be a four-dimensional real vector space with a non-degenerate symplectic
form < , >. Let G = Sp(V ) = Sp(V, < , >) be the isometry group of < , >.
Choose a basis of V such that < , > is given by J = ( 0 I2

−I2 0 ). Then Sp(V ) is
isomorphic to G = Sp(4, R), the group of matrices g satisfying g J tg = J . Thus
G consists of the matrices ( A B

C D ) where

A tB = t(A tB) C tD = t(C tD) A tD − B tC = I2.

Let g0 be the Lie algebra of G. Thus g0 consists of matrices X satisfying X J +
J tX = 0, i.e., X = ( A B

C − tA ) where B and C are symmetric.
We will make repeated use of the Cartan subgroups of G. There are four

conjugacy classes of Cartan subgroups, isomorphic to R∗ × R∗, R∗ × S1, C∗ and
S1 × S1 respectively. We choose explicit representatives H s, H #, H sh and H c

as follows (# and sh stand for long and short Cayley transforms respectively
[21, page 417]).

Let H s(x, y) = diag(x, y, 1
x , 1

y ) (x, y ∈ R∗). This gives the Cartan subgroup
H s .

For 2 × 2 matrices A, B and θ ∈ R let

M(A, B) =





A1,1 A1,2

B1,1 B1,2

A2,1 A2,2

B2,1 B2,2



(3.1)
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t(θ ) =
(

cos(θ ) sin(θ )
− sin(θ ) cos(θ )

)
.(3.2)

For x ∈ R∗, θ ∈ R let h#(x, θ ) = M(diag(x, 1
x ), t(θ )) and hsh(x, θ ) =

diag(xt(θ ), 1
x t(θ )). This gives H # % R∗ × S1 and H sh % C∗ respectively.

We also need the Lie algebras. Let Xs(x, y) = diag(x, y, −x − y); this gives
the Lie algebra hs

0 of H s .
Let T (y) = ( y

−y ). Let X #(x, y) = diag(x I2 + T (y), −x I2 + T (y)) and
Xsh(x, y) = M(diag(x, −x), T (y)). Finally let Xc(x, y) = M(T (x), T (y)). This
gives the Lie algebras h#

0, hsh
0 , and hc

0 respectively.
Write (x, y) for the element of Hom(hc

0, C) taking hc(x ′, y′) to i(xx ′ + yy′).
Then α = (0, 2), β = (1, −1), γ = (1, 1), and µ = (2, 0) are a set '+(g, hc) of
positive roots of hc in g, and ρ (one-half the sum of the positive roots) is (2, 1).

Let θ (g) = tg−1; this is a Cartan involution of G, and let K = Gθ % U (2) be
a maximal compact subgroup of G. Let θ (X ) = − tX be the corresponding Cartan
involution of g0, and let k0 = gθ

0, p0 = g−θ
0 . For ) = c, #, sh, or s write H ) =

T ) A) as usual, with T ) = H ) ∩ K . Let '+(k, hc) = '+(g, hc) ∩ '(k, hc) = {β},
'+(p, hc) = '+(g, hc) ∩ '(p, hc) = {α, γ , δ}. Let p± be the abelian subalgebra of
p corresponding to ±'+(p, hc).

The irreducible representations of K are parametrized by highest weights with
respect to '+(k, hc). For x ≥ y, x, y ∈ Z let µ(x, y) be the irreducible finite dimen-
sional representation with highest weight (x, y). By a highest weight module for
g we mean a module with a vector annihilated by p−. For more on highest weight
modules in general see [31].

We parametrize infinitesimal characters for g by elements of Hom(hc, C) via
the Harish-Chandra homomorphism. See [12] or [24, Lecture 5] for the definitions
of infinitesimal character and Harish-Chandra homomorphism. Write χ (x, y) for
the infinitesimal character corresponding to (x, y) (x, y ∈ C).

Let λ0 = (1, 0), and let q = q(λ0) be the associated θ -stable parabolic [32,
Definition 5.2.1]. Thus q = l ⊕ u with l % C ⊕ sl(2, C). With the usual notation
we have '(l, hc) = {±α} and '(u, hc) = {β, γ , µ}, ρl = (0, 1) and ρu = (2, 0).

Let L be the normalizer of q as usual; L % U (1) × SL(2, R). Note that L ⊃ H #;
in fact L is the centralizer of T #. Suppose λ ∈ Hom(t#, C) is the differential of a
character of T #; equivalently λ is the restriction of (k, 0) for some k ∈ Z. We
normalize the derived functor construction as in [32, 6.3.1] and [25, 5.3b]; let Aq(λ)
be the (g, K )-module R1

q(λ − ρ(u)). As usual we view λ − ρ(u) as an (l, L ∩ K )-
module. This has infinitesimal character χ (λ + ρl) = (k, 1).

This is an irreducible non-tempered unitary representation if k ≥ 1, i.e., the
matrix coefficents are in L2+ε(G) [21, page 198] or [24, Lecture 8]. It has lowest
K -type µ(k + 1, 1) and has non-zero (g, K )-cohomology if k ≥ 2. See [32, Defi-
nition 1.2.10, page 52] for the notion of lowest K -type. See [37] for a discussion
of representations with (g, K )-cohomology, and in particular Theorem 4.6, p. 232
for the classification of these representations.
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LetO be the nilpotent orbit in g0 through the element ( 0 B
0 0 ) with B = diag(1, 0).

This is a 4-dimensional orbit. Its closure consists of itself and the 0-orbit.

Remark 2.1. We take this oppportunity to clarify some notation. The alge-
braic group Sp(2n) is simply connected, and is a two-fold cover of its adjoint
group P Sp(2n). The group P Sp(2n, R) usually refers to the real points of the
algebraic group P Sp(2n), or equivalently the real points of the complex group
P Sp(2n, C) = Sp(2n, C)/ ± I . This group is disconnected as a real Lie group,
and has identity component Sp(2n, R)/ ± I . Occasionally (for example in [36],
pp. 251–254) P Sp(2n, R) refers to Sp(2n, R)/ ± I .

Also consider the symplectic similitude group GSp(2n). This has center Z %
Gm and the adjoint group GSp(2n)/Z is isomorphic to P Sp(2n). Furthermore the
set of real points of the adjoint group is isomorphic to GSp(2n, R)/Z (R). So the
notation PGSp(2n, R) is unambiguous, and perhaps for this reason some authors
prefer to use this group.

Simliar remarks hold over any local field.

4. Θ10. We give a number of descriptions of !10. For unexplained notation
see Section 3.

Theorem 4.1. There is a unique irreducible representation !10 of Sp(4, R)
satisfying the following equivalent conditions:

1. !10 is a highest weight module for '+(k, hc) ∪ '(p−
0 , hc), with highest

weight (2, 2);
2. !10 is the endpoint of the continuous spectrum in the parametrization [38]

of unitary highest weight modules of G with one-dimensional lowest K-types;
3. In the Langlands-Knapp-Zuckerman classification, !10 is a limit of holo-

morphic discrete series [21, Chapter 12, §7, page 460], with infinitesimal char-
acter χ (1, 0). Thus !10 = !G(λ, C, χ ) in the notation of [23, Theorem 1.1], with
λ = (1, 0), C the holomorphic discrete series chamber (given by simple roots α, β),
and χ the trivial character of the center of G;

4. !10 = ψα(π ′) where π ′ is the holomorphic discrete series with infinitesimal
character χ (ρ), and ψα is the translation functor to the α-wall (cf. [32, 8.2.6]);

5. !10 has infinitesimal character χ (1, 0) and contains the K-type µ(2, 2);
6. In the Vogan-Zuckerman classification, !10 = X (q, δ ⊗ ν)(µ(2, 2)), where

δ ⊗ ν ∈ H #∗
is given by δ ⊗ ν(h#(θ, x)) = e−iθsgn(x) ([32], Definition 6.5.11);

7. !10 is the direct summand of IndG
MAN(π2 ⊗ 1 ⊗ 1) containing µ(2, 2), where

M A % SL(2, R) × R∗ is the centralizer of A# and π2 is the lowest holomorphic
discrete series representation of SL(2, R);

8. !10 has K-spectrum 11≤m≤nn µ(2m, 2n);
9. !10 corresponds to the sgn representation of O(2) in the dual pair corre-

spondence for (O(2), Sp(4, R));
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10. !10 is the direct summand of Aq(0) containing µ(2, 2); equivalently it is
the tempered summand of this representation;

11. !10 is tempered, has infinitesimal character χ (1, 0) and wave-front set O
[17].

!10 is unitary, tempered, and has Gelfand-Kirillov dimension 2 (cf. [35]).

Remark 4.2. There is an outer automorphism of Sp(4, R) that takes !10 to its
contragredient !∗

10. There is no intrinsic way to choose one of these two represen-
tations. The explict choices of the previous section enable us to make such a choice
and denote it !10.

If we replace Sp(4, R) with G = P Sp(4, R) (cf. Remark 2.1) there is a unique
representation, whose restriction to the identity component G0 of G is !10 ⊕ !∗

10
(pushed down to G0 = Sp(4, R)/ ± I ).

Proof. Most of these facts may be found in the literature, generally as special
cases. We sketch the arguments.

The equivalence of (1) and (2) is a matter of reading the definitions of [38].
Thus the endpoint of the continuous spectrum in (2) is a limit of discrete se-
ries with highest weight (2, 2). The relation between the infinitesimal character
χ (x, y) and highest weight τ = (x ′, y′) is given by (x ′, y′) = (x + 1, y + 2), so
χ = χ (1, 0). Note for later use that this implies the only highest weight modules
with this infinitesimal character have highest weight (1, 1) or (2, 2). Also note that
the series [38] of unitary highest weight modules for the universal cover of G
has four isolated points, two of which correspond to representations which factor
to G.

The data (λ, C, χ ) [23] giving the limit of discrete series described by (2) are the
infinitesimal character, the “type” of discrete series (holomorphic) and the central
character (µ(2, 2) is trivial on the center of G). Thus (2) and (3) are equivalent.
Item (4) is simply the definition of limit of discrete series in terms of translation
functors [23, Section 1].

Let π be any representation with lowest K -type µ(2, 2) or µ(2, 0) and infinites-
imal character χ (1, 0). The θ -stable data attached to this data [32, Definition 5.4.8
and Corollary 5.4.9] are computed as follows. The element λ of [32, Definition
5.3.22] is (1, 0), so the θ -stable parabolic is q (cf. Section 3). The L ∩ K -type π0

has highest weight (−1, 1), and so δ is this weight restricted to H c as stated. Then
ν is determined in this case by the infinitesimal character and is trivial.

Thus π is a subquotient of the standard module X = X (q, δ ⊗ ν) [32, Definition
6.5.2, page 392]. Now X is computed as follows [32, Definition 6.5.1]. We have
L % U (1) × SL(2, R) and X L is a principal series of L with odd K-types (because
δT #∩A# is the sgn character) and infinitesimal character 0 (because dν = 0) on
SL(2, R). Therefore X L is the sum of the limits of discrete series of SL(2, R)
tensored with δ|U (1), which is e−iθ on U (1). Thus by [32, 6.5.10] X (q, δ ⊗ ν) is
the direct sum of two pieces, each with a unique irreducible summand. By [32,
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6.5.10] again this standard module has two lowest K-types µ(2, 2) and µ(2, 0) each
of which is the unique lowest K-type of a summand. Thus !10 is the summand of
X containing µ(2, 2), i.e., X (q, δ ⊗ ν)(µ(2, 2)).

Thus there are unique irreducible representations with infinitesimal character
χ (1, 0) and lowest K-types µ(2, 2) and µ(2, 0) respectively, and they are distinct.
Now let π be any irreducible representation with this infinitesimal character and
containing the K-type µ(2, 2) (not necessarily lowest). By definition of the ordering
of K-types and elementary K-type considerations, the only possible lower K-types
are µ(2, 0), which is ruled out by the above discussion, or trivial. The spherical
principal series with infinitesimal character ρ contains the holomorphic discrete
series as a constituent (see the Appendix). Translated to infinitesimal character
χ (1, 0) we obtain the standard module X , so by (3) X contains !10. Since X
contains µ(2, 2) with multiplicity one we see the irreducible spherical constituent
does not contain µ(2, 2). This proves the representation defined by (5) is unique
and equal to that defined by (1–4) and (6).

Item (7) is equivalent to (6) by [32, 6.6.2, 6.6.12–14]. The representation defined
by (3) has the K-spectrum indicated in (8) by the Blattner formula [14]. Conversely
if an irreducible representation π has this K-spectrum it is clearly a highest weight
module (since operators from p−

0 lower weights), so this representation is !10 by
(1).

For (9), the sgn representation of O(2) corresponds to an irreducible represen-
tation of Sp(4, R) with highest weight (2, 2) [20], which is isomorphic to !10 by
(1). See Section 5.

For (10) we compute the K-spectrum of Aq(0) by the Blattner formula. We see
it has K-types µ(1, 1), µ(2, 2), µ(3, 1), . . . , and as in (8) any constituent of this
representation has a highest weight. Considering infinitesimal characters as in (2)
we immediately see Aq(0) has two constituents, with highest weights (1, 1) and
(2, 2). By (2) the term with highest weight (1, 1) is not tempered. On the other hand
Aq(0) is completely reducible. This proves (10) is equivalent to (1).

For (11) !10 has the indicated wave-front set, and any representation with this
wave-front set is a highest weight module. Using the infinitesimal character and
the discussion in (2) we see the only other possible highest weight is (1, 1). This
representation has the same wave-front set, but is not tempered. This proves (11).

This completes the proof of the theorem. !

5. Reductive dual pairs. We now list some representations of Sp(4, R) com-
ing from dual pairs. Fix a non-trivial unitary character of R, and let ωn be the
corresponding oscillator representation of Sp(2n, R). Fix n, and let < , >i be a set
of representatives of the isomorphism classes of symmetric bilinear forms of dimen-
sion 2n. There are 2n + 1 such forms, one each of signature (p, q) (p + q = 2n).
Let Gi be isometry group of < , >i . We write Gi = G p,q if < , >i has signature
(p, q). Then for all p, q (G p,q, Sp(4, R)) is a reductive dual pair in Sp(8n, R). Even
though G p,q % Gq,p this notation keeps track not just of G but of the form and the
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embedding (which it is necessary to choose consistently). See [3] for details. Let
ι : G p,q × Sp(4, R) → Sp(8n, R) be the corresponding map.

Let S̃p(2n, R) be the non-trivial two-fold cover of Sp(2n, R). If H is a subgroup
of Sp(2n, R), let H̃ denote its inverse image in S̃p(2n, R). In particular Ũ (n) is
isomorphic to the det

1
2 cover of U (n):

Ũ (n) % {(g, z)| g ∈ U (n), z ∈ C
∗, det(g) = z2}.

Consequently if (O(p, q), Sp(2n, R)) is a dual pair in Sp(2n(p + q), R), then
Õ(p, q) % {(g, z)| det(g)n = z2}. If n is even this covering splits over O(p, q)
by the map g → (g, det(g)n/2).

The covering of Sp(2n(p + q), R) splits over Sp(2n, R) if and only if p + q is
even, in which case the splitting is unique. Thus if p + q and n are even we obtain
a map γ : G p,q × Sp(2n R) → S̃p(2n(p + q), R).

The oscillator representation ω of Sp(8n, R) now yields a bijection between
subsets of the admissible duals of G̃ p,q (p + q = 2) and S̃ p(4, R). We are in the set-
ting of the previous paragraph and via γ we obtain a representation correspondence
between representations of G p,q and Sp(4, R).

Let π+[p, q] be the irreducible representation of Sp(4, R) corresponding (via
the embedding coming from the form of signature (p, q)) to the trivial representation
of G p,q . Similary π−[p, q] corresponds to the sgn representation. The following
identifications are not difficult to deduce from the literature. We use the notation
of the Appendix. All representations have infinitesimal character (1, 0) and are
unitary.

(1) π+[2, 0]: highest weight module, with lowest K -type µ(1, 1); non-
tempered; Cα,

(2) π+[0, 2] = π+[2, 0]∗; LKT µ(−1, −1); Dα,

(3) π−[2, 0] = !10; LKT µ(2, 2); I α,

(4) π−[0, 2] = !∗
10; LKT µ(−2, −2); Lα,

(5) π+[1, 1]: spherical; Bα,

(6) π−[1, 1]: LKT (1, −1); Hα,

(7) π+[4, 0] = !10,

(8) π+[0, 4] = !∗
10,

(9) π+[2, 2] = π+[1, 1].

Here is a brief justification for this table. In each example the lowest K -type
of the representation of Sp(4, R) is known by Howe’s theory of joint harmonics
[19, Proposition 3.4; see 4, Proposition 1.4, page 7]. Also the infinitesimal character
is determined; see [29] or [1, page 107].

In (1–4) the orthogonal groups O(2, 0) and O(0, 2) are compact, and by [18]
the corresponding representations of Sp(4, R) are highest weight modules. These
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are determined by their lowest K -type and infinitesimal character. Similar com-
ments apply to cases (7) and (8). In cases (5) and (9) the representation of Sp(4, R)
is spherical by the preceding paragraph and is determined by its infinitesimal char-
acter, which determines the representation. Finally the representation in (6) is de-
termined by its lowest K -type and infinitesimal character.

6. Packets. We now describe some L and Arthur packets for G.
Let L G be the L-group for G [26]. The identity component ∨G, sometimes

denoted L G0, is a complex connected group with root system of type B2 % C2, and
is adjoint since G is simply connected. Therefore ∨G is isomorphic to the special
orthogonal group on a complex 5-dimensional space. We define ∨G = SO(5, C)
with respect to the standard inner product. Then L G is a trivial extension of ∨G by
5 = Gal(C/R), i.e., L G % ∨G × 5. As usual we may drop the extension since it
is trivial, and write L G = ∨G.

Let WR be the Weil group of R [9]. This is the unique non-split central extension
of Gal(C/R) by C∗. It is given by generators and relations as WR =< C∗, j >,
where j2 = −1 and j z j−1 = z.

6.1. L-packets. We now define the L-homomorphism φ : WR → L G whose
corresponding L-packet 7φ contains !10. We begin by describing the more general
L-homomorphism giving a general L-packet of discrete series. For k, # ∈ Z let
φ(reiθ ) = diag(t(kθ ), t(#θ ), 1) (cf. 3.2). To extend this to a homomorphism of WR

we need to choose x = φ( j) such that

x2 = diag((−1)k, (−1)k, (−1)#, (−1)#, 1)

and such that conjugation by x acts by inverse on φ(C∗). This forces x =
diag(1, −1, 1, −1, 1)t with t ∈ φ(C∗), which in turn implies k, # are even. Then φ

is an admissible homomorphism [26].

Definition 6.1. For k, # ∈ Z let φk,# be the admissible homomorphism from
WR to L G defined by:

φk,#(reiθ ) = diag(t(2kθ ), t(2#θ ), 1), φk,#( j) = J.

For k 0= # both non-zero the image of φk,# is contained in no proper Levi
subgroup of L G, and the corresponding L-packet consists of four discrete series
representations with infinitesimal character χ (k, #). Up to conjugation we may
assume k > # > 0.

The L-homomorphism giving !10 is φ1,0:

Definition 6.2.

φ(reiθ ) = diag(t(2θ ), 1, 1, 1), φ( j) = diag(1, −1, 1, −1, 1)
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The next proposition follows immediately.

Proposition 6.3. The L-packet 7φ contains !10, and consists of four limits of
discrete series representations.

We describe this L-packet in more detail. The L-packet 7φ2,1 contains four
discrete representations, with Harish-Chandra parameters (2, ±1), (±1, −2). Each
of these representations is non-zero when we translate to the α-wall, with infinites-
imal character χ (1, 0), and these are the four limits of discrete series in 7φ . They
have lowest K -types µ(2, 2), µ(2, 0), µ(0, −2), and µ(−2, −2) respectively. We
can think of them as having Harish-Chandra parameters (1, 0+), (1, 0−), (0+, −1),
and (0−, −1), respectively. Here 0± indicates the limit; for example (1, 0+) is the
translation to the wall of the discrete series representation with Harish-Chandra
parameter (2, 1).

Write γ for the limit of discrete series representation with lowest K -type
µ(2, 0). Then

∏
φ

= {!10, γ , γ ∗, !∗
10}.

The centralizer Sφ of φ in ∨G is computed as follows. The centralizer of φ(C∗)
is isomorphic to C∗ × SO(3, C), and φ( j) acts on the centralizer as an involution.
The fixed point set of this action is isomorphic to Z/2Z × O(2). The component
group Sφ is Z/2Z × Z/2Z. The four characters of this group correspond to the four
representations in the L-packet 7φ , with the trivial representation corresponding
to γ . Note that in [2] and [5] we discussed the larger super-packet containing
!10, which contains representations of the groups Sp(p, q). In this case this is not
necessary: we have obtained a bijection 7φ → S̃φ̂ .

6.2. Arthur packets. We describe some Arthur packets of unipotent repre-
sentations of Sp(4, R) [5]. There is some overlap with [7, Examples 1.4.2–3] and
[5, Example 27.14].

We describe unipotent orbits by their Jordan form [11]: SO(5, C) has four
unipotent orbits: O(5),O(1, 1, 1, 1, 1),O(3, 1, 1), and O(2, 2, 1). That is if λ is a
partition of 5 then λ determines a nilpotent orbit in GL(5, C). If the multiplicity
of every even entry of λ is even, this orbit interesects SO(5, C) and determines a
unipotent orbit of SO(5, C). We consider parameters ψ corresponding to the first
three cases in turn.

(1) O(5).
This is the principal orbit for the dual group, and it follows that ψ( j) = I5. The

corresponding representations have infinitesimal character ρ and trivial associated
variety: 7ψ = {trivial}. The centralizer of the image of ψ is trivial, so there is no
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endoscopy for this packet. (There would be if we consider packets for all real forms
of Sp(2n, R) as in [5].) See [5, Theorem 27.18].

(2) O(1, 1, 1, 1, 1).
This is the 0-orbit for the dual group, with dual orbit the principal orbit of

Sp(4, R), and infinitesimal character 0. We takeψ(z) = 1 (z ∈ C∗). Up to conjugacy
there are three possibilities for ψ( j). We write ψ† with † = a, b, c, where:

ψ†( j) =






I5 † = a

diag(−1, −1, 1, 1, 1) † = b

diag(−1, −1, −1, −1, 1) † = c

Let y = ψ( j). Then y acts as an involution on ∨G, and thereby defines a real
form of ∨G. These real forms are SO(5, 0), SO(3, 2), and SO(4, 1), respectively.
The representations in each packet have infinitesimal character 0. There are three
(minimal) principal series representations of Sp(4, R) with infinitesimal character
0, the spherical one which is irreducible, and the two others each having two
irreducible components.

In terms of the tables in the Appendix we see this as follows. After translation
we are considering representations with infinitesimal character ρ, and both simple
roots not in the τ -invariant. See [32, Definition 7.3.8, p. 472] for the definition of the
τ -invariant. These are dual to representations of the real forms of ∨G with both roots
in the τ -invariant, i.e., one-dimensional representations. These are parametrized by
∨G(R)/∨G(R)0; there are 1, 2 and 2 of them respectively. In the first case 7 consists
of the single irreducible spherical representation πsph with infinitesimal character
0 (this representation is itself a block). In the second case 7 consists of the two
large discrete series representations J , K translated to infinitesimal character 0. We
denote these J 0, K 0. The final case consists of the two representations Y , Z in the
other block for Sp(4, R), translated to Y 0, Z0 at infinitesimal character 0.

It is immediate that πsph , K 0 + L0, and Y 0 + Z0 are stable.
We turn now to endoscopy. See [5, Chapters 22 and 26] for details. Computing

centralizers, we see Sψ consists of 1, 2 and 2 elements respectively. Given s ∈ Sψ

let ∨H be the identity component of the centralizer of s in ∨G. Associated to ∨H
and ψ is an endoscopic group H , stable Arthur packet of unipotent representations
of H , and virtual character of Sp(4, R) obtained by lifting. The identity element
corresponds to the stable sums above.

We consider endoscopy coming from the non-trivial elements. For ψa we
have H = GL(1, R) × SL(2, R); K 0 − L0 is the lift from H of sgn on GL(1, R)
and the irreducible (spherical) principal series of infinitesimal character 0 on
the SL(2, R) factor. In this case lifting is induction from a real parabolic sub-
group. The corresponding construction at infinitesimal character ρ yields E − F =
E − F + I + J − K − L , and translating to infinitesimal character 0 all terms van-
ish except K 0 − L0.
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Similarly we obtain Y 0 − Z0 as the lift from GL(1, R) × SL(2, R), of the trivial
representation on GL(1, R) times the reducible principal series of infinitesimal
character 0 on SL(2, R).

We summarize this as follows.

Proposition 6.4. (1) 7ψa = {πsph}
(2) 7ψb = {J 0, K 0}

(2a) J 0 − K 0 is the lift of an irreducible principal series representation of
GL(1, R) × SL(2, R),

(3) 7ψc = {Y 0, Z0}
(4) Y 0 − Z0 is the lift of a reducible principal series representation of

GL(1, R) × SL(2, R).

(3) O(3, 1, 1)
This is the most interesting case. To be concrete, let ι denote the embedding

of SO(3, C) given by ι(g) = diag(I2, g). Let π : SL(2, C) → SO(3, C) be the
covering map and let ψ = ι ◦ π : SL(2, C) → SO(5, C).

We take ψ(z) = 1 (z ∈ C∗). The centralizer of ψ(SL(2, C)) is isomorphic to
O(2). Up to conjugation O(2) has three elements of order two. Hence there are
three Arthur parameters ψ for this orbit, written ψ† with † = a, b, c, where

ψ†( j) =






I5 † = a

diag(−1, −1, 1, 1, 1) † = b

diag(1, −1, −1, −1, −1) † = c

As in [5, 22.8] we obtain an element y ∈ ∨G of order 2, defining a Cartan
involution θy . For † = a, b, c, we have y = diag(1, 1, −1, 1, −1), diag(−1 − 1
−, 1, −1), and diag(1, −1, 1, −1, 1), respectively. The Cartan involutions θy define
the real forms SO(3, 2), SO(4, 1), and SO(3, 2), respectively. We obtain a block
for this real form, and the representations in 7ψ† are dual in the sense of [33] to
these.

Using some facts about associated varieties for representations of SO(3, 2) and
SO(4, 1) we conclude (notation as in Section 5 and the Appendix):

Theorem 6.5. The Arthur packets defined by ψa, ψb, and ψc are:
1. 7ψa = {Bα, Hα} = {π+[1, 1], π−[1, 1]}.
2. 7ψb = {W α, Xα}.
3. 7ψc = {Cα, Dα, I α, Lα} = {π+[2, 0], π+[0, 2], π−[2, 0] =

!10, π
−[0, 2] = !∗

10}.

Now we compute the centralizer of the image of ψ . As noted the centralizer of
ψ(SL(2, C)) is isomorphic to O(2). To compute the centralizer of the image of ψ

we compute the fixed points of ψ( j) on this group.
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Lemma 6.6. The centralizer Sψ and its component group Sψ are as follows:
(1) If ψ = ψa or ψb then Sψ % O(2), and Sψ = Z/2Z, with

s = diag(1, −1, −1, −1, −1).
(2) Sψc = Sψc = S[O(1) × O(1) × O(1)] % Z/2Z × Z/2Z. Explicitly Sψc =

{s1 = I5, s2 = diag(−1, −1, 1, 1, 1), s3 = diag(1, −1, −1, −1, −1), s4 = s2s3}.

In case (1) the identity component ∨H of the centralizer of the non-trivial
element of S is SO(4, C). In case a (respectively b) θy gives the real form SO(2, 2)
(resp. SO(3, 1)). The corresponding endoscopic groups are SO(2, 2) and SO(3, 1),
respectively.

In case (2) the identity components of the centralizers of the elements of
S are SO(5), SO(3) × SO(2), SO(4), and SO(4), respectively. The correspond-
ing real forms defined are SO(3, 2), R∗ × SO(2, 1), SO(2, 2), and SO(3, 1), re-
spectively. The corresponding endoscopic groups are isomorphic to Sp(4, R),
U (1) × SL(2, R), SO(2, 2), and SO(3, 1), respectively.

Let sgn be the non-trivial one-dimensional representation of SO(2, 2) or
SO(3, 1).

Proposition 6.7. Each Arthur packet 7ψ† is in bijection with Sψ† . The lifted
characters in the Arthur packets defined by ψa, ψb, and ψc are the following.

(1) ψa:
(1a) Bα + Hα is stable,
(1b) Bα − Hα is the lift from SO(2, 2) of the sgn representation,

(2) ψb:
(2a) W α + Xα is stable,
(2b) W α − Xα is the lift from SO(3, 1) of the sgn representation,

(3) ψc:
(3a) Cα + Dα + I α + Lα is stable,
(3b) Cα − Dα − I α + Lα is the lift of the trivial representation from

SL(2, R) × U (1),
(3c) Cα − Dα + I α − Lα is the lift of the trivial representation from SO(3, 1).
(3d) Cα + Dα − I α − Lα is the lift of the trivial representation from SO(2, 2).

Remark 6.8. There is a further choice required to define the lifting [5, Definition
26.15(iii)]. The affect of this choice is to interchange the trivial and sgn represen-
tations of the endoscopic group H . We have made a particular such choice above.

Remark 6.9. The packets given by ψb, ψc, are those of [7, 1.4.3] and [5,
27.27(a–b)]. The case of ψc is [7, 1.4.2] and [5, 27.17(c)].

Proof. The proofs of these facts are all similar, based on the character table in the
Appendix. The basic technique is that standard representations of H at infinitesimal
character ρ for G lift to standard representations in a simple way. To compute
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the lift of an irreducible representation, in particular the trivial representation, we
write it as a linear combination of standard representations. We then compute the
corresponding lift at ρ, and then translate to a wall (cf. [32, 8.2.6]). The information
which we need is either in the Appendix or is readily obtained from smaller groups
such as SL(2, R).

We give a few examples.

ψa:

B + H = (B − G − I − L) + (H − J − K )

= B + H + G − (I + J + K + L),

which is stable. Translating to the α wall we conclude that Bα + Hα is stable. On
the other hand the lift of the sgn representation of SO(2, 2) is the translation to the
α wall of

B − G − G + (−I + J+K − L) = (B + E + F + G + H + I + J + K + L)

− 2(G + E + F + H + J + K )

− I + J + K − L

= B − E − F − G − H .

Translating to the α wall we have

Lift(sgn) = Bα − Eα − Fα − Gα − Hα = Bα − Hα,

since α is in the τ -invariant of E, F , and G.
The case of ψb is similar.

ψc:

C + D + I + L = (C − E − H + I + J + K )

+ (D − H − F + J + K + L) + I + L

= (C + D) − (E + F) − 2H + 2(I + J + K + L).

This is stable, and remains so upon passing to the α wall.
The lift of the trivial representation of SO(2, 2) is

A − H − H + (−I + J + K − L) = (A + C + D + E + F + G + 2H + J + K )

− 2(H + J + K ) − I + J + K − L

= A + C + D + E + F − I − L.

Translating to the α wall A, E, F vanish to give

Lift(C) = Cα + Dα − I α − Lα.

We leave verification of the remaining cases to the reader. !
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6.3. Relation with the theta correspondence. Note that by 6.2(3) 7ψc con-
sists of the representations corresponding to the trivial and sgn representations of
O(2, 0) and O(0, 2). This is an example of the philosophy of [1].

This can also be described in terms of derived functors. With notation as in Sec-
tion 3 Aq(k, 0) is an irreducible unitary representation if k ≥ 1. We define Aq′(0, −k)
analogously; Aq′(0, −k) % Aq(k, 0)∗. If k ≥ 1 then {Aq((k, 0)), Aq((0, −k))} is an
Arthur packet of a particularly simple type as in [6].

Now take k = 0. Then Aq(0) is unitary and reducible; in fact

Aq(0) = !10 ⊕ π+[2, 0], Aq′(0) = !∗
10 ⊕ π+[0, 2].

Therefore 7ψc consists of the four consitituents of Aq(0) and Aq(0), and this is an
Arthur packet of the previous type at singular infinitesimal character.

7. Appendix: Character tables. We give some information about the repre-
sentations of Sp(4, R) with infinitesimal character ρ. This information is reasonably
well known, if not necessarily readily accessible. Each table lists standard mod-
ules A, B, . . . with their irreducible quotients A, B, . . . . The composition series
of the standard modules and the expressions of the irreducible modules (in the
Grothendieck group) in terms of standard modules are given. The final column
shows the τ -invariant of each irreducible representation, with α (respectively β) a
long (respectively short) simple root. For general information see [32] and [33].

There are three blocks for Sp(4, R) with infinitesimal character ρ. One of these
is the singleton consisting of the irreducible principle series module, which is dual
to the trivial representation of SO(5, 0). The other two are the block of the trivial
representation (dual to a block for SO(3, 2)) and a block dual to the block of the
trivial representation of SO(3, 1).

Table I is from [36]. The information in Table II may all be read off via duality
from the corresonding dual block of the trivial representation of SO(4, 1). We
note that SO(4, 1) has two one-dimensional representations trivial and χ , and two
representations with (g, K )-cohomology. We denote the latter Aq(λ) and A(q, λ)′ =
Aq(λ) ⊗ χ .

If α is not contained in the τ -invariant of a representation X occuring in this
list, we let ψα(X ) 0= 0 be the translate of X to the α wall.
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CHAPTER 3

DISCRETE SERIES CHARACTERS OF DIVISION ALGEBRAS
AND GLn OVER A p-ADIC FIELD

By Jeffrey D. Adler, Lawrence Corwin, and Paul J. Sally, Jr.

1. Introduction. Let F be a p-adic field (with p odd) and D a central divi-
sion algebra of degree n over F . We assume throughout this paper that (n, p) = 1,
the tame case. In this situation, the construction of the irreducible unitary repre-
sentations of D× has been known for some time; see [1], [2], [10] and [18]. (There
is also a construction available when p | n. See [3] and [13]). The characters of
these representations have been computed for n = 2 in [12]. More generally, some
qualitative information about the nature of characters of D× is available in [4].

One of our main goals in the current paper is to give explicit character formulas
for the irreducible representations of D×. In the tame case, these representations
are parametrized by admissible characters θ of the multiplicative groups of field
extensions E/F of degree dividing n. We indicate the dependence by writing θ !
πθ . Fix π = πθ and write χπ for its trace character. We describe a collection of
elements of D×, called normal elements, which meets every conjugacy class in
D×, and, in the theorem below, give a formula for χπ (y) when y is normal. This
formula depends only on θ and y, and on certain algebraic data attached to y. While
complicated, it can be used for explicit computations in many situations. We give
several examples in Section 5.

The representation theory of D× is related to the representation theory of
GLn(F) via the Matching Theorem (see [8], [16]). This provides a canonical bijec-
tion between the set of irreducible representations of D× and the set of discrete series
representations of GLn(F). Among other things, this bijection preserves characters
up to a sign. It was shown in [5] that, under this matching, supercuspidal repre-
sentations of GLn(F) correspond to representations πθ where θ is an admissible
character of an extension E/F of degree n; and generalized special representations
of GLn(F) correspond to representations πθ where θ is an admissible character of
an extension E/F of degree m < n. Using this and our formulas here, we can get
interesting qualitative information about the difference between trace characters of
supercuspidal and generalized special representations of GLn(F). A special exam-
ple of the character formulas in this paper appears in [6] in the case where n = $ is
prime and E/F is totally ramified. All of the details are present in that paper. Here,
our general character formula includes the case when n = $ is prime and E/F is

Jeffrey D. Adler was partially supported by the National Security Agency (#MDA904-02-1-0020).
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unramified. Both the totally ramified and unramified cases are computed directly
in [7] for GL$(F) and, as DeBacker has observed, upon replacing m − 1 by $ − 1
in [6, Theorem 4.2(c)], these results agree. (This is a typographical error in [6], not
a disagreement.) The construction of πθ from θ is inductive in two senses. First,
πθ is induced from a representation π0 of some subgroup of D×. Second, the main
ingredient in the inducing representation π0 is an irreducible representation of the
multiplicative group D×

1 of a division algebra of smaller degree (over an extension
of F). Thus, χπθ

may be described in terms of characters of representations of
division algebras of smaller degree. A qualitative description of the relationship
between these two characters appeared in [4]. One can use this information and an
inductive argument to find an explicit formula for χπθ

.

Acknowledgments. The authors thank Allen Moy and Loren Spice for their
assistance in preparing this manuscript.

Comments by the senior author. Joseph Shalika is a remarkable mathematician
and a terrific colleague. The present paper is a natural continuation of our first
collaboration, [17]. I salute Joe on his sixtieth birthday.

2. Notation. As in the introduction, let F be a p-adic field of characteristic 0
and odd residual characteristic p and D a central division algebra over F of degree
n (so that the center of D is F and [D : F] = n2). Assume (n, p) = 1. Write RD

for the ring of integers in D and ℘D for the prime ideal in RD.
We choose a prime element & ∈ D so that & n ∈ F . Then & normalizes the

maximal unramified extension Fn of F in D, and σ : x $→ & x&−1 generates
Gal(Fn/F). (In fact, given a generator σ ∈ Gal(Fn/F), there is a unique central
division algebra D/F so that σ arises in this way.) We normalize the valuation and
absolute value on D so that v(& ) = 1 and |& | = q−n .

An element of the form α& j , where α is either zero or a (qn − 1)st root of
unity in Fn , is called a monomial. If y ∈ D×, we may write y uniquely as a sum of
monomials,

y =
∞

∑

j= j0

α j&
j , α j0 '= 0.

Then v(y) = j0 and |y| = q−nj0 . We say that y is normal if all the monomials
α j&

j appearing in the sum above commute. The following lemma illustrates the
importance of normal elements.

Lemma. Every element y ∈ D× is conjugate to a normal element. In fact, for
any extension E/F of degree dividing n, E× embeds into the set of normal elements
in D×.
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We introduce a filtration on D× by putting K0 = R×
D and Km = 1 + ℘m

D for
m ≥ 1. For any closed subgroup S ⊆ D× and any irreducible smooth representation
π of S, we define the depth of π to be the smallest nonnegative integer d such that π
is trivial on S ∩ Kd+1. (The notion of depth becomes more complicated when one
replaces D× by an arbitrary reductive p-adic group. The general definition is due
to Moy and Prasad [15]. Note that, because we normalize our valuation differently
from the way they do, our depths are not exactly the same as theirs. For example,
if a representation π of D× has depth d in our normalization, then it has depth d/n
in theirs.)

3. Representations. The irreducible representations of D× are parametrized
by admissible characters θ of extensions E/F of degree dividing n. Given θ , there
exist a tower of fields F = E0 ! E1 ! · · · ! Et = E and characters φ0, φ1, . . . , φt

of E×
0 , E×

1 , . . . , E×
t such that:

(1) θ =
∏t

i=0(φi ◦ NE/Ei ).

(2) For 1 ≤ i ≤ t , φi is a “generic” character of E×
i over Ei−1.

Let d be the depth of θ and let di be the depth of φi , 0 ≤ i ≤ t . The tower of fields is
uniquely determined by θ , as are the depths d1 > d2 > · · · > dt . Moreover, d0 ≥ d1

or we may take φ0 ≡ 1. A detailed discussion of admissible characters and their
properties may be found in [11] or [14].

We can (and will) embed each field Ei in D by identifying Ei with some L[m],
where L is a subfield of Fn , and m is a monomial. Let Di be the centralizer of
Ei in D. The irreducible representation πθ corresponding to θ is induced from
a representation π0 of the subgroup D×

t (D×
t−1 ∩ K.dt /2/) · · · (D×

1 ∩ K.d2/2/)K.d1/2/.
All irreducible representations of D× are obtained in this way. Full details appear
in the references mentioned in the introduction.

4. Character formulas. Let θ be an admissible character of an extension
E/F of degree dividing n, and let π = πθ be the corresponding irreducible repre-
sentation of D×. We compute the character values χπ (y) = χπθ

(y), y ∈ D×. We
can make some simplifying assumptions before starting:

(1) The depth of π is minimal under twisting by characters of D×. This implies
that d = d1, and we may take the character φ0 arising in the Howe factorization to
be trivial.

(2) The element y is normal.

The following notation will be used in the character formulas below. Write

y = γ0&
j0 (1 + γ1& + γ2&

2 + · · · )
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• Define a tower of fields F ⊆ E (0) ⊆ E (1) ⊆ · · · as follows: E (0) =
F[γ0&

j0 ] and, for j ≥ 1, E ( j) = F[γ0&
j0, γ1&, . . . , γ j&

j ].

• For 1 ≤ i ≤ t , let s(i) be the smallest index j such that E ( j) = E (di −1).

• For 0 ≤ j < s(1), let h( j) be the largest index 1 ≤ i ≤ t such that there is
some index j ′ < di with E ( j ′) = E ( j).

• For y ∈ D×
t Kd , let Gal′(E∗/F)y denote the set of all normal ỹ in the group

D×
t (D×

t−1 ∩ Kdt ) · · · (D×
1 ∩ Kd2 )Kd1 such that ỹ is conjugate to y in D×, but not via

an element of D×
t .

• Let Ei, j denote the center of the division algebra of elements that commute
with Ei and E ( j). (Note that when y ∈ D×

t Kd and j < d, Ei and E ( j) commute,
so this is simply the compositum Ei E ( j).) Let n(i, j), e(i, j) and f (i, j) denote the
degree, ramification index and residual degree of Ei, j/F , respectively.

Note that when y ∈ D×
t Kd+1, then Gal′(E∗/F)y has a simpler interpretation: We

can (and do) replace y by a normal element of D×
t . In this case, Gal′(E∗/F)y is

just the orbit of y under the action of the group of F-automorphisms of E that
preserve every Ei (a group that acts on y via conjugation in D×). Moreover, Ei, j

can be defined as a compositum for all j ≤ d.
In the particular case when y ∈ D×

t Kd , but y is not conjugate to a normal
element in D×

t Kd+1, the more complicated definitions above are necessary. It is
this situation which creates the so-called “bad shell” for the character formulas
(see, for example, [6, Theorem 4.2(d)]).

Take ỹ normal in D×. To each pair of indices (i, i ′) with 1 ≤ i ≤ t and 1 ≤
i ′ ≤ s(i), we associate an eighth root of unity Hi,i ′(ỹ) (depending on θ ). This is the
only term appearing in the character formula which we do not discuss in complete
detail. The computation of these factors is somewhat long and complicated, and
will appear in a future paper with full details of the computation of the character
formulas listed in the Theorem below.

Theorem. Let π = πθ be an irreducible representation of D×, and let χπ =
χπθ

be its character.
1. If y is not conjugate to a normal element of D×

t Kd , then χπ (y) = 0.
2. If y is a normal element in D×

t Kd , then

χπ (y) =
∑

ỹ∈Gal′(E∗/F)y

(θ ◦ NDt /Et )(ỹ)
(

∏

1≤i≤t
i ′≤s(i)

Hi,i ′(ỹ)
)

×
( t

∏

i=1

f (i, di )
f (i − 1, di )

qn/e(i−1,di ) − 1
qn/e(i,di ) − 1

)

qα(y,π)/2,
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where

α(y, π ) =
∑

0≤ j<s(1)

(

n
n(0, j)

− n
n(h( j), j)

)

+
t

∑

i=1

(di − s(i))
(

n
n(i − 1, di − 1)

− n
n(i, di − 1)

)

−
(

n
e(i − 1, di − 1)

− n
e(i, di − 1)

)

.

Corollary. If θ is generic and y is a normal element of D×
t Kd , then

χπ (y) =
∑

ỹ∈Gal(E1/F)y

(θ ◦ ND1/E1 )(ỹ)
(

∏

i ′≤s(1)

H1,i ′(ỹ)
)

×
(

f (1, d)
f (0, d)

qn/e(0,d) − 1
qn/e(1,d) − 1

)

qα(y,π )/2,

where

α(y, π ) =
∑

0≤ j<s(1)

(

n
n(0, j)

− n
n(1, j)

)

+ (d − s(1))
(

n
n(0, d − 1)

− n
n(1, d − 1)

)

−
(

n
e(0, d − 1)

− n
e(1, d − 1)

)

.

Proof of the Corollary. In this case, t = 1 and every h( j) = 1. "

Remark. Note a distinction between the cases [E : F] = n and [E : F] < n.
In each case, one may ask which Cartan subgroups (up to conjugacy) contain very
regular elements (see §5.2) far from the identity on which the character χπ does
not vanish. In the former case, which corresponds to supercuspidal characters of
GLn(F), the answer is the single Cartan subgroup E×. In the latter case, which
corresponds to generalized special characters of GLn(F), Dt is a division algebra
which contains every extension of E having degree n over F . Thus, the answer is:
every Cartan subgroup that contains E×.

5. Applications of the character formula.

5.1. Degrees. The degree of π = πθ is χπ (1). The character formula gives

χπ (1) = f
qn − 1

qn/e − 1
qα(1,π )/2.
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Here, e = e(E/F), f = f (E/F), ni = [Ei : F] and

α(1, π ) = n
e

− n +
t

∑

i=1

di

(

n
ni−1

− n
ni

)

.

This follows from the facts that Gal′(E∗/F) · 1 = {1}, s(i) = 0 for all i , h( j) = 1
for all j , and Hi,i ′(1) = 1. This agrees with [5, Theorem 3.25].

5.2. Character values at very regular points. Following [9], let us call an
element y ∈ D× very regular if the associated fields E ( j) all have dimension n (and
thus are equal). Let θ be a generic character of a field E/F of degree dividing n.
(In this case, E = E1 and θ = φ1.) We will compute the character of π = πθ at all
very regular elements y ∈ D×

1 . In fact, our assumption on y is slightly weaker than
this. We assume only that the fields E ( j) are all equal and contain E . Then

χπ (y) =
∑

ỹ∈Gal(E1/F)y

(θ ◦ ND1/E1 )(ỹ) · H1,0(ỹ).

This follows from the Corollary above and the facts that s(1) = 0 and α(y, π ) = 0.
By the Matching Theorem, we have now partially computed the characters of all
very supercuspidal representations and some generalized special representations
of GLn(F) (all generalized special representations, in case n is the product of two
primes).

5.3. n prime. In this situation, θ is always generic (under the assumption that
χ = 1), and so the Corollary above applies. For ease of computation, we compute
the character values only at those elements y which are conjugate to a normal
element in E× · Kd+1. Without loss of generality, we may in fact assume that y is
a normal element in E×. Then the character formula takes several different forms,
depending on the value of s(1). If s(1) = 0, then

χπ (y) =
∑

ỹ∈Gal(E/F)y

θ (ỹ)H1,0(ỹ).

If 0 < s(1) < d, then

χπ (y) =
∑

ỹ∈Gal(E/F)y

θ (ỹ)
(

∏

i ′≤s(1)

H1,i ′(ỹ)
)

q (n−1)s(1)/2.

If s(1) = d, then

χπ (y) =
∑

ỹ∈Gal(E/F)y

θ (ỹ)
(

∏

i ′≤d

H1,i ′(ỹ)
)

q (n−1)d/2

if E/F is unramified and

χπ (y) =
∑

ỹ∈Gal(E/F)y

θ (ỹ)
(

∏

i ′≤d

H1,i ′(ỹ)
)

q (n−1)(d−1)/2
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if E/F is ramified. If s(1) > d, then

χπ (y) =
∑

ỹ∈Gal(E/F)y

θ (ỹ)
(

∏

i ′≤s(1)

H1,i ′(ỹ)
)

nq (n−1)d/2

if E/F is unramified, and

χπ (y) =
∑

ỹ∈Gal(E/F)y

θ (ỹ)
(

∏

i ′≤s(1)

H1,i ′(ỹ)
)qn − 1

q − 1
q (n−1)(d−1)/2

if E/F is ramified. In the notation of [6], s(1) = ν0(y).

University of Akron, Akron, OH 44325-4002
E-mail address: adler@uakron.edu

Rutgers University, Piscataway, NJ 08854

University of Chicago, Chicago, IL 60637-1514
E-mail address: sally@math.uchicago.edu

references

[1] L. Corwin, Representations of division algebras over local fields, Adv. in Math. 13 (1974), 259–267.
[2] , Representations of division algebras over local fields. II, Pacific J. Math. 101 (1982), no. 1,

49–70.
[3] , The unitary dual for the multiplicative group of arbitrary division algebras over local fields,

J. Amer. Math. Soc. 2 (1989), no. 3, 565–598.
[4] L. Corwin and R. Howe, Computing characters of tamely ramified p-adic division algebras, Pacific J. Math.

73 (1977), no. 2, 461–477.
[5] L. Corwin, A. Moy and P. J. Sally, Jr., Degrees and formal degrees for division algebras and GLn over a

p-adic field, Pacific J. Math. 141 (1990), no. 1, 21–45.
[6] , Supercuspidal character formulas for GL$, Representation theory and harmonic analysis

(Cincinnati, OH, 1994), Contemp. Math., vol. 191, Amer. Math. Soc., Providence, RI, 1995,
pp. 1–11.

[7] S. DeBacker, On supercuspidal characters of GL$, $ a prime, Ph.D. thesis, University of Chicago, 1997.
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CHAPTER 4

AUTOMORPHIC REPRESENTATIONS OF GSp(4)

By James Arthur

1. In this note, we shall describe a classification for automorphic representations
of GSp(4), the group of similitudes of four-dimensional symplectic space. The
results are part of a project [A3] on the automorphic representations of general
classical groups. The monograph [A3] is still in preparation. When complete, it
will contain a larger classification of representations, subject to a general condition
on the fundamental lemma.

In the case of GSp(4), the standard fundamental lemma for invariant orbital
integrals has been established [Ha], [W]. However, a natural variant of the standard
fundamental lemma is also needed. To be specific, the theorem we will announce
here is contingent upon a fundamental lemma for twisted, weighted, orbital integrals
on the group GL(4) × GL(1) (relative to a certain outer automorphism). This has not
been established. However, it seems likely that by methods of descent, perhaps in
combination with other means, one could reduce the problem to known cases of
the standard fundamental lemma. (The papers [BWW], [F], and [Sc] apply such
methods to the twisted analogue of the fundamental lemma, but not its generalization
to weighted orbital integrals.)

The general results of [A3] are proved by a comparison of spectral terms in
the stabilized trace formula. It is for the existence of the stabilized trace formula
[A2] (and its twisted analogues) that the fundamental lemma is required. However,
any discussion of such methods would be outside the scope of this paper. We shall
be content simply to state the classification for GSp(4) in reasonably elementary
terms. The paper will in fact be somewhat expository. We shall try to motivate the
classification by examining the relevant mappings from a Galois group (or some
extension thereof ) to the appropriate L-groups.

Representations of the group GSp(4) have been widely studied. The papers
[HP], [Ku], [Y], [So], and [Ro] contain results that were established directly for
GSp(4). Results for groups of higher rank in [CKPS] and [GRS] could also be
applied (either now or in the near future) to the special case of GSp(4).

2. Let F be a local or global field of characteristic zero. If N is any positive integer,
the general linear group GL(N ) has an outer automorphism

g → g∨ = t g−1, g ∈ GL(N ),

over F . Standard classical groups arise as fixed point groups of automorphisms in
the associated inner class. In this paper, we shall be concerned with classical groups

65
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of similitudes. We therefore take the slightly larger group

G̃ = GL(N ) × GL(1)

over F , equipped with the outer automorphism

α : (x, y) → (x∨, det(x)y), x ∈ GL(N ), y ∈ GL(1).

The corresponding complex dual group

̂̃G = GL(N , C) × C
∗

comes with the dual outer automorphism

α̂ : (g, z) → (g∨z, z), g ∈ GL(N , C), z ∈ C
∗.

Motivated by Langlands’s conjectural parametrization of representations, we
consider homomorphisms

ψ̃ : #F → ̂̃G,

from the Galois group #F = Gal(F̄/F) into ̂̃G. Each ψ̃ is required to be continuous,
which is to say that it factors through a finite quotient #E/F = Gal(E/F) of #F ,
and is to be taken up to conjugacy in ̂̃G. Any ψ̃ may therefore be decomposed
according to the representation theory of finite groups. We first write

ψ̃ = ψ ⊕ χ : σ → ψ(σ ) ⊕ χ (σ ), σ ∈ #F ,

where ψ is a (continuous) N -dimensional representation of #F , and χ is a (contin-
uous) 1-dimensional character on #F . We then break ψ into a direct sum

ψ = &1ψ1 ⊕ · · · ⊕ &rψr ,

for inequivalent irreducible representations

ψi : #F → GL(Ni , C), 1 ≤ i ≤ r,

and multiplicities &i such that

N = &1 N1 + · · · + &r Nr .

We shall be interested in maps ψ̃ that are α̂-stable, in the sense that the homo-
morphism α̂ ◦ ψ̃ is conjugate to ψ̃ . It is clear that ψ̃ is α̂-stable if and only if the
N -dimensional representation

ψ∨ ⊗ χ : σ → ψ(σ )∨χ (σ ), σ ∈ #F ,

is equivalent to ψ . This in turn is true if and only if there is an involution i ↔ i∨ on
the indices such that for any i , the representation ψi

∨ ⊗ χ is equivalent to ψi∨ , and
&i equals &i∨ . We shall say that ψ̃ is α̂-discrete if it satisfies the further constraint
that for each i , i∨ = i and &i = 1.
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Suppose that ψ̃ is α̂-discrete. Then

ψ = ψ1 ⊕ · · · ⊕ ψr ,

for distinct irreducible representations ψi of degree Ni that are χ -self dual, in the
sense that ψi is equivalent to ψi

∨ ⊗ χ . We write

ψi (σ )∨χ (σ ) = A−1
i ψi (σ )Ai , σ ∈ #F , 1 ≤ i ≤ r,

for fixed intertwining operators Ai ∈ GL(Ni , C). Applying the automorphism
g → g∨ to each side of the last equation, we deduce from Schur’s lemma that

t Ai = ci Ai ,

for some complex number ci with c2
i = 1. The operator Ai can thus be identified

with a bilinear form on Cn that is symmetric if ci = 1 and skew-symmetric if
ci = −1. We are of course free to replace any ψi by a conjugate

B−1
i ψi (w)Bi , Bi ∈ GL(Ni , C).

This has the effect of replacing Ai by the matrix

Bi Ai
t Bi .

We can therefore assume that the intertwining operator takes a standard form

Ai =





0 1
·

·
·

1 0




, if ci = 1,

and

Ai =





0 1
−1

·
·

·
1

−1 0





, if ci = −1,

We shall say that ψi is orthogonal or symplectic according to whether ci equals 1
or −1.

We have shown that the image of the homomorphism ψ̃i = ψi ⊕ χ is contained
in the subgroup

{(g, z) ∈ GL(Ni , C) × C
∗ : g∨z = A−1

i g Ai }

of GL(Ni , C) × C∗. If (g, z) belongs to this subgroup, z is the image

g → z = '(g)
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of g under a rational character '. The subgroup of GL(Ni , C) × C∗ therefore
projects isomorphically onto the subgroup

{g ∈ GL(Ni , C) : Ai
t g A−1

i g = '(g)I }

of GL(Ni , C). This subgroup is, by definition, the group GO(Ni , C) of orthogonal
similitudes if ci = 1, and the group GSp(Ni , C) of symplectic similitudes if ci =
−1. In each case, the rational character ' is called the similitude character of the
group. Set

N± =
∑

i∈I±
Ni , I± = {i : ci = ±1}.

We then obtain a decomposition

ψ = ψ+ ⊕ ψ−,

where ψ+ takes values in a subgroup of GL(N+, C) that is isomorphic to
GO(N+, C), while ψ− takes values in a subgroup of GL(N−, C) that is isomor-
phic to GSp(N−, C). The original representation takes a form

ψ̃ = ψ+ ⊕ ψ− ⊕ χ ,

in which the two similitude characters satisfy

'(ψ+(σ )) = '(ψ−(σ )) = χ (σ ), σ ∈ #F .

The complex group GSp(N−, C) is connected. It is therefore isomorphic to the
complex dual group Ĝ− of a split group G− over F . If N+ is odd, GO(N+, C) is
also connected. It is again isomorphic to a complex dual group Ĝ+, for a split group
G+ over F . If N+ = 2n+ is even, however, the mapping

ν : g → '(g)−n+ det(g), g ∈ GO(N+, C),

is a nontrivial homomorphism from GO(N+, C) to the group {±1}, whose kernel
SGO(N+, C) is connected. (See [Ra, §2].) The composition of ψ+ with ν then pro-
vides a homomorphism from#F to a group of outer automorphisms of SGO(N+, C).
In this case, we take G+ to be the quasisplit group over F whose dual group is iso-
morphic to the group SGO(N+, C), equipped with the given action of #F . Having
defined G+ and G− in all cases, we write G for the quotient of G+ × G− whose
dual group is isomorphic to the subgroup

Ĝ = {g+, g−, z) ∈ Ĝ+ × Ĝ− × C
∗ : '(g+) = '(g−) = z}

of Ĝ+ × Ĝ− × C∗.
The quasisplit groups G over F , obtained from α̂-discrete homomorphisms ψ̃

as above, are called the (elliptic, α-twisted) endoscopic groups for G̃. Any such G
is determined up to isomorphism by a partition N = N+ + N−, and an extension
E of F of degree at most two (with E = F unless N+ is even). One sees easily that
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there is a natural L-embedding
L G = Ĝ ! #F ↪→ L G̃ = (GL(n, C) × C

∗) × #F

of L-groups. Given the α̂-discrete parameter ψ̃ , we conclude that the mapping
σ → ψ̃(σ ) × σ from #F to L G̃ factors through a subgroup L G, for a unique endo-
scopic group G. The discussion above can also be carried out for α̂-stable maps ψ̃

that are not α̂-discrete. In this case, however, the mapping σ → ψ̃(σ ) × σ could
factor through several subgroups L G of L G̃.

The classification of α̂-discrete maps ψ̃ has been a simple exercise in elementary
representation theory. The group #F plays no special role, apart from the property
that its quotients of order two parametrize quadratic extensions of F . The discussion
would still make sense if #F were replaced by a product of the group SL(2, C) with
the Weil group WF , or more generally, the Langlands group L F of F . We recall
[Ko, §12] that L F equals WF in the case that F is local archimedean, and equals the
product of WF with the group SU(2) if F is local nonarchimedean. If F is global,
L F is a hypothetical group, which is believed to be an extension of WF by a product
of compact, semisimple, simply connected groups. We assume its existence in what
follows. Then in all cases, L F comes with a projection w → σ (w) onto a dense
subgroup of #F .

Having granted the existence of L F , we consider continuous homomorphisms

ψ̃ = ψ ⊕ χ : L F × SL(2, C) → ̂̃G = GL(n, C) × C
∗.

In this context, we also impose the condition that the restriction of ψ̃ to L F be
unitary, or equivalently, that the image of L F in ̂̃G be relatively compact. Assume
that ψ̃ is α̂-stable and α̂-discrete. The discussion above then carries over verbatim.
We obtain a decomposition

ψ = ψ1 ⊕ · · · ⊕ ψr ,

for distinct irreducible representations

ψi : L F × SL(2, C) → GL(Ni , C),

such that ψi is equivalent to ψi
∨ ⊗ χ . We shall again say that ψi is symplectic or

orthogonal, according to whether its image is contained in the subgroup GSp(Ni , C)
or GO(Ni , C) of GL(Ni , C). Combining the symplectic and orthogonal components
as before, we see that ψ̃ factors through a subgroup L G of L G̃, for a unique (elliptic,
α-twisted) endoscopic group G for G̃.

We are working with a product L F × SL(2, C), in place of the original group
#F . This means that the irreducible components of ψ decompose into tensor
products

ψi = µi ⊗ νi , 1 ≤ i ≤ r,

for irreducible representations µi : L F → GL(mi , C) and
νi : SL(2, C) → GL(ni , C) such that Ni = mi ni . Any irreducible representation
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of SL(2, C) is automatically self dual. This means that for any i , µi is equivalent to
µi

∨ ⊗ χ . Moreover, the representation νi of SL(2, C) is symplectic or orthogonal
according to whether it is even or odd dimensional. It follows that ψi is symplectic
if and only if either µi is symplectic and νi is odd dimensional, or µi is orthogonal
and νi is even dimensional.

3. We have classified the α̂-discrete representations of the group L F × SL(2, C) in
order to motivate a classification of symplectic automorphic representations. At this
point, we may as well specialize to the case that ψ is purely symplectic, which is
to say that the corresponding group Ĝ is purely symplectic. We assume henceforth
that N is even, and that G is the split group over F such that Ĝ is isomorphic to
GSp(N , C). Then G is isomorphic to the general spin group

GSpin(N + 1) = (Spin(N + 1) × C
∗)/{±1}

over F . Our ultimate concern will in fact be the special case that N equals 4. In this
case, there is an exceptional isomorphism between GSpin(N + 1) and GSp(N ), so
that G is isomorphic to the group GSp(4) of the title.

For the given group G ∼= GSpin(N + 1), we write *(G) = *(G/F) for the set
of continuous homomorphisms ψ from L F × SL(2, C) to Ĝ, taken up to conjugacy
in Ĝ, such that the image of L F is relatively compact. For any such ψ , we set

χ (w) = '(ψ(w, u)), w ∈ L F , u ∈ SL(2, C),

where ' : Ĝ → C∗ is the similitude character on Ĝ. Then χ = χψ is a one-
dimensional unitary character on L F . The correspondence ψ → ψ̃ = ψ ⊕ χψ

gives a bijection from *(G) to the subset of (equivalence classes of ) α̂-stable
representations ψ̃ such that the mapping

(w, u) → ψ̃(w, u) × σ (w), w ∈ L F , u ∈ SL(2, C),

factors through the subgroup L G of L G̃. We shall write *2(G) for the subset of
elements ψ ∈ *(G) such that ψ̃ is α̂-discrete. For any unitary 1-dimensional char-
acter χ on L F , we also write *(G, χ ) and *2(G, χ ) for the subsets of elements ψ

in *(G) and *2(G), respectively, such that χψ = χ .
If ψ belongs to *(G), we set

Sψ = CentĜ(Im(ψ)) = {s ∈ Ĝ : sψ(w, u) = ψ(w, u)s, (w, u) ∈ L F × SL(2, C)},

and also

Sψ = Sψ/S0
ψ Z (Ĝ),

where Z (Ĝ) ∼= C∗ is the center of Ĝ. Then ψ belongs to *2(G) if and only if the
connected group S0

ψ equals Z (Ĝ), which is to say that the group Sψ is finite modulo
Z (Ĝ). It is not hard to compute Sψ directly in terms of the irreducible components
ψi of ψ . For example, if ψ belongs to the subset *2(G), and has r components,
then Sψ is isomorphic to (Z/2Z)r−1 × C∗, while Sψ is isomorphic to (Z/2Z)r−1.
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We assume from now on that F is global. We write VF for the set of valuations
of F , and VF,∞ for the finite subset of archimedean valuations in VF . The Langlands
group L F is supposed to come with an embedding L Fv ↪→ L F for each v ∈ VF . This
embedding is determined up to conjugacy in L F , and extends the usual conjugacy
classes of embeddings WFv ↪→ WF and #Fv ↪→ #F . It gives rise to a restriction
mapping

ψ → ψv = ψ
L Fv ×SL(2,C)

, ψ ∈ *(G),

from *(G) = *(G/F) to *(G/Fv ), which in turn provides an injection Sψv → Sψ ,
and a homomorphism Sψv → Sψ . Consider the special case that ψ is unramified at
v . This means that v lies in the complement of VF,∞, and that for each u ∈ SL(2, C),
the function

wv → ψv (wv , u), wv ∈ L Fv ,

depends only on the image of wv in the quotient

WFv /IFv
∼= F∗

v /O∗
v

of WFv = L Fv . Following standard notation, we write +v for a fixed uniformizing
element in F∗

v . Then +v maps to a generator of the cyclic group WFv /IFv , and can
also be mapped to the element

(
|+v |

1
2 0

0 |+v |−
1
2

)

in SL(2, C). Composed with ψv , these mappings yield a semisimple conjugacy
class

cv (ψ) = c(ψv ) = ψv

(

+v ,

(
|+v |

1
2 0

0 |+v |−
1
2

))

in Ĝ.
The Langlands group is assumed to have the property that its finite dimensional

representations are unramified almost everywhere. It follows that any ψ ∈ *(G)
determines a family

c(ψ) = {cv (ψ) = c(ψv ) : v /∈ Vψ}

of semisimple conjugacy classes in Ĝ, indexed by the complement of a finite
subset Vψ ⊃ VF,∞ of VF . We note that if ψ belongs to a subset *2(G, χ ) of *(G),
the family of complex numbers c(χ ) = {cv (χ )} is equal to the image '(c(ψ)) =
{'(cv (ψ))} of c(ψ) under the similitude character. In general the relationships
among the different elements in any family c(ψ) convey much of the arithmetic
information that is wrapped up in the homomorphism ψ .

There is of course another source of semisimple conjugacy classes in Ĝ,
namely automorphic representations. If π is an automorphic representation of G,
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the Frobenius–Hecke conjugacy classes provide a family

c(π ) = {cv (π ) = c(πv ) : v /∈ Vπ }

of semisimple conjugacy classes in Ĝ, indexed by the complement of a finite subset
Vπ ⊃ VF,∞ of VF . The elements in c(π ) are constructed in a simple way from the
inducing data attached to unramified constituents πv of π . (See [B], for example.)
Now a one dimensional character χ of L F amounts to an idèle class character of
F , and this in turn can be identified with a character on the center of G(A). Let
L2

disc(G(F)\G(A), χ ) be the space of χ -equivariant, square integrable functions
on G(F)\G(A) that decompose discretely under the action of G(A). We write
-2(G, χ ) for the set of equivalence classes of automorphic representations of G
that are constituents of L2

disc(G(F)\G(A), χ ). If π belongs to -2(G, χ ), the family
c(χ ) is equal to the image '(c(π )) = {'(cv (π ))} of c(π ) under '. In general, the
relationships among the different elements in any family c(π ) convey much of the
arithmetic information that is wrapped up in the automorphic representation π .

The following conjecture was an outgrowth of Langlands’s conjectural theory
of endoscopy. We have stated it here somewhat informally. A more precise assertion,
which applies to any group, is given in [A1] and [AG].

Conjecture. (i) For anyψ , there is a canonical mappingπ → ψ from-2(G, χ )
to *2(G, χ ) such that

c(π ) = c(ψ), π ∈ -2(G, χ ).

(ii) Any fiber of the mapping is of the form

{π ∈ -2(G, χ ) : c(π ) = c(ψ)}, ψ ∈ *2(G, χ ),

and can be characterized explicitly in terms of the groups Sψv , the diagonal image
of the map

Sψ →
∏

v

Sψv ,

and a character

εψ : Sψ → {±1}

attached to certain symplectic root numbers [A1, §8].

4. The conjecture describes a classification of the automorphic χ -discrete spectrum
of G in terms of mappings

ψ = ψ1 ⊕ · · · ⊕ ψr = (µ1 ⊗ ν1) ⊕ · · · ⊕ (µr ⊗ νr )

in *2(G, χ ). It is the simplest way to motivate what one might try to prove.
The conjecture would actually be very difficult to establish in the form stated above
(and in [A1] and [AG]). Indeed, one would first have to establish the existence
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and fundamental properties of the global Langlands group L F . However, there is a
natural way to reformulate the conjecture as a classification of automorphic repre-
sentations of G in terms of those of general linear groups. The idea is to reinterpret
the “semisimple” constituents µi of ψ .

We may as well keep the idèle class character χ fixed from this point on. In
the formulation above, µi stands for an irreducible unitary representation of L F of
dimension mi that is χ -self dual. The main hypothetical property of L F is that its
irreducible unitary representations of dimension m should be in canonical bijection
with the unitary cuspidal automorphic representations of GL(m). We could therefore
bypass L F altogether by interpreting µi as an automorphic representation. From
now on, µi will stand for a unitary, cuspidal automorphic representation of GL(mi )
that is χ -self dual, in the sense that the representation

x → µi (x∨)χ (det x), x ∈ GL(mi , A),

is equivalent to µi . As an automorphic representation of GL(mi ), µi comes with a
family

c(µi ) = {cv (µi ) : v /∈ Vµi }

of Frobenius–Hecke conjugacy classes in GL(mi , C). The family satisfies

cv (µi )−1cv (χ ) = cv (µi ), v /∈ Vµi ,

since µi is χ -self dual, and it determines µi uniquely, by the theorem of strong
multiplicity one.

As an example, we shall describe the classification of χ -self dual, unitary,
cuspidal automorphic representations of GL(2).

Example. Suppose that E is a quadratic extension of F , and that θ is an idèle
class character of E . We assume that θ is not fixed by Gal(E/F). Then there is
a (unique) χ -self dual, unitary, cuspidal automorphic representation µ = µ(θ ) of
GL(2) such that

c(µ) = {cv (µ) = ρ(cv (θ )) : v /∈ Vθ },

where θ is regarded as an automorphic representation of the group KE =
ResE/F (GL(1)), and ρ is the standard two dimensional representation of L KE . Con-
versely, suppose that µ is a χ -self dual, unitary, cuspidal automorphic representation
of GL(2). We write χµ for the central character of µ. It follows from the definitions
that χ2

µ = χ2, or in other words, that the idèle class character ηµ = χµχ−1 of F
has order one or two. If ηµ /= 1, it is known that µ equals µ(θ ), for an idèle class
character θ of the class field E of ηµ. In this case, we shall say that µ is of or-
thogonal type. If ηµ = 1, µ is to be regarded as symplectic, for the obvious reason
that GL(2) ∼= GSp(2). This is really the generic case, since if µ is any automorphic
representation with central character χµ equal to χ , µ is automatically χ -self dual.
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For the group GL(4), some χ -self dual, unitary, cuspidal automorphic repre-
sentations can also be described in relatively simple terms. They are given by the
following theorem of Ramakrishnan.

Theorem: [Ra]. Let E be an extension of F of degree at most two, and set

HE =
{

GL(2) × GL(2), if E = F,

ResE/F (GL(2)), if E /= F.

Let ρ be the homomorphism from L HE to the group GL(4, C) ∼= GL(M2(C)) defined
by setting

ρ(g1, g2)X = g1 Xt g2, g1, g2 ∈ GL(2, C),

and

ρ(σ )X =
{

X, if σE = 1,
t X, if σE /= 1,

for any X ∈ M2(C), and for any σ ∈ #F with image σE in #E/F . Suppose that τ

is a unitary, cuspidal automorphic representation of HE that is not a transfer from
GL(2) (relative to the natural embedding of GL(2, C) into L HE ), and whose central
character is the pullback of χ (relative to the natural mapping from the center of
HE to GL(1)). Then there is a unique χ -self dual, unitary, cuspidal automorphic
representation µ of GL(4) such that

c(µ) = {cv (µ) = ρ(cv (τ )) : v /∈ Vτ }.

We shall say that a χ -self dual, unitary, cuspidal automorphic representation µ

of GL(4) is of orthogonal type if it is given by the construction of Ramakrishnan’s
theorem. This is of course because µ is a transfer to GL(4) of a representation of
the group GO(4).

Returning to our group G ∼= GSpin(N + 1), with N even, we can try to con-
struct objects ψ for G purely in terms of automorphic representations. We now
define *2(G, χ ) to be the set of formal (unordered) sums

ψ = ψ1 ! · · · ! ψr

of distinct, formal, χ -self dual tensor products

ψi = µi " νi , 1 ≤ i ≤ r,

of symplectic type. More precisely, νi is an irreducible representation of SL(2, C) of
dimension mi , and µi is a χ -self dual, unitary, cuspidal automorphic representation
of GL(mi ) that is of symplectic type if ni is odd and orthogonal type if ni is even,
for integers mi and ni such that

N = N1 + · · · + Nr = m1n1 + · · · + mr nr .
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To complete the definition, one would of course have to be able to say what it means
for µi to be of symplectic or orthogonal type. In general, this must be done in terms
of whether a certain automorphic L-function for µi (essentially the symmetric
square or skew-symmetric square) has a pole at s = 1. The necessary consistency
arguments for such a characterization are inductive, and require higher cases of the
fundamental lemma, even when N = 4. However, if mi equals either 2 or 4, we
can give an ad hoc characterization. In these cases, we have already defined what
it means for µi to be of orthogonal type. We declare µi to be of symplectic type
simply if it is not of orthogonal type. This expedient allows us to construct the
family *2(G, χ ) in the case that N = 4.

Suppose that N is such that the set *2(G, χ ) has been defined, and that

ψ = (µ1 " ν1) ! · · · ! (µr " νr )

is an element in this set. For any i , µi comes with a family c(µi ) of Frobenius–
Hecke conjugacy classes in GL(mi , C). The representation νi of SL(2, C) gives rise
to its own family

c(νi ) =
{

cv (νi ) = νi

(
|+v |

1
2

0
0

|+v |−
1
2

)

: v /∈ VF,∞

}

of conjugacy classes in GL(ni , C). The tensor product family

c(ψi ) = {cv (ψi ) = cv (µi ) ⊗ cv (νi ) : v /∈ Vµi }

is then a family of semisimple conjugacy classes in the group GL(Ni , C) =
GL(mi ni , C). Taking the direct sum over i , we obtain a family

c(ψ) =
r⊕

i=1

c(ψi ) =
{

cv (ψ) =
r⊕

i=1

cv (ψi ) : v /∈ Vψ

}

of semisimple conjugacy classes in GL(N , C). This is of course parallel to the
family of conjugacy classes constructed with the earlier interpretation of ψ as a
representation of L F × SL(2, C). We also set

Sψ = (Z/2Z)r−1,

as before. We can then define a character

εψ : Sψ → {±1}

in terms of symplectic root numbers by copying the prescription in [A1, §8].
The local Langlands conjecture has now been proved for the general linear

groups GL(mi ) [HT], [He]. We can therefore identify any local component

ψv = (µ1,v " ν1) ! · · · ! (µr,v " νr )

of an element ψ ∈ *2(G, χ ) with an N -dimensional representation of the group
L Fv × SL(2, C). In the process of proving the classification theorem stated below,
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one shows that if µi is either symplectic or orthogonal (in the sense alluded to
above), the same holds for the local components µi,v (as representations of L Fv ).
It follows that ψv can be identified with a homomorphism from L Fv × SL(2, C)
into Ĝ. In particular, we can define the groups Sψv and Sψv as before, in terms of
the centralizer of the image of ψv . Moreover, there is a canonical homomorphism
s → sv from Sψ to Sψv . The groups Sψ and Sψv are always abelian, and in fact are
products of groups Z/2Z.

5. We shall now specialize to the case that N = 4. Thus, Ĝ is isomorphic to
GSp(4, C), and

G ∼= GSpin(5) ∼= GSp(4).

As we have noted, the set *2(G, χ ) can be defined explicitly in this case in terms
of certain cuspidal automorphic representations of general linear groups.

The object of this article has been to announce the following classification
theorem for automorphic representations of G. The theorem is contingent upon
cases of the fundamental lemma that are in principle within reach, and I should also
admit, the general results in [A3] that have still to be written up in detail.

Classification Theorem. (i) There exist canonical local packets

-ψv , ψ ∈ *2(G, χ ), v ∈ VF ,

of (possibly reducible) representations of the groups G(Fv ), together with injections

πv → ξπv , πv ∈ -ψv ,

from these packets to the associated finite groups Ŝψv of characters on Sψv .
(ii) The automorphic discrete spectrum attached to χ has an explicit decom-

position

L2
disc(G(F)\G(A), χ ) =

⊕

ψ∈*2(G,χ )

⊕

{π∈
∏

ψ : ξπ=εψ}
π

in terms of the global packets

-ψ = {π = ⊗
v

πv : πv ∈ -ψv , ξπv = 1 for almost all v}

of (possibly reducible) representations of G(A), and corresponding characters

ξπ : s →
∏

v

ξπv (sv ), s ∈ Sψ , π ∈ -ψ ,

on the groups Sψ .
(iii) The global packets

-ψ , ψ ∈ -2(G, χ ),
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are disjoint, in the sense that no irreducible representation of G(A) is a constituent
of representations in two distinct packets. Moreover, if ψ belongs to the subset
*ss,2(G, χ ) of elements in *2(G, χ ) that are trivial on SL(2, C), the packet -ψ

contains only irreducible representations. Thus, for any ψ ∈ *ss,2(G, χ ), any rep-
resentation π ∈ -ψ occurs in L2

disc(G(F)\G(A), χ ) with multiplicity 1 or 0.

Remarks. 1. The local packets -ψv in part (i) are defined by the endoscopic
transfer of characters. More precisely, the characters of representations in -ψv are
defined in terms of Langlands–Shelstad (and Kottwitz–Shelstad) transfer mappings
of functions, and the groups Sψv . I do not know whether the representations in -ψv

are generally irreducible. However, in the case that ψ is unramified at v , one can
at least show that the preimage of the trivial character in Ŝψv under the mapping
πv → ξπv is irreducible.

2. If ψ belongs to the complement of *ss,2(G, χ ) in *2(G, χ ), the represen-
tations in the packet -ψ are all nontempered. On the other hand, if ψ belongs to
*ss,2(G, χ ), the generalized Ramanujan conjecture (applied to the groups GL(2)
and GL(4)) implies that the representations in the packet -ψ are tempered. Thus,
the multiplicity assertion at the end of the theorem pertains to what ought to be
the tempered constituents of L2

disc(G(F)\G(A), χ ). If ψ is a more general element
in *2(G, χ ), and if the direct sum of the representations in each local packet -ψv

is multiplicity free, the irreducible constituents of the representations in -ψ also
occur with multiplicity 1 or 0.

The multiplicity formula of the theorem is a quantitative description of the
decomposition of the discrete spectrum. The general structure of the parameters ψ

also provides useful qualitative information about the spectrum. We shall conclude
with a list of the six general families of automorphic representations that occur
in the discrete spectrum. In each case, we shall describe the relevant parameters
ψ , the corresponding families of Frobenius–Hecke conjugacy classes, the groups
Sψ , and the sign characters εψ on Sψ . (The characters εψ are in fact trivial for
all but one of the six families.) We shall write ν(n) for the irreducible represen-
tation of SL(2, C) of dimension n. Observe that the Frobenius–Hecke conjugacy
classes

c(ν(n)) =





cv (ν(n)) =





|+v |
n−1

2 0
|+v |

n−3
2

. . .
0 |+v |−

n−1
2










of ν(n) have positive real eigenvalues. This is in contrast to the case of a unitary, cus-
pidal automorphic representation µ of GL(m), which according to the generalized
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Ramanujan conjecture, has Frobenius–Hecke conjugacy classes

c(µ) =





cv (µ) =




c1

v (µ) 0
. . .

0 cm
v (µ)










whose eigenvalues lie on the unit circle.
We list the six families according to how they behave with respect to stability

(for the multiplicities of representations π ∈ -ψ ) and the implicit Jordan decom-
position (for elements ψ ∈ *2(G, χ )). I have also taken the liberty of assigning
proper names to some of the families, which I hope give fair reflection of their
history.

(a) Stable, semisimple (general type)

ψ = ψ1 = µ " 1,

where µ is a χ -self dual, unitary cuspidal automorphic representation of GL(4) that
is not of orthogonal type,

c(ψ) = c(µ) =









c1

v (µ) 0
. . .

0 c4
v (µ)









,

Sψ = 1,

εψ = 1.

(b) Unstable, semisimple (Yoshida type [Y])

ψ = ψ1 ! ψ2 = (µ1 " 1) ! (µ2 " 1),

where µ1 and µ2 are distinct, unitary, cuspidal automorphic representations of
GL(2) whose central characters satisfy χµ1 = χµ2 = χ ,

c(ψ) = c(µ1) ⊕ c(µ2) =










c1
v (µ1) 0

c1
v (µ2)

c2
v (µ2)

0 c2
v (µ1)









,

Sψ = Z/2Z,

εψ = 1.

(c) Stable, mixed (Soudry type [So])

ψ = ψ1 = µ " ν(2),
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where µ = µ(θ ) is a unitary, cuspidal automorphic representation of GL(2) of
orthogonal type with χ2

µ = χ ,

c(ψ) = c(µ) ⊗ c(ν(2))

=










c1
v (µ)|+v |

1
2 0

c2
v (µ)|+v |

1
2

c1
v (µ)|+v |−

1
2

0 c2
v (µ)|+v |−

1
2









,

Sψ = 1,

εψ = 1.

(d) Unstable, mixed (Saito, Kurokawa type [Ku])

ψ = ψ1 ! ψ2 = (λ " ν(2)) ! (µ " 1),

where λ is an idèle class character of F and µ is a unitary, cuspidal automorphic
representation of GL(2), with λ2 = χµ = χ ,

c(ψ) = (c(λ) ⊗ c(ν(2)) ⊕ (c(µ))

=










cv (λ)|+v |
1
2 0

c1
v (µ)

c2
v (µ)

0 cv (λ)|+v |−
1
2









,

Sψ = Z/2Z,

εψ =
{

1, if ε
( 1

2 , µ ⊗ λ−1
)

= 1,

sgn, if ε
( 1

2 , µ ⊗ λ−1
)

= −1,

where sgn is the nontrivial character on Z/2Z.

(e) Unstable, almost unipotent (Howe, Piatetski-Shapiro type [HP])

ψ = ψ1 ! ψ2 = (λ1 " ν(2)) ! (λ2 " ν(2)),

where λ1 and λ2 are distinct idèle class characters of F with λ2
1 = λ2

2 = χ ,

c(ψ) = (c(λ1) ⊗ c(ν(2))) ⊕ (c(λ2) ⊗ c(ν(2)))

=










cv (λ1)|+v |
1
2 0

cv (λ2)|+v |
1
2

cv (λ2)|+v |−
1
2

0 cv (λ1)|+v |−
1
2









,

Sψ = Z/2Z,

εψ = 1.
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(f) Stable, almost unipotent (one dimensional type)

ψ = ψ1 = λ " ν(4),

where λ is an idèle class character of F with λ4 = χ ,

c(ψ) = c(λ) ⊗ c(ν(4))

=










cv (λ)|+v |
3
2 0

cv (λ)|+v |
1
2

cv (λ)|+v |−
1
2

0 cv (λ)|+v |−
3
2









,

Sψ = 1,

εψ = 1.
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CHAPTER 5

ELLIPTIC CURVES, HILBERT MODULAR FORMS,
AND THE HODGE CONJECTURE

By Don Blasius

1. Introduction.

1.1. Recall the following special case of a foundational result of Shimura ([S2,
Theorems 7.15 and 7.16]):

Theorem. Let f be a holomorphic newform of weight 2 with rational Fourier
coefficients {an( f )|n ≥ 1}. There exists an elliptic curve E defined over Q such
that, for all but finitely many of the primes p at which E has good reduction E p,
the formula

ap( f ) = 1 − Np(E) + p

holds. Here Np(E) denotes the number of points of E p over the field with p elements.

1.2. The first result of this type is due to Eichler ([E]) who treated the case
where f = f11 is the unique weight 2 newform for !0(11) and E is the compactified
modular curve for this group. Later, in several works, Shimura showed that the
Hasse-Weil zeta functions of special models (often called canonical models) of
modular and quaternionic curves are, at almost all finite places v , products of the
v-Euler factors attached to a basis of the Hecke eigenforms of the given level.
These results give at once computations of the zeta functions of the Jacobians of
these curves since H 1

l (C) = H 1
l (Jac(C)) for a smooth projective curve. However,

it was only in late 1960’s that the correspondence between individual forms and
geometry came to be emphasized. In particular, in his proof of the above Theorem,
Shimura identified L( f, s) as the zeta function of a one dimensional factor E f of
the Jacobian variety. He also treated the case where the an( f ) are not rational; then
E f is replaced by a higher dimensional factor (or, alternatively, quotient) A f of the
Jacobian ([S3] and [S4]).

By Tate’s conjecture ([F]), the above correspondence f → E f determines E f

up to an isogeny defined over Q. Further, by works of Igusa, Langlands, Deligne,
Carayol, and others, a completed result is known: the conductor NE of E coincides
with the conductor N f of f, the above formula holds for all p such that (N f , p) = 1,
and corresponding but more complicated statements (the local Langlands corre-
spondence) hold at the primes p which divide N f .

Manuscript received October 22, 2002.
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1.3. Our goal here is to give a conditional generalisation of Shimura’s result
to totally real fields F , i.e. to Hilbert modular forms. Thus, we replace f by a
cuspidal automorphic representation π = π∞ ⊗ π f of the adele group GL2(AF ).
The weight 2 condition generalises to the requirements that (i) π∞ belong to the
lowest discrete series as a representation of GL2(F ⊗ R), and (ii) π have central
character ωπ equal to the inverse of the usual idelic norm. In the classical language of
holomorphic forms on (disjoint unions of) products of upper-half planes, condition
(i) asserts that on each product the form be of diagonal weight (2, . . . , 2). For each
finite place v of F at which π is unramified, we have the Hecke eigenvalue av (π ).
We assume that the av (π ) belong to Q for all such v, and that the Hecke operators
are so normalized that, for almost all v , the polynomial T 2 − av (π )T + Nv has
its zeros at numbers of size N 1/2

v , where Nv denotes the number of elements in
the residue field of F at v . Here is the now standard conjectural generalisation of
Shimura’s result.

Existence Conjecture 1.4. For π as above, there exists an elliptic curve E de-
fined over F such that for all but finitely many of the finite places v of F at which
E has good reduction Ev ,

av (π ) = 1 − Nv (E) + Nv

holds. Here Nv (E) is the number of points of Ev over the residue field at v . It should
be noted that if the Existence Conjecture is proven, then the appropriate statements
of the Langlands correspondence hold at all places. (This follows from [T1], [T2],
and the Cebotarev theorem.)

1.5. Central to our argument is an unproved hypothesis of Deligne: the Absolute
Hodge Conjecture ([D4]). This conjecture can be stated in several ways. For us, its
categorical formulation is most directly useful. To recall it, let MC denote the tensor
category of motives for absolute Hodge cycles defined over C (cf. [D4]). By Hodge
theory, the usual topological cohomology functor on varieties, which attaches to
each projective smooth complex variety X its total cohomology ring H∗

B(X, Q),
takes values in the tensor category of polarisable rational Hodge structures. It
extends to the category MC and we denote this extended functor by ωB . The rational
Hodge structure attached to a motive M , defined over a subfield L of C, is MB =
ωB(M ⊗ C), where M ⊗ C is the base change of M to C.
In this language the Absolute Hodge Conjecture asserts simply:

The functor ωB is fully faithful.

In fact we shall use precisely the assertion:

If M and N are motives for absolute Hodge cycles defined over C, and
MB is isomorphic to NB as Hodge structure, then M is isomorphic
to N.
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Of course, the Absolute Hodge Conjecture (AHC) is trivially a consequence of
the usual Hodge Conjecture. The AHC was proved for all abelian varieties over
subfields of C (in particular, for all products of curves over C) by Deligne, and
as such it has been of great utility in the theory of Shimura varieties. We need to
use it in this paper for a product of a Picard modular surface (e.g. an arithmetic
quotient of the unit ball) and an abelian variety. In such a case the conjecture is
unknown.

1.6. The main result here is the following

Theorem 1. Suppose that the Absolute Hodge Conjecture is true. Then the
Existence Conjecture is true.

1.7. For background it is essential to recall the known cases of the Existence
Conjecture.

1.7.1. It is an easy consequence of work of Hida ([H]) and Faltings ([F]) in
the cases covered by the following hypotheses QC:

QC1. [F:Q] is odd, or
QC2. π has a finite place at which πv belongs to the discrete series.

In Section 2 below this case is deduced from Hida’s work.

1.7.2. The conjecture is also known for all forms π of CM type. Here π

is defined to be of CM type if there exists a non-trivial idele class character ε

(necessarily of order 2) of F such that the representation π ⊗ ε is isomorphic to π .
See 2.2 below for some comments.

1.7.3. However, to our knowledge, the existence conjecture is not known for
the non-CM-type everywhere unramified representations π in the case where F is
a real quadratic extension of Q, except in the case where π is the quadratic twist
of a base change from Q. One may regard these forms as the test case for any
construction.

1.8. In recent years, many automorphic correspondences, more sophisticated
than the Jacquet-Langlands correspondence, have been proven. It is natural to ask
whether, at least in principle, there should exist some other such functorialities to a
group of Hermitian symmetric type from which the sought E’s can be directly con-
structed. However, some new ideas will be needed. Indeed, we have the following
folklore result:

Theorem 2. Every simple abelian variety whose H 1 Hodge structure occurs
in H 1 of a Shimura variety is isogenous to a base change of a factor of the Jacobian
of a quaternionic Shimura curve.
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The proof of this easy negative result is sketched, if not proven, below in 2.3.
Further, it is not hard to see (proof omitted!) that there do exist elliptic curves over
F , e.g. for F real quadratic, which are not isogenous over C to any such factor.
Hence, it seemed reasonable to investigate whether any known principles (e.g. the
Hodge Conjecture) could provide the additional abelian varieties needed for the
Existence Conjecture.

1.9. Here is a brief outline of the proof of Theorem 1. There are 4 main steps:

1.9.1. We use a sequence of functorialities to find an orthogonal rank 3 motive
M in the second cohomology of a Picard modular surface ([LR]) which has the
same L-function as the symmetric square of a base change of π .

1.9.2. From the weight 2 Hodge structure MB of M , we construct a rank 2
rational Hodge structure R of type (1,0) (0,1) whose symmetric square is isomorphic
to MB . We let A = AC be an elliptic curve over C whose H 1

B(A) is isomorphic as
Hodge structure to R.

1.9.3. Using the Absolute Hodge Conjecture, we descend A to a curve, also
denoted A, defined over a number field L which contains F .

1.9.4. Using the existence ([T1, BR2]) of a two dimensional l-adic representa-
tion attached to π , we find a D of dimension 1 inside the Weil restriction of scalars
of A from L to F ; by construction, D has the correct l-adic representations.

1.10. Since the result is in any case conditional, and for simplicity, we have
usually treated only the case of rational Hecke eigenvalues where the sought va-
riety really is an elliptic curve. However, the proof extends, with some changes,
to the general case of forms with π∞ belonging to the lowest discrete series. At
the suggestion of the referee, we have indicated significant changes needed for
the case of general Hecke field Tπ , which is defined as the number field gen-
erated by the av (π ). In this case it is more convenient to state the conjecture
cohomologically:

For π of weight (2, . . . , 2), having Hecke field Tπ , there exists an abelian variety
Aπ , defined over F, such that End(Aπ ) = Tπ , and such that for all but finitely many
of the finite places v of F at which Aπ has good reduction,

Lv
(

H 1
l (Aπ ), Tπ , s

)

= Lv (π, s).

Here Lv (H 1
l (Aπ ), Tπ , s) is the L-function denoted ζ (s; Aπ/F, Tπ ) in ([S2, Section

7.6]), and is denoted by Lv (H 1
l (Bπ ), σl, s) below in 2.1, for the case σl = id.

1.11. Finally, we note that in several lectures on this topic the proof was given
with alternative first steps using quaternionic surfaces. The proof given here is a
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little simpler, but the earlier construction is still useful. In particular, it enables
the unconditional proof of the Ramanujan conjecture at all places for holomorphic
Hilbert modular forms which are discrete series at infinity ([B]).

Notations 1.12. Throughout the chapter, F denotes a totally real field, K0 is a
fixed quadratic imaginary extension of Q and K = F K0. The letter L will denote
a number field whose definition depends on context. The symbol π denotes a fixed
cuspidal automorphic representation, as above, of GL(2, AF ), i.e. which is (i) of
lowest discrete series type at infinity, and (ii) has central character equal to the
inverse of the norm.

Acknowledgments. This work was largely done during a visit to SFB 478 in
Münster, Germany; this hospitality was greatly appreciated.

2. Known cases of the existence conjecture and negative background.

2.1. The case QC. Hida ([H, Theorem 4.12]) generalised most of Shimura’s
result (1.1), to the curves defined by quaternion algebras over totally real fields.
Thus, to use Hida’s work, one first invokes the Jacquet-Langlands correspondence
([JL]) to find an automorphic representation πQ with the same L-function as π but
on the adele group associated to the muliplicative group of a suitable quaternion
algebra Q over F . Here suitable means that the canonical models of the associated
arithmetic quotients are curves defined over F . The hypotheses QC above are
necessary and sufficient for such a pair (Q, πQ) to exist.

Let T = Tπ be the Hecke field of π . It is a number field which is either totally
real or a totally imaginary quadratic extension of a totally real field. By Hida ([H,
Prop. 4.8]) there exists an abelian variety Bπ and a Tπ -subalgebra T of End(Bπ ),
which is isomorphic to a direct sum of number fields, such that H 1

l (Bπ ) is a free
rank 2 T ⊗ Ql-module. Further, for almost all finite places v of F , all l prime to v ,
and all morphisms σl : T → Ql ,

Lv
(

H 1
l (Bπ ), σl, s

)

= Lv (π, σl, s)d

where d = [T : Tπ ], the L-factor on the left hand side is that of the σl-eigensubspace
of H 1

l (Bπ ) ⊗ Ql , and that on the right hand side is the L-factor with coefficients in
σl(Tπ ) defined by applying σl to the coefficients of Lv (π, s). (The equality makes
sense if one recalls the usual convention that Q is identified once and for all with
subfields of both C and Ql via fixed embeddings.)

By ([BR1]), each σl-eigensubspace of H 1
l (Bπ ) ⊗ Ql , is absolutely irreducible.

Hence, the commutant of the image of Galois in EndQl (H 1
l (Bπ ) ⊗ Ql) is isomorphic

to the matrix algebra Md(Tπ ⊗ Ql). By the Tate conjecture ([F]), this means that
End(Bπ ) is a simple algebra with center Tπ and T is a maximal commutative
semisimple subalgebra. By Albert’s classification, End(Bπ ) is isomorphic either
to (i) Me(D) where D is a quaternion algebra with center Tπ , or (ii) Md(Tπ ).
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This follows because we know in general that the rank over T of the topological
cohomology H 1

B(Bπ ) is a multiple of k, if [D : Tπ ] = k2. To exclude the former
case if Tπ = Q is easy: D is split at all finite places and so, since there is only 1
infinite place, it must be split everywhere. However, if Tπ '= Q, we need to use
a standard argument which relies upon the fact that F has a real place. Let B0

be a simple factor of Bπ . Then End(B0) = D. Note that complex conjugation
defines a continous involution of the set of complex points B0(C) of B0. Denote
the associated involution on the rank 1 D module H 1

B(B0) by Fr∞. Evidently, Fr∞
has order 2, has eigenvalues 1 and -1 with equal multiplicity (since it interchanges
the holomorphic and antiholomorphic parts of the Hodge splitting) and commutes
with Tπ . To conclude, note that the commutant of D in End(B0) is isomorphic to
the opposite quaternion algebra Dop to D, and that Fr∞ is a non-scalar element of
this algebra. Since Fr∞ is non-scalar, the algebra Q[X ]/(X2 − 1) embeds in Dop.
But this algebra is not a field, and hence this case cannot occur.

Thus, End(Bπ ) = Md(Tπ ). If Aπ denotes any simple factor, we have
End(Aπ ) = Tπ and finally

Lv
(

H 1
l (Aπ ), σl, s

)

= Lv (π, σl, s)

for all σl , almost all v , and all l which are prime to v . Hence:

Theorem 3. The Existence Conjecture holds for all π which satisfy the hy-
potheses QC.

Remark. It would be interesting to show that we can take d = 1 without invok-
ing the Tate conjecture.

2.2. The CM case. This follows from the work of Casselman ([S1]), the
Tate conjecture for abelian varieties of CM type, and the fact that the holomorphic
cusp forms of CM type (of weight 2) are exactly those associated by theta series (or
automorphic induction) to algebraic Hecke characters of totally imaginary quadratic
extensions of F and having a CM type for their infinity type. In more detail, if π is
of CM type, then there exists a totally imaginary quadratic extension J of F and
a Hecke character ρ of J such that L(π, s) = L(ρ, s), where the equality is one
of formal Euler products over places of F . Since the Hecke eigenvalues of π are
rational, the field generated by the values of ρ on the finite ideles of J is a quadratic
imaginary extension T of Q. By Casselman’s theorem ([S1], Theorem 6), there
exists an elliptic curve E defined over J, having complex multiplication by OT

over J , such that L(ρ, s)L(ρ, s) is the zeta function of H 1(E). Let RE denote the
restriction scalars (in the sense of Weil) from J to F of E . Let for each finite place
λ of K , ρλ be the λ-adic representation of Gal(Q/Q) attached to ρ by Weil. Then
the induced representation IndJ

F (ρλ) has a Ql-rational character and hence, since
F has a real place, can be defined over Ql . Note the L-function of the compatible
system of all IndJ

F (ρλ) is L(π, s). Since H 1
l (E) is a free rank 2 K ⊗ Ql-module,
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and the Galois action commutes with this structure, the Galois action on H 1
l (E) is

the direct sum of two copies of the Ql model of I nd J
F (ρλ). Hence the commutant

of the image of Galois is M2(Ql). Since this holds for all l, and using the Tate
conjecture, we conclude that End(RE) is M2(Q) and RE is isogenous to a square
E0 × E0. Evidently, we have L(π, s) = L(H 1(E0), s).

2.3. We sketch the proof of Theorem 2. Let S be any Shimura variety in the
sense of Deligne’s axioms ([D1]). The condition that S have H 1

B(S, Q) '= 0 is very
restrictive. Indeed, unless dim(S) = 1, we have

H 1
B(S, Q) = I H 1

B(S, Q) = H 1
2 (S, Q)

where I H∗ denotes the usual intersection cohomology and H 1
2 denotes the L2

cohomology. Now using the Künneth formula, we can assume that S is defined by
an algebraic group G over Q whose semisimple part Gss is almost simple. In a
standard way (using the Matsushima formula, the Künneth formula for continuous
cohomology, the Vogan-Zuckermann classification, and the strong approximation
theorem), we see that Gss(R) can have at most one non-compact factor G1 which
must itself be of real rank 1. By the classification of groups of Hermitian symmetric
type, the only possibilities for G1 are that it be isogenous to SU (n, 1) for n ≥ 1.
Suppose n > 1. Then by ([MR] and [BR3], Prop. 7.2) H 1

B(S, Q) is of CM type and
so is the associated Picard variety. On the other hand, if n = 1, then S is a curve,
and it is not hard to see, from the definition of reflex fields and the computation of
the zeta function of these curves, that every factor of the Jacobian of S is isogenous
to the base change of a factor of the Jacobian of a quaternionic Shimura curve. This
completes our sketch of the proof.

3. Some functorialities.

3.1. We assume throughout the paper that [F : Q] > 1. Further, from now
until the last Section of the paper we insist that

(i) K is unramified quadratic over F ,

(ii) π is unramified at every finite place of F ,

(iii) the central character ωπ of π is | ∗ |−1
F , the inverse of the idelic norm.

These conditions will impose no restriction on our final result. Indeed, the first
condition may be achieved, starting from any quadratic extension K of F , by a
cyclic totally real base change from F to an extension F ′, suitably ramified at the
places of F where K is ramified, so that K ′ = K F ′ is unramified over F ′. For
(ii), if πv belongs to the discrete series at any finite place v , then the condtion
QC2 is satisfied, and there is nothing to prove. On the other hand, if πv belongs
to the principal series at each finite place, then there is always an abelian totally



P1: IML

PB440-05 HIDA-0662G PB440-Hida-v4.cls December 3, 2003 20:46

don blasius90

real base change which kills all ramification, as may easily be seen by using the
fact that the Galois representations attached to π by Taylor ([T1, T2]) satisfy the
local Langlands correspondence. Finally, since ωπ differs from | ∗ |−1

F by a totally
even character ψ of finite order, a base change to the field Fψ associated to ψ by
class-field theory establishes (iii). Of course, for the main case of this paper, it is
part of our initial assumption. Note in any case that it ensures, since π is non-CM,
that Tπ is totally real.

3.2. Jacquet and Gelbart ([GJ]) have proven a correspondence Sym2 from non-
CM cuspidal automorphic representations of GL(2, AF ) to cuspidal automorphic
representations of GL(3, AF ). The underlying local correspondence is elementary
to describe, at least at the finite places, since π is unramified. For such a place v ,
recall that the Hecke polynomial at v of π is

Hv (π )(T ) = T 2 − av (π )T + Nv ,

which we factor as Hv (π )(T ) = (T − αv (π ))(T − βv (π )). Similarly, each cuspidal
automorphic representation , of GL(3, AF ) has Hecke polynomials

Hv (,)(T ) = (T − rv )(T − sv )(T − tv )

for v which are unramified for ,. Define

H 2
v (π )(T ) = (T − α2)(T − Nv )(T − β2

v ).

Then by ([GJ]) there exists a unique cuspidal automorphic representation Sym2(π )
of GL(3, AF ) such that

Hv (Sym2(π )) = H 2
v (π )

for all finite v .
An analogous result holds at the infinite places. Here the groups are GL(2, R)

and GL(3, R) whose irreducible admissible representations are classified by
conjugacy classes of semisimple homomorphisms σv : WR → GL(k, C), (k =
2, 3), where WR is the Weil group of R. Of course, givenσv : WR → GL(2, C), there
is a naturally defined class Sym2(σv ) : WR → GL(3, C). (One definition is Sym2 =
(σv ) ⊗ (σv )/det(σv ).) Then the correspondence at infinite v is σv (Sym2(π )) =
Sym2(σv ).

3.3. There is a base change correspondence ([AC, Theorem 4.2])

BC K
F {cusp forms on GL3(AF)} *−→ {cusp forms on GL3(AK)}

which takes cusp forms to cusp forms. For π3 a cuspidal automorphic representa-
tion of GL(3, AK ), BC K

F (π3) is characterized by the equality, for all but finitely
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many v ,

Lw
(

BC K
F (π3), s

)

= Lv (π3, s)Lv (π3 ⊗ εK/F , s),

where εK/F is the idele class character of A∗
F associated by class-field theory to

K/F . An analogous result holds at all places. At the infinite places, the groups
are GL(3, R) and GL(3, C) whose irreducible admissible representations are clas-
sified by semisimple homomorphisms σ : WR → GL(3, C) and σ : WC = C∗ →
GL(3, C), respectively. Then

σ
((

BC K
F (π3)

)

w

)

= σ (π3)v |WC

if w lies over v .

3.4. Let V be a vector space of dimension 3 over K and let H : V × V → K
be a non-degenerate Hermitian form relative to K/F . Let G = U (H ) denote the
unitary group of H as an algebraic group over F . Assume that H is chosen so that G
is quasi-split. Let G∗ = GU ∗(H ) be the group of rational similitudes of H . Then the
base change of G to K (as algebraic group) is isomorphic to GL(3, K ) as algebraic
group over K . In [R2] Rogawski established base change correspondences, also
denoted BC K

F , between automorphic forms on G(AF ) and on GL(3, AK ). Let η be
the algebraic automorphism of G defined by η(g) =t g−1 for all g in GL(3, K ) and
extend η to GL(3, AK ) in the natural way. Then a cusp form ,3 on GL(3, AK ) is in
the image of base change BC K

F from a global L-packet of automorphic representa-
tions of G iff ,3 ◦ η is isomorphic to ,3. Let ,3 = BC K

F (Sym2(,)) ⊗ |det |. Then
evidently ,3 ◦ η ∼= ,3 since this is so almost everywhere locally (since the form
is a base change, the conjugation can be ignored; since the map g →t g−1 takes a
local unitary ,w to its contragredient, it suffices to note that the local components
of BC K

F (Sym2(π )) ⊗ |det | are self-dual). By [R2] there exists an L-packet ,(G) of
G(AF ) such that BC K

F (,(G)) = BC K
F (Sym2(,)) ⊗ |det |. Further, at each infinite

place v , the members of the local L-packet ,(G)v belong to the discrete series;
they are exactly the 3 discrete series representations π (G)v such that

dim(H 2(Lie(G), k∞, π (G)v )) = 1.

Denoting any of these ,(G)v by ,(G)∞, put

,(G)∞ = {π+, π−, π0},

where the members are respectively holomorphic, antiholomorphic, and neither,
for the usual choice of complex structure on the symmetric space (=unit ball)
attached to G. Since BC K

F (Sym2(,)) is cuspidal, ,(G) is stable and its structure
is easy to describe. If π (G) ∈ ,(G), then π (G) = π∞(G) ⊗ π f (G). The π f (G)
is independent of the choice of π (G) ∈ ,(G), and the π∞(G) is any one of 3g

representations of G(F ⊗ R) which arise as external tensor products of the elements
of the local L-packets ,(G)v .
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3.5. Now let G1 be the inner form of G which is

(i) isomorphic to G at all finite places,

(ii) isomorphic to U (2, 1), e.g. quasi-split, at the archimedian place v1 of F
defined by the given embedding of F into R,

(iii) isomorphic to U (3), e.g. compact, at the other archimedian places of F .

Then G1 is an anisotropic group, also defined by a Hermitian form H1; let G∗
1 be

the associated group of rational similitudes. In [R2], Rogawski proved a Jacquet-
Langlands type of correspondence between L-packets on G and G1. Since ,(G) is
stable cuspidal and ,(G)v is discrete series at each infinite place, there is a unique
L-packet, all of whose members are automorphic, ,(G1) on G1 such that

(i) ,(G1) f = ,(G) f ,

(ii) ,(G1)∞1 = ,(G)∞,

(iii) ,(G1)v consists solely of the trivial representation for all archimedian v
other than ∞1.

Further, (i) the central character of each member of ,(G1) is trivial and (ii) the
multiplicity of any π (G1) in the discrete automorphic spectrum of G1 is one. (These
results are not stated explicitly in Chapter 14 of [R2] but they follow easily from
Theorem 14.6.1 (comparison of traces) and Theorem 13.3.3, and in any case are
well-known.)

3.6. Each automorphic representation π (G1) in ,(G1) extends uniquely to an
automorphic representation π (G∗

1) of G∗
1 with trivial central character. Thus, we

obtain on G∗
1 a set ,(G∗

1) of 3 automorphic representations with isomorphic finite
parts π (G∗

1) f and whose infinite parts are identified, via projection of G∗
1(R) onto

the factor corresponding to F∞1 as the members of ,(G)∞ = {π+, π−, π0}. For
more details see [BR1, R1].

4. Picard modular surfaces.

4.1. The group G∗
1 defines a compact Shimura variety Sh whose field of

definition is easily seen to be K . Let U be an open compact subgroup of (G∗
1) f .

Then Sh is the projective limit over such U of projective varieties ShU , each of
which is defined over K and consists of a finite disjoint union of projective algebraic
surfaces. (It is customary to refer to any of the ShK as a Picard modular surface.
See [D1, LR] for background.)

Let U (1) be an open compact which is a product of hyperspecial maximal
compact subgroups at each finite place, and let U be a normal subgroup of U (1),
sufficiently small so that ShU is non-singular. For a (G∗

1) f module V , let V U (1)
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denote the subspace of U (1) invariants. It is a module for the Hecke algebra HU (1)

of compactly supported bi-U (1) invariant functions on (G∗
1) f . Note that V U (1) is a

module for HU (1).
The degree 2 cohomology H 2

B(Sh, Q) of Sh decomposes as a direct sum of
isotypic π (G∗

1) f modules. Now let V = H 2
B(Sh, Q)(π (G∗

1) f ) denote the π (G∗
1) f -

isotypic component. Then, as usual, V U (1) is identified, using the Matsushima
formula, with a 3 dimensional subspace of H 2

B(ShU , Q); it is an isotypic component
for a representation (π (G∗

1) f )U (1) of HU (1).

4.2. Q-structure. Note that V has a natural Q structure coming from
H 2

B(Sh, Q).

Lemma. The subspace V U (1) of V is defined over Q.

Proof. Let τ be an automorphism of C and let V U (1)τ be the conjugate of V U (1)

inside H 2
B(Sh, Q) = H 2

B(Sh, Q) ⊗ Q. Then V U (1)τ is the ((π (G∗
1) f )τ )U (1) isotypic

subspace of H 2
B(Sh, Q), so it is enough to show that

(

π
(

G∗
1

)

f

)τ = π
(

G∗
1

)

f .

Since these representations are unramified, and since, by the discussion of [R2,
12.2], unramified local L-packets for G1 consist of single elements, it is enough to
check, for each finite place v , the equality of Langlands classes

σv
((

π
(

G∗
1

)

f

)τ ) = σv
(

π
(

G∗
1

)

f

)

.

However, it is not hard to check that

σv
((

π
(

G∗
1

)

f

)τ ) = σv
((

π
(

G∗
1

)

f

))τ
.

By the discussion of [R1, 4.1-2], these classes are in Galois equivariant bijection
with associated L-factors. In our case, as is easily seen, the factor is given by

Lw
(

BC K
F (Sym2(π )), s

)

,

where w is any extension of v . Since π has rational Hecke eigenvalues
L(BC K

F (Sym2(,)), s) is an Euler product over reciprocals of Dirichlet polyno-
mials with rational coefficients. Hence

σv
((

π
(

G∗
1

)

f

))τ = σv
((

π
(

G∗
1

)

f

)

and the result follows. !

4.2.1. The case Tπ '= Q. Here, instead of the above Lemma, one shows that the
smallest subspace WB of H 2

B(Sh, Q) whose scalar extension to Q contains V U (1) is
a 3-dimensional Tπ vector space, where Tπ is identified with the quotient of HU (1)

acting on WB . The argument requires nothing new.
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4.3. Hodge structure. Let MB denote the Q vector space provided by
Lemma 4.2, such that

MB ⊗ Q = V U (1).

By the stability of the L-packet, each tensor product σ ∗ ⊗ π f with σ ∗ ∈ ,(G)∞1

is automorphic. The bigraded Matsushima formula ([BW]) shows that the Hodge
decomposition of MB has the form

MB ⊗ C = M (2,0)
⊕

M (1,1)
⊕

M (0,2)

where the factors, each of dimension 1, are the contributions of σ+, σ 0, and σ− to
the cohomology, respectively.

4.4. Motive. For each rational prime l, Ml = MB ⊗ Ql is identified with a
summand of the l-adic etale cohomology H 2

B(Sh × Q, Ql). Since the action of the
Hecke algebra on H 2

B(Sh, Q) is semisimple, there exists an element e which acts
as an idempotent on H 2

B(Sh, Q) and whose image is MB . Interpreting, as usual, the
action of Hecke operators via algebraic correspondences (c.f. [DM, BR2]), we see
that the pair

M =
(

H 2
B(Sh, Q), e

)

defines a Grothendieck motive with associated ∞-tuple of realizations

Mr = (MB, MDR; Ml, l prime).

Here MB is regarded as a rational Hodge structure, MDR , a graded K -vector space, is
the De Rham cohomology of M , and each Ml is a Gal(Q/Q)-module. Each module
is the image of the action of e in the corresponding cohomology theory of Sh. Since
the classes of algebraic cycles are absolute Hodge cycles, every Grothendieck mo-
tive is also a motive for absolute Hodge cycles. Henceforth, by abuse of language, we
regard Mr as such motive, and all motives will be motives for absolute Hodge cycles.

4.5. Polarization. There is ([DM]) a well-known Tate twist operation which
for any motive M and any n ∈ Z defines a new motive M(n); we recall the properties
of this operation only as needed. Further, any motive is polarisable. In our case, this
means that there is a non-degenerate symmetric morphism of Hodge structures

/M : MB(1) ⊗ MB(1) → Q

whose associated bilinear form has signature (1, 2). Here Q has the “trivial” Hodge
structure of type (0, 0), and the Hodge decomposition of MB(1) coincides with that
of MB, but with each pair (p, q) of the bigrading replaced by (p − 1, q − 1). The
form induces, for each l, a Gal(Q/K )-equivariant map

/l : Ml(1) ⊗ Ml(1) → Ql
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where Ql is the trivial Galois module. A similar remark applies to MDR , but we
will have no need of it. Likewise, an explicit realisation of the polarisation is given
by the restriction to M of the cup-product on H 2(Sh), but we don’t need this
fact.

4.5.1. If Tπ '= Q, then the above construction provides us with a motive M of
rank 3 over Tπ such that Tπ acts on each component of the Hodge decomposition
by the regular representation. The polarization /M has the form /M = T rK/F (/0)
with a Tπ -linear symmetric bilinear form /0 taking values in Tπ⊗. The Tπ ⊗
R-valued form /M ⊗ R decomposes as a sum, indexed by the embeddings of Tπ

into R of forms of signature (1, 2). In particular, the orthogonal group of this form
is quasi-split at each infinite place.

4.6. Construction of an elliptic curve over C. For a Hodge structure H , let
Sym2(H ) denote its symmetric square.

Proposition. There exists, up to isomorphism, a unique two dimensional ra-
tional Hodge structure HB having Hodge types (1, 0) and (0, 1) such that Sym2(HB)
is isomorphic to MB.

4.7. Proof. 4.7.1. We follow [D2], Sections 3 and 4. Let C+ = C+(MB(1))
be the even Clifford algebra of the quadratic module MB(1). A Hodge structure
on a rational vector space X is given by a morphism of real algebraic groups
h : S → Aut(X ⊗ R) where S = RC/RGm is the Weil restriction of scalars from C
to R of the multiplicative group. Let h = hMB (1) denote the morphism so defined
for M . There is a canonical morphism with kernel Gm of the algebraic group
(C+)∗ into the group SO(MB(1), /). Of course, im(h) lies in SO(MB(1), /)(R).
The morphism h lifts uniquely to a morphism h+ : S → (C+)∗ ⊗ R such that the
associated Hodge structure on C+ has types (1, 0) and (0, 1) only. Note that in our
case C+ is a quaternion algebra with center Q. !

4.7.2. We must show that C+ is a split algebra. If so, then denoting by W an irre-
ducible 2 dimensional module for C+, we know by [D2], 3.4 that End(W )/center
is isomorphic to 02(MB(1)), which is itself isomorphic to MB(1). (Note that
the center of End(W ) is a rational sub-Hodge structure of type (0, 0).) Hence
Sym2(W ) = (W ⊗ W )/02(W ) is isomorphic to MB .

4.7.3. To show that C+ is split, we use the surface Sh and R. Taylor’s l-adic
representations ρT

l of Gal(Q/F).

Lemma 4.7.4. The representations ρT
l and Sym2(ρT

l ) are irreducible and re-
main irreducible when restricted to any finite subgroup of Gal(Q/F).
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Proof. Evidently, if the result holds for Sym2(ρT
l ), then it holds for ρT

l . The
former case will follow from [BR1], Theorem 2.2.1(b), once we exclude the case
(iib) of that Theorem, i.e. that Sym2(ρT

l ) is potentially abelian. To see this, ob-
serve that, since Sym2(ρT

l ) occurs as the Galois action on Ml for a motive M whose
MB has 3 Hodge types (2, 0), (1, 1), and (0, 2), the Hodge-Tate theory shows that
the semisimple part of the Zariski-closure of the image of Galois, over any finite
extension L of K , contains a non-trivial torus over Cl . Considering now ρT

l , this
means that if ρT

l is potentially abelian, the connected component of the Zariski
closure over Cl is a non-central torus S of GL(2). Hence the image of ρT

l must lie
in the normalizer N of S inside GL(2). Such an N is either abelian or has an abelian
subgroup of index 2, and so the image of Galois is either abelian or is non-abelian
but has an abelian subgroup of index 2. The first case contradicts ([BR1, Prop.
2.3.1], [T2]), whereas the second means that π is of CM type. !

For each l, let ηl = Sym2(ρT
l |K )(1) . Each ηl acts on Q3

l which is isomorphic to the
module Ml(1) as Galois module. Let Gl denote the Zariski closure of the image of
ηl in End(Q3

l ).

Lemma 4.7.5. Gl is a quasi-split special orthogonal group.

Proof. The image of Sym2 ⊗ (det−1) : GL(2) → GL(3) is a quasi-split spe-
cial orthogonal group SO(3)qs . Hence we need only check that the image of ηl ,
automatically contained in this group, has Zariski closure equal to it. But (ηl)|L is
irreducible for all finite extensions L of K . Hence Gl is a connected irreducible
algebraic subgroup of SO(3)qs . Fortunately, the only such subgroup is SO(3)qs

itself. !

4.7.6. Completion of proof that C+ is split. Now we know that the Zariski closure
of the Galois action on each Ml(1) is the quasi-split orthogonal group. On the other
hand, this irreducible action preserves the form /l . Since an irreducible orthogonal
representation can preserve at most one quadratic form (up to homothety), this
shows that the special orthogonal group of /l is SO(3)qs for all l. Hence for all
primes l, the algebra C+ ⊗ Ql is split. Hence it must be split at infinity as well,
and so is a matrix algebra.

4.7.7. If Tπ '= Q, we must construct a rational Hodge structure on the underlying
rational vector space of a 2 dimensional Tπ vector space HB so that (i) only Hodge
types (1, 0) and (0, 1) occur, and (ii) Tπ acts via endomorphisms of the Hodge
structure. The argument of 4.7.1 provides such a Tπ -linear Hodge structure h+ on
C+, which is now quaternion algebra over Tπ . Similarly, the argument through
4.7.5, using the Tπ -linear Sym2, extends without difficulty to show that C+ is split
at all finite places. Finally, since SO(/M ) is quasi-split at each infinite place, so is
(C+)∗. So (C+)∗ is everywhere locally, and hence globally, split.
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4.8. The Hodge structure HB defines a unique isogeny class of elliptic curves
over C such that for any member A of this class, H 1

B(A) is isomorphic as Hodge
structure to HB . We now choose and fix one such A.

4.8.1. If Tπ '= Q, HB defines an isogeny class of abelian varieties over C, such that
for any member A = Aπ of this class, H 1

B(A) is isomorphic as Hodge structure to
HB . Indeed, the Tπ action renders HB automatically polarisable, which is all that
needed to be checked.

5. Descent of A to Q.

5.1. Let τ be an automorphism of C over Q. Let τ (A) be the conjugate of A
by τ .

Theorem 4. Suppose the Absolute Hodge Conjecture holds. Then τ (A) is
isogenous to A.

Proposition 5.2. Let E1 and E2 be elliptic curves over C and suppose that
the Hodge structures Sym2(H 1

B(E1)) and Sym2(H 1
B(E2)) are isomorphic. Then E1

is isogenous to E2.

5.3 Proof. E1 is isogenous to E2 if H 1
B(E1) is isomorphic to H 1

B(E2) as rational
Hodge structure. As in 4.7.1, let h1 and h2 be the Hodge structure morphisms defined
for H 1

B(E1) and H 1
B(E2); these actions are each separately equivalent over R to the

tautological action of C∗ = S(R) on C, for a suitable choice of isomorphism of C
with R2. Let Vj = H 1

B(E j ) ( j ∈ {1, 2}), and let

h = (h1, h2) : S → GL(V1, R) × GL(V2, R)

be the product morphism. Let H be the smallest algebraic subgroup of GL(V1, Q) ×
GL(V2, Q) which contains im(h) over R. Then H is a reductive algebraic group; it is
the Mumford-Tate group of E1 × E2 and the isomorphism classes of its algebraic
representations over Q are in natural bijection with the isomorphism classes of
rational Hodge structures contained in all tensor powers of all sums of V1, V2,
and their duals. The projection of H to a factor is the Mumford-Tate group of the
corresponding curve. !

Put W = (V1 ⊗ V2) ⊗ (V1 ⊗ V2). Then of course W ∼= (V1 ⊗ V1) ⊗ (V2 ⊗ V2).
Since the action of H on Vj ⊗ Vj factors through the projection onto GL(Vj ), we
see that the action of H on Vj ⊗ Vj decomposes as a sum of the 1-dimensional
representation det ◦ pr j and the 3-dimensional representation Sym2(Vj ) ◦ pr j .
Further, the representations det(pr1) and det(pr2) are isomorphic since the cor-
responding Hodge structures are 1-dimensional, of type (1, 1), and there is up
to isomorphism only 1 such Hodge structure. Since, by assumption, Sym2(V1) is
isomorphic to Sym2(V2), and Sym2(V1)∗ ∼= Sym2(V1) ⊗ (det(pr1))−2, we see that
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Sym2(V1) ⊗ Sym2(V2) decomposes as the sum of a 1-dimensional (det(pr1))2, and
an 8-dimensional representation. Hence W contains at least two copies of the rep-
resentation (det(pr1))2. Now, V1 and V2 are non-isomorphic as Hodge structures
if they are non-isomorphic as H -modules if V1 ⊗ V2 contains no 1-dimensional
summand isomorphic to det(pr1). This follows since (V1)∗ ∼= V1 ⊗ (det(pr1)−1),
and the morphisms of Hodge structure are exactly the vectors in V ∗

1 ⊗ V2 on which
H acts via the trivial representation. Suppose now V1 ⊗ V2

∼= A ⊕ B with A and B
2-dimensional sub-Hodge structures. Evidently, one of the factors is purely of type
(1, 1), and so the associated H representation is isomorphic to det(pr1) ⊕ det(pr1).
Hence V1 is isomorphic to V2. (Of course, in this case we know more: both have
complex multiplication, since if α and β are two non-homothetic elements of
Hom(E1, E2), (β̂) ◦ α is a non-scalar endomorphism of E1.) Thus, we must only
exclude the possibility that V1 ⊗ V2 is an irreducible Hodge structure, i.e. corre-
sponds to an irreducible representation of H . But in this case V1 ⊗ V2 ⊗ V1 ⊗ V2

contains exactly one copy of (det(pr1))2, by Schur’s Lemma. Since we have seen
above that the multiplicity of det(pr1) is at least 2, this case cannot occur.

5.4. Remark. This Proposition is easily adapted to the general case, provided
one works always in the category of Hodge structures which are Tπ -modules,
working Tπ -linearly.

5.5. Proof of Theorem 4. By construction, the Hodge structure Sym2

(H 1(A)) is isomorphic to that of MB(π f ). Hence, by the Absolute Hodge Con-
jecture, there is an isomorphism in the category of motives over C:

φ : Sym2(H 1(A)) → MB(π f ) ⊗ C.

Let τ be an element of Aut(C/Q). Conjugating by τ , we get an isomor-
phism φτ : (Sym2(H 1(A)))τ → MB(π f )τ . Since MB(π f ) is defined over Q,
MB(π f )τ = MB(π f ). Further, (Sym2(H 1(A)))τ ∼= Sym2(H 1(Aτ )). Hence Sym2

(H 1(Aτ )) ∼= Sym2(H 1(A)). In particular, the Hodge structures Sym2(H 1
B(Aτ )) and

Sym2(H 1
B(A)) are isomorphic. By the Proposition 5.2, Aτ is isogenous to A.

Corollary 5.6. Suppose the Absolute Hodge Conjecture holds. Then A admits
a model over a finite extension L of Q.

Proof. The complex isogeny class of A contains only countably many complex
isomorphism classes of elliptic curves. For an elliptic curve B let j(B) be its j-
invariant. Then B1 is isomorphic over C to B2 iff j(B1) = j(B2). Furthermore,
j(τ (B)) = τ ( j(B)) for all B. Hence, considering all automorphisms τ of C over
Q, the set {τ ( j(A))} is countable. Let on the other hand z be any non-algebraic
complex number. Then it is well-known that the set {τ (z)} is uncountable. Hence,
j(A) must be in Q, i.e. {τ ( j(A))} is finite. Let L = Q( j(A)). Since any elliptic
curve B admits a Weierstrass model over Q( j(B)), we are done. !



P1: IML

PB440-05 HIDA-0662G PB440-Hida-v4.cls December 3, 2003 20:46

elliptic curves, hilbert modular forms, hodge conjecture 99

Remark 5.7. In the general case Tπ '= Q, we can, changing A within its isogeny
class as needed, give A a principal polarisation PA. Then the set of all j-invariants
is replaced by the quasi-projective variety Md , defined over Q, which parametrises
all isomorphism classes B of pairs (B, PB) where B has dimension d, and PB

is a principal polarisation of B. Then A = (A, PA) defines a point ν(A) of Md .
The variety Md is defined over Q. Further, if τ is an automorphism of C over Q,
τ (A) = (τ (A), τ (PA)) is also a principally polarised abelian variety and τ (ν(A)) =
ν(τ (A)). Again, the set of all isomorphism classes of pairs B = (B, PB) where B is
isogenous to A is countable. Since τ (A) is isogenous to A, this means that the set of
all τ (ν(A)) is countable. Hence ν(A) has algebraic coordinates. (This is standard.
Choosing a suitable hyperplane H , defined over Q which does not contain ν((A)),
the countable set τ (ν(A)) is contained in an affine variety defined over Q. But if V
is an affine variety defined over Q, and v is a point of V with complex coordinates
such that τ (v) is countable, then the coordinates of v are all algebraic.) Now let L0

be the number field generated by the coordinates of ν(A); it is called the field of
moduli of A. But it is known that every polarised smooth projective variety admits
a model over a finite algebraic extension of its field of moduli. So (A, PA), and
hence A alone, is definable over a finite extension L of L0. This completes our
sketch of the general case.

6. Comparison of H1
l (A) and ρT

l (π).

6.1. Fix a prime l. The two dimensional Ql-vector space H 1
l (A) is a Gal(Q/L)-

module. Recall that V T
l (π ) denotes the 2-dimensional Gal(Q/F)-module attached

to π ([T1, BR2]); the Galois action has been denoted ρT
l (π f ).

Proposition 6.2. Suppose the Absolute Hodge Conjecture holds. Then there
exists a finite extension L1 of L, containing K , such that V T

l (π )|L1 is isomorphic
as Gal(Q/L1)-module to H 1

l (A)|L1 .

6.3. Proof. The motive Sym2(H 1(A)) is defined over L , and by construction,
there is an isomorphism ιB of Hodge structures between MB and Sym2(H 1(A))B .
Regarding ιB as an element of M∗

B ⊗ Sym2(H 1(A))B , it is a rational class of type
(0, 0). By Deligne’s theorem, Gal(Q/L) acts continuously, via a finite quotient
group, on the Q-vector subspace of all rational classes of type (0, 0). Let L1 be a
finite extension of L , containing K , such that Gal(Q/L) acts trivially on ιB. Now,
for a rational prime l, ιB defines also an isomorphism

ιl : (M ⊗K L1)l →
(

Sym2(H 1(A)) ⊗L L1
)

l

which is Gal(Q/L1)-equivariant. !

6.4. Since the restriction to K of

Sym2 (

ρT (π )l
)

: Gal(Q/F) → Aut
(

V T
l

)
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is isomorphic to Ml , we now know that, over L1, Sym2(ρT (π )l)|L1 is isomor-
phic as a Galois module to Sym2(H 1(A))l . Since the dual of Sym2(ρT (π )l)|L1 is
isomorphic to (Sym2(ρT (π )l)|L1)(2), this means that

(

Sym2 (

ρT (π )l
)

|L1
)

⊗
(

Sym2 (

H 1(A)
)

l

)

contains χ−2
l , where χl is the l-adic cyclotomic character. Let Ql(−1) be Ql with

Galois action given by χl .

6.5. We now proceed as in the conclusion of the proof of the preceding proposition.
Let V1 = H 1

l (A) and let V2 = V T
l |L1. Then

V1 ⊗ V1 ⊗ V2 ⊗ V2

is isomorphic to
(

Sym2(V1) ⊕ Ql(−1)
)

⊗
(

Sym2(V2) ⊕ Ql(−1)
)

which, from the above, contains the square of the inverse of the l-adic cyclotomic
character χ−2

l with multiplicity two. Hence, putting W = V1 ⊗ V2, we see that
W ⊗ W contains χ−2 with multiplicity two. If W is absolutely (i.e. Ql) irreducible
as a Galois module, then W ⊗ W contains χ−2

l with multiplicity one. So W is re-
ducible. If W decomposes as X ⊕ Y , with X and Y irreducible and two dimensional,
then consider the exterior square

0 = 02(X ⊕ Y ).

This decomposes as

det(X ) ⊕ X ⊗ Y ⊕ det(Y ).

On the other hand

0 = 02(V1 ⊗ V2)

which decomposes as

0 = (Sym2(V1) ⊗ det(V2)) ⊕ (det(V1) ⊗ Sym2(V2)).

The first calculation shows that 0 has at least two 1-dimensional summands,
and, since Sym2(V1) ∼= Sym2(V2) is irreducible, the second shows that 0 has
no 1-dimensional summands, this case is impossible. Hence W = U ⊕ Z with a
1-dimensional summand Z .

6.6. To finish the argument, denote the Galois action on Z by ψ . Then V ∗
1 ⊗ (V2 ⊗

ψ−1)(−1) contains the trivial representation. Since V1 is irreducible, this means
that V1 is isomorphic to (V2 ⊗ ψ−1)(−1). Since det(V1) and det(V2) both have the
Galois action given by χ−1

l , we conclude by taking determinants, that (ψχl)2 = 1.
Set µ = ψχl . Enlarge L1 by a finite extension L2 such that µ|L2 is trivial. Then
over L2, V2

∼= V1. Relabeling L2 as L1, we are done.
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7. Completion of the Construction.

7.1. Preliminary. We now remove the conditions, in force since Section 3,
that π be unramified over F , and F K0 = K be unramified over F , and we reinterpret
the preceding constructions as commencing from the base change of π to the solv-
able totally real extension F1 of F , over which BC F1

F (π ) is unramified, and such that
F1 K0 is unramified. Further, we henceforth let L (not L1) denote any number field
which is a field of definition of A and which satisfies the conclusion of the previous
proposition.

7.2. Finally, let B = RL/F (A). Then the Gal(Q/F)-module H 1
l (B) is isomorphic

to the induced module I ndL/F (H 1
l (A)). However, H 1

l (A) is isomorphic to the
restriction ResL/F (V T

l ) of the 2-dimensional Gal(Q/F)-module V T
l = V T

l (π ).
Hence H 1

l (B) is isomorphic to V T
l ⊗ ,L/F where ,L/F is the permutation repre-

sentation defined by the action of Gal(Q/F) on the set of F-linear embeddings of
L into Q.

7.3. Since the trivial representation occurs in ,L/F , we see that V T
l occurs in

H 1
l (B). Let τ be any non-trivial irreducible constituent of ,L/F ⊗ Ql . Then

we claim that ρT
l is not a constituent of ρT

l ⊗ τ . To see this, just note that
the multiplicity in question is the dimension of ((V T

l )∗ ⊗ V T
l ⊗ τ )Gal where

Gal = Gal(Q/F). Since (V T
l )∗ ⊗ V T

l = 1 ⊕ Ad(V T
l ), and 1 ⊗ τ is irreducible,

it is enough to check that Ad(V T
l ) ⊗ τ contains no Galois invariants. But if J

denotes the kernel of τ , then the restriction of Ad(V T
l ) ⊗ τ to J is isomorphic

to the direct sum of 3 copies of (the restriction to J of) Ad(V T
l ). Since we have

seen that Ad(V T
l ) = Sym2(V T

l ) ⊗ ω−1
π , and Sym2(V T

l ) remains irreducible on
restriction to J , there are no invariants. Hence the multiplicity of V T

l in H 1
l (B)

is 1.

7.4. Let D be the smallest abelian subvariety of B such that H 1
l (D) contains the

unique submodule of H 1
l (B) which is isomorphic to V T

l . We will show that D
is an elliptic curve. Evidently D is simple and so End(D) is a division algebra.
In fact, End(D) is a field. To see this let Z be the center of End(D) and let
dim Z (End(D)) = n2. Then over Z ⊗ Ql , H 1

l (D) ⊗ Ql is a free module over the
the matrix algebra Mn(Z ⊗ Ql). Hence each irreducible Galois submodule of
H 1

l (D) ⊗ Ql must occur at least n times. Since V T
l occurs once, this means n = 1,

i.e. End(D) = Z .

7.5. Now we must show that Z = Q. To see this, note that H 1
l (D) is a free

Z ⊗ Ql-module. Put Z ⊗ Ql = Z1 ⊕ . . . ⊕ Zt , with local fields Z j . Let e j denote
the idempotent of Z ⊗ Ql which has image the factor Z j . Choose the indexing
so that the Z1 module e1(H 1

l (D)) contains the Ql-submodule W isomorphic
to V T

l . Since the Galois action on V T
l is irreducible, there is an embedding of
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V T
l ⊗ Z1 into e1(H 1

l (D)). But if [Z1 : Ql] > 1, the commutant of this image
would be non-abelian. Since Z is a field, this means Z1 = Ql . Since l is arbitrary,
the Cebotarev theorem ([CF], Exercise 6.2) forces Z = Q. Thus the commutant
of the image of Galois in End(H 1(D)) ⊗ Ql is Ql . This means that H 1

l (D) is
isomorphic to V T

l , and so D is in fact the sought elliptic curve. This completes the
construction.

7.6. If Tπ '= Q, the arguments of Sections 6 and 7 proceed essentially unchanged,
albeit Tπ -linearly, using the free rank 2 Tπ ⊗ Ql-adic representations V T

l of
Taylor.
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[E] Martin Eichler, Quaternäre quadratische Formen und die Riemannsche Vermütung für die Kon-

gruenzzetafunktion. Arch. Math. 5, (1954), 355–366.
[F] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73 (1983), no.
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1982.

[R1] J. Rogawski, Analytic expression for the number of points mod p. The zeta functions of Picard modular
surfaces, 65–109, Univ. Montréal, Montréal, QC, 1992.
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CHAPTER 6

ON THE GLOBAL GROSS-PRASAD CONJECTURE
FOR YOSHIDA LIFTINGS

By Siegfried Böcherer, Masaaki Furusawa, and Rainer Schulze-Pillot

Prof. J. Shalika on his 60th birthday

Introduction. In two articles in the Canadian Journal [16, 17], B. Gross and
D. Prasad proclaimed a global conjecture concerning the decomposition of an au-
tomorphic representation of an adelic special orthogonal group G1 upon restriction
to an embedded orthogonal group G2 of a quadratic space in smaller dimension and
also its local counterpart. In the local situation, one can summarize the conjecture
by saying that the occurrence of π2 in the restriction of π1 depends on the ε-factor
attached to the representation π1 ⊗ π2; in the global situation, assuming the exis-
tence of the local nontrivial invariant functional at all places and its nonvanishing
on the spherical vector at almost all unramified places, one considers a specific
linear functional given by a period integral. This period integral is then conjec-
tured to give a nontrivial functional if and only if the central critical value of the
L-function attached to π1 ⊗ π2 is nonzero. In particular in the case when G1 is the
group of an n-dimensional nondegenerate quadratic space V and G2 is the group
of an (n − 1)-dimensional subspace W of V , they showed that in low dimensions
(n ≤ 4) known results can be interpreted as evidence for this conjecture, using the
well known isomorphisms for orthogonal groups in low dimensions.

The case n = 5 has been treated in the local situation by Prasad [27]; it can
also be reinterpreted using these isomorphisms: The split special orthogonal group
in dimension 5 is isomorphic to the projective symplectic similitude group PGSp2,

and the spin group of the 4-dimensional split orthogonal group is SL2 × SL2. Prasad
then showed that for forms on PGSp2 that are lifts from the orthogonal group of a
4-dimensional space, the situation can be understood in terms of the seesaw dual
reductive pair (in Kudla’s sense)

GSp2 GO(4) ×GO(4).

G(SL2 × SL2) GO(4)
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India for their hospitality. Schulze-Pillot’s visit to HCRI was also supported by DFG.

105



P1: GIG

PB440-06 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 10:56
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In classical terms, the analogous global question leads to the problem to determine
those pairs of cuspidal elliptic modular forms (eigenforms of almost all Hecke
operators) that can occur as summands if one decomposes the restriction of a
cuspidal Siegel modular form F of degree 2 (that is an eigenform of almost all
Hecke operators) to the diagonally embedded product of two upper half planes into
a sum of (products of) eigenforms of almost all Hecke operators (for a discussion
of the problems that arise in translating the representation theoretic statement into
a classical statement see below and Remark 2.13). One can also rephrase this as
the problem of calculating the period integral

∫

(#\H)×(#\H)

F
((

z1 0
0 z2

))
f1(z1) f2(z2)d∗z1d∗z2

for two elliptic Hecke eigenforms f1, f2. The L-function that should occur then ac-
cording to the conjecture of Gross and Prasad is the degree 16 L-function associated
to the tensor product of the 4-dimensional representation of the L-group Spin(4) of
SO(5) with the two 2-dimensional representation associated to two copies of SO(3)
(due to the decomposition of SO(4) or rather its covering group mentioned above).
We denote this L-function as L(Spin(F), f1, f2, s).

In this reformulation it is natural to go beyond the original question of nonva-
nishing and to try and get an explicit formula connecting the L-value in question
with the period integral. In general, it seems rather difficult to calculate the period
integral as above, since little is known about the restriction of Siegel modular forms
to the diagonally embedded product of two upper half planes. One should also point
out that an integral representation for the degree 16 L-function in question is not
known yet. However, for theta series of quadratic forms the restriction to the di-
agonal of a degree two theta series becomes simply the product of the degree one
theta series in the variables z1, z2, which allows one to get a calculation started.
Thus here we only consider Siegel modular forms (of trivial character) that arise
as linear combinations of theta series of quaternary quadratic forms. Such Siegel
modular forms, if they are eigenforms, are called Yoshida liftings, attached to a
pair of elliptic cusp forms or, equivalently, to a pair of automorphic forms on the
multiplicative group of an adelic quaternion algebra. These liftings have been inves-
tigated in [32, 4, 8], and the connection between the trilinear forms on the spaces of
automorphic forms on the multiplicative group of an adelic quaternion algebra and
the triple product L-function has been investigated in [20, 15, 7]. If one combines
these results and applies them to the present situation, it turns out that the period
integral in question can indeed be explicitly calculated in terms of the central critical
value of the L-function mentioned; in the case of a Yoshida lifting attached to the
pair h1, h2 of elliptic cusp forms, this L-function is seen to split into the product
L(h1, f1, f2, s)L(h2, f1, f2, s), so that the central critical value becomes the prod-
uct of the central critical values of these two triple product L-functions. We prove a
formula that expresses the square of the period integral explicitly as the product of
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these two central critical values, multiplied by an explicitly known non-zero factor.
We reformulate the obtained identity in a way which makes sense as well for an
arbitrary Siegel modular form F in terms of the original L(Spin(F), f1, f2, s), in
place of L(h1, f1, f2, s)L(h2, f1, f2, s), hoping that such an identity indeed holds
for any Siegel modular form F . At present we cannot prove it except for the case
when F is a Siegel or suitable Klingen Eisenstein series of level 1. In the case when
F is the Saito-Kurokawa lifting of an elliptic Hecke eigenform h, one sees easily
that the period integral is zero unless one has f1 = f2 = f ; in this case the period
integral can be transformed into the Petersson inner product of the restriction of the
first Fourier Jacobi coefficient of F to the upper half plane with f and then leads
us to a conjectural identity for the square of this Petersson inner product with the
central critical value of L(h, f, f ; s).

Our calculation leaves the question open whether it can happen that the pe-
riod integral vanishes for the classical modular forms considered but is non-zero
for other functions in the same adelic representation space. Viewed locally, this
amounts to the question whether an invariant nontrivial linear functional on the
local representation space is necessarily non-zero at the given vector. At the infinite
place we can exhibit such a vector (depending on the weights given) by applying
a suitable differential operator to the Siegel modular form considered. At the finite
places not dividing the level, it comes down to the question whether (for an unram-
ified representation) a nontrivial invariant linear functional is necessarily nonzero
at the spherical (or class 1) vector invariant under the maximal compact subgroup.
This is generally expected, at least for generic representations. We intend to come
back to this question in future work.

We also investigate the situation where the pair f1, f2 and the product H × H
are replaced by a Hilbert modular form and the modular embedding of a Hilbert
modular surface; in terms of the Gross-Prasad conjecture this amounts to replacing
the split orthogonal group of a 4-dimensional space from above by a nonsplit (but
quasisplit) orthogonal group that is split at infinity. It turns out that one gets an
analogous result; we prove this only in the simplest case when all modular forms
involved have weight 2, the class number of the quadratic field involved is 1 and
the order in a quaternion algebra belonging to the situation is a maximal order. The
proof for the general case should be possible in an analogous manner.

1. Yoshida liftings and their restriction to the diagonal. For generalities on
Siegel modular forms we refer to [Fre1]. For a symplectic matrix M = ( A

C
B
D ) ∈

GSpn(R) (with n × n-blocks A, B, C, D) we denote by (M, Z ) '→ M < Z >=
(AZ + B)(C Z + D)−1 the usual action of the group G+Sp(n, R) of proper sym-
plectic similitudes on Siegel’s upper half space Hn .

We shall mainly be concerned with Siegel modular forms for congruence sub-
groups of type

#
(n)
0 (N ) =

{(
A B
C D

)
∈ Sp(n, Z) | C ≡ 0 mod N

}
.
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The space of Siegel modular forms (and cusp forms respectively) of degree n and
weight k for #

(n)
0 (N ) will be denoted by Mk

n (N ) (Sk
n (N )), for a vector valued modular

form transforming according to the representation ρ the weight k above should be
replaced by ρ . By < , > we denote the Petersson scalar product.

We recall from [4, 8, 5] some notations concerning the Yoshida liftings whose
restrictions we are going to study in this article. For details we refer to the cited
articles. We consider a definite quaternion algebra D over Q and an Eichler order
R of square free level N in it and decompose N as N = N1 N2 where N1 is the
product of the primes that are ramified in D. On D we have the involution x '→ x ,
the (reduced) trace tr(x) = x + x and the (reduced) norm n(x) = xx .

The group of proper similitudes of the quadratic form q(x) = n(x) on D is
isomorphic to (D× × D×)/Z (D×) (as algebraic group) via

(x1, x2) '→ σx1,x2 with σx1,x2 (y) = x1 yx−1
2 ,

the special orthogonal group is then the image of

{(x1, x2) ∈ D× × D× | n(x1) = n(x2)}.

We denote by H the orthogonal group of (D, n) and by H+ the special orthogonal
group.

For ν ∈ N let U (0)
ν be the space of homogeneous harmonic polynomials of

degree ν on R3 and view P ∈ U (0)
ν as a polynomial on

D(0)
∞ = {x ∈ D∞ | tr(x) = 0}

by putting

P

(
3∑

i=1

xi ei

)

= P(x1, x2, x3)

for an orthonormal basis {ei } of D(0)
∞ with respect to the norm form n. The space

U (0)
ν is known to have a basis of rational polynomials (i.e., polynomials that take

rational values on vectors in D(0) = D(0)
∞ ∩ D).

The group D×
∞/R× acts on U (0)

ν through the representation τν (of highest weight
(ν)) given by

(τν(y))(P)(x) = P(y−1xy).

Changing the orthonormal basis above amounts to replacing P by (τν(y))(P)
for some y ∈ D×

∞.

By 〈〈 , 〉〉0 we denote the suitably normalized invariant scalar product in the
representation space U (0)

ν .
For ν1 ≥ ν2 the H+(R)-space

U (0)
ν1

⊗ U (0)
ν2
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(irreducible of highest weight (ν1 + ν2, ν1 − ν2)) is isomorphic to the H+(R)-space
Uν1,ν2 of C[X1, X2]-valued harmonic forms on D2

∞ transforming according to the
representation of GL2(R) of highest weight (ν1 + ν2, ν1 − ν2).

An intertwining map ( has been given explicitly in [5, Section 3]; for x =
(x1, x2) ∈ D2

∞ the polynomial ((Q)(x) ∈ C[X1, X2] is homogeneous of degree
2ν2. We write now for Q ∈ U (0)

ν1
⊗ U (0)

ν2

((Q)(x) =
∑

α1+α2=2ν2

cα1α2 (x, Q)Xα1
1 Xα2

2 .(1.1)

The map x '→ cα1α2 (x, Q) is (for fixed Q) a polynomial in x1, x2 that is harmonic
of degree α′

1 = α1 + ν1 − ν2 in x1 and harmonic of degree α′
2 = α2 + ν1 − ν2 in

x2, and for h ∈ H+(R) we have

cα1α2 (hx, Q) = cα1α2 (x, h−1 Q).

The irreducibility of the space U (0)
ν1

⊗ U (0)
ν2

implies that this map is nonzero for
some Q. We denote by Uα the space of harmonic polynomials of degree α on
D∞ with invariant scalar product 〈〈 , 〉〉. If α is even, the H (R)-spaces Uα and
U (0)

α/2 ⊗ U (0)
α/2 are isomorphic and will be identified.

The map

(Q, R1, R2) '→ 〈〈cα1α2 (·, Q), R1 ⊗ R2〉〉(1.2)

for Q ∈ U (0)
ν1

⊗ U (0)
ν2

, R1 ∈ Uα′
1
, R2 ∈ Uα′

2
defines then a nontrivial invariant trilin-

ear form for the triple of H (R)-spaces ((U (0)
ν1

⊗ U (0)
ν2

), Uα′
1
, Uα′

2
).

Lemma 1.1. Let integers ν1 ≥ ν2 and β1, β2 be given for which

β ′
1 = β1 + ν1 − ν2, β

′
2 = β2 + ν1 − ν2

are even. Then there exists a nontrivial H (R)-invariant trilinear form T on the space
Uν1,ν2 ⊗ Uβ ′

1
⊗ Uβ ′

2
if and only if there exist integers α1, α2, γ such that βi = αi + γ

and α1 + α2 = 2ν2 holds. This form is unique up to scalar multiples and can be
decomposed as

T = T (0)
1 ⊗ T (0)

2

with (up to scalars) unique nontrivial invariant trilinear forms

T (0)
i = T (0)

i,β ′
1,β

′
2

on

U (0)
νi

⊗ U (0)
β ′

1/2 ⊗ U (0)
β ′

2/2.

In particular, for γ = 0 and T fixed, the trilinear form given in (1.2) is proportional
to T (with a nonzero factor c̃(ν1, ν2, α1, α2)).
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Proof. Decomposing

Uβ ′
1
= U (0)

β ′
1/2 ⊗ U (0)

β ′
1/2, Uβ ′

2
= U (0)

β ′
2/2 ⊗ U (0)

β ′
2/2

as a D×
∞/R× × D×

∞/R×-space one sees that T as asserted exists if and only if there
are nontrivial invariant trilinear forms

T (0)
i = T (0)

i,β ′
1,β

′
2

on

U (0)
νi

⊗ U (0)
β ′

1/2 ⊗ U (0)
β ′

2/2

for i = 1, 2. In this case T decomposes as

T = T (0)
1 ⊗ T (0)

2 .

!

The T (0)
i are known to exist if and only if the triples

(β ′
1/2, β ′

2/2, ν1), (β ′
1/2, β ′

2/2, ν2)

are balanced, i.e. the numbers in either triple are the lengths of the sides of a
triangle (and then the form is unique up to scalars); they are unique up to scalar
multiplication. It is then easily checked that the numerical condition given above
is equivalent to the existence of nonnegative integers α1, α2, γ satisfying βi =
αi + γ andα1 + α2 = 2ν2.Consider now the Gegenbauer polynomial G(α)(x, x ′) =
obtained from

G(α)
1 (t) = 2α

[ α
2 ]∑

j=0

(−1) j 1
j!(α − 2 j)!

(α − j)!
22 j

tα−2 j

by

G̃(α)(x, x ′) = 2α(n(x)n(x ′))α/2G(α)
1

(
tr(xx ′)

2
√

n(x)n(x ′)

)

and normalize the scalar product on Uα such that G(α) is a reproducing kernel, i.e.

〈〈G(α)(x, x ′), Q(x)〉〉α = Q(x ′)

for all Q ∈ Uα. Then for α1, α2, α
′
1, α

′
2 as above and some fixed Q ∈ Uν1,ν2 the map

(x1, x2) '→ T (Q, G(α′
1)(x1, ·), G(α′

2)(x2, ·))

defines a polynomial RQ(x1, x2) in x1, x2 that is harmonic of degree α′
1 = α1 +

ν1 − ν2 in x1 and harmonic of degree α′
2 = α2 + ν1 − ν2 in x2, and for h ∈ H+(R)

we have RQ(hx) = Rh−1 Q(x).
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As above we can therefore conclude that one has

cα1α2 (x, Q) = c̃(ν1, ν2, α1, α2)T (Q, G(α′
1)(x1, ·)), G(α′

2)(x2, ·),(1.3)

where the factor of proportionality c̃(ν1, ν2, α1, α2) is not zero.
We denote by

A(D×
A , R×

A , ν)

the space of functions ϕ : D×
A → U (0)

ν satisfying ϕ(γ xu) = τν(u−1
∞ )ϕ(x)

for γ ∈ D×
Q and u = u∞u f ∈ R×

A , where

R×
A = D×

∞ ×
∏

p

R×
p

is the adelic group of units of R. These functions are determined by their values on
the representatives yi of a double coset decomposition

D×
A = ∪r

i=1 D×yi R×
A

(where we choose the yi to satisfy yi,∞ = 1 and n(yi ) = 1).
The natural inner product on the space A(D×

A , R×
A , ν) is given by

〈ϕ, ψ〉 =
r∑

i=1

〈〈ϕ(yi ), ψ(yi )〉〉0

ei
,

where ei =| (yi Ry−1
i )× | is the number of units of the order Ri = yi Ry−1

i of D.

On the space A(D×
A , R×

A , ν) we have for p 2 |N (hermitian) Hecke operators
T̃ (p) (given explicitly by the End(U (0)

ν )-valued Brandt matrices (Bi j (p))) and for
p | N involutions w̃ p commuting with the Hecke operators and with each other.

For i = 1, 2 and ν1 ≥ ν2 with ν1 − ν2 even we consider now functions ϕi in
A(D×

A , R×
A , νi ).

The Yoshida lifting (of degree 2) of the pair (ϕ1, ϕ2) is then given as

(1.4) Y (2)(ϕ1, ϕ2)(Z )(X1, X2) =

=
r∑

i, j=1

1
ei e j

∑

(x1,x2)∈(yi Ry−1
j )2

((ϕ1(yi ) ⊗ ϕ2(y j ))(x1, x2)(X1, X2) ×

× exp
(

2π i tr
((

n(x1) tr (x1x2)
tr (x1x2) n(x2)

)
Z
)

.

This is a vector valued holomorphic Siegel modular form for the group #
(2)
0 (N )

with trivial character and with respect to the representation σ2ν2 ⊗ detν1−ν2+2 (where
σ2ν2 denotes the 2ν2-th symmetric power representation of GL2).

If we consider the restriction of such a modular form to the diagonal ( z1 0
0 z2

), the
coefficient of Xα1

1 Xα2
2 becomes a function F (α1,α2)(z1, z2) which is in both variables
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a scalar valued modular form for the group #0(N ) with trivial character of weight

α1 + ν1 − ν2 + 2 in z1, α2 + ν1 − ν2 + 2 in z2.

In particular the weights in the variables z1, z2 add up to 2ν1 + 4 for each pair
(α1, α2) with α1 + α2 = 2ν2 and the coefficient of Xα1

1 Xα2
2 vanishes unless

α′
1 = α1 + ν1 − ν2, α′

2 = α2 + ν1 − ν2

are even.

If f1, f2 are elliptic modular forms of weights k1, k2 we define then
〈
F

(( z1 0
0 z2

))
, f1(z1) f2(z2)

〉
k1,k2

to be the double Petersson product
〈
〈F (α1,α2)(z1, z2), f1(z1)〉k1, f2(z2)

〉
k2

if

k1 = α1 + ν1 − ν2 + 2, k2 = α2 + ν1 − ν2 + 2

for some α1, α2 with α1 + α2 = 2ν2 and to be zero otherwise (this definition coin-
cides with the Petersson product of the corresponding automorphic forms on the
groups Sp2(A) or Sp2(R) (restricted to the naturally embedded SL2(A) × SL2(A))
and SL2(A) (or the respective real groups)).

We will mainly consider Yoshida liftings for pairs of forms that are eigen-
forms of all Hecke operators and of all the involutions. It is then easy to see that
Y (2)(ϕ1, ϕ2)(Z ) is identically zero unless ϕ1, ϕ2 have the same eigenvalue under
the involution w̃ p for all p | N . The precise conditions under which the lifting is
nonzero have been stated in [8].

We will finally need some facts about the correspondence studied e.g. in [10, 22,
29, 24] between modular forms for #0(N ) (with trivial character) and automorphic
forms on the adelic quaternion algebra D×

A .

We consider the essential part

Aess
(
D×

A , R×
A , ν

)

consisting of functions ϕ that are orthogonal to all ψ ∈ A(D×
A , (R′

A)×, ν) for orders
R′ strictly containing R; this space is invariant under the T̃ (p) for p 2 |N and the w̃ p

for p | N and hence has a basis of common eigenfunctions of all the T̃ (p) for p 2 |N
and all the involutions w̃ p for p | N . Being the components of eigenvectors of a
rational matrix with real eigenvalues the values of these eigenfunctions are real,
(i.e., polynomials with real coefficients in the vector valued case) when suitably
normalized.

Moreover the eigenfunctions are in one to one correspondence with the new-
forms in the space

S2+2ν(N )



P1: GIG

PB440-06 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 10:56

global gross-prasad conjecture for yoshida liftings 113

of elliptic cusp forms of weight 2 + 2ν for the group #0(N ) that are eigenfunctions
of all Hecke operators (if τ is the trivial representation and R is a maximal order
one has to restrict here to functions orthogonal to the constant function 1 on the
quaternion side in order to obtain cusp forms on the modular forms side). This
correspondence (Eichler’s correspondence) preserves Hecke eigenvalues for p 2 |N ,
and if ϕ corresponds to f ∈ S2+2ν(N ) then the eigenvalue of f under the Atkin-
Lehner involution w p is equal to that of ϕ under w̃p if D splits at p and equal to
minus that of ϕ under w̃p if Dp is a skew field. The correspondence can be explicitly
described by associating to ϕ the modular form

h(z) =
r∑

i, j=1

1
ei e j

∑

x∈(yi Ry−1
j )

(ϕ(yi ) ⊗ ϕ(y j ))(x) exp(2π in(x)z)

(where as above ϕ(yi ) ⊗ ϕ(y j ) denotes the harmonic polynomial in U2ν obtained
by identifying U (0)

ν ⊗ U (0)
ν with U2ν).

An extension of Eichler’s correspondence to forms ϕ as above that are not
essential but eigenfunctions of all the involutions w̃ p has been given in [21, 7].

2. Computation of periods. Our goal is the computation of the periods

〈Y (2)(ϕ1, ϕ2)
((

z1 0
0 z2

))
, f1(z1) f2(z2)〉k1,k2

defined above for elliptic modular forms f1, f2 for the group #0(N ). For this we
study first how the vanishing of this period integral depends on the eigenvalues of
the functions involved under the Atkin-Lehner involutions or their quaternionic and
Siegel modular forms counterparts.

For a Siegel modular form F for the group #
(2)
0 (N ) we let the Atkin-Lehner

involutions with respect to the variables z1, z2 act on the restriction of F to the
diagonal matrices ( z1 0

0 z2
) and denote by F(( z1 0

0 z2
)) | W̃p the result of this action.

Lemma 2.1. Let N be squarefree and let F be a vector valued Siegel modular
form of degree 2 for the representation ρ of GL2(C) of highest weight (λ1, λ2)
in the space C[X1, X2]λ1−λ2 of homogeneous polynomials of degree λ1 − λ2 in
X1, X2 with respect to #

(2)
0 (N ) and assume for p | N that the restriction of F to

the diagonal is an eigenform of W̃p with eigenvalue ε̃(0)
p . Let f1, f2 be elliptic cusp

forms of weights k1, k2 for #0(N ) that are eigenforms of the Atkin-Lehner involution
w p with eigenvalues ε(1)

p , ε(2)
p . Then the period integral

〈
F

((
z1 0
0 z2

))
, f1(z1) f2(z2)

〉

k1,k2

(2.1)

is zero unless one has ˜
ε

(0)
p ε(1)

p ε(2)
p = 1.



P1: GIG

PB440-06 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 10:56
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Proof. Applying the Atkin-Lehner involution wp to both variables z1, z2 one
sees that this is obvious. !

We can view the condition of Lemma 2.1 as a (necessary) local condition for
the nonvanishing of the period integral at the finite primes dividing the level, with
a similar role being played at the infinite primes by the condition that modular
forms of the weights k1, k2 of f1, f2 appear in the decomposition of the restriction
of the vector valued modular form F to the diagonal (or of a suitable form in the
representation space of F , see below).

Lemma 2.2. Let f1, f2, h1, h2 be modular forms for #0(N ) that are eigenfunc-
tions of all Atkin-Lehner involutions for the p | N with f1, f2 cuspidal. Let h1, h2

have the same eigenvalue ε′p for all the w p for the p | N and denote by ε(1)
p , ε(2)

p the
Atkin-Lehner eigenvalues at p | N of f1, f2.

For a factorization N = N1 N2 where N1 has an odd number of prime factors
let DN1 be the quaternion algebra over Q that is ramified precisely at ∞ and the
primes p | N1 and RN1 an Eichler order of level N in DN1 .

Let ϕ
(N1)
1 , ϕ

(N1)
2 be the forms in A((DN1 )

×
A, (RN1 )

×
A, τi )(i = 1, 2) corresponding

to h1, h2 under Eichler’s correspondence.
Then the period integral

〈
Y (2)(ϕ(N1)

1 , ϕ
(N1)
2

) ((
z1 0
0 z2

))
, f1(z1) f2(z2)

〉

k1,k2

(2.2)

is zero unless ε′pε
(1)
p ε(2)

p = −1 holds for precisely those p that divide N1; in partic-
ular it is always zero unless

∏
p|N ε′pε

(1)
p ε(2)

p = −1 holds.

Proof. For each factorization of N as above we denote by ε̃p(N1) the eigenvalue
under w̃ p of ϕ

(N1)
1 , ϕ

(N1)
2 , we have ε̃p(N1) = −ε′p for the p dividing N1 and ε̃p(N1) =

ε′p for the p dividing N2. Hence the product ε̃p(N1)ε(1)
p ε(2)

p is 1 for all p dividing N if
N1 is the product of the primes p | N such that ε′pε

(1)
p ε(2)

p = −1 and is−1 for at least
one p | N otherwise; in particular a decomposition for which ε̃p(N1)ε(1)

p ε(2)
p = 1

for all p | N holds and N1 has an odd number of prime factors exists if and only if
we have

∏
p|N ε̃p(N1)ε(1)

p ε(2)
p = −1.

The W̃p-eigenvalue of the restriction of Y (2)(ϕ(N1)
1 , ϕ

(N1)
2 ) to the diagonal is

ε̃p(N1) by the result of Lemma 9.1 of [4] on the eigenvalue of Y (2)(ϕ(N1)
1 , ϕ

(N1)
2 )

under the analogue for Siegel modular forms of the Atkin-Lehner involution. The
assertion then follows from the previous lemma. !

For simplicity we will in the sequel assume that h1, h2, f1, f2 are all newforms
of (squarefree) level N ; essentially the same results can be obtained for more general
quadruples of forms of squarefree level using the methods of [7].
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Lemma 2.3. Let N 2= 1 be squarefree, D, R as described in Section 1, let
f1, f2 be normalized newforms of weights k1, k2 for the group #0(N ). Let ϕ1, ϕ2 ∈
A(D×

A , R×
A , τi ) be as above. Assume that the (even) weights k1, k2 of f1, f2 can

be written as ki = αi + ν1 − ν2 + 2 = α′
i + 2 with nonnegative integers αi sat-

isfying α1 + α2 = 2ν2 and denote for i = 1, 2 by ψi the U (0)
α′

i /2-valued form in

A(D×
A , R×

A , τα′
i
) corresponding to fi under Eichler’s correspondence.

Then the period integral
〈
Y (2)(ϕ1, ϕ2)

((
z1 0
0 z2

))
, f1(z1) f2(z2)

〉

k1,k2

(2.3)

has the (real) value

(2.4) c〈 f1, f1〉〈 f2, f2〉
(

r∑

j=1

T (0)
ν1,α

′
1,α

′
2
(ϕ1(yi ) ⊗ ψ1(yi ) ⊗ ψ2(yi ))

)

×
(

r∑

j=1

T (0)
ν2,α

′
1,α

′
2
(ϕ2(yi ) ⊗ ψ1(yi ) ⊗ ψ2(yi ))

)

,

with a nonzero constant c depending only on ν1, ν2, k1, k2.

Proof. The coefficient of Xα1
1 Xα2

2 of the (i, j)-term in F(z1, z2) = Y (2)(ϕ1, ϕ2)
( z1 0

0 z2
) is (with Qi j := ϕ1(yi ) ⊗ ϕ2(y j )) equal to

(2.5) c̃(ν1, ν2, α1, α2)
∑

(x1,x2)∈Ii j

T
(

Qi j , G(α′
1)(x1, ·), G(α′

2)(x2, ·)
)

× exp(2π in(x1)z1) exp(2π in(x2)z2)

by (1.3). We write

/
(α′)
i j (z)(x ′) =

∑

x∈Ii j

G(α′)(x, x ′) exp(2π in(x)z)(2.6)

for the Uα′-valued theta series attached to Ii j and the Gegenbauer polynomial
G(α)(x, x ′) and rewrite (2.5) as

c̃(ν1, ν2, α1, α2)T (Qi j , /
(α′

1)
i j (z1), /(α′

2)
i j (z2)).(2.7)

The i j-term of the period integral (2.3) becomes then

c̃(ν1, ν2, α1, α2)T (Qi j ,
〈
/

(α′
1)

i j (z1), f1(z1)
〉
,
〈
/

(α′
2)

i j (z2), f2(z2)
〉
,(2.8)

which by (3.13) of [6] and the factorization

T = Tν1,ν2,α
′
1,α

′
2
= T (0)

ν1,α
′
1,α

′
2
⊗ T (0)

ν2,α
′
1,α

′
2
= T (0)

1 ⊗ T (0)
2(2.9)
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is equal to

(2.10) c̃(ν1, ν2, α1, α2)〈 f1, f1〉〈 f2, f2〉T (0)
1 (ϕ1(yi ), ψ1(yi ), ψ2(yi ))

× T (0)
2 (ϕ2(y j ), ψ1(y j ), ψ2(y j )).

Summation over i, j proves the assertion. The value computed is real since the
values of the ϕi , ψi are so and since T0 is known to be real. !

Theorem 2.4. Let h1, h2, f1, f2, ψ1, ψ2 be as in Lemma 2.2, Lemma 2.3
with Atkin-Lehner eigenvalues ε′p for h1, h2 and ε(1)

p , ε(2)
p for f1, f2; assume∏

p|N ε′pε
(1)
p ε(2)

p = −1. Let D be the quaternion algebra over Q which is ramified
precisely at the primes p | N for which ε′pε

(1)
p ε(2)

p = −1 holds and R an Eichler
order of level N in D, let ϕ1, ϕ2 be the forms in A(D×

A , R×
A , τ1,2) corresponding to

h1, h2 under Eichler’s correspondence.
Then the square of the period integral

〈
Y (2)(ϕ1, ϕ2)

((
z1 0
0 z2

))
, f1(z1) f2(z2)

〉
k1,k2

(2.11)

is equal to

c
〈h1, h1〉〈h2, h2〉

L
(

h1, f1, f2;
1
2

)
L

(
h2, f1, f2;

1
2

)
,(2.12)

where c is an explicitly computable nonzero number depending only on
ν1, ν2, k1, k2, N and the triple product L-function L(h, g, f ; s) is normalized to
have its functional equation under s '→ 1 − s.

In particular the period integral is nonzero if and only if the central critical
value of L(h1, f1, f2; s)L(h2, f1, f2; s) is nonzero.

Proof. The choice of the decomposition N = N1 N2 made above implies that
we can use Theorem 5.7 of [7] to express the right hand side of (2.4) by the
product of central critical values of the triple product L-functions associated to
(h1, f1, f2), (h2, f1, f2). The Petersson norms of f1, f2 appearing in Theorem 5.7
of [7] cancel against those appearing in the proof of Lemma 2.3. !

Remark 2.5. (a) If the product
∏

p|N ε′pε
(1)
p ε(2)

p is +1 we know from [7]
that the sign in the functional equation of the triple product L-functions
L(h1, f1, f2; s), L(h2, f1, f2; s) is −1 and hence the central critical values are zero;
from Lemma 2.2 we know that for any Yoshida lifting F associated to h1, h2 as
in Lemma 2.2 the Petersson product of the restriction of F to the diagonal and
f1(z1), f2(z2) is zero as well.

(b) It should be noticed that given h1, h2 there are 2ω(N )−1 possible choices
of the quaternion algebra with respect to which one considers the Yoshida lifting



P1: GIG

PB440-06 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 10:56

global gross-prasad conjecture for yoshida liftings 117

associated to h1, h2. All these Yoshida liftings are different, but have the same
Satake parameters for all p ! N . Given f1, f2 with

∏
p|N ε′pε

(1)
p ε(2)

p = −1 there is
then precisely one choice of quaternion algebra that leads to a nontrivial result for
the period integral, all the others give automatically zero by Lemma 2.2. The choice
of this quaternion algebra should be seen as variation of the Vogan L-packet of the
p-adic component of the adelic representation generated by the Siegel modular
form for the p | N in such a way that the resulting L-packet satisfies the local
Gross-Prasad condition for the split 5-dimensional and 4-dimensional orthogonal
groups.

We want to rephrase the result of Theorem 2.4 in order to replace the factor of com-
parison 〈h1, h1〉〈h2, h2〉 occurring by a factor depending only on F = Y (2)(ϕ1, ϕ2)
instead of h1, h2. Concerning the symmetric square L-function of F occurring
in the following corollary we remind the reader that we view F as an auto-
morphic form on the adelic orthogonal group of the 5-dimensional quadratic
space V of discriminant 1 over Q that contains a 2-dimensional totally isotropic
subspace.

Corollary 2.6. Under the assumptions of Theorem 2.4 and the additional
assumption that h1, h2 are not proportional, the value of (2.12) is equal to:

c〈F, F〉
L (N )(F, Sym2, 1)

L
(

h1, f1, f2;
1
2

)
L

(
h2, f1, f2;

1
2

)
,(2.13)

where again c is an explicitly computable nonzero constant depending only on the
levels and weights involved and L (N )(F, Sym2, s) is the N-free part of the L function
of F with respect to the symmetric square of the 4-dimensional representation of
the L-group of the group SO(V ) (V as above).

Proof. Since h1, h2 are not proportional, the Siegel modular form F is cuspidal
and the Petersson product 〈F, F〉 is well defined. From [4, Proposition 10.2] we
recall that 〈F, F〉 is (up to a nonzero constant) equal to the the residue at s = 1 of
the N -free part D(N )

F (s) of the degree 5 L-function associated to F (normalizing the
ϕi to 〈ϕi , ϕi 〉 = 1; the formulas given in [4] generalize easily to the situation where
the ϕi take values in harmonic polynomials). It is also well known that 〈hi , hi 〉 is
equal (up to a nonzero constant depending only on weights and levels) to D(N )

hi
(1)

where D(N )
hi

(s) is the symmetric square L-function associated to hi . Comparing
the parameters of the L-functions L (N )(F, Sym2, s) and D(N )

F (s)D(N )
h1

(s)D(N )
h2

(s) we
see that the value of L (N )(F, Sym2, s) at s = 1 is equal to the residue at s = 1 of
D(N )

F (s)D(N )
h1

(s)D(N )
h2

(s), which gives the assertion. !

Remark. We can as well view L (N )(F, Sym2, s) as the exterior square of the
degree 5 L-function associated to F .
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Let us discuss now two degenerate cases:

Corollary 2.7. (a) Under the assumptions of Theorem 2.4 replace ϕ2 by
the constant function (1i

1
ei

)−1 (and hence h2(z) by the Eisenstein series E(z) =
(1i, j

1
ei e j

)−11i, j
1

ei e j
/

(0)
i j (z)). Then the period integral

〈
Y (2)(ϕ1, ϕ2)

((
z1 0
0 z2

))
, f1(z1) f2(z2)

〉

k1,k2

(2.14)

is zero unless f1 = f2 =: f, in which case its square is equal to the value at s = 1
of

c〈F, F〉
L (N )(F, Sym2, s)

L
(

h1, f, f ; s − 1
2

)
L

(
E, f, f ; s − 1

2

)
,(2.15)

where again c is an explicitly computable nonzero constant depending only on the
levels and weights involved and L(E, f1, f2; s) is defined in the same way as the
triple product L-function for a triple of cusp forms, setting the p-parameters of E
equal to p1/2, p−1/2 for p ! N .

(b) Under the assumptions of Theorem 2.4 let h = h1 = h2. Then the period
integral (2.11) is equal to

c
〈h, h〉

L
(

h, f1, f2;
1
2

)
,(2.16)

where c is a nonzero constant depending only on the levels and weights involved.

Proof. Both assertions are obtained in the same way as Theorem 2.4 and Corol-
lary 2.6; notice that in case a) (with ω(N ) denoting the number of prime factors of
N ) both L(E, f, f ; s − 1

2 ) and L (N )(F, Sym2, s) are of order ω(N ) − 1 at s = 1. !

Remark. (a) The form of our result given in Corollary 2.6 could in principle
be true for any Siegel modular form F instead of a Yoshida lifting if one replaces
L(h1, f1, f2; 1

2 )L(h2, f1, f2; 1
2 ) by the value L(Spin(F), f1, f2,

1
2 ) of the spin L-

function mentioned in the introduction. There is, however, not much known about
the analytic properties of L (N )(F, Sym2, s), in particular this L- function might
have a zero or a pole at s = 1.

(b) In the degenerate case of Corollary 2.7 a) the Yoshida lifting F is the Saito-
Kurokawa lifting associated to h1. The result of that case could also be true in the
case that h1, f1, f2 are of level 1 and F is the Saito-Kurokawa lifting of h1, but we
cannot prove this at present (except for the vanishing of the period integral in the
case that f1 2= f2, which is easily proved).
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We notice that in that last case (as well as in the related case of a Yoshida lifting
of Saito-Kurokawa type) the period integral is seen to be equal to the Petersson
product 〈φ1(τ, 0), f (τ )〉, where φ1(τ, z) is the first Fourier Jacobi coefficient of F.

In the case of Corollary 2.7 b) the Yoshida lift F can be viewed as an Eisenstein
series of Klingen type associated to h, in particular its image under Siegel’s 3-
operator is equal to h (more precisely, the Klingen Eisenstein series in question is a
sum of Yoshida liftings associated to various quaternion algebras of level dividing
N (see [6]), where the other contributions yield a vanishing period integral). Notice
that this Eisenstein series is vector valued if the weight k of h is > 2; the usual
scalar valued Klingen Eisenstein series leads (in the case of level 1) to a similar
formula with L(h, f1, f2; k−1

2 ) instead of L(h, f1, f2; 1
2 ).

We can obtain a result similar to that of Theorem 2.4 for more general weights k1, k2

of the modular forms f1, f2. For this, remember that according to Lemma 1.1 the
value given in (2.4) for the period integral in question also makes sense if one
replaces throughout α′

1, α
′
2 by β ′

1 = α′
1 + γ , β ′

2 = α′
2 + γ for some fixed γ > 0;

the forms f1, f2 then having weights ki = α′
i + 2 + γ for i = 1, 2. As noticed

above, our period integral becomes 0 in this situation. We can, however, modify
the function Y (2)(ϕ1, ϕ2)(Z ) by a differential operator D̃γ

2,α1,α2
in such a way that

D̃γ
2,α1,α2

Y (2)(ϕ1, ϕ2) is a function on H × H that is a modular form of weights k1, k2

of z1, z2 as described above and yields a value for the period integral of the same
form as the one given in form (2.4).

More precisely, we have:

Proposition 2.8. For nonnegative integers k, r and l with k ≥ 2 and any par-
tition l = a + b, there exists a (nonzero) holomorphic differential operator Dr

k,a,b

(polynomial in X2
1

∂
∂z1

, X1 X2
∂

∂z12
, X2

2
∂

∂z2
, evaluated in z12 = 0) mapping C[X1, X2]l -

valued functions on H2 to C · Xa+r
1 Xb+r

2 -valued functions on H × H and satisfying

Dr
k,a,b

(
F |k,l M↑

1 M↓
2

)
=

(
Dr

k,a,b F
)

|z1
k+a+r M1 |z2

k+b+r M2

for all M1, M2 ∈ SL(2, R); here the upper indices z1 and z2 at the slash-operator
indicate the variable, with respect to which one has to apply the elements of SL(2, R)
and ↑↓ denote the standard embedding of SL(2) × SL(2) into Sp(2) given by

(
a b
c d

)↑
×

(
A B
C D

)↓
=





a 0 b 0
0 A 0 B
c 0 d 0
0 C 0 D



 .

Of course one can consider Dr
k,a,b F as a C-valued function.

Remark 2.9. One may indeed show, that there exists (up to multiplication by a
constant) precisely one such nontrivial holomorphic differential operator.
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Corollary 2.10. The differential operator Dr
k,a,b defined above gives rise to

a map

D̃r
k,a,b : M2

k,l

(
#2

0(N )
)
−→ M1

k+a+r

(
#1

0(N )
)
⊗ M1

k+b+r

(
#1

0(N )
)

of spaces of modular forms. (It is easy to see that for r > 0 this map actually goes
into spaces of cusp foms).

Corollary 2.11. Denoting by Sym2(C) the space of complex symmetric ma-
trices of size 2 we define a polynomial function

Q : Sym2(C) −→ C[X1, X2]2r

by

Dr
k,a,betr (T Z ) = Q(T )et1z1+t2z2

where

Z =
(

z1 z3

z3 z2

)
∈ H2.

Furthermore we assume (with k = m
2 + ν) that P : C(m,2) −→ C[X1, X2]l is a poly-

nomial function satisfying
a) P is pluriharmonic
b) P((X1, X2)A) = ρν,l(A)P(X1, X2) for all A ∈ GL(2, C).

Then, for Y1, Y2 ∈ Cm

(Y1, Y2) '−→
{

P(Y1, Y2) · Q
((

Yt
1Y1 Yt

1Y2

Yt
2Y1 Yt

2Y2

))}

a+r+ν,b+r+ν

defines an element of Ha+r+ν(m) ⊗ Hb+r+ν(m), where Hµ(m) is the space of har-
monic polynomials in m variables (for the standard quadratic form), homogeneous
of degree µ and for any R ∈ C[X1, X2]l+2r we denote by {R}α,β the coefficient of
Xα

1 Xβ
2 in R, α + β = l + 2r .

The proof of Corollary 2.11 is a vector-valued variant of similar statements in
[2] and [9, p. 200], using the proposition above and the characterization of harmonic
polynomials by the Gauß-transform; we leave the details of proof to the reader.

Proof (of Proposition 2.8). We start from a Maaß-type differential operator δk+l

which maps C[X1, X2]l-valued functions on H2 to C[X1, X2]l+2-valued ones and
satisfies

(δk+l F) | k,l+2 M = δk+l
(
F |k,l M

)

for all M ∈ Sp(2, R).
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It is well known, how such operators arise from elements of the universal enveloping
algebra of the complexified Lie algebra of Sp(2, R), see e.g. [19] . In our case (we
refer to [3] for details) we can describe these operators quite explicitly in terms of
the simple operators

DF :=
(

1
2π i

∂

∂ Z

)
[X]

and

N F :=
(
− 1

4π
(I m Z )−1 F

)
[X].

Here X stands for the column vector ( X1
X2

). Then we define

δk F = k N F + DF.

It is remarkable (and already incorporated in our notation!) that δk+l depends only
on k + l.
The iteration

δr
k+l := δk+l+2r−2 ◦ · · · ◦ δk+l+2 ◦ δk+l

can also be described explicitly by

δr
k+l =

r∑

i=0

#(k + l + r )
#(k + l + r − i)

(
r
i

)
N i Dr−i .

For a function F : H2 −→ C[X1, X2]l and a decomposition l = a + b we put

∇r
k+l(a, b)F =: Xa+r

1 Xb+r
2 − coefficient of

(
δr

2,k+l F
)
|H×H .

Then ∇ has already the transfomation properties required in the proposition, i.e.

∇r
k+l(a, b)

(
F |k,l M↑

1 M↓
2

)
=

(
∇r

k+l(a, b)F
)

|z1
k+a+r M1 |z2

k+b+r M2

for M1, M2 ∈ SL(2, R).
Moreover, if F is in addition a holomorphic function on H2, then ∇r

k+l(a, b)F is a
nearly holomorphic function in the sense of Shimura (with respect to both variables
z1 and z2), as polynomials in 1

y1
and 1

y2
they are of degree ≤ r . Shimura’s structure

theorem on nearly holomorphic functions [30] says that all nearly holomorphic
functions on H can be obtained from holomorphic functions by applying Maaß-
type operators

δk := k
2iy

+ ∂

∂z

and their iterates. This however is only true if the weight (i.e. k + a + r or k + r + b)
is bigger than 2r , which is not necessarily true in our situation. We therefore use
a weaker version of Shimura’s theorem (see [31, Theorem 3.3]), valid under the
assumption “w > 1 + r”, where w is the weight at hand and r is the degree of the
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s. böcherer, m. furusawa, and r. schulze-pillot122

nearly holomorphic function: Every such function f on H of degree ≤ r has an
expression

f = fhol + Lw ( f̃ )

where fhol is holomorphic and f̃ is again nearly holomorphic of degree ≤ r ; in this
expression

Lw := δw−2

(
y2 ∂

∂ z̄

)
= w

2i
y

∂

∂ z̄
+ y2 ∂2

∂z∂ z̄

is a “Laplacian” of weight w commuting with the |w -action of SL(2, R). We also
point out that fhol is uniquely determined by f (in particular, f = fhol , if f is
holomorphic) and we have ( f |w M)hol = ( fhol) |w M for all M ∈ SL(2, R).

If we apply this statement to ∇r
k+l(a, b)F , considered as function of z1 and z2,

we get an expression of type

∇r
k+l(a, b)F = f + Lz1

k+a+r g1 + Lz2
k+r+bg2 + Lz1

k+a+r Lz2
k+r+bh

where f, g1, g2, h are nearly holomorphic functions on H × H, f being holomor-
phic in both variables, g1 holomorphic in z2, g2 holomorphic in z1. Note that (due
to our assumption k ≥ 2 ) Shimura’s theorem is applicable here. An inspection of
Shimura’s proof (which is quite elementary for our case) shows that f is indeed of
the form f = DF , where D is a polynomial p in ∂

∂z1
, ∂

∂z12
, ∂

∂z2
, evaluated in z12 = 0.

This polynomial does not depend on F at all and it has the required transformation
properties.

It remains however to show that D is not zero:
For this purpose, we consider the special function

zr
12 :

{
H2 −→ C[X1, X2]l

Z '−→ zr
12 Xa

1 Xb
2

.

It is easy to see that∇r
k+l(a, b)(zr

12) is then equal to the constant function r !, therefore

∇r
k+l(a, b)

(
zr

12

)
= D

(
zr

12

)
= r !,

in particular, D is nonzero and we may put

Dr
k,a,b = p

(
X2

1
∂

∂z1
, X1 X2

∂

∂z12
, X2

2
∂

∂z2

)
,

evaluated at z12 = 0. !

We can then prove in the same way as above:

Corollary 2.12. The assertions of Lemma 2.3 and Theorem 2.4 remain true
if f1, f2 have weights ki = α′

i + 2 + γ (i = 1, 2) with some γ > 0, if one replaces

Y (2)(ϕ1, ϕ2)
((

z1 0
0 z2

))
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by

D̃γ
2,α1,α2

Y (2)(ϕ1, ϕ2) (z1, z2) .

Remark 2.13. Application of the differential operator to Y (2)((ϕ1, ϕ2) (Z )) be-
fore restriction to the diagonal does not change the Sp2(R)-representation space of
that function, i.e., we have found a different function in the same representation
space whose period integral assumes the value that is predicted by the conjecture of
Gross and Prasad. More precisely, (using remark 2.9 and some additional consider-
ations) one can show that the vanishing of this predicted value is already sufficient
for the vanishing of the period integral for all triples F ′, f ′

1, f ′
2 of functions in the

Harish-Chandra modules generated by the original functions F, f1, f2. To obtain a
similar statement for the local representations at the finite places not dividing the
level one would have to show that a nonvanishing invariant linear functional on the
tensor product of the representations is not zero on the product of the spherical (or
class 1) vectors invariant under the maximal compact subgroup. This is expected
to be true as well; we plan to come back to these problems in future work.

3. Restriction to an embedded Hilbert modular surface. To avoid techni-
cal difficulties we deal here only with the simplest case: The quaternion algebra D
is ramified at all primes p dividing the level N and we have ν1 = ν2 = 0, i.e., the
Yoshida lifting is a scalar valued Siegel modular form of weight 2 and the order R
we are considering is a maximal order. We put F = Q(

√
N ) and assume that N is

such that the class number of F is 1. We denote by 6 the discriminant of F, by
a '→ aσ its nontrivial automorphism and consider the basis 1, w with w = 6+

√
6

2
of the ring oF of F . Denoting by C the matrix

C :=
(

1 1
w w̄

)

we have the usual modular embedding

ι : (z1, z2) '→ C
(

z1 0
0 z2

)
tC(3.1)

of H × H into the Siegel upper half plane H2 and

ι̃ :
(

a b
c d

)
'→

(
C 0
0 tC−1

)




a 0 b 0
0 aσ 0 bσ

c 0 d 0
0 cσ 0 dσ





(
C−1 0

0 tC

)
(3.2)

from SL2(F) into Sp2(Q).
We have then for γ ∈ SL2(F) :

ι̃(γ )(ι((z1, z2))) = ι̃(γ ((z1, z2)))(3.3)
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with the usual actions of the groups SL2(F) on H × H and of Sp2(Q) on the Siegel
upper half plane.
We put now

J =





1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0





and consider for a Siegel modular form f of weight k for the group # ⊆ Sp2(Q)
the function

f̃ (τ1, τ2) := f |k J (ι(τ1, τ2)).(3.4)

Writing ι0 = J ◦ ι, ι̃0(γ ) := J ι(γ )J−1 we see that f̃ is a Hilbert modular form for
the group ι̃0

−1(#).
By calculating ι̃0(γ ) explicitly for γ ∈ SL2(F) one checks that ι̃0(γ ) is in

#
(2)
0 (N ) if and only if γ is in SL2(oF ⊕ d), the group of matrices ( a b

c d ) with
a, d ∈ oF , c ∈ d, b ∈ d−1, where d is the different of F.

If L is a Z-lattice of (even) rank m = 2k with quadratic form q and asso-
ciated bilinear form B(x, y) := q(x + y) − q(x) − q(y) satisfying q(L) ⊆ Z and
Nq(L#)Z = Z (N is the level of (L , q)) then it is shown in [4] that

ϑ (2)(L , q, Z )|k J = c1

∑

x1∈L ,x2∈L#

exp
(

2π i tr
((

q(x1) B(x1, x2)/2
B(x1, x2)/2 q(x2)

)
Z
))

,

(3.5)

where c1 is a nonzero constant depending only on the genus of (L , q) and where
ϑ (2)(L , q, Z ) is the usual theta series of degree 2 of (L , q). One checks therefore
that, writing K = {x1 + x2w ∈ L ⊗ F | x1 ∈ L , x2 ∈ L#}, we have

ϑ (2)(L , q, ι̃0(z1, z2)) = ϑ(K , q, (z1, z2)),(3.6)

where we denote by ϑ(K , q, (z1, z2)) =
∑

y∈K exp(2π i(q(y)z1 + q(y)σ z2)) the
theta series of the oF -lattice K with the extended form q on it.

It is again easily checked that L# ⊆ N−1L implies that K is an integral uni-
modular oF -lattice, and it is well known that then the theta series ϑ(K , q, (z1, z2))
is a modular form of weight k for the group SL2(oF ⊕ d).

Lemma 3.1. Let D̃ be a quaternion algebra over F ramified at both infinite
primes and let R̃ be a maximal order in D̃. Let

A
(
D̃×

A , R̃×
A , 0

)
=: A

(
D̃×

A , R̃×
A

)

be defined in the same way as in Section 1 for D and let A(D̃×
A , R̃×

A ) be equipped
with the natural action of Hecke operators T (p) for the p not dividing N described
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by Brandt matrices as explained in [11]. Then by associating to a Hecke eigenform
ψ ∈ A(D̃×

A , R̃×
A ) the Hilbert modular form

f (z1, z2) =
∫

(D̃×\D̃×
A )× (D̃×\D̃×

A )

ψ(y)ψ(y′)ϑ
(
y′ R̃ y−1, (z1, z2)

)
dy dy′

one gets a bijective correspondence between the ψ as above and the Hecke eigen-
forms of weight 2 and trivial character for the group #0(n, d) of precise level n giv-
ing an explicit realization of the correspondence of Shimizu und Jacquet/Langlands
[29, 24]. Here n denotes the product of the prime ideals ramified in D̃ and #0(n, d)
is the subgroup of SL2(oF ⊕ d) whose lower left entries are in nd.

The function ρ(y, y′) on D̃×
A × D̃×

A given by setting ρ(y, y′) equal to the Peters-
son product of f with ϑ(y′ R̃ y−1, (z1, z2)) is proportional to (y, y′) '→ ψ(y)ψ(y′).

Proof. The first part of this Lemma is due to Shimizu [29] (taking into account
that by [11] the group #0(n, d) is the correct transformation group for the theta series
in question). Let ρ̂ be the function on the adelic orthogonal group of D̃ induced
by ρ and let ψ̂ be the function on the adelic orthogonal group of D̃ induced by
(y, y′) '→ ψ(y)ψ(y′). The function ψ̂ generates an irreducible representation space
of D̃×

A whose theta lifting to SL2(FA) is generated by f, and ρ̂ is a vector in the
theta lifting of this latter representation of SL2(FA), which by [25] coincides with
the original representation space generated by ψ̂ . Since both ρ̂, ψ̂ are invariant
under the same maximal compact subgroup of D̃×

A , the uniqueness of such a vector
implies that they must coincide up to proportionality. That ρ̂ is not zero follows
from the obvious fact that f by its construction can not be orthogonal to all the
theta series. !

Lemma 3.2. With the above notations let ϕ1, ϕ2 in A(D×
A , R×

A , 0) be Hecke
eigenforms with the same eigenvalue under the involutions w̃ p for the p | N with
associated newforms h1, h2 of weight 2 and level N . Let f be a Hilbert modular
form of weight 2 for the group SL2(oF ⊕ d) that corresponds in the way described
in Lemma 3.1 to the function ψ ∈ A(D̃×

A , R̃×
A ) for D̃ = D ⊗ F and R̃ being the

maximal order in R̃ containing R. Then the value of the period integral
∫

SL2(oF ⊕d)\H×H

(
Y (2)(ϕ1, ϕ2)

)
| 2 J (ι((z1, z2))) f ((z1, z2))dz1dz2(3.7)

is equal to

c2〈 f, f 〉
( ∑

i

ϕ1(yi )ψ(yi )
)( ∑

i

ϕ2(yi )ψ(yi )
)

,(3.8)

where we identify yi with yi ⊗ 1 ∈ D̃ and where c2 is some constant depending
only on N .
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In order to interpret the value obtained in (3.8) in the same way as in Section 2 as the
central critical value of an L-function, we review briefly the integral representation
of the L-function that one obtains when one replaces in a triple (h, f1, f2) of elliptic
cusp forms the pair ( f1, f2) by one Hilbert cusp form f for a real quadratic field.

For the moment, both the Hilbert cusp form f and the elliptic cusp form h can
be of arbitrary even weight k. Now we consider the Siegel type Eisenstein series
of weight k, defined on H3 by

Ek
3(W, s) =

∑

γ=
(

* *
C D

)
∈#3

0 (N )∞\#3
0 (N )

det(CW + D)−kdet(9(γ < W >)s)

Here and in the sequel we denote by G∞ the subgroup of G defined by “C = 0,”
where G is any group of symplectic matrices.

We restrict this Eisenstein series to W = ( τ 0
0 Z ) with τ ∈ H, Z ∈ H2 and fur-

thermore we consider then the modular embedding with respect to Z .
In this way we get a function E(τ, z1, z2, s), which behaves like a modular form

for τ and like a Hilbert modular form for (z1, z2) of weight k. We want to compute
the twofold integral

I ( f, h, s) :=
∫

SL2(oF ⊕d)\H2

∫

#0(N )\H

h(τ ) f (z1, z2)E(τ, z1, z2, s)dτ ∗dz∗1dz∗2

where dz∗ = yk−2dxdy for z = x + iy ∈ H.
This can be done in several ways: One can relate this integral to similar ones

in [26] or in [14] (both these works are in an adelic setting) or one can try to do it
along classical lines as in [13, 28, 9]. We sketch the latter approach here (for class
number one, h being a normalized newform of level N ).

The inner integration over τ (which can be done with Z ∈ H2 instead of the
embedded (z1, z2)) is the same as in the papers mentioned above, producing an
L-factor L2(h, 2s + 2k − 2) (with L2(, ) denoting the symmetric square L-
function) times a Klingen-type Eisenstein series E2,1(h, s), which is defined as
follows: We denote by C2,1 the maximal parabolic subgroup of Sp(2) for which
the last line is of the form (0, 0, 0, ∗) and we put C2,1(N ) = C2,1(Q) ∩ #2

0(N ).
Furthermore we define a function hs(Z ) on H2 by

hs(Z ) = h(z1)
(

det(Y )
y1

)s

,

where z1 = x1 + iy1 denotes the entry in the upper left corner of Z = X + iY ∈ H2.
Then we put

E2,1(h, s)(Z ) =
∑

γ ∈C2,1\#2
0 (N )

hs(Z ) |k γ
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To do the second integration, one needs information on certain cosets: This is the
only new ingredient entering the picture:

Lemma 3.3. A complete set of representatives for C2,1(N )\#2
0(N ) is given by

{d(M)J−1 ι̃0(γ )}

with γ running over SL2(oF ⊕ d)∞\SL2(oF ⊕ d), and M = ( ∗ ∗
u v ) running over

those elements of SL(2, Z)∞\SL(2, Z) with v ≡ 0(N ), where d denotes the stan-
dard embedding of GL(2) in Sp(2) given by d(M) = ( (M−1)t 0

0 M
).

This lemma is related to the double coset decomposition

C2,1(N )\#2
0(N )/ι̃0(SL2(oF ⊕ d))

and somewhat analogous to the coset decomposition in [28, p. 692]; we omit the
proof.

We may now do the usual unfolding to get
∫

SL2(oF⊕d)\H2

h(z1, z2) ˜E2,1(h, ∗, s)(z1, z2) dz∗1dz∗2(3.9)

=
∫

SL2(oF⊕d)∞\H2

∑

M=
(

* *
v u

)
h
(

(v, u)C
(

z1 0
0 z2

)
Ct

( v
u

))

× f (z1, z2)
(

Dy1 y4

(v + uω)2 y1 + (v + uω̄)2 y2

)s

dz∗1dz∗2.

Using the Fourier expansions of f and F ,

h(z) =
∞∑

n=1

a(n)e2π inz, f (z1, z2) =
∑

ν∈0F ,ν:0

A(ν)e2π i tr (ν·z)

one can (after some standard calculations) write the integral above as

γ (s)
∑

n

∑

∼\(u,v)

a(n)A(n(v + uω)2)n−s−2k+2 N (v + uω)−2s−2k+2

where we use the following equivalence relation: two pairs (u, v) and (u′, v ′) are
called equivalent iff v + uω and v ′ + u′ω are equal up to a unit from oF as a factor.

Assume now in addition that h is a normalized eigenfunction of all Hecke
operators; then we define the L-function L(h ⊗ f, s) as an Euler product over all
primes p with Euler factors (at least for p coprime to N )

L p(h ⊗ f, s) := L Asai
p

(
f, αp p−s)L Asai

p

(
f, βp p−s)
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where we use the Euler factors L Asai
p ( f, s) of the Asai-L-function attached to f

(see [1]) and αp and βp are the Satake-p-parameters attached to the eigenform
h (normalized to have absolute values p

k−1
2 ). We will write later L(h, f ; s) to

denote the shift of this L-function that is normalized to have functional equation
under s '→ 1 − s.

By standard calculation, we see that the integral above is, after multiplica-
tion by L2(h, 2s + 2k − 2), equal to the L-function L(h ⊗ f, s + 2k − 2) (up to
elementary factors; the condition v ≡ 0(N ) also creates some extra contribution
for p-Euler factors with p | N ). This calculation of course requires some formal
calculations similar to those given e.g. in [13].

Remark 3.4. If the class number H of F is different from one, then the orbit
structure is more complicated. One gets H different sets of representatives of the
type described in the lemma above (each one twisted by a matrix in SL2(F) mapping
a cusp into ∞). After unfolding, one gets then a Dirichlet series also involving
Fourier coefficients of f at all the H different cusps. If we assume that f is the
first component (i.e. the one corresponding to the principal ideal class) in a tuple
of H Hilbert modular forms such that the corresponding adelic modular form is
an eigenform of all Hecke operators, then it is possible (but quite unpleasant) to
transfer that Dirichlet series into the Euler product in question.

Now we return to the case of weight 2. We can compute the integral I ( f, h, s) at
s = 0 not only by unfolding as above but also by using the Siegel-Weil formula for
the Eisenstein series in the integrand. Then one gets in the same way as in [7] that
the square of the right hand side of (3.8) is (up to an explicit constant) the product
of the central critical values of the L-functions attached to the pairs h1, f and h2, f
as above:

Theorem 3.5. Let ϕ1, ϕ2, h1, h2, f, ψ be as in Lemma 3.2. Then the square of
the period integral

∫

SL2(oF⊕d)\H×H

(
Y (2)(ϕ1, ϕ2)

)
| 2 J (ι((z1, z2))) f ((z1, z2)) dz1dz2(3.10)

is equal to

c3

〈h1, h1〉〈h2, h2〉
L(h1, f ; 1/2)L(h2, f ; 1/2),(3.11)

where c3 is an explicitly computable nonzero number depending only on N and the
product L-function L(h, f ; s) is normalized to have its functional equation under
s '→ 1 − s.

In particular the period integral is nonzero if and only if the central critical
value of L(h1, f ; s)L(h2, f, s) is nonzero.
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CHAPTER 7

SUMS OF TWISTED GL(3) AUTOMORPHIC L-FUNCTIONS

By Daniel Bump, Solomon Friedberg, and Jeffrey Hoffstein

This paper is dedicated to Professor Joseph Shalika

Abstract. Let F be a number field and π be an automorphic representation on GLr (AF ). In this paper we
consider weighted sums of quadratic twists of the L-function for π ,

∑
d L(s, π, χd ) a(s, π, d) Nd−w ,

where χd is a quadratic character roughly attached to F(
√

d)/F . We analyze the properties which the
weights a(s, π, d) must satisfy if this is to satisfy a (certain, non-abelian) group of functional equations
in (s, w), and show that there is a unique family of weight functions with this property for r ≤ 3. We
describe these weights in detail when r = 3. As an application we give, for cuspidal π on GL3(AQ),
a new proof of the holomorphicity of the symmetric square L-function of π . We also prove that if π ′

is a cuspidal automorphic representation of GL(2) over Q then infinitely many quadratic twists of the
adjoint square L-function of π ′ are nonvanishing at the center of the critical strip.

0. Introduction. This paper concerns double Dirichlet series which may be
expressed as weighted sums of quadratic twists of L-functions. In [BFH], a class
of double Dirichlet series was proposed as follows. Let π be an automorphic rep-
resentation of GL(r, A), where A is the adele ring of the global field F , let χπ be
the central character of π , and let ω be an idèle class character of A×/F×. Roughly
speaking, and restricting ourselves to the quadratic case, the Dirichlet series of
interest is:

Z0(s, w) =
∑

d

L(s, π, χd) ω((d)) Nd−w(0.1)

where d runs through classes of F× modulo squares, Nd is the absolute norm, χd

is the quadratic character attached to F(
√

d), and L(s, π, χd) denotes the twisted
L-function of π . As is explained in [BFH], the expectation is that this function
of two variables will satisfy two functional equations generating a finite group if
r ≤ 3 and an infinite group if r ≥ 4.

Unfortunately (0.1) is only an approximation to the actual Dirichlet series
which we want. To explain why, let us sketch a method of studying such a se-
ries. First, each L-series being summed has a functional equation. Taking into
account the power of the conductor of χd which occurs in the epsilon-factor for
π ⊗ χd , one sees that there should be a functional equation for Z0(s, w) under the

1991 Mathematics Subject Classification. Primary 11F66, Secondary 11F70, 11M41, 11N75.
Key words ad phrases. Automorphic representation, double Dirichlet series, quadratic twist, twisted

L-function, mean value.
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transformation (s, w) → (1 − s, w + r (s − 1/2)). Second, writing L(s, π, χd) =∑
c(m) χd(m) Nm−s , where the sum is over a set of representatives for the nonzero

integral ideals of F , the series Z0(s, w) may be written

Z0(s, w) =
∑

d

∑

m

c(m) χd(m) ω((d)) Nm−s Nd−w .

Now if m is an integer, then quadratic reciprocity says roughly that χd(m) is equal to
χm(d). Thus after an interchange of summation, the inner sum is roughly of the form∑

d χm(d) ω((d)) Nd−w , and this is roughly a GL1 L-function in w . This suggests
that the series should have a second functional equation under the transformation
(s, w) → (s + w − 1/2, 1 − w)! If this can be made rigorous, then for r ≤ 3 it is not
hard to check that these two functional equations allow one to (meromorphically)
continue Z0(s, w) to a tube domain in C2 whose convex hull is all of C2. Putting in
a finite set of factors to cancel possible poles, one has a holomorphic function on
this tube domain, and hence by the continuation theorem for functions of several
complex variables which are holomorphic on a tube domain [Ho, Theorem 2.5.10],
a function which continues to C2.

Now we can see the issues to be addressed. Indeed, for the interchange to yield
a GL1 sum, one must sum over all d giving nonzero integral ideals of F , rather
than over a set of representatives for F×/(F×)2. This is problematic for several
reasons. First, it is natural to attach quadratic characters only to elements of F×,
not to ideals. In essence, issues of units and class number arise. In addition quadratic
reciprocity must be formulated precisely. Third, if one is to sum over all d, this
raises the question of how to get the desired functional equations. Even in the class-
number-one case, the conductor of χd involves only the square-free-part of d. So
if one is to sum over non-square-free d, one must include with the L-functions of
(0.1) a second “correction factor” a(s, π, d) which also has a functional equation
under s → 1 − s, this second functional equation giving the corresponding power
of the square-part of d. In a similar way there must be such factors in w , after
the interchange. Do such factors, behaving properly with respect to the functional
equations and allowing the interchange of summation, exist? Are they unique?

The first two obstructions above, involving class number and quadratic reci-
procity, have been resolved by Fisher and Friedberg [FF1, FF2]. We will describe
their results briefly below. Then in this paper we will study these last questions by
describing and analyzing the (essentially local) relations which must be satisfied
by the correction factors for this sketch of proof to go through. Using this analysis,
we will show that the last two questions may be answered in the affirmative for
r ≤ 3—the correction factors do exist, and they are unique.

A different approach to the existence of the correction factors has recently been
given by Fisher and Friedberg [FF1, FF2]; this approach does not consider the issue
of their uniqueness. Correction factors also arise in the work of Siegel [Si] (r = 1)
and Bump, Friedberg and Hoffstein [BFH] and Friedberg and Hoffstein [FH]
(r = 2).
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Let us now explain how to resolve the issues from algebraic number theory as
in the work of Fisher and Friedberg. Let O be the ring of integers of F , and let S
be a finite set of places containing all even places and all archimedean places, and
such that the ring of S-integers OS has class number 1. (In the application to double
Dirichlet series, we will suppose that π and ω are unramified outside S.) If T is
any set of places, let I (T ) denote the ideals of O prime to T . Let Div(F) be the
free abelian group generated by the places of F , and let C =

∑
v∈S nvv ∈ Div(F),

with nv = ordv (4) if v is even and nv = 1 otherwise. Let HC be the (narrow)
ray class group modulo C , and let E0 ⊆ I(S) be a set of representatives for a
basis for HC ⊗ Z/2Z as a vector space over F2. For each E0 ∈ E0 choose m E0 ∈
F× such that E0OS = m E0OS . Let E ⊆ I(S) be the full set of representatives
for HC ⊗ Z/2Z obtained by taking all possible products of distinct elements of
E0. If E =

∏
E0∈E0

E
nE0
0 (each nE0 = 0 or 1), then let m E =

∏
E0∈E0

m
nE0
E0

, so that
EOS = m EOS . Also, let ( a

∗ ) be the power residue symbol (Jacobi symbol) attached
to the extension F(

√
a) of F . Then one has

Proposition 0.1 (Fisher-Friedberg). Let I, I1 ∈ I(S) be coprime. Write
I = (m)EG2 with E ∈ E , m ≡ 1 mod C and G ∈ I (S), (G, I1) = 1. Then the
quadratic power residue symbol ( mm E

I1
) is defined. If I = (m ′)E ′G ′2 is another

such decomposition, then E ′ = E and ( m ′m E
I1

) = ( mm E
I1

).

In view of this Proposition, let us define (following Fisher and Friedberg) the
quadratic symbol ( I

I1
) by ( I

I1
) = ( mm E

I1
) and the quadratic character χI by χI (I1) =

( I
I1

). This depends on the choices above, but we suppress this from the notation. Let
SI denote the support of the conductor of χI . One may check that if I = I ′(I ′′)2,
then χI (I1) = χI ′(I1) whenever both are defined. This allows one to extend χI to a
character of all ideals of I(S ∪ SI ).

Proposition 0.2 (Fisher-Friedberg). Reciprocity – Let I , I1 ∈ I(S) be dis-
joint, and α(I, I1) = χI (I1)χI1 (I ). Then α(I, I1) depends only on the images of
I and I1 in HC ⊗ Z/2Z.

Using these results, let us reformulate our problem as follows. Let π be a
cuspidal automorphic representation of GLr (A) unramified outside S, and let ω be
an idèle class character also unramified outside S, where S is as above. Regard ω as
a character of I(S). For each d ∈ I (S), let L(s, π, χd) denote the partial L-function
for π ⊗ χd with the places in S ∪ Sd removed. Then we will study the sum

Z (s, w ; π, ω) =
∑

d

L(s, π, χd) a(s, π, d) ω(d) Nd−w ,(0.2)

the sum over d ∈ I (S), where a(s, π, d) is a correction factor to be determined.
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One may first ask how this object depends on the choices in the definition of
the quadratic characters χI above, indeed whether or not this series is natural. As
shown in Fisher-Friedberg, if one allows ω to vary over twists by characters of the
finite group HC ⊗ Z/2Z and similarly considers twists of π by such characters,
then the resulting series span a finite dimensional vector space which is independent
of all choices. Thus the problem is natural; moreover, one may establish the two
functional equations for different bases of this vector space.

For x ∈ HC ⊗ Z/2Z, let δx be the function of I(S) which projects to the char-
acteristic function of x . For the first functional equation, a basis for the vector space
above is given by

Z (s, w ; π, δxω) =
∑

[d]∈x

L(s, π, χd) a(s, π, d) ω(d) Nd−w ,(0.3)

where the sum is over d ∈ I(S) projecting to x . It suffices to establish a functional
equation for each such series. By the theory of GLr L-functions, each L-function
in (0.3) satisfies a functional equation of the form

L(s, π, χd) = ε(s, π ⊗ χd) L(1 − s, π̃ , χd)
∏

v∈S

L(1 − s, π̃v , χd,v )
L(s, πv , χd,v )

.(0.4)

Let E ∈ E represent x . Since d is in the class of x , we have d = ( f )EG2

where f ∈ F× satisfies f ≡ 1 mod C and where G ∈ I(S). Since f ≡ 1 mod C ,
f is a square in the local ring Ov for all v ∈ S. It follows that the local quadratic
characters χd,v = χ f m E ,v = χE,v for all v ∈ S. Write d = d0d2

1 with d0, d1 ∈ I(S),
d0 square-free. Recall that each epsilon-factor in (0.4) is of the form ABs−1/2 for
some A, B. To obtain a functional equation for (0.3), we are concerned with the
dependence of these quantities on d. It can be shown that the central value A for
the twisted epsilon-factor in (0.4) is χπ (d0) times a quantity depending only on
E . This may be established since outside S ∪ Sd the epsilon-factor is a product of
GL1 epsilon-factors, and these may be computed by comparing Gauss sums. The
remaining part of each epsilon factor, Bs−1/2, may also be studied by reducing to
GL1. One finds that the dependence of B on d is given by Nd−r (s−1/2)

0 . Hence
each L-function in (0.3) transforms under s → 1 − s by χπ (d0)Nd−r (s−1/2)

0 times
a factor which may be pulled out of the sum. To achieve a functional equation for
this sum, we must find a correction factor transforming by a suitable multiple of
d1. That is, we seek correction factors a satisfying the condition

a(s, π, d) = (Nd1)−2r (s−1/2) χπ (d2
1 ) a(1 − s, π̃ , d).(0.5)

The correction factor is to be given by a finite Dirichlet polynomial, i.e. a polynomial
in N p−s , and the primes p must divide d1. Equation (0.5) gives the first condition
on these polynomials.

For the second functional equation, it is sufficient to study Z (s, w ; πδx , ωδy)
with x, y ∈ HC ⊗ Z/2Z since (by the orthogonality relations) such series span the
vector space of double Dirichlet series. Let L(s, π, χd) =

∑
m c(m) χd(m) Nm−s

where the sum is now over m ∈ I(S). Then after interchange of summation, one
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arrives at

Z (s, w ; πδx , ωδy) =
∑

[m]∈x

∑

[d]∈y

c(m) χd(m) ω(d) a(s, π, d) Nm−s Nd−w .(0.6)

Since [m] ∈ x , [d] ∈ y, we have χd(m) = α(y, x) χm(d) by Proposition 0.2. Thus
the inner sum gives a sum of the GL1 L-functions L(w, ωρχm) (the characters
ρ summing to give the characteristic function δy), provided the correction factors
behave appropriately. More precisely, we seek to write (0.6) in the form

∑
L(w, ωρχm) b(w, ωρ, π, m) m−s,(0.7)

for certain (different) correction factors b(w, ωρ, π, m). (Here we have absorbed
the coefficients c(m) into the correction factors b(w, ωρ, π, m).) Once again, since
χm depends only on the square-free part of m, for this to be a sum of terms with
a functional equation we must impose conditions on the b(w, ωρ, π, m). If m =
m0m2

1 with m0, m1 ∈ I(S), m0 square-free, then we require

b(w, ωρ, π, m) = (Nm1)1−2w ω(m2
1) b

(
1 − w, ω−1ρ, π, m

)
.(0.8)

(Note that ρ2 = 1.) The correction factor b(w, ωρ, π, m) is also to be given by
a finite Dirichlet polynomial, this time in the primes dividing m1. Equation (0.8)
gives a condition on these polynomials.

In Section 1 we combine the two conditions (0.5), (0.8) and the relation among
the a’s, b’s, π , and ω necessary for the interchange of summation to work, and
analyze the resulting situation. We derive relations among the coefficients of the
polynomials which give the correction factors, and show that these lead to a (very
complicated) system of recursion relations upon the coefficients. This allows us to
establish the uniqueness of the correction factor for r ≤ 3. Then in Section 2 we
present a solution to the relations when r = 3.

In Section 3, we illustrate the utility of these double Dirichlet series by giving
an application to the estimation of sums of twisted GL3 L-functions. In this section
we restrict to F = Q and χ2

π = 1 for convenience. We first give details of the
continuation of Z (s, w ; π, ω) and describe the precise pole. As (0.7) suggests, when
ω2 = 1 there is a pole at w = 1 whose residue essentially gives the contribution from
the terms where m is a square. This residue is (up to bad prime factors) precisely
ζ (6s − 1) L(2s, π, ∨2), where the last factor is the symmetric square L-function
for π !

The analytic properties of the symmetric square L-function have already been
studied by the Langlands-Shahidi method (Langlands [L] and Shahidi [Sh]) and by
the Rankin-Selberg method (see Patterson and Piatetski-Shapiro [PP] and Bump
and Ginzburg [BG]). The present method seems fundamentally different from either
of these. We will prove:

Theorem 0.3. (i) Let f be an automorphic cuspidal representation of GL(3)
over Q whose central character has square 1. Let M be a finite set of primes
including 2, ∞, and the primes dividing the level of f . Let L M (s, f, ∨2) denote the
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symmetric square L-series with the Euler factors corresponding to primes dividing
M removed. Then ζ (3s − 1) L M (s, f, ∨2) is an analytic function of s for all s, with
the possible exception of s = 1, where a pole of order 1 can occur, and at s = 2/3
where a pole comes from the zeta factor.

(ii) Restrict to the case when L M (s, f, ∨2) has a pole of order 1 at s = 1. Let
d run through a sequence of discriminants such that d falls into a fixed quadratic
residue class mod p for every prime dividing M (mod8 if p = 2). Then there exist
infinitely many d in this sequence such that L(1/2, f, χd) 0= 0, where the L-series
referred to is the twist of the L-series of f by the character χd .

From this we deduce:

Theorem 0.4. Let π ′ be a cuspidal automorphic representation of GL(2) over
Q. Then there exist infinitely many quadratic characters χd as in Theorem 0.3
(ii) such that L(1/2, π ′, Ad2 ⊗ χd) 0= 0.

Indeed, we may apply Theorem 0.3 (ii) to the adjoint (Gelbart-Jacquet [GJ])
lift π of π ′ to GL(3). The symmetric square L-function of this is the Riemann
zeta function times a twist of the symmetric fourth power L-function of π ′. Now
the (twisted) symmetric fourth power L-function is automorphic on GL(5) by Kim
and Shahidi [KS], hence does not vanish at s = 1 by Jacquet and Shalika [JS1].
Therefore the symmetric square of π has a pole there and Theorem 0.3 is applicable.

Actually Theorem 0.3 (ii) is not more general than this special case. Indeed
Ginzburg, Rallis and Soudry [GRS] have shown that if the symmetric or exterior
square L-function of an automorphic form on GL(r ) has a pole, then the automor-
phic form is a classical lift. When r = 3, this means that in order for the symmetric
square L-function to have a pole, the automorphic cuspidal representation π of
GL(3) must be a quadratic twist of the adjoint (Gelbart-Jacquet [GJ]) lift of an
automorphic representation π ′ of GL(2).

In Theorem 3.8 we establish a somewhat more refined mean value result from
which Theorem 0.3 is derived. Another work which utilizes the results of this
paper to give estimates for sums of L-functions is Diaconu, Goldfeld and Hoffstein
[DGH].

Acknowledgments. The authors wish to warmly thank Adrian Diaconu, Benji
Fisher and Dorian Goldfeld for helpful conversations. We also wish to thank the
Institute for Advanced Study and the Banker’s Trust Company Foundation for
support.

1. The interchange of summation. Let π be an automorphic representation
of GLr (A) and ω be an idèle class character, both unramified outside S. Recall
that if d = d0d2

1 with d0 square free, then χd = χd0 . As above we write the partial
L-function L(s, π, χd) =

∑
m c(m) χd0 (m) Nm−s , where the sum is over m ∈ I(S)
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and we define χd0 (m) = 0 if d0 and m are not coprime. Suppose that the correction
factor a(s, π, d) is given by a Dirichlet polynomial Pd0,d1 (s) in the primes dividing
d1. Then

Z (s, w ; π, ω) =
∑

d = d0d2
1

d0 squarefree

∑

m

c(m) χd0 (m) Nm−s Pd0,d1 (s) ω(d) Nd−w .(1.1)

As in Section 0, we seek polynomials P and Q, the latter giving the correction
factors b(w, ω, π, m), such that

Z (s, w ; π, ω) =
∑

x,y

α(x, y)
∑

m=m0m2
1∈[x]

m0 squarefree

∑

d∈[y]

ω(d) χm0 (d) Nd−w Qm0,m1 (w) Nm−s .

(1.2)

Here the first sum is over x, y ∈ HC ⊗ Z/2Z. We shall call the equality of (1.1)
and (1.2) the basic identity. Denote the above quantity Z (s, w) for conciseness.

The degrees of the polynomials P, Q (if they exist) are determined by the
relations (0.5), (0.8) respectively. We introduce the notation

Pd0,d1 (s) =
∏

pα ||d1

(
1 + a(α)

d0,p N p−s + a(α)
d0,p2 N p−2rαs + · · · + a(α)

d0,p2rα N p−2rαs
)

,

Qm0,m1 (w) =
∏

pα ||m1

(
b(α)

m0,1 + ω(p) b(α)
m0,p N p−w + ω(p2) b(α)

m0,p2 N p−2w + · · ·

+ ω(p2α) b(α)
m0,p2α N p−2αw

)
.

The coefficients of P here depend on π but are independent of ω by hypothesis,
while those of Q depend on π, ω. (As we shall soon see, with this normalization
of Q the coefficients b(α)

m0,p j turn out to be independent of ω.) We normalize the
coefficients of P to begin with 1 as shown.

In this section we investigate the relations that the coefficients a(α)
d0,p j and b(α)

m0,p j

must satisfy if they are to give the basic identity.

Proposition 1.1. Let t0, u0, p ∈ I(S) be squarefree with p prime and t0, u0, p
pairwise coprime. Then the coefficients a(α)

d0,d1
and b(α)

m0,m1
must satisfy the following

relations for all e, f ≥ 0:

c(t0)
2e+1∑

k=0

c(pk) χu0 (p)k+1 a( f )
u0,p2e+1−k = b(e)

pt0,p2 f .(1.3)

c(t0) χp(t0) a( f )
u0 p,p2e+1 = χu0 (p) b(e)

t0 p,p2 f +1 .(1.4)

c(t0)

[
2e∑

k=0

c(pk) χu0 (p)k a( f )
u0,p2e−k − a( f −1)

u0 p,p2e

]

= b(e)
t0,p2 f .(1.5)
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(Here a(−1)
u0 p,p2e ≡ 0 by definition.)

c(t0) χp(t0)

[

a( f )
u0 p,p2e −

2e∑

k=0

c(pk) χu0 (p)k a( f )
u0,p2e−k

]

= b(e)
t0,p2 f +1 .(1.6)

In particular, for δ = 0, 1

b(e)
t0 pδ,p f = c(t0) χp(t0) f b(e)

pδ,p f

b(e)
t0 pδ,1 = c(t0 pδ+2e),

and for all m0 ∈ I(S) the coefficients b(e)
m0,p f are independent of ω.

Note that the relations (1.3)–(1.6) are also consistent with the equation

a( f )
u0 pδ,pe = χu0 (p)e a( f )

pδ,pe for δ = 0, 1.

Proof. We equate coefficients in the basic identity. Note that

α(ab, xy) = α(a, x)α(a, y)α(b, x)α(b, y).(1.7)

Fix a prime p.
First, consider the coefficient in Z (s, w) of

N p−(2e+1)s−2 f w Nt−s
0 Nu−w

0 (e, f ≥ 0).

In (1.1), this arises from summands with (d0, d1) = (u0, p f ). One must sum the
contributions for m = t0 pk with 0 ≤ k ≤ 2e + 1. In (1.2), this term arises when
(m0, m1) = (pt0, pe). Thus in (1.2), we must have (d, p) = 1 (since otherwise
χpt0 (d) = 0) so in fact d = u0. Comparing terms we obtain

c(t0) ω
(
u0 p2 f ) χu0 (t0)

2e+1∑

k=0

c(pk) χu0 (p)k a( f )
u0,p2e+1−k

= α(pt0, u0) ω
(
u0 p2 f ) χpt0 (u0) b(e)

pt0,p2 f .

Making use of Proposition 0.2, we have α(pt0, u0) χpt0 (u0) = χu0 (pt0). Canceling
the factor ω(u0 p2 f ) χu0 (t0) from both sides, one obtains equation (1.3).

Second, consider the coefficient of

N p(2e+1)s−(2 f +1)w Nt−s
0 Nu−w

0 (e, f ≥ 0).

In (1.1), this arises from summands with (d0, d1) = (u0 p, p f ). In (1.2), it arises
when (m0, m1) = (t0 p, pe). This time, we must have (m, p) = 1 and hence m = t0
in (1.1), and (d, p) = 1 so d = u0 in (1.2). The factor χu0 p(t0) appears in (1.1) and
the factor α(t0 p, u0)χt0 p(u0) = χu0 (t0 p) in (1.2). Canceling ω(u0 p2 f +1) χu0 (t0), the
relation obtained is simply (1.4). Later we will see that both sides of (1.4) are 0 for
r ≤ 3.
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Third, for the coefficients corresponding to an even power of N p−s , it is best
to multiply by a zeta factor in w first. Thus we consider the coefficient of

N p−2es−2 f w Nt−s
0 Nu−w

0 (e, f ≥ 0)

in
(
1 − χp(t0) ω(p) N p−w)

Z (s, w).

Substituting the expression for Z (s, w) from (1.1), we get contributions to this
coefficient when (d0, d1) = (u0, p f ) and when (d0, d1) = (u0 p, p f −1). For this
second term, one must have (m, p) = 1 so in that case m = t0. On the other hand,
substituting the expression from (1.2), one gets a contribution from (m0, m1) =
(t0, pe), and then the sum telescopes! (Here one makes use of (1.7).) Canceling
ω(u0 p2 f ) χu0 (t0), we arrive at the relation (1.5).

Fourth, consider the coefficient of

N p−2es−(2 f +1)w Nt−s
0 Nu−w

0 (e, f ≥ 0)

in (1 − χp(t0) ω(p) N p−w )Z (s, w). Once again, substituting in the two sums for
Z (s, w), the contributions in (1.1) arise from (d0, d1) = (u0 p, p f ) and (d0, d1) =
(u0, p f ). In the first of these one necessarily has m = t0. The contributions in
(1.2) arise from (m0, m1) = (t0, pe). Once again, this second sum telescopes. After
canceling ω(u0 p2 f +1) χu0 (t0), one obtains the relation (1.6). !

The relations of Proposition 1.1 completely determine the b’s from the a’s.
Surprisingly, they do more: they determine the a’s as well when r ≤ 3! Before
explaining this, let us record the relations on the coefficients of P, Q implied by
(0.5) and (0.8). These state that:

a(α)
d0,pi = χπ (p)2α N pi−rαã(α)

d0,p2rα−i , 0 ≤ i ≤ 2rα(1.8)

b(α)
m0,p j = N p j−α b(α)

m0,p2α− j , 0 ≤ j ≤ 2α.(1.9)

Here and below we let ã denote the family of coefficients associated with the
contragredient representation π̃ of π . We also let c̃ be defined by L(s, π̃ , χd) =∑

c̃(m) χd(m) Nm−s . (In the proof of (S2) below we assume that ã(α)
d0,pi = 0 implies

a(α)
d0,pi = 0. This is consistent with the formal equality of (1.1) and (1.2) for all π

which we are seeking.) Since ã(α)
d0,1 = 1 and b(α)

m0,1 = c(m0 p2α), we deduce that

a(α)
d0,p2rα = χπ (p)2α N prα, b(α)

n0,p2α = N pα c
(
m0 p2α

)
.(1.10)

We turn now to the relations which follow from Proposition 1.1.

Theorem 1.2. Let u0, p ∈ I(S) be squarefree with p prime and (p, u0) = 1.
Then the coefficients a(α)

d0,p j must satisfy the following relations, which completely
determine them if r ≤ 3.
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First, the coefficients are stable in the sense that:

(S1) a( f )
u0,pe = a( f ′)

u0,pe for f, f ′ ≥
⌊ e+1

2

⌋
.

(S2) a( f )
u0 p,p2e+1 = 0 for f > 0 and e ≥ 0, if r ≤ 3.

(S3) a( f )
u0 p,p2e = a( f +1)

u0 p,p2e for f ≥ e.

Second, the coefficients satisfy the relations:

(R1) a( f )
u0,p2e+1 = −

∑2e+1
k=1 c(pk) χu0 (p)k a( f )

u0,p2e+1−k for f > e.

(R2) a(e)
u0,p2e+1 =χu0 (p) N pe c(p2e+1)−

∑2e+1
k=1 c(pk) χu0 (p)k a(e)

u0,p2e+1−k for e ≥ 1.
(R3)

a( f )
u0,p2e+1 = N p2 f −e

2e+1∑

k=0

c(pk) χu0 (p)k a(e− f )
u0,p2e+1−k −

2e+1∑

k=1

c(pk) χu0 (p)k a( f )
u0,p2e+1−k

for f ≤ e < 2 f .
(R4) a( f )

u0,p2e = a( f −1)
u0 p,p2e −

∑2e
k=1 c(pk) χu0 (p)k a( f )

u0,p2e−k for f > e.

(R5) a(e)
u0,p2e = N pe c(p2e) + a(e−1)

u0 p,p2e −
∑2e

k=1 c(pk) χu0 (p)k a(e)
u0,p2e−k .

(R6)

a( f )
u0,p2e = a( f −1)

u0 p,p2e −
2e∑

k=1

c(pk) χu0 (p)k a( f )
u0,p2e−k

+ N p2 f −e
[ 2e∑

k=0

c(pk) χu0 (p)k a(e− f )
u0,p2e−k − a(e− f −1)

u0 p,p2e

]

for f ≤ e < 2 f .

(R7) a( f )
u0 p,p2e =

∑2e
k=0 c(pk) χu0 (p)k a( f )

u0,p2e−k for f ≥ e.
(R8)

a( f )
u0 p,p2e =

2e∑

k=0

c(pk) χu0 (p)k a( f )
u0,p2e−k

+ N p2 f +1−e
[

a(e− f −1)
u0 p,p2e −

2e∑

k=0

c(pk) χu0 (p)k a(e− f −1)
u0,p2e−k

]

for f < e < 2 f + 1.

Proof. In this proof, we use the relations of Proposition 1.1 with t0 = 1 and the
functional equation (1.9) extensively. The coefficients with even and odd indices
will be treated separately, since they satisfy separate relations per Proposition 1.1.

First let us obtain stability and also some of the a’s. Observe that b(e)
m0,p2 f = 0

for f > e (see equation (0.8) or (1.9)). Applying this to (1.5) we see that (since
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c(1) 0= 0)

a( f −1)
u0 p,p2e =

2e∑

k=0

c(pk) χu0 (p)k a( f )
u0,p2e−k

for f > e. Similarly, b(e)
1,p2 f +1 = 0 for f ≥ e, so (1.6) gives

a( f )
u0 p,p2e =

2e∑

k=0

c(pk) χu0 (p)k a( f )
u0,p2e−k .

Thus we conclude that relation (R7) holds and also that stability (S3) holds. We
also deduce that the sum

T (e, f ) =
2e∑

k=0

c(pk) χu0 (p)k a( f )
u0,p2e−k

satisfies T (e, f ) = T (e, f ′) for f, f ′ ≥ e.
Next we turn to relation (1.3). Once again the right side vanishes for f > e. For

example, when e = 0 we obtain a( f )
u0,p = −χu0 (p) c(p) for f > 0. We also deduce

that

To(e, f ) =
2e+1∑

k=0

c(pk) χu0 (p)k a( f )
u0,p2e+1−k

satisfies To(e, f ) = To(e, f ′) for f, f ′ > e.
We say that the coefficients a( f )

d0,pk are stable if they are independent of f for
f sufficiently large (depending on k). To establish this, alternating between To

and T , we obtain the stability of the a’s up to the top one in each sum. Since the
entire expression is stable, the top term must be too. For example, since T (1, f ) =
T (1, f ′) for f, f ′ ≥ 1, we conclude that a( f )

u0,p2 is stable for f ≥ 1. Then since
To(1, f ) = To(1, f ′) for f, f ′ > 1 we conclude that a( f )

u0,p3 is stable for f ≥ 2.
Continuing in this way, we obtain stability relation (S1).

Next, relation (1.4) implies that

a( f )
u0 p,p2e+1 = 0 f ≥ e,(1.11)

b(e)
p,p2 f +1 = 0 e ≥ r f.(1.12)

These quantities are then 0 for r ≤ 3. (This may be true in general but we do not
check it here.) Indeed, if r = 1 this is immediate from the above, as b(e)

p,p2 f +1 = 0 for
e ≥ f and for f ≥ e. For r ≥ 2, since b(e)

t0 p,p = 0 for e ≥ 0, the functional equation
(1.9) in the b’s implies that b(e)

t0 p,p2e−1 = 0 for e ≥ 0. By relation (1.4), a( f )
u0 p,p2e+1 = 0

for f = e − 1. Since a( f )
u0 p,p2e+1 = 0 for e ≤ f + 1, the functional equation (1.8) in

the a’s gives

a( f )
u0 p,p2e+1 = 0 for

2r f − (2e + 1) − 1
2

≤ f + 1.
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This last condition may be rewritten as f (r − 1) ≤ e + 2. Thus by relation (1.4)
once again,

b(e)
t0 p,p2 f +1 = 0 for 2 f + 1 ≤ 2

e + 2
r − 1

+ 1.

For r = 2, 3 this holds for 2 f + 1 ≤ e. By the functional equation (1.9) it follows
that all b(e)

t0 p,p2 f +1 = 0, hence by (1.4), all a( f )
u0 p,p2e+1 = 0. This establishes stability

condition (S2).
We now deduce the relations for the remaining relations (R) on the a’s.
First, relation (R1) is obtained from relation (1.3) since the right hand side is

0 when f > e. Similarly, relation (R2) is obtained from relation (1.3) with e = f ;
using b(e)

p,p2e = N pe c(p2e+1) (see (1.10)). As for (R3), we note that (1.9) gives

b(e)
p,p2 f = N p2 f −e b(e)

p,p2e−2 f .

Thus (1.3) gives

2e+1∑

k=0

c(pk) χu0 (p)k a( f )
u0,p2e+1−k = N p2 f −e

2e+1∑

k=0

c(pk) χu0 (p)k a(e− f )
u0,p2e+1−k .

Moving the left hand summands with k ≥ 1 to the right hand side, relation (R3)
follows. Note that the relation only determines a(e)

u0,p2e+1 if 0 ≤ e − f < f or f ≤
e < 2 f . (If e − f < 0 the right hand side vanishes and we get relation (R1).)

Similarly we obtain the relations for a( f )
u0,p2e from relation (1.5) above. If f > e

the right side of (1.5) vanishes. Solving for the a( f )
u0,p2e gives precisely (R4). If

e = f , the right side of (1.5) equals N pe c(p2e) and proceeding as above we get
(R5). Finally to get (R6), we use the functional equation

b(e)
1,p2 f = N p2 f −e b(e)

1,p2(e− f ) .

Thus (1.5) gives precisely (R6) when one uses this, equating the expressions in
the a’s corresponding to the above equation. Note that one gets information only
when e − f < f and the indexing with e − f ≤ 0 is already captured in (R4), (R5)
above.

Lastly, one determines the coefficients a( f )
u0 p,p2e from equation (1.6). If f ≥ e

the right side of (1.6) equals zero, which immediately gives (R7), as already noted
above. To get (R8), one may use the functional equation

b(e)
1,p2 f +1 = N p2 f −e+1 b(e)

1,p2(e− f −1)+1 .

Substituting the expressions which, by (1.6), correspond to each side of this equa-
tion and solving, one arrives at (R8). One needs 0 ≤ e − f − 1 < f to extract
information from this relation.

This concludes the proof of Theorem 1.2. !

Note that none of these arguments above uses a specific value for the rank r ,
except for our treatment of the vanishing of a( f )

u0 p,p2e+1 and b(e)
t0 p,p2 f +1 . However the

relations given do not determine all other coefficients when r ≥ 4. In contrast, in
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the case r ≤ 3, the relations in Theorem 1.2 overdetermine the coefficients. It is not
hard to check that if there is a set of solutions to the relations given in Proposition
1.1 and Theorem 1.2, then the basic identity does indeed hold.

2. The coefficients for r = 3.

Theorem 2.1. The combinatorial problem of Section 1 has a unique solution
when r = 3.

Uniqueness has already been noted. To prove existence, we describe the coefficients
explicitly.

Fix a prime p and squarefree u0 ∈ I(S) prime to p. Let α, β and γ be the
Langlands parameters of πp. Thus c(pk) is the k-th complete symmetric polynomial
in α, β and γ . More generally, let c(pk1, pk2 ) be the Schur polynomial

c(pk1, pk2 ) =

∣∣∣∣∣∣

αk1+k2+2 βk1+k2+2 γ k1+k2+2

αk2+1 βk2+1 γ k2+1

1 1 1

∣∣∣∣∣∣
∣∣∣∣∣∣

α2 β2 γ 2

α β γ

1 1 1

∣∣∣∣∣∣

.

Then c(pk) = c(pk, 1), χπ (p) = αβγ and c̃(pk) = χπ (p)−k c(1, pk). We will also
use the notation

[k1, k2] = χu0 (pk1+2k2 ) c(pk1, pk2 ).

We sometimes omit the comma if it is obvious, so [10] = [1, 0]. Each coefficient
[k1, k2] is the character of an irreducible representation of GL(3, C) evaluated
at the semisimple conjugacy class with eigenvalues α′ = χu0 (p)α, β ′ = χu0 (p)β,
γ ′ = χu0 (p)γ . We define [n, m] = 0 if either n or m is negative.

If λ = 1 or p, we want to compute a(θ )
λu0,pk , where 0 ≤ k ≤ 6θ . The formulas

are simpler when λ = p. The general formula in this case is:

a(θ )
pu0,p2k =

∑

r≥0

N pk+r
( ∑

r1,r2≥0
r1+2r2≤k−3r

2r1+r2≤3θ−k−3r
r1−r2≡k(mod3)

χπ (p)(2/3)(k−r1−2r2)[2r1, 2r2]
)

.(2.1)

Though the sum over r in (2.1) is infinite, almost all terms are zero since the
inner summation conditions are empty for r sufficiently large. The odd coefficients
a(θ )

pu0,p2k+1 vanish as noted in Section 2. From formula (2.1) it is not difficult to check
the functional equation (1.8). One may verify the other relations such as (R1–R6)
in Theorem 1.2 using these formulas and Pieri’s formula in the form

[t, 0][r1, r2] =
∑

m,n≥0
n≤r1

0≤t−m−n≤r2

[r1 + m − n, r2 + 2n + m − t]
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and its special case [r1, r2] = [r1, 0][0, r2] − [r1 − 1, 0][0, r2 − 1].
The formula for a(θ )

u0,p2k is given by:

a(θ )
u0,p2k =

∞∑

r=1

N pk+r−1
∑

r1+2r2≤2k−6r+6
2r1+r2≤6θ−2k−6r+6

r1≡r2≡0 (mod 2)
r1−r2≡2k (mod 3)

χπ (p)(1/3)(2k−r1−2r2)[r1, r2]

+
∞∑

r=0

N pk+r−1
∑

r1+2r2≤2k−6r
2r1+r2≤6θ−2k−6r−3
r1≡0,r2≡1 (mod 2)
r1−r2≡2k (mod 3)

χπ (p)(1/3)(2k−r1−2r2)[r1, r2]

(2.2)

+
∞∑

r=0

N pk+r−1
∑

r1+2r2≤2k−6r−3
2r1+r2≤6θ−2k−6r

r1≡1,r2≡0 (mod 2)
r1−r2≡2k (mod 3)

χπ (p)(1/3)(2k−r1−2r2)[r1, r2]

+
∞∑

r=0

N pk+r−1
∑

r1+2r2≤2k−6r−3
2r1+r2≤6θ−2k−6r−3

r1≡r2≡1 (mod 2)
r1−r2≡2k (mod 3)

χπ (p)(1/3)(2k−r1−2r2)[r1, r2].

Once again, though the sums in (2.2) are infinite, almost all terms are zero since
each of the four inner summation conditions is empty for r sufficiently large. The
formula for a(θ )

u0,p2k+1 is given by:

a(θ )
u0,p2k+1 = −

( ∞∑

r=0

N pk+r−1
∑

r1+2r2≤2k−6r−2
2r1+r2≤6θ−2k−6r−4

r1≡r2≡0 (mod 2)
r1−r2≡2k+1 (mod 3)

χπ (p)(1/3)(2k+1−r1−2r2)[r1, r2]

+
∞∑

r=1

N pk+r−1
∑

r1+2r2≤2k−6r+4
2r1+r2≤6θ−2k−6r+5
r1≡0,r2≡1 (mod 2)

r1−r2≡2k+1 (mod 3)

χπ (p)(1/3)(2k+1−r1−2r2)[r1, r2]

(2.3)

+
∞∑

r=1

N pk+r−1
∑

r1+2r2≤2k−6r+7
2r1+r2≤6θ−2k−6r+2
r1≡1,r2≡0 (mod 2)

r1−r2≡2k+1 (mod 3)

χπ (p)(1/3)(2k+1−r1−2r2)[r1, r2]

+
∞∑

r=1

N pk+r−1
∑

r1+2r2≤2k−6r+7
2r1+r2≤6θ−2k−6r+5

r1≡r2≡1 (mod 2)
r1−r2≡2k+1 (mod 3)

χπ (p)(1/3)(2k+1−r1−2r2)[r1, r2]
)

.
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The formulas for the b’s are simpler than those for the a’s. We have, for k even,

b(θ )
p,pk =

min(k/2,2θ−3k/2)∑

j=−k/2

∑

0≤r2≤min( k
2 −| j |,θ− k

2 −|k+ j−θ |)
r2≡ j−k/2 (mod 2)

N pk+ j

× 1
2 min

(
k
2

− | j | − r2 + 2, θ − k
2

− |k + j − θ | − r2 + 2,

(2.4)

− 3k
2

− 3 j + 2θ + 2 − r2

)

×χπ (p)(k/2)+ j−r2

[
2θ − 3k

2
− 3 j − r2 + 1, 2r2

]
,

while b(θ )
p,pk = 0 if k is odd. Also if k is even:

b(θ )
1,pk =

min(k/2,2θ−3k/2)∑

j=−k/2

∑

0≤r2≤min( k
2 −| j |,θ− k

2 −|k+ j−θ |)
r2≡ j−k/2 (mod 2)

N pk+ j

× 1
2 min

(
k
2

− | j | − r2 + 2, θ − k
2

− |k + j − θ | − r2 + 2,

(2.5)

−3k
2

− 3 j + 2θ + 2 − r2

)

×χπ (p)(k/2)+ j−r2

[
2θ − 3k

2
− 3 j − r2, 2r2

]

If k is odd:

b(θ )
1,pk = −

min( k−1
2 ,2θ− 3k+1

2 )∑

j=− k−1
2

∑

0≤r2≤min( k−1
2 −| j |,θ− k+1

2 −|k+ j−θ |)
r2≡ j−(k−1)/2 (mod 2)

N pk−1+ j

× 1
2 min

(
k − 1

2
− | j | − r2 + 2, θ − k + 1

2
− |k + j − θ | − r2

(2.6)

+ 2, 2θ − 3(k − 1)
2

− 3 j − r2

)

× χπ (p)(
k−1

2 )+ j−r2

[
2θ − 3(k − 1)

2
− 3 j − r2, 2r2

]
.

Next we offer some remarks about the stable a-coefficients. Let F(k) be the k-th
symmetric power of the symmetric square character [2, 0]. This is a homogeneous
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polynomial of degree 2k in α′, β ′ and γ ′ given by the formula

F(k) =
∑

r1+2r2≤k
r1+2r2≡k (mod 3)

[2r1, 2r2].

Define F(k) = 0 if k < 0. Using (S1)–(S3) the stable coefficients may be defined
by astab

λ,pk = a(θ )
λ,pk whenever θ ≥ k/2. Then one may check that:

astab
u0 p,p2k = N pk F(k) + N pk+1 χπ (p)2 F(k − 3)

+N pk+2 χπ (p)4 F(k − 6) + · · ·(2.7)

astab
u0,p2k = astab

u0 p,p2k + [0, 1]astab
u0 p,p2k−2,

astab
u0,p2k+1 = −

(
[1, 0]astab

u0,p2k + χπ (p) astab
u0 p,p2k−2

)
.

Introducing a topic to be developed further in the next section, we observe now
that the symmetric square L-function appears as a residue of the double Dirichlet
series, and one can see its functional equation this way. Indeed, the group of func-
tional equations is generated by

(s, w) 1→
(
s + w − 1

2 , 1 − w
)
, (s, w) 1→

(
1 − s, w + 3s − 3

2

)
.

One element of this dihedral group of order twelve is:

(s, w) 1→
( 3

2 − s − w, w
)
,

so when taking the residue at w = 1, we obtain a Dirichlet series having a functional
equation under s → 1

2 − s. Now

2θ∑

t=0

N p−t b(θ )
1,pt = F(θ ) + N p F(θ − 3) + N p2 F(θ − 6) + . . . .(2.8)

The significance of (2.8) is that this Dirichlet series is

L(2s, f, ∨2) ζ (6s − 1).

This follows from (2.7) since

N pθ
2θ∑

t=0

N p−t b(θ )
1,pt = astab

p,p2θ .

We have also investigated the local matters reported on here for r = 4. Globally
and locally this is a fundamentally different situation, for in that case the group of
functional equations is infinite. We find that there the local combinatorial problem,
discussed above for r = 3, does have a solution which is almost but not quite unique.
In the Dirichlet polynomial P the middle coefficient a(α)

1,p4α is not determined and
can be chosen freely—there will still be a solution to the combinatorial problem
of Section 1. The residue will be the symmetric square times a Dirichlet series
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with a natural boundary. Nevertheless computer computations suggest that there
might be a choice which makes this Dirichlet series as simple as possible. Let
[n1, n2, n3] denote the L-group character with highest weight

∑
ni-i in terms of

the fundamental dominant weights -i . Assuming for simplicity that the central
character χπ is trivial, this preferred choice would seem to be:

a(1)
1,p4 = [0, 2, 0]N p2 + [1, 0, 1]N p + 1,

a(2)
1,p8 = N p4([2, 0, 2] + [0, 4, 0] + 1) + N p3([0, 1, 2] + [1, 0, 1] + [1, 2, 1]

+ [2, 1, 0]) + N p2[0, 2, 0].

If we make these choices then the residue is a series

∑

α

Z [α] N p−2αs,

where in terms of the symmetric square [2, 0, 0] we have:

Z [1] = [2, 0.0],

Z [2] = ∨2([2, 0, 0]),

Z [3] = ∨3([2, 0, 0]) + [0, 0, 2] N p,

Z [4] = ∨4([2, 0, 0]) + [2, 0, 2] N p + N p2,

Z [5] = ∨5([2, 0, 0]) + ([4, 0, 2] + [0, 2, 2] − [0, 1, 0]) N p + 2[2, 0.0] N p2.

For different choices of coefficients these formulae would be considerably more
complicated.

3. An application to automorphic forms on GL(3). In this section our
objective will be to illustrate the technique of multiple Dirichlet series in the par-
ticular case of automorphic L-series on GL(3) defined over Q. We change slightly
the notation from Sections 0–2 in order to state our results in a way which closely
resembles the classical GL(2) theory.

Let f be an automorphic cusp form on GL(3) over Q of level N corresponding
to the automorphic representation π . All L-series in this section will have the
archimedean factor removed (we shall deal with this factor explicitly and separately
below). Assume that f is an eigenfunction of all the Hecke operators. Let S be a
finite set of primes including 2 and the primes dividing N and let M =

∏
p∈S p. As

remarked before, the L-series associated to f has the form

L(s, f ) =
∞∑

1

c(m)
ms



P1: GIG

PB440-07 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 12:54

d. bump, s. friedberg, and j. hoffstein148

for certain generalized Fourier coefficients c(m), and decomposes into the Euler
product

L(s, f ) =
∏

p

(
1 − αp p−s)−1(1 − βp p−s)−1(1 − γp p−s)−1

,(3.1)

the product being over all primes p of Q.
It is well known that L(s, f ) possesses a functional equation:

N s/2G f (s)L(s, f ) = ε f N (1−s)/2G f (1 − s)L(1 − s, f̃ ),(3.2)

where f̃ denotes the contragredient of f and G f is a product of gamma factors
depending on f .

If f is twisted by a character χ of conductor D the associated L-series becomes

L(s, f, χ )

=
∏

p

(
1 − χ (p)αp p−s

)−1(1 − χ (p)βp p−s
)−1(1 − χ (p)γp p−s

)−1
,

(3.3)

and the functional equation is given by

(D3 N )s/2G f,χ (s)L(s, f, χ )

= ε f τ (χ )3ψN (D)(D3 N )(1−s)/2G f,χ (1 − s)L(1 − s, f̃ , χ ).
(3.4)

Here the gamma factors have an additive shift that depends on the sign of χ (−1),
ψN is the Dirichlet character associated to the idèle class character χπ , and τ (χ ) is
the Gauss sum associated to χ normalized to have absolute value equal to 1. This
is simply (0.4) restated in classical language. In this section we will also assume
that ψN is quadratic or trivial of conductor dividing N (this assumption simplifies
our work but is not essential for it).

In what follows we will not need a very explicit description of G f,χ but we will
find the following upper bound convenient. For σ1 > σ2 and t real it follows from
Stirling’s formula that for large |t |, independent of χ ,

|G f,χ (σ1 + i t)/G f,χ (σ2 − i t)| << (|t | + 1)3(σ1−σ2)/2.(3.5)

Here the implied constant depends only on the eigenvalues of f .
When all finite primes are included in the product (3.1) the functional equation

(3.2) has its optimal form. However, it is often convenient to omit factors corre-
sponding to “bad” primes, for example 2 and those dividing the level N . For M, S as
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above we denote the L-series with Euler factors corresponding to primes dividing
M removed as follows:

L M (s, f, χ )

=
∏

p/∈S

(
1 − χ (p)αp p−s)−1(1 − χ (p)βp p−s)−1(1 − χ (p)γp p−s)−1

(3.6)

= L(s, f, χ )
∏

p∈S

(
1 − χ (p)αp p−s)(1 − χ (p)βp p−s)(1 − χ (p)γp p−s).

A particularly interesting class of twists are the quadratic characters described
by χd(∗) = ( d

∗ ), where d is a squarefree nonzero integer and χd is the real character
associated to the quadratic field Q(

√
d). We will assume in the following that the

character ω that we twist by is quadratic.
When twisted by χd , the L-series L(s, f, χd) will have a functional equation of

the form (3.4) when χd is a primitive character. This corresponds to the case where
d is the squarefree part of a fundamental discriminant. In the preceding sections,
it was noted that when d is not squarefree, it is possible to complete L(s, f, χd)
by multiplying by a certain Dirichlet polynomial in such a way that the resulting
product has a functional equation of precisely the same form (3.4), with D replaced
by |d| or |4d|.

Our object will be to obtain the analytic continuation in s, w , and an estimate for
the growth in vertical strips w = σ + i t , for fixed σ and s, of the following double
Dirichlet series. Let l1, l2 > 0, l1, l2|M and a1, a2 ∈ {1, −1} and let χa1l1, χa2l2 be
the quadratic characters corresponding to a1l1, a2l2 as defined above. For l1, l2 >

0, l1, l2|M and a1, a2 ∈ {1, −1} define

Z M (s, w ; χa2l2, χa1l1 ) =
∑

(d,M)=1

L M (s, f, χd0χa1l1 )χa2l2 (d0)Pa1l1d0,d1 (s)
dw

,(3.7)

where we sum over d > 0 and use the decomposition d = d0d2
1 , with d0 > 0 square-

free. In the notation of Section 1, Z M (s, w ; χa2l2, χa1l1 ) = Z (s, w ; π, ω). Here π

corresponds to f ⊗ χa1l1 and χa2l2 replaces ω.
Proceeding as in [DGH], the following proposition will provide a useful way of

collecting the properties of Z M (s, w ; χa2l2, χa1l1 ). For a positive integer M, define

Div(M) =
{

a · l
∣∣∣ a = ±1, 1 ≤ l, l|M

}
,

which has cardinality 2d(M) = 2
∑

d|M 1. Let
→
ZM, f (s, w ; χa2l2, χDiv(M)) denote the

2d(M) by 1 column vector whose j th entry is Z M (s, w ; χa2l2, χ
( j)), where χ ( j)( j =

1, 2, . . . , 2d(M)) ranges over the characters χa1l1 with a1 = ±1, 1 ≤ l1, l1|M.

Then, we will prove
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Proposition 3.1. There exists a 2d(M) by 2d(M) matrix 1(a2l2)(w) such that
for any fixed w, w 0= 1, and for any s with sufficiently large real part (depending
on w)

∏

p|(M/ l2)

(
1 − p−2+2w)

· →
ZM, f (s, w ; χa2l2, χDiv(M))

= 1(a2l2)(w)
→
ZM, f (s + w − 1/2, 1 − w ; χa2l2, χDiv(M)).

The entries of 1(a2l2)(w), denoted by 1
(a2l2)
i, j (w), are meromorphic functions in C.

Also, the only possible poles of the 1
(a2l2)
i, j (w) are canceled by trivial zeros of the

L-series appearing in the numerator of
→
ZM, f (s + w − 1/2, 1 − w ; χa2l2, χDiv(M)).

Proof. By the basic identity (1.1), (1.2), writing n = n0n2
1, with squarefree

n0 > 0, we have

Z M (s, w ; χa2l2, χa1l1 ) =
∑

(n,M)=1

L M (w, χ̃n0χa2l2 )χa1l1 (n0)c
(
n0n2

1

)
Q(a2l2)

n0,n1
(w)

ns
.

(3.8)

Here χ̃n0 denotes the quadratic character (∗/n0). Now

L M (w, χ̃n0χa2l2 ) = L(w, χ̃n0χa2l2 ) ·
∏

p|M

(
1 − χ̃n0χa2l2 (p)p−w)

,(3.9)

where L(w, χ̃n0χa2l2 ) satisfies the functional equation

Gε(w)(n0l2 Da2l2 )
w/2L(w, χ̃n0χa2l2 )

= Gε(1 − w)(n0l2 Da2l2 )
(1−w)/2L(1 − w, χ̃n0χa2l2 ).

(3.10)

Here ε = χ̃n0χa2l2 (−1),

Gε(w) =
{

π−w/22(w/2) if ε = 1

π−(w+1)/22((w + 1)/2) if ε = −1,
(3.11)

and

Da2l2 =
{

1 if a2l2 ≡ 1 (mod 4)

4 otherwise.
(3.12)
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Combining this with the functional equation for Q implied by (0.8), we obtain

Z M (s, w ; χa2l2, χa1l1 )

=
∑

a3=1,−1

∑

(n,M)=1, n≡a3 (4)

Gε(a3a2l2)(1 − w)(l2 Da2l2 )
1/2−w

Gε(a3a2l2)(w)ns+w−1/2

×χa1l1 (n0)L M (1− w, χ̃n0χa2l2 )c(n0n2
1)Q(a2l2)

n0,n1
(1 − w) ·

∏

p|(M/ l2)

(
1 − χ̃n0χa2l2 (p)p−w)

×
∏

p|(M/ l2)

(
1 − χ̃n0χa2l2 (p)p−1+w)−1

.

Here ε(a) denotes the sign of a. Note that we are leaving out terms in the product
where p|l2 as the character vanishes here.

Multiplying by
∏

p|(M/ l2)(1 − p−2+2w ), reorganizing, and proceeding exactly
as in the proof of Proposition 4.2 in [DGH] we obtain (in the case of a2l2 ≡ 1
(mod 4))

∏

p|(M/ l2)

(
1 − p−2+2w)

· Z M (s, w ; χa2l2, χa1l1 )

= 1
2

· l1/2−w
2 ·

∑

l3,l4|(M/ l2)

µ(l3)χa2l2 (l3l4)l−w
3 l−1+w

4

∑

a3=1,−1

Gε(a3a2l2)(1 − w)
Gε(a3a2l2)(w)

(3.13)

×
(
Z M (s + w − 1/2, 1 − w ; χa2l2, χa1l1l3l4 )

+ a3 Z M (s + w − 1/2, 1 − w ; χa2l2, χ−a1l1l3l4 )
)
.

In the case a2l2 ≡ −1, 2 (mod 4), just the behavior at the finite place 2
changes. The observation concerning the poles of 1

(a2l2)
i, j (w) follows from the fact

that the only source of possible poles on the right hand side of (3.13) are the
gamma factors Gε(a3a2l2)(1 − w). These, however, are canceled by trivial zeros of L
series.

This completes the proof of Proposition 3.1. !

The function Z M (s, w ; χa2l2, χa1l1 ) defined in (3.7) also possesses a functional
equation as s → 1 − s. Let d(M) be as before, and let

→
ZM, f (s, w ; χDiv(M), χa1l1 )

denote the 2d(M) by 1 column vector whose j th entry is Z M (s, w ; χ ( j), χa1l1 ), where
χ ( j) ( j = 1, 2, . . . , 2d(M)) ranges over the characters χa2l2 with a2 = ±1, 1 ≤
l2, l2|M.

Then we have the following.
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Proposition 3.2. There exists a 2d(M) by 2d(M) matrix 3(a1l1)(s) such that
for any fixed s, s 0= 1, and for any w with sufficiently large real part (depending
on s)

→
ZM, f (s, w ; χDiv(M), χa1l1 ) ·

∏

p|(M/ l1)

(
1 − α̃2

p p−2+2s)(1 − β̃2
p p−2+2s)(1 − γ̃ 2

p p−2+2s)

= 3 (a1l1)(s)
→
ZM, f̃ (1 − s, w + 3s − 3/2; χDiv(M), χa1l1 ).

The entries of 3(a1l1)(s), denoted by 3
(a1l1)
i, j (s), are meromorphic functions in C.

The only possible poles of 3
(a1l1)
i, j (s) are canceled by trivial zeros of the L-series

occurring in the numerator of
→
ZM, f̃ (1 − s, w + 3s − 3/2; χDiv(M), χa1l1 ).

Proof. First, write

L M (s, f, χd0χa1l1 ) = L(s, f, χd0χa1l1 )(3.14)

·
∏

p|(M/ l1)

(
1 − αpχd0χa1l1 (p)p−s)(1 − βpχd0χa1l1 (p)p−s)(1 − γpχd0χa1l1 (p)p−s)

= L(s, f, χd0χa1l1 )

·
∑

lα |(M/ l1)

µ(lα)χa1d0l1 (lα)l−s
α

∏

p|lα
αp

·
∑

lβ |(M/ l1)

µ(lβ)χa1d0l1 (lβ)l−s
β

∏

p|lβ
βp

∑

lγ |(M/ l1)

µ(lγ )χa1d0l1 (lγ )l−s
γ

∏

p|lγ
γp.

By (3.4)

L(s, f, χd0χa1l1 )

= ε f ψN (a1d0l1)((d0l1 Da1d0l1 )
3 N )(1/2−s) G f,ε (1−s)

G f,ε (s) L(1 − s, f̃ , χd0χa1l1 ),
(3.15)

where G f,ε is a product of gamma factors depending only on f and on the sign of
a1d0l1, and Da1d0l1 is given by (3.12).

On the other side of the functional equation,

L(1 − s, f̃ , χa1d0l1 ) = L M (1 − s, f̃ , χa1d0l1 )
∏

p|(M/ l1)

(
1 − α̃pχa1d0l1 (p)p−1+s)−1(1 − β̃pχa1d0l1 (p)p−1+s)−1(1 − γ̃pχa1d0l1 (p)p−1+s)−1

,
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so

L(1 − s, f̃ , χa1d0l1 )
∏

p|(M/ l1)

(
1 − α̃2

p p−2+2s)(1 − β̃2
p p−2+2s)(1 − γ̃ 2

p p−2+2s)

= L M (1 − s, f̃ , χa1d0l1 )

·
∏

p|(M/ l1)

(
1 + α̃pχa1d0l1 (p)p−1+s)(1 + β̃pχa1d0l1 (p)p−1+s)(1 + γ̃pχa1d0l1 (p)p−1+s)

= L M (1 − s, f̃ , χa1d0l1 )
∑

lα̃ |(M/ l1)

χa1d0l1 (lα̃)l−1+s
α̃

∏

p|lα̃
α̃p

·
∑

lβ̃ |(M/ l1)

χa1d0l1 (lβ̃)l−1+s
β̃

∏

p|lβ̃

β̃p

∑

lγ̃ |(M/ l1)

χa1d0l1 (lγ̃ )l−1+s
γ̃

∏

p|lγ̃
γ̃p.

Combining the above with (3.14) and (3.15) we obtain

(3.16)

Z M (s, w ; χa2l2, χa1l1 )
∏

p|(M/ l1)

(
1 − α̃2

p p−2+2s)(1 − β̃2
p p−2+2s)(1 − γ̃ 2

p p−2+2s)

=
∑

(d,M)=1

ε f ψN (a1d0l1)((l1 Da1d0l1 )
3 N )(1/2−s) G f,ε(1 − s)

G f,ε(s)
· L M (1 − s, f̃ , χd0a1l1 )

dw+3s−3/2

·P (a1l1)
d0,d1

(1 − s)χa2l2 (d0)
∑

lα |(M/ l1)

µ(lα)χa1d0l1 (lα)l−s
α

∏

p|lα
αp

·
∑

lβ |(M/ l1)

µ(lβ)χa1d0l1 (lβ)l−s
β

∏

p|lβ
βp

∑

lγ |(M/ l1)

µ(lγ )χa1d0l1 (lγ )l−s
γ

∏

p|lγ
γp

·
∑

lα̃ |(M/ l1)

χa1d0l1 (lα̃)l−1+s
α̃

∏

p|lα̃
α̃p

·
∑

lβ̃ |(M/ l1)

χa1d0l1 (lβ̃)l−1+s
β̃

∏

p|lβ̃

β̃p

∑

lγ̃ |(M/ l1)

χa1d0l1 (lγ̃ )l−1+s
γ̃

∏

p|lγ̃
γ̃p.

This decomposes into a linear combination of the functions Z̃ M (1 − s, w + 3s −
3/2; χ∗, χa1l1 ) where the character χ∗ takes one of the two forms

ψNχlαlβ lγ lα̃lβ̃ lγ̃ χa2l2, ψNχ−1χlαlβ lγ lα̃lβ̃ lγ̃ χa2l2 .

Here we have denoted by Z̃ M (s, w ; χα2l2, χα1l1 ), the double Dirichlet series formed
with f̃ rather than f . The result then follows as in the previous proposition and
as in [DGH] and we omit the precise, rather complicated, expression for 3 (a1l1)(s).
This completes the proof of Proposition 3.2. !

We now continue the analytic continuation of Z M (s, w ; χα2l2, χα1l1 ). Our ap-
proach will follow a parallel route to that of [DGH], differing only in some details
caused by the fact that the Ramanujan conjecture is not known for automorphic
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forms on GL(3). We refer to [DGH] for background and definitions that will be used
from the theory of several complex variables, and for some details of arguments
that we will omit below.

We will repeatedly apply the functional equations given in Propositions 3.1, 3.2.
To do this conveniently, we define two involutions on C × C:

α: (s, w) → (1 − s, w + 3s − 3/2) and β: (s, w) → (s + w − 1/2, 1 − w).

Then α, β generate D12, the dihedral group of order 12, and α2 = β2 = 1, (αβ)6 =
(βα)6 = 1. Note that αβ 0= βα.

We will find it useful in the following to define three regions R1, R2, R3 as
follows: Write s, w as s = σ + i t, w = ν + iγ .

The tube region R1 is defined to be the set of all points (s, w) such that (σ, ν)
lie strictly above the polygon determined by (−2/5, 37/10), (3/2, 0), and the rays
ν = −3σ + 5/2 for σ ≤ −2/5 and ν = −σ + 3/2 for σ ≥ 3/2.

The tube region R2 is defined to be the set of all points (s, w) such that (σ, ν)
lie strictly above the polygon determined by (−1/2, 3) and (3/2, 0) and the rays
ν = −2σ + 2 for σ ≤ −1/2, and ν = −σ + 3/2 for σ ≥ 3/2.

The tube region R3 is defined to be the set of all points (s, w) such that (σ, ν)
lie strictly above the line ν = −2σ + 2.

These regions are related by the involutions α, β as described in the following
proposition. The proof, a simple exercise, is omitted.

Proposition 3.3. The regions R1 and α(R1) have a non-empty intersection,
and the convex hull of R1 ∪ α(R1) equals R2. Similarly, R2 and β(R2) have a non-
empty intersection and the convex hull of R2 ∪ β(R2) equals R3. Finally, R3 and
α(R3) have a non-empty intersection and the convex hull of R3 ∪ α(R3) equals C2.

We will begin by demonstrating

Proposition 3.4. Let R1 be the tube region defined above. The functions

(w − 1)Z M (s, w ; χa2l2, χa1l1 ) and (w − 1)Z̃ M (s, w ; χa2l2, χa1l1 )

are analytic in R1.

Proof. Consider first the expression for Z M (s, w ; χa2l2, χa1l1 ) given in (3.7). We
first need to determine when L M (s, f, χd0χa1l1 ) converges absolutely. A well known
upper bound for the size of the coefficients c(n) of f (and c̃(n) of f̃ ) is c(n) 2
|n|2/5+ε . This follows from the properties of the Rankin-Selberg convolution of f
with f̃ (in particular from the presence of nine gamma factors in the functional
equation). As a consequence, L M (s, f, χd0χa1l1 ) converges absolutely for σ > 7/5
and is bounded above by a constant independent of d0. See Jacquet, Piatetski-
Shapiro and Shalika [JPS1] and Jacquet and Shalika [JS2] for the Rankin-Selberg
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method for GL(n). Over a number field a weaker estimate could instead be obtained
from Jacquet, Piatetski-Shapiro and Shalika [JPS2].

Now suppose that the sum were restricted only to squarefree d = d0. It is
clear then that Z M (s, w ; χa2l2, χa1l1 ) would converge absolutely in the region σ >

7/5, ν > 1. Reflecting s to 1 − s (using (3.4)) and noting that the missing Euler
factors do not affect convergence, one sees that there would be convergence in the
region σ < −2/5, ν > −3σ + 5/2 and consequently, by the Phragmen-Lindelöf
principle, there would be convergence in the region lying between these two areas
and above the line connecting (−2/5, 37/10) and (7/5, 1). It follows from (2.1–2.3)
that we have the bound

Pa1l1d0,d1 (s) 2 1

for σ > 7/5. In fact, more precisely, Pa1l1d0,d1 (s) 2 1 will hold whenever σ >

1/2 + η, where c(m) 2ε mη+ε is an upper bound for the coefficients of the GL(3)
form f . Thus, for example, if f is the adjoint square lift of a form on GL(2) then
η = 2/5 will produce the estimate above.

Because of this, and the functional equation (0.5) applied to Pa,l,d0,d(s),precisely
the same estimates apply as we sum over all d. Consequently, Z M (s, w ; χa2l2, χa1l1 )
converges above the given lines. As f is cuspidal L M (s, f, χd0χa1l1 ) has no poles
in this region.

Noting that the expression converges when ν > 1, σ > 7/5, we now change
the order of summation to the form given in (3.8). The location of the pole of
the Rankin-Selberg convolution of f with itself implies the absolute convergence
of L M (s, f ) for σ > 1. Consequently, applying the usual convexity estimates for
L(w, χn0 ), the corresponding estimate

Q(a2l2)
n0,n1

(w) 2 c(n0n2
1)

(which follows from (2.4–2.6)) and functional equations for c(n0n2
1)Q(a2l2)

n0,n1
(w), we

see Z M (s, w ; χa2l2, χa1l1 ) converges for σ > 1 when ν > 1, for σ > (−1/2)ν + 3/2
when 0 ≤ ν ≤ 1, and for σ > −ν + 3/2 when ν < 0. The factor w − 1 cancels
the pole at w = 1. The regions described above overlap and thus by the con-
vexity principle for several complex variables (see Proposition 4.6 of [DGH])
Z M (s, w ; χa2l2, χa1l1 )P(s, w) has an analytic continuation to the convex closure
of the regions, which is R1 described above. An identical argument applies when
f is replaced by f̃ .

This completes the proof of Proposition 3.4. !

Our plan is now to apply the involutions α, β, α in that order to R1, and use
Propositions 3.1 and 3.2 to extend the analytic continuation to C2. To aid in this,
it will be useful to introduce some additional notation to make the content of these
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propositions a bit clearer and easier to apply. Let

A(s, w) ≡ AM (s, w) =
∏

p|M

(
1 − α̃2

p p−2+2s)(1 − β̃2
p p−2+2s)(1 − γ̃ 2

p p−2+2s)

and

B(s, w) ≡ BM (s, w) =
∏

p|M
(1 − p−2+2w ),(3.17)

and let

3̃ (a1l1)(s, w) = 3 (a1l1)(s)
∏

p|l1

(
1 − α̃2

p p−2+2s)(1 − β̃2
p p−2+2s)(1 − γ̃ 2

p p−2+2s),

1̃(a2l2)(s, w) = 1(a2l2)(w)
∏

p|l2

(1 − p−2+2w ).

The following is a reformulation of the content we require now from Propo-
sitions 3.1 and 3.2. For (s, w) such that both sides are contained in a connected
region of analytic continuation for (w − 1)Z M (s, w ; χa2l2, χa1l1 )

A(s, w)
→
ZM, f (s, w ; χDiv(M), χa1l1 ) = 3̃ (a1l1)(s, w)

→
ZM, f (α(s, w); χDiv(M), χa1l1 )

(3.18)

and

B(s, w)
→
ZM, f (s, w ; χa2l2, χDiv(M)) = 1̃(a2l2)(s, w)

→
ZM, f (β(s, w); χa2l2, χDiv(M)).

(3.19)

Next we prove the analytic continuation of Z M (s, w ; χa2l2, χa1l1 ).

Proposition 3.5. Let

P(s, w) = w(w − 1)(3s + w − 5/2)(3s + 2w − 3)(3s + w − 3/2).

Then the following product has an analytic continuation to an entire function in
C2:

Z∗
M (s, w ; χa2l2, χa1l1 ) :=

A(s, w)A(α(s, w))A(β(s, w))A(βα(s, w))B(s, w)B(α(s, w))P(s, w)

× Z M (s, w ; χa2l2, χa1l1 ).

Proof. Let P(s, w) = w − 1. In Proposition 3.4 we established the analytic
continuation of Z M (s, w ; χa2l2, χa1l1 )P(s, w) and Z̃ M (s, w ; χa2l2, χa1l1 )P(s, w) in
R1. As α2 = 1, ˜̃f = f and 3̃ (a1l1)(s, w) is meromorphic in C2, it follows that

3̃ (a1l1)(s, w)
→
ZM, f (α(s, w); χDiv(M), χa1l1 )P(α(s, w))
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is a meromorphic function in α(R1). As any poles of 3̃ (a1l1)(s, w) arise from gamma
factors and are canceled by trivial zeros of the L-series appearing in

→
ZM, f̃ (α(s, w); χDiv(M), χa1l1 ),

we can conclude from Proposition 3.4 and (3.18) that

A(s, w)P(s, w)P(α(s, w))
→
ZM, f (s, w ; χDiv(M), χa1l1 )

is analytic in R1 ∪ α(R1), R1 and α(R1) having a substantial intersection (contain-
ing 3(s), 3(w) > 1). Thus by the convexity principle this function is analytic in
R2, the convex hull of the union.

A similar argument applies to
→
ZM, f̃ (s, w ; χDiv(M), χa1l1 ). The rest of the argu-

ment proceeds exactly as in the proof of Proposition 4.10 of [DGH]. The only
change is a slight difference in the definition of the region R1, which does not affect
the argument. This completes the proof of Proposition 3.5. !

We will now use the analytic continuation and functional equations (3.18),
(3.19) for the function

→
ZM, f (s, w ; χDiv(M), χa1l1 ) to locate poles and obtain an esti-

mate for the growth of Z M (1/2, w ; χa2l2, χa1l1 ) in a vertical strip. Before doing this,
however, we need some additional notation.

Let
→
ZM, f (s, w) denote the 4d(M)2–dimensional column vector consisting of

the concatenation of the 2d(M) column vectors
→
ZM, f (s, w ; χa2l2, χDiv(M)) for a2 ∈

{1, −1} and all l2|M. Then by Propositions 3.1 and 3.2, combined with (3.18),
(3.19), there exist 4d(M)2 by 4d(M)2 matrices 1M (s, w), 3M (s, w) such that

AM (s, w)
→
ZM, f (s, w) = 3M (s, w)

→
ZM, f̃ (α(s, w))(3.20)

and

BM (s, w)
→
ZM, f (s, w) = 1M (s, w)

→
ZM, f (β(s, w)).(3.21)

Here AM (s, w), BM (s, w) are given by (3.17). The matrices 1M (s, w), 3M (s, w)
are constructed from blocks of 1̃(a2l2)(s, w) and 3̃ (a1l1)(s, w) on the diagonal.

We now remark that the function Z∗
M (1/2, w ; χa2l2, χa1l1 ), defined in Propo-

sition 3.5, is of finite order. This straightforward statement about a one–variable
problem requires the theory of several complex variables for the proof. As the proof
in this context is virtually identical to that given in detail in Proposition 4.11 of
[DGH] we will omit it.

We now show:

Proposition 3.6. Let w = ν + i t. For ε > 0, −3/4 − ε ≤ ν, and any a1, a2 ∈
{1, −1}, l1, l2|M, the function Z M (1/2, w ; χa2l2, χa1l1 ) is an analytic function of w,

except for poles at w = 3
4 , 1. If (l1, l2) = 1 or 2 and |t | > 1, then it satisfies the
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upper bounds

Z M

(
1
2
, ν + i t ; χa2l2, χa1l1

)
2ε (N M3)1/4+ε,

for 7/4 + ε < ν, and

Z M

(
1
2
, ν + i t ; χa2l2, χa1l1

)
2ε (N M3)1/4+ε Ma(7/4−ν)+v1(ε)|t |b(7/4−ν)+v2(ε)

for −3/4 − ε ≤ ν ≤ 7/4 + ε. The constants a, b are positive and explicitly com-
putable. Also the functions v1(ε), v2(ε) are explicitly computable functions
satisfying

lim
ε→0

v1(ε) = lim
ε→0

v2(ε) = 0.

Proof. The result stated here is rather crude, but suffices for our purposes. It
would be an easy matter to refine these estimates but as we are not aiming for an
optimal unweighted mean value estimate this is all that we require.

The first bound in the region 7/4 + ε < ν follows immediately from the stan-
dard convexity estimate L(1/2, f, χD) 2 (N D3)1/4+ε , where N is the level of f
and D is the conductor of χD. The bound for −3/4 − ε ≤ ν ≤ 7/4 + ε is more
difficult to obtain. The approach is to first obtain a bound for Z M ( 1

2 , −3/4 − ε +
i t ; χa2l2, χa1l1 ). We then apply a convexity argument (using the finite order prop-
erty mentioned above) to complete the proof for −3/4 − ε ≤ ν ≤ 7/4 + ε. The
argument is identical to that presented in the proof of Proposition 4.12 of [DGH]
and so will be omitted. We will remark, however, that the only possible poles of
Z M (1/2, w ; χa2l2, χa1l1 ) are at locations corresponding to zeros of the factors A, B
and P appearing on the right hand side of the product given in Proposition 3.5. All
can be eliminated as possibilities except for w = 1 and w = 3/4. This completes
the proof of Proposition 3.6. !

It now remains to calculate the order of the pole of Z M (1/2, w ; χa2l2, χa1l1 ) and
compute the leading coefficient in the Laurent expansion at w = 1.

To do this we first compute the residue of Z M (s, w ; χa2l2, χa1l1 ) at w = 1 for s
in a neighborhood of 1/2. Our result is summarized in

Proposition 3.7. For s in a neighborhood of 1/2 but s 0= 1/2, the func-
tion Z M (s, w ; χa2l2, χa1l1 ) is analytic at w = 1 whenever a2l2 0= 1. When a2l2 = 1,
Z M (s, w ; 1, χa1l1 ) has a pole of order 1 at w = 1 with residue

RM (s; χa1l1 ) = lim
w→1

(w − 1)Z M (s, w ; 1, χa1l1 )

given by:

RM (s; χa1l1 ) =
∏

p|M
(1 − p−1)L M (2s, f, ∨2)ζM (6s − 1).
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Here L M (2s, f, ∨2), ζM (6s − 1) denote the symmetric square L-function of f at
2s and the zeta function at 6s − 1, each with Euler factors corresponding to primes
dividing M removed.

Proof. Taking real parts of w, s sufficiently large to guarantee absolute con-
vergence we apply the basic identity translated into the equality of equations (3.7)
and (3.8). It follows that for the real part of s sufficiently large

lim
w→1

(w − 1)Z M (s, w ; χa2l2, χa1l1 )

=
∑

(n,M)=1,n>0

limw→1(w − 1)L M (w, χ̃n0χa2l2 )χa1l1 (n0)c
(
n0n2

1

)
Q(a2l2)

n0,n1
(w)

ns
.

Now limw→1(w − 1)L M (w, χ̃n0χa2l2 ) vanishes unless χn0χa2l2 is the trivial charac-
ter. This can only happen if n0 = 1 and a2l2 = 1. Thus the residue vanishes unless
a2l2 = 1. If a2l2 = 1 then all the terms on the right hand side of the above will
vanish unless n0 = 1, in which case L M (w, χ̃n0χa2l2 ) = ζM (w) and the residue is∏

p|M (1 − p−1).
After taking the residue, the right hand side of the above reduces to

∏

p|M
(1 − p−1)

∑

(n1,M)=1,n1>0

c
(
n2

1

)
Q(1)

1,n1
(1)

n2s
1

.

Referring to (2.7) we see that each p-part sums to the p-part of

L M (2s, f, ∨2) ζM (6s − 1)

as claimed. !

Recall now that the product

A(s, w)A(α(s, w))A(β(s, w))A(βα(s, w))B(s, w)B(α(s, w))P(s, w)

×Z M (s, w ; χa2l2, χa1l1 )

was shown in Proposition 3.5 to be an entire function of s, w . Specializing to w = 1
and removing the w − 1 factor, the remaining factors ofP(s, 1) are (3s − 3/2)(3s −
1)(3s − 1/2). Thus the only possible poles of the residue RM (s; χa1l1 ) are at zeros of
A(s, 1)A(α(s, 1))A(β(s, 1))A(βα(s, 1))B(s, 1)B(α(s, 1)) or at s = 1/2, 1/3, 1/6.
The possible poles corresponding to zeros of Euler factors of A, B are eliminated
as in Proposition 3.6. The factor 3s − 1 cancels the simple pole of ζM (6s − 1) at
s = 1/3. The possible pole at s = 1/6 is easily eliminated and we are left with the
possibility of a simple pole at s = 1/2. This will occur if and only if L M (2s, f, ∨2)
has a simple pole at s = 1/2. We have thus completed the proof of the first part of
Theorem 0.3.
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We now proceed with the proof of a mean value result from which the second
half of Theorem 0.3 will follow. We will work with the case that L M (2s, f, ∨2) has
a simple pole at s = 1/2 and denote the nonzero residue as RM , so

RM = lim
s→1/2

(s − 1/2)L M (2s, f, ∨2).(3.22)

The polar line w = 1 is reflected into the lines w = −3s + 5/2 and 2w = −3s + 3
by the functional equations α, β. The third of these gives a single polar line passing
through (1/2, 3/4) while w = 1, w = −3s + 5/2 give two polar lines intersecting
at (1/2, 1). The behavior of Z M (s, w ; 1, χa1l1 ) near (1/2, 1) is given by a sum of
contributions from the two polar lines:

(3.23)

Z M (s, w ; 1, χa1l1 )

= A0

(w − 1)(s − 1/2)
+ A1(s)

w − 1
+ A′

0

(w + 3s − 5/2)(s − 1/2)
+ A′

1(s)
w + 3s − 5/2

+ H (s, w),

where

A0 = lims→1/2 limw→1(s − 1/2)(w − 1)Z M (s, w ; 1, χa1l1 ).

A′
0 = lims→1/2 limw→5/2−3s(s − 1/2)(w + 3s − 5/2)Z M (s, w ; 1, χa1l1 ),

and H (s, w) is an analytic function of s, w near (1/2, 1). Let s → 1/2 in (3.23)
while w 0= 1. We know from the left hand side of (3.23) that this must remain
analytic. However, summing the two leading fractions, we see that this can only
happen if A′

0 = −A0, in which case (3.23) reduces, at s = 1/2, to

Z M (1/2, w ; 1, χa1l1 ) = 3A0

(w − 1)2
+ B1

w − 1
+ I (w),(3.24)

where B1 is computable and I (w) is an analytic function of w near w = 1.
We will now state the mean value theorem and do the remaining bit of work

necessary to complete the proof.

Theorem 3.8. Let l1, l2 > 0, l1, l2|M and a1, a2 ∈ {1, −1} and let the L-series
L M (1/2, f, χd0χa1l1 ) and correction factors Pa1l1d0,d1 (1/2) be as defined above.
Then

∑

d>0,(d,M)=1

L M (1/2, f, χd0χa1l1 )χa2l2 (d0)Pa1l1d0,d1 (1/2)e−d/x

= δ1,a2l2

∏

p|M
(1 − p−1)RMζM (2)(x log x)+δ1,a2l2CM x+C ′

M x3/4 + C ′′
M + O(x−3/4).
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Here RM = lims→1/2(s − 1/2)L M (2s, f, ∨2), CM , C ′
M , C ′′

M are computable con-
stants and δ1,a2l2 = 1 if a2l2 = 1 and is 0 otherwise.

Proof. Applying the integral transform

1
2π i

∫ 2+i∞

2−i∞
2(w)xw dw = e−1/x ,

valid for x > 0, we obtain first

1
2π i

∫ 2+i∞

2−i∞
Z M (1/2, w ; χa2l2, χa1l1 )2(w)xw dw

=
∑

d>0,(d,M)=1

L M (1/2, f, χd0χa1l1 )χa2l2 (d0)Pa1l1d0,d1 (1/2)e−d/x .

Moving the line of integration to 3(w) = −3/4 − ε, for ε > 0, we pick up from
the pole at w = 1 a polynomial of the form x(A0 log x + CM ), where the constants
A0, CM are computable and

A0 = lim
s→1/2

(s − 1/2)RM (s; χa1l1 ) =
∏

p|M
(1 − p−1)RMζM (2).(3.25)

Passing the pole at w = 3/4 we pick up an additional contribution of C ′
M x3/4 and at

w = 0 we get a contribution of C ′′
M . The integral at 3(w) = −3/4 − ε converges

absolutely by the upper bound estimate of Proposition 3.6 (as 2(w) decays ex-
ponentially), and contributes an error on the order of x−3/4−ε . This completes the
proof of Theorem 3.8.

The remainder of Theorem 0.3 follows after taking a linear combination of
different χa1l1, χa2l2 to sieve out d0 with particular quadratic residue restrictions. As
the leading term in the mean value estimate is independent of a1l1 and vanishes if
a2l2 0= 1, for any class of d satisfying the restrictions of Theorem 0.3 there will be
a nonzero leading term in a sum over this restricted class.

It follows from the explicit description (2.1–2.3) that Pa1l1d0,d1 (1/2) 2d0,ε d2η+ε
1

where, as mentioned previously, c(m) 2ε mη+ε is any valid upper bound for
the coefficients of the GL(3) form f . As a consequence, the correction factors
Pa1l1d0,d1 (1/2) attached to a single d0 can only add a contribution on the order of
x1/2+η+ε . As the bound η = 2/5 is true, and 1/2 + 2/5 < 1, there must be non-
vanishing for infinitely many distinct d0. !

Let us remark that since the symmetric square L-function has a pole, the sum
of the quadratic twists is on the order of x log x , as we have seen in Theorem 3.8,
with no conditions at all on the signs of the functional equations. By contrast, if
there were no pole, then the corresponding sums would be on the order of x , and
could conceivably lack a main term if two colliding main terms had opposite signs.
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Thus to obtain a nonvanishing theorem the precise analysis in that case is more
delicate, and we do not carry it out here.
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CHAPTER 8

HARMONIC ANALYSIS OF THE SCHWARTZ SPACE OF Γ\SL2(R)

By Bill Casselman

To Joe Shalika with fond memories of a fruitful if brief collaboration

This is the fourth in a series of papers (the earlier ones are [Casselman:1989],
[Casselman:1993] and [Casselman:1999]) intended to present eventually a new
way of proving, among other things, the well known results of Chapter 7 of
[Langlands:1977] on the completeness of the spectrum arising from cusp forms and
Eisenstein series. That Langlands’ results have lasted for nearly 40 years without
major improvements is testimony to their depth, but—to (mis)quote Peter Sarnak,
who had some recent work of Joseph Bernstein’s in mind—it is time to reconsider
the theory.

In the first of this series of papers I attempted to pursue with some force an idea
apparently due originally to Godement—that from an analyst’s point of view the
theory of automorphic forms is essentially the study of the Schwartz space of !\G
and its dual. In the next two, I looked at subgroups of SL2(R) in this perspective. In
one of these two I attempted to explain in terms of tempered distributions certain
features of the theory—integral formulas such as that for the volume of !\G and
the Maass-Selberg formula—which might have seemed up to then coincidental. In
the other I found a new derivation of the Plancherel measure in the case of rank one
groups.

This is presumably the last of the series in which I try to explain how a few
new ideas, tailored principally to the case of higher rank, may be applied in the
simplest case, that of SL2(R). In this paper, the principal result will be a theorem of
Paley-Wiener type for the Schwartz space S(!\SL2(R)), from which the complete-
ness theorem (due originally in this case, I imagine, to Selberg) follows easily.

Paley-Wiener theorems of this sort have been proven before. The earliest result
that I am aware of can be found in the remarkable paper [Ehrenpreis-Mautner:1959].
Ehrenpreis and Mautner defined the Schwartz space of SL2(Z)\H (where H is
the upper half-plane) and characterized functions in it by their integrals against
cusp forms and Eisenstein series. Their formulation and their proof both depended
strongly on properties of the Riemann ζ -function, and it was not at all apparent
how to generalize their results to other than congruence subgroups. In fact, their
dependence on properties of ζ (s) disguised the essentially simple nature of the
problem. I was able to find a generalization of their result in [Casselman:1984], in
the course of trying to understand the relationship between Paley-Wiener theorems
and cohomology. In spite of the title of that paper, the arguments there are valid

163
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for an arbitrary arithmetic subgroup acting on H, and indeed only a few slight
modifications would be required in order to deal with arbitrary arithmetic groups
of rational rank one.

In this paper, I will prove a slightly stronger result than that in [Casselman:
1984], but by methods which I have developed in the meantime to apply also to
groups of higher rank. The point is not so much to prove the new result itself, which
could have been done by the methods of [Casselman:1984], but to explain how the
new methods work in a simple case.

What is new here? In the Paley-Wiener theorem I envisage in general, a crucial
role is played by a square-integrability condition on the critical line. In the earlier
work, I followed Langlands’ argument in shifting contours in towards the critical
line to deal with square-integrability before I moved contours out from the critical
line in order to derive estimates on the growth of certain functions near a cusp.
This duplication of effort was annoying. Since then, in [Casselman:1999], I have
been able to obtain with no contour movement a Plancherel theorem which implies
the square-integrability condition directly. Both here and earlier I move contours
in order to evaluate a certain constant term. The most difficult point in this is to
take the first nearly infinitesimal step off the critical line. In the earlier paper I used
a very special calculation (the Maass-Selberg formula) to do that. That argument,
although surprisingly elementary (depending only on the integrability of 1/

√
x

near x = 0) will unfortunately not work in all situations which arise for groups
of higher rank. In this paper I replace that argument by a very general one, one
closely related to a more or less standard one in the theory of Laplace transforms of
distributions.

Roughly speaking, the arguments of this series differ from Langlands’ in that
whereas he moved contours to evaluate the inner product of two Eisenstein series
of functions of compact support, I move them to evaluate a constant term. There
are many virtues to this new technique, but most of them will appear clearly only
for groups of higher rank. One virtue, likely to be appreciated by those familiar
with Langlands’ work, is that in the new arguments each Eisenstein series residue
actually contributes to the spectrum, whereas in Langlands’ argument (illustrated
by his well known example of G2) there occurs a certain complicating cancellation
of residues which makes it difficult to understand their significance. I would like to
think that the new arguments will eventually make it possible to calculate residues
of Eisenstein series by computer, something not easy to see how to do at the
moment.

0. Introduction. Let

G = SL2(R)

P = the subgroup of upper triangular matrices in G

N = the subgroup of unipotent matrices in P
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A = the group of positive diagonal matrices in G, which may be identified with
the multiplicative group R

pos

K = the maximal compact subgroup of rotation matrices
[

cos θ −sin θ

sin θ cos θ

]
.

I assume ! to be a discrete subgroup of SL2(R) of “arithmetic type.” In addition,
a few extra conditions will be put on ! in order to simplify the argument without
significant loss of generality. The precise assumptions we make on ! are:

• The group ! has a single cusp at ∞;

• the intersection ! ∩ P consists of all matrices of the form
[
±1 n

0 ±1

]

where n varies over all of Z.

The effect of these assumptions is to allow a reasonable simplification in no-
tation, without losing track of the most important ideas. Of course there is at least
one group satisfying these conditions, namely SL2(Z).

Let H be the upper half-plane {z ∈ C | &(z) > 0}. The group G acts on it on
the left:

g =
[

a b
c d

]
: z '−→ az + b

cz + d
.

This action preserves the non-Euclidean metric (dx2 + dy2)/y2 and the non-
Euclidean measure dx dy/y2 on H.

The group ! ∩ P stabilizes each domain HT = {y ≥ T }, and for T large
enough the projection from ! ∩ P\HT to !\H is injective. Its image is a neigh-
borhood of the cusp ∞. That ! has a single cusp means that the complement of
this image is compact.

The isotropy subgroup of i in H is the subgroup K , and the quotient G/K may
therefore be identified with H. Let GT be the inverse image of HT , which consists
of those g in G with an Iwasawa factorization

g =
[

1 x
0 1

] [
a 0
0 a−1

]
k

where a2 > T and k lies in K . For large T the quotient ! ∩ P\GT embeds into
!\G with compact complement.

In the rest of this paper, T will be assumed to be large enough so that this
embedding occurs.

The area of ! ∩ P\HT can be calculated explicitly, and it is finite. Because the
complement is compact, the area of !\H and the volume of !\G are both finite as
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well. Define δ to be the function pulled back from the y-coordinate on H. In terms
of the Iwasawa factorization G = NAK, δ(nak) = δ(a) = | det Adn(a)|, where

δ(a) = x2 if a =
[

x 0
0 x−1

]
.

The character δ is also the modulus character of P .
The length of the non-Euclidean circle around i and passing through iy is

(y − y−1)/2. This means that in terms of the Cartan factorization G = KAK we
have an integral formula

∫

G
f (g) dg =

∫

K

∫

A

∫

K
f (k1ak2)

(
δ(a) − δ−1(a)

2

)
dk1 da dk2

with a suitable measure assigned to K . On G we define the norm

‖k1ak2‖ = max |δ(a)|, |δ(a)|−1.

This is the same as

sup
‖v‖=1

‖gv‖ (v ∈ R
2)

and satisfies the inequality

‖gh‖ ≤ ‖g‖ ‖h‖.

The function ‖g‖−(1+ε) is then integrable on G for ε > 0.
A function f on !\G is said to be of moderate growth at ∞ if f = O(δm)

on the regions GT for some integer m > 0, and rapidly decreasing at ∞ if it is
O(δ−m) for all m. The Schwartz space S(!\G) is that of all smooth right-K -finite
functions f on !\G with all RX f (X ∈ U (g)) rapidly decreasing at ∞. Because
of the condition of K -finiteness, any function in S(!\G) may be expressed as a
finite sum of components transforming on the right by a character χ of K :

S(!\G) = ⊕S(!\G)χ

S(!\G)χ = { f ∈ S(!\G) | f (gk) = χ (k) f (g) for all k ∈ K , g ∈ G}.

If χ = 1, we are looking at functions on !\H.
The problem that this paper deals with is how to characterize the functions in the

Schwartz space by their integrals against various automorphic forms, and especially
Eisenstein series. There are technical reasons why the Paley-Wiener theorem for
S(!\H) is simpler than the one for S(!\G), and for that reason I will discuss the
first case in detail, then go back and deal with the extra complications needed to
deal with S(!\G). But in order to give an idea of what’s going on, I’ll explain in
the next section a few of the simplest possible Paley-Wiener theorems.

The simplest Paley-Wiener theorems. It will be useful to keep in mind a
few elementary theorems of the kind we are looking for.
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(1) Define the Schwartz space S of the group A, identified here with the mul-
tiplicative group of positive real numbers R

pos, to be made up of those smooth
functions f (x) on A satisfying the condition that it and all its derivatives vanish
rapidly at 0 and ∞ in the sense that

∣∣ f (n)(x)
∣∣ = O(xm)

for all non-negative integers n and all integers m, whether positive or negative.
Then for all s in C we can define the Fourier transform

F(s) = f̂ (s) =
∫ ∞

0
f (x)x−s dx

x
.

It turns out to be holomorphic in all of C, and since the Fourier transform of the
multiplicative derivative x d f/dx is s f̂ it satisfies the growth condition

F(σ + it) = O
(

1
1 + |t |m

)

for all m > 0, uniformly in vertical bands of finite width. Conversely, if F(s) is any
entire function satisfying these growth conditions, then for any real σ

f (x) = 1
2π i

∫ σ+i∞

σ−i∞
F(s)xs dx

will be a function in S(A), independent of σ , whose Fourier transform is F . The
proof depends on a clearly justifiable shift of contour of integration.

(2) A second result will turn out to look even more similar to that for arithmetic
quotients. Define L2,∞

S (A) to be the space of all smooth functions f on (0, ∞)
such that (a) f and all its derivatives vanish of infinite order at 0; (b) f and all its
multiplicative derivatives are square-integrable on A. Condition (a) implies that the
Fourier transform is defined and holomorphic in the region -(s) > 0. On the other
hand, condition (b) implies that the Fourier transform of f on the line -(s) = 0
exists as a square-integrable function. The relationship between the two defini-
tions of F(s) on -(s) = 0 and -(s) > 0 is that uniformly on bounded horizontal
strips the function F(σ+ it) approaches the function F(it) in the L2-norm. In these
circumstances we have the following result:

Theorem. If f (x) lies in L2,∞
S then its Fourier transform F(s) satisfies the

following conditions:

• F(s) is holomorphic in the half plane -(s) > 0;

• it satisfies the condition

F(σ + it) = O
(

1√
σ (1 + |t |)n

)

for σ > 0 and all n > 0, uniformly on horizontally bounded vertical strips;
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• the restriction of F to -(s) = 0 is square-integrable, and the weak limit of
the distributions

Fσ ( it) = F(σ + it)

as σ → 0.
Conversely, if F(s) is a function satisfying these conditions then it is the Fourier

transform of the function

f (x) = 1
2π i

∫ σ+i∞

σ−i∞
F(s)xs ds

which does not depend on the choice of σ > 0, and which lies in L2,∞
S .

The natural proof of this relies on results from the last section of this paper, and
much of the argument duplicates what I shall say about the analogous (and more
difficult) result for the upper half plane. I leave it as an exercise.

Quotients of the upper half-plane. For the group R
pos, the results stated in

the previous section are just some of many analogous results, most notably one
characterizing functions of compact support by their Fourier transforms. But for
quotients of symmetric spaces by arithmetic subgroups I do not know whether
a result for functions of compact support is possible even in principle. A Paley-
Wiener theorem for functions of rapid decrease may be the only natural one to
consider.

In this section I’ll explain the Paley-Wiener theorem forS(!\H). The definition
of the space S(!\H) involves lifting a function f on !\H to a function F on !\G
and then considering the right derivatives RX F . But the functions in S(!\H) may
be more concretely identified with those smooth functions on !\H satisfying the
condition that

)n f = O(y−m)

for all positive integers n and m, where ) is the non-Euclidean Laplace operator

) = y2
(

∂2

∂x2
+ ∂2

∂y2

)
.

This definition of the Schwartz space is the one used by Ehrenpreis and Mautner,
and in my 1984 paper (Proposition 2.3) I showed that this notion is equivalent to
the one given earlier. That equivalence will not play a role here except in so far as
it ties the result of Ehrenpreis and Mautner to mine.

Any smooth function f (z) on !\H may be expanded in a Fourier series

f (x + iy) =
∞∑

−∞
fn(y)e2π inx .
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If f is any smooth function on !\H which is of uniform moderate growth in the
sense that for some fixed m

)n f = O(ym)

for all n > 0, then all coefficient functions fn(y) for n .= 0 vanish rapidly as y → ∞,
and more generally the difference between f (y) and f0(y) also vanishes rapidly.
In other words, the asymptotic behavior of f (y) as y → ∞ is controlled by the
constant term f0(y). Furthermore, as we shall see later, the Schwartz space decom-
poses into a sum of two large pieces—the cuspidal component, that of functions
whose constant terms vanish identically, and the Eisenstein component orthogonal
to the cuspidal one. The cuspidal component is a discrete sum of eigenspaces of
the Laplace operator, and is of no particular interest in this discussion.

The spectrum of ) is continuous on the Eisenstein component. The functions
which for !\H play the role of the characters xs on R

pos are the Eisenstein series.
For every s with -(s) > 1 the series

Es(z) =
∑

!∩P\!
y(γ (z))s

converges to an eigenfunction of ) on !\H, with eigenvalue

)(s) = s(s − 1) = (s − 1/2)2 − 1/4.

When ! = SL2(Z), for example, this series was first defined by Maass, and can be
expressed more explicitly as

Es(z) =
∑

c>0, gcd(c,d)=1

ys

|cz + d|2s
.

For all !, the function Es continues meromorphically in s to all of C. In the
right-hand half-plane -(s) ≥ 1/2 there is always a simple pole at s = 1, and there
may be a few more simple poles on (1/2, 1). The constant term of Es is of the form

ys + c(s)y1−s

where c(s) is a meromorphic function on C. For ! = SL2(Z)

c(s) = ξ (2s − 1)
ξ (2s)

, ξ (s) = π−s/2!(s/2)ζ (s).

In this case the behaviour of Es for -(s) < 1/2 is therefore related to the Riemann
hypothesis, and ought to be considered, whenever possible, as buried inside an
impenetrable box. The function Es satisfies the functional equation

Es = c(s)E1−s

so that s and 1 − s contribute essentially the same automorphic forms to !\H.
From this equation for Es it follows that c(s) satisfies the functional equation

c(s)c(1 − s) = 1.
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In the region -(s) > 1/2, s /∈ (1/2, 1] the Eisenstein series can be constructed
by a simple argument relying only on the self-adjointness of the operator ) on
!\H. The rough idea is this:

Let χ (y) be a function on (0, ∞) which is identically 1 for large y, and non-
vanishing only for large y. The product χ (y)ys may be identified with a function
Ys on !\H. Choose s such that -(s) > 1/2, s /∈ (1/2, 1], and let λ = s(s − 1).
Then Xs = () − λ)Ys will have compact support on !\H, since )ys = λys . For
λ /∈ (−∞, 0] (the spectrum of )) let

Fs(z) = −() − λ)−1 Xs .

Then

Es(z) = Fs(z) + Ys(z).

In other words, for s in this region the function Es is uniquely determined by the
conditions that (a) )Es = λEs and (b) Es − ys is square-integrable near ∞. (This
is explained in more detail in [Colin de Verdière:1981].) The theory of self-adjoint
operators also guarantees that

‖) − λ‖2 = ‖) − -(λ)‖2 + |&(λ)|2

‖) − λ‖ ≥ |&(λ)|

= |2σ t | (s = 1/2 + σ + i t)

‖) − λ‖−1 ≤ |2σ t |−1 ,

which implies that ‖Fs‖ = O(|2σ t |−1).
For T large enough we can define the truncation of an automorphic form F(z)

in the region y ≥ T . On the quotient !\HT the truncation .T F is the difference
between F and its constant term. Because the asymptotic behavior of F is controlled
by its constant term, this is always square-integrable. For Eisenstein series there
exists the explicit Maass-Selberg formula for the inner product of two truncations.
For generic s and t it asserts that

〈
.T Es, .

T Et
〉
= T s+t−1 − c(s)c(t)T 1−s−t

s + t − 1
− c(s)T 1−s+t − c(t)T 1−t+s

s − t
.

Formally, the expression on the right is
∫ T

0
(ys + c(s)y1−s)(yt + c(t)y1−t ) y−2 dy.

This apparent accident is explained in [Casselman:1993]. When s = 1/2 + σ + iτ
and t = s it becomes

‖.T Es‖2 = T 2σ − |c(s)|2T −2σ

2σ
− c(s)T −2iτ − c(t)T 2iτ

2iτ
.
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This formula makes more precise the idea that the behavior of Es is determined by
that of c(s), and vice versa. That this must always be positive, for example, implies
that |c(s)| must be bounded at ±i∞ in the region σ > 0, and that the poles of Es

and c(s) have to be simple in that region. (See [Langlands:1966], or the proof of
Proposition 3.7 in [Casselman:1984] for more detail.)

The Fourier-Eisenstein transform of f in S(!\H) is

F(s) = f̂ (s) =
∫

!\H
f (z)E1−s(z)

dx dy
y2

.

It follows immediately from properties of Es that

(PW1) The function F(s) satisfies the functional equation

F(1 − s) = c(s)F(s).

(PW2) The function F(s) is meromorphic everywhere in C, holomorphic in the
half-plane -(s) ≤ 1/2 except for possible simple poles in [0, 1/2) corresponding
to those of E1−s .

There are also a few other significant and more subtle properties of F(s).

(PW3) The function F(s) is square-integrable on -(s) = 1/2.

(PW4) In any region

σ0 < -(s) < 1/2, |&(s)| > τ

we have for all m > 0

|F(s)| = O
(

1
|1/2 − σ | |t |m

)
(s = σ + i t).

The first follows from the following result, a Plancherel formula for the critical
line, which is far more basic:

For 0(s) a function of compact support on the line -(s) = 1/2, the integral

E0(z) = 1
2π i

∫ 1/2+i∞

1/2−i∞
0(s)Es(z) ds

defines a square-integrable function on !\H with

1
2

‖E0‖2 = 1
2π i

∫ 1/2+i∞

1/2−i∞
|0(s)|2 ds.

This is well known. The usual proof (as in [Langlands:1966]) relies on contour
movement, but in [Casselman:1999] it is proven directly. At any rate, given this,
we can verify property (PW3). First of all it implies that E0 can be defined as an
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L2 limit for arbitrary functions in L2(1/2 + iR). Second, for f in S(!\H) we can
calculate that

‖ f ‖ ‖E0‖ ≥ 〈 f, E0〉

= 1
2π i

∫ 1/2+i∞

1/2−i∞
0(s) 〈 f, Es〉 ds

= 1
2π i

∫ 1/2+i∞

1/2−i∞
0(s) f̂ (1 − s) ds

for any square-integrable 0, which implies that f̂ itself is square-integrable.
As for property (PW4), it can be proven either from the spectral inequality

mentioned above, or from the Maass-Selberg formula. This property is used in
moving contours of integration; the second proof, which asserts a more precise result
than the other, allows an elementary argument in doing this (see [Casselman:1984]),
but in higher rank becomes invalid. The first is therefore preferable. In both proofs,
we begin by writing

〈 f, Es〉 =
〈
f, .T Es

〉
+

〈
f, CT Es

〉

and arguing separately for each term. For the first term, use the spectral construction
of Es described earlier. An estimate for the second term follows easily from an
argument about the multiplicative group.

Theorem. Let F(s) be any function on C such that all )n(s)F(s) satisfy con-
ditions (PW1)–(PW4), and for each pole s in [0, 1/2) let F#(s) be the residue of F
there. Then

f (z) = −
∑

F#(s)Es + 1
2

1
2π i

∫ 1/2+i∞

1/2−i∞
F(s)Es(z) ds

lies in S(!\H) and has Fourier-Eisenstein transform F.

Note that because c(s)c(1 − s) = 1, if c has a pole at 1 − s then c(s) = 0, Es

is well defined, and its constant term is exactly ys . The integral is to be interpreted
as the limit of finite integrals

1
2π i

∫ 1/2+iT

1/2−iT
F(s)Es ds

which exists as a square-integrable function on !\H by the Plancherel formula
explained above. In fact, it lies in the space Aumg(!\H). This is proven directly
in [Casselman:1984], but follows easily from extremely general reasoning about
L2,∞(!\G) (Theorem 1.16 and Proposition 1.17 of [Casselman:1989]). This argu-
ment is recalled in a simplified form later in this paper.

What this means is that in order to determine whether f (x) lies in S(!\H) we
can look at its constant term.
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The constant term of the integral is

1
2π i

∫ 1/2+i∞

1/2−i∞

[
F(s)ys + c(s)F(s)y1−s

2

]
ds

(suitably interpreted as a limit) which is equal to

1
2π i

∫ 1/2+i∞

1/2−i∞

[
F(s)ys + c(1 − s)F(1 − s)ys

2

]
ds = 1

2π i

∫ 1/2+i∞

1/2−i∞
F(s)ys ds

by (PW2). The most difficult step in the whole proof is to justify replacing the
integral

1
2π i

∫ 1/2+i∞

1/2−i∞
F(s)ys ds

by the integral

1
2π i

∫ σ+i∞

σ−i∞
F(s)ys ds

for some number σ very close to 1/2. This can be done by the results in the final
section of this paper. Once this step has been taken, the growth conditions on F(s)
in vertical bands allow us to move arbitrarily far to the left, picking up residues as
we go. Recall that the constant term of Es is ys at a pole of F(s). These residues
cancel out with the residues in the formula for f (z). Therefore the constant term of
f (z) is equal to

1
2π i

∫ σ+i∞

σ−i∞
F(s)ys ds

for arbitrary σ 1 0, which implies that it vanishes rapidly as y → ∞. A classical
result from the theory of the Laplace transform finishes off the Proposition.

The constant term. In this section, I begin consideration of !\G instead of
!\H. Some points are simpler, and in fact some of the claims for !\H are best
examined in the current context. The principal complication is that notation is more
cumbersome.

For any reasonable function f on !\G define its constant term to be the function
on N (! ∩ P)\G defined by the formula

fP (g) =
∫

!∩N\N
f (xg) dx .

If f lies in S(!\G) then fP will be bounded on all of N (! ∩ P)\G and in
addition satisfy an inequality

RX f (g) = O(δ(g)−m)

on GT , for all X in U (g) and m > 0.
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Define Aumg(!\G) to be the space of all functions of uniform moderate growth
on !\G—those smooth functions F for which there exists a single m > 0 with

|RX F(g)| = O(δ(g)m)

on GT , for all X in U (g).
If F lies in Aumg(!\G) and f lies in S(!\G) then the product F f will lie in

S(!\G), and hence may be integrated. The two spaces are therefore in duality. It is
shown in [Casselman:1989] that the space Aumg(!\G) may be identified with the
Gårding subspace of the dual of S(!\G), the space of tempered distributions on
!\G.

For large T , the truncation .T F of a continuous function F on !\G at T is
what you get from F by chopping away its constant term on GT . More precisely,
if 0 is any function on N (! ∩ P)\G define CT 0 to be the product of 0 and the
characteristic function of GT , and then for F on !\G set

CT F(g) =
∑

!∩P\!
CT FP (γ g)

.T F = F − CT F.

The sum F = .T F + CT F is orthogonal.
One of the basic results in analysis on !\G is that

if F lies in Aumg(!\G) then .T F is rapidly decreasing at ∞.

Analysis on N(! ∩ P)\G. The space N (! ∩ P)\G plays the same role for
!\G that A ∼= N (! ∩ P)\G/K plays for !\H. And analysis on N (! ∩ P)\G still
looks much like analysis on the multiplicative group R

pos. One can be phrased
literally in terms of the other since we can look at irreducible K -eigenspaces, and
N\G/K ∼= A/{±1} ∼= R

pos.
For each s in C define the space

Is = { f ∈ C∞(G) | f is K -finite, f (pg) = δs(p) f (g) for all p ∈ P, g ∈ G}.

Right derivation makes this into the principal series representation of (g, K )
parametrized by the character p '→ δs(p). It has a basis made up of functions
fn,s where

fn,s(pk) = δs(p)εn(k)

where

ε :
[

c −s
s c

]
'−→ c + is.
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If

κ =
[

0 −1
1 0

]

X+ = (1/2)
[

1 −i
−i −1

]

X− = (1/2)
[

1 i
i −1

]

then on Is

Rκ fn,s = ni fn,s

RX+ fn,s = (s + n/2) fn+2,s

RX− fn,s = (s − n/2) fn−2,s .

These are generators of U (g), and therefore every element of U (g) acts on Is by a
polynomial function of s.

The representation of (g, K ) on Is is irreducible for almost all s, and the Casimir
operator C acts as the scalar )(s) = s(s − 1) on it. Elements of I0 may be identified
with functions on P

1(R), those of I1 with smooth 1-densities on P
1(R). With a

suitable choice of measures, the integral formula
∫

N (!∩P)\G
f (x) dx =

∫

P\G
f̄ (x) dx

is valid, where

f̄ (x) =
∫

A
δ−1

P (a) f (ax) da

lies in I1.
The product of an element of Is and one in I1−s lies in I1, and may then be

integrated. The space I1−s is therefore the contragredient of Is . If -(s) = 1/2 so
that s = 1/2 + i t , then 1 − s = 1/2 − i t = s; the representation of (g, K ) on Is is
therefore unitary.

Let

I = the space of K -finite functions on K ∩ P\K .

Since G = PK, restriction to K is a K -covariant isomorphism of Is with I. Thus
as vector spaces and as representations of K , all the Is may be identified with each
other. It therefore makes sense to say that they form a holomorphic family, or that
the representation of g varies holomorphically with s. Restriction to K can be used
to define a norm on the Is . For f in Is with the decomposition f =

∑
fχ into
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K -components, define

‖ f ‖2 =
∫

K∩P\K
| f (k)|2 dk =

∑

χ

‖ fχ‖2.

For -(s) = 1/2, ‖ f ‖ is the same as the norm induced by the identity of I1−s with
the contragredient of Is , the G-invariant Hilbert space norm on Is .

Fourier analysis decomposes functions on N (! ∩ P)\G into its components in
the spaces Is . As with classical analysis, there are several variants.

A Paley-Wiener theorem. Suppose ϕ to be a smooth K -finite function on
N (! ∩ P)\G which is rapidly decreasing at infinity on N (! ∩ P)\G in both di-
rections, in the sense that for any integer m whatsoever (positive or negative)
RXϕ = O(δm) for all X in U (g). Then for any s in C we can define an element ϕ̂s

in Is by the condition

〈̂ϕs, ψ〉 =
∫

N (!∩P)\G
ϕ(x)ψ(x) dx

for each ψ in I1−s . More explicitly, we can write the integral as
∫

N (!∩P)\G
ϕ(x)ψ(x) dx =

∫

P\G

∫

A
δ−1

P (a)ϕ(ax)ψ(ax) da dx

so that

ϕ̂s(g) =
∫ ∞

0
δ(a)−sϕ(ag) da.

The function ϕ̂s will determine a section of I over all of C, rapidly decreasing at
±i∞. We can recover ϕ from the functions ϕ̂s by the formula

ϕ(g) = 1
2π i

∫

-(s)=σ

ϕ̂s(g) ds

for any real number σ .
If ϕ and ψ are two such functions on N (! ∩ P)\G then their inner product can

be calculated from their Fourier transforms by the formula
∫

N (!∩P)\G
ϕ(g)ψ(g) dg = 1

2π i

∫ 1/2+i∞

1/2−i∞

〈
ϕ̂s, ψ̂1−s

〉
ds.

The map taking ϕ to ϕ̂ is an isomorphism of S(N (! ∩ P)\G) with that of all
holomorphic sections 0s of Is over all of C satisfying the condition that for all
m > 0 we have

‖0σ+i t‖ = O
(

1
1 + |t |m

)

uniformly on horizontally bounded vertical strips.
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The Laplace transform. Suppose ϕ to be a smooth function on N (! ∩ P)\G,
such that each right derivative RXϕ is bounded overall and rapidly decreasing at
∞ (but not necessarily at 0). These conditions are satisfied, for example, by the
constant terms of functions in S(!\G). Then for any s in C with -(s) < 1/2 the
integral

ϕ̂s(g) =
∫ ∞

0
δ(a)−sϕ(ag) da

converges and defines a function in Is . In other words, we now have a holomorphic
section of Is over the region -(s) < 1/2, which can reasonably be called the Laplace
transform of ϕ. When only one K -component is involved, this amounts to the usual
Laplace transform on the multiplicative group R

pos. Standard arguments from the
theory of the Laplace transform on the multiplicative group of positive reals then
imply that the function ϕ can be recovered from ϕ̂:

ϕ(g) = 1
2π i

∫ σ+i∞

σ−i∞
ϕ̂s(g) ds

for all σ < 1/2. The integral over each line makes sense because under the as-
sumptions on ϕ the magnitude of ϕ̂(s) decreases rapidly at ±i∞. In particular, if
ϕ̂(s) vanishes identically, then ϕ = 0. This is a consequence of our assumption that
! ∩ P contains ±1—without this assumption we would have to take into account
characters of A not necessarily trivial on ±1.

In particular:

If f lies in S(!\G) and the Laplace transform of fP vanishes, then so does fP .

Square-integrable functions. The map taking f in from S(N (! ∩ P)\G) to f̂
extends to an isomorphism of L2(N (! ∩ P)\G) (square-integrable half-densities)
with the space L2(1/2 + iR, I) of all square-integrable functions 0 on 1/2 + iR
with values in I, i.e. those such that

1
2π i

∫ 1/2+i∞

1/2−i∞
‖0(s)‖2 ds < ∞.

Eisenstein series. Suppose 0 to be an element of Is with -(s) > 1. Then the
Eisenstein series

E(0) =
∑

!∩P\!
0(γ g)

will converge absolutely to a function of uniform moderate growth—in fact, an
automorphic form—on !\G.

Let ιs be the identification of I with Is , extending ϕ on K ∩ P\K to ϕs = ιsϕ

on N (! ∩ P)\G where

ϕs(pk) = δs(p)ϕ(k).
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Then the composite

Es(ϕ) = E(ϕs)

will vary holomorphically for s with -(s) > 1.
The map

Es : I → Aumg(!\G)

continues meromorphically to all of C, defining where it is holomorphic a (g, K )-
covariant map from Is to A(!\G). It is holomorphic in the region -(s) ≥ 1/2
except for a simple pole at s = 1 and possibly a few more simple poles on the line
segment (1/2, 1).

The constant term of E(ϕs) is for generic s a sum

ϕs + τ (ϕs)

where τ is a covariant (g, K ) map from Is to I1−s . Let τs be the composite

τs : ϕ → ϕs → τ (ϕs)|K .

It is meromorphic in s. For -(s) > 1/2 and s /∈ [1/2, 1], the Eisenstein series E(ϕs)
is determined uniquely by the conditions that (1) near ∞ it is the sum of ϕs and
something square-integrable; (2) it is an eigenfunction of the Casimir operator in
U (g). As a result of uniqueness, the Eisenstein series satisfies a functional equation

Es(ϕ) = E1−s(τsϕ).

In any event, the operator τs satisfies the condition τsτ1−s = 1, and is a unitary oper-
ator when -(s) = 1/2. When ϕ ≡ 1 and ! = SL2(Z), as I have already mentioned,
τs(ϕ) is related to the Riemann ζ function. In this case, the functional equation for
the Eisenstein series is implied by—but does not imply—that for ξ (s). Poles of Es

in the region -(s) < 1/2 will in this case arise from zeroes of ζ (s).
It is not important in this context to know exactly what happens to the left of

the critical line -(s) = 1/2. This is just as well, because this is uncharted—and
perhaps unchartable—territory.

The truncation .T E of any Eisenstein series E will be square-integrable. There
is a relatively simple formula, called the Maass-Selberg formula, for the inner
product of two of these. For generic values of s and t we have a formal rule

〈
.T 0s, .

T 6t
〉
= −

∫

N (!∩P)\GT

〈ϕs, ψt〉 dx

where 0s lies in the image of Es , etc., and ϕs is its constant term. The integral is
defined by analytic continuation and, if necessary, l’Hôpital’s rule. If we take 6 to
be the conjugate of 0, we get a formula for ‖.T 0s‖.

If ϕ is K -invariant, there is always a pole of E(ϕs) at s = 1, and its residue
is a constant function whose value is related to the volume of !\G. For other K -
eigenfunctions there will be no poles at s = 1. These phenomena occur because
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the trivial representation of (g, K ) is a quotient of I1 and embeds into I0. Since Is

is irreducible for 1/2 < s < 1, poles in (1/2, 1) will occur simultaneously for all
K -components of Is .

The cuspidal decomposition. A function F on !\G is said to be cuspidal
if its constant term vanishes identically. If F lies in Aumg(!\G) and it is cuspidal
then it will lie in S(!\G). Define Scusp to be the subspace of cuspidal functions in
S(!\G).

If ϕ lies in S(N (! ∩ P)\G) then the Eisenstein series

Eϕ(g) =
∑

!∩P\!
ϕ(γ g)

will converge to a function in S(!\G), and the map from S(N (! ∩ P)\G) to
S(!\G) is continuous. Define SEis to be the closure in S(!\G) of the image of
S(N (! ∩ P)\G).

Proposition. The Schwartz space S(!\G) is the direct sum of its two sub-
spaces Scusp and SEis.

As a preliminary:

Lemma. The space L2,∞(!\G) is contained in Aumg.

I recall that the space L2,∞ is that of all functions 0 on !\G such that the
distributional derivatives RX F (X ∈ U (g)) are all square-integrable. It is to be
shown that every 0 in L2,∞ is a smooth function on !\G and that for some single
m > 0 independent of 0 we have

RX0(g) = O(δm(g))

on GT , for all X ∈ U (g).
A much more general result is proven in [Casselman:1989] (Proposition 1.16

and remarks afterwards), but circumstances here allow a simpler argument.

Proof. According to the Decomposition Theorem (see §1.2 of [Cartier:1974])
we can express the Dirac δ at 1 as

δ1 =
∑

ξi ∗ fi

where ξi are in U (g), the fi in Ck
c (G), and k is arbitrarily high. As a consequence,

every 0 in L2,∞ can be expressed as a sum of vectors R f F , where F lies in L2,∞

and f in Ck
c (G). Furthermore, if

0 =
∑

R fi Fi
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then

RX0 =
∑

RX fi Fi .

It therefore suffices to prove that for some m > 0, all f in Cc(G), and all F in L2,∞

the convolution R f F is continuous on !\G and satisfies

R f F(g) = O(δm(g))

on GT . On a fundamental domain of !, the function δ(g) and the norm ‖g‖ are
asymptotically equivalent, hence it is sufficient to verify

R f F(g) = O(‖g‖m).

Formally we can write

R f F(g) =
∫

G
F(gx) f (x) dx

=
∫

!\G
F(y)

∑

!

f (g−1γ y) dy

= 〈F, 7Lg f 〉

≤ ‖F‖ ‖7Lg f ‖

where 7 is the map taking f in Cc(G) to

7 f (y) =
∑

!

f (γ y).

There are only a finite number of non-zero terms in this series, which therefore
converges to a continuous function of compact support on !\G, so the formal
calculation at least makes sense.

Since

‖7 f ‖ ≤ vol(!\G)1/2 sup
!\G

∣∣7 f (x)
∣∣

we must find a bound on the values of 7 f , and then see how the bound for 7Lg f

changes with g.
Choose a compact open subgroup U such that

! ∩ U−1 · U = {1}

and let

‖U‖ = max
u∈U

‖u‖.
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Then for u in U , γ in !, x in G

‖uγ x‖ ≤ ‖u‖ ‖γ x‖

≤ ‖U‖ ‖γ x‖
1

‖γ x‖
≤ ‖U‖

‖uγ x‖
.

and
∑

!

1
‖γ x‖1+ε

≤ ‖U‖1+ε

meas(U )

∫

Uγ x

1
‖y‖1+ε

dy.

If C f,ε = max ‖x‖1+ε | f (x)| then
∣∣7 f (x)

∣∣ ≤
∑

!

∣∣ f (γ x)
∣∣

≤
∑

!

C f,ε

‖γ x‖1+ε

= C f,ε

∑

!

1
‖γ x‖1+ε

≤ C f,ε
‖U‖1+ε

meas(U )

∑

!

∫

Uγ x

1
‖y‖1+ε

dy

≤ C f,ε
‖U‖1+ε

meas(U )

∫

G

1
‖y‖1+ε

dy

(since the Uγ x are disjoint) and
∣∣7Lg f (x)

∣∣ ≤ K‖g‖1+εC f,ε

for a constant K > 0 depending only on ε. Everything we want to know follows
from this. !

Proof of the Proposition. Let L2
cusp be the subspace of functions in L2(!\G)

whose constant terms vanish, and L2
Eis its orthogonal complement. Any f in S can

be expressed as a sum of two corresponding components

f = fcusp + fEis

where a priori each component is known only to lie in L2. But the first component
lies in L2,∞ ⊆ Aumg and has constant term equal to 0, so lies itself in S. Therefore
the second does, too. This proves that

S = Scusp⊕
(
S ∩ L2

Eis

)
.

It remains to be shown that the second component here is the closure of the functions
E(ϕ) with ϕ in S(N (! ∩ P)\G).
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For this, because of the Hahn-Banach theorem, it suffices to show that if 0 is
a tempered distribution which is equal to 0 on both Scusp and all the E(ϕ), then
it is 0. On the one hand, the constant term of 0 vanishes, and therefore so does
that of every R f 0, which since it lies in Aumg must also lie in Scusp. But on the
other hand, the orthogonal complement of Scusp is G-stable, so all these R f 0 also
lie in this complement. But since they themselves are cuspidal, they must vanish,
too. However, 0 is the weak limit of R f 0 if f converges weakly to the Dirac
distribution δ1. Therefore 0 itself vanishes. !

An analogous result for groups of arbitrary rank, essentially a reformulation of
a result due to Langlands, is proven in [Casselman:1989].

Definition of the Fourier-Eisenstein transform. Suppose f to be in
S(!\G). For s ∈ C where the Eisenstein series map E1−s is holomorphic, define
its Fourier-Eisenstein transform f̂ (s) to be the unique element of Is such that

〈 f, E1−s(ϕ)〉 = 〈 f̂ (s), ιsϕ〉

for every ϕ in I. The section F = f̂ of I is meromorphic in s and has poles where
E1−s does. It clearly satisfies this condition:

(PW1) F(1 − s) = τs F(s).

The next step is to investigate more carefully the singularities of F(s). They will
only occur at the poles of E1−s . In the region -(s) < 1/2, which is all we will care
about, they are simple. What can we say about its residues in that region?

(PW2) The function F(s) has simple poles on [0, 1/2) where E1−s does, and
the residue F#(s) at such a pole lies in the image of the residue of τ1−s .

Proof. For -(s) < 0 we have a simple rearrangement of a converging series
that shows

〈 f, E1−s(ϕ)〉!\G = 〈 fP , ϕ1−s〉N (!∩P)\G

so that f̂ = 0 if fP = 0. The kernel of this transform is therefore precisely the
subspace Scusp of “The cuspidal decomposition”, and the transform is completely
determined by its restriction to SEis. The space SEis is the closure of the image of
the functions E f for f in S(!\G). Any particular K -constituent in Is is finite-
dimensional, so the image of all of S(!\G) in Is under the Fourier-Eisenstein
transform is the same as the image of the functions E f for f in SN (!∩P)\G .

If f lies in SN (!∩P)\G we can express it as

1
2π i

∫ σ+i∞

σ−i∞
f̂ (s) ds
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for any real σ . If we choose σ > 1 this gives us

E f = 1
2π i

∫ σ+i∞

σ−i∞
E( f̂ (s)) ds

and then

[E f ]P = 1
2π i

∫ σ+i∞

σ−i∞
E( f̂ (s))P ds

= 1
2π i

∫ σ+i∞

σ−i∞
f̂ (s) + τs f̂ (s) ds

= 1
2π i

∫ σ+i∞

σ−i∞
f̂ (s) ds + 1

2π i

∫ σ+i∞

σ−i∞
τs f̂ (s) ds

= 1
2π i

∫ 1−σ+i∞

1−σ−i∞
f̂ (s) + τ1−s f̂ (1 − s) ds.

In the last step we move the contour of one integral and make a substitution of
1 − s for s in the other. This implies that the Fourier-Eisenstein transform of E f

is f̂ (s) + τ1−s f̂ (1 − s). If we take residues of this expression at a pole, we obtain
(PW2). !

Keep in mind that since τsτ1−s = 1, on this image Es is well defined and τs = 0.
Hence the constant term of E(Fs) will just be Fs itself.

The Plancherel theorem. Suppose ϕs to be a smooth function of compact
support on the critical line -(s) = 1/2 with values in I. Define the Eisenstein series
Eϕ to be

Eϕ = 1
2π i

∫ 1/2+i∞

1/2−i∞
E(ϕs) ds.

It will be a smooth function on !\G. The Plancherel Formula for !\G asserts that
it will be in L2(!\G and that its L2-norm will be given by the equation

1
2

‖Eϕ‖2 = 1
2π i

∫ 1/2+i∞

1/2−i∞
‖ϕs‖2 ds.

As a consequence, the map ϕ '→ Eϕ extends to one from L2(1/2 + iR) to L2(!\G).
The principal consequence of the Plancherel theorem for our purposes is this:

(PW3) For f in S(!\H) the function f̂ (s) is square-integrable on 1/2 + iR
in the sense that

1
2π i

∫ 1/2+i∞

1/2−i∞
‖ f̂ (s)‖2 ds < ∞.
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Proof. For ϕ of compact support

〈 f, Eϕ〉 = 1
2π i

∫

-(s)=1/2
〈 f, E(ϕs)〉 ds

= 1
2π i

∫

-(s)=1/2
〈 f̂ 1−s, ϕ1−s〉 ds

≤ ‖ f ‖ ‖Eϕ‖

= 1
2

‖ f ‖ ‖ϕ‖

so f̂ (s) extends to a continuous functional on L2(1/2 + iR), and must itself lie in
L2(1/2 + iR) by Radon-Nikodym. !

Spectral considerations. The Casimir operator is self-adjoint on any one K -
component of L2(!\H). A standard argument about self-adjoint operators implies
that

‖C − λ‖−1 ≤ |&(λ)|−1

and here

&(s(s − 1)) = 2σ t, s = 1/2 + σ + i t

‖C − s(s − 1)‖−1 ≤ 1
2|σ t |

.

The construction of Eisenstein series in, for example, [Colin de Verdière:1981]
shows then that

‖.T E(ϕs)‖ = O
(

1
2σ |t |

)
.

Since we can write

E(ϕs) = .T E(ϕs) + CT (ϕs)

we have

〈 f, E(ϕ1−s)〉 =
〈
f, .T E(ϕ1−s)

〉
+

〈
f, CT E(ϕ1−s)

〉

| 〈 f, E(ϕ1−s)〉 | ≤ ‖ f ‖
∥∥.T E(ϕ1−s)

∥∥ +
∣∣〈 f, CT E(ϕ1−s)

〉∣∣ .

The second term involves an easy calculation on R
pos, and since the same reasoning

applies to all Cn f we deduce

(PW4) In any subregion of -(s) < 1/2, |-(s)| > τ bounded to the left

‖F(s)‖ = O
(

1
σ |t |m

)

for all m > 0, where s = 1/2 − σ + i t .
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The Paley-Wiener theorem. If f lies in S then so does every Cm f . Define
PW (!\G) to be the space of all meromorphic functions F(s) with values in I
such that every 0(s) = )(s)m F(s) satisfies (PW1)–(PW4). These translate to the
following conditions on F(s) itself:

• F(1 − s) = τs F(s)

• F(s) has only simple poles on [0, 1/2) in the region -(s) ≤ 0, located
among the poles of E1−s . The residue F#(s) at s lies in the image of τ1−s .

• The restriction of any sm F(s) to (1/2 + iR) is square-integrable.

• In any region s = 1/2 − σ + i t with σ bounded, t bounded away from 0,
we have

‖F(s)‖ = O
(

1
σ |t |m

)
.

for all m > 0.

For F in PW (!\G), let F#(s) be its residue at any s in [0, 1/2). Define

E(F) = −
∑

Es(F#(s)) + 1
2

1
2π i

∫ 1/2+i∞

1/2−i∞
Es(F(s)) ds.

Theorem. (1) The map E has image in S(!\G). (2) If F = f̂ then E(F) has
the same constant term as f .

Proof. It comes to showing that the constant term of E(F) is

1
2π i

∫ σ+i∞

σ−i∞
F(s) ds

for σ 1 0. The crucial point, as before, is that we are allowed to move contours by
the results of the last section. !

Cusp forms. We now have a map from S(!\G) to a space of meromorphic
sections of I satisfying certain conditions, with an inverse map back from the
space of such sections to S(!\G). The kernel of this map is precisely the sub-
space of functions in S(!\G) whose constant term vanishes identically. This is the
subspace of cusp forms. We therefore have an explicit version of the direct sum
decomposition

S(!\G) = Scusp ⊕SEis.

The space of cusp forms is itself a direct sum of irreducible G-representations, each
with finite multiplicity. If π is one of these components, then the map f '→ 〈 f, v〉
(v ∈ Vπ ) induces a map from S(!\G) to the dual of a cuspidal representation



P1: GIG

PB440-08 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 16:48

bill casselman186

π . The cuspidal component of S(!\G) is a kind of Schwartz discrete sum of
irreducible unitary representations of G. In order to say more we must know about
the asymptotic distribution of cusp forms. But that is another story.

A calculus exercise. In the next section we shall need this result:

Lemma. Suppose f (x) to be a function in Cr+1(0, ρ], such that for some κr+1

∣∣ f (r+1)(x)
∣∣ ≤ κr+1

xr

for all 0 < x ≤ ρ. Then

f0 = lim
x→0

f (x)

exists, and

| f0| ≤ A κr+1 +
∑

0≤k≤r

ρk

k!
| f (k)(ρ)|

for some positive coefficient A independent of f .

In effect, the function f (x) extends to a continuous function on all of [0, ρ].
As an illustration of the Lemma, let 9(x) = x log x − x . We have on the one

hand

9(x) = x log x − x

9′(x) = log x

9′′(x) = 1
x

9′′′(t) = − 1
x2

9(p)(x) = (−1)p (p − 2)!
x p−1

9(r+1)(x) = (−1)r+1 (r − 1)!
xr

,

and on the other limx→0 9(x) = 0. The function 9(x) will play a role in the proof of
the Lemma.

Proof. It is an exercise in elementary calculus. The cases r = 0, r ≥ 1 are
treated differently. Begin by recalling the elementary criterion of Cauchy: If f (x)
is continuous in (0, ρ] then limx→0 f (x) exists if and only if for every ε > 0 we can
find δ > 0 such that | f (y) − f (z)| < ε whenever 0 < y, z < δ. !
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(1) The case r = 0. By assumption, f is C1 on (0, ρ] and f ′ is bounded by κ1

on that interval. For any y, z in (0, ρ].

f (z) − f (y) =
∫ z

y
f ′(x) dx, | f (z) − f (y)| ≤ κ1 |z − y|.

Therefore Cauchy’s criterion is satisfied, and the limit f0 = limx→0 f (x) exists.
Furthermore

f0 = − f (ρ) +
∫ ρ

0
f ′(x) dx

| f0| ≤ | f (ρ)| + κ1ρ .

(2) The case r > 0. For any y in (0, ρ] we can write

f (ρ) − f (y) =
∫ ρ

y
f ′(x1) dx1

f (y) = −
∫ ρ

y
f ′(x1) dx1 + f (ρ).

We extend this by repeating the same process with f ′(x1) etc. to get

f ′(x1) = −
∫ ρ

x1

f ′′(x2) dx2 + f ′(ρ)

f (y) = −
∫ ρ

y
f ′(x1) dx1 + f (ρ)

= −
∫ ρ

y

(
−

∫ ρ

x1

f ′′(x2) dx2 + f ′(ρ)
)

dx1 + f (ρ)

=
∫ ρ

y

∫ ρ

x1

f ′′(x2) dx2 dx1 + (y − ρ) f ′(ρ) + f (ρ)

= −
∫ ρ

y

∫ ρ

x1

∫ ρ

x2

f ′′′(x3) dx3 dx2 dx1 + (y − ρ)
2

2

f ′′(ρ)

+ (y − ρ) f ′(ρ) + f (ρ)

= . . .

= (−1)p
∫ ρ

y
· · ·

∫ ρ

x p−1

f (p)(x p) dx p . . . dx1

+ (y − ρ)
(p − 1)!

p−1

f (p−1)(ρ) + (y − ρ)
(p − 2)!

p−2

f (p−2)(ρ) + · · · + f (ρ).

This is the familiar calculation leading to Taylor series at ρ. If we apply this also
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to z in (0, ρ] and set p = r + 1 we get by subtraction

f (y) − f (z) = (−1)r+1
∫ z

y
· · ·

∫ ρ

xr

f (r+1)(xr+1) dxr+1 . . . dx1

+ [(y − ρ)r − (z − ρ)r ]
f (r )(ρ)

r !

+ [(y − ρ)r−1 − (z − ρ)r−1]
f (r−1)(ρ)
(r − 1)!

+ · · · + [y − z] f ′(ρ).

In order to apply Cauchy’s criterion, we must show how to bound
∣∣∣∣

∫ z

y
· · ·

∫ ρ

xr

f (r+1)(xr+1) dxr+1 . . . dx1

∣∣∣∣ ≤
∫ z

y
· · ·

∫ ρ

xr

κr+1

xr
r+1

dxr+1 . . . dx1.

We do not have to do a new calculation to find an explicit formula for the iterated
integral

Ky,z,r =
∫ z

y
· · ·

∫ ρ

xr

1
xr

r+1
dxr+1 . . . dx1.

If we set f = 9 above we get

9(y) = y log y − y

=
∫ ρ

y
· · ·

∫ ρ

xr

(r − 1)!
xr

r+1
dxr+1 . . . dx1

+ (y − ρ)
r !

r

9(r )(ρ) + (y − ρ)
(r − 1)!

r−1

9(r−1)(ρ) + · · · + 9(ρ) ,

so that

Ky,ρ,r =
∫ ρ

y
· · ·

∫ ρ

xr

(r − 1)!
xr

r+1
dxr+1 . . . dx1

= 9(y) − (y − ρ)
r !

r

9(r )(ρ) − (y − ρ)
(r − 1)!

r−1

9(r−1)(ρ) − · · · − 9(ρ).

Ky,z,r = Kz,ρ,r − Ky,ρ,r

Since 9(x) is continuous on [0, ρ] we may now apply Cauchy’s criterion in the other
direction to see that the limit f0 exists. Furthermore, the bound on f (r+1) together
with the equation for f (y) − f (z) enable us to to see that

| f0| ≤ κr+1 |K0,ρ,r+1| +
r∑

0

ρ

k!

k ∣∣ f (k)(ρ)
∣∣.

This concludes the proof of the Lemma.

Moving contours. In the proof of Paley-Wiener theorems for the Schwartz
space of arithmetic quotients, it is necessary to allow a change of contour of inte-
gration which is not obviously justifiable. This is a consequence of the following
very general result. In this paper I require only the special case n = 1, but it is
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only slightly more difficult to deal with the general case, which will be needed for
Paley-Wiener theorems for groups of higher rank.

For the next result, for ε > 0 let
∑

ε

= {s ∈ C
n | 0 < -(si ) < ε}

and
∑

ε
= {s ∈ C

n | 0 ≤ -(si ) < ε}.

Theorem. Suppose 0(s) to be holomorphic in :ε. Suppose in addition that
for some positive integers m and r ≥ 0 it satisfies an inequality

0(σ + i t) = O
(

1 + ‖t‖m

∏
σ r

i

)
.

Thus for a fixed s in :ε the function t '→ 0(s + i t) is of moderate growth and
therefore defines by integration a tempered distribution 0s . For every s in the
region :ε the weak limit

0s = lim
x∈:ε,x→s

0x

exists as a tempered distribution. If the tempered distribution ϕ0 is the inverse
Fourier transform of 00, then for every s in :ε the product distribution ϕs =
e−〈s,•〉ϕ0 is tempered and has Fourier transform 0s .

Proof. It is a straightforward modification of that of a similar result to be found
on p. 25 in volume II of the series on methods of mathematical physics by by Mike
Reed and Barry Simon (which also contains an implicit version of the Lemma in
the previous section).

Suppose for the moment that s = 0, and choose λ a real point in :ε. Suppose
6(t) to be a function in the Schwartz space S(Rn). For each x in (0, 1] let

fλ(x) =
∫

Rn
0(xλ + i t)6(t) dt,

i.e., integration against 6 on the space -(s) = xλ. Then

f ′
λ(x) =

∫

Rn

d
dx

0(xλ + i t)6(t) dt

=
∫

Rn

∑
λk

[
∂ 0

∂sk

]
(xλ + i t)6(t) dt

=
∫

Rn

∑
λk

1
i
∂

∂tk

[
t '→ 0(xλ + i t)

]
6(t) dt

= i
∫

Rn
0(xλ + i t)

∑
λk

∂ 6(t)
∂tk

dt (integration by parts)

=
∫

Rn
0(xλ + i t)Dλ6(t) dt

!
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where

Dλ = i
∑

λk
∂

∂tk
.

Therefore for all p

f (p)
λ (x) =

∫

Rn
0(xλ + i t)D p

λ 6(t) dt.

The assumptions on 0 and 6 ensure that for all large integers k and suitable Cm+k

∣∣0(xλ + i t)D p
λ 6(t)

∣∣ ≤ C
1 + ‖t‖m

xnr
∏

λr
k

Cm+k

1 + ‖t‖m+k

∣∣ f (p)
λ (x)

∣∣ ≤ 1
xnr

CCm+k∏
λr

k

∫

Rn

1 + ‖t‖m

1 + ‖t‖m+k
dt.

The Lemma can therefore be applied to fλ(x) to see that fλ(0) exists and depends
continuously on the norms of 6, therefore defining in limit the tempered distribution

〈00,λ, 6〉 = lim
x→0

〈0xλ, 6〉

where

〈0σ , 6〉 =
∫

Rn
0(σ + i t)6(t) dt.

Define ϕ0,λ to be the inverse Fourier transform of 00,λ, a tempered distribution on
R

n . It remains to be shown that the product ϕσ of e−σ x and ϕ0,λ is also tempered for
σ in :ε, and that 0σ is the Fourier transform of ϕσ . This will prove among other
things that 00,λ doesn’t actually depend on the choice of λ.

Choose a function ψ in C∞
c (Rn). Its Fourier transform

6(s) =
∫

Rn
ψ(x)e−〈s,x〉 dx

will be entire, satisfying inequalities

|6(s)| = O
(

1
1 + ‖&(s)‖m

)

for every m > 0, uniformly on vertical strips ‖-(s)‖ < C .
Then for every σ in R

n with σi > 0 the product e−〈σ,x〉ψ(x) will also be of
compact support with Fourier transform

6σ (s) =
∫ ∞

−∞
e−〈σ,x〉e−〈s,x〉 f (x) dx = 6(σ + s).

Recall that if ϕ is a tempered distribution on R
n and and ψ in S(Rn) with Fourier

transforms 0 and 6 then (expressing it formally)

〈ϕ, ψ〉 =
(

1
2π i

)n ∫

(iR)n
0(s)6(−s) ds.
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Thus

〈ϕσ , ψ(x)〉 =
〈
ϕ0, e−〈σ,x〉ψ(x)

〉

= lim
x→0

(
1

2π i

)n ∫

(iR)n
0(xλ + i t)6(σ − i t) dt.

We change of contour of integration from σ + (iR)n to (iR)n , which is permissible
by our assumptions. The calculation continues

〈ϕσ , ψ(x)〉 = lim
x→0

(
1

2π i

)n ∫

(iR)n
0(xλ + σ + iu)6(−iu) du

=
(

1
2π i

)n ∫

(iR)n
0(σ + iu)6(−iu) du.

This result implies that the limit of 0s as s approaches 0 does not depend on the
way in which the limit is taken, since 00 = e〈s,x〉0s for all s in :ε.

Dealing with an arbitrary s in :ε is straightforward, since e−〈s,•〉ϕ0 is clearly
tempered.

This concludes the proof of the Theorem.

Corollary. Suppose 0(s) to be holomorphic in the region :ε, having as
continuous limit as -(s) → 0 a function in L2((iR)n). Assume that for some integer
r > 0 it satisfies an inequality

|0(σ + i t)| ≤ Cm

(1 + ‖t‖m)
∏

σ r
i

for all m > 0 in the region :ε. Then

lim
T →∞

(
1

2π i

)n ∫

‖s‖≤T
0(s)e〈s,x〉 ds =

(
1

2π i

)n ∫

-(s)=σ

0(s)e〈s,x〉 ds

for any σ in :ε.

The limit here is to be the limit in the L2 norm of the functions

ϕT (x) =
(

1
2π i

)n ∫

‖s‖≤T
0(s)e〈s,x〉 ds.

Formally, this is just a change of contours, but a direct argument allowing this
does not seem possible. Instead, apply the Theorem to the function 0(s), using the
hypotheses to compute its inverse Fourier transform in two ways.

To apply the results of this section to the principal results of this paper, a change
from additive to multiplicative coordinates is necessary. Thus e〈s,x〉 is replaced by
xs =

∏
xsk

k .
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CHAPTER 9

EQUIDISTRIBUTION DES POINTS DE HECKE

By Laurent Clozel and Emmanuel Ullmo

1. Introduction. André et Oort ont formulé un analogue de la conjecture de
Manin-Mumford, démontrée par Raynaud [32] [33], pour les points à multiplica-
tion complexe de l’espace des modules Ag,1 des variétés abéliennes principalement
polarisées. Dans les deux cas ces conjectures s’énoncent sous la forme: Une com-
posante irréductible de l’adhérence de Zariski d’un ensemble de points spéciaux
est une sous-variété spéciale.

La nouvelle preuve de la conjecture de Manin-Mumford, via la conjecture
de Bogomolov [39] [41] et l’équidistribution des petits points [37], suggère que
l’on peut essayer d’attaquer la conjecture de André et Oort via des théorèmes
d’équidistribution ayant une signification modulaire. Dans cette optique, on s’attend
à une réponse positive à la question suivante:

Question 1.1. Soit xn une suite “générique” de points à multiplication com-
plexe sur Ag,1(Q). Cela signifie que pour toute sous-variété Y ⊂ Ag,1 avec Y "=
Ag,1, l’ensemble {n ∈ N |xn ∈ Y (Q)} est fini. Pour x ∈ Ag,1(Q), on note O(x)
l’orbite sous Galois de x. Pour x ∈ Ag,1(C), on note δx la mesure de Dirac au point
x. Est-il vrai que la suite de mesures

µn = 1
Card(O(xn))

∑

y∈O(Xn)

δy

converge faiblement vers la mesure Sp(2g)(R)-invariante sur Ag,1(C)?

Dans le cas g = 1 et pour les points ayant multiplication complexe par l’anneau
des entiers OK d’un corps de nombres quadratique imaginaire, une réponse affir-
mative à cette question est donnée par un théorème de Duke [16].

Dans ce texte nous démontrons des énoncés d’équidistribution de ce type pour
les suites de mesures associées à des correspondance de Hecke. Les résultats que
nous avons en vue concernent les groupes G1 = GLn et G2 = GSp(2g). On rappelle
que Sp(2g) désigne le groupe laissant invariant la forme symplectique sur un espace
de dimension 2g de matrice

J =
(

0 −1g

1g 0

)

et que GSp(2g) désigne le groupe de similitude associé. Soit "i = Gi (Z).

Manuscript received October 17, 2002.
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On considère pour tout entier N positif et tout r ∈ [1, . . . , n] la double classe

Tr,N = "1Diag(N , . . . , N , 1 . . . , 1)"1(1)

où Diag(N , . . . , N , 1 . . . , 1) désigne la matrice diagonale dont les r premiers termes
sont égaux à N et les (n − r ) suivants sont égaux à 1. Pour G2, on considère la
double classe

TN = "2Diag(N , . . . , N , 1 . . . , 1)"2(2)

où Diag(N , . . . , N , 1, . . . , 1) désigne la matrice diagonale dont les g premiers
termes sont égaux à N et les g suivants sont égaux à 1. On note |Tr,N | et |TN | les
degrès de Tr,N et TN .

On note Zi le centre de Gi et L2("i\Gi (R), 1) l’espace des fonctions Zi -
invariantes de carré intégrable modulo le centre sur"i\Gi (R) pour la mesure Gi (R)-
invariante normalisée. On peut alors voir Tr,N et TN comme des opérateurs sur
L2("i\Gi (R), 1). On note alors T r,N = Tr,n

|Tr,n | l’opérateur normalisé et on définit de

même T N .
On peut aussi voir Tr,N comme une correspondance sur "1 Z1(R)\G1(R). Pour

tout x ∈ G1(R), on note Tr,N .x l’ensemble de points correspondant de "1\G1(R).
Par abus de notation, on note de la même manière l’image de ces points dans
"1 Z1(R)\G1(R). La même notation s’applique à TN .

Soit G un groupe réductif connexe défini et déployé sur Q, " = G(Z) et soit Z
son centre. Soit µn une suite de mesure de masse 1 sur "Z (R)\G(R). On normalise
la mesure de Haar dµ(g) sur G de sorte que

∫

Z (R)"\G(R)
dµ(g) = 1.

Soit C0("Z (R)\G(R)) l’espace des fonctions continues sur "Z (R)\G(R) qui ten-
dent vers 0 à l’infini. On dit que µn converge faiblement vers dµ(g) si pour tout
f ∈ C0("Z (R)\G(R)), on a

lim
n→∞

µn( f ) =
∫

Z (R)"\G(R)
f (g)dµ(g).

Si E est un ensemble de points de "Z (R)\G(R) de cardinal nE , on note µE la
mesure 1

nE
#y∈Eδy , ou δx désigne la mesure de Dirac de support x . Soit En une suite

d’ensembles finis de points de "Z (R)\G(R). On dit que les En sont équidistribués
pour la mesure de Haar si la suite µEn converge faiblement vers dµ(g).

On montre dans ce texte les deux théorèmes suivants:

Théorème 1.2. Soient n ≥ 3, G = G1 = GLn et r ∈ [1, . . . , n − 1].

(a) Pour tout f ∈ L2("1\G1(R), 1) et tout nombre premier p, on a

‖T r,p f −
∫

Z1(R)"1\G1(R)
f (g)dµ(g)‖ ≤ n! p−

min(r,n−r )
2 ‖ f ‖.(3)
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En particulier, quand N tend vers l’infini, parmi les entiers sans facteurs
carrés T r,N f tend, pour la convergence L2, vers la fonction constante égale à∫

Z1(R)"1\G1(R) f (g)dµ(g).

(b) Pour tout x ∈ "1\G1(R) la suite des Tr,N .x est équidistribuée pour la
mesure de Haar.

Pour décrire les résultats analogues pour G2 = GSp(2g), on introduit la “con-
stante de Ramanujan” θ relative au groupe SL2. La définition précise sera donné dans
la partie 6 de ce texte. Disons seulement qu’avec nos normalisations, on a θ = 0
si la conjecture de Ramanujan pour les composantes locales des représentations
automorphes cuspidales de SL2(F), pour un corps de nombres arbitraire F est
vérifiée. L’estimation triviale de Hecke donne θ = 1, le théorème de Gelbart-
Jacquet [19] donne 0 ≤ θ ≤ 1

2 et la meilleure estimée valable pour tout corps de
nombres (Shahidi [35]) donne 0 ≤ θ ≤ 2

5 . Notons que Luo, Rudnick et Sarnak [26]
[27] ont récemment obtenu la même borne par une autre méthode qui a l’avantage
de donner aussi des résultats de ce type aux places archimédiennes. Une meilleure
estimée, valable uniquement pour F = Q est donné dans [4]; elle sera utilisé dans
la partie concernant la courbe modulaire X (1).

Théorème 1.3. Soit G = G2 = GSp(2g).
(a) Pour tout f ∈ L2("2\G2(R), 1) et tout nombre premier p on a

‖T p f −
∫

Z2(R)"1\G2(R)
f (g)dµ(g)‖ ≤ 2g p−

g(1−θ )
2 ‖ f ‖.(4)

En particulier, quand N tend vers l’infini parmi les entiers sans facteurs carrés,
T r,N f →

∫
Z2(R)"2\G2(R) f (g)dµ(g) au sens L2.

(b) Pour tout x ∈ "2\G2(R) la suite des TN .x est équidistribuée pour la mesure
de Haar.

Notons que les estimations pour la norme L2 dans les deux théorèmes
précédents sont essentiellement optimales: En formant des séries d’Eisenstein à par-
tir de la représentation triviale du sous-groupe de Lévi GLn−1 × GL1 de GLn , on fab-
rique des fonctions dans L2("\GLn(R), 1), dans l’orthogonale des fonctions con-
stantes, pour lesquelles les bornes obtenues dans le théorème (1.2) sont optimales
en ce qui concerne la puissance de p. De même en formant des séries d’Eisenstein
à partir de la représentation triviale du sous-groupe de Lévi GL1 × GSp(2g − 2)
on voit que si la conjecture de Ramanujan pour SL2 est vraie (donc θ = 0) les
estimées du théorème (1.3) sont aussi essentiellement optimales.

Décrivons le plan de ce texte et des démonstrations de ces théorèmes.
Dans la deuxième partie nous traitons le cas de la courbe modulaire Y (1) = "\H

quotient du demi-plan de Poincaré par " = SL2(Z). Cette partie est indépendante
du reste du texte mais elle permet de comprendre la srtucture de la preuve des
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théorèmes (1.2) et (1.3) dans ce cadre élémentaire. Le résultat découle du fait
que les fonctions intevenant dans la décomposition spectrale sont propres pour les
opérateurs de Hecke et que l’on dispose des bornes [4] pour les valeurs propres de
ces opérateurs. Nous donnons deux applications de ces résultats: Dans la section 2.3
nous étendons les résultats de Duke à des discriminants non fondamentaux. Ceci
donne donc une réponse complète à la question 1 quand g = 1. Dans la section
2.4, on utilise les résultats précédents pour montrer qu’une application propre de
Y (1) = SL(2, Z)\H dans Y (1) qui commute en tant que correspondance à trois
opérateurs de Hecke est soit l’identité soit l’application obtenue par passage au
quotient de l’application z →−z du demi-plan de Poincaré H.

Dans la troisième partie, on décrit la décomposition spectrale de l’espace
L2(Z (R)"\G(R)) en fonction des vecteurs sphériques des représentation auto-
morphes de G(A). On explique aussi comment les opérateurs de Hecke agis-
sent sur les vecteurs sphériques de ces représentations via la transformée de
Sataké. On verra que la transformée de Sataké s’exprime sous une forme très
simple en fonctions des paramètres des représentations (non ramifiées) intervenant
dans la décomposition spectrale pour les opérateurs de Hecke des théorèmes 1.2
et 1.3. Ceci explique dans quelles autres situations notre méthode est susceptible
de s’adapter.

Dans la quatrième partie nous démontrons la partie L2 du théorème 1.2 pour
GLn . La difficulté nouvelle par rapport au cas classique provient de la présence du
spectre résiduel. Le théorème de Moeglin et Waldspurger [30] permet de décrire tous
les paramètres des représentations automorphes intervenant dans la décomposition
spectrale pour GLn à partir des paramètres de représentations automorphes cuspi-
dales de GLm pour m ≤ n. On utilise alors les approximations de la conjecture de
Ramanujan dues à Jacquet et Shalika pour n ≥ 3 [22] et à Gelbart et Jacquet [19]
pour n = 2. Le résultat combinatoire à la base de la démonstration du théorème
est donné dans la proposition (4.2). Notons qu’une meilleure approximation de
la conjecture de Ramanujan pour GLm comme celles obtenues dans [26] [27] ne
changerait pas nos estimations.

Pour GSp(2g), on ne dispose pas d’une description aussi agréable des
paramètres des représentations intervenant dans la décomposition spectrale. Nous
donnons dans la cinquième partie deux démonstrations de l’analogue en p du
principe de restriction de Burger, Li et Sarnak [8] [9]: Pour tout groupe semi-
simple, simplement connexe G défini sur Q, on définit le spectre automorphe Ĝaut

p .
C’est un sous-ensemble du dual unitaire Ĝ p de G p = G(Qp). On montre alors

Théorème 1.4. Soit H un sous-groupe semi-simple de G. Soit π ∈ Ĝaut
p et

π ′ ∈ Ĥp. Si π ′ est faiblement contenue dans π |Hp , alors π ′ ∈ Ĥ aut
p .

Nous utilisons cet énoncé dans la sixième partie avec G = Sp(2g) et H = SLg
2

pour controler la croissance des fonctions sphériques associées aux représentations
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non ramifiés intervenant dans la décomposition spectrale de G grâce aux formules
explicites pour les fonctions sphériques associés aux représentations automorphes
sphériques sur SL2. On interprète ensuite ces résultats comme des bornes sur le spec-
tre de l’opérateur Tp. On termine cette partie en faisant le lien avec les conjectures
d’Arthur qui permettent aussi de prévoir le spectre de Tp.

Dans la septième partie, nous étendons les techniques précédentes à des groupes
possédant un sous-système de racines fortement orthogonal de rang maximal. On
explicite le cas de G = SO(2g + 1).

Dans la dernière partie on complète la démonstration des théorèmes 1.2 et 1.3.
Quand les fonctions test sont suffisament régulières nous estimons la vitesse de
convergence dans les énoncés des théorèmes 1.2 b et 1.3 b.

Les problèmes considérés dans cet article, ainsi que les méthodes que nous
utilisons ont été introduits pour la première fois de façon systématique par Burger,
Li et Sarnak [8], [9]. En particulier la section 5 ne fait qu’étendre aux places finies,
ainsi qu’ils l’avaient eux même envisagé, un résultat fondamental de Burger et
Sarnak [9], alors que les sections 6 et 7 adaptent leur méthode de restriction à un
groupe maximal du groupe ambiant.

Nous avons appris après avoir complété ce travail qu’une partie des résultats
concernant GLn et l’opérateur T1,p ont été annoncés avec une esquisse de preuve
par Sarnak [34] dans son rapport au congrès international de Kyoto. Des précisions
pour le cas n = 2 et n = 3 sont données par Chiu dans [13]. Comme notre méthode
pour GLn est plus précise (grâce à notre utilisation du théorème de Moeglin et
Waldspurger), concerne plus d’opérateurs de Hecke, et vu l’absence d’une preuve
détaillée des résultats de [34], il nous a semblé utile de rédiger nos résultats sur
GLn .

Nous tenons à remercier P. Gille, P. Michel, P. Sarnak, S.Kudla et S. Zhang pour
d’utiles conversations relatives à ce travail. Après la rédaction de ce travail est apparu
le papier de Oh [31] qui permet d’améliorer les résultats de notre § 6. Pour ceci nous
renvoyons le lecteur à: L. Clozel, H. Oh, E. Ullmo, Equidistribution des points de
Hecke, Inventiones Math 114 (2001), 327–351. Comme les méthodes introduites
dans cet article ont depuis été utilisées—et l’article cité—dans de nombreux papiers
ultérieurs, nous avons néanmoins conservé la présente rédaction.

Acknowledgments. L’un des auteurs (L.C.) se souvient avec gratitude de
l’hospitalité de Joseph Shalika à l’université de Johns Hopkins. Tous deux sont
heureux de lui dédier ce travail en témoignage d’admiration.

2. Le cas classique. Soient H le demi plan de Poincaré, " = SL(2, Z). On
note Y (1) la courbe modulaire Y (1) = "\H et X (1) la courbe propre obtenue
en rajoutant la pointe ∞ à Y (1). On note dµ0 = 3

π
dx dy

y2 la mesure de Poincaré
et D0 = y2( ∂

2

∂x2 + ∂2

∂y2 ) le laplacien associé. On note L2("\H, dµ0) l’espace des
fonctions "–invariantes de carré intégrable pour la mesure de Poincaré. On note
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Cc("\H) (resp C0("\H)) l’espace des fonctions continues à support compact
(resp des fonction continues tendant vers 0 en l’infini). On notera aussi D("\H)
l’espace de fonctions "–invariantes bornées de classe C∞ telles que D0 f est aussi
bornée et de classe C∞.

On dispose sur X (1) des correspondances de Hecke Tn définies pour tout entier
n par

Tn.z =
∑

ad=n

∑

0≤b<d

az + b
d

.(5)

La correspondance Tn est de degré σ1(n) où pour tout nombre complexe s on a
σs(n) =

∑
d/n ds . Pour toute fonction f sur X (1) on définit Tn f par la formule

Tn f (z) =
∑

y∈Tn .z

f (y).(6)

Théorème 2.1. (a) Pour toute fonction f dans L2("\H, dµ0) et tout ε > 0,
il existe une constante Cε , ne dépendant que de ε, telle que:

∥∥∥∥
1

σ1(n)
Tn f −

∫

"\H
f (ζ )dµ0(ζ )

∥∥∥∥ ≤ Cεn−
1
2 + 5

28 +ε‖ f ‖.(7)

En particulier on a une convergence au sens L2 de Tn f vers
∫
"\H f (ζ )dµ0(ζ )

quand n tend vers l’infini.

(b) Pour toute fonction f ∈ D("\H), pour tout z ∈ "\H et tout ε > 0, il existe
une constante Cε,z, f telle que

∣∣∣∣
1

σ1(n)
Tn f (z)−

∫

"\H
f (ζ )dµ0(ζ )

∣∣∣∣ ≤ Cε,z, f n−
1
2 + 5

28 +ε .(8)

Quand z varie dans un compact, la constante Cε,z, f peut être rendue indépendante
de z.

(c) Pour tout f ∈ C0("\H) et tout z ∈ "\H, on a

lim
n→+∞

1
σ1(n)

Tn f (z) =
∫

"\H
f (ζ )dµ0(ζ ).(9)

Cette convergence est uniforme sur les compacts.

2.1. Décomposition spectrale de L2(Γ\H, dµ0). On rappelle que L2("\H,

dµ0) désigne l’espace des fonctions "–invariantes de carré intégrable pour la
mesure de Poincaré. Cet espace se décompose via l’opérateur D0 sous la forme

L2("\H, dµ0) = ⊕n≥0 C[ϕn]⊕ E

où ϕn est une famille orthonormée de fonctions propres de D0 de valeurs propres
associées −λn et E est la partie relative au spectre continu. La famille non bornée
0 = λ0 < λ1 ≤ λ2 . . . forme le spectre discret de l’opérateur D0. On note sn et rn
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les nombres complexes vérifiant λn = sn(1− sn) = 1/4 + r2
n (rn est réel d’après

Roelcke). Il est possible de choisir les ϕn propres pour tout les opérateurs de Hecke.
Nous supposerons ce choix fait dans la suite.

La partie relative au spectre continu est donnée par l’isomométrie suivante:

E : L2(R+) → E

h → 1√
2π

∫ +∞

0
h(t)E∞

(
z,

1
2

+ it
)

dt
(10)

où L2(R+) désigne les fonctions de R+ de carré intégrable pour la mesure de
Lebesgue et E∞(z, s) est la série d’Eisenstein en la pointe∞, donnée par la formule

E∞(z, s) = 1
2

∑

(m,n)=1

1
|mz + n|2s

.

Soit α ∈ L2("\H, dµ0) de décomposition spectrale

α(z) =
∑

n≥0

Anϕn(z) +
∫ +∞

0
h(t)E∞

(
z,

1
2

+ it
)

dt(11)

alors

An = (α,ϕn) =
∫

X
α(z)ϕn(z) dµ0(z)

h(t) = 1
2π

∫

X
α(z)E∞

(
z,

1
2
− it
)

dµ0(z)

(au moins si α est à décroissancce assez rapide, par exemple si α ∈ D("\H)) et sa
norme L2 est donnée par

‖α‖2 =
∑

n

|An|2 + 2π
∫ +∞

0
|h(t)|2 dt.(12)

Si on suppose de plus que la fonction α(z) appartient à D("\H), alors le
développement (11) est absolument convergent et uniformément convergent sur les
compacts [21] théorèmes (4.7) et (7.3).

2.2. Preuve du théorème dans le cas classique. Pour démontrer le théorème
2.1, on commence par traiter le cas où on a f = ϕn pour un n ∈ N et le cas où f
est dans la partie continue du spectre de D0. On finit en utilisant la décomposition
spectrale (11).

Pour f = ϕ0, c’est à dire pour les fonctions constantes le théorème 2.1 est
trivial car Tn est une correspondance de degré σ1(n).

Lemme 2.2. Pour tout k ≥ 1, et tout z ∈ Y (1), on a

lim
n→∞

Tnϕk(z)
σ1(n)

= 0 =
∫

"\H
ϕkdµ0.(13)
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Preuve. On rappelle que ϕn est une fonction propre de tout les opérateurs de
Hecke. On définit αk(n) par

Tn.ϕk = αk(n)ϕk .

La conjecture de Ramanujan-Petersson dans ce cadre prévoirait l’estimation:

|αk(n)| ≤ d(n)n1/2,

où d(n) = σ0(n) est le nombre de diviseurs de n. La meilleure borne connue
est [4]:

|αk(n)| ≤ d(n)n1/2+ 5
28 .(14)

On en déduit que l’on a pour tout ε > 0 et n assez grand
∣∣∣∣
Tnϕk(z)
σ1(n)

∣∣∣∣ =
∣∣∣∣
αk(n)
σ1(n)

f (z)
∣∣∣∣ ≤ n−1/2+ 5

28 +ε| f (z)|.(15)

Ceci termine la preuve du Lemme 2.2.

Lemme 2.3. Soit f une fonction dans E ∩ D("\H). On a:

lim
n→∞

Tn f (z)
σ1(n)

= 0 =
∫

"\H
f dµ0.(16)

Preuve. On peut alors trouver une fonction h(t) dans L2(R+) telle que:

f (z) =
∫ ∞

0
h(t)E∞

(
z,

1
2

+ it
)

dt

et cette dernière intégrale est absolument convergente. On rappelle que la série
d’Eisenstein E∞(z, s) est propre pour tous les opérateurs de Hecke et que l’on a la
relation:

Tn E∞(z, s) = nsσ1−2s(n)E∞(z, s).

On en déduit alors la relation

Tn f (z) = n1/2
∫ ∞

0
nitσ−2it(n)h(t)E∞

(
z,

1
2

+ it
)

dt.(17)

On en déduit alors que pour tout ε > 0 et tout n assez grand, on a l’inégalité:
∣∣∣∣
Tn f (z)
σ1(n)

∣∣∣∣ ≤ n−1/2+ε
∫ ∞

0
|h(t)E∞(z, s)|dt.(18)

Ceci termine la preuve du lemme 2.3.
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Preuve du Théorème 2.1. Soit f une fonction dans L2("\H, dµ0)). On écrit sa
décomposition spectrale sous la forme

f (z) =
∑

k≥0

Akϕk(z) +
∫ +∞

0
h(t)E∞

(
z,

1
2

+ it
)

dt.(19)

Si on pose

Jn =
∥∥∥∥

Tn f
σ1(n)

−
∫

"\H
f (ζ )dµ0(ζ )

∥∥∥∥ ,

on obtient alors

Jn =
∥∥∥∥∥
∑

k≥1

Akαk(n)φk

σ1(n)
+ n

1
2

σ1(n)

∫ ∞

0
nitσ−2it(n)h(t)E∞(z, s) dt

∥∥∥∥∥ .

D’après l’expression de la norme L2 donnée à l’équation (12), on a:

J 2
n = 1

σ1(n)2

∑

k≥1

|Ak |2|αk(n)|2 + 2π
n

σ1(n)2

∫ ∞

0
|h(t)|2|σ−2it(n)|2dt.

On termine la preuve de la première partie du théorème (2.1) en utilisant l’estimation
sur les valeurs propres αk(n) donnée dans l’équation (14).

On suppose maintenant que f ∈ D("\H) et on fixe z ∈ "\H. En utilisant les
équations (15) et (18) on obtient pour tout ε > 0 et tout n assez grand la majoration:

∣∣∣∣
Tn f (z)
σ1(n)

− A0

∣∣∣∣ ≤ n−1/2+5/28+ε

(
∑

k≥1

|Akϕk(z)| +
∫ ∞

0
|h(t)E∞(z, s)|dt

)

.

Ceci termine la preuve de la deuxième partie du théorème (2.1) car A0 =∫
"\H f (z)dµ0(z) et l’expression dans le membre de droite de la dernière inégalité

a un sens car f ∈ D("\H) assure que sa décomposition spectrale converge absol-
ument. L’assertion sur la constante Cε,z, f résulte du fait que pour f ∈ D("\H), la
décomposition spectrale converge uniformément sur les compacts.

On suppose maintenant que f ∈ C0("\H). Soient z ∈ "\H et ε > 0. On peut
alors trouver φ ∈ D("\H) telle que

supx∈"\H| f (x)− φ(x)| ≤ ε

D’après la deuxième partie du théorème 2.1, pour tout n assez grand, on a
∣∣∣∣
Tnφ(z)
σ1(n)

−
∫

"\H
φdµ0

∣∣∣∣ ≤ ε.
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On pose In = | Tn f (z)
σ1(n) −

∫
"\H f dµ0|. On déduit de ce qui précède que

In ≤
∣∣∣∣
Tn f (z)
σ1(n)

− Tnφ(z)
σ1(n)

∣∣∣∣+
∣∣∣∣
Tnφ(z)
σ1(n)

−
∫

"\H
φdµ0

∣∣∣∣+
∣∣∣∣

∫

"\H
(φ − f )dµ0

∣∣∣∣ ≤ 3ε.

Ceci termine la preuve de la troisième partie du théorème 2.1.

2.3. Equidistribution des points CM. Dans cette partie, nous allons étendre
les résultats de Duke [16] sur l’équidistribution des points CM sur Y = "\H pour
donner une réponse à la question (1) dans le cas g = 1. Le travail de Duke permet
de traiter les discriminants fondamentaux. Les techniques précédentes permettent
d’aller dans la direction opposée: On fixe le corps de multiplication complexe et on
fait varier l’ordre dans l’anneau d’entiers.

Soient d un entier sans facteurs carrés, Kd = Q(
√
−d), OKd son anneau

d’entiers et hd l’ordre du groupe de Picard de OKd . Les ordres de OKd sont de la
forme OKd, f = Z + f OKd pour un unique conducteur f ≥ 1. On note hd, f le car-
dinal du groupe de Picard de OKd, f .

Soit.d, f l’ensemble des points ayant multiplication complexe par OKd, f ; c’est
un ensemble de cardinal hd, f .

Théorème 2.4. Pour toute fonction φ ∈ C0(Y ), on a

1
hd, f

∑

y∈.d, f

φ(y) −→
∫

"\H
φ(x)dµ0(x),(20)

quand d f →∞.

Comme l’ensemble C∞
c (Y ) des fonctions C∞ sur Y , à support compact, sont

denses dans C0(Y ), il suffit de prouver le théorème pour φ ∈ C∞
c (Y ). En changeant

φ par φ −
∫
"\H φ(x)dµ0(x) on se ramène au cas où

∫
"\H φ(x)dµ0(x) = 0. Soit

φ(z) =
∑

n≥1

Anφn(z) +
∫ ∞

0
h(t)E∞

(
z,

1
2

+ it
)

dt(21)

sa décomposition spectrale. On sait alors que pour tout A, on a An = O( 1
n A ) et

h(t) = O( 1
t A+1 ). Le théorème est alors conséquence de la proposition suivante:

Proposition 2.5. Il existe A > 0 tel que pour tout ε > 0, il existe Cε tel que:
∣∣∣∣∣

1
hd, f

∑

y∈.d, f

φn(y)

∣∣∣∣∣ ≤
Cεn A

d
1

28−ε f
1
2−

5
28−ε

(22)

et
∣∣∣∣∣

1
hd, f

∑

y∈.d, f

E∞

(
y,

1
2

+ it
)∣∣∣∣∣ ≤

Cε(t A + 1)

d
1
28−ε f

1
2−ε

.(23)



P1: GIG

PB440-09 HIDA-0662G PB440-Hida-v4.cls December 10, 2003 7:10

equidistribution des points de hecke 203

Quand f = 1, la proposition précédente est due à Duke. Pour tout d sans facteurs
carrés et tout n ∈ N, on note Rd(n) le nombre d’idéaux entiers de norme n dans
OKd . Pour tout couple (d, f ), on note wd, f le cardinal de O∗

Kd, f
/Z∗. Nous aurons

besoin du lemme suivant dû à Zhang [42] (prop 3.2.1).

Lemme 2.6. On a l’égalité entre diviseurs sur Y suivante:

T f
.d,1

wd,1
=
∑

c/ f

Rd

(
f
c

)
.d,c

wd,c
.(24)

On va traiter le cas où wd,c = 1 pour tout c et on laisse au lecteur scrupuleux le
soin d’écrire les modifications nécéssaires. Soit εd le caractère quadratique associé
à l’extension Q(

√
−d)/Q. On a alors la relation:

Rd(n) =
∑

k/n

εd(k)(25)

où εd désigne le caractère quadratique de l’extension Q(
√
−d) de Q.

Faisons un court rappel sur les fonctions arithmétiques. Notre référence est [1].
Soit f (n) et g(n) deux fonctions arithmétiques, on définit le produit de convolution
f ∗ g(n) par la formule

f ∗ g(n) =
∑

d/n

f (d)g
(n

d

)
.

Ce produit est alors associatif, commutatif et on dispose d’un élément neutre I (n)
qui est la fonction telle que I (1) = 1 et I (n) = 0 si n "= 1. Si f (1) "= 0, il existe
une unique fonction arithmétique f −1 telle que f ∗ f −1 = I . Si µ(n) désigne
la fonction de Moebius et u(n) la fonction constante u(n) = 1, on a la relation
µ ∗ u = I .

La relation (25) s’écrit alors dans ce langage Rd(n) = εd ∗ u(n). La formule
explicite pour le calcul de l’inverse nous donne alors la relation

R−1
d (m) = µ ∗ (µεd).(26)

On déduit de cela que pour tout ε > 0, on a |R−1
d (m)| = O(mε).

Soit φ une fonction sur Y = "\H. On rappelle que si E est un ensemble fini
de points de Y , on définit φ(E) par la formule

φ(E) =
∑

y∈E

φ(y).

On suppose que φ est propre pour tout les opérateurs de Hecke. On écrit alors
Tcφ = λc(φ)φ. On définit alors les deux fonctions arithmétiques

h(m) = Tmφ(.d,1)(27)
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et

g(m) = φ(.d,m).(28)

On a donc la relation h = Rd ∗ g donc g = R−1
d ∗ h. Un simple calcul prouve que

l’on a:
∑

y∈.d, f

φ(y) =
∑

y∈.d,1

∑

c/ f

R−1
d

(
f
c

)
λc(φ)φ(y).(29)

Si on prend φ = 1 dans cette équation,

hd, f = card(.d, f ) ≥ hd f.(30)

Quand φ = φn est une forme de Maass ou une série d’Eisenstein, Duke montre
([16] équations (6-5) et (6.6)) l’existence d’un A > 0 tel

∣∣∣∣∣
1
hd

∑

y∈.d,1

φn(y)

∣∣∣∣∣ ≤ n A O(|d|− 1
28 +ε)

et
∣∣∣∣∣

1
hd

∑

y∈.d,1

E∞

(
z,

1
2

+ it
)∣∣∣∣∣ ≤ t A O(|d|− 1

28 +ε).

On finit alors la preuve de la proposition en utilisant les estimations données
pour les valeurs propres de Hecke des formes de Maass et des séries d’Eisenstein
dans les équations (14) et (17) et l’estimée R−1

d (c) = O(cε) pour tout ε > 0.

2.4. Application: Un théorème de rigidité. Nous allons déduire du
théorème 2.1 le résultat de rigidité suivant. Soient " = SL(2, Z) et Y = "\H.
Soit

h : Y −→ Y

une application continue. Soit n un entier, on dit que h commute à l’opérateur
Tn si pour tout z ∈ Y , l’ensemble Tn(h(z)) coı̈ncide (avec ses multiplicités) avec
h(Tn(z)). Soit T−1 l’application de Y dans Y obtenue par passage au quotient de
l’application (z →−z) de H. On vérifie que T−1 commute avec tout les opérateurs
de Hecke. Le but de cette partie est de montrer le résultat suivant:

Théorème 2.7. Soient (p1, p2, p3) trois nombres premiers distincts. Soit
h : Y → Y une application continue et propre commutant avec Tpi (i ∈ {1, 2, 3}).
Alors h est l’identité ou h = T−1.

Lemme 2.8. Soit p un nombre premier. Soit h : Y → Y une application pro-
pre continue commutant à un opérateur de Hecke Tp, alors h préserve la mesure
invariante sur Y .
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Comme h est propre, h preserve Cc(Y ). Le lemme se déduit alors de la conver-
gence faible de la suite de mesure µn associée à l’ensemble En = (Tp)n.z0 vers la
mesure invariante dµ0 qui se déduit du théorème 2.1. (Voir § 8 dans le cas le plus
général.)

On rappelle que l’on a une décomposition L2(Y, dµ0) = L2
disc ⊕ E où L2

disc

désigne la partie discrète et E désigne la partie continue du spectre. Comme h
commute avec un opérateur Tp qui est borné et autoadjoint il conserve son spectre
discret et son spectre continu. On en déduit alors que:

Lemme 2.9. L’application

H : L2(Y, dµ0) → L2(Y, dµ0)

définie par H ( f )(z) = f (h(z)) préserve L2
disc et E .

Lemme 2.10. Soit h : Y → Y une application vérifiant les hypothèses du
théorème 2.4. Pour tout z ∈ Y et tout t ∈ R, on a

E∞

(
h(z),

1
2

+ it
)

= c(t)E∞

(
z,

1
2

+ it
)

(31)

pour une fonction c(t) continue sur R telle que |c(t)| = 1.

Soit E l’isométrie entre L2(R+) et E donnée dans (10). Fixons T > 0. Pour
tout α ∈ L2[0, T ], on définit KT (α) = E−1(H (E(α))). On a donc la relation

∫ T

0
α(t)E∞

(
h(z),

1
2

+ it
)

dt =
∫ ∞

0
KT (α)(t))E∞

(
z,

1
2

+ it
)

dt.(32)

Soit p un des trois nombres premiers (p1, p2, p3). On pose

ηp(t) = pit + p−it.

On a donc

Tp E∞

(
z,

1
2

+ it
)

= p
1
2ηp(t)E∞

(
z,

1
2

+ it
)

.

Comme h commute à Tp, on a

KT (αηp)(t) = ηp(t)KT (α)(t).(33)

On commence par montrer:

Lemme 2.11. Soit A l’algèbre des fonctions continues complexes sur [0, T ]
engendrée par les fonctions constantes et (ηp1, ηp2, ηp3 ). Alors A est dense dans
l’ensemble C([0, T ]) des fonctions continues complexes sur [0, T ].

Preuve. Puisque ηp(t) = ηp(t), il suffit par le théorème de Stone-Weierstrass de voir
que A sépare les points. Or si ηp(t) = ηp(t ′), il existe k ∈ Z tel que t = ±t ′ + 2kπ

ln p .
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Si une telle égalité est vérifiée pour trois nombres premiers distincts, on obtient
t = t ′. Ceci termine la preuve du lemme (2.11).

Posons K T (α) = KT (α)|[0,T ]. D’après l’équation (33), K T commute à la mul-
tiplication par les fonctions continues sur [0, T ]. On en déduit que K T est la mul-
tiplication par la fonction cT (t) = K T (1). Si T ′ > T , la restriction à [0, T ] de cT ′

coı̈ncide avec cT . On en déduit que cT (t) est indépendant de T . On note alors c(t) la
fonction sur R+ qui vaut cT (t) pout tout T > t . Soient maintenant α ∈ L2(R+) et
χT la fonction caractéristique de [0, T ]. En appliquant ce qui précède à la fonction
αχT et en faisant tendre T vers l’infini, on trouve l’égalité entre fonctions de E
suivante:

∫ ∞

0
α(t)E∞

(
h(z),

1
2

+ it
)

dt =
∫ ∞

0
α(t)c(t)E∞

(
z,

1
2

+ it
)

dt.(34)

Pour des choix convenables de α(t), à z fixé, on a des convergences absolues
dans les intégrales précédentes. On en déduit que

E∞

(
h(z),

1
2

+ it
)

= c(t)E∞

(
z,

1
2

+ it
)

.(35)

Comme les séries d’Eisenstein sont analytiques en t ([21] théorème 6-11) et non
identiquement nulles en z si t "= 0 ([21] proposition 6-12), la fonction c(t) est
analytique pour tout t "= 0. Comme h préserve la mesure invariante, on a presque
partout |c(t)| = 1. Par continuité de c(t), on obtient bien |c(t)| = 1. Ceci termine
la preuve du lemme (2.10).

Lemme 2.12. On a c(t) = 1.

Preuve. On note, pour tout s ∈ C, θ (s) = π−s"(s)ζ (2s) et φ(s) = θ (s)
θ (1−s) .

L’équation fonctionelle des séries d’Eisenstein ([21] chapitre 3) donne:

E∞

(
z,

1
2

+ it
)

= E∞

(
z,

1
2
− it
)

= φ
(

1
2
− it
)

E∞

(
z,

1
2

+ it
)

.(36)

En écrivant cette égalité pour h(z) et en utilisant la définition de c(t), on trouve

c(t)E∞

(
z,

1
2

+ it
)

= φ
(

1
2
− it
)

c(t)E∞

(
z,

1
2

+ it
)

.(37)

Comme pour tout t "= 0, E∞(z, 1
2 + it) n’est pas identiquement nulle et que la

fonction φ( 1
2 + it) ne s’annule pas (car θ (s) ne s’annule pas pour Re(s) = 1

2 ) les
équations (36) et (37) impliquent que pour t "= 0, c(t) = c(t). Comme |c(t)| = 1
et c(t) est continue, on en déduit que c = ±1. Par prolongement analytique, on a
pour tout s où E∞(z, s) est holomorphe

E∞(h(z), s) = ±E∞(z, s).
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Pour s réel et assez grand la série d’Eisenstein est positive donc c(t) = 1. On a donc

E∞(h(z), s) = E∞(z, s).(38)

On va déduire la démonstration du théorème de ce qui précède et du comporte-
ment de séries d’Eisenstein pour s réel tendant vers +∞. En utilisant l’expression
explicite de la série d’Eisenstein pour Re(s) > 1, z = x + iy:

E∞(z, s) = 1
2

∑

(c,d)∈Z |(c,d)=1

ys

|cz + d|2s
,(39)

on montre facilement le lemme suivant

Lemme 2.13. Soit D = {z ∈ H tels que |z| > 1 , − 1
2 < Re(z) < 1

2} le do-
maine usuel pour ". Soit z = x + iy ∈ D. Pour s réel, s → +∞, on a le
développement asymptotique

E∞(z, s) = ys(1 + |z + 1|−2s + |z − 1|−2s + |z|−2s + O(ρs)),(40)

avec ρ < Inf(|z + 1|−2, |z − 1|−2) < 1.

On déduit de cela (et du fait que pour z ∈ D, on a |z ± 1| > 1) que si (z =
x + iy, z′ = x ′ + iy′) ∈ D et E∞(z, s) = E∞(z′, s), alors y = y′ et

{|z + 1|, |z − 1|} = {|z′ + 1|, |z′ − 1|}.

Il en résulte que z′ = z ou z′ = −z. Nous pouvons maintenant compléter la preuve
du théorème.

Soit 3 ⊂ X l’image de D, c’est un ouvert de mesure totale dans X . Soit 3′ =
h−1(3). Comme h préserve la mesure, c’est encore un ouvert de mesure totale dans
X . Soit D′ l’image inverse de 3′ dans D, c’est un ouvert de mesure totale dans D
et on peut considérer h comme une application continue de D′ dans D. Il résulte
du lemme 2.4 et de l’équation (38) que pour z ∈ D′, on a h(z) = z ou h(z) = −z.
On en déduit par continuité de h que pour tout z ∈ D on a h(z) = z ou h(z) = −z.
Il en résulte que h peut être vu comme une application continue de D dans D. Soit

D− = {z ∈ D; Re(z) < 0} et D+ = {z ∈ D; Re(z) > 0}.

Par connexité, on a h(D−) = D− ou h(D−) = D+. Comme h préserve la mesure,
on en déduit enfin que h est donné par l’identité ou par z →−z sur D− ∪ D+ et
donc partout.

3. Préliminaire.

3.1 Interprétation adélique. Soit G un groupe réductif déployé défini sur Z
et" = G(Z). On a en vue G = G1 = GLn ou G = G2 = GSp(2g). Soit A l’anneau
des adèles de Q et Af celui des adèles finies. On note G f = G(Af). Pour un nombre
premier p, on note Qp le corps des nombres p-adiques et Zp son anneau d’entiers.
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Soit K p = G(Zp), K f = 4p K p. On se donne de plus un compact maximal K∞ de
G(R) et on pose K = K∞ × K f . Soit G+(R) la composante connexe de l’élément
neutre de G(R), on suppose que l’on a une décomposition

G(A) = G(Q)G+(R)K f .

C’est le cas pour G = G1 et G = G2. On a alors:

" = G(Q) ∩ (G(R)× K f )

et " est un sous-groupe discret de G(R). On a une bijection entre l’espace des
fonctions sur G(Q)\G(A)/K f et l’espace des fonctions sur "\G(R) donnée par

α −→ (x → α(x × 1 f )),(41)

où 1 f désigne l’adèle finie dont toutes les composantes valent 1. On note f → φ f

la bijection réciproque.
Soit Hp = H (G p, K p), l’algèbre de Hecke locale des fonctions sur G p =

G(Qp) bi-invariantes sous K p et de support contenu dans une union finie de doubles
classes de la forme K pgp K p, gp ∈ G p. On pose

H f (G f , K f ) =
⊗

p

H (G p, K p).

On dispose d’une action par convolution de H f (G f , K f ) sur l’espace des fonctions
sur G(Q)\G(A)/K f .

Soient r ∈ [1, n − 1], chr,p ∈ H (GLn(Qp), K p) la fonction caractéristique de
la double classe

K pDiag(p, . . . , p, 1, . . . , 1)K p

et T ′
r,p l’opérateur associé sur les fonctions sur GLn(Q)\GLn(A)/K f . On a alors la

relation

T ′
r,pφ f = φTr,p . f(42)

De même soit ch p ∈ H (GSp(2g)(Qp), K p), la fonction caractéristique de la
double classe

K pDiag(p, . . . , p, 1, . . . , 1)K p

et T ′
p l’opérateur associé, on a

T ′
pφ f = φTp . f .(43)

3.2. Décomposition spectrale de L2(Γ\G(R), 1). Soit G un groupe
algébrique réductif défini et déployé sur Q. Le but de cette partie est d’expliquer
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les informations sur la décomposition spectrale de l’espace L2("\G(R), 1) dont
nous aurons besoin dans la suite de ce texte. Les références pour cette partie sont
[3], [29]. On garde les notations de la partie précédente. On fixe un parabolique
minimal P0 = B de composant de Lévi M0.

Soit P un parabolique standard (donc défini sur Q et contenant P0). On note
NP le radical unipotent de P et MP l’unique composant de Lévi de P contenant
M0 et TP le tore maximal (déployé) qui est central dans MP . Quand il n’y a pas
d’ambiguı̈té sur P , on se permet de supprimer les indices “P” dans les notations
précédentes. On rappelle que l’on sait définir une relation d’équivalence, la relation
d’association, pour les paraboliques standard [3].

On note X∗(M) le groupe des caractères rationnels de M ,

a∗M = X∗(M)⊗Z C

et X∗(M) = HomZ(X∗(M), Z). Pour tout χ ∈ X∗(M), on définit un homomor-
phisme continu |χ | de M(A) dans C∗ en associant à tout m = (ml) ∈ M(A) le
nombre complexe |χ |(m) = 4l |mχl

l |l et on note

M1 = ∩χ∈X∗(M)Ker|χ |.

On note X M le groupe des homomorphimes continus de M(A) dans C∗ qui sont
triviaux sur M1 et X G

M le sous-groupe de X M formé des homomorphismes qui sont
de plus triviaux sur le centre Z (A) (Z désignant le centre de G). On peut alors
identifier X G

M à un sous-espace vectoriel de a∗M [29]. On note Im(X G
M ) la partie

imaginaire de X G
M .

On rappelle que L2("\G(R), 1) désigne l’espace des fonctions sur "\G(R)
qui sont triviales sur le centre Z (R) de G(R) et qui sont de carré intégrable modulo
le centre. On a alors la décomposition de Langlands qui réalise L2("\G(R), 1)
comme un sous-module de

⊕

[P]

⊕

τ

∫

Im(X G
MP

)
IndG(A)

P(A)(τ ⊗ s ⊗ 1)K f dµτ (s)(44)

où [P] parcourt les classes d’association de paraboliques, τ décrit les représenta-
tions automorphes irréductibles intervenant dans la partie discrète de la représen-
tation régulière de M(A) sur L2(T (R)0 M(Q)\M(A)). Dans la somme directe (44),
L2("\G(R), 1) est l’espace des fonctions vérifiant les équations fonctionnelles
données par les opérateurs d’entrelacement [29].

La représentation

IndG(A)
M(A)N (A)(τ ⊗ s ⊗ 1)

est l’induite unitaire de la représentation de P(A) = M(A)N (A) qui est l’image
inverse de la représentation τ ⊗ s. Cet espace s’envoie dans l’espace L2(G(Q)\
G(A), 1) via la théorie des séries d’Eisenstein et on prend les K f -invariants.
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3.3. Action des opérateurs de Hecke. Pour comprendre l’action des
opérateurs de Hecke sur les fonctions intervenant dans la décomposition spectrale
(44), il faut décrire les représentations qui interviennent dans cette décomposi-
tion ainsi que l’action de H (G p, K p) sur les vecteurs K f -invariants de ces
représentations.

Soit π une telle représentation, on a une décomposition sous la forme d’un
produit tensoriel restreintπ = ⊗̂πl [18] et la composante en p est une représentation
unitaire non ramifiée de G p = G(Qp). On sait alors que πp est unitairement induite
à partir d’un caractère non ramifié χ de T0(Qp).

Soit N (T0) le normalisateur de T0 et W 2 N (T0)/T0 le groupe de Weyl de G.
Le caractère χ n’est défini qu’à l’action de W près. On note X∗(T0), le groupe
des caractères rationnels de T0 et X∗(T0) celui des cocaractères. On note < , >

l’accouplement de dualité sur X∗(T0)× X∗(T0). Soit L G le L-groupe associé à G p

(voir [5]). C’est un groupe réductif connexe sur C dont le système de racines est
dual de celui de G. On fixe un tore maximal T̂0 dans un sous-groupe de Borel de
L G. On a alors un isomorphisme

X∗(T̂0) 2 X∗(T0).

Soit (t1, . . . , tn) les coordonnées sur T̂0. La transformée de Sataké induit
un isomorphisme de l’algèbre de Hecke locale H (G p, K p)⊗ C avec l’algèbre
C[X∗(T̂0)]W des polynômes en les tεi

i , (εi = +1 ou −1), qui sont invariants par le
groupe de Weyl. On note S f la transformée de Sataké de f ∈ H (G p, K p).

On sait par ailleurs qu’il existe une bijection entre les caractères non ramifiés
de T0(Qp) modulo l’action de W et les classes de conjugaison d’éléments semi-
simples dans L G(C). On note tχ = (α1, . . . ,αn) un représentant de la classe de
conjugaison d’éléments semi-simples associée àχ . On sait que l’espace des vecteurs
K p-invariants de π est propre pour l’action des f ∈ H (G p, K p) de vecteur propre
S f (α1, . . . ,αn).

Le calcul de la transformée de Sataké peut se révéler très complexe; pour les
opérateurs de Hecke utilisés dans ce texte elle prend une forme particulièrement
simple. Soit φ ⊂ X∗(T0) l’ensemble des racines de G p, φ+ le sous-ensemble des
racines positives et ρ ∈ X∗(T0) la demi somme des racines positives. On note
P+ ⊂ X∗(T0) la chambre de Weyl positive définie par

P+ = {λ ∈ X∗(T0) | < λ,α >≥ 0 pour tout α ∈ φ+}.

On a alors une décomposition de la forme

G p = ∪λ∈P+ K pλ(p)K p

et les fonctions caractéristiques chλ de K pλ(p)K p pour λ ∈ P+ forment une base
de H (G p, K p). Par ailleurs les λ ∈ P+ ⊂ X∗(T̂0) paramètrent les représentations
irréductibles de dimensions finies Vλ de L G; λ est le plus haut poids de Vλ. Si
λ est un poids minuscule de L G la transformée de Sataké de chλ prend la forme
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suivante [24]:

S chλ = p<λ,ρ>Tr(Vλ).(45)

On vérifie que l’on est dans cette situation quand G = GLn ou G = GSp(2g) avec
les opérateurs de Hecke considéré dans ce texte.

Quand G = GLn , on peut prendre tχ = (t1, . . . , tn) avec

ti = χ (Diag(1, . . . , 1, p, 1, . . . , 1)).(46)

La représentation associé à chr,p est la puissance exterieure r -ième de la repré-
sentation standard de L G = GLn(C) et on trouve

S chr,p(α1, . . . ,αn) = p
r (n−r )

2

∑

1≤i1<i2<···<ir≤n

∏

j

αi j .(47)

On est aussi dans cette situation pour G = GSp(2g) et ch p. Le résultat est donné
dans le lemme 6.4. Pour le groupe G = SO(2g + 1), le résultat est donné dans le
lemme (7.2).

4. Le cas de GLN .

4.1. Le théorème de Moeglin-Waldspurger. Soit n ≥ 2 un entier et G =
GLn . Les notations générales des parties précédentes s’appliquent. Les sous-groupes
de Lévi standard de G sont de la forme

M = GLN1 × · · ·× GLNr

pour des entiers (N1, . . . , Nr ) tels que n =
∑

Ni . On note P le parabolique stan-
dard de composant de Lévi M formé de matrices triangulaires supérieures et N
son radical unipotent. Le but de cette partie est de décrire, grâce au théorème de
Moeglin et Waldspurger [30] les paramètres des représentations non ramifiées qui
interviennent dans la décomposition spectrale (44). Ces paramètres ne sont définis
qu’a l’action du groupe symétrique Sn près.

Soit π = ⊗̂lπl une représentation automorphe cuspidale de GLn(A). Soit p
une place telle que πp soit non ramifiée. Soit χ un caractère de T0(Qp) associé et
tχ = (t1, . . . , tn) (donnée par (46)). La conjecture de Ramanujan-Petersson prévoit
que pour tout j ∈ [1, . . . , n], on a |t j | = 1. Une approximation de cette conjecture
est donné par un théorème de Jacquet et Shalika [22]:

p−
1
2 < |ti | < p

1
2 .(48)

Si n = 2, on a une meilleure estimée [19]:

p−
1
4 < |ti | < p

1
4 .(49)

Ces estimations sont en fait valable sur tout corps de nombres et de meilleures
estimations sont données dans [26] [27] [35], mais ces améliorations ne nous seront
pas utiles dans la suite.
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Soit a et b deux entiers et N = ab. On pose

M ′ = GLa × · · ·× GLa ⊂ GLN

et P ′ le parabolique associé comme précédemment. Soit σ = ⊗̂σl une représen-
tation automorphe cuspidale unitaire de Gla(A). Pour tout s ∈ C, on note σ [s] la
représentation telle que pour tout g ∈ GLa(A) on ait

σ [s](g) = |det|sσ (g).

Soit

θ = σ
[

b − 1
2

]
⊗ σ

[
b − 3

2

]
⊗ · · ·⊗ σ

[
1− b

2

]
,

(il s’agit de produits tensoriels externes) c’est une représentation de M ′(A). Par un
théorème de Langlands, on sait que la représentation de GLN (A):

Ind GLN (A)
P ′(A) θ ⊗ 1

admet un unique quotient irréductible J (σ ). Jacquet et Shalika [23] montrent que
cette représentation intervient dans le spectre discret de GLN (A). Le théorème
de Moeglin-Waldspurger [30] nous assure que quand on fait varier a parmi les
diviseurs de N et σ parmi les représentations automorphes cuspidales on obtient
tout le spectre discret de GLN (A).

En une place p, où σ est non ramifiée, on note (t1, . . . , ta) les paramètres de
σp. La représentation J (σ )p est alors non ramifiée et a pour paramètres:

tσ,a,b =
(

t1 p
b−1

2 , . . . , ta p
b−1

2 , t1 p
b−3

2 , . . . , ta p
b−3

2 , . . . , t1 p
1−b

2 , . . . , ta p
1−b

2

)
.(50)

On revient maintenant à la situation intiale où n = N1 + N2 + · · · + Nr . On
suppose que pour tout i ∈ [1, . . . , r ] on a des entiers, ai et bi tels que Ni = ai bi .
On se donne des représentations cuspidales automorphes σi = ⊗̂σi,l de GLai (A) et
on fixe une place p pour laquelle σi,p est non ramifiée. On note (ti,1, . . . , ti,ai ) les
paramètres de σi,p. Soit

τ = J (σ1)⊗ · · ·⊗ J (σr )

la représentation discrète de M(A) obtenue par la construction précédente. Pour
tout s ∈ ImX G

M telle que la représentation

π = IndG(A)
P(A)τ ⊗ s ⊗ 1 = ⊗̂πl

soit irréductible et non ramifiée en p, les paramètres de πp sont de la forme

tπ = (t ′σ1,a1,b1
, . . . , t ′σi ,ai ,bi

)

avec

t ′σi ,ai ,bi
=
(

t ′i,1 p
bi−1

2 , . . . , t ′i,ai
p

bi−1
2 , . . . , t ′i,1 p

1−bi
2 , . . . , t ′i,ai

p
1−bi

2

)
(51)

où les t ′i, j sont des nombres complexes tels que |t ′i, j | = |ti, j |.



P1: GIG

PB440-09 HIDA-0662G PB440-Hida-v4.cls December 10, 2003 7:10

equidistribution des points de hecke 213

On définit dans la section suivante la notion de matrices de Hecke admissibles.
La définition est faite de telle sorte que, au vu de la discussion précédente, des es-
timées de Jacquet-Shalika et du fait que les représentations automorphes cuspidales
ont un caractère central unitaire on a montré le lemme:

Lemme 4.1. Les paramètres locaux en p d’une représentation π intervenant
dans la décomposition spectrale (44) sont les coefficients d’une matrice de Hecke
admissible.

4.2. Matrices de Hecke admissibles. Soit n un entier positif, n =
∑r

i=1 ai bi

pour des entiers ai et bi positifs. On suppose que si i ≤ j alors bi ≥ b j . Pour
tout i ∈ [1, . . . , r ], on se donne des nombres complexes (ti,1, . . . , ti,ai ) avec les
propriétés suivantes:

Pour tout couple (i, j) ∈ [1, . . . , r ]× [1, . . . , ai ] on a p
−1
2 < |ti, j | < p

1
2 .(52)

Pour tout i ∈ [1, . . . , r ] on a
ai∏

j=1

|ti, j | = 1.(53)

Si ai = 2 on a |ti,1| < p
1
4 et |ti,2| < p

1
4 .(54)

On note Di la matrice diagonale de GLai bi :

Diag
(
ti,1 p

bi−1
2 , . . . , ti,ai p

bi−1
2 , ti,1 p

bi−3
2 , . . . , ti,ai p

bi−3
2 , . . . , ti,1 p

1−bi
2 , . . . , ti,ai p

1−bi
2

)
.

On note D = Diag(D1, . . . , Dr ). On dit qu’une matrice de ce type est une matrice
de Hecke admissible. Les ti, j sont appelés paramètres cuspidaux de D. Une ma-
trice de Hecke est dite de type Ramanujan si tous ses paramètres cuspidaux sont
de module 1. Pour toute matrice de Hecke admissible D = Diag(x1, . . . , xn), on
note |D| = Diag(|x1|, . . . , |xn|) et DR la matrice obtenue à partir de D en rem-
plaçant tous les paramètres cuspidaux par 1. On constate que |D| est une matrice
de Hecke admissible et que DR est une matrice de Hecke de type Ramanujan. On
note Dtriv la matrice Dtriv = Diag(p

n−1
2 , p

n−3
2 , . . . , p

1−n
2 ).

On se donne de plus un polynôme homogène symétrique

Pr1,...,rn (x1, . . . , xn)(55)

obtenu par symétrisation à partir du monôme
∏n

i=1 xri
i . On suppose que si i ≤ j

alors ri ≥ r j . Si D = Diag(a1, . . . , an) ∈ GLn , on note

Pr1,...,rn (D) = Pr1,...,rn (a1, . . . , an).

Le but de cette partie est de montrer la proposition suivante.



P1: GIG

PB440-09 HIDA-0662G PB440-Hida-v4.cls December 10, 2003 7:10

l. clozel and e. ullmo214

Proposition 4.2. Pour tout n ≥ 3 et pour toute matrice de Hecke admissible
D telle que |D| "= Dtriv, on a:

"(D) = |Pr1,...,rn (D)|
|Pr1,...,rn (Dtriv)|

≤ n!p
−

[ n+1
2 ]∑

i=1

ri − rn+1−i

2
(56)

òu [x] désigne la partie entière de x et "(D) est défini par cette égalité.

Remarque 4.3. L’exposant en p est optimal, comme on le voit en calculant
Pr1,...,rn (D0) où D0 désigne la matrice de Hecke admissible de type Ramanujan
D0 = Diag(p

(n−1)−1
2 , . . . , p

1−(n−1)
2 , 1).

Soit D = Diag(α1, . . . ,αn) une matrice de Hecke admissible. On choisit une
permutation σ du groupe symétrique Sn telle que

β1 = |ασ (1)| ≥ β2 = |ασ (2)| ≥ · · · ≥ βn = |ασ (n)|.

On note ti = pθi les paramètres cuspidaux de βi . On note

Diag(α′i , . . . ,α
′
n) = DR

et on choisit une permutation σ ′ de Sn telle que

β ′1 = α′σ ′(1) ≥ · · · ≥ β ′n = α′σ ′(n).

On écrit β ′i = pγi , on remarque que l’on a la relation γn+1−i = −γi . On en déduit
le

Lemme 4.4. Pour toute matrice de Hecke admissible D on a:

"(D) ≤ n! p

n∑

i=1

riθi +
[ n+1

2 ]∑

i=1

(ri − rn+1−i )
(
γi −

n − (2i − 1)
2

)

.

(57)

Soient a et b deux entiers naturels positifs. On pose δ(1, b) = 0, δ(2, b) = b
4 et

pour tout a > 2

δ(a, b) = min
(

(a − 1)b
2

,
ab
4

)
.

On commence par montrer

Lemme 4.5. On a l’inégalité:

n∑

i=1

riθi ≤
r∑

i=1

δ(ai , bi )(r1 − rn).(58)
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Preuve. On fixe i ∈ [1, . . . , r ] et on note, pour j ∈ [1, . . . , ai ], θ ′j le nombre
réel tel que |ti, j | = pθ

′
j . On peut supposer (et on supposera) que l’on a les relations

1
2
≥ θ ′1 ≥ θ ′2 ≥ · · · ≥ θ ′ai

≥ −1
2
.

Dans la somme. =
∑n

i=1 riθi , chaque θ ′j intervient bi fois. On note σ(i, j,k) l’entier
de [1, . . . , n] qui est l’indice pour lequel θ ′j intervient pour la k-ième fois dans la
somme.. On a alors, pour tout j ∈ [1, . . . , ai ] et tout 1 ≤ k ≤ k ′ ≤ bi , l’inégalité
σ(i, j,k) ≤ σ(i, j,k ′). Par ailleurs, on peut supposer que tout 1 ≤ j ≤ j ′ ≤ ai et tout
k ∈ [1, . . . , bi ] l’inégalité: σ(i, j,k) ≤ σ(i, j ′,k).

En utilisant (53), on trouve que

.i =
ai∑

j=1

bi∑

k=1

rσ(i, j,k)θ
′
j =

ai−1∑

j=1

bi∑

k=1

(
rσ(i, j,k) − rσ(i,ai ,k)

)
θ ′j .

Ce qui donne en utilisant (52):

.i ≤
(ai − 1)bi

2
(r1 − rn)(59)

et si ai = 2 on obtient en utilisant (54):

.i ≤
bi

4
(r1 − rn).(60)

Par ailleurs, si ai > 2 et a′i désigne le nombre de θ ′j qui sont positifs, on a:

a′i∑

i=1

θ ′i = −
ai∑

i=a′i +1

θ ′i ≤ min
(

a′i
2

,
ai − a′i

2

)
≤ ai

4
.

On en déduit alors que

.i ≤ bi (r1 − rn)




a′i∑

i=1

θ ′i



 ≤ ai bi

4
(r1 − rn).(61)

Ceci termine la preuve du lemme 4.5 quand on a remarqué que . =
∑r

i=1.i .

Lemme 4.6. Pour tout n ≥ 4 et pour toute matrice de Hecke admissible D de
GLn telle que |D| "= Dtriv, on a

n∑

i=1

riθi + (r1 − rn)
(
γ1 −

n − 1
2

)
≤ −r1 − rn

2
.(62)

Preuve. D’après la définition des matrices de Hecke admissible et la conven-
tion b1 ≥ b2 ≥ · · · ≥ br , on a γ1 = b1−1

2 . D’après le lemme (4.5), il suffit de
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montrer que

λ = b1 − n
2

+
r∑

i=1

δ(ai , bi ) ≤ −
1
2
.

On a

λ ≤ b1 − n
2

r∑

i=1

(ai − 1)bi

2
= −

r∑

i=2

bi

2
.

Ceci prouve le lemme si r ≥ 2. Si r = 1, on a n = a1b1 et a1 "= 1 (sinon |D| = Dtriv).
Si a1 = 2, on a b1 ≥ 2 et λ = − b1

4 ≤ −
1
2 ; ce qui montre le lemme dans ce cas. Si

a1 > 2, on a

λ ≤ b1(2− a1)
4

≤ −1
2

dès que n "= 3. Ceci termine la preuve du lemme (4.6).
La preuve de la proposition (4.2) pour n ≥ 5 est alors conséquence du lemme

(4.2) et du lemme suivant:

Lemme 4.7. Pour tout n ≥ 5 et pour toute matrice de Hecke admissible D de
GLn telle que |D| "= Dtriv, on a

[ n+1
2 ]∑

i=2

(ri − rn+1−i )
(
γi −

n − (2i − 1)
2

)
≤ −

[ n+1
2 ]∑

i=2

ri − rn+1−i

2
.(63)

Preuve. On note ε = 1
2 si n impair et εn = 0 si n pair. Pour tout j ∈

[1, . . . , [ n+1
2 ]], on pose δ j = γ[ n+1

2 ]+1− j . On a alors en posant

µ =
[ n+1

2 ]∑

i=2

(ri − rn+1−i )
(
γi −

n − (2i − 1)
2

)
(64)

la relation

µ =
[ n−1

2 ]∑

j=1

(r[ n+1
2 ]+1− j − r[ n

2 ]+ j )
(
δ j + 1

2
+ εn − j

)
.(65)

On note pour tout i ∈ [1, . . . , r ]

Ai =
{

bi − 1
2

,
bi − 3

2
, . . . ,

1
2

}
si bi paire

et

Ai =
{

bi − 1
2

,
bi − 3

2
, . . . , 0

}
si bi impaire.
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Pour tout α ∈ 1
2N différent de 0, on note

λα =
∑

i |α∈Ai

ai

et

λ0 =





1 +
∑

i |0∈Ai

ai

2



 .

La suite des δ j est alors la suite croissante formée d’éléments α ∈ 1
2N, 0 ≤ α ≤

b1−1
2 , où chaque α apparaı̂t λα fois. On a pour tout j l’inégalité δ j+1 − δ j ≤ 1.

On voit alors qu’il suffit de prouver que pour tout j ≥ 2, on a

δ j + 1− j ≤ −1
2

et que δ1 − 1
2 ≤ −

1
2 car si n est impair alors r[ n+1

2 ] − r[ n
2 ] = 0. Le lemme (4.7)

s’obtient facilement avec cette remarque quand λ0 ≥ 2 ou λ0 = 1 et n pair.
Si λ0 = 1 et n impair alors λ 1

2
"= 0 sinon on a |D| = Dtriv. On a donc δ1 = 0 et

pour tout j ≥ 2, δ j ≤ 1
2 + j − 2. On a donc pour tout j ≥ 2 l’inégalité δ j + 1−

j ≤ − 1
2 . Ceci démontre le lemme dans ce cas car n étant impair il n’y a rien à

vérifier pour j = 1.
Si λ0 = 0, tous les bi sont pairs et donc n est lui aussi pair. On a δ1 = 1

2 et

λ 1
2

=
r∑

i=1

ai ≥ 2

car dans le cas contraire on a r = 1 et a1 = 1 et on retrouve |D| = Dtriv. On en
déduit que δ2 = 1

2 et que pour tout j ≥ 2, on a δ j ≤ 1
2 + j − 2. On en déduit alors

que pour tout j ≥ 2, on a δ j + 1
2 − j ≤ −1. Ceci termine la preuve du lemme et

de la proposition car comme n ≥ 5 il y a au moins 3 termes dans la somme µ et on
a l’inégalité r1 ≥ r2 ≥ · · · ≥ rn .

Il reste à montrer la proposition (4.2) pour n = 3 et n = 4.
Traitons le cas n = 4. On reprend les notations précédentes. La preuve

précédente prouve la proposition (4.2) si γ2 = 0 (utiliser les lemmes (4.4), (4.5) et
(4.6). On peut donc supposer b1 ≥ 2. Si b1 = 4 alors |D| = Dtriv. Si b1 = 3 alors
|D| = D0 et on a vu à la remarque (4.3) que l’estimée de la proposition (4.2) est
optimale. Il reste à regarder les cas b1 = a1 = 2 et b1 = b2 = 2 (donc a1 = a2 = 1).
Dans ces deux cas, il existe θ ∈ [0, 1

4 ] tel que

|D| = Diag(p
1
2 +θ , p

1
2−θ , p

−1
2 +θ , p

−1
2 −θ ).

On a alors

Pr1,r2,r3,r4 (D) ≤ 4!p( 1
2 +θ)(r1−r4)+( 1

2−θ)(r2−r3).
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Il suffit alors de prouver l’inégalité:

(r1 − r4)
(
−1

2
+ θ
)

+ (r2 − r3)
(

1
2
− θ
)
≤ 0

qui est une conséquence de l’inégalité r1 ≥ r2 ≥ r3 ≥ r4.
Dans le cas n = 3, on regarde suivant les valeurs des (ai , bi ). Le cas le plus

difficile est a1 = 3, b1 = 1, on laisse les autres cas au lecteur. On a alors

D = Diag(pθ1, pθ2, pθ3 )

avec θ1 + θ2 + θ3 = 0 et 1
2 ≥ θ1 ≥ θ2 ≥ θ3 ≥ − 1

2 . On doit alors prouver que

I = (r1 − r3)
(
θ1 −

1
2

)
+ (r2 − r3)θ2 ≤ 0.

Ceci est clair si θ2 ≤ 0. Si θ2 ≥ 0, alors comme r1 ≥ r2, on trouve

I ≤ (r1 − r3)
(
−1

2
+ θ1 + θ2

)
= (r1 − r3)

(
−1

2
− θ3

)
≤ 0.

Ceci termine la preuve de la proposition (4.2).

4.3. Preuve du théorème 1.2. Le but de cette partie est de prouver la première
partie du théorème 1.2. Soit donc n ≥ 3 un entier. On écrit la décomposition or-
thogonale:

L2("\GLn(R), 1) = C.1⊕ L

où C.1 désigne l’espace des fonctions constantes et L désigne l’orthogonal des
constantes. Soit π = ⊗̂πl une représentation automorphe de GLn(A) intervenant
dans la décomposition spectrale (44). La composante en p, πp est non ramifiée
et est unitairement induite à partir d’un caractère non ramifié χ de T0(Qp). On
note tχ = (t1, t2, , . . . , tn) les paramètres de πp. On sait d’après le lemme (4.1) que
la matrice diagonale Dχ ayant (t1, . . . , tn) comme coefficients est une matrice de
Hecke admissible au sens de la partie précédente.

On pose

Pr (X1, X2, . . . , Xn) =
∑

1≤i1<i2<···<ir≤n

Xi1 Xi2 . . . Xin .

Avec les notations de l’équation (55), on a

Pr (X1, X2, . . . , Xn) = P1,...,1,0,...,0(X1, X2, . . . , Xn).

En utilisant (41) et (42), on voit que l’action de T p sur la partie relative à π dans la
décomposition spectrale (44) est donnée par l’action de chr,p

deg(chr,p) sur la composante
en p d’un vecteur K f -invariant deπ . D’après l’équation (47) cette action est donnée
par la multiplication par

λπ,p = Pr (t1, . . . , tn)
Pr (Dtriv)

.
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Siπ n’est pas la représentation triviale, on a |Dχ | "= Dtriv. D’après la proposition
(4.2) on a

|λr,p| ≤ n!p−
min(r,n−r )

2 .

La première partie du Théorème (1.2) découle de la décomposition spectrale (44)
et de cette inégalité.

5. Le principe de restriction de Burger, Li et Sarnak aux places finies.
Soit G un groupe semi-simple connexe et simplement connexe défini sur Q et H
un sous-groupe semi-simple connexe de G. Le but de ce paragraphe est d’étendre
aux places finies un résultat de Burger et Sarnak ([9]: voir aussi [8]) formulé pour
la place archimédienne.

Soit donc p un nombre premier, et G p = G(Qp). Posons G∞ = G(R). Soit Ĝ p

le dual unitaire de G p. Soit " ⊂ G∞ × G p, un sous-groupe de congruence: donc

" = G(Q) ∩ K(66)

où K est un sous-groupe compact ouvert de G(Ap
f ); " est naturellement plongé

dans G∞ × G p.
Le groupe G∞ × G p opère à droite sur l’espace de formes automorphes

L2("\G∞ × G p).
Par restriction, on obtient une représentation de G p. Son support (Dixmier

[14], chapitre 18) est un sous-ensemble fermé de Ĝ p. Quand " varie parmi les
sous-groupes de congruence, on obtient ainsi une famille de fermés de Ĝ p; la
clôture de leur réunion est par définition le spectre automorphe de G p, noté Ĝaut

p .
Rappelons que si π est une représentation unitaire d’un groupe localement

compact, et ρ une représentation irréductible, ρ est faiblement contenue dans π
([14]: 18.1.3) si et seulement si ρ appartient au support de π .

Les notations et les définitions qui précèdent s’appliquent au groupe H .

Théorème 5.1. Soit π ∈ Ĝaut
p et soit π ′ ∈ Ĥp. Supposons π ′ faiblement con-

tenue dans π |Hp . Alors π ′ ∈ Ĥ aut
p .

Si l’on remplace p par la valuation archimédienne, ceci est le Théorème 1.1
(a) de Burger et Sarnak. Notons le Corollaire suivant: (Théorème 1.1 (b) de [9]):

Corollaire 5.2. Si π, ρ ∈ Ĝaut
p et π ′ ∈ Ĝ p est faiblement contenue dans π ⊗

ρ, π ′ ∈ Ĝaut
p .

Il suffit en effet de remarquer que le produit tensoriel extérieur π ! ρ ∈ (G p ×
G p)∧ est dans le spectre automorphe. Le groupe G p étant de type 1, (G p × G p)∧ =
Ĝ p × Ĝ p [14], avec la topologie produit. Pour tout couple (",3) de sous-groupes
de congruence de G∞ × G p, la représentation associée de G p × G p est un produit
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tensoriel (extérieur) et son support est le produit des supports. De tels couples
étant cofinaux dans la famille des sous-groupes de congruence de (G∞ × G p)2, on
en déduit que (G p × G p)∧,aut = Ĝaut

p × Ĝaut
p . Le Corollaire résulte du Théorème à

l’aide du plongement diagonal.
Nous déduirons en fait le théorème 5 d’une version “S-arithmétique” du

résultat de Burger-Sarnak. Soit S un ensemble fini de places de Q contenant ∞,
GS = 4v∈SG(Qv ). On définit de façon analogue Ĝaut

S , à l’aide de sous-groupes
S-arithmétiques. Même notation pour H .

Théorème 5.3. Soientπ ∈ Ĝaut
S etπ ′ ∈ ĤS. Siπ ′ est faiblement contenue dans

π |HS , π ′ ∈ Ĥ aut
S .

5.1. Réduction au cas S-arithmétique. Ce paragraphe est consacré à
démontrer que le Théorème 5.3 implique le Théorème 5.1. On prend S = {p,∞}.
La démonstration va reposer sur la décomposition de L2("\G∞ × G p) donnée par
les séries d’Eisenstein, rappelée dans la section 3.2.

Si le sous-groupe de S-congruences " est fixé, on a:

L2("\G∞ × G p) ⊂
⊕

M

⊕

τ

∫

ia∗M
Ind(τ, s)K dµτ (s)(67)

où M parcourt l’ensemble des sous-groupes de Levi de G à association près, τ
parcourt l’ensemble des représentations de M(Q)\M(A) – modulo torsion par les
caractères non ramifiés – dans le spectre discret, ia∗M paramètre les caractères
unitaires non ramifiés de M(A), et Ind(τ, s) = IndG(A)

M(A)N (A)(τ ⊗ s) est envoyé dans
l’espace des formes automorphes par l’opérateur d’Eisenstein. (Il faut tenir compte
des isométries induites par les opérateurs d’entrelacement, mais ceci n’aura pas
d’influence sur les arguments suivants.) Le groupe K ⊂ G(Ap

f ) est associé à "
(cf. 66) et l’on prend les K -invariants dans Ind(τ, s): sous G∞ × G p, Ind(τ, s)K

est donc une somme finie de représentations de la forme Ind(τ∞ ⊗ τp, s) (cf. 44)
dans le § 3.2).

D’après (67), une représentation πp de G p est alors dans le support de
L2("\G∞ × G p) si, et seulement si, c’est une limite pour la topologie de Fell
[40] de sous-représentations de IndG(Qp)

M(Qp)N (Qp)(τp ⊗ s). On a un résultat analogue
pour une représentation π∞ ⊗ πp de G∞ × G p.

Pour s générique, Ind(τ∞ ⊗ τp, s) est irréductible. Soit alors πp = Ind(τp, s)
et supposons que l’induite π∞ ⊗ πp := Ind(τ∞ ⊗ τp, s) est irréductible.

Soit π ′p ∈ Ĥp faiblement contenue dans πp, et choisissons π ′∞ ∈ Ĥ∞ faible-
ment contenue dans π∞. La représentation π∞ ⊗ πp de H∞ ⊗ Hp étant un produit
tensoriel, et les deux groupes étant de type 1, sa décomposition spectrale est le
produit des deux décompositions de π∞, πp. En particulier π ′∞ ⊗ π ′p est faible-
ment contenue dans π∞ ⊗ πp|H∞,p . D’après le Théorème 5.3, π ′∞ ⊗ π ′p appartient
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au spectre automorphe de H∞ × Hp. Ceci implique a fortiori que π ′p appartient au
spectre automorphe de Hp.

Considérons maintenant le cas général; soit πp ∈ Ĝaut
p . Alors d’une part πp est

limite (selon les groupes de (∞, p)-congruence ") de représentations π"p appa-
raissant dans l’espace des formes automorphes L2; par ailleurs pour " fixé, π"p est
limite de représentations apparaissant dans (67); on peut de plus supposer que pour
celles-ci l’induite Ind(τn ⊗ τp, s) est irréductible. Par conséquent le Théorème 5.1
sera démontré (modulo le Théorème 5.3) si l’on prouve:

Lemme 5.4. Soit A un ensemble filtrant d’indices, et soit π = limα∈A π
α dans

Ĝ p. Supposons que pour tout α le support de πα|Hp est contenu dans Ĥ aut
p . Alors

le support de π |Hp est contenu dans Ĥ aut
p .

Démonstration. Le lemme est plus général: H ⊂ G est un sous-groupe fermé
d’un groupe localement compact, C ⊂ Ĥ est un fermé, et Supp(πα|H ) ⊂ C ; on
en déduit que Supp(π |H ) ⊂ C . Par définition ceci veut dire que tout coefficient
diagonal fπ de π , restreint à H est limite de fonctions ϕβ , les ϕβ étant sommes
finies (positives) de coefficients diagonaux de représentations de C :

fπ (h) = lim
β
ϕβ(h)(68)

la convergence étant uniforme sur tout compact de H . Notons que l’on pourrait
prendre des suites d’indices, les topologies sur tous les groupes considérés ici étant
séparables (mais non métrisables!).

Mais πα → π dans Ĝ, ce qui veut dire que

fπ (g) = lim
α

fα(g)(69)

fα étant une somme finie de coefficients diagonaux de πα, la convergence étant
uniforme sur tout compact de G. Enfin, puisque le support de πα est contenu dans
C , on a pour tout α:

fα(h) = lim
β
ϕαβ (h),(70)

les ϕαβ étant des sommes de coefficients de C . Alors (68) résulte de (69) et (70).
Ceci termine la démonstration.

Nous donnerons deux démonstrations du Théorème 5. La première imite celle
de Burger et Sarnak [9]; elle semble nécessiter l’hypothèse que G(R) est non
compact. La seconde ne fait pas cette hypothèse, mais, dans le cas où G est obtenu
par restriction des scalaires à partir d’une forme de SL(2, k) où k est un corps de
nombres, nécessite une approximation de la conjecture de Ramanujan pour G.

5.2. Première démonstration. Dans cette section, nous supposons donc que
G est quasi-simple sur Q et que G(R) est non compact. Pour simplifier les notations,
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nous démontrons le Théorème 5.3 dans le cas où S = {∞, p} ce qui suffira pour
les besoins du reste de l’article.

Nous fixons un sous-groupe de congruence " ⊂ G∞ × G p (cf. (5.1)). Si δ ∈
G(Q), la double classe "δ" = Tδ opère de la façon habituelle sur L" := L2("\G);
pour abréger nous écrivons G = G∞ × G p si cela ne prête pas à confusion. Si

"δ" =
∐

i

"δi ,(71)

alors

( f |Tδ)(g) =
∑

f (δi g) (g ∈ G).(72)

Soit deg(Tδ) le degré de Tδ, égal au cardinal de "\"δ". Nous appellerons
opérateur de Hecke positif une combinaison linéaire finie à coefficients entiers
≥ 0 de Tδ; son degré est alors défini par additivité.

Lemme 5.5. [9] Tδ est un opérateur borné dans L", de norme

‖Tδ‖ = deg(Tδ).

Démonstration. Soit 3 = δ"δ−1 ∩ ", 3′ = " ∩ δ−1"δ. Alors T = Tδ est
obtenu par composition à partir du diagramme

3\G −−−→ 3′\G
[δ]

π
|
↓

|
↓ ρ

"\G −−−→ "\G

(73)

où [δ] est l’application f (g) 5→ f (δg) et π, ρ sont les projections naturelles. On a
alors:

T f = ρ∗δ∗π∗ f ( f ∈ L")(74)

(T f, h)" = (ρ∗δ∗π∗ f, h)" = (δ∗π∗ f, ρ∗h)3′(75)

d’où

|(T f, h)|" ≤ ‖δ∗π∗ f ‖3′‖ρ∗h‖3′
≤ ‖π∗ f ‖3‖ρ∗h‖3′
≤ [" : 3]‖ f ‖"‖h‖".

(76)

(On a utilisé le fait que [δ] induit une isométrie, que ‖π∗ f ‖2
3 = [" : 3]‖ f ‖2

",
et que [" : 3] = [" : 3′]). Le Lemme résulte de ce calcul, et du fait que T opère
sur les constantes par deg(T ).

Le Théorème 5.3 va résulter de la proposition suivante.
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Si f ∈ L", soit f 0 la projection de f sur l’espace des fonctions invariantes
par G:

f 0(g) =
∫

"\G
f (x)dx ∀g ∈ G.(77)

(Rappelons que "\G est de volume fini. On normalise la mesure de façon que
vol("\G) = 1.) Si T est un opérateur de Hecke, soit T̃ = deg(T )−1T l’opérateur
normalisé associé. Enfin, si X est un espace localement compact, soit C0(X )
l’espace des fonctions continues sur X tendant vers 0 à l’infini.

Proposition 5.6. Il existe un opérateur de Hecke auto-adjoint T : L" → L"
tel que T̃ m f → f 0 pour la topologie faible sur L" si f ∈ L".

Nous renvoyons à Burger et Sarnak [9] pour la démonstration du Théorème
5.3 à partir de la Proposition 5.6. Nous démontrons maintenant la Proposition, sous
l’hypothèse que G est quasi-simple et G(R) non compact.

Soit F un ensemble fini de nombres premiers tel que G admette un plonge-
ment dans GL(N ) défini sur l’anneau Z(F) des F-entiers, et soit q /∈ F tel que
G(Qq) ne soit pas compact. D’après le théorème d’approximation forte, G(Q) est
dense dans G(Aq). Soit AF = 48∈FQ8, S = F ∪ {p, q} et OS = 48/∈SZ8. Alors
G(Q) ∩ G(OS) = G(Z(S)), et ce groupe est dense dans G(R)× G(Qp)× G(AF );
en particulier il est dense dans G(R)× G(Qp).

D’après Borel et Serre [7], G(Z(S)) est un groupe de type fini. Soit {ε1, . . . , εr }
un ensemble fini de générateurs, et posons

T =
r∑

i=1

(
Tεi + Tε−1

i

)
,(78)

opérant sur L". La norme L2 de T est égale à son degré

k =
∑

i

∥∥Tεi

∥∥+
∥∥Tε−1

i

∥∥.

On a alors pour f ∈ L":

T m f (g) =
km∑

j=1

f
(
δ

(m)
j g
)
.(79)

Lemme 5.7. Pour tout m, on peut écrire

T m f (g) =
∑

i1,... ,im
x1,... ,xm

f
(
εx1

i1
· · · εxm

im
g
)
+
∑

j ′
f
(
δ

(m)
j ′ g
)

(80)

où i = (i1, . . . , im) parcourt les applications de [1, m] vers [1, r ] et x =
(x1, . . . , xm) parcourt {±1}m.



P1: GIG

PB440-09 HIDA-0662G PB440-Hida-v4.cls December 10, 2003 7:10

l. clozel and e. ullmo224

En effet T f (g) =
∑r

i=1{ f (εi g) + f (ε−1
i g)} +

∑
j ′ f (δ j ′, g), d’où le résultat

par itération. Une assertion plus forte figure dans [9] (voir après (2.7) de leur
article) mais n’a pas l’air correcte sauf si " ⊂ G(Z(S)) (avec leur notation).

On vérifie que Tε−1
i

est l’adjoint de Tεi ; l’opérateur T̃ est donc autoadjoint. Son
spectre est contenu dans [−1, +1] d’après le Lemme 5.5. Il suffit alors (voir [9])
de montrer que (−1) n’est pas une valeur propre de T̃ et que 1 n’apparaı̂t qu’avec
multiplicité 1, correspondant à l’espace des fonctions constantes. Soit donc

L⊥1 =
{

f ∈ L" : T̃ f = f,
∫

"\G
f dg = 0

}
(81)

L−1 = { f ∈ L" : T̃ f = − f }.(82)

Noter que T̃ commute à l’action de G par translations à droite. En convolant
avec des fonctions lisses à support compact sur G, on en déduit que L⊥1 ∩ C("\G)
et L−1 ∩ C("\G) sont denses dans L⊥1 et L−1.

Si L⊥1 ou L−1 est non-nul, il contient donc une fonction continue que l’on peut
supposer à valeurs réelles puisque T est un opérateur réel. Noter que si f ∈ L−1

alors
∫
"\G f (g)dg = 0 car, 1 désignant la fonction constante unité, on a ( f, 1) =

−(T̃ f, 1) = −( f, T̃ 1) = −( f, 1). Par ailleurs, si T̃ f = ± f , on a alors

( f, f ) = |(T̃ f, f )| ≤ (|T̃ f |, | f |) ≤ (T̃ | f |, | f |),(83)

la dernière inégalité résultant immédiatement de la définition de T̃ . Mais (T̃ | f |,
| f |) ≤ ‖ f ‖2; on en déduit que (T̃ | f |, | f |) = ( f, f ) = (| f |, | f |). Puisque T̃ est de
norme 1, ceci implique que T̃ | f | = | f |.

Par conséquent la démonstration se ramène au.

Lemme 5.8. Si f est une fonction continue réelle, intégrable et d’intégrale
nulle sur "\G et T̃ | f | = | f | alors f = 0.

C’est le seul endroit où la démonstration requiert un argument nouveau. Nous
aurons besoin du théorème des valeurs intermédiaires pour des fonctions continues
sur "\G!

Lemme 5.9. Si f est une fonction continue à valeurs réelles prenant des valeurs
positives et négatives sur "\G, f prend la valeur 0.

Démonstration. Supposons l’inverse, et soit

s(g) = s(g∞, gp)(avec g = (g∞, gp) ∈ G(R)× G(Qp))

le signe de f . Pour gp fixé, s(g∞, gp) est une fonction constante de g∞. On a donc
s(g∞, gp) = s(gp) ∈ ±1. Mais s est alors une fonction sur G p invariante par ".
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Puisque G∞ n’est pas compact, " est dense dans G p, toujours d’après le théorème
d’approximation forte. Donc s est constante, contrairement à l’hypothèse.

Nous terminons la démonstration à l’aide de l’argument de Burger-Sarnak [9].
Soit f comme dans le Lemme 5.8. D’après le Lemme 5.9 il existe g ∈ "\G tel
que | f (g)| = 0. On a alors T m | f |(g) = 0 pour tout m. D’après le Lemme 5.9,
ceci implique que f (εx1

i1
· · · εxm

im
g) = 0 pour tout monôme en les ε±1

i . Puisque les εi

engendrent G(Z(S)) qui est dense dans G, f = 0.

5.3. Deuxième démonstration. Nous donnons maintenant une nouvelle
démonstration de la Proposition 5.6 et donc des théorèmes 5.1 et 5.3. Notons que
si G p (donc Hp) est compact le Théorème 5.1 est trivial car toute représentation
de Hp est automorphe; ceci résulte par exemple de la formule des traces de Sel-
berg, de façon très simple puisque H est alors anisotrope (e.g., [12]). De même, le
Théorème 5.3 est trivial si G(AS) est compact. Soit " ⊂ G(AS) un sous-groupe
de S-congruences, et définissons comme auparavant L" = L2("\G); soit L⊥"
l’orthogonal de l’espace des fonctions constantes. Nous pouvons donc supposer que
G(AS) n’est pas compact; G est supposé quasi-simple sur Q. Alors le Théorème
5.3 résulte du résultat suivant, plus fort que la Proposition 5.6.

Théorème 5.10. Il existe un opérateur de Hecke positif T (cf. avant le Lemme
5.5) et auto-adjoint tel que T̃ f = f pour f constante sur "\G et ‖T̃ |L⊥" ‖ < 1.

La norme est la norme forte d’opérateur:

‖T̃ f ‖ ≤ ‖T̃ |L⊥" ‖ ‖ f ‖, f ∈ L⊥" .(84)

La démonstration est la suivante. Pour simplifier nous supposons toujours que
S = {∞, p}. Par approximation forte G(Q) est dense dans G(Ap

f ). Si " est défini
par (1) on en déduit que l’algèbre de Hecke classique définie par (G(Q),") (cf.
Shimura [36]) coïncide avec l’algèbre des fonctions bi-K -invariantes sur G(Ap

f ),
munie du produit de convolution. On normalise la mesure de Haar par vol(K ) = 1.

Fixons alors une place q telle que G soit déployé sur Qq , que G soit défini sur
Z(q), et que K = K q Kq , Kq ⊂ G(Qq) étant le sous-groupe hyperspécial G(Zq).
L’opérateur de Hecke cherché va appartenir à la composante locale H(Gq, Kq) de
H(G(Ap

f ), K ).
Puisque G est quasi-simple, G est obtenu par restriction des scalaires (pour

une extension finie F de Q) d’un groupe absolument quasi-simple G0/F . Sous nos
hypothèses, q est une place décomposée dans F et

G(Qq) =
∏

v|q
G0(Fv ),

chaque facteur étant isomorphe à Gd(Qq) ou Gd est le groupe déployé simple-
ment connexe de même système de racines que G0. Nous allons en fait travailler
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dans l’algèbre de Hecke H(G0(Fv ), Kv ) = H(Gd(Qq), Kq), avec des notations
évidentes. Si Gd "= SL(2), ce groupe est de rang ≥ 2. Il suffit alors de démontrer:

Lemme 5.11. Si G est un groupe déployé de rang ≥ 2 sur Qq et

K = G(Zq) ⊂ G = G(Qq),

il existe ϕ ∈ H(G, K ) positive, à coefficients entiers et auto-adjointe (ϕ(g) =
ϕ(g−1)) et K < 1 tels que

‖π (ϕ)‖ ≤ K deg(ϕ)(85)

si π ∈ Ĝ est différente de la représentation triviale.

Démonstration. Soit Ĝnr l’ensemble des représentations non-ramifiées de G.
Alors Ĝnr est un sous-ensemble quasi-compact de Ĝ. Si T ⊂ G est un tore maximal
déployé et W le groupe de Weyl associé, Ĝnr s’identifie à un sous-espace compact C
de T̂ /W , sa topologie étant la topologie quotient. En particulier Ĝnr est séparé (pour
tous ces faits voir Tadič [38]). Par hypothèse la représentation triviale C (associée à
la “demi-somme des racines” ρ ∈ T̂ ) est isolée dans C . Soit C0 = C − {ρ}. Soient
enfin C l’algèbre de Hecke des fonctions localement constantes à support compact
sur G, et A ⊂ C le sous-ensemble formé des fonctions positives d’intégrale 1. (On
normalise la mesure de Haar sur G par vol(K ) = 1). Soit H = H(G, K ).

Puisque le rang de G est ≥ 2, la représentation triviale est isolée dans Ĝ ([28],
Ch. III) et donc a fortiori dans Ĝnr . D’après ([28], Prop. III.1.3) il existe, pour
tout π ∈ C0, une fonction ϕ ∈ A telle que ‖π (ϕ)‖ < 1 – la norme étant toujours la
norme d’opérateur. Si 1K est la fonction caractéristique de K , on a alors ‖π (1K ∗
ϕ ∗ 1K )‖ < 1 avec ψ = 1K ∗ ϕ ∗ 1K ∈ H(G, K ).

Noter que π (ψ) est simplement donnée par l’action de ψ sur le vecteur K -
invariant de π ; en particulier ‖π (ψ)‖ est une fonction continue de π ∈ C0. Par
compacité on en déduit un recouvrement fini de C0 par des ouverts Ui , et des fonc-
tionsψi telles que ‖π (ψi )‖ ≤ Ki < 1 si π ∈ Ui . On aψi ∈ A et donc ‖π (ψi )‖ ≤ 1
pour tout π unitaire. Si on pose

ϕ = 1
2N

N∑

i=1

ψi ,

alors ϕ(g) + ϕ(g−1) vérifie:

deg ϕ = 1
‖π (ϕ)‖ ≤ K , K = sup(Ki )+(N−1)

N ,
(86)

pour tout π ∈ C0. De plus π (ϕ) = 0 si π ∈ Ĝ est ramifiée. Le Lemme s’en déduit
en approchant ϕ par des fonctions à valeurs rationnelles.

Si G est une forme de SL(2)/F , le Lemme 5.11 reste vrai si on considère
π ∈ Ĝaut

v , puisque l’on dispose d’une approximation de la conjecture de Ramanujan.
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Plus précisément, la clôture dans (Ĝv )nr de (Ĝv )aut est disjointe de la représentation
triviale.

Complétons alors la démonstration du Théorème 5.10. Ecrivons

L" = L2("\G) = C⊕ L⊥"(87)

où C désigne l’espace des constantes; L" est une représentation de G. Soit v la
place au-dessus de q choisie plus haut, et écrivons K = Kv K v (Kv ⊂ G0(Fv )) et
soit "v = G(Q) ∩ K v . Alors

L"v = L2(G(Q)\G0(AF )/K v )(88)

(notations évidentes) est une représentation de G × G0(Fv ), et L" est l’espace
des Kv -invariants dans L"v . Par approximation forte, L⊥" = (L⊥"v

)Kv où L⊥"v
est

l’orthogonal de l’espace des constantes.
La théorie des séries d’Eisenstein donne une décomposition

L"v = C⊕
∫

Ĝ0(Fv )
m(πv )πv dµ(πv )(89)

que nous n’expliciterons pas, mais où l’intégrale porte sur l’espace des représen-
tations automorphes non triviales dans Ĝ0(Fv ). L’opérateur T associé à la fonction
ϕ du Lemme 5.11 opère alors sur LKv

"v
décomposé selon (89) par

T = deg(T )⊕
∫

Ĝ0
nr (Fv )

m(πv )πv (ϕ)dµ(πv );(90)

πv (ϕ) est un scalaire de norme ≤ K deg T . D’où le Théorème 5.10.

Remarque. La démonstration est essentiellement différente de celle de Burger-
Sarnak puisque l’opérateur T est de nature locale. Noter en revanche que T est loin
d’être explicite (voir la démonstration de Margulis pour la Proposition III.1.3 citée
ci-dessus). Si G est adjoint plutôt que simplement connexe, les fonctions de Hecke
associées aux poids minuscules du groupe dual Ĝ—s’il y en a—fournissent des
opérateurs explicites ayant les propriétés du Lemme 5.11 (voir les sections 6 7). Il
serait intéressant d’obtenir de telles fonctions explicites pour un groupe arbitraire.

5.4. Extension au cas non simplement connexe. Pour une application
ultérieure, montrons enfin que l’on peut se dispenser de l’hypothèse que G est
simplement connexe dans les Théorèmes 5.1 et 5.3. Utilisons la démonstration
donnée dans la section 5.3. Soient S 8 ∞ un ensemble de places et " ⊂ G(AS) un
sous-groupe de congruence. Il s’agit de produire un opérateur de Hecke autoadjoint
ayant la propriété de la Proposition 5.6. Soit Gsc le revêtement (fini) simplement
connexe de G.
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Si K S ⊂ G(AS) est compact-ouvert, et " = G(Q) ∩ K S , on a maintenant

G(Q)\G(A)/K S =
∐

i

"i\GS(91)

L2(G(Q\G(A)/K S) =
⊕

i

L"i(92)

(unions et sommes finies, " étant l’un des "i ). Les opérateurs de Hecke globaux
vont a priori permuter les L"i .

Il résulte de (91) qu’il existe un ensemble fini T ⊃ S tel que

G(A) = G(Q)GT K T(93)

(avec K S = K S
T K T , les notations étant évidentes) et donc un sous-groupe de con-

gruence 3 ⊂ GT tel que

3\GT = G(Q)\G(A)/KT.(94)

Choisissons une place v /∈ T ayant les propriétés de la section 5.3. Nous ferons
agir sur L3 l’algèbre de Hecke H(Gv , Kv ).

A priori cette algèbre n’est pas toute obtenue à l’aide d’opérateurs de
Hecke “classiques” donnés par des doubles classes 3γ3, γ ∈ G(Q), puisque
l’approximation forte fait défaut. Mais soit 3sc ⊂ Gsc(Q) l’image inverse de 3:
c’est un sous-groupe de congruence de Gsc(Q) puisque les fibres de Gsc(A) →
G(A) sont compactes. On vérifie alors que l’algèbre de Hecke classique
H(Gsc(Q),3sc) est munie d’un homomorphisme naturel vers H(G(Q),3).

En particulier l’algèbre de Hecke Hsc
v = H(Gsc(kv ), K̃v ) (où K̃v est l’image

inverse de Kv ), contenue dans H(Gsc(Q),3sc), s’envoie injectivement sur une
sous-algèbre de H(G(Q),3) et aussi de H(G(kv ), Kv ). On peut alors utiliser
de tels opérateurs de Hecke à la place v: ils ont les propriétés utilisées dans la
section 5.3.

Il reste à vérifier qu’on peut construire de tels opérateurs ayant les propriétés
du Lemme 5.11. Puisque la fonction ϕ provient de H(Gsc(kv ), K̃v ), elle n’aura
les propriétés cherchées que pour π ∈ Ĝv telle que π |Gsc soit différente de la
représentation triviale. Ceci revient à dire que π n’est pas un caractère non ramifié
de G(kv ).

Revenons alors à la démonstration de Burger-Sarnak [9]. Ils considèrent
une fonction f ∈ C0("\G(R)) – ici C0(3\G(AT )) – et montrent, modulo le
Lemme 5.11, que les coefficients matriciels diagonaux

ψ(h) =
∫

3\G(AT )
f (g) f (gh)dg (L ∈ H (As))(95)

sont limites de coefficients diagonaux de représentations dans Ĥ aut(As). Si f ap-
partient à l’espace C00(3\G(AT )) des fonctions orthogonales à tous les caractères
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non ramifiés, abéliens de G(kv ), il en est de même deψ considérée comme fonction
de h ∈ H (ASϕ), et le résultat est impliqué par la démonstration de [9].

En général, la décomposition spectrale pour L3 = L2(3\G(AT )) montre que
L3 est somme directe (hilbertienne) de L3 ⊂ C00 et d’une somme finie de car-
actères abéliens de G(AT ). (Utiliser l’approximation forte pour Gsc). Il est clair que
cette décomposition reste vraie dans C(3\G(AT )). Puisque la restriction à H (AT )
d’un caractère abélien est trivialement automorphe, ceci termine la démonstration
dans ce cas: le support de L3|H (AT ) est contenu dans (ĤT )aut.

Revenant alors à notre situation originale, remarquons que

L2(G(Q)\G(A)/K s) = LK s
T

3 .

On en déduit que cet espace est supporté dans le dual automorphe de GS , comme
dans la réduction du Théorème 5.1 au Théorème 5.3.

6. Composantes locales des représentations automorphes de Sp(2g).

6.1. Introduction. Dans ce chapitre nous allons utiliser les résultats du
chapitre 5, ainsi qu’un argument, encore dû à Burger et Sarnak, relatif aux fonctions
sphériques, pour exhiber des bornes non triviales sur les composantes locales (non
ramifiées) des représentations automorphes de Sp(2g) sur un corps de nombres k.
Nous interprétons ensuite ce résultat comme une borne sur le spectre de l’opérateur
standard Tp opérant dans les formes automorphes sur GSp(2g), p étant une place
de k.

Les bornes que nous obtiendrons dépendent de l’approximation connue (voir
l’Introduction, ainsi que la section 3) de la conjecture de Ramanujan pour SL(2).
Dans la section 6.4, nous expliquons comment les conjectures d’Arthur [2, 3]
permettent de prévoir effectivement le spectre de Tp. Nous montrons que notre
estimée est optimale, au vu des conjectures d’Arthur, si la conjecture de Ramanujan
est connue pour SL(2), et qu’en général elle donne une approximation des estimées
vraies proportionnelle à l’approximation connue de la conjecture de Ramanujan
(toujours pour SL(2)).

6.2. Composantes locales des représentations automorphes de Sp(2g).
Nous notons Sp(2g) le groupe laissant invariante la forme symplectique sur un
espace de dimension 2g et de matrice

(
0 −1g

1g 0

)
(96)

et GSp(2g) le groupe de similitudes associé.
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Soit G le groupe Sp(2g); G contient un tore déployé T donné par:

T =










x1
. . .

xg

x−1
1

. . .
x−1

g










∼= Gg
m(97)

ainsi qu’un sous-groupe H ∼= SL(2)g, chaque facteur de H étant plongé dans G
par

(
a b
c d

)
5→





1
. . .

1
a b

. . .
1

1
. . .

c d
. . .

1





,

(
a b
c d

)
∈ SL(2).(98)

Noter que T est encore un tore déployé maximal de H .
Soit maintenant F un corps p-adique. Nous pouvons considérer G, H , T comme

des groupes définis sur F ; G(OF ) = K est un sous-groupe hyperspécial de G(F),
que nous noterons souvent G. Une représentation non ramifiée de G est alors
unitairement induite à partir d’un caractère non ramifié χ de T = T (F); χ est alors
uniquement déterminé par

ti = χ





1
. . .
:

. . .
1

. . .
:−1

. . .
1





(99)
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où : ∈ F est une uniformisante; soit tχ = (t1, . . . , tg) ∈ (C×)g. Nous écrivons
parfois T̂ pour (C×)g qui est ainsi identifié naturellement au tore dual [5] de T .
Noter que le groupe de Weyl W de (G, T ) est {±1}g ! Sg, (±1)g opérant sur les
composantes par xi 5→ x±1

i . Le groupe de Weyl de (H, T ) est (±1)g.
Une base de racines simples pour (G, T ) est donnée par

3G =
{

x1x−1
2 , . . . , xg−1x−1

g , x2
g

}
.

Une base3H pour (H, T ) est donné par {x2
1 , . . . , x2

g}. Les demi-sommes de racines
positives associées sont

ρG = xg
1 xg−1

2 · · · xg(100)

ρH = x1 · · · xg.(101)

On pose δG = |ρG |, ρH = |ρH |.
Puisque les réseaux de caractères et de cocaractères de T et de T̂ sont en du-

alité, les coracines de (G, T ) définissent naturellement des caractères de T̂ . Notons
α1, . . . αg les racines de 3G . Alors

3∨ =
{
α∨1 = t1t−1

2 ,α∨2 = t2t−1
3 , . . . ,α∨g = tg

}
.(102)

Notons enfin T+ le domaine fondamental dans T pour l’action de W (i.e.,
T = ∪w∈W wT+; les wT+ ne sont bien sûr pas disjoints, ni même d’intersection
négligeable pour un corps p-adique):

T+ = {(x1, . . . xg) = |x1| ≤ |x2| ≤ · · · ≤ |xg| ≤ 1}.(103)

On a alors

val(x1) ≥ val(x2) ≥ · · · ≥ val(xy) ≥ 0,(104)

val( ) désignant la valuation normalisée de F .
Rappelons une partie de la théorie des fonctions sphériques, selon Harish-

Chandra (cf. Cartier [10] et Casselman [11]). Soient χ un caractère non ramifié de
T = T (F), πχ la représentation associée et ϕχ la fonction sphérique attachée à πχ .
Soit t = tχ ∈ T̂ paramétrant χ ; t n’est défini que modulo l’action de W .

Il existe alors, modulo W , un choix de t vérifiant

|t1| ≥ · · · ≥ |tg| ≥ 1.(105)

Le caractère χ associé vérifie alors

|χ (x)| ≥ 1 (x ∈ T+)

|χ (x)| ≥ |χ (w x)| (x ∈ T+, w ∈ W ).
(106)

Il peut exister plusieurs t vérifiant (105), mais les valeurs absolues |ti | sont
alors uniquement définies. Soient {χ1, . . . ,χr } les caractères de T associés – donc
r ≤ |W |, et les |χi | ont la même valeur absolue. Alors ϕχ admet un terme principal
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au sens suivant: si ϕ,ψ sont deux fonctions sur T+ écrivons ϕ ∼ ψ si ϕ,ψ sont
équivalentes pour x ∈ T+ et |xαi | → 0 pour toute racine simple αi . Par ailleurs, une
fonction L(x) sur T+ est logarithmique si elle est invariante par T (OF ) et s’étend
en un polynôme sur le réseau T (F)/T (OF ). On sait alors qu’il existe des fonctions
logarithmiques Li sur T+ telles que

ϕχ (x) ∼
r∑

i=1

χi (x)δG(x)Li (x).(107)

Noter que δG(x) ≤ 1 sur T+ et que δG(χ ) → 0 si |xαi | → 0. Pour la
démonstration, voir Casselman ([11], Théorème 4.3.3). (Casselman ne donne pas
explicitement le développement (107), mais celui-ci se déduit de son résultat et du
cas, trivial, des représentations de dimension finie du tore T ).

Nous supposons maintenant donné un corps de nombres – noté pour l’instant
k – et une place finie v de k telle que F ∼= kv . Supposons que π appartienne au
spectre automorphe Ĝaut = Ĝ(kv )aut, relativement au groupe global G/k. Alors
la décomposition spectrale de π |H est une intégrale sur Ĥ aut. Notons que si
e ∈ H (où H désigne l’espace de π ) est le vecteur K -invariant, la décomposition
qui en résulte pour e ne porte que sur les représentations non-ramifiées de H .
Notons, comme dans le paragraphe 5.3, Ĥ aut

nr le spectre automorphe non ram-
ifié pour H . D’après les travaux de Gelbart-Jacquet [19], on a alors Ĥ aut

nr =
( ̂SL(2, F)

aut

nr )g, avec

̂SL(2, F)
aut

nr ⊂ {C} ∪ {τ (z) : |z| = 1 ou z ∈ [q−1/2, q1/2]}.(108)

On a noté q le cardinal du corps résiduel pour F , et τ (z) la représentation de
SL(2) induite à partir de

(
x 0
0 x−1

)
5→ zval(x), x ∈ F×.(109)

Si la décomposition spectrale de π |H contenait, avec une mesure non nulle,
un facteur relatif à la représentation triviale, H contiendrait un vecteur invariant
par l’un des facteurs SL(2, F). C’est impossible d’après un théorème de Howe et
Moore [20]. Si C0 est le produit, dans Ĥ = 4g

i=1
̂SL(2, F), des duaux automorphes

des facteurs SL(2, F) dont on retranche la représentation triviale, on a donc pour π
non triviale, m(τ ) désignant une multiplicité:

π |H =
∫

C0
m(τ )τdµ(τ )⊕ (partie ramifiée).(110)

Soit e un vecteur sphérique unitaire dans H. Selon (110), on a donc, presque
partout, e(τ ) ∈ Hm(τ )

τ et

(e, e) =
∫

C0
(e(τ ), e(τ ))dµ(τ ).(111)
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Si h ∈ H , h · e(τ ) reste dans le sous-espace irréductible de Hm(τ )
τ , isomorphe

à Hτ , engendré par e(τ ). Pour h ∈ H on a donc en particulier

ϕπ (h) = (he, e) =
∫

C0
ϕτ (h)(e(τ ), e(τ ))dµ(τ )(112)

où ϕτ est la fonction sphérique associée à τ .
Notons maintenant T H

+ le domaine fondamental pour H :

T H
+ = {(x1, . . . xg) : |xi | ≤ 1}.(113)

Noter que T+ ⊂ T H
+ . (Il est éclairant de dessiner l’inclusion correspondante

dans X∗(T )⊗ R pour g = 2). Nous aurons besoin de contrôler la croissance des
fonctions Fτ intervenant dans (112) sur T H

+ . Rappelons l’expression des fonctions
sphériques sur SL(2). Si z ∈ C× et si τ (z) est la représentation associée de SL(2, F)
(cf. (108)), on a, ψz étant la fonction sphérique:

ψz(x) = 1
1 + q−1

q−v
(

zv 1− q−1z−1

1− z−1
+ z−v 1− q−1z

1− z

)
(114)

où x ∈ F× est associé à ( x
0

0
x−1 ) et v = val(x). Pour z = 1 cette expression doit

être interprétée par prolongement analytique.
Introduisons la “constante de Ramanujan” (sic) relative à k, i.e., le plus petit

θ tel qu’on ait q−θ ≤ |z| ≤ qθ si v est une place de k et si τ (z) = τv (z) est la
composante locale d’une représentation cuspidale non ramifiée de SL(2, Ak). On a
donc:

0 ≤ θ ≤ 1
2

(Gelbart-Jacquet),(115)

θ = 1 correspondant à l’estimée triviale “de Hecke.”

Lemme 6.1. Pour |x | ≤ 1 on a

|ψz(x)| ≤ C |x |1−θ L(x)(116)

uniformément en z ∈ C× tel que |z| = 1 ou q−θ ≤ |z| ≤ qθ , C étant une constante
et L une fonction logarithmique sur F× indépendantes de z.

Noter que ceci est l’assertion (107) pour SL(2), l’uniformité en sus. On le
démontre de la façon suivante. Si |z| = 1 on sait que |ψz(x)| ≤ ψ1(x) et qu’une
telle estimée est satisfaite, avec θ = 0 (Harish-Chandra). On peut donc supposer que
z ∈]1, qθ ]. Posons z = qα avec α ∈]0, θ ]. On peut supposer v > 0. En développant
la fraction rationnelle (114), on obtient l’autre expression de ψz(x):

(1 + q−1)ψz(x) = q−v zv{(1 + z−1 + · · · + z−2v )−(117)

− q−1z−1(1 + z−1 + · · · + z−2v+2)}.(118)
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Pour z = qα on en déduit:

(1 + q−1)ψz(x) ≤ q (α−1)v (2v + 1)(119)

d’où une majoration du type (116).
Pour x = (x1, . . . xg) ∈ T H

+ et τ = τ (z1, . . . zg) figurant dans (112) on a donc:

|ϕτ (x)| ≤ C |x |1−θ L(x)(120)

en posant |x | = |x1 · · · xg|, C étant une constante et L une fonction logarithmique.
On en déduit:

|ϕπ (x)| ≤ C |x |1−θ L(x)(121)

avec une nouvelle constante.
Comparons maintenant ceci avec l’expression (107). Puisque (121) et (107)

sont des sommes finies d’exponentielles – logarithmes, l’inégalité (121) donne
alors le:

Lemme 6.2. Pour chacun des caractéres dominants χi figurant dans (107), et
pour tout x ∈ T+, on a

|χi (x)δG(x)| ≤ |x |1−θ = |δH (x)|1−θ .(122)

Revenons à nos expressions explicites: T+ est défini par

val(x1) ≥ val(x2) ≥ · · · ≥ val(xg) ≥ 0,

et |χi (x)|δG(x)δH (x)θ−1 est donné en fonction de vi = val(xi ) par

(v1, . . . , vg) 5→
(
|t1|q−(g−1)−θ)v1

(
|t2|q−(g−2)−θ)v2 · · ·

(
|tg|q−θ

)vg
.(123)

Alors (122) est équivalent à

|t1|q−(g−1)−θ ≤ 1
|t1t2|q−(2g−3)−2θ ≤ 1

...
|t1t2 · · · tg|q−

g(g−1)
2 −gθ ≤ 1.

(124)

Rappelons par ailleurs que

|t1| ≥ |t2| ≥ · · · |tg| ≥ 1.

On a donc enfin démontré le résultat suivant.

Théorème 6.3. Soient k un corps de nombres, F un complété p-adique de k, et
π une représentation non triviale, non ramifiée de G(F) = Sp(2g, F) qui est com-
posante locale d’une représentation de G(Ak) apparaissant dans L2(G(k)\G(Ak)).
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Alors tπ = (t1, . . . , tg) ∈ (C×)g, normalisé par

|t1| ≥ |t2| ≥ · · · ≥ |tg| ≥ 1,

vérifie

|t1| ≤ qg−1+θ

|t1t2| ≤ q2g−3+2θ

...
|t1t2 · · · tg| ≤ q

g(g−1)
2 +gθ = q

g(g+1)
2 −g(1−θ )

(125)

où θ est la constante de Ramanujan pour SL(2, k).

Noter que l’on peut bien sûr déduire de ceci des estimées pour les |ti | mais
celles-ci ne semblent pas intéressantes. Comparons en revanche les majorations
obtenues à la matrice tC associée à la représentation triviale. D’après (100) on a

tC = (qg, qg−1, . . . q).(126)

Donc θ = 1 (estimée triviale pour SL(2)) correspond à l’estimée évidente disant
que pour une représentation unitaire |tπ | est dans l’enveloppe convexe de l’orbite
sous W de |tC|. L’amélioration par rapport à ceci est linéaire en θ . Pour θ = 0, nous
verrons dans la section 6.4 que l’on obtient les bornes prévues par les conjectures
d’Arthur.

6.3. Valeurs propres de l’opérateur standard Tp. Nous notons maintenant
G le groupe de similitudes symplectiques GSp(2g). Nous utiliserons G0, . . . ,

T0, . . . pour les données attachées à Sp(2g).
Le centre Z de G s’identifie à GL(1) et son groupe dérivé à G0. Soit T ∼= Gg+1

m

le tore maximal déployé de G donné par

T =










x1
. . .

xg

y1
. . .

yg





: x1 y1 = · · · xg yg = z






(127)

z est alors le rapport de similitude. Le groupe de Weyl W = W (G, T ) est le groupe
engendré par les permutations des coordonnées (à la fois en x et en y) et par les
transpositions (xi , yi ) 5→ (yi , xi ).



P1: GIG

PB440-09 HIDA-0662G PB440-Hida-v4.cls December 10, 2003 7:10

l. clozel and e. ullmo236

Une description non homogène de T est obtenue en posant:

T =










x1
. . .

xg

zx−1
1

. . .
zy−1

g










∼= Gg+1
m .(128)

On rappelle que F désigne un corps p-adique. Une représentation non-ramifiée
π de GSp(2g, F) est déterminée par l’orbite sous W d’un caractère non ramifié χ
de T (F).

Une fonction ϕ dans l’algèbre de Hecke de G(F) par rapport à G(OF ) est
déterminée par sa transformée de Satake ϕ̂, une fonction sur T̂ ∼= (C×)g+1 invariante
par W . Alors ϕ opère dans π (χ ) par ϕ̂(tχ ) où tχ est défini comme en 6.2.

Selon la paramétrisation non homogène (128), on a alors

ϕ̂ ∈ C
[
t1, t−1

1 , . . . , tg, t−1
g , s, s−1]W .

Le groupe W opère en permutant les indices, et par le groupe d’ordre 2g, engendré
par les symétries données à permutation près par

(t1, . . . tg, s) 5→
(
t−1
1 , t2, . . . tg, t1s

)
.(129)

Notons ;v la fonction caractéristique de la double classe

K





:
. . .
:

1
. . .

1





K(130)

dans G = G(F), avec K = G(OF ).

Lemme 6.4. On a

;̂v (t1, . . . tg, s) = q
1
4 g(g+1)

∑

I

(∏

i∈I

ti
)

s = q
1
4 g(g+1)s

g∏

i=1

(1 + ti )(131)

où I parcourt les sous-ensembles de {1, . . . g}.

Nous renvoyons à Duke, Howe et Li pour une démonstration explicite ([17],
Lemme 2.3); ceci est un lemme standard dans la théorie des variétés de Shimura,
voir [24].
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Considérons en particulier le cas où t ∈ T̂ est associé à la représentation unité
de G.

Soit χ le caractère de T (F) associé à t . Alors χ est trivial sur le centre Z , donc

χ (x, . . . x, x2) = 1 (x ∈ F×),(132)

donc

t1 · · · tgs2 = 1.(133)

Par ailleurs χ (x1, . . . xg, 1) est donné par (100). En normalisant t selon (105)
on a donc:

(t1, . . . tg) = (qg, . . . q)(134)

soit s = q−
g(g+1)

4 et enfin:

;̂(t1, . . . , tg, s) = deg(;v ) =
∑

I⊂{1,...g}

∏

i∈I

qi = (1 + q)(1 + q2) · · · (1 + qg).
(135)

Considérons maintenant la décomposition spectrale de L2(G(k)\G(Ak), ε) où
ε est un caractère unitaire de Z (k)\Z(Ak) ∼= k×\A×

k . NotonsLε cet espace, etL⊥ε le
sous-espace orthogonal de l’espace des caractères abéliens (caractèresω de k×\A×

k ,
considérés comme des caractères de G(Ak) via le rapport de similitude; on doit donc
avoir alors ω2 = ε).

Proposition 6.5. Soit π une représentation unitaire de G(Ak) intervenant
dans la décomposition spectrale de L⊥ε , et non ramifiée en v. Alors, si

π (;v )ev = λv ev ,(136)

ev étant le vecteur non ramifié de πv , on a

|λv | ≤ 2gq
g(g+1)

2 − g
2 (1−θ ),(137)

θ étant la constante de Ramanujan pour SL(2, Ak).

Démonstration. D’après l’argument donné pour la représentation triviale, on a
|t1 · · · tg s2| = 1. Par ailleurs on peut supposer que (t1, . . . tg) ∈ (C×)g vérifie

(25) |t1| ≥ · · · ≥ |tg| ≥ 1.

Par conséquent la valeur absolue de la somme dans (131) est majorée par
2g|t1 · · · tg s|. Or |s| = |t1 · · · tg|−1/2 d’où enfin |t1 · · · tg s| = |t1 · · · tg|1/2. D’après
le Lemme 6.4 et le Théorème 6.3, on en déduit

|λv | ≤ 2gq
g(g+1)

2 − g
2 (1−θ ).(138)
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A titre de vérification, noter que θ = 1 conduit à |λv | ≤ 2gq
g(g+1)

2 – estimée
grossière du degré de ;v – et que, pour g = 1, θ = 0 donne

|λv | ≤ 2q
1
2 ,(139)

c’est-à-dire la conjecture de Ramanujan.

Corollaire 6.6. Si la conjecture de Ramanujan (θ = 0) est vraie pour k, on
a

|λv | ≤ 2g q
g2

2 .(140)

6.4. Interprétation au vu des conjectures d’Arthur. Dans ce paragraphe,
nous expliquons comment interpréter la Proposition 6.5 et le Corollaire 6.6 au vu
des conjectures générales d’Arthur, et des propriétés (connues et conjecturées) de
la cohomologie des variétés de modules associées à GSp(2g). Nous supposerons
pour simplifier que k = Q.

Le groupe dual [5] de G = GSp(2g) est un groupe réductif complexe Ĝ, ayant
T̂ comme tore maximal, et ayant comme système de racines R(Ĝ, T̂ ) les coracines
de (G, T ) – vues comme sous-groupes à un paramètre de T , donc comme caractères
de T̂ . On vérifie que c’est le groupe GSpin(2g + 1) des similitudes spinorielles en
rang g; le groupe dérivé est donc le revêtement spinoriel de SO(2g + 1).

D’après Arthur [2], [3] il devrait exister un groupe conjectural LQ (dont les
représentations irréductibles de degré n paramétrent les représentations cuspidales
de GL(n, Q)) ayant la propriété suivante. Toute représentation automorphe π de
GSp(2g, AQ) devrait être associée à une représentation continue

ψ : LQ × SL(2, C) → Ĝ.(141)

Si F = Qp est un complété p-adique de Q, le groupe de Weil WQp doit être
muni d’un homomorphisme ιp : WQp → LQ.

Si πp est non ramifiée, ψ ◦ ιp devrait être non ramifiée. Par ailleurs, on a un
homomorphisme naturel j : WQp → SL(2, C) donné par

w 5→
(

|w |1/2 0
0 |w |−1/2

)
(142)

où |w | est la norme sur Q×
p , composée avec l’isomorphisme du corps de classes

local. Soit

ψ(Frobp) = ψ(ιp(Frobp), j(Frobp)) ∈ Ĝ(143)

où Frobp ∈ Wp est un élément de Frobenius; ceci est bien défini conjecturalement
si πp est non ramifiée. Alors la classe de conjugaison associée à ψ(Frobp) dans
Ĝ devrait être semi-simple et correspondre, par la paramétrisation de Satake, à
πp. Enfin, si π est unitaire, l’image de LQ doit être d’adhérence compacte. Par
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conséquent, les valeurs absolues des valeurs propres de ψ(Frobp) sont uniquement
déterminées par ψ |SL(2,C).

Les valeurs absolues des matrices de Hecke

t(πp) ∈ T̂ ⊂ Ĝ

d’une représentation de G correspondent donc, par composition avec le plongement:

Frobp 5→
(

p1/2 0
0 p−1/2

)
,(144)

aux représentations SL(2) → Ĝ, donc aux homomorphismes

SL(2) → SO(2g + 1),

i.e., aux représentations orthogonales de degré (2g + 1) de SL(2). Une telle
représentation est une représentation de SL(2) dont tous les constituants
irréductibles de multiplicité impaire sont orthogonaux, i.e., de degré impair.

Puisque on considère des représentations de GSp(2g) de caractère central uni-
taire, la taille des matrices de Hecke est déterminée par leur restriction à Sp(2g).
Soit alors

G0 = Sp(2g), T0 =










x1
. . .

xg

x−1
1

. . .
x−1

g










(145)

et T̂0 ⊂ Ĝ0 = SO(2g + 1). On a alors naturellement

T0 =










t1
. . .

tg

1
t−1
1

. . .
t−1
g





: ti ∈ C×






,(146)

les coracines de (G0, T0) s’identifiant aux racines {ti t−1
j : i "= j} et {t±1

i } de
(Ĝ0, T̂0)—cf. (102).

Soit alors r : SL(2) → SO(2g + 1) une représentation. On peut supposer que
r envoie le tore diagonal de SL(2) vers T̂0.
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Pour h =
( x 0

0 x−1

)
∈ SL(2), on peut supposer à conjugaison près dans Ĝ que

r (h) =





xm1

. . .
xmg

1
x−m1

. . .
x−mg





(147)

avec m1 ≥ · · · ≥ mg.
Alors la représentationψ = 1⊗ r de LQ × SL(2) donne pour matrice de Hecke

tp = >(Frobp) =





pm1/2

pm2/2

. . .
1

. . .
p−mg/2





.(148)

Si r est la représentation irréductible (donc orthogonale) de degré (2g + 1), on
obtient donc:

tp =





pg

pg−1

. . .
p

1
p−g

. . .
p−1





,(149)

c’est-à-dire la matrice de Hecke de la représentation triviale.

Lemme 6.7. Pour r orthogonale mais non irréductible, on a

m1 + · · · + mg ≤ g(g − 1).(150)

Démonstration. Si ρ est une représentation irréductible de SL(2) de plus haut
poids h 5→ xm (m ≥ 0), la somme des poids ≥ 0 de ρ est m(m+2)

4 si m est pair et
(m+1)2

4 si m est impair. En paramétrant les composantes irréductibles de r par leur
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degré d = m + 1, on a donc

M = m1 + · · · + mg =
∑

d impair

d2 − 1
4

+
∑

d pair

d2

4
(151)

∑
d = 2g + 1,(152)

les degrés d pouvant bien sûr intervenir avec des multiplicités.
L’inégalité (150) s’écrit alors

∑

d≡1

(d2 − 1) +
∑

d≡0

d2 ≤ 4g2 − 4g(153)

où les congruences sont modulo 2.
Soit e l’un des degrés d apparaissant dans (153). Alors

∑
d2 ≤ e2 + (2g + 1− e)2

donc (153) sera vérifiée si

e2 + (2g + 1− e)2 ≤ 4g2 − 4g,(154)

soit

2e2 − 2(2g + 1)e + 8g + 1 ≤ 0.(155)

Cette équation est symétrique si on remplace e par 2g + 1− e. Le polynôme
quadratique est égal en e = 3 à −4g + 13 < 0 si g > 3, ce que nous supposons
pour l’instant.

Si la partition 2g + 1 =
∑

d viole (153), on doit donc avoir, pour tout d, d = 1,
2 ou d = 2g, 2g − 1. (On a supposé r réductible, donc d = 2g + 1 est exclu). Les
seules partitions de 2g + 1 à considérer sont donc (1, 1, 2g − 1), (2, 2g − 1) et
(1, 2g). (Les partitions de la forme 1a2b sont aisément exclues) La seconde et la
troisième sont exclues car la représentation de degré 2 ou 2g, qui apparaı̂trait avec
multiplicité 1, est symplectique. Il reste la première; dans ce cas, revenant à (153),
on voit qu’on a bien

∑
(d2 − 1) = −3 + 2 + (2g − 1)2 = (2g − 1)2 − 1 = 4g2 − 4g.(156)

Si g = 2, en se rappelant que les représentations de degré pair doivent apparaı̂tre
avec multiplicité paire, on voit que les seules partitions à considérer modulo les
arguments précédents sont 5 = 2 + 2 + 1, 5 = 3 + 1 + 1, 5 = 1 + 1 + · · · + 1, qui
vérifient (153), avec égalité pour les deux premières. Pour g = 3, on doit considérer
les partitions 32 · 1, 3 · 22, 3 · 14, 22 · 13 et 17. Toutes vérifient l’inégalité stricte dans
(153).

Notons la conséquence du calcul, dont nous ne ferons pas usage ici:

Lemme 6.8. Si g ≥ 3, la seule représentation r donnant l’égalité dans (150)
est celle de degrés (1, 1, 2g − 1).

Si g = 2, les représentations de degrés (2, 2, 1) et (3, 1, 1) conviennent.
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Nous pouvons maintenant interpréter le Corollaire 3.5 à l’aide des conjectures
d’Arthur. Si π est une représentation de Sp(2g, AQ) non triviale apparaissant dans
l’espace des formes de carré intégrable, sa matrice de Hecke tp en une place non
ramifiée doit avoir des valeurs absolues données par (148), pour une représentation
r de SL(2) vérifiant (150). On a donc

|t1 · · · tg| ≤ p
g(g−1)

2 = p
g(g+1)

2 −g.(157)

C’est l’estimée du Théorème 6.3 (pour θ = 0) et on en déduit le Corollaire 6.6.
Noter que les conjectures d’Arthur impliquent donc que l’estimée associée

à θ = 0 est optimale pour Sp(2g), puisque les paramètres associés à la partition
considérée sont présents. On obtiendrait des formes automorphes correspondant à
ces matrices de Hecke en formant des séries d’Eisenstein à partir de la représentation
triviale du sous-groupe de Levi Sp(2(g − 1))× GL(1) de Sp(2g).

Terminons en indiquant une autre interprétation, géométrique, de l’estimée du
Corollaire 6.6. Soient N un entier ≥ 1, et X N = Ag(N ) l’espace de modules des
variétés abéliennes principalement polarisées munies d’une structure de niveau N .
Alors la fonction ;p du 6.3 opère sur la cohomologie L2, H •

(2)(X N , C); celle-ci,
d’après la conjecture de Zucker, est isomorphe à la cohomologie d’intersection
I H •(X N , C), X N étant la compactification de Baily-Borel.

Les variétés X N , X N sont définies sur Q et les valeurs propres αp de ;p

devraient être liées à celle d’un opérateur de Frobenius en p, opérant dans
I H •(X N ⊗Q, Q8). La cohomologie d’intersection vérifie la dualité de Poincaré,
et, d’après un théorème d’annulation bien connu [6], est nulle en degré ≤ g – en
omettant les classes de Chern associées à la représentation triviale de Sp(2g, AQ).
En dehors de la partie triviale de la cohomologie, les propriétés de pureté des valeurs
propres de Frobenius doivent alors impliquer αp ≤ p

g(g+1)
2 − g

2 = p
g2

2 puisque la di-
mension de X N est g(g+1)

2 . Le facteur 2g du Corollaire 6.6 correspond, comme pour
GL(2), au degré maximal des représentations galoisiennes de Gal(Q/Q) apparais-
sant dans la cohomologie d’intersection, ici égal à 2g. On renvoie à Kottwitz [24]
pour une description précise (mais conjecturale) de la cohomologie d’intersection
de Ag(N ) en termes de formes automorphes. Noter qu’il résulte de Li [25] que
IHg(X N , C) est effectivement non nul, pour N convenable (et contient des classes
différentes des classes de Chern). Ceci explique de nouveau pourquoi le Corollaire
6.6 est optimal.

6.5. Preuve du théorème 1.3. La preuve du théorème 1.3 à partir de ce
qui précède est identique à la preuve du théorème 1.2. On écrit la décomposition
orthogonale:

L2("2\G2(R), 1) = C1⊕ L ,

où C1 désigne l’espace des fonctions constantes et L son orthogonal.
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Soit π = ⊗̂πp une représentation automorphe irréductible de GSp(2g)(A) in-
tervenant dans la décomposition spectrale (44). La composante πp de π en p est
non ramifiée. Soit χ un caractère associé et

tχ = (t1, . . . , tg, s)

les paramètres de πp. On a défini ch p avant l’équation (43). D’après (43), l’action
de T p sur la partie relative à π de la décomposition spectrale (44) est donnée
par l’action de ch p

deg(ch p) sur la composante en p d’un vecteur K f -invariant de π .
D’après la section 3.3, le lemme 6.4 et l’équation (135), cette action est donnée par
multiplication par

λp = ĉh p(t1, . . . tg, s)
∏g

i=1(1 + pi )
.

D’après la proposition 6.5, si π n’est pas la représentation triviale, on a

|ĉh p(t1, . . . , tg, s)| ≤ 2g p
g(g+1)

2 − g(1−θ )
2 .

On déduit la première partie du théorème 1.3 en utilisant la décomposition spectrale
(44) et cette inégalité.

7. Généralisation. Le cas des groupes orthogonaux.

7.1. Le cas des groupes fortement orthogonaux. L’élément crucial dans
les majorations obtenues dans la partie 6 est le fait que Sp(g) contient un produit
de g facteurs SL(2). Cet argument s’applique à d’autres groupes; il est remarquable
qu’en particulier (pour des groupes déployés) cela est le cas quand G est associé à
des variétés de Shimura. Nous expliquons l’argument dans le cas général, puis nous
dérivons des majorations explicites dans le cas de SO(2g + 1) où, pour simplifier,
nous supposerons g pair.

Soit donc G un groupe simple déployé de rang g sur un corps de nombres k, et
supposons qu’il existe un homomorphisme de noyau fini ϕ : SL(2)g → G, d’image
H . Soit T un tore maximal déployé de H , donc de G. Les racines de T associées
aux sous-groupes unipotents de H forment alors un système de racines (de type
Ag

1) fortement orthogonales. (Rappelons que ceci veut dire que, pour deux d’entre
elles, soit α,β, ±α ± β n’est pas une racine).

En particulier, le groupe de Weyl W (G, T ) doit contenir l’élément (−1), et l’on
sait en fait que ceci est équivalent à l’existence de g racines fortement orthogonales
(e.g., Warner [40] p. 93). Si k est totalement réel, ceci revient à supposer que
G(k ⊗Q R) a une série discrète: en particulier ceci est vrai pour les groupes déployés
(sur des corps totalement réels) dont l’espace symétrique est hermitien.

Avec les notations ci-dessus, notons R(G, T ) et R(H, T ) les systèmes de racines
de G et H , contenus dans le groupe X∗ des caractères de T . On choisit une base
3G de R(G, T ) (et donc un choix de racines positives); il existe une unique base



P1: GIG

PB440-09 HIDA-0662G PB440-Hida-v4.cls December 10, 2003 7:10

l. clozel and e. ullmo244

3H de R(H, T ) formé de racines positives. Si X∗ est le réseau des cocaractères de
T , dual de X∗, on écrira

t = X∗ ⊗Z R, t̂ = X∗ ⊗Z R.(158)

T̂ = Hom(X∗, C×).(159)

Si v est une place non archimédienne de k et F = kv on écrira simplement T
pour T (F). On note q le cardinal du corps résiduel. Soit

T + = {x ∈ T | |xα| ≤ 1 ∀α ∈ 3G}(160)

T +
H = {x ∈ T | |xα| ≤ 1 ∀α ∈ 3H }(161)

de sorte que T + ⊂ T +
H . Par ailleurs, soit 3∨G ⊂ X∗(T ) = X∗(T̂ ) l’ensemble des

racines duales, et

T̂+ = {t ∈ T̂ : |tβ | ≥ 1 ∀β ∈ 3∨G}.(162)

On identifie X∗(T ) à T (F)/T (O) en envoyant u ∈ X∗(T ) sur u(: ), où : est
une uniformisante. Ainsi T̂ s’identifie au groupe des caractères non ramifiés de T .
On vérifie alors que l’image inverse de T + dans X∗(T ) est l’intersection de celui-ci
avec la chambre de Weyl

C+ ⊂ t, C+ = {X ∈ t : (X,α) ≥ 0 ∀α ∈ 3G}.(163)

Notons Re l’application logarithme de T̂ vers t̂ donnée par

|χ (u)| = q (Re χ ,u) (u ∈ X∗(T ),χ ∈ T̂ ).(164)

Alors

T̂+ = {t ∈ T̂ : Ret ∈ Ĉ+}(165)

où

Ĉ+ = {Y ∈ t̂ : (Y,β) ≥ 0 ∀β ∈ 3∨G}.(166)

Enfin soit δG , δH les caractères à valeurs positives de T donnés par la racine
carrée du module du produit des racines positives relatives à G, H . Noter que leurs
valeurs sont ≤ 1 sur T +. Un calcul facile montre que

Re δG = −ρG, Re δH = −ρH(167)

où ρG , ρH ∈ t̂ sont les demi-sommes de racines positives de G, H .
Soit alors χ ∈ T̂ un caractère non ramifié, et ϕχ la fonction sphérique associée.

L’expression (108) de la fonction sphérique donne ici, si χ ∈ T̂+:

ϕχ (x) ∼
r∑

i=1

χi (x)δG(x)Li (x) (x ∈ T +)(168)
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où les χi sont les conjugués de χ par W (G, T ) contenus dans T̂+ et les Li sont des
fonctions polynomiales sur T (F)/T (O) = X∗(T ).

Supposons que la représentation non ramifiée πχ associée à χ est automorphe
(i.e., ∈ Ĝ(F)aut au sens de la section 5) et n’est pas un caractère abélien. Si θ est la
constante de Ramanujan pour k, il résulte alors des résultats de la section 5 et des
arguments donnés autour du Lemme 6.2, que

|ϕχ (x)| ≤ CδH (x)1−θ L(x)
(
x ∈ T +

H

)
(169)

pour une fonction polynomiale L . D’après (168) et (169):

|χ (x)|δG(x)δH (x)θ−1 ≤ 1 (x ∈ T +).(170)

Vu la description de T + donnée avant (163), on en déduit d’après (164) et (167):

(Re χ − ρG + (1− θ )ρH , X ) ≤ 0 (X ∈ C+),(171)

c’est-à-dire:

Re χ = ρG + (θ − 1)ρH −
∑

α∈3G

λαα, λα ≥ 0.(172)

On a donc démontré le résultat suivant. Notons ≤ l’ordre sur t̂ associé aux
racines positives de G.

Théorème 7.1. Soient G un groupe simple et déployé sur k et H ⊂ G un sous-
groupe isogène à SL(2)g où g est le rang de G; soit F = kv une complétion non
archimédienne de k.

Soit χ ∈ T̂ un caractère associé à une représentation automorphe non
abélienne et non ramifiée de G(F), et supposons que Re χ ∈ Ĉ+. Alors Re χ ≤
ρG + (θ − 1)ρH .

En particulier, on voit que sous la conjecture de Ramanujan (θ = 0) on devrait
avoir

Re χ ≤ ρG − ρH = ρG −
1
2

∑

β

β(173)

pour tout système {β} de g racines positives fortement orthogonales.
Dans le paragraphe qui suit, nous expliciterons la relation (173) dans le cas des

groupes orthogonaux. On verra dans ce cas que (pour T ⊂ G,3G fixés) il existe un
système ; de racines fortement orthogonales telle que la relation (173) déduite de
; implique toutes les relations analogues. Autrement dit, si;′ est un autre système,
on a, avec des notations évidentes:

ρ; ≥ ρ;′ .(174)

Hee Oh [31] a vérifié cette propriété pour tous les systèmes de racines.
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7.2. Application au groupe G = SO(2g + 1). Considérons maintenant le
cas où G = SO(2g + 1); nous supposerons pour simplifier g = 2h pair. On suppose
G associé à la forme quadratique sur k2g+1 de matrice

Q =




1g

1
1g



 .(175)

Soit T =










x1
. . .

xg

1
x−1

1
. . .

x−1
g










∼= Gg
m ⊂ G.

Les calculs relatifs aux racines sont duaux de ceux du § 6.
On a un système de racines simples

3G =
{

x1x−1
2 , . . . , xg−1x−1

g , xg
}
.(176)

Notant comme ci-dessus T = T (F), on a donc

T+ = {(x1, . . . , xg) : |x1| ≤ |x2| ≤ · · · ≤ |xg| ≤ 1}.(177)

On a T̂ = (C×)g, un caractère χ ∈ T̂ étant associé à (t1, . . . , tg) avec

ti = χ





1
1
:

. . .
1

1
:−1

. . .
1





.(178)

Les coracines ont une base donnée par

3∨G =
{
t1t−1

2 , . . . , tg−1t−1
g , t2

g

}
,(179)

donc T̂+ = {t ∈ T̂ : |t1| ≥ · · · ≥ |tg| ≥ 1}.
Notons enfin que les racines positives associés à la base 3G sont données par

R+(G, T ) =
{

xi x−1
j , xi x j

}
i< j ∪ {xi }1≤i≤g.(180)



P1: GIG

PB440-09 HIDA-0662G PB440-Hida-v4.cls December 10, 2003 7:10

equidistribution des points de hecke 247

Un système ; de racines positives fortement orthogonales est, comme on le
vérifie aisément, de la forme suivante. Soit {1, . . . , g} =

∐h
k=1{ik, jk} une partition

de {1, . . . , g} en ensembles à deux éléments; on suppose ik < jk . Alors:

; = ∪h
k=1

{
xik x−1

jk , xik x jk

}
(181)

est fortement orthogonal. On a alors:

ρ2
G(x) = x2g−1

1 x2g−3
2 · · · x3

g−1xg(182)

ρ2
H (x) =

h∏

k=1

x2
ik
,(183)

et si ρG et ρH sont vus comme des éléments de 1
2 X∗(T ) ⊂ t̂ (cf. après (167)), où

X∗(T ) est identifié à Zg:

ρG =
(

2g − 1
2

,
2g − 3

2
, . . . ,

2g + 1− 21
2

, . . . ,
1
2

)
.(184)

ρH = (0, . . . 1, 0, . . . 1, . . . 0, . . . )(185)

les coefficients 1 apparaissant pour i = ik .
Si χ ∈ T̂+ et Y = Reχ ∈ t̂ = Rg, Y vérifie

Y1 ≥ Y2 ≥ · · · ≥ Yg ≥ 0,(186)

et par définition

Yi = 8n|ti |
8nq

.(187)

Enfin, Y ∈ t̂ est positif (pour l’ordre associé aux racines) si

Y1 ≥ 0
Y1 + Y2 ≥ 0

Y1 + · · · + Yg ≥ 0.

(188)

Noter que ρ; = ρH , où H est associé à ;, ne dépend que des indices ik dans
(181). Soit ; un système fortement orthogonal tel que {i1, . . . ik} = {1, . . . h}. On
a donc

ρ; = (1, . . . 1, 0, . . . 0).(189)

Si ;′ est un autre système fortement orthogonal et ρ;′ = (Y1, . . . , Yg), on
a, pour tout i ≤ h, Y1 + · · · + Yi ≤ i , et pour tout i > h, Y1 + · · · + Yi ≤ h. Ceci
montre d’après (188) que ρ; ≥ ρ;′ , comme on l’a remarqué après le Théorème 4.1.
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L’inégalité

Reχ ≤ ρG + (θ − 1)ρH ,

où H est associé à ;′ arbitraire, est donc impliquée par l’unique inégalité
associée à; comme ci-dessus. En explicitant (188), on obtient donc les majorations
suivantes pour Yi = 8n(ti )

8nq :

Y1 ≤ 1
2 (2g − 1) + θ − 1

Y1 + Y2 ≤ 1
2 (2g − 1 + 2g − 3) + 2(θ − 1)

...
Y1+· · ·+Yh≤ 1

2 (2g − 1 + 2g − 3 + · · · + (2g + 1− 2h)) + h(θ − 1)
Y1 + · · · + Yh+1 ≤ 1

2 (2g − 1 + · · · + (2g + 1− 2(h + 1)) + h(θ − 1)
...

Y1 + · · · + Yg ≤ 1
2 ((2g − 1) + (2g − 3) + · · · + 1) + h(θ − 1).

(190)

Donnons une application de cette estimée à la trace d’un opérateur de Hecke naturel.
Soit Ĝ = Sp(2g) le groupe dual de G, de sorte que Ĝ ⊃ T̂ . Les poids dominants

des représentations irréductibles de dimension finie de Ĝ correspondent alors aux
éléments (dominants) de X∗(T ). En particulier, la représentation standard de degré
2g de Ĝ, dont le poids maximal est minuscule, correspond à un cocaractère µ ∈
X∗(T ). Soit a = µ(: ) ∈ T (F) et soit ;v la fonction caractéristique de Kva Kv ,
où Kv = G(Ov ). On a alors:

Lemme 7.2. (Langlands, Kottwitz). Si ϕ 5→ ϕ̂ (ϕ ∈ H(Gv , Kv ), ϕ̂ ∈ C[T̂ ]W )
désigne la transformée de Satake,

;̂v (t1, . . . tg) = q
2g−1

2

g∑

i=1

(
ti + t−1

i

)
.(191)

Pour la démonstration, voir Kottwitz [24] Théorème. 2.1.3.
Des inégalités (190) on déduit alors la majoration grossière (On laisse au lecteur

le soin de dériver des majorations plus fines de (190) et d’inégalités de convexité):

Corollaire 7.3. Si πv est une représentation non ramifiée et non abélienne
de G(F) apparaissant dans l’espace des formes automorphes,

;̂v (πv ) = tr (πv (;v ))(192)

vérifie:

|;̂v (πv )| ≤ 2g q2g−1+θ−1.(193)

En particulier, sous l’hypothèse de Ramanujan pour SL(2):

|;̂v (πv )| ≤ 2g q2g−2.(194)
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On notera que si πv est la représentation triviale, la matrice de Hecke t ∈ T̂ est

tC =





q
2g−1

2

q
2g−3

2

. . .
q

q−1

. . .

q
1−2g

2





(195)

(on a considéré T̂ , de la façon naturelle, comme plongé dans Ĝ) et donc:

;̂v (C) = q2g−1 + q2g−2 + · · · + 1 > q2g−1.(196)

L’amélioration donnée par le Corollaire est donc en qθ−1, q−1/2 incondition-
nellement (Gelbart-Jacquet) et q−1 sous l’hypothèse de Ramanujan.

On notera que cette majoration est de nouveau essentiellement optimale (en
supposant θ = 0) au vu des conjectures d’Arthur. On renvoie au chapı̂tre 6.4 pour
le cas de Sp(2g). Pour G = SO(2g + 1), Ĝ = Sp(2g), les valeurs absolues des
valeurs propres des matrices de Hecke de représentations automorphes (au sens
de la décomposition de L2) sont données par la recette donnée à la section 6.4
appliquée à des représentations r : SL(2) → Ĝ. Si r est réductible et symplectique,
de degré (2g), son poids maximal m = Max(mi ) (notation (147) est m = 2g − 3.
Si πv vérifie l’hypothèse du Corollaire 7.3, les valeurs absolues des valeurs propres
de sa matrice de Hecke tπv ∈ Ĝ sont alors majorées par q

2g−3
2 , d’où (194) d’après

le Lemme 7.2. On voit en particulier que (194) donne l’ordre de grandeur correct.
Comme dans le cas de Sp(2g), nous ne savons pas si l’on dispose d’assez

d’informations sur le dual unitaire pour dériver (190) des résultats locaux. Noter
cependant que (190) est, dans le cas de SO(2g + 1), plus faible que les conjectures
d’Arthur. Par exemple (190) donne, sous l’hypothèse de Ramanujan:

|t1 · · · tg| ≤ q
g
2−

1
2 q

1
2 {(2g−3)+(2g−5)+···+1}(197)

alors que les conjectures d’Arthur impliquent

|t1 · · · tg| ≤ q
1
2 {(2g−3)+(2g−5)+···+1}.(198)

8. Equidistribution des points de Hecke. Dans cette section nous ex-
pliquons comment on obtient la deuxième partie des théorèmes 1.2 et 1.3 à partir
des résultats pour la norme L2.

Soit G un groupe réductif défini sur Q. On note " = G(Z) et Z le centre de
G. On note Cc = Cc("Z (R)\G(R)) l’ensemble des fonctions continues à support
compact dans "Z (R)\G(R).
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Soit E un sous ensemble fini, invariant à droite par ", de "\G(R). Soit |E | son
cardinal. On dispose alors d’un opérateur TE sur L2("Z (R)\G(R)) définie par

TE f (z) = 1
|E |

∑

m∈E

f (mz).

On note encore TE l’opérateur sur Cc obtenue par restriction. Si h ∈ G(Q) et E =
"h" = ∪r

i=1"hi , on note Th = TE .

Proposition 8.1. Soit En une suite de sous ensembles finis, invariants à droite
par ", de "\G(R). On suppose que pour toute fonction

f ∈ L2("Z (R)\G(R))

on a

lim
n→∞

‖TEn f −
∫

"Z (R)\G(R)
f (x)dµ(x)‖ = 0.

Pour toute fonction f ∈ Cc et tout z0 ∈ "Z (R)\G(R) on a la convergence simple

lim
n→∞

TEn f (z0) =
∫

"Z (R)\G(R)
f (x)dµ(x).

On note < , > le produit scalaire sur L2("Z (R)\G(R)). Par l’inégalité de
Cauchy-Schwartz on montre que pour des fonctions f et g dans

L2("Z (R)\G(R))

on a:

lim
n→∞

< TEn f, g >=< f, 1 >< 1, g >.(199)

Soient f ∈ Cc et ε > 0. On identifie f à une fonction "-invariante sur
Z (R)\G(R); f est alors uniformément continue pour la structure uniforme in-
variante à droite. Par uniforme continuité de f , il existe un voisinage Uε(z0) de z0

telle que pour tout z ∈ Uε(z0) et tout g ∈ G on ait

|| f (gz)− f (gz0)| ≤ ε.(200)

Soit ψ ∈ Cc une fonction positive dont le support est contenue dans Uε(z0)
telle que

∫

"Z (R)\G(R)
ψ(x)dµ(x) = 1.

D’après l’équation (199), pour tout n assez grand, on a

| < TEn f,ψ > −
∫

"Z (R)\G(R)
f (x)dµ(x)| ≤ ε.



P1: GIG

PB440-09 HIDA-0662G PB440-Hida-v4.cls December 10, 2003 7:10

equidistribution des points de hecke 251

d‘après l’équation (200), on a

| < TEn f,ψ > −TEn f (z0)| ≤ ε.

On déduit des deux dernières inégalités que l’on a bien

lim
n→∞

TEn f (z0) =
∫

"Z (R)\G(R)
f (x)dµ(x).

8.1. Estimées ponctuelles. Les Théorèmes 1.2 et 1.3 (b) ne donnent pas la
vitesse de convergence de T N x vers la mesure de Haar. Dans cette section nous
montrons comment estimer la vitesse de convergence quand T N x est évalué sur
une fonction suffisamment différentiable.

Dans la section 2.2 (voir Théorème 2.1 (b)) une telle estimée était déduite
d’évaluations uniformes des valeurs des séries d’Eisenstein. Nous ne savons pas si
de telles estimées sont accessibles en général. Nous remplaçons donc cet argument
par l’usage d’une paramétrix pour un opérateur elliptique d’ordre 2 sur G(R). Un
tel argument semble avoir été utilisé pour la première fois par Duflo et Labesse [15]
p. 199.

Gardons les notations du début de la section 8. On notera simplement T un
opérateur de Hecke TE , normalisé. On suppose que " ⊂ G(Q) est arithmétique.

Notons d la dimension de Z (R)\G(R) = PG(R), que l’on suppose connexe.
Pour une fonction L2 f sur Z (R)"\G(R), soit f 0 sa projection sur l’espace des
constantes.

Soient g l’algèbre de Lie de PG(R) et Z le centre de son algèbre enveloppante
U (g). Soit g = k⊕ p une décomposition de Cartan de g. Soient Zα, Yβ des vecteurs
de k et p tel que B(Zα, Zα) = −1 et B(Yβ, Yβ) = +1 et autrement orthogonaux.
Alors CG = −#Z2

α +#Y 2
β est un élément de Z et CK = −#Z2

α appartient à ZK .
Notons D = CG − 2CK : D est un opérateur différentiel elliptique dans U (g).

Soit m un entier ≥ d+1
2 . D’après la théorie de la paramétrix [15] il existe des

fonctions ψ ∈ D(PG(R)), ϕ ∈ D2m−d−1(PG(R))-Di désignant l’espace des fonc-
tions i fois différentiables à support compact et D l’espace des fonctions C∞ à
support compact – telles que l’on ait sur PG(R):

Dm ∗ ϕ = δ + ψ(201)

δ étant la mesure de Dirac à l’origine.
Notons D(m) l’espace des fonctions sur Z (R)"\G(R) telles que f et f ∗ Dm

soient de carré intégrable.

Proposition 8.2. Soit ω ⊂ Z (R)"\G(R) un sous-ensemble compact. Il existe
alors des constantes C1(ω) et C2(ω) telles que, pour tout f ∈ D(m) et x ∈ ω, et
tout opérateur de Hecke T :

|T f (x)− f 0(x)| ≤ C1(ω)‖T f − f 0‖2 + C2(ω) · ‖T ( f ∗ Dm)− f 0 ∗ Dm‖2.

(202)
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Corollaire 8.3. Si (Tn) est une suite d’opérateurs de Hecke normalisés tels
que ‖Tn f − f 0‖2 ≤ ε(n)‖ f ‖2 ( f ∈ L2) alors pour tout f ∈ D(m), x ∈ Z (R)"\
G(R)

|Tn f (x)− f 0(x)| ≤ C ε(n)(203)

la constante C (dépendant de f ) étant uniforme pour x dans un compact.

Ceci permet d’évaluer les restes dans les résultats d’équidistribution des
Théorèmes 1.2 et 1.3.

Corollaire 8.4. (Notation du Théorème 1.2). Si f ∈ D( n2

2 ) alors

|T r,p f (x)− f 0(x)| ≤ C p−
min(r,n−r )

2(204)

pour tout r, p, la constante C étant uniforme pour x dans un compact.

Corollaire 8.5. (Notations du Thm 1.3). Si f ∈ D(g2 + g+1
2 ),

|T p f (x)− f 0(x)| ≤ C p−
g(1−θ )

2(205)

uniformément sur tout compact.

Démonstration de la Proposition 8.2. D’après (201) on peut écrire pour toute
fonction f sur X = Z (R)"\G(R) et même pour toute distribution (les distributions
apparaissant dans (201) étant à support compact):

f = ( f ∗ Dm) ∗ ϕ − f ∗ ψ.(206)

L’opérateur T , opérant à gauche, commute avec les convolutions, et on a donc

T f = T ( f ∗ Dm) ∗ ϕ − (T f ) ∗ ψ.(207)

Considérons par exemple le second terme de (207). La fonction T f ∗ ψ est
convolée d’une fonction L2 et d’une fonction à support compact, et il en est de
même pour f 0 ∗ ψ . On en déduit qu’elle est continue et que

|T f ∗ ψ(x)− f 0 ∗ ψ(x)| ≤ C1(ω) · ‖T f − f 0‖2(208)

pour x dans un compact ω. De façon analogue, ϕ ∈ D2m−d−1 étant continue, on a

|T ( f ∗ Dm) ∗ ϕ(x)− ( f ∗ Dm)0 ∗ ϕ(x)| ≤ C2(ω)‖T ( f ∗ Dm)− ( f ∗ Dm)0‖2.

(209)

Noter que le même argument appliqué à la décomposition (206) montre que
f est continue (Bien sûr, ceci n’est que le lemme de Sobolev dans ce contexte.)
D’après (208) et (209),

|T f (x) + f 0 ∗ ψ(x)− ( f ∗ Dm)0 ∗ ϕ(x)|(210)
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admet la majoration indiquée dans la Proposition 2. Il reste à remarquer que la
projection sur les constantes commute avec la convolution, de sorte que

f 0 ∗ ψ − ( f ∗ Dm)0 ∗ ϕ = ( f ∗ ψ − f ∗ Dm ∗ ϕ)0 = − f 0.(211)
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[39] E. Ullmo, Positivité et Dicrétion Des Points Algébriques Des Courbes, Ann. of Maths 147 (1998), 167–179.
[40] G. Warner, Harmonic Analysis on Semi-Simple Lie Groups I, II. Springer-Verlag, Berlin, 1972.
[41] S. Zhang, Equidistribution of Small Points on Abelian Varieties, Ann. of Maths 147 (1998), 159–165.
[42] ———, Heights of Heegner Points on Shimura Curve, preprint, 1999.



P1: GIG

PB440-10 HIDA-0662G PB440-Hida-v4.cls December 10, 2003 7:18

CHAPTER 10

REMARKS ON RANKIN-SELBERG CONVOLUTIONS

By James W. Cogdell and Ilya I. Piatetski-Shapiro

Dedicated to Joe Shalika

In this paper we would like to present two types of results on the theory of Rankin-
Selberg convolution L-functions for GLn × GLm . Both families of results are based
on the foundational work of Shalika with Jacquet and the second author of this
paper [10, 11, 12, 13] on the analysis of these L-functions via the theory of integral
representations.

In the first section we present results on the local archimedean Rankin-Selberg
convolutions. This section was written in response to a question of D. Ramakrishnan
as to whether the local L-function as defined by Jacquet and Shalika in [13] was
indeed the “correct” factor in the sense that it is precisely the standard archimedean
Euler factor which is determined by the poles of the family of local integrals using
either K -finite data or smooth data (i.e., without passing to the Casselman-Wallach
completion). In Section 1 we answer this affirmatively as a consequence of showing
that the ratio of the local integral divided by the L-function is continuous in the
appropriate topology, uniformly on compact subsets of C. As a consequence we
establish a non-vanishing result for this ratio which is necessary for the completion
of the global theory of Rankin-Selberg convolutions.

In the second section we complete global theory of Rankin-Selberg convolu-
tions from the point of view of integral representations. This section was motivated
by the comment of Jacquet that, although known to the experts, this completion
had never appeared in print. Most of the necessary results can be found in the
paper [12] by Jacquet and Shalika, though not always explicitly stated. One miss-
ing ingredient was the non-vanishing result for the archimedean Rankin-Selberg
integrals alluded to above. With this in hand, in Section 2 we combine the global
results of [10, 12] with the local results of [11, 13] and Section 1 of this paper to
give a proof of the fact that the global L-functions L(s, π × π ′) are nice, in the
sense that they have meromorphic continuation, are bounded in vertical strips, and
satisfy a global functional equation, within the context of integral representations.
Actually, we are only able to establish the boundedness in vertical strips within
the method for m = n and m = n − 1. Outside of these cases we must rely on the
results of Gelbart and Shahidi [6]. In addition we establish the location of poles
for these L-functions, giving the proof of Jacquet, Piatetski-Shapiro, and Shalika
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of these results alluded to in the appendix of [14]. If one combines these results
with the strong multiplicity one results of [12] and the converse theorems [2, 3] we
can consider the basic global theory of Rankin-Selberg convolutions via integral
representations to now be essentially complete, with the exception of the cases of
boundedness in vertical strips alluded to above.

Acknowledgments. We would like to thank D. Ramakrishnan for asking us the
question which led to the first part of this paper. We would like to thank H. Jacquet
for pointing out the need for the second part of this paper and for providing us with
the sketch of his proof with Shalika of Theorem 1.3.

1. Archimedean Rankin–Selberg convolutions. This section complements
the material in the paper of Jacquet and Shalika [13] and is meant to show that
indeed the results there are enough for most applications. Unless otherwise noted,
the notation is as in [13].

1.1. An extension of Dixmier–Malliavin. Let E be a Fréchet space, G a real
Lie group, g its complexified Lie algebra, and π a continuous representation of G
on E . Let {p j } be a set of seminorms on E defining the topology on E .

Let E∞ be the smooth vectors of E . Let U (g) be the universal enveloping
algebra of g and let {ui } be a basis of U (g). The topology on E∞ is defined by
the seminorms qi, j (ξ ) = p j (π (ui )ξ ) for ξ ∈ E∞. With this topology, E∞ is again
a Fréchet space [1]. For convenience, reindex the family {qi, j } by a single index
{qi }.

Let ξk → ξ0 be a convergent sequence in E∞. The purpose of this section is
to prove the following extension of Theorem 3.3 of [4]. Our proof is a variation of
that in [4] which we follow.

Proposition 1.1. There exists a finite set of functions f j ∈ C∞
c (G) and a col-

lection of vectors ξk, j ∈ E∞ such that ξk =
∑

π ( f j )ξk, j for all k ≥ 0 and such that
for each j , ξk , j converge to ξ0, j in E∞.

Proof. Since E∞ is linear, it suffices to consider the case ξ0 = 0.
Let {X1, . . . , Xm} be a basis of g with the property that under the map

(t1, . . . , tm) (→ et1 X1 · · · etm Xm

from Rm to G the open set (−1, 1)m is mapped diffeomorphically onto an open set
# of G.

Lemma 1.1. For each choice of seminorm qi and non-negative integer n the
set of real numbers {qi (π (X1)2nξk)} is bounded.
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Proof. Since π (X1)2n acts continuously and the seminorm qi is continuous,
the sequence qi (π (X1)2nξk) converges to qi (π (X1)2n0) = 0. Hence the sequence of
real numbers qi (π (X1)2nξk) is bounded. !

Let Mn,i be an upper bound for {qi (π(X1)2nξk)}.

Lemma 1.2. There exist positive real numbers βn such that the sum
∑

n βn Mn,i

is convergent for all i .

Proof. For each i there are positive numbers βn,i such that
∑

n βn,i Mn,i con-
verges. Let β (k)

n = min1≤i≤k βn,i and set βn = β (n)
n . Then

∑

n

βn Mn,i =
∑

n≤i

βn Mn,i +
∑

n>i

βn Mn,i .

For n > i , βn = min
1≤ j≤n

βn, j ≤ βn,i . So

∑

n>i

βn Mn,i ≤
∑

n>i

βn,i Mn,i < ∞.

Now let ε ∈ (0, 1
2 ]. Then by Lemma 2.5 and Remark 2.6 of [4] there is a

sequence of positive numbers αn and functions g(t) and h(t) in C∞
c (R), supported

in (−ε, ε) such that
∑

n

αn Mn,i < ∞ for all i

and
p∑

n=0

(−1)nαnδ
(2n)
0 ∗ g → δ0 + h

in the spaceE ′(R) of compactly supported distributions on R. δ0 is the Dirac measure
supported at the origin of R.

The measures g(t) dt and h(t) dt induce measures µ1 and ν1 on G under the
map R → G given by t (→ et X1 . Then

µ1 ∗
p∑

n=0

(−1)nαn X2n
1 =

p∑

n=0

(−1)nαn X2n
1 ∗ µ1 → δe + ν1

in the space E ′(G) of compactly supported distributions on G and

π (µ1)
p∑

n=0

(−1)nαnπ (X1)2nξk → ξk + π (ν1)ξk

in the weak topology on E .
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However, by our choice of αn ,
∑∞

n=0 qi (αnπ (X1)2nξk) < ∞ for each seminorm
qi . Therefore

∑p
n=0(−1)nαnπ (X1)2nξk converges to a vector ηk in E∞. Therefore

we have

ξk = π (µ1)ηk − π (ν1)ξk

for each ξk .

Lemma 1.3. The sequence ηk converges to 0 in E∞.

Proof. By continuity of the seminorms,

qi (ηk) ≤ lim
p→∞

p∑

n=0

αnqi
(
π (X1)2nξk

)
≤

∞∑

n=0

αnqi
(
π (X1)2nξk

)
.

Since the sum
∑

αnqi (π (X1)2nξk) is absolutely convergent, we can interchange
limit and summation to obtain

lim
k→∞

∞∑

n=0

αnqi (π (X1)2nξk) = 0.

Therefore limk→∞ qi (ηk) = 0 for all qi . Hence ηk → 0 in E∞. !

Now apply the same process for X2 through Xm . In this way we obtain a finite
collection of measures {µi, j }, where each µi, j is the image of a measure gi, j (ti ) dti
under the map ti (→ eti Xi as above, and sequences ξk, j such that

ξk =
∑

j

π (µ1, j ∗ · · · ∗ µm, j )ξ j,k

for each k with limk→∞ ξ j,k = 0 for each j .
The measure µ1, j ∗ · · · ∗ µm, j on G is then the image of the measure on

Rm given by g1, j (t1) · · · gm, j (tm) dt1 · · · dtm . If g j (t1, · · · , tm) = g1, j (t1) · · · gm, j (tm)
then g j is smooth with compact support in (−ε, ε)m . Hence by our choice of basis
on g the image of the measure g j (t) dt on Rm will be of the form f j (g) dg on G
with f j ∈ C∞

c (G).
Hence we now have a finite collection of f j ∈ C∞

c (G) and ξk, j ∈ E∞ such that

ξk =
∑

j

π ( f j )ξk, j

with the sequence ξk, j now converging to 0 in E∞ for each j .
This completes the proof of the proposition. !

1.2. Continuity of the archimedean local integral. Let F be either R or C.
Let ψ be a non-trivial additive character of F . Let GLr = GLr (F). Let (π, V ) be a
finitely generated admissible smooth representation of moderate growth of GLn , as
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in [1, 13]. Let Vo denote the space of Kn–finite vectors, i.e., the underlying Harish-
Chandra module. Similarly, let (σ, E) be a finitely generated admissible smooth
representation of moderate growth of GLm , and Eo its underlying Harish-Chandra
module. Note that both V and E are Fréchet spaces and equal to their spaces of
smooth vectors.

We further assume that π and σ are of Whittaker type as in [13], with continuous
Whittaker functionals λπ with respect to ψ and λσ with respect to ψ−1.

We will let (π ⊗ σ, V ⊗ E) denote the algebraic tensor product of (π, V ) and
(σ, E). We let (π⊗̂σ, V ⊗̂E) denote the (projective) topological tensor product.
Then (π⊗̂σ, V ⊗̂E) is the again an admissible smooth representation of moderate
growth of GLn × GLm and is in fact the Casselman-Wallach completion of the
algebraic tensor product [1, 13]. (Note: This notation is slightly different from that
of [13] where they use ⊗ for the topological tensor product.)

The linear functional µ = λπ ⊗ λσ is a continuous Whittaker functional on
V ⊗ E and extends to a Whittaker functional on V ⊗̂E [13]. For each v ∈ V ⊗̂E
let

Wv (g, g′) = µ(π (g)⊗̂σ (g′)v)

and let W(π⊗̂σ, ψ) be the space spanned by all such functions. Then
W(π⊗̂σ, ψ) ⊃ W(π, ψ) ⊗ W(σ, ψ−1).

As in [13], define for W ∈ W(π⊗̂σ, ψ) and - ∈ S(Fn)

.(s; W, -) =
∫

Nn\GLn

W (g, g)-(eng) |det (g)|s dg if n = m

.(s; W ) =
∫

Nm\GLm

W
((

g
In−m

)
, g

)
|det (g)|s−(n−m)/2 dg if n > m

.(s; W, j) =
∫

Nm\GLm

∫

X

W








g
x I j

Ik+1



, g



|det (g)|s−(n−m)/2dx dg if n > m

where j + k = n − m − 1. These are all absolutely convergent for Re(s) - 0.
Define W̃ (g, g′) = W (wngι, wm g′ι), where wr is the long Weyl element(

1
. . .

1

)
and ι is the outer automorphism of GLr , namely g (→ gι =t g−1. Then

W̃ is in the Whittaker model of V ι⊗̂E ι = (V ⊗̂E)ι. Then we have the functional
equation:

.(1 − s; W̃ , -̂) = ωσ (−1)n−1γ (s, π × σ, ψ).(s; W, -) if n = m

.(1 − s; ρ(wn,m)W̃ , j) = ωσ (−1)n−1γ (s, π × σ, ψ).(s; W, k) if n > m
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where j + k = n − m − 1 and

γ (s, π × σ, ψ) = ε(s, π × σ, ψ)L(1 − s, πι × σ ι)
L(s, π × σ )

.

Note that here L(s, π × σ ) is as in [13], i.e., it is the factor attached to the pair
(π, σ ) by the (arithmetic) Langlands classification.

The purpose of this section is to prove the following result.

Theorem 1.1. Let 4s , respectively 4s,-, be the linear functional on V ⊗̂E
defined by

4s(v) = .(s; Wv )
L(s, π × σ )

if n > m

4s,-(v) = .(s; Wv , -)
L(s, π × σ )

if n = m

for v ∈ V ⊗̂E. Then 4s , respectively 4s,-, is continuous on V ⊗̂E, uniformly for s
in a compact set.

Note that we claim the continuity for all s, not just for those s for which the
local integral is absolutely convergent.

We begin by recalling the following result of [13].

Lemma 1.4. Let f ∈ C∞
c (GLn × GLm). Then there exists a seminorm β on

V ⊗̂E and a gauge ξ on GLn × GLm depending only on f such that

|ρ( f )Wv (g, g′)| ≤ β(v)ξ (g, g′)

for all v ∈ V ⊗̂E.

Proof. The proof is word for word the same as the proof of Proposition 2.1 in
[13]. !

We will prove the theorem in the case n > m. The proof in the case n = m is
the same, with the obvious modifications.

Proposition 1.2. For s in the half plane of absolute convergence, the functional
v (→ .(s; Wv ) is continuous on V ⊗̂E, uniformly for s in a compact set.

Proof. Since the functional is evidently linear, it is enough to show that the
sequence .(s; Wvk ) converges to 0 whenever vk → 0 in V ⊗̂E , uniformly for s in
a compact set.
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By Proposition 1.1, there exists a finite collection of functions f j ∈ C∞
c (GLn ×

GLm) and sequences vk, j in V ⊗̂E such that vk =
∑

jπ⊗̂σ ( f j )vk, j for each k and
vk, j → 0 for each j .

Then we have

Wvk (g, g′) =
∑

j

ρ( f j )Wvk, j (g, g′)

so that by Lemma 1.4

|Wvk (g, g′)| ≤
∑

j

β j (vk, j )ξ j (g, g′)

for seminorms β j and gauges ξ j depending only on f j . Then

|.(s; Wvk )| =
∣∣∣∣

∫
Wvk

((
g

In−m

)
, g

)∣∣∣∣ det (g)|s−(n−m)/2 dg|

≤
∫ ∣∣∣∣Wvk

((
g

In−m

)
, g

)∣∣∣∣ |det (g)|Re(s)−(n−m)/2 dg

≤
∑

j

β j (vk, j )
∫

ξ j

((
g

In−m

)
, g

)
|det (g)|Re(s)−(n−m)/2 dg.

In this last expression, each integral involving a gauge ξ j is absolutely con-
vergent for Re(s) - 0, uniformly for s in compact sets. Since the seminorms β j

are continuous on V ⊗̂E and since each sequence vk, j → 0 as k → ∞ we have
|.(s; Wvk )| converges to 0 as k → ∞ uniformly for s in a compact set. !

Corollary. For s in the realm of absolute convergence of the local integrals,
the functional 4s(v) = .(s; Wv )/L(s, π × σ ) is continuous on V ⊗̂E, uniformly
for s in a compact set.

Repeating the proof we also obtain the following.

Corollary. For s in the realm of absolute convergence of the local inte-
grals, the functional 4s, j (v) = .(s; Wv , j)/L(s, π × σ ) is continuous on V ⊗̂E,
uniformly for s in a compact set.

From this we obtain:

Corollary. The functional 4̃s, j (v) = .(1 − s; ρ(wn,m)W̃v , j)/L
(1 − s, πι × σ ι) is continuous on V ⊗̂E, uniformly for s in a compact set,
in the domain Re(s) . 0.

We are now ready to prove the theorem.
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Proof. [Proof of Theorem 1.1] By the first Corollary, we have that the functional
4s(v) is continuous in a domain Re(s) > B ′, uniformly for s in a compact set. If
we let 4′

s(v) = 4s(v)es2
then 4′

s will also be continuous in this domain with the
same uniformity.

Let B > B ′. Then on the line Re(s) = B we have a uniform estimate |4′
s(v)| ≤

cB.(B; |Wv |). To see this, write

|4′
s(v)| = |.(s; Wv )|

∣∣∣∣
es2

L(s, π × σ )

∣∣∣∣.

On the line Re(s) = B, the function e(B+i t)2
L(B + i t, π × σ )−1 is rapidly decreas-

ing as |t | → ∞. Hence there is a constant cB so that |e(B+i t)2
L(B + i t, π × σ )−1| ≤

cB . On the other hand, it is elementary that |.(s; W )| ≤ .(B; |W |). This gives the
estimate.

By the functional equation, we have

4′
s(v) = .(s; W )es2

L(s, π × σ )

= ωσ (−1)n−1ε(s, π × σ, ψ)−1 .(1 − s; ρ(wn,m)W̃ , n − m − 1)es2

L(1 − s, πι × σ ι)

= 4̃′
s,n−m−1(v).

It follows from the third corollary that4s,n−m−1 is continuous in a halfplane Re(s) <

A′, hence so are 4′
s(v) and 4s(v) = 4′

s(v)e−s2
, with uniformity on compact subsets

of Re(s) < A′.
Arguing as above, if A < A′ we have a uniform bound on the line Re(s) = A

of the form |4′
s(v)| = |4̃′

s,n−m−1(v)| ≤ cA.(1 − A; |ρ(wn,m)W̃ |, n − m − 1).
Consider now the behavior of 4′

s(v) in the strip A ≤ Re(s) ≤ B. The function
4′

s(v), as a function of s, grows sufficiently slowly that we may apply Phragmen–
Lindelöf to the strip A ≤ Re(s) ≤ B and we obtain the estimate

|4′
s(v)| ≤ max(cB.(B; |Wv |), cA.(1 − A; |ρ(wn,m)W̃ |, n − m − 1))

in this strip. Now suppose that vk is a sequence converging to 0 in V ⊗̂E . Then
the proof of Proposition 1.2 shows that both the contributions .(B; |Wvk |) and
.(1 − A; |ρ(wn,m)W̃vk |, n − m − 1) go to 0 as k → ∞. Hence 4′

s(vk) converges
to 0 in the strip, uniformly for all s. Hence 4′

s is continuous for s in the strip, and
uniformly so. Then 4s(v) = 4′

s(v)e−s2
will be continuous on this strip, uniformly

for s in a compact set.
This completes the proof of the theorem. !

1.3. Applications. In this section we would like to present our applications
to the analytic properties of the local Rankin-Selberg convolutions, which in turn
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are needed for the completion of the global theory of Rankin-Selberg convolutions
in the following section.

We keep the notation of Section 1.2. Recall that Vo and Eo are the underlying
Harish-Chandra modules of V and E . Let Wo(π, ψ) be the subspace of W(π, ψ)
spanned by the Whittaker functions associated to vectors in Vo, and similarly for
Wo(σ, ψ−1).

Theorem 1.2. (i) For each W ∈ Wo(π, ψ) and W ′ ∈ Wo(σ, ψ−1) the ratio

e(s; W, W ′) = .(s; W, W ′)
L(s, π × σ )

is an entire function of s.
(ii) For every s0 ∈ C there is a choice of W0 ∈ Wo(π, ψ) and W ′

0 ∈ Wo(σ, ψ−1)
such that e(s0; W0, W ′

0) /= 0.

Proof. We have that Vo is dense in V and Eo is dense in E . The Casselman-
Wallach completion of the Harish-Chandra module Vo ⊗ Eo is V ⊗̂E . Hence Vo ⊗
Eo is dense in V ⊗̂E .

Statement (i) now follows from Theorem 11.1 of [13].
Statement (ii) follows from Theorem 11.1 of [13] and Theorem 2.1 above. By

Theorem 11.1 of [13] we know that L(s, π × σ ) is obtained by .(s; W ) for some
W = Wv with v ∈ V ⊗̂E . For this v , 4s(v) = .(s; Wv )/L(s, π × σ ) = 1. Since
Vo ⊗ Eo is dense, there will be a vector ṽ ∈ Vo ⊗ Eo for which 4s0 (ṽ) is close to 1
and in particular is non-zero. Writing ṽ as a sum of decomposable tensors, we find
a vector v0 ⊗ v ′

0 such that 4s0 (v0 ⊗ v ′
0) /= 0. But

4s0 (v0 ⊗ v ′
0) =

.(s0; Wv0, W ′
v ′

0
)

L(s0, π × σ )
= e(s0; Wv0, W ′

v ′
0
).

Hence (ii). !

The same proof yields the following corollary.

Corollary. (i) For each pair W ∈ W(π, ψ) and W ′ ∈ W(σ, ψ−1) the ratio

e(s; W, W ′) = .(s; W, W ′)
L(s, π × σ )

is an entire function of s.
(ii) For every s0 ∈ C there is a choice of W0 ∈ W(π, ψ) and W ′

0 ∈ W(σ, ψ−1)
such that e(s0; W0, W ′

0) /= 0.

These results show that the L-function L(s, π × σ ) as defined in [13] not
only cancels all poles of the local integrals, but also dividing by it introduces no
extraneous zeros. Hence this is the minimal standard Euler factor which cancels all
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poles in the local integrals, even for the K -finite vectors, as in the non-archimedean
case [11].

The continuity of the local integrals also plays a role in proving the following
result of Stade [16, 17] and Jacquet and Shalika (unpublished).

Theorem 1.3. In the cases m = n and m = n − 1 there exist a finite collec-
tion of K –finite functions Wi ∈ Wo(π, ψ), W ′

i ∈ Wo(σ, ψ−1), and -i ∈ S(Fn) if
necessary such that

L(s, π × σ ) =
∑

.(s; Wi , W ′
i ) or L(s, π × σ ) =

∑
.(s; Wi , W ′

i , -i ).

In the case where both π and σ are unramified, Stade shows that one obtains
the L-function exactly with the K –invariant Whittaker functions (and Schwartz
function if necessary). Our results are not needed in this case.

In the general case, Jacquet has provided us with a sketch of his argument
with Shalika. First one proves that the integrals involving K –finite functions are
equal to the product of a polynomial and the L-factor. It suffices to prove this for
principal series, since the other representations embed into principal series. For
principal series one proceeds by an induction argument on n, however one must
prove the m = n and m = n − 1 cases simultaneously. The (essentially formal)
arguments needed are to be found in the published papers of Jacquet and Shalika.
The polynomials in question then form an ideal and the point now is to show this
ideal is the full polynomial ring. This is then implied by Theorem 1.2 (ii) above.

2. Global Rankin–Selberg convolutions. It was recently pointed out to us
by Jacquet that the global theory of Rankin–Selberg convolutions via integral rep-
resentations has never appeared in print. We would like to take this opportunity
to at least partially correct this situation. All of the necessary global foundational
material can be found in [10] and [12] and the necessarily local results are in [11]
and [13] with the addition of the material in Section 1 above.

Let k be a global field, A its ring of adeles, and fix a non-trivial continuous
additive character ψ = ⊗ψv of A trivial on k.

Let (π, Vπ ) be a unitary cuspidal representation of GLn(A) and (π ′, Vπ ′) a
unitary cuspidal representation of GLm(A). Since they are irreducible we have re-
stricted tensor product decompositions π 0 ⊗′πv and π ′ 0 ⊗′π ′

v with (πv , Vπv ) and
(π ′

v , Vπ ′
v
) irreducible admissible smooth generic unitary representations of GLn(kv )

and GLm(kv ) [5, 7, 8]. Let ω = ⊗′ωv and ω′ = ⊗′ω′
v be their central characters.

These are both continuous characters of k×\A×.

2.1. Global Eulerian integrals for GLn × GLm. Let us first assume that
m < n. Then the results we need can be found in Part II of [12]. Let ϕ ∈ Vπ and
ϕ′ ∈ Vπ ′ be two cusp forms. The integral representations in this situation are of
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Hecke type and essentially involve the integration of these cusp forms against a
factor of |det|s , that is, a type of generalized Mellin transform.

In GLn , let Pn denote the mirabolic subgroup, that is, the stabilizer of the
row vector (0, . . . , 0, 1). Let Nn be the subgroup of upper triangular unipotent
matrices, that is, the unipotent radical of the standard Borel subgroup. In the usual
way, the additive character ψ defines a non-degenerate character of Nn through its
abelianization. Let Yn,m be the unipotent radical of the standard parabolic subgroup
attached to the partition (m + 1, 1, . . . , 1). Then ψ defines a character of Yn,m(A)
trivial on Yn,m(k) since Yn,m ⊂ Nn . The group Yn,m is normalized by GLm+1 ⊂
GLn and the mirabolic subgroup Pm+1 ⊂ GLm+1 is the stabilizer in GLm+1 of the
character ψ .

Definition. If ϕ(g) is a cusp form on GLn(A) define the projection operator
Pn

m from cusp forms on GLn(A) to cuspidal functions on Pm+1(A) by

P
n
mϕ(p) = |det (p)|−

( n−m−1
2

) ∫

Yn,m (k)\ Yn,m (A)
ϕ

(
y
(

p
In−m−1

))
ψ−1(y) dy

for p ∈ Pm+1(A).

This function Pn
mϕ is essentially the same as the function denoted Vϕ,m in Part II

of [12]. As the integration is over a compact domain, the integral is absolutely
convergent. We first analyze the behavior on Pm+1(A). From Section 3.1 of Part II
of [12] we find the proofs of the following Lemmas.

Lemma 2.1. The function Pn
mϕ(p) is a cuspidal function on Pm+1(A).

Lemma 2.2. Let ϕ be a cusp form on GLn(A). Then for h ∈ GLm(A),

Pn
mϕ

(
h

1

)
has the Fourier expansion

P
n
mϕ

(
h

1

)
= |det (h)|−

( n−m−1
2

) ∑

γ∈Nm (k)\ GLm (k)

Wϕ

((
γ 0
0 In−m

) (
h

In−m

))

with convergence absolute and uniform on compact subsets.

We now have the prerequisites for writing down a family of Eulerian integrals
for cusp forms ϕ on GLn twisted by automorphic forms on GLm for m < n. Let
ϕ ∈ Vπ be a cusp form on GLn(A) and ϕ′ ∈ Vπ ′ a cusp form on GLm(A). (Actually,
we could take ϕ′ to be an arbitrary automorphic form on GLm(A).) Consider the
integrals

I (s; ϕ, ϕ′) =
∫

GLm (k)\ GLm (A)
P

n
mϕ

(
h 0
0 1

)
ϕ′(h)|det (h)|s−1/2 dh.
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The integral I (s; ϕ, ϕ′) is absolutely convergent for all values of the complex param-
eter s, uniformly in compact subsets, since the cusp forms are rapidly decreasing.
Hence it is entire and bounded in any vertical strip.

Let us now investigate the Eulerian properties of these integrals. We first replace
Pn

mϕ by its Fourier expansion.

I (s; ϕ, ϕ′) =
∫

GLm (k)\ GLm (A)
P

n
mϕ

(
h 0
0 In−m

)
ϕ′(h)|det (h)|s−1/2 dh

=
∫

GLm (k)\ GLm (A)

∑

γ∈Nm (k)\ GLm (k)

Wϕ

((
γ 0
0 In−m

) (
h 0
0 In−m

))

× ϕ′(h)|det (h)|s−(n−m)/2 dh.

Since ϕ′(h) is automorphic on GLm(A) and |det (γ )| = 1 for γ ∈ GLm(k) we may
interchange the order of summation and integration for Re(s) - 0 and then recom-
bine to obtain

I (s; ϕ, ϕ′) =
∫

Nm (k)\ GLm (A)
Wϕ

(
h 0
0 In−m

)
ϕ′(h)|det (h)|s−(n−m)/2 dh.

This integral is absolutely convergent for Re(s) - 0 by the gauge estimates of [10,
Section 13] and this justifies the interchange.

Let us now integrate first over Nm(k)\ Nm(A). Recall that for n ∈ Nm(A) ⊂
Nn(A) we have Wϕ(ng) = ψ(n)Wϕ(g). Hence we have

I (s; ϕ, ϕ′) =
∫

Nm (A)\ GLm (A)

∫

Nm (k)\ Nm (A)
Wϕ

((
n 0
0 In−m

) (
h 0
0 In−m

))

×ϕ′(nh) dn |det (h)|s−(n−m)/2 dh

=
∫

Nm (A)\ GLm (A)
Wϕ

(
h 0
0 In−m

)

×
∫

Nm (k)\ Nm (A)
ψ(n)ϕ′(nh) dn |det (h)|s−(n−m)/2 dh

=
∫

Nm (A)\ GLm (A)
Wϕ

(
h 0
0 In−m

)
W ′

ϕ′(h) |det (h)|s−(n−m)/2 dh

= .(s; Wϕ, W ′
ϕ′)

where W ′
ϕ′(h) is the ψ−1-Whittaker function on GLm(A) associated to ϕ′, i.e.,

W ′
ϕ′(h) =

∫

Nm (k)\ Nm (A)
ϕ′(nh)ψ(n) dn,

and we retain absolute convergence for Re(s) - 0.
From this point, the fact that the integrals are Eulerian is a consequence of the

uniqueness of the Whittaker model for GLn [9, 15]. Take ϕ a smooth cusp form in



P1: GIG

PB440-10 HIDA-0662G PB440-Hida-v4.cls December 10, 2003 7:18

remarks on rankin-selberg convolutions 267

a cuspidal representation π of GLn(A). Assume in addition that ϕ is factorizable,
i.e., in the decomposition π = ⊗′πv of π into a restricted tensor product of local
representations, ϕ = ⊗ϕv is a pure tensor. Then there is a choice of local Whittaker
models so that Wϕ(g) =

∏
Wϕv (gv ). Similarly for decomposable ϕ′ we have the

factorization W ′
ϕ′(h) =

∏
W ′

ϕ′
v
(hv ).

If we substitute these factorizations into our integral expression, then since the
domain of integration factors Nm(A)\ GLm(A) =

∏
Nm(kv )\ GLm(kv ) we see that

our integral factors into a product of local integrals

.(s; Wϕ, W ′
ϕ′)

=
∏

v

∫

Nm (kv )\ GLm (kv )
Wϕv

(
hv 0
0 In−m

)
W ′

ϕ′
v
(hv ) |det (hv )|s−(n−m)/2

v dhv .

If we denote the local integrals by

.v (s; Wϕv , W ′
ϕ′

v
) =

∫

Nm (kv )\ GLm (kv )
Wϕv

(
hv 0
0 In−m

)
W ′

ϕ′
v
(hv ) |det(hv )|s−(n−m)/2

v dhv ,

which converges for Re(s) - 0 by the gauge estimate of [10, Proposition 2.3.6],
we see that we now have a family of Eulerian integrals.

Now let us return to the question of a functional equation. The functional
equation is essentially a consequence of the existence of the outer automorphism
g (→ ι(g) = gι = tg−1 of GLn . If we define the action of this automorphism on
automorphic forms by setting ϕ̃(g) = ϕ(gι) = ϕ(wngι) and let P̃n

m = ι ◦ Pn
m ◦ ι then

our integrals naturally satisfy the functional equation

I (s; ϕ, ϕ′) = Ĩ (1 − s; ϕ̃, ϕ̃′)

where

Ĩ (s; ϕ, ϕ′) =
∫

GLm (k)\ GLm (A)
P̃

n
mϕ

(
h

1

)
ϕ′(h)|det (h)|s−1/2 dh.

We have established the following result.

Theorem 2.1. Let ϕ ∈ Vπ be a cusp form on GLn(A) and ϕ′ ∈ Vπ ′ a cusp
form on GLm(A) with m < n. Then the family of integrals I (s; ϕ, ϕ′) define entire
functions of s, bounded in vertical strips, and satisfy the functional equation

I (s; ϕ, ϕ′) = Ĩ (1 − s; ϕ̃, ϕ̃′).

Moreover the integrals are Eulerian and if ϕ and ϕ′ are factorizable, we have

I (s; ϕ, ϕ′) =
∏

v

.v (s; Wϕv , W ′
ϕ′

v
)

with convergence absolute and uniform for Re(s) - 0.
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The integrals occurring in the right hand side of our functional equation are
again Eulerian. One can unfold the definitions to find first that

Ĩ (1 − s; ϕ̃, ϕ̃′) = .̃(1 − s; ρ(wn,m)W̃ϕ, W̃ ′
ϕ′)

where the unfolded global integral is

.̃(s; W, W ′) =
∫ ∫

W




h
x In−m−1

1



 dx W ′(h) |det (h)|s−(n−m)/2 dh

with the h integral over Nm(A)\ GLm(A) and the x integral over Mn−m−1,m(A),
the space of (n − m − 1) × m matrices, ρ denoting right translation, and wn,m

the Weyl element wn,m =
(

Im
wn−m

)
with wn−m =

(
1

. . .
1

)
the standard

long Weyl element in GLn−m . Also, for W ∈ W(π, ψ) we set W̃ (g) = W (wngι) ∈
W(π̃ , ψ−1). The extra unipotent integration is the remnant of P̃n

m . As before,
.̃(s; W, W ′) is absolutely convergent for Re(s) - 0. For ϕ and ϕ′ factorizable
as before, these integrals .̃(s; Wϕ, W ′

ϕ′) will factor as well. Hence we have

.̃(s; Wϕ, W ′
ϕ′) =

∏

v

.̃v (s; Wϕv , W ′
ϕ′

v
)

where

.̃v (s; Wv , W ′
v ) =

∫ ∫
Wv




hv

xv In−m−1

1



 dxv W ′
v (hv )|det (hv )|s−(n−m)/2 dhv

where now with the hv integral is over Nm(kv )\ GLm(kv ) and the xv integral is over
the matrix space Mn−m−1,m(kv ). Thus, coming back to our functional equation, we
find that the right hand side is Eulerian and factors as

Ĩ (1 − s; ϕ̃, ϕ̃′) = .̃(1 − s; ρ(wn,m)W̃ϕ, W̃ ′
ϕ′) =

∏

v

.̃v (1 − s; ρ(wn,m)W̃ϕv , W̃ ′
ϕ′

v
).

Now consider the case of m = n. Then the results we need can essentially be
found in Part I of [12]. Let (π, Vπ ) and (π ′, Vπ ′) be two unitary cuspidal repre-
sentations of GLn(A). Let ϕ ∈ Vπ and ϕ′ ∈ Vπ ′ be two cusp forms. The integral
representation in this situation is an honest Rankin–Selberg integral and will involve
the integration of the cusp forms ϕ and ϕ′ against a particular type of Eisenstein
series on GLn(A).

To construct the Eisenstein series as in Part I of [12] we observe that
Pn \ GLn 0 kn − {0}. If we letS(An) denote the Schwartz–Bruhat functions on An ,
then each - ∈ S defines a smooth function on GLn(A), left invariant by Pn(A), by
g (→ -((0, . . . , 0, 1)g) = -(eng). Let η be a unitary idele class character. (For our
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application η will be determined by the central characters of π and π ′.) Consider
the function

F(g, -; s, η) = |det (g)|s
∫

A×
-(aeng)|a|nsη(a) d×a.

If we let P ′
n = Zn Pn be the parabolic of GLn associated to the partition (n − 1, 1)

then one checks that for p′ =
(

h y

0 d

)
∈ P ′

n(A) with h ∈ GLn−1(A) and d ∈ A×

we have,
F(p′g, -; s, η) = |det (h)|s |d|−(n−1)sη(d)−1 F(g, -; s, η)

= δs
P ′

n
(p′)η−1(d)F(g, -; s, η),

with the integral absolutely convergent for Re(s) > 1/n, so that if we extend η to
a character of P ′

n by η(p′) = η(d) in the above notation we have that F(g, -; s, η)
is a smooth section of the normalized induced representationI ndGLn(A)

P ′
n(A) (δs−1/2

P ′
n

η−1).
Since the inducing character δ

s−1/2
P ′

n
η−1 of P ′

n(A) is invariant under P ′
n(k) we may

form Eisenstein series from this family of sections by

E(g, -; s, η) =
∑

γ∈P ′
n(k)\ GLn(k)

F(γ g, -; s, η).

If we replace F in this sum by its definition we can rewrite this Eisenstein series as

E(g, -; s, η) = |det (g)|s
∫

k×\A×

∑

ξ∈kn−{0}
-(aξg)|a|nsη(a) d×a

= |det (g)|s
∫

k×\A×
6′

-(a, g)|a|nsη(a) d×a

and this first expression is convergent absolutely for Re(s) > 1 [12].
The second expression essentially gives the Eisenstein series as the Mellin

transform of the Theta series

6-(a, g) =
∑

ξ∈kn

-(aξg),

where in the above we have written

6′
-(a, g) =

∑

ξ∈kn−{0}
-(aξg) = 6-(a, g) − -(0).

This allows us to obtain the analytic properties of the Eisenstein series from the
Poisson summation formula for 6-, namely

6-(a, g) =
∑

ξ∈kn

-(aξg) =
∑

ξ∈kn

-a,g(ξ )

=
∑

ξ∈kn

-̂a,g(ξ ) =
∑

ξ∈kn

|a|−n|det (g)|−1-̂(a−1ξ tg−1)

= |a|−n|det (g)|−16-̂(a−1,t g−1)
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where the Fourier transform -̂ on S(An) is defined by

-̂(x) =
∫

A×
-(y)ψ(ytx) dy.

This allows us to write the Eisenstein series as

E(g, -, s, η) = |det (g)|s
∫

|a|≥1
6′

-(a, g)|a|nsη(a) d×a

+ |det (g)|s−1
∫

|a|≥1
6′

-̂
(a,t g−1)|a|n(1−s)η−1(a) d×a + δ(s)

where

δ(s) =
{

0 if η is ramified

−c-(0) |det (g)|s
s+iσ + c-̂(0) |det (g)|s−1

s−1+iσ if η(a) = |a|inσ with σ ∈ R

with c a non-zero constant. From this we derive easily the basic properties of our
Eisenstein series [12, Part I, Section 4].

Proposition 2.1. The Eisenstein series E(g, -; s, η) has a meromorphic con-
tinuation to all of C with at most simple poles at s = −iσ, 1 − iσ when η is
unramified of the form η(a) = |a|inσ . As a function of g it is smooth of moderate
growth and as a function of s it is bounded in vertical strips (away from the possible
poles), uniformly for g in compact sets. Moreover, we have the functional equation

E(g, -; s, η) = E(gι, -̂; 1 − s, η−1)

where gι = tg−1.

Note that under the center the Eisenstein series transforms by the central char-
acter η−1.

Now let us return to our Eulerian integrals. Let π and π ′ be our irreducible
cuspidal representations. Let their central characters be ω and ω′. Set η = ωω′.
Then for each pair of cusp forms ϕ ∈ Vπ and ϕ′ ∈ Vπ ′ and each Schwartz-Bruhat
function - ∈ S(An) set

I (s; ϕ, ϕ′, -) =
∫

Zn(A) GLn(k)\ GLn(A)
ϕ(g)ϕ′(g)E(g, -; s, η) dg.

Since the two cusp forms are rapidly decreasing on Zn(A) GLn(k)\ GLn(A) and the
Eisenstein is only of moderate growth, we see that the integral converges absolutely
for all s away from the poles of the Eisenstein series and is hence meromorphic. It
will be bounded in vertical strips away from the poles and satisfies the functional
equation

I (s; ϕ, ϕ′, -) = I (1 − s; ϕ̃, ϕ̃′, -̂),
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coming from the functional equation of the Eisenstein series, where we still have
ϕ̃(g) = ϕ(gι) = ϕ(wngι) ∈ Vπ̃ and similarly for ϕ̃′.

These integrals will be entire unless we have η(a) = ω(a)ω′(a) = |a|inσ is
unramified. In that case, the residue at s = −iσ will be

Res
s=−iσ

I (s; ϕ, ϕ′, -) = −c-(0)
∫

Zn(A) GLn(A)\ GLn(A)
ϕ(g)ϕ′(g)|det (g)|−iσ dg

and at s = 1 − iσ we can write the residue as

Res
s=1−iσ

I (s; ϕ, ϕ′, -) = c-̂(0)
∫

Zn(A) GLn(k)\ GLn(A)
ϕ̃(g)̃ϕ′(g)|det (g)|iσ dg.

Therefore these residues define GLn(A) invariant pairings between π and π ′ ⊗
|det|−iσ or equivalently between π̃ and π̃ ′ ⊗ |det|iσ . Hence a residue can be non-
zero only if π 0 π̃ ′ ⊗ |det|iσ and in this case we can find ϕ, ϕ′, and - such that
indeed the residue does not vanish.

We have yet to check that our integrals are Eulerian. To this end we take the
integral, replace the Eisenstein series by its definition, and unfold:

I (s; ϕ, ϕ′, -) =
∫

Zn(A) GLn(k)\ GLn(A)
ϕ(g)ϕ′(g)E(g, -; s, η) dg

=
∫

Zn(A) P ′
n(k)\ GLn(A)

ϕ(g)ϕ′(g)F(g, -; s, η) dg

=
∫

Zn(A) Pn(k)\ GLn(A)
ϕ(g)ϕ′(g)|det (g)|s

∫

A×
-(aeng)|a|nsη(a) da dg

=
∫

Pn(k)\ GLn(A)
ϕ(g)ϕ′(g)-(eng)|det (g)|s dg.

We next replace ϕ by its Fourier expansion in the form

ϕ(g) =
∑

γ∈Nn(k)\ Pn(k)

Wϕ(γ g)

and unfold to find

I (s; ϕ, ϕ′, -) =
∫

Nn(k)\ GLn(A)
Wϕ(g)ϕ′(g)-(eng)|det (g)|s dg

=
∫

Nn(A)\ GLn(A)
Wϕ(g)

∫

Nn(k)\ Nn(A)
ϕ′(ng)ψ(n) dn -(eng)|det (g)|s dg

=
∫

Nn(A)\ GLn(A)
Wϕ(g)W ′

ϕ′(g)-(eng)|det (g)|s dg

= .(s; Wϕ, W ′
ϕ′, -).

This expression converges for Re(s) - 0 by the gauge estimates as before.
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To continue, we assume that ϕ, ϕ′ and - are decomposable tensors under
the isomorphisms π 0 ⊗′πv , π ′ 0 ⊗′π ′

v , and S(An) 0 ⊗′S(kn
v ) so that we have

Wϕ(g) =
∏

v Wϕv (gv ), W ′
ϕ′(g) =

∏
v W ′

ϕ′
v
(gv ) and -(g) =

∏
v -v (gv ). Then, since

the domain of integration also naturally factors we can decompose this last integral
into an Euler product and now write

.(s; Wϕ, W ′
ϕ′, -) =

∏

v

.v (s; Wϕv , W ′
ϕ′

v
, -v ),

where

.v (s; Wϕv , W ′
ϕ′

v
, -v ) =

∫

Nn(kv )\ GLn(kv )
Wϕv (gv )W ′

ϕ′
v
(gv )-v (engv )|det (gv )|s dgv ,

still with convergence for Re(s) - 0 by the local gauge estimates. We have now
established the following result.

Theorem 2.2. Let ϕ ∈ Vπ and ϕ′ ∈ Vπ ′ cusp forms on GLn(A) and let - ∈
S(An). Then the family of integrals I (s; ϕ, ϕ′, -) define meromorphic functions
of s, bounded in vertical strips away from the poles. The only possible poles are
simple and occur iff π 0 π̃ ′ ⊗ |det|iσ with σ real and are then at s = −iσ and
s = 1 − iσ with residues as above. They satisfy the functional equation

I (s; ϕ, ϕ′, -) = I (1 − s; ϕ̃, ϕ̃′, -̂).

Moreover, for ϕ, ϕ′, and - factorizable we have that the integrals are Eulerian and
we have

I (s; ϕ, ϕ′, -) =
∏

v

.v (s; Wϕv , W ′
ϕ′

v
, -v )

with convergence absolute and uniform for Re(s) - 0.

We remark in passing that the right hand side of the functional equation also
unfolds as

I (1 − s; ϕ̃, ϕ̃′, -̂) =
∫

Nn(A)\ GLn(A)
W̃ϕ(g)W̃ ′

ϕ′(g)-̂(eng)|det (g)|1−s dg

=
∏

v

.v (1 − s; W̃ϕv , W̃ ′
ϕ′

v
, -̂)

with convergence for Re(s) . 0.

2.2. The Global L-function. Let S be the finite set of places of k, containing
the archimedean places S∞, such that for all v /∈ S we have that πv , π ′

v , and ψv are
unramified.

For each place v of k local factors L(s, πv × π ′
v ) and ε(s, πv × π ′

v , ψv ) have
been defined through the local theory of Rankin-Selberg convolutions in [11] for
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non-archimedean v and in [13] for archimedean v . Then we can at least formally
define

L(s, π × π ′) =
∏

v

L(s, πv × π ′
v ) and ε(s, π × π ′) =

∏

v

ε(s, πv × π ′
v , ψv ).

We need to discuss convergence of these products. Let us first consider the con-
vergence of L(s, π × π ′). For those v /∈ S, so πv , π ′

v , and ψv are unramified, Jacquet
and Shalika have explicitly computed the local factor in [12, Part I, Section 2;
Part II, Section 1]. They show

L(s, πv × π ′
v ) = det (I − q−s

v Aπv ⊗ Aπ ′
v
)−1

where Aπv and Aπ ′
v

are the associated Satake parameters, and that the eigenvalues
of Aπv and Aπ ′

v
are all of absolute value less than q1/2

v [12, Part I, Corollary 2.5].
Thus, as in [12, Theorem 5.3], the partial (or incomplete) L-function

L S(s, π × π ′) =
∏

v /∈S

L(s, πv × π ′
v ) =

∏

v /∈S

det (I − q−s
v Aπv ⊗ Aπ ′

v
)−1

is absolutely convergent for Re(s) - 0. Thus the same is true for L(s, π × π ′).

Remark. The local calculation alluded to above is actually the computation
of the local integral with the unramified Whittaker functions. For v /∈ S, in the
Whittaker models there will be unique normalized K = GL(ov )–fixed
Whittaker functions, W ◦

v ∈ W(πv , ψv ) and W ′◦
v ∈ W(π ′

v , ψ
−1
v ), normalized by

W ◦
v (e) = W ′◦

v (e) = 1. When n = m let - = -◦
v be the characteristic function of

the lattice ov
n ⊂ kn

v . What Jacquet and Shalika show is that

det (I − q−s
v Aπv ⊗ Aπ ′

v
)−1 =

{
.(s; W ◦

v , W ′◦
v ) m < n

.(s; W ◦
v , W ′◦

v , -◦
v ) m = n

and hence det (I − q−s
v Aπv ⊗ Aπ ′

v
) divides L(s, πv × π ′

v )−1. To see that this actually
calculates the L-function, one needs to combine this calculation with Proposition
9.4 of [11].

For the ε–factor, it follows from the local calculation cited above and the local
functional equation [11, Theorem 2.7 (iii)] that ε(s, πv × π ′

v , ψv ) ≡ 1 for v /∈ S so
that the product is in fact a finite product and there is no problem with convergence.
The fact that ε(s, π × π ′) is independent of ψ can either be checked by analyzing
how the local ε–factors vary as you vary ψ , as is done in [2, Lemma 2.1], or it will
follow from the global functional equation presented below.

2.3. The basic analytic properties. Our first goal is to show that these L-
functions have nice analytic properties.

Theorem 2.3. The global L–functions L(s, π × π ′) are nice in the sense that
(1) L(s, π × π ′) has a meromorphic continuation to all of C,
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(2) the extended function is bounded in vertical strips (away from its poles),
(3) they satisfy the functional equation

L(s, π × π ′) = ε(s, π × π ′)L(1 − s, π̃ × π̃ ′).

To do so, we relate the L-functions to the global integrals.
Let us begin with continuation. In the case m < n for every ϕ ∈ Vπ and ϕ′ ∈ Vπ ′

we know the integral I (s; ϕ, ϕ′) converges absolutely for all s. From the unfolding in
Section 2.1 and the local calculation mentioned above we know that for Re(s) - 0
and for appropriate choices of ϕ and ϕ′ we have

I (s; ϕ, ϕ′) =
∏

v

.v (s; Wϕv , Wϕ′
v
)

=
(

∏

v∈S

.v (s; Wϕv , Wϕ′
v
)

)

L S(s, π × π ′)

=
(

∏

v∈S

.v (s; Wϕv , Wϕ′
v
)

L(s, πv × π ′
v )

)

L(s, π × π ′)

=
(

∏

v∈S

ev (s; Wϕv , Wϕ′
v
)

)

L(s, π × π ′).

We know that each ev (s; Wv , W ′
v ) is entire. For non-archimedean v this follows from

[11, Theorem 2.3] and for archimedean v this follows from Theorem 1.2 above and
its corollary. Hence L(s, π × π ′) has a meromorphic continuation. If m = n then
for appropriate ϕ ∈ Vπ , ϕ′ ∈ Vπ ′ , and - ∈ S(An) we again have

I (s; ϕ, ϕ′, -) =
(

∏

v∈S

ev (s; Wϕv , W ′
ϕ′

v
, -v )

)

L(s, π × π ′).

Once again, since each ev (s; Wv , W ′
v , -v ) is entire, L(s, π × π ′) has a meromorphic

continuation.
Let us next turn to the functional equation. This will follow from the functional

equation for the global integrals given above and the local functional equations [11,
Theorem 2.7 (iii)] and [13, Theorem 5.1 (ii)]. We will consider only the case where
m < n since the other case is entirely analogous. The functional equation for the
global integrals is simply

I (s; ϕ, ϕ′) = Ĩ (1 − s; ϕ̃, ϕ̃′).

Once again we have for appropriate ϕ and ϕ′

I (s; ϕ, ϕ′) =
(

∏

v∈S

ev (s; Wϕv , W ′
ϕ′

v
)

)

L(s, π × π ′)
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while on the other side

Ĩ (1 − s; ϕ̃, ϕ̃′) =
(

∏

v∈S

ẽv (1 − s; ρ(wn,m)W̃ϕv , W̃ ′
ϕ′

v
)

)

L(1 − s, π̃ × π̃ ′).

However, by the local functional equations, for each v ∈ S we have

ẽv (1 − s; ρ(wn,m)W̃v , W̃ ′
v ) = .̃(1 − s; ρ(wn,m)W̃v , W̃ ′

v )
L(1 − s, π̃ × π̃ ′)

= ω′
v (−1)n−1ε(s, πv × π ′

v , ψv )
.(s; Wv , W ′

v )
L(s, π × π ′)

= ω′
v (−1)n−1ε(s, πv × π ′

v , ψv )ev (s, Wv , W ′
v ).

Combining these, we have

L(s, π × π ′) =
(

∏

v∈S

ω′
v (−1)n−1ε(s, πv × π ′

v , ψv )

)

L(1 − s, π̃ × π̃ ′).

Now, for v /∈ S we know that π ′
v is unramified, so ω′

v (−1) = 1, and also that
ε(s, πv × π ′

v , ψv ) ≡ 1. Therefore
∏

v∈S

ω′
v (−1)n−1ε(s, πv × π ′

v , ψv ) =
∏

v

ω′
v (−1)n−1ε(s, πv × π ′

v , ψv )

= ω′(−1)n−1ε(s, π × π ′)

= ε(s, π × π ′)

and we indeed have

L(s, π × π ′) = ε(s, π × π ′)L(1 − s, π̃ × π̃ ′).

Note that this implies that ε(s, π × π ′) is independent of ψ as well.
Let us now turn to the boundedness in vertical strips. For the global integrals

I (s; ϕ, ϕ′) or I (s; ϕ, ϕ, -) this simply follows from the absolute convergence. For
the L-function itself, the paradigm is the following. For every finite place v ∈ S, by
the definition of the local L-function as the generator of the fractional ideal spanned
by the local integrals [11, Theorem 2.7 (ii)] we know that there is a choice of finite
collections Wv,i , W ′

v,i , and if necessary -v,i such that

L(s, πv × π ′
v ) =

∑
.(s; Wv,i , W ′

v ′i ) or

L(s, πv × π ′
v ) =

∑
.(s; Wv,i , W ′

v ′i , -v,i ).

If m = n − 1 or m = n then by the results of Stade [16, 17] or the unpublished
work of Jacquet and Shalika presented in Theorem 1.3 above we know that we
have similar statements for v ∈ S∞. Hence if m = n − 1 or m = n there are finite
global choices ϕi , ϕ′

i , and if necessary -i such that

L(s, π × π ′) =
∑

I (s; ϕi , ϕ
′
i ) or L(s, π × π ′) =

∑
I (s; ϕi , ϕ

′
i , -i ).
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Then the boundedness in vertical strips for the L-functions follows from that of the
global integrals.

However, if m < n − 1 then all we know at those v ∈ S∞ is that there is a
function Wv ∈ W(πv⊗̂π ′

v , ψv ) = W(πv , ψv )⊗̂W(π ′
v , ψ

−1
v ) or a finite collection

of such functions Wv,i and of -v,i such that

L(s, πv × π ′
v ) = I (s; Wv ) or L(s, πv × π ′

v ) =
∑

I (s; Wv,i , -v,i ).

To make the above paradigm work for m < n − 1 one possibility would be to rework
the theory of global Eulerian integrals for cusp forms in Vπ⊗̂Vπ ′ . This is naturally
the space of smooth vectors in an irreducible unitary cuspidal representation of
GLn(A) × GLm(A). So we would need to extend the global theory of integrals
parallel to Jacquet and Shalika’s extension of the local integrals in the archimedean
theory. There seems to be no obstruction to carrying this out, and then we would
obtain boundedness in vertical strips for L(s, π × π ′) in general within the context
of integral representations. However, if one approaches these L-functions by the
method of constant terms and Fourier coefficients of Eisenstein series, then Gelbart
and Shahidi have shown a wide class of automorphic L-functions, including ours,
to be bounded in vertical strips [6]. Thus the boundedness in vertical strips is true,
even if we must go “outside the method” for this fact at this point.

2.4. Poles of L-functions. Let us determine where the global L-functions
can have poles. The poles of the L-functions will be related to the poles of the
global integrals. Recall from Section 2.2 that in the case of m < n we have that the
global integrals I (s; ϕ, ϕ′) are entire and that when m = n then I (s; ϕ, ϕ′, -) can
have at most simple poles and they occur at s = −iσ and s = 1 − iσ for σ real
when π 0 π̃ ′ ⊗ |det|iσ . As we have noted above, the global integrals and global
L-functions are related, for appropriate ϕ, ϕ′, and -, by

I (s; ϕ, ϕ′) =
(

∏

v∈S

ev (s; Wϕv , W ′
ϕ′

v
)

)

L(s, π × π ′)

or

I (s; ϕ, ϕ′, -) =
(

∏

v∈S

ev (s; Wϕv , W ′
ϕ′

v
, -v )

)

L(s, π × π ′).

On the other hand, for any s0 ∈ C and any v there is a choice of local Wv , W ′
v , and

-v such that the local factors ev (s0; Wv , W ′
v ) /= 0 or ev (s0; Wv , W ′

v , -v ) /= 0. For
archimedean v this is Theorem 1.2 (ii) and its corollary. For non-archimedean v
this follows from the definition of the L-function as the generator of the fractional
ideal spanned by the local integrals. As noted above this implies that there are finite
collections Wv,i , W ′

v,i , and -v,i if necessary such that

L(s, πv × π ′
v ) =

∑
.(s; Wv,i , W ′

v ′i ) or

L(s, πv × π ′
v ) =

∑
.(s; Wv,i , W ′

v ′i , -v,i )
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which is equivalent to

1 =
∑

e(s; Wv,i , W ′
v ′i ) or 1 =

∑
e(s; Wv,i , W ′

v ′i , -v,i ).

Hence for any choice of s0 ∈ C one of the e(s0; Wv,i , W ′
v ′i ) or e(s0; Wv,i , W ′

v ′i , -v,i )
must be non-vanishing. So as we vary ϕ, ϕ′ and - at the places v ∈ S we see that
division by these factors can introduce no extraneous poles in L(s, π × π ′), that is,
in keeping with the local characterization of the L-factor in terms of poles of local
integrals, globally the poles of L(s, π × π ′) are precisely the poles of the family of
global integrals {I (s; ϕ, ϕ′)} or {I (s; ϕ, ϕ′, -)}. Hence from Theorems 2.1 and 2.2
we have:

Theorem 2.4. If m < n then L(s, π × π ′) is entire. If m = n, then L(s, π ×
π ′) has at most simple poles and they occur iff π 0 π̃ ′ ⊗ |det|iσ with σ real and
are then at s = −iσ and s = 1 − iσ .

If we apply this with π ′ = π̃ we obtain the following corollary.

Corollary. L(s, π × π̃ ) has simple poles at s = 0 and s = 1.

Since a general, not necessarily unitary, cuspidal representation π is always
of the form π = πu ⊗ |det|r with πu unitary cuspidal, these results extend in a
straightforward way to all cuspidal representations. In particular, this gives the
proof of Jacquet, Piatetski-Shapiro, and Shalika of these results which was alluded
to in the appendix of [14], where these results were proven using the technique of
Eisenstein series.

Department of Mathematics, Oklahoma State University, Stillwater, OK
74078
E-mail: cogdell@math.okstate.edu

Department of Mathematics, Yale University, New Haven, CT 06520
E-mail: ilya@math.yale.edu

references

[1] W. Casselman, Canonical extensions of Harish-Chandra modules to representations of G, Can. J. Math.
XLI (1989), 385–438.

[2] J. W. Cogdell and I. I. Piatetski-Shapiro, Converse Theorems for GLn , Publ. Math. IHES 79 (1994),
157–214.

[3] ———, Converse Theorems for GLn , II J. reine angew. Math. 507 (1999), 165–188.
[4] J. Dixmier and P. Malliavin, Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull.
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CHAPTER 11

ON SOME GEOMETRIC CONSTRUCTIONS RELATED
TO THETA CHARACTERISTICS

By Benedict H. Gross and Joe Harris

To J. Shalika, on his 60th birthday

0. Introduction. The theory of quadratic forms over the field of 2 elements
has many mathematical applications, from finite group theory to algebraic topology.
Here we pursue a connection discovered by Mumford, relating theta characteristics
on an algebraic curve to quadratic forms on the vector space of 2-torsion points in
its Jacobian.

We develop the algebraic and combinatorial aspects of quadratic forms in the
first three sections, then review some of the theory of theta characteristics in sec-
tion 4. The last three sections use this theory to investigate some classical geometric
constructions on curves of genus 2 and 3.

Some of the material in sections 2 and 3 appears in the 19th century literature
(cf. for example [C1], [C2], and [W]), and has been abstracted in expository articles
(cf. [Sa]). Similarly, versions of the geometric constructions in sections 5–7 have
appeared in several excellent modern expositions (cf. [G–H] and [D–O]).

Acknowledgments. We wish to thank Igor Dolgachev, who guided us to much of
the existing literature.

1. Quadratic forms. Throughout this paper, k = Z/2Z is the field with 2
elements. Let V be a vector space of dimension 2g over k. We fix a nondegenerate,
strictly alternating from 〈,〉 : V ⊗ V → k. Thus 〈v, v〉 = 0 for all v ∈ V , and the
map v &→ fv (u) = 〈u, v〉gives an isomorphism from V to its dual space Hom (V, k).

The symplectic space (V, 〈,〉) is uniquely determined up to isomorphism by its
dimension 2g. Let Sp(V ) be the group of all k-linear isomorphisms T : V → V
which satisfy 〈T v, T u〉 = 〈v, u〉 for all v, u ∈ V . The group Sp(V ) is generated by
the transvections:

Tu(v) = v + 〈v, u〉u(1.1)

where u '= 0 in V , and these form a single conjugacy class of involutions in Sp(V ).
The finite group Sp(V ) has order 2g2

(22g − 1)(22g−2 − 1) · · · (22 − 1) ([A]).
A subspace X ⊂ V is isotropic if 〈x, x ′〉 = 0 for all x, x ′ ∈ X . The maxi-

mal isotropic spaces all have dimension g, and may be completed to an isotropic

279
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decomposition of V :

V = X ⊕ Y(1.2)

with X and Y isotropic of dimension g. The pairing 〈,〉 on V puts the subspaces X
and Y in duality. The isotropic decompositions (1.2) of V are all conjugate under
Sp(V ), and the stability subgroup of a fixed decomposition is isomorphic to GL(X )
([A]). If 〈e1, . . . , eg〉 is a basis for X and 〈 f1, . . . , fg〉 is the dual basis of Y , the
vectors 〈e1, . . . , eg; f1, . . . , fg〉 give a symplectic basis for V .

We say a function q : V → k is a quadratic form on V (relative to the fixed
sympletic form 〈,〉) provided that

q(v + u) + q(v) + q(u) = 〈v, u〉(1.3)

for all v, u ∈ V . If V = X ⊕ Y is any isotropic decomposition, the function

q0(x + y) = 〈x, y〉(1.4)

defines a quadratic form on V . In terms of a symplectic basis:

q0

(

g
∑

i=1

αi ei +
g

∑

i=1

βi fi

)

=
g

∑

i=1

αiβi .(1.5)

Let QV denote the set of all quadratic forms on V , relative to 〈,〉. Then QV is a
principal homogeneous space for V : if q ∈ QV and v ∈ V we define the quadratic
form q + v by

q + v(u) = q(u) + 〈v, u〉.(1.6)

Similarly, if q and q ′ are two elements of QV there is a unique vector v = q + q ′

such that

〈v, u〉 = q(u) + q ′(u).(1.7)

This gives the disjoint union W = V ∪ QV the structure of a k-vector space of
dimension 2g + 1, which contains V as a subspace of codimension 1.

The group Sp(V ) acts on the set QV by the formula q &→ Tq, where

Tq(T v) = q(v).(1.8)

This gives a linear action of Sp(V ) on W , and we have an exact sequence of Sp(V )-
modules

0 → V → W → k → 0.(1.9)

We define the Arf invariant a : QV → k as follows. Let 〈e1, . . . , eg;
f1, . . . , fg〉 be a symplectic basis of V . For q ∈ QV, let

a(q) =
∑

q(ei )q( fi ).(1.10)
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A priori, this depends on the symplectic basis chosen, but we have the following:

Proposition 1.11. The Arf invariant a(q) does not depend on the symplectic
basis chosen to define it. If q is defined by an isotropic decomposition, as in (1.4),
then a(q) = 0.

We have the formulas

a(Tq) = a(q) T ∈ Sp(V )

a(q + v) = a(q) + q(v) v ∈ V .

The group Sp(V ) has 2 orbits on QV, the 2g−1(2g + 1) even forms q with a(q) = 0,
and the 2g−1(2g − 1) odd forms q with a(q) = 1.

Proof. Since Sp(V ) acts transitively on the collection of symplectic bases, and
is generated by the transvections Tu , it suffices to check that

∑

q(ei )q( fi ) =
∑

q(Tuei )q(Tu fi ).

This is an amusing exercise, which uses the identity α2 = α in k.
If q = q0 is defined using an isotropic decomposition (1.4), then q = 0 on the

subspaces X and Y . Hence a(q) = 0.
The formula a(Tq) = a(q) follows from the independence of basis. To prove

that a(q + v) = a(q) + q(v), extend v = e1 to a symplectic basis of V and use
(1.10) to calculate a(q + v).

One shows, by induction on g, that the form q0 defined by (1.4)–(1.5) has
2g−1(2g + 1) zeroes on V . Since a(q0) = 0, we have a(q0 + v) = q0(v). Hence
there are 2g−1(2g + 1) forms q = q0 + v with a(q) = 0, and 2g−1(2g − 1) forms q
with a(q) = 1.

Now fix q, and consider the action of the involutions Tu ∈ Sp(V ). If q(u) = 1,
we find that Tuq = q. If q(u) = 0, then Tuq = q + u. It follows that the group
Sp(V ) acts transitively on the set of forms with either Arf invariant. !

Corollary 1.12. For q ∈ QV, the following conditions are all equivalent
1. a(q) = 0.
2. q has 2g−1(2g + 1) zeroes on V.
3. There is an isotropic decomposition V = X ⊕ Y such that q = 0 on the

subspaces X and Y .

Corollary 1.13. The stabilizer O(V, q) ⊂ Sp(V ) of a form q ∈ QV has order

2g2−g+1(22g−2 − 1)(22g−4 − 1) · · · (22 − 1)(2g − 1) if a(q) = 0
2g2−g+1(22g−2 − 1)(22g−4 − 1) · · · (22 − 1)(2g + 1) if a(q) = 1.

The transvection Tu lies in O(V, q) if q(u) = 1.

Corollary 1.14. If g ≥ 2, the sequence (1.9) of Sp(V )-modules
0 → V → W → k → 0 is not split.
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2. Aronhold sets. Recall that W = V ∪ QV is a k-vector space of dimension
2g + 1 over k. Let S = {q1, q2, . . . , q2g+1} be a set of linearly independent vectors,
all of which lie in the coset QV. Relative to this basis, any vector w ∈ W has
a unique expression w = #αi qi with αi = 0, 1 in Z. We define #w = #αi , so
0 ≤ #w ≤ 2g + 1. If w lies in the coset QV, then #w is odd.

We say S is an Aronhold set provided that the Arf invariant of any element
q = #αi qi in QV depends only on the residue class of the odd integer #q (mod 4).
If S is an Aronhold set, we must have a(q1) = a(q2) = · · · = a(q2g+1), as these are
the forms q with #q = 1. Also, there is a unique form qS = #qi with #qS = 2g + 1,
and this form must satisfy a(qS) ≡ a(qi ) + g (mod 2).

Proposition 2.1. There exist Aronhold sets S = {q1, . . . , q2g+1} with

a(qi ) =
{

0 g ≡ 0, 1 (mod 4)

1 g ≡ 2, 3 (mod 4)
.

The group Sp(V ) acts transitively on the collection of Aronhold sets in W , and the
stabilizer of S is the full symmetric group

Sym(S) ↪→ O(V, qS) ↪→ Sp(V ).

Proof. Define the vector space N of dimension 2g + 1 over k, with basis S =
{n1, n2, . . . , n2g+1}. Let M be the subspace {#αi ni : #α2 ≡ 0} of codimension 1.
The bilinear form on N

〈

∑

αi ni ,
∑

βi ni

〉

=
∑

αiβi

is strictly alternating and nondegenerate on M .
For n = #αi ni in N , with αi = 0, 1 in Z, define #n = #αi . Put

a(ni ) =
{

0 g ≡ 0, 1 (mod 4)

1 g ≡ 2, 3 (mod 4)
.

For n ∈ N − M , #n is odd and we define

a(n) ≡ a(ni ) +
(

#n − 1
2

)

.

Clearly a(n) depends only on #n (mod 4). We now show that, like the Arf
invariant, a(n) takes the value zero 2g−1(2g + 1) times on N − M , and the value
one on the remaining 2g−1(2g − 1) elements. !

Lemma 2.2.
∑

k≡1(mod 4)

(

2g + 1
k

)

=
{

2g−1(2g + 1) g ≡ 0, 1 (mod 4)
2g−1(2g − 1) g ≡ 2, 3 (mod 4)

.
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Proof. We have

∑

kodd

(

2g + 1
k

)

= 22g.

If i2 = −1 in C, we also have

(1 + i)2g+1 = (2i)g(1 + i) = 2g(i g + i g+1) =
∑

(

2g + 1
k

)

i k .

Taking the coefficient of i gives the identity

∑

k≡1(mod 4)

(

2g + 1
k

)

−
∑

k≡3(mod 4)

(

2g + 1
k

)

=
{

2g g ≡ 0, 1 (mod 4)
−2g g ≡ 2, 3 (mod 4)

.

Adding this to the first identity in the proof gives the desired formula.
For n ∈ N − M , we define the function fn : M → k by the formula fn(m) =

a(n + m) + a(n). !

Lemma 2.3. The function fn is a quadratic form on M associated to the sym-
plectic form 〈,〉. The Arf invariant of fn is a(n).

Proof. We must show that

fn(m1 + m2) + fn(m1) + fn(m2) = 〈m1, m2〉.

We first check this for the special case when n = nS =
∑

ni has #n = 2g + 1.
In this case, we write f for the function fn and observe that we have the simple
formula

f (m) ≡ #m
2

(mod 2).

Since #(m1 + m2) = #m1 + #m2 − 2#(m1 ∩ m2) with #(m1 ∩ m2) =
∑

αi (m1)
αi (m2) ≡ 〈m1, m2〉, we have

f (m1 + m2) + f (m1) + f (m2) = 〈m1, m2〉

as desired.
In general, n = nS + m ′ and fn(m) = f (m + m ′) + f (m ′). We must show that

the four-term sum

f (m1 + m2 + m ′) + f (m1 + m ′) + f (m2 + m ′) + f (m ′)

is equal to 〈m1, m2〉. By the above identity for f , this sum is equal to

f (m1 + m2) + 〈m ′, m1 + m2〉 + f (m1) + 〈m ′, m1〉 + f (m2) + 〈m ′, m2〉.
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Since 〈m ′, m1 + m2〉 = 〈m ′, m1〉 + 〈m ′, m2〉, the sum is equal to f (m1 + m2) +
f (m1) + f (m2) = 〈m1, m2〉 as desired.

The Arf invariant of fn clearly depends only on #n (mod 4), so it suffices to
check that it is correct when n = nS has #n = 2g + 1. An argument similar to
Lemma 2.2 shows that the function f has 2g−1(2g + 1) zeroes on M when g ≡ 3,
4 (mod 4) and 2g−1(2g − 1) zeroes on M when g ≡ 1, 2 (mod 4). Hence the Arf
invariant of the form f is equal to a(nS) ≡ a(ni ) + g(mod 2).

We now complete the proof of Proposition 2.1. Since M and V are both
nondegenerate symplectic spaces of dimension 2g, there is a linear isomor-
phism T : M → V which satisfies 〈Tm1, Tm2〉 = 〈m1, m2〉 for m1, m2 ∈ M . Via
T , we may identify the elements n of N − M with quadratic forms q = T (n)
on V : q(Tm) = fn(m). The fact that q is a quadratic form, with Arf invariant
a(n) ≡ a(ni ) + ( #n−1

2 ), follows from Lemma 2.3.
The induced map T : N → W is a linear isomorphism, and the images

qi = T (ni ) give an Aronhold set S in W . The transitivity of Sp(V ) on Aronhold
sets, and the stability subgroup follow similarly. This completes the proof of Propo-
sition 2.1. !

We give some examples of Aronhold sets S for small values of g. When g = 1,
there are 3 even forms q on V . The group Sp(V ) is isomorphic to S3 via its permu-
tation representation on the set S = {q1, q2, q3} of even forms. This is the unique
Aronhold set in W , and qS = q1 + q2 + q3 is the unique odd form on V .

When g = 2 there are 6 odd forms q on V , and the group Sp(V ) is isomorphic
to S6 via its permutation representation on the set of odd forms. The Aronhold
sets S = {q1, q2, . . . , q5} are the 5-subsets of the set of odd forms, and qS is the
unique odd form not in S. The group O(V, qS) is isomorphic to the symmetric
group Sym(S) = S5.

When g = 3 there are 28 odd forms q on V . An Aronhold set S =
{q1, q2, . . . , q7} consists of 7 odd forms which give a basis for W = V ∪ QV, such
that

qi + q j + qk is even i '= j '= k

qi + q j + qk + q% + qm is odd i '= j '= k '= % '= m

qS =
7

∑

i=1

qi is even.

The following simpler criterion is often useful.

Proposition 2.4. Let S = {q1, q2, . . . , q7} be a set of seven distinct odd forms
on V , such that qi + q j + qk is even for all i '= j '= k. Then S is an Aronhold set
in W .
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Proof. The hypothesis implies that the 21 vectors vi j = qi + q j are nonzero
and distinct in V . For if vi j = vk,%, then qi + q j + qk + q% = 0 in W , and the form
qi + q j + qk = q% would be odd.

If k '= i, j then qk(vi j ) = a(qk) + a(qi + q j + qk) = 1. On the other hand,
qi (vi j ) = q j (vi j ) = a(qi ) + a(q j ) = 0. Hence qS =

∑7
i=1 qi takes the value 1 on

the 21 vectors vi j , and is not equal to any of the qi . It follows that the vectors {qi }
are linearly independent in W , so give a basis.

The forms qi + q j + qk with i '= j '= k are hence all distinct, and give ( 7
3 ) = 35

of the 36 even forms on V . It therefore suffices to prove that qS is even.
Of the 21 forms qi + q j + qk + q% + qm with i '= j '= k '= % '= m, at least

20 must be odd. Assume r = q1 + q2 + q3 + q4 + q5 is odd. Since qS = r +
v67, a(qS) = a(r ) + qS(v67) = 1 + 1 = 0 as desired. !

Corollary 2.5. The 21 vectors vi j = qi + q j in V determine the Aronhold
set S = {qi } in W .

Proof. Indeed, there is a unique even form q (= qS) which takes the value
1 on the vi j . Let {v1, . . . , v7} be the remaining vectors where q(vi ) = 1, and let
qi = q + vi . These are the 7 forms of S.

The group S7 = Sym(S) has index eight in the group O(V, qS), so for each
even form q there are precisely 8 Aronhold sets S which satisfy q S = q. (This
gives 288 = 36.8 Aronhold sets S in all.) The action of O(V, qS) on these 8 sets S
gives an isomorphism O(V, qS) 1 S8. Finally, each odd form q1 appears in precisely
two Aronhold sets S with qS = q, so in 72 Aronhold sets in all.

If 〈e1, e2, e3; f1, f2, f3〉 is a symplectic basis for V such that the even form q
is given by

q
(

∑

αi ei +
∑

βi fi

)

=
∑

αiβi

then an explicit Aronhold set S with qS = q is given by

q1 = q + e1 + f1 + f2

q2 = q + e2 + f2

q3 = q + e3 + f1 + f2 + f3

q4 = q + e1 + e2 + f1 + f3

q5 = q + e1 + e3 + f2 + f3

q6 = q + e2 + e3 + f3

q7 = q + e1 + e2 + e3 + f1.
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Note. We have chosen the name Aronhold set for S in view of Aronhold’s
work on the 28 bitangents to a smooth plane quartic (the notion of an Aronhold set
appears in Coble’s book [C2, §26] as a “normal fundamental set”). The relationship
between this work and the theory of quadratic forms on V when g = 3 will be
explained in §4.

We define an Aronhold basis of W to be an ordered Aronhold set
〈q1, q2, . . . , q2g+1〉 in QV . The group Sp(V ) acts simply-transitively on Aronhold
bases of W , and on symplectic bases 〈e1, . . . , eg; f1, . . . , fg〉 of V . We may iden-
tify these principal homogeneous spaces for Sp(V ) by associating to each Aronhold
basis the symplectic basis:

e1 = q1 + q2 f1 = q1 + q2g+1

e2 = q3 + q4 f2 = q1 + q2 + q3 + q2g+1

...
...

eg = q2g−1 + q2g fg = q1 + q2 + · · · + q2g−1 + q2g+1

3. A bipartite graph. Many of the combinatorial questions involving
quadratic forms on V can be studied by a consideration of a certain bipartite graph
&. The two sets of vertices of & correspond respectively to the elements of V and
QV . The two vertices v and q are joined by an edge if a(q + v) = 1.

The group Sp(V ) ∝ W acts as an automorphism of &. The subgroup W per-
mutes the vertices simply-transitively, and Sp(V ) preserves the vertex v = 0. The
subgroup O(V, q) of Sp(V ) preserves the two vertices v = 0 and q.

Let q be a fixed even quadratic form, and let σ = σq be the involution of &

given by translation by q. Since w is not connected to w + q, σ fixes no edge of &,
and the quotient graph ( = &/〈σ 〉 has no loops.

The combinatorial graph ( has 22g vertices, indexed by v ∈ V . The vertices v
and u are connected by an edge if a(q + v + u) = 1. Therefore, ( is regular with
valency

2g−1(2g − 1) = #{v : q(v) = 1}.

The group O(V, q) ∝ V acts as automorphism of the quotient graph (. The sub-
group V permutes the vertices simply-transitively, and O(V, q) preserves the vertex
v = 0. It acts on the complete subgraph ((0), which is, by definition, the induced
graph on the star of v = 0 in (.

We give some examples of ( and ((0) for small g. When g = 1, ( is the graph

0 v v′′v′
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where v is the unique vector in V with q(v) = 1. In this case, O(V, q) is the group
S2 of order 2. In this case, O(V, q) is the group S2 of order 2.

When g = 2, ( has 16 vertices and 48 edges. There is a unique partition
{v1, v2, v3}, {v4, v5, v6} of the six vectors v with q(v) = 1 into two 3-element sub-
sets, such that each element in the first 3-subset is orthogonal to each element
in the second 3-subset. Indeed, if 〈e1, e2; f1, f2〉 is a symplectic basis for V and
q(α1e1 + α2e2 + β1 f1 + β2 f2) = α1β1 + α2β2, we have the partition















v1 = e1 + f1

v2 = e2 + f2 + e1

v3 = e2 + f2 + f1















v4 = e2 + f2

v5 = e1 + f1 + e2

v6 = e1 + f1 + f2.

The subgraph ((0) is given by

v1

v2v3

v4

v5 v6

0

and the group O(V, q) is isomorphic to the subgroup (S3 × S3) · 2 of S6 = Sp(V ).
When g = 3 the graph ( has 64 = 26 vertices and 896 = 27 · 7 edges. There are

28 vectors v with q(v) = 1. Let S = {q1, q2, . . . , q7} be an Aronhold set with q =
qS = #qi , and write qi = q + vi . Since q(vi ) = a(qi ) = 1, the seven vertices vi lie
in ((0). Since q(vi + v j ) = a(#k '=i, j qk) = 1, the vertices vi and v j are connected
by an edge in ((0). Hence ((0) contains the complete graph (S on the eight
vertices {0, v1, v0, . . . , v7}:
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v1

v2

v3

v4v5

v6

0

v7

There are 8 choices for S with qS = q. If S′ '= S, the complete graphs (S and
(S′ meet along a single edge with vertex v = 0 in ((0). Of the 28 vertices v '= 0
in ((0), each is connected to 12 vertices w '= 0. The group O(V, q) = S8 acts on
((0); the subgroup S7 stabilizing (S permutes the 7 vertices {v1, v2, . . . , v7}, as
well as the 7 remaining complete graphs (S′ .

4. Theta characteristics. Following Mumford [M], we recall how the theory
of theta characteristics is linked to the theory of quadratic forms over Z/2Z.

Let C be a complete, nonsingular algebraic curve of genus g, defined over an
algebraically closed field of characteristic '= 2. Let Pic(C) be the group of divisor
classes on C , and Picn(C) the divisor classes of degree n. If d ∈ Pic(C), we write
L(d) for the corresponding line bundle on C , and h0(d) for the dimension of the
space of sections H 0(C,L(d)).

Let

V = {v ∈ Pic0(C) : 2v = 0}(4.1)

be the classes killed by 2. This is a vector space of dimension 2g over k = Z/2Z.
It has a nondegenerate symplectic form defined by the Weil pairing. If d and e
are divisors with disjoint support in the classes of v and u, and 2d = div( f ), 2e =
div(g), then

(−1)〈v,u〉 = f (e)/g(d).

Let κ be the canonical class in Pic2g−2(C). The set of theta characteristics

QV = {q ∈ Picg−1(C) : 2q = κ}(4.2)
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is a principal homogeneous space for V which can be identified with the set of
quadratic forms on V . The form q is given by the formula

q(v) ≡ h0(q + v) + h0(q) (mod 2).(4.3)

The Arf invariant of q is given by

a(q) ≡ h0(q) (mod 2).(4.4)

The vector space W = V ∪ QV appears as a subgroup of order 22g+1 in Pic(C)/Zκ ,
when g '= 1.

We consider some examples in low genus. When g = 0, there is a single (even)
characteristic q. In this case C 1 P1,L(q) 1 O(−1), and h0(q) = 0.

When g = 1, C is an elliptic curve and κ = 0. In this case, QV = V . There are
three even characteristics q = v '= 0 with h0(q) = 0, and one odd characteristic
with h0(q) = 1.

When g = 2, the canonical series |κ| gives a two-fold covering C → P1. Let
τ be the hyperelliptic involution of C and let {p1, p2, . . . , p6} be the fixed points
of τ . The six odd characteristics q correspond to the line bundles L(pi ) and satisfy
h0(q) = 1. The 10 even characteristics q correspond to the line bundles L(pi +
p j − pk), where {pi , p j , pk} is a 3-subset of the 6 fixed points, well-defined up to
complementation. They satisfy h0(q) = 0.

When g = 3, the canonical series |κ| gives a morphism π : C → P2. If C is
hyperelliptic, this map is 2-to-1 onto a smooth conic D ⊂ P2. In this case, there
is a distinguished even theta characteristic qC with h0(qC ) = 2; we have L(qC ) =
π∗OD(1). Let τ be the hyperelliptic involution of C , and let {p1, p2, . . . , p8} be
its 8 fixed points. The 28 odd theta characteristics q correspond to the line bundles
L(pi + p j ), and satisfy h0(q) = 1.

If C is not hyperelliptic, the canonical series embeds C as a smooth quartic in
P2. The 28 odd theta characteristics q correspond to the 28 bitangent lines to this
quartic; the corresponding line bundles are L(p + r ) where p and r are the two
points of double tangency.

Classically, an Aronhold set S consisted of 7 bitangents {(p1, r1), . . . , (p7, r7)}
on C ⊆ P2, with the property that no 6 points of the form {pi , ri , p j , r j , pk, rk} i '=
j '= k were on the intersection of C with a conic. Equivalently, S is a collection
of 7 odd theta characteristics {q1, . . . , q7} such that qi + q j + qk − κ is an even
characteristic, for i '= j '= k. The remaining 21 odd characteristics have the form
qi + q j + qk + q% + qm − 2κ , so the remaining 21 bitangents to C can be obtained
as the residual intersection of C with a cubic passing through 10 points of the form
{pi , ri , p j , r j , pk, rk, p%, r%, pm, rm}.

The Aronhold set S = {q1, . . . , q7} determines an even characteristic qs =
q1 + q2 + · · · + q7 − 3κ . Since C is not hyperelliptic, h0(qS) = 0. The linear series
|κ + qS| embeds C as a nonsingular sextic curve in P3, and Hesse showed that the
28 lines pr in P3 given by the odd theta characteristics meet in 8 distinct points
Y = {y1, y2, . . . , y8}. The scheme Y is the base locus of a net of quadrics {Qλ}λ∈P2
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in P3, whose discriminant locus defines the smooth quartic curve C in P2:

C = {λ ∈ P2 : det Qλ = 0}.

The lines pr in P3 give the complete graph on the 8 points of Y = ∩λQλ, and the
Aronhold set S is a complete fan from one of the vertices. We will recover and
extend these results in §6.

5. Curves of genus 2. Let C be a nonsingular, complete curve of genus 2
defined over an algebraically closed field of characteristic '= 2. Let A = Pic0(C)
be the Jacobian of C , and let κ be the canonical class in Pic2(C). We have the
symplectic space V = {v ∈ A : 2v = 0} of dimension 4 over Z/2Z, and identify
QV with the set of 16 theta characteristics {q ∈ Pic1(C) : 2q = κ} as in §4.

In this section, we will show how C gives rise to a K 3-surface X , together with
a very ample line bundle L of degree 8 on X . We will also see how to associate to
each even theta characteristic q on C an Enriques involution σ = σq of X fixing
L, and will study a configuration of 16 rational curves on the quotient Enriques
surface Y = X/〈σq〉, whose dual graph is the combinatorial graph ( described in
§3. The subgraph ((0) will be used to produce an elliptic fibration f : Y → P1

with two double fibres, each of Kodaira type I3.
Our treatment follows [GH, Ch. 6]. Let τ be the hyperelliptic involution of C ,

which induces the automorphism −1 on A. Besides the 16 points of V on A, which
are fixed by −1, we have the 16 curves Cq of genus 2 corresponding to classes in
QV.

Cq = {(p) − q : p ∈ C}.(5.1)

The involution −1 of A fixes Cq , and induces its hyperelliptic involution. If q '= q ′,
then Cq and Cq ′ meet in 2 points of V , and the point v ∈ V lies on the curve Cq if
a(q + v) = 1.

The class of the divisor E = 2 · (Cq) in Pic(A) is independent of the choice
of q ∈ QV; this is the linear series usually denoted |2-|. The line bundle L(E) is
ample and satisfies L(E)2 = 8, h0(L(E)) = 4. The sections of L(E) are all fixed
by −1 and give a projective embedding of the Kummer surface K = A/〈−1〉.

K ↪→ P3(5.2)

where the image is a hypersurface of degree 4. This quartic has 16 ordinary double
points, at the images of elements in V . The curves Cq on A give 16 rational curves
Cq/〈τq〉 on K , which map to conics in the 16 reducible hyperplane sections.

Let X be the blow-up of K at the 16 double points V . This is abstractly a K 3
surface, with 32 obvious rational curves

the 16 proper transforms Dq of the curves Cq/〈τq〉

the 16 exceptional divisors DV .
(5.3)
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These all satisfy D2 = −2, and the dual graph of the configuration is the bipartite
graph &:

Dv · Dq =
{

1 if a(q + v) = 1
0 if a(q + v) = 0.

(5.4)

Next, we show that the finite group W = V ∪ QV ∼= (Z/2Z)5 acts as automor-
phisms of X and permutes the 32 curves Dw simply-transitively. The involutions
σv associated to points v '= 0 in V are induced by the translations a &→ a + v on
A. They have 8 fixed points on X—the images of the 16 points a of order 4 on A
which satisfy 2a = v .

The involutions σq associated to forms q ∈ QV are more subtle to define, as
they act only on X (not on A or K ). We specify σq by insisting that it permutes
the curves Dw in the obvious manner: σq(Dw ) = Dw+q . This gives an involution
of the subgroup of NS(X ) spanned by the curves Dw , which is free of rank 17, and
extends uniquely to an involution of the Hodge structure on H 2(X ), acting trivially
on the image of H 2(A). By the Torelli theorem for K3 surfaces, σq arises from a
unique automorphism of X .

Let B be the blow-up of A at the 16 points v ∈ V . Then −1 lifts to an involution
of B, and B/〈−1〉 = X . The branch divisor of the 2-fold cover B → X is equal to
#v (Dv ), so this class is divisible by 2 in Pic(X ) = NS(X ). Since Pic(X ) is torsion-
free, the class 1

2#(Dv ) is well-defined in Pic(X ).
For q ∈ QV, define the class

Hq = 4(Dq) + 2
∑

a(q+v)=1

(Dv ) − 1
2

∑

v

(Dv )(5.5)

in Pic(X ). Then

Hq · Dw = 1 w ∈ W = V ∪ QV.(5.6)

Hence H = Hq is independent of the choice of q, and fixed under the action of W
on Pic(X ). The associated line bundle L = L(H ) satisfies

L · L = 8, h0(L) = 6.(5.7)

This is the very ample class in Pic(X ) determined by C .
The sections of L give a projective embedding

X ↪→ P5(5.8)

where the image has degree 8. The 32 rational curves Dw are mapped to lines in
P5, which lie on the 80 reducible hyperplane sections (each of which contains 4
lines Dv and 4 lines Dq). [GH, Ch. 6].

To understand the projective representation of W on P5 = P(H 0(X,L)), we
introduce a central extension U of W which acts linearly on H 0(X,L). Let U be
a 6-dimensional vector space over k = Z/2Z, with basis 〈u1, u2, . . . , u6〉, and let
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〈q1, q2, . . . , q6〉 be the odd quadratic forms on V . We have an exact sequence of
Sp(V ) = S6–modules

0 → k → U → W → 0

ui &→ qi

1 &→
∑

ui .

(5.9)

The projective representation of W lifts uniquely to a linear representation of U
on H 0(X,L), such that the space of sections decomposes as the direct sum of the
six lines Li = {s ∈ H 0(X,L) : ui (s) = −s}. Using this decomposition, we obtain
eigencoordinates 〈x1, x2, . . . , x6〉 on P5 such that X appears as the intersection of
3-diagonal quadrics [GH, 768–769]:

∑

αi x2
i =

∑

βi x2
i =

∑

γi x2
i = 0.

If q = qi is odd, σq fixes a hyperplane section of X , which is a canonical curve of
genus 5. If q is even, σq is given by the action of ui · u j · uk , where {qi , q j , qk} is
the 3-subset of the odd forms well determined by q up to complementation. In this
case, σq is fixed-point free on X .

We summarize the results obtained so far.

Proposition 5.10. Associated to a curve C of genus 2 is a K 3 surface X,
together with a very ample line bundle L on X which satisfies L · L = 8.

The surface X contains 32 rational curves Dw corresponding to elements w ∈
W . The dual graph of the configuration of these curves is the bipartite graph &. The
group W acts as automorphisms of X, fixes the class L in Pic(X ), and permutes
the curves Dw simply-transitively.

The sections of L give a projective embedding X ↪→ P5 in which W acts as the
group 〈±1〉6/〈−1, −1, . . . , −1〉 of sign changes on the 6 coordinates. The surface
X is the complete intersection of 3 diagonal quadrics, and the curves Dw are
mapped to lines in P5.

If q is an even theta characteristic on C, the involution σq involves 3 sign
changes on P5 and is fixed-point free on X.

Now let q be a fixed even characteristic on C , and write σ = σq for the corre-
sponding Enriques involution of X . The quotient Y = X/〈σ 〉 is an Enriques surface,
with 16 rational curves Dv (the image of either Dv or Dv+q) indexed by v ∈ V . The
group V acts as automorphisms of Y and permutes the curves Dv simply-transitively.
The dual graph of the configuration of these curves is the graph ( = &/〈σ 〉 studied
in §3.







D2
v = 2

Dv · Du =
{

1 if a(q + v + u) = 1
0 if a(q + v + u) = 0.
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Let T = {q1, q2, q3} and T ′ = {q4, q5, q6} be the two 3-subsets of odd char-
acteristics determined by q. We have q1 + q2 + q3 = q4 + q5 + q6 = q in W . The
embedding X ↪→ P5 = P(V ) gives rise to two coverings:

πT : Y → P2 = P(V123)

πT
′ : Y → P2 = P(V456).

Each has degree 4, and the line bundle π∗
TO(1) ⊗ π∗

T ′O(1)−1 is isomorphic to the
canonical bundle /2

Y of Y .
Write qi = q + vi , and consider the two divisors

E = Dv1 + Dv2 + Dv3

E ′ = Dv4 + Dv5 + Dv6

on Y . By our picture of ((0) in §3, these give disjoint configurations of −2 curves
on Y :

Dv

1

2

4

5 6

Dv

Dv Dv

Dv

Dv

E E′

3 .

Hence E2 = (E ′)2 = E · E ′. Again, the difference (E) − (E ′) represents the canon-
ical class KY . Since this class has order 2 in Pic(Y ) there is a function f : Y → P1

with div( f ) = 2(E) − 2(E ′). The map f is an elliptic fibration of Y , with 2 double
fibres 2E and 2E ′. (Both E and E ′ are generalized elliptic curves, of Kodaira type
I3.) Of the remaining curves Dv on Y , the nine curves with v '= 0 are bisections of
this fibration, and the curve D0 is a six-fold section.

6. Curves of genus 3. In this section C is a nonsingular, complete curve
of genus 3 over an algebraically closed field of characteristic '= 2, which is not
hyperelliptic. Let q be an even theta characteristic on C , and let K = 2q be the
canonical class. We study the sesquicanonical embedding of C into P3 given by the
very ample linear series |3q| = |K + q| of degree 6.

To understand the geometry of the image B of C in P3, which is a sextic
space curve, we have to arrive at it from another point of view, that of symmetric
determinantal representations of the plane quartic.
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To start with, suppose we are given a net of quadrics in P3, which we define to
be an inclusion

ϕ : V ↪→ Sym2W ∗

of a three-dimensional vector space V into the space of symmetric bilinear forms
on a four-dimensional vector space W , up to the action of Aut(V ) and Aut(W ) on
the left and right. We can immediately associate to such an object the locus

C = {[v] ∈ PV : ϕ(v) is singular} ⊂ PV ∼= P2.

Given that this is the zero locus of the determinant of a symmetric 4 × 4 matrix of
linear forms on PV , we expect it to be a quartic curve; we will call the net typical
if it is a smooth plane quartic.

It is natural to ask whether every plane quartic curve C may be realized in this
fashion, and if in turn C determines the net. The answers to these two questions
are, respectively, “yes” and “not quite.” In fact, we need only a little extra structure
beyond the specification of C to specify the net; and once we have said what that
is, we will readily prove that we have a one-to-one correspondence between nets
and curves with this structure.

Now, suppose our net is typical. It follows then that the rank of ϕ(v) is never
less than 3: the variety in Sym2W ∗ of quadrics of rank 3 or less is singular along the
locus of quadrics of rank strictly less than 3. From this we see that we can further
associate to our net a line bundle on C : the line bundle M whose fiber at any point
p = [v] on C is the kernel of ϕ(v), viewed as a map from W to W ∗. In a similar
way, we can associate another line bundle N on C , whose fiber at p is the cokernel
of ϕ(v).

To be more precise, our net ϕ may be viewed as giving a morphism of locally
free sheaves on PV :

ψ : OPV ⊗ W → OPV (1) ⊗ W ∗.

The cokernel of this morphism of sheaves on PV is supported on C ; in fact, it is
just the line bundle N . We thus have an exact sequence of sheaves on P2:

0 → OPV ⊗ W → OPV (1) ⊗ W ∗ → N → 0.(6.1)

When we restrict to C—that is, tensor with OC —this does not remain exact; rather
we get a four-term exact sequence

0 → M → OC ⊗ W → OC (1) ⊗ W ∗ → N → 0.(6.2)

From this we see in particular that

c1(N ) − c1(M) = c1(OC (1) ⊗ W ∗),

i.e.,

N ⊗ M∗ ∼= OC (4).
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At the same time, the symmetry of the map ϕ̃ gives another relation between N
and M . Dualizing the four-term sequence of locally-free sheaves on C , we get a
sequence

0 → N ∗ → OC (−1) ⊗ W → OC ⊗ W ∗ → M∗ → 0,

where the map in the middle is simply the transpose of ϕ̃. But this is simply the map
ϕ̃ again, tensored with (the identity map on) OC (−1); in other words, tensoring this
with OC (1) we have the same sequence as before, and thus deduce that

M∗(1) ∼= N and (equivalently) N ∗(1) ∼= M.

Combining this with our earlier relation, we see that

N ⊗ N ∼= N ⊗ M∗(1) ∼= OC (5)

and correspondingly

M∗ ⊗ M∗ ∼= OC (3),

in other words, the line bundle L = M∗ is sesquicanonical, and can be written as

L ∼= KC ⊗ -

for some theta-characteristic - on C . Moreover, tensoring the exact sequence (1)
above with OPV (2) we arrive at

0 → OPV (−2) ⊗ W → OPV (−1) ⊗ W ∗ → N (−2) → 0,

and we may deduce, given that the left-hand term has no cohomology whatsoever,
that

h0(C, -) = h0(C, N (−2)) = 0,

i.e., that - is an even theta-characteristic. We have thus described a map
{

nets of quadrics in
P3

}

α−→
{

smooth nonhyperelliptic curves C
of genus 3 with even theta-characteristics -

}

.

Lemma 6.3. The map α is a bijection.

Proof. We have to exhibit an inverse, that is, associate to a pair (C, -) a net of
quadrics.

We will give a relatively concrete approach. We start with an abstract curve C
and an even theta-characteristic - on C ; by way of notation, we will denote by C
again its canonical image in PV ∼= P2, and by B the image of C in PW ∼= P3 under
the map ϕ = ϕL associated to the line bundle L = KC ⊗ - on C .
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Choose a basis σ1, . . . , σ4 for H 0(C, L). For every pair i, j the product σiσ j

will be a section of

2 · L = 2(KC + -) = 3 · KC = OC (3),

and so will be the restriction to C of a unique cubic polynomial Fi j (X ) on P2

(viewed as a section of OP2 (3)).
Now, consider the (symmetric) 4 × 4 matrix

2 =









F1,1 F1,2 F1,3 F1,4

F2,1 F2,2 F2,3 F2,4

F3,1 F3,2 F3,3 F3,4

F4,1 F4,2 F4,3 F4,4









.

On C , this matrix has rank one—that is, every 2 × 2 minor vanishes on C ; every
3 × 3 minor vanishes to order 2 on C and the determinant of 2 vanishes to order 3.
In fact, since the determinant of 2 is a homogeneous polynomial of degree 12 it
follows from the last that it must be (up to scalars) simply the cube of the quartic
polynomial G(X ) defining C .

Now let 30 be the matrix of cofactors of 2. By what we have just said, every
entry of 3 is divisible by G(X )2; set

3 = 30

G(X )2
·

3 is then a symmetric matrix of linear forms on P2. Now, since

2 · 30 = det(2) · I,

we have

det(2) · det(30) = G(X )3 · det(30) = G(X )12,

that is, the determinant of 30 is G(X )9 and hence

det(3) = G(X ).

We thus arrive at a symmetric 4 × 4 matrix 3 of linear forms on P2—that is,
a net of quadrics in P3—whose discriminant curve is C . To complete the proof of
the Lemma, then it remains to see that the theta characteristic on C associated to
this net is indeed -.

To do this, we go back initially to the matrix 2. The restriction of this matrix
to C we may view as a map of vector bundles

ω : OC (−3)⊕4 → OC
⊕4

having rank 1 everywhere. Moreover, at each point p ∈ C the image of this map
is simply the one-dimensional subspace of C4 corresponding to the point p ∈ B,
thus the image of ϕ is the line bundle L−1.
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In the same way, we may view the matrix 3 of cofactors (after dividing out by
G(X )2) as a vector bundle map

ψ : OC
⊕4 → OC (1)⊕4,

having rank 3 everywhere on C ; and the kernel of this map, at each point p ∈
C , will be simply the subspace of C4 spanned by any of the rows of 2, that is
to say, again the one-dimensional subspace corresponding to the point p on B.
Thus

Ker(ψ) = L−1 = −KC − -,

and so the theta characteristic associated to our net is indeed -.
Now suppose we are given a smooth non-hyperelliptic curve C of genus 3 and an

even theta characteristic - on C . Let V = H 0(C, KC )∗ and W = H 0(C, KC ⊗ -)∗,
and let ϕ : V → Sym2W ∗ be the associated net of quadrics. By way of notation,
we will denote by C again its canonical image in PV ∼= P2, and by B its image in
PW ∼= P3.

The association to the pair (C, -) of the net of quadrics does two things. First
of all, it allows us to realize the curve B ⊂ PW directly: B is simply the locus
of singular points of the singular quadrics Q P in the net; as we will see, this
description will be instrumental in describing the geometry of B. Secondly, we
see that the ambient space PW = P3 of the curve B carries additional structure: in
particular, it contains 8 distinguished points, the base points of the net. !

Lemma 6.4. A net {QP} of quadrics in P3 is typical if and only if the base
locus of the net is zero-dimensional, reduced, and in linear general position; that
is, it consists of 8 distinct points, no four coplanar.

Proof. The proof is based on one simple observation: in the space P9 of all
quadrics in P3, the locus # of singular quadrics is smooth exactly along the open
subset of quadrics of rank 3, that is, cones Q over smooth plane conics; and the
projective tangent space TQ(#) ⊂ P9 to # at such a point Q is simply the hyper-
plane in P9 of quadrics containing the vertex Qsing of Q. It follows that a net of
quadrics is typical if and only if it satisfies the two conditions

i. it contains no quadrics of rank 2 or less; and
ii. no singular point of any quadric of the net is a base point of the net.

Now, suppose first that the tangent space to the intersection & = ∩Q P at a point
r is positive-dimensional; let ν ∈ Tr (P3) be a tangent vector to & at this point. Then
not only do all the quadrics Q p contain the point r , the partial derivatives of their
defining equations in the direction υ all vanish; it follows that at least one of
them, say Q0, is singular at r . But by our initial remark, this means the net is not
typical.
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Similar, suppose that the base locus of the net contains four coplanar points
p1, . . . , p4 ∈ H . If three of them are colinear the base locus of the pencil will be
positive-dimensional, and hence the net cannot be typical by the above; so we may
assume this is not the case. It follows that there are only two conics in H containing
p1, . . . , p4, that is, the restriction map from our net of quadrics in P3 to H must
have a kernel. Thus at least one of the quadrics in our net must contain H , and
hence have rank at most 2; so our net cannot be typical.

The reverse implication likewise follows immediately from our remark. Given
any quadric Q0 in our net, we can write the base locus of the net as a complete
intersection & = Q0 ∩ Q1 ∩ Q2; if & consists of 8 distinct points it follows that Q0

must be smooth at each of them. Similarly, if & does not contain a planar subscheme
of degree 4, no union of two planes can contain it, so no quadric in the net can have
rank less than 4, and our net must be typical. This completes the proof of the
lemma. !

We have thus seen that to a sesquicanonical curve B ⊂ P3 of genus 3 we may
associate a configuration of 8 points in P3, in linear general position, and (by the
initial remark in the proof of the lemma) disjoint from B. What is the relationship
between these 8 points and the curve? It turns out to be a beautiful one. Briefly, it
is this: the 28 lines joining the 8 points pairwise—which a priori need not meet the
curve B ⊂ P3 at all—all turn out to be bisecants to the curve B; and the pairs of
points of incidence of these lines with B are exactly the odd theta-characteristics
of B.

It will take us the next few pages to establish these facts. To start with, let p and
q be two of the 8 points, and consider first the line L = pq containing them. Since
L contains two base points of the net, the net cuts out on L a fixed divisor; thus
the kernel of the restriction map of our net to the line must be two-dimensional; or
in other words, the net contains a pencil of quadrics containing L . Let M ⊂ PV
be the line corresponding to this pencil. Now, what does a pencil of quadrics in P3

containing a line L look like? The answer is that if no element of the pencil has
rank 2 or less it has as base; locus the union of the line L with a twisted cubic curve
T meeting L twice or tangent to it once. To see this, observe first that the base locus
3 of the pencil must be one-dimensional, if no element of the pencil is reducible;
in particular, the pencil will consist of all the quadrics containing 3. Now let T be
the curve residual to L in this intersection. Let Q be a general quadric of the net, so
that L ⊂ Q is a curve of type (1,0) on Q and T is correspondingly a curve of type
(1,2). Either T is irreducible, in which case it is a twisted cubic curve meeting L
in a total of (T · L)Q = 2 points counting multiplicity; or it is reducible, in which
case it contains a planar curve of degree 2 and we see that the pencil contains a
reducible member.

From this picture it is easy to see what the singular elements of the pencil must
be. For one thing, all the lines of a quadric cone pass through its vertex; so if the
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union T ∪ L lies on a quadric cone, of course the vertex r of that cone must lie on
L . At the same time, projection of T from r must be a conic, so r must lie on T as
well; thus r must be one of the points of intersection of T with L . One thing that
follows from this is that the line L must have been a chord to B, meeting B in two
points a and b.

Next, since the pencil has only one or two singular elements rather than the
expected four, the line M ⊂ P2 must be in special position with respect to the
curve C ⊂ P2 of singular elements of the net: specifically, it can meet C in at most
two points. In fact, we can see directly that it must be a bitangent (a hyperflex is
considered a bitangent). We can do this in two ways: by the same sort of argument
as given above, we can argue that since the base locus of the pencil is singular at
the vertex of each singular element of the pencil, the curve C must be tangent to M
everywhere they meet, that is, the intersection M ∩ C is everywhere nonreduced.
Alternatively, we can observe that since we have a marked ruling on each quadric of
the pencil (namely, the one containing L) the discriminant of the pencil can vanish
only to even order.

The conclusion in any case is this: the line L = pq is a chord to B; the line M is
a bitangent line to C ; and the two points of intersection of Mwith C are the points at
which the line L meets B. Moreover, since there are 28 lines joining the eight base
points of the net pairwise, the converse is also true: for any odd theta-characteristic
7 = OC (a + b), the line ab will contain two of the base points of the pencil.

We thus have a correspondence between the odd theta characteristics on C and
the pairs of base points of the net. In particular, labelling the eight base points of
the net p1, . . . , p8 is equivalent to labeling of the 28 odd theta characteristics on C .

Let us take a moment out and consider in some more detail this correspondence
between the odd theta characteristics on C and the pairs of base points of the net,
that is, edges of the complete octagon with vertices p1, . . . , p8. For this purpose,
we will for 1 ≤ i, j ≤ 8 identify the theta characteristic cut by the line pi p j by
Ei, j . Moreover, so as not to confuse the notions of equality in Pic(C) and equality
in the group W in Pic(C)/ZKC associated to the curve C in the preceding section,
we will denote by q0 and qi, j the elements of W corresponding to - and Ei, j .

We may make one preliminary observation: since, as a net of quadrics varies
among all typical nets, the monodromy action on the base points is the full sym-
metric group on 8 letters. It follows that for any subset of these edges, the sum
of the corresponding theta characteristics will be zero or nonzero (if it is an even
sum) and odd or even (it is an odd sum) depending only on the configuration of the
corresponding edges. We will try to say in some cases which it is.

Now, our first observation is simple: for any triple of base points of the net, the
sum of the corresponding divisors Ei, j , Ei,k and E j,k is a hyperplane section of the
curve B, so that in Pic(C) we have

Ei, j + Ei,k + E j,k = KC + -
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and correspondingly in the group W we have

(∗i, j,k) qi, j + qi,k + q j,k = q0.

Next, since the theta characteristics qi, j are all distinct, the pairwise sums qi, j +
qk,% are all nonzero. The distinction is this: if two theta characteristics correspond
to incident lines pi p j and p j pk , then since Ei, j + E j,k + - = KC + Ei,k , we have

q0(qi, j + q j,k) = 1,

i.e., the sum of the theta characteristics corresponding to two incident lines is not a
zero of the quadratic form q0 on V . Conversely, the sum of the theta characteristics
corresponding to two disjoint lines is not a zero of the quadratic form q0 : q0(qi, j +
qk,%) = 1 would mean that the divisor

Ei, j + Ek,% + - − KC = KC + - − Ei, j − Ek,%

was effective; but since the complete linear series |KC + -| is cut on B by planes,
this is not the case. (In fact, by monodromy considerations, the 216 pairwise
sums of theta characteristics corresponding to incident lines must be evenly dis-
tributed among the 28 vectors ν ∈ V such that q0(ν) = 1, that is, each must oc-
cur 6 times; and the 210 pairwise sums of theta characteristics corresponding to
skew lines must include all 35 zeroes of the form q0 other than 0, each occurring
8 times.)

Now, fix a single base point pi , say p8, and for each i, j consider the vector
νi, j = qi,8 + q j,8. We claim that the pairwise sums of the vectors νi, j are all distinct,
that is, the four-fold sum qi,8 + q j,8 + qk,8 + q%,8 '= 0 for any i, j, k, % distinct. To
see this, simply observe that by the equalities (∗i, j,8) and (∗k,%,8) above, νi, j =
qi,8 + q j,8 = q0 + qi, j and likewise νk,% = q0 + qk,%; thus

νi, j + νk,% = qi,8 + q j,8 + qk,8 + q%,8 = qi, j + qk,% '= 0.

p8

pi

pj

pk
p!

It also follows from this that the sums of theta characteristic corresponding to
three concurrent lines are all even; given any distinct i, j, k between 1 and 7, we can
write qi,8 + q j,8 + qk,8 = qi,8 + q j,k + q0, so that the parity of qi,8 + q j,8 + qk,8 is
q0(qi,8 + q j,k) = 0.
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pi
pj

pk

p8

.

In the same way, we can determine the parity of the sum of any three theta
characteristics in terms of the configuration of the corresponding lines: if we have
theta characteristics qi, j and q j,k corresponding to two incident lines and one q%,m

corresponding to a line skew to both, we may add the relation (∗i, j,k) to deduce
that

qi, j + q j,k + q%,m = q j,k + q%,m + q0

is even. Similarly, if we have three theta characteristics qi, j , q j,k , and qk,% corre-
sponding to lines forming a chain, we may add the relations (∗i, j,k) and (∗i,k,%) to
deduce that

qi, j + q j,k + qk,% = qi,%

is odd. The last case, that of three theta characteristics corresponding to mutually
skew lines, yields an even theta characteristic, as will be seen in a moment.

To conclude, we consider further sums of theta characteristics corresponding
to concurrent lines. First, fix one base point p8 as before, and consider the sum
of all seven theta characteristics Ei,8 To describe this, note that projection from
the point p8 maps B ⊂ P3 to a plane curve B̄. Being of degree 6, the curve B̄ has
arithmetic genus ( 5

2 ) = 10; since it has geometric genus 3, we would expect B̄ to
have 10 − 3 = 7 nodes. In fact we can see them all: they are exactly the images of
the lines ppi . By adjunction, the canonical series on B will be cut out by the series
of plane cubics passing through the nodes of B̄; in other words, we have a linear
equivalence

K B = OB(3)(−E1,8 − · · · − E7,8).

But OB(1) = K B ⊗ -, and this amounts to saying that

E1,8 + · · · + E7,8 = 3KC + 3- − KC = 3KC + -;

in other words,

q1,8 + · · · + q7,8 = q0.

Next, for any i1, . . . , i5 ⊂ (1, . . . , 7), consider the corresponding subset
Ei1,8 , . . . , Ei5,8 of five of the seven theta characteristics Ei . Since any five of
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the lines ppi lie on a quadric (the cone over the conic containing the images of the
pi under projection from p), we see that h0(OB(2)(−Ei1 − · · · − Ei5 )) > 0; this
translates into the assertion that

0 ≤ 2(KC + -) − Ei1,8 − · · · − Ei5,8

= Ei1,8 + · · · + Ei5,8 − 2KC
,

that is, the sum Ei18 + · · · + Ei8 − 2KC is an odd theta characteristic /. In fact,
we can say which one it is: if i, j ∈ {1, · · · , 7} are the two indices not included in the
subset {i1, · · · , i5}, we can add the relation (∗i, j,8) to the relation q1,8 + · · · + q7,8 =
q0 above to conclude that

qi1,8 + · · · + qi5,8 = qi, j .

Note that the assertions verified above imply (somewhat redundantly, in fact)
that the theta characteristics corresponding to the seven lines through one of
the base points of the net form an Aronhold set with associated even theta
characteristic -. That is, the seven lines through a base point give an Aronhold
set q1, . . . , q7 and qS = #7

i=1 qi = 3K is the class of -. We may thus refine the
correspondence α above further, to arrive at bijections:







typical nets of quadrics
in P3 with choice of

one base point







α′
←→







smooth nonhyperelliptic
curves C of genus 3
with Aronhold set







and






typical nets of quadrics
in P3 with labeled

base points







α′′
←→







smooth nonhyperelliptic
curves C of genus 3

with full level 2 structure







.

7. Del Pezzo surfaces. Now that we have established this correspondence,
let us take it one step further and consider how a general net of quadrics in P3

may be specified. Of course, a net is specified by its base points, but it is not the
case conversely that any 8 points in P3 form the base of a net of quadrics. What is
true, however, is that seven points in linear general position do impose independent
conditions on quadrics, so that there will be exactly a net of quadrics containing
them. We accordingly make the

Definition. We will say that a collection 2 = {p1, . . . , p7} of seven points in
P3 is typical if they are in linear general position, and the net of quadrics containing
them is typical.

Note that there are two ways that a configuration of seven points in linear
general position may fail to be typical in this sense. First of all, the base locus &

of the net of quadrics containing them may be positive-dimensional. Now, if this
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is the case, the degree of & can be at most 3; so it must contain either a line, a
plane conic, or a twisted cubic curve. In fact, it cannot contain a conic, since the
restriction map from our net to the plane containing the conic would have to have
a kernel, i.e., the net would have to include reducible quadrics and seven points in
linear general position cannot lie on the union of two planes. Similarly, & cannot
contain a line, by the same argument applied to the plane spanned by that line and
any of the points pi not lying on it. Thus, & can be positive-dimensional only if it
contains a twisted cubic curve X , in which case the net is simply the net of quadrics
containing X and & = X ; in fact this will occur if and only if the points p1, . . . , p7

lie on a twisted cubic curve.
If indeed the base locus of the net determined by 2 is zero-dimensional, the

points p1, . . . , p7 may still fail to be typical if that base locus is nonreduced, that
is, contains one of the points pi multiply. By what we have said, this will in turn be
the case only if some member of the net is singular at the point pi ; which is in turn
equivalent to saying that the projection of the remaining 6 points {p j : j '= i} from
pi lie on a conic. Since, if all seven points lie on a twisted cubic, the projection
from any one of the points of the remaining six lie on the conic that is the image
under projection of the twisted cubic, we have the

Lemma 7.1. A collection {p1, . . . , p7} of seven points in P3 in linear general
position is typical if and only if the projection of any six from the remaining point
does not lie on a conic.

Now that we have characterized typical collections of 7 points in P3, we can
extend our correspondence. Tautologously, an unordered collection 2 of 7 points
in P3 determines a typical net, and of course determines also one base point of that
net, namely the one not in 2. Similarly, an ordered collection 3 of 7 points in P3

determines a typical net together with an ordering of the base points of that net. We
thus have two further correspondences, expressed in the

Theorem 7.2. We have bijections







smooth nonhyperelliptic
curves C of genus 3
with Aronhold set







β ′

←→







unordered collections of
7 typical points in P3,

modulo PGL4







and






smooth nonhyperelliptic
curves C of genus 3

with full level 2 structure







β ′′

←→







ordered collections of 7
typical points in P3,

modulo PGL4







.

Moreover, in terms of the structure of coarse moduli space on all four sets,
these two maps are isomorphisms of varieties.
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Note in particular that the moduli space of ordered collections of 7 typical points
in P3 is rational: there is a unique element of PGL4 sending the first 5 of the seven
points to the standard points [1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1], and [1,1,1,1]
so that this moduli space is in fact isomorphic to an open subset of P3 × P3. We
thus have the

Corollary 7.3. The moduli space M3[2] of curves of genus 3 with full level
2 structure is rational. In particular, the locus of curves C of genus 3 defined over
Q, all of whose line bundles of order 2 and all of whose theta characteristics are
defined over Q, is Zariski dense in the moduli space of curves of genus 3.

For the next step, suppose we are given a typical collection 3 = {p1, . . . , p7}
of 7 points in P3, either ordered or not. We can associate to this the base locus &

of the net of quadrics they determine, which is a collection of 8 points p1, . . . , p8,
any seven of which are typical. Now, consider in turn the projection of the original
collection 2 from the eight point p8 to the plane. This will be a configuration 3 of
7 points in the plane, no three of which will be collinear and no six of which will
lie on a conic, since any subset of seven of the eight points p1, . . . , p8 is typical.
We thus make yet another

Definition. We will say that a collection 3 = {q1, . . . , q7} ⊂ P2 of seven points
in the plane is typical if no three are collinear and no six lie on a conic and we observe
that we have a natural map γ from the space C3,7 of typical 7-tuples of points in
P3 modulo PGL4 to the space C2,7 of typical 7-tuples of points in P2 modulo
PGL3, defined simply by sending a typical 7-tuple p1, . . . , p7 to the projection of
p1, . . . , p7 from the eighth point of intersection of the quadrics containing them.

Now, it may seem at first glance that, in projecting seven points p1, . . . , p7 ∈ P3

to P2 from the eighth base point of the net they determine we are necessarily losing
information. Remarkably (to us, anyway) this is not the case; in fact, we claim that
γ is an isomorphism.

To prove this, we will exhibit an explicit inverse map γ ′ : C2,7 → C3,7. This goes
as follows: suppose we are given a typical configuration 3 = {q1, . . . , q7} ⊂ P2

of seven points in the plane. Such a collection of points imposes independent
conditions on cubic curves in the plane, so that it lies exactly on a net of cubics; and
moreover this net has no other base points beyond the qi . Now, choose a general
pencil D = {Cλ} of cubics in this net; it will have nine base points, consisting
of q1, . . . , q7 and two further points r and s. Let ϕ : P2 → P3 be the rational
map (regular on P2 − {r, s}) given by the web of conics through r and s, and let
pi = ϕ(qi ) ∈ P3, i = 1, . . . , 7. We will then set

γ ′(3) = & = {p1, . . . , p7} ⊂ P3.

We have then the
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Lemma 7.4. γ ′ is a well-defined map from C2,7 to C3,7 (that is, up to PGL4 the
configuration {p1, . . . , p7} ⊂ P3 does not depend on the choice of pencil), and γ

and γ ′ are inverse isomorphisms.

Proof. It will turn out to be simpler to establish a more refined bijection. We
have seen in the definition of γ ′ that the data of a typical configuration 3 ⊂ P2 of
seven points in the plane, together with a choice of D of pencil of cubics in the
net |I3(3)| containing 3, determines a configuration & ⊂ P3 of seven points in
space together with a quadric in the net |I&(2)| containing &, namely, the image
Q = ϕ(P2). !

s r

qi

pi

p

Q

Note also that ϕ blows up the points r and s and collapses the line L = rs joining
them to a point, which we will call p8; the rulings of the quadric Q correspond to
the pencils of lines through r and s. At the same time, ϕ carries cubics through r
and s—and in particular the cubics in our pencil—into quartic curves in P3; more
specifically, since Cλ meets the general line through r or s in two other points,
this will be a curve of type (2,2) on Q. Also since every cubic Cλ in the pencil
meets L at one point beyond r and s, their images Eλ ⊂ Q will all pass through
the point p8. The curves Eλ thus form a pencil on Q with base points p1, . . . , p8;
and this pencil is the restriction to Q of a net of quadrics in P3 with these base
points. In particular, p1, . . . , p8 form the base of a net of quadrics in P3, so that
γ (γ ′(3)) = πp8 (&) = 3.

Conversely, suppose we are given a typical configuration & = {p1, . . . , p7} ⊂
P3 together with a general quadric Q in the net |I3(3)|; let p8 ∈ Q be the eighth
base point of the net and M and N ⊂ Q the two lines of Q passing through the
point p8. Now, the net of quadrics through & cuts on Q a pencil ε = {Eλ} of curves
of type (2,2) on Q (in particular, quartic curves of arithmetic genus 1), whose base
locus consists of p1, . . . , p8. When we project from p8, the curves Eλ are mapped
isomorphically into a pencil D = {Cλ} of plane cubic curves, whose base points
will include the images qi = π (pi ), i = 1, . . . , 7. The other two base points of D
will be the images r and s ∈ P2 of the two lines L and M : since each curve Eλ
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meets M and N in one point other than p8, their images Cλ will all contain the
points r and s.

In sum, we see that we have a bijection














(&, Q) : & is a typical
configuration of 7

points in P3, and Q ⊃ &

a quadric, modulo PGL4















γ̃←→















3,D : 3 is a typical
configuration of 7

points in P2;D ⊂ |I3(3)|
a pencil, modulo PGL3















that induces the bijections






ordered collections of 7
typical points in P3,

modulo PGL4







γ−→
←−

γ ′







ordered collections of
7 typical points in P2,

modulo PGL3







.

We should mention in passing that γ and γ ′ represent a very special case of the
Gale transform; see for example [E-P].

Now that we have arrived at configuration of seven points in the plane, what
can we do with those? One answer from classical algebraic geometry is immediate:
we can blow them up to obtain a quadric del Pezzo surface. This is what we will do
next, after a short interlude to discuss del Pezzo surfaces in general.

For our present purposes, it will make sense to define a del Pezzo surface to be
simply one whose anticanonical bundle is ample. It is then a classical result that any
such surface S is either P1 × P1 or the blow-up of P2 at m ≤ 8 points pi , no three
collinear and no six on a conic. In the latter case, we will denote by % the pullback
to S, via the blow-up map, of the class of a line in P2. Note that this is not intrinsic
to the abstract surface S, but will (as we will see) depend on the representation
π : S → P2 of S as a blow-up of P2. We will denote by Ei the exceptional divisor
lying over the point pi , and its class by ei ; so that, for example, the anticanonical
class is given by

H = −KS ∼ 3% −
∑

ei .

Given that the self-intersection of % on S is 1, as it is on P2, the self-intersection
of ei is −1, and (% · ei ) = 0 for each i , we see that the self-intersection of −KS is
9 − m; we will call this quantity the degree of S and denote it d. In that vein, we
will call a line of S any curve with intersection number 1 with H . We can easily
list the lines on S: they are

(1) the exceptional divisor Ei ;

(2) the proper transforms of the lines joining two of the points pi ;

(3) the proper transforms of the conics containing five of the points pi ;

(4) the proper transforms of the cubics double at one of the points pi and
containing six others;
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(5) the proper transforms of the quartics double at three of the points pi and
containing five others; and

(6) the proper transforms of the quintics double at six of the points pi and
containing two others.

Note that the last two are possible only when m = 8, the last three only when
m ≥ 7, and so on.

It is not hard to see directly that the points pi impose independent conditions
on cubic curves in the plane, so that the dimension of the anticanonical series will
be exactly 9 − m = d. Now, in case d ≥ 3, this series will in fact be very ample,
giving an embedding of S in Pd (the images of these maps are what is often referred
to as del Pezzo surfaces, i.e., the definition of del Pezzo may in some sources require
the anticanonical series to be very ample rather than merely ample).

The principal case of interest to us at present, however, is the case of m = 7,
that is, del Pezzos of degree 2. In this case, the anticanonical series gives a regular
map ϕ : S → P2, expressing S as a double cover of the plane. It is not hard to see
what the branch divisor C ⊂ P2 must be, in any of several ways. For one thing, the
inverse image E of a general line L ⊂ P2 will be a smooth curve of genus

(−KS · (−KS + KS))
2

+ 1 = 1;

inasmuch as the map ϕ expresses E as a double cover of a line branched at its points
of intersection with C , we conclude that C must be a quartic curve. C moreover must
be smooth since S is. Alternatively, we can apply the Riemann-Hurwitz formula:
if R ⊂ S is the ramification divisor, the canonical line bundle of S is given by

KS = ϕ∗(KP2 )(R)

∼ 3 · KS + R,

we conclude that R ∼ −2KS , and in particular that the degree of the image C =
ϕ(R) is

(R · −KS) = 2(KS · KS) = 4.

Thus, a del Pezzo of degree 2 is a double cover of P2 branched along a smooth
quartic. Conversely, if ϕ : S → P2 is a double cover branched along a quartic, the
canonical bundle of S is given by Riemann-Hurwitz as

KS = ϕ∗(OP2 (−1));

and since the map ϕ is finite we conclude that −KS is indeed ample, so S is a del
Pezzo surface.

Note that the expression ϕ : S → P2 of S as a double cover defines a regular
involution ψ on S exchanging the sheets of this map; ψ may also be viewed
as a birational involution of the plane P2 of which S is the blow-up. (Here and
elsewhere there is some potential confusion between the two copies of P2 floating
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around, inasmuch as ϕ defines a rational map P2 → P2 of degree 2.) This involution
is known as the Geyser involution, and has the following alternative description.
Given a general point q ∈ P2, the cubic curves passing through the eight points
p1, . . . , p7 and q will form a pencil, and this pencil will have one other base point
r ∈ P2; the involution is the one sending q to r .

Next, we would like to discuss the lines on S. We already know them in terms
of the description of S as a blow-up of P2; they are

(1) the 7 exceptional divisors E1;

(2) the 21 proper transforms of the lines joining two of the points pi ;

(3) the 21 proper transforms of the conics containing five of the points pi ;

(4) the 7 proper transforms of the cubics double at one of the points pi and
containing six others.

We would now like to describe their images under the double cover ϕ. This is
in fact easy: since by definition a line of S is a curve on S mapped by ϕ one-to-one
onto a line in P2, the inverse images in S of the image in P2 of any line on S must
consist of exactly two lines on S. In particular, the 56 lines of S map onto exactly
28 lines in P2. Moreover, inasmuch as the inverse images of these 28 lines in P2

are reducible, they cannot have any points of odd intersection multiplicity with the
branch divisor C of ϕ; thus the 28 images of the lines of S must be exactly the 28
bitangent lines to the curve C .

Note finally that labeling all 56 lines of S (equivalently, choosing a set of
generators for Pic(S)) amounts to labeling the 28 bitangents to C , so that a quadric
del Pezzo surface together with a set of generators for its Picard group gives us
the data of curve of genus 3 with full level two structure. If we do not identify
the elements of Pic(S), but only the expression 9 : S → P2 of S as a blow-up of
P2 at 7 points (that is, equivalently, specify only the unordered set {E1, . . . , E7}
of exceptional divisors), we arrive at a curve C of genus 3, together with the
specification of an Aronhold set. And finally, if we specify only the abstract surface
S, and not its representation as a blow-up of the plane, we find the curve C , but no
further level 2 structure on it.

We have now come, as promised, all the way around. To recap the journey:
We start with a smooth, nonhyperelliptic curve of genus 3, with full level 2

structure. This structure, as we have seen in preceding sections, is equivalent
to specifying an ordered Aronhold set -1, . . . , -7 of odd theta characteristics
on C.

We may then associate to this data a typical net ϕ of quadrics in P3 with base
points labeled p1, . . . , p8. The discriminant curve of this net—that is, the set of
singular quadrics in the net—will be C ⊂ P2; and the locus in P3 of vertices of
singular quadrics in the net will be the image B ⊂ P3 of the curve C , embedded
by the linear series KC + - where - is the even theta characteristic associated to
our Aronhold set (in other words, - = #-i , in the group W ). The lines joining the



P1: IOI

PB440-11 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 8:45

geometric constructions related to theta characteristics 309

points pi pairwise will cut on B the 28 odd theta characteristics, with our Aronhold
set -1, . . . , -7 cut by the seven lines pi p8 through the point p8.

Now, a typical net ϕ of quadrics is determined by any seven of its base points;
thus we may associate to ϕ simply the typical configuration p1, . . . , p7 of seven
ordered points in P3.

Next, we may project the configuration p1, . . . , p7 from p8 to obtain a typical
configuration of seven points q1, . . . , q7 in the plane. Again, it is far from clear at
first that this is equivalent data, but it is, as may be seen either from the identification
of {q1, . . . , q7} ⊂ P2 with the Gale transform of {p1, . . . , p7} ⊂ P3 or the explicit
(if complicated) inverse given by the cycle of associations here.

Now, a typical configuration & = {q1, . . . , q7} ⊂ P2 of seven ordered points in
the plane determines a del Pezzo surface S, together with a standard basis for the
Picard group of S, namely, we take S = Bl&(P2) to be the blow-up of the plane at
q1, . . . , q7 and the generators of Pic(S) the pullback of the class of a line in P2 and
classes of the seven exceptional divisors Ei .

Finally, a del Pezzo surface determines a smooth plane quartic, namely the
branch divisor C ⊂ P2 of the anticanonical map ϕ−K : S → P2. Moreover, the
seven generators in a normalized set correspond to seven exceptional divisors,
whose images in P2 will be bitangent lines to C forming an Aronhold set. Thus we
arrive once more at a smooth nonhyperelliptic curve C with an ordered Aronhold
set, that is to say, full level 2 structure. We may represent the various stages in this
cycle in a diagram:

{

typical nets of quadrics
in P3 with marked

base points

}

{

ordered collections of
7 typical points in P3,

modulo PGL4

}

{

smooth nonhyperelliptic
curves C of genus 3

with full level 2 structure

}

ordered collections of
7 typical points in P2,

modulo PGL3

}

{

quadric del Pezzo
surfaces S with

marked Picard group

}

{

.
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Alternatively, we may go through an analogous cycle of objects and associations
starting with the specification on C only of an unordered Aronhold set. In this case
we get a typical net of quadrics in P3 with one distinguished base point, but no
ordering of the remaining seven; this gives us in turn an unordered collection of
7 typical points in P3, then an unordered collection of 7 typical points in P2, then
a quadric del Pezzo surface with a choice of regular birational map π : S → P2

(equivalently, a divisor class L with L2 = 1 and L · KS = −3). Finally, the branch
divisor of the anticanonical map of S is a plane quartic curve, on which the seven
exceptional divisors of the map π cut an unordered Aronhold set of odd theta
characteristics. In other words, we have the analogous diagram

{

typical nets of quadrics
in P3 with one

marked base point

}

{

unordered collections of
7 typical points in P3 ,

modulo PGL4

}

{

smooth nonhyperelliptic
curves C of genus 3
with Aronhold set

}

{

unordered collections of
7 typical points in P2,

modulo PGL3

}

{

quadric del Pezzo surfaces
S with regular birational

map π : S → P2

}

.

Lastly, if we specify only the curve C and an even theta characteristic - on
C , we get a typical net of quadrics in P3, but no distinguished base point; and we
cannot complete the cycle in any way.

There are a number of questions, we can ask about this correspondence. For
one, all the various moduli spaces referred to in the diagrams above have known
compactifications—some, several. To what extent do these associations extend to
regular isomorphisms between these moduli spaces? To mention one particularly
interesting case, we could enlarge the set of smooth nonhyperelliptic curves of
genus 3 to all smooth curves of genus three, and try to extend the definition of the
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maps α, β and γ to this locus. What happens to the net of quadrics when the curve
becomes hyperelliptic? What happens to its eight base points?

Similarly, if we consider some singular curves of genus 3—for example, to take
the simplest cases, nodal plane quartics—what happens to the nets, to their base
points, and to the del Pezzo surfaces?

Finally, it is known that (some) plane curves with theta characteristics, as well
a nets of quadrics are related to the theory of vector bundles on P2. In the particular
case relevant to the paper one takes (stable) rank 2 bundles with c1 = 0 and c2 = 4.

Then the quartic curves which arise in this way can be characterized as Luroth
quartics; see again [B].

E-mail: gross@math.harvard.edu

E-mail: harris@math.harvard.edu
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CHAPTER 12

CAN p-ADIC INTEGRALS BE COMPUTED?

By Thomas C. Hales

Abstract. This article gives an introduction to arithmetic motivic integration in the context of p-adic
integrals that arise in representation theory. A special case of the fundamental lemma is interpreted as
an identity of Chow motives.

1. Introduction. This article raises a question in its title, and the short answer
to the question is that it still has not been answered. However, tools have now been
developed to answer questions such as this, and this article gives an introduction to
some of these tools.

This article will concentrate on a particular family of integrals that arise in
connection with the representation theory of reductive groups. These are orbital
integrals. The clear expectation is that these integrals can be computed, for reasons
that will be explained below.

This article will also touch on the fundamental lemma, which is a conjectural
identity that holds between certain orbital integrals. This article will include a
statement of the fundamental lemma in a special case.

The first sections may seem misplaced because they describe some methods
that are not in current use in representation theory, but by the end of the article,
their relevance will be established.

The central question in my research for some time is the question of how
to use a computer to prove theorems, particularly theorems in geometry. I hope
to show that there is some interesting geometry that arises in connection with
p-adic integration, and that computers can enhance our understanding of that
geometry.

In Sections 2, 4, and 5, three major threads will be introduced: Tarski’s decision
procedure for the real numbers, p-adic integration, and motives. The other sections
will tie these threads together in the context of the fundamental lemma and p-adic
orbital integrals.
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preparing this manuscript.
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2. Tarski’s decision procedure. Around 1930, Tarski proved a decision pro-
cedure for sentences in the elementary theory of real closed fields [2, 3, 29].

Tarski’s result can be formulated precisely in terms of a first-order language.
The language is built from the fifteen symbols.

0 1 + ∗
( ) = <

∀ ∃ x ′

∧ ∨ ¬

We will not go into the details of the syntax of the language [12, 14]. Each x is
followed by zero or more primes, and primes only occur after x or another prime.
We abbreviate x followed by n primes to xn . The language contains variables xn ,
and the constants 0, 1. The variables and constants can be added and multiplied
(symbols + and ∗). Polynomial expressions can be compared with the predicates
= and <. The quantifiers (∀ and ∃) should be understood as ranging over the real
numbers (or a complete ordered field). For example, the assertion that a quadratic
polynomial has a root can be written in this formal language as

¬(x ′ = 0) ∧ ∃x(x ′ ∗ x ∗ x + x ′′ ∗ x + x ′′′ = 0)(1)

The formal language quickly becomes cumbersome, and we allow ourselves certain
informal shorthand conventions, for example, writing Formula 1 as

a '= 0 ∧ ∃x(ax2 + bx + c = 0),

whenever a translation back into a formal statement of the language is clear.
Many things are noticeably absent from this little first-order language. There is

no way to express particular real numbers in this language such as π = 3.14159 . . . ,
e = 2.71828 . . . , ln (2). There is no notion of set. There are no quantifiers that
range over subsets of the real numbers (for example, there are no quantifiers over
the integers). There are no transcendental functions such as the cosine function.
There is no calculus or integration (except for formal derivatives of polynomials
and the like).

Tarski’s result can be expressed as an algorithm for the elimination of quantifiers
in this first-order language. It takes a formula in this language and manipulates it by
an entirely mechanical procedure into an equivalent form that contains no quantifiers
(∃ ∀). The formula that this procedure gives as output is equivalent to the input in
the sense that the same n-tuples of real numbers satisfy the two formulas.

For example, if we apply Tarski’s procedure to Formula 1, it returns something
equivalent to the quantifier-free formula

¬(x ′ = 0)
∧(x ′′ ∗ x ′′ − (1 + 1 + 1 + 1) ∗ x ′ ∗ x ′′ > 0
∨x ′′ ∗ x ′′ − (1 + 1 + 1 + 1) ∗ x ′ ∗ x ′ = 0))
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or less formally,

a '= 0 ∧ (b2 − 4ac ≥ 0).

In other words, Tarski’s procedure determines that a quadratic equation has a real
root if and only if the discriminant is non-negative. In a similar way, the truth value
of all sentences in this language can be decided: the truth value of an equivalent
sentence without quantifiers is trivially determined.

Here is a more difficult example, drawn from [3, page 7]. When is a quartic
polynomial semi-definite? Tarski’s algorithm takes the (formal translation of)

∀x(x4 + px2 + qx + r ≥ 0)

and returns a formula equivalent to

(256r3 − 128p2r2 + 144pq2r
+ 16p4r − 27q4 − 4p3q2 ≥ 0

∧
8pr − 9q2 − 2p3 ≤ 0)

∨
(27q2 + 8p3 ≥ 0 ∧ 8pr − 9q2 − 2p3 ≥ 0)

∧
r ≥ 0.

Tarski’s original algorithm is very slow, but in 1975 George Collins found a
vastly improved method of quantifier elimination. Further improvements are men-
tioned in the survey article [3].

The methods have improved to the point that the algorithms are of practical
importance. For instance, in robotics, quantifier elimination can be used to deter-
mine whether two moving objects will collide [3]. Mathematica 4.0 implements
an experimental package in quantifier elimination [28]. There are highly nontrivial
problems in discrete geometry that can be expressed in this little first-order lan-
guage (for example, the dodecahedral conjecture [21]). The strategy is to squeeze
nontrivial assertions into this little language, and then let the general algorithms
prove the results.

3. Pas’s language. This article is concerned, however, with p-adic quanti-
fier elimination and not with Tarski’s quantifier elimination over the reals. The first
early results on quantifier elimination can be found in articles by Ax-Kochen and
Ershov ([1] and [13]). The approach that we follow grows out of the article Decision
procedures for real and p-adic fields by Paul J. Cohen in 1969 (see [4]). Cohen’s
work on p-adic quantifier elimination was refined and extended by various peo-
ple (Denef [6], Macintyre [27], and Pas [30]). We will describe p-adic quantifier
elimination as it is developed by Pas.

Pas defines a first-order language for complete Henselian rings that is analogous
to Tarski’s first-order language for the theory of complete ordered fields. It contains
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the following tokens

0 1 + ∗
( ) = <

∀ ∃ x m ξ ′

∧ ∨ ¬
ord ac .

The language consists of syntactically well-formed formulas in this language. There
are three sorts of variables x , x ′, x ′′ (which we abbreviate to x0, x1, etc.), m, m ′, m ′′

(which we abbreviate to mi ) and ξ , ξ ′, ξ ′′, etc. (which we abbreviate to ξi ).
In the interpretations of this language, there are three algebraic structures: a

valued field (such as a p-adic field), a value group (the target of the valuation,
which will typically be the additive group of the integers), and a residue field. The
variables xi are of the valued-field sort, the variables mi are of the additive group
sort, and the variables ξi are of the residue field sort. Correspondingly, there are three
sorts of quantification depending on the sort of variable the quantified is attached
to. The constant 0 comes in three sorts: (0x , 0m , and 0ξ ). These are interpreted
as the zero element in the valued field, the additive value group, and the residue
field, respectively. The addition symbol + is overloaded in that it is interpreted as
addition in the valued field, addition in the value group, or addition in the residue
field, according to its arguments. (The syntax requires the arguments to + to be of
the same sort.)

The function name ord is interpreted as the valuation on the field. If the model
is a p-adic field, ord is interpreted as the normalized valuation on the field. The
function name ac is interpreted as an angular component function. On the units in
the ring of integers, the interpretation is the mapping from the units to its nonzero
residue in the residue field. On general nonzero elements, it is interpreted as the
function that scales its argument by a power of a uniformizer to make it a unit and
then takes its image in the residue field. (Although a uniformizer is used to construct
the interpretation of the function ac, the uniformizer itself does not appear in Pas’s
language.) Expressions involving “<” are restricted to the additive group sort.

One of the design requirements of this language is that it be small enough for
there to be a quantifier elimination procedure. By results of Gödel, this would not
be possible if the language were to encompass the full arithmetic theory of the
integers [16]. For this reason, the language is restricted to the additive theory of the
value group. That is, integer products such as m ∗ m ′ are prohibited in the language.
Integer expressions may be compared through equality and inequality (= and <).
According to a result proved by Presburger in 1929, a decision procedure exists for
the additive theory of the integers ([31]).

Just as in the case of the first-order theory of the reals, much is missing from
the language. For instance, there is no uniformizer in the language, so we cannot
express p-adic expansions of numbers in the valued field. As in the case of the
reals, there is no notation that would allow us to express sets in this language. It is
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impossible to express field extensions directly (only indirectly through polynomials
defining the roots, for instance). Most of Galois theory and local class field theory
will be inexpressible.

However, this language is small enough for there to be a procedure of quantifier
elimination. In 1989, Pas, building on earlier results, proved that the quantifiers of
the valued field sort can be eliminated, in the sense that an algorithm exists to
produce an equivalent formula without quantifiers of the valued-field sort. Pas’s
language gives quantifier elimination of quantifiers of the valued field sort. To
eliminate all quantifiers, Pas’s result must be combined with Presburger’s quantifier
elimination on the additive theory of the integers, and with the theory of Galois
stratification for quantifiers of the residue field sort. (Equivalence here means in
the sense that for any complete henselian ring with a residue field of characteristic
zero, the two formulas have the same set of solutions. Although Pas’s procedure
requires the residue field to have characteristic zero, Pas, Denef, and Loeser are able
to apply these results to p-adic fields with residue fields of positive characteristic.
This involves the use of ultrafilters and ultraproducts. Finitely many primes are
discarded in the process.)

One of the main applications of Pas’s language and its quantifier elimination
procedure has been to the theory of p-adic integration. For example, Pas’s original
article contains results about the Igusa local zeta function, which is a p-adic integral
([30]).

4. p-adic integration. Let F be a p-adic field of characteristic zero. Let g be
a reductive Lie algebra defined over F , X a regular semisimple element of g(F). Let
f be a function of compact support on g(F). We consider the stable orbit Ost (X )
of X (meaning the F-points of the orbit of X over an algebraic closure). We pick an
invariant measure µ on the orbit. The integral of f over Ost (X ) is called an orbital
integral. A fundamental problem is to compute

∫

Ost (X )
f dµ.

These integrals arise repeatedly in the representation theory of p-adic groups,
in places such as the trace formula. The conjectural fundamental lemma (it will
be discussed in Section 7.4) is an identity of orbital integrals. The fact that the
fundamental lemma has resisted all efforts to prove it is closely related to the
difficulty of computing orbital integrals.

4.1. An example in so(5). An example will illustrate the nature of these
integrals. Let Fq be the residue field. Assume that its characteristic is not 2. Let g =
so(5). Assume that X has that property that the valuation of α(X ) is independent
of the root α. Assume that

|α(X )| = q−r/2,
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for an odd integer r . Viewing X as a linear transformation on a 5-dimensional vector
space, the roots of the characteristic polynomial of X are

0, ±t1, ±t2.

Let RX be the quadratic polynomial in k[λ] with roots the reduction mod a uni-
formizer %F of

t2
i /% r

F .

We have an elliptic curve EX over the finite field k given by

y2 = RX (λ2).

There are test functions f so that (for appropriate normalizations of measures)
we have

∫

Ost (X )
f dµ = A(q) + B(q)|EX (k)|,(2)

for some rational functions of q: A and B '= 0. (See [19].) The rational functions A
and B depend on f . This special case gives an indication of what orbital integrals
can give.

What does it mean to calculate the orbital integral? The naive and completely
unsatisfactory answer is that a calculation of an orbital integral is to take a particular
p-adic field, a particular element X and to program a computer to find the complex
number expressed on the right-hand side of Equation 2. A satisfactory answer to
what it should mean to calculate the orbital integral is to find the rational functions
A and B, and to give the elliptic curve EX . In other words, what is really needed is
a symbolic computation that gets at the underlying variety (in this case an elliptic
curve). This is the sense in which I intend the question asked in the title “Can p-adic
integrals be computed?”

If we examine this example more closely, we might ask what features of the
problem made this calculation possible? The first obvious feature is that as we vary
the parameter X , the elliptic curves do not change erratically; rather, they vary
within a nice family of elliptic curves over the finite field.

The second noteworthy feature is that as we move from local field to local field,
we obtain (in some sense) the “same family” of elliptic curves in each case. It is
this consistency as we go from one local field to another that makes it reasonable
to hope that a computer algorithm might be found to compute the orbital integrals
for all local fields. We can view this as a single elliptic curve E that is defined over
Q(a, b):

y2 = x4 + ax2 + b,

or as a family parameterized by a and b. All elliptic curves EX for all p-adic orbital
integrals for all local fields come as various specializations of this family.
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To carry this example farther, we might look at some of the identities that
are predicted by Langlands’s principle of functoriality. One such identity (that is
needed for applications of the trace formula) predicts an equality of orbital integrals
between so(5) and sp(4). It has the form

∫

Ost (X ),so(5)
f dµ =

∫

Ost (Y ),sp(4)
f ′ dµ′.

The data for sp(4) is similar to that data for so(5). The elements X and Y are related
through their characteristic polynomials PX (resp. PY ):

PX (λ) = λPY (λ).

(Note that 0 is always a root of PX .) (The function f ′ has to be related to f in a
suitable way.) When these integrals are computed we find elliptic curves for sp(4)
as well, and the identity of orbital integrals holds if and only if we have an identity
of the following form

A(q) + B(q)|EX (k)| = A(q) + B(q)|E ′
Y (k)|.

It turns out that the elliptic curves EX and E ′
Y are not isomorphic (they have different

j-invariants), but they can be proved to have the same number of points by producing
an isogeny between EX and E ′

Y .
This isogeny can be expressed as a single isogeny between two elliptic curves

E and E ′ over Q(a, b). The conclusion of this discussion is that this particular
identity of orbital integrals holds for all p-adic fields because of an identity of two
Chow motives over Q(a, b): that is, E is isogenous to E ′.

What this suggests is a general hope that there are global objects attached to
p-adic integrals. The global object should be something like a Chow motive. Iden-
tities of p-adic integrals should be consequences of identities of Chow motives.

5. Motives. We are finally in the position to give a precise definition of what
it means to compute a p-adic integral. We state it as a thesis:

Thesis 5.1. The computation of a p-adic integral is an effective algorithm to
obtain the underlying virtual Chow motive.

This thesis is incoherent unless virtual Chow motives are associated with gen-
eral families of p-adic integrals. That this should be so was articulated by Loeser
in Strasbourg in 1999 [25].

Principle 5.2. (Denef-Loeser Principle) All “natural” p-adic integrals are
motivic.

Without committing Denef and Loeser to any particular definition of “natural,”
as representation theorists, we like to think that the important integrals that arise
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in representation theory are natural. We are thus led to an investigation of motivic
underpinnings of p-adic integrals.

5.1. An example of motivic integration. Motivic integration was introduced
by Kontsevich in a lecture in Orsay in 1995 [22]. The properties of motivic integra-
tion have been developed in a series of fundamental articles by Denef and Loeser
[7], [8], [9], [11]. In fact, my entire article is nothing but an application of the
beautiful circle of ideas that they develop.

To describe the theory in a few words, I will describe motivic integration by
analogy with p-adic integration. Consider the following elementary p-adic integral:

∫

Fq [[t]]
|x |m dx =

∞
∑

&=0

|%&|m+1
∫

|u|=1

du
|u|

= (1 + q−(m+1) + q−2(m+1) · · · )(1 − q−1).

The answer is independent of the field, so we are tempted to write for any field (say
a field of characteristic zero):

∫

k[[t]]
|x |m dx =

∞
∑

&=0

|%&|m+1
∫

|u|=1

du
u

= (1 + q−(m+1) + q−2(m+1) · · · )(1 − q−1).

The only difficulty is in the interpretation of q. Kontsevich supplies the answer with
motivic integration: it is a symbol. More specifically, in the case of finite fields it
is a symbol attached to the affine line A1, and for general fields we can continue to
view it as a symbol attached to the affine line. To mark the change of context from
p-adic fields to more general fields, we replace the symbol q with L (to suggest the
Lefschetz motive).

5.2. Rings of virtual motives. Section 5.1 describes a simple example of
motivic integration. You integrate much in the same way as with p-adic integration,
but whenever in p-adic integration it becomes necessary to count points on a variety,
with motivic integration you introduce a new symbol for that variety and move on.
Although a single symbol (q or L) suffices for the one example that was shown,
motivic integration in general will require a host of new symbols. Integration should
be linear, so relations must be introduced among the symbols to make motivic
integration linear. In that example, q (or L) occurs as a denominator, and this will
require us to invert L in the ring we construct. In that example, the answer is a limit
(that is, an infinite sum), and this will require us to complete the ring we construct.

6. Rings of motives. Let k be a field of characteristic zero. Let Schk be the
category of varieties over k. Let K0(Schk) be the Grothendieck ring of varieties
over k. It is the commutative ring generated by symbols

[S]
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for each variety S over k. The relations are

[S × S′] = [S][S′]

and if S′ is closed in S, then

[S] = [S \ S′] + [S′].

We let L = [A1]. Let K0(Schk)loc be the ring obtained by inverting L.
We let Motk,Q̄ be the category of Chow motives over k with coefficients in Q̄,

an algebraic closure of Q. (This category is described in detail in [32].) The objects
in this category are triples

(S, p, n)

where S is a variety over k, p is a projection operator over Q̄, and n is an integer.
This category is an additive category, but it is not abelian [32].

Let K0(Motk,Q̄) be the Grothendieck group of the additive category Motk,Q̄.
The set of generators of this group is the set of objects in Motk,Q̄. By a fundamental
result of Gillet and Soulet [15] and Guillén and Navarro Aznar [17], there is a
homomorphism of rings

K0(Schk) → K0(Motk,Q̄)

that takes the symbol [S] of a smooth projective variety S to the generator associated
with (S, id, 0), where id is the identity projection operator. The image of L under
this homomorphism is invertible. Thus, the homomorphism extends to K0(Schk)loc.
Let K v

0 (Motk,Q̄)loc be the image of this homomorphism.
There is a filtration Fm K v

0 (Motk,Q̄)loc on this group given by S/Li ∈ Fm iff
dim S − i ≤ −m. We let K̂ v

0 (Motk,Q̄)loc be the completion with respect to this
filtration. This is the ring in which motivic integrals take their values (or sometimes
its tensor product with Q).

6.1. Arithmetic motivic integration. In 1999, Denef and Loeser developed
an arithmetic theory of motivic integration in [10]. (This theory is distinct from a
geometric theory of motivic integration that was developed earlier.) In their article,
Denef and Loeser describe the three threads introduced in Sections 2, 4, and 5, and
show how they relate to one another. In their article, they make two fundamental
discoveries:

(1) Motives can be attached to formulas in Pas’s language.

(2) The trace of Frobenius on the motive equals the p-adic integral over the
p-adic set defined by the formula.

The process is represented schematically in Figure 1. A formula in Pas’s lan-
guage can be interpreted two ways, leading to two different integrals. First the
formula can be interpreted over a p-adic field. The p-adic set of points that satisfy
the formula has a volume. The formula can also be interpreted over a henselian field
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p-adic model
arc space
model

trace of
Frobenius

volume

Denef-Loeser comparison
theorem

formula

p-adic setdefinable set
in an arc space

virtual motive

Figure 12.1 The Denef-Loeser comparison theorem

(such as C((t))). The set of points that satisfy the formula has a motivic volume (an
element of the ring K̂ v

0 (Motk,Q̄)loc).
The comparison theorem of Denef and Loeser asserts that the trace of Frobenius

against this virtual motive is equal to the p-adic volume of the p-adic set. In
particular, if a p-adic set has the special form given by the set of points satisfying a
formula in Pas’s language, then a motive can be attached to it. It is this comparison
theorem that will permit us to show that interesting p-adic integrals have a motivic
interpretation.

7. The fundamental lemma. All the sections until now have been an ex-
tended introduction to provide context for the results I am about to describe. Roughly
speaking, I have found that orbital integrals can be placed into the framework of
Denef and Loeser.

7.1. Strips. Let F be a p-adic field of characteristic 0. Let k be the residue
field of F . Fix parameters n, k, and r satisfying the following conditions:

• n is a positive integer.

• k is an integer k ≤ n.

• r is a rational number. Write it as r = &/h, with & and h relatively prime.
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Let g = so(2n + 1). There are endoscopic Lie algebras

h = so(2k + 1) × so(2n − 2k + 1).

That is, we take a product of two orthogonal Lie algebras, whose ranks add up to
that of g. (Endoscopy was originally defined in terms of groups, but it has become
common practice to follow the practice of Waldspurger and to pass to the Lie
algebras.)

We define a subset of g that I will call a strip. It depends on the parameter r .
Define strip(r ) to be the set of all X ∈ g such that |α(X )| = q−r for all roots α.
These elements are called elements equal valuation.

Write the characteristic polynomial PX (λ) as

PX (λ) = λP0
X (λ).

Let F̄q be an algebraic closure of Fq . Let RX be the separable polynomial in Fq[λ]
with roots in F̄q given by the reduction of the elements

th
i /ω&

F ,

where ti are the nonzero roots of PX (that is, the roots of P0
X ). The elements th

i have
been multiplied by an appropriate power of the uniformizer, so that they become
units. As a result, the roots of RX are nonzero.

7.2. Aside on equal valuation. In this article, we do not justify our restriction
to this special kind of element. Without going into the details, it seems to me that
the study of orbital integrals can be divided into two quite different parts. The
part discussed in this article is that of elements of equal valuation. It seems that
geometric methods such as motivic integration are very important for this part.

For elements of nonequal valuation, it seems that a quite different set of meth-
ods will be relevant. Here issues such as homogeneity (generalizing the results of
Waldspurger [34] and DeBacker [5]) and descent for orbital integrals [24] should
be relevant.

This is currently merely speculation, but it is the reason that I am restricting to
elements of equal valuation. It seems that different groups could study these two
different kinds of orbital integrals with little interaction and few shared methods.

7.3. A hope

Conjecture 7.1. If X and X ′ are elements in strip(r ) such that RX = RX ′ ,
then their orbital integrals are equal.

We represent strip(r ) schematically as a long rectangular strip (a union of
semisimple orbits). Around the conjugacy class of X we can draw a tube (a thickened
neighborhood) of all the elements in the strip with the same reduced characteristic
polynomial RX . (Figure 2.) The function X /→ RX thus partitions strip(r ) into tubes.
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Figure 12.2 A tube

7.4. A p-adic fundamental lemma. Langlands and Shelstad define a transfer
factor ((X, Y, Z ) on so(2n + 1) × so(2k + 1) × so(2(n − k) + 1). On the strip(r )
it has the form

qcsign (X, Y, Z )

for some constant c = c(n, k, r ) and some function sign taking values in {0, 1, −1}.
Let OF be the ring of integers of the p-adic field F . They conjecture that for
appropriate normalizations of measures [20], we have the following special case of
the fundamental lemma:

Conjecture 7.2. (Langlands-Shelstad) For all Y and Z regular semisimple
such that there exists a regular semisimple X in g such that P0

X = P0
Y P0

Z , we have

qc)X

∫

O(X )∩g(OF )
sign (X, Y, Z ) =

∫

Ost (Y )×Ost (Z )∩h(OF )
1.

The sum runs over representatives of all regular semisimple conjugacy classes.
The function sign (X, Y, Z ) is zero unless P0

X = P0
Y P0

Z . It is enough to restrict the
sum to such representatives.

Proposition 7.3. If F is a field of sufficiently large residual characteristic,
then the sign of the transfer factor in so(2n + 1),

sign−1 (x), for x ∈ {0, 1, −1},

is given by a formula in the language of rings.

The proof will be given in a separate article. The surprising thing about this
calculation is that the full strength of Pas’s language is not required. That is, the
transfer factor is expressed without the functions ord and ac, and without quantifiers
over the additive group and residue field. This means that we can define a transfer
factor for any field.
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The formula for sign−1{−1, 1} does not require quantifiers. It is the set of
elements (X, Y, Z ) with

λPX = PY PZ

for which X is regular, which is expressed as the nonvanishing of the resultant

resultant (PX , P ′
X ) '= 0.

The starting point for the proof of the proposition is Waldspurger’s simplified
formula for the transfer factors on the Lie algebra of classical groups [33].

From this proposition, the Denef-Loeser construction gives us a +1-motive in
K̂ v

0 (Motk,Q̄)loc. It also gives a −1-motive in the same set. In this sense, we can
affirm that the Langlands-Shelstad transfer factor is a motive.

7.5. Orbital integrals. A serious difficulty that we encounter in the study of
orbital integrals is that individual orbits of semisimple elements are not given by a
formula in Pas’s language. In fact, the characteristic polynomial

PX ∈ F[λ]

has p-adic coefficients, which cannot be expressed in the language. (Without a
uniformizer in the language, we cannot express the p-adic expansion of the coeffi-
cients.)

Our only hope is to use the fact that orbital integrals are locally constant. We
place each orbit into a larger tube, where the tube is large enough to be defined
by a formula in Pas’s language. Each tube is defined by the set of elements with a
given reduced characteristic polynomial with coefficients in the residue field (see
Section 7.1):

RX ∈ Fq[λ].

To patch these together into a global object, we let k be a finite extension of Q,
with ring of integers Ok . Each polynomial RX is a specialization of a polynomial

ṘX ∈ S[λ],

where S is the coordinate ring over Ok of the set of regular orbits

Z = Zr = a/Ad A

on an appropriate Lie algebra a and group A, defined over Ok . We can then use ṘX

to define a formula in

Lpas(S).

(This denotes the Pas’s language extended by a symbolic constant for each element
of S, as described in [14, Section 6.3].)
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The formula for the set of elements in the tube with transfer factor equal to +1
gives, by the construction of Denef and Loeser, a Chow motive

*G,+
n,k,r .

The negative part of the tube gives a second Chow motive

*G,−
n,k,r .

The tube on the endoscopic groups gives a third Chow motive

*H,st
n,k,r .

Recall that the p-adic transfer factor has the form

±qc

for some constant c = c(n, k, r ). We are thus able to formulate a motivic funda-
mental lemma:

Conjecture 7.4. Given n, k, and r, we have

Lc
(

*G,+
n,k,r − *G,−

n,k,r

)

= *H,st
n,k,r

in

K̂ v
0 (MQ(Zr ),Q̄)loc,Q.

This single identity of Chow motives governs the fundamental lemma over the
entire strip(r ) at almost all places.

Remark 7.5. The Denef-Loeser comparison theorem relates the trace of
Frobenius on these motives to the traditional fundamental lemma. The Denef-Loeser
comparison theorem in its current form is not quite strong enough to deduce the
fundamental lemma from its motivic form. However, I hope that these are relatively
minor obstacles that future research should be able to surmount.

First of all, we need the Denef-Loeser comparison theorem for the finitely
generated extension Q(Zr )/Q. Denef and Loeser give two comparison theorems,
one for p-adic integration on local fields of positive characteristic, and another on
local fields in characteristic zero. The comparison theorem in characteristic zero
assumes that the field is a finite extension of Q and hence it cannot be applied to
Q(Zr ). (Denef and Loeser, via private communication have informed me that they
can relax this restriction for p-adic fields of characteristic zero that are unramified
over Q. This is expected to be sufficient for applications to the fundamental lemma.)

The second restriction of the Denef-Loeser comparison theorem is that if R is a
normal domain with field of fractions Q(Zr ), then the comparison theorem holds at
all closed points x of Spec R f for some non-explicit element f of R. It is possible
that f blocks a comparison of some elements of the p-adic field.
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Remark 7.6. One of the most interesting aspects of this calculation is that it
shows that there are two local-global pathways. The local-global pathway connect-
ing automorphic representation theory with the representation theory of local fields
is a well-established part of the Langlands program. It generalizes the pathway
between global and local class field theory. The Denef-Loeser apparatus gives a
genuinely new pathway between global and local objects. (To see that it is a dif-
ferent pathway, observe that a global regular semisimple element in a reductive
group

γ ∈ G(Q)

lies in an unramified Cartan subgroup at almost every place. However, the Denef-
Loeser construction quite often globalizes local data that is everywhere ramified.)

Thus, we have global problems in automorphic representation theory that are
localized by the first pathway, and then globalized again by the second pathway to
obtain conjectural identities of Chow motives.

8. Open problems. We conclude this article with four problems that are
raised by the study of p-adic integrals from the vantage point of motivic integration.

Problem 8.1. Give effective algorithms to find the Chow motives

*∗,∗
n,k,r .

By solving this problem, we succeed in computing p-adic orbital integrals in
the sense proposed in this article. The quantifier elimination procedures (Pas’s algo-
rithm [30], Presburger’s algorithm [12], and Galois stratification [14]) are entirely
algorithmic. Thus, I hope that this first problem can be settled.

Problem 8.2. Prove the hope of Conjecture 7.1: if RX = RX ′ , then the orbital
integrals of Ost (X ) and Ost (X ′) are equal.

In unpublished work, Clifton Cunningham has made progress toward a solution
of this second problem.

Problem 8.3. Extend the results to degenerate elements X that do not lie in any
strip(r). In particular, find finitely many motives over finitely generated extensions
of Q that govern the fundamental lemma for all X ∈ g over almost all completions
of any number field.

This seems to me to be a difficult problem. As an earlier section states (see 7.2),
the methods involved here seem to be methods of generalized homogeneity laws
in the spirit of Waldspurger and DeBacker ([34] and [5]).
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Problem 8.4. Prove the motivic fundamental lemma.

If the first three problems can be solved, then we have an algorithm to compute
the Chow motives that govern the fundamental lemma for a given group. However,
more is needed. First there is the problem of equality: given two Chow motives, is
there an algorithm to determine if they are equal?

Second, there is the problem of induction. Even if we have an algorithm to check
the fundamental lemma for one group, how do we give a proof for all reductive
groups at once? Here it seems to me that we need to develop a deeper understanding
of the motives that arise in connection with the fundamental lemma.

9. Conclusion. The Denef-Loeser apparatus of arithmetic motivic integra-
tion seems to mesh well with certain p-adic integrals that arise in representation
theory.

We should investigate how far motives permeate representation theory of p-
adic groups. If we believe with Denef and Loeser that all natural p-adic integrals
are motivic, then the influence of the motivic point of view will be far-reaching.
One can speculate that many of the basic objects of representation theory (such as
Harish-Chandra characters) have a motivic nature.

The hope is that the motivic interpretation will allow us to calculate p-adic
integrals that have resisted all efforts until now.
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CHAPTER 13

OCCULT PERIOD INVARIANTS AND CRITICAL VALUES
OF THE DEGREE FOUR L-FUNCTION OF GSp(4)

By Michael Harris

To Joe Shalika

0. Introduction. Let G be the similitude group of a four-dimensional sym-
plectic space over Q:

G = {g ∈ GL(4) | t g Jg = λ(g)J }(0.1)

where J = ( 0
−I2

I2
0 ) is the standard alternating form of dimension 4 and the homo-

morphism λ : G → Gm is defined by (0.1). Let π be a cuspidal automorphic rep-
resentation of G, π = π∞ ⊗

⊗

p πp, where p runs over rational primes. Let S be
the set of finite primes for which πp is not a spherical representation, together with
the archimedean prime. The Langlands dual group of G can be identified with G
itself, hence it makes sense to speak of the Langlands Euler product

L S(s, π ) =
∏

p/∈S

L(s, πp, r ),(0.2)

where r : G → GL(4) is the tautological representation. When π∞ is in the holo-
morphic discrete series and S is empty, an integral representation for L(s, π ) was
discovered by Andrianov [An], with a functional equation (at least) when all π are
unramified. An adelic version of Andrianov’s construction, valid in principle for all
π , and over any number field, was discovered by Piatetski-Shapiro a few years later,
but was only published in 1997 [PS]. The article [PS] defines local Euler factors
at ramified primes as well, and obtains local and global functional equations as in
Tate’s thesis. More generally, if µ is a Hecke character of A×/Q×, then one can
define the twisted (partial) L-function L S(s, π, µ) =

∏

p/∈S L(s, πp, µp, r ). The
Andrianov-Piatetski-Shapiro method gives integral representations and functional
equations for these L-functions as well.

The constructions of [An] and [PS] are based on the Fourier expansion of forms
in π . Let P ⊂ G be the Siegel parabolic

P =
{(

A B
0 D

)}

⊂ G,

U ⊂ P the unipotent radical, isomorphic to the additive group S2 of symmetric
2 × 2 matrices. Let ψ : A/Q → C× be a non-trivial additive character, β ∈ S2(Q),
ψβ : U (A)/U (Q) → C× the character u → ψ(tr (βu)), where u ∈ U (A) is viewed

331
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as an element of S2(A) as above and tr is the usual trace. For f ∈ π , we can write

f (ug) =
∑

β

fβ(g)ψβ(u), u ∈ U (A),(0.3)

where fβ is a smooth function on G(A). We say β is in the support of π if fβ (= 0
for some f ∈ π .

Write P = MU, with M the Levi component, isomorphic to GL(2) × Gm . We
assume det(β) (= 0, and let D = Dβ ⊂ M denote the identity component of the
stabilizer of the linear form u → tr(βu) under the adjoint action. Then there is a
unique quadratic semi-simple algebra K = Kβ over Q such that D = RK/QGm .
(For all this, as well as what follows, see [PS].) Let Nβ = {n ∈ U | tr(βn) = 0},
and define R = DU ⊂ P ⊂ G. Let H be the subgroup of RK/QGL(2) defined by
the following cartesian diagram:

H −→ RK/QGL(2)−→ det

−→

Gm,Q −→ RK/QGm,K .

There is an embedding H → G such that H ∩ R = DN [PS, Prop. 2.1]. We let λH

denote the composition of the similitude character λ with this embedding.
One chooses a β in the support of π and a Hecke character ν of D(A)/D(Q), and

constructs a standard Eisenstein series E = E&(h; µ, ν, s) with h ∈ Hβ(Q)\Hβ(A),
meromorphic in s, and depending on additional data & to be specified below. Let
ZG denote the center of G. Then the family of integrals

Z ( f, &, µ, ν, s) =
∫

ZG (A)H (Q)\H (A)
f (h)E&(h; µ, ν, s) dh(0.4)

has an Euler product whose local factors are almost everywhere given by L(s, πp, r ):

Z ( f, &, µ, ν, s) = a(π, β, ν)
∏

w∈S

Zw ( f, &, µ, ν, s)
∏

p/∈S

L(s, πp, µ, r ),(0.5)

assuming of course f and & to be factorizable data. Here a(π, β, ν) is a coefficient
to be explained below. Note that the L-function on the right-hand side of (0.5)
does not depend on the choice of ν. Starting in §1, β will be assumed isotropic,
so D will be a split torus and ν can be written as a pair of Hecke characters of
A×/Q×.

The group G is attached to a three-dimensional Shimura variety Sh, isomorphic
to the Siegel modular variety of genus 2, with a canonical model over Q (see §2 for
the formula). Holomorphic automorphic forms on G can be regarded as sections of
automorphic vector bundles on Sh, and possess a rational structure over Q. In the
setting of [An], in which π is holomorphic discrete series, β is necessarily a positive-
definite (or negative-definite) symmetric matrix, K is an imaginary quadratic field,
and H (R) is basically the same as GL(2, C), so no Shimura variety is attached
to H . Thus the formula (0.5) admits no clear interpretation in terms of algebraic
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geometry at integral points s. This is not surprising, since Deligne’s conjecture
expresses the critical values of L(s, π ) in terms of the determinant of a 2 × 2 matrix
of periods, involving forms from distinct elements of the L-packet (conjecturally)
attached to π . In particular, the critical values should involve periods of functions
in π ′ = πnh

∞ ⊗
⊗

p π ′
p where π ′

p = πp for almost all p but πnh
∞ belongs to the

non-holomorphic discrete series associated to π∞. Anyway, no one knows how to
construct periods of general cohomological automorphic forms on G.

On the other hand, suppose β is of signature (1, 1), so that π∞ is in the non-
holomorphic discrete series. Then K is either a real quadratic field or K = Q ⊕ Q,
H corresponds to a Shimura subvariety ShH ⊂ Sh, and for special values of s and
appropriate choices of the auxiliary data the Eisenstein series E&(h; µ, ν, s) are
nearly holomorphic automorphic forms, in Shimura’s sense [S2]. The modest goal
of this note is to show that, for certain choices of f , the global zeta integral in (0.4),
when s = m is a critical value in Deligne’s sense, can be interpreted as a cup product
in coherent cohomology on ShH . This then expresses the special values of the
corresponding L-function in terms of intrinsic coherent cohomological invariants
of π , the occult period invariants of the title, related to the coefficients a(π, β, ν)
for varying ν. These invariants are doubly occult: in the first place, because they
cannot be defined merely by reference to the abstract representation π but depend
on its realization in coherent cohomology; in the second place, because they are
not (yet) known to be non-trivial in any specific case.

The invariants a(π, β, ν) are obtained by comparing a rational structure on
the space π defined in terms of coherent cohomology with one defined in terms
of the Bessel model of π attached to the pair (β, ν). More precisely, in the ab-
sence of a natural choice of archimedean local data, the invariant is the product
a(π, β, ν)Z∞( f, &, µ, ν, m). Coherent cohomological invariants of this type al-
ready appeared in [H2] in connection with Rankin-Selberg L-functions for Hilbert
modular forms. Similar invariants, making use of the rational structure on topolog-
ical cohomology of non-hermitian locally symmetric spaces, were related by Hida
[Hida] to Rankin-Selberg L-functions for GL(2) over totally imaginary number
fields; Grenié [G] has recently obtained a partial generalization of Hida’s work to
GL(n) for n > 2. The most intriguing discovery in the present paper is that odd and
even critical values are related to a(π, β, ν) for different choices of ν, an observation
consistent with Deligne’s conjecture.

The ideas in this note date back to 1988. The appearance of [PS] has made
their publication more reasonable, and in view of the conjectures of Furusawa and
Shalika [FS] on the products of two central special values of L(s, π ), publication
may actually be of some use. The reader should nevertheless bear in mind that
nothing in this paper should be considered definitive. In particular, the heuristic
arguments presented here are vacuous unless one knows, first, that the archimedean
zeta integrals in (0.5) do not vanish for a cohomological choice of data; and more
crucially, that the global invariant (Bessel coefficient) a(π, β, ν) does not vanish
for arithmetically interesting characters ν. Local non-vanishing should not be too
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hard to establish, but I haven’t tried to do so. On the other hand, I have no idea how
to prove non-vanishing of the global invariant.

Acknowledgment. I began writing this article in the summer of 2001, during
a visit to the Hong Kong University of Science and Technology; I thank Jian-
Shu Li and the HKUST for their generous hospitality. I also thank David Soudry
for his very pertinent answers to a number of questions about Piatetski-Shapiro’s
article and its relation to other integral representations of automorphic L-functions,
Masaaki Furusawa for comments regarding his conjectures with Shalika, and Daniel
Bertrand for the reference for the discussion in (2.7). I thank the referee for a careful
reading. Finally, it is indeed a pleasure to dedicate this paper to Joe Shalika, in whose
Princeton algebra course I first encountered the notion of a group representation,
and who continues to inspire and surprise.

1. Motives for GSp(4). Notation is as in the introduction. We make the fol-
lowing departure from convention. Let K∞ = ZG(R)U (2) be the standard maximal
compact (mod center) connected subgroup of G(R), the stabilizer of the point i · I2

in the Siegel upper half space of genus 2. For us, it is more convenient to let a cuspidal
automorphic representation of G be an irreducible (g, K∞) × G(A f )-submodule
of the cusp forms on G(Q)\G(A). In the cases of interest to us, it generally takes
two automorphic representations of this kind to make one of the usual kind, simply
because G(R) is disconnected.

Henceforward we assume β to be isotropic over Q, and write H for Hβ . (There
is also a theory for general indefinite β, but it seems to give less complete results.)
Then up to isomorphism,

H = {(g1, g2) ∈ GL(2) × GL(2) |det(g1) = det(g2)}.

Thus, letting Sh(GL(2)) denote the standard Shimura variety attached to GL(2) (the
tower of modular curves of all levels), there is a natural embedding

ShH ↪→ Sh(GL(2)) × Sh(GL(2))

rational over Q. Let pr1 and pr2 denote the two projections of ShH to the Shimura
variety Sh(GL(2)) attached to GL(2) (the tower of modular curves), corresponding to
the composition of the H → GL(2) × GL(2) with projection on the first and second
factors respectively. Automorphic vector bundles on Sh(GL(2)) are denoted Fk,d for
pairs of integers k ≡ d (mod 2). Given a triple (k, (, −c) in Z, with k + ( ≡ −c
(mod 2), F(k,(,−c) on ShH is the pullback via (pr1, pr2) of the external tensor product
Fk,d1 ⊗ F(,d2 for any pair of integers (d1, d2) such that d1 ≡ k (mod 2), d2 ≡ (

(mod 2), and d1 + d2 = −c.
To any irreducible finite-dimensional representation (ρ, Vρ) of G we can asso-

ciate a local system Ṽρ in Q-vector spaces over the Shimura variety Sh. Note that
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ρ can be realized over Q. We write

K Sh(C) = G(Q)\G(A)/K∞K ,

Sh(C) = lim←−
K

K Sh(C),

where K∞ = ZG(R)U (2) is as above and K runs over open compact subgroups of
G(A f ). Then

Ṽρ,((C) = lim←−
K

G(Q)\G(A) × Vρ(Q)/K∞K ,(1.1)

where G(Q) acts diagonally on G(A) × Vρ(Q). There are compatible right actions
of G(A f ) on Sh and Ṽρ , and hence on the cohomology of the former with coefficients
in the latter. The middle dimensional interior cohomology

H 3
! (Sh, Ṽρ) = I m

[

H 3
c (Sh, Ṽρ) ⊗ Q → H 3(Sh, Ṽρ) ⊗ Q

]

decomposes as the direct sum of irreducible Q[G(A f )]-modules with finite multi-
plicities. One expects that, for the “general” Q[G(A f )]-module π f , the space

M(π f ) = H 3
! (Sh, Ṽρ)[π f ] = HomG(A f )

(

π f , H 3
! (Sh, Ṽρ)

)

is four-dimensional, and moreover one has

H 3
! (Sh, Ṽρ)[π f ] = HomG(A f )

(

π f , H 3
cusp(Sh, Ṽρ)

)

where H 3
cusp is the image in H 3

! of the cuspidal cohomology. This is still not
completely known, although significant partial results have been proved by Taylor,
Laumon, and Weissauer. We assume π = π∞ ⊗ π f to have this property, which
we call stability (at infinity); it also presupposes a multiplicity one property about
which relatively little is known.

Tensoring over Q with C, the interior cohomology acquires a Hodge decom-
position

H 3
! (Sh, Ṽρ) ⊗Q C =

3
⊕

i=0

Hi
!

(

Sh, E3−i
ρ

)

⊗Q C,

hence M(π f ) has the analogous decomposition

M(π f ) =
3

⊕

i=0

Hi
!

(

Sh, E3−i
ρ

)

⊗Q C[π f ].(1.2)

Here E j
ρ , j = 0, 1, 2, 3, is a locally free coherent sheaf (automorphic vector bundle)

over Sh, defined over Q, which we can describe explicitly in terms of the highest
weights of ρ. We choose a maximal compact (mod center) torus T ⊂ K∞ and a
positive root system as in [HK], to which the reader is referred for details of the
following construction. Suppose (ρ, Ṽρ) has highest weight (a, b, c), with a ≥ b ≥
0 in Z and c an integer congruent to a + b modulo 2. An automorphic vector bundle
is associated to an irreducible algebraic representation of K∞, hence to a triple of
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integers (a′, b′, c′) with a′ ≥ b′ and the same parity condition. Then E j
ρ is associated

to the triple *
j
ρ , where

*0
ρ = (a, b, c); *1

ρ = (a, −b − 2, c); *2
ρ = (b − 1, −a − 3, c);(1.3)

*3
ρ = (−b − 3, −a − 3, c)

[HK, Table 2.2.1].
For future reference, we note that the Hodge numbers corresponding to the

Hodge decomposition (1.2) are given by

(a + b + 3 + δ, δ), (a + 2 + δ, b + 1 + δ),(1.4)

(b + 1 + δ, a + 2 + δ), (δ, a + b + 3 + δ)

where δ = c−a−b
2 and the weight is w = 3 + c. It will be most convenient to fix

c = a + b; then δ = 0 and the weight is a + b + 3.
The notation Hi

! is slightly abusive. Indeed, to define Hi
! (Sh, E j

ρ), one has first
to replace K Sh at finite level K by a smooth projective toroidal compactification
K Sh, such that K Sh, − K Sh is a divisor with normal crossings, and to replace
E j

ρ by a pair of canonically defined extensions, E j,sub
ρ ⊂ E j,can

ρ to vector bundles
over Sh, . (Here and below, the subscript , designates an unspecified datum used
to define a toroidal compactification, as in [H1].) Then [H1, §2]

Hi
!

(

Sh, E j
ρ

)

= lim−→
K

I m
[

Hi(
K Sh,, E j,sub

ρ

)

→ Hi(
K Sh,, E j,can

ρ

)]

is independent of the choices of , (hence the direct limit makes sense) and is an ad-
missible G(A f )-module, with a canonical Q-rational structure. Thus any irreducible
admissible G(A f )-module π f that occurs in Hi

! (Sh, E j
ρ) can be realized over Q,

and we can define Hi
! (Sh, E3−i

ρ ) ⊗Q Q[π f ] as well as Hi
! (Sh, E3−i

ρ ) ⊗Q C[π f ]. A
strengthening of Hodge theory due to various people in various forms (Zucker,
Faltings, . . . ) then yields the decomposition (1.2). Stability at infinity comes down
to

Hypothesis (1.5). For i = 0, 1, 2, 3,

H i
!

(

Sh, E3−i
ρ

)

⊗Q Q[π f ] = Hi
cusp

(

Sh, E3−i
ρ

)

⊗Q Q[π f ]

is of dimension one.

Here Hi
cusp is the image of the cusp forms in Hi

! (cf.[H1]). Equality of the
two spaces in (1.5) can be taken as part of the hypothesis; in any case, it will be
automatic in the applications (see the next paragraph). In Hypothesis (1.5) we can
replace Q by C; the two versions are equivalent. Actually, for most of what we
have in mind it suffices to assume the different Hodge components have the same
dimension. In any case, there is a discrete series L-packet (π j

ρ , j = 0, 1, 2, 3) of
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(g, K∞)-modules and an isomorphism

Hi
cusp

(

Sh, E3−i
ρ

)

⊗Q C[π f ] = Hom(g,K∞)×G(A f )
(

π i
ρ ⊗ π f ,Acusp(G)

)

(1.6)

where Acusp(G) is the space of cusp forms on G(Q)\G(A) [BHR]. For future refer-
ence, we let Hi

cusp(Sh, E3−i
ρ ) ⊗Q Q(π f ) denote the image of any non-zero G(A f )-

morphism π f → Hi
cusp(Sh, E3−i

ρ ) ⊗Q Q; by Hypothesis (1.5) such a morphism, an
element of Hi

cusp(Sh, E3−i
ρ ) ⊗Q Q[π f ] (note the difference in notation!), is unique

up to (algebraic) scalar multiples.
We now return to π as in the introduction and assume π = π2

ρ ⊗ π f , so π con-
tributes to coherent cohomology in degree 2, i.e., to H 2

cusp(Sh, E1
ρ) ⊗Q Q. We as-

sume a > b > 0 (strict inequality), so that H 2
cusp(Sh, E1

ρ) = H 2
! (Sh, E1

ρ) (cf. [MT],
2.1, Proposition 1). Moreover, we have a natural inclusion [H1, §3]

H 2
cusp

(

Sh, E1
ρ

)

⊂ lim−→
K

H 2(
K Sh,, E1,sub

ρ

)

.(1.7)

The space on the right-hand side is denoted H̃ 2(Sh, E1,sub
ρ ), as in [H1, HK].

Let ShH be as in the introduction. We may assume T to be a maximal torus
in H = Hβ ; then T (R) is a maximal connected compact (mod center) subgroup of
H (R), and automorphic vector bundles on ShH correspond to weights of the torus
T . Specifically, we let T = H ∩ K∞, the stabilizer of the point (i, i) in the prod-
uct of two upper half-planes; we occasionally also write K H,∞ = T (R). Thus any
triple of integers *# = (r, s, c), with c ≡ r + s (mod 2), defines an automorphic
vector bundle F*# = F(r,s,c) on ShH . As in (1.6), we can define toroidal compactifi-
cations ShH,,H of ShH , and canonical and subcanonical extensions Fcan

*# and Fsub
*#

over ShH,,H . For i ∈ Z, we define *#(i) = (a − i, i − b − 2, c) (for ρ = (a, b, c)
as above). Let ι : ShH → Sh be the embedding. For 0 ≤ i ≤ a + b + 2 there are
homomorphisms [HK, (2.6.3)]

ι∗
((

E1
ρ

)sub) → Fsub
*#(i)

giving rise to homomorphisms

ψi : H̃ 2
cusp

(

Sh,
(

E1
ρ

)sub) → H̃ 2(ShH , Fsub
*#(i)

)

.(1.8)

It follows from (1.7) that one can actually lift ψi to a homomorphism

H 2
cusp

(

Sh, E1
ρ

)

→ H̃ 2(ShH , Fsub
*#(i)

) ∼−→
[

H̃ 0(ShH , Fcan
(i−a−2,b−i,−c)

)]∗
,(1.9)

where the isomorphism is given by Serre duality ([H1], Corollary 2.3; see §8 of
[H1] for the shift by 2). The right-hand side is isomorphic to the space of (pairs
of) classical holomorphic modular forms on ShH , including Eisenstein series, of
weight (a + 2 − i, i − b). Unless b + 1 ≤ i ≤ a + 1 the right-hand side is therefore
uninteresting for our purposes.
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Let f ∈ π belong to the lowest K∞-type subspace of π∞, which has highest
weight (a + 3, −b − 1, c) [HK, Table 2.2.1]. We assume f is a weight vector for
T with character (a + 2 − i, i − b, c), hence upon restriction to H can pair non-
trivially with a section g ∈ H̃ 0(ShH , Fcan

(i−a−2,b−i,−c)), to yield a complex number
< f, g >. If both f and g are rational over Q, then so is < f, g >. (Cohomology
classes in H 2

cusp(Sh, E1
ρ) are defined by vector-valued automorphic forms via a

normalized Dolbeault isomorphism, as in [H1]. By f being rational we mean f
is the weight component of character (a + 2 − i, i − b, c) of a rational element of
H 2

cusp(Sh, E1
ρ)). We want to identify the zeta integral of (0.4) with such a pairing.

Unfortunately, the Eisenstein series we need is in general not a holomorphic section
of Fcan

(i−a−2,b−i,−c), so a priori the pairing cannot be interpreted in terms of coherent
cohomology.

(1.10) Maass operators. Our main results are based on the algebraic inter-
pretation of the Maass operators due to Katz, and developed in the present language
in [H2] and elsewhere. In this section k and ( are positive integers. Let .1

i , i = 1, 2
denote the pullback via pri to ShH of the cotangent bundle of Sh(GL(2)), and let
jetr1,r2 (F(−k,−(,−c)) denote the pullback via (pr1, pr2) of jetr1 F−k,d1 ⊗ jetr2 F−(,d2 .
Let

j r1,r2 : Fcan
(−k,−(,−c) → jetr1,r2

(

Fcan
(−k,−(,−c)

)

denote the canonical differential operator of order r1 + r2, and let

Split(r1, r2) : jetr1,r2
(

Fcan,∞
(−k,−(,−c)

)

−→(1.10.1)
[

Symr1
(

.1
1

)

⊗ Symr2
(

.1
2

)

⊗ F(−k,−(,−c)
]can,∞ ∼−→ Fcan,∞

(−k−2r1,−(−2r2,−c)

be the canonical splitting of the Hodge filtration in the category of H (A f )-
equivariant C∞ vector bundles (cf. [H2, 2.5]). Then δr1,r2 = Split(r1, r2) ◦ j r1,r2

corresponds to the classical Maass operator in two variables. Explicitly, let Ek

and E( be holomorphic modular forms on GL(2, Q)\GL(2, A) of weights k
and (, respectively, corresponding (via the trivializations of [H2]) to sections
fk ∈ H 0(Sh(GL(2)), F−k,d1 ) and f( ∈ H 0(Sh(GL(2)), F−(,d2 ), respectively. Then
δr1,r2 (pr1, pr2)∗( fk ⊗ f() is the C∞ section of Fcan,∞

(−k−2r1,−(−2r2,−c) corresponding
to the restriction to H of

Dr1
k Ek ⊗ Dr2

( E(

where for any j , d j is the first order differential operator on the upper half-plane

d j = 1
2π i

(

d
dz

+ j
2iy

)

and Dr1
k = dk+2r1−2 ◦ . . . dk+2 ◦ dk , Dr2

( = d(+2r2−2 ◦ . . . d(+2 ◦ d(.
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The map (1.10.1) is a splitting in the C∞ category of a short exact sequence of
automorphic vector bundles:

0 →
[

Symr1
(

.1
1

)

⊗ Symr2
(

.1
2

)

⊗ F(−k,−(,−c)
]can(1.10.2)

→ jetr1,r2 (F(−k,−(,−c))can → jetr1−1,r2−1(F(−k,−(,−c))can → 0

where the final term is defined by analogy with that in the middle.

Proposition 1.10.3. Let dh denote a Haar measure on ZG(A)H (Q)\H (A).
There is a constant c (dh) ∈ R× with the following property. Let π ⊂ A0(G) be as
in the introduction. Suppose f ∈ π defines a Q-rational cohomology class (also
denoted f ) in H 2

cusp(Sh, E1
ρ). Let i be an integer, b + 1 ≤ i ≤ a + 1, and suppose

a + 2 − i = k + 2r1, i − b = ( + 2r2

with positive (resp. non-negative) integers k, ( (resp. r1, r2). Let Ek, E( be holo-
morphic modular forms on GL(2, Q)\GL(2, A), as above, and suppose the corre-
sponding fk and f( are Q-rational. Then

c(dh) ·
∫

ZG (A)H (Q)\H (A)
f (h)Dr1

k Ek ⊗ Dr2
( E((h)dh

lies in Q.

Proof. With k, (, r j , and i as in the statement of the proposition, the first
non-zero term on the left of (1.10.2) can be identified with Fcan

(−k−2r1,−(−2r2,−c) =
Fcan

(−2−a+i,i−b). Tensoring with Fsub
*#(i) = Fsub

(a−i,i−b−2,c) we obtain an exact sequence

0 → Fsub
(2,2) →

[

jetr1,r2 (F(−k,−(,−c)) ⊗ F(a−i,i−b−2,c)
]sub

→
[

jetr1−1,r2−1(F(−k,−(,−c)) ⊗ F(a−i,i−b−2,c)
]sub → 0,

which we rewrite

0 → Fsub
(2,2) → (Jr1,r2 )sub → (Jr1−1,r2−1)sub → 0.

Now Fsub
(2,2)

∼−→ .1
ShH

is the dualizing sheaf. Taking the long exact sequence
of cohomology, we have

. . . → H̃ 1(ShH , (Jr1−1,r2−1)sub) → H̃ 2(ShH , .1
ShH

)

(1.10.4)

→ H̃ 2(ShH , (Jr1,r2 )sub) → H̃ 2(ShH , (Jr1−1,r2−1)sub) → 0

which by Serre duality (cf. [H1], Corollary 2.3 for the duality between sub and can)
yields

0 → H̃ 0(ShH , .1
ShH

⊗ (Jr1−1,r2−1)sub,∗) → H̃ 0(ShH , .1
ShH

⊗ (Jr1,r2 )sub,∗)

→ H̃ 0(ShH ,Ocan
ShH

)

→ H̃ 1(ShH , .1
ShH

⊗ (Jr1−1,r2−1)sub,∗) → · · · .
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Here we use the superscript ∗ to denote duality. Now .1
ShH

⊗ (Jr1−1,r2−1)sub,∗ has a
finite filtration whose associated graded object is a sum of line bundles of the form

.1
ShH

⊗ Fsub,∗
(i+a−2+2e j ,b−i+2 f j ) = Fcan

(2−a−i−2e j ,i−b−2 f j )

where 0 ≤ e j ≤ r1 − 1, 0 ≤ f j ≤ r2 − 1. By our choice of r1 and r2, each term is
of the form Fα,β with α, β ≥ 2. It is known (cf. [H1, §8]) that H 1(ShH , Fcan

α,β ) = 0
for α, β ≥ 2, hence (1.10.4) becomes

0 → H̃ 0(ShH ,Ocan
ShH

)∗ → H̃ 2(ShH , (Jr1,r2 )sub)(1.10.5)

→ H̃ 0(ShH , .1
ShH

⊗ (Jr1−1,r2−1)sub,∗) → 0.

The term H̃ 0(ShH ,Ocan
ShH

)∗ is a sum of one-dimensional representations of G(A f ).
On the other hand, by filtering .1

ShH
⊗ (Jr1−1,r2−1)sub,∗ as before, one sees that

the H (A f )-representation on H̃ 0(ShH , .1
ShH

⊗ (Jr1−1,r2−1)sub,∗) has a filtration by
representations corresponding to holomorphic modular forms of positive weight,
hence its Jordan-Hölder series contains no one-dimensional constituents. (One can
make the filtration finite by restricting to the subrepresentation generated by vectors
of fixed level K ⊂ H (A f ).) It follows that the natural map from the middle term
of (1.10.5) to its H (A f )-coinvariants factors through a non-trivial, Q-rational map
from the middle term

Ir1,r2 : H̃ 2(ShH , (Jr1,r2 )sub) →
[

H̃ 0
(

ShH ,Ocan
ShH

)∗]
H (A f )(1.10.6)

=
[

H̃ 0
(

ShH ,Ocan
ShH

)∗]H (A f )
,

where the right-hand side is a one-dimensional space generated by the constant
function 1. In particular, if φ is a rapidly decreasing Dolbeault cocycle representing a
class [φ] ∈ H̃ 2(ShH , (Jr1,r2 )sub) [H1], then φ 3→ Ir1,r2 [φ] factors through projection
on K H,∞ = T (R)-invariants.

Putting together all these maps, we obtain a Q-rational, H (A f )-invariant pairing

H 2
cusp

(

Sh,
(

E1
ρ

)sub) ⊗ H̃ 0(ShH , F(−k,−(,−c)
)

ι∗⊗ jr1,r2

→ H̃ 2(ShH , ι∗
((

E1
ρ)sub)) ⊗ H̃ 0(ShH , jetr1,r2 (F(−k,−(,−c))can)

ψi→ H̃ 2(ShH , Fsub
*#(i)

)

⊗ H̃ 0(ShH , jetr1,r2 (F(−k,−(,−c))can)

∪→ H̃ 2(ShH , (Jr1,r2 )sub)

Ir1,r2→
[

H̃ 0(ShH ,Ocan
ShH

)∗]G(A f ) ∼−→ C.

Applying this composition to the rapidly decreasing Dolbeault cocycle represented
by f ⊗ Ek,(, we find that

Ir1,r2 (ψi ( f ) ⊗ j r1,r2 (Ek,()) ∈ Q.
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But we have seen that Ir1,r2 factors through projection on the T -invariants. Thus
Ir1,r2 factors through

ψi ( f ) ⊗ j r1,r2 (Ek,() 3→ (1 ⊗ Split(r1, r2))(ψi ( f ) ⊗ j r1,r2 (Ek,())

= ψi ( f ) ⊗ δr1,r2 Ek,(.

Finally, the Serre duality pairing is expressed in terms of integration of Dolbeault
cocycles with growth conditions [H1, Proposition 3.8]. The Proposition now follows
from the definitions. !

2. Interlude on Deligne’s conjecture. For motives, their L-functions, and
their Deligne period invariants, we refer to [D]. Let w = a + b + 3 = c + 3 and
let µ be a Hecke character of finite order. Let π be as above, with central character
ξπ = ξ0,π · | • |−c, where | • | is the idèle norm; then ξ0,π is a Hecke character of
finite order. We postulate the existence of a motive M(π f ) with coefficients in some
number field E(π f ) of rank four, unramified outside S, of weight w , such that

L S(s, M(π f )) = L S
(

s − 3
2
, π

)

(2.1)

as Euler products away from S. The Hodge numbers are given by (1.4), with
δ = 0. If we are satisfied to work with motives for absolute Hodge cycles, as in
[D], then the existence of M(π f ) as indicated is roughly equivalent to Hypothesis
1.5, once one has overcome scruples regarding cohomology with support, given
results of Taylor, Laumon, and Weissauer on the cohomology of the genus two
Siegel modular variety. The functional equation of [PS], relating (the completed
L-function) L(s, π, µ), to L(1 − s, π̂ , µ−1) = L(c + 1 − s, π, µ−1 · ξ−1

0,π ), be-
comes an equation relating L(s, M(π f ), µ) (one completes using the local factors
of [PS]) to L(w + 1 − s, M ′(π f ), µ−1), where

M ′(π f ) = M̂(π f )(−w) = M ⊗ M
(

ξ−1
0,π

)

(2.2)

where ∗̂ designates duality and (w) denotes Tate twist. Indeed, there is a non-
degenerate bilinear pairing

M(π f ) ⊗ M(π f ) → M(ξ0,π )(−w).(2.3)

in any realization, where M(ξ0,π ) is the rank one motive attached to the Dirichlet
character ξ0,π (note that the values of ξ0,π are contained in the coefficient field
E(π f )). For instance, in the (-adic realizations, it suffices by Chebotarev’s density
theorem to verify this locally for all p /∈ S, and this follows from (2.1) and the
characteristic fact that

π̂ f
∼−→ π f ⊗ λ ◦ ξ−1

π(2.4)

which reflects the fact that GSp(4) is its own Langlands dual group.
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From (2.3) we derive the isomorphism (2.2). More generally, we let M(π f , µ)
be the motive whose L-function is L(s − w

2 , π, µ) (one can obtain the (-adic real-
ization by twisting by µ composed with the similitude character, since the Galois
representation takes values in GSp(4)); then

M̂(π f , µ)
∼−→ M(w) ⊗ M((µ · ξ0,π )−1).

Let m be any integer. By standard calculations (as in [D] (5.1.8)) one verifies the
following relations for the Deligne periods:

c+(M(π f , µ)(m)) = (2π i)2m g(µ)2c±(M(π f ))(2.5)

where g(µ) is a Gauss sum and ± = (−1)m+e(µ∞) where e(µ∞) = 0 if µ∞ is trivial
and = 1 otherwise.

By (1.4) and standard hypotheses (e.g., [D,5.2]) the archimedean Euler factors
in the functional equation for L(s, M(π f ), µ) are given, independently of µ, by
2C(s)2C(s − b − 1), with 2C(s) = 2 · (2π )−s2(s) for the Euler Gamma function.
The critical values of L(s, M(π f ), µ), in Deligne’s sense, are then the integers
m ∈ [b + 2, a + 2]. The right half of the critical set, accessible by combining the
geometric considerations of §1 with the calculations in terms of Bessel models, is
then the set of integers in [ a+b

2 + 2, a + 2]. Note that the central value m = a+b
2 + 2

is critical if and only if c = a + b is even.
By (2.5), Deligne’s conjecture for the special values of L(s, M(π f , µ)) can be

stated uniformly in terms of the Deligne periods c±(M(π f )) and elementary factors.
Let E(π f , µ) be the field generated by E(π f ) and the values of µ. We consider
L(s, M(π f , µ)) as a function with values in C ⊗ E(π f , µ), as in [D]. Then we
have

2.6 (Deligne’s Conjecture). For m ∈
[ a+b

2 + 2, a + 2
]

∩ Z,

L(m, M(π f , µ))/(2π i)2m g(µ)2c±(M(π f )) ∈ E(π f , µ),

with ± = (−1)m+e(µ∞).

(2.7) Remark. When µ is fixed, Deligne’s conjecture thus relates the odd and
even critical values to distinct, presumably transcendental, invariants. When the
motive does not have additional symmetries one expects the periods c+(M(π f ))
and c−(M(π f )) to be algebraically independent. For example, suppose M(π f ) is of
the form Sym3(M), where M is the motive attached to an elliptic modular form of
weight k > 2. (Combining the proof by Kim and Shahidi of the existence of the sym-
metric cube lift from GL(2) to GL(4) with any of a number of methods (e.g. [GRS], or
earlier unpublished results of Jacquet, Piatetski-Shapiro, and Shalika) for associat-
ing generic representations of classical groups to self-dual forms on GL(4), one can
construct at least part of the motive Sym3(M) on GSp(4). See [KS, §9].) Deligne’s
calculations in [D, Prop. 7.7] identify c+(Sym3(M)) (resp. c−(Sym3(M))) with
(2π i)−1c+(M)3c−(M) (resp. (2π i)−1c−(M)3c+(M)), up to rational factors. On the
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other hand, it follows from a generalization of a theorem of Th. Schneider, due to
Bertrand (and subsequently vastly generalized by Wüstholz), that when M is the
motive attached to a modular form of weight 2, then c+(M)/c−(M) is transcenden-
tal (cf. [B], Corollary 1, p. 35). In this case it follows easily that c+(Sym3(M)) and
c−(Sym3(M)) are also algebraically independent over Q.

3. Bessel models and zeta integrals. Notation is as in the Introduction. Re-
call that we are assuming β isotropic over Q, so that K = Q ⊕ Q. If h = (g1, g2) ∈
H (F), for some field F , then λH (h) = det(g1) = det(g2). Let µ and ν = (ν1, ν2)
be Hecke characters of A×/Q× and (A×/Q×)2, respectively. Let V denote the free
K -module K 2, S(VA) the space of Schwartz-Bruhat functions on the adeles of
V . To & ∈ S(VA) one can assign an Eisenstein series E&(h; µ, ν, s) as a function
of (h, s) ∈ H (Q)\H (A) × C, meromorphic in s but holomorphic for Re(s) >> 0;
the normalizations are given in [PS, p. 270]. With this notation, the zeta integral
Z ( f, &, µ, ν, s) of (0.4) is defined.

We define an adelic character αν,β of R = DU by

αν,β(du) = ν(d)ψβ(u), d ∈ D(A), u ∈ U (A).

With this definition, and for f ∈ π , let

W f (g) = W β,ν
f (g) =

∫

ZG (A)R(Q)\R(A)
f (rg)α−1

ν,β(r )dr.(3.1)

As in [PS], we refrain from normalizing measures, only requiring that measures
on groups over non-archimedean local fields take algebraic values. The formulas to
follow only hold for consistent choices of measures. The interesting question is to
normalize the archimedean measure in an arithmetically meaningful way, in con-
nection with hypothesis (3.2.2) below. Since we do not calculate the archimedean
zeta integral explicitly, we do not address this question.

The map f 3→ W f is a G(A)-equivariant homomorphism from π to the space
of functions W on G(A) satisfying

W (rg) = αν,β(r )W (g).(3.2)

If this map is non-zero, it is called a (β, ν)-Bessel model ([PS] refers to it as a
generalized Whittaker model, but the terminology “Bessel model” appears in other
articles of Piatetski-Shapiro and seems to be more widely used).

Let ξν denote the restriction of ν to the ideles of Q, embedded (diagonally) in
the ideles of K . Let ξπ denote the central character of π , also a Hecke character
of Q. If π has a global (β, ν)-Bessel model, then necessarily ξν = ξπ . Moreover,
each local component πw has a local (β, νw )-Bessel model, i.e., a map (β,νw to
the space of functions on G(Qw ) satisfying the analogue of (3.2). One knows (cf.
Theorem 3.1 of [PS] and the references given there) that local Bessel models are
unique. Thus if f = ⊗ fw ∈ π =

⊗

πw is a factorizable function, we can factor
W f = ⊗w W f,w = ⊗w W β,ν

f,w , and this gives rise to the Euler product factorization
of the zeta integral (0.4). For details see [PS, §5], and the discussion below.
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(3.3) Hypotheses.

(3.3.1) β is isotropic over Q.

(3.3.2) µ is a character of finite order.

(3.3.3) π has a (β, ν)-Bessel model.

These hypotheses are not all of the same nature. Hypotheses (3.3.1), already
introduced in §1, and (3.3.2) carry no commitment, whereas (3.3.3) is an existence
hypothesis.

The Q-isotropic non-degenerate symmetric matrices β form a single conjugacy
class under the adjoint action of the rational points of the Levi component of P . If
π is a theta lift from maximally isotropic O(4) or O(6) then β is in the support of
π for any β in this conjugacy class [R, (I) §3]. Such a π thus has a (β, ν)-Bessel
model for some ν, but not necessarily the ones we introduce below.

(3.4) Arithmetic Eisenstein series. Let B ⊂ GL(2) be the standard Borel
subgroup, and choose an Iwasawa decomposition GL(2, A f ) = B(A f )K f , with
K f =

∏

p GL(2, Zp). We choose a pair of integers (k, γ ) with k ≡ γ (mod 2),
k > 0, and a Dirichlet character µ̄, viewed as an adelic Hecke character of finite
order, satisfying

µ̄∞(−1) = (−1)k .(3.4.1)

Define the character

χk,γ ,µ̄ : B(A) → C×; χk,γ ,µ̄

(

a b
0 d

)

= |ad|
k+γ

2 |d|−kµ̄(d),(3.4.2)

where | • | is the idèle norm. Let Ik,γ ,µ̄ be the induced representation
I ndGL(2,A)

B(A) χk,γ ,µ̄ where here and below we work with non-normalized induction.
Write KGL(2),∞ for the stabilizer ZGL(2) · SO(2) of the point i in the upper

half-plane. Let φ ∈ Ik,γ ,µ̄ and write φ = φ∞ ⊗ φ f , and always assume φ∞ to be
KGL(2),∞-finite. By the Iwasawa decomposition for GL(2, R), φ∞ is determined by
its restriction to KGL(2),∞, and can be written as a finite sum

φ∞(t) =
∑

κ

aκκ(t),

where aκ ∈ C and κ runs through characters of T (R) whose restriction to the center
KGL(2),∞ ∩ B(R) of GL(2, R) coincides with χk,γ ,µ̄. Say φ is pure (of type κ) if φ∞
is isotypic for character κ (i.e., aκ ′ = 0 for κ ′ (= κ). For each κ as above, the unique
pure φ∞ of type κ with φ∞(1) = 1 is called a canonical automorphy factor, and is
denoted φκ . For exactly one κ (namely κ = k, in an appropriate normalization; cf.
[H2, §3]) φκ is a holomorphic automorphy factor; if φ is pure for this κ we call φ

holomorphic.



P1: GIG

PB440-13 HIDA-0662G PB440-Hida-v4.cls November 27, 2003 16:30

occult period invariants 345

Suppose k > 2. Then for any KGL(2),∞-finite function φ ∈ Ik,γ ,µ̄ we can define
an Eisenstein series Ek,γ ,µ̄(φ) on GL(2, Q)\GL(2, A) by the absolutely convergent
formula

Ek,γ ,µ̄(φ, g) =
∑

α∈B(Q)\GL(2,Q)

φ(αg).

When φ∞ is a holomorphic automorphy factor then Ek,γ ,µ̄(φ) is a holomorphic
Eisenstein series (of classical weight k); we denote it Ek,γ ,µ̄(φ f ) to stress that φ∞
is fixed. When k = 1, one can define a holomorphic Eisenstein series Ek,γ ,µ̄(φ) by
analytic continuation, and when k = 2 one can still define Ek,γ ,µ̄(φ) by analytic
continuation, provided µ̄ is a non-trivial character, which we will henceforth assume
for simplicity.

We say φ is arithmetic if φ∞ is pure of type κ with aκ ∈ Q, and if φ f takes values
in Q; we then say Ek,γ ,µ̄(φ) is arithmetic (though not necessarily holomorphic).
The following Lemma is a special case of the results used in §3 of [H2].

Lemma 3.4.3. Suppose φ is arithmetic and holomorphic. Then, with normaliza-
tions as in [H2], the normalized holomorphic Eisenstein series (2π i)

k+γ
2 Ek,γ ,µ̄(φ f )

corresponds, as in §1, to a Q-rational section of the line bundle F−k,−γ on
Sh(GL(2)).

Write k for the triple (k, γ1, µ̄1). For two pairs (k1, φ1) and (k2, φ2), with
k1 = (k, γ1, µ̄1), k2 = ((, γ1, µ̄1), we let Ek1,k2

(φ1, f , φ2, f ) denote the restriction
of Ek1

(φ1, f ) ⊗ Ek2
(φ2, f ) to H (A) ⊂ GL(2, A) × GL(2, A). For any pair (r1, r2) of

non-negative integers, we let

E (r1,r2)
k1,k2

(φ1, f , φ2, f ) = Dr1
k ⊗ Dr2

( Ek1,k2
(φ1, f , φ2, f ).

where Dr1
k and Dr2

( are the Maass operators on the first and second factors of
GL(2, A) × GL(2, A), respectively, normalized as in §1. Then E (r1,r2)

k1,k2
(φ1, f , φ2, f ) is

a (special value of a) real analytic Eisenstein series on H , which is nearly holo-
morphic in Shimura’s sense—in other words, is contained in a representation gen-
erated by holomorphic representation of classical weight (k + 2r1, ( + 2r2) in the
two variables. In any case, E (r1,r2)

k1,k2
(φ1, f , φ2, f ) belongs to a representation of H (A)

isomorphic to the restriction of I ndGL(2,A)
B(A) χk1

⊗ I ndGL(2,A)
B(A) χk2

, independent of the
choice of (r1, r2).

One can define arithmeticity for Eisenstein series on H (A) corresponding to
K H,∞-finite functions in (the restriction to H (A) of) Ik,γ1,µ̄1 ⊗ I(,γ2,µ̄2 ; holomorphy
has already been defined.

Corollary 3.4.4. Suppose φ1, f and φ2, f take values in Q. Then (2π i)r1+r2

E (r1,r2)
k1,k2

(φ1, f , φ2, f ) is arithmetic.
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This follows from standard formulas for the action of Maass operators on canon-
ical automorphy factors (cf. [S1]); the power of 2π i comes from our normalization
of these operators.

Let B ′ denote the upper triangular subgroup of H . The integral representation
(0.4) of L(s, M(π f ), µ), taking into account the shift (2.1), uses an Eisenstein series
E(h, &, µ, ν, s) induced from the character

χs,µ,ν

((

a1 b1

0 d1

)

,

(

a2 b2

0 d2

))

= µ(a1/d2) · |a1/d2|s−1 · ν−1
1 (d1)ν−1

2 (d2)(3.4.5)

of B ′(A), where we have the relation a1d1 = a2d2. Here µ, ν1, and ν2 are Hecke
characters of Q×\A×, satisfying the single relation

ν1 · ν2 = ξπ = ξπ,0 · | • |−c.(3.4.6)

We assume µ to be of finite order, as above, and write νi = νi,0 · |νi |, i = 1, 2,
where νi,0 is of finite order and |νi (t)| = |t |αi is a power of the norm; then (3.4.6)
implies α1 + α2 = −c. The argument & belongs to the space S(VA) of Schwartz-
Bruhat functions on VA, where V = (Q2)2 corresponding to the realization of H
as a subgroup of GL(2, Q2). In what follows, we let (xi , yi ), i = 1, 2, denote the
standard rational coordinates on V , so that the identity subgroup of the stabilizer T of
the quadratic form Q(v) = x2

1 + y2
1 + x2

2 + y2
2 , with v = ((x1, y1), (x2, y2)), is the

stabilizer of the point (i, i) in the product of two upper half-planes. The Schwartz-
Bruhat function &∞ defines a K H,∞-finite Eisenstein series E(h, &, µ, ν, s), for our
choice of K H,∞, provided it is of the form P(v)e−π Q(v), where P(v) is a polynomial
and e−π Q(v) is the standard Gaussian. More precisely, let IK denote A× × A×, as
in [PS], and define

f &(h; µ, ν, s) = µ(det h)| det h|s−1
∫

IK

&((0, t)h)|t1t2|s−1(3.4.7)

µ(t1t2)ν1(t1)ν2(t2) d×t

as in [PS, §5], where t = (t1, t2) ∈ A× × A× and | • | is the idèle norm; we have
incorporated the shift (2.1). It is then clear that &∞ = e−π Q(v) gives rise to a vector
fixed by the maximal compact subgroup K c

H,∞ of K H,∞. More generally, K H,∞
acts linearly on the space of polynomials on V (R), and if P(v) is isotypic for K H,∞
then &∞ = P(v)e−π Q(v) yields a vector isotypic of the same type (for K c

H,∞). We
let E(χs,µ,ν) denote the space of Eisenstein series of the form E(h, &, µ, ν, s).

We only consider Schwartz-Bruhat functions &(v1, v2) on V (A) = A2 ⊕ A2

that factor as &((v1, v2)) = &1(v1)&2(v2), and such that each &i factors as
∏

w &i,w

over the places of Q. It follows from (3.4.7) that

f &(1; µ, ν, s) =
∫

IK

&((0, t))|t1t2|s−1µ(t1t2)ν(t) d×t
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factors as a product of local Tate integrals
2

∏

i=1

∏

w

∫

Q×
w

&i,w (0, ti,w )|ti,w |s−1µ(ti,w )νi,w (ti,w ) d×ti,w

(3.4.8)

=
2

∏

i=1

∏

w∈S

Zw (&i,w , s, µi,w , νi,w ) · L S(s − 1, µ · νi ),

where S is a finite set of bad primes, including the archimedean primes, Zw (&i,w ,

s, µi,w , νi,w ) is just the local factor on the first line of (3.4.8), and L S(s − 1, µ · νi )
is the partial Dirichlet L-series.

(3.4.9). Set µ̄i = (µ · νi,0)−1, i = 1, 2. For any automorphic representation σ

of H (A) and any Hecke character ξ of A×, we write σ ⊗ ξ for σ ⊗ ξ ◦ λ. We fix
positive integers k and ( as above. Comparing (3.4.2) and (3.4.5), we obtain

Lemma 3.4.9.1. Let s = m. For any (r1, r2), E (r1,r2)
k1,k2

(φ1, f , φ2, f ) belongs to
E(χm,µ,ν) ⊗ µ−1 provided

m − 1 = k − α1 = ( − α2 = k + ( + γ1 + γ2

2
.(3.4.9.2)

Moreover, any holomorphic vector in E(χs,µ,ν) ⊗ µ−1 is of the form
Ek1,k2

(φ1, f , φ2, f ) for some choice of φ1, φ2.

The first part is a trivial computation, whereas the second part follows
from the fact that the holomorphic subspace of the archimedean component of
I nd H (A)

B ′(A)χm,µ,ν ⊗ µ−1 is of dimension one. Given s and ν, the weight (k, () of the
holomorphic vector is determined by (3.4.9.2), as is the sum γ1 + γ2; the individual
γi are only visible on GL(2) × GL(2), and not on the subgroup H .

More precisely, it follows from (3.4.6) and (3.4.9.2) that

γ1 + γ2 = −(α1 + α2) = c; α1 = k − ( − c
2

; α2 = ( − k − c
2

.(3.4.9.3)

This and the congruences

γ1 ≡ k (mod 2), γ1 ≡ ( (mod 2)(3.4.9.4)

are the only restrictions on our choices. In order to obtain nearly holomorphic
Eisenstein series, we also need to suppose (3.4.1), which is equivalent to

µ̄i,∞(−1) = (−1)γi .(3.4.9.5)

As the reader will verify, (3.4.9.5) is compatible with (3.4.6).
Say the (factorizable) Schwartz-Bruhat function

&((v1, v2)) =
2

∏

i=1

∏

w

&i,w (vi,w )

is arithmetic if &i,∞ is of the form Pi (vi )e−π Qi (v) with Pi a homogeneous polyno-
mial of fixed degree hi with Q coefficients, and if &i,w for finite primes w takes
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values in Q. It follows easily from (3.4.8), (3.4.9.5), and the classical formulas for
special (critical) values of Dirichlet L-functions that, if & is arithmetic, then there
is a constant c1

∞, depending only on µ∞, νi,∞, the hi , and m, such that the Eisen-
stein series E(h, &, µ, ν, m) is arithmetic, in the sense introduced above (3.4.3).
Indeed, c1

∞ can be taken to be an integral power of 2π i (more precisely, a product
of two integral powers of 2π i , one coming from the factors L S(m − 1, µνi ), the
other coming from the archimedean zeta integrals), which can easily be determined
explicitly. It’s pointless to be more precise, though, since our final result will involve
an archimedean zeta integral about which nothing is known.

Lemma 3.4.9.6. Suppose the Schwartz-Bruhat function & is arithmetic, and
suppose the Eisenstein series E(h, &, µ, ν, m) and E (r1,r2)

k1,k2
(φ1, f , φ2, f ) for some

pair of non-negative integers r1, r2 and (any) finite data φi, f are of the same K c
H,∞-

type. Then under (3.4.9.2), there is a constant c2
∞(m), depending only on µ∞, νi,∞,

the hi , and m, such that c2
∞(m)E(h, &, µ, ν, m) corresponds to the image under

Dr1
k ⊗ Dr2

( of a Q-rational section of the line bundle F(−k,−(,−c) on ShH .

Proof. An easy consequence of Lemma 3.4.9.1 and Corollary 3.4.4; the twist
by µ−1 in (3.4.9.1) has no effect on the rationality over Q. !

(3.5) The main theorem. (3.5.0) Hypotheses, recalled. As above, a > b > 0
is a pair of positive integers, E1

ρ the automorphic vector bundle on Sh associated
to the K∞-type with highest weight *1

ρ = (a, −b − 2, a + b), and π is a cuspidal
automorphic representation of G such that H 2

! (Sh, E1
ρ)[π f ] is of dimension one.

Let µ be a Hecke character of A×/Q× of finite order, and ν = (ν1, ν2) a pair of
Hecke characters of A×/Q×, satisfying the relation (3.4.6). Let β be a Q-isotropic
symmetric 2 × 2-matrix with non-zero determinant; we assume π admits a (β, ν)-
Bessel model. Various choices of ν will be made in the following discussion,
depending on the special value in question and the sign of µ. Finally, the integers
k, (, γ1, γ2, are chosen subject to the restrictions (3.4.9.3) and (3.4.9.4).

To motivate the main theorem, we first work it out in the special cases

µ(−1) = 1, a − b ≡ 0 (mod 4);(3.5.1(A))

µ(−1) = 1, a − b ≡ 2 (mod 4).(3.5.1(B))

In both cases c = a + b is even, so that ξ0,π = ν1,0 · ν2,0. Odd and even criti-
cal values are treated by two separate calculations: (i) k ≡ ( ≡ 1 (mod 2) and
(ii) k ≡ ( ≡ 2 (mod 2). In case A(i) or B(ii), we choose i = a+b

2 + 1, so that
a + 2 − i = i − b, i.e. the middle of the range considered in Proposition 1.10.3,
and choose k = ( and r1 = r2 subject to the hypotheses of that proposition.

1 ≤ k = ( ≤ a − b
2

+ 1, 2r1 = 2r2 = a − b
2

+ 1 − k.(3.5.1 A(i)/B(ii))
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In case A(ii), we choose i = a+b
2 , take k = ( and r2 = r1 − 1, so that

2 ≤ k = ( ≤ a − b
2

, 2r1 = 2r2 − 2 = a − b
2

− k.(3.5.1 A(ii)/B(i))

In case A(i)/B(ii) (resp. A(ii)/B(i)) we choose γ1 and γ2 odd (resp. even) subject
to (3.4.9.4), and we fix ν1 and ν2 satisfying (3.4.9.2) and (3.4.9.5); in any case the
weights αi are determined by (3.4.9.3). We let νodd (resp. νeven) denote the fixed
pair (ν1, ν2) in case A(i)/B(ii) (resp. A(ii)/B(i)). We define m by (3.4.9.2); then
corresponding to (3.5.1) we have

m = a + b
2

+ k + 1 = a + b
2

+ 2,
a + b

2
+ 4, . . . a + 2;(3.5.2 A(i)/B(ii))

m = a + b
2

+ k + 1 = a + b
2

+ 3,
a + b

2
+ 5, . . . a + 1.(3.5.2 A(ii)/B(i))

The union of these two sets is precisely the right half of the critical set for
L(s, M(π f , µ)), as determined in §2.

Assume & and f ∈ π satisfy the hypotheses of Lemma 3.4.9.6 and Proposi-
tion 1.10.3, respectively, with the choices of k, (, . . . as above. In particular, f
is identified with a class in H 2

cusp(Sh, E1
ρ) ⊗Q Q(π f ). Assume f = ⊗w fw is fac-

torizable, with fw in the (abstract) representation πw , as in the discussion preced-
ing (3.3), and write W f (g) =

∏

w W β,ν
fw

(gw ), where W f is the generalized “Bessel
function” of type (β, ν) defined by (3.1). The function W fw (gw ) can be defined as
(β,ν(πw (gw ) fw ), where (β,ν,w is a (fixed) Bessel functional on πw , as defined above.
Recall that f is of K∞-type (a + 3, −b − 1, c). This is the lowest K∞-type τπ∞ in
π∞, hence is of multiplicity one. Moreover, we have assumed f to be a weight vector
for T (R) with character (a + 2 − i, i − b, c), with the i just specified. The corre-
sponding weight subspace τπ∞(a + 2 − i, i − b, c) is of dimension one. We arbitrar-
ily choose a non-zero vector fπ∞(a + 2 − i, i − b, c) ∈ τπ∞(a + 2 − i, i − b, c),
and let W (a+2−i,i−b,c)

π∞
denote its image under the (also arbitrarily chosen) non-zero

(β, ν∞)-Bessel functional (β,ν,∞.
Now it follows as in [BHR] that the representations πp, for p finite, can all

be realized over Q. Moreover, the local Hecke characters νp take algebraic values.
It follows that the local Bessel functionals (β,ν,p can be chosen to take Q-rational
vectors in πw to functions W f p in C∞(G(Qp), Q). Recall that we have defined
H 2

cusp(Sh, E1
ρ) ⊗Q Q(π f ) ⊂ H 2

cusp(Sh, E2
ρ) ⊗Q Q following (1.6), and that it is iso-

morphic to π f . It then follows easily from the unicity of the Bessel model that:

Proposition 3.5.2. There exists a constant a(π, β, ν) ∈ C×, well-defined up to
Q

×
-multiples, such that the global Bessel functional f 3→ W f takes H 2

cusp(Sh, E1
ρ)

⊗QQ(π f )
∼−→ π f to the space of (β, ν)-Bessel functions on G(A) of the form

a(π, β, ν) · W (a+2−i,i−b,c)
π∞

⊗ Wπ f in

where Wπ f in (g f ) ∈ Q for all g f ∈ G(A f ).
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The constant a(π, β, ν) is the occult period invariant of the title. Under Hypoth-
esis (1.5) it depends only on π f . Using the argument that follows, one can show that
this remains true even without Hypothesis (1.5), provided there are non-vanishing
special values in the critical range.

We can now explain the Euler factorization in (0.5). For p /∈ S we have arranged
that &p as well as W f p are standard unramified data and the local zeta integral is
just the local Euler factor L p(s, M(π f , µ)) = L(s − 3

2 , πp, µ, r ). For p ∈ S finite
we have

Z p( f, &, µ, ν, s) =
∫

Np\Hp

W f p (h p)&p((0, 1)h p)µ(det h p)| det h p|s−1dh p.

(3.5.3)

Here Hp = H (Qp), Np = Nβ(Qp), with Nβ as in the introduction, and dh p is a
rational-valued Haar measure. The integral converges absolutely for Re(s) suf-
ficiently large, and extends analytically to a rational function of s, still denoted
Z p( f, &, µ, ν, s).

Lemma 3.5.4. Suppose &p is arithmetic and W f p takes algebraic values. Then
for any integer m, Z p( f, &, µ, ν, m) ∈ Q. Moreover, for an appropriate choice of
arithmetic data & and W f p we can arrange that Z p( f, &, µ, ν, m) ∈ Q

×
.

Proof. The first assertion is proved by in [H2, Lemma 3.4.2]. The non-vanishing
of the local zeta integral at m for some (not necessarily arithmetic) choice of data is
implicit in Proposition 3.2 of [PS], and is proved by standard arguments. Since the
arithmetic data define Q-structures on the Schwartz-Bruhat and Bessel spaces, and
since the zeta integral is bilinear as a function of W f p and &p, the second assertion
then follows from the first. !

Finally, we let

Z∞( f, &, µ, ν, s) =
∫

Nβ (R)\H (R)
W (a+2−i,i−b,c)

π∞
(h∞)&∞((0, 1)h∞)(3.5.5)

µ(det h∞)| det h∞|s−1dh∞.

With these choices, the Euler product in the form (0.5) follows from Proposition
3.5.2.

Combining (1.10.3), (3.4.9.6), (3.5.2), (3.5.4), and (0.5), we obtain our main
theorem:

Theorem 3.5.5. Let m be in the right-hand half of the critical set of the
L-function L(s, M(π f , µ)). Suppose µ(−1) = 1 and c = a + b is even. There is a
constant c3

∞(m) ∈ C×, well defined up to Q
×

-multiples, with the following property.
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In case A(i)/B(ii), for m in the list (3.5.2) A(i)/B(ii), we have
(

c3
∞(m)

)−1a(π, β, νodd)Z∞( f, &, µ, νodd, m)L(m, M(π f , µ)) ∈ Q.

In case A(ii)/B(i), for m in the list (3.5.2) A(ii)/B(i), we have
(

c3
∞(m)

)−1a(π, β, νeven)Z∞( f, &, µ, νodd, m)L(m, M(π f , µ)) ∈ Q.

We have incorporated the constant c(dh) of Proposition 1.10.3 into our new
constant c3

∞(m).

Remarks. Note that this theorem is roughly compatible with Deligne’s con-
jecture, in that, up to the “elementary factor” (c3

∞(m))−1 Z∞( f, &, µ, ν∗, m), the
special value is determined by the parity of m. Here and below ∗ denotes “odd” or
“even”. Of course this theorem is vacuous if (3.3.3) fails for all ν satisfying (3.4.9.4)
and (3.4.9.5). Even if the appropriate Bessel model exists, the theorem is still vac-
uous if our normalized archimedean zeta factor Z∞( f, &, µ, ν∗, m) vanishes. It
should not be too difficult to determine at least whether the non-holomorphic dis-
crete series π∞ has non-vanishing (β, ν∞) Bessel models, and then the calculation
of the archimedean zeta factor should not be too taxing. We suspect the theorem
is not vacuous, because of the formal fit with Deligne’s conjecture, but we have
not carried out the necessary archimedean calculations, and we have nothing to say
about the global hypothesis (3.3.3).

The product a(π, β, ν∗)Z∞( f, &, µ, ν∗, m) does not depend on the choice of
the vector W (a+2−i,i−b,c)

π∞
(of given K∞ and T -type) in the (β, ν∞)-subspace, but

one expects there is a natural choice for which Z∞( f, &, µ, ν∗, m) is an algebraic
multiple of some power of π for the indicated values of m. Then a(π, β, ν∗) should
be directly related to c±(M(π f )), where the relation of ∗ to ± depends on the parity
of a+b

2 .

(3.5.6) The remaining cases. We now assume c = a + b odd, so w = c + 3
is even. As above, we distinguish two cases:

µ(−1) = 1, a − b ≡ 1 (mod 4);(3.5.6.1(C))

µ(−1) = 1, a − b ≡ 3 (mod 4).(3.5.6.1(D))

It is then natural to choose i = a+b+3
2 , so that a + 2 − i = i − b − 1, one of two

points closest to the middle of the range of Proposition 1.10.3. Then k and (

necessarily have opposite parity: k is odd in case (C) and even in case (D). Again
there are two calculations, according as (i) k = ( − 1 or (ii) k = ( + 1. We have

(k, () = (1, 2), (3, 4), . . . ,
(

a − b + 1
2

,
a − b + 3

2

)

,(3.5.6.1C(i))

2r1 = 2r2 = a − b + 1
2

− k;
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(k, () = (2, 3), (4, 5), . . . ,
(

a − b + 1
2

,
a − b + 3

2

)

,(3.5.6.1D(i))

2r1 = 2r2 = a − b + 1
2

+ 1 − k;

(k, () = (3, 2), (5, 4), . . . ,
(

a − b + 1
2

,
a − b − 1

2

)

,(3.5.6.1C(ii))

2r1 = 2r2 − 2 = a − b + 1
2

− k;

(k, () = (2, 1), (4, 3), . . . ,
(

a − b + 1
2

,
a − b − 1

2

)

,(3.5.6.1D(ii))

2r1 = 2r2 − 2 = a − b + 1
2

+ 1 − k.

In case C(i)/D(i) (resp. C(ii)/D(ii)) we have (α1, α2) = (−1−c
2 , 1−c

2 ) (resp. (α1, α2) =
( 1−c

2 , −1−c
2 )). We fix ν consistent with these values of αi and satisfying (3.4.9.5),

as before, and denote them ν(i) and ν(i i), respectively. Defining m by (3.4.9.2), we
obtain

m = k + 1 − α1 = a + b + 3
2

+ 1,
a + b + 3

2
+ 4, . . . , a + 2;(3.5.6.2C(i))

m = a + b + 3
2

+ 2,
a + b + 3

2
+ 5, . . . , a + 2;(3.5.6.2D(i))

m = a + b + 3
2

+ 2, . . . , a + 1;(3.5.6.2C(ii))

m = a + b + 3
2

+ 1, . . . , a + 1;(3.5.6.2D(ii))

The analogue of Proposition 3.5.2 remains true, under the hypotheses (3.3), and we
conclude

Theorem 3.5.7. Let m be in the right-hand half of the critical set of the
L-function L(s, M(π f , µ)). Suppose µ(−1) = 1 and c = a + b is odd. In case
C(i)/D(i), for m in the corresponding lists (3.5.6.2), we have

(

c3
∞(m)

)−1a(π, β, ν(i))Z∞( f, &, µ, ν(i), m)L(m, M(π f , µ)) ∈ Q.

In case C(ii)/D(ii), for m in the corresponding lists (3.5.6.2), we have
(

c3
∞(m)

)−1a(π, β, ν(i i))Z∞( f, &, µ, ν(i i), m)L(m, M(π f , µ)) ∈ Q.
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(3.6) Period relations and the case µ(−1) = −1. We note first that The-
orems 3.5.5 and 3.5.6.3 make no reference to the finite part of the character ν.
In other words, assuming there are non-vanishing special values, we can write
a(π, β, ν) = a(π, β, ν∞) for the ν∞ in question, which in turn is determined by
the signs of µ̄i/µ and the pair (α1, α2). Presumably there are refinements, in which
a(π, β, ν) is determined up to Q rather than Q, which would be sensitive to the
full character ν. Finally, for the critical values corresponding to Eisenstein series of
weight 2 we have made the assumption that µ̄ is nontrivial; this places an implicit
restriction on the choice of ν.

We have chosen to assume |k − (| ≤ 2, with i close to the center of the avail-
able range, in order to cover the largest possible number of special values. This
choice determines ν∞ via (3.4.9.2) and (3.4.9.5). However, we can repeat the above
argument, using other values of i , or using other sequences of pairs (k, () satisfying
the appropriate congruence conditions. For example, in case A(ii)/B(i) we can take
( = k + 2. This leads to a different value for ν∞, hence to a relation between the
corresponding a(π, β, ν) (assuming they do not vanish). We have no interpretation
to propose for this phenomenon.

The characters ν∞ used in cases A(i)/B(ii) and in A(ii)/B(i) differ only in the
signs. In both cases k = ( and α1 = α2 = − c

2 ; however νi,∞(−1) = −1 in cases
(A(i)/B(ii)), whereas νi,∞(−1) = 1 in cases A(ii)/B(i). Now suppose µ(−1) = −1.
Then (3.4.9.5) requires that the signs change; i.e. that νi,∞(−1) = 1 (resp. = −1)
in cases A(i)/B(ii) (resp. in cases A(ii)/B(i)). We leave it to the reader to verify,
using (2.5), that this is completely consistent with what is predicted by Deligne’s
conjecture, and to check the cases (C) and (D).

UFR de Mathématique, Université Paris 7, 2 Pl. Jussieu
75251 Paris cedex 05 FRANCE
Institut de Mathématiques de Jussieu, U.M.R. 7586 du CNRS. Membre,
Institut Universitaire de France
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CHAPTER 14

ON A CONJECTURE OF JACQUET

By Michael Harris and Stephen S. Kudla

For Joe Shalika, with our admiration and appreciation

0. Introduction. Let k be a number field and let πi , i = 1, 2, 3, be cuspidal
automorphic representations of GL2(A) such that the product of their central char-
acters is trivial. Jacquet then conjectured that the central value L( 1

2 , π1 ⊗ π2 ⊗ π3)
of the triple product L–function is nonzero if and only if there exists a quaternion
algebra B over k and automorphic forms f B

i ∈ π B
i such that the integral

I
(

f B
1 , f B

2 , f B
3

)

=
∫

Z (A)B×(k)\B×(A)
f B
1 (b) f B

2 (b) f B
3 (b) d×b $= 0,(0.1)

where π B
i is the representation of B×(A) corresponding to πi via the Jacquet-

Langlands correspondence.
In a previous paper [4], we proved this conjecture in the special case where

k = Q and the πi ’s correspond to a triple of holomorphic newforms. Our method
was based on a combination of the Garrett, Piatetski-Shapiro, Rallis integral rep-
resentation of the triple product L-function with the extended Siegel-Weil formula
and the seesaw identity. The restriction to holomorphic newforms over Q arose from
(i) the need to invoke the Ramanujan Conjecture to control the poles of some bad
local factors and (ii) the use of a version of the Siegel-Weil formula for similitudes.
In this note, we show that, thanks to the recent improvement on the Ramanujan
bound due to Kim-Shahidi [11], together with a slight variation in the setup of
(ii), our method yields Jacquet’s conjecture in general.

Since the exposition in [4] was specialized from the start to the case of interest
for certain arithmetic applications, we will briefly sketch the method in general in
the first few sections. We then prove the facts required about the extended Siegel-
Weil formula.

Several authors have considered interpretations of the vanishing of the central
value L( 1

2 , π1 ⊗ π2 ⊗ π3). Here we mention only the work of Dihua Jiang, [9],
who gave an intriguing relation with a period of an Eisenstein series on G2 and the
recent Princeton thesis of Thomas Watson, [26], who applies these central values
to problems in “quantum chaos.”

Acknowledgments. The authors would like to thank the IHP in Paris where this
project was realized during the special program on “geometric aspects of auto-
morphic forms” in June of 2000. We also thank the referee for helpful comments,
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and in particular for reminding us that the completion of the proof of Proposition
5.3 made implicit use of recent results of Loke [16].

1. The integral representation of the triple product L-function. Let G =
GSp6 be the group of similitudes of the standard 6-dimensional symplectic vector
space over k, and let P = MN be the Siegel parabolic subgroup of G. For a ∈ GL3,
b ∈ Sym3 and ν a scalar, let

m(a) =
(

a
ta−1

)

, n(b) =
(

1 b
1

)

, and d(ν) =
(

1
ν

)

∈ G.(1.1)

Let KG = KG,∞ · KG, f be the standard maximal compact subgroup of G(A). For
s ∈ C, let λs be the character of P(A) defined by

λs(d(ν)n(b)m(a)) = |ν|−3s | det (a)|2s .(1.2)

Let I (s) = I G
P (λs) be the normalized induced representation of G(A), consisting of

all smooth KG-finite functions $s on G(A) such that

$s(d(ν)n(b)m(a)g, s) = |ν|−3s−3 | det (a)|2s+2 $s(g).(1.3)

The Eisenstein series associated to a section $s ∈ I (s) is defined for Re (s) > 2 by

E(g, s, $s) =
∑

γ∈P(k)\G(k)

$s(γ g),(1.4)

and the normalized Eisenstein series is

E∗(g, s, $s) = bG(s) · E(g, s, $s),(1.5)

where bG(s) = ζk(2s + 2) ζk(4s + 2), as in [17]. Note that the central character of
E(g, s, $s) is trivial. These functions have meromorphic analytic continuations to
the whole s-plane and have no poles on the unitary axis Re (s) = 0. In particular,
the map

E∗(0) : I (0) −→ A(G), $0 )→ (g )→ E∗(g, 0, $s))(1.6)

gives a (g∞, KG,∞) × G(A f )–intertwining map from the induced representation
I (0) at s = 0 to the space of automorphic forms on G with trivial central character.

Let

G = (GL2 × GL2 × GL2)0(1.7)

=
{

(g1, g2, g3) ∈ (GL2)3 | det (g1) = det (g2) = det (g3)
}

.

This group embeds diagonally in G = GSp6. For automorphic forms fi ∈ πi , i = 1,
2, 3, let F = f1 ⊗ f2 ⊗ f3 be the corresponding function on G(A). The global zeta
integral [17] is given by

Z (s, F, $s) =
∫

ZG (A)G(k)\G(A)
E∗(g, s, $s) F(g) dg.(1.8)
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Suppose that the automorphic forms fi ∈ πi have factorizable Whittaker functions
W ψ

i = ⊗v W ψ
i,v and that the section $s is factorizable. Let S be a finite set of places

of k, including all archimedean places, such that, for v /∈ S,

(i) the fixed additive character ψ of A/k has conductor Ok,v at v .

(ii) πi,v is unramified, fi is fixed under Kv = GL2(Ok,v ), and W ψ
i,v (e) = 1.

(iii) $s,v is right invariant under G(Ok,v ) = KG,v and $s,v (e) = 1.

Then

Z (s, F, $s) = L S
(

s + 1
2
, π1 ⊗ π2 ⊗ π3

)

·
∏

v∈S

Zv (s, W ψ
v , $s,v ),(1.9)

for local zeta integrals Zv (s, W ψ
v , $s,v ), where W ψ

v = W ψ
1,v ⊗ W ψ

2,v ⊗ W ψ
3,v . Here

Z (s, W ψ
v , $s,v ) =

∫

ZG (kv )M(kv )\G(kv )
$s,v (δ g) W ψ

v (g) dg,(1.10)

where δ ∈ G(k) is a representative for the open orbit of G in P\G, cf. for example
[2], and

M =
{( (

1 x1

1

)

,

(

1 x2

1

)

,

(

1 x3

1

) )

∈ G | x1 + x2 + x3 = 0
}

.(1.11)

Here L S(s, π1 ⊗ π2 ⊗ π3) is the triple product L-functions with the factors for
v ∈ S omitted.

2. Local zeta integrals. In this section, we record some consequences of
recent results of Kim and Shahidi [11] on the Ramanujan estimate for the πi ’s.
We begin by recalling relevant aspects of the local theory of the triple product, as
recently completed by Ikeda and Ramakrishnan. In the following proposition by
“local Euler factor” at a finite place v of kwe mean a function of the form P(q−s

v )−1,
where P is a polynomial, P(0) = 1, and qv is the order of the residue field; at
an archimedean field we mean a finite product of Tate’s local Euler factors for
GL(1).

Proposition 2.1. Let v be a place of k and let πi,v , i = 1, 2, 3, be a triple of
admissible irreducible representations of GL(2,kv ) that arise as local components
at v of cuspidal automorphic representations πi .

(i) There exists a local Euler factor L(s, π1,v ⊗ π2,v ⊗ π3,v ) such that, for any
local data (W ψ

v , $s,v ), the quotient

Z̃v
(

s, W ψ
v , $s,v

)

= Zv
(

s, W ψ
v , $s,v

)

· L
(

s + 1
2
, π1,v ⊗ π2,v ⊗ π3,v

)−1

is entire as a function of s.
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(ii) Let σi,v , i = 1, 2, 3, be the representations of the Weil-Deligne group of kv

associated to πi,v by the local Langlands correspondence. Then

L(s, π1,v ⊗ π2,v ⊗ π3,v ) = L(s, σ1,v ⊗ σ2,v ⊗ σ3,v ).

(iii) For any finite place v, there is a local section $s,v and a Whittaker function
W ψ

v = W ψ
1,v ⊗ W ψ

2,v ⊗ W ψ
3,v , such that

Z
(

s, $s,v , W ψ
v

)

≡ 1.

(iv) For any archimedean place v, there exists a finite collection of Whittaker
functions W ψ, j

v and of sections $
j
s,v , holomorphic in a neighborhood of s = 0 such

that
∑

j

Z
(

0, $ j
s,v , W ψ, j

v

)

= 1.

Proof. For v nonarchimedean, assertion (i) is proved in §3, Appendix 3, of
[17]; see [7], p. 227 for a concise statement. For v real or complex, (i) and (ii)
were proved in several steps by Ikeda, of which the crucial one is [8], Theorem
1.10. Assertion (ii) in general is due to Ramakrishnan, [21], Theorem 4.4.1. For
the moment, the hypothesis that the πi,v embed in global cuspidal representations
seems to be necessary.

Assertions (iii) and (iv) are contained in Proposition 3.3 of [17]. !

Proposition 2.2. (i) For any triple πi of cusp forms for GL2 over k, and for
any place v, the local Langlands L-factor L(s, π1,v ⊗ π2,v ⊗ π3,v ) is holomorphic
at s = 1

2 .
(ii) For any place v, for any triple of Whittaker functions W ψ

i,v in the Whittaker
spaces of πi,v , and for any section $s,v ∈ Iv (s), holomorphic in a neighborhood of
s = 0, the local zeta integral Z (s, W ψ

v , Ps,v ) is holomorphic in a neighborhood of
s = 0.

Proof. This follows from the results of Kim and Shahidi. We sketch the simple
argument, quoting the proof of Proposition 3.3.2 of [21]. Let σi,v correspond to πi,v

as in the previous proposition. For the present purposes we can assume each πi to
be unitary. Indeed, this can be arranged by twisting πi by a (unique) character of
the form | · |ai , where | · | is the idèle norm and ai ∈ C. Since the product of the
central characters of πi is trivial, we have a1 + a2 + a3 = 0, so the triple product
L-factor is left unaffected.

To each πi,v , necessarily generic and now assumed unitary, we can assign an
index λi,v which measures the failure of πi,v to be tempered; we have λi,v = t if πi,v

is a complementary series attached to (µ| · |t , µ| · |−t ) with t > 0 and µ unitary,
λi,v = 0 otherwise. Then, according to [21], (3.3.10),

L(s, π1,v ⊗ π2,v ⊗ π3,v )(2.1)

is holomophic for Re (s) > λ(π1,v ) + λ(π2,v ) + λ(π3,v ).
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Now (i) follows from (2.1) and the Kim-Shahidi estimate λ(πi,v ) < 5
34 for all i and

all v [11], whereas (ii) follows from (i), and Proposition 2.1 (i) and (ii). !

By (1.8), (1.9), and the holomorphy of E∗(g, s, $) on the unitary axis, the
expression

L S

(

s + 1
2
, π1 ⊗ π2 ⊗ π3

)

·
∏

v∈S

Zv (s, F, $s,v )(2.2)

=
∫

ZG (A)G(k)\G(A) E∗(g, s, $s) F(g) dg

is holomorphic at s = 0 for all choices of data F and $s . By varying the data
for places in S and applying (iii) and (iv) of Proposition 2.1, it follows that the
partial Euler product L S(s + 1

2 , π1 ⊗ π2 ⊗ π3) is holomorphic at s = 0. By (i) of
Proposition 2.2, the Euler product L(s + 1

2 , π1 ⊗ π2 ⊗ π3) over all finite places is
holomorphic at s = 0, and we obtain the identity

L
(

1
2
, π1 ⊗ π2 ⊗ π3

)

·
∏

v∈S

Z∗
v

(

0, W ψ
v , $s,v

)

(2.3)

=
∫

ZG (A)G(k)\G(A) E∗(g, 0, $s) F(g) dg

where

Z∗
v

(

s, W ψ
v , $s,v

)

=
{

Z̃v
(

s, W ψ
v , $s,v

)

if v ∈ S f ,

Zv
(

s, W ψ
v , $s,v

)

if v ∈ S∞.
(2.4)

Corollary 2.3. L( 1
2 , π1 ⊗ π2 ⊗ π3) = 0 if and only if

∫

ZG (A)G(k)\G(A)
E∗(g, 0, $s) F(g) dg = 0,

for all choices of F ∈ * = π1 ⊗ π2 ⊗ π3 and $s ∈ I (s).

Of course, relation (2.3) gives a formula for L( 1
2 , π1 ⊗ π2 ⊗ π3) for a suitable

choice of F and $s .

3. The Weil representation for similitudes. The material of this section is
a slight variation on that of section 5 of [3]. We consider only the case of the dual
pair (GO(V ), GSp6) where the space V has square discriminant.

Let B be a quaternion algebra over k (including the possibility B = M2(k)),
and let V = B be a 4-dimensional quadratic space over k where the quadratic form
is given by Q(x) = α νB(x), where νB is the reduced norm on B and α ∈ k×. Note
that the isomorphism class of V is determined by B and the sign of α at the set
,∞(B) of real archimedean places of k at which B is division. Let H = GO(V )
and let H1 = O(V ) be the kernel of the scale map ν : H → Gm . Let G = GSp6,
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and let G1 = Sp6 be the kernel of the scale map ν : G → Gm . We want to extend
the standard Weil representation ω = ωψ of H1(A) × G1(A) on the Schwartz space
S(V (A)3). First, there is a natural action of H (A) on S(V (A)3) given by

L(h)ϕ(x) = |ν(h)|−3 ϕ(h−1x).(3.1)

For g1 ∈ G1(A) one has

L(h)ω(g1)L(h)−1 = ω(d(ν)g1d(ν)−1),(3.2)

where ν = ν(h), and d(ν) is as in section 1. Therefore, one obtains a representation
of the semidirect product H (A) ! G1(A) on S(V (A)3). Let

R = {(h, g) ∈ H × G | ν(h) = ν(g)}.(3.3)

Then there is an isomorphism

R −→ H ! G1, (h, g) )→ (h, d(ν(g))−1g) = (h, g1),(3.4)

(this defines a map g )→ g1) and a representation of R(A) on S(V (A)3) given by

ω(h, g)ϕ(x) = (L(h)ω(g1)ϕ)(x) = |ν(h)|−3(ω(g1)ϕ)(h−1x).(3.5)

The theta distribution / on S(V (A)3) is invariant under R(k), since, for (h, g) ∈
R(k),

/(ω(h, g)ϕ) =
∑

x∈V (k)3

|ν(h)|−3(ω(g1)ϕ)(h−1x)(3.6)

=
∑

x∈V (k)3

(ω(g1)ϕ)(x)

= /(ω(g1)ϕ) = /(ϕ),

since g1 ∈ G1(k). The theta kernel, defined for (h, g) ∈ R(A) by

θ (h, g; ϕ) =
∑

x∈V (k)3

ω(h, g)ϕ(x),(3.7)

is thus left R(k) invariant.

Remark 3.1. Aside from a shift in notation, the convention here is essentially
the same as in section 5 of [3] and section 3 of [4], except that we take pairs (h, g)
here versus (g, h) there. Compare (3.5) above with (5.1.5) of [3]. It turns out that
this seemingly slight shift in convention will be crucial for the extension of the
Siegel-Weil formula to similitudes, as we will see below.

Note that the set of archimedean places ,∞(B) introduced above is the set
of all real archimedean places of k at which V is definite (positive or negative).
Then,

G(A)+: = {g ∈ G(A) | ν(g) ∈ ν(H (A))}(3.8)

= {g ∈ G(A) | ν(g)v > 0, ∀v ∈ ,∞(B)}.
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For g ∈ G(A)+, and ϕ ∈ S(V (A)3), and for V anisotropic over k, i.e., for B $=
M2(k), the theta integral is defined by

I (g, ϕ) =
∫

H1(k)\H1(A)
θ (h1h, g; ϕ) dh1,(3.9)

where h ∈ H (A) with ν(h) = ν(g). It does not depend on the choice of h.
In the case B = M2(k), the theta integral must be defined by regularization.

If k has a real place, the procedure outlined on p. 621 of [4], [15], using a certain
differential operator to kill support, can be applied. An analogous procedure using
an element of the Bernstein center can be applied at a nonarchimedean place, [25].
We omit the details.

Lemma 3.2. (i) (Eichler’s norm Theorem) If α ∈ ν(H (A)) ∩ k×, then there
exists an element h ∈ H (k) with ν(h) = α.

(ii) The theta integral is left invariant under G(A)+ ∩ G(k).
(iii) The theta integral has trivial central character, i.e., for z ∈ ZG(A) ⊂

G(A)+, I (zg, ϕ) = I (g, ϕ).

Proof. (i) is a standard characterization of ν(H (k)) in the present case. To check
(ii), given γ ∈ G(A)+ ∩ G(k), choose γ ′ ∈ H (k) with ν(γ ′) = ν(γ ). Then

I (γ g, ϕ) =
∫

H1(k)\H1(A)
θ (h1γ

′h, γ g; ϕ) dh1

=
∫

H1(k)\H1(A)
θ (γ ′h1h, γ g; ϕ) dh1(3.10)

= I (g, ϕ),

via the left invariance of the theta kernel under (γ ′, γ ) ∈ R(k). Here, in the next
to last step, we have conjugated the domain of integration H1(k)\H1(A) by the
element γ ′ ∈ H (k).

Finally, the proof of (iii) is just like that of Lemma 5.1.9 (ii) in [3]. !

Since G(A) = G(k)G(A)+, it follows that I (g, ϕ) has a unique extension to a left
G(k)-invariant function on G(A). Moreover, for any g0 ∈ G(A)+, we have

I (gg0, ϕ) = I (g, ω(h0, g0)ϕ),(3.11)

where h0 ∈ H (A) with ν(h0) = ν(g0). In particular, if h1 ∈ H1(A), then

I (g, ω(h1)ϕ) = I (g, ϕ).(3.12)

4. The Siegel-Weil formula for (GO(V),GSp6). First we recall the Siegel-
Weil formula for (O(V ), Sp6). The results of [15] on the regularized Siegel-Weil
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formula were formulated over a totally real number field, since, at a number of
points, we needed facts about degenerate principal series, intertwining operators,
etc. which had not been checked for complex places. The proof in the case of
the central value of the Siegel-Eisenstein series is simpler than the general case,
and the additional facts needed at complex places are easy to check. In the rest of
this section, we will state the results for an arbitrary number field k. A sketch of
the proof of Theorem 4.1 below for such a field k will be given in the Appendix
below.

Let I1(s) = I G1
P1

(λs) be the global induced representation of G1(A) = Sp6(A)
induced from the restriction of the character λs of P(A) to P1(A) = P(A)∩
G1(A).

For a global quadratic space V of dimension 4 over k associated to a quaternion
algebra B, as in the previous section, there is a (g1,∞, KG1,∞) × G1(A f )-equivariant
map

S(V (A)3) −→ I1(0), ϕ )→ [ϕ],(4.1)

where

[ϕ](g1) = (ω(g1)ϕ)(0).(4.2)

The image, *1(V ), is an irreducible summand of the unitarizable induced re-
presentation I1(0). By the results of Rallis [19], Kudla-Rallis [14], [13], and the
appendix,

*1(V ) / S(V (A)3)O(V )(A),(4.3)

the space of H1(A) = O(V )(A)-coinvariants. One then has a decomposition

I1(0) = (⊕V *1(V )) ⊕ (⊕V*1(V)),(4.4)

into irreducible representations of G1(A), as V runs over the isomorphism classes
of such spaces and as V runs over the incoherent collections, obtained by switching
one local component of a *1(V ), cf. [12].

The Siegel-Weil formula of [4], asserts the following in the present case.

Theorem 4.1. (i) The (g1,∞, KG1,∞) × G1(A f )-intertwining map

E1(0) : I1(0) −→ A(G1), $0 )→ (g1 )→ E(g1, 0, $s))

has kernel ⊕V*1(V).
(ii) For a section $s ∈ I1(s) with $0 = [ϕ] for some ϕ ∈ S(V (A)3),

(SW) E(g1, 0, $s) = 2 I (g1, ϕ),

for the theta integral as defined in §3.
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As explained in the previous section, the theta integral can be extended to an
automorphic form on G(A). We will see presently that it coincides with an Eisenstein
series on G(A).

Restriction of functions from G(A) to G1(A) yields an isomorphism I (s)
∼→

I1(s), which is intertwining for the right action of G1(A). Here I (s) is the induced
representation of G(A) defined in section 1. The inverse map is given by $s )→ $∼

s
where

$∼
s (g) = |ν(g)|−3s−3$s(g1),(4.5)

for g1 = d(ν(g))−1g, as above. The decomposition (4.4) into G1(A)-irreducibles
yields a decomposition

I (0) = (⊕B*(B)) ⊕ (⊕B*(B)),(4.6)

into irreducible representations of G(A), where, for a global quaternion algebra B
over k,

*(B) = ⊕V *(V )(4.7)

where V runs over the non-isomorphic spaces associated to B (i.e., different multi-
ples of the norm form) and *(V ) denotes the image of *1(V ) under the inverse of
the restriction isomorphism. Note that there are 2|,∞(B)| such V ’s. In effect, at a real
archimedean place v , the local induced representation I (0)v has a decomposition
into irreducible (g1,v , KG1,v )-modules

I (0)v = *(4, 0)v ⊕ *(2, 2)v ⊕ *(0, 4)v(4.8)

according to signatures. The space *(2, 2)v is actually stable under (gv , KG,v ), as
is the sum *(4, 0)v ⊕ *(0, 4)v , and

*(B)v =
{

*(2, 2)v if Bv / M2(R).
*(4, 0)v ⊕ *(0, 4)v if Bv is division.

(4.9)

The summands *(B) are defined similarly.

Theorem 4.2. (i) The (g∞, KG,∞) × G(A f )-intertwining map

E(0) : I (0) −→ A(G), $s )→ (g )→ E(g, 0, $s))

has kernel ⊕B*(B).
(ii) For a section $s ∈ I (s) with $0 ∈ *(V ) so that $0 = [ϕ]∼ for some ϕ ∈

S(V (A)3),

(GSW) E(g, 0, $s) = 2 I (g, ϕ),

for the theta integral as defined in §3.
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Proof. For g0 ∈ G(A f ), we have

E(gg0, s, $s) = E(g, s, rs(g0)$s),(4.10)

where rs denotes the action in the induced representation I (s) by right translation.
Taking the value at s = 0, we obtain

E(gg0, 0, $s) = E(g, 0, rs(g0)$s).(4.11)

Note that this value depends only on $0 and r0(g0)$0.

Lemma 4.3. For ϕ ∈ S(V (A)3), let [ϕ] ∈ I1(0) be defined by (4.2) and let [ϕ]∼

be the corresponding function in I (0) under the inverse of the restriction isomor-
phism.

(i) For g ∈ G(A)+,

[ϕ]∼(g) = (ω(h, g)ϕ)(0),

where h ∈ G O(V )(A) with ν(h) = ν(g).
(ii) For g0 ∈ G(A f ),

r0(g0)[ϕ]∼ = [ω(h0, g0)ϕ]∼,

where h0 ∈ G O(V )(A f ) with ν(h0) = ν(g0).

Proof. For (i), we have

[ϕ]∼(g) = [ϕ]∼(d(ν)g1)

= |ν|−3[ϕ](g1)

= |ν|−3(ω(g1)ϕ)(0)(4.12)

= (L(h)ω(g1)ϕ)(0)

= (ω(h, g)ϕ)(0).

For (ii),

(r0(g0)[ϕ]∼)(g) = |ν|−3[ϕ]∼(g1g0)

= |ν|−3(ω(h0, g1g0)ϕ)(0)

= |ν|−3(ω(g1)ω(h0, g0)ϕ)(0)(4.13)

= |ν|−3[ω(h0, g0)ϕ](g1)

= [ω(h0, g0)ϕ]∼(g).

Thus, if $0 = [ϕ]∼, then r0(g0)$0 = [ω(h0, g0)ϕ]∼. Since
G(A) = G(k)ZG(A)G1 (A)G(A f ), we have, by (4.11),

E(g, 0, $s) = E(γ zg1g0, 0, $s)(4.14)

= E(g1, 0, rs(g0) $s),
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the value at g1 of the Siegel-Eisenstein series attached to ω(h0, g0)ϕ ∈ S(V (A)3).
On the other hand, by (3.11),

I (g, ϕ) = I (γ zg1g0, ϕ)(4.15)

= I (g1, ω(h0, g0) ϕ).

Thus (GSW) follows from (SW). !

5. Proof of Jacquet’s conjecture. Applying the Siegel-Weil formula for
similitudes to the basic identity (2.3), we obtain

L
(

1
2
, π1 ⊗ π2 ⊗ π3

)

· Z∗(F, $)

=
∫

ZG(A)G(k)\G(A)
E∗(g, 0, $s) F(g) dg(5.1)

= 2ζk(2)2
∑

V

∫

ZG(A)G(k)\G(A)
I (g, ϕV ) F(g) dg

where

Z∗(F, $) =
∏

v∈S

Z∗
v

(

0, W ψ
v , $s,v

)

,(5.2)

and where ϕV ∈ S(V (A)3), and, in fact, only a finite set of V ’s occurs in the sum.
More precisely, in the decomposition (4.6),

$0 =
∑

V

[ϕV ]∼ + terms in the *(B)’s ∈ I (0),(5.3)

where the quaternion algebras B associated to V ’s are split outside the set S, due
to condition (iii) in the definition of S in section 1. We thus have the following
reformulation of Corollary 2.3, generalizing Proposition 5.6 of [4]:

Corollary 5.1. L( 1
2 , π1 ⊗ π2 ⊗ π3) = 0 if and only if
∫

ZG(A)G(k)\G(A)
I (g, ϕV ) F(g) dg

vanishes for all choices of F ∈ * = π1 ⊗ π2 ⊗ π3, all choices of quadratic spaces
V attached to quaternion algebras B over k, and all choices of ϕV ∈ S(V (A)3).

Now consider the integral in the last line of (5.1) for a fixed ϕ = ϕV . To apply the
seesaw identity, we set

H = GO(V )

H = {(h1, h2, h3) ∈ H 3 | ν(h1) = ν(h2) = ν(h3)},
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R = {(h, g) ∈ H × G | ν(h) = ν(g)}(5.4)

R0 = {(h, g) ∈ H × G | ν(h) = ν(g)},

and hence have the seesaw pair:

I (·, ϕ; F) (GO(V )3)0 = H G = GSp6 I (·, ϕ)
↑ ↖ ↗ ↑
| ↙ ↘ |

11 GO(V ) = H G =
(

GL3
2

)

0 F.

(5.5)

There are representations of both R(A) and R(A) on S(V (A)3), and the restriction
of these representations to the common subgroup R0(A) coincide.

For F a cuspidal automorphic form on G(A) and for h ∈ H(A), let

I (h, ϕ; F) =
∫

G1(k)\G1(A)
θ(h, g1g; ϕ) F(g1g) dg1,(5.6)

where g ∈ G(A) with ν(g) = ν(h).

Lemma 5.2. (Seesaw identity)
∫

ZG (A)G(k)\G(A)
I (g, ϕ) F(g) dg =

∫

Z H (A)H (k)\H (A)
I (h, ϕ; F) dh.

Proof. Note that ZG(A)G(k)\G(A) / ZG(A)G(k)+\G(A)+, and that

ZG(A)G(k)+G1(A)\G(A)+ / Z H (A)H (k)\H (A) / A×,2k×,+\A×,+ =: C,

(5.7)

is compact, where A×,+ = ν(H (A)) and k×,+ = ν(H (k)). Fixing a Haar measure
dc giving C volume 1, we have

∫

ZG(A)G(k)\G(A)
I (g, ϕ) F(g) dg

=
∫

C

∫

G1(k)\G1(A)

∫

H1(k)\H1(A)
θ (h1h(c), g1g(c); ϕ) F(g1g(c)) dh1 dg1 dc(5.8)

=
∫

Z H (A)H (k)\H (A)
I (h, ϕ; F) dh,

generalizing the proof of Proposition 7.1.4 of [3]. !

To apply the seesaw identity to the restriction to G(A) of a function F ∈ * = π1 ⊗
π2 ⊗ π3, we recall the description, from sections 7 and 8 of [4], of the corresponding
space of functions /(*) on H(A) spanned by the I (h, ϕ; F)’s for F ∈ * and
ϕ ∈ S(V (A)3). Note that one obtains the same space by fixing a nonzero F and
only varying ϕ [5].
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The action of B× × B× on V = B, ρ(b1, b2)x = b1xb−1
2 determines an exten-

sion

1 −→ Gm −→
(

B× × B× )

" 〈t〉 −→ H = GO(V ) −→ 1(5.9)

where the involution t acts on V by ρ(t)(x) = x ι and on B× × B× by (b1, b2) )→
(bι

2, bι
1)−1. Write

H̃ =
(

B× × B× )

" 〈t〉 and H̃ 0 = B× × B×,(5.10)

and let H̃ and H̃0 be the analogous groups for H = (GO(V )3)0. Thus, we have the
diagram

/̃(*) /(*)

H̃0 ↪→ H̃ −→ H

↑ ↑ ↑

H̃ 0 ↪→ H̃ −→ H .

(5.11)

For an irreducible cuspidal automorphic representation π of GL2(A), let π B be
the associated automorphic representation of B×(A) under the Jacquet-Langlands
correspondence. We take π B to be zero if π does not correspond to a representation
of B×(A). Similarly, let *B = π B

1 ⊗ π B
2 ⊗ π B

3 be the corresponding representation
of B×(A)3, or zero if some factor does not exist. Note that the central character of
*B is trivial, and so, (*B)∨ / *B , where (*B)∨ is the contragradient of *B . Thus
we can view the space of functions *B on B×(A)3 as the automorphic realization
of both *B and its contragredient.

The following result is proved in [4], sections 7 and 8, based on the work of
Shimizu and Prasad.

Proposition 5.3. (i) /(*) is either zero or a cuspidal automorphic represen-
tation of H(A) and is nonzero if and only if *B is nonzero.

(ii) As spaces of functions on H̃0(A),

/̃(*)
∣

∣

H̃0(A) =
(

*B ⊗ (*B)∨
)

∣

∣

∣

∣

H̃0(A)
.

For fixed F ∈ * and ϕ ∈ S(V (A)3), we let Ĩ (·, ϕ; F) denote the pullback of
I (·, ϕ; F) to H̃(A), and, via (ii) of Proposition 5.3, we write the restriction of
this function to H̃0(A) as

Ĩ ((b1, b2), ϕ; F) =
∑

r

I 1,r (b1, ϕ; F) I 2,r (b2, ϕ; F)(5.12)
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for functions I i,r (·, ϕ; F) ∈ *B and bi ∈ B×(A)3. The seesaw then gives
∫

ZG (A)G(k)\G(A)
I (g, ϕ) F(g) dg

=
∫

Z H (A)H (k)\H (A)
I (h, ϕ; F) dh

=
∫

Z H̃0 (A)H̃ (k)\H̃ (A)
Ĩ (h, ϕ; F) dh(5.13)

=
∫

Z H̃0 (A)H̃ 0(k)\H̃ 0(A)
Ĩ (h, ϕ; F) dh

=
∑

r

∫

A×B×(k)\B×(A)
I 1,r (b1, ϕ; F) db1 ·

∫

A×B×(k)\B×(A)
I 2,r (b2, ϕ; F) db2.

The fact that the integral over Z H̃ 0 (A)H̃ (k)\H̃ (A) in the third line can be replaced
by the integral over Z H̃ 0 (A)H̃ 0(k)\H̃ 0(A) is (7.3.2), p. 632 of [4]. Its proof in section
8.6, p. 636 of [4] depends on Prasad’s uniqueness theorem [18] for invariant trilinear
forms. This theorem was recently completed by H. Y. Loke [16], who treated general
triples of admissible irreducible representations of GL(2, R) and GL(2, C). This
is the only place in [4] where Prasad’s uniqueness theorem is used, although it was
an important motivation for the article as well as for Jacquet’s conjecture. Thus
the calculation in (5.13) is valid for all number fields and for all triples of cuspidal
automorphic representations.

Finally, we observe that the integrals in the last line of (5.13) are finite linear
combinations of the quantities I ( f B

1 , f B
2 , f B

3 ) of (0.1). By (ii) of Proposition 5.3,
every such quantity can be obtained as an integral

∫

A×B×(k)\B×(A) I 1,r (b1, ϕ; F) db1

for some ϕ, F and r .
Jacquet’s conjecture now follows upon combining this observation with Corol-

lary 5.1 (compare the proof of Theorem 7.4 in [4]).

Remark 5.4. In fact, by Prasad’s uniqueness theorem, if the root number

ε

(

1
2
, π1 ⊗ π2 ⊗ π3

)

= 1,(5.14)

then there is a unique B for which *B $= 0 and for which the space of global in-
variant trilinear forms on *B has dimension 1. The automorphic trilinear form
is given by integration over A×B×(k)\B×(A) is then nonzero if and only if
L( 1

2 , π1 ⊗ π2 ⊗ π3) $= 0. Choose f B
i ∈ π B

i , i = 1, 2, 3, such that

I
(

f B
1 , f B

2 , f B
3

)

$= 0.(5.15)

For any nonzero F ∈ *, we can choose ϕ ∈ S(V (A))3 such that

Ĩ ((b, b′), ϕ; F) = f B
1 (b1) f B

2 (b2) f B
3 (b3) f B

1 (b′
1) f B

2 (b′
2) f B

3 (b′
3),(5.16)
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where b = (b1, b2, b3) and b′ = (b′
1, b′

2, b′
3). We then obtain

L
(

1
2
, π1 ⊗ π2 ⊗ π3

)

· Z∗(F, $) = 2ζk(2)2 I
(

f B
1 , f B

2 , f B
3

)2
.(5.17)

where, $ is determined by ϕ, and Z∗(F, $) $= 0. Of course, this identity is only
useful when one has sufficient information about the function ϕ and the product of
local zeta integrals Z∗(F, $). This was a main concern in [4].

On the other hand, when the root number ε( 1
2 , π1 ⊗ π2 ⊗ π3) = −1, then there

is no *B which supports an invariant trilinear form, and the central value of the
triple product L-function vanishes due to the sign in the functional equation.

Appendix: The Siegel-Weil formula for general k. In this appendix, we
will sketch the proof of Theorem 4.1 for an arbitrary number field k, indicating the
additional facts which are needed when k has complex places.

First, suppose that v is a complex place of k and consider the local degenerate
principal series representation I1,v (0) of G1,v = Sp3(C) and the Weil representation
of G1,v on S(V 3

v ), where Vv / M2(C) with Q(x) = det (x).

Lemma A.1. (i) I1,v (0) is an irreducible unitarizable representation of G1,v .
(ii) (Coinvariants) The map S(V 3

v ) → I1,v (0), ϕ )→ [ϕ], analogous to (4.1)
induces an isomorphism

S
(

V 3
v

)

H1,v

∼−→ I1,v (0).

Here H1 = O(V ).

Remark. Statement (i) is in Sahi’s paper, [23], Theorem 3A. The proof of
(ii) was explained to us by Chen-bo Zhu (he also directed us to [23]. We wish
to thank him for his help on these points) [28], and is based on the method of
[27].

In the case B = M2(k), the theta integral must be defined by regularization, cf. the
remarks before Lemma 3.2 above.
We write

Ireg(g1, ϕ) =
{

I (g1, ϕ) if V is anisotropic,

B−1(g1, ϕ) if V is isotropic,
(A.1)

where B−1 is as in (5.5.24) of [15], except that we normalize the auxillary Eisenstein-
series E(h, s) to have residue 1 at s ′0. The key facts which we need are the
following:

Lemma A.2. (i) The map Ireg : S(V (A)3) → A(G1) factors through the space
of coinvariants S(V (A)3)H1(A) = *(V ).
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(ii) For all β ∈ Sym3(k),

Ireg,β(g1, ϕ) = 1
2

·
∫

H1(A)
ω(g1)ϕ(h−1x) dh,

where x ∈ V (k)3 with Q(x) = β.

The second statement here is Corollary 6.11 of [15]; it asserts that the nonsingular
Fourier coefficients behave as though no regularization were involved.

Next we have the analogue of Lemma 4.2, p. 111 of [20]; the main point
of the proof is the local uniqueness, and the “submersive set” argument for the
archimedean places carries over for a complex place.

Lemma A.3. For β ∈ Sym3(k) with det (β) $= 0, let Tβ be the space of distri-
butions T ∈ S(V (A)3)′ such that

(i) T is H (A)–invariant.
(ii) For all b ∈ Sym3(A f ),

T (ω(n(b)ϕ)) = ψβ(b) T (ϕ),

where ψβ(b) = ψ(tr(βb)).
(iii) For an archimedean place v of k and for all X ∈ n = Lie(N ),

T (ω(X )ϕ) = dψβ(X ) · T (ϕ).

Then Tβ has dimension at most 1 and is spanned by the orbital integral

T (ϕ) =
∫

H1(A)
ϕ(h−1x) dh,

where x ∈ V (k)3 with Q(x) = β. In particular, Tβ = 0 if and only if there is no
such x.

Sketch of the Proof of Theorem 4.1. First consider a global space V associated
to a quaternion algebra B. We have two intertwining maps

E1(0) : *(V ) −→ A(G1) and Ireg : *(V ) −→ A(G1)(A.2)

from the irreducible representation *(V ) / S(V (A)3)H (A) of G1(A) to the space of
automorphic forms. For a nonsingular β ∈ Sym3(k), the distributions obtained by
taking the βth Fourier coefficient of the composition of the projection S(V (A)3) →
*(V ) with each of the embeddings in (A.2) satisfy the conditions of Lemma A.3
and hence are proportional. In particular, the β-th Fourier of the Eisenstein series
vanishes unless β is represented by V . By the argument of pp. 111–115 of [20],
the constant of proportionality is independent of β and so there is a constant c such
that E1(g, 0, [ϕ]) − c · Ireg(g, ϕ) has vanishing nonsingular Fourier coefficients.
But then the argument at the top of p. 28 of [15], cf. also, [20], implies that this
difference is identically zero.
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In the case of a component *(V) ⊂ I1(0), the nonsingular Fourier coefficients
of E(g, 0, $) vanish by the argument on p. 28 of [15], so, again by “nonsingularity”
the map E1(0) must vanish on *(V).
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CHAPTER 15

INTEGRAL REPRESENTATION OF WHITTAKER FUNCTIONS

By Hervé Jacquet

To Joseph Shalika

1. Introduction. Recently, the converse theorem has been used to prove spec-
tacular results in the theory of automorphic representations for the group GL(n)
(see [KS], [CKPSS] for instance). The converse theorem ([CPS1] & [CPS2]) is
based in part on a careful analysis of the properties of the Rankin-Selberg integrals
at infinity ([JS]). The simplest example of such an integral takes the form

!(s, W, W ′) =
∫

Nn\Gn

W
[(

g 0
0 1

)]
| det g |s−1/2 W ′(g)dg.

Here W is in the Whittaker model W(π,ψ) of a unitary generic representation
π of GL(n, F) and W ′ in W(π ′,ψ) where π ′ is a unitary generic representation
of GL(n − 1, F) (see below for unexplained notations). One of the difficulties of
the theory is that the representations π and π ′ need not be tempered. Thus one
is led to consider holomorphic fiber bundles of representations (πu) and (π ′u′), for
instance, non-unitary principal series. Correspondingly, the functions W = Wu and
W ′ = W ′

u′ depend also on u and u′. They are associated with sections of the fiber-
bundle of representations at hand. Rather than standard sections (with a constant
restriction to the maximal compact subgroup), we consider convolutions of standard
sections with smooth functions of compact support. It is difficult to prove that
the integrals !(s, Wu, W ′

u′) are meromorphic functions of (s, u, u′). The elaborate
technics of [JS] were designed to go around this difficulty. In particular, there,
the analytic properties of the integral as functions of s, as well as their functional
equations, were found to be equivalent to a family of identities (depending on
(u, u′)) which were then established by analytic continuation with respect to the
parameters (u, u′). In the present note, we first find integral representations for Wu

and W ′
u′ which converge for all values of the parameters (u, u′). In particular, it is

easy to obtain estimates for Wu and W ′
u′ which are uniform in (u, u′). Then, using

these integral representations, we show that the integrals at hand are meromorphic
functions of (s, u, u′). This being established, one can use the methods of [JS]
to prove the functional equations. We do not repeat this step here because it is
now much easier: one first proves that the integrals are meromorphic functions

Research supported in part by NSF grant DMS 9619766.
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of (s, u, u′) and then one proves the functional equation. In contrast, in [JS], we
add to prove simultaneously the analytic continuation and the functional equation.
Moreover, it was difficult to obtain estimates for the functions. Having the functional
equation at our disposal, we obtain the more precise result that the integral is a
holomorphic function of (s, u, u′) times the appropriate $ factor. We emphasize
that the $ factor is itself a meromorphic function of (s, u, u′). Thus the proofs here
are much simpler than in [JS].

Another advantage of the present approach is that we obtain directly the proper-
ties of the integrals for smooth vectors. In [JS], we first established the properties of
the integrals for Kn-finite vectors and then used the automatic continuity theorem
(Casselman and Wallach, see [W] 11.4) to extend the results to smooth vectors.
Needless to say, we use extensively (and most of the time implicitly) the existence
of a canonical topological model for representations of GL(n) ([W], Chapter 11).

In addition, we have now at our disposal the very complete results on the
Whittaker integrals contained in the remarkable book of N. Wallach ([W], Chap-
ter 15). We use them extensively.

Since the publication of [JS], there have been several papers containing related
results ([D], [S], [St]).

In this note we will not discuss the more subtle question of proving that the
appropriate$ factor can be obtained in terms of the integral. In [JS], it is established
that the $ factor, in other words, the factor L(s,π × π ′), is equal to an integral of
the form

∫
W
[(

g 0
0 1

)
, g
]

| det g |s−1/2 dg,

where W is a function on GL(n, F)× GL(n − 1, F) which belongs to the
Whittaker model ofπ ⊗ π ′. In other words, the function W corresponds to a smooth
vector for the representation π ⊗ π ′ which needs not be of the form

∑
i vi ⊗ v ′i .

One could use this to prove directly that the global L-function L(s,π × π ′) is entire
and bounded in vertical strips and similarly for the other Rankin-Selberg integrals.
Of course, this is no longer needed as direct proofs from the theory of Eisenstein
series are now available ([GS], see also [RS]). Nonetheless, the following question
is still of interest, namely, to show that

L(s,π × π ′) =
∑

i

!(s, Wi , W ′
i ),

where the functions Wi and W ′
i are respectively Kn and Kn−1 finite. We will show

this is the case in another paper. A more subtle question is to identify precisely the
functions Wi and W ′

i (see [St1] & [St2] for a special case). The integrals attached
to the pair of integers (n, n) have analogous properties. However, for the Rankin-
Selberg integrals attached to pairs (n, m) with m < n − 1 the L-factor cannot be
obtained in terms of K -finite vectors but only in terms of smooth vectors in the
tensor product representation ([JS]).
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Acknowledgments. Finally, it is a pleasure to dedicate this note to Joseph
Shalika as a memento of a long, fructuous, and most enjoyable collaboration. The
proof given here is similar to, but different of, the original unpublished proof of the
results of [JS]. Moreover, a suggestion of Piatetski-Shapiro is used in a somewhat
different form. Thus I must thank both of my former collaborators without being
able to pinpoint precisely their contribution.

The paper is arranged as follows. In section 2, we review results on Whittaker
linear forms for the principal series. In section 3, we present the main ideas of our
construction in the case of the group GL(2). Section 4 contains auxiliary but crucial
results. In section 5, we give an integral representation for our sections which leads
to the integral representation of Whittaker functions in section 6. In section 7 we
give the main properties of the Whittaker functions. In sections 8 to 10, we prove the
main result on Rankin-Selberg integrals for the pairs (n, n). Finally, in section 11,
we give a few indications on how to treat the case of the Rankin-Selberg integrals
for the other cases.

2. Whittaker linear form for principal series. Let F be the field of real or
complex numbers. We denote by | z |F or simply αF (z) the module of z ∈ F . Thus
αF (z) = zz if F is complex. We will denote by ψ a non-trivial additive character
of F and by dx the corresponding self-dual Haar measure on F . We will set

d×x = dx
| x |F

L(1, 1F ).

We denote by U1 the subgroup of z ∈ C such that zz = 1.
We will denote by Gn the group GL(n, F), by An the subgroup of diagonal

matrices, by Bn the group of upper triangular matrices, by Nn the group of upper
triangular matrices with unit diagonal. We write Bn and N n for the corresponding
groups of lower triangular matrices. All these groups are regarded as algebraic
groups over F . We denote by Kn the standard maximal compact subgroup of Gn .
We often write Gn for Gn(F) and so on for the other groups. We define a character
θn : Nn → U1 by

θn(v) = ψ

(
∑

1≤i≤n−1

vi,i+1

)

.

When there is no confusion, we often drop the index n from the notations.
We shall say that a character of module 1 of F× is normalized, if its restriction

to R
×
+ is trivial. Hence if F = R every normalized character is either trivial or of

the form t (→ t | t |−1. If F = C then every normalized character has the form

z (→
(

z

(zz)
1
2

)n

or z (→
(

z

(zz)
1
2

)n

with n ∈ N. Let µ = (µ1, µ2, . . . , µn) be a n-tuple of normalized characters of
F×. Given u= (u1, u2, . . . , un) a n-tuple of complex numbers, we consider the
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representation of G = GL(n, F)

'u = I (µ1α
u1, µ2α

u2, . . . , µnα
un )(1)

induced by the quasi-characters µiα
ui and the group Bn . A function f in the space

of the representation is a smooth function f on Gn(F) with complex values such
that

f (vag) = µ(a)
∏

1≤≤i≤n−1

| ai |ui− n−i
2 f (g),

for all v ∈ N n , a = diag(a1, a2, . . . , an) ∈ An and g ∈ Gn; we have written µ(a) =∏
i µi (ai ).

We will use Arthur’s standard notations. Therefore let

a∗ = HomF (An, F×)⊗Z R * R
n

be the real vector space generated by the algebraic characters of An . Let a be
the dual vector space. Let ρ ∈ a∗ be the half sum of the roots positives for Bn

(i.e., the roots in Nn). We also denote by αi the simple roots. We have a map
H : Gn → a defined by e〈H (a),u〉 =

∏
| ai |ui for a ∈ An , and H (vak) = H (a), for

v ∈ Nn , k ∈ Kn , a ∈ An . We also define H ′ : Gn → a by H ′(vak) = H (a), for
v ∈ N n , k ∈ Kn , a ∈ An . Thus a function f in the space of the representation is a
smooth function such that

f (g) = f (vak) = µ(a) f (k)e〈H
′(g),u−ρ〉>.

Such a function is determined by its restriction to Kn . Let therefore V (µ) be the
space of smooth functions f : Kn → C such that

f (ak) =
∏

µi (ai ) f (k)

for all a ∈ A ∩ K . If f ∈ V (µ) then for every u the function fu defined by

fu(vak) = f (k)e〈H (a),u−ρ〉

is in the induced representation. Such a section of the fiber bundle of the represen-
tations is called a standard section.

Suppose that fu is a standard section. Let φ be a smooth function of compact
support on G(F). Then the function fφ,u defined by

fφ,u(g) :=
∫

G(F)
fu(gx)φ(x)dx(2)

is, for every u, an element of the corresponding induced representation. More
precisely, its value on g ∈ Kn is given by

∫

G(F)
fu(x)φ(g−1x)dx =

∫

N×K×A+
f (k)φ(g−1nak)e〈H (a),u−ρ〉dndadk.
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We often say that such a section is a convolution section. For f ∈ V (µ), we define
the Whittaker integral

Wu( f ) :=
∫

fu(ν)θ (ν)dν.(3)

It converges when .(ui+1 − ui ) > 0 for 1 ≤ i ≤ n − 1 and extends to an entire
function of u ([W], Chapter 11). We claim the same is true of the integral

∫
fφ,u(n)θ (n)dn.(4)

Indeed, we appeal to a simple lemma, which will be constantly used in this paper.

Lemma 1. Let V be a locally convex complete topological vector space. Let
+ be an open subset of Cn. Suppose that A : +→ V is a continuous holomorphic
map. Suppose that we are given a map λ : +× V → C, which is continuous and
such that, for every v ∈ V , the map s (→ λ(s, v) is holomorphic, and for every s,
the map v (→ A(s, v) is linear. Then the map s (→ λ(s, A(s)) is holomorphic.

Proof. Indeed the map (s1, s2) (→ λ(s1, A(s1)) from +×+ to C is continuous
and separately holomorphic. Hence it is holomorphic. Thus its restriction to the
diagonal is holomorphic. !

We will write Wu( fu) and Wu( fφ,u) for the above integrals. Recall ([W], Chap-
ter 11) that for a given u, the integral (3) defines a non-zero linear form on the space
V (µ). Moreover, within a constant factor, it is the only continuous linear form W
such that, for all v ∈ Nn ,

W('u(v) f ) = θ (v)W( f ).

We denote by W('u,ψ) the space spanned by the functions

g (→Wu('u(g) fu).

At least when 'u is irreducible, this is the Whittaker model of 'u .

3. The case of GL(2). For an introduction, we review the case of GL(2)
which was considered in previous papers (for instance [GJR]). Let fu(•) be a
section, for instance, a standard section. Thus

fu

[(
a1 0
x a2

)
k
]

= µ1(a1) | a1 |u1−1/2 µ2(a2) | a2 |u2+1/2 fu(k).

If φ is a smooth function of compact support then the convolution of fu and φ is a
new section fφ,u defined by

fφ,u(g) =
∫

fu(gx)φ(x)dx =
∫

f (x)φ(g−1x)dx =
∫

fu(x−1)φ̌(xg)dx
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where we set φ̌(g) := φ(g−1). To compute this integral we set

x = k
(

1 0
y 1

)(
a1 0
0 a2

)
.

Then

dx = dkdyd×a1d×a2

and the integral becomes
∫

fu(k−1)φ̌
[

k
(

1 0
y 1

)(
a1 0
0 a2

)
g
]

µ1(a1)−1 | a1 |−u1+1/2 µ2(a2) | a2 |−u2−1/2 dkdyd×a1d×a2.

Let us set

gu(g) =
∫

f (k−1)φ̌
[

k
(

1 0
y 1

)(
1 0
0 a2

)
g
]

µ2

(
det
[(

1 0
y 1

)(
1 0
0 a2

)
g
]) ∣∣∣∣det

[(
1 0
y 1

)(
1 0
0 a2

)
g
]∣∣∣∣
−u2−1/2

dkdyd×a2.

This function of g is invariant on the left under the subgroup P of matrices of the
form

(
1 0
∗ ∗

)
.

Thus there is a function -u[•] on F2 such that

-u[(1, 0)g] = gu(g).

In particular, the function

(x, y) (→ -u[(x, y)]

has support in a fixed compact set of F2 − 0. Then

fφ,u(g) =
∫

gu

[
g
(

t 0
0 1

)]
µ2µ

−1
1 (t) | t |u2−u1+1 d×t µ2(det g) | det g |u2+1/2

=
∫
-u[(t, 0)g] | t |u2−u1+1 d×t µ2(det g) | det g |u2+1/2 .

We now compute

Wu( fφ,u) =
∫

fφ,u

[(
1 x
0 1

)]
ψ(−x)dx

=
∫ ∫

-u [(t, t x)] µ2µ
−1
1 (t) | t |u2−u1+1 d×tψ(−x)dx .
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This double integral converges absolutely for .u2 > .u1. If we change x to xt−1

we get:
∫

F1(-u)[(t, t−1)]µ2 · µ−1
1 (t) | t |u2−u1 d×t

where we denote by a F1 (or simply -̂) the partial Fourier transform with respect
to the second variable:

F1(-)(x, y) =
∫
-(x, z)ψ(−zx)dz.

It is then clear that this new integral converges for all values of u. For the case of
GL(2), it is the integral representation alluded to in the introduction.

To obtain a more general formula, we introduce two representations l2 and l̂2

of GL(2, F) on S(F2) by

l2(g)-(X ) = -(Xg) , l̂2(g)F1(-) = F1(l2(g)-).

Then Wu(g) := Wu('u(g) fφ,u) is given by

Wu(g) =
∫

l̂2(g)F1(-u)[(t, t−1)]µ2µ
−1
1 (t) | t |u2−u1 d×t

µ2(det g) | det g |u2+ 1
2 .

For instance, if α = diag(α1,α2), then

Wu(α) =
∫

F1(-u)
[(

tα1, t−1α−1
2

)]
µ2µ

−1
1 (t) | t |u2−u1 d×t

µ2(α1α2) | α1α2 |u2 | α1 |1/2| α2 |−1/2 .

4. A reduction step. We will need an elementary but crucial result which
in the case of GL(2) describes the space of function represented by the integrals
Wu('u(g) fφ,u). We will set ZF = Z if F is real and ZF = Z/2 if F is complex.

Proposition 1. Let + be an open, connected, relatively compact set of C, the
closure of which is contained in C− ZF . Let X be an auxiliary real vector space
of finite dimension. Given - ∈ S(F2 ⊕ X) and u ∈ + there are -1,u and -2,u in
S(F ⊕ X) such that, for all u ∈ +,

w-,u(t1, t2 : X ) :=
∫
-(t1t, t2t−1 : X ) | t |u µ(t)d×t

is equal to

-1,u(t1t2 : X ) | t1 |−u µ−1(t1) +-2,u(t1t2 : X ) | t2 |u µ(t2).

One can choose the functions-i,u(t : X ) in such a way that the maps u (→ -i,u(• : •)
are holomorphic maps from+ toS(F ⊕ X). Furthermore, if- remains in a bounded
set, then the functions -i,u remain in a bounded set. Finally, if - = -s depends
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holomorphically on s ∈ +′, +′ open in Cn, and remains in a bounded set for all
values of s, one can choose the functions -∗ to depend holomorphically on (u, s)
and to remain in a bounded set.

Proof. We begin the proof with a variant of the Borel lemma, as expounded in
[H], Theorem 1.2.6. !

Lemma 2. Let f j be a sequence of holomorphic functions on an open, con-
nected, set + of Cn. Assume each f j is bounded. For any ε > 0 there is a smooth
function f (u, t) on+×]− ε, ε[ with the following properties. The function is holo-
morphic in u and, for each j ≥ 0,

∂ f j

∂t j
(u, 0) = f j (u).

Finally the support of f has a compact projection on the second factor.

Proof of the Lemma. We choose a smooth function g of compact support con-
tained in ]− ε, ε[, with g(t) = 1 for t sufficiently close to 0. Next we choose
0 < ε j < 1 and set

g j (u, t) = g
(

t
ε j

)
t j

j!
f j (u).

We have then, for α < j ,
∣∣∣∣
∂αg j (u, t)
∂tα

∣∣∣∣ ≤ Cα, j sup
+

| f j | ε j−α
j ≤ C j sup

+

| f j | ε j

where C j = supα< j Cα, j depends only j (and our choice of g). If

ε j ≤
1

C j sup+ | f j | 2 j

then, for all α < j ,
∣∣∣∣
∂tαg j (u, t)
∂tα

∣∣∣∣ ≤ 2− j .

The function

f (u, t) =
∑

j

g j (u, t)

has the required property. !

In the same way, one proves the following lemma.

Lemma 3. Let f j,k be a double sequence of holomorphic functions on an open
set + of Cn. Assume each f j,k is bounded. For any open disc D of center 0 in C,
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there is a smooth function f (u, t) on +× D with the following properties. The
function is holomorphic in u and, for each j ≥ 0, k ≥ 0,

∂ f j+k

∂t j∂t k (u, 0) = f j,k(u).

Finally the support of f has a compact projection on the second factor.

Another variant of the Borel lemma is as follows.

Lemma 4. Let f j be a sequence of Schwartz functions on some vector space U.
For any ε > 0 there is a Schwartz function f on U⊕ R, supported on U× [−ε, ε]
such that, for every j ≥ 0,

∂ f j

∂t j
(u, 0) = f j (u).

Indeed, we may view a Schwartz function on U as a smooth function on the sphere
S in U⊕ R which, in addition, vanishes as well as all its derivatives at some point
P0 ∈ S. We construct the required function f as before as a sum of a series

f (s, t) =
∑

j

g
(

t
ε j

)
t j

j!
f j (s)

which can be differentiated term wise. In particular f and all its derivatives in the
s variables vanish at any point of the form (P0, t).

We go back to the proof of the proposition. To be definite we assume that F is
complex. The real case is somewhat simpler. We recall that an integral

∫
-(t) | t |s d×t

converges absolutely for .s > 0 and extends meromorphically with a simple pole
at s = 0 and residue -(0). Let ξ be a normalized character. To find the poles and
residues of an integral of the form

∫
-(t) | t |s ξ (t)d×t

in the half plane .s > −M − 1, we choose a smooth function of compact support
φ0 on F equal to 1 near 0. We write

-(t) = φ0(t)-(t) + (1− φ1)-(t)

= φ0(t)
∑

n1+n2≤M

t n1 t n2

n1!n2!
∂n1+n2-

∂t n1∂t n2
(0) + r (t).
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Then the integral is the sum of
∫

r (t) | t |s ξ (t)d×t

which has no pole in the half plane and

∑

n1+n2≤M

1
n1!n2!

∂n1+n2-

∂t n1∂t n2
(0)
∫
φ0(t) | t |s ξ (t)t n1 t n2d×t.

Each term contributes (at most) one simple pole at any point s such that there are
integers n1 ≥ 0, n2 ≥ 0 with

| t |s ξ (t)t n1 t n2 ≡ 1.

The residue is then

1
n1!n2!

∂n1+n2-

∂t n1∂t n2
(0).

For instance, if ξ (z) = (z/
√

zz)r with r ≥ 0, there is a pole at any point − r
2 − n

with n ≥ 0 integer. The residue is given by the above formula with n1 = n and
n2 = n + r .

Coming back to our integral, we will first prove the Proposition when there is
no auxiliary space X and no dependence on some complex parameter s. We remark
that, after a change of variables, we can reduce ourselves to the case where t2 = 1,
in other words, study the function wu(a) := w-,u(a, 1). We then have to show that

wu(a) = -1,u(a) | a |−u µ−1(a) +-2,u(a).

After a change of variables, we find
∫

wu(a) | a |s ξ (a)d×a

=
∫ ∫

-(t2, t1) | t2 |s ξ (t2)d×t2 | t1 |s−u ξµ−1(t1)d×t1.

Consider for one moment the following function of two variables:

A(s2, s1) :=
∫ ∫

-(t2, t1) | t2 |s2 ξ (t2)d×t2 | t1 |s1 ξµ−1(t1)d×t1.

It is a meromorphic function of (s2, s1) with hyperplane singularities. There are
singularities on some of the hyperplanes

s2 + z2 = 0, z2 ∈ ZF , z2 ≥ 0

and on some of the hyperplanes

s1 + z1 = 0, z1 ∈ ZF , z1 ≥ 0.
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Now consider the function A(s, s − u). In C2, a singular hyperplane

s + z2 = 0

and a singular hyperplane

s − u + z1 = 0

intersect only at points where u ∈ ZF . In particular, if u is not in ZF , then
A(s, s − u), viewed as a function of s, has only simple poles. At a pole where
s is such that

| t2 |s ξ (t2)tn1
2 tn2

2 ≡ 1

the residue is equal to

1
n1!n2!

∫
∂n1+n2-

∂tn1
2 ∂tn2

2
(0, t1) | t1 |−u t−n1

1 t−n2
1 µ−1(t1)d×t1.

Note that the integral defines a holomorphic function of u in the complement of
ZF .

Likewise, at a pole where s is such that

| t1 |s−u ξµ−1(t1)tm1
1 tm2

1 ≡ 1

the residue is equal to

1
m1!m2!

∫
∂m1+m2-

∂tm1
1 ∂tm2

1
(t2, 0) | t2 |u µ(t2)t−m1

2 t−m2
2 d×t2.

Applying the variant of Borel lemma given above, we can find smooth functions of
compact support -2,u(a) and -1,u(a), depending holomorphically on u, such that,
for all u ∈ +,

∂n1+n2-2,u

∂a n1∂a n2
(0) =

∫
∂n1+n2-

∂tn1
2 ∂tn2

2
(0, t1) | t1 |−u t−n1

1 t−n2
1 µ−1(t1)d×t1(5)

and

∂m1+m2-1,u

∂a m1∂a m2
(0) =

∫
∂m1+m2-

∂tm1
1 ∂tm2

1
(t2, 0) | t2 |u µ(t2)t−m1

2 t−m2
2 d×t2.(6)

The difference between
∫

wu(a) | a |s ξ (a)d×a

and

Bu :=
∫
-2,u(a) | a |s ξ (a)d×a +

∫
-1,u(a) | a |s−u ξµ−1(a)d×a(7)

is then, by construction, an entire function of s. It is rapidly decreasing in a vertical
strip and also rapidly decreasing with respect to ξ . It follows there is a smooth
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function !u(a) on F , rapidly decreasing at infinity, with zero derivatives at 0 such
that the above difference is

∫
!u(a) | a |s ξ (a)d×a

for all ξ . Furthermore, the function depends holomorphically on u. We obtain our
claim with -2,u replaced by -2,u +!u .

If there is an auxiliary vector space X and dependence on a complex parameter
s we use the variants of the Borel lemma to choose the functions-i,u(x : X : s) in
such a way that

∂n1+n2-2,u

∂a n1∂a n2
(0 : X : s)

=
∫
∂n1+n2-

∂tn1
2 ∂tn2

2
[(0, t1) : X : s] | t1 |−u t−n1

1 t−n2
1 µ−1(t1)d×t1

and

∂m1+m2-1,u

∂a m1∂a m2
(0 : X : s)

=
∫
∂m1+m2-

∂tm1
1 ∂tm2

1
[(t2, 0) : X : s] | t2 |u µ(t2)t−m1

2 t−m2
2 d×t2.

In fact, we will need the following supplement to the previous proposition.

Proposition 2. Let 0 < a be real a number not in ZF and S the strip {u|− a <

.u < a}. Let P(u) = P(−u) be the polynomial
∏

(u − u j ), where the product is
over all u j ∈ S ∩ ZF . Given - ∈ S(F2 ⊕ X) set as before

w-,u(t1, t2 : X ) :=
∫
-(t1t, t2t−1) | t |u µ(t)d×t.

For each u ∈ S, there are -1,u and -2,u in S(F ⊕ X) such that, for u ∈ S,

P(u)w-,u(t1, t2 : X )

= -1,u(t1t2 : X ) | t1 |−u µ−1(t1) +-2,u(t1t2 : X ) | t2 |u µ(t2).

One can choose the functions in such a way that the maps u (→ -i,u from S
to S(F ⊕ X) are holomorphic and, furthermore, the functions -i,u remain in a
bounded set if- does. Finally, if- depends holomorphically on s ∈ +′,+′ open in
Cm, and remains in a bounded set for all values of s, one can choose the functions
-∗ to depend holomorphically on (u, s) and to remain in a bounded set.

Proof. The proof is similar to the proof of the previous proposition. The only
difference is that we choose the functions-i,u such that they satisfy, instead of (5)
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and (6) the following relations, for all u ∈ S,

∂n1+n2-2,u

∂a n1∂a n2
(0) = P(u)

∫
∂n1+n2-

∂tn1
2 ∂tn2

2
(0, t1) | t1 |−u t−n1

1 t−n2
1 µ−1(t1)d×t1

and

∂m1+m2-1,u

∂a m1∂a m2
(0) = P(u)

∫
∂m1+m2-

∂tm1
1 ∂tm2

1
(t2, 0) | t2 |u µ(t2)t−m1

2 t−m2
2 d×t2.

Again, the right-hand sides integrals are holomorphic functions of s in S. To finish
the proof as before, we need only check that the difference between

Au(s) := P(u)
∫

wu(a) | a |s ξ (a)d×a

and Bu(s) defined in (7) is, for each u ∈ S, a holomorphic function of u. For u 3∈ ZF ,
this follows directly as before from the constructions. Consider now a u0 ∈ S ∩ ZF .
Then Au0 (s) ≡ 0. Thus we need to check that Bu0 (s) is a holomorphic function of s.
We write P(u) = P1(u)(u − u0). Consider then a potential pole s0 of the first term
in Bu . This means that, for suitable integers n1, n2 ≥ 0,

| a |s0 ξ (a)an1an2 ≡ 1.(8)

The residue of the first term is then P1(u0) times

u − u0

n1!n2!

∫
∂n1+n2-

∂tn1
2 ∂tn2

2
(0, t1) | t1 |−u t−n1

1 t−n2
1 µ−1(t1)d×t1

∣∣∣∣
u=u0

.

This is zero unless u0 is a singularity of the integral, that is, for suitable integers
m1 ≥ 0, m2 ≥ 0,

| t1 |−u0 t−n1
1 t−n2

1 µ−1(t1)tm1
1 tm2

2 ≡ 1.(9)

The residue is then

− P1(u0)
n1!n2!m1!m2!

∂n1+n2+m1+m2-

∂tn1
2 ∂tn2

2 ∂tm1
1 ∂tm2

1
(0, 0).

On the other hand, we have from (8) and (9)

| a |s0−u0 ξµ−1(a)am1am2 ≡ 1.

Thus s0 is a potential pole of the second term with residue

P1(u0)
(u − u0)
m1!m2!

∫
∂m1+m2-

∂tm1
1 ∂tm2

1
(t2, 0) | t2 |u µ(t2)t−m1

2 t−m2
2 d×t2

∣∣∣∣
u=u0

.

From (8) and (9) we get

| t2 |u0 µ(t2)t−m1
2 t−m2

2 tn1
2 tn2

2 ≡ 1.
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We see that u0 is a pole of this integral and so the residue of the second term at s0 is

P1(u0)
n1!n2!m1!m2!

∂n1+n2+m1+m2-

∂tn1
2 ∂tn2

2 ∂tm1
1 ∂tm2

1
(0, 0).

We see then that the sum of the two terms has no pole at s0. The same analysis
applies to the second term. Our assertion follows. !

We will need a coarse majorization of our functions.

Proposition 3. For - ∈ S(F2 ⊕ X) set

w-,u(t1, t2 : X ) :=
∫
-(t1t, t2t−1 : X ) | t |u µ(t)d×t.

Suppose that- is in a bounded set and .u in a compact set. Then, there is M > 0
such that, for every N > 0, there is φ ≥ 0 in S(X) such that

|w-,u(t1, t2 : X )| ≤| t2 |.u φ(X )
| t1t2 |−M

(1+ | t1t2 |)N

If- is in a bounded set and u purely imaginary, there is, for every N > 0, a function
φ ≥ 0 in S(X) such that

|w-,u(t1, t2 : X )| ≤ φ(X )
A + B | log | t1t2 ||

(1+ | t1t2 |)N .

Proof. Say F is complex. We may as well study

w-,u(a : X ) :=
∫
-(at, t−1 : X ) | t |u µ(t)d×t.

We may bound - in absolute value by a product -0!(X ) with fixed non-negative
Schwartz functions and replace u by its real part. Then the integral is bounded,
for all N1, N2, by a constant times !(X ) times

∫ | t |u

(1+ | at |)N1 (1+ | t−1 |)N2
d×t ≤ | a |−N1

∫ | t |N2−N1+u

(1+ | t |)N2
d×t.

The first assertion follows then by considering separately the case | a |≤ 1 and the
case | a |≥ 1.

For the second assertion we may assume u = 0. We need only consider the
estimate for | a |≤ 1. We write

∫
1

(1+ | at |)N1
(
1+ | t−1 |

)N2
d×t

as the sum of
∫

|t |≤1

| t |N2

(1+ | at |)N1 (1+ | t |)N2
d×t
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and
∫

|t |≥1

| t |N2

(1+ | at |)N1 (1+ | t |)N2
d×t.

The first integral is bounded independently of a. The second is bounded by
∫

|t |≥1

1

(1+ | at |)N1
d×t =

∫

|t |≥|a|

1

(1+ | t |)N1
d×t

which is in turn bounded by a polynomial of degree 1 in log | a |. !

5. Integral representation of sections. Our goal in this section is to obtain
an integral representation of sections of the form fφ,u . Assume that φ = φ1 ∗ φ2 ∗
· · · ∗ φn−1 with φi ∈ D(Gn). According to [DM], every element of D(Gn) is a sum
of such products, so there is no loss of generality. Let fu be a standard section. We
consider the section fφ,u defined by

fφ,u(g) =
∫

fu(gx)φ(x)dx(10)

or, more explicitly,

fφ,u(g) =
∫

fu[gx1x2 · · · xn−1]φ1(x1)φ2(x2) · · ·φn−1(xn−1)dx1dx2 · · · dxn.

We set

Vn := M(1× 2, F)× M(2× 3, F)× · · ·× M(n − 1× n, F).(11)

We denote by Ri the set of matrices of rank i in M(i × i + 1, F).

Proposition 4. There is a function

-u [X1 : X2 : · · · : Xn−1]

on Cn × Vn with the following properties. It is a smooth function, holomorphic in
u. The projection of its support on the i − th factor is contained in a fixed compact
subset of Ri . Finally, for every u,

fφ,u(g) = | det g |un+ n−1
2 µn(det g)

×
∫
-u
[
(g1, 0)g−1

2 : (g2, 0)g−1
3 : · · · : (gn−2, 0)g−1

n−1 : (gn−1, 0)g
]

i=n−1∏

i=1

| det gi |ui+1−ui +1 µi+1µ
−1
i (det gi )dgi ;

in this integral, each variable gi is integrated over GL(i, F).
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Note that the integral is convergent for all u under the restricted assumption on
the support of-. This would not be true for a Schwartz function or even a function
of compact support.

In what follows, by abuse of language, we will suppress the characters µi

from the notations. The reader will easily re-establish them by replacing | det g |un

by µn(det g) | g |un and so on. It will be more convenient to prove the result for
somewhat more general sections. Namely, we consider functions of the form

fu[g, g1, g2, . . . , gn−1]

which are smooth functions on Cn × GL(n)n and holomorphic in u; we assume
that, for fixed u and fixed (gi ), the function

g (→ fu[g, g1, g2, . . . , gn−1]

belongs to the space of'u . The projection of the support of f on the i + 1-th factor
is contained in a fixed compact set of GL(n). Then

g (→
∫

fu[gx1x2 · · · xn−1, x1, x2, . . . , xn−1]dx1dx2 · · · dxn−1(12)

is the type of section for which we prove our integral representation, by induction
on n.

Thus we assume our assertion established for sections of this type and the
integer n − 1. In fact, for the purpose of carrying out our induction, we should
consider more generally functions of the form

fu,s[g, g1, g2, . . . , gn−1, h]

where the s is an auxiliary complex parameter and the last variable h is in some
auxiliary manifold S; the function depends holomorphically on s and the projection
of its support on S is contained in a fixed compact set. Then the function -u of
the Proposition would also depend on s and h with obvious properties. We simply
ignore this complication.

Consider a section of the type (12). It is convenient to introduce

f 1
u [g, x1, x2, . . . , xn−1; s] = fu

[
g, x−1

1 , x2, . . . , xn−1
]

and then the integral defining (12) takes the form
∫

f 1
u

[
x1x2 · · · xn−1, x−1

1 g, x2, . . . , xn−1
]

dx1dx2 · · · dxn−1.

Next, we use the Iwasawa decomposition of x1, in the form

x1 = p1k1,

p1 =
(

gn−1 0
X t

)
=
(

gn−1 0
0 1

)(
1n−1 0

X t

)
(13)
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with k1 ∈ Kn , gn−1 ∈ GL(n − 1), t ∈ F×. After a change of variables, the integral
becomes ∫

f 1
u

[(
gn−1 0

0 1

)
x2 · · · xn−1, k−1

1 p−1
1 g, k−1

1 x2, . . . , xn−1

]

| t |un− n−1
2 dk1dgn−1d×td Xdx2 · · · dxn−1.

If we set

f 2
u (g, x1, x2, . . . , xn−1) =

∫
f 1
u (g, k−1

1 x1, k−1
1 x2, . . . , xn−1)dk1

then, after integrating over k1, we obtain
∫

f 2
u

[(
gn−1 0

0 1

)
x2 · · · xn−1, p−1

1 g, x2, . . . , xn−1

]

| t |un− n−1
2 dgn−1d×td Xdx2 · · · dxn−1.

To continue we set

xi =
(

mi 0
0 1

)
pi , mi ∈ GL(n − 1, F), pi ∈ GL(n − 1, F)\GL(n, F).

Then
dxi = dmi dr pi

where dr p is an invariant measure on GL(n − 1, F)\GL(n, F). After a change of
variables, we get

∫
f 2
u

[(
gn−1m2m3 · · · mn−1 0

0 1

)
pn−1, p−1

1 g,

(
m2 0
0 1

)
p2, p−1

2

(
m3 0
0 1

)
p3, . . . , p−1

n−2

(
mn−1 0

0 1

)
pn−1

]

| t |un− n−1
2 dgn−1d×td X

n−1⊗

i=2

dmi

n−1⊗

i=2

dr pi .

We introduce a new function f 3
u on

C
n × GL(n − 1)× GL(n)× GL(n − 1)n−2

which is defined by

| det gn−1 |−1/2
n−1∏

i=2

| det mi |1/2 f 3
u [gn−1, g, m2, m3, . . . , mn−1] :

=
∫

f 2
u

[(
gn−1 0

0 1

)
pn−1, g,

(
m2 0
0 1

)
p2, p−1

2

(
m3 0
0 1

)
p3, . . . , p−1

n−2

(
mn−1 0

0 1

)
pn−1

] i=n−1⊗

i=2

dr pi .
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It is clear that f 3
u is a smooth function, holomorphic in u, and the projection of its

support on each linear factor except the first one is contained in a fixed compact
set. Moreover, the function

gn−1 (→ f 3
u [gn−1, g, m2, m3, . . . , mn−1]

belongs to the space of the representation of GL(n − 1) determined by
(µ1, µ2, . . . , µn−1) and (u1, u2, . . . un−1).

Finally, we set

f 4
u (gn−1, g)

=
∫

f 3
u (gn−1m2m3 · · · mn−1, g, m2, m3, . . . , mn−1)dm2dm3 · · · dmn−1.

The section (12) can be represented by the integral
∫

f 4
u

[
gn−1, p−1

1 g
]

| det gn−1 |−1/2| t |un− n−1
2 dgn−1d×td X.(14)

We apply the induction hypothesis to the function gn−1 (→ f 4
u (gn−1, g). There

is a function -1
u on

C
n × Vn−1 × GL(n)

such that

f 4
u (gn−1, g) =| det gn−1 |un−1+ n−2

2(15)

×
∫
-1

u

[
(g1, 0)g−1

2 : (g2, 0)g−1
3 : · · · : (gn−3, 0)g−1

n−2 : (gn−2, 0)gn−1 : g
]

i=n−2∏

i=1

| det gi |ui+1−ui +1 dgi ;

the projection of its support on each factor of Vn−1 or the factor GL(n) is contained
in a fixed compact set; more precisely, for each factor of Vn−1, a compact set of Ri .

Finally, we can change variables in the integral (14) where p1 is given by (13)
to obtain

∫
f 4
u

[
g−1

n−1,

(
1n−1 0

X t

)(
gn−1 0

0 1

)
g
]

| det gn−1 |1/2| t |−un− n−1
2 dgn−1d×td X.

The above integral can be written as
∫

f 4
u

[
g−1

n−1, p
(

gn−1 0
0 1

)
g
] ∣∣∣∣det p

(
gn−1 0

0 1

)
g
∣∣∣∣
−un− n−1

2

(16)

dgn−1dr p | det gn−1 |un+ n
2 | det g |un+ n−1

2
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where the integral in p is over the group P of matrices of the form
(

1n−1 0
∗ ∗

)

and dr p is a right invariant measure. In terms of -1
u this can be written as

| det g |un+ n−1
2

×
∫
-1

u

[
(g1, 0)g−1

2 : (g2, 0)g−1
3 : · · · : (gn−3, 0)g−1

n−2 : (gn−2, 0)g−1
n−1

: p
(

gn−1 0
0 1

)
g
] ∣∣∣∣det p

(
gn−1 0

0 1

)
g
∣∣∣∣
−un− n−1

2

i=n−1∏

i=1

| det gi |ui+1−ui +1 dgi dr p.

There is a smooth function -u on Cn × Vn such that

-u(X1, X2, . . . , Xn−1, (1n−1, 0)g)(17)

=
∫
-1

u(X1, X2, . . . , Xn−1, pg) |det pg|−un− n−1
2 dr p.

As before, the projection of its support on the i − th linear factor of Cn × Vn is
contained in a fixed compact set of Ri . If we combine (14) and the formula just
before it we arrive at our conclusion.

We will need estimates on the function -u of the previous proposition.

Proposition 5. Suppose that φ is the convolution product of (n − 1) functions,
each of which is in a bounded set B of D(Gn) and the standard section fu (or rather
its restriction to Kn) is in a bounded set of V(µ). Fix a multi strip S = {u|− A <

.ui < A, 1 ≤ i ≤ n} in Cn. Then, there is a bounded set C of S(Vn) such that
-u ∈ C, for all u in S. Moreover, the map

( fu,φ1,φ2, . . . ,φn−1) (→ -u

is continuous.

Proof. We prove the first assertion. The second assertion has a similar proof.
Our construction shows that the functions -u have a support contained in a fixed
compact set of Vn . Thus we have only to show that their derivatives are bounded
uniformly when u is in S. This follows from the following lemma. !

Lemma 5. Let S be a strip in C andB a bounded set ofD(Gn). For φ ∈ D(Gn),
u ∈ C, set

gu(g) =| det g |u µ(det g)φ(g)
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and

g1
u =
∫

P
gu(pg)dr p.

Let Rn−1 be the open set of matrices of maximal rank in M((n − 1)× n, F). Define
a function -u ∈ S(M((n − 1)× n, F)) with compact support contained in Rn−1

by

-u[(1n−1, 0)g] = g1
u(g).

If u is in a strip S and φ in a bounded set B, the function-u remains in a bounded
set of S(M((n − 1)× n, F)).

Proof of the Lemma. We have to show the derivatives of -u are uniformly
bounded. The group SL(n, F) is transitive on Rn−1 thus the above relation for
g ∈ SL(n, F) already determines-u . If X is in the enveloping algebra of SL(n, F)
(viewed as a real Lie group) it is easy to see that for u ∈ S and φ ∈ B, the function
ρ(X )gu is uniformly bounded. The same assertion is thus true for the function g1

u .
Since Rn−1 is isomorphic to P ∩ SL(n, F)\SL(n, F) as a manifold, it will suffice to
show that for every differential operator ξ on P ∩ SL(n, F)\SL(n, F) the function
ξg1

u is uniformly bounded for g ∈ SL(n, F) and u in the given strip. This is true
for an operator of the form ξ = ρ(X ) where X is in the enveloping algebra of
SL(n, F). Thus, in turn, it will suffice to show that every differential operator
on P ∩ SL(n, F)\SL(n, F) can be written as a linear combination of operators
of the form ρ(X ) with smooth coefficients. For instance, one may use the fact that
the map (g, k) (→ gk from GL(n − 1)× K ∩ SL(n) to GL(n, F) passes to the
quotients and defines an isomorphism of a quotient of GL(n − 1)× K ∩ SL(n)
with P ∩ SL(n, F)\SL(n, F). !

6. Integral representation of Whittaker functions. In this section, our goal
is to obtain an absolutely convergent integral formula for Wu( fφ,u). To that end,
we introduce more notations. The groups GL(n − 1, F) and GL(n, F) operate on
the space of Schwartz functions on M((n − 1)× n, F) as follows:

ln(gn).!.rn−1(gn−1)[X ] = ![gn−1 Xgn].

As the notation indicates, ln is a left action and rn−1 a right action. We may identify
the space of (n − 1)× n matrices (n − 1 rows, n columns) to the direct sum of the
space Bl(n − 1, F) of lower triangular matrices of size (n − 1)× (n − 1) and the
space Bu(n − 1, F) of upper triangular matrices of size (n − 1)× (n − 1). For
instance, for n = 3, the matrix

(
x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

)
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corresponds to the pair of matrices
((

x1,1 0
x2,1 x2,2

)
,

(
x1,2 x1,3

0 x2,3

))
.

Accordingly, if- is a Schwartz function on M((n − 1)× n, F) we define its partial
Fourier transform Fn−1- or simply -̂ by

-̂(b1, b2) =
∫

Bu (n−1,F)
-(b1 ⊕ b′)ψ(−tr(b2b′))db′.

It is thus a function on Bl(n − 1, F)⊕ Bl(n − 1, F). We can use this partial Fourier
transform to define two new representations r̂n−1, l̂n by

Fn−1 (ln(gn).!.rn−1(gn−1)) = l̂n(gn).!̂.r̂n−1(gn−1),

on the space of Schwartz functions on Bl(n − 1, F)⊕ Bl(n − 1, F).
The following formula will be very useful. Let α = diag(α1,α2, . . . ,αn) be a

diagonal matrix of size n. Set

αb = diag(α1,α2, . . . ,αn−1), αe = diag(α2,α3, . . . ,αn).(18)

We will denote by α−b and α−e the inverses of the matrices αb,αe. Then:

ln(α)-(b1 ⊕ b′) = -(b1α
b ⊕ b′αe)(19)

l̂n(α)-̂(b1, b2) = -̂(b1α
b,α−eb2) | α2 |−1| α3 |−2 · · · | αn |−(n−1) .(20)

We can define analogous representations of the appropriate linear groups on the
space of Schwartz functions on

Vn := M(1× 2, F)⊕ M(2× 3, F)⊕ · · ·⊕ M(n − 1× n, F).

They are denoted by r1, r2, . . . , rn−1,l2, l3, . . . , ln . For instance, if n = 3, then

l2(g2)l3(g3)-
[

(x1, y1) :
(

x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

)]
r2(g′2)

= -

[
(x1, y1)g2 : g′2

(
x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

)
g3

]
.

We can also define the partial Fourier transform F(-) = F1F2 · · ·Fn−1(-) of a
function- ∈ S(Vn). This partial Fourier transform is then a function on the direct
sum:

Un :=(21)

Bl(1, F)⊕ Bl(1, F)⊕ Bl(2, F)⊕ Bl(2, F)⊕ · · ·⊕ Bl(n − 1, F)⊕ Bl(n − 1, F).
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We have also representations r̂1, r̂2, . . . , r̂n−1,l̂2, . . . , l̂n on the space S(Un). For
- ∈ S(Vn) we define F A(-) ∈ S(Un) by

F A(-)(22)

=
∫

l̂2(k2)l̂3(k3) · · · l̂n−1(kn−1)F(-)r̂2
(
k−1

2

)
r̂3
(
k−1

3

)
· · · r̂n−1

(
k−1

n−1

)

i=n−1∏

i=2

µ−1
i µi−1(det ki )dki

the integral being over the product K2 × K3 × · · ·× Kn−1.

Theorem 1. Suppose that fφ,u is the section represented by the integral of
Proposition 4. Set

!u = F A(-u).

Then

Wu( fφ,u)

=
∫
!u
[
a1a−b

2 , a−1
1 ae

2 : a2a−b
3 , a−1

2 ae
3 : · · · : an−2a−b

n−1, a−1
n−2ae

n−1 : an−1, a−1
n−1

]

i=n−1∏

i=1

µi+1µ
−1
i (det ai ) | det ai |ui+1−ui dai .

Here ai is integrated over Ai .

Before we embark on the proof of the theorem we write down a more general
formula, which follows from the theorem.

Wu('u(g) fφ,u)(23)

=
∫

l̂n(g).!u
[
a1a−b

2 , a−1
1 ae

2 : a2a−b
3 , a−1

2 ae
3 : · · ·

: an−2a−b
n−1, a−1

n−2ae
n−1 : an−1, a−1

n−1

]

i=n−1∏

i=1

µi+1µ
−1
i (det ai ) | det ai |ui+1−ui dai × | det g |un+ n−1

2 µn(det g).

In particular, for a diagonal matrix α,

Wu('u(α) fφ,u)(24)

=
∫
!u
[
a1a−b

2 , a−1
1 ae

2 : a2a−b
3 , a−1

2 ae
3 : · · ·

: an−2a−b
n−1, a−1

n−2ae
n−1 : an−1α

b, a−1
n−1α

−e]
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i=n−1∏

i=1

µi+1µ
−1
i (det ai ) | det ai |ui+1−ui dai

× | detα |un µn(detα)e〈H (α),ρ〉.

Proof. As before, we suppress the characters µi from the notations. Our task
can be summarized as follows.

Lemma 6. Suppose - is a smooth function on Vn with compact support con-
tained in

∏
Ri . Define

f (g) =
∫
-
[
(g1, 0)g−1

2 : (g2, 0)g−1
3 : · · · : (gn−2, 0)g−1

n−1 : (gn−1, 0)g
]

i=n−1∏

i=1

| det gi |ui+1−ui +1 µi+1µ
−1
i (det gi )dgi .

Then, for .(ui+1 − ui ) > 0 for all i ,
∫

Nn

f (vg)θn(v)dv

=
∫

l̂n(g)!
[
a1a−b

2 , a−1
1 ae

2 : a2a−b
3 , a−1

2 ae
3 :

· · · : an−2a−b
n−1, a−1

n−2ae
n−1 : an−1, a−1

n−1

]

i=n−1∏

i=1

µi+1µ
−1
i (det ai ) | det ai |ui+1−ui dai

where ! = F A(-).

We prove the lemma by induction on n. The case n = 2 was treated in sec-
tion 3. We may assume n > 2 and the lemma true for n − 1. Since F A(ln(g)-) =
l̂n(g)F A(-), it suffices to prove the formula for g = 1. We first compute

w(g) :=
∫

Nn−1

f
[(

v 0
0 1

)
g
]
θn−1(v)du.(25)

After a change of variables we find w(g) is equal to
∫ ∫

-
[
(g1, 0)g−1

2 : (g2, 0)g−1
3 : · · · : (gn−2, 0)vg−1

n−1 : (gn−1, 0)g
]

i=n−1∏

i=1

| det gi |ui+1−ui +1 dgiθn−1(v)dv .



P1: IOI

PB440-15 HIDA-0662G PB440-Hida-v4.cls December 12, 2003 9:51
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We are led to introduce

+(gn−1 : X ) : =
∫
-
[
(g1, 0)g−1

2 : (g2, 0)g−1
3 : · · · : (gn−2, 0)gn−1 : X

]
(26)

i=n−2∏

i=1

| det gi |ui+1−ui +1 dgi

and

'(gn−1 : X ) :=
∫
+u(vgn−1 : X )θn−1(v)dv .(27)

Then

w(g) =
∫
'(g−1

n−1, (gn−1, 0)g) | det gn−1 |un−un−1+1 dgn−1.

We can apply the induction hypothesis to the function gn−1 (→ +(gn−1 : X ). Before
we do, we remark that the representation l̂n−1 of GL(n − 1) onS(Un−1) and the rep-
resentation rn−1 of GL(n − 1) on S(M(n − 1)× n, F) give corresponding repre-
sentations on the space of Schwartz functions on Un−1 ⊕ M((n − 1)× n, F). By the
induction hypothesis, there is a Schwartz function !1 on that direct sum such that

'(gn−1 : X )

=
∫

l̂n−1(gn−1).!1 [a1a−b
2 , a−1

1 ae
2 : a2a−b

3 , a−1
2 ae

3 : · · · : an−2, a−1
n−2 : X

]

i=n−2∏

i=1

| det ai |ui+1−ui dai .

It follows that

w(g) =
∫

l̂n−1
(
g−1

n−1

)
.!1 [a1a−b

2 , a−1
1 ae

2 : a2a−b
3 ,(28)

a−1
2 ae

3 : · · · : an−2, a−1
n−2 : (gn−1, 0)g

]

i=n−2∏

i=1

| det ai |ui+1−ui dai

| det gn−1 |un−un−1+1 dgn−1.

At this point, we use the Iwasawa decomposition of GL(n − 1) to write gn−1 =
kn−1bn−1 with kn−1 ∈ Kn−1 and b ∈ Bn−1. Then dgn−1 = dkn−1dr bn−1, where
dr bn−1 is a right invariant measure on Bn−1. Recalling our notational convention,
we replace !1 by the Schwartz function !2 defined by

!2 =
∫

Kn−1

l̂n−1
(
k−1

n−1

)
.!1

u .rn−1(kn−1)µnµ
−1
n−1(det kn−1)dkn−1

or, somewhat more explicitly,

!2(•, X ) =
∫

Kn−1

l̂n−1
(
k−1

n−1

)
.!1(•, kn−1 X )µnµ

−1
n−1(det kn−1)dkn−1.
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We keep in mind the relation
'(vgn−1, X ) = '(gn−1, X )θn−1(v).

It is equivalent to the relation
∫

l̂n−1(vgn−1).!2 [a1a−b
2 , a−1

1 ae
2 : a2a−b

3 , a−1
2 ae

3 : · · · : an−2, a−1
n−2 : X

]

i=n−2∏

i=1

| det ai |ui+1−ui dai

= θn−1(v)

×
∫

l̂n−1(gn−1).!2 [a1a−b
2 , a−1

1 ae
2 : a2a−b

3 , a−1
2 ae

3 : · · · : an−2, a−1
n−2 : X

]

i=n−2∏

i=1

| det ai |ui+1−ui dai .

Formula (28) for w(g) becomes

∫
l̂n−1
(
b−1

n−1

)
.!2 [a1a−b

2 , a−1
1 ae

2 : a2a−b
3 , a−1

2 ae
3 : · · · : an−2, a−1

n−2 : (bn−1, 0)g
]

(29)

i=n−2∏

i=1

| det ai |ui+1−ui dai

| det bn−1 |un−un−1+1 dr bn−1.

Now we set

bn−1 =





a1,1 x1,2 x1,3 · · · x1,n−1

0 a2,2 x2,3 · · · x2,n−1

· · · · · · · · · · · · · · ·
0 · · · · · · an−2,n−2 xn−2,n−1

0 · · · · · · 0 an−1,n−1




,

an−1 = diag
(
a1,1, a2,2, . . . , an−1,n−1

)
.

Then

dr bn−1 = dan−1

⊗
dxi, j | a2,2 |−1 | a3,3 |−2 · · · | an−1,n−1 |−(n−2) .

We now use formula (29) to compute
∫

f (v)θn(v)dv =
∫

w
[(

1n−1 U
0 1

)]
ψ(−εn−1U )dU

where U is integrated over the space of (n − 1)-columns and

εn−1 = (0, 0, . . . , 0, 1).
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We find
∫

l̂n−1
(
b−1

n−1

)
.!2

u

[
a1a−b

2 , a−1
1 ae

2 : a2a−b
3 , a−1

2 ae
3 : · · · : an−2, a−1

n−2 : (bn−1, bn−1U )
]

i=n−2∏

i=1

| det ai |ui+1−ui dai

| det bn−1 |un−un−1+1 dr bn−1ψ(−εn−1U )dU.

We change U to b−1
n−1U . We get

∫
l̂n−1
(
b−1

n−1

)
.!2

u

[
a1a−b

2 , a−1
1 ae

2 : a2a−b
3 , a−1

2 ae
3 : · · · : an−2, a−1

n−2 : (bn−1, U )g
]

i=n−2∏

i=1

| det ai |ui+1−ui dai

| det bn−1 |un−un−1 dr bn−1ψ
(
− εn−1b−1

n−1U
)
dU

or, more explicitly, denoting by Ui , 1 ≤ i ≤ n − 1, the entries of U ,
∫

l̂n−1
(
a−1

n−1

)
.!2 [a1a−b

2 , a−1
1 ae

2 : a2a−b
3 , a−1

2 ae
3 : · · · : an−2, a−1

n−2 : (bn−1, U )
]

i=n−2∏

i=1

| det ai |ui+1−ui dai

ψ
(
−a−1

1,1x1,2 − a−1
2,2x2,3 · · ·− a−1

n−2,n−2xn−2,n−1 − a−1
n−1,n−1Un−1

)

| det bn−1 |un−un−1 dr bn−1dU.

By (20), we may bring l̂n−1(a−1
n−1) “inside” to get

l̂n−1
(
a−1

n−1

)
.!2[• : an−2, a−1

n−2 : •
]

= !2
[
• : an−2a−b

n−1, a−1
n−2ae

n−1 : •
]

| a2,2 || a3,3 |2 · · · | an−1,n−1 |n−2 .

Thus we find for our integral
∫
!2

u

[
a1a−b

2 , a−1
1 ae

2 : a2a−b
3 , a−1

2 ae
3 : · · · : an−2a−b

n−1, a−1
n−2ae

n−1 : bn−1, U )
]

i=n−1∏

i=1

| det ai |ui+1−ui dai

ψ
(
−a−1

1,1x1,2 − a−1
2,2x2,3 · · ·− a−1

n−2,n−2xn−2,n−1 − a−1
n−1,n−1Un−1

)

⊗
dxi, j

⊗
dUi .
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Finally, we set ! = Fn−1(!2). Then the above integral can be written as
∫
!
[
a1a−b

2 , a−1
1 ae

2 : a2a−b
3 , a−1

2 ae
3 : · · · : an−2a−b

n−1, a−1
n−2ae

n−1 : an−1, a−1
n−1)
]

i=n−1∏

i=1

| det ai |ui+1−ui dai .

To finish the proof of the lemma we remark that

! = Fn−1(!2)

= Fn−1

(∫
l̂n−1

(
k−1

n−1

)
(!1)rn−1(kn−1)µnµ

−1
n−1(det kn−1)dkn−1

)

=
∫

Fn−1

(
l̂n−1

(
k−1

n−1

)
(!1)rn−1(kn−1)

)
µnµ

−1
n−1(det kn−1)dkn−1

=
∫

l̂n−1
(
k−1

n−1

) (
Fn−1(!1)

)
r̂n−1(kn−1)µnµ

−1
n−1(det kn−1)dkn−1

so that inductively we see that ! = F A(-) as claimed.

7. Properties of the Whittaker functions. In this section we will use the
integral representation to obtain a very precise description of the behavior of a
Whittaker function on the diagonal subgroup. Our starting point is an investigation
of the type of integrals that represent Whittaker functions. We let An be the vector
space of diagonal matrices with n-entries, a space we may also identify to Fn . We
consider the direct sum

Wn := A1 ⊕ A1 ⊕ A2 ⊕ A2 ⊕ A3 ⊕ A3 ⊕ · · ·⊕ An−1 ⊕ An−1(30)

and a function ! ∈ S(Wn ⊕ X), where X is an auxiliary real vector space. We
consider the function on An × X defined by the following integral:

w!,u(m : X ) :=| det m |un µn(det m)(31)

∫

A1×A2×···×An−1

!
[
a1a−b

2 , a−1
1 ae

2 : a2a−b
3 , a−1

2 ae
3 : · · · :

an−2a−b
n−1, a−1

n−2ae
n−1 : an−1mb, a−1

n−1m−e : X
]

i=n−1∏

i=1

µiµ
−1
i−1(ai ) | det ai |ui−ui−1 dai .

Let σu be the n-dimensional representation of F× (or the Weil group of F) defined
by

σu(t) =
⊕

µi (t) | t |ui
F .
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In particular, σ0 =
⊕

µi (t). For 1 ≤ j ≤ n, the representation
∧ j
σu decomposes

into the sum of the characters

t (→ µi1µi2 · · · µi j (t) | t |ui1 +ui2 +···+ui j

with

1 ≤ i1 < i2 < · · · < i j ≤ n.

We consider the algebraic co-characters of An defined by the fundamental co-
weights:

2̌ j (m) = (
j︷ ︸︸ ︷

m, m, . . . , m, 1, . . . 1).

Thus αi (2̌ j (m)) = mδi, j . Below we consider over all complex characters ξ of An

such that, for each 1 ≤ i ≤ n, the character ξ ◦ 2̌i is a component of
∧i
σu . If we

write ξ (m) =
∏

1≤i≤n ξi (mi ) where the mi are the entries of m, this amounts to say
that every product ξ1ξ2 · · · ξ j is a component of

∧ j (σu). The characters ξ depend
on u so we will often write them as ξu . Thus ξu,1(t) = µi (t) | t |ui for a suitable i
and

ξu,1ξu,2 · · · ξu,n(t) = µ1µ2 · · · µn(t) | t |u1+u2+···un .

Proposition 6. We fix a multi strip

S = {u|− A < .ui < A, 1 ≤ i ≤ n}, A 3∈ ZF .(32)

With the above notations, there is a polynomial P, product of linear factors, with
the following properties. For u ∈ S,

P(u)w!,u(m : X ) =
∑

-ξu (mbm−e : X )ξu(m),-ζu ∈ S(An−2 ⊕ X ),

where the sum is over all the characters ξu of An of the above type. Suppose that!
remains in a bounded set. Then one can choose the functions -∗ in a bounded set.
Suppose that ! depends holomorphically on s ∈ +, where + is open in Cm, and
remains in a bounded set for all values s. Then one can choose the functions-∗ to
depend holomorphically on (u, s) and to remain in a bounded set.

Proof. We prove the proposition by induction on n. The case n = 2 is Propo-
sition 2 of section 4. Thus we assume n > 2 and the result true for (n − 1). Set
u′ = (u1, u2, . . . , un−1) and let τu be the representation of degree (n − 1) of F×

associated with u′ and the characters µi , 1 ≤ i ≤ n − 1.
As before, we suppress the characters µi from the notations. Consider the strip

S′ = {u′|− A < .ui < A, 1 ≤ i ≤ n − 1}. Let Q′(u′) be the polynomial whose
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existence is guaranteed by the induction hypothesis. Then the product of Q(u′)
| det an−1 |un−1 and the integral

∫
!
[
a1a−b

2 , a−1
1 ae

2 : a2a−b
3 , a−1

2 ae
3 : · · · : an−2ab

n−1, a−1
n−2a−e

n−1 : Y : X
]

i=n−2∏

i=1

| det ai |ui+1−ui dai

is a sum of terms of the form

-u′(ab
n−1a−e

n−1 : Y : X )η(an−1).

The components ηi of η have the property that each product η1η2 · · · η j is a com-
ponent of

∧ j
τu . Using this result we see that the product Q(u′)w!,u(m : X ) is a

sum of terms of the following form

| det m |un

×
∫
-u′
[
a−b

n−1ae
n−1 : an−1mb, a−1

n−1m−e : X
]
η−1(an−1) | det an−1 |un dan−1.

More explicitly, in terms of the entries bi of the matrix an−1 and the entries mi of
m, this expression reads

| m1m2 · · · mn−1mn |un

∫
-u′
[
b−1

1 b2, b−1
2 b3, . . . , b−1

n−2bn :

b1m1, b−1
1 m−1

2 , b2m2, b−1
2 m−1

3 , . . . , bn−1mn−1, b−1
n−1m−1

n : X
]

η−1
1 (b1)η−1

2 (b2) · · · η−1
n−1(bn) | b1b2 · · · bn−1 |un

⊗
d×bi .

For convenience, we have changed the order of the variables. In general, we re-
mark that if -(x, y, z, X ) is a Schwartz function of (x, y, z, X ), then the function
-(yz, y, z, X ) is still a Schwartz function of (y, z, X ). Applying this simple remark
repeatedly, we see the above expression has the form:

∫
-1

u′
[
b1m1, b−1

1 m−1
2 , b2m2, b−1

2 m−1
3 , . . . , bn−1mn−1, b−1

n−1m−1
n : X

]
(33)

η−1
1 (b1)η−1

2 (b2) · · · η−1
n−1(bn) | b1b2 · · · bn−1 |un

⊗
d×bi | m1m2 · · · mn−1mn |un

where -1
u′ is a new Schwartz function. Next we apply Proposition 2 of section 4

repeatedly and we see that there is a polynomial R(u) such that the product of the
previous expression and R(u) is a sum of terms of the following form

-u
(
m1m−1

2 , m2m−1
3 , . . . , mn−1m−1

n

)
ξ (m),
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where the character ξ (m) is obtained as the product of | det m |un and a character
obtained from the following table

{
η1(m1) | m1 |−un

η1(m2) | m2 |−un

} {
η2(m2) | m2 |−un

η2(m3) | m3 |−un

}
· · ·

{
ηn−1(mn−1) | mn−1 |−un

ηn−1(mn) | mn |−un

}
.

In each column we choose in any way a character and multiply our choices together.
If we evaluate ξ on an element of the form

diag(
j︷ ︸︸ ︷

m0, m0, . . . , m0, 1, 1 . . . , 1)

we find η1η2 · · · η j (m0) if j < n and η1η2 · · · ηn−1(m0) | m0 |un if j = n. Thus the
character ξ has the required properties. !

We can state our main theorem. Indeed, it follows at once from the previous
proposition and the integral representation of the Whittaker functions.

Theorem 2. Suppose that fu is a standard section and φ the convolution of
(n − 1) elements φi of D(Gn). Fix a multi strip S = {u|− A < .ui < A, 1 ≤ i ≤
n} with A 3∈ ZF . Then there is a polynomial P(u), product of linear factors, such
that in the multi strip

P(u)Wu('u(mk) fφ,u)

=
∑

ξu

-ξu ,u
(
m1m−1

2 , m2m−1
3 , . . . , mn−1m−1

n , k
)
ξu(m)e〈H (m),ρ〉.

For each ξu, and each u the function

-ξu ,u (x1, x2, . . . , xn−1, k)

is in S(Fn−1 × K ) and u (→ -ξu ,u is a holomorphic function with values in
S(Fn−1 × K ). Its values are in a bounded set if fu and the functions φi are each
in a bounded set.

If Wu(g) = Wu(ρ(mk) fφ,u) then we set

W̃−u := Wu
(
wn

t g−1).(34)

Note that W̃−u(ng) = θ (n)W̃−u(g). Moreover, for m ∈ An , k ∈ Kn ,

W̃u(mk) = Wu(wm−1wk ′), k ′ = w t k−1 ∈ Kn.

We remark that, for 1 ≤ i ≤ n,
n− j∧
σu ⊗ det σ−1

u =
j∧
σ̃u
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and

2̌i (wt−1w) = 2̌n−i (t)2̌n(t)−1.

It follows that the function W̃u(g) has the same properties as the function Wu , except
that the representation σu is replaced by the contragredient representation, or, what
amounts to the same, the characters µi are replaced by their inverses and u by −u.
In particular, we have the following proposition, the proof of which is immediate.

Proposition 7. Notations being as in the theorem, the product

P(u)W̃−u(mk)

can be written as
∑

ξu

-̃ξu ,u
(
m1m−1

2 , m2m−1
3 , . . . , mn−1m−1

n , k
)
ξu(m)−1e〈H (m),ρ〉

where the sum is the same as before and the functions -̃ξu ,u have the same properties
as above.

We shall need estimates which are uniform in u for the Whittaker functions.
We first consider integrals of the form (31).

Proposition 8. Suppose that ! is in a bounded set and u in a multi strip.
There are integers Ni , 1 ≤ i ≤ n − 1, with the following property. For any integer
M > 0 there is a majorization

|w!,u(m : X )| ≤| mn |.(
∑

1≤i≤n ui )
i=n−1∏

i=1

∣∣mi m−1
i+1

∣∣−Ni

(
1 +
∣∣mi m−1

i+1

∣∣)M
-0(X )

where-0 ≥ 0 is in S(X). Suppose that u is purely imaginary. Then there is a poly-
nomial Q in log (| mi/mi+1 |) such that, for every integer M, there is a majorization

|w!,u(m : X )| ≤ Q(log | mi/mi+1 |)
∏i=n−1

i=1

(
1 +
∣∣mi m−1

i+1

∣∣)M
-0(X ).

Proof. We prove the first assertion by induction on n. For the case n = 2, we
have, dropping the characters µi from the notation,

w!,u(m : X ) =| m1m2 |u2

∫
!
(
a1m1, a−1

1 m−1
2 : X

)
| a1 |u2−u1 d×a1

=| m2 |u1+u2 | m1m−1
2 |u2

∫
!(a1m1m−1

2 , a−1
1 : X ) | a1 |u2−u1 d×a1

and then our assertion follows from Proposition 3 of Section 4. Thus we may assume
n > 2 and our assertion true for n − 1. We may also assume that ! is bounded by
a function ≥ 0 which is a product and so we may ignore the dependence on X
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and assume ! ≥ 0 and the ui are real. Then, for an−1 ∈ An−1 with entries bi , the
product of | det an−1 |un−1 and the integral

∫
!
[
a1a−b

2 , a−1
1 ae

2 : a2a−b
3 , a−1

2 ae
3 : · · · : an−2ab

n−1, a−1
n−2a−e

n−1 : Y
]

i=n−2∏

i=1

| det ai |ui+1−ui dai

is bounded by

| bn−1 |
∑

1≤i≤n−1 ui ×
i=n−2∏

i=1

∣∣bi b−1
i+1

∣∣−Ni

(
1 +
∣∣bi b−1

i+1

∣∣)M
-0(Y ).

Thus | w!,u(m) | is bounded by

| det m |un ×
∫

| det an−1 |un | bn−1 |−
∑

1≤i≤n−1 ui

i=n−2∏

i=1

∣∣bi b−1
i+1

∣∣Ni

(
1 +
∣∣b−1

i bi+1
∣∣)M

-0
(
an−1mb, a−1

n−1m−e) dan−1.

In turn, this is majorized by

| det m |un ×
∫

| det an−1 |un | bn−1 |−
∑

1≤i≤n−1 ui

i=n−2∏

i=1

∣∣bi b−1
i+1

∣∣Ni +M

-0
(
an−1mb, a−1

n−1m−e) dan−1.

This has the form

| det m |un ×
∫ i=n−1∏

i=1

| bi |si -0
(
an−1mb, a−1

n−1m−e) dan−1

where each si belongs to some fixed interval and

i=n−1∑

i=1

si = nun −
i=n∑

i=1

ui .

Explicitly, the integral reads (after changing the order of the variables)

| det m |un ×
∫
-0
[
b1m1, b−1

1 m−1
2 , b2m2, b−1

2 m−1
3 , . . . , bn−1mn−1, b−1

n−1m−1
n

]

i=n−1∏

i=1

| bi |si d×bi .
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Changing variables, we get:

| det m |un | m2 |−s1 | m3 |−s2 · · · | mn |−sn−1

×
∫
-0
[
b1m1m−1

2 , b−1
1 , b2m2m−1

3 , b−1
2 , . . . , bn−1mn−1m−1

n , b−1
n−1

]

i=n−1∏

i=1

| bi |si d×bi ,

or, finally,∏

1≤i≤n−1

| mi m−1
i+1 |ti | mn |

∑
1≤i≤n ui

∫
-0
[
b1m1m−1

2 , b−1
1 , b2m2m−1

3 , b−1
2 , . . . , bn−1mn−1m−1

n , b−1
n−1

]

i=n−1∏

i=1

| bi |si d×bi ,

where each one of the exponents ti is in some fixed interval. Our assertion follows
then from repeated use of Proposition 3 in Section 4. This concludes the proof of
the first assertion. The proof of the second assertion is similar. !

Using once more the integral representation of the Whittaker functions we
obtain at once the following estimates.

Proposition 9. Suppose that u is in a multi strip, fu in a bounded set and the
functions φi in a bounded set. Then there are Ni > 0, 1 ≤ i ≤ n − 1, such that, for
all M > 0,

|Wu('u(mk) fφ,u)| ≤ cM | mn |.7ui e〈H (m),ρ〉
i=n−1∏

i=1

| mi/mi+1 |−Ni

(
1 +
∣∣mi m−1

i+1

∣∣)M
.

If u is purely imaginary, then there is a polynomial Q in n − 1 variables such that

|Wu'u(mk) fφ,u)| ≤| det m |.7ui e〈H (m),ρ〉 Q(log(| mi/mi+1 |)
∏i=n−1

i=1

(
1 +
∣∣mi m−1

i+1

∣∣)M
.

8. Rankin-Selberg integrals for GL(n) × GL(n). In this section we con-
sider two n-tuples of (normalized) characters

(µ1, µ2, . . . , µn), (µ′1, µ
′
2, . . . , µ

′
n)

and two elements u and u′ of Cn . We denote by W ′
u′ the linear form on the space

V(µ′) which is defined by analytic continuation of the integral

W ′
u′( fu′) =

∫

Nn

fu′(v)θn(v)dv .
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We consider two corresponding convolution sections fφ,u and fφ′,u′ and we set

Wu(g) = Wu('u(g) fφ,u), W ′
u′(g) = W ′

u′('u′(g) fφ′,u′).(35)

We study the corresponding Rankin-Selberg integral. We set

εn = (0, 0, 0, . . . , 0, 1).(36)

We let and - be an element of S(Fn). We define

!(s, Wu, W ′
u′,-) :=

∫

Nn\Gn

Wu(g)W ′
u′(g

′)-[(εn)g] | det g |s dg.(37)

Proposition 10. If (u, u′) are in a multi strip then there is s0 such that the
integral converges absolutely in the right half plane .s > s0, uniformly on any
vertical strip contained in the half plane. If u and u′ are purely imaginary, then
the integral converges in the half plane .s > 0, uniformly on any vertical strip
contained in the half plane.

Proof. We write g = ak with dg = e〈H (a),−2ρ〉dadk. We write a in terms of the
co-weights:

a =
∏

1≤i≤n

2̌i (ai ) = diag(a1a2 · · · an, a2 · · · an, . . . , an)

and use the majorization of Wu(ak) and W ′
u′(ak) from the previous section. We find

that

Wu(ak)W ′
u′(ak)e〈H (a),−2ρ〉

is majorized by

cM

∏

1≤i≤n−1

| ai |−Mi

(1+ | ai |)N
| an |.

(∑
ui +
∑

u′i
)

where the integer N is arbitrarily large. On the other hand, for all N , -[(εn)ak] is
majorized by

c′N
1

(1+ | an |)N
.

The integral is thus majorized by
∫ | a1 |.s−M1

(1+ | a1 |)N

| a2 |2.s−M2

(1+ | a2 |)N
· · ·

| an−1 |(n−1).s−Mn−1

(1+ | an−1 |)N

| an |
∑
.ui +

∑
.u′i +n.s

(1+ | an |)N
⊗ d×ai

and the first assertion follows. The proof of the second assertion is similar.
We simply majorize Wu(ak)W ′

u′(ak)e〈H (a),−2ρ〉 by a polynomial in the variables
log | ai |, 1 ≤ i ≤ n − 1. !
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Our next result will be improved upon in the next theorem.

Proposition 11. Let σu and σ ′u′ be the n-dimensional representations of F×

(or the Weil group) defined by

σu = ⊕µiα
ui
F , σ ′u′ = ⊕µ′iα

u′i
F .

Then!(s, Wu, W ′
u′,-) extends to a meromorphic function of (s, u, u′) which is the

product of

j=n∏

j=1

L

(

js,
j∧
σu ⊗

j∧
σ ′u′

)

and an entire function of (s, u, u′).

Proof. Choose a multi strip S of the form (32) in C2n . For (u, u′) ∈ S the inte-
gral converges in some halfspace A = {s|.s > s0} and thus defines a holomorphic
function of (s, u, u′) in A×S. As before let us write g = ak and a in terms of the
co-weights. There are polynomials P, P ′, products of linear factors, such that

P(u)P(u′)Wu(ak)W ′
u′(ak)e〈H (a),−2ρ〉

is a sum of terms of the following form

-u(a1, a2, . . . , an−1, k)-′u′(a1, a2, . . . , an−1, k)

ξ1,uξ
′
1,u′(a1)ξ2,uξ

′
2,u′(a2) · · · ξn−1,uξ

′
n−1,u′(an−1)ξn,uξ

′
n,u′(an)

where each ξi,u (resp. ξ ′i,u′) is a component of
∧i
σu (resp.

∧i
σ ′u′). On the other

hand

| det ak |s=| a1 |s | a2 |2s · · · | an |ns

and

-(εnak) = φ(an, k)

where φ is a Schwartz function in one variable depending on k. The contribution
of the term at hand to the total integral has thus the form

∫ (∫
-u(a1, a2, . . . , an−1, k)-′u(a1, a2, . . . , an−1, k)φ(an, k)dk

)

n∏

i=1

ξi,uξ
′
i,u′(ai ) | ai |is d×ai .

After integrating over Kn we obtain a multivariate Tate integral (where in addition
the Schwartz function depends holomorphically on (u, u′)). Thus

P(u)P(u′)!(s, Wu, W ′
u′,-)
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is a sum of terms of the form

h(s, u, u′)
n∏

j=1

L( js, ξ jξ
′
j )

where h is holomorphic in C×S. This already shows that ! extends to a mero-
morphic function on C×S. The only possible singularities are the singularities of
the L-factors and the zeroes of P(u)P ′(u′). Thus they are hyperplanes of the form:

js + ui1 + ui2 + · · · + ui j + u′i ′1 + u′i ′2 + · · · + u′i ′j = z0,

l(u) = z1, l(u′) = z2

with z∗ ∈ ZF . Consider a hyperplane of the form l(u) = z1 which intersects C×S.
Then it also intersects A×S. However the function !(s, Wu, W ′

u′,-) is holo-
morphic in this region because the integral is convergent, thus this is not actually a
singular hyperplane. Likewise for a hyperplane l(u′) = z2. We conclude that the only
singularities of !(s, Wu, W ′

u′,-) are those of the L-factors and we are done. !

Proposition 12. Let u0 and u′0 be fixed elements of Cn. Then the meromorphic
function

!(s, Wu0, W ′
u′0

,-)

is bounded at infinity in vertical strips.

Proof. Fix a multi strip S of the form (32) in C2n+1. Only finitely many singular
hyperplanes of !(s, Wu, W ′

u′) intersect S. Let Q(s, u, u′) be the product of the
corresponding (non-homogeneous) linear forms, with the appropriate multiplicity,
repeated according to their multiplicity. The product of Q(s, u, u′) and any of the
Tate integrals considered in the previous proposition is actually bounded in S. Thus
the product

k(s, u, u′) := Q(s, u, u′)P(u)P ′(u′)!(s, Wu, W ′
u′)

is holomorphic and bounded in S. Now we choose slightly smaller multi strip S′

and S” such that

S′ ⊂ Closure(S′) ⊂ S” ⊂ Closure(S”) ⊂ S.

By the Cauchy integral formula, k and all its derivatives are bounded in S”. On the
other hand, by the previous proposition

k(s, u, u′) = P(u)P ′(u′)h(s, u, u′)

where h is holomorphic in S. We claim that h and all its derivatives are bounded in
Closure(S′) which will prove the proposition. We think of S” as the product a× b
where

a = {s|− a < .s < a}
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and

b = {(u, u′)|∀i − a < .ui < a, ∀ j − a < .u′j < a}.

Clearly, it will be enough to show that for every (u0, u′0) ∈ b, there is a tubular
neighborhood u of (u0, u′0) in b such that h and all its derivatives are bounded in
a× u. Indeed, a finite number of the sets a× u cover Closure(S′). Thus it will
suffice to apply repeatedly the following lemma. !

Lemma 7. Let a = {s ∈ C|− a < .s < a} and let u be a tubular open set in
Cn. Suppose that k is a holomorphic function on a× u uniformly bounded as well
as its derivatives. Suppose that

h(s, u) = (l(u)− z)k(s, u)

where k is holomorphic and l(u) =
∑n

i=1 ui vi with (vi ) non-zero in Rn and z is
real. Given u0 ∈ u, there is a tubular neighborhood u0 of u0 in u such that h and
all its derivatives are bounded in a× u0.

Proof of the Lemma. Perhaps we should recall that a tubular neighborhood of
u0 in Cn is a set of the form {u|.u ∈ +} where + is a neighborhood of .u0 in Rn .
There is no harm in assuming u0 real. Our assertion is trivial if l(u0)− z 3= 0. Thus
we may assume l(u0) = z. After a real change of coordinates in the variables u, we
may assume u0 = 0, z = 0, and

k(s, z1, z2, . . . , zn) = z1h(s, z1, z2, . . . , zn)

and u contains the set

u0 = {z|∀i − b < .zi < b}.

Then

h(s, z1, z2, . . . , zn) =
∫ 1

0

∂

∂z1
k(s, t z1, z2, . . . , zn)dt

and this formula shows that h and all its derivatives are bounded on u0. !

If we fix u0 and u′0 then the functions !(s, Wu0, W ′
u0

,-) are holomorphic
multiples of L(s, σu0 × σu′0 ). One can improve the previous result as follows. Let
H be the space of holomorphic multiples h(s) of L(s, σu0 × σu′0 ) such that, for any
strip −a < .s < a, and any polynomial P(s) such that P(s)L(s, σu0 × σu′0 ) has
no pole on −a ≤ .s ≤ a, the product P(s)h(s) is bounded in the open strip. Then
!(Wu0, W ′

u0
,-) is in H. In fact, we can prove even more. Suppose that f and f ′

are elements of V (µ) and V (µ′), each in some bonded set B and B′ respectively.
Let

W (g) = Wu0 ('u0 (g) f ), W ′(g) = W ′
u0

('u0 (g) f ′).
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Suppose that - is in some bounded set C of S(Fn). Then we claim

!(s, W, W ′,-)

is in a bounded set of H. Since the spaces V (µ), V (µ′) and S(Fn) are bornological
spaces, this proves that the trilinear map

( f, f ′,-) (→ !(•, W, W ′,-)

from V (µ)× V (µ′)× S(Fn) to H is continuous. To verify our claim we use the
Dixmier Malliavin Lemma to write

f =
∑

i

'u0 (φi ) fi

with φi in a bounded set of D(Gn) and fi in a bounded set of V (µ). We consider
the standard sections fi,u attached to the fi , the convolution sections fi,φi ,u , and the
corresponding Whittaker functions Wi,u . Likewise we write

f ′ =
∑

j

'u′0 (φ
′
j ) f ′j

and define W ′
j,u′ . Then

!(s, W, W ′) =
∑

i, j

!(s, Wi,u0, W ′
j,u′0

,-).

Our construction shows that each term is in a bounded set of H.
We now are ready to state our main theorem.

Theorem 3. The ratio

!(s, Wu, W ′
u′,-)

L(s, σu ⊗ σ ′u′)
(38)

is a holomorphic function of (s, u, u′) in C2n+1.

Proof. We recall the functional equation satisfied by the functions ! ([JS]).
We introduce, as before,

W̃u(g) := Wu(w t g−1), W̃ ′
u′(g) := W ′

u′(w
t g−1).

The function W̃u(g) has the same properties as the function Wu , except that the
representation σu is replaced by the contragredient representation σ̃u . The equation
in question reads:

!(W̃u, W̃ ′
u′,-)

L(1− s, σ̃u ⊗ σ̃ ′u′)
= ε(s, σu ⊗ σ ′u′,ψ)

!(s, Wu, W ′
u′ ;-)

L(s, σu ⊗ σ ′u)
.

Fix u and u′ purely imaginary. Then the integral defining !(s, Wu, W ′
u′ ;-) con-

verges for.s > 0. Thus the right-hand side, which is a priori defined for.s >> 0



P1: IOI

PB440-15 HIDA-0662G PB440-Hida-v4.cls December 12, 2003 9:51

integral representation of whittaker functions 411

extends to a function holomorphic in the half plane.s > 0. Likewise, the left-hand
size extends to a holomorphic function in the half plane .s < 1. We conclude that
the right-hand side, for u, u′ fixed and imaginary, is actually an entire function of s.

Now by the previous proposition, the ratio (38) has the form

h(s, u, u′)
i=n∏

i=2

L
(

s,
i∧
σu ⊗

i∧
σ ′u′

)
(39)

where h is holomorphic. The singularities of L(s,
∧i
σu ⊗

∧i
σ ′u′) are hyperplanes

of the form:

is + u j1 + u j2 + · · · + u ji + u′k1
+ u′k2

+ · · · u′ki
= −z

with z ≥ 0, z ∈ ZF , j1 < j2 < · · · < ji , k1 < k2 < · · · < ki . Fix u and u′ imaginary
in such a way that the values of s determined by these equations are all distinct. Then,
for.s >> 0, the expression (39) is equal to the integral divided by L(s, σu ⊗ σ ′u′).
Thus for fixed imaginary (u, u′) it extends to an entire function of s. This forces
h(s, u, u′) = 0 for any s satisfying one (and only one) of these equations. It follows
that h vanishes identically on any of these hyperplanes. Thus it is divisible by
each one of the linear forms is + u j1 + u j2 + · · · + u ji + u′k1

+ u′k2
+ · · · u′ki

+ z.
If these singularities have multiplicity this argument can be repeated. Our assertion
follows. !

9. Other series for the real case. It remains to prove the analog of the
previous theorem for representations which are (non-unitarily) induced by discrete
series of GL(2) and characters of GL(1). Thus we assume from now on that F is
real.

We first recall the following result on the convergence of the integrals.

Proposition 13. Let π and π ′ be unitary irreducible tempered representations
of GL(n). For W (resp. W ′) in the Whittaker model of π (resp. π ′) and any - ∈
S(Fn), the integral!(s, W, W ′,-) converges absolutely for.s > 0, uniformly for
.s in a compact set.

Proof. We think of the smooth vectors ofπ as elements of the Whittaker model.
Let λ be the evaluation at e. Thus

W (g) = λ(π (g)W ).

According to [W] (Lemma 15.2.3 and Theorem 15.2.5, page 375), the linear
formλ is tame for the pair (B, A); thus there is8π ∈ a∗ and a continuous semi-norm
q such that, for a ∈ A− and any smooth vector v ,

λ(π (a)v) ≤ e〈8π+ρ,H (a)〉 (1+ ‖ log a ‖)d q(v).
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Since π is tempered,8π =
∑

1≤i≤n−1 xiαi with xi ≥ 0. We also recall that there is
an integer N such that q(π (g)v) ≤‖ g ‖N q(v).

A similar result applies to π ′ with a linear form 8π ′ , a semi-norm q ′ and a
number N ′.

Now

!(s, W, W ′,-)

=
∫

An−1×F××Kn

W
[(

a 0
0 1

)
k
]

W ′
[(

a 0
0 1

)
k
]
-[(0, 0, . . . , 0, an)k]

| an |ns ωω′(an)e〈H (a),−2ρ〉 | det a |s dad×andk,

where ω and ω′ are the central characters. We write as before

a =
i=n−1∏

i=1

bi , bi = 2̌i (ai ) = diag

i︷ ︸︸ ︷
(ai , ai , . . . , ai , 1, . . . , 1) .

By the Dixmier-Malliavin Lemma we may assume that

W (g) =
∫

W0(gx)φ(x)dx

where φ is smooth of compact support. Then

W
[(

a 0
0 1

)
k
]

=
∫

W0

[(
a 0
0 1

)
n1m1k1

]
φ(n1m1k1k−1)dn1dm1eH (〈m1),−2ρ〉dk1

=
∫

W0

[(
a 0
0 1

)
m1k1

]
φ(n1m1k1k−1)θ (an1a−1)dn1dm1eH (〈m1),−2ρ〉dk1.

After integrating over n1 we see that this has the form:

∫
W0

[(
a 0
0 1

)
m1k1

]
φ1(a1, a2, . . . an−1; m1, k1, k)dm1dk1,

where φ1 is a smooth function on Fn−1 × An × Kn × Kn whose support has a
compact projection on An and which is rapidly decreasing with respect to the first
n − 1 variables.

If T is a subset (possibly empty) of the set {α1,α2, . . . ,αn−1} of simple roots
(or, equivalently, a subset of [1, n − 1]), we denote by A(T ) the set of diagonal
matrices a such that | αi (a) |≤ 1 for αi ∈ T and | αi (a) |> 1 for αi 3∈ T . Thus A is
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the union of the set A(T ). It will suffice to prove that for each T the integral
∫


a 0
0 1



∈A(T )

W
[(

a 0
0 1

)
k
]

W ′
[(

a 0
0 1

)
k
]
-[(0, 0, . . . , 0, an)k]

| an |ns ωω′(an)e〈H (a),−2ρ〉 | det a |s dad×andk

converges absolutely. We write

a = bT bT

where bT =
∏

i∈T bi . We have thus
∣∣∣∣W0

[(
a 0
0 1

)
m1k1

]∣∣∣∣ ≤ e〈H (bT ),8π+ρ〉(1+ ‖ log bT ‖)dq
(
π (bT m1k1)W0

)

or
∣∣∣∣W0

[(
a 0
0 1

)
m1k1

]∣∣∣∣ ≤ e〈H (bT ),8π+ρ〉(1+ ‖ log bT ‖)d ‖ bT ‖N‖ m1 ‖N q (W0).

Thus
∣∣∣∣W
[(

a 0
0 1

)
k
]∣∣∣∣ ≤ e〈H (bT ),8π+ρ〉(1+ ‖ log bT ‖)d

× ‖ bT ‖N
∫

| φ | (a1, a2, · · · , an−1; m1, k1, k) ‖ m1 ‖N dm1dk1.

Thus after integrating over m1 and k1, we find that
∣∣∣∣W
[(

a 0
0 1

)
k
]∣∣∣∣ ≤ e〈H (bT ),8π+ρ〉(1+ ‖ log bT ‖)d ‖ bT ‖N φ0(a1, a2, · · · , an−1)

where φ0 ≥ 0 is a Schwartz function. In turn φ0 is majorized by a Schwartz function
φT (ai ) depending only on the ai , i 3∈ T . There is a similar majorization for W ′.

We see then that we have to check the convergence of the three following
integrals, for s > 0:

∫
e〈H (bT ),8π+8π ′ > (1+ ‖ log bT ‖)d+d ′ | det bT |s dbT

∫
‖ bT ‖N+N ′ | det bT |s e〈b

T ,−2ρ〉φT (ai )dbT

∫
φ1(an) | an |ns dan.

The first one is in fact
∫

|ai |≤1,i∈T

∏

i∈T

| ai |is+xi +x ′i (1+ ‖ (log ai ) ‖)d+d ′
⊗

i∈T

d×ai

thus converges for .s > 0 since xi ≥ 0, x ′i ≥ 0. The convergence of the other in-
tegrals is trivial. !
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We now consider a general induced representation. In a precise way, we consider
unitary irreducible representations τi , 1 ≤ i ≤ r of degree ri = 1, 2 of the Weil
group of R; we assume that

∑
ri = n. To each τi is attached an irreducible unitary

representation (quasi-square integrable if ri = 2) πi of GL(ri , R). We choose a
non-zero linear form Wi on the space of smooth vectors of πi such that

Wi

[
πi

(
1 x
0 1

)
v
]

= ψi (x)Wi (v).

If the degree is 1 then Wi is the linear form taking the value 1 on 1 ∈ C.
If v is a r -tuple of complex numbers we consider the representation

:v := I (π1 ⊗ αv1 × π2 ⊗ αv2 × · · ·× πr ⊗ αvr )

induced from the lower parabolic subgroup of type (r1, r2, . . . , rr ). Let π be the
tensor product of the representations πi and Wπ be the tensor product of the linear
forms Wi . We define a linear form Wv by the integral:

Wv ( f ) =
∫

NP

Wπ f (n)e〈H
′(n),v+ρP 〉θ (n)dn

The integral converges when .vr > .vr−1 > · · ·.v1. It has analytic continuation
to an entire function of u.

We set

τ0 :=
⊕

1≤i≤r

τi , τv :=
⊕

1≤i≤r

τi ⊗ αvi .

If the degree of τi is 2 then the representation πi is in the discrete series of
GL(2, R) and is a subrepresentation of an induced representation of the form

I (ξi ⊗ α pi , ηi ⊗ αqi )

where ξi , ηi are normalized characters (of module 1), pi , qi are real numbers with
qi − pi > 0. Then we take

Wi ( f ) =
∫

f
[(

1 x
0 1

)]
ψi (x)dx .

We may view :v as a subrepresentation of an induced representation of the
form

'u = I (µ1 ⊗ αu1, µ2 ⊗ αu2, . . . , µn ⊗ αun )

where the µi are characters of module 1 and the ui complex numbers obtained in
the following way. If the degree of τi is one then we associate with τi a character
µk = πi and a complex number uk = vi . If the degree of τi is 2 then we associate
to τi characters µk = ξi , µk+1 = ηi , and complex numbers uk = pi + vi , uk+1 =
qi + vi . We remark that if the differences.vi+1 −.vi are positive and large enough
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then

.un > .un−1 > · · · > .u1.

We write u = T (v), ui = Ti (v). Thus T is an affine linear transformation.
As before, for arbitrary u, the representations 'u operate on the same vector

space V('0) of scalar valued functions on K . Likewise, all the representations:v

operate on the same vector space V(:0) which is a subspace of V('0). This being
so, if f is in V(:0) then we have the standard section fv of :v and the standard
section fT (v) of :u and, in fact,

fv = fT (v).

Moreover

Wv ( fv ) = WT (u)( fT (u))

when .vi+1 −.vi >> 0. This relation remains true for all values of v .
We now consider similar data for the group GL(n′). Suppose that

Wv (g) = Wv (:v (g) fφ,v )

where φ is the convolution of (n − 1) elements of D(Gn). We note that we may
define, more generally,

Wu(g) = Wu('u(g) fφ,u)

for u ∈ Cn . Then

Wv (g) = WT (v)(g).

Similarly suppose that

W ′
v ′(g) = W ′

v ′(:′u′ f ′φ′,v ′).

Theorem 4. If .v and .v ′ are in compact sets, then there is s0 ∈ R such that
the integral

!(s, Wv , W ′
v ′)

converges for .s > s0, uniformly for .s in a compact set. If ν and ν ′ are purely
imaginary then the integral converges for.s > 0. Finally, the integral has analytic
continuation to a meromorphic function of (s, v, v ′) which is of the form

L(s, τv ⊗ τ ′v ′)× H (s, v, v ′)

where H is a holomorphic function on Cr+r ′+1.

We first remark that the vectors (s, T (u), T ′(u′)) are in an affine subspace of
Cn+n′+1 defined by real equations. Moreover, that affine subspace is not contained
in any singular hyperplane for the function

!(s, Wu, W ′
u).
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hervé jacquet416

We may therefore restrict this function to the affine subspace at hand. The result is
clearly a meromorphic function of (s, v, v ′) which is a holomorphic multiple of

L(s, σT (v) ⊗ σ ′T ′(v ′)).

In fact this product has the form

L(s, σT (v) ⊗ σ ′T ′(v ′)) =
∏

1≤i≤r,1≤ j≤r ′
Pi, j (s + vi + v ′j )L(s, τv ⊗ τ ′v ′)×

where each Pi, j is a polynomial. Furthermore

ε(s, σT (v) ⊗ σ ′T ′(v ′),ψ)
L(s, σT (v) ⊗ σ ′T ′(v ′))

L(1− s, (σT (v) ⊗ σ ′T ′(v ′))̃ )

= ε(s, τv ⊗ τ ′v ′,ψ)
L(s, τv ⊗ τ ′v ′)

L(1− s, τ̃v ⊗ τ̃ ′v ′)
.

It follows that the functional equation can be written

!(1− s, W̃ν, W̃ ′
ν ′-̂)

L(1− s, τ̃ν ⊗ τ̃ ′ν ′)
= ε(s, τν ⊗ τ ′ν ′,ψ)

!(s, Wν, W ′
ν ′-)

L(s, τν ⊗ τ ′ν ′)
.

One then finishes the proof as in the previous section.

10. Complements. Consider now a standard section fu,u′ of the tensor prod-
uct representation'u ⊗'u′ (or:ν ⊗:′ν ′) and a corresponding convolution section
fφ,u,u′ where now φ is a smooth function of compact support on Gn × Gn . We then
consider the Whittaker integral

Wu,u′( fu,u′) =
∫

Nn×Nn

fu,u′(v, v ′)θ (v)θ (v ′)dvdv ′.

It is then easy to obtain directly an integral representation for the functions

Wu,u′(g, g′) = Wu,u′('u ⊗'u′(g, g′) fφ,u,u′)

and obtain the analytic properties of the integral

!(s, Wu,u′,-) :=
∫

Nn\Gn

Wu,u′(g)-(εng) | det g |s dg.

In the previous construction we pass from a standard section fu to a convolution
section fφ,u but in fact the construction is more general. Let us say that a section fu

is well behaved if, for u in any multi strip, the restriction of fu to Kn is uniformly
bounded as well as all its Kn-derivatives. At this point, we recall the space S(Gn)
([W] 7.1); it is the space of smooth functions- on Gn such that for every X and Y
in the enveloping algebra of Gn and for every integer N ,

sup
g∈Gn

‖ g ‖N |λ(X )ρ(Y )-(g)| < +∞.
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If fu is a standard section and - ∈ S(Gn) then

f-,u(g) :=
∫

fu(gx)-(x)dx

is a well behaved section. In addition, the group Gn (and any Lie subgroup of Gn)
operates by right and left translations on S(Gn) and the Dixmier-Malliavin Lemma
applies to these representations. Thus if - is in S(Gn) then it can be written as a
finite sum of convolution products

-(g) =
∑

i

φi ∗-i ,

with φi ∈ D(Gn) and -i ∈ S(Gn). Suppose that fu is a standard section. Then the
section f-,u verifies

f-,u(g) =
∑

i

∫
f-i ,u(gx)φi (x)dx .

It follows that our previous results apply to Whittaker functions defined by

Wu(g) = Wu('u(g) f-,u)

with fu a standard section and - ∈ S(Gn).

11. Other Rankin-Selberg integrals. In [JS] we associate to every pair of
integers (n, n′) with n′ ≤ n a family of Rankin-Selberg integrals with similar ana-
lytic properties. To be specific, let us consider only the integrals attached to principal
series representations. Thus we consider a n-tuple of characters (µ1, µ2, . . . , µn)
and a n′-tuple (µ′1, µ

′
2, . . . , µ

′
n′) and u ∈ Cn , u′ ∈ Cn′ . If n′ = n − 1 the integrals

can be treated as in the case n = n′. However, for n′ ≤ n − 2, an additional compli-
cation is that, in order to state the functions equation, one has to consider integrals
!(s, Wu, W ′

u′ ; j) which involve an auxiliary integration over the space M( j × n′)
of matrices with j rows and n′ columns, for 0 ≤ j ≤ n − n′ − 1, namely:

(40)

!(s, W, W ′; j) =
∫

W








g 0 0
X 1 j 0
0 0 1n−n′− j







W ′(g) | det g |s− n−n′
2 dgd X.

The following lemma will allow us to reduce the study of the integrals
!(s, Wu, W ′

u′ ; j) to the study of the integrals !(s, Wu, W ′
u′ ; 0).

Lemma 8. Suppose n′ ≤ n − 2 and 0 < j ≤ n − n′ − 1. Let fu be a standard
section. Let- ∈ S(Gn), and Wu the Whittaker function attached to the section f-,u.
Then there is -1 ∈ S(Gn) such that the Whittaker function W1,u attached to the
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section f-1,u verifies

∫
Wu








g 0 0
X 1 j 0
0 0 1n−n′− j







 d X = W1,u








g 0 0
0 1 j 0
0 0 1n−n′− j









for all g ∈ Gn′ .

Proof of the Lemma. The proof is by descending induction on j . We show the
induction step. By the Dixmier Malliavin Lemma we can write

-(g) =
∑

i

∫
-i









1n′ 0 Y 0
0 1 j 0 0
0 0 1 0
0 0 0 1n−n′− j−1



 g



φi (−Y )dY,

with φi ∈ D(F) and -i ∈ S(Gn). Then

Wu(g) =
∑

i

∫
Wi,u



g





1n′ 0 Y 0
0 1 j 0 0
0 0 1 0
0 0 0 1n−n′− j−1







φi (Y )dY

where Wi,u is the Whittaker function corresponding to the section f-i ,u . Then

∫
Wu








g 0 0
0 1 j 0
0 0 1n−n′− j









1n′ 0 0 0
X1 1 j−1 0 0
X2 0 1 0
0 0 0 1n−n′− j







 d X2

=
∑

i

∫
Wi,u








g 0 0
0 1 j 0
0 0 1n−n′− j









1n′ 0 0 0
X1 1 j−1 0 0
X2 0 1 0
0 0 0 1n−n′− j









d X2ψ(X2Y )φi (Y )dY

=
∑

i

∫
Wi,u








g 0 0
0 1 j 0
0 0 1n−n′− j









1n′ 0 0 0
X1 1 j−1 0 0
X2 0 1 0
0 0 0 1n−n′− j









d X2φ̂i (−X2)

= W0,u








g 0 0
0 1 j 0
0 0 1n−n′− j









1n′ 0 0 0
X1 1 j−1 0 0
0 0 1 0
0 0 0 1n−n′− j
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where W0,u is the Whittaker function attached to the section f-0,u and -0 is the
element of S(G) defined by:

-0(g) =
∑

i

∫
-i









1n′ 0 0 0
0 1 j−1 0 0

X2 0 1 0
0 0 0 1n−n′− j



 g



 d X2φ̂i (X2).

The lemma follows. !

As for the integrals !(s, Wu, W ′
u′ ; 0), they can be studied in the same way as

before.
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CHAPTER 16

A SPECTRAL IDENTITY FOR SKEW SYMMETRIC MATRICES

By Hervé Jacquet, Erez Lapid, and Stephen Rallis

Dedicated to Joe Shalika on the occasion of his 60th birthday

Abstract. We prove an identity between a spherical distribution of a residual Eisenstein series on GL2n

with respect to the symplectic group and a weighted trace of a cuspidal representation on GLn with
respect to a certain automorphic form.

1. Introduction. Let G be a reductive group over a number field F and let
H be the fixed point subgroup of an involutive automorphism of G defined over F .
For simplicity assume that H is semisimple. Let A be the ring of adèles of F . If π

is a cuspidal representation of G(A) one may consider the period linear form

"H (ϕ) =
∫

H (F)\H (A)
ϕ(h) dh

on the space of π . If "H !≡ 0 then π is said to be distinguished by H . These kinds
of periods are interesting from both an arithmetic and an analytic point of view, and
there is a great deal of literature about them. Many of them are related to special
values of L-functions.

If π is distinguished by H we define the spherical distribution of π with respect
to H by

Bπ
"H ,"H

( f ) =
∑

{ϕ}
"H (π ( f )ϕ)"H (ϕ)

for any f ∈ C∞
c (G(A)), where ϕ runs over an orthonormal basis of π .

Distinguished representations (by one, or a family of period subgroups) are
often characterized, or expected to be characterized, as functorial images, in the
sense of Langlands, from a third group G ′. As pointed out in [JLR93] the hy-
pothetical group G ′ should roughly speaking be characterized by the fact that its
conjugacy classes are in one-to-one correspondence with the double coset space
H\G/H . (For the existence of G ′ with this property, cf. [KR69].) In the case at
hand G = GL2n , H is the symplectic group in 2n variables, G ′ = GLn and the
map associates to a conjugacy class of g ∈ G ′ the double coset H ( g

0
0
1n

)H . If π
is a cuspidal automorphic representation of G ′(A) the corresponding distinguished
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automorphic representation $ of G(A) is not cuspidal but in fact is the residue of the
Eisenstein series induced from π |det| 1

2 ⊗ π |det|− 1
2 (normalized induction) viewed

as a representation of the Levi subgroup M of the parabolic subgroup P = M · U
of G of type (n, n).

The correspondence between conjugacy classes and double cosets suggests an
identity of the form

∫

H (F)\H (A)

∫

H (F)\H (A)
K f (h1, h2) dh1 dh2 =

∫

G ′(F)\G ′(A)1
K f ′(x, x) dx(1)

suitably regularized (with truncation, etc.) where f and f ′ are smooth compactly
supported function on G(A), G ′(A) respectively, with “matching” orbital integrals.
Here, as usual, K f (x, y) (resp. K f ′(x ′, y′)) is the automorphic kernel for G (resp. G ′)
defined by

K f (x, y) =
∑

γ ∈G(F)

f (x−1γ y)

and G ′(A)1 = {g ∈ GLn(A) : |det(g)| = 1}. Unfortunately, the identity (1) simply
does not work. It turns out, for reasons which are quite mysterious to us, that
instead, one needs to put a certain automorphic weight function in either side.
More precisely, we expect to have (after suitable regularization)

∫

H (F)\H (A)

∫

H (F)\H (A)
K f (h1, h2) dh1 dh2 =

∫

G ′(F)\G ′(A)1
K f ′(x, x)E(x) dx(2)

and
∫

H (F)\H (A)

∫

H (F)\H (A)
K f (h1, h2)&(h2) dh1 dh2 =

∫

G ′(F)\G ′(A)1
K f ′(x, x) dx(3)

whereE is a certain degenerate Eisenstein series on G ′, and & is a residual Eisenstein
series on H which is induced from the character |det|n−3/2 on the Siegel parabolic.

The first instance of such a comparison (and the only one up to now) was carried
out in [JLR93] in a certain rank one situation.

Naively, it should follow from (2) that to every cuspidal representation π of
G ′ corresponds an automorphic representation $ of G distinguished by H and
moreover we have an identity between the spherical distribution of $ and the
weighted trace of π , the latter defined by

∑

ϕ′

∫

G ′(F)\G ′(A)1
π ( f ′)ϕ′(x)ϕ′(x)E(x) dx

where ϕ′ ranges over an orthonormal basis of π . Such an identity is the main result
of this paper. The transfer map f (→ f ′ is given explicitly in terms of the Harish-
Chandra map. This reflects the elementary nature of the functoriality. The proof of
this result is direct and does not use the comparison (2).
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There are two main ingredients in the proof. The first is the fact that $ is
constructed explicitly from π by means of residues of Eisenstein series and the
inner product of two such forms is given by

∫

G(F)\G(A)1
E−1(g, ϕ1)E−1(g, ϕ2) dg(4)

=
∫

K

∫

M(F)\M(A)1
M−1ϕ1(mk)ϕ2(mk) dm dk.

Here E−1(•, ϕ) is the residual Eisenstein series induced from an automorphic form
ϕ ∈ A(M(F)U (A)\G(A))π⊗π and M−1 is the residue of the intertwining operator.
See §2 for other unexplained notation.

The second ingredient is two expressions for the period of a residue of an
Eisenstein series. The first one is

∫

H (F)\H (A)
E−1(h, ϕ) dh =

∫

KH

∫

MH (F)\MH (A)1
ϕ(mk) dm dk(5)

where MH * GLn is the Levi subgroup of the Siegel parabolic of H . This formula
was proved in [JR92b]. Curiously enough, there is an alternative formula for the
period, in terms of M−1. This is our second main result:

λ−1

n
·
∫

H\H (A)
E−1(h, ϕ) dh =

∫

K H

∫

MH \MH (A)1
M−1ϕ(mk)E(m) dm dk

where λ−1 = vol(F∗\I1
F ). The proof of this identity is achieved using a regulariza-

tion procedure. We compute
∫

H\H (A)
E−1(h, ϕ)θ),σ (h) dh(6)

as a distribution of σ . Here θ),σ (h) is a pseudo-Eisenstein series of H which depends
on a test function whose Fourier transform is σ , and which is induced from the
identity representation on the “Heisenberg” parabolic Q of H (the stabilizer of a
line). Unlike the more standard pseudo-Eisenstein series which are induced from
cuspidal representations, these are not rapidly decreasing and care must be taken
in dealing with them and with expressions like (6). We use the expansion

E−1(h, ϕ) =
∑

P(n,n−1,1)\P(2n−1,1)

M−1ϕ(γ g)

where P(n1,...,nk ) denotes the parabolic of type (n1, . . . , nk). After resolving certain
convergence issues, we can utilize the standard Rankin-Selberg method to compute
(6) as a sum of contributions from double cosets P(n,n−1,1)\P(2n−1,1)/Q. This is
a finite sum. Most of the terms vanish because of the cuspidality of the data. If
n is even, the term attached to the open double coset vanishes because it factors
through a period of π over Spn/2 and this is known to be zero. In all cases, the only
contribution is from the trivial double coset, which is easy to compute.
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The conjectural identity (3) suggests a spectral identity as well. However, we
will not discuss it in this paper because it involves regularization of the divergent
integral

∫

H (F)\H (A)
ϕ(h)&(h) dh

where ϕ ∈ $.
The formula (5) can be used to prove a simpler identity

B$

"H ,Wψ
( f ) = Bπ

Wψ ′
,Wψ ′ ( f ′)(7)

(with a different f ′). Here ψ ′ is a generic character of N ′, Wψ ′
is the ψ ′-th Fourier

coefficient along N ′ viewed as a linear form on π , ψ is the degenerate character on
N defined by

ψ

((

n1

u
0
n2

))

= ψ ′(n1)ψ ′(n2)(8)

andWψ is the ψ-th Fourier coefficient on $. A trace formula approach for the above
identity was discussed in [JR92a]. In other (more complicated) situations trace
formulas of this type and problems derived from them are discussed extensively
in the literature, cf. [Jac87], [Mao92], [Jac95], [Mao97], [Fli97], [Ngô99], [JN99],
[JLR99], [LR00], [LR], [Lap]. For a survey see [Jac97], [Jac].

Formulas (2) and (3), as well as the corresponding spectral identities should have
analogues in the general case. In order for our method to generalize to other cases,
one needs an explicit construction of the functoriality involved, as well as explicit
formulas for the scalar product and the period. There was a great deal of progress
on explicit constructions of functoriality in recent years. It would be interesting if
one can utilize this to get more sophisticated identities of distributions. However,
currently there are situations where the trace formula is the only available means,
and then, formulas like (2) and (3) seem to be indispensable to study distinguished
representations.

2. Notation and preliminaries.

2.1. Roots, weights and vector spaces. Let F be a number field and A =
AF its ring of adèles. By our convention, we denote by the same letter a group
over F and its F-points. For any group X over F set X (A)1 = ∩ ker|χ | where χ

ranges over all rational characters of X and let δX (•) be the modulus function on
X (A). Throughout let G be the group GL2n with n > 1. Let V = F2n be the vector
space of row vectors on which G acts on the right. We will denote by P(n1,...,nk ) =
M(n1,...,nk ) · U(n1,...,nk ) the standard parabolic subgroup of G corresponding to the
partition 2n = n1 + · · · + nk with its standard Levi decomposition. Let T0 be the
diagonal subgroup of G isomorphic to (F∗)2n and let P0 = T0 · U0 be the standard
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Borel subgroup. The embedding

R ↪→ F ⊗Q R ↪→ AF(9)

defined by x (→ 1 ⊗ x , will be used to obtain a subgroup A0 of T0(A) isomorphic
to (R∗

+)2n .
We let

/0 = {α1, . . . , α2n−1}

be the set of simple roots of G, in the usual ordering. Let /̂ = {11, . . . , 12n−1} be
the set of fundamental weights. As usual, a0 will be the real vector space generated
by the co-characters of T0, and a∗

0 its dual. We may think of a0 as the set of diagonal
matrices diag(a1, . . . , a2n), or simply as R2n . For any standard parabolic P = M · U
of G we have the decomposition

a0 = aM ⊕ aM
0

and similarly for the dual spaces. We let /M
0 or /P

0 be the set of simple roots of
T0 in U0 ∩ M . Then (aM

0 )∗ is spanned by /M
0 and /̂ spans (aG

0 )∗. We let aG
M =

aM ∩ aG
0 . Set /

(n1,...,nk )
0 = /

P(n1,...,nk )

0 . We denote by H0 : G(A) → a0 the standard
height function of G. On T0(A) it is given by

e〈χ ,H0(t)〉 =
∏

v

|χv (tv )|

for any rational character χ of T0. It extends to G(A) by the Iwasawa decomposition.
Similarly, we have maps HM : G(A) → aM for any Levi subgroup M . Let AM be
the intersection of A0 with the center of M(A). Then HM defines an isomorphism
between AM and aM . Let X (→ eX be its inverse. Let ρP ∈ a∗

M be such that δP (p) =
e〈2ρP ,HM (p)〉 for all p ∈ P(A). We letS be a Siegel set of G of the form ω × A0(c0) ×
K where ω is a certain compact subset of P0(A)1, K is the maximal compact of G
and

A0(c0) = {a ∈ A0 : 〈α, H0(a)〉 > c0 for all α ∈ /0}.

Similarly, we have Siegel sets S P = ω × AP
0 (c0) × K where AP

0 (c0) is defined as
A0(c0) except that we impose the inequalities only for α ∈ /P

0 . We set S (n1,...,nk ) =
S P(n1,...,nk ) . We choose ω and c0 appropriately so that G(A) = P · S P for all P .

For any parabolic P = M · U , an automorphic representation π of M(A) and a
parameter λ ∈ a∗

M,C we let A(U (A)M\G(A))π,λ be the space of smooth functions
on G(A), left invariant under U (A) · M such that for any g ∈ G(A) the function
m (→ e−〈λ+ρP ,HP (m)〉ϕ(mg) belongs to the space of π . We will always assume that π

is trivial on AM . We also setA(U (A)M\G(A))π = A(U (A)M\G(A))π,0. The space
A(U (A)M\G(A))π,λ is isomorphic to (the smooth part of ) IndG(A)

P(A)π ⊗ e〈λ,HM (•)〉 =
I (π, λ). This applies in particular to the identity representation which we will denote
by 1.
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2.2. The setup. Let H be the group Spn defined by the skew symmetric form
[•, •] corresponding to

ε2n =
(

0 wn

−wn 0

)

where

wn =













0 0 . . . 0 1
0 0 . . . 1 0

. . . . . . . . . . . . . . .

0 1 . . . 0 0
1 0 . . . 0 0













.

We view H as a subgroup of G. The notation for H will be similar to that of G,
except that it will usually be appended by H . The torus T0 ∩ H is a maximal split
torus of H and the vector space aH

0 spanned by the co-characters of T0 ∩ H is a
subspace of a0. The restriction of H0 to H (A) is the height function with respect to
H (A). We also get a surjection of a∗

0 onto (aH
0 )∗. Although this is not injective, we

will often not distinguish between λ ∈ a∗
0 and its image in (aH

0 )∗. We will choose
the Siegel set S so that the intersection SH = S ∩ H (A) is a Siegel set for H with
H (A) = H · SH .

2.3. Specific notation. From now on we let P = M · U be the parabolic of
G of type (n, n) and PH = P ∩ H = MH · UH the Siegel parabolic of H . Its Levi
subgroup MH is identified with GLn by

m (→
(

m∗

m

)

(10)

where m∗ = w−1
n

t m−1wn . The unipotent radical UH is given by
{

u =
(

1 X
0 1

)

∈ U : wn
t Xwn = X

}

.

The weight 1n ∈ (aG
M )∗ corresponds to the character

(

m1 0
0 m2

)

(→ |det(m1)/ det(m2)|1/2.

Under the identification aH
0 ↪→ a0, aMH is identified with aG

M . Similarly for the dual
spaces. We have

ρP = n1n,

ρPH = n + 1
2

1n.

We will denote by Q the intersection of P(2n−1,1) with H . It is a maximal parabolic
subgroup of H which is also given by P(1,2n−2,1) ∩ H . Its Levi decomposition is
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L · V where L = M(1,2n−1,1) ∩ H and V = U(1,2n−2,1) ∩ H . Also, Q(A)1 =
H (A) ∩ P(2n−1,1)(A)1 and the modulus function δQ is the restriction to Q(A) of
δP(2n−1,1) . It is given by





a ∗ ∗
∗ ∗

a−1



 (→ |a|2n.

Finally, Q1 = PH ∩ Q = L1V1 will be the parabolic of H of co-rank 2 whose
intersection P1 with MH is a parabolic of type (n − 1, 1). We have V1 = (V1 ∩ MH ) ·
UH and P1 = L1 · (V1 ∩ MH ) is the Levi decomposition of P1. Also, Q1 = P1 · UH .

The convention about Haar measures will be the following. On any discrete
group we take the counting measure. For any unipotent group N we take the
Tamagawa measure so that vol(N\N (A)) = 1. On the maximal compact K we
take the measure of total mass 1. We fix a Haar measure dg on G(A). The Haar
measure on M(A) will be determined by

∫

G(A)
f (g) dg =

∫

K

∫

U (A)

∫

M(A)
f (muk) dm du dk.

Writing M = M1 × M2 with M1 * M2 * GLn we obtain a measure on GLn(A) by
requiring that dm = dm1 × dm2. We then get a measure on MH (A) by identifying it
with GLn(A). In turn, this will define a Haar measure on H (A) which is compatible
with respect to the Iwasawa decomposition relative to PH , where on the maximal
compact KH = K ∩ H (A) we take the measure of total mass 1. The measure on
aG

M * aMH will be the pull-back of dx under X (→ 〈1n, X〉. This will define a
Haar measure on MH (A)1 by the isomorphism MH (A)/MH (A)1 * aMH . On G(A)1

we will take the measure so that the quotient measure on G(A)/G(A)1 is the
pull-back of d∗t under |det •|. This will define a measure on M(A) ∩ G(A)1 by the
isomorphism M(A)/(M(A) ∩ G(A)1) * G(A)/G(A)1. We also get a Haar measure
on M(A)1 using the identification (M(A) ∩ G(A)1)/M(A)1 * aG

M . On the idèles IF

we take the unnormalized Tamagawa measure. The measure on I1
F will be taken so

that the quotient measure on IF/I1
F will be the pull-back of d∗t under |•|F .

2.4. Eisenstein Series. We will consider various Eisenstein series. Let π be
a cuspidal automorphic representation of G ′ = GLn , trivial on R∗

+ and view π ⊗ π

as a representation of M(A). For any ϕ ∈ A(U (A)M\G(A))π⊗π we consider the
Eisenstein series

E(g, ϕ, λ) =
∑

γ ∈P\G

ϕ(γ g)e〈λ,HP (γ g)〉

on G. The residue E−1(g, ϕ) of E(g, ϕ, s1n) at s = 1 is a square integrable function
on G\G(A)1. Its constant term is given by M−1ϕ where M−1 is the residue of the
intertwining operator at 1n . Let $ be the representation generated by these residues.
It is irreducible and lies in the discrete spectrum of L2(G\G(A)1). The inner product
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formula (4) follows from spectral theory [MW95], or simply by taking residue in
the inner product formula for truncated cuspidal Eisenstein series ([Art80], §4), and
taking into account our conventions on measures.

We now recall the construction of normalized Eisenstein series on GLW where
W is an m-dimensional vector space over F . Let 0 != v0 ∈ W and Pv0 be the
parabolic subgroup of GLW fixing the line F · v0 with unipotent radical Uv0 . Let
) be a Schwartz-Bruhat function on W(A). For any s ∈ C consider the function

φ),s(g) = φW,v0
),s (g) =

∫

IF

)(v0tg)|t |m(s+1)/2 d∗t · |det(g)|(s+1)/2

on GLW(A). We have

φ),s(pg) = e〈(s+1)ρPv0
,HPv0

(p)〉φ),s(g) p ∈ Pv0 (A), g ∈ GLW(A),

and thus we obtain a GLW(A)1-equivariant map

) (→ φW
),s

from the space S(W(A)) of Schwartz-Bruhat functions on W(A) to
A(Uv0 (A)Pv0\GLW(A))1,sρPv0

. We set

EW
) (g, s) =

∑

γ ∈Pv0 \GLW

φW
),s(γ g).

The series converges for Re s > 1 and admits a meromorphic continuation. When-
ever it is regular, it gives rise to an intertwining map

S(W(A)) → A(G\G(A))

which factors through IndG(A)
Pv0 (A)e

〈sρPv0
,HPv0

(•)〉. We have

EW
) (g, s) = |det(g)|(s+1)/2 ·

∫

F∗\IF

∑

v∈W−{0}
)(vtg)|t |m(s+1)/2 d∗t

for g ∈ GLW(A).
In particular, this applies to the group G acting on V = F2n with v0 =

(0, . . . , 0, 1) and Pv0 = P(2n−1,1). Since G = P(2n−1,1) H and Q = P(2n−1,1) ∩ H
we may write

EV
)(h, s) =

∑

γ ∈Q\H

φ),s(γ h).

Thus, the restriction E)(•, s) of EV
)(•, s) to H (A) is an Eisenstein series and it gives

an intertwining map

S(V(A)) → A(H\H (A))

which factors through IndG(A)
Q(A)e

〈sρQ ,HQ (•)〉.
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We define

&)(g) =
∑

v∈V

)(vg)

and

&∗
)(g) = &)(g) − )(0).

Then

E)(h, s) =
∫

F∗\IF

&∗
)(th)|t |n(s+1) d∗t

for h ∈ H (A). By Poisson summation formula we have

&)(th) = t−2n&)̂(t−1h)

where

)̂(x) =
∫

V(A)
)(y)ψ0([x, y]) dy

and ψ0 is a fixed non-trivial character on F\AF . Using the computation in Tate’s
thesis,

E)(h, s) =
∫ ∞

1

∫

F∗\I1
F

&∗
)(t xh) d∗x tn(s+1) d∗t − λ−1 · )(0)/(n(s + 1))(11)

+
∫ ∞

1

∫

F∗\I1
F

&∗
)̂

(t xh) d∗x tn(1−s) d∗t + λ−1 · )̂(0)/(n(s − 1))

= E)̂(h, −s),

where λ−1 = vol(F∗\I1
F ). The integrals appearing in (11) are entire functions of s

and rapidly decreasing on vertical strips.
Let V′ be the subspace of V defined by the vanishing of the first n coordinates and

let )0 ≥ 0 be the “standard” Schwartz-Bruhat function on V′(A). Then MH * GLV′

via (10) and we will denote the unramified Eisenstein series EV′

)0
(m, s) on MH by

E(m, s).
We will also set for any ) ∈ S(V(A))

E)(h, s) =
∑

Q1\PH

φV
),s ′(γ h) =

∑

P1\MH

φV
),s ′(γ h)(12)

where s ′ = (s − 1)/2. It is an automorphic form on UH (A)MH\H (A) which under
left multiplication by AMH transforms according to the character e〈(s ′+1)·1n,HMH (•)〉.
For any h ∈ H (A) we have

E)(mh, s) = EV′

)h
(m, s) m ∈ MH (A)1
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where )h is the translate of ) by h (restricted to V′(A)). As before, we get an
intertwining map

S(V(A)) → A(UH (A)MH\H (A))

which factors through IndH (A)
Q(A)e

〈s ′ρQ ,HQ (•)〉.

Lemma 1. The exponents of E(h, s) along PH are (±s − (n − 1)/2)1n.

Proof. We first claim that H = Q PH ∪ Qξ PH where ξ = ( 0
1n

−1n
0 ). Indeed,

Q\H can be identified with the set of lines in V while PH is the stabilizer of
V′. Our statement amounts to saying that if W1, W2 are two lines not contained
in V′ then W2 = W1 · h where h ∈ H stabilizes V′. Since (V′ ⊕ W1, [•, •]) *
(V′ ⊕ W2, [•, •]) with an isomorphism taking W1 to W2 and V′ to itself, this
follows from Witt’s Theorem.

It follows that

E(h, s) =
∑

P1\MH

φ),s(γ h) +
∑

ξ Qξ−1∩PH \PH

φ),s(ξγ h)

and hence the constant term of E(h, s1) along PH is the sum of
∑

P1\MH

φ),s(γ h)

and

f (h) =
∫

UH \UH (A)

∑

γ ∈PH ∩ξ−1 Qξ\PH

φ),s(ξγ uh) du.

The first summand is E)(•, 2s + 1). Its behavior under AMH is given by
e〈(s+1)1n,HMH (•)〉 so the exponent along PH is (s + 1)1n − ρPH = (s − (n −
1)/2)1n . To analyze the second summand, observe that PH ∩ ξ−1 Qξ = (MH ∩ ξ−1

Qξ )(UH ∩ ξ−1 Qξ ). Thus,

f (h) =
∫

UH \UH (A)

∑

γ ∈MH ∩ξ−1 Qξ\MH

∑

δ∈UH ∩γ −1ξ−1 Qξγ \UH

φ),s(ξγ δuh) du

=
∑

γ ∈MH ∩ξ−1 Qξ\MH

∫

UH ∩γ −1ξ−1 Qξγ \UH (A)
φ),s(ξγ uh) du

=
∑

γ ∈MH ∩ξ−1 Qξ\MH

∫

UH (A)∩ξ−1 Q(A)ξ\UH (A)
φ),s(ξuγ h) du.
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We have UH ∩ ξ−1 Qξ = {L(x1, . . . , xn) =
(

1n

xn 0 0
... 0 0

x1 . . . xn
0 1n

)

}. Since v0ξL
(x1, . . . , xn) = (0, . . . , 0, 1, x1, . . . , xn),

∫

UH (A)∩ξ−1 Q(A)ξ\UH (A)
φ),s(ξuh) du

=
∫

IF

∫

(x1,...,xn)∈An
)(t(0, . . . , 0, 1, x1, . . . , xn)h) dx1 . . . dxn|t |n(s+1) d∗t

=
∫

IF

()h)V/V′
(tv1)|t |ns d∗t

where v1 = (0, . . . , 0, 1, ∗, . . . , ∗) ∈ V/V′ and )V/V′ ∈ S(V/V′(A)) is defined by

)V/V′
(w) =

∫

V′(A)
)(w + v) dv .

Note that ()mh)V/V′
(•) = |detV′ m|−1 · ()h)V/V′

(•m) for m ∈ MH (A). We may
identify MH with GLV/V′ and then the stabilizer of Fv1 is MH ∩ ξ−1 Qξ . We
then have

f (mh) = EV/V′

()h )V/V′ (m, s ′)| det
V/V′

m|1−s, m ∈ MH (A)

with s ′ such that s = (s ′ + 1)/2. Hence f is an automorphic form on UH (A)
PH\H (A) whose behavior under AMH is according to the character e〈(1−s)1n,HMH (•)〉.
Thus the exponent is (1 − s)1n − ρPH as required. !

3. The Symplectic Period. Our first main theorem is the following:

Theorem 1. For any ϕ ∈ A(U (A)M\G(A))π⊗π and ) ∈ S(V(A)) we have

λ−1

n
)̂(0) ·

∫

H\H (A)
E−1(h, ϕ) dh

=
∫

K H

∫

MH \MH (A)1
M−1ϕ(mk)E)(mk, 3) dm dk.

In particular, taking ) to be the “standard” K-invariant function on V(A),

λ−1

n

∫

H\H (A)
E−1(h, ϕ) dh =

∫

K H

∫

MH \MH (A)1
M−1ϕ(mk)E(m, 3) dm dk.

Recall that the formula (5) proved in [JR92b] gives a different identity for the
same expression!

The theorem will eventually be proved in the end of this paper. Let us first try to
motivate and interpret the theorem. Let ψ ∈ A(U (A)M\G(A))π⊗π,−1n . Consider
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hervé jacquet, erez lapid, and stephen rallis432

the representation τ = IndH (A)
Q(A)δ

1
2
Q of H (A) (normalized induction). The form

ι : ) ∈ S(V(A)) (→
∫

AMH UH (A)PH \H (A)
ψ(h) E)(h, 3) dh

is well defined since under left multiplication by a ∈ AMH the integrand behaves
according to the character

e〈(−1+n)1n+21n,HMH (a)〉 = e〈(n+1)1n,HMH (a)〉 = δPH (a).

Clearly, ι factors through τ because ) (→ E)(h, 3) does. Thus we get a map

ϒ : A(U (A)M\G(A))π⊗π,−1n −→ τ ∨

which is clearly H (A)-equivariant. On the other hand

)̂(0) =
∫

Q(A)\H (A)
φ),1(h) dh

so that the form ) (→ )̂(0) can be factored through τ as / ◦ φ),1 where / ∈ τ ∨

is defined by integration over Q(A)\H (A) (or over KH ). Up to a scalar, / is the
unique H (A)-invariant vector in τ ∨.

We can now reformulate Theorem 1 as follows.

Theorem 2. The image of ϒ ◦ M−1 : A(U (A)M\G(A))π⊗π,1n → τ ∨ is the
identity subrepresentation. In fact,

ϒ ◦ M−1 = λ−1

n
· ("H ◦ E−1) · /

where "H is the H (A)-invariant form given by integration over H\H (A).

Theorem 1 together with formula (5) suggest a local analogue. Let π be a unitary
generic representation of GLn over a local field. We realize π in its Whittaker model
with respect to the character

ψ ′





















1 x1 . . . . . .

1
. . . . . .

1 xn−1

1





















= ψ0(x1 + · · · + xn−1).

Define the linear form lMH on π ⊗ π by

lMH (W1 ⊗ W2) =
∫

Nn−1\GLn−1

W1(g∗)W2(g) dg
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where Nk is the unipotent radical of the standard Borel in GLk . Then lMH is MH -
invariant by [Ber84] and [GK75]. Thus the linear form

lH (ϕ) =
∫

PH \H
lMH (ϕ(h)) dh =

∫

K H

lMH (ϕ(k)) dk

on I (π ⊗ π, 1n) is H -invariant. Define the linear form

lMH ,E(W1 ⊗ W2) =
∫

Nn\GLn

W1(g∗)W2(g))0((0, . . . , 0, 1)g)|det(g)|2 dg.

The claim is that the linear form
∫

PH \H
lMH ,E[(M(1n)ϕ)(h)] dh =

∫

K H

lMH ,E[(M(1n)ϕ)(k)] dk

is H -invariant and proportional to lH where M(•) is the local intertwining operator.
In fact, if π is a local component of a cuspidal automorphic representation of GLn

this follows from our global result.

4. Identity of distributions. Theorem 1 and the alternative formula can be
used to give an identity of Bessel distributions. As mentioned in the introduction,
this identity is the cuspidal part of the spectral side of a hypothetical identity

∫

H\H (A)

∫

H\H (A)
K f (h1, h2) dh1 dh2 =

∫

G ′\G ′(A)1
K f ′(x, x)E(x∗, 3) dx

(suitably regularized to overcome convergence issues). We emphasize again that
the main point of the paper is to avoid the trace formula approach.

4.1. Bessel distributions and weighted traces. Let F be a non-Archimedean
field and (π, V ) an admissible representation of G(F). Let V ′ be the dual of V and
let (π∨, V ∨) be the dual representation on the smooth part of V ′. Then (π∨, V ∨)
is admissible and for any f ∈ C∞

c (G) and l ∈ V ′ we have l ◦ π ( f ) ∈ V ∨. For any
form l of V and l ′ of V ∨ we let

Bπ
l,l ′( f ) = l ′ [l ◦ π ( f )]

for f ∈ C∞
c (G). It is called the Bessel distribution of π with respect to l, l ′.

Let End(V ) be the smooth part (with respect to G × G) of the space of linear
maps from V to V . Then End(V ) * (V ⊗ V ∨)∨ * V ∨ ⊗ V as a representation of
G × G. We can view any bilinear form L on V ∨ × V as a linear form on End(V ).
The weighted trace of π with respect to L is defined by

T π
L ( f ) = L(π ( f ))

for f ∈ C∞
c (G). This makes sense since π ( f ) ∈ End(V ). The usual trace is the

weighted trace with respect to the standard pairing.
The relation between the weighted trace and Bessel distributions is the follow-

ing. If l and l ′ are forms on V and V ∨ respectively then we may consider the linear
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form l ′ ⊗ l on V ∨ ⊗ V as a bilinear pairing on V ∨ × V . Clearly

Bπ
l,l ′( f ) = T π

l ′⊗l( f ).(13)

On the other hand, consider the representation π ⊗ π∨ on V ⊗ V ∨. As before any
bilinear pairing L on V ∨ × V defines a linear form on V ∨ ⊗ V = (V ⊗ V ∨)∨. Let
l be the standard pairing on V ⊗ V ∨. Then

Bπ⊗π∨

l,L ( f1 ⊗ f2) = T π
L ( f ∨

2 : f1)(14)

where f ∨
2 (g) = f2(g−1). More generally, if f is a function on G × G then

Bπ⊗π∨

l,L ( f ) = T π
L ( f ′)(15)

where f ′ is the function on G defined by

f ′(g′) =
∫

G
f (xg′, x) dx .

Let V be the vector space obtained by conjugating the scalar multiplication
on V (but keeping the set, the addition and the group action the same as V ). The
resulting representation of G on V will be denoted by π . We let σ be the anti-linear
isomorphism between V and V . As a mapping of sets σ is the identity. We will also
denote by σ the map V → V .

Consider the case where π is unitary and let (•, •) be an invariant positive
definite Hermitian form on V . The map

v (→ (•, v)

defines an equivalence between π and π∨. Thus for linear forms l, l ′ of V we may
consider Bπ

l,l ′( f ) where l ′ is the linear form on V * V ∨ defined by l ′(σv) = l ′(v)
for all v ∈ V . Then Bπ

l,l ′( f ) = l ′(σ [l ◦ π ( f )]). We also have

Bπ
l,l ′( f ) =

∑

ei

l(π ( f )ei )l ′(ei )

where ei ranges over an orthonormal basis in V . Similarly,

T π
L ( f ) =

∑

ei

L(σ (ei ), π ( f )ei ).

In the Archimedean case, let π be a continuous representation on a Hilbert space
H (not necessarily unitary) and let V be the space of smooth vectors in H equipped
with the Frechet topology determined by the semi-norms v (→ ‖π (X )v‖ where X ∈
U(g). Recall that π ( f )(H) ⊂ V for f ∈ C∞

c (G). Let H∨ be the dual Hilbert space.
Let π∨ be the dual representation on H∨ defined by π∨(g)u(v) = u(π (g−1v)). Then
π∨ is also continuous ([Wal88], §1.1.4) and H∨ ⊂ V ′ where V ′ is the topological
dual of V . We will still denote by π∨ the representation of G on V ′. Let V ∨ be
the space of smooth vectors in H∨. We claim that if f ∈ C∞

c (G) then π∨( f )V ′

⊂ V ∨. Indeed, if l ∈ V ′ then there exist vi ∈ H∨, Xi ∈ U(g) i = 1, . . . , m such
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that l(v) =
∑

i vi (π (Xi )v). Then π∨( f )l =
∑

π∨((Xi f ∨)∨)vi ∈ V ∨. The Bessel
distribution Bl,l ′( f ) is defined as before for any l ∈ V ′, l ′ ∈ (V ∨)′ and f ∈ C∞

c (G).
It is known (§11.6.7 in [Wal92]) that the representation V is determined by the

underlying (g, K )-module VK of K-finite vectors in H, provided that the latter is
admissible and finitely generated. In that case, V ∨

K , the space of K -finite vectors in
H∨, is equal to the space of K-finite vectors in the algebraic dual of VK , and is also
finitely generated and admissible. In particular, V ∨ is also determined by VK .

If π is unitary and (topologically) irreducible, then VK is admissible and irre-
ducible. Let σ : H → H∨ be the anti-linear isomorphism. Then σ is an anti-linear
intertwining operator which takes V to V ∨ and VK to V ∨

K .
In the global case we start with a continuous representation π on a Hilbert space

H and let V = ∪VK0 where K0 range over all compact open subgroups of G(A f )
and

VK0 = {v ∈ H : v is fixed under K0 and g∞ (→ π (g∞)v ∈ C∞(G∞)}.

Each VK0 is a Frechet space and we let V ′ = lim←− V ′
K0

. Then as before, π ( f )H ⊂ V
and π∨( f )(V ′) ⊂ V ∨ for any f ∈ C∞

c (G(A)). We can define the Bessel distribution
as before. If π is the restricted infinite tensor product of πv and (in the appropriate
sense) l = ⊗lv and l ′ = ⊗l ′

v then

Bπ
l,l ′( f ) =

∏

v

Bπv
lv ,l ′

v
( fv )

for f = ⊗ fv . Similarly for weighted traces.

4.2. The Comparison. Let π and $ be as in §2.4 and view π ⊗ π as a
representation of M(A). We use the inner products on G ′\G ′(A)1, M\M(A)1, and
G\G(A)1 respectively to identify π , π ⊗ π and $ with π∨, (π ⊗ π )∨ and $∨

respectively.
Let "H be the linear form on $ defined by

"H (ϕ) =
∫

H\H (A)
ϕ(h) dh

and "MH be the period over MH\MH (A)1 as a linear form on π ⊗ π . Let also "MH ,E
be the linear form on π ⊗ π defined by

"MH ,E(ϕ) =
∫

MH \MH (A)1
ϕ(m)E(m, 3) dm

and let B be the bilinear form on π∨ × π * π × π defined by

B(φ, φ′) =
∫

G ′\G ′(A)1
φ(x)φ′(x)E(x∗, 3) dx .
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For any function f ′ on M(A) we define the function C( f ′) on G ′(A) by

C( f ′)(g′) =
∫

G ′(A)
f ′(xg′, x∗) dx g′ ∈ G ′(A),

where we recall that x∗ = wn
t xwn . We now state the relative trace – weighted trace

identity between π and $.

Theorem 3. We have
λ−1

n
· B$

"H ,"H
( f ) = Bπ⊗π

"MH ,"MH ,E
( f ′

KH
) = T π

B(C( f ′
KH

))(16)

where f ′
KH

is the function on M(A) defined by

f ′
KH

(m) = e〈1n+ρP ,HM (m)〉 ·
∫

KH

∫

KH

∫

U (A)
f (k ′muk) du dk ′ dk.

Note that f ′
KH

is essentially the Harish-Chandra map from G to M . We also
have a “generic version” of this identity which is the spectral counterpart of a
trace formula considered in [JR92a]. In fact, this will not require Theorem 1. Both
versions use the formula (5). Recall that ψ ′ is a generic character of U ′

0 and ψ is
defined by (8). The ψ-th Fourier coefficient is denoted by Wψ and similarly for ψ ′.

Theorem 4. We have

B$

"H ,Wψ
( f ) = Bπ⊗π

"MH ,Wψ ′⊗ψ ′ ( f ′) = Bπ

Wψ ′
,Wψ ′ (C( f ′))(17)

where f ′ is the function on M(A) defined by

f ′(m) = e〈1n+ρP ,HM (m)〉 ·
∫

KH

∫

U (A)
f (k ′mu) du dk ′.

The map ϕ (→ E−1(•, ϕ) defines an intertwining map

E−1 : I (π ⊗ π, 1n) → $.

In principle, E−1 is defined only for K -finite vectors. However, by a Theorem of
Wallach [Wal92] any smooth vector can be written as π ( f )v with v K -finite and
f ∈ S(G). Hence, E−1 is defined for smooth ϕ as well and moreover

E−1 viewed as a map between the smooth parts is onto.(18)

We may identify I (π ⊗ π, 1n)∨ with I ((π ⊗ π )∨, −1n) by integrating over
K. We get a dual map

E∨
−1 : $ → I ((π ⊗ π )∨, −1n).

We also have an intertwining map

M−1 : I (π ⊗ π, 1n) → I (π ⊗ π, −1n).
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The inner product formula (4) for residual Eisenstein series can be interpreted as
the identity

E∨
−1 ◦ σ ◦ E−1 = σ ◦ M−1

where on the left hand side σ is the anti-linear isomorphism from $ to $ and on
the right hand side σ denotes the anti-linear isomorphism from I (π ⊗ π, −1n) to
I (π ⊗ π , −1n).

Let us first prove the second equality in (16). Consider the isomorphism θ of
M defined by θ (x, y) = (x, y∗). We have

Bπ⊗π

"MH ,"MH ,E
( f ′

KH
) = Bπ⊗π∗

"MH ◦θ,"MH ,E◦θ
(θ ( f ′

KH
))

where π∗ is the (regular) representation on the space of functions ϕ(•∗) where
ϕ ∈ Vπ . The form "MH ◦ θ is a non-degenerate invariant pairing on π × π∗. Hence,
we may use it to identify π∗ with π∨. The derived isomorphism π∗ * π is ϕ (→ ϕ.
The form "MH ,E◦ θ viewed as a form on π ⊗ π becomes the bilinear map B. We
can now invoke (15).

Similarly, the form Wψ ′⊗ψ ′ ◦ θ = Wψ ′ ⊗ (Wψ ′)∗ considered as a form on π ⊗
π becomes Wψ ′ ⊗ Wψ ′

. Thus, by (15) and (13)

Bπ⊗π

"MH ,Wψ ′⊗ψ ′ ( f ′) = Bπ⊗π∗

"MH ◦θ,Wψ ′⊗ψ ′ ◦θ
(θ ( f ′))

= T π

Wψ ′ ⊗Wψ ′ (C( f ′)) = Bπ

Wψ ′
,Wψ ′ (C( f ′))

and the second equality of (17) follows.
We now turn to the first equalities in (16) and (17). Theorem 1 states the identity

λ−1

n
· "H ◦ E−1 = β ◦ M−1

on I (π ⊗ π, 1n) where

β(ϕ) =
∫

KH

"MH ,E(ϕ(k)) dk

where ϕ takes values in π ⊗ π . Note also that

Wψ (E−1ϕ) = Wψ ′⊗ψ ′
[M−1ϕ(e)] .

The first equalities in (16) and in (17) will follow from the following more general
statement.

Theorem 5. Suppose that γ1 ∈ $′ satisfies

γ1(E−1v) = β1((M−1v)(e)) v ∈ I (π ⊗ π, 1n)

for some β1 ∈ (π ⊗ π )′. Then with the notation of Theorem 4

B$
"H ,γ1

( f ) = Bπ⊗π

"MH ,β1
( f ′).
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Similarly, if γ2 ∈ $′ satisfies

γ2(E−1v) = β2(M−1v)

where β2 ∈ I (π ⊗ π, −1n)′ is given by

β2(ϕ) =
∫

KH

α2(ϕ(k)) dk(19)

with α2 ∈ (π ⊗ π )′ then

B$
"H ,γ2

( f ) = Bπ⊗π
"MH ,α2

( f ′
KH

).

To prove the theorem we first need the following lemma which will be proved
below.

Lemma 2. The linear form

ϕ (→ "H ($( f )E−1(•, ϕ))(20)

on I (π ⊗ π, 1n) is given by < ∈ I ((π ⊗ π )∨, −1n) where

<(g) = "MH ◦ π ⊗ π ((Rg f )′)(21)

where Rg f (•) = f (•g).

Let us prove the second part of Theorem 5. The first part is very similar but
easier. The lemma shows that the form ψ = "H ◦ $( f ) on $ satisfies E∨

−1ψ = <.
By (18) we can write σψ = E−1v with v ∈ I (π ⊗ π, 1n). Then

B$
"H ,γ2

( f ) = γ2(σ ["H ◦ $( f )]) = γ2(σψ) = γ2(E−1v) = β2(M−1v)

= β2(σσ M−1v) = β2(σ E∨
−1 ◦ σ ◦ E−1v) = β2(σ E∨

−1ψ) = β2(σ<).

By (19) this is equal to
∫

KH

α2(σ (<(k))) dk =
∫

KH

α2(<(k)) dk = α2

[
∫

KH

<(k) dk
]

.

Using (21) we obtain

α2

[
∫

KH

"MH ◦ π ⊗ π ((Rk f )′) dk
]

= α2["MH ◦ π ⊗ π ( f ′
KH

)]

which is equal to Bπ⊗π
"MH ,α2

( f ′
KH

) as required.

Proof of Lemma 2. First, one easily checks that < lies in I ((π ⊗ π )∨, −1n).
Using (5) we write (20) as

∫

KH

∫

MH \MH (A)1
I ( f, π ⊗ π, 1n)ϕ(lk ′) dl dk ′.
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Note that

I ( f, π ⊗ π, 1n)ϕ(g) =
∫

G(A)
f (x)ϕ(gx) dx =

∫

G(A)
f (g−1x)ϕ(x) dx,

so that we get
∫

KH

∫

MH \MH (A)1

∫

G(A)
f (k ′l−1x)ϕ(x) dx dl dk ′.

Next, we use the Iwasawa decomposition x = muk with u ∈ U (A), m ∈ M(A) and
k ∈ K to obtain

∫

KH

∫

MH \MH (A)1

∫

K

∫

U (A)

∫

M(A)
f (k ′l−1muk)ϕ(muk) dm du dk dl dk ′

=
∫

KH

∫

MH \MH (A)1

∫

K

∫

U (A)

∫

M(A)
f (k ′muk)ϕ(lmuk) dm du dk dl dk ′

=
∫

KH

∫

MH \MH (A)1

∫

K

∫

U (A)

∫

M(A)
f (k ′muk)ϕ(lmk) dm du dk dl dk ′.

Viewing ϕ as an element I (π ⊗ π, 1n) we get

∫

KH

∫

K

∫

U (A)

∫

M(A)
f (k ′muk)"MH (π ⊗ π (m)ϕ(k))e〈1n+ρP ,HM (m)〉

dm du dk dk ′ =
∫

K
"MH ◦ (π ⊗ π )((Rk f )′)(ϕ(k)) dk = <(ϕ)

as required. !

5. A Distributional formula. We now return to the proof of Theorem 1. The
main technical tool will be pseudo-Eisenstein series which we proceed to define in
this context.

5.1. Pseudo-Eisenstein series. Let P(C) be the space of holomorphic func-
tions of Paley-Wiener type. For each σ ∈ P(C) let

Cσ (X ) =
∫

iR
σ (s)e(s+1)X ds.

(The contour of integration can be shifted to any Re(s) = s0.) It is a compactly
supported smooth function on R. We recover σ from Cσ by

σ (s) = 1
2π i

∫

R

Cσ (X )e−(s+1)X d X.

For any ) ∈ S(V(A)) the function

F),σ (g) =
∫

IF

)(v0tg)Cσ (log(|t |n|det g| 1
2 )) d∗t
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is a function on G(A) which is left invariant under P(2n−1,1)(A)1. Its restriction to
H (A) is left invariant under Q(A)1. Let θ),σ (•) be the pseudo-Eisenstein series on
G(A) defined by

θ),σ (g) =
∑

γ ∈P(2n−1,1)\G

F),σ (γ g).

The sum is absolutely convergent. Indeed, we may write this as

∑

F∗\(V−{0})

∫

IF

)(vtg)Cσ (log(|t |n|det g| 1
2 )) d∗t

=
∫

F∗\IF

∑

V−{0}
)(vtg)Cσ (log(|t |n|det g| 1

2 )) d∗t.

The convergence follows since ) ∈ S(V(A)) and Cσ (log(|•|)) is compactly sup-
ported on F∗\IF . Clearly θ),σ (•) is a function on G\G(A). Roughly speaking,
these functions approximate the constant function on G(A) as σ approaches the
delta function at 1. As before, we may sum γ over Q\H and the restriction of θ),σ

to H (A) is a pseudo-Eisenstein series on H\H (A). We have

θ),σ (h) =
∫

Re(s)=s0

σ (s)E)(h, s) ds

whenever s0 > 1. These functions are not rapidly decreasing because we started
with the identity representation on L(A).

Let us analyze the distribution

P)(σ ) =
∫

H\H (A)
E−1(h, ϕ)θ),σ (h) dh.

The auxiliary function ) will be fixed and will often be suppressed from the nota-
tion. We will prove:

Theorem 6. The integral defining P)(σ ) is absolutely convergent and

P)(σ ) = 2π iσ (1) ·
∫

K H

∫

MH \MH (A)1
M−1ϕ(mk) E)(mk, 3) dm dk.(22)

Recall that Theorem 1 relates the right hand side of (22) to the period of E−1

over H\H (A). For the rest of the section we will show that Theorem 6 implies
Theorem 1. We will prove Theorem 6 in §6 and §7.

We write P(σ ) as

P(σ ) =
∫

H\H (A)
E−1(h, ϕ)

(
∫

Re(s)=s0

σ (s)E(h, s) ds
)

dh
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for any s0 > 1. The integral converges as an iterated integral. Fix s1 real with
|s1| < 1. Using (11) we may shift the contour of integration to get

∫

Re(s)=s0

σ (s)E(h, s) ds = 2π iλ−1

n
σ (1))̂(0) +

∫

Re(s)=s1

σ (s)E(h, s) ds.

We will need the following proposition which will be proved below.

Proposition 1. The integral
∫

H\H (A)
E−1(h, ϕ)E(h, s) dh(23)

converges absolutely for any s such that |Re(s)| < 1. Moreover, there exists a
constant c such that

∫

H\H (A)
|E−1(h, ϕ)E(h, s)| dh < c

for all s with Re(s) = s1 < 1.

Since
∫

H\H (A)
E−1(h, ϕ) dh

converges absolutely ([JR92b]), it will follow by changing the order of integration
that

P)(σ ) = 2π iλ−1

n
σ (1) · )̂(0) ·

∫

H\H (A)
E−1(h, ϕ) dh +

∫

Re s=s1

σ (s)<)(s) ds

where

<)(s) =
∫

H\H (A)
E−1(h, ϕ)E)(h, s) dh.

We compare this with the expression given in Theorem 6 and invoke the following
lemma to complete the proof of Theorem 1.

Lemma 3. Let D be a linear form on P(C) which is given by

D( f ) = α · f (1) +
∫

Re s=0
f (s)g(s) ds

where g is a bounded function. Suppose that D( f ) = 0 for all f . Then α = 0 and
g(s) ≡ 0.

Proof. Since any polynomial is a multiplier of P(C) the linear form D1( f ) =
D((s − 1) f ) is well defined. It is given by integration against the slowly increasing
function g1(s) = (s − 1)g(s) on the unitary axis. The Fourier transform of g1(i•),
which is a tempered distribution, vanishes on all compactly supported smooth
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functions, and hence it is zero. Thus g1 ≡ 0, which in turn implies that g ≡ 0, and
α = 0. !

Remark. It will also follow that
∫

H\H (A)
E−1(h, ϕ)E)(h, s) dh = 0

whenever the integral converges, namely for |Re(s)| < 1.

We finally prove Proposition 1. We first prove that there exists )1 ∈ S(V(A))
such that |)| ≤ )1 and |)̂| ≤ )̂1.

Indeed, by the Dixmier-Malliavin Theorem ([DM78]), we may assume that
) = )2:)3 with )2, )3 ∈ S(V (A)). (In fact, we may even assume that )3 ∈
C∞

c (V (A)).) We can find )4 ∈ S(V(A)) such that |)2| ≤ )4 and |)3| ≤ )∨
4

where )∨
4 (x) = )4(−x). Let )5 = )4:)∨

4 . Then |)| ≤ )5 and )̂5 = |)̂4|2 ≥ 0.
Similarly, there exists )6 ∈ S(V(A)) such that |)̂| ≤ )6 and )̂6 ≥ 0. Let )1 =
)5 + )̂∨

6 . Then |)| ≤ )1 and |)̂| ≤ )6 ≤ )̂1 as required.
It follows from (11) that

|E)(h, s)| ≤ |E)1 (h, Re(s))| + c

where the constant c depends only on Re(s). Thus the second statement of the
proposition would follow from the first.

We will use Lemma I.4.1 of [MW95] to bound the automorphic forms at hand
by their cuspidal exponents. The only cuspidal exponent of E−1 is −1n along P .
By that lemma there exists an integer N1 ≥ 0 and for any µ ∈ (aM

0 )∗ a constant c1

such that

|E−1(g, ϕ)| ≤ c1 · e〈−1n+µ+ρP ,H0(g)〉(1 + ‖H0(g)‖)N1

for all g ∈ S where ‖•‖ is a norm on a0. This in particular applies to g ∈ SH and
µ ∈ (aMH

0 )∗. Similarly, E(h, s1) is bounded by

c2 ·
∑

e〈µi +ρ H
0 ,H0(h)〉(1 + ‖H0(h)‖)N2

on SH for some c2, N2 > 0, where µi are the exponents of E(h, s1) along the Borel
subgroup of H . Let f (h) be the integrand of (23). By the integration formula on
H\H (A) we have to bound

∫

KH

∫

AH
0 (c0)

∫

ωH

e−〈2ρ H
0 ,H0(a)〉| f (tak)| dt da dk.

Using the bounds above, it remains to show that for every exponent ν of E(•, s1),
ν − ρ H

0 − 1n + ρP + µ lies in the obtuse Weyl chamber of (aH
0 )∗ for some µ ∈

(aMH
0 )∗. If λ ∈ a∗

MH
we write λ > 0 if λ is a positive multiple on 1n . Projecting to

a∗
MH

it thus remains to show that

(−1 + n)1n + νMH − ρPH < 0
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i.e., that

νMH < −n − 3
2

1n.

The possible νMH ’s are the exponents of the constant term of E(h, s1) along the
Siegel parabolic. By Lemma 1 these are (±s1 − (n − 1)/2)1n . Hence,

µM < (1 − (n − 1)/2)1n = −n − 3
2

1n

as required.

6. Convergence. We now begin the proof of Theorem 6. We can rewrite P(σ )
as

∫

Q\H (A)
E−1(h, ϕ)Fσ (h) dh.

We utilize the expansion

E−1(g, ϕ) =
∑

P(n,n−1,1)\P(2n−1,1)

M−1ϕ(γ g) g ∈ G(A)

where the series is absolutely convergent ([MW89], Lemma 1 in appendix). Note
that Q ⊂ P(2n−1,1). Thus, P(σ ) is equal, at least formally, to

∑

η∈P(n,n−1,1)\P(2n−1,1)/Q

∫

Qη\H (A)
M−1ϕ(ηh)Fσ (h) dh(24)

where Qη = Q ∩ η−1 P(n,n−1,1)η. To justify this we will prove the convergence of
∫

Q\H (A)

(

∑

P(n,n−1,1)\P(2n−1,1)

|M−1ϕ(γ h)|
)

· |Fσ (h)| dh

which is the same as
∫

H\H (A)

∑

δ∈Q\H

(

∑

γ ∈P(n,n−1,1)\P(2n−1,1)

|M−1ϕ(γ δh)|
)

· |Fσ (δh)| dh

or also
∫

H\H (A)

∑

δ∈P(2n−1,1)\G

(

∑

γ ∈P(n,n−1,1)\P(2n−1,1)

|M−1ϕ(γ δh)|
)

· |Fσ (δh)| dh(25)

since G = P(2n−1,1) H . Let ?(•) be the integrand in (25). It is a function on H\H (A).
We will use the following notation. Let X , Y , Z be non-negative variables

depending on unspecified parameters. We write Z = @(X, Y ) if for any N > 0 there
exists c, k > 0, depending only on N , such that Z ≤ c max(1, X )−N max(1, Y )k .

We will prove the following estimates.
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Proposition 2. 1. We have
∑

δ∈P(2n−1,1)\G

@(1, e−〈12n−1,H0(δh)〉)|F),σ (δh)| ≤ c · e〈1n,H0(h)〉(26)

for some constant c and all h ∈ SH . In particular,
∑

δ∈P(2n−1,1)\G

|F),σ (δh)| ≤ c · e〈1n,H0(h)〉.(27)

2. We have
∑

γ ∈P(n,n−1,1)\P(2n−1,1)−P(n,n−1,1)

|M−1ϕ(γ g)| = @(1, e−〈12n−1,H0(g)〉)(28)

for all g ∈ S (2n−1,1) ∩ G(A)1.
3. There exists a constant c > 0 such that

?(h) ≤ c · e〈n1n,HMH (h)〉

for h ∈ SH .

The convergence of (25) will follow from the last part of the proposition. Indeed,
by the integration formula on the Siegel domain, it remains to bound

∫

KH

∫

AH
0 (c0)

∫

ωH

e−〈2ρ H
0 ,H0(a)〉e〈n1n,HMH (a)〉 dt da dk.

This will converge, provided that the exponent µ = −2ρ H
0 + n1n lies in the

negative obtuse Weyl chamber of aH
0 . This is true since µMH = −2ρMH

0 and
µMH = −2 n+1

2 1n + n1n = −1n .
For the proof of Proposition 2 we will first prove a few auxiliary results.

Lemma 4. There exists a constant c such that

〈1, H0(γ g)〉 ≤ 〈1, H0(g)〉 + c

for any g ∈ SG, γ ∈ G and fundamental weight 1 ∈ /̂0.

Proof. Write g = uak an Iwasawa decomposition for g and let X = H0(g). Let
also γ = u1twu2 be a Bruhat decomposition for γ . Then

H0(γ g) = H0(wu2ua) = H0(waw−1wu′) = w X + H0(wu′)

= H0(g) + w X − X + H0(wu′)

for a certain u′ ∈ U0(A). It is standard that H0(wu′) lies in a fixed translate of the
negative obtuse Weyl chamber. The same is true for w X − X since X lies in a fixed
translate of the positive (acute) Weyl chamber. !
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We will use ‖•‖ to denote the norm function on G(A) whose definition and
basic properties can be found in [MW95], I.2.2.

Lemma 5. For N >> 0
∑

γ ∈G

‖γ g‖−N

is bounded uniformly in g ∈ G(A).

Proof. Choose a compact neighborhood A of 1 such that Aγ ∩ A = ∅ for all
1 != γ ∈ G. Then there exists a constant c such that

∑

γ ∈G

‖γ g‖−N ≤ c
∑

γ ∈G

‖ωγ g‖−N

for all g ∈ G(A) and ω ∈ A. Integrating this inequality over A and using the fact
that ∪γ ∈GAγ is disjoint we get

vol(A) ·
∑

γ ∈G

‖γ g‖−N ≤ c
∑

γ ∈G

∫

A

‖ωγ g‖−N dω ≤ c
∫

G(A)
‖xg‖−N dx

= c
∫

G(A)
‖x‖−N dx .

The right hand side converges for N >> 0 since vol({x ∈ G(A) : ‖x‖ ≤ T }) is
bounded by a power of T . !

The following is a reformulation of Proposition 6 of [JR92b].

Lemma 6. Fix a cusp form ϕ on GLn. Then for every fundamental weight 1

and g ∈ GLn(A)1 we have

|ϕ(g)| = @(e〈1,H0(g)〉, 1).

Proof of Proposition 2. To prove the first part, we first recall that

e−〈12n−1,H0(g)〉 = |v0g|

with

|v| =
∏

w

|v|w

where the product ranges over all places of F and

|(x1, . . . , x2n)|w =
{

maxi (|xi |w ) w non-archimedean,
(
∑

i |xi |2w
)

1
2 otherwise.
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Thus, identifying P(2n−1,1)\G with the set of lines in V, the left hand side of (26) is
majorized by (a constant multiple of)

∫

F∗\IF

∑

v∈V−{0}
|)(vth)| max

(

1, |vh|)k |Cσ (log(|t |n)
)

| d∗t

for some k ≥ 0. Since h ∈ SH it can be written as h = ah0 with a ∈ AH
0 (c0) and

h0 in a certain compact set. Also, t may be restricted to a compact set since Cσ has
compact support. It therefore remains to show that there exists a constant c such that

∑

v∈V−{0}
|)′(va)| max(1, |va|)k ≤ c · e〈1n,H0(a)〉

for all a ∈ AH
0 (c0) and )′ in the set {)(•x) : x ∈ C} where C is a fixed compact

subset of H (A). Since this is a bounded set of Schwartz-Bruhat functions, it is
bounded by a fixed 0 ≤ )′ ∈ S(V(A)), so it is enough to prove it for )′. Thus, it
remains to bound

∑

v=(x1,...,xn,yn,...,y1)∈F2n

)′(va) max(1, |va|)k .

Let a = diag(a1, . . . , an, a−1
n , . . . , a−1

1 ) with ai ’s positive real and bounded away
from zero. We get

(29)
∑

(x1,...,xn,yn,...,y1)∈F2n

)′ ((x1a1, . . . , xnan, yna−1
n , . . . , y1a−1

1 )
)

· max
(

1, |(x1a1, . . . , xnan, yna−1
n , . . . , y1a−1

1 )|
)k

.

We have to bound this by a constant multiple of
∏n

i=1|ai |F . It follows from the
Dixmier-Malliavin Theorem that )̂ is a sum of convolutions products of Schwartz
functions, each with 2n factors. Thus, ) is a sum of (ordinary) products, each with
2n factors. It follows immediately that there exist functions )

(1)
i , )

(2)
i ∈ S(A),

i = 1, . . . , n such that

)′(x1, . . . , xn, yn, . . . , y1) ≤
n

∏

i=1

)
(1)
i (xi ))

(2)
i (yi ).

Then (29) is bounded by the product over i of
∑

xi ∈F

)
(1)
i (xi ai ) max(1, |xai |)k ×

∑

yi ∈F

)
(2)
i

(

yi a−1
i

)

max(1, |ya−1
i |)k .

Since |xi ai | = ai ≥ c1 if xi != 0 this is bounded by
(

)
(1)
i (0) +

∑

xi !=0

)
(1)
i (xi ai )ak

i ) × ()(2)
i (0) + c−k

1

∑

yi !=0

)2(yi a−1
i )

)

.

The first factor is bounded uniformly, while the second factor is bounded by a
multiple of |ai |F .
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Before proving the second part of Proposition 2 let us introduce the following
notation. If X and Y are real variables, depending on unspecified parameters, we
write X = O(Y ) if there exist constants a and b such that X ≤ a max(0, Y ) + b. If
Y is non-negative, we write X = A(Y ) if there exist constants a > 0, b such that
X ≥ aY + b. The constants should be universal.

Let γ ∈ P(2n−1,1). Upon multiplying by an element in P(n,n−1,1) we can and
shall assume that γ g ∈ S (n,n−1,1). Let X = H0(γ g). Then

〈α, X〉 = A(0) for all α ∈ /
(n,n−1,1)
0 .

Note that {αn} = /
(2n−1,1)
0 \ /

(n,n−1,1)
0 . If 〈αn, X〉 >> 0 then γ g ∈ S (2n−1,1) and

since g ∈ S (2n−1,1), a standard result in reduction theory implies that γ ∈ P(n,n−1,1).
(Cf. p. 941 of [Art78] lines 14–19. Note the following misprint on the end of line
17: S P1 (T0, ω) should be replaced by S P (T0, ω).) We conclude that if γ /∈ P(n,n−1,1)

then

〈αn, X〉 = O(0).

Let M1, M2 be the GLn blocks of M so that M = M1 × M2. We may write X =
X1 + X2 + X M where X1 ∈ aM1

0 , X2 ∈ aM2
0 and X M ∈ aM . Concretely, if

X = (x1, . . . , xn, y1, . . . , yn) then

X1 = (x1 − x̄, . . . , xn − x̄, 0, . . . , 0)

X2 = (0, . . . , 0, y1 − ȳ, . . . , yn − ȳ)

X M = (x̄, . . . , x̄, ȳ, . . . , ȳ)

where x̄ = 1
n

∑n
i=1 xi , ȳ = 1

n

∑n
i=1 yi . We have

1. x̄ + ȳ = 0.

2. xi − xi+1 = A(0) for all 1 ≤ i < n.

3. yi − yi+1 = A(0) for all 1 ≤ i < n − 1.

4. xn − y1 = O(0).

Recall the norm ‖•‖ on a0 (not to be confused with the norm function on G(A)).

Lemma 7. There exists a fundamental weight 1 of M2 (depending on X) such
that

‖X‖ = O(‖X1‖) + O(〈1, X2〉) + O(− 〈12n−1, H0(g)〉).

Proof. We divide into two cases
y1 ≥ 0: Let i be the last index strictly less than n so that yi ≥ 0. Then for

1 ≤ j ≤ i we have y j = A(0) and hence y j = A(|y j |). Take 1 corresponding to
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the i-th root of M2. Then

n 〈1, X2〉 = (n − i) ·
∑

1≤ j≤i

y j − i ·
∑

i< j≤n

y j = A

(

∑

1≤ j≤n

|y j |
)

− n · max(0, yn)

and hence

‖X‖ = O

(

‖X1‖ +
∑

1≤ j≤n

|y j |
)

= O(‖X1‖) + O(〈1, X2〉) + O(yn).

y1 < 0: In this case y j = O(0) for 1 ≤ j < n and we take 1 corresponding to
the first root of M2. We have

0 = x̄ + ȳ = x1 + O(0) + O(yn) = x1 + O(yn).

Using the relation (6) we get

n 〈1, X2〉 = n · y1 −
∑

1≤ j≤n

y j = n · xn − O(0) +
∑

1≤ j≤n

|y j | − O(yn)

= n · x1 − O(‖X1‖) +
∑

1≤ j≤n

|y j | − O(yn)

= −O(‖X1‖) +
∑

1≤ j≤n

|y j | − O(yn)

since x1 = −O(yn). Hence,

‖X‖ = O(‖X1‖ +
∑

1≤ j≤n

|y j |) = O(‖X1‖) + O(〈1, X2〉) + O(yn).

Finally note that yn = − 〈12n−1, X〉 = − 〈12n−1, H0(g)〉. !

We return to the proof of the second part of Proposition 2. Let γ g =
ueX M m1m2k be the Iwasawa decomposition of γ g with u ∈ U (A), m1 ∈ M1(A)1,
m2 ∈ M2(A)1 and k ∈ K . Then

|M−1ϕ(γ g)| = |M−1ϕ
(

ueX M m1m2k
)

| = e〈µ,X M 〉|M−1ϕ(m1m2k)|

where µ = −1n + n1n ∈ a∗
M . Thinking of M−1ϕ as a tensor of cusp forms on M1

and M2 we may use the rapid decay in M1, the fact that m1 ∈ SM1 and Lemma 6
applied to M2 to majorize the above by

e〈µ,X M 〉 · @(‖m1‖, 1) · @(e〈1,H
M2
0 (m2)〉, 1) = e〈µ,X M 〉 · @(e‖X1‖, 1) · @(e〈1,X2〉, 1).

This and Lemma 7 give

|M−1ϕ(γ g)| = @(e‖X‖, e−〈12n−1,H0(g)〉) = @(‖γ g‖, e−〈12n−1,H0(g)〉)
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because log(‖γ g‖) = O(‖X‖). It follows that the left hand side of (28) is bounded
by

∑

γ ∈G

@(‖γ g‖, e−〈12n−1,H0(g)〉).

It remains to invoke Lemma 5.
To prove the last part of the proposition fix h ∈ SH ⊂ SG and let δ ∈ G. Upon

multiplying δ on the left by an element of P(2n−1,1) we may assume that δh ∈
S (2n−1,1). Applying the second part to g = δh,

∑

γ ∈P(n,n−1,1)\P(2n−1,1)

|M−1ϕ(γ δh)| = |M−1ϕ(δh)| + @(1, e−〈12n−1,H0(δh)〉).

Also, since any cusp form is bounded, we have

|M−1ϕ(δh)| ≤ c2 · e〈−1n+n1n,HM (δh)〉 ≤ c3 · e〈−1n+n1n,HM (h)〉

for appropriate constants where the second inequality follows from Lemma 4. Thus

?(h) ≤ c3 · e〈−1n+n1n,HM (h)〉 ·
∑

δ∈P(2n−1,1)\G

|F),σ (δh)|

+
∑

δ∈P(2n−1,1)\G

@(1, e−〈12n−1,H0(δh)〉) · |F),σ (δh)|.

Using (28), the second sum is bounded by e〈1n,H0(h)〉. Also, by (27) the first sum is
bounded by e〈n1n,H0(h)〉. It remains to note that

e〈1n,H0(h)〉 ≤ c4 · e〈n1n,H0(h)〉

for an appropriate constant.

7. Double cosets. The map p (→ V′ p is a bijection between P\G and
the set of n-dimensional vector subspaces V0 ⊂ V. The H -orbit of V0 is deter-
mined by the rank r of [•, •]|V0 and thus the double cosets P\G/H are indexed
by the even integers 0 ≤ r ≤ n ([JR92b]). Next, we analyze the double cosets
P(n,n−1,1)\P(2n−1,1)/Q. Since P(n,n−1,1) = P(2n−1,1) ∩ P(n,n) the map p (→ V′ p is a
bijection between P(n,n−1,1)\P(2n−1,1) and the set V of n-dimensional vector sub-
spaces V0 ⊂ V containing v0. Recall that Q is in fact the stabilizer in H of F · v0.
To every V0 ∈ V we associate the pair (r, ε) where r = rank([•, •]|V0 ) and ε = ±1
is a sign which is 1 if v0 ∈ rad([•, •]|V0 ) and −1 otherwise. Clearly, these are Q-
invariant. Conversely, it follows from Witt’s Theorem that the Q-orbits in V are
determined by the pairs (r, ε). These Q-orbits, or what amounts to the same, the
double cosets P(n,n−1,1)\P(2n−1,1)/Q, are thus indexed by an even integer 0 ≤ r ≤ n
and ε = ±1. If r = 0, i.e. if [•, •]|V0 = 0 then necessarily ε = 1, while if r = n
(with n even) then necessarily ε = −1. We will calculate the contribution of each
double coset to (24).
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7.1. Case r = 0. In this case we may take η = 1 and its contribution is

∫

Q1\H (A)
M−1ϕ(h)F(h) dh.

Recalling the notation from §2.3, we compute this as

∫

PH (A)\H (A)

∫

Q1\PH (A)
δPH (p)−1 M−1ϕ(ph)Fσ (ph) dh

=
∫

KH

∫

P1\MH (A)

∫

UH \UH (A)
δPH (m)−1 M−1ϕ(umk)Fσ (umk) du dm dk

=
∫

KH

∫

P1\MH (A)1
M−1ϕ(mk)

×
(

∫

aMH

e〈−2ρPH ,X〉e〈−1n+ρP ,X〉Fσ (eX mk) d X

)

dm dk

since Fσ is invariant under UH (A). The inner integral is

∫

aMH

e−2〈1n,X〉Fσ (eX mk) d X

=
∫

aMH

e−2〈1n,X〉
∫

IF

)(tv0eX mk)Cσ (log|t |n) d∗t d X

=
∫

R

e−2x
∫

IF

)(te−x/nv0mk)Cσ (log|t |n) d∗t dx

using the variable x = 〈1n, X〉 and the embedding (9). After a change of variable
we obtain

∫

R

e−2x
∫

IF

)(tv0mk)Cσ (log|t |n + x) d∗t dx

=
∫

IF

)(tv0mk)
∫

R

e−2xCσ (log|t |n + x) dx d∗t

=
∫

IF

)(tv0mk)
(

∫

R

e−2xCσ (x) dx
)

|t |2n d∗t

=
∫

IF

)(tv0mk) · 2π iσ (1) · |t |2n d∗t = 2π iσ (1) · φV
),1(mk).



P1: IOI

PB440-16 HIDA-0662G PB440-Hida-v4.cls December 15, 2003 9:22

a spectral identity for skew symmetric matrices 451

The contribution from η = 1 now becomes 2π iσ (1) times

∫

K H

∫

MH \MH (A)1
M−1ϕ(mk) ·

∑

γ ∈P1\MH

φ),1(γ mk) dm dk

=
∫

K H

∫

MH \MH (A)1
M−1ϕ(mk)E)(mk, 3) dm dk

by (12). This is the required contribution.

7.2. r = n. The computation will be similar to the one in [JR92b]. We take
V0 to be

(x1, . . . , xn/2, 0, . . . , 0, y1, . . . , yn/2).

Then V0 = V′η where

η =









1n/2

1n/2

1n/2

1n/2









.

Then
∫

Qη\H (A)
M−1ϕ(ηh)Fσ (h) dh =

∫

ηQηη−1\ηH (A)η−1
M−1ϕ(hη)Fσ (hη) dh.(30)

The group ηHη−1 is the symplectic group attached to the skew symmetric ma-
trix tηε2nη = ( εn

0
0
εn

). Since η ∈ P(2n−1,1) we have Qη = H ∩ η−1 P(n,n)η ∩ P(2n−1,1).
Thus,

ηQηη−1 = ηHη−1 ∩ P(n,n) ∩ P(2n−1,1).

The group ηHη−1 ∩ P(n,n) is equal to
{ (

m1 0
0 m2

)

: m1, m2 ∈ Spn/2

}

.

Thus,

ηQηη−1 =
{ (

m1 0
0 m2

)

: m1 ∈ Spn/2, m2 ∈ Spn/2 ∩ P(n−1,1)

}

.

The integral (30) factors through
∫

Spn/2\Spn/2(A)
M−1ϕ

( (

m1 0
0 m2

)

hη

)

Fσ

( (

m1 0
0 m2

)

hη

)

dm1
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which is 0 because it is a symplectic period of a cusp form on GLn ([JR92b],
Proposition 1).

7.3. 0 < r < n. Let projM : P → M be the canonical projection. Let M1 be
the subgroup

{ (

A 0
0 1n

)

: A ∈ GLn

}

of M and let T1 be the inverse image of M1 under projM , i.e. the group
{ (

A B
0 1n

)

: A ∈ GLn, B ∈ Mn×n

}

.

T1 is a normal subgroup of P contained in P(n,n−1,1).
Consider first a representative δ of the double coset of P\G/H indexed by r .

We may take δ to be the representative considered in ([JR92b],§4). The stabilizer
Pδ = P ∩ δHδ−1 is given explicitly. In particular ([loc. cit.] p. 184, formula (22)),
the unipotent radical S of Pδ consists of matrices of the form









1n−r X1 ∗ ∗
0 1r ∗ ∗
0 0 1r X2

0 0 0 1n−r









where X1 is an arbitrary (n − r ) × r matrix and X2 is an arbitrary r × (n − r )
matrix. It follows that the intersection N = S ∩ T1 is a unipotent normal subgroup
of Pδ whose image R under projM is a unipotent radical of a proper parabolic
subgroup of M1 (of type (n − r, r )).

Let η be a representative for one of the two double cosets in P(n,n−1,1)\
P(2n−1,1)/Q corresponding to (r, ±1). Then η ∈ PδH and we write η = pδh with
p ∈ P and h ∈ H . Let N1 = pN p−1.

Proposition 3. 1. N1 is a normal unipotent subgroup of P(n,n−1,1) ∩ ηQη−1.
2. R1 = projM (N1) is a unipotent radical of a proper parabolic of M1.

Proof. Since N ⊂ T1 and T1 is normal in P we have

N1 ⊂ T1 ⊂ P(n,n−1,1).

Hence,

η−1 N1η ⊂ P(2n−1,1)

since η ∈ P(2n−1,1). On the other hand

η−1 N1η = h−1δ−1 Nδh ⊂ H.
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All in all,

N1 ⊂ P(n,n−1,1) ∩ η(H ∩ P(2n−1,1))η−1 = P(n,n−1,1) ∩ ηQη−1.

The first part follows since

P(n,n−1,1) ∩ ηQη−1 ⊂ P ∩ ηHη−1 = pPδ p−1.

The second part is true since

projM (N1) = projM (pN p−1) = projM (p)R projM (p−1). !

Let B be the kernel of the map projM restricted to N1 and let ν : R1 → B\N1

be the inverse of the isomorphism defined by projM . Finally let N ′ = η−1 N1η. It is
a normal unipotent subgroup of Qη. The contribution from η is

∫

Qη\H (A)
M−1ϕ(ηh)Fσ (h) dh

=
∫

Qη(A)\H (A)

∫

Qη\Qη(A)
δQη

(q)−1 M−1ϕ(ηqh)Fσ (qh) dq dh

=
∫

Qη(A)\H (A)

∫

Qη·N ′(A)\Qη(A)
δQη

(q)−1

×
(

∫

N ′\N ′(A)
M−1ϕ(ηn′qh)Fσ (n′qh) dn′

)

dq dh

=
∫

Qη(A)\H (A)

∫

Qη·N ′(A)\Qη(A)
δQη

(q)−1

(
∫

N ′\N ′(A)
M−1ϕ(ηn′qh) dn′

)

Fσ (qh) dq dh

because Fσ is left invariant under Q(A)1. However,
∫

N ′\N ′(A)
M−1ϕ(ηn′h) dn′ =

∫

N1\N1(A)
M−1ϕ(nηh) dn

=
∫

B(A)·N1\N1(A)

∫

B\B(A)
M−1ϕ(bnηh) db dn =

∫

B(A)·N1\N1(A)
M−1ϕ(nηh) dn

=
∫

R1\R1(A)
M−1ϕ(ν(r )ηh) dr =

∫

R1\R1(A)
M−1ϕ(rηh) dr

since ν(r ) and r have the same projection onto M . The last term vanishes by
cuspidality.
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CHAPTER 17

GENERIC REPRESENTATIONS AND LOCAL LANGLANDS
RECIPROCITY LAW FOR p-ADIC SO2n+1

By Dihua Jiang and David Soudry

To Professor J. Shalika with admiration

Introduction. An irreducible admissible representation of a quasi-split re-
ductive algebraic group G(F), where F is a p-adic field, is called generic, or more
precisely, generic with respect to a given nondegenerate character of a maximal
unipotent subgroup of G(F), if it admits a non-zero Whittaker functional with re-
spect to the given character. Such a functional is unique up to scalar multiples.
This well known uniqueness property was proved by Gelfand and Kazhdan for
G = GL(n) [G.K.] and by J. Shalika [Sh] for general G (over any local field). As
a result, a generic representation has a unique Whittaker model. In the last thirty
years, the uniqueness of Whittaker models for irreducible generic representations
of G has played very important roles in both the local theory and the global theory of
automorphic forms, and in particular, in the theory of automorphic L-functions. In
this paper, we study generic representations of p-adic SO(2n + 1) and the relation
with the local Langlands reciprocity conjecture.

We state the local Langlands reciprocity conjecture for a p-adic split reductive
group G below, the general version of which can be found in [B]. Let WF be the
Weil group associated to the the local field F . We take

WF × SL2(C)

as the Weil-Deligne group [A]. The relation between this version of the Weil-
Deligne group and the version used in [B] is not difficult to figure out. One may
find a relevant explicit discussion in [Kn]. It is known [Sp] that a split reductive
group G is uniquely determined, up to central isogeny, by the associated root datum.
The Langlands dual group G∨(C) of G is a complex reductive group with root datum
dual to that of G. For example, the Langlands dual group of SO(2n + 1) is Sp2n(C).
Let !(G) be the set of conjugacy classes of admissible homomorphisms ϕ from
WF × SL2(C) to G∨(C). For any ϕ ∈ !(G), we may decompose it into a direct sum
of irreducible representations of WF × SL2(C)

ϕ = ⊕iφi ⊗ Swi +1.

The first named author is partly supported by NSF grant 0098003, by the Sloan Research Fellowship and
by McKnight Professorship at University of Minnesota. The second named author is partly supported by a grant
from the Israel-USA Binational Sciences Foundation.
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Then the admissibility of ϕ means that the representations φi are continuous com-
plex representations of WF with φi (WF ) consisting of semi-simple elements in
G∨(C) and Swi +1 is the irreducible algebraic complex representations of SL2(C)
of dimension wi + 1. The elements in the set !(G) are called the local Langlands
parameters for G(F).

The local Langlands reciprocity conjecture asserts the existence of a param-
eterization of the set $(G) of all equivalence classes of irreducible admissible
representations of G(F) in terms of the set !(G) of the local Langlands parame-
ters. More precisely, the conjecture can be stated as follows:

Local Langlands Reciprocity Conjecture. For each local Langlands
parameter ϕ ∈ !(G), there exists a finite subset $(ϕ), which is called the local
L-packet attached to ϕ, of $(G) such that

(1) the local L-packet $(ϕ) is not empty,
(2) the reciprocity map taking ϕ to$(ϕ) is one to one, and preserves the local

factors, i.e.,

L(ϕ, s) = L(π, s),

ε(ϕ, s,ψ) = ε(π, s,ψ),

for π ∈ $(ϕ), where ψ is a given nontrivial character of F, and
(3) the union of all local L-packets $(ϕ) gives a partition for $(G).

For G = GL(n), this conjecture was proved by M. Harris and R. Taylor [H.T.]
and by G. Henniart [H1] for the supercuspidal cases, while the reduction of the
conjecture for GL(n) to supercuspidal cases was given by A. Zelevinsky [Z]. More
discussions about this conjecture for GL(n) can be found in [K]. It is worthwhile to
point out that when G = GL(n), each local L-packet$(ϕ) contains only one mem-
ber. A main reason for this is that any irreducible supercuspidal representation
of GLn(F) is generic, i.e. has a non-zero Whittaker model. However, when G is
not GL(n), it is expected that each local L-packet $(ϕ) contains more than one
member in general. It is clear that in order to completely understand the set$(G),
one has to have explicit description for each local L-packet$(ϕ) in addtion to the
local Langlands reciprocity conjecture. From Arthur’s trace formula approach to
study square integrable automorphic representations [A] or Shahidi’s proof of Lang-
lands conjecture on Plancherel measures [S1], it is important to know when a local
L-packet has a generic member. Some further refined properties for local L-packets
$(ϕ) are given in Borel’s paper [B].

The objective of this paper is to study the local Langlands reciprocity conjecture
for G = SO(2n + 1) and the genericity of the local L-packets. Our main results
can be stated as follows.

Theorem A. For each local Langlands parameterϕ ∈ !(SO2n+1), there exists
an irreducible admissible representation σ (ϕ) of SO2n+1(F), such that
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(1) σ (ϕ) is uniquely determined by the parameter ϕ and can be realized as the
Langlands subquotient of an induced representation

δ(*1) × · · · × δ(* f ) ! σ (t)

where σ (t) is an irreducible generic tempered representation of SO2n∗+1(F), and
δ(*i ) is the essentially square integrable representation of GLni (F) associated to
the imbalanced segment *i for i = 1, 2, . . . , f (n = n∗ +

∑ f
i=1 ni ); and

(2) the reciprocity map taking ϕ to σ (ϕ) is one-to-one and preserves relevant
local factors

L(ϕ ⊗ φ, s) = L(σ (ϕ) × r (φ), s)(0.1)

ε(ϕ ⊗ φ, s,ψ) = ε(σ (ϕ) × r (φ), s,ψ),(0.2)

where φ is a local Langlands parameter for GLl , and r is the reciprocity map for
GLl (for any positive integer l) given in [H.T.] and [H1].

Theorem A will be proved by establishing the explicit local Langlands functorial
lift from SO(2n + 1) to GL(2n) (Theorems 1.1, 2.1, 3.1, 4.1, and 5.1), by studying
the fine structure of the local Langlands parameters (Proposition 6.1), and by using
the local Langlands reciprocity conjecture for GL(n) in [H.T.] and [H1].

We state here the explicit local Langlands functorial lift from irreducible tem-
pered generic representations of SO(2n + 1) to GL(2n) (Theorem 4.1), while the
generalization of this theorem to irreducible generic representations of SO(2n + 1)
is Theorem 5.1, which is more involved and not convenient to be stated here. Let
τ be an irreducible unitary supercuspidal representation of GLk(F) and 2m be an
integer. We denote by ,(τ, m) the unique irreducible square-integrable subrep-
resentation of GLk(2m+1)(F) attached to the balanced segment [ν−mτ, νmτ ] (see
formula (0.11) for more details).

Theorem B. There exists a bijection . between the set$(tg)(SO2n+1) of equiv-
alence classes of irreducible tempered generic representations of SO2n+1(F) and
the set of equivalence classes of irreducible tempered representations of GL2n(F)
of the following form

,(λ1, h1) ×,(λ2, h2) × · · · ×,(λ f , h f )(0.3)

where λ1, . . . , λ f are irreducible unitary supercuspidal representations of GLkλi

(F), respectively, and 2hi ’s are non-negative integers, such that for 1 ≤ i ≤ f
(1) if λi )∼= λ̂i , then ,(λi , hi ) occurs in (0.3) as many times as ,(̂λi , hi ) does,
(2) if the exterior square L-factor L(λi ,0

2, s) has a pole at s = 0, and hi ∈
1
2 + Z≥0, then ,(λi , hi ) occurs an even number of times in (0.3),

(3) if the symmetric square L-factor L(λi , sym2, s) has a pole at s = 0, and
hi ∈ Z≥0, then ,(λi , hi ) occurs an even number of times in (0.3).
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Moreover, we have

L(σ × π, s) = L(.(σ ) × π, s)(0.4)

ε(σ × π, s,ψ) = ε(.(σ ) × π, s,ψ)(0.5)

for all generic tempered representations σ of SO2n+1(F) and all irreducible generic
representations π of GLk(F) with all k ∈ Z>0.

We shall construct explicitly in §6 the representation σ (ϕ) of SO2n+1(F) in terms
of the local Langlands parameter ϕ and show that σ (ϕ) is generic if and only if the
induced representation

δ(*1) × · · · × δ(* f ) ! σ (t)

is irreducible. A characterization of the genericity of σ (ϕ) will be given in the
following theorems.

Theorem C. For each local Langlands parameter ϕ ∈ !(SO2n+1), the irre-
ducible representation σ (ϕ) of SO2n+1(F) constructed in Theorem A enjoys the
following properties.

(1) One can associate to ϕ at most one irreducible generic representation of
SO2n+1(F) satisfying conditions (0.1) and (0.2) in Theorem A;

(2) If ϕ is tempered, i.e., ϕ(WF ) is bounded in Sp2n(C), then the representation
σ (ϕ) is generic; and

(3) The representation σ (ϕ) is generic if and only if the local adjoint L-function

L
(
AdSp2n

◦ ϕ, s
)

is regular at s = 1. (This is the SO(2n + 1)-case of a conjecture of Gross-Prasad
[G.P.] and of Rallis [K].)

Remark. Property (1) in Theorem C follows from the local converse theorem
for generic representations of SO2n+1(F), which was proved in [Jng.S.] and stated
as Theorem 1.3 in this paper. In the language of local L-packets (in the sense of the
local Langlands reciprocity conjecture), Property (1) means that for each given local
Langlands parameter ϕ ∈ !(SO2n+1), the “associated” local L-packet $(ϕ) has at
most one generic member. Property (2) can be interpreted as that if the parameter
ϕ ∈ !(SO2n+1) is tempered, the “associated” local L-packet $(ϕ) has a generic
member. This statement is a conjecture stated in [S1] and a basic assumption used
in [A] for SO(2n + 1) and will be proved in §4. For G = U(2, 1), the genericity of
tempered L-packets was established by S. Gelbart, H. Jacquet, and J. Rogawski in
[G.J.R.]. Finally, Property (3) can be understood as a criterion for the genericity
of the “associated” local L-packet $(ϕ) in terms of the regularity of the adjoint
L-functions at s = 1, which will be proved in §7.
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As applications of our results to the global theory of automorphic forms, we
prove the following theorems. Let k be a number field and A be the ring of adeles
associated to k.

Theorem D. If an irreducible cuspidal automorphic representation π of
GL2n(A) has the property that L(π,02, s) has a pole at s = 1, then every lo-
cal component of π is symplectic, i.e., the local Langlands parameter attached to
each local component of π is symplectic.

This result proves Conjecture III in [PR], which may be deduced at least heuris-
tically from the global Langlands reciprocity conjecture or Arthur’s conjectures.
We shall prove it in §7. It is worth pointing out that this result is an important ingre-
dient in the recent work of E. Lapid and S. Rallis [L.R.] proving the positivity of
the central value of the standard L-functions attached to certain self-dual cuspidal
automorphic representations of GL(2n).

Theorem E. The weak lift from irreducible generic cuspidal automorphic rep-
resentations σ of SO2n+1(A) to automorphic representations * of GL2n(A) (estab-
lished in [C.K.PS.S]) is in fact Langlands functorial, i.e., is compatible with the
local Langlands functorial lift at all local places.

This theorem completes the Langlands functorial lift from irreducible generic
cuspidal automorphic representations of SO2n+1 to GL2n . In [C.K.PS.S], J. Cogdell,
H. Kim, I. Piatetski-Shapiro, and F. Shahidi proved that there exists a lift from
irreducible generic cuspidal automorphic representations σ of SO2n+1 to π of GL2n

which is compatible with the local Langlands functorial lift at archimedean places,
and at finite places where σv is unramified, i.e., there exists a weak Langlands
functorial lift for such σ . The image of this weak Langlands functorial lift was
explicitly characterized by D. Ginzburg, S. Rallis, and D. Soudry in [G.R.S.]. We
shall prove Theorem E in §7. Of course, it is still an open problem to establish
the Langlands functorial lift from irreducible non-generic cuspidal automorphic
representations of SO(2n + 1) to GL(2n).

As we already mentioned above, one of the main ingredients in the proof of
our main results here is to establish explicitly the local Langlands functorial lift
from irreducible generic representations of SO2n+1(F) to GL2n(F) (Theorem 5.1).
We recall from [Jng.S.] the explicit local Langlands functorial lift from irreducible
generic supercuspidal representations of SO2n+1(F) to GL2n(F) in §1. In order to
get Theorem 5.1, we have to go through the induction procedure step by step. Using
Muic’s classification of irreducible generic representations of SO2n+1(F) in [M1, 2],
we carry out the explicit lift and verify the compatibility of relevant local factors
as required in the local Langlands conjecture. This work will be done in Sections
2, 3, 4, and 5. Basically, §2 deals with generic square-integrable representations,
§3 discusses elliptic tempered generic representations, §4 is for tempered generic
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representations (Theorem B), and §5 proves Theorem 5.1 which is for irreducible
generic representations. In §6, we shall prove Theorem A, and Theorems C, D, and
E will be completed in §7.

Acknowledgments. Finally, we would like to thank Professor Jian-Shu Li for
his warm invitation to the Hong Kong University of Science and Technology in the
summer, 2001. We thank the Department of Mathematics, at HKUST, for providing
us with a very friendly and stimulating research atmosphere during our stay, where
we finished essentially the first version of this paper. Finally, we thank the referee
for his comments on the earlier version of this paper.

Notations and some preliminaries. Let F be a non-archimedean local field
of characteristic zero. SO2n+1(F) denotes the group of F-points of the split group
SO2n+1. We realize it as

{g ∈ GL2n+1(F) | t g Jg = J }

where J =
(

0 1
. ..

1 0

)

, a (2n + 1) × (2n + 1)-matrix.

In this paper, all representations are assumed to be smooth. Given irreducible
(smooth) representations τi of GLmi (F), where i = 1, 2, . . . , r , we denote by

τ1 × τ2 × · · · × τr(0.6)

the representation of GLn(F), n = m1 + m2 + · · · + mr induced from the standard
parabolic subgroup of type (m1, m2, . . . , mr ).

We follow the notation used in [Td] and [M1,2]. For an irreducible representa-
tion σ of SO2m+1(F), we denote by

τ1 × · · · × τr ! σ,(0.7)

the representation of SO2l+1(F) (l = m +
∑r

i=1 mi ) induced from the standard
parabolic subgroup, whose Levi part is isomorphic to GLm1 (F) × · · · × GLmr (F) ×
SO2m+1(F), and from the representation τ1 ⊗ · · · ⊗ τr ⊗ σ .

We fix a nontrivial character ψ of F . A representation σ of SO2n+1(F) (in a
space Vσ ) has a Whittaker model with respect to ψ , if there is a nontrivial linear
functional l on Vσ , such that

l



σ




z x y

1 x ′

z∗



 (v)



 = ψ(z12 + z23 + · · · + zn−1,n + xn)l(v)(0.8)

for all v ∈ Vσ , where z is in the maximal upper unipotent subgroup of GLn(F)

so that

(
z x y

1 x ′

z∗

)

is an element in the standard maximal unipotent subgroup

Un(F) of SO2n+1(F). Since the diagonal subgroup of SO2n+1(F) acts transitively
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on Un(F), we may replace the “standard nondegenerate character of Un(F) defined
by ψ” in (0.8) by the following character

Un(F) .




z x y

1 x ′

z∗



 /→ ψ(a1z12 + a2z23 + · · · + an−1zn−1,n + anxn)

for given a1, . . . , an ∈ F∗. Thus, the notion of having a Whittaker model (for σ )
does not depend on ψ or on a1, . . . , an ∈ F∗. We simply say that σ is generic if σ
admits a non-zero Whittaker functional as in (0.8).

Given a representation λ of GLk(F), we often denote k = kλ.
We recall the classification of irreducible representations of GLn(F) from [Z].

Letλbe an irreducible, supercuspidal representation of GLk(F). Consider a segment

* = [λ, νrλ] = {λ, νλ, ν2λ, . . . , νrλ},(0.9)

where r ∈ Z≥0 (the set of all non-negative integers), and ν(·) := | det(·)|F (| · |F

denotes the absolute value character of F∗). The representation

νrλ× · · · × νλ× λ

has a unique irreducible subrepresentation δ[λ, νrλ], and it is essentially square-
integrable. We say, as in p. 22 of [M2], that a segment * is balanced if δ(*) is
square-integrable. Balanced segments have the form

[ν−mτ, νmτ ],(0.10)

where τ is an irreducible unitary supercuspidal representation of GLkτ (F) and
2m ∈ Z≥0. We denote, in this case,

,(τ, m) = δ[ν−mτ, νmτ ](0.11)

for the unique irreducible square-integrable subrepresentation attached to
[ν−mτ, νmτ ]. In general, one has, for a segment [νατ, νβτ ], τ as above, and α ∈ R,
β − α ∈ Z≥0,

δ[νατ, νβτ ] = ν
α+β

2 ,

(
τ,
β − α

2

)
.(0.12)

The dual of a segment * = [λ, νrλ] is the segment *̂ = [ν−r λ̂, λ̂]. One has

δ̂(*) ∼= δ(*̂).(0.13)

Two segments *,*′ are said linked if * ∪*′ is a segment, * )⊂ *′ and *′ )⊂
*. Every irreducible, generic representation of GLm(F) has the form δ(*1) × · · · ×
δ(*r ) where no two of {*1, . . . ,*r } are linked. The set {*1, . . . ,*r } is determined
uniquely by the given irreducible, generic representation of GLm(F).

Finally, the following calculations of local gamma and L-factors follow from
[J.PS.S], [S1,3]. See also [M1]. Let *1, . . . ,*r be a sequence of segments. Write
δ(*i ) = νei δi as in (0.12), where δi = ,(τi , mi ) is square-integrable. Assume
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that e1 ≥ e2 ≥ · · · ≥ er . Let σ be the Langlands quotient of δ(*1) × · · · × δ(*r ).
Similarly let *′

1, . . . ,*
′
r ′ be another such sequence of segments; δ(*′

j ) = νe′
j δ′j ,

δ′j = ,(τ ′
j , m ′

j ), as above. Letσ ′ be the Langlands quotient of δ(*′
1) × · · · × δ(*′

r ′).
Then

γ (σ × σ ′, s,ψ) =
∏

1≤i≤r
1≤ j≤r ′

γ (δi × δ′j , s + ei + e′
j ,ψ)(0.14)

L(σ × σ ′, s) =
∏

1≤i≤r
1≤ j≤r ′

L(δi × δ′j , s + ei + e′
j )(0.15)

γ (,(τi , mi ) × ,(τ ′
j , m ′

j ), s,ψ)(0.16)

=
∏

0≤k≤2mi
0≤k′≤2m′

j

γ (τi × τ ′
j , s − mi − m ′

j + k + k ′,ψ)

L(,(τi , mi ) × ,(τ ′
j , m ′

j ), s)(0.17)

=
min(2mi +1,2m ′

j +1)∏

.=1

L(τi × τ ′
j , s + mi + m ′

j + 1 − .).

1. Supercuspidal generic representations. The description of the local
Langlands functorial lift from irreducible, supercuspidal, generic representations
of SO2n+1(F) to irreducible representations of GL2n(F), is one of the main results
of our previous work [Jng.S., Theorems 6.1, 6.4]. We summarize it here.

Theorem 1.1 [Jng.S., Theorem 6.1]. There is a bijection . between the set
$(sg)(SO2n+1) of equivalence classes of irreducible, supercuspidal, generic repre-
sentation of SO2n+1(F), and the set of isomorphism classes of representations of
GL2n(F), which have the form

τ1 × τ2 × · · · × τr = IndGL2n(F)
Q (τ1 ⊗ τ2 ⊗ · · · ⊗ τr ),(1.1)

where Q is a standard parabolic subgroup of GL2n(F) of type (2n1, . . . , 2nr ) with
n =
∑r

i=1 ni , and for each 1 ≤ i ≤ r , τi is an irreducible, supercuspidal repre-
sentation of GL2ni (F), such that L(τi ,0

2, s) has a pole at s = 0 and for i )= j ,
τi )∼= τ j . The bijection . preserves local L and ε factors with GL-twists, namely,

L(σ × π, s) = L(.(σ ) × π, s)(1.2)

ε(σ × π, s,ψ) = ε(.(σ ) × π, s,ψ)(1.3)

for any irreducible, supercuspidal, generic representation σ of SO2n+1(F) and any
irreducible, generic representation π of GLk(F) (k is any positive integer).
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Remark 1.1. 1. If τ is an irreducible supercuspidal representation of
GL2m+1(F), then L(τ,02, s) is holomorphic. This is the reason that τi ’s in the
theorem are representations of GL2ni (F).

2. The local factors on the l.h.s. of (1.2), (1.3) are the ones defined by Shahidi
for SO2n+1 × GLk . The local factors on the r.h.s. are for GL2n × GLk . See [J.PS.S]
and [S1]. See also [S2] for properties of local exterior square L-functions.

3. Note that the representation (1.1) is irreducible and tempered.

We characterized in [Jng.S.] the local Langlands parameters for the represen-
tations in the image of the local Langlands functorial lift from irreducible generic
supercuspidal representations of SO2n+1(F) to GL2n(F), based on [H.T.] and [H1].
This provides the local Langlands parameters for irreducible generic supercus-
pidal representations of SO2n+1(F). In general, local Langlands parameters for
SO2n+1(F) are defined as follows. General discussion of local Langlands param-
eters can be found in [A], [B], and [Kn]. Recall that the Langlands dual group of
SO2n+1(F) is Sp2n(C).

Definition 1.1 (Local Langlands Parameters for SO2n+1(F)). Let WF ×
SL2(C) be the Weil-Deligne group attached to the base field F . A local Langlands
parameter ϕ for SO2n+1(F) is a conjugacy class of admissible homomorphism from
WF × SL2(C) to Sp2n(C). Here, if we decompose ϕ into a direct sum of irreducible
representations of WF × SL2(C)

ϕ = ⊕iφi ⊗ Swi +1,

the admissibility of ϕ means that φi ’s are continuous complex representations of
WF with φi (WF ) consisting of semi-simple elements in Sp2n(C) and Swi +1 is the
irreducible algebraic complex representation of SL2(C) of dimension wi + 1. We
denote by !(SO2n+1) the set of all local Langlands parameters for SO2n+1(F).

Let !(0)(SO2n+1) be the subset of !(SO2n+1) consisting of all parameters of
type

ϕ = ⊕iφi ⊗ Swi +1

with the properties that (i) wi = 0 for all i’s, (ii) φi )∼= φ j if i )= j , and (iii) for each
i , φi is an irreducible element in!(SO2ni +1) for some non-negative integer ni . Then
we have

Theorem 1.2 [Jng.S., Theorem 6.2]. There is a bijection y between
!(0)(SO2n+1) and the set $(sg)(SO2n+1). The bijection y preserves local factors
as follows.

L(ϕ ⊗ ϕ′, s) = L(y(ϕ) × r (ϕ), s)(1.4)

ε(ϕ ⊗ ϕ′, s,ψ) = ε(y(ϕ) × r (ϕ′), s,ψ)(1.5)
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for all irreducible, admissible, representations ϕ′ of WF of dimension k with all
k ∈ Z>0. Here r (ϕ′) is the supercuspidal representation of GLk(F), corresponding
to ϕ′ by the local Langlands reciprocity map for GL(k) as in [H.T.] and [H1].

Note that for ϕ as in Theorem 1.2, the composition of ϕ with the embedding
Sp2n(C) ⊂ GL2n(C) gives a degree 2n representation of WF , which has a multi-
plicity one decomposition into irreducible representations

φ1 ⊕ · · · ⊕ φr(1.6)

such that each summand φi is symplectic, say of degree 2ni with n1 + · · · + nr = n.
It turns out that the corresponding supercuspidal representation τi = r (φi ) of
GL2ni (F) is such that L(τi ,0

2, s) has a pole at s = 0. We have

y(ϕ) = .−1
(

IndGL2n(F)
Q (τ1 ⊗ · · · ⊗ τr )

)
(1.7)

= .−1
(

IndGL2n(F)
Q (r (φ1) ⊗ · · · ⊗ r (φr ))

)

= .−1(r (φ1 ⊕ · · · ⊕ φr ))

where we keep denoting by r the local Langlands reciprocity map for GL.
A key ingredient in the proof of the theorems above is the following local

converse theorem [Jng.S.].

Theorem 1.3. Let σ and σ ′ be irreducible, generic representations of
SO2n+1(F). If for all irreducible, supercuspidal representations π of GLk(F),
1 ≤ k ≤ 2n − 1, we have

γ (σ × π, s,ψ) = γ (σ ′ × π, s,ψ)

then σ ∼= σ ′.

We quote here some special cases of Shahidi’s general theorem on the Multi-
plicativity of Twisted Gamma Factors [S3]. These special cases are also proved by
Soudry in [Sd1,2] and will be needed in the rest of the paper.

Theorem 1.4 [Multiplicativity of Gamma Factors]. (1) Suppose that an
irreducible admissible generic representation σ of SO2n+1(k) is a subquotient of
IndSO2n+1(k)

Pr
(τr ⊗ σn−r ), the unitarily induced representation from a standard max-

imal parabolic subgroup Pr of SO2n+1(k), where τr is an admissible generic
representation of GLr (k) and σn−r is an admissible generic representation of
SO2(n−r )+1(k). Then

γ (σ × 4, s,ψ) = ωτ (−1)nγ (τr × 4, s,ψ) · γ (σn−r × 4, s,ψ) · γ (τ∨
r × 4, s,ψ),
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for any irreducible admissible generic representations 4 of GLl(k) with l being any
positive integer, where γ (τr × 4, s,ψ) and γ (τ∨

r × 4, s,ψ) are the local gamma
factors defined in [J.PS.S.]. (τ∨ is the contragredient representation of τ .)

(2) Suppose that an irreducible admissible generic representation 4 of GLl(k)
is a subquotient of IndGLl (k)

Pr,l−r (k)(τr ⊗ τl−r ), the unitarily induced representation from
a standard maximal parabolic subgroup Pr,l−r of GLl , where τr is an admissible
generic representation of GLr (k) and τl−r is an admissible generic representation
of GLl−r (k). Then

γ (σ × 4, s,ψ) = γ (σ × τr , s,ψ) · γ (σ × τl−r , s,ψ),

for any irreducible admissible generic representations σ of SO2n+1(k).

In Sections 2, 3, 4, and 5, we will extend Theorems 1.1 and 1.2 to generic dis-
crete series representations, to generic elliptic tempered representations, to generic
tempered representations, and to generic representations, respectively.

2. Discrete Series generic representations. We first extend the local Lang-
lands functorial lift . from the set $(sg)(SO2n+1) of all equivalence classes of irre-
ducible, supercuspidal, generic representations to the set$(dg)(SO2n+1) of all equiv-
alence classes of irreducible, discrete series, generic representations of SO2n+1(F).
Then we write the local Langlands parameters for each member in$(dg)(SO2n+1).
As we mentioned before, the main ingredients for this extension are Theorem 1.1
and the description given by Muic in [M1,2] of square-integrable generic represen-
tations of SO2n+1(F).

Theorem 2.1. The bijection . of Theorem 1.1 can be extended to a bijection
(we still denote it by .) between the set$(dg)(SO2n+1) and the set of all equivalence
classes of irreducible tempered representations of GL2n(F) of the following form

,(τ1, m1) ×,(τ2, m2) × · · · ×,(τr , mr )(2.1)

where the balanced segments [ν−mi τi , ν
mi τi ] are pairwise distinct, self-dual (i.e.,

τi
∼= τ̂i ) and satisfy the following properties that for each i ,

(1) if L(τi , sym2, s) has a pole at s = 0, then mi ∈ 1
2 + Z≥0; or

(2) if L(τi ,0
2, s) has a pole at s = 0, then mi ∈ Z≥0.

We have the following compatibility of local factors:

L(σ × π, s) = L(.(σ ) × π, s),(2.2)

ε(σ × π, s,ψ) = ε(.(σ ) × π, s,ψ)(2.3)

for any σ in$(dg)(SO2n+1) and any irreducible generic representationπ of GLk(F)
with all k ∈ Z>0.
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Remark 2.1. An equivalent description of the image of the local Langlands
functorial lift . in Theorem 2.1 is the following. An irreducible representation ρ
of GL2n(F) lies in the image of . in Theorem 2.1 if and only if ρ is tempered,
and satisfies the following properties: for any irreducible, unitary, supercuspidal
representation τ of GLk(F) with k = 1, 2, . . . , 2n,

(1) if τ )∼= τ̂ , then L(ρ × τ, s) has no poles on the real line,
(2) if τ ∼= τ̂ and L(ρ × τ, s) is not holomorphic, then

(a) if L(τ, sym2, s) has a pole at s = 0, then L(ρ × τ, s) has only simple
poles, whose real parts lie inside − 1

2 + Z≤0 (where Z≤0 denotes the set of all
non-positive integers);

(b) if L(τ,02, s) has a pole at s = 0, then L(ρ × τ, s) has only simple
poles, whose real parts be inside Z≤0.

Note that by [Z] any (irreducible) tempered representation ρ of GL2n(F) has
the form

,(τ1, m1) ×,(τ2, m2) × · · · ×,(τr , mr )

where 2mi ∈ Z≥0 and τi are irreducible, unitary, supercuspidal representations of
some GLki (F), respectively. The condition (1) in the last remark implies that the
representations τi are self-dual, because of formula (0.17), and then conditions (a),
(b) show that the description in the last remark is identical with that of the image
of . in Theorem 2.1.

Proof of Theorem 2.1. We start with a tempered representation ρ of GL2n(F)
in the proposed image, and associate to it a discrete series generic representation
σ = σρ (depending on ρ) of SO2n+1(F), such that ρ = .(σ ) and (2.2) and (2.3)
hold. It will be convenient to use the description of Remark 2.1 as the conditions
characterizing the image.

The idea is to use the information about the poles on the real line of the local
L-functions L(ρ × τ, s), for all τ in the set $(ss)(GLk) of equivalence classes of
irreducible, self-dual, supercuspidal representations of GLk(F) (with k being any
positive integer), to determine the structure of the tempered representationρ. Denote
by P(ρ) the set of all such poles, i.e.,

P(ρ) := {τ ∈ $(ss)(GLk) | L(ρ × τ, s) has a pole in R; k ∈ Z>0}.

It is known from the structure of tempered representations of GL that the set P(ρ)
is finite. For τ ∈ P(ρ), we list the real poles of L(ρ × τ, s) as follows

−mdτ (τ ) < · · · < −m2(τ ) < −m1(τ ) ≤ 0.(2.4)
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Let us put dτ = 0 if L(ρ × τ, s) is holomorphic for τ irreducible, supercuspidal
(self-dual or not). Consider the following subsets of P(ρ)

A(ρ) = {τ ∈ P(ρ) | L(τ,02, s) has a pole at s = 0, and dτ is odd},

B(ρ) = {τ ∈ P(ρ) | L(τ,02, s) has a pole at s = 0, and dτ is even},

C(ρ) = {τ ∈ P(ρ) | L(τ, sym2, s) has a pole at s = 0}.

Note that since ρ satisfies the assumptions of Remark 2.1, we have

P(ρ) = A(ρ) ∪ B(ρ) ∪ C(ρ).

In particular, for τ ∈ A(ρ) ∪ B(ρ), we have {mi (τ )}dτ
i=1 ⊂ Z≥0, and for τ ∈ C(ρ),

we have {mi (τ )}dτ
i=1 ⊂ 1

2 + Z≥0.
We will now construct a certain set of supercuspidal representations, which

defines an irreducible supercuspidal representation of a certain Levi subgroup
of SO2n+1(F) and then we form the corresponding induced representation of
SO2n+1(F).

Since, for τ ∈ A(ρ), L(τ,02, s) has a pole at s = 0, kτ is even. Write kτ = 2nτ .
By Theorem 1.1, there exists a unique (up to equivalence) irreducible, supercuspi-
dal, generic representation σ 0

ρ of SO2n′+1(F), n′ =
∑
τ∈A(ρ) nτ , such that

.
(
σ (0)
ρ

)
= ×
τ∈A(ρ)

τ

on GL2n′(F). Consider the following three subsets of A(ρ):

A0(ρ) = {τ ∈ A(ρ) | dτ = 1 and m1(τ ) = 0},

A1(ρ) = {τ ∈ A(ρ) | dτ ≥ 3 and m1(τ ) = 0},

A2(ρ) = {τ ∈ A(ρ) | m1(τ ) ≥ 1}.

It is clear that they form a partition of A(ρ). For τ ∈ A1(ρ), we consider the follow-
ing set of essentially square-integrable representations (of appropriate GL∗(F))

,i (τ ) = δ[ν−m2i (τ )τ, νm2i+1(τ )τ ], i = 1, 2, . . . ,
dτ − 1

2
,(2.5)

and for τ ∈ A2(ρ), we consider

,0(τ ) = δ[ντ, νm1(τ )τ ], ,i (τ ) = δ[ν−m2i (τ )τ, νm2i+1(τ )τ ],(2.6)

i = 1, 2, . . . ,
dτ − 1

2
.

(Recall that dτ is odd, and that mi (τ ) ∈ Z+, for τ ∈ A(ρ).)
For τ ∈ B(ρ), define the following sequence of essentially square-integrable

representations (of appropriate GL∗(F)).

,i (τ ) = δ[ν−m2i−1(τ )τ, νm2i (τ )τ ], i = 1, 2, . . . ,
dτ
2

,(2.7)
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(note that here dτ is even). Similarly, for τ ∈ C(ρ), if dτ is odd, define the sequence

,0(τ ) = δ
[
ν1/2τ, νm1(τ )τ

]
, ,i (τ ) = δ

[
ν−m2i (τ )τ, νm2i+1(τ )τ

]
,(2.8)

i = 1, 2, . . . ,
dτ − 1

2
,

and finally, for τ ∈ C(ρ), if dτ is even, define

,i (τ ) = δ[ν−m2i−1(τ )τ, νm2i (τ )τ ], i = 1, 2, . . . ,
dτ
2

.(2.9)

Finally, denote

Jτ =






{
1, 2, . . . , dτ−1

2

}
, in case (2.5){

0, 1, 2, . . . , dτ−1
2

}
, in cases (2.6), (2.8){

1, 2, . . . , dτ
2

}
, in cases (2.7), (2.9).

Now, let σρ be the unique generic constituent (actually, it is a subrepresentation) of
( ×
τ∈P(ρ)\A0(ρ)

×
j∈Jτ
, j (τ )

)
! σ (0)

ρ .(2.10)

Note that σρ is indeed on SO2n+1(F). By [Td] and [M2, Thm. 2.1, Prop. 2.1], σρ is
square-integrable. We will review and recall the square integrability of σρ in detail
after we show formula (2.2) and (2.3) hold for the pair (σρ, ρ).

We first show that

γ (σρ × π, s,ψ) = γ (ρ × π, s,ψ)(2.11)

for all irreducible, generic representations π of GLk(F) with all k ∈ Z>0. By the
multiplicativity property of gamma factors (Theorem 1.4), it is enough to show
(2.11) for supercuspidal π . Since σρ is a constituent of (2.10), we have

γ (σρ × π, s,ψ)(2.12)

=
[

∏

τ∈P(ρ)\A0(ρ)

∏

j∈Jτ

γ (, j (τ ) × π, s,ψ)γ (,̂ j (τ ) × π, s,ψ)

]

× γ
(
σ (0)
ρ × π, s,ψ

)

=
[

∏

τ∈P(ρ)\A0(ρ)

∏

j∈Jτ

γ (, j (τ ) × π, s,ψ)γ (,̂ j (τ ) × π, s,ψ)

]

×
∏

τ∈A(ρ)

γ (τ × π, s,ψ).

Here we used Theorem 1.1 and the fact that .(σ (0)
ρ ) = ×

τ∈A(ρ)
τ.
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We split the product (2.12) into the following five terms

(I) :
∏

τ∈A0(ρ)
γ (τ × π, s,ψ)

(II)i :
∏

τ∈Ai (ρ)
γ (τ × π, s,ψ)

∏
j∈Jτ
γ (, j (τ ) × π, s,ψ)γ (,̂ j (τ ) × π, s,ψ), i = 1, 2

(III)B :
∏

τ∈B(ρ)

∏
j∈Jτ
γ (, j (τ ) × π, s,ψ)γ (,̂ j (τ ) × π, s,ψ)

(III)C :
∏

τ∈C(ρ)

∏
j∈Jτ
γ (, j (τ ) × π, s,ψ)γ (,̂ j (τ ) × π, s,ψ).

Now we consider γ (ρ × π, s,ψ). By our assumption on ρ, formula (2.4) and
the multiplicativity of gamma factors, we have

γ (ρ × π, s,ψ) =
r∏

i=1

γ (,(τi , mi ) × π, s,ψ)(2.13)

=
∏

τ∈P(ρ)

dτ∏

i=1

γ (,(τ, mi (τ )) × π, s,ψ).

We have to show that the product in (2.13) consists exactly of the factors which
appear in the five products above. Note that each term in the product (I) appears in
(2.13) since for τ ∈ A0(ρ), we have dτ = 1 and m1(τ ) = 0.

Next, we have to consider a product formula for gamma factors related to the
induced representation

, j (τ ) × ,̂ j (τ ).

The use of the × here may be confused with the Rankin product in the twisted
gamma factor. To distinguish these, we use

[, j (τ ) × ,̂ j (τ )]

to indicate the induced representation in any formula here. Then we have

γ ([, j (τ ) × ,̂ j (τ )] × π, s,ψ) = γ (, j (τ ) × π, s,ψ)γ (,̂ j (τ ) × π, s,ψ)

for j ≥ 1. There are two cases. In the first case the representation, j (τ ) appears in
(2.5), (2.6), and (2.8). In this case we have

, j (τ ) × ,̂ j (τ ) = δ
[
ν−m2 j (τ )τ, νm2 j+1(τ )τ

]
× δ
[
ν−m2 j+1(τ )τ, νm2 j (τ )τ

]
.

By [Z], the unique generic constituent of this representation is

δ
[
ν−m2 j (τ )τ, νm2 j (τ )τ

]
× δ
[
ν−m2 j+1(τ )τ, νm2 j+1(τ )τ

]
(2.14)

= ,(τ, m2 j (τ )) ×,(τ, m2 j+1(τ )).
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By multiplicativity of gamma factors, we get

γ ([, j (τ ) × ,̂ j (τ )] × π, s,ψ) = γ (,(τ, m2 j (τ )) × π, s,ψ)(2.15)

× γ (,(τ, m2 j+1(τ )) × π, s,ψ).

In the second case the representation , j (τ ) appears in (2.7), (2.9). In this case we
similarly get

γ ([, j (τ ) × ,̂ j (τ )] × π, s,ψ) = γ (,(τ, m2 j−1(τ )) × π, s,ψ)(2.16)

× γ (,(τ, m2 j (τ )) × π, s,ψ).

We conclude from (2.15) that
∏

τ∈A1(ρ)

γ (τ × π, s,ψ)
∏

j∈Jτ

γ (, j (τ ) × π, s,ψ)γ (,̂ j (τ ) × π, s,ψ)(2.17)

=
∏

τ∈A1(ρ)

γ (τ × π, s,ψ)
dτ∏

k=2

γ (,(τ, mk(τ )) × π, s,ψ)

=
∏

τ∈A1(ρ)

dτ∏

k=1

γ (,(τ, mk(τ )) × π, s,ψ).

This shows that the product of type (II)1 appears in (2.13). Similarly, using (2.16),
we find that the product of type (III)B appears in (2.13), and also the following part
of (III)C appears in (2.13)

∏

τ∈C(ρ)
dτ even

∏

j∈Jτ

γ (, j (τ ) × π, s,ψ)γ (,̂ j (τ ) × π, s,ψ)(2.18)

=
∏

τ∈C(ρ)
dτ even

dτ∏

i=1

γ (,(τ, mi (τ )) × π, s,ψ).

The term (II)2 is treated as in (2.17), except that we still have to consider that j = 0
and τ ∈ A2(ρ) in (2.6). In this case, we have

,0(τ ) × ,̂0(τ ) × τ = δ[ντ, νm1(τ )τ ] × δ[ν−m1(τ )τ, ν−1τ ] × τ.

By [Z], the unique generic constituent of this representation is

δ[ν−m1(τ )τ, νm1(τ )τ ] = ,(τ, m1(τ )).

Hence we get

γ (τ × π, s,ψ)γ (,0(τ ) × π, s,ψ)γ (,̂0(τ ) × π, s,ψ)(2.19)

= γ (,(τ, m1(τ )) × π, s,ψ).
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Using (2.19) and (2.15) for j ≥ 1, we get
∏

τ∈A2(ρ)

γ (τ × π, s,ψ)
∏

j∈Jτ

γ (, j (τ ) × π, s,ψ)γ (,̂ j (τ ) × π, s,ψ)(2.20)

=
∏

τ∈A2(ρ)

γ (,(τ, m1(τ )) × π, s,ψ)
dτ∏

i=2

γ (,(τ, mi (τ )) × π, s,ψ)

=
∏

τ∈A2(ρ)

dτ∏

i=1

γ (,(τ, mi (τ ) × π, s,ψ).

Thus, the term (II)2 appears in (2.13). Finally, the term of type (III)C, with dτ odd
is treated similarly to the last case and to (2.20). We only have to consider j = 0
and τ ∈ C(ρ) in (2.8). In this case we have

,0(τ ) × ,̂0(τ ) = δ
[
ν1/2τ, νm1(τ )τ

]
× δ
[
ν−m1(τ )τ, ν−1/2τ

]
.

By [Z], the unique generic constituent of this representation is

δ
[
ν−m1(τ )τ, νm1(τ )τ

]
= ,(τ, m1(τ )).

We get, as in (2.18) and (2.20)
∏

τ∈C(ρ)
dτ odd

∏

j∈Jτ

γ (, j (τ ) × π, s,ψ)γ (,̂ j (τ ) × π, s,ψ)(2.21)

=
∏

τ∈C(ρ)
dτ odd

dτ∏

i=1

γ (,(τ, mi (τ )) × π, s,ψ).

Multiplying (2.18) and (2.21), we see that (III)C appears in (2.13). Since

P(ρ) = A(ρ) ∪ B(ρ) ∪ C(ρ),

the identity in (2.11) is now clear.
Note that the generic constituent σρ of (2.10) is uniquely determined by (2.11).

This follows from Theorem 1.3. From (2.11), we also conclude that

L(σρ × π, s) = L(ρ × π, s)(2.22)

ε(σρ × π, s,ψ) = ε(ρ × π, s,ψ),(2.23)

that is, (2.2) and (2.3) hold for the pair (σρ, ρ). Indeed, we may assume that π is
also unitary. Rewrite (2.11) as

ε(σρ × π, s,ψ)
L(σρ × π̂ , 1 − s)

L(σρ × π, s)
= ε(ρ × π, s,ψ)

L(ρ × π̂ , 1 − s)
L(ρ × π, s)

.(2.24)

Note thatρ is self-dual. By [C.S., p. 573], sinceσρ andπ are (in particular) tempered,
L(σρ × π, z) and L(σρ × π̂ , z) are holomorphic, for Re(z) > 0. This shows that, as
polynomials in q−s , L(σρ × π, s)−1 and L(σρ × π̂ , 1 − s)−1 are relatively prime.
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Similarly, (since ρ is tempered) L(ρ × π, s)−1 and L(ρ × π̂ , 1 − s)−1 are relatively
prime. Since the ε-factors are of the form aqbs , we get (2.22) and (2.23).

We turn now to show that the generic constituent σρ of (2.10) is square-
integrable. To this end we recall from [Td], [M2, Sec. 2] the structure of generic
square-integrable representations of SO2n+1(F).

Let P ′ be a finite set of irreducible, supercuspidal, self-dual representations τ
of GLkτ (F). Assume that for each τ ∈ P ′, there is a sequence of segments

Di (τ ) =
[
ν−ai (τ )τ, νbi (τ )τ

]
, i = 1, 2, . . . , eτ ,(2.25)

satisfying

2ai (τ ) ∈ Z and 2bi (τ ) ∈ Z+,(2.26)

and

a1(τ ) < b1(τ ) < a2(τ ) < b2(τ ) < a3(τ ) < · · · < beτ−1(τ ) < aeτ (τ ) < beτ (τ ).
(2.27)

Next, letσ (0) be an irreducible, supercuspidal, generic representation of SO2n′+1(F).
Assume that

(C1) if L(σ (0) × τ, s) has a pole at s = 0, then −1 ≤ ai (τ ) ∈ Z\{0},(2.28)

for 1 ≤ i ≤ eτ ;

(C0) if L(τ,02, s) has a pole at s = 0, but L(σ (0) × τ, s) is(2.29)

holomorphic at s = 0, then ai (τ ) ∈ Z≥0, for 1 ≤ i ≤ eτ ;
(
C 1

2

)
if L(τ, sym2, s) has a pole at s = 0, then ai (τ ) ∈ − 1

2 + Z≥0,(2.30)

for 1 ≤ i ≤ eτ .

Then the unique generic constituent of

(×
τ∈P ′

eτ×
i=1

δ(Di (τ ))
)

! σ (0)(2.31)

is square-integrable [Td]. Assume that the representation (2.31) is on SO2n+1(F).
Then every discrete series generic representation of SO2n+1(F) is obtained in
this way for a unique set consisting of a finite set P ′, segments {Di (τ ) | 1 ≤ i ≤
eτ ; τ ∈ P ′} and a unique generic supercuspidal representation σ 0 [M2], satisfying
conditions (2.26)–(2.30). !

Remark 2.2. If L(σ (0) × τ, s) has a pole at s = 0 (case C1), then L(τ,02, s)
has a pole at s = 0. See [Jng.S., Lemma 3.1]. Thus (2.28) and (2.29) cover all
possible cases, where L(τ,02, s) has a pole at s = 0.
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It is now easy to see that the sequence of segments in (2.5)–(2.9), together with
σ 0
ρ satisfy (2.26)–(2.30) and hence σρ is square-integrable.

Conversely, we have to show that any irreducible square-integrable generic
representation σ of SO2n+1(F) has a local Langlands functorial lift .(σ ), which is an
irreducible admissible representation of GL2n(F) satisfying the conditions stated in
Theorem 2.1. We start with an irreducible square-integrable, generic representation
σ on SO2n+1(F). We may assume that σ is realized as the unique generic constituent
of the induced representation defined by (2.31) for a unique set consisting of a finite
set P ′, segments {Di (τ ) | 1 ≤ i ≤ eτ ; τ ∈ P ′} and a unique generic supercuspidal
representation σ 0, satisfying conditions (2.26)–(2.30).

By Theorem 1.1, there exists a unique finite set A of irreducible, supercuspidal,
self-dual representations τ of GLkτ (F) (kτ must be even), such that L(τ,02, s) has
a pole at s = 0, and

.(σ (0)) = ×
τ∈A
τ.

We expect the lift .(σ ) to be the generic constituent of

(×
τ∈P ′

eτ×
i=1

[δ(Di (τ )) × δ(D̂i (τ ))]
)

× .(σ (0)).(2.32)

Note that (2.32) is reducible in general, due to segment linkages. We want to write
the generic constituent of (2.32) in form according to the classification theory in
[Z]. We define the following sets

A0 = A $ P ′

A1 = {τ ∈ A ∩ P ′ | a1(τ ) ∈ Z>0}(2.33)

A2 = {τ ∈ A ∩ P ′ | a1(τ ) = −1}.

It follows from Theorem 1.1 that A is exactly the set of all irreducible supercuspidal
representations τ of GLkτ (F), such that L(σ (0) × τ, s) has a pole at s = 0, and hence,
by (2.28), we have

A = A0 ∪ A1 ∪ A2.(2.34)

Next, we define

B = {τ ∈ P ′ $ A | L(τ,02, s) has a pole at s = 0}(2.35)

and

C = {τ ∈ P ′ | L(τ, sym2, s) has a pole at s = 0}.(2.36)

Clearly, we have

P ′ = A1 ∪ A2 ∪ B ∪ C.
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In order to figure out the unique generic constituent of (2.32), we have to
consider the procedure of induction in stages. With this procedure, we can separate
the linkages among the segments and determine the reducibility of each step.

First we consider

×
τ∈A1

eτ×
i=1

[δ(Di (τ )) × δ(D̂i (τ ))],

which is a “piece” of (2.32) and is called A1-piece for convenience. For τ ∈ A1,
since a1(τ ) ∈ Z>0, we have from (2.27)

Di (τ ) ∩ D̂i (τ ) =
[
ν−ai (τ )τ, νbi (τ )τ

]
∩
[
ν−bi (τ )τ, νai (τ )τ

]
=
[
ν−ai (τ )τ, νai (τ )τ

]
(2.37)

and

Di (τ ) ∪ D̂i (τ ) =
[
ν−bi (τ )τ, νbi (τ )τ

]
,

with i = 1, . . . , eτ . By [Z], the unique generic constituent of δ(Di (τ )) × δ(D̂i (τ ))
is

δ
[
ν−ai (τ )τ, νai (τ )τ

]
× δ
[
ν−bi (τ )τ, νbi (τ )τ

]
= ,(τ, ai (τ )) ×,(τ, bi (τ )).(2.38)

Then the A1-piece has

×
τ∈A1

,(τ, 0) ×
eτ×

i=1
[,(τ, ai (τ )) ×,(τ, bi (τ ))](2.39)

as the unique generic constituent. Put, for τ ∈ A1, dτ = 2eτ + 1 and

m1(τ ) = 0, m2i (τ ) = ai (τ ), m2i+1(τ ) = bi (τ ), i = 1, 2, . . . , eτ .(2.40)

Next, we consider the A2-piece of (2.32)

×
τ∈A2

eτ×
i=1

[δ(Di (τ )) × δ(D̂i (τ ))].

For τ ∈ A2, we repeat (2.37) and (2.38) for i = 2, . . . , eτ . For i = 1, since a1(τ ) =
−1, the set D1(τ ) ∩ D̂1(τ ) is empty. By [Z], the unique generic constituent of
δ(D1(τ )) × δ(D̂1(τ )) × τ is,(τ, b1(τ )). Hence the A2-piece has the following term
as the unique generic constituent

×
τ∈A2

,(τ, b1(τ )) ×
eτ×

i=2
[,(τ, ai (τ )) ×,(τ, bi (τ ))].(2.41)

Put, for τ ∈ A2, dτ = 2eτ − 1, and

m1(τ ) = b1(τ ), m2i−2(τ ) = ai (τ ), m2i−1(τ ) = bi (τ ), i = 2, 3, . . . , eτ .(2.42)
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By repeating the “operation” in (2.37) and (2.38), we know that the B-piece

×
τ∈B

eτ×
i=1

[δ(Di (τ )) × δ(D̂i (τ ))]

has the unique generic constituent

×
τ∈B

eτ×
i=1

[,(τ, ai (τ )) ×,(τ, bi (τ ))],(2.43)

and for τ ∈ B, we put dτ = 2eτ and

m2i−1(τ ) = ai (τ ), m2i (τ ) = bi (τ ), i = 1, 2, . . . , eτ .(2.44)

In the C-piece of (2.32), we can get the unique generic constituent in the same
way, but we have two cases to be considered. First we know by repeating (2.37)
and (2.38) that

×
a1(τ )≥ 1

2

τ∈C

eτ×
i=1

[δ(Di (τ )) × δ(D̂i (τ ))]

has a unique generic constituent which is

×
a1(τ )≥ 1

2

τ∈C

eτ×
i=1

[,(τ, ai (τ )) ×,(τ, bi (τ ))].(2.45)

In this case, for such τ , we put dτ = 2eτ , and

m2i−1(τ ) = ai (τ ), m2i (τ ) = bi (τ ), i = 1, 2, . . . , eτ .(2.46)

Next we know by the same reason that

×
a1(τ )=− 1

2

τ∈C

eτ×
i=1

[δ(Di (τ )) × δ(D̂i (τ ))]

has a unique generic constituent which is

×
a1(τ )=− 1

2

τ∈C

,(τ, b1(τ )) ×
eτ×

i=2
[,(τ, ai (τ )) ×,(τ, bi (τ ))].(2.47)

In this case, for such τ , we put dτ = 2eτ − 1, and

m1(τ ) = b1(τ ), m2i−2(τ ) = ai (τ ), m2i−1(τ ) = bi (τ ), i = 2, 3, . . . , eτ .(2.48)
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Finally, for τ ∈ A0, we put

dτ = 1 and m1(τ ) = 0.(2.49)

Note that {mi (τ )}dτ
i=1 is always strictly increasing, i.e.,

[
ν−mi (τ )τ, νmi (τ )τ

]
%
[
ν−mi+1(τ )τ, νmi+1(τ )τ

]
(2.50)

for 1 ≤ i ≤ dτ − 1. It is clear that the unique generic constituent of (2.32) is

.(σ ) = ×
τ∈P ′∪A0

dτ×
i=1
,(τ, mi (τ )).(2.51)

This is the product of ×
τ∈A0

τ and the products in (2.39), (2.41), (2.43), (2.45) and

(2.47). From (2.51), it is clear that .(σ ) is of the form (2.1) and satisfies the re-
quirements of Theorem 2.1. Looking at (2.40), (2.42), (2.44), (2.46), (2.48), (2.49)
and comparing to (2.5)–(2.9), it is clear that, for ρ = .(σ ), given by (2.51), and
P(ρ) = P ′ ∪ A0,

{, j (τ ) | τ ∈ P(ρ)\A0(ρ), j ∈ Jτ } = {Di (τ ) | τ ∈ P ′, 1 ≤ i ≤ eτ }.

We can use the first part of the proof to conclude (2.2) and (2.3). This completes
the proof of Theorem 2.1.

The following is the generalization of Theorem 1.2 to $(dg)(SO2n+1), the set
of equivalence classes of irreducible discrete series generic representations of
SO2n+1(F), which provides the local Langlands parameters for the members in
$(dg)(SO2n+1). Let !(d)(SO2n+1) be the subset of !(SO2n+1) consisting of all the
local Langlands parameters of type

ϕ = ⊕iφi ⊗ Smi +1

where φi ’s are irreducible self-dual representations of WF of dimension kφi and
Smi +1’s are irreducible representations of SL2(C) of dimension mi + 1, satisfying
the conditions that (a) the tensor products φi ⊗ Smi +1 are irreducible and symplec-
tic, (b) φi ⊗ Smi +1 and φ j ⊗ Sm j +1 are not equivalent if i )= j , and (c) the image
ϕ(WF × SL2(C)) is not contained in any proper Levi subgroup of Sp2n(C). The
local Langlands parameters in !(d)(SO2n+1) are called discrete.

Theorem 2.2. There is a bijection y (which extends the one in Theorem 1.2)
between the set !(d)(SO2n+1) of discrete parameters ϕ and the set $(dg)(SO2n+1).
The bijection y preserves local factors as in (1.4), (1.5), i.e.,

L(ϕ ⊗ ϕ′, s) = L(y(ϕ) × r (ϕ′)s)(2.52)

ε(ϕ ⊗ ϕ′, s,ψ) = ε(y(ϕ) × r (ϕ′), s,ψ)(2.53)
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for all irreducible, admissible representations ϕ′ of WF of degree k with k ∈ Z>0,
where r is the reciprocity map for GL as before.

Proof. The proof is outlined in [M1, p. 714] assuming Conjectures 3.1 and 3.2
in [M1]. With Theorem 1.2 and Theorem 6.3 in [Jng.S.], we write down the proof
in detail without assumption. Let ϕ : WF × SL2(C) −→ Sp2n(C) be a parameter
in !(d)(SO2n+1). We write it as a multiplicity one decomposition into irreducible
summands

ϕ =
r⊕

i=1

φi ⊗ S2mi +1, 2mi ∈ Z≥0.(2.54)

Since the tensor product φi ⊗ S2m j +1 is symplectic for 1 ≤ i ≤ r , one knows that
φi is self-dual, and it is symplectic (orthogonal, resp.) if and only if S2mi +1 is
orthogonal (symplectic, resp.). Thus, for 1 ≤ i ≤ r ,

if L(02(φi ), s) has a pole at s = 0, then mi ∈ Z+(2.55)

if L(sym2(φi ), s) has a pole at s = 0, then mi ∈ 1
2

+ Z+.(2.56)

Let τi = r (φi ) be the irreducible, self-dual, supercuspidal representation of
GLkφi

(F), corresponding to φi . By Henniart’s result [Jng.S., Thm. 6.3],

L(02(φi ), s) has a pole at s = 0 ⇐⇒ L(τi ,0
2, s) has a pole at s = 0

(2.57)

and

L(sym2(φi ), s) has a pole at s = 0 ⇐⇒ L(τi , sym2, s) has a pole at s = 0.

(2.58)

We have

r (φi ⊗ S2mi +1) = ,(r (φi ), mi ) = ,(τi , mi ); r (ϕ) =
r×

i=1
,(τi , mi ).

Now r (ϕ) has the form (2.1), and the conditions (2.55), (2.56), translated through
(2.57), (2.58) are exactly the conditions (1), (2) of Theorem 2.1. Thus,

σ = .−1(r (ϕ))

is a discrete series generic representation of SO2n+1(F), such that

L(σ × r (ϕ′), s) = L(r (ϕ) × r (ϕ′), s) = L(ϕ ⊗ ϕ′, s)

ε(σ × r (ϕ′), s,ψ) = ε(r (ϕ) × r (ϕ′), s,ψ) = ε(ϕ ⊗ ϕ′, s,ψ)

for all irreducible admissible representations ϕ′ of WF of degree k with k ∈ Z>0.
Finally, we define y(ϕ) = σ .
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Conversely, letσ be a discrete series, generic representation of SO2n+1(F). Con-
sider, by Theorem 2.1, the corresponding tempered representation .(σ ) of GL2n(F).
We know that .(σ ) has the form (2.1) so that the requirements (1), (2) of Theorem
2.1 are satisfied. Let φi = r−1(τi ) for 1 ≤ i ≤ r , and define ϕ by (2.54). By (2.57),
(2.58), it is clear that ϕ is as required by Theorem 2.2, and that y(ϕ) = σ . This
proves Theorem 2.2. !

3. Elliptic tempered generic representations. An irreducible admissible
representationσ of SO2n+1(F) is called elliptic if the distribution character7σ is not
zero on the set of elliptic regular elements of SO2n+1(F). Elliptic representations of
p-adic classical groups (in particular, of SO2n+1(F)) have been extensively studied
by Herb in [Hb]. For instance, all discrete series representations of SO2n+1(F) are
elliptic. In the classification theory (a la Bernstein-Zelevinsky) of p-adic classical
groups, elliptic representations play an important role as building blocks in the
induction procedure from supercuspidal representations to general representations.
This type of classification for generic representations of Sp2n(F) and SO2n+1(F)
has been carried out in [M2]. In this section, we study the explicit local Langlands
functorial lift from the set$(etg)(SO2n+1) of equivalence classes of elliptic tempered
generic representations of SO2n+1(F) to GL2n(F).

We recall the construction of elliptic tempered generic representations of
SO2n+1(F) from [Hb] and [M2].

Let σ (2) be a discrete series generic representation of SO2n′′+1(F). The image
of the local Langlands functorial lift of σ (2) is given by Theorem 2.1, i.e.,

.(σ (2)) = ρ(2)

which is an irreducible tempered representation of GL2n′′(F). Write

ρ(2) =
r×

i=1
,(τi , mi ) = ×

τ∈P(ρ(2))

dτ×
j=1
,(τ, m j (τ ))(3.1)

as in (2.1) and as in the proof of Theorem 2.1. Put

P ′(ρ(2)) = P(ρ(2)) $ A0(ρ(2)).

Let β1, . . . ,βc (with possible repetitions) be irreducible, self-dual, supercusp-
idal representations of GLkβ1

(F), . . . , GLkβc
(F), respectively. Consider a sequence

of pairwise inequivalent square-integrable representations

{,(βi , ei )}c
i=1, 2ei ∈ Z≥0

of GLkβi (2ei +1)(F) (i = 1, . . . , c), satisfying the following properties: for 1 ≤ i ≤ c,

,(βi , ei ) )∈ {,(τ, m j (τ )) | 1 ≤ j ≤ dτ , τ ∈ P ′(ρ(2))}(3.2)
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and one of the following conditions holds

* ,(βi , ei ) ∈ A2(ρ(2)), which implies that ei = 0, or(3.3)

* L(σ (0) × βi , s) has a pole at s = 0, and ei ≥ 1, or(3.4)

* L(βi ,0
2, s) has a pole at s = 0, L(σ (0) × βi , s) is holomorphic(3.5)

at s = 0, and ei ∈ Z≥0, or

* L(βi , sym2, s) has a pole at s = 0, and ei ∈ 1
2 + Z≥0.(3.6)

Recall that σ (0) is the irreducible, supercuspidal, generic representation of SO2n′+1

(F), such that .(σ (0)) = ×
τ∈A(ρ(2))

τ as in (2.32).

Note that conditions (3.2), (3.3)–(3.6) may be replaced by conditions (3.2)′,
(3.3)–(3.6), where condition (3.2)′ is given by

(3.2′)

,(βi , ei ) )∈ {,(τ, m j (τ )) | 1 ≤ j ≤ dτ , τ ∈ P(ρ(2))} = {,(τi , mi ) | 1 ≤ i ≤ r}

The unique generic constituent σ of

,(β1, e1) × · · · ×,(βc, ec) ! σ (2)(3.7)

is a tempered elliptic representation of SO2n+1(F). This is the way that all elliptic
tempered generic representations of SO2n+1(F) are obtained and the induction data
{,(βi , ei )}c

i=1 and σ (2) satisfying conditions (3.2)–(3.6) are uniquely determined
(n = n′′ +

∑c
i=1(2ei + 1)kβi ). Note also that if ei ∈ 1

2 + Z≥0, then ,(βi , ei ) is a
representation of GL2e′

i +2(F), where ei = 1
2 + e′

i and e′
i ∈ Z≥0. This characteriza-

tion of elliptic tempered generic representations of SO2n+1(F) is essentially due to
[Hb] and can be found in [M2, §3] for relevant discussion.

Theorem 3.1. The bijection . of Theorem 2.1 can be extended to a bijection
(which is still denoted by .) between the set$(etg)(SO2n+1) and the set of equivalence
classes of tempered representations of GL2n(F) of the following form

,(λ1, h1) ×,(λ2, h2) × · · · ×,(λ f , h f )(3.8)

where each representation,(λi , hi ) in (3.8) is self-dual, and appears in (3.8) either
once or twice, and satisfies the following condition, for each i ,

(1) if L(λi , sym2, s) has a pole at s = 0, then hi ∈ 1
2 + Z≥0

(2) if L(λi ,0
2, s) has a pole at s = 0, then hi ∈ Z≥0.

Moreover, we have

L(σ × π, s) = L(.(σ ) × π, s),(3.9)

ε(σ × π, s,ψ) = ε(.(σ ) × π, s,ψ),(3.10)
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for any σ in $(etg)(SO2n+1) and any irreducible, generic representation π of
GLk(F) with all k ∈ Z>0.

The following remark is analogous to the one right after Theorem 2.1.

Remark 3.1. An equivalent description of the image of . in Theorem 3.1 is
the following. An irreducible representation ρ of GL2n(F) lies in the image of .
(in Theorem 3.1) if and only if ρ is tempered and satisfies the following prop-
erties. Let τ be an irreducible, unitary, supercuspidal representation of GLk(F),
k = 1, 2, . . . , 2n. Then

(1) if τ )∼= τ̂ , then L(ρ × τ, s) has no poles on the real line,
(2) if τ ∼= τ̂ and L(ρ × τ, s) is not holomorphic, then

(a) if L(τ, sym2, s) has a pole at s = 0, then L(ρ × τ, s) has poles, of order
at most two, whose real parts lie inside − 1

2 + Z≤0.

(b) if L(τ,02, s) has a pole at s = 0, then L(ρ × τ, s) has poles, of order
at most two, whose real parts lie inside Z≤0.

Proof of Theorem 3.1. Let ρ be a representation of GL2n(F) of the form (3.8),
satisfying the conditions of Theorem 3.1. We shall construct an irreducible elliptic
tempered generic representation σρ of SO2n+1(F) such that (3.9) and (3.10) hold for
the pair (σρ, ρ). Let,(τ1, m1), . . . ,,(τr , mr ) be the factors, which appear exactly
once in (3.8), and let,(β1, e1), . . . ,,(βc, ec) be the different factors, which appear
twice in (3.8). Put

ρ(2) = ,(τ1, m1) × · · · ×,(τr , mr ).(3.11)

It is a representation of GL2n′′(F) belonging to the image of the local Langlands
functorial lift as given in Theorem 2.1. Hence there exists a unique (up to equiv-
alence) irreducible discrete series generic representation σ (2) of SO2n′′+1(F), such
that .(σ (2)) = ρ(2). Let σρ be the unique generic constituent of

,(β1, e1) × · · · ×,(βc, ec) ! σ (2).

In order to show that σρ is tempered and elliptic, we have to verify the conditions
(3.2)′, (3.3)–(3.6).

If ,(βi , ei ) ∈ {,(τi , mi ) | 1 ≤ i ≤ r}, then ,(βi , ei ) appears three times in
(3.8), which is impossible. This verifies (3.2)′. Next, if L(βi , sym2, s) has a pole at
s = 0, then by assumption, ei ∈ 1

2 + Z≥0, which is (3.6).
Let σ (0) be the irreducible, generic, supercuspidal representation of SO2n′+1(F)

associated to the square-integrable representation σ (2) of SO2n′′+1(F) as in formula
(2.31). In this case we can express the image of σ (0) under the lift map . as .(σ (0)) =
×

τ∈A(ρ(2))
τ (Theorem 1.1). If L(βi ,0

2, s) has a pole at s = 0, then, by assumption,
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ei ∈ Z≥0. If L(σ (0) × βi , s) is holomorphic, then this is (3.5), so assume that
L(σ (0) × βi , s) has a pole at s = 0. This means that βi ∈ A(ρ(2)). If ei ≥ 1, then
this is (3.4).

Assume that ei = 0. Recall that A(ρ(2)) = A0(ρ(2)) ∪ A1(ρ(2)) ∪ A2(ρ(2)). If
βi = ,(βi , 0) ∈ A0(ρ(2)) ∪ A1(ρ(2)), then,(βi , 0) occurs three times, which is im-
possible by the assumption. Thus, in this case, we must have ,(βi , ei ) ∈ A2(ρ(2)),
which is (3.3). This proves that the given generic constituent σρ of (3.11) is elliptic
and tempered. Furthermore, we have, for an irreducible, supercuspidal representa-
tion π of GLk(F), the compatibility of the twisted gamma factors:

γ (σρ × π, s,ψ) =
[

c∏

i=1

γ (,(βi , ei ) × π, s,ψ)2

]

γ (σ (2) × π, s,ψ)

=
[

c∏

i=1

γ (,(βi , ei ) × π, s,ψ)2

]
r∏

i=1

γ (,(τi , mi ) × π, s,ψ)

=
f∏

i=1

γ (,(λi , hi ) × π, s,ψ)

= γ (ρ × π, s,ψ).

We used the multiplicativity property of gamma factors (Theorem 1.4) and Theo-
rem 2.1. Now we conclude (3.9) and (3.10) (with .(σρ) = ρ), in the same way as
we obtained (2.22) and (2.23), since σρ and ρ are tempered.

Conversely, for any σ in$(etg)(SO2n+1), we write σ as in (3.1)–(3.7), and define

.(σ ) = ,(β1, e1) × · · · ×,(βc, ec) × .(σ (2)) ×,(βc, ec) × · · · ×,(β1, e1).

(3.12)

Put ρ = .(σ ). This is an irreducible, tempered representation of GL2n(F). By (3.2)′,
no factor ,(βi , ei ) appears in

.(σ (2)) = ρ(2) = ,(τ1, m1) × · · · ×,(τr , mr ).

Thus, each,(βi , ei ) appears in (3.12) twice, and each,(τi , mi ) appears once. The
conditions (1), (2) of Theorem 3.1 are satisfied by assumption. By the first part of
this proof we get that σ = σρ and conditions (3.9) and (3.10) are satisfied. This
proves Theorem 3.1. !

Now it is easy to write the local Langlands parameter for each member in
$(etg)(SO2n+1). For any σ in$(etg)(SO2n+1), the lift .(σ ) is given as in (3.12). The
parameter for σ is

ϕ =
[

c⊕

i=1

φi ⊗ S2ei +1

]

⊕ ϕσ (2) ⊕
[

c⊕

i=1

φi ⊗ S2ei +1

]

,
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with the image ϕ(WF × SL2(C)) in a proper Levi subgroup of Sp2n(C), where ϕσ (2)

is the parameter for the irreducible square-integrable generic representation σ (2)

occurring in σ .

4. Tempered generic representations. From [M2, §4], we know that tem-
pered generic representations of SO2n+1(F) are either elliptic or induced from
elliptic tempered generic representations of Levi subgroups. We continue with
Muic’s description of tempered generic representations of SO2n+1(F) to get an
explicit description of the image of the local Langlands functorial lift to GL2n(F)
from the set $(tg)(SO2n+1) of equivalence classes of irreducible tempered generic
representations of SO2n+1(F).

Let σ (et) be an elliptic, tempered, generic representation of SO2̃n+1(F). Put
ρ(et) = .(σ (et)), which is a tempered representation of GL2̃n(F) as given in Theorem
3.1. We keep the notations of (3.1)–(3.7) and write σ (et) as the unique generic
constituent of (3.7), and then ρ(et) = .(σ (et)) can be expressed as in (3.12).

Let η1, . . . , ηd (with possible repetitions) be irreducible unitary, supercuspidal
representations of GLkη1

(F), . . . , GLkηd
(F), respectively. We construct from the

ηi ’s a sequence of irreducible square-integrable representations {,(ηi , pi )}d
i=1 of

GLkηi (2pi +1)(F) with 2pi ∈ Z≥0 and i = 1, . . . , d, satisfying one of the following
properties, for 1 ≤ i ≤ d

* ,(ηi , pi ) ∈ {,(β j , e j ) | 1 ≤ j ≤ c}, or(4.1)

* ,(ηi , pi ) ∈ {,(τ j , m j ) | 1 ≤ j ≤ r}, or(4.2)

* ηi )∼= η̂i , or(4.3)

* L(ηi ,0
2, s) has a pole at s = 0, and pi ∈ 1

2 + Z≥0, or(4.4)

* L(ηi , sym2, s) has a pole at s = 0, and pi ∈ Z≥0.(4.5)

Then the induced representation

σ = ,(η1, p1) × · · · ×,(ηd, pd) ! σ (et)(4.6)

is an irreducible, tempered, generic representation of SO2n+1(F). This is the way
all tempered, generic representations of SO2n+1(F) are obtained, and the induction
data {,(ηi , pi )}d

i=1 and σ (et) are uniquely determined (n = ñ +
∑d

i=1(2pi + 1)kηi ),
up to replacements

,(ηi , pi ) ↔ ,(η̂i , pi )

in cases (4.3).

Theorem 4.1. The bijection . of Theorem 3.1 extends to a bijection (which is
still denoted by .) between the set$(tg)(SO2n+1) and the set of equivalence classes
of tempered representations of GL2n(F) of the following form

,(λ1, h1) ×,(λ2, h2) × · · · ×,(λ f , h f )(4.7)
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where λ1, . . . , λ f are unitary, supercuspidal, 2hi ∈ Z≥0, such that for 1 ≤ i ≤ f
(1) if λi )∼= λ̂i , then ,(λi , hi ) occurs in (4.7) as many times as ,(̂λi , hi ) does,
(2) if L(λi ,0

2, s) has a pole at s = 0, and hi ∈ 1
2 + Z≥0, then,(λi , hi ) occurs

an even number of times in (4.7),
(3) if L(λi , sym2, s) has a pole at s = 0, and hi ∈ Z≥0, then ,(λi , hi ) occurs

an even number of times in (4.7).
Moreover, we have

L(σ × π, s) = L(.(σ ) × π, s)(4.8)

ε(σ × π, s,ψ) = ε(.(σ ) × π, s,ψ)(4.9)

for all generic tempered representationsσ of SO2n+1(F) and all irreducible generic
representations π of GLk(F) with all k ∈ Z>0.

Remark 4.1. As in the previous section, we can write an equivalent description
in terms of poles of L-functions. An irreducible representation ρ of GL2n(F) lies
in the image of the lift . defined in Theorem 4.1 if and only if ρ is tempered and
satisfies the following properties:

Let τ be an irreducible, unitary, supercuspidal representation of GLkτ (F), such
that L(ρ × τ, s) has poles. Because there is a real number t , such that L(ρ × νi tτ, s)
has real poles, we may assume that L(ρ × τ, s) has real poles. Note that such a real
pole lies in 1

2Z≤0. Let m ∈ 1
2Z≤0 be one of such poles of L(ρ × τ, s). Then

(1) if τ )∼= τ̂ , then s = m is also a pole of L(ρ × τ̂ , s), with the same multiplicity
as that of s = m for L(ρ × τ, s);

(2) if L(τ,02, s) has a pole at s = 0, and m ∈ − 1
2 + Z≤0, then the order of the

pole at s = m of L(ρ × τ, s) is even; and
(3) if L(τ, sym2, s) has a pole at s = 0, and m ∈ Z≤0, then the order of the

pole at s = m of L(ρ × τ, s) is even.

Proof of Theorem 4.1. Let ρ be a representation of GL2n(F) of the form (4.7)
satisfying conditions (1)–(3) of Theorem 4.1. We define the following sets N , M ,
and R from the “factors” of the induced representation in (4.7):

* N consists of ,(λi , hi )’s with 1 ≤ i ≤ f such that λ̂i )∼= λi ,

* W consists of ,(λi , hi )’s with 1 ≤ i ≤ f such that L(λi ,0
2, s) has a pole

at s = 0 and hi ∈ 1
2 + Z≥0, or L(λ, sym2, s) has a pole at s = 0 and hi ∈ Z≥0, and

* R consists of ,(λi , hi )’s with 1 ≤ i ≤ f such that L(λi ,0
2, s) has a pole

at s = 0 and hi ∈ Z≥0, or L(λi , sym2, s) has a pole at s = 0 and hi ∈ 1
2 + Z≥0.

These sets are taken with multiplicities. Denote by µ′
i the multiplicity of ,(λi , hi )

in (4.7). For example, if ,(λi , hi ) occurs in N , then it must be counted µ′
i times.

By assumption, for ,(λi , hi ) ∈ W , µ′
i = 2µi is even. Let

{,(λi1, hi1 ), . . . ,,(λiu , hiu )}(4.10)
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be the set of all different elements in W . Put

JW (ρ) =
u×

j=1

(
,
(
λi j , hi j

)
× · · · ×,

(
λi j , hi j

))
︸ ︷︷ ︸

µi j times

.(4.11)

Now, by assumption, if,(λi , hi ) ∈ N , then ,̂(λi , hi ) = ,(̂λi , hi ) ∈ N . Write,
in this case: ,̂(λi , hi ) = ,(λî , hî ), and by assumption the multiplicities of,(λi , hi )
and ,(λî , hî ) are equal, i.e., µ′

i = µ′
î
. Let

{,(λz1, hz1 ), ̂,(λz1, hz1 ), . . . ,,(λzv , hzv ), ̂,(λzv , hzv )}(4.12)

be the set of all different elements in N . Put

JN (ρ) =
v×

j=1

(
,
(
λz j , hz j

)
×,
(
λz j , hz j

)
× · · · ×,

(
λz j , hz j

))
︸ ︷︷ ︸

µ′
z j

times

.(4.13)

Let

R1 = {,(λi , hi ) ∈ R | µ′
i = 2µi + 1 is odd}(4.14)

R2 = {,(λi , hi ) ∈ R | µ′
i = 2µi is even}.(4.15)

The sets are taken with multiplicities. Let

{,(τ1, m1), . . . ,,(τr , mr )} := {,(λx1, hx1 ), . . . ,,(λxr , hxr )}(4.16)

be the set of all different elements of R1, and let

{,(β1, e1), . . . ,,(βc, ec)} := {,(λt1, ht1 ), . . . ,,(λtc , htc )}(4.17)

be the set of all different elements of R2. We define

JR1 (ρ) =
r×

j=1

(
,
(
λx j , hx j

)
× · · · ×,

(
λx j hx j

))
︸ ︷︷ ︸

µx j

(4.18)

JR2 (ρ) =
c×

j=1

(
,
(
λt j , ht j

)
× · · · ×,

(
λt j ht j

))
︸ ︷︷ ︸

µt j −1

.(4.19)

For the remaining representations from R1 and R2, we do the following. By as-
sumption, the induced representation

ρ(2) = ,(τ1, m1) × · · · ×,(τr , mr )(4.20)
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is a representation of GL2n′′(F) and satisfies the conditions of Theorem 2.1. Hence
by Theorem 2.1, there is a unique, up to equivalence, irreducible discrete series
generic representation σ (2) of SO2n′′+1(F) such that .(σ (2)) = ρ(2). Similarly, by
assumption,

ρ(et) = ,(β1, e1) × · · · ×,(βc, ec) × ρ(2) ×,(βc, ec) × · · · ×,(β1, e1)(4.21)

is a representation of GL2̃n(F) and satisfies the conditions of Theorem 3.1. Hence,
by Theorem 3.1, there is a unique (up to equivalence) irreducible generic tempered
elliptic representation σ (et) of SO2̃n+1(F), such that .(σ (et)) = ρ(et). Note that σ (et)

can be realized as the unique generic constituent of

,(β1, e1) × · · · ×,(βc, ec) ! σ (2)(4.22)

as in (3.7). Finally we define

σρ := JN (ρ) × JW (ρ) × JR1 (ρ) × JR2 (ρ) ! σ (et),(4.23)

which is a representation of SO2n+1(F). Let,(η1, p1), . . . ,,(ηd, pd) be the list of
all “factors”, with repetitions, which appear in JN (ρ) × JW (ρ) × JR1 (ρ) × JR2 (ρ).
Then we have

σρ = ,(η1, p1) × · · · ×,(ηd, pd) ! σ (et).(4.24)

We now claim that the representation σρ in (4.24) satisfies conditions (4.1)–
(4.5). Indeed, if, for 1 ≤ i ≤ d,,(ηi , pi ) is a factor of JR2 (ρ), then (4.1) is satisfied,
and if ,(ηi , pi ) is a factor of JR1 (ρ), then (4.2) is satisfied. If ,(ηi , pi ) is a factor
of JN (ρ), then (4.3) is satisfied, and if ,(ηi , pi ) is a factor of JW (ρ), then (4.4) or
(4.5) are satisfied. Finally, σρ in (4.24) is of the form (4.6). By the multiplicativity
of gamma factors (Theorem 1.4) and by Theorems 1.1, 2.1, and 3.1, we have, for
an irreducible supercuspidal representation π of GLk(F),

γ (σρ × π, s,ψ) =
[

d∏

i=1

γ (,(ηi , pi ) × π, s,ψ) · γ ( ̂,(ηi , pi ) × π, s,ψ)

]

× γ (σ (et) × π, s,ψ)

=
[

d∏

i=1

γ (,(ηi , pi ) × π, s,ψ)γ ( ̂,(ηi , pi ) × π, s,ψ)

]

× γ (ρ(et) × π, s,ψ)

=
[

d∏

i=1

γ (,(ηi , pi ) × π, s,ψ)γ ( ̂,(ηi , pi ) × π, s,ψ)

]
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×
[

c∏

i=1

γ (,(βi , ei ) × π, s,ψ)2

]
r∏

i=1

γ (,(τi , mi ) × π, s,ψ)

=
f∏

i=1

γ (,(λi , hi ) × π, s,ψ)

= γ (ρ × π, s,ψ).

Finally we conclude, for .(σρ) = ρ, (4.8) and (4.9) exactly as we concluded (2.22)
and (2.23), since σρ and ρ are tempered.

Conversely, let σ be a tempered generic representation of SO2n+1(F). Write σ
in the form (4.6), so that (4.1)–(4.5) are satisfied. Define

.(σ ) = ,(η1, p1) × · · · ×,(ηd, pd) × .(σ (et)) × ̂,(ηd, pd) × · · · × ̂,(η1, p1).

(4.25)

Put ρ = .(σ ). This is clearly an irreducible tempered representation of GL2n(F). It
is now easy to verify that .(σ ) is of the form in (4.7), so that conditions (1)–(3) of
Theorem 4.1 are satisfied, and by the first part of this proof, we get (4.8) and (4.9).
This proves Theorem 4.1. !

In the following we extend Theorem 2.2 to the case of tempered generic repre-
sentations of SO2n+1(F). By Theorem 4.1, we know the local Langlands parameter
for each member σ in$(tg)(SO2n+1). More precisely, for each σ in$(tg)(SO2n+1),
we can express its lift .(σ ) as in (4.25) and hence the local Langlands parameter
for σ is

ϕσ (et) ⊕
d⊕

i=1

[ϕηi ⊗ S2pi +1 ⊕ ϕ̂ηi ⊗ S2pi +1].

Let !(t)(SO2n+1) be the subset of !(SO2n+1) consisting of the local Langlands
parameters ϕ with the property that ϕ(WF ) is bounded in Sp2n(C). The parameters
in !(t)(SO2n+1) are called tempered.

Theorem 4.2. The bijection of Theorem 2.2 extends to a bijection y (which is
still denoted by y) between the set!(t)(SO2n+1) and the set$(tg)(SO2n+1). We have

L(ϕ ⊗ ϕ′, s) = L(y(ϕ) × r (ϕ′), s)(4.26)

ε(ϕ ⊗ ϕ′, s,ψ) = ε(y(ϕ) × r (ϕ′), s,ψ)(4.27)

for all irreducible admissible representations ϕ′ of WF of degree k with all k ∈ Z>0.
Here r is the reciprocity map for GL.

Proof. Let ϕ be an admissible homomorphism of WF × SL2(C) into Sp2n(C),
such that ϕ(WF ) is bounded. Compose ϕ with the embedding Sp2n(C) ↪→ GL2n(C),
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and regard ϕ as a 2n-dimensional representation of WF × SL2(C). Since the image
ϕ(WF × SL2(C)) preserves a nondegenerate skew-symmetric bilinear form, the
representation ϕ has a decomposition of following form:

ϕ = J ′
N (ϕ) ⊕ J ′

W (ϕ) ⊕ J ′
R1

(ϕ) ⊕ J ′
R2

(ϕ) ⊕ J2(ϕ)(4.28)

where each summand can be written explicitly as follows. The summand J ′
N (ϕ) is

J ′
N (ϕ) =

v⊕

j=1

µ′
z j

(
ϕz j ⊗ S2hz j +1 ⊕ ϕ̂z j ⊗ S2hz j +1

)
(4.29)

with the properties that (i) 2hz j ∈ Z≥0, (ii) µ′
z j

∈ Z>0 are the multiplicities, (iii)
ϕz j )∼= ϕ̂z j , and (iv) ϕz1, . . . ,ϕzv are pairwise non-equivalent irreducible bounded
representations of WF . The summand J ′

W (ϕ) has an expression

J ′
W (ϕ) =

u⊕

j=1

2µi j

(
ϕi j ⊗ S2hi j +1

)
(4.30)

with the properties that (i) 2hi j ∈ Z≥0, (ii) µi j ∈ Z>0 are the half of the multiplic-
ities, and (iii) ϕi1, . . . ,ϕiu are pairwise non-equivalent irreducible, bounded, self-
dual, representations of WF , such that ϕi j ⊗ S2hi j +1’s are orthogonal. This means
that for each j , either ϕi j is symplectic and hi j ∈ 1

2 + Z≥0, or ϕi j is orthogonal and
hi j ∈ Z≥0. The summand J ′

R2
(ϕ) has form

J ′
R2

(ϕ) =
c⊕

j=1

2µt j

(
ϕt j ⊗ S2ht j +1

)
(4.31)

with the properties that (i) 2ht j ∈ Z≥0, (ii)µt j ∈ Z>0 are the half of the multiplicities,
and (iii) ϕt1, . . . ,ϕtc are pairwise non-equivalent irreducible, bounded, self-dual,
representation of WF , such that ϕt j ⊗ S2nt j +1’s are symplectic. This means that for
each j , eitherϕt j is symplectic and ht j ∈ Z≥0, orϕt j is orthogonal and ht j ∈ 1

2 + Z≥0.
Finally, the summands J ′

R1
(ϕ) and J2(ϕ) can be expressed as

J ′
R1

(ϕ) ⊕ J2(ϕ) =
r⊕

j=1

(
2µx j + 1

)(
ϕx j ⊗ S2hx j +1

)
(4.32)

J2(ϕ) =
r⊕

j=1

ϕx j ⊗ S2hx j +1(4.33)

with the properties that (i) 2hx j ∈ Z≥0, (ii) µx j ∈ Z≥0 (2µx j + 1 are the multi-
plicities), and (iii) ϕx1, . . . ,ϕxr are pairwise non-equivalent irreducible, bounded,
self-dual, representations of WF , such that ϕx j ⊗ S2hx j +1 is symplectic. Note that
some of the sums in (4.29)–(4.31), (4.33) may be empty. Let y(ϕ) be the unique ir-
reducible generic constituent of the following induced representation of SO2n+1(F)

JN (y(ϕ)) × JW (y(ϕ)) × JR1 (y(ϕ)) × J ∗
R2

(y(ϕ)) ! y(J2(ϕ)).
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The induction data in the induced representation can be expressed as follows:

JN (y(ϕ)) =
v×

j=1

(
,
(
r
(
ϕz j

)
, hz j

)
× · · · ×,

(
r
(
ϕz j ), hz j

))
︸ ︷︷ ︸

µ′
z j

JW (y(ϕ)) =
u×

j=1

(
,
(
r
(
ϕi j

)
, hi j

)
× · · · ×,

(
r
(
ϕi j

)
, hi j

))
︸ ︷︷ ︸

µi j

J ∗
R2

(y(ϕ)) =
c×

j=1

(
,
(
r
(
ϕt j ), ht j

)
× · · · ×,

(
r
(
ϕi j

)
, ht j

))
︸ ︷︷ ︸

µt j

JR1 (y(ϕ)) =
r×

j=1

(
,
(
r
(
ϕt j

)
, ht j

)
× · · · ×,

(
r
(
ϕx j

)
, hx j

))
︸ ︷︷ ︸

µx j

and y(J2(ϕ)) is the irreducible discrete series (or square-integrable) generic repre-
sentation of SO2n′′+1(F) given by Theorem 2.2. It follows that y(ϕ) is tempered and
generic, and by the proof of Theorem 4.1, we have that .(y(ϕ)) = r (ϕ) and hence

L(ϕ ⊗ ϕ′, s) = L(r (ϕ) × r (ϕ′), s) = L(y(ϕ) × r (ϕ′), s)

ε(ϕ ⊗ ϕ′, s,ψ) = ε(r (ϕ) × r (ϕ′), s,ψ) = ε(y(ϕ) × r (ϕ′), s,ψ)

for any irreducible representation ϕ′ of WF .
Conversely, let σ be an irreducible tempered generic representation of

SO2n+1(F). Consider the tempered representation .(σ ) of GL2n(F) given by The-
orem 4.1. By the discussion right before the statement of Theorem 4.2 we have
that ϕ = r−1(.(σ )), which is a tempered local parameter in !(t)(SO2n+1). Thus
.(σ ) = r (ϕ) and hence y(ϕ) = σ (we keep using Theorem 1.3). This finishes the
proof of Theorem 4.2. !

The following result is a direct consequence of our discussions above. It is
stated as Part (2) of Theorem C in the Introduction.

Theorem 4.3. If a local Langlands parameter ϕ in !(SO2n+1) is tempered,
i.e., the image ϕ(WF ) is bounded in the Langlands dual group Sp2n(C) of SO2n+1,
then the representation y(ϕ) constructed in Theorem 4.2 is an irreducible generic
representation of SO2n+1(F), satisfying conditions (4.26) and (4.27).

We remark that since the representation y(ϕ) constructed in Theorem 4.2 sat-
isfies the conditions in the local Langlands reciprocity conjecture, if the conjec-
tured local L-packet $(ϕ) were constructed, then Theorem 4.3 would mean that
each tempered local L-packet contains a generic member. This last statement is a
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SO2n+1-case of a general conjecture stated in [S1] and of a basic assumption used
in [A]. It is clear that the explicit construction of local L-packets is beyond the
methods used here. We refer to [M.W.] and [M.T.] for a recent progress related to
this problem.

5. Generic representations. In this section, we complete the local Langlands
functorial lift . from the set $(g)(SO2n+1) of equivalence classes of irreducible
generic representations of SO2n+1(F) to GL2n(F) and write the local Langlands
parameter for each member in $(g)(SO2n+1). From Theorems 1.1, 2.1, 3.1, and
4.1, we see that the image of . consists of irreducible generic representations of
GL2n(F). However, this is no longer true for general (non-tempered) members
in $(g)(SO2n+1). Because of this new phenomenon, we include the discussion of
Theorem 5.2 here, although it is not directly related to the main results of this paper.

By the classification theory in [Z], any irreducible representation of GL2n(F)
can be realized as a constituent of an induced representation

δ(*1) × · · · × δ(*q)

of GL2n(F). We shall study which irreducible constituent is in the image of the
local Langlands lift . from $(g)(SO2n+1). (This . will be a natural extension of
the map . in Theorem 4.1.) By Theorem 4.1, we should consider only self-dual
representations of GL2n(F) of the following form

δ(*1) × · · · × δ(* f ) × ρ(t) × δ(*̂ f ) × · · · × δ(*̂1),(5.1)

where ρ(t) is an irreducible, self-dual, tempered representation of GL2n∗(F) and
*i ’s are imbalanced segments (which are given more explicitly below).

Assume that ρ(t) is in the image of the local Langlands lift from SO2n∗+1(F)
as given in Theorem 4.1. This means that there is a unique irreducible generic
tempered representation σ (t) of SO2n∗+1(F) such that .(σ (t)) = ρ(t). In the follow-
ing discussion, we let ρ(2) be the lift of the unique irreducible square-integrable
generic representation σ (2), which is related to σ (t) by the classification theory (see
(3.7) and (4.6)), and let σ (0) be the irreducible generic supercuspidal representation
occurring in σ (2) as in (2.31), whose lift is denoted by .(σ (0)) = ρ(0). Then, by
Theorems 1.1, 2.1, 3.1, and 4.1, the representation ρ(t) is completely determined,
up to isomorphism, by the following three families of irreducible square-integrable
representations of GL∗(F):

{,(τ j , m j )}r
j=1, {,(β j , e j )}c

j=1, {,(η j , p j )}d
j=1.(5.2)

We use the notations of the previous sections and write

*1 =
[
ν−q1ξ1, ν

−q1+w1ξ1
]
, *2 =

[
ν−q2ξ2, ν

−q2+w2ξ2
]
, . . . ,(5.3)

* f =
[
ν−q f ξ f , ν

−q f +w f ξ f
]
,
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where ξ1, . . . , ξ f are irreducible, unitary and supercuspidal (with possible repeti-
tions), qi ∈ R, wi ∈ Z≥0 and qi )= wi

2 .

Definition 5.1. Let {* j } f
j=1 and ρ(t) be given as above. The sequence {* j } f

j=1

is called an SO2n+1-generic sequence (of segments) with respect to ρ(t) if it satisfies
the following conditions:

(1) the segment *i is not linked to either * j or *̂ j for 1 ≤ i )= j ≤ f ; and
(2) for 1 ≤ i ≤ f , *i is not linked to any segment, which corresponds to a

representation in any of the families

{,(τ j , m j )}r
j=1, {,(β j , e j )}c

j=1, {,(η j , p j )}d
j=1,

which are determined by ρ(t) as in (5.2); and
(3) one of the following three conditions holds
(3a) ξi )∼= ξ̂i , or

(3b) *i is linked to an element of A2(ρ(2)), or

(3c) (ξi , σ
(0)) is (Cα) (α = 0, 1

2 , 1), but ±α )∈ {−qi , −qi + 1, . . . , −qi + wi }.

Remark 5.1. Condition (3c) means that

• if L(σ (0) × ξi , s) has a pole at s = 0, then ±1 )∈ {−qi , −qi + 1, . . . ,

−qi + wi },
• if L(ξi ,0

2, s) has a pole at s = 0, but L(σ (0) × ξi , s) has no pole at s = 0,
then 0 /∈ {−qi , −qi + 1, −qi + wi },

• if L(ξi , sym2, s) has a pole at s = 0, then ± 1
2 )∈ {−qi , −qi + 1, . . . ,

−qi + wi }.

From the data given above, if we put πi = δ(*i ), i = 1, . . . , f , then the repre-
sentation σ of SO2n+1(F) defined by

σ := π1 × π2 × · · · × π f ! σ (t)(5.4)

is irreducible and generic. Moreover, all irreducible generic representations of
SO2n+1(F) are obtained in this way. The set {π1, . . . ,π f ; σ (t)} is uniquely de-
termined. This is the classification theorem proved and explained by Muic in §4 of
[M2].

The natural candidate for the image of the local Langlands lift of σ is the
Langlands subquotient of the induced representation

δ(*1) × · · · × δ(* f ) × ρ(t) × δ(*̂ f ) × · · · × δ(*̂1)

of GL2n(F). It is clear that this lift defined in this way preserves the twisted local
γ -factors, L-factors and ε-factors. After re-arranging the induction data, we may
assume that the exponents of δ(*1), . . . , δ(* f ) are positive and in non-increasing
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order, i.e., the Langlands induction data. Let us now reformulate the conditions of
Definition 5.1 as follows (adding now Condition (L1)):

(L1) w1
2 − q1 ≥ w2

2 − q2 ≥ · · · ≥ w f

2 − q f > 0,

(L2) The only possible linkages among the segments

*1,*2, . . . ,* f , *̂ f , . . . , *̂2, *̂1

may occur between*i and *̂i for some indices i (this is Condition (1) in Definition
5.1),

(L3) The representations δ(*i ) × ρ(t) and δ(*̂i ) × ρ(t) are irreducible for all
1 ≤ i ≤ f (this is Condition (2) in Definition 5.1), and

(L4) Assume that ξi is self-dual and 2qi ∈ Z, such that if L(ξi ,0
2, s) has a pole

at s = 0, then qi ∈ Z, and if L(ξi , sym2, s) has a pole at s = 0, then qi ∈ 1
2 + Z.

Then in this case, *i is not linked to *̂i . Moreover, if L(ρ(0) × ξi , s) has a pole at
s = 0, then −qi ≥ 2, or qi = −1 and ξi ∈ A2(ρ(2)). This covers Condition (3) in
Definition 5.1, where A2(ρ(2)) is defined in the proof of Theorem 2.1.

We summarize what we got. For any given irreducible generic representation
σ of SO2n+1(F), which is realized as in (5.4), we have the following induced
representation of GL2n(F) satisfying conditions (L1)–(L4),

δ(*1) × δ(*2) × · · · × δ(* f ) × ρ(t) × δ(*̂ f ) × · · · × δ(*̂2) × δ(*̂1),(5.5)

which is completely determined by σ . It follows from conditions (L1)–(L4) and
the classification theory in [Z] that the induced representation in (5.5) is irreducible
if and only if there is no index i ∈ {1, . . . , f } such that *i is linked to *̂i . In
general, we take ρ to be the Langlands quotient of (5.5). It follows that ρ is the
local Langlands lift of σ and satisfies the compatibilities of local factors:

L(σρ × π, s) = L(ρ × π, s)(5.6)

γ (σρ × π, s,ψ) = γ (ρ × π, s,ψ)(5.7)

ε(σρ × π, s,ψ) = ε(ρ × π, s,ψ)(5.8)

for any irreducible supercuspidal representation π of GL∗(F). (See [S1 p. 308],
[S3], [J.PS.S. p. 458] for details on these local factors.) This extends the bijection
. in Theorem 4.1 to the set $(g)(SO2n+1). Hence we have:

Theorem 5.1. The bijection . of Theorem 4.1 extends to a bijection (which
is still denoted by .) between the set $(g)(SO2n+1) of equivalence classes of irre-
ducible generic representations σ of SO2n+1(F) and the set of equivalence classes
of irreducible self-dual representations ρ = .(σ ) of GL2n(F), which are Langlands
quotients of representations as in (5.5), satisfying conditions (L1)–(L4). This bi-
jection preserves twisted local γ -, L-, and ε-factors as in (5.6)–(5.8). In addition,
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.(σ ) is generic if and only if there is no index i ∈ {1, . . . , f } such that *i is linked
to *̂i (notations as in (5.5)).

The last statement in Theorem 5.1 is about the genericity of ρ = .(σ ). This is
equivalent to the irreducibility of the induced representation in (5.5). The conditions
characterizing this property depend on segments and L-functions. In general, by
the classification theory in [Z], an irreducible self-dual generic representation ρ of
GL2n(F) can be written as

ρ = δ(*1) × · · · × δ(*q).(5.9)

It is our interest here to determine, in terms of its segments, if ρ lies in the image
of the local Langlands lift . from $(g)(SO2n+1).

For the sake of simplicity, we say that a segment* occurs in ρ if the associated
representation δ(*) occurs in the induced data of ρ in (5.9). Let Pbs(ρ) be the set
of all different irreducible, supercuspidal, self-dual representations λ of GL∗(F)
such that balanced segments of the form [ν−aλ, νaλ] occur in ρ for some a with
2a ∈ Z≥0.

Let PW (ρ) be the subset of Pbs(ρ), consisting of all λ’s with the property
that if L(λ,02, s) has a pole at s = 0, then there are segments [ν−aλ, νaλ], with
a ∈ 1

2 + Z≥0, which occur in ρ, or if L(λ, sym2, s) has a pole at s = 0, then there
are segments [ν−aλ, νaλ], with a ∈ Z≥0, which occur in ρ. For any λ ∈ PW (ρ), we
define a set

Eλ(ρ) ⊂ 1
2

· Z,(5.10)

which satisfies the following conditions:

(1) if L(λ,02, s) has a pole at s = 0, then Eλ(ρ) consists of all different half-
integers a ∈ 1

2 + Z≥0 such that the segment [ν−aλ, νaλ] occurs in ρ; and

(2) if L(λ, sym2, s) has a pole at s = 0, then Eλ(ρ) consists of all different
integers a ∈ Z≥0 such that the segment [ν−aλ, νaλ] occurs in ρ.

For a ∈ Eλ(ρ), we denote by µλ(a) the multiplicity of the factor,(λ, a) in ρ. Write
Eλ(ρ) in decreasing order

Eλ(ρ) : aλ(1) > aλ(2) > · · · > aλ(nλ)(5.11)

and write the sequences of multiplicities

µ(Eλ(ρ)) : {µλ(aλ(1)), µλ(aλ(2)), . . . , µλ(aλ(nλ))}.(5.12)

Single out of µ(Eλ(ρ)) the odd multiplicities as follows. Let

OEλ(ρ) = {1 ≤ i ≤ nλ | µλ(aλ(i)) is odd} = O(1)
Eλ(ρ) ∪· O

(2)
Eλ(ρ) ∪· · · · ∪· O(lλ)

Eλ(ρ)

(5.13)
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where O( j)
Eλ(ρ) are the “connected components” of OEλ(ρ) in the sense that O( j)

Eλ(ρ)
consists of consecutive (i.e., differ by one) integers. We note that the largest integer
of O( j)

Eλ(ρ) is smaller than the smallest integer of O( j+1)
Eλ(ρ) by at least two.

Theorem 5.2. (a) Let ρ be an irreducible, self-dual, generic representation
of GL2n(F). Then ρ is in the image of . as in Theorem 5.1, if and only if OEλ(ρ) is
empty for all λ ∈ PW (ρ).

(b) There is a bijection b between the set of equivalence classes of irreducible
generic representations of SO2n+1(F) and the set of equivalence classes of irre-
ducible, self-dual, generic representations ρ of GL2n(F) satisfying the properties
that for λ in PW (ρ),

(1) |O( j)
Eλ(ρ)| is even, for 1 ≤ j ≤ lλ − 1,

(2) if L(λ, sym2, s) has a pole at s = 0, then |O(lλ)
Eλ(ρ)| is even,

(3) if L(λ,02, s) has a pole at s = 0, then |O(lλ)
Eλ(ρ)| may be even or odd; in

case it is odd, write O(lλ)
Eλ(ρ) = {α,α + 1,α + 2, . . . ,α + 2t0}, then α + 2t0 = nλ.

This bijection preserves twisted local gamma factors:

γ (σ × π, s,ψ) = γ (b(σ ) × π, s,ψ)

for all irreducible generic representations σ (resp. π ) of SO2n+1(F) (resp. GLk(F))
with all k ∈ Z>0.

We remark that Part (b) of Theorem 5.2 characterizes the set of irreducible
self-dual generic representations of GL2n(F), which share the same twisted local
gamma factors with those in the image of the local Langlands lift . in Theorem
5.1. However, they do not necessarily share the same twisted L-factors in general.
This is one of the points which we have to keep in mind when thinking about the
characterization of local Langlands functorial lifts.

Proof of Part (b) of Theorem 5.2. We first write the given irreducible self-dual
generic representation ρ of GL2n(F) (in (5.9)) as follows

ρ ∼= δ(*1) × · · · × δ(* f1 ) × ρ1 × δ(*̂ f1 ) × · · · × δ(*̂1)(5.14)

where*1, . . . ,* f1 are imbalanced segments, *̂1, . . . , *̂ f1 are the respective duals,
andρ1 is self-dual and is an induced representation associated to balanced segments.
Since ρ is irreducible and generic, there are no linkages among the segments, in
particular among the imbalanced segments

*1, . . . ,* f1 ; *̂1, . . . , *̂ f1 .

For 1 ≤ i ≤ f1, write *i and *̂i as

*i =
[
ν−qi ξi , ν

−qi +wi ξi
]
, *̂i =

[
ν−wi +qi ξ̂i , ν

(−wi +qi )+wi ξ̂i
]
,(5.15)
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where ξi is an irreducible unitary supercuspidal representation of GL∗(F) and
qi ∈ R, wi ∈ Z≥0, wi )= 2qi . By assumption on linkage,

δ(*1) × · · · × δ(* f1 ) × δ(*̂ f1 ) × · · · × δ(*̂1)

is irreducible. Note that

νqi − wi
2 δ(*i ) = ,

(
ξi ,

wi

2

)
(5.16)

is square-integrable. We may assume that
w1

2
− q1 ≥ w2

2
− q2 ≥ · · · ≥ w f1

2
− q f1 > 0.(5.17)

This implies that
w1

2
− q1 ≥ · · · ≥ w f1

2
− q f1 > 0 > q f1 − w f1

2
≥ · · · ≥ q1 − w1

2
.(5.18)

Note that PW (ρ) = PW (ρ1). We consider the structure of the segments occurring
in ρ1. Let λ ∈ PW (ρ1). Consider OEλ(ρ1) = OEλ(ρ), as in (5.13). Let 1 ≤ j ≤ lλ − 1,
and in case |O(lλ)

Eλ(ρ)| is even, we include j = lλ, as well. Write

O( j)
Eλ(ρ) = {α j ,α j + 1,α j + 2, . . . ,α j + 2s j − 1}.(5.19)

Thus, the self-dual representations

,(λ, aλ(α j )),,(λ, aλ(α j + 1)), . . . ,,(λ, aλ(α j + 2s j − 1))(5.20)

occur in ρ1, each one with odd multiplicity

µλ(aλ(α j )), µλ(aλ(α j + 1)), . . . , µλ(aλ(α j + 2s j − 1)),

respectively. Note that the segments, which correspond to the representations in
(5.20) form a strictly decreasing sequence

[
ν−aλ(α j )λ, νaλ(α j )λ

]
& · · · &

[
ν−aλ(α j +2s j −1)λ, νaλ(α j +2s j −1)λ

]
.

Following the same idea as in (2.37) and (2.38), we define then the following
segments:

*
(i)
λ, j =

[
ν−aλ(α j +2i−1)λ, νaλ(α j +2i−2)λ

]
, i = 1, 2, . . . , s j .(5.21)

In case |O(lλ)
Eλ(ρ)| is odd, (this implies that L(λ,02, s) has a pole at s = 0), we

have to deal with the case of j = lλ. We write

O(lλ)
Eλ(ρ) =

{
αlλ,αlλ + 1, . . . ,αlλ + 2tlλ

}
(5.22)

and define, for i = 1, 2, . . . , tlλ ,

*
(i)
λ,lλ =

[
ν−aλ(αlλ+2i−1)λ, νaλ(αlλ+2i−2)λ

]
, and *

(tlλ+1)
λ,lλ =

[
ν

1
2λ, νaλ(αlλ+2tlλ )λ

]
.

(5.23)
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Note that *(i)
λ, j is linked to *̂(i)

λ, j , for all i ≥ 1, but there are no other linkages
among

*
(1)
λ, j , *̂

(1)
λ, j , *

(2)
λ, j , *̂

(2)
λ, j , . . . .(5.24)

The reason for this is that when i ′ > i , we have

*
(i)
λ, j & *

(i ′)
λ, j ∪ *̂(i ′)

λ, j .

For λ ∈ PW (ρ1), rewrite (5.19) and (5.22) in a uniform way

O( j)
Eλ(ρ) = {α j ,α j + 1, . . . ,α j + t j }

and put r j = [ t j +2
2 ]. The segments in (5.21), (5.23) can now be indexed in a uniform

way

*
(1)
λ, j , *

(2)
λ, j , . . . ,*

(r j )
λ, j .(5.25)

In order to study the structure of ρ1 with the local Langlands lift given in The-
orem 4.1, we express ρ1 as

ρ1
∼=



 ×
λ∈PW (ρ)

lλ×
j=1

t j×
i=0

,(λ, aλ(α j + i))



× ρ(t)(5.26)

where ρ(t) is tempered and self-dual.
We claim that ρ(t) lies in the image of the lift . in Theorem 4.1. To prove

this statement, we only need to verify conditions (2), (3) of Theorem 4.1, while
condition (1) is clear from the self-duality of ρ(t). By the definition of PW (ρ1), if a
representation λ in Pbs(ρ1) belongs to PW (ρ1), then it satisfies the same conditions
about the poles of L-functions as required in condition (2) or (3) in Theorem 4.1.
It remains to show that for λ in PW (ρ1), the multiplicity of ,(λ, aλ(i)) occurring
in ρ(t) is even for 1 ≤ i ≤ nλ. Indeed, if i ∈ OEλ(ρ), then i = α j + i ′, for some
1 ≤ j ≤ lλ, 0 ≤ i ′ ≤ t j , and since µλ(aλ(i)) is odd, then ,(λ, aλ(i)) appears an
even number of times (possibly zero) in ρ(t). If i )∈ OEλ(ρ), then µλ(aλ(i)) is even
and hence ,(λ, aλ(i)) appears an even number of times in ρ(t). This justifies the
above claim.

We assume that the above ρ(t) is an irreducible representation of GL2n∗(F).
Since it satisfies the conditions characterizing the image of the lift . in Theorem 4.1,
there is a unique, up to equivalence, irreducible generic tempered representation
σ (t) of SO2n∗+1(F), such that ρ(t) = .(σ (t)). From the given irreducible generic
representation ρ and the constructed representations ρ1, ρ(t), and σ (t), we construct
the following representation of SO2n+1(F):

σρ =
f1×

i=1
δ(*i ) ×

(

×
λ∈PW (ρ)

lλ×
j=1

r j×
i=1
δ
(
*

(i)
λ, j

)
)

! σ (t).(5.27)
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We are going to show that this representation σρ is irreducible and generic, or
equivalently that it has the form (5.4) and satisfies all conditions in Definition 5.1.
Write σ (t) in the form (4.6) (with n∗ replacing n) so that (4.1)–(4.5) are satisfied.
For the sake of the following discussion, we recall that ρ(2) is the lift of the unique
irreducible square-integrable generic representation σ (2), which is related to σ (t)

by the classification theory (see (3.7) and (4.6)), and σ (0) is the irreducible generic
supercuspidal representation occurring in σ (2) as in (2.31), whose lift is denoted by
.(σ (0)) = ρ(0).

We already know that there is no linkage among the segments {*i , *̂ j | 1 ≤ i,
j ≤ f1} and there is no linkage among the segments

{
*

(i)
λ, j , *̂

(i ′)
λ, j ′ | λ ∈ PW (ρ), 1 ≤ j, j ′ ≤ lλ, 1 ≤ i, i ′ ≤ r j

}

except for the linkages between *(i)
λ, j and *̂(i)

λ, j , for each λ, j, i as above. (See

(5.24).) There is no linkage between *i and *(i ′)
λ, j or *̂(i ′)

λ, j . Indeed, this happens, if
and only if *i is linked to one of the segments

*
(i ′)
λ, j ∪ *̂(i ′)

λ, j =
[
ν−aλ(α j +2i ′−2)λ, νaλ(α j +2i ′−2)λ

]
,(5.28)

*
(i ′)
λ, j ∩ *̂(i ′)

λ, j =
[
ν−aλ(α j +2i ′−1)λ, νaλ(α j +2i ′−1)λ

]
.(5.29)

Recall that *i is not linked to *̂i . Note that this is also valid in case j = lλ and
i ′ = tlλ + 1, since (5.29) is empty in these cases. Since each of the last two segments
occurs in ρ, together with*i , this is impossible. All segments which occur in ρ are
not linked. Similarly, *̂i can not be linked to*(i ′)

λ, j or to *̂(i ′)
λ, j . This verifies Condition

(1) in Definition 5.1.
Note also, that the segments *(i)

λ, j verify Condition (3c) in Definition 5.1. Re-
call that aλ(ν) ∈ 1

2 + Z≥0, if L(λ,02, s) has a pole at s = 0, and aλ(ν) ∈ Z≥0, if
L(λ, sym2, s) has a pole at s = 0. Let us show now that the segments *(i)

λ, j satisfy
Condition (2) in Definition 5.1 (we use its notation here). Clearly, *(i)

λ, j can not be
linked to any segment of the form [ν−etβt , ν

etβt ] or [ν−mt τt , ν
mt τt ] since the powers

of ν just do not match. If *(i)
λ, j is linked to a segment of the form [ν−ptηt , ν

ptηt ],
then ηt = λ ∈ PW (ρ) and pt is of the form aλ(ν), 1 ≤ ν ≤ nλ. By construction, we
have either *(i)

λ, j ⊃ [ν−aλ(ν)λ, νaλ(ν)λ] or *(i)
λ, j ⊂ [ν−aλ(ν)λ, νaλ(ν)λ] and hence there

can not be a linkage. This verifies Condition (2) in Definition 5.1 for the segments
*

(i)
λ, j . The segments *i verify Condition (2) in Definition 5.1 as well, since the

segments
{[
ν−p jη j , ν

p jη j
]}d

j=1,
{[
ν−e jβ j , ν

e jβ j
]}c

j=1,
{[
ν−m j τ j , ν

m j τ j
]}r

j=1

are precisely the ones which occur in ρ(t). Since *i occurs, together with these
segments in ρ (by (5.15), (5.26)), we see that *i can not be linked to any of the
segments above. It remains to show that the *i verify one of the three conditions
(3a), (3b), (3c), in Definition 5.1. If (3a) is not satisfied for *i then ξi is self-dual.
In this case, if (3c) is not satisfied, we have to consider the following cases:
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(i) If L(σ (0) × ξi , s) has a pole at s = 0 ((C1) case), and if 1, or −1 belongs to
E (i) = {−qi , −qi + 1, . . . , −qi + wi }, then qi ∈ Z. If −1 ∈ E (i), it follows that*i

is linked to *̂i since −qi + wi = (−qi + wi
2 ) + wi

2 > wi
2 by assumption. But this

contradicts Condition (1) in Definition 5.1, which we just verified. This implies
that 1 ∈ E (i). Using the last argument, one shows that qi = −1. Thus, *i is linked
to [ξi ]. Now, by assumption,

ξi ∈ A(ρ(2)) = A0(ρ(2)) ∪ A1(ρ(2)) ∪ A2(ρ(2)).

Since the elements of A0(ρ(2)) ∪ A1(ρ(2)) occur in ρ (even in ρ(2)) together with*i ,
we see that *i can not be linked to an element of A0(ρ(2)) ∪ A1(ρ(2)). This forces
ξi ∈ A2(ρ(2)), and hence *i verifies (3b).

(ii) If L(σ (0) × ξi , s) has no pole at s = 0 while L(ξi ,0
2, s) still has a pole at

s = 0, and 0 ∈ E (i), then qi ∈ Z. Since *i is imbalanced, we conclude that *i is
linked to *̂i , which is impossible.

(iii) If L(ξi , sym2, s) has a pole at s = 0, and one of 1
2 , −

1
2 lies in E (i) (this implies

that qi ∈ 1
2 + Z), then in both cases, we conclude, as before, that*i is linked to *̂i ,

which is impossible.

This proves that σρ defined in (5.27) is an irreducible generic representation of
SO2n+1(F), as required.

We now verify that twisted local gamma factors are preserved. Using the mul-
tiplicativity property of gamma factors (Theorem 1.4), we have, for an irreducible
supercuspidal representation π of GLk(F),

γ (σρ × π, s,ψ)(5.30)

= γ (σ (t) × π, s,ψ) ·
f1∏

i=1

γ (δ(*i ) × π, s,ψ)γ (δ(*̂i ) × π, s,ψ) ·

·
∏

λ∈PW (ρ)

lλ∏

j=1

r j∏

i=1

γ
(
δ
(
*

(i)
λ, j

)
× π, s,ψ

)
γ
(
δ
(
*̂

(i)
λ, j

)
× π, s,ψ

)
.

For any segment *, such that * ∪ *̂ is a segment, we have

γ (δ(*) × π, s,ψ)γ (δ(*̂) × π, s,ψ)(5.31)

= γ (δ(* ∪ *̂) × π, s,ψ)γ (δ(* ∩ *̂) × π, s,ψ).

Using (5.28), (5.29), (5.31) and Theorem 4.1, we get in (5.30),

γ (σρ × π, s,ψ) = γ (ρ(t) × π, s,ψ) ·
f1∏

i=1

γ (δ(*i ) × π, s,ψ)γ (δ(*̂i ) × π, s,ψ) ·

·
∏

λ∈PW (ρ)

lλ∏

j=1

r j∏

i=1

γ (,(λ, aλ(α j + 2i − 2)) × π, s,ψ)

γ (,(λ, aλ(α j + 2i − 1)) × π, s,ψ).
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By the structure of the representation ρ1 in (5.26) and the structure of the repre-
sentation ρ in (5.14), and by the the multiplicativity property of gamma factors
(Theorem 1.4), the above product of gamma factors equals

f1∏

i=1

γ (δ(*i ) × π, s,ψ)γ (δ(*̂i ) × π, s,ψ)γ (ρ1 × π, s,ψ) = γ (ρ × π, s,ψ).

We proved that

γ (σρ × π, s,ψ) = γ (ρ × π, s,ψ).(5.32)

Hence we prove one direction in Part (b) of Theorem 5.2.
To complete the proof of Part (b) of Theorem 5.2, we start now with an irre-

ducible generic representationσ of SO2n+1(F) and constructρ = b(σ ) on GL2n(F),
as required. Write σ in the form (5.4), so that all conditions in Definition 5.1 are
satisfied.

Separate first from (5.4) the segments *i which are not linked to their duals.
Reorder them, if necessary, and assume that these are *1, . . . ,* f1 . Consider the
remaining segments * f1+1, . . . ,* f . Of course, *i is linked to *̂i , for f1 + 1 ≤
i ≤ f . For such i , it is clear that neither (3a) nor (3b) can be satisfied, and hence
(3c) is satisfied. This implies, for f1 + 1 ≤ i ≤ f , that if L(ξi ,0

2, s) has a pole
at s = 0, then one of the segments *i or *̂i has the form [ν−aξi , ν

bξi ], where
b ∈ 1

2 + Z≥0 and a = −1/2 or a ∈ 1
2 + Z≥0 and a < b; or if L(ξi , sym2, s) has a

pole at s = 0, then one of the segments *i or *̂i has the form [ν−aξi , ν
bξi ] where

b ∈ N and 0 ≤ a < b. In either case, we may assume that*i has the indicated form,
and rewrite, as in the beginning of this section, *i = [ν−qi ξi , ν

−qi +wi ξi ]. We have,
for f1 + 1 ≤ i ≤ f ,

*i ∪ *̂i =
[
νqi −wi ξi , ν

−qi +wi ξi
]

(5.33)

and unless L(ξi ,0
2, s) has a pole at s = 0, and qi = −1/2 (in which case*i ∩ *̂i

is empty),

*i ∩ *̂i =
[
ν−qi ξi , ν

qi ξi
]
.(5.34)

It is easy to see, by Condition (1) in Definition 5.1, that the segments of type (5.33)
or (5.34) are not linked to any of the segments * j , *̂ j , 1 ≤ j ≤ f1. Note also that
in the induced representation

f

×
i= f1+1

[,(ξi , −qi + wi ) ×,(ξi , qi )](5.35)

each segment occurs only once, otherwise, we get a contradiction to Condition (1)
in Definition 5.1. If qi = −1/2, ,(ξi , qi ) is omitted from (5.35).
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We define

ρ =
f1×

i=1
[δ(*i ) × δ(*̂i )] ×

f

×
i= f1+1

(,(ξi , −qi + wi ) ×,(ξi , qi )) × ρ(t)(5.36)

(where ρ(t) = .(σ (t))). It is clear that ρ is irreducible, self-dual and generic, and
that the segments of type (5.33), (5.34) ( f1 + 1 ≤ i ≤ f ) occur an odd number of
times, in ρ (again, such a segment occurs exactly once in (5.35) and an even number
of times, possibly zero, in ρ(t) (Theorem 4.1)). It is clear that

{λ ∈ PW (ρ) | OEλ(ρ) is not empty} = {ξi | f1 + 1 ≤ i ≤ f }.(5.37)

It remains to show that |O( j)
Eξi

| is even for 1 ≤ j ≤ lξi − 1, and for j = lξi , in
case L(ξi , sym2, s) has a pole s = 0. The reason for this is that there can not exist
a factor ,(ξi , m) occurring in ρ(t), such that

[
ν−qi ξi , ν

qi ξi
]

%
[
ν−mξi , ν

mξi
]

%
[
νqi −wi ξi , ν

−qi +wi ξi
]

because this would imply that *i is linked to [ν−mξi , ν
mξi ], contradicting Con-

dition (2) in Definition 5.1. Similarly, there can not exist j )= i , f1 + 1 ≤ j ≤ f ,
such that either one of [νq j −w j ξ j , ν

−q j +w j ξ j ] or [ν−q j ξ j , ν
q j ξ j ] lies properly be-

tween [ν−qi ξi , ν
qi ξi ] and [νqi −wi ξi , ν

−qi +wi ξi ], since this would imply a linkage
between *i and * j , or *i and *̂ j , contradicting Condition (1) in Definition 5.1.
Thus,,(ξi , qi ) is the immediate successor of,(ξi , −qi + wi ) in the decreasing in-
clusion ordering of the corresponding segments. This means that ,(ξi , −qi + wi )
and,(ξi , qi ) correspond to consecutive elements in the appropriate connected com-
ponent, say O( j)

Eξi
, of OEξi (see (5.13)). In other words, the indices occur in O( j)

Eξi
by

pairs, i.e., |O( j)
Eξi

| is even in all the cases under consideration.
The only extra case is when qi = 1/2. In this case L(ξi ,0

2, s) has a pole at
s = 0, and [ν−qi ξi , ν

qi ξi ] is empty. This implies that the corresponding connected
component is O(lξi )

Eξi
and −qi + wi = nξi (see Condition (3) in Theorem 5.2). In this

case |O(lξi )
Eξi

| is odd.
Therefore, we see that ρ is of the form considered in Theorem 5.2. By the first

part of the proof, it is clear that σ ∼= σρ , and by (5.32)

γ (σ × π, s,ψ) = γ (ρ × π, s,ψ)

for all irreducible, supercuspidal representations π of GLk(F) with all k ∈ Z>0.
This completes the proof of Part (b) of Theorem 5.2. !

Before we start the proof of Part (a) of Theorem 5.2, we make the following
remarks on the bijection b in Part (b) of Theorem 5.2. Although we always have

γ (σ × π, s,ψ) = γ (b(σ ) × π, s,ψ)
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for all irreducible, supercuspidal representations π of GLk(F) with all k ∈ Z>0,
the twisted L-functions may not be preserved by the bijection b, i.e., the following
identity

L(σ × π, s) = L(b(σ ) × π, s)(5.38)

for any irreducible supercuspidal representation π of GL∗(F), may not hold.
(1) Assume that there is no λ ∈ PW (ρ), such that L(λ,02, s) has a pole at

s = 0, and |O(lλ)
Eλ(ρ)| is odd. Then

L(σρ × π, s) = L(ρ × π, s)

for all irreducible, supercuspidal representations π of GLk(F) with all k ∈ Z>0.
Indeed, the proof is the same as the one for the gamma factor. See (0.15), (0.17).

Note that

L
(
δ
(
*

(i)
λ, j

)
× π, s

)
= L(λ× π, s + aλ(α j + 2i − 2))(5.39)

= L(,(λ, aλ(α j + 2i − 2)) × π, s)

L
(
δ
(
*̂

(i)
λ, j

)
× π, s

)
= L(λ× π, s + aλ(α j + 2i − 1))

= L(,(λ, aλ(α j + 2i − 1))×,π, s)

so that

L
(
δ
(
*

(i)
λ, j

)
× π, s

)
L
(
δ
(
*̂

(i)
λ, j

)
× π, s

)

= L(,(λ, aλ(α j + 2i − 2)) × π, s)L(,(λ, aλ(α j + 2i − 1)) × π, s)(5.40)

= L([,(λ, aλ(α j + 2i − 2)) ×,(λ, aλ(α j + 2i − 1))] × π, s).

(2) The equality (5.40) breaks down in case j = lλ, i = r j (i.e., i = tlλ + 1 in
the notation of (5.23)). Here, we get

L
(
δ
(
*

(tlλ+1)
λ,lλ

)
× π, s

)
L
(
δ
(
*̂

(tlλ+1)
λ,lλ

)
× π, s

)

= L(λ× π, s + aλ(αlλ + 2tlλ))L
(
λ× π, s − 1

2

)

= L(,(λ, aλ(αlλ + 2tlλ)) × π, s)L
(
λ× π, s − 1

2

)
.

In this case, L(,(λ, aλ(αlλ + 2tlλ)) × π, s) accounts for the factor ,(λ, aλ(αlλ +
2tlλ)), which appears in ρ, but L(λ× π, s − 1/2) does not account for a factor of
ρ. Here we get

L(σρ × π, s) = L(ρ × π, s)
∏

λ∈PW (ρ)

|O(lλ)
Eλ(ρ) |odd

L(λ× π, s − 1/2).(5.41)
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(3) Even in the case of the first remark, there is a problem on the reci-
procity map. Looking again at (5.39), the parameter of ,(λ, aλ(α j + 2i − 2))
is ϕλ ⊗ S2aλ(α j +2i−2)+1 where ϕλ = r−1(λ). The parameter ϕλ ⊗ S2aλ(α j +2i−2)+1 is
orthogonal. Since,(λ, aλ(α j + 2i − 2)) appears an odd number of times in ρ, the
multiplicity of ϕλ ⊗ S2aλ(α j +2i−2)+1 in the parameter of ρ is odd, and hence, its
isotypic component can not be symplectic. Thus, if for λ ∈ PW (ρ), OEλ(ρ) is not
empty, σρ does not have the same local Langlands parameter as ρ does. However,
it has the same gamma factors as ρ (see (5.32)) and even the same L-factors as ρ
(see (5.38)) in the case of the first remark.

Proof of Part (a) of Theorem 5.2. For a given irreducible generic representation
σ of SO2n+1(F), we have actually constructed two irreducible representations of
GL2n(F) in Theorem 5.1 and Part (b) of Theorem 5.2, respectively. Let ρ(1) = .(σ )
be the Langlands quotient constructed in Theorem 5.1, and ρ(2) = b(σ ) be the
irreducible generic representation of GL2n(F) as constructed in Part (b) of Theorem
5.2. We know from the proof of Theorem 5.1 and the proof of Part (b) of Theorem
5.2 that there exists an induced representation of GL2n(F) as in (5.5) constructed
from σ , such that ρ(2) can be realized as its unique generic subrepresentation and
ρ(1) as its unique Langlands quotient.

Let ρ be an irreducible self-dual generic representation of GL2n(F), such that
OEλ(ρ) is empty for all λ ∈ PW (ρ). We will show that there exists an irreducible
generic representation σ of SO2n+1(F), such that ρ = .(σ ). Now the construction
of this σ follows exactly from the proof of Part (b) of Theorem 5.2; this is in fact
the most trivial case of the construction. We summarize the details. We first write ρ
in the form (5.14). Since OEλ(ρ) is empty for all λ ∈ PW (ρ), we know that ρ1

∼= ρ(t)

in (5.26). Next in (5.27),

σρ =




f1×

i=1
δ(*i )



! σ (t).

Then ρ = b(σρ) is given by (5.36) with f1 = f

b(σρ) =




f

×
i=1
δ(*i )



× ρ(t) ×




f

×
i=1
δ(*̂i )



 .

On the other hand, by Theorem 5.1, .(σρ) is given by the Langlands quotient of the
induced representation




f

×
i=1
δ(*i )



× ρ(t) ×




f

×
i=1
δ(*̂i )





which is equal to ρ.
Now assume that an irreducible self-dual generic representation ρ lies in the

image of the local Langlands functorial lift ., i.e., ρ = .(σ ) for some irreducible
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generic representation σ of SO2n+1(F). Then by the proof of Theorem 5.1 and
Part (b) of Theorem 5.2, the representation σ determines uniquely an induced
representation of GL2n(F) of the form (5.5) andρ = .(σ ) is realized as its Langlands
quotient and the representation b(σ ) is realized as its unique irreducible generic
subrepresentation. Since ρ = .(σ ) is assumed to be generic, one knows that

ρ = .(σ ) = b(σ ) = ρ(1) = ρ(2).

This implies that the induced representation of GL2n(F) of the form (5.5) deter-
mined by σ is irreducible. We will now show thatOEλ(ρ) is empty for all λ ∈ PW (ρ).

Assume thatOEλ(ρ) is not empty for some λ ∈ PW (ρ). We write ρ(2) as in (5.36).
As we remarked right after the proof of Part (b) of Theorem 5.2, the representations
,(λ, aλ(α j + i − 2)) and,(λ, aλ(α j + 2i − 1)), which correspond to the consec-
utive points α j + 2i − 2, α j + 2i − 1 in O( j)

Eλ(ρ), occur in ρ(2) (which is ρ in Part (b)
of Theorem 5.2) with odd multiplicities (µλ(aλ(α j − 2i − 2)), µλ(aλ(α j + 2i − 1))
respectively). We take one from the µλ(aλ(α j − 2i − 2)) (µλ(aλ(α j + 2i − 1)),
resp.) pieces of,(λ, aλ(α j + i − 2)) (,(λ, aλ(α j + 2i − 1)), resp.), the rest occur
with even multiplicities inρ(t)

(2). As in (2.37) and (2.38), we can realize the irreducible
induced representation

[,(λ, aλ(α j + 2i − 2)) ×,(λ, aλ(α j + 2i − 1))]

as the unique irreducible generic subrepresentation of the following induced rep-
resentation

δ
([
ν−aλ(α j +2i−1)λ, νaλ(α j +2i−2)λ

])
× δ
([
ν−aλ(α j +2i−2)λ, νaλ(α j +2i−1)λ

])
,(5.42)

for i = 1, . . . , s j (see (5.21)). In case j = lλ and |O(lλ)
Eλ(ρ)| is odd, we realize the

irreducible generic representation ,(λ, aλ(nλ)) as the unique irreducible generic
subrepresentation of the following induced representation

δ
[
ν1/2λ, νaλ(nλ)λ

]
× δ
[
ν−aλ(nλ)λ, ν−1/2λ

]
.(5.43)

Hence we realize the representation ρ(2) in (5.36) as the unique irreducible generic
subrepresentation of the following induced representation

δ(*1) × δ(*2) × · · · × δ(* f ) × ρ(t)
(2) × δ(*̂ f ) × · · · × δ(*̂2) × δ(*̂1),(5.44)

which is in Langlands induction data and satisfies Conditions (L1)–(L4) (as in
(5.5)). By Theorem 5.1, the Langlands quotient of (5.44) equals .(σρ(2) ). Note that
σ = σρ(1) = σρ(2) . It follows that

.(σ ) )= b(σ ).

This is a contradiction. This completes the proof of Part (a) of Theorem 5.2. !

We conclude this section by giving the Langlands parameter for an irre-
ducible generic representation σ of SO2n+1(F). Let σ be an irreducible generic
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representation of SO2n+1(F) given in (5.4). Then the local Langlands functorial lift
.(σ ) is realized as the unique Langlands quotient of (5.5). Hence the Langlands
parameter for σ is the admissible homomorphism from WF × SL2(C) to Sp2n(C)
of following type

ϕσ = y−1(σ (t)) ⊕
f⊕

i=1

[
| · |−qi + wi

2 r−1(ξi ) ⊗ Swi +1 ⊕ | · |qi − wi
2 r−1(̂ξi ) ⊗ Swi +1

]
,

(5.45)

where y is the reciprocity map given in Theorem 4.2 for irreducible tempered
generic representations in $(tg)(SO2n+1) and r is the reciprocity map for GL∗(F)
defined in [H.T.] and [H1], and as in Theorem 1.2 in Section 1. Note that | · |s is
the character of WF normalized as in [T] via the local class field theory.

6. Representations attached to local langlands parameters. In Sections
1–5, we have established explicitly the local Langlands functorial lift from irre-
ducible generic representations of SO2n+1(F) to GL2n(F), and have written down
the local Langlands parameter for each member in$(g)(SO2n+1). Our current meth-
ods seem insufficient to establish the theory for general irreducible representations
of SO2n+1(F). However, in this section, we shall construct for each local Langlands
parameter ϕ in !(SO2n+1) an irreducible representation of SO2n+1(F) as stated in
Theorem A in the Introduction.

We first describe the structure of local Langlands parameters in !(SO2n+1).

Proposition 6.1. Let ϕ : WF × SL2(C) → Sp2n(C) be a local Langlands pa-
rameter in!(SO2n+1). Then either ϕ is a tempered parameter in!(t)(SO2n+1), i.e.,
ϕ(WF ) is bounded in Sp2n(C) or ϕ can be decomposed as a direct sum

ϕ = ϕ(t) ⊕ ϕ(n)(6.1)

where ϕ(t) is a tempered parameter in !(t)(SO2n∗+1) (n∗ < n) and ϕ(n) is a pa-
rameter in!(SO2(n−n∗)+1) satisfying the following conditions: there exist f ∈ Z>0,
w1, . . . , w f ∈ Z≥0, and q1, . . . , q f ∈ R, such that qi )= wi

2 , for 1 ≤ i ≤ f , and

ϕ(n) =
f⊕

i=1

[
| · |

wi
2 −qiϕi ⊗ Swi +1 ⊕ | · |−

wi
2 +qi ϕ̂i ⊗ Swi +1

]
(6.2)

where for 1 ≤ i ≤ f , ϕi is an irreducible bounded representation of the Weil group
WF ,

wi

2
− qi ≥ wi+1

2
− qi+1 > 0

for i = 1, 2, . . . , f − 1, and | · |∗ is the character of WF normalized as in [T] via
the local class field theory.
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Proof. Let V = C2n be the nondegenerate symplectic space of dimension 2n,
equipped with the symplectic form <, >, which corresponds to the given parameter
ϕ. Write

V = V1 ⊕ V2

where V1 is the direct sum of all irreducible subspaces, which are stable under
WF × SL2(C) and in which ϕ(WF ) is bounded; and similarly, V2 is the direct sum of
all irreducible subspaces, which are stable under WF × SL2(C) and in which ϕ(WF )
is unbounded. We have to show that both subspaces V1 and V2 are nondegenerate
with respect to the restriction of the nondegenerate symplectic form <, >.

Let rad(Vi ) (i = 1, 2) be the radical of (Vi , <, > |Vi ). Then rad(Vi ) is stable
under the action of WF × SL2(C). We first prove rad(V2) is zero. Let v2 be any
vector in rad(V2), which lies in an irreducible summand, say of the form φ ⊗ Sw+1,
where φ is an irreducible unbounded representation of WF . We may write

φ = | · |tφ′,

where φ′(WF ) is bounded and 0 )= t ∈ R. Then for any v1 ∈ V1, we have

< v2,ϕ(w−1)(v1) >=< ϕ(w)(v2), v1 >= |w |t < (φ′(w) ⊗ id)(v2), v1 >.(6.3)

It is clear that < v2,ϕ(w−1)(v1) > is bounded, but |w |t < (φ′(w) ⊗ id)(v2), v1 >

is unbounded, unless

< ϕ(w)(v2), v1 >= 0, for all v1 ∈ V1.(6.4)

Since v1 is arbitrary, we get

< v2, v1 >= 0, for all v1 ∈ V1.

Because v2 is in rad(V2), we have

< v2, v >= 0, for all v ∈ V .

Since V is nondegenerate, the vector v2 must be zero. We proved that V2 is non-
degenerate since rad(V2) is zero. The same proof works for showing that V1 is
nondegenerate, where this time we fix v1 in rad(V1) in (6.4) and let v2 vary in an
arbitrary irreducible summand of V2.

Now denote by ϕ(t) the subrepresentation of WF × SL2(C) on V1 and by ϕ(n) the
subrepresentation of WF × SL2(C) on V2. It is clear thatϕ(t) is in!(t)(SO2n∗+1). The
representation ϕ(n) is a direct sum of irreducible representations of WF × SL2(C)
in each of which ϕ(n)(WF ) is unbounded. Since ϕ(n) is self-dual (symplectic, in
particular), it is clear that it has the form as in (6.2). !

By using the structure of the local Langlands parameters given in Proposition
6.1, the special cases of local Langlands reciprocity law for SO2n+1 in Sections 1–5,
and the local Langlands reciprocity law for GL in [H.T.] and in [H1], we obtain the
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following version of local Langlands reciprocity law for irreducible representations
of SO2n+1(F), which is a restatement of Theorem A in the Introduction.

Theorem 6.1. The local Langlands reciprocity map defined in Theorem 4.2
has a unique extension to a bijection y between the set !(SO2n+1) and the set of
equivalence classes of irreducible admissible representations of SO2n+1(F), which
are Langlands quotients of induced representations

δ(*1) × · · · × δ(* f ) ! σ (t)(6.5)

where σ (t) is an irreducible generic tempered representation of SO2n∗+1(F), and

*1,*2, . . . ,* f

are imbalanced segments, whose exponents are positive and in non-increasing
order. This bijection y preserves twisted local factors:

L(ϕ ⊗ ϕ′, s) = L(y(ϕ) × r (ϕ′), s)(6.6)

ε(ϕ ⊗ ϕ′, s,ψ) = ε(y(ϕ) × r (ϕ′), s,ψ)(6.7)

for all admissible homomorphisms ϕ′ : WF × SL2(C) → GLk(C) with all k ∈ Z>0,
where r is given in [H.T.] and in [H1].

Proof. For a given ϕ in !(SO2n+1), we write, as in Proposition 6.1,

ϕ = ϕ(t) ⊕ ϕ(n).

By Theorem 4.2 and the local Langlands conjecture for GLk(F) ([H.T.] and [H1]),
we define

σ (t) = y(ϕ(t))(6.8)

*i = [ν−qi r (ϕi ), ν−qi +wi r (ϕi )], i = 1, 2, · · · , f.(6.9)

Thenσ (t) is an irreducible, generic, tempered representation of SO2n∗+1(F). Let now
y(ϕ) be the Langlands quotient of the representation in (6.5). It follows that the map
y preserves the twisted local factors as stated. It follows also from the construction,
Theorem 4.2, [H.T.] and [H1] that the map y is bijective. The uniqueness of such
extension y follows from the local converse theorem we proved in [Jng.S.] (Theorem
1.3). !

7. Applications. In this last section, we discuss applications of our results
obtained in Sections 1–6 to both local theory and global theory of automorphic
forms. In §7.1, we discuss the Gross-Prasad and Rallis conjecture for SO2n+1(F)
and in §7.2, we obtained interesting applications to automorphic representations.

7.1. On a conjecture of Gross-Prasad and Rallis. Let G be a reductive
group which is split over F and G∨(C) be its Langlands dual group. A local
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Langlands parameter

ϕ : WF × SL2(C) → G∨(C),

is called generic if there is an irreducible generic representation of G(F) attached
to ϕ by the local Langlands reciprocity conjecture. In particular, if G = GLk , then
ϕ is generic if r (ϕ) is generic, where the map r is the local Langlands reciprocity
map for GL in [H.R.] and [H1]; and if G = SO2n+1, then ϕ is generic if y(ϕ) defined
in Theorem 6.1 is generic.

In the following, we shall verify a conjecture of Gross-Prasad and of Rallis for
GLn(F) and for SO2n+1(F) ([G.P., p. 977] and [K, p. 384]).

Conjecture (Gross-Prasad; Rallis). Let G be a reductive group which is split
over F and G∨(C) be its Langlands dual group. A local Langlands parameter

ϕ : WF × SL2(C) → G∨(C),

is generic if and only if the associated local adjoint L-function L(AdG∨ ◦ ϕ, s) is
regular at s = 1 (where AdG∨ is the adjoint representation of G∨(C) on the Lie
algebra of G∨(C).)

This conjecture is known for GLn(F) ([K]). We prove it here first for the
convenience of the reader.

Proposition 7.1. A local Langlands parameter

ϕ : WF × SL2(C) → GLn(C)

is generic, if and only if the associated adjoint L-function L(AdGLn ◦ ϕ, s) is regular
at s = 1.

Proof. By the definition of the adjoint L-function in this case, one has

L(AdGLn ◦ ϕ, s) = L(r (ϕ) × r̂ (ϕ), s).

Thus, for an irreducible representation π of GLn(F), it suffices to show that
L(π × π̂ , s) is holomorphic at s = 1, if and only if π is generic.

Write π as the Langlands quotient of an induced representation

δ(D1) × · · · × δ(D f )

where Di = [ν−ai ξi , ν
bi ξi ], ξi is an irreducible unitary supercuspidal representation

of GLni (F) and

bi − ai ≥ bi+1 − ai+1, for i = 1, 2, . . . , f − 1.

We may assume that ai ∈ R and bi ∈ −ai + Z≥0. By [Z], π is generic if and only
if there are no linkages among the segments {Di } f

i=1. We have

L(π × π̂ , s) =
∏

1≤i, j≤ f

L(δ(Di ) × ˆδ(D j ), s).
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Note that L(δ(Di ) × ˆδ(Di ), s) is holomorphic at s = 1. Indeed, write

δ(Di ) = ν
bi −ai

2 ,

(
ξi ,

ai + bi

2

)
.

By (0.17), we have

L(δ(Di ) × ˆδ(Di ), s) = L
(
,

(
ξi ,

ai + bi

2

)
×,
(
ξ̂i ,

ai + bi

2

)
, s
)

=
ai +bi +1∏

l=1

L(ξi × ξ̂i , s + ai + bi + 1 − l),

which is holomorphic and non-vanishing at s = 1 (since ai + bi + 1 − l ≥ 0).
It remains to show that for i )= j , the segments Di and D j are linked if and

only if

L(δ(Di ) × ˆδ(D j ), s)L(δ(D j ) × ˆδ(Di ), s)(7.1)

has a pole at s = 1. We may assume that ai + bi ≥ a j + b j .
Again, by (0.17), we have

L(δ(Di ) × ˆδ(D j ), s)L(δ(D j ) × ˆδ(Di ), s)(7.2)

=
a j +b j +1∏

l=1

L(ξi × ξ̂ j , s + bi + a j + 1 − l)L(ξ j × ξ̂i , s + ai + b j + 1 − l).

Clearly, a necessary condition for the last product to have a pole at s = 1, or for Di

to be linked to D j , is that

ξi
∼= ξ j .

Thus, we may assume that ξi = ξ j . In this case, if the product in (7.2) has a pole at
s = 1, then there is at least one 1 ≤ l ≤ a j + b j + 1 such that

l = 2 + ai + b j or l = 2 + a j + bi .

This implies that ai ∈ a j + Z. If l = 2 + a j + bi , then

−a j − 1 ≤ bi ≤ b j − 1.

Since ai + bi ≥ a j + b j , we conclude that Di and D j are linked in such a way
that bi < b j . If l = 2 + ai + b j , then the same argument yields that Di and D j are
linked in such a way that bi > b j .

Conversely, if Di and D j are linked, then we have either (1) b j > bi and a j < ai

or (2) b j < bi and a j > ai . In case (1), we have

a j + bi < a j + b j ≤ ai + bi < ai + b j .

Then there is an integer 1 ≤ l ≤ a j + b j + 1 such that l = 2 + a j + bi . For this
value of l the L-factor L(ξi × ξ̂ j , s + bi + a j + 1 − l) has a pole at s = 1. Since
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1
L(ξ j ×ξ̂i ,s)

is a polynomial in q−s , we know that the L-factor L(ξ j × ξ̂i , s + ai +
b j + 1 − l) does not vanish. Hence we know that the product in (7.2) has a pole at
s = 1. The same argument works for case (2). This proves Proposition 6.2. !

Now we consider the conjecture for SO2n+1(F). First the following character-
ization of the genericity of the local Langlands parameters is given by the classifi-
cation of irreducible generic representations of SO2n+1(F) in [M2].

Proposition 7.2. For any local Langlands parameter

ϕ : WF × SL2(C) → Sp2n(C),

the representation y(ϕ) defined in Theorem 6.1 is generic if and only if σ (t) and *i

(i = 1, 2, . . . , f ) defined in (6.8) and (6.9) satisfy the conditions of Definition 5.1
(with ρ(t) = .(σ (t))).

Now we prove the Gross-Prasad and Rallis conjecture for SO2n+1(F), which
is Part (3) of Theorem C in the Introduction.

Theorem 7.1. For any local Langlands parameter

ϕ : WF × SL2(C) → Sp2n(C),

the representation y(ϕ) defined in Theorem 6.1 is generic if and only if the associated
adjoint L-function L(AdSp2n

◦ ϕ, s) is regular at s = 1.

Proof. First we show that if y(ϕ) is generic, then L(AdSp2n
◦ ϕ, s) is regular at

s = 1. We use previous notations as well as those in Section 5.
Write ϕ = ϕ(t) ⊕ ϕ(n) as in (6.1) and from (6.2), we let

θ =
f⊕

i=1

| · |
wi
2 −qiϕi ⊗ Swi +1,(7.3)

so that ϕ(n) = θ ⊕ θ̂ . Then we have by a direct calculation that

L
(
AdSp2n

◦ ϕ, s
)

= L(θ ⊗ θ̂ , s) · L(θ ⊗ ϕ(t), s) · L(θ̂ ⊗ ϕ(t), s) ·(7.4)

·L
(
AdSp2n∗ ◦ ϕ(t), s

)
· L(sym2 ◦ θ, s) · L(sym2 ◦ θ̂ , s).

We show that each factor in the above product is holomorphic at s = 1. By
Theorems 4.1 and 4.2 and by [H.T.] and [H1], we have

L(θ ⊗ θ̂ , s) = L(r (θ ) × r̂ (θ ), s),(7.5)

L(θ ⊗ ϕ(t), s) = L(r (θ ) × ρ(t), s),

L(θ̂ ⊗ ϕ(t), s) = L(r̂ (θ ) × ρ(t), s),
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where ρ(t) = .(σ (t)) = .(y(ϕ(t))) and r (θ ) = δ(*1) × · · · × δ(* f ). By Conditions
(1) and (2) of Definition 5.1, the representations r (θ ) and π = r (θ ) ⊗ ρ(t) are
irreducible and generic. Hence by Proposition 7.1, we know that L(π × π̂ , s) is
holomorphic at s = 1. Since L(π × π̂ , s) can be expressed as

L(π × π̂ , s) = L(r (θ ) × ˆr (θ ), s) · L(r (θ ) × ρ(t), s) · L( ˆr (θ ) × ρ(t), s)(7.6)

· L(ρ(t) × ρ(t), s)

and the last L-factor in (7.6), L(ρ(t) × ρ(t), s) does not vanish at s = 1, it follows
that

L(θ ⊗ θ̂ , s) · L(θ ⊗ ϕ(t), s) · L(θ̂ ⊗ ϕ(t), s)

is holomorphic at s = 1. Note that this product of three L-functions occurs in (7.4).
As in Theorem 6.1, we know that ρ(t) = .(σ (t)) is an irreducible tempered

(generic) representation of GL2n∗(F). By Proposition 7.1, we have

L(ρ(t) × ρ̂(t), s) = L
(
AdGL2n∗ ◦ ϕ(t), s

)

is regular at s = 1. This implies the holomorphicity at s = 1 of L(AdSp2n∗ ◦ ϕ(t), s),
since L(AdSp2n∗ ◦ ϕ(t), s)−1 divides L(AdGL2n∗ ◦ ϕ(t), s)−1 (as polynomials in q−s).

It remains to show that both L(sym2 ◦ θ, s) and L(sym2 ◦ θ̂ , s) are holomorphic
at s = 1. It is easy to show that L(sym2 ◦ θ, s) is holomorphic at s = 1. Indeed,
since θ has positive exponents (in Proposition 6.1), the L-function L(θ ⊗ θ, s) is
holomorphic at s = 1. From the standard decomposition

L(θ ⊗ θ, s) = L(sym2 ◦ θ, s) · L(02 ◦ θ, s),

the L-factor L(sym2 ◦ θ, s) must be holomorphic at s = 1, since L(02 ◦ θ, s) does
not vanish at s = 1.

Finally, let us show that L(sym2 ◦ θ̂ , s) is regular at s = 1. Recall from (7.3)
that

θ =
f⊕

i=1

| · |
wi
2 −qiϕi ⊗ Swi +1.

We let θi := ϕi ⊗ Swi +1 in the following calculation. Then we have

L(sym2 ◦ θ̂ , s) =
f∏

i=1

L(sym2 ◦ θ̂i , s − wi + 2qi )(7.7)

×
∏

1≤i< j≤ f

L
(
θ̂i ⊗ θ̂ j , s − wi + w j

2
+ qi + q j

)
.

For 1 ≤ i < j ≤ f , we use the same argument as in the proof of Proposition
7.1 and obtain that

L
(
θ̂i ⊗ θ̂ j , s − wi + w j

2
+ qi + q j

)
= L(δ(*̂i ) × δ(*̂ j ), s)(7.8)
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is holomorphic at s = 1 since*i is not linked to *̂ j by Condition (1) of Definition
5.1. We have to calculate then the L-factors L(sym2 ◦ θ̂i , z), for i = 1, 2, . . . , f and
z = s − wi + 2qi .

It is an easy calculation from linear algebra that

sym2 ◦ (ϕ̂i ⊗ Swi +1) =
(
sym2 ◦ ϕ̂i

)
⊗
(
sym2 ◦ Swi +1

)
⊕
(
02 ◦ ϕ̂i

)
⊗
(
02 ◦ Swi +1

)
.

(7.9)

Now, recall (see for example [F.H., sec. 11.2, 11.3]) the formulae:

sym2(symmC2) =
[ m

2 ]⊕

k=0

sym2m−4kC2(7.10)

02(symmC2) =
[ m−1

2 ]⊕

k=0

sym2(m−1)−4kC2(7.11)

and recall that Swi +1 is the irreducible representation symwi of SL2(C). We obtain
the following formula

sym2(ϕ̂i ⊗ Swi +1) =




[ wi

2 ]⊕

k=0

(
sym2 ◦ ϕ̂i

)
⊗ S2wi −4k+1



(7.12)

⊕





[
wi −1

2

]

⊕

k ′=0

(
02 ◦ ϕ̂i

)
⊗ S2(wi −1)−4k+1



 ,

and an identity for L-factors

L
(
sym2 ◦ φ̂i , z

)
=

[ wi
2 ]∏

k=0

L
(
sym2 ◦ ϕ̂i , z + wi − 2k

)
(7.13)

·

[
wi −1

2

]

∏

k=0

L
(
02 ◦ ϕ̂i , z + wi − 1 − 2k

)
.

Replacing z = s − wi + 2qi in the last identity of L-factors, we see that it is enough
to show that all

L
(
sym2 ◦ ϕ̂i , s + 2qi − 2k

)
and L

(
02 ◦ ϕ̂i , s + 2qi − 1 − 2k ′)

are holomorphic at s = 1 for k = 0, 1, . . . , [ wi
2 ] and k ′ = 0, 1, . . . , [ wi −1

2 ].
Clearly, if ϕi is not self-dual, then all these L-factors are holomorphic on the

real line, and in particular at s = 1. Thus, we may assume that ϕi is self-dual. Recall
Henniart’s result from Theorem 6.3 in [Jng.S.] that L(sym2 ◦ ϕi , z) has a pole at
z = 0 if and only if L(r (ϕi ), sym2, z) has a pole at z = 0, and the same statement
holds for L(02 ◦ ϕi , z) and L(r (ϕi ),02, z) at z = 0.



P1: GIG

PB440-17 HIDA-0662G PB440-Hida-v4.cls December 10, 2003 7:23

generic representations and local langlands reciprocity law 513

If L(r (ϕi ), sym2, s + 2qi − 2k) has a pole at s = 1, for some 0 ≤ k ≤ [ wi
2 ],

then 1 + 2qi − 2k = 0 since r (ϕi ) is an irreducible, self-dual, supercuspidal repre-
sentation of GL∗(F). It follows that

−qi = 1
2

− k ∈ 1
2

+ Z−.(7.14)

Since −qi + wi ≥ −qi + wi
2 > 0, we conclude from (7.14) that −qi + wi ∈ 1

2 +
Z≥0. Since −qi ≤ 1

2 (by (7.14)), it follows that

1
2

∈ {−qi , −qi + 1, . . . , −qi + wi }.

This contradicts Conditions (3b) and (3c) in Definition 5.1. Since Condition
(3a) of Definition 5.1 is not valid in this case, we conclude that the L-factor
L(r (ϕi ), sym2, s + 2qi − 2k) is holomorphic at s = 1, for all 0 ≤ k ≤ [ wi

2 ].
If L(r (ϕi ),02, s + 2qi − 1 − 2k) has a pole at s = 1 for some 0 ≤ k ≤ [ wi −1

2 ],
then

−qi = −k ∈ Z−.

As before, −qi + wi is a positive integer, and in particular,

−qi + wi ≥ 1.

We conclude that

0, 1 ∈ {−qi , −qi + 1, . . . , −qi + wi }.
This contradicts Condition (3c) of Definition 5.1. Since both Conditions (3a) and
(3b) are not valid in this case, we conclude that the L-factor L(r (ϕi ),02, s + 2qi −
1 − 2k) is holomorphic at s = 1 for all 0 ≤ k ≤ [ wi −1

2 ]. This completes the proof
of the holomorphicity at s = 1 of the adjoint L-function L(AdSp2n

◦ ϕ, s) when ϕ
in !(SO2n+1) is a generic parameter.

Conversely, we now prove that if a local Langlands parameter ϕ in!(SO2n+1)
is not generic, then the adjoint L-function L(AdSp2n

◦ ϕ, s) must have a pole at
s = 1.

Assume that ϕ ∈ !(SO2n+1) is not generic. Then

*1, . . . ,* f , and ρ(t) = .(σ (t))

do not satisfy the conditions in Definition 5.1. If Condition (1) is not satisfied,
then there are 1 ≤ i )= j ≤ f such that *i is linked to * j or *̂ j . By the proof of
Proposition 7.1, the product

L(δ(*i ) × δ(*̂ j ), s)L(δ(* j ) × δ(*̂i ), s)L(δ(*i ) × δ(* j ), s)L(δ(*̂i ) × δ(*̂ j ), s)
(7.15)

has a pole at s = 1. This implies that L(Ad ◦ ϕ, s) has a pole at s = 1 since the
product in (7.15) is a factor in L(AdSp2n

◦ ϕ, s).
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If Condition (2) in Definition 5.1 is not satisfied, then the representation

r (θ) × ρ(t)

is reducible and its Langlands quotient π is non-generic. By Proposition 7.1, the
product in (7.6) has a pole at s = 1. It is clear that the pole at s = 1 of the product
in (7.6) must occur at the product of the first three factors, since the last one is
holomorphic at s = 1. Since the product of the first three factors in (7.6) occurs in
L(AdSp2n

◦ ϕ, s), we see that L(AdSp2n
◦ ϕ, s) has a pole at s = 1 in this case.

Finally, if there is an integer 1 ≤ i ≤ f such that Condition (3) of Definition
5.1 is not satisfied, then ϕi is self-dual,*i is not linked to an element of A2(ρ(2)) and
r (ϕi ) does not satisfy Condition (3c), where ρ(2) = .(σ (2)) and σ (2) is the irreducible
discrete series generic representation occurring in σ (t). In the following, σ (0) is the
irreducible supercuspidal generic representation occurring in σ (2).

Put ξi = r (ϕi ). Since ξi is self-dual, (ξi , σ
(0)) is (Cα) for α = 1, 0, or 1

2 . We
show in each case that

L
(
sym2 ◦ φ̂i , s − wi + 2qi

)

has a pole at s = 1, which is equivalent to showing that the product

[ wi
2 ]∏

k=0

L
(
sym2 ◦ ϕ̂i , s + 2qi − 2k

)
·

[
wi −1

2

]

∏

k ′=0

L
(
02 ◦ ϕ̂i , s + 2qi − 1 − 2k ′)(7.16)

has a pole at s = 1 (see (7.13)).
Assume that (ξi , σ

(0)) is (C1) (in particular it is not (C 1
2 ) or (C0)). Then at least

one of ±1 is in

{−qi , −qi + 1, . . . , −qi + wi }.

In particular, qi ∈ Z. Since L(ξi ,0
2, s) has a pole at s = 0, (7.16) will have a pole

at s = 1 if there is a solution 0 ≤ k ′ ≤ [ wi −1
2 ] to the equation

1 + 2qi − 2k ′ − 1 = 0,

that is, k ′ = qi . We have to show that 0 ≤ qi ≤ [ wi −1
2 ]. If qi < 0, then qi ≤ −1, and

so −qi ≥ 1. This implies that −qi = 1. Since L(σ (0) × ξi , s) has a pole at s = 1,
this means that *i is linked to an element of A(ρ(2)). By the present assumption,
we know that *i is linked to an element of A0(ρ(2)) ∪ A1(ρ(2)). This implies, in
particular, that *i is linked to a segment of ρ(t), which means that Condition (2)
of Definition 5.1 is violated. But, in this case we already showed that L(Ad ◦ ϕ, s)
has a pole at s = 1. Therefore, we may assume that qi ≥ 0. Since qi < wi

2 , we get

0 ≤ qi ≤
[

wi − 1
2

]
, qi ∈ Z.
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Thus, the second product of (7.16) has a pole at s = 1, since its factor corresponding
to k ′ = qi has a pole at s = 1.

Next, assume that (ξi , σ
(0)) is (C0) (in particular it is not (C 1

2 ) or (C1)). Then
we must have

0 ∈ {−qi , −qi + 1, . . . , −qi + wi }.

Hence qi ∈ Z. As in the last case, we have to show that

0 ≤ qi ≤
[

wi − 1
2

]
, qi ∈ Z.

This is clear, since −qi ≤ 0 in this case (recall that qi < wi
2 ).

The last case is that (ξi , σ
(0)) is (C 1

2 ) (in particular it is not (C0) or (C1)). Then
at least one of ± 1

2 lies in

{−qi , −qi + 1, . . . , −qi + wi }.

In particular, qi ∈ 1
2 + Z and −qi ≤ 1

2 . Since L(ξi , sym2, s) has a pole at s = 0,
(7.16) has a pole at s = 1 if there is a solution 0 ≤ k ≤ [ wi

2 ] to the equation

1 + 2qi − 2k = 0,

which means that k = qi + 1
2 . Thus, we have to show that

0 ≤ qi + 1
2

≤
[wi

2

]
, qi ∈ 1

2
+ Z.

This follows exactly from the assumption and the fact that wi
2 − qi > 0. The proof

of Theorem 7.1 is completed. !

7.2. Applications to automorphic representations. Let k be a number field
and A be the ring of adeles of k. Our first application concerns the (global) Langlands
functorial lift from irreducible generic cuspidal automorphic representations of
SO2n+1(A) to GL2n(A). Recall that the Langlands dual group of SO2n+1 is Sp2n(C),
and the functorial lift we are concerned with is attached to the natural embedding
of Sp2n(C) into GL2n(C).

Let σ be an irreducible generic cuspidal automorphic representation of SO2n+1

(A). An irreducible automorphic representation π of GL2n(A) is called a Langlands
functorial lift of σ from SO2n+1(A) if at all local places, the local componentπv ofπ
is a local Langlands functorial lift of the local component σv , which is equivalent to
the compatibility of local factors at all places. In general, the definition of Langlands
functorial lift is given in terms of global L-packets [B]. A weak version of this
Langlands functorial lift was established in [C.K.PS.S], which states that there is an
irreducible automorphic representationπ of GL2n(A) such that the local component
πv of π is a local Langlands functorial lift from the local component σv of σ at all
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archimedean places, and at almost all finite places where σv are unramified. Such
a weak version of a Langlands functorial lift is usually called a weak lift.

It follows from the strong multiplicity one theorem for GL of H. Jacquet and J.
Shalika [J.S.] that the image of the weak lift of σ is unique. The precise character-
ization of the structure of the image was given in [G.R.S]. In particular, the image
of the weak lift is generic in the sense that it has a non-zero Whittaker-Fourier
coefficient. It follows from [C.K.PS.S] that if π is the weak lift of σ , then at each
local place v the twisted local gamma factors are preserved, i.e.,

γ (σv × τ, s,ψ) = γ (πv × τ, s,ψ)(7.17)

where τ is any irreducible supercuspidal representation of GLl(kv ) for l = 1, 2, . . . ,
and ψ is a given nontrivial additive character of kv .

We remark that for representations of p-adic groups in general the preservation
of the twisted local gamma factors as in (7.17) is generally not enough to assure
that the two representations are related by the local Langlands functorial lift. See
the discussion in the proof of Part (b) of Theorem 5.2 and the remarks afterwards.
However, in the special case that σv and πv are the local components of σ and π ,
respectively, we can show that πv is the local Langlands lift of σv . This is done
as follows by applying Theorem 5.1 in Section 5 and the argument in [C.K.PS.S]
which prove the existence of the weak lift.

The idea is now very simple. By using the local Langlands functorial lift from
SO2n+1 to GL2n for irreducible representations at archimedean places and for irre-
ducible unramified representations at finite places, an irreducible admissible repre-
sentationπ ′ of GL2n(A) was chosen in [C.K.PS.S] so that the associated L-functions
with restricted twisting have the “nice” analytic properties as required for applica-
tion of the Converse Theorem. Now Theorem 5.1 establishes the local Langlands
functorial lift for irreducible generic representations of SO2n+1(kv ) for any finite
local place v . For each finite local place v0 where σv0 is ramified, we treat the local
place v0 in the same way as archimedean places are treated in [C.K.PS.S], i.e., we
choose the local component π ′

v0
of π ′ to be the one given by Theorem 5.1. Then we

repeat the proof exactly as the one given in [C.K.PS.S] and conclude the existence
of an irreducible automorphic representation π which has the property that

πv
∼= π ′

v

for all archimedean places and for almost all finite places where σv are unramified,
and also for the given local finite place v0. Hence the weak lift so obtained is
compatible with the local Langlands functorial lift at the finite place v0. Since the
image of the weak lift is uniquely determined by σ , we have thus proved that the
weak lift given in [C.K.PS.S] is compatible with the local Langlands functorial lift
at every local place. This is Theorem E in the Introduction.

Theorem 7.2. The weak (global) Langlands functorial lift from irreducible
generic cuspidal automorphic representations of SO2n+1(A) to GL2n(A) given in
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[C.K.PS.S] is compatible with the local Langlands functorial lift at every local
place. In particular, at each finite place, the local Langlands lift is given explicitly
by Theorem 5.1.

As a consequence of Theorems 5.1, 5.2, and 7.2, we may give a certain de-
scription of the structure of local components of irreducible generic cuspidal au-
tomorphic representations of SO2n+1(A) and of the local Langlands parameters of
local components of irreducible self-dual cuspidal automorphic representations π
of GL2n(A) whose exterior square L-function L(π,02, s) has a pole at s = 1.

Let σ be an irreducible generic cuspidal automorphic representation of
SO2n+1(A) and let σv be the local component of σ at a finite place v . Then σv

is generic, and hence σv can be written as

σv = δv (*1) × · · · × δv (* fv ) ! σ (t)
v ,(7.18)

so that *1, . . . ,* fv and σ (t)
v satisfy the Conditions of Definition 5.1 (with ρ(t) =

.(σ (t))).

Corollary 7.1. If σv (as given in (7.18)) is the local component of an irre-
ducible generic cuspidal automorphic representation σ of SO2n+1(A), then there
is no 1 ≤ i ≤ fv such that the segments *i and *̂i are linked.

Proof. By Theorem 7.2, the local Langlands functorial lift .(σv ) constructed in
Theorem 5.1 is a local component of an irreducible generic automorphic represen-
tation of GL2n(A). In particular, .(σv ) is generic. Now the conclusion follows from
Theorem 5.1 again. !

It is also interesting to characterize by the criterion in Part (a) of Theorem
5.2, the structure of the local components at finite places of an irreducible generic
cuspidal automorphic representation σ of SO2n+1(A), but we will not make this
explicit here.

Finally, we consider an irreducible, automorphic, self-dual, cuspidal represen-
tation π of GL2n(A) such that the exterior square L-function L(π,02, s) has a pole
at s = 1. By the backward lift from GL2n to SO2n+1, established in [G.R.S], there
exists an irreducible, automorphic, cuspidal, generic representationσ of SO2n+1(A),
which has a weak lift to π . By Theorem 7.2, each local component πv of π is the
local Langlands functorial lift of σv . Therefore we have the following Theorem,
which is Theorem D in the Introduction.

Theorem 7.3. Let π be an irreducible, automorphic, self-dual, cuspidal rep-
resentation π of GL2n(A), such that the exterior square L-function L(π,02, s) has
a pole at s = 1. Let ϕv be the local Langlands parameter attached to the local com-
ponent πv at v of π (by the local Langlands reciprocity law for GL2n established in
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[H.T.] and [H1]). Then for every local place v, ϕv is symplectic, i.e., the parameter
ϕv is a local Langlands parameter for SO2n+1.

School of Mathematics, University of Minnesota, Minneapolis, MN
55455, U.S.A

School of Mathematical Sciences, Sackler Faculty of Exact Sciences,
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CHAPTER 18

LARSEN’S ALTERNATIVE, MOMENTS, AND THE MONODROMY
OF LEFSCHETZ PENCILS

By Nicholas M. Katz

To Joe Shalika on his 60th birthday

Introduction. We work over an algebraically closed field “C” of character-
istic zero. Let V be a C-vector space of dimension N ≥ 2. We fix a (not necessarily
connected) Zariski closed subgroup G ⊂ GL(V ) which is reductive (i.e., every
finite-dimensional representation of G is completely reducible). We are interested
in criteria which guarantee that G is one of the standard classical groups, i.e., that
either G is caught between SL(V ) and GL(V ), or that G is one of SO(V ), O(V ), or
(if dim (V ) is even) Sp(V ).

Larsen’s Alternative (cf. [Lar-Char] and [Lar-Normal]) is a marvelous criterion,
in terms of having a sufficiently small “fourth moment,” which guarantees that G
is either a standard classical group or is a finite group. We have already made use
of this criterion in [Ka-LFM, page 113]. In that application, we were content with
either alternative.

However, in many applications, especially to the determination of (Zariski
closures of) geometric monodromy groups in explicitly given families, we want to
be able to rule out the possibility that G be finite. Failing this, we would at least
like to have a better understanding of the cases in which G can in fact be finite.

Part I of this paper represents very modest progress toward these two goals.
Toward the first goal, we give criteria for ruling out the possibility that G be finite.
These criteria rely on the observation that if G is finite and has a sufficiently small
fourth moment, it must be primitive. This observation in turn allows us to bring to
bear the classical results of Blichfeld and of Mitchell, and the more recent results
of Wales and Zalesskii. Toward the second goal, we give examples of finite G with
a very low fourth moment.

In Part II, we apply the results proven in Part I to the monodromy of Lefschetz
pencils. Start with a projective smooth variety X of dimension n + 1 ≥ 1, and
take the universal family of (or a sufficiently general Lefschetz pencil of) smooth
hypersurface sections of degree d. By its monodromy group Gd , we mean the Zariski
closure of the monodromy of the local system Fd on the space of all smooth, degree
d, hypersurface sections, given by

H #→ H n (X ∩ H )/H n (X ).

Let us denote by Nd the rank of this local system.

521
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For n odd, the monodromy group Gd is the full symplectic group Sp(Nd), cf.
[De-Weil II, 4.4.1 and 4.4.2a].

For n = 0, X is a curve, X ∩ H is finite, Nd + 1 = Card ((X ∩ H )(k)) =
d × deg (X ), and the monodromy group Gd is well known to be the full symmetric
group SNd+1 := Aut ((X ∩ H )(k)), cf. 2.4.4.

For n ≥ 2 and even, the situation is more involved. Deligne proved [De-Weil II,
4.4.1, 4.4.2s , and 4.4.9] that the monodromy group Gd is either the full orthogonal
group O(Nd) or a finite reflection group, and that the only finite reflection groups
that arise are the Weyl groups of root systems of type A, D, or E in their standard
representations. Deligne needed this more precise information for his pgcd theorem
[De-Weil II, 4.5.1], where the O(Nd) case was easy, but the finite case required
case by case argument. Using the criteria developed in Part I, we show that the
monodromy group Gd is in fact the full orthogonal group O(Nd) for all sufficiently
large d (more precisely, for all d with d ≥ 3 and Nd > 8, and also for all d with
d ≥ 7 and Nd > 2, cf. 2.2.4, 2.2.15, and 2.3.6).

Acknowledgments. I would like to thank CheeWhye Chin for his assistance in
using the computer program GAP [GAP] to compute moments of exceptional Weyl
groups. I would also like to thank the referee, for suggesting Theorem 2.3.6.

Part I: Group Theory

1.1. Review of Larsen’s Alternative

1.1.1. Recall that C is an algebraically closed field of characteristic zero, V is
a C-vector space of dimension N ≥ 2, and G is a Zariski closed, reductive subgroup
of GL(V ).

1.1.2. For each pair (a, b) of non-negative integers, we denote by Ma,b(G, V )
the dimension of the space of G-invariant vectors in V ⊗a ⊗ (V ∨)⊗b:

Ma,b(G, V ) := dimC (V ⊗a ⊗ (V ∨)⊗b)G .(1.1.2.1)

We call Ma,b(G, V ) the (a, b)’th moment of (G, V ). For each even integer 2n ≥ 2,
we denote by M2n(G, V ) the 2n’th absolute moment, defined by

M2n(G, V ) := Mn,n(G, V ).(1.1.2.2)

If H is any subgroup of G, we have the a priori inequalities

Ma,b(G, V ) ≤ Ma,b(H, V )(1.1.2.3)

for every (a, b).

1.1.3. The reason for the terminology “moments” is this. If C is the field of
complex numbers, and if K ⊂ G(C) is a maximal compact subgroup of G(C)an,
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then K is Zariski dense in G (Weyl’s unitarian trick). If we denote by dk the Haar
measure on K of total mass one, and by

χ : G(C) → C

χ (g) := Trace (g|V ),

the character of V as G-module, then we have the formulas

Ma,b(G, V ) =
∫

K
χ (k)aχ (k)bdk,(1.1.3.1)

M2n(G, V ) =
∫

K
|χ (k)|2ndk.(1.1.3.2)

Thus the terminology “moments” and “absolute moments”.

1.1.4. The most computationally straightforward interpretation of the 2n’th
absolute moment M2n(G, V ) is this. Decompose the G-module V ⊗n as a sum of
irreducibles with multiplicities:

V ⊗n ∼= ⊕i mi Wi .(1.1.4.1)

Then by Schur’s Lemma we have

M2n(G, V ) = "i (mi )2.(1.1.4.2)

More precisely, given any decomposition of V ⊗n as a sum of (not necessarily
irreducible) G-modules Vi with (strictly positive integer) multiplicities mi ,

V ⊗n ∼= ⊕i mi Vi ,(1.1.4.3)

we have the inequality

M2n (G, V ) ≥ "i (mi )2,(1.1.4.4)

with equality if and only if the Vi are distinct irreducibles.

1.1.5. If n is itself even, say n = 2m, there is another interpretation of
M4m(G, V ). Decompose the G-module V ⊗m ⊗ (V ∨)⊗m = End (V ⊗m) as a sum
of irreducibles with multiplicities:

End (V ⊗m) ∼= ⊕i ni Wi .(1.1.5.1)

Then we have, again by Schur’s Lemma,

M4m(G, V ) = "i (ni )2.(1.1.5.2)

More precisely, given any decomposition of End (V ⊗m) as a sum of (not necessarily
irreducible) G-modules Vi with (strictly positive integer) multiplicities ni ,

End (V ⊗m) ∼= ⊕i ni Vi ,(1.1.5.3)
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we have the inequality

M2n (G, V ) ≥ "i (ni )2,(1.1.5.4)

with equality if and only if the Vi are distinct irreducibles.

Theorem 1.1.6. (Larsen’s Alternative, cf. [Lar-Char], [Lar-Normal], [Ka-
LFM, page 113]) Let V be a C-vector space of dimension N ≥ 2, G ⊂ GL(V )
a (not necessarily connected) Zariski closed reductive subgroup of GL(V).

(1) If M4(G, V ) ≤ 5, then V is G-irreducible.
(2) If M4(G, V ) = 2, then either G ⊃ SL(V ), or G/(G ∩ scalars) is finite. If

in addition G ∩ scalars is finite (e.g., if G is semisimple), then either G0 = SL(V ),
or G is finite.

(3) Suppose <,> is a nondegenerate symmetric bilinear form on V, and suppose
G lies in the orthogonal group O(V ) := Aut (V, <, >). If M4(G, V ) = 3, then
either G = O(V ), or G = SO(V ), or G is finite. If dim (V) is 2 or 4, then G is not
contained in SO(V).

(4) Suppose <,> is a nondegenerate alternating bilinear form on V (such a
form exists only if dim (V) is even), suppose G lies in the symplectic group Sp(V ) :=
Aut (V, <, >), and suppose dim (V) > 2. If M4(G, V ) = 3, then either G = Sp(V ),
or G is finite.

Proof. To prove 1), suppose that V = V1 ⊕ V2 is the direct sum of two non-zero
G-modules. Then we have a G-isomorphism

V ⊗2 ∼= (V1)⊗2 ⊕ (V2)⊗2 ⊕ 2(V1 ⊗ V2),

and this in turn forces M4 (G, V ) ≥ 1 + 1 + 22 = 6.
To prove 2), we use the second interpretation (1.1.5) of M4 (G, V ). If

M4 (G, V ) = 2, then End (V ) is the sum of two distinct irreducible representations
of G. But under the bigger group GL(V ), End (V ) is the sum of two representations
of GL(V ), namely

End (V ) = End0 (V ) ⊕ 1 = Lie (SL(V )) ⊕ 1.

(The two summands are inequivalent irreducible representations of GL(V ), but we
will not use this fact.) Because M4 (G, V ) = 2, this must be the decomposition of
End (V ) as the sum of two distinct irreducible representations of G. In particular,
Lie (SL(V )) is G-irreducible.

The derived group Gder lies in SL(V ), so Lie (Gder) lies in Lie (SL(V )). As Gder

is a normal subgroup of G, Lie (Gder) is a G-stable submodule of Lie (SL(V )).
So by the G-irreducibility of Lie (SL(V )), either Lie (Gder) = Lie (SL(V )), or
Lie (Gder) = 0. In the first case, (Gder)0 = SL(V ), and so G ⊃ SL(V ). Thus if in
addition G ∩ scalars is finite, G0 is SL(V ).

In the second case, Gder is finite. For any fixed element γ in G(C), the morphism
from G0 to Gder defined by g #→ gγ g−1γ −1 is therefore the constant map g #→ e.
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Therefore G0 lies in Z (G). As G acts irreducibly on V , its center Z (G) lies in
the Gm of scalars. But G0 ⊂ Z (G), so G0 lies in the Gm of scalars. Therefore
G0 ⊂ G ∩ scalars, whence G/(G ∩ scalars) is finite. So if in addition G ∩ scalars
is finite, then G is finite.

To prove 3), use the first interpretation (1.1.4) of M4 (G, V ). If M4 (G, V ) = 3,

then V ⊗2 is the sum of three distinct irreducible representations of G. Under GL(V ),
we first decompose

V ⊗2 = Sym2 (V ) ⊕ $2 (V ).

As O(V )-modules, we have an isomorphism

$2 (V ) ∼= Lie (SO(V ))

and the further decompostion

Sym2 (V ) = SphHarm2 (V ) ⊕ 1.

Thus as O(V )-module, we have the three term decomposition

V ⊗2 = SphHarm2 (V ) ⊕ 1 ⊕ Lie (SO(V )).

(For dim (V ) ≥ 2, the three summands are distinct irreducible representations of
O(V ). If dim (V ) is neither 2 nor 4, they are distinct irreducible representations of
SO(V ). For n = 2 (resp. n = 4), SphHarm2 (V ) (resp. Lie (SO(V ))) is a reducible
representation of SO(V ). We will not use these facts.)

If M4 (G, V ) = 3, then

V ⊗2 = SphHarm2 (V ) ⊕ 1 ⊕ Lie (SO(V ))

must be the decomposition of of V ⊗2 as the sum of three distinct irreducible rep-
resentations of G.

We now exploit the fact that Lie (SO(V )) is G-irreducible. Since G ⊂ O(V ),
G0 ⊂ SO(V ), so Lie (G0) is a G-stable submodule of Lie (SO(V )). By G-
irreducibility, Lie (G0) is either Lie (SO(V )) or is zero. If Lie (G0) = Lie (SO(V )),
then G0 is SO(V ) and G, being caught between SO(V ) and O(V ), is either SO(V )
or O(V ). If Lie (G0) is zero, then G is finite.

If dim (V ) is 2 or 4, we claim G cannot lie in SO(V ). Indeed, for dim (V ) =
2, SO(V ) is Gm , Lie (SO(V )) is 1 as SO(V )-module, and SphHarm2 (V ) is SO(V )-
reducible, so if G ⊂ SO(V ) then M4 (G, V ) ≥ 6. If dim (V ) = 4, then SO(4) is
(SL(2) × SL(2)) / ± (1,1), hence Lie (SO(4)) is SO(4)-reducible: so if G ⊂ SO(V )
then M4 (G, V ) ≥ 4.

To prove 4), we begin with the GL(V )-decomposition

V ⊗2 = Sym2 (V ) ⊕ $2 (V ).

As Sp (V )-modules, we have an isomorphism

Lie (Sp(V )) ∼= Sym2 (V ),
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and the further (because dim (V ) > 2) decomposition

$2(V ) = ($2(V )/1) ⊕ 1.

Thus as Sp(V )-module we have a three term deomposition

V ⊗2 = Lie (Sp(V )) ⊕ ($2(V )/1) ⊕ 1.

(The three summands are distinct irreducible representations of Sp (V ), but we
will not use this fact.) Exactly as in the SO case above, we infer that Lie (Sp (V )) is
G-irreducible. But G ⊂ Sp (V ), so Lie (G0) is a G-stable submodule of Lie (Sp (V )),
and so either Lie (G0) = Lie (Sp (V )), or Lie (G0) is zero. In the first case, G is
Sp (V ), and in the second case G is finite. !

1.2. Remarks

1.2.1. We should call attention to a striking result of Beukers, Brownawell,
and Heckmann, [BBH, Theorems A5 and A7 together], which is similar in spirit
to 1.1, though more difficult: if G is a Zariski closed subgroup of GL(V ) which
acts irreducibly on Sym2 (V ), then either G/(G ∩ scalars) is finite, or G contains
SL(V ), or dim (V ) is even and Sp (V ) ⊂ G ⊂ GSp (V ).

1.2.2. There are connected semisimple subgroups G ⊂ GL(V ) with
M4 (G, V ) = 3 other than SO(V ) (for dim (V ) ≥ 3, but .= 4) and Sp (V ) (for dim (V )
≥ 4). The simplest examples are these. Take a C-vector space W of dimension % + 1.
Then for V either Sym2 (W ), if % ≥ 2, or $2 (W ), if % ≥ 4, the image G of SL(W )
in GL(V ) has M4 (G, V ) = 3, but V is not self-dual as a representation of G (not
self-dual because we excluded the case % = 3, V = $2 (W )). Here is a bad proof.
In the Bourbaki notation [Bour-L8, page 188], Sym2 (W ) is the highest weight
module E (2ω1), and $2 (W ) is the highest weight module E(ω2). We use the first
interpretation (1.1.4) of the fourth absolute moment. We have

End (E(2ω1)) = E(2ω1) ⊗ E(2ω1)∨ = E(2ω1) ⊗ E(2ω%)(1.2.2.1)

and

End (E(ω2)) = E(ω2) ⊗ E(ω2)∨ = E(ω2) ⊗ E(ω%−1).(1.2.2.2)

Now End (any nontrivial representation of SL(W )) contain both the trivial repre-
sentation 1 of SL(W ) and its adjoint representation E(ω1 + ω%).

From looking at highest weights, we see that End (E(2ω1)) contains
E(2ω1 + 2ω%), and we see that End (E(ω2)) contains E (ω2 + ω%−1).

Thus we have a priori decompositions

End (E(2ω1)) = 1 ⊕ E(ω1 + ω%) ⊕ E(2ω1 + 2ω%) ⊕ (?),(1.2.2.3)

End (E(ω2)) = 1 ⊕ E(ω1 + ω%) ⊕ E(ω2 + ω%−1) ⊕ (?).(1.2.2.4)
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To see that in both cases there is no (?) term, it suffices to check that the dimensions
add up, an exercise in the Weyl dimension formula we leave to the reader.

1.2.3. Other examples are (the image of) E6 in either of its 27-dimensional
irreducible representations, or Spin(10) in either of its 16-dimensional spin repre-
sentations: according to simpLie [MPR], these all have fourth absolute moment 3.

1.3. The case of G finite: the primitivity theorem

1.3.1. What about finite groups G ⊂ GL(V ) with M4 (G, V ) = 2, or finite
groups G in O(V ) or Sp (V ) with M4 (G, V ) = 3?

Primitivity Theorem 1.3.2. Let V be a C-vector space of dimension
N ≥ 2, G ⊂ GL(V ) a finite subgroup of GL(V ). With the notations of the previous
theorem, suppose that one of the following conditions 1), 2), or 3) holds.

(1) M4 (G, V ) = 2
(2) G lies in O(V ), dim (V ) ≥ 3, and M4 (G, V ) = 3.
(3) G lies in Sp (V ), dim (V ) ≥ 4, and M4 (G, V ) = 3.
Then G is an (irreducible) primitive subgroup of GL(V ), i.e., there exists no

proper subgroup H of G such that V is induced from a representation of H.

1.3.3. Before giving the proof, we recall the following well-known lemma.

Lemma 1.3.4. Let G be a group, H a subgroup of G of finite index, and A and
B two finite-dimensional C-representations of H.

1. Denoting by ∨ the dual (contragredient) representation, we have a canonical
G-isomorphism

(

IndH
G (A)

)∨ ∼= IndH
G (A∨).

2. There is a canonical surjective G-morphism (“cup product”)
(

IndH
G (A)

)

⊗C

(

IndH
G (B)

)

→ IndH
G (A ⊗C B).

Proof of Lemma 1.3.4. Assertion 1) is proven in [Ka-TLFM, 3.1.3]. For asser-
tion 2), we view induction as Mackey induction, cf. [Ka-TLFM, 3.0.1.2]. Thus
IndH

G(A) is Homleft H−sets(G, A), with left G-action defined by (Lgϕ)(x) :=
ϕ(xg). We define a C-bilinear map

(

IndH
G(A)

)

⊗C

(

IndH
G(B)

)

→ IndH
G(A ⊗C B)

as follows. Given maps ϕ : G → A and ψ : G → B of left H -sets, we define their
cup product ϕ ⊗ ψ : G → A ⊗C B by

(ϕ ⊗ ψ)(x) := ϕ(x) ⊗ ψ(x).
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It is immediate that ϕ ⊗ ψ is a map of left H -sets, and so the cup product construc-
tion (ϕ, ψ) #→ ϕ ⊗ ψ is a C-linear map

(

IndH
G(A)

)

⊗C

(

IndH
G(B)

)

→ IndH
G(A ⊗C B).

This map is easily checked to be G-equivariant and surjective. !

Proof of Theorem 1.3.2. Let H be a subgroup of a finite group G, of finite index
d ≥ 2, and A be a finite-dimensional C-representation of H , of dimension a ≥ 1.
We wish to compute a lower bound for M4 (G, IndH

G(A)). To do this we attempt
to decompose IndH

G(A) ⊗ (IndH
G(A))∨ as a sum of G-modules. By the previous

lemma, we have a g-isomorphism
(

IndH
G(A)

)∨ ∼= IndH
G(A∨),

and a surjective G-map

IndH
G(A) ⊗ IndH

G(A∨) → IndH
G(A ⊗ A∨).

Its source has dimension d2a2, while its target has lower dimension da2, so this
map has a nonzero kernel “Ker,” which is a G-module of dimension (d2 − d)a2.
So we have a G-isomorphism

IndH
G(A) ⊗

(

IndH
G(A)

)∨ ∼= Ker ⊕ IndH
G(A ⊗ A∨).

Now the H -module A ⊗ A∨ = End (A) itself has an H -decomposition

End (A) ∼= End0 (A) ⊕ 1H ,

as the sum of the endomorphisms of trace zero with the scalars. [Of course, if A is
one-dimensional, then End0 (A) vanishes.] Thus we have a G-decomposition

IndH
G(A ⊗ A∨) ∼= IndH

G(End0 (A)) ⊕ IndH
G(1H ),

Now the trivial representation 1G occurs once in IndH
G(1H ), so we have a further

decomposition

IndH
G(1H ) ∼= IndH

G(1H )/1G ⊕ 1G .

So all in all we have a four term G-decomposition

IndH
G(A) ⊗

(

IndH
G(A)

)∨ ∼= Ker ⊕ IndH
G(End0 (A)) ⊕ IndH

G(1H )/1G ⊕ 1G,

in which the dimensions of the terms are respectively (d2 − d)a2, d(a2 − 1), d − 1,
and 1. So we obtain the a priori estimate

M4
(

G, IndH
G(A)

)

≥ 4 if dim (A) ≥ 2,

M4
(

G, IndH
G(A)

)

≥ 3 if dim (A) = 1.

Thus if M4 (G, V ) = 2, then G is a primitive subgroup of GL(V ).
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Suppose now that M4(G, V ) = 3, and that V is induced from a subgroup
H of G of finite index d ≥ 2, from an H -module A. Then dim (A) = 1, and
dim (V ) = d. Moreover, IndH

G(A) ⊗ (IndH
G(A))∨ is the sum of three distinct

irreducibles, of dimensions d2 − d, d − 1, and 1.
If we further suppose that G lies in either O(V ) or Sp (V ), then V ∼= IndH

G(A)
is self-dual, so we have a G-isomorphism

IndH
G(A) ⊗

(

IndH
G(A)

)∨ ∼= IndH
G(A) ⊗ IndH

G(A) ∼= V ⊗ V .

If G lies in O(V ), and dim (V ) ≥ 3, then we have the G-decomposition

V ⊗ V ∼= SphHarm2(V ) ⊕ $2(V ) ⊕ 1G .

In this decomposition, the dimensions of the terms are respectively
d(d + 1)/2 − 1, d(d − 1)/2, and 1. Since M4(G, V ) = 3, these three terms must
be distinct irreducibles. Thus V ⊗ V ∼= V ⊗ V ∨ is simultaneously presented as the
sum of three distinct irreducibles of dimensions d2 − d, d − 1, and 1, and the sum
of three distinct irreducibles of dimensions d(d + 1)/2 − 1, d(d − 1)/2, and 1. As
d ≥ 2, we have d(d + 1)/2 − 1 ≥ d(d − 1)/2. Comparing the dimensions of the
largest irreducible constituent in the two presentations, we find

d2 − d = d(d + 1)/2 − 1,

which forces d = 1 or 2, contradiction.
If G lies in Sp (V ), and dim (V ) ≥ 4, the argument is similar. We have the

G-decomposition

V ⊗ V ∼= Sym2 (V ) ⊕ $2(V )/1G ⊕ 1G .

into what must be three distinct irreducibles, of dimensions d(d + 1)/2,

d(d − 1)/2 − 1, and 1. Exactly as above, we compare dimensions of the largest
irreducible constituent in the two presentations. We find

d2 − d = d(d + 1)/2,

which forces d = 3, contradiction. !

Remark 1.3.5. In the primitivity theorem, when V is either symplectic or or-
thogonal, we required dim (V ) > 2. This restriction is necessary, because there
exist imprimitive finite groups G in both O(2) and in Sp (2) = SL(2) whose fourth
moment is 3 in their given representations. Indeed, fix an integer n ≥ 1 which is
not a divisor of 4, and denote by ζ a primitive n’th root of unity. The dihedral group
D2n ⊂ O(2) of order 2n (denoted Dn in [C-R-MRT, page 22]), the group generated
by Diag(ζ, ζ−1) and Antidiag (1, 1), is easily checked to have fourth moment 3 in its
given representation. If we further require n to be even, the generalized quaternion
group Q2n ⊂ SL(2) of order 2n (denoted Qn/2 in [C-R-MRT, page 23]), the group
generated by Diag(ζ, ζ−1) and Antidiag (1,−1), is easily checked to have fourth
moment 3 in its given representation.
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Tensor Indecomposability Lemma 1.3.6. Let V be a C-vector space
of dimension N ≥ 2, G ⊂ GL(V ) a finite subgroup of GL(V ). Suppose that
M4 (G, V ) ≤ 3. Then V is tensor-indecomposable in the following (strong) sense.
There exists no expression of the C-vector space V as a tensor product

V = V1 ⊗ V2

of C-vector spaces V1 and Y in such a way that all three of the following conditions
are satisfied:

dim (V1) ≥ 2,
dim (V2) ≥ 2,
every element g in G, viewed as lying in GL(V ) = GL(V1 ⊗ V2), can be written

in the form A ⊗ B with A in GL(V1) and with B in GL(V2).

Proof. If not, G lies in the image “GL(V1) ⊗ GL(V2)” of the product group
GL(V1) × GL(V2) in GL(V1 ⊗ V2). So we have the trivial inequality

M4(G, V ) = M4(G, V1 ⊗ V2) ≥ M4 (GL(V1) ⊗ GL(V2), V1 ⊗ V2).

But by definition

M4(GL(V1) ⊗ GL(V2), V1 ⊗ V2)

= dim (((V1 ⊗ V2)⊗2 ⊗ ((V1 ⊗ V2)∨)⊗2)GL(V1)×GL(V2))

= dim (((V1
⊗2 ⊗ (V1

∨)⊗2) ⊗ (V2
⊗2 ⊗ (V2

∨)⊗2))GL(V1)×GL(V2))

≥ dim (((V ⊗2
1 ⊗ (V ∨

1 )⊗2)GL(V1)) ⊗ ((V ⊗2
2 ⊗ (V ∨

2 )⊗2)GL(V2)))

= M4(GL(V1), V1) × M4(GL(V2), V2)

≥ 2 × 2 = 4. !

Normal Subgroup Corollary 1.3.7 [Larsen-Char, 1.6]. Let V be a
C-vector space of dimension N ≥ 2, G ⊂ GL(V ) a finite subgroup of GL(V ). Let
H be a proper normal subgroup of G. Suppose that one of the following conditions
1), 2), or 3) holds.

(1) M4(G, V ) = 2.
(2) G lies in O(V ), dim(V ) ≥ 3, and M4(G, V ) = 3.
(3) G lies in Sp(V ), dim(V ) ≥ 4, and M4(G, V ) = 3.
Then either H acts on V as scalars and lies in the center Z (G), or V is

H-irreducible.

Proof. By the Primitivity Theorem 1.3.2, G is primitive. So the restriction of
V to H must be H -isotypical, as otherwise V is induced. Say V |H ∼= nV1, for
some irreducible representation V1 of H . If dim (V1) = 1, then H acts on V as
scalars. But H ⊂ G ⊂ GL(V ), so H certainly lies in Z (G). If n = 1, then V = V1

is H -irreducible. It remains to show that the case where dim(V1) ≥ 2 and n ≥ 2
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cannot arise. To see this, write the vector space V as X ⊗ Y with X := V1 and
Y := HomH (V1, V ). Then dim(X ) and dim(Y ) are both at least 2, and, by [C-R-
MRT, 51.7], every element of g is of the form A ⊗ B with A in GL(X ) and B in
GL(Y ). But this contradicts the Tensor Indecomposability Lemma 1.3.5. !

1.4. Criteria for G to be big

1.4.1. We next combine these results with some classical results of Blichfeld
and of Mitchell, and with recent results of Wales and Zalesskii, to give criteria which
force G to be big. Recall that an element A in GL(V ) is called a pseudoreflection
if Ker(A − 1) has codimension 1 in V . A pseudoreflection of order 2 is called a
reflection. Given an integer r with 1 ≤ r < dim(V ), an element A of GL(V ) is
called quadratic of drop r if its minimal polynomial is (T − 1)(T − λ) for some
nonzero λ, if V /Ker(A − 1) has dimension r , and if A acts on this space as the
scalar λ. Thus a quadratic element of drop 1 is precisely a pseudoreflection.

Theorem 1.4.2. Let V be a C-vector space of dimension N ≥ 2, G in GL(V )
a (not necessarily connected) Zariski closed reductive subgroup of GL(V ) with
M4(G, V ) = 2. Fix an integer r with 1 ≤ r < dim (V ). If any of the following
conditions is satisfied, then G ⊃ SL(V ).

(1) G contains a unipotent element A .= 1.
(2) G contains a quadratic element A of drop r which has finite order n ≥ 6.
(3) G contains a quadratic element A of drop r which has finite order 4 or 5,

and dim (V ) > 2r .
(4) G contains a quadratic element A of drop r which has finite order 3, and

dim (V ) > 4r .
(5) G contains a reflection A, and dim (V ) > 8.

Proof. Suppose we have already proven the theorem in the case when
G ∩ scalars is finite. To treat the remaining case, when G contains the scalars,
we make use of the following elementary lemma. !

Lemma 1.4.3. Let V be a C-vector space of dimension N ≥ 2, G ⊂ GL(V )
a (not necessarily connected) Zariski closed reductive subgroup of GL(V ) which
contains the scalars C×. For each integer d ≥ 1, denote by Gd ⊂ G the closed
subgroup

Gd := {g in G| det(g)d = 1}.

Then Gd is reductive, and for every integer n ≥ 1, we have

M2n(Gd, V ) = M2n(G, V ).
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Proof of Lemma 1.4.3. Since G contains the scalars, every element of G can be
written as λg1 with λ any chosen n’th root of det(g), and g1 := λ−1g an element of
G1. So we have G = GmGd for every d ≥ 1. So for every n ≥ 1, G and Gd acting
on V ⊗n(V ∨)⊗n have the same image in GL(V ⊗n(V ∨)⊗n) (simply because the scalars
in GL(V ) act trivially on V ⊗n(V ∨)⊗n). Therefore we have the asserted equality of
moments. Moreover, G being reductive, each V ⊗n(V ∨)⊗n is a completely reducible
representation of Gd . Each has a finite kernel (because its kernel in GL(V ) is the
scalars), so Gd is reductive. !

Proof of Theorem 1.4.2, suite. Thus if G contains the scalars, each Gd is re-
ductive, Gd ∩ scalars is finite, and Gd has fourth moment 2. So we already know
the theorem for Gd . In all of the cases 1) through 5), the given element A in G lies
in some Gd . So Gd ⊃ SL(V ), and we are done.

It remains to treat the case in which G ∩ scalars is finite. By Larsen’s theorem
together with the primitivity theorem, either G0 = SL(V ), or G is a finite irreducible
primitive subgroup of GL(V ). Suppose that G is a finite irreducible primitive sub-
group of GL(V ). We will show that each of the conditions 1) through 5) leads to a
contradiction

For assertion 1), the contradiction is obvious: a nontrivial unipotent element is
of infinite order.

Assertion 2) contradicts Blichfeld’s “60◦ theorem” [Blich-FCG, paragraph 70,
Theorem 8, page 96], applied to that power of A whose only eigenvalues are 1
and exp(2π i/n): in a finite irreducible primitive subgroup G of GL(N , C), if an
element g in G has an eigenvalue α such that every other eigenvalue of g is within
60◦ of α (on either side, including the endpoints), then g is a scalar.

Assertion 3) in the case n = 5 (resp. n = 4) contradicts a result of Zalesskii [Zal,
11.2] (resp. Wales [Wales, Thm. 1],) applied to A: if a finite irreducible primitive
subgroup G of GL(N , C) contains a quadratic element of drop r and order 5 (resp.
order 4), then dim(V ) = 2r .

Assertion 4) contradicts a result of Wales [Wales, section 5], applied to A: if a
finite irreducible primitive subgroup G of GL(N , C) contains a quadratic element
of drop r and order 3, then dim(V ) ≤ 4r .

Assertion 5) contradicts the following theorem, the first (and essential) part of
which was proved by Mitchell nearly a century ago. !

Theorem 1.4.4 (Mitchell). Let V be a C-vector space of dimension N > 8,
G ⊂ GL(V ) a finite irreducible primitive subgroup of GL(V ) ∼= GL(N , C) which
contains a reflection A. Let - ⊂ G denote the normal subgroup of G generated by
all the reflections in G. Then we have:

(1) - is (conjugate in GL(V ) to) the group SN+1, viewed as a subgroup of
GL(N , C) by its “permutation of coordinates” action on the hyperplane AugN in
CN+1 consisting of those vectors whose coordinates sum to zero.

(2) G is the product of - with the group G ∩ (scalars).
(3) M4(G, V ) > 3.
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Proof. By a theorem of Mitchell [Mi], if N > 8, and if G is a finite irreducible
primitive subgroup of GL(V ) ∼= GL(AugN ) which contains a reflection, then the
image of G in the projective group PGL(AugN ) = GL(AugN )/C× is the image in
that group of the symmetric group SN+1.

We first exhibit an SN+1 inside G. For this, we argue as follows. We have
our reflection A in G. Its image in SN+1, and indeed the image in SN+1 of any
reflection in G, is a transposition. Renumbering, we may suppose A #→ (1, 2). As
all transpositions in SN+1 are SN+1-conjugate, for each i with 1 ≤ i ≤ N , there is
a G-conjugate Ai of A which maps to the transposition σi := (i, i + 1). Now Ai is
itself a reflection, being a conjugate of the reflection A. We claim it is the unique
reflection in G which maps to σi . Indeed, any element in G which maps to σi is
of the form λAi for some invertible scalar λ; but λAi has λ as eigenvalue with
multiplicity N − 1 > 1, so λAi can be a reflection only if λ = 1. We next claim
that the subgroup H of G generated by the Ai maps isomorphically to SN+1. We
know H maps onto SN+1 (because SN+1 is generated by the σi ), so it suffices to
show that the order of H divides (N + 1)! For this, it suffices to show that H is a
quotient of SN+1. We know [Bour-L4, pages 12 and 27] that SN+1 is generated by
elements si , 1 ≤ i ≤ N , subject to the Coxeter relations

(si s j )m(i, j) = 1,

where

m(i, i) = 1,
m(i, j) = 2 if |i − j | ≥ 2,
m(i, j) = 3 if |i − j | = 1.

(If we map si to σi , we get the required isomorphism with SN+1.) So it suffices to
show that the Ai satisfy these relations. Each Ai is a reflection, so of order 2. For
any i and j , the subspace

Ker (Ai − 1) ∩ Ker (A j − 1)

of V has codimension at most 2, and the product Ai A j fixes each element of this
subspace. Therefore its power (Ai A j )m(i, j) also fixes each element of this subspace.
But (Ai A j )m(i, j) maps to (σiσ j )m(i, j) = 1 in SN+1, and hence (Ai A j )m(i, j) is a scalar
λ. As this scalar λ fixes every vector in a subspace of codimension at most 2, we
must have λ = 1.

We next observe that H = -, i.e., that H contains every reflection A in G. For
the image of A in the projective group is a transposition, so A = λh for some scalar
λ and some transposition h in H . But such an h is a reflection in GL(AugN ). Thus
both h and λh are reflections, which forces λ = 1. This proves 1).

Since H = - maps isomorphically to the image SN+1
∼= G/G ∩ (scalars) of

G in PGL(AugN ), G is generated by - and by the central subgroup G ∩ (scalars),
and - ∩ (scalars) = {1}. This proves 2).

To prove 3), notice that the scalars in GL(V ) act trivially on the tensor
spaces V ⊗n ⊗ (V ∨)⊗n for every n, in particular for n = 2. So the action of
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G = - × G ∩ (scalars) on V n ⊗ (V ∨)⊗n factors through the action of -. Thus
we have

M2n(G, V ) = M2n(-, V ) = M2n(SN+1, AugN ).

So it remains only to prove the following lemma. !

Lemma 1.4.5. For any N ≥ 4, we have M4(SN+1, AugN ) > 3.

Remark 1.4.5.1. We will see later (2.4.3) that, in fact, we have
M4(SN+1, AugN ) = 4 for N ≥ 3, but we do not need this finer result here.

Proof of Lemma 1.4.5. Aug := AugN is an orthogonal representation of SN+1,
so we have an SN+1-decomposition

(Aug)⊗2 ∼= 1 ⊕ $2(Aug) ⊕ SphHarm2(Aug),

and thus an a priori inequality M4(SN+1, AugN ) ≥ 3, with equality if and only if
the following condition (1.4.5.2) holds:

(1.4.5.2) 1, $2(Aug), and SphHarm2(Aug) are three inequivalent irreducible
representations of SN+1. !

The dimensions of these three representations are 1, N (N − 1)/2, and
N (N + 1)/2 − 1 respectively. Because N ≥ 4, none of these dimensions is N . So if
(1.4.5.2) holds, then the irreducible representation Aug does not occur in (Aug)⊗2,
or equivalently (Aug being self-dual), 1 does not occur in (Aug)⊗3, or equivalently

∫

SN+1

Trace (g| Aug)3 = 0.

But in fact we have
∫

SN+1

Trace (g| Aug)3 > 0,

as the following argument shows. The representation Aug being irreducible and
nontrivial, we have

∫

SN+1

Trace (g| Aug) = 0.

For g in SN+1, let us denote by Fix(g) the number of fixed points of g, viewed as
a perrmutation of {1, . . . , N + 1}. Then

Trace (g| Aug) = Fix (g) − 1.

So we get
∫

SN+1

(Fix (g) − 1) = 0.

Now break up SN+1 as the disjoint union Fix≥2 0 Fix=1 0 Fix=0, according to the
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number of fixed points. Then we may rewrite the above vanishing as
∫

Fix≥2

(Fix (g) − 1) −
∫

Fix=0

(1) = 0.

At the same time, we have
∫

SN+1

Trace (g | Aug)3 =
∫

Fix≥2

(Fix (g) − 1)3 −
∫

Fix=0

(1).

At every point of Fix≥2 , we have

(Fix (g) − 1)3 ≥ Fix (g) − 1,

with strict inequality on the nonempty set Fix≥3. Thus we have
∫

SN+1

Trace (g | Aug)3 >

∫

SN+1

Trace (g | Aug) = 0.

Therefore (1.4.5.2) does not hold, i.e., we have M4(SN+1, AugN ) > 3. This proves
both Lemma 1.4.5 and Theorem 1.4.4.

Using Theorem 1.4.4, we also get a result in the orthogonal case.

Theorem 1.4.6. Let V be a C -vector space of dimension N > 8 equipped with
a nondegenerate quadratic form. Let G ⊂ O(V ) be a (not necessarily connected)
Zariski closed reductive subgroup of O(V ) with M4(G, V ) = 3. If G contains a
reflection, then G = O(V ).

Proof. Theorem 1.4.4 rules out the possibility that G is a finite irreducible
primitive subgroup of GL(V ). So G is either SO(V ) or O(V ). But SO(V ) does not
contain a reflection. !

For the sake of completeness, let us also record the immediate consequence of
Larsen’s theorem (1.1.6) in the symplectic case.

Theorem 1.4.7. Let V be a C -vector space of dimension N ≥ 4 equipped with
a nondegenerate alternating form. Suppose that G ⊂ Sp(V ) is a (not necessarily
connected) Zariski closed reductive subgroup of Sp(V ) with M4(G, V ) = 3. If G
contains a unipotent element A .= 1, then G = Sp(V ).

Proof. By Theorem 1.1.6, G is either Sp(V ) or it is finite. Since A has infinite
order, G is not finite. !

1.5. Examples of finite G: the Weil–Shale case

1.5.1. We begin with some examples of finite groups G ⊂ GL(V ) with
M4(G, V ) = 2, pointed out to me by Deligne. Let q be a power of an odd prime
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p, i.e., q is the cardinality of a finite field Fq of odd characteristic p. Fix an integer
n ≥ 1, and a 2n-dimensional Fq-vector space F , endowed with a nondegenerate
symplectic form < , >. The Heisenberg group Heis2n(Fq) is the central extension
of F by Fq defined as the set of pairs (λ in Fq , f in F), with group operation

(λ, f )(µ, g) := (λ+µ + < f, g>, f + g).

The symplectic group Sp(F) acts on Heis2n(Fq), γ in Sp(F) acting by

γ (λ, f ) := (λ, γ ( f )).

The irreducible C-representations of the group Heis2n(Fq) are well-known. There
are q2n one-dimensional representations, those trivial on the center. For each of
the q − 1 nontrivial C×-valued characters ψ of the center, there is precisely one
irreducible representation with central character ψ , say Vψ , which has dimension
qn . Because the action of Sp(F) on Heis2n(Fq) is trivial on the center, the action of
Heis2n(Fq) on Vψ extends to a projective representation of the semidirect product
group Heis2n(Fq)×Sp(F) on Vψ . Because we are over a finite field, this projective
representation in turn extends to a linear representation of Heis2n(Fq)×Sp(F) on
Vψ , the Weil-Shale representation.

1.5.2. We claim that for any nontrivial character ψ of the center, we have

M4(Heis2n(Fq)×Sp (F), Vψ ) = 2.(1.5.2.1)

To see this, it suffices to work over the complex numbers. We fix a choice of the
nontrivial character ψ , and denote by

χ : Heis2n(Fq)×Sp (F) → C

the character of Vψ :

χ ((λ, f, γ )) := Trace ((λ, f, γ ) | Vψ ).

According to Howe [Howe, Prop. 2, (i), page 290], χ is supported on those con-
jugacy classes which meet (the center Z of Heis2n(Fq))×Sp(F), where it is given
by

|χ ((λ, 0, γ ))|2 = qdim (Ker (γ−1) in F).(1.5.2.2)

Moreover, an element (λ, f, γ ) in Heis2n(Fq)×Sp(F) is conjugate to an element
of Z ×Sp(F) if and only if it is conjugate to (λ, 0, γ ), and this happens if and only
if f lies in Image (γ − 1), cf. [Howe, page 294, first paragraph]. Thus we have

|χ ((λ, f, γ ))|2 = qdim (Ker (γ−1)), if f ε Image (γ − 1),(1.5.2.3)

|χ ((λ, f, γ ))|2 = 0, if not.
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1.5.3. Using this explicit formula, we find a striking relation between the
absolute moments of Heis2n(Fq)×Sp(F) on Vψ and the absolute moments of its
subgroup Sp(F) on Vψ . For any integer k ≥ 1, we have

M2k+2(Heis2n(Fq)×Sp(F), Vψ ) = M2k(Sp(F), Vψ ).(1.5.3.1)

To see this, we use the fact that dim(Ker (γ − 1)) + dim (Im (γ − 1)) = dim (F),
and simply compute:

#(Heis2n(Fq)×Sp (F)) × M2k+2(Heis2n(Fq)×Sp(F), Vψ )

:= "(λ, f,γ )|χ ((λ, f, γ ))|2k+2

= "(λ,0,γ )" f in Im (γ−1) |χ ((λ, f, γ ))|2k+2

= "(λ,0,γ ) qdim (Im (γ−1)) × |qdim (Ker (γ−1))|k+1

= "γ in Sp(F) q1+dim (F) × |qdim (Ker (γ−1)|k

= "γ in Sp(F) q1+dim (F) × |χ ((0, 0, γ ))|2k

= q1+dim (F) × #(Sp(F)) × M2k(Sp(F), Vψ )

= #(Heis2n(Fq)×Sp(F)) × M2k(Sp(F), Vψ ).

So in particular we have

M4(Heis2n(Fq)×Sp(F), Vψ ) = M2(Sp(F), Vψ ).(1.5.3.2)

1.5.4. The formula (1.5.2.2) |χ ((0, 0, γ )) |2= qdim (Ker (γ−1)) = # (fixed points
of γ on F) means precisely that End (Vψ ) as Sp(F)-module is isomorphic to the
natural permutation representation of Sp(F) on the space of C-valued functions on
F . So

M2(Sp(F), Vψ ) = M1,0(Sp(F), Fct (F, C))(1.5.4.1)

is the dimension of the space of Sp(F)-invariant functions on F , which is in turn
equal to the number of Sp(F)-orbits in F , cf. [Ger, proof of Cor. 4.4, first paragraph,
page 85]. But Sp(F) acts transitively on F − {0}, so there are just two orbits. Thus

M4(Heis2n(Fq)×Sp(F), Vψ ) = M2(Sp(F), Vψ )(1.5.4.2)

= M1,0(Sp(F), Fct (F, C)) = 2,

as asserted.

1.6. Examples of finite G from the Atlas

1.6.1. A perusal of the Atlas [CCNPW-Atlas] gives some finite simple
groups G with a low dimensional irreducible representation V for which we have
M4(G, V ) = 2. Here are some of them. In the table below, we give (in Atlas no-
tation) the simple group G, the character χ of the lowest dimensional such V , the



P1: IOI

PB440-18 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 17:36

nicholas m. katz538

dimension of V , and the expression of |χ |2 as the sum of two distinct irreducible
characters.

G character χ of V dim (V ) |χ |2
L3(2) = L2(7) χ2, χ3 3 1 + χ6

U4(2) = S4(3) χ2, χ3 5 1 + χ10

U5(2) χ3, χ4 11 1 + χ16

2F4(2)′ χ2, χ3 26 1 + χ15

M23 χ3, χ4 45 1 + χ17

M24 χ3, χ4 45 1 + χ19

J4 χ2, χ3 1333 1 + χ11

1.6.2. What about finite subgroups of O(V ) with M4(G, V ) = 3? Again the
Atlas gives some examples of finite simple groups G with a low dimensional
irreducible orthogonal representation V for which we have M4(G, V ) = 3. Here
are some of them:

G character χ of V dim (V ) χ2

U4(2) χ4 6 1 + χ7 + χ9

S6(2) χ2 7 1 + χ4 + χ6

S4(5) χ2 13 1 + χ7 + χ9

χ3 13 1 + χ8 + χ9

G2(3) χ2 14 1 + χ6 + χ7

McL χ2 22 1 + χ3 + χ4

U6(2) χ2 22 1 + χ3 + χ4

CO2 χ2 23 1 + χ3 + χ4

Fi22 χ2 78 1 + χ6 + χ7

HN = F5+ χ2 133 1 + χ6 + χ8

χ3 133 1 + χ7 + χ8

Th χ2 248 1 + χ6 + χ7

1.6.3. What about finite subgroups of Sp(V ) with M4(G, V ) = 3?
The Atlas gives a few cases of finite simple groups G with a low dimen-

sional irreducible symplectic representation V for which we have M4(G, V ) = 3.
[As Deligne and Ramakrishnan explained to me, “most” simple groups have no
symplectic representations, cf. the article [Pra] of Prasad.] Here are two lonely
examples:

G character of V dim (V ) χ2

U3(2) χ2 6 1 + χ6 + χ7

U5(2) χ2 10 1 + χ5 + χ6

1.7. Questions

1.7.1. Given a connected algebraic group G over C with Lie (G) simple, what
if any are the finite subgroups of G which act irreducibly on Lie (G)?
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1.7.2. Given a finite set of irreducible representations {Vi }i of such a G, what
if any are the finite subgroups - of G which act irreducibly on every Vi ? From the
data (G, {Vi }i ), how can one tell if any such - will exist? For example, if G is simple
and simply connected, can we find such a - if we take for {Vi }i all the fundamental
representations of G. [For SL(N ), pick any even m ≥ 4: then the subgroup -m ⊂
SL(N ) consisting of all permutation-shaped matrices of determinant one with entries
in µm is such a subgroup.] If we take for {Vi }i all the irreducible representations
whose highest weight is the sum of at most two fundamental weights? [For SL(N ),
the groups -m above fail here, already for Sym2(stdN ) = E(2ω1). Indeed, the C-
span of the squares (e1)2 of the standard basis elements ei of CN is a -m-stable
subspace of Sym2(stdN ).]

1.7.3. Given a reductive, Zariski closed subgroup G of GL(V ), can one classify
the finite subgroups - ⊂ G for which M4(-, V ) = M4(G, V )?

1.7.4. Given G as in 3) above, and an integer k ≥ 1, let us say that a finite
subgroup - ⊂ G “spoofs” G to order k if we have

M2%(-, V ) = M2%(G, V ) for all 1 ≤ % ≤ k?(1.7.4.1)

For a given G, what can we say about the set Spoof(G) of integers k ≥ 1 for which
there exists a finite subgroup - ⊂ G which spoofs G to order k? This set may
consist of all k ≥ 1. Take for G the diagonal subgroup of GL(N ), and, for each
integer m ≥ 2, take -m the finite subgroup of G consisting of diagonal matrices
with entries in µm . Then -m spoofs G to order m − 1. Or take G itself to be finite,
then - = G spoofs G to any order. Is it true that if G0 is semisimple and nontrivial,
then the set Spoof(G) is finite.?

Part II: Applications to the Monodromy of Lefschetz Pencils

2.1. Diophantine preliminaries

2.1.1. Let k be a finite field of cardinality q and characteristic p, % a prime
number other than p, w a real number, ι an embedding of Q% into C, S/k a smooth,
geometrically connected k-scheme of dimension D ≥ 1, and F a lisse Q%-sheaf on
S of rank r ≥ 1 which is ι-pure of integer weight w . Pick a geometric point s in S,
and define V := Fs . Denote by

ρF : π1(S, s) → GL(V ) = GL(Fs) ∼= GL(r, Q̄%),(2.1.1.1)

the %-adic representation that F “is.” Denote by G ⊂ GL(V ) the Zariski closure
of the image of π1

geom (S, s) := π1(S ⊗k k̄, s) under ρF . Because F is ι-pure of
some weight, we know [De-Weil II, 1.3.8 and 3.4.3 (iii)] that G is a (not necessarily
connected) semisimple subgroup of GL(V ).
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2.1.2. Denote by F∨ the linear dual (contragredient representation) of F , and
by F := F∨(−w) the “complex conjugate” of F ; the sheaves F and F have, via ι,
complex conjugate local trace functions.

2.1.3. Our first task is to give a diophantine calculation of the absolute mo-
ments M2n(G, V ), n ≥ 1, in terms of moments S2n of the local trace function of F .
For each finite extension field E/k, define the real number S2n(E,F) by

S2n(E,F) :=(2.1.3.1)

(#E)−dim(S)−nw"x in S(E) |ι (Trace (FrobE,x |F))|2n.

Lemma 2.1.4. Hypotheses and notations as in 2.1.1–3 above, for each n ≥ 1
we have the limit formula

M2n(G, V ) = limsupE/k finite S2n(E,F).

Proof. The moment M2n(G, V ) is the dimension of the space of G-invariants,
or equivalently of π1

geom(S, s)-invariants, in (V ⊗ V ∨)⊗n , i.e., it is the dimension
of H 0(S ⊗k k̄, (F ⊗ F)⊗n). So, by Poincare duality, we have

M2n(G, V ) = dim H 2dim (S)
c

(

S ⊗k k̄, (F ⊗ F)⊗n) .

Because F is pure of weight w, (F ⊗ F)⊗n is ι-pure of weight 2nw , so this last
cohomology group is ι-pure of weight 2nw + 2dim (S). So the endomorphism
A := Frobk/qwn+dim (S) acting on it has, via ι, all its eigenvalues on the unit circle. By
a standard compactness argument (cf. [Ka-SE, 2.2.2.1]), we recover the dimension
of the cohomology group by the limsup formula

dim H 2dim (S)
c (S ⊗k k̄, (F ⊗ F)⊗n

= limsupm |ι
(

Trace
(

Am
∣

∣H 2dim (S)
c

(

S ⊗k k̄, (F ⊗ F)⊗n)))
∣

∣

= limsupE/k finite

(#E)−dim (S)−nw |ι
(

Trace
(

FrobE
∣

∣H 2dim(S)
c

(

S ⊗k k̄, (F ⊗ F)⊗n)))
∣

∣ .

By [De-Weil II, 3.3.4], the lower cohomology groups H j
c , j < 2 dim (S), are

ι-mixed of strictly lower weight, so we get M2n(G, V ) as the limsup, over E/k
finite, of the quantities

(#E)−dim(S)−nw" j
∣

∣ι
(

" j (−1) j Trace
(

FrobE |H j
c

(

S ⊗k k̄, (F ⊗ F)⊗n)))
∣

∣ .

By the Lefschetz Trace Formula, this last quantity is precisely S2n(E,F). !

First Variant Lemma 2.1.5. Hypotheses and notations as in Lemma 2.1.4,
suppose we are given in addition a Q%-valued function ϕ(E, x) on the set of pairs

(a finite extension field E/k, a point x in S(E))
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such that there exists a positive real constant C for which we have the estimate

|ι(ϕ(E, x))| ≤ C(#E)w−1/2.

For each finite extension E/k, define the approximate moment S̃2n(E,F) by

S̃2n(E,F) := (#E)−dim(S)−nw"x in S(E)|ι(Trace (FrobE,x | F) + ϕ(E, x))|2n.

Then we have the limit formula

M2n(G, V ) = limsupE/k finite S̃2n(E,F).

Proof. One checks easily that S̃2n(E,F) − S2n(E,F) → 0 as #E grows. !

Second Variant Lemma 2.1.6. Hypotheses and notations as in Lemma 2.1.5,
suppose that S is an open subscheme of a smooth, geometrically connected k-scheme
T/k (necessarily of the same dimension D). Suppose that we are given a Q%-valued
function τ (E, x) on the set of pairs

(a finite extension field E/k, a point x in T (E)),

such that whenever x lies in S(E), we have

τ (E, x) = Trace (FrobE,x | F) + ϕ(E, x).

For each finite extension E/k, define the mock moment T2n(E,F) by

T2n(E,F) := (#E)−dim (S)−nw"x in T (E)|ι(τ (E, x))|2n.

Then we have the inequality

M2n(G, V ) ≤ lim supE/k finite T2n(E,F).

Proof. Obvious from the previous result and the observation that for each E/k
we have

S̃2n(E,F) ≤ T2n(E,F )

simply because we obtain T2n(E,F) by adding positive quantities to S̃2n(E,F). !

2.2. Universal families of hypersurface sections

2.2.1. Recall that k is a finite field, and X /k is a projective, smooth, geometrical
variety of dimension n + 1 ≥ 1, given with a projective embedding X ⊂ P. We
denote by PHypd /k the projective space of degree d hypersurfaces in P, and by

GoodX PHypd ⊂ PHypd(2.2.1.1)

the dense open set consisting of those degree d hypersurfaces H which are trans-
verse to X , i.e., such that the scheme-theoretic intersection X ∩ H is smooth and
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of codimension one in X . Over GoodX PHypd we have the universal family of all
smooth, degree d hypersurface sections of X , say

π : Univd → GoodX PHypd,(2.2.1.2)

whose fibre over a degree d hypersurface H in P is X ∩ H .

2.2.2. For any finite extension E /k, and any point H in GoodX PHypd(E), the
weak Lefschetz theorem tells us that the restriction map

Hi (X ⊗ k k, Q%) → Hi ((X ⊗ k k) ∩ H, Q%)

is an isomorphism for i < n, and injective for i = n. By Poincare duality, the Gysin
map

Hi ((X ⊗ k k) ∩ H, Q%) → Hi+2(X ⊗ k k, Q%)(1)

is an isomorphism for i > n, and surjective for i = n. Thanks to the hard Lefschetz
theorem, we know that, for i = n, the kernel of the Gysin map is a subspace

Evn((X ⊗ k k) ∩ H, Q%) ⊂ H n((X ⊗ k k) ∩ H, Q%)

on which the cup-product remains nondegenerate, and which maps isomorphically
to the quotient H n((X ⊗ k k) ∩ H, Q%)/H n(X ⊗ k k, Q%).

2.2.3. Over the space GoodX PHypd , there is a lisse Q%-sheaf Fd , such that for
any finite extension E/k, and any E-valued point H of GoodX PHypd , the stalk of
Fd at H is Evn((X ⊗ k k) ∩ H, Q%). The sheaf Fd is pure of weight n, and carries a
cup-product autoduality toward Q%(−n). The autoduality is symplectic if n is odd,
and orthogonal if n is even. For fixed X but variable d, the rank Nd of Fd is a
polynomial in d of degree n + 1, of the form deg (X )dn+1 + lower terms.

Theorem 2.2.4. Suppose that n ≥ 2 is even, that d ≥ 3, and that Nd > 8. Then
the geometric monodromy group Gd of the lisse sheafFd is the full orthogonal group
O(Nd).

Proof. The group Gd is a priori a Zariski closed subgroup of O(Nd). We first
recall that Gd , indeed its subgroup ρFd (π1

geom (GoodX PHypd)), contains a reflec-
tion.

Take a sufficiently general line L in PHypd . Over its intersection L − 3 with
GoodX PHypd , we get a Lefschetz pencil of smooth hypersurface sections of degree
d of X . Denote by

i : L − 3 → GoodX PHypd

the inclusion. We have the inequality

#3(k) ≥ 1 if Nd .= 0,
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because Evn((X ⊗ k k) ∩ H, Q%) is spanned by the images, using all possible
“chemins,” of the vanishing cycles, one at each point of 3(k), cf. [De-Weil II,
4.2.4 and 4.3.9]. (So long as char (k) is not 2, we can choose a single chemin for
each vanishing cycle, and we have the inequality #3(k) ≥ Nd , cf. [SGA 7, Expose
XVIII, 6.6 and 6.6.1]).

By the Picard-Lefschetz formula [SGA 7, Exposé XV, 3.4], each of the #3(k) lo-
cal monodromies in a Lefschetz pencil is a reflection. Thus π1

geom(L − 3) contains
elements which act on i∗Fd as reflections, and their images inπ1

geom (GoodX PHypd)
act as reflections on Fd .

In view of Theorem 1.4.6, it suffices to show that, denoting by Vd the represen-
tation of Gd given by Fd , we have M4(Gd, Vd) = 3. Since Gd lies in O(Nd) and
Nd > 1, we have the a priori inequality

M4(Gd, Vd) ≥ M4(O(Nd), std) = 3.

So the desired conclusion results from the following theorem. !

Theorem 2.2.5. Suppose that n ≥ 1 and d ≥ 3. Then M4(Gd, Vd) ≤ 3. If n =
0 and d ≥ 3, we have M4(Gd, Vd) ≤ 4.

Proof. Denote by Hypd/k the affine space over k which is the affine cone of
the projective space PHypd/k. For any k-algebra A, the A-valued points of Hypd

are the elements of H 0(P,O(d)) ⊗ k A. The natural projection map

π : Hypd − {0} → PHypd

is a (Zariski locally trivial) Gm-bundle. We denote by

GoodX Hypd ⊂ Hypd − {0}

the dense open set which is the inverse image of GoodX PHypd , and by

π : GoodX Hypd → GoodX PHypd

its projection. Thus we have a cartesian diagram

GoodX Hypd ⊂ Hypd − {0}
π ↓ π ↓

GoodX PHypd ⊂ PHypd

We form the lisse sheaf π∗Fd on GoodX Hypd . By [Ka-La-FGCFT, Lemma 2,
part (2)], for any geometric point ξ of GoodX Hypd , the map

π∗ : π1
geom(GoodX Hypd, ξ ) → π1

geom(GoodX PHypd, π (ξ ))

is surjective. So we recover Gd as the Zariski closure of the image of π1
geom

(GoodX Hypd) acting on π∗Fd .
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The advantage is that the base space is now a dense open set of an affine space,
namely Hypd . We will now apply the diophantine method explained above, to the
sheaf π∗Fd on the dense open set GoodX Hypd of Hypd .

Let E/k be a finite extension field, and H an E-valued point of GoodX Hypd .
Then the stalk of π∗Fd at H is Evn((X ⊗ k k) ∩ (H = 0), Q%). !

Key Lemma 2.2.6. Given X/k as above, denote by "(X ⊗ k k, Q%) the sum of
the Q%-Betti numbers. Then for any finite extension field E/k, and for any E-valued
point H of GoodX Hypd , putting Y := X ∩ (H = 0), we have the estimate

|Trace (FrobE,H | π∗Fd) − (−1)n(#Y (E) − #X (E)/#E)|

≤ "(X ⊗ k k, Q%)(#E)(n−1)/2.

Proof. Use the Lefschetz Trace Formula on Y to write #Y (E) as a sum of three
terms:

#Y (E) = "i≤n−1 (−1)i Trace (FrobE |Hi (Y ⊗ E k, Q%))

+ (−1)nTrace (FrobE |H n(Y ⊗ E k, Q%))

+ "i≥n+1 (−1)i Trace (FrobE |Hi (Y ⊗ E k, Q%)).

Use the same formula to write #X (E)/#E as the sum of three terms:

#X (E)/#E = "i≤n+1 (−1)i Trace (FrobE |Hi (X ⊗ k k, Q%)(1))

+ (−1)n+2Trace (FrobE |H n+2(X ⊗ k k, Q%)(1))

+ + "i≥n+3 (−1)i Trace (FrobE |Hi (X ⊗ k k, Q%)(1)).

By the Poincare dual of the weak Lefschetz theorem, the third terms in the two
expressions are equal. The difference of the second terms is precisely

(−1)nTrace (FrobE | Evn((X ⊗ k k) ∩ (H = 0), Q%)),

i.e., it is (−1)nTrace (FrobE,H | π∗Fd). The difference of the first terms is

"i≤n−1 (−1)i Trace (FrobE |Hi (Y ⊗ E k, Q%))

− "i≤n+1 (−1)i Trace (FrobE |Hi (X ⊗ k k, Q%)(1)).

By Deligne’s Weil I, each cohomology group occurring here is pure of some weight
≤ n − 1, so we get the asserted estimate with the constant

"i≤n−1 hi (Y ⊗ E k, Q%) + "i≤n+1 hi (X ⊗ k k, Q%).

Using weak Lefschetz, this is equal to

= "i≤n−1 hi (X ⊗ k k, Q%) + "i≤n+1 hi (X ⊗ k k, Q%).
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Using Poincare duality on X , this in turn is equal to

= "i≥n+3 hi (X ⊗ k k, Q%) + "i≤n+1 hi (X ⊗ k k, Q%)

≤ "i hi (X ⊗ k k, Q%) := "(X ⊗ k k, Q%). !

For any finite extension field E/k, and for any E-valued point H of Hypd , we
define

τ (E, H ) := (−1)n((−1)n(#(X ∩ (H = 0))(E) − #X (E)/#E).

Notice that τ takes values in Q.
We then define the mock moment T4(E, π∗Fd) by

T4(E, π∗Fd) := (#E)− dim(Hypd )−2n "H in Hypd (E) | τ (E, H )|4

= (#E)− dim(Hypd )−2n "H in Hypd (E) (#(X ∩ (H = 0))(E) − #X (E)/#E)4.

(Because τ takes values in Q, there is no need for the ι which figured in the general
definition, where τ was allowed to be Q%-valued.)

In view of the Second Variant Lemma 2.1.6, Theorem 2.2.5 now results from
the following theorem:

Theorem 2.2.7. Let X/k be as above, of dimension n + 1 ≥ 1. If n ≥ 1, then
for any d ≥ 3, we have the estimate

|T4(E, π∗Fd) − 3| = O((#E)−1/2).

If n = 0, then for any d ≥ 3, we have the estimate

|T4(E, π∗Fd) − 4| = O((#E)−1/2).

Proof. Fix a finite field extension E/k with #E ≥ 6. We will use an exponential
sum method to calculate T4(E, π∗Fd) in closed form. Fix a nontrivial C×-valued
additive character ψ of E . View the ambient P = P m as the space of lines in Am+1.
For each point x in P m(E), choose a point x̃ in Am+1(E) − {0} which lifts it. For
any fixed H in Hypd(E), the value H (x̃) depends upon the choice of x̃ lifting x ,
but only up to an E×-multiple. So the sum

"λ in E× ψ(λH (x̃))

depends only on the original point x in P(E). By the orthogonality relations for
characters, we have

"λ in E× ψ(λH (x̃)) = −1 + "λ in E ψ(λH (x̃))

= #E − 1, if H (x) = 0,

= −1, if not.
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So we get the identity

"x in X (E) "λ in E× ψ(λH (x̃)) = (#E)(#(X ∩ (H = 0))(E)) − #X (E)

= (−1)n(#E)τ (E, H ).

This in turn gives the identity

(#E)dim(Hypd )+2n+4 T4(E, π∗Fd)

= "H in Hypd (E) ("x in X (E) "λ in E× ψ(λH (x̃)))4.

We next open the inner sum and interchange orders of summation, to get

= "(xi ) in X (E)4 "(λi ) in (E×)4 "H in Hypd (E) ψ("i=1 to 4 λi H (x̃i )).

The key observation is given by the following lemma. !

Singleton Lemma 2.2.8. Suppose #E ≥ 4. Given four (not necessarily dis-
tinct) points x1, x2, x3, x4 in P(E), suppose among them there is a singleton, i.e., a
point which is not equal to any of the others. Then for any (λi ) in (E×)4, we have
the vanishing

"H in Hypd (E) ψ("i=1 to 4 λi H (x̃i )) = 0.

Before proving this lemma, it will be convenient to give two other lemmas.

Lemma 2.2.9. If #E ≥ 4, then given four (not necessarily distinct) points
x1, x2, x3, x4 in P(E), there exists an E-rational hyperplane L in P, i.e., a point L
in PHyp1(E), such that all four points xi lie in the affine open set P m[1/L].

Proof. Say P is P m . In the dual projective space, the set of hyperplanes through
a given point xi in P m(E) form a P m−1, so there are precisely

((#E)m − 1)/(#E − 1)

E-rational hyperplanes through xi . So there are at least

((#E)m+1 − 1)/(#E − 1) − 4((#E)m − 1)/(#E − 1)

E-rational hyperplanes which pass through none of the xi . As #E is at least 4, this
difference is strictly positive. !

Evaluation Lemma 2.2.10. Let E be a field, m ≥ 1 and d ≥ 1 integers. De-
note by Poly≤ d(E) the E-vector space of E-rational polynomial functions on Am.
For any integer r ≤ d + 1, and for any r distinct points xi , i = 1 to r , in Am(E),
the E-linear multi-evaluation map

Poly≤ d(E) → Er

f #→ ( f (x1), . . . , f (xr ))

is surjective.
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Proof. The map being E-linear, its surjectivity map be checked over any exten-
sion field. Passing to a large enough such extension, we may add additional distinct
points, so that our xi are the first r of d + 1 distinct points. It suffices to prove
the lemma in the hardest case r = d + 1 (then project onto the first r coordinates
in the target). To do this hardest case, we first treat the case m = 1. In this case,
source and target have the same dimension, d + 1, so it suffices that the map be
injective. But its kernel consists of those polynomials in one variable of degree
at most d, which have d + 1 distinct zeroes. To do the general case, it suffices to
find a linear form T from Am to A1 under which the d + 1 points xi have d + 1
distinct images. For then already polynomials of degree at most d in T will be a
subspace of the source Poly≤ d(E) which will map onto Er . We can do this as soon
as #E ≥ Binom (d + 1, 2). Indeed, we are looking for a linear form T with the
property that for each of the Binom (d + 1, 2) pairs (xi , x j ) with i < j , we have
T (xi ) − T (x j ) .= 0. For each such pair, the set of T for which T (xi ) − T (x j ) = 0
is a hyperplane in the dual space. So we need T to not lie in the union of
Binom (d + 1, 2) linear subspaces of codimension one. Since they all intersect
in zero, their union has cardinality strictly less than Binom (d + 1, 2)(#E)m−1. So
as soon as #E ≥ Binom (d + 1, 2), the desired T exists. !

With these preliminaries out of the way, we can prove the Singleton Lemma
2.2.8. Because #E ≥ 4, we can find a non-zero linear form L in Hyp1(E) such that
our four points xi all lie in P[1/L] ∼= Am . By means of the map H #→ H/Ld , we
get an E-linear isomorphism

Hypd(E) ∼= Poly≤ d(E)

of Hypd(E) with the E-rational polynomial functions on P[1/L] ∼= Am of degree
at most d.

Moreover, for any x in P[1/L](E), and any lifting x̃ in Am+1(E), the two
E-linear forms on Hypd(E),

H #→ H (x̃)

and

H → (H/Ld)(x),

are proportional. So whatever the four points (xi ) in P[1/L](E) ∼= Am(E), we can
rewite the sum

"H in Hypd (E) ψ("i=1 to 4 λi H (x̃i ))

= "h in Poly≤ d (E) ψ("i=1 to 4 λi h(xi )).

Renumbering, we may suppose that x1 is a singleton. We consider separately
various cases (which, up to renumbering, cover all the cases when x1 is a singleton).
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If the four points are all distinct, then as h runs over Poly≤ d(E), the vector
(h(xi )) runs over E4, and our sum becomes #(Ker of eval at (xi )) times

"(ti ) in E4 ψ("i=1 to 4 λi ti ).

Since the vector (λi ) is nonzero, (ti ) #→ ψ("i=1 to 4 λi ti ) is a nontrivial additive
character of E4, so the inner sum vanishes.

If the three remaining points are all equal, then as h runs over Poly≤ d(E), the
vector (h(x1), h(x2)) runs over E2, and our sum becomes #(Ker of eval at (x1, x2))
times

"(t1,t2) in E2 ψ(λ1t1 + (λ2 + λ3 + λ4)t2).

Since the vector (λ1, λ2 + λ3 + λ4) is nonzero, the sum again vanishes.
If the first three points are distinct, but x4 = x3, then our sum becomes #(Ker

of eval at (x1, x2, x3)) times

"(t1,t2,t3) in E3 ψ(λ1t1 + λ2t2 + (λ3 + λ4)t3).

Since the vector (λ1, λ2, λ3 + λ4) is nonzero, the sum again vanishes.
In exactly the same way, we prove the following two elementary lemmas.

Twinning Lemma 2.2.11. Suppose #E ≥ 2. Given two distinct points x1, x2

in P(E), put x3 = x1, and put x4 = x2. Then for (λi ) in (E×)4, we have

"H in Hypd (E) ψ("i=1 to 4 λi H (x̃i ))

= #Hypd(E), if λ1 + λ2 = λ3 + λ4 = 0,

= 0, otherwise.

Quadruples Lemma 2.2.12. Given a point x in P(E), put xi = x for i = 1 to
4. Then for (λi ) in (E×)4, we have

"H in Hypd (E)ψ ("i=1 to 4 λi H (x̃i ))

= #Hypd(E), if λ1 + λ2 + λ3 + λ4 = 0,

= 0, otherwise.

Proof of Theorem 2.2.7: suite. Recall that we have the identity

(#E)dim(Hypd )+2n+4 T4(E, π∗Fd)

= "(xi ) in X (E)4 "(λi ) in (E×)4 "H in Hypd (E) ψ("i=1 to 4 λi H (x̃i )).

We now break up this sum by the coincidence pattern of the four-tuple (x1, x2,
x3, x4).

If there is any singleton, the entire inner sum vanishes.
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If all the xi coincide, the inner sum is

#Hypd(E) × #{(λi ) in (E×)4 with λ1 + λ2 + λ3 + λ4 = 0}.

This case occurs #X (E) times, one for each of the possible common values of the xi .
If there are no singletons and exactly two among the xi are distinct, put x := x1,

and take for y the other. Then the pattern is either (x , x , y, y) or (x , y, x , y) or
(x , y, y, x). In each case, the inner sum is

#Hypd(E) × #{(λi ) in (E×)4 with λ1 + λ2 = λ3 + λ4 = 0}

= #Hypd(E) × (#E − 1)2.

This case occurs 3(#X (E))(#X (E) − 1) times, 3 for the possible repeat pattern,
#X (E) for the choice of x1, #X (E) − 1 for the choice of y .= x1.

So all in all, we get a closed formula

(#E)dim(Hypd )+2n+4 T4(E, π∗Fd)

= 3(#X (E))(#X (E) − 1)(#Hypd(E))(#E − 1)2

+ (#X (E))(#Hypd(E))(#{(λi ) in (E×)4 with λ1 + λ2 + λ3 + λ4 = 0}).

Dividing through by #Hypd(E) = (#E)dim(Hypd ), we get

(#E)2n+4 T 4(E, π∗Fd)

= 3(#X (E))(#X (E) − 1)(#E − 1)2

+ (#X (E))(#{(λi ) in (E×)4 with λ1 + λ2 = λ3 + λ4 = 0}).

Lemma 2.2.13. We have the identity

#{(λi ) in (E×)4 with λ1 + λ2 + λ3 + λ4 = 0}

= (#E − 1)3 − ((#E − 1)2 − (#E − 1)).

Proof of Lemma 2.2.13. View the set in question as the subset of (E×)3 where
λ1 + λ2 + λ3 .= 0 (solve for λ4). Its complement in (E×)3 is the subset of (E×)2

where λ1 + λ2 .= 0 (solve for λ3). The complement in (E×)2 of this last set is the
set of pairs (λ, −λ). !

So now we have the identity

(#E)2n+4 T |
4(E, π∗Fd)

= 3(#X (E))(#X (E) − 1)(#E − 1)2

+ (#X (E))((#E − 1)3 − ((#E − 1)2 − (#E − 1))).
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Dividing through, we get

T4(E, π∗Fd)

= 3(#X (E)/(#E)n+1)(#X (E)/(#E)n+1 − 1/(#E)n+1)(1 − 1/#E)2

+ (#X (E)/(#E)n+1)((#E − 1)3 − ((#E − 1)2 − (#E − 1)))/(#E)n+3.

By Lang-Weil, we have

|(#X (E)/(#E)n+1 − 1| = O((#E)−1/2).

So the first term is 3 + O((#E)−1/2). If n = 0, the second term is 1 + O((#E)−1/2),
while if n ≥ 1 the second term is O((#E)−1). This concludes the proof of Theorem
2.2.7, and, with it, the proofs of Theorems 2.2.5 and 2.2.4.

2.2.14. We now give a supplement to Theorem 2.2.4, by combining our results
with those of Deligne [De-Weil II, 4.4.1, 4.4.2s, and 4.4.9]. This supplement will
itself be supplemented in 2.3.6.

Theorem 2.2.15 (Supplement to Theorem 2.2.4). Suppose that n ≥ 2 is
even, and that d ≥ 3.

(1) If Nd is 1, 3, 4, or 5, or if Nd ≥ 9, then the geometric monodromy group
Gd of the lisse sheaf Fd is the full orthogonal group O(Nd).

(2) If Nd is 6, 7, or 8, then Gd is either the full orthogonal group O(Nd), or Gd

is the Weyl group of the root system Eα, α := Nd, in its standard Nd-dimensional
representation as a Weyl group.

(3) If Nd = 2, then Gd is the symmetric group S3 in the representation
Aug2.

Proof. According to [De-Weil II, 4.4.1, 4.4.2s, and 4.4.9], if Nd ≥ 1, Gd is
either the full orthogonal group O(Nd), or it is a finite reflection group. Moreover,
the only finite reflection groups that arise are the Weyl groups of root systems
of type Aα for α ≥ 1, Dα for α ≥ 4, or Eα for α = 6, 7, or 8, in their standard
α-dimensional representations.

We have shown (Theorem 2.2.5) that for any d ≥ 3, we have M4(Gd, Vd) ≤ 3.
Suppose first that Gd is finite, and that Nd ≥ 3.

We cannot have the Weyl group of Aα for any α ≥ 3, in its standard represen-
tation, i.e., we cannnot have he group Sα+1 in the representation Augα, because
M4(Sα+1, Augα) > 3 for α ≥ 3. Indeed, for α ≥ 4 this is proven in Lemma 1.4.5,
and for α = 3 it is an elementary calculation we leave to the reader (or the reader
can observe that A3 = D3, and see the discussion of Dα just below).

We can rule out having the Weyl group of Dα for any α ≥ 3, in its standard
representation, as follows. By Theorem 1.3.2, Gd is primitive. But the standard
representation of the Weyl group of Dα is induced (in the Bourbaki notations
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[Bour-L6, Planche IV, page 257], the lines spanned by the ε j are permuted among
themselves).

So the only surviving finite group cases with Nd ≥ 3 are the Weyl groups of
E6, E7, and E8 in their standard representations.

If Nd = 2, then Gd must be finite, because it is a semisimple subgroup of
O(2). The only possibility is the Weyl group of A2, i.e., S3 in the representation
Aug2.

If Nd = 1, then O(1) = {±1} = S2 in Aug1, so there is only one possibility. !

Remark 2.2.16. The Weyl groups of type E in their standard Weyl group rep-
resentations all have fourth moment 3. The Weyl group of E6 occurs as the mon-
odromy group attached to the universal family of smooth cubic surfaces in P3.
(Since a smooth cubic surface has middle Betti number 7, and all its cohomology
is algebraic, we have a case with d = 3, Nd = 6, and Gd finite, so necessarily the
Weyl group of E6, cf. also [Beau].) We do not know if the Weyl groups of E7 or
of E8 can occur as the monodromy group of the universal family of smooth hy-
persurface sections of degree d ≥ 3 of some projective smooth X . (These groups
certainly occur as the monodromy of suitable families of del Pezzo surfaces, but
those families are not of the required form.)

Remark 2.2.17. In Theorems 2.2.4 and 2.2.15, the hypothesis that d be at least
3 is absolutely essential. Indeed, fix an even integer n ≥ 0, take for X a smooth
quadric hypersurface in Pn+2, and consider the universal family of smooth, degree
d = 2 hypersurface sections of X . Each member of this family is a smooth complete
intersection of multi-degree (2, 2) in Pn+2, so has middle betti number n + 4, and
all cohomology algebraic. This family has Nd = n + 3, and its finite Gd is the Weyl
group of Dn+3. (Indeed, if n = 0 the two possibilities coincide. If n ≥ 2, the only
other possibility is Sn+4 in Augn+3, or, if n = 4, the Weyl group of E7 in its standard
Weyl group representation, both of which are primitive. But by [Reid], cf. [Beau,
page 16], the monodromy for the universal family of smooth complete intersections
of multi-degree (2, 2) in Pn+2 is the Weyl group of Dn+3. So our Gd is a subgroup
of the Weyl group of Dn+3. In particular, our Gd is imprimitive.)

2.3. Higher moments

2.3.1. The same ideas used in proving Theorem 2.2.5 allow one to prove the
following estimate for higher moments.

Theorem 2.3.2. Suppose that n ≥ 1 and d ≥ 3. For any integer b ≥ 1 with
2b ≤ d + 1, we have the estimate

M2b(Gd, Vd) ≤ (2b)!! := 6 j=1 to b(2 j − 1).
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Proof. We proceed as in the proof of Theorem 2.2.7. We define the mock
moment T2b(E, π∗Fd) by

T2b(E, π∗Fd) := (#E)−dim(Hypd )−bn "H in Hypd (E)|τ (E, H )|2b

= (#E)−dim(Hypd )−bn "H in Hypd (E)(#(X ∩ (H = 0))(E) − #X (E)/#E)2b.

It suffices to show that

|T2b(E, π∗Fd) − (2b)!!| = O((#E)−1/2).

Exactly as in the discussion of T4, we find for T2b the identity

(#E)dim(Hypd )+bn+2b T2b(E, π∗Fd)

= "H in Hypd (E) ("x in X (E) "λ in E× ψ(λH (x̃)))2b.

We next open the inner sum and interchange orders of summation, to get

= "(xi ) in X (E)2b "(λi ) in (E×)2b "H in Hypd (E) ψ("i=1 to 2b λi H (x̃i )).

We next break up this sum according to the coincidence pattern of the 2b not
necessarily distinct points x1, . . . , x2b in X (E).

The coincidence pattern among the xi gives a partition P of the set {1, 2, . . . ,
2b} into #P disjoint nonempty subsets Sα : xi = x j if and only if i and j lie in the
same Sα.

Fix a point (xi ) in X (E)2b with partition P . Exactly as in the proof of Theorem
2.2.7, the innermost sum vanishes unless, for each Sα in P , we have "i in Sα

λi = 0,
in which case the innermost sum is equal to (#E)dim (Hypd ). So the inner double sum
is equal to

(#E)dim (Hypd )6α inP#{(λi )i inSα
with λi in E×and "i in Sα

λi = 0}.

This visibly vanishes if some Sα is a singleton. More generally, consider the se-
quence of integer polynomials Pr (X ), r ≥ 1, defined inductively by

P1(X ) = 0,

Pr (X ) = Xr−1 − Pr−1(X ),

i.e.,

Pr (X ) = Xr−1 − Xr−2 + Xr−3 . . . + (−1)r−2 X.

We have the elementary identity

#{(λi )i in Sα
with λi in E× and "i,in Sα

λi = 0} = P#Sα
(#E).

So the innermost double sum is

(#E)dim (Hypd )6α inP P#Sα
(#E).
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This vanishes if any Sα is a singleton, otherwise it is given by a polynomial in #E
of the form

(#E)dim (Hypd )6α inP (#E)#Sα−1 + lower terms

= (#E)dim (Hypd )+2b−#P + lower terms.

The number of points (xi ) in X (E)2b with given partition P is

6 j=0 to #P−1(# X (E) − j) = # X (E)#P + lower terms

= (# E)(n+1)#P + O((# E)(n+1)#P−1/2).

As we have seen above, partitions with a singleton do not contribute.
For each partition P without singletons, the total contribution of all points with

that coincidence pattern is thus the product

((#E)dim (Hypd )+2b−#P + lower terms) × ((#E)(n+1)#P + O((#E)(n+1)#P−1/2))

= (#E)dim (Hypd )+2b+n#P (1 + +O(#E)−1/2).

So the terms of biggest size (#E)dim (Hypd )+2b+nb come from those P without sin-
gletons having exact b members, and there are exactly (2b)!! such partitions. !

2.3.3. The relevance of Theorem 2.3.2 is this. Recall (cf. [Weyl, Theorem
(2.9.A), page 53 and Theorem (6.1.A), page 167], [ABP, Appendix I, pages 322–
326]) that for O(V ) or Sp(V ), the invariants in the dual of any even tensor power
V ⊗2b, b ≥ 1, are the C -span of the “complete contractions,” i.e., the linear forms
on V ⊗2b obtained by choosing a partition P of the index set {1, 2, . . . , 2b} into b
disjoint sets Sα of pairs, say Sα = {iα, jα} with iα < jα, and mapping

v1 ⊗ v2 ⊗ . . . ⊗ v2b → 6α inP < viα , v jα >.

There are (2b)!! such complete contractions. If dim (V ) ≥ 2b, they are linearly
independent (cf. [Weyl, section 5 of Chapter V , pages 147–149]). So for any
N ≥ 2b, we have

M2b(O(N ), std) = (2b)!!,

and for any even N ≥ 2b, we have

M2b(Sp(N ), std) = (2b)!!,

(cf. [Larsen-Normal], [Dia-Sha]).

Corollary 2.3.4. Suppose n ≥ 1, and d ≥ 3. For each b ≥ 1 with

2b ≤ Max (Nd, d + 1),
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we have the equality

M2b(Gd, Vd) = (2b)!!.

Proof. Suppose n is odd. Since Gd is a subgroup of Sp(Nd) = Sp(Vd), we have
the a priori inequality

M2b(Gd, Vd) ≥ M2b(Sp(Nd), std).

If 2b ≤ Nd , we have

M2b(Sp(N ), std) = (2b)!!,

as explained in (2.3.3) above. So we find

M2b(Gd, Vd) ≥ (2b)!!.

If in addition d ≥ 3 and d + 1 ≥ 2b, we have the reverse inequality from Theorem
2.3.2. For the proof in the case of even n, simply replace Sp(Nd) by O(Nd) in the
above argument. !

2.3.5. We now use these estimates for higher moments to eliminate more
possibilities of finite monodromy in our universal families.

Theorem 2.3.6 (Supplement to Theorem 2.2.15). Suppose that n ≥ 2 is
even, that d ≥ 5, and that Nd ≥ 3. If Nd .= 8, or if d ≥ 7, then the geometric
monodromy group Gd of the lisse sheaf Fd is the full orthogonal group O(Nd).

Proof. Unless Nd is 6, 7, or 8, the desired conclusion is given by 2.2.15.
If Nd is 6, then Gd is either O(6) or it is W (E6), the Weyl group of E6, in

its standard reflection representation std6. According to the the computer program
GAP [GAP], the sixth moment of W (E6) in std6 is given by

M6(W (E6), std6) = 16.

But if d ≥ 5, then by 2.3.2, we have M6(Gd, Vd) ≤ 6!! = 15. So we cannot have
W (E6) if d ≥ 5.

If Nd is 7, then Gd is either O(7) or it is W (E7), the Weyl group of E7, in its
standard reflection representation std7. According to GAP [GAP], the sixth moment
of W (E7) in std7 is given by

M6(W (E7), std7) = 16.

But if d ≥ 5, then by 2.3.2, we have M6(Gd, Vd) ≤ 6!! = 15. So we cannot have
W (E7) if d ≥ 5.

If Nd = 8, then Gd is either O(8) or it is W (E8), the Weyl group of E8, in
its standard reflection representation std8. According to GAP [GAP], the eighth
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moment of W (E8) in std8 is given by

M8(W (E8), std8) = 106.

But if d ≥ 7, then by 2.3.2 we have M8(Gd, Vd) ≤ 8!! = 105. So we cannot have
W (E8) if d ≥ 7. !

2.4. Remarks on Theorem 2.2.4

2.4.1. We have stated Theorem 2.2.4 in terms of the universal family of smooth
hypersurface sections of degree d. It results from Bertini’s theorem [Ka-ACT,
3.11.1] that we also get the same Gd for any sufficiently general Lefschetz pencil
of hypersurface sections of degree d.

2.4.2. We have given a diophantine proof of Theorem 2.2.4, based on having
a finite ground field. It follows, by standard spreading out techniques, that the same
theorem is valid, for either the universal family of smooth hypersurface sections of
degree d, or for a sufficiently general Lefschetz pencil thereof, over any field k in
which % is invertible. When k is C , we have integral cohomology theory

X #→ H∗(X (C)an, Z),

so Fd has a natural Z-form, and we can speak of the integral monodromy group.
In some cases, this finer invariant is known, cf. [Beau].

2.4.3. In the case n = 0, if we take X to be P1, then Gd is a subgroup of the
symmetric group Sd , and Vd is just the representation Augd−1. (Of course, Gd is
equal to Sd , thanks to Abel, but we will not use this fact here, cf. 2.4.4 just below.)
Since we have proven that

M4(Gd, Vd = Augd−1) ≤ 4,

it follows that for the larger group Sd we have

M4(Sd, Augd−1) ≤ 4.

On the other hand, we have already proven (1.4.5) that

M4(Sd, Augd−1) > 3 for d ≥ 5.

Since in any case the moments are integers, we have

M4(Sd, Augd−1) = 4 for d ≥ 5.

(One can check by hand that M4(S4, Aug3) = 4, but that M4(S3, Aug2) = 3.)

2.4.4. In the case n = 0, X ⊂ P any smooth, geometrically connected, pro-
jective curve, we can see that Gd , the geometric monodromy group of Fd , is the
full symmetric group SNd+1 as follows. Since Gd is a priori a subgroup of SNd+1, it
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suffices to exhibit a pullback of Fd whose geometric monodromy group is SNd+1.
Any Lefschetz pencil of degree d hypersurface sections on X will do this. Indeed,
such a pencil gives a finite flat map f : X → P1 which is finite etale of degree

deg ( f ) = deg (OX (d)) = d × deg (X ) = 1 + Nd

over a dense open set P1 − S, inclusion denoted

j : P1 − S → P1,

such that for each geometric point s in S, the geometric fibre f −1(s) consists of
deg ( f ) −1 distinct points. The pullback to P1 − S of the sheaf Fd is j∗( f∗Q%/Q%).
We must show that j∗( f∗Q%) has geometric monodromy group Sdeg( f ). From the
commutative diagram

k
X − f −1(S) ⊂ X

f̃ ↓ ↓ f

P1 − S ⊂ P1

j

we see that f∗Q% = f∗k∗Q% = j∗ f̃ ∗Q% = j∗ j∗ f∗Q%. From the equality f∗Q% =
j∗ j∗ f∗Q%, we see that the local monodromy of j∗( f∗Q%) at each point of S has
a fixed space of codimension one, so is a reflection. The monodromy group of
j∗( f∗Q%) is a subgroup of Sdeg ( f ) which is transitive (the total space X − f −1(S)
is geometrically connected) and generated by reflections (all the conjugates of the
local monodromies at all the points of S), hence is the whole group Sdeg ( f ).

2.5. A p-adic approach to ruling out finite monodromy for universal
families of hypersurface sections

2.5.1. In the case of odd fibre dimension n, we know [De-Weil II, 4.4.1]
that any Lefschetz pencil has monodromy group which is Zariski dense in the
full symplectic group. The moment technique gives a variant proof, valid for the
universal family (and then by Bertini for any sufficiently general Lefschtz pencil)
of hypersurface sections of degree d ≥ 3 such that Nd ≥ 4. Indeed, the fourth
moment is 3, so Gd is either Sp(Nd) or it is finite. But Gd cannot be finite, because
in odd fibre dimension the local monodromies in a Lefschetz pencil are unipotent
pseudoreflections (and so of infinite order).

2.5.2. In our discussion so far, we have made essential use of the Picard-
Lefschetz formula [SGA 7, Exposé XV, 3.4], to know that Gd contains a reflection
in the case of even fibre dimension n, and, a unipotent pseudoreflection in the case
of odd fibre dimension.
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2.5.3. Suppose we did not know the Picard-Lefschetz formula, but did know
all the results of [De-Weil II], an admittedly unlikely but nonetheless logically
possible situation. In that case, a result of Koblitz [Kob, Lemma 4, page 132, and
Theorem 1, page 139] leads to a p-adic proof that, given X/k as above of dimension
n + 1 ≥ 2, then for all d sufficiently large, the group Gd is not finite. Once Gd is
not finite for a given d ≥ 3 with Nd ≥ 3, we know from Larsen’s Alternative that
Gd is Sp(Nd) if n is odd, and that Gd is either SO(Nd) or O(Nd) if n is even. We
do not know how to prove, in the case of even fibre dimension, that the SO case
cannot occur, without appealing to the Picard-Lefschetz formula!

2.5.4. We now explain the p-adic proof that if X/k as above has dimension
n + 1 ≥ 2, then for d sufficiently large, the group Gd is not finite.

2.5.4.1. We know that Gd is an irreducible subgroup of GL(Vd). If Gd is
finite, then any element A of the ambient GL(Vd) which normalizes Gd has some
power a scalar. For the group Aut (Gd) is itself finite, so a power of A, acting by
conjugation on Gd , will act trivially, i.e., a power of A will commute with Gd ,
which, Gd being irreducible, makes that power a scalar. This applies to the image
in GL(Vd) of any Frobenius element in π1 (GoodX PHypd). So if Gd is finite, then for
any finite extension field E/k, and any H in GoodX PHypd(E), we find that a power
of FrobE acting on Evn((X ⊗k k̄) ∩ H, Q%) is a scalar. Moreover, we know that
FrobE/(#E)n/2 lies in either Sp or O , so has determinant ±1. Since FrobE/(#E)n/2

has a power which is a scalar, that scalar must be a root of unity. Thus every
eigenvalue of FrobE acting on Evn((X ⊗k k̄) ∩ H, Q%) is of the form (a root of
unity) × (#E)n/2, so in particular of the form p × (an algebraic integer).

2.5.4.2. On the other hand, we know that the characteristic polynomial of
FrobE on Hi ((X ⊗k k̄) ∩ H, Q%) or on Hi (X ⊗k k̄, Q%) has Z-coefficients. By the
hard Lefschetz theorem on X , for i > n, all eigenvalues of FrobE on Hi (X ⊗k k̄)
∩ H, Q%) are also of the form p × (an algebraic integer). So we get a congruence
mod p for the zeta function of X ∩ H/E , viewed as an element of 1 + T Z[[T ]]:

Zeta (X ∩ H/E, T )

≡ 6i=0 to n det (1 − T FrobE |Hi ((X ⊗k k̄) ∩ H, Q%)(−1)i+1
.

Using the weak Lefschetz theorem, this last product is equal to the product

(6i=0 to n det (1 − T FrobE |Hi (X ⊗k k̄, Q%)(−1)i+1
)

× det (1 − T FrobE |Evn(X ⊗k k̄) ∩ H, Q%)(−1)n+1
.

If Gd is finite, then the second term is 1 mod p. So we get a congruence formula
for Zeta (X ∩ H/E, T ) which shows that its reduction mod p is a rational function
whose degree as a rational function depends only on X . Indeed, if we denote by σi
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the degree of the reduction mod p of the integer polynomial

det (1 − T Frobk |Hi (X ⊗k k̄, Q%),

then Zeta (X ∩ H/E, T ) mod p has degree σ (X ) := "i=0 to n(−1)i+1σi , for every
finite extension E/k, and every point H in GoodX PHypd(E).

2.5.4.3. We now explain how this last conclusion leads to a contradiction for
large d. By the congruence formula [SGA 7, Part II, Exposé XXII, 3.1] for the zeta
function, we have the mod p congruence

Zeta (X ∩ H/E, T )

≡ 6i=0 to n det (1 − T FrobE |Hi (X ∩ H,OX∩H ))(−1)i+1
.

For d sufficiently large, the restriction map

Hi ((X,OX ) → Hi (X ∩ H,OX∩H ))

is an isomorphism for i < n, and is injective for i = n (i.e., for large d we have
vanishing of Hi (X,OX (−d)) for i ≤ n). So we can factor this mod p product as

(6i=0 to n det (1 − T FrobE |Hi (X,OX ))
(−1)i+1

)

× det (1 − T FrobE |H n(X ∩ H,OX∩H )/H n(X,OX ))(−1)n+1
.

The degree of the first factor depends only on X . Indeed, if we denote by τi the
degree of the mod p polynomial

det (1 − T Frobk |Hi (X,OX )),

this degree is τ (X ) := "i=0 to n(−1)i+1τi . So if Gd is finite, then we conclude that
the mod p polynomial

det (1 − T FrobE |H n(X ∩ H,OX∩H )/H n(X,OX ))

has degree (−1)n(σ (X ) − τ (X )), for every finite extension E /k, and every point H
in GoodX PHypd(E).

2.5.4.4. Thanks to Koblitz [Kob, Lemma 4, page 132, and Theorem 1, page
139], for d sufficiently large, there is a dense open set of GoodX PHypd on which
the degree of the mod p polynomial

det (1 − T FrobE |H n(X ∩ H,OX∩H )/H n(X,OX ))

is constant, say F(d), and F(d) goes to infinity with d. More precisely, Koblitz
shows that there is a Q-polynomial PX (T ) of degree n + 1, of the form
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deg(X )T n+1/(n + 1)! + lower terms, such that F(d) ≥ PX (d). So for d large
enough that the following three conditions hold:

d ≥ 3,

Hi (X,OX (−d)) = 0 for i ≤ n,

F(d) > (−1)n(σ (X ) − τ (X )),

Gd is not finite.
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CHAPTER 19

ON THE HOLOMORPHY OF CERTAIN L-FUNCTIONS

By Henry H. Kim and Freydoon Shahidi

To Joseph A. Shalika

1. Introduction. In this note we continue our study of automorphic L-
functions using the Langlands-Shahidi method. In [Ki-Sh], we proved that symmet-
ric cube L-functions of non-monomial cuspidal representations of GL2 are entire
using our method.

In this note we study the general case but when m ≥ 2. Here m is the number
of automorphic L-functions which appear in the constant term of corresponding
Eisenstein series. (See (3.1).) Moreover, we assume that the inducing cuspidal rep-
resentation of maximal Levi M has at least one supercuspidal component. The
second author [Sh1] determined the unitary dual for such places and we can there-
fore use our method. We prove, under a standard conjecture on the normalized local
intertwining operators, that L(s, σ, ri ), i ≥ 3, are all entire, since they come from
non-self conjugate maximal parabolic subgroups. We then prove that if the second
L-function has a pole at s = 1, then the first one is entire (Theorem 6.2).

We give several examples. The first one is that of classical groups. For example,
let σ be a cuspidal representation of GLk(A) and τ a generic cuspidal representation
of Sp2l(A). Our result then implies that if σ ⊗ τ has one supercuspidal component
and L(s, σ, ∧2) has a pole at s = 1, then L(s, σ × τ ) is entire. This clearly agrees
with the parametrization problem. Here A is the ring of adeles of our number field F .

As our second example, we show that exterior cube L-functions for cuspidal
representations of PGL6(A) are entire, if the cuspidal representations of PGL6(A)
each have at least one supercuspidal component. These are degree 20 L-functions.

Finally, under our assumption on normalized local intertwining operators (As-
sumption (A) in Section 3), we prove that the following three L-functions are
entire if the corresponding cuspidal representations each have one supercuspidal
component;

(1) the degree 56 standard L-function attached to generic cuspidal representa-
tions of the adelic points of the adjoint group of type E7,

(2) the degree 32 L-function L(s, π, r ), where π is a generic cuspidal repre-
sentation of PSO12(A) and r is the half-spin representation of Spin(12, C), and

Research of the first author supported in part by NSF grant DMS9988672, DMS9729992 (at IAS), and by
Clay Mathematics Institute; research of the second author supported in part by NSF grant DMS9970156 and by
Clay Mathematics Institute.
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(3) the L-function L(s, π, r ), where π is a generic cuspidal representation of
SO7(A) and r is the 14-dimensional representation of Sp6(C), the so called spherical
harmonic representation.

We refer to [B-F-G], [G1-G3], [G-R], [G-R-S], and [G-PS-R] for integral rep-
resentations for these L-functions.

Acknowledgments. It is our great pleasure to dedicate this paper to Joseph
Shalika on the occasion of his 60th birthday. Being Shalika’s first student, the
second author is particularly indebted to him, since it was through his mentorship
and guidance that he started his career in automorphic forms many years ago.

2. Notation. Throughout this paper, we refer to [Sh2] for more details and
unexplained notations. Let F be a number field and A = AF be its ring of adeles.
Let G be a quasi-split connected reductive group over F and let G = G(AF ). Let
B = TU be a Borel subgroup, where T is a maximal torus and U is the unipotent
radical of B. Let P be a standard parabolic subgroup of G containing B. Let P =
MN be a Levi decomposition, where N ⊂ U. Assume T ⊂ M and let A be the split
component of the center of M. Hence A ⊂ T.

Let v be a place of F and let Fv be the completion of F with respect to v . All
the groups above may be considered as objects over Fv . If H is one such, we write
Hv = H(Fv ).

L-groups. Let ψ(G) = (X∗, X∗, %
∗, %∗) be the root datum, where X∗ and X∗

are the character group and the cocharacter group of T respectively. Moreover, %∗

and %∗ are the roots and the coroots of T in U, respectively. Define a complex
group Ĝ (connected and reductive) such that ψ(Ĝ) = ψ(G)∨ = (X∗, X∗, %∗, %

∗).
Let W = W (F̄/F) be the Weil group. It acts on ψ(G) and thus on ψ(Ĝ) and on
Ĝ. Let L G = Ĝ ! W be the L-group of G. Similarly define L M for M. There is
a natural definition of L N , L-group of N, such that L P = L M L N is a parabolic
subgroup of L G, L T ⊂ L M and L N ⊂ LU [Bo]. Let Ln be the Lie algebra of L N .
Then L M acts by adjoint action on Ln. Denote this action by r .

From now on, we will assume P is maximal. This is equivalent to saying that
either dim(A/A ∩ Z (G)) = 1, or that there exists a unique simple root α of A0 ⊂ T,
maximal split torus of T, in N. Let ρP be half the sum of roots generating the Lie
algebra of N, and let α̃ = 〈ρP, α〉−1ρP. We decompose r = ⊕m

i=1ri to its irreducible
constituents on Ln = V = ⊕m

i=1Vi and index them according to an upper central
series of Ln. More precisely, m is equal to the nilpotence class of LN (or Ln), and
each ri corresponds to a factor in the series with rm corresponding to the action on
the center Vm of Ln, and then increasing up on the series. Notice that

Vi =
{

Xβv ∈ Ln|〈α̃, β〉 = i
}
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and therefore the order is that of the increasing eigenvalues of the action of LA
on Ln.

3. Automorphic L-functions. Let π = ⊗vπv be a cuspidal representation
of M = M(AF ). For almost all v , πv is M(Ov )-spherical and will be parametrized
by a semisimple conjugacy class {tv} ⊂ L Mv , where L Mv is the L-group of M, as
a group over Fv . Recall that

L(s, πv , ri,v ) = det
(
1 − ri,v (tv )q−s

v

)−1
.

Here ri,v : L Mv−→L M −→ Aut(H(ri )). If S is a finite set of places of F such that
πv is M(Ov )-spherical for v /∈ S, we then let

L S(s, π, ri ) =
∏

v /∈S

L(s, πv , ri,v ).

Problem. (1) Define L(s, πv , ri,v ) and ε(s, πv , ri,v , ψv ) for v ∈ S;
(2) Let L(s, π, ri ) =

∏
v L(s, πv , ri,v ), and ε(s, π, ri ) =

∏
v ε(s, πv , ri,v , ψv ).

Show that each L(s, π, ri ) has an analytic continuation to the whole complex plane
and satisfies a functional equation L(s, π, ri ) = ε(s, π, ri )L(1 − s, π, r̃i );

(3) Show that L(s, π, ri ) has a finite number of poles.

Suppose π is globally generic, i.e., has a non-zero Fourier coefficient with
respect to a generic character of UM(F)\UM(AF ). Then (1) and (2) are solved in
[Sh1]. Local factors are defined canonically such that archimedean factors and those
who have Iwahori fixed vectors are Artin factors. (3) is solved partially in [Sh2].

We would like to address the problem (3) in some generality whenever one
local component πv0 is supercuspidal, and show that in some fairly general setting,
poles are only at s = 0, 1. This has been fairly hard up to now.

Example. Let G = GLn+p, M = GLn × GLp and let π = π ′ ⊗ π ′′, where π ′

(resp. π ′′) is a cuspidal representation of GLn(A) (resp. GLp(A)). Let t ′
v =

diag(α′
1,v , . . . , α

′
n,v ) and t ′′

v = diag(α′′
1,v , . . . , α

′′
p,v ). We obtain m = 1 and

L(s, πv , r1) = L(s, π ′
v × π̃ ′′

v ) =
∏

1≤i≤n,1≤ j≤p

(1 − α′
i,vα

′′
j,v

−1q−s
v )−1,

the Rankin-Selberg product L-function. The conditions (1), (2) and (3) are all proved
in this case: Local factors are the same as those defined by Rankin-Selberg method
[Sh4]. At archimedean places they are given by Langlands’ parametrization. At
non-archimedean places they are the same as those from the parametrization a lá
Harris-Taylor [Ha-Ta] and [He]. Functional equations are proved in [Sh3]. Recall
that φv : WFv −→ L Mv −→ Aut(H(ri,v )) gives ri,v ◦ φv as a representation of WFv ,
to which one can attach Artin factors.
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Recall the global intertwining operator and its normalization ([Sh1], [Ki1])

M(s, π ) f(3.1)

=
m∏

i=1

ε(is, π, r̃i )−1L(is, π, r̃i )L(1 + is, π, r̃i )−1 ⊗v N (sα̃, πv , w) fv .

In this paper, we assume the following [Ki1].

Assumption (A). The local normalized intertwining operators N (sα̃, πv , w0)
are all holomorphic and non-zero for Re(s) ≥ 1

2 .

This assumption was proved for the split classical groups Sp2n and SO2n+1 in
[Ki2]. Similar arguments work for the split group SO2n . We will prove it for certain
other cases later.

Next, let Eχ (s, ϕ̃, e, P) be the χ–Fourier coefficient of the Eisenstein series
attached to π and P as defined in [Sh2, Sh4]. Here ϕ̃ is the function attached to f
coming from a cusp form ϕ on M . We record equation (3.4) of [Sh2] as:

Proposition 3.1. One has

Eχ (s, ϕ̃, e, P) =
∏

v∈S

Wv,s(e) ·
m∏

i=1

L S(1 + is, π, r̃i )−1,

where Wv,s is the Whittaker function attached to fv by equation (3.2) of [Sh2].

4. Non-self conjugate cases. Let W = W (A0) = NG(A0)/A0, M = Mθ . Let
WM = NM(A0)/A0. Let w̃l ∈ W (resp. w̃l,θ ∈ WM) be the longest element in W
(resp. WM). Let w̃0 = w̃l w̃l,θ . Let α be the unique simple root of A0 in N, i.e.,
/ − θ = {α}, where / is the set of simple roots of A0 in U and θ is the set of
simple roots in M. Then P = Pθ is self-conjugate or self-associate if and only
if w̃0(α) = w̃l(α) = −α if and only if w̃0(θ ) = θ . Non-self conjugate maximal
parabolic subgroups exist only in groups of type An , Dn (n odd), and E6. Note that
if P is non-self conjugate, then in (3.1), m = 1, except for one case in E6 (the case
E6 − 2 in [Sh2]) for which m = 2.

Recall Langlands’ theory of Eisenstein series.

Proposition 4.1 [Ki1, Proposition 2.1]. If w0(π ) 23 π , then the global inter-
twining operator (3.1) is holomorphic for Re(s) ≥ 0.

Hence if P is non-self conjugate, together with Assumption (A),
m∏

i=1

L(is, π, ri )
L(1 + is, π, ri )

(4.1)

is holomorphic for Re(s) ≥ 1
2 . By induction and the functional equation, we have:
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Theorem 4.2 [Ki1]. Under Assumption (A), L(s, π, r1) is entire whenever P
is not self conjugate.

Proof. As we noted above, except for case E6 − 2 [Sh2], m = 1. Hence
L(s, π, r1)L(1 + s, π, r1)−1 is holomorphic for Re(s) ≥ 1

2 . Starting with Re(s)
large, and using induction, we see that L(s, π, r1) is holomorphic for Re(s) ≥ 1

2
since L(s, π, r1) is in fact holomorphic for Re(s) large. By the functional equation,
L(s, π, r1) is entire.

Now, in the case E6 − 2, m = 2 and we see that L(s, π, r1)L(2s, π, r2) is holo-
morphic for Re(s) ≥ 1

2 . However L(s, π, r2) is a unitary Hecke L-function, and it
has no zeros for Re(s) ≥ 1. Hence L(s, π, r1) is holomorphic for Re(s) ≥ 1

2 and is
entire by the functional equation. !

Proposition 4.3. If P is non-self conjugate, then L(s, π, r1) has no zeros for
Re(s) ≥ 1, except in the case E6 − 2. In this case, L(s, π, r1) has no zeros for
Re(s) > 1.

Proof. By Proposition 4.1, the Eisenstein series E(s, ϕ̃, e, P) is holomor-
phic for Re(s) ≥ 0 and so is Eχ (s, ϕ̃, e, P). Note that Whittaker functions and
L-functions are non-zero. Hence our assertion is immediate from Proposition 3.1
if m = 1. In the case E6 − 2, Proposition 3.1 implies that L(1 + s, π, r1)
L(1 + 2s, π, r2) has no zeros for Re(s) ≥ 0. But L(s, π, r2) has no poles for
Re(s) > 1, as it is a Hecke L-function attached to a unitary character and hence
our assertion follows. !

5. The general case. When G is exceptional, m ≥ 3 is possible. In fact, for
G = E8, m = 6 also happens. But for i ≥ 3, each L-function L(s, π, ri ) already
appears in one of the non-self conjugate cases and is therefore entire. Moreover,
using the holomorphy of the non-constant Fourier coefficients of non-self conjugate
cases, i.e., Proposition 3.1, we can remove all L(s, π, ri ) for i ≥ 3 from (4.1).
Let us make this more precise. We begin with the main induction step of [Sh1]
(cf. Propositions 4.1, 4.2, 5.1, Theorem 3.5 of [Sh1]).

Proposition 5.1. Let F be a number field (resp., a local field of character-
istic zero). Let G be a quasisplit connected reductive group over F. Let P = MN
be a standard maximal parabolic subgroup of G with respect to a F–Borel
subgroup B as before. Let π be a globally generic cuspidal representation of
M = M(AF ) (irreducible admissible generic representation of M = M(F), respec-
tively). Let r = ⊕m

i=1ri be the adjoint action of LM on Ln as before. Then for each
i, 2 ≤ i ≤ m, there exists a quasisplit connected reductive F–group Gi , a maximal
F–parabolic subgroup Pi = Mi Ni of Gi , a globally generic cuspidal representa-
tion π ′ of Mi = Mi (AF ) (an irreducible admissible generic representation π ′ of
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Mi = Mi (F), respectively) such that, if the adjoint action r ′ of LMi on Lni decom-
poses as r ′ = ⊕m ′

j=1r ′
j , then

L(s, π, ri ) = L(s, π ′, r ′
1)(5.1)

and

ε(s, π, ri ) = ε(s, π ′, r ′
1)(5.2)

(ε(s, π, ri , ψF ) = ε(s, π ′, r ′
1, ψF ), respectively). Moreover m ′ < m and if the data

outside S is unramified for (G, M, π ), then the same is true for each (Gi , Mi , π
′).

Lemma 5.2. If i ≥ 3, then L S(s, π, ri ) is holomorphic for Re(s) > 1
2 . If As-

sumption (A) is satisfied, then the completed L-functions L(s, π, ri ) are entire.

Proof. By the above proposition, there exists a quasisplit group Gi , a maximal
parabolic subgroup Pi = Mi Ni , and a cuspidal representation π ′ of Mi (A) such
that if the adjoint action r ′ of L Mi on Lni decomposes as r ′ = ⊕m ′

j=1r ′
j , then

L S(s, π, ri ) = L S(s, π ′, r ′
1).

Note that except for r3 of the case (E8 − 1) of [Sh3], each (Gi , Mi ), 3 ≤ i ≤
m, may be chosen to have length one with Pi non-self conjugate in Gi . Then
applying the same argument as in the discussion after Theorem 3.12 of [Ki1],
we see that L S(s, σ, ri ) is holomorphic for Re(s) > 0 for i ≥ 3, except for r3 of
the case (E8 − 1). (This is an inductive argument on Re(s) using the constant
term which is in the same vein as in Lemma 5.7 of [Sh2], but this time using the
holomorphy of M(s, π ) for Re(s) > 0 as in [Ki1], instead of finiteness of poles used
in [Sh2].) The representation r3 of (E8 − 1) appears as r ′

1 in the case (E6 − 2). In
this case we showed (see the remark after Theorem 3.12 in [Ki1]) that L S(s, π ′, r ′

1)
is holomorphic for Re(s) > 1

2 . Hence L S(s, π, r3) is holomorphic for Re(s) > 1
2 .

As for the completed L-functions, use the fact that L(s, π, ri ) = L(s, π ′, r ′
1)

and Theorem 4.2. !

Proposition 5.3. If i ≥ 3, L S(s, π, ri ) has no zeros for Re(s) > 1.

Proof. As in the proof of Lemma 5.2, each (Gi , Mi ), 3 ≤ i ≤ m, may be chosen
to have Pi non-self conjugate in Gi . Hence our result follows from Proposition 4.3.

!

In many cases, if w0(π ) 23 π , then w ′
0(π ′) 23 π ′ in Proposition 5.1 with i = 2.

(It is not always true that w0(π ) 23 π implies w ′
0(π ′) 23 π ′. For example, let G =

GSp2n , M = GLn × GL1. Let σ be a cuspidal representation of GLn with central
character ωσ . Then w0(σ ⊗ χ ) = σ̃ ⊗ (ωσχ ). But π ′ = σ . Hence if σ 3 σ̃ and
ωσ 2= 1, then w ′

0(π ′) 3 π ′, but w0(σ ⊗ χ ) 23 σ ⊗ χ .) When this is the case, we
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can prove that under Assumption (A), L(s, π, ri ) is entire and has no zeros for
Re(s) ≥ 1 by induction.

6. Main theorem. From now on we will assume that m ≥ 2, P is self-
conjugate, and w0(π ) 3 π . Suppose πv0 is supercuspidal for some finite place v0.

Consider I (sα̃, πv0 ). Since w0(πv0 ) 3 πv0 , there exists a unique s0 ≥ 0 such
that I (s, πv0 ) is reducible at s = s0 and irreducible at all other points. It is proved
in [Sh1] that s0 ∈ {0, 1

2 , 1};

(1) s0 = 0. In this case, I (sα̃, πv0 ) is always irreducible and never unitary
for s > 0.

(2) s0 = 1
2 . This happens if and only if L(s, πv0, r2) has a pole at s = 0. In this

case, I (sα̃, πv0 ) is always irreducible and never unitary for s > 1
2 .

(3) s0 = 1. This happens if and only if L(s, πv0, r1) has a pole at s = 0. In this
case, I (sα̃, πv0 ) is always irreducible and never unitary for s > 1.

Lemma 6.1. Suppose L(s, πv0, r1) does not have a pole at s = 0. Then
L(s, π, r1) is holomorphic, except possibly at s = 1

2 .

Proof. For every pole s0 of L(s, π, r1), we obtain a unitarizable Langlands’
quotient for I (s0α̃, πv0 ). By assumption, we are either in Case (1) or (2) discussed
above and therefore s0 ≤ 1/2. Consequently L(s, π, r1) is holomorphic for Re(s) >
1
2 . We now apply the functional equation. !

Theorem 6.2. Assume m ≥ 2. Suppose πv0 is supercuspidal for some v0. If
L(s, π, r2) has a pole at s = 1, then L(s, π, r1) is entire.

In order to prove Theorem 6.2, we first need the following lemma.

Lemma 6.3. Suppose L(s, π, r2) has a pole at s = 1. Then L(s, πv0, r2) has a
pole at s = 0 and therefore L(s, πv0, r1) is holomorphic at s = 0.

Proof. By induction, there exists (G′, M′) and π ′ a cuspidal representation of
M′(AF ) such that

L(s, π, r2) = L(s, π ′, r ′
1), L(s, πv0, r2) = L(s, π ′

v0
, r ′

1).

Here note that since πv0 is supercuspidal, then so is π ′
v0

. Since L(s, π, r2) has a pole
at s = 1, L(s, π ′, r ′

1) has a pole at s = 1. This means that I (sα̃′, π ′
v0

) is reducible
at s = 1. Consequently L(s, π ′

v0
, r ′

1) must have a pole at s = 0, hence the same is
true for L(s, πv0, r2). !
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Corollary (of the proof). If the edge of complementary series for
I (sα̃′, π ′

v0
) is at 1, then the edge for I (sα̃, πv0 ) is at 1/2.

Proof of the Theorem 6.2. A pole for L(s, π, r1) at s = 1
2 will give a double pole

for Eisenstein series which is not possible. To prove the holomorphy elsewhere, we
note that the condition of Lemma 6.1 is now satisfied by Lemma 6.3. !

Remark. One can replace supercuspidal πv0 by any irreducible unitary repre-
sentation, for which 1

2 is the edge of complementary series.

Remark. Theorem 6.2 is expected to be true for arbitrary π . In fact, one expects
that the product L(s, π, r1)L(s, π, r2) has at most a simple pole at s = 1 for any π .

7. Examples.

7.1. Classical groups. Let Gn+p be a quasisplit classical group of rank
n + p. Let M = GLn × Gp. Then m = 2 and r1 = ρn ⊗ ρp, where ρn is the stan-
dard representation of GLn(C) and ρp is the standard representation of L G p;

r2 =






Sym2(ρn), G = odd orthogonal group

∧2(ρn), G = even orthogonal or symplectic group

Asai or Asai⊗η, G = U (n + p, n + p) or U (n + p + 1, n + p), resp.,

where η is the corresponding class field character (cf. [Sh2]).
Conjecture 7.1 of [Sh1], which demands the holomorphy of local L-functions

attached to tempered data for Re(s) > 0, is true in these cases [Ca-Sh]. Suppose
that π contains a supercuspidal component. Then since Assumption (A) is valid for
split classical groups [Ki2], we have:

Proposition 7.1.1. Let π be a cuspidal representation of GLn(A) and assume
σ is a generic cuspidal representation of Gr (A). Suppose π ⊗ σ has a supercuspidal
component.

(1) If Gr = SO(even) or Sp, and π comes from SO(odd), i.e., L(s, π, 22) has
a pole at s = 1 (cf. [Sh5]), then L(s, π × σ ) is entire.

(2) If Gr = SO(odd), and π comes from SO(even) (cf. [Sh5]), i.e., L(s, π,

Sym2) has a pole at s = 1, then L(s, π × σ ) is entire.

7.2. Exceptional groups. (1) Let G be the adjoint group of type E6. Let
M = Mθ , where θ = {α1, α3, α4, α5, α6}. Let π be a cuspidal representation of
PGL6(A). Extend π to a cuspidal representation of M(A), trivial on GL1. Then r1

is the third exterior power representation ∧3 of SL6(C), i.e., δ3. Here dim r1 = 20,
while r2 is the 1-dimensional trivial representation. Note that if πv is an unramified
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component with Satake parameter diag(β1, . . . , β6), then

L
(
s, πv , ∧3) =

∏

1≤i< j<k≤6

(
1 − βiβ jβkq−s

v

)−1
.

Moreover, observe that L(s, π, r2) has a pole at s = 1. In this case, Conjecture 7.1
of [Sh1] is valid. We prove:

Lemma 7.2.1. Assumption (A) is valid.

Proof. We proceed as in [Ki2, Proposition 3.4]. If πv is tempered, then
N (s, πv , w0) is holomorphic and non-zero for Re(s) > 0, since Conjecture 7.1
of [Sh1] is valid.

If πv is non-tempered, we write I (s, πv ) as in [Ki1, p. 481], i.e.,

I (s, πv ) = I (sα̃ + 20, π0) = IndG(Fv )
M0(Fv )N0(Fv ) π0 ⊗ q〈sα̃+HP0 ( )〉,

where π0 is a tempered representation of M0(Fv ) and P0 = M0 N0 is another
parabolic subgroup of G. We can identify the normalized operator N (s, πv , w0)
with the normalized operator N (sα̃ + 20, π0, w̃0), which is a product of rank-one
operators attached to tempered representations (cf. [Zh, Proposition 1]).

Suppose πv is not of the form Ind µ| |r ⊗ σ ⊗ µ| |−r , where 0 < r < 1
2 , µ is a

unitary character of F×
v , and σ is a tempered representation of GL4(Fv ). Then all

the rank-one operators are operators for a parabolic subgroup whose Levi subgroup
has a derived group isomorphic to SLk × SLl inside a group of type Ak+l−1.

By [M-W2, Proposition I.10] one knows that each rank-one operator for GLk ×
GLl is holomorphic for Re(s) > −1. Hence by identifying roots of G with respect
to a parabolic subgroup, with those of G with respect to the maximal torus, it is
enough to check 〈sα̃ + 20, β

∨〉 > −1 for all positive roots β if Re(s) ≥ 1
2 .

Here in the notation of Bourbaki, α̃ = α1 + 2α2 + 2α3 + 3α4 + 2α5 +
α6; 20 = r1α1 + (r1 + r2)α3 + (r1 + r2 + r3)α4 + (r1 + r2)α5 + r1α6, where 1

2 >

r1 ≥ r2 ≥ r3 ≥ 0. Hence

sα̃ + 20 = (s + r1)α1 + 2sα2 + (2s + r1 + r2)α3 + (3s + r1 + r2 + r3)α4

+ (2s + r1 + r2)α5 + (s + r1)α6.

We observe that the least value of Re(〈sα̃ + 20, β
∨〉) is Re(s) − (r1 + r2 + r3)

which is larger than −1, if Re(s) ≥ 1
2 . Consequently, N (sα̃ + 20, π0, w̃0) is holo-

morphic for Re(s) ≥ 1
2 . By Zhang’s lemma (cf. [Ki2, Lemma 1.7]), it is non-zero

as well.
This completes the proof except for the case of a Levi subgroup of type A3

inside a group of type D4. In this case, r2 = r3 = 0. Hence sα̃ + 20 is in the closure
of the positive Weyl chamber for Re(s) ≥ 1

2 . In this case, N (sα̃ + 20, π0, w̃0) is
holomorphic over the same region [Ki1, Proposition 2.4]. !
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The following proposition is now a consequence of Theorem 6.2 and
Lemma 7.2.1.

Proposition 7.2.2. Let π be a cuspidal representation of PGL6(A) which
has at least one supercuspidal component. Then the exterior cube L-function
L(s, π, ∧3) is entire.

(2) Let Ead
7 be the adjoint group of type E7 and let π be a generic cuspidal

representation of Ead
7 (A). Let r1 be the degree 56 standard representation of Esc

7 (C).

Theorem 7.2.3. Assume π has a supercuspidal component and assume the
validity of Assumption (A) (which holds; for example, if ramified ones are tempered).
Then L(s, π, r1) is entire.

Proof. This is case (xxxii) in [La]. We take G = E8 and consider

M =
(
Esc

7 × GL1
)
/{±1}.

Take π as a cuspidal representation of Esc
7 (A), trivial on {±1}, and extend it to

all of M , trivially on GL1. Here m = 2 and the second L-function is the Hecke
L-function attached to the trivial character which has a pole at s = 1. Observe that

L M =
(
Esc

7 (C) × GL1(C)
)
/{±1},

where Esc
7 is the simply connected group of type E7. Apply Theorem 6.2. !

(3) Let π be a generic cuspidal representation of PSO12(A). Let r1 be the degree
32 half-spin representation of Spin(12, C).

Theorem 7.2.4. Assume π has a supercuspidal component and assume the
validity of Assumption (A) (e.g., if ramified ones are tempered). Then L(s, π, r1) is
entire.

Proof. This is case (xxvi) in [La]. We take G = Ead
7 and consider

M = (HS(12) × GL1)/{±1} = GHS(12).

Here HS(12) is the half-spin group Spin(12)/{1, z}, where z = Hα2 (−1)Hα5 (−1)
Hα7 (−1), i.e., the image of Spin(12) ⊂ Esc

7 in Ead
7 (cf. [C]). Since PGHS(12) =

PHS(12) ∼= PSO(12) = PGSO(12), we can extend π to all of M , trivially on GL1.
Here m = 2 and the second L-function is the Hecke L-function attached to the
trivial character which has a pole at s = 1. Observe that L M = GSpin(12, C). Apply
Theorem 6.2. !
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(4) Let G = F4 be the (simply-connected) group of type F4. Consider a generic
cuspidal representation π of SO7(A). Let r be the 14-dimensional irreducible rep-
resentation of Sp6(C), the so called spherical harmonic representation.

Theorem 7.2.5. Assume π has a supercuspidal component and assume the
validity of Assumption (A) (e.g., if ramified ones are tempered). Then L(s, π, r ) is
entire.

Proof. This is the case (xviii) in [La]. Take G = F4 and consider

M = (Spin(7) × GL1)/{±1}.

Lift π to a cuspidal representation of Spin7(A) and extend it to all of M , trivially
on GL1. Here m = 2 and the second L-function is the Hecke L-function attached
to the trivial character which has a pole at s = 1. Apply Theorem 6.2. !
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CHAPTER 20

RICHARDSON VARIETIES IN THE GRASSMANNIAN

By Victor Kreiman and V. Lakshmibai

Dedicated to Professor J. Shalika on his sixtieth birthday

Abstract. The Richardson variety Xv
w is defined to be the intersection of the Schubert variety Xw

and the opposite Schubert variety Xv . For Xv
w in the Grassmannian, we obtain a standard monomial

basis for the homogeneous coordinate ring of Xv
w . We use this basis first to prove the vanishing of

Hi (Xv
w , Lm ), i > 0, m ≥ 0, where L is the restriction to Xv

w of the ample generator of the Picard group
of the Grassmannian; then to determine a basis for the tangent space and a criterion for smoothness for
Xv

w at any T -fixed point eτ; and finally to derive a recursive formula for the multiplicity of Xv
w at any

T -fixed point eτ . Using the recursive formula, we show that the multiplicity of Xv
w at eτ is the product

of the multiplicity of Xw at eτ and the multiplicity of Xv at eτ . This result allows us to generalize the
Rosenthal-Zelevinsky determinantal formula for multiplicities at T -fixed points of Schubert varieties
to the case of Richardson varieties.

0. Introduction. Let G denote a semisimple, simply connected, algebraic
group defined over an algebraically closed field K of arbitrary characteristic. Let
us fix a maximal torus T and a Borel subgroup B containing T . Let W be the Weyl
group (N (T )/T , N (T ) being the normalizer of T ). Let Q be a parabolic subgroup
of G containing B, and WQ , the Weyl group of Q. For the action of G on G/Q
given by left multiplication, the T -fixed points are precisely the cosets ew := w Q
in G/Q. For w ∈ W/WQ , let Xw denote the Schubert variety (the Zariski clo-
sure of the B-orbit Bew in G/Q through the T -fixed point ew ), endowed with
the canonical structure of a closed, reduced subscheme of G/Q. Let B− denote
the Borel subgroup of G opposite to B (it is the unique Borel subgroup of G
with the property B ∩ B− = T ). For v ∈ W/WQ , let Xv denote the opposite
Schubert variety, the Zariski closure of the B−-orbit B−ev in G/Q.

Schubert and opposite Schubert varieties play an important role in the study
of the generalized flag variety G/Q, especially, the algebraic-geometric and
representation-theoretic aspects of G/Q. A more general class of subvarieties in
G/Q is the class of Richardson varieties; these are varieties of the form Xv

w :=
Xw ∩ Xv , the intersection of the Schubert variety Xw with opposite Schubert vari-
ety Xv . Such varieties were first considered by Richardson in (cf. [22]), who shows
that such intersections are reduced and irreducible. Recently, Richardson varieties
have shown up in several contexts: such double coset intersections Bw B ∩ B−x B
first appear in [11], [12], [22], [23]. Very recently, Richardson varieties have also
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appeared in the context of K-theory of flag varieties ([3], [14]). They also show up
in the construction of certain degenerations of Schubert varieties (cf. [3]).

In this paper, we present results for Richardson varieties in the Grassmannian
variety. Let Gd,n be the Grassmannian variety of d-dimensional subspaces of K n ,
and p : Gd,n ↪→ PN (= P(∧d K n)), the Plücker embedding (note that Gd,n may be
identified with G/P, G = SLn(K ), P a suitable maximal parabolic subgroup of
G). Let X := Xw ∩ Xv be a Richardson variety in Gd,n . We first present a standard
monomial theory for X (cf. Theorem 3.3.2). Standard monomial theory (SMT)
consists in constructing an explicit basis for the homogeneous coordinate ring of X .
SMT for Schubert varieties was first developed by the second author together with
Musili and Seshadri in a series of papers, culminating in [16], where it is established
for all classical groups. Further results concerning certain exceptional and Kac-
Moody groups led to conjectural formulations of a general SMT, see [17]. These
conjectures were then proved by Littelmann, who introduced new combinatorial
and algebraic tools: the path model of representations of any Kac-Moody group,
and Lusztig’s Frobenius map for quantum groups at roots of unity (see [18, 19]);
recently, in collaboration with Littelmann (cf. [14]), the second author has extended
the results of [19] to Richardson varieties in G/B, for any semisimple G. Further,
in collaboration with Brion (cf. [4]), the second author has also given a purely
geometric construction of standard monomial basis for Richardson varieties in
G/B, for any semisimple G; this construction in loc. cit. is done using certain
flat family with generic fiber ∼= diag (Xv

w ) ⊂ Xv
w × Xv

w , and the special fiber ∼=
∪v≤x≤w Xv

x × X x
w .

If one is concerned with just Richardson varieties in the Grassmannian, one
could develop a SMT in the same spirit as in [21] using just the Plücker coordi-
nates, and one doesn’t need to use any quantum group theory nor does one need the
technicalities of [4]. Thus we give a self-contained presentation of SMT for unions
of Richardson varieties in the Grassmannian. We should remark that Richardson
varieties in the Grassmannian are also studied in [26], where these varieties are
called skew Schubert varieties, and standard monomial bases for these varieties
also appear in loc. cit. (Some discussion of these varieties also appears in [10].)
As a consequence of our results for unions of Richardson varieties, we deduce
the vanishing of Hi (X, Lm), i ≥ 1, m ≥ 0, L , being the restriction to X of OPN (1)
(cf. Theorem 5.0.6); again, this result may be deduced using the theory of Frobenius-
splitting (cf. [20]), while our approach uses just the classical Pieri formula. Using
the standard monomial basis, we then determine the tangent space and also the
multiplicity at any T -fixed point eτ on X . We first give a recursive formula for the
multiplicity of X at eτ (cf. Theorem 7.6.2). Using the recursive formula, we derive
a formula for the multiplicity of X at eτ as being the product of the multiplici-
ties at eτ of Xw and Xv (as above, X = Xw ∩ Xv ) (cf. Theorem 7.6.4). Using the
product formula, we get a generalization of Rosenthal-Zelevinsky determinantal
formula (cf. [24]) for the multiplicities at singular points of Schubert varieties to
the case of Richardson varieties (cf. Theorem 7.7.3). It should be mentioned that the
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multiplicities of Schubert varieties at T -fixed points determine their multiplicities
at all other points, because of the B-action; but this does not extend to Richardson
varieties, since Richardson varieties have only a T -action. Thus even though, cer-
tain smoothness criteria at T -fixed points on a Richardson variety are given in
Corollaries 6.7.3 and 7.6.5, the problem of the determination of singular loci of
Richardson varieties still remains open.

In §1, we present basic generalities on the Grassmannian variety and the Plücker
embedding. In §2, we define Schubert varieties, opposite Schubert varieties, and the
more general Richardson varieties in the Grassmannian and give some of their basic
properties. We then develop a standard monomial theory for a Richardson variety
Xv

w in the Grassmannian in §3 and extend this to a standard monomial theory for
unions and nonempty intersections of Richardson varieties in the Grassmannian in
§4. Using the standard monomial theory, we obtain our main results in the three
subsequent sections. In §5, we prove the vanishing of Hi (Xv

w , Lm), i > 0, m ≥ 0,
where L is the restriction to Xv

w of the ample generator of the Picard group of the
Grassmannian. In §6, we determine a basis for the tangent space and a criterion
for smoothness for Xv

w at any T -fixed point eτ . Finally, in §7, we derive several
formulas for the multiplicity of Xv

w at any T -fixed point eτ .

Acknowledgments. We are thankful to the referee for many valuable comments
and suggestions, especially for the alternate proof of Theorem 7.6.4.

1. The Grassmannian variety Gd,n. Let K be the base field, which we
assume to be algebraically closed of arbitrary characteristic. Let d be such that
1 ≤ d < n. The Grassmannian Gd,n is the set of all d-dimensional subspaces of
K n . Let U be an element of Gd,n and {a1, . . . ad} a basis of U , where each a j is a
vector of the form

a j =





a1 j

a2 j
...

anj




, with ai j ∈ K .

Thus, the basis {a1, · · · , ad} gives rise to an n × d matrix A = (ai j ) of rank d, whose
columns are the vectors a1, · · · , ad .

We have a canonical embedding

p : Gd,n ↪→ P(∧d K n) , U ,→ [a1 ∧ · · · ∧ ad]

called the Plücker embedding. It is well known that p is a closed immersion; thus
Gd,n acquires the structure of a projective variety. Let

Id,n = {i = (i1, . . . , id) ∈ Nd : 1 ≤ i1 < · · · < id ≤ n}.

Then the projective coordinates (Plücker coordinates) of points in P(∧d K n) may
be indexed by Id,n; for i ∈ Id,n , we shall denote the i-th component of p by pi , or
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pi1,···,id . If a point U in Gd,n is represented by the n × d matrix A as above, then
pi1,···,id (U ) = det(Ai1,...,id ), where Ai1,...,id denotes the d × d submatrix whose rows
are the rows of A with indices i1, . . . , id , in this order.

For i ∈ Id,n consider the point ei of Gd,n represented by the n × d matrix
whose entries are all 0, except the ones in the i j -th row and j-th column, for each
1 ≤ j ≤ d, which are equal to 1. Clearly, for i, j ∈ Id,n ,

pi (e j ) =
{

1, if i = j ;

0, otherwise.

We define a partial order ≥ on Id,n in the following manner: if i = (i1, . . . , id)
and j = ( j1, . . . , jd), then i ≥ j ⇔ it ≥ jt ,∀t . The following well known theorem
gives the defining relations of Gd,n as a closed subvariety of P(∧d K n) (cf. [9]; see
[13] for details):

Theorem 1.0.1. The Grassmannian Gd,n ⊂ P(∧d K n) consists of the zeroes in
P(∧d K n) of quadratic polynomials of the form

pi p j −
∑

± pα pβ

for all i, j ∈ Id,n, i, j non-comparable, where α, β run over a certain subset of
Id,n such that α > both i and j , and β < both i and j .

1.1. Identification of G/Pd with Gd,n. Let G = SLn(K ). Let Pd be the maxi-
mal parabolic subgroup

Pd =
{

A ∈ G
∣∣∣∣ A =

(
∗ ∗

0(n−d)×d ∗

)}
.

For the natural action of G on P(∧d K n), we have, the isotropy at [e1 ∧ · · · ∧ ed]
is Pd while the orbit through [e1 ∧ · · · ∧ ed] is Gd,n . Thus we obtain a surjec-
tive morphism π : G → Gd,n, g ,→ g · a, where a = [e1 ∧ · · · ∧ ed]. Further, the
differential dπe : LieG → T (Gd,n)a (= the tangent space to Gd,n at a) is easily
seen to be surjective. Hence we obtain an identification fd : G/Pd

∼= Gd,n (cf. [1],
Proposition 6.7).

1.2. Weyl group and Root System. Let G and Pd be as above. Let T be the
subgroup of diagonal matrices in G, B the subgroup of upper triangular matrices
in G, and B− the subgroup of lower triangular matrices in G. Let W be the Weyl
group of G relative to T , and WPd the Weyl group of Pd . Note that W = Sn , the
group of permutations of a set of n elements, and that WPd = Sd × Sn−d . For a
permutation w in Sn , l(w) will denote the usual length function. Note also that
Id,n can be identified with W/WPd . In the sequel, we shall identify Id,n with the
set of “minimal representatives” of W/WPd in Sn; to be very precise, a d-tuple
i ∈ Id,n will be identified with the element (i1, . . . , id, j1, . . . , jn−d) ∈ Sn , where
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{ j1, . . . , jn−d} is the complement of {i1, . . . , id} in {1, . . . , n} arranged in increasing
order. We denote the set of such minimal representatives of Sn by W Pd .

Let R denote the root system of G relative to T , and R+ the set of positive
roots relative to B. Let RPd denote the root system of Pd , and R+

Pd
the set of positive

roots.

2. Schubert, opposite Schubert, and Richardson varieties in Gd,n. For
1 ≤ t ≤ n, let Vt be the subspace of K n spanned by {e1, . . . , et}, and let V t be the
subspace spanned by {en, . . . , en−t+1}. For each i ∈ Id,n , the Schubert variety Xi

and opposite Schubert variety Xi associated to i are defined to be

Xi = {U ∈ Gd,n | dim (U ∩ Vit ) ≥ t , 1 ≤ t ≤ d},

Xi = {U ∈ Gd,n | dim (U ∩ V n−i(d−t+1)+1) ≥ t , 1 ≤ t ≤ d}.

For i, j ∈ Id,n , the Richardson variety X
j
i is defined to be Xi ∩ X j . For i, j, e,

f ∈ Id,n , where e = (1, . . . , d) and f = (n + 1 − d, . . . , n), note that Gd,n = Xe
f ,

Xi = Xe
i , and Xi = Xi

f .

For the action of G on P(∧d K n), the T -fixed points are precisely the points
corresponding to the T -eigenvectors in ∧d K n . Now

∧d K n =
⊕

i∈Id,n

K ei , as T -modules,

where for i = (i1, . . . , id), ei = ei1 ∧ · · · ∧ eid . Thus the T -fixed points in P(∧d K n)
are precisely [ei ], i ∈ Id,n , and these points, obviously, belong to Gd,n . Further, the
Schubert variety Xi associated to i is simply the Zariski closure of the B-orbit B[ei ]
through the T -fixed point [ei ] (with the canonical reduced structure), B being as in
§1.2. The opposite Schubert variety Xi is the Zariski closure of the B−-orbit B−[ei ]
through the T -fixed point [ei ] (with the canonical reduced structure), B− being as
in §1.2.

2.1. Bruhat decomposition. Let V = K n . Let i ∈ Id,n . Let Ci = B[ei ]
be the Schubert cell and Ci = B−[ei ] the opposite Schubert cell associated to i . The
Ci ’s provide a cell decomposition of Gd,n , as do the Ci ’s. Let X = V ⊕ · · · ⊕ V
(d times). Let

π : X → ∧d V, (u1, . . . , ud) ,→ u1 ∧ . . . ∧ ud,

and

p : ∧d V \ {0} → P(∧d V ), u1 ∧ . . . ∧ ud ,→ [u1 ∧ . . . ∧ ud].

Let vi denote the point (ei1, . . . , eid ) ∈ X .
Identifying X with Mn×d , vi gets identified with the n × d matrix whose entries

are all zero except the ones in the i j -th row and j-th column, 1 ≤ j ≤ d, which are
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equal to 1. We have

B · vi =
{

A ∈ Mn×d | xi j = 0, i > i j , and
∏

t

xit t 1= 0

}

,

B− · vi =
{

A ∈ Mn×d | xi j = 0, i < i j , and
∏

t

xit t 1= 0

}

.

Denoting B · vi by Di , we have Di = {A ∈ Mn×d | xi j = 0, i > i j }. Further,
π (B · vi ) = p−1(Ci ), π (Di ) = X̂i , the cone over Xi . Denoting B− · vi by Di , we
have Di = {A ∈ Mn×d | xi j = 0, i < i j }. Further, π (B− · vi ) = p−1(Ci ), π (Di ) =
X̂ i , the cone over Xi . From this, we obtain:

Theorem 2.1.1. (1) Bruhat Decomposition: X j = ˙∪i ≤ j Bei , X j = ˙∪i ≥ j

B−ei .
(2) Xi ⊆ X j if and only if i ≤ j .
(3) Xi ⊆ X j if and only if i ≥ j .

Corollary 2.1.2. (1) Xk
j is nonempty ⇐⇒ j ≥ k; further, when Xk

j is
nonempty, it is reduced and irreducible of dimension l(w) − l(v), where w (resp. v)
is the permutation in Sn representing j (resp. k) as in §1.2.

(2) p j
∣∣

Xk
i
1= 0 ⇐⇒ i ≥ j ≥ k.

Proof. (1) Follows from [22]. The criterion for Xk
j to be nonempty, the irre-

ducibility, and the dimension formula are also proved in [6].
(2) From Bruhat decomposition, we have p j |Xi 1= 0 ⇐⇒ e j ∈ Xi ; we also have
p j |Xk 1= 0 ⇐⇒ e j ∈ Xk . Thus p j |Xk

i
1= 0 ⇐⇒ e j ∈ Xk

i . Again from Bruhat
decomposition, we have e j ∈ Xk

i ⇐⇒ i ≥ j ≥ k. The result follows from
this. !

For the remainder of this paper, we will assume that all our Richardson varieties
are nonempty.

Remark 2.1.3. In view of Theorem 2.1.1, we have Xi ⊆ X j if and only if i ≤ j .
Thus, under the set-theoretic bijection between the set of Schubert varieties and the
set Id,n , the partial order on the set of Schubert varieties given by inclusion induces
the partial order ≥ on Id,n .

2.2. More results on Richardson varieties.

Lemma 2.2.1. Let X ⊆ Gd,n be closed and B-stable (resp. B−-stable). Then
X is a union of Schubert varieties (resp. opposite Schubert varieties).
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The proof is obvious.

Lemma 2.2.2. Let X1, X2 be two Richardson varieties in Gd,n with nonempty
intersection. Then X1 ∩ X2 is a Richardson variety (set-theoretically).

Proof. We first give the proof when X1 and X2 are both Schubert varieties. Let
X1 = Xτ1 , X2 = Xτ2 , where τ1 = (a1, . . . , ad), τ2 = (b1, . . . , bd). By Lemma 2.2.1,
X1 ∩ X2 = ∪Xwi , where wi < τ1, wi < τ2. Let c j = min {a j , b j }, 1 ≤ j ≤ d, and
τ = (c1, . . . , cd). Then, clearly τ ∈ Id,n , and τ < τi , i = 1, 2. We have wi ≤ τ , and
hence X1 ∩ X2 = Xτ .

The proof when X1 and X2 are opposite Schubert varieties is similar. The result
for Richardson varieties follows immediately from the result for Schubert varieties
and the result for opposite Schubert varieties. !

Remark 2.2.3. Explicitly, in terms of the distributive lattice structure of Id,n ,
we have that Xv1

w1
∩ Xv2

w2
= Xv1∨v2

w1∧w2
(set-theoretically), where w1 ∧ w2 is the meet

of w1 and w2 (the largest element of W Pd which is less than both w1 and w2) and
v1 ∨ v2 is the join of v1 and v2 (the smallest element of W Pd which is greater than
both v1 and v2). The fact that X1 ∩ X2 is reduced follows from [20]; we will also
provide a proof in Theorem 4.3.1.

3. Standard monomial theory for Richardson varieties.

3.1. Standard monomials. Let R0 be the homogeneous coordinate ring of
Gd,n for the Plücker embedding, and for w, v ∈ Id,n , let Rv

w be the homogeneous
coordinate ring of the Richardson variety Xv

w . In this section, we present a stan-
dard monomial theory for Xv

w in the same spirit as in [21]. As mentioned in the
introduction, standard monomial theory consists in constructing an explicit basis
for Rv

w .

Definition 3.1.1. A monomial f = pτ1 · · · pτm is said to be standard if

τ1 ≥ · · · ≥ τm .(*)

Such a monomial is said to be standard on Xv
w , if in addition to condition (*), we

have w ≥ τ1 and τm ≥ v .

Remark 3.1.2. Note that in the presence of condition (*), the standardness of f
on Xv

w is equivalent to the condition that f |Xv
w

1= 0. Thus given a standard monomial
f , we have f |Xv

w
is either 0 or remains standard on Xv

w .

3.2. Linear independence of standard monomials.

Theorem 3.2.1. The standard monomials on Xv
w of degree m are linearly

independent in Rv
w .
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Proof. We proceed by induction on dim Xv
w .

If dim Xv
w = 0, then w = v , pm

w is the only standard monomial on Xv
w of degree

m, and the result is obvious. Let dim Xv
w > 0. Let

0 =
r∑

i=1

ci Fi , ci ∈ K ∗ ,(∗)

be a linear relation of standard monomials Fi of degree m. Let Fi = pwi1 . . . pwim .
Suppose that wi1 < w for some i . For simplicity, assume that w11 < w , and w11 is a
minimal element of {w j1 | w j1 < w}. Let us denote w11 by ϕ. Then for i ≥ 2, Fi |Xv

ϕ

is either 0, or is standard on Xv
ϕ . Hence restricting (∗) to Xv

ϕ , we obtain a nontrivial
standard sum on Xv

ϕ being zero, which is not possible (by induction hypothesis).
Hence we conclude that wi1 = w for all i , 1 ≤ i ≤ m. Canceling pw , we obtain a
linear relation among standard monomials on Xv

w of degree m − 1. Using induction
on m, the required result follows. !

3.3. Generation by standard monomials.

Theorem 3.3.1. Let F = pw1 . . . pwm be any monomial in the Plücker coor-
dinates of degree m. Then F is a linear combination of standard monomials of
degree m.

Proof. For F = pw1 . . . pwm , define

NF = l(w1)N m−1 + l(w2)N m−2 + . . . l(wm),

where N 6 0, say N > d(n − d) (= dim Gd,n) and l(w) = dim Xw . If F is stan-
dard, there is nothing to prove. Let t be the first violation of standardness, i.e.
pw1 . . . pwt−1 is standard, but pw1 . . . pwt is not. Hence wt−1 1≥ wt , and using the
quadratic relations (cf. Theorem 1.0.1)

pwt−1 pwt =
∑

α,β

±pα pβ,(*)

F can be expressed as F =
∑

Fi , with NFi > NF (since α > wt−1 for all α on
the right hand side of (∗)). Now the required result is obtained by decreasing
induction on NF (the starting point of induction, i.e. the case when NF is the
largest, corresponds to standard monomial F = pm

θ , where θ = (n + 1 − d, n +
2 − d, · · · , n), in which case F is clearly standard). !

Combining Theorems 3.2.1 and 3.3.1, we obtain:

Theorem 3.3.2. Standard monomials on Xv
w of degree m give a basis for Rv

w
of degree m.

As a consequence of Theorem 3.3.2 (or also Theorem 1.0.1), we have a qualita-
tive description of a typical quadratic relation on a Richardson variety Xv

w as given
by the following:
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Proposition 3.3.3. Let w, τ, ϕ, v ∈ Id,n, w > τ, ϕ and τ, ϕ > v. Further let
τ, ϕ be non-comparable (so that pτ pϕ is a non-standard degree 2 monomial on
Xv

w ). Let

pτ pϕ =
∑

α,β

cα,β pα pβ, cα,β ∈ k∗(*)

be the expression for pτ pϕ as a sum of standard monomials on Xv
w . Then for every

α, β on the right hand side we have, α > both τ and ϕ, and β < both τ and ϕ.

Such a relation as in (*) is called a straightening relation.

3.4. Equations defining Richardson varieties in the Grassmannian. Let
w, v ∈ Id,n , with w ≥ v . Let π v

w be the map R0 → Rv
w (the restriction map). Let

ker π v
w = J v

w . Let Zv
w = {all standard monomials F | F contains some pϕ for some

w 1≥ ϕ or ϕ 1≥ v}. We shall now give a set of generators for J v
w in terms of Plücker

coordinates.

Lemma 3.4.1. Let I v
w = (pϕ, w 1≥ ϕ or ϕ 1≥ v) (ideal in R0). Then Zv

w is a basis
for I v

w .

Proof. Let F ∈ I v
w . Then writing F as a linear combination of standard mono-

mials

F =
∑

ai Fi +
∑

b j G j ,

where in the first sum each Fi contains some pτ , with w 1≥ τ or τ 1≥ v , and in the
second sum each G j contains only coordinates of the form pτ , with w ≥ τ ≥ v .
This implies that

∑
ai Fi ∈ I v

w , and hence we obtain
∑

b j G j ∈ I v
w .

This now implies that considered as an element of Rv
w ,
∑

b j G j is equal to 0 (note
that I v

w ⊂ J v
w ). Now the linear independence of standard monomials on Xv

w implies
that b j = 0 for all j . The required result now follows. !

Proposition 3.4.2. Let w, v ∈ Id,n with w ≥ v. Then Rv
w = R0/I v

w .

Proof. We have, Rv
w = R0/J v

w (where J v
w is as above). We shall now show that

the inclusion I v
w ⊂ J v

w is in fact an equality. Let F ∈ R0. Writing F as a linear
combination of standard monomials

F =
∑

ai Fi +
∑

b j G j ,

where in the first sum each Fi contains some term pτ , with w 1≥ τ or τ 1≥ v , and in
the second sum each G j contains only coordinates pτ , with w ≥ τ ≥ v , we have,∑

ai Fi ∈ I v
w , and hence we obtain
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F ∈ J v
w

⇐⇒
∑

b j G j ∈ J v
w (since

∑
ai Fi ∈ I v

w , and I v
w ⊂ J v

w )
⇐⇒ π v

w (F) (=
∑

b j G j ) is zero
⇐⇒

∑
b j G j (= a sum of standard monomials on Xv

w ) is zero on Xv
w

⇐⇒ b j = 0 for all j (in view of the linear independence of standard monomials
on Xv

w )
⇐⇒ F =

∑
ai Fi

⇐⇒ F ∈ I v
w .

Hence we obtain J v
w = I v

w . !

Equations defining Richardson varieties. Let w, v ∈ Id,n , with w ≥ v . By
Lemma 3.4.1 and Proposition 3.4.2, we have that the kernel of (R0)1 → (Rv

w )1

has a basis given by {pτ | w 1≥ τ or τ 1≥ v}, and that the ideal J v
w (= the kernel of

the restriction map R0 → Rv
w ) is generated by {pτ | w 1≥ τ or τ 1≥ v}. Hence J v

w
is generated by the kernel of (R0)1 → (Rv

w )1. Thus we obtain that Xv
w is scheme-

theoretically (even at the cone level) the intersection of Gd,n with all hyperplanes
in P(∧dkn) containing Xv

w . Further, as a closed subvariety of Gd,n , Xv
w is defined

(scheme-theoretically) by the vanishing of {pτ | w 1≥ τ or τ 1≥ v}.

4. Standard monomial theory for a union of Richardson varieties. In
this section, we prove results similar to Theorems 3.2.1 and 3.3.2 for a union of
Richardson varieties.

Let Xi be Richardson varieties in Gd,n . Let X = ∪Xi .

Definition 4.0.3. A monomial F in the Plücker coordinates is standard on the
union X = ∪Xi if it is standard on some Xi .

4.1. Linear independence of standard monomials on X = ∪Xi .

Theorem 4.1.1. Monomials standard on X = ∪Xi are linearly independent.

Proof. If possible, let

0 =
r∑

i=1

ai Fi , ai ∈ K ∗(*)

be a nontrivial relation among standard monomials on X . Suppose F1 is standard
on X j . Then restricting (∗) to X j , we obtain a nontrivial relation among standard
monomials on X j , which is a contradiction (note that for any i, Fi |X j is either 0 or
remains standard on X j ; further, F1|X j is non-zero). !

4.2. Standard monomial basis.

Theorem 4.2.1. Let X = ∪r
i=1 Xvi

wi
, and S the homogeneous coordinate ring

of X. Then the standard monomials on X give a basis for S.
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Proof. For w, v ∈ Id,n with w ≥ v , let I v
w be as in Lemma 3.4.1. Let us denote

It = I vt
wt

, Xt = Xvt
wt

, 1 ≤ t ≤ r . We have Rvt
wt

= R0/It (cf. Proposition 3.4.2). Let
S = R0/I . Then I = ∩It (note that being the intersection of radical ideals, I is
also a radical ideal, and hence the set-theoretic equality X = ∪Xi is also scheme-
theoretic). A typical element in R0/I may be written as π ( f ), for some f ∈ R0,
where π is the canonical projection R0 → R0/I . Let us write f as a sum of standard
monomials

f =
∑

a j G j +
∑

bl Hl,

where each G j contains some pτ j such that wi 1≥ τ j or τ j 1≥ vi , for 1 ≤ i ≤ r ; and
for each Hl , there is some il , with 1 ≤ il ≤ r , such that Hl is made up entirely of
pτ ’s with wil ≥ τ ≥ vil . We have π ( f ) =

∑
bl Hl (since

∑
a j G j ∈ I ). Thus we

obtain that S (as a vector space) is generated by monomials standard on X . This
together with the linear independence of standard monomials on X implies the
required result. !

4.3. Consequences.

Theorem 4.3.1. Let X1, X2 be two Richardson varieties in Gd,n. Then
(1) X1 ∪ X2 is reduced.
(2) If X1 ∩ X2 1= ∅, then X1 ∩ X2 is reduced.

Proof. (1) Assertion is obvious.
(2) Let X1 = Xv1

w1
, X2 = Xv2

w2
, I1 = I v1

w1
, and I2 = I v2

w2
. Let A be the homoge-

neous coordinate ring of X1 ∩ X2. Let A = R0/I . Then I = I1 + I2. Let F ∈ I .
Then by Lemma 3.4.1 and Proposition 3.4.2, in the expression for F as a linear
combination of standard monomials

F =
∑

a j Fj ,

each Fj contains some pτ , where either ((w1 or w2) 1≥ τ ) or (τ 1≥ (v1 or v2)). Let
X1 ∩ X2 = X ν

µ set theoretically, where µ = w1 ∧ w2 and ν = v1 ∨ v2 (cf. Remark
2.2.3). If B = R0/

√
I , then by Lemma 3.4.1 and Proposition 3.4.2, under π : R0 →

B, ker π consists of all f such that f =
∑

ck fk , fk being standard monomials such
that each fk contains some pϕ , where µ 1≥ ϕ or ϕ 1≥ ν. Hence either ((w1 or w2) 1≥
ϕ) or (ϕ 1≥ (v1 or v2)). Hence

√
I = I , and the required result follows from this. !

Definition 4.3.2. Let w > v . Define ∂+ Xv
w := ∪w>w ′≥v Xv

w ′ , and ∂−Xv
w :=

∪w≥v ′>v Xv ′

w .

Theorem 4.3.3. (Pieri’s formulas) Let w > v.
(1) Xv

w ∩ {pw = 0} = ∂+ Xv
w , scheme theoretically.

(2) Xv
w ∩ {pv = 0} = ∂−Xv

w , scheme theoretically.

Proof. Let X = ∂+ Xv
w , and let A be the homogeneous coordinate ring of X .

Let A = Rv
w/I . Clearly, (pw ) ⊆ I, (pw ) being the principal ideal in Rv

w generated
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by pw . Let f ∈ I . Writing f as

f =
∑

bi Gi +
∑

c j Hj ,

where each Gi is a standard monomial in Rv
w starting with pw and each Hj is a

standard monomial in Rv
w starting with pθ j1 , where θ j1 < w , we have,

∑
bi Gi ∈ I .

This now implies
∑

c j Hj is zero on ∂+ Xv
w . But now

∑
c j Hj being a sum of

standard monomials on ∂+ Xv
w , we have by Theorem 4.1.1, c j = 0, for all j . Thus

we obtain f =
∑

bi Gi , and hence f ∈ (pw ). This implies I = (pw ). Hence we
obtain A = Rv

w/(pw ), and (1) follows from this. The proof of (2) is similar. !

5. Vanishing theorems. Let X be a union of Richardson varieties. Let
S(X, m) be the set of standard monomials on X of degree m, and s(X, m) the
cardinality of S(X, m). If X=Xv

w for some w, v , then S(X, m) and s(X, m) will also
be denoted by just S(w, v, m), respectively s(w, v, m).

Lemma 5.0.4. (1) Let Y = Y1 ∪ Y2, where Y1 and Y2 are unions of Richardson
varieties such that Y1 ∩ Y2 1= ∅. Then

s(Y, m) = s(Y1, m) + s(Y2, m) − s(Y1 ∩ Y2, m).

(2) Let w > v. Then

s(w, v, m) = s(w, v, m − 1) + s
(
∂+ Xv

w , m
)

= s(w, v, m − 1) + s
(
∂−Xv

w , m
)
.

(1) and (2) are easy consequences of the results of the previous section.

Let X be a closed subvariety of Gd,n . Let L = p∗(OP(1)), where P = P(∧d K n),
and p : X ↪→ P is the Plücker embedding restricted to X .

Proposition 5.0.5. Let r be an integer ≤ d(n − d). Suppose that all
Richardson varieties X in Gd,n of dimension at most r satisfy the following two
conditions:

(1) Hi (X, Lm) = 0, for i ≥ 1, m ≥ 0.
(2) The set S(X, m) is a basis for H 0(X, Lm), m ≥ 0.

Then any union of Richardson varieties of dimension at most r which have nonempty
intersection, and any nonempty intersection of Richardson varieties, satisfy (1)
and (2).

Proof. The proof for intersections of Richardson varieties is clear, since
any nonempty intersection of Richardson varieties is itself a Richardson variety
(cf. Lemma 2.2.2 and Theorem 4.3.1).

We will prove the result for unions by induction on r . Let Sr denote the set of
Richardson varieties X in Gd,n of dimension at most r . Let Y = ∪t

j=1 X j , X j ∈ Sr .
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Let Y1 = ∪t−1
j=1 X j , and Y2 = Xt . Consider the exact sequence

0 → OY → OY1 ⊕ OY2 → OY1∩Y2 → 0,

where OY → OY1 ⊕ OY2 is the map f ,→ ( f |Y1, f |Y2 ) and OY1 ⊕ OY2 → OY1∩Y2

is the map ( f, g) ,→ ( f − g)|Y1∩Y2 . Tensoring with Lm , we obtain the long exact
sequence

→ Hi−1(Y1 ∩ Y2, Lm) → Hi (Y, Lm) → Hi (Y1, Lm) ⊕ Hi (Y2, Lm)

→ Hi (Y1 ∩ Y2, Lm) →

Now Y1 ∩ Y2 is reduced (cf. Theorem 4.3.1) and Y1 ∩ Y2 ∈ Sr−1. Hence, by the
induction hypothesis (1) and (2) hold for Y1 ∩ Y2. In particular, if m ≥ 0, then (2)
implies that the map H 0(Y1, Lm) ⊕ H 0(Y2, Lm) → H 0(Y1 ∩ Y2, Lm) is surjective.
Hence we obtain that the sequence

0 → H 0(Y, Lm) → H 0(Y1, Lm) ⊕ H 0(Y2, Lm) → H 0(Y1 ∩ Y2, Lm) → 0

is exact. This implies H 0(Y1 ∩ Y2, Lm) → H 1(Y, Lm) is the zero map; we have,
H 1(Y, Lm) → H 1(Y1, Lm) ⊕ H 1(Y2, Lm) is also the zero map (since by induction
H 1(Y1, Lm) = 0 = H 1(Y2, Lm)). Hence we obtain H 1(Y, Lm) = 0, m ≥ 0, and
for i ≥ 2, the assertion that Hi (Y, Lm) = 0, m ≥ 0 follows from the long exact
cohomology sequence above (and induction hypothesis). This proves the assertion
(1) for Y .

To prove assertion (2) for Y , we observe

h0(Y, Lm) = h0(Y1, Lm) + h0(Y2, Lm) − h0(Y1 ∩ Y2, Lm)

= s(Y1, m) + s(Y2, m) − s(Y1 ∩ Y2, m).

Hence Lemma 5.0.4 implies that

h0(Y, Lm) = s(Y, Lm).

This together with linear independence of standard monomials on Y proves assertion
(2) for Y . !

Theorem 5.0.6. Let X be a Richardson variety in Gd,n. Then
(a) Hi (X, Lm) = 0 for i ≥ 1, m ≥ 0.
(b) S(X, m) is a basis for H 0(X, Lm), m ≥ 0.

Proof. We prove the result by induction on m, and dim X .
If dim X = 0, X is just a point, and the result is obvious. Assume now that

dim X ≥ 1. Let X = Xv
w , w > v . Let Y = ∂+ Xv

w . Then by Pieri’s formula (cf.
§4.3.3), we have,

Y = X (τ ) ∩ {pτ = 0} (scheme theoretically).
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Hence the sequence

0 → OX (−1) → OX → OY → 0

is exact. Tensoring it with Lm , and writing the cohomology exact sequence, we
obtain the long exact cohomology sequence

· · · → Hi−1(Y, Lm) → Hi (X, Lm−1) → Hi (X, Lm) → Hi (Y, Lm) → · · · .

Let m ≥ 0, i ≥ 2. Then the induction hypothesis on dim X implies (in view of
Proposition 5.0.5) that Hi (Y, Lm) = 0, i ≥ 1. Hence we obtain that the sequence
0 → Hi (X, Lm−1) → Hi (X, Lm), i ≥ 2, is exact. If i = 1, again the induction
hypothesis implies the surjectivity of H 0(X, Lm) → H 0(Y, Lm). This in turn im-
plies that the map H 0(Y, Lm) → H 1(X, Lm−1) is the zero map, and hence we ob-
tain that the sequence 0 → H 1(X, Lm−1) → H 1(X, Lm) is exact. Thus we obtain
that 0 → Hi (X, Lm−1) → Hi (X, Lm), m ≥ 0, i ≥ 1 is exact. But Hi (X, Lm) = 0,
m 6 0, i ≥ 1 (cf. [25]). Hence we obtain

(1) Hi (X, Lm) = 0 for i ≥ 1, m ≥ 0,

and

(2) h0(X, Lm) = h0(X, Lm−1) + h0(Y, Lm).

In particular, assertion (a) follows from (1). The induction hypothesis on m im-
plies that h0(X, Lm−1) = s(X, m − 1). On the other hand, the induction hypothesis
on dim X implies (in view of Proposition 5.0.5) that h0(Y, Lm) = s(Y, m). Hence
we obtain

(3) h0(X, Lm) = s(X, m − 1) + s(Y, m).

Now (3) together with Lemma 5.0.4, (2) implies h0(X, Lm) = s(X, m). Hence
(b) follows in view of the linear independence of standard monomials on Xv

w (cf.
Theorem 3.2.1). !

Corollary 5.0.7. We have
(1) Rv

w = ⊕m∈Z+ H 0(Xv
w , Lm), w ≥ v .

(2) dim H 0(∂+ Xv
w , Lm) = dim H 0(∂−Xv

w , Lm), w > v, m ≥ 0.

Proof. Assertion 1 follows immediately from Theorems 3.3.2 and 5.0.6(b).
Assertion 2 follows from Lemma 5.0.4, Theorem 5.0.5(2), and Theorem 5.0.6(b).

!

6. Tangent Space and smoothness.

6.1. The Zariski Tangent Space. Let x be a point on a variety X . Let mx be
the maximal ideal of the local ringOX, x with residue field K (x)(= OX, x/mx ). Note
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that K (x) = K (since K is algebraically closed). Recall that the Zariski tangent
space to X at x is defined as

Tx (X ) = DerK (OX, x , K (x))

= {D : OX, x → K (x), K -linear such that D(ab) = D(a)b + aD(b)}
(here K (x) is regarded as an OX, x -module). It can be seen easily that Tx (X ) is
canonically isomorphic to HomK -mod(mx/m

2
x , K ).

6.2. Smooth and non-smooth points. A point x on a variety X is said to be
a simple or smooth or nonsingular point of X if OX, x is a regular local ring. A point
x which is not simple is called a multiple or non-smooth or singular point of X .
The set Sing X = {x ∈ X | x is a singular point} is called the singular locus of X .
A variety X is said to be smooth if SingX = ∅. We recall the well known:

Theorem 6.2.1. Let x ∈ X. Then dimK Tx (X ) ≥ dimOX, x with equality if
and only if x is a simple point of X.

6.3. The Space Tv
w ,τ . Let G, T, B, Pd, W, R, WPd , RPd etc., be as in §1.2.

We shall henceforth denote Pd by just P . For α ∈ R, let Xα be the element of the
Chevalley basis for g (= LieG), corresponding to α. We follow [2] for denoting
elements of R, R+ etc.

For w ≥ τ ≥ v , let T v
w,τ be the Zariski tangent space to Xv

w at eτ . Let w0 be the
element of largest length in W . Now the tangent space to G at eid is g, and hence
the tangent space to G/P at eid is ⊕β∈R+\R+

P
g−β . For τ ∈ W , identifying G/P with

G/τ P (where τ P = τ Pτ−1) via the map g P ,→ (nτ gn−1
τ )τ P, nτ being a fixed lift

of τ in NG(T ), we have, the tangent space to G/P at eτ is ⊕β∈τ (R+)\τ (R+
P ) g−β , i.e.,

T id
w0,τ

=
⊕

β∈τ (R+)\τ (R+
P )

g−β .

Set

N v
w,τ =

{
β ∈ τ (R+) \ τ (R+

P ) | X−β ∈ T v
w,τ

}
.

Since T v
w,τ is a T -stable subspace of T v

w0,τ
, we have

T v
w,τ = the span of

{
X−β, β ∈ N v

w,τ

}
.

6.4. Certain Canonical Vectors in Tv
w ,τ . For a root α ∈ R+ \ R+

P , let Zα

denote the SL(2)-copy in G corresponding to α; note that Zα is simply the subgroup
of G generated by Uα and U−α. Given x ∈ W P , precisely one of {Uα, U−α} fixes
the point ex . Thus Zα · ex is a T -stable curve in G/P (note that Zα · ex

∼= P1), and
conversely any T -stable curve in G/P is of this form (cf. [5]). Now a T -stable
curve Zα · ex is contained in a Richardson variety Xv

w if and only if ex , esαx are both
in Xv

w .
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Lemma 6.4.1. Let w, τ, v ∈ W P , w ≥ τ ≥ v. Let β ∈ τ (R+ \ R+
P ). If w ≥

sβτ ≥ v (mod WP ), then X−β ∈ T v
w,τ .

(Note that sβτ need not be in W P .)

Proof. The hypothesis that w ≥ sβτ ≥ v(mod WP ) implies that the curve
Zβ · eτ is contained in Xv

w . Now the tangent space to Zβ · eτ at eτ is the one-
dimensional span of X−β . The required result now follows. !

We shall show in Theorem 6.7.2 that w, τ, v being as above, T v
w,τ is precisely

the span of {X−β, β ∈ τ (R+ \ R+
P ) | w ≥ sβτ ≥ v (mod WP )}.

6.5. A Canonical affine neighborhood of a T-fixed point. Let τ ∈ W . Let
U−

τ be the unipotent subgroup of G generated by the root subgroups U−β, β ∈
τ (R+) (note that U−

τ is the unipotent part of the Borel subgroup τ B−, opposite to
τ B (= τ Bτ−1)). We have

U−β
∼= Ga, U−

τ
∼=

∏

β∈τ (R+)

U−β .

Now, U−
τ acts on G/P by left multiplication. The isotropy subgroup in U−

τ at eτ is
*β∈τ (R+

P ) U−β . Thus U−
τ eτ

∼= *β∈τ (R+\R+
P ) U−β . In this way, U−

τ eτ gets identified
with AN , where N = #(R+ \ R+

P ). We shall denote the induced coordinate system
on U−

τ eτ by {x−β, β ∈ τ (R+ \ R+
P )}. In the sequel, we shall denote U−

τ eτ by O−
τ

also. Thus we obtain that O−
τ is an affine neighborhood of eτ in G/P .

6.6. The affine variety Yv
w ,τ . For w, τ, v ∈ W, w ≥ τ ≥ v , let us denote

Y v
w,τ := O−

τ ∩ Xv
w,τ . It is a nonempty affine open subvariety of Xv

w , and a closed
subvariety of the affine space O−

τ .
Note that L , the ample generator of Pic(G/P), is the line bundle corresponding

to the Plücker embedding, and H 0(G/P, L) = (∧d K n)∗, which has a basis given
by the Plücker coordinates {pθ , θ ∈ Id,n}. Note also that the affine ring O−

τ may be
identified as the homogeneous localization (R0)(pτ ), R0 being as in §3.1. We shall
denote pθ/pτ by fθ,τ . Let I v

w,τ be the ideal defining Y v
w,τ as a closed subvariety of

O−
τ . Then I v

w,τ is generated by { fθ,τ | w 1≥ θ or θ 1≤ v}.

6.7. Basis for tangent space and criterion for smoothness of Xv
w at eτ . Let

Y be an affine variety in An , and let I (Y ) be the ideal defining Y in An . Let I (Y )
be generated by { f1, f2, . . . , fr }. Let J be the Jacobian matrix ( ∂ fi

∂x j
). We have (cf.

Theorem 6.2.1) the dimension of the tangent space to Y at a point P is greater than
or equal to the dimension of Y , with equality if and only if P is a smooth point;
equivalently, rank JP ≤ codimAn Y with equality if and only if P is a smooth point
of Y (here JP denotes J evaluated at P).
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Let w, τ, v ∈ W, w ≥ τ ≥ v . The problem of determining whether or not eτ

is a smooth point of Xv
w is equivalent to determining whether or not eτ is a smooth

point of Y v
w,τ (since Y v

w,τ is an open neighborhood of eτ in Xv
w ). In view of Jacobian

criterion, the problem is reduced to computing (∂ fθ,τ/∂x−β)eτ
, w 1≥ θ or θ 1≥ v (the

Jacobian matrix evaluated at eτ ). To carry out this computation, we first observe
the following:

Let V be the G-module H 0(G/P, L) (= (∧d K n)∗). Now V is also a g-module.
Given X in g, we identify X with the corresponding right invariant vector field DX

on G. Thus we have DX pθ = X pθ , and we note that

(∂ fθ,τ/∂x−β)(eτ ) = X−β pθ (eτ ), β ∈ τ (R+ \ R+
P ),

where the left hand side denotes the partial derivative evaluated at eτ .
We make the following three observations:

(1) For θ, µ ∈ W P , pθ (eµ) 1= 0 ⇐⇒ θ = µ, where, recall that for θ =
(i1 · · · id) ∈ W P , eθ denotes the vector ei1 ∧ · · · ∧ eid in ∧d K n , and pθ denotes
the Plücker coordinate associated to θ .

(2) Let Xα be the element of the Chevalley basis ofg, corresponding toα ∈ R. If
Xα pµ 1= 0, µ ∈ W P , then Xα pµ = ±psαµ, where sα is the reflection corresponding
to the root α.

(3) For α 1= β, if Xα pµ, Xβ pµ are non-zero, then Xα pµ 1= Xβ pµ.

The first remark is obvious, since {pθ | θ ∈ W P} is the basis of (∧P K n)∗

(= H 0(G/P, L)), dual to the basis {eϕ, ϕ ∈ Id,n} of ∧d K n . The second remark
is a consequence of SL2 theory, using the following facts:

(a) |〈χ , α∗〉| = | 2(χ ,α)
(α,α) | = 0 or 1, χ being the weight of pµ.

(b) pµ is the lowest weight vector for the Borel subgroup µ B = µBµ−1.

The third remark follows from weight considerations (note that if Xα pµ 1= 0,
then Xα pµ is a weight vector (for the T -action) of weight χ + α, χ being the weight
of pµ).

Theorem 6.7.1. Let w, τ, v ∈ W P , w ≥ τ ≥ v. Then

dim T v
w,τ = #{γ ∈ τ (R+ \ R+

P ) | w ≥ sγ τ ≥ v (mod WP )}.

Proof. By Lemma 3.4.1 and Proposition 3.4.2, we have, I v
w,τ is generated

by { fθ,τ | w 1≥ θ or θ 1≥ v}. Denoting the affine coordinates on O−
τ by x−β, β ∈

τ (R+ \ R+
P ), we have the evaluations of ∂ fθ,τ

∂xβ
and Xβ pθ at eτ coincide. Let J v

w de-
note the Jacobian matrix of Y v

w,τ (considered as a subvariety of the affine space
O−

τ ). We shall index the rows of J v
w by { fθ,τ | w 1≥ θ or θ 1≥ v} and the columns by

x−β, β ∈ τ (R+ \ R+
P ). Let J v

w (τ ) denote J v
w evaluated at eτ . Now in view of (1) and
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(2) above, the ( fθ,τ , x−β)-th entry in J v
w (τ ) is non-zero if and only if Xβ pθ = ±pτ .

Hence in view of (3) above, we obtain that in each row of J v
w (τ ), there is at most one

non-zero entry. Hence rankJ v
w (τ ) = the number of non-zero columns of J v

w (τ ). Now,
Xβ pθ = ±pτ if and only if θ ≡ sβτ (mod WP ). Thus the column of J v

w (τ ) indexed
by x−β is non-zero if and only if w 1≥ sβτ (mod WP ) or sβτ 1≥ v (mod WP ). Hence
rankJ v

w (τ ) = #{γ ∈ τ (R+ \ R+
P ) | w 1≥ sγ τ (mod WP ) or sγ τ 1≥ v (mod WP )} and

thus we obtain

dim T v
w,τ = #{γ ∈ τ (R+ \ R+

P ) | w ≥ sγ τ ≥ v (mod WP )}. !

Theorem 6.7.2. Let w, τ, v be as in Theorem 6.7.1. Then {X−β, β ∈ τ (R+ \
R+

P ) | w ≥ sβτ ≥ v (mod WP )} is a basis for T v
w,τ .

Proof. Let β ∈ τ (R+ \ R+
P ) be such that w ≥ sβτ ≥ v (mod WP ). We have (by

Lemma 6.4.1), X−β ∈ T v
w,τ . On the other hand, by Theorem 6.7.1, dim T v

w,τ =
#{β ∈ τ (R+ \ R+

P ) | w ≥ sβτ ≥ v (mod WP )}. The result follows from this. !

Corollary 6.7.3. Xv
w is smooth at eτ if and only if l(w) − l(v) = #{α ∈ R+ \

R+
P | w ≥ τ sα ≥ v (mod WP )}.

Proof. We have, Xv
w is smooth at eτ if and only if dim T v

w,τ = dim Xv
w , and the

result follows in view of Corollary 2.1.2 and Theorem 6.7.1 (note that if β = τ (α),
then sβτ = τ sα (mod WP )). !

7. Multiplicity at a singular point.

7.1. Multiplicity of an Algebraic variety at a point. Let B be a graded,
affine K -algebra such that B1 generates B (as a K -algebra). Let X = Proj(B). The
function hB(m) (or hX (m)) = dimK Bm , m ∈ Z is called the Hilbert function of
B (or X ). There exists a polynomial PB(x) (or PX (x)) ∈ Q[x], called the Hilbert
polynomial of B (or X ), such that fB(m) = PB(m) for m 6 0. Let r denote the
degree of PB(x). Then r = dim (X ), and the leading coefficient of PB(x) is of the
form cB/r !, where cB ∈ N. The integer cB is called the degree of X , and denoted
deg (X ) (see [7] for details). In the sequel we shall also denote deg (X ) by deg (B).

Let X be an algebraic variety, and let P ∈ X . Let A = OX,P be the stalk at P
and m the unique maximal ideal of the local ring A. Then the tangent cone to X
at P , denoted TCP (X ), is Spec(gr(A, m)), where gr(A, m) = ⊕∞

j=0m
j/m j+1. The

multiplicity of X at P , denoted multP (X ), is deg(Proj(gr(A, m))). (If X ⊂ K n is
an affine closed subvariety, and m P ⊂ K [X ] is the maximal ideal corresponding to
P ∈ X , then gr(K [X ], m P ) = gr(A, m).)

7.2. Evaluation of Plücker coordinates on U−
τ eτ . Let X = Xv

w . Consider
a τ ∈ W P such that w ≥ τ ≥ v .
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I. Let us first consider the case τ = id. We identify U−eid with









Idd×d

xd+1 1 . . . xd+1 d
...

...
xn 1 . . . xn d




, xi j ∈ k, d + 1 ≤ i ≤ n, 1 ≤ j ≤ d





.

Let A be the affine algebra of U−eid. Let us identify A with the polynomial
algebra k[x−β, β ∈ R+ \ R+

P ]. To be very precise, we have R+ \ R+
P = {ε j − εi ,

1 ≤ j ≤ d, d + 1 ≤ i ≤ n}; given β ∈ R+ \ R+
P , say β = ε j − εi , we identify x−β

with xi j . Hence we obtain that the expression for fθ,id in the local coordinates x−β’s
is homogeneous.

Example 7.2.1. Consider G2,4. Then

U−eid =










1 0
0 1

x31 x32

x41 x42



 , xi j ∈ k





.

On U−eid, we have p12 = 1, p13 = x32, p14 = x42, p23 = x31, p24 = x41, p34 =
x31x42 − x41x32.

Thus a Plücker coordinate is homogeneous in the local coordinates xi j , d + 1 ≤
i ≤ n, 1 ≤ j ≤ d.

II. Let now τ be any other element in W P , say τ = (a1, . . . , an). Then U−
τ eτ

consists of {Nd,n}, where Nd,n is obtained from ( Id
X )n×d (with notations as above)

by permuting the rows by τ−1. (Note that U−
τ eτ = τU−eid.)

Example 7.2.2. Consider G2,4, and let τ = (2314). Then τ−1 = (3124), and

U−
τ eτ =










x31 x32

1 0
0 1

x41 x42



 , xi j ∈ k





.

We have on U−
τ eτ , p12 = −x32, p13 = x31, p14 = x31x42 − x41x32, p23 = 1,

p24 = x42, p34 = −x41.

As in the case τ = id, we find that for θ ∈ W P , fθ,τ := pθ |U−
τ eτ

is homogeneous
in local coordinates. In fact we have:

Proposition 7.2.3. Let θ ∈ W P. We have a natural isomorphism

k[x−β, β ∈ R+ \ R+
P ] ∼= k[x−τ (β), β ∈ R+ \ R+

P ],

given by
fθ,id ,→ fτθ,τ .
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The proof is immediate from the above identifications of U−eid and U−
τ eτ . As a

consequence, we have:

Corollary 7.2.4. Let θ ∈ W P. Then the polynomial expression for fθ,τ in the
local coordinates {x−τ (β), β ∈ R+ \ R+

P } is homogeneous.

7.3. The algebra Av
w ,τ . As above, we identify Aτ , the affine algebra of U−

τ eτ

with the polynomial algebra K [x−β, β ∈ τ (R+ \ R+
P )]. Let Av

w,τ = Aτ/I v
w,τ , where

I v
wτ is the ideal of elements of Aτ that vanish on Xv

w ∩ U−
τ eτ .

Now I (Xv
w ), the ideal of Xv

w in G/P , is generated by {pθ , θ ∈ W P | w 1≥
θ or θ 1≥ v}. Hence we obtain (cf. Corollary 7.2.4) that I v

w,τ is homogeneous. Hence
we get

gr (Av
w,τ , Mv

w,τ ) = Av
w,τ ,(*)

where Mv
w,τ is the maximal ideal of Av

w,τ corresponding to eτ . In particular, denoting
the image of x−β under the canonical map Aτ → Av

w,τ by just x−β , the set {x−β |
β ∈ τ (R+ \ R+

P )} generates Av
w,τ . Let Rv

w be the homogeneous coordinate ring of
Xv

w (for the Plücker embedding), Y v
w,τ = Xv

w ∩ U−
τ eτ . Then K [Y v

w,τ ] = Av
w,τ gets

identified with the homogeneous localization (Rv
w )(pτ ), i.e. the subring of (Rv

w )pτ

(the localization of Rv
w with respect to pτ ) generated by the elements

{
pθ

pτ

, θ ∈ W P , w ≥ θ ≥ v
}

.

7.4. The integer deg τ (θ). Let θ ∈ W P . We define degτ (θ ) by

deg τ (θ ) := deg fθ,τ

(note that fθ,τ is homogeneous, cf. Corollary 7.2.4). In fact, we have an explicit
expression for degτ (θ ), as follows (cf. [13]):

Proposition 7.4.1. Let θ ∈ W P. Let τ = (a1, . . . , an), θ = (b1, . . . , bn). Let
r = #{a1, . . . , ad} ∩ {b1, . . . , bd}. Then deg τ (θ ) = d − r .

7.5. A basis for the Tangent Cone. Let Zτ ={θ ∈ W P | either θ ≥τ or τ ≥θ}.

Theorem 7.5.1. With notations as above, given r ∈ Z+,
{

fθ1,τ . . . fθm ,τ | w ≥ θ1 ≥ ... ≥ θm ≥ v, θi ∈ Zτ ,
m∑

i=1

degτ (θi ) = r

}

is a basis for (Mv
w,τ )r/(Mv

w,τ )r+1.

Proof. For F = pθ1 · · · pθm , let deg F denote the degree of fθ1,τ · · · fθm ,τ . Let

Ar = {F = pθ1 · · · pθm , w ≥ θi ≥ v | degF = r}.

Then in view of the relation (*) in §7.3, we have, Ar generates (Mv
w,τ )r/(Mv

w,τ )r+1.
Let F ∈ Ar , say F = pτ1 · · · pτm . From the results in §3, we know that pτ1 · · · pτm
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is a linear combination of standard monomials pθ1 · · · pθm , w ≥ θi ≥ v . We claim
that in each pθ1 · · · pθm , θi ∈ Zτ , for all i . Suppose that for some i, θi 1∈ Zτ . This
means θi and τ are not comparable. Then using the fact that fτ,τ = 1, on Y v

w,τ ,
we replace pθi by pθi pτ in pθ1 · · · pθm . We now use the straightening relation (cf.
Proposition 3.3.3) pθi pτ =

∑
cα,β pα pβ on Xv

w , where in each term pα pβ on the
right hand side, we have α < w , and α > both θi and τ , and β < both θi and τ ; in
particular, we have, in each term pα pβ on the right hand side, α, β belong to Zτ .
We now proceed as in the proof of Theorem 3.3.1 to conclude that on Y v

w,τ , F is a
linear combination of standard monomials in pθ ’s, θ ∈ Zτ which proves the claim.

Clearly, { fθ1,τ . . . fθm ,τ | w ≥ θ1 ≥ ... ≥ θm ≥ v, θi ∈ Zτ } is linearly indepen-
dent in view of Theorem 3.2.1 (since pl

τ fθ1,τ · · · fθm ,τ = pl−m
τ pθ1 · · · pθm for l ≥ m,

and the monomial on the right hand side is standard since θi ∈ Zτ ). !

7.6. Recursive formulas for multτ Xv
w .

Definition 7.6.1. If w > τ ≥ v , define ∂v,+
w,τ := {w ′ ∈ W P | w > w ′ ≥

τ ≥ v, l(w ′) = l(w) − 1}. If w ≥ τ > v , define ∂v,−
w,τ := {v ′ ∈ W P | w ≥ τ ≥

v ′ > v, l(v ′) = l(v) + 1}.

Theorem 7.6.2. (1) Suppose w > τ ≥ v. Then

(multτ Xv
w ) degτ w =

∑

w ′∈∂v,+
w,τ

multτ Xv
w ′ .

(2) Suppose w ≥ τ > v. Then

(multτ Xv
w ) degτ v =

∑

v ′∈∂v,−
w,τ

multτ Xv ′

w .

(3) multτ X τ
τ = 1.

Proof. Since X τ
τ is a single point, (3) is trivial. We will prove (1); the proof of

(2) is similar.
Let Hτ = ∪w ′∈∂v,+

w,τ
Xv

w ′ . Let ϕv
w (r ) (resp. ϕHτ

(r )) be the Hilbert function for the
tangent cone of Xv

w (resp. Hτ ) at e(τ ), i.e.

ϕv
w (r ) = dim ((Mv

w,τ )r/(Mv
w,τ )r+1).

Let

Bv
w,τ (r )

=
{

pτ1 . . . pτm , τi ∈ Zτ | (1) w ≥ τ1 ≥ · · · ≥ τm ≥ v, (2)
∑

degτ (τi ) = r
}

.

Let

B1 = {pτ1 . . . pτm ∈ Bv
w,τ (r ) | τ1 = w},

B2 = {pτ1 . . . pτm ∈ Bv
w,τ (r ) | τ1 < w}.
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We have Bv
w,τ (r ) = B1∪̇B2. Hence denoting deg τ (w) by d, we obtain

ϕv
w (r + d) = ϕv

w (r ) + ϕHτ
(r + d).

Taking r 6 0 and comparing the coefficients of ru−1, where u = dim Xv
w , we obtain

the result. !

Corollary 7.6.3. Let w > τ > v. Then

(multτ Xv
w )(degτ w + degτ v) =

∑

w ′∈∂v,+
w,τ

multτ Xv
w ′ +

∑

v ′∈∂v,−
w,τ

multτ Xv ′

w .

Theorem 7.6.4. Let w ≥ τ ≥ v. Then multτ Xv
w = (multτ Xw ) · (multτ Xv ).

Proof. We proceed by induction on dim Xv
w .

If dim Xv
w = 0, then w = τ = v . In this case, by Theorem 7.6.2 (3), we have

that multτ X τ
τ = 1. Since eτ ∈ Beτ ⊆ Xw , and Beτ is an affine space open in Xw ,

eτ is a smooth point of Xw , i.e. multτ Xw = 1. Similarly, multτ Xv = 1.
Next suppose that dim Xv

w > 0, and w > τ ≥ v . By Theorem 7.6.2 (1),

multτ Xv
w = 1

degτ w

∑

w ′∈∂v,+
w,τ

multτ Xv
w ′

= 1
degτ w

∑

w ′∈∂v,+
w,τ

multτ Xw ′ ··· multτ Xv

=



 1
degτ w

∑

w ′∈∂v,+
w,τ

multτ Xw ′



 ··· multτ Xv

=



 1
degτ w

∑

w ′∈∂v,+
w,τ

multτ X id
w ′



 ··· multτ Xv

=
(
multτ X id

w

)
··· multτ Xv = multτ Xw ··· multτ Xv .

The case of dim Xv
w > 0 and w = τ > v is proven similarly. !

Corollary 7.6.5. Let w ≥ τ ≥ v. Then Xv
w is smooth at eτ if and only if both

Xw and Xv are smooth at eτ .

Remark 7.6.6. The following alternate proof of Theorem 7.6.4 is due to the
referee, and we thank the referee for the same.

Identify O−
τ with the affine space AN where N = d(n − d), by the

coordinate functions defined in §6.5. Then Xw ∩ O−
τ and Xv ∩ O−

τ are
closed subvarieties of that affine space, both invariant under scalar
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multiplication (e.g. by Corollary 7.2.4). Moreover, Xw and Xv intersect
properly along the irreducible subvariety Xv

w ; in addition, the Schubert
cells Cw and Cv intersect transversally (by [22]).

Now let Y and Z be subvarieties of AN , both invariant under scalar
multiplication, and intersecting properly. Assume in addition that they
intersect transversally along a dense open subset of Y ∩ Z. Then

multo(Y ∩ Z ) = multo(Y ) ··· multo(Z )

where o is the origin of AN .
To see this, let P(Y ), P(Z ) be the closed subvarieties of P(AN ) =

PN−1 associated with Y , Z. Then multo(Y ) equals the degree
deg(P(Y )), and likewise for Z, Y ∩ Z. Now

deg(P(Y ∩ Z )) = deg(P(Y ) ∩ P(Z )) = deg(P(Y )) ··· deg(P(Z ))

by the assumptions and the Bezout theorem (see [8], Proposition 8.4
and Example 8.1.11).

It has also been pointed out by the referee that the above alternate proof in
fact holds for Richardson varieties in a minuscule G/P , since the intersections of
Schubert and opposite Schubert varieties with the opposite cell are again invariant
under scalar multiplication (the result analogous to Corollary 7.2.4 for a minuscule
G/P follows from the results in [15]). Recall that for G a semisimple algebraic
group and P a maximal parabolic subgroup of G, G/P is said to be minuscule if
the associated fundamental weight ω of P satisfies

(ω, β∗) ( = 2(ω, β)/(ω, β)) ≤ 1

for all positive roots β, where ( , ) denotes a W -invariant inner product on X (T ).

7.7. Determinantal formula for mult Xv
w . In this section, we extend the

Rosenthal-Zelevinsky determinantal formula (cf. [24]) for the multiplicity of a
Schubert variety at a T -fixed point to the case of Richardson varieties. We use the
convention that the binomial coefficient

(a
b

)
= 0 if b < 0.

Theorem 7.7.1. (Rosenthal-Zelevinsky) Let w = (i1, . . . , id) and τ =
(τ1, . . . , τd) be such that w ≥ τ . Then

multτ Xw = (−1)κ1+···+κd

∣∣∣∣∣∣∣∣∣∣∣∣

( i1
−κ1

)
· · ·

( id
−κd

)

( i1
1−κ1

)
· · ·

( id
1−κd

)

...
...

( i1
d−1−κ1

)
· · ·

( id
d−1−κd

)

∣∣∣∣∣∣∣∣∣∣∣∣

,

where κq := #{τp | τp > iq}, for q = 1, . . . , d.
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Lemma 7.7.2. multτ Xv = multwoτ Xw0v , where w0 = (n + 1 − d, . . . , n).

Proof. Fix a lift n0 in N (T ) of w0. The map f : Xv → n0 Xv given by left
multiplication is an isomorphism of algebraic varieties. We have f (eτ ) = ew0τ , and
n0 Xv = n0 B−ev = n0n0 Bn0ev = Bn0ev = Bew0v = Xw0v . !

Theorem 7.7.3. Let w = (i1, . . . , id), τ = (τ1, . . . , τd), and v = ( j1, . . . , jd)
be such that w ≥ τ ≥ v. Then

multτ Xv
w = (−1)c

∣∣∣∣∣∣∣∣∣∣∣∣





( i1
−κ1

)
· · ·

( id
−κd

)

( i1
1−κ1

)
· · ·

( id
1−κd

)

...
...

( i1
d−1−κ1

)
· · ·

( id
d−1−κd

)




···





(n+1− jd
−γd

)
· · ·

(n+1− j1
−γ1

)

(n+1− jd
1−γd

)
· · ·

(n+1− j1
1−γ1

)

...
...

(n+1− jd
d−1−γd

)
· · ·

(n+1− j1
d−1−γ1

)





∣∣∣∣∣∣∣∣∣∣∣∣

,

where κq := #{τp | τp > iq}, for q = 1, . . . , d, and γq := #{τp | τp < jq}, for q =
1, . . . , d, and c = κ1 + · · · + κd + γ1 + · · · + γd .

Proof. Follows immediately from Theorems 7.6.4, 7.7.1, and Lemma 7.7.2,
in view of the fact that w0τ = (n + 1 − τd, . . . , n + 1 − τ1) and w0v = (n + 1 −
jd, . . . , n + 1 − j1). !
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[14] V. Lakshmibai and P. Littelmann, Equivariant K-theory and Richardson varieties, preprint, math.

AG/0201075, 2002.
[15] V. Lakshmibai and J. Weyman, Multiplicities of points on a Schubert variety in a minuscule G/P, Advances

in Math. 84 (1990), 179–208.
[16] V. Lakshmibai and C.S. Seshadri, Geometry of G/P-V, J. Algebra 100 (1986), 462–557.
[17] , Standard monomial theory, Proc. Hyderabad Conference on Algebraic Groups (S. Ramanan et

al., eds.), Manoj Prakashan, Madras (1991), 279–323.
[18] P. Littelmann, A Littlewood—Richardson formula for symmetrizable Kac-Moody algebras. Invent. Math.

116 (1994) 329–346.
[19] P. Littelmann, Contracting modules and standard monomial theory. JAMS 11 (1998) 551–567.
[20] V. B. Mehta and A. Ramanathan Frobenius splitting and cohomology vanishing for Schubert varieties, Ann.

Math. 122 (1985), 27–40.
[21] C. Musili, Postulation formula for Schubert varieties, J. Indian Math. Soc. 36 (1972), 143–171.
[22] R. W. Richardson, Intersections of double cosets in algebraic groups, Indag. Math. 3 (1992), 69–77.
[23] R. W. Richardson, G. Rörle, and R. Steinberg, Parabolic subgroups with abelian unipotent radical, Inv.

Math. 110 (1992), 649–671.
[24] J. Rosenthal and A. Zelevinsky, Multiplicities of points on Schubert varieties in Grassmannians, J. Algebraic

Combin. 13 (2001), 213–218.
[25] J.P. Serre, Faisceaux algèbriques cohérentsés, Ann. Math. 61 (1955), 197–278.
[26] R. Stanley, Some conbinatorial aspects of the Schubert calculus, Combinatoire et Représentation du Groupe

Symétrique, Lecture Notes in Mathematics, Vol. 579, Springer-Verlag, 1977.



P1: IML/SPH P2: IML/SPH QC: IML/SPH T1: IML

PB440-20 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 8:47

598



P1: FMK

PB440-21 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 9:8

CHAPTER 21

TYPES AND COVERS FOR SL(2)

By Philip Kutzko

Let F be a p-adic field and let G be the set of F-points of a connected reductive
group over F . Then it is a fundamental result of Bernstein that the category of
smooth complex representations R(G) of G decomposes as a product of certain
subcategories Rs(G). Further, one knows that each of these categories is equivalent
to the category of left R-modules of some ring with identity R. In many cases, the
ring R may be chosen to be a certain convolution algebra H(G, λ) associated to
an irreducible representation λ of a compact subgroup J of G. In this case, one
says that (J, λ) is a type for Rs(G) in G or, simply, an s-type. It should be noted
that the equivalence of categories Rs(G) ∼= H(G, λ)-Mod is quite explicit in this
case and that the algebra H(G, λ) is, in all known cases, isomorphic to an affine
Hecke algebra (with possibly unequal parameters). Thus, one may hope to transfer
questions about the representation theory of G to questions concerning the module
theory of affine Hecke algebras, a theory that has been much studied [Lu].

Let P = L N be an F-parabolic subgroup of G and write ι = ιP : R(L) →
R(G) for the functor of normalized parabolic induction. Then ι maps Bernstein
subcategories of L to Bernstein subcategories of G and, in certain cases, this is
captured by a homomorphism of rings j : H(L , λL ) → H(G, λ) for appropriate
types (JL , λL ), (J, λ) in L and G respectively. When this happens, we say that
(J, λ) is a G-cover for (JL , λL ).

If, in particular, P is a maximal (proper) parabolic subgroup and if the Bernstein
subcategory in R(L) is one whose irreducible objects are supercuspidal, then one
expects the resulting algebra H(G, λ) to be isomorphic to an affine Hecke algebra
with two generators. In theory, then, a study of the module theory and harmonic
analysis of these algebras should yield information about the representation theory
and harmonic analysis of the functor ιP , information which, in light of the work of
Langlands, Shahidi, and others has arithmetical implications [Sh].

We have recently, together with Aubert and Morris, undertaken such a study
and have, among other things, given an analog of the Plancherel formula for affine
Hecke algebras with two generators. (See also [Mat].) In case G = SL (2, F) this
formula, when combined with results of [BK] and [BHK], is sufficient to determine
Plancherel measure for G given that one has constructed types and covers for this
group. The purpose of this paper is to provide these constructions.

Research partially supported by NSF grant DMS-9503140
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This paper is organized as follows. In §1 we give a description of the Bernstein
subcategories of R(G) and note that there are two different kinds of subcategories:
those whose irreducible objects are supercuspidal and those which arise by parabolic
induction from the subgroup L of diagonal matrices. In the former case, the exis-
tence of a type follows from the fact that irreducible supercuspidal representations
of G may be constructed by induction from compact, open subgroups. In the latter
case, types may be constructed as covers; this is done in §2. In §3 we describe the
algebras H(G, λ) and give isomorphisms to affine Hecke algebras with at most two
generators. In §4 we use the isomorphisms given in §3 to transfer representations
of G to modules over our affine Hecke algebras.

We note that the results here have been known to us for some time and that
there are now more general (though less explicit) results available for the groups
SL (N , F) [GR]. We are publishing them now in the hope that, apart from the
applications described above, these results may serve as an introduction to the
method of types and covers.

It should be noted that Shalika was among the first to exploit the existence of
compact, open subgroups in the study of the representation theory and harmonic
analysis of p-adic groups. My own work and the work of many others has been
greatly influenced by a reading of Shalika’s papers in this field. It is a pleasure to
acknowledge this influence on the occasion of his sixtieth birthday.

1. Background. Let F be a p-adic field with ring of integers O and maximal
ideal P . Write ν for the usual (additive) valuation and fix $ ∈ F with ν($ ) = 1.
Set G = SL (2, F) and write L , N , N̄ respectively for the diagonal, upper unipotent,
and lower unipotent subgroups of G. Set B = LN, B̄ = L N̄ . It is a consequence
of a general result of Bernstein [BD] that the category R(G) of smooth complex
representations of G decomposes into a product of full subcategories

R(G) ∼=
∏

s∈B(G)

Rs(G)

where B(G) is an indexing set whose elements we now describe for the case at
hand.

(1) Supercuspidal elements
For each irreducible supercuspidal representation σ of G we write s(σ ) for the

equivalence class of σ in R(G) . We let Rs(σ )(G) be the full subcategory of R(G)
whose objects are isomorphic to sums of copies of σ .

(2) Induced elements

We identify L with F× via a →
[

a
a−1

]

, a ∈ F× and we note that un-

der this identification, O× corresponds to the maximal compact subgroup L0 of
L . We write XF , XO for the groups of (not necessarily unitary) characters of
F×, O× respectively, and, given χ ∈ XO, we let Rχ (L) be the full subcategory
R(L) whose objects (π, V ) have the property that π (x)v = χ (x)v, x ∈ L0, v ∈ V .
Then one may easily verify that the category R(L) decomposes as a product of its
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subcategories Rχ (L):

R(L) ∼= (χ∈XORχ (L).

Indeed, this is just the Bernstein decomposition of R(L).

Given χ ∈ XO we set s(χ ) = {χ , χ−1} and we let Rs(χ )(G) be the full subcat-
egory of R(G) whose objects are subrepresentations of representations of the form
ιB(ν) where ν is an object in Rχ (L). (Here, ιB : R(L) → R(G) is the functor of
normalized induction.) We note that Rs(χ )(G) depends only on the set s(χ ).

The set B(G) is then just the union of the sets {s(σ )}, {s(χ )}, σ, χ as above.
Let J be a compact open subgroup of G, let (λ, W ) be a smooth irreducible

representation of J and write (λ̂, Ŵ ) for the contragredient representation. Fixing
once and for all Haar measure on G one then has associated to the pair (J, λ)
the convolution (Hecke) algebra H(G, λ) of EndC(Ŵ )-valued functions f on G
which satisfy f (hxk) = λ̂(h) f (x)λ̂(k), x ∈ G, h, k ∈ J . Further, given a smooth
G-representation (π, V ) there is a natural left H(G, λ)-module structure on the
space Vλ = HomJ (W, V ). (See §2 of [BK].) Given s ∈ B(G) we say that the pair
(J, λ) as above is a type for s (or an s-type) if the map (π, V ) → Vλ induces an
equivalence of categories Rs(G) ∼= H(G, λ)-Mod.

In the case that s = s(σ ) is a supercuspidal element the existence of a type for
s is a consequence of the fact [KS] that there exists an irreducible representation λ

of a compact, open subgroup J of G such that

σ ∼= indG
J λ.

(Here, indG
J : R(J ) → R(G) is the functor of compact induction.)

In fact (J, λ) above is an s-type and one notes that H(G, λ) is just the trivial
C-algebra in this case and that σ corresponds to the trivial H(G, λ)-module under
the map V → Vλ.

2. Types and covers.

2.1. Our goal is now to construct s-types in case s = s(χ ) is an induced
element. We will construct these types using the method of covers [BK]. To begin
with, it is worth noting that for a character χ ∈ XO, the pair (L0, χ ) is a χ -type in
L; that is, (L0, χ ) is a type for the subcategory Rχ (L) of R(L). Next, recall that a
G-cover for (L0, χ ) is a pair (J, λ) where J is a compact open subgroup of G and
λ is an irreducible representation of J (necessarily one dimensional in this case),
this pair having the following properties:

(1) J = (J ∩ N̄ )L0(J ∩ N ).

(2) J ∩ N̄ , J ∩ N < ker λ; λ|L0 = χ .

(3) There are positive integers n1, n2 and invertible elements f1, f2 ∈ H(G, λ)
such that f1, f2 are supported respectively on the double cosets J(n1 J, J(−n2 J

where ( =
[

$
$−1

]

.
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(One checks that these properties are specializations to the present context of the
defining properties of a cover given in 8.1 of [BK].) It follows from 8.3 of [BK]
that a G-cover of (L0, χ ) is an s(χ ) type; we construct these covers as follows:

For χ ∈ XO define the integer sw(χ ) by setting sw(χ ) = 1 if (1 + P) < ker χ

and letting sw(χ ) be the smallest integer n so that (1 + Pn) < ker χ otherwise.
Now define the subgroup J = Jχ by

J =
{

[ci j ] ∈ G | c11, c22 ∈ O×, c12 ∈ O, c21 ∈ P sw(χ )}

and define a function λ = λχ on J by

λ([ci j ]) = χ (c11).

Then we will prove

Proposition. The pair (Jχ , λχ ) is a G-cover for (L0, χ ), χ ∈ XO.

Remark. One checks that λ is in fact a character and that properties (1) and (2)
above hold for (J, λ). We will show in the next two sections that property (3) holds
as well.

2.2. We continue with the notation of the previous section. In addition we set
K = SL (2,OF ) and we let I be the Iwahori subgroup

I = {[ci j ] ∈ K | c21 ∈ P}

Then one has K = I ∪ I w I where w =
[

0 1
−1 0

]

.

Recall that an element x ∈ G is said to intertwine λ if λ(xkx−1) = λ(k),
k ∈ J ∩ x−1 J x . We denote by I = IG(λ) the set of elements in G which inter-
twine λ. Recall also that

H(G, λ) = ⊕x∈IHx (G, λ)

where Hx (G, λ) is the space of functions in H(G, λ) which are supported on the
double coset J x J . Since λ is one dimensional it follows that Hx (G, λ) is one-
dimensional; indeed, Hx (G, λ) is spanned by the function gx where gx is supported
on J x J and is given there by the formula f (hxk) = λ(h−1)λ(k−1), h, k ∈ J . (Re-
call that the contragredient of λ is just λ−1 in this case.). We will need the following
lemma.

Lemma. (1) We have (I(n I ) ∩ I = J(n J, n ∈ Z.
(2) If χ2 )= 1 then (J N̄ J ) ∩ I = J .

Proof. (1) If sw(χ ) ≤ 1 there is nothing to prove. Suppose then that sw(χ ) ≥ 2
and assume without loss of generality that n ≥ 0. (One notes that I is stable un-
der x → x−1.) Then (−n(I ∩ N̄ )(n ⊂ I and so I(n I = J (I ∩ N̄ )(n I = J(n I .

Thus we only need to show that the element a = (n

[

1 0
y 1

]

does not intertwine
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λ if 1 ≤ ν(y) ≤ sw(χ ) − 1. To this end, we fix y with 1 ≤ ν(y) ≤ sw(χ ) − 1, pick
z ∈ P sw(χ )−1 with χ (1 + z) )= 1 and set

c(y) =
[

1 0
y 1

]

, b =
[

1 0
−zy(1 + z)−1 1

] [

1 − zy−1

0 1

]

.

Then b ∈ J and one computes that aba−1 =
[

1 + z −zy−1(2n

0 (1 + z)−1

]

. Thus aba−1 ∈ J

and we have λ(aba−1) = χ (1 + z) )= 1 = χ (b). It follows that a does not intertwine
λ as was to be shown.

(2) We may now assume that νF (y) ≤ 0. Pick a ∈ O×
F with χ (a2) )= 1 and set

x1 =
[

a (a − a−1)y−1

0 a−1

]

, x2 =
[

a−1 (a − a−1)y−1

0 a

]

.

Then xi ∈ J, i = 1, 2 and c(y)x1c(y)−1 = x2. Since λ(x1) = χ (a) )= χ (a−1) =
λ(x2), we see that c(y) does not intertwine λ. !

We may now prove

Proposition. Suppose that χ2 )= 1. Then (J, λ) is a cover for (L0, χ ).

Proof. We have to verify condition (3) of the previous section. First, we note that
the elements (, (−1 intertwine λ; we set f1 = g(, f2 = g(−1 . Now the convolution
f1 ∗ f2 is supported on (J(J(−1 J ) ∩ I and since (J(−1 ⊂ J N̄ J , it follows
from our lemma that f1 ∗ f2 is supported on J . A direct calculation shows that
f1 ∗ f2(1) )= 0. (See Lemma 3.2 below.) It follows that f1 ∗ f2 is a non-zero scalar
multiple of g1 which is in turn a scalar multiple of the identity element in H(G, λ).
Thus both f1, f2 are invertible as was to be shown. !

2.3. Continuing with the notation of the previous section we now assume that
χ2 = 1.

Lemma. We have

IK (λ) = J ∪ Jw J

Proof. We have K = I ∪ I w I and we claim that I w I = Jw J . To see this we
note that

I = (I ∩ B)(I ∩ N̄ ) = (I ∩ N̄ )(I ∩ B)

and also that

w−1(I ∩ N̄ )w, w(I ∩ N̄ )w−1 ⊂ I ∩ B.
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It follows that I w I = (I ∩ B)(I ∩ N̄ )w I = (I ∩ B)w I and similarly that
(I ∩ B)w I = (I ∩ B)w(I ∩ B). Since I ∩ B ⊂ J we have I w I ⊂ Jw J whence
our claim, the other containment being obvious. Thus K = I ∪ Jw J . But by the
lemma in the preceding section, I ∩ I = J and so IK ⊂ J ∪ Jw J . On the other
hand, w certainly intertwines λ whence our lemma. !

Corollary. The element gw is invertible in H(G, λ).

Proof. The element gw ∗ gw is supported on K ∩ I. By our lemma, we have
that gw ∗ gw = agw + bg1 for scalars a, b. One checks that gw ∗ gw (1) )= 0 whence
b )= 0. (See Proposition 3.2 below.) Since g1 is a non-zero scalar multiple of the
identity element of H(G, λ), it follows that gw satisfies a quadratic equation with
non-zero constant term and is thus invertible. !

Proposition. (J, λ) is a G-cover for (L0, χ ) in case χ2 = 1.

Proof. Let α =
[

0 1
$ sw(χ ) 0

]

. Then conjugation by α induces an outer au-

tomorphism of G that takes J to J and fixes λ. This automorphism thus in-
duces an algebra automorphism α̃ of H(G, λ) that takes gw to gw ′ where w ′ =

αwα−1 =
[

0 −$−sw(χ)

$ sw(χ ) 0

]

. Thus gw ′ is invertible in H(G, λ). It follows

that gw ∗ gw ′ is invertible in H(G, λ) and is supported on Jw Jw ′ J . One checks
that Jw Jw ′ J = Jww ′ J = J(sw(χ ) J so that gw ∗ gw ′ is invertible in H(G, λ) and
supported on J(sw(χ ) J . Now conjugation by α takes ( to (−1 and so α̃(gw ∗ gw ′)
is invertible in H(G, λ) and supported on J(−sw(χ) J .

Thus we may satisfy condition (3) in §2.1 by setting f1 = gw ∗ gw ′,

f2 = α̃(gw ∗ gw ′). This proves our proposition and completes our proof of Propo-
sition 21. !

3. The algebras H(G,λ).

3.1. We now apply Theorem 11.4 of [BK] to give a preliminary description
of the algebra H(G, λ). To begin we, we note that the algebra H(L , χ ) has a
particularly simple structure. Indeed, if we let h be the function in H(L , χ ) which
is supported on L0( and defined there by h(k() = χ̄ (k), k ∈ L0, then we have
H(L , χ ) = C[h, h−1]. Let h( = 1

q g( and define a map of algebras j+ : C[h] →
H(G, λ) be setting j+(h) = h(. Then it is a consequence of Theorem 7.2 of [BK]
that j+ extends to an injective map of algebras j : H(L , χ ) → H(G, λ). (We will
explain the factor 1

q in §4 below.) Set B = j(H(L , χ )), K = H(K , λ). Then we
may apply Theorem 11.4 of [BK] to Theorem 2.1 above to obtain:

Proposition. The map (φ, f ) → φ ∗ f induces an isomorphism of left B-
modules

B ⊗C K ∼= H(G, λ).
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In case χ2 )= 1, this proposition is sufficient to completely determine the struc-
ture of H(G, λ):

Corollary. Suppose that χ2 )= 1. Then the map j above is an isomorphism.

Proof. As we have seen, K = I ∪ Jw J and we have also seen that I ∩ I = J .
On the other hand, w does not intertwine χ since χ2 )= 1. It follows that K is one
dimensional whence our result. !

3.2. Our goal is now to give an explicit description of the algebra H(G, λ) in
case χ2 = 1. (We note in this case that χ = χ−1 so that we may replace λ−1 by λ

in the definition of H(G, λ); see §1.) To facilitate calculations we fix Haar measure
on G such that J has measure one. In addition, we set

w1 = w =
[

0 1
−1 0

]

, w2 =
[

0 −$−1

$ 0

]

.

Proposition. If χ is the trivial character then we have

gwi ∗ gwi = (q − 1)gwi + qg1, i = 1, 2.

Otherwise we have

gwi ∗ gwi = χ (−1)qg1 if sw(χ ) = 1

while

gw1 ∗ gw1 = χ (−1)qsw(χ)g1, gw2 ∗ gw2 = χ (−1)qsw(χ )−2g1 if sw(χ ) ≥ 2.

Proof. We begin with a lemma: !

Lemma. Let a, b ∈ G. Then
(1) We have

ga ∗ gb(x) = [J : J ∩ a Ja−1]
∫

J
λ(k−1)gb(a−1kx)dk, x ∈ G.

(2) Write c(u) =
[

1 0
u 1

]

, u ∈ F and fix Haar measure on F so that O has

measure one. Then

gw1 ∗ gb(x) = qsw(χ)
∫

O
gb

(

c
(

u
)

w−1
1 x

)

du x ∈ G.

Proof of lemma. By definition, we have

ga ∗ gb(x) =
∫

G
ga(y)gb(y−1x) dy.
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Now we use the fact that the integrand is supported on Ja J and is right invariant
under J together with the fact that the map k → ka induces a bijection J/(J ∩
a Ja−1) → Ja J/J to conclude that

∫

G
ga(y)gb(y−1x) dy = [J : J ∩ a Ja−1]

∫

J
ga(ka)gb(a−1k−1x) dk.

(We note that G is unimodular.)
The first part of our lemma now follows on making the substitution k → k−1

in the last integral and noting that ga(k−1a) = λ(k−1), k ∈ J .
Now set a = w1. Then J ∩ w1 Jw−1

1 = {[ci j ] ∈ J | c12 ∈ P sw(χ )} and so [J :
J ∩ w1 Jw−1

1 ] = qsw(χ ). The integrand in the first part of our lemma is left invari-
ant under J ∩ B̄ and since J = (J ∩ B̄)(J ∩ N ) and λ is trivial on N , we see
that

gw1 ∗ gb(x) = qsw(χ )
∫

O
gb

(

w−1
1

[

1 −u
0 1

]

x
)

du.

The second part of our lemma now follows on noting that w−1
1

[

1 −u
0 1

]

=

c(u)w−1
1 . !

Proof of proposition. We know that gw1 ∗ gw1 = a1gw1 + b1gw1 for some
scalars a1, b1 and clearly a1 = gw1 ∗ gw1 (w1), b1 = gw1 ∗ gw1 (1). Now [J : J ∩ w1

Jw−1
1 ] = qsw(χ ) and so by the first part of our lemma,

b1 = qsw(χ)
∫

J
λ(k−1)gw1

(

w−1
1 k

)

dk.

But w−1
1 = −w1 and so the integrand is just χ (−1). Thus b1 = χ (−1)qsw(χ) as was

to be shown.
By the second part of our lemma we have

a1 = qsw(χ )
∫

O
gw1 (c(u)) du.

Now one checks that c(u) ∈ Jw1 J if and only if u ∈ O×. If χ = 1 then we see that
a1 = qµ(O×) = q − 1. Thus our proposition is proved in this case. Now suppose
that χ )= 1. Then for u ∈ O×, we have

c(u) = −
[

u−1 1
0 u

]

w1

[

1 u−1

0 1

]

whence gw1 (c(u)) = χ (−u−1). Therefore,
∫

O gw1 (c(u))du =
∫

O× χ (−u−1)du = 0
since χ is non-trivial and so a1 = 0 as was to be shown in this case.

We now turn to the computation of gw2 ∗ gw2 . Let

K2 =
{

[ci j ] ∈ G | c11, c22 ∈ O, c12 ∈ P−1, c21 ∈ P
}

;
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that is, K2 = βKβ−1 for β =
[

0 1
$ 0

]

. Then J < K2; we set K2 = H(K2, λ).

Now it follows from 11.5 and 11.6 of [BK] that dimC K2 = 2. Since w2 intertwines
λ, we see that {g1, gw2} is a basis for K2; in particular, gw2 ∗ gw2 = a2gw2 + b2g1

for scalars a2, b2. Now if sw(χ ) = 1, then β Jβ−1 = J and conjugation by β fixes
λ. Thus conjugation by β induces an algebra isomorphism K ∼= K2 and this iso-
morphism clearly takes gw1 to gw2 . It follows that a2 = a1, b2 = b1 as was shown.
We now may take sw(χ ) ≥ 2.

In this case, we note that w2 Jw2 ⊂ I so that Jw2 Jw2 J ⊂ I . Since, gw2 ∗ gw2

is supported on Jw2 Jw2 J ∩ I, it follows from the first part of Lemma 2.1 that
gw2 ∗ gw2 is supported on J ; that is, a2 = 0. We have b2 = gw2 ∗ gw2 (1) and
by the first part of our lemma, gw2 ∗ gw2 (1) = χ (−1)[J : J ∩ w2 Jw−1

2 ]. Since
J ∩ w2 Jw−1

2 = {[ci j ] ∈ J | c12 ∈ P sw(χ )−2} we see that [J : J ∩ w2 Jw−1
2 ] =

qsw(χ )−2, whence our result. !

3.3. We continue with the notation of the preceding section and define func-
tions h j ∈ H(G, λ), j = 1.2 by setting h j = ε2 j−1|gw j ∗ gw j |

1
2 gw j where ε = 1 if

χ (1) = 1, ε = i if χ (1) = −1.

Lemma. We have h1 ∗ h2 = h(

Proof. We work first with gw1 ∗ gw2 and note that this function is sup-
ported on Jw1 Jw2 J ∩ I ⊂ I w1 I w2 I ∩ I. Now I = (I ∩ N̄ )(I ∩ B and w1(I ∩
N̄ )w−1

1 , w−1
2 (I ∩ B)w2 ⊂ I ; it follows that I w1 I w2 I = I(I . This being so,

it follows from Lemma 3.1 that gw1 ∗ gw2 is supported on J(J ; that is,
gw1 ∗ gw2 = (gw1 ∗ gw2 (1))g(. Now by the second part of Lemma 3.2 we have
gw1 ∗ gw2 (1) = qsw(χ)

∫

O gw2 (c(u)w2)du and we see that the integrand is 0 unless
c(u) ∈ (Jw2 Jw−1

2 ) ∩ J in which case the integrand is identically one. A direct
calculation shows that if sw(χ ) = 1 then c(u) ∈ (Jw2 Jw−1

2 ) ∩ J if and only if
u ∈ P , while, if sw(χ ) ≥ 2, then c(u) ∈ (Jw2 Jw−1

2 ) ∩ J if and only if u ∈ P2.
We conclude that gw1 ∗ gw2 = g( if sw(χ ) = 1 while gw1 ∗ gw2 = qsw(χ)−2g( if
sw(χ ) ≥ 2. Our lemma now follows from the definition of the functions hi given
above together with the calculation of the constants gwi ∗ gwi (1) given in the proof
of Proposition 3.2. !

Proposition. Fix a real number l ≥ 1 and let H(l) be the algebra with identity
1H(l) and two generators s1, s2 subject only to the relations

s2
i = (l

1
2 − l−

1
2 )si + 1H(l), i = 1, 2.

Then the map si → hi , i = 1, 2 induces an isomorphism of algebras

- : H(l) ∼= H(G, λ)

where l = q if χ is trivial and l = 1 otherwise.
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Proof. The case that χ is trivial is well known and its proof will be omitted.
(See, e.g., [Bo].) We assume now that χ is non-trivial. Then H(l) is just the group
algebra on the infinite dihedral group with generators s1, s2 and we have shown
that h2

i = g1, i = 1, 2. Since g1 is the identity element for H(G, λ) the map si →
hi certainly induces a homomorphism of algebras - : H(l) → H(G, λ). Now the
reduced words on s1, s2 form a C-basis for H(l). But by Proposition 5, the set of
elements hn

(, hn
(h1, n ∈ Z form a C-basis for H(G, λ) and, by our lemma, these

are exactly the set of reduced words on h1, h2. Thus - maps a basis in H(l) onto a
basis in H(G, λ) so that - is an isomorphism as was shown. !

4. Parabolic induction. We now turn to the question of computing the func-
tor ιB : Rχ (L) → Rs(G), s = s(χ ), using the method of types and covers. The
basic tool here is Corollary 8.4 of [BK].

There is a unique embedding of algebras t = tB : H(L , χ ) → H(G, λ) so that
the following diagram commutes:

Rχ (L)
IndB−−→ Rs(G)

| |↓ ↓
H(L , χ )-Mod H(G, λ)-Mod.−−→

t∗
Here, the vertical arrows are given by the functors X → Xχ , V → Vλ respec-

tively, the functor IndG
B is that of smooth (non-normalized) parabolic induction

while the functor t∗ is given on objects by t∗(M) = homH(L ,χ )(H(G, λ), M) where
H(G, λ) is viewed a left H(L , χ )-module via ( f, g) → t( f )g, f ∈ H(L , χ ), g ∈
H(G, λ). One may thus say that the map tB implements parabolic induction at the
level of Hecke algebras.

The map t is given explicitly (§7 of [BK]); in our case, it is just the map
determined by t(h) = δg( where δ is the module of the action of ( on N . One
computes δ = [N (O) : (N (O)(−1]−1 = 1

q2 . Thus t is determined by t(h) = 1
q2 g(.

The functor ιB of normalized parabolic induction is given by ιB((ξ, X )) =
IndG

B ((ξ ⊗ δ
1
2 , X ) for any smooth representation (ξ, X ) of L . It follows easily from

the above commutative diagram that the map j : H(L , χ ) → H(G, λ) given in §3.1
implements normalized parabolic induction at the level of Hecke algebras; that is,
that the following diagram commutes:

Rχ (L)
ιB−−→ Rs(G)

| |↓ ↓
H(L , χ )-Mod H(G, λ)-Mod.−−→

j∗

Now in case χ2 = 1, Proposition 3.3 gives us another commutative diagram.
To be precise, let d = s1s2, set D = C[d, d−1] ⊂ H(l) and define an algebra iso-
morphism -l : D → H(L , χ ) by -L (d) = h. Then j(-L (d)) = -(d) whence the
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following diagram commutes:

H(L , χ )-Mod
j∗

−−→ H(G, λ)-Mod
| |

-∗
L ↓ ↓ -∗

D-Mod H(l)-Mod.−→
homD(H(l), − )

If, on the other hand, χ2 )= 1 then by Corollary 3.1 we have H(G, λ) =
C[h(, h−1

( ], and so we have an isomorphism 0 : D → H(G, λ) given by 0(d) =
h(. (We think of d as an indeterminate in case χ2 )= 1.) We then have the commu-
tative diagram

H(L , χ )-Mod
j∗

−−→ H(G, λ)-Mod
| |

-∗
L ↓ ↓ 0∗

D-Mod D-Mod.

The following terminology will be useful.

Definition. Let χ ∈ XO.
(1) If χ2 = 1 then we say that the H(l)-module M corresponds to the smooth

G-representation (π, V ) if M = -∗(Vλ).
(2) If χ2 )= 1 then we say that the D-module M corresponds to the smooth

G-representation (π, V ) if M = 0∗(Vλ).

4.1. We consider the implications of §4.1 for the case of a principal series
representation of G. To this end, we fix a character χ ∈ XO and for t ∈ C we define
the character χt on F× by

χt |O× = χ ; χt ($ ) = q−t .

We think of χt as giving us a one-dimensional representation (χt , Ct ) of L
and we set (πt , Vt ) = ιB(χt , Ct ). Now -∗

L (Ct ) is just Ct and one checks that the
structure of Ct as a left D module is given by d · z = q−t z, z ∈ Ct . It therefore
follows from our discussion in §4.1 that

Proposition. Fix χ ∈ XO, if χ2 = 1, set l = q if χ is trivial, and l = 1 if χ is
non-trivial. Then

(1) If χ2 = 1 then the representation (πt , Vt ) corresponds to the left H(l)-
module Mt = homD(H(l), Ct ).

(2) If χ2 )= 1 then the representation (πt , Vt ) corresponds to the left
D-module Ct .

Remark. The above proposition effectively transfers almost all questions con-
cerning the representation theory and harmonic analysis of the categories Rs(G)
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to analogous questions about the module theory and harmonic analysis of the al-
gebras H(l), D. For example, given enough information about the module theory
of H(l), D one may determine the parameters t for which the representation πt is
reducible and the parameters t1, t2 for which πt1 = πt2 . Similarly, given enough in-
formation about the harmonic analysis of H(l), D one may determine which of the
representations πt is unitarizable and one may determine the Plancherel measure
on that part of the reduced dual of G whose smooth vectors are objects in Rs(χ)(G).
The module theory and harmonic analysis of D is well known; that of the algebras
H(l) is the subject of forthcoming work with Aubert and Morris.

Department of Mathematics, University of Iowa, Iowa City IA 54420, USA
E-mail: pkutzko@blue.weeg.uiowa.edu
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CHAPTER 22

BEYOND ENDOSCOPY

By Robert P. Langlands

Ya tutarsa – Nasreddin Hoca

Dedicated to Joseph Shalika on the occasion of his sixtieth birthday

Informal reference. There is available at http://SunSITE.UBC.CA/Digital
MathArchive/Langlands the text of a lecture Endoscopy and beyond that can serve
as an introduction to this paper. It has the advantage of being informal, but there
are misprints and some suggestions towards the end are red herrings. The present
paper may well turn out to have the same defects!

Acknowledgments. I would like to thank James Arthur, who once again guided
me through the subtleties of weighted orbital integrals, Erez Lapid and Peter Sarnak
for useful conversations related to the material of this paper and Werner Hoffmann
for his comments on [H] and on Appendix C and D.

0.1. Functoriality and related matters. The notion of L-group and the prin-
ciple of functoriality appeared in [L] and were explained at more length in [Cor]
and elsewhere. The principle of functoriality, which is now widely believed but is
very far from being established in general, can be roughly stated as follows:

(I) If H and G are two reductive groups over the global field F and the group G
is quasi-split then to each homomorphism

φ : L H −→ L G

there is associated a transfer of automorphic representations of H to automorphic
representations of G.

A second problem that arose some time after functoriality is that of associating
to an automorphic representation π , now on the group G, an algebraic subgroup
λHπ of L G that would at best be defined up to conjugacy, although even that might
often fail, and would have the following property. (I use the notation λH to stress
that we are dealing with a subgroup of the L-group L G that may not itself be an
L-group, but is close to one. Although there is not yet a group H attached to λH , I
use, for simplicity, in the next statement and subsequently, the notation m H (ρ) or
m Hπ

(ρ) rather than mλH (ρ) or mλHπ
(ρ).)

611
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(II) If ρ is a representation of L G then the multiplicity m H (ρ) of the trivial rep-
resentation of λHπ in the restriction of ρ to λHπ is the order mπ (ρ) of the pole of
L(s, π, ρ) at s = 1.

Once again, this is not intended as an absolutely precise statement.

0.2. Some touchstones. There are three. The first two form a part of func-
toriality. The third does not. It is a question raised by a theorem of Deligne-Serre
[DS]. I take for expository purposes the ground field F to be an arbitrary number
field (of finite degree).

(T1) Take H to be GL (2), G to be GL (m + 1), and φ to be the m th symmetric
power representation.

(T2) Take H to be the group consisting of a single element and G to be GL (2).
Then L H is a Galois group and problem (I) is that of associating an automorphic
form to a two-dimensional Galois representation.

(T3) Take G to be GL (2) and π to be an automorphic representation such that
every infinite place v of the πv is associated to a two-dimensional representation
not merely of the Weil group but of the Galois group over Fv . Show that Hπ is finite.

A positive solution of the first problem has as consequence the Ramanujan-
Petersson conjecture and the Selberg conjecture in their strongest forms; the Artin
conjecture follows from the second. As is well known, all these problems have
been partially solved; some striking results for the first problem are very recent. For
various reasons, the partial solutions all leave from a methodological point of view
a great deal to be desired. Although none of these problems refer to the existence
of λHπ , I am now inclined to the view that the key to the solution of the first two
and of functoriality in general lies in the problem (II), whose ultimate formulation
will include functoriality. Moreover, as I shall observe at the very end of the paper,
the problem (T3) can be approached in the same spirit.

I by no means want to suggest that I believe the solution to (II) is imminent. What
I want to suggest rather, and to establish on the basis of the concrete calculations
in this paper, is that reflecting on the problem of attacking (II) with the help of
the trace formula, in my opinion, the only analytic tool of any substantial promise
available for either (I) or (II), one is led to concrete problems in analytic number
theory. They are difficult; but an often successful strategy, even though slow and
usually inglorious, for breaching an otherwise unassailable mathematical problem
is to reduce some aspect of it to a concrete, accessible form on which at least small
inroads can be made and some experience acquired. The calculations, tentative as
they are, described in the third part of this paper are intended as a first step in this
direction for problems (I) and (II). I concentrate on (T2), for which G is GL (2)
and on π for which λHπ is finite. The same approach applied to (T1) would entail
dealing with GL (m + 1) and π for which λH was the image of GL (2) under the mth
symmetric power. This would require the use of the trace formula for GL (m + 1),
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much more sophisticated than that for GL (2) although perhaps not completely
inaccessible to numerical investigation for very small m.

Part I: Formal structure.

1.1. The group λHπ. We might take (II) as a definition of λHπ , but there
are several difficulties. It is, first of all, perhaps best not to try to define λHπ for
all π . Arthur in his study of the trace formula has been led to a classification
of automorphic representations that, in spite of its apparent reliance on objects
whose existence is not established, can, in fact, in the context of the trace formula,
usually be formulated in decidable terms. The classification is above all a separation
into representations that are of Ramanujan type and those that are not. It is of
conceptual significance that one expects to prove ultimately that the representations
of Ramanujan type are exactly those that satisfy the general form of the Ramanujan
conjecture, but that is not essential to the classification. The point is that a given
trace formula will give a sum over both types of automorphic representation but the
contribution to the formula of the representations that are not of Ramanujan type
will be expressible in terms of traces from groups of lower dimension, so that
the remainder can be regarded as the sum over the representations of Ramanujan
type. We shall see a simple application of this principle to GL (2). If π is not of
Ramanujan type, it will be natural to define λHπ as the product λHπ ′ × S of a group
λHπ ′ defined by an ancillary π ′ of Ramanujan type with an image S of SL (2, C),
but this is a matter for which any great concern would be premature.

The other difficulties are more severe. The first is that even though we may
expect that when π is of Ramanujan type, the functions L(s, π, ρ) are analytic
on Re(s) ≥ 1, except perhaps for a finite number of poles on Re(s) = 1, we are
in no position to prove it. So an alternative definition of mπ (ρ) is called for, even
though, as must be stressed, the definition need at first only be used operationally—
as a guide to the construction of various algebraic and analytic expressions whose
meaning will be clear and unambiguous.

There are two more difficulties: given π (implicitly of Ramanujan type) why
should there exist an λH (implicitly a reductive, but often not a connected, group)
such that

m H (ρ) = mπ (ρ)

for all ρ. Even if there is such an λH , why should it be unique, or rather why should
its conjugacy class under Ĝ be unique? Recall that the L-group is the semi-direct
product of its connected component Ĝ with the Galois group Gal (K/F) of a finite
Galois extension of F that has to be allowed to be arbitrarily large, so that the
L-group is really an inverse sequence of groups with a common connected com-
ponent. It normally suffices, however, to fix a K large enough for the purposes at
hand.

The second of these difficulties is easily resolved. The conjugacy class may
not be unique and there may be several groups to be denoted λHπ . This is related
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to the multiplicity problem for automorphic representations. It will, however, be
important to establish that if the function ρ → m H (ρ) is given, then there are only
finitely many possibilities for the conjugacy class of λH . Jean-Pierre Wintenberger
has pointed out to me that as a consequence of a theorem of Larsen-Pink [LP] the
group λH is uniquely determined by the numbers m H (ρ) if L G is GL (n, C), thus if
G is GL (n) over F and the Galois extension of F used to define the L-group is F
itself. (There are certain supplementary conditions to be taken into account even in
this case.)

In so far as the condition that the function mπ be an m H is a linear condition—
thus mπ (ρ) = tr π ( f ρ), where f ρ is some kind of generalized function on G(AF )—
the existence of λHπ is something to be verified by the trace formula. In the simplest
of cases, there would be a linear form

∑

αρmπ (ρ), αρ = αH
ρ ,(1)

which is 0 if λHπ is not conjugate to a given λH but is 1 if it is. The trace formula
will, with any luck, yield an expression for the sum over all π with appropriate
multiplicities of (1) and will thus select exactly those π attached to λH , but a
similar sum that selected exactly, perhaps with multiplicity, those π such that λHπ

lies in a given λH would be better. Thus
∑

αρmπ (ρ) is to be 0 if none of the possible
λHπ is conjugate to a subgroup of λH but is otherwise to be βH

π &= 0, where βH
π

depends only on the collection of possible λHπ and is to be 1 if λHπ = λH .
If we admit the possibility that there is a second group λH ′ such that m H ′(ρ) =

m H (ρ) for all ρ, then we see that we are demanding too much from the form (1).
We might rather introduce a partial ordering on the collection of λH , writing

λH ′ ≺ LP λH ,

if m H ′(ρ) ≥ m H (ρ) for all ρ. Then we could at best hope that (1) would be different
from 0 only if λHπ ≺ LP

λH , and that it would be 1 if λHπ ∼ LP
λH , thus if m Hπ

(ρ) =
m H (ρ) for all ρ. We would then, for each λHπ , try to obtain from the trace formula
an expression for

∑

λHπ≺LPλH

∑

ρ

αH
ρ mπ (ρ).(2)

It is best, however, to admit frankly that the first of the two difficulties, which
amounts to understanding the conditions on the linear form ρ → m(ρ) that guaran-
tee it is given by a subgroup λH and to showing that mπ satisfies these conditions,
is a very serious problem that is not broached here. I content myself with a basic
example or two that suggest it is prudent to keep an open mind about the properties
to be possessed by (1) and about the final structure of the arguments. So (1) and (2)
are at best provisional approximations to what is to be investigated.

1.2. A simple observation. Not only is the L-group an inverse sequence but
so is, implicitly, each λH . If the occasion arises to distinguish the group in the
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sequence that lies in L G K = Ĝ ! Gal (K/F), we denote it λH K . If K ⊂ K ′, there
is a surjective map

λH K ′ → λH K .

Among the representations ρ are those that factor through the projection of L G on
the Galois group, Gal (K/F). Since L(s, π, ρ) is, for such a representation, equal to
the Artin L-function L(s, ρ), the number mπ (ρ) = m Hπ

(ρ) is just the multiplicity
with which the trivial representation occurs in ρ. If H is the image of λHπ in
G = Gal (K/F), it is also mH(ρ), calculated with respect to G. This is clearly
possible for all ρ only if H = G. Thus if λHπ exists it will have to be such that its
projection on Gal (K/F) is the full group. We shall implicitly assume throughout
the paper that any group λH appearing has this property.

1.3. Calculation of mH(ρ) in some simple cases. In the second part of the
paper, I shall consider only the group G = GL (2), and only over the base field
Q. I have not reflected on any other cases. I shall also often consider only π

whose central character is trivial, so that π is an automorphic representation of
PGL (2). Then mπ (ρ) will not change when ρ is multiplied by any one-dimensional
representation of GL (2, C), and λHπ will lie in SL (2, C) or, to be more precise, in
the family {SL (2, C) × Gal (K/Q)}. It is instructive to compute m H (ρ) for a few
λH K in SL (2, C) × Gal (K/Q) and a few ρ. We may as well confine ourselves to
the standard symmetric powers σm , m = 1, 2, . . . of dimension m + 1 and to their
tensor products with irreducible Galois representations τ .

If λH ⊂ SL (2, C) × Gal (K/Q), the multiplicity m H (σ1) is 2 if the projection
of λH on the first factor is {1} and is 0 otherwise. Thus if we confine ourselves to
groups λH that project onto Gal (K/Q), then

a1m H (ρ1), a1 = 1
2
, ρ1 = σ1,(A)

is 1 if λH = {1} × Gal (K/Q) and 0 otherwise. On the other hand,

a1m H ′(ρ1), a1 = 1, ρ1 = det,(B)

is 1 for all subgroups λH ′ of λH = SL (2, C) × Gal (K/Q) but 0 for groups that are
not contained in λH . When and if the occasion arises for a precise reference, we
denote the groups in these two cases by λHA and λHB .

In general, as in (1) and (2), given λH , we would like to find a collection
ρ1, . . . , ρn of representations and a collection a1, . . . , an of real numbers such that

∑

k

akm H ′(ρk) = 1,

if λH ′ ⊂ λH and 0 if it is not. We will normally want to consider only λH and λH ′

defined with respect to a given K . To make clear to which group given collections
are associated I sometimes write as before ρk = ρH

k , ak = aH
k .
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If the kernel of the projection of λH to Gal (K/Q) is infinite, it is either SL (2, C),
a trivial case already treated, or contains the group

Ĥ =
{(

a 0
0 a−1

)

| a ∈ C×
}

as a normal subgroup of index 1 or 2. The group of outer automorphisms of Ĥ ,
through which the action of λH on Ĥ factors, is of order two and the image of
λH in it may or may not be trivial. If it is trivial, then λH = Ĥ × Gal (K/Q) and
m H (σm ⊗ τ ) is 1 if m is even and τ is trivial and otherwise 0. We take

a1 = 1 ρ1 = σ2,(C)

and denote the pertinent group by λHC .
If the image of λH in the group of outer automorphisms, identified with Z2,

is not trivial, the map λH → Z2 may or may not factor through the Galois group.
If it does not, then Ĥ\λH is isomorphic to Z2 × Gal (K/Q) and λH contains the
normalizer of Ĥ in SL (2, C). Moreover m H (σm ⊗ τ ) = 0 unless m ≡ 0 (mod 4)
and τ is trivial, when it is 1. If the map λH → Z2 factors through the Galois group,
then Ĥ\H is isomorphic to Gal (K/Q) and m H (σm ⊗ τ ) is 1, if and only if m ≡ 0
(mod 4) and τ is trivial or m ≡ 2 (mod 4) is even and τ is the one-dimensional
representation τ0 of Gal (K/Q) obtained by projecting onto the group Z2 and then
taking the nontrivial character of this group, which is of order two. Otherwise
m H (σm ⊗ τ ) is 0. We take in these two cases:

a1 = 1, ρ1 = σ4;(D)

a1 = 1, ρ1 = σ2 ⊗ τ0.(E)

The two groups will of course be denoted by λHD and λHE .
If λH ′ and λH are each one of the five groups just described, then

∑

k

aH
k m H ′

(

ρH
k

)

is different from 0 only if λH ′ is conjugate to a subgroup of λH and is 1 if λH ′ = λH .
Observe as well that in each of these cases, m H (σm ⊗ τ ) depends only on τ and on
m modulo 4.

The only remaining possibility is that λH projects to a finite nontrivial subgroup
in SL (2, C). The projection is either abelian, dihedral, tetrahedral, octahedral, or
icosahedral. For the last three cases, the numbers m H (σm) are calculated for m =
1, . . . , 30 to be the following.

Tetrahedral: 0,0,0,0,0,1,0,1,0,0,0,2,0,1,0,1,0,2,0,2,0,1,0,3,0,2,0,2,0,3;

Octahedral: 0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,1,0,1,0,0,0,2,0,1,0,1,0,1;

Icosahedral: 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1.
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As a consequence, if we take K to be Q and let λHT , λHO , and λHI be the three
subgroups of SL (2, C) corresponding to the regular solids, and if we set

aT
1 = 1, aT

2 = −1, ρT
1 = σ6, ρT

2 = σ2,

aO
1 = 1, aO

2 = −1, ρO
1 = σ8, ρO

2 = σ4,

aI
1 = 1, aI

2 = −1, ρ I
1 = σ12, ρ I

2 = σ8,

then, for λH ′ infinite or equal to one of the same three groups,
∑

k

aH
k m H ′

(

ρH
k

)

is 0 if λH ′ is not conjugate to a subgroup of λH , and is 1 if λH ′ = λH .
On the other hand, if the projection on SL (2, C) is abelian of order l, then

m H (σm) is the number N of integers in {m, m − 2, . . . , −m} divisible by l, and if it
is dihedral with center of order l ≥ 3, then m H (σ ) is N/2 if m is odd and (N + 1)/2
if m ≡ 0 (mod 4) and (N − 1)/2 if m ≡ 2 (mod 4). Suppose, for example, that it
is dihedral with center of order 6. Then N = 3 for m = 6 and N = 1 for m = 2.
Thus

aT
1 m H

(

ρT
1

)

− aT
2 m H

(

ρT
2

)

= 1 &= 0,

but the group H is not contained in the tetrahedral group. If we try to exclude the
group H by adding other representations to the sequence ρT

1 , ρT
2 , for example, σ10,

then we will introduce other groups, like the abelian group of order 10, that should
be, but will not be, subgroups of the tetrahedral group. So we are still hoping for
too much from the form (1). It looks as though we will have to accept in (2) groups
that are not subgroups of the tetrahedral group, but that are finite dihedral groups
or abelian. Since λHπ is abelian only if π is associated to Eisenstein series, we can
envisage treating them by first treating the infinite dihedral groups along the lines
of (1) and (2), and then treating dihedral λH as subgroups of the L-group of the
group defined by the elements of norm 1 in a quadratic extension. This is clumsier
than one might hope. On the other hand, we would be using these arguments in
combination with the trace formula, in which there is always an implicit upper
bound on the ramification of the π that occur. Since π with large finite λHπ would,
in all likelihood, necessarily have large ramification, we can imagine that these two
contrary influences might allow us to remove the unwanted groups from (2).

Suppose the group λHQ = λH = λHπ is defined and finite for K = Q. Then for
an extension K the projection of the group λH K on SL (2, C) will be λHQ and

λH K ⊂ λHQ × Gal (K/Q).

There are two possibilities: there exists a K such that the projection of λH K onto
Gal (K/Q) is an isomorphism, or there does not, so that the kernel is never trivial. If
our definitions are correct, it should be possible to decide which from the behavior
of the m H (ρ) as K and ρ vary.
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Take as an example the case that λHQ is a cyclic group of odd prime order
l, a possibility that will certainly arise. Then λH K will be a subgroup of Z/ lZ ×
Gal (K/Q). If it is a proper subgroup, then its projection to Gal (K/Q) is an iso-
morphism. If it is not the case to be considered, then it is the full product. In both
cases, m H (σl) = 2, m H (σl−2) = 0, and m H (ρa) = 2 if

ρa = σl − σl−2

is defined as a virtual representation.
The numbers

l − 2, l − 4, . . . , 1, −1, . . . , 2 − l

run over all the nonzero residues of l, so that every nontrivial character of Z/ lZ =
λHQ appears exactly once in the restriction of the representation σl−2 to λHQ.
Suppose that τ is a character of the Galois group of order l and consider the
representation,

ρb = σl−2 ⊗ τ.

If λH is the full group λHQ × Gal (K/Q), then m H (ρb) = 0 because ρb does not
contain the trivial representation of λH . If, on the other hand, it is not the full
group and τ factors through Gal (K/Q) - λH K → λHQ, then it contains the trivial
representation exactly once and m H (ρb) = 1. Thus

1
2

m H (ρa) − m H (ρb) &= 0(3)

if λH K is the full group, but can be 0 if it is not.
The question with which we began is very difficult, but an obvious hypothesis

lies at hand.

1.4. A splitting hypothesis. Suppose that for some automorphic represen-
tation π of Ramanujan type the group λHπ = λH K

π ⊂ Ĝ ! Gal (K/F), whose ex-
istence is only hypothetical, were finite. Then I expect—and there is no reason to
believe that I am alone—that for a perhaps larger extension L and the group λH L

π

in Ĝ ! Gal (L/F), the projection of λH L
π to Gal (L/F) will be an isomorphism and

that this will then continue to be true for all Galois extensions of F that contain L .
Moreover if π is unramified outside a finite set S it is natural to suppose that L can
also be taken unramified outside of S and of a degree that is bounded by an integer
determined by the order of the intersection of λHπ with Ĝ. Thus L could be chosen
among one of a finite number of fields.

In general, even when λHπ ∩ Ĝ is not finite, we can expect that for some
sufficiently large L , the group λH L

π ∩ Ĝ will be connected and that L can be taken
unramified where π is unramified and of a degree over K bounded by an integer
determined by the number of connected components of λH K

π ∩ Ĝ. The observations
at the end of the previous section indicate what, at least from the point of view of
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this paper, the proof of the hypothesis will entail a special case: it must be shown
that the expression (3), which we still do not know how we might calculate, is 0
for at least one of the finitely many cyclic extensions of Q of order p unramified
outside a finite set that depends on the original π . One might expect that the general
hypothesis, or rather each case of it, reduces to similar statements.

1.5. Alternative definition of mπ. The integers mπ (ρ) have been defined
by residues of the logarithmic derivatives of automorphic L-functions at a point
s = 1 outside the region at which they are known to be absolutely convergent. So
it is not clear how this definition might be implemented. Since these integers have
been introduced in the hope of broaching the problem of functoriality and thus that
of analytic continuation, an alternative definition has to be found that better lends
itself to harmonic analysis and to numerical investigation. For this purpose, I recall
some familiar basic principles of analytic number theory. Since the extension of
the principles and the definitions to other number fields will be patent, I confine
myself for simplicity to the rationals.

If c > 0 is sufficiently large and X > 0, then

− 1
2π i

∫ c+i∞

c−i∞

L ′

L
(s, π, ρ)Xs ds

s
(4)

is equal to

1
2π i

∑

p

∑

ln(p)
∫ c+i∞

c−i∞

tr
(

ρ
(

A(πp)k
))

pks
Xs ds

s
.(5)

This expansion shows that the integral (4) converges at least conditionally. Those
terms of (5) for which X < pk are 0, as is shown by moving the contour to the
right. The finite number of terms for which X > pk are calculated by moving the
integral to the left as a residue at s = 0. So (5) is equal to

∑

pk<X

ln(p) tr
(

ρ
(

A(πp)k))

On the other hand, if the L-function can be analytically continued to a region
containing the closed half-plane Re(s) ≥ 1, where it has no poles except for a
finite number at points 1 + iρl , l = 1, . . . , n, and if its behavior in Im(s) permits a
deformation of the contour of integration in (4) to a contour C that except for small
semi-circles skirting these points on the left runs directly from 1 − i∞ to 1 + i∞
on the line Re(s) = 1, then (4) is (morally) equal to

∑

l

m1+iρl

1 + iρl
X1+iρl + o(X ).
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As a consequence

mπ (ρ) = m1 = lim
M→∞, X→∞

1
M

∫ X+M

X

∑

pk<Y ln(p) tr
(

ρ
(

A(πp)k
))

Y
dY.(6)

If, for whatever reason, we know that the only possible pole is at 1, then this may
be simplified to

mπ (ρ) = lim
X→∞

∑

pk<X ln(p) tr
(

ρ
(

A(πp)k
))

X
.(7)

The possible appearance of other poles and thus the introduction of M are simply
nuisances that we could well do without.

For summation over primes, the sums [Lan]

ϑ(X ) =
∑

p<X

ln(p)

are the analogues of the sums over all positive integers
∑

1≤n<X

1.

In particular, ϑ(X ) = X + o(X ). Moreover,

ψ(X ) =
∑

pk<X

ln(p) = ϑ(X ) + o(X ).

Since it is expected that for π of Ramanujan type the eigenvalues of ρ(A(πp)) all
have absolute value equal to 1, it is therefore not unreasonable in a tentative treat-
ment to replace (6) and (7), both nothing but possible definitions, by

mπ (ρ) = lim
M→∞, X→∞

1
M

∫ X+M

X

∑

p<Y ln(p) tr(ρ(A(πp)))

Y
dY(8)

and by

mπ (ρ) = lim
X→∞

∑

p<X ln(p) tr(ρ(A(πp)))

X
.(9)

We want to see to what extent these definitions can be given real content and how.
We could modify (5) by replacing the denominator s by s(s + 1). The residues

at s = 1 + iρl become 1/(1 + iρl)(2 + iρl) and the residue at s = 0 is replaced by
residues at s = 0 and s = 1. The result is that

(6′) mπ (ρ) = lim
M→∞, X→∞

2
M

∫ X+M

X

∑

pk<X ln(p)(1 − p/X ) tr
(

ρ
(

A(πp)k
))

X
d X,

or in the favorable case that there is only a pole at s = 1,

(7′) mπ (ρ) = lim
X→∞

2
∑

pk<X ln(p)(1 − p/X ) tr
(

ρ
(

A(πp)k
))

X
.
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The two formulas (8) and (9) can be similarly modified. Some of the experiments
have been made using (7′) on the somewhat doubtful and certainly untested as-
sumption that this improves convergence.

1.6. The role of the trace formula. As we have already stressed, in the
general theory of automorphic forms, it is usually unwise to attempt to calculate
directly any invariant associated to individual automorphic representations. Rather
one calculates the sum—often weighted as, for example, in endoscopy—of the in-
variants over all automorphic representations of one group and compares them with
an analogous sum for a second group, establishing by a term-by-term comparison
their equality. For present purposes, what we might hope to calculate from the trace
formula is

∑

π

µπmπ (ρ)
∏

v∈S

tr(πv ( fv )).(10)

(We have to expect that it will at first be unknown whether the mπ (ρ) are integers.
To show that they are integers comparisons like those envisaged in (15) will very
likely be necessary.) The finite-dimensional complex-analytic representation ρ of
L G is arbitrary. The set S is a finite set of places of the base field F , including all
archimedean places and all places where the group G is not quasi-split and split
over an unramified extension, and fv is a suitable function on G(Fv ). Implicitly we
also fix a hyperspecial maximal compact subgroup at each place outside of S. The
coefficient µπ is usually a multiplicity; the sum is over automorphic representa-
tions of Ramanujan type unramified outside of S, ultimately perhaps only over the
cuspidal ones, although it is best not to try without more experience to anticipate
exactly what will be most useful—or the exact nature of µπ .

For the base field F = Q, at this stage an adequate representative of the general
case, to arrive at (10) we choose, for each given prime p &∈ S, fq , q &∈ S, and q &= p
to be the unit element of the Hecke algebra at q and we choose f p in the Hecke
algebra to be such that

tr(πp( f p)) = tr(ρ(A(πp)))(11)

if πp is unramified. Then we take f p(g) =
∏

v fv (gv ), where fv , v ∈ S, is given in
(10). If R is the representation of G on the space of cuspidal automorphic forms of
Ramanujan type and if we can get away with (9), then (10) is equal to

lim
X→∞

∑

π

µπ

∑

p<X ln(p) tr(R( f p))

X
.(12)

If we use (7′) then (12) is replaced by

(12′) 2 lim
X→∞

∑

π

µπ

∑

p<X ln(p)(1 − p/X ) tr(R( f p))

X
.
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Not only is it unclear at this stage whether it is the representation on the space of
cuspidal automorphic forms that is most appropriate or whether it might be better
to include some noncuspidal representations, but it is also unclear whether it is best
to take the ordinary trace or the stable trace. Such questions are premature. The
important questions are whether we can hope to prove that the limit of (12) exists
and whether we can find a useful, concrete expression for it.

We shall address some very particular cases of this question in the second part
of this paper. Grant for the moment that we have such a representation for represen-
tations ρk , 1 ≤ k ≤ n. Then for any coefficients ak we also have an expression for

∑

π

µπ

n
∑

k=1

akmπ (ρk)
∏

v∈S

tr(πv ( fv ))

If we could find ak such that
∑

k

akmπ (ρk)(13)

is equal to 1 if and only if λHπ is IP-dominated by a given group λH and is other-
wise 0, then we would have an expression for

∑

λHπ≺λH

µπ

∏

v∈S

tr(πv ( fv )),(14)

the sum being over automorphic representations of G unramified outside of S,
principally over cuspidal but perhaps with some noncuspidal terms present as well.
The multiplicities µπ could be ordinary multiplicities, but they will more likely be
stable multiplicities and may even depend on λHπ . As we observed, we will have
to content ourselves with satisfying the conditions imposed on (13) approximately;
some of the representations for which it is not zero may have to be dealt with
separately by an iterative procedure or the argument modified.

The existence of coefficients ak for which (13) has the desired properties,
exactly or approximately, is an algebraic question that I have not broached except
for GL (2). The group GL (2) has a center, so that the representation of GL (2, A)
on the space of cusp forms is not the direct sum of irreducible representations.
To achieve this it is necessary, as usual, to consider the cusp forms transforming
under a given character of Z+ = R+ and there is no good reason at this stage not
to suppose that this character is the trivial character. So we treat the representation
on the space of functions on GL (2, Q)Z+\GL (2, A). Then f∞ will be a smooth
function of compact support on Z+\GL (2, R) and the only π to be considered are
those for which π∞ is trivial on Z+. This implies that the central character of π is
trivial on R+. In addition, if we suppose that S consists of the infinite place alone—
this is an assumption to be made purely for convenience as it removes inessential
complications from the preliminary algebra and from the experiments—then we
conclude that the only π to be considered are those whose central character is
trivial on R+ and unramified and thus trivial. Since the central character controls
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the group det(Hπ ), this means that we are taking only π with λHπ ⊂ SL (2, C), or,
more precisely, λHπ ⊂ SL (2, C) × Gal (K\Q). These are the very simple groups
that we considered in a previous section and for which we are in a position to
find—in so far as they are available—the coefficients of (13).

1.7. Comparison. If we managed by a combination of the trace formula
with various limiting processes to obtain a formula for (14), then we would want
to compare it with the trace formula on λH itself, except that λH may not be an
L-group, for it may not be defined by a semidirect product. When, however, the
kernel of λH K → Gal (K/Q) is connected, it is possible as a consequence of, for
example, Prop. 4 of [L1] to imbed the center Ẑ of Ĥ , the connected component of
the identity in λH , in the connected dual T̂ of a product of tori, T =

∏

i K ×
i , where

each Ki is a field over F , and to imbed it in such a way that L H̃ , the quotient of the
semidirect product T̂ ! λH by the diagonally imbedded Ẑ becomes an L-group.
(The L-group may have to be defined by the Weil group and not by the Galois
group, but that is of no import.) Notice that the Galois group Gal (K/Q) acts on
T̂ , so that λH does as well. Maps φ into λH may be identified with maps into L H̃
that correspond to automorphic representations of H̃ whose central character is
prescribed by the structure of λH . They can presumably be identified in the context
of the trace formula.

Then, to make use of (14), we would have to introduce a transfer f → f H

from functions on G(AF ) to functions on H (AF ) (if λH = L H is an L-group but
to functions on H̃ (AF ) in the general case) and compare (14) with

∑ ∏

v∈S

tr
(

π ′
v

(

f H
v

))

,(15)

the sum being over automorphic representations of H of, say, Ramanujan type
unramified outside of S, so that there will also be a formula for (15) which is to be
compared with that for (14). The difference between IP-domination and inclusion
will undoubtedly complicate this comparison.

There is no reason not to admit the possibility that (14) is replaced by a sum
over groups λH ,

(14′)
∑

λH

∑

λHπ≺λH

µπ

∏

v∈S

tr(πv ( fv )).

Then (15) would be replaced by a similar sum (15′).
It is perhaps well to underline explicitly the differences between the comparison

envisaged here and endoscopic comparison. For endoscopy the transfer f → f H

is defined in terms of a correspondence between conjugacy classes. In general,
the transfer f → f H , which is defined locally, will be much less simple. There
will already be much more knowledge of local harmonic analysis, especially of
irreducible characters, implicit in its definition. Secondly, there will be difficult
analytic problems to overcome in taking the limit of the trace formula on G. Thirdly,
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the groups λH that occur are essentially arbitrary subgroups of L G, not just those
defined by endoscopic conditions.

1.8. Further concrete cases. I consider GL (2) and icosahedral representa-
tions but in two different ways. The ground field F may as well be taken to be
Q. Suppose K/Q is a Galois extension and Gal (K/Q) admits an imbedding τ in
GL (2, C) as an icosahedral representation. Thus Gal (K/Q) is an extension of the
icosahedral group by Z2. Take L G = L G K and consider ρ = σ1 ⊗ τ̃ , where τ̃ is the
contragedient of τ . If m H (ρ) &= 0, then σ1 and τ define the same representation of
λH . Therefore the kernels of λH → Gal (K/Q) and λH → GL (2, C) are the same
and thus {1}. So the projection of λH to Gal (K/Q) is an isomorphism; λH is an
L-group, that attached to the group H = {1}; and σ1 restricted to λH is τ , or rather
the composition of τ with the isomorphism λH → Gal (K/Q).

Thus we can expect that mπ (ρ) &= 0 if and only if π = π (τ ) is the automorphic
representation attached to τ by functoriality. To compare (14), provided we can
find such a formula, and (15), we will need to define the local transfer fv → f H

v
by means of the characters of πv (τ ).

On the other hand, define the L-group L G to be L GQ and take ρ = σ12 − σ8. We
have seen that m H (ρ) is nonzero only if λH is a subgroup of the icosahedral group
or perhaps a finite abelian or dihedral group that can be treated independently. Then
mπ (ρ) will be nonzero only if λHπ is such a subgroup. There will be many such π

and although (15) will not have to take them all into account, it will have to contain
a sum over all icosahedral extensions unramified outside a given set of places.

So the first approach has at least one advantage: it singles out a unique π . It
may have another. Numerical experiments involving σ1 are manageable. Those for
σm quickly become impossible as m grows. Even m = 3 is very slow. On the other
hand, the first approach alone cannot, so far as I can see, assure us that if λHπ ⊂ L GQ

is an icosahedral group, then π is associated to an icosahedral representation of the
Galois group. No matter what τ we choose, it necessarily overlooks π for which
this is false.

1.9. A cautionary example. Take the group G to be GL (1) over Q and take
λH to be the finite group of order m in L G = C×. If ρ is the representation z → zm ,
then m H ′(ρ) = 1 if λH ′ lies in λH and is otherwise 0. Let S be, as usual, a finite set
of places containing the infinite places. In order to have a discrete spectrum under
the action of G(A), we consider functions, thus automorphic forms, on R+Q×\I , I
being the group of idèles. This is the space R+G(Q)\G(A). The function f =

∏

v fv

will be such that f∞ is in fact a function on R+\R× = {±1}. The function f p is
the characteristic function of the set of integral γ with |γ | = p−m .

If we take the measure on R+\G(A) to be a product measure, with the measure
of G(Zp) and of R+\R+ equal to 1, then µ(R+G(Q)\G(A)) is equal to 1 and

tr R( f ) =
∑

π

tr π ( f ) =
∑

γ∈Q×

f (γ ).(16)
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The element γ must be equal to apm , where

a = ±
∏

q∈S

qαq .(17)

Thus the expression (16) is equal to g(pm), where g is the function on
∏

q∈S Zq

given by g(x) =
∑

f (ax), the sum being over all a of the form (17).
Thus (12) is

lim
X→∞

∑

p<X ln(p)g(pm)

X
,

which is equal to
∑

x mod M g(xm)
ϕ(M)

,

where M is a positive integer that is divisible only by primes in S and that depends
on the collection of functions fq , q ∈ S, each of them being smooth. The number
ϕ(M) is the order of the multiplicative group of Z/MZ. In terms of f , this is

∫

R+QS I m
S

f (x)dx
∫

R+QS I m
S

dx
.(18)

where QS is the set of nonzero rational numbers that are units outside of S and IS

is the product
∏

v∈S Qv , the first regarded as a subgroup of the second.
The expression (18) is certainly in an appropriate form and is equal to

∑

χ

χ ( f ),

where χ runs over all characters of R+QS IS of order dividing m. This, however, is
pretty much the point from which we began. We are still left, as in class-field theory,
with the problem of showing that these characters can be deduced from characters
of the Galois group. Thus we cannot expect that the trace formula will spare us the
arithmetical investigations. It will, at best, make it clear what these must be.

Part II: Preliminary analysis.

2.1. Measures and orbital integrals. In this part of the paper, we shall review
the trace formula for GL (2), the only group with which we are seriously concerned
at present, and examine the possibility of obtaining an expression for (14) or (15′).
It would be worthwhile to undertake a similar study of the trace formula for other
groups. If the general trace formula admits a similar analysis and transformation,
it will be an encouraging sign.

To obtain expressions that can then be used for numerical purposes, we have
to be clear about the conventions. As we already observed, we shall consider auto-
morphic forms on G(Q)Z+\G(A), A = AQ, and G = GL (2). The functions whose
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trace is to be calculated are functions on Z+\G(A) and are taken to be products
f (g) =

∏

v fv (gv ). The measure on Z+\G(A) is to be a product measure as is the
measure on Z+\Gγ (A) if γ is regular and semisimple. The group Gγ is then de-
fined by the multiplicative group of a ring Eγ , the centralizer of γ in the ring of
2 × 2 matrices. At a nonarchimedean place p, the subgroup Gγ (Zp) has a natural
definition and we normalize the local measures by the conditions:

µ(Gγ (Zp)) = 1, µ(G(Zp)) = 1.

At infinity, the choice of measure on Z+\G(R) is not important, nor is that on
Z+\Gγ (R). It is not necessary to be explicit about the first, but it is best to be
explicit about the second.

(a) Elliptic torus. Here I mean that the torus is elliptic at infinity and thus that
E = Eγ is an imaginary quadratic extension. I assume, for simplicity, that it is
neither Q(

√
−2) nor Q(

√
−3). An element in Gγ (R) is given by its eigenvalues,

σeiθ and σe−iθ . The value of σ > 0 is irrelevant and I take the measure to be dθ .
The volume of

Z+Gγ (Q)\Gγ (A) = Z+E×\IE(19)

is the class number CE times the measure of

±Z+\C× ×
∏

p

Gγ (Zp),

which, according to the conventions chosen, is the measure of ±Z+\C× or
∫ π

0
dθ = π.

(b) Split torus. Once again, the torus is only to be split at infinity, so that Eγ

is a real quadratic field. If the eigenvalues of an element δ are α and β, set

r = α + β,

N = 4αβ,

r√
|N |

= 1
2

(

sgn α

√

|α|
|β|

+ sgn β

√

|β|
|α|

)

= ±1
2

(λ ± λ−1),(20)

λ =

√

|α|
|β|

, σ =
√

|αβ|,

α = ±σλ, β = ±σ

λ
.

The value of σ is irrelevant and I take the measure to be dλ
λ

. Notice that

d
(

r√
|N |

)

= 1
2

(1 ∓ λ−2)dλ = 1
2

(

1 − β

α

)

dλ.(21)
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The upper sign is that of N . The parameters r = tr δ and N = 4 det δ can also be
defined when the torus is elliptic at infinity or globally or at any other place. When
the torus is elliptic at infinity,

d
(

r√
|N |

)

= d cos θ = i
2

(1 − λ−2)dλ, λ = eiθ .(22)

The fundamental unit ε can be taken to be the unit with the smallest absolute
value |ε| > 1. Thus ln |ε| is the regulator as it appears in [C]. The measure of the
quotient (19) is now the class number times the measure of

±R+\R× × R×/{εk |k ∈ Z}.(23)

Since ±R+\R× × R× can be identified with R× by projecting on the first factor, the
measure of (23) is 2 ln |ε|, the measure of (19) is, in the notation of [C], 2h(D)R(D)
if D is the discriminant of the field Eγ .

There is a very small point to which attention has to be paid when computing
with the trace formula. Locally there are two measures to be normalized, that on
Gγ (Qv )\G(Qv ) and that on Z+\Gγ (R) or Gγ (Qp). They appear in two ways in the
measure on G(Qv ): once when fixing it, as dδdḡ, by the measure on the subgroup
Gγ (Qp) (or Z+\Gγ (R)) and the measure on the quotient space Gγ (Qv )\G(Qv );
and once, as in the Weyl integration formula, when fixing the measure on

{g−1δg | δ ∈ Gγ (Qv ), g ∈ G(Qv )}

by means of the map

(δ, g) → g−1δg, Gγ (Qv ) × (Gγ (Qv )\G(Qv )) → G(Qv ).(24)

Since (24) is a double covering, the measure to be used in the Weyl integration
formula is

1
2

∏

α

|1 − α(δ)|dδdḡ,

the product over α being a product over the two roots of the torus.
If m is a nonnegative integer, let T m

p be the characteristic function of

{X ∈ Mat(Zp)| | det X | = p−m},

where Mat(Zp) is the algebra of 2 × 2-matrices over Zp. If ρ = σm , then T m
p /pm/2

is the function f p of (11). In other words,

tr πp
(

T m
p

)

= pm/2
m

∑

k=0

αm−k(πp)βk(πp)

if πp is unramified and α(πp) and β(πp) are the eigenvalues of A(πp). I recall the
standard calculation.
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Take πp to be the usual induced representation, so that the vector fixed by
GL (2, Zp) is the function

φ(ntk) = |a|−s1+1/2|b|−s2−1/2, t =
(

a 0
0 b

)

,

and {α(πp), β(πp)} = {ps1, ps2}. Then
∫

φ(g)T m
p (g)dg =

m
∑

k=0

p(m−k)s1+ks2 p(2k−m)/2
∫

|x |≤pm−k
dx = pm/2

m
∑

k=0

p(m−k)s1+ks2 .

We shall need the orbital integrals of the functions T m
p /pm/2 for all m, but

m = 0 is particularly important as it is the unit element of the Hecke algebra. The
pertinent calculations can be found in [JL] but there is no harm in repeating them
here. If γ is a regular semisimple element in G(Qp), set

U m(γ ) =
∫

Gγ (Qp)\G(Qp)
T m

p (g−1γ g).(25)

Denote the two eigenvalues of γ by γ1 and γ2 and extend the usual norm on Qp

to Qp(γ1, γ2) or to E p = Eγ ⊗ Qp, which we identify, taking γ1 = γ . The ring of
integral elements in E p is of the form Zp ⊕ Zp1. If 1̄ is the conjugate of 1, so
that 1 + 1̄ = tr(1), set δγ = p|1 − 1̄|. Let γ1 − γ2 = b(1 − 1̄) with |b| = p−k ,
k = kγ .

Lemma 1. U m(γ ) is 0 unless γ1 and γ2 are integral and |γ1γ2| = p−m, when
it is given by the following formulas.

(a) If γ is split then (25) is

pk = 1
|γ1 − γ2|

.

(b) If γ is not split and Eγ is unramified then (2) is

pk p + 1
p − 1

− 2
p − 1

.

(c) If γ is not split and Eγ is ramified then (25) is

pk+1

p − 1
− 1

p − 1
.

The proof is familiar and easy. As the lemma is basic to our calculations, I repeat
it. The value of the characteristic function T m

p (g−1γ g) is 1 if and only if g−1γ g
takes the lattice L0 = Zp ⊕ Zp into itself and has determinant with absolute value
p−m , thus only if it stabilizes the lattice and | det(γ )| = p−m . Thus, assuming this
last condition, if and only if γ stabilizes L = gL0. Knowing L is equivalent to
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knowing g modulo G(Zp) on the right. Multiplying g on the left by an element of
Gγ (Qp) = E×

p is equivalent to multiplying L by the same element.
If E p is split, then we can normalize L up to such a multiplication by demanding

that

L ∩ {(0, z) | z ∈ Qp} = {(0, z) | z ∈ Zp}

and that its projection onto the first factor is Z p. Then the x such that (1, x) lies in
L are determined modulo Z p by L . Multiplying by

(

α 0
0 β

)

, |α| = |β| = 1,

we replace (1, x) by (1, βx/α), so that only the absolute value |x | counts. The
measure in Gγ (Qp)\G(Qp) of the set of g giving the lattice L is the index in Gγ (Zp)
of the stabilizer of L . This is just the number of y modulo Zp with the same absolute
value as x (or with |y| ≤ 1 if |x | ≤ 1), thus the number of lattices that can be obtained
from the given one by multiplying by an element of Gγ (Zp). The condition that L
be fixed by γ = (γ1, γ2) is that γ1 and γ2 be integral and that

(γ1, γ2x) = γ1(1, x) + (0, (γ2 − γ1)x)

lie in L , thus that (γ1 − γ2)x be integral. We conclude finally that (25) is equal to
1/|γ1 − γ2|.

The argument is the same in the remaining cases. Identifying G(Qp) with the
automorphisms of the vector space E p, we identify the quotient G(Qp)/G(Zp)
with the lattices in E p. Modulo the action of Gγ (Qp), these can be put in the
form Zp + Zp p j1, j ≥ 0. Such a lattice is fixed by γ if and only if k ≥ j . In the
unramified case, the stabilizer of the lattice in Gγ (Zp) has index 1 if j = 1 and
index p j (1 + 1/p) otherwise. So (25) is equal to

1 +
k

∑

j=1

p j
(

1 + 1
p

)

= pk p + 1
p − 1

− 2
p − 1

,

as asserted by (b). If E p is ramified, the stabilizer has index 1 if j = 0 and index
p j otherwise. So (25) is now equal to

1 +
k

∑

j=1

p j = pk+1

p − 1
− 1

p − 1
.

This is (c).
This lemma provided us with the orbital integrals that we need outside of S.

The discussion inside of S is quite different. Since we are going to take, for the
present purposes, S = {∞}, I confine myself to this case. The same principles apply
in all cases. Over the field R = Q∞, the necessary information is in the discussion
of HCS-families in Chap. 6 of [L2], although it is not elegantly expressed. Let
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ch(γ ) = (4 Nm(γ ), tr(γ )). For any γ in GL (2, R),
∫

f∞(g−1γ g)dg = ψ(ch(γ )) = ψ ′
∞(ch(γ )) + ψ ′′

∞(ch(γ ))
| Nm γ |1/2

|γ1 − γ2|
,(26)

where ψ ′
∞ and ψ ′′

∞ depend on f∞. The second is a smooth function on the plane
with the y-axis removed. The first is 0 outside the parabola y2 − x ≤ 0, but inside
and up to the boundary of this parabola, it is a smooth function of x and y2 − x . The
functions ψ ′ and ψ ′′ are not uniquely determined. Since we have taken f positively
homogeneous, the function ψ is positively homogeneous, ψ(λ2 N , λr ) = ψ(N , r )
for λ > 0. Thus it is determined by the two functions ψ(±1, r ) on the line. The
function ψ− = ψ(−1, r ) is smooth; the function ψ+ = ψ(1, r ) may not be. They
are both compactly supported.

If θ (γ ) = θ (ch(γ )) is any positively homogeneous class function on G(R), the
Weyl integration formula and formulas (21) and (22) give

∫

Z+\G(R)
θ (g) f (g)dg = 1

2

∑

∫

Z+\T (R)
θ (ch(γ ))ψ(ch(γ ))

∣

∣

∣

∣

1 − α

β

∣

∣

∣

∣

∣

∣

∣

∣

1 − β

α

∣

∣

∣

∣

dλ

|λ|
(27)

= 4
∑

∫ ∞

−∞
ψ±(r )θ (±1, r )

√

|r2 ∓ 1|dr

because
∣

∣

∣

∣

1 − α

β

∣

∣

∣

∣

∣

∣

∣

∣

1 − β

α

∣

∣

∣

∣

dλ

|λ|
= 2

∣

∣

∣

∣

1 − α

β

∣

∣

∣

∣

|λ| dr√
|N |

,

λ

(

1 − α

β

)

= λ ∓ λ−1,

r2

N
− 1 = ±1

4
(λ ± λ−1)2 − 1 = ± (λ ∓ λ−1)2

4
,

and

2|λ ∓ λ−1| dr√
|N |

= 4

√

∣

∣

∣

∣

r2

N
− 1

∣

∣

∣

∣

dr√
|N |

.

The sums in (27) are over the two tori and then, in the last line, over the two possible
signs. The elliptic torus corresponds to the region −1 < r < 1, N = 1; the split
torus to the rest. The factor 1/2 is removed in the passage from the first to the
second line of (27) because the map γ → ch(γ ) from each of the tori to the plane
is also a double covering.

The formula (27) is applicable if θ is a one-dimensional representation of G(R),
in particular, if it is identically equal to 1, and then (27) yields

tr(θ ( f )) = 4
∑

∫ ∞

−∞
ψ±(r )

√

|r2 ∓ 1|dr.(28)
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Another possibility is to take θ to be the character of the representation πχ

unitarily induced from a character

χ :
(

α 0
0 β

)

→ sgn αk sgn βl

of the diagonal matrices. Only the parities of k and l matter. The character is 0 on
the elliptic elements, where N > 0 and r2 < N . Otherwise it is constant on the four
sets determined by fixing the signs of N and r , where it is given by

(sgn N + 1)
sgn(r )√

|1 − α/β||1 − β/α|
(29.a)

if k &= l and by

2
sgn(N )l

√
|1 − α/β||1 − β/α|

(29.b)

otherwise. The eigenvalues α and β of γ with ch(γ ) = (N , r ) are of course one-half
the roots of x2 − 2r x + N = 0. Since

|γ1 − γ2|2

| Nm γ |
= |1 − α/β||1 − β/α| = |λ|2|1 ∓ λ−2|2 = 4

∣

∣

∣

∣

r2

N
− 1

∣

∣

∣

∣

,

we conclude that ψ±, although not necessarily bounded, are integrable functions
of r and that tr(πχ ( f )) is given by

4
{
∫ −1

−∞
ε+−ψ+(r ) +

∫ ∞

1
ε++ψ+(r ) +

∫ 0

−∞
ε−−ψ−(r ) +

∫ ∞

0
ε−+ψ−(r )

}

,(30)

where the constants ε±±, which are ±1 or 0, are to be chosen as prescribed by (29).

2.2. Calculating with the trace formula. Rather than refer to Arthur’s gen-
eral trace formula, as I should if I were intent on preparing for the general case, I
prefer to appeal to the formula on pp. 516–517 of [JL] with which I am more at
ease and to which the reader is requested to refer. There are eight terms in that for-
mula, but for a base field of characteristic zero the term (iii) is absent. We shall also
only consider, for reasons already given, automorphic representations whose central
character is trivial on R+. The formula of [JL] gives the sum of the traces of π ( f )
over all automorphic representations occurring discretely in L2(Z+G(Q)\G(A)).
So we need to subtract those representations that are not of Ramanujan type. For
G = GL (2), these are the one-dimensional representations. Their traces will be
subtracted from the term (ii) of [JL] and the difference will be more important than
(ii) itself. We refer to the difference as the elliptic term. It is the most difficult and
will be discussed—not treated—in §2.5.

The principal question that concerns us is whether there are any possible devel-
opments in analytic number theory that might enable us to find an explicit expression
for (12). The numbers µπ are here equal to 1 (or, for those π that are absent from
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the sum, 0). Lacking all experience, I fell back on the obvious and made explicit
calculations. For ρ = σm ⊗ τ they are feasible and not all too slow for m = 1. For
m = 2, 3 something can still be done, but for higher m, at least with my inefficient
programs, they are too slow to provide any useful information. On the other hand,
as the first problem of §1.8 demonstrates, calculations for m = 1 are of consider-
able interest provided that we take the tensor product of σm with a general τ or
even just a τ of icosahedral type. Although taking such a tensor product demands a
simultaneous study of icosahedral representations or other Galois representations,
there is no reason not to expect that the important features of the problem are not
already present for τ trivial and that they persist. Of course, there may be acci-
dental features, but these the wise student should recognize and resolutely ignore.
The addition of the Galois representation will add to the labor but should not put
additional demands on raw computer power, only on the skill of the programmer. So
I confine myself to trivial τ and, by and large, to m = 1. Although it is important
for theoretical purposes to envisage taking S arbitrarily large, computations and
theory for larger S should not differ essentially from the case that S consists of the
infinite place alone, although there will be many more terms in the trace formula
to be taken into account.

The sum over r ∈ Z that occurs in the elliptic term will be replaced by sums
over r satisfying a congruence condition. This will entail that whatever behavior we
find for S = {∞} should remain valid when congruence conditions are imposed.
Such an assertion, which implies a greater theoretical regularity that may make
the proofs easier to come by, has to be tested further, but these are the principles
that justify confining myself at first to m = 1 and to representations unramified
at all finite places. We know, of course, a good deal about such representations.
In particular, there are none of Galois type, but this is an accidental circumstance
that we will use to verify that the programs are functioning well, but that will be
otherwise irrelevant to our conclusions.

The representations are to be unramified at all finite places; so the central
character η of [JL] is trivial. Since we will also examine, at least briefly, some
m > 1, I do not fix m to be 1. The representation τ will be, however, trivial. The
trace formula replaces the expression (12) by a sum of seven terms, corresponding
to its seven terms. The function 3 of [JL] is now being denoted f , f p, or even
f p,m , and

f p,m(g) = f∞(g∞) f m
p (gp)

∏

q &=p

fq(gq),

in which f∞ is a variable function, f m
p depends on m, but all the other fq do not

depend on m. Thus the function 3 does not satisfy the conditions of [JL]; it does
not transform according to a character of the center Z (A) of G(A), and the resulting
trace formula is different, but not very different. In (i) there is a sum over the scalar
matrices. In (ii) and (iv) there are sums over the full tori, not just over the tori divided
by the center. In (v) there is also a sum over the scalar matrices, the n0 defining
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θ (s, fv ) being replaced by zn0. In principle, (vi), (vii), and (viii) are different, but
because fq is a spherical function for all q, the sum over (µ, ν) implicit in these
expressions reduces to the single term µ = ν = 1.

Since we are in a situation where (7) is appropriate and (6) unnecessary, the
contribution of the first term of the trace formula to (12) is given by

∑

Z (Q)

µ(Z+G(Q)\G(A))
X

∑

ln(p) f m(z).(TF.1)

Since

f m(z) = f∞(z)
pm/2

,

if z = ±pm/2 and 0 otherwise, the limit that appears in (12) or (12′) will be 0.
The second term is the elliptic term to be treated in the next section. None of the

terms (iv), (v), and (viii) of [JL], is invariant on its own, so that some recombination
of these terms is necessary. The terms (vi) and (vii) can, however, be treated directly.

I begin with (vi), which yields a contribution that is not in general 0. Since fq

is a spherical function for all q, the only pair (µ, ν) that contributes to (vi) or to
(vii) is the pair of trivial characters and ρ(·, s), denoted ξs in this paper to avoid a
conflict of notation, is the global (or local) representation unitarily induced from
the representation

(

α x
0 β

)

→ |α| s
2 |β|− s

2

of the adelic superdiagonal matrices. It is, moreover, easily verified that M(0) is
the operator −I . Thus the contribution of (vi) to (12) is

1
4X

∑

ln(p) tr(ξ0( f∞)) tr
(

ξ0
(

f m
p

))

.(TF.2)

Since tr(ξ0( f m
p )) = m + 1, the limit as X → ∞ is

m + 1
4

tr(ξ0( f∞)).(31)

From (30) we conclude that for m = 1, this is

2
{
∫ −1

−∞
ψ+(r )dr +

∫ ∞

1
ψ+(r )dr +

∫ ∞

−∞
ψ−(r )dr

}

.(32)

Apart from the elliptic term, this will be the only nonzero contribution to the limit.
Since the standard automorphic L-function L(s, π, σ1) does not have poles on
Re(s) = 1, we expect that (32) will be cancelled by the elliptic term. This is acci-
dental and will not be for us, even numerically, the principal feature of the elliptic
term.
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The function m(s) that appears in (vii) is

π
6((1 − s)/2)
6((1 + s)/2)

ζ (1 − s)
ζ (1 + s)

.

Thus

m ′(s)
m(s)

= −1
2

6′((1 − s)/2)
6((1 − s)/2)

− 1
2

6′((1 + s)/2)
6((1 + s)/2)

− ζ ′(1 − s)
ζ (1 − s)

− ζ ′(1 + s)
ζ (1 + s)

.(33)

It is to be multiplied by the product of

tr(ξs( f∞))(34)

and tr(ξs( f m
p ). The first of these two functions, as a function on (−i∞, i∞), is the

Fourier transform of a smooth function of compact support. The second is equal to

pim s
2 + pi(m−2) s

2 + · · · + pi(2−m) s
2 + p−im s

2 .(35)

The estimates of §48 and §77 of [Lan] assure us that the product of (33) and (34)
is an L1-function on (−i∞, i∞). From the Riemann-Lebesgue lemma we then
conclude that, for odd m, the integral of the product of (33), (34), and (35) over that
line approaches 0 as p approaches infinity. So, for m odd, (vii) does not contribute
to the limit in (12) or (12′).

2.3. The noninvariant terms. Both ω(γ , fv ) and ω1(γ , fv ) are 0 unless there
is a matrix

n =
(

1 x
0 1

)

, x ∈ Fv ,

and a matrix k in the maximal compact subgroup of GL (2, Qv ) such that the element
k−1n−1γ nk lies in the support of fv . Since f∞ is fixed at present, this means that
the two eigenvalues α and β of γ are units away from p and that there is a fixed
δ > 0 such that δ < |α/β|∞ < 1/δ. From the product formula we conclude that
δ < |α/β|p < 1/δ. Since αβ = α2(β/α) = ±pm if ω(γ , fv ) or ω1(γ , fv ) is not 0,
we conclude that (iv) is 0 for all but a finite number of p if m is odd and thus does
not contribute to (12) or (12′). If m is even, there are only a finite number of γ that
yield a nonzero contribution to (iv). Indeed, such γ have to be of the form

γ =
(

±pk 0
0 ±pl

)

, k + l = m.

Since α/β = ±pk−m is bounded in absolute value, for all but a finite number of p
only

γ

(

±pm/2 0
0 ±pm/2

)

contribute. Since γ is not central, the signs must be different.
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In the new form of (v), θ (s, fv ) depends upon a nonzero scalar z,

θz(s, fv ) =
∫ ∫

fv
(

k−1
v a−1

v zn0avkv
)

∣

∣

∣

∣

αv

βv

∣

∣

∣

∣

−1−s

davdkv .

So the only contribution to (v) will be from z = ±pm/2 and it will only occur for
even m.

At finite places q, the operator R′(µq, νq, s) that occurs in (viii) annihilates the
vector fixed by G(Zq). So, with our assumptions, (viii) reduces to

1
4π

∫ i∞

−i∞
tr(R−1(s)R′(s)ξs( f∞))

(

m
∑

k=0

pi(m−2k)s

)

d|s|

in which R is the local intertwining operator at infinity normalized as in [JL] and
in which it is implicit that µ∞ = ν∞ = 1. According to the estimates of [A],

| tr(R−1(s)R′(s)ξs( f∞))| = O
(

1
s2

)

, s → ∞.

Thus we can once again apply the Riemann-Lebesgue lemma to conclude that, for
m odd, there will be no contribution to the limits (12) or (12′) from (viii).

2.4. The case of even m. There are four sections devoted to even m, by and
large to m = 2, or to weighted orbital integrals: §2.4, §4.3, and Appendices B and C.
They are not used in this paper and are best omitted on a first reading. The formulas
for even m are given for almost no other purpose than to make clear that for odd
m many significant simplifications occur. Since the formulas are not elegant and
are applied neither theoretically nor numerically, I very much fear that errors may
have slipped in and advise the reader to be cautious.

For even m, there are several contributions in addition to those from (ii) that
survive when we take the limit in X . Since the term p0 occurs in (35), the expression
(vii) contributes

1
4π

∫ i∞

−i∞

m ′(s)
m(s)

tr(ξs( f∞))d|s|(36)

to (12) or (12′). From (viii) we have

1
4π

∫ i∞

−i∞
tr(R−1(s)R′(s)ξs( f∞))d|s|(37)

To treat (36), or at least part of it, we deform the contour from Re(s) = 0 to
Re(s) > 0 or to Re(s) < 0, as the usual estimates permit [Lan], expand

−ζ ′(1 − s)
ζ (1 − s)

− ζ ′(1 + s)
ζ (1 + s)



P1: IML/SPH P2: IML/SPH QC: IML/SPH T1: IML

PB440F-22 HIDA-0662G PB440-Hida-v4.cls December 10, 2003 7:24

r. p. langlands636

as
∑

q

∑

n>0

ln q
qn(1−s)

+
∑

q

∑

n>0

ln q
qn(1+s)

(38)

and integrate term by term, deforming the contours of the individual integrals back
to Re(s) = 0. In fact, because of the pole of

ζ ′(1 ± s)
ζ (1 ± s)

at s = 0, we have first to move the contour to the right and then, for the contribution
from ζ ′(1 − s)/ζ (1 − s), move it back to the left. The result is that we pick up a
supplementary contribution − tr(ξ0( f∞))/2.

Since the character of ξs is the function

|α/β|s/2 + |β/α|s/2

√
|1 − α/β||1 − β/α|

,

the calculation that led to (30) shows that

tr(ξs( f∞)) = 2
∫

(λs/2 + λ−s/2)ψ±(r )dr,(39)

where the integral is to be taken over the set of (±1, r ) with the interval

{(1, r )} | − 1 ≤ r ≤ 1}

removed. This may be rewritten as

2
∫ ∞

−∞
|t |s{|t − t−1|ψ+(t + 1/t) + |t + t−1|ψ−(t − 1/t)}dt

|t |
,

so that, for s purely imaginary, tr(ξs( f∞)) is the Fourier transform of

2{|ex − e−x |ψ+(ex + e−x ) + |ex + e−x |ψ−(ex − e−x )}.(40)

As a result, the contribution of (38) to (36) is

∑

q

∑

n>0

ln q
qn

{|qn − q−n|ψ+(qn + q−n) + |qn + q−n|ψ−(qn − q−n)} − tr(ξ0( f∞))
2

,

(41)

in which the terms for large q or large n are 0. Since this expression occurs for
every p, it remains in the average, as in part a sum of atomic measures that may
well be finally cancelled by a contribution from the elliptic term, but it is hard to
see at present how this will occur!

Although the local normalization of the intertwining operators to R used in
[JL] is necessary if the products and sums appearing in the trace formula are to
converge, or at least if the global contribution (vii), which entails no study of local
harmonic analysis, is to be clearly separated from the contributions (viii) for which
the primary difficulty lies in the local harmonic analysis. Nonetheless it is best that,
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having separated (38) from (33) to obtain a term that could be analyzed more easily,
we combine what remains of (36) with (37) so that we can more readily appeal to
known results on weighted orbital integrals.

Since

−1
2

6′((1 − s)/2)
6((1 − s)/2)

− 1
2

6′((1 + s)/2)
6((1 + s)/2)

(42)

is the logarithmic derivative of

π (s−1)/26((1 − s)/2)
π (s+1)/26((1 + s)/2)

,

the combination of the two terms amounts to multiplying the unnormalized operator

Js : φ → Jsφ, Jsφ(g) =
∫

R

φ(n̄(x)g)dx(43)

on the space of the induced representation ξs by

π (s−1)/26((1 − s)/2)
π s/26(s/2)

.(44)

I set

n(x) =
(

1 x
0 1

)

, n̄(x) =
(

1 0
x 1

)

.

The choice of measure is irrelevant, because a logarithmic derivative is to be taken.
Moreover there is a slight difference between (43) and the intertwining operator of
[JL], but this difference too disappears when the logarithmic derivative is taken. So
we use (43), which is the definition used in [H].

The logarithmic derivatives of both (44) and Js now have a pole at s = 0, the
poles cancelling, so that, when we replace the sum of (37) and the contribution
of (42) to (36) by the integrals of the logarithmic derivative of (43) and of (44),
the contour of integration has to be deformed whenever we want to discuss them
separately. Hoffmann prefers to avoid 0 by skirting it to the right. I follow his
convention. So if C is the new contour, we are left with two terms,

1
4π i

∫

C

{

−1
2

6′((1 − s)/2)
6((1 − s)/2)

− 1
2

6′(s/2)
6(s/2)

}

tr ξs( f∞)ds(45)

and
1

4π i

∫

C
tr

(

J−1
s J ′

sξs( f∞)
)

ds.(46)

The contribution (46) is not invariant and must be paired with terms from (iv) and
(v) to obtain an invariant distribution, the only kind that is useful in our context, for
it is the only kind expressible in terms of ψ alone.

The two expressions will be, however, ultimately combined. Indeed, there is
a danger in discussing them separately. We need an explicit expression for the
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sum as

1
4π i

∫ i∞

−i∞
9(s) tr ξs( f∞)ds.

Since tr ξs( f∞) is even but otherwise essentially arbitrary, the function (or distri-
bution) 9 will be unique if it is assumed even. The integrands of (36) and (37) are
even, so that if we stay with them it is easier to use parity to monitor the manipu-
lations. On the other hand, the factor multiplying the trace in (45) is not even; nor
is the integrand of (46). Since Hoffmann’s results for (46) are in a form that is not
only transparent but also symmetric, and since we can easily put (45) in symmetric
form, we can readily restore the symmetry, the only cost being the replacement of
(45) by a somewhat lengthier expression, in which there is one surprise, the final
term in the following formula. If we avoid 0 by a small semi-circle of radius ε then
(45) becomes, up to a term of order O(ε)

1
4π i

∫ −iε

−i∞
+

∫ i∞

iε

{

−1
2

6′((1 − s)/2)
6((1 − s)/2)

− 1
2

6′(s/2)
6(s/2)

}

tr ξs( f∞)ds + tr ξ0( f∞)
4

.

The first factor in the integrand may be symmetrized, so that the singularity 1/s at
s = 0 disappears, and then ε allowed to go to 0. The result is the sum of

1
16π i

∫ i∞

−i∞

{

−6′((1 − s)/2)
6((1 − s)/2)

− 6′(s/2)
6(s/2)

− 6′((1 + s)/2)
6((1 + s)/2)

− 6′(−s/2)
6(−s/2)

}

tr ξs( f∞)ds,

or better, since

6′(s/2)
6(s/2)

= 6′(1 + s/2)
6(1 + s/2)

− 2
s
,

of

−1
16π i

∫
{

6′((1 − s)/2)
6((1 − s)/2)

+ 6′(1 + s/2)
6(1 + s/2)

+ 6′((1 + s)/2)
6((1 + s)/2)

+ 6′(1 − s/2)
6(1 − s/2)

}

tr ξs( f∞)(47)

and

tr ξ0( f∞)
4

.(48)

When considering (iv) and (v), we suppose that p &= 2 since, as we observed,
the values for a particular p have no influence on the limit. We may also suppose
that γ = ±pm/2δ, where δ is a matrix with eigenvalues ±1. The signs are equal for
(v) and different for (iv).

We begin with (iv). (There appears to be a factor of 1/2 missing in (iv). It was
lost on passing from p. 530 to p. 531 of [JL], but is included below.) We invert
the order of summation and discard all terms that do not contribute to the average,
so that it becomes a sum over just two γ followed by a sum over the places of Q.
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If v is a finite place q different from p, then

n(x)−1γ n(x) = ±pm/2
(

1 2x
0 −1

)

is integral in Qv if and only if 2x is integral. Consequently, ω1(γ , fq), q &= p, is 0
except for q = 2, but for q = 2,

ω1(γ , f2) = − ln(22)
2

= − ln 2.

Moreover,

ω(γ , fq) =
{

1, q &= 2, p;

2, q = 2.

On the other hand,

ω(γ , f p) = 1,

if p &= 2. Finally

ω1(γ , f p) = −
∫

1<|x |≤pm/2 ln |x |2dx

pm/2
= −

(

1 − 1
p

)

ln p
pm/2

m/2
∑

j=1

2 j p j .

The integral is taken in Qp.
Thus the sum over v in (iv) reduces to three terms, those for v = ∞, v = 2,

and v = p. Since our emphasis is on f∞, the only variable part of f , the first plays
a different role than the last two. It is invariant only in combination with (46). The
first two are already invariant as functions of f∞.

Before continuing, we give the values of the three constants c, λ0, and λ−1

appearing in the trace formula as given in [JL]. First of all, λ−1 = 1 and λ0 is
Euler’s constant. The constant c is the ratio between two measures, the numerator
being the measure introduced in §2.1 and used to define the operators

R( f ) =
∫

Z+\G(A)
f (g)dg

appearing in the trace formula. (So the symbol R has two different roles. It is
not the only symbol of the paper whose meaning depends on the context.) The
denominator being that given locally and globally as d(ank) = dadndk, g = ank
being the Iwasawa decomposition. Thus both measures are product measures, so
that c =

∏

cv . If we choose, as we implicitly do, the measures da and dn so that
A(Zq) and N (Zq) have measure 1 for all q, then cq = 1 at all finite places. On the
other hand, we have not been explicit about the measure on Z+\G(R). There was
no need for it. We may as well suppose that it is taken to be dadndk, where a now
belongs to Z+\A(R). Then c = c∞ = 1.
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The measure on Z+\A(R) has already been fixed, but the choice of measures
on N∞ and K∞ do not enter the formulas explicitly. We have

ω(γ , f∞) = ψ(ch(γ )).

Thus the contribution from (iv) is the sum of two terms. The first

−1
2

∑

γ

ω1(γ , f∞)
∏

q &=∞
ω(γ , fq),(49)

in which only two γ appear,

γ = ±pm/2
(

1 0
0 −1

)

,

is to be combined with (46). Since ω(γ , fq) is just the orbital integral of fq , it is
calculated by Lemma 1 and, as |γ1 − γ2| = |2pm/2| for the γ in question,

∏

q &=∞
ω(γ , fq) = 1

pm/2
2pm/2 = 2.(50)

The second stands alone and is

1
2
ψ−(0)

{

ln 2 +
(

1 − 1
p

)

ln p
pm/2

m/2
∑

j=1

2 j p j

}

,(51)

an expression that is about ln p in size. Its occurrence is certainly unexpected, as
it is not bounded in p, so that the elliptic term will have to contain something that
compensates for it. The source of this atomic contribution to the elliptic term—if
it is present—should not be hard to find, but I have not yet searched for it.

We verify immediately that

θz(0, fv ) =
∫

Qv

∫

Kv

fv
(

± pm/2k−1
v n(x)kv

)

dkvdx, z = ±pm/2,

if v = q is finite. If q &= p, this is equal to 1. If q = p, it is equal to 1 because pm/2x
is integral for |x | ≤ pm/2. Since (the notation is that of [JL, p. 194])

L(1) = π−1/26

(

1
2

)

= 1

and f∞ is positively homogeneous, the first term of (v) contributes
∑

±
λ0θ±1(0, f∞) = λ0

∑

∫

R

∫

K∞

f∞(±k−1n(x)k)dkdx .(52)

to the average.
The expression (52) can be calculated easily in terms of ψ+. We take

γ = ±
(

et 0
0 e−t

)

,
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and let t approach 0. Then ch(γ ) = (N , r ) = (4, ±2 cosh t), r/
√

|N | approaches
±1, and, as a simple change of variables shows,

2

(
√

r2

N
− 1

)

ψ+(r ) = 2| sinh t |
∫

R

∫

K∞

f∞(k−1γ n((1 − e−2t )x)k)dxdk(53)

approaches the integral of (52). According to (26), the limit of (53) is ψ ′′
∞(4, ±2).

It is nonzero only when ψ+ is singular at 1 or −1.
The derivative

θ ′
z(0, fv ) = − ln q

q − 1

∫

fv (k−1zn(x)k)dxdk +
∫

fv (k−1zn(x)k) ln |x |dxdk(54)

if v = q is nonarchimedean. If it is archimedean, then

θ ′
z(0, fv ) = κ

∫

f∞(k−1zn(x)k)dxdk +
∫

f∞(k−1zn(x)k) ln |x |dxdk,(55)

where

κ = −π−1/26(1/2)
2

ln π + π−1/26′(1/2) = −λ0

2
− ln π

2
− ln 2,

a result of

6′
(

1
2

)

= (−λ0 − 2 ln 2)
√

π , (cf. [N, p. 15]).

The expression (54) is deceptive. If v &= p and z = ±pm/2, then θz(s, fq) is
identically 1 and its derivative 0. If q = p, then

θz(s, fq) = 1
pm/2Lq(1 + s, 1)

∫

|β|≤pm/2
|β|1+s dβ

|β|
= pms/2,

so that

θ ′
z(0, f p) = m ln p

2
.

The sum in (v) is a double sum, over γ = ±pm/2 and over v . Only v = ∞ and
v = p yield a contribution different from 0. The first will be combined with (52)
to give the sum of

κ1

∑

∫

R

∫

K∞

f∞(±k−1n(x)k)dx, κ1 = λ0

2
− ln π

2
− ln 2(56)

and the noninvariant expression

∑

∫

f∞(k−1zn(x)k) ln |x |dxdk,(57)
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which will have to be combined with (46). The second is
∑ m ln p

2

∫

R

∫

K∞

f∞(±k−1n(x)k)dx,(58)

in which two disagreeable features appear: the logarithm of p that cannot possibly
have an average and the integral that is expressible only in terms of the singularities
of ψ+ at ±1. So there is no question of the logarithmic terms in (51) and (58)
cancelling.

2.5. The elliptic term. The sum in the expression (ii) from [JL] is over the
global regular elliptic elements γ , each γ being determined by its trace, which we
have denoted r and by 4 times its determinant, N = 4 det(γ ). Only γ for which r
is integral and N = ±4pm appear. The eigenvalues of γ are

r
2

±
√

r2 − N
2

.

Their difference is ±
√

r2 − N . Thus γ will be elliptic if and only if r2 − N is not
a square. We write r2 − N = s2 D, where D is a fundamental discriminant, thus
D ≡ 0, 1 (mod 4). Both D and s are understood to be functions of r and N . If
r2 = N , then D is taken to be 0; if it is a square, then D = 1. Note that the symbol
s appears in the paper in two quite different ways: here and elsewhere, as an integer
by whose square we divide to obtain the fundamental discriminant; previously and
also below, as a variable parametrizing the characters of R+.

I claim that

∑

f |s
f
∏

q| f



1 −

(

D
q

)

q



 ,(59)

in which ( D
p ) is the Kronecker symbol ([C]), is equal to the product of U m(γ ) taken at

p with the product over q &= p of U 1(γ ). By multiplicativity, it is enough to consider

1 +
k

∑

j=1

q j



1 −

(

D
q

)

q





for each prime q. If ( D
q ) = 1, this is 1 + qk − 1, but if ( D

q ) = −1, it is

1 + (qk − 1)
q + 1
q − 1

= qk q + 1
q − 1

− 2
q − 1

.

Finally, if ( D
q ) = 0, it is

k
∑

j=0

q j = qk+1

q − 1
− 1

q − 1
.

So we have only to appeal to Lemma 1.
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Let µD be the volume µ(Z+Gγ (Q)\Gγ (A)) if D &= 1. Then the uncorrected
elliptic term is the sum

∑

N=±4pm

∑

r

µD
ψ(N , r )

pm/2

∑

f |s
f
∏

q| f



1 −

(

D
q

)

q



 ,(60)

in which the function ψ continues to be defined as in (26). The factor 1/2 in (ii)
has been removed because each r accounts for two γ . Because of the presence of
the term ψ(N , r ), the sum is finite, the number of terms being of order

√
|N |. The

terms with D = 0, 1 are excluded because they do not correspond to regular elliptic
γ . Moreover p is fixed for the moment.

We now make use of formulas from [C] (§5.3.3 and §5.6.2—the general form
of the second formula is stated incorrectly but we do not need the general form) for
µD. If n is a positive integer and x a real number, define the function ϕ(x, n) by the
following formulas.
x < 0:

ϕ(x, n) = π erfc
(

n
√

π√
|x |

)

+
√

|x |
n

exp(−πn2/|x |).

x > 0:

ϕ(x, n) =
√

x
n

erfc
(

n
√

π√
|x |

)

+ E1

(

πn2

x

)

,

where E1 is defined to be the function

−γ − ln(x) +
∑

k≥1

(−1)k−1 xk

k!k
,

γ being Euler’s constant. Then, on making use of the formulas in §2.1 for µD in
terms of the class number, we obtain

µD =
∞

∑

n=1

(

D
n

)

ϕ(D, n).(61)

The series (61) is absolutely convergent and we substitute it in (60) to obtain

2
∑

n

∑

f

∑

{(r,N ) | f |s}
f
(

D
n

)

ϕ(D, n)
ψ(N , r )√

|N |
∏

q| f



1 −

(

D
q

)

q



 .(62)

Recall that N assumes only two values ±4pm , but that r runs over all integers
except the very few for which D = 0, 1. By homogeneity, we may replace ψ(N , r )
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by ψ±(xr ), where for brevity of notation I set xr = r/
√

|N |. I rewrite (62) as

2
∑

f

∑

{n | (n, f )=1}

∑

{(r,N ) | f |s}

∑

f ′

f
(

D
n f ′

)

ϕ(D, n f ′)
ψ±(xr )√

|N |
∏

q| f



1 −

(

D
q

)

q



 .(63)

The sum over f ′ is over all positive numbers all of whose prime divisors are prime
divisors of f . The sum over (r, N ) is over those pairs for which f |s, s continuing
to be defined by r2 − N = s2 D. In principle, we want to examine the individual
terms

2
∑

f |s

∑

f ′

f
(

D
n f ′

)

ϕ(D, n f ′)
ψ±(xr )√

|N |
∏

q| f



1 −

(

D
q

)

q



 ,(64)

the outer sum being a sum over r and the two possible N , but we must first subtract
the contribution (28) from the trivial representation. So we have to express it too
as a sum over n and f .

The contribution from the trivial representation θ is the product of (28) with

tr θ
(

f m
p

)

=
m

∑

k=0

p(m−2k)/2 = pm/2 1 − p−m

1 − p−1
=

√
|N |
2

1 − p−m

1 − p−1
.

So it is

2
√

|N |1 − p−m

1 − p−1

∑

∫

ψ±(x)
√

|x2 ∓ 1|dx,(65)

the sum being over the set {+, −}. To see how this is to be expressed as a sum
over n and f , we observe that ϕ(D, n) behaves for large |D| like

√
|D|/n =

√

|r2 − N |/sn, so that, for a rough analysis, (63) may be replaced by

2
√

|N |
∑

f

∑

{n | (n, f )=1}

∑

f |s

∑

f ′

f
sn f ′

(

D
n f ′

)

ψ±(xr )

√

|x2
r ∓ 1|

√
|N |

∏

q| f



1 −

(

D
q

)

q



 .(66)

Suppose we replace each of the factors

∑

f ′

f
sn f ′

(

D
n f ′

)

∏

q| f



1 −

(

D
q

)

q



 = f
sn

(

D
n

)

(67)

by a number εn, f (N ), an approximation to its average value on intervals long with
respect to n but short with respect to

√
|N |. Then (63) is replaced by

2
√

|N |
∑

f

∑

{n | (n, f )=1}

∑

±
εn, f (N )

∫

ψ±(x)
√

|x2 ∓ 1|dx .(68)

The inner sum is over the two possible values of N .



P1: IML/SPH P2: IML/SPH QC: IML/SPH T1: IML

PB440F-22 HIDA-0662G PB440-Hida-v4.cls December 10, 2003 7:24

beyond endoscopy 645

The exact sense in which εn, f (N ) is an approximation to the average is not
important, provided the choice works, but we do need to show that

∑

n, f

εn, f (N ) = 1
1 − p−1

+ O(|N |−1),(69)

= 1 − p−m − 1
1 − p−1

+ O(|N |−1),

so that (65) is equal to (68) and the difference between (63) and (65) has some
chance of being o(|N |1/2). For the purposes of further examination, we write this
difference as the sum over n and f , gcd(n, f ) = 1, of

2

{

∑

f
(

D
n f ′

)

ϕ(D, n f ′)
ψ±(xr )√

|N |
3 −

√

|N |
∑

±
εn, f (N )

∫

ψ±(x)
√

|x2 ∓ 1|dx

}

,(70)

with

3 = 3 f =
∏

q| f



1 −

(

D
q

)

q



 .

The first sum in (70) is over r , f ′, and ±. (Notice that the sum (70) has a simpler
mathematical structure than (60), especially for f = 1 for then the sum over f ′

is absent. The only element that varies irregularly with r is the square s2 dividing
r2 − N .)

I now explain how we choose εn, f (N ). Let t be an integer large with respect to√
|N | and divisible by a multiplicatively very large square. The average of (68) is

to be first calculated on [0, t). The divisibility of r2 − N by s2 is then decided for
all s up to a certain point by the residue of r modulo t . Whether (r2 − N )/s2 is then
divisible by further squares is not, but it is except for squares that are only divisible
by very large primes. There will be very few r for which this occurs. Otherwise
f divides s if and only if f 2 divides r2 − N with a remainder congruent to 0 or 1
modulo 4. Then, for (n, f ) = 1,

(

(r2 − N ) f 2/s2

n

)

=
(

D
n

)

.

Thus εn, f (N ) will be an approximation to the average value of

f
sn

(

(r2 − N ) f 2/s2

n

)

.(71)

If (n, f ) were not 1, these expressions would be 0, and it is useful to set εn, f (N ) = 0
if gcd(n, f ) &= 1. The calculation of these factors is long and tedious, but their
values are needed for the numerical experiments, and (69) is a confirmation of the
correctness of the calculation. So I present the calculation in an appendix.
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Part III: Numerical experiments.

3.1. A first test. We observed that (32) was, apart from the elliptic term, the
only nonzero contribution to the limit. Since L(s, π, σ1) is regular and nonzero on
Re(s) = 1 for all cuspidal automorphic π , we expect that the limit (12′) is 0. For
m = 1, we have calculated explicitly all contributions to the limit (12′) except for
the difference between the elliptic term (60) and the contribution (65) from the
one-dimensional representations. So we have to show that this difference, or rather
its average in the sense of (12′) over p < X , cancels the simple, but in our context
fundamental, distribution (32). A first test is numeric.

Both (60) and (65) are distributions, even measures, on the pair (ψ+, ψ−). The
first is a sum of atomic measures. The second is absolutely continuous with respect
to Lebesgue measure. So their difference and the average over p is also a measure,
symmetric with respect to r → −r . I divide the interval from −3 to 3 on each of the
lines N = ±1 into 60 equal parts of length 0.1 and calculate numerically for each
p the measure of each interval. In the unlikely event that a point common to two
intervals has nonzero mass, I assign half of this mass to each of the two intervals.
Then I average over the first n primes in the sense of (12′). The result should be
approaching −0.2 on each of the intervals except those on N = +1 between −1
and 1, where it should approach 0. From Table 3.1, in which the first two columns
refer to the average over the first 200 primes, the second to that over the first 3600
primes, and the third to that over the first 9400, we see that the average is almost
immediately approximately correct at least for the intervals closer to 0, that it does
seem to converge to the correct values, but that the convergence is slow, sometimes
even doubtfully slow.

Thanks to the symmetry, only the results for the intervals from −3 to 0 need be
given. In each set of two columns, the numbers in the first column are for intervals
of r with N = −1, and those in the second for N = 1. Once the results get within
about 0.007 of the expected values they cease to improve. I assume they would with
better programming.

3.2. A rough estimate. For m odd and in particular for m = 1, the elliptic
term, or more precisely the difference between the elliptic term and the contribution
from the one-dimensional representations, is a formidable expression, with which
it is difficult, probably very difficult, to deal. The limit of the average is nevertheless
expected to exist and is, moreover, expected to be, even if S contains finite places,
a linear combination of the distributions (30), of which there are three, because
ε−− = ε−+. The coefficients will depend on the functions fq , q &= ∞, q ∈ S, thus
on congruence conditions. So there is a great deal of uniformity present in the limit,
and it is fair to assume that it will influence the structure of the proofs.

On the other hand, the average of the difference, with the elliptic term expressed
as in (62) and (65), decomposed with the help of (69), will be a sum over three
parameters, r , p, and n. More precisely, the last sum is over n and f , but the
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Table 3.1

−0.686858, −0.010181, −0.232848, −0.181406, −0.207348, −0.213738,
0.186493, −0.509315, −0.143169, −0.267028, −0.160988, −0.214750,

−0.291132, −0.231973, −0.268148, −0.267438, −0.226005, −0.252182,
−0.199118, −0.079383, −0.183245, −0.132645, −0.202296, −0.171024,
−1.025438, −0.527494, −0.233874, −0.247813, −0.248718, −0.231158,

0.017161, −0.245755, −0.271121, −0.200476, −0.211613, −0.186097,
0.057466, −0.073425, −0.243888, −0.170394, −0.227328, −0.194990,

−0.604006, −0.449603, −0.106058, −0.211854, −0.123694, −0.198008,
−0.147666, −0.198848, −0.244547, −0.154175, −0.267187, −0.169350,
−0.232995, −0.460777, −0.199048, −0.265850, −0.163095, −0.238796,
−0.352068, 0.088846, −0.154301, −0.183977, −0.186853, −0.186285,
−0.183918, −0.399292, −0.319741, −0.250550, −0.273583, −0.235420,
−0.218394, −0.137239, −0.112422, −0.158514, −0.140592, −0.170782,
−0.331184, −0.328770, −0.223462, −0.234503, −0.237538, −0.201874,
−0.330528, −0.277603, −0.236737, −0.227831, −0.191458, −0.218459,
−0.107266, −0.126031, −0.195398, −0.185583, −0.213405, −0.202951,
−0.138815, −0.188041, −0.211230, −0.181449, −0.197189, −0.192290,
−0.388114, −0.267641, −0.236432, −0.223636, −0.239041, −0.204733,
−0.285824, −0.179338, −0.159782, −0.179327, −0.176213, −0.194733,
−0.147042, −0.182515, −0.213875, −0.195378, −0.207439, −0.192548,
−0.137437, −0.008915, −0.225177, −0.013033, −0.211749, −0.000857,
−0.413068, −0.056893, −0.220921, 0.007333, −0.201721, 0.003851,
−0.080076, −0.004867, −0.169043, −0.005863, −0.182254, −0.007391,
−0.270411, −0.037313, −0.235472, −0.020661, −0.224686, −0.006618,
−0.282038, −0.001461, −0.188183, 0.019859, −0.193986, 0.005356,
−0.232331, −0.095297, −0.217932, −0.011204, −0.224461, 0.004303,
−0.125913, 0.028871, −0.208961, −0.020619, −0.194989, −0.011606,
−0.238424, −0.026239, −0.177729, 0.004167, −0.197464, −0.006211,
−0.175674, −0.020565, −0.215916, 0.008770, −0.192947, −0.007468,
−0.249100, 0.015408, −0.184689, −0.009332, −0.198297, 0.006565.

additional sum over f may be little more than an unfortunate complication, whose
implications are limited, of the sum over n. At the moment, I am not concerned
with it. There are also sums over ± and f ′ that occur simultaneously with the sum
over r and are understood to be part of it.

The sum over r has a simple structure, except for the dependence on s. The use
of the logarithmic derivatives that leads us to an average over p with the factor ln p is
alarming as any incautious move puts us dangerously close to the mathematics of the
Riemann hypothesis, but there is nothing to be done about it. The structure suggested
by functoriality and the L-group imposes the use of the logarithmic derivative on
us, and any attempt to avoid it for specious (in the sense of MacAulay) technical
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advantages is likely to lead us away from our goal, not toward it. Although in the
middle of the nineteenth century the word specious did not yet have its present
thoroughly pejorative sense, it did evoke doubt; so a few words of explanation are
in order. The only tool presently in sight for passing from π to λH are the functions
mπ and m H , which are linear in ρ. We are already familiar, thanks to basic results
for the Artin L-functions, with the importance of the linearity in ρ of the order of
the pole of the L-functions at s = 1. The linearity in ρ is naturally accompanied by
a linearity in π . The functions mπ not only incorporate the structural advantages
suggested by functoriality that will be of great importance when we pass to groups
of large dimension but also are fully adapted to the trace formula, provided we take
them as defined by the logarithm of the L-function L(s, π, ρ) or its derivative. On
the other hand, we have none of the necessary analytic experience. We are faced
with sums and limits in which we do not know what is large, what is small, what
converges, what does not, and we desperately need insight. If some experience and
some feeling for the analysis can be acquired by a modification of the problem
in special cases in which the sums over primes that appear in the logarithmic
derivative are replaced by easier sums over integers, then common sense suggests
that we start there. Moreover, we do want to discover something about the behaviour
of automorphic L-functions near s = 1, although if we are careful we should not
otherwise find ourselves inside the critical strip.

By passing from (60) to (62) we remove the class number, an almost intractable
factor, but at the cost of the additional sum over n and f . Although the contribution
from the one-dimensional representations is not at first expressed as a sum over n
and f , we observed in §2.5 that there was a natural way so to express it, so that the
difference becomes the sum over n and f of (70).

If it turned out that for each n and f , the sum over r and p behaved well,
then we would, it seems to me, have a much better chance of dealing with the
elliptic term. More precisely, it would be a real windfall if the average of (70)
approached a limit for each n and f, and if the sum over n and f followed by the
average could be replaced by the average followed by the sum. The most important
observation of this paper is that preliminary numerical investigations suggest that
the average of (70) does indeed have a regular behavior, but there are no windfalls.
Since my experience as a programmer is limited and mistakes are easy to make,
either outright blunders or a careless analysis of possible systematic errors in what
are necessarily approximate calculations, I very much hope that others will find
the results sufficiently curious to be worthy of their attention. Not only should my
conclusions be examined again and more extensively, but, apart from any theoretical
efforts, higher m, especially m = 2, 3, need to be considered as does the effect of
congruence conditions or of characters of the Galois group.

Interchanging the order of summation and the passage to the limit is another
matter. In the summation there are three ranges: n substantially smaller than

√
|N |;

n about equal to
√

|N |; n substantially larger than
√

|N |. We can expect that the
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interchange picks out the first range. The function ϕ(x, n) is such that we can
expect the last range to contribute nothing. This leaves the intermediate range,
which may very well contribute but about which nothing is said in this paper,
whose tentative explorations, instructive though they are, stop short of all difficult
analytic problems. Since ϕ(x, n) is a function of n/

√
x , the factor ϕ(D, n) in (62)

can almost be treated as a constant when n ∼
√

N . Thus, in so far as D is just
r2 − N , the pertinent expression in the intermediate range is pretty much

∑

−cn≤r≤cn

(

r2 − N
n

)

ψ±

( r
n

)

.

More extensive investigations, which I have not yet undertaken, would examine,
at least numerically but also theoretically if this is possible, the sum over the
intermediate range in this light as well as the validity of the separation into three
ranges. Is it possible to hope that the average over p < X of the previous expression
will have features like those described in §3.3 for the average over the first range?
Can the separation be made cleanly so that any contributions from intermediate
domains on the marches of the three ranges are small?

Although we persuaded ourselves that (70) might very well be o(|N |1/2), so
that it is smaller than the two expressions of which it is a difference, we made no
effort to see what size it might be. Its average over p is intended to have a limit,
thus, in particular, to be O(1), but that does not prevent violent oscillations in the
individual terms. Besides, the existence of a limit may be too much to expect. The
numerical results described later in this section suggest that (70) is O(ln2 |N |), but
I have not yet even been able to show that it is O(lnc |N |) for some exponent c.
Before coming to the experiments, I describe briefly the difficulties that I met in
trying to estimate (70) directly. I have not yet made a serious attempt to overcome
them.

Recall first that ψ± in (70) are zero outside some interval [c1, c2], so that r
need be summed only over c1

√
|N | ≤ r ≤ c2

√
|N |. To simplify the—in any case

rough—analysis, I suppose that both ψ± are bounded; thus I ignore the possible
singularity of ψ+ at r = ±1. Observe that, for large N ,

ϕ(x, n) =
√

|x |
n

+ A + B ln |x | + O(|x |−1/2),

where A and B are well-determined constants that depend only on the sign of x .
The constant implicit in the error term depends on n. Since

∑

c1
√

|N |≤r≤c2
√

|N |

1√
|N |

= O(1),

we can replace ϕ(x, n) by
√

|x |/n at a cost that is O(ln |N |), a price that we are
willing to pay.
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Thus, at that level of precision, we can make the same modifications as led
from (63) to (66) and replace (70) by twice the sum over ± of the difference

∑

r

f
sn

(

D
n

)

ψ±(xr )
√

|x2
r ∓ 1|3 −

√

|N |εn, f (N )
∫

ψ±(x)
√

|x2 ∓ 1|dx .(72)

In (72) there is no longer a sum over f ′ and no need to sum over ±, as we can
simply fix the sign.

To simplify further, I take n = 1. In so far as there is any real argument in the
following discussion, it can easily be extended to an arbitrary n. This is just a matter
of imposing further congruence conditions on r modulo primes dividing 2n. For
similar reasons, I also take f = 1. Then (72) becomes

∑

r

ψ±(xr )
√

|D|√
|N |

−
√

|N |ε1,1(N )
∫

ψ±(x)
√

x2 ∓ 1dx .

It might be better to take ψ± to be the characteristic function of an interval and to
attack this fairly simple expression directly. I tried a different approach.

I indicate explicitly the dependence of s on r by setting s = sr and then write
the first term of the difference, with n now equal to 1, as

∑

s

1
s

∑

sr =s

ψ±(xr )
√

|x2
r ∓ 1|.(73)

We then compare
∑

sr =s

ψ±(xr )
√

|x2
r ∓ 1|(74)

with
√

|N |
s2

∫ ∞

−∞
ψ±(x)

√

|x2 ∓ 1|gs(x)dx,(75)

where gs(x) is constant on each interval [ks2/
√

|N |, (k + 1)s2/
√

|N |) and equal to
the number Cs(k) of integral points r in [ks2, (k + 1)s2) such that r2 − N divided
by s2 is a fundamental discriminant. The sum (73) is compared with

∑

s

√
|N |
s3

∫ ∞

−∞
ψ±(x)

√

|x2 ∓ 1|gs(x)dx .(76)

We have to compare (76) not only with (73) but also with the second term of (72),
which is, for n = f = 1,

√

|N |ε1,1(N )
∫

ψ±(x)
√

|x2 ∓ 1|dx .(77)

I truncate both (73) and (76) at s ≤ M = |N |1/4. An integer r contributes to
the number Cs(k) only if s2 divides r2 − N . This already fixes r up to a number of
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possibilities modulo s2 bounded by 2#(s), where #(s) is the number of prime divisors
of s. Thus the truncation of (76) leads to an error whose order is no larger than

∑

s>M

√
|N |2#(s)

s3
= O(ln2c−1 |N |),

as in Lemma B.1 of Appendix B. As observed there, the constant c may very well
be 1.

For s > M , the number of r in [c1
√

|N |, c2
√

|N |) such that s2 divides r2 − N
is O(2#(s)), because

√
|N |/s2 is bounded by 1. Thus, according to Lemma B.3, the

error entailed by the truncation of (73) is of order no worse than

∑

C
√

|N |>s>M

2#(s)

s
= O(ln2c |N |).

To estimate the difference between (74) and (75), we regard

ψ±(xr )
√

|x2
r ∓ 1| =

√
|N |
s2

ψ±(xr )
√

|x2
r ∓ 1| s2

√
|N |

,

ks2 ≤ r < (k + 1)s2, as an approximation to

√
|N |
s2

∫
(k+1)s2
√

|N |

ks2√
|N |

ψ±(x)
√

|x2 ∓ 1|dx .

Besides difficulties around x = ±1—where ψ+ may not be bounded, much less
smooth—the approximation will be good to within

√
|N |
s2

O

(

(

s2

√
|N |

)2
)

= O
(

s2

√
|N |

)

.

Multiplying by 1/s and summing up to M , we obtain as an estimate for the truncated
difference between (73) and (76)

1√
|N |

O

(

∑

s≤M

2#(s)s

)

,

which is estimated according to Corollary B.4 as O(ln2c |N |).
For a given N and a given natural number s, the condition that (r2 − N )/s2 be

integral but divisible by the square of no odd prime dividing s and that (r2 − N )/4
have some specified residue modulo 4, or any given higher power of 2 is a condition
on r modulo 4s4 or some multiple of this by a power of 2, so that it makes sense to
speak of the average number α′(N , s) of such r . The number α′(N , s) is O(2#(s)/s2).
If q is odd and prime to s then the average number of r for which, in addition, r2 − N
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is not divisible by q2 is

1 −
1 +

(

N
q

)

q2
.

Thus the average number of r for which r2 − N divided by s2 is a fundamental
discriminant can be defined as

α(N , s) = α′(N , s)
∏

gcd(q,2s)=1



1 −
1 +

(

N
q

)

q2



 .

As in the first appendix,

ε1,1(N ) =
∞

∑

s=1

α(N , s)
s

.

It remains to compare (75) with
√

|N |α(N , s)
∫ ∞

−∞
ψ±(x)

√

|x2 ∓ 1|dx(78)

remembering that their difference is to be divided by s and then summed over s,
although by Lemma B.1, the sum can be truncated at s ≤ M . I had difficulties with
the estimates that I have not yet been able to overcome. I describe them.

Let ḡs be the average of gs on some interval [−C, C] large enough to contain
in its interior the support of ψ±. The difference between (75) and (78) divided by
s is the sum of two terms. First of all,

√
|N |
s3

∫ C

−C
ψ±(x)

√

|x2 ∓ 1|(gs(x) − ḡs(x))dx ;(79)

and secondly,
√

|N |
s3

∫ C

−C
ψ±(x)

√

|x2 ∓ 1|(ḡs(x) − s2α(N , s))dx .(80)

The first should be smallest when ψ± is very flat; the second when its mean is 0.
So it appears they are to be estimated separately.

First of all, to calculate Cs(k) and thus gs , we have to examine the O(2#(s))
integers r in the pertinent interval such that s2 divides r2 − N . For simplicity,
rather than work with gs and ḡs , I work with the contributions to Cs(k) from a
single residue class r̄ modulo s2, but without changing the notation. As a result, the
estimates obtained will have to be multiplied by the familiar factor 2#(s). Moreover,
the definition of α(N , s) will have to be modified according to the same principle.

If r lies in [−C
√

|N |, C
√

|N |] and has residue r̄ , then we attach to r the set
p1, p2, . . . , pl such that s2 p2

i divides r2 − N and is congruent to 0 or 1 modulo 4.
Then s(r ) is divisible by sp1 . . . pl and s2 p2

1 . . . p2
l ≤ (C2 + 1)|N |. So there are only

a finite number of sets {p1, . . . , pl} that arise. Let A(p1, . . . , pl) be the set of k such
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that r ∈ [ks2, (k + 1)s2) ⊂ [−C
√

|N |, C
√

|N |] with the given residue r̄ has s(r )
divisible by sp1 . . . pl and by no prime but those in {p1, . . . , pl}. Let |A| be the total
number of elements in all the A(p1, . . . , pl), l ≥ 0. Then |A| − 2C

√
|N |/s2 is O(1)

and 1/|A| = s2/2C
√

|N | + O(1/|A|2). Let A(+) be the union of A(p1, . . . , pl),
l > 0.

Set ;±(k) equal to the integral over the interval [ks2/
√

|N |, (k + 1)s2/
√

|N |]
of ψ±(x)

√

|x2 ± 1|. Then with our new conventions, the integral in (79) becomes

∑

k∈A()

;±(k)

(

1 −
∑

i∈A()

1/|A|
)

−
∑

k∈A(+)

∑

i∈A()

;±(k)/|A| + O(s2/
√

|N |).

Thanks to (B.10) we may ignore the error term. The main term is

1
|A|

∑

k∈A()

∑

i∈A(+)

(;±(k) − ;±(i)).(81)

Each term ;±(k) that appears in (81) is assigned not only to a k ∈ A() but also
to an i ∈ A(+), say i ∈ A(p1, . . . , pl). We can change the assignation and thus
rearrange the sum by decomposing the integers into intervals Im = [ms2 p2

1 . . . p2
l ,

(m + 1)s2 p2
1 . . . p2

l ), choosing for each of these intervals an i ′ in it such that i ′ ≡ i
(mod s2 p2

1 . . . p2
l ) and assigning ;±(k) to k and to that i ′ lying in the same interval

Im as k. For this to be effective, we introduce sets B(p1, . . . , pl), defined as the set
of k such that the r ∈ [ks2, (k + 1)s2) with the given residue r̄ modulo s has s(r )
divisible by sp1 . . . pl . Then i ′ necessarily lies in B(p1, . . . , pl), although it may
not lie in A(p1, . . . , pl). Then the union B(+) of all the B(p1, . . . , pl), l > 0, is
again A(+) but these sets are no longer disjoint. The number of times Q(k, i ′) that
k is assigned to a given i ′ is clearly O(

√
|N |/s2 p2

1 . . . p2
l ).

If we change notation, replacing i ′ by i , the sum (81) becomes

1
|A|

∑

i∈A(+)

∑

k∈A()

Q(k, i)(;±(k) − ;±(i)).(82)

If ψ± is continuously differentiable and if i ∈ A(p1, . . . , pl) and Q(k, i) &= 0, then

;±(k) − ;±(i) = O
(

s2

√
|N |

)

O

(

s2 ∏l
j=1 p2

j√
|N |

)

,

the first factor coming from the length of the interval, the second from the differ-
ence of the functions ψ± on the two intervals. Since the number of elements in
B(p1, . . . , pl) is O(2l ′√|N |/s2 p2

1 . . . p2
l ), l ′ being the number of p j , 1 ≤ j ≤ l,

that do not divide s, (81) is estimated as

1
|A|

∑

l>0

∑

p1,...,pl

2l ′ O
(

s2

√
|N |

)

O

(

s2 ∏l
j=1 p2

j√
|N |

)

O
(

√
|N |

s2 p2
1 . . . p2

l

)2

O
(

p2
1 . . . p2

l

)

,
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the final factor being the number of intervals of length s2 in an interval Im . This
expression is

O
(

s2

√
|N |

)

O

(

∑

l>0

∑

p1,...,pl

2l ′

)

,(83)

which multiplied by
√

|N |/s3 yields

O
(

1
s

)

O

(

∑

l>0

∑

p1,...,pl

2l ′

)

.(84)

Were it not for the second factor, we could appeal to (B.10). Even though
this factor is a finite sum because s2 p2

1 . . . Pl2 ≤ (C2 + 1)
√

|N |, it is far too large
to be useful. It is likely to have been very wasteful to estimate the terms in (82)
individually. We can after all expect that if 0 ≤ ī < s2 p2

1 . . . p2
l is the residue of

i in A(p1, . . . , pl) then ī/s2 p2
1 . . . p2

l is distributed fairly uniformly over [0, 1) as
p1, . . . , pl vary, but at the moment I do not know how to establish or to use this.
So the poor estimate (83) is one obstacle to establishing a reasonable estimate for
(72).

As in the analysis of (79), we may calculate, with an error that is easily estimated
as O(s2/

√
|N |), ḡs as |A()|/|A| or, better, s2|A()|/2C

√
|N |. It is clear that

|A()| = |B()| −
∑

p1

|B(p1)| +
∑

p1,p2

|B(p1, p2)| − + . . . ,(85)

in which the sum is over s2 p2
1 . . . p2

l ≤ C2 + 1. Each set B(p1, . . . , pl) corresponds
to an interval [ks2 p2

1 . . . p2
l , (k + 1)s2 p2

1 . . . p2
l ) and it is implicit in the definition

that this interval must meet [−C
√

|N |, C
√

|N |]. It is not, however, necessary that
it be contained in the larger interval. Then

|B(p1, . . . , pl)| = α(p1, . . . , pl)

(

2C
√

N
s2 p2

1 . . . p2
l

+ ε(p1, . . . , pl)

)

.(86)

Here

α(p1, . . . , pl) =
l

∏

j=1

α(p j ).

If p is odd, α(p), which is 0, 1, or 2, is the number of solutions of r2 − N ≡ 0
(mod s2 p2), (r2 − N )/s2 p2 ≡ 0, 1 (mod 4) with the condition that the residue of
r modulo s2 is r̄ . If p = 2, it is 1/4 the number of solutions of the same con-
ditions but with r taken modulo 4s2 p2. Because those intervals [ks2 p2

1 . . . p2
l ,

(k + 1)s2 p2
1 . . . p2

l ) that lie partly inside [−C
√

|N |, C
√

|N |] and partly outside
may or not belong to B(p1, . . . , pl) the number ε(p1, . . . , pl) lies between −1 and
1 if no p j is 2. Otherwise it lies between −4 and 4.
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We can also calculate the modified α(N , s) as
∑

p1,...,pl

(−1)l α(p1, . . . , pl)
s2 p2

1 . . . p2
l

.

We conclude from (85) and (86) that, apart from an error that we can allow ourselves,
the difference ḡs − s2α is

∑

l≥0

∑

p1,...,pl

(−1)lα(p1, . . . , pl)ε(p1, . . . , pl)
s2

2C
√

|N |
.

So once again, we have to deal with

∑

s

1
s

{

∑

l≥0

∑

p1,...,pl

(−1)lα(p1, . . . , pl)ε(p1, . . . , pl)

}

.(87)

The expression in parentheses in (87) depends strongly on s and is, once again,
apparently far too large, a coarse estimate suggesting that the inner sum is of
magnitude

∑

p2
1 ...p

2
l ≤(C2+1)

√
|N |/s2

2l ′,(88)

where l ′ is once again the number of j , 1 ≤ j ≤ l such that p j does not divide s.
Perhaps we have to take into account that the signs of the factors ε(p1, . . . , pl) vary
and cancel each other. I have not tried to do this.

Our estimate of (70) is unsatisfactory, so that at this stage it is useful to examine
it numerically. The numerical results that I now describe suggest strongly that all
estimates that look, for one reason or another, weak are indeed so and that (70) is
O(ln2 |N |). The experimental results, too, leave a good deal to be desired, partly
because it is impossible to detect slowly growing coefficients but also because it is
inconvenient (for me with my limited programming skills) to work with integers
greater than 231 = 2147483648. For example, when testing the divisibility proper-
ties of r2 − N by s2, it is inconvenient to take s greater than 215. Since we can work
with remainders when taking squares, we can let r be as large as 231. Nonethless,
if we do not want to take more time with the programming and do not want the
machine to be too long with the calculations, there are limits on the accuracy with
which we can calculate the s = sr appearing in (72). We can calculate a large divisor
of s, for example, the largest prime divisor that is the product of powers qa = qaq of
the first Q primes, where Q is at our disposition and where qaq is at most 215. The
same limitations apply to the calculation of εn, f (N ) and, in particular, of ε1,1(N ).
So we can only approximate (72), the approximation depending also on Q.

In Table 3.2.A, which has three parts, we give three approximations not to the
difference itself but to the difference divided by ln p. Each is for n = f = 1 and for
three different primes of quite different sizes, the 6000th, p = 59369, the 60000th,
p = 746777, and the 600000th, p = 8960467. The three approximations are for
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Table 3.2.A: Part 1: p = 59369

0.356779, −0.136681, 0.358137, −0.135542, 0.358815, −0.136301,
−0.305870, 0.089564, −0.304567, 0.090622, −0.303917, 0.089916,

0.102864, 0.114616, 0.104113, 0.115592, 0.104736, 0.114941,
−0.108330, 0.054990, −0.107135, 0.055883, −0.106538, 0.055287,
−0.027594, 0.071878, −0.026452, 0.072683, −0.025881, 0.072146,
−0.212283, 0.083968, −0.211192, 0.084682, −0.210647, 0.084206,

0.117788, −0.003163, 0.118829, −0.002547, 0.119348, −0.002958,
0.091523, −0.015066, 0.092514, −0.014557, 0.093010, −0.014897,
0.020256, −0.084660, 0.021200, −0.084275, 0.021671, −0.084532,

−0.252761, −0.016231, −0.251863, −0.016025, −0.251414, −0.016162,
0.133049, 0.067864, 0.133903, 0.068064, 0.134330, 0.067930,
0.088015, 0.014307, 0.088828, 0.014663, 0.089234, 0.014425,

−0.081067, −0.030958, −0.080293, −0.030509, −0.079906, −0.030808,
0.017027, 0.076392, 0.017766, 0.076908, 0.018135, 0.076564,
0.121633, 0.025750, 0.122340, 0.026318, 0.122693, 0.025939,

−0.081617, 0.053260, −0.080938, 0.053867, −0.080599, 0.053463,
−0.002066, −0.126718, −0.001409, −0.126081, −0.001082, −0.126505,

0.068478, 0.082597, 0.069116, 0.083256, 0.069435, 0.082816,
−0.004951, 0.124929, −0.004325, 0.125601, −0.004012, 0.125153,
−0.239656, 0.099643, −0.239035, 0.100322, −0.238725, 0.099869.

Q = 80, 160, 320. They give not (72) itself, but the measure implicit in it, thus the
mass with respect to the measure of the twenty intervals of length 0.1 between −2
and 0, a point mass falling between exactly at the point separating two intervals being
assigned half to one and half to the other interval. All these masses are divided by
ln p. For the smallest of the three primes, all approximations give similar results. For
the largest of the primes, even the best two are only close to another. For numbers
with any claim to precision, either a larger value of Q or a larger bound on the
powers of the primes would be necessary. Nevertheless, the change in the numbers
with increasing Q is far, far less than suggested by (84) and (88).

In each part of the table one of the three primes is considered. Each part has
three double columns, each of them corresponding to one value of Q. For a given
Q, the first element of the double column is the measure for ψ− and the second for
ψ+. The interval in the first row is [−2, −1.9] and in the last is [−0.1, 0]. Notice
that the mass divided by ln p does not seem to grow much or to decrease much
but does behave irregularly. Thus the mass itself at first glance seems to be about
O(ln p), but, as already suggested, this is not the correct conclusion.

To exhibit the fluctuating character of these numbers, a similar table for the
6001st prime p = 746791 is included as Table 3.2.B, but I only give the results for
Q = 320. Once again, they come in pairs, for N = −1 and N = 1, but there are
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Table 3.2.A: Part 2: p = 746777

−0.219263, 0.068058, −0.215435, 0.071714, −0.208291, 0.070964,
0.143721, 0.001004, 0.146339, 0.004404, 0.153195, 0.003706,

−0.020184, 0.035014, −0.016663, −0.065354, −0.010093, −0.065998,
−0.091281, −0.098202, −0.087911, −0.095335, −0.081622, −0.095923,

0.003985, −0.017991, 0.007207, −0.015405, 0.013220, −0.015936,
0.087754, 0.076422, −0.042187, 0.078715, −0.036444, 0.078245,
0.180775, −0.060344, 0.183710, −0.058364, 0.189187, −0.058771,
0.107415, 0.038662, 0.110212, 0.013086, 0.115430, 0.012750,

−0.058412, −0.094389, −0.167936, −0.093154, −0.162967, −0.093407,
−0.073063, 0.007405, −0.070531, 0.008066, −0.065803, 0.007930,

0.070096, 0.045556, 0.072506, 0.046198, 0.077003, 0.046066,
−0.023146, 0.060006, −0.020854, 0.061151, −0.016574, 0.060916,

0.129606, −0.071048, 0.084723, −0.117606, 0.088799, −0.117902,
−0.044026, 0.110108, −0.041942, 0.111766, −0.038054, 0.111426,
−0.015731, −0.062830, −0.013737, −0.061007, −0.010015, −0.061381,
−0.180290, 0.079119, −0.258895, 0.081069, −0.255319, 0.080669,

0.077034, −0.078929, 0.078885, −0.076884, 0.082340, −0.077304,
−0.011454, 0.060534, −0.009653, −0.008355, −0.006292, −0.008789,
−0.003079, 0.082049, −0.001312, 0.084207, 0.001986, 0.083764,

0.031046, 0.121403, −0.041293, 0.123583, −0.038028, 0.123136.

two columns, the first for the interval from −2 to −1 and the second for the interval
from −1 to 0. Table 3.2.B can be compared with Table 3.2.A, Part 1, to see the
change on moving from one prime to the next.

As a further test, I took the largest of the absolute values of the masses of the 2
times 20 intervals for the 1000th, the 2000th, and so on, up to the 100000th prime
and divided it by ln p. The one hundred numbers so obtained appear as Table 3.2.C,
which is to be read like a normal text, from left to right and then from top to bottom.
In the calculations, the integer Q was taken to be 160, but doubling this has only
a slight effect. Although at first glance, there is no obvious sign in the table of any
increase, a plot of the numbers, as in Diagram 3.2.A, suggests that they do increase
and rather dramatically. (Unfortunately, it was not always convenient to insert the
tables and the diagrams at the points where they are discussed in the text.)

On the other hand, if we continue up to the 600000th prime we obtain the results
of Diagram 3.2.B, where once again Q = 160 and where once again doubling Q
leads to essentially the same scattering with only a slight displacement of the
points. So Diagram 3.2.A is misleading and there is no dramatic rise! A second,
more careful glance at the diagram suggests, however, that a slow movement of the
points upward, perhaps compatible with the O(ln2 |N |) = O(ln2 p) hypothesis, is
not out of the question. We will return to this point when we have more and different
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Table 3.2.A: Part 3: p = 8960467

0.065614, −0.026226, 0.077929, −0.016149, 0.086276, −0.021717,
−0.099652, −0.151652, −0.087834, −0.142283, −0.079825, −0.147459,
−0.148913, 0.172582, −0.137585, 0.181226, −0.129909, 0.176450,

0.403084, −0.036168, 0.413927, −0.028269, 0.421275, −0.032633,
−0.156494, 0.060108, −0.146127, 0.067236, −0.139102, 0.063297,

0.016583, 0.038520, 0.026483, 0.044839, 0.033191, 0.041348,
0.273885, 0.195733, 0.283327, 0.201189, 0.289726, 0.198174,

−0.074761, −0.041762, −0.065764, −0.037253, −0.059667, −0.039744,
0.092875, 0.010855, 0.101440, 0.014259, 0.107244, 0.012378,

−0.126962, 0.015473, −0.118812, 0.017294, −0.113290, 0.016288,
0.065242, 0.009336, 0.072994, 0.011104, 0.078248, 0.010127,
0.258894, 0.023944, 0.266270, 0.027098, 0.271269, 0.025356,

−0.120552, −0.028011, −0.113526, −0.024038, −0.108765, −0.026233,
−0.059059, 0.034596, −0.052355, 0.039166, −0.047812, 0.036641,
−0.106739, −0.015397, −0.100324, −0.010374, −0.095977, −0.013149,

0.093762, −0.044505, 0.099926, −0.039132, 0.104104, −0.042101,
−0.101929, 0.219005, −0.095973, 0.224641, −0.091937, 0.221527,

0.101531, 0.011202, 0.107326, 0.017028, 0.111253, 0.013809,
0.036660, −0.033043, 0.042345, −0.027093, 0.046198, −0.030380,

−0.010312, −0.008676, −0.004683, −0.002666, −0.000869, −0.005986.

data at our disposition. As a convenient comparison, Diagram 3.2.C superposes the
points of Diagram 3.2.B on the graph of the curve 0.4 ln(1000x ln(1000x))/15,
1 ≤ x ≤ 600. The diagram confirms, to the extent it can, the hypothesis.

3.3. Some suggestive phenomena. The previous section does not establish
beyond doubt that (70) is O(ln2 p) or even the slightly weaker hypothesis that for
some integer l the expression (70) is O(lnl p). We now consider fixing n and f

Table 3.2.B

0.065424, 0.139319, 0.009127, 0.020117,
−0.339535, 0.095697, 0.244114, 0.028861,

0.064939, −0.125936, −0.242039, 0.013350,
0.227577, 0.215971, 0.068047, 0.008164,

−0.077371, −0.069531, 0.011311, 0.034411,
−0.210577, −0.056532, 0.159543, −0.064707,

0.373104, −0.083462, −0.002606, 0.046361,
−0.279405, 0.042905, 0.147926, 0.197334,

0.176183, 0.114329, −0.041558, 0.238247,
−0.049009, −0.016793, −0.180851, −0.082724.
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Table 3.2.C

0.358120, 0.872623, 0.258640, 0.295414, 0.345120,
0.358137, 0.310121, 0.427307, 0.392101, 0.461449,
0.301074, 0.242229, 0.353707, 0.498970, 0.449767,
0.405747, 0.256198, 0.461453, 0.381769, 0.347241,
0.317558, 0.345492, 0.324273, 0.559732, 0.305104,
0.246601, 0.355806, 0.287550, 0.435331, 0.400707,
0.275095, 0.324584, 0.376984, 0.427550, 0.321304,
0.319035, 0.306974, 0.494958, 0.301518, 0.393844,
0.394138, 0.252000, 0.429559, 0.365034, 0.407917,
0.359968, 0.458391, 0.338244, 0.312106, 0.300587,
0.291630, 0.489896, 0.327670, 0.405218, 0.209386,
0.227849, 0.481018, 0.556393, 0.322056, 0.258895,
0.361781, 0.383069, 0.374638, 0.337790, 0.287852,
0.441601, 0.695974, 0.321117, 0.627571, 0.324480,
0.391816, 0.830769, 0.615896, 0.358815, 0.291243,
0.644122, 0.228597, 0.557525, 0.313941, 0.440433,
0.343996, 0.864512, 0.356637, 0.678889, 0.582523,
0.314871, 0.329813, 0.398283, 0.385383, 0.645377,
0.314966, 0.470168, 0.331259, 0.298338, 0.479059,
0.302799, 0.579901, 0.365380, 0.457965, 0.388941.

and taking the average of (70), in the sense of (12′) over the primes up to X . If
X = x ln x , then, under the hypothesis that (70) is O(ln p), the order of the average
will be majorized by a constant times

∑

n<x ln2(n ln n)
x ln x

.(89)

This is approximately
∫ x

2 ln2(t ln t)
x ln x

∼ ln x ∼ ln(x ln x) = ln X.

If the order were lnl p, then (89) would be majorized by a constant times lnl X .
The average is a measure νn, f,X , which we may also consider as a distribution on
the set of possible ψ±. Suppose

νn, f,X = αn, f + βn, f ln X + on, f (1),

where αn, f and βn, f are two measures or distributions. Then interchanging the order
of the sum up to X and the sum over n, we find that we are to take the limit of

∑

n, f

αn, f +
∑

n, f

βn, f ln X +
∑

n, f

on, f (1).(90)
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0.6

0.8

Diagram 3.2.A

If there were no contributions from the other two ranges and if the third sum
was itself o(1), then the sum

∑

n, f

βn, f(91)

would have to be 0, and the sum
∑

n, f

αn, f(92)

the limit for which we are looking, thus the contribution from the first range of
summation where n is smaller than

√
|N |. There is, however, no good reason to

100 200 300 400 500 600

0.2

0.4

0.6

0.8

Diagram 3.2.B
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100 200 300 400 500 600

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Diagram 3.2.C

expect that (91) is 0. It may be cancelled by a contribution from the intermediate
range.

We can certainly envisage polynomials of higher degree in (90). For such
asymptotic behavior to make sense, it is best that the change in lnl X be o(1), as
X changes from n ln n to (n + 1) ln(n + 1), thus, in essence, as we pass from one
prime to the next. Since

(n + 1) ln(n + 1) = (n + 1) ln n + O(1) = n ln n
(

1 + O
(

1
n

))

,

we have

ln((n + 1) ln(n + 1)) = ln(n ln n) + O
(

1
n

)

.

I examined the behavior of the average of the sum (70) for n = 1, 3, 5, 15 and
f = 1, treating it again as a measure on the two lines N = ±1 and plotting the
average, in the sense of (12′), over the first 1000k primes for 1 ≤ k ≤ 60 against
1000k ln(1000k). The results are given at the end of the paper in Diagrams 3.3.A
to 3.3.D. The results are not so simple as (90), although they do make it clear that
the average behaves regularly and is naturally expressed as a quadratic function of
ln(X ), so that ν f,n,X would be a quadratic function of ln X with a small remainder
and there would be another sum in (91) that would have to vanish. (It is perfectly
clear to me that these suggestions are far-fetched. I feel, nevertheless, that they
are worth pursuing.) I divided the interval [−3, 0] into six intervals of length 0.5,
each column of each diagram contains the six graphs for the six intervals, the first
column for N = −1 and the second for N = 1. They are close to linear as (90)
suggests, but not exactly linear.
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5
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Diagram 3.3.A
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10 11 12 13-1.2

-0.8
-0.6
-0.4

10 11 12 13

-0.55

-0.5

-0.45

10 11 12 13-1.2

-0.8
-0.6

10 11 12 13-0.52

-0.48
-0.46
-0.44
-0.42

10 11 12 13
-1.4
-1.2

-0.8
-0.6

10 11 12 13

-0.8
-0.6
-0.4
-0.2

10 11 12 13
-1.4
-1.2

-0.8
-0.6

10 11 12 13-1.2

-0.8
-0.6

10 11 12 13

-1.6
-1.4
-1.2

-0.8
-0.6

10 11 12 13
-1.4
-1.2

-0.8
-0.6

10 11 12 13

-1.6
-1.4
-1.2

-0.8

10 11 12 13

-1.6
-1.4
-1.2

-0.8
-0.6

Diagram 3.3.B
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0.18

Diagram 3.3.C



P1: IML/SPH P2: IML/SPH QC: IML/SPH T1: IML

PB440F-22 HIDA-0662G PB440-Hida-v4.cls December 10, 2003 7:24

beyond endoscopy 665

10 11 12 13
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Diagram 3.3.D
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1.95

2.05

2.1

2.15

2.2

Diagram 3.3.E

So I redid the experiments for det N > 0 and n = 1 on the intervals in [−1, 0]
for primes up to 140000, using a slightly better approximation to the integral

∫

√

1 − x2dx

over the two intervals, but continuing to use only 320 primes to compute the various
factors. Since ln(k ln k) is 13.4 for k = 60000, 14.32 for k = 140000, and 15.7 for
k = 600000, not much is gained by taking even more primes. The two resulting
curves, but only for 50000 ≤ k ≤ 140000, together with quadratic approximations
to them are shown in Diagrams 3.3.E, for the first interval, and 3.3.F, for the second.

13.2 13.4 13.6 13.8 14.2

2.6

2.7

2.8

Diagram 3.3.F
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The quadratic approximations are

−1.37552 + 0.24677x + 0.06329(x − 13.5)2

for the first interval and

−1.97565 + 0.33297x + 0.10656(x − 13.5)2

for the second. The quadratic term looks to be definitely present. There may even
be terms of higher order, but there appears to be little question that we are dealing
with a function that as a function of ln X is essentially polynomial. Thus the natural
parameter is ln X and not some power of X .

Part IV: Supplementary remarks.

4.1. Quaternion algebras. There is some advantage in treating quaternion
algebras, as similar results are to be expected, but only the terms (i) and (ii) appear
in the trace formula. The disadvantage, especially for numerical purposes, is that
some ramification has to be admitted immediately. Apart from that, the only formal
difference in the elliptic term is that the discriminant D is subject to the condition
that ( D

q ) = 1 for those q that ramify in the quaternion algebra. Moreover, if the
algebra is ramified at infinity then only D < 0 are allowed.

4.2. Transfer from elliptic tori. The representation σ2 is of course the rep-
resentation

X → AX At(93)

on the space of symmetric matrices. Thus if a reductive subgroup λHQ of L GQ =
GL (2, C) is not abelian but has a fixed vector in the representation, it is contained in
an orthogonal group. Observe that the condition of §1.3 may no longer be fulfilled:
the group λH may not lie in SL (2, C) × Gal (K/F). If λHQ is the first term of an
inverse system λH in the system L G, then λHQ is contained in the usual image in
L GQ of the L-group of an elliptic torus. Thus, if we take the ρ implicit in (12′) to
be σ2, then we can expect to single out in the limit those cuspidal representations π

that are transfers from elliptic tori. They will, however, have an additional property.
If the torus is associated to the quadratic extension E with associated character χE ,
then χE will be the central character of π . Since we can, in the context of the trace
formula, fix the central character of the representations π to be considered in any
way we like, we can in fact single out those representations that are transfers from
a given elliptic torus. Then the sum in (14′) will be a sum over a single torus.

If we want an arbitrary central character, then we have to replace (93) by the
tensor product of σ4 with det−2. Thus the sum in (14′) will be an infinite sum, over
all elliptic tori. Moreover, there will in all likelihood be no choice but to let the
transfer f → f H reflect the reality of the situation. It will have to be defined by
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the condition that

tr θ ( f H ) = tr <( f )

if < is the transfer of the character θ . These transfers are certainly known to exist,
but the relation between the characters of θ and < remains obscure. So the definition
of f H , which is to be made locally, is by no means clear.

If the base field is Q, we cannot take fv to be unramified at all finite places,
because f H

v would then necessarily be 0 at those places where the quadratic field
defining the torus H was ramified. So for experimental purposes, some ramification
in f has to be admitted.

If we consider only representations trivial on Z+, then (14′) will be
∑

H

∑

θ

tr θ ( f H ),(94)

with those θ that lead to noncuspidal representations excluded. Since they can be
taken care of separately, it is best to include them. Then (94) can be written as

∑

H

µ(Z+ H (Q)\H (A))
∑

γ∈H (Q)

f H (γ ).(95)

Although this sum appears infinite, it will not be, because f H will necessarily be 0
for those H that ramify where fv is unramifed. The sum (95) is very much like the
elliptic term of the trace formula, except that the γ in the center appear more than
once.

The transfer θ → < is well understood at infinity. There, at least, the inverse
tranfer f → f H differs in an important way from endoscopic transfer. Endoscopic
transfer is local in the sense that the support of (the orbital integrals of) f H is, in
the stable sense, the same as the support of (those of) f H . In contrast, even if the
orbital integrals of f∞ are supported on hyperbolic elements, f H

∞ may be nonzero
for tori elliptic at infinity. This does not prevent a comparison between (14′) and
(17′), but does suggest that it may have a number of novel elements not present for
endoscopy.

The first, simplest test offers itself for the representations unramified every-
where. Since every quadratic extension of Q is ramified somewhere, there are no
unramified representations arising from elliptic tori. Thus the limit (12′) should
be 0 for ρ = σm , m = 2. This is even less obvious than for m = 1 and everything
will depend on the elliptic contribution to the trace formula. It must cancel all the
others. I have made no attempt to understand numerically how this might function,
but it would be very useful to do so. A distillation that separates the different kinds
of contribution in the elliptic term may be necessary. It would then be useful to
understand clearly the orders of magnitude of these contributions.

As a convenient reference for myself, and for anyone else who might be inclined
to pursue the matter, I apply the formulas of Appendix B to the conclusions of §2.4
to obtain a list of all the contributions to be cancelled. As it stands, the list has
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no structure and the terms no meaning. Until they do, §4.3 has to be treated with
scepticism.

4.3. Contributions for even m. I consider all contributions but the elliptic.
The first is made up of (31) from the term (ii), corrected by the last term in (41)
and by (48) to yield

(a)
m
4

tr(ξ0( f∞)).

The second is the sum of atomic measures in (41):

(b)
∑

q

∑

n>0

{|qn − q−n|ψ+(qn + q−n) + |qn + q−n|ψ−(qn − q−n)}.

The third arises from (51), which is equal to

ψ−(0)
{

ln 2 + m ln p
(

1 + O
(

1
p

))}

and whose average is

(c) ψ−(0)(ln 2 + m ln X ).

As was already suggested, this means that for m = 2 the analogue of (91) will not
be 0, but will have to cancel, among other things, (c), at least when there is no
ramification.

The contributions from (56) and (48) yield together, in the notation of Appen-
dix C,

∑

±

(

κ1 + m ln p
2

)

f̂ ∞(a(1, ±1)),

or when averaged

(d)
∑

±

(

κ1 + m ln X
2

)

f̂ ∞(a(1, ±1)).

I offer no guarantee for the constants in (c) and (d).
All that remains are the terms resulting from the combination of (49) and

(57) with (46) and an application of Hoffmann’s formula. There is, first of all, the
contribution from (C.13) (which must be multiplied by 1/2)

(e) − 1
2

∑

∫ ∞

−∞

e−|x |

1 + e−|x | f̂ ∞(a)dx,

where the sum is over the arbitrary sign before the matrix

a = ±
(

ex 0
0 −e−x

)

,
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and, from (C.17) and (C.18),

(f )
1
2

∑

∫ ∞

−∞

(

e−|x |

1 − e−|x | − 1
|x |

)

f̂ ∞(a)dx,

in which

a = a(x) = ±
(

ex 0
0 e−x

)

,

the sum being again over the sign, and

(g) − 1
2

∫ ∞

−∞
ln |x |d f̂ ∞

dx
(a)dx,

which according to the formula of Appendix D is equal to
∫ i∞

−i∞
(ln |s| + λ0) tr ξs( f∞).

From (47) we have

(h)
1

16π i

∫ i∞

−i∞

{

−6′((1 − s)/2)
6((1 − s)/2)

− 6′(s/2)
6(s/2)

− 6′((1 + s)/2)
6((1 + s)/2)

− 6′(−s/2)
6(−s/2)

}

tr ξs( f∞)ds.

Finally, from (D.19) there is the completely different contribution

(i) − 1
2

∞
∑

k=0

(±1)k−1<πk ( f ).

The usual formulas [N, §72] for the logarithmic derivative of the 6-function suggest
that there should be cancellation among (f), (g), and (h). The Fourier transform of
ξs( f∞) is, however, a function on all four components of the group of diagonal
matrices, each component determined by the signs in

a = a(x) =
(

±ex 0
0 ±e−x

)

.

So any cancellation between (h) and (f) would also have to involve (e). I am not
familiar with any formula that relates (e) to the 6-function and have not searched
for one.

4.4. The third touchstone. The problem (T3) is, on the face of it, different
than the first two, but may be amenable to the same kind of arguments. If the base
field is Q, the pertinent representations of GL (2, R) are those obtained by induction
from the representations

(

a x
0 b

)

→ (sgn a)k(sgn b)l
∣

∣

∣

a
b

∣

∣

∣

s/2
, k, l = ±1.
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We can try to isolate them by a function f∞ such that tr π ( f∞) is 0 if π lies in
the discrete series and tr ξ k,l

s ( f∞) is independent of k, l, but, as a function of s, is
an approximation to the δ-function at s = 0. This means that f̂ ∞ is concentrated
on a with positive eigenvalues and that it is approaching the function identically
equal to 1. Thus ψ− will be 0 and ψ+ will be 0 for x < −1. For x > 1, it will be
approaching

ψ+(x) = 1
et − e−t

= 1
√

|x2 − 1|
, r = et + e−t , x = r

2
.

What will happen on the range −1 < x < 1 remains to be worked out.
Since the approximation at infinity would be occurring while fq remained fixed

at the other places, the sum over r in the elliptic term of the trace formula would
be a sum over a fixed lattice—the lattice of integral r if fq were the unit element
of the Hecke algebra everywhere. So the problems that arise look to be different
than those for (T2): the limits to be taken are of a different nature. They are perhaps
easier, perhaps more difficult; but I have not examined the matter. I have also not
examined the role of the other terms in the trace formula.

4.5. General groups. Is there an obvious obstacle to extending the consider-
ations of this paper to general groups? Recall that the structure of the trace formula
is the equality of a spectral side and a geometric side. The principal term of the spec-
tral side is the sum over the representations occurring discretely in L2(G(Q)\G(A))
of tr π ( f ). As for GL (2), we will expect that an inductive procedure will be nec-
essary to remove the contributions from representations that are not of Ramanujan
type. This will leave

∑

π

R
tr π ( f )

in which to substitute appropriate f before passing to the limit.
On the geometric side, there will also be a main term, the sum over the elliptic

elements. For GL (k) an elliptic element γ corresponds to a monic polynomial

xk + a1xk−1 + . . . ak−1x + ak .

For GL (2), a1 = −r , a2 = N/4. Of course, for γ to be regular certain degenerate
sequences a1, a2, . . . , ak will have to be excluded. For GL (2), not only is N &= 0
but r2 − N &= 0. In addition, split γ are excluded. We should like to say that for
a general group, an elliptic element is defined, after the exclusion of singular or
partially split elements, by the values of a similar sequence a1, a2, . . . , ak . If the
group is semisimple and simply connected, these could be the characters of the
representations with highest weight λi , (λi , α j ) = δi, j , but only if we deal not with
conjugacy classes in the usual sense but with stable conjugacy classes, as is perfectly
reasonable if we first stabilize the trace formula. For groups that are not semisimple
or not simply connected, something can surely be arranged. So we can expect in
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general a sum over a lattice, analogous either to the lattice of integral (r, N ), or,
if we recognize that the values of the rational characters of G on those γ that
yield a contribution different from 0 will be determined up to a finite number of
possibilities by f , over an analogue of the lattice of r . As for GL (2), it will be
appropriate to allow a fixed denominator or to impose congruence conditions.

The limits of the remaining terms, either on the spectral side or on the geo-
metric side, we can hope to treat by induction. So the question arises during these
preliminary reflections whether the terms in the sum over the lattice have the same
structural features as for GL (2). If so, and if there is a procedure for passing rig-
orously to the limit in the sum over p < X , either one in the spirit of the remarks
in Part III or some quite different method, then we can continue to hope that the
constructs of this paper have some general validity.

There are several factors in the sum: the volume µγ of Gγ (Q)\Gγ (A); the
orbital integral at infinity, a function of a1, . . . , ak and the analogue of ψ ; the
orbital integrals at the finite number of finite primes in S that give congruence
conditions and conditions on the denominators; the orbital integrals at the primes
outside of S. The latter accounts for the contribution

∑

f |s
f
∏

q| f



1 −

(

D
q

)

q



(96)

of (59).
The usual calculations of the volume of T (Q)\T (A) (see Ono’s appendix to

[W]) show that it is expressible as the value of an L-function at s = 1 so that it
will be given by an expression similar to (61). There will be changes. In particular,
the L-function will be a product of nonabelian Artin L-functions. For GL (k) the
Kronecker symbols ( D

n ) will be replaced by an expression determined by the be-
havior of xk + a1xk−1 + · · · ≡ 0 in the local fields defined by this equation and
associated to the primes dividing n. This behavior is periodic in a1, . . . , ak with
period given by some bounded power of the primes dividing n, so that the nature of
the contribution of µγ to the numerical analysis appears to be unchanged. For other
groups the relation between the coefficients a1, a2, . . . and the stable conjugacy
class will be less simple, but the principle is the same.

The contribution of the orbital integrals for places outside S will not be so
simple as that given by Lemma 1. It has still to be examined, but it will have similar
features. Lemma 1 expresses, among other things, a simple form of the Shalika
germ expansion, and it may very well be that this structural feature of orbital
integrals will be pertinent to the general analysis. It is reassuring for those who
have struggled with the fundamental lemma and other aspects of orbital integrals
to see that the arithmetic structure of the orbital integrals of functions in the Hecke
algebra, especially of the unit element, may have an even deeper signifance than
yet appreciated.
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It remains, however, to be seen whether anything serious along these lines can
be accomplished!

Appendix A: Calculation of εn, f (N). Both n and f are products of prime
powers, n =

∏

qa and f =
∏

qb. Thanks to the Chinese remainder theorem,

εn, f (N ) =
∏

q

εqa,qb (N ).

It will suffice to show that
∞

∑

a,b=0

εqa,qb (N ) = 1, q &= p,

= 1
1 − p−1

+ O(|N |−1/2), q = p.

(A.1)

When q is fixed, we set for brevity εqa,qb (N ) = =a,b. It will be more convenient
to define =a,b,c, c ≥ b, as the product of the average value of

(

(r2 − N )q2b/q2c

q2a

)

on the set of r for which q2c is the highest even power of q dividing r2 − N with a
remainder congruent to 0 or 1 modulo 4 with the density of the set, and to calculate
=a,b as

∑

c≥b

qb

qa+c
=a,b,c.(A.2)

That the =a,b,c are at least as natural to calculate as the =a,b suggests that rather
than expressing the elliptic term as a sum over f and n as in the experiments to be
described, one might want to express it as a sum over f , n, and s. This would mean
that a,d = c − b and c were as good a choice of parameters as a, b, and c, or that
(71) could be replaced by

1
gn

(

(r2 − N )/g2

n

)

, g = s
f
.(A.3)

A direct analytic attack on the problems leads to (A.3) and not to (71).
Suppose first that q is odd and not equal to p. Then N is prime to q. If t is a

high power of q, then the density of r modulo t such that r2 − N is divisible by qc

is
(

1 +
(

N
q

))

q−c,
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if c > 0. Thus the density µc of r such that it is divisible by q2c and not by q2c+2 is

1 − 1
q2

(

1 +
(

N
q

))

, c = 0

1
q2c

(

1 +
(

N
q

)) (

1 − 1
q2

)

, c > 0.

(A.4)

For positive even a, it is the density νc of r such that r2 − N is divisible by q2c and
not by q2c+1 that is pertinent. This is

1 − 1
q

(

1 +
(

N
q

))

, c = 0

1
q2c

(

1 +
(

N
q

)) (

1 − 1
q

)

, c > 0.

(A.5)

When c > 0, if r2 = N + uqc, then

(r + vqc)2 ≡ N + (u + 2v)qc (mod qc+1).

Thus, the average value of
(

(r2 − N )/q2c

qa

)

on those r for which r2 − N is divisible by q2c and not by q2c+2 is 0 if a is odd.
For c = 0 and a odd, we have a simple lemma that shows that the average is −1/q.

Lemma 2. The sum A of
(

r2 − N
q

)

over r modulo q is −1.

Since the number of solutions of

y2 = x2 − N(A.6)

for a given value of x is
(

x2 − N
q

)

+ 1,

the number A + q is just the number of points on the rational curve (A.6) modulo
q whose coordinates are finite. The lemma follows.
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The value of all =a,b,c and =a,b can now be calculated. For a = b = 0, =0,0,c =
µc and

=0,0 =
∑ 1

qc
µc

= 1 − 1
q2

(

1 +
(

N
q

))

+
∞

∑

c=1

1
q3c

(

1 +
(

N
q

)) (

1 − 1
q2

)

= 1 −
(

1 +
(

N
q

)) {

1
q2

− 1
q2

q2 − 1
q3 − 1

}

= 1 −
(

1 +
(

N
q

))

q − 1
q3 − 1

.

If a > 0 and b > 0 then =a,b,c = 0 and =a,b = 0. For b > 0,

=0,b =
∞

∑

c=b

qb

qc
=0,b,c

=
∞

∑

c=b

qb

qc
µc

=
(

1 − 1
q2

) (

1 +
(

N
q

)) ∞
∑

c=b

qb

q3c

=
(

1 − 1
q2

) (

1 +
(

N
q

))

1
q2b

1
1 − q−3

.

Thus
∞

∑

b=1

=0,b = 1
q2

(

1 +
(

N
q

))

1
1 − q−3

= q
q3 − 1

(

1 +
(

N
q

))

.(A.7)

If a > 0 is even,

=a,0 = 1
qa

∞
∑

c=0

νc

qc

= 1
qa

{

1 − 1
q

(

1 +
(

N
q

))

+ 1
q3 − 1

(

1 +
(

N
q

)) (

1 − 1
q

)}

.

The sum of this over all positive even integers is

∞
∑

a=1

=2a,0 = 1
q2 − 1

{

1 − 1
q

(

1 +
(

N
q

))

+ 1
q3 − 1

(

1 +
(

N
q

)) (

1 − 1
q

)}

= 1
q2 − 1

− 1
q3 − 1

(

1 +
(

N
q

))

.
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If a is odd

=a,0 = − 1
qa+1

.

Thus

∞
∑

a=0

=2a+1 = − 1
q2

1

1 − 1
q2

= − 1
q2 − 1

.

Examining the previous calculations, we conclude that

∞
∑

a,b=0

=a,b = 1.

We now consider q = 2 &= p, calculating first of all for each r the highest even
power 22c of 2 that divides r2 − N with a remainder congruent to 0 or 1 modulo
4. We begin by observing that 4 divides r2 − N if and only if r = 2t is even and
then

r2 − N
4

= t2 − M, M = ±pm,

which is congruent to 0 modulo 4, if and only if t is odd and (−1
M ) = 1, and to 1, if

and only if t is even and (−1
M ) = −1. In the first of these two cases, c > 0; in the

second c = 1. Otherwise c = 0.
There are thus two ways in which c can be 0. Either r is odd or r is even. Since

r2 − N is odd, if and only if r is odd, and is then congruent to 1 − N modulo 8,

=0,0,0 = 1
2

+ 1
4

= 3
4
,

=a,0,0 = 1
2

(

1 − N
2

)

= 1
2

(

5
2

)

= −1
2
, a > 0, a odd,

=a,0,0 = 1
2
, a > 0, a even.

If (−1
M ) = −1 and c > 0, then c is necessarily 1. Thus for such M ,

=a,b,c = 0, c > 1.

Moreover, recalling that the Kronecker symbol ( n
2 ) is 0 for n even, 1 for n ≡ 1, 7

(mod 8), and −1 for n ≡ 3, 5 (mod 8) and that t2 − M is odd only for t even and
then takes on the values −M , 4 − M modulo 8 with equal frequency, we see that
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for the same M ,

=0,b,1 = 1
4

= 1
4

− 1
16

(

1 +
(−1

M

))

, 1 ≥ b ≥ 0,

=a,0,1 = 0, a > 0, a odd,

=a,0,1 = 1
4
, a > 0, a even.

Now suppose that (−1
M ) = 1 and c > 0. Then, as observed, 4 divides t2 − M

if and only if t = 2u + 1. The integer u2 + u is necessarily even and for any even
v and any d ≥ 2, u2 + u ≡ v (mod 2d) has exactly two solutions modulo 2d . In
particular, u ≡ 0, 1, 2, 3 (mod 4) yield respectively u2 + u ≡ 0, 2, 2, 0 (mod 4).
Since

t2 − M
4

= u2 + u + 1 − M
4

,(A.8)

and we conclude that c = 1 for 1/2 of the possible values of u and c = 2 for the
other half when M ≡ 5 (mod 8). Thus, in this case,

=0,b,1 = 1
8

= 1
4

− 1
16

(

1 +
(−1

M

))

, 1 ≥ b ≥ 0,

=0,b,2 = 1
8

= 1
32

(

1 +
(−1

M

)) (

1 −
(

M
2

))

, 2 ≥ b ≥ 0,

=a,0,1 = 0, =a,0,2 = 0, a > 0, a odd,

=a,0,1 = 0, =a,0,2 = 1
8
. a > 0, a even.

These numbers are to be incorporated with the factor

1
4

(

1 +
(−1

M

)) (

1 −
(

M
2

))

in so far as it is not already present.
For M ≡ 1 (mod 8), (A.8) can be any even number and the density of u for

which it can be divided by 22d , d ≥ 0, to give a number congruent to 0, 1 modulo
4 is 1/2 if d = 0 and 1/22d if d > 0. Since d will be c − 2, this is 1/22c−4. On the
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other hand, the density is multiplied by 1/4 when we pass from u to r , so that

=0,b,1 = 1
8

= 1
4

− 1
16

(

1 +
(−1

M

))

, 1 ≥ b ≥ 0,

=a,0,1 = =a,0,2 = 0, a > 0, a odd,

=a,0,1 = =a,0,2 = 0, a > 0, a even,

=0,b,2 = 1
16

, 2 ≥ b ≥ 0,

=0,b,c = 1
22c−2

(

1 − 1
4

)

, c ≥ b ≥ 0, c > 2,

=a,0,c = 0, a > 0, a odd, c > 2,

=a,0,c = 1
22c−1

, a > 0, a even, c > 2.

These numbers are to be incorporated with the factor

1
4

(

1 +
(−1

M

)) (

1 +
(

M
2

))

.

Then =0,0 is the sum of

(A.9′)
7
8

− 1
32

(

1 +
(−1

M

))

+ 1
27

(

1 +
(−1

M

)) (

1 −
(

M
2

))

and
{

1
28

+ 3
24

∞
∑

c=3

1
23c−2

}

(

1 +
(−1

M

)) (

1 +
(

M
2

))

or

(A.9′′) =′
0,0 = 1

28

(

1 + 3
7

) (

1 +
(−1

M

)) (

1 +
(

M
2

))

.

For b > 0,

=0,b =
∞

∑

c=b

2b

2c
=0,b,c.

Thus =0,1 is

1
4

− 1
16

(

1 +
(−1

M

))

+ 1
64

(

1 +
(−1

M

)) (

1 −
(

M
2

))

+ 1
27

(

1 + 3
7

) (

1 +
(−1

M

)) (

1 +
(

M
2

))

,
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while

=0,2 = 1
32

(

1 +
(−1

M

)) (

1 −
(

M
2

))

+ 1
26

(

1 + 3
7

) (

1 +
(−1

M

)) (

1 +
(

M
2

))

and

=0,b = 3
7

1
22b−1

(

1 +
(−1

M

)) (

1 +
(

M
2

))

, b > 2,

because

3
16

∞
∑

c=b

2b

23c−2
= 3

7
1

22b−1
.

Thus
∑

b>2

=0,b = 1
23

1
7

(

1 +
(−1

M

)) (

1 +
(

M
2

))

and

=′
0,0 +

∑

b>0

=0,b

is equal to the sum of

(A.10′)
1
4

− 1
16

(

1 +
(−1

M

))

and

(A.10′′)
3
64

(

1 +
(−1

M

)) (

1 −
(

M
2

))

and

(A.10′′′)
{

5
27

+ 1
7

1
23

} (

1 +
(−1

M

)) (

1 +
(

M
2

))

,

because
5
7

(

1
27

+ 1
26

+ 1
25

)

+ 1
7

1
23

= 5
27

+ 1
7

1
23

.

Finally

=a,0 =
∞

∑

c=0

1
2a+c

=a,0,c, a > 0.

I express it as a sum of three terms, the first of which is

=′
a,0 = − 1

2a+1
, a odd,
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or

=′
a,0 = 1

2a+1
+ 1

2a+4

(

1 −
(−1

M

))

, a even.

The other two, =′′
a,0 and =′′′

a,0, will be multiples of (1 + (−1
M ))(1 + ( M

2 )) and
(1 + (−1

M ))(1 − ( M
2 )), respectively. Observe that

∞
∑

a=1

=′
a,0 = −1

3
+ 1

6
+ 1

48

(

1 −
(−1

M

))

(A.11)

= − 1
16

(

1 −
(−1

M

))

− 1
12

(

1 +
(−1

M

))

.

Since

1
8

= 1
16

(

1 +
(−1

M

))

+ 1
16

(

1 −
(−1

M

))

,(A.12)

we can conclude at least that
∑

=a,b − 1 is a multiple of (1 + (−1
M )).

The terms that involve (1 + (−1
M )) alone without a second factor (1 ± ( M

2 )) come
from (A.9′), (A.10′), (A.11), and (A.12).

{

− 1
32

− 1
16

+ 1
16

− 1
12

} (

1 +
(−1

M

))

.(A.13)

Since all other terms involve the second factor, I multiply (A.13) by

1
2

(

1 +
(

M
2

))

+ 1
2

(

1 −
(

M
2

))

.

To establish the first equality of (A.1) for q = 2, we have to show that the coefficients
of the two expressions (1 + (−1

M ))(1 ± ( M
2 )) add up to 0.

The remaining terms that involve the product (1 + (−1
M ))(1 − ( M

2 )) come from
(A.9′), (A.10′′), and

∑

a>0

1
2a+2

=′′
a,0 =

∑

a>0

1
22a+7

(

1 +
(−1

M

)) (

1 −
(

M
2

))

= 1
27

1
3

(

1 +
(−1

M

)) (

1 −
(

M
2

))

.

They multiply it by the factor

1
27

+ 3
64

+ 1
27

1
3
.

The sum of this factor and 1/2 of that of (A.13) is

1
32

− 1
24

+ 1
25

1
3

= 0.
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Since
∑

a>0

=′′′
a,0 = 1

4

(

1 +
(−1

M

)) (

1 +
(

M
2

))

∑

a=2d>0

∞
∑

c=3

1
2a+3c−1

= 1
27

1
3

1
7

(

1 +
(−1

M

)) (

1 +
(

M
2

))

,

the terms involving the factor (1 + (−1
M ))(1 + ( M

2 )) yield
{

5
27

+ 1
7

1
23

+ 1
27

1
3

1
7

} (

1 +
(−1

M

)) (

1 +
(

M
2

))

(A.14)

= 11
263

(

1 +
(−1

M

)) (

1 +
(

M
2

))

.

Since

− 1
32

− 1
12

= − 11
253

,

the term (A.14) cancels the contribution from (A.13).
I treat the second equality of (A.1) only for q odd as this suffices for our pur-

poses. We calculate =a,b using (A.2). Since

∑

a≥0

∑

c≥b

∑

c≥m/2

qb

qa+c
O

(

1
qc

)

=
{

∑

a≥0

∑

d≥0

1
qa+d

}

∑

c≥m/2

O
(

1
qc

)

,

we need not use the exact value of =a,b,c for 2c ≥ m. We need only approximate it
uniformly within O( 1

qc ).
For 2c < m, the density of r for which r2 − N is exactly divisible by q2c is

(1 − 1/q)/qc. For 2c ≥ m, it is O(1/qc). Thus, as an approximation,

=0,0 ∼
(

1 − 1
q

) ∞
∑

c=0

1
q2c

= q
q + 1

.

Moreover, again as an approximation,

=0,b ∼
(

1 − 1
q

) ∞
∑

c=b

qb

q2c
= q

q + 1
1
qb

, b > 0,

so that
∑

b>0

=0,b ∼ q
q + 1

1
q − 1

.

If 2c < m and r = qct , (q, t) = 1, then

r2 − N
q2c

≡ t2 (mod q)
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and
(

(r2 − N )/q2c

q

)

= 1.

Thus, the approximation is

=a,0 ∼
(

1 − 1
q

) ∞
∑

c=0

1
qa+2c

= 1
qa

q
q + 1

,

and
∑

a>0

=a,0 ∼ q
q + 1

1
q − 1

.

Finally

=0,0 +
∑

b>0

=0,b +
∑

a>0

=a,0 ∼ 1
1 − q−1

.

Appendix B: Some estimates. I collect here a few simple estimates needed
in Section 3.2. They are provisional and made without any effort to search the
literature. To simplify the notation, take N to be positive and M = N 1/4. If s is a
positive integer, let #(s) be the number of distinct prime divisors of s.

Lemma B.1. There is a constant c ≥ 1 such that

√
N

∑

s>M

2#(s)

s3
= O(ln2c−1 N ).

There is a chance that the constant c is 1. It is even very likely, but I make
no effort to prove it here. The analysis would certainly be more difficult. For the
lemma as stated, it is sufficient to use the well-known Tchebychef estimate [HW,
p. 10] for the n-th prime number p(n) 4 n ln 2n. (Following [HW], I use the notation
p(n) 4 n ln 2n to mean that C1n ln 2n ≤ p(n) ≤ C2n ln 2n, with positive constants
C1 and C2.) I have used n ln 2n rather than n ln n only to avoid dividing by ln 1 = 0.
To verify the lemma with c = 1 would undoubtedly entail the use the prime number
theorem, thus the asymptotic relation p(n) ∼ n/ ln 2n ∼ n/ ln n, and a different,
more incisive treatment of the sums that appear.

Let q(n) be the nth element of the sequence of prime powers {2, 3, 4, 5, 7,

8, 9, . . . }, and σ (x) the number of prime powers less than x . I observe first that
the Tchebychef estimate π (x) 4 x ln x implies that σ (x) 4 x ln x as well, and thus
that q(n) 4 n ln n 4 n ln 2n.

Indeed,

σ (x) = π (x) + π (x1/2) + . . . π (x1/D) + O(1), D = [ln x],
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and
D

∑

j=2

π (x1/j ) ≤ C
∫ D

t=1

x1/t

ln x1/t
dt ≤ C

∫ ln x

t=1

x1/t

ln x1/t
dt,

because y/ ln y is an increasing function for y ≥ e. The integral is

1
ln x

∫ ln x

1
teln x/t dt = 1

ln x

∫ 1

1/ ln x
et ln x dt

t3

= ln x
∫ ln x

1
et dt

t3

≤ ln x
∫ ln x/2

1
et dt

t3
+ 8

ln2 x

∫ ln x

ln x/2
et dt = O

(

x

ln2 x

)

.

Thus σ (x) 4 π (x).
To prove the lemma we write s as s = pa1

1 . . . pal
l , where all the primes

p1, . . . , pl , are different. At first, take p1 < p2 < · · · < pl . The expression of the
lemma may be written as

√
N

{

∑

l>0

∑

p1,p2,...,pl

2l

p3a1
1 . . . p3al

l

}

.

There is certainly a sequence 1′ < · · · < k ′, k ′ ≤ l such that pa1′
1′ . . . pak′

k ′ > M while
pa1′

1′ . . . p̂ai ′
i ′ . . . pak′

k ′ ≤ M for any i ′, 1 ≤ i ′ ≤ k ′. The notation signifies that pai ′
i ′ is

removed from the product. Thus the expression of the lemma is bounded by

√
N

{

∑

k>0

∑

p1,p2,...,pk

2k

pa3
1

1 . . . p
a3

k
k

(

∑

t

2#(t)

t3

)}

,

where t is allowed to run over all integers prime to p1, . . . , pk , but where
p1 < · · · < pk , pa1

1 . . . pak
k > M , and pa1

1 . . . p̂ai
i . . . pak

k ≤ M .
I next allow p1, . . . , pk to appear in any order, so that I have to divide by k!. It

is still the case, however, that pa1
1 . . . pak

k > M and that pa1
1 . . . pak−1

k−1 ≤ M . Since

∑

t

2#(t)

t3
≤

∏

p

(

1 + 2
p3

+ 2
p6

+ . . .

)

is finite, we may drop it from the expression and consider

√
N

∞
∑

k=1

2k

k!

∑

p
a1
1 ...p

ak
k >M

p
a1
1 ...p

ak−1
k−1 ≤M

1

p3a1
1 . . . p3ak

k

(B.1)

=
√

N
∞

∑

k=1

2k

k!

∑

q1...qk >M
q1...qk−1≤M

1
q3

1 . . . q3
k

,
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where q1, . . . qk are prime powers. It is this sum that is to be estimated. In it,

qk > A = M
q1 . . . qk−1

≥ 1.

So in general, as a first step, we need to estimate, for any A ≥ 1,

∑

q>A

1
q3

.(B.2)

We apply the Tchebychef estimate. Thus, if C is taken to be an appropriate positive
constant independent of A, (B.2) is majorized by a constant times

∑

n>C A
ln 2A

1

n3 ln3 2n
≤ 1

ln3(CA/ ln 2A)

∑

n>C A
ln 2A

1
n3

= O
(

1
(A/ ln 2A)2

1

ln3(2A/ ln 2A)

)

= O
(

1
A2 ln 2A

)

.

Although the argument itself is doubtful for small A, especially if C is also small,
the conclusion is not.

As a result, (B.1) is bounded by

C
√

N
∞

∑

k=1

2k

k!

∑

q1...qk−1≤M

1
q3

1 . . . q3
k−1

q2
1 . . . q2

k−1

M2

1
ln(2M/q1 . . . qk−1)

,

with perhaps a new constant C . Since M2 =
√

N , this is

C
∑

k

2k

k!

∑

q1...qk−1≤M

1
q1 . . . qk−1

1
ln(2M/q1 . . . qk−1)

.(B.3)

To complete the proof of Lemma B.1, we shall use another lemma.

Lemma B.2. If A ≥ 1, then

∑

q≤A

1
q ln(2A/q)

≤ c
ln ln A
ln 2A

,(B.4)

the sum running over prime powers.

The constant of this lemma is the constant that appears in Lemma B.1. So it is
Lemma B.2 that will have to be improved.
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Before proving the lemma, we complete the proof of Lemma B.1. Set A =
M/p1 . . . pk−2. Then

∑

q1...qk−1≤M

1
q1 . . . qk−1

1
ln(2M/q1 . . . qk−1)

(B.5)

may be rewritten as
∑

q1...qk−2≤M

1
q1. . . qk−2

∑

qk−1≤A

1
qk−1

1
ln(2A/qk−1)

,

which, by Lemma B.2, is at most

c
∑

q1...qk−2≤M

1
q1 . . . qk−2

ln ln A
ln 2A

≤ c ln ln M
∑

q1...qk−2≤M

1
q1 . . . qk−2

1
ln 2A

.

It is clear that (B.5) is O((c ln ln M)k−1/ ln 2M) for k = 1, and this estimate now
follows readily by induction for all k uniformly in k. As a result (B.3) is

O

(

∞
∑

k=1

2k(c ln ln M)k−1

k! ln M

)

= O
(

e2c ln ln M

ln ln M ln M

)

= O(ln2c−1 M),

where we have discarded a ln ln M in the denominator that is of no help.
If we are willing to accept a very large constant c in (B.4), then we can replace

ln 2A/q in the denominator by ln CA/ ln p, where C is any given constant greater
than 1 or by CA/n ln 2n, if q = q(n) is the nth prime power and C is chosen
sufficiently large in comparison to the constant in the Tchebychef inequality. We
can also replace the p(n) in the denominator by n ln 2n. Thus, at the cost of adding
some terms, we may replace the sum (B.4) by

∑

n ln 2n≤C ′ A

1
n ln 2n

1
ln(CA/n ln 2n)

.(B.6)

There is no harm in supposing that C ′ = 1, Clearly, we can also demand that the
sum run over n ln 2n ≥ C1, where C1 is a fixed arbitrary constant, because the sum

∑

n ln 2n≤C1

1
n ln 2n

1
ln(CA/n ln 2n)

is certainly O(1/ ln A). Set

CA
n ln 2n

= A1−α, α = e−a.

If C1 ≥ C , α = α(n) ≥ 0. Moreover, as we have agreed to exclude the initial
terms of the original sum, α < 1 and a > 0. If β is some fixed number less than 1,
then

∑

α(n)≤β

1
n ln 2n

1
ln(CA/n ln 2n)

≤ C2
1

ln 2A

∑

α(n)≤β

1
n ln 2n

≤ C3
ln ln A
ln 2A

.
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So we may sum over α(n) > β or a = a(n) < b, b = − ln β. We now confine
ourselves to this range.

In addition (1 − α) ln A ≥ ln C , so that (1 − α) ≥ C4/ ln A and

a ≥ C5/ ln A.

Let ε > 0 and set b(k) = b(1 + ε/ ln A)−k . I shall decompose the sum into sums
over the intervals b(k + 1) ≤ a(n) < b(k), for all those k such that b(k + 2) ≥
C5/ ln A, and into one last interval C5/ ln A ≤ a(n) < b(k), where k is the first
integer such that b(k + 2) < C5/ ln A. I shall denote these intervals by I and use
the Hardy-Wright notation to indicate uniformity with respect to I .

Notice first that

Aα(n+1)−α(n) = (n + 1) ln 2(n + 1)
n ln 2n

= 1 + O
(

1
n

)

= 1 + O
(

1
ln 2n

)

.

Thus α(n + 1) − α(n) ≤ C6/ ln2 A when α(n) > β. As a result, on the same range
a(n) − a(n + 1) ≤ C7/ ln2 A. Moreover,

b(k) − b(k + 1) ≥ b(k)
ε

ln A
>

C5ε

ln2 A
.

Thus each of these intervals contains at least two terms of our sum provided that
C5ε > 2C7, as we assume. Moreover, if a′ and a lie in the same interval, then
a′/a 4 1 and (1 − α′)/(1 − α) 4 1, so that

ln(CA/n′ ln 2n′)
ln(CA/2n ln 2n)

4 1,

where n′ = n(α′) and n = n(α) are not necessarily integers.
We conclude first of all that, for any point aI in I ,

∑

a(n)∈I

1
n ln 2n

1
ln(CA/n ln 2n)

4 1
aI ln 2A

∑

a(n)∈I

1
n ln 2n

and that
∫

I

1
a

da 4 1
aI

∫

I
da.

So, if we can show that
∑

a(n)∈I

1
n ln 2n

4
∫

I
da,(B.7)

the lemma will follow, because

∑

I

∫

I

1
a

da =
∫ b

C5/ ln A

1
a

da = O(ln ln A).
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Since

(n + 1) ln 2(n + 1)
n ln 2n

= O

(

(

1 + 1
n

)2
)

,

the sum in (B.7) may be replaced by the integral with respect to dn from n1 to n2 if
a2 = a(n2 − 1) and a1 = a(n1) are the first and last points in the interval associated
to integers. The integral is equal to

∫ n2

n1

1
n ln 2n

dn = ln ln 2n2 − ln ln 2n1.

We show that the right-hand side is equivalent in the sense of Hardy-Wright to
a2 − a1 or, what is the same on the range in question, to α1 − α2. Thus all three are
of comparable magnitudes uniformly in I . Since a2 − a1 is equivalent, again in the
sense of Hardy-Wright, to the length of I , the relation (B.7) will follow.

Since n ln 2n = CAα, ln n + ln ln 2n = ln C + α ln A,

ln n + ln ln 2n = ln n +
(

1 + ln ln 2n
ln n

)

,

and α = α(n) is bounded below by − ln b, we infer that ln n 4 ln A. Moreover

ln ln n +
(

1 + ln ln n
ln 2n

)

= ln
(

α ln A
(

1 + ln C
α ln A

))

(B.8)

= ln α + ln ln A + ln
(

1 + ln C
α ln A

)

.

Since a difference between the values of a continuously differentiable function at
two values of the argument is equal to the difference of the arguments times the
derivative at some intermediate point,

ln
(

1 + ln C
α2 ln A

)

− ln
(

1 + ln C
α1 ln A

)

= O
(

ln C
ln A

(α1 − α2)
)

(B.9)

= O
(

1
ln A

(a2 − a1)
)

.

The expression

ln
(

1 + ln ln 2n
ln n

)

= ln
(

1 + ln X
X − ln 2

)

, X = ln 2n.

So the difference

ln
(

1 + ln2 ln 2n2

ln n2

)

− ln
(

1 + ln1 ln 2n1

ln n1

)

= O
(

ln ln A

ln2 A
(ln n2 − ln n1)

)

.

Since

ln ln n2 − ln ln n1 4 1
ln A

(ln n2 − ln n1),
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we conclude from (B.8) and (B.9)that

ln ln 2n2 − ln ln 2n1 4 ln ln n2 − ln ln n1 4 α2 − α1.

The next lemma is similar to Lemma B.1.

Lemma B.3. There is a positive constant c ≥ 1 such that for any positive con-
stant C,

∑

C
√

N>s>M

2#(s)

s
= O(ln2c N ).

It is again very likely that c may be taken equal to 1, but once again our proof
will squander a good deal of the force even of the Tchebychef inequality.

I have stated the lemma in the way it will be used, but the constant C is clearly
neither here nor there. Moreover, we prove the stronger statement

∑

s≤
√

N

2#(s)

s
= O(ln2c N ).(B.10)

Thus the lower bound on s in the sum is unnecessary. We take A =
√

N and write
s = p1 . . . pl t , where t is prime to p1, . . . , pl and where p|t implies that p2|t . So
the left side of (B.10) is majorized by

(

∑

l≥0

∑

p1...pl<A

2l

p1 . . . pl

)

∏

p

(

1 + 2
p2

+ 2
p3

+ . . .

)

.

The product is a constant factor and can be dropped for purposes of the estimation.
So we are left with

∑

l≥0

∑

p1...pl<A

2l

p1 . . . pl
=

∑

l≥0

∑

p1...pl<A

2l

l!
1

p1 . . . pl
,(B.11)

the difference between the left and the right sides being that the first is over p1 <

· · · < pl , whereas in the second the primes are different but the order arbitrary.
It is clear that

∑

p<A

1
p

= O

(

∑

n ln 2n<CA

1
n ln 2n

)

= O
(

ln ln
(

A
ln A

))

= O(ln ln A).

Thus,

∑

p1...pl<A

1
p1 . . . pl

≤
(

∑

p<A

1
p

)l

≤ (c ln ln A)l,

uniformly in l. The estimate (B.10) follows from (B.11).
Applying Lemma B.3 with N replaced by

√
N we obtain
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Corollary B.4. There is a constant c ≥ 1 such that

1√
N

∑

s≤M

2#(s)s = O(ln2c N ).

Appendix C: Weighted orbital integrals. This is largely a matter of recol-
lecting results from [H] and earlier papers, amply acknowledged in [H]. More must
be said than would be necessary had the author, W. Hoffmann, not assumed that
his groups were connected, for, like many groups that arise in the arithmetic theory
of automorphic forms, Z+\GL (2, R) is unfortunately disconnected, but there is no
real difficulty and I shall be as brief as possible. The goal of §2.4 and §4.3, for which
we need these results, is just to make clear what terms in addition to the elliptic term
contribute to the limit (12′) when m is even and how. We first establish the relation
between the notation of this paper and that of [H], as well as the connection between
ω1(γ , f∞) and θ ′

z(0, f∞), or rather, on referring to (55), between ω1(γ , f∞) and
∫

f∞(k−1zn(x)k) ln |x |dxdk.(C.1)

Let

γ =
(

α 0
0 β

)

.

According to its definition in [JL],

ω1(γ , f∞) = −
∫ ∫

f∞(k−1n−1(x)γ n(x)k) ln(1 + x2)dxdk

= −
∫ ∫

f∞(k−1γ n((1 − β/α)x)k) ln(1 + x2)dxdk,

which is equal to

− 1
|1 − β/α|

∫ ∫

f∞(k−1γ n(x)k){ln((1 − β/α)2 + x2) − ln(1 − β/α)2}dxdk.

Thus

|1 − β/α|ω1(γ , f∞) − ln(1 − β/α)2ω(γ , f∞)(C.2)

approaches −2 times (C.1) as α and β approach z. So we shall be able to deduce
a convenient expression for (C.1) from Hoffmann’s formulas, which are valid for
αβ > 0. Since the singularity of |1 − β/α|ω1(γ , f∞) at α = β is only logarithmic,
we may multiply it in (C.2) by any smooth function that assumes the value 1 for
α = β.

Because

γ = z
(

1 0
0 −1

)
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does not lie in the connected component of Z+\GL (2, R), Hoffmann’s arguments
do not apply directly to ω1(γ , f∞) for this γ .

When comparing the notation of this paper with that of Hoffmann, it is best
to replace, without comment, all of Hoffmann’s group elements by their inverses.
Otherwise the conventions are not those of number-theorists and not those of this
paper. For him maximal compact subgroups operate on the left, and parabolic and
discrete groups on the right.

The group P of Hoffmann is for us the group of upper-triangular matrices, P̄ the
group of lower-triangular matrices, and M is the quotient of the group of diagonal
matrices by Z+ and has as Lie algebra aR. His map λP , which is determined by the
weight in the noninvariant orbital integral defining ω1, we take to be

(

a 0
0 b

)

→ a − b,

and the λ defining his σ to be s/2 times λP . In addition, his dλ is ds/2. Then, as
a result of the transfer of the parabolic subgroup to the right in [H], Hoffmann’s
v(n(x)) is ln(1 + x2) and is, as he observes, positive. (What with signs and factors
of 2, there is considerable room for error when attempting to reconcile conventions
from various sources.) Since

DG(m) =
(

1 − β

α

) (

1 − α

β

)

, m = γ ,

we conclude that

JM (m, f∞) = − |α − β|
|αβ| 1

2

ω1(γ , f∞).

So we may replace |1 − β/α|ω1(γ , f∞) in (C.2) by −JM (m, f∞). Here and else-
where in this appendix I freely use the symbol m as it is used by Hoffmann.
Elsewhere in the paper, the symbol m is reserved for the degree of the symmetric
power.

Before entering into further comparisons between our notation and that of
Hoffmann, I review my understanding of his conventions about the measure on M
and on its dual. He takes the two measures to be dual with respect to the Fourier
transform. So when they both appear, the normalization is immaterial. On the other
hand, only one may appear; moreover, there is a second choice, that of λP , which is
fixed by the weighting factor v . Hoffmann’s IP is a linear combination of JM (m, f )
and an integral over the dual M̂ . JM (m, f ) depends directly on λP but not on the
two Haar measures. There is a further dependence on the measure on M\G, but
this dependence is the same in every pertinent expression in his paper and can be
ignored. The integral over the dual depends directly on the measure on M̂ and
directly on the measure on M because of the presence of πP,σ ( f ), which depends
directly on the measure on G, thus on the measures on M and M\G; because of the
derivative δP , it depends directly on λP as well. Since the measures on M and its
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dual are inversely proportional, the dependence on the two measures is cancelled
and both terms of the sum depend on λP alone.

This must therefore be the case for the right side of the formula in his Theorem
1 as well. In the second term, the integral over M̂ , this is clear, because <πσ

depends
directly on the measure on M and 9P,> depends depends directly on λP . In the first
term, however, the only dependence is through 9π ( f ) and is a direct dependence
on the measure on M . If the theorem is to be valid, this measure must be defined
directly in terms of the form λP . This Hoffmann does in a straightforward manner.
I refer to his paper for more precision. For the group SL (2, R) = Z+\G+, with
G+ = {g ∈ GL (2, R) | det(g) > 0} and with our parameters, s, for the characters
of M and t for a = a(x) as in §4.3, the measures are dσ = d|s|/2 and da = dx ,
which is also the measure dλ/λ of §2.1.

The collection M̂ of unitary representations of M has four connected compo-
nents, corresponding to the four choices of k, l = 0, 1,

σ : γ → sgn(α)k sgn(β)l

∣

∣

∣

∣

α

β

∣

∣

∣

∣

s/2

,

with s purely imaginary. Although Js and tr(J−1
s J ′

sξs( f∞)) were defined in §2.3
only for k = l = 0, they are defined for all choices of k and l and Hoffmann’s
−JP (σ, f∞) is nothing but 2 tr(J−1

s J ′
sξ

k,l
s ( f∞)), an expression in which all implicit

dependence on k and l is not indicated. Earlier in the paper, ξ 0,0
s appeared simply

as ξs . The factor 2 is a result of the relation λ = sλP/2.
Recalling that DM (m) = 1, we consider

JM (m, f∞) + 1
8π i

∑

∫

C
sgn(α)k sgn(β)l

∣

∣

∣

∣

α

β

∣

∣

∣

∣

−s/2

tr
(

J−1
s J ′

sξ
k,l
s ( f∞)

)

ds.(C.3)

The sum before the integration is over the four possible choices for the pair (k, l). If
f is supported on G+ and if det(m) > 0, then the integrand does not change when
k, l are replaced modulo 2 by k + 1, l + 1. So the sum over l can be dropped, l
can be taken to be 0 and the 8 becomes 4. So (C.3) would reproduce Hoffmann’s
definition if we were concerned with G+ alone.

We will, in general, be summing (C.3) over ±m, so that the total contribution
from the integrals for k &= l will be 0 and for k = l the 8π i in the denominator will
be replaced by 4π i . Moreover replacing k = l = 0 by k = l = 1 has the effect of
replacing ξs(g) by sgn(det(g))ξs(g) and has no effect on Js . For the contribution
from (iv), we shall be concerned with α = −β and, for such an m, sgn αk sgn βk is
1 for k = 0 and −1 for k = 1. The sum of (C.3) over ±m therefore reduces to

JM (m, f∞) + JM (−m, f∞) + 1
2π i

∫

C
tr

(

J−1
s J ′

sξs( f −
∞)

)

ds,(C.4)

where f −
∞ is the product of f∞ with the characteristic function of the component

of Z+\GL (2, R) defined by det(g) = −1. The analogous f +
∞ will appear below.

For the m in question, the factor |DG(m)|1/2 is equal to 2. This is the factor coming
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from ω(γ , f2). Thus (C.4) is twice the negative of the sum of the contribution to
the limit (12′) of (iv), in which there is yet another minus sign, and of that part of
(viii) associated to f −

∞.
The expression (C.3) has no meaning for the γ that are pertinent in the contri-

bution of (v) to the limit (12′) for even symmetric powers, namely for α = β. We
may, however, consider it for α unequal but close to β. Once again we consider the
sum over ±m. Then only the terms with k = l remain. Since sgn α will be equal to
sgn β, we obtain

JM (m, f∞) + JM (−m, f∞) + 1
2π i

∫

C

∣

∣

∣

∣

α

β

∣

∣

∣

∣

−s/2

tr
(

J−1
s J ′

sξs( f +
∞)

)

ds.(C.5)

We add to this

ln(1 − β/α)2{ω(γ , f∞) + ω(−γ , f∞)}, γ = m.

Since the second term in (C.3) is well behaved as α → β, the result will have a
limit as α and β approach a common value z because the integrals themselves will
have a limit. The limit is

2
1

∑

j=0

∫

f∞(k−1(−1) j zn(x)k) ln |x |dxdk + 1
2π i

∫

C
tr

(

J−1
s J ′

sξs( f +
∞)

)

ds.(C.6)

This is twice the contribution of (57) and of that part of (viii) associated to f +
∞ to

the limit (12′),
Although the results of Hoffmann cannot be applied directly to the general

form of (C.3) or (C.4), they can be applied to (C.5). In fact, the material necessary
for extending his arguments is available, although not all in print. The principal
ingredients are the differential equation for the weighted orbital integrals and an
analysis of their asymptotic behavior. The first is available in general [A1] and
the second will appear in the course of time in a paper by the same author. Since
irreducible representations of Z+\GL (2, R) are obtained by decomposing—into
at most two irreducible constituents—representations induced from its connected
component SL (2, R), the Plancherel measure of the larger group is, at least for the
discrete series, the same as that of the smaller one. So I feel free to apply Hoffmann’s
results to (C.3) and (C.4) as well, taking care that the measures used are compatible
on restriction to functions supported on G+ with his.

For any diagonal matrix m with diagonal entries of different absolute value,
Hoffmann ([H],Th.1) finds—at least for f supported on G+—that IP (m, f∞) is
equal to

− |α − β|
|αβ| 1

2

∑

π

<π̌ (m)<π ( f ) + 1
8π i

∑

k,l

∫ i∞

−i∞
9(m, s) tr ξ k,l

s ( f∞)ds,(C.7)

where

9(m, s) = ηk,l(m, s) + ηl,k(m, −s)
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and

ηk,l(m, s) = sgn αk sgn βlets







∑∞
n=1

(α/β)−n

n−s , t > 0
∑∞

n=0
(α/β)n

n+s + π (−1)k+l

sin(πs) , t < 0,
(C.8)

if

m = m(t) =
(

α 0
0 β

)

=
(

±et 0
0 ±e−t

)

,

the two signs being chosen independently. The factor λP (Hα)/2 that appears in [H]
is 1.

There are two observations to be made. First of all, 9 depends not only on m and
s, but also on k and l, which determine the character of MI . Secondly, 9(m, s) is,
for a given m, symmetric in s and, despite appearances, does not have a singularity
at s = 0, so that the contour of integration can pass through that point.

For our purposes, it is best to represent (C.7) in terms of the Fourier transform
of ξ k,l

s ( f∞). We begin with the case that det m is negative, for the passage to the
limit |α| = |β| is then more direct. We refer to the first term in (C.7) as the elliptic
contribution and to the second as the hyperbolic contribution. If det m is negative,
then the character of a discrete-series representation vanishes at m, <π̌ (m) = 0. So
the elliptic contribution is 0.

The character of the representation ξ k,l
s is 0 on the elliptic elements of GL (2, R),

but on a hyperbolic element

a = a(x) = ε

(

ex 0
0 δe−x

)

, δ, ε = ±1,(C.9)

it is equal to

εk+l δlesx + δke−sx

√
|1 − α/β||1 − β/α|

,(C.10)

where the signs are that appearing in the matrix. Since

r = ε(ex ± e−x ),

the numbers ex and e−x can of course be recovered from r and the sign. The measure
dλ/λ is in this new notation dx . If

f̂ ∞(a) =
√

|1 − α/β||1 − β/α|
∫

M\GL (2,R)
f∞(g−1ag)dg,

then, by the Weyl integration formula,

tr ξ k,l
s ( f∞) =

∑

∫ ∞

−∞
εk+lδlesx f̂ ∞(a)dx,
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where a is given by (C.9) and there is a sum over the two free signs in a. Thus
tr(ξ k,l

s ( f∞)) is expressed as the Fourier transform of the functions f̂ ∞(a), although
the formula (C.10) and the calculations that led to (30) allow us to express this
immediately as an integral of the two functions ψ±. It is, however, too soon to pass
to the variable r .

What we want to do is to express the hyperbolic contribution to (C.7), for
|α| &= |β|, in terms not of tr ξ k,l

s ( f∞) but in terms of its Fourier transform, then to
pass to α = −β, and at this point and for this particular choice to express the result
in terms of ψ±. I stop short of this final transformation.

Since we shall be taking the limit t → 0, it suffices to take t > 0. Since the signs
of α and β are supposed different, the function η(m, s) is the Fourier transform of
the function that is

sgn αk sgn βl
∞

∑

n=1

(−1)ne−n(t+x) = − sgn αk sgn βl e−(t+x)

1 + e−(t+x)

for x > t and 0 for x < t . Thus, the hyperbolic contribution is

−1
4

∑

k,l

∑

∫ ∞

t
sgn αk sgn βlεk+lδl e−(t+x)

1 + e−(t+x)
f̂ ∞(a)dx,

in which the inner sum is over the free signs in a. The effect of the sum over k and
l together with the factor 1/4 is to remove all terms of the inner sum except the one
for which ε = α and δε = β, as we could have predicted. Thus the signs of a are
those of m and the hyperbolic contribution is

−
∑

∫ ∞

t

e−(t+x)

1 + e−(t+x)
f̂ ∞(a)dx .(C.11)

The limit as t → 0 can be taken without further ado and gives

−
∑

∫ ∞

0

e−x

1 + e−x
f̂ ∞(a)dx,(C.12)

where a has eigenvalues of opposite sign. Which is positive and which is negative
does not matter because of the summation over the two possible opposing signs.
When we take η(m, −s) into account as well, we obtain in addition

(C.12′) −
∑

∫ 0

−∞

e−x

1 + e−x
f̂ ∞(a)dx,

The two are to be added together. Since we take the sum of IP (m, f∞) and
IP (−m, f∞), it is probably best to represent it as the sum of (C.12) (together
with (C.12′)),

−
∑

∫ ∞

−∞

e−|x |

1 + e−|x | f̂ ∞(a)dx, a = a(x).(C.13)
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If det m is positive, then, the sign no longer appearing, (C.11) is replaced by

∑

∫ ∞

t

e−(t+x)

1 − e−(t+x)
f̂ ∞(a)dx,(C.14)

where, of course, the signs of a are those of m. When we need to be explicit, we
denote by a(x, ε) the diagonal matrix with eigenvalues εex and εe−x , ε being ±1.
For the passage to the limit, we replace (C.14) by the sum of

∑

∫ ∞

t

(

e−(t+x)

1 − e−(t+x)
− 1

t + x

)

f̂ ∞(a)dx,(C.15)

whose limit is obtained by setting t = 0, and

1
2

∑

∫ ∞

t

1
t + x

f̂ ∞(a)dx = −
∑

f̂ ∞(±m) ln(2t) −
∫ ∞

t
ln(t + x)

d f̂ ∞
dx

(a)dx,

(C.16)

where we have integrated by parts. (The formulas here are variants of those to be
found in [H], especially Lemma 6. They are not necessarily more useful.) Once
again, there will be similar terms arising from η(m, −s). The first term is an even
function of x and will thus contribute

−2
∑

f̂ ∞(±m) ln(2t).

Since 1 − β/α ∼ 2t , we are to add to this

ln(4t2)ω(γ , f∞) = 2 ln(2t) f̂ ∞(m), γ = m,

because in spite of our notation, taken as it is from a variety of sources, f̂ (m) =
ω(γ , f∞).

So the limit as t → 0 of the sum over m and −m is the sum of
∑

∫ ∞

−∞

(

e−|x |

1 − e−|x | − 1
|x |

)

f̂ ∞(a)dx(C.17)

and

−
∑

∫ ∞

−∞
ln |x | sgn x

d f̂ ∞
dx

(a)dx .(C.18)

In both (C.17) and (C.18) there is a sum over a and −a, as in (C.13).
For the elliptic contribution, we recall that from the formula for the discrete-

series character with parameter k ≥ 0, as found, for example, in [K]

− |α − β|
|αβ| 1

2

<π̌ (m) = −(±1)k−1e−kt , m = a(t, ±1), t > 0.

This has a limit as t → 0. It is −(±1)k−1. Since

−
∞

∑

k=0

(±1)k−1<πk ( f )(C.19)
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is absolutely convergent, we can provisionally take (C.19) as the contribution of
the elliptic term of Hoffmann’s formula. The contribution (C.19) does not appear
to be expressible as an integral of the pair of functions ψ± against a measure. So
for the moment I prefer to leave it as it stands.

Appendix D: A Fourier transform. The Fourier transform of the distribution

h →
∫ ∞

0
ln x

dh
dx

(x)dx(D.1)

is calculated by treating the distribution as minus the derivative with respect to the
purely imaginary Fourier transform variable s of

lim
ε→0

d
dt

∫ ∞

0
xt e−εx h(x)dx

for s = 0. The Fourier transform of the distribution without either the derivative or
the limit is calculated directly as

∫ ∞

0
xt e−εx esx dx = (ε − s)−1−t6(t + 1),

where s is purely imaginary. Differentiating, setting t = 0, and multiplying by −s,
we obtain

s
ε − s

6(1) ln(ε + s) − 6′(1)
s

ε − s
.

Careful attention to the real content of this formal argument reveals that ln(ε + s)
is to be chosen between −π/2 and π/2. Letting ε approach 0, this becomes

− ln s + 6′(1),(D.2)

where ln s is ln |s| + π
2 sgn s. The symmetric form of (D.1) is

(D.1′)
∫ ∞

−∞
ln |x | sgn x

dh
dx

(x)dx

and the symmetric form of (D.2) is −2 ln |s| + 26′(1). Recall from [N, p. 15] that
6′(1) = −λ0 is the negative of Euler’s constant.
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Added in proof. As the reader was cautioned, much of the material of the paper
was provisional: the analysis rough and the numerical experiments preliminary.
Although further reflection confirms so far the general conclusions, details will
have to be modified. There is little point in precise explanations until arguments or
experiments have reached a more mature stage. There are only three observations
to make. First of all, the O(lnl(p)) hypothesis for the size of (70) appears more than
doubtful. On the other hand, the averages continue to be behave, with better code,
as described, but better, for the quadratic term in ln p seems to have coefficient 0.
Finally formula (81) is not correct as it stands.
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CHAPTER 23

AN ANALOGUE OF A CONJECTURE OF MAZUR: A QUESTION IN
DIOPHANTINE APPROXIMATION ON TORI

By Dipendra Prasad

To Professor Shalika, with admiration

Abstract. B. Mazur has considered the question of density in the Euclidean topology of the set of
Q-rational points on a variety X defined over Q, in particular for Abelian varieties. In this paper we
consider the question of closures of the image of finitely generated subgroups of T (Q) in !\T (R)
where T is a torus defined over Q, ! an arithmetic subgroup such that !\T (R) is compact. Assuming
Schanuel’s conjecture, we prove that the closures correspond to algebraic sub-tori of T .

Let V be a smooth algebraic variety over Q. The set V (R) acquires a topological
structure from the Euclidean topology of R. It is known that V (R) has finitely
many connected components. If V (Q) is Zariski dense in V , it was conjectured
by B. Mazur, cf. [M1] and [M2], that the closure of V (Q) in V (R) is a finite
union of connected components of V (R). This conjecture was shown to be false
in this generality for an elliptic surface by Colliot-Thélène, Skorobogatov, and
Swinnerton-Dyer, who have proposed a slightly reformulated conjecture, cf. [CSS].
However, the present evidence seems to suggest that the following special case of
Mazur’s conjecture is true.

Conjecture 1 (Mazur’s conjecture for Abelian varieties). Let A be an abelian
variety over Q, and G a subgroup of A(Q). Then the closure of G in the Euclidean
topology of A(R) contains B(R)0 as a subgroup of finite index for a certain abelian
subvariety B defined over Q.

The following theorem of M. Waldschmidt [W1] is the best result known toward
Mazur’s conjecture.

Theorem 1 (Waldschmidt). If A is a simple abelian variety over Q of di-
mension d if the rank of A(Q) is ≥ d2 − d + 1, then the closure of A(Q) in the
Euclidean topology contains A(R)0.

1. The conjecture about tori. In this section we propose the following
analogue of Mazur’s conjecture for tori. We begin by recalling certain standard
definitions.

Manuscript received October 17, 2002.
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Let S be a torus defined over Q, i.e., let S be a commutative linear algebraic
group over Q which becomes isomorphic to Gn

m over the algebraic closure Q of Q

for a certain integer n ≥ 0. The torus S is called isotropic over Q if there exists a
homomorphism of algebraic groups S → Gm defined over Q. If S is not isotropic
over Q, it is called anisotropic.

Given a linear algebraic group over Q such as S, it makes sense to talk of
arithmetic subgroups ! of S(Q). Any two arithmetic subgroups !1 and !2 are
commensurable, i.e., !1 ∩ !2 is of finite index in both !1 and !2. It is a consequence
of Dirichlet unit theorem (or the general theorem due to Borel and Harish-Chandra)
that if S is an anisotropic torus over Q, then !\S(R) is a compact abelian group
for ! any arithmetic subgroup of S(Q). The connected component of identity of
!\S(R) is a torus in the usual sense of the word, i.e., a topological group isomorphic
to (S1)n .

Unlike most other algebraic groups, tori have the property that there is a unique
maximal arithmetic group. This unique maximal arithmetic subgroup is the sub-
group ! of T (Q) defined as follows:

! =
{

γ ∈ T (Q)
∣

∣

∣

∣

χ (γ ) = a unit in the ring of integers of Q̄∗

for all characters χ : T → Gm

}

.

We now make the following analogue of Mazur’s conjecture for tori.

Conjecture 2. Let S be an anisotropic algebraic torus defined over Q. Let F be
a finitely generated subgroup of S(Q). For ! any arithmetic subgroup of S(Q), the
connected component of identity of the closure of the image of F in !\S(R) equals
connected component of identity of !T \T (R) for a certain subtorus T of S defined
over Q with !T = ! ∩ T (Q). Equivalently, the closure of the image of F is dense
in the Euclidean topology in the identity component of !\S(R) if and only if any
subgroup G of S(Q) surjecting on the image of F in !\S(R) is Zariski dense in S.

Remark 1. To any finitely generated subgroup F of S(Q), there is a natural
subtorus T of S over Q defined as the (connected component of the identity of the)
kernel of the group of characters

X F = {χ : S → Gm |χ (a) = a unit in the ring of integers of Q̄∗ for all a ∈ F}.

By embedding an anisotropic torus in a product of norm 1 tori (as in Lemma 3
below), it is easy to see that the torus T defined here is the same as that which
appears in the conjecture above. We are sloppy here, as well as in other places in
the paper, about making such assertions only up to connected components.

Remark 2. Let the finitely generated group F be generated by {a1, a2, . . . , an}.
Since the product of compact subgroups is compact, it is clear that the closure of
the image of F in !\S(R), ! an arithmetic subgroup of S(R), is the product of the
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closures of cyclic groups generated by ai . Hence it suffices to prove the conjecture
for cyclic groups F . By embedding an anisotropic torus in a product of norm 1
tori (as in Lemma 3 below), we are further reduced to proving the conjecture for a
cyclic subgroup in a product of norm 1 tori.

Remark 3. The conjecture above can also be formulated as the closure of a
finitely generated subgroup in S(Q) containing an arithmetic subgroup in S(R). We
note that since an arithmetic group in an anisotropic torus over Q, which is split
over R, is Zariski dense, so will this finitely generated subgroup. Thus in this sense,
our conjecture has a different flavor than Mazur’s conjecture. We note that there
is also a conjecture, different from the one formulated here, due to Waldschmidt
[W3, Conjecture 3.5 of Chapter 3] about the closure in the Euclidean topology of
a finitely generated subgroup of S(Q).

Remark 4. In this paper we will often be using without explicit mention the
trivial remark that the connected component of identity of the closure in either
Euclidean or Zariski topology of a finitely generated subgroup F (of a topological
group or an Algebraic group) or a subgroup G of F of finite index is the same.

Example 1. The simplest case of our conjecture is when T is a torus over Q such
that T (R) itself is compact. In this case we can take T (Z) to be the trivial subgroup
of T (Q). We will thus be comparing the closures in Euclidean topology and Zariski
topology of a finitely generated subgroup of T (Q). That the two closures are the
same follows from the easily proven assertion that any continuous homomorphism
from the compact group T (R) to S1 is the restriction to T (R) of an algebraic
character (defined over C) from T (C) to C∗.

Example 2. Let k be a totally real cubic extension of Q. Let T = k1 denote the
group of norm 1 elements of k. So T (Q) = k1, and the group of units of (the ring
of integers of) k of norm 1 can be taken to be an arithmetic subgroup of T (Q). We
have,

T (R) = [k ⊗ R]1

= [R ⊕ R ⊕ R]1

∼= R∗ × R∗.

We note that (x, y) → (log x, log y) gives an isomorphism of the product of two
copies of positive reals (under multiplication) with real numbers (under addition).
We have thus a homomorphism from T (R) to R × R such that the image of the
group of units of norm 1 is a discrete cocompact subgroup with quotient S1 × S1.

It is easy to see that the torus T of norm 1 elements of a cubic field has no
nontrivial subtorus defined over Q. Our conjecture in this case will therefore say
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that any element of T (Q) which is not of finite order will generate a dense subgroup
of T (Z)\T (R). We make this more concrete.

Observe that if $ ⊂ R2 is a lattice in R2 and v is a vector in R2, then integral
multiples of v is dense in $\R2 if and only if there does not exist a nonzero integer q,
and a lattice point λ ∈ $ such that qv + λ is real multiple of a vector in $. Suppose
if possible, qv + λ = rλ1 for an integer q, and a real number r . By looking at the
coordinates of the vectors on the two sides of the equality, it is easily seen that
it suffices to prove that if (log |x1|, log |x2|) is a real multiple of (log |ε1|, log |ε2|),
then it is a rational multiple of (log |ε1|, log |ε2|). Here x1 and x2 are the images of an
element (corresponding to qv + r ) in k1 under two fixed embeddings into the reals,
and ε1 and ε2 are the images of a unit element in k1 under the same embeddings
into the reals. Even this simple-minded question seems beyond present knowledge.
However, we note that this will be a consequence of the following well-known
conjecture, cf. [W2].

Conjecture 3. (4 Exponential Conjecture due to Schneider, Lang, and
Ramachandra) Let M be a 2 × 2 matrix consisting of a logarithm of algebraic
numbers. Assume that the rows of the matrix are linearly independent over Q,
and also that the columns of the matrix are linearly independent over Q, then the
determinant of M is nonzero.

The following theorem is a step toward the proof of the 4 exponential
conjecture.

Theorem 2 (Lang and Ramachandra). Let M be a 2 × 3 matrix consisting
of a logarithm of algebraic numbers. Assume that the rows of the matrix are linearly
independent over Q, and also that the columns of the matrix are linearly independent
over Q. Then the rank of M is 2.

2. Some lemmas about Tori. In this section we collect together some ele-
mentary lemmas about tori. We will be considering closures of finitely generated
subgroups in the Euclidean and Zariski topologies.

Lemma 1. (a) For a discrete subgroup $ ⊂ Rn with Rn/$ compact, the inte-
gral multiples of a point x ∈ Rn are dense inside Rn/$ if and only if no nontrivial
continuous homomorphism of Rn/$ to S1 takes x to the identity element of S1.

(b) The integral multiples of x ∈ Rn are dense inside Rn/$ if and only if r x + λ

does not belong to $1 ⊗Z R for any subgroup $1 of $ with rank Z$1 < n, any
nonzero integer r , and any element λ ∈ $.

(c) The integral multiples of x = (x1, . . . , xn) ∈ Rn are dense inside Rn/$ if
and only if for '1 = ('11, . . . , '1n), . . . , 'n−1 = ('n−1,1, . . . , 'n−1,n), belonging to
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$ and generating a rank (n − 1) subgroup of $, the matrix

















r x1 + λ1 r x2 + λ2 · · r xn + λn

'11 '12 · '1n

· · · · ·
· · · ·
· · · · ·

'n−1,1 'n−1,2 · · 'n−1,n

















is nonsingular, i.e., the determinant is nonzero, for any nonzero integer r , and any
λ = (λ1, . . . , λn) ∈ $.

Now we have a lemma about density of the abelian group generated by a point
on a torus in the Zariski topology. In this lemma for a number field K , we will be
looking at the torus T = RK/QGm defined over Q to be the algebraic group whose
group of rational points over any Q-algebra A is T (A) = (K ⊗Q A)∗; in particular
T (Q) = K ∗.

Lemma 2. (a) An element x ∈ T (Q) = K ∗ generates K (i.e., K is the smallest
field extension of Q containing x) if and only if all its conjugates (i.e., the image of
x under all the distinct embeddings of K in C) {x1, . . . , xn} are distinct.

(b) An element x ∈ T (Q) = K ∗ lies in no proper algebraic subgroup defined
over Q if and only if the abelian subgroup generated by {x1, . . . , xn} is free abelian
of rank n.

Proof. Part (a) is clear. For part (b) note that any algebraic character of T (Q) =
K ∗ (defined over the algebraic closure) is defined by z → zd1

1 · zd2
2 · · · zdn

n , where
zi denotes the image of z under the various embeddings of K into C. Since for an
element belonging to a proper algebraic subgroup of T , there is a character of T
trivial on that element, therefore if x belongs to a proper algebraic subgroup, the
subgroup generated by {x1, . . . , xn} will not be free.

Conversely, if the subgroup generated by {x1, . . . , xn} is not free abelian, x
belongs to the kernel of a nontrivial character χ of T defined over Q. Hence
x ∈ T (Q) lies in S(Q) for an algebraic subgroup S of T . By Galois conjugation,
x ∈ Sσ (Q) for all Galois conjugates of S. Hence x ∈ ∩(Sσ )(Q). However, A =
∩(Sσ ) is an algebraic group defined over Q. Hence x belongs to A(Q) for A a
proper algebraic subgroup of T . !

Lemma 3. For any anisotropic torus T over Q, there are field extensions
K1, . . . , Kd of Q, such that if S denotes the product of the norm 1 tori associ-
ated to Ki , then there is an embedding of T into S.
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Proof. As is well known, there is an equivalence of categories between tori
over Q and finitely generated free Z-module with an action of the Galois group
Gal (Q̄/Q) of the algebraic closure Q̄ of Q. The equivalence is given by associating
to any torus T , its character group X∗(T ). Choose a Z-basis, say {e1, . . . , ed} of
the character group of T . Suppose that Hi is the subgroup of Gal (Q̄/Q) which
stabilizes the vector ei . The mapping g → g · ei from Gal (Q̄/Q) to X∗(T ) gives a
mapping from Z[G/Hi ] to X∗(T ). Summing over i , we get a surjective map from
∑

i Z[G/Hi ] to X∗(T ). This gives an embedding from T to
∏

i RKi /QGm where
Ki is the fixed field of Hi . Since T is anisotropic, the image of T lands inside the
product of norm 1 tori. !

3. Schanuel’s conjecture implies conjecture 2. In this section we prove
that our conjecture 2 about closures in Euclidean topology of finitely generated
subgroups in general tori is a consequence of Schanuel’s conjecture.

We should, however, add that although our approach in this paper is via
Schanuel’s conjecture, there is a possibility that there may be a simpler proof for
conjecture 2, just by using the more primitive methods of Geometry of Numbers,
as we are dealing with a rather specific number theoretic context.

We begin with the statement of Schanuel’s conjecture, which is one of the
most outstanding problems in transcendental number theory. In the statement of
this conjecture, as well as everywhere else in the paper, one means by log A, for a
complex number A to be any complex number B such that exp(B) = A.

Conjecture 4 (Schanuel’s Conjecture). If α1, . . . , αn are algebraic numbers
such that log α1, . . . , log αn are linearly independent over Q, then log α1, . . . , log αn

are algebraically independent over Q.
We will need the following lemma about number fields.

Lemma 4. Let L be a number field that is Galois over Q. Enumerate the
elements of the Galois group G of L over Q as σ1 = 1, σ2, . . . , σd . For an element
z of L∗, denote the various (not necessarily distinct) Galois conjugates of z by
z1 = z, z2 = σ2(z), . . . , zd = σd(z). Let x be an element L∗. Then there is a nonzero
integer m and a unit ε in (the ring of integers of) L, such that whenever xn1

1 xn2
2 . . . xnd

d
is a unit in (the ring of integers of) L for a d-tuple (n1, n2, . . . , nd) inside Zd ,
(xmε)n1

1 (xmε)n2
2 . . . (xmε)nd

d = 1. The integer m can be taken to be the order of the
class group of L times the degree of L over Q, hence can be chosen to be independent
of x.

Proof. Write the (fractional) ideal generated by x as a product of prime ideals:

(x) = ℘m1
1 · · · ℘mr

r .

(We will assume that if a certain prime ℘i occurs in the above decomposition, so
does any Galois conjugate of it, with exponent perhaps 0.) Let k be an integer such
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that each of the ideals ℘k
i is a principal ideal generated by, say +i . If Hi denotes the

subgroup of the Galois group that fixes the prime ideal ℘i , then the elements of Hi

will take +i into itself up to a unit: h(+i ) = hi · +i . Clearly h → hi is a 1-cocycle
on Hi with values in the group of units of L∗. Since Hi is a finite group, a finite
power of the cocycle becomes a coboundary, i.e., there is a positive integer r , and
a unit νi such that

h(+ r
i ) = hr

i · + r
i = h(νi )ν−1

i + r
i .

It follows that ν−1
i + r

i is invariant under Hi . Thus we can choose generators πi of
the principal ideals ℘rk

i in such a way that if an element of the Galois group takes
one such ideal into another such, then the same holds for the generators (and not
just only up to units). From the equality of ideals, (xrk) = (πm1

1 πm2
2 · · · πmr

r ), there
is a unit ε with, xrkε = πm1

1 πm2
2 · · · πmr

r . Now observe that if a product of certain
elements of L∗ with any two distinct elements coprime (such as πi ’s) is a unit, then
the product is in fact 1 (and is in some sense the “empty product”). From this it
follows that (xkrε)n1

1 (xkrε)n2
2 · · · (xkrε)nd

d = 1. Finally, the proof given here works
with the choice of m = rk to be the product of the order of the class group of L
and the degree of L over Q. !

Corollary 1 (of the Proof). With the notation as in the lemma, given ele-
ments {x (1), x (2), . . . , x (n)} in L∗, there is an integer m and units εi in the ring of
integers of L such that for y(i) = (x (i))mεi , the subgroup of L∗ generated by σ j (y(i))
does not contain any unit of the ring of integers of L other than 1.

Theorem 3. Schanuel’s conjecture implies conjecture 2.

Proof. As already noted in Remark 2, it suffices to prove Conjecture 2 for cyclic
subgroups. Furthermore, because of Lemma 3, we can assume that the anisotropic
torus S is the product of the norm 1 tori: S =

∏m
i=1(RKi /QGm)1. We will further

assume (by enlarging the anisotropic torus which does not affect the conclusion
regarding closures) that the fields Ki are Galois over Q, and by taking the com-
positum, we assume that the fields Ki are the same, say L , a Galois extension of
degree d + 1 over Q, which we will assume to be totally real. The case when L has
complex places is very similar, although notationally more cumbersome.

For an element x (i) ∈ L , we let x (i)
j , j ∈ {1, 2, . . . , d + 1}, denote the various

Galois conjugates of x (i).
Let x = (x (1), x (2), . . . , x (m)) ∈ S =

∏m
i=1(RL/QGm)1. Replacing x (i) by y(i) =

(x (i))mεi as in Corollary 1, we can assume that y = (y(1), y(2), . . . , y(m)) is such that
the group generated by the various Galois conjugates y(i)

j intersects the units in the
ring of integers of L in identity alone.

We note that a general algebraic character of L∗ is given by z →
∏

j (z j )n j .

Denote by A the group of characters χ of S =
∏m

i=1(RL/QGm)1 such that χ (y) = 1.
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Let the rank of the abelian group A be dm − k. Therefore the subgroup of L∗

generated by {y(i)
j } is a free abelian group of rank k.

We will use the homomorphism with finite kernel:

[L ⊗ R]1 → Rd

(x1, . . . , xd+1) → (log |x1|, . . . , log |xd |),

under which (by Dirichlet unit theorem) the group of units of the ring of integers
of L of norm 1, O∗1

L goes to a lattice $ in Rd with Rd/$ compact.
Taking the direct sum of this homomorphism m number of times, we get a

homomorphism from S(R) to Rdm/$m , whose kernel is an arithmetic group in S(R),
to be denoted by S(Z). We will denote the image of y = (y(1), y(2), . . . , y(m)) in Rdm

as (log (|y(1)
1 |), . . . , log (|y(1)

d |), . . . , log (|y(m)
1 |), . . . , log (|y(m)

d |)). By Lemma 1(c),
to prove this theorem it suffices to prove that the rank of the matrix

A =

















a11 · · · a1d · · · am1 · · · amd

'(1)11 · · · '(1)1d · · · '(1)m1 · · · '(1)md

· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·

'(k − 1)11 · · · '(k − 1)1d · · · '(k − 1)m1 · · · '(k − 1)md

















is k where (a11, . . . , a1d, . . . , am1, . . . , amd) = (r log (|y(1)
1 |) + '11, . . . ,

r log (|y(1)
d |) + '1d, . . . , r log (|y(m)

1 |) + 'm1, . . . , r log (|y(m)
d |)) + 'md , r is a non-

zero integer, ('11, . . . , '1,d, . . . , 'm1, . . . , 'md) is a vector in $m , and where the 2nd
to kth rows of this matrix represent (k − 1) Z-linearly independent vectors in $m .

Since the rank of the matrix

B =













'(1)11 · · · '(1)1d · · · '(1)m1 · · · '(1)md

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·

'(k − 1)11 · · · '(k − 1)1d · · · '(k − 1)m1 · · · '(k − 1)md













is (k − 1), there is a (k − 1) × (k − 1) submatrix with nonzero determinant. After
re-indexing the coordinates in Rdm , we assume that the first (k − 1) × (k − 1)
submatrix of B has rank (k − 1), i.e., has nonzero determinant.

Since the rank of the group generated by {y(i)
j } is k, there is at least one index, say

y(i0)
j0 , such that no power of it belongs to the group generated by the y′s corresponding

to the first (k − 1) entries in the first row of A (after re-indexing introduced above).
Denote these y′s as y1, y2, . . . , yk−1, and the corresponding '′s as '1, '2, . . . , 'k−1.
Also, denote y(i0)

j0 as yk .
Let C be the k × k submatrix of A comprised of the first (k − 1) columns of

A, and the kth column corresponding to y(i0)
j0 . We want to prove that det (C) -= 0.

Clearly det (C) =
∑k

i=1[r log (|yi |) + 'i ] det (Li ), where Li is a (k − 1) ×
(k − 1) matrix consisting of log of units in L , and 'i are also log of units in L .
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It follows from Schanuel’s conjecture and our hypothesis that no (nonzero)
power of yk belongs to the group generated by yi , i = 1, . . . , k − 1, that log (|yk |)
is algebraically independent over the subfield of C generated by log of algebraic
units and the log (|yi |), i = 1, . . . , k − 1.

By our assumption, the first (k − 1) × (k − 1) submatrix of B has nonzero deter-
minant, which is det (Lk), hence det (C) =

∑

[r log (|yi |) + 'i ] det (Li ) is nonzero
(by algebraic independence of the kth term from the rest). !

4. Counter-example to a more general question. It is natural to ask if an
analogue of Conjecture 2 can be made more generally. The general question is
about the algebraicity of the connected component of identity of the closure in
Euclidean topology of a finitely generated subgroup of C∗n with algebraic coordi-
nates, where C∗n is considered as the 2n-dimensional torus defined over R as the
Weil restriction of scalars RC/RGn

m . For example, can one drop the condition on the
torus S in Conjecture 2 being anisotropic over Q, and instead of taking S(Z), which
is a cocompact discrete subgroup of S(R) if S is anisotropic, take any cocompact
discrete subgroup ! of S(R) contained in S(Q)? A simple counter-example shows
that this is not possible, shattering any hope for a simple answer to the general
question above.

To construct the counter-example, take S = G3
m , the 3-dimensional split torus

over Q. The principle behind the counter-example is the well-known observation
that although the determinant of a skew-symmetric n × n matrix consisting of
logarithm of algebraic numbers is 0 if n is odd, the rows and columns could be
linearly independent over Q, such as for the matrix:





0 log 2 log 3
− log 2 0 log 5
− log 3 − log 5 0



 .

Since the determinant of the following matrix is nonzero,




0 log 2 log 3
− log 2 0 log 5
log 7 0 log 2



 ,

it follows that the subgroup of R∗3 generated by the elements, x = (1, 2, 3), y =
(1/2, 1, 5), z = (7, 1, 2), is a discrete cocompact subgroup ! of R∗3. However, the
closure of the image of the cyclic group generated by the image of w = (3, 5, 1) in
!\R∗3 is a 2-dimensional topological torus (this follows from Lemma, 1(b)), which
does not arise from an algebraic subtorus of R∗3, as follows from Lemma 2(b).

Remark. The connected component of identity of the closure of a finitely gen-
erated subgroup of algebraic numbers of C∗ is {1, R+, S1, C∗}. We refer to Theo-
rem 1.10, p. 56 of [W3] for a proof of this assuming Schanuel’s conjecture. (The
subtlety lies in proving that algebraic points cannot be dense on a closed connected
subgroup of C∗ besides those mentioned above.)
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5. Non-abelian analogue. It seems very natural to extend the scope of Con-
jecture 2 by replacing the anisotropic torus T by a general algebraic group G over
Q.

We recall that by a theorem due to Borel and Harish-Chandra, for a reductive
algebraic group G over Q, which is anisotropic over Q, G(Z)\G(R) is compact.
We would like to suggest the analogue of Conjecture 2 to assert that the closure
of the image in G(Z)\G(R) of a finitely generated subgroup F of G(Q̄R) (where
Q̄R is the subfield of algebraic numbers in R) is of the form !H\H (R) for an
algebraic subgroup H of G defined over Q with !H = H (R) ∩ G(Z). (Note that
if the image of a subgroup H (R) in G(Z)\G(R) is closed, hence compact, then
!H = H (R) ∩ G(Z) is a cocompact lattice in H (R), and hence if H is algebraic,
it is defined over Q by the Borel density theorem.) Notice that we have not proved
even for a torus (even after assuming Schanuel’s conjecture), a theorem in this
generality as we have always restricted ourselves to finitely generated subgroups
F of the torus which are contained in the group of Q-rational points. This seems to
have been necessary for the proof of Conjecture 2 given here.

We remark that our suggested analogue contains a consequence of M. Ratner’s
theorem (the proof of the so-called Raghunathan conjecture) as observed by Dani
and Raghunathan, cf. Cor. 4.9 in [V] in a very special case. It states that if a semi-
simple group G over R (with G(R) noncompact) has two distinct Q structures, with
corresponding lattices !1 and !2, then !1 · !2 is dense in G(R) (in the Euclidean
topology).

Acknowledgment. This note was conceived several years back. It is being pub-
lished now in the hope of stimulating further research. The author thanks B. Mazur,
Gopal Prasad, T. N. Venkataramana and M. Waldschmidt for encouragement and
helpful remarks.
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CHAPTER 24

EXISTENCE OF RAMANUJAN PRIMES FOR GL(3)

By Dinakar Ramakrishnan

To Joe Shalika with admiration

Introduction. Let π be a cusp form on GL (n)/Q, i.e., a cuspidal automophic
representation of GL (n, A), where A denotes the adele ring of Q. We will say that
a prime p is a Ramanujan prime for π iff the corresponding πp is tempered. The
local component πp will necessarily be unramified for almost all p, determined
by an unordered n-tuple {α1,p, α2,p, . . . , αn,p} of nonzero complex numbers, often
represented by the corresponding diagonal matrix Ap(π ) in GL (n, C), unique up
to permutation of the diagonal entries. The L-factor of π at p is given by

L(s, πp) = det
(

I − Ap(π )p−s)−1 =
n

∏

j=1

(

1 − α j,p p−s)−1
.

As π is unitary, πp is tempered (in the unramified case) iff each α j,p is of absolute
value 1. It was shown in [Ra] that for n = 2, the set R(π ) of Ramanujan primes for
π is of lower density at least 9/10. When one applies in addition the deep recent
results of H. Kim and F. Shahidi [KSh] on the symmetric cube and the symmetric
fourth power liftings for GL (2), the lower bound improves from 9/10 to 34/35
(loc. cit.), which is 0.971428 . . . .

For n > 2 there is a dearth of results for general π , though for cusp forms of
regular algebraic infinity type, assumed for n > 3 to have a discrete series compo-
nent at a finite place, one knows by [Pic] for n = 3, which relies on the works of
J. Rogawski, et al, and by the work of Clozel [C#] for n > 3 (see also the nontriv-
ial refinement due to Harris and Taylor [HaT]) that all the unramified primes are
Ramanujan primes for π . (Of course for n = 2, a regular algebraic cusp form is
necessarily holomorphic of weight k ≥ 2, and it is known, by Eichler-Shimura for
k = 2 and by Deligne for k > 2, that every prime is a Ramanujan prime in this case;
ditto for k = 1 by the work of Deligne and Serre.) One is interested in knowing
whether there exists even one Ramanujan prime for general π on GL (n). Thanks
to the work of Kim and Shahidi, one sees the importance of knowing a positive
answer to such a question.

The main result of this note is the following:

Theorem A. Let π be a cusp form on GL (3)/Q. Then there exist infinitely
many Ramanujan primes for π .
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Let us now explain the main issues behind its proof. One can show (see Sec-
tion 1) that at any prime p where π is unramified, if the coefficient ap(π ) is bounded
in absolute value by 1, then πp is tempered. A general result proved in [Ra] for
GL (n) implies that for any real number b > 1, the set of p where |ap(π )| ≤ b is
infinite, even of lower Dirichlet density ≥ 1 − 1

b2 . But this gives us nothing for
b = 1. Our aim here is to show that for infinitely many primes p, ap(π ) is indeed
bounded in absolute value by 1. The key idea is to exploit the adjoint L-function
(whose definition makes sense for π on GL (n) for any n):

(0.1) L(s, π ; Ad) = L(s, π × π )
ζ (s)

,

where L(s, π × π ) is the Rankin-Selberg L-function of the pair (π, π ). (As usual,
π signifies the complex conjugate of π , which, by the unitarity of π , is the same
as the contragredient of π .) One knows (see [HRa], Lemma a of Section 2) that
L(s, π × π ) is of positive type, i.e., the Dirichlet series defined by its logarithm has
non-negative coefficients. The proof of Theorem A relies on the following:

Proposition B. Let π be a cusp form on GL (n)/Q. Then for any finite set S
of primes containing infinity, the incomplete adjoint L-function L S(s, π, Ad) is not
of positive type.

The proof given here of this proposition, and hence of Theorem A, will work
over any number field F having no real zeros in the interval (0, 1). In the case of
real zeros one has to proceed differently.

Acknowledgments. When I was at Hopkins as an Assistant Professor during
1983–85, I learnt a lot from Joe Shalika about the L-functions of GL (n). It is a
pleasure to dedicate this article to him. Thanks are due to Jeff Lagarias and Freydoon
Shahidi for making comments on an earlier version of this article, which led to an
improvement of the exposition, and to the NSF for financial support through the
grant DMS–0100372.

1. Why Proposition B implies Theorem A. Let π % π∞ ⊗ (⊗′
pπp) be a

cuspidal automorphic representation of GL (3, A) = GL (3, R) × GL (3, A f ). Let
S0 be the set of primes p where πp is unramified and tempered, and let S1 be the
finite set of primes where πp is ramified. Put

(1.1) S = S0 ∪ S1 ∪ {∞}.

For any L-function with an Euler product
∏

v Lv (s) over Q, put

(1.2) L S(s) =
∏

p/∈S

L p(s),

which we call the incomplete Euler product relative to, or outside, S.
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Pick any p outside S (if there is one) and consider the Langlands class

(1.3) Ap = Ap(π ) = {α1,p, α2,p, α3,p}.

As πp is by assumption nontempered, there is a nonzero real number t and a complex
number u of absolute value 1 such that, after possibly renumbering the α j,p,

α1,p = upt .

On the other hand, by the unitarity of πp, we must have

{α1,p, α2,p, α3,p} =
{

α−1
1,p, α

−1
2,p, α

−1
3,p

}

.

This then implies that

(1.4) Ap = {upt , up−t , w},

for some complex number w of absolute value 1. We may, and we will, assume that
t is positive. Put

(1.6) u−1w = eiθ ,

for some θ ∈ [0, 2π ) ⊂ R.
So we have

(1.6)
|ap|2 = (pt + p−t + cos θ )2 + sin2 θ = 3 + p2t + p−2t + 2 cos θ (pt + p−t ).

Now let us look at the adjoint L-function. By definition,

(1.7) L S(s, π ; Ad) =
∏

p/∈S L(s, πpπ p)
∏

p/∈S(1 − p−s)−1
.

So for any p outside S, the Langlands class of the Adjoint L-function is

Ap(π ; Ad) = Ap ⊗ Ap − {1}.

Applying (1.4) and (1.5), we get

(1.8) Ap(π ; Ad) = {p2t , p−2t , 1, 1, uw pt , uw p−t , uwpt , uwp−t}

and

ap(π ; Ad) = tr (Ap(π ; Ad)) = 2 + p2t + p−2t + 2 cos θ (pt + p−t ).

Consequently,

(1.9) log L S(s, π ; Ad) =
∑

p/∈S

∑

m≥1

apm (π ; Ad)
pms

,

where (by (1.8) and (1.6))

(1.10). apm (π ; Ad) = 2 + p2mt + p−2mt + 2 cos mθ (pmt + p−mt ).
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Since

pmt + p−mt ≥ 2,

and since

apm (π ; Ad) = (pmt + p−mt )((pmt + p−mt ) + 2 cos mθ )),

we get the following:

Lemma 1.11. Let π be a cusp form on GL (3)/Q and S the set of primes
containing ∞, the primes where π is ramified and the Ramanujan primes for π .
Then L S(s, π ; Ad) is of positive type.

But if S0, and hence S, is finite, this lemma contradicts the conclusion of
Proposition B. Hence the set of Ramanujan primes for π must be infinite, once we
accept Proposition B.

2. Proof of Proposition B. In this section π will be a unitary, cuspidal auto-
morphic representation of GL (n, A). At each place v , the local factor of L(s, π ; Ad)
is given by

(2.1) L(s, πv ; Ad) = L(s, πv × π v )
ζv (s)

,

where ζv (s) is (1 − p−s)−1 if v is a finite place defined by a prime p, and it equals
π−s/2&(s/2) if v is the archimedean place. By convention, ζ (s) is the product of
ζv (s) over all the finite v , while all the other automorphic L-functions occurring in
this paper will also involve the archimedean factors.

The L-group of GL (n) is GL (n, C), and the Euler factor L(s, π ; Ad) is asso-
ciated to the representation

(2.2) Ad : GL (n, C) → GL (n2 − 1, C),

given by composing the natural projection of GL (n, C) onto PGL (n, C) with the
(n2 − 1)-dimensional Adjoint representation of PGL (n, C), whence the notation
Ad . In any case, we have for every v:

(2.3) L(s, πv ; Ad) -= 0, ∀ s ∈ C.

One way to see this will be to use the local Langlands correspondence, estab-
lished recently by Harris-Taylor [HaT] and Henniart [He], associating to each πv an
n-dimensional representation σv of WFv × SL(2, C) (resp. WFv ) for v finite (resp.
infinite). (Here WFv denotes as usual the Weil group of Fv .) Since this correspon-
dence preserves the local factors of pairs and matches the central character of πv

with the determinant of σv , one gets in particular

L(s, πv ; Ad) = L(s, Ad(σv )),
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where Ad(σv ) denotes σv ⊗ σ∨
v 0 1, which is a genuine representation because the

trivial representation occurs in σv ⊗ σ∨
v % End (σv ). It is well known that for any

representation τv of WFv × SL (2, C), such as Ad(σv ), the associated L-factor has
no zeros.

Now let S be any finite set of primes containing ∞ and the primes where π is
ramified. Put

(2.4) L S(s, π ; Ad) =
∏

v /∈S

L(s, πv ; Ad).

Suppose L S(s, π ; Ad) is of positive type. Then by definition, its logarithm
defines a Dirichlet series with positive coefficients, absolutely convergent in a right
half plane. By the theory of Landau, this Dirichlet series converges on (β, ∞),
where β is the largest real number where log L S(s, π ; Ad) diverges. But such a
point of divergence must be a pole, and not a zero, of L S(s, π ; Ad) because its
logarithm is positive in (β, ∞).

Lemma 2.5. Let β be the smallest real number such that L S(s, π ; Ad) converges
for all real s > β. Then

β < 0.

Proof of the Lemma 2.5. By the standard properties of the Rankin-Selberg
L-functions ([JPSS], [JS], [Sh1-3], [MW]—see also [BRa]), L S(s, π × π) is in-
vertible for 1(s) > 1 and admits a meromorphic continuation to the whole s-plane
with a unique simple pole at s = 1. The same properties hold of course for ζ S(s);
so L S(s, π ; Ad) has no pole in 1(s) ≥ 1. In other words we have β < 1. Moreover,
one knows that ζ S(s) is nonzero on (0, 1) ⊂ R. Hence we have

β ≤ 0.

Now let us look at the point s = 0. By definition,

L S(s, π ; Ad) = L∞(s, π × π )
ζ (s)

∏

v∈S−{∞} L(s, πv ; Ad)
. !

The numerator on the right has no pole at s = 0, and ζ (s) does not vanish at
s = 0. Moreover, as we noted above, the local factors L(s, πv ; Ad) have no zeros.
Consequently, L S(s, π ; Ad) has no pole at s = 0, and this proves the lemma.

Lemma 2.6. L(s, π∞; Ad) has a pole at s = 0.

Proof of the Lemma 2.6. There exist complex numbers z1, z2, z3 such that

(2.7) L(s, π∞) =
3

∏

j=1

&R(s + z j + δ j ),
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with δ j ∈ {±1}, ∀ j , and

&R(s) = π−s/2&(s/2).

By the unitarity of π∞, we see that either all the z j have absolute value 1, in which
case π∞ is tempered, or exactly one of the z j , say z1, has absolute value 1, and
moreover,

z2 = u + t, z3 = u − t,

for some positive real number t and a complex number u of absolute value 1. In
either case we see that the set

(2.8) B(π∞; Ad) := {z1, z2, z3} ∪ {z1, z2, z3} − {0}

contains 0. The standard yoga of Langlands L-functions furnishes the identity

(2.9) L(s, π∞; Ad) =
∏

z∈B(π∞;Ad)

&R(s + z).

Recall that &R(s) never vanishes and has simple poles at the even non-positive
integers, in particular at s = 0. Since B(π∞; Ad) contains 0, &R(s) is a factor of
L(s, π∞; Ad). We must then have

−ords=0L(s, π∞; Ad) ≥ 1,

as asserted. !

Proof of Proposition B (continued). As the local factors L(s, πv ; Ad) never
vanish, and since S is finite by assumption, the function

L S−{∞}(π ; Ad) : =
∏

p∈S−{∞}
L(s, πp; Ad)

is nonzero at s = 0. Hence by Lemma 2.6,

(2.10) −ords=0L S(s, π ; Ad) ≥ 1.

But we know that the full adjoint L-function L(s, π ; Ad) has no pole at s = 1, nor
at s = 0 by the functional equation. So all this forces the following:

L S(0, π ; Ad) = 0,

which contradicts Lemma 2.5. The only unsupported assumption we made was
that L S(s, π ; Ad) is of positive type, which must be wrong if S is finite. We are
done. !

Note that the proof uses the base field Q in order to use the crucial property of the
Riemann zeta function that it does not vanish in the real interval (0, 1). For general
number fields F , the Dedekind zeta function ζF (s) should not have any such real
zero either, save possibly at s = 1/2. Clearly, Theorem A will follow for any F
for which Proposition B can be established. One way to get around the difficulty
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for general F would be to prove a priori that the adjoint L-function, which has
been studied from different points of view by D. Ginzburg, Y. Flicker, H. Jacquet,
S. Rallis, F. Shahidi, and D. Zagier, has no pole in (0, 1), which is, to our knowledge,
unknown. To elaborate a little, a particular version of the trace formula due to
H. Jacquet and D. Zagier [JZ] suggests that the divisibility of L(s, π × π ) by ζF (s)
for all cuspidal automorphic representations π of GL (n, AF ) with trivial central
character is equivalent to the divisibility of ζK (s) by ζF (s) for all commutative cubic
algebras K over F . Since the latter is known for n = 3, one hopes that the former
holds. This divisibility has been investigated by relating it to an Eisenstein series
on G2 by D. Jiang and S. Rallis [JiR], and the desired result could be close to being
established in the n = 3 case.

253-37 Caltech, Pasadena, CA 91125
E-mail: dinakar@its.caltech.edu
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CHAPTER 25

NONVANISHING OF L-FUNCTIONS ON !(s) = 1

By Peter Sarnak

To Joe Shalika on his 60th birthday

Abstract. In [Ja-Sh], Jacquet and Shalika use the spectral theory of Eisenstein series to establish a
new result concerning the nonvanishing of L-functions on !(s) = 1. Specifically they show that the
standard L-function L(s, π ) of an automorphic cusp form π on GLm is nonzero for !(s) = 1. We
analyze this method, make it effective, and also compare it with the more standard methods. This note
is based on the letter [Sa1].

1. Review of de la Vallée Poussin’s method. A celebrated result of
Hadamard and de la Vallée Poussin is the Prime Number Theorem. Their proof
involved showing that the Riemann zeta function ζ (s) is not zero for !(s) = 1. In
fact these two results turn out to be equivalent. De la Vallée Poussin (1899) extended
this method to give a zero-free region for ζ (s) of the form

ζ (s) "= 0 for σ ≥ 1 − c
log(|t | + 2)

.(1.1)

Here c is an absolute positive constant and s = σ + it. We will call a zero-free
region of the type (1), a standard zero-free region.

De la Vallée Poussin’s method is based on the construction of an auxillary
L-function, D(s) with positive coefficients. D(s) should be analytic in !(s) > 1,
have a pole at s = 1 of order, say, k, and if L(σ + it0) = 0, (here L(s) stands for a
generic L-function whose nonvanishing we seek to establish.) D(s) should vanish
to order at least k at s = σ . (Since the coefficients of D(s) are positive, the Euler
product for D(s) converges absolutely for !(s) > 1.) This is enough to ensure that
L(1 + it0) "= 0 and if the order of vanishing at σ is bigger than k then one obtains
an effective standard zero-free region for L(s). To arrange for D(s) to have positive
coefficients one often uses a positive definite function on an appropriate group. For
example L(s, π × π̃ ), where π is any unitary isobaric representation of GLm (see,
for example, [Ho-Ra] for definitions and examples) has this property. See also [De]
for such positive definite functions on other groups.

In the most basic case of ζ (s) and t0 ∈ R with |t0| ≥ 2, one can take

D(s) = ζ 3(s) ζ 2(s + it0) ζ 2(s − it0) ζ (s + 2it0) ζ (s − 2it0)(1.2)

= L(s, $ × $̃) .

Here $ = 1 ! α−it0 ! αit0 is an isobaric representation of GL3 and α the principal
quasi-character of A∗

Q. D(s) has a pole of order 3 at s = 1 and if ζ (σ + it0) = 0
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then D(s) will have a zero of order 4 at s = σ . Hence, by a standard function
theoretic argument (see [Ho-Ra], for example) we have that ζ (σ + it0) "= 0 for
σ ≥ 1 − c

log |t0| . This establishes the standard zero-free region (1) for ζ (s).
We note that (1.1) is not the best zero-free region that is known for ζ (s).

Vinogradov [Vi] and his school have developed sophisticated techniques that lead
to zero-free regions of the type; ζ (s) "= 0 for σ ≥ 1 − cα/(log(|t | + 2))α for α > 2

3
and cα > 0.

Another well-known example of nonvanishing is that of a Dirichlet L-function
L(s, χ ), with χ a quadratic character of conductor q. For D(s) we can take
ζ (s)L(s, χ ) (or, if one prefers, (ζ (s)L(s, χ ))2 = L(s, (1 ! χ ) × (1̃!χ )). In this
case the order of zero at s = 1 is equal to the order of pole. Hence L(1, χ ) "= 0 (see
Landau’s Lemma [Da], p. 34) but this does not yield a standard zero-free region
near s = 1 for L(s, χ )—i.e., in terms of the conductor. (That is to say, L(σ, χ ) "= 0
for σ ≥ 1 − c

log q and some c > 0.) In fact no such zero-free region is known for
L(s, χ )—this being the notorious problem of the exceptional, or “Landau-Siegel,”
zero. In this note we will only be concerned with zero-free regions for a fixed L-
function (i.e., what is called the t-aspect). For a recent discussion of the exceptional
zero problem in general, see the paper [Ho-Ra].

The de la Vallée Poussin method generalizes to automorphic L-functions. Let
K be a number field, m ≥ 1, and let π be an automorphic cusp form on GLm(Ak).
The standard (finite part) L-function associated with π , namely, L(s, π ), has an
analytic continuation to C and a functional equation s −→ 1 − s, π −→ π̃ [Go-Ja].
Also well known by now are the analytic properties (i.e., continuation and functional
equation) of the Rankin-Selberg L-functions L(s, π × π ′), where π and π ′ are cusp
forms on GLm(Ak) and GLm ′(Ak), respectively. This follows from [Ja -PS-Sh],
[Sh1], and [Mo-Wa].

Apply de la Vallée Poussin’s method with

D(s) = ζ (s) L2(s, π × π̃ )L2(s + it0, π ) L2(s − it0, π̃ ) ·(1.3)

L(s + 2it0, π × π ) L(s − 2it0, π̃ × π̃ )

= L(s, $ × $̃),

where $ := 1 ! π ⊗ αit0 ! π̃ ⊗ α−it0 (we are tacitly assuming that we have
normalized π so that π̃ "= π ⊗ α±2it0 ).

This yields a standard zero-free region for L(s, π )—that is, a zero-free region
as in (1) but with

c = c(π ).(1.4)

As mentioned in the abstract, the nonvanishing of such an L(s, π ) for σ = 1 was
first established (before the Rankin-Selberg theory was developed) by Jacquet-
Shalika who used the method discussed in Section 2. The advantage of de la Vallée
Poussin’s method here is that it yields a standard zero-free region (1.4). According



P1: IML/SPH P2: IML/SPH QC: IML/SPH T1: IML

PB440-25 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 9:49

nonvanishing of L-functions on !(s) = 1 721

to the general functoriality conjectures of Langlands, any automorphic L-function
should be a (finite) product of such standard L-functions. If so, we would be in
good shape at least in that the zero-free region for the general L-function would be
of the same quality as for ζ (s).

One can apply de la Vallée Poussin’s method to certain Rankin-Selberg L-
functions. If π "= π ′, take for D,

D(s) = L(s, π × π̃ ) L(s, π ′ × π̃ ′) L(s + it0, π × π ′) L(s − it0, π̃ × π̃ ′).(1.5)

From this it follows that L(1 + it0, π × π ′) "= 0. This nonvanishing result was
established in this way by Ogg [Og] for m = 2 = m ′. The general case of any m and
m ′ was first proven by Shahidi [Sh1] using the Eisenstein series method discussed
in Section 2. If π and π ′ are self-dual, Moreno [Mo] established a standard zero-free
region for L(s, π × π ′). To see this, one can take D(s) = L(s, $ × $̃) where

$ = π ! π ⊗ αit0 ! π ⊗ α−it0 ! π ′ ! π ′ ⊗ αit0 ! π ′ ⊗ α−i t0 .(1.6)

In this case, D(s) has a pole of order 6 at s = 1 and a zero of order 8 at s = σ if
L(σ + it, π × π ′) = 0.

These L-functions L(s, π ) and L(s, π × π ′) and any others that can be ex-
pressed in terms of these by known cases of functoriality are more or less all that
can be handled by de la Vallée Poussin’s method. We turn now to the Eisenstein
series method.

2. Nonvanishing via Eisenstein series. This method is based on the spectral
theory of locally homogeneous spaces and in particular Eisenstein series. In as
much as this method works effectively in all cases where the methods of Section
1 apply as well as in many other cases, it must, at least at the present time, be
considered a principal method. There have been a number of suggestions as well as
evidence for useful spectral interpretations of the zeroes of L-functions [Od], [Ka-
Sa], [Co], [Za]. However, it does not seem to be widely appreciated that the spectral
interpretation of the zeroes of L-functions through poles of Eisenstein series (i.e.,
as resonances) has already proven to be very powerful.

To illustrate this, consider the symmetric power L-functions L(s, π, symk),
where π is a cusp form on GL2(AQ) with trivial central character and k ≥ 1 (see
[Sh2] for definitions). The recently established functorial lifts, sym3 : GL2 −→
GL4 and sym4 : GL2 −→ GL5, due to Kim and Shahidi [K-S1], [Ki] (see also [He]),
allow one to study L(s, π, symk) for 1 ≤ k ≤ 8. By decomposing L(s, symiπ ×
symjπ ) 1 ≤ i ≤ 4, 1 ≤ j ≤ 4 into a product of primitive L-functions (see [K - S2])
and using (6) of Section 1, one sees that for 1 ≤ k ≤ 8, L(s, π, symk) satisfies a
standard zero-free region. However, the next symmetric power L(s, π, sym9) falls
outside of the range of this approach. It is not known whether the Euler product
for L(s, π, sym9) converges absolutely for !(s) > 1. In particular L(s, π, sym9)
might even have zeroes in !(s) > 1! Thus an application of de la Vallée Poussin’s
method appears to be problematic. Concerning the absolute convergence, if we use
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the best bounds known towards the Ramanujan Conjectures [Ki-Sa] one sees that
L(s, π, sym9) converges absolutely for !(s) > 71

64 . Given the above comments, it is
remarkable that the theory of Eisenstein series on E8 together with the Langlands-
Shahidi (see [Mi] for a recent summary and outline) method allows one to show
that (see [K-S2]): L(s, π, sym9) is meromorphic in the plane and is analytic and
nonvanishing in !(s) ≥ 1, except possibly for a finite number of simple zeros
or poles in

[
1, 71

64

]
. The same arguments give the analyticity and nonvanishing in

{s|!(s) ≥ 1}\[1, ∞), for a quite general class of L-functions—see [Ge-Sh]. Given
the success of this technique the question arises as to what zero-free region it yields.
The proof of nonvanishing, though very simple (even magical), is quite indirect and
it is not clear how to make it effective so as to yield zero-free regions. We show
below that in the simplest case of ζ (s), one can with some effort make the proof
effective, and it gives zero-free regions which are almost as good as the standard
zero-free regions—see (53) below. At the end of this section we indicate how one
might proceed in the general case.

In order to deal with ζ (s) we consider the Eisenstein series for the modular
quotient X of the upper half-plane H, that is, X = SL (2, Z)\H. It is instructive
in this analysis to consider more general Fuchsian groups ' ≤ SL (2, R) for this
allows us to separate the arithmetic and analytic features. So assume that '\H

has one cusp at infinity and it is normalized so that the stabilizer of infinity is
'∞ = {±

(1 m
0 1

)
|m ∈ Z}.

The corresponding Eisenstein series is defined by

E'(z, s) =
∑

γ∈'∞\'
(y(γ z))s , for !(s) > 1(2.1)

and z = x + iy ∈ H.
The spectral theory of Eisenstein series due to Selberg in this setting [Se1], and
Langlands in general [La], asserts that E'(z, s) is meromorphic in s. Moreover, it
is analytic in !(s) ≥ 1

2 except possibly for simple poles in ( 1
2 , 1]. These general

properties when applied to ' = SL (2, Z) imply that ζ (s) "= 0 for !(s) = 1.
One can formulate this in a very explicit way (see (2.15) below), which I

learned from a lecture of Selberg’s (at Stanford, ± 1980). Let '∞\'
/
'∞ be a set

of representatives for these double cosets for such a ' ≤ PSL (2, R). The set of c
appearing in [ a

c
b
d ] ∈ '∞\'/'∞ can be chosen so that c ≥ 0 and c = 0 corresponds

to the identity coset. They form a discrete subset in [0, ∞). For m ∈ Z and c > 0
as above set

τm,'(c) =
∑

[
a
c

b
d

]
∈'∞\'/'∞

e
(

md
c

)
.(2.2)

Here e(z) = e2π i z and the sum is easily seen to be well defined. A standard calcu-
lation [Ku] shows that the m−th coefficient of E'(z, s),

∫ 1
0 E'(z, s) e(−mx) dx , is
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given by

ys +
(

∑

c>o

τ0,'(c)
c2s

)
π1/2'(s− 1

2 )
'(s) y1−s, if m = 0

:= ys + φ'(s) y1−s,

(2.3)

and

=
(

∑

c>0

τm,'(c)
c2s

)
2π s |m|s− 1

2 y1/2 Ks− 1
2
(2π |m|y)

'(s)
, if m "= 0 .(2.4)

Using (2.4) and the theory of Eisenstein series we can meromorphically continue
the functions Dm(s), where

Dm(s) :=
∑

c>0

τm,'(c)
c2s

.(2.5)

In order to give growth bounds on Dm(s) for !(s) ≥ 1
2 , we use the technique in

[Go-Sa]. For m > 0 set

Pm(z, s) =
∑

γ∈'∞\'
(y(γ z))s e(mγ z) .(2.6)

This series converges absolutely for !(s) > 1 and for !(s) ≥ 3
2 , we have the

bound

Pm(z, s) - y1−σ for y ≥ 1
2
.(2.7)

Hence for σ ≥ 1
2 we may form

〈E'(·, s) , Pm(· , s̄ + 1)〉(2.8)

=
∫

'\H

E'(z, s) Pm(z, s̄ + 1)
dx dy

y2

= a bs '(2s)
'(s) '(s + 1)

Dm(s),

for suitable constants a and b (depending on m).
We assume that E'(z, s) has no poles in ( 1

2 , 1). For a given ' this can be
checked, and if such poles are present, they will enter in the asymptotics below in
an explicit way. From (2.8) and the properties of Eisenstein series we see that Dm(s)
is holomorphic in !(s) ≥ 1

2 (there being no pole at s = 1 since 〈1, Pm〉 = 0). Also
from (2.8) and Stirling’s series we see that for !(s) = 1

2 and |t | large,

|Dm(s)| ∼ |t |1/2| < E(· , s) , Pm(· , s̄ + 1)〉| .(2.9)

For T large and T ≤ t ≤ T + 1 write

Pm

(
3
2

+ it
)

= Pm

(
3
2

+ iT
)

+ 1
i

∫ t

T
P ′

m

(
3
2

+ i τ

)
dτ.
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Hence
∫ T +1

T

∣∣∣∣

〈
E

(
1
2

+ it
)
, Pm

(
3
2

− it
)〉∣∣∣∣ dt(2.10)

≤
∫ T +1

T

{∣∣∣∣

〈
E

(
1
2

+ it
)
, Pm

(
3
2

− iT
)〉∣∣∣∣

+
∫ t

T

∣∣∣∣

〈
E

(
1
2

+ it
)
, P ′

m

(
3
2

− iτ
)〉∣∣∣∣ dτ

}
dt.

The spectral theory of L2('\H) and, in particular, Bessel’s inequality, yields
∫ ∞

−∞

∣∣∣∣

〈
E

(
1
2

+ it
)
, P ′

m

(
3
2

− iτ
)〉∣∣∣∣

2

dt ≤
∥∥∥∥P ′

m

(
3
2

− iτ
)∥∥∥∥

2

2
- 1 .(2.11)

Putting this in (2.10) and applying Cauchy’s inequality yields,
∫ T +1

T

∣∣∣∣

〈
E

(
1
2

+ it
)
, Pm

(
3
2

− it
)〉∣∣∣∣ dt - 1 .

Combined with (2.9) we get
∫ T +1

T

∣∣∣∣Dm

(
1
2

+ it
)∣∣∣∣ dt - T 1/2 .(2.12)

Equipped with (2.12) we return to (2.5) and apply Perron’s formula. For x > 0
∑

c ≤ x

(
1 − c

x

)
τm,'(c) = 1

2π i

∫

!(s)=2
Dm(s) x2s ds

s(2s + 1)
.(2.13)

Now shift the contour in the last integral to !(s) = 1
2 . The estimate (2.12) easily

justifies this shift and, moreover, we don’t pick up any poles. Thus

∑

c ≤ x

(
1 − c

x

)
τm,'(c) = x

2π

∫ ∞

−∞

Dm
( 1

2 + i t
)

eit log x

( 1
2 + it

)
(1 + 2it)

dt.(2.14)

(2.12) ensures that the integral in (2.14) is absolutely convergent. Hence by the
Riemann-Lebesgue lemma we conclude that as x −→ ∞

∑

c ≤ x

(
1 − c

x

)
τm,'(c) = o(x) .(2.15)

This general result holds for any ' for which E(z, s) has no poles in ( 1
2 , 1). In

particular, it holds if λ1 ('\H) ≥ 1
4 where λ1 is the second smallest eigenvalue of

the Laplacian on '\H. For SL (2, Z)\H as well as other low genus Riemann surfaces
one can use geometric methods, see for example [S2, p. 34], to show that λ1 ≥ 1

4 .
Also, for ' = SL (2, Z) the c’s run over integers and the sums τm,SL (2,Z)(c) are
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Ramanujan sums that may be evaluated explicitly in terms of the Mobius function µ.

τm,SL (2,Z)(c) =
∑

d|m
d|c

µ
( c

d

)
d .(2.16)

Thus for m = 1 and ' = SL (2, Z), (15) asserts that
∑

c ≤ x

(
1 − c

x

)
µ(c) = o(x) .(2.17)

Now (2.17) is elementarily equivalent to the prime number theorem. Thus the
above spectral analysis provides us with a nonarithmetic setting in which (2.15),
a form of the prime number theorem, is valid in a family (the Beurling theory
of generalized primes [Be] provides another such setting). However the standard
zero-free region for ζ (s) does not persist in the family and is apparently a rigid
feature. To see this, note that a zero-free region is equivalent to a rate of decay in
(2.17) or (2.15) and that this in turn is equivalent to a pole-free region in β < 1

2 for
the poles ρ = β + iγ of Dm(s). From (2.8) this amounts to such pole-free regions
for E'(z, s), and according to the theory of Eisenstein series these poles occur at
poles of φ'(s). We apply the theory [P-S1], [P-S2], and see also [Wo1] and [Wo2],
concerning the behavior of such poles under deformations of '. A consequence of
the theory is that if the critical values of certain L-functions are nonzero, then the
corresponding eigenvalues of the Laplacian are dissolved into poles of Eisenstein
series. For example, using the recent nonvanishing results of Luo [Lu] for such
critical values of Rankin-Selberg L-functions and assuming a suitable form of a
standard multiplicity bound conjecture for the eigenvalues of the Laplacian on a
congruence quotient of H, we have that for the generic ':

There is c' > 0 such that the number of poles ρ = β + iγ(2.18)

of φ' (s) with|γ | ≤ T and 0 ≤ β <
1
2

is at least c'T 2.

On the other hand Selberg [Se2] has shown that for any '

∑

ρ
|γ | ≤ T
β < 1

2

(
1
2

− β

)
= O(T log T ) .(2.19)

Combining (2.18) and (2.19) we see that for generic ' there is a sequence of poles
ρ j = β j + iγ j of φ'(s) with

1
2

> β j >
1
2

− c′
' log |γ j |

|γ j |
.(2.20)

In the case of ' = SL (2, Z), according to (2.2), (2.3), and (2.16) we have

φSL (2,Z)(s) =
√

π '
(
s − 1

2

)

'(s)
ζ (2s − 1)

ζ (2s)
(2.21)



P1: IML/SPH P2: IML/SPH QC: IML/SPH T1: IML

PB440-25 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 9:49

peter sarnak726

and the m−th coefficient of E(z, s) is

2π s |m|s−1/2 y1/2 Ks− 1
2

(2π |m|y)

'(s) ζ (2s)
σ1−2s (|m|),(2.22)

where

σs(m) =
∑

d|m
ds .(2.23)

Hence the standard zero-free region for ζ (s) implies the pole-free region for SL2(Z)
of the form:

β ≤ 1
2

− c
log(|γ | + 2)

.(2.24)

Thus while the analogue of the nonvanishing of ζ (s) on σ = 1 is valid for
general ', the pole-free region (2.24) is not. In particular this shows that one cannot
apply this Eisenstein series method of showing nonvanishing of L-functions on
σ = 1 to get zero-free regions at least if all one uses is the general spectral theory.

The key to effectivizing the nonvanishing proof in which the Fourier coef-
ficients of E(· , s) along unipotents of parabolics are ratios of L-functions (as
in the Langlands-Shahidi method, see [Ge-Sh]) is to exploit the inhomogeneous
form of the Maass-Selberg-Langlands relation. For the rest we stick to the case
' = SL (2, Z). It is perhaps worth pointing out the simple magical and standard
derivation of the nonvanishing of ζ (s) for σ = 1 using E(z, s). E(z, s) is analytic
for !(s) = 1

2 , thus if we look at (2.22) with m "= 0, we see that such a coeffi-
cient is analytic for !(s) = 1

2 . Clearly, consideration of the denominator shows that
ζ (1 + 2it0) cannot be zero.

To continue our quantitative analysis, we will use freely the analytic properties
of ζ (s)—that is, the location of poles and the functional equation (all of which are
essentially known for the general L-function that can be continued by the theory
of Eisenstein series). We also use freely the asymptotic properties of the Whittaker
functions Ks(y) as well as the Gamma function.

The Maass-Selberg relation for SL (2, Z) reads:

∫

X

∣∣∣∣E A

(
z,

1
2

+ it
)∣∣∣∣

2 dxdy
y2

(2.25)

= 2 log A − φ′

φ

(
1
2

+ it
)

+
φ̄

( 1
2 + it

)
A2it − φ

( 1
2 + it

)
A−2it

2it
,

where A ≥ 1 and where for z ∈ F (the standard fundamental domain),

E A(z, s) =
{

E(z, s), for y ≤ A
E(z, s) − ys − φ(s)y1−s, for y > A.

(2.26)
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Normalizing the denominator in φ(s)—(see (2.21))—gives

∫

X
|ζ (1 + 2it)|2

∣∣∣∣E A

(
z,

1
2

+ it
)∣∣∣∣

2 dxdy
y2

(2.27)

= |ζ (1 + 2it)|2
∣∣∣ 2 log A − φ′

φ

(
1
2

+ it
)

+
φ

( 1
2 + it

)
A2it − φ

( 1
2 + it

)
A−2it

2it

∣∣∣.

From (2.22), Parseval’s inequality and the shape of F we have that

LHS of (2.27) 2
∞∑

m=1

∫ ∞

1

∣∣∣∣∣
Kit (2π |m|y) σ−2i t (m)

'
( 1

2 + it
)

∣∣∣∣∣

2
dy
y

.(2.28)

On the other hand, (2.21) together with Stirling for '′

'
(s) and the functional equation

for ζ (s) shows that for t ≥ 2
∣∣∣∣ζ (1 + 2i t)

φ′

φ

(
1
2

+ it
)∣∣∣∣ - log t + |ζ (1 + 2it)| +

∣∣ζ ′(1 + 2it)
∣∣ .(2.29)

It is elementary (see p. 49 of [Ti] and such upper bounds for L-functions can be
derived generally) that for t ≥ 2

|ζ (1 + 2it) | - log t(2.30)

|ζ ′(1 + 2it)| - (log t)2 .

Hence
∣∣∣∣ζ (1 + 2it)

φ′

φ

(
1
2

+ it
) ∣∣∣∣ - (log t)2 .(2.31)

Assuming that |ζ (1 + 2it) | ≤ 1, which we can in estimating this quantity from
below, we have from (2.28) and (2.29) that

∞∑

m=1

|σ−2it(m)|2
∫ ∞

m

∣∣∣∣∣
Kit(2πy)

'
( 1

2 + it
)

∣∣∣∣∣

2
dy
y

- |ζ (1 + 2it)| (log t)2.(2.32)

Using the asymptotics [E, p. 87–88] we have that for y < t
4

Kit(y) ∼ e
−π
4 t

√
2π

4
√

t2 − y2
sin

[π

4
+ th (y/t)

]
,(2.33)

with h a fixed smooth function.
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Hence

∫ t/4

t/8

∣∣∣∣∣
Kit (2πy)

'
( 1

2 + it
)

∣∣∣∣∣

2
dy
y

2 1
t

,(2.34)

and so for m ≤ t/8 we have

∫ ∞

m

∣∣∣∣∣
Kit(2πy)

'
( 1

2 + it
)

∣∣∣∣∣

2
dy
y

2 1
t

.(2.35)

Applying (2.32) with m = 1 and using (2.35) and |σ−2i t (1)| = 1, we obtain

|ζ (1 + 2it)| 2 1
t(log t)2

.(2.36)

We can do better by using many m’s in (2.32). For example, note that for m = p,
a prime

∣∣σ−2it(p) − σ−2it (p2)
∣∣ = 1.

Hence
∣∣σ−2it (p2)

∣∣2 +
∣∣σ−2it (p)

∣∣2 2 1.(2.37)

Thus
∑

m ≤ t/8

∣∣σ−2it(m)
∣∣2 2

∑

p ≤
√

t
8

1.

The last sum is by elementary means (Chebyshev) 2
√

t/log t . Combining this
with (2.32) and (2.35) yields

|ζ (1 + 2it)| 2 1

(log t)3
√

t
.(2.38)

To further improve this, we examine intervals of primes p where |1 + pit2| is small,
i.e., where σ+2it(p) is small. To proceed we need more flexibility on the range of
m’s in (2.32). Set η = t−δ with δ > 0 (e.g., δ = 1 will work) and consider instead
of (2.27), the quantity

I =
∫ ∞

η

∫ 1

0
|ζ (1 + 2it)|2

∣∣∣∣E A

(
z,

1
2

+ it
)∣∣∣∣

2 dxdy
y2

.(2.39)

If N (z, η) = |{γ ∈ '∞\'| y(γ z) ≥ η}| then it is not difficult to see ([Iw], p. 54)
that for η ≤ 1

N (z, η) - 1
η

.(2.40)
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Hence

I =
∫

F
N (z, η)

∣∣∣∣E A

(
z,

1
2

+ it
)∣∣∣∣

2

|ζ (1 + 2it)|2 dxdy
y2

(2.41)

- 1
η

∫

F
|ζ (1 + 2it)|2

∣∣∣∣E A

(
z,

1
2

+ it
)∣∣∣∣

2 dxdy
y2

.

By (2.27) and (2.29), this gives

I - 1
η

|ζ (1 + 2it) |
[
(log t)2 + 2 log A

]
.(2.42)

Now if 1
A = η, then we see that the nonzero Fourier coefficients of E A(z, s) coincide

with those of E(z, s) for y ≥ η. So as in the discussion following (2.27) we deduce
that

I 2
∞∑

m=1

|σ−2i t (m)|2
∫ ∞

ηm

∣∣∣∣∣
Kit (2πy)

'
( 1

2 + it
)

∣∣∣∣∣

2
dy
y

(2.43)

2 1
t

∑

m ≤ t/4η

|σ−2i t (m)|2 .

On the other hand, for A = 1/η, log A = O(log t) so that (2.42) and (2.43) yield
η

t

∑

m ≤ t/4η

|σ−2it(m)|2 - (log t)2 |ζ (1 + 2it)|.(2.44)

This gives us the flexibility we need. If δ = 1, i.e., η = t−1, we have

1
t2

∑

t2
8 ≤ m ≤ t2

4

|σ−2it(m)|2 - |ζ (1 + 2it)|(log t)2 .(2.45)

To give a lower bound for the left hand side of (2.45) we restrict m to primes
N ≤ p ≤ 2N with N = t2

8 . For integers m with

t log N ≤ 2πm ≤ t log(2N ),(2.46)

let Im be the interval of p given by

|2t log p − 2πm + π | <
1

100
.(2.47)

Note that for p /∈ Im

|σ2i t (p)| 2 1 .(2.48)

The length Im satisfies

|Im | ≤ N
50t

.(2.49)
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A well-known application of sieve theory (which is independent of the zeta func-
tion!), see, for example, [Bo-Da], who use the large sieve, asserts that for N , M ≥ 2

π (M + N ) − π (N ) ≤ 3M
log M

,(2.50)

where π (x) =
∑

p≤x

1.

Hence the number of primes in Im is at most

3N
50t log(N/50t)

≤ 3N
25t log N

.(2.51)

The number of intervals Im is less than t according to the set up (2.46). Thus
the total number of primes in ∪m Im is at most

3N
25 log N

.(2.52)

Again, elementary arguments show that the number of primes p satisfying N ≤
p ≤ 2N is at least N

4 log N . Hence there are at least N
8 log N primes N ≤ p ≤ 2N which

are not in any Im . Thus from (2.45) and (2.47) it follows that

| ζ (1 + 2it) | 2 1
(log t)3

.(2.53)

This is the effective nonvanishing of ζ on σ = 1 that we sought to establish using
E(z, s). It leads immediately to a zero-free region of the type ζ (s) "= 0 for !(s) >

1 − c
(log t)5 . This is not quite the standard zero-free region but it is of the same

general quality.
Note that once we arrive at (2.45) we are in a similar position to a proof of the

nonvanishing of ζ (s) on σ = 1 due to Ingham [In]. He uses the identity
∞∑

n=1

|σit0 (n)|2 n−s = ζ 2(s) ζ (s + it0) ζ (s − i t0)
ζ (2s)

.(2.54)

Indeed, Balasubramanian and Ramachandra [Ba-Ra] in deriving zero-free regions
from (2.54), use similar sieving arguments to those used after (2.45). See also the
comments by Heath-Brown on p. 68 of [Ti]. Our point is that we arrive at (2.45) in
a geometric way using the Maass-Selberg relation, and hence our analysis can be
generalized to the Langlands-Shahidi setting.

In that setting one would probably (at least at first) go as far as (2.36) in
the above argument. That is to consider only one nonzero Fourier coefficient Eχ (s)
(in the notation of [Ge-Sh]) of the Eisenstein series. This will require understanding
the asymptotic behaviour in t of the archimedian local Whittaker function Wit (e).
Mckee [Mc] has made the first steps in this direction. We expect that these ideas
will lead to effective lower bounds in general of the type

|Lfinite (1 + it, π, r ) | 2 |t |−δ(2.55)
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for a constant δ depending on the group on which the Eisenstein series lives. This
falls short of a standard zero-free region, but it would be more than enough to
establish the conjecture in [Ge-Sh].

Acknowledgement. I would like to thank S. Gelbart and F. Shahidi for their
comments on an earlier version of this note.
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CHAPTER 26

RATIONAL POINTS AND AUTOMORPHIC FORMS

By Joseph A. Shalika, Ramin Takloo-Bighash, and Yuri Tschinkel

Abstract. We study the distribution of rational points of bounded height on certain equivariant com-
pactifications of anisotropic inner forms of semi-simple groups.

1. Introduction. Let x ∈ Pn(Q) be a Q-rational point in the projective space
of dimension n with coordinates x = (x0 : x1 : · · · : xn), such that

(x0, x1, . . . , xn) ∈ Zn+1
prim,

that is, the set of primitive (n + 1)-tuples of integers. Define a height function

H (x) := max
j

(|x j |).

Of course, we could replace this norm by any other norm on Rn+1, for example,
√

x2
0 + · · · + x2

n . Generally, for any number field F and x ∈ Pn(F) we can define

H (x) :=
∏

v∈Val(F)

max
j

(|x j |v ),

where the product is over all valuations of F . By the product formula, this does
not depend on a particular choice of homogeneous coordinates for x. Clearly, the
number

N (Pn, B) := #{x ∈ Pn(F) | H (x) ≤ B}

is finite, for any B > 0. In 1964, Schanuel computed its asymptotic behavior, as
B → ∞,

N (Pn, B) = c(n, F, H ) · Bn+1(1 + o(1)),

where c(n, F, H ) is an explicit constant (see [35]).
Let X be an algebraic variety over a F and µ : X −→ Pn a projective em-

bedding. Then H ◦ µ defines a height function on the set of F-rational points
X (F) (more conceptually, the height is defined by means of an adelic metrization
L = (L , ‖ · ‖A) of the line bundle L := µ∗(O(1))). We obtain an induced counting
function

N (X,L, B) := #{x ∈ X (F) | H ◦ µ(x) ≤ B}.

One of the main themes of modern arithmetic geometry and number theory
is the study of distribution properties of rational points on algebraic varieties. In
particular, one is interested in understanding the asymptotic distribution of rational
points of bounded height.

733
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All theoretical and numerical evidence available so far indicates that one should
expect an asymptotic expression of the form

N (X,L, B) = c · Ba log (B)b−1(1 + o(1)),

for some a ∈ Q, b ∈ 1
2Z, and a positive real c. In 1987, Manin had initiated a

program aimed at interpreting the constants a, b, and c in terms of intrinsic algebro-
geometric and arithmetic invariants of X . The main observation was that a and b
should depend only on the class of the embedding line bundle L in the Picard group
Pic (X ) of the variety X , more precisely its position with respect to the anticanonical
class [−K X ] and the cone of effective divisors !eff(X ) ⊂ Pic (X )R. The constant c,
on the other hand, should reflect the dependence of the asymptotic expression on
finer structures (like the choice of a norm in the definition of the height and p-adic
densities).

Of course, it may happen that X has no rational points at all, or that X (F) is
entirely contained in a proper Zariski closed subset. In these cases, it is hopeless to
try to read off the geometry of X from the asymptotics of rational points. We will
therefore assume that X (F) is Zariski dense. In general, it is not so easy to produce
examples of interesting varieties with a Zariski dense set of rational points (unless,
of course, X admits an action of an algebraic group with a Zariski dense orbit).
For example, X could be a flag variety or an abelian variety. It is expected that the
density of points (at least after a finite extension of the groundfield) holds for Fano
varieties (that is, varieties with ample anticanonical class [−K X ]). This question is
still open even in dimension 3 (see [20]). Here is a version of Manin’s conjecture:

Conjecture 1.1. Let X be an algebraic variety over a number field F such that
its anticanonical class [−K X ] is ample and X (F) is Zariski dense. Then there exists
a Zariski open subset U ⊂ X such that

N (U, −KX , B) = c(KX ) · B(log B)b(X )−1(1 + o(1))

for B → ∞, where −KX is a (metrized) anticanonical line bundle, b(X ) is the rank
of the Picard group Pic (X ) and c(KX ) a nonzero constant.

Remark 1.2. The restriction to Zariski open subsets is necessary since X may
contain accumulating subvarieties (the asymptotics of rational points on these sub-
varieties will dominate the asymptotics of the complement). The constant c(KX ) has
an interpretation as a Tamagawa number (defined by Peyre in [33]). Finally, there
is a similar description for arbitrary ample line bundles, proposed in [3], resp. [8].

Conjecture 1.1 and its refinements have been proved for the following classes
of varieties:

• smooth complete intersections of small degree in Pn (circle method);

• generalized flag varieties [17];

• toric varieties [5], [6];
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• horospherical varieties [40];

• equivariant compactifications of Gn
a [11];

• bi-equivariant compactifications of unipotent groups [38], [39].

We expect that Manin’s conjecture (and its refinements) should hold for
equivariant compactifications of all linear algebraic groups G and their homo-
geneous spaces G/H. We provide further evidence for this expectation by outlin-
ing a proof of the above conjecture for certain smooth equivariant compactifica-
tions of Q-anisotropic semi-simple Q-groups of adjoint type (for complete proofs
see [37]).

This work focuses on the interplay between arithmetic geometry and auto-
morphic forms. Though the main problem is inspired by Manin’s conjecture in
arithmetic geometry, our tools and techniques, which are naturally suited to the
current context, are from the theory of automorphic forms and representations of
p-adic groups. Our approach is inspired by the work of Batyrev and Tschinkel on
compactifications of anisotropic tori [4] and the work of Godement and Jacquet
on central simple algebras [19]. We are currently working on a generalization of
our results to higher rank, where the presence of the Eisenstein series makes the
problem even more interesting from the analytic point of view.

Finally, we would like to mention related work of Duke, Rudnick, and Sarnak
[14], Eskin, McMullen [15], Eskin, Mozes, and Shah [16] on asymptotics of integral
points of bounded height on homogeneous varieties. Their theorems neither imply
our results nor follow from them.

Acknowledgments. We have greatly benefited from conversations with Arthur
and Sarnak. The second author wishes to thank the Clay Mathematics Institute for
partial support of this project. The third author was partially supported by the NSA,
NSF and the Clay Mathematics Institute.

2. Methods and results. Let F be a number field and D a central simple
algebra of rank m over F . Let ! be a lattice in D. Denote by Val (F) the set of
all valuations and by S∞ the subset of archimedean valuations of F . For each
v ∈ Val (F), we put Dv = D ⊗F Fv and, for v /∈ S∞, !v = ! ⊗OF Ov . For almost
all v , !v is a maximal order in Dv . We proceed to define a family of norms ‖ · ‖!v

on Dv , one for each place v of F .

• nonarchimedean v: Choose a basis {ξ v
1 , . . . , ξ v

k } for !v . For g ∈ Dv , write
g =

∑

i ci (g)ξ v
i and set

‖g‖v = ‖g‖!v := max
i=1,...,k

{|ci (g)|v}.

It is easy to see that this norm is independent of the choice of basis.

• archimedean v: Fix a Banach space norm ‖ · ‖v = ‖ · ‖Dv on the finite-
dimensional real (or complex) vector space Dv = D ⊗F Fv .



P1: FMK

PB440-26 HIDA-0662G PB440-Hida-v4.cls December 10, 2003 7:34

j. shalika, r. takloo-bighash, and yu. tschinkel736

Clearly, for c ∈ Fv and g ∈ Dv , we have

‖cg‖v = |c|v · ‖g‖v .

Consequently, for c ∈ F× and g ∈ D, we have
∏

v∈Val (F)

‖cg‖v =
∏

v∈Val (F)

‖g‖v ,(2.1)

by the product formula. For an adelic point g = (gv )v ∈ D(A) define the global
height function:

H (g) :=
∏

v∈Val (F)

Hv (g) =
∏

v∈Val (F)

‖gv‖v .

By the product formula, H is well defined on the projective group D(F)×/F×.
Moreover, H is invariant under the right and left action of a compact open subgroup

K0 =
∏

v /∈S∞

K0,v ⊂ G(Afin)

(if we fix an integral model for G then K0,v = G(Ov ), for almost all v). It will be
convenient to assume that the Haar measure dg is such that vol (K0) = 1.

From now on, we let G be an F-anisotropic inner form of a split semi-simple
group G̃ of adjoint type over a number field F . Let

#F : G −→ D×

be an F-group morphism from G to the multiplicative group of a central simple
algebra over F of rank m. Extending scalars to a finite Galois extension E/F over
which both G and D are split, we obtain a homomorphism

#E : G̃(E) −→ GLm(E).

This homomorphism is obtained from an algebraic representation

# : G̃ −→ GLm,

defined over F .

Remark 2.1. Conversely, from any algebraic representation # : G̃ −→ GLm

over F we obtain a group homomorphism

#E : G̃(E) −→ GLm(E),

which induces a map

#∗
E : Z1(Gal (E/F), G̃(E)) −→ Z1(Gal (E/F), PGLm(E)).

Let c ∈ Z1(Gal (E/F), G̃(E)) be the cocycle that defines the inner form G. Then
#∗

E (c) defines a central simple algebra D ⊂ Matm(E). It is easy to verify that #E
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descends to a morphism of F-groups

#F : G → D×.

Thus we can use #F to pull back the height function from D× to G. We are
interested in the asymptotics of

N (#, B) := #{γ ∈ G(F) | H (#F (γ )) ≤ B},

as B → ∞. To put this in geometric perspective, the pair (G, #F ) defines an equi-
variant compactification X of G and a G-linearized ample line bundle on X (and vice
versa). Thus we are counting rational points on a Zariski open subset G ⊂ X , with
respect to some adelically metrized line bundle (depending on #). Below we will
see that for appropriate choices of # the asymptotic formula for N (#, B) matches
precisely Manin’s prediction.

Our main technical assumption (used in the computation (2.5)) is the following:

Assumption 2.2. The representation #F is absolutely irreducible.

In order to state our theorem we need to introduce some notation. Fix a Borel
subgroup B with maximal split torus T in G̃ and denote by X∗(T) the character
group of T. Let % be the root system of (G̃, T), and & = {α1, . . . , αr } the set of
simple roots. Also let 2ρG =

∑

α∈%+ α. Since G̃ is of adjoint type it is immediate
that there are one-parameter subgroups {α̂1, . . . , α̂r } of T such that

< α̂ j , αi >= −δi j .

Let # = #λ be the irreducible algebraic representation of G̃ associated with a dom-
inant weight λ. Let χλ be the character of T associated with λ. Since λ is dominant
and G̃ is of adjoint type, there exist nonnegative integers k1(#), . . . , kr (#) such
that

χλ(t) =
r

∏

i=1

αi (t)ki (#).

The numbers ki (#), 1 ≤ i ≤ r , are all non zero if the representation # is nontrivial.
Set then

a# := max
j=1,...,r

1− < α̂ j , 2ρG >

k j (#)
, and b# := #

{

j | 1− < α̂ j , 2ρG >

k j (#)
= a#

}

.

Remark 2.3. The anticanonical embedding of the wonderful compactification
X of G of de Concini-Procesi is associated with the weight κ = 2ρG +

∑r
i=1 αi . In

particular, X is Fano (see [9],[13] for more details).
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It is not hard to see that if # = #κ , then a# = 1 and b# = r . We set

cκ := lim
s→1

(s − 1)r
∫

G(A)
H (#F (g))−s dg,

(where dg is a suitably normalized Haar measure on G(A)). By (2.5), the limit
exists and is a positive real number. Our main theorem is the following:

Theorem 2.4. We have

N (#κ , B) = cκ

(r − 1)!
· B(log B)r−1(1 + o(1)),

as B → ∞.

We note that this theorem implies Manin’s conjecture and its refinement due
to Peyre for the wonderful compactification of G as above. We have also proved
analogous results for arbitrary irreducible representations # (in other words, for
height functions associated with arbitrary ample line bundles on the wonderful
compactification of G).

We will now sketch the proof (in the case # = #κ ). Using Tauberian theorems
one deduces the asymptotic properties of N (#, B) from the analytic properties of
the height zeta function

Z(s, #) =
∑

γ∈G(F)

H (#F (γ ))−s .

Actually, we will use the function

Z(s, #, g) =
∑

γ∈G(F)

H (#F (γ g))−s .

For ,(s) - 0, the right side converges (uniformly on compacts) to a function which
is holomorphic in s and continuous in g on C × G(A). Since G is F-anisotropic,
G(F)\G(A) is compact, and

Z ∈ L2(G(F)\G(A))K0

(recall that H is bi-invariant under K0). Again since G is anisotropic, we have

L2(G(F)\G(A)) =
(

ˆ⊕

π

Hπ

)

⊕

(

⊕

χ

Cχ

)

,(2.2)

as a direct sum of irreducible subspaces. Here the first direct sum is over infinite-
dimensional representations of G(A) and the second direct sum is a sum over all
automorphic characters of G(A). Consequently,

L2(G(F)\G(A))K0 =
(

ˆ⊕

π

HK0
π

)

⊕

(

⊕

χ

Cχ

)

,(2.3)



P1: FMK

PB440-26 HIDA-0662G PB440-Hida-v4.cls December 10, 2003 7:34

rational points and automorphic forms 739

a sum over representations containing a K0-fixed vector (in particular, the sum over
characters is finite). For each infinite-dimensional π occurring in (2.3) we choose
an orthonormal basis Bπ = {φπ

α }α for HK0
π . We have next the “Poisson formula:”

Z(s, #, g) =
∑

π

∑

φ∈Bπ

〈Z(s, #, g), φ(g)〉φ(g) +
∑

χ

〈Z(s, #, g), χ (g)〉χ (g).(2.4)

Here the series on the right converges normally to Z(#, g) for ,(s) - 0. We will
establish a meromorphic continuation of the right side of (2.4), leading to a proof
of the main theorem.

A key result is the computation of the individual inner products 〈Z, φ〉. After
the usual unfolding it turns out that each of these is an Euler product with an explicit
regularization. In particular, the pole of highest order ofZ(s, #, g) (or the main term
in the asymptotic expression of N (#, B)) is contributed by the trivial representation:

∫

G(A)
H (#F (g))−sdg =

∏

v∈Val (F)

∫

G(Fv )
Hv (#F (gv ))−sdgv .

Local integrals of such type can be computed explicitly at almost all places (see
[11]). They are reminiscent of Igusa’s local zeta functions and their modern gener-
alizations: “motivic” integrals of Batyrev, Kontsevich, and Denef-Loeser (see [2],
[12]). In our case, we have

∫

G(A)
H (#F (g))−sdg =

r
∏

j=1

ζF (k j s+ < α̂ j , 2ρG >) · hF (s, #)(2.5)

(where hF (s, #) is a holomorphic function for ,(s) > 1 − ε and some ε > 0 and
hF (1, #) ∈ R>0).

Next we prove that each remaining term is holomorphic around ,(s) = 1. In
general, we have

〈Z, φ〉 =
∫

G(F)\G(A)
Z(s, #, g)φ(g) dg

=
∫

G(A)
H (#F (g))−sφ(g) dg

=
∫

G(A)
H (#F (g))−s

∫

K0

φ(kg) dk dg.

Next we follow an argument by Godement and Jacquet in [19]. Without loss of
generality we can assume that

K0 =
∏

v /∈S

Kv × KS
0 ,

for a finite set of places S. Here for v /∈ S, Kv is a maximal special open compact
subgroup in G(Fv ). After enlarging S to contain all the places where G is not split,
we can assume that Kv = G(Ov ). In particular, for v /∈ S the local representations
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πv are spherical. Thus we have a normalized local spherical function ϕv associated
to πv . We have assumed that each φ is right K0-invariant. In conclusion,

〈Z, φ〉 =
∏

v /∈S

∫

G(Fv )
ϕv (gv )Hv (#F (gv ))−s dgv

×
∫

G(AS)
H (#F (η(gS)))−s

∫

KS
0

φ(kη(gS)) dk dgS.

(Here η : G(AS) → G(A) is the natural inclusion map.) The second factor is rela-
tively easy to deal with. Our main concern here is with the first factor. To proceed
we need to invoke some fairly deep results from the representation theory of re-
ductive groups to find nontrivial bounds on spherical functions. Depending on the
semi-simple rank of G, there are two cases to consider:

Case 1: semi-simple rank 1. In this situation, G is an inner form of PGL2—that is,
the projective group of a quaternion algebra. By the Jacquet-Langlands correspon-
dence [22], there is an irreducible cuspidal automorphic representation π ′ = ⊗vπ

′
v

of PGL2 such that for v /∈ S, we have πv = π ′
v . In particular, in order to obtain

nontrivial bounds on spherical functions of infinite-dimensional representations,
we need to examine local components of cuspidal representations of GL2 with
trivial central character. Here the estimate we need follows from a classical result
of Gelbart and Jacquet who established the symmetric square lifting from GL2

to GL3 [18], combined with a result of Jacquet and Shalika (see [23]). We also
note the recent beautiful results of Kim and Shahidi towards sharper bounds in the
Ramanujan-Petersson conjecture [24].

Case 2: semi-simple rank > 1. First we use a strong approximation argument to
show that for v /∈ S, the representation πv is not one-dimensional, unless π itself
is one-dimensional (a similar argument appears in the work of Clozel and Ullmo
[10]). Then we apply a recent result of Oh [32] giving bounds for all nontrivial
spherical matrix coefficients of the unitary dual of semi-simple groups of rank at
least 2, which can be considered as a quantitative version of property (T) for these
groups. Moreover, the bounds are uniform over all primes p, which is crucial in our
applications. Let us mention that a (weaker) form of Oh’s results can be deduced
from [21] for Sp2n(Qp) and for GLn(Qp) from the known classification of the
unitary dual (see [41]).

Putting everything together, we obtain that there exists an ε > 0 such that for
all nontrivial representations and all φ the inner product 〈Z, φ〉 is holomorphic for
,(s) > 1 − ε.

Finally, to prove the convergence of the right side (for appropriate s), we inte-
grate by parts (with respect to the Laplacian & on the compact Riemannian manifold
associated with G(A) and K0), and combine L∞-estimates for &-eigenfunctions
with standard facts about spectral zeta functions of compact manifolds.
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Remark 2.5. Similar arguments lead to a proof of equidistribution of rational
points of bounded anticanonical height with respect to the Tamagawa measure
associated with the metrization of −K X .
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CHAPTER 27

HEIGHT ZETA FUNCTIONS OF EQUIVARIANT COMPACTIFICATIONS
OF THE HEISENBERG GROUP

By Joseph A. Shalika and Yuri Tschinkel

Abstract. We study analytic properties of height zeta functions of equivariant compactifications of the
Heisenberg group.

Introduction. Let G = G3 be the three-dimensional Heisenberg group:

G =







g = g(x, z, y) =





1 x z
0 1 y
0 0 1











.

Let X be a projective equivariant compactification of G (for example, X = P3).
Thus X is a projective algebraic variety over Q, equipped with a (left) action of G
(and containing G as a dense Zariski open subset). Such varieties can be constructed
as follows: consider a Q-rational algebraic representation ρ : G → PGLn+1 and
take X ⊂ Pn to be the Zariski closure of an orbit (with trivial stabilizer). This
closure need not be smooth (or even normal). Applying G-equivariant resolution of
singularities and passing to a desingularization, we may assume that X is smooth
and that the boundary D = X\G consists of geometrically irreducible components
D = ∪α∈ADα, intersecting transversally. In this chapter, we will always assume that
X is a bi-equivariant compactification, that is, X carries a left and right G-action,
extending the left and right action of G on itself. Equivalently, X is an equivariant
compactification of the homogeneous space G × G/G.

Let L be a very ample line bundle on X . It defines an embedding of X into
some projective space Pn . Let L = (L , ‖ · ‖A) be a (smooth adelic) metrization of
L and

HL : X (Q) → R>0

the associated (exponential) height. Concretely, fix a basis { f j } j=0,...,n in the vector
space of global sections of L and put

HL(x) :=
∏

p

max
j

(| f j (x)|p) ·
(

n
∑

j=0

f j (x)2

)1/2

.

We are interested in the asymptotics of

N (B) = N (L, B) := {γ ∈ G(Q) | HL(γ ) ≤ B}

as B → ∞.

743
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The main result of this chapter is the determination of the asymptotic behavior
of N (B) for arbitrary bi-equivariant compactifications X of G and arbitrary projec-
tive embeddings.

To describe this asymptotic behavior it is necessary to introduce some geo-
metric notions. Denote by Pic(X ) the Picard group of X . For smooth equivariant
compactifications of unipotent groups, Pic(X ) is freely generated by the classes of
Dα (with α ∈ A). We will use these classes as a basis. In this basis, the (closed)
cone of effective divisors $eff(X ) ⊂ Pic(X )R consists of classes

[L] = (lα) =
∑

α∈A
lα[Dα] ∈ Pic(X )R,

with lα ≥ 0 for all α. Let L = (L , ‖ · ‖A) be a metrized line bundle on X such
that its class [L] is contained in the interior of $eff(X ). Conjecturally, at least
for varieties with sufficiently positive anticanonical class, asymptotics of rational
points of bounded height are related to the location of (the class of) L in Pic(X )
with respect to the anticanonical class [−K X ] = κ = (κα) and the cone $eff(X )
(see [4], [10], and [20]). In the special case of G-compactifications X as above and
[L] = (lα), define:

• a(L) := inf{a | a[L] + [K X ] ∈ $eff(X )} = maxα(κα/ lα);

• b(L) := #{α | κα = a(L)lα};
• C(L) := {α | κα += a(L)lα};
• c(L) :=

∏

α /∈C(L) l−1
α .

Let
Z(s,L) :=

∑

γ∈G(Q)

HL(γ )−s,

be the height zeta function (the series converges a priori to a holomorphic function
for ample L and ,(s) - 0). The Tauberian theorems relate the asymptotics of
N (L, B) to analytic properties of Z(s,L).

Theorem. Let X be a smooth projective bi-equivariant compactification of the
Heisenberg group G and L = (L , ‖ · ‖A) a line bundle (equipped with a smooth
adelic metrization) such that its class [L] ∈ Pic(X ) is contained in the interior of
the cone of effective divisors $eff(X ). Then

Z(s,L) = c(L)τ (L)
(s − a(L))b(L)

+ h(s)
(s − a(L))b(L)−1

,

where h(s) is a holomorphic function (for ,(s) > a(L) − ε, some ε > 0) and τ (L)
is a positive real number. Consequently,

N (L, B) ∼ c(L)τ (L)
a(L)(b(L) − 1)!

Ba(L) log(B)b(L)−1

as B → ∞.
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Remark 0.1. The constant τ (−KX ) is the Tamagawa number associated to the
metrization of the anticanonical line bundle (see [20]). For arbitrary polarizations
τ (L) has been defined in [4].

This chapter is structured as follows: in Section 1 we describe the relevant geo-
metric invariants of equivariant compactifications of unipotent groups. In Section 2
we introduce the height pairing

H =
∏

p

Hp · H∞ : Pic(X )C × G(A) → C

between the complexified Picard group and the adelic points of G, generalizing the
usual height, and the height zeta function

Z(s, g) :=
∑

γ∈G(Q)

H (s, γ g)−1.(0.1)

By the projectivity of X , the series converges to a function that is continuous and
bounded in g and holomorphic in s, for ,(s) contained in some (shifted) cone
$ ⊂ Pic(X )R. Our goal is to obtain a meromorphic continuation of Z(s, g) to the
tube domain T over an open neighborhood of [−K X ] = κ ∈ Pic(X )R and to identify
the poles.

The bi-equivariance of X implies that H is invariant under the action on both
sides of a compact open subgroup K of the finite adeles G(Afin). Moreover, H∞ is
smooth. We observe that

Z ∈ L2(G(Q)\G(A))K.

Next, we have, for ,(s) contained in some shifted cone in Pic(X )R, an identity in
L2(G(Q)\G(A)) (Fourier expansion):

Z(s, g) =
∑

(

Z((s, g),(0.2)

where the sum is over all irreducible unitary representations ((,H() of G(A), oc-
curing in the right regular representation of G(A) in L2(G(Q)\G(A)) and having
K-fixed vectors. We recall the relevant results from representation theory in Sec-
tion 3.

We will establish the above identity as an identity of continuous functions by
analyzing the individual terms on the right. Thus we need to use the (well-known)
theory of irreducible unitary representations of the Heisenberg group. We will see
that for L = −K X the pole of highest order of the height zeta function is supplied by
the trivial representation. This need not be the case for other line bundles. Depending
on the geometry of X , it can happen that infinitely many nontrivial representations
contribute to the leading pole of Z(s,L). In such cases the coefficient at the pole
of highest order is an infinite (convergent) sum of Euler products.
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To analyze the contributions in (0.2) from the various representations, we need
to compute local height integrals. For example, for the trivial representation, we
need to compute the integral

∫

G(Qp)
Hp(s, gp)−1dgp

for almost all p (see Section 4). This has been done in [6] for equivariant compact-
ifications of additive groups Gn

a; the same approach applies here. We regard the
height integrals as geometric versions of Igusa’s integrals. They are closely related
to “motivic” integrals of Batyrev, Kontsevich, Denef, and Loeser (see [9], [14], and
[18]).
The above integral is in fact equal to:

p− dim(X )

(

∑

A⊆A
#D0

A(Fp)
∏

α∈A

p − 1
psα−κα+1 − 1

)

,(0.3)

where

D∅ := G, DA := ∩α∈A Dα, D0
A := DA \ ∪A′!A DA′,

and Fp is the finite field Z/pZ. The resulting Euler product has a pole of order
rk Pic(X ) at s = κ and also the expected leading coefficient at this pole.

The bi-K-invariance of the height insures us that the trivial representation is
“isolated” (c.f. especially Proposition 4.9). Using “motivic” integration as above,
we prove that each of the terms on the right side in (0.2) admits a meromorphic
continuation. We will identify the poles of Z( for nontrivial representations: for
s ∈ T, they are contained in the real hyperplanes sα = κα, and the order of the
pole at s = κ is strictly smaller than rk Pic(X ). Finally, it will suffice to prove the
convergence of the series (0.2), for s in the appropriate domain. This is done in
Section 4.

This chapter is part of a program initiated in [10] to relate asymptotics of
rational points of bounded height to geometric invariants. It continues the work
of Chambert-Loir and the second author on compactifications of additive groups
[6]. Many statements are direct generalizations from that paper. Here we explore
the interplay between the theory of infinite-dimensional representations of adelic
groups and the theory of height zeta functions of algebraic varieties. The main
theorem holds for bi-equivariant compactifications of arbitrary unipotent groups.
We decided to explain in detail, in a somewhat expository fashion, our approach
in the simplest possible case of the Heisenberg group over Q and to postpone the
treatment of the general case to a subsequent publication. We have also included
the example of P3 in which most of the technicalities are absent.

Acknowledgments. The second author was partially supported by the NSA,
NSF and the Clay Foundation.
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1. Geometry.

Notations 1.1. Let X be a smooth projective algebraic variety. We denote by
Pic(X ) the Picard group, by $eff(X ) the (closed) cone of effective divisors and by
K X the canonical class of X . If X admits an action by a group G, we write PicG(X )
for the group of (classes of) G-linearized line bundles on X .

Definition 1.2. Let X be a smooth projective algebraic variety. Assume that
$eff(X ) is a finitely generated polyhedral cone. Let L be a line bundle such that its
class [L] is contained in the interior of $eff(X ). Define

a(L) = inf{a | a[L] + [K X ] ∈ $eff(X )}
and b(L) as the codimension of the face of $eff(X ) containing a(L)[L] + [K X ].

Notations 1.3. Let G be a linear algebraic group over a number field F . An
algebraic variety X (over F) will be called a good compactification of G if:

• X is smooth and projective;

• X contains G as a dense Zariski open subset and the action of G on itself
(by left translations) extends to X ;

• the boundary X \ G is a union of smooth geometrically irreducible divi-
sors intersecting transversally (a divisor with strict normal crossings).

Remark 1.4. Equivariant resolution of singularities (over a field of characteris-
tic zero) implies that for any equivariant compactification X there exists an equiv-
ariant desingularization (a composition of equivariant blowups) ρ : X̃ → X , such
that X̃ is a good compactification. By the functoriality of heights, the counting
problem for a metrized line bundle L on X can then be transferred to a counting
problem for ρ∗(L) on X̃ . Thus it suffices to prove the theorem for good compacti-
fications (the answer, of course, does not depend on the chosen desingularization).

Proposition 1.5. Let X be a good compactification of a unipotent algebraic
group G. Let D := X \ G be the boundary and {Dα}α∈A the set of its irreducible
components. Then:

• PicG(X )Q = Pic (X )Q;
• Pic(X ) is freely generated by the classes [Dα];
• $eff(X ) = ⊕αR≥0[Dα];
• [−K X ] =

∑

α κα[Dα] with κα ≥ 2 for all α ∈ A.

Proof. Analogous to the proofs in Section 2 of [12]. In particular, it suffices to
assume that X carries only a one-sided action of G. !

Notations 1.6. Introduce coordinates on Pic(X ) using the basis {Dα}α∈A: a
vector s = (sα) corresponds to

∑

α sα Dα.
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Corollary 1.7. The divisor of every nonconstant function f ∈ F[G] can be
written as

div( f ) = E( f ) −
∑

α

dα( f )Dα,

where E( f ) is the unique irreducible component of { f = 0} in G and dα( f ) ≥ 0
for all α. Moreover, there is at least one α ∈ A such that dα( f ) > 0.

2. Height zeta function.

Notations 2.1. For a number field F , we denote by Val(F) the set of all places
of F , by S∞ the set of archimedean and by Sfin the set of nonarchimedean places.
For any finite set S of places containing S∞, we denote by oS the ring of S-integers.
We denote by A (resp. Afin) the ring of adeles (resp. finite adeles).

Definition 2.2. Let X be a smooth projective algebraic variety over a number
field F . A smooth adelic metrization of a line bundle L on X is a family ‖ · ‖A of
v-adic norms ‖ · ‖v on L ⊗F Fv , for all v ∈ Val(F), such that:

• for v ∈ S∞, the norm ‖ · ‖v is C∞;

• for v ∈ Sfin, the norm of every local section of L is locally constant in the
v-adic topology;

• there exist a finite set S ⊂ Val(F), a flat projective scheme (an integral
model) X over Spec(oS) with generic fiber X together with a line bundle L on
X , such that for all v /∈ S, the v-adic metric is given by the integral model.

Proposition 2.3. Let G be a unipotent algebraic group defined over a number
field F and X a good bi-equivariant compactification of G. Then there exists a
height pairing

H =
∏

v∈Val(F)

Hv : Pic(X )C × G(A) → C

such that:
• for all [L] ∈ Pic(X ), the restriction of H to [L] × G(F) is a height corre-

sponding to some smooth adelic metrization of L;
• the pairing is exponential in the Pic(X ) component:

Hv (s + s′, g) = Hv (s, g)Hv (s′, g),

for all s, s′ ∈ Pic(X )C, all g ∈ G (A) and all v ∈ Val (F);
• there exists a compact open subgroup (depending on H)

K = K(H ) =
∏

v

Kv ⊂ G(Afin)

such that, for all v ∈ Sfin, one has Hv (s, kgk ′) = Hv (s, g) for all s ∈
Pic(X )C, k, k ′ ∈ Kv , and g ∈ G(Fv ).
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Proof. For G = Gn
a the proposition is proved in [6], Lemma 3.2. The same

proof applies to any unipotent group. !

Notations 2.4. For δ ∈ R, we denote byTδ ⊂ Pic(X )C the tube domain,(sα) −
κα > δ (for all α ∈ A).

Definition 2.5. The height zeta function on Pic(X )C × G(A) is defined as

Z(s, g) =
∑

γ∈G(F)

H (s, γ g)−1.

Proposition 2.6. There exists a δ > 0 such that, for all s ∈ Tδ and all g ∈
G(A), the series defining the height zeta function Z(s, g) converges normally (for
g and s contained in compacts in G(A), resp. Tδ) to a function that is holomorphic
in s and continuous in g.

Proof. The proof is essentially analogous to the proof of Proposition 4.5 in [6]
(and follows from the projectivity of X ). !

Corollary 2.7. For s ∈ Tδ, one has an identity in L2(G(F)\G(A)), as above:

Z(s, g) =
∑

(

Z((s, g).(2.1)

The sum is over all irreducible unitary representations ( of G(A) occuring
L2(G(F)\G(A)) and having a K-fixed vector (cf. Proposition 3.3).

3. Representations.

3.1. From now on, for the sake of simplicity, we suppose F = Q. Denote by
Z = Ga the one-dimensional center and by Gab = G/Z = G2

a the abelianization of
G. Let U ⊂ G be the subgroup

U := {u ∈ G | u = (0, z, y)}

and

W := {w ∈ G | w = (x, 0, 0)}.

We have G = W · U = U · W. We may assume that the compact open subgroup

K =
∏

p

Kp ⊂ G(Afin)

of Proposition 2.3 is given by

K =
∏

p/∈SH

G(Zp) ·
∏

p∈SH

G(pn p Zp),(3.1)
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where SH is a finite set of primes and the n p are positive integers. We denote
by Kab, KZ, etc., the corresponding compact subgroups of the (finite) adeles of
Gab, Z, U, W, respectively, and put

n(K) =
∏

p∈SH

pn p .

We denote by dg =
∏

p dgp · dg∞ the Haar measure on G(A), where we have set
dgp = dx pdypdz p with the normalization

∫

Zp
dx p = 1, etc., (similarly at the real

place). We write du p = dz pdyp (resp. du∞, du) for the Haar measure on U(Qp)
(resp. U(R), U(A)). We let dkp be the Haar measure on Kp obtained by restriction
of dgp to Kp. Further, our normalization of measures implies that

∫

Kp
dkp = 1.

As usual, a choice of a measure on the local (or global) points of G and of a
subgroup H ⊂ G determines a unique measure on the local (resp. global) points of
the homogeneous space G/H.

Lemma 3.2. One has:
• G(Zp) = (G(Zp) ∩ U(Qp)) · (G(Zp) ∩ W(Qp));
• U(Qp) · W(Zp) is a subgroup of G(Qp);
• G(A) = G(Q) · G(R) · K;
• there exists a subgroup * ⊂ G(Z) (of finite index) such that

G(Q)\G(A)/K = *\G(R);

• the quotient *\G(R) is compact.
These statements are well known and easily verified.

We now recall the well known representation theory of the Heisenberg group
in an adele setting [13]. Denote by ( the right regular representation of G(A) on
the Hilbert space

H := L2(G(Q)\G(A)).

Consider the action of the compact group Z(A)/Z(Q) onH (recall that Z = Ga).
By the Peter-Weyl theorem, we obtain a decomposition

H = ⊕Hψ

and corresponding representations ((ψ ,Hψ ) of G(A). Here

Hψ := {ϕ ∈ H | ((z)(ϕ)(g) = ψ(z)ϕ(g)}

and ψ runs over the set of (unitary) characters of Z(A), which are trivial on Z(Q).
For nontrivial ψ , the corresponding representation ((ψ ,Hψ ) of G(A) is nontrivial,
irreducible and unitary. On the other hand, when ψ is the trivial character, the corre-
sponding representation (0 decomposes further as a direct sum of one-dimensional
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representations (η:

H0 = ⊕ηHη.

Here η runs once over all (unitary) characters of the group Gab(Q)\Gab(A). It is con-
venient to consider η as a function on G(A), trivial on the Z(A)-cosets. Precisely, let
ψ1 =

∏

p ψ1,p · ψ1,∞ be the Tate-character (which has exponent zero at each finite
prime, see [27] and [28]). For a = (a1, a2) ∈ A ⊕ A, consider the corresponding
linear form on

Gab(A) = A ⊕ A

given by

g(x, z, y) 6→ a1x + a2 y,

and denote by η = ηa (a = (a1, a2)) the corresponding adelic character

η : g(x, z, y) 6→ ψ1(a1x + a2 y)

of G(A). For a ∈ A, we will denote by ψa the adelic character of Z(A) given by

z 6→ ψ1(az).

As in Section 2, the starting point of our analysis of the height zeta function is
the spectral decomposition of H. A more detailed version of Corollary 2.7 is the
following proposition.

Proposition 3.3. There exists a δ > 0 such that, for all s ∈ Tδ, one has an
identity of L2-functions

Z(s, g) = Z0(s, g) + Z1(s, g) + Z2(s, g),(3.2)

where

Z0(s, id) =
∫

G(A)
H (s, g)−1dg,(3.3)

Z1(s, g) =
∑

η

η(g) · Z(s, η),(3.4)

and

Z2(s, g) =
∑

ψ

∑

ωψ

ωψ (g) · Z(s, ωψ ).(3.5)
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Here we have set

Z(s, η) := 〈Z(s, ·), η〉 =
∫

G(A)
H (s, g)−1η(g)dg,

Z(s, ωψ ) := 〈Z(s, g), ωψ〉 =
∫

G(Q)\G(A)
Z(s, g)ωψ (g)dg

=
∫

G(A)
H (s, g)−1ωψ (g)dg,

η ranges over all nontrivial characters of

Gab(Q) · Kab\Gab(A),

ψ ranges over all nontrivial characters of

Z(Q) · KZ\Z(A),

and ωψ ranges over a fixed orthonormal basis of HK
ψ (for each ψ).

In particular, for η = ηa and ψ = ψa occuring in this decomposition, we have

a1, a2, a ∈ 1
n(K)

Z.

Proof. We use the (right) K-invariance of the height for the last statement
(for η). For ψ see also Lemma 3.11 as well as Proposition 2.6. !

Remark 3.4. The desired meromorphic properties of Z0 and Z1 have, in fact,
already been established in [6]. The height integrals are computed as in the abelian
case, and the convergence of the series Z1 is proved in the same way as in [6].
In particular, (3.4) is an identity of continuous functions. The novelty here is the
treatment of Z2.

We now proceed to describe the various standard models of infinite-dimensional
representations of the Heisenberg group.

3.5. Locally. Let ψ = ψp (resp. ψ = ψ∞) be a local nontrivial character of
Qp (resp. R). Extend ψ to U(Qp) by setting

ψ((0, z, y)) = ψ(z).

The one-dimensional representation of U(Qp) thus obtained induces a represen-
tation πψ = πψ,p of G(Qp). The representation πψ acts on the Hilbert space of
measurable functions

φ : G(Qp) → C,
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which satisfy the conditions:

• φ(ug) = ψ(u)φ(g), for all u ∈ U(Qp) and g ∈ G(Qp);

• ‖φ‖2 :=
∫

U(Qp)\G(Qp) |φ(g)|2dg < ∞.

The action is given by

πψ (g′)φ(g) = φ(gg′), g′ ∈ G(Qp).

On the other hand, we have a representation π ′
ψ = π ′

ψ,p (the oscillator repre-
sentation) on

L2(W(Qp)) = L2(Qp),

where the action of G(Qp) on a function ϕ ∈ L2(Qp) is given by

π ′
ψ (g(x ′, 0, 0))ϕ(x) = ϕ(x + x ′)(3.6)

π ′
ψ (g(0, 0, y))ϕ(x) = ψ(y · x)ϕ(x)

π ′
ψ (g(0, z, 0))ϕ(x) = ψ(z)ϕ(x).

It is easy to see that the representations πψ and π ′
ψ are unitarily equivalent. We

will identify the unitary representations πψ and π ′
ψ in what follows.

Globally. In the adelic situation, to each nontrivial character ψ of Z(A) we can
associate a representation πψ of G(A), where πψ = ⊗pπψ,p ⊗ πψ,∞, and the action
on L2(U(A)\G(A)) = L2(A) is given by the formulas (3.6) (with ψp replaced by ψ).
The representations πψ and (ψ are equivalent irreducible unitary representations
of G(A). We will recall the explicit intertwining map between πψ and (ψ (c.f.
Lemma 3.11).

We also recall that the space S(A) ⊂ L2(A) of Schwartz-Bruhat functions co-
incides with the space of smooth vectors of πψ (for the real place, see the appendix
in [7]) and note that L2(Qp)Kp = S(Qp)Kp .

For a character ψ(z) = ψ∞(z) = e2π iaz (with a += 0), consider the following
operators on the subspace of Schwartz functions S(R) ⊂ L2(R):

d+
ψϕ(x) = d

dx
ϕ(x)

d−ψϕ(x) = 2π iaxϕ(x)

1ψ = (d+
ψ )2 + (d−ψ )2.

We have

1ψϕ(x) = ϕ′′(x) − (2πax)2ϕ(x)

(harmonic oscillator). The eigenvalues of 1ψ are given by

λψ
n = −2π (2n + 1)|a|
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(with n = 0, 1, 2, . . . ). They have multiplicity one. Denote by hψ
n (x) the n-th Her-

mite polynomial:

hψ
0 (x) = 1

hψ
1 (x) = 4π |a|x

hψ
2 (x) = −4π |a|(1 − 4π |a|x2)

and, in general,

dn

dxn
e−2π |a|x2 = (−1)nhψ

n (x)e−2π |a|x2
.

The (essentially unique) eigenfunction ϕ
ψ
n corresponding to λ

ψ
n is given by

ϕψ
n := cne−π |a|x2

hψ
n (x).

Here we choose the constants cn , so that the L2-norm of ϕ
ψ
n is 1.

Lemma 3.6. The set B∞(π ′
ψ ) := {ϕψ

n } is a complete orthonormal basis of
L2(R).

Proof. For details see, for example, [5], Chapter 13, or [8]. !

3.7.

Notations 3.8. For η = ηa with a = (a1, a2) and a1, a2 ∈ 1
n(K)Z, denote by Sη

the set of primes p dividing either n(K)a1 or n(K)a2. Similarly, for ψ = ψa with
a ∈ 1

n(K)Z, denote by Sψ the set of primes dividing n(K)a.

Lemma 3.9. Let ψ = ψa be a nontrivial character of Z(Q)\Z(A) and (ψ =
⊗p(ψ,p ⊗ (ψ,∞ the corresponding infinite-dimensional automorphic representa-
tion. Suppose (ψ contains a K-fixed vector (for K as in (3.1)). Then:

• a ∈ 1
n(K)Z (for n(K) =

∏

p∈SH
pn p );

• dim (
Kp

ψ,p = 1 for p /∈ Sψ ;

• dim (
Kp

ψ,p = |n(K)2a|−1
p for p ∈ Sψ , provided pn p · n(K) ∈ Zp.

Proof. We need only use the explicit form of the representation πψ,p given in
(3.6). Suppose first that πψ,p has a nonzero Kp-fixed vector ϕ. Taking z ∈ pn p · Zp,
we get

ψp(pn pr ) = ψ1,p(apn pr ) = 1

for all r ∈ Zp. Since the exponent of ψ1,p is zero, we have

a · pn p ∈ Zp,

from which the first assertion follows.
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Let us assume then that pn p · n(K) ∈ Zp. Then the space of Kp-fixed vectors ϕ

in L2(Qp) is precisely the set of ϕ satisfying

• ϕ(u + pn pr1) = ϕ(u);

• ϕ(u) = ψ(pn pr2u)ϕ(u)

for all r1, r2 ∈ Zp, u ∈ Qp. The first identity implies that ϕ is a continuous function
and the second that Supp(ϕ) ⊂ a−1 p−n p · Zp. The second and the third assertions
of the lemma follow at once. !

Notations 3.10. Let Vψ,p be the space of the induced representation of πψ,p.
Denote by V ∞

ψ,p the space of smooth vectors in Vψ,p. Thus V ∞
ψ,p is the set of all

ν ∈ Vψ,p fixed by some open compact subgroup of G(Qp). Note that V ∞
ψ,p is stable

under the action of G(Qp). Note also that in the explicit realization of πψ,p given
in (3.6), L2(Qp)∞ = S(Qp) (see the proof of Lemma 3.9)

For ϕ ∈ S(A) define the theta-distribution

4(ϕ) :=
∑

x∈Q

ϕ(x).

Clearly, 4 is a G(Q)-invariant linear functional on S(A). This gives a map

jψ : S(A) → L2(G(Q)\G(A))
jψ (ϕ)(g) = 4(πψ (g)ϕ).

Lemma 3.11. The map jψ extends to an isometry

jψ : L2(A)
∼−→ Hψ ⊂ L2(G(Q)\G(A)),

intertwining πψ and (ψ . Moreover,

jψ : L2(A)K ∼−→ HK
ψ .

Let us recall the definition of a restricted algebraic tensor product: for all primes
p, let Vp be a (pre-unitary) representation space for G(Qp). Let (ep)p be a family
of vectors ep ∈ Vp, defined for all primes p outside a finite set S0. Suppose that,
for almost all p, ep is fixed by Kp. We will also assume that the norm of ep is
equal to 1. Let S be a finite set of primes containing S0. A pure tensor is a vector,
ν = νS ⊗ eS , where eS = ⊗p/∈Sep and νS is a pure tensor in the finite tensor product
⊗p∈SVp. The restricted algebraic tensor product V = ⊗pVp is generated by finite
linear combinations of pure tensors (see [16] for more details).

Example 3.12. Consider the representation πψ of G(A) on the Schwartz-Bruhat
space S(Afin) = ⊗pS(Qp) and the corresponding representation πψp of G(Qp) on
S(Qp). In this case, for all primes p /∈ Sψ , ep is unique (up to scalars) and may be
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taken to be the characteristic function of Zp. We have jψ (S(Afin) ⊗ S(R)) = Hsmooth
ψ

(by [7]).

We now fix an orthonormal basis Bfin(πψ ) for the space S(Afin)K as follows. We
let Bfin(πψ ) = ⊗pBp(πψp ), where, for p ∈ S0 = S = Sψ , Bp(πψp ) is any fixed or-
thonormal basis for S(Qp)Kp and, for p /∈ S, Bp(πψp ) = ep. Thus any ϕ ∈ Bfin(πψ )
has the form

ϕ = ϕS ⊗ eS,

with eS = ⊗p∈Sep, as above. We have then the following lemma:

Lemma 3.13. The set

B((ψ ) := jψ (Bfin(πψ ) ⊗ B∞(πψ ))

is a complete orthonormal basis of HK
ψ . The number of elements ω ∈ B((ψ ) (c.f.

Lemma 3.9) with given eigenvalue λ
ψ
n is |n(K)2a| if a ∈ 1

n(K)Z (and zero otherwise).

Definition 3.14. Suppose p /∈ Sψ . The normalized spherical function f p on
G(Qp) is defined by

f p(gp) := 〈πψp (gp)ep, ep〉.

Here 〈 · , ·〉 is the standard inner product on L2(Qp).

Lemma 3.15 (Factorization). For ω ∈ B((ψ ) and S = Sψ ∪ {∞}, we have
an identity

∫

KS
ω(kSg)dkS =

∏

p/∈S

f p(gp) · ω(gS).

Here KS =
∏

p/∈Sψ
Kp, g = gS · gS, with gS (resp. gS) in G(AS) (resp. G(AS)).

Proof. Define a linear form µ on V = S(A) by setting

µ(ϕ) :=
∫

KS
j(ϕ)(kS)dkS,

(where ϕ ∈ S(A)). Set

V S := ⊗p/∈SS(Qp)

and

VS := ⊗p∈Sψ
S(Qp) ⊗ S(R),
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so that V = VS ⊗ V S . Then from Lemma 3.9 we have, for ϕS ∈ V S , with π S
ψ =

⊗p/∈Sπψ,p, an equality of the form
∫

KS
π S

ψ (kS)ϕSdkS = νS(ϕS) · eS

for a unique linear form νS on V S . Note that νS(ϕS) = 〈ϕS, eS〉, for ϕS ∈ V S . Now
we have, for ϕ of the form ϕ = ϕS ⊗ ϕS , with ϕS ∈ VS and ϕS ∈ V S ,

µ
(

ϕS ⊗ π S
ψ (kS)ϕS) = µ(ϕS ⊗ ϕS),

from which it follows at once that

µ(ϕS ⊗ ϕS) = µS(ϕS) · νS(ϕS),

for some linear form µS on VS . From this we obtain in turn, for ϕ = ϕS ⊗ eS , the
identity

∫

KS j(ϕ)(kSg)dkS = µ(πψ (g)ϕ)

= µS(πψ,S(gS)ϕS) · νS
(

π S
ψ (gS)eS

)

= µS(πψ,S(gS)ϕS) ·
∏

p/∈S f p(gp)

for g ∈ G(A). Here πψ,S = ⊗p∈Sπψ,p. Taking ω = j(ϕ), with ϕ = ϕS ⊗ eS, ϕS ∈
VS as above, we arrive next at the equality

∫

KS
ω(kSg)dkS = ω′(gS) ·

∏

p/∈S

f p(gp),

for some function ω′ on G(AS). Finally, if g = gS ∈ G(AS), we obtain from the last
expression

ω′(gS) =
∫

KS
ω(kSgS)dkS =

∫

KS
ω(gSkS)dkS = ω(gS),

since, in fact, ω is K-invariant on the right. This completes the proof of the
lemma. !

Corollary 3.16. Let ψ = ψa be as above (with a ∈ Q×) and (ψ the associ-
ated irreducible unitary automorphic representation of G(A). Suppose that (ψ has
a K-fixed vector. Then, for S = Sψ ∪ {∞}, all ω ∈ B((ψ ), all primes p /∈ Sψ and
all (integrable) functions H on G(A) such that

Hp(kpgp) = Hp(gpkp) = Hp(gp),
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for all kp ∈ Kp and gp ∈ G(Qp), one has

∫

G(A)
H (g)ω(g)dg =

∏

p/∈S

∫

G(Qp)
Hp(gp) f p(gp)dgp ·

∫

G(AS)
H (gS)ωS(gS)dgS,

(3.7)

where ωS is the restriction of ω to G(AS).

Lemma 3.17. For all ψ and all p /∈ Sψ one has, for Hp as above,
∫

G(Qp)
Hp(gp) f p(gp)dgp =

∫

U(Qp)
Hp(u p)ψp(u p)dup.

Proof. Suppose p /∈ Sψ . Let χp be the characteristic function of Kp. Define a
function ψ̃p on G(Qp) by setting

ψ̃p(gp) :=
∫

U(Qp)
χp(u pgp)ψ p(u p)dup

(with gp ∈ G(Qp)). Clearly, ψ̃p belongs to the space Vψ,p of the induced represen-
tation πψ,p; moreover, ψ̃p is Kp-invariant (on the right).

Next we have, with our normalization of Haar measures,

ψ̃p(gp) = ψp(u p)

provided gp = u pkp, with u p ∈ U(Qp), kp ∈ Kp, and zero otherwise. In particular,

|ψ̃p(gp)|2 =
∫

U(Qp)
χp(u pgp)dup,

from which it follows that

‖ψ̃p‖2 =
∫

U(Qp)\G(Qp)
|ψ̃p(gp)|2d∗gp =

∫

G(Qp)
χp(gp)dgp =

∫

Kp

dgp = 1.

(Here d∗gp is normalized so that dgp = du pd∗gp as in Section 3.1.) Next, for
ν ∈ V ∞

ψ,p, we have, with πp = πψ,p,
∫

Kp

πp(kp)νdkp = µ(ν)ψ̃p,

for a unique linear form µ on V ∞
ψ,p. Note that µ(ν) = 〈ν, ψ̃p〉. We have then, using

ψ̃p(e) = 1,

f p(gp) = 〈πp(gp)ψ̃p, ψ̃p〉 =
∫

Kp

ψ̃p(kpgp)dkp.

To complete the proof, we note first, from the left Kp-invariance of Hp, that
∫

G(Qp)
Hp(gp) f p(gp)dgp =

∫

G(Qp)
Hp(gp)ψ̃p(gp)dgp.
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In turn, the last integral is

=
∫

U(Qp) ψ p(u p)
∫

G(Qp) Hp(gp)χp(u pgp)dgp

=
∫

U(Qp) ψp(u p)
∫

G(Qp) Hp(u pgp)χp(gp)dgp

=
∫

U(Qp) Hp(u p)ψp(u p)dup,

the last equality from the right Kp-invariance of Hp. !

4. Euler products. In this section we show that each summand in the L2-
expansion of the height zeta function in Proposition 3.3 is regularized by an explicit
Euler product. First we record the integrability of local heights:

Lemma 4.1. For all compacts K ⊂ T−1 and all primes p, there exists a constant
cp(K) such that, for all s ∈ K, one has:

∫

G(Qp)
|Hp(s, gp)−1|dgp ≤ cp(K).

Moreover, for all ∂ in the universal enveloping algebra U(g) of G and all compacts
K ⊂ T−1, there exists a constant c(K, ∂) such that, for all s ∈ K,

∫

G(R)
|∂ H∞(s, g∞)−1|dg∞ ≤ c(K, ∂).

Proof. This is Lemma 8.2 and Proposition 8.4 of [6]. !

Notations 4.2. Denote by SX the set of all primes such that one of the following
holds:

• p is 2 or 3;

• Kp += G(Zp);

• over Zp, the union ∪α Dα is not a union of smooth relative divisors with
strict normal crossings.

Remark 4.3. For all p /∈ SX , the height Hp is invariant with respect to the right
and left G(Zp)-action.

Proposition 4.4. For all primes p /∈ SX and all s ∈ T−1, one has
∫

G(Qp)
H (s, gp)−1dgp = p−3

(

∑

A⊆A
#D0

A(Fp)
∏

α∈A

p − 1
psα−κα+1 − 1

)

,

where X = 9D0
A is the stratification of X by locally closed subvarieties as in the

Introduction and Fp = Z/pZ is the finite field with p elements.
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Proof. This is Theorem 9.1 in [6]. The proof proceeds as follows: for p /∈ SX

there is a good model X of X over Zp: all boundary components Dα (and G) are
defined over Zp and form a strict normal crossing divisor. We can consider the
reduction map

red : X (Qp) = X (Zp) → X (Fp) = 9A⊂A D0
A(Fp).

The main observation is that, in a neighborhood of the preimage in X (Qp) of the
point x̃v ⊂ D0

A(Fp), one can introduce local p-adic analytic coordinates {xα}α=1,...,n

such that

Hp(s, g) =
∏

α∈A

|xα|sα
p .

Now it suffices to keep track of the change of the measure dgp:

dgp =
∏

α /∈A

dxα ·
∏

α∈A

|xα|kα
p dxα,

where dxα are standard Haar measures on Qp. The integrals obtained are elemen-
tary:

∫

red−1(x̃ p)
Hp(s, gp)−1dgp =

∏

α /∈A

∫

pZp

dxα ·
∏

α∈A

∫

pZp

p−(sα−kα)v p(xα)dxα

(where v p(x) = logp(|x |p) is the ordinal of x at p). Summing over all x̃ p ∈ X (Fp),
we obtain the proof (see [6] for more details.) !

Corollary 4.5. For all primes p one has the identity
∫

G(Qp)
Hp(s, gp)−1dgp =

∏

α∈A
ζp(sα − κα + 1) · f0,p(s),

where f0,p(s) is a holomorphic function in T−1+ε . Moreover, there exist a δ > 0
and a function f0(s, g), which is holomorphic in T−δ and continuous in g ∈ G(A),
such that

Z0(s, g) = f0(s, g) ·
∏

α∈A
ζ (sα − κα + 1);

moreover,

lim
s→κ

Z0(s, e) ·
∏

α∈A
(sα − κα) = τ (KX ) += 0,

where τ (KX ) is the Tamagawa number defined in [20].

Proof. Apply Corollary 9.6 in [6]. !

Notations 4.6. Let a = (a1, a2) ∈ Q2 and let fa be the Q-rational linear form

(x, y) 6→ a1x + a2 y.
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The linear form fa defines an adelic character η = ηa of G(A):

η(g(x, z, y)) = ψ1(a1x + a2 y),

where again ψ1 is the Tate-character of A/Q. Write

div(η) = E(η) −
∑

α∈A
dα(η)Dα

for the divisor of the function fa on the compactification X (by Corollary 1.7,
dα ≥ 0 for all α ∈ A and dα > 0 for at least one α ∈ A). Denote by

A0(η) = {α | dα(η) = 0}.

Let V ⊂ X be the induced equivariant compactification of U ⊂ G.

Assumption 4.7. From now on we will assume that the boundary V \ U is a
strict normal crossing divisor whose components are obtained by intersecting the
boundary components of X with V :

V \ U = ∪α∈AV DV
α = ∪α∈ADα ∩ V,

(with AV ⊆ A).

Remark 4.8. The general case can be reduced to this situation by (equivariant)
resolution of singularities.

By Lemma 7.3 of [6], we have

−KV =
∑

α∈AV

κV
α DV

α ,

with κV
α ≤ κα (for all α) and equality holding for α in a proper subset of A.

Denote by fa the Q-rational linear form on the center Z of G

z 6→ a · z.

The linear form fa defines an adelic character ψ = ψa of U(A)/U(Q):

ψa(g(0, z, y)) = ψ1(az).

Write

div(ψ) = E(ψ) −
∑

α∈AV

dα(ψ)Dα

for the divisor of the function fa on V and denote by

A0(ψ) = {α | dα(ψ) = 0}.

We note that both A0(η) and A0(ψ) are proper subsets of A. A precise formu-
lation of the statement that the trivial representation of G(A) is “isolated” in the
automorphic spectrum is the following proposition.
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Proposition 4.9. Let η = ηa and ψ = ψa be the nontrivial adelic characters
occuring in Proposition 3.3 (a1, a2, a ∈ 1

n(K)Z). For any ε > 0 there exist a constant
c(ε) and holomorphic bounded functions φη(a, ·), ϕψ (a, ·) on T−1/2+ε such that,
for any s ∈ T0, one has

∏

p/∈Sη

∫

G(Qp)
Hp(s, gp)−1ηp(gp)dgp = φη(a, s)

∏

α∈A0(η)

ζ Sη (sα − κα + 1);

∏

p/∈Sψ

∫

U(Qp)
Hp(s, u p)−1ψ p(u p)du p = ϕψ (a, s)

∏

α∈A0(ψ)

ζ Sψ (sα − κα + 1),

where ζ S(s) =
∏

p/∈S(1 − p−s)−1 is the incomplete Riemann zeta function. More-
over,

|φη(a, s)| ≤ c(ε),

|ϕψ (a, s)| ≤ c(ε).

Proof. The integrals can be computed as in Proposition 4.4. They are regu-
larized by the indicated products of (partial) zeta functions. The remaining Euler
products are expressions involving the number of Fp-points for boundary strata
(and their intersections with div(η), resp. div(ψ)). In particular, they are uniformly
bounded on compacts in T−1/2+ε . For details we refer to [6], Proposition 5.5 (which
follows from Proposition 10.2, loc. cit.). !

Corollary 4.10. In particular, each term in the sums Z1(s, g) and Z2(s, g)
has a meromorphic continuation to the domain T−1/2.

Lemma 4.11. For any ε > 0 and any compact K in T−1/2+ε , there exist con-
stants c(K) and n′ = n′(K) > 0, such that

|
∏

p∈Sη

∫

G(Qp) Hp(s, gp)−1dgp| ≤ c(K) · (1 + ‖a‖)n
′

|
∏

p∈Sψ

∫

G(Qp) Hp(s, gp)−1dgp| ≤ c(K) · (1 + |a|)n′

for all s ∈ K.

Proof. For p ∈ SX we use the bound from Lemma 4.1. For p ∈ Sη \ SX (resp.
Sψ \ SX ) we apply Proposition 4.4: there is a constant c > 0 (depending only on X
and K) such that

∣

∣

∣

∣

∣

∫

G(Qp)
Hp(s, gp)−1dgp

∣

∣

∣

∣

∣

≤
(

1 + c
√

p

)

for all p. Using the bound
∏

p|b

(

1 + c
√

p

)

≤ |b|n′

(for b = a · n(K) and some n′ = n′(K) > 0), we conclude the proof. !
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Proposition 4.12. For any n > 0 and any compact K ⊂ T−1/2+ε , there exists
a constant c(K, n) such that, for any s ∈ K, and any a = (a1, a2) and a as above,
one has the estimates

|
∫

G(R) H∞(s, g∞)−1η∞(g∞)dg∞| ≤ c(K, n)(1 + ‖a‖)−n,

|
∫

G(AS) HS(s, gS)−1ωS(gS)dgS| ≤ c(K, n)(1 + |λ|)−n(1 + |a|)n′
,

where n′ = n′(K) is the bound from Lemma 4.11, S = Sψ ∪ {∞}, λ = λ(ω) is the
eigenvalue of ωS ∈ BS((ψ ) (with respect to the elliptic operator 1).

Proof. We use Lemma 4.1 and integration by parts. For η we apply the operator
∂ = ∂2

x + ∂2
y (as in [6]) and for ψ the elliptic operator 1 = ∂2

x + ∂2
y + ∂2

z (and use
the eigenfunction property of ωS , or, what amounts to the same, of ω ∈ B((ψ )).
More precisely, the second integral is majorized by

|λ|−m · |
∫

G(AS)
1mHS(s, gS)−1dgS| · sup

gS∈G(AS)
|ωS(gS)|.

Using the class number one property

G(A) = G(Q) · G(R) · K

and the invariance of ω under G(Q) and K, we obtain the estimates

sup
gS∈G(AS)

|ωS(gS)| ≤ sup
g∈G(A)

|ω(g)| = sup
g∈*\G(R)

|ω∞(g)|.(4.1)

Further we have

sup
g∈*\G(R)

|ω∞(g)| ; |λ|m′ · ‖ω‖L2(*\G(R)) = |λ|m′ · ‖ω‖L2(G(Q)\G(A)) = |λ|m′
(4.2)

for some constant m′ (see [11], [23], p. 22, and [25] for the comparison between
the L2 and the L∞ norms of an eigenfunction of an elliptic operator on a compact
manifold and other applications of this inequality). The rest of the proof follows
at once from Lemma 4.1 and Lemma 4.11. (Notice that the implied constants,
including m′, in the above inequalities depend only on the choice of K.) !

Before continuing to the proof of the main theorem, we discuss the individual
inner products

Z(s, η) = 〈Z(s, ·), η〉,

Z(s, ωψ ) = 〈Z(s, ·), ωψ〉.
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Let us first set

ζη(s) =
∏

α∈A0(η)

ζ (sα − κα + 1),

ζψ (s) =
∏

α∈A0(ψ)

ζ (sα − κα + 1).

We have then the following corollary.

Corollary 4.13. The functions

ζη(s)−1 · Z(s, η)

and

ζψ (s)−1 · Z(s, ωψ ),

initially defined for s ∈ Tδ (cf. 2.4), have an analytic continuation to the domain
T−1/2+ε (for all ε > 0).

Proof. We will consider the function ζψ (s)−1 · Z(s, ωψ ) and leave the first case
to the reader. We start by observing that, for s ∈ Tδ, we have

∫

G(A)
|H (s, g)|−1dg < ∞(4.3)

(this follows from Proposition 2.4 together with the compactness of G(Q)\G(A)).
Consequently,

Z(s, ωψ ) =
∫

G(A)
H (s, g)−1ωψ (g)dg,

again for s ∈ Tδ. Using the left-K, and in particular, the left KS-invariance of H ,
we have, for s ∈ Tδ,

Z(s, ωψ ) =
∫

G(A)
H (s, g)−1

∫

KS
ωψ (kSg)dkSdg.

Then, from Lemma 3.15 (factorization), we have (with s in the same domain),

Z(s, ωψ ) =
∫

G(AS)
H (s, gS)−1ωψ (gS)dgS ·

∫

G(AS)
H (s, gS)−1 f S(gS)dgS,(4.4)

where we have set

f S(gS) :=
∏

p/∈S

f p(gp)

(recall that S = Sψ ∪ {∞}). Both integrals above are convergent for s ∈ Tδ by (4.3).
By Lemma 4.1, the first integral on the right in (4.4) is absolutely convergent for
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s ∈ T−1. Next it follows from Proposition 4.9 that the second integral above actually
converges for s ∈ T0. Moreover, we have for that integral the product expression

∏

p/∈Sψ

∫

G(Qp)
Hp(s, gp)−1 f p(gp)dgp.

As we have noted in Proposition 4.9, the infinite product is convergent to a holo-
morphic function, for s ∈ T0. Further, we then have for this infinite product the
expression

ϕψ (a, s) ·
∏

α∈A0(ψ)

∏

p∈Sψ

ζ (sα − κα + 1) · ζψ (s),

for s ∈ T0. It follows, again from Proposition 4.9, that

ζψ (s)−1 · Z(s, ωψ )

can be continued holomorphically to the domain T−1/2+ε . (Note that we have used
the meromorphic continuation of ζ (s) to ,(s) > 1/2 + ε.) !

Moreover, we have the following lemma:

Lemma 4.14. For any ε, n > 0 and any compact K ⊂ T−1/2+ε , there is a con-
stant c(K, n) and an integern′ > 0 such that, for any s ∈ Kand a as above (ψ = ψa),
we have

|ζψ (s)−1 · Z(s, ωψ )| ≤ c(K, n)(1 + ‖λ|)−n(1 + |a|)n′
.

Proof. We have from the preceding (proof of Corollary 4.13)

ζψ (s)−1 · Z(s, ωψ )

= ϕψ (a, s) ·
∫

G(AS)
H (s, gS)−1ω(gS)dgS ·

∏

α∈A0(ψ)

∏

p∈Sψ

ζp(sα − κα + 1),

for s ∈ T−1/2+ε . Our conclusion follows from Proposition 4.9 and Proposition 4.12
and, for example, the elementary inequality

∏

p|b

(

1 + 1
√

p

)

≤ |b|n′

applied to b = an(K) (for some n′ > 0, independent of a). !

Theorem 4.15. The height zeta functionZ(s) is holomorphic for s ∈ T0. More-
over,

∏

α∈A
(sα − κα) · Z(s)
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admits a holomorphic continuation to T−δ (for some δ > 0) and

lim
s→κ

∏

α∈A
(sα − κα) · Z(s) = τ (KX ).

Proof. Set

z(s) :=
∏

α∈A
(sα − κα).

We prove first that both series
∑

η +=1

z(s) · Z(s, η) · η(g)(4.5)

and
∑

ψ +=1

∑

ωψ∈B((ψ )

z(s) · Z(s, ωψ ) · ωψ (g)(4.6)

are normally convergent for s in a compact subset of T−1/2+ε and g in a compact
subset of G(A). We note that, by Proposition 4.12, the products

z(s)Z(s, η) and z(s)Z(s, ωψ )

are defined for s ∈ T−1/2+ε . We will prove our assertion for the second series; the
proof for the first is entirely similar.

We have a map from the set of nontrivial characters {ψ} of A/Q to the set of
subsets of A given by

ψ 6→ A0(ψ).

It suffices to prove our assertion for each subseries ZA of Z2 corresponding to ψ

with A0(ψ) = A (for A ⊂ A). From Lemma 4.14 we have a uniform majoration
(for real s)

z(s) · Z(s, ωψ ) ; z(s) · ζψ (s) · (1 + |λ|)−n · (1 + |a|)n′
.

By definition, the function ζψ is the same for all for ψ occuring in ZA. It remains
then to prove the assertion for the series

∑

ψ

∑

ωψ∈B((ψ )

|λ|−n+m′ |a|n′
,(4.7)

where we have used the estimates (4.1) and (4.2) (and the sum is over all characters
ψ occuring inZA). We recall thatλ = λ(ωψ ) is the1-eigenvalue ofωψ andψ = ψa .
We also recall (Lemma 3.13) that (with S = Sψ )

ωψ = j(ϕS ⊗ eS ⊗ ϕψ
n ),

for n = 0, 1, 2, . . . , where ϕS varies over an orthonormal basis of S(AS)KS . Thus
our series (4.7) is bounded from above by

∑

a∈Z,a +=0

∑

n

|λn|−n|a|n′+1 · n(K)2
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(see Lemma 3.9). Our claim now follows upon remarking that

λn = (−2π (n + 1)|a| − 4π2a2).

At this point we may conclude that the series (4.5) and (4.7) converge as stated.
It now follows that, for s ∈ Tδ,

Z(s, g) = Z0(s, g) + Z1(s, g) + Z2(s, g),

as an equality of continuous functions on G(A). In particular, we have

z(s)Z(s) = z(s)(Z0(s, id) + Z1(s, id) + Z2(s, id)),(4.8)

again for s ∈ Tδ. Finally, we obtain, from (4.8), Corollary 4.5, and the preceding,
the meromorphic continuation of Z(s) to the domain T−1/2+ε .

Further, since for nontrivial ψ the set A0(ψ) is a proper subset of A, we also
see that the function

z(s)(Z1(s, id) + Z2(s, id))

vanishes for s = κ . Thus we have finally

z(s)Z(s, id)|s=κ = z(s)Z0(s, id)|s=κ .

Applying Corollary 4.5 we conclude the proof. !

Remark 4.16. Theorem 4.15 implies that for each L in the interior of $eff(X )
the (one-parameter) height zeta function Z(s,L) is holomorphic for ,(s) > a(L)
and admits a meromorphic continuation to ,(s) > a(L) − ε (for some ε > 0) with
an isolated pole at s = a(L) of order at most b(L). The proof that the order is
exactly b(L) and that the leading coefficient of Z(s,L) at this pole is c(L) · τ (L)
is analogous to the proof of the corresponding statement for height zeta functions
of equivariant compactifications of additive groups (see Section 7 in [6]).

5. Example: P3. A standard bi-equivariant compactification of the
Heisenberg group G is the three-dimensional projective space X = P3. The bound-
ary D = X\G consists of a single irreducible divisor (the hyperplane section). The
class of this divisor generates the Picard group Pic(X ). The anticanonical class
−[K X ] = 4[D] and the cone of effective divisors $eff(X ) = R≥0[D]. The height
pairing is given by

H (s, g) :=
∏

p

Hp(s, gp) · H∞(s, g∞),(5.1)

where g ∈ G(A),

Hp(s, gp) = max{1, |x |p, |y|p, |z|p}s(5.2)

and

H∞(s, g∞) = (1 + x2 + y2 + z2)s/2.(5.3)



P1: IML/SPH P2: IML/SPH QC: IML/SPH T1: IML

PB440-27 HIDA-0662G PB440-Hida-v4.cls December 10, 2003 7:35

joseph shalika and yuri tschinkel768

The heights Hp are invariant with respect to the action of G(Zp) (on both sides).
We are interested in the analytic properties of the height zeta function

Z(s, g) =
∑

γ=(x,z,y)∈Q3

H (s, γ g)−1.(5.4)

As above, we consider the Fourier expansion of Z(s, g). Each term in this
expansion will be regularized by an explicit Euler product of height integrals. We
need to compute these height integrals at good primes and estimate them at bad
primes and at the real place.

Lemma 5.1. For ,(s) > 4, one has
∫

G(Afin)
H (s, g)−1dg = ζ (s − 3)

ζ (s)
.

Lemma 5.2. For ,(s) > 3 and all p /∈ Sη, one has
∫

G(Qp)
Hp(s, gp)−1ηa(gp)dgp = ζ−1

p (s).

Proof. Both lemmas may be proved by direct computation using the definition
of Hp in (5.2). !

Lemma 5.3. For ,(s) > 3, all ψ = ψa and all p /∈ Sψ , one has
∫

G(Qp)
Hp(s, gp)−1 f p(gp)dgp =

∫

U(Qp)
Hp(s, u p)−1ψa(u p)dup = ζ−1

p (s)

(where f p is the local normalized spherical function).

Proof. Direct computation. Note that the second integral is similar to the inte-
gral in Lemma 5.2 for the variety P2 ⊂ P3 (the induced equivariant compactification
of U). !

Lemma 5.4. For all ε > 0, n > 0 and all compacts K in the domain ,(s) >

3 + ε, there exists a constant c(n, K) such that, for all s ∈ K and all η = ηa (with
a ∈ Z2), the finite product

∣

∣

∣

∣

∣

∏

p∈Sη

∫

G(Qp)
Hp(s, gp)−1η(gp)dgp

∫

G(R)
H∞(s, g∞)−1η(g∞)dg∞

∣

∣

∣

∣

∣

is bounded by

c(n, K)(1 + |a1| + |a2|)−n.
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Proof. We replace η by 1, Hp(s, gp) by Hp(,(s), g) and obtain
∣

∣

∣

∣

∣

∫

G(Qp)
Hp(s, gp)−1dgp

∣

∣

∣

∣

∣

≤ 1
1 − p−ε

.

For a ∈ Z, we have
∏

p|a
(1 + p−ε) ≤ (1 + |a|)n′

(for some positive integer n′). Using the definition of H∞:
∣

∣

∣

∣

∫

R3
(1 + x2 + y2 + z2)−s/2e−2π i(a1x+a2 y)dxdydz

∣

∣

∣

∣

< c(n, K)(1 + |a1| + |a2|)−n

for all n (this is an easy consequence of integration by parts). !

Lemma 5.5. For all ε > 0, n > 0 and all compacts K in the domain ,(s) >

3 + ε, there exists a constant c(n, K) such that, for all s ∈ K, all ψ = ψa (with
a ∈ Z, a += 0), S = Sψ ∪ {∞}, and all ωS ∈ BS((ψ ), the expression

∣

∣

∣

∣

∫

G(AS)
H (s, gS)−1ωS(gS)dgS

∣

∣

∣

∣

is bounded by

c(K, n)|an|−n

(where the real component of j−1
ψ (ωS) is equal to cnϕ

ψ
n , cf. Lemma 3.13).

Proof. Let λ be the 1-eigenvalue of ω. Here

1 = ∂2
x + ∂2

y + ∂2
z

is an elliptic differential operator on G(Z)\G(R), and ∂x (resp. ∂y, ∂z) is the invariant
vector field corresponding to g(x, 0, 0) (resp. g(0, 0, y) and g(0, z, 0)). On each
subspace

HK
ψ ⊂ L2(G(Q)\G(A))K = L2(G(Z)\G(R)),

we have

∂zω = (2π ia)ω

(here we used the πψ realization). It follows that

∂2
z ω = −4π2a2 · ω,

and

1ω = (λψ
n − 4π2a2)ω,

where λ
ψ
n = −2π (2n + 1)|a| is the 1ψ -eigenvalue of ϕ

ψ
n , the real component of

j−1
ψ (ωS).
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After these preparations, we can assume that s is real. Using repeated integration
by parts, we find the following estimate for the above integral:

λ−n · ‖ω‖L∞ ·
∏

p|a

∫

G(Qp)
Hp(s, gp)−1dgp ·

∫

R3
1n(1 + x2 + y2 + z2)−s/2dxdydz.

Here we have again used the estimates (4.1) and (4.2). Continuing, we estimate the
finite product of p-adic integrals as in the proof of Lemma 5.4. Finally, we find
from Lemma 4.1 that the integral

∫

R3
1n(1 + x2 + y2 + z2)−s/2dxdydz

is convergent for s ∈ K and, further, is bounded on the same region. !

Proposition 5.6. The height zeta function Z(s) defined in (5.4)
• is holomorphic for ,(s) > 4;
• admits a meromorphic continuation to ,(s) > 3 + ε (for any ε > 0); and
• has a simple pole in this domain at s = 4 with residue

ζ (4)−1
∫

R3
(1 + x2 + y2 + z2)−2dxdydz = π2

ζ (4)
.

Proof. Using the estimates of Lemma 5.5, and (4.1) and (4.2), we see, as in the
proof of Theorem 4.15, that the series for Z2(s, g) in Proposition 3.3 is normally
convergent for s in a compact set K of ,(s) > 3 and for g ∈ G(A). It now follows
(as in the proof of Theorem 4.15) that, for ,(s) > 4,

Z(s, g) = Z0(s, g) + Z1(s, g) + Z2(s, g),

as an equality of continuous functions on G(A). In particular,

Z(s, id) = Z0(s, id) + Z1(s, id) + Z2(s, id),(5.5)

again for ,(s) > 4. We obtain then, as in the proof of Theorem 4.15, the meromor-
phic continuation of Z(s) to ,(s) > 3 + ε (see esp. Lemma 5.1 for Z0). Finally,

(s − 4)Z(s)|s=4 = (s − 4)Z0(s, id)|s=4 = π2

ζ (4)
. !
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CHAPTER 28

ON HIGHEST WHITTAKER MODELS AND INTEGRAL STRUCTURES

By Marie-France Vignéras

Abstract. We show that the integral functions in a highest Whittaker model of an irreducible integral
Q!-representation of a p-adic reductive connected group form an integral structure.

Introduction. This work is motivated by a question of E. Urban (March
2001) for the group Sp(4). The fact that the integral Whittaker functions form an
integral structure is an ingredient at the nonarchimedean places for deducing con-
gruences between Eisenstein series and cuspidal automorphic forms from congru-
ences between special values of L-functions using the theory of Langlands-Shahidi.
Many fundamental and deep theorems in the theory of Whittaker models and of
L-functions attached to automorphic representations of reductive groups with arith-
metical applications are due to Joseph Shalika and his collaborators, or inspired
by him. Whittaker models and their generalizations as the Shalika models have
become a basic tool to study automorphic representations and they may become
soon a basic tool for studying congruences between them.

Let (F, G, !) be the triple formed by a local nonarchimedean field F of residual
characteristic p, the group G of rational points of a reductive connected F-group,
a prime number ! different from p. We denote by Q! an algebraic closure of
the field Q! of !-adic numbers, Z! the ring of its integers, " the maximal ideal,
F! = Z!/"Z! the residual field (an algebraic closure of the finite field F! with
!-elements), ModQ!

G the category of Q!-representations of G, IrrQ!
G the subset

of irreducible representations. All representations (π, V ) of G are smooth: the
stabilizer of any vector v ∈ V is open. The dimension of a representation of G is
usually infinite.

However, a reductive p-adic group tries very hard to behave like a finite group.
A striking example of this principle is the strong Brauer-Nesbitt theorem:

Theorem 1. Let (π, V ) be a Q!-representation of G of finite length, which
contains a G-stable free Z!-submodule L. Then the Z!G-module L is finitely gen-
erated, L/"L has finite length and the semi-simplification of L/"L is independent
of the choice of L.

This is a stronger version of the Brauer-Nesbitt theorem in [V2, II.5.11.b]
because the hypotheses (loc. cit.) contained the property that the Z!G-module L

Manuscript received September 24, 2001, revised July 7, 2002.
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is finitely generated and Z!-free. Here we prove that the Z!-freeness of L implies
that L is Z!G-finitely generated.

A representation (π, V ) ∈ ModQ!
G is called integral when the vector space V

contains a G-stable free Z!-submodule L containing a Q!-basis, and L is called an
integral structure.

There is not yet a standard notation for the Whittaker models. Our notation is
the following. A Whittaker Q!-representation of G is associated to a pair (Y, µ)
where Y is a nilpotent element of Lie G and µ is a cocharacter of G related by
Ad µ(x)Y = x−2Y for all x ∈ F∗. The Whittaker Q!-representation of G is an in-
duced representation IndG

N $, where N is the unipotent subgroup of G defined by
the cocharacter µ and $ is an admissible irreducible representation (character or an
infinite dimensional metaplectic representation) of N defined by the nilpotent ele-
ment Y [MW]. The contragredient (N , $̃) of (N , $) is associated to (−Y, µ). When
Y = 0, $ is the trivial character of N . When Y is regular, i.e., the dimension d(Y ) of
the nilpotent orbit O = Ad G, Y is maximal among the dimensions of the nilpotent
orbits of Lie G, N is a maximal unipotent subgroup and $ is a generic character
of N ; the corresponding Whittaker Q!-representation of G is called generic. We
need the assumption that the characteristic of F is 0 and p $= 2 in order to refer to
[MW]. It is clear that a generic Whittaker Q!-representation of G can be defined
without any assumption on F .

Let π ∈ ModQ!
G, which may fail to be irreducible. A Whittaker model of π

associated to (Y, µ) is a subrepresentation of IndG
N $ isomorphic to π , if there exists

one. If π has a model in a generic Whittaker Q!-representation of G, then π is called
generic and the model is called a generic Whittaker model. The “highest Whittaker
models” of π are the Whittaker models of π associated to (Y, µ) when the nilpotent
orbit O is maximal among the nilpotent orbits of Lie G associated to the Whittaker
models of π , when π has a Whittaker model. When π is irreducible and generic,
the generic Whittaker models are the highest Whittaker models of π .

When π is irreducible, the characteristic of F is 0 and p $= 2, a Whittaker
model with our definition is called a degenerate Whittaker model in [MW]; the set
of Whittaker models of π is not empty [MW].

We relate now the Whittaker models with the integral structures. The repre-
sentation $ has a natural integral structure L$ but the induction does not respect
integral structures: in general, the Z!G-submodule IndG

H L$ is not Z!-free and
does not generate IndG

N $, and the Whittaker representation IndG
H $ is not integral.

However, we have the following remarkable property.

Theorem 2. Let π ∈ ModQ!
G admissible and let V ⊂ IndG

N $ be a highest
Whittaker model of π . Then the two following properties (1) and (2) are equivalent:

(1) π is integral.
(2) The functions in V with values in L$ form an integral structure of π .

Under the restriction on (F, π ), the characteristic of F is 0 and p $= 2, π is
irreducible.
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When V is a generic Whittaker model of π , the equivalence is true without
restriction on (F, π ).

As (2) implies clearly (1), the key point is to show that (1) implies (2). We
prove that (1) implies (2) iff any element v of V has a denominator, i.e., the values
of a multiple of v belong to L$ (II.5), and we give two general criteria A, B for this
property (II.6 and II.7).

Criterion A given in (II.6) is that (π, V ) contains an integral structure L such
that the $-coinvariant p$L is Z!N -finitely generated. This is an integral version
of the fact that the $-coinvariant p$V is finite dimensional (Moeglin and Wald-
spurger) when V is a highest Whittaker model of π ∈ IrrQ!

G attached to (N , $). To
explain the method due to Rodier, let us suppose that $ is a character. One approx-
imates (N , $) by characters χn of open compact pro-p-subgroups Kn of G. The
key point is to prove that the projection p$ on the (N , $)-coinvariants restricts to
an isomorphism enV & p$V , where en is the projector on the (Kn, χn)-invariants,
when n is big enough. Recall that V is admissible, hence p$V is finite dimensional.
The tool to prove the isomorphism is the expansion of the trace of π around 1. As
en L is a lattice of enV for any integral structure L of (π, V ), criterion A is satisfied
if p$ restricts to an isomorphism en L & p$L . This is proved in Section III by a
careful analysis of the proof of [MW].

Compact induction behaves well for integral structures. A compact Whittaker
representation indG

H $ is integral and indG
H L$ is an integral structure. The

Whittaker representation IndG
N $ is the contragredient of the compact Whittaker

representation indG
N $̃, where $̃ is the contragredient of $ because $ is admissible

and N unimodular. The criterion B given in (II.7) is a property of the K -invariants
of indG

N L̃$ as a right module for the Hecke algebra of (G, K ) when K is an open
compact subgroup of G. It is an integral version of a finiteness theorem: the com-
ponent of indG

N $̃ in any Bernstein block is finitely generated. In the generic case
and without restriction on (F, π ), this has been recently proved by Bushnell and
Henniart [BH 7.1]. Their proof is well adapted to criterion B and one can, af-
ter some simplifications, obtain that a generic compact Whittaker representation
satisfies criterion B. This is done in Section IV.

For a generic irreducible representation with the restriction on F , we get two
very different proofs of the Theorem 2, using criteria A and B. For GL (n, F)
with no restriction on F , when the representation is also cuspidal, a third proof
was known and showed that modulo homotheties, the Kirillov model is the unique
integral structure [V4]. The Kirillov integral model was used for GL (2, F) to prove
that the semi-simple local Langlands correspondence modulo ! is uniquely defined
by equalities between ε factors [V6]. The characterization of the local Langlands
correspondence modulo ! in the general case n > 2 by L and ε factors remains
open. Probably the case n = 3 is accessible.

As noticed by Jacquet and Shalika for GL (n, F), the Whittaker models of
representations induced from tempered irreducible representations are useful. Being
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aware of future applications, we did not consider only integral models of irreducible
representations. The criteria A, B, as well as Theorem 1 and the generic case of
Theorem 2 are given for representations that may fail to be irreducible.

In the appendix, we compare, for a representation V of G over an algebraically
closed field R of characteristic $= p, the three properties:

(i) the rightHR (G, K )-modules V K are finitely generated for the open compact
subgroups K of G;

(ii) the components of V in the blocks of ModR G are finitely generated;

(iii) the irreducible quotients of V have finite multiplicity.

The criterion A is an integral version of (iii), the criterion B is an integral version
of (i). The property (i) is equivalent (ii) in the complex case [BH] and it is clear that
(ii) implies (iii) but is not equivalent. We give a proof of the equivalence between
(i) and (ii) in the modular case, and in the complex case we give certain properties
of V and of its Jacquet functors implying the equivalence between (ii) and (iii).
For instance, the complex representation of GL (2, F) compactly induced from a
character of a maximal (split or not split) torus and its coinvariants by a unipotent
subgroup satisfy this properties. This representation introduced by Waldspurger
and studied also by Tunnel, plays a role in the arithmetic theory of automorphic
forms.

Acknowledgments. I thank the Institute for Advanced Study for its invitation
during the spring term 2001, where this work started and was completed in the
best possible conditions. I thank Guy Henniart and Steve Rallis for discussions on
Gelfand-Graev-Whittaker models. I thank also the C.N.R.S. for the delegation that
allows me to come here and to do research full-time for one year.

I. Proof of the strong Brauer-Nesbitt theorem. Let (π, V ) be a finite length
Q!-representation of G which contains a G-stable free Z!-submodule L . We will
prove that the Z!G-module L is finitely generated. The rest of the theorem follows
from the Brauer-Nesbitt theorem proved in [V2, II.5.11.b].

The proof uses an unrefined theory of types for G as in [V2, II.5.11.b]. One
can take either the mottes [V1] or the more sophisticated Moy-Prasad types.

The subrepresentation π ′ of π generated by L has finite length and we may
suppose that π = π ′ is generated by L .

One may replace Z! by the ring of integers OE of a finite extension E of Q!

as in [V II.4.7]. What is important is that OE is a principal local ring. Let pE be a
generator of the maximal ideal, let kE := OE/pE OE be the residual field.

The theory of unrefined types shows that L/pE L ∈ ModkE G has finite
length because it contains only finitely many unrefined minimal types modulo G-
conjugation ([V II.5.11.a], where the condition OE G-finitely generated is useless).
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Let m be the length of L/pE L . We will prove the Z!G-module L is generated by m
elements.

We cannot conclude immediately because the free OE -module L is usually
not of finite rank. As ! $= p, the open compact pro-p-subgroups K of G form a
fundamental system of neighborhoods of 1. The finite length Q!-representation
(π, V ) of G is admissible: for any open compact pro-p-subgroup K of G, the E-
dimension of the vector space V K is finite. The OE -modules L K are free of finite
rank. By smoothness we have L = ∪K L K .

The kE G-module L/pE L is generated by m elements w1, . . . , wm . We lift these
elements arbitrarily to v1, . . . , vm in L and we consider the OE G-submodule L ′ of
L that they generate. As OE is principal and L is OE -free, the OE -submodule L ′

of L is OE -free. We have by construction

L = L ′ + pE L .

The OE -modules L
′ K , L K are free of finite rank and L K = L

′ K + pE L K . The
theory of invariants for free modules of finite rank over a principal ring implies that
L

′ K = L K . As L = ∪K L K , L ′ = ∪K L
′ K , we deduce L = L ′. Thus Theorem 1 is

proved.

II. Integral structures in induced representations (criteria A and B). The
framework of this section is very general, R is a commutative ring and G is a locally
profinite group that contains an open compact subgroup C of pro-order invertible
in R, such that G/C is countable. The criteria A and B are given in (II.6) and (II.7).
The proofs are given at the end of the section.

II.1. We fix the notations:

ModR is the category of R-modules;

ModR G is the category of smooth representations of G on R-modules;

IrrR G is the subset of irreducible representations;

H is a closed subgroup of G;

OE is a principal ring with quotient field E ;

($, W ) ∈ ModE H of countable dimension;

IndG
H ($, W ) ∈ ModE G is the space of functions f : G → W right invariant

by some open compact subgroup K f , with functional equation f (hg) = $(h) f (g)
for h, g ∈ H, G, with the action of G by right translations;

indG
H ($, W ) ∈ ModE G is the compactly induced representation, subrepresen-

tation of IndG
H ($, W ) on the functions f with compact support modulo H .

We often forget the module V or the action π in the notation (π, V ) of a
representation.
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The induced representation IndG
H $ and the compactly induced representation

indG
H $ can be equal even when G is not compact modulo H . There are two typical

examples with indG
H $ = IndG

H $:

– a metaplectic representation [MVW I.3, I.6]: G is a p-adic Heisenberg group
of center Z , H is a maximal commutative subgroup of G, ! $= p a prime number,
E is the field generated over Q! by the roots of 1 of order any power of p (the ring
of integers OE is principal), $ is an E-character of H nontrivial on Z .

– a cuspidal representation [V5]: G is a p-adic connected reductive group, H
is the normalizer in G of a maximal parahoric subgroup K , R is an algebraically
closed field of characteristic $= p, $ ∈ IrrR H such that $|K contains the inflation
of a cuspidal irreducible representation of the quotient K/K p (a finite connected
reductive group).

A representation (π, V ) ∈ ModE G is called OE -integral when it contains an
OE -integral structure L , i.e., a G-stable OE -free submodule L that contains an
E-basis of V .

II.2. Let L be an OE -integral structure of a representation (π, V ) ∈ ModE G
and let (π ′, V ′) be a subrepresentation of (π, V ). Then L ′ := L ∩ V is an OE -
integral structure of (π ′, V ′).

This is a basic fact with an easy proof: clearly L ′ is G-stable; as OE is principal
and the OE -module L is free, the OE -submodule L ′ ⊂ L is free; if (vi )i∈I is a basis
of V ′ then for each i ∈ I there exists ai ∈ OE such that vi ai ∈ L hence vi ai ∈ L ′.
Therefore L ′ is an OE -integral structure of V ′.

In contrast with (II.2): a quotient of an integral representation is not always
integral. A counter-example is given after (II.3).

We suppose in this section that ($, W ) ∈ IrrE H is OE -integral with an
OE G-finitely generated, OE -integral structure LW . Are the induced representa-
tions IndG

H $ and indG
H $ integral? In general, the induced representation without

condition on the support is not integral by (II.2) because IndG
H $ may contain a

nonintegral irreducible representation. This contrasts with the compactly induced
representation indG

H $, which is integral.

Proposition II.3. indG
H LW is an OE -integral structure of indG

H ($, W ).

The integral representation indG
H $ may have nonintegral quotients: ind

Q∗
p

1 1E

is integral but there are characters of Q∗
p with values not contained in O∗

E .
The OE -module IndG

H LW is clearly G-stable. But when indG
H $ $= IndG

H $, the
OE -module IndG

H LW is not free and does not contain a basis of IndG
H W . Hence the

following property is particularly nice:

Proposition II.4. For any admissible subrepresentation (π, V ) of IndG
H

($, W ), the OE -module V ∩ IndG
H LW is free or zero.
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Clearly V ∩ IndG
H LW is G-stable, hence V ∩ IndG

H LW is an OE -integral struc-
ture of (π, V ) if and only if any element of V has a nonzero multiple in IndG

H LW .

Denominators. Let (π, V ) ⊂ IndG
H ($, W ). We say that v ∈ V has a denom-

inator if there exists a ∈ OE nonzero with av ∈ IndG
H LW . We say that V has a

bounded denominator if there exists a ∈ OE nonzero and an E-basis of V with
av ∈ IndG

H LW for all v in the basis.

Two OE G-finitely generated, OE -integral structures LW , L ′
W of ($, W ) ∈

IrrE H are commensurable:

aLW ⊂ L ′
W ⊂ bLW , for some a, b ∈ OE

and the definition of a denominator or of a bounded denominator does not depend
on the choice of LW . Any element of V has a denominator iff every element in a set
of generators of V has a denominator. If (π, V ) is finitely generated, any element
of V has a denominator iff V has a bounded denominator; this is false if (π, V ) is
not finitely generated. From (II.4) we deduce:

Corollary II.5. Let (π, V ) ∈ ModE G admissible contained in IndG
H ($, W ).

Then any element of V has a denominator iff V ∩ IndG
H LW is an OE -integral

structure of (π, V ).

We give two criteria A in (II.6), B in (II.7) for this property.

II.6. Criterion A uses the H -equivariant projection

p$ : V → V$

on the $-coinvariants V$ of (π, V ) ∈ ModE G; by definition V$ is the maximal
semi-simple $-isotypic quotient of the restriction of (π, V ) to H .

Criterion A. Let (π, V ) ∈ ModE G contained in IndG
H ($, W ). If (π, V ) con-

tains an OE -integral model L such that the OE H-module p$L is finitely generated,
then V has a bounded denominator.

Criterion A is equivalent to: V$ is isomorphic to a finite sum ⊕m(π )$ and p$L
is an OE -structure of V$. This is clear except may be the OE -freeness of p$L that
results from the fact that OE is principal and that a multiple of p$L is contained in
the OE -integral structure of V$ defined by LW . By adjunction

m(π ) = dimE HomEG
(

π, IndG
H $

)

.

Criterion A is an integral version of the finite multiplicity of π in IndG
H $.

In the section III, for (F, G, !) as in the introduction under the restriction on
F given in the Theorem 2, we will prove that any highest Whittaker model of
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(π, V ) ∈ IrrQ!
G satisfies the criterion A. As (π, V ) is admissible, it follows that

(1) implies (2) in Theorem 2.

II.7. Criterion B uses the Hecke algebras. One denotes by &R an isomor-
phism of R-modules. For any open compact subgroup K of G, one defines the Hecke
R-algebra of (G, K ),

HR(G, K ) := EndRG R[K\G] &R R[K\G/K ].

For g ∈ G, the RG-endomorphism of R[K\G] sending the characteristic function
of K to the characteristic function of K gK identifies with the natural image [K gK ]
of K gK in R[K\G/K ]. The set V K of K -invariants of (π, V ) ∈ ModR G, has
a natural structure of right HR(G, K )-module, which satisfies for any v ∈ V K ,

g ∈ G:

(1) v ∗ [K gK ] =
∑

h

π (h)−1v,

where K gK = ∪h K h (disjoint union).

Criterion B. We suppose that the HOE (G, K )-module (indG
H LW )K is finitely

generated for all K in a separated decreasing sequence of open compact sub-
groups of G of pro-order invertible in OE . Let (π, V ) ∈ ModE G be a quotient
of indG

H ($, W ). Then (π, V ) is OE -integral iff the image of indG
H LW in V is an

OE -integral structure of (π, V ).

Criterion B does not depend on the choice of LW . There is no restriction
on (π, V ). Its application to the integral structures of subrepresentations of IndG

H
($, W ) is obtained by using the contragredient (II.8.3); for the contragredient, we
need to restrict to admissible representations.

Criterion B implies that the HE (G, K )-modules (indG
H $)K are finitely gener-

ated. This implies that for any admissible representation(π, V ) ∈ ModE G,

mK (π ) := dimE HomHE (G,K )
((

indG
H $

)K
, π K )

< ∞.

The converse is false in general, the finite multiplicity mK (π ) < ∞ for all (π, V ) ∈
ModE G does not implies that the HE (G, K )-modules (indG

H $)K are finitely
generated.

For (F, G, !) as in the introduction, we will prove in (IV.2.1) that any generic
compact Whittaker Q!-representation of G satisfies the Criterion B. Therefore (1)
implies (2) in the Theorem 2 for any generic admissible representation, without
restriction on F .

II.8. We recall some general properties of the contragredient. The contragre-
dient (π̃ , Ṽ ) ∈ ModR G of an R-representation (π, V ) ∈ ModR G of G is given the
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natural action of G on the smooth linear forms of V [V2, I.4.12]. The representation
(π, V ) is called reflexive when (π, V ) is the contragredient of (π̃ , Ṽ ).

The contragredient˜ : ModE G → ModE G is exact [V2, I.4.18] and relates the
induced representation to the compactly induced representation

(

indG
H $

)˜ & IndG
H ($˜ ⊗ δH ),

where δH is the module of H [V2, I.5.11].
Admissible representations of ModE G are reflexive and conversely [V2,

I.4.18]. Note that the induced representations IndG
H $, indG

H $ are not admissible
in general. To apply the Criterion B to a subrepresentation (π, V ) of IndG

H ($, W ),
we suppose (π, V ) and ($, W ) admissible so that:

(

indG
H $̃ ⊗ δ−1

H

)˜ & IndG
H $

and (π̃ , Ṽ ) is a quotient of indG
H ($̃ ⊗ δ−1

H , W̃ ).
The assertion on the quotient results from a property (II.8.1) of the following

isomorphism [V2, I.4.13]: Let V1, V2 ∈ ModR G, then there is an isomorphism

HomRG(V1, Ṽ2) & HomRG(V2, Ṽ1)

sending f ∈ HomRG(V1, Ṽ2) to φ ∈ HomRG(V2, Ṽ1) such that

< f (v1), v2 >=< v1, φ(v2) > for all v1 ∈ V1, v2 ∈ V2

(for ṽ ∈ Ṽ , v ∈ V , one denotes ṽ(v) by < ṽ, v > or by < v, ṽ >).

Claim II.8.1. Suppose that R is a field. If φ is surjective then f is injective; if
V1 is admissible then the converse is true.

An integral OE -structure L (II.1) of an admissible representation
(π, V ) ∈ ModE G is an admissible integral OE -structure in the sense of [V2, I.9.1-
2] and conversely. The contragredient L̃ of L in ModOE G is an OE -structure of
(π̃ , Ṽ ) [V2, I.9.7], and L is reflexive in ModOE G, i.e., the contragredient of L̃ is
equal to L . These results are false without the admissibility.

The values of the module δH are units in OE hence L̃W ⊂ W̃ is stable by the
action of $̃ ⊗ δ−1

H . The OE -module L̃W is an OE -integral structure of ($̃ ⊗ δ−1
H , W̃ ).

The space of indG
H ($̃ ⊗ δ−1

H , L̃W ) ∈ ModOE G is the OE -module of functions f ∈
indG

H ($̃ ⊗ δ−1
H , W̃ ) with values in L̃W .

indG
H ($̃ ⊗ δ−1

H , L̃W ) is an OE -integral structure of indG
H ($̃ ⊗ δ−1

H , W̃ ) by (II.3).

(IndG
H $, IndG

H LW ) is the contragredient of indG
H ($̃⊗ δ−1

H , L̃W ) by [V2, I.5.11].

But IndG
H LW is not an OE -integral structure of IndG

H ($, W ) in general.
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We deduce:
Let (π, V ) ∈ ModE G admissible, OE -integral, and contained in IndG

H ($, W ).
Then (π̃ , Ṽ ) ∈ ModE G is admissible, OE -integral, and a quotient of indG

H ($̃ ⊗
δ−1

H , W̃ ).
The image L ′ of indG

H ($̃ ⊗ δ−1
H , L̃W ) in Ṽ is always nonzero. When L ′ is an

OE -integral structure of (π̃ , Ṽ ), then L̃ ′ is an OE -integral structure of (π, V ).

Proposition II.8.2. Let ($, W ) ∈ IrrE H admissible and let (π, V ) ∈ ModE G
admissible contained in IndG

H ($, W ) and OE -integral. The following properties
are equivalent:

– L := V ∩ IndG
H LW contains an E-basis of V ,

– the image L ′ of indG
H ($̃ ⊗ δ−1

H , L̃W ) in Ṽ is OE -free.

– L , L ′ are OE -integral structures of (π, V ), (π̃ , Ṽ ), contragredient of each
other.

Remarks: (i) When π is irreducible, the first property is equivalent to L $= 0.
(ii) When L ′ is OE G-finitely generated, the second property is satisfied be-

cause a multiple of L ′ is contained in an OE -integral structure of (π̃ , Ṽ ) and OE is
principal.

With Criterion B (II.7) we deduce:

Corollary II.8.3. Suppose that theHOE (G, K )-module indG
H ($̃ ⊗ δ−1

H , L̃W )K

is finitely generated for all K as in (II.7). Let (π, V ) ⊂ IndG
H ($, W ) admissible.

Then (π, V ) is OE -integral iff V ∩ IndG
H LW is an OE -integral structure of (π, V ).

Proofs of II.3, II.4, II.6, II.7, II.8.

Proof of II.3. Let K be an arbitrary open compact subgroup of G of pro-order
invertible in OE . We have the Mackey relations [V2, I.5.5]:

(II.3.1)
(

indG
H W

)K = ⊕HgK indHgK
H W, indHgK

H W &R W H∩gK g−1
.

The hypotheses on G, H, W insure that the dimension of indG
H W = ∪K (indG

H W )K

is countable. The relations (II.3.1) are valid for any OE -representation of H . We
apply them to LW ∈ ModOE H . As OE is principal and LW is an OE -free module
that generates W , the OE -module L H∩gK g−1

W is free and generates W H∩gK g−1
. We

deduce that the OE -module (indG
H LW )K is free and contains a basis of (indG

H W )K .
As K is arbitrary, this implies that indG

H LW contains a basis of the vector space
indG

H W and is free as an OE -module, by the characterization of free modules on a
principal commutative ring [V2, I.9.2 or I.C.4]. !



P1: FMK

PB440-28 HIDA-0662G PB440-Hida-v4.cls December 3, 2003 20:20

on highest whittaker models and integral structures 783

Proof of II.4. Let (ei )i∈I be an OE -basis of (indG
H LW )K . We have

(

IndG
H W

)K =
∏

i∈I

Eei ,
(

IndG
H LW

)K =
∏

i∈I

OE ei .

We suppose, as we may, IndG
H W $= indG

H W ; the set I is infinite and countable. The
E-dimension N of V K if finite because V is admissible. Let (v j )1≤ j≤N be an E-
basis of V K . We write v j =

∑

i∈I x j,i ei with x j,i ∈ E, and the support of the map
i → x j,i is finite. We can extract a square submatrix A = (x j,i ) for i = i1, . . . , iN

and 1 ≤ j ≤ N of nonzero determinant; the projection p : V K → ⊕1≤k≤N Eeik is
an isomorphism. The projection p restricts to an injective OE -homomorphism

V K ∩
(

IndG
H LW

)K =
(

V ∩ IndG
H LW

)K → ⊕1≤k≤N OE eik .

As OE is principal, the OE -submodule p(V ∩ IndG
H LW )K of ⊕1≤k≤N OE eik is OE -

free or zero. This is true for all K and we deduce that V ∩ IndG
H LW is OE -free or

zero as in the proof of II.3. !

Proof of II.6. The value at 1 defines an H -equivariant nonzero linear form
V → W, and hence factorizes through p$V . There exists an H -equivariant linear
map q : p$V → W such that v(1) = q ◦ p$(v) for all v ∈ V . As V$ is semi-simple,
q splits and we can suppose that q corresponds to the first projection ⊕m(π )W → W .

By hypothesis p$(L) is OE H -finitely generated, the same is true for its image
by the H -equivariant linear map q, therefore there exists a ∈ OE such that a(q ◦
p$)L ⊂ LW . Let (v, g) ∈ L × G arbitrary. We have v(g) = gv(1) = q ◦ p$(gv)
and gv ∈ L , hence av(g) ∈ LW , that is, aL ⊂ IndG

H LW . As L contains an E-basis
of V , V has a bounded denominator. !

Proof of II.7. We suppose that (π, V ) is OE -integral. We want to prove that the
image L of indG

H LW in V is an OE -integral structure of (π, V ). Clearly L is G-stable
and generates the E-vector space V . The only property that needs some argument
is the OE -freeness of L . As in the proofs of (II.3) and of (II.6) it is equivalent to
prove that L K is contained in a OE -free module for all K , as in the Criterion B,
with V K $= 0. This results from the fact that the right HOE (G, K )-module L K is
finitely generated, being the quotient of (indG

H LW )K ( as p $= !, the K -invariant
functor is exact), hence a multiple of L K is contained in an OE -structure of (π, V ),
and OE is principal. !

Proof of II.8.1. f is not injective iff there exist v1 ∈ V1 nonzero such that
f (v1) = 0, i.e., < φ(v2), v1 >= 0 for any v2 ∈ V2. Let K be an open compact
subgroup of G of pro-order invertible in R such that v1 ∈ V K

1 . Then (Ṽ1)K is the
linear dual of V K

1 , and as we supposed that R is a field, there exists a linear form
of V K

1 that does not vanish on v1. Hence φ is not surjective.
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φ is not surjective iff there exists K , as above, such that φ(V2)K is not the linear
dual of V K

1 . Suppose V1 admissible. The vector space V K
1 is finite dimensional

and φ(V2)K is not the linear dual of V K
1 iff there exists v1 ∈ V K

1 nonzero such that
φ(V2)K vanish on v1. Hence f is not injective. !

Proof of II.8.2. (a) By definition L = V ∩ IndG
H LW and L ′ is the image in Ṽ

of indG
H L̃W (we supressed $, $̃ ⊗ δ−1

H to simplify).
An element v ∈ IndG

H W belongs to IndG
H LW iff < v, φ >∈ OE for all φ ∈

indG
H (L̃W ), because IndG

H ($, LW ) is the contragredient of indG
H ($̃ ⊗ δ−1

H , L̃W ). An
element φ ∈ indG

H (W̃ ) acts on V via the quotient map indG
H (W̃ ) → Ṽ .

We deduce that L is the set of v ∈ V such that < v, φ >∈ OE for all φ ∈
indG

H (L̃W ) and < L ′, L >⊂ OE .
(b) Suppose that L ′ is OE -free. Then L ′ is an OE -integral structure of (π̃ , Ṽ ).

Its contragredient L̃ ′ is equal to L by the above description of L . Hence L = L̃ ′ is
an OE -integral structure of (π, V ).

(c) Suppose that L contains an E-basis of V , that is, by (II.4), L is an OE -
integral structure of (π, V ). Its contragredient L̃ is an OE -integral structure of Ṽ .
By the last formula in (a), L ′ ⊂ L̃ hence L ′ is OE -free because OE is principal.
From (b) we deduce that L ′ is the OE -integral structure of (π̃ , Ṽ ) contragredient
to L . !

III. Integral highest Whittaker model. Let (F, G, !) be as in the intro-
duction with the restriction: the characteristic of F is zero and p $= 2.

We define a Whittaker data and a Whittaker representation following [MW].
We choose:

(a) A continuous homomorphism φ : F → C∗, trivial on OF but not on
p−1

F OF .

(b) A nondegenerate Ad G-invariant bilinear form B : G × G → F on the Lie
algebra G of G.

(c) An exponential exp : V(0) → V (1), which is a bijective G-equivariant
homeomorphism defined on an Ad G-invariant open closed subset V(0) of G con-
taining the nilpotent elements with image an G-invariant open closed subset V (1)
of G, with inverse a logarithm log : V (1) → V(0).

(d) A nilpotent element Y of G of orbit O = Ad G.Y .

(e) A cocharacter µ : F∗ → G of G defining via the adjoint action a grading
of the Lie algebra G = ⊕i∈Z Gi ,

Gi := {X ∈ G | Ad µ(s).X = si X for all s ∈ µ(F∗)}

such that Y ∈ G−2. Set G≥? := ⊕i≥? Gi and ?i := Gi∩?.
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Clearly the grading is finite, [Gi ,G j ] ⊂ Gi+ j and B(Gi ,G j ) = 0 if i + j $= 0.
The centralizer GY := {Z ∈ G | [Y, Z ] = 0} of Y in G satisfies B(Y,GY ) = 0 [MW,
p. 438]. There is a unique µ(F∗)-invariant decomposition

G = M ⊕ GY

and M = ⊕i∈ZMi , GY = ⊕i∈ZGY
i . The skew bilinear form

BY (X, Z ) := B(Y, [X, Z ]) : G × G → F

has a radical {Z ∈ G | B(Y, [X, Z ]) = 0 for all X ∈ G} equal to GY . Therefore BY

induces a duality between Mi and Mi+2 for all i ∈ Z and a symplectic form on
M1. The dimension of M1 is an even integer 2m1.

(f) An OF -lattice M1(OF ) of M1, which is self-dual for BY :

M1(OF ) = {m ∈ M1 | BY (m,M1(OF )) ⊂ OF}.

The group N := expG≥1 is unipotent and depends only on the choice of µ and
exp. We consider the open subgroup H of N and the character χ of H defined by:

H := exp
(

M1(OF ) ⊕ GY
1 ⊕ Gi≥2

)

, χ (exp X ) := φ(B(Y, X )).

Clearly H = N iff M1 = 0, and χ (exp X ) = χ (exp X2), where X2 is the com-
ponent of X in M2. The character χ does not change if (φ, B) is replaced by
(φa, a−1 B), where φa(x) := φ(ax) with a ∈ O∗

F .

Definition III.1. We call (φ, B, exp, Y,O, µ,M1(OF )) a Whittaker data of G
and

IndG
H χ = IndG

N $, where $ := IndN
H χ

a Whittaker representation of G.

When H $= N the representation $ is a metaplectic representation of the
Heisenberg group H/ Ker χ . The representation $ is irreducible and admissible
[MVW chapter 2, I.6 (3)] and its isomorphism class does not depend on the choice
of M1(OF ). The isomorphism class of the Whittaker representation depends only
on (Y, µ) when (φ, B, exp) are fixed, and does not change if (Y, µ) is replaced by
a G-conjugate.

The complex field C appears only in the definition of the nontrivial additive
character φ of F . The same definitions can be given over any field (or even a
commutative ring) R, which contains roots of 1 of any p-power order.

We define the highest Whittaker models of (π, V ) ∈ IrrQ!
G as in the introduc-

tion. When V ⊂ IndG
H χ is a highest Whittaker model of π , we want to show that

the projection on the (H, χ )-coinvariant vectors

pχ : V → Vχ

behaves well with integral structures.
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Theorem III.2. Let (π, V ) ∈ IrrQ!
G integral with V ⊂ IndG

H χ a highest
Whittaker model. Let L be a Z!-integral structure of (π, V ). Then pχ L is a Z!-free
module.

As pχ V is a finite dimensional Q!-space by Moeglin and Waldspurger, and
as pχ L is a Z!-integral structure (a lattice) of pχ V by the Theorem III.2, (π, V )
satisfies the criterion A, modulo the fact that Z! is not a principal ring. But we may
replace (Z!, Q!) by (OE , E), where OE is the ring of integers of a finite extension
E/Q!(µp∞) such that π is defined over E , where µp∞ is the group of roots of 1 of
any order of p in Q!. The extension Q!(µp∞)/Q! is infinite and unramified hence
OE is principal.

Therefore (III.2) implies the Theorem 2 of the introduction under the restric-
tions on (F, π ). The theorem (III.2) results from (III.4.6) and the remark following
(III.4.3). The rest of the section III is devoted to the proof of (III.2).

The fundamental idea due to Rodier is to approximate the character χ of H by
characters χn of open compact subgroups Kn with the property that the projections
en on the (Kn, χn)-invariant vectors approximate the projection pχ on the (H, χ )-
coinvariant vectors in the following sense: when n is big enough, pχ restricts to
an isomorphism enV → pχ V . We want to prove the same thing for an integral
structure L instead of V . There is not much to add to the original proof for V , only
another technical computation (III.4.1), and this is the purpose of this section.

III.3. We recall the construction of the geometric approximation (Kn, χn)
of (H, χ ) following [MW I.2 (2), I.4 (1), I.9, I.13] (our χn is not the character
χn of [MW]). Set t := µ(pF ). We choose a lattice L of G such that [L,L] ⊂ L
and we complete M1(OF ) to a self-dual lattice M(OF ) = ⊕iMi (OF ) of M. The
OF -module

L′ := M(OF ) ⊕ ⊕i∈Z
(

L ∩ GY
i

)

is an OF -lattice of G. For a big enough fixed integer A and a fixed integer c ≥ A,
we set for all n ≥ A

Gn := exp
(

pn
FL′), An := exp

(

p[n/2]+c
F (L ∩ G1)Y )

, Kn := t−n(Gn An)tn

ξn(exp X ) = χn(t−n exp(Z1) exp(X )tn) := φ
(

p−2n
F B(Y, X )

)

for all X ∈ pn
FL′, Z1 ∈ p[n/2]+c

F (L ∩ G1)Y , where [n/2] is the smallest integer ≤
n/2. The particular form of Kn will be explained soon.

We set N ′ := exp(GY
1 ⊕ Gi≥2). The Campbell-Hausdorff formula shows that N ′

is a normal subgroup of H . The closed subgroup C of H generated by exp(M1(OF ))
is compact and H = C N ′. The character χ of H is trivial on C . The sequence
(Kn, χn)n≥A is an approximation of (H, χ ) in the following sense:
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Kn = (Kn ∩ P−)(Kn ∩ H ) = (Kn ∩ H )(Kn ∩ P−) [MW I.4] where P− is the
stabilizer in G of ⊕i<0Gi , the sequence of groups Kn ∩ P− is decreasing with
trivial intersection, the sequence of groups Kn ∩ H = C(Kn ∩ N ′) is increasing
with union H , the restriction of χn to Kn ∩ P− is trivial and χn = χ on Kn ∩ H .

The sequence of open compact subgroups Gn of G is decreasing with trivial
intersection, and ξn is a character of Gn . A basic property of (Gn, ξn) is [MW I.6]:

Claim III.3.1. For any integers A ≤ m ≤ n, the group Gn is normal in Gm and
the stabilizer of ξn in Gm is equal to Gn exp(pm

FLY ).
We introduce now an admissible representation (π, V ) ∈ ModQ!

G. Let In be
the projection of V on its (Gn, ξn)-invariant vectors. The dimension of the Q!-vector
space InV is finite. The profinite group exp(pc+[n/2]

F LY ) acts on InV by (III.3.1). The
action is trivial iff the trace trIn V u of the action of any element u ∈ exp(pc+[n/2]

F LY )
is equal to dim InV .

Suppose that (π, V ) is irreducible hence admissible. When n is big enough,
trIn V u can be computed using the expansion of the trace tr π of π around 1. The
computation simplifies when the nilpotent orbit O is maximal among the nilpotent
orbits with a nonzero coefficient. When O satisfies this property we say that O is
maximal for tr π . Then we have [MW I.13]:

Claim III.3.2. Let (π, V ) ∈ IrrQ!
G. When O is maximal for tr π and when n

is big enough, the action of exp(pc+[n/2]
F LY ) on InV is trivial.

For two integers n, m ≥ A, we denote by In,m : InV → Im V the restriction to
InV of Imtm−n . In particular

In+1,n = Int−1 : In+1V → InV,

In,n+1 = In+1t : InV → In+1V .

The property [MW I.15]: “Let (π, V ) ∈ IrrQ!
G. When O is maximal for tr π

and when n is big enough, In+1,n In,n+1 In is a nonzero multiple of In” is used to
prove that the nilpotent orbits maximal for trπ are those maximal for the Whittaker
models [MW I.16] and that the dimension of the (H, χ )-coinvariants of (V, π ) is
equal to the coefficient attached to O in the expansion of trπ [MW I.17].

III.4. We give variants of this property that will be the key to prove (III.2).

Lemma III.4.1. Let (π, V ) ∈ ModQ!
G such that the action of exp(pc+[n/2]

F LY )
on InV is trivial when n is big enough. Then, when n ≥ no is big enough, there
exist integers b(n), b′(n) ≥ 0 such that

In+1,n In,n+1 In = pb(n) In, In,n+1 In+1,n In+1 = pb′(n) In+1.

We will prove in (III.4.2) that b(n) = b′(n).
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Proof of III.4.1. To simplify we set gv := π (g)v for g ∈ G, v ∈ V .

(a) It is proved in [MW I.15] under the hypothesis that π is irreducible but
without using this property, that for any wn ∈ InV , In+1,n In,n+1wn is the product
of a power of p and of a sum

∑

h

ξn+1(h−1)t−1htwn,

where h ∈ Gn+1/(Gn+1 ∩ tGnt−1) and t−1ht stabilizes ξn . The number of terms
of the sum is a power of p. It is claimed in [MW I.15] that each term of the
sum is equal to wn when n is big enough; we deduce that there exists an integer
b(n) such that In+1,n In,n+1 In = pb(n) In . We give a proof of the claim because the
same method is used for the second equality of the lemma. Let h ∈ Gn+1 such
that t−1ht stabilizes ξn . The definition of Gn shows that if n is big enough, the
group t−1Gn+1t is contained in Gn+1−a for some integer a such that c + [n/2] ≤
n + 1 − a. There exists g ∈ Gn and y ∈ exp pn+1−a

F LY such that t−1ht = gy by
(III.3.1). By (III.3.2) y acts trivially on InV hence t−1htwn = gwn = ξn(g)wn .
Denote by X2 the component of log g in M2. Then

ξn(g) = φ
(

p−2n
F B(Y, X2)

)

= φ
(

p−2n−2
F B(Y, Ad t.X2)

)

= ξn+1(h).

Hence each term in the sum is equal to wn .

(b) We prove the second equality with the same method. For all n ≥ A,
we choose on Gn the Haar measure normalized by vol Gn = 1. By definition,
In,n+1 In+1,n In+1 = In+1t Int−1 In+1 is equal to

∫

Gn+1

∫

Gn

∫

Gn+1

ξn+1(g′)−1ξn(h)−1ξn+1(g)−1g′tht−1g dg′ dh dg.

When h ∈ Gn ∩ t−1Gn+1t , the action of ξn(h)−1tht−1 on In+1V is trivial be-
cause ξn(h) = ξn+1(tht−1) as in (a). The volume of Gn ∩ t−1Gn+1t is a power of p.
The triple integral is the product of this volume and of:

∑

h∈Gn/(Gn∩t−1Gn+1t)

ξn(h)−1
∫

Gn+1

∫

Gn+1

ξn+1(g′)−1ξn+1(g)−1g′tht−1g dg′ dg.

The group tGnt−1 normalizes Gn+1, because tGnt−1 is contained in Gn−a and n −
a ≥ A when n is big enough. After the change of variables y = (tht−1)−1g′tht−1

and x = yg in Gn+1 we get
∑

h∈Gn/(Gn∩t−1Gn+1t)

ξn(h)−1tht−1
∫

Gn+1

∫

Gn+1

ξn+1(tht−1 y(tht−1)−1 y−1x)−1x dx dy,

which is equal to the product of a power of p and of

J :=
∑

h

ξn(h)−1tht−1
∫

Gn+1

ξn+1(x)−1x dx =
∑

h

ξn(h)−1tht−1 In+1,
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where h ∈ Gn/(Gn ∩ t−1Gn+1t) and tht−1 stabilizes ξn+1. The number of h is a
power of p. Let wn+1 ∈ In+1V . We have

Jwn+1 =
∑

h

ξn(h)−1tht−1wn+1

for h as above. As in (a), one shows that each term of the sum is equal to wn+1. Let
h ∈ Gn such that tht−1 stabilizes ξn+1. As in (a), tht−1 ∈ Gn−a and the stabilizer
of ξn+1 in Gn−a is Gn+1 exp pn−a

F LY with n − a > c + [(n + 1)/2] when n is big
enough. Hence tht−1 = gy for some g ∈ Gn+1 and the action of y on In+1V is
trivial. Hence tht−1wn+1 = gwn+1 = ξn+1(g)wn+1. Denote by X2 the component
of log g in G2. Then

ξn+1(g) = φ
(

p−2n−2
F B(Y, X2)

)

= φ
(

p−2n
F B(Y, Ad t−1.X2)

)

= ξn(h).

Hence each term in the sum is equal to wn+1. We deduce that there exists an integer
b′(n) such that In,n+1 In+1,n In+1 = pb′(n) In+1. The lemma is proved. !

For the application that we have in mind, we replace the projection In on the
(Gn, ξn)-invariant vectors by the projection en on the (Kn, χn)-invariant vectors in
the Lemma III.4.1, and we prove b(n) = b′(n).

Stabilization Lemma III.4.2. Let (π, V ) ∈ ModQ!
G such that the action of

exp(pc+[n/2]
F LY ) on InV is trivial when n is big enough. Then, when n ≥ no is big

enough, there exists an integer b(n) ≥ 0 such that

enen+1en = pb(n)en, en+1enen+1 = pb(n)en+1.

In particular, en+1 induces an isomorphism enV & en+1V of inverse p−b(n)en re-
stricted to en+1V .

Proof of III.4.2. Suppose that n is big enough. By (III.3) Kn = t−n Antn

t−nGntn , as t−n Antn acts trivially on t−n InV and as χn(t−ngtn) = ξn(g) for all
g ∈ Gn , we have

In = tnent−n.

The action of t on V is invertible hence InV = tnenV . We have

In+1,n = Int−1 = tnent−n−1 : tn+1en+1V → tnenV,

In,n+1 = In+1t = tn+1en+1t−n : tnenV → tn+1en+1V,

In+1,n In,n+1 = tnenen+1t−n : tnenV → tnenV,

In,n+1 In+1,n = tn+1en+1ent−n−1 : tn+1en+1V → tn+1en+1V,

In+1,n In,n+1 In = tnenen+1ent−n : V → tnenV,

In,n+1 In+1,n In+1 = tn+1en+1enen+1t−n−1 : V → tn+1en+1V .
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The equalities in III.4.1 are equivalent to

enen+1en = pb(n)en, en+1enen+1 = pb′(n)en+1.

We compute enen+1enen+1 in two different ways using the two equalities. We get
pb(n)enen+1 = pb′(n)enen+1. The first equality implies enen+1 $= 0, hence b(n) =
b′(n). The equalities in (III.4.2) are proved.

Let vn ∈ enV . The first equality gives enen+1vn = pb(n)vn . In particular en+1

is injective on enV . For vn+1 ∈ en+1V the second equality gives en+1envn+1 =
pb(n)vn+1. In particular en+1enV = en+1V . Hence en+1 induces an isomorphism
enV → en+1V . By the first equality p−b(n)enen+1vn = vn , by the second equal-
ity en+1 p−b(n)envn+1 = vn+1. Hence p−b(n)en induces the inverse isomorphism
en+1V → enV . !

Stabilization Property III.4.3. We say that the stabilization property holds
for (H, χ ) in (π, V ) ∈ ModQ!

G when: for all big enough integers n ≥ no, there
exists an integer b(n) such that en+1 restricted to enV is an isomorphism enV &
en+1V of inverse p−b(n)en restricted to en+1V .

Remark. When (π, V ) ∈ IrrQ!
G and V ⊂ IndG

H χ is a highest Whittaker
model, then the stabilization property III.4.3 holds for (H, χ ) in (π, V ) by (III.3.2)
and (III.4.2).

We consider finally the projections εn on the (Kn ∩ H, χ |Kn∩H )-invariant
vectors.

Lemma III.4.4. The stabilization property for (H, χ ) in (π, V ) ∈ ModQ!
G im-

plies for any big enough integers n ≥ m ≥ no:

(a) εn = en on em V and εn restricted to em V is an isomorphism em V → enV ,

(b) if (π, V ) has an integral structure L, we can replace V by L in (a).

Proof of III.4.4. εnv = env for any v ∈ V , which is invariant by Kn ∩ P−

because Kn = (Kn ∩ P−)(Kn ∩ H ) and χn is trivial on Kn ∩ P− and equal to χ

on Kn ∩ H . In particular εnvm = envm for any vm ∈ em V because the sequence
of groups Kn ∩ P− is decreasing and χm is trivial on Km ∩ P−. The stabilization
property implies that εm+1 restricted to em V is an isomorphism em V & em+1V . By
induction, εn ◦ . . . ◦ εm+1 restricted to em V is an isomorphism em V & enV . The
open compact groups Kn ∩ H form an increasing sequence, hence for any n ≥ m
and m big enough, εn = εn ◦ . . . ◦ εm . We proved (a).

If (π, V ) has an integral structure L , en+1 and p−b(n)en give by restriction
isomorphisms en L & en+1L , which are inverse of each other, because the Kn are
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pro-p-groups, p $= !, and en L = L ∩ enV . The arguments given in the proof (a)
are valid when V is replaced by L . !

As the open compact groups Kn ∩ H form an increasing sequence of union
H , the projections εn on the (Kn ∩ H, χ |Kn∩H )-invariant vectors approximate the
projection pχ on the (H, χ )-invariants in the following sense:

(III.4.5) pχεn = pχ , Ker pχ = ∪n≥m Ker εn

for any integer m.

Proposition III.4.6. The stabilization property (III.4.3) for (H, χ ) in (π, V ) ∈
ModQ!

G implies for a big enough integer m ≥ no:
(1) pχ restricted to em V is an isomorphism em V & pχ V ,
(2) if (π, V ) is integral with integral structure L, pχem L & pχ L is a lattice of

pχ V .

The property (1) is a reformulation of [MW I.14] when (π, V ) ∈ IrrQ!
G and

V ⊂ IndG
H χ is a highest Whittaker model.

Proof of III.4.6. (a) Injectivity of pχ restricted to em V . Apply (III.4.5),
(III.4.4), and the injectivity of εn restricted to em V for all n ≥ m ≥ no.

(b) Surjectivity of pχ restricted to em V . We have V = ∪n≥m V Kn∩P−
and by

(III.4.4), and its proof:

pχ (V Kn∩P−
) = pχεn(V Kn∩P−

) = pχen(V Kn∩P−
) ⊂ pχenV = pχεnem V = pχem V .

Hence pχ V = pχem V .

(c) pχem L = pχ L . The arguments of (b) apply to L instead of V .
(d) em L is a lattice of em V ; this remains true when one applies the isomor-

phism pχ . !

IV. Integral generic compact Whittaker representation

Notation IV.1. Let (F, G) be as in the introduction and let R be a commutative
ring that contains roots of the unity of any power of p. The characteristic of R is
automatically different from p. We choose in G a maximal split F-torus T (the
group of rational points a maximal split F-torus) and a minimal parabolic F-group
B = T U that contains T and of unipotent radical U . We denote by Z the centralizer
of T in G (not the center of G), and by B = T U the opposite of B in G. We denote
by +, +red, ,, ++, ++,red the set of roots of (G, T ) in Lie U , of reduced roots,
of simple positive roots, of positive roots, of positive reduced roots with respect
to B. Let U(α) be the unipotent subgroup of U normalized by Z with Lie algebra
Uα + U2α for any root α ∈ + (when 2α is not a root, U2α = 0 and U(2α) = {1}).
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Definition IV.1.1. A character φ : U → R∗ is nondegenerate if the restrictions
φ(α) of φ to U(α) satisfy the two following properties (1) and (2):

1. φ(α) is trivial for any α ∈ ++ − ,.
The character φ satisfying (1) identifies to a character of the direct product

∏

α∈,

U(α)/U(2α) → R∗.

2. The kernel Ker φ(α) of φ(α) is an open compact subgroup of U(α) for all
α ∈ ,.

In particular (2) implies that φ(α) is nontrivial for all α ∈ ,.

Remarks IV.1.2. (1) When G is anisotropic, U = {1} is the trivial group, the
regular representation of G on the R-module C∞

c (G; R) of locally constant func-
tions f : G → R with compact support is the compact generic Whittaker R-
representation of G.

(2) When G is split, the property (1) of (IV.1.1) is true except in some excep-
tional cases [Borel Tits Ann. Math. 97 (1973), 449–571, see page 519 4.3], and the
property (2) of (IV.1.1) is equivalent to: φ(α) is nontrivial for all α ∈ ,.

(3) The set of nondegenerate characters of U is stable by the natural action of
Z , because Z normalizes U(α) for all roots α ∈ +.

IV.2. We choose an open compact subgroup Ko of G such that

G = BKo

and a normal subgroup K of Ko of finite index, normalized by

T + := {t ∈ T | |α(t)| ≤ 1 for all α ∈ ,},

with an Iwahori decomposition

K = (K ∩ U )(K ∩ Z )(K ∩ U ) = (K ∩ U )(K ∩ Z )(K ∩ U ).

K ∩ U =
∏

α∈++,red

K ∩ U(α), K ∩ U =
∏

α∈++,red

K ∩ U(−α).

The theory of Bruhat-Tits gives a subgroup Ko of G and a decreasing separated
sequence of subgroups K of G satisfying these properties.

Theorem IV.2.1. The right HR(G, K )-module (indG
U φ)K is finitely generated

for any nondegenerate character φ : U → R∗.

This implies that a generic compact Whittaker representation satisfies the Cri-
terion B of (II.7). The rest of this section is devoted to the proof of the theorem.

When R = C is the field of complex numbers, this is a theorem of Bushnell
and Henniart [BH 7.1].
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The theorem follows from a geometric property (IV.2.2) and a computation
(IV.2.3). This proof is valid over any R and does not use the theorem over C, and
is a variant of the proof of [BH].

The support of (indG
U φ)K is

G(U, φ, K ) = {g ∈ G | gK g−1 ∩ U ⊂ Ker φ}(1)

by the Mackey decomposition of (indG
U φ)K (proof of (II.3)). This means the fol-

lowing :

- for g ∈ G(U, φ, K ) there exists a function φUgK ∈ (indG
U φ)K with support

UgK and value 1 at g,
- the functions φUgK for the (U, K )-cosets UgK of G(U, φ, K ) form a basis

of the R-module (indG
U φ)K over R.

Claim IV.2.2. The support G(U, φ, K ) of (indG
U φ)K satisfies the geometric

property: G(U, φ, K ) is a finite union of U zT+Ko with z ∈ Z ∩ G(U, φ, K ).

Claim IV.2.3. The right action of the Hecke algebra HR(G, K ) on (indG
U φ)K

satisfies:

(a) We have for x ∈ G(U, φ, K ) and ko ∈ Ko:

φU x K ∗ [K ko K ] = φU xko K

(b) We have for z ∈ Z ∩ G(U, φ, K ) and t+ ∈ T+:

φU zK ∗ [K t+K ] = φU zt+ K .

Clearly, the Theorem IV.2.1 follows from the claims (IV.2.2) and (IV.2.3).

IV.3. The geometric property (IV.2.2) results from a known fact: when X (α)

is a group in the Bruhat-Tits filtration of U(α) for α ∈ , [T 1.4.2], we have the
equality of semi-groups (deduced from [T 1.2 (1), 1.4.2]):

(IV.3.1) T (X, X ) = T+,

where T (X, X ) := {t ∈ T | t X (α)t−1 ⊂ X (α) for all α ∈ ,}.
For (IV.2.2) it is enough to know that for any α ∈ , there exists an open compact

subgroup X (α) of U(α) such that (IV.3.1) is true. We give a variant of (IV.3.1) when
T is replaced by Z and the X (α) are replaced by pairs (K(α), C(α)) of open compact
subgroups of U(α) with K(α) normalized by T+ for any α ∈ ,, and T (X, X ) is
replaced by

Z (K , C) := {z ∈ Z | zK(α)z−1 ⊂ C(α) for all α ∈ ,}.
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Claim IV.3.2. Z (K , C) = ZoT+ for some compact subset Zo of Z (K , C).
The proof of the variant (IV.3.2) uses the particular case (IV.3.1) and the fact

that T+ contains the maximal compact open subgroup T o of T with semi-group
quotient T/T o & Nd where N is the set of natural integers and d > 0 an integer.
One reduces (IV.3.2) to the combinatorial finiteness property:

Claim IV.3.3. Any non-empty subset Y of Nd saturated under addition by Nd

is a finite union of y + Nd for y ∈ Y .
The proof is elementary. When d = 1, we choose the minimum element y of

Y . Then Y = y + N. By induction on d, we suppose that the property is true for
d − 1. Let us call “minimal” an element y of Y such that z + Nd ⊂ y + Nd and
z ∈ Y implies z = y. Then Y is the union of y + Nd for y ∈ Y minimal. The property
is equivalent to the finiteness of minimum elements. If y, z ∈ Y are minimum and
distinct, then some component of z is strictly smaller than some component of y.
We are reduced to prove that the set M(i, m) of minimum elements of Y with a
given i-th component m ∈ N is finite, for any 1 ≤ i ≤ d and any m ∈ N. Suppose
that M(i, m) is not empty and let Yi,m be the union of y + Nd for y ∈ M(i, m). Via
the components different from i , the set of elements of Yi,m with i-th component
m, identifies with a non-empty subset of Y (i, m) ⊂ Nd−1 saturated under under
addition by Nd−1. Under this identification M(i, m) becomes the set of minimum
elements of Y (i, m). By induction hypothesis, the set M(i, m) is finite.

IV.3.4. We explain how (IV.3.1) and (IV.3.3) imply (IV.3.2).

(1) We replace Z by T . There exists an open compact subgroup Zo of Z that
normalizes K(α) for any α ∈ ,. There exists a finite set of zk ∈ Z such that

Z = ∪k zk T Zo

because the quotient Z/T is compact. The subset Ck,(α) := z−1
k C(α)zk of U(α) is open

and compact. Let t ∈ T, zo ∈ Zo. Then zkt zo ∈ Z (K , C) iff t belongs to T (K , Ck)
where

T (K , C) := {t ∈ T | t K(α)t−1 ⊂ C(α) for all α ∈ ,}.

Hence Z (K , C) = ∪k zk T (K , Ck)Zo. The set T (K , C) is stable by multiplication
by T+ because the K(α) are normalized by T+. Hence the property (IV.3.2) is true
if for any (K , C) iff T (K , C) = ToT+ for some compact To ⊂ T (K , C) for any
(K , C). When T (K , C) satisfies this property we say simply that T (K , C) is com-
pact modulo T+.

(2) Change of (K , C) by (K ′, C ′). The conjugation by t ∈ T respects the
property of being an open compact subgroup of T or of being an open compact
subgroup of T normalized by T+. Let t1, t2 ∈ T . Then (t−1

1 K t1, t2Ct−1
2 ) satisfies the

same hypotheses than (K , C). An element t ∈ T satisfies t t−1
1 K(α)t1t−1 ⊂ t2C(α)t−1

2
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iff x := t(t1t2)−1 satisfies x K(α)x−1 ⊂ C(α). In other terms,

T (K , C) = T (t−1
1 K t1, t2Ct−1

2 )(t1t2)−1.(2a)

We deduce that T (t−1
1 K t1, t2Ct−1

2 ) is compact modulo T+ iff the same is true for
T (K , C).

Let (K ′, C ′) satisfying the same hypotheses than (K , C). For Y = K , C and
α ∈ ,, there exists t+ ∈ T + such that

t+Y(α)t−1
+ ⊂ Y ′

(α) ⊂ t−1
+ Y(α)t+.

We can choose t+ independent of the finite set of α ∈ ,. The inclusions K ′
(α) ⊂

t−1
+ K(α)t+, t+C(α)t−1

+ ⊂ C ′
(α) imply T (t−1

+ K t+, t+Ct−1
+ ) ⊂ T (K ′, C ′). By symme-

try and by (2a), we obtain:

T (K ′, C ′)t2
+ ⊂ T (K , C) ⊂ T (K ′, C ′)t−2

+ .(2b)

(3) Choosing (K ′, C ′) = (X, X ) and applying (IV.3.1) we deduce from (2a) and
(2b) that there exists t+ ∈ T+ such that T+t4

+ ⊂ T (t−1
+ K t+, t+Ct−1

+ ) ⊂ T+. Using
the remark following (2a) and that t4

+ ∈ T+, we deduced that T (K , C) is compact
modulo T+ for all (K , C) iff this is true when

T+t+ ⊂ T (K , C) ⊂ T+

for some t+ ∈ T+. The image of these inclusions under the natural projection T →
T/T o followed by an isomorphism T/T o & Nd is

a + Nd ⊂ Y ⊂ Nd,

where (Y, a) is the image of (T (K , C), t+) in Nd . We have Y + Nd ⊂ Y because
T (K , C) is stable by multiplication by T +. By (IV.3.3), Y is a finite union of y + Nd

with y ∈ Y . We deduce that T (K , C) = ToT+ is compact modulo T +.
The claim (IV.3.2) is proved.

IV.3.5. We explain how the geometric property (IV.2.2) can be deduced from
(IV.3.2). We start from the decomposition G = U Z Ko. As K is normal in Ko,
the support G(U, φ, K ) of indG

U φ described in (IV.2.1) (1) is a union of double
(U, Ko)-cosets. Hence G(U, φ, K ) = U (Z ∩ G(U, φ, K ))Ko. We have

Z ∩ G(U, φ, K ) = {z ∈ Z | z(K ∩ U )z−1 ⊂ Ker φ}.

because zK z−1 ∩ U = z(K ∩ U )z−1 as z ∈ Z normalizes U . As φ(α) is trivial for
all positive non simple roots α ∈ ++ − , by hypothesis (IV.1.1), and as z ∈ Z
normalizes U(α) for all roots α ∈ +, the decomposition of K ∩ U implies that

Z ∩ G(U, φ, K ) = {z ∈ Z | z(K ∩ U(α))z−1 ⊂ Ker φ(α) for all α ∈ ,}.

By hypothesis (IV.1.1), Ker φ(α) is an open compact subgroup of U(α) for all α ∈ ,.
The open compact subgroups K ∩ U(α) of U(α) are normalized by T+. Hence by
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(IV.3.2) Z ∩ G(U, φ, K ) is compact modulo T +. Therefore G(U, φ, K ) is a finite
union of U zKo with z ∈ Z . The geometric property (IV.2.2) is proved.

IV.3.6. We check the computations of (IV.2.3). The first one (a) follows from
the formula (II.7) (1) and from the fact that K is normal in Ko hence K ko K =
ko K = K ko and U x K ko K = U xko K for any ko ∈ Ko, x ∈ G. We check now the
second one (b). Any element t+ ∈ T+ satisfies the relations

t+(K ∩ U )t−1
+ ⊂ K ∩ U, t+(K ∩ Z )t−1

+ = K ∩ Z , t−1
+ (K ∩ U )t+ ⊂ K ∩ U .

These relations and the Iwahori decomposition of K imply

(a) t+K = (K ∩ ZU )t+K ,

(b) K t+ = K t+(K ∩ ZU ),

(c) K t+K = ∪u− K t+u−(disjoint) with K ∩ U− = ∪u− t−1
+ (K ∩ U−)t+u−

(disjoint),

(d) U zK t+K = U z(K ∩ ZU )t+K = U zt+K for any z ∈ Z (z normalizes
U ∩ K ).

By (d) the support of f := φU zK ∗ [K t+K ] is contained in U zt+K . Hence f =
f (zt+)φU zt+ K . We want to prove f (zt+) = 1. We have using (c):

f (zt+) =
∑

u−

φU zK
(

zt+(t+u−)−1) =
∑

u−

φU zK
(

zt+u−−1t−1
+

)

for u− as in (c). Only the u− with zt+u−−1t−1
+ ∈ U zK give a nonzero contribution.

As z normalises U , we can forget it and the condition is u−−1 ∈ t−1
+ U K t+ which

means u− ∈ t−1
+ (K ∩ U−)t+ because U K ⊂ B(K ∩ U−). With (c), only one term

contributes and f (zt+) = 1.

Appendix. Let (F, G, !) be as in the introduction and let R be any alge-
braically closed field of characteristic !. The aim of this appendix is to compare
three properties of a representation (ρ, V ) ∈ ModR G:

(i) The HR(G, K )-module V K is finitely generated for all K in a separated
decreasing sequence of open compact pro-p-subgroups of G.

(ii) (ρ, V ) is finitely generated in each block of ModR G.

(iii) For any irreducible R-representation π , the quotient multiplicity dimR

HomRG(ρ, π ) is finite.

Example. G = GL (2, F), H is a maximal torus (split or not split), $ : H →
R∗ a character. The representation ρ = indG

H $ was originally considered by
Waldspurger in his work on modular forms of half integral weight leading to a
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proof of nonvanishing of values of L functions of automorphic cuspidal repre-
sentations for GL (2) at the center of the critical strip. We call it a Waldspurger
representation.

Theorem.
- (i) is equivalent to (ii).
- (ii) implies (iii).
- (iii) implies (ii) for a complex Waldspurger representation.

Remarks. (1) The finite quotient multiplicity of ρ ∈ ModR G is equivalent to
the finite multiplicity of the contragredient ρ̃ : for all π ∈ IrrR G, the multiplicity
dimR HomRG(π, ρ̃) is finite. To prove this, one uses that the contragredient is an in-
volution on IrrR G and the isomorphism (see II.8): HomRG(π, ρ̃) & HomRG(ρ, π̃ ).

(2) When G is noncompact, their are infinitely many irreducible representa-
tions in a block, their direct sum is not finitely generated but satisfies the finite
quotient multiplicity.

(3) When R is the field of complex numbers, the equivalence between (i) and
(ii) is proved in [BH].

(4) The category ModR G is a product of blocks. Each block has a level r ∈ Q
and there are finitely many blocks of a given level [V2, II.5.8, II.5.9] and [V3, III.6]

(5) By the theory of Bernstein, in the complex case, the cuspidal blocks are
well understood and the blocks are related with the cuspidal blocks of the Levi
subgroups M of the parabolic subgroups of G. The groups M are the F-points of
a reductive connected group, just as G, always with a noncompact center when
M $= G.

Proof (i) ⇔ (ii). We need some preliminaries on the theory of Moy-Prasad
minimal unrefined R-types. There are finitely many blocks of a given level r ∈ Q.
We denote by ModR G(r ) their sum. The Moy-Prasad minimal unrefined types of
level r contained in V ∈ ModC G generate the component V (r ) of V in ModR G(r ).
There are only finitely many Moy-Prasad minimal unrefined types of a given level
r , modulo G-conjugation [V2, II.5.5]. For each level r , there exists K (r ) such that
V (r ) is generated by V (r )K (r ), this is also true for a smaller K ⊂ K (r ). Note that V
is generated by V K for some K iff V has only finitely many non zero components
in the blocks of G. The letter K or K (r ) always stands for an open compact pro-p-
subgroup of G. The properties (i), (ii) are respectively equivalent to: For any level
r ∈ Q,

(i)′ the HR(G, K )-module V (r )K is finitely generated for some K ⊂ K (r ).

(ii)′ V (r ) finitely generated.

We prove that (i)′ and (ii)′ are equivalent. We have V K = eK V where eK ∈
HR(G) is an idempotent such that the Hecke algebra HR(G, K ) identifies to the
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subalgebra eKHR(G)eK of the global Hecke algebra HR(G), using that K is a
pro-p-group [V2, I.3.2]. Let (vi )i∈I be elements of V K . The two relations

V K =
∑

i∈I

HR(G, K )vi , HR(G)V K =
∑

i∈I

HR(G)vi

are equivalent. Take V = V (r ) then HR(G)V (r )K = V (r ) for any K ⊂ K (r ); we
deduce from this the equivalence of (i)′ and (ii)′. !

Comparaison between (ii) and (iii). It is clear that the finite generation in each
block implies the finite quotient multiplicity because each irreducible representation
is admissible. The converse is not true in general. We will describe certain properties
which imply that the converse is true for complex representations.

We consider first a cuspidal block B ⊂ ModC G. We recall some known facts
[BDK]. As for a torus (IV.3), the compact subgroups of G generate a normal
subgroup Go with quotient isomorphic to Zd where d is the rank of the maximal
central split torus T of G. The unipotent subgroups of G are contained in Go. If Z
is the center of G (and not the centralizer of T as in the chapter IV), the quotient
G/Go Z is finite. Let π ∈ B irreducible. The restriction

π |Go = ⊕σi , σi ∈ IrrC Go,

of π to Go is semi-simple of finite length, and the irreducible representations in B
are the representations of G with the same restriction to Go. Each σi is the unique
irreducible representation in a block of ModC Go. We denote by Bo the sum of the
blocks containing the σi . For V ∈ ModC G, the restriction of V to Go belongs to Bo

iff V belongs to B. There are infinitely many irreducible non isomorphic cuspidal
representations in B iff d > 0. The abelian subcategory Bω of representations in B
with a central character ω contains only finitely many irreducible representations
modulo isomorphism.

The categories Bo and Bω are semi-simple. In these categories, the properties
finitely generated, finite length, finite multiplicity, finite quotient multiplicity are
trivially equivalent.

For any representation V = indG
Go W ∈ B compactly induced from W ∈ Bo,

the property: V has finite quotient multiplicity is equivalent to the same property
for W using that the functor indG

Go is the left adjoint of the restriction from G to Go.
It implies that W is finitely generated hence V is finitely generated. By transitivity
of the compact induction, this is also true for any V ∈ B compactly induced from
a closed subgroup H of Go. Any complex irreducible representation of a closed
subgroup H of G has a central character because the cardinal of C is strictly bigger
than the cardinal of G, hence V = indG

H W has a central character when Z ⊂ H .
We summarize:

Let H be a closed subgroup of G with H ⊂ Go or Z ⊂ H and let $ ∈ IrrC H.
Then the cuspidal irreducible quotients of indG

H $ have finite multiplicity if and
only if indG

H $ is finitely generated in any cuspidal block.
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Remarks. (1) This applies to all the representations used to give models of
irreducible representations in the theory of automorphic forms related with L-
functions, that I am aware of. For the Whittaker representations, H is nilpotent
hence H ⊂ Go. For the Waldspurger representations, H contains the center Z
of G.

(2) There are of course other properties of (H, $) implying the same property
for indG

H $. A variant that we will use for the component of a Waldspurger rep-
resentation in a non cuspidal block is: H = Go Z ′ where Z ′ is a closed subgroup
acting on $ ∈ ModC H by a character.

Reduction to a cuspidal block. We consider now a noncuspidal block B of
ModC G. There exists a pair (P,BM ) where P = MN is a parabolic subgroup of
G with unipotent radical N and Levi subgroup M and BM is a cuspidal block of
M , unique modulo association, such that the normalized functor of N -coinvariants,
called the Jacquet functor, r G

P : B →
∑

BM restricted to B is exact and faithful [R]
Corollary 2.4 of image contained in the finite sum

∑

BM of the blocks of ModC M
conjugate to BM by the normalizer of M in G. We need all of them, at the level of
blocks r G

P (B) =
∑

BM . Let (π, V ) ∈ B. We claim:
(π, V ) is finitely generated iff r G

P (π, V ) is finitely generated.
(π, V ) has finite quotient multiplicity iff r G

P (π, V ) has finite quotient
multiplicity.

r G
P (π, V ) is finitely generated iff r G

P (π, V ) is finitely generated in each cuspidal
block because the sum

∑

BM is finite. The computation of the Jacquet functors of
the representations used for models in the theory of automorphic forms is a well
known and basic question, originally considered by Rodier, Casselman, and Shalika
for the generic Whittaker representation.

The proof of the claim is easy. Finitely generated: if because of exactness and
faithfulness of r G

P , any subset (vi ) of V which lifts a set of generators of r G
P (π, V )

generates (π, V ). Iff because G/P is compact, a finite set (vi ) of generators of
(π, V ) is fixed by an open compact subgroup K , G = ∪ j Pk j K (finite union), the
finite set (k j vi ) generates r G

P (π, V ).
Finite quotient multiplicity: r G

P is the left adjoint of the normalized parabolic
induction i G

P , so HomCG(π, i G
P τ ) & HomCM (r G

P π, τ ) for all τ ∈ IrrC M . As i G
P τ

has finite length, the finite quotient multiplicity for π implies the finite quotient
multiplicity for r G

P π (one does not need to suppose π ∈ B).
Conversely, the faithfulness of r G

P onB implies that r G
P ρ $= 0 for any irreducible

representation ρ which is a quotient of π ∈ B; as r G
P ρ has finite length it has an irre-

ducible quotient τ ; by adjunction ρ is contained in i G
P τ and dimC HomCG(π, ρ) ≤

dimC HomCG(r G
P π, τ ). Hence the finite quotient multiplicity for r G

P π implies the
finite quotient multiplicity for π .

Example. Let G = GL (2, F) and B = T N is the upper triangular subgroup
with unipotent radical N and T the diagonal subgroup. Let V ∈ ModC G. Then
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(iii) implies (ii) for the noncuspidal part of V iff (iii) implies (ii) for the N -
coinvariants VN . We need to analyze VN . We take the example of a complex
Waldspurger representation indG

H $ defined at the beginning of the appendix.

First case: H = T . We have G = B ∪ Bs N where s =
(

0 1
1 0

)

and a CN -

equivariant exact sequence:

0 → indBs N
T $ → indG

T $ → indB
T $ → 0.(1)

The functor of N -coinvariants is exact and (indG
T $)N can be computed using (2)

and (3) below. We have

(indB
T $)N & $(2)

by the linear form f →
∫

N f (n) dn for f ∈ indB
T $ and a Haar measure dn on

N . We can neglect the character $ for the properties (ii) and (iii). We compute
(indBs N

T $)N . The linear map f (bsn) → φ(b) :=
∫

N f (bsn)dn for b ∈ B, followed
by the restriction to N identifies (indBs N

T $)N with the space C∞
c (N ; C). The action

of t ∈ T on φ ∈ C∞
c (N ; C) is

(t ∗ φ)(n′) =
∫

N
f (n′snt) dn = $(sts)

∫

N
f (n′′s t−1nt)dn = $δB(sts)φ(n′′)

where δB is the module of B and n′′ := (sts)−1n′sts for n′ ∈ N . We have
(

indBs N
T $

)

N & ($δB ⊗ ρ) ◦ s,(3)

where ρ is the natural action of T on C∞
c (N ; C) by (t.φ)(n) = φ(t−1nt). For the

properties (ii) and (iii) we can neglect the character $δB and s. As T has two orbits
in N , the trivial element of stabilizer T and the nontrivial elements of stabilizer the
center Z of G, we have a T -equivariant exact sequence

0 → indT
Z 1 → ρ → 1 → 0.(4)

For (ii) and (iii) we can neglect the trivial character, and we are reduced to examine
indT

Z 1. The blocks of ModC T are parametrized by the characters χo of the maximal
compact subgroup T o of T , and the component of indT

Z 1 in the block parametrized
byχo is the cyclic representation indT

Z T o χo ifχo is trivial on Z ∩ T o and 0 otherwise.
We deduce that the Waldspurger representation indG

T $ is finitely generated in the
non cuspidal blocks of G.

Second case: H nonsplit. Modulo conjugation, H is contained in one of the
two maximal, compact modulo the center Z , subgroups of G

C1 := KZ, C2 := ZI ∪ ZIt,

where K = GL (2, OF ), I is the standard Iwahori subgroup normalized by t :=
(

0 1
pF 0

)

. We suppose H ⊂ C where C = C1 or C2. Using G = CTN and the
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transitivity of the compact induction, we compute:
(

indG
H $

)

N & indT
C∩T (τC∩N ),(5)

with τC∩N equal to the C ∩ N -coinvariants of τ = indC
H $. As C ∩ T = T o Z and

Z acts on τC∩N by multiplication by a character. We deduce from the cuspidal case
seen above, that the Waldspurger representation indG

H $ are finitely generated in the
non cuspidal blocks if and only if the noncuspidal quotients have finite multiplicity.
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[MVW] Colette Moeglin, Marie-France Vignéras, and Jean-Loup Waldspurger, Correspondances de Howe sur
un corps p-adique. Lecture Notes in Mathematics, vol. 1291, Springer-Verlag, Berlin, 1987.

[R] Alain Roche, Parabolic induction and the Bernstein decomposition, Compositio. Math. 134 (2002),
113–133.
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CHAPTER 29

REPRÉSENTATIONS DE RÉDUCTION UNIPOTENTE POUR SO(2N+1):
QUELQUES CONSÉQUENCES D’UN ARTICLE DE LUSZTIG

By Jean-Loup Waldspurger

0. Introduction. Cet article fait suite à l’article [MW] de C. Moeglin et
l’auteur. Rappelons brièvement quel en était le sujet. Soient p un nombre premier,
F une extension finie de Qp, n un entier ≥ 1. On suppose p “grand.” On note Giso

et Gan les deux formes possibles sur F du groupe spécial orthogonal d’une forme
quadratique de dimension 2n + 1; Giso est déployé et Gan est une forme intérieure
non déployée de Giso. Quand on n’a pas besoin de distinguer les deux formes, on les
note uniformément G!. On pose G! = G!(F). Soit π une représentation admissible
irréductible de G! dans un espace vectoriel complexe E . Soit K un sous-groupe
parahorique de G!, notons K u son radical pro-p-unipotent et E K u

le sous-espace
des éléments de E invariants par K u . De π se déduit une représentation de K/K u

dans E K u
, notons-la resK (π ). Le quotient K/K u est le groupe des points sur le

corps résiduel Fq de F d’un groupe algébrique réductif connexe défini sur Fq . On
connaı̂t la notion de représentation irréductible unipotente d’un tel groupe. On dit
alors que π est de réduction unipotente s’il existe K comme ci-dessus tel que E K u

soit non nul et tel que resK (π ) contienne une représentation irréductible unipotente
de ce groupe. On note IrrG!

u l’ensemble des classes d’isomorphie de représentations
de G!, admissibles, irréductibles et de réduction unipotente. On note IrrG!

utemp le sous-
ensemble des classes d’isomorphie des représentations qui sont de plus tempérées.
Si π ∈ IrrG!

utemp, notons #π son caractère, que l’on considère comme une distribution
sur G!. Le but de l’article [MW] est de décrire les combinaisons linéaires $ci #πi ,
où les πi appartiennent à IrrG!

utemp, qui sont des distributions stablement invariantes.
Notons WF le groupe de Weil de F . Considérons un couple (ψ, ε), où:

ψ : WF × SL(2, C) → Sp(2n, C)

est un homomorphisme tel que ψ|WF est semi-simple et non ramifié et ψ|SL(2,C) est
algébrique;

ε : ZSp(2n,C)(ψ)/ZSp(2n,C)(ψ)0 → {±1}

est un caractère, où ZSp(2n,C)(ψ) est le commutant dans Sp(2n, C) de l’image de ψ

et ZSp(2n,C)(ψ)0 est sa composante neutre.

Manuscript received Juillet 2001
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Notons Ẑ le centre de Sp(2n, C). On note ε|Ẑ le caractère de Ẑ composé de ε

et de l’homomorphisme naturel:

Ẑ → ZSp(2n,C)(ψ)/ZSp(2n,C)(ψ)0.

Identifions à {±1} le groupe des caractères de Ẑ . On note '
G!

u l’ensemble des
classes de conjugaison par Sp(2n, C) des couples (ψ, ε) comme ci-dessus tels que:

ε|Ẑ =
{

1, si ! = iso,

−1, si ! = an.

Lusztig a construit une bijection de '
G!

u sur IrrG!

u , cf. [L1]; l’existence de cette
bijection était prédite par une conjecture de Langlands, raffinée par Deligne et
Lusztig. Dans [MW], nous avons besoin de renseignements supplémentaires, dans
les trois directions suivantes.

(1) Notons '
G!

utemp le sous-ensemble des (classes de conjugaison de) (ψ, ε) ∈
'

G!

u tels que l’image de WF par ψ|WF soit un sous-groupe relativement compact de
Sp(2n, C). On veut construire une bijection

'
G!

utemp → IrrG!

utemp

(ψ, ε) &→ πψ,ε .

(2) On veut déterminer les combinaisons linéaires d’éléments de '
G!

utemp dont les
images par la bijection précédente soient des représentations (virtuelles) elliptiques
au sens d’Arthur [Ar].

(3) Soient (ψ, ε) ∈ '
G!

utemp et K un sous-groupe parahorique de G!. Supposons
que πψ,ε soit composante d’une représentation (virtuelle) elliptique. On veut cal-
culer, ou du moins obtenir assez de renseignements sur la représentation resK (πψ,ε).

Nous résolvons ces problèmes à l’aide des méthodes introduites par Lusztig.
Remplaçons la bijection qu’il a construite par sa composée avec l’involution DG!

de Zelevinsky-Aubert-Schneider-Stuhler. On note:

'
G!

u → IrrG!

u

(ψ, ε) &→ πψ,ε

cette application composée. On prouve alors, pour (ψ, ε) ∈ '
G!

u :

• πψ,ε est de la série discrète si et seulement si l’image de ψ n’est contenue
dans aucun sous-groupe parabolique propre de Sp(2n, C) (proposition 4.2);

• πψ,ε est tempérée si et seulement si (ψ, ε) ∈ '
G!

utemp (proposition 4.3); cela
résout le problème (1).

Notre bijection est compatible à la classification de Langlands. Soit (ψ, ε) ∈
'

G!

u . Notons Frob un élément de Frobenius de WF . Alors z = ψ|WF (Frob) est un
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élément semi-simple de Sp(2n, C). On lui associe un sous-groupe parabolique Q̂
et un sous-groupe de Lévi L̂ de Q̂: les algèbres de Lie correspondantes sont les
sommes des sous-espaces de l’algèbre de Lie sp(2n, C), propres pour Ad(z), de
valeurs propres de modules ≤ 1, resp. = 1. On introduit dualement un sous-groupe
parabolique Q de G! et un sous-groupe de Lévi L de Q. En fait, ψ prend ses
valeurs dans L̂ et une généralisation facile de la bijection ci-dessus permet de
définir une représentation π L

ψ,ε de L . Elle vérifie les conditions requises pour que

la représentation induite IndG!

Q (π L
ψ,ε) possède un unique quotient irréductible, le

quotient de Langlands. On montre que ce quotient est égal à πψ,ε (théorème 4.4).
La solution du problème (2) ci-dessus est exprimée en termes combinatoires

par le théorème 4.7.
Pour ce qui est du problème (3), nous revenons à la bijection initiale de Lusztig,

c’est-à-dire que nous calculons resK ◦ DG!(πψ,ε). Les représentations des groupes
finis qui interviennent sont paramétrisées par des représentations de groupes de
Weyl. Nous calculons resK ◦ DG!(πψ,ε) en termes de cette paramétrisation (propo-
sition 5.3).

Décrivons brièvement le contenu de chacun des paragraphes de l’article. Le
premier rappelle les constructions de [L1] et [L2]. On les précise un peu car Lusztig
laisse indéterminés certains choix. Expliquons ce point. Notons µnr le caractère non
ramifié d’ordre 2 de WF , prolongeons-le trivialement à WF × SL (2, C). Soit π un
élément cuspidal de IrrG!

u . Les constructions de Lusztig définissent deux couples
(ψ ′, ε′), (ψ ′′, ε′′) ∈ '

G!

u , candidats à paramétriser π . Ils se déduisent l’un de l’autre
par torsion: ψ ′ = ψ ′′ ⊗ µnr , ε′ = ε′′. Pour ce que fait Lusztig, le choix d’un élément
de ce couple est indifférent. Pour ce que nous faisons dans [MW], à savoir regrouper
les représentations en paquets, le choix ne peut plus être arbitraire, c’est pourquoi
nous devons le préciser.

On doit étudier comment les constructions de Lusztig se comportent par induc-
tion. Le problème se décompose en deux, comme les constructions elles-mêmes.
Une partie “géométrique” est traitée au paragraphe 2, à l’aide des résultats de
[L3] et [L4]. La démonstration de la proposition principale 2.11 s’inspire de celle
du théorème 6.2 de [KL]. Une deuxième partie, “algébrique,” est traitée au para-
graphe 3. Elle repose sur les constructions de [L2] et des résultats de Bushnell et
Kutzko. Les problèmes (1) et (2) sont ensuite résolus au paragraphe 4, comme de
simples conséquences des deux paragraphes précédents.

Le caractère explicite des constructions rappelées au paragraphe 1 permet, par
un argument de déformation (remplacer q par 1), de résoudre le problème (3), plus
exactement, comme on l’a dit ci-dessus, ce problème modifié par l’involution DG! .
Cela est fait au paragraphe 5, où on utilise largement des constructions combina-
toires de [MW].

Le sixième paragraphe revient sur la question des choix évoquée plus haut.
Le problème est en fait équivalent au suivant, concernant les groupes orthogonaux
pairs sur les corps finis. Une représentation unipotente cuspidale du groupe spécial
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orthogonal étant donnée, comment distinguer ses deux prolongements au groupe
orthogonal? Nous donnons une façon de le faire en 6.3. Nous montrons ensuite
que cette définition coı̈ncide avec celle de [MW]. Cette dernière repose sur une
conjecture que nous admettons pour prouver cette coı̈ncidence. Mais, pour le présent
article, nous n’avons pas besoin de cette conjecture.

L’article se termine par un index des principales notations.
On a choisi de ne traiter que le cas des groupes orthogonaux impairs, alors

que l’article [L1] s’applique à tout groupe adjoint dont la forme intérieure quasi-
déployée est déployée. Cela pour plusieurs raisons. D’abord parce que, pour les
applications à notre article [MW], ce cas suffit. Ensuite parce que travailler dans
une situation concrète nous semble permettre davantage de précision. Enfin parce
que le cadre des groupes adjoints n’est pas non plus d’une généralité maximale.
Mais, bien que nous ne traitions qu’un groupe particulier, les méthodes que nous em-
ployons sont pour l’essentiel générales (à l’exception de la démonstration du lemme
2.13, où nous utilisons le plongement naturel de G! dans GL(2n + 1)). Elles doivent
pouvoir s’appliquer à tout groupe réductif connexe. Le fait de se limiter aux groupes
orthogonaux impairs a toutefois un inconvénient. Pour de nombreux raisonnements
utilisant l’induction parabolique, on doit supposer connus les résultats pour les sous-
groupes de Lévi de sous-groupes paraboliques de G!. Or ces Lévi ne sont pas des
groupes orthogonaux impairs, mais des produits de tels groupes avec des groupes
linéaires. Nous avons choisi d’admettre sans démonstration les résultats correspon-
dants pour ces groupes linéaires. Cela nous paraı̂t légitime car il n’y a pas de doute
que nos méthodes s’appliquent à ces groupes (et même se simplifient dans ce cas).
La théorie des représentations de ces groupes est d’ailleurs suffisamment connue
grâce à Bernstein et Zelevinsky, cela n’aurait pas grand intérêt de la refaire.

Il s’est avéré que, pendant que j’écrivais cet article, Lusztig écrivait l’article
[L10]. Quelques mois plus tard, il publiait [L11]. Ces articles contiennent les
résultats de nos paragraphes 2 et 3 et du début du paragraphe 4. Ils se placent
dans un cadre beaucoup plus général que le nôtre. Je remercie d’ailleurs Lusztig
de m’avoir signalé une définition incorrecte dans une première version du présent
article.

1. Paramétrisation.

1.1. Rappelons quelques notations de l’article I. On note F un corps lo-
cal non archimédien de caractéristique nulle, oF son anneau des entiers, (F une
uniformisante, Fq le corps résiduel, qui est fini et a q éléments. On note p la
caractéristique de Fq . On suppose p += 2.

Les groupes algébriques définis sur F ou Fq seront désignés par des lettres ma-
juscules grasses et leurs groupes de points sur F ou Fq par les lettres majuscules ordi-
naires correspondantes (H = H(F)). Interviendront aussi des groupes algébriques
complexes. Leurs algèbres de Lie seront désignées par des lettres gothiques



P1: IML/SPH P2: IML/SPH QC: IML/SPH T1: IML

PB440-29 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 11:24
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minuscules: h est l’algèbre de Lie de H . En tout cas, pour un groupe algébrique
H défini sur un corps quelconque, on note H0 sa composante neutre.

Soient V un espace vectoriel de dimension finie sur F , muni d’une forme
quadratique Q non dégénérée. On note G le groupe spécial orthogonal de (V, Q)
et G± le groupe orthogonal. Eventuellement, on précisera ces notations en ajoutant
un indice V : GV , G±

V . On dispose d’un homomorphisme:

sp : G → {±1},

composé de la norme spinorielle:

G → F×/F×2

et de l’homomorphisme:

F×/F×2 → {±1}
x &→ (−1)vF (x)

où vF est bien sûr la valuation. On note Gsp =1 le noyau de sp.
Si L ⊆ V est un oF -réseau, on pose:

L̃ = {v ∈ V ; ∀v ′ ∈ V, Q(v, v ′) ∈ oF}.

On dit que L est presque autodual si:

L̃ ⊇ L ⊇ (F L̃.

Soit L . = (L0, . . . , Lr ) une chaı̂ne de réseaux presque autoduaux. Cela signifie que
chaque Li est un réseau presque autodual et que l’on a les inclusions:

L̃0 ⊇ L0 ⊃ L1 ⊃ . . . ⊃ Lr ⊇ (F L̃r .

On note K (L .) le sous-groupe des éléments de Gsp=1 qui stabilisent chaque réseau
Li . On note K (L .)u son plus grand sous-groupe distingué pro-p-nilpotent. Les
espaces:

l ′r = Lr/(F L̃r et l ′′0 = L̃0/L0

sont munis de formes quadratiques non dégénérées à valeurs dans Fq . On a
l’isomorphisme:

K (L .)/K (L .)u 0 GL(L0/L1) × . . . × GL(Lr−1/Lr ) × Gl ′r × Gl ′′0 .

On parlera indifféremment de représentations de G ou de G-modules. C’est-à-
dire que, une représentation étant un couple (ou une classe d’isomorphie de couple)
(π, E), où E est un espace vectoriel complexe et π un homomorphisme de G dans
GL(E), on désignera ce couple comme “la représentation π” ou bien comme “le
G-module E .” On fera de même pour les représentations des divers groupes et
algèbres qui interviendront.
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On note IrrG l’ensemble des classes d’isomorphie de représentations lisses
irréductibles de G. Soit (π, E) une telle représentation. On dit que π est de réduction
unipotente s’il existe une chaı̂ne de réseaux presque autoduaux L . de V telle que:

• le sous-espace des invariants E K (L .)u
est non nul;

• la représentation déduite de π de K (L .)/K (L .)u dans cet espace est
somme de représentations irréductibles unipotentes (on sait définir cette notion
car K (L .)/K (L .)u est le groupe des points sur Fq d’un groupe réductif connexe).

On note IrrG
u l’ensemble des classes d’isomorphie de représentations lisses

irréductibles de G, de réduction unipotente.
On fixe pour tout l’article un entier n ≥ 1 et deux espaces Viso et Van de dimen-

sion 2n + 1 sur F , munis de formes quadratiques non dégénérées Qiso et Qan telles
que:

• (−1)n det(Qiso) ∈ F×2, (−1)n det(Qan) ∈ F×2;

• le noyau anisotrope de Qiso, resp. Qan , est de dimension 1, resp. 3.

Quand on n’aura pas besoin de distinguer Viso de Van , on notera souvent V! l’un
quelconque de ces espaces. On note G! le groupe spécial orthogonal de (V!, Q!).

Le but du premier chapitre est d’expliciter les constructions de Lusztig qui
paramétrisent IrrG!

u en termes d’objets vivant dans le L-groupe Sp(2n, C) de G!.

1.2. Soit ! = iso ou an. On note #! l’ensemble des couples (R′, R′′) d’entiers
≥ 0 tels que:

• R
′2 + R′ + R

′′2 ≤ n,

• R′′ est pair si ! = iso, R′′ est impair si ! = an.

Soit θ = (R′, R′′) ∈ #!, posons N = n − R
′2 − R′ − R

′′2. Fixons dans V! une
chaı̂ne de réseaux presque autoduaux L . = (L0, . . . , L N ), telle qu’en posant:

l ′N = L N/(F L̃ N , l ′′0 = L̃0/L0,

on ait:

dimFq (l ′N ) = 2R
′2 + 2R′ + 1, dimFq (l ′′0 ) = 2R

′′2.

Posons Kθ = K (L .). C’est un sous-groupe parahorique de G! et l’on a:

Kθ/K u
θ 0 (F×

q )N × Gl ′N × Gl ′′0 .

Chacun des groupes Gl ′N et Gl ′′0 possède, à isomorphisme près, une unique
représentation irréductible cuspidale et unipotente, cf. I.2.6, I.2.9. Nous la notons
π ′

R′ , resp. π ′′
R′′ . Considérons π ′

R′ ⊗ π ′′
R′′ comme une représentation de Kθ/K u

θ , triv-
iale sur (F×

q )N . Notons πθ la représentation de Kθ composée de la représentation
précédente et de la projection de Kθ sur Kθ/K u

θ . Enfin, notons IrrG!

θ l’ensemble
des classes d’isomorphie de représentations admissibles irréductibles de G! dont



P1: IML/SPH P2: IML/SPH QC: IML/SPH T1: IML

PB440-29 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 11:24
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la restriction à Kθ contient πθ . Alors IrrG!

u est réunion disjointe des IrrG!

θ , quand θ

parcourt #!.
On note RepG!

θ la catégorie des représentations lisses de longueur finie de G!

dont tous les sous-quotients irréductibles appartiennent à IrrG!

θ .

1.3. Soient ! = iso ou an et θ = (R′, R′′) ∈ #!. Introduisons un espace Eθ

dans lequel se réalise πθ . Notons Hθ l’espace des fonctions f : G! → End(Eθ ), à
support compact, telles que:

f (kgk ′) = πθ (k) f (g)πθ (k ′)

pour tous g ∈ G!, k, k ′ ∈ Kθ . Cet espace est muni d’une structure d’algèbre pour
laquelle l’unité est la fonction 1 à support dans Kθ et telle que 1(k) = πθ (k) pour
tout k ∈ Kθ . Dans la suite, ne sont considérés que des Hθ -modules dans lesquels 1
agit par l’identité.

Si E est un G!-module appartenant à RepG!

θ , l’espace HomKθ
(Eθ , E) est muni

d’une action de Hθ , cf. [BK] 2.7.

Remarque. On utilise ici, pour simplifier, le fait que πθ est isomorphe à sa
contragrédiente.

D’après [M] 4.13, [MP] théorème 6.14 et [L1 ] 1.6, l’application E &→
HomKθ

(Eθ , E) est une équivalence de catégories entre RepG!

θ et la catégorie des
Hθ -modules de longueur finie. Nous allons décrire Hθ .

Fixons, ainsi qu’il est loisible:

• un sous-espace U de V!;

• des éléments vi de V!, pour i ∈ {±1, . . . , ±N };

de sorte que les conditions suivantes soient vérifiées:

• pour tous i, j ∈ {±1, . . . , ±N },

Q!(vi , v j ) =
{

0, si i + j += 0,

1, si i + j = 0;

• la famille (vi ) est une base de l’orthogonal U⊥ de U dans V!;

• pour tout i ∈ {0, . . . , N }, Li est somme directe de L0 ∩ U et du réseau de
U⊥ engendré par:

v1, . . . , vN , v−N , . . . , v−i−1, (F v−i , . . . , (F v−1.

Notons K ±
θ le normalisateur de Kθ dans G!, et K−

θ = K ±
θ \ Kθ . Si R′′ > 0,

on a:

K ±
θ /K u

θ 0 (F×
q )N × Gl ′N × G±

l ′′0
,
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(cf. I.1.2). On a fixé en I.2.9 un prolongement π̂ ′′
R′′ de π ′′

R′′ à G±
l ′′0

. On a besoin de
fixer un prolongement π̂θ de πθ à K ±

θ . Dans l’espoir de rendre les choses plus
compréhensibles, on reporte au paragraphe 6.3 la définition précise de ce prolonge-
ment. On note ω l’élément de Hθ à support dans K−

θ , tel que ω(k) = π̂θ (k) pour
tout k ∈ K−

θ . Si R′′ = 0 et N > 0, Kθ est encore d’indice 2 dans K ±
θ . Notons sω

l’élément de G! qui agit par −1 sur U et tel que:

sω(vi ) = vi , pour tout i ∈ {±2, . . . , ±N },

sω(v1) = (F v−1, sω(v−1) = (−1
F v1.

Alors sω ∈ K−
θ . On note ω l’unique élément de Hθ , à support dans K−

θ et tel que
ω(sω) soit l’identité de Eθ . En tout cas, on a ω2 = 1.

Si N = R′′ = 0, on a Hθ = C.
Si N = 0 et R′′ > 0, on a Hθ = C[ω].
Supposons N > 0. Introduisons les éléments suivants si de G±

! , pour i ∈
{0, . . . , N }. Ils fixent tout élément de U ainsi que les v j , sauf ceux indiqués ci-
après:

• pour i ∈ {1, . . . , N − 1}, si échange vi et vi+1, ainsi que v−i et v−i−1;

• sN échange vN et v−N ;

• si R′′ += 0, s0(v1) = (F v−1, s0(v−1) = (−1
F v1;

• si R′′ = 0 et N ≥ 2, s0(v1) = (F v−2, s0(v2) = (F v−1, s0(v−2) = (−1
F v1,

s0(v−1) = (−1
F v2;

• si R′′ = 0 et N = 1, s0(v1) = ( 2
F v−1, s0(v−1) = (−2

F v1.

Rappelons que l’on note G!,sp=1 le noyau de l’homomorphisme sp. Notons
NG±

!
(Kθ ) le normalisateur de Kθ dans G±

! . L’intersection:

(si NG±
!
(Kθ )) ∩ G!,sp=1

est formée d’une seule classe à droite modulo Kθ . Fixons s ′i ∈ NG±
!
(Kθ ) tel que si s ′i

appartienne à cette classe. Il existe alors dans Hθ un unique élément Si , à support
dans Kθ si s ′i Kθ , vérifiant l’équation:

(Si + 1)(Si − q L(i)1) = 0,(1)

où:

L(1) = L(2) = . . . = L(N − 1) = 1, L(N ) = 2R′ + 1,

L(0) =
{

2R′′, si R′′ > 0,

1, si R′′ = 0.

NotonsH′
θ la sous-algèbre engendrée par les Si pour i ∈ {0, . . . , N }. On sait que les

relations vérifiées par les Si sont engendrées par les relations (1) et par les relations
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suivantes:

• pour i, j ∈ {0, . . . , N } tels que i += j et si s j est d’ordre fini m(i, j) dans G!,

Si S j Si . . . = Sj Si S j . . .

où chaque produit a m(i, j) termes.

On a l’égalité:

Hθ = C[ω] ⊗C H′
θ .

La structure d’algèbre est le produit direct si R′′ > 0, le produit semi-direct pour
lequel ω échange S0 et S1 si R′′ = 0.

On aura besoin des précisions suivantes concernant les Si . Dans le cas où
i ∈ {1, . . . , N − 1}, le calcul de Si se ramène aisément au cas du groupe GL2(F). On
voit que l’on peut supposer s ′i = 1 et que Si (si ) est l’identité de Eθ . La détermination
de S0 et SN est plus délicate. On a déjà fixé un prolongement π̂θ de πθ à K ±

θ .
On le prolonge encore en une représentation de NG±

!
(Kθ ), notée encore π̂θ . Ce

prolongement est bien déterminé de la façon suivante. Notons ξ l’élément de G±
!

qui agit par −1 sur U et par l’identité sur U⊥. Alors π̂θ (ξ ) est l’identité de Eθ .
Alors, pour i ∈ {0, N }, il existe νi ∈ C× tel que:

Si (si s ′i ) = νi π̂θ (s ′i ).

Proposition. On a les égalités:

ν0 = q−R
′′2+R′′

, νN = (−1)R′
q−R

′2
.

Cette proposition sera démontrée en 6.11.

1.4. Soient N , A, B trois entiers tels que N ≥ 1, A > B ≥ 0. Introduisons,
à la suite de Lusztig, l’algèbre de Hecke affine H(N ; A, B), de type CN , de
paramètres A et B. Dans les notations de [L2], elle correspond au système de
racines (X N , YN , RN , ŘN , -N ) et aux fonctions λ, λ∗ suivants:

• X N = YN = ZN ; on note (ei )i=1,...,N , resp. (ěi )i=1,...,N , la base canonique
de X N , resp. YN ;

• RN = {±ei ± e j ; 1 ≤ i < j ≤ N } ∪ {±ei ; 1 ≤ i ≤ N };
• ŘN = {±ěi ± ě j ; 1 ≤ i < j ≤ N } ∩ {±2ěi ; 1 ≤ i ≤ N };
• -N = {α1, . . . , αN }, où αi = ei − ei+1 pour i = 1, . . . , N − 1, αN = eN ;

• λ : -N → N est définie par λ(αi ) = 1, pour i = 1, . . . , N − 1, λ(αN ) = A;

• λ∗(αN ) = B.

Notons WN le groupe de Weyl du système de racines ci-dessus. C’est un groupe
de type CN qui est engendré par les symétries élémentaires wi , pour i = 1, . . . , N ,
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associées aux éléments de -N . On note W aff
N le produit semi-direct de X N et WN .

C’est un groupe de Weyl affine qui est engendré par les éléments wi , pour i =
0, . . . , N , où w0 est défini ainsi: notons σ ′

0 l’élément de WN qui envoie e1 sur −e1

et fixe ei pour tout i ≥ 2; alors w0 = e1σ ′
0.

Introduisons une indéterminée v et l’algèbreA = C[v, v−1]. AlorsH(N ; A, B)
est la A-algèbre engendrée par des éléments Ti pour i ∈ {0, . . . , N }, soumis aux
relations suivantes:

• pour i, j ∈ {0, . . . , N }, avec i += j ,

Ti Tj = Tj Ti , si |i − j | += 1,

Ti Tj Ti = Tj Ti Tj , si |i − j | = 1 et {i, j} ∩ {0, N } = ∅,

Ti Tj Ti Tj = Tj Ti Tj Ti , si |i − j | = 1, N += 1 et {i, j} ∩ {0, N } += ∅;

• pour i ∈ {1, . . . , N − 1}, (Ti + 1)(Ti − v2) = 0;

• (T0 + 1)(T0 − v2B) = 0, (TN + 1)(TN − v2A) = 0.

A tout w ∈ W aff
N , on peut associer un élément T (w) de H(N ; A, B) de sorte que

T (wi ) = Ti pour tout i ∈ {0, . . . , N } et T (w ′w ′′) = T (w ′)T (w ′′) si 1(w ′w ′′) =
1(w ′) + 1(w ′′), où 1 est la fonction longueur.

Lusztig donne une autre présentation de l’algèbreH(N ; A, B). NotonsH(N ; A)
la sous-algèbre engendrée par les Ti pour i ∈ {1, . . . , N }. Notons A[X N ] la
A-algèbre du groupe X N et, pour x ∈ X N , ξx l’élément de A[X N ] associé. Alors:

H(N ; A, B) = A[X N ] ⊗A H(N ; A),

la structure d’algèbre étant définie par les relations suivantes:

• pour x ∈ X N et i ∈ {1, . . . , N − 1},

ξx Ti − Ti ξwi (x) = (v2 − 1)
ξx − ξwi (x)

1 − ξ−αi

;

• pour x ∈ X N ,

ξx TN − TN ξw N (x) =
(

(v2A − 1) + ξ−αN (v A+B − v A−B)
) ξx − ξw N (x)

1 − ξ−2αN

.

On passe d’une présentation à l’autre par les formules suivantes:

• pour i ∈ {1, . . . , N },

ξe1+...+ei =
(

v−2N−A−B+i+1T0T1 . . . TN TN−1 . . . Ti
)i

;

• T0 = v2N+A+B−2ξe1 T (σ ′
0)−1.

Pour unifier les notations, pour A et B comme précédemment, on pose
H(0; A, B) = A.
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Par spécialisation de v en q1/2 (la racine carrée positive de q), on déduit de
l’algèbre H(N ; A, B) une C-algèbre notée Hq(N ; A, B).

1.5. Soient ! = iso ou an et θ = (R′, R′′) ∈ #!. Posons N = n − R
′2 −

R′ − R
′′2, A = sup (2R′ + 1, 2R′′), B = inf (2R′ + 1, 2R′′). Supposons N > 0. On

vérifie qu’un homomorphisme:

h : Hq(N ; A, B) → Hθ

est bien défini par les formules suivantes, pour i ∈ {0, . . . , N }:

• si R′ ≥ R′′ > 0, h(Ti ) = Si ;

• si R′ ≥ R′′ = 0, h(Ti ) = Si si i += 0, h(T0) = ω;

• si R′′ > R′, h(Ti ) = SN−i .

L’homomorphisme h est injectif, d’image H′
θ si R′′ > 0, Hθ si R′′ = 0. On en

déduit un isomorphisme:

Hθ 0
{

Hq(N ; A, B), si R′′ = 0,

C[ω] ⊗C Hq(N ; A, B), si R′′ > 0,

ce dernier produit étant direct.
Bien sûr, cela reste vrai si N = 0.

1.6. Soient N , A, B comme en 1.4. Le groupe WN agit sur A[X N ]. Notons
Z = A[X N ]WN la sous-algèbre des invariants et F le corps des fractions de Z .
L’algèbreZ est le centre deH(N ; A, B). Définissons les éléments deA[X N ] ⊗Z F
suivants:

• pour i ∈ {1, . . . , N − 1}, G(i) = ξαi v2−1
ξαi −1 ,

• G(N ) =
(

ξαN v A+B−1
)(

ξαN v A−B+1
)

ξ2αN −1 ;

et les éléments de H(N ; A, B) ⊗Z F suivants, pour i ∈ {1, . . . , N }:

τ (wi ) = −1 + (Ti + 1)G(i)−1.

Pour tout w ∈ WN , on peut définir τ (w) de sorte que τ (w ′w ′′) = τ (w ′)τ (w ′′) pour
tous w ′, w ′′ ∈ WN . Pour tous x ∈ X N et w ∈ WN , on a la relation:

τ (w)ξx = ξw(x)τ (w),

et H(N ; A, B) ⊗Z F est engendrée par A[X N ] ⊗Z F et les τ (w), pour w ∈ WN .
Le groupe SN est naturellement un sous-groupe de WN . On note HS(N ) la

sous-algèbre de H(N ; A, B) engendrée par A[X N ] et les T (w), pour w ∈ SN . Elle
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est indépendante de A et B. C’est une algèbre affine étendue de type AN−1. L’algèbre
HS(N ) ⊗Z F est engendrée par A[X N ] ⊗Z F et les τ (w), pour w ∈ SN .

1.7. On conserve les mêmes hypothèses. Considérons:

• un élément s = (s1, . . . , sN ; v0) ∈ (YN ⊗Z C×) × C× 0 (C×)N+1;

• une décomposition:

N = N+ + N1 + . . . + Na + N−

en entiers tels que N+ ≥ 0, N− ≥ 0, N j ≥ 1 pour tout j ∈ {1, . . . , a};
• un signe ζ ∈ {±1}.

A la décomposition de N est associée la décomposition en intervalles:

{1, . . . , N }(1)

= {1, . . . , N+} ∪ {N+ + 1, . . . , N+ + N1} ∪ . . . ∪ {N − N− + 1, . . . , N }.

Pour tout z ∈ C×, notons < z > le sous-groupe de C× engendré par z. Sup-
posons vérifiées les conditions suivantes:

• pour tout i ∈ {1, . . . , N },

si ∈ ζ < v0 >⇔ i ∈ {1, . . . , N+},

−si ∈ ζ < v0 >⇔ i ∈ {N − N− + 1, . . . , N };

• pour tous i, j ∈ {N+ + 1, . . . , N − N−},

si i et j appartiennent au même intervalle (cf. (1)), si s−1
j ∈< v2

0 >,
si i et j n’appartiennent pas au même intervalle, si s−1

j +∈< v2
0 > et si s j +∈

< v2
0 >. Posons:

H′ = H(N+; A, B) ⊗A HS(N1) ⊗A . . .⊗A HS(Na) ⊗A H(N−; A, B).

De la décomposition (1) sont issus:

• un plongement W ′ → WN , où

W ′ = WN+ × SN1 × . . .× SNa × WN− ;

• un isomorphisme

X N 0 X N+ ⊕ X N1 ⊕ . . .⊕ X Na ⊕ X N− ;

puis un plongement A[X N ] → H′. On note Z ′ = A[X N ]W ′
la sous-algèbre des

invariants par W ′. C’est le centre de H′.

Notons 1s : A[X N ] → C l’évaluation au point s: 1s(v) = v0, 1s(ξei ) = si pour
tout i ∈ {1, . . . , N }. On note encore 1s sa restriction à Z ou Z ′.
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Proposition. Il existe une équivalence entre la catégorie des H′-modules
de dimension finie sur lesquels Z ′ agit par l’homomorphisme 1s et celle des
H(N ; A, B)-modules de dimension finie sur lesquels Z agit par l’homomorphisme
1s .

Cf. [L2] paragraphe 8. Rappelons la construction que donne Lusztig de cette
équivalence. Notons F ′ le corps des fractions de Z ′. Remarquons que F se plonge
dans F ′. En appliquant à chaque facteur de H′ les constructions de 1.4 et 1.6, on
dispose pour tout w ∈ W ′ d’un élément de H′ ⊗Z ′ F ′, que nous noterons τ ′(w).
Notons U le sous-ensemble des w ∈ WN qui sont de longueur minimale dans leur
classe W ′w . Posons

u = |U | = |W ′\WN |.

On définit un homomorphisme:

m : H(N ; A, B) ⊗Z F → Mu(H′ ⊗Z ′ F ′)
h &→ (m(h)w ′,w ′′)w ′,w ′′∈U

de la façon suivante:

• pour x ∈ X N et w ′, w ′′ ∈ U ,

m(ξx )w ′,w ′′ =
{

0, si w ′ += w ′′,
ξw ′(x), si w ′ = w ′′;

• pour w ∈ WN et w ′, w ′′ ∈ U ,

m(τ (w))w ′,w ′′ =
{

0, si w ′ww
′′−1 +∈ W ′,

τ ′(w ′ww
′′−1), si w ′ww

′′−1 ∈ W ′.

Notons Z(s) ⊆ F , resp. Z ′
(s) ⊆ F ′, le localisé de Z , resp. Z ′, relativement à l’idéal

Z ∩ K er (1s), resp. Z ′ ∩ K er (1s), et Z̄(s), resp. Z̄ ′
(s), son complété. En modifiant

légèrement la preuve de [L2], on montre que l’image par m de H(N ; A, B) ⊗Z Z(s)

est incluse dans Mu(H′ ⊗Z ′ Z ′
(s)) et que m se prolonge en un isomorphisme:

H(N ; A, B) ⊗Z Z̄(s) 0 Mu(H′ ⊗Z ′ Z ′
(s)).

Cet isomorphisme identifie Z̄(s) à Z̄ ′
(s) plongé diagonalement dans l’algèbre

de droite. Soit E ′ un H′-module de dimension finie sur lequel Z ′ agit par
l’homomorphisme 1s . Alors E ′ s’étend en un H′ ⊗Z ′ Z ′

(s)-module. L’espace (E ′)⊗u

est un Mu(H′ ⊗Z ′ Z ′
(s))-module, donc un H(N ; A, B) ⊗Z Z̄(s)-module et, par re-

striction, un H(N ; A, B)-module. L’algèbre Z y agit par l’homomorphisme 1s . Le
foncteur E ′ &→ (E ′)⊕u est l’équivalence de catégories annoncée.

Décrivons une variante de la construction ci-dessus. On définit un plongement:

j ′ : H′ ⊗Z ′ F ′ → H(N ; A, B) ⊗Z F
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de la façon suivante:

• pour x ∈ X N , j ′(ξx ) = ξx ;

• pour w ∈ W ′, j ′(τ ′(w)) = τ (w).

Définissons le sous-espace:

J ′
(s) =

∑

w∈U
j ′(H′ ⊗Z ′ Z ′

(s))τ (w)

de H(N ; A, B) ⊗Z F . Il est stable par multiplication à gauche par j ′(H′). Il est
aussi stable par multiplication à droite par H(N ; A, B). En effet, soient h ∈ H et

x =
∑

w∈U
j ′(h′

w )τ (w) ∈ J ′
(s),

avec h′
w ∈ H′ ⊗Z ′ Z ′

(s) pour tout w ∈ U . On calcule:

xh =
∑

w∈U

(

∑

w ′∈U
j ′

(

h′
w m(h)w ′,w

)

)

τ (w).

Or, d’après les résultats ci-dessus, m(h)w ′,w ∈ H′ ⊗Z ′ Z ′
(s) pour tous w ′, w ∈ U .

Donc xh ∈ J ′
(s).

Soit E ′ un H′-module de dimension finie sur lequel Z ′ agit par
l’homomorphisme 1s . Posons:

E = HomH′
(

J ′
(s), E ′),

i.e., E est l’ensemble des applications linéaires f : J ′
(s) → E ′ telles que

f ( j ′(h′)x) = h′ f (x) pour tous x ∈ J ′
(s) et h ∈ H′. PuisqueH(N ; A, B) agit à droite

sur J ′
(s), E est muni d’une structure de H(N ; A, B)-module. On vérifie que E est

isomorphe au module (E ′)⊕u construit ci-dessus.

Remarque. On a l’égalité:

J ′
(s) = j ′

(

H′ ⊗Z ′ Z ′
(s)

)

H(N ; A, B).

En effet, puisque J ′
(s) est stable par multiplication à gauche par j ′(H′ ⊗Z ′ Z ′

(s)) et
à droite par H(N ; A, B), le membre de droite ci-dessus est contenu dans J ′

(s). Pour
démontrer l’inclusion opposée, il suffit de prouver que pour tout w ∈ U ,

τ (w) ∈ j ′(Z ′
(s))H(N ; A, B).(2)

Pour tout α ∈ RN , posons:

• si α est longue, Gd(α) = ξ−αv2 − 1,

• si α est courte, Gd(α) = (ξ−αv A+B − 1)(ξ−αv A−B + 1).
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La base -N définit un ordre sur RN . Pour w ∈ WN , posons:

Gd(w) =
∏

α > 0
w−1(α) < 0

Gd(α).

On vérifie sur les définitions que Gd(w)τ (w) ∈ H(N ; A, B). Mais, si w ∈ U , on
vérifie que Gd(w)−1 ∈ j ′(Z ′

(s))A[X N ]. La relation (2) en résulte.

1.8. Soient N un entier ≥ 0 et C un entier ≥ 1. On note S l’algèbre
symétrique de (X N ⊗Z C) ⊕ C. C’est une algèbre de polynômes en des coordonnées
que nous noterons de façon évidente x1, . . . , xN , r . Le groupe WN agit surS, en fix-
ant r . On note H̄(N ; C) la S-algèbre engendrée par des éléments tw , pour w ∈ WN ,
soumis aux relations suivantes:

• pour w, w ′ ∈ WN , tww ′ = tw tw ′ ;

• pour tout i ∈ {1, . . . , N }, posons ti = twi ; alors, pour toute f ∈ S,

ti f − wi ( f )ti =
{

2r f −wi ( f )
αi

, si i < N ,

Cr f −wi ( f )
αi

, si i = N .

Remarque. Si N = 0, on a simplement H̄(N ; C) = C[r ].

Notons M l’algèbre des fonctions méromorphes sur (YN ⊗Z C) ⊕ C et
MH̄(N ; C) l’analogue de l’algèbre H̄(N ; C) quand S est remplacé par M. De
l’injection naturelle S ⊆ M se déduit une injection:

H̄(N ; C) ⊆ MH̄(N ; C).

Définissons les éléments de M suivants:

• pour i ∈ {1, . . . , N − 1}, Ḡ(i) = 1 + 2r
αi

,

• Ḡ(N ) = 1 + Cr
αN

;

et les éléments de MH̄(N ; C) suivants:

• pour i ∈ {1, . . . , N }, τ̄ (wi ) = −1 + (ti + 1)Ḡ(i)−1.

Alors, pour tout w ∈ WN , on peut définir τ̄ (w) de sorte que τ̄ (w ′w ′′) = τ̄ (w ′)τ̄ (w ′′)
pour tous w ′, w ′′ ∈ WN . Pour tous f ∈ M, w ∈ WN , on a la relation τ̄ (w) f =
w( f )τ̄ (w). L’algèbre MH̄(N ; C) est engendrée par M et les τ̄ (w), pour w ∈ WN .

NotonsZS = SWN l’algèbre des invariants par WN . C’est le centre de H̄(N ; C).
Pour tout σ = (σ1, . . . , σN ; r0) ∈ (Y ⊗Z C) ⊕ C, notons 1σ : S → C l’évaluation
au point σ , et WN (σ ) = {w(σ ); w ∈ WN }. Remarquons que pour w ∈ WN , les
restrictions à ZS de 1σ et 1w(σ ) coı̈ncident. Notons MWN (σ ) la sous-algèbre
des éléments de M qui sont holomorphes en tout point de WN (σ ). On définit
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MWN (σ )H̄(N ; C) comme on a défini H̄(N ; C): on remplace S par MWN (σ ). On a
les inclusions:

H̄(N ; C) ⊆ MWN (σ )H̄(N ; C) ⊆ MH̄(N ; C).

Soient σ comme ci-dessus et E un H̄(N ; C)-module. Supposons que ZS agisse
dans E par l’homomorphisme 1σ . Alors l’action de H̄(N ; C) dans E s’étend en
une action de MWN (σ )H̄(N ; C). On doit pour cela définir une action de MWN (σ )

dans E . Posons I = ZS ∩ K er (1σ ). Pour tout σ ′ ∈ WN (σ ), introduisons l’anneau
topologique S̄(σ ′), complété du localisé de S en σ ′, et notons Ī(σ ′) la clôture de I S̄(σ ′)

dans S̄(σ ′). On a un isomorphisme:

IS\S ∼→ ⊕σ ′∈WN (σ ) Ī(σ ′)\S̄(σ ′),

et une application naturelle:

MWN (σ ) →⊕σ ′∈WN (σ )S̄(σ ′)

(le développement en série au voisinage de chaque σ ′). D’où un homomorphisme
MWN (σ ) → IS\S. Puisque S agit dans E via son quotient IS\S, on déduit de cet
homomorphisme l’action cherchée de MWN (σ ).

1.9. Soient N , A, B comme en 1.4 et ε ∈ {±1}. Posons C = A + εB. On
définit un homomorphisme:

grε : H(N ; A, B) ⊗Z F → MH̄(N ; C)

de la façon suivante:

• pour tout i ∈ {1, . . . , N }, grε(ξei ) = εexp(xi );

• pour tout w ∈ WN , grε(τ (w)) = τ̄ (w).

Soit σ = (σ1, . . . , σN ; r0) ∈ (YN ⊗Z C) ⊕ C. Supposons r0 +∈ 2π iQ (où i est
ici une racine carrée de −1) et σ j

r0
∈ Z pour tout j ∈ {1, . . . , N }. Alors Lusztig

montre que l’image de H(N ; A, B) par grε est incluse dans MWN (σ )H̄(N ; C). Soit
E un H̄(N ; C)-module. Supposons que ZS y agisse par l’homomorphisme 1σ .
Alors E est aussi un MWN (σ )H̄(N ; C)-module (cf. 1.8). Via grε , c’est donc un
H(N ; A, B)-module. L’algèbre Z y agit par l’homomorphisme 1s , où:

s = (εexp(σ1), . . . , εexp(σN ); exp(r0)).

Le foncteur ainsi défini est une équivalence entre la catégorie des H̄(N ; C)-modules
de longueur finie sur lesquelsZS agit par 1σ et la catégorie desH(N ; A, B)-modules
de longueur finie sur lesquels Z agit par 1s .

1.10. Soient d un entier pair ≥ 2 et V̂ un espace de dimension d sur C, muni
d’une forme symplectique. On note Ĝ son groupe symplectique et ĝ l’algèbre de



P1: IML/SPH P2: IML/SPH QC: IML/SPH T1: IML

PB440-29 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 11:24
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Lie de ce groupe. Considérons un quadruplet (σ, r0, y, ε), où:

• σ est un élément semi-simple de ĝ;

• r0 ∈ C, r0 += 0;

• y est un élément nilpotent de ĝ;

• ε est un caractère du groupe de composantes:

ZĜ(σ, y)/ZĜ(σ, y)0

où ZĜ(σ, y) est l’intersection des commutants dans Ĝ de σ et y, et ZĜ(σ, y)0 est
sa composante neutre; ces données vérifiant la relation:

[σ, y] = 2r0 y.

On sait que l’on peut décomposer σ en σL + σ L , où σL commute à σ et y
et (r−1

0 σ L , y) peut être complété en un sl2-triplet. La décomposition est unique
à conjugaison près par ZĜ(σ, y). Notons V̂0 l’espace propre pour σL associé à la
valeur propre 0, et V̂⊥ son orthogonal. Notons Ĝ0, resp. Ĝ⊥, le groupe symplectique
de V̂0, resp. V̂⊥, et ĝ0, resp. ĝ⊥, leurs algèbres de Lie. L’élément y se décompose
en y0 + y⊥, où y0 ∈ ĝ0 et y⊥ ∈ ĝ⊥. On a l’isomorphisme:

ZĜ(σ, y)/ZĜ(σ, y)0 0 ZĜ0
(y0)/ZĜ0

(y0)0,

qui permet de considérer ε comme un caractère de ce dernier groupe. Par la corre-
spondance de Springer généralisée (cf. [L5] paragraphe 12), à (y0, ε) sont associés
un entier k ∈ N tel que k(k + 1) ≤ dimC(V̂0) et un couple cuspidal (yc, εc). Notons
V̂c un espace de dimension k(k + 1) sur C, muni d’une forme symplectique, Ĝc son
groupe symplectique et ĝc l’algèbre de Lie de ce groupe. Le terme yc est un élément
nilpotent de Ĝc et εc est un caractère de ZĜc

(yc)/ZĜc
(yc)0. Plus précisément, yc est

paramétrisé par la partition:

(2k, 2(k − 1), . . . , 2).

Le groupe ZĜc
(yc)/ZĜc

(yc)0 est isomorphe à (Z/2Z)k ; il a une base naturelle
{ f2, . . . , f2k} sur Z/2Z, indexée par les termes de la partition. On a l’égalité
εc( f2i ) = (−1)i pour tout i ∈ {1, . . . , k}.

Comme on le verra plus loin (cf. 2.4), il en résulte que l’on peut plonger V̂c

dans V̂0, de sorte qu’en notant V̂1 son orthogonal dans V̂ , V̂c et V̂1 soient stables
par σ et, si σc désigne la restriction de σ à V̂c, on ait la relation:

[σc, yc] = 2r0 yc.

Posons:

N = (d − k(k + 1))/2, C = 2k + 1.

Notons σ1 la restriction de σ à V̂1. Sa classe de conjugaison dans le groupe sym-
plectique de V̂1 est déterminée par la collection de ses valeurs propres, que l’on peut
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voir comme un élément (σ1, . . . , σN ) de YN ⊗C C, bien déterminé modulo l’action
de WN . Posons:

σ = (σ1, . . . , σN ; r0).

Au quadruplet (σ, r0, y, ε), Lusztig associe en [L4] un module irréductible
P(σ, r0, y, ε) sur l’algèbre H̄(N ; C). Le centre ZS agit sur ce module par
l’homomorphisme 1σ .

Remarque. Si k ≥ 1, c’est directement la construction de Lusztig. Si k = 0,
l’algèbre qu’il construit n’est pas à première vue la nôtre: pour lui, C = 2. Mais
son système de racines n’est pas non plus le nôtre: pour lui, αN est multiplié par 2.
Ces deux modifications se compensent.

1.11. Soient V̂ un espace de dimension 2n sur C, muni d’une forme sym-
plectique. On utilise les notations du paragraphe précédent. Considérons un triplet
(s, y, ε), où:

• s est un élément semi-simple de Ĝ;

• y est un élément nilpotent de ĝ;

• ε est un caractère de ZĜ(s, y)/ZĜ(s, y)0, avec une notation évidente;

ces données vérifiant la relation:

Ad(s)(y) = qy.

On peut trouver:

• une décomposition orthogonale

V̂ = V̂ + ⊕ V̂− ⊕ (⊕ j=1,...,a V̂± j );

• pour tout j ∈ {1, . . . , a}, une décomposition en deux lagrangiens V̂± j =
V̂ j ⊕ V̂− j et un nombre complexe z j ;

de sorte que:

• chacun des espaces V̂ +, V̂−, V̂± j , V̂ j , V̂− j soit stable par s;

• les valeurs propres de s dans V̂ +, resp. V̂−, V̂ j , V̂− j , appartiennent à
< q1/2 >, resp. − < q1/2 >, z j < q >, z−1

j < q >;

• pour tout j ∈ {1, . . . , a}, z j +∈ ± < q1/2 >;

• pour tous j, k ∈ {1, . . . , a}, avec j += k, z j z−1
k +∈< q >, z j zk +∈< q >.

Notons Ĝ
+

, resp. Ĝ
−

, le groupe symplectique de V̂ +, resp. V̂−, et ĝ+, resp.
ĝ−, son algèbre de Lie. Le produit Ĝ

+ × Ĝ
− ×

∏

j=1,...,a GL(V̂ j ) est naturellement
un sous-groupe de Ĝ, et s appartient à ce sous-groupe. De même, y appartient
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à ĝ+ ⊕ ĝ− ⊕ (⊕ j=1,...,agl(V̂ j )). Ecrivons de façon évidente s = s+s−
∏

j=1,...,a s j ,
y = y+ + y− +

∑

j=1,...,a y j . On a l’isomorphisme:

ZĜ(s, y)/ZĜ(s, y)0 0 ZĜ
+(s+, y+)/ZĜ

+(s+, y+)0 × ZĜ
−(s−, y−)/ZĜ

−(s−, y−)0.

Le caractère ε se décompose ainsi en un couple (ε+, ε−).
Soit η ∈ {±1}, que l’on identifie à un signe ±. Il existe un unique élément σ η

de l’algèbre de Lie ĝη tel que:

• ses valeurs propres appartiennent à log(q)
2 Z;

• exp(σ η) = ηsη.

On a l’égalité:

[σ η, yη] = log(q)yη.

Appliquons la construction de 1.10 à V̂ η et au quadruplet (σ η, log(q)
2 , yη, εη). On en

déduit un entier kη et un module irréductible sur l’algèbre H̄(N η; 2kη + 1), où

N η = 1
2

(dimC(V̂ η) − kη(kη + 1)).

On en déduit aussi un élément σ η de (YN η ⊗Z C) ⊕ C.
Définissons deux entiers R′, R′′ ∈ N et un signe ζ ∈ {±1} de la façon suivante:

• si k+ = k−, R′ = k+ = k−, R′′ = 0, ζ = (−1)R′
;

• si k+ > k− et k+ ≡ k− mod 2Z, R′ = k++k−
2 , R′′ = k+−k−

2 , ζ = 1;

• si k+ < k− et k+ ≡ k− mod 2Z, R′ = k++k−
2 , R′′ = k−−k+

2 , ζ = −1;

• si k+ > k− et k+ +≡ k− mod 2Z, R′ = k+−k−−1
2 , R′′ = k++k−+1

2 , ζ = 1;

• si k+ < k− et k+ +≡ k− mod 2Z, R′ = k−−k+−1
2 , R′′ = k++k−+1

2 , ζ = −1.

Remarquons que:

R
′2 + R′ + R

′′2 = k+(k+ + 1) + k−(k− + 1)
2

.

Posons:

A = sup (2R′ + 1, 2R′′), B = inf (2R′ + 1, 2R′′).

Soit η ∈ {±1}. On a l’égalité 2kη + 1 = A + ηζ B. Appliquons la construction de
1.9 à N η, A, B, ε = ηζ et σ η. Du module irréductible ci-dessus pour l’algèbre
H̄(N η; 2kη + 1) se déduit un module irréductible sur l’algèbre H(N η; A, B).

Des constructions analogues à celles de 1.9 et 1.10 sont valables pour les
algèbres de Hecke relatives au groupe linéaire. Nous ne les détaillerons pas, cf. [L2]
et [L4]. Le résultat est que, pour tout j ∈ {1, . . . , a}, on peut associer aux données
(ζ s j , y j ) un module irréductible sur l’algèbre HS(N j ), où N j = dimC(V̂ j ).
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Posons N = n − R
′2 − R′ − R

′′2. On a la décomposition:

N = N+ + N1 + . . . + Na + N−

et on a construit ci-dessus des représentations irréductibles des algèbres
H(N+; A, B), H(N−; A, B) et HS(N j ) pour tout j ∈ {1, . . . , a}. On en déduit
par tensorisation une représentation de H′, où:

H′ = H(N+; A, B) ⊗A HS(N1) ⊗A . . .⊗A HS(Na) ⊗A H(N−; A, B).

On peut appliquer la construction de 1.7 à cette situation et en déduire une
représentation irréductible de H(N ; A, B). Par construction, v agit dans cette
représentation par multiplication par q1/2. Il s’agit donc d’une représentation de
Hq(N ; A, B).

Posons ! = iso si R′′ est pair, ! = an si R′′ est impair. Le couple θ = (R′, R′′)
appartient à #!. Si R′′ = 0, on aHθ = Hq(N ; A, B) et la représentation précédente
s’identifie à une représentation de Hθ . Si R′′ > 0, on a:

Hθ = C[ω] ⊗C Hq(N ; A, B).

On prolonge la représentation précédente de Hq(N ; A, B) en une représentation
irréductible de Hθ dans laquelle ω agit par multiplication par (−1)R′

ζ .
Du Hθ -module ainsi construit, on déduit un G!-module irréductible, noté

P(s, y, ε), qui appartient à IrrG!

u . En résumé, au triplet (s, y, ε), on a associé un
élément P(s, y, ε) de IrrGiso

u ∪ IrrGan
u . Lusztig a prouvé que cette application se

quotientait en une bijection entre l’ensemble des classes de conjugaison par Ĝ de
triplets (s, y, ε) et l’ensemble IrrGiso

u ∪ IrrGan
u .

1.12. Soit (s, y, ε) un triplet vérifiant les conditions du paragraphe précédent.
On lui a associé un terme ! qu’il est utile de préciser. Le groupe Z (Ĝ) 0 {±1}
s’envoie naturellement dans ZĜ(s, y)/ZĜ(s, y)0, de façon en général non injective.
Donc de ε se déduit un caractère de Z (Ĝ) que l’on note improprement ε|Z (Ĝ).
Identifions à {±1} le groupe des caractères de Z (Ĝ).

Lemme. On a les relations:

! =
{

iso, si ε|Z (Ĝ) = 1;
an, si ε|Z (Ĝ) = −1.

Preuve. En 1.11, on a associé à (s, y, ε) des objets Ĝ
+

, s+, y+, ε+, Ĝ
−

, s−, y−,
ε−. En 1.10, on leur a associé d’autres objets que nous noterons de façon évidente
Ĝ

+
0 , y+

0 , Ĝ
−
0 , y−0 . On a l’isomorphisme:

ZĜ(s, y)/ZĜ(s, y)0 0
(

ZĜ
+
0
(y+

0 )/ZĜ
+
0
(y+

0 )0
)

×
(

ZĜ
−
0
(y−0 )/ZĜ

−
0
(y−0 )0

)

.
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Supposons pour simplifier Ĝ
+
0 et Ĝ

−
0 non triviaux (le raisonnement s’adapte

aisément au cas général). En identifiant à {±1} les trois groupes des caractères
de Z (Ĝ), Z (Ĝ

+
0 ) et Z (Ĝ

−
0 ), on a l’égalité:

ε|Z (Ĝ) = ε+
|Z (Ĝ

+
0 )

ε−
|Z (Ĝ

−
0 )

.

Les entiers k+, resp. k−, sont associés par la correspondance de Springer généralisée
aux couples (y+

0 , ε+), resp. (y−0 , ε−). On a calculé ces entiers en [W] XI.3. On voit
que pour tout signe η = ±,

kη ≡
{

0 ou 3 mod 4Z, si ε
η

|Z (Ĝ
η

0)
= 1,

1 ou 2 mod 4Z, si ε
η

|Z (Ĝ
η

0)
= −1.

Il résulte alors de la définition de R′′ (cf.1.11) que:
R′′ est pair si ε|Z (Ĝ) = 1,
R′′ est impair si ε|Z (Ĝ) = −1.

Par définition, ! = iso si R′′ est pair, ! = an si R′′ est impair. D’où le lemme.

2. Modules standard.

2.1. Soient d un entier pair ≥ 1, V̂ un espace de dimension d sur C muni
d’une forme symplectique, Ĝ son groupe symplectique, k un entier ≥ 0 tel que
k(k + 1) ≤ d. Posons:

N = (d − k(k + 1))/2, H̄ = H̄(N ; 2k + 1).

Fixons un sous-groupe parabolique P̂ de Ĝ et une décomposition de Lévi P̂ = M̂Û
de sorte que:

M̂ 0 (C×)N × Ĝc,

où Ĝc est un groupe symplectique de rang k(k + 1)/2. On note T̂ le plus grand tore
central dans M̂ . On note par les lettres gothiques minuscules les algèbres de Lie
correspondantes: ĝ, ĝc, p̂ etc . . . Soit C l’unique classe de conjugaison nilpotente
dans ĝc (ou m̂) paramétrisée par la partition (2k, 2k − 2, . . . , 2). Fixons yc ∈ C.
Le caractère εc de ZĜc

(yc)/ZĜc
(yc)0 décrit en 1.10 définit un système local de rang

1 sur C que l’on note L. Il est M̂-équivariant.
Soit y un élément nilpotent de ĝ. On pose:

Py = {g P̂ ∈ Ĝ/P̂; Ad(g−1)y ∈ C + û}.

Considérons le diagramme:

{gT̂Û ∈ Ĝ/T̂Û ; Ad(g−1)y ∈ C + û}

f1 ↙ ↘ f2

Py C
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( f1 est la projection évidente; f2 envoie gT̂Û sur la projection sur C de Ad(g−1)y).
Parce que L est M̂-équivariant, il existe un unique système local sur Py , que l’on
note encore L, de sorte que l’on ait l’égalité: f ∗1 L = f ∗2 L.

Remarque. Dans la suite, on déduira de L des systèmes locaux sur diverses
variétés par des procédés du même genre que celui ci-dessus. On n’explicitera pas
les définitions. Les systèmes locaux obtenus seront tous notés L.

On pose ĜC = Ĝ × C× et, de même, P̂C = P̂ × C× etc . . . Le groupe ĜC agit
sur ĝ par:

(g, λ)x = λ−2 Ad(g)x .

Posons:

Â(y) = ZĜC
(y)0, Ā(y) = ZĜC

(y)/ZĜC
(y)0.

Remarquons que l’injection ZĜ(y) → ZĜC
(y) induit un isomorphisme:

ZĜ(y)/ZĜ(y)0 0 Ā(y).

Le groupe ZĜC
(y) agit sur Py , par ((g, λ), g′ P̂) &→ gg′ P̂ , et L est équivariant pour

cette action. On définit l’espace d’homologie équivariante:

H Â(y)(Py,L) = ⊕ j∈N H Â(y)
2 j (Py,L)

([L3]1.1; la définition sera rappelée brièvement en 2.3; les groupes de degré impair
sont nuls, cf. [L3] proposition 8.6). Cet espace est muni d’une action de l’algèbre
de cohomologie HÂ(y) et d’une action du groupe Ā(y). Lusztig définit une action

de H̄ sur H Â(y)(Py,L), qui commute aux actions précédentes ([L3] paragraphe 8,
et ci-dessous 2.5).

L’algèbre de Lie â(y) de Â(y) est incluse dans ĝC = ĝ ⊕ C. Soit (σ, r0) un
élément semi-simple de â(y). On a σ ∈ ĝ, r0 ∈ C et [σ, y] = 2r0 y. Posons:

Ā(σ, y) = ZĜ(σ, y)/ZĜ(σ, y)0.

C’est un groupe abélien. De (σ, r0) se déduit un homomorphisme d’algèbres:

χσ,r0 : HÂ(y) → C

(cf. ci-dessous 2.4). On en déduit par tensorisation un espace:

H Â(y)(Py,L)σ,r0 = C ⊗HÂ(y)
H Â(y)(Py,L).

Le groupe Ā(σ, y) agit sur cet espace, lequel se décompose selon les caractères de
ce groupe. On note Ek(σ, r0, y) l’ensemble des caractères qui interviennent et, pour
tout ε ∈ Ek(σ, r0, y), M(σ, r0, y, ε) le sous-espace correspondant. Chaque espace
M(σ, r0, y, ε) est un H̄-module, dont la classe d’isomorphie ne dépend que de r0 et
de la classe de conjugaison par Ĝ du triplet (σ, r0, ε). Les H̄-modules M(σ, r0, y, ε)
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sont appelés par Lusztig des modules standard. Ils ne sont pas irréductibles en
général.

2.2. Pour tout élément semi-simple (σ, r0) de ĝC, posons:

ĝσ,r0 = {y ∈ ĝ; [σ, y] = 2r0 y}.

Supposons r0 += 0. Alors le groupe ZĜ(σ ) agit dans ĝσ,r0 et il n’y a dans cet espace
qu’un nombre fini d’orbites pour cette action. Si y ∈ ĝσ,r0 , on note oσ,r0

y son orbite
pour cette action et ōσ,r0

y la clôture de cette orbite. La finitude du nombre d’orbites
entraı̂ne qu’il existe une et une seule orbite dense dans ĝσ,r0 .

Décrivons le lien entre les constructions de 2.1 et celles de 1.10. Soit (σ, r0, y, ε)
comme en 1.10. On a dit que Lusztig associait à ce quadruplet un H̄-module
irréductible P(σ, r0, y, ε). Supposons que l’entier k de 2.1 soit égal à celui associé
en 1.10 à (σ, r0, y, ε). Alors ε ∈ Ek(σ, r0, y) et, dans le groupe de Grothendieck des
H̄-modules de dimension finie, on a une égalité:

P(σ, r0, y, ε) = M(σ, r0, y, ε) +
∑

y′

∑

ε′∈Ek (σ,r0,y′)

c(y′, ε′)M(σ, r0, y′, ε′),

où les c(y′, ε′) sont des entiers relatifs et y′ parcourt un ensemble fini d’éléments
nilpotents de ĝ tels que:

• y′ ∈ ĝσ,r0 ,

• oσ,r0
y ⊂ ōσ,r0

y′ et oσ,r0
y += oσ,r0

y′ ,

(cf. [L4] corollaire 10.7). En particulier, si oσ,r0
y est l’orbite dense dans ĝσ,r0 ,

alors M(σ, r0, y, ε) est irréductible et égal à P(σ, r0, y, ε). En général, la for-
mule ci-dessus est “triangulaire” et s’inverse en une formule analogue exprimant
M(σ, r0, y, ε) en fonction des P(σ, r0, y′, ε′). Il en résulte que P(σ, r0, y, ε) est un
sous-quotient irréductible de M(σ, r0, y, ε).

2.3. Rappelons brièvement les définitions des groupes d’homologie et de
cohomologie équivariante. Si L est un groupe agissant à droite sur un ensemble A
et à gauche sur un ensemble B, on note A ×L B le quotient de A × B par la relation
d’équivalence (a1, b) ∼ (a, 1b) pour tous a ∈ A, b ∈ B, 1 ∈ L . Si B ′ est un autre
ensemble muni d’une action à gauche de L et si f : B → B ′ est une application
entrelaçant les actions de L , on note:

idA ×L f : A ×L B → A ×L B ′

l’application quotient de idA × f , où idA est l’identité de A. Dans ce qui suit,
les variétés considérées sont des variétés algébriques complexes, les groupes sont
des groupes algébriques complexes, les actions des groupes sur les variétés sont
algébriques. Soient L un groupe, X une variété munie d’une action de L , F un
système local L-équivariant sur X , F∗ le système dual. Un entier j ≥ 0 étant fixé,
on choisit une variété 6 lisse irréductible sur laquelle L agit librement, telle que
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Hi (6) = {0} pour i ∈ {1, . . . , m}, m étant un entier assez grand. Des systèmes
locaux F et F∗ se déduisent des systèmes locaux encore notés F et F∗ sur la
variété 6 ×L X . On pose:

H j
L (X,F) = H j (6 ×L X,F), H L

j (X,F) = H 2δ− j
c (6 ×L X,F∗)∗,

où δ = dim(6 ×L X ) et le dernier ∗ signifie “dual.” Dans le cas particulier où
X = {.}, c’est-à-dire X est réduit à un point, et F = C, on pose simplement:

H j
L = H j

L ({.}, C), H L
j = H L

j ({.}, C).

Remarquons que la condition “m assez grand” dépend de j . On ignorera cette
difficulté en fixant 6. Strictement parlant, nos constructions ne seront correctes
que pour un ensemble borné de j . Peu importe puisqu’on peut choisir 6 tel que cet
ensemble soit aussi grand qu’on le veut. On fixe donc une variété 6 lisse irréductible,
sur laquelle ĜC agit librement, “assez acyclique.”

2.4. Fixons un sous-groupe de Borel P̂0 de P̂ et un sous-tore maximal T̂0

de P̂0 ∩ M̂ . Notons W , resp. W M̂ , le groupe de Weyl de Ĝ, resp. M̂ , relativement
à T̂0. Posons:

W (M̂) = {w ∈ W ; w M̂w−1 = M̂}.

C’est un sous-groupe de W et W M̂ est un sous-groupe distingué de W (M̂). Remar-
quons que le quotient W (M̂)/W M̂ agit naturellement sur T̂ .

Fixons un homomorphisme φc : SL(2, C) → M̂ tel que sa dérivée dφc envoie
( 0 1

0 0 ) sur yc ∈ C. Posons:

Ẑ (φc) = {(m, λ) ∈ M̂C; mφc(γ )m−1 = φc

((

λ 0
0 λ−1

)

γ

(

λ−1 0
0 λ

))

pour tout γ ∈ SL(2, C)}.

Notons Âc la composante neutre de Ẑ (φc) et Āc = Ẑ (φc)/ Âc. On vérifie que
Ẑ (φc) est abélien. Soit (m, λ) ∈ Âc. Posons mT = mφc(( λ−1 0

0 λ )). Alors mT ∈ T̂ .
L’application (m, λ) &→ (mT , λ) est un isomorphisme de Âc sur T̂C. L’isomorphisme
dérivé de âc sur t̂C sera noté (σ, r0) &→ (σT , r0), avec σT = σ − dφc(( r0 0

0 −r0
)). Re-

marquons que, pour deux éléments (σ, r0), (σ ′, r ′0) ∈ âc, avec r ′0 = r0, σ et σ ′ sont
conjugués par un élément de Ĝ si et seulement si σT et σ ′

T le sont. On a défini YN

et WN en 1.4. On peut identifier YN au groupe des cocaractères X∗(T̂ ) et WN au
groupe W (M̂)/W M̂ , de sorte que:

• l’action de WN sur YN s’identifie à l’action naturelle de W (M̂)/W M̂ sur
X∗(T̂ );

• les éléments de ŘN ⊆ YN s’identifient à des cocaractères positifs relative-
ment à P̂ .
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Le Z-module YN ⊕ Z s’identifie à X∗(T̂C), donc à X∗( Âc). Il résulte alors de [L3]
1.11 que l’on a l’isomorphisme HÂc

0 S.
Soit y un élément nilpotent de ĝ. Notons Z la variété qui classifie les classes de

conjugaison semi-simples dans l’algèbre de Lie â(y) de Â(y), pour la conjugaison
par Â(y). L’algèbre HÂ(y) n’est autre que l’algèbre des fonctions régulières sur Z
([L3] 1.11). Tout élément semi-simple (σ, r0) ∈ â(y) détermine un homomorphisme
d’évaluation:

χσ,r0 : HÂ(y) → C.

On pose:

H Â(y)(Py,L)σ,r0 = C ⊗HÂ(y)
H Â(y)(Py,L).

Fixons (σ, r0). Notons D̂ le plus petit sous-tore de Â(y) dont l’algèbre de Lie
contient (σ, r0) et P D̂

y le sous-ensemble des invariants par D̂ dans Py . On a encore
un homomorphisme d’évaluation:

χσ,r0 : HD̂ → C.

De l’homomorphisme naturel H Â(y)(Py,L) → H D̂(Py,L) se déduit un isomor-
phisme:

H Â(y)(Py,L)σ,r0 = C ⊗HD̂
H D̂(Py,L)

([L3], 7.5). D’après [L4], proposition 4.4, de l’homomorphisme H D̂(P D̂
y ,L) →

H D̂(Py,L) déduit de l’injection P D̂
y → Py , se déduit un isomorphisme:

H Â(y)(Py,L)σ,r0 = C ⊗HD̂
H D̂(P D̂

y ,L).

Supposons H Â(y)(Py,L)σ,r0 += {0}. Alors P D̂
y est non vide. A fortiori, il existe

g ∈ Ĝ tel que Ad(g−1)y ∈ C + û et Ad(g−1)σ ∈ p̂. Quitte à conjuguer σ et y, on
peut supposer g = 1. Quitte à conjuguer encore σ et y, on peut supposer σ ∈ m̂, puis
y ∈ yc + û. L’équation [σ, y] = 2r0 y entraı̂ne [σ, yc] = 2r0 yc. Quitte à conjuguer
encore σ et y, on peut donc supposer (σ, r0) ∈ âc.

Remarque. Cela explique une construction de 1.10: en supposant (σ, r0) ∈ âc,
les éléments σc, resp. σ1, de 1.10 ne sont autres que dφc(( r0 0

0 −r0
)), resp. σT .

2.5. Jusqu’en 2.11, on fixe un élément nilpotent y ∈ ĝ. On simplifie les
notations en posant P = Py , Â = Â(y), Ā = Ā(y). Remarquons qu’une action de
H̄ dans un espace E est déterminée par:

• une action de S dans E , via l’injection naturelle S → H̄;

• une action de WN dans E , via l’homomorphisme w &→ tw de WN dans H̄.
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Rappelons les définitions des actions de S et WN dans H Â(P,L). Posons:

ġ = {(x, g P̂) ∈ ĝ × Ĝ/P̂; Ad(g−1)x ∈ C + t̂ + û}.

Le groupe ĜC agit sur ġ par:

(g′, λ)(x, g P̂) = (λ−2 Ad(g′)x, g′g P̂).

On a un isomorphisme:

HĜC
(ġ) 0 S,(1)

qui est le composé des isomorphismes (2) à (7) ci-dessous. L’application:

ĜC ×P̂C
(C + t̂ + û) → ġ

((g, λ), x) &→ (λ−2 Ad(g)x, g P̂)

est un isomorphisme. Donc:

6 ×P̂C
(C + t̂ + û) 0 6 ×ĜC

ġ,

et:

HĜC
(ġ) 0 HP̂C

(C + t̂ + û).(2)

D’après [L3] 1.4 (h):

HP̂C
(C + t̂ + û) 0 HM̂C

(C + t̂ + û).(3)

De la projection pC : C + t̂ + û → C se déduit un isomorphisme:

p∗C : HM̂C
(C) 0 HM̂C

(C + t̂ + û).(4)

Posons Ẑc = Z M̂C
(yc). Puisque C 0 M̂C ×Ẑc

{yc}, on a 6 ×M̂C
C 0 6 ×Ẑc

{yc} et:

HM̂C
(C) 0 HẐc

.(5)

Mais Ẑ (φc) est un sous-groupe réductif maximal de Ẑc. D’après [L3] 1.4 (h) et 1.12
(a), on a donc:

HẐc
0 HẐ (φc) 0 HÂc

.(6)

Enfin, comme on l’a dit en 2.4,

HÂc
0 S.(7)

Posons P̃ = ĜC × Â P . De L se déduit un système local sur P̃ , encore noté L
selon nos conventions. Puisque 6 ×ĜC

P̃ 0 6 × Â P , on a:

H Â(P,L) 0 H ĜC(P̃,L).(8)

Définissons l’application:

h : P̃ → ġ
(g, λ, g′ P̂) &→ (λ−2 Ad(g)y, gg′ P̂).
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On en déduit un homomorphisme:

h∗ : HĜC
(ġ) → HĜC

(P̃).

On dispose d’un accouplement, issu du cup-produit:

HĜC
(P̃) × H ĜC(P̃,L) → H ĜC(P̃,L).

Via h∗, on en déduit un accouplement:

HĜC
(ġ) × H ĜC(P̃,L) → H ĜC(P̃,L).(9)

Via les isomorphismes (1) et (8), c’est la définition de l’action de S sur H Â(P,L)
([L3] 8.2). On peut transcrire cette définition d’une façon plus maniable pour nous.
Posons:

P̃P̂ = {(g, λ, g′ P̂) ∈ P̃; gg′ P̂ = P̂},

Ṽ = {(g, λ, g′ P̂) ∈ P̃P̂ ; λ−2 Ad(g)y ∈ yc + û}.

On a:

P̃ = ĜC ×P̂C
P̃P̂ , P̃P̂ = M̂C ×Ẑc

Ṽ.

Parallèlement aux isomorphismes (2) à (6), on a les isomorphismes:

H ĜC(P̃,L) 0 H P̂C(P̃P̂ ,L) 0 H M̂C(P̃P̂ ,L) 0 H Ẑc (Ṽ,L)(10)

0 H Ẑ (φc)(Ṽ,L) 0 H Âc (Ṽ,L) Āc ,

où le dernier exposant signifie que l’on prend les invariants par le groupe Āc, cf.
[L3] 1.9 (a) pour le dernier isomorphisme. Il est facile de suivre la transformation de
l’accouplement (9) via les isomorphismes (2) à (6) et (10). On obtient la description
suivante de l’action de S sur H Â(P,L): identifions S à HÂc

via (7), et H Â(P,L) à
H Âc (Ṽ,L) Āc via (8) et (10); alors l’action de S sur H Â(P,L) s’identifie à l’action
naturelle de HÂc

sur H Âc (Ṽ,L) Āc .
Considérons la projection naturelle:

pĝ : ġ → ĝ.

Posons K = pĝ!L∗. Il s’agit d’un objet de la catégorie dérivée des complexes ĜC-
équivariants sur ĝ. En fait, K est un faisceau pervers et c’est le prolongement
d’intersection d’un faisceau lisse défini sur la variété:

Y = {Ad(g)(σ + yc); g ∈ Ĝ, σ ∈ t̂, ZĜ(σ ) = M̂}.

D’autre part, fixons un élément nilpotent y0 ∈ ĝ tel qu’en notant o(y0) son orbite
pour l’action adjointe de Ĝ, l’intersection o(y0) ∩ (C + û) soit dense dans C + û.
La fibre (H0 K )y0 du faisceau de cohomologie H0 K est de dimension 1 ([L5],
théorème 9.2.c). Lusztig a défini une action de WN sur K ([L3], paragraphe 3).
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Elle est caractérisée par les propriétés suivantes. Identifions WN à un ensem-
ble de représentants dans le normalisateur de M̂ dans Ĝ. Pour tout w ∈ WN , le
système local Ad(w)∗L sur C est isomorphe à L. Fixons un isomorphisme aw :
L → Ad(w)∗L. Soit σ un élément de t̂ tel que ZĜ(σ ) = M̂ . Posons x = σ + yc.
La fibre de pĝ au-dessus de x est l’ensemble des sous-groupes paraboliques de Ĝ
de sous-groupe de Lévi M̂ , que l’on identifie à WN par w &→ w P̂w−1. La fibre Kx

de K en x est naturellement isomorphe à:

⊕w∈WNLAd(w)−1 yc .

Pour tout w , l’isomorphisme aw identifie LAd(w)−1 yc à Lyc . En fixant un isomor-
phisme Lyc 0 C, on identifie donc Kx à CWN . En [L5], théorème 9.2, Lusztig mon-
tre que l’on peut choisir d’une unique façon la famille d’isomorphismes (aw )w∈WN ,
de telle sorte que, pour tout w ∈ WN , il existe un unique automorphisme ρ(w) de
K vérifiant:

• pour tout (zw ′)w ′∈WN ∈ CWN 0 Kx , ρ(w)(zw ′)w ′∈WN = (zw ′w )w ′∈WN ;

• ρ(w) agit trivialement sur (H0 K )y0 .

De plus, l’application w &→ ρ(w) est un homomorphisme de WN dans le groupe
des automorphismes de K . On a ainsi défini une action de WN sur K .

Considérons le diagramme évident:

6 ×ĜC
ġ ← 6 × ġ → ġ

p ↓ ↓ ↓ pĝ

6 ×ĜC
ĝ ← 6 × ĝ

α→ ĝ

.

Parce que α est lisse, à fibres connexes, le faisceau K se remonte en un faisceau
sur 6 × ĝ. Il est ĜC-équivariant et se descend en un faisceau sur 6 ×ĜC

ĝ. Parce
que les carrés du diagramme sont cartésiens, ce faisceau n’est autre que p!L∗.
Il est encore pervers, à un décalage près, et a même anneau d’endomorphismes que
K ([BBD], proposition 4.2.5). D’où une action de WN sur p!L∗.

Considérons le diagramme:

6 × Â P ḣ→ 6 ×ĜC
ġ

↓ py ↓ p

6 × Â {y} h→ 6 ×ĜC
ĝ

(les flèches py et h sont évidentes; ḣ est définie par ḣ(γ , g P̂) = (γ , y, g P̂)). Il est
cartésien, donc h∗ p!L∗ = py!L∗. Par fonctorialité par h∗, on obtient une action de
WN sur py!L∗. Soit j un entier ≥ 0. On a:

H Â
j (P,L) = H 2δ− j

c (6 × Â P,L∗)∗ = H 2δ− j
c (6 × Â {y}, py!L∗)∗,

où δ = dim(6 × Â P). De l’action de WN sur py!L∗ se déduit une action de WN sur
le dernier espace ci-dessus, donc sur H Â

j (P,L). C’est l’action cherchée.
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L’action que l’on vient de définir de H̄ sur H Â(P,L) commute à l’action
naturelle de HÂ ([L3] 8.3). Pour (σ, r0) ∈ â, l’espace H Â(P,L)σ,r0 défini en 2.4 est
donc muni d’une structure de H̄-module.

Remarque. Si (π, E) est une représentation de dimension finie de H̄, on note
Exp(π ), ou Exp(E), l’ensemble des σ = (σ, r0) ∈ (YN ⊗Z C) ⊕ C tels qu’il existe
e ∈ E , e += 0, vérifiant:

π ( f )e = 1σ ( f )e

pour tout f ∈ S, cf. 1.8 pour les notations. Soit (σ, r0) ∈ â, supposons
H Â(P,L)σ,r0 += {0} et soit (σ1, r1) ∈ Exp(H Â(P,L)σ,r0 ). Soit (σ ′

1, r1) ∈ âc tel que
σ ′

1,T = σ1, cf. 2.4 pour cette notation. On montre alors que (σ ′
1, r1) et (σ, r0) appar-

tiennent à la même orbite pour l’action adjointe de ĜC, cf. [L3] preuve du théorème
8.17 (c). En particulier r1 = r0.

2.6. Soient Q̂ un sous-groupe parabolique de Ĝ et Q̂ = L̂ N̂ une
décomposition de Lévi. On suppose P̂0 ⊆ Q̂, T̂0 ⊆ L̂ , on note W L̂ le groupe de
Weyl de L̂ relativement à T̂0. C’est un sous-groupe de W .

Lemme. Supposons que Q̂ ne contient pas P̂ et que y appartient à l̂. Alors
H Â(P,L) = {0}.

Preuve. Considérons la variété Z qui classifie les classes de conjugaison semi-
simples dans l’algèbre de Lie â de Â, pour la conjugaison par Â. On sait que
l’algèbre HÂ est l’algèbre des fonctions régulières sur Z . De plus, H Â(P,L) est un
module projectif de type fini sur HÂ ([L3], proposition 8.6). Il suffit pour démontrer
l’énoncé de trouver un ouvert dense Z ′ ⊆ Z tel que, pour tout élément semi-simple
(σ, r0) ∈ â dont la classe appartient à Z ′, on ait H Â(P,L)σ,r0 = {0}.

Notons T̂L le plus grand tore central dans L̂ . Il s’identifie, par t &→ (t, 1), à un
sous-tore de Â. Fixons un sous-tore maximal T̂A de Â contenant T̂L . On a T̂A ⊆ L̂C.
Notons t̂′A l’ensemble des (t, r0) ∈ t̂A tels que:

• (t, r0) est régulier dans â;

l’application:(1)

n̂ → n̂
x &→ Ad(t)x

est bijective.
Parce que t̂L est inclus dans t̂A, t̂′A est un ouvert dense dans t̂A. Il nous suffit

de prouver que H Â(P,L)t,r0 = {0} pour tout (t, r0) ∈ t̂′A. Fixons donc (t, r0) ∈ t̂′A.
Notons D̂ le plus petit sous-tore de Â dont l’algèbre de Lie contient (t, r0) et P D̂
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le sous-ensemble des invariants par D̂ dans P . On a l’isomorphisme:

H Â(P,L)t,r0 0 C ⊗HD̂
H D̂(P D̂,L)(2)

(cf. 2.4). Fixons un ensemble de représentants W ′ de l’ensemble de doubles classes
W L̂\W/W M̂ . Pour tout w ∈ W ′, posons:

Pw = {g P̂ ∈ P; g ∈ L̂w P̂}.

Quand w varie dans W ′, ces sous-ensembles sont disjoints. Montrons que:

P D̂ = ∪w∈W ′P D̂
w .(3)

Fixons, ainsi qu’il est loisible, un élément x ∈ L̂ tel que Ad(x)t ∈ t̂0, posons t0 =
Ad(x)t . Notons Û0 le radical unipotent de P̂0 et Û ′ celui du sous-groupe parabolique
de Ĝ, de Lévi M̂ , opposé à P̂ . Soit g P̂ ∈ P D̂. On sait qu’il existe w ∈ W et
u ∈ Û0 ∩ wÛ ′w−1 tels que g P̂ = x−1uw P̂ . On a l’égalité:

Û0 ∩ wÛ ′w−1 = (N̂ ∩ wÛ ′w−1)(Û0 ∩ L̂ ∩ wÛ ′w−1).

Fixons donc w ∈ W , u1 ∈ N̂ ∩ wÛ ′w−1 et u2 ∈ Û0 ∩ L̂ ∩ wÛ ′w−1, de sorte
que g P̂ = x−1u1u2w P̂ . Puisque g P̂ ∈ P D̂, on a t ∈ Ad(g)p̂, ou encore
Ad(u−1

2 )Ad(u−1
1 )t0 ∈ Ad(w)p̂. Parce que t0 ∈ t̂0, on a Ad(u−1)t0 − t0 ∈ n̂ ∩

Ad(w)û′ pour tout u ∈ N̂ ∩ wÛ ′w−1 et, grâce à l’hypothèse (1), on voit que:

l’application:(4)

N̂ ∩ wÛ ′w−1 → n̂ ∩ Ad(w)û′

u &→ Ad(u−1)t0 − t0

est bijective.
Notons y1 l’image de u1 par cette application. Alors:

Ad(u−1
2 )t0 + Ad(u−1

2 )y1 ∈ Ad(w)p̂.

Mais le premier terme ci-dessus appartient à l̂ ∩ Ad(w)û′, le deuxième à n̂ ∩
Ad(w)û′. La relation ci-dessus entraı̂ne que ces deux termes sont nuls. Or Ad(u−1

2 )
est un automorphisme de n̂ ∩ Ad(w)û′. Donc y1 = 0 et, grâce à (4), u1 = 1. Alors
g P̂ ∈ L̂w P̂ . On peut dans cette relation remplacer w par un élément de W ′. Alors
g P̂ ∈ P D̂

w . Cela démontre (3).
Soit w ∈ W ′. Montrons que:

si Pw += ∅, alors w M̂w−1 ⊆ L̂.(5)

Supposons Pw += ∅, soit h ∈ L̂ tel que hw P̂ ∈ P . Alors Ad(w−1h−1)y ∈ C + û.
Ecrivons:

Ad(h−1)y = Ad(w)(y′c + y′′),
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avec y′c ∈ C et y′′ ∈ û. Soit (tn)n≥1 une suite d’éléments de T̂ telle que
limn→∞Ad(tn)y′′ = 0. Pour tout n, posons t ′n = wtnw−1. Alors:

limn→∞Ad(t ′nh−1)y = Ad(w)y′c.

Mais, pour tout n, t ′n ∈ T̂0 ⊆ L̂ , donc Ad(t ′nh−1)y ∈ l̂. Il en résulte que Ad(w)y′c ∈ l̂.
Alors, le sous-tore (wT̂ w−1)T̂L de T̂0 est contenu dans ZĜ(Ad(w)y′c). Or wT̂ w−1 est
un sous-tore maximal de ce centralisateur. Donc T̂L ⊆ wT̂ w−1, puis L̂ ⊇ w M̂w−1.
Cela démontre (5).

On a supposé que Q̂ ne contenait pas P̂ . De la forme particulière du groupe P̂
résulte que w M̂w−1 n’est inclus dans L̂ pour aucun w ∈ W ′. D’après (3) et (5), on
a donc P D̂ = ∅. Alors l’espace de droite de (2) est nul, donc aussi H Â(P,L)t,r0 .
Cela achève la démonstration.

2.7. On conserve les notations du paragraphe précédent, on suppose main-
tenant et jusqu’en 2.11 que Q̂ contient P̂ et y ∈ l̂. En remplaçant Ĝ par L̂ et P̂ par
L̂ ∩ P̂ dans les définitions, on définit la variété P L̂ , le groupe Â

L̂
, que l’on note

pour simplifier B̂, et le groupe d’homologie H B̂(P L̂ ,L). Il est muni d’une action
d’une algèbre H̄L̂ analogue à H̄. Il est facile d’identifier H̄L̂ . En effet, posons:

W L̂
N = {w ∈ W L̂ ; w M̂w−1 = M̂}/W M̂ .

C’est un sous-groupe de WN et H̄L̂ est la sous-algèbre de H̄ engendrée par S et les
éléments tw de H̄, pour w ∈ W L̂

N .
Puisque B̂ est un sous-groupe de Â, on dispose de deux homomorphismes:

HÂ → HB̂, H Â(P,L) → H B̂(P,L),

dont on déduit un homomorphisme de HB̂-modules:

HB̂ ⊗HÂ
H Â(P,L) → H B̂(P,L).

C’est un isomorphisme ([L3], propositions 7.5 et 8.6). De l’action de H̄ sur
H Â(P,L) se déduit une action de H̄ sur H B̂(P,L).

De l’injection naturelle i : P L̂ → P se déduit un homomorphisme de HB̂-
modules:

i! : H B̂(P L̂ ,L) → H B̂(P,L)

([L3], 1.4).

Lemme. L’application i! est un homomorphisme de S-modules.

Preuve. Posons:

P̃B = ĜC ×B̂ P, ṼB = {(g, λ, g′ P̂) ∈ P̃B ; gg′ P̂ = P̂, λ−2 Ad(g)y ∈ yc + û},
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et définissons Ṽ comme en 2.5. Comme en 2.5 (10), on a des isomorphismes:

H B̂(P,L) 0 H Ĝ(P̃B,L) 0 H Âc (ṼB,L) Āc .(1)

De l’application naturelle ṼB → Ṽ se déduit un homomorphisme:

H Âc (Ṽ,L) Āc → H Âc (ṼB,L) Āc .

Le diagramme suivant est commutatif:

H Â(P,L) 0 H Âc (Ṽ,L) Āc

↓ ↓
H B̂(P,L) 0 H Âc (ṼB,L) Āc

.

De la description de 2.5 résulte que, quand on identifie H B̂(P,L) à H Âc (ṼB,L) Āc

et S à HÂc
, l’action de S sur H B̂(P,L) s’identifie à l’action naturelle de HÂc

sur
H Âc (ṼB,L) Āc . Posons:

P̃ L̂ = L̂C ×B̂ P L̂ , Ṽ L̂ = {(g, λ, g′(L̂ ∩ P̂)) ∈ P̃ L̂ ;

gg′(L̂ ∩ P̂) = L̂ ∩ P̂, λ−2 Ad(g)y ∈ yc + l̂ ∩ û}.

Comme en 2.5 (10), on a des isomorphismes:

H B̂(P L̂ ,L) 0 H L̂C(P̃ L̂ ,L) 0 H Âc (Ṽ L̂ ,L) Āc .(2)

Posons:

Ṽ1
B = {(g, λ, g′ P̂) ∈ ṼB ; g ∈ Q̂}.

Notons ĩ : Ṽ1
B → ṼB l’injection naturelle. Remarquons que l’application:

N̂ × Ṽ L̂ → Ṽ1
B

(n, g, λ, g′(L̂ ∩ P̂)) → (ng, λ, g′ P̂)

est un isomorphisme. On dispose donc d’une suite d’homomorphismes:

H Âc (Ṽ L̂ ,L) 0 H Âc (N̂ × Ṽ L̂ ,L) 0 H Âc (Ṽ1
B,L)

ĩ!→ H Âc (ṼB,L).(3)

En dévissant la construction des isomorphismes (1) et (2), on vérifie que le dia-
gramme ci-dessous est commutatif:

H B̂(P L̂ ,L)
∼−→ H Âc (Ṽ L̂ ,L) Āc

↓ i! ↓
H B̂(P,L)

∼−→ H Âc (ṼB,L) Āc

(les flèches horizontales sont celles de (1) et (2), la flèche verticale de droite est
celle de (3)). Dire que i! entrelace les actions de S revient à dire que la flèche de
droite entrelace les actions de HÂc

. C’est clair.
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2.8. Notons zN̂ (y) le commutant de y dans n̂. Pour tout élément (σ, r0) de
l’algèbre de Lie b̂, l’opérateur ad(σ ) conserve n̂ et zN̂ (y). Posons:

;(σ, r0) = det (ad(σ ) − 2r0|n̂) det (ad (σ )|zN̂ (y)) det (ad (σ )|n̂)−1.

Cela définit une fonction rationnelle sur b̂, invariante par conjugaison par B̂,
autrement dit un élément du corps des fractions de HB̂ .

Rappelons que pour tout élément semi-simple (σ, r0) de b̂, on peut trouver un
homomorphisme φ : SL(2, C) → L̂ et un élément semi-simple z de l̂ tels que:

• z commute à l’image de φ;

• dφ( 0 1
0 0 ) = y;

• σ = z + dφ(r0 0
0 −r0

).

Le couple (z, φ) est bien déterminé à conjugaison près par l’intersection des com-
mutants de σ et de y dans L̂ . Avec ces notations, nous dirons que (σ, r0) contracte
q̂ si r0 > 0 et si toutes les valeurs propres de ad(z) dans n̂ ont une partie réelle ≤ 0.

Lemme. (i) La fonction ; est régulière sur b̂, i.e. ; ∈ HB̂.
(ii) Si (σ, r0) est un élément semi-simple de b̂ qui contracte q̂, alors

;(σ, r0) += 0.

Preuve. Fixons un homomorphisme φ : SL(2, C) → L̂ tel que:

dφ

(

0 1
0 0

)

= y,

et un sous-tore maximal T̂φ du commutant dans L̂ de l’image de φ. Le produit
T̂φ × SL(2, C) agit naturellement dans n̂: T̂φ agit par Ad, SL(2, C) par Ad ◦ φ.
Décomposons n̂ en somme directe de sous-espaces irréductibles pour cette action:

n̂ = ⊕s∈Sn̂s .

Soit s ∈ S, posons ds = dimC(n̂s), Ds = {−ds + 1,−ds + 3, . . . , ds − 3, ds − 1}.
Il existe une base (es,δ)δ∈Ds de n̂s telle que, pour tout λ ∈ C, on ait:

ad ◦ dφ(
(

λ 0
0 −λ

)

es,δ = δλes,δ.

Fixons une telle base. Alors la famille (es,ds−1)s∈S est une base de zN̂ (y). D’autre
part, pour tout s ∈ S, il existe αs ∈ X∗(T̂φ) tel que, pour tout z ∈ t̂φ et tout e ∈ n̂s ,
on ait ad(z)e = αs(z)e, où l’on identifie αs à une forme linéaire sur t̂φ .
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Il nous suffit de considérer les éléments (σ, r0) ∈ b̂ tels qu’il existe z ∈ t̂φ de
sorte que σ = z + dφ(( r0 0

0 −r0
)). Pour un tel élément et pour s ∈ S, posons:

;s(σ, r0) = det (ad (σ ) − 2r0|n̂s) det (ad (σ )|zN̂ (y) ∩ n̂s)det (ad (σ )|n̂s)−1.

On calcule:

;s(σ, r0) =
(

∏

δ∈Ds

(αs(z) + (δ − 2)r0)

)

(αs(z) + (ds − 1)r0)

(

∏

δ∈Ds

(αs(z) + δr0)

)−1

,

= αs(z) − (ds + 1)r0.

Donc ;s est une fonction régulière. Si (σ, r0) contracte q̂, on a r0 > 0 et Re(αs(z))
≤ 0, donc ;s(σ, r0) += 0. Puisque:

;(σ, r0) =
∏

s∈S

;s(σ, r0),

le lemme s’ensuit.

2.9. Notons wmax et w L̂
max les éléments de plus grande longueur de W et W L̂ .

Posons w0 = w L̂
maxwmax. On a w2

0 = 1. On identifie w0 à un représentant dans Ĝ.
Remarquons que w0 normalise M̂ , L̂ , L̂ ∩ P̂ , (C + û) ∩ L̂ . On supposera, ainsi qu’il
est loisible, que Ad(w0) agit trivialement sur le sous-groupe Ĝc de M̂ , a fortiori sur
C. Il agit donc sur Ẑ (φc), Âc et Āc. Son action sur Āc est triviale. Posons:

Pw0 = {g P̂ ∈ P; g ∈ Q̂w0 P̂}.

L’injection naturelle j : Pw0 → P est un plongement ouvert. Soit g ∈ Q̂w0 P̂ .
Ecrivons g = xhw0z, avec x ∈ N̂ , h ∈ L̂ et z ∈ P̂ . L’élément x et la classe
h(L̂ ∩ P̂) sont uniquement déterminés. Alors g P̂ ∈ P si et seulement si x ∈ Z N̂ (y)
et h(L̂ ∩ P̂) ∈ P L̂ . L’application:

Pw0 → Z N̂ (y) × P L̂

g P̂ &→ (x, h(L̂ ∩ P̂))

est un isomorphisme. On note π : Pw0 → P L̂ le composé de cet isomorphisme et
de la projection naturelle de Z N̂ (y) × P L̂ sur P L̂ .

Le groupe B̂ agit sur P , Pw0 et P L̂ . Les applications j et π sont équivariantes
pour ces actions. D’après [L3] 1.4, de j et π se déduisent:

• un homomorphisme j∗ : H B̂(P,L) → H B̂(Pw0,L);

• un isomorphisme π∗ : H B̂(P L̂ ,L)
∼→ H B̂(Pw0,L).

On note ρ, resp. ρ L̂ , l’action de H̄, resp. H̄L̂ , sur H B̂(P,L), resp.H B̂(P L̂ ,L).
D’autre part, l’élément ; de HB̂ définit un endomorphisme de chacun de ces
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espaces, que l’on note encore ;. Pour w ∈ WN , resp. w ∈ W L̂
N , l’application

(π∗)−1 ◦ j∗ ◦ ρ(tw ) ◦ i!, resp. ; ◦ ρ L̂ (tw ), est un endomorphisme de H B̂(P L̂ ,L).

Proposition. (i) Pour tout w ∈ WN \ w0W L̂
N , (π∗)−1 ◦ j∗ ◦ ρ(tw ) ◦ i! = 0.

(ii) Pour tout w ∈ W L̂
N , (π∗)−1 ◦ j∗ ◦ ρ(tw0w ) ◦ i! = ; ◦ ρ L̂ (tw ).

Preuve. Introduisons les variétés:

q̇ = {(x, g P̂) ∈ q̂ × Ĝ/P̂; Ad(g−1)x ∈ C + t̂ + û},

q̇1 = {(x, g P̂) ∈ q̇; g ∈ Q̂},

q̇w0 = {(x, g P̂) ∈ q̇; g ∈ Q̂w0 P̂}.

Le groupe L̂C agit sur chacune d’elles par (h, λ)(x, g P̂) = (λ−2 Ad(h)x, hg P̂). On
définit la variété l̇ comme on a défini ġ, en remplaçant Ĝ par L̂ .

L’application:

n̂ × l̇ → q̇1

(v, x, h(L̂ ∩ P̂)) &→ (x + v, h P̂)
(1)

est un isomorphisme. Elle est équivariante pour les actions de L̂C, si l’on
munit n̂ × l̇ de l’action de L̂C ainsi définie: (h, λ)(v, x, h′(L̂ ∩ P̂)) =
(λ−2 Ad(h)v, λ−2 Ad(h)x, hh′(L̂ ∩ P̂)).

L’application:

N̂ × l̇ → q̇w0

(n, x, h(L̂ ∩ P̂)) &→ (Ad(n)x, nhw0 P̂)
(2)

est un isomorphisme. Elle est équivariante pour les actions de L̂C, si
l’on munit N̂ × l̇ de l’action de L̂C ainsi définnie: (h, λ)(n, x, h′(L̂ ∩ P̂)) =
(hnh−1, λ−2 Ad(h)x, hh′(L̂ ∩ P̂)). Remarquons que n̂× l̇ et N̂ × l̇ sont isomor-
phes en tant que variétés, mais pas en tant que variétés munies d’une action de
L̂C.

Introduisons les variétés:

Y = {(x, g P̂) ∈ q̇; x ∈ y + n̂}, Y1 = Y ∩ q̇1, Yw0 = Y ∩ q̇w0 .

L’action sur q̇ du sous-groupe B̂ de L̂C conserve chacune d’elles. Rappelons que
P L̂ se plonge dans l̇ par h(L̂ ∩ P̂) &→ (y, h(L̂ ∩ P̂)). Alors les isomorphismes (1)
et (2) se restreignent en des isomorphismes:

n̂× P L̂ ∼−→ Y1,(3)

N̂ × P L̂ ∼−→ Yw0 .(4)

On note π1 : Y1 → P L̂ , resp. πw0 : Yw0 → P L̂ , les composés des inverses de ces
isomorphismes et des projections évidentes de n̂× P L̂ , resp. N̂ × P L̂ , sur P L̂ . De
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ces applications se déduisent des isomorphismes:

π1∗ : H B̂(P L̂ ,L)
∼→ H B̂(Y1,L),

πw0∗ : H B̂(P L̂ ,L)
∼→ H B̂(Yw0,L).

On a des applications naturelles:

Y1 iY−→ Y jY←− Yw0 .

L’application iY est une immersion fermée et jY est une immersion ouverte. On en
déduit des applications:

iY! : H B̂(Y1,L) → H B̂(Y,L),

j∗Y : H B̂(Y,L) → H B̂(Yw0,L).

Considérons le diagramme évident:

6 ×B̂ Y k̇−→ 6 ×L̂C
q̇

ḣq−→ 6 ×ĜC
ġ

↓ pY ↓ p̃ ↓ p

6 ×B̂ (y + n̂)
k−→ 6 ×L̂C

q̂
hq−→ 6 ×ĜC

ĝ

Chacun des carrés est cartésien, donc h∗
qp!L∗ = p̃!L∗, (hq◦ k)∗ p!L∗ = pY!L∗. Par

fonctorialité par h∗
q, resp. (hq◦ k)∗, l’action de WN sur p!L∗ définie en 2.5 se

transporte en une action de WN sur p̃!L∗, resp. pY!L∗. Comme en 2.5, de cette
action sur pY!L∗ se déduit une action de WN sur H B̂(Y,L), que nous identifions à
une action ρY du sous-groupe {tw ; w ∈ WN } de H̄. Pour w ∈ WN , resp. w ∈ W L̂

N , les
applications suivantes sont des endomorphismes de H B̂(P L̂ ,L): (πw0∗)−1 ◦ j∗Y ◦
ρY (tw ) ◦ iY! ◦ π1∗, resp. ρ L̂ (tw ). Nous prouverons ci-dessous les deux relations:

pour tout w ∈ WN \ w0W L̂
N , (πw0∗)−1 ◦ j∗Y ◦ ρY (tw ) ◦ iY! ◦ π1∗ = 0;(5)

pour tout w ∈ W L̂
N , (πw0∗)−1 ◦ j∗Y ◦ ρY (tw0w ) ◦ iY! ◦ π1∗ = ρ L̂ (tw ).(6)

Admettons-les et démontrons la proposition. Considérons le diagramme:

Y1 iY−→ Y jY←− Yw0

↑ α1 ↑ α ↑ αw0

P L̂ i−→ P j←− Pw0

où α et αw0 sont définis par g P̂ &→ (y, g P̂) et α1 l’est par h(L̂ ∩ P̂) &→ (y, h P̂).
Les carrés sont cartésiens et α, α1, αw0 sont des immersions fermées. On en déduit
un diagramme:

H B̂(Y1,L)
iY!−→ H B̂(Y,L)

j∗Y−→ H B̂(Yw0,L)
↑ α1

! ↑ α! ↑ αw0
!

H B̂(P L̂ ,L)
i!−→ H B̂(P,L)

j∗−→ H B̂(Pw0,L)
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Il résulte des définitions que ses carrés sont commutatifs. Il résulte aussi des
définitions que, pour tout w ∈ WN , on a l’égalité ρY (tw ) ◦ α! = α! ◦ ρ(tw ). Intro-
duisons les endomorphismes de H B̂(P L̂ ,L) suivants:

D1 = (π1∗)−1 ◦ α1
! , Dw0 = (πw0∗)−1 ◦ αw0

! ◦ π∗.

Pour w ∈ WN , l’égalité:

Dw0 ◦ (π1∗)−1 ◦ j∗ ◦ ρ(tw ) ◦ i! = (πw0∗)−1 ◦ j∗Y ◦ ρY (tw ) ◦ iY! ◦ π1∗ ◦ D1(7)

résulte formellement des propriétés ci-dessus. Les endomorphismes D1 et Dw0 se
calculent aisément. Grâce à (3), les applications α1 et π1 s’identifient aux applica-
tions évidentes:

P L̂ α1

−→ n̂× P L̂ π1

−→ P L̂ .

D’après [L3] 1.10, D1 est donc la multiplication par un élément de HB̂ , que nous
notons encore D1. En un point (σ, r0) ∈ b̂, D1(σ, r0) est le déterminant de l’action
de (σ, r0) sur n̂. On se rappelle que B̂ agit sur n̂ par (h, λ)v = λ−2 Ad(h)v . Donc:

D1(σ, r0) = det (ad(σ ) − 2r0|n̂).

Grâce à (4), les applications π , αw0 et πw0 s’identifient aux applications évidentes:

P L̂ π←− Z N̂ (y) × P L̂ αw0
−→ N̂ × P L̂ πw0

−→ P L̂ .

Par l’exponentielle, on peut remplacer N̂ et Z N̂ (y) par leurs algèbres de Lie n̂ et
zN̂ (y). En identifiant n̂/zN̂ (y) à un supplémentaire B̂-invariant de zN̂ (y) dans n̂, on
peut remplacer la suite d’applications ci-dessus par:

P L̂ π←− zN̂ (y) × P L̂ αw0
−→ (n̂/zN̂ (y)) × zN̂ (y) × P L̂ β−→ zN̂ (y) × P L̂ π−→ P L̂ .

Comme ci-dessus, (β∗)−1 ◦ αw0
! est la multiplication par un élément de HB̂ , que

nous notons encore Dw0 . En un point (σ, r0) ∈ b̂, Dw0 (σ, r0) est le déterminant de
l’action de (σ, r0) sur n̂/zN̂ (y). On se rappelle que B̂ agit sur N̂ par (h, λ)n = hnh−1.
Donc:

Dw0 (σ, r0) = det (ad(σ )|n̂) det (ad(σ )|zN̂ (y))−1.

Puisque notre endomorphisme originel Dw0 est égal à (π∗)−1 ◦ (β∗)−1 ◦ αw0
! ◦ π∗,

il est aussi égal à la multiplication par le Dw0 ci-dessus.
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On a l’égalité D1 = ;Dw0 . Le HB̂-module H B̂(P L̂ ,L) étant projectif ([L3]
proposition 8.6), on peut diviser l’égalité (7) par Dw0 et on obtient l’égalité:

(π1∗)−1 ◦ j∗ ◦ ρ(tw ) ◦ i! = ; ◦ (πw0∗)−1 ◦ j∗Y ◦ ρY (tw ) ◦ iY! ◦ π1∗.

La proposition résulte alors de (5) et (6), qu’il nous reste à démontrer.
Considérons le diagramme commutatif:

6 ×B̂ (n̂ × P L̂ ) = 6 ×B̂ Y1 id6×B̂ iY−→ 6 ×B̂ Y
id6×B̂ jY←− 6 ×B̂ Yw0 = 6 ×B̂ (N̂ × P L̂ )

↓ id6 ×B̂ π1 ↓ pY ↓ id6 ×B̂ πw0

6 ×B̂ P L̂ 6 ×B̂ (y + n̂) 6 ×B̂ P L̂

↘ pL̂
y ↓ s pL̂

y ↙
6 ×B̂ {y}

(8)

Parce que π1 et πw0 sont des fibrations en espaces vectoriels, on a (id6 ×B̂
π1)!L∗ = L∗[−2δ], (id6 ×B̂ πw0 )!L∗ = L∗[−2δ], où δ = dimC(n̂) = dimC(N̂ ).
Parce que iY est une immersion fermée et jY une immersion ouverte, on dispose
d’homomorphismes naturels:

(id6 ×B̂ jY )!L∗ = (id6 ×B̂ jY )!(id6 ×B̂ jY )!L∗ → L∗

→ (id6 ×B̂ iY )∗(id6 ×B̂ iY )∗L∗ = (id6 ×B̂ iY )!L∗.

En appliquant (s ◦ pY )!, on en déduit des homomorphismes:

pL̂
y!(id6 ×B̂ πw0 )!L∗ = pL̂

y!L∗[−2δ]
εw0
−→ s! pY!L∗ ε1

−→ pL̂
y!L∗[−2δ]

= pL̂
y!(id6 ×B̂ π1)!L∗.

On a défini plus haut une action de WN sur pY!L∗. Par fonctorialité par s!, on en
déduit une action de WN sur s! pY!L∗, que l’on note ρY . Soit w ∈ WN . Alors ε1 ◦
ρY (w−1) ◦ εw0 est un endomorphisme de pL̂

y!L∗[−2δ]. On en déduit pour tout entier
j ≥ 0 un endomorphisme de H j

c (6 ×B̂ {y}, pL̂
y!L∗), i.e. de H j

c (6 ×B̂ P L̂ ,L∗). Par
dualité, on en déduit pour tout entier j ≥ 0 un endomorphisme de H B̂

j (P L̂ ,L). Il
résulte des définitions que cet endomorphisme est égal à (πw0∗)−1 ◦ j∗Y ◦ ρY (tw ) ◦
iY! ◦ π1∗. De la même façon, en remplaçant Ĝ par L̂ dans les définitions de 2.5, on
dispose d’une action de W L̂

N sur pL̂
y!L∗, ou, si l’on préfère, sur pL̂

y!L∗[−2δ]. Notons
ρ L̂ cette action. Pour w ∈ W L̂

N , l’endomorphisme ρ L̂ (tw ) se déduit de ρ L̂ (w−1) par
le même procédé que ci-dessus. Alors (5) et (6) résultent des assertions suivantes
concernant des endomorphismes de pL̂

y!L∗[−2δ]:

pour tout w ∈ WN \ W L̂
N w0, ε1 ◦ ρY (w) ◦ εw0 = 0;(9)

pour tout w ∈ W L̂
N , ε1 ◦ ρY (ww0) ◦ εw0 = ρ L̂ (w).(10)
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Considérons le diagramme commutatif:

6 ×L̂C
(n̂× l̇) = 6 ×L̂C

q̇1 ĩ−→ 6 ×L̂C
q̇

j̃←− 6 ×L̂C
q̇w0 = 6 ×L̂C

(N̂ × l̇)
↓ π̃1 ↓ p̃ ↓ π̃w0

6 ×L̂C
l̇ 6 ×L̂C

q̂ 6 ×L̂C
l̇

↘ pL̂ ↓ s̃ pL̂ ↙
6 ×L̂C

l̂

(11)

Les mêmes procédés que ci-dessus permettent de définir:

• des endomorphismes:

pL̂
! L∗[−2δ]

ε̃w0
−→ s̃! p̃!L∗ ε̃1

−→ pL̂
! L∗[−2δ];

• une action ρ̃ de WN sur s̃! p̃!L∗;

• une action ρ̃ L̂ de W L̂
N sur pL̂

! L∗[−2δ].

Or le diagramme (8) est l’image réciproque, en un sens évident, du diagramme (11)
par l’application naturelle:

6 ×B̂ {y} hL̂

−→ 6 ×L̂C
l̂.

Et les objets εw0, ε1, ρY , ρ L̂ se déduisent par fonctorialité par hL̂∗ des objets

ε̃w0, ε̃1, ρ̃, ρ̃ L̂ . Alors (9) et (10) résultent des assertions suivantes:

pour tout w ∈ WN \ W L̂
N w0, ε̃1 ◦ ρ̃(w) ◦ ε̃w0 = 0;(12)

pour tout w ∈ W L̂
N , ε̃1 ◦ ρ̃(ww0) ◦ ε̃w0 = ρ̃ L̂ (w).(13)

Rappelons que pL̂
! L∗ est un faisceau pervers et que c’est le prolongement

d’intersection d’un faisceau lisse sur la variété:

6 ×L̂C
{Ad(x)(σ + yc); x ∈ L̂, σ ∈ t̂, ZL̂ (σ ) = M̂}.

On peut fixer γ ∈ 6 et s ∈ t̂ tel que ZĜ(σ ) = M̂ et se contenter de vérifier (12) et
(13) sur la fibre de pL̂

! L∗[−2δ] au-dessus de (γ , σ + yc). L’application:

N̂ × WN → 6 ×L̂C
q̇

(n, w) &→ (γ , Ad(n)(σ + yc), nw P̂)

définit un isomorphisme de N̂ × WN sur la fibre de s̃ ◦ p̃ au-dessus de (γ , σ + yc).
Les fibres de pL̂ ◦ π̃1, resp. pL̂ ◦ π̃w0 , s’identifient à N̂ × W L̂

N , resp. N̂ × W L̂
N w0,

les applications ĩ et j̃ étant les injections évidentes. Les fibres de s̃! p̃!L∗,
resp. pL̂

! L∗[−2δ], au-dessus de (γ , σ + yc) s’identifient donc à C[−2δ]WN , resp.
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C[−2δ]W L̂
N . Les applications:

ε̃1 : C[−2δ]WN → C[−2δ]W L̂
N ,

ε̃w0 : C[−2δ]W L̂
N → C[−2δ]WN ,

se décrivent ainsi:

ε̃1((zw )w∈WN ) = (zw )w∈W L̂
N
,

ε̃w0 ((zw )w∈W L̂
N
) = (z′w )w∈WN ,

où z′w = 0 si w +∈ W L̂
N w0, z′ww0

= zw si w ∈ W L̂
N . Pour w ∈ WN , resp. w ∈ W L̂

N , on
a décrit en 2.5 les actions ρ̃(w), resp. ρ̃ L̂ (w). On a:

ρ̃(w)((zw ′)w ′∈WN ) = (zw ′w )w ′∈WN ,

resp. ρ̃ L̂ (w)((zw ′)w ′∈WN ) = (zw ′w )w ′∈W L̂
N
.

Alors (12) et (13) deviennent évidents. Cela achève la démonstration.

2.10. De l’automorphisme Ad(w0) de L̂ se déduit un automorphisme de H̄L̂ ,
encore noté Ad(w0):

• pour x ∈ X N 0 X∗(T̂ ), on a Ad(w0)(ξx ) = ξw0(x);

• pour w ∈ W L̂
N , on a Ad(w0)(tw ) = tw0ww−1

0
.

Si ρ L̂ est une action de H̄L̂ dans un espace complexe, ρ L̂ ◦ Ad(w0) est encore une
action de H̄L̂ dans le même espace.

On note ρ l’action de H̄ sur H B̂(P,L) (cf. 2.7) et ρ|H̄L̂ sa restriction à H̄L̂ . On

note ρ L̂ l’action de H̄L̂ sur H B̂(P L̂ ,L).

Lemme. (i) L’homomorphisme:

(π∗)−1 ◦ j∗ : H B̂(P,L) → H B̂(P L̂ ,L)

entrelace les actions ρ|H̄L̂ et ρ L̂ ◦ Ad(w0).
(ii) L’homomorphisme:

i! : H B̂(P L̂ ,L) → H B̂(P,L)

entrelace les actions ρ L̂ et ρ|H̄L̂ .

Preuve. Pour tout élément semi-simple (σ, r0) ∈ b̂, on dispose d’un homomor-
phisme d’évaluation χσ,r0 : HB̂ → C. Si X est un HB̂-module, on pose Xσ,r0 =
C ⊗HB̂

X , la tensorisation se faisant via χσ,r0 . De même, si α : X → Y est un
homomorphisme de HB̂-modules, on note ασ,r0 : Xσ,r0 → Yσ,r0 l’homomorphisme
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spécialisé. Posons pour simplifier:

X = H B̂(P,L), Y = H B̂(P L̂ ,L), α = (π∗)−1 ◦ j∗.

Fixons un ensemble de représentants U de l’ensemble de classes W L̂
N \WN .

Définissons une application:

α̃ : X → YU

h &→ (α ◦ ρ(tw0w )(h))w∈U .

C’est un homomorphisme de HB̂-modules. Il vérifie la propriété:
(1) si (σ, r0) est un élément semi-simple de b̂ tel que ;(σ, r0) += 0, alors α̃σ,r0

est surjectif.
En effet, soit (hw )w∈U ∈ YU

σ,r0
. Posons:

h = ;(σ, r0)−1
∑

w∈U
(ρ(tw−1 ) ◦ i!)σ,r0 (hw ).(2)

Alors α̃σ,r0 (h) = (h′
w )w∈U , où, pour tout w ∈ U ,

h′
w = ;(σ, r0)−1

∑

w ′∈U
(α ◦ ρ(tw0ww ′−1 ) ◦ i!)σ,r0 (hw ′).

Soient w, w ′ ∈ U . Si w += w ′, on a w0ww
′−1 +∈ w0W L̂

N et α ◦ ρ(tw0ww ′−1 ) ◦ i! = 0.
Si w = w ′, (α ◦ ρ(tw0ww ′−1 ) ◦ i!)σ,r0 = ;(σ, r0). Alors h′

w = hw pour tout w ∈ U ,
et cela démontre (1).

D’autre part:
(3) pour tout élément semi-simple (σ, r0) de b̂, on a dimC(Xσ,r0 ) = dimC(YU

σ,r0
).

Parce que X et Y sont des HB̂-modules projectifs de type fini, ces dimensions ne
dépendent pas du point (σ, r0). On peut supposer que (σ, r0) est régulier dans b̂
et que l’application Ad(σ ) définit un automorphisme de n̂. Notons D̂ le plus petit
sous-tore de B̂ dont l’algèbre de Lie contient (σ, r0) et notons P D̂, resp. P L̂,D̂, le
sous-ensemble des invariants par D̂ dans P , resp. P L̂ . Reprenons la démonstration
du lemme 2.6. On a les isomorphismes:

Yσ,r0 0 C ⊗HD̂
H D̂(P L̂,D̂,L), Xσ,r0 0 C ⊗HD̂

H D̂(P D̂,L),

la tensorisation se faisant via l’homomorphisme HD̂ → C d’évaluation en (σ, r0).
Remarquons que U est un système de représentants de l’ensemble des doubles
classes w ∈ W L̂\W/W M̂ telles que w M̂w−1 ⊆ L̂ . Grâce à 2.6 (3) et (5), et avec
les notations de ce paragraphe, on a:

P D̂ =
⋃

w∈U
P D̂

w .

C’est une décomposition en union disjointe et chaque sous-variété P D̂
w est fermée

dans P D̂ (car L̂w P̂ est fermé dans Ĝ). Donc:

Xσ,r0 0 ⊕w∈U
(

C ⊗HD̂
H D̂(

P D̂
w ,L

))

.
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Enfin, pour tout w ∈ U , l’application h(L̂ ∩ P̂) &→ hw P̂ est un isomorphisme de
P L̂,D̂ sur P D̂

w . Donc:

Xσ,r0 0
(

C ⊗HD̂
H D̂(

P L̂,D̂,L
))U 0 YU

σ,r0
.

Cela démontre (3).
De (1) et (3) résulte bien sûr:
(4) si (σ, r0) est un élément semi-simple de b̂ tel que ;(σ, r0) += 0, alors α̃σ,r0

est bijectif.
Fixons un tel élément (σ, r0). Puisque α̃σ,r0 est bijectif, il a un inverse, qui est donné
par la formule (2). Supposons que w0 ∈ U , ainsi qu’il est loisible. Soit h ∈ Xσ,r0 ,
posons α̃σ,r0 (h) = (hw )w∈U . On a hw0 = ασ,r0 (h). Soit w ∈ W L̂

N . Grâce à (2), on a:

(α ◦ ρ(tw ))σ,r0 (h) = ;(σ, r0)−1
∑

w ′∈U
(α ◦ ρ(tww ′−1 ) ◦ i!)σ,r0 (hw ′).

Si w ′ ∈ U et w ′ += w0, on a ww
′−1 +∈ w0W L̂

N et α ◦ ρ(tww ′−1 ) ◦ i! = 0. Si w ′ = w0,
on a ww

′−1 = w0w0ww0 et:

α ◦ ρ(tww ′−1 ) ◦ i! = ; ◦ ρ L̂ (tw0ww0 ).

D’où les égalités:

(α ◦ ρ(tw ))σ,r0 (h) = ρ L̂ (tw0ww0 )σ,r0 (hw0 ) =
(

ρ L̂ (tw0ww0 ) ◦ α
)

σ,r0
(h).(5)

Soit maintenant x ∈ X N . Grâce à (2), on a:

(α ◦ ρ(ξx ))σ,r0 (h) = ;(σ, r0)−1
∑

w∈U
(α ◦ ρ(ξx tw−1 ) ◦ i!)σ,r0 (hw ).

Soit w ∈ U . Dans l’algèbre H̄, on a une égalité:

ξx tw−1 = tw−1ξw(x) +
∑

w ′

tw ′ϕw ′,x ,

où:

• w ′ parcourt l’ensemble des éléments de WN de longueur 1(w ′) < 1(w);

• pour tout tel w ′, ϕw ′,x ∈ S.

Grâce au lemme 2.7, on a donc:

α ◦ ρ(ξx tw−1 ) ◦ i! = α ◦ ρ(tw−1 ) ◦ i!ρ
L̂ (ξw(x)) +

∑

w ′

α ◦ ρ(tw ′) ◦ i! ◦ ρ L̂ (ϕw ′,x ).

Pour un élément w ′ intervenant dans cette dernière somme, on a 1(w ′) < 1(w−1) ≤
1(w0). Donc w ′ +∈ w0W L̂

N et α ◦ ρ(tw ′) ◦ i! = 0. Si w += w0, on a aussi α ◦ ρ(tw−1 ) ◦
i! = 0. Si w = w0, alors α ◦ ρ(tw−1 ) ◦ i! = ;. Finalement:

(α ◦ ρ(ξx ))σ,r0 (h) = ρ L̂ (ξw(x))σ,r0 (hw0 ) = (ρ L̂ (ξw(x)) ◦ α)σ,r0 (h).(6)
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Les relations (5) et (6) montrent que ασ,r0 entrelace les représentations de H̄L̂ dans
Xσ,r0 et Yσ,r0 . Parce que X et Y sont des HB̂-modules projectifs, donc sans torsion,
il en résulte que α lui-même est un entrelacement. Cela démontre la première
assertion du lemme. La démonstration de la seconde assertion est analogue, on la
laisse au lecteur. Notons d’ailleurs que l’on a déjà fait la moitié du travail en 2.7.

2.11. Soit (ρ, E) un H̄L̂ -module de dimension finie. On note Ind H̄
H̄L̂ (E)

l’espace des fonctions f : H̄ → E telles que f (h′h) = ρ(h′) f (h) pour tous h ∈ H̄,
h′ ∈ H̄L̂ . De l’action de H̄ sur lui-même par multiplication à droite se déduit une
action de H̄ sur IndH̄

H̄L̂ (E). On définit aussi l’espace H̄⊗H̄L̂ E , quotient de H̄⊗C E
par le sous-espace engendré par les éléments hh′ ⊗ e − h ⊗ ρ(h′)e, pour h ∈ H̄,
h′ ∈ H̄L̂ , e ∈ E . De l’action de H̄ sur lui-même par multiplication à gauche se
déduit une action de H̄ sur H̄⊗H̄L̂ E .

D’autre part, on note Ad(w0) ◦ E le H̄L̂ -module ainsi défini: en tant qu’espace
vectoriel complexe, Ad(w0) ◦ E = E ; l’action de H̄L̂ sur Ad(w0) ◦ E est ρ ◦
Ad(w0) (cf. 2.10).

Soit (σ, r0) un élément semi-simple de l’algèbre de Lie b̂. On a défini en 2.1 un
ensemble Ek(σ, r0, y) de caractères du groupe Ā(σ, y) et, pour ε ∈ Ek(σ, r0, y), un
H̄-module M(σ, r0, y, ε). Des constructions analogues s’appliquent en remplaçant
Ĝ par L̂: on définit un ensemble E L̂

k (σ, r0, y) de caractères de ĀL̂ (σ, y) et, pour tout
ε L̂ dans cet ensemble, un H̄L̂ -module ML̂ (σ, r0, y, ε L̂ ).

Remarquons que, de l’injection naturelle ZL̂ (σ, y) → ZĜ(σ, y), se déduit une
injection:

ĀL̂ (σ, y) → Ā(σ, y).

Pour tout caractère ε de Ā(σ, y), on note ε| ĀL̂ (σ,y)
le composé de ε et de cette

injection.

Proposition. Soit (σ, r0) un élément semi-simple de l’algèbre de Lie b̂.
(i) Pour tout caractère ε de Ā(σ, y), ε appartient àEk(σ, r0, y) si et seulement

si ε| ĀL̂ (σ,y)
appartient à E L̂

k (σ, r0, y).

(ii) Supposons que (σ, r0) contracte q̂ (cf. 2.8), soit ε L̂ ∈ E L̂
k σ, r0, y). Alors

les trois H̄-modules suivants sont isomorphes:

Ind H̄
H̄L̂

(

Ad(w0) ◦ ML̂(

σ, r0, y, ε L̂))

, H̄⊗H̄L̂ ML̂(

σ, r0, y, ε L̂)

, ⊕εM(σ, r0, y, ε),

où l’on somme sur les caractères ε de Ā(σ, y) tels que ε| ĀL̂ (σ,y)
= ε L̂ .

Preuve. Supposons d’abord (σ, r0) = (0, 0). Dans ce cas, Ā(0, y) = Ā(y)
(cf.2.1) et, pour un caractère ε de ce groupe, ε appartient à Ek(0, 0, y) si et seule-
ment si k est l’entier associé au couple (y, ε) par la correspondance de Springer
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généralisée (cf. [L5]). Il résulte des propriétés relatives à l’induction de cette cor-
respondance ([L5], théorème 8.3) que cet entier se conserve par induction, i.e.,
ε ∈ Ek(0, 0, y) ⇐⇒ ε| ĀL̂ (0,y)

∈ E L̂
k (0, 0, y). Passons au cas général. On a un dia-

gramme commutatif d’homomorphismes injectifs:

ĀL̂ (σ, y) → Ā(σ, y)
↓ ↓

ĀL̂ (y) → Ā(y)

Soit ε un caractère de Ā(σ, y), fixons un caractère ε′ de Ā(y) tel que ε′| Ā(σ,y) = ε,
avec une notation évidente. On a alors les équivalences:

ε ∈ Ek(σ, r0, y) ⇐⇒ ε′ ∈Ek(0, 0, y) ⇐⇒ ε′
| ĀL̂ (y)

∈ E L̂
k (0, 0, y)

⇐⇒ ε| ĀL̂ (σ,y)
∈E L̂

k (σ, r0, y).

La deuxième équivalence est le cas particulier déjà traité. Les deux autres résultent
de [L4] propositions 8.16 et 8.17. Cela démontre (i).

Plaçons-nous sous les hypothèses de (ii). Posons pour simplifier:

X = H B̂(P,L), Y = H B̂(P L̂ ,L), α = (π∗)−1 ◦ j∗, β = i!.

D’après le lemme précédent, les applications:

Y β→ X α→ Ad(w0) ◦ Y

sont des homomorphismes de H̄L̂ -modules. On en déduit des homomorphismes de
H̄-modules:

H̄⊗H̄L̂ Y
β̃→ X α̃→ IndH̄H̄L̂ (Ad(w0) ◦ Y)

par les formules suivantes, où ρ désigne l’action de H̄ sur X :

• pour ϕ ∈ H̄ et h′ ∈ Y , β̃(ϕ ⊗ h′) = ρ(ϕ)β(h′);

• pour h ∈ X et ϕ ∈ H̄, α̃(h)(ϕ) = (α ◦ ρ(ϕ))(h).

En définissant U comme dans la preuve précédente, on a des isomorphismes
d’espaces vectoriels:

IndH̄
H̄L̂ (Ad(w0) ◦ Y) → YU

f &→ ( f (tw0w ))w∈U
YU → H̄⊗H̄L̂ Y

(hw )w∈U &→
∑

w∈U tw−1 ⊗ hw .

Il résulte alors de 2.10 (4) et du lemme 2.8 (ii) que l’application spécialisée α̃σ,r0

est un isomorphisme. De même, on a vu au cours de la preuve précédente que
l’application définie par 2.10 (2) était un isomorphisme. Il en est donc de même
de β̃σ,r0 . Le groupe ĀL̂ (σ, y) agit naturellement sur Xσ,r0 , IndH̄H̄L̂ (Ad(w0) ◦ Yσ,r0 ) et
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H̄⊗H̄L̂ Yσ,r0 . Par construction, α̃σ,r0 et β̃σ,r0 entrelacent ces actions. Donc α̃σ,r0 et
β̃σ,r0 se restreignent en des isomorphismes entre les parties isotypiques de type ε L̂

de leurs espaces de départ et d’arrivée. Or ces parties isotypiques sont les modules
de l’énoncé.

2.12. Avec les notations de 1.4, posons:

-̌N = {ě1 − ě2, . . . , ěN−1 − ěN , 2ěN }.

On note +C(YN ) le sous-cône ouvert de YN ⊗Z R engendré par -̌N et +C̄(YN ) sa
clôture. On définit aussi le cône positif aigu:

C+(YN ) = {µ ∈ YN ⊗Z R;∀α ∈ -N , < α, µ >> 0},

et sa clôture C̄+(YN ). Plus généralement, soit J un sous-ensemble de {1, . . . , N }.
On note:

• +C J le sous-cône des µ ∈ YN ⊗Z R qui s’écrivent µ =
∑

j∈J µ j α̌ j , avec
des α j > 0;

• C+
J le sous-cône des µ ∈ YN ⊗Z R tels que, pour tout j ∈ {1, . . . , N }, on

ait < α j , µ >= 0 si j ∈ J et < α j , µ >> 0 si j +∈ J ;

• +C̄ J et C̄+
J les clôtures de +C J et C+

J ;

• W J
N le sous-groupe de WN engendré par les symétries élémentaires w j pour

j ∈ J ;

• WN ,J l’ensemble des w ∈ WN de longueur minimale dans leur classe W J
N w .

On munit l’espace YN ⊗Z R de l’ordre partiel pour lequel:

µ1 ≤ µ2 ⇐⇒ µ2 − µ1 ∈ +C̄(YN ).

D’après le lemme de Langlands, pour tout µ ∈ YN ⊗Z R, il existe un unique ensem-
ble J (µ) ⊆ {1, . . . , N } tel que l’on puisse écrire µ = µ+ − µ−, avec µ+ ∈ C̄+

J (µ)

et µ− ∈ +C J (µ). L’application:

YN ⊗Z R → C̄+(YN )
µ &→ µ+

est croissante. De plus, pour tout µ ∈ YN ⊗Z R et tout w ∈ WN ,J (µ), on a l’inégalité
(w−1(µ))+ ≤ µ+.

Soit (π, E) une représentation de dimension finie de H̄. Nous dirons que π est
anti-tempérée, resp. anti-discrète, si et seulement si tout exposant (σ, r0) ∈ Exp(π )
(cf. 2.5) vérifie les relations:

• r0 ∈ R et r0 > 0;

• σ ∈ +C̄(YN ), resp. σ ∈ +C(YN ).
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2.13. Soient σ , resp. y, un élément semi-simple, resp. nilpotent, de ĝ, et r0

un réel > 0. On suppose:

• [σ, y] = 2r0 y;

H Â(y)(Py,L)σ,r0 += {0}.(1)

On sait que l’on peut trouver un homomorphisme φ : SL(2, C) → Ĝ et un élément
semi-simple z de ĝ tels que:

• z commute à l’image de φ;

• dφ( 0 1
0 0 ) = y;

• σ = z + dφ(r0 0
0 −r0

).

Fixons de telles données et fixons un sous-tore maximal T̂L du centralisateur dans
Ĝ de l’image de φ, tel que z ∈ t̂L . Notons L̂ le commutant de T̂L dans Ĝ. C’est
un groupe de Lévi de Ĝ, c’est-à-dire un sous-groupe de Lévi d’un sous-groupe
parabolique de Ĝ.

Remarque. On a y ∈ l̂. On vérifie que si L̂1 est un groupe de Lévi de Ĝ tel que
y ∈ l̂1, alors il existe g ∈ ZĜ(y)0 tel que gL̂g−1 ⊆ L̂1. En particulier L̂ est minimal
dans l’ensemble des groupes de Lévi L̂1 tels que y ∈ l̂1.

Le tore T̂L est le plus grand tore central dans L̂ . Pour toute racine α de T̂L dans
ĝ, notons ĝα le sous-espace correspondant, et identifions α à une forme linéaire
sur t̂L . Notons Q̂temp le sous-groupe parabolique de Ĝ dont l’algèbre de Lie est la
somme de l̂ et des ĝα pour les α tels que Re(α(z)) ≤ 0. Fixons un sous-groupe
parabolique Q̂ de Ĝ, de sous-groupe de Lévi L̂ , tel que Q̂ ⊆ Q̂temp. On a fixé
en 2.4 un sous-groupe de Borel P̂0 et un sous-tore maximal T̂0 de P̂0. Quitte à
conjuguer σ et y, on peut supposer P̂0 ⊆ Q̂ et T̂0 ⊆ L̂ . D’après notre hypothèse (1)
et la proposition 2.6, on a alors P̂ ⊆ Q̂, M̂ ⊆ L̂ et l’inclusion t̂L ⊆ t̂ 0 YN ⊗Z C.
Il existe un unique sous-ensemble J ⊆ {1, . . . , N } tel que, par cette inclusion, t̂L

s’identifie à l’ensemble des µ ∈ YN ⊗Z C tels que < α j , µ >= 0 pour tout j ∈ J .
L’élément z de t̂L s’identifie à un élément de YN ⊗Z C. On note Re(z) sa partie

réelle dans YN ⊗Z R et on pose:

τ (σ, y) = −z.

Par construction, τ (σ, y) ∈ C̄+
J ⊆ C̄+(YN ). On vérifie que cet élément τ (σ, y) ne

dépend pas des choix effectués dans la construction ci-dessus.
On renvoie à 2.2 pour les notations utilisées ci-dessous.

Lemme. Soient σ, y, y′ tels que les couples (σ, y) et (σ, y′) vérifient tous deux
les hypothèses précédentes. Supposons oσ,r0

y ⊆ ōσ,r0
y′ . Alors τ (σ, y) ≥ τ (σ, y′). Sup-

posons de plus oσ,r0
y += oσ,r0

y′ . Alors τ (σ, y) > τ (σ, y′).
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Preuve. De même que l’on a identifié t̂ à YN ⊗Z C, on peut identifier t̂0 à
Yd/2 ⊗Z C. Le plongement de t̂ dans t̂0 s’identifie à un plongement:

YN ⊗Z C → Yd/2 ⊗Z C,(2)

dont on peut supposer qu’il se déduit de l’injection naturelle {1, . . . , N } →
{1, . . . , d/2}. De même que l’on a défini τ (σ, y), on peut définir τ0(σ, y) ∈
C̄+(Yd/2). Cette construction ne fait pas intervenir l’entier k, en particulier n’utilise
pas l’hypothèse (1) qui ne nous a servi que pour plonger t̂L dans t̂. Mais par con-
struction, τ (σ, y) = τ0(σ, y). De plus, par le plongement (2), l’ordre sur YN ⊗Z R

s’identifie à la restriction de l’ordre sur Yd/2 ⊗Z R. On peut donc pour notre
problème remplacer τ (σ, y) et τ (σ, y′) par τ0(σ, y) et τ0(σ, y′), et YN ⊗Z R par
Yd/2 ⊗Z R, autrement dit supposer k = 0.

Débarrassées de k, nos définitions s’étendent à tout groupe réductif connexe
sur C. Montrons que l’analogue de l’énoncé pour le groupe GL(V̂ ) entraı̂ne notre
énoncé pour le groupe Ĝ. On a un plongement naturel Ĝ → GL(V̂ ). On peut fixer
un sous-groupe de Borel P̃ de GL(V̂ ) et un sous-tore maximal T̃ de P̃ de sorte
que P̂ = P̃ ∩ Ĝ, T̂ = T̃ ∩ Ĝ (rappelons que l’on suppose k = 0, donc P̂ = P̂0,
T̂ = T̂0). Posons Ỹ = X∗(T̃ ). On définit les cônes C+(Ỹ ), +C(Ỹ ), etc . . . et un ordre
sur Ỹ ⊗Z R. L’espace YN ⊗Z R se plonge dans Ỹ ⊗Z R et l’ordre sur YN ⊗Z R

n’est autre que la restriction de l’ordre sur Ỹ ⊗Z R. De même que l’on a défini
τ (σ, y) ∈ C̄+(YN ), on définit un élément τ̃ (σ, y) ∈ C̄+(Ỹ ). Mais, via le plongement
précédent, on a l’égalité τ (σ, y) = τ̃ (σ, y). De même que l’on a défini la ZĜ(σ )-
orbite oσ,r0

y , on définit la ZGL(V̂ )(σ )-orbite õσ,r0
y . Il est clair que si oσ,r0

y ⊆ ōσ,r0
y′ , alors

õσ,r0
y ⊆ ¯̃oσ,r0

y′ . Alors, si la première assertion de l’énoncé est vraie pour le groupe
GL(V̂ ), elle l’est aussi pour Ĝ. Pour appliquer le même raisonnement à la deuxième
assertion, on doit démontrer la propriété moins immédiate:

si oσ,r0
y += oσ,r0

y′ , alors õσ,r0
y += õσ,r0

y′ .(3)

Fixons z et φ comme dans les constructions précédant l’énoncé, avec dφ(( 0 1
0 0 )) =

y, et de même z′ et φ′ avec dφ′(( 0 1
0 0 )) = y′. Supposons õσ,r0

y = õσ,r0
y′ . Fixons h̃ ∈

ZGL(V̂ )(σ ) tel que y′ = Ad(h̃)y. Les données Ad(h̃)z et Ad(h̃)φ vérifient, pour le
groupe GL(V̂ ), les mêmes conditions que z′ et φ′. Il en résulte (cf. [L6] proposition
3.3) qu’il existe h̃′ ∈ ZGL(V̂ )(σ ) tel que Ad(h̃′h̃)z = z′ et Ad(h̃′h̃)φ = φ′.

On a des isomorphismes:

ZĜ(σ ) 0 GL(N1, C) × · · ·× GL(Na, C) × Ĝ
0
,

ZGL(V̂ )(σ ) 0 (GL(N1, C) × GL(N1, C)) × · · ·× (GL(Na, C)

×GL(Na, C)) × GL(V̂0),

où V̂0 est un sous-espace non dégénéré de V̂ et Ĝ0 est son groupe symplectique.
Le plongement ZĜ(σ ) → ZGL(V̂ )(σ ) est le produit du plongement naturel Ĝ0 →
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GL(V̂0) et des plongements:

GL(Ni , C) → GL(Ni , C) × GL(Ni , C)
g &→ (g, t g−1).

Les deux éléments z, z′ appartiennent à l’algèbre de Lie zĜ(σ ) et sont semi-simples.
Ils sont dans la même orbite pour l’action de ZGL(V̂ )(σ ). De la description ci-dessus
résulte qu’ils sont aussi dans la même orbite pour l’action de ZĜ(σ ). Soit donc h ∈
ZĜ(σ ) tel que Ad(h)z = z′. Puisque Ad(h)σ = σ , on a aussi Ad(h)dφ(( r0 0

0 −r0
)) =

Ad(h)dφ′(( r0 0
0 −r0

)). Notons Ĥ
′

le commutant de z′ dans Ĝ. Alors Ad(h)φ et φ′

sont deux SL(2)-triplets à valeurs dans Ĥ
′
, tels que les valeurs de leurs dérivées

en ( r0 0
0 −r0

) soient égales. Il en résulte que ces SL(2)-triplets sont dans la même
orbite pour l’action de Ĥ

′
, cf. [C] proposition 5.6.4. Soit donc h′ ∈ Ĥ ′ tel que

Ad(h′h)φ = φ′. On a alors Ad(h′h)dφ(( r0 0
0 −r0

)) = dφ′(( r0 0
0 −r0

)), i.e., Ad(h′h)σ =
σ , donc h′h ∈ ZĜ(σ ). On a aussi:

Ad(h′h)y = Ad(h′h) dφ

((

0 1
0 0

))

= dφ′
((

0 1
0 0

))

= y′.

Donc oσ,r0
y = oσ,r0

y′ . Cela démontre (3).
On est maintenant ramené au cas du groupe GL(V̂ ). Les objets se décrivent de

façon élémentaire. On identifie Ỹ ⊗Z C à Cd , Ỹ ⊗Z R à Rd et C̄+(Ỹ ) au cône des
x = (x1, . . . , xd) ∈ Rd tels que x1 ≥ x2 ≥ · · · ≥ xd . Pour x = (x1, . . . , xd), x ′ =
(x ′1, . . . , x ′d) ∈ Rd , on a x ≤ x ′ si et seulement si:

(d − i)(x1 + · · · + xi ) − i(xi+1 + · · · + xd) ≤ (d − i)(x ′1 + · · · + x ′i )

−i(x ′i+1 + · · · + x ′d)

pour tout i ∈ {1, . . . , d − 1}. Appelons segment un sous-ensemble de C de la forme:

; = {a, a + 1, . . . , a + 1 − 1},

où a ∈ C et 1 ∈ N. Avec ces notations, on pose 1(;) = 1 et c(;) = a + 1−1
2 si 1 +=

0. Appelons multi-ensemble de segments une famille finie (;k)k∈K de segments.
On identifie deux familles qui ne diffèrent que par leur indexation, ainsi que deux
familles qui ne diffèrent que par des segments vides. Notons D(σ ) l’ensemble
des multi-ensembles de segments (;k)k∈K tels que, pour tout x ∈ C, le nombre
d’éléments de l’ensemble {k ∈ K ; x ∈ ;k} soit égal à la dimension de l’espace
propre de σ associé à la valeur propre 2xr0. On définit un ordre dans D(σ ). Il
est engendré par la relation élémentaire suivante. Soient ; = (;k)k∈K ∈ D(σ ) et
k, k ′ ∈ K , avec k += k ′. Supposons:

• ;k +⊆ ;k ′ et ;k ′ +⊆ ;k ;

• ;k ∪ ;k ′ et ;k ∩ ;k ′ sont des segments.
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Notons ;′ la famille réunion, en un sens évident, de (;k ′′)k ′′∈K\{k,k ′} et de (;k ∪
;k ′, ;k ∩ ;k ′). Alors ; < ;′.

Pour ; = (;k)k∈K ∈ D(σ ), on définit τ (;) = (x1, . . . , xd) ∈ C̄+(Ỹ ) par la
propriété: pour tout x ∈ R, on a l’égalité:

|{i ∈ {1, . . . , d}; xi = x}| =
∑

1(;k),

où l’on somme sur les k ∈ K tels que 1(;k) += 0 et Re(c(;k)) = x .
Il résulte de [Z] qu’il existe une bijection o &→ ;(o) définie sur l’ensemble des

ZGL(V̂ )(σ )-orbites dans l’espace:

gl(V̂ )σ,r0 = {y′′ ∈ gl(V̂ ); [σ, y′′] = 2r0 y′′},

à valeurs dans D(σ ), telle que:

• si o ⊆ ō′, alors ;(o) ≤ ;(o′);

• si o est l’orbite de y′′ ∈ gl(V̂ )σ,r0 , alors τ (σ, y′′) = τ (;(o)).

Pour achever la démonstration, il reste à montrer que si ;, ;′ ∈ D(σ ) vérifient
; < ;′, alors τ (;) > τ (;′). On peut supposer que ;′ se déduit de ; par une
opération élémentaire décrite ci-dessus. La preuve est alors facile. Cela achève la
démonstration.

2.14. On fixe jusqu’à la fin du paragraphe 2 deux éléments σ et y de ĝ et un réel
r0 > 0. On suppose vérifiées les hypothèses du paragraphe précédent, c’est-à-dire:

• σ est semi-simple et y est nilpotent;

• [σ, y] = 2r0 y;

• H Â(y)(Py,L)σ,r0 += {0}.

Cette dernière hypothèse est équivalente à: Ek(σ, r0, y) += ∅.

Corollaire. Supposons τ (σ, r0) = 0. Alors, pour tout ε ∈ Ek(σ, r0, y), le H̄-
module M(σ, r0, y, ε) est irréductible et égal à P(σ, r0, y, ε).

Preuve. D’après le lemme précédent, il n’existe pas de y′ ∈ ĝσ,r0 tel que oσ,r0
y ⊂

ōσ,r0
y′ et oσ,r0

y += oσ,r0
y′ . Il reste à appliquer l’égalité de 2.2.

2.15.

Lemme. Supposons que y n’est contenu dans aucune sous-algèbre de Lévi
d’une sous-algèbre parabolique propre de ĝ. Alors, pour tout ε ∈ Ek(σ, r0, y), le
H̄-module M(σ, r0, y, ε) est anti-discret.
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Preuve. Fixons ε ∈ Ek(σ, r0, y). On doit prouver que, si (µ, r0) ∈
Exp(M(σ, r0, y, ε)), alors Re(µ) ∈ +C(YN ). En 2.4, on a identifié âc et (YN ⊗Z

C) ⊕ C par une application (s, λ) &→ (sT , λ). Soit (s, r0) ∈ âc, posons µ = sT .
On a défini en 1.8 l’homomorphisme d’évaluation 1µ,r0 : S → C. Supposons
(µ, r0) ∈ Exp(M(σ, r0, y, ε)). Par définition:

C ⊗S M(σ, r0, y, ε) += {0},
le produit tensoriel se faisant via 1µ,r0 . Par construction, l’espace précédent est
quotient de:

C ⊗S H Â(y)(Py,L).

En 2.4 et 2.5, on a identifié S à HÂc
et H Â(y)(Py,L) à un espace H Âc (Ṽ,L) Āc .

L’homomorphisme 1µ,r0 s’identifie à l’homomorphisme d’évaluation χs,r0 : HÂc
→

C. Alors l’espace ci-dessus est quotient de:

C ⊗HÂc
H Âc (Ṽ,L),(1)

le produit tensoriel se faisant via χs,r0 . Cet espace est donc non nul.
Notons D̂ le plus petit sous-tore de Âc dont l’algèbre de Lie contient (s, r0) et

notons Ṽ D̂ le sous-ensemble des invariants par D̂ dans Ṽ . D’après [L4] proposition
4.4(a), l’espace (1) est égal à: C ⊗HÂc

H Âc (Ṽ D̂,L). Cet espace étant non nul, Ṽ D̂

est non vide. Notons oy l’orbite de y pour l’action adjointe de Ĝ. La projection:

Ṽ → (yc + û) ∩ oy

(g, λ, g′ P̂) &→ λ−2 Ad(g)y

entrelace les actions de D̂. Puisque Ṽ D̂ est non vide, l’ensemble des invariants
((yc + û) ∩ oy)D̂ ne l’est pas non plus. Quitte à conjuguer y, on peut supposer qu’il
appartient à cet ensemble. On a donc: y ∈ yc + û, [s, y] = 2r0 y. Comme en 2.13,
il existe un homomorphisme φ : SL(2, C) → Ĝ tel que:

dφ

(

0 1
0 0

)

= y, dφ

(

r0 0
0 −r0

)

= s;

(l’élément z de 2.13 est nul car le Lévi L̂ de ce paragraphe est Ĝ tout entier d’après
l’hypothèse sur y). Soient ω ∈ X∗(T̂ ) un poids dominant relativement à P̂ et P̂ω le
sous-groupe parabolique propre maximal de Ĝ associé à ω. On a P̂ω ⊇ P̂ . Il existe
une représentation algébrique ρ de Ĝ dans un espace E et un élément e ∈ E \ {0}
tels que:

• le stabilisateur dans Ĝ de la droite Ce est P̂ω;

• pour tout x ∈ p̂ω, dρ(x)e = ω(x)e;

(ω définit un caractère de P̂ω puis, par dérivation, une forme linéaire sur p̂ω). Posons
ρ ′ = ρ ◦ φ. On a:

dρ ′
(

0 1
0 0

)

e = 0, dρ ′
(

r0 0
0 −r0

)

e =< ω, s > e.



P1: IML/SPH P2: IML/SPH QC: IML/SPH T1: IML

PB440-29 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 11:24
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De la théorie des représentations de SL(2, C) résulte que < ω, s >≥ 0. Si
< ω, s >= 0, il résulte de la même théorie que dρ ′(x)e = 0 pour tout x ∈ sl(2, C).
Alors l’image de φ est contenue dans P̂ω, donc dans un sous-groupe de Lévi de
P̂ω. L’élément y appartient à l’algèbre de Lie de ce sous-groupe, contrairement à
l’hypothèse. Donc < ω, s >> 0. Cela est vrai pour tout poids dominant ω. Cela
revient à dire que sT , c’est-à-dire µ, est réel et appartient à +C(YN ). Cela achève
la démonstration.

2.16. Comme en 2.13, on associe à σ , y et r0 des groupes Q̂, L̂ , un sous-
ensemble J ⊆ {1, . . . , N } et un élément τ (σ, y) ∈ C̄+

J . On a défini en 2.12
l’ensemble WN ,J .

Lemme. Soit ε ∈ Ek(σ, r0, y).
(i) Pour tout (µ, r0) ∈ Exp(M(σ, r0, y, ε)), il existe w ∈ WN ,J et µJ ∈ +C J

tels que Re(µ) = w−1(−τ (σ, y) + µJ ).
(ii) Il existe (µ, r0) ∈ Exp(M(σ, r0, y, ε)) et µJ ∈ +C J tels que Re(µ) =

−τ (σ, y) + µJ .

Preuve. Posons ε L̂ = ε
| ÂL̂

(σ,y)
. Le couple (σ, r0) appartient à l’algèbre de Lie

âL̂ (y) et, par construction, il contracte q̂. Il résulte de la proposition 2.11 que:

(1) M(σ, r0, y, ε) est sous-module de IndH̄
H̄L̂ (Ad(w0) ◦ ML̂ (σ, r0, y, ε L̂ ));

(2) M(σ, r0, y, ε) est quotient de H̄⊗H̄L̂ ML̂ (σ, r0, y, ε L̂ ).

Reprenons les notations de 2.13 qui nous ont servi à définir τ (σ, y). Considérons
le triplet σ − z, r0, y. Le lemme 2.15, que nous avons démontré pour le groupe Ĝ,
se généralise au groupe L̂: il faut traiter le cas d’un groupe linéaire, ce qui se fait
de la même façon; évidemment, pour un tel groupe, il faut imposer dans l’énoncé
que le “caractère central” est unitaire. Le triplet ci-dessus vérifie les hypothèses
de ce lemme, relativement au groupe L̂ . Donc le H̄L̂ -module ML̂ (σ − z, r0, y, ε L̂ )
est anti-discret. Si (µ, r0) est l’un de ses exposants, on a Re(µ) ∈ +C J . D’autre
part, il est clair que l’ensemble des exposants de ML̂ (σ, r0, y, ε L̂ ) est l’ensemble
des (µ + z, r0), pour (µ, r0) parcourant Exp(ML̂ (σ − z, r0, y, ε L̂ )). L’image de
l’application:

ML̂
(

σ, r0, y, ε L̂
)

→ H̄⊗H̄L̂ ML̂
(

σ, r0, y, ε L̂
)

h &→ 1 ⊗ h

(où 1 = t1 est l’unité de H̄) engendre H̄⊗H̄L̂ ML̂ (σ, r0, y, ε L̂ ) sur H̄. Sa projec-
tion est donc non nulle dans tout quotient non nul de ce module. Grâce à (2),
l’intersection:

Exp(M(σ, r0, y, ε)) ∩ Exp(ML̂ (σ, r0, y, ε L̂ ))
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est donc non vide. En se rappelant que τ (σ, y) = −Re(z), on voit que tout élément
de cette intersection vérifie la condition du (ii) de l’énoncé.

Soit (ρ, E) un H̄L̂ -module. Alors on a l’égalité:

Exp
(

IndH̄H̄L̂ (E)
)

= ∪w∈WN ,J w−1(Exp(E))(3)

l’action de WN sur YN ⊗Z C étant prolongée trivialement à (YN ⊗Z C) ⊕ C. En
effet, munissons WN ,J d’un ordre total raffinant l’ordre de Bruhat. Pour w ∈ WN ,J ,
notons Fw le sous-espace des f ∈ IndH̄H̄L̂ (E) tels que f (tw ′) = 0 pour tout w ′ ∈
WN ,J , w ′ < w . C’est un sous-S-module de IndH̄

H̄L̂ (E) et la famille (Fw )w∈WN ,J forme
une filtration décroissante. Notons ⊕w∈WN ,JF

gr
w le gradué associé. Pour w ∈ WN ,J ,

l’application:

Fw → E
f &→ f (tw )

se quotiente en un isomorphisme d’espaces vectoriels F gr
w 0 E . Pour f ∈ Fw et

x ∈ X N , on a la relation:

f (tw ξx ) = f (ξw(x)tw ) = ρ(ξw(x)) f (tw ).

On en déduit que Exp(F gr
w ) = w−1(Exp(E)). L’ensemble des exposants de

IndH̄H̄L̂ (E) étant le même que celui de son gradué, on obtient (3).
D’autre part, il est clair que:

Exp(Ad(w0) ◦ ML̂ (σ, r0, y, ε L̂ )) = w0(Exp(ML̂ (σ, r0, y, ε L̂ ))).

De (1) et (3) se déduit l’égalité:

Exp(M(σ, r0, y, ε)) ⊆ ∪w∈WN ,J w−1(Exp(ML̂ (σ, r0, y, ε L̂ ))).

Grâce aux propriétés déjà démontrées des exposants de ML̂ (σ, r0, y, ε L̂ ), on en
déduit (i).

2.17. On conserve les mêmes notations.

Lemme. Soit ε ∈ Ek(σ, r0, y). Alors il existe (µ, r0) ∈ Exp(P(σ, r0, y, ε)) et
µJ ∈ +C J tels que Re(µ) = −τ (σ, y) + µJ .

Preuve. Soient (µ, r0) ∈ Exp(M(σ, r0, y, ε)) et µJ ∈ +C J tels que Re(µ) =
−τ (σ, y) + µJ . Supposons (µ, r0) +∈ Exp(P(σ, r0, y, ε)). Alors, d’après 2.2, il ex-
iste y′ ∈ ĝσ,r0 et ε′ ∈ Ek(σ, r0, y′) tels que:

• oσ,r0
y ⊂ ōσ,r0

y′ et oσ,r0
y += oσ,r0

y′ ;

• (µ, r0) ∈ Exp(M(σ, r0, y′, ε′)).

Fixons de tels y′, ε′. D’après le lemme 2.16 (i), appliqué à σ, r0, y′, ε′, et les rappels
de 2.12, on a (−Re(µ))+ ≤ τ (σ, y′). Par construction de µ, on a (−Re(µ))+ =
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τ (σ, y). Donc τ (σ, y) ≤ τ (σ, y′). Cela contredit le lemme 2.13. Cette contradiction
prouve que (µ, r0) ∈ Exp(P(σ, r0, y, ε)).

2.18.

Proposition. Soit ε ∈ Ek(σ, r0, y). Alors le module P(σ, r0, y, ε) est anti-
discret si et seulement si y n’appartient à aucune sous-algèbre de Lévi d’une
sous-algèbre parabolique propre de ĝ.

Preuve. Si cette condition sur y est vérifiée, on a τ (σ, y) = 0, donc
P(σ, r0, y, ε) = M(σ, r0, y, ε) d’après le corollaire 2.14. Ce module est anti-discret
d’après 2.15.

Inversement, supposons P(σ, r0, y, ε) anti-discret. Soit (µ, r0) vérifiant les
conditions du lemme 2.17. Puisque P(σ, r0, y, ε) est anti-discret, on a Re(µ) ∈
+C(YN ). Cela entraı̂ne τ (σ, r0) = 0 et J = {1, . . . , N }. Alors L̂ = Ĝ, d’où la con-
clusion.

2.19.

Proposition. Soit ε ∈ Ek(σ, r0, y). Alors le module P(σ, r0, y, ε) est anti-
tempéré si et seulement si τ (σ, y) = 0. S’il en est ainsi, on a l’égalité M(σ, r0,

y, ε) = P(σ, r0, y, ε).

Preuve. Si τ (σ, y) = 0, M(σ, r0, y, ε) est anti-tempéré: cela résulte du (i) du
lemme 2.16 et des rappels de 2.12. La démonstration de la proposition est alors
similaire à la démonstration précédente.

3. Exposants, foncteur de Jacquet, induction.

3.1. Soient H un groupe réductif connexe défini sur F . Soient P un sous-
groupe parabolique de H, de radical unipotent U, et M un sous-groupe de Lévi de
P. Notons TM le plus grand tore déployé central dans M et X∗(TM ), resp. X∗(TM ),
le groupe des caractères de TM , resp. des cocaractères. Notons -P l’ensemble des
racines simples de TM agissant dans l’algèbre de Lie u. C’est un sous-ensemble de
X∗(TM ). Dans X∗(TM ) ⊗Z R, on définit le cône:

+CP =
{

∑

β∈-P

cββ; cβ > 0 pour tout β ∈ -P

}

et sa clôture +C̄P . De l’application:

C× → R

z &→ log (|z|),
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se déduit une application, notée:

X∗(TM ) ⊗Z C× → X∗(TM ) ⊗Z R

χ &→ log |χ |.

Le groupe X∗(TM ) se plonge dans TM par x &→ x((F ). D’autre part, le groupe
X∗(TM ) ⊗Z C× s’identifie au groupe des caractères complexes de X∗(TM ).

Soit π une représentation lisse de H dans un espace E , de longueur finie. Par
le foncteur de Jacquet, on en déduit une représentation πP de M dans un espace
EP .

Remarque. Pour nous, ces modules sont “normalisés,” i.e., si pr : E → EP est
la projection naturelle, on a l’égalité:

pr (π (m)e) = δP (m)1/2πP (m)pr (e)

pour tous m ∈ M , e ∈ E .
Le groupe TM , donc aussi son sous-groupe X∗(TM ), agit dans EP . On note

ExpP (π ), ou ExpP (E), l’ensemble fini des χ ∈ X∗(TM ) ⊗Z C× tels qu’il existe
e ∈ EP , e += 0, vérifiant:

πP (x((F ))e = χ (x)e

pour tout x ∈ X∗(TM ).
Supposons π irréductible et de caractère central unitaire. On sait bien qu’alors

π est tempérée, resp. de la série discrète, si et seulement s’il existe P de sorte que:

• EP += {0};
• πP est cuspidale;

• pour tout χ ∈ ExpP (π ), −log |χ | ∈ +C̄P , resp. +CP .

3.2. Notons IrrH l’ensemble des classes d’isomorphie de représentations
lisses irréductibles de H . D’après [Au], il existe une involution DH de l’ensemble
IrrH vérifiant les propriétés suivantes:

• si π ∈ IrrH est cuspidale, DH (π ) = π ; soient P = MU un sous-groupe
parabolique de H et P̄ = MŪ le sous-groupe parabolique opposé;

• soient π M ∈ IrrM et π ∈ IrrH ; alors la multiplicité de π dans la semi-
simplifiée de la représentation induite IndH

P (π M ) est égale à celle de DH (π ) dans
la semi-simplifiée de IndH

P (DM (π M )) ou de IndH
P̄ (DM (π M ));

• si π ∈ IrrH , ExpP (DH (π )) = ExpP̄ (π ).

Remarquons que, dans le cas où H est un groupe G! comme en 1.1, les propriétés
ci-dessus entraı̂nent que DG! conserve l’ensemble IrrG!

u ainsi que chacun des sous-
ensembles IrrG!

θ pour θ ∈ #! (cf. 1.2).
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Soit (π, E) ∈ IrrH , supposons le caractère central de π unitaire. Nous dirons
que π est anti-tempérée, resp. anti-discrète, si et seulement si DH (π ) est tempérée,
resp. de la série discrète. Il revient au même de dire qu’il existe P tel que:

• EP += {0};
• πP est cuspidale;

• pour tout χ ∈ ExpP (π ), log|χ | ∈ +C̄P , resp. +CP .

3.3. Soient ! = iso ou an et θ = (R′, R′′) ∈ #!. En 1.5, on a associé à θ un
triplet N , A, B. On a défini en 2.12 l’ensemble de coracines -̌N ainsi que les
sous-cônes +C(YN ) et +C̄(YN ) de YN ⊗Z R.

Reprenons les notations de 1.2. Supposons d’abord R′ ≥ R′′. On note P le
sous-groupe parabolique de G! qui stabilise le drapeau de sous-espaces de V!:

Fv−1, Fv−1 ⊕ Fv−2, . . . , Fv−1 ⊕ . . .⊕ Fv−N .

On note M le sous-groupe de Lévi de P qui stabilise chaque droite Fvi , pour
i ∈ {±1, . . . , ±N }. Pour tout i ∈ {1, . . . , N }, notons xi l’élément de X∗(TM ) tel
que, pour tout z ∈ F× et tout 1 ∈ {±1, . . . , ±N },

xi (z)(v1) =







v1, si 1 +∈ {±i},
z−1vi , si 1 = i,
zv−i , si 1 = −i.

L’application qui, pour tout i , envoie ei sur xi est un isomorphisme de X N sur
X∗(TM ). On note j : X∗(TM ) → YN l’isomorphisme dual. On note encore:

j : X∗(TM ) ⊗Z C× → YN ⊗Z C×, j : X∗(TM ) ⊗Z R → YN ⊗Z R,

les isomorphismes qui s’en déduisent. Remarquons que pour tout β ∈ -P , on a
j(β) ∈ -̌N ou 2 j(β) ∈ -̌N . A fortiori j(+CP ) = +C(YN ).

Supposons maintenant R′′ > R′. Pour tout i ∈ {1, . . . , N }, posons v ′i = vN+1−i ,
v ′−i = v−N−1+i . On définit alors P, M, xi pour i ∈ {1, . . . , N } et l’isomorphisme j
de la même façon que ci-dessus, à ceci près que l’on remplace chaque vecteur vi

par v ′i . L’isomorphisme j a les mêmes propriétés que ci-dessus.
Remarquons que YN ⊗Z C× s’identifie au groupe des caractères de X N . Soit

(π, E) une représentation de dimension finie de l’algèbre Hq(N ; A, B). On note
Exp(π ), ou Exp(E), l’ensemble des s ∈ YN ⊗Z C× tels qu’il existe e ∈ E , e += 0,
vérifiant:

π (ξx )e = s(x)e

pour tout x ∈ X N .
Fixons ζ ∈ {±1}. Si R′′ = 0, on suppose ζ = (−1)R′

. Soit (π, E) une
représentation de dimension finie de l’algèbre Hq(N ; A, B). Si R′′ > 0, on l’étend
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en une représentation, encore notée (π, E), de l’algèbre:

C[ω] ⊗C Hq(N ; A, B)

dans laquelle ω agit par multiplication par (−1)R′
ζ . Par 1.5, (π, E) s’identifie à une

représentation de Hθ . On en déduit par 1.3 une représentation de longueur finie
(π̃ , Ẽ) de G!. Définissons l’élément:

s(ζ ) = (ζ, . . . , ζ )

de YN ⊗Z C× 0 (C×)N .

Proposition. Sous les hypothèses ci-dessus, les propriétés suivantes sont
vérifiées:

(i) ẼP += {0};
(ii) π̃P est cuspidale;

(iii) j(ExpP (π̃ )) = s(ζ )Exp(π ).

Preuve. En généralisant les définitions de 1.2 et 1.3 et en y remplaçant G! par
M , on définit l’ensemble de représentations IrrM

θ et l’algèbre HM
θ . Cette algèbre est

commutative et il est connu que dans ce cas, toutes les représentations appartenant
à IrrM

θ sont cuspidales. Posons:

EP = HomKθ∩M (Eθ , ẼP ).

C’est un HM
θ -module. D’après [BK] théorème 7.9, de la projection pr : Ẽ → ẼP

se déduit un isomorphisme:

J : E → EP .

En particulier, ce dernier espace est non nul et (i) est vérifié.
Puisque EP est non nul, au moins un sous-quotient irréductible de π̃P , notons-

le σ , appartient à IrrM
θ . Alors σ est cuspidale. Donc π̃P elle-même est cuspidale

et (ii) est vérifiée. De plus, tous les sous-quotients irréductibles de π̃P sont de
la forme w(σ ), où w appartient au normalisateur NG!

(M) de M dans G!. Un tel
w(σ ) appartient aussi à IrrM

θ . Chacun de ces sous-quotients contribue de façon
non nulle à l’espace EP . Il en résulte que ExpP (π̃ ) est égal à l’ensemble des
χ ∈ X∗(TM ) ⊗Z C× tels qu’il existe e ∈ EP , e += 0, de sorte que:

π̃P (x((F ))e = χ (x)e

pour tout x ∈ X∗(TM ), où on a encore noté π̃P l’action de TM sur EP naturellement
déduite de son action sur ẼP .

Notons π M l’action naturelle de HM
θ sur EP . Pour tout x ∈ X∗(TM ), notons fx

l’unique élément de HM
θ , à support dans x((F )(Kθ ∩ M), tel que fx (x((F )) soit

l’identité de Eθ . L’opérateur π̃P (x((F )) ci-dessus est égal à π M ( fx ). Bushnell et
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Kutzko ont défini un homomorphisme:

tu : HM
θ → Hθ ,

et prouvé la relation:

π M ( f ) ◦ J = J ◦ π (tu( f ))

pour tout f ∈ HM
θ ([BK], théorème 7.9). Donc ExpP (π̃ ) est l’ensemble des χ ∈

X∗(TM ) ⊗Z C× tels qu’il existe e ∈ E , e += 0, vérifiant:

π (tu( fx ))e = χ (x)e

pour tout x ∈ X∗(TM ). On va prouver la relation:

pour tout i ∈ {1, · · · , N }, π (tu( fx1+···+xi )) = ζ i π (ξe1+···+ei ).(1)

Puisque les éléments x1 + · · · + xi , pour i ∈ {1, . . . , N }, engendrent X∗(TM ),
l’assertion (iii) résulte de cette relation.

D’après [BK] paragraphe 7, pour un élément x ∈ X∗(TM ), dominant, c’est-à-
dire tel que < x, x̌ >≥ 0 pour tout x̌ ∈+ C̄P , tu( fx ) est l’unique élément de Hθ , à
support dans Kθ x((F )Kθ , tel que

tu( fx )(x((F )) = δP (x((F ))1/2idθ ,

où idθ est l’identité de Eθ .

Remarque. Cette normalisation diffère de celle de [BK] parce que nous avons
normalisé différemment nos modules de Jacquet.

Revenons aux constructions de 1.3. Soit i ∈ {1, . . . , N }, posons x≤i = x1

+ · · · + xi . Supposons d’abord R′ ≥ R′′ > 0. On a l’égalité:

x≤i ((F ) = (s0s1 . . . sN sN−1 . . . si )i .

Il existe donc k ∈ K ±
θ tel que:

x≤i ((F ) = k(s0s ′0s1 . . . sN s ′N sN−1 . . . si )i .

On vérifie que sp (x≤i ((F )) = (−1)i , donc aussi sp (k) = (−1)i . Posons:

ϕi = (ωS0S1 . . . SN SN−1 . . . Si )i .

La décomposition ci-dessus étant “de longueur minimale”, on vérifie que ϕi est à
support dans Kθ x≤i ((F )Kθ et que l’on a l’égalité:

ϕi (x≤i ((F )) = (ν0νN )i idθ .

Grâce à la proposition 1.3, on a donc l’égalité:

ϕi (x≤i ((F )) = ((−1)R′
q−R

′2−R
′′2+R′′

)i idθ .
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On en déduit l’égalité:

tu( fx≤i ) = δP (x≤i ((F ))1/2((−1)R′
q R

′2+R
′′2−R′′)i

ϕi .

On calcule:

δP (x≤i ((F ))1/2qi(R
′2+R

′′2−R′′) = q
1
2 (−2N−A−B+i+1).

En identifiant Hθ à C[ω] ⊗C Hq(N ; A, B), les égalités ci-dessus entraı̂nent:

tu( fx≤i ) = (−1)i R′
ωi ξe1+···+ei .

Puisque ω agit sur E par multiplication par (−1)R′
ζ , on obtient la relation (1).

Supposons maintenant R′′ > R′. Un calcul analogue conduit à la même con-
clusion: la permutation que l’on a introduite dans la définition des xi compense
celle qui intervient dans l’identification de Hθ à C[ω] ⊗C Hq(N ; A, B), cf. 1.5.

Supposons enfin R′ ≥ R′′ = 0. On a cette fois:

x≤i ((F ) = (sωs1 . . . sN sN−1 . . . si )i .

Il existe donc k ∈ K ±
θ tel que:

x≤i ((F ) = k(sωs1 . . . sN s ′N sN−1 . . . si )i .

On a cette fois sp (sω) = −1, d’où sp (k) = 1. On pose:

ϕi = (ωS1 . . . SN SN−1 . . . Si )i ,

et le raisonnement se poursuit comme précédemment, grâce à la proposition 1.3.
Cela achève la démonstration.

3.4. Soient N un entier≥ 0 et C un entier≥ 1. Soit (π, E) une représentation
de dimension finie de H̄(N ; C) (cf. 1.8). On a défini en 2.5 l’ensemble de ses
exposants Exp(π ), que l’on notera aussi Exp(E). On dit que (π, E) est q-entière
si les deux conditions suivantes sont vérifiées:

(1) π (r ) est la multiplication par 1
2 log(q).

Il en résulte que pour tout σ = (σ, r0) ∈ Exp(π ), on a r0 = 1
2 log (q). Par la projec-

tion σ &→ σ , on identifie Exp(π ) à un sous-ensemble de YN ⊗Z C 0 CN .

(2) Pour tout σ = (σ1, . . . , σN ) ∈ Exp(π ) et tout j ∈ {1, . . . , N }, on a σ j ∈
1
2 log (q)Z.

Remarque. Cette définition s’étend aux représentations de l’algèbre H̄S(N ),
ou même de S.

Soient ! = iso ou an, θ = (R′, R′′) ∈ #! et ζ ∈ {±1}. Dans le cas où R′′ = 0,
on suppose ζ = (−1)R′

. Posons:

N = n − R
′2 − R′ − R

′′2, A = sup (2R′ + 1, 2R′′),

B = inf (2R′ + 1, 2R′′), H = Hq(N ; A, B).
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Soient N+ et N− deux entiers ≥ 0 tels que N = N+ + N−. Pour η ∈ {±1}, que
l’on identifie à un signe ±, posons:

H̄η = H̄(N η; A + ζηB), Hη = Hq(N η; A, B).

Soit Eη un H̄η-module de dimension finie. On suppose que Eη est q-entier et que
le centre de H̄η agit sur Eη par un caractère.

La construction de 1.11 s’étend à cette situation. Par 1.9, appliqué à ε = ζη,
Eη devient un Hη-module. On déduit du H+ ⊗C H−-module E+ ⊗C E− un H-
module par la construction de 1.7. On étend ce H-module en un Hθ -module: dans
le cas où R′′ > 0, ω y agit par multiplication par (−1)R′

ζ . Enfin, par l’équivalence
de catégories de 1.3, on obtient un G!-module >(E+, E−). Le foncteur > ainsi
défini est une équivalence entre des catégories convenables. En particulier, si, pour
η ∈ {±1}, (Eη

i )i∈I η est une suite de Jordan-Hölder de Eη, alors:
(

>
(

E+
i , E−

j

))

(i, j)∈I +×I−

est une suite de Jordan-Hölder de >(E+, E−). De plus, >(E+, E−) est semi-simple
si et seulement si E+ et E− le sont tous deux.

Posons W ′ = WN+ × WN− . Comme en 1.7, de la décomposition:

{1, . . . , N } = {1, . . . , N+} ∪ {N+ + 1, . . . , N }

se déduit un plongement de W ′ dans WN . Notons U l’ensemble des éléments w de
WN qui sont de longueur minimale dans leur classe W ′w .

Définissons une application:

exp± : (YN+ ⊗Z C) ⊕ (YN− ⊗Z C) → YN ⊗Z C×

(

σ +
1 , . . . , σ +

N+

)

+
(

σ−
1 , . . . , σ−

N−

)

&→
(

exp
(

σ +
1

)

, . . . , exp
(

σ +
N+

)

,−exp
(

σ−
1

)

, . . . ,−exp
(

σ−
N−

))

.

Comme en 3.3, on associe à θ un sous-groupe parabolique P de G! et une applica-
tion j .

Lemme. Pour η ∈ {±1}, soit Eη un H̄η-module de dimension finie. On suppose
que Eη est q-entier et que le centre de H̄η agit sur Eη par un caractère. Posons
Ẽ = >(E+, E−). Alors on a l’égalité:

j(ExpP (Ẽ)) = {w−1(exp ±(σ + ⊕ σ−)); w ∈ U, σ + ∈ Exp(E+),

σ− ∈ Exp(E−) }.

Preuve. Soit η ∈ {±1}. Comme on l’a dit, Eη devient un Hη-module par la
construction de 1.9 appliquée à ε = ζη. Notons plus précisément Eη ceHη-module.
D’après 1.9,

Exp(Eη) = {(ζηexp (σ1), . . . , ζηexp (σN η )); (σ1, . . . , σN η ) ∈ Exp(Eη)}.
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En identifiant (YN+ ⊗Z C×) × (YN− ⊗Z C×) à YN ⊗Z C× de façon évidente, on
obtient:

Exp(E+ ⊗C E−) = {s(ζ )exp ±(σ + + σ−); σ + ∈ Exp(E+), σ− ∈ Exp(E−)}.

Soit E le H-module déduit de E+ ⊗C E− par la construction de 1.7. Il résulte de
cette construction que:

Exp(E) = {w−1s; w ∈ U, s ∈ Exp(E+ ⊗C E−)}.

Enfin, d’après la proposition 2.3,

j(ExpP (Ẽ)) = s(ζ )Exp(E).

D’où la formule de l’énoncé.

3.5. On a défini en 2.12 les notions de H̄η-module anti-tempéré, resp. anti-
discret.

Corollaire. Sous les hypothèses du lemme précédent, le G!-module Ẽ est
anti-tempéré, resp. anti-discret, si et seulement si les modules E+ et E− le sont
tous deux.

Preuve. Cela résulte du lemme précédent et de la propriété suivante. Soit σ + ∈
YN+ ⊗Z R, σ− ∈ YN− ⊗Z R. Alors w−1(σ + + σ−) ∈ +C̄(YN ), resp. +C(YN ), pour
tout w ∈ U si et seulement si σ + ∈ +C̄(YN+) et σ− ∈ −C̄(YN−), resp. σ + ∈
+C(YN+) et σ− ∈ +C(YN−).

3.6. Soit (s, y, ε) comme en 1.11. Utilisons les notations de ce paragraphe.
Supposons a = 0. Pour tout signe η, on a défini en 2.13 un élément τ (σ η, yη) ∈
C̄+(YN η ). Identifions (YN+ ⊗Z R) ⊕ (YN− ⊗Z R) à YN ⊗Z R de façon évidente.
Notons τ (s, y) l’unique élément de C̄+(YN ) qui appartient à la WN -orbite de
τ (σ +, y+) ⊕ τ (σ−, y−). A (s, y, ε), on a associé en 1.11 des données ! et θ =
(R′, R′′) ∈ #!. On en déduit comme en 3.3 un sous-groupe parabolique P = MU
de G! et un isomorphisme:

j : X∗(TM ) ⊗Z R → YN ⊗Z R.

Corollaire. Sous ces hypothèses, il existe χ ∈ ExpP (P(s, y, ε)) tel que
(− j(log|χ |))+ = τ (s, y).

Cf. 2.12 pour la définition de l’application µ &→ µ+.

Preuve. Pour tout signe η, posons Eη = P(σ η, log(q)
2 , yη, εη). D’après 2.17,

il existe un sous-ensemble J η ⊆ {1, . . . , N η} et un élément µη ∈ Exp(Eη) de



P1: IML/SPH P2: IML/SPH QC: IML/SPH T1: IML

PB440-29 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 11:24
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sorte que:

τ (σ η, yη) ∈ C+
J η , Re(µη) ∈ −τ (σ η, yη) + +C̄ J η

.

On fixe de tels éléments. Il existe un élément w de l’ensemble U de 3.4 tel que
w−1(τ (σ +, y+) ⊕ τ (σ−, y−)) = τ (s, y). Fixons-en un. Notons J l’unique sous-
ensemble de {1, . . . , N } tel que τ (s, y) ∈ C+

J . L’ensemble +C̄ J+ ⊕ +C̄ J−
étant

plongé dans YN ⊗Z R via les applications:
+C̄ J+ ⊕ +C̄ J− → (YN+ ⊗Z R) ⊕ ((YN− ⊗Z R) → YN ⊗Z R,

on vérifie que l’on a l’inclusion:

w−1(+C̄ J+ ⊕ +C̄ J−
) ⊆ +C̄ J .

Alors w−1(µ+ ⊕ µ−) ∈ −τ (s, y) + +C̄ J , et (−w−1(µ+ ⊕ µ−))+ = τ (s, y). On
a l’égalité P(s, y, ε) = >(E+, E−). D’après le lemme 3.4, il existe χ ∈
ExpP (P(s, y, ε)) tel que j(log|χ |) = w−1(µ+ ⊕ µ−). Ce χ vérifie la condition
de l’énoncé.

3.7. Soient C un entier ≥ 1 et N1, . . . , Nb, N0, N des entiers tels que N j ≥ 1
pour tout j ∈ {1, . . . , b}, N0 ≥ 0, N = N1 + · · · + Nb + N0. Posons:

H̄ = H̄(N ; C),

H̄L = H̄S(N1) ⊗C[r ] . . .⊗C[r ] H̄S(Nb) ⊗C[r ] H̄(N0; C).

De la décomposition:

{1, . . . , N } = {1, . . . , N1} ∪ . . . ∪ {N1 + · · · + Nb−1 + 1, . . . , N1 + · · · + Nb}

∪ {N1 + · · · + Nb + 1, . . . , N }

se déduit une identification de H̄L à une sous-algèbre de H̄. Soient E1, resp.
E2, . . . , Eb, E0, des modules de dimension finie sur les algèbres H̄S(N1), resp.
H̄S(N2), . . . , H̄S(Nb), H̄(N0; C). Supposons que r agisse sur tous ces modules
par un même scalaire. Posons:

E L = E1 ⊗C . . .⊗C Eb ⊗C E0.

C’est un H̄L -module. On définit comme en 2.11 le H̄-module induit E =
IndH̄

H̄L (E L ).
Soient maintenant ! = iso ou an, θ = (R′, R′′) ∈ #! et ζ ∈ {±1}. Si R′′ = 0,

on suppose ζ = (−1)R′
. On définit N , A et B comme en 2.4. Soient

N+
1 , . . ., N+

b+, N−
1 , . . . , N−

b− des entiers ≥ 1 et N+
0 , N−

0 des entiers ≥ 0 tels que:

N = N+
1 + · · · + N+

b+ + N−
1 + · · · + N−

b− + N+
0 + N−

0 .

Soient E+
1 , . . . , E+

b+, E−
1 , . . . , E−

b−, E+
0 , E−

0 des modules de dimension finie sur les
algèbres H̄S(N+

1 ), resp. . . . , H̄S(N+
b+), H̄S(N−

1 ), . . . , H̄S(N−
b−), H̄(N+

0 ; A + ζ B),
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H̄(N−
0 ; A − ζ B). On suppose que tous ces modules sont q-entiers et que les centres

des algèbres respectives y agissent par des caractères. Posons:

N0 = N+
0 + N−

0 , n0 = N0 + R
′2 + R′ + R

′′2,

soit G!,0 un groupe de même type que G!, mais de rang absolu n0. De E+
0 et E−

0
se déduit un G!,0-module Ẽ0 = >(E+

0 , E−
0 ).

Pour η ∈ {±1}, posons:

N η = N η
1 + · · · + N η

bη + N η
0 , H̄η = H̄(N η; A + ζηB),

H̄η,L = H̄S(

N η
1

)

⊗C[r ] . . .⊗C[r ] H̄S(

N η
bη

)

⊗C[r ] H̄
(

N η
0 ; A + ζηB

)

,

Eη,L = Eη
1 ⊗C . . . ⊗C Eη

bη ⊗C Eη
0 ,

Eη = IndH̄η

H̄η,L (Eη,L ).

De E+ et E− se déduit un G!-module Ẽ = >(E+, E−).
Soient η ∈ {±1} et i ∈ {1, . . . , bη}. En adaptant les constructions des para-

graphes précédents, du H̄S(N η
i )-module Eη

i se déduit un GL(N η
i )-module Ẽη

i . On
doit seulement prendre garde aux signes: l’application grη de 1.9 se restreint en un
homomorphisme HS(N η

i ) → MH̄S(N η
i ), avec une notation évidente. Via cet ho-

momorphisme, Eη
i devient un HS(N η

i )-module, dont on déduit le GL(N η
i )-module

cherché.
Notons π̃ , resp. π̃0, π̃

η
i , la représentation de G! dans Ẽ , resp. de G!,0 dans Ẽ0,

resp. de GL(N η
i ) dans Ẽη

i .

Remarque. Notons µnr l’unique caractère de F×, non ramifié et d’ordre 2.
Alors le support cuspidal de π̃

η
i est composé de caractères de la forme |.| j/2 si

η = 1, µnr |.| j/2, si η = −1, où j ∈ Z.
Soit Q = LU un sous-groupe parabolique de G! tel que:

L = GL
(

N+
1

)

× . . .× GL
(

N+
b+

)

× GL
(

N−
1

)

× · · ·× GL
(

N−
b−

)

× G!,0,

les facteurs GL étant rangés dans l’ordre évident, c’est-à-dire que Q stabilise
un drapeau de sous-espaces de dimensions N+

1 , N+
1 + N+

2 , etc . . . On définit la
représentation de L:

π̃ L = π̃+
1 × · · ·× π̃+

b+ × π̃−
1 × · · ·× π̃−

b− × π̃0.

Proposition. La représentation π̃ est isomorphe à la représentation induite
IndG!

Q (π̃ L ).

Preuve. Commençons par introduire quelques notations. On pose

H = H(N ; A, B), H0 = H(N0; A, B),
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et, pour η ∈ {±1},

Hη = H
(

N η; A, B
)

, Hη
0 = H

(

N η
0 ; A, B

)

,

Hη
i = HS(

N η
i

)

, pour i ∈ {1, . . . , bη}.

Tous les modules considérés sur ces différentes algèbres sont de dimension finie et
v y agit par multiplication par q1/2.

Si X+ est unH+-module et X− unH−-module, on en déduit par la construction
de 1.7 un H-module que nous noterons ici 6(X+, X−). Si X est un H-module, on
le prolonge en un Hθ -module, où ω agit par multiplication par (−1)R′

ζ dans le cas
où R′′ > 0, et on en déduit une représentation de G! que nous noterons π̃ [X ]. On
utilise des notations analogues si l’on remplace H+, H− etc . . . par H+

0 , H−
0 etc . . .

Si m est un entier ≥ 1 et (σ, X ) un HS(m)-module, on note π̃ [X ] la
représentation de GL(m) qui s’en déduit. Si de plus z ∈ C×, on définit le HS(m)-
module (σ [z], X [z]): on pose X [z] = X ; pour w ∈ Sm , σ [z](w) = σ (w); pour
i ∈ {1, . . . , m}, σ [z](ξei ) = zσ (ξei ). En particulier π̃ [X [−1]] = π̃ [X ] ⊗ µnr .

On considère désormais Eη
0 , Eη et Eη

i , pour η ∈ {±1} et i ∈ {1, . . . , bη},
comme des Hη

0, resp. Hη, Hη
i -modules grâce à 1.8. Insistons sur le fait que

l’homomorphisme utilisé en 1.8 est grζη dans le cas des modules Eη
0 et Eη, mais

grη dans celui des modules Eη
i . Posons:

Hη,L = Hη
1 ⊗A . . . ⊗A Hη

bη ⊗A Hη
0,

définissons le Hη,L -module:

Eη,L = Eη
1 [ζ ] ⊗C . . .⊗C Eη

bη [ζ ] ⊗C Eη
0 ,

et le Hη-module induit (en un sens évident):

IndHη

Hη,L (Eη,L ).

Il est isomorphe à Eη: la torsion par ζ compense le fait que les homomorphismes grε

utilisés ne sont pas tous associés au même ε. Par définition, π̃ = π̃ [6(E+, E−)],
donc:

π̃ = π̃ [6(IndH+

H+,L (E+,L ), IndH−

H−,L (E−,L ))].(1)

Posons:

HL = H+
1 ⊗A . . . ⊗A H+

b+ ⊗A H−
1 ⊗A . . . ⊗A H−

b− ⊗A H0.

Rappelons un résultat de Bushnell et Kutzko. Pour η ∈ {±1} et i ∈ {1, . . . , bη}, soit
Xη

i un Hη
i -module. Soit X0 un H0-module. Posons:

X L = X+
1 [ζ ] ⊗C · · · ⊗C X+

b+[ζ ] ⊗C X−
1 [ζ ] ⊗C . . . ⊗C X−

b−[ζ ] ⊗C X0,

π L = π̃
[

X+
1

]

× · · · × π̃
[

X+
b+

]

× π̃
[

X−
1

]

× · · · × π̃
[

X−
b−

]

× π̃ [X0].
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L’espace X L est un HL -module et π L est une représentation de L . Alors les deux
représentations de G!:

IndG!

Q (π L ) et π̃
[

IndHHL (X L )
]

sont isomorphes, cf. [BK] 8.4. La torsion par ζ est la même que celle intervenant
dans la proposition 2.3 et s’introduit pour les mêmes raisons. Posons:

E L = E+
1 [ζ ] ⊗C . . . ⊗C E+

b+[ζ ] ⊗C E−
1 [ζ ] ⊗C . . .⊗C E−

b−[ζ ] ⊗C 6(E+
0 , E−

0 ).

Le résultat ci-dessus entraı̂ne l’égalité:

IndG!

Q (π̃ L ) = π̃ [IndH
HL (E L )].(2)

En comparant (1) et (2), on voit qu’il nous suffit de démontrer l’isomorphisme:

6
(

IndH
+

H+,L (E+,L ), IndH−

H−,L (E−,L )
)

= IndH
HL (E L ).(3)

A ce point, ζ n’intervient plus que par une torsion sur tous les modules Eη
i . On peut

supposer ζ = 1.
Posons:

H+−
0 = H+

0 ⊗A H−
0 , H+− = H+ ⊗A H−,

K = H+
1 ⊗A . . . ⊗A H+

b+ ⊗A H+
0 ⊗A H−

1 ⊗A . . .⊗A H−
b− ⊗A H−

0 .

On note Z+−
0 le centre de H+−

0 , F+−
0 son corps des fractions, on pose

H+−
0,F = H+−

0 ⊗Z+−
0

F+−
0 . On définit de façon similaire H+−

F , HF , HL
F , H0,F

et KF . Pour η ∈ {±1}, fixons sη
0 ∈ (YN η

0
⊗Z C×) × C× tel que le centre de

Hη
0 agisse sur Eη

0 par l’homomorphisme 1sη
0
. Pour i ∈ {1, . . . , bη}, fixons de

même sη
i ∈ (YN η

i
⊗Z C×) × C× tel que le centre de Hη

i agisse sur Eη
i par

l’homomorphisme 1sη
i
. Ces points définissent naturellement des idéaux dans les

centres des algèbres H+−
0 , H+−, K. Par exemple, écrivons:

sη
0 =

(

sη
0,1, . . . , sη

0,N η
0
; q1/2),

posons:

s0 =
(

s+
0,1, . . . , s+

0,N+
0
, s−0,1, . . . , s−0,N−

0
; q1/2).

L’idéal en question de Z+−
0 est Z+−

0 ∩ Ker(1s0
). On note Z+−

0,loc le localisé de Z+−
0

relativement à cet idéal et:

H+−
0,loc = H+−

0 ⊗Z+−
0

Z+−
0,loc.

On définit de même H+−
loc et Kloc.
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Considérons les décompositions en intervalles, croissantes en un sens évident:

{1, . . . , N0} = {1, . . . , N+
0 } ∪ {N+

0 + 1, . . . , N0},

{1, . . . , N } = {1, . . . , N+} ∪ {N+ + 1, . . . , N },

{1, . . . , N } = I +
1 ∪ . . . ∪ I +

b+ ∪ I +
0 ∪ I−1 ∪ . . . ∪ I−b− ∪ I−0 ,(4)

{1, . . . , N } = J+
1 ∪ . . . ∪ J+

b+ ∪ J−
1 ∪ . . . ∪ J−

b− ∪ J+
0 ∪ J−

0 ,(5)

où, pour η ∈ {±1} et i ∈ {0, . . . , bη}, |I η
i | = |J η

i | = N η
i . A l’aide des deux

premières décompositions, on a défini en 1.7 des plongements:

j0 : H+−
0,F → H0,F , j : H+−

F → HF .

De même, à l’aide des décompositions (4) et (5), on définit des plongements:

j ′ : KF → HF , resp. j ′′ : KF → HF .

Notons que, pour définir j ′′, on permute implicitement l’ordre des facteurs de K.
Introduisons le K-module:

EK = E+
1 ⊗C . . .⊗C E+

b+ ⊗C E+
0 ⊗C E−

1 ⊗C . . .⊗C E−
b− ⊗C E−

0 .

Comme en 1.7, introduisons le sous-espace j ′(Kloc)H de HF . C’est un H-module
à droite et un K-module à gauche, via le plongement j ′. Posons:

E ′ = HomK( j ′(Kloc)H, EK).

C’est un H-module. Montrons que:

6
(

IndH
+

H+,L (E+,L ), IndH−

H−,L (E−,L )
)

0 E ′.(6)

Pour η ∈ {±1}, posons Iη = IndHη

Hη,L (Eη,L ). Par définition (cf. 1.7):

6(I+, I−) = HomH+−
(

j
(

H+−
loc

)

H, I+ ⊗C I−)

.

L’algèbre K se plonge naturellement dans H+− et l’on a:

I+ ⊗C I− = HomK(H+−, EK).

Donc:

6(I+, I−) = HomH+−
(

j
(

H+−
loc

)

H, HomK(H+−, EK)
)

.

Le plongement de K dans H+− s’étend en un plongement de KF dans H+−
F . Le

composé de j et de ce plongement est égal à j ′. On vérifie de plus que j(H+−
loc ) ⊆

j ′(Kloc)H. On définit alors une application:

E ′ = HomK( j ′(Kloc)H, EK) → 6(I+, I−)
= HomH+−

(

j
(

H+−
loc

)

H, HomK(H+−, EK))

e &→ f
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par f (h1)(h2) = e( j(h2)h1) pour tous h1 ∈ j(H+−
loc )H, h2 ∈ H+−. Cette application

est injective et est un morphisme de H-modules. Elle est surjective car les deux
modules ont même dimension sur C, cf. 1.7. Cela démontre (6).

Introduisons maintenant le sous-espace j ′′(Kloc)H de HF . C’est un H-module
à droite et un K-module à gauche, via le plongement j ′′. Posons:

E ′′ = HomK( j ′′(Kloc)H, EK).

C’est un H-module. Montrons que:

IndHHL (E L ) 0 E ′′.(7)

Considérons la suite d’applications:

K = H+
1 ⊗A . . .⊗A H+

b+ ⊗A H+
0 ⊗A H−

1 ⊗A . . .⊗A H−
b− ⊗A H−

0

→ H+
1 ⊗A . . . ⊗A H+

b+ ⊗A H−
1 ⊗A . . . ⊗A H−

b− ⊗A H+
0 ⊗A H−

0 → HL
F .

La première est la permutation des facteurs, la seconde est issue du plongement j0.
Leur composée se prolonge en un plongement:

j L
0 : KF → HL

F .

D’après 1.7, on a:

6
(

E+
0 , E−

0

)

= HomH+−
0

(

j0
(

H+−
0,loc

)

H0, E+
0 ⊗C E−

0

)

.

D’où:

E L = HomK
(

j L
0 (Kloc)HL , EK)

,

IndHHL (E L ) = HomHL (H, HomK
(

j L
0 (Kloc)HL , EK))

.

Le plongement de HL dans H s’étend en un plongement de HL
F dans HF . Le

composé de j L
0 et de ce plongement est égal à j ′′. On définit une application:

E ′′ = HomK( j ′′(Kloc)H, EK) → IndHHL (E L )
= HomHL

(

H, HomK
(

j L
0 (Kloc)HL , EK))

e &→ f

par f (h1)(h2) = e(h2h1) pour h1 ∈ H, h2 ∈ j L
0 (Kloc)HL . Cette application est in-

jective et est un morphisme de H-modules. Elle est surjective car les deux modules
ont même dimension sur C, cf. 1.7. Cela démontre (7).

Notons w la permutation de {1, . . . , N } telle que, pour tout η ∈ {±1} et tout i ∈
{0, . . . , bη}, on ait w(I η

i ) = J η
i (cf. (4) et (5)) et w soit croissante sur I η

i . Identifions
w à un élément de WN . Il résulte des définitions que:

j ′′(h) = τ (w) j ′(h)τ (w−1)

pour tout h ∈ Kloc. Comme en 1.7, on montre que τ (w−1) ∈ j ′(Kloc)H. Donc:

j ′′(Kloc)H = τ (w) j ′(Kloc)H.



P1: IML/SPH P2: IML/SPH QC: IML/SPH T1: IML

PB440-29 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 11:24
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Alors l’application:

E ′′ → E ′

e′′ &→ e′

définie par e′(h) = e′′(τ (w)h) pour tout h ∈ j ′(Kloc)H, est un isomorphisme. Les
relations (6) et (7) démontrent (3), ce qui achève la démonstration.

3.8. Soient s un élément semi-simple de Ĝ et y un élément nilpotent de ĝ, tels
que Ad(s)y = qy. Une partie des constructions de 1.11 s’applique au couple (s, y),
c’est-à-dire est indépendante de la donnée supplémentaire ε de ce paragraphe. En
particulier, on définit un entier a. Nous supposons:

a = 0.(1)

On a une décomposition V̂ = V̂ + ⊕ V̂− et, pour tout signe η, deux éléments σ η et
yη de ĝη.

Pour tout signe η, donnons-nous une décomposition orthogonale:

V̂ η = V̂ η
0 ⊕

(

⊕1=1,...,bη V̂ η
±1

)

,

et pour tout 1 ∈ {1, . . . , bη}, une décomposition en deux lagrangiens V̂ η
±1 = V̂ η

1 ⊕
V̂ η
−1. On note L̂η le sous-groupe des éléments de Ĝ

η
qui conservent chacun de ces

sous-espaces. On a:

L̂η = GL
(

V̂ η
1

)

× · · · × GL
(

V̂ η
bη

)

× Ĝ
η

0,

avec une notation évidente. Supposons que σ η et yη appartiennent à l̂η. Pour tout
1 ∈ {−bη, . . . , bη}, on note σ

η
1 et yη

1 les restrictions de σ η et yη à V̂ η
1 . Donnons-nous

de plus un caractère ε
η
0 du groupe:

ZĜ
η

(

σ
η
0 , yη

0

)

/ZĜ
η

(

σ
η
0 , yη

0

)0
.

Du quadruplet (σ η
0 , log(q)

2 , yη
0 , ε

η
0 ) se déduisent:

• des entiers kη et N η
0 = 1

2 (dimC(V̂ η
0 ) − kη(kη + 1)) (cf. 1.10);

• un module Eη
0 = M(σ η

0 , log(q)
2 , yη

0 , ε
η
0 ) sur l’algèbre H̄(N η

0 ; 2kη + 1)
(cf. 2.1);

• un élément τ (σ η
0 , yη

0 ) ∈ C
+

(YN η
0
) (cf. 2.13).

Nous supposons:

τ
(

σ
η
0 , yη

0

)

= 0.(2)

Pour 1 ∈ {1, . . . , bη}, on pose N η
1 = dimC(V̂ η

1 ). En adaptant au groupe linéaire les
constructions du paragraphe 2, on déduit du triplet (σ η

1 , log(q)
2 , yη

1 ):

• un module Eη
1 = M(σ η

1 , log(q)
2 , yη

1 ) sur l’algèbre H̄S(N η
1 );
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• un élément τ (σ η
1 , yη

1 ) ∈ TN η
1
⊗Z R, qui appartient à la fermeture de la cham-

bre de Weyl positive pour l’ensemble de racines -N η
1
\ {αN η

1
} (cf. 1.4).

Nous supposons:

τ
(

σ
η
1 , yη

1

)

est “central”, i.e., est diagonal quand on identifie YN η
1
⊗Z R à RN η

1 .

(3)

Du couple (k+, k−) se déduisent comme en 1.11 un couple (R′, R′′) et un signe
ζ . Soit ! = iso ou an tel que (R′, R′′) ∈ #!. On a maintenant toutes les données
requises pour appliquer les constructions de 3.7. On construit donc comme dans ce
paragraphe un sous-groupe parabolique Q = LU de G! et une représentation π̃ L

de L .
On a une injection naturelle:

(

ZĜ
+
0

(

σ +
0 , y+

0

)

/ZĜ
+
0

(

σ +
0 , y+

0

)0) ×
(

ZĜ
−
0

(

σ−
0 , y−0

)

/ZĜ
−
0

(

σ−
0 , y−0

)0)

→ ZĜ(s, y)/ZĜ(s, y)0.

Notons E(ε+
0 , ε−0 ) l’ensemble des caractères de ZĜ(s, y)/ZĜ(s, y)0 dont le com-

posé avec cette injection soit égal à (ε+
0 , ε−0 ).

Lemme. Rappelons que l’on a imposé les hypothèses (1), (2) et (3).

(i) Pour tout ε ∈ E(ε+
0 , ε−0 ), la représentation de G! dans P(s, y, ε) est sous-

quotient de la représentation induite IndG!

Q (π̃ L ).
(ii) Supposons que pour tout signe η et tout 1 ∈ {1, . . . , bη}, on ait l’égalité

τ (σ η
1 , yη

1 ) = 0. Alors la représentation induite IndG!

Q (π̃ L ) est isomorphe à la
représentation de G! dans:

⊕ε∈E(ε+
0 ,ε−0 )P(s, y, ε).

Preuve. On reprend les notations de 3.7. Soit η un signe. On peut effectuer
certaines opérations sur nos objets de départ, ainsi que sur le couple L, π̃ L . Les
propriétés suivantes sont claires:

• pour 1, m ∈ {1, . . . , bη} avec 1 += m, échanger les couples (V̂ η
1 , V̂ η

−1) et
(V̂ η

m, V̂ η
−m) revient à permuter les facteurs GL(N η

1 ) et GL(N η
m) de L ainsi que les

représentations π̃
η
1 et π̃

η
m ;

• pour 1 ∈ {1, . . . , bη}, échanger V̂ η
1 et V̂ η

−1 revient à remplacer π̃
η
1 par sa

contragrédiente.

De telles opérations ne modifient pas la semi-simplifiée de la représentation in-
duite IndĜ!

Q (π̃ L ). Quitte à en effectuer, on peut supposer vérifiée la condition suiv-
ante. Pour tout signe η et tout 1 ∈ {1, . . . , bη}, écrivons τ (σ η

1 , yη
1 ) = (τ η

1 , . . . , τ
η
1 ) ∈
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RN η
1 0 YN η

1
⊗Z R. On demande que pour chaque η, on ait:

τ
η
1 ≥ τ

η
2 ≥ · · · ≥ τ

η
bη ≥ 0.(4)

D’après la proposition 3.7, on peut remplacer IndG!

Q (π̃ L ) par la représentation de
G! dans le module Ẽ = >(E+, E−). Pour tout signe η, notons E(εη

0 ) l’ensemble
des caractères de ZĜ

η (σ η, yη)/ZĜ
η (σ η, yη)0 dont le composé avec l’injection:

ZĜ
η

0

(

σ
η
0 , yη

0

)

/ZĜ
η

0

(

σ
η
0 , yη

0

)0 → ZĜ
η (σ η, yη)/ZĜ

η (σ η, yη)0

soit égal à ε
η
0 . On a une bijection:

E
(

ε+
0 , ε−0

)

→ E
(

ε+
0

)

× E
(

ε−0
)

ε &→ (ε+, ε−).

Rappelons que, pour ε ∈ E(ε+
0 , ε−0 ), on a l’égalité:

P(s, y, ε) = >

(

P

(

σ +,
log(q)

2
, y+, ε+

)

, P

(

σ−,
log(q)

2
, y−, ε−

))

.

Les propriétés du foncteur > (cf. 3.4) nous ramènent à démontrer les propriétés
suivantes, pour tout signe η:

pour tout εη ∈ E
(

ε
η
0

)

, P
(

σ η,
log(q)

2 , yη, εη
)

est sous-quotient de Eη;(5)

sous les hypothèses de (ii), Eη est isomorphe à le somme directe:(6)

⊕εη∈E(ε
η
0 )P

(

σ η,
log(q)

2
, yη, εη

)

.

Fixons η, notons Q̂η le sous-groupe parabolique de Ĝ
η

qui stabilise le drapeau;

V̂ η
1 ⊆ V̂ η

1 ⊕ V̂ η
2 ⊆ . . . ⊆ V̂ η

1 ⊕ . . .⊕ V̂ η
bη ,

et introduisons un élément w0 comme en 2.9, relatif au groupe Ĝ
η

et à ce sous-
groupe parabolique. Avec les notations de 2.11, on a l’égalité:

Eη,L = ML̂η

(

σ η,
log(q)

2
, yη, ε

η
0

)

.

Par simple transport de structure, il est clair que:

Eη,L = Ad(w0) ◦ ML̂η

(

Ad(w0)(σ η),
log(q)

2
, Ad(w0)(yη), ε

η
0 ◦ Ad(w0)

)

.

Grâce à (4), (Ad(w0)(σ η), log(q)
2 ) contracte q̂. La proposition 2.11 nous dit que Eη,

qui est par définition IndH̄η

H̄η,L (Eη,L ), est isomorphe à:

⊕εη∈E(ε
η
0 )M

(

σ η,
log(q)

2
, yη, εη

)
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(on a utilisé le fait que ce dernier module ne dépend que de la classe de con-
jugaison de (σ η, yη, εη)). Pour εη ∈ E(εη

0 ), P(σ η, log(q)
2 , yη, εη) est sous-quotient

de M(σ η, log(q)
2 , yη, εη), et (5) en résulte. Sous les hypothèses de (ii), l’élément

τ (σ η, yη) défini en 2.13 est nul. D’après 3.14, on a l’égalité:

M

(

σ η,
log(q)

2
, yη, εη

)

= P

(

σ η,
log(q)

2
, yη, εη

)

pour tout εη ∈ E(εη
0 ) et (6) en résulte. Cela achève la démonstration.

3.9. Soit (s, y, ε) un triplet comme en 1.11, reprenons les notations de ce para-
graphe. Notons π la représentation de G! dans P(s, y, ε). Introduisons un groupe
G!,0, de même type que G!, mais de rang absolu n0 = 1

2 (dimC(V̂ +) + dimC(V̂−)).
Notons Ĝ0 le groupe symplectique de V̂ + ⊕ V̂−, s0 = s+s−, y0 = y+ + y−, iden-
tifions ε à un caractère du groupe:

ZĜ0
(s0, y0)/ZĜ0

(s0, y0)0.

Le triplet (s0, y0, ε) paramétrise un G!,0-module irréductible P(s0, y0, ε). Notons
π0 la représentation de G!,0 dans ce module.

Soit j ∈ {1, . . . , a}. Par des constructions analogues à celles du paragraphe 1
(cf. [L4]), le couple (s j , y j ) paramétrise une représentation irréductible π j du groupe
linéaire GL(N j ).

Remarque. La paramétrisation de [L4] n’est pas la plus usuelle: c’est la com-
posée de celle-ci avec l’involution de 2.2. En particulier, supposons que la collection
des valeurs propres de s j soit:

(

z j q (N j−1)/2, . . . , z j q (1−N j )/2),

et que y j soit un nilpotent régulier. Alors π j est le caractère |det |σ j où σ j est tel
que q−σ j = z j .

Soit Q = LU un sous-groupe parabolique de G! tel que:

L = GL(N1) × · · · × GL(Na) × G!,0.

Introduisons la représentation de L:

π L = π1 × · · ·× πa × π0.

Proposition. Sous ces hypothèses, π est isomorphe à la représentation induite
IndG!

Q (π L ).

La démonstration est similaire à celle de la proposition 3.7.
Si a ≥ 1, π est une induite irréductible. Son image DG!(π ) par l’involution

l’est aussi. Donc DG!(π ) n’est pas de la série discrète et ne peut pas intervenir dans
l’une des représentations elliptiques construites par Arthur.



P1: IML/SPH P2: IML/SPH QC: IML/SPH T1: IML

PB440-29 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 11:24
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Remarque. Du point de vue de la fonctorialité, les énoncés 3.7 et 3.9 sont
raisonnables. Cela légitime les choix de signes que nous avons effectués pour
construire la paramétrisation (s, y, ε) &→ P(s, y, ε).

4. Paramétrisation de Langlands.

4.1. On revient aux hypothèses de 1.1. Comme en 1.11, on fixe un espace
symplectique de dimension 2n sur C, dont on note Ĝ le groupe symplectique. On
note WF le groupe de Weil de F , qui est un sous-groupe de Gal(F̄/F). Soit ! = iso
ou an. Notons '

G!

u l’ensemble des classes de conjugaison par Ĝ de couples (ψ, ε)
tels que:

• ψ : WF × SL(2, C) → Ĝ est un homomorphisme tel que ψ|WF soit semi-
simple et non ramifié:

• ε : ZĜ(ψ)/ZĜ(ψ)0 → {±1} est un caractère;

• ε|Z (Ĝ) =
{

1, si ! = iso,

−1, si ! = an.

Expliquons les notations. On a noté ZĜ(ψ) le commutant dans Ĝ de l’image de ψ ,
et ZĜ(ψ)0 sa composante neutre. Il y a un homomorphisme naturel:

Z (Ĝ) → ZĜ(ψ)/ZĜ(ψ)0,

en général non injectif. On note ε|Z (Ĝ) le caractère composé de ε et de cet homo-
morphisme. Enfin Z (Ĝ) = {±1}, et on identifie son groupe de caractères à {±1}.

Soit (ψ, ε) ∈ '
G!

u (plus exactement, soit (ψ, ε) un couple dont la classe de
conjugaison appartient à '

Ĝ!

u ). Soit Frob un élément de Frobenius de WF . Posons:

s = ψ

(

Frob,

(

q1/2 0
0 q−1/2

))

.

Remarquons que s ne dépend pas du choix de Frob, puisque ψ|WF est non ramifié.
Posons:

y = d(ψ|SL(2,C))
((

0 1
0 0

))

.

Il y a un isomorphisme naturel:

ZĜ(ψ)/ZĜ(ψ)0 0 ZĜ(s, y)/ZĜ(s, y)0,

et ε s’identifie à un caractère de ce dernier groupe. Alors le triplet (s, y, ε) vérifie
les conditions de 1.11. On a associé à ce triplet un élément !′ = iso ou an et un
G!′-module irréductible P(s, y, ε). Grâce au lemme 1.12, on a !′ = !. On note πψ,ε

la représentation de G! dans le module DG!(P(s, y, ε)), image de P(s, y, ε) par
l’involution de 3.2. L’énoncé suivant ne fait que reformuler le résultat de Lusztig
[L1].
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Proposition. L’application:

'
G!

u → IrrG!

u

(ψ, ε) &→ πψ,ε

est bijective.

Cela résulte de 1.11.

4.2. Notons '
G!

udisc le sous-ensemble des (ψ, ε) ∈ '
G!

u tels que l’image de ψ

ne soit contenue dans aucun sous-groupe parabolique propre de Ĝ.

Proposition. Soit (ψ, ε) ∈ '
G!

u . Alors πψ,ε est de la série discrète si et seule-
ment si (ψ, ε) ∈ '

G!

udisc.

Preuve. Supposons πψ,ε de la série discrète, soit (s, y, ε) le triplet associé à
(ψ, ε) comme dans le paragraphe précédent. Utilisons les notations de 1.11 relatives
à ce triplet. Puisque πψ,ε est de la série discrète, P(s, y, ε) est anti-discret. Alors
a = 0 d’après 3.9. Pour tout signe η, le H̄(N η; 2kη + 1)-module P(σ η, log(q)

2 , yη, εη)
est anti-discret, d’après 3.5. D’après 2.18, yη n’appartient à aucune sous-algèbre de
Lévi d’une sous-algèbre parabolique propre de ĝη. De ces conditions résulte qu’il
n’existe pas de sous-groupe parabolique propre de Ĝ contenant l’image de ψ . Donc
(ψ, ε) ∈ '

G!

udisc.
Des arguments analogues prouvent la réciproque.

4.3. Notons '
G!

utemp le sous-ensemble des (ψ, ε) ∈ '
G!

u tels que ψ(WF ) soit un
sous-groupe relativement compact de Ĝ.

Proposition. Soit (ψ, ε) ∈ '
G!

u . Alors πψ,ε est tempérée si et seulement si
(ψ, ε) ∈ '

G!

utemp.

Preuve. Supposons πψ,ε tempérée, soit (s, y, ε) le triplet associé à (ψ, ε)
comme en 4.1. Utilisons les notations de 3.9. La représentation πψ,ε est isomorphe
à la représentation induite:

IndG!

Q̄ (DGL(N1)(π1) × · · · × DGL(Na)(πa) × DG0,!(π0)).

Or une représentation induite est tempérée si et seulement si la représentation que
l’on induit l’est. Donc π1, . . . , πa et π0 sont toutes anti-tempérées. On utilise
ci-après les notations de 1.11. Soit un signe η. Puisque π0 est anti-tempérée,
le H̄(N η; 2kη + 1)-module P(σ η, log(q)

2 , yη, εη) l’est aussi, d’après 3.5. Donc
τ (σ η, yη) = 0, d’après 2.19. Par construction, l’élément σ η est “réel”. Ces deux
conditions entraı̂nent l’existence d’un homomorphisme:

φη : SL(2, C) → Ĝ
η
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de sorte que:

dφη

(

0 1
0 0

)

= yη et dφη

( log(q)
2 0
0 − log(q)

2

)

= σ η.

Alors sη = ηφη( q1/2 0
0 q−1/2 ).

Pour tout groupe linéaire GL(m), on peut démontrer un énoncé analogue à la
proposition 2.19. D’ailleurs, la classification des représentations d’un tel groupe
est assez connue. Soit j ∈ {1, . . . , a}. Parce que π j est anti-tempérée, on montre
comme ci-dessus qu’il existe un homomorphisme:

φ j : SL(2, C) → GL(V̂ j )

et un nombre complexe z j de module 1 de sorte que:

dφ j

(

0 1
0 0

)

= y j , s j = z j φ j

(

q1/2 0
0 q−1/2

)

.

Notons z′ l’élément semi-simple de Ĝ qui agit par multiplication par 1 sur
V̂ +, −1 sur V̂−, z j sur V̂ j , z−1

j sur V̂− j pour tout j ∈ {1, . . . , a}. Notons φ′ :
SL(2, C) → Ĝ l’unique homomorphisme tel que, pour x ∈ SL(2, C), φ′(x) respecte
la décomposition:

V̂ = V̂ + ⊕ V̂− ⊕ ⊕ j=1,...,a(V̂ j ⊕ V̂− j ),

et agit comme φ+(x) sur V̂ +, comme φ−(x) sur V̂− et comme φ j (x) sur V̂ j pour
tout j ∈ {1, . . . , a}. Alors:

dφ′
(

0 1
0 0

)

= y, s = z′φ′
(

q1/2 0
0 q−1/2

)

,

et z′ commute à l’image de φ′. Posons;

z = ψ|WF (Frob), φ = ψ|SL(2C).

Le couple (z, φ) vérifie les mêmes conditions que (z′, φ′). De la théorie des SL(2)-
triplets résulte que z est conjugué à z′ dans Ĝ. Toutes les valeurs propres de z′ sont
de module 1, donc z engendre un sous-groupe relativement compact de Ĝ. Cela
démontre que (ψ, ε) ∈ '

G!

utemp.
Des arguments analogues prouvent la réciproque.

4.4. Soit (ψ, ε) ∈ '
G!

u , posons z = ψ|WF (Frob). On peut décomposer z en un
produit νzc de deux éléments semi-simples qui commutent, de sorte que toutes
les valeurs propres de ν, resp. zc, agissant dans V̂ , soient réelles > 0, resp. de
module 1. Cette décomposition est unique. Considérons l’ensemble réunion de {1}
et de l’ensemble des valeurs propres de ν. On note ses éléments:

ν1 < · · · < νt < ν0 = 1 < ν−t < · · · < ν−1
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(on a ν−r = ν−1
r pour tout r ). Pour r ∈ {−t, . . . , t}, notons V̂.r le sous-espace propre

attaché à la valeur propre νr , sauf dans le cas où r = 0 et 1 n’est pas valeur propre
de ν, auquel cas on pose V̂.0 = {0}. On note L̂ le sous-groupe des éléments de Ĝ
qui conservent V̂.r pour tout r . On note Q̂ le sous-groupe des éléments de Ĝ qui
conservent le drapeau de sous-espaces:

V̂.1 ⊂ V̂.1 ⊕ V̂.2 ⊂ · · · ⊂ V̂.1 ⊕ V̂.2 ⊕ . . .⊕ V̂.t .

C’est un sous-groupe parabolique de Ĝ, de sous-groupe de Lévi L̂ . On a
l’isomorphisme:

L̂ 0 GL(V̂.1) × · · · × GL(V̂.t ) × Ĝ .0,

où Ĝ .0 est le groupe symplectique de V̂.0. Remarquons que ψ prend ses valeurs
dans L̂ et s’identifie à un produit d’homomorphismes ψ1 × · · ·× ψt × ψ0, où:

ψ0 : WF × SL(2, C) → Ĝ .0,

ψr : WF × SL(2, C) → GL(V̂.r ), pour r ∈ {1, . . . , t}.

Soient (s, y, ε) le triplet associé à (ψ, ε) comme en 4.1 et θ = (R′, R′′) l’élément
de #! associé en 1.11 à ce triplet. Si l’on se reporte aux définitions de 1.10 et 1.11,
on voit que, parce que y ∈ l̂, on a l’inégalité:

dimC(V̂.0) ≥ 2(R
′2 + R′ + R

′′2).(1)

En particulier, si ! = an, dimC(V̂.0) ≥ 2 puisque R′′ est impair. Il existe donc
dans G! un sous-groupe parabolique Q stabilisant un drapeau de sous-espaces
isotropes de V! de dimensions d.1, d.1 + d.2, · · · , d.1 + · · · + d.t , où, pour tout
r ∈ {−t, . . . , t}, on a posé d.r = dimC(V̂.r ). Fixons Q et un sous-groupe de Lévi L
de Q. On a un isomorphisme:

L 0 GL(d.1) × · · ·× GL(d.t ) × G.0,

où G.0 est un groupe de même type que G!, dont Ĝ .0 est le L-groupe.
Il y a un isomorphisme naturel:

ZĜ .0
(ψ0)/ZĜ .0

(ψ0)0 0 ZĜ(ψ)/ZĜ(ψ)0

et ε s’identifie à un caractère du premier quotient. Le couple (ψ0, ε) appartient à
'G .0

u , et même à 'G .0
utemp. D’après la proposition 4.3, il paramétrise une représentation

tempérée πψ0,ε de G .0.
Soit r ∈ {1, . . . , t}. Notons:

ψr,temp : WF × SL(2, C) → GL(V̂.r )

l’unique homomorphisme tel que:

ψr,temp|SL(2,C) = ψr |SL(2,C),

ψr,temp|WF (Frob) = ν−1
j ψr |WF (Frob).
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Les définitions et résultats de 4.1 et 4.3 s’étendent au cas d’un groupe linéaire. Pour
un tel groupe, les caractères ε disparaissent car les centralisateurs sont connexes.
Alors ψr,temp paramétrise une représentation tempérée πψr,temp de GL(d.r ).

On introduit la représentation tempérée de L:

π L = πψ1,temp ⊗ · · · ⊗ πψt,temp ⊗ πψ0,ε .

Notons TL , resp. T̂L , le plus grand tore central de L, resp. L̂ . On a:

ν ∈ X∗(T̂L ) ⊗Z R×
+ = X∗(TL ) ⊗Z R×

+ = X∗(L) ⊗Z R×
+,

avec des notations usuelles. Un tel élément paramétrise un caractère de L à valeurs
réelles > 0, que l’on note ν. On a choisi Q de sorte que le couple (ν, π L ) vérifie les
conditions requises pour que la représentation induite IndG!

Q (ν ⊗ π L ) possède un
unique quotient irréductible, que l’on appelle son quotient de Langlands (cf. [S]).

Théorème. La représentation πψ,ε est égale au quotient de Langlands de la
représentation induite IndG!

Q (ν ⊗ π L ).

Preuve. On introduit le sous-groupe parabolique P = MU de G! associé à θ ,
cf. 3.3. On note TM le plus grand tore central de M. Grâce à l’inégalité (1), on peut
supposer que Q contient P et L contient M. Posons N = n − R

′2 − R′ − R
′′2. On

a une suite d’applications:

X∗(T̂L ) ⊗Z R 0 X∗(TL ) ⊗Z R 0 X∗(L) ⊗Z R →

X∗(M) ⊗Z R 0 X∗(TM ) ⊗Z R 0 YN ⊗Z R,

le dernier isomorphisme étant le j de 3.3. Puisque ν ∈ X∗(T̂L ) ⊗Z R×
+, on peut

définir log(ν) ∈ X∗(T̂L ) ⊗Z R, que l’on identifie à un élément de YN ⊗Z R. On
pose τ = −log(ν). On a choisi Q de sorte que τ ∈ C̄+(YN ). De même, pour χ ∈
X∗(TM ) ⊗Z C×, on définit log|χ |, que l’on identifie à un élément de YN ⊗Z R.

Le couple θ que l’on a associé à (ψ, ε) ∈ '
G!

u est égal au couple associé de
même à (ψ0, ε) ∈ 'G .0

u . Il en résulte que π L est sous-quotient d’une induite d’une
représentation cuspidale de M . Le quotient de Langlands de la représentation
IndG!

Q (ν ⊗ π L ) se caractérise de la façon suivante: c’est l’unique représentation
admissible irréductible π de G! telle que:

• π est sous-quotient de IndG!

Q̄ (ν ⊗ π L );

• il existe χ ∈ ExpP̄ (π ) tel que (−log|χ |)+ = τ .

Cette caractérisation résulte de la démonstration par Silberger de l’unicité du quo-
tient de Langlands (cf. [S]). On va prouver que πψ,ε vérifie ces propriétés.

Pour tout r ∈ {−t, . . . , t}, s et y laissent stables V̂.r . On note s.r et y.r leurs
restrictions à V̂.r . Le triplet (s.0, y.0, ε) paramétrise un G .0-module P(s.0, y.0, ε).
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Pour r ∈ {1, . . . , t}, le couple (s.r , y.r ) paramétrise un GL(d.r )-module P(s.r , y.r ).
Posons:

P = P(s.1, y.1) ⊗ · · ·⊗ P(s.t , y.t ) ⊗ P(s.0, y.0, ε).

La représentation ν ⊗ π L est la représentation de L dans le module DL (PL ). Les
propriétés de l’involution rappelées en 3.2 nous ramènent à démontrer:

P(s, y, ε) est sous-quotient de IndG!

Q (PL );(2)

il existe χ ∈ ExpP (P(s, y, ε)) tel que (−log|χ |)+ = τ.(3)

On a une première décomposition V̂ = ⊕r=−t,...,t V̂.r . En 1.11, on a attaché à (s, y, ε)
une autre décomposition que, pour la distinguer de la précédente, on note ici:

V̂ = V̂ +
0. ⊕ V̂−

0. ⊕ (⊕ j=1,...,a(V̂ j. ⊕ V̂− j.)).

Ces deux décompositions sont compatibles, c’est-à-dire que si l’on pose, pour tout
r ∈ {−t, . . . , t}:

V̂ +
0r = V̂ +

0. ∩ V̂.r , V̂−
0r = V̂−

0. ∩ V̂.r ,

V̂ jr = V̂ j. ∩ V̂.r , pour tout j ∈ {±1, . . . , ±a},

on a l’égalité:

V̂ = ⊕r=−t,...,t
(

V̂ +
0r ⊕ V̂−

0r ⊕ (⊕ j=1,...,a(V̂ jr ⊕ V̂(− j)r ))
)

.

On regroupera parfois les espaces V̂ +
0. et V̂−

0. en posant:

V̂0. = V̂ +
0. ⊕ V̂−

0. , V̂0r = V̂ +
0r ⊕ V̂−

0r .

Les éléments s et y stabilisent tous ces sous-espaces. On note de façon évidente
leurs restrictions à ces sous-espaces. Par exemple, s+

0r , resp. s jr , est la restriction de
s à V̂ +

0r , resp. V̂ jr . De même, on note par exemple d+
0r , resp. d jr , la dimension de

V̂ +
0r , resp. V̂ jr .

Remarquons que la décomposition:

V̂.0 = V̂ +
00 ⊕ V̂−

00 ⊕
(

⊕ j=1,...,a(V̂ j0 ⊕ V̂(− j)0)
)

est celle attachée en 1.11 au triplet (s.0, y.0, ε). Fixons un sous-groupe parabolique
Q.0 de G.0 de sous-groupe de Lévi:

L.0 = GL (d10) × · · ·× GL (da0) × G00,

où G00 est un groupe analogue à G!, dont le L-groupe est le groupe symplectique
Ĝ00 de l’espace V̂00. On a un isomorphisme naturel:

ZĜ00
(s00, y00)/ZĜ00

(s00, y00)0 0 ZĜ(s, y)/ZĜ(s, y)0,

et ε s’identifie à un caractère du premier quotient. Le triplet (s00, y00, ε) paramétrise
un G00-module P(s00, y00, ε). De même, pour tout j ∈ {1, . . . , a}, le couple
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(s j0, y j0) paramétrise un GL(d j0)-module P(s j0, y j0). Posons:

PL .0 = P(s10, y10) ⊗ · · ·⊗ P(sa0, ya0) ⊗ P(s00, y00, ε).

D’après la proposition 3.9, P(s.0, y.0, ε) est isomorphe au module induit IndG .0
Q.0

(PL .0 ).
Soit r ∈ {1, . . . , t}. Introduisons un sous-groupe parabolique Q.r de GL(d.r ),

de sous-groupe de Lévi:

L.r = GL
(

d+
0r

)

× GL
(

d−
0r

)

× GL (d1r ) × GL (d(−1)r )

× · · ·× GL (dar ) × GL (d(−a)r ).

Le couple (s+
0r , y+

0r ), resp . . . (s(−a)r , y(−a)r ), paramétrise un GL(d+
0r )-module

P(s+
0r , y+

0r ), resp . . . un GL(d(−a)r )-module P(s(−a)r , y(−a)r ). Posons:

PL .r = P
(

s+
0r , y+

0r

)

⊗ · · · ⊗ P(s(−a)r , y(−a)r ).

D’après l’analogue pour le groupe GL(d.r ) de la proposition 3.9, P(s.r , y.r ) est
isomorphe au module induit IndGL(d.r )

Q.r
(PL .r ).

Remarque. Cette analogue de la proposition 3.9 revient essentiellement à dire
que ce module induit est irréductible. Cela résulte d’un critère d’irréductibilité
bien connu, dû à Bernstein et Zelevinsky: si χ1 et χ2 sont des caractères de F×

apparaissant dans le support cuspidal de deux facteurs distincts de PL .r , alors
χ1χ−1

2 +∈ {|.|, |.|−1}. On a même χ1χ−1
2 +∈ {|.|m ; m ∈ Z}.

Soit Q. l’unique sous-groupe parabolique de G!, inclus dans Q, et tel que:

Q. ∩ L = Q.1 × · · · × Q.t × Q.0.

Posons:

L. = L.1 × · · · × L.t × L.0,

PL . = PL .1 ⊗ · · ·⊗ PL .t ⊗ PL .0 .

Le groupe L. est un sous-groupe de Lévi de Q. et PL . est un L .-module. Des
isomorphismes précédents se déduit un isomorphisme:

IndG!

Q (PL ) = IndG!

Q.
(PL .).(4)

Fixons maintenant un sous-groupe parabolique Q′ de G!, de sous-groupe de
Lévi:

L′ = GL(d1.) × · · · × GL(da.) × G0.,

où G0. est un groupe de même type que G!, dont le L-groupe est le groupe sym-
plectique Ĝ0. de l’espace V̂0.. Le triplet (s0., y0., ε) paramétrise un G0.-module
P(s0., y0., ε). Pour j ∈ {1, . . . , a}, le couple (s j., y j.) paramétrise un GL(d j.)-
module P(s j., y j.). Posons:

PL ′ = P(s1., y1.) ⊗ · · · ⊗ P(sa., ya.) ⊗ P(s0., y0., ε).
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D’après la proposition 3.9, on a l’isomorphisme:

P(s, y, ε) = IndG!

Q′ (PL ′
).(5)

Fixons un sous-groupe parabolique Q′
0. de G0., de sous-groupe de Lévi:

L′
0. = GL

(

d+
01

)

× · · · × GL
(

d+
0t

)

× GL
(

d−
01

)

× · · · × GL
(

d−
0t

)

× G00.

Introduisons le L ′
0.-module:

PL ′
0. = P

(

s+
01, y+

01

)

⊗ · · ·⊗ P
(

s+
0t , y+

0t

)

⊗ P
(

s−01, y−01

)

⊗ · · ·⊗ P
(

s−0t , y−0t

)

⊗P(s00, y00, ε).

Grâce au (i) du lemme 3.8, le G0.-module P(s0., y0., ε) est sous-quotient du module
induit IndG0.

Q′
0.
(PL ′

0.).
Soit j ∈ {1, . . . , a}. Fixons un sous-groupe parabolique Q′

j. de GL(d j.), de
sous-groupe de Lévi:

L′
j. = GL (d j1) × · · ·× GL (d jt ) × GL (d j0) × GL (d j(−t)) × · · · × GL (d j(−1)).

Introduisons le L ′
j.-module:

PL ′
j. = P(s j1, y j1) ⊗ · · ·⊗ P(s jt , y jt ) ⊗ P(s j0, y j0) ⊗ P(s j(−t), y j(−t)) ⊗ · · ·⊗

P(s j(−1), y j(−1)).

Un analogue du lemme 3.8 vaut pour les groupes linéaires. Alors le GL(d j.)-module
P(s j., y j.) est sous-quotient du module induit IndGL(d j.)

Q′
j.

(PL ′
j.).

Soit Q′
. l’unique sous-groupe parabolique de G!, inclus dans Q′, tel que:

Q′
. ∩ L′ = Q′

1. × · · ·× Q′
a. × Q′

0..

Posons:

L′
. = L′

1. × . . . × L′
a. × L′

0.,

PL ′
. = PL ′

1. ⊗ · · · ⊗ PL ′
a. ⊗ PL ′

0. .

Le groupe L′
. est un sous-groupe de Lévi de Q′

. et PL ′
. est un L ′

.-module. D’après les
résultats ci-dessus, P(s, y, ε) est sous-quotient du module induit IndG!

Q′
.
(PL ′

.). Mais
les triplets (Q., L., PL .) et (Q′

., L′
., PL ′

.) sont conjugués par un élément de G!. En
effet, une telle conjugaison nous permet:

• de permuter les facteurs GL de nos Lévi;

• de remplacer un facteur GL (d j(−r )) par GL (d(− j)r ), à condition de rem-
placer P(s j(−r ), y j(−r )) par P(s(− j)r , y(− j)r ) (l’opération duale consiste à échanger
les espaces isotropes duaux V̂ j(−r ) et V̂(− j)r .
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Une succession de telles opérations réalise la conjugaison cherchée. Alors les mod-
ules induits:

IndG!

Q.
(PL .) et IndG!

Q′
.
(PL ′

.)

ont mêmes sous-quotients irréductibles. Donc P(s, y, ε) est sous-quotient du mod-
ule induit IndG!

Q.
(PL .) et (4) entraı̂ne (2).

Si m1, . . . , mh, m sont des entiers ≥ 0 tels que m = m1 + · · · + mh et si
c1, . . . , ch sont des réels, on note:

c⊕m1
1 ⊕ · · ·⊕ c⊕mh

h

l’élément de Rm suivant:

(c1, . . . , c1, . . . , ch, . . . , ch),

où chaque ci intervient mi fois.
Pour tout signe η, considérons le couple (σ η, yη) défini en 1.11. On a défini en

2.13 l’élément τ (σ η, yη) de YN η ⊗Z R 0 RN η

. On a l’égalité:

τ (σ η, yη) = (−log(ν1))⊕dη
01 ⊕ · · ·⊕ (−log(νt ))⊕dη

0t ⊕ 0⊕N η
00 .

On déduit de τ (σ +, y+) et τ (σ−, y−) un élément τ (s0., y0.) ∈ YN0.
⊗Z R, où N0. =

N+ + N−, cf. 3.6. On a l’égalité:

τ (s0., y0.) = (−log(ν1))⊕d01 ⊕ · · ·⊕ (−log(νt ))⊕d0t ⊕ 0⊕N00,

où N00 = N+
00 + N−

00. Notons J0 l’unique sous-ensemble de {1, . . . , N0} tel que
τ (s0., y0.) ∈ +CJ0 . D’après le corollaire 3.6, il existe χ0 ∈ ExpP∩G0.

(P(s0., y0., ε))
tel que:

−log|χ0| ∈ τ (s0., y0.) − +C̄ J0 .

On fixe un tel χ0.
Soit j ∈ {1, . . . , a}. Un résultat analogue vaut pour le GL(d j.)-module

P(s j., y j.). Il faut adapter les définitions au cas d’un système de racines Ad j.−1.
Le résultat est le suivant. Posons:

τ (s j., y j.) = (−log(ν1))⊕d j1 ⊕ . . . ⊕ (−log(νt ))⊕d jt ⊕ 0⊕d j0 ⊕ (log(νt ))⊕d j(−t)

⊕ · · ·⊕ (log(ν1))⊕d j(−1) .

Notons Jj l’ensemble des m ∈ {1, . . . , d j. − 1} tels que < αm, τ (s j., y j.) > = 0.
Alors il existe χ j ∈ ExpP∩GL(d j.)(P(s j., y j.)) tel que:

−log|χ j | ∈ τ (s j., y j.) − +C̄ Jj .

On fixe un tel χ j .
Posons:

I = {1, . . . , N }, IN0.
= {N − N0. + 1, . . . , N }
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et, pour tout j ∈ {1, . . . , a}:

I j = {d1. + · · · + d j−1 . + 1, . . . , d1. + · · · + d j.}.

On identifie {1, . . . , N0.} à IN0.
par l’unique bijection croissante et de même, pour

tout j ∈ {1, . . . , a}, on identifie {1, . . . , d j.} à I j . On en déduit une identification
de YN ⊗Z R à:

(Yd1.
⊗Z R) ⊕ · · ·⊕ (Yda.

⊗Z R) ⊕ (YN0.
⊗Z R).

Le groupe de Weyl NG!
(M)/M s’identifie au sous-groupe WN du groupe des per-

mutations de I ∪ (−I ). Définissons le sous-groupe W L ′ = NL ′(M)/M de WN et
l’ensemble WL ′ des éléments w ∈ WN de longueur minimale dans leur classe W L ′

w .
L’égalité (5) et le calcul habituel des modules de Jacquet entraı̂nent que l’ensemble
{log|χ |; χ ∈ ExpP (P(s, y, ε))} est égal à celui des:

w−1(log|ξ1|⊕ · · · ⊕ log|ξa|⊕ log|ξ0|),

où:

• w parcourt WL ′ ;

• ξ1, resp . . . ξa, ξ0, parcourt ExpP∩GL(d1.)(P(s1., y1.)), resp . . . ExpP∩GL(da.)
(P(sa., ya.)), ExpP∩G0.

(P(s0., y0., ε)).

Le terme τ = −log(ν) est égal à:

(−log(ν1))⊕d.1 ⊕ · · ·⊕ (−log(νt ))⊕d.t ⊕ 0⊕N.0,

où N.0 = N −
∑

r=1,...,t d.r . Notons J l’unique sous-ensemble de I tel que τ ∈ C+
J .

On vérifie qu’il existe w ∈ WL ′ tel que:

w−1(τ (s1., y1.) ⊕ · · ·⊕ τ (sa., ya.) ⊕ τ (s0., y0.)) = τ,

w−1( +C̄ J1 ⊕ · · ·⊕ +C̄ Ja ⊕ +C̄ J0 ) ⊆ +C̄ J .

Pour un tel w , soit χ ∈ ExpP (P(s, y, ε)) tel que:

log|χ | = w−1(log|χ1|⊕ · · ·⊕ log|χa| ⊕ log|χ0|).

Alors−log|χ | ∈ τ − +C̄ J . L’assertion (3) en résulte. Cela achève la démonstration.

4.5. Soit Q un sous-groupe parabolique de G! de sous-groupe de Lévi:

L = GL (d.1) × · · ·× GL (d.t ) × G.0,

où G.0 est un groupe analogue à G!. Soient (ψ0, ε0) ∈ 'G .0
utemp et, pour tout

r ∈ {1, . . . , t}, ψr ∈ '
GL(d.r )
utemp (l’ensemble analogue à '

G!

utemp quand on remplace
G! par GL(d.r )). On associe à (ψ0, ε0) une représentation πψ0,ε0 de G .0. Pour tout
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r ∈ {1, . . . , t}, on associe à ψr une représentation πψr de GL(d.r ). On introduit la
représentation de L:

π L = πψ1 ⊗ . . .⊗ πψt ⊗ πψ0,ε0 .

Soit Q̂ un sous-groupe parabolique de Ĝ dual de Q, de sous-groupe de Lévi:

L̂ = GL(d.1, C) × · · · × GL(d.t , C) × Ĝ .0.

On considère le produit ψ1 × · · · × ψt × ψ0 comme un homomorphisme de WF ×
SL(2, C) dans L̂ . Par composition avec l’injection de L̂ dans Ĝ, on obtient un
homomorphisme ψ : WF × SL (2, C) → Ĝ.

On dispose de l’injection naturelle:

ZĜ .0
(ψ0)/ZĜ .0

(ψ0)0 → ZĜ(ψ)/ZĜ(ψ)0.

Notons E(ε0) l’ensemble des caractères du quotient de droite dont la restriction au
quotient de gauche est ε0. Pour tout ε ∈ E(ε0), le couple (ψ, ε) appartient à '

G!

utemp

et paramétrise une représentation πψ,ε de G!.

Proposition. La représentation induite IndG!

Q (π L ) est somme directe des
représentations πψ,ε , où ε décrit E(ε0).

Preuve. Puisque π L est tempérée, son induite est semi-simple, on peut se con-
tenter de décrire ses sous-quotients irréductibles.

Introduisons une décomposition:

V̂ = ⊕r=−t,...,t V̂.r ,(1)

de sorte que:

• la décomposition moins fine:

V̂ = V̂.0 ⊕⊕r=1,...,t (V̂.r ⊕ V̂.−r )

soit orthogonale;

• pour tout r ∈ {1, . . . , t}, V̂.r et V̂.−r soient totalement isotropes;

• L̂ conserve la décomposition (1);

• Q̂ soit le stabilisateur du drapeau de sous-espaces:

V̂.1 ⊆ V̂.1 ⊕ V̂.2 ⊆ . . . ⊆ V̂.1 ⊕ . . .⊕ V̂.t .

Posons:

s = ψ

(

Frob ×
(

q1/2 0
0 q−1/2

))

, y = d(ψ|SL(2,C))
((

0 1
0 0

))

.

Reprenons les notations de la démonstration précédente. Posons:

PL = P(s.1, y.1) ⊗ . . .⊗ P(s.t , y.t ) ⊗ P(s.0, y.0, ε0).
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En utilisant les propriétés de l’involution de 3.2, on est ramené à prouver que les
sous-quotients irréductibles du module induit IndG!

Q (PL ) sont les P(s, y, ε), pour
ε ∈ E(ε0), chacun d’eux intervenant avec multiplicité 1.

On peut reprendre les définitions de la démonstration précédente (le ε de celle-ci
étant remplacé par ε0). On a alors:

IndG!

Q (PL ) = IndG!

Q.
(PL .),

et les modules induits:

IndG!

Q.
(PL .) et IndG!

Q′
.
(PL ′

.)

ont mêmes semi-simplifiés. Il suffit d’étudier ce dernier module.
Nos données vérifient les hypothèses requises pour appliquer le (ii) du lemme

3.8. Il en résulte que le module induit IndG0.

Q′
0.
(PL ′

0.) est isomorphe à:

⊕ε∈E(ε0)P(s0., y0., ε).

Comme toujours, un résultat analogue vaut pour les groupes linéaires. On obtient
que, pour tout j ∈ {1, . . . , a}, les GL(d j.)-modules IndGL(d j.)

Q′
j.

(PL ′
. j ) et P(s j., y j.) sont

isomorphes.
De ces assertions résulte que le module IndG!

Q′
.
(PL ′

.) est isomorphe à:

⊕ε∈E(ε0)IndG!

Q′ (P(s1., y1.) ⊗ . . .⊗ P(sa., ya.) ⊗ P(s0., y0., ε)).

D’après la proposition 3.8, ce dernier module n’est autre que:

⊕ε∈E(ε0)P(s, y, ε).

Cela achève la démonstration.

4.6. Introduisons quelques notations. Soient o une orbite nilpotente dans ĝ et
y un élément de o. On peut décomposer y en blocs de Jordan. On note:

• multo : N \ {0} → N la fonction telle que, pour tout i ∈ N \ {0}, multo(i)
soit le nombre de blocs de Jordan de longueur i ;

• Jord(o) = {i ∈ N \ {0}; multo(i) ≥ 1};
• Jordbp(o) le sous-ensemble des entiers pairs dans Jord(o).

Soit de plus f : N \ {0} → N une fonction. On pose:

Jord bp
f ≥1(o) = {i ∈ Jordbp(o); f (i) ≥ 1},

et, pour tout h ∈ N,

Jord bp
f =h(o) = {i ∈ Jordbp(o); f (i) = h}.
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Notons '̄
G!

uquad l’ensemble des quintuplets o = (o, m+, ε+, m−, ε−) tels que:

• o est une orbite nilpotente dans ĝ;

• m+, m− : N \ {0} → N sont des fonctions telles que m+ + m− = multo et
m+(i) et m−(i) sont pairs pour tout entier i impair;

• ε+ et ε− sont deux fonctions:

ε+ : Jordbp
m+≥1(o) → {±1}, ε− : Jordbp

m−≥1(o) → {±1};

•
(
∏

ε+(i)
) (

∏

ε−(i)
)

=
{

1, si ! = iso,

−1, si ! = an,

où les produits sont pris sur les i ∈ Jordbp(o) tels que m+(i) est impair, resp. m−(i)
est impair.

Notons '
G!

uquad l’ensemble des (ψ, ε) ∈ '
G!

u tels que ψ|WF soit somme de
caractères d’ordre au plus 2 (ces caractères sont non ramifiés par définition de
'

G!

u ). Soit (ψ, ε) ∈ '
G!

uquad. Associons-lui un triplet (s, y, ε) comme en 4.1. La
décomposition de V̂ attachée en 1.11 à ce triplet se réduit à V̂ = V̂ + ⊕ V̂−. Les
termes s, y, ε se décomposent en s = s+s−, y = y+ + y−, ε = (ε+, ε−). Notons
o, resp. o+, o−, l’orbite de y dans ĝ, resp. de y+ dans ĝ+, de y− dans ĝ−. Posons
m+ = multo+, m− = multo−. Soit η ∈ {±1}, identifié à un signe. L’hypothèse sur
(ψ, ε) entraı̂ne qu’il existe un homomorphisme φη : SL(2, C) → Ĝ

η
tel que:

sη = ηφη

(

q1/2 0
0 q−1/2

)

, yη = dφη

(

0 1
0 0

)

.

Alors:

ZĜ
η (sη, yη)/ZĜ

η (sη, yη)0 0 ZĜ
η (yη)/ZĜ

η (yη)0.

Ce groupe s’identifie naturellement à (Z/2Z)Jordbp(oη). Remarquons que
Jordbp(oη) = Jordbp

mη≥1(o). Puisque εη est un caractère du groupe ci-dessus, il
s’identifie à une fonction:

εη : Jordbp
mη≥1(o) → {±1}.

On vérifie que le quintuplet o = (o, m+, ε+, m−, ε−) appartient à '̄
G!

uquad. L’appli-

cation (ψ, ε) &→ o ainsi définie est une bijection de '
G!

uquad sur '̄
G!

uquad. Pour o ∈
'̄

G!

uquad, on pose πo = πψ,ε , où (ψ, ε) est l’image réciproque de o par l’application

précédente. Remarquons que πo est tempérée puisque '
G!

uquad ⊆ '
G!

utemp.

Il est facile de déterminer l’image de '
G!

udisc par l’application précédente. C’est
le sous-ensemble '̄

G!

udisc des o = (o, m+, ε+, m−, ε−) ∈ '̄
G!

uquad tels que m+(i) ≤ 1
et m−(i) ≤ 1 pour tout entier i ∈ N \ {0}. Remarquons que cette relation entraı̂ne
m+(i) = m−(i) = 0 pour tout entier i impair, puisqu’alors m+(i) et m−(i) sont pairs.
Donc multo(i) = 0 pour tout tel entier, i.e. Jordbp(o) = Jord(o). L’application o &→
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πo se restreint en une bijection de '̄
G!

udisc sur l’ensemble des classes d’isomorphie
de représentations lisses irréductibles de G!, de réduction unipotente et de la série
discrète.

4.7. Notons ĒllG!

u l’ensemble des quintuplets oell = (o, m+, ε+
ell, m−, ε−ell) tels

que:

• o est une orbite nilpotente dans ĝ;

• Jordbp(o) = Jord(o);

• m+, m− : N \ {0} → N sont des fonctions telles que m+ + m− = multo et
m+(i) ≤ 2 et m−(i) ≤ 2 pour tout entier i ≥ 1;

• ε+
ell, ε−ell sont deux fonctions:

ε+
ell : Jordbp

m+=1(o) → {±1}, ε−ell : Jordbp
m−=1(o) → {±1};

•
(
∏

ε+
ell(i)

) (
∏

ε−ell(i)
)

=
{

1, si ! = iso,

−1, si ! = an,

où les produits sont pris respectivement sur i ∈ Jordbp
m+=1(o), i ∈ Jordbp

m−=1(o).

Pour un tel quintuplet, on pose:

t(oell) =
∣

∣

∣
Jordbp

m+=2(o)
∣

∣

∣
+

∣

∣

∣
Jordbp

m−=2(o)
∣

∣

∣

et on note Irr(oell) le sous-ensemble des o = (o, m+, ε+, m−, ε−) ∈ '̄
G!

uquad tels que:

• les données o, m+ et m− sont les mêmes que celles figurant dans oell ;

• pour tout signe η, la restriction de εη à Jordbp
mη=1(o) est égale à ε

η
ell .

L’application qui, à un tel quintuplet o, associe le couple des restrictions de ε+ à
Jordbp

m+=2(o) et de ε− à Jordbp
m−=2(o) est une bijection de Irr(oell) sur l’ensemble:

{±1}Jordbp
m+=2

(o) × {±1}Jordbp
m−=2

(o).(1)

Donc:

|Irr(oell)| = 2t(oell ).

Introduisons l’élément suivant de C(IrrG!

utemp):

πoell
=2−t(oell )

∑

o=(o,m+,ε+,m−,ε−)∈Irr(oell )





∏

i∈Jordbp
m+=2

(o)

ε+(i)









∏

i∈Jordbp
m−=2

(o)

ε−(i)



 πo.
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En [MW]1.7, à la suite d’Arthur, on a défini le sous-ensemble des représentations el-
liptiques EllG!

u ⊆ C(IrrG!

utemp). En fait, on avait dû choisir des signes, la normalisation
des opérateurs d’entrelacement n’étant pas canonique. En [MW]1.7, ces signes
avaient été choisis arbitrairement.

Théorème. On peut choisir ces signes de sorte que, pour tout oell ∈ ĒllG!

u , πoell

appartienne à EllG!

u . L’application oell &→ πoell est alors une bijection de ĒllG!

u sur

EllG!

u .

Preuve. On a expliqué en [MW]1.7 comment se construisaient les
représentations elliptiques de G!. En modifiant légérement les notations de
[MW]1.7, on part d’un sous-groupe parabolique Q = LN de G! et d’une
représentation irréductible δ de L , de la série discrète. On écrit:

L = GL (d1) × · · ·× GL (dr ) × G0,

δ = δ1 ⊗ · · ·⊗ δr ⊗ δ0.

Puisqu’on ne s’intéresse qu’aux représentations elliptiques de réduction unipotente,
on peut supposer δ1, . . . , δr et δ0 de réduction unipotente. Alors δ0 est paramétrisée
par (ψ0, ε0) ∈ 'G0

udisc. De même, pour i ∈ {1, . . . , r}, δi est paramétrisée par ψi ∈
'

GL(di )
udisc . Pour un tel ψi , la représentation ψi |SL(2,C) est isomorphe à la représentation

Symdi−1 de SL(2, C) et ψi |WF (Frob) est central, égal à l’homothétie de rapport,
disons, zi ∈ C×. L’homomorphisme ψi est entièrement déterminé, à conjugaison
près, par zi . La condition s = t de [MW]1.7 signifie que δi = δ∗i pour tout i ∈
{1, . . . , r}, autrement dit que zi ∈ {±1} pour tout i ∈ {1, . . . , r}. On peut supposer
qu’il existe un entier r+ ∈ {0, . . . , r} de sorte que:

zi =
{

1, pour i ∈ {1, . . . , r+},
−1, pour i ∈ {r+ + 1, . . . , r}.

Les autres conditions imposées en [MW]1.7 reviennent à dire que |Rδ| = 2r ,
autrement dit que la représentation IndG!

Q (δ) est de longueur 2r . La décomposition
de cette représentation induite est calculée par la proposition 4.5: avec les notations
de cette proposition, l’induite est la somme directe des représentations πψ,ε quand
ε décrit E(ε0). Pour tout tel ε, (ψ, ε) appartient à '

G!

uquad et correspond à un élément

de '̄
G!

uquad. C’est un simple exercice de calculer l’ensemble U des o ∈ '̄
G!

uquad corre-
spondant aux (ψ, ε) quand ε décrit E(ε0). Soit o0 = (o0, m+

0 , ε+
0 , m−

0 , ε−0 ) ∈ '̄G0
udisc

l’élément correspondant à (ψ0, ε0). Définissons des fonctions m+, m− : N \ {0} →
N par:

m+(i) = m+
0 (i) + 2|{ j ∈ {1, . . . , r+}; d j = i}|,

m−(i) = m−
0 (i) + 2|{ j ∈ {r+ + 1, . . . , r}; d j = i}|,
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pour tout i ∈ N \ {0}. Il existe une unique orbite nilpotente o dans ĝ telle que
multo = m+ + m−. Pour tout signe η, posons pour simplifier:

J η = Jordbp
mη≥1(o), J η

0 = Jordbp
mη

0≥1(o).

On a l’inclusion J η
0 ⊆ J η. Si εη est une fonction sur J η, notons res0(εη) sa restriction

à J η
0 . AlorsU est l’ensemble des quadruplets o = (o, m+, ε+, m−, ε−) ∈ '̄

G!

uquad tels
que o, m+, m− soient les termes définis ci-dessus et ε+,ε− vérifient:

res0(ε+) = ε+
0 , res0(ε−) = ε−0 .

L’application qui, à un tel quadruplet, associe la restriction de (ε+, ε−) à (J+ \
J+

0 ) × (J− \ J−
0 ) est une bijection de U sur:

{±1}J+\J+
0 × {±1}J−\J−

0 .

Notre condition |U | = 2r se traduit par l’égalité:

|J+ \ J+
0 | + |J− \ J−

0 | = r.

Par construction, on a aussi:
(

∑

i≥1

m+(i) − m+
0 (i)

2

)

+
(

∑

i≥1

m−(i) − m−
0 (i)

2

)

= r.

De plus, pour tout signe η et tout i ∈ J η \ J η
0 , on a mη(i)−mη

0(i)
2 ≥ 1. On se rappelle

que o0 ∈ '̄G0
udisc, donc Jordbp(o0) = Jord(o0) et mη

0(i) ≤ 1 pour tout η et tout i . La
comparaison des égalités ci-dessus entraı̂ne que pour tout signe η et tout entier
i ≥ 1, on a les relations:

• si i +∈ J η, mη(i) = mη
0(i) = 0;

• si i ∈ J η \ J η
0 , mη(i) = 2 et mη

0(i) = 0;

• si i ∈ J η
0 , mη(i) = mη

0(i) = 1.

Alors Jordbp(o) = Jord(o), on a m+(i) ≤ 2 et m−(i) ≤ 2 pour tout entier i ≥ 1, et
on a les égalités:

Jordbp
m+=1(o) = Jordbp

m+
0 ≥1(o0), Jordbp

m−=1(o) = Jordbp
m−

0 ≥1(o0).

Posons oell = (o, m+, ε+
0 , m−, ε−0 ). Alors oell ∈ ĒllG!

u et l’ensemble U n’est autre
que Irr(oell). Remarquons qu’on a l’égalité r = t(oell).

D’après [MW]1.7, de nos données est issue une unique représentation ellip-
tique π . Si t(oell) = 0, on a oell = o0 et π = πo0

= πoell . Supposons t(oell) ≥ 1. La
représentation π est de la forme:

π = 2−t(oell)
∑

o∈Irr(oell)

c(o)πo
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où c(o) ∈ {±1} pour tout o ∈ Irr(oell). Pour déterminer ces signes, introduisons
sur l’espace C(IrrG!

utemp) le produit scalaire naı̈f pour lequel IrrG!

utemp forme une base
orthonormée. Il résulte de [MW]1.7 que π est orthogonale à toute représentation
induite à partir d’un sous-groupe parabolique propre de G!. Fixons un signe η et
un entier i ≥ 1 tel que mη(i) = 2. Supposons pour simplifier la rédaction η = +.
Introduisons un groupe G′

! analogue à G!, de rang absolu n − i , et son L-groupe

Ĝ
′
. Définissons m

′+ : N \ {0} → N par:

m
′+(i ′) =

{

m+(i ′), si i ′ += i,
0, si i ′ = i.

Il existe une unique orbite nilpotente o′ dans ĝ′ telle que multo′ = m
′+ + m−. On a

les égalités:

Jordbp
m ′+=1

(o′) = Jordbp
m+

0 ≥1(o0), Jordbp
m−=1(o′) = Jordbp

m−
0 ≥1(o0).

Soient:

ε
′+ : Jordbp

m ′+≥1
(o′) → {±1}, ε− : Jordbp

m−≥1(o′) → {±1}

deux fonctions dont les restrictions à Jordbp
m+

0 ≥1(o0), resp. Jordbp
m−

0 ≥1(o0) soient égales

à ε+
0 , ε−0 . Le quintuplet o′ = (o′, m

′+, ε
′+, m−, ε−) appartient à '̄

G ′
!

uquad et paramétrise
une représentation tempérée πo′ de G ′

!. Par construction de m+, il existe un unique
j ∈ {1, . . . , r+} tel que d j = i . Considérons le sous-groupe parabolique Q′ de G!,
de sous-groupe de Lévi L′ = GL (d j ) × G′

!. Considérons la représentation π ′ =
δ j ⊗ πo′ de L ′. On décompose la représentation induite:

IndG!

Q′ (π ′)(2)

de la même façon que l’on a décomposé l’induite IndG!

Q (δ). Le résultat est le suivant.
On a l’égalité:

Jordbp
m+≥1(o) = Jordbp

m ′+≥1
(o′) ∪ {i}.

Notons ε+
1 et ε+

2 les deux fonctions sur Jordbp
m+≥1(o), à valeurs dans {±1},

dont les restrictions à Jordbp
m ′+≥1

(o′) sont égales à ε
′+. Pour 1 ∈ {1, 2}, posons

o1 = (o, m+, ε+
1 , m−, ε−). Alors l’induite (2) est la somme de πo1

et de πo2
. Re-

marquons que o1, o2 ∈ Irr(oell). Puisque π est orthogonale à cette induite, on
a l’égalité c(o1) = −c(o2). En faisant varier i, ε

′+, ε−, puis en faisant la même
chose pour η = −, on obtient le résultat suivant. Identifions Irr(oell) à l’ensemble
(1). Soient o1, o2 deux éléments de Irr(oell) dont toutes les composantes sont
égales, sauf pour un indice, pour lequel ces composantes sont opposées. Alors
c(o1) = −c(o2). Cette propriété entraı̂ne qu’il existe c ∈ {±1} tel que, pour tout
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o = (o, m+, ε+, m−, ε−) ∈ Irr(oell), on a l’égalité:

c(o) = c





∏

i∈Jord bp
m+=2

(o)

ε+(i)









∏

i∈Jord bp
m−=2

(o)

ε−(i)



 .

Quitte à changer les signes des normalisations de [MW]1.7, on peut supposer c = 1.
Alors π = πoell .

A toute représentation π ∈ EllG!

u , on vient d’associer un élément oell ∈ ĒllG!

u
tel que π = πoell . Il est facile de vérifier la bijectivité de cette application. Cela
démontre le théorème.

5. Restriction aux normalisateurs des sous-groupes parahoriques.

5.1. Soient d un entier pair≥ 2, V̂ un espace de dimension d sur C muni d’une
forme symplectique, Ĝ son groupe symplectique. Soit y un élément nilpotent de ĝ.
Comme en 2.1, posons:

Ā(y) = ZĜ(y)/ZĜ(y)0.

Soit ε un caractère de ce groupe. La correspondance de Springer généralisée (cf.
[L6]) associe au couple (y, ε):

• un entier k ≥ 0 tel que k(k + 1) ≤ d:

• une représentation irréductible ρ(y, ε) du groupe WN , où N = (d − k(k +
1))/2 (on rappelle que WN est le groupe de Weyl de type CN ).

Si besoin est, nous noterons plus précisément k(y, ε) l’entier k.
Considérons les constructions de 2.1, relatives à cet entier k. L’algèbre de

Lie â(y) contient en particulier le point (σ, r0) = (0, 0). On a défini un ensemble
Ek(0, 0, y) de caractères du groupe Ā(0, y) = Ā(y) et, pour tout ε′ ∈ Ek(0, 0, y),
un H̄-module M(0, 0, y, ε′), où:

H̄ = H̄(N ; 2k + 1).

Par définition de la correspondance de Springer généralisée, ε appartient à
Ek(0, 0, y). On dispose donc du H̄-module M(0, 0, y, ε). Rappelons que l’on a
un plongement:

WN → H̄
w &→ tw

grâce auquel M(0, 0, y, ε) apparaı̂t comme un WN -module. Nous noterons ρ(y, ε)
la représentation de WN dans ce module. Elle n’est pas irréductible en général.
Grâce à [L7] 24.2.14, on a une décomposition:

ρ(y, ε) = ρ(y, ε) ⊕ (⊕(y′,ε′) py′,ε′;y,ερ(y′, ε′)),
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où les coefficients py′,ε′;y,ε sont des entiers ≥ 0 et (y′, ε′) parcourt un ensemble fini
de couples tels que:

• y′ est un élément nilpotent de ĝ tel que, si l’on note oy , resp. oy′ , l’orbite de
y, resp. y′, pour l’action adjointe de Ĝ, on a oy ⊂ ōy′ et oy += oy′ ;

• ε′ est un caractère de Ā(y′) tel que k(y′, ε′) = k.

5.2. Soit (s, y, ε) un triplet comme en 1.11. En utilisant les notations de ce
paragraphe, nous supposons:

• a = 0;

• pour tout signe η, il existe un homomorphisme φη : SL(2, C) → Ĝ
η

tel que:

dφη

(( log(q)
2 0
0 − log(q)

2

))

= σ η, dφη

((

0 1
0 0

))

= yη.

On introduit les entiers N+, N−, N , k+, k−, R′, R′′, A, B et le signe ζ . On a associé
à (s, y, ε) une représentation de l’algèbre Hθ , où θ = (R′, R′′). Notons π cette
représentation.

Considérons maintenant deux entiers N ′, N ′′ ≥ 0 tels que N ′ + N ′′ = N . In-
troduisons les sous-algèbres H′

θ et H′′
θ suivantes (cf. 1.3 pour les notations):

• H′
θ est engendrée par {Si ; i = N ′′ + 1, . . . , N };

• si N ′′ = R′′ = 0, H′′
θ = C;

• si N ′′ > 0 et R′′ = 0, H′′
θ est engendrée par ω et {Si ; i = 0, . . . , N ′′ − 1};

• si R′′ > 0, H′′
θ est engendrée par {Si ; i = 0, . . . , N ′′ − 1}.

L’algèbre H′
θ est une algèbre de Hecke, de paramètre q, pour le groupe WN ′ . Ses

représentations irréductibles sont en bijection avec celles du groupe WN ′ . Si R′′ > 0,
l’algèbre H′′

θ est aussi une algèbre de Hecke, de paramètre q, pour le groupe WN ′′ .
Ses représentations irréductibles sont en bijection avec celles du groupe WN ′′ . Si
R′′ = 0 et N ′′ > 0, H′′

θ est le produit tensoriel semi-direct de C[ω] et d’une algèbre
de Hecke, de paramètre q, pour le groupe W D

N ′′ (le groupe de Weyl de type DN ′′).
Comme il est expliqué en [MW]2.9, ses représentations irréductibles sont encore
en bijection avec les représentations irréductibles de WN ′′ .

Notons res(π ) la restriction de π à H′
θ ⊗C H′′

θ . On peut considérer res(π )
comme un élément de C(ŴN ′) ⊗C C(ŴN ′′).

Pour tout signe η, on a défini en 5.1 une représentation ρ(yη, εη) de WN η . On
en déduit un élément:

ρ(y+, ε+) ⊗ ρ(y−, ε−) ∈ C(ŴN+) ⊗C C(ŴN−).
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Reprenons les constructions de [MW]3.9 et [MW]3.10. Définissons deux éléments
ĥ

+
, ĥ

− ∈ ĥ de la façon suivante:

• si R′′ ≤ R′ et ζ = 1, ĥ
+ = (0, 0), ĥ

− = (0, 1);

• si R′′ ≤ R′ et ζ = −1, ĥ
+ = (0, 1), ĥ

− = (0, 0);

• si R′ < R′′ et ζ = 1, ĥ
+ = (0, 0), ĥ

− = (1, 0);

• si R′ < R′′ et ζ = −1, ĥ
+ = (1, 0), ĥ

− = (0, 0).

A l’aide du couple ĥ
+
, ĥ

−
, on a défini en [MW]3.10 une application:

ιN+,N− : C(ŴN+) ⊗C C(ŴN−) → C(ŴN ).

On a aussi défini en [MW]3.9 une application:

ρ∗
N ′,N ′′ : C(ŴN ) → C(ŴN ′) ⊗C C(ŴN ′′).

Proposition. On a l’égalité:

res(π ) = ρ∗
N ′,N ′′ ◦ ιN+,N−(ρ(y+, ε+) ⊗ ρ(y−, ε−)).

Preuve. Supposons R′′ ≤ R′ et ζ = 1. PosonsH = H(N ; A, B) et introduisons
les sous-A-algèbres H′ et H′′ de H suivantes:

• H′ est engendrée par {Ti ; i = N ′′ + 1, . . . , N };
• H′′ est engendrée par {Ti ; i = 0, . . . , N ′′ − 1},

cf. 1.4 pour les notations. Il résulte de 1.5 et 1.11 que, pour notre problème, on
peut remplacer Hθ par H, H′

θ par H′, H′′
θ par H′′ et π par la représentation de H

associée en 1.11 à (s, y, ε). C’est cette dernière représentation que nous noterons
π désormais.

Pour tout signe η, posons:

Hη = H(N η; A, B), H̄η = H̄(N η; A + ηB).

Soit z ∈ C. On dispose du H̄η-module M(zσ η, z log(q)
2 , yη, εη). Notons π̄ η(z) la

représentation de H̄η dans ce module. Pourvu que z +∈ 4π i
log(q)Q, on en déduit une

représentation πη(z) de Hη (cf. 1.9, où l’on prend ε = η). Grâce à 1.7, on déduit de
la représentation π+(z) ⊗ π−(z) de H+ ⊗A H− une représentation π (z) de H. On
la restreint ensuite en une représentation res(π (z)) de H′ ⊗A H′′. Par construction,
π = π (1) (remarquons que, pour tout signe η, on a l’égalité:

P

(

σ η,
log(q)

2
, yη, εη

)

= M

(

σ η,
log(q)

2
, yη, εη

)

d’après le corollaire 2.13 et nos hypothèses).
On va montrer que π (z) est continue en z ∈ C \ 4π i

log(q)Q et qu’elle a une lim-
ite quand z tend vers 0. En notant π (0) cette limite, on va calculer res(π (0)).
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Remarquons que chaque représentation res(π (z)) s’identifie à une représentation
de WN ′ × WN ′′ . Celle-ci varie continûment en z et est donc constante. On a
donc l’égalité res(π ) = res(π (0)), les deux membres étant interprétés comme des
éléments de C(ŴN ′) ⊗C C(ŴN ′′). La proposition découlera donc des résultats que
l’on va maintenant démontrer.

Soit η ∈ {±1}, identifié à un signe. On reprend les constructions du paragraphe
2. Notons D̂ le sous-tore de Ĝ

η

C, image de l’homomorphisme:

C× → Ĝ
η

C

λ &→
(

φη

((

λ 0
0 λ−1

))

, λ

)

.

Il est inclus dans Â(y). Son algèbre de Lie est la droite {(zσ η, z log(q)
2 ); z ∈ C}, et

l’algèbre d’homologie HD̂ est l’algèbre des polynômes sur cette droite, notons-la
C[Z ], où Z est le polynôme valant z au point (zσ η, z log(q)

2 ). Considérons l’espace
de cohomologie H D̂(Py,L). On a l’isomorphisme:

HD̂ ⊗HÂ(y)
H Â(y)(Py,L) 0 H D̂(Py,L)

(cf. [L3] proposition 7.5). Donc H D̂(Py,L) se retrouve muni de deux actions de H̄η

et Ā(y). Notons H D̂(Py,L)εη

le sous-espace de H D̂(Py,L) dans lequel Ā(y) agit
par le caractère εη. C’est un sous-HD̂-module. D’après l’isomorphisme ci-dessus,
pour tout z ∈ C, on a l’isomorphisme:

M

(

zσ η, z
log(q)

2
, yη, εη

)

= C ⊗HD̂
H D̂(Py,L)εη

,

la tensorisation se faisant via l’homomorphisme:

HD̂ = C[Z ] → C

P(Z ) &→ P(z).

Mais H D̂(Py,L) est un HD̂-module projectif de type fini ([L3] proposition 7.2). Il
en est de même de H D̂(Py,L)εη

, qui est un facteur direct du précédent. Tout C[Z ]-
module projectif de type fini est libre. Grâce à l’isomorphisme ci-dessus, π̄ η(z)
apparaı̂t comme la spécialisation d’une représentation de H̄η algébrique en z ∈ C.
A fortiori, elle est continue. Pour z = 0, l’ensemble des exposants Exp(π̄ η(0)) est
réduit à {(0, 0)}, cf. la remarque de 2.5. L’idéal d’augmentation I de la sous-algèbre
S de H̄η agit donc de façon nilpotente sur M(0, 0, yη, εη). Il agit trivialement sur le
semi-simplifié de ce module. Notons π̄ η(0)ss la représentation de H̄η dans ce semi-
simplifié. Elle apparaı̂t comme une représentation de H̄η/H̄ηI. Cette algèbre n’est
autre que la C-algèbre du groupe WN η . La représentation ρ(yη, εη) du groupe WN η

s’interprète comme une représentation de cette algèbre. Elle est égale à π̄ η(0)ss ,
par définition de ρ(yη, εη) .

Fixons un élément λη = (λη
1, . . . , λ

η
N η ; log(q)

2 ) de Exp(π̄ η(1)). Alors
Exp(π̄ η(1)) ⊆ WN η (λη), cf. 1.8 pour la notation. Plus généralement, pour tout
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z ∈ C, Exp(π̄ η(z)) ⊆ WN η (zλη). Soit z0 ∈ C. Supposons z0 = 0 ou z0 +∈ 4π i
log(q)Q.

L’image de Hη par l’homomorphisme grη de 1.9 est incluse dans MWNη (z0λη)H̄η:
si z0 += 0, cela résulte de [L2], lemme 9.5 (c’est ce que l’on a utilisé en 1.9); si
z0 = 0, cela résulte de [L2] 9.7. Pour tout voisinage V de WN η (z0λη), invariant
par WN η , notons MV la sous-algèbre des éléments de M qui sont holomorphes
dans V . On définit MVH̄η comme on a défini H̄η, en remplaçant S par MV dans
les définitions. Puisque Hη est de type fini, si V est assez petit, l’image de Hη

par grη est incluse dans MVH̄η. Si z est assez proche de z0, WN η (zλη) est inclus
dans V et π̄ η(z) se prolonge en une représentation de MVH̄η. Ce prolongement
est continu en z. Puisque πη(z) est la composée de cette représentation et de
l’homomorphisme grη, πη(z) est continue au voisinage de z0.

Notons πη(0)ss la semi-simplifiée de πη(0). C’est la composée de π̄ η(0)ss et
de grη. Evidemment, πη(0)ss(v) est l’identité. On utilise ci-dessous les termes
ξei , τ (wi ), τ̄ (wi ),G(i), Ḡ(i) définis en 1.4, 1.6, 1.8. Pour i ∈ {1, . . . , N η}, on a:

grη(ξei ) = ηexp(xi ).

Puisque π̄ η(0)ss(xi ) = 0, πη(0)ss(ξei ) est l’homothétie de rapport η. On a l’égalité:

grη(τ (wi )) = τ̄ (wi ),

d’où:

grη(Ti ) = −1 + (ti + 1)Ḡ(i)−1grη(G(i)).(1)

Le terme Ḡ(i)−1grη(G(i)) est un élément de M, holomorphe au point 0 = (0, 0) ∈
(YN η ⊗Z C) ⊕ C. Montrons qu’il vaut 1 en ce point. Supposons d’abord i += N η.
Par définition:

Ḡ(i)−1grη(G(i)) = αi

αi + 2r
exp(αi + 2r ) − 1

exp(αi ) − 1
.

Chacun des termes:
αi

exp(αi ) − 1
et

exp(αi + 2r ) − 1
αi + 2r

est holomorphe en 0 et vaut 1 en ce point. Supposons i = N η. Alors, en posant
α = αN η , on a:

Ḡ(i)−1grη(G(i))

= α

α + (A + ηB)r
(ηexp(α + (A + B)r ) − 1)(ηexp(α + (A − B)r ) + 1)

exp(2α) − 1
,

= α

α + (A + ηB)r
(exp(α + (A + ηB)r ) − 1)(exp(α + (A − ηB)r ) + 1)

exp(2α) − 1
.

Chacun des termes:
α

exp(2α) − 1
,

exp(α + (A + ηB)r ) − 1
α + (A + ηB)r

, exp(α + (A − ηB)r ) + 1,
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est holomorphe en 0. En ce point, ils valent respectivement 1
2 , 1 et 2. Cela démontre

l’assertion. On en déduit que π̄ η(0)ss(Ḡ(i)−1grη(G(i))) est l’identité, puis, grâce à
(1), que:

πη(0)ss(Ti ) = π̄ η(0)ss(ti ) = ρ(yη, εη)(wi ).

On peut formuler le calcul de πη(0)ss à l’aide des groupes introduits en
[MW]3.9. Soit m ∈ N. Rappelons que Wm , resp. Wm , est un sous-groupe du
groupe des permutations de {±1} × {1, . . . , m}, resp. {±1} × {±1} × {1, . . . , m}.
Soit i ∈ {1, . . . , m} et w ∈ Wm . On définit deux éléments ei et w de Wm par les
formules suivantes, pour α, β ∈ {±1} et j ∈ {1, . . . , m}:

ei (α, β, j) =
{

(α, β, j), si j += i,
(−α,−β, i), si j = i ;

w(α, β, j) = (α′, β, j ′), où w(α, j) = (α′, j ′).

Pour tout groupe fini X , notons C[X ] la C-algèbre du groupe X . On vérifie que
l’on peut définir un homomorphisme:

δm : H(m; A, B) → C[Wm]

par les formules suivantes:

• δm(v) = 1;

• pour i ∈ {1, . . . , m}, δm(ξei ) = ei ;

• pour w ∈ Wm , δm(Tw ) = w .

En [MW]3.9, on a défini une projection pm : Wm → Wm qui se prolonge en un
homomorphisme pm : C[Wm] → C[Wm]. Pour ĥ ∈ Ĥ , on a défini un caractère χĥ
de Wm , qui se prolonge en un homomorphisme χĥ : C[Wm] → C. On peut alors
reformuler les calculs ci-dessus par l’égalité:

πη(0)ss = ((ρ(yη, εη) ◦ pN η ) ⊗ χĥ
η ) ◦ δN η ,(2)

où ĥ
+ = (0, 0) et ĥ

− = (0, 1).
Pour z ∈ C, posons:

s(z) =
(

exp(zλ+
1 ), . . . , exp(zλ+

N+),−exp(zλ−1 ), . . . ,−exp(zλ−N−); exp
(

z
log(q)

2

))

.

C’est un élément de (YN ⊗Z C×) × C×. Si z +∈ 4π i
log(q)Q ou si z = 0, on peut appliquer

la construction de 1.7 au point s et à la représentation π+(z) ⊗ π−(z) de H′ =
HN+ ⊗A HN− . Fixons un tel point z0. L’image de H par l’homomorphisme m de
1.7 prend ses valeurs dans Mu(H′ ⊗Z ′ Z ′

(s(z0))). Puisque H est de type fini, on peut
fixer un voisinage de Zariski V de s(z0) tel qu’en notant Z ′

V l’anneau des éléments
du corps des fractions de Z ′ réguliers dans V , l’image de H par m soit incluse
dans Mu(H′ ⊗Z ′ Z ′

V ). Si z est assez proche de z0 (et z +∈ 4π i
log(q)Q ou z = 0), s(z)
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appartient à V et la représentation (π+(z) ⊗ π−(z))⊕u de Mu(H′) se prolonge en
une représentation de Mu(H′ ⊗Z ′ Z ′

V ), qui est continue en z. Puisque π (z) est la
composée de cette représentation et de l’homomorphisme m, π (z) est continue au
voisinage de z0.

On a un plongement naturel:

WN+ ×WN− → WN .

Posons:

C = C[WN+ ×WN−] = C[WN+] ⊗C C[WN−].

En 1.7, on a introduit le sous-ensembleU des éléments w ∈ WN qui sont de longueur
minimale dans leur classe (WN+ × WN−)w . On vérifie que l’on peut définir un
homomorphisme:

µ : C[WN ] → Mu(C)
f &→ (µ( f )w ′,w ′′)w ′,w ′′∈U

par la formule suivante, pour w ∈ WN et w ′, w ′′ ∈ U :

µ(w)w ′,w ′′ =
{

0, si w ′ww
′′−1 +∈ WN+ ×WN−,

w ′ww
′′−1, si w ′ww

′′−1 ∈ WN+ ×WN− .

Posons:

ρ = ((ρ(y+, ε+) ◦ pN+) ⊗ χĥ
+) ⊗ ((ρ(y−, ε−) ◦ pN−) ⊗ χĥ

−).

C’est une représentation de C. On en déduit une représentation ρ⊕u de Mu(C).
Posons:

π = π+(0)ss ⊗ π−(0)ss,

et notons π (0)ss la semi-simplifiée de π (0). C’est la composée de ρ⊕u et de
l’homomorphisme m. On va démontrer l’égalité:

π (0)ss = ρ⊕u◦ µ ◦ δN .(3)

Par construction, il s’agit de prouver que, pour tous h ∈ H, w ′, w ′′ ∈ U , on a
l’égalité:

π (m(h)w ′,w ′′) = ρ(µ(δN (h))w ′,w ′′).(4)

Il suffit de la démontrer pour h parcourant un ensemble de générateurs de H.
Soit i ∈ {1, . . . , N }, vérifions (4) pour h = ξei . On voit que les deux mem-

bres sont nuls si w ′ += w ′′. Supposons w ′ = w ′′. Remarquons que U s’identifie à
l’ensemble des permutations w de {1, . . . , N } telles que w−1 est croissante sur
chacun des intervalles {1, . . . , N+}, {N+ + 1, . . . , N }. Alors:

π (m(ξei )w ′,w ′′) = π (ξw ′(ei )) = π
(

ξew ′(i)

)

.
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Grâce à (2), c’est égal à ρ(ew ′(i)). De même:

ρ(µ(δN (ξei ))w ′,w ′′) = ρ(µ(ei )w ′,w ′′) = ρ(ew ′(i)).

D’où (4) dans ce cas.
Soit i ∈ {1, . . . , N − 1}, vérifions (4) pour h = Ti . On a:

Ti = −1 + (τ (wi ) + 1)G(i).

La forme des matrices m(τ (wi )) et m(G(i)) entraı̂ne que:

m(Ti )w ′,w ′′ =















































0, si w ′ += w ′′ et
w ′wi w

′′−1 +∈ WN+ × WN−,

−1 + m(G(i))w ′,w ′′, si w ′ = w ′′ et
w ′wi w

′′−1 +∈ WN+ × WN−,

m(τ (wi ))w ′,w ′′m(G(i))w ′′,w ′′, si w ′ += w ′′ et
w ′wi w

′′−1 ∈ WN+ × WN−,

−1 + (m(τ (wi ))w ′,w ′ + 1)m(G(i))w ′,w ′, si w ′ = w ′′ et
w ′wi w

′′−1 ∈ WN+ × WN− .

Posons j = w ′′(i), k = w ′′(i + 1). Supposons d’abord j, k dans le même intervalle
{1, . . . , N+} ou {N+ + 1, . . . , N }. Alors k = j + 1 et w ′wi w

′′−1 ∈ WN+ × WN−

si et seulement si w ′ = w ′′. Les deuxième et troisième cas du tableau ci-dessus
sont exclus. Supposons w ′ = w ′′. Alors w ′wi w

′−1 = w j , m(τ (wi ))w ′,w ′ = τ ′(w j ),
m(G(i))w ′,w ′ = G ′( j), où, pour plus de précision, on note par des ′ les éléments
relatifs à l’algèbre H′ = H+ ⊗A H−. Alors:

m(Ti )w ′,w ′′ = −1 + (τ ′(w j ) + 1)G ′( j) = T ′
j = T ′(w ′wi w

′′−1).

Supposons maintenant que j et k n’appartiennent pas au même intervalle. On a
w ′ww

′′−1 ∈ WN+ × WN− si et seulement si w ′ = w ′′wi . Le quatrième cas du tableau
ci-dessus est exclu. Supposons w ′ = w ′′ (on est alors dans le deuxième cas). On a:

m(G(i))w ′,w ′ =
ξe j−ek v

2 − 1

ξe j−ek − 1
.

Parce que j et k ne sont pas dans le même intervalle, ce terme appartient à
l’algèbre localisée A⊗Z ′ Z ′

(s(0)). Plus précisément, π (ξe j ) et π (ξek ) sont des ho-
mothéties de rapport des signes opposés. Donc π (m(G(i))w ′,w ′) est l’identité. Alors
π (m(Ti )w ′,w ′′) = 0. Supposons maintenant w ′ = w ′′w j . On est dans le troisième cas
du tableau ci-dessus. Comme précédemment, π (m(G(i))w ′′,w ′′) est l’identité. On a:

m(τ (wi ))w ′,w ′′ = τ ′(w ′wi w
′′−1) = τ ′(1) = T ′(1) = T ′(w ′wi w

′′−1),

et π (m(Ti )w ′,w ′′) = π (T ′(w ′wi w
′′−1)). En résumé, on a prouvé l’égalité:

π (m(Ti )w ′,w ′′) =
{

0, si w ′wi w
′′−1 +∈ WN+ × WN−,

π (T ′(w ′wi w
′′−1)), si w ′wi w

′′−1 ∈ WN+ × WN− .
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Grâce à (2), on peut remplacer ce dernier terme π (T ′(w ′wi w
′′−1)) par ρ(w ′wi w

′′−1).
L’égalité (4), pour h = Ti , en découle.

Vérifions enfin (4) pour h = TN . On a le même tableau que précédemment.
Maintenant w ′w N w

′′−1 ∈ WN+ × WN− si et seulement si w ′ = w ′′. Les deuxième
et troisième cas du tableau sont exclus. Supposons w ′ = w ′′. On a nécessairement
w ′′(N ) = N+ ou w ′′(N ) = N . Supposons par exemple w ′′(N ) = N+. Alors:

m(τ (w N )w ′,w ′) = τ (w ′w N w
′−1) = τ ′(w ′

N+),

où w ′
N+ est l’élément de WN+ analogue de w N . Et m(G(N ))w ′,w ′ = G ′(N+). Alors:

m(TN )w ′,w ′ = −1 + (τ ′(w ′
N+) + 1)G ′(N+) = T ′

N+ = T ′(w ′w N w
′′−1).

Le calcul se poursuit comme dans le cas h = Ti , i < N , et conduit encore à l’égalité
(4). Cela achève la preuve de (3).

On veut calculer res(π (0)), identifiée à une représentation de WN ′ × WN ′′ .
Remarquons que toute représentation de ce groupe étant semi-simple, on peut
remplacer res(π (0)) par res(π (0)ss). Pour plus de précision, notons resH(π (0)ss)
la représentation de H′ ⊗A H′′ et resW (π (0)ss) la représentation de WN ′ × WN ′′

à laquelle elle s’identifie. On dispose de l’homomorphisme de spécialisation en
v = 1:

Sp : H′ ⊗A H′′ → C[WN ′] ⊗C C[WN ′′],

et on a l’égalité resH(π (0)ss) = resW (π (0)ss) ◦ Sp. Notons R l’homomorphisme
tel que le diagramme suivant soit commutatif:

H′ ⊗A H′′ → H
Sp ↓ ↓ δN

C[WN ′] ⊗C C[WN ′′]
R−→ C[WN ]

Il résulte de (3) que:

resW (π (0)ss) = ρ⊕u◦ µ ◦ R.(5)

Calculons R. Notons {w ′
i ; i = 1, . . . , N ′}, resp. {w ′′

i ; i = 1, . . . , N ′′}, les généra-
teurs habituels de WN ′ , resp. WN ′′ . On a les égalités:

Sp(Ti ) = w ′′
N ′′−i , pour i ∈ {0, . . . , N ′′ − 1},

Sp(Ti ) = w ′
i−N ′′, pour i ∈ {N ′′ + 1, . . . , N }.

Pour i ∈ {1, .., N }, δN (Ti ) = wi . Donc:

R(w ′
i ) = wi+N ′′, pour i ∈ {1, . . . , N ′},

R(w ′′
i ) = w N ′′−i , pour i ∈ {1, . . . , N ′′ − 1}.

Avec les notations de 1.4, on a l’égalité:

T0 = v2N+A+B−2ξe1 T (σ ′
0)−1.
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D’où R(w ′′
N ′′) = δN (T0) = e1σ

′−1
0 . En [MW], 3.9, on a introduit un homomor-

phisme:

ρN ′,N ′′ : WN ′ × WN ′′ → WN .

On vérifie sur les formules ci-dessus qu’il existe un élément w de WN tel que R soit
l’homomorphisme d’algèbres déduit de l’homomorphisme Ad(w) ◦ ρN ′,N ′′ . Dans
l’égalité (5), on peut aussi bien remplacer R par l’homomorphisme d’algèbres
déduit de ρN ′,N ′′ . Interprétons maintenant resW (π (0)ss) comme un élément de
C(ŴN ′) ⊗C C(ŴN ′′). En se remémorant les définitions de [MW]3.9 et [MW]3.10,
l’égalité (5) devient:

resW (π (0)ss) = ρ∗
N ′,N ′′ ◦ ιN+,N−(ρ(y+, ε+) ⊗ ρ(y−, ε−)).

On a déjà dit que res(π ) = resW (π (0)ss). On obtient la formule de l’énoncé.
On a supposé R′′ ≤ R′ et ζ = 1. Dans le cas où ζ = −1, la construction de

π (cf. 1.11) échange les rôles de H̄+ et H̄−. Cela conduit au même résultat que
ci-dessus, où l’on échange ĥ

+
et ĥ

−
. Dans le cas où R′ < R′′, c’est l’identification

de Hθ à H ou à C[ω] ⊗C H qui échange les rôles de H′ et H′′ (cf. 1.4). Dans les
calculs ci-dessus, on doit remplacer ρN ′,N ′′ par l’homomorphisme:

WN ′ × WN ′′ → WN

(w ′, w ′′) &→ ρN ′′,N ′(w ′′, w ′)
(6)

Pour tout entier m ∈ N, notons νm l’automorphisme de {±1} × {±1} × {1, . . . , m}
défini par la formule:

νm(α, β, i) = (β, α, i),

pour α, β ∈ {±1}, i ∈ {1, . . . , m}. La conjugaison par νm conserve le groupe Wm .
On vérifie qu’il existe w ∈ WN tel que le plongement (6) soit égal à Ad(wνN ) ◦
ρN ′,N ′′ . On peut aussi bien remplacer le plongement (6) par Ad(νN ) ◦ ρN ′,N ′′ . On
obtient:

res(π ) = ρ∗
N ′,N ′′ ◦ Ad(νN )∗ ◦ ιN+,N−(ρ(y+, ε+) ⊗ ρ(y−, ε−)),

où ιN+,N− est défini comme dans le cas R′′ ≤ R′. Reprenons les notations de
[MW]3.10. Soient f ′ ∈ C(Ŵm ′), f ′′ ∈ C(Ŵm ′′), calculons:

Ad(νm)∗ ◦ ιm ′,m ′′( f ′ ⊗ f ′′),

l’application ιm ′,m ′′ étant définie à l’aide d’un couple (ĥ
′
, ĥ

′′
) = ((a′, b′), (a′′, b′′)).

L’automorphisme Ad(νm) de Wm conserve le sous-groupe Wm ′ ×Wm ′′ et agit sur
celui-ci comme Ad(νm ′) × Ad(νm ′′). Définissons la fonction f ν

0 sur Wm ′ ×Wm ′′

par:

f ν
0 (w ′, w ′′) = f0(Ad(νm ′)(w ′), Ad(νm ′′)(w ′′)).
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Alors Ad(νm)∗ ◦ ιm ′,m ′′( f ′ ⊗ f ′′) est l’induite à Wm de f ν
0 . On vérifie que:

pm ′ ◦ Ad(νm ′) = pm ′, χ
ĥ
′ ◦ Ad(νm ′) = χ

ν(ĥ
′
)
,

où ν(ĥ
′
) = (b′, a′). On a bien sûr des formules analogues pour le facteurWm ′′ . D’où

l’égalité:

Ad(νm)∗ ◦ ιm ′,m ′′( f ′ ⊗ f ′′) = ινm ′,m ′′( f ′ ⊗ f ′′),

où ινm ′,m ′′ est définie à l’aide du couple (ν(ĥ
′
), ν(ĥ

′′
)). On obtient finalement que

res(π ) est calculée par la même formule que dans le cas R′′ ≤ R′, le couple (ĥ
+
, ĥ

−
)

étant changé en (ν(ĥ
+

), ν(ĥ
−

)). Cela conduit aux formules de l’énoncé.

5.3. Soient ! = iso ou an et (ψ, ε) ∈ '
G!

uquad. On lui associe un triplet (s, y, ε)
comme en 4.1. Ce triplet vérifie les hypothèses de 5.2. On lui associe les entiers
N+, N−, R′, R′′, le signe ζ et les représentations ρ(y+, ε+) de WN+ et ρ(y−, ε−)
de WN− . Posons γ = (R′, ζ R′′, N+, N−). C’est un élément de l’ensemble 6 de
[MW]3.17. On a l’égalité:

R(γ ) = C(ŴN+) ⊗C C(ŴN−),

cf. [MW], 3.17. La représentation ρ(y+, ε+) ⊗ ρ(y−, ε−) appartient à cet ensemble.
Puisque R(γ ) est un sous-espace de l’espace R de [MW]3.16, on peut considérer
cette représentation comme un élément de R. On a défini:

• en [MW]3.16, un espace Rpar et un isomorphisme Rep : R → Rpar ;

• en [MW]3.18, un endomorphisme ρι de R;

• en [MW]4.2, un homomorphisme Res: C(IrrG!

u ) → Rpar ;

• en 3.2, une involution DG! de IrrG!

u .

Remarque. La définition de Rep nécessite des choix de prolongements, cf.
[MW] 2.9. Nous les fixons ici comme expliqué en 6.3.

Proposition. Avec les notations ci-dessus, on a l’égalité:

Res ◦ DG!(πψ,ε) = Rep ◦ ρι(ρ(y+, ε+) ⊗ ρ(y−, ε−)).

Preuve. Posons π = DG!(πψ,ε). C’est la représentation de G! dans le module
P(s, y, ε). Soient (n′, n′′) ∈ D(n), i.e. n′, n′′ ∈ N tels que n′ + n′′ = n. Si ! = an,
on suppose n′′ ≥ 1. Calculons la composante Respar

n′,n′′(π ) de Respar (π ) dans le
sommand:

C[SO(2n′ + 1)]u ⊗C C[O(2n′′)!]u
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de Rpar . Choisissons un réseau presque autodual L de V! tel que:

dimFq (L/(F L̃) = 2n′ + 1, dimFq (L̃/L) = 2n′′,

cf. 1.1 pour les notations. Alors:

K ±(L)/K (L)u 0 SO(2n′ + 1) × O(2n′′)!,

et Respar
n′,n′′(π ) est la trace de la représentation de ce groupe dans le sous-espace

des invariants P(s, y, ε)K (L)u
. D’après [MP] théorème 3.5, cet espace n’est non nul

que si K (L) contient un conjugué du groupe Kθ de 1.2, i.e., si n′ ≥ R
′2 + R′ et

n′′ ≥ R
′′2. Supposons ces conditions vérifiées. On peut alors supposer que L est le

réseau Ln′′−R′′2 de 1.2. Notons HK
θ la sous-algèbre des éléments de l’algèbre Hθ à

support dans K ±(L). Avec les notations de 5.2, où l’on prend N ′ = n′ − R
′2 − R′,

N ′′ = n′′ − R
′′2, on a:

HK
θ =

{

H′
θ ⊗C H′′

θ , si R′′ = 0,

H′
θ ⊗C (C[ω] ⊗C H′′

θ ), si R′′ > 0.

Soit E un sous-K ±(L)-module irréductible de P(s, y, ε)K (L)u
. Toujours d’après

[MP] théorème 3.5, l’espace HomKθ
(Eθ , E) est non nul et c’est un HK

θ -module
irréductible. Il lui correspond deux représentations irréductibles ρ ′

E de WN ′ et ρ ′′
E

de WN ′′ , plus un signe νE dans le cas où R′′ > 0, à savoir le signe par lequel agit ω.
Posons γE = (R′, 0, N ′, N ′′) si R′′ = 0, γE = (R′, νE R′′, N ′, N ′′) si R′′ > 0, ρE =
ρ ′

E ⊗ ρ ′′
E . Alors ρE ∈ R(γE ) et, par définition de l’application Rep, Rep(ρE ) est la

trace de la représentation de K ±(L) dans E . Le terme Respar
n′,n′′(π ) est égal à la somme

des Rep(ρE ) quand E parcourt les sous-modules irréductibles de P(s, y, ε)K (L)u
,

comptés bien sûr avec leurs multiplicités.
Notons π̃ la représentation deHθ associée à π . Quand E parcourt l’ensemble de

sous-modules ci-dessus, les représentations associées deHK
θ parcourent l’ensemble

des composantes irréductibles (comptées avec leurs multiplicités) de la restriction
de π̃ à HK

θ . Dans le cas où R′′ > 0, π̃ (ω) est la multiplication par (−1)R′
ζ . Le signe

νE est donc constant; en posant γN ′,N ′′ = (R′, (−1)R′
ζ R′′, N ′, N ′′), on a toujours

γE = γN ′,N ′′ . D’autre part, la somme des ρ ′
E ⊗ ρ ′′

E n’est autre que la représentation
res(π̃ ) définie en 5.2. Cette représentation est calculée par la proposition 5.2. On
obtient que Respar

n′,n′′(π ) est égal à l’image par Rep de l’élément:

ρ∗
N ′,N ′′ ◦ ιN+,N−(ρ(y+, ε+) ⊗ ρ(y−, ε−))

de R(γN ′,N ′′), l’application ιN+,N− étant définie comme en 5.2. On vérifie sur les
définitions que ce terme n’est autre que la composante dans R(γN ′,N ′′) de:

ρι(ρ(y+, ε+) ⊗ ρ(y−, ε−)).

Pour obtenir Respar (π ), il suffit de sommer sur (n′, n′′) ∈ D(n). Cela revient à
sommer les termes ci-dessus sur (N ′, N ′′) ∈ D(n − R

′2 − R′ − R
′′2). On obtient

alors l’égalité de l’énoncé.
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6. Choix des prolongements.

6.1. Soient r un entier ≥ 0, V un espace vectoriel sur Fq , muni d’une forme
quadratique non dégénérée Q. On note d la dimension de V sur Fq . On suppose
vérifiée l’une des hypothèses suivantes:

d = 2r2 + 2r + 1;
d = 2r2, r est pair > 0 et det (Q) ∈ F×2

q ;
d = 2r2, r est impair et −det (Q) +∈ F×2

q .

On a introduit en [MW]2.6 et [MW]2.9 une représentation irréductible de GV ,
unipotente et cuspidale. Notons-la (πr , Er ). On la prolonge, ainsi qu’il est loisible,
en une représentation π̂r de G±

V dans Er , ce prolongement étant provisoirement
arbitraire.

Soit V1 un espace vectoriel de dimension 2 sur Fq , muni d’une base {e, f }. On
note Q1 la forme quadratique sur V1 dont la matrice dans cette base est ( 0 1

1 0 ).
Posons V ′ = V ⊕ V1, que l’on munit de la forme Q′ somme directe orthogonale de
Q et Q1. Notons P le sous-groupe parabolique de GV ′ qui stabilise la droite Fqe,
et U son radical unipotent. Par la projection naturelle P → GV , on remonte πr en
une représentation de P . Notons H l’algèbre d’entrelacement de la représentation
IndGV ′

P (πr ). Elle est de dimension 2 sur C. Décrivons une base de H. Notons:

1 : GV ′ → End(Er )

la fonction à support dans P et telle que 1(p) = πr (p) pour tout p ∈ P . Fixons un
élément s ∈ G−

V , notons s1 l’élément de G−
V1

qui échange e et f , et s ′ l’élément de
GV produit de s et s1. Notons:

φ : GV ′ → End(Er )

la fonction à support dans Ps P et telle que:

φ(p1s ′ p2) = πr (p1)π̂r (s)πr (p2)

pour tous p1, p2 ∈ P . Alors {1, φ} est une base deH. Le produit deH est normalisé
ainsi:

ϕ1 ∗ ϕ2(g) = |P|−1
∑

h∈GV ′

ϕ1(gh) ◦ ϕ2(h−1).(1)

Alors 1 est l’unité de H. Il est connu qu’il existe un unique nombre complexe non
nul, que l’on note νd , tel qu’en posant S = νdφ, on ait l’égalité:

(S + 1)(S − q L1) = 0,(2)

où:

L =
{

2r + 1, si d est impair,
2r, si d est pair

cf. [L1] 1.18 et [L3] 2.13.
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6.2. Supposons d impair. On a l’égalité G±
V = {±1} × GV . On fixe le pro-

longement π̂r de sorte qu’il soit trivial sur {±1}.

Lemme. Sous ces hypothèses, on a l’égalité νd = (−1)r q−r2
.

C’est un résultat d’Asai, cf. [As] paragraphe 1.3 et lemme 1.5.12.

6.3. On suppose d pair. Pour tout v ∈ V tel que Q(v) += 0 (où Q(v) = Q(v, v)),
notons σv ∈ G−

V la symétrie par rapport à l’hyperplan orthogonal à v . Si v, v ′ ∈ V
vérifient Q(v) += 0, Q(v ′) += 0 et Q(v)Q(v ′)−1 ∈ F×2

q , alors σv et σv ′ sont conjugués
dans G±

V . Fixons donc deux éléments v+, v− ∈ V tels que:

Q(v+) ∈ det (Q)F×2
q , Q(v−) ∈ F×

q \ det (Q)F×2
q .

Posons:

σ+ = σv+, σ− = σv−,

t = trace(π̂r (σ+)) + trace(π̂r (σ−)).

Ce terme ne dépend pas des choix de v+, v−. Posons:

µ = (q − 1)qr−1(qr2 + (−1)r+1)t
2(q2r − 1)dimC(Er )

.(1)

Le résultat suivant est bien connu.

Lemme. Le nombre µ appartient à {±1} et on a l’égalité νd = µq−r2+r .

Preuve. Calculons φ2(1) et φ2(s ′), où φ2 = φ ∗ φ. En appliquant 6.1(1), on voit
que:

φ2(s ′) =
∑

u∈U

φ(s ′us
′−1) ◦ φ(s ′).(2)

considérons l’application de U dans V qui à u ∈ U associe la projection orthogonale
u de u( f ) sur V . Elle est bijective. Un calcul matriciel montre que, pour u ∈ U , les
propriétés suivantes sont vérifiées:

s ′us
′−1 ∈ Ps ′P ⇐⇒ Q(u) += 0;

si Q(u) += 0, φ(s ′us
′−1) = π̂r (σu).

Posons:

A =
∑

v∈V,Q(v)+=0

π̂r (σv ).
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L’égalité (2) devient φ2(s ′) = A ◦ π̂r (s). On vérifie que A commute à πr (g) pour
tout g ∈ GV . C’est donc une homothétie de rapport trace(A)dimC(Er )−1. Posons:

a+ = |{v ∈ V ; Q(v) ∈ det (Q)F×2
q }|,

a− = |{v ∈ V ; Q(v) ∈ F×
q \ det (Q)F×2

q }|.

Alors:

trace(A) = a+ trace(π̂r (σ+)) + a− trace(π̂r (σ−)),

et:

φ2(s ′) = a+ trace(π̂r (σ+)) + a− trace(π̂r (σ−))
dimC(Er )

π̂r (s).(3)

Le calcul de φ2(1) est immédiat:

φ2(1) = |P|−1|Ps ′P| id = |U | id = |V | id,(4)

où id est l’identité de Er .
L’égalité 6.1(2) est équivalente aux deux égalités:

ν2
dφ2(1) = q L id, νdφ2(s ′) = (q L − 1)π̂r (s).(5)

De la première et de (4) résulte l’existence de µ1 ∈ {±1} tel que νd = µ1q−r2+r .
Pour η ∈ {±1}, identifié à un signe, on explicite aisément:

aη = qr2−1(qr2 + (−1)r+1)
q − 1

2
.

De la deuxième égalité de (5) et de (3) résulte alors l’égalité µ1 = µ.
On a fixé arbitrairement le prolongement π̂r . Si l’on change ce prolongement,

c’est-à-dire si on le multiplie par le caractère det de G±
V , le nombre µ se change en

son opposé. Le prolongement π̂r que l’on a fixé en 1.3 est choisi de sorte que l’on
ait l’égalité µ = 1, ou encore νd = q−r2+r .

6.4. On suppose encore d pair. La conjecture [MW]2.11 affirme l’existence
d’un certain prolongement π̃r de πr .

Proposition. Supposons d pair et admettons la conjecture [MW]2.11. Alors
les deux prolongements π̂r et π̃r coı̈ncident.

La preuve occupe les paragraphes 6.5 à 6.9, dans lesquels on suppose d pair.
Définissons comme dans le paragraphe précédent des termes t et µ, mais relatifs
au prolongement π̃r . Tout revient à prouver que µ = 1.

6.5. Bien que ce ne soit pas indispensable, nous utiliserons le lemme suivant,
dont la démonstration est laissée au lecteur.
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Lemme. Soit D ∈ C(X ) une fraction rationnelle. Supposons qu’il existe un
entier N0 > 0 tel que, pour tout N ≥ N0, D(q N ) appartienne à Z. Alors D ∈ Q[X ],
i.e., D est un polynôme à coefficients dans Q.

6.6. Les nombres dimC(Er ) et t qui interviennent dans nos formules dépendent
de r et q. L’entier r étant fixé, q peut être considéré comme variable: c’est une
puissance quelconque d’un nombre premier quelconque p ≥ 3. Cela a un sens de
dire que dimC(Er ) et t dépendent polynomialement de q. C’est ce qu’affirment les
lemmes suivants.

Lemme. Il existe un polynôme Dr ∈ Q[X ] tel que dimC(Er ) = Dr (q). Si l’on
note δr le degré de Dr et αr son coefficient dominant, on a les égalités:

δr = r4 − 2
3

r3 − r2

2
+ r

6
;

αr = 2−r+1.

Preuve. La dimension dimC(Er ) est calculée par le théorème 8.2 de [L8]. Le
symbole @ associé à πr est @ = (X, Y ), où Y = ∅ et:

X = {2r − 1, 2r − 2, . . . , 0}.

En explicitant les formules de [L8], on obtient le résultat, à ceci près que Dr n’est
a priori qu’une fraction rationnelle. Puisque dimC(Er ) est forcément un entier, le
lemme 6.5 montre que Dr est bien un polynôme.

6.7.

Lemme. Il existe un polynôme Dr,t ∈ Q[X ] tel que t = Dr,t (q). Notons δr,t son
degré et αr,t son coefficient dominant. On a les égalités:

δr,t = r4 − 2
3

r3 − 3r2

2
+ 7r

6
, αr,t = 22−r .

Cela sera démontré en 6.9.

6.8. Admettons ce lemme et démontrons la proposition 6.4. D’après la
définition 6.3 (1), et grâce aux lemmes précédents, µ est donné par le quotient de
deux polynômes dont on connaı̂t les degrés et les coefficients dominants. Puisqu’on
sait que µ ∈ {±1}, les degrés de ces deux polynômes sont nécessairement égaux
(ce qui résulte aussi du calcul de ces degrés) et µ est égal au rapport des coefficients
dominants. On voit alors que µ = 1.

6.9. Rappelons que par hypothèse, Q est déployée si r est pair, non déployée
si r est impair. On pose ! = iso dans le premier cas, ! = an dans le second. A
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tout symbole @′′ = (X ′′, Y ′′) ∈ S̃r2,pair (cf. [MW]2.1), on a associé en [MW]2.4 un
couple (r ′′, ρ), où r ′′ est un entier relatif tel que |r ′′| ≤ r et ρ est une représentation
irréductible de Wr2−r ′′2 . A ce couple (r ′′, ρ), on a associé en [MW]2.10 une fonction
k(r ′′, ρ)! sur G±

V , que l’on notera aussi k(@′′)!. L’élément @ de S̃r2,pair associé à
π̃r est le même que celui introduit en 6.6. Notons ˜Fam(@) ⊆ D̃r2,pair sa famille.
D’après la conjecture [MW]2.11, que nous admettons, on a l’égalité:

trace(π̃r )(g) = 2−r
∑

@′′∈ ˜Fam(@)

(−1)<@,@′′>k(@′′)!(g),(1)

pour tout g ∈ G±
V .

Soient r ′′ un entier tel que |r ′′| ≤ r et ρ une représentation irréductible de
Wr2−r ′′2 . Soit η ∈ {±1}, identifié à un signe. D’après [MW]2.10, on a les égalités:

• k(r ′′, ρ)!(ση) = 0, si r ′′ est pair;

• (2) k(−r ′′, ρ)!(ση) = (−1)r k(r ′′, ρ)!(ση).

Supposons r ′′ ≥ 0 et r ′′ impair. D’après [MW]2.13, on a l’égalité:

k(r ′′, ρ)!(ση) = |Wr2−r ′′2 |−1
∑

w∈W
r2−r ′′2

trace(ρ(w))k(r ′′, w)!(ση).

Fixons w ∈ Wr2−r ′′2 . On a calculé k(r ′′, w)! en [MW]2.16, sous l’hypothèse que
w était elliptique. Cette hypothèse ne nous servait qu’à prouver que k(r ′′, w)!(x)
était nul si la partie semi-simple de x n’était pas elliptique. Ici ση est semi-simple
elliptique et la proposition [MW]2.16 s’applique. Le (i) de cette proposition nous
dit que k(r ′′, w)!(ση) = 0 si r

′′2 > 1, i.e., si r ′′ += 1. Supposons r ′′ = 1. Notons V+
l’espace propre pour ση associé à la valeur propre 1. Il est de dimension 2r2 − 1.
On dispose de la fonction Q(1, w) sur GV+ (cf. [MW]2.14). Alors le (ii) de la
proposition [MW]2.16 nous dit que:

k(1, w)!(ση) = (−1)r+1 Q(1, w)(1).

Introduisons le tore maximal T de GV+ paramétrisé par la classe de conjugaison de
w et notons RT le caractère de Deligne-Lusztig associé à T et au caractère trivial
de T . D’après [MW]2.14 et [L7] théorème 1.14, on a les égalités:

Q(1, w)(1) = trace(φ|K u(1, w)1) = (−1)r+1 RT (1)

(la formule du théorème de Lusztig fait intervenir le signe (−1)rg, où rg est le rang
de GV+ ; on a rg = r2 − 1). D’après [C], théorème 7.5.1, on a l’égalité:

RT (1) = εGV+
εT |GV+|p′ |T |−1,

où εGV+
, resp. εT , est le rang “déployé” de GV+ , resp. T, et |GV+|p′ est la partie

première à p de |GV+|. On a l’égalité εGV+
= (−1)r+1. Faisons agir naturellement

sur Rr2−1 l’élément w de Wr2−1. On a l’égalité bien connue:

εT |T | = det (1 − qw |Rr2−1).
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Pour tout entier h ≥ 0, définissons le polynôme:

θ (h, X ) =
∏

i=1, ... ,h

(Xi − 1).

On calcule:

|GV+|p′ = θ (r2 − 1, q2).

D’où l’égalité:

k(1, w)!(ση) = (−1)r+1θ (r2 − 1, q2) det (1 − qw |Rr2−1).

Pour tout entier m ∈ N et toute représentation irréductible χ de Wm , posons:

δχ (q) = (−1)m |Wm |−1
∑

w∈Wm

trace(χ (m)) det (1 − qw |Rm)−1.

De l’égalité précédente résulte l’égalité:

k(1, ρ)!(ση) = θ (r2 − 1, q2)δρ(q).(3)

Dans la situation ci-dessus où χ ∈ Ŵm , le terme δχ (q) est calculé en [L9] lemme
2.4. Soit (A, B) le symbole associé au couple (0, χ ), avec:

A = {a1 > · · · > ac+1}, B = {b1 > · · · > bc}.

Alors δχ (q) est une fraction rationnelle en q, de degré:
(

∑

i=1,...,c+1

ai (2c + 1 − 2i)

)

+
(

∑

i=1,...,c

bi (2c − 2i)

)

−
(

∑

i=1,...,c+1

a2
i

)

(4)

−
(

∑

i=1,...,c

b2
i

)

− 2c3

3
+ c2

2
+ c

6
,

et de coefficient dominant 1.
Soient maintenant @′′ = (X ′′, Y ′′) ∈ ˜Fam(@), avec |X ′′| + |Y ′′| = 2r , et

(r ′′, ρ) le couple correspondant. La condition r ′′ = 1, resp. r ′′ = −1, est équivalente
à |X ′′| = r + 1, |Y ′′| = r − 1, resp. |X ′′| = r − 1, |Y ′′| = r + 1. Supposons l’une
de ces conditions vérifiées, posons σ (@′′) = (Y ′′, X ′′). Son couple associé est
(−r ′′, ρ). De plus,

< @, σ (@′′) >≡< @, @′′ > +r mod 2Z.

En utilisant (2), on voit que la formule (1) se simplifie:

trace(π̃r )(ση) = 21−r
∑

@′′ = (X ′′, Y ′′) ∈ ˜Fam(@)
|X ′′| = r + 1, |Y ′′| = r − 1

(−1)<@,@′′>k(@′′)!(ση).(5)
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Soient donc @′′ = (X ′′, Y ′′) ∈ ˜Fam(@), avec |X ′′| = r + 1, |Y ′′| = r − 1, et (1, ρ)
le couple correspondant. Pour calculer δρ(q), on doit paramétriser ρ par un sym-
bole (A, B) tel que |A| = |B| + 1. On peut prendre pour couple (X ′′, Y ∗), où,
si Y ′′ = {y′′1 > · · · > y′′r−1}, on a posé Y ∗ = {y′′1 + 1 > · · · > y′′r−1 + 1 > 0}. On
vérifie grâce à (3) et (4) les propriétés suivantes:

• k(@′′)!(ση) est une fraction rationnelle en q de degré≤ r4 − 2r3

3 − 3r2

2 + 7r
6 ,

de coefficient dominant 1;

• cette inégalité est une égalité pour l’unique symbole @′′ = (X ′′, Y ′′) tel que:

X ′′ = {2r − 1, 2r − 2, 2r − 4, . . . , 2, 0}, Y ′′ = {2r − 3, 2r − 5, . . . , 3, 1}.

On vérifie que, pour ce symbole, < @, @′′ >≡ 0 mod 2Z (cf. [MW]2.1). De la
formule (4) et des propriétés ci-dessus résultent les assertions du lemme 6.7, à ceci
près qu’a priori, on obtient des fractioons rationnelles au lieu de polynômes. Mais
t est une somme de traces d’éléments dont le carré est l’identité. Donc t ∈ Z. Le
lemme 6.5 permet d’affirmer que les fractions rationnelles sont des polynômes.
Cela achève la preuve de la proposition 6.4.

6.10. Démontrons maintenant la proposition 1.3. Les notations sont celles du
paragraphe 1. Supposons R′′ += 0. On a l’isomorphisme:

NG±
!
(Kθ )/K u

θ 0 (F×
q )N × G±

l ′N
× G±

l ′′0
.

On a défini en 6.2 et 6.3 les prolongements π̂ ′
R′ de π ′

R′ à G±
l ′N

, π̂ ′′
R′′ de π ′′

R′′ à G±
l ′′0

. Par
produit tensoriel, on en déduit un prolongement de πθ à NG±

!
(Kθ ). On vérifie que

c’est le prolongement π̂θ défini en 1.3 (cela résulte simplement du fait connu que
π ′′

R′′(−1) est l’identité).
Considérons la chaı̂ne de réseaux:

L. = (L0, L1, . . . , L N−1),

posons l ′N−1 = L N−1/(F L̃ N−1. On a:

K (L.)/K (L.)u 0 (F×
q )N−1 × Gl ′N−1

× Gl ′′0 .

L’image de Kθ dans ce quotient est de la forme:

(F×
q )N−1 × P ′ × Gl ′′0 ,

où P′ est un sous-groupe parabolique de Gl ′N−1
. En appliquant les constructions de

6.1 à l’espace l ′N−1 et à ce parabolique P′, on dispose de deux fonctions 1′, φ′ :
Gl ′N−1

→ End(E ′
R′) (on a affecté d’un ′ les notations de 6.1). Soit f ′ l’une d’elles.

Définissons une fonction:

(F×
q )N−1 × Gl ′N−1

× Gl ′′0 → End(Eθ )
(z1, . . . , zN−1; x ′, x ′′) &→ f ′(x ′) ⊗ π ′′

R′′(x ′′).
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Remontons-la en une fonction sur K (L.) puis prolongeons-la à G! tout entier par 0
en dehors de K (L.). Notons 1, resp. φ, la fonction obtenue, dans le cas où f ′ = 1′,
resp. f ′ = φ′. La fonction 1 est bien celle notée ainsi en 1.3, à savoir l’unité de
l’algèbre Hθ . Il résulte de la construction de SN que l’on a l’égalité SN = νN φ.
L’égalité (1) de 1.3 pour cette fonction SN est équivalente à l’identité:

(νN φ′ + 1′)(νN φ′ − q L(N )1′) = 0.

Autrement dit, νN est égal au terme noté νd en 6.1, relatif à l’espace l ′N−1. L’égalité
νN = (−1)R′

q−R
′2

résulte du lemme 6.2 .
Le calcul de ν0 est analogue. On considère cette fois la chaı̂ne de réseaux

L. = (L1, . . . , L N ), pour laquelle:

K (L.)/K (L.)u 0 (F×
q )N−1 × Gl ′N × Gl ′′1 ,

où l ′1 = L̃1/L1. L’égalite ν0 = q−R
′′2+R′′

résulte du lemme 6.3 appliqué à l’espace
l ′′1 .

Dans le cas où R′′ = 0, le calcul de νN s’effectue comme ci-dessus. Celui de
ν0 se ramène à un calcul dans un groupe GL(2). Cela achève la démonstration.

CNRS, Institut mathématiques de JUSSIEU
E-mail: waldspur@math.jussieu.fr
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