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PREFACE

The present volume is slightly connected to the conference organized in
Budapest, January 2001 to the honour of Vera Sos and Andras Hajnal
on the occasion of their 70th birthdays. Namely, we mainly asked the
invited speakers of that conference to write survey papers on their favorite
subjects. Therefore the volume contains strong and well-written surveys
in the areas of the celebrated colleagues : mostly in combinatorics, graph
theory, less in number theory and set theory. The authors gave the up-to
date state of the art in their subjects, put the recent results into integral
framework. Examples are listed below. The other papers contain original
research results.

Matthias Beck, Xueqin Wang, and Thomas Zaslavsky find a nice, so
called unifying generalization of different versions of Sperner's theorem.
They found a uniform handling of several different generalizations.

Bela Bollobas and Alexander Scott summarize different results on dis
crepancies of graphs and hypergraphs,

Eva Czabarka, Ondrej Sykora, Laszlo A. Szekely and Imrich Vrto survey
some bounds on biplanar crossing numbers of graphs which is the sum of
the crossing numbers over all partitions of a graph into two planar graphs.

Andras Frank studies the different notions of edge-connectivity of
graphs, digraps and hypergraphs and uses properties of submodular func
tions to get different theorems on them. He gives an extensive survey of the
results concerning orientations and connectivity augmentations in a general
setting.

Kalman Cyory surveys when we can get (almost) complete powers as
the product of consecutive terms of an arithmetic progression or binomial
coefficients . The results are mostly negative as it turns out from the nice
overview of classical papers of Erdos and Selfridge as well as the recent ones
of the surveyer and others'.

Istvan Juhasz and Andrzej Szymanski present a purely topological gen
eralization of Fodor's theorem called "the pressing down lemma" . By means
of it, the authors prove a partial generalization of this framework of 8010
vay's celebrated stationary set decomposition theorem.
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In his extensive survey paper, Alexandr Kostochka summarizes the re
sults on the minimum number of edges in color-critical graphs and hyper
graphs .

Michael Krivelevich and Benny Sudakov give an extensive survey on
pseudo random graphs with emphasis on the results obtained by means of
the investigation of the eigenvalues of the adjacency matrix.

Jaroslav Nesetril deals with questions and results concerning order
theoretic properties of the homomorphism order of graphs, but the author
surveys upper bounds, suprema and maximal elements of the homomor
phism order lattice in other interesting finite structures too . The author
also studies minor closed classes of graphs, shows how the order setting
captures Hadwiger conjecture and suggests some new problems too .

Andras Recski and David Szeszler investigate VLSI routing algorithms,
especially the influence of Gallai 's Algorithm on them . They show the
first forty years of the influence on VLSI design of the classic result on the
perfectness of interval graphs.

Andras Sarkozy's paper describes advance in a specific question, the
possible behaviour of representation functions. We take a set A of positive
integers, and consider rIJn), the number of representations of n as a sum of
k elements of A, or variants where the order is neglected or where an element
can be used only once. Typical questions are whether such a function can
be monotonic, or can be very near to a given regular function. The author
presents plenty of results and unsolved problems .

Andrew Thomason presents results and methods concerning the min
imum number of edges guaranteeing a given graph minor. It turns out
that the extremal graphs are pseudo-random. The survey describes what is
known about the extremal function and discusses some related matters.

Robert Tijdemau's survey covers a broad area, with main emphasis on
tilings and balanced words. We learn how words with small complexity
(that is, with a small number of different subwords of length n for every n)
are connected with balanced words, where the number of occurrences of
any fixed letter in subwords of given length is almost constant, and with
sequences given by the integer part of a linear function.

The organizers of the conference gratefully acknowledge the financial
support of the High Level Scientific Conferences program of the European
Union (contract No. HPCF-CT-2000-00419) .

The editors
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A UNIFYING GENERALIZATION OF SPERNER'S

THEOREM

M. BECK, X. WANG and T . ZASLAVSKY*

Dedicated to the m emories of Pal Erdos and Lev Meshalkin

Sperner's bound on th e size of an antichain in the latti ce P (S) of subsets of a
finite set S has been genera lized in three different directi ons: by Erdos to subsets
of P(S) in which chains contain at most r elements ; by Meshalkin to certain
classes of compositions of S ; by Griggs, Stahl , and Trotter through replacing
the antichains by certain sets of pairs of disjoint elements of P(S) . We unify
these three bound s with a common genera lizat ion. vVe simi larly unify their
accompanying LYM inequalities , Our bounds do not in general appear to be
the best possible.

1. SP ERNER-TYPE THEOREMS

Let S be a finite set with n elements. In the lattice P(S) of all subsets of S
one tries to estimate the size of a subset with certain characteristics. The
most famous such estimate concerns antichains , that is, subsets of P(S)
in which any two elements are incomparable.

Theorem 1.1 (Sperner [11]). Suppose AI , . . . , Am ~ S suet: tha t Ak i. Aj

for k =1= j . Tll en ni ~ (In/2J)' Furthermore, this bound can be at tained for
any n .

We at tai n the bound by taking all l~J-element subsets of S, or all
r ~l -element subsets, but in no other way. There are many ways to prove

'Research supported by Nationa l Science Foundation grant DMS-OOi 0729.
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Sperner 's bound and the near-uniqueness of the maximal exam ple; several
of them will be found in the opening chapters of Anderson 's lovely intro
ductory book [1]. The most famous approach is perhaps th at of the "LYM
inequality" ; see Theorem 2.1 below.

Speruer 's th eorem has been genera lized in many different directions .
Here are three: Erdos extended Sperner's inequality to subsets of P (S ) in
which cha ins contain at most r clements. Meshalkin proved a Sperner-like
inequality for famil ies of compos it ions of S into a fixed number of pa rts , in
which the sets in each part const itute an antichain. Finally, Griggs, Stahl,
and Trotter extended Sperner 's theorem by replacing the antichains by sets
of pairs of disjoint elements of P (S) satisfying an intersect ion conditio n.
In this pap er we unify the Er dos, Meshalkin , and Griggs- Stahl-Trot ter
inequaliti es in a single genera lization. However , except in special cases
(among which are genera lizations of the known bound s), our bounds are
not the best possible.

For a precise statement of Erdos's generalization, call a su bset of P (S )
r -cha in- fr ee if its cha ins (i.e., linearly ordered subsets) contain no more
than r elements; that is, no cha in has length 1'. 1 In particular , an ant ichain
is l- chain-fr ee. The genera lization of T heorem 1.1 to r-c ha in-Iree families is

Theorem 1.2 (Erdos [4]). Suppose {A l , . . . , Am} ~ P(S) contains no
chains with r +1 elements. Th en m is bounded by the sum of th e r largest
binom ial coe fficien ts CZ), 0 :::; k: :::; n . T he bound is attainable for every ti

and r .

Sperner's theorem is the case r = 1. To attain the bound take all subsets
of sizes I n-~+ IJ ~ k ~ lll +~ -l J or all of sizes rn-;+ll:::; k ~ rn+;-l l; these
arc the only ways.

Going in a different direct ion, Sperner 's inequality can be genera lized
to certain ordered weak par titions of S. We define a weak partial com
position of S into p parts as an ordered p-tuple (AI , " " Ap ) of sets Ak,
possibly void (hence the word "weak" ), such that AI , . . . , Ap are pairwise
disjoint and Al U" 'UAp ~ S. If Al U· · 'U Ap = S, we have a weak compo
si tion of S . A Sperner-like inequality suitable for this setting was proposed
by Sevast'yanov and proved by Meshalkin (see [9]) . By a p- m ult in om ia l
coefficient for n we mean a multin omial coefficient (UJ , .~. ,Q) : where ai 2: 0

and al + ...+ ap = n . Let [p] := {l ,2, ... ,p}.

IT he term "r -family" or "k-falllily" , depending 0 11 t he nam e of th e forb idden length ,
has been used ill th e pas t , but we think it is tim e for a disti ncti ve nam e.
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Theorem 1.3 (Meshalkin). Let p ~ 2. Suppose (Aj l, . . . , Ajp) for j =
1, . . . , m are different weak compositions of S into p parts such that, for
each k E [p], the set {Ajk : 1 ~ j ~ m} (ignoring repetition) forms an
antichain. Then m is bounded by the largest p-multinomial coefficient for
n. Furthermore, the bound is attainable for every nand p.

This largest multinomial coefficient can be written explicitly as

n!

where p = n - pl#J. We attain the bound by choosing any set K ~ [p] of
size p and taking all weak compositions (Aj l , . .. , Ajp) in which IAjkl = L#J
if k E K and IAjkl = f#l if k ~ K. Hochberg and Hirsch [6] showed that no
other family of weak compositions of S has maximum size. Meshalkin's the
orem and the completion by Hochberg and Hirsch are curiously neglected:
we have not seen them mentioned in any book except [7].

To see why Meshalkin 's inequality generalizes Sperner's Theorem, sup

pose AI ,"" Am ~ S form an antichain. Then S - AI, . . . ,S - Am also form
an antichain . Hence the ni weak compositions (Aj , S - Aj ) of S into two
parts satisfy Meshalkin's conditions and Spemer's inequality follows.

Yet another generalization of Sperner's Theorem is

Theorem 1.4' (Griggs-Stahl-Trotter [5]). Suppose {A j o, ... , Ajq} for j =
1, . .. , m are chains of size q + 1 in P(S) such that Aj i ez Akl for all i and
I and all j i=- k. Then ni :::; (L(n'~~)/2J) ' Furthermore, this bound can be
attained for all nand q.

An equivalent, simplified form of this result (in which Aj = Ajo, Bj =
S - Aj q , and n replaces n - q) is

Theorem 1.4. Let n > O. Suppose (Aj , B j ) are ni pairs of sets such that
Aj n e, = 0 for all i, Aj n s; =I 0 for all j =I k, and alllAjl + IBjl ~ n.
Tllen m ~ (Ln/2J) and this bound can be attained for every ti,

Sperner's inequality follows as the special case in which AI , .. . , Am ~ S
form an antichain and B j = S - Aj . To attain the bound in Theorem 1.4'
take {Ajo} to consist of all subsets of [n - q] of size In?J, or all of size
fn?l Then let Ajk = Ajo U {n - q + 1, . . . , n - q + k}. In Theorem 1.4,
take Aj = Ajo and Bj = [71.] - Aj .
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(1 )

T heorems 1.2, 1.3, and 1.4 are incomparable generalizat ions of Sperner 's
Theorem. We wish to combine (and hence fur ther genera lize) these gener
alizat ions. To state our main result , we define a weak set composition as
a weak composit ion of any set S. Our genera lizat ion of Sperner' s inequality
IS:

Theorem 1.5. Fix integers P 2: 2 and r 2: 1. Suppose (A j l , ... , A j p )

for j = 1, ... , m are different weak set composit ions into p parts with the
condition that , for all k E [p] and all I ~ ['In] with III = r + 1, there exist
distinct i, j E I such that either A ik = A jk or

A ik n UAjl t= 0 t= Aj k n UAil ,

lik lik

and let n := maxl Sj 9 n ( IAjll + ... + IAjpl) . Th en rn is bounded by the
sum of tlie r P largest p-m ult inomial coefficients for integers less than or
equal to n .

T hink of the p-mult inomial coefficients as a sequence arranged in weakly
descending order. T hen if r P is larger than (r;p) , the number of P:
multin omial coefficients, we regard. the sequence of coefficients as extended
by O's.

The reader may find the statement of thi s t heorem somewhat difficult.
We would first like to show that it does genera lize T heorems 1.2, 1.3, and 1.4
simultaneously. The last follows easily as the case T = 1, p = 2. T heorem
1.3 can be deduced by choosing T = 1 and restrict ing the weak composit ions
to be composit ions of a fixed set S with n elements. Finally, Theorem 1.2
follows by choosing ]J = 2 and the weak composit ions to be composit ions
of a fixed n-set into 2 parts. What we find most interesting, however , is
that specializing T heorem 1.5 yields three corollaries that generalize two at
a time of T heorems 1.2, 1.3, and 1.4 yet are easy to state and understand .
Section 4 collects these corollaries.

We came to Theorem 1.5 through seeking a common genera lizat ion of
Erdos's and Meshalkin 's theorems (see Corollary 4.1); our origina l motiva
t ion was, in pa rt , surprise at the lack of genera l awareness of Mesha lkiu's
result . When we learned of the Griggs- St ahl-Trotter theorem, we could
not be satisfied until we succeeded in extending our result to include it as
well. (Fortunately for us, we did not encounte r a four th kind of Sperner
generalization.)

The condit ion of the theorem implies th at each set Ak = {Aj k : j E
[m]} (ignoring repeti tion) is r- chain-frce. We suspect th at the converse is
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not t rue in genera l. (It is true if all the weak set compositions are weak
composit ions of the same set of order n , as in Corollary 4.1.)

All the theorems we have stated have each a slight ly stronger companion,
a ll LYM inequality. In Section 2, we state these inequalit ies and show how
Theorems 1.1-1.5 can be dedu ced from them. The proofs of T heorem 1.5
and the corresponding LYM inequality are in Section 3. After the corollaries
of Sect ion 4, in Section 5 we show that some, at least , of our upp er bounds
cannot be attained .

2. LYIVI INEQUALITIES

In attempting to est imate the order of th e free distributive lat ti ce with
n generators , Yam amoto came up with th e following result , which was
rediscovered by Meshalkin in the course of proving his Sperner genera lization
(T heorem 1.3) and st ill later by Lub ell with a classic short proof. In
the meantime Bollobas had illdependently proved even a genera lization
(T heorem 2.4 below). The result is the famous LYM inequali ty, that has
given its name to a whole class of similar relations.

Theorem 2.1 (Yamamoto [12, §6], Meshalkin [9, Lemm a], Lub ell [8]).
Suppose AI , "" Am ~ S sucu that AI.: C/:. Aj for k i= j. Th en

I1l 1
"'- <1.L...J( II ) -
k =1 IAk l

Sperner 's inequality follows immediately by notin g that maxi, (Z) =

( II )In/2J .
An LYM inequali ty corresponding to Theorem 1.2 appea red to our

knowledge first in [10]:

Theorem 2.2 (Rota-Harper). SlIpp ose {A I , " " A lii} ~ P (S ) contains no
chains with T' + 1 elem ents. Th en

m 1

L-(") <r.
1.:= 1 IAkl

Deducing Erdos's T heorem 1.2 from this inequality is not as st ra ight 
forward as the connection between Theorems 2.1 and 1.1. It can be done
through Lemma 3.1, which we also need in order to dedu ce Theorem 1.5.
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The LYM companion of Theorem 1.3 first appeared in [G]; again, Me
shalkin's Theorem 1.3 follows immediately.

Theorem 2.3 (Hochberg-Hirsch). Suppose (Ajl "'" A j p) for j = 1, ... , tn

are different weak compositions of S into ]J parts such that for each k E [p]
the set {Aj k : 1 :::; j :::; rn} (ignoring repetitions) forms an nnticluuu. Then

The LYM inequality corresponding to Theorem 1.4 is due to Bollobas.

Theorem 2.4 (Bollobas [3]). Suppose (Aj , Bj) are rn pairs of sets such
that A j n e, = 0 for all j and Aj n Bk =1= 0 for all j =1= k. Tl1cn

Once more, the corresponding upper bound, the Griggs-Stahl-Trotter
Theorem 1.4, is an immediate consequence.

Naturally, there is an LYt-v'I inequality accompanying our main Theorem
1.5. Like its siblings, it constitutes a refinement.

Theorem 2.5. Let p 2: 2 and T 2: 1. Suppose (Aj l , ... , A j p ) for j =

1, .. . , rn are differcnt weak compositions (of any sets) into p parts satisfying
the same condition as in Theorem 1.5. Then

Example 2.1. The complicated hypothesis of Theorem 2.5 cannot be re
placed by the assumption that each Ak is r-chain-free, because then there
is no LYM bound independent of n . Let 71. » p 2: 2, S = [71.]' and
A = {( A, {n}, {n - 1}, .. . , {n - I' + 2}) : A E AI} where Al is a largest
r-chain-free family in [n - p + 1]' specifically,

Al = UPj ( [n - p+ 1])
.'lEI
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where

15

I={in-p+1- rliTl,-p+1-rl in - p + 1 - r l '- }I 2 ' I 2 + 1, I 2 + r 1 .

The LYM sum is

'" 1 = '" IAI!
D (IAI+p-l) D (IAI+p-1) !

AEAl IAI,! ,..,,1 il EAl

= '" (11, - P+1) j !
D j (j + p - 1)!
,lE I

= '" (n - p + 1) .,. (n - p - j +2)
D (p-1+j)!
,lE I

--t 00 as n --t 00 ,

There is no possible upp er bound in terms of n.

3. PROOF OF TH E M AIN TH EOREMS

Proof of Theorem 2.5 . Let 8 be a finite set conta ining all Aj/,; for
j = 1, , , " 'In and k: = 1,. " ,p, and let ti = 181. We count maximal chains
in P(8) , Let us say a maximal chain separates the weak composit ion
(A] " " ,Ap ) if there exist elements 0 = Xo ~ XII ~ . .. ~ Xlp = 8 of th e
maximal cha in such th at AI" ~ X lk - Xlk_ 1 for each k. Th ere are

maximal chains separating (A] , ... ,Ap) . (To prove this , replace maxim al
chains 0 c {ri} C {XI , X2} c .,· c 8 by permutations (:Q , x2, ... ,Xn )

of 8 . Choose IAII + ...+ IApl places for Al u ··· u Ap; then arrange Al in
any order in th e first IAII of these places, A2 in the next IA21, etc . Finally,
arrange 8 - (A 1 u .. . u Ap ) in th e remaining places. This const ructs all
maximal chains th at separate (A I , .. . , Ap ) . )



16 M. Beck, X. Wang and T . ZasJavsky

We claim that every max imal chain separates at most r P weak par
t ial composit ions of lSI . To prove this, assume th at t here is a maximal
cha in that separates N weak par ti al composit ions ( A j l , .. . , A j p) . Con
side r all first components Aj l and suppose 'I' + 1 of them are different ,
say All , A 2l , . . . , A /"+ 1,1 . By the hypotheses of the t heorem, there are
i , i' E ['1' +1] such that A il meets some A i' I' where [' > 1 and A j'l meets some
Ail where l > 1. By separation , there are ql and q~ such t hat Ail ~ XI/! - Xo
and A i'l ~ Xq~ - X o , and t here are q/-l , q/, qf,-l' qf, such that (jl ::; q/-l ::; ql ,

q~ ::; qf,- 1 ::; qf" and

and

Since Ail meets Ai'I', t here is an element a il E Xq' - .Xq, ; it follows that
[, [' -I

qf' -l < ql · Similarly, ql-I < q~ . But this is a cont ra dict ion. It follows
th at , amongst the N sets Aj 1, t here are at most r different sets. Hence
(by t he pigeonhole pr inciple) t here are rNlr1 am ong the N weak partial
composit ions th at have t he same first set Aj l .

Looking now at th ese rN1'1'1weak partial composit ions , we can repeat
th e argument to conclude that th ere are rrN [r1/1'1 2: rN /1'21weak partial
composit ions for which both the A jl 's and the A j 2's ar e ident ical. Repeating
this process p - 1 times yields rN Irp- l1 weak par tial composit ions into P
par ts whose first p - 1 par ts are identical , But now the hyp oth eses imply
th at the last parts of all these weak partial compos itions are at most r

different sets ; in other words, there are at most 1· distin ct weak partial
composit ions . Hen ce rN Irp - l 1 ::; 1', whence N ::; r" , (If we know that
all th e composit ions are weak-but not partial- compositions of S, then
the last parts of all these rN Irp- l1 weak compositi ons are iden tical. Thus
N ::; rP- l . )

Since at most r P weak partial composit ions of S are separated by each
of t he n ! maximal chains , from (2) we deduce t hat

The theorem follows. •
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To ded uce Theorem 1.5 from T heorem 2.5, we use the following lemma,
which originally appeared in somewhat different and incomplete form in
[10], used there to prove Er dos 's T heorem 1.2 by means of T heore m 2.2 ,
and appeared in complete form in [7, Lemma 3.1.3]. We give a very short
proof, which seems to be new.

Lemma 3.1 (Harper-Klain-Rota) . Sup pose M l , ... , MN E rn: satisfy ivIl ~

!'vh ~ ... ~ M N ~ 0, and let R be an int eger wit h 1 < R < N . If
ql , . . . , qN E [0,1 ] hsve sum

ql + ...+ qN ::; R ,

then
ql M l + . . . + qN!lIN ::; M 1+ .. . + MR .

Proof. By assumption,

N R

L qk::; L(1- qd·
k=R+ l k= l

Hence, by the condit ion on the !11k ,

N N R R

L qk!'vh ::; !I1R 2: qk::; M R2:(1 - qk) ::; 2:(1 - qk)Mk,
k=R+l k=R+l k=l k=l

which is equivalent to th e conclusion. _

Proof of Theorem 1.5. Let 5 be any finite set that contains all A j k . Write
down the LYM inequality from T heorem 2.5.

From the m. weak partial composit ions (A j l , , Aj l' ) of 5, collect
those whose shape is (o,l , . . . , o.p) into the set C(o,l, , ap). Label the p-

mult inomial coefficients for integers n' ::; n as Mf,M~, .. . so that Mf 2':
M2' 2': .. . . If Mk'. is ( n' ) , let qk'.:= IC( al , .. . ,ap) I/M£. By Theorem

01 , .. . ,° 11

2.5, the q~ ' s and M£'s satisfy all the condit ions of Lemma 3.1 with N re
placed by the number of p-t uples (0. 1, .. . ,ap ) whose sum is at. most n , that
is (n; p), and R replaced by min(N, r P) . Hence

L jC(al'''' ,ap)1 ::;M~ +...+ !11k·
0.1 +.·.+u.p:Sn

T he conclusion of the theorem now follows, since

rn =

(II + " · +U. p :S1I

IC(aI , . .. , ap) I· -
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M. Beck, X. Wang and T. Zaslavsky

As promised in Section 1, we now state sp ecial cases of T heo rems 1.5/2.5
that uni fy pairs of T heorems 1.2, 1.3, and 1.4 as well as t heir LYM com
pani ons.

The first special case unifies Theorems 1.2/2 .2 and 1.3/2 .3. (It is a
corolla ry of the proof of the main theorems , not of the theorems themselves.
See [2] for a very short , direct proof.)

Corollary 4.1. Suppose (Aj l , . .. , Ajp) are Tn different weak compositions
of 5 into p parts sucl: that for each k E [p - 1], the set {Aj k : 1 :S j :S rn}
is r-ctieiti-Ivee. Then

< p- l_ r .

Conse quently, Tn is bo unded by the sum of the r P- l largest p-nmltinomial
coe fficien ts for n .

Proof. We note tha t , for a family of Tn weak composit ions of 5, the condi
t ion of Theorem 2.5 for a par ticular k E [p- 1] is equivalent to {Ajd j being
r -chai n-free . Thus by the hyp othesis of the corollary, the hyp othesis of the
theorem is met for k = 1, ... , P - 1. Then t he proof of Theorem 2.5 goes
throu gh perfectly with the only difference, explained in the proof, that (even
without. a condit ion on k = p) we obtain N :S r P- l . In the proof of Theorem
1.5, under our hyp otheses t he sets C(a l ," . , ap ) with a l + ., .+ ap < n are
empty. Therefore we take only the p-mult inomial coefficients for n , lab elled
M, ~ M 2 ~ . ... In applying Lemma 3.1 we take R = min(N , r P- l ) and
summations over a l + ... + 0p = n . Wi th these alterat ions t he proof fits
Corollar y 4.1. _

A good way to think of Corollary 4.1 is as a t heorem abo ut parti al wea k
composit ions , obtained by dropp ing the last part from each of the weak
composit ions in t he corollary.

Corollary 4.2. Fix p ~ 2 and T ~ 1. Suppose (Aj l , .. . , Ajp) are n i different
weak partial com posit ions of an n- set 5 in to p parts such th at for each
k E [p], the set {Aj k : 1 :S j :S rn ] is r -efrain-free . Then Tn is bounded by
the slim of the r P largest (p + 1)-m ult inomial coe fficients for n . _



A Unifying Generalization of Spemer'« Th eorem 19

A difference between this and Theorem 1.5 is that Corollary 4.2 has a
weaker and simpler hypothesis but a much weaker bound. But th e biggest
difference is th e omission of an accompa nying LYM inequ ality. Corollary 4.1
obviously implies one, but it is weaker than that in Theorem 2.5 because,
since the top number in th e latter can be less th an '11, the denominators are
much smaller . We do not present in Corollary 4.2 an LyrvI inequ ality of the
kind in Theorem 2.5 for the very good reason that non e is possible; that is
the meaning of Example 2.1.

The second sp ecializ ation constit utes a weak common refinement of
Theorems 1.2/2 .2 and 1.4/2.4. We call it weak because its spec ializat ion to
t he case B j = S - A j , which is the situ ation of Theorems 1.2/2 .2, is weaker
than those theorems.

Corollary 4.3. Let r be a positive integer. Suppose (A j , B j ) are m pairs
of sets such that Aj n Bj = 0 and, for all I ~ [rn] with III = r + 1,
there exist distinct i , j E I for which A j n Bk =1= 0 =1= 11k n B] . Let

'11 = maxj (IAjl + IBjl) . Th en

In 1

L (IAjl+IBjl) ::; r.
) = 1 IAjl

Consequently, m is bounded by the Slim of th e r largest binomial coefficients
(~) for 0 ::; k ::; '11' ::; n . This bound can be attained for all '11 and r.

Proof. Set p = 2 in Theorems 1.5/2.5. To attain th e bound, let Aj range
over all k-subsets of ['II] and let B j = ['11] - Aj . •

T he last speci a l case of T heorems 1.5/2.5 we would like to mentio n is
tha t in which r = 1; it unifies Theorems 1.3/2 .3 and 1.4/2.4.

Corollary 4.4. Suppose (Aj 1, . . . , Ajp) are m different weak set composi
tions into p parts with the condition that , for all k E [p] and all distinct
i, j E [rn], either Aik = Ajk or

Aik n UAjl =1= 0 =1= Ajk n UAil ·
1# 1#

and let '11 2: maxj (IAjIi +...+ IAjp!) . Th en

In 1

~ (IA jJl+"+IAjpl) ::; 1.
)-1 IAjJl,...,IAjpl

Consequently, ni is bounded by the largest p-nmltinomial coefficient for n.
Th e bound can be at tained for every '11 and p.
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Proof. Everything follows from Theorems 1.5/2.5 except the attainability
of the upper bound, which is a consequence of Theorem 1.3. •

5. THE MAXIMUM NUMBER OF COMPOSITIONS

Although the bounds in all the previously known Sperner generalizations of
Section 1 can be attained, for the most part that seems not to be the case
in Theorem 1.5. The key difficulty appears in the combination of r-families
with compositions as in Corollary 4.1. (We think it makes no difference if
we allow partial compositions but we have not proved it .) We begin with a
refinement of Lemma 3.1. A weak set composition has shape (0,1 , . .. ,ap )

if IAkl = o,k for all k.

Lemma 5.1. Given values of n, r, and p such that r P- 1 ~ (n;~~ 1) , the
bound in Corollary 4.1 can be attained only by taking all weak compositions
of shape (0,1 , ... , o,p) that give p-multinomial coefficient larger than the
(rP- 1 + l)-st largest such coefficient Mr11- I + I , and none whose shape gives
a smaller coefficient than the (rP- 1)-st uugest. such coefficient M';«: I.

Proof. First we need to characterized sharpness in Lemma 3.1. Our lemma
is a slight improvement on [7, Lemma 3.1.3].

Lemma 5.2. In Lemma 3.1, suppose that 1I1R > O. Then there is equality
in the conclusion if and only if

and qk = a if Mk < M R

and also, letting MRI+l and MRII be the first and last Mk'S equal to MR,

qR'+1 + ... + qR" = R - R'. •

In Lemma 5.1, all lIh > a for k ~ (n;~~ I) . (We assume N is no larger

than (n;~~1). The contrary case is easily derived from that one .) It is
clear that, when applying Lemma 3.1, we have to have in our set of weak
compositions all those of the shapes (0,1 , . . . , o,p) for which ( n ) > lI;[rp-1al ,···,ap

and none for which (al ,.~. ,a) < Jv!rP- I. The rest of the m. weak compositions

can have any shapes for which el, .n. ,a) = Jv!rP-J. If 1I1rp- 1 > Mrp- l +1

this means we must have all weak compositions with shapes for which

el ,.n.,ap) > lI1.rp- l+ l · •
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To explain why the bound cannot usually be attained, we need to define
the "first appearance" of a size ai in the descending order of p-multinomial
coefficients for n .

Fix p 2: 3 and n and let n = vp +p where a ::; p < p. In C
1

,.~., a) ' the ai
are the sizes. The multiset of sizes is the form of the coefficient. Arrange
th e multinomial coefficients in weakly decreasing order: M1 2: M2 2: M3 2:
.. ' . (There are many such orderings; choose one arbitrarily, fix it, and call
it the descending order of coefficients.) Thus, for example,

( n) ( n )M 1 = > M 2 =
t/, . • • , v v + 1, v, ... , v, v-I

= M3 = .. . = M p(p- l )+ l if pin

since Nh, .. . ,M p(p- l )+ l have the same form as M2 , and

M 1 = ( n ) = .. . = f..1(p) > M(P)+l if p t n,
v+1 , . .. ,v p p

where the form of M1 has p sizes equal to v + 1, so M1, ..• , M(:) all have

the same form.

As we scan the descending order of multinomial coefficients, each pos
sible size K" a ::; K, ::; n , appears first in a certain Mi. We call M,
the first appearance of K, and label it LK, ' For example, if pin,
L; = M1 > LV +1 = LV - 1 = M2 , while if p t n then L; = LV +1 = Mi.
It is clear that Lv > Lv- 1 > ... and LV+l > LV +2 > . . . , but the way in
which the lower LK, 's, where K, ::; t/ , interleave the upper ones is not obvious.
We write L'k for the k-th LK, in the descending order of multinomial coeffi
cients . Thus Li = Lv; L'2 = LV +1 and L; = Lv- 1 (or vice versa) if pin,
and L'2 = LV + 1 if Pt n while L; = LV + 2 or Lv-i ·

Theorem 5.1. Given r 2: 2, p 2: 3, and n 2: p, the bound in Corollary 4.1
cannot be attained if L; > Mrp-l +i-

The proof depends on the following lemma.

Lemma 5.3. Let r 2: 2 and p 2: 3, and let K,1,"" K,r be tue first r sizes
that appear in the descending order ofp-multinomial coefficients for n. The
number of all coefficients with sizes drawn from K,1, ..• , K,r is less than rP- 1

and their sum is less than M; + ...+ Mrp-l.
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Proof. Clearly, K }, . . . , K r form a consecutive set that includes u, Let K

be the smallest and K' the largest . One can verify that, in C,..~ K;) and

C,;I ,..: K;' ,y)' it is impossible for both x and y to lie in the interval [K ,K'] as
long as (1' - 1)(p - 2) > O. •

Proof of Theorem 5.1. Suppose the upp er bound of Corollary 4.1 is
attained by a certain set of weak composit ions of S, an n-element set . For
each of the first r sizes K 1, . . . , /iT t hat appea r in the descending order of
p-multinomial coefficients, £ K;i has sizes drawn from K} , . . . , K r and at least
one size ru, Taking all coefficients Mi. that have the same forms as th e £ K;i '
Ki will app ear in each position j in some M k . By hypothesis and Lemma
5.1, among our set of weak compositions, every Ki-subset of S appears in
every position in the weak compositions. If any subset of S of a different
size from K} , . . . , K T appea red in any position, there would be a chain of
length r in that position. Therefore we can only have weak compositions
whose sizes are among the first r sizes. By Lemma 5.3, there are not enough
of these to attain th e upp er bound. •

Theorem 5.1 can be hard to appl y because we do not know M r p-l + i- On
the other hand , we do know £1{ since it equals ( n ) where a2, . . . , apK ,U2 ,· · · ,a p

are as nearly equal as possible. A more practical criterion for nonattainment
of the upp er bound is therefore

Corollary 5 .1. Given T 2: 2, P 2: 3, and n 2: p, the bound in Corollary 4.1
cannot be attained if £; > £;'+1 '

Proof. It follows from Lemma 5.3 that £ ; +} is one of the first 1'P- } coeffi
cients. Thus t; > £; +1 2: M rP- l + 1 and Theorem 5.1 applies. •

It seems clear that £ ; will almost always be larger than £ ; +1 (if r 2: 3 or
p t n) so our bound will not be attained. However , cases of equality do exist .
For inst ance, take p = 3, r = 3, and n = 10; th en £'5 = L 1 = (5,14~1) = 1260

and L6= L6 = (61~2) = 1260. Thus if T = 5, Corollary 5.1 does not apply
here. (We think tl;~ bound is still not attained but we cannot prove it.) We
can isolate the instances of equality for each 1' , but as r grows larger the
calculations quickly become extensive. Thus we state the results only for
small values of 1' .

P roposition 5. 1. Th e bound in Corollmy 4.1 cannot be attained if 2 ~

r ~ 5 and P 2: 3 and n ~ r - 1, except possibly when r = 2, pin, and
p = 3,4,5, or when r = 4, p ~ 4, and n = 2p - 1, or when r = 5, p = 3, and
n = 10.
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Proof sketch. Suppose p f n. We have verified (by long but routine
calculations which we omit) that Li = L2 > L3 > L4 > L'5 > L'6 except
that L4= L'5 if p = p - 1 and p ~ 4 and v = 1 and L'5 = L'6 when p = v = 3
and p = 1.

If pin then Li > L2 = L3 > L4 > L'5 > L'6 . This implies the
proposition for r = 3, 4, or 5. We approach r = 2 differently. The largest
coefficients are

( n) ( n )M, = > M2 =
v, .. . , v v +1, v, ... , v, v-I

= Mp(p-l)+l > M p(p- l )+2 '

= '"

If p(p - 1) + 1 :s: r P- l , the bound is unattainable by Theorem 5.1. That is
the case when p ~ 6.
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A QUICK PROOF OF SPRINDZHUK 'S D E COMP OSIT ION

THEOREM

Y. F . BILU and D. MASSER

Dedicated to the memory of V. G. Sprind zhuk

In [11] Sprindzhuk proved the following st riking theorem.

Theorem 1 (Sprindzhuk [11]). Let F (x , y) E Q [x , y] be a Q-irreducible
polyn omial satisfying

(1) F (O, 0) = 0,
BF
By (0, 0) # O.

Then for all but finitely many prim e numbers p, the polyn omial F(p , y) is
Q-irreducible.

Actu ally, prim e numb ers can be replaced by prime powers , as well as by
numbers of the form lit , where t E Z, t # 0: see Corollary 3.

In the subsequent pap er [12] (see also [13 , 14] for a more detailed ex
position) Sprindzhuk obtained an even more amusing result . To formulate
it , recall that the height of a ra tional numb er a = alb (where a and b are
coprime integers) is defined by

(2) H( a) = max {Ia l,Ibl} .

One immediately verifies that

(3) H(a ) = II max {I, lalJ = II max {I, la l~ l } ,
v EA/Q VEMQ

where MQ is the set of all places of th e field Q (th at is, MQ = {primes} U
{oo}).

For a E Q put V (a) = {v E MQ : lalv < I}.



26 Y . F. Bilu and D. Messer

Theorem 2 (Sprindzhuk [12]). Let F( x ,y) be as in Theorem 1 and E a pos
itive number. For every 0' E Q let d l (0') , .. . ,ddO') be the degrees of the Q
irreducible factors of F(O', y) (so that dI(O') +...+dk(O') = degy F). Then
for all but finitely many 0' E Q there is a partition V(O') = VI U . . . U Vk sucu
that

(4) (i=I , .. . , k).

We do not formally assert that th e partition sets VI, . .. , Vk are non
empty. However, (4) implies that th ey are indeed non-empty when E is
sufficientl y small (in fact , when E < II degy F).

Theorem 1 easily follows from Theorem 2. Put n = {prime powers} U

{l it : t E Z, ItI > I} .

Corollary 3. Let F(x ,y) be as in Th eorem 1. Then F(w,y) is Q-irreducible
for all but finitely many w E n .

Proof. As we observed above, the partition sets VI, ... , Vk are non-empty
when E is sufficiently small. But for every wEn the set V(w) consists of
a single element , and cannot be partitioned into more than one non-empty
part. _

Here is anot her amazing consequence of Th eorem 2 (th e proof is imme
diate).

Corollary 4. Let F( x ,y) be as in Th eorem 1 and let {qv} , {Tv} be two
sequences of prime powers such the: limv->oo log qvl log Tv exists and is
irrational. Then F(qvTv , y) is Q-irreducible for all but finitely many 1/ .

-
We invite th e reader to invent many other corollaries of this wonderful

theorem.

Actually Sprindzhuk in [12] obtained a yet sharper version of Theorem 2

with E replaced by an error term of order ( log H (0') ) -1 /2 . To prove this he
used Siegel's Lemma and some sophisticat ed machinery from the th eory of
Diophantine approximation and tr anscendence such as the cancellat ion of
factorials and a zero estimate (Lemma 6 of [11]) . He also used Eisenstein's
theorem, which is easy when (1) is assumed .

In the final paragraph of the Russian edition of his book [13], Sprindzhuk
wrote that, while methods of Diophantine approximation are used in the
proof of Theorem 2, its formulation
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".. . involves no concepts related to the th eory of Diophantine
approximation. This gives hope th at a different proof exists,
which is independent of th e th eory of Diophantine approxima
tion ."

27

Indeed, such a proof was soon after found by Bombieri [1], who used the
machinery ofWeil functions and Neron-Tat e height . Weil functions were also
employed by Fried [9] in the prime-power case. It was Bombieri who pointed
out the connect ion with G-functions and Fuchsian differenti al operators of
arithmet ic typ e. This connection was further developed by Debes (and
Zann ier) [3 ,4, 5, 6].

Th e object of th e present note is to point out th at Theorem 2 itself can
be established rather quickly, also along the lines of Sprindzhuk 's original
arti cles, bu t without most of the sophisticated machinery. Our proof relies
only on the simplest properties of heights (see Proposition 5 below) and
Eisenst ein's theorem.

Recall th e definition of th e height of an algebraic number. This is

(5)

where K is a numb er field containing a and MJ( is th e set of valuati ons
on K , which are norm alized to exte nd the standard valuat ions of Q. As
usual , K; and Qv stand for the topological completions with respect to
v E MJ(.

It is st raightforward to verify th at th e right-hand side of (5) does not
depend on th e choice of th e field K. Also (3) implies th at this definition is
compat ible with th e definition of th e height of a rational numb er from (2).

The product formula

II lal!;(v:Qul = 1
VElv!{.(

(a E K *)

implies th at for any V c MJ( and a E K* one has the following "Liouville
inequality" :

(6) II l al~(u : Qvl ~ H(a)-[J( :Ql .

v EV

The following two well-known properties of the height function are (al
most) immediate consequences of its definition (5).
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Proposition 5. Let a , 13 be algebraic numbers and F( x , y) a polynomial
with algebraic coefficients. Put m = deg, F and n = degy F .

1. For 1 = F (a , 13) one has H b ) « H (a )mH( j3t·

2. Assume that F is not divisible by x -a. Then F (a ,{3) = a implies
that H{ j3) « H (a )m.

Constants implied by "«" depend only on the polynomial F.

Proof. Part "I" is straigh tforward. To prove "2", write F( x , y) = fn(x)yn+
...+ fo{Y). By the assumption, not all of the numbers fo{a) , ... , fn(a)
vanish . Put v = max {j : f j( a) =1= a}.

Let J( be a number field containing a , 13 and th e coeffic ients of F . The
equality fv(a)j3v + fv_l( a) j3v-1 + . . . + fo(a) = a implies th at

max { 1, Ij3lv} ~ max { 1, Ivlv}

Using the product formula, we obtain

H( {3)::; H(V )( II max{l ,lfv-I(a)/fv (a)l v"'"
VEMf{

)

l/IK:iQJ
Ifo{a)/ fv(a)1 JIKv : iQvJ

=v( II max{lfv(a)l lI ,lfv-I(a)! v"' "
vE M f{

as wanted. -

Recall also Eisenstein 's t heorem.

Theorem 6. Let Y( x) = ao + alx + a2x2 + . . . be a power series with co
efficients in a number field J( , algebraic over the field K (:1: ). Th en for
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every v E Mg th ere exists Cv ~ 1 such that all but finitely many Cv are
equal to 1, and

(7) (v EMf( , j = 1,2 , ... ).

(i=I , .. . ,k).(8)

Classically, Eisenstein 's theorem reads as follows: there exists a posi
tive int eger T such t hat T j o,j are algebraic integers for j = 1,2, . ... This
immedi at ely implies Theorem 6. Indeed , for non-archimedean v one may
put Cv = ITI;;-l . For archimedean v , the existence of Cv follows from th e fact
tha t th e convergence radius of a complex algebraic power series is positive.

Eisenstein 's th eorem goes back to Eisenstein 's paper [8]. See [10,
page 151] for an old-fashioned proof and [7] for a modern quantit ative argu
ment. See also [2, page 28] for an especially quick proof when J( = Q, which
suffices for the present note. In addit ion, if 0,0 = 0 and F( x ,Y(x)) = 0,
where F(x ,y) E Z [x ,y] satisfies (1), th en a very easy induction gives the

value T = ( fJF/fJy(O ,0)) 2 , and in fact this case suffices as well.

Proof of Theorem 2. P ut rn = deg, F and n = degy F. To prove the
theorem, it is sufficient to find a partition V (a) = VI U . . . U VI,; sat isfying

- I:VEY: log lalv di(a), < - - +c
log H( a) - n

Indeed, by th e second equa lity in (3),

1,; " I I I,;
"\' - D v EVi log a v = 1 = "\' di(a).
L 100. H( a) L n
i = ! b i=l

(i = I , ... ,k),

Hence (8) implies tha t

- I:vEV log lalv di(a), > -- - (k - l) c
log H( a) - n

and (4) follows afte r redefining c.

It follows from (1) that th ere exists a power series Y(x) = o,l x+o,2x2+. . .
with rational coefficients satisfying F( x ,Y(x)) = O. Put

(9) N = r4rn(n - l) /c1-
There is a non-zero polynomi al G(x,y) E Q[x,y] sat isfying

(10)

(11)

elegyG :::; n - 1, deg; G :::; N ,

ord:r=oG( x , Y(x)) ~ nN.
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(Indeed, th e vector space of polynomials satisfying (10) is of dimension
n(N + 1), while (11) is equivalent to nN linear relations.) In the sequel,
constants implied by "0 (·)", "«" and "»" may depend only on F , G and E.

Put U(x) = G( .7:, Y(x)) . By Eisenstein's theorem, for every v E MQ
there exists Cv 2: 1 such that all but finitely many cv are equal to 1, and the
coefficients of the power series Y(x) = 2:~I OjX

j and U(x) = 2:~nN bjxj

satisfy

(12)

For 0: E Q put

{
< 1/(2cv ) if v = 00, }

V'(o:) = v E V(o:) : 100Iv - ,

< 1/Cv if v < 00 .

V"(o:) = V(o:) \ V'(o:) .

Since - 2:vEVII(Q) log 100Iv « 1, for all but finitely many 0: we have

- L:vEV II(Q) log 100I v E
--~-'-.:.-_- < -.

logH(o:) - 2

Hence it is sufficient to find a partition V' (0:) = V{ U . .. U Vi such that

(13)
- L:vEV' log 100Iv d(o:) E, < -~- + -

log H (0:) - n 2
(i = 1, ... , k) ,

for then putting, say, VI = V{ U V"(o:) and Vi = Vi' for i 2: 2, we obtain (8).

Thus, fix 0: E Q and let F(o: ,y) = h(y)' " h(y) be the decomposition
of F( 0: , y) into Q-irreducible factors. We may assume (discarding finitely
many 0: at which the y-discriminant of F( x ,y) vanish es) that the polyno
mials Ii are pairwise coprime. We put di = deg k

For any v E V'(o:) the series Y(x) converges v-adically at 0:. Its sum
in Qv, denoted by ~(o:) , is a zero of F(o: , y). Define th e partition V'(o:) =

V{ U .. . U Vi as follows:

Vi' = {v E V'(o:) : Yv(O:) is a zero of Ji(y)} (i=l , ... , k ).

Now fix i and let {3 = (3i be a zero of fi(y) . Again discarding finitely
many 0: , we may assume that 'r/ := G(o: , (3) =J O. Ind eed, since F( x , y)
is irreducible, and elegy G < elegy F , the system of algebraic equations
F(0:, (3) = G( 0: , (3) = 0 has only finitely many solutions.
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Extend every v E Vi to the number field J( = Q({3) to have Yv(a) = {3.
Notice that

(14)

for this exte nsion of v . Then for v E Vi' we have TJ = Uv(a) , t he v-adic sum
of U(x ) at a . Using (11) and (12), we obtain

(15) (v E Vi') .

The equality F(a , {3) = a together with Propositi on 5: 2 implies that
H({3) « H(a )m (since th e polynomial F is irr educible, it is not divis
ible by x - a) . Now Proposition 5: 1 implies that H(TJ) « H(a)N+v,
where v = (n - l)rn . Using (14) and "Liouville inequ ality" (0) , we obtain

(16) IT ITJl
v

= IT ITJI~( v :QvJ~ H(TJ)-di » H(a) - (N+v)di .

VEV/ vEV/

Combining this with (15) and (9), we conclude that
(17)

( V) d· ( C) d·- L log lalv ::; 1 + N ~ log H(a)+O(l)::; 1 + 4' ~ log H(a)+O(l ).
VEV/

Wh en H(a ) is sufficient ly large, we obtain

(18)

which is (13). •
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DISCREPANCY IN GRAPHS AND HYPERGRAPHS

B. BOLLOBA.S and A. D. SCOTT*

Let G be a graph with n vertices and pG) edges, and define the discrepancies

disc:(G) = maxYCV(G) {e(Y) - p('~I)} and disc;(G) = maxYCV(G) {p('~I) 

e(Y)} . We prove that ifp(l-p) ~ l/n then disc: (G) disc; (G) ~ p(1-p)n3/6400.
We also prove a similar inequality for k-uniform hypergraphs, and give related
results concerning 2-colourings of k-uniform hypergraphs. Our results extend
those of Erdos , Goldberg, Pach and Spencer [6] and Erdos and Spencer [7] .

1. INTRODUCTION

The discrepancy of a graph G is disc (G) = maxYCV(G) Ie(Y) - H'~')I,
where we write e(Y) = e(G[Y]) for the number of edges of G spanned
by Y . If G has edge density 1/2 then the discrepancy can be seen as a
measure of how uniformly the edges are distributed among the vertices; see
Sos [11] and Beck and Sos [1] for more discusssion and a general account
of discrepancy. Erdos and Spencer [7] showed that for some constant c > a
every graph G of order n satisfies disc (G) 2: cn3/ 2 . More generally, they
showed that for every k 2: 3 there is a constant Ck > a such that if H
is a k-uniform hypergraph of order n then disc (H) 2: Ckn(k+l)/2 , where

disc (H) = maxYCV(H) le(Y) - H'~') I· By considering random graphs they
showed that this bound is sharp up to the value of the constant.

Now suppose that G is a graph with e(G) = m = p(I~I), where p < 1/2,
so that we expect a random subset Y C V(G) to span a subgraph with

"Research supported in part by NSF grant DSM 9971788 and DARPA grant F33615
Ol-C-1900.
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p('~I) edges . Then a more ap propriate measure of edge distri bution is given

by the quanti ty discp(G) = max)' CV(G) le(Y) - p(~) I. Erdos, Goldb erg,
Pach and Spencer [6] showed that in this case discp(G) 2: cJrnn, where c is
an abso lute constant .

A su bset of vertices with large discrepancy can clearly be eit her more
or less dense than the whole graph. Let us define the positive discrep
ancy by disc+(G) = maxYCV(G) { e(Y ) - H'~ ') } and the negative discrep-

ancy by disc-(G) = maxYCV(G) {H ' ~ ') - e(Y) }. Then a ran dom graph

G E 9(n, 1/2) shows that it is possible to have max { disc+(G),disc- (G)} :s:
cn3/ 2 . The one-sided discrepancy can be smaller: for instance: the complete
bipartite graph Kn/ 2,n / 2 has positive discrepancy O(n) , although its nega
t ive discrepancy is cn2• Similarly, the graph 2Kn/ 2 has positive discrepancy
O(n) but negative discrepancy cn2 . These examples show that we can gua r
antee small discrepancy on one side provided we allow large discrepancy on
the other. In thi s paper we shall prove that positive discrepancy substan
tially smaller than n3/ 2 gua rantees negative discrepancy substant ially larger
than n 3/ 2 ; indeed, we sha ll quant ify the trade-off between positive and neg
ative discrepancies. Surprisingly, the correct measure turns out to be the
product disc+(G) disc- (G).

We remark that a different type of negative discrepancy was considered
by Erdos, Faudree, Rousseau and Schelp [5] with the idea of showing that
grap hs with small negative discrepancy contai n complet e subgraphs of fixed
size. For furth er recent results in this dir ection see Kr ivelevich [9J and
Keevash and Sudakov [8J .

We begin with some definitions. For a k-uniform hypergraph G, a real
p E [0, 1J and X C V(G) let

( IXI)dp(X) = e(X ) - P k .

For disjoint sets of vertices X and Y , let

dp(X ,Y ) = e(X, Y) - pjXIIYI.
Then we define

(1)

and

(2)

disc;(G) = max dp(X)
XCV(G)

disc; (G)=- min dp(X ),
xCV(G)
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and set

discp(G) = max Idp(X)1 = max { disc;(G) , disc; (G)}.
XCV(G)

35

IfP is not specified we assume p = 1/2 , so for instance disc (G) = disCl/2(G).

Note that the cases p = 0 and p = 1 are trivial, and that if e(G) = Po (I~I)

we have discp(G) 2: Idp ( V (G)) I= Ip - Po I(I~I) . We will therefore usually

take p with e(G) = p(I~I) . Note that, for any p, disc:(G) = disc1_p(G) and

disc;(G) = disci-p(G) . We shall usually assume p S 1/2 , since if p > 1/2

we may replace G by G and p by 1 - p.

We remark that it does not make much difference if we restrict the
definitions in (1) and (2) to sets X of size n/2 (or some other size en): as
noted by Erdos , Goldberg, Pach and Spencer [6], this would change the
resulting discrepancy by at most a constant factor.

We shall frequently refer to a random bipartition V = Xu Y. Unless
otherwise stated, this means a random bipartition in which each vertex is
assigned independently to X or Y with equal probability. Throughout the
paper we shall use e, and Pj for sequences of independent Bernoulli random
variables , with e, E {+1, -I} and Pj E {O, I}, each taking either value with
probability 1/2.

The rest of the paper is organized as follows. In section 2 we give
lower bounds on discp(G) for graphs; in section 3 we turn our attention
to hypergraphs. Finally, in section 4, we consider some related results
concerning subgraphs of a fixed graph or hypergraph.

2. DISCREPANCY OF GRAPHS

In this section we prove our results on graph discrepancy. Let G be a graph
of order n and size p(~). If G is very sparse, say 0 < p S l/(n - 1), then
taking the union of PG) /2 edges from G gives a subgraph with at most pG)

vertices , so disc: (G) 2: p(;) /2 - p(pG)) 2/2 2: pn2/5 - p3n4/8 > pn2/20 for
sufficiently large n, while since G has average degree at most 1 it contains
an independent set of size at least n/2, and so disc- (G) 2: p(n~2) > pn2/9

for sufficiently large n. On the other hand, max { disc+(G) , disc-(G)} S
e(G) < pn2/2. Thus disc: (G) and disc; (G) are both 8(pn2). A similar
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argument applies if G is very dense, with p ~ 1 - l/(n - 1). (More precise
bounds are given by Erdos, Goldberg, Pach and Spencer [6] .)

We therefore restrict our attention to graphs with p(l - p) ~ l/n. Our
main result is the following.

Theorem 1. Let G be a graph ofordern and sizepG) , wherep(l-p) ~ l/n.

Then

(3) disc;(G) disc; (G) ~ p(l- p)n3 / 6400.

As an immediate corollary we get the following result of Erdos, Goldberg,
Pach and Spencer [6] .

Corollary 2. Let G be a graph of order n and size PG) , where p(l - p) ~
l/n. Then

We remark that the result of Erdos and Spencer for graphs can easily be
deduced from Theorem 1: if 1/3::; P::; 2/3 then disc (G) ~ ~(disc;(G) +
disc;(G)) ~ n3/ 2/160, while otherwise disc (G) ~ le(G) - H~)I ~ G)/6 ~

n3/ 2/ 12.

We also remark that, for r ~ 2, the Turan graph Tr(n) gives a bound
on the optimal constant in (3). Defining p by tr(n) = e(Tr (n )) = pG), we
have p '" 1 - ~ . A little calculation shows that

(4)

and, for r even,

which implies

. + ) pn
dlSCp (Tr(n) = 8" + O(r) ,

. _ (1-p)n2

dlSCp (Tr ( n)) = (1 + o(1)) 8 '

p(l - p)n3

disc; (Tr (n)) disc; (Tr (n)) ::; (1 +o(1)) 64 .

Before turning to the proof of Theorem 1, we make some comments
about one-sided discrepancies. Since every graph with n vertices and tr(n)
edges contains a subgraph of order u and size at least tr(u) for every
1 ::; u ::; n, the Turan graphs Tr(n) have minimal positive p-discrepancy
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among graphs of order n and size tr(n). Thus (4) gives an optimal bound
in th ese cases, which have density p f"V 1 - ~ . To obtain a similar bound for
arbitrary densities, we define an extension of the Tur an numb ers for non
integral r. Given an integer n 2: 1 and a real numb er r 2: 1, we can write
n = qr + s , where q is an integer and 0 :::; s < r . We define the fractional
Turan numb er tr(n ) by

where

_ (q +1) (q)tr (n) = s 2 + (r - s) 2 .

Note th at this is consistent with th e definition of Turan numb ers when r is
integral; it is convenient to work with the quanti ty tr(n) inst ead of tr(n) .

A bound mat ching (4) will follow from the following result.

Lemma 3. Suppose that n 2: 1 is an integer and 1 :::; r :::; n . Let G be
a graph with n vertices and at least tr(n ) edges. Th en, for 2 :::; u :::; n, G
contains a subgraph with u vertices and at least tr(u) edges.

Proof. It is enough to prove the theorem when u = n - 1. Taking com
plements, this is equivalent to showing that if e(G) :::; tr (n) t hen th ere is a
vertex v such that e(G \ v) :::; tr(n - 1). We may also assume r > 1, or else
G is empty.

Adding edges if necessary, we may ass ume that

(5)

where 0 :::; 'fl < 1. Thus if n = qr + 8 ,

e(G) = 8(q; 1) + (r - 8) (~) - 'fl

1
= 2(rq2 + (28 - r)q) - 'fl.

A short calculation shows that

(6) tl(G) 2: f2e(G)1= q -1 + fq8+ 8 - 2TJ1 .
n qr +8
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By (5) and (6), it is sufficient to show that
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(7) f
qS+ s - 2"11 - -q - 1 + + TI 2:: tT ( 11.) - tT (11. - 1).

qr + s

If q = 0 then we have a complete graph and are done immediately. Thus
we may assume that q 2:: 1. Now if s 2:: 1, then it is easily seen that

ir(n) - iT(n - 1) = q,

while if 0 ::; s < 1, then a simple calculation shows that

(8) iT (11.) - ir(11. - 1) = q - 1+ s.

Now if s > "1 then qs + e > 2"1, and so the left side of (7) is at least q + TI ,
and thus (7) is satisfied. If s ::; TI , however, then 0 ::; s < 1, so (8) holds . It
is then sufficient by (7) to show that

f
qS + s - 2"11 + "1 2:: s,

qr+ s

which holds provided
qs + s - 2"1-"----- > -1.

qr + s

But qr + s = 11. and qs + s - 2"1 2:: -2"1 > -2, so this holds for 11. 2:: 2. •

Calculating as in (4), we obtain the following result.

Corollary 4. For 0 ::; p ::; 1, every graph G with 11. vertices and PG) edges
satisfies

pn 1
disc;(G) 2:: -8 + 0(--) .

1-p

We now turn to the proof of Theorem 1. We shall need two simple
inequalities (these follow easily from the Littlewood-Khinchin inequality,
see [10], [12], [13] ; however, we give short proofs at the end of the section).
Recall that e, and Pi are i.i.d . Bernoulli with e, E {+1 , -I} and Pi E {O, I}.

Lemma 5. For 11. 2:: 1,
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Lemma 6. Let a = (ai)r= l be a sequence of real numbers, and A a real
number. Th en

and

Our main tool in the proof of Theorem 1 is the following lemm a, which
shows th at in a random bipar ti tion of a graph G, we do not expect the
vertex neighbourhoods to spli t too evenly.

Lemma 7. Let G be a graph of order n and size P(;) , where p(1-p) ~ 1/n .
Let V(G) = X u Y be a random bipartition. Then

lE L II f(x) n YI - plYl1 ~ Jp(l - p)n3
/
2/ 20.

xE X

Proof. We may assume p ::; 1/2 since we may take complements and replace
p by 1 - p. Suppose x E V( G) has degree d = d(x) = p(n - 1) + r(x ). For
v 1= x, define eu = 1 if xv E E(G) and eu = 0 otherwise. Then

lEI If (x) n YI - piY \ {x}1 1= lEI L pu(ell - p)1
ufx

= lEl~ L(eu - p)+ ~ L cu(eu - p)1
ufx ufx

~ max {~I d - (n - l )pl , ~IHl~ o"(e" - P11} ,

since I:ufx( eu - p) = d - (n - l)p and the distribution of I: vf x Eu(eu - p)
is symmetric about O. Now, by Lemma 5,

Hli I>"(e"-P11 = Hli I: oi(l- pl+ ~ oi (- P11
ufx i= l i=d+l

d

~ lEI BEi (1 - p)\

~ (1 - p)J d/2
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and so
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1
1E 11 f(x ) n Y / - pIY \ {x }1 1~ 2max { lr(x )I, (I - p)J d(x )/ 2 } .

Now for x E V = V(G) let I( x ) = 1 if x E X and I (x ) = 0 otherwise.
Then, since I( x) and If( x) n yl are independent random variables,

IE L IIf(x) nyl- plYl1= IE L I( x)llf(x )nyl- ply\ {x} 11
x EX x EV

~ ~ max { L Ir(x)l , L(1- P)Jd(X)/2}
x EV xE V

1
~ s L (Ir(x )1 + (1 - p)Jd(x )/2).

x EV

Note that the first equality holds as Y = Y \ {x} if I (x) = 1. Fur thermore,
Ir(x )I+(1 - p)Jd(x )/2 is minimized when r(x) = 0 and so d(x) = p(n -1 ).
Thus

1 1SL (I r(x )/ + (1 - p)Jd(x )/2) ~ Sn(1 - p)J p(n - 1)/2
xEV

since p ~ 1/2 and we may assume n ~ 3. •

After this preparation, we are ready to prove Theorem 1.

Proof of Theorem 1. Since (3) is symmetric in p and I-p, we may replace
G by its complement G, and so we may assume that disc; (G) ~ disc; (G). If

disc; (G) ~ J p(l- p)n3/ 2/80 we are done. Otherwise, suppose disc; (G) =

J p(1 - p)n3/ 2/800: , where 0: ~ 1. We shall show that

(9) disc; (G) ~ o: J p(1 - p)n3
/
2/80,

so disc; (G) disc; (G) ~ p(1 - P)n3 / 6400.
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Let V(G) = XUY be a random bipartition. Then since p(l-p) ~ l/n ,
it follows from Lemma 7 that

(10) lEI: Ilr(x)nYI-pIYII ~ Vp(1-p)n3
/
2/ 20.

xEX

Now let X+ = {x EX: If(x) n YI ~ plYI} and X- = X \ X+ ; so

dp(X,Y) = L (!f(x)nY!-pIYI)+ L (!f(x)nYI-pIYI) ·
x E X + xEX-

Since IEdp(X, Y) = 0, we have

IE L Ilr(x)nYI-pIYII =IE L Ilr(x)nYI-pIYII
XEX + xEX-

and so by (10)

(11) IEdp(X+, Y) = IE L (Ir(x) n YI- plYI) ~ Vp(l- p)n3
/

2 / 40.
xEX+

Now IE dp(Y) = 0, so (11) implies

Let X+ , Y be a pair of sets achieving at least the expectation in (12)
and let Z be a random subset of X+ , where each vertex of X+ is chosen
independently with probability 1/0. . Then it follows from (12) that

IEdp(Z U Y) = IE( dp(Z) + dp(Z,Y) + dp(Y))

1 1
= 2dp(X) + -dp(X, Y) + dp(Y)

a a

1 1
~ 2dp(X) + -vp(l - p)n3

/
2/40.

a a

Since disc; (G) = Vp(l- p)n3/ 2/800., this implies

and so dp(X) ~ -o.Vp(l - p)n3/ 2/80, which gives the desired lower bound
on disc; (G). •
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Finally in this section we give the proofs of Lemmas 5 and 6, postponed
from earlier.

Proof of Lemma 5. A simple calculation shows that for n = 2k we

have lEI 2::~1 cd = 21
-

2kk (2: ) and for n = 2k + 1 we have lEI 2::~=1 cd =
2-2k(2k + 1)(~) = lEI 2::7:11cd. Let Sn = lEI 2::~1 cil/vn. Then, for

k 2 1, S2k+2/S2k = (k + ~)/Jk(k+ 1) > 1 and , for k 2 0, S2k+3/S2k+l =

/(k + ~)(k + !)/(k + 1) < 1. Thus (s2d:l is increasing and (s2k+d:o

is decreasing; both converge to lEI N(O, 1)1 = J2/7r . Therefore s., 2 82 =
1/J2 for all n. •

Proof of Lemma 6. We may clearly assume that all ai are nonnegative.
Since 2::7=1 e.a, is symmetric about 0, the expectation is minimized for a
given a when A = 0. Now if ai =1= OJ then let a~ = aj = (ai + aj) /2; it is
easily checked that IEIB +e.a, +cjajl 2 IEIB +cia~ +cjajl for every real B.

It follows that lEI 2::~~1 ciad 2 lEI 2::7=1 cial, where a = 2::7=1 ai/no Thus,
by Lemma 5,

The second inequality follows directly from the first. •

Note that in fact proof of Lemma 5 implies the inequalities lEI 2::?=1 ai I2

J2/7rnllaI11 if n is odd and lEI 2::7=1 ad 2 (1 + 0(1)) J2/7rnllaI11 for gen
eral n .

3. HYPERGRAPH DISCREPANCY

In this section we turn our attention to hypergraphs. After defining a little
notation, we begin with a result for weighted hypergraphs; we then turn to
the consideration of unweighted hypergraphs.

If G is the complete k-uniform hypergraph with edge-weighting wand
X ~ V(G) , we define

d(X) = L w(K) .
KEX(k)
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As in definitions (1) and (2) we define disc+(G) = maxXCF(G) d(X) and
disc-(G) = - minXCF(G) d(X) ; we also define

disc (G) = max { disc" (G), disc- (G)} .

Note th at this is consistent with the definitions for an unweighted hyper
graph G by taking w(e) = 1 if e E E(G) and w(e ) = -1 otherwise.

For disjoint sets X I , . . . .X; and integers kl , .. . , kt such th at L~=l ki =
k, we define

dkl,...»,(Xl , ... , X t} = L'w(e),

where th e sum is over edges e with [en XiI= ki for every i.

We can now state the first result of the section.

Theorem 8. Let G be the complete k-uniform hypergraph of order n with
edge-weighting w such th at L w(e) = 0 and L Iw(e)1 = G). Th en

disc" (G) disc- (G) ~ T 14k
2
n k+ l .

We shall need three lemmas. In th e first lemma we use th e fact that
if P(x) is a polynomi al of degree k with SUPXE[O,lll p(x)1 ::; 1 then every

coefficient of P(x) has absolute value at most 2kk2k / kL (Tamas Erdelyi
[4] pointed out to us tha t this is an elementary consequence of Markov 's
Inequality; see [3].)

Lemma 9. If G is a complete k-uniform hypergraph with edge-weighting
wand disc (G) ::; M th en [ or disjoint subsets X , Y oi V(G) and 0 ::; i ::; k,

Proof. Let Z be a random subset of X , where each vertex is chosen
independently with probability p. Then

k

IE( d(Z U Y)) = Lpidi,k-i(X,Y).
i=O

Since disc (G) ::; u , it follows that maxo::;p::; ll L~=Opidi ,k-i(X, Y)! ::; !vI

and so maxO::;i::;k Idi,k-i (X, Y)I ::; 2kk2kllt/j k! ::; 22k2M . •

We also need an analogue of Lemma 7.
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Lemma 10. Let G be a complete k-uniform hypergraph of order n with
edge-weighting w. Let V(G) = U U W be a random bipartition. Th en

IE L Idk-1 ,1(I<,W)1 ?kTk L Iw(L)l/hn.
J(EU(k-l) LEV(G)(k)

Proof. Let V = V( G) = Uuw be a random bipartition. Given I< E V(k-l) ,
it follows from Lemma 6 that

IEldk-l,l(I<,W\I<)I? L Iw(I<U {v}) II;&;:·
vEV\J(

Since the event {I< C U} and the random variable dk-l ,l(I<, W \ I<) are
independent, and each edge L E V(k) occurs k times as I< U {v} , we have

IE L Idk-l,l(I<,W)I= L 1P(I<CU)IE!dk-l ,l(I<,W\I<)1
KEU(k-l) J(EV(k-l)

> L T k+1 L Iw(I< U {v}) II;&;:
J(EV(k-l) VEV\K

= kT k L Iw(L)I/~· •
LEV(k)

The following lemma will be useful several times.

Lemma 11. Let G be a k-uniform hypergraph of order n with edge
weighting w. Suppose that 0: ? 1 and X, Y are disjoint subsets of V(G)
with

(13)

Then eitllel

or

d1 ,k-l(X, Y) +o:d(Y) = M ? O.
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Proof. If Idi,k-i(X, Y) I ~ 2-
k2

aM for some 0 <i <k then we are don e by
Lemma 9. Otherwise, let Z be a random subset of X, obtained by choosing
each vertex of X independently with probability 1/0'. . Then

k

JEd(Z U Y) = (2=di,k-i(Z, Y)
i=O

k

= L di,k-i(X,Y)/ai

i=O

~ M]« - (k _1)Tk2M]«

2: T 3k2M/0'..

Since some set Z must achieve this bound, we obtain the desired bound on
disc+(G). •

We can now prove the main theorem of this section.

Proof of Theorem 8. As in the proof of Theorem 1, we may assume
that disc+(G) ~ disc-(G). If disc+(G) 2: 2-7k2n(k+l )/2 we are done.
Otherwise, suppose disc+(G) = 2-7k2n (k+1 )/2/ 0'. for some 0'. > 1: we shall
show disc-(G) 2: 2-7k20'.n (k+l}/2.

Note first that for disjoint sets X ,Y C V(G), if

(14) d _ (X Y) + O'.d(Y) > T 4k2n(k+l)/2l,k 1 , _

then we are done by Lemma 11. It is therefore enough to find disjoint X,
Y satisfying (14).

Let V(G) = Xk .U Wk- l be a random bipartition and let Wk- l =
Xk-l UWk-2,· ·· , W2 = X 2UWI be random bipartitions where, as usual, in
each bipartition each vertex is assigned independently to either vertex class
with probability 1/2. We define weightings Wi on the i-set s in Wi for each
i by

(15)
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Let Wk = V(G) and define Wk = w. Then for 1 ~ i < k and K E W? ),

= L dHl ,1,...,1(KU{x} ,Xi+2, .. . , X k)
XEXi+1

= L Wi+1 ( K U {x} ) .
XEXt+ l

It therefore follows from Lemma 10 th at given WH 1 and Wi+ l,

(16) IE L Iwi(K )1 2: (i + l)T(i+ l) L IWi+l (L)I/~.

KEWii
) LEWi~i l)

It follows th at

IE L Id1,...,1({ X}, X 2, ,, ,, X k) I= IE L IWl(X)1
XE WI XE WI

(17)

IE d1 l(X+ X 2 ... X k. ) > ~k!T ( k ~l) ( n) /(2n)(k- l)/2 > 2- 2k2n(k+l) /2.
,.. ., l ' , , - 2 k -

We partition the edges in Vo= Xi UU~=2 Xi t hat meet Xi in exactly one
vertex as follows. For a nonempty S c {2, .. . , k} , let Vs = U iES X i and

Es = {KU {x } : x E Xi , K E VJk-l) , IKnxil > 0 Vi E S}. Let ds =
"'E.KE Es w(K ) and note that d1 ,k-l(X+ ,Vs) = "'E.0¥Tc sdT and d{2 ,...,k} =
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d1,...,I (X t , X 2"", X k)' Let So be minimal with Idso l ~ (2krk+ISld{2,...,k}'
Then

~ Idsol - I: Idrl
0f-rc;So

ISol- l
> ( (2k)-k+ISol _ " kISOI - i(2k) -k+i ) d .- L.J {2,...,k}

i = l

~ d{2....,k}/2(2k )k-l

Thus it follows from (17) that

IE max Id ._ (X+ V )I > T 3k 2n(k+ 1)/ 2l ,k 1 i . S _
SC{2,...,k }

and so there is some S c {2, ... , k} with

Now letY=VsandXt= { XEW1: dl ,k- l ( {X} , Vs) > O}. Then, since
IE dJ.k-l(W1 , Vs ) = 0, we have

Finally, since IE d(Vs) = 0, we have

It follows that there are sets X , Y satisfying (14). •

We note that Theorem 8 implies the followi ng bound on

disc; (G) disc; (G)

for unweighted hypergraphs G.
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Corollary 12. Let G be a k-uniform hypergraph with n vertices and p(Z)
edges. Then

Proof. The result is trivial if p = 0 or p = 1. Otherwise, let H be the
complete k-uniform hypergraph on the same vertex set as G with edge
weighting w defined by w(e) = 1/2p if e E E(G) and w(e) = -1/2(1 - p)
otherwise. Then L: w(e) = 0 and L: Iw(e)I = (Z) , and so, by Theorem 8,

disc+(H)disc-(H)?:: T14k2nk+l.

Now for Y C V(G) ,

= L (If(EE(G) - p)
KEy(k)

= L 2p(1 - p)w(K)
KEy(k)

=2p(1 - p)d(H)(y) .

Thus

which implies the required bound. •

We can, however , improve upon the p2(1 - p)2 term in Corollary 12 (at
the cost of a slightly worse constant) to obtain a bound similar to that in
Theorem 1. First, however, we need a version of Lemma 7 for unweighted
hypergraphs.

Lemma 13. Let G be a k-uniform hypergraph of order n with p(Z) edges,
where p(l - p) ?:: l/n and n ?:: 2k . Let V(G) = X u Y be a random

bipartition. Then

IE L Idk-l,l(K,Y) - plYll ?:: T
2k2

Jp(l- p)nk-~.
KEX(k-l)
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Proof. We follow the argument of Lemma 7. As before, we may assume
p ~ 1/2. Let V = V (G) = XuY be a random biparti tion. For K E V (k-l ),
let d(K) be the number of edges of G containing K and define r (K ) by
d(K) = p(n - k + 1) + r(K) . Let d = p(n - k + 1). Then, as in Lemma 7,

lEIdk-l ,l(K, Y \ K ) - plY \ KI I ~ ~ max {! r (K) I , (1 - p)vd(K )/2}.

For K E V(k- l~, we define I (K ) = 1 if K c X and I (K ) = 0 ot herwise.
Then I (K) and dk-1,1 (K, Y \ K ) are independent random variables, so

lE L Idk-l,l(K,Y)-pIYI!
J(EX(k-l)

=lE L I(K)ldk_1 ,1(K,Y\K)-pIY\KI!
K E V (k -l )

=rk+1 L lEldk-l ,l (K,Y\K)- pIY\KII
KEV(k -l)

~rkmax{ L Ir (K )I , L (1 - P)V d(K )/ 2}
KEV (k - l ) K E V (k- l ) .

~ r(k+l ) L Ir(K) \ + (1- p)Vd(K )/2.
KEV(k -l)

Since Ir(K)1 + (1 - p)Jd(x )/2 is minimized when r(K) = 0 and d(K) =
p(n - k + 1),

lE L Idk-1 ,1(K, Y) - plYl1 ~ (k: l)r(k+l)(l- p)vp(n - k+ 1)/2
K EX(k-l )

Theorem 14. Let G be a k-uniform hypergraph of order n with p(~) edges,
where p( l - p) ~ lin. Th en
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Proof. Let H be the complete k-uniform hypergraph on V (G) with weight
ing w(e) = 1 - p if e E E(G) and w(e) = -p otherwise. Then disc+(H) =
disct(G) and disc-(H) = disc; (G). Note that w(H) = O. As usual we may

assume p ~ 1/2 and disc-(H) 2: disc+(H) = 2-9k2Jp(l- p)n(k+I)/2/cy .
If cy ~ 1 we are done, so we may assume cy 2: 1. We will show that
disc-(H) 2: 2-9k2Jp(1 - p)cyn(k+I)/2 . If there are disjoint X, Y c V(H)
with

then we are done by Lemma 11. Thus it is enough to find disjoint X, Y
satisfying (19).

As in the proof of Theorem 8, we define random sets Wk = X :=> Wk-I :=>

• • . :=> WI , where the i-sets in Wi are weighted as in equation (15) . Then by
Lemma 13,

(20) IE L /Wk-I(K)/ 2: r 2k2Jp(l- p)nk-~,
KEW(k-l)

k-l

while WI , .' " Wk-2 satisfy (16). We have

IE L !WI(x)l2: (k-l)lrm L IWk_I(K)I/(~)k-2,
xEWl KEW(k-l)

k-l

and so, defining Xi as before, we can replace (17) by

(21) IE dl, ...,1(Xi, X2, . . . , Xk) 2: r 4k2Jp(l - p)n(k+l) /2.

The argument is completed as before (with all bounds changed by a factor
2- 2k2Jp(1 - p)). •

The following corollary is immediate.

Corollary 15. Let G be a k-uniform hypergraph of order n with p(~) edges,
where p(1 - p) 2: lin. Then

discp(G) 2: r 9k2Jp(1 - p)n(k+l)/2.

We note that Corollaries 2 and 15 are best possible up to the value
of the constant 2-9k2. To see this, let G E g(k)(n, p) be a random k
uniform hypergraph, where each possible edge is present independently with
probability v, and let S c V(G) . Let N = (~) and

h = (1 + e:)k!-1/2J2p(1 - p) In2n(k+I)/2 .
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Then by standard bounds on the tail of the binomial distribution (see [2],
Theorem 1.3), provided p(l - p) ~ ekn 1- k, for any subset S of V(G) we
have

1?(ldp(S)1 ~ h) :S1?(IB(N,p)- NPI ~ h) < Tn

for sufficient ly large n. Thus there is some k-uniform hypergraph G of order
n with discp ( G) ::; h.

Let us also note th at the gain from p2(1 - p)2 to p(1- p) between Corol
lary 12 and Theorem 14 comes because a "typical" vertex in G has degree
p G=D: so if p is small, then the weight around a typical vertex is con
centra ted in fairly few edges. We remark that no similar bound is possible
for the larger class of k-uniform hypergraphs with 2: Iw(e)1 = G) such
that 2: max {w(e),o} = pG) : consider a random k-uniform hypergraph

HE g(kJ(n,1/2) , and let G be the weighted hypergraph obt ained by giving
each edge weight 2p and each non-edge weight -2(1 - p). Then if e(H ) =
H~) (which happ ens with probability at least e~n-k/2 if G) is even) we
have 2: Iw(e)1 = G) and 2: max {w(e),O} = pG) . On the other hand , it

follows from (18) that disc: (G) disc; (G) = 4p2(1 - p)2disc+(H) disc-(H) ,

while disc+(H) and disc-(H) are both O(n(k+lJ/2) with exponent ially small
failure probability.

It is interesting to ask about the range in which Theorem 1 and Theorem
14 are sharp (up to the constant ). For instance, in the case of graphs
the remarks above show that disc: (G) and disc; (G) can both be around

eJ p(l - p)n3/2. When p is (about) 1/2, the complete bipart ite graph and
its complement show that we can have discrepancy O(n) on one side (and
en2 on the other) . Thus T heorem 1 is sharp in in middle of the the scale
from en to c'n2 , and (for p = 1/2) is sharp at the ends. How sharp is it at
othe r parts of the scale, or at the ends when p i= 1/2?

The constant in Theorem 14 is clearly not best possible. A more careful
version of the argument should improve it to 2-ck In k ; it would be of interest
to know the correct order of magnitude. It would also be interesting to know
what happ ens in th e range n l-k :S p :S l / n .

4. S UB GRAPH DIS CREPANCY

In previous sections we have been concerned with the discrepancy of sub
graphs or, equivalently, 2-colourings of the complete graph. We begin this
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section by considering 2-colourings of an arbitrary graph: questions of this
form were raised by 80s in [11] .

For a k-uniform hypergraph G, a subgraph H of G and a real number
p E [0,1], we define

disc:(H,G) = max e(H[S]) -pe(G[S])
ScV(G)

and
disc; (H, G) = max pe( G[S]) - e( H[S]).

SCV(G)

Note that if G is the complete k-uniform hypergraph then these two defini
tions agree with (1) and (2). We set

discp ( H, G) = max { disc: (H, G), disc; (H, G) } .

We begin with a fairly straightforward analogue to Theorem 8. Note
that arguing as in Corollary 12 gives a bound with p2(1 - p)2 in place of
p(l - p).

Theorem 16. Let G be a k-uniform hypergraph with n vertices and m
edges, and let H be a sllbgraph of G with pm edges, where p(l- p) ~ lin.
Then

We first need a version of Lemma 13.

Lemma 17. Let G be a k-iuiilotu: hypergraph with n vertices and m
edges, and let H c G be a euobypetgtept: of G with pm edges, where
p(l- p) ~ lin. Let V(G) = X u Y be a random bipartition. Then

IE L Id~~i,l(K , Y) - pd~c:!1,1(I{, Y)! ~ T(k+l)Jp(l- p)m/Jii.
I<EX(k-l)

Proof. For a partition V(G) = Xu Y, let us write

f(X, Y) = L Id~Ll(K, Y) - pd~~L(K, Y)I ·
I<EX(k-l)

As in Lemma 13, we may assume that p ~ 1/2 or else replace H by its
complement in G. For K E V(k-l) , let dH(K) be the number of edges of
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H containing K and let dc(K) be the number of edges of G containing K.
Define r(K) by dH(K) = pdc(K) + r(K). Then, as in Lemma 13,

IEld~~)l,l (K, Y\K) -pd~~)l,l(I<, Y)I ~ ~ max {Ir(K)I , (I-p) J dH(K)/2}.

Thus

IEf(X, Y) ~ r(k+l) L Ir(K)1 + (1- p)JdH(J()/2.
[(EV(k-l)

Now Ir(K)1 + (1 - p)Jdfl(K)/2 is minimized when r(K)
dH(K) = pdc(K). Thus

lEf(X, Y) ~ r(k+l) L (1 - p)Jpdc(K)/2
[(EV(k-l)

~ r(k+l) L (1 - p)dc(K) Jp/2n
[(EV(k-l)

since dc(K) < n. Now 2:[(EV(k-l) dc(K) = km, so

IEf(X, Y) ~ r(k+l)krn(I- p)Jp/2n

~ r(k+l)Jp(I- p)rn/vn. •

o and so

Theorem 16 now follows by a modification of the proof of Theorem 14.

Proof of Theorem 16. Let V = V(G). We may assume p :S 1/2 or replace
H by its complement in G. We define, as in Theorem 14, an edge-weighting
won V(k) by w(K) = 1 - P if K E E(H) , w(K) = -p if K E E(G) \ E(H)
and w(K) = 0 otherwise. Note that then w(V) = O. We may assume

discp(H,G) ~ disct(H, G) = 2-9k2Jp(I_p)e(G)/yfiik-l a . Ifa ~ 1 we
are done, so we may assume a ~ 1. If there are disjoint X, Y with

then we are done as before by Lemma 11. Once again, we define random
subsets Wk = X ~ Wk-l ~ ... ~ WI . Applying Lemma 17 instead of
Lemma 13 to Wk-l , we can replace (20) by
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As before, WI,"" Wk - 2 satisfy (16) ; applying this k - 2 times to (22), we
see that (instead of (21)) we obtain

and the argument is completed as before. •

Corollary 18. Let G be a k-uniform hypergraph with n vertices and m
edges, and H a subgraph of G witll pm edges, where p(l - p) ~ lin. Then

We obtain stronger results when there is a restriction on the maximum
overlap between edges of positive and negative weights.

Theorem 19. Let G be a complete k-uniiotui hypergraph of order n with
edge-weightingw. Suppose in addition that, for some 1:S s:S r , ifw(e) > 0
and w(e/) < 0 then [e ne'l < s . Let M = L:: Iw(e) I and m = L:: w(e). If
m = (2p - l)M, where p(1 - p) ~ lin, then

Proof. Suppose first that p = 1/2, and let E = {e : w(e) 1= O}. As in
the proof of Theorem 8, we may assume disc+(G) :s disc-(G) . Suppose
disc+(G) = 2-9k 2e(H)/n(s-I) /2ex , where ex 2:: 1. If there are disjoint X , Y

with

dl ,k-I(X, Y) + exd(Y) 2:: T 6k 2e(H)/n(S-I) /2

then we are done by Lemma 11. Otherwise, define Wi, Xi and ui, as before,
and consider W s and W s' Since w(e) > 0 and w(e /) < 0 implies [e ne'l < s ,

we have, for K E W~s),

Iw(e)1
enws=J<, lenXil=1 Vi>s

and so

E L Iws(K)I=E L Iw(e)l ·
J<EW~') lenw.l=s , lenXil=l Vi>s
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Let Ae be th e event that [e n Wsl = s and [e n Wi! = 1 for all i > s. Then
lP'Ae > 2-k 2

and so IEEI< EW; S) Iws(K)1 ~ 2-k2M. Applying Lemm a 10 as

in (16), we obtain th at

IE L Id1,...,1({ X}, X2, .. . , Xk) I~IE L I ws(K)I /(~r-l
xE W 1 I<EW; s)

The rest of the argument follows as in th e proof of Theorem 8.

Now suppose p i= 1/2 . As in th e proof of Corollary 12, we multiply all
positive edge-weights by 1/2p and all negative edge-weights by -1/2(1- p)
to obt ain a new edge-weighting ui ' , The result follows immediat ely. •

As an application of Theorem 19, let us consider th e complete subgraphs
of a graph and its complement. For t ~ 2 and a graph G, we writ e kt(G)
for the numb er of copies of K; of G. We writ e

For inst ance, discI<2 (G) is just disc (G). Clearly, complete subgraphs of G
meet complete subgraphs of its complement in at most one vertex: applying
Theorem 19 to the k-uniform hypergraph of complete or independent k-sets
gives the following resul t .

Corollary 20. For every graph G of order n,

discKk(G) ~ Ckn k-L

For instance, in some s ubset 5 ,

Considering random graphs shows th at this result is best possible up to
the constant . A similar approach yields results in some cases for discH(G)
where H is not a complete graph (and discH is defined in th e obvious way) .
It would be interesting to determine th e correct order of magnitude of discH
for all graphs H . When H is fairly dense, so that copies of H and H cannot
overlap very much, we obtain a lower bound on discH(G) using Theorem 19.
However , when H is sparse this gives a much weaker bound; for instance,
what can we say when H is a tree?
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BIPLANAR CROSSING NUMBERS 1:
A SURVEY OF RESULTS AND PROBLEMS

E. CZABARKA, O. SYKORA*, L. A. SZEKELyt and 1. VRTO+

This paper is dedicated to the 70th birthdays of Andras Hajnal and Vera T. 50S

We survey known results and propose open problems on th e biplanar crossing
numb er. We study biplanar crossing numbers of specific famil ies of graphs, in
par ticular , of complete bipar ti te graphs. We find a few par ticular exact values
and give general lower and upper bounds for th e biplanar crossing number. We
find th e exact biplan ar crossi ng number of K s.q for every q.

1. I NTROD UCTION

During WWII in a forced work camp, Paul Turan [27] introduced th e
crossing number problem, in particular the Brick Factory Problem, which
asks for the crossing numb er of complete bipartite graphs. The present
paper surveys the few known results and proposes open problems on a
variant of the crossing number, the biplanar crossing number, and solves
the biplanar version of the Brick Factory Problem for K S,q exactly.

Recall that a graph G is biplanar [5], if one can write G = G1 U G2 ,

where Gl and G2 are planar graphs. Let cr (G) denote the standard crossing
number of the graph G, i.e. the minimum number of crossings of its edges
over all possible drawings of G in the plane, under the usual rules for

"This resear ch was supported in par t by the EPSRC grant GR/R37395/01.
tThis research was supported in par t by the NSF cont ract Nr. 007 2187 and 0302307.
tThis research was supported in part by th e VEGA grant Nr. 2/3164/23.
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drawings for crossing numbers [20, 26] . Motivat ed by printed circuit boards,
Owens [15] introduced th e biplanar crossing number of a graph G, th at we
denote by cr2(G). By definition cr2(G) = min { cr (G1) + cr (G2) } , where
th e minimum is taken over all unions G = G1 UG2. A biplanar drawing of a
gra ph G means drawings of two subgraphs, Gl and G2 , of G, on two disjoint
planes under th e usual rules for drawings for crossing numb ers , such tha t
G1 U G2 = G. Owens described a biplanar drawing of th e complete graph
Kn with cr2 (Kn ) :s; 7n4 j 1536 + O(n3 ) . One can define crk(G) similarly for
any k ~ 2, making G a union of k subgraphs. Determining crk(G) would
have applicat ion to the design of multil ayer VLSI circuits [1] ; but perhaps
th e case k = 2 is the most interesting, and even this simplest case is little
explored so far. Note th at one always can realize cr2(G) by dr awing the
edges of G1 and G2 on two different sides of th e same plane, while identi cal
vertices of Gl and G2 are placed to identi cal locations on th e plane on th e
two sides.

The biplanar crossing numb er problem is related to the thickness and
book crossing number- problems. The thickness 8(G) of G is the minimum
numb er of planar graphs whose union is G. By definit ion, cr2(G) = °if
and only if 8(G) :s; 2, i.e. G is biplanar. The nature of the crossing number
and the biplanar crossing numb er problems seems different , since testing
whether cr (G) =°can be done in linear time, while test ing biplanarity is
an NP-complete problem [12] . Asano 's result [3] implies that if a gra ph is
toroidal, then cr2(G) = O. Surveys on biplanar graphs and the thi ckness
problem can be found in [5, 13].

A k-book embedding of a graph G consists of placing vertices of G on
th e spine of a book and drawing each edge on one of the k pages. The book
crossing number- of G, denoted by /ldG) , is the minimum total number of
crossings on all pages among all k-page book embedding of G [21] . One can
easily observe that cr2(G) :s; /14 (G).

We denote by n the order and by m the size of a gra ph, and we deviat e
from this rule only for complete bipartite graphs.

We are indebted to an anonymous referee for their comments.
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2. GENERAL RESULTS

2.1. Variants of Euler's formula

59

Little is known about th e bipl anar crossing number in genera l. Some of
th e lower bounds for crossing numbers, mutatis mutandis apply to biplanar
crossing numbers . For example, the lower bound resulting from Eul er 's
formula, cr (G) ~ rn - 3n + 6 for n ~ 3, provides

(1) cr2(G) ~ rn - 6n + 12.

There is a st rengthening of th e lower bound resulting from Euler 's formula
for graphs G with girt h ~ g, cr (G) ~ rn - g(n - 2)/(g - 2) for n ~ g; and
we get

(2) 9cr2(G) ~ rn - 2--(n - 2)
g-2

for n ~ 9 (it follows from combining Theorem 2.1 in [5] with the arguments
in [20]) . Pach and T6 th showed ([18] and personal communication from G.
T6th) th at with n ~ 3

(3) cr (G) ~ 6rn - 33n + 66,

and for triangle-free gra phs with n ~ 4

(4) cr (G) ~ 6rn - 27n + 54.

These results immediately imply their counte rpa rts for the biplanar crossing
numb er:

(5) cr2(G) ~ 61'11, - 66n + 132,

for n ~ 3; and for t riangle-free graphs with n ~ 4

(6) cr2(G) ~ 6rn - 54n + 108.
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2.2. Other lower bounds
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Using our (1) instead of formula (1) from [20] in the second proof of Theorem
3.2 in [20], one obtains the following biplanar counterpart of the Leighton
[10] and Ajtai et al. [2] bound: for all c > 6, if m 2: cn, then

(7)
c- 6 m 3

cr2(G) 2: -3- . -2 .
C n

For somewhat denser graphs one can improve (7) using the Pach-Toth's
results cited above.

Pach , Spencer and T6th [17] proved a conjecture of Simonovits, improv
ing the bound of (7). If G has girth> 2r and m 2: 4n, then

(8) (
m

r
+

2
)cr(G)=D n r +1 .

It is easy to see that (8) also hold for cr2 instead of cr, if m 2: 8n.

Lower bounds for the crossing number based on the counting method [20]
provide similar arguments setting lower bounds for the biplanar crossing
number. Since we are going to use it , we review the counting method.
Assume that we have a sample graph H. Take a graph G together with a
biplanar drawing which realizes its biplanar crossing number. Without loss
of generality we may assume that no adjacent edges cross and any two edges
cross at most once in the drawing [26]. If we find A copies of H in G, and
no crossing of the drawing belongs to more than B copies of H, then

However, important techniques as the embedding method [10] or the
bisection width method [16], [24] (see also the survey [20]) do not seem
to generalize to biplanar crossing numbers . Even worse, as Tutte noted
[5], the biplanar crossing number is not an invariant for homeomorphic
graphs; in fact , the edges of every graph can be subdivided such that the
subdivided graph is biplanar! Furthermore, Beineke [5] shows that the
minimum number of subdivisions needed to make a graph biplanar equals
the minimum number of edges whose deletion leaves a biplanar graph.

Open Problem 1. Find lower bound arguments for the biplanar crossing

number based on structural properties of graphs , not merely on the density

of graphs.
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J. Spencer [25] was the first to find such a lower bound. Say that a
graph of order n and size in has property (*) , if for every vertex set A
with n/6 ~ IAI ~ 5n/6 , the number of edges between A and A is at least
rn/lOOOO. Spencer showed that if tti > cn for a certain c, L, df = o(rn2 ) ,

and the graph has the (*) property, then cr2(G) = O(rn2
) . Since random

graphs have the (*) property, the biplanar crossing number of the random

graph is O(p2G) 2) for p ~ c'In. Bounded degree expander graphs also have
property (*) .

2.3. Drawings, upper bounds

We showed [23] using a randomized algorithm, that for all graphs G,

(9)

However, one cannot give an upper bound for cr(G) in terms of cr2(G) ,
since there are graphs G of order n and size rn, with crossing number
cr (G) = 8(rn2 ) (i.e. as large as possible) and biplanar crossing number
cr2(G) = 8(rn3/n2 ) (i.e. as small as possible) , for any rn = rn(n), where
min exceeds a certain absolute constant . As [23] shows, such graphs G can
be obtained from a certain graph H with cr (H) = 8(rn3/n2

) , such that
vertices of H are identified with identically named vertices of H 1f

, where
H 1f is obtained from H by permuting the vertices randomly.

Open Problem 2. What is the smallest number c* (in place oE3/8), with
which (9) is true?

Owens [15] came up with a conjectured crj-optimal drawing of K n which
has about 7/24 of the crossings of a conjectured cr-optimal drawing of K n .

This might give some basis to conjecture that c* ~ 7/24. On the other hand ,
we will show in (19) that cr2(Kn) ~ n4/ 952 for large n, and comparison
with cr(Kn ) ~ n4 / 64 [29] proves c* ~ 64/952. We used (9) to prove that
for any graph G, 8(G) - 2 = O( cr(G).4057) [23] . It is likely that .4057
can be replaced by smaller constants, perhaps with .25. The example of a
complete graph shows that the constant cannot be smaller than .25.

We see a curious phenomenon. Call a biplanar drawing realizing the
biplanar crossing number of a graph G self-complementary, if the subgraphs
G1 and G2 are isomorphic in the graph theoretic sense. Kg is biplanar, and
a self-complementary drawing shows it [5], and the same can be told about
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K5,12 . Self-complementary biplanar drawings are very convenient to draw.
As Gland G2 are isomorphic we only need to label the vertices by symbols
like (a : b) , which means that the vertex in question is vertex a in the
drawing on the first plane, and is vertex b in the drawing on the second
plane. (See Figs . 1, 2, 3, 4.) Our drawing in Theorem 6 for the hypercube
Qk with even k-although clearly not optimal , but probably near-optimal
is also self-complementary.

Open Problem 3. Show that if Kn or Kp,q has an even number of edges,
then it has an optimal biplanar drawing, which is self-complementary.

Concerning upper bounds for cr2(G), in terms of 711" we proved in a
joint paper with Shahrokhi [211 a general upper bound for the k-page book
crossing numbers of graphs:

(10) 1( 1) 2 (711,2)J.1k (G) :::; 3k2 1 - 2k 711, + 0 kn '

which together with cr2(G) :::; J.14(G) gives a general upper bound on cr2(G)

(11)

3. RESULTS AND PROBLEMS ON COMPLETE BIPARTITE GRAPHS

The famous Zarankiewicz 's Crossing Number Conjecture or Turan's Brick
Factory Problem is as follows:

(12) cr (Kp,q) = l~J lp; 1J l~J lq; 1J.

Kleitman showed that (12) holds for q :::; 6 [91 and also proved that the small
est counterexample to the Zarankiewicz 's conjecture must occur for odd p

and q. Woodall used elaborate computer search to show that (12) holds for
f{7,7 and f{7,9' Thus, the smallest unsettled instances of Zarankiewicz's con
jecture are K 7,1l and Kg,g. The following remarkable construction suggests
Zarankiewicz's conjecture: place lp/2J vertices to negative positions on the
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x-axis, rpj21 verti ces to positive positions on the x-axis, lqj2J verti ces to
negative positions on the y-axis, rqj21 vertices to positive positions on the
y-axis, and draw pq edges by straight line segments to obt ain a drawing of
Kp,q .

In this section we work towards a biplanar analogue of the Zarankiewicz's
Conjecture and make conjectures for the cases q = 6 and 8.

3.1. Lower bounds for complete bipartite Graphs

The girth formula (2) yields

(13) cr2 (Kp,q) ~ pq - 4(p + q - 2).

One can use the count ing argument with H = KlO,lO, G = Kp,q , and the
fact that cr2(KlO,1O) ~ 28 from (13), to obtain:

Theorem 1. For 10 ::; P ::; q, we have

(14)
. , tK ) > p(p - l)q(q - 1)

C12 '\.p ,q - 290 .

For p ::; 9 we make a finer analysis of cr2(Kp,q).

3.2. Exact results for complete bipartite graphs

It is easy to see that K 4,q is always biplanar. The result on the thickness
of complete bipartite graphs of Harary et al. [4] implies that for q ::; 12,
8 (Ks,q) ::; 2 and 8(Ks,13) = 3. Hence cr2(Ks,13 ) ~ 1. Paterson [19]
observed that cr2(Ks ,13 ) = 1. Determining the biplanar crossing number of
Ks,q for q ~ 14 is the main result of thi s paper.

Theorem 2. For any q ~ 1, we have

and for even q there is an optimal drawing, which is self-complementary.
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~--------{ 7:1O}-----.:::,;,v3:v3~----_{ 1:4}-----~

Fig. 1. Self-complementary drawing of KS,12

Proof. We provide a drawing first. Assume that q = 12a+ b,°::; b < 12.
Partition the q vertices into 12 consecutive arcs, which are as equal as
possible. Let these arcs be 51,52, . .. ,512. Clearly b arcs contain a + 1
vertices and 12 - b arcs contain a vertices . Consider the regular 12-gon
inscribed into the unit circle centered at (0,0), with one vertex placed in
(1,0) . Fig. 1 shows a self-complementary biplanar drawing of K 5,12, where
the 12 vertices are placed into the vertices of the regular 12-gon. To draw
K5,q , we place the 5 vertices into the locations as they take in Fig. 1. We use
small neighborhoods of the vertices of this regular 12-gon for the placement
of the 12 arcs on the circumscribed circle of the 12-gon, starting with 51 at
(1,0), and going counterclockwise, i.e, put S, where the vertex is (i : 5 - i)
on the figure. Now we describe a drawing of K5,q on the first plane.
Place VI at (-2,0) and join it to 54, 55, 56, 57, 58, 59, 510·
Place V2 at (0, -~) and join it to 58, 59, 510, 511, 512 .
Place V3 at (0,0) and join it to 512, 51 , 52 and 56, 57, 58·
Place V4 at (2,0) and join it to 510, 511, 512, 51 , 52, 53, 54.
Place V5 at (o,~) and join it to 52,53,54,55,56.

On the second plane, place VI at (0, ~), V2 at (2,0), V3 at (0,0), V4 at

(0, -~) , and V5 at (-2,0) . Put 55- i (counting mod 12) where S, was in the
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first plane and and draw the remaining edges exactly with the same curves
that we used in the first plane.

In general, vertex (i : 5 - i) represents an arc with S, in the first plane
and an arc with SS-i in the second plane. Clearly the number of crossings
as we made the necessary crossings only-is exactly

Substituting a = lq/12J and b = q - 12lq/12J into the previous formula we
get the required upper bound.

We obtained above a self-complementary drawing of KS,12q. To make
this drawing self-complementary for every even q, the question is, where we
put the extra b = 2b' vertices. Whenever we have to add two new vertices,
they must be added to arcs Si and SS-i for some i. Note that the twelve
arcs make exactly 6 such pairs .

The lower bound is proved by induction on q. The claim is true for
12 :s; q :s; 24, as formula (2) gives a lower bound of q - 12. Assume that
it is true for some q ~ 24. Using the counting argument with H = KS,q,
G = KS,q+ 1, we argue that

cr2(KS,q+1) -lq~1J (q - 6lq~1J- 5)

> r~;~;~ Cf,(K5,q)l-lq~ 1J (q - 6lq~ 1J- 5)

~ r~ ~ ~ llq2J(q - 6l 1
q
2J- 6) -lq~ 1J (q - 6lq~ 1J- 5)1·

To conclude the proof, one has to show that the expression inside the
big brackets of the last line is greater than -1. This can be done by
distinguishing two cases: whether q = 11 (mod12), or not, and doing some
algebra. •

Other exact results that we know about cr2(Kp,q) are summarized in the
following table. In some interesting cases we also included lower and upper
bounds.
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p vs. q 7 8 9 10 11 12 13 14 15 16

6 0 0 2 4 6 8 10 12 14 16
7 1 4 7 10 13 16 19,21
8 4 8 12 16 20 24 29,32
9 7 12 17,19 22,24
10 10 16 22,24 28,32

All the lower bounds in the table follow from the lower bound (13).
Exactness for p = 6 follows from Theorem 3 in Subsect ion 3.3. Exactness
for p = 7 follows from the drawing Fig. 2 of K7,12 for q = 12; and optimal
drawings for K7,q for 8 ~ q ~ 11 can be obtai ned from Fig. 2 by successively
erasing vertices 12, 11, 10, 9, in this order. Note th at the drawings obt ained
for K7,s, K 7,1O , and K 7,12 are also self-complementary. Unfortunately, we
do not have a biplanar drawing of K 7,q that we would dare to think optimal.

Fig. 2. Self-complementary drawing of K 7 , 12

Exactness for p = 8 follows from the self-complementary drawing Fig. 3
of KS,12; optimal drawings for K s ,q for 6 ~ q ~ 11 can be obt ained from
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that drawing by e.g. successively erasing vertices 12, 1, 7, 6, 10, 3, in this
order.

Fig. 3. Self-compl ementary drawing of K S •12

One can get drawings for Kg,q and KlO,q from the general drawing
described in Subsection 3.4. We know that as early as for Kll ,ll or K lO,I3 ,

the est imation (13) is no longer the best lower bound. This follows from
the argum ents th at lead to (6).

3.3. Conjectured exact results for complete bipartite graphs

Theorem 3. For any q :2: 1, we have

This bound is optimal for any q ~ 16.

Proof. We provide two different drawings . First drawing. On both planes
we draw a "thinned out " copy of the drawing from the Zarankiewicz conjec
ture. Place the verti ces VI, v2 and V3 (resp. UI , U2 and U3) on the positive
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(resp. negative) part of the x axis, in this order from the origin. Partition
the q vertices into 8 almost equal sets, 51, 52, 53, 54 and 1'1, 1'2, 1'3, 1'4 .
Place 5i (Ii ), i = 1,2,3,4 consecutively from the origin toward infinity (mi
nus infinity) on the y axis . On both planes we connect any Vi , Uj to all or
no vertices of any 8k or 71, and all connections are straight line segments .
For the drawing on the first plane join VI and Ul with 51, 52, 1'1 , 1'2; V2 and
U2 with 82, 53, 1'2, 1'3 ; v3 and U3 with 83, 54, 1'3, 1'4. For the drawing on
the second plane the locations of vi's and ui's are the same. But place the
5i's vertices in the order 53,54,51,52, from the origin toward infinity; and
place the Ii's vertices in the order 1'3 , 1'4, 1'1 , 1'2, from the origin toward
minus infinity. Draw the remaining edges with straight line segments. The
number of crossings is precisely

(15) 2(Ci l
) + C~21) + C~31) + C~41) + C~II)

+ C~21) + C~31) + C~41)).

Simple algebra shows that this is equal to the expresion in the statement
of the Theorem.

Second drawing. Fig . 4 shows a crossing-free self-complementary drawing
of K6,8. We explain how to extend it into a self-complementary drawing
with the same number of crossings as the first drawing. Assume first that
n = 8k . Substitute every lettered vertex in Fig. 4 with k vertices on a
very short straight line segment. We will join all three former neighbors
of a lettered vertex to all k successors of the lettered vertex. Join one of
the three from one side of the short straight line segment , and join the two
others from the other side of the short straight line segment. Clearly the
number of crossings is the same as in (15) . If q = 8k + T (1 S T S 3), then
use k + 1 successor vertices for T of the lettered vertices (a : a) and (c : c)
and (g : g). If q = 8k + 4 + r (1 S T S 3), then use k + 1 successor vertices
for the lettered vertices (e : b) and (b : e) and (d : f) and (f : d); and also
use k + 1 successor vertices for T of the lettered vertices (a : a) and (c : c)
and (g : g). The number of crossings is-in all cases- the same as in (15)
again .

The optimality of the lower bound for q S 16 follows from (2), which
gives a lower bound of 2q - 16. •

We would like to point out that if cr2(J(6,q) is even for every q, then th e
counting argument from the proof of Theorem 2, mutatis mutandis, can be
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Fig. 4. Self-compl ementary dr awing of K 6 ,8

repeat ed for Theorem 3. Not e that if J{6 ,q has an optimal biplanar drawing
in which GI is isomorphic to G2, as we conjecture, then c r2 (I(6 ,q) is even.

Theorem 4. For any q ~ 1, we have

cr2(J{8,q) ~ 4l~J (q - -l~J - 3) .
Thi s bound is optimal for any q ~ 12.

Proof. Place the vertices VI, V2, V3 and V4 (resp. UI , U2, U3 and U4) on th e
posit ive (resp . negative) part of the y axis, in this ord er from th e origin.
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Partition the q vertices into 6 almost equal sets, 8 1, 82, 83 and T1, T2, T3.
Place 8i (7i ), i = 1,2,3 , consecutively from the origin toward infinity (minus
infinity) on the x axis. On both planes we connect any Vi, v,j to all or no
vertices of any 8k or Ti , and all connections are straight line segments. For
the drawing on the first plane join VI and U1 with 8 1, T1; V2 and U2 with
81, 82, T1, T2 ; V3 and U3 with 82, 83, T2, T3 and V4, U4 to 8:3 , T3 . For the
drawing on the second plane the locations of 8 i 's and Ti'S are the same.
But place the Vi'S vertices in the order V3 , V4 , VI, V2, from the origin toward
infinity ; and place the ui's vertices in the order U3, U4, U1, U2 , from the
origin toward minus infinity. Draw the remaining edges with straight line
segments. The number of crossings is precisely

The rest is similar as in the proof of Theorem 3. Optimality follows from
(2), which gives a lower bound of 4q - 24. •

Open Problem 4. Prove that the upper bounds in Theorem 3 and in
Theorem 4 are optimal. Make a first step in this direction by proving that
cr2(K6,q) = (k + o(1))q2 .

3.4. The best known drawings for other complete bipartite graphs

Theorem 5. For any p 2: 6, q 2: 8, we have

1
:S 144 (p +5)(q +7)(2pq +4p +q - 7) .

Proof. We generalize the drawings for K6,q and K8,q ' Partition the P
vertices into almost equal sets Xl , X 2, . .. , X6. Place Xl , X2 , X3 (resp.
X 4, Xs , X6) on the positive (negative) part of the x axis in this order from
the origin towards infinity (minus infinity). Partition the q vertices into
almost equal sets YI , Y2, · · . , Yg . Plac e Y1, Y2, Y3, Y4 (resp . Ys, Y6, Y7 , Yg)

on the positive (negative) part of the y axis in this order from the origin
towards infinity (minus infinity).
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On both planes we connect all vertices of any Xi to all or no vertices
of any Yj, and all connect ions are straight line segments. For the dr awing
on th e first plane join Xl and X 4 with Y}, Y2, Ys, Y6; X 2 and Xs with Y2,
Y3, Y6, Y7; X 3 and X 6 with Y3, Y4, Y7, Ys. For the drawing on t he second
plane t he locations of Xi'Sare th e same. Pl ace the Yi 's vert ices in the ord er
Y3, Y4, Yl , Y2, from the origin towa rds infini ty; and Y7, Ys, Ys , Y6, from
the origin towards minus infinity on t he y axis. Draw t he remaining edges
with st ra ight line segments . By count ing up of all kinds of crossings in th e
dr awing and by regrouping terms we get that the number of crossings is
precisely

6 S

L C~il) L Ci')2=1 J=l

+ ( C~ll) + C~31) + C~41) + C~61) )

x (IYI11Y21 + 1Y311Y41+ IYSI1Y61 + 1Y711Ysl)

+ ( C~2 1) + C~sl) ) (IYI! IY41 + 1Y211Y31 + IYsllYsl + 1Y611Y71)

+ (IXII IX21+ IX41IXsl) (C~21) + C~41) + ('~6 1) + C~81) )

+ (IX211 X31 + IXsIIX61) (C~ll) + C~3 1) + C~s l) + C~7 1) ) .

First assume that p is divisibl e by 6 and q is divisible by 8. One can easily
compute that the number of crossings is pq(2pq - lOp - 9q + 36)/144.

Now let p, q be arbitrary numbers. Let p' be the smallest number
divisible by 6 such that p' 2 p and q' be the smallest number divisible by 8
such that q' 2 q. Then the number of crossings is at most p'q'(2p'q' - lOp' 
9q' + 36)/144. Noting th at p' = 6r~l ::; p+5 and q' = 8 r ~ l ::; q+7 we get
th e claim . _

Open Problem 5. Make a conject ure showing a pattern for optimal bi
planar drawings of K p,q , i.e. pose th e biplanar version of th e Zarankiewicz
conjecture. A good conject ure for K 7,q already seems to be hard to find.

Open Problem 6. Find an asym pto tic formula for cr2(Kp,q) for small
fixed p.
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4. RESULTS AND PROBLEMS ON OTHER SPECIFIC FAMILIES GRAPHS

4.1. Complete graphs

Note that bounding cr2(Kn) is a Nordhaus-Gaddum type problem [14] .
Owens gave an explicit biplanar drawing of K n with

The same upper bound (up to the second order term) , based on a different
drawing follows immediately from our work with Shahrokhi [21] by setting
C = K; in (11) .

Harary et al. [4] and Tutte [28] showed that for n ~ 8, 8(Kn ) ~ 2 and
8(Kg) = 3. Their construction actually also shows cr2(Kg) = 1. Applying
the counting argument for H = KlO,lO' C = K n , and using cr2(KlO,1O) ~ 28
from (13), we obtain

(16)

We can do somewhat better than (16). Consider a biplanar drawing D
of K n . Then any subset of vertices induces a biplanar subdrawing, D' , of
the induced complete subgraph G'. Assume that G' has order n' and size
m' = C~) . According to (5),

6m' - 66n' + 132 if n' ~ 3

6rn' - 66n' + 132 - 12 if n' = 2
(17) cr2(G') ~

6m' - 66n' + 132 - 66 if n' = 1

6m' - 66n' + 132 - 132 if n' =0.

Pick now independently with probability p vertices of K n to obtain a random
C' . Taking expectation of the inequality of two random variables , (17), we
obtain:

( r' ( r- 66np 1 - p - 132 1 - P .
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Setting p = 30.073871/n in (18) yields that for n sufficiently large,

n4

(19) cr2(Kn) ~ 952'
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if k is odd.

if k is even ,

It follows from the counting argument applied to G = K n and H =
Kn- l , that cr (Kn)/G) is a non-decreasing function of n , and hence has
finite limit . The same argument applies to cr2(Kn) as well

Open Problem 7. Improve the lower bound in (19). Is

. /(n) 7 24 7lim cr2(Kn) = - . - =-?
n ......oo 4 24 64 64

Find exact values for the biplanar crossing numbers of complete graphs for
small values n = 10,11, . . . .

4.2 . Hypercubes

For the k-dimensional hypercube Qk, it is known that 8(Q7) ~ 2 and the
estimation (2) gives cr2(QS) ~ 8. We give a general upper bound for the
biplanar crossing number of hypercubes.

Theorem 6. For k ~ 8

{

165 2~k + O(k22k)
512 '

cr2(Qk) ~
1762~k O(k22k)
512 + ,

Proof. Our biplanar drawing of Qk is based on the best known planar
drawing due to Faria and Figueiredo [6] satisfying

(20)

Let 0 ~ i ~ k. Observe that all edges belonging to the first i dimensions in
Qk induce 2i distinct hypercubes isomorphic to Qk-i. Draw these hyper
cubes on the first plane and the 2k- i hypercubes isomorphic to Qi, induced
by the last k - i dimensions on the second plane , using (20). We get a
biplanar drawing with

cr (Q ) < 165 22k-i 165 2k+i .
2 k - 1024 + 1024

Finally, by setting 'i = fk/21 , we get the result. •
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Unfortunately, the lower bound formula (7) gives only a weak estimation
of order O(k32k ) , and even (8) improves it insignificantly to O(k42k ) . In
order to use (8), we have to note that we can keep a positive percentage
of edges of Qk, while destroying all 4-cycles by throwing out edges, see
[8]. We know that our drawing is not optimal: some edges between vertex
disjoint copies of QLk/2J (resp. Qrk/21) can be brought over from the other
plane without making new crossings, and in this way their old crossings are
eliminated.

Open Problem 8. Is the upper bound in Theorem 6 stil! the best possible
up to a constant multiplicative factor?

4.3. Meshes

In the standard plane crossing number theory one of the most studied graph
is the toroidal mesh, i.e. the Cartesian product of two cycles. See the recent
paper [7] for the almost complete exact solution. We will concentrate on
the biplanar crossing number of toroidal and ordinary meshes. It is an
easy exercise to show that the graph Cn l X Cn 2 X Cn 3 is biplanar for any
3 ::; nl , n2, n3 . On the other hand O«, X Cn 2 X Cn 3 X Cn 4 has thickness at
least 3. We do not know whether

Open Problem 9. Is it true that cr2(Pn x Cn X Cn x Cn) = 07

If it is nonzero, it is surprisingly small, since we have a biplanar drawing
showing that Cr2(Pn x Cnx Cn x Cn ) = O(n 4) , which is just linear in the
number of edges. (Put edges from the first two dimensions on the first plane,
and edges from the second two dimensions on the second plane.)

Theorem 7. For even k

cr2 ( IT Cn) ::; 2~+5nk-2.
~==I

Proof. Put the edges of the first k/2 dimensions on the first plane. They
k

induce 2~ vertex disjoint subgraphs isomorphic to TIl==1 Cn . Place the
leftover edges on the second plane. Using the estimation

k

cr ( IT Cn) ::; 16nk
-

2

~== 1
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from [22] we get the result. •
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We leave it to the Reader to prove an analogue of Theorem 7 for odd k.

Open Problem 10. Show that the upper bound in Theorem 7 is tight.

5. CONCL USION

Our knowledge on biplanar crossing numbers is as rudimentary as it was
our knowledge on crossing numbers till Leighton 's work [10] in the 70's.
Bisection width and graph embedding methods cannot be used, only the
count ing method and density-b ased lower bounds are available. We hope
that the development of st ructure-based lower bounds for the biplanar
crossing numbers will shed light to some so far unknown prop erti es of
ordinary crossing numbers as well.
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AN EXERCISE ON THE AVERAGE NUMBER OF REAL

ZEROS OF RANDOM REAL POLYNOMIALS

C. DOCHE and M. MENDES FRANCE

A Vera Sos et Andras Hajnal avec admiration et amitie

The average num ber of rea l zeros of random n degree real polynomials is well
known since M. Kac's semin al article of 1943 [12] which states th at it is logn +
0(1) . Some fifty years later, A. Edelman and E. Kostlan found a beauti ful
geometrical proo f which allowed them to give many other related results [10] .
Using their method we discuss th e average number of rea l zeros of random real
polynomi als

where th e Ai's are independent Gaussian variables with mean °and with variance

where 13 E lR is a given parameter . The average numb er of real zeros in th e
interval (a,b) is shown to be

1 ( b a )E (n; a, b) =;JTi Arctan n fJ / 2 - Arct an n fJ/ 2 .

While discussing special polynomials we are led to show that under general
conditions , polynom ials of the type

k

L Ai(X)(ai X + bit
i = 1

have at most 0(1) real zeros as n increases to infinity.
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1. THE GENERAL SETTING

C. Doche and M . Mendes France

Let A be a sequence of n + 1 integers AO, AI, ... , An; Aj ~ 0, not necessarily
distinct. Consider the real polynomial

n

P(X) = L ajX>'j
j=O

where the coefficients aj are real independent Gaussian variables with mean
oand standard deviation cr(aj) = 1. The object of the paper is to compute
the expectation of the number of real zeros of P for a special sequence A
which we shall describe shortly.

At this point it should be observed that the result is independent of
the order of the Aj'S in A since the aj's are independent identical random
variables: any permutation on A leaves the expected number of real zeros
invariant.

Define

and

Then

P(X) = L X k L aj.
O(k(IAI jE>.-l(k)

The random variables

Ak = L aj
jE>.-l(k)

are independent Gaussian variables with mean 0 and with standard devia

tion

The most natural and interesting case is when A = {O, 1, .. . , n} and this is
the one studied by M. Kac [12, 13] and later by A. Edleman and E. Kostlan
[10] . For a short history we refer to the book of A. T. Bharuca-Reid and
M. Sambandham [3] or to [8].
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2. A SPECIAL CASE

The special case we wish to discuss is the following which even though it
may be thought as artificial, it seems to have some relevance in Quantum
Mechanics. This was already noticed in [10]. Let 8(j) be the sum of the
binary digits of the integer j ~ O. Choose

A== (8(0),8(1),8(2), .. .,8(2n - 1))

so that IAI == n . Then

P(X) == L ajXs(j)

O~j<2n

== L X
k L aj == L AkX

k.

O~k~n s(j)=k O~k~n

Quite obviously

L 1==(n)
s(j )=k k

so that the variance of Ak is G). This is precisely the case encountered
by the three physicists E. Bogomolny, O. Bohigas and P. Lebceuf [2] even
though the sum of the digits does not appear explicitly in their presentation.

Here we shall give a simple generalization of the above case. We are
given a real parameter {3 and we assume that the coefficients Ak of the
polynomial

are independent random Gaussian variables with mean 0 and variance

The parameter {3 can be thought of as an "order parameter" which intro
duces some "noise" (inverse temperature) in the system. Negative noise or
negative temperatures should not surprise the physicists; see for example
[15, Chapter VI, §71].

As (3 decreases from +00 to -00, the standard deviation lJ(Ak), k ~ 1,
increases from 0 to +00. For large (3, the Ak'S have small standard deviation
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and are to some extent well determined. On the contrary, when f3 is in the
vicinity of -00, the Ak's have large standard deviation and as such, are
completely unpredictable. See also Figure 1.

1

>1

o nl
2

Fig. 1

n

If 1f31 < 1, the graph k f-+ CJ(Ak) has a maximum in the open interval
JO ,n[; the values f3 = ±1 seem to playa special role.
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3. A FIRST RES ULT

Theorem 1. Suppose Ao,AI , . .. ,An are (n + 1) centered independent
Gaussian variables with variance

Th en the average number of real zeros of th e polynomial

in the interval (a, b) is

1 ( b a )E(n; a, b) =;.In Arctan nf3/ 2 - Arctan nf3/ 2 •

In particular the average number of real zeros is independent of (3:
E(n; IR) = ,;n.
Proof. The proof is very simple since according to [10], th e average numb er
of zeros in (a,b) is

In our case

_( xy)n- l+
nf3

.

Therefore

,;nI b
n

f3
/

2

E(n;a,b) = - 2 f3 dt
7f a t +n

and the result follows. •
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4, COMMENTS

The density of probability is

and the normalized density is

C. Doche and M. Mendes France

1 1 n{3/2
Pn(t) = ~Pn(t) = - 2 (3'

y n n t + n

For a fixed large n Figure 2 displays the aspects of the grap hs of the functions
t f-1 Pn(t) . If /3 < a is fixed and if n tends to infinity, Pn(t) converges to
the Dirac measure at the origin, The zeros tend to concentrate on the

1 -/3/2-n
'Tr

o
Fig. 2

t
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neighbourhood of O. A hand -waving argument could have predicted this
behaviour. Indeed,

and therefore, since /3 < 0

(j2(Aj+d

(j2(Aj )

n - j 1

j + 1 n f3

(j2(Aj+d
J~~ (j2(A

j
) = +00.

Aj+l is infinitely more dispersed than Aj • Divide th e polynomial by An.
For large n it behaves like

o+OX +OX2 +...+OXn
-

1 + X"

and indeed, all the zeros are concentrat ed on X = O.

In the same fashion , suppose /3 > O. Then th e graph t 1--7 Pn(t) is close
to the horizont al axis. The zeros are well dispersed on JR. This could have
been foreseen. Indeed

if j = 0

if 0 < j

so th at for infinitely large n almost all polynomi als coincide with

0,0 +OX +OX2 +...+OXn .

The zeros have infinit e size, i.e. they are not confined in a bounded set in
JR . In oth er terms th ey appear dispersed within the real line.

Let us analyze our results differently. Let 0 < a < b. The average
numb er of zeros in th e interval (a, b) is, as we showed

1 ( b a )E( n;a ,b) =;vn Arctan nf3/2 - Arctan nf3 /2 .

When n increases to infinity, the limit of E(n ;a, b) depends on /3:

a if (3 < -1

!-(~-~) if /3 = -1
7r a b

lim E(n;a,b) = +00 if -1 < /3 <1n->oo

1
-(b - a) if /3 = 1
7r

0 if j3 > 1.
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Two crit ical values appear f3 = ±1. If !f31 > 1 th e limit vanishes for all
interval (a,b) , and then of course the same conclusion holds for all int erval
(- b, - a), 0 < a < b. Therefore, if t he real zeros are sufficiently many, they
must all be close to O. Comparing this result with our previous ones we
conclude that

f3 < -1 } { The zeros are mostly in

n large ==> a small neighbourhood of O.

f3 > 1 } ==> { The zeros are so dispersed and spa rse

n large that for all c> 0 E(n;- c, +c) ~ O.

5. RANDOM SEQ UENCES AND DETERMINISTI C SEQ UEN CES

In relationship with our initial discussion it may be interesting to test the
distribution of real zeros of the random polynomials

2" - 1

Pn(X ) = L ± X s(j )

j =O

where th e signs (±) are chosen rand omly according to the uniform proba
bility (~ , ~) . We should expect vn real zeros. However it is particularly
difficul t to compute these polynomials for large n since they involve a huge
quant ity of inform ation. In practice it is hard to exceed the degree 30 for
a given sequence. We have done some computations for the determinist ic
choice of signs aj = (-1) Ly'2jJ which seem consistant with our expectat ion.

For well chosen sequences we can somet imes compute exact ly t he number
of real zeros. For example if aj = » for some real '\ , it is eas ily seen tha t

(1) L )JX s(j ) = II (1+ X,\2
k

) .

O~j<2" O~k<n

The zeros are all real: X - ,\_ 2
k

; k = 0,1 , ... , n - 1. Another trivial
example is aj = (-1 )s(j) , t he TIme-Morse sequence. Then clearly

L (_ l) s(j)x s(j ) = (1 - x t

O~j<2"
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and again the zeros are all real.

The Thue-Morse sequence is a special example of the so-called 2
automat ic sequences, i.e. sequences generat ed by a finite basis 2 automaton
(see [5 , 6], [4] or [1] for the general theory of automatic sequences) .

Another example is given by the Rudin -Shapiro sequence defined by

a2j = aj and a2j+1 = (-l) jaj .

It is possible to show that

Indeed
2" - 1

Pn(X) = Pn- 1(X) + L ajXS(j).
j=2"-1

This last term is trivi ally equal to

Now from the definition of (aj)j ~O it is easy to ensure that

so that

2,,-2 _ 1 2,,- 1_ 1

Pn(X) = Pn-1(X) + X L akXs(k) - X L akXs(k)
k=O k=2"- 2

= Pn-1(X) + XPn- 2(X) - XPn-1(X) + XPn- 2(X)

= (1- X)Pn-1(X) + 2XPn- 2(X)

as claimed. Computations up to degree 200 with the polsturm command
of PARI suggest that the number of real roots of Pn(X) is about n/2 more
precisely it seems to satisfy

2 r~1_(-1)n;1
+1.
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Unfortunately we are not able to establish this. . .

It is probable that 2-automatic sequences are too correlated to the
sequence of exponents s(j) to provide examples of polynomials which have
(1 +o(1)) ;n real zeros as in the generic case.

The next example, namely the paperfolding sequence strengthens this
guess . This is a (±) sequence defined as [7, 9, IJ

a2n = (-Iyn, a2n+l = an; n ~ O.

Let
Pn(X) = L ajXs(j).

O~j<2n

In the next paragraph we establish that

(2) Pn(X) = (1 - X)(I +Xyn-l +2Xn

and by use of a general theorem which we shall prove we manage to show
that the number of real zeros of Pn(X) is bounded independently of ti.

6. THE PAPERFOLDING CASE AND A GENERAL THEOREM

We first establish Identity (2).

Pn(X) = L a2jXs(2j) + L a2j+lX s(2j+l)

O~j<2n-l O~j<2n-l

L (-1)jx s(2j)+XP
n_l(X),

00<2n- 1

The first sum on the right hand side is (1 - X)(1 + xt-2 as is clear from
Identity (1) with A = -1. Therefore

from where we conclude that indeed

{

Pn(X ) = (1 - X)(l +xt- 1 + 2Xn,

Po(X) = 1
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The fact that the number of distinct real zeros of Pn(X) is bounded
independently of n is a consequence of the following argument . Put Y =
1+*- The zeros of Pn(X) satisfy y n - 2yn-1 +2 = O. Descartes' theorem
asserts that thi s polynomial has at most 2 real zeros if n is even and 3 if n is
odd. Actu ally for n > 4 these results are sharp. The zeros are distinct since
Pn and p~ have no common zero and therefore the number of real zeros is
0(1) .

The above argument can be extended to establish the following result .

Theorem 2. Let k ~ 2 be a given integer and let Aln(X) , A2n(X) , ,
Akn(X) be an in finite family of nonzero real polynomials (n = 0,1 ,2, )
th e degrees of which are bounded independ ently of n. Let aI , a2, "" ak;
bl , b2, . . . ,bk be 2k real numbers such that for all i =1= j aibj - ajbi =1= O.
Th en the polynomials

k

Pn(X) = L Ain(X)(ai X + bdn

i= l

each have a number of real zeros which is bounded independently of n.

Proof. We prove the theorem by induction on k ~ 2. Let

Pn(X) = An(X)(aX + b)n + Bn(X)(eX + dt

with ad - be =1= O. Ignoring a finite number of real zeros, we can suppose
with no loss of generality that An(X) is coprime with eX + d. So -die is
not a zero of Pn .

Put
y = aX +b

eX +d '
X = -dY +b .

eY -a

- -
= (eX +dynAn(y)~n +Bn(Y)

Cn(Y)
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~ ~ -
where An(Y), Bn(Y) , Cn(Y) are polynomials. There is a 1-1 correspon-
dance between the real zeros of Pn(X) and the real zeros of An(y)yn +
Bn(Y) = Qn(Y). The numbe~:.oftermsof the polynomials Qn(Y) is bounded
by the number of terms of An(Y) plus those of Bn(Y). This number is
bounded independently of n. By a theorem of Descartes we conclude that
the number of zeros of Pn(X) is bounded independently of n .

We now assume that the theorem is true for all values up to k - 1.
Consider

k

Pn(X) = L Ain(X)(aiX + bir'
i=l

Put
Y = ak-IX + bk- 1 .

ak X + bk

The zeros of Pn(X) are obtained from those of

k-l

L Ain(Y)(ai Y +bd
n + Ak(Y),

i=l

where the iLn (Y) are polynomials with degrees bounded independently of
n . By successive derivations, say d, the last polynomial Ak(Y) vanishes and
we are left with a polynomial

k-l

L Ain(y)yn- d

i=l

which by induction hypothesis has a number of real zeros bounded inde
pendently of n. By successive integrations (d in fact) we conclude that the
same is true for Pn(X) . •
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7. ApOLOGY

One of the main ideas in the beautiful book of J . Harthong on probability
[11] is that basically random variables on bounded sets are always uniformly
distributed, and on IR they are centered Gaussian variables with equal
standard deviation. But of course they may be submitted to const ra ints
in which case they are as uniform as can be given the extra conditions. In
other terms, they adhere to the maximal entropy principle.

In our case
2" - 1L ajXs(j)

j=O

the const raint comes from the fact th at the exponents are not distinct . The
variance G) comes out naturally. The random variables

A k = L a j

s(j)=k

play the role of the main variables whereas the aj 's seem to be "hidden
variables" . . .

In any case, the varian ces

do not app ear to be so art ificial as first one might think. As for

we are afraid we can offer no convincing argument to just ify the choice.. .
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EDGE-CONNECTION OF GRAPHS, DIGRAPHS, AND

HYPERGRAPHS

A. FRANK*

To the memory of C. St . J. A. Nash- Williams and W. T. Tutte who contributed

to the area with fundamental results.

In this work extensions and variations of the notion of edge-connectivity of
undirected graphs, directed graphs, and hypergraphs will be considered. We show
how classical results concerning orientations and connectivity augmentations may
be formulated in this more general setting.

1. INTRODUCTION

A digraph D = (V, E) is called strongly connected if there is a directed
path from every node to every other node . By an easy exercise, this is
equivalent to requiring that (2D(X) 2: 1 for every proper non-empty subset
X of V, where (2D(X), the indegree of X, denotes the number of edges
entering X. An undirected graph, (in short, a graph) G = (V, E) is called
2-edge-connected if there are two edge-disjoint paths from every node to
every other. It is not difficult to show that this is equivalent to requiring
that dc(X) 2: 2 for every proper non-empty subset X of V , where dc(X) ,
the degree of X, denotes the number of edges connecting X and V - X.

'The work was started while the author visited the Institute for Discrete Mathematics,
University of Bonn, July, 2000. Supported by the Hungarian National Foundation for
Scientific Research, OTKA T037547 .
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T he prototypes of theorems we are interested in concern st rong-connectivity
and 2-edge-connectivity.

1. Augmentation [K. P. Eswaran and R. E. Tarjan] [1 2] . A digraph can
be made strongly connected by adding a t most, new edges if and only if
there are no , + 1 disjoint sink-sets (:strongly-connected component s with
no leaving edges) and there are no , + 1 disjoint source-sets (:strongly
connected components with no ente ring edges) . A connected undirected
graph can be made 2-edge-connected by adding at most , new edges if and
only if the number of 'leaves' is a t most 2" where a leaf is a minimal subset
X with dc(X) = 1.

2. Orientation [H. E. Robbins] [52]. An undirected graph has a stron gly
connected orientation if and only if it is 2-edge-connected.

3. Constructive characterization [folklore]. A digraph is strongly con
nected if and only if it can be built from a node by the following two opera
tions: (i) add a new directed edge connecting exist ing nodes, (ii) subdivide
an exist ing edge by a new node. A graph is 2-edge-connected if and only if i t
can be built from a node by the following two operations: (i) add a new edge
connecting exist ing nodes, (ii) subdivide an exist ing edge by a new node.
In both cases the two operations may be included into one: add a path (di
rected, in case of digraphs) connecting two existing nod es (which may be
equal), an opera tion called addi ng an ear . Therefore these theorems are
often formulated in the form: a graph is 2-edge-connected or a digraph is
st rongly connected if and only if it can be buil t from a node by adding ears .
The sequence of ears in such a const ruction is called an ear-d ecomposition
of th e (2-edge-connect ed) graph or (strongly connected) digraph. Moreover,
such an ear-decom position exists if the initial (di)graph is an arbitrary 2
edge-connec ted (respectively, stron gly connected) sub(di)graph.

We survey these typ es of results concern ing higher edge-connection.
Here the word 'edge-connect ion ' is used in its informal meaning to descr ibe
the intu itive notion of a graph G = (V,E) or a digraph D = (V,A) being
'pret ty much connected by edges'. To capture this idea formally, there are
(at least ) two distinct approaches, and both of them admit several versions .

The first approach requ ires th e (di)graph to be not dismantleable int o
smaller parts by leaving out only few edges. Here are four possible defini
tions to make this intuit ion formal.
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(AI) A graph G = (V,E) is k-edge-connected if discarding less than
k edges leaves a connected graph . (This is easily seen to be equivalent to
requiring dc(X) 2: k whenever 0 C X c V.)

(A2) A digraph D = (V, A) is k-edge-connected if discarding less
than k edges leaves a strongly connected digraph . (This is easily seen to
be equivalent to requiring QD(X) 2: k whenever 0 C X c V.) For k = 1,
k-edge-connectivity is just strong-connectivity.

(A3) G is k-partition-connected if discarding less than kq edges
leaves a graph with at most q connected components for every q = 1,2 , . . . ,
IVI-I. Equivalently, there are at least kq edges connect ing distinct parts for
every partition of V into q+1 non-empty parts for every q, 1 S; q S; IVI- 1.
Note that for k = 1, par tition-connectivity is equivalent to connectivity.

(A4) D is rooted k-edge-connected if there is a root-node s so that
after discarding less th an k edges every node keeps to be reachable from s.
(This is easily seen to be equivalent to requiring QD (X) 2: k for every non
empty subset X of V - s).

The second possible approach to capture the notion of high edge
connection is requiring the graph or digraph to contain several edge-disjoint
'simple' connected const ituents. Here are four possibilities .

(BI) In G there are k edge-disjoint paths between every pair u, v of
nodes.

(B2) In D there are k edge-disjoint directed paths from every node to
every other.

(B3) G contains k edge-disjoint spanning trees (in which case G is
called k-tree-connected) .

(B4) D contains a node s so that there are k edge-disjoint spanning
arborescences root ed at s .

Some basic results of graph theory asserts the equivalence of the cor
responding definitions. Namely, by the edge-versions of Menger's theorem
[15], the definitions (AI) and (BI) [resp., (A2) and (B2)] are equivalent :

Theorem 1.1 (Menger). An undirected graph is k-edge-connected if and
only if there are k edge-disjoint paths between every pair of nodes. A
digraph is k-edge-connected if and only if there are k edge-disjoint paths
from every node to every other.

The equivalence of (A3) and (B3) was proved by W. T . Tutte [56].
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Theorem 1.2 (Tutte) . A graph contains k edge-disj oint spanning trees
if and only if, for every partition {Vi , . .. , vt} of V, the number of edges
connecting distinct parts is at least k(t - 1).

Finally, the equivalence of definitions (A4) and (B4) was proved by
J. Edmonds [9] .

Theorem 1.3 (Edmonds). A digraph D contains k edge-disjoint spanning
arbo rescences roo ted at s if and only if f2D (X) ~ k for every non-empty
subset X of V - s .

We extend these notions even further. For non-negative integers l ~ k,
a digraph D is (k, l)-ed ge-connected if D has a node s so that there are k
edge-disjoint paths from s to every oth er node and there are l edge-disjoint
paths from every node to s. Equivalently, the digraph is i-edge-connected
and rooted k-edge-connected. Note that D is (k, k)-edge-connected exactly
if D is k-edge-connected, and (k,O)-edge-connectivity is equivalent to rooted
k-edge-connectivity. We also remark that , by relying on max-flow min-cut
computat ions, it is possible to decide in polynomial time if a digraph is
(k, i)-edge-connected or not .

Another general notion is as follows. For two subsets S,T of nodes, D
is said to be k-ed ge-con nect ed from S t o T if there are kedge-disjoint
paths from every element of S to every element of T. In the special case
S = T we briefly say that D is k-edge-connected in S . If S = T = V we
are back at k-edge-connectivity. If S = {s} and T = V we arrive at root ed
k-edge-connectivity. Also, for an undirected graph G = (V, E) we say th at
G is k-ed ge-con nect ed in S ~ V if there are k edge-disjoint paths in G
between any two elements of S. A directed edge st with s E S, t E Twill
be called an ST-edge.

We say that a partition of V into t non-empty parts is a t-partition . For
a given partition P of V , the set of edges in a graph G = (V, E) connect ing
distinct parts of P is called the border of P . An element of the border
is called a cross-edge of the parti tion. The border of a 2-partition is
tradit ionally called a cut. For an integer i (which may be negative), we call
an undirected graph G = (V, E) (k, i)-partition-connected if the border
of every t-partition of V (t ~ 2) has at least k(t - 1) + l elements . For
l ~ 0, this definition attempts to capture the intuitive notion for higher
edge-connection which requires that leaving out only few edges does not
result in too many components.
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A very first question concerning th is notion is whether there exists a
polynomially checkable cert ificate for a graph being (k, l)-partition-con
nected. The answer depends on whether l :S 0, or 1 :S l :S k , or k < l .
If l = 0, we are back at k-partition-connectivity, and then the certificate
(by Tutte's theorem) is a set of k disjoint spanning trees. When l = - I
is negative, we will prove (Theorem 2.10) that a graph is (k, l )-partition
connec ted if and only if it is possible to add 1 new edges so tha t th e resulting
graph contains k disjoin t spanning trees. That is, in this case the cert ificate
for (k, l)-partition-connectivity is k disjoint spanning trees whose union may
contain 1 new edges.

For l ~ k, we claim t hat (k, l)-partition-connectivity is equivalent to
(k + l)-edge-connectivity. Indeed, if Gis (k, l)-partition-connected, then the
definition for t = 2 implies th at every cut contai ns at least k(t -1) +l = k+l
edges, that is, G is (k +l)-edge-connected. Conversely, let G be (k +l )-edge
connected and let P := {VI, . . . , \It} be a partition. By letting ec (P ) denote
the number of cross-edges of P , we have ec(P ) = L~ dc(Vi)/2 ~ (k+l)t/2 =
tk + t(l - k)/2 ~ tk + (l- k) = k(t -1) + l, and hence we conclude that Gis
(k, l)-partition-connected. Therefore we will be interested in (k, l)-partition
connectivity only if l < k.

Finally, for °< l < k one has the following characterizat ion (T heorem
4.5): a graph is (k, l)-partition-connected if and only if it has a (k , l)-edge
connected orientation. Such an orientation may indeed serve as a certificate
for (k, l)-partition- connectivity since a digraph can be tested for (k, l )-edge
connect ivity by relying on Menger 's theorem.

Given a groundset V , by a co-partition (of V) we mean a family of
subsets consist ing of the complementary sets of a partition of V. A family
F of subsets of V is called a sub-pa r tition of V if F is a partition of a
subset of V . For a partition F of a non-empty proper subset Z of V , the
family {V - X : X E F} is called a co-part it ion of V - Z . For a subset X
and for two elements x and y , we say that X is an x y-set if x E X, y ~ X .

For non-negative integers k, I, we call an undirected graph G (k, l)-tree
connected if deleting any subset of at most l edges leaves a k-tree-connected
graph. By Tutte's theorem, G is (k, l)-tree-connected if and only if G is
(k, l)-partition-connected.

In a graph G = (V,E) the loca l edge-connectivity A(X,y ; G) of nodes
x and y is the minimum cardinality of a cut separating x and y. By
Menger's theorem, this is equal to the maximum number of edge-disjoint
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paths connecting x and y. ec(X) denotes the number of edges with at least
one endnode in X.

In a digraph D = (V, E) the local edge-connectivity ..\(x,YiD) from
node x to node y is the minimum number of edges entering a vi-set. By
Menger's theorem, this is equal to the maximum number of edge-disjoint
paths from x to y. e(X) denotes the number of edges entering X and
8(X) := Q(V - X) . For a graph or digraph H, iH(X) denotes the number
of edges induced by X.

Typically we will work with directed or undirected graphs and write
(di)graph when either of them is meant . Sometimes mixed graphs are also
considered which may contain both directed and undirected edges.

2. RELATIONS BETWEEN OLD RESULTS

The three motivating theorems mentioned at the beginning of the introduc
tion represent, respectively, the following general problem classes.

1. In a connectivity augmentation problem we want to add some new
edges to a graph or digraph so that the resulting graph or digraph satisfies a
prescribed connectivity property. In a minimization problem the number
(or, more generally, the total cost) of new edges is to be minimized . In a
degree-specified problem, in addition to the connectivity requirement, the
(di)graph of the newly added edges must meet some (in)degree specification.
Another aspect of augmentation problems distinguishes between the type of
graphs of usable new edges. In a restricted augmentation the new edges
must be chosen from a specified graph. We speak of a free augmentation if
any possible edge is allowed to be added in any number of parallel copies.
In the directed case, ST-free augmentations will also be considered when
the new edges must be ST-edges.

2. In a connectivity orientation problem we want to orient the edges
of an undirected graph so that the resulting digraph satisfies a prescribed
connectivity property. The proof of Robbins' theorem is fairly easy (say, by
ear-decomposition) but there are even easier orientation results: (A) a graph
G has a root-connected orientation (:every node is reachable from a root
node) if and only if G is connected, and (B) G has an orientation in which a
specified node t is reachable from s if and only if sand t belong to the same
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component of G. These are indeed so trivial that they deserve mentioning
only because they serve as a good ground for possible generalizations.

3. In a constructive characterization problem we are interested in
finding simple operations for a given connect ivity property by which every
(di)graph with the property may be obtained from a small initial (di)graph.
It will turn out that this type of results often help proving connect ivity
orientation results.

In earlier survey type works ([21] [22], [23]) I endeavored to overview
some aspects of connectivity orientations and augmentations with special
emphasis on their relationship to sub- and supermodular functions. There
fore in the present paper those results are mentioned only when the overview
of the developments of the past decade requires them. Exhibiting this
progress is our main goal, with a special emphasis on some known and
some newly discovered links connecting the different problems. Some new
observatio ns will also be out lined.

By comparing older results, this section is offered to demonstr at e how
closely the orientation, augmentation, and characterizat ion problems are re
lated to each other. But first a small remark is in order. The augmentation
problem may be considered as one of finding a supergraph of a (di)graph
with certain connect ivity properties. Thi s is naturally related to the sub
graph problem which consists of finding an optim al subgraph of a (di)graph
satisfying connect ivity requirements (somet imes called generalized Steiner
network problem) . The minimum cost versions of these problems are ac
tually equivalent , and to explain this we invoke a specific subgraph versus
supergraph problem-pair. Subgraph problem: givena digraph D = (V, A)
with specified nodes sand t endowed with a cost function c on A , find a
minimum cost subdigraph D' of D which is k-edge-connected from s to t .
Supergraph (=augment ation) problem: given a digraph D = (V,A) with
specified nodes sand t , moreover another digraph H = (V,F) endowed
with a cost function CF on F , find a minimum cost augmentat ion of D
which is k-edge-connected from s to t. Now if the subgraph problem is
tractable, then so is the supergraph problem: Let D 1 = (V, A U F ) be the
union of G and H and define a cost function CIon AUF by Cl (e) := a
if e E A and cl(e) := cF(e) if e E F . Obviously, an opt imal solut ion to
the subgraph problem on D1 determines an opti mal solut ion to the aug
mentation problem. Conversely, the subgraph problem can be viewed as
an augmentation problem because it is equivalent to augment , at a mini
mum cost, of the empty digraph (V,0) by using edges of D, (or wording
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differently, by using arbitrary edges but the ones not in D have cost +00).
Typically we use this equivalence in one direction : when the minimum cost
subgraph problem is tractable then so is the augmentation problem. In our
concrete case the subgraph problem is indeed solvable with the help of a
minimum cost flow algorithm. On the same ground , as the minimum cost
connected subgraph problem is solvable with the greedy algorithm, the min
imum cost augmentation problem, to make a given graph connected, is also
solvable.

We hasten to emphasize however that in several cases the subgraph prob
lem is NP-complete while the corresponding (free) augmentation problem
is nicely solvable. A prime example for this phenomenon is the problem
of finding a minimum cardinality 2-edge-connected subgraph of a graph G
which is known to be NP-complete as it includes the Hamiltonian circuit
problem (:the minimum is equal to IVI if and only if G is Hamiltonian).
On the other hand, the second introductory problem on the corresponding
connectivity augmentation is solvable.

2.1. Splitting and augmentation

The following two splitting lemmas are central to several results . By split
ting off a pair of undirected edges e = ZU, f = zv we mean the operation
of replacing e and f by a new edge connecting u and v . In the directed case
directed edges uz and zv are replaced by a directed edge uv .

Theorem 2.1 (Lovasz.'s undirected splitting lemma [42]). Let k 2: 2 be an
integer and G = (V + z, E) an undirected graph with a special node z of
even degree. If G is k-edge-connected in V, then there is a pair of edges
e = zu , f = zv which can be split off without destroying k-edge-connectivity
in V.

Theorem 2.2 (Mader's directed splitting lemma [46]). Let k 2: 1 be an
integer and D = (V + z , E) a directed graph with a special node z having
the same in- and out-degree. If D is k-edge-connected in V, then there is
a pair of edges e = zu , f = vz which can be split off without destroying
k-edge-connectivity in V.

Both lemmas may be used repeatedly, as long as there are edges incident
to z, and in this case we speak of a complete splitting. Sometimes by the
splitting lemma this complete version is meant : Under the same hypotheses,
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th ere is a complete split ting a t z so that th e resulting (di)graph on node set
V is k-edge-connected.

An easy observati on shows that the existence of a complete undirected
splitting th at preserves k-edge-connect ivity is equivalent to the following
degree-specified augmentation result [19] . Here and throughout th e pap er ,
we use the notation rn(X) := I: [rn(v) : v EX] .

Theorem 2.3. We are given an undirected graph G = (V,E) , a degree
specification rn : V -t Z+ with rn(V) even, and an int eger k ~ 2. Th ere is
a graph H = (V, F) so tha t dH(v) = rn(v) for every node v E V and G + H
is k-edge-connected if and only if rn(X ) ~ k - dc(X) for every non-empty
subset XcV .

This result was used in [19] to exhibit a short derivation of T . Wat anabe
and A. Nakamura's [57] earlier solution to the minimizati on form of th e
undirected edge-connect ivity augmentat ion problem:

Theorem 2.4 (Watanabe and Nakamura). An undirected graph G can be
made k-edge-connected (k ~ 2) by adding at most , new edges if and only
if I:i [k - dc(Xd] :s: 2, for every subpartition {Xl, ... , Xd of V.

Note that th e last theorem fails to hold for k = 1. On the other hand, for
this case, even th e minimum cost version is solvable by th e greedy algorithm
since it is equivalent to th e min-cost spanning t ree problem (while for k ~ 2
th e min-cost version is NP-complete.)

Mader's dir ected splitting lemma is also easily seen to be equivalent to
the degree-specified directed edge-connectivity augmentat ion problem:

Theorem 2.5. We are given a directed graph D = (V,E) , in- and out
degree specifications tn, : V -t Z+ and tn., : V -t Z+ so that rni(V) =
rno(V). Let k ~ 1 be all int eger. Th ere is a digraph H = (V,F ) so that
8H(v) = rno (v), (lH(V ) = rni(V) for every node v E V and so that D+ H is k
edge-connected if and only if rni(X) 2: k - (lD (X ) and rno (X) 2: k - 8D(X )
holds for every non-empty subset X c V .

This impl ies the minim ization form of directed edge-connectivity aug
mentation [1 9] :

Theorem 2.6. A digraph D = (V, E) can be made k-edge-connected (k ~

1) by adding at most , directed edges if and only if I:i [k - {l D (Xi)] :S:,
and I:i [k - 6D(Xd] :S: , hold for every subpartition {Xl , . .. , Xd of V .
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2.2. Connectivity orientation and augmentation

A. Frank

The easy orientation results mentioned above concern ing strong-conn ectiv
ity, connectivity from s to t , and s-rooted l -edge-connectivi ty naturally raise
questions on high er connection: when does a graph G have an orientation
which is (a) k-edge-conn ected from s to t , (b) rooted k-edge-conn ected ,
(c) k-edge-connected? Among these, the first one is easy (given Menger's
t heorem).

Theorem 2.7. For in tegers k1, k2 2: 0 and specified nodes s , t E V , an
undirected graph G = (V, E) has an orientat ion which is k1-edge-connected
from s to t and k2-edge-connected from t to s if and only if every cut of G
separating sand t has at least k1 + k2 edges.

Proof. The necessity of the condit ion is straightforward. The sufficiency
follows by observing that the condit ion impli es, by Menger 's theorem, the
existence of k1+k2 edge-disjoint paths between sand t. One can orient the
edges of k1 paths toward t , th e edges of the remaining k2 paths toward s,
and the remaining edges arbitrarily. _

The first non-trivial result concern ing orientation is du e to C. St . J. A.
Nash-Willi ams [47J. He proved the following extension of Robbins' theorem
(actua lly in a much st ronger form ).

Theorem 2.8 (Nash-Williams: weak form). An undirect ed graph G has a
k-edge-connected orientation if and only if G is 2k-edge-connected.

By a straightforward induction , Lovasz's undirected split ting lemm a
impli es Nash-William s' theorem . When roo ted k-edge-conn ectivity is the
target in the orientation problem , one has th e following resul t.

Theorem 2.9. An undirect ed graph G = (V, E) has a rooted k-edge
connected (that is, (k ,O)-edge-connected) orientation if and only if G is
k-parti tion-connected.

The non-trivial 'if ' par t is an easy consequence of Theorem 1.2 on
disjoint trees since Tu tte's theorem impli es that a k-par tition-connected
graph contains k disjoint spanning trees and, by orienting each of these trees
away from th e root (to become a spanning arborescence) while the remaining
edges arbit rarily, one obtains a rooted k-edge-conn ected orientation of G .

On the other hand, Theorem 2.9, when combined with Edmonds The
orem 1.3, gives rise to Tu t te's Theorem 1.2. At this point the question
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naturally emerges: if the required orient ations do not exist, th en how many
new undirected edges have to be added so that th e augmented graph admits
an orientation?

The answer is evident when the goal is to augment a graph so as to
become k-edge-connected orientable. Namely, by Nash-Williams ' theorem
this is equivalent to augment ing the graph to make it 2k-edge-connected, a
problem solved in Theorems 2.4 and 2.3. Suppose now we want to augment
G to become k-tree-connected (= k-par tition-connected) . For the special
case of free augmentat ion one has th e following:

Theorem 2.10. Let G = (V, E) be an undirected graph, s E V a specified
node, and "( a nonnegative integer. It is possible to add at most "( new
edges to G so th at th e enlarged graph has an s-rooted k-edge-connected
orientation if and only if G is (k , - "()-partition-connected. Moreover, all
the newly added edges may be chosen to be incident to s.

Proof. Recall that by definition G is (k, - "()-partition-connected if

(1) e(F) ~ k(t - 1) - "(

holds for every partition F := {VI" ' " itt} of V , where e(F ) denot es th e
number of cross edges of F . For brevity we call an orientation good if it
is k-edge-connected from s. If there is a good orient ation after adding "(
edges, then g(Vi) ~ k holds for every subset Vi c V not containing sand
hence e(F ) + "( ~ e+(F ) ~ k(t - 1), where e+ refers to the enlarged graph,
proving the necessity of the condit ion.

To see th e sufficiency, add a minimum numb er of new edges to G, each
incident to s so th at the enlarged graph has a good orient ation and let "('
denot e this minimum. Our goal is to prove "(' ::; "(.

Let g denot e th e in-degree function of th e good orient ation of the en
larged graph G+. We may assume th at g(s) = O. Let us call a set X ~ V - s
tight, if g(X) = k. By stand ard submodular technique, we see th at both
the intersect ion and th e union of two tight sets with non-empty intersection
are tight . Let T denote th e subset of nodes which can be reached from the
head of at least one new edge. Clearly, s ~ T and g(V - T) = O.

Lemma 2.11. If Z is tight and Z n T i= 0, then Z ~ T .

Proof. Suppose indirectly th at Z i. T . Then for Y := V - T we have
k= g(Y)+g(Z) = g(YnZ)+Q(YUZ)+d+(Y,Z) ~ k+O+d+(Y,Z) ~ k,
where d+(Y, Z) denot es the number of edges of G+ connect ing elements of
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Y - Z and Z - Y. Hence Q(Y U Z) = 0 and d+(Y,Z) = O. From the first
equality there is a new edge e = st for which t E Z for otherwise no element
of Z n T would be reachable from the head of any new edge. But then, by
the existence of edge e, we have d+(Y, Z) > 0, a contradiction. •

There are two cases. If there is a node v in T which does not belong to
any tight set, then let st be a new edge for which there is a path P from t
to v . Reorient each edge of P and discard e. Since v does not belong to any
tight set the revised orientation is good, contradicting the minimality of "('.

In the second case every element of T belongs to a tight set . Let
VI, .. . ,Vi-I be maximal tight sets intersecting T . These are pairwise dis
joint and by the lemma they form a partition of T. Let Vi := V - T and
F := {VI, . .. , Vi}. Since Q(Vi) = 0, and every new edge enters T, we get
k(t - 1) = L: [g(Vi) : i = 1,. .. , (t - 1)] = L: [Q(Vi) : i = 1, ... , t] =

i+(F) = e(F) + "('. This and (1) give rise to "(' = k(t - 1) - e(F) ~ "(, as
required. •

By combining Theorems 2.10 and 2.9, we obtain the following extension
of Tutte 's Theorem 1.2 which serves as a characterization of (k, l)-partition
connected graphs in case I ~ O.

Theorem 2.12. An undirected grapll G = (V, E) can be augmented by
adding "( ~ 0 new edges so that tIle enlarged graph is k-tree-coiuiected if
and only if G is (k , -"()-partition-connected. Moreover, the newly added
edges may be chosen to be incident to any given node in V.

The theorem shows that the free augmentation problem is tractable for
k-tree-connectivity as a target. This is, however, not surprising since, by
using matroid techniques, even the minimum cost version is solvable in
polynomial time. To see this , let G = (V, E) be an undirected graph and
let Gu = (V, Eu ) be a graph, where Eu is the set of edges usable in the
augmentation of G. Let C11 : Eu ........, R+ be a cost function . We want to
choose a subset F of edges of Gu of minimum total cost so that the increased
graph G+ = (V,E + F) is k-tree-connected.

To this end , let us define a cost function c' on the edge set of the union
G' = (V, E +Eu ) of G and Gu so that c'(e) := 0 if e E E and c'(e) = c(e) if
e E Eu . Then the problem is equivalent to finding k disjoint spanning trees
of G' with minimum total cost . Since the edge-sets which are the union of
k disjoint spanning trees form the set of bases of a matroid, this problem is
solvable in polynomial time by using Edmonds' matroid partition algorithm
and the greedy algorithm. This approach also shows that Edmonds' matroid
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partition theorem does provide a characterization for the existence of th e
required augmentation in Theorem 2.10. Our goal has simply been to show
a direct, graphical proof.

One may also consider the degree-specified version of the k-tree-con
nected augmentation problem. This does not seem to be a matroid problem
and it does not follow from the previous mat erial either. Section 4 includes
an answer even for the more general case of (k, l)-partition-connectivity.

2.3. Constructive characterization and splitting

Let G' = (V + z ,E') be an undirected graph with a special node z of even
degree and suppose that G' is k-edge-connected in V. By the undirected
splitting lemm a we know th at there is a complete splitting at z so that the
resulting graph G = (V,E) is k-edge-connected. In other words , the d(z)
edges incident to z can be paired so th at splitting off th ese j := d(z)j2
pairs (and discarding z) we obtain a k-edge-connected graph. In a directed
graph D' = (V +z, A') a complete splitting at z consists of pairing th e edges
entering z with those leaving z and then splitting off the pairs. Both in the
directed and in th e undirected cases th e inverse operation of a complete
splitting is as follows. Add a new node z , subdivide j existing edges by
new nodes and identif y the j subdividing nodes with z. Thi s will be called
pinching j edges (with z ). When j = 0 this means adding a single
new node z, while in case j = 1 pinching an edge requir es the edge to be
subdivided by a node z.

By the operation of adding a new edge to a (di)graph we always mean
that th e new edge connects exist ing nodes. Unless otherwise st ated, th e
newly added edge may be a loop or may be parallel to exist ing edges.

After these definitions, we exhibit how th e splitting lemmas give rise
to constructive characte rizations of 2k-edge-connected graphs and k-edge
connected digraphs. By using the easy observation th at a minim ally (with
respect to edge-delet ion) K-edge-connected undirected graph (with at least
two nodes) always contains a node of degree K , one can easily derive from
the undirected splitting lemma th e following const ructive characterization
of 2k-edge-connected gra phs.

Theorem 2.13 (Lovasz]. An undirected graph G = (V, E) is 2k-edge
connected if and only if G can be obtained from a single node by the
following two operations: (i) add a new edge, (ii) pinel] k existing edges.
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By using a rather difficult theorem of Mader [44], stating that a mini
mally (with respect to edge-deletion) k -edge-connected directed graph (with
at least two nodes) always contains a node of in-degree and out-degree k,
one can derive from the directed splitting lemma the following constructive
characterization of k-edge-connected digraphs.

Theorem 2.14 (Mader). A directed graph D = (V, E) is k-edge-connected
if and only if D can be obtained from a single node by the following two
operations: (i) add a new edge, (ii) pinch k existing edges.

It is useful to observe that Mader 's characterizaton in Theorem 2.14 for
k-edge-connected digraphs combined with Nash-Williams' orientation result
give rise to Theorem 2.13. The same phenomenon will occur later as well:
with the help of an orientation result , a constructive characterization for
directed graphs may be used to derive its undirected counterpart.

By an easy reduction, Theorem 2.14 provides a constructive characteri
zation of rooted k-edge-connected digraphs.

Theorem 2.15. A digraph D = (V, E) is rooted k-edge-connected if and
only if D can be built up from a root-node s by the following two operations:
(j) add a new edge, (jj) pinch i (0 ~ i ~ k - 1) existing edges with a new
node z, and add k - i new edges entering z and leaving existing nodes.

In [46] Mader showed that this characterization, in turn, can be used to
derive Edmonds' Theorem 1.3 on disjoint arborescences. Combining Theo
rems 2.9 and 2.15, one obtains the following constructive characterization.

Theorem 2.16. An undirected graph G = (V, E) is k-tree-connected (=
k-partition-connected) if and only if G can be built from a node by the
following two operations: (j) add a new edge, OJ) pinch i (0 ~ i ~ k - 1)
existing edges with a new node z, and add k - i new edges connecting z
with existing nodes.

3. SPLITTING AND DETACHMENT

In this section first we exhibit extensions of the splitting lemmas of section 2
and of their applications. After that the notion of splitting will be extended
to detachments.
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As a signifi cant generalization of Lovasz 's undirect ed splitting lemma,
W. Mader [45] proved the following result . Recall (from the int roduction)
the definition of local edge-connectivity A.

Theorem 3.1 (Mader). Let G = (V + z ,E) be an undirected graph so th at
th ere is no cut-edge incident to z and the degree of z is even. Th en there
exists a complete spli tting at z preserving the local edge-connectivities of
all pairs of nodes u, v E V .

Mader originally formulated his result in a slightly weaker form : If z is
not a cut-no de of G = (V + z, E) and d(z) ~ 4, th en there exists a pair of
edges incident to z which can be split off without lowering any local edge
connecivity on V. However the two form s can be shown to be equivalent.
T his and a relatively short proof of Mad er 's theorem was given in [20].

3.1.1. Constructive characterizations. Mader [45] used his result t o

charac terize (2k + 1)-edge-connected graphs .

Theorem 3.2 (Mad er) . Let K = 2k + 1 ~ 3. An undirected graph
G = (U, E) is K -edge-connected if and only if G can be construc ted from
tiie initial graph of two nodes connected by K parallel edges by the following
three operations:

(i) add an edge,

(ii) pinch k edges with a new node z' and add an edge connecting z' with
an existing node,

(iii) pinch k edges witll a new node z', pinch then again in the resulting
graph k edges with another new node z so that not all of th ese k edges are
incident to z' , and finally connect z and z' by a new edge.

The theorem is obviously equivalent to the first part of the following

result :

Theorem 3.3. An undirected graph G with more th an two nodes is K
edge-connected (K odd) if and only if G can be obtained from a (sm aller)
K -edge-connected graph G' by one application of one of th e operations (i) ,
(ii), (iii) . Moreover, for any nod e s of G, G' can be chosen so as to contain s.
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Proof. It is not difficult to check that each of these operations preserves
K-edge-connectivity. (Note that if all the k edges to be pinched with z'
in the second part of (iii) were adjacent to z, then only K - 1 = 2k edges
would leave the subset {z , z'}.)

For a subset X ~ V , the set of edges connecting X and V - X will
be denoted by [X,V - X]. We call a cut [X,V - Xl trivial if IXI = 1 or
IV - XI = 1. Bya minimum cut we mean one with cardinality K.

Lemma 3.4. Suppose that X is a minimal subset of nodes of a K -edge
connected graph G = (U, E) for which

(2) dc(X) = K and IXI ~ 2.

Then any minimum cut B containing an edge e = zz' witli Z, Z' E X is
trivial (that is, B is [z, U - z] or [z', U - z']) .

Proof. Suppose indirectly that there is a subset Y for which z E Y,
z' E U - Y , d(Y) = K, IYI ~ 2, IU - YI ~ 2. Then by the minimal
choice of X we have Y 1= X and U - Y 1= X . But it is well-known (and
an easy exercise anyway to show) that in a K-edge-connected graph with
K odd there cannot exist two such crossing sets X , Y. (Indeed , we have
K +K = d(X)+d(Y) = d(XnY)+d(XUY)+2d(X, Y) ~ K +K +0 from
which d(X n Y) = K = d(X U Y) and d(X, Y) = 0, where d(X,Y) denotes
the number of edges connecting X - Y and Y - X . Analogously, we obtain
for Y := U - Y that d(X n Y) = K = d(X U Y) and d(X,Y) = o. So if
a := d(XnY, Y -X), then d(XnY, X -Y) = K -(Y = d(Y-X, U -(XUY))
from which K = d(Y) = d(XnY, X -Y)+d(Y-X, U -(XUY)) = 2K -2a,
that is, K is even, a contradiction.) •

If there is an edge e so that G' := G - e is K-edge-connected, then
G arises from G' by (i). So we may assume that G is minimally K-edge
connected. We may assume that there is no node z which is connected only
with s since otherwise, then by the minimality, d(z) = K and then G arises
from G' by operation (ii) where G' is a graph arising from G by deleting z
and adding k loops at s. (Clearly G' is K-edge-connected.)

If every minimum cut is trivial, then let e = zz' be an arbitrary edge
not incident to s. If there are non-trivial minimum cuts, then there is a set
X satisfying (2). Since the complement of X also satisfies (2), there exists
a minimal set X satisfying (2) so that s ~ X.

Let e = zz' be an arbitrary edge induced by X . As X induces a
connected subgraph, such an e exists. Now e belongs to at most two
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minimum cuts, each is trivial. If e belongs to one minimum cut , than exactly
one of z and z', say z, is of degree K. Then G - e is K -edge-connected in
U-z. By Lovasz.'s splitting lemma there is a complete splitting at z resulting
in a K-edge-connected digraph G'. Then G arises from G' by operation (ii).

If both z and z' are of degree K , then G - e is K -edge-connected in
U - {z,z' }. It follows from Mader's splitting Theorem 3.1 th at there is
a complete split t ing of G - e at z so that the resulting graph G1 is K
edge-connected in U - {z, z' }. By applying the splitting lemma to G1 (now
Lovasz's is enough), we obt ain th at there is a complete splitting at z' so
that the resulting graph G' with node set U - {z, z'} is K- edge-connected.
This construct ion shows that G arises from G' by operation (iii).

Since in each case z and z' were chosen to be distinct from 5 , we have
also proved the second half of the theorem. _ _

Operation (iii) may seem to be a bit too complicated and one's natural
wish could be to try to simplify it . For example, a simpler, more symmetri c
version could be as follows: (iii)' choose two disjoint subsets F and F' of
edges both having k elements, pinch the elements of F with a new node
z, pinch the elements of F' with another new node z', and finally connect
z and z' . However, Mader in his original paper showed an example which
cannot be obtained with operat ions (i), (ii), (iii)'.

Fortunately, for K = 3, operations (iii) and (iii)' coincide and it is
worthwile to formulate th is special case separately:

Corollary 3.5. An undirected graph G with at least two nod es is 3-edge
connec ted if and only if G can be built from a node by the following
operations:

(i) add an edge,

(ii) subdivide an existing edge e = uv by a new nod e z and connect z to an
existing node,

(iii) subdivide two existing edges by nodes z and z' and connect z and z'
by a new edge.

3.1.2. Orientation. Lovasa's splitting lemma immediately implied Nash
Williams' orientation theorem (:a 2k-edge-connected graph always ties a
k-edge-connected orientation). In [29] we observed that Mader 's splitting
theorem also rather easily gives rise to the following common generalizat ion
of theorems 2.8 and 2.7.
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Theorem 3.6. Let k1, k2, k be non-negative integers with k, 2: k , k2 2: k .
An undirected graph G = (V, E) with two specified nodes" and t has a
k-edge-connected orientation which is ks-edge-connected from s to t and
k2-edge-connected from t to s if and only if G is 2k-edge-connected and G
is (kl + k2)-edge-connected in {5, t}.

This immediately implies a characterization of (2k + l)-edge-connected
graphs .

Theorem 3.7. An undirected graph G is (2k + l)-edge-connected if and
only if, for every pair of nodes 5 and t , G has a k-edge-connected orientation
which is (k + l)-edge-connected from 5 to t .

Given the easy way how Lovasz's splitting lemma implies the weak
form of Nash-Williams orientation theorem, one may expect that Mader 's
stronger splitting result implies immediately th e following stronger orienta
tion result of Nash-Williams [47] :

Theorem 3.8 (Nash-Williams: strong form). Every undirected graph G =
(V, E) has an orientation G for whic11 '\( x, y; G) 2: l'\(x, y; G)/2J for all

x, y E V .

Mader was indeed able to derive Theorem 3.8 relying on his splitting
theorem but the derivation is not at all simple (as neither is Nash-Williams'
original proof).

In the introduction of his paper, Nash-Williams [48] remarks that his
orientation theorems 'do not seem particularly closely related to much other
existing work in graph theory'. These words are painfully true even after
40 years as far as the strong form is concerned, and it remains a major
task to find a simple proof of Theorem 3.8 or at least to find some closer
link to the body of edge-connectivity problems. Note that by now pretty
much is known about the various connections of the weak form along with
its numerous strengthenings and extensions. Nash-Williams also remarks
that 'these theorems seem to have a somewhat natural character which
would suggest that there must ultimately be a place for them in the overall
structure of graph theory '. Since then it has turned out that wherever this
place is located, it is not a lonely one.

Nash- Williams calls an orientation with the property given in the the
orem well-balanced. He actually proved the existence of a well-balanced
orientation that is, in addition , near-Eulerian which means by definition
that IQ(v) - 8(v)1 ~ 1 for every node v of G. Nash-Williams also outlined
the proof of the following generalization of Theorem 3.8.
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Theorem 3.9 [47]. Let G be a graph and H a subgraph of G. Th en G has
a well-balanced and near-Eulerian orientation witll the additional property
that its restriction to H is a well-balanced and near-Eulerian orientation
of H.

Corollary 3.10. Let G = (V, E) be a 2k-edge-connected graph and H =

(V, F) an Eulerian subgraph of G. For any Eulerian orientation of H , the
edges in E - F can be oriented so as to obtain a k-edge-connected orientation
of G.

This implies that in order to find a k-edge-connected orientation of a
2k-edge-connected graph G one can pick up edge-disjoint circuits one after
the oth er and orient them around. The corollary ensures that the remaining
forest can always be oriented to get a k-edge-connected orientati on of G.
It would be interesting to see a direct constructive proof of this fact which
does not rely on Theorem 3.9. We note that there is an easy alternat ive
proof of Corollary 3.10 relying on submodular flows .

3.1.3. Augmentation. Let us turn to the effect of Mader's theorem on con
nectivity augmentat ion. The same way as Lovasz 's split ting lemma could
be used for solving (global) connect ivity augmentation, Mader 's splitting
theorem gives rise to a solution of the local edge-connect ivity augment a
tion problem. Let G = (V, E) be an undirected graph and r a non-negati ve
integer-valued function on unord ered pairs {u,v} of distinct nodes of G,
called a requirement function . In the local edge-connectivity augmenta
tion problem we want to augment G so that the local edge-connectivity in
the increased graph G+ majorizes r . By Menger 's theorem this is equivalent
to requiring

(3)

where

dc+ (X) ~ Rr(X) for every subset X c V,

(4) Rr(X) := max {r(u ,v) : u E X ,v E V - X}.

The following two results appeared in [19] .

Theorem 3.11. Let G = (V, E) be an undirected graph . Let m : V -+ Z+
be an integer-valued function so that m(V) is even and m(C) ~ 2 for each
compon ent C of G. Th ere is a set F of new edges so that the local edge
connectivity in G+ = (V, E + F) is at least rand dF(V) = m(v) for every
node v if and only if

(5.10) m(X) ~ Rr(X) - dc(X)
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for every X ~ V.

Let C(i V) be the node-set of a component of G and call C a marginal
component (with respect to r) if Rr(C) ::; 1 and Rr(X) ::; dc(X) for every
proper subset X of C. Let q(X) := Rr(X) - dc(X) for XcV.

Theorem 3.12. Suppose that there are no marginal components. There
is a set F of at most "( edges so that the local edge-connectivity in G+ =

(V,E + F) is at least r if and only if

(5)

holds for every sub-partition {Xl, X 2, . • . , Xd of V .

In [1], J . Bang-Jensen, H. Gabow , T . Jordan and Z. Szigeti investigated
the augmentation problem when the possible set of new edges meets a
partition constraint. Among their numerous results, we cite here only one:

Theorem 3.13. Let G = (V,E) be an undirected graph and P = {PI, ""
Pr } a partition of V into at least two non-empty parts. Let k 2: 2 be an
even integer. It is possible to add at most "( new edges to G each connecting
distinct parts of P so that the resulting graph is k-edge-connected if and

only if LXEF [k - d(X) : X E F] ::; 2"( holds for every subpertitiou F
of V , and LXEFi [k - d(X) : X E Fd ::; "( holds for every subpestition F i

of Pi (i = 1, .. . , r).

It is not difficult to check that the conditions in the theorem are neces
sary for even and odd k, as well. For odd k, however, they are not sufficient .
But [1] did provide a characterization even for this more complicated case.

3.2 . Directed splitting

Can one extend Mader's directed splitting lemma so as to preserve local
edge-connectivities in directed graphs? No such a general result is known
but some extensions of the directed splitting lemma are available. The
following is a consequence of a result in [22].

Theorem 3.14. Let k 2: l 2: 1 be integers and D = (V + z , E) a directed
graph with a special node z having the same in- and out-degree. If D is

(k, l)-edge-connected in V, then there is a pair of edges e = zu, f = vz
which can be split off without destroying (k, l)-edge-connectivity in V.



Edge-Connection of Graphs , Digraphs, and Hypergraphs 113

This result was proved in [22] in a more general form concerning cover
ings of crossing supermodular functions by digraphs. It can be used to solve
the free- and the degree-specified augmentation problem for digraphs when
the target is (k,l)-edge-connectivity. Let D = (V, E) be a digraph with a

root-node s and let a ::; I ::; k be integers. Define Pkl(X) := (k - eD(X)) +

if f/J c X c V - sand Pkl(X) := (I - eD(X)) + if sEX C V .

Theorem 3.15. For in- and out-degree specifications nli : V --t Z+ and
ni; : V --t Z+ with nli(V) = mAY), there is a digraph H = (V,F) so that
JH(v) = nlo(v), eH(V) = nli(V) for every node v E V and so that D + H is
(k,l)-edge-connected with respect to root s if and only if nli(X) ~ Pkl(X)
and nlo(V - X) ~ Pkl(X) holds for every non-empty subset XCV.

Theorem 3.16. There is a digraph H = (V, F) of at most "f edges so
that D + H is (k,l)-edge-connected with respect to root s if and only if
L [Pkl(X) : X E.1"] ::; "f and L [Pkl(V - X) : X E.1"] ::; "f hold for every
partition .1" of V.

3.3. Undirected detachment

Let G = (V+z,E) be an undirected graph. We modify slightly the operation
of splitting off a pair of edges e = uz, f = vz as follows. Replace e and f by
a new edge h = uv and subdivide then h by a new node z', More generally,
by a detachment of node z into P nodes we mean the following operation.
Replace z by P new nodes Zl , ... ,zp and replace each edge uz by an edge
UZi. If the degree of each new node z; is required to be a specified number
di , we speak of a degree-specified detachment of z . In order for this to make
sense we assume that d1, . • • , dp add up to dc(z).

Theorem 3.17 (Nash-Williams, [50]). Let G = (U, E) be a graph with a
given positive integer p(z) at every node z . It is possible to detach each
node z into p(z) parts so that the resulting graph is connected if and only
if

(6) e(X) ~ p(X) + cc(X) - 1

holds for every non-empty subset X ~ V , where p(X) := L [p(v) : v E X] ,
e(X) is the number of edges having at least one end-node in X, and cc(X)
denotes the number of components of G - X .
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Note th at Nash-Williams pointed out th at this type of detachment can
be handled as a matroid partition problem.

Suppose now th at we are given at each node z of a graph G = (U, E)
a degree specification d1(z), . . . ,dp(z)(z) . Nash-Williams showed that it is
possible to detach simultaneously all nodes so that there exists a degree
specified detachment of all nodes so that the resulting graph is connecte d if
and only if (6) holds and di(z) ;::: 1 for each i and z E V.

What if we want a detachment which is k-edge-connected for k ;::: 2?
Clearly, for the existence of such detachment it is necessary that G be k
edge-connected and that each d;(z) is at least k. This is not always sufficient
and we exhibit even two examples to show th at . Let k be odd. First , suppose
G consists of just two nodes u and v connected with 2k parallel edges, and
d1(u) = d2( u) = k = d1(v) = d2( v) . Second , suppose th at G has a cut node
z of degree 2k and d1(z) = d2( z) = k. It is not difficult two check th at no
k-edge-connected detachment exists in either case. Quite surprisingly, there
are no oth er bad cases:

T heorem 3. 18 (Nash-Williams , [50]). Let G = (V, E) be an undirected
graph with a degree specification d1(z), . . . ,dp(z)(z) at each node z. It is
possible to detach each node z into p(z) nodes having specified degrees so
that the resulting graph is k-edge-connected if and only if G is k-edge
connected, each requested degree di (z) is at least k, except if k is odd and
G is one of th e two excep tional examples mentioned above.

How is this result related to Lovasz 's undirected splitting lemma? They
are not really comparable (in th e sense that neither implies the other.) The
split t ing lemma detaches only one node, into nodes of degree two, and is
clearly not ' inte rested' in preserving k-edge-connectivi ty at the detached
nodes. But there is a very nice result of B. Fleiner [1 3] which is a genera l
ization of Lovasz's splitting lemma on one hand and implies easily Theorem
3.18 on th e other.

T he split t ing lemma asserted that if G was k-edge-connected on V then
a k-edge-connectivi ty preserving split ting always existed. If there are odd
numb ers in the degree-specification of the detachment , then this is not
necessari ly true. Let G consist of two disjoint triangles plus a node z
connected to all the other six nodes. Then G is 3-edge-connected on V
(even the whole G is) but it is not possible to detach z into two nodes of
degree 3 so th at th e resultin g graph keeps to be 3-edge-connected on V.
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Theorem 3.19 (Fl einer). Let G = (V + z, E) be an undirected graph with
a special node z and k ~ 2 an integer. Let d1, . . . , dp be integers for which
di ~ 2, L di = dc(z). It is possible to detach z into p nodes of degree
d1 , . . . , dp , respectively, so that th e resulting graph is k-edge-connected in
V if and only if G is k-edge-connected in V and G - z is k' -edge-connected
where

(7)
p

k' := k - I)di/2j .
i= l

Not e that if each di is even, then G- z is automat ically k'-edge-connected
so we do not have to explicit ly require it , and this special case follows
immediately from the undirected split t ing lemma. As Lovasz 's split t ing
lemma could be used to derive Watanab e and Nakamura 's Theorem 2.4 on
minimum k-edge-connected augmentat ion of a graph, Fleiner used his result
to prove t he following generalization [13].

Theorem 3.20 (Fleiner). Let G = (V, E) be an undirected graph and
d1 , . . . , dp and k integers larger than one. It is possible to augment G by
adding p new nodes of degree di , respecti vely, so th at th e enlarged grap}l
G+ is k-edge-conn ected on V if and only if

(8)
p

L[(k-dc(X)) : XEF] ~Ldi
i= l

holds for every sub-part it ion :F of V , and

(9)
p

>.(u,ViG) ~ k - Lldd2j
i= ]

holds for every pair of nodes u , v E V , th at is, G is k'- edge-connected, where
k' .- k - ,,",p ld·/?j.- L.."i=] t ~ •

So, Fleiner 's Theorem 3.19 is one generalization of the undirected split
ting lemma while Mader 's Theorem 3.1 is anot her. Does there perhaps exist
a common generalization of these difficult theorems? Yes, T . Jordan and
Z. Szigeti proved the following theorem [34].

Theorem 3.21 (Jordan and Szigeti). Let G = (V + z , E) be a graph with
a special node z so th at th ere is no cut-edge incident to z. Let db ' .. , dp



116 A. Frank

be int egers for which di ~ 2, L di = dc( z). Also , we are given a symmetric
function r(u ,v ) on the pairs of nodes in V. Tliete is a detachment of z into
p nodes of degree d1, . . . , dp , respectively, so that in the resulting graph G'
the local edge-connectivity A(u,v;G') is a t least r(u,v) for every u , v E V if
and only if

11

(10) r(u,v) ::; A(U,v;G) and A(U,v;G - z) ~ r(u,v) - I)di/2J
i= l

for all u, v E V.

In the augmentation results so far we always added edges to an existing
graph G = (V,E) . This may be interpreted as add ing new nodes of degree
two so that the (local) edge-connect ivity shou ld attain a certain prescribed
value. It is quite natural to investigat e an extension of the problem when
the newly added nodes are of prescribed degree, not necessarily two. The
following result of Jordan and Szigeti [34] is a straight generalization of
Theorem 3.12. As in Theorem 3.12, we are given an undirected graph
G = (V,E) and a symm etric non-negative integer-valued function r(u,v) on
the pair of nodes, called local edge-connectivity requirement . Let Rr(X ) :=

max { r(u,v) : u E X ,v E V - X} for every X ~ V and let q(X ) :=

Rr(X) - dc(X ). Recall the definition from (4) of Rr(X ): q(X ) and a
marginal component of G.

Theorem 3 .2 2 (Jordan and Szigeti [34]) . Let G = (V, E ) be an undirected
graph, r (u , v) a local edge-connectivity requirement function so that there
are no meiginel components. Moreover, let dl ,d2 , ... , dp be integers each
larger than 1. It is possible to add to G p new nodes of degree di, respec
tively, so that the enlarged graph G+ satisfies A(U,v; G+) ~ r(u ,v ) for every
pair of nodes u , v E V if and only if

(11)
p

L [q(X) : X E F] ::; Ldi

i=l

holds for every sub-partition F of V , and

(12)

p

A(U,V;G) ~ r(u,v) - L ldd2J
i=l

holds for every pair of nodes u, v E V.
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In Mader's directed splitting lemma, it was assumed for the specified nod e
Z to have th e same in- and outdegree. Without this restriction a split t ing at
Z preserving k-edge-connectivity in V does not necessarily exist. However ,
Berg , Jackson and Jordan [5] found the following interesting extension of
the splitting lemm a.

Theorem 3.23 (Berg, Jackson, Jordan). Let k 2: 1 be an integer and
D = (V +z, E) a direct ed graph with a sp ecial node z for which [)(z) 2: 5(z) .
If D is k-edge-conn ect ed on V, th en for every edge zu th ere are t edges
V I Z, . . . , VtZ , where 1 ::; t ::; [)(z) - 5(z) + 1, entering z so th at det aching z
into two nodes z' and ZI results in a digraph Wllich is k- edge-conn ected on
V , where ZI ues one outgoing edge Z I U and t entering edges VI ZI ,· . . , Vt ZI .

By repeated applicat ions of the theorem , one easily obtains a complete
det achment version: If k , D , Z are the same as before, it is possible to
deta ch the edges at Z in to 5(t) nodes so that each conta ins exactly one edge
leaving it and so that the resulting digraph is k -edge-conn ected in V.

A directed counte r-pa rt of Nash-Williams's det achment theorem was
obtained by Berg, Jackson and Jordan [6J . Given a function T : V --t Z+ ,
by an r-d et a ch m ent of a digraph D = (V, A) we mean a digraph arising
from D by 'detaching' simultaneously each nod e V into r (v) pieces so th at
each edge leaving or ente ring v would leave or enter one of th e pieces.

Theorem 3.24 ([6]). Let D = (V, E) be a digraph and let T : V --t Z+.
Then D has a k- edge-connect ed r-detechmetit if and only if

(a) D is k- edge-connect ed ,

(b) o(v) 2: kT(v) and 5(v) 2: kT(v) for every v E V.

In addit ion, Berg , J ackson and Jordan proved th at the in- and out
degrees of every detached node v E V can be arbit ra rily specified provided
that at each nod e v of D all th e values in th e indegree specificat ions are
at least k and add up to the indegree of v and similarly for the outdegree
specificat ions.
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4. UNCROSSING-BASED RES ULTS

A. Frank

In the previous two sections we overviewed results evolving from the spli tting
lemmas. Here some fruits of another fundament al technique, th e uncrossing
procedure, will be surveyed. The rough idea of thi s approach is that for a
given family of sets with certain properties or parameters one can replace
two uncomparable (or intersecting, or crossing) sets by their intersection
and union so as to preserve the properties or parameters of the family. By
repeating this uncrossing step as long as possible, one arrives in a finite
numb er of steps at a nicer family (chain of sets , lamin ar , or cross-free):
preserving the essential properties or parameters of the initial one. To my
best knowledge, th e first appear ance of this approach that appeared in prin t
[39] was a solut ion of L. LOVclsZ (a third-grade university student at that
t ime) to Problem 11 (posed by A. Renyi) of th e Memori al Mathemati cal
Contest Miklos Schweitzer of th e year 1968.

Later Lovasz used the technique to provide a simple proof of the
Lucchesi-Younger theorem [41] and to prove his theorem on minimum T 
joins [40] . Since th en the uncrossing method has proved to be an ext remely
powerfu l proof technique. In this section we briefly overview some recent
results th at were obtained th is way.

4 .0 .1. A d e tour to t he origin of u ncrossing . Renyi 's P roblem 11 was
to verify an inequality concern ing the prob abilities of some events in a finite
prob abili ty space . In his solution, LOVclsZ first observed that the logarithm
of th e probability of events is a submodular function (where product and
sum of events corres pond to intersection and union, respectively), and he
then appli ed the uncrossing technique to derive the requested inequality.
Actually, Lovasz 's proof uses nothing but the submodular property and
hence it provid es the corresponding inequality for any submodular funct ion :
we exhibit Lovasz 's proof in this context . In ord er to do so, it is useful to
introduce the notion of linear ext ension of a set -funct ion.

Let b be a set-function on a groundset S for which b(0) = O. For any
vector c E R lsl, arr ange the elements of S in such a way that c(S 1) 2:
.. . 2: c(sn) . Let Si := {SI , " " s.} and define b(c) by b(c) := c(sn)b(Sn) +
L:r:/ [C(Si) - c(si+d ] b(Sd · The function b : RS

--1 R defined this way is
called the linea r extension of b. It was introdu ced also by Lovasz in 1983
[43] and therefore often the term Loiuisz ext ension is used . It should be
noted th at th e corr ectness of the matroid greedy algorithm is equivalent to
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stating th at the maximum c-weight of bases of a matroid with rank function
r equa ls 'r (c), or mor e generally, Edmonds' polymatroid greedy algorit hm
is equivalent to the assert ion th at , given a fully submodular function b,
max {cx : x E B(b)} = b(c) , where B(b) := { x E RS : x(Z) S b(Z) for
every Z C 5 and x(5) = b(5)} is the so called base-polyhedron.

The solution of Lovasz in [39] to Problem 11 contains implicitly th e
following.

Lemma 4.1. Let b be a fully submodular function on a ground-set 5 and
bits linear extension. Th en, for any collection {X I , X 2, . . . , Xm} of subsets
of 5,

(13)

where Xx denot es the characteristic function of X.

Proof. Apply the uncrossing pro cedure to the family {Xl , ... , Xm}, that
is, as long as there are two uncomp arable sets in the current family, replace
th em by their intersection and union . Due to th e submodularity of b, the
sum of the b-values of the members never increases, while the sum of t he
characte ristic vectors of the members stay unch anged.

Since the number of uncomparable sets in the family during an uncross
ing step strictly decreases, the uncrossing pro cedure terminates in a finite
number of st eps. The final family is a cha in {Z1 <; Z2 <; . . . <; Zm} of
subset s for which 2:i XXi 2:i XZi , and hence 2:i b(Xi) 2:: 2:i b(Zi) =

b( 2:i Xz;) = b( 2:i XX;). •

The inequ ality in (13) may be called generalized submodular inequ ality.
(We note that the even more genera l inequ ality 2: b(Ci) 2:: b( 2: Ci ) also

holds true for arbit rary vect ors q, . . . , Cm E R S .) To see the usefulness of
(13) , we make a little detour and derive in a few lines the following elegant
result on matroids from the partition th eorem.

Theorem 4.2 (Greene es Magnanti) . Let B I and B2 be bases of a matroid
M and {Zl , Z2, . . . , Zm} a partition of BI . Th en there is a partition
{YI , , Y;n} of B2 for which BI - Z, u}Ii is a basis for each subscript
i = 1, , m .
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Proof. We may assume that B 1 and B2 are disjoint for otherwise their
intersecion can be contracted and the theorem for the contracted matroid
implies that for M. Let k denote the rank of M . For each i, consider the
matroid M, = (B2, ri) arising from M by contracting first B1 - Z; and
restricting then the resulting matroid to B2. For any subset X ~ B2 , let
Xi := BI-ZiUX. Then 2::i XXi = (rn-1)x(BIUX)+XX' and by (13) we have

2::i r(Xi) ~ f( 2::ixx;) = f [(rn - 1)x(BIUX) + XxJ = (rn - 1)r(B1 U X) +
r(X) = (rn-1)k+IXI· From ri(X) = r(Xd-r(B1- Zi) = r(Xi ) -IB1 - Zd,
we obtain 2::iri(X) = 2::i [r(Xd -IB1 - ZilJ = 2::ir(Xi) - (krn - k) ~

(rn - 1)k +IXI- (krn - k) = IXI.
By the matroid partition theorem of Edmonds and Fulkerson [11J, B2

can be partitioned into sets Y1, Y2 ,"" Ym so that Yi is independent in M«.
By the definition of Mi, IYiI ~ IZil for each i, and hence E IZil = E IYiI·
Therefore IYiI = IZd, and then B I - Zi U Yi is a basis of M . •

4.1. Orientations and augmentations through submodular flows

A general and flexible framework concerning sub- or supermodular functions
is the notion of submodular flow. hi [23] a rather exhaustive survey was
given to show how basic results on submodular flows can be applied to ori
entation problems . By an orientation of a mixed graph M = (V, A + E) ,
with directed and undirected edge-sets A and E respectively, we mean a di
rected graph (V, A + E) arising from M by orienting each undirected edge
and leaving alone the directed ones.

Before exhibiting a characterization of mixed graphs having k-edge
connected orientations, let us consider the special case k = 1.

4.1.1. Strongly connected orientation of mixed graphs. A straight
forward generalization of Robbins ' theorem, with a fairly easy proof, is due
to F. Boesch and R. Tindell [7].

Theorem 4.3. A mixed graph M = (V, A + E) has a strongly connected
orientation if and only if M has no cut-edge and no subset (I) c X c V of
nodes so that neither directed nor undirected edges leave X.

Proof. We show that the undirected edges can be oriented greedily one by
one, taking care only to avoiding the creation of a directed cut . There is
nothing to prove if E is empty. Let e = uv E E be an undirected edge. If
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orienting e toward v (toward u, respectively) creates a directed cut, then
there is a uv-set X (a viI-set Y) so that no directed edge leaves X (Y)
and e is the only undirected edge leaving X (Y). Then neither X n Y nor
V - (XUY) admits a leaving edge and hence they must be empty. Therefore
X and Yare complementary sets and e is the only edge connecting X and
Y, contradicting the assumption on the non-existence of cut-edges. •

The simplicity of this result may suggest that Nash-Williams' Theo
rem 2.8 on k-edge-connected orientability of 2k-edge-connected undirected
graphs can also be extended to mixed graphs in a straightforward way. But
this is not the case even for k = 2.

4.1.2. An example for k = 2. It turns out that in this case the natural
cut-type or partition-type necessary conditions are not sufficient anymore .
To see this , define a mixed graph M = (V4 , A + E) as follows . Let V4 =

{Vl,V2,V3 ,V4} , let E consist of two edges el = VIV2, e2 = V3V4 , and let A
consist of the following nine edges: VIV3 , VIV3 , V3Vl, V2V3, V2'IJ3, V3V2, V2V4,

V2V4, V4 V2 ·

The digraph D = (V4, A) is strongly connected, that is, every in-deficient
set (with respect to 2-edge-connectivity) is of indegree one, and there are
exactly three such sets:

Let A3 := {Xl, X 2, X3}· In order to have a 2-edge-connected orientation of
M, one has two orient the two edges of G = (V4, E) so that each member of
A3 admits at least one newly oriented entering edge. An easy case checking
shows that no such orientation may exist. Note, however, that for every
two members of A3, there is an orientation of G in which the indegree of
these two members is at least 1. This implies that any certificate of the
nonexistence of a 2-edge-conneced orientation of !VI which consists of in
deficient sets must include all the three members of A3 .

Note that A3 is neither a partition nor a co-partition of any subset of V .
The example therefore indicates why one needs more general families of sets
in the characterization of k-edge-connected orientable mixed graphs. The
result will also show that the use of submodular functions is unavoidable
in the solution of this purely graph-theoretic problem . The approach easily
extends to (k, l)-edge-connected orientability.
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(15)

4.1.3. Tree-compositions. For a prop er non-empty subset 8 of V we
introduce the notion of a tree-composition of 8. Let {81, . . . , 8aJ be a
par tition of 8 and {ZI , " "Z,6} a partition of V - 8 (0:, /3 ;::: 1). Let
T = (U, F) be a directed tree such th at U := {S1, .. . , Sa, Zl ,·· · , z,6 } and
each direct ed edge goes from a Zj to an Si. For each edge f of the tree, let
7j denote th e set of nod es of th at component of T - f which is entered by
.f. The family A := { <p-l(1'f) : f E F} is called a tree-composition of
8 where <p(v ) = s, if v E 8i and <p(v) = Zj if v E Zj . We will also say that a
partition or a co-partition of V is a tree-composition of V. Not e that a
tree-composition A of 8 is cross-free and every element of 8 belongs to th e
same number t of memb ers of A and every element of V - 8 belongs to t - 1
members. (If 0: = (3 = 1, then A consists of th e single set 8 . If (3 = 1 < 0: ,
then A is a partit ion of 8 . If 0: = 1 < (3 , t hen A is a co-part it ion of S.)

Let us consider the subset 8 := {VI ,V2} in the example above. We claim
that th e family A3 forms a tree-composition of 8 . This can be seen by
defining 81 := {vi}, 82 := {V2} , ZI := {V3}, Z4 := {V4} and by letting l'
be a directed tree on node set {SI, S2 ,ZI ,Z2} having three edges: !I = V3 Vl ,
h = V3V2 , h = V4V2· Now 1'/1 = Sl , 1'/2 = {z2,sd and 1'13 = {SI, S2 ,zd·
Let <p(vd = SI, <p(V2) = S2 , <p(V3 ) = Zl, <p(V4) = Z2 · Then A3 indeed arises
in th e form described in the definition of tree-composition.

Suppose now th at G = (V,E) is an arbit ra ry undirected graph. Let A
be a tree-composition of a subs et 8 ~ V and j = uv an edge of G. Let
euv (A ) deno te the number of uv-sets in A. That is, euv(A ) is th e number
of sets in A entered by the directed edge with tail v and head u . Let
ej (A ) := max { euv (A ), euv (A )} and

(14) ec(A ) := L ej (A ).
JE E

Note that Ieuv (A )-evlL (A )I ::; 1 with equalityif andonlyifISn{u, v}1 = 1.
The quantity ej (A ) indicates th e (maximal) possible contribution of an edge

j = uv to the sum I: [l?e(X) : X E A] for any orientation Gof G. Hence
ec (A ) measures the total of these contributions and we have

L l?e(X) ::; ec (A )
XEA

for any orientation Gof G. Let D = (V, A) be a digraph and M = (V, A+E)
a mixed gra ph. Let s be a root-node of M . For integers a :s l :s k define
Pkl(X) := (k - l?D(X)) + if 0 c X c V - s and Pkl(X) := (l - l?D(X))+ if

sEX C V.
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Theorem 4.4 [23]. A mixed graph M has a (k, l)-edge-connected orienta
tion (with respect to root-node s) if and only if

(16) L [Pkl(X) : X E A] ~ L [ec(A) : e E E)

(17)

holds for every tree-composition A.

In the example above , where k = l = 2, A3 violat es (16) since Pkl(X) = 1
for each X E A3 while ec (A3) = 2 since each of the two edges of G can
contribute to the indegree of the sets in A3 by one.

'4 .1. 4. Special cases. While tree-compositions are inevitable in general,
in some important special cases they are not , as we have already seen in
Theorems 2.8 and 2.9. We now exhibit a common generalization of these
last two results when partition type conditions turn out to be sufficient . We
investigate th e orientation problem when l-edge-connectivity and rooted
k-edge-connectivity are simultaneously required (that is, we want a (k, l)
edge-connected orientation) .

Theorem 4.5 [18]. Let 0 :S l :S k be integers. An undirected graph
G = (V, E) has a (k , l)- edge-connected orientation if and only if G is (k , l)
partition-connected.

Another special case of th e mixed graph (k, l)-edge-connected orienta
tion problem when only partition type conditions are required is the case of
l :S 1. The case I = 0, which is a generalization of Theorem 2.9, appeared
in [16].

Theorem 4.6. A mixed graph D + G = (V, A + E) with a root-node s has
a (k ,O)-edge-connected (that is, s-rooted k-edge-connected) orientation if
and only if the number of cross-edges of G is at least

t

L [k - eD(Vi)]
i = 1

for every partition {Va , VI , .. . , Vi} of V into non-empty parts with s EVa.

The case l = 1 appeared in [23].

Theorem 4.7. A mixed graph D + G = (V, A + E) with a root-node s
has a (k , 1)-edge-cotuiected orientation (that is, strongly connected and s
rooted k-edge-connected) if and only if th e number of cross-edges of G is

at least 2:~=1 [k - eD(Vi)] + 1 for every partition {Va , VI , " " Vd of V into
non-empty parts with s EVa.
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4.1.5. An augmentation result. The rooted edge-connectivity augmen
tation problem (in digraphs) behaves nicely in the sense that even the min
imum cost version is tractable. Suppose that we are given a digraph with a
special root-node s and we want to augment the digraph by adding a mini
mum cost of new edges so as to have a rooted k-edge-connected digraph . At
the beginning of section 2, we mentioned that the minimum cost subgraph
problem is equivalent to the minimum cost augmentation problem, and in
this case the subgraph problem (:find in a digraph a minimum cost rooted k
edge-connected subgraph) can be solved with the help of submodular flows,
see [17] and [54] . Here we mention only one consequence of this:

Theorem 4.8. Let D = (V, E) end H = (V, A) be two digraphs so that
their union D+H = (V, EUA) is k-edge-connected from a root-node s. The
minimum number of edges of H whose addition to D results ill as-rooted
k-edge-connected digraph is equal to the maximum of E [k - f2D(X) :
X E F] , where the maximum is taken over all laminar families F of non
empty subsets of V - s for which no edge of H enters more than one member

of F.

4.2. Connectivity orientation and augmentation combined

Now comes an account on some new developments making possible to com
bine certain orientation and augmentation problems. In subsection 2.2 we
have already mentioned this type of results: Theorem 2.10 characterized
undirected graphs which can be augmented by adding at most 'Y edges so
as to have a (k,O)-edge-connected orientation. We also remarked that even
the minimum cost augmentation was tractable by using matroid techniques.
Here we consider the same problem for mixed graphs (where those matroid
techniques do not work.) Let us consider Theorem 4.6 and suppose that
the required orientation does not exists, that is, the necessary and sufficient
condition in (17) fails to hold . How many new undirected edges should be
added to M so as to have a (k ,O)-edge-connected orientation. Or more gen
erally, what is the minimum cost of required new edges? By considering the
existing undirected edges having zero cost, this latter problem is equivalent

to the following.

Given a mixed graph with a root node s endowed with a non-negative
cost function on the set of undirected edges, delete a maximum cost of edges
so that the resulting mixed graph has a (k,O)-edge-connected orientation.
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S. Kh anna, J. Naor and F . B. Shepherd [35] solved this problem in an even
more general form when th e directed edges may also have costs and th e two
possible directions e' = uv and e" = vu of an undirected edge uv may have
different costs .

To be more specific, let M = (V, A + E) be a mixed graph consist ing of
a digraph D = (V, A) and an undirected gra ph (V,E) . Let s be a root
node of M and let Al := A U {e', e" : e E E}. Furthermore we are
given a nonnegative cost function c : Al ---? R+ . We say th at a subset
F S;;; Al of directed edges (or the subdigraph D' := (V, F)) is orientation
constrained if F may contain at most one of the two possible dir ections e'
and e" of any undirected edge e E E.

The (k,O)-orientable subgraph problem consists of finding a min
imum cost (k ,O)-edge-connected orientati on-constrained subdigraph D' =
(V, F) of D I := (V, Ad.

Khanna, Naor and Sheph erd considered th e following linear program :

(18)

subject to

min L [c(J)x(J) : f E Ad

(19) 0::; x(J) ::; 1 for every direct ed edge f E Al

(20) x(e' ) + x(e") ::; 1 for every edge e E E

(21)

L [xU) : f E AI , f enters ZJ 2: k for every subset (/) C Z S;;; V - s.

Let P denote the polytope described by the three constrai nts . Clearly,
an int eger vector in P is actually 0 - l-valued and the 0 - 1 vectors of
P are precisely th e charac te ristic vecto rs of orient ation constrained (k,O)
edge-connected subdigraphs of D I .

The main result of [35] is as follows:

Theorem 4 .9 (Kh anna, Naor , and Sheph erd). Tile vertices of polytope
Pare 0 - 1 vectors, or equivalently, P is tile convex hull of (characteristic
vectors) oforientation-const rained (k,O) -edge-connected subdigraphs of D j •

By relying on linear programming du ality, t his theorem provid es a min
max formula for the minimum cost of a solution. We avoid formul ating
this since the result can be even further improved [29] . We emphasize,
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however, that the improvement uses only known ideas, and th e main point
here is the recognition of Khanna, Naor , and Shepherd th at even this general
framework is tractable by stand ard techniques.

T heorem 4. 10. Th e linear inequality system of (19), (20), and (21) is
totally dual integral (implyin g the integrality of P) . Moreover, P is a
submo dular flow polyh edron .

This th eorem enables us to solve the problem algorithmi cally by invoking
a submodular flow algorithm. Furthermore, one has a better structured
duality theorem. For th e sake of simplicity we formulat e it only for 0 - 1
valued cost functions.

Theor em 4. 11. Let 111 = (V, A + E) be a mixed graph with a root-node
s endowed with a 0 - 1 valued cost function c : A U E -> {O, 1}. Til e
minimum cost of a mixed subgraph of 111 which has a (k,O)-edge-connected
orientat ion is equal to the maximum of

tk - ec( .1') - L [QD(X) : X E .1'] +q(.1') ,

where the maximum is taken over all laminar families .1' of t (t 2: 0) subsets
of V - s . Here G = (V, E) is the undirected part of 111 , ec(.1') is defined
in (14), and q(.1') denotes the number of (directed or undirected) edges of
cost 1 which enter at least one memb er of .1'.

This is a common genera lization of T heorems 4.6 and 4.8. When c is
zero on all directed edges, we are back at our star ting problem of finding a
smallest set of new undirected edges to be add ed to a mixed graph to have
a (k,O)-edge-connected orientation.

So, we can solve quite reassuringly the combined orient ation/augmen
tat ion problem in mixed graphs when th e target is (k,O)-edge-connectivity.
Wouldn 't it be natural to lift our horizon to (k, l)-edge-connectivity? The
directed (k, l)-edge-connectivity augmentation problem is solved by T he
orem 3.16. The (k, l)-edge-connectivity orient ati on prob lem is solved for
undirected graphs by T heorem 4.5 (and even for mixed graphs by Theorem
4.4). We show now how to solve the prob lem of augment ing an undirected
graph by adding undirected edges so that the resulting graph has a (k, l)
edge-connected orientation . Due to the relatively complicated nature of
tree-composit ions in Theorem 4.4, so far we have not taken cour age to try
to attack the corresponding augmentat ion problem for mixed graphs. And
even for undirected graphs the minimum cost version is out of question
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because the NP-complete problem of finding a Hamiltonian circuit prob
lem is a special case. We consider the degree-specified and the minimum
augment ation probl ems as well. The following results are taken from [28] .

Theorem 4.12. Let G = (V, E) be an undirected graph , k 2: I 2: 0 integers,
and m := V -t Z+ a degree-specification for which m(V) is even. There
exists a graph H = (V, A) so that dn (v) = m(v ) for every 'U E V and so
that G + H is (k ,l)-tree-connected (= (k,l)-partition-connected = (k ,l)
edge-connected orient able) if and only if

(22)

and

(23)

m(V) j22: (t - l)k +1- ec (F )

min m(V - X) 2: (t - l)k + l - ec(F )
XCF

hold for every partition F of V into t 2: 2 non-empty parts.

Let us indicate briefly th e proof of necessity. If G + H has a (k, l)
edge-connected orient ation, then it is (k, l)-partition-connected, th at is,
eC+H(F ) 2: k(t - 1) + I and hence eH(F ) 2: k(t - 1) + I - ec(F ). If
H satisfies the degree-specification, then m(V)j2 = IAI 2: eH(F ) and
m(V - X) 2: cH(F ) for every X E F from which both (22) and (23) follow.

This result might be interesting even in th e special case of I = 0:

Corollary 4.13. Let G = (V, E) be an undirect ed graph, k 2: 1 an integer,
and n i := V -t Z+ a degree-specification for which m(V) is even. Th ere
exists a graph H = (V, A ) so that dH(V) = m(v) for every 'U E V and so
that G + H is k-tree-conn ected if and only if

(24)

and

(25)

m(V) / 2 2: (t - l)k - ec (F )

min m(V - X) 2: (t - l)k - ec (F )
XE:F

hold for every partition F of V into t 2: 2 non-empty parts.

The following th eorem is a bit out of the main line of the paper since the
target of the augmentation is not a connect ivity prop erty. As a counterpart
to tr ee-packing in corollary 4.13, here our target is tree-covering:
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Theorem 4.14 [28]. Let G = (V, E ) be an undirected graph, k ~ 1 an
integer, and m := V ~ Z+ a degree-specification for which m(V) is even.
Th ere exists a graph H = (V, A) so that dH(v) = m(v) for every v E V and
so that G + H is the union of k forests if and only if

(26) m(X) - m(V)/2::; k(IXI - 1) - ic(X)

for every 0 C X ~ V , where i c( X) denotes the number of edges of G
induced by X .

Again it is useful to prove the necessity. If H is a grap h for which G+H
is the union of k forests, then eC+H ::; k( IXI - 1) holds for every subset
X ~ V, that is, iH(X ) ::; k( IXI - 1) - ic (X ). If H satisfies the degree
specificat ion, th en IAI = m(V )/2 and at most m(V - X) edges may be
incident with an element of V-X. So at least m(V)/2 - m(V - X) edges
are induced by X in H and hence m(X )-m(V)/2 = m(V )/2- m(V -X) ::;
iH(X) ::; k(IXI-1) - ic(X).

To conclude this subsect ion, we cite a result from [28] on the minimiza
tion form of (k, l)-tr ee-connect ivity augmentation.

Theorem 4.15. Let G = (V,E) be an undirected graph. It is possible to
add at most I new edges to G so that the resul ting graph G+ is (k , l)-tree
connected (that is, G+ has a (k, l) -edge-connected orientation) if and only
if

(27) I ~ k(t - 1) + l - ec(F)

holds for every parti tion F of V with t mem bers, and

(28)

holds whenever F is th e union a parti tion F 1 of a subset Z ~ V and a
co-partition F2 of Z so that IFil = t, (i = 1,2) and so that F 1 is a finer
partition of Z th an parti tion {X : V - X E F21·
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In [25] we proved a general min-max formula concerning minimum coverings
of a so-called bi-supermodular function by directed graphs. This result
implies Theorem 3.16 (which has had an independent and simpler proof)
and implies the following, as well.

Theorem 4.16. Let D = (V, A) be a directed graph and S, T two (not
necessarily disjoint) non-empty subsets. It is possible to add at most, ST
edges so that the resulting digraph is k-edge-connected from S to T if and
only if

(29)

holds for every family F of pairwise ST-independent sets, where two sets
X, Yare ST-independent if X n Y n T = 0 or S - (X UT) = 0.

In sharp contrast with the existence of a good characterization in The
orem 3.12 concerning local edge-connectivity augmentations of undirected
graphs, the directed counterpart of this problem is NP-complete [19] even
in the special case when the requirement is one between the nodes of a spec
ified subset T of nodes and zero otherwise. (That is, given a digraph, add a
minimum number of new edges so that there is a path from every element
of T to every other element of T.) Recently, however, I found the following
characterization for ITI = 2 [24] . (This result seems to be independent of
the rather general main theorem of [25].)

Theorem 4.17. Let D = (V, E) be a digraph with two specified nodes
s , t and let k, I be two non-negative integers. Let S, T be non-empty
subsets of V so that every sf-set X with QD(X) < k and every ts-set X
with QD(X) < I is entered by an ST-edge. D can be augmented by adding
at most, (possibly parallel) ST-edges so that in the resulting digraph there
are k edge-disjoint paths from s to t and there are l edge-disjoint paths from
t to s if and only if,2 k - QD(X) whenever t E X ~ V - s, ,2l- QD(X)
whenevers E X ~ V-t, and, 2 (l-QD(X)) + (k-QD(Y)) holds
whenever SEX, t E Y and X n Y n T = 0 or Xu Y 2 S.



130

5. CONSTRUCTIVE CHARACT ERIZATI ONS

A. Frank

We have already seen const ruct ive characterizations of k-edge-connected
graphs and digraphs (Theorems 2.13, 3.2, 2.14), of (k ,O)-edge-connected
digraphs (2.15) and k-tree-connected graphs (2.16). For int egers 0 :S l < k
we offer the following:

Conjecture 5.1. A directed graph D is (k , l )-edge-connected if and only if
it can be built from a node by the following two operations: (j) add a new
edge, (jj) pinch i (l :S i < k) existing edges wit h a new node z, and add
k - i new edges entering z and leaving existing nodes. An undirected graph
is (k , l) -tree-connected (= (k , l)-partition-connected) if and only if it can be
built from a node by th e following two operation s: (j) add a new edge, (jj)
pinch i (l:S i < k) exist ing edges with a new node z, and add k - i new
edges connecting z with existing nodes.

Note that by Theorem 4.5 t he undirected version of t he conjecture
follows from t he dir ected one. As mentioned above, t he case l = 0 is settled
by Theorem 2.15. Jointly with Zolt an Kiraly [27], we characterized (k , k-1 )
edge-connected digraphs (and hence (k,k - l)-par tition-conn ected graphs,
as well). At the other end of the range of l , recently in [31] we proved the
case l = 1. All other cases of the conjecture are open (for example, when
k = 4, I = 2) .

The theorem in [27] concern ing th e case l = k - 1, in turn , can be used
to derive t he following orientation result . Let G = (V, E ) be an undirected
graph. A subset T of nodes is called G-even if ITI + lEI is even . We call an
orientation of G T-odd if t he indegree of a node v is odd precisely when v
belongs to T . The following is taken from [27] .

Theorem 5.2. An undirected graph G has a k-edge-connected and T-odd
orientat ion for every G-even subset T if and only if G is (k +1, k )-partiti on
connected.

Corollary 5.3. A (2k + 2)-edge-connected graph always admits a k-edge
connected orientation in which the indegree of all nodes but possibly one
are odd .

As mentioned above, the proof is based on th e const ructive cha racte riza
tion of (k+1, k)-partition-connected graphs. It would be int eresting to have
a simple dir ect proof of the corollary, even for the special case k = 1 when it
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asserts that a 4-edge-connected graph has a strongly connected orientation
in which every node but possibly one is of odd indegree.

The motivation behind such a theorem is the natural attempt to have
a better understanding of problems where both parity and connectivity
are involved. In Theorem 5.2 we chara terized graphs having a certain
orient ation for every G-cven subset 1'. It would be interestin g to know
the necessary and sufficient condit ion of the existence of a k-edge-connected
1'-odd orientation of a graph G for one specified G-even subset 1'. This is
open. However, t he analogous question concerning k-tree-connectivity has
been set tled in [26].

Theorem 5.4. Let G = (V, E) be a graph with a root-node s . Let T be
a G-even subset of V - s . G has a (k ,O)-edge-conn ected (= s-rooted k
edge-connected) Ti-odd orientation if and only if th e number of cross edges
of every partition P := {VI , ... ,Vi} of V into at least two non-empty parts
is at least

k(t - 1)+ o(P),

where o(P) (which depends also on G, k , and 1') denotes the number of
those parts X of P for wl1ich IX n 1'1- i c(X) - k is odd.

As a possible counterpa rt to Corollary 5.3, we can derive:

Corollary 5.5. Let G = (V,E) be an undirected graph with lEI+IVI even.
If G is (k + 1)-tree-conn ected, then G lies a (k , O)-edge-conn ected V -odd
orientation .

But this is straightforward anyway since we can take k + 1 edge-disjoint
trees, orient the edges of k of th ese away from a root node s, orient th e
remaining edges not in the last tree Fk+1 arbit rarily, and finally, orient th e
edges of Fk+1 so as to meet th e parity prescription.

A problem relat ed to the constructive characterization of k-edge-con
nected digraphs is to find a charact erization of (acyclic) digr aphs whose all
directed cuts admit at least k edges. Such an approach could perhaps be
used to prove D. Wood all 's long-standing conjecture:

Conjecture 5.6. If every directed cut of a digraph D has at least k edges,
then th e edge-set of D can be par titioned into k parts so th at each part has
at least one edge from every direct ed cut .
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Woodall 's conjecture can easily be seen to be true for k 2 but no
answer is known even for k = 3 and for planar digraph s. (In which case,
after planar dualization, the conjecture reads as follows: in a simple pla
nar digraph, the edge-set can be coloured by three colours so that every
directed triangle contains each colour.) A st raightforward genera lization
of Woodall 's conjecture concern ing a crossing family of directed cuts was
disproved by A. Schrij ver [53] even for k = 2.

We call a graph G = (V,E ) nearly k-t r ee-connect ed if G + e is the
union of k edge-disjoint spanning t rees for every possible new edge e = uv
(u, v E V ). It follows that such a graph has exactly k ( lVI - I) -1 edges and
that every subset X ~ V with IXI 2: 2 induces at most k ( IX1-1) -1 edges .
A theorem of Nash-Williams [49] implies th at t hese properties actually
characterize nearly k-t ree-connected graphs.

This notion for k = 2 (under different name) has been introduced in the
theory of graph rigidity. By combining theorems of L. Henneberg [33] and
of G. Laman [37], one obtains the following constructive characterization of
nearly 2-t ree-connected graphs.

Theorem 5.7 (Henneberg and Laman). A graph G is nearly 2-tree
connected if and only if G can be constructed from one (non-loop) edge
by the following two opera tions: (i) add a new node z and connect z to two
distin ct existing nodes, (ii) subdivide an exist ing edge uv by a node z and
connect z to an exist ing node distinct from u and v.

Jointly with Laszlo Szego [31], we were ab le to extend this resul t for
genera l k.

Theorem 5.8. A graph G is nearly k-tree-connected if and only if G can
be constructed from an initial graph, consisting of two nodes and k - 1
parallel edges, by the following operation: choose a subset F of j existing
edges (0 ::; j ::; k - 1), pinch the elements of F with a new node z, and
add k - j new edges connecting z with other nodes so that there are no ],~

parallel edges among these new edges.

(k, 1)-t ree-connectivity has meant that the graph has k disjoint spanning
trees even afte r deleting any edge. What can be said about graphs which
can be covered by k forests even afte r adding any new edge? We call such
a graph k-spa rse . By a theorem of Nash-Williams, we know that a graph
G = (V, E ) is k-sparse if and only if every subset X of nod es with at least
two elements induces at most k ( IXI- 1) - 1 edges. Not e th at k-sparse
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graphs with k ( IVI - 1) - 1 edges are exact ly the nearly k-tree-connected
graphs.

Theorem 5.9 [31]. An undirected graph G = (V, E) is k-sparse if and only
if G can be built from a single node by applying the following operations.
(i) add a new nod e z and a t most k new edges ending at z so that no k:
parallel edges can arise, (ii) choose a subset F of i existing edges (1 :::; i :::;
k -1) , pinct: the elements of F with a new nod e z , and add k - i new edges
connecting z with oth er existing nodes so that there are no k parallel edges
in the resulting graph.

6. HYPERGRAPHS

So far our interest has been fully occupied by graphs and digraphs. In this
last sect ion we let hypergraphs take over the center stage . A hypergraph
H = (V,F) consists of a ground-set V and a family F of (not necessarily
distinct) subsets of V , called hyperedges. The cardinality IZIof a hyperedge
Z is called its size. We are naturally back at undirected graphs when each
hyper edge is of size two. Such a hyperedge will be referred as a graph-edge.
The maximum size of a hyperedge is called the rank of H . Throughout we
will assume th at the size of every hyperedge is at least two.

It is often useful to associate a bipartite graph B = B H = (V, UF ; E)
with hypergraph H as follows. The elements of UF correspond to the
hyperedges of H and a node v E V is connected to a node Ux E U:F

precisely if u EX . In this correspondence the size of a hyperedge Z will be
the degree of its corresponding node uz in B.

For a subset X ~ V let dH(V) denote the number of hyperedges of H
intersecting both X and V - X. For a specified subset R ~ V , a hypergraph
H is called k-edge-connected in R if dH(X) ~ k for every subset X C V

separating R . (X is said to separate R if XnR =I- 0,R-X =I- 0.) If R = V ,
the hypergraph itse lf is called k-edge-connected. When k = 1 we simply
say that H is connected.

From the definit ions it follows that H is k-edge-connected in R if and
only if the elements of R belong to one component of the graph arising from
the associated bipartite graph (V,UF ; E) by deleting at most k -1 elements
of UF. By a version of Menger 's theorem, it follows that B has this property
if and only if there are k paths between any pair of nodes u, 'IJ of R so that
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each node of UF belongs to at most one of these paths (but the paths may
sha re freely elements of V).

T his implies that a hypergraph H is k-edge-connect ed in R if and only
if t here are k hyperedge-disjoint hyperpaths between every pair of nodes
U , v E R. Here a hyperpath means a sequence {Ul := u , F1, U2 , F2 , . . . , Ut, Ft ,

Ut+l := v} so that Ui,Ui+ l E F; E :F for i = 1, .. . , t .

T heorem 2.4 has been extended by J . Bang-J ensen and B. Jackson to
hypergraphs [2].

Theorem 6.1 (Bang-Jensen and Jackson). A hypergraph H = (V, A ) can
be made k-edge-connected by adding at most , new graph-edges if and only
if 2:J k - dH(X) : X E P ) ::; 2, holds for every sub-partition P of V and
c(H') - 1 ::; , for every hypergraph H' = (V, A') arising from H by leaving
out k - 1 hyperedges where c(H' ) denotes the number of components of H'.

In [4] we extended this to th e case when the target is k-edge-connect ivity
in a specified subset R ~ V .

For q ~ 3, T . Kiraly [36] recently to charact erized hypergraphs which
can be made k-edge-connected by add ing at most , hyperedges of size at
most q. T he special case, when H is already (k - l )-edge-connect ed , was
solved by T . Fleiner and T . Jordan [14].

Let r be again a requirement function on the set of unordered pairs of
nodes, We say that H is r-edge-connected if t here are at least r(u, v) edge
disjoint hyperpaths between every pair of nodes u , v. Again by Menger 's
theorem, this is equivalent to requi ring dH(X) ~ Rr(X) for every non-empty
subset X C V.

Since local edge-connectivity augm entation is nicely tract able for undi 
rected graphs, one may want to ext end this to hypergraphs and determine
the minimum number of new graph edges whose addit ion to H results in an
r-edge-connected hyp ergraph. However , B. Cosh , B. Jackson and Z. Kiraly
[8] pointed out that this problem is NP-complete even if r is (1 - 2)-valued .
For 3-uniform hypergraphs, however, the local edge-connectivity augmenta
t ion problem is t ract ab le in the case when th e newly add ed hyperedges are
of size three or size two and for both types the number of new hyperedges
are specified. This follows from Theorem 3.22 of Jordan and Sziget i and
is based on the observation that intui t ively says that t he cont ribution of a
hyperedge {a,b, c} of size three to the edge-connect ivity is the same as tha t
of a star graph with t hree edges , tha t is, a graph with node set {z,a,b,c}
and edge set {za, zb, zc}.
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Anot her interesting version of the local edge-connect ivity augmentation
of hypergraph s was solved nicely by Z. Szigeti [55].

Theorem 6.2 (Sziget i). Given a requirement function T , a hypergraph H
can be made r-edge-connected by adding hyperedges with total size at most
I if and only if L i ( Rr (X i ) - dH(Xi ) ) :S I holds for every subpettition
X1 , ··· ,XtofV.

The material below is taken from [30]. A hypergraph H = (V, £) is
called connected if there is a hyperedge intersectin g both X and V - X
for every non-emp ty, proper subset X of V. The hypergraph is partition
connected if there are at least t - 1 hyperedges intersectin g at least two
parts for every t-par ti tion of V . For graphs th ese two notions coincide but
for hypergraphs th ey do not (consider the hypergraph on three elements a,
b, c having a single hyperedge {a,b,c}).

The connect ivity of a hypergraph is equivalent to the connect ivity of
the bipartite gra ph associated with H. Therefore deciding whet her a hy
pergra ph is connected is an easy tas k. Testing a hypergraph for partition
connectivity is not so straightforward. To this end we call a hypergraph
H = (V,F ) wooded if it is possible to select two elements from each hy
perdege of H so that the selected pairs, as graph edges, form a forest.

Theorem 6.3 (Lovasz) . A hypergraph H = (V, F ) is wooded if and only
if H satisfies the strong form of the Hall condition, that is, the union of any
j hyperedges (j 2: 1) has at least j + 1 nodes.

Proof. (out line) The necessity is staight forward. To see the sufficiency,
consider the bipartite grap h B = (V, U; E ) associated with If . Since the
Hall condition is satisfied, there is a matching M of B covering the elements
of U. Let S denote th e set of nodes not covered by M . Orient the elements
of M toward V while all ot her edges toward U. It follows from the strong
form of the Hall condit ion that each node of B is reachable from S . Hence
there is a spanning branching of B rooted at S and this determines the
required forest. •

Theorem 6.4 (Lorea, [38]). Given a hypergraph If = (V,[), the wooded
subhypergraphs of If form a family of independent sets of a matroid on
ground-set £.

Theorem 6.5 [30]. A hypergraph H = (V,[) is parti tion-connected if and
only if H contains a wooded subhypergraph (V, F ) with IVI - l hyperedges.
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A hypergraph is k-partition-connected if there are at least k(t - 1)
hyperedges intersecting at least two parts for every t-partition of V .

Tutte's Theorem 1.2 characterizes those graphs that can be decomposed
into k edge-disjoint connected (or equivalent ly, partition-connected) span
ning subgraphs, asserting that exact ly the k-partition-connected graphs
have this property. The problems of decomposing a hypergraph into k
connected or into k parti tion-connected spanning subhypergraphs are not
equivalent anymore. Th e first one can be shown to be NP-complete, while
the second one is tractable.

Theorem 6.6 [30]. A l1ypergraph H = (V, F) can be decomposed into
k partition-connected subhyp ergraphs if and only if H is k-partition-con 
nected.

The following corollary is well-known for graphs (case q = 2).

Corollary 6.7. Ifa hypergraph H of rank at m ost q is (kq)-edge-conn ect ed ,
th en H can be decomposed into k parti tion-conn ected (and thus connected)
spanning subhypergraphs.

Proof. By Theorem 6.6 it suffices to show th at H is k-partition-connected .
Let P = {VI , ... , \It} be a parti tion of V. There are at least kq hyperedges
intersecting both Vi and its complement for each i. Since every hyperedge
is of cardinality at most q, the total number of hyperedges intersecting at
least two members of P is at least kqt jq = kt 2 k(t - 1). Th erefore H is
indeed k-partition-connected and Theorem 6.6 applies. •

6.1. Directed hypergraphs

There may be several choices to define directed hypergraphs, we work with
the following definition . A directed hyperedge (Z,z) is a pair of a subset
Z of the ground-set V and an element z of Z. The element z is called the
head of Z. By a directed hypergraph we mean a collection of directed
hyperedges. This obviously generalizes the notion of directed graphs. A
disadvant age of thi s definition is th at the symmetry between the head and
the tail of a directed graph edge is lost. On the positive side of this definition
is that several results concerning edge-connect ivity of directed graphs can
be carr ied ove r ni cel y to di rected hyper gruphs .

We say that a directed hyperedge (Z, z) enters a subset X ~ V if
the head z is in X but Z - X =f 0. A directed hypergraph is called
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k-edge-conneeted if there are at least k hyperedges entering each non
empty proper subset of V. More generally, for integers 0 ~ I ~ k, a directed
hypergraph is called (k, l)-edge-connected if there is a node s E V so that
each non-empty subset X ~ V - s is entered by at least k hyperedges and
each subset X C V containing s is entered by at least I hyperedges.

By orienting an (undirected) hypergraph we mean the operation that
consists of assigning a head to every hyperedge.

Theorem 6.8 [29]. A hypergraph has a (k, l)-edge-connected orientation
if and only if there are at least kt - k + I hyperedges intersecting more than
one part of every t-partite partition of V.

Finally we mention that Edmonds' Theorem 1.3 can also be carried over
to hypergraphs. To this end we say that a directed hypergraph H is a
spanning hyper-arborescence of root s if H has IVI - 1 hyperedges whose
heads are distinct elements of V - sand H is (1, O)-edge-connected.

Theorem 6.9 [29]. A directed hypergraph contains k disjoint spanning
hyper-arborescences of root s if and only if H is (k, O)-edge-connected (with
respect to s) .

Note that the special case I = 0 of Theorem 6.8 combined with Theorem
6.9 immediately implies Theorem 6.6 (without using matroids).

The paper [5] of Berg, Jackson and Jordan contains extensions of
Mader's directed splitting lemma and of the directed augmentation The
orem 2.6 to directed hypergraphs.
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PERFECT POWERS IN PRODUCTS WITH CONSECUTIVE

TERMS FROM ARITHMETIC PROGRESSIONS

K. GYORY*

1. INTRODUCTION

There is an extensive literature on perfect powers and "almost" perfect
powers in products of the form

(1) n(n +d) ... (n + (k - l)d)

where n, d, k are positive integers with gcd(n, d) = 1 and k ~ 3. By an
"almost" perfect power we mean a number of the shape b times a perfect
power, where b is a positive integer having no prime factor greater than a
given number, say k. The classical case d = 1 has been completely settled.
Further, for d > 1, a lot of interesting partial results have been published.
For survey papers on results obtained before 1999 we refer to Tijdeman [41]'
[42], Shorey and Tijdeman [37, 38], Shorey [33, 34] and Gyory [19] .

Since 1999, considerable progress has been made in the case d > 1.
Several results have been established on squares and "almost" squares of
the form (1), on those d for which (1) can be a perfect or an "almost"
perfect power, and on the situation when at least one of the factors n + id
is omitted from the product (1). For an account of these results we refer to
Shorey [35, 36].

Recently, it has been proved by Gyory [19, case k = 3]' Gyory, Hajdu
and Saradha [20, case k = 4, 5] and Bennett, Cyory and Hajdu [2 , case

'Research supported in part by the Hungarian Academy of Sciences, by the Nether
lands Organization for Scientific Research, and by Grant 29330 from the Hungarian Na
tional Foundation for Scientific Research .
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6 ~ k ~ 11] that apart from some exceptions, (1) cannot be a perfect or
an "almost" perfect power whenever k ~ 11. Further, Gyory, Hajdu and
Saradha [20] showed, for each k, the finiteness of the numbers n, d for which
(1) is an "almost" perfect power. The purpose of the present paper is to give
an overview of the above-mentioned results of Bennett, Hajdu, Saradha and
the author. This article may be considered as a continuation of Sections 1
to 4 of Gyory [19] .

In the second section a brief survey is given on the most important results
obtained in the case d = 1. In the first part of Section III general finiteness
theorems are presented. The second part of Section III is devoted to recent
results which, for k :::; 11, provide all perfect or "almost" perfect powers of
the form (1). In Section IV we deal with an application to rational solutions
of a related superelliptic equation. Finally, in the last section some methods
will be discussed which were needed in our proofs. It will be pointed out that
ternary diophantine equations and the theory of Galois representations and
modular forms playa crucial role in recent investigations concerning (1).

II. PRODUCTS OF CONSECUTIVE INTEGERS

The case d = 1

It was an old conjecture from the 1820's that equation

(2) n(n + 1) .. . (n + k - 1) = yl in integers n ~ 1, k, y , l ~ 2

has no solution. After many special results, Erdos [9] and Rigge [28] con
firmed the conjecture for l = 2. Their proof was elementary and ingenious.
Erdos [10] and, independently, Rigge showed that for every l > 2 there is
a ko = ko(l) such that for k ~ ko, (2) is impossible . By means of the
Thue-Siegel method Erdos and Siegel proved in 1940 the conjecture for all
sufficiently large k. Their proof remained unpublished. Later, Erdos [12]
gave another, elementary proof for this theorem.

Using Erdos' method, Erdos and Selfridge [13] proved the conjecture in
full generality.

Theorem A (Erdos and Selfridge, [13]). Equation (2) has no solution .
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Saradha and Shorey [31] recently showed that omitting one of the factors
n+i on the left hand side of (2), all the solutions of the equation so obt ained
are

2.(2+2.1)=23 and 1.(1+1).(1+3.1)=23.

The binomial equation

Consider now the equat ion

(
n + kk - 1) = yl(3) in integers k, l, y ~ 2, n ~ k + 1.

For k = l = 2, this leads to a Pell equation and hence it has infinitely many
solutions (n , y). For k = 3, l = 2, Meyl [23, n odd], and Watson [43 , n even]
proved that

is the only solution of (3).

Erdos [10] conjectured th at for l > 2, equation (3) has no solution. In
the same article he proved this for l = 3 and for k ~ 2l . The cases l = 4, 5
were sett led by Oblath [24] .

Using his elementary method applied earlier to (2), Erdos [11] proved
th at for k ~ 4, equat ion (3) has no solution.

For k < 4, the approach of Erdos does not work. By means of Baker's
method Tijd eman [40] proved in an effective form that for k = 2 and 3,
equation (3) has only finitely many solutions. Later Terai [39] showed that
in this case I < 4250. We note th at recently Terai derived a bound for l also
in the case when in (3) yl is replaced by pyl with an odd primep.

Finally, in Gyory [17J I succeeded to prove Erdos ' conjecture for the
remaining cases k = 2,3 and I > 2. The proof is based on a combinat ion of
some result s of Cyory [15] and Darmon and Merel [6] on generalized Fermat
equations with a theorem of Bennett and de Weger [4] on binomial Thue
equations. In fact this was the first time th at generalized Fermat equations
were used in the study of equation s (3) and (4) and their generalizat ions.

Summing up the above results , we have the following.

Theorem B (Erdos, [11 , case k ~ 4]; Gyory, [17, case k < 4]). Apart from
th e cases (k , l) = (2,2) , (3,2) , equation (3) has no solution .
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Denote by P(b) the greatest prime factor of any integer b > 1, and let
P(I) = 1. The equation
(4)
n(n + 1) ... (n + k - 1) = byl in integers n ,b,y 2:: 1,k, I 2:: 2 with P(b) :::; k

is a common generalization of equations (2) and (3). For b = 1 this is just
equation (2), while for b = k! it gives equation (3).

For k = b = I = 2, this is again a Pell equation, having infinitely many
solutions.

Let p(k) denote the least prime with p(k) > k. As was pointed out
in Cyory [19], n , k yield a solution of (4) with P(y) :::; k if and only if
n E {I, 2, ... , p(k) - k}. This means that for given k, equation (4) has only
finitely many solutions with P(y) :::; k and all these can be easily determined .
Hence, in what follows, we are interested only in those solutions for which

P(y) > k.

It was proved by Erdos and Selfridge [13] that under the restriction
P(b) < k, equation (4) has no solution with P(y) > k. However , this result
cannot be applied to equation (4) if k is prime.

The following theorem gives the complete solution of equation (4).

Theorem C (Saradha [30, case k 2:: 4]; Cyory [18, case k < 4]). Apart
[rom the case (k , b, I) = (2,2,2), equation (4) has the only solution

48 . 49 . 50 = 6 . 1402

with P(y) > k.

To prove this theorem for k 2:: 4, Saradha [30] combined Erdos ' method
with a result of Shorey and Tijdeman and with some computations. Her
method of proof cannot be applied to the case k < 4. In Gyory [18],
the results of Wiles [44], Ribet [27] and Darmon and Merel [6] concerning
generalized Fermat equations were used to resolve (4) for k = 2 and 3.

Theorems A and B are consequences of Theorem C; d. Gyory [19].
Further, it is clear that Theorem C is valid also with P(b) :::; k replaced
by P(b) < p(k).

In (4) , P(y) > k implies that n > kl • Recently, Theorem C has been
refined by Saradha [30] for k 2:: 9, Hanrot, Saradha and Shorey [22] for
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6 ::; k < 8 and Benne tt [1] for 3 ::; k ::; 5. They proved that under th e
assumptions l 2: 3, n> kl and P(b) ::; p( k), equa tion (4) does not hold.

For 3 ::; k ::; 5, a fur th er refinement has been recently obtained by Cyory
and Pinter [21]. They showed th at (4) is impossible even if l 2: 3, n > k l

and P(b) ::; t» . where Pk denotes the k-th prime. It is clear th at Pk > p (k)

if k 2: 4.

III. PRODUCTS OF CONSECUTIVE TERMS IN ARITHMETIC

PROGRESSION

In this section we deal with the equat ions

(5)

and

(6)

n(n + d) ... (n + (k - l)d) = yl

n( n + d) ... (n + (k - 1)d) = byl,

where n ,d,b, y 2: 1 and k 2: 3, l 2: 2 are unknown integers such that
gcd(n, d) = 1 and P(b) ::; k.

Finiteness results

It is easy to see th at both equa tions (5) and (6) have infinitely many
solutions if k = 2 or if (k, l) = (3,2). Tijdeman [41] showed th at (6) has
infinit ely many solutions with P(y) > k for (k,l) = (3,3) and (4,2) , too.

Erdos conjectured tha t in (5) k must be bounded. Further , by a
conjecture of T ijdeman [41], t he total number of solutions of (6) with
P(y) > k and k + l > 6 is finite.

Using Faltings' th eorem [14] on rational points of curves of genus> 1,
Darmon and Granville [5] proved th at for given k 2: 3, l 2: 4, equation (5)
has only finitely many solutions. The following theorem refines this and
extends it to the case b > 1.

Theorem 1 (Gyory, Hajdu, Saradha [20]). For given k 2: 3, l 2: 2 with
k + l > 6, equation (6) has only finitely many solutions (n , d,b,V).
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In view of Tijdeman's result (6) has infinitely many solutions for each
choice of k 2:: 3, l 2:: 2 with k + l ::; 6.

Shorey [33] proved th at for l 2:: 4, the abc conjecture impli es Erdos'
conjecture on the boundedness of k, In fact, from the abc conjecture one
can deduce a more precis e result.

Theorem 2 (Cyory, Hajdu , Saradha [20]). Th e abc conj ecture implies that
(6) has only finitely many solutions (n , d, k , b, y , l) with k 2:: 3, l 2:: 4 and

d> 1.

We note that the assumption d » 1 is necessary. For d = 1, (6) has the

solution n = y = 1, b = k! for each k 2:: 3.

On the resolution of equations (5) and (6)

First consider equation (5). As was mentioned above, (5) has infinitely
many solutions both for k = 2 and for (k, l) = (3,2) . Eul er proved that for
(k, l) = (4,2) , equation (5) has no solution. The same result was proved by
Oblcith [25, 26] for (k, l) = (5,2) , (3, 3), (3,4) and (3,5).

Using results of Wiles , Rib et and Darmon and Merel on generalized
Fermat equations, Gyory [19] showed that equation (5) is impossible for

k = 3 and l > 2.
Recently, the following theorem has been established for k S 11.

Theorem 3 (Cydry, Hajdu, Sar adha [20, case k S 5]; Bennett, Gyory,
Hajdu [2, case k ~ 6]). For 4 S k S 11, equation (5) has no solution.

We note that for 6 S k S 11 and I = 2, Theorem 3 was independently
proved by Hirata-Kohne and Shorey.

Summarizing the above results on equation (5) we have the. following.

Theorem D. Apart from the case (k , l) = (3,2) , equation (5) is impossible

for 3 S k ::; 11.

Conjecture 1. For k ~ 3 and (k, I) #- (3,2) , (5) has no solution .

Concerning equation (6) , Gyory [19] proved more generally that for
k = 3, I > 2 and P(b) ::; 2, (6) is not solvable. As Tijdemari 's result
[41] concerning the case (k , l) = (3 ,3) shows, the assum pt ion on b cannot

be relaxed to P(b) ::; 3.

Recently Cyory's theorem [19] has been extended to t he case k ::; 11.
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Theorem 4 (Bennett, Gyory, Hajdu [2]). For 4::; k ::; 6, P(h) ::; 2 and for
6 < k ::; 11, P(b) ::; 3, equation (6) has no solution.

For k = 4 and 5, this was proved in a less precise form by Gyory, Hajdu
and Saradha [20]. When b = 1, Theorem 4 gives back Theorem 3.

The above results on (6) can be summarized as follows.

Theorem E. If 3 ::; k ::; 11, (k, l) =1= (3,2) and P(b) ::; 2, then (6) has no
solution.

We note that in Oyory, Hajdu and Saradha [20] and Bennett, Gyory
and Hajdu [2], the results were extended to the case when nand b are not
necessarily positive integers. As will be seen in Section IV, this extension
is important for certain applications.

Conjecture 2. For k ~ 3, (k, l) =1= (3,2) and P(b) ::; 2, (6) has no solution.

The examples

2 . 9 . 16 = 25 . 32 . 11 and 1 . 2 . 3 . 4 = 23 . 3 . 11

show that for k = 3 and 4, the assumption P(b) :s 2 cannot be replaced by
P(b) ::; 3. It is likely that for k ~ 5, the assumption on the greatest prime
factor of b can be relaxed in Theorems 4, E and in Conjecture 2.

IV. AN APPLICATION OF THEOREMS 3 AND 4

The results concerning equations (5) and (6) can be applied to the superel
liptic equation

(7) x(x + 1) ... (x + k - 1) = zl,

where the unknowns are now k, l, x, z with k, l ~ 2 and rational x, z . It
is clear that (x, z) = (-i, 0) are solutions of (7) for i = 0, .. . , k - 1. These
solutions are called trivial.

It follows from Faltings' theorem [14] that for fixed k, l with k + l > 6,
equation (7) has only finitely many solutions.

Sander [29] proved that if 2 ::; k ::; 4 and (k, l) =1= (2,2), then (7) has
only trivial solutions. Further he conjectured that except for the case
(k, l) = (2,2), (7) has no non-trivial solution.
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Putting x = njd, z = yju, with integers n,d, y, u such that d,u > 0,
n,y i= °and gcd(n, d) = gcd(y,u) = 1, (7) leads to the equation

n(n+d) ... (n+(k-l)d) =yl,

By applying now the extended version of Theorem 3 with not necessarily
positive n, the following theorem follows.

Theorem 5 (Gyory, Hajdu, Saradha [20, case 2 ::; k ::; 5, l ~ 3], Bennett,
Gyory, Hajdu [2, the other cases]). For 2 ::; k ::; 11, the only non-trivial
solutions of (7) are given by

(k,l,x,z)

As is seen , for (k, l) = (3,3) and (4,2) there exist non-trivial solutions
which are missing from the theorem and the conjecture of Sander. Hence
Sander's conjecture should be modified accordingly.

We note that we proved Theorem 5 in a more general form, we solved
equation (7) with zl replaced by ±2Q

• zl, where Ct E Z is also unknown.
Further, under the assumptions l ~ 3 and gcd(k, l) = 1, Theorem 5 has
been extended in Gyory, Hajdu, and Saradha [20] to the case k ::; 18.

V. THE METHOD OF PROOFS OF THEOREMS 1 TO 4

We briefly present the basic ideas and the main tools used in the proofs of

Theorems 1, 2 and 4.

From the equation

(6) n(n+d) .. . (n+(k-l)d) =byl ,

where ti, d, b, y ~ 1 and k ~ 3, l ~ 2 are unknown integers with gcd( n, d) =

1 and P(b) ::; k, one can deduce that

(8) i = 0, . . . , k - 1,

where Ai, Xi ~ 1 are unknown integers with P(Ad ::; k. It is obvious that
conversely, (8) implies (6). Depending on the situation investigated, we can
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choose th e Ai , Xi such that either Ai is l-th power free (when , for fixed k ,
th ere are only finitely many possibilities for Ai) or Xi is free of prime factors
'5: k.

Using (8) , (6) can be redu ced to systems of equat ions consist ing of
genera lized Ferm at equations. There are two possibilities:

1. For distinct int egers a '5: p, q, r '5: k - 1, one can easily find non-zero
int egers Ap, Aq, AT with absolute values '5: k such that

Ap(n+pd) + Aq(n +qd) = Ar(n + rd) .

Hence, in view of (8), we get an equation of the form

(9) AXl + ev' = GZl in coprime non-zero int egers X, y, Z,

where A, B , G are relatively prime non-zero integers with P(ABG) '5:
k.

2. For integers a '5: p < q '5: r < s '5: k - 1 with p + s = q + r , we deduce
that

(n +qd)(n + rd) - (n +pd)(n + sd) = (qr - ps)d2
.

Thus, by (8), we obtain an equat ion of th e shape

(10) AX l + ev' = GZ2 in coprime non-zero integers X, y, Z,

where A, B , G are relatively prime non-zero integers with P(AB) '5: k
and lei ~ (k - 1)2.

The basic ideas of the proofs of Theorems 1 and 2

To prove Theorem 1, we choose in (8) the Ai to be l-th power free. Then
we arrived at equa t ions of the form (9) with coefficients which can be taken
fixed. For k = 3 and l ~ 4, one can use Falt ing' s theorem to prove the
finiteness of the number of solutions of the equation (9) so obtained, whence
Theorem 1 follows. If k ~ 4, th e situation is more complicated but a similar
argument can be applied in that case, too.

In the proof of Theorem 2 we may assume th at (n,d,k) i=- (2,7,3) . Then
a th eorem of Shorey and Tijdeman [37] gives th at P(y) > k. Under thi s
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assumpt ion Shorey [33] used the abc conjecture to prove that k is bounded .
So we can fix k. Then we reduce equation (6) to equations of the form (9),
where A, B , C are not fixed , but P (ABC) ::; k. The abc conjecture can be
applied to (9) in a well-known way to show th at X , Y , Z and I are bounded.
So we may assume th at x', y l and Zl are fixed. Now (9) becomes an S
unit equat ion in A , B , C for the set of primes S = {p I p ::; k} , hence, by
a theorem of Gyory [16], max {IAI,IBI,ICI } is bounded . T his implies tha t
max {n,d,b,y} is also bounded.

We note that using an effective version of the abc conjecture, the above
proo f provides an effect ive upp er bound for max {n,d,k,b,y , l} .

The main tools in the proof of Theorem 4

T he proof of Theorem 4 is long and complicated.

The case l = 2. In the case l = 2 one can reduce equation (6) to finding
rational points on some elliptic curves of ran k O. Then one can use th e
program package MAGMA to find all rational points on the curves in
quest ion.

The case l > 2. In t his case we may assume that I > 2 is a pr ime. After
having reduced equation (6) to (8), we have to dist inguish several subcases,
according to the possible choices of the Ai. If t here are 0 ::; i, j ::; k - 1
such that P (AiA i+1 • • • Ai+j) ::; j + 1, th en (6) reduces to the case when k
is replaced by j + 1 < k. However , this is not th e case in general. T hen,
as remarked above, equation (6) can be reduced to systems of equat ions
consist ing of ternary equations of the form (9) and (10).

We applied different methods to deal with non-trivial solut ions X , Y,
Z of (9) and (10), i.e. with solut ions for which XY Z i= 0, ±1.

When 3 ::; l ::; 7, for certain choices of the Ai we used local meth ods
and showed that at least one of the equations (9) and (10) involved is not
solvable (mod p) for some appropriat e prime p.

For l = 3, classical resu lts of Selmer [32] and oth ers can be used to prove
that some equat ions (9) coming from (6) have no non-trivial solut ions.

For l = 5, 7, one can use some resul ts of Dirichlet , Lebesgue, Maillet
(d. [8]), Denes [7], Cyory [15] and Bennet t , Cyory and Hajdu [2] on the
equat ions of the form (9) with A = B = 1.
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For l 2': 7, the main ingredients are some recent results on ternary
equations of the form (9) and (10) whose proofs are based upon th e theory
of Frey curves, Galois representations and modular forms.

It should be mentioned here the celebrated results of Wiles [44], Ribet
[27], Darmon and Merel [6] and others on equat ions of the form (9). For
example, we utilize the fact that for A = B = 1, C = 20:, n 2': 0 integer ,
equation (9) has no non-trivial solutions.

Some results of Bennett and Skinner [3] and Bennett, Cyory and Hajdu
[2] play also an important role in the proof of Theorem 4. For example , we
showed with Bennett and Hajdu that for P(AB) ~ 3 and C = 1, equation
(10) has no solutions with 5 IXY if l 2': 7, and with 7 IXY if l 2': 11.

Acknowledgements. The author is indebted to Professor A. Petho and
Dr. L. Hajdu for pointing out some typist's errors in the manuscript.
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THE TOPOLOGICAL VERSION OF FODOR'S THEOREM

1. JUHAsz* and A. SZYMANSKIt

The following purely topological generalization is given of Fodor 's theorem from
[3] (also known as th e "pressing down lemma") :

Let X be a locally compact, non-compact T2 space such that any two closed
unbounded (cub) subsets of X int ersect [of course , a set is bounded if it has
compact closure]; call SeX st ationary if it meets every cub in X . Then
for every neighbourhood assignment U defined on a stationary set S there is a
stationary subset T C S such that

n{U(x) : x E T} i= 0.

Just like the "modern" proof of Fodor 's theorem, our proof hinges on a notion
of diagonal intersection of cub's , definable under some additional conditions.

We also use these results to present an (alas , only partial) generalization to
this framework of Solovay 's celebrated stationary set decomposition theorem.

1. INTRODUCTION

One of the most frequently used results in set-theory is Fodor's theorem
(also known as the pressing down lemma) from [3] :

Theorem 1. Let a be an ordinal of uncountable cofinality. If Sea is
stationary in a {i.e. S n C =f 0 for every closed unbounded (in short: cub)
subset C of a} and 1 : S ----t a is a regressive function on S {i.e. 1(0 < ~

whenever ~ E S\ {O}} then there is a stationary subset T C S and an ordinal

'Research supported by OTKA grant no. 37758.
tResearch supported by Charles University and the Czech Academy of Sciences.
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( E 0: with f(~) ~ ( for all ~ E T. In particular, if Q is (an uncountable)
regular cardinal then T and ( above may be chosen in such a way that
f(() = ( for all ( E T .

A precursor of Fodor 's result was Neumer's theorem from [8] that , under
the same assumptions, yields the same conclusion with only an unbounded
T c S, instead of a stationary one.

Since a regressive function f defined on S C ex is equivalent to the
neighbourhood assignment ( t-t (J(() ,(] in the ordinal space 0: [i.e. ex
considered with its natural order topology], and the conclusion of the above
results can be reformulated to state that the neighbourhoods assigned to
all elements of T have non-empty intersection, both Fodor 's and Neumer's
theorems can be viewed as purely topological statements about the ordinal
space Q. This was clear to Fodor himself, and raises naturally the question
if these results could be generalized to a purely topological setting.

In [5] and [10] such generalizations were successfully achieved for the
case of Neumer's result, but not for Fodor's. In fact , both authors explicitly
stated the problem of finding a purely topological generalization of Fodor's
theorem.

It should be mentioned that the authors of [2] took a completely different
approach to viewing Fodor's and Neumer's results as topological : they
viewed the regressive function f as one that assigns to the open set ( =
[o,~) the compact subset [O ,f(()]. Still, for them the same phenomenon
occurred: they found a satisfactory generalization of Neumer's theorem but
not that of Fodor's.

Finally, we should like to note that the generalization of Fodor's theorem
to finite products of uncountable regular cardinals given in [1], contrary to
the title of that paper, is a generalization towards partial orders rather than
topological spaces.

We hope to convince the reader that our generalization of Fodor's theo
rem, formulated and proved below, does provide a/the satisfactory solution
to the above problem .

2. THE THEOREM FOR LOCALLY COMPACT SPACES

Let us start with the basic definitions.
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Definition 1. Let X be a locally compact but non-compact T2 space. Th e
set A c X is called bounded in X if its closure A is compact, unbounded if it
is not bounded. It follows from our assumptions th at X itself is unbounded.
We say that X is good if the intersection of any two closed unbounded (in
short: c u b) subsets of X is non-empty. We shall denote by C(X) the family
of all c u b sets in X .

It is easy to see that an ordinal space a is good exact ly if it has un
countable cofinality. A more general statement is formulated below.

Lemma 1. If X is good then X is counta bly compact.

Proof. Assume, indirectly th at X is not countably compact , hence we have
an infinite set A c X with no accumulation point. But then every infinite
subset of A is c u b, cont radicting that X is good. •

Anoth er easy but frequently used result is the following.

Lemma 2. Let X be a good, non-compact , locally compact T2 space. Th en
C1, C2 E C(X) implies 0 1 n C2 E C(X) .

Proof. Assume th at C1 n C2 ¢ C(X), hence actu ally C1 n C2 is compact .
By the local compactness of X then there is a bounded open set U in X
with C1 n C2 c U. However, th en C1 \ U and C2 \ U would be two disjoint
members of C(X) , cont radict ing that X is good. •

Definition 2. Let X be a locally compact, noncompact T2 space. We say
that a set SeX is stationary in X if it meets every c u b, i.e. every member
of C(X). We denote th e family of all stationary subsets of X by St (X) .

Now, the following are immediate from Lemma 2 and the definitions.

Lemma 3. Let X be as in Lemma 2. Tb eii

(i) C(X) cSt (X) ;

(ii) if C E C(X) and S E St (X) then C n S E St (X) ;

(iii) every stationary set is unbounded.

The following definition introduces two concepts that , for good spaces,
serve as generalizat ions of cofinality for ordinal spaces.
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Definition 3. Let X be as above. We set
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cf (X ) = min {IAI : A is unbounded}

and
e(X) = min{ICI : C C C(X) and nC = 0} .

It is easy to see th at cf (X ) ~ e(X) holds for any good space X ,
moreover for a good ordinal space a we have e(a) = cf(a ). If X is the
well-known Ost aszewski space from [9] then clearly X is good and we have
cf (X ) = w < e(X ) = WI·

The next result on e(X) is a strengthening of Lemma 2.

Lemma 4. Let X be as above and let V C C(X) with IVI < e(X) . Then
nv E C(X). Consequently, the union of fewer than e(X) non-stationary
sets is non-stationary.

Proof. Assume that n v ~ C(X) then nV is compact and hence can be
covered by a bounded open set U. But then the family {D \ U : DE V} C

C(X) and has empty intersection , and is of cardinality less than e(X ), a
cont radict ion. •

From this and Lemm a 1 we now can directly conclude

Lemma 5. If X is as above then e(X) is an uncountable regular cardinal.

The Ostaszewski space, mentioned above, is an example showing that
this is not necessarily true for cf( X) for a good space X . However , we
do not have an example of a good space X for which cf( X) is a singular
cardinal.

If K is an uncountab le regular cardinal and {Co: : a E K} is a x-sequence
of cub's in K t hen their diagonal intersection is defined by

and is known to be c u b. Our next goal is to generalize th is concept to our
general setting for sequences of c u b's in X of length e(X) . However , this
will only be possible under special circumstances.

To this end, let us recall (see e.g. [6]) that a free sequence in a space X
is a transfinite sequence P = {Po: : a E 'TJ} with the prop erty tha t

{Pf3 : f3 E a} n {Pf3 : f3 E 'TJ \ a } = 0

for every a E 'TJ . Clearly, if P is a free sequence in X then, as a subspace,
P is discrete.



The Topological Version of Fodor's Th eorem 161

Definition 4. Let X be as above and assume , in addition, that P = {Po. :
0: E (2 = (2(X)} is a free sequence in X such that P has no complet e
accumulation point in X . In this case we say that P is a spine of the good
space X .

For {Ho. : 0: E (2} C C(X) we set

t::. p { H 0. : 0: E (2} =U{P~ nn{H /3 : j3 EO:} : 0: E (2} ,

where Po. = {P/3 : j3 EO:} and P~ is the derived set of Po., i.e. the set of all
limit points of Po..

Before we prove that this P-diagonal intersection t::. p{Hc; : 0: E (2} is
cub, let us first show that it is very closely relat ed to the ordinary diagonal
intersection of c u b's on an uncountable regular cardinal K,. Indeed, then
the sequence of all successor ordinals P = {Po. = 0: + 1 : 0: E K,} is clearly a
free sequence in K, with no complete accumulation point. Moreover , for any
limit ordinal t5 E K, we have t5 E P~ if and only if 0: 2': t5 , hence clearly

Lemma 6. Under th e conditions of Definition 4, we have

H = t::.p{Ho. : 0: E e} E C(X) .

Proof. Let us note first of all that, as P is a discrete subspace in X , we
have pI = P \ P and P~ = Po. \ Po. for every 0: E (2. The fact that P has no
complete accumulation point implies th at every final segment P \ Po. of P
is unbounded and so, as P is free and X is good, Po. and consequent ly P~

as well are compact, moreover P' = U{P~ : 0: E d .
To show that H is closed, consider any point y E X \ H . If y rj. P' ,

then, as P' is closed and H C P', we have y rj. H . If y E P' then let
0: E (2 be minimal such that y E P~ . Then, however, y rj. H implies that
y rj. n{ H/3 : j3 E o} , so we can choose an ordinal 'Y E 0: with y rj. H y • Since
H"( is closed and by the minimality of 0: then y rj. P~ as well, there is a
neighbourhood V of y such th at both V n H"( = 0 and V n P"( = 0. But
then for every j3 :::; 'Y we have V n P~ = 0 and for every j3 E (2 \ ('Y + 1) we
have V n n{H; : v E j3 } = 0, consequent ly V n H = 0, showing again that
y rj. H .

Finally, to conclude that H E C(X), it suffices to show that H cannot
be covered by any bounded open set . So let us fix U open with U compact.
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Then, as P has no complete accumulation point, there is a final segment
P \ Pao of P disjoint from U (or even of U) .

Let us note now that for every unbounded set A c X we have A'
unbounded as well. Indeed, otherwise A' would be compact and if V is
open with V compact and A' c V, then A \ V is infinite being unbounded
and (A \ V)' = 0, contradicting the countable compactness of X.

Applying this remark to A = P \ Pao and using Lemma 4, we can pick
a point VO in

Clearly, then there is an ordinal al E (! with al > ao such that actually
VO E (Pal \Pao)I. Repeating the above procedure then by a straightforward
recursion we may pick an increasing sequence of ordinals an E (} and points
Vn such that

for all nEw. Since (P \ Pao) n U = 0 we clearly have Vn E X \ U for every
nEw.

Now let a = sup {an : nEw} E (! and V be any limit point of the set
{Vn : nEw} ; V exists because X is count ably compact. But then we clearly
have y E P~ as well, moreover V E n{H,B : {3 E a} because the sequence
{Yn : nEw} is contained eventually in Hf3 for every {3 E a . Consequently,
we have

V E P~ nn{Hf3 : {3 E a} C H,

moreover V ti. U because {Yn : nEw} C X \ U, hence H \ U =I 0, as
required. •

After all this preparation, we are now ready to prove the main result of
this section.

Theorem 2. Let X be a locally compact, non-compact T2 space that is
good . If SeX is stationary and U is any neighbourhood assignment on
S [i.e. U(x) is an open set containing x for each xES} then there is a
stationary subset T C S such that

n{ U(:r) : x E T} =10.
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Proof. We distinguish two cases:

Case 1. There is an unbounded subs et Aof X with IAI < (} = (}(X) , i.e.
cf (X ) < (}(X) . Then S n A is stat ionary and for every point x E S n A we
have U(x) n A i= 0. Bu t then, in view of Lemma 4, there is a point q E A
for which the set

T = { x E S n A : q E U(x)}

is st ationary in X , and we are done.

Case 2. For every set A c X with IAI < (} its closur e A is compact,
i.e. cf (X ) = (}(X). Then we can define a spin e for X , i.e. a free sequence
p = {Po: : ex E (}} as in Definition 4, as follows.

Let us first fix a sequence {F1/ : v E (}} C C(X) such tha t n{Fv :

v E (}} = 0 and v < J-L implies Fv :) FJI , using the definition of (}(X) and
Lemma 4. We then define points Po: and ordinals Vo: E (} induct ively as
follows. If ex E (} and {p,6 : /3 E ex} , {v,6 : /3 E ex} have already been

defined then, by assumption, {p,6 : /3 E ex} is compact, hence we can pick

Vo: E e\ U{v,6 : /3 E ex} such that F,/u n {p,6 : /3 E ex} = 0. Then Po: E Fvc>
is picked arbi traril y. P = {Po: : ex E (}} is a free sequence because for
every ex E (} we have {p,6 : /3 2:: ex} C Fvc>:, Moreover, P has no complete
accumulati on point because n{Fvc>: : ex E (}} = 0 and if x ~ Fvc>: th en

i.e. th e complement of Fvc. in X is a neighbourhood of the point x in X th at
meets P in a set of size smaller than g.

Now, we claim th at there is a point Po: E P such th at T = { x E S :
Po: E U(x)} is stat iona ry in X . Assume, indi rectly, th at for every ex E (2

there is a c u b H o: E C(X) such that Po: ~ U(.1:) for every x E S n Ho: . Set
H = D. p{Ho: : ex E (2} , th en H E C(X) by Lemma 5. Consequently
H n S i= 0 as S is st ationary, so let q E H n S . But then we have
q E P~ n n{H,6 : /3 E ex} for some ex E (2, hence on th e aile hand th ere
are (infinitely many) /3 E ex such that P,6 E U(q), while on th e ot her hand
q E H,6 n S impl ies P,6 ~ U(q) for all /3 E ex . This contradiction complet es
the proof. •

For lat er use , let us note th at th e above proof act ually established th e
following somewhat stronger result: Using th e not ation

M(U) = {q EX : {x E S : q E U(.1:)} ESt (X)} ,
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we have M(U) n A =f 0 if cf(X) < 1?(X) and A is any unbounded set of
size less than 1?(X) , moreover M(U) n P =f 0 if cf(X) = 1?(X) and P is any
spine of X.

The following strengthening of Theorem 2 is now obtained as an easy
consequence.

Corollary. Let X, S, and U be as ill Theorem 2. Th en the set M (U) is
stationary in X .

Proof. Let C be any cub in X, then it is obvious that C as a subspace
of X is locally compact, non-compact, and good. Also, S n C is stationary
in C and thus we may apply Theorem 2 to the neighbourhood assignment
V (:r) = U(x) nC defined on S nC. Thus there is a set T c S nC stationary
in C and therefore also in X and a point q E C with

q E n{ U(x) : x E 1'} ,

hence q E en M(U) . Since C E C(X) was arbitrary, we indeed have
M(U) ESt (X) . •

We conclude this section by a result which shows that the condition of
goodness for assuring the general Fodor-type result is not only natural, in
some sense it is also necessary. If X is a locally compact , non-compact 1'2
space then let us denote by PDL(X) the stat ement that Fodor 's theorem
holds true for X , i.e. whenever S is st ation ary in X and U is a neighbourhood
assignment on S then there is a stationary T C S with n{U( :r) : .1: E 1'} i=
0, or more concisely, M(U) i= 0. Also, we denote by SPDL(X) the
statement that for S and U as before, M (U) = {q EX : { x E S :

q E U(x)} ESt (X)} is even stationary in X.

Theorem 3. Let X be a locally compa ct, non-compact 1'2 space. Then th e
following three statements (i)-(iii) are equivalent.

(i) X is good ;

(ii) X is normal and P DL(X) ;

(iii) SPDL(X) .

Proof. If X is good and J( , L are disjoint closed sets in X then one of them
must be compact, hence X is clearly normal. The implications (i) ==} (ii)
and (i) ==} (iii) now follow from Theorem 2 and its corollary, respectively.
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To see (ii) ==} (i) assume th at X is normal but not good. Then we
have two disjoint c u b's, say J( and L , and by normality we have disjoint
open sets V and W with J( c V and LeW. Consider the neighbourhood
assignment U defined on X as follows:

U(x) = {:

X \(J(UL)

if x E J( ;

if .1: E L ;

if x ~ J( U L.

Then U witnesses the failure of PDL(X): indeed, if q E V , then { x
q E U(x)} n L = 0, if q E W then { x : q E U(x)} n J( = 0, and if
q E X \ (J( U L) { x : q E U(.1:)} n (J( U L) = 0, hence all three types of
sets are non-stat ionary in X .

Finally, to see (iii) ==} (i) assume that J( and L are disjoint c u b's in
X and then define a neighbourhood assignment U on X with the following
stipulations:

{
X \ J( if x E L,

U(x ) =
X \ L if x ~ L .

We claim that U is a witness for the failure of SPDL(X) , i.e. M(U ) = {q E

X : { x EX : q E U(x)} E St (X)} is non-station ary in X . Indeed, we
have L n M(U) = 0 since otherwise there is some q E L n M(U) which, by
the definition of U implies {.1: EX: q E U(x)} = X \ J( E St (X) , clearly
a cont radict ion. •

3. A POSSIBLE GENERALIZATION

In this section we present a further generalization of our topological frame
work for Fodor 's theorem, where local compactness is omitted and the no
tion of boundedness is extended from the fixed ideal of sets having compact
closure. The precise definition is given below.

Definition 5. Let X be any topological space and I be any proper ideal
of subsets of X containing all finite sets . We shall call the elements of I
bounded and, of course, the subsets of X not in I unbounded. We say that
I is a good ideal on X if it satisfies the following four conditions:



166 I. Juhasz and A . Szymanski

(i) If A E I then A E I as well (i.e. the closure of any bounded set is
bounded).

(ii) For every A E I there is an open set U E I with A c U (i.e. every
bounded set has a bounded neighbourhood).

(iii) Any two closed unbounded (in short: c u b) sets have non-empty
intersection. (We shall use C(X , I) to denote the family of all cub
sets in this case.)

(iv) Setting

Q(X,I) = min {ICI : Cc C(X,I) and nC = 0} ,

we have

Q(X,I) = min {ICI : Cc C(X , I) and for every

A E I there is C E C with An C = 0}.

In other words, this says that whenever we have a subfamily of C(X, I)
such that every point in X is missed by an element of this family then
there is a (possibly different) subfamily of the same size for which
every member of I is missed by an element . Condition (ii) insures
that a subfamily with the latter property does exist .

In addition to Q(X,I) we may again define as another generalization of
cofinality

cf(X, I) = non - I = min {IAI : A is unbounded}.

Clearly, if a set A meets every every member of a family C C C(X , I) having
the property that every bounded set is avoided by some member of C, then
A must be unbounded, hence by condition (iv) we have

cf(X, I) ~ Q(X, I).

Now, a subset of X is called I-stationary (or simply stationary, if I is
understood) if it meets every member of C(X , I) and St (X, I) denotes the
family of all I -stationary sets in X . From condition (ii) it is obvious that
the family C(X, I) is Q(X, I) -complete, i.e. it is closed under intersections
subfamilies of size less than Q(X, I), hence the union of fewer than Q(X,I)
non-stationary sets is always non-stationary.
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Finally, PDL(X, 1) denotes the statement that Fodor's theorem holds
in this setting, i.e. for every neighbourhood assignment U defined on an
I-stationary subset S of X the set

lVh(U) = {q EX: {x E S : q E U(x)} ESt (X,I)}

is non-empty. Moreover, SPDL(X, 1) stands for the statement that for any
such neighbourhood assignment U the set MI(U) is even I-stationary.

Examples. (1) Of course, the motivating example for a space with a good
ideal is given by any good locally compact, non-compact space together with
the ideal of its subsets having compact closure.

(2) Now, let 0: be any ordinal number with cf(o:) > WI and consider the
subspace

X = {,6 Eo:: cf(,6) > w}

of the ordinal space 0: . Then X is neither locally compact, nor countably
compact, and the ideal I of all bounded subsets of X (in the sense of order)
is easily seen to be good .

(3) With 0: as in (2), let us now consider its subspace

y = {,6 Eo:: cf(,6) = w} .

Then Y is countably compact but not locally compact, while the ideal of
order-bounded subsets of Y is again good.

(4) If I is a good ideal on a space X and S E St (X, 1) is I-stationary
then obviously

I rS={AEI : ACS}

(that is the restriction of I to S) is a good ideal on the subspace S of X.
Clearly, both (2) and (3) are particular cases of this .

We may now formulate a result of which theorem 2 is clearly a special
case by example (1) above. The proof will closely parallel that of Theorem
2, however the lack of countable compactness causes a bit of a complication.
The following lemma shows that a certain amount of "compactness" is still
present and this will be sufficient for the proof to go through.

Lemma 7. Let I be a good ideal on the T I space X. Then for every
unbounded set A its derived set A' is also unbounded and hence cub.
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Proof. Let us start by fixing a family C = { GE, : ~ E g = g(X ,I) } c
C(X, I) such that every bounded set misses some member of C, with the
additional property th at C is st rict ly decreasing, i.e. ~ < TJ implies th at G'l
is a proper subs et of GE, .

Now assume, indirectly, that A' is bounded and fix a bounded open set
G with A' c G. Then B = A \ G is again unbounded with B ' = 0, hence B
is a closed discrete set in X . In par ticular , then B is c u b, hence we have
B n Gf, i= 0 for all ~ E g. Thus we can easily select two disjoint subsets D
and E of B such tha t both D and E intersect every member of C. Bu t this
contradicts property (iii) of I because both D and E are c u b. •

Now the promised generalizat ion of Fodor 's theorem reads as follows.

Theorem 4. Let X be a T[ topological space carrying a good ideal I. Then
(S)PDL(X, I) holds.

Proof. Let U be a neighbourhood assignment defined on the I- stati onary
set S . If t here is an unb ounded set A with IAI < g(X, I) then clearly we
even have An Ml (U) i= 0. Otherwise, tha t is if cf( X , I) = g(X , I) , one
can easily construct an I -spin e for X , that is a free sequence P = {Pn :
0' E g = g(X, I)} which is unb ounded, all its proper initial segments Po
are bounded, and has no complete accumulat ion point in X. \Ve may also
assume without any loss of generality that Pet E Gn holds for all 0' E g where
the c 11 b's Go. are chosen as in the proof of lemma 7.

Then exac tly as in definition 4 we can define the P~diagonal intersection
of any g-sequence

{Ret : 0' E g}

of c u b's, and with the help of lemm a 7 we will show that this P -diagonal
intersection

is again a c u b. The proof that R is closed is the same as above. To prove
that it is unb ounded we first need some notati on.

For any 0' E f2 let us set Po. = {P,B : f3 E O:} and Qn = P \ Po. . Recall
tha t for any 0' E f2 we have P~ n Q~~ = 0, moreover

For any point x E P' we set

'P (x ) = min {O' x E P~} .
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Clearly we have Qa C Ca , consequent ly also Q~ C c; for every a E e,
moreover <p(.r) > a implies x E Q~ , hence if sup { <p(x) : x E A} = () holds
for a set A C P' then A meets every Ca and so is unbounded.

Let us now define by tr ansfinite recursion on a points Ya E P' and
ordinals Vo E () as follows. Assume th at a E e and th at both Ya = {y,6
j3 E a} and {v,6 : j3 E a} have already been defined. T hen we set

Va = sup { <p(Y{3) : j3 E Ct }

and then choose

Ya E Q~o n n{H,6 : j3 EVa} .

Th e latter is possible because Q~Q is c u b by lemma 7.

It is easy to see from the const ruction that

<p(Y,6 ) ~ Va < <P(Ya )

whenever j3 < a, consequent ly th e set Y = {Va : a E (}} is unbounded
because sup { <p(y) : Y E Y} = e. Thus to prove th at H is unbounded, by
lemma 7, it suffices to show th at Y' c H . So let Y E Y' be any accumulation
point of Y . Then YeP' implies th at YEP' , hence rp (y) = V is defined . But
th en Y ~ Q~ , hence Y ~ {Ya : <P(Ya ) > v}' and so Y E {Ya : <P(Ya ) < v} '.
Now let <5 be th e smallest ordinal with y E Yj , where YJ = {Va : a < <5}.
Clearly <5 must be a limit ordinal because X is TI .

Note th at th en we have

VJ = sup { <P(Ya) : a < <5} = sup{va : a < <5} ,

and th us clearly Y E P,~.s ' Moreover, the minimality of S implies th at we
have

y E {ya : j3 < a < S}'
for every j3 < <5 , consequently, as the final segment {Ya : j3 < a < <5} of YJ
is contained in n{H( : ~ < vo}, we also have Y E n{H( : ~ < vd . Putting
all this together we indeed have

We can now complete the proof of PDL(X,1) by repeating th e analogous
argument given in the finishing part of th e proof of Theorem 2 showing that
actually P n 1I11(U) =1= 0. Fin ally, SPDL(X,1) is then obta ined as an easy
corollary aga in, by restricting both U and I to any c u b C. We make use
here of th e fact that the restriction of the ideal I to the subspace C is also
good. •
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Examples (2) and (3) show that, at least formally, Theorem 4 is a genuine
extension of Theorem 2. However, we must admit that we don't as yet have
an application of Theorem 4 which cannot be easily reduced to Theorem 2.
We emphasize, on the other hand, that the stationary decomposition results
of the next section work just as easily in the general framework of spaces
with a good ideal of bounded sets as in the restricted case of good locally
compact spaces.

4 . STATIONARY SET DECOMPOSITION

Solovay proved that for every uncountable regular cardinal r: if S is any
stationary subset of r: then S can be decomposed into x disjoint stationary
subsets (see e.g. [7], theorem 85). As an immediate corollary, it follows that
if 0: is an ordinal with cf(o:) > w then every stationary set in 0: is cf(o:)
decomposable. Our aim in this section is to generalize this result to our
topological setting. We start with a lemma that shows the relevance of our
Fodor-type results to this.

Lemma 8. Let X be a space and I be an ideal (of bounded sets) on X such

that for some set A c X we have

whenever U is any neigbboiuiioot! assignment defined on an I -stationary
set. Assume moreover that for some S E St (X, 1) there are a cardinal",
and a neighbourhood assignment V on S such that for cvery set B E [A(K
we have

{XES : BnV(x)=0} ESt(X,I).

Then S is ",-decomposable, i.e. it splits iuto « disjoint I -stationary sets.

Proof. By transfinite recursion on 0: E '" we define points qcx E A as follows:
If Qn = {q{3 f3 Eo:} has already been defined, by our second assumption

the set

is I -stationary. Thus applying our first assumption to the restriction of V
to So we can pick qo from the non-empty set An MI(V r So) . Now it is
obvious from our construction that the sets
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are pairwise disjoint I-stationary subsets of S (for a E x), hence S is indeed
x-decomposable. •

The main result of this section is the following theorem th at implies
Solovay's decomposition theorem in many cases. Roughly, it says that
if I is a good ideal on X and all points in an I-stationary set Shave
small character in X , then S is cf(X, I)-decomposable. We recall that the
character X(x, X) of the point x in the space X is defined as the smallest
size of a neighbourhood base for x in X. Note also that if a is an ordinal
space then for any f3 E a the character of the point f3 in a is equal to its
cofinality cf(f3) .

Theorem 5. Let I be a good ideal of bounded sets on a T1 space X,
moreover set, cf(X, I) = non - I. Then every I-stationary set S
satisfying

sup {X(x,X) : X E S} = f-l < ,

is ,-decomposable.

Proof. For every point xES let us fix first of all a neighbourhood base of
the form {UQ(x) : a E f-l} (repetitions are permitted). Then we prove the
following claim: For every regular cardinal r: ::; , there is an a E f-l such
that for every set Q E [X(K we have

{xES: QnUQ (x) = 0} ESt(X,I) .

Indeed, assume indirectly that tl; = cf(tl;) ::; , but for every a E f-l there is
a set QQ E [X]<K for which

is non-stationary. Set Q = U{QQ : a E f-l}, then IQI < , follows from the
regularity of n. ::; , if f-l < tl; and from f-l < ,otherwise. Hence, by definition,
Q is a bounded set . On the other hand, since f-l < , ::; f2 and so the union
of f-l non-stationary sets is again non-stationary, we have th at the set

is stationary and so unbounded. But for any point x E T we have Q n
UQ (x) f= 0 for all a E f-l , which leads to the absurd conclusion that the
closure of the bounded set Q, that is also bounded, contains the unbounded
set T.
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Now, using lemma 8 we immediately conclude from this claim that S is
x-decomposable for every regular cardinal Ii: :::; 'Y. In particular, this finishes
the proof if 'Y is regular. Otherwise, if'Y is singular and so cf("() = r: < 'Y,
then we may first decompose S into r: many disjoint stationary subsets {Set :
0: E 1'\,} and note that the condition of the theorem is trivially inherited by
(stationary) subsets. Thus if we have

with 'Yet < 'Y for each 0: E r: then every set Set is 'Yet-decomposable and hence
S itself is -y-decomposable again. •

Note that if 0: = /1+ is a successor cardinal then for every point (3 E 0:

the cofinality (i.e . the character) of (3 is at most /1, hence in this case our
theorem applies. This particular case of Solovay's decomposition result was
obtained by Fodor in [4].

We can get a decomposition result for our topological setting that yields
a complete .generalization of Solovay 's theorem if "a certain amount of
compactness" is assumed for our underlying space. However, the problem
with this result is that , unlike in the case of the generalized Fodor theorem
or Theorem 5, in its proof we have to make use of Solovay's original theorem!
Still, for the sake of completeness, we present this result below . We recall
that a space X is said to be initially < p-compact iff every infinite set
A E [X(O has a complete accumulation point in X .

Theorem 6. Assume that I is a good ideal of bounded sets on a Tl space
X that is initially < (! = {}(X , I)-compact , moreover there is an I -spin e
p = {Pet : 0: E {}} in X with the property that for every bounded subset A
of pi there is an 0: E {} with A c P~ . Then every I -stetiotisry subset of X

is g-decomposable.

Proof. Since, by lemma 7, the set pi is cub, it suffices to show that any
stationary S C pi is {}-decomposable. To accomplish this we shall again
consider the map rp pi -t g defined (in the proof of Theorem 4) for x E pi

by

rp(x) = min {o: : x E P~}.

It is easy to see that this map rp is continuous because each p~ is clopen in
Pl . Next we show that sp is also a closed ma.p, i.e. the rp-image of any closed

set is closed.
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Indeed, assume indirectly th at A c P' is closed but B = <p [A] is not .
Let a E B' be the smallest limit point of B that is not in B . Then we may
choose a set Z C an B that has order type cf (a ) and is cofinal in a . For
each ordinal ( E Z pick a point lk; E A with <p (yc) = ( and set

y = {y( : ( E Z}.

Then WI = cf (a ) < (}, hence by our assumpt ion there is a complete
accumulation point y of Y and yEA because A is closed. So if we can
show that <p(y) = a then we get a contradiction because <p (y) E B .

But the cont inuity of ip immediat ely implies that <p(y) is in the closure
of Z, hence <p(y) ::; a . On the other hand , we cannot have <p(y) = j3 < a
because then p~ would be a clopen neighbourhood of y in P' such th at

p~ n Y = {y( : ( ::; j3 },

cont radicting that y is a complete accumulat ion point of Y .

Now, let S be any I-stationary subset of Pl. We claim th at its image
T = <p [S] is stationary in (}. Indeed, let C be any c u b in (}. Then
by cont inuity <p- l (C) is closed in P' and it must also be unbounded by
our assumpt ion on the I -spine P . Thus we have S n <p-l (C) =f:. 0 and
consequently T n C =f:. 0 as well.

But we also have the converse of this st at ement , i.e, for any stat ionary
subset T of (} its inverse image S = <p - l (T) is I-stationary; to prove this
we use th at <p is a closed map . Indeed, for any c u b C E C(X ,1) with
C C P' its image <p [C] is clearly c u b in e. Therefore we have Tn <p [C] =f:. 0,
consequent ly rp - l (T ) n C =f:. (/) as well.

To complete our proof, let us consider any I- st ationary subset S of Pl .
We may then apply Solovay's theorem to the stationary set T = <p [S] in (}
and decompose T into the disjoint stationary sets {Tn : a E d. But then
the family {<p- l(Tn ) : a E d forms a (}-decomposit ion of S . •

Note that the existence of an I-spine as required in the above theorem
is insured by the very natural assump tion cf (X ,1) = (}(X 1). T his as
sumption also occurs in the following conjecture that , if t rue, would provide
us with a purely topological version of Solovay's theorem in the spirit of
Theorem 5.

Conjecture. Let I be a good ideal of bounded sets on a T1 space X such
that cf (X,I) = o(X,1). Then every I -st ationary set S with the property
that x(:r ,X) < g(X,I) holds for all point s .'C E S is g(X,I)-(l< ~composable.
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COLOR-CRITICAL GRAPHS AND HYPERGRAPHS WITH

FEW EDGES: A SURVEY

A. KOSTOCHKA*

The current situation with bounds on the small est number of edges in color
critical graphs and hypergraphs is discussed.

1. INTRODUCTION

The theory of graph and hypergraph coloring plays a central role in discrete
mathematics. It has applications in areas with seemingly little connection
to coloring. Coloring deals with the fundamental problem of partitioning
a set of objects into classes that avoid certain conflicts . Many timetabling,
sequencing, and scheduling problems are of this nature .

A hypergraph is color- critical if deleting any edge or vertex reduces
the chromatic number; a color-critical hypergraph with chromatic number
k is k-criiical. Every k-chromatic hypergraph contains a k-critical hyper
graph, so one can study chromatic number by studying the structure of
k-critical (hyper)graphs. There is vast literature on k-critical graphs and
hypergraphs. Many references can be found in [23, Chapters 5 and 1].

In this survey we concentrate on k-critical graphs and hypergraphs with
few edges. Lower bounds on, say, average degree of k-critical graphs can
be applied as follows. If we know that the average degree of every k

critical graph in a family H is at least x, and the average degree of every
subgraph H' of a graph H E H is less than z , then we know that H is

'This work was partially supported by th e NSF grant DMS-0099608.
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(k - I)-colorable. For example, a theorem of Gallai (described in Section 4
below) says that IE(G)I /1 V(G)I ~ O.5(k - 1 + :2__33) when G is a k
critical graph other than Ki: For k ~ 6 and arbitrary g, this implies
that the problem of testing k-colorab ility is solvable in polynomial time
for graphs that embed on the orientable surface of genus g. If such a
graph is not k-colorable, then it has a (k + I)- critical subgraph G'. Euler's
Formula yields 1E(G')I < 3(1 V(G')I + 2g - 2) , but Gallai 's Theorem

requires IE(G')I ~ O.5(k + k2~2;-2)1 V(G')I · For k ~ 6, this requires

IV (G') I ~ I38(g - 1). Therefore, it suffices to test the k-colorability of
every subgraph of G having at most I38(g - 1) vertices.

Another application of such bounds to coloring of graphs on surfaces
app ears in [7], and Krivelevich [36] presents interesting applications to
random graphs.

In connection with list coloring originated by Vizing [54] and Erdos,
Rubin, and Taylor [19], one can study also list-k-critical (hyper)graphs.
Given a (hyper)graph G and a list assignment L for the vertices of G, G
is L-critical if there is no proper coloring of vertices of G from their lists,
but after deleting any edge or vertex, such a coloring does exist. A list
assignment L for the vertices of a (hyper)graph G is called i-unijorm if
IL(v)1 = t for every v E V(G) .

Two basic questions will be discussed :

(a) what is the minimum possible number of edges in a k-critical (hy

per)graph in a given class 9?
(b) what is the minimum possible number of edges in a k-critical (hy-

per)graph on n vertices in a given class 9? In particular what is the inf i~~~ii
taken over k-critical (hyper)graph in a given class 9?

In the next section we give proofs of a few basic facts . Then graph
questions are discussed in Sections 3, 4, and 5, and hypergraph questions in
Sections 6, 7, and 8.

2. PRELIMINARIES

It is well known that color-critical graphs and hypergraphs do not have
vertices of small degree . This is true also for list-critical hypergraphs. We
state this folklore observation as a proposition because of its importance.
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Proposition 1. Let L be a (k - I)-uniform list for a hypergraph G and
let G be L-critical. Then degc(v) ~ k - 1 for every v E V(G) . Moreover ,
for every v E V(G), th ere exist som e k - 1 edges el, . . . , eh- l such that
e, n ej = { v} for every 1 ~ i < j ~ k - 1.

Proof. Let v E V(G) . By definition , t here is an L-coloring I of G - v , but
we cannot extend I to v . This means th at for every cr E L(v), th ere exists
an edge eo: containing v such th at all vertices of eo: - v are colored with cr.

And for distinct o , f3 E L(v), th e sets ea - v and e(3 - v must be disjoint.
This proves the proposition. •

Dirac [12] observed that k-critical hypergraphs have not only the mini
mum degree at leas t k - 1, but also the edge-connect ivity at least k - 1.

Proposition 2 [12]. Let G be a k -crit ical hypergraph. Then G is (k - 1)
edge-connected.

Proof.' Assume that V (G) = W u U , W n U = 0, and the only edges
intersecting both W and U are el, .. . , e.; where s ~ k - 2. For j = 1, .. . , s ,
let Wj be some vertex in W nej and Uj be some vertex in Un ej ' Since G is
k-critical, there exists a (k -I)-coloring Iw of G(W) and a (k -I)-coloring
Iv of G(U), both using colors 1, . . . , k - 1. We can change th e names of
colors in Iv in (k - I)! ways, keeping th e same partition of vertices. For a
given j, in at most (k-2)! ways we will get the colors of Wj and Uj th e same.
Thus, there are at least (k - I)! - (k - 2)!s = (k - 1 - s )(k - 2)! > 0 ways
to choose the nam es of colors in Iv so th at the resulting (k - l l-coloring of
G will be proper . •

In view of the simple proof of Proposition 2 above, it is a bit surprising
th at for list colorings, thi s proposition does not hold .

Example 1. Let H (k) denote the graph with V ( H (k)) = W u U, where
W = {wl , . .. ,wkl , U = {ul , .. . ,ukl, such that the subgraphs of H(k)
indu ced by Wand U are complete graphs and th ere is exact ly one edge,
namely WkUk , connect ing W with U.

Define the list L for the H(k) by

{

{I, ... , k - l },
L(v) =

{2, .. . ,k},

if v E V(G) - {wk ,ukl;

if v E {Wk, ud.

I I've learn ed this proof from Jacent Tokaz via Douglas West. Another short proof the
reader can find in [52].
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Assume that H(k) is L-colorable. Then all colors 1, . . . , k - 1 should
be used on WI , ... , wk-l, and the same holds for UI , . . . , Uk-I. Thus, both
Wk and Uk must be colored with k, a contradiction. It is also easy to check
that after deleting any edge, we get an L-colorable graph. Hence, H(k) is
L-critical and has connectivity 1.

3. DIRAC-TYPE BOUNDS

Critical graphs were first defined and used by Dirac [11] in 1951. Dirac was
interested in

F(k, n) = min {I E(G)I : Gis k-critical and IV(G)I = n} .

In view of Proposition 1, for every k-critical graph G on n vertices,

L deg(v) 2 (k - l)n.
vEV(G)

Thus 2F(k, n) 2: (k - l)n. This motivates introducing the excess

c(k, G) = L (deg(v) - k + 1)
vEV(G)

and

(1) c(k, n) = min {c(k, G) IG is k-critical and IV(G)I = n}

= 2F(k, n) - (k - l)n.

Brooks' Theorem yields that c(k ,n) 2 1 for k 2 4 and n 2 k +1. Dirac [13]
proved the following.

Theorem 3 [13]. Let k 2: 4 and G be a k-critical graph. If G is not a Kk,
then c(k,G) 2 k - 3.

Shorter and more elegant proofs of this result were given by Kronk
and Mitchem [37] and Weinstein [56]. We present here a proof using ideas
from [10, 29].
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Proof of Dirac's Theorem. Assume that G is a vertex minimum k-critical
graph distinct from J{k , with E(k ,G) ::; k - 4. For every v E V(G) , define

cc(k, v) = degc(v) - k + 1. Then E(k ,G) = L VEV(C) cc(k,v) .

Let w E V (G) and degc(v) = k - 1. Since G =1= J{k, t here are non 
adj acent vertices X l, X2 E Nc(w). The graph G* obtain ed from G by
merging X l and X2 into a new vertex x* is not (k - l l-colorabl e, since every
its (k - 1)-coloring generates a (k - 1)-coloring of G. Hence G* contains a
k-critical subgraph Gj. Note th at x* E V(Gi) (otherwise, Gj would be a
subgraph of G). Since degc'(w) = k - 2, w =1= V(Gi).

Let vt = V(Gi) , VI = Vt - x* + X l + X2, and V2 = V(G*) - Vt =

V (G)- VI. Let EI ,2 be the set of edges connec t ing VI with V2 in G. Assume
that Gl =1= Ki: Then by the minimality of G, c(k,Gd 2: k - :3. Since every
edge in E l ,2 cont ributes 1 to L VEVt (cc*(k ,v) - ccj(k,v)) , we have

(2) E(k ,G) 2: L cc( k, v) + c(k, Gj) + IEl ,21- (k - 1),
VEV2

where the last -(k - 1) reflects merging Xl with X2 . By Proposition 2,
IEl ,212: k - 1. Hence (2) yields E(k ,G) 2: k - 3, a cont ra dict ion .

Thus G* contains a J{k one of whose vert ices is x*. In other words, G
contains a triple (M,Yl , Y2), where M is a clique of size k - 1 and YI and Y2
are non-adj acent vertices with Nc( {Yl ' yd) :J M .

Among all such triples, choose a triple (M,YI ,Y2) with maximum
INc(yt}nMj .

Now, let X l = Yl if NC(yd n M contains a vertex w of degree k - 1,
and let .1:1 = Y2 otherwise. Since c(k, G) ::; k - 4, in both cases there is
w E Nc(xd n M with degc(w) = k - 1. Let X2 be a non-adjacent to X l

ver t ex in M of the smallest degree. Define graphs G* and Gj and sets Vt ,
VI, V2, and El ,2 as above. Then again Gi = Ki: Let M' = V(Gi) - x*,
M* = M - X2+ X* , Mj = M*nV(Gi) and ml = IMjl . Since every v E Mj
has at least k - 1 neighbors in Gj and at least k -1- ml neighbors outside
of Gi , c(k, G) 2: (mI - l)(k - 1 - md . Since w ~ Mj , in order to have
(ml - l)(k - 1 - ml) :s k - 4, we need ml = 1, which mean s Mj = {x*} ,
i.e. M' n M* = 0.

Let INc(yd nMI = m and INC(XI) nMI = m'. Then INC(X2) nMI 2:
k -1- m by the choice of Yl . Hence degc(x2) 2: (k - 2) + (k -1- m) . By
the choice of X2, cc(k ,v) 2: k - 2 - m for every v E M - NdxI) ' Taking
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into account that all vertices in M' U M - X 2 are adjacent to Xl or X2 , and
at least m' of them to both, we have

(3) c(k, G) 2: (k - 2 - m)(k - 2 - m') +m' - 1.

If Xl = YI , then m' = m and the minimum of (k - 2 - rnl + m - 1 over
int egers m , 1 ::; m ::; k - 2 is exactly k - 3. This contradicts the choice
of G. So, let Xl = Y2 . In th is case, YI is not adjacent to at least 3
vertices of degree k - 1 in M, and hence k - 2 - m 2: 2. Then (3) yields
c(k, G) 2: 2(k - 2 - m') + m' - 1 2: k - 3, again. This proves the theorem.

•
For k 2: 3, let VI,; denote th e family of all graphs G whose vertex set

consists of three non-empty pairwise disjoint sets A , B I , B2 with IBII +
IB21 = IAI+1 = k-l and two additional vertices a, b such th at A and B IUB2
are cliques in G not joined by any edge, Nc(a) = AUBl and Nc(b) = AUB2·
Obviously, such a graph G has 2k-l vertices, degc(x) = k-l for all verti ces
X -=I a,b, and c(k , G) = degc(a) + degc(b) - 2(k - 1) = k - 3. That G is
k-critical was observed by Dirac [13] and by Gallai [20] . Thus Dirac 's bound
is sharp for every G E VI,;.

In 1974, Dirac [14] extended Theorem 3 as follows.

Theorem 4 [14] . Let k 2: 4, and let G be a k-critical graph . If G is neither
the K/,; 1101' a member of DkJ then

{

2 if k = 4.
c(k , G) 2: '

k - 1 if k 2: 5.

Shorter proofs of this result were found by Mitch em [40] and by Deub el'

et . al. [10].

For k 2: 3, let FI,; denote the family of all graphs G whose vertex
set consists of four non-empty pairwise disjoint sets AI, A2, B I , B 2 , where
IBII + IB2 1 = IAII + IA2 1 = k -1 and IA2 1+ IB2 1 ::; k -1 , and one addi tional
vertex c such that A = Al U A2 and B = BI U B2 are cliques in G,
Nc( c) = Al UBI, and a vertex a E A is joined to a vertex b E B by
an edge in G if and only if a E A2 and b E B2. Every such graph G has
2k -1 vertices and independence numb er 2. Consequently, G is not (k -1)
colorable. Moreover, it is easy to check that th e deletion of any edge results
in a (k - 1)-colorable graph. Therefore , G is k-critical. Clearly, G is in V I,;
if and only if IA2 1 = 1 or IB21 = 1. Moreover , VI,; ~ Fi:
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Kostochka and Stiebitz [29] improved the bounds of Theorem 4 as fol
lows.

Theorem 5 [29]. Let k ;:::: 4 and G be a k-ctiiicel graph. If G is neither a
K k nor a m ember of :FJ,; , then c(k , G) ;:::: 2(k - 3).

The bounds of this result are tight not only for graphs on 2k - 1 vertices.
There ar e examples of k-critical graphs G with c: (k, G) = 2(k - 3) on
k +2, 2k - 2, 2k - 1, 2k and 3k - 2 vertices. However , for k ;:::: 4, it is poss ible
to show that c(k , n ) = 2(k - 3) if and only if n E {k + 2, 2k - 2, 2k , 3k - 2}.

The join of ver tex disjoint gra phs G, and G2, denoted by G1 V G2, is
the graph obtained from their union by adding edges joining each vertex of
G1 to each vertex of G2 . It is evident th at X(G1 V G2) = X(Gt} + X(G2) .

Moreover , G1 V G2 is crit ical if and only if both G1 and G2 are critical.

In one of his seminal pap ers from 1963, Gallai [21] proved that every
k-critical graph with at most 2k - 2 vertices is th e join of two other crit ical
graphs. This allowed him to find the minimum excess of k-crit ical graphs
with at most 2k - 1 ver tices and to describe th e ext remal cases.

Theorem 6 [21]. Let k , p be integers satisfying k ;:::: 4 and 2 ~ p ~ k - 1.
If G is a k-critical graph with k + p vertices, then c: (k, G) ;:::: p(k - p) - 2,
where equality holds if and only if G is the join of Kk-p-l and a graph in

'Dp+1.

Since Proposit ion 1 holds for list coloring, one might exp ect that for
every (k - I)-uniform list L, each L-cri ti cal gra ph G on n > k vertices
has etk, G) ;:::: k - 3. But Example 1 shows an L-critical graph H(k) with
c: (k, H(k)) = 2 for every k , On th e other hand , if we forbid Kk as a
subgraph, the sit uation changes .

Theorem 7 [31]. Let k ;:::: 4. Let G be a hypergraph on n verti ces not
containing K k ' and let L be a list for G with IL( v)1 = k - 1 for every
v E V(G). If G is L -critical, th en 21 E(G)I ;:::: (k-1)n+k-3 . In parti cular,
if G is a graph , then eik , G) ;:::: k - 3.

The above results det ermine the values of c(k , n) (and hence F(k , n))
for n ~ 2k and n = 3k - 2. Hajos const ruct ion with one of the graphs being
K k yields that

(4) c:(k , n + k - 1) ~ c(k, n ) + k - 3.
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Ore [42] suggested that (4) holds with equality for every n ;::: k + 2 (see
also [23, p. 99]). In view of the above results, that would mean that

(5) lim 2F(k, n) = k __2_.
n--+oo n k - 1

The existing lower bounds are far from (5) . The next section contains
more discussion on the topic.

4. GALLAI-TYPE BOUNDS

The results of the previous section give bounds on c(k,n) that do not depend
on n, while (5) (if true) would imply that c(k , n) grows asymptotically as
n(k - 3)j(k - 1). There is an attractive conjecture that for n ;::: 6,

(6) F( 4, n) ;::: l5;J.

The first lower bound on c(k,n) depending on n was the abovementioned

theorem of Gallai [20].

Theorem 8 [20]. Let G be a k-critical graph . Then every block in the
subgraph of G induced by vertices of degree k - 1 is a complete graph or
an odd cycle. Furthermore, if k 2 4 and G i= Kk, then

(7) ( k 3)2jE(G)12 k-1+ k2--3 IV(G)I·

In particular, if k ;::: 4 and n ;::: k +2, then

(8)
k-3

c(k,n);::: k 2 _ 3n.

For n = 2k this gives only c(k, n) ;::: 2 while Theorem 5 gives c(2n , n) ;:::
2(k - 3); but in the long run the bound of Theorem 5 is much better.

Remark 1. The proof of Theorem 8 works for list coloring as well, so
Inequality (7) holds also for every L-critical graph G i= Kk if L is a (k - 1)

uniform list for G and k ;::: 4.
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Theorem 8 yields F(4, n) ~ (~ + 2
1
6 ) n while the conjecture (6) is that

F(4,n) is roughly (~+ i)n.

Krivelevich [35, 36], using a result of Stiebitz [49] on the structure of
critical graphs, improved this bound as follows.

Theorem 9 [35, 36]. Suppose k ~ 4, and let G be a k-ciiticel graph on
more th an k vertices. Th en

(9) (
k - 3 )

2I E(G)1 ~ k-l+ k2-2k-l IV(G)I.

In particular, if k: ~ 4 and n ~ k + 2, th en

(10)
k-3

E(k,n) ~ k 2 h n .
o -2~-1

The improvement is better for sm all k. In particular , it gives F(4,n) ~
G+ 1~)n for n ~ 6. Since Stiebitz 's result [49] do es not hold for list
colorings, the proof of Theorem 9 does not generalize to list crit ical gr aphs.

Kostochka and Stiebitz [32] improved Krivelevich 's bound for k ~ 9.

Theorem 10 [32]. Suppose k ~ 6, and let G be a k-critical graph on more
than k vertices. Then

In particular, if k ~ 4 and n ~ k + 2, th en

(12)
2(k - 3)

E(k , n ) ~ 02 0 6 n .
k + 6k - 9 - k-2

The technique of [32] genera lizes to list colorings, with sufficiently weaker
bounds.

Theorem 11 [32]. Suppose k ~ 9, and let G be an L- critical graph , where
L is a (k - l j-uniform list for G. If G I:- KkJ then

(13) 21 E(G)I ~ (k -1 + 2 1~2(k - 3) 4 ) IV(G)I .
k + k - 4 - 5k-1O

There is st ill a gap of roughly tin between (12) and the known upper
bounds on E(k, n) . And the conject ure (6) is an attractive challenge.
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5. C RITICAL GRAPH S WITH NO LARG E CLIQUES

A. Kostochke

It is natural to ask whether the bound on th e number of edges in a k

crit ical gra ph with n vertices can be improved when we have addit iona l
restrictions on the structure of the graph. A possible direction is to ask
what is F(k , n , 8)- the minimum numb er of edges in a k-cri tical graph on
n vert ices without cliques of size 8 + 1.

Together with Theorem 8, Dirac [1 3] proved the bound

2F(k , n , 8) ~ (k - l )n + (k - 3) + (k - 8) if 8:S; k :s; n - 2.

Weinst ein [56] improved the bound to 2F(k , n , 8) ~ (k - l )n + (k - 3) +
2(k - 8), but the surplus over (k - l)n st ill does not depend on n .

Krivelevich [36] improved the bound as follows.

T he orem 12 [36]. L et k and 8 be integers satisfying 3 :s; 8 < k . Let G be
a k- critical graph not con taining a cliq ue of siz e 8 + 1. Then

1. if 8:S; 2k/3, then IE(G)I ~ (~ - 2(2k
k

_-8
2
_ 3)) IV(G)I;

(
k (k - 2)8 )

2. if 8 ~ 2k/3 , th en IE(G)I ~ "2 - 2(2k8 _ 2k _ 8 2) IV(G)I ;

Krivelevich [36] also gives a bit st ronger bounds on th e numb er of edges
for crit ical graphs without short odd cycles, and shows nice applications of
his bounds to other interest ing problems.

The case of fixed 8 and large k was considered by Kostochka and Stieb
itz [30] .

T heorem 13 [30]. For every fix ed 8 and sufEcien tly large k , every L -critical

graph G on n ver tices wi th out cliques of size 8 + 1 for any (k: - I )-uniform

list L has at leas t (k - o(k)) n edges. In ptu ticuuu, F( k , n , 8) ~ (k- o(k)) n .

T his bound is almost twice larger than the previously mentioned bounds
for large k. The bad side of the theorem is that it works only for really large
k, when Johannson 's t heorem on coloring of sparse graphs with given maxi
mum degree works , The good side of it is that t he theorem is asymptot ically
(in k) tight even for graphs of arbitrary girth. A way to const ruct k-cr it ical
graphs G of arbitrary girth with IE(G)1/IV (G)I < k - 1 was shown in [24].
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Abbott, Hare, and Zhou [3J const ructed k-critical graphs G with density

IE(G)I II V(G)I < k - 713 for girth 4 and density IE(G)I II V(G)I < k - 2
for girth 5. Kostochka and Nesetril [281 proved that there exist k-critical

graphs G with IE( G)II IV(G)I < k - 2 and arbit rarily large girt h .

But for small and moderate k, find ing least possible average degree of a
triangle-free k-critical graph is an interesting op en problem .

6. CRITICAL HYPERGRA PHS WITH FEW EDGES

Famous Local Lemma [18J implies that every k-critical r-uniform hyper
graph has maximum degree at least (k - 1)r-l I4r. One might expect that

the average degree of k-critical r -uniforrn hypergraphs is also always super

linear in k for fixed r . In fact , Erdos and Lovasz [18, p . 612J conject ured
this for simple hypergr aphs. But this is not the case.

Lovasz [38, 39], Woodall [53], Seymour [47], and Burstein [9J proved
that IE(H)I ~ IV(H)I for every 3-critical hypergraph H . Kostochka and
Nesetril [28J exte nded results of Burstein [9J and of Abbott , Hare, and
Zhou [1, 3J by proving t he followin g upper bound on the minimum of IE(H)I
in terms of IV(H)j .

Theorem 14 [28J. For each r ~ 3, k ~ 4, 9 ~ 3 and E > 0, there
exists an r -uniform k-ctiticel hypergraph H with girth at least 9 and

IE(H)I /IV(H)I < k - 2 + E.

And for large k , this is almost matched by the followin g lower bound
due to Kostochka and Stiebitz [30J .

Theorem 15 [30J. Let H be a liypergrepu with no edges of size 2. If
H is L-critical for a k-uniform list assignment L , then IE(H) II IV(H) I >
k(l- 3I ijk) .

The advantage of Theorem 15 is that it works for list coloring, and
not only for uniform hypergr aphs. The girth is also not an issue. The

disadvantage is that it provides no information when k < 27.

Note t hat all known examples of r-uniform k-cri ti cal hyp ergraph with

sm all average degree have many vertices. Thus it makes sense to as k about
m(r , k)-the minimum number of edges in an r- uniform not k- colorable
hypergmph (with no restriction on the number of vertices). A first thought
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here would be that the complete r-uniform hypergraph on 1 + k(r - 1)
vertices gives the answer. And for r = 2 (ordinary graphs) this is the case.
But already for r = 3 the Fano plane with 7 edges beats KJ with 10 edges.
Erdos and Hajnal [17] suggested that if k is very large in comparison with
r, then the complete hypergraph still is the best construction, but Alon [4]
disproved this conjecture.

Finding good estimates on m(r, k), and especially on m(r, 2), was one of
the favorite topics of Paul Erdos for a long time. He proved in [15, 16] the
first nontrivial bounds on m(r, 2):

The proofs of both upper and lower bounds are simple, so we present them

here.

Lemma 16. For every r 2 2 and k 2 2,

(14)

Proof. Suppose that an r-uniform hypergraph H = (V, E) has less than
kT - 1 edges. Consider a random coloring f of V with k colors such that
every vertex gets colored with color i with probability 11k for every 1 ::;
i ::; k independently of all other vertices. Then for every edge e E E, the
probability that e is monochromatic is k1

-
T and the expected number of

monochromatic edges is IElk 1- T < 1. Thus there exists a k-coloring of V
with no monochromatic edges.

To prove the upper bound, let m = l20r2kTlnkJ. Um 2 e~kT), then
the complete hypergraph K[+kT witnesses the bound, so we assume the op
posite. Consider a random hypergraph G(r, k,m) on a set V of kr2 labelled

vertices, where every of (k;2) r-subsets of V belongs to E( G(r,k,m)) with

(kr2)-1
probability p = O.5m T independently of all other r-subsets. Note that

Pr{IE(G(r,k,m)) I> m} < 1/2.

For a given We V with IWI = r 2 , the probability that W is independent

is at most

( r

2

) {(r2
) (kr

2
) -1} {O 5m}(1 - p) r ::; exp - r ·O.5m r ::; exp - ~kT .
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Therefore, since m > 19.5r 2kT In k, the probability that there is some
independent We V with IWI = r 2 is at most

(
kr

2
) exp { __m_} < (ekr2 exp { __19_.5_r

2_ln_k}

r 2 2ekT - 2e

~ exp {r2(1+ Ink) - 3.5r2lnk}.

The last expression is at most exp {-O.5r2 } < 1/4, and with positive
probability G(r, k, m) has at most m edges and has no independent set
of size r 2 , which means that it is not k-colorable. This proves the lemma .

•
Remark 2. The proof of the lower bound works for list colorings as well.

Beck [8] improved the lower bound for m(r, 2) to 2Tr1/ 3- c and Spencer
[48] presented a simpler proof of the Beck's bound based on random re
coloring. Recently, Radhakrishnan and Srinivasan [44] improved the lower
bound further .

Theorem 17 [44]. For every c < 1/.../2, there exists an ro = ro(c) such
that

m(r,2) 2': c2T Jr / In r.

for every r > ro.

Remark 3. In fact, the proof of Theorem 17 also can be adapted for list
coloring. So, the result holds for L-critical r-uniforrn hypergraphs for every
2-uniform list L.

Erdos [16] and Erdos and Lovasz [18] said that "perhaps, the order of
magnitude of m(r, 2) is r2T

" . The following result supports the insight of
Erdos.

Theorem 18 [25]. For every positive integer k, let c = c(k) = exp {-4k2 }

and rk = exp {2ck2
} . Let n be a positive integer such that k 2': 2n . Then

for every r > rk,
n

m(r, k) 2': ck" (..!...-) n+1 •
In r

Note that the proof of Theorem 18 does not work for list coloring.
Mubayi and Tetali [41] have some other results for fixed k and large r,

Recall that the ratio of the RHS of (14) to the LHS is 20r2k In k. When
k is larger than r, then the factor k In k becomes more important than r 2 .

Alon [4] improved both bounds in (14) for k large in comparison with r .
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Theorem 19 [4]. For every positive integers r 2 3 and k 2 2,

A . Kostochka

rn(r, k) :::; (k(r - 1) + 1) Inr l~J -1 < (k(r - 1) + 1)
r Inr - 1 In r r

and

rkl lr IJ r-1 1rn(r , k) > (1' - 1);: -1'- rv ;e.
Furthermore, if r ---7 00 and klr ---7 00, then

((
k(r -1) + 1) (3)T)rn(r,k) = 0 r r1.5lnr 4"

Note that when k is much larger than 1', the complete hypergraph
I<r+k(T-1) gives a better upper bound than (14), but Alon's bound is even
better. The proof of the lower bound is amazingly simple: he first colors
vertices of a hypergraph at random using most of the colors , but not all.
Then he uncolors a vertex in every monochromatic edge and spends a new
color for every r - 1 uncolored vertices. This proof does not work for list
coloring ; thus it would be interesting to find a reasonable lower bound for
the number of edges in L-critical r-uniform hypergraphs for arbitrary k
uniform lists L. Also, with respect to k, the upper and lower bounds are of
the same order, but with respect to r, the gap probably could be narrowed.

If a hypergraph H = (V, E) is not uniform but 2.:eEE 2- lel :::; 1/2, then a
random 2-coloring (as in the proof of Lemma 16) with positive probability is
proper. Erdos and Lovasz [18] conjectured that the minimum value ¢(n) of
2.: eEE 2- lel over non-2-colorable hypergraphs with the minimum size of an
edge equal to n tends to infinity as n tends to infinity. Beck [8J proved this
conjecture. The lower bound on ¢(n) in his proof tends to infinity rather
slowly. It would be interesting to estimate the rate of growth of ¢(n).

7. ON CRITICAL SIMPLE HYPERGRAPHS

A hypergraph is called simple (sometimes, linear) if no two distinct edges
share more than one vertex. Let rn*(r, k) denote the minimum number of
edges in an r-uniform not k-colorable simple hypergraph. Since Fano plane
is a simple hypergraph, rn*(3,2) = rn(3,2) = 7. But in general, rn*(r, k)
grows much faster than rn(r, k) . In their seminal paper [18], Erdos and
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Lovasz thoroughly studied m*(r,k). In fact , the celebrated Local Lemma
appeared in this pap er and its first applicat ion was to give lower bounds on
m*(r ,k).

Theorem 20 [18] . Let s ~ 2, r ~ 2, k ~ 2, n = 4 · 20s-l r3s-2k(s-l)(r+I) ,

m = 4 . 20sr3s-2ks(r+1) , d = 20r2kr- l . Then th ere ex ists an r-uniform

hypergraph H on kn vertices witll at most m edges and witi: degrees at
most d which do es no t con tain any circuit of length::; s and in whicu each
set of n vertices con tains an edge. In particular, H is not k- coloreble.

Since for a hyp ergraph being simple is the same as to have no 2-circuits,
pluging in s = 2 yields

(15)

and this is still the best known bound for r large in comparison with k.

Theorem 21 [18]. Let r ~ 2, k ~ 2. Then

k 2(r-2)
nl*( r ,k) ~ 2 '

16r(r - 1)

This bound can be improved by a factor of r /2 as follows. Theorem 5
in [18] says that every simple (k + I)- chromatic r-uniform hypergraph con
tains at least kr - 2 / 4(r - 1) vertices with degree at least kr- 2/ 4(r - 1). Then
simply the sum of degrees of vertices is used. But one can be less gener
ous . Let G be a (k+ I)-chromatic r-uniform hyp ergraph. Order the vertices
VI, v2 , . .. of G so t hat degc(vd ;::: degc(V2) ;::: . . . and delet e one by one
vertices in this order together with the incident edges. The degree of a ver
tex Vi at the moment of deletion is at least degc(Vi) - (i - l ), because G
is simple. Thus by the cited above T heorem 5 in [18], afte r deleting vertex
Vk" - 2/4(r - l ) we have delet ed at least

k
r-2

(k
r-2

) (V-2
) k

2r-4

---+ -1 + -2 + · · ·+1 >------".
4(r - 1) 4(r - 1) 4(r - 1) - 32(r _ 1)2

edges. This proves the bound.

For k = 2, t he lower bound can be improved further . Szabo [50] proved
th at for every E: > 0 there exists ro(E:) such that for r ~ rO(E:) every 3
chromatic r -uniform simple hypergraph has a vertex of degree at least 2r - :» .
Using this result one get s along the lines of the proof of Theorem 5 in [18]
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and of the previous paragraph that for every e > 0 there exists 1'o(c:) such
that

k2r - 2

rn*(1', 2) ~ 2
2(1' - 1) e

for r ~ 1'o(c:) .
For k very large in comparison with 1' , the bounds on rn*(1', k) were

improved and generalized to partial (r , l)-systems. A partial (r, l)-system is
an r-uniform hypergraph in which every set of l vertices is contained in at
most one edge. Let mir, k, l) be the minimum number of edges in an (r, l)
system that is not k-colorable. Thus, a simple r-uniform hypergraph is a
partial (1',2)-system and rn*(r ,k) = rn(r, k, 2).

The works [43 , 45, 22] on Steiner systems with small independence
number yield results for partial (1', i)-systems, and imply upper bounds
on rn*(1', k) that improve (15) for k very large in comparison with r . In
particular, Grable, Phelps and Rodl [22] constructed simple hypergraphs
(in fact , Steiner systems) with chromatic number at least k + 1 and at most
c4Tr2k2r-21n2 k edges for every r and infinitely many k. Thus, for such r
and k ,

(16)

Kostochka, Mubayi, Rodl, and Tetali [27] proved that for every r ~ 3,
l ~ 2,

31
(21' l )r=T _I

rn(1',k ,l):::; .( ) ( l )(e-1 ln 3k) /- I .
71'-1 ... 1'-+1

For fixed r and huge k, this bound was matched by the following lower
bound.

Theorem 22 [27]. Let r > I > 2 be fixed. Then there exists C depending

only on T and I such that

rn(T,k,I) ~ C(e-1lnk)l /(l -1).

The proof of Theorem 22 does not work for list coloring.
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8. VARIATIONS: PANCHROMATIC AND STRONG COLORINGS

191

One of reasonable generalizations of hypergraph coloring is the panchromatic
k-coloring-a k-coloring such that every edge meets every of k: colors. Then
the ordinary 2-coloring is a panchromatic 2-coloring. Let p(r, k) denote the
minimum number of edges in an r-uniform hypergraph not admitting any
panchromatic k-coloring. By above, p(r,2) = rn(r, 2).

Theorem 3 in the already mentioned paper [18] by Erdos and Lovasz
speaks on panchromatic colorings.

Theorem 23 [18]. If each edge of an r-uniform hypergraph H meets at
most kr - 1/ 4(k - 1r other edges, then H is panchromatically k-colorable.

This implies that

kr - 1 1
p(r, k) > 1 + 4(k _ lr > 1 + 4k erik.

Let N(k, r) denote the minimum number of vertices in a k-partite graph
with list chromatic number greater than r , Among other results, Erdos ,
Rubin , and Taylor [19] proved that N(2, r) is closely connected with m(r, 2):

m(r,2) ::; N(2, r) ::; 2m(r ,2).

An interesting feature of this results is that ordinary coloring of r
uniform hypergraphs relates to list coloring of bipartite graphs. This re
lation can be easily extended to panchromatic colorings with more colors:

Theorem 24 [26]. For every r ~ 2 and k ~ 2, p(r, k) ::; N(k , r) ::; k p(r, k) .

It follows from Alon's results in [5] that for some 0 < ci < C2 and every
r ~ 2 and k ~ 2,

exp {clr / k} ::; N(k ,r)::; kexp{c2r/k}.

Therefore, by Theorem 4 we get reasonable bounds on p(r , k) for fixed k
and large r :

exp{clr/k}/k ::;p(r,k)::; kexp{c2r/k}.

Recall that Theorem 23 also yields the lower bound on p(r,k) with Cl = 1/4
and thus itself implies the lower bound 1 + 41kerlk on N(k ,r ).
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One can also define panchromatic list colorings: If each vertex v of H
is assigned a list L(v) of k colors, then a panchromatic L-coloring of H is
a coloring in which each vertex is given a color from its own list and each
edge contains vertices with at least k different colours.

Kostochka and Woodall [33] obtained bounds on the minimum number
of edges in hypergraphs being edge critical with respect to panchromatic
colorings.

Theorem 25 [33]. Let k 2: 2 and let H = (V, E) be a hypergraph in which
every edge has at least k vertices, and every vertex is given a list L( v) of k
colors. If H is not panchromatically L-colorable, but after deleting any edge
becomes panchromatically L-colorable, then lEI 2: (IVI + k - 2) j(k - 1).
This bound is attained for every k 2: 2 for ordinary panchromatic colorings.

If the condition 'every edge has at least k vertices' is replaced with 'k
uniform ', then the inequality can be strengthened.

Theorem 26 [33]. Let k 2: 2 and let H = (V, E) be a k-uniform hypergraph
and every vertex is given a list L(v) of k colors. If H is not panchromat
ically L-colorable, but after deleting any edge becomes panchromatically
L-colorable , then lEI 2: IVI(k +2)jk2

.

This bound is unlikely to be sharp. The following result says that even if
panchromatically critical hypergraphs are not dense themselves, they must
contain dense subgraphs.

Theorem 27 [33]. Let k 2: 4, k i= 5, and let H = (V, E) be a k-uniform
hypergraph such that

Then H is panchromatically k-colorable. For k E {3, 5} , the same conclusion
follows if the final +1 in tile numerator is omitted.

This bound is sharp if k ~ {3, 5}. Note that a panchromatic k-coloring
of a k-uniform hypergraph is a strong coloring, i.e, the coloring in which
every two distinct vertices sharing an edge must have different colors. Every
strong coloring of a hypergraph H corresponds to a proper edge coloring
of the hypergraph H* dual to H. The problem of estimating the edge
chromatic number of uniform hypergraphs with a given maximum degree
and moderate codegree attracted a lot of attention after Rodl's solution
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of the Erdos-Hanan! Problem. A remarkable sequence of significant papers
due to Rodl, Frankl, Pippenger, Spencer, Kahn, Grable, Alon, Kim, Molloy,
Reed, and Vu was devoted to this topic. Theorem 27 can be interpreted as
a (somewhat unusual) sufficient condition for the edge-chromat ic number
of a hypergraph H to equal its trivial lower bound, the maximum vertex
degree .6. (H) .

Theorem 28 [33]. Let H be a liypeigtepti with maximum degree r ,
where r = 4 or r ~ 6. If every vertex subset S is incident witu at least
((r2 - 2r +2)ISI + r - 1) [r edges, then H is r-edge-colorable.

By the definition, the st rong chromat ic number of a hyp ergraph H =
(V, E) equals the chroma t ic number of its skeleton, S(H)-the graph on
V whose vertices are adjacent if and only if they sha re some edge in H .
Delet ion of an edge from it hyp ergraph is a rather rough act ion with resp ect
to strong coloring: deletion of an edge of size r may reduce th e st rong
chromat ic number by r - 1. A subt ler operation is splitting: if H = (V, E)
is a hypergraph, v Ee E E , and degH(v) ~ 2, t hen the (v , e)-splitting of H
is ob tain ed by repl acing the edge e by the edge e - v +v', where v' is a new
vertex. Then deleting an edge e can be performed as a sequ ence of (v,e)
splittings over the ver ti ces v Ee of degree at least two . The (v ,e)-split t ing
corresponds to cutting edge v in the du al hyp ergraph H* into two pieces,
one of which has size one.

Kostochka and Woodall [34] considered splitting-critical hyp ergraphs
with resp ect to strong coloring and strong list -coloring. It appears that
for k ~ r + 2, the sparsest k-splitting-critical r-uniform hyp ergraphs are
obtained from sp arse k-critical graphs by adding to every edge r - 2 new
vertices (of degree one in the resulting hyp ergraph). On the other hand, the
sparsest (r + 1)-splitting-critical r- uniforrn hyp ergraphs cannot be ob tained
this way. If k is large in comparison with r and the skeleton S(H) of a
k-splitting-crit ica l r-uniforrn hyp ergraph H has no large cliques, then th e
lower bound on th e number of edges in H can be improved.

Theorem 29 [34]. Let s ~ r be positive int egers and let k be sufficiently
large with respect to s. Let H be a list -k-splitting-critical r-uniform ilyper
graph witil respect to strong coloring whose skeleton S(H) does not contain
a complete subgrapil on s + 1 vertices. Th en

IE(H)I ~k(1-6(lnk)-1/3)(IV(H)I-(r-2)IE(H)I)·
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As with Theorem 13, the bad side of the last theorem is that the proof
works only for really large k, and the good side of it is that the bound is
asymptotically (in k) sharp even for hypergraphs of large girth.

9. CONCLUDING REMARKS

Certainly, the survey is not full. Essenti ally, it describes problems I am
inter ested in. The reader might look into [23, Chapter 5] and [46] for more
problems on color-critical graphs and hypergraphs. Maybe some proofs of
the results above can be simplified using recent impressive results of Vu (see,
e.g., [55]).

I thank Michael Stiebitz and Douglas Woodall for our discussions on
the topic and their helpful comments on a earlier version of this survey.
Some pieces of our joint works were used in this text. Thanks for helpful
comments are also due to Oleg Borodin and Bjarne Toft .
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PSEUDO- RANDOM GRAPHS

M. KRIVELEVICH* and B. SUDAKOVt

1. INTRODUCTION

Random graphs have proven to be one of the most important and fruit
ful concepts in modern Combinatorics and Theoretical Computer Science.
Besides being a fascinating study subject for their own sake, they serve
as essential instruments in proving an enormous number of combinatorial
statements, making their role quite hard to overestimate. Their tremen
dous success serves as a natural motivation for the following very general
and deep informal questions: what are the essential properties of random
graphs? How can one tell when a given graph behaves like a random graph?
How to create deterministically graphs that look random-like? This leads
us to a concept of pseudo-randoni graphs.

Speaking very informally, a pseudo-random graph G = (V, E) is a graph
that behaves like a truly random graph G( IV I, p) of the same edge density

p = IEI/ (I~I) . Although the last sentence gives some initial idea about
this concept , it is not very informative, as first of all it does not say
in which aspect the pseudo-random graph behavior is similar to that of
the corresponding random graph, and secondly it does not supply any
quantitative measure of this similarity. There are quite a few possible graph
parameters that can potentially serve for comparing pseudo-random and
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tResearch supported in part by NSF grants DMS-0355497, DMS-0106589, and by
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random graphs (and in fact quite a few of them are equivalent in certain,
very natural sense, as we will see later), but probably the most important
characteristics of a truly random graph is its edge distribution. We can
thus make a significant step forward and say that a pseudo-random graph
is a graph with edge distribution resembling the one of a truly random
graph with the same edge density. Still , the quantitative measure of this
resemblance remains to be introduced.

Although first examples and applications of pseudo-random graphs ap
peared very long time ago, it was Andrew Thomason who launched system
atic research on this subject with his two papers [79], [80J in the mid-eighties.
Thomason introduced the notion of jumbled graphs, enabling to measure in
quantitative terms the similarity between the edge distributions of pseudo
random and truly random graphs. He also supplied several examples of
pseudo-random graphs and discussed many of their properties. Thomason 's
papers undoubtedly defined directions of future research for many years.

Another cornerstone contribution belongs to Chung , Graham and Wil
son [26J who in 1989 showed that many properties of different nature are in
certain sense equivalent to the notion of pseudo-randomness, defined using
the edge distribution. This fundamental result opened many new horizons
by showing additional facets of pseudo-randomness.

Last years brought many new and striking results on pseudo-randomness
by various researchers, There are two clear trends in recent research on
pseudo-random graphs. The first is to apply very diverse methods from
different fields (algebraic, linear algebraic, combinatorial, probabilistic etc.)
to construct and study pseudo-random graphs. The second and equally en
couraging is to find applications, in many cases quite surprising, of pseudo
random graphs to problems in Graph Theory, Computer Science and other
disciplines. This mutually enriching interplay has greatly contributed to
significant progress in research on pseudo-randomness achieved lately.

The aim of this survey is to provide a systematic treatment of the
concept of pseudo-random graphs, probably the first since the two seminal
contributions of Thomason [79], [80] . Research in pseudo-random graphs
has developed tremendously since then , making it impossible to provide full
coverage of this subject in a single paper. We are thus forced to omit
quite a few directions, approaches, theorem proofs from our discussion.
Nevertheless we will attempt to provide the reader with a rather detailed
and illustrative account of the current state of research in pseudo-random
graphs.
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Although, as we will discuss later, there are several possible formal ap
proaches to pseudo-randomness, we will mostly emphasize the approach
based on graph eigenvalues. We find this approach, combining linear al
gebraic and combinatorial tools in a very elegant way, probably the most
appealing, convenient and yet quite powerful.

This survey is structured as follows. In the next section we will discuss
various formal definitions of the notion of pseudo-randomness, from the
so called jumbled graphs of Thomason to the (n,d, A)-graphs defined by
Alon, where pseudo-randomness is connected to the eigenvalue gap. We
then describe several known constructions of pseudo-random graphs, serving
both as illustrative examples for the notion of pseudo-randomness, and also
as test cases for many of the theorems to be presented afterwards. The
strength of every abstract concept is best tested by properties it enables to
derive. Pseudo-random graphs are certainly not an exception here, so in
Section 4 we discuss various properties of pseudo-random graphs. Section
5, the final section of the paper, is devoted to concluding remarks.

2. DEFINITIONS OF PSEUDO-RANDOM GRAPHS

Pseudo-random graphs are much more of a general concept describing some
graph theoretic phenomenon than of a rigid well defined notion - the fact
reflected already in the plural form of the title of this section! Here we
describe various formal approaches to the concept of pseudo-randomness.
We start with stating known facts on the edge distribution of random
graphs, that will serve later as a benchmark for all other definitions . Then
we discuss the notion of jumbled graphs introduced by Thomason in the mid
eighties. Then we pass on to the discussion of graph properties, equivalent
in a weak (qualitative) sense to the pseudo-random edge distribution, as
revealed by Chung, Graham and Wilson in [26] . Our next item in this
section is the definition of pseudo-randomness based on graph eigenvalues
- the approach most frequently used in this survey. Finally, we discuss the
related notion of strongly regular graphs, their eigenvalues and their relation
to pseudo-randomness.

2.1. Random graphs
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As we have already indicated in the Introduction, pseudo-random graphs
are modeled after truly random graphs, and therefore mastering the edge
distribution in random graphs can provide the most useful insight on what
can be expected from pseudo-random graphs. The aim of this subsection is
to state all necessary definitions and results on random graphs. We certainly
do not intend to be comprehensive here, instead referring the reader to two
monographs on random graphs [20], [49], devoted entirely to the subject
and presenting a very detailed picture of the current research in this area.

A random gmph G(n, p) is a probability space of all labeled graphs on
n vertices {I, ... , n}, where for each pair 1 ~ i < j ~ n, (i,j) is an edge
of G(n,p) with probability p = p(n), independently of any other edges.
Equivalently, the probability of a graph G = (V, E) with V = {I, .. . , n} in

G(n,p) is Pr[G] = pIE(Gll(1- p)G)-IE(Gl/. We will occasionally mention
also the probability space Gn,d, this is the probability space of all d-regular
graphs on n vertices endowed with the uniform measure, see the survey of
Wormald [83J for more background. We also say that a graph property A
holds almost surely, or a.s. for brevity, in G(n, p) (Gn,d) if the probability
that G(n, p) (Gn,d) has A tends to one as the number of vertices n tends to
infinity.

From our point of view the most important parameter of random graph
G(n , p) is its edge distribution. This characteristics can be easily handled
due to the fact that G(n, p) is a product probability space with independent
appearances of different edges. Below we cite known results on the edge
distribution in G(n,p) .

Theorem 2.1. Let p = p(n) ~ 0.99. Then almost surely G E G(n,p) is
such that if U is any set of u vertices, then

Theorem 2.2. Let p = p(n) ~ 0.99. Then almost surely G E G(n,p) is
such that if U, Ware disjoint sets of vertices satisfying u = IUI~ w = IWI,

then

The proof of the above two statements is rather straightforward. Notice
that both quantities e(U) and e(U,W) are binomially distributed random
variables with parameters G) and p, and uw and p, respectively. Applying
standard Chernoff-type estimates on the tails of the binomial distribution
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(see, e.g., Appendix A of [18]) and then the union bound, one gets the
desired inequalities.

It is very instructive to notice that we get less and less control over
the edge distribution as the set size becomes smaller. For example, in the
probability space G(n,1/2) every subset is expected to contain half of its
potential edges. While this is what happens almost surely for large enough
sets due to Theorem 2.1, there will be almost surely sets of size about 210g2 n
containing all possible edges (i.e. cliques), and there will be almost surely
sets of about the same size, containing no edges at all (i.e. independent
sets).

For future comparison we formulate the above two theorems in the
following unified form :

Corollary 2.3. Let p = p(n) :::; 0.99. Then almost surely in G(n,p)
for every two (not necessarily) disjoint subsets of vertices U, W C V of
cardinalities lUI = u, IWI = w, the number e(U, W) of edges of G with one
endpoint in U and the other one in W satisfies:

(1) Ie(U,W) - puwl = o( Juwnp).

(A notational agreement here and later in the paper: if an edge e belongs
to the intersection U n W , then e is counted twice in e(U, W) .)

Similar bounds for edge distribution hold also in the space Gn ,d of d
regular graphs, although they are significantly harder to derive there.

Inequality (1) provides us with a quantitative benchmark, according to
which we will later measure the uniformity of edge distribution in pseudo
random graphs on n vertices with edge density p = IE(G) 1/G) .

It is interesting to draw comparisons between research in random graphs
and in pseudo-random graphs. In general, many properties of random
graphs are much easier to study than the corresponding properties of
pseudo-random graphs, mainly due to the fact that along with the almost
uniform edge distribution described in Corollary 2.3, random graphs possess
as well many other nice features, first and foremost of them being that they
are in fact very simply defined product probability spaces. Certain graph
properties can be easily shown to hold almost surely in G(n, p) while they
are not necessarily valid in pseudo-random graphs of the same edge density.
We will see quite a few such examples in the next section. A general line
of research appears to be not to use pseudo-random methods to get new
results for random graphs, but rather to try to adapt techniques developed
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for random graphs to the case of pseudo-random graphs, or alternatively to
develop original techniques and methods.

2.2. Thomason's jumbled graphs

In two fundamental papers [79], [80] published in 1987 Andrew Thomason
introduced the first formal quantitative definition of pseudo-random graphs.
It appears quite safe to attribute the launch of the systematic study of
pseudo-randomness to Thomason's papers.

Thomason used the term "jumbled" graphs in his papers. A graph
G = (V, E) is said to be (p, a)-jumbled if p, a are real numbers satisfying
o< p < 1 ::; a if every subset of vertices U C V satisfies:

(2)

The parameter p can be thought of as the density of G, while a controls the
deviation from the ideal distribution. According to Thomason, the word
"jumbled" is intended to convey the fact that the edges are evenly spread
throughout the graph.

The motivation for the above definition can be clearly traced to the
attempt to compare the edge distribution in a graph G to that of a truly
random graph G(n,p) . Applying it indeed to G(n,p) and recalling (1) we
conclude that the random graph G(n,p) is almost surely o( JTiP)-jumbled.

Thomason's definition has several trivial yet very nice features. Observe
for example that if Gis (p, a)-jumbled then the complement Gis (1- p, a)
jumbled. Also, the definition is hereditary - if G is (p,a)-jumbled, then so
is every induced subgraph H of G.

Note that being (p, 8(np)) -jumbled for a graph G on n vertices and G)p
edges does not say too much about the edge distribution of G as the number
of edges in linear sized sets can deviate by a percentage from their expected
value. However as we shall see very soon if G is known to be (p,o(np)) 
jumbled, quite a lot can be said about its properties. Of course, the smaller
is the value of a, the more uniform or jumbled is the edge distribution of
G. A natural question is then how small can be the parameter a = a(n,p)
for a graph G = (V, E) on IVI = n vertices with edge density p = IEI/G)?
Erdos and Spencer proved in [35] that a satisfies a = n(JTi) for a constant

p; their method can be extended to show a = n(JTiP) for all values of
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p = p(n). We thus may think about (p,O(JriP))-jumbled graphs on n
vertices as in a sense best possible pseudo-random graphs.

Although the fact that G is (p, a)-jumbled carries in it a lot of diverse
information on the graph, it says almost nothing (directly at least) about
small subgraphs, i.e. those spanned by subsets U of size lUI = o(a/p) .
Therefore in principle a (p, a)-jumbled graph can have subsets of size lUI =
O(a/p) spanning by a constant factor less or more edges then predicted by
the uniform distribution. In many cases however quite a meaningful local
information (such as the presence of subgraphs of fixed size) can still be
salvaged from global considerations as we will see later.

Condition (2) has obviously a global nature as it applies to all subsets
of G, and there are exponentially many of them. Therefore the following
result of Thomason, providing a sufficient condition for pseudo-randomness
based on degrees and co-degrees only, carries a certain element of surprise
in it .

Theorem 2.4 [79]. Let G be a graph on n vertices with minimum degree
np. If no pair of vertices of G has more than npz + l common neighbors,
then G is (p , J(p + l)n )-jumbled.

The above theorem shows how the pseudo-randomness condition of (2)
can be ensured/checked by testing only a polynomial number of easily
accessible conditions. It is very useful for showing that specific constructions
are jumbled. Also, it can find algorithmic applications, for example, a very
similar approach has been used by Alon, Duke, Lefmann, Rodl and Yuster
in their Algorithmic Regularity Lemma [9] .

As observed by Thomason, the minimum degree condition of Theorem
2.4 can be dropped if we require that every pair of vertices has (1 +o(1)) npz
common neighbors. One cannot however weaken the conditions of the
theorem so as to only require that every edge is in at most np'2 + l triangles.

Another sufficient condition for pseudo-randomness, this time of global
nature, has also been provided in [79], [80]:

Theorem 2.5 [79]. Let G be a graph of order n , let 7]n be an integer
between 2 and n - 2, and let w > 1 be a real number. Suppose that eecl:
induced subgraph H of order nti satisfies le(H) - p('1z

n
) IS tnio: Then G is

(p, 7Jna/rt/(l - 7]) )-jumbled. Moreover G contains a subset U ~ V( G) of

size lUI ~ (1 - n(1~8~)2w)n such that the induced subgraph G[UJ is (p, wa)

jumbled.
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Thomason also describes in [79], [80] several properties of jumbled
graphs. We will not discuss these results in details here as we will mostly
adopt a different approach to pseudo-randomness. Occasionally however we
will compare some of later results to those obtained by Thomason.

2.3. Equivalent definitions of weak pseudo-randomness

Let us go back to the jumbledness condition (2) of Thomason. As we have
already noted it becomes non-trivial only when the error term in (2) is
o(n2p). Thus the latter condition can be considered as the weakest possible
condition for pseudo-randomness.

Guided by the above observation we now define the notion of weak
pseudo-randomness as follows. Let (Gn ) be a sequence of graphs, where
Gn has n vertices. Let also p = p(n) is a parameter (p(n) is a typical
density of graphs in the sequence). We say that the sequence (Gn ) is weakly
pseudo-random if the following condition holds:

(3) For all subsets U ~ V(Gn ) ,

For notational convenience we will frequently write G = Gn , tacitly assum
ing that (G) is in fact a sequence of graphs.

Notice that the error term in the above condition of weak pseudo
randomness does not depend on the size of the subset U. Therefore it
applies essentially only to subsets U of linear size, ignoring subsets U of size
o(n). Hence (3) is potentially much weaker than Thomason's jumbledness
condition (2).

Corollary 2.3 supplies us with the first example of weakly pseudo-random
graphs - a random graph G(n,p) is weakly pseudo-random as long as p(n)
satisfies np ----; 00. We can thus say that if a graph G on ti vertices is weakly
pseudo-random for a parameter p, then the edge distribution of G is close
to that of G(n,p).

In the previous subsection we have already seen examples of conditions
implying pseudo-randomness. In general one can expect that conditions of
various kinds that hold almost surely in G(n, p) may imply or be equivalent
to weak pseudo-randomness of graphs with edge density p.

Let us first consider the case of the constant edge density p. This case
has been treated extensively in the celebrated paper of Chung, Graham and
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Wilson from 1989 [26], where they formulated several equivalent conditions
for weak pseudo-randomness. In order to state their important result we
need to introduce some notation.

Let G = (V, E) be a graph on n vertices . For a graph L we denote by
Nc(L) the number of labeled induced copies of Lin G, and by Nc(L) the
number of labeled not necessarily induced copies of L in G. For a pair of
vertices x, y E V(G), we set s(x , y) to be the number of vertices of G joined
to x and y the same way: either to both or to none. Also, codeg(x, y) is
the number of common neighbors of x and y in G. Finally, we order the
eigenvalues Ai of the adjacency matrix A(G) so that IAII ~ IA21 ~ ... ~ JAnl.

Theorem 2.6 [26]. Let p E (0,1) be fixed. For any graph sequence (Gn )

the following properties are equivalent:

PI {l): For a fixed 1~ 4 for all graphs L on 1 vertices,

P2(t): Let C, denote the cycle of length t. Let t ~ 4 be even,

P3: e(Gn ) ~*+ 0(n2) and Al = (1 + 0(1)) tip, A2 = o(n) .

P4: For each subset U c V(G), e(U) = ~IUI2 + 0(n2).

P5 : For each subset U c V(G) with lUI = l~J, we have

e(U) = (~ + 0(1))n2•

P6: LX,YEV Is(x, y) - (p2 + (1 - p)2)nl = 0(n3).

P7: LX,YEV Icodeg(x, y) - p2nl = 0(n3).

Note that condition P4 of this remarkable theorem is in fact identical
to our condition (3) of weak pseudo-randomness. Thus according to the
theorem all conditions PI - P3, Ps - P7 are in fact equivalent to weak pseudo
randomness!

As noted by Chung et al. probably the most surprising fact (although
possibly less surprising for the reader in view of Theorem 2.4) is that
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apparently the weak condition P2(4) is strong enough to imply weak pseudo
randomness.

It is quite easy to add another condition to the equivalence list of the
above theorem: for all U,We V , e(U,W) = plUllWI + 0(n2).

A condition of a very different type, related to the celebrated Szemeredi
Regularity Lemma has been added to the above list by Simonovits and Sos
in [73]. They showed that if a graph G possesses a Szemeredi partition in
which almost all pairs have density p, then G is weakly pseudo-random,
and conversely if G is weakly pseudo-random then in every Szemeredi par
tition all pairs are regular with density p. An extensive background on
the Szemeredi Regularity Lemma, containing in particular the definitions
of the above used notions, can be found in a survey paper of Komlos and
Simonovits [55].

The reader may have gotten the feeling that basically every property
of random graphs G(n, p) ensures weak pseudo-randomness. This feeling
is quite misleading, and one should be careful while formulating properties
equivalent to pseudo-randomness. Here is an example provided by Chung
et al. Let G be a graph with vertex set {I, . .. , 4n} defined as follows: the
subgraph of G spanned by th e first 2n vertices is a complete bipartite graph
J(n ,n , the subgraph spanned by the last 2n vertices is the complement of
J(n ,n, and for every pair (i, j), 1 :s i :s 2n, 2n + 1 :s j :s 4n , the edge (i ,j) is
present in G independently with probability 0.5. Then G is almost surely
a graph on 4n vertices with edge density 0.5. One can verify that G has
properties PI (3) and P2(2t + 1) for every t 2 1, but is obviously very far
from being pseudo-random (contains a clique and an independent set of one
quarter of its size). Hence PI (3) and P2(2t + 1) are not pseudo-random
properties. This example shows also the real difference between even and
odd cycles in this context - recall that Property P2(2t) does imply pseudo
randomness.

A possible explanation to the above described somewhat disturbing phe
nomenon has been suggested by Simonovits and Sos in [74] . They noticed
that the above discussed prop erties are not hereditary in the sense that the
fact that the whole graph G possesses one of these properties does not im
ply that large induced subgraphs of G also have it . A property is called
hereditary in this context if it is assumed to hold for all sufficiently large
subgraphs F of our graph G with the same error term as for G. Simonovits
and Sos proved that adding this hereditary condition gives significant extra
strength to many properties making them pseudo-random.
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Theorem 2.7 [74]. Let L be a fixed graph on l vertices, and let p E (0,1)
be fixed. Let (Gn ) be a sequence of graphs . If for every induced subgrapll
H ~ G on h vertices,

then (Gn ) is weakly pseudo-random, i.e. prop erty P4 holds.

Two main distinctive features of the last result compared to Theorem
2.6 are: (a) P1(3) assumed hereditarily implies pseudo-r andomness; and (b)
requiring the right numb er of copies of a single graph L 0 11 l vertices is
enough, compared to Condition PI (I) required to hold for all graphs on I
vertices simultaneously.

Let us switch now to th e case of vanishing edge density pen) = 0(1).
This case has been t rea ted in two very recent papers of Chun g and Graham
[25] and of Kohayakawa, Rodl and Sissokho [50]. Here the picture becomes
significant ly more complicated compared to the dense case. In particular ,
th ere exist graphs with very balanced edge distribution not containing a
single copy of some fixed subgraphs (see th e Erdos-Renyi graph and th e
Alon graph in the next section (Examples 6, 9, resp.)) .

In an attempt to find prop erti es equivalent to weak pseudo-randomness
in th e sparse case, Chun g and Graham define th e following properties in
[25] :

CIRCUIT(t) : Th e numb er of closed walks wo, wI, . .. ,Wt = Wo of length
t in G is (1+ 0(1)) (np) t;

CYCLE(t): Th e numb er of labeled t-cyclcs in G is (1 + 0(1)) (np)t ;

EIG: The eigenvalues Ai, IA11 ~ IA21 ~ ... IAnl , of the adjace ncy matrix of
G satisfy:

Al = (l+o(l))np,

IAil = o(np) , i > 1.

DISC: For all X , Y C V(G) ,

Ie(X, Y) - plXllYl1 = 0(pn2).

(DISC here is in fact DICS(l) in [25]).
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Theorem 2.8 [25]. Let (G = Gn : n --t (0) be a sequence of graphs with
e(Gn ) = (1 + 0(1)) pC~). Then the following implications hold for all t ~ 1:

CIRCU IT(2t) :::} EIG :::} DISC.

Proof. To prove the first implication, let A be the adjacency matrix of
G, and consider the trace Tr(A2t ) . The (i, i)-entry of A2t is equal to the
number of closed walks of length 2t starting and ending at i , and hence
Tr(A2t) = (1 + 0(1)) (np)2t. On the other hand, since A is symmetric it
is similar to the diagonal matrix D = diag(>I1, A2,"" An), and therefore
Tr(A2t ) = L:;~1 Art. We obtain:

n

LArt = (1 + 0(1)) (np)2t .
i=1

Since the first eigenvalue of G is easily shown to be as large as its average
degree, it follows that Al ~ 21 E(G)III V(G)I = (1 + 0(1)) np. Combining
these two facts we derive that Al = (1 + 0(1)) np and IAil = o(np) as
required.

The second implication will be proven in the next subsection. _

Both reverse implications are false in general. To see why DISC =/? EIG
take a graph Go on n - 1 vertices with all degrees equal to (1 + 0(1)) nO.1

and having property DISC (see next section for examples of such graphs).
Now add to Go a vertex v* and connect it to any set of size nO.8 in Go , let G
be the obtained graph. Since G is obtained from Go by adding o( 1 E(Go)1 )

edges, G still satisfies DISC. On the other hand, G contains a star S of size
nO.8 with a center at v*, and hence Al (G) ~ Al (S) = VnO.8 - 1 » IE(G) IIn
(see, e.g. Chapter 11 of [64] for the relevant proofs). This solves an open
question from [25J.

The Erdos-Renyi graph from the next section is easily seen to satisfy
EIG, but fails to satisfy CIRCU IT(4) . Chung and Graham provide an
alternative example in [25J (Example 1).

The above discussion indicates that one probably needs to impose some
additional condition on the graph G to glue all these pieces together and to
make the above stated properties equivalent. One such condition has been
suggested by Chung and Graham who defined:

U (t): For some absolute constant c, all degrees in G satisfy: d(v) < cnp,
and for every pair of vertices x , y E G the number et-l (x , y) of walks of
length t - 1 from x to :y satisfies: et-l (x , JJ) ::; cnt - 2pt-l .
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Notice that U(t) can only hold for p > c'n-l+l/(t-l), where c' depends
on c. Also, every dense graph (p = 6(1)) satisfies U(t) .

As it turns out adding property U(t) makes all the above defined proper
ties equivalent and thus equivalent to the notion of weak pseudo-randomness
(that can be identified with property DISC):

Theorem 2.9 [25]. Suppose for some constant c > 0, p(n) > cn-l+l/(t-l) ,
wheret ~ 2. For any family of graphs Gn , IE(Gn)1 = (l+o(l))pC~) ,

satisfying U (t), the following properties are all equivalent: C IRCU IT(2t) ,
CYCLE(2t) , EIG and DISC.

Theorem 2.9 can be viewed as a sparse analog of Theorem 2.6 as it also
provides a list of conditions equivalent to weak pseudo-randomness.

Further properties implying or equivalent to pseudo-randomness, includ
ing local statistics conditions, are given in [50].

2.4. Eigenvalues and pseudo-random graphs

In this subsection we describe an approach to pseudo-randomness based on
graph eigenvalues - the approach most frequently used in this survey. Al
though the eigenvalue-based condition is not as general as the jumbledness
condition of Thomason or some other properties described in the previous
subsection, its power and convenience are so appealing that they certainly
constitute a good enough reason to prefer this approach. Below we first pro
vide a necessary background on graph spectra and then derive quantitative
estimates connecting the eigenvalue gap and edge distribution.

Recall that the adjacency matrix of a graph G = (V, E) with vertex set
V = {l, . . . , n } is an n-by-n matrix whose entry aij is 1 if (i ,j) E E(G) ,
and is °otherwise. Thus A is a 0, 1 symmetric matrix with zeroes along
the main diagonal, and we can apply the standard machinery of eigenvalues
and eigenvectors of real symmetric matrices. It follows that all eigenvalues
of A (usually also called the eigenvalues of the graph G itself) are real, and
we denote them by )'1 ~ A2 ~ ... ~ An. Also, there is an orthonormal
basis B = {Xl, . . . , xn } of the euclidean space H" composed of eigenvectors
of A: AXi = AiXi, X~Xi = 1, i = 1, . . . , n . The matrix A can be decomposed
then as: A = L:7=1 AiXiX~ - the so called spectral decomposition of A.

(Notice that the product x."C t , X. E R"; is an n-by-n matrix of rank 1; if
x ,y, z E R" then yt(xxt)z = (ytx)(xtz)). Every vector y E R" can be
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eas ily represented in basis B : y = 2:?=1 (yt .1:i )Xi' Therefore, for y , z E RIl
,

yt z = 2:7=1 (yt x i) (zt'xd and lIyl12= yty = 2:?=1 (ytxd2
.

All the above applies in fact to all real symmetric matrices. Since t he
adjacency matrix A of a gra ph G is a matrix wit h non-negati ve ent ries, one

can derive some important ext ra features of A , most notably the Perron

Frob enius Theorem, that reads in the graph context as follows: if G is

connected t hen the multiplicity of )'1 is one, all coordinates of the first
eigenvec tor X l can be ass umed to be strictly positive, and lAd ::; Al for all
i ~ 2. Thus, graph sp ectrum lies ent irely in the interval [-AI ,A1J .

For the most importan t spec ial case of regul ar graphs Perron-Frobenius
implies the following corolla ry:

Propositio n 2.10. Let G be a d-regulet grapil on n verti ces. Let Al ~

A2 ~ .. . ~ An be th e eigenvalues of G. Th en Al = d and -d ::; Ai ::; d for
all 1 ::; i ::; n. Moreover, if G is connec ted th en the first eigenvector X l is
prop ortional to tile all one vector (1, ... , 1)t E R" , and Ai < d for all i ~ 2.

To derive th e above claim from t he Perron-Frob enius Theorem obse rve
that e = (1, . . . , 1) is immedi ately seen to be an eigenvector of A(G) corre
spo nding to the eigenvalue d: Ae = de. The positivity of the coordinates of
e implies then that e is not orthogonal to the first eigenvector, and hence
is in fact proportion al to X l of A(G). Proposition 2.10 can be also proved
directly without relyin g on t he Perron-Frobenius T heorem.

We rem ark t hat An = -d is possibl e, in fact it holds if and only if t he
graph G is bipar tite.

All this background information , presented above in a somewhat con
densed form , can be found in many textbooks in Linear Algebra. Read ers
more inclined to consult combinato rial books can find it for example in a
recent monograph of Godsil and Royle on Algebraic Graph Theory [46J.

We now prove a well known theorem (see its vari ant , e.g., in Chapter 9,
[1 8]) bridgin g between graph spectra and edge distribution.

Theorem 2.11. Let G be a d-teguler graph on n vertices. Let d = Al ~

A2 ~ . . . An be the eigenvalues of G. Denote

A = max IAil.
2::;i::; n

T hen for every two subsets U, W c V,
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Proof. Let B = {Xl , ... , xn } be an orthonormal basis of R" composed from
eigenvectors of A: AXi = AiXi, 1 ::; i ::; ti , We represent A = Er=1 Aixixt.
Denote

n

E = L Aixixt ,
i=2

then A = Al +E.

Let u = lUI , w = IWI be the cardinalities of U, W, respectively. We
denote the characteristic vector of U by Xu ERn , i.e, Xu(i) = 1 if i E U,
and Xu(i) = 0 otherwise. Similarly, let XW E R" be the characteristic
vector of W. We represent Xu, XW according to B:

n

Xu = L ();iXi,
i=1

n

xw = Lf3iXi'
i=1

n

L ();T = II Xu 11
2

= H,

i=1
n

Lf31 = IIxwl1 2
= w.

i=1

It follows easily from the definitions of A, Xu and XW that the product
X~Axw counts exactly the number of edges of G with one endpoint in U
and the other one in W , i.e.

Now we estimate the last two summands separately, the first of them will
be the main term for e(U, W) , the second one will be the error term.
Substituting the expressions for Xu, XW and recalling the orthonormality
of B , we get:

n n

= L L ();i Alf3j(xtxd(xixj) = ();1f31 Al·
i=1 j=1

Similarly,
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Recall now that G is d-regular. Then according to Proposition 2.10,
Al = d and Xl = )n(l , .. . ,n'. We thus get : Ql = Xtxl = u] JTi and

f3l = XtyXl = wlJTi· Hence it follows from (5) that XtAlXW = duwln .
Now we estimate the absolute value of the error term xtEXw. Recalling

(6), the definition of Aand the obtained values of Ql, f3l, we derive, applying
Cauchy-Schwartz:

The theorem follows . •

The above proof can be extended to the irregular (general) case. Since
the obtained quantitative bounds on edge distribution turn out to be some
what cumbersome, we will just indicate how they can be obtained. Let
G = (V,E) be a graph on n vertices with average degree d. Assume that
the eigenvalues of G satisfy .\ < d, with Aas defined in the theorem. Denote

K=L(d(v)-d)2.
vEV

The parameter K is a measure of irregularity of G. Clearly K = 0 if and
only if G is d-regular. Let e = )n (1, . .. , 1)t . We represent e in the basis

B = {Xl, . .. , xn } of the eigenvectors of A(G):

n

e = L liXi, Ii = et xi ,
i=l

n

L If = lIel1 2 = l.
i=l

Denote z = )n (d(vd - d, . . . ,d(vn ) - d) t, then IIzl1 2 = Kin . Notice

that Ae = )n(d(vd, . . . ,d(vn)) t = de+z, and therefore z = Ae-de =

2::~~1 li(.\i - d)Xi. This implies:

n n
K 2" 2 2" 2 2- = IIzll = L Ii (Ai - d) ~ L Ii (Ai - d)
n i=l i=2

n

~ (d - A)2 L If.
i=2
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Hence 2:~2 "/1 ::; n(d~>.)2 ' It follows that If = 1 - 2:~2 "/1 ~ 1 - n(d~>.)2
and

> 2>1_ K
"/1 - "/1 - n(d _ A)2 '

Now we estimate the distance between the vectors e and Xl and show that
they are close given that the parameter K is small.

lie - xtlI 2 = (e - xd(e - xd = ete + xix1 - 2etx1 = 1+1- 2"/1 = 2 - 2"/1

2K
< 2'-n(d-A)

We now return to expressions (5) and (6) from the proof of Theorem
2.11. In order to estimate the main term XtA1XW , we bound the coefficients
aI, (31 and Al as follows:

_ t t t( ) U t( )
a1 - XuX l = Xue +Xu Xl - e = vn +Xu Xl - e ,

and therefore

(7)

In a similar way one gets :

(8)

Finally, to estimate from above the absolute value of the difference between
Al and d we argue as follows:

and therefore

(9)
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Summarizing, we see from (7), (8) and (9) that the main term in the product
XtAIXW is equal to d~w, just as in the regular case, and the error term is
governed by the parameter K.

In order to estimate the error term xtExw we use (6) to get :

n n

~ A LcrlL!J? = Allxull IIxwil = Ay'UW. •
i=1 i=1

Applying the above developed techniques we can prove now the second
implication of Theorem 2.8. Let us prove first that EIG implies K = 0(nd2) ,
where d = (1 + 0(1))np is as before the average degree of G. Indeed , for
every vector vERn we have IIAvl1 ~ AIilvll, and therefore

AIn = AIete ~ (Ae)t(Ae) = L d2(v).
vEV

Hence from EIG we get: LVEVd2(v) ~ (1 +0(1))nd2. As Lvd(v) = nd,
it follows that:

K = L (d(v) - d) 2 = L d2(v) - 2dL d(v) + nd2

vEV vEV vEV

= (1+ 0(1))nd2 - 2nd2+ nd2 = 0(nd2),

as promised. Substituting this into estimates (7), (8), (9) and using A = o(d)
of EIG we get:

crl = :n + o( JU),

!Jl=;+O(JW) ,

Al = (1 + 0(1))d,

and therefore
t duw )

XUAIXW = - + o(dn .
n

Also, according to EIG, A = o(d), which implies:

xtEXw = o(dy'UW) = o(dn) ,

and the claim follows . •
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Theorem 2.11 is a truly remarkable result. Not only it connects between
two seemingly unrelated graph characteristics - edge distribution and spec
trum, it also provides a very good quantitative handle for the uniformity of
edge distribution, based on easily computable, both theoretically and prac
tically, graph parameters - graph eigenvalues. According to the bound (4),
a polynomial number of parameters can control quite well the number of
edges in exponentially many subsets of vertices.

The parameter A in the formulation of Theorem 2.11 is usually called
the second eigenvalue of the d-regular graph G (the first and the trivial one
being Al = d). There is certain inaccuracy though in this term, as in fact
A = max {A2, -An} . Later we will call, following Alon, a d-regular graph G
on n vertices in which all eigenvalues, but the first one, are at most A in
their absolute values, an (n, d, A)-graph.

Comparing (4) with the definition of jumbled graphs by Thomason we
see that an (n, d, A)-graph G is (d/ n, A)-jumbled. Hence the parameter A
(or in other words, the so called spectral gap - the difference between d and
A) is responsible for pseudo-random properties of such a graph. The smaller
the value of A compared to d, the more close is the edge distribution of G to
the ideal uniform distribution. A natural question is then: how small can
be A? It is easy to see that as long as d ::; (1 - E)n, A = n(Vd). Indeed ,

the trace of A2 satisfies:

n

nd = 21 E(G)I = Tr(A2) = .L A[ ~ d2+ (n -1)A2 ~ (1- E)nd+ (n -1)A2,
i=1

and ). = n(V"d) as claimed. More accurate bounds are known for smaller
values of d (see, e.g. [69]) . Based on these estimates we can say that an
(n,d,A)-graph G, for which A= 8(V"d), is a very good pseudo-random
graph. We will see several examples of such graphs in the next section.

2.5. Strongly regular graphs

A strongly regular graph srg(n, d,1], fJ) is a d-regular graph on n vertices in
which every pair of adjacent vertices has exactly 1] common neighbors and
every pair of non-adjacent vertices has exactly fJ common neighbors. (We
changed the very standard notation in the above definition so as to avoid
interference with other notational conventions throughout this paper and
to make it more coherent, usually the parameters are denoted (v,k, >., fJ)) .
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Two simple examples of strongly regular grap h are the pentagon Cs that
has parameters (5, 2,0, 1), and the Petersen graph whose parameters are
(10,3 ,0 , 1). Strongly regular graphs were introduced by Bose in 1963 [2 1]
who also pointed out their t ight connect ions wit h finite geomet ries. As
follows from the definition, st rongly regular graphs are highly regular struc
tures , and one can safely predict that algebra ic methods are extremely use
ful in their st udy. We do not intend to provide any syste matic coverage
of this fascinat ing concept here, addressing the reader to the vast litera
ture on the subject instead (see, e.g., [24]) . Our aim here is to calculate
the eigenvalues of st rongly regular graphs and then to connect them with
pseudo-randomness, relying on results from th e previous subsect ion.

Proposition 2.12. Let G be a connected strongly regular graph with para
meters (n , d, 7], J.l) . Th en the eigenvalues of G are: Al = d with multiplicity
S l = 1,

and

with multiplicit ies

and

respectively.

Proof. Let A be t he adjacency matrix of A. By the definition of A and th e
fact that A is symmetri c with zeroes on the main diagonal, the (i ,j)-entr y
of the square A2 counts the number of common neighbors of Vi and "i in G
if i i= j , and is equal to the degree d(vd in case i = j . T he statement that
G is srg( n ,d,7], J.l ) is equivalent then to:

(10) AJ = dJ,

where J is the n-by-n all-one matri x and I is the n-by-n identi ty matrix.
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Since G is d-regular and connected, we obtain from the Perron-Frobenius
Theorem that }'1 = d is an eigenvalue of G with multiplicity 1 and with
e = (1, ... , 1)t as the corresponding eigenvector. Let A =I- d be another
eigenvalue of G, and let x E RH be a corresponding eigenvector. Then x is
orthogonal to e, and therefore Jx = O. Applying both sides of the second
identity in (10) to x we get the equation: A2X = (d- J-l)x+ (1]- J-l)AX, which
results in the following quadratic equation for A:

This equation has two solutions A2 and A3 as defined in the proposition
formulation. If we denote by 82 and 83 the respective multiplicities of A2
and A3 as eigenvalues of A, we get :

1 + 82 + 83 = n,

Solving the above system of linear equations for 82 and 83 we obtain the
assertion of the proposition. _

Using the bound (4) we can derive from the above proposition that if
the parameters of a strongly regular graph G satisfy 1] :::::: J-l then G has a
large eigenvalue gap and is therefore a good pseudo-random graph. We will
exhibit several examples of such graphs in the next section.

3. EXAMPLES

Here we present some examples of pseudo-random graphs. Many of them
are well known and already appeared, e.g., in [79] and [80], but there also
some which have been discovered only recently. Since in the rest of the
paper we will mostly discuss properties of (n,d, A)-graphs, in our examples
we emphasize the spectral properties of the constructed graphs. We will
also use most of these constructions later to illustrate particular points and
to test the strength of the theorems.

Random graphs.

1. Let G = G(n, p) be a random graph with edge probability p. If p
satisfies pn/ log n --; 00 and (1- p)n log n --; 00, then almost surely all
the degrees of G are equal to (1 +0(1)) np. Moreover it was proved
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by Fiiredi and Komlos [44] that the largest eigenvalue of G is a .s.
(1 +0(1)) np and that A(G) :::; (2+0(1)) Vp(l - p)n. They stated this

result only for constant p but their proof shows that A(G) :::; 0 ( yfiiP)
also when p ~ polylognln.

2. For a positive integer-valued function d = d(n) we define the model
Gn,d of random regular graphs consisting of all regular graphs on n
vertices of degree d with the uniform probability distribution. This
definition of a random regular graph is conceptually simple, but it is
not easy to use. Fortunately, for small d there is an efficient way to
generate Gn,d which is useful for theoretical studies. This is the so
called configuration model. For more details about this model, and
random regular graphs in general we refer the interested reader to two
excellent monographs [20] and [49] , or to a survey [83] . As it turns
out, sparse random regular graphs have quite different properties from
those of the binomial random graph G(n,p),p = din . For example ,
they are almost surely connected. The spectrum of Gn,1i for a fixed d
was studied in [38] by Friedman, Kahn and Szemeredi, Friedman [39]
proved that for constant d the second largest eigenvalue of a random
d-regular graph is A = (1 + 0(1))2JCf=l. The approach of Kahn and

Szemeredi gives only o(Jd) bound on A but continues to work also

when d is small power of n. The case d » n1/2 was recently studied
by Krivelevich, Sudakov, Vu and Wormald [61]. They proved that in
this case for any two vertices u, v E Gn,d almost surely

where C is some constant and codeg(u , v) is the number of common
neighbors of u, v . Moreover if d ~ n] log n, then C can be defined to be
zero . Using this it is easy to show that for d » n 1/2, the second largest
eigenvalue of a random d-regular graph is o(d). The true bound for the
second largest eigenvalue of Gn,d should be probably (1+0(1))2~
for all values of d, but we are still far from proving it .

Strongly regular graphs.

3. Let q = pO be a prime power which is congruent to 1 modulo 4 so
that -1 is a square in the finite field GF(q). Let Pq be the graph
whose vertices are all elements of GF(q) and two vertices are adjacent
if and only if their difference is a quadratic residue in GF(q). This
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graph is usually called the Paley graph. It is easy to see that Pq is
(q - 1)/ 2-regular. In addit ion one can easily compute the number of
common neighbors of two vert ices in Pq . Let X be th e quadratic residue
character on GF(q) , i.e., X(O) = 0, X(:r:) = 1 if x =I- 0 and is a square
in GF(q) and X(x) = -1 ot herwise. By definition, Lxx( x) = 0 and
the number of common neighbors of two vert ices a and b equals

q - 2 x(a - b) 1 L
= - - + - x(a - x )x(b - .1: ).

4 2 4
x ,pa.b

Using th at for x =I- b, X(b-x) = X( (b-x)- l ), the last term can be
rewritten as

"" 1 "" (a- x) "" ( a- b)L x (a- .1: )x ( (b- x )-) = L X b - .1: =L X l+
b_ x

x ,pa,b x ,pa,b x ,pa,b

= L X(x) = - 1.
x ,pO. 1

T hus the number of common neighbors of a and b is (q - 3)/4 - x(a
b)/2. This equals (q - 5)/4 if a and b are adjacent and (q - 1)/ 4
ot herwise. T his implies that the Paley graph is a st rongly regular
graph with parameters (q, (q- 1)/2 , (q-5) /4 , (q- 1)/4) and therefore

its second largest eigenvalue equals ( -fij + 1) /2 .

4. For any odd integer k let H/,; denote the grap h whose n/,; = 2/,;-1 - 1
vertices are all binary vectors of length k with an odd number of ones
except the all one vecto r, in which two.distinct vertices are adjace nt
iff the inner produ ct of the correspond ing vectors is 1 modulo 2.
Using elementary linear algebra it is easy to check that this graph
is (2/,; -2 - 2)-regular . Also every two nonadjacent vert ices vertices in
it have 2/,; -3 - 1 common neighbors and every two adjace nt vertices
vert ices have 2/,;-3 - 3 common neighbors. Thus H/,; is a strongly
regular graph with parameters (2/,;-1- 1, 2/,;-2 - 2, 2/,; -3 - 3, 2/,; -3 - 1)

/,;- 3
and with the second largest eigenvalue )"(H/,;) = 1 + 2- 2- .

5. Let q be a pr ime power an let V(G) be the elements of the two
dimensional vector space over GF(q) , so G has q2 vertices. Par ti t ion
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the q + 1 lines through the origin of the space into two sets P and N ,
where IFI = k , Two vertices x and y of the graph G are adjacent if
:1: - y is parallel to a line in P. This example is due to Delsarte and
Goethals and to Turyn (see [72]). It is easy to check that G is strongly
regular with parameters (k(q - 1), (k - l)(k - 2) + q - 2, k(k - 1)) .
Therefore its eigenvalues, besides the trivial one are -k and q - k.
Thus if k is sufficiently large we obtain that G is d = k(q - 1)-regular
graph whose second largest eigenvalue is much smaller than d.

Graphs arising from finite geometries.

6. For any integer t ~ 2 and for any power q = i~1; of prime P let PG(q , t)
denote the projective geometry of dimension t over the finite field
GF(q). The interesting case for our purposes here is that of large q
and fixed t. The vertices of PG(q, t) correspond to the equivalence
classes of the set of all non-zero vectors x = (xo, . . . , Xt) of length t +1
over GF(q), where two vectors are equivalent if one is a multiple of
the other by an element of the field. Let G denote the graph whose
vertices are the points of PG (q , t) and two (not necessarily distinct)
vertices x and yare adjacent if and only if XoYo + ... + XtYt = O.
This construction is well known. In particular, in case t = 2 this
graph is often called the Erdos-Renyi graph and it contains no cycles
of length 4. It is easy to see that the number of vertices of G is
nq,t = (qt+l -l)/(q - 1) = (1 + o(l))qt and that it is dq,t-regular
for dq,t = (qt - l)/(q -1) = (1 + o(l))qt-l , where 0(1) tends to zero
as q tends to infinity. It is easy to see that the number of vertices of
G with loops is bounded by 2(ql. - l)/(q - 1) = (2+ 0(1))«:', since
for every possible value of X o, ... , Xt-l we have at most two possible
choices of Xt. Actually using more complicated computation, which
we omit, one can determine the exact number of vertices with loops .
The eigenvalues of G are easy to compute (see [11]). Indeed, let A
be the adjacency matrix of G. Then, by the properties of PG(q, t),
A2 = AAT = J-IJ + (dq,t - J-I)I, where p. = (qt-l - 1) /(q - 1), J is
the all one matrix and I is the identity matrix, both of size nq,t x nq,t·
Therefore the largest eigenvalue of A is dq,t and the absolute value of
all other eigenvalues is )dq,t - J-I = q(t-l) /2 .

7. The generalized polygons are incidence structures consisting of points
P and lines L. For our purposes we restrict our attention to those in
which every point is incident to q + 1 lines and every line is incident
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to q+ 1 points. A generalized m-gon defines a bipartite graph G with
bipartition (P, £.) that satisfies the following conditions. The diameter
of G is m and for every vertex v E G there is a vertex u E G such
that the shortest path from u to v has length m. Also for every r < m
and for every two vertices u, v at distance r there exists a unique path
of length r connecting them . This immediately implies that every
cycle in G has length at least 2m. For q ~ 2, it was proved by Feit
and Higman [36] that (q + 1)-regular generalized m-gons exist only
for in = 3,4,6. A polar'ity of G is a bijection n : P U L --t P U £.
such that n(P) = L, n(£.) = P and n2 is the identity map. Also for
every pEP, l E L, n(p) is adjacent to n(l) if and only if p and l
are adjacent. Given n we define a polarity graph G1f to be the graph
whose vertices are point in P and two (not necessarily distinct) points
Pl,])2 are adjacent iff PI was adjacent to n(P2) in G. Some properties
of G1f can be easily deduced from the corresponding properties of G.
In particular, G1f is (q+l l-regular and also contains no even cycles of
length less than 2m.

For every q which is an odd power of 2, the incidence graph of the
generalized 4-gon has a polarity. The corresponding polarity graph
is a (q + I)-regular graph with q3 + q2 + q + 1 vertices. See [23],
[62] for more details. This graph contains no cycle of length 6 and
it is not difficult to compute its eigenvalues (they can be derived, for
example, from the eigenvalues of the corresponding bipartite incidence
graph, given in [78]) . Indeed, all the eigenvalues, besides the trivial
one (which is q + 1) are either 0 or J2ii or -.j2(j. Similarly, for every
q which is an odd power of 3, the incidence graph of the generalized
6-gon has a polarity. The corresponding polarity graph is a (q + 1)
regular graph with ({> + q4 + ... + 'I + 1 vertices (see again [23], [62]).
This graph contains no cycle of length 10 and its eigenvalues can be
derived using the same technique as in case of the 4-gon. All these
eigenvalues, besides the trivial one are either J3i1 or - J3i1 or Jri or
-Jri.

Cayley graphs.

8. Let G be a finite group and let S be a set of non-identity elements of
G such that S = S-1, i.e., for every 8 E S, 8- 1 also belongs to S. The
Cayley graph I'(G, S) of this group with respect to the generating set
S is the graph whose set of vertices is G and where two vertices 9 and
g' are adjacent if and only if g'g-1 E S. Clearly, r(G, S) is lSI-regular
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and it is connected iff S is a set of generators of the group. If G is
abelian then the eigenvalues of the Cayley graph can be computed in
terms of the characters of G. Indeed, let X : G --t C be a character
of G and let A be the adjacency matrix of I'(G, S) whose rows and
columns are indexed by the elements of G. Consider the vector v
defined by v(g) = X(g) . Then it is easy to check that Av = O'V

with a = LsES X(s). In addition all eigenvalues can be obtained in
this way, since every abelian group has exactly IGI different characters
which are orthogonal to each other. Using this fact, one can often give
estimates on the eigenvalues of I'(G, S) for abelian groups.

One example of a Cayley graph that has already been described earlier
is Fq. In that case the group is the additive group of the finite field
GF(q) and S is the set of all quadratic residues modulo q. Next we
present a slightly more general construction. Let q = 2kT + 1 be a
prime power and let r be a Cayley graph whose group is the additive
group of GF(q) and whose generating set is S = {:1; = yk I for some
y E GF(q)}. By definition, r is (q - l)jk-regular. On the other
hand, this graph is not strongly regular unless k = 2, when it is the
Paley graph. Let X be a nontrivial additive character of GF(q) and
consider the Gauss sum ~YEGF(!J) X(]/)· Using the classical bound

IL.YEGF(q) X(yk) I~ (k_1)ql /2 (see e.g. [G3]) and the above connection
between characters and eigenvalues we can conclude that the second
largest eigenvalue of our graph r is bounded by O(ql/2).

9. Next we present a surprising construction obtained by Alon [3] of a
very dense pseudo-random graph that on the other hand is triangle
free. For a positive integer k, consider the finite field GF(2k

) , whose
elements are represented by binary vectors of length k. If a, b, c are
three such vectors, denote by (a, b,c) the binary vector of length 3k
whose coordinates are those of a, followed by coordinates of band
then c. Suppose that k is not divisible by 3. Let Wo be the set
of all nonzero elements 0' E GF(2k ) so that the leftmost bit in the
binary representation of 0'7 is 0, and let WI be the set of all nonzero
elements a E GF(2k ) for which the leftmost bit of a 7 is 1. Since 3
does not divide k , 7 does not divide 2k -1 and hence IWol = 2k

-
I -1

and IvVII = 2k - I, as when a ranges over all nonzero elements of
the field so does a 7 . Let Gn be the graph whose vertices are all
n = 23k binary vectors of length 3k, where two vectors v and v' are
adjacent if and only if there exist 1110 E Wo and WI E WI so that
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v - v' = (Wo ,wg ,w8 )+ (WI ,wy, wf), where here powers are computed
in th e field GF(2k ) and the addition is addition modulo 2. Note th at
Gn is the Cayley graph of the addit ive group Z~k with respect to the
generating set 8 = UO +UI, where Uo = { (wo , w~ , wg ) IWo E Wo} and
UI is defined similarly. A well known fact from Coding Theory (see
e.g., [66]) , which can be proved using the Vandermonde determinant , is
th at every set of six distinct vectors in UoU UI is linearly independent
over GF (2). In particular all the vectors in Uo + UI are distinct ,
8 = IUollUII and hence Gn is 181= 2k- I (2k- I - I )-regular. Th e
statement that Gn is t riangle free is clearly equivalent to the fact that
the sum modulo 2 of any set of 3 nonzero elements of 8 is not a zero
vector . Let 'Uo+ 'ill , 'U~ +u'l and 'lL~ + 'u'{ be three distin ct element of 8 ,
where 'Uo,'U~ , 'u~ E Uo and UI ,U~,'U~ E UI . By the above discussion , if
the sum of th ese six vectors is zero, th en every vector must appear an
even numb er of times in the sequence (uo, u~ , 'U~, 'U1, u'l, '/l,'{) . However,
since Uo and Ul are disjoint , this is clearly impossible. Finally, as we
already mentioned, the eigenvalues of Gn can be computed in terms of
charac ters of Z~k. Using this fact together with the Carlitz-Uchiyama
bound on th e charac ters of Z~k it was proved in [3] th at the second
eigenvalue of Gn is bounded by >. ::; 9 . 2k + 3 . 2k / 2 + 1/4 .

10. The construction above can be exte nded in the obvious way as men
t ioned in [10]. Let h ~ 1 and suppose that k is an integer such that
2k - 1 is not divisible by 4h + 3. Let Wo be the set of all nonzero ele
ments a E GF(2k ) so that the leftmost bit in the binary represent ation
of a4h+3 is 0, and let WI be the set of all nonzero elements a E GF(2k )

for which the leftm ost bit of a4h+ 3 is 1. Since 4h + 3 does not divide
2k - 1 we have th at IWol = 2k- I_I and /WII = 2k - I , as when a ranges
over all nonzero elements of th e field so does a4h+3 . Define G to be the
Cayley graph of th e additive group Z~2h+l )k with respect to the gener
ating set 8 = Uo + UI , where Uo = {(wo.w~, ... ,wci h+1

) I Wo E Wo}
and U1 is defined similarly. Clearly, G is a 2k- 1(2k- l - I)-regular
graph on 2(2h+I )k verti ces. Using methods from [3], one can show

. -that G contams no odd cycle of length j; 2h + 1 and th at th e second
eigenvalue of G is bounded by O(2k ) .

11. Now we describ e the celebrated expander graphs const ructed by
Lubotzky, Phillips and Sarn ak [65] and independently by Margulis
[68]. Let p and q be unequal primes, both congruent to 1 modul o
4 and such that p is a quadr atic residue modulo q. As usual de-
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note by PSL(2, q) th e factor group of the group of two by two ma
trices over GF(q) with determinant 1 modulo its norm al subgroup

.. f I I . (1 0) (-1 0)consist ing 0 t ie two sea ar matnces O land 0 -1 ' The

graphs we describe are Cayley graphs of PSL(2,q). A well known
t heorem of J acobi asserts that th e numb er of ways to represent a
positive int eger n as a sum of 4 squares is 8 I::4td, d in d. This eas
ily impli es th at there are precisely p + 1 vectors a = (ao,aI, az ,a3),
where ao is an odd positive integer , ai ,a2, a3 are even integers and
a6+ a? +a§+ a~ = p. From each such vecto r construct t he matrix !vIa

. PSL(2 ) h ~ '1 1 ( ao+ ia , a2 + ia3) d i . .111 , q were lVJ a = rn . . an ~ IS an inte-
vp - a2+ w 3 aO-wl

gel' satisfying i 2 = -l(mod q). Note that, indeed , the determinan t of
Ma is 1 and that t he squa re root of p mod ulo q does exist. Let GM
denote the Cayley graph of PSL (2,q) with respect to t hese p +1 ma
t rices. In [65] it was proved that if q > 2..fP then GM is a connected
(p +1)-regular graph on n = q(q2 - 1)/ 2 vertices. Its girth is at least
210gp q and all the eigenvalues of it s adjacency matrix, besides th e
t rivial one Al = P+ 1, are at most 2..fP in absolute value. The bound
on the eigenvalues was obtained by applying deep resul ts of Eichler
and Igusa concern ing the Ramanujan conjecture . The graphs G P,q

have very good expansion properties and have numerous applications
in Combinatorics and Theoretical Computer Science .

12. The projective norm graphs NGp,t have been const ructed in [17]'
mod ifying an earlier const ruct ion given in [52]. T hese graphs are not
Cayley graphs , but as one will immedi at ely see, their construction
has a similar flavor. T he construction is t he following. Let t > 2
be an integer , let p be a prime, let GF(p)* be the multiplicat ive
group of the field with p elements and let GF(pt -1) be the field
with pt-1 elements . The set of vert ices of the graph N Gp,t is t he set
V = GF (pt-1 ) x GF(p)*. T wo dist inct vertices (X ,a) and (Y,b) E V
a1~e adjacent if an d only if N(X + Y ) = ob, where the norm N is
understood over GF(p), t hat is, N( X) = Xl+p+···+pt-2. Note that

IVI = pt - pt-1 . If (X ,a) and (Y ,b) are adjacent, then (X, a) and
Y f. -X det ermine b. Thus NGp,t is a regular graph of degree
pt-1 _ 1. In addit ion, it was proved in [17] , that NGp,t contains
no complete bipar ti te graphs J{t,(t-1 )!+1 ' T hese graphs can be also
defined in the same man ner starting wit h a prime power instead of
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the prime p. It is also not difficult to compute the eigenvalues of
this graph. Indeed, put q = pt-l and let A be the adjacency matrix
of NGp ,t. The rows and columns of this matrix are indexed by the
ordered pairs of the set GF( q) x GF(p)* . Let 'l/J be a character of the
additive group of GF(q), and let X be a character of the multiplicative
group of GF(p) . Consider the vector v : GF(q) x GF(p)* I---t C
defined by v(X, a) = 'l/J(X)x(a). Now one can check (see [14]' [76] for
more details) that the vector v is an eigenvector of A2 with eigenvalue

2IL.ZEGF(q),Z~O 'l/J(Z)X( N(Z)) I and that all eigenvalues of A2 have

this form. Set X'(Z) = X(N (Z)) for all nonzero Z in GF(q). Note
that as the norm is multiplicative, X' is a multiplicative character of
the large field. Hence the above expression is a square of the absolute
value of the Gauss sum and it is well known (see e.g. [31], [20]) that
the value of each such square, besides the trivial one (that is, when
either '1jJ or X' are trivial), is q. This implies that the second largest
eigenvalue of NGp,t is "fti = p(t-l) /2.

4. PROPERTIES OF PSEUDO-RANDOM GRAPHS

We now examine closely properties of pseudo-random graphs, with a special
emphasis on (n, d, A)-graphs. The majority of them are obtained using the
estimate (4) of Theorem 2.11, showing again the extreme importance and
applicability of the latter result. It is instructive to compare the properties of
pseudo-random graphs, considered below, with the analogous properties of
random graphs, usually shown to hold by completely different methods. The
set of properties we chose to treat here is not meant to be comprehensive or
systematic, but quite a few rather diverse graph parameters will be covered.

4.1. Connectivity and perfect matchings

The vertex-connectivity of a graph G is the minimum number of vertices
that we need to delete to make G disconnected. We denote this parameter
by Ii(G). For random graphs it is well known (see, e.g., [20]) that the vertex
connectivity is almost surely the same as the minimum degree. Recently '
it was also proved (see [61] and [30]) that random d-regular graphs are d
vertex-connected. For (n,d, A)-graphs it is easy to show the following.
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Theorem 4.1. Let G be an (n, d,>.)-graph with d ~ n/2. Then the vertex
connectivity of G satisfies:

K,(G) ~ d - 36>.2/d.

Proof. We can assume that >. ~ diG, since otherwise there is nothing to
prove. Suppose that there is a subset S c V of size less than d - 36>.2/d
such that the induced graph G[V - S] is disconnected. Denote by U the
set of vertices of the smallest connected component of G[V - S] and set
W = V - (SuU) . Then IWI ~ (n-d)/2 ~ n/4 and there is no edge between
U and W . Also lUI + lSI> d; since all the neighbors of a vertex from U
are contained in S U U. Therefore lUI ~ 36>.2/d. Since there are no edges
between U and W, by Theorem 2.11, we have that dlUIIWI/n < >')IUIIWI·
This implies that

Next note that , by Theorem 2.11, the number of edges spanned by U is at
most

e(U) < dlUI
2
+ >'1U1 < >.n dlUI + >'IUI = >'IUI + >'IUI = >'IUI.

- 2n 2 d 2n 2 2 2

As the degree of every vertex in U is d, it follows that

e(U, S) ~ dlUI- 2e(U) > (d - 2>.)IUI ~ 2dIUI/3.

On the other hand using again Theorem 2.11 together with the facts that
lUI :2 36>.2/d, lSI < d and d :::; n/2 we conclude that

e(U, S) :::; dlUllSI +>.JfUf1Si < ~dlUI +>.JdjUI ~ dlUI + >'VdIUI
n n 2 JWI

dlUI >.VdIUI dlUI dlUI 2dlUI<-+ =-+-=--.
- 2 6>./.jd 2 6 3

This contradiction completes the proof. •

The constants in this theorem can be easily improved and we make no
attempt to optimize them. Note that, in particular, for an (n, d, >.)-graph
G with>. = o(Vd) we have that "'(G) = d - 8(1) .
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Next we present an example which shows th at the assertion of Theorem
4.1 is tight up to a constant factor. Let G be any (n, d,A)-graph with
A = e(Jd ). We already const ructe d several such graphs in the previous
sect ion. For an integer k, consider a new graph Gk, which is obtained
by replacing each vertex of G by the complete graph of order k and by
connect ing two vertices of Gk by an edge if and only if the corresponding
vertices of G are connected by an edge. Then it follows immediately from
the definit ion that Gk has n' = nk vert ices and is d'-regular graph with
d' ~ dk +k - 1. Let A' be the second eigenvalue of Gk. To estimate A' note
that the adjacency matri x of Gk equals to Ac ® Jk + In ® AKk· Here Ac
is the adjacency matrix of G, Jk is the all one matrix of size k x k, In is
the identi ty matrix of size n x n and AKk is the adjacency matrix of the
complete graph of order k. Also the tensor product of the m x n dimensional
matrix A = (aij) and the s x t-dimensional matrix B = (bk1) is the ms x nt
dimensional matrix A®B , whose ent ry labelled ((i, k)(j , I)) is aijbkl. In case
A and B are symmetric matri ces with spect rums {AI , .. . , An}, {Ill, . .. ,Ild
respectively, it is a simple consequence of the definition that the spect rum
of A ® B is {Aillk : i = 1, ... , n, k = 1, ... , t} (see, e.g. [64]). Therefore
the second eigenvalue of Ac ® Jk is k ): On the other hand In ® AKk is the
adjacency matri x of the disjoint union of k-cliques and therefore the absolute
value of all its eigenvalues is at most k - 1. Using these two facts we conclude
that A' ~ Ak+ k-1 and that Gk is (n' = n k , d' = dk+ k-1 , A' = Ak+k-1)
graph. Also it is easy to see that the set of vertices of Gk that corresponds
to a vertex in G has exactly dk neighbors outside this set . By deleting these
neighbors we can disconnect the graph Gk and thus

~(Gd ~ dk = d' - (k - 1) = d' - D( (>..')2/d' ) .

Somet imes we can improve the result of Theorem 4.1 using the informa
tion about co-degrees of vert ices in our graph. Such result was used in [61]
to determine the vertex-connectivity of dense random d-regular graphs.

Proposition 4.2 [61]. Let G = (V, E) be a d-regular graph on n vertices
such that vnlogn < d ~ 3nl4 and the number of common neighbors for
every two distinct vertices in G is (1 + 0(1)) d2In. Th en th e graph G is
d-vertex-connected.

Similarly to vertex-connectivity, define the edge-connectivi ty of a graph
G to be the minimum number of edges that we need to delete to make
G disconnected. We denote this parameter by ~'(G). Clearly the edge
connect ivity is always at most the minimum degree of a grap h. We also say
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that G has a perfect matching if there is a set of disjoint edges that covers
all the vertices of G. Next we show that (n,d, A)-graphs even with a very
weak spectral gap are d-edge-connected and have a perfect matching (if the
number of vertices is even).

Theorem 4.3. Let G be an (n, d, A)-graph with d - A ~ 2. Then G is
d-edge-connected. When n is even, it has a perfect matching.

Proof. Let U be a subset of vertices of G of size at most n/2. To prove
that G is d-edge-connected we need to show that there are always at least d
edges between U and V(G) - U. If 1 ::; lUI::; d, then every vertex in U has
at least d - (lUI-I) neighbors outside U and therefore e(U, V(G) - U) ~
lUI (d - lUI + 1) ~ d. On the other hand if d ::; lUI::; n/2, then using that
d - A ~ 2 together with Theorem 2.11 we obtain that

e(U, V(G) - U)

~ dlUI (nn- lUI) _ A lUI (n - lUI) (1 - I~I) (1 - n -nlU l)

= (d - A) (n -nIUI) lUI ~ 2 . ~ ·IUI = lUI ~ d,

and therefore ",'(G) = d.

To show that G contains a perfect matching we apply the celebrated
Tutte's condition. Since n is even, we need to prove that for every nonempty
set of vertices S, the induced graph G[V - S] has at most lSI connected
components of odd size. Since G is d-edge-connected we have that there
are at least d edges from every connected component of G[V - S] to S.
On the other hand there are at most dlSI edges incident with vertices in
S. Therefore G[V - S] has at most lSI connected components and hence G
contains a perfect matching. •

4.2. Maximum cut

Let G = (V, E) be a graph and let S be a nonempty proper subset of V .
Denote by (S,V - S) the cut of G consisting of all edges with one end in S
and another one in V - S. The size of the cut is the number of edges in it.
The MAX CUT problem is the problem of finding a cut of maximum size in
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G. Let f(G) be th e size of the maximum cut in G. MAX CUT is one of th e
most natural combinatorial optimization problems. It is well known that
this problem is NP-hard [45]. Th erefore it is useful to have bounds on f( G)
based on other parameters of the graph, th at can be computed efficient ly.

Here we describe two such folklore results. First, consider a random
partition V = VI UV2 , obtained by assigning each vert ex v E V to VIOl' V2

with probability 1/2 independently. It is easy to see th at each edge of G has
probability 1/2 to cross between Vl and V2. Th erefore th e expected numb er
of edges in the cut (VI , V2 ) is rn/2 , where rn is th e number of edges in G.
T his implies tha t for every graph f( G) ~ rn/2 . Th e example of a complete
graph shows th at this lower bound is asymptotica lly optimal. The second
result provides an upp er bound for f( G), for a regular graph G, in terms of
the smallest eigenvalue of its adjacency matrix.

Proposition 4.4. Let G be a d-teguler graph (which may have loops) of
order n with rn = dn/ 2 edges and let )11 ~ A2 ~ . . . ~ An be the eigenvalues
of the adjacency matrix of G. Then

f(G) ~~·_A~n.

In particular HG is an (n ,d, A)-graph then f(G) ~ (d+ A)n/4.

Proof. Let A = (aij) be th e adjacency matrix of G = (V,E) and let
V = {l , . .. ,n}. Let x = (Xl, .. . ,xn ) be any vector with coordinates ±l.
Since the graph G is d-regular we have

n

. L (Xi - Xj)2 = dL X; - LaijXiXj = dn - x tAx.
(i,j)EE i = l i,j

By the variational definition of the eigenvalues of A, for any vector z E R" ,
zt A z ~ An llzl12 . Therefore

(11) L (Xi - Xj )2 = dn - x'Ax ~ dn - An llxl12 = dn - Ann.
(i,j)E E

Let V = VI UV2 be an arbitrary partition of V into two disjoint subsets
and let e(VI , V2 ) be th e numb er of edges in the bipartite subgraph of G with
bipartition (VI , V2) . For every vertex v E V(G) define Xv = 1 if v E VI and
Xv = -1 if v E V2. Note that for every edge (i, j) of G, (Xi - Xj)2 = 4 if
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this edge has its ends in the distinct parts of the above partition and is zero
otherwise . Now using (11), we conclude that

This upper bound is often used to show that some particular results
about maximum cuts are tight. For example this approach was used in [5]
and [8] . In these papers the authors proved that for every graph G with m

edges and girth at least r 2: 4, f(G) 2: m/2 +n(mr~l) . They also show,
using Proposition 4.4 and Examples 9, 6 from Section 3, that this bound is
tight for r = 4,5.

4.3. Independent sets and the chromatic number

The independence number a(G) of a graph G is the maximum cardinality
of a set of vertices of G no two of which are adjacent. Using Theorem 2.11
we can immediately establish an upper bound on the size of a maximum
independent set of pseudo-random graphs.

Proposition 4.5. Let G be an (n, d, A)-graph, then

An
a(G) :::; d + A'

Proof. Let U be an independent set in G, then e(U) = 0 and by Theorem
2.11 we have that dlUI 2In :::; AIUI (1 - IUlln). This implies that lUI :::;
An/(d + A). •

Note that even when A = o(Jd) this bound only has order of magni

tude o( n]Jd). This contrasts sharply with the behavior of random graphs
where it is known (see [20] and [49]) that the independence number of ran
dom graph G(n,p) is only e(~ logd) where d = (1 + 0(1)) np. More strik
ingly there are graphs for which the bound in Proposition 4.5 cannot be
improved. One such graph is the Paley graph Pq with q = p2 (Example 3
in the previous section). Indeed it is easy to see that in this case all ele
ments of the subfield GF(p) c GF(p2) are quadratic residues in GF(p2).
This implies that for every quadratic non-residue 13 E GF(p2) all elements
of any multiplicative coset (3GF(p) form an independent set of size p. As
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we already mentioned, Pq is an (n, d,A)-graph with n = p2, d = (p2 - 1)/2
and A= (p + 1)/2. Hence for this graph we get a(Pq ) = An/(d + A).

Next we obtain a lower bound on the independence number of pseudo
random graphs. We present a slightly more general result by Alon et al.
[12j which we will need later.

Proposition 4.6 [12]. Let G be an (n , d, A)-grapll such that A < d:::; 0.9n.
Then the induced subgraph G[Uj of G on any subset U, lUI = m, contains
an independent set of size at least

n (m(d - A) )
a( G[UJ) ~ 2(d _ A) In n(A +1) +1 .

In particular,

n ((d-A))
a(G)~2(d_A)ln (A+1)+1 .

Sketch of proof. First using Theorem 2.11 it is easy to show that if U is a
set of bn vertices of G, then the minimum degree in the induced subgraph
G[Uj is at most db +>'(1 - b) = (d - A)b + >.. Construct an independent set
I in the induced subgraph C[U] of G by the following greedy procedure.
Repeatedly choose a vertex of minimum degree in G[UJ, add it to the
independent set I and delete it and its neighbors from U, stopping when the
remaining set of vertices is empty. Let ai, i ~ 0 be the sequence of numbers
defined by the following recurrence formula:

ao=m,

( a' a.) ( d - >.)
ai+l = ai - d ~ + >'(1 - ~) + 1 = 1- -n- ai - (>' + 1), Vi ~ O.

By the above discussion, it is easy to see that the size of the remaining set
of vertices after i iterations is at least ai. Therefore the size of the resulting
independent set I is at least the smallest index i such that ai :::; O. By
solving the recurrence equation we obtain that this index satisfies:

n (m(d - A) )
i ~ 2(d _ A) In n(>. + 1) + 1. •

For an (n,d, A)-graph G with A:::; d1- O, 8> 0, this proposition implies
that a(G) ~ n(~ log d) . This shows that the independence number of a
pseudo-random graph with a sufficiently small second eigenvalue is up to
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a constant factor at least as large as a( G(n,p)) with p = din. On the
other hand the graph Hk (Example 4, Section 3) shows that even when
A ~ 0 (Jd) the independence number of (n,d, A)-graph can be smaller

than a( G(n,p)) with p = din. This graph has n = 2k - 1 - 1 vertices,

degree d = (1 + o(1))n/2 and A = e(Jd). Also it is easy to see that
every independent set in Hk corresponds to a family of orthogonal vectors
in Z~ and thus has size at most k = (1 + o(1)) log2n. This is only half of
the size of a maximum independent set in the corresponding random graph

G(n, 1/2) .

A vertex-coloring of a graph G is an assignment of a color to each
of its vertices. The coloring is proper if no two adjacent vertices get the
same color. The chromatic number x(G) of G is the minimum number
of colors used in a proper coloring of it . Since every color class in the
proper coloring of G forms an independent set we can immediately obtain
that X(G) ~ IV(G)I la(G). This together with Proposition 4.5 implies the
following result of Hoffman [48].

Corollary 4.7. Let G be an (n, d, A)-graph. Then the chromatic number

of G is at least 1+ dl ):

On the other hand, using Proposition 4.6, one can obtain the following
upper bound on the chromatic number of pseudo-random graphs.

Theorem 4.8 [12]. Let G be an (n, d, A)-graph SUcJl that A < d :s O.9n .

Then the chromatic number of G satisfies

6(d - A)
X(G):S (d-A ).

In >.+1 + 1

Sketch of proof. Color the graph G as follows. As long as the remaining
set of vertices U contains at least n] In (~~~ + 1) vertices, by Proposition
4.6 we can find an independent set of vertices in the induced subgraph G[U]
of size at least

n (IUI(d-A)) n (d-A)
2(d - A) In n(A + 1) + 1 ~ 4(d _ A) In A+ 1 + 1 .

Color all the members of such a set by a new color, delete them from
the graph and continue. When this process terminates, the remaining
set of vertices U is of size at most n] In (~~~ + 1) and we used at most

4(d - A)/ln (~~~ + 1) colors so far. As we already mentioned above, for
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every subset U' c U the induced subgraph G[U'] contains a vertex of degree
at most

lU'l lUI d - A 2(d - A)
(d-A)-+A:::;(d-A)-+A:::; (d->. )+A:::; (d->. )-1.

n n In >.+ 1 + 1 In >.+ 1 + 1

Thus we can complete the coloring of G by coloring G[U] using at most
2(d - A)I In (~~~ + 1) additional colors. The total number of colors used is

at most 6(d - A)/ln (~~~ + 1).•

For an (n,d,A)-graph G with A :::; dl - 8 , 8 > a this proposition implies
that X( G) :::; 0 Co~d)' This shows that the chromatic number of a pseudo
random graph with a sufficiently small second eigenvalue is up to a constant
factor at least as small as X( G(n,p)) with p = din. On the other hand, the
Paley graph Pq , q = p2, shows that sometimes the chromatic number of a
pseudo-random graph can be much smaller than the above bound, even the
in case A = e(Jd). Indeed, as we already mentioned above, all elements

of the subfield GF(p) c GF(p2) are quadratic residues in GF(p2). This
implies that for every quadratic non-residue (3 E GF(p2) all elements of
a multiplicative coset (3GF(p) form an independent set of size p. Also all
additive cosets of (3GF(p) are independent sets in Pq. This implies that
X(Pq ) :::; y7j = p. In fact Pq contains a clique of size p (all elements of a
subfield GF(p)), showing that X(Pq ) = y7j« qllogq. Therefore the bound
in Corollary 4.7 is best possible.

A more complicated quantity related to the chromatic Humber is the
list-chromatic number Xl(G) of G, introduced in [34] and [82]. This is the
minimum integer k such that for every assignment of a set S(v) of k colors to
every vertex v of G, there is a proper coloring of G that assigns to each vertex
v a color from S(v). The study of this parameter received a considerable
amount of attention in recent years, see, e.g., [2]' [57] for two surveys . Note
that from the definition it follows immediately that Xl(G) ~ x( G) and it is
known that the gap between these two parameters can be arbitrarily large.
The list-chromatic number of pseudo-random graphs was studied by Alon,
Krivelevich and Sudakov [12] and independently by Vu [84] . In [12] and
[84] the authors mainly considered graphs with all degrees (1 + 0(1))np and
all co-degrees (1 + o(1)) np2. Here we use ideas from these two papers to
obtain an upper bound on the list-chromatic number of an (n,d, A)-graphs.
This bound has the same order of magnitude as the list chromatic number
of the truly random graph G(n,p) with p = din (for more details see [12],
[84]).
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Theorem 4.9. Suppose that 0 < 8 < 1 and let G be an (n, d, A)-graph
satisfying A ::; d1- 0, d ::; O.9n. Th en the list-chromatic number of G is
bounded by

Xl(G) ::; 0 (0 l:g d) .
P r oo f. Suppose that d is sufficiently large and consider first the case when
d::; n 1

-
0

/
4

. Then by Theorem 2.11 the neighbors of every vertex in G span
at most d3/n+Ad::; O(d2

-
O

/ 4 ) edges. Now we can apply the result of Vu [84]
which says that if the neighbors of every vertex in a graph G with maximum

degree d sp an at most O(d2
- O/ 4 ) edges then XI(G) ::; O(d/(ologd)) .

Now consider the case when d 2': n 1- o/4 . For every vertex v E V , let
S(v) be a list of at least ol~~n colors . Our objective is to prove that there
is a proper coloring of G assigning to each vertex a color from its list . As
long as there is a set C of at least n 1- 0/ 2 vertices containing the same color

c in their lists we can, by Proposition 4.6, find an ind ep enden t set of at
least ~~ log n vertices in C , color them all by c, omit t hem from the graph
and omit the color c from all lists. The total number of colors that can

be deleted in this process cannot exceed Ol~~ n (since in each such deletion

at least ~~ log n vert ices a re deleted from the graph). When this process

te rminates , no color appears in more than nl - 0/ 2 lists , and each list still

contains at least ol:gn > n1- 0/ 2 colors. Therefore, by Hall 's t heorem, we
can assign to each of the rem aining vertices a color from its list so that
no color is being assigned to more than one vertex, thus complet ing the
coloring and the proof. •

4.4. Small subgraphs

We now examine sm all subgraphs of pseudo-random graphs . Let H be a
fixed graph of order 8 with T edges and with automorphism group Aut(H) .
Using the second mom ent method it is not difficult to show t hat for every
constant p the random graph G(n, p) contains

induced copies of H . Thomason exte nded t his result to jumbled gr aphs.
He showed in [79] that if a graph G is (p,a)-jumbled and pSn » 42a 82
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then the number of induced subgraphs of G which are isomorphic to H is

(1 + 0(1))pS(l - p)W-rnS/1 Aut(H)I.

Here we present a result of Noga Alon [6] that proves that every large
subset of the set of vertices of (n,d, A)-graph contains the "correct" number
of copies of any fixed sparse graph. An additional advantage of this result
is that its assertion depends not on the number of vertices s in H but only
on its maximum degree b. which can be smaller than s. Special cases of
this result have appeared in various papers including [11], [13] and probably
other papers as well. The approach here is similar to the one in [13] .

Theorem 4.10. [6] Let H be a fixed gtepu with r edges, s vertices and
maximum degree b., and let G = (V,E) be an (n, d, A)-graph, where, say,

d::; 0.9n. Let m < n satisfy m »A(J)6.. Then, for every subset V' C V
of cardinality m, the number of (not necessarily induced) copies of H in V'
is

ni" (d)'r
(1+0(1))IAut(H)1 -;;

Note that this implies that a similar result holds for the number of

induced copies of H. Indeed, if n» d and m» A(~)6.+1 then the number
of copies of each graph obtained from H by adding to it at least one edge
is, by the above Theorem, negligible compared to the number of copies of
H , and hence almost all copies of H in V' are induced. If d = 8(n) then,
by inclusion-exclusion, the number of induced copies of H in V' as above
is also roughly the "correct" number. A special case of the above theorem
implies that if A = o( Jd) and d» n2/ 3 , then any (n, d, A)-graph contains
many triangles. As shown in Example 9, Section 3, this is not true when
d = U+ 0(1) )n 2/ 3 , showing that the assertion of the theorem is not far
from being best possible.

Proof of Theorem 4.10. To prove the theorem, consider a random one
to-one mapping of the set of vertices of H into the set of vertices V' . Denote
by A(H) the event that every edge of H is mapped on an edge of G. In
such a case we say that the mapping is an embedding of H . Note that it
suffices to prove that

(12) Pr(A(H)) = (1 +0(1)) (~)"

We prove (12) by induction on the number of edges r . The base case
(r = 0) is trivial. Suppose that (12) holds for all graphs with less than r
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edges, and let uv be an edge of H. Let H ll v be the graph obtained from
H by removing the edge uv (and keeping all vertices). Let Hu and H;
be the induced subgraphs of H on the sets of vertices V(H) \ {v} and
V (H) \ {u}, respectively, and let H' be the induced subgraph of H on the
set of vertices V (H) \ {u,v}. Let r' be the number of edges of H' and note
that r - r' ~ 2(6. -1) +1 = 26. -1. Clearly Pr(A(Huv ) ) = Pr(A(Huv ) I
A(H')) .Pr( A(H')). Thus, by the induction hypothesis applied to Huv and
to H':

Pr( A(Huv ) IA(H')) = (1 + 0(1)) (~)r-l-TI

For an embedding f' of H', let v(u, f') be the number of extensions of t'
to an embedding of Hu in V' ; v(v,1') denotes the same for v. Clearly,
the number of extensions of t' to an embedding of H llv in V' is at least
v(u,1')v(v, f') - min (v(u, 1'), v(v, f')) and at most v(u, 1')/J(v, f') · Thus
we have

v(u,1')v(v,1') - min (v( u,1'), v(v,1'))
(m-s+2)(m-s+1)

< Pr(A(H ) If') < v(u, f')v(v, 1')
- llV - (m-s+2)(m-s+1)

Taking expectation over all embedclings i' the middle term becomes

Pr(A(Huv ) I A(H')) , which is (1 + 0(1)) (~r-l-rl . Note that by our

choice of the parameters and the well known fact that A = n(Vd ), the

expectation of the term min (v(u,1'),v(v,1')) (~m) is negligible and we
get

Ef'(v(u,1')v(v,1') I A(H')) = (1+0(1))m2 (~)T-l-TI

Now let f be a random one-to-one mapping of V(H) into V'. Let l' be a
fixed embedding of H'. Then

( ') (d) v(u,1')v(v,J') s
Prj A(H) I flv(H) \{u,v} = f = ;; (m _ s + 2)(m - s + 1) + ,

where 161 :s A(If:;~'t;ll~~:;)l)' This follows from Theorem 2.11, where we
take the possible images of u as the set U and the possible images of v as
the set W . Averaging over embeddings i' we get Pr( A(H) IA(H')) on the
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,

left hand side. On the right hand side we get (1 + 0(1)) (~) r r-r from the
first term plus the expectation of the error term o. By Jensen's inequality,
the absolute value of this expectation is bounded by

JE(v(u, 1')v(v, 1')) A (d) (r-r'-l)/2
A = (1 +o(1)) - -

(m-s+2)(m-s+1) m n

Our assumptions on the parameters imply that this is negligible with re
spect to the main term. Therefore Pr(A(H)) = Pr(A(H) I A(H')) .
Pr( A(H')) = (1 +0(1)) (~)r, completing the proof of Theorem 4.10. •

If we are only interested in the existence of one copy of H then one
can sometimes improve the conditions on d and A in Theorem 4.10. For
example if H is a complete graph of order r then the following result was
proved in [11].

Proposition 4.11 [11]. Let G be an (n, d, A)-graph. Then for every integer
r ~ 2 every set of vertices of G of size more than

(A + l)n (n (n)r-2)
d 1+;:[+ . .. +;:[

contains a copy of a complete graph K«.

In particular, when d ~ D(n2/ 3 ) and A :::; O(Jd) then any (n, d, A)
graph contains a triangle and as shows Example 9 in Section :3 this is tight .
Unfortunately we do not know if this bound is also tight for r ~ 4. It
would be interesting to construct examples of (n, d, A)-graphs with d =
8(n1 - 1/ (2r - 3) ) and), :::; O( /d) which contain no copy of K, .

Finally we present one additional result about the existence of odd cycles
in pseudo-random graphs.

Proposition 4.12. Let k ~ 1 be an integer and let G be an (n, d, A)-graph
such that d2kIn» A2k

- 1 . Then G contains a cycle of length 2k + 1.

Proof. Suppose that G contains no cycle of length 2k + 1. For every two
vertices u,v of G denote by d(u,v) the length of a shortest path from u to
v. For every i ~ 1 let Ni(v) = {u Id(u ,v) = i} be the set of all vertices in
G which are at distance exactly i from v. In [32] Erdos et al. proved that
if G contains no cycle of length 2k + 1 then for any 1 :::; i :::; k the induced
graph G [Ni (v)] contains an independent set of size INi(v)II (2k - 1). This
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result together with Proposition 4.5 implies that for every vertex v and for
every 1 ~ i ~ k, INi(v)1 ~ (2k - 1»..njd. Since d2kjn » ),21.:-1 we have
that), = o(d). Therefore by Theorem 2.11

Next we prove by induction that for every 1 ~ i ~ k, II~:;~~I)I >

(1 - o( 1)) d2 j),2. By the above discussion the number of edges spanned by
N1(v) is o(d2) and therefore e(N1(v),N2(V)) = d2 - 0(d2) = (1- 0(1))d2.
On the other hand, by Theorem 2.11

e(N1(v),N2(v)) <~IN1(V)IIN2(V)1 +),JIN1(v)IIN2(v)1

~ ~d(2k-1),n+),VdI N2(v)1
n d

Therefore IZ:~~~1 ~ (1- 0(1))d2j),2. Now assume that I~~;~~I)I ~ (1 

0(1))d2j),2. Since the number of edges spanned by Ni(v) is o(dl Ni(V)I) we
obtain

e(Ni(v) ,Ni+1(V)) =dINi(v)!-2e(Ni(v)) -e(Ni-1(V),Ni(V))

~ dINi(V)I - 0 ( dINi(V)I) - dINi-1 (V)I

~ (1-0(1))dINi(v)l- (1 + 0(1))d(),2jd2)!Ni(v)!

= (l-o(l))dINi(V)!-o(dINi(V)I)

= (l-o(l))dINi(v)l ·
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On the other hand, by Theorem 2.11

e(Ni(v),Ni+1(V)) :::; ~INi(V)IINi+l(V)1 +AVINi(v)IINi+1(V)1

d(2k-l)An . /
:::; ;; d INi(v)1 + Ay INi(V)11 Ni+l (V )1

INi+1(V)1
INi(v)1

241

Therefore II~:~~ ~I)I ~ (1 - 0(1))d2/ A2 and we proved the induction step .

Finally note th at

This contradict ion completes the proof. •

2

This result implies th at when d » n 2k +! and A :::; o( /d) th en any
(n , d , A)-graph contains a cycle of length 2k + 1. As shown by Example 10
of the previous section thi s result is tight. It is worth mentioning here tha t
it follows from th e result of Bondy and Simon ovits [22] th at any d-regular
graph with d » n 1/ k contains a cycle of length 2k. Here we do not need to
make any assumption about the second eigenvalue A. This bound is known
to be tight for k = 2,3,5 (see Examples 6,7, Section 3).

4.5. Extremal properties

Turan 's th eorem [81] is one of the fund amental results in Extremal Graph
Theory. It states th at among n-vertex graphs not cont aining a clique of
size t th e complete (t - I)-partite graph with (almost) equal parts has the
maximum number of edges. For two graphs G and H we define th e Turan
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number ex(G, H) of H in G, as the largest integer e, such that there is an
H-free subgraph of G with e edges. Obviously ex(G,H) ~ IE(G)j , where
E(G) denotes the edge set of G. Turan 's theorem, in an asymptotic form ,
can be restated as

that is the largest Kt-free subgraph of Kn cont ains approximately ~:::}

fraction of its edges. Here we would like to describe an exte nsion of this
result to (n,d, >. )-gr aphs.

For an arbitrary graph G on n vertices it is easy to give a lower bound on
ex(G, Kd following Turan's construct ion. One can partition th e vertex set
of G into t - 1 parts such that the degree of each vertex within its own part
is at most t2 1-t imes its degree in G. Thus the subgraph consisting of the

edges of G connecting two different parts has at leas t a ~ ::::i - fraction of the
edges of G and is clearly Kt-free. We say that a gra ph (or rather a famil y of
graphs) is t- Tuttiti if this trivial lower bound is essentially an upper bound

as well. More precisely, Gis z-Turan if e.'E (G, Kt) = U::::i + o(I))IE(G)I ·

It has been shown that for any fixed t , there is a number rn(t,n) such
th at almost all gr aphs on n vertices with rn ~ rn(t,n) edges are z-Turan (see
[77], [51] for the most recent est imate for rn(t,n) ). However , th ese resul ts are
ab out random graphs and do not provide a det erministic sufficient condit ion
for a graph to be t-Turan. It appears that such a condition can be obtain ed
by a simple assumption about the sp ectrum of th e graph. This was proved
by Sudakov, Szabo and Vu in [75]. They obtain ed the following result.

Theorem 4.13 [75]. Let t ~ 3 be an integer and let G = (V, E ) be an
(n ,d,>.)-graph. If>' = o(dt - 1jnt- 2) then

(
t - 2 )ex(G, Kd = - + 0(1) IE(G)I ·t - 1

Note that this theorem generalizes Turan's t heorem, as th e second eigen
valu e of the complete graph K n is 1.

Let us bri efly discuss the sharpness of Theorem 4.13 . For t = 3, one can
show that its condition involving n, d and >. is asymptot ically tight. Indeed ,
in t his case the above theorem states that if d2 jn » >. , then one needs to
delete about half of the edges of G to destroy all the triangles. On the
other hand, by t aking th e exa mple of Alon (Section 3, Ex ample 9) whose
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parameters are: d = 8(n2/ 3 ) , A= 8(nI/ 3) , and blowing it up (which means
replacing each vertex by an independent set of size k and connecting two
vertices in the new graph if and only if the corresponding vertices of G are
connected by an edge) we get a graph G(k) with the following properties:

W( G(k)) 1= nk =nk; G(k) is dk =dk-regular ; G(k) is t riangle-free;

A(G(k)) = kA and A(G(k)) = n(dVnk)'

The above bound for the second eigenvalue of G(k) can be obtained by using
well known results on the eigenvalues of the tensor product of two matrices,
see [59] for more details. Thi s const ruct ion implies that for t = 3 and any
sensible degree d the condition in Theorem 4.13 is not far from being best
possible.

4.6. Factors and fractional factors

Let H be a fixed graph on n verti ces. We say that a graph G on n vertices
has an H-factor if G contains nih vertex disjoint copies of H . Of course,
a t rivial necessary condition for the existence of an H -factor in G is that h
divides n. For example, if H is just an edge H = K2 , then an H-factor is a
perfect mat ching in G.

One of the most important classes of graph embedding problems is to
find sufficient conditions for the existence of an H-factor in a graph G,
usually assumin g th at H is fixed while the order n of G grows. In many
cases such condit ions are formulat ed in terms of the minimum degree of G.
For example, the classical result of Hajnal and Szemeredi [47] asserts that if
the minimum degree <5(G) satisfies <5(G) ~ (1- ~ )n, then G contains lniTJ
vertex disjoint copies of K«. The statement of this theorem is easily seen to
be t ight.

It turns our that pseudo-randomness allows in many cases to significant ly
weaken sufficient conditions for H-factors and to obt ain results which fail
to hold for general graphs of the same edge density.

Consider first the case of a constant edge density p. In this case the
celebrated Blow-up Lemma of Komlos, Sarkozy and Szerneredi [54] can be
used to show the existence of H-factors. In order to formulat e the Blow-up
Lemma we need to introduce the notion of a super-regular pair. Given € > a
and 0 < p < 1, a bipartite graph G with bipartition (VI, V2) , !VII = !V21 = n ,
is called super (p , e) -reqular if
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1. For all vertices v E V (G),
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(p - E)n :s d(v) :s (p + E)n ;

2. For every pair of sets (U,W ), UC VI , We V2, lU I,IWI ~ En ,

e(U,W)

IUliwl
IE(G)I

n2

Theorem 4.14 [54]. For every choice of integers r and b. and a real
o< p < 1 there exist an E > 0 and an integer no(E) such that the following
is true. Consider an r -part ite graph G with all partition sets VI, . .. , Vr of
order n > no and all (; ) bipartite subgraphs G [Vi ,Vj] super (p, E)-regular.
Th en for every r-partite graph H with maximum degree b.(H ) :s b. and all
partition sets Xl, .. . .X; of order n , there exists an em bedding f of H into
G with each set X i mapped onto Vi, i = 1, . .. , r .

(The above version of the Blow-up Lemma, due to Rodl and Rucinski
[71]' is somewhat different from and yet equivalent to the original formula
t ion of Kom16s et al. We use it here as it is somewhat closer in spirit to t he
notion of pseudo- randomness).

The Blow-up Lemma is a very powerful embedding tool. Combined
wit h another "big cannon", the Szemered i Regularity Lemm a, it can be
used to obtain approximate versions of many of t he most famous embedding
conject ures. We suggest the reader to consu lt a survey of Komlos [53] for
more details and discussions.

It is easy to show that if G is an (n , d, A)-graph with d = 8 (n ) and
A = o(n) , and h divides n, then a random par ti tion of V( G ) into h equal
par ts VI, . .. , Vi! produces almost sure ly ( ~ ) sup er (djn,E)-regular pair s.
Thus the Blow-up Lemma can be applied to the obtained h-par ti te subgra ph
of G and we get :

Corollary 4.15. Let G be an (n , d, A)-graph with d = 8 (n ), A = o(n ). If
h divides n , then G contains an H-factor, for every fixed graph H on h
vertices.

The case of a vanishing edge density p = 0(1) is as usual significant ly
more complicated. Here a sufficient condit ion for the exist ence of an H
factor should depend heavily on the graph H , as there may exist quite
dense pseudo-random gra phs without a single copy of H , see , for example,
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the Alon graph (Example 9 of Section 3). When H = J{2, already a very
weak pseudo-randomness condition suffices to guarantee an H-factor, or a
perfect matching, as provided by Theorem 4.3. We thus consider the case
H = J{3 , the task here is to guarantee a triangle factor, i.e. a, collection of
nl3 vertex disjoint triangles . This problem has been treated by Krivelevich ,
Sudakov and Szabo [59] who obtained the following result :

Theorem 4.16 [59]. Let G be an (n, d, A)-graph. If n is divisible by 3 and

(
d3 )A-o

- n210gn'

then G has a triangle factor.

For best pseudo-random graphs with A = e(Jd) the condition of the

above theorem is fulfilled when d » n4/ 510g2
/

5 n.

To prove Theorem 4.16 Krivelevich et al. first partition the vertex set
V(G) into three parts VI, V2 , V3 of equal cardinality at random. Then they
choose a perfect matching 111 between VI an V2 at random and form an
auxiliary bipartite graph r whose parts are M and V3, and whose edges are
formed by connecting e E M and v E V3 if both endpoints of e are connected
by edges to v in G. The existence of a perfect matching in r is equivalent
to the existence of a triangle factor in G. The authors of [59] then proceed
to show that if M is chosen at random then the Hall condition is satisfied
for r with positive probability.

The result of Theorem 4.16 is probably not tight. In fact , the following
conjecture is stated in [59] :

Conjecture 4.17 [59]. There exists an absolute constant c > 0 so that
every d-regular graph G on 3n vertices, satisfying A(G) ~ cd2In, has a
triangle factor.

If true the above conjecture would be best possible, up to a constant
multiplicative factor. This is shown by taking the example of Alon (Section
3, Example 9) and blowing each of its vertices by an independent set of
size k. As we already discussed in the previous section (see also [59]) , this
gives a triangle-free dk-regular graph G(k) on nk vertices which satisfies
A( G(k)) = n( dk/nk)'

Krivelevich, Sudakov and Szabo considered in [59] also the fractional
version of the triangle factor problem. Given a graph G = (V, E), denote
by T = T( G) the set of all triangles of G. A function f : T -t IR+ is called
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a fractional triangle factor' if for every v E V(G) one has L VEt f (t) = 1. If
G cont ains a trian gle factor To, then ass igning values f (t ) = 1 for all t E To,
and f (t ) = 0 for all othe r t E T produces a fractional triangle facto r. This
simple argument shows t hat the existence of a triangle factor in G implies
the existence of a fractional t r iangle factor. The converse statement is eas ily
seen to be invalid in general.

The fact that a fractional triangle factor f can t ake non-integer values,
as opposed to the characterist ic vector of a "usua l" (i.e . int eger ) t riangle
factor, enables to invoke the powerful machinery of Linear Programming to
prove a much better resul t than T heorem 4.16.

Theorem 4.18 [59]. Let G = (V, E) be a (n, d, A)-graph . If A :s; O.ld2 j n
th en G has a fractional triangle factor.

This statement is optimal up to a constant fact or - see the discussion
following Conj ect ure 4.17.

Already for the next case H = ](4 analogs of T heo rem 4.16 and 4.18
are not known. In fact , even an analog of Conjecture 4.17 is not available
eit he r, mainly du e to the fact that we do not know t he weakest possible
spectral cond it ion guaranteeing a single copy of ](4, or K; in general, for
r 2: 4.

Finally it would be interesting to show that for every integer tl there
exist a real M and an integer no so that the following is t rue. If n 2: no and
G is an (n , d, A)-graph for which A :s; d(djnl'vI , then G contains a copy of
any graph H on at most n vert ices with maximum degree 6.(H) :S 6.. T his
can be considered as a sparse analog of t he Blow-up Lemma.

4.7. Hamiltonicity

A Hamilton cycle in a graph is a cycle passing through all the vert ices of
this graph. A graph is called Hamiltonian if it has at leas t one Hamilton
cycle . For background information on Hamiltonian cycles the reader can
consult a survey of Chvatal [28].

T he notion of Hamilton cycles is one of the most cent ral in mod ern
Gr aph Theory, and many efforts have bee n devoted to obtain sufficient con
dit ions for Hamiltoni city. The absolute majority of such known condit ions
(for example, the famous t heo rem of Dir ac asse rting that a graph on n ver 
tices wit h minimal deg ree at least nj2 is Hamiltonian ) deal wit h graphs
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which are fairly dense. Apparently there are very few sufficient conditions
for the existence of a Hamilton cycle in sparse graphs.

As it turns out spectral properties of graphs can supply rather powerful
sufficient conditions for Hamiltonicity. Here is one such result , quite general
and yet very simple to prove , given our knowledge of properties of pseudo
random graphs.

Proposition 4.19. Let G be an (n, d, A)-graph. If

A2 An
d-36- >-

d -d+A'

then G is Hamiltonian.

Proof. According to Theorem 4.1 G is (d- 36A2Id)-vertex-connected. Also,
o:(G) :::; Anl(d + A), as stated in Proposition 4.5. Finally, a theorem of
Chvatal and Erdos [29] asserts that if the vertex-connectivity of a graph G
is at least as large as its independence number, then G is Hamiltonian. _

The Chvatal-Erdos Theorem has also been used by Thomason in [79],
who proved that a (p,o:)-jumbled graph G with minimal degree o(G) =
D(o:lp) is Hamiltonian. His proof is quite similar in spirit to that of the
above proposition.

Assuming that A = o(d) and d -t 00, the condition of Proposition 4.19
reads then as : A:::; (1-0(1)) d2In. For best possible pseudo-random graphs,

where A = e(va), this condition starts working when d = D(n2/ 3 ) .

One can however prove a much stronger asymptotical result, using more
sophisticated tools for assuring Hamiltonicity. The authors prove such a
result in [58]:

Theorem 4.20 [58]. Let G be an (n,d, A)-graph. If n is uuge enougl: and

A < (log log n)
2

d,
- 1000 log n(log log log n)

then G is Hamiltonian.

The proof of Theorem 4.20 is quite involved technically. Its main in
strument is the famous rotation-extension technique of Posa [70], or rather
a version of it developed by Komlos and Szemeredi in [56] to obtain the ex
act threshold for the appearance of a Hamilton cycle in the random graph
G(n,p) . We omit the proof details here, referring the reader to [58].
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For reasonably good pseudo-random gra phs, in which A ::; d1- c: for some
e > 0, T heorem 4.20 starts working already when the degree d is only poly
logarithmic in n - quite a progress compared to the easy Proposition 4.19!
It is possible though that an even stronger result is true as given by th e
following conjecture:

Conjecture 4.21 [58]. There exists a positive constant C such that for
large enough n, any (n,d,A)-graph that satisfies d]A > C contains a Hamil
ton cycle.

This conjecture is closely related to another well known problem on
Hamil tonicity. The toughness t(G) of a graph G is the largest real t so
that for every positive integer x ~ 2 one should delete at least tx vert ices
from G in order to get an induced subgraph of it with at least x connected
components. G is t-tough if t(G) ~ t. This parameter was introduced by
Chvatal in [27], where he observed that Hamil tonian graphs are l -tough
and conjectured that t-tough graphs are Hamiltonian for large enough t .
Alon showed in [4] that if G is an (n,d, A)-graph , then the tou ghness of G
satisfies t(G) > O(dIA). T herefore the conjecture of Chvatal implies the
above conjecture .

Krivelevich and Sudakov used T heorem 4.20 in [58] to derive Hamiltonic
ity of sparse random Cayley graphs. Given a group G of order n, choose
a set S of s non-identity elements uniformly at rand om and form a Cayley
graph I'( G, 5 U 5- 1) (see Exampl e 8 in Section 3 for the definit ion of a Cay
ley graph). T he question is how large should be the value of t = t(n) so as
to guarantee the almost sure Hamiltonicity of the random Cayley graph no
matter which group G we started with.

Theorem 4.22 [58]. Let G be a group of order n. Th en for every c > 0
and large enougb n a Cayley grapb X( G, 5 US-I) , form ed by choosing a
set S of c log" n random generators in G, is almost surely Hamil tonian.

Sketch of proof. Let Abe the second largest by absolute value eigenvalue of
X (G, S ). Note that the Cayley graph X (G , S ) is d-regular for tl ~ clog5n.
T herefore to prove Hamiltonicity of X(G , S) , by Theorem 4.20 it is enough
to show that almost surely Aid ::; O(1ogn). T his can be done by ap plying
an approach of Alon and Roichman [16] for bounding the second eigenvalue
of a random Cayley graph. •

We note th at a well known conjecture claims that every connected
Cayley graph is Hamiltonian . If t rue the conjecture would easily imply
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that as few as O(1ogn) random generators are enough to give almost sure
connectivity and thus Hamiltonicity.

4.8. Random subgraphs of pseudo-random graphs

There is a clear tendency in recent years to study random graphs different
from the classical by now model G(n, p) of binomial random graphs. One of
the most natural models for random graphs, directly generalizing G(n,p),
is defined as follows. Let G = (V, E) be a graph and let 0 < p < 1. The
random subgraph Gp if formed by choosing every edge of G independently
and with probability p. Thus, when G is the complete graph Kn we get back
the probability space G(n,p) . In many cases the obtained random graph Gp

has many interesting and peculiar features, sometimes reminiscent of those
of G(n,p), and sometimes inherited from those of the host graph G.

In this subsection we report on various results obtained on random
subgraphs of pseudo-random graphs. While studying this subject, we study
in fact not a single probability space, but rather a family of probability
spaces, having many common features, guaranteed by those of pseudo
random graphs. Although several results have already been achieved in
this direction, overall it is much less developed than the study of binomial
random graphs G(n,p), and one can certainly expect many new results on
this topic to appear in the future.

We start with Hamiltonicity of random subgraphs of pseudo-random
graphs. As we learned in the previous section spectral condit ion are in many
cases sufficient to guarantee Hamiltonicity. Suppose then that a host graph
G is a Hamiltonian (n,d, A)-graph. How small can the edge probability
p = p(n) be chosen so as to guarantee almost sure Hamiltonicity of the
random subgraph Gp? This question has been studied by Frieze and the
first author in [42]. They obtained the following result .

Theorem 4.23 [42]. Let G be an (n, d, A)-graph . Assume that A =
o ( 3/2 d

5
/

2
3/ 2 ) ' Form a random sllbgraph Gp of G by choosing each edge

n (Iogn)

of G independently with probability p. Then for any function w(n) tending
to infinity arbitrarily slowly:

1. if p(n) = ~ ( log n + log log n - w(n)), then Gp is almost surely not
Hamiltonian ;
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2. if p(n) = H log n+ log log n +w(n)) , then Gp is almost surely Hamil
tonian.

Just as in the case of G( n, p) (see, e.g. [20]) it is quite easy to predict
the critical probability for the appearance of a Hamilton cycle in Gp . An
obvious obstacle for its existence is a vertex of degree at most one. If su ch a
ver tex almost surely exists in Gp , then Gp is almost sure ly non-Hamil tonian .
It is a straightforward exe rcise to show that the smaller pr obabili ty in the
state ment of Theorem 4.23 gives t he almost sure existence of such a ver tex .
The larger probabili ty ca n be shown to be sufficient to eliminate almost
surely all vertices of degree at most one in Gp. Proving that this is sufficient
for almost sure Hamiltonicity is much harder. Again as in the case of G( n ,p)
the rotation-extension technique of Posa [70] comes to our rescue. We omit
technical det ails of the proof of Theorem 4.23, referring the reader to [42] .

One of the most impor tant events in the study of random graphs was
the discovery of the sudde n appear ance of the giant component by Erdos

and Renyi [331. They proved that all connected components of G(n ,c/n)
with 0 < c < 1 ar e almost surely t rees or un icyclic and have size O(log n ).
On t he other hand , if c > 1, then G(n,c/n ) contains almost surely a unique
component of size linear in n (the so called giant component ), while all
other components are at most logarithmic in size. Thus, the random graph
G (n , p) experiences the so called phase transit ion at p = 1/n .

Very recently Fr ieze, Krivelevich and Martin sh owed [43] that a very sim 
ilar behavior holds for random subgraphs of many pseudo-r andom graphs .
To formulate their resul t , for a > 1 we define Q < 1 to be the unique
solution (other than a) of the equation xe - x = ae - u .

Theorem 4.24 [43]. Let G be an (n , d, A)-graph. Assum e that A = o(d).
Consider the random subgraph Gn / d , formed by choosing each edge of G
independently and with probability p = a/d. Th en:

(a) If a < 1 then almost surely the maximum component size is o(log n) .

(b) If a > 1 then almost surely there is a unique giant component of
asympt otic size (1 - ~ ) n and the remaining components are of size
O(log n).

Let us outline bri efly the proof of Theorem 4.24 . First , bound (4) and
known est imates on the number of k-vertex trees in d-regular graphs are used
to get est imates on the expectat ion of the number of connected components
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of size k in Gp , for various values of k. Using these estimates it is proved
th~n that almost surely Gp has no connected components of size between
(l/a,) logn and ,n for a properly chosen, = ,(a). Define f(a) to be 1
for all a ::; 1, and to be ii/a for a > 1. One can show then that almost
surely in Ga / d the number of vertices in components of size between 1 and

d1/ 3 is equal to nf(a) up to the error term which is O(n5/ 6Iogn). This
is done by first calculating the expectation of the last quantity, which is
asymptotically equal to nf(a), and then by applying the Azuma-Hoeffding
martingale inequality.

Given the above, the proof of Theorem 4.24 is straightforward. For the
case a < 1 we have nf(a) = n and therefore all but at most n5/ 610g n
vertices lie in components of size at most (l/a,) logn. The remaining

•
vertices should be in components of size at least ,n, but there is no room
for such components. If a> 1, then (ii/a)n + O(n5/ 6Iogn) vertices belong
to components of size at most (l/a,) logn, and all remaining vertices are
in components of size at least ,TL These components are easily shown to
merge quickly into one giant component of a linear size. The detail can be
found in [43] (see also [7] for some related results).

One of the recent most popular subjects in the study of random graphs
is proving sharpness of thresholds for various combinatorial properties.
This direction of research was spurred by a powerful theorem of Friedgut
Bourgain [37], providing a sufficient condition for the sharpness of a thresh
old. The authors together with Vu apply this theorem in [60] to show sharp
ness of graph connectivity, sometimes also called network reliability, in ran
dom subgraphs of a wide class of graphs. Here are the relevant definitions.
For a connected graph G and edge probability p denote by f(p) = f(G,p)
the probability that a random subgraph Gp is connected. The function
f(p) can be easily shown to be strictly monotone. For a fixed positive con
stant x ::; 1 and a graph G, let Px denote the (unique) value of p where
f(G ,px) = x . We say that a family (Gi)~l of graphs satisfies the sharp
threshold property if for any fixed positive e ::; 1/2

Thus the threshold for connectivity is sharp if the width of the transition
interval is negligible compared to the critical probability. Krivelevich, Su
dakov and Vu proved in [60] the following theorem.
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Theorem 4.25 [60] . Let (Gd~ l be a family of distinct graphs, where G,
has ni vert ices, maxim um degree di and it is ki-edge-connected. If

1
. ki Inni

.um d = 00,
2......00 i

then the family (Gd~ l has a sherp connectivity threshold.

The above theorem extends a celebrated result of Margulis [67] on net
work reliability (Margulis' resul t applies to the case where the critical prob
abi lity is a constant ).

Since (n,d, A) graphs are d(1 - o(1)) -connected as long as A = o(d) by
T heorem 4.1, we immediately g~t t he following result on the sharpness of
the connectivity threshold for pseudo-random gra phs.

Corollary 4.26. Let G be an (n , d, A)-graph. If A = o(d) , then the
threshold for connectivity in the random subgraph Gp is sharp.

T hus already weak connectivity is sufficient to guarantee sharpness of
the threshold. T his result has potential practi cal applications as discussed
in [60] .

Finally we consider a different probabil ity space crea ted from a graph
G = (V,E) . This space is obtained by put tin g random weights on th e
edges of G independently. One can then ask abo ut the behavior of optimal
solutio ns for various combinatorial optimization problems.

Beveridge, Frieze and McDiarmid treated in [19] the problem of esti
mating the weight of a random minimum length spanning t ree in regu lar
graphs. For each edge e of a connected graph G = (V,E ) define the length
X; of e to be a random variable uniformly dist ributed in the interval (0, 1),
where all X; are independ ent. Let mst(G, X) denote the minimum length
of a spanning tree in such a graph, and let m st(G) be th e expected value
of mst(G, X ). Of course, t he value of m st (G) depends on the connectiv
ity st ruct ure of the graph G. Beveridge et al. were able to prove however
that if the gra ph G is assumed to be almost regular and has a modest edge
expansion, then mst(G) can be calcu lated asymptotically:

Theorem 4.27 [1 9] . Let 0: = o:(d) = O(d- 1/ 3 ) and let p(d) and w(d) tend
to infini ty with d. Suppose that the graph G = (V, E ) satisfies

d:S d(v) :S (1 + o: )d for all v E V(G) ,
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e(S, I~I\ S) 2: wd2
/

3 log d for all S c V with d/2 < lSI ~ min {pd , 1V1/2} .

Then

rnst(G) = (1 +0(1)) I~I ((3),

where the 0(1) term tends to 0 as d -1 00, and ((3) = 2:~1 i-3 = 1.202....

The above theorem extends a celebrated result of Frieze [40], who proved
it in the case of the complete graph G = Kn .

Pseudo-random graphs supply easily the degree of edge expansion re
quired by Theorem 4.27. We thus get :

Corollary 4.28. Let G be an (n ,d, A)-graph. If A = o(d) then

n
rnst(G) = (1+0(1))d((3).

Beveridge, Frieze and McDiarmid also proved that the random variable
rnst(G, X) is sharply concentrated around its mean given by Theorem 4.27.

Comparing between the very well developed research of binomial random
graphs G(n, p) and few currently available results on random subgraphs of
pseudo-random graphs, we can say that many interesting problems in the
latter subject are yet to be addressed, such as the asymptotic behavior of the
independence number and the chromatic number, connectivity, existence of
matchings and factors , spectral properties, to mention just a few.

4.9. Enumerative aspects

Pseudo-random graphs on n vertices with edge density p are quite similar
in many aspects to the random graph G(n ,p). One can thus expect that
counting statistics in pseudo-random graphs will be close to those in truly
random graphs of the same density. As the random graph G(n,p) is a prod
uct probability space in which each edge behaves independently, computing
the expected number of most subgraphs in G(n ,p) is straightforward. Here
are just a few examples:

• The expected number of perfect matchings in G(n,p) is (n/2)!!2n/2 pn/2

(assuming of course that n is even);
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• The expected number of spanning trees in G(n, p) is nn-2pn-l ;

• The expected number of Hamilton cycles in G(n,p) is (n;l)!pn.

In certain cases it is possible to prove that the actual number of subgraphs
in a pseudo-random graph on n vertices with edge density p = p(n) is close
to the corresponding expected value in the binomial random graph G(n,p).

Frieze in [41] gave estimates on the number of perfect matchings and
Hamilton cycles in what he calls super s-regular graphs. Let G = (V,E) be
a graph on n vertices with G)p edges, where 0 < p< 1 is a constant. Then
G is called super (p, c) -reqular, for a constant e > 0, if

1. For all vertices v E V (G),

(p - c)n ::; d(v) ::; (p+c)n ;

2. For all U,We V, un W = 0, lUI, IWI ~ en,

l
e(u ,W) I
IUIIWI - p ::; c.

Thus, a super (p,c)-regular graph G can be considered a non-bipartite ana
log of the notion of a super-regular pair defined above. In our terminology,
G is a weakly pseudo-random graph of constant density p, in which all de
grees are asymptotically equal to pn. Assume that n = 2/1 is even. Let
m( G) denote the number of perfect matchings in G and let h(G) denote
the number of Hamilton cycles in G, and let t(G) denote the number of
spanning trees in G.

Theorem 4.29 [41]. If e is sufficiently small and n is sufficiently large

then

(a)
v n! v n!

(p - 2c) --r2v ::; m(G) ::; (p+ 2c) --r2v ;
/I. /I.

(b)
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Theorem 4.29 thus implies that the numbers of perfect matchings and
of Hamilton cycles in super s-regular graphs are quite close asymptotically
to the expected values of the corresponding quantities in the random graph
G(n,p) . Part (b) of Theorem 4.29 improves significantly Corollary 2.9 of
Thomason [79] which estimates from below the number of Hamilton cycles
in jumbled graphs.

Here is a very brief sketch of the proof of Theorem 4.29. To estimate
the number of perfect matchings in G, Frieze takes a random partition of
the vertices of G into two equal parts A and B and estimates the number
of perfect matchings in the bipartite subgraph of G between A and B . This
bipartite graph is almost surely super 2c-regular, which allows to apply
bounds previously obtained by Alon , Rodl and Rucinski [15] for such graphs.

Since each Hamilton cycle is a union of two perfect matchings, it follows
immediately that h(G) ~ m 2(G)/ 2, establishing the desired upper bound
on h(G). In order to prove a lower bound, let ik be the number of 2-factors
in G containing exactly k cycles, so that h = h(G). Let also A be the
number of ordered pairs of edge disjoint perfect matchings in G. Then

(13)
In/3J

A = L i 'ik ·
i=l

For a perfect matching M in G let aM be the number of perfect matchings
of G disjoint from M. Since deleting M disturbs s-regularity of G only
marginally, one can use part (a) of the theorem to get aM ~ (p - 2ctvfiv.
Thus

(14) A = "" aM ~ ((p _ 2ct~)2 ~ (p _ 2ctn! . _1_.c: v!2v 3n 1/ 2
MEG

Next Frieze shows that the ratio ik+dik can be bounded by a polynomial
in n for all 1 ~ k ~ k1 = O(p-2) , Ik ~ 5-(k-ko)/2 max {iko+l , iko} for all

k ~ ko+2,ko = 8(p-310g n ) and that the ratio (ikl+l + ...+ hn/3J)/ikl
is also bounded by a polynomial in n. Then from (13) , A ~ Op(l) L:~~il h
and thus A ~ nO(l) h . Plugging (14) we get the desired lower bound.

One can also show (see [1]) that the number of spanning trees t(G) in
super (p,c)-regular graphs satisfies:
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for small enough e > 0 and large enough n. In order to estimate from
below the number of spanning trees in G, consider a random mapping f :
V(G) -t V(G), defined by choosing for each v. E V its neighbor f(v) at
random. Each such f defines a digraph D f = (V, Af), Af = {( v, f(v)) :

v E V}. Each component of Df consists of cycle C with a rooted forest
whose roots are all in C. Suppose that D f has k f components. Then
a spanning tree of G can be obtained by deleting the lexicographically
first edge of each cycle in Df, and then extending the kf components to a
spanning tree. Showing that Df has typically 0 ( .;n) components implies
that most of the mappings f create a digraph close to a spanning tree of G,
and therefore:

t(G) 2: n-O(JTi)lf : V -t VI 2: n-O(JTi)(p - c)nn.

Fortheupperboundont(G)letD*={f: V-tV : (v,f(v)) EE(G) for

v =1= 1 and f(l) = I}. Then

To see this consider the following injection from the spanning trees of G
into D*: orient each edge of a tree T towards vertex 1 and set f(l) = 1.
Note that this proof does not use the fact that the graph is pseudo-random.
Surprisingly it shows that all nearly regular connected graphs with the same
density have approximately the same number of spanning trees.

For sparse pseudo-random graphs one can use Theorem 4.23 to estimate
the number of Hamilton cycles. Let G be an (n,d, .A)-graph satisfying the
conditions of Theorem 4.23. Consider the random subgraph Gp of G, where
p = (log n + 2 log log n) / d. Let X be the random variable counting the
number of Hamilton cycles in Gp. According to Theorem 4.23, Gp has
almost surely a Hamilton cycle, and therefore E[X] 2: 1 - 0(1). On the
oth er hand, the probability that a given Hamilton cycle of G appears in Gp

is exactly pn. Therefore the linearity of expectation implies E[X] = h(G)pn.
Combining the above two estimates we derive:

( )

n

1 G 1 - 0(1) d
~( ) 2: pn = (1+ 0(1)) logn

We thus get the following corollary :
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Corollary 4.30 [42J . Let G be an (n, d, A)-graph with

Then G contains at least (( (~) I .) n Hamilton cycles.
1+01 ogn
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Note th at the numb er of Hamilton cycles in any d-regular graph on
n vertices obviously does not exceed d" , Thus for graphs satisfyin g the
conditions of Theorem 4.23 the above corollary provides an asymptot ically
tight estimate on the exponent of the number of Hamilton cycles.

5. CONCLUSION

Although we have made an effort to provide a systematic coverage of the
current research in pseudo-random graphs, there are certainly quite a few
subj ects that were left outside this survey, due to the limitations of space
and time (and of the authors' energy). Probably the most notable omission
is a discussion of diverse applicat ions of pseudo-random graphs to questions
from other fields, mostly Extremal Graph Theory, where pseudo-random
graphs provide the best known bounds for an amazing array of problems.
We hope to cover this direction in one of our future papers. Still , we would
like to believe that this survey can be helpful in mastering various results
and techniques pertaining to this field. Undoubtedly many more of them
are bound to appear in the future and will make this fascinating subject
even more deep, diverse and appealing.

Acknowledgment. The aut hors would like to thank Noga Alon for many
illuminating discussions and for kindly granting us his permission to present
his Theorem 4.10 here. The proofs of Theorems 4.1, 4.3 were obtained in
discussions with him.
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BOUNDS AND EXTREMA FOR CLASSES OF GRAPHS AND

FINITE STRUCTURES

J. NESETRIL*

We consider the homomorphism (or colouring) order C induced by all finite struc
tures (of a given type; for example graphs) and the existence of a homomorphism
between them. This ordering may be seen as a lattice which is however far from
being complete. In this paper we study (upper) bounds, suprema and maximal
elements in C of some frequently studied classes of structures (such as classes
of structures with bounded degree of its vertices, degenerated and classes deter
mined by a finite set of forbidden substructures) . We relate these extrema to cuts
and duality theorems for C. Some of these results hold for general finite relational
structures. In view of combinatorial problems related to coloring problems this
should be regarded as a surprise. We support this view also by showing both
analogies and striking differences between undirected and oriented graphs (i.e.
for the easiest types) This is based on our recent work with C. Tardif.

We also consider minor closed classes of graphs and we survey recent results
obtained by P. Ossona de Mendez and author. We show how the order setting
captures Hadwiger conjecture and suggests some new problems.

1. INTRODUCTION

Graph theory receives its mathematical motivation mostly from two areas
of mathematics: algebra and geometry (topology) and it is fair to say that
graphical notions stood at the birth of algebraic topology (in the begin
ning called combinatorial topology) . Consequently, various operations and
relations for graphs stress either its algebraic aspects (e.g. colourings and

'Supported by Grants LNOOA56 and IM0021620808 of the Czech Ministary of Educa
tion .



264 J. Nesetii!

homomorphisms, various products and spaces associated with graphs) or
its geomet rical aspects (e.g. drawings, cont ractions, embeddings). It is only
natural that the key place in modern graph theory is played by (fortunate)
mixtures of both approaches as exhibited best by various modifications of
the notion of graph minor. From the algebraic point of view perhaps the
most natural notion which capt ures comparision of two grap hs is that of a
homomorphism.

A hom omorphism G -t H is a mapping f : V (G) -t V (H) which
satisfies f (1, )f(v ) E E(H) for any edge uv E E(G). (We shall consider both
directed and undirected graphs. T his will be always clearly specified. Some
of the results hold for general finite st ruct ures. Sect ion 5 is devoted ent irely
to th em.)

The centra l notion of this paper is the quasiorder (and partial order)
induced by the existence of a homomorphism. This notion and its context
is illustr ated on the example of graphs.

Given graphs G, H we denote by G ::; H the existence of a homomor
phism G -t H. Clearly ::; is a quasiorder. If we consider isomorphism typ es
of minimal retr acts (or cores, see [16]) then we obtain a par ti al order. This
quasiord er (and partial order) is called colouring order (or hom om orphism
order, [1 6]) and it is denoted by C. We denote by G '" H the equivalence
given by G ::; H ::; G. We also denote by < the strict version of ::; (t hus
G < H iff G :::; H and G "" H) . For a graph H we denote by CH the princi
pal ideal determin ed by H: CH = {G; G ::; H}. CH is also called a colour
class. This name is justified by interpreting homomorph isms as generalized
colourings: Indeed, for undirected graphs a homomor phism G -t J(k is a
just a (prope r) k-colouring of grap h G and thus a homomorphism G -t H is
also called a H -colouring. Consequently, CH is the class of all H-colourable
graphs; hence the name colour class. It follows that the question whet her
G ::; H is difficult to decide (and it is NP-complete in a very strong sense) .
We refer to [14, 16, 6, 9J as a background information. Our graph-theory
terminology is st andard .

It is perhaps surprising how many fine combinatorial questions are cap
tured by order-theoretic properties of the colouring order C. In this paper
we concentrate on extr emal elements of this order: greatest and maximal
elements, suprema and (upper) bounds in genera l. It appears that these
ext remal graphs capt ure various problems which are as remote as duality
theorem s ([23]) and celebrated Hadwiger conject ure . These interpret ations
lead also to some, hopefully interestin g, problems.
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Given a class K. of graphs it is usually a difficult question to find a graph
H which is maximal (or greatest, or even supremum) of lC in C. Among
other things such result yields maximal chromatic number of a graph in K:
As these concepts are the subject of this paper we recall the corresponding
definitions in the setting of colouring order C:

A graph H is said to be maximal of lC if H E K. and no graph G E lC
satisfies H < G.

A graph H is said to be an (upper) bound of K. if every graph G E K.
satisfies H ::; G. If in addition H E lC then H is said to be greatest graph
in K. (or maximum of lC).

A graph H is said to be supremum of K. if G ::; H for every G E lC and
if for every graph H' < H there exists a graph G E K. such that G i H'.

For example, in this setting, the 4-colour theorem says that K 4 is the
greatest graph in the class of all planar graphs. This obviously cannot be
improved. On the other hand , Grotzsch's theorem says that K 3 is an upper
bound of the class of all planar K3-free graphs. However, as we will see,
this may be improved as K 3 fails to be a supremum of this class.

This is our motivating example . By proving that k is the maximal
chromatic number of a class K. we claim that the graph K k is an upper
bound for lC (in the coloring order C) while the graph Kk - 1 fails to be such
upper bound. But the homomorphism order is dense and thus it is natural
to ask if there exists a smaller upper bound.

In this paper we determine suprema and greatest elements of some of
the frequently studied classes of graphs (compare [6]). These include classes
Forb (F) where F is a finite set of connected graphs: We denote by Forb (F)
the class of all finite graphs G which satisfy FiG for every F E F.
Alternatively, Forb (F) is the class of all graphs which do not contain a
homomorphic image of a graph from F. Or we could say that Forb (F) is
the class of all F -free graphs. In yet another way we can say that Forb (F)
is the class of all graphs defined by forbidden homomorphisms from a finite
set of graphs F. In our context these are natural classes of graphs. A bit
surprisingly all related questions can be solved for classes Forb (F) . For
undirected graphs this is much easier than for directed graphs where we use
strong results obtained jointly with C. Tardif [23, 24].

As an approximation to the minor closed classes we also consider ex
trema relativized by classes of bounded degree graphs and classes of d
degenerated graphs. While for degenerated graphs we have a full discussion
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of extremal properties for bounded degrees this seems to be a very difficult
problem.

In a way thi s line of research presents a development of inve rse program
for graph colouring problems: while in the usual setting one investigat es
chromatic number and similar characteristics of a given class of graphs here
we are interested in the structural properties of the bounds themselves.
Random graphs (and high-chrom atic sparse) graphs provide us with rigidity
properties.

In this paper we also generalize some of the algebraic constructions
to finite relational models in the full generality. Such a generalizations
is not for its own sake. Homomorphisms of relational structures and the
corresponding H -coloring prob lem is equivalent to CSP problems and thi s
genera l approach led recent ly to a new approach to classical prob lems such
as dichotomy conjec ture. For more on this see [9, 1, 13J. In Section 2 we
briefly introdu ce thi s general framework .

The paper is organized as follows: In Section 2 we start with genera l
systems of ty pe b. and in Section 3 we prove non-existence of proper suprema
for classes of bounded degree b.-systems in the full genera lity. Sections 4,
and 5 deal with graphs. In Section 4 we consider d-degenerated graphs
and we display th e st riking difference between classes of d-degener ated
graphs and classes of bounded degree graphs. We det ermine the suprema
of degenerat ed classes in every color class. In Section 5 we consider minor
closed classes and show the relevance of a recent result [20] to Hadwiger
conjecture via our order-theoret ic set t ing. It is also here where we introduce
the cuts and th eir characterization problem. In Section 6 we return to b.
systems and completely characterize ext rema for classes of ty pe Forb (F)
for a finite set F of connected graphs. This is related to our joint work with
C. Tardif ([23, 24]). In Section 5 we consider oriented graphs and we prove
the main result on classes Forb (.1") and in Section 6 we conclude with some
remarks and prob lems.

2. RELATIONAL ST RUCTU RES

A relational struct ure of a given type generalizes the notion of a relation
and of a graph to more relations and to higher (non-binary) arit ies,

A type b. is a sequence (6i ; i E 1) of posit ive integers . A relational system

A of type b. is a pair (X, (Ri ; i E 1)) where X is a set and R; E X 8i ; that
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is R; is a Di-nary relation on X. In this paper we shall always assume that
X is a finite set (thus we consider finite relational systems only) .

The type ~ = (Di; i E 1) will be fixed throughout this paper. Note that
for the type ~ = (2) relational systems of type ~ correspond to oriented
graphs, the case !::i. = (2,2) corresponds to oriented graphs with blue-green
colored edges. Relational systems (of type ~) will be denoted by capital
letters A, B , C, . . .. A relational system of type !::i. is also called a ~-system.

If A = (X, (Ri; i E 1)) we also denote the base set X as A and the relation
R, by Ri(A) . Let A = (X,(Ri ; i E I)) and B = (Y,(Si ; i E I)) be !::i.
systems . A mapping f : X -t Y is called a homomorphism if for each i E I
holds: (Xl, "" Xed E Ri implies (J(xt} , ... ,f(x.sJ) E Si.

In other words a homomorphism f is any mapping F : A -t B which
satisfies f (u;(A)) C s;(B) for each i E I . (Here we extended the definition
of f by putting f(XI, "., Xt) = (J(xt}, ... , f(xt)) .)

For !::i.-systems A and B we write A -t B if there exists a homomorphism
from A to B. Hence the symbol -t denotes a relation that is defined on the
class of all !::i.-systems. This relation is clearly reflexive and transitive, thus
induces a quasi-ordering of all ~-systems. As is usual with quasi-orderings,
it is convenient to reduce it to a partial order on classes of equivalent objects:
Two !::i.-systems A and B are called homomorphically equivalent if we have
both A -t Band B -t A; we then write A rv B .

The relation -t induces an order on the classes of homomorphically
equivalent !::i.-system, which we call the homomorphism order and we denote
it again by C (suppressing type !::i. which will be clear from the context) .
Other categorical notions which were introduced in Section 1 are defined
analogously as in the case of graphs. Particularly the core of a ~-system

is defined analogously as for graphs. The operations of sum, product and
exponentiation reveal the rich categorical structure of the homomorphism
order:

• The sum A + B of A and B has the property that for any !::i.-system
C, we have A + B -t C if and only if A -t C and B -t C.

• The product A x B of A and B has the property that for any zx-systcm
C, we have C -t A x B if and only if C -t A and C -t B.

It follows that the homomorphism order is a distributive lattice. This
categorical description will be more relevant to us that the actual (i.e. inner)
description of sums and products, which is bit technical though standard.
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Some further notions for graphs and their classes may be translated to
relational systems. So we shall speak about cores, classes Forb (F) , bounds,
suprema etc . for D.-systems. The type D. will be always properly understood
from the context. We add the following two notions which relate 6.-systems
and graphs:

Let A = (X, (R i ; i E 1)) be a 6.-system. The graph-shadow of A is th e
graph (X, E) where xy E E providing there exists i E I and (Xl, " " Xt) E R,
such that X = Xu and y = Xb for distinct indices a i= b. The graph shadow of
A will be denoted sh(A). Note that sh(A) may have loops . We say that D.
system A is connected if its shadow sh(A) is connected. Alternatively, A is
connected if it cannot be written as a sum B +C. Degree of a vertex X E A
is the degree of X in sh( A). (This may sound as slightly unusual definition
but we are interested in bounded degrees of D.- systems for a fixed type 6.
and thus our definition suffices.)

Given 6.-system A = (X,(Ri; i E 1)) we also define incidence graph

Inc (A) as the bipartite graph (X ULiEf Ri ,E) where xe E E iff x E e E R;
for some i E I . Here we denoted by LiEf R, the disjoint union of sets
Rs; i E I .

3. BOUNDED DEGREES

Let type 6. be fixed throughout this section. Denote by D.d the class of all
D.-systems A with maximal degree ~ d. For a finite set F = {Fl , . . . , Fd
of connected graphs denote also 6.d(F) the class of all 6.-systems A E D.d
with F; -+t G for i = 1, . . . , t. Thus 6.d(F) = 6.dn Forb (F) .

Celebrated Brooks theorem states that while Kd+l is a bound (and
indeed greatest element) of the class (2)d by forbidding Kd+l this may be
improved to a better bound Kd. It follows that Kd+l fails to be supremum
of th e class (2)A {Kd+d) (which here means just graphs). This is not
an accident and a similar statement holds in general thus yielding a whole
hierarchy of Brook's type bounds.

We say that a A is a proper supremum of a class K of zx-systems if A is
supremum and A f:. J( (as we are working with equivalence classes the later

condition of course means that A r;/J B for every 6.-system B E K). The
following is the main result of this section:
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Theorem 3.1. The class 6.d(F) has no proper suprema for any d 2 1 and
any finite set F of connected 6.-systems.

Motivated by the above interpretation of Brooks theorem Theorem 3.1
means that one cannot hope to prove the "best Brooks-type" bound. We
shall later see that this statement is in a sharp contrast with properties of
all structures and even of classes of d-degenerated graphs (see Section 3).

Advancing the proof of Theorem 3.1 we state first the following easy:

Lemma 3.2. Let B, B' be bounds of a class K of 6.-systems. Then B x B'
is also a bound.

The key of the proof of Theorem 3.1 is the following construction which
extends [3, 8]:

Proposition 3.3. The class 6.d(F) has a bound B E Forb (F) .

Proof. Put F = {Fl , . . . , Fd, let D denotes the maximal size of Fi , i E I
and let fJ denotes maximal fJi ; i E I (i.e. the maximal arity of relation in
our 6.-systems). Put a = fJD and b = d2a+ l . Let A = (X, (Ri; i E 1)) E
6.d(F) . By our assumption all vertices of X have degree j, d. Consider the
(auxiliar) graph defined by xy E E iff the distance of x and y in sh(A) is
at most 20,. It follows that that the graph (X, E) has all vertices of degree
< b and thus it may be properly colored by b colors. For the shadow graph
sh(A) this in turn means that there exists a coloring c : X ---. {1, . .. , b}
such that any two vertices x, z of sh(A) at distance at most a get different
color. Particularly any subgraph of sh(A) induced by all vertices of sh(A)
at distance at most a from a fixed vertex is colored by distinct colors only.
This property may be used for a construction of a bound C E Forb (F) :

(A 20,- ball is a 6.-structure A together with a fixed vertex T such that
all other vertices of A have distance < 20, from T in sh(A) .)

The vertices of C are all 2a-balls (B, T) E 6.d(F) where B C {l, ... , b}.
We put ((Bi,Tt}, ... ,(BJi ,TJJ) E Ri(C) iff the following holds (for every
i E 1):

i . (ri , ... , rJ;) E Ri(Bj ) for all j = 1, . . . , fJi·

ii. For any i .1 ::; j ::; fJi all the vertices of ts, of distance < a from rj

belong as well to any other Bjl, 1 ::; j' ::; fJi ;

Clearly C is a 6.-system. We already indicated all the essential fact
which yield that C is a bound of the class 6.d( F): Given a system A E 6.d( F)
and a mapping c : X ---. {1, ... , b} as above we simply define the mapping
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f : X --t B by putting f( x) = c(B2a , x ) where (B2a , x) is the 2a-ball in A
induced by all vertices of distance < 2a from x and by c(B 2a , z ) we denoted
its image by the map c (i.e. isomorphic copy of (B2a , x) induced on the set
{c (y); y E B 2a } ) . It follows from conditions i. t hat f is a homomorphism
A --t C.

Now we prove that C E Forb (F). Toward s thi s end let f : F --t C be a
homomorphism for an F E F . Pu t F = {UI , ... ,ud and f( uj) = (Aj , rj) .
According to the definition each of the vertice s Ui has distance < D from
'U I and thus each of the verti ce rl , . .. .r, is reached from rl by a walk of
lengt h < 8D . According to the ii . we get that {rl , " " rd is a subset of
Al and thus (by ii. of the definition of edges of C) we get that f indu ces a
homomorphism F --t Al which is a contradict ion. •

The statement of T heorem 3.1 will be proved in the following more
technical form :

Theorem 3.4. Let F be a finite set of connected tl-stmctures. Let C be a
bound for the class tld(F), C ~ tld(F). Then there exists a bound C' for
tld(F) with C' < C.

Proof. In the situation of Theorem 3.4 let C be a bound. If C is connected
than we can consider the system F U {C} = F'. It is easy to see that
Forb (F) = Forb (F' ) and using Proposition 3.3 there exists a bound C' of
tld(F') in Forb (F') . But then obviously C' < C .

Thus assume that C is a disconnected core. Let K be a component of C
such that J{ ~ tld(F). As before put F U {J{} = F' . Applying P roposition
3.3 and Lemma 3.2, there exists a tl-system C' such that C' is a bound
of tld(F' ), C' E Forb (F') , and C' ~ C. But the definit ion of F' in fact
implies C' < C . Thus it suffices to prove that C' is also a bound for the class
tld(F ). In fact we prove aga in tld(F ) = tld(F' ). One direct ion is clear :
tld(F) :J tld(F' ) (as F c F' ). In the reverse direction assume contrary : let
A E tld(F) \ tld(F'). It is J{ ~ A ~ C and thus there exists a component L
of A such t ha t J{ ~ L. Now A ~ C and thus J{ ~ L ~ J{' for a component
J{' of C. However we assumed that C is a core and thus J{ = J{' and thus
also J{ = L. This is a contradiction as J{ ~ tld(F) while A and thus also
L E tld(F). •

It follows that for classes of form tldnForb (F) a supremum exists only
if there exists H E tld n Forb (F) such that .6.d n Forb (F) c CH ; t his means
that H is the greatest element of 6. d (F ). However the st ructure of classes
tld n Cn is far from obvious. For example th e following two problems have
been isolated;
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Problem 3.5 (Independence problem). Let d ~ 3. Is it true that for every
graph G E fld , G < K d there exists a graph G' E t:..d such that neither
G :S G' nor G' :S G (i.e. graphs G and G' are incomparable graphs in t:.. d)?

This problem is related to the complexity of H-colourings of bounded
degree graphs which have been studied e.g. in [5, 11].

Problem 3.6 (Pentagon problem). Does there exists an 9 such that any
cubic (Le. 3-regular) graph G with girth 9 is homomorphic to C5 (Le. is
C5-colourable)?

Partial results related to this problem were obtained in [28, 10, 11, 7].
One should note that for C2k + I , k > 2, (instead of C5 ) the answer is
negative.

4. DEGENERATED CLASSES OF GRAPHS

In this section we consider undirected graphs only. The degenerated graphs
are low-density graphs and as such they serve as an approximation for
coloring problems of bounded degree- and minor-restricted classes of graphs.
We shall see that their homomorphism behaviour differs very much from
these classes (which are discussed in Sections 3 and 5). Recall that a graph
G = (V, E) is said to be d-degenerated if there exists a linear ordering
VI < V2 < ... < Vn of vertices of G such that for every i holds

Alternatively, a d-degenerated graph can be defined by the condition

8(G'):Sd

for every subgraph G' of G (8(G) denotes the minimal degree of a vertex
of G). (Yet another way is to define d-degenerated graphs by the hereditary
edge-densi ty.)

The class D EG 1 is just the class of all forests . For d > 1 these classes
are more interesting. Similarily as in the previous section we denote by
DEGd(F) the class of all d-degenerated graphs which belong to the class
Forb (F). While these definitions are formally similar the extremal proper
ties of these classes are strikingly different .
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Theorem 4.1. Let d 2:: 2. Then the following holds:

i. ]{d+1 is the greatest graph in DEGd.

ii . For every finit e set F of non-biparti te connected graphs the class
DEGd(F) has supremum ]{d+1.

Corollary 4.2. For any d 2:: 2 and any proper subclass DEGd(F) of
b.d (wh ere F is a finite set of non-bipartite connected graphs) th e class
DEGd(F) fails to be bounded by an F-free graph.

Note that for sets F which contain a bipar tite graph the situation is
much simpler and different - ]{1 is a bound.

P roof. Clearly it suffices to prove ii . Let d 2:: 2 and F be as assumed.
Let P denot es the set of all non-bipartite blocks of graphs belonging to
:F. As any graph F E F contains a non-bipartite block it follows th at th e
class DEGd(P) is a subclass of the class DEGd(F) . Put l the maxim al
number of vertices of a graph belonging to F'. Now let H be a graph ,
H < ]{d+1 ' Put k = IV (H) I · We shall const ruct a graph G with the
following properties:

1. G has girt h > I (and thus par ticularly FiG for any F E P and
consequently also FiG for any F E F).

2. G is d-degenerated;

3. Any homomorphic image of G with at most k vertices contains ]{d+1 '

It follows from 3. th at G i H and thus H fails to be a bound of
DEGd(F).

The graph G will be const ructed by means of Descartes-Tutte-type of
construc tion as follows (compare [10]):

We shall const ruct graphs G1,G2 , . . • ,Gd+1; Gd+1 will be the desired
graph G . Put G1 = K1 and G 2 = ]{2 . In the induction step assume th at
G, is const ructed. Put IV(Gdl = Pi and let (Xi+1,Mi+d be Pi-uniform
hypergraph without cycles of length j; I and with chromatic number > k (it
exists by [4, 12]). For every M E Mi+1 take an isomorphi c copy Gt I

of Gi and assume V(Gt I ) n X i+1 = 0, V(GtI
) n V(GtI') = 0, for all

M # M' E M i+1' Finally for every M E M i+1 fix a bijection 7TtJ-l
V(Gt I ) --t M . Define the graph Gi+1 = (Vi+1 , Ei+d as follows:

V1+1 = X i+1 UU(V(Gt I
) ; M E Mi+d

Ei+1 =U(E(GtI
) ; ME Mi+I) u { V7Tt~1 (v); v E V(GtI ) , ME Mi+I} .
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GH I does not contain cycles of length S; l (in fact, by our choice of
GI and G2 it does not contain cycles of length S; 31; we do not optimize
here). We also prove by induction for i = 1,2, ... ,d + 1 that G, is an
U- 1)-degenerated graph. In the induction step assume that G, has an
(i - I)-degenerated ordering. For V(GHd choose such an ordering which
satisfies x < v for all x E XHI and v E V(Gfl) and coincides on any
set V(Gfl) with (i - I)-degenerated ordering (of Gfl) . Clearly this is an
i-degenerated ordering of GH I.

Finally, let f : V (Gd+ i) --t H be a homomorphism, IV (H) I S; k. By
the downward induction for j = d + 1,d, ... , 1 we prove that for every j
there exists Mj E Mj such that f restricted to the set Mj is a constant .
However this is nearly obvious as the building blocks of our construction 
the hypergraphs (Xi, M j) - have all chromatic number> k. As every M,

is joined by an edge to all vertices of V (G;~I) we get that tile homomorphic
image of Gunder f contains [{d+l, which is a contradiction. •

We use properties of degenerated classes of graphs again in Section 6.

5. MINOR CLOSED CLASSES OF GRAPHS

A class of graphs IC is said to be mitior closed if it contains all minors
of any of its member. We say that IC is proper' if it does not contain all
graphs. Note that all graphs in a proper minor closed class of graphs are
d-degenerated for a d = d(K) (by Mader's Theorem) . Consequently any
minor closed class of graphs is bounded (in C). However extremal graphs
are much more difficult for minor closed classes then for bounded degree and
d-degenerated classes. One of the few general results was obtained recently
[20] as a culmination of previous efforts [17, 18, 19]. It is the analogy of
Theorem 3,1 (for minor closed classes instead of classes of bounded degrees) :

Theorem 5.1. Let IC be any proper minor closed class of graphs. Let F
be a finite set of connected graphs. Then the class Forb (F) n IC (of all F
free graphs from IC) is bounded by a graph from Forb (F) (i.e. by a F-free
graph).

Explicitly, there exists a graph H = H(F, IC) with the following prop
erties:

i. F 1:. H for every F E F;
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ii . G '5: H for any G E K n Forb (F).

A dditionally we may assume that th e chromatic number of H is equal
to the maxim al chromatic number of a graph in K .

The proof of this statement is presently not easy and in fact the proof
does not yield an explicite bound H. Let us just remark that T heorem
5.1 (and its special case proved already in [1 9]) implies that the Cr otzscli's
theorem (which asserts that K 3 is a bound for all t riangle-free planar graphs)
does not yield the best bound : By virtue of T heorem 5.1 there exists a bound
H satisfying H < K 3. The bounds for minor closed classes are relat ed to the
Hadwiger conjecture which we state in three ways: i . is the usual formulation
and ii . is a formulation in the spirit of thi s paper. We also add a localised
version i i i . of i i .. (A class of graphs is said to be principal ideal in th e minor
order if the class consists from minors of a graph.)

Conjecture 5.2 (Hadwiger) .

i , For every graph G holds x( G) '5: h(G) where h(G) is the maximal
complete graph which is a minor of G.

ii . Any proper minor closed class K of gra phs has the greatest element
which is a complete graph.

ii i . Any principal ideal of the minor quasiorder has greatest graph in
the homomorphism order and it is a complete graph.

iu. Any principal ideal of the minor quasiorder has greatest graph in th e
homomorphism order.

It is easy to see that the first three forms of Hadwiger conjecture are
indeed equivalent : ii , => i : holds as for any graph G we can apply i . to
the corresponding principal ideal. If H is th e greatest element of K then
X(G) '5: X(H) and thus ii. implies X(G) '5: h(G).

Converesely, assume i. and let K be a proper minor closed class. Let
H be a graph in K with the maximal chromatic number, put k = X(H).
Then K is bounded by Kk and by ii . applied to the graph H we know that
Kk E K. Th e equivalence of i. and ii i . follows similarly. The equivalence of
i. and iv . was recently (independent ly) observed by Ossona de Mendez and
aut hor [19] and by Nasseraser and Nigussie [1 5] ; see also [9] .

In view of results of the previous two sections perhaps one could consider
th e following weaker problems:

Does a proper minor closed class of graphs has a greatest element?

Does a proper minor closed class of graphs has a supremum?
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At some instances these weaker forms are more accessible and true.
However in the full generality there is an evidence that they are as difficult as
the Hadwiger conjecture. We formulate this more precisely in the following
statement. We say that a proper minor closed class K is connected if it is
determined by a set of connected forbidden minors. We then have

Proposition 5.3. For every connected proper minor closed class K are the
following three statements equivalent:

i . Hadwiger conjecture holds for K;

ii . K has a greatest element (in the coloring order C);

iii . K has a supremum (in the coloring order C).

Proof. Clearly i . implies both ii . and iii .. The equivalence of i. and ii . is
a recent result of Nasseraser and Nigussie [15] and of [19]. We prove that
iii. implies i.. This will follow from the following which is perhaps of an
independent interest:

Claim. Every connected proper minor closed class K. does not have a proper
supremum (in C).

We show that this is a consequence of Theorem 5.1: Assume contrary,
let H be a proper supremum of K, let K be a connected component of
H , K ~ K. (K exists as K. is a connected minor closed class). Put
K' = K n Forb ({K}). According to Theorem 5.1 there exists an K-free
bound H' of K' with H' ::; H. But then of course H' < H. It remains to
check that H' is also a bound for K. However K = K'. (This is similar to the
proof of Theorem 3.4: Assume there exists G E lC \ lC', by our assumptions
we may assume that G is connected. However then K ::; G ::; H but the
only possibility for the second inequality is G ::; K. Thus K rv G and K E lC
a contradicion.) •

Let us also note that by Theorem 5.1 any proper minor dosed class of
graphs is bounded by a graph H with clique number w(H) = h(K) where
h(K) is the largest clique contained in K which may be interpreted as yet
another approximation to Hadwiger conjecture.

Another interpretation of restricted extrema for classes of graph is by
means of cuts which are defined as follows:

Let K be a class of graphs. A finite subset C of K is said to be a cut if
for every graph G E K there exists a graph H E C such that either G ::; H
or H ::; G and C is minimal with this property. In the other words a set
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C is a cut if any graph in K is comparable with at least one element of C .
If ICI = 1 then C is called I- cut. It is easy to see that {Kd and {K2 } are
the only finite minimal cuts for the class of all (undirected) graphs. This
we state in the following form as

Theorem 5.4. Let G I , G2 , •.. , G, be a set of non-bipartite graphs. Th en
there exist s a graph G such that G and Gi , i = 1,2, . .. , t are incomparabl e.

P roof. Let l denotes the maximal number of vertices of graphs Gi , i =
1,2, . . . ,t . It suffices to consider any graph G with X(G) > l and with the
girt h > l . •

In this context one should also mention the following result for countable
graph proved recently in [22J:

Theorem 5.5. K I J K 2 and the infini te complete graph K w are the only
minimall-cuts for the class of all countable graphs.

As opposed to the finite case count able graphs allow finite cuts of any
size. And contrary to the l- cuts, the minimal cuts of size t > 1 are abundant:

Theorem 5.6. For every t > 1 there are (for countable graphs) infini tely
many minimal cuts each of size t.

Proof. Let t > 1 be fixed. Let FI , F2 , .. . , Ft - l be finite connecte d graphs
which are pairwise incomparable in C. We can use Theorem 5.4, a random
(t - I) -tuple of graphs will do as well. Now we can apply a result of
[2J which gives th e existence of a counta ble graph H which is universal
for the class Forb (FI , F2 , . .. , Ft- l ) (when considered as the class of all
countable graphs) . Explicitly: H is a graph such that F; i H for every
i = 1, , t - 1 and if G is a countable graph satisfying F; i G for every
i = 1, , t - 1 then G is an induced subgraph of H . However then th e set
C = {FI , F2 , ... , Ft-l , H} is obviously a cut in the class of all countable
graphs. It is also easy to check th at C is a minim al cut . •

This proof is perhaps more interesting th an the statement of Theorem
5.6: presently there are no other known minimal cuts for infinite graphs.
This suggest the following probl em (which is also supported by some results
for oriented graphs (see Section 4):

Problem 5.7. Is it t rue that any minimal cut of size at least 2 for the class
of all countable graphs contains always a finite graph?
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6. BOUNDS, SUPREMA AND DUALITIES FO R FI NITE STRUC TURES

In the previous two sections we considered undirected grap hs only. It is
a special feature of this area that there is a big gap between directed and
undirected graphs. We briefly review some recent results for directed grap h
which are relevant to the context of this paper. At the end we return to the
~-systems and prove some analogous results for this case.

First we consider classes For'b(oF) (of all directed graphs G which do
not contain any F E Forb (oF) with F ::; G). While for the undirected
graphs these classes are bounded in trivial instances only for directed graphs
we have a much richer an interesting spectrum of results. Recall that an
oriented graph G is said to be balanced iff every cycle in G has the same
number of forwarding and backwarding arcs. In terms of homomorphisms
this is the same as to say that there exists a homomorphism G --t Pn where
fin is the directed path of length n (i.e. with n + 1 vert ices). For a balanced
grap h G we also put al(G) = min {n; G --t Pn } (algebraic length of G).

We start with the following:

Theorem 6.1. For a finite set F of graphs the following statements are
equivalent:

i . Th e class Forb (oF) is bounded;

ii. At lest one of the graphs F E F is balanced.

Proof. This is yet anot her version of sparse high chromatic graphs. ii .
implies i . as the chromatic number of graphs in Forb (oF) is bounded by
1 + al(F) for a balanced F E F. Conversely, suppose that no F E F
is balanced. Altern atively we know that any homomorphic image of any
F E F contains a cycle. Consider any orientat ion Gof a high chromatic
graph G without short cycles. It follows that GE Forb (oF) and thus there
is no bound for this class. _

T he characterization of classes of form Forb (oF) with a greatest element
is a more difficult resul t:

Theorem 6.2. For a fini te set F of graphs tile following statements are
equivalent:

i. The class Forb (oF) has greatest element;

ii . F E F is a set of oriented trees.
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Theorem 6.2 is proved in [23] in a different context which we now outline:
Let F = {FI , F2 , . • • ,Fd be a finite set of graphs and suppose that H is
the greatest element of the class Forb (F) . These facts may be expressed
equivalently by the validity of the following statement:

For every graph G holds

Fi -.'+ G, i = 1, . .. , t ¢::? G -; H.

Such statement is called a Homomorphism Duality. H is called the dual
of the set {FI , ... , Fd (up to the homomorphism equivalence the dual is
uniquely determined). The main result of [23] characterizes all finite sets of
graphs which have dual graph - these are just sets of finite trees (and sets
which are homomorphically equivalent to them) .

Let us remark that Theorem 6.2 may be seen as characterization of
all Gallai-Roy-Vitaver (and Hasse) - type theorems. (Callai-Hasse-Roy
Vitaver theorem corresponds to the case F = {Pn } . In this case the dual
graph is the transitive tournament with n vertices.) This point of view is
taken in [24] .

Let us finally discuss the existence of suprema for the classes Forb (F) .
Here we have also a full solution which is perhaps surprising (and combines
several techniques described above):

Theorem 6.3. For a finite set F of connected graphs the following state
ments are equivalent:

i . The class Forb (F) has supremum;

ii. At least one of the graphs F E F is balanced.

In the other words every bounded class Forb (F) of oriented graphs has
a supremum.

Proof. Clearly it suffices to prove ii. :::;. i . Put F = {FI, F2,"" Fd. Denote
also by F' the class of all homomorphic images of graphs Fi which are trees.
F' is a non-empty set. Consider the class Forb (F') and let H = Hp be the
greatest element of Forb (F') (i.e. H is the dual of F'). We prove that His
supremum of Forb (F) . Clearly Forb (F) is a subclass of Forb (F') and thus
G ::; H for every G E Forb (F). Now suppose that A is a graph satisfying
A < H; let k be the number of vertices of A. Let G be the graph with the
following properties:

1. G -; H ;

2. G -.'+ A;
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3. G does not contain cycles of length j, k.

The existence of graph G will not be proved here as it follows from
(oriented version of) Sparse Incomparability Lemma which has been isolated
in several papers, see e.g. [21 ,25,16] . It suffices to prove that G E Forb (F) .
(This shows th at A is not a bound of Forb (F) and thus H is indeed
supremum of the class Forb (F) .) Assume cont rary: let f : Fi -t G. Th e
homomorphic image f(Fi ) has at most k vertices and thus it induces a tree
in G. Therefore f(Fd E .1". It follows that also G ~ Forb (F') and thus (by
homomorphism duality) G -f-t H. This is a cont radiction. •

At the end of this paper let us return to the general ~-systems .

Let ~ = (Oi; i E 1) be a fixed type, assume without loss of generality (of
this section) that Oi 2:: 2. A special role is played by the following zx-systcm:
all-loop system is the system L where L. = {1} and Ri(L) = {(1, .. . , 1)} for
every i E I (the all-loop system will be always denoted by L). The all-loop
system is the only (up to homomorphism equivalence) absolute retr act for
~-systems :

Proposition 6.4. A rv L if and only if A contains L as a subsys tem.

We say th at a class K is bounded if there exists a ~-system C ~ L such
that A ::; C for every A E K. Which classes K are bounded? Thi s is a non
trivial question even for finite undir ected graphs (see e.g. problems stated in
[6 , 11]). We can completely solve these questions for classes Forb (F) where
.1' is a finite set of connected ~-systems. We shall need a generalizat ion
of a balanced graph : We say th at a ~-system A = (X, (Ri ; i E 1))
is balanced if it is homomorphic to a ~-tree. (Recall, A is said to be a
tree if its incidence system Inc (A) is a t ree. (Clearly for oriented graphs
both definitions coincide. One can devise also more explicite definition of a
balanced ~-system but this will not be needed.)

Theorem 6.5. For a finite set .1' of ~-systems the following statements are
equivalent:

i . Th e class Forb (F) is bounded;

ii . At least one of the sys tems F E .1' is balanced.

Proof. i , implies ii. similarly as in the proof of Theorem 6.1: Suppose
contrary, let every F E .1' be an unbalanced ~-system . Put ti = max { IFI;
F E F} and let the class Forb (F) be bounded by a system B with N
verti ces. Denote by k the sum of all Oi , i E I , and consider a k-uniform
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hypergraph (X, M) with chromatic number> N not containing cycles with
at most n vertices. Modify (X, M) to a .6-system A = (X, (Ri ; i E 1))
by inserting for every edge M E M a collection of III mutually disjoint bi
tuples, i E I. Clearly A ..".. B (as any homomorphism f : A ~ C to a a
system C with at most N points implies that C contains an all-loop). On
the other hand any subsystem of A with at most n points is necessarily a
system without cycles. Thus A E Forb (F) , a contradiction.

Conversely assume that the class Forb (F) is unbounded. We use the
following family K(.6, X , io) of complete systems as our scale class: the
vertices of K = K(.6 , X, io) is the set X and Ri(K) = XJi for all i i= 'to
while Rio(K) = XJio \ { (x, . . . ,x); x E X}. (I.e. Rio(I() is the set of all
non-constant bio-tuples). For X = {I, 2, .. . , N} we put briefly K(N, i) for
K(!:i., X, i) . None of the systems K(N, i) is a bound of Forb (F) . Thus for
every N, i there exists a .6-system A(N,i) E Forb (F) such that A(N,i) .."..

K(N, i) . This implies that the shadow graph sh( A(N,i)) has chromatic
number> N but we shall need more. Let i E I be fixed. Fix two indices
1 ::; a < b ::; bi. By A(N,i)(a, b) denote the oriented graph (X, Ea,b) where
Ea,b consists from all pairs (xa , Xb) which appear in a bi-tuple (Xl, .. . ,XJJ E

Ri(A(N,i))' It follows from A(N,i) -A K(N, i) that x(A(N,i)(a,b)) > N.
From this follows that the graph AN(a, b) fails to be degenerated and thus
it contains a subgraph with all out- and in-degrees > N /2. As N was
arbitrary we can repeat this argument and find (for every n) a subsystem
A' of A(N(n) ,i) for which all the graphs A'(a ,b) have large in- and out

degrees. We then repeat this argument for all i E I . This may be then used
to find any !:i.-tree with at most n vertices . Particularly, every balanced
FE F will for some A satisfying A ..".. K(N, i), i E I, satisfy F ~ A which
is again a contradiction. -

It is important that the main result of [23] solves the existence of greatest
elements in classes of type Forb (F) and this in turn can be used to char
acterize those classes Forb (F) of !:i.-structures which have suprema. We
combine these statement to a single statement:

Theorem 6.6.

I. For a finite set F of graphs the following statements are equivalent:

i. The class Forb (F) has greatest element;

ii. F E F is a set of !:i.-trees.

II. For a finite set F of connected graphs the following statements are
equivalent:
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i. The class Forb (F) has supremum;

ii . At least one of the graphs F E F is balanced.
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As our above proofs were catego rical we can use general results of [23]
and proceed analogously. We omit the details.

7. SUMMARY AND CONCLU DI NG REMARKS

The purpose of this paper is to initi at e the study of graph bounds in a
homomorphism and partial order setting. From this point of view greatest
elements and suprema present tight bounds (which cannot be "improved" ).
We have proved (Theorems 6.6) th at classes which are defined by forbidd en
homomorphisms from a finite set of connected syst ems have suprema if
and only if they are bounded. On the other hand the same classes when
relativized by small degrees are bounded but do not have suprema at all
(with a few isolated cases; see Th eorem 3.1). Similar negative results
were obtained for minor closed classes. This is in a sha rp cont rast with
the situation for degenerated graphs where suprema are easy to describe
(and they form a chain). T his perhaps sheds some light on questions like
Hadwiger conjecture which can be expressed in the same vein. Most of
the questions, theorems and proofs considered in this paper can be carried
over to more genera l sit uations. This provides a connect ion with universal
algebra and model theory. We hope to return to this in near future.

What we propose here is a global approach to extremal-theory est i
mates (such as bounds for chromatic numb er) by means of coloring (homo
morphism) order. We st udied some local prop erties of the coloring order
(such as suprema and grea test elements ). To present a good bound (i.e.
supremum) for a class of graphs is equivalent to finding a smallest finite ho
momorphism universal graph. Whether this hom-universal graph can have
the same local properties as the class itself is one of the central questions
of this paper. We gave instances with both positive and negative answer.
A satisfactory solution we could provide for classes which are defined by
finite ly many homomorphism obst ruct ions. We rclativized these results by
bounded degree-, degeneracy- and minor closed-restrictions. This leads to
some seemingly difficult problems but it also shows how these quest ions are
relevant and that global st ructure of colorings can capture some of the key
combinatorial conjectures .
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RELAXING PLANARITY FOR TOPOLOGICAL GRAPHS

J. PACH , R. RADOICIC and G. TOTH*

Accordin g to Euler 's formula, every planar graph with n vertices has at most
O(n) edges . How much can we relax th e condition of planarity with out violating
th e conclusion? After surveying some classical and recent resul ts of th is kind , we
prove that every graph of n verti ces , which can be drawn in the plane without
three pairwise crossing edges, has at most O(n) edges. For straight-line dr awings ,
this statement has been established by Agarwal et al., using a more complicated
argument , but for the general case previously no bound better th an O(n3

/
2

) was
known.

1. I NTROD UCTION

A geometric graph is a gra ph dr awn in th e plane so that its vertices are
represented by points in general position (i.e., no three are collinear) and
its edges by straight-line segments connect ing th e corresponding points.
Topological graphs are defined similarly, except th at now each edge can be
represented by any simple (non-selfintersecting) Jordan arc passing through
no vertices other th an its endpoints . Throughout thi s paper , we assume
tha t if two edges of a topological graph G share an interior point , th en at
this point they properly cross. We also assume, for simplicity, that no three
edges cross at the same point and th at any two edges cross only a finite
numb er of times. If any two edges of G have at most one point in common
(including their endpoints), then G is said to be a sim ple topological gra ph.

•Janos Pach has been supported by NSF Grant CCR-00-98245, by PSC-CUNY Re
search Award 63352-0036, and by OTKA T-032458. Geza Toth has been suppor ted by
OT KA-T-038397 and by an award from the New York University Research Challenge
Fund .
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Clearly, every geometric graph is simple. Let V(G) and E(G) denote the
vertex set and edge set of G, respecti vely. We will make no notational
distinction between the vert ices (edges) of t he underlying abstract graph ,
and the points (ar cs) representing t hem in the plane.

It follows from Eul er 's Polyhedral Formula that every simple plan ar
graph with n vertices has at most 3n - 6 edges . Equivalently, every topo
logical graph with n vertices and more th an 3n - 6 edges has a pair of
crossing edges . What ha ppens if, instead of a crossing pair of edges , we
want to guarantee t he existence of some larger configurations involving sev
eral crossings? Wh at kind of unavoidable substruc tures must occur in every
geometric (or topological) graph G having n vertices and more tha n Cn
edges, for an appropriate large constant C > O?

In the next four sect ions, we approach thi s question from four different
directi ons, each leading to different answers . In the last sect ion, we prove
that any topological graph with n vertices and no three pairwise crossing
edges has at most 0 (n) edges . For simple topological graphs , t his result
was first established by Agar wal- Aronov-Pach-Pollack-Shari r [1], using a
more comp licated argume nt .

2. ORDINARY AND TOPOLO GI CAL MINORS

A graph H is said to be a minor of ano ther graph G if H can be obtained
from a subgraph of G by a series of edge cont ractions. If It subgraph of
G can be obtained from H by replacing it s edges wit h independe nt paths
between their endpoints, t hen H is called a topological minor of G. Clearly,
a to pological minor of G is also its (ordinar y) minor.

If a graph G with n vertices has no minor isomorphic to Ks or to
K 3,3 , then by Kuratowski 's theorem it is plan ar and its number of edges
cannot exceed 3n - 6. It follows from an old resul t of Wagner that the same
conclusion holds under t he weaker assumptio n that G has no K s minor. A
few years ago Mader [1 6J proved the following famous conjecture of Dirac:

Theorem 2.1 (Mader) . E very graph of n vertices with no topological K s
minor has at most 3n - 6 edges .

If we only assume that G has no topological K; minor for some r > 5,
we can st ill conclude tha t G is sparse, i.e., its number of edges is at most
linear in n .
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Theorem 2.2 (Komlos-Szemeredi [10], Bollobas-Thomason [4]). For any
positive integer r, every graph of n vertices with no topological K; minor
has at most cr2n edges.

Moreover, Komlos and Szemeredi showed that the above statement is
true with any positive constant c > 1/4, provided that r is large enough.
Apart from the value of the constant, this theorem is sharp, as is shown by
the union of pairwise disjoint copies of a complete bipartite graph of size
roughly r2 .

We have a better bound on the number of edges, under the stronger
assumption that G has no K; minor.

Theorem 2.3 (Kostochka [11], Thomason [31]). For any positive integer
r, every graph of n vertices with no K; minor has at most crJlog rn edges.

The best value of the constant c for which the theorem holds was as
ymptotically determined in [33] . The theorem is sharp up to the constant.
(Warning! The letters c and C used in several statements will denote unre
lated positive constants.)

Reversing Theorem 2.3, we obtain that every graph with n vertices and
more than crJlogrn edges has a K; minor. This immediately implies that
if the chromatic number x(G) of G is at least 2crJlog r + 1, then G has
a K; minor. According to Hadwiger's notorious conjecture, for the same
conclusion it is enough to assume that x(G) ~ r, This is known to be true
for r ~ 6 (see [28]).

3. QUASI-PLANAR GRAPHS

A graph is planar if and only if it can be drawn as a topological graph with
no crossing edges. What happens if we relax this condition and we allow T

crossings per edge, for some fixed T ~ 07

Theorem 3.1 [25]. Let T be a natural number and let G be a simple
topological graph ofn vertices, in which every edge crosses at most T others.

Then , for any T ~ 4, we have IE(G)I ~ (r + 3)(n - 2).

The case T = a is Euler's theorem, which is sharp. In the case T = 1,
studied in [25] and independently by Gartner, Thiele, and Ziegler (personal
communication), the above bound can be attained for all n ~ 12. The result
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is also sharp for T = 2, provided that n == 5 (mod 15) is sufficient ly large
(see Fig. 1).

Fig. J

However , for r = 3, we have recently proved that IE(G)I ~ 5.5(n - 2),
and this bound is best possible up to an addit ive constant [23]. For very
large values of T , a much better upper bound can be deduced from the
following t heorem of Ajtai- Chvatal- Newborn- Szemeredi [2] and Leighton
[1 4]: any topological graph with n vertices and e > 4n edges has at least
constant times e3/n2 crossings.

Corollary 3.2 [23J. Any topological graph with n vert ices, whose each
edge crosses at most T others, has at most 4JTn edges.

One can also obtain a linear upper bound for the number of edges of
a topological gra ph und er th e weaker assumption that no edge can cross
more than T other edges incident to the same vertex. T his can be fur th er
generalized, as follows.

Theorem 3.3 [20] . Let G be a topological graph with n vertices which
contains no r + s edges such that the first T are incident to the same vert ex
and each of them crosses the other s edges. Th en we have IE (G)I ~ Csrn ,
where C, is a constant depending only on s.

In particular, it follows that if a topological graph contains no large
gridlike crossing pat tern (two large sets of edges such that every element
of the first set crosses all elements of the second) , its number of edges is at
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most linear in n . It is a challenging open problem to decide whether the
same assertion remains true for all topologi cal graphs cont aining no large
complete crossing pattern.

For any positive integer r, we call a topological graph r -quasi-planar if
it has no r pairwise crossing edges. A topological graph is x -monotone if
all of its edges are z-monotone curves, i.e., every vertical line crosses th em
at most once . Clearly, every geometric graph is z-monotone, because its
edges are straight-line segments (that are assumed to be non-vertical) . If
th e vertices of a geometric graph are in convex position, then it is said to
be a convex geometric graph.

Theorem 3.4 [7J. The maximum numb er of edges of any r-quesi-ptene:
convex geometric graph with n ~ 21' edges is

(
2r -1)2(r-1)n- 2 .

X13

Fig. 2. Construction showing that Theorem 3.4 is sharp (n = 13, r = 4)

Theorem 3.5 (Valtr [34]). Every r-quasi-planar x-monotone topological
graph with n vertices has at most Crn log n edges, for a suitable constant
C; depending on r .
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Theorem 3.6 [24]. For any r ~ 4, every r-quesi-plener simple topological

graph G with n vertices has at most Crn (log n)2(r-3) edges, for a suitable
constant C; depending only on r .

In Section 6, we will poin t out th at Theorem 3.6 remains true even if we
drop the assumpt ion that G is simple, i.e., two edges may cross more than
once.

For 3-quasi-planar topological graphs we have a linear upp er bound.

Theorem 3.7 [1]. Every 3-quasi-planar simple topological graph G with
n vertices has at most C n edges, for a suitable constant C .

In Section 7, we give a short new proof of the last th eorem, showing that
here, too , one can drop th e assumpt ion that no two edges cross more than
once (i.e., th at G is simple) . In this case, previously no bound better th an
O(n3/ 2 ) was known. T heorem 3.7 can also be extended in anot her direction :
it remains true for every to pological graph G with no r + 2 edges such that
each of the first T edges crosses th e last two and the last two edges cross
each other. Of course , the constant C in the theorem now depends on r [22].

All theorems in this section provide (usu ally linear) upper bounds on
the number of edges of topological gra phs satisfying certain condit ions . In
each case, one may ask whether a st ronger statement is t rue . Is it .possible
tha t t he graphs in question can be decomposed into a small numb er planar
graphs? For instance, the following stronger form of Theorem 3.7 may hold:

Conjecture 3.8. There is a constant k such th at the edges of every 3-qu asi
planar topological graph G can be colored by k colors so that no two edges
of the same color cross each ot her.

McGuinness [18] proved that Conjecture 3.8 is true for simple topological
gra phs, provided th at t here is a closed Jordan curve crossing every edge
of G precisely once. The st atement is also true for r-quasi-planar convex
geometric graphs, for any fixed r (see [12], [13]).

4. GENERALIZED THRACKLES AND THEIR RELATIVES

Two edges are said to be adjacent if they share an endpoint . We say th at a
gra ph drawn in th e plane is a gen eralized thra ckle if any two edges meet an
odd number of times, count ing their common endpoints , if t hey have any.
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That is, a graph is a generalized thrackle if and only if it has no two adjacent
edges that cross an odd number of times and no two non-adjacent edges that
cross an even number of times. In particular, a generalized thrackle cannot
have two non-adjacent edges that are disjoint. Although at first glance this
property may appear to be the exact opposite of planarity, surprisingly, the
two notions are not that different . In particular, for bipartite graphs, they
are equivalent .

Theorem 4.1 [151. A bipartite graph can be drawn in the plane as a
generalized thrackle if and only if it is planar.

Using the fact that every graph G has a bipartite subgraph with at least
IE(G)1/2 edges, we obtain that if a graph G of n vertices can be drawn as
a generalized thrackle, then IE(G)I = O(n).

Theorem 4.2 (Cairns-Nikolayevsky [6]). Every generalized thrackle with
n vertices has at most 2n - 2 edges. This bound is sharp.

Fig . 3. A generalized thrackle with n vertices and 2n - 2 edges

A geometric graph G is a generalized thrackle if and only if it has no
two disjoint edges. (The edges are supposed to be closed sets, so that two
disjoint edges are necessarily non-adjacent .) One can relax this condition by
assuming that G has no r pairwise disjoint edges, for some fixed r ?: 2. For
r = 2, it was proved by Hopf-Pannwitz [9] that every graph satisfying this
property has at most n edges, and that this bound is sharp. For r = 3, the
first linear bound on the number of edges of such graphs was established by
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Alon-Erdos [3], which was lat er improved to 3n by Goddard-Kat chalski
Kleitman [8]. For general r , the first linear bound was established in [26].
Th e best currently known est imate is the following:

Theorem 4.3 (T6th [32]) . Every geome tric giept: with n vertices and no
T pairwise disjoin t edges has at most 29(1' - 1)2n edges.

It is likely th at th e dependence of this bound on r can be furth er
improved to linear. If we want to prove th e analogue of Theorem 4.3 for
topological graphs, we have to make some additional assumptions on the
st ruct ure of G, otherwise it is possible that any two edges of G cross each
other.

Conjecture 4.4 (Conway's Thrackle Conjecture) .
topological graph of n vertices. If G has no two
IE(G)I ::; n .

Let G be a simple
disjoint edges, th en

For many related results, consult [15], [6], [35] . The next interesting
open question is to decide whether the maximum number of edges of a
simple topological graph with n vert ices and no three pairwise disjoint edges
is O(n ).

5. LO CALLY PLANAR G RAP HS

For any r ~ 3, a topological graph G is called r -locally planar if G has
no selfintersecting path of length at most r . Roughly speaking, thi s means
that the embedding of the graph is planar in a neighborhood of radius 1'/2
around any vertex. In [21], we showed th at there exist 3-locally planar
geomet ric graphs with n vertices and with at least consta nt times n log n
edges. Somewhat surprisingly (to us) , Tardos [30] managed to extend
this result to any fixed r ~ 3. He constructed a sequence of r-locally
planar geomet ric graphs with n vertices and a superlinear number of edges
(approximately n t imes the l1'/2J times iterated logarithm of n). Moreover ,
these graphs are bipartite and all of th eir edges can be st abb ed by the same
line.

Th e following positive result is probably very far from being sharp.

Theorem 5.1 [21]. Th e maximum uutubet of edges of a 3-locally planar
topol ogical graph with n vertices is O(n3/ 2 ) .
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For geometric graphs, much stronger results are known.

Theorem 5.2 [21]. The maximum number of edges of a 3-locally planar
x-monotone topological graph with n vertices is O(nlogn). This bound is
asymptotically sharp.

For 5-locally planar x-monotone topological graphs, we have a slightly
better upper bound on the number of edges: O(nlogn/loglogn) . This
bound can be further improved under the additional assumption that all
edges of the graph cross the y-axis .

Theorem 5.3 [21]. Let G be an x-monotone r-locally planar topological
graph of n vertices all of whose edges cross the y-axis. Then, we have
IE(G)I ::; crn(logn)l/ lr/2J for a suitable constant c.

6. STRENGTHENING THEOREM 3.6

In this section, we outline the proof of

Theorem 6.1. Every r-quasi-planar topological graph with n vertices has
at most

f,.(n) := C,.n(logn)4(r-3)

edges, where r 2: 2 and C; is a suitable positive constant depending on r .

Let G be a graph with vertex set V(G) and edge set E(G) . The bisection
width b(G) of G is defined as the minimum number of edges, whose removal
splits the graph into two roughly equal subgraphs. More precisely, b(G)
is the minimum number of edges running between VI and V2 , over all
partitions of the vertex set of G into two disjoint parts VI U V2 such that
lVII, 1V21 2: IV(G)I /3. The pair-crossing number PAIR-CR(G) of a graph G
is the minimum number of crossing pairs of edges in any drawing of G.

We need a recent result of Kolman and Matousek [17], whose analogue
for ordinary crossing numbers was proved in [24] and [29].

Lemma 6.2 (Matousek). Let G be a graph of n vertices with degrees
dl , d2, ... , dn . Then we have

b2(G) ::; c(log nl (PAIR-CR (G) +t d;),
t=1

where c is a suitable constant.
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We follow the idea of the original proof of Theorem 3.6. We establish
Theorem 6.1 by double induction on rand n. By Theorem 7.1 (in the next
section), the statement is true for r = 3 and for all n . It is also true for
any r > 2 and n :::; ti; provided that C; is sufficiently large in terms of
nr, because then the stated bound exceeds G). (The integers n; can be
specified later so as to satify certain simple technical conditions.)

Assume that we have already proved Theorem 6.1 for some r 2:: 3 and
all n . Let n 2:: n r +l , and suppose that the theorem holds for r + 1 and for
all topological graphs having fewer than n vertices.

Let G be an (r + 1)-quasi-planar topological graph of n vertices. For
simplicity, we use the same letter G to denote the underlying abstract graph .
For any edge e E E(G) , let G; C G denote the topological graph consisting
of all edges of G that cross e. Clearly, Ge is r-quasi-planar. Thus, by the
induction hypothesis, we have

1 1
PAIR-CR(G):::;:2 ~ IE(Ge)!:::; :2!E(G)!fr(n).

eEE (G )

Using the fact that L;~l dr :::; 21 E(G)I n holds for every graph G with
degrees d l , d2 , .. . , dn , Lemma 6.2 implies that

Consider a partition of V(G) into two parts of sizes nl , n'2 :::; 2n/3 such
that the number of edges running between them is b(G). Obviously, both
subgraphs induced by these parts are (r + l j-quasi-planar. Thus, we can
apply the induction hypothesis to obtain

Comparing the last two inequalities, the result follows by some routine
calculation.

7. STRENGTHENING THEOREM 3.7

The aim of this section is to prove the following stronger version of Theorem

3.7.
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Theorem 7.1. Every 3-quasi-planar topological graph witll n vertices has
at most Cn edges, for a suitable constant C.

Let G be a 3-quasi-plan ar topological graph with n vertices. Redraw G,
if necessary, without creat ing 3 pairwise crossing edges so that the number
of crossings in the resulting topological gra ph G is as small as possible.
Obv iously, no edge of Gcrosses itself, otherwise we could reduce th e number
of crossings by removing the loop . Suppose that Ghas two distinct edges
that cross at least twi ce. A region enclosed by two pieces of the participating
edges is ca lled a lens. Suppose there is a lens £ that contains no vertex of G.
Consider a minimal lens £' ~ £, by containment . Noti ce that by swapping
th e two sides of £', we could reduce th e number of crossings without creat ing
any new pair of crossing edges. In par ticular , G rem ains 3-qu asi-plan ar.
Therefore, we can conclude th at

Claim 1. Each lens of G contains a vertex.

We may assume without loss of generality that th e underlying abstract
graph of G is connec ted , because otherwise we can prove Theorem 7.1
by induction on the number of vertices. Let el, e2, . . . ,en- l E E(G) be
a sequence of edges such that el, e2," " e, form a tree Ti ~ G for every
1 ~ i ~ n - 1. In par ti cular, e l , e2," " en- l form a spanning tree of G.

First , we const ruct a sequence of crossing-free topological graphs (trees) ,
i 't, 1'2 ,.. .,Tn- I' Let 1'1 be defined as a topological gr aph of two vertices,
consist ing of the single edge el (as was dr awn in G). Suppose that Ti has
already been defined for som e i ~ 1, and let v denote the endpoint of eH l

th at does not belong to l j . Now add to Ti the piece of ei+ l between v and
its first crossing with Ti. More precisely, follow th e edge eH l from v up to
the point v' where it hits 7~ for the first time, and deno te this piece of ei + l

by e i+ l ' If v'is a vertex of i; then add v and eH l to i; and let Ti+ l be the
resulting topological graph. If v' is in th e interior of an edge e of i; th en
introduce a new ~ertex at v' . It divides e into two edges, e' an.? e" . Add
both of them to Ti, and delete e. Also add v and ei+1, and let Ti.; 1 be the
resulting topological graph.

Aft er n - 2 steps, we obtain a topological t ree l' := 7~ -1 , which (1) is
crossing-free, (2) has fewer than 2n vertices , (3) contains each ver tex of G,
and (4) has the property that each of its edges is either a full edge, or a
piece of an edge of G.

Let D denote the open region obtain ed by removing from the plane
every point belonging to T. Define a convex geomet ric graph H, as follows.
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Fig. 4. Constructing t from T

Travelling around the boundary of D in clockwise direction, we encounte r
two kinds of different "features": vertices and edges of T. Represent each
such feature by a different vertex Xi of H , in clockwise order in convex
position. Note th at the same feature will be represented by several Xi 'S :

every edge will be represented twice, because we visit both of its sides, and
every vert ex will be represented as many times as its degree in T . It is not
hard to see that the numb er of vert ices Xi E V (H) does not exceed 8n.

Next, we define the e_dges of H . Let E be th e set of edges of G\T. Every
edge e E E may cross T at several points. These crossing point s divide e
into several pieces, called segments. Let S denote the set of all segments of
all edges e E E . With the exception of its endpoints, every segment s E 5
runs in th e region D . The endpoints of s belong to two features along th e
boundary of D , represented by two vertices Xi and Xj of H. Connect Xi

and Xj by a st raight-line edge of H . Notice that H has no loops, because
if Xi = Xj, then, using the fact that T is connec_ted, one can easily conclude
tha t the lens enclosed by s and by th e edge of T corresponding to Xi has no
vertex of G in its interior. This contradicts Claim l.

Of course, several different segments may give rise to th e same edge
XiXj E E(H). Two such segments are said to be of the same type. Observe
that two segments of the same type cannot cross. Indeed, as no edge
intersects itself, th e two crossing segments would belong to distinct edges
el, e2 E E. Since any two vertices of G are connected by at most one edge,
at least one of Xi and Xj corresponds to an edge (and not to a vertex) of T,
which together with e j and e2 would form a pairwise intersecting triple of
edges, contradicting our assumption that G is 3-quasi-planar.

Claim 2. H is a 3-quasi-planar convex geomet ric graph.
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To establish this claim, it is sufficien~ to observe that if two edges of H
cross each other, then the "features" of T corresponding to their endpoints
alternate in the clockwise order around the boundary of D. Therefore,
any three pairwise crossing edges of H would correspond to three pairwise
crossing segments, which is a contradiction.

A segment s is said to be shielded if there are two other segments, Sl and
S2 , of the same type, one on each side of s. Otherwise, s is called exposed.
An edge e E E is said to be exposed if at least one of its segments is exposed .
Otherwise, e is called a shielded edge.

In view of Claim 2, we can apply Theorem 3.4 [7] to H. We obtain that
1E(H)I :::; 41 V(H)I -10 < 32n, that is, there are fewer than 32n different
types of segments. There are at most two exposed segments of the same
type , so the total number of exposed segments is smaller than 64n, and this
is also an upper bound on the number of exposed edges in E.

It remains to bound the number of shielded edges in E.

Claim 3. There are no shielded edges.

Suppose , in order to obtain a contradiction, that there is a shielded edge
e E E . Orient e arbitrarily, and denote its segments by sj , 82, . . . , 8 m E 5,
listed according to this orientation. For any 1 :::; i :::; m , let i, E 5 be the
(unique) segment of the same type as s., running closest to s, on its left
side.

Since there is no self-intersecting edge and empty lens in G, the segments
t, and tH1 belong to the same edge fEE , for every i < m (see Fig. 5).
However, this means that both endpoints of e and f coincide, which is
impossible .

We can conclude that E has fewer than 64n elements , all of which are
exposed . Thus, taking into ac~ount the n - 1 edges of the spanning tree T,
the total number of edges of G is smaller than 65n.

Fig . 5. i, and ti+1 belong to the same edge
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1. INTRODUCTION

1.1. CNS polynomials

Let P(x) = Pdxd + ... + Po E Z[x]' with Pd=1. It is called a CNS
polynomial if every element of the factor ring R = Z[xJlP(x)Z(x) has a
unique representative of form

(1)

This definition is equivalent with the following one: for any A(x) E Z[x]
th ere exist uniqu ely integers e,0 ::; ai < IPol, 0 ::; i ::; e,Pi =I- 0 if e> 0, such
th at

(2)
e

A(x) == L aixi (mod P) .
i=O

In the sequel th e polynomial staying on th e right hand side of (2) will be
called the CNS represent ation of A(x) .

' Research partially supported by Hungarian National Foundation for Scientific Re
search Grant Nos 29330 and 38225.
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It is clear that there exist for any A(x) E Z[x] unique integers, Ao, . . . , Ad,
such that

(3)
d-l

A(x) == L Aixi (mod P).
i=O

d-l
One gets I: Aixi from A(x) by dividing it by P(x). In contrast one obtains

i=O
e
I: aixi from A(x) by a "backward" division process with P(x). More
i=O

precisely, let A(x)

indices, and let

00

I: Aixi E Z[:r], Ai = 0 for all but finitely many
i=O

where lxJdenotes the integer part of x. Then

A(x) = Ao - Po l::J+ xT(A).

To obtain the eNS representation of A one has to compute T(A), T 2(A), . . .
until Tf(A) = 0 for some £ 2': o.

Unfortunately this "backward" division process often does not termi
nate; it can become divergent (e.g. -1 for P(x) = x2+4x+2) or ultimately
periodic (e.g. -1 for P(x) = z - 2). Therefore the characterization of CN S
polynomials is not a trivial problem. In the sequel the set of CN S polyno
mials will be denoted by C.

The concept of CNS polynomials was introduced in [14] as a general
ization of canonical number systems [7] , [6], [8] or radix representations [5]
in algebraic number fields . Generalizing a result of [9] I gave the following
algorithmic characterization of square-free CNS polynomials [14] .

Theorem AR. Let P(x) E Z[x] be square-free. Let al ,"" ad and D
denote its zeroes and discriminant respectively. Then P( x) E C if and only
if

(i) lail> 1 and ai < -1 , if ai E JR, 1 ~ ·i ~ d,
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d- I

(ii) every A(x) = L Aixi E Z[x] with
i =O

303

has a CNS representation. Here h(P) denotes the maximum of the absolute
values of the coefficients of P(x).

This result was genera lized for not necessarily squa re-free polynomials,
bu t without giving an explicit upper bound for the A/sin [3].

By changing the basis 1, x, ... , .xd- I of R to W I , W2," " Wd where Wi =
i
L Pd- j X j , i = 1, . .. ,d, H. Brunotte [4] realized that the CNS property of

j =O

polynomi als can be characterized by properties of the mapp ing T : Zd -t Zd,

(4) ( l J )
T

T a lP I + ...+ adPd
T ( (a I , ... , ad) ) = - Po ' a I , ... , ad-I

His original algorit hm was sim plified 111 [3] . We give here the vers ion

appeared in [1 , Lemma 2.6] .

Lemma B. Assume that E ~ Zd has the following properties

(i) ( l ,O, .. . , O)EE,

(ii) -E ~ E ,

(iii) T(E) ~ E,

(iv ) for every e E E there exists some kEN with Tk(e) = O.

Then P E e .

Akiyam a and Rao [3] poin ted out, that if all zero es of P(x) are lying
outside the closed uni t disc then T is ul tima tely contractive, i.e. t here exists
a finite set E ~ Zd satisfying (i)-(iii) of Lemma B. T heir argument is based

on T heo rem AR and the connection between the mappings T and T. Here

we will give a direct proof of t he following t heorem.
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Theorem 1. Let P(x) be such that all of its zeroes are lying outside the
closed unit disc. Then there exists a constant c depending only 011 d and
H(P) such that iF

E = {(a1' " ' ' adf E Zd : max {Iail , 1 ::; i ::; d} ::; c}

then there exist for any b E Zd a positive integer k witJl T
k(b) E E .

In the case when P( x) is square-free, i.e. P(x) has no multipl e roots, we
are able to give a nice explicit form for c.

Theorem 2. Let P(x) be square-Free and denote 0'1 , . . . , O'd its zeros. As
sume that 100ii > 1, 1 ::; i ::; d. Then we may take

where P'(x) denotes the derivative of P( x) .

1.2. Integral interpolation

Let m1," " md E Z be pairwise distinct and 0.1 , .'" ad E Z. We call
a = (0.1 , ... ,adf E Zd integral int er-potable by m = (m1' . . . , mdf if there
exists an I(x) E Z(x) such that

(5)

i = 1, . . . ,d.(6)

It is well known that there exists always an I(x) E Q[x] satisfying (5), but
very often I (x) has non-integer coefficients. The Chinese remainder theo
rem (see e.g. Mignotte and Stefanescu [12]) gives necessary and sufficient
condition for the solvability of the integral interpolation problem, but it is
usually very complicated. We are intend to give here an other condition
based 011 eNS polynomials.

The vector a E Zd is called simultaneously representable by m E Zd if
there exist integers 0 ::; qo , . . . , qe < M = Im1 . .. mdl such that

e
ai = Lqjm{,

j=O

This concept was introduced by Indlekofer , Katai and Racsko [11].

We start with a simple observation.
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Proposition 1. If a E Zd is sinlllita neollsly representable by m then it is
integral interpolable by m .

e
Proof. If (6) holds then take I (x ) = L qj X j E Z[x], which satisfies obvi 

j=O

ously (5). •

T he converse of Proposit ion 1 is not t rue. Take for example m l = 1,
m2 = 2, then for any pair (aI,a2f E ,£2 the polynomial I (x ) = (a2 - adx+
(2al - a2) satisfies (5). On the other hand , if a l or a2 is negative, then (6)
can never hold, because its right hand side is always non-negative.

The next theorem connects integral interpolat ion, simultaneous repre
sentation and CN S polynomials.

d

Theorem 3. Let P(x ) = Il (x - mi) E C. Then a E Zd is simu ltaneo usly
i= 1

representable by m if and only if it is integral interpolable by m .

Proof. By Proposition 1 it is enough to consider the case, when a is integral
interpolable by m. Then there exists an I (x) E Z[x] satisfying (5). As P(x )
is a CNS polynomial, whose constant ter m is (- l)dm l ... m'd , there exist
integers 0 ::; qo , .. . ,qe < M = Iml . . . mdl such that

e
I (x ) == L qj X

j (mod P(x )),
j=O

which means
e

I (:r) =L qj X
j + Q(x )P(x )

j=O

with a Q(x) E Z[x] . Substituting here .1: = ml , . . . , md and using (5) and
P(rnd = 0, i = 1, .. . , d we obtain (6). •

d
Remark that if P(x ) = Il (x - mi ) ~ C then there exist infinitely

i= 1

many a E Zd which is integral interpolable by m , but not simultaneously
representable. Indeed, as P ~ C there exists I (x ) E Z[x] of degree less
then d, which does not have a CNS representation with respect to P(x).
Choosing ai = I (mi), i = 1, . . . , d the vector a = (al, " " ad)T is integral
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i = 1, . .. , d.

interpolable by m. If a would be simultaneously representable by m then
there would exist integers 0 :s: qi, . . . , qe < M such that

e
ai = ~qjm{,

j=O

e
Taking J(x) = I:: qjXj then I(x) == J( .T) (mod z - md, i = 1, . . . , d hold

j=O

and as the polynomials x - mi are pairwise relatively primes I(x) == J(x)
(mod P(x)) by the Chinese remainder theorem. Hence J(x) would be the
eNS representation of I(x) with respect to P(x) which is a contradiction.
Hence a is not integral representable by m.

h
Let Q(x) = I:: qixi E Z[x] with 0 :s: qi < M . Then IQ(x) = Q(x) +

i=O

xh+I I (x) does not have a eNS representation because Th+I (IQ(x) )
I(x) . The set

S = {(aQj1"" aQJ : ao, = IQ(md, Q as above}

is obviously infinite. The elements of S are not simultaneously representable
bym.

d
In the sequel we will prove under some assumptions that II (x - mi)

i=l
belongs to C.

Theorem 4. Let mI , . .. , rlld :s: -2 be such that

d 1
,,- < 1.
LJlm'l-
i=I 2

d
Then P(.T) = II (x - mi) E C.

i=I

d
Proof. Let TI (X-mi) = Xd+Pd_IXd- I+.. ·+Po· By the assumptions all co

i=I

efficients of P(.T) are positive. We have Pj = I:: 1m-I iI " ·Imlid_
i

,
I~iI< ..-<id-i~d

j = 0, ... ,d -1. Further

(7) j = 0, . .. , d - 2
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hold by Newton 's inequality between symmetric means . (See [10, p. 52] or
the original work of 1. Newton [13].)

We have

PI = ~_1_ < 1
Po '8lmd - ,

i.e. Po :2: Pl · Assume that we proved already Po :2: PI :2: ... :2: Pj for some
1 ::; j < d - 2. Applying (7) we obtain

( d ) ( d ) (d) -2 P0p O+I::; 0 ' . ' . • _ J_ . p o< Pi-
J J - 1 .7 + 1 J Pj-l J .7

The theorem is proved. •

In the next theorem we show th at the same assert ion is true if d is small.

Theorem 5. Let d ::; 4 and m I , .. . , md ::; -2 be pairwise distinct integers.
d

Then P(.T) = TI (x - 7nj) E C.
j= l

To prove Theorem 5 we need a lemm a.

Lemma 1. Let P( x) = x4 +P3x3+P2x2+PIX+Po E Z[x] be such that

(i) PI > Po > PI - p2/2 +P3,

(ii) PI ::; 2P2 :2: 8P3, P3 ::; 3.

Then P( x) E C.

Proof. Consider the following set of quadruples

Eo = {(0,0 ,0 ,0) , (0,0 ,0 ,1) , (0,0,1 , -2), (0,0,1 , -1) , (0,0 ,1 ,0),

(0,1 , -2,1) , (0, 1, -2, 2), (0, 1, -1 ,0) , (0, 1, -1 , 1), (0, 1, -1 , 2), (0, 1,0 , -1) ,

(1, -2,2 , -2) , (1, -2,2 , -1) , (1, -2, 1,0) , (1, -1 ,0 ,0) , (1, -1 ,0 ,1) ,

(1 , -1 , 1, -2) , (1, -1 , 1, -1) , (1, -1 , 1,0) , (1, -1 , 2, -2) , (1, -1 ,2 , -1) ,

(1,0 , -1 ,0) , (1,0 , -1 , 1), (1,0, -1 , 2), (1 ,0 ,0 , -1) , (1,0 ,0 ,0) , (2, -2, 1,0) ,

(2, -2, 2, -1) , (2, -1 , 0,0), (2, -1 ,0,1) , (2, -2,2 , -2)}

and put E = Eo U -Eo . Notic e that if (aI , a2, a3, a4)7' E E, then

aia(i+l) mod 4 ::; °and if ai = ±2, then ai+l =1= O. It is easy to see that
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E satisfies the conditions (i) and (ii) of Lemma B. It remains to show (iii)
and (iv), which will be done by considering several cases. If T(el) = e2,

then we will write el -? e2. Further e -1 means that T(e) belongs to case
A considered earlier .

IV
VII (0,0, -1, a4) -t (1,0,0, -1) -t

IV
VIII (0,0,0 ,-1) -t (1,0,0,0)-t

This shows that (iii) and (iv) hold for our set E , hence P(x) E C. •

Proof of Theorem 5. If Lt~l 1~i1 :::; 1 then the assertion follows from
Theorem 4.

If d :::; 3 then I:1~1 11~il :::; 1 holds except when (177 1, rn2 , rn3) =

(-2, -3, -4) , (-2, -3, -5) . The corresponding polynomials x:l+9x2+26x+

24 and x3 + 10x2 + 31x + 30 belong to C by Proposition 3.12 (3) and (1)
of [2J.

Let d = 4. Then there are three infinite families

(-2, -3, -5 , -rn) and (-2, -3, -6, -rn)
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with m ~ 5,6 and 7 respectively and 64 further values

(-2, -3, -7, -m) , 8 ~ m ~ 41,

(-2, -3, -8, -m), 9 ~ m ~ 23,

(-2 , - 3, -9, -m), 10 ~ m ~ 17,

(-2 -3 -10 -m) 11 ~ m ~ 14 and, , , ,

(-2 -3 -11 -m) 12 ~ m ~ 13, , , ,
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for which L 11~ '1 > 1.
i= l •

It is easy to see that the corresponding polynomials satisfy the assump
tions of Lemma 1, thus they belong to C. •

Using the method of the proof of Theorem 5 one could probably prove
the sam e assertion for d = 5 too. Unfortunately the number of cases, which
must be handled separately is much larger , one has three two parametric
and 64 one param etric families and a lot of sporadi c cases. Hence we need
new ideals .

On the other hand, in light of Theorems 4 and 5 we do not see any
reason not to formulate the following conjecture.

Conjecture 1. Let m1, ... , fry ~ - 2 be pairwise distinct integers. Then
d

p (x) = IT (x - mi) E C.
i=l

2. PROOF OF THEOREMS 1 AND 2

To prove Theorems 1 and 2 we need some preparation from linear algebra
and from linear rec urr ing sequences. More precisely we have to analyze the
mapping T defined by equa t ion (4). For a E 'ld let us define

if k = 0,

if k > O.
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Further let P E 7ldx d be the matrix

A. Petho

-pI/po . . . -Pd-I/pO -Pd/PO

1 a °P=

° 1 °
With these definitions we have the following assertion

T dLemma 2. Let a = (0,1, , ad) E 7l and 1 :; k E 7l. Then Tk(a) E 7ld

and there exist -1 < 61, , 6k :; Osuch tllat

k

Tk(a) = pka + Lpk- j
Oj

j=l

holds, where OJ = (6j, 0, ... ,of E jRd,

Proof. Let k = 1. Then T(a) E 7ld , which can be written in the form

where 01 = (61,0, . . . ,O)T E jRd with -1 < 61:; 0.

Assume that the assertion is true for k - 1 2:: O. Then T
k- 1(a) E 7ld ,

thus Tk(a) E tld is true by (4) too. Let Tk- 1(a) = (a~k-l) , ... , a~k-1) ( E 7ld

then

( l (k-l) (k-1) j )T
k() _ _ 0,1 Pl+···+ a d Pd (k- l) (k-1)

T a - ,0,1 , ... , ad - 1
Po

(

(k-l) (k-l) ) T
__0,1 Pl+···+ a d Pd r (k-l) (k-l)- + uk ,a1 , . .. , o,d-l '

Po

where 6k satisfies the inequalities -1 < 6k :; °by the definition of the
integer part function. Thus

and by the induction hypothesis the assertion of the lemma follows. •
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Let {Gn }~=o be th e linear recurring sequence defined by the initial terms
Go = . ..Gd- 2 = 0, Gd- I = 1 and by the difference equation

(8) PI PdGn+d = --Gn+d - 1 - . . . - -Gn·
Po Po

Let furth er G n = (Gn+d- I , ... , Gnf and for n ~ d - 1 denote by 9n th e
d x d mat rix, whose columns are G n , . . . , G n - d+! . Then we have obviously

9n = P9n- 1 for n = d,d + 1, ....

This implies

(9) 9n+d- 1 = p n 9d-1 for n ~ O.

As 9d- 1 is a non singular matrix we obtain

(10)

On the ot her hand if 131,. .. ,f3h denot e the distinct zeroes of the poly
nomial

P * (x ) = xd + PI xd- I + .. .+ Pd = xdp (~)
Po Po x

with mult iplicity el, " " ell ~ 1, then

(11) Gn = 91(n)f3f + ... +9h(n) f3;:

hold for any n ~ 0, where 9i( X) , 1 ::; i ::; h denote polynomials with
coefficients of the field Q(f3l, ... ,(311 ) of degree at most ei - 1. (See [15].)

Denoting by p~; ) , 1 ::; i, j ::; d, n ~ 0 the entries of p n t hen (10) and
(11) imply

(12)
II

(n ) '" ( )f3nPi j = L gi j f n t :
f = 1

Proof of Theorem 1. As we explained in the int roduct ion it is enough to
consider polynomials of degree at most d - 1, say

d- I

A(x) = L aixi,
i = O
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(13)

Let a = (aO ' . . . ,ad_1)T E 'if We have to prove that there exists a k ~ 0
such that ,k(a) E E . From the proof it will be clear how to choose the
constant c.

Let k ~ 1. Then there exist by Lemma 2 -1 < 51 , .. . ,15k ~ 0 such that

k

,k(a) = pka+ Lpk-j8j .
j=1

In the sequel let ,k(a)i denote the z-th coordinate of ,k(a). Then (13)
implies

d k

,k(a)i = LP~;)aj + LP~~-j)5j .
j=1 j=1

Observe that by (9) the first column of P" is exactly Gn . Using this, (11),
(12) and the last equation we obtain

d h h k-1
,k(a)i = L aj Lgije(k)13; + L L 5k-jgeU)13~ .

j=1 e=1 e=1 j=O

Thus

d h h k-1
(14) I,k(a)il ~LlajILlgije(k)ll13elk+L LI5k- jllgeU)II13el

j.

j=1 e=1 e=1 j=O

The roots of P*(x) are the reciprocal of the roots of P(x), hence l13el < 1,
1 ~ £ ~ h. If k is large enough then the first summand of (14) is less than 1.

Similarly, there exists a jo such that if j > jo then Ige(j) II13el
j < l13el

j
/2. As

15jl ~ 1, j ~ 1 we can estimate the second summand of (14) as follows

h k-1 h io h jo

L L 15k- j llgeU)II13el
j
~ L L IgeU)II13el

j
+ L L l13el

j
/
2

e=1 j=O e=1 j=O e=1 j=jo+1

Hence, taking

h jo . h l13djo+1) /2
C = 1 +L L Ige(j)ll13eIJ + L 1/2

e=1 j=O e=1 1 - l13el
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then

Irk(a)il ~ c

and c depends only on the height and degree of P(x). •

To prove Theorem 2 we need one more lemma

313

Lemma 3. Let the linear recurring sequence {Gn}~=o be defined by (8).
Assume that P(x) is square-free and denote al,.'" ad its roots. Then

d ad- n - 2

c; = -Po L ;'(a ) .
h=1 h

Proof. By a result of M. Ward [16] we have

d f3n

Gn = L P*' (~ ).
It=l h

As f3h = ! , h = 1, ... ,d and
~h

•

Proof of Theorem 2. We are using the notations introduced in the proof
of Theorem 1. As the roots of P(x) are simple the polynomials gije(X) are
constants. Further (3h = l/ah, h = 1, . . . , d. After these preparations, using
also Lemma 3 inequality (14) can be rewritten as

Now there exists for any E > a a ko such that if k > ko then the first
summand is less than c. For the second summand we obtain

d laeld- l

= IPol f; (Iael- 1) IP'(ae)I'
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Hence

A. Petlu5

As Tk(a)i E IE and E can be chosen arbitrary small we obtain
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THE EVOLUTION OF AN IDEA - GALLAI 'S ALGORITHM

A. RECSKI and D. SZESZLER

Vera T . Sos is prob ably the single most influential person for orient ing th e
research interest of many of the participants of this conference towards discrete
mathemati cs. It is appropriate to recaIl th at th e single most influent ial person
for orient ing his interest toward s discrete mathematics was his secondary school
math teacher , Tibor GaIlai who achieved outs ta nding resul ts in several areas of
graph th eory. In this note the first forty years of the influence on VLSI design of
a classic result of GaIlai about th e perfectn ess of interval gra phs is describ ed.

1. INTRODUCTIO N

The first classic result in the topic of VLSI (Very Large Scale Integrated)
routing is probably Gallai's linear time algorithm. From a graph-t heoret ical
viewpoint it is nothing else but an alte rnat ive proof of the fact that interval
graphs are perfect.

The design of VLSI circuits is a broad area, it covers a wide range of
substant ially different problems th at arise during the design process. One of
these problems is deta iled rout ing which can be formulat ed in the following
way. Assume that t he devices of the electric equipment have already been
placed on the four bound aries of a rectangular circuit board. Our task is
to interconnect certain given subsets (or nets ) of the pins (or terminals ) of
these devices by wires. Wires belonging to different nets must not intersect
or get closer to each other than a given distance. To this end, it is mostly
assumed that the wires must go on a given 3-dimensional rectangular grid
consisting of a numb er of planar layers, each of them parallel with the
circuit board. (In the l-Iayer , that is, 2-dimensional case the problem is
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unsolvable in most cases.) Wires can leave a layer for a consecutive one at
any gridpoint. To sum it up from a graph-theoretical viewpoint , the detailed
routing problem consists of finding vertex-disjoint Steiner-trees (trees with a
given terminal vertex set) in a 3-dimensional rectangular grid graph. In this
context, the given vertex sets of the trees are the nets and the Steiner-trees
themselves are called wires.

Traditionally, detailed routing was considered a 2-dimensional problem
because the number of layers was very small compared to the length and
the width of the board. (Originally, in the ancient times of printed circuit
technology there were only two layers: the two sides of the board. Later the
number of layers was gradually extended to 3,4, ... ) Since recent technology
permits more and more layers (6, 8 or even more) a 'real' 3-dimensional
approach becomes reasonable. In this paper we first give a brief survey of
2-dimensional results with a special emphasis on those that use Gallai's
algorithm or an idea similar to it . Then we turn our attention to 3
dimensional routing and we survey a few related results.

2 . 2-DIMENSIONAL ROUTING

2.1. Single Row Routing

Within detailed routing, the easiest special case is single roui routing. In
a single row routing problem all the terminals of each net are situated on
one boundary (say, the upper boundary) of the circuit board. Hence the
specification of such a problem only fixes the number of columns of the
grid (the length of the problem). Therefore the usual formulation of single
row routing is to fix the number of layers and ask for the minimum width
routing, that is, a routing that occupies the minimum number of rows in
the grid.

A solution of a (not necessarily single row) routing problem is said to
belong to the Manhattan model if consecutive layers contain wire segments
of different directions only. That is, layers with horizontal (parallel with the
upper boundary) and vertical (perpendicular to the upper boundary) wire
segments alternate. This notion is motivated by the fact that for certain
technologies it is advantageous not to have long parallel wire segments
on two consecutive layers. Therefore there are many results that provide
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routings in the Manhattan model. If a solution does not belong to the
Manhattan model, it is said to he in the unconstrain ed model.

Gallai's algorithm solves the single row routing problem with optimal
width in the 2-layer Manh attan model. Such a routing problem together
with a possible solution is shown in Fig. 1. In Fig. 1 solid dots denote
the terminals and sets of termin als marked with a common number form
the nets . Wire segments of the two layers are denoted by cont inuous and
dashed lines, respectively. Empty dots denote the edges of the wires that
join adjacent vertices of the two layers (these are called vias) .

e

1 4 1 6 4 5 1 6 2 7 5 2 7 2 3 5 3

• • • • • • • • • • • • • • • • •I I I I I I I I I I I I I I I I I
I <9 I I E!:J I 6 <9 I 6
I I I I I
I I 6 I 6I I I

6 6

Fig. 1

For every vertical line e th at cuts the grid into two we define its conges
tion c(e): it is the number of nets that are divided into two by e (that is,
the number of nets th at have termin als both left to e and right to e). For
example, the congest ion of the line e in Fig. 1 is c(e) = 3. The maximum
congestion of all vertical lines that cut the grid into two is called the density
of the problem. It is st ra ightforward th at the density is a lower bound on
the width of any routing (again , in the 2-layer Manhattan model).

Theorem 1 (T. Gallai) [3]. The minimum width of a solution of a single
row routing problem in tbe 2-layer Manhattan model is equal to the density
of the problem.

The proof involves a linear time algorithm (the 'left edge algorithm').
The connect ion between the above result and the perfectness of interval
graphs is almost st raightforward. A horizont al interval is associated with
every net , st ret ching from its leftmost terminal to its rightmost termin al.
The density is equal to the clique number of the corresponding inte rval
graph. A colouring with an equal number of colours can easily be trans
formed into an optim al width routing: nets belonging to a common colour
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class can be routed in a common row. In Fig. 2 the interval graph corre
sponding to the routing problem of Fig. 1 is coloured using three colours;
the solution of the routing problem obtained from this colouring is shown
in Fig. 1.

3

4 6

Fig. 2

7

We mention that no polynomial time algorithm is known to find an op
timum width solution for a single row routing problem in the unconstrained
2-layer model.

2.2. Channel Routing

By the channel routing problem we mean the special case of detailed routing
in which all the terminals of each net are situated on two opposite boundaries
of the grid (say, the upper and lower boundaries). Again, the usual setting
of the problem is to fix the number of layers and ask for the minimum width
routing, if at all a routing exists. However, channel routing is much more
complicated than single row routing as it is shown by the following theorem.

Theorem 2 (T. G. Szymanski, 1985) [12] . It is NP-complete to decide
whether a channel routing problem is solvable in the 2-layer Manhattan
model with width at most w (where w is part of the input).

Therefore it is worthwhile to look at this problem under less strict
conditions: either in the 2-layer unconstrained model, or in the multilayer
Manhattan model.

It is true that every channel routing problem is solvable in the 2-layer
unconstrained model in polynomial time (with a sufficiently large width).
This was first proved by M. Marek-Sadowska and E. Kuh [6]. Later
A. Recski and F. Strzyzewski found a linear time algorithm which also
uses Gallai's algorithm as a 'subroutine'.
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Theorem 3 (A. Recski and F. Strzyzewski, 1990) [8]. Every channel routing
problem can be solved in linear time in the 2-layer unconstrained model.

Their algorithm does not give an optimal width solution. The complex
ity of the naturally arising question of finding a minimum width routing is
not known, but according to the widely accepted conjecture of D. S. Johnson
[5] it is NP-hard.

It is also true that every channel routing problem is solvable in the k
layer Manhattan model for every k ;::: 3. This again can be proved by
a simple modification of Gallai's algorithm. The complexity of finding a
minimum width routing is in this case known to be NP-hard [7] .

2.3. Switchbox Routing

In the switchbox routing problem terminals may occur on all four boundaries
of the circuit board. Since the specification of such a problem fixes both the
length and the width of the board, the number of layers is to be optimized.
We suppose that the corners of the board are not occupied by a terminal
and routings must not use them either. We also suppose that the wires can
access the terminals on any layer.

We have seen that in case of single row and channel routing two layers
were always sufficient to solve any problem (and if we restrict ourselves to
the Manhattan model, three layers were needed in case of channel routing) .
This, however, is not true for switchbox routing. Moreover, no fixed number
of layers suffice, which is shown by the following theorem.

Theorem 4 (S. E. Hambrusch, 1985) [4]. For every positive integer k there
exists a switcbbox routing problem that cannot be solved on k layers in the
unconstrained model.

Proof. Consider the switchbox routing problem of Fig. 3. The congestion
of the line e is n + w , that is, each of the n + w nets have terminals on
both sides of e. Therefore the existence of a routing on k layers implies
n + w :::; kw since there are w rows on every layer . From this we have
{}j + 1 :::; k. The value of nand w can be chosen such that this inequality
does not hold, which proves the theorem. _

Obviously, the background of the phenomenon involved in the above
theorem is the fact that in case of switchbox routing both the length nand
the width ware given by the specification. Denote the ratio max ({}j, 7f) by
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1 2 n

n+1

n+ EL2
f
n+ ~ +1

n+w

n+w

n+ ~ +1

n+~

n+1

n n-1" '~+1 ~ ~-1' "

Fig. 3

1

m. The proof of the above theorem also includes the following statement:
rm1+ 1 is a lower bound on the minimum number of layers of a solution in
the worst case . A slight modification of the proof shows that if we restrict
ourselves to the Manhattan model then at least 2rm1+ 1 layers are needed
in the worst case if m > 1 and 4 layers are needed if m = 1.

It is a natural question whether there is also an upper bound for the
necessary number of layers as a function of m? The following theorem
answers this question in the affirmative.

Theorem 5 (E. Boros, A. R.ecski and F. Wettl, 1995) [2]. Any switchbox
routing problem can be solved in linear time on at most 18 layers if m ~ 2
and on at most 2m.+ 14 layers if m > 2 in the unconstrained model.

Later the bounds given in the above theorem were improved. The
construction of the following result can also be regarded as a generalization

of Gallai's method.

Theorem 6 (D. Szeszler, 1997) [11]. Any switchbox routing problem can
be solved in lineal' time on at most 2rm1+4 layers in the Manhattan model.
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3. 3-DIMENSIONAL RO UTING

323

Although the solution of a switchbox problem can require arbitrarily many
layers, switchbox rou tin g can st ill be regarded as a 2-dimensional problem:
the input consists of four sequences (t he te rminals on the four boundaries)
and the out put consists of a fixed number of planar layers (provided that
the value of m defined in the previous sect ion is fixed).

Due to the quick improvement of routing technology, research has re
cently turned towards 'real' 3-dimensional routing. In th e single active layer
muting problem (or SALRP for short) the terminals to be interconnected
are situated on a rectangular planar grid of size w x n and the routing should
be realized in a cubic grid of height h above the original grid th at contains
the terminals. Evid ently, the height 11. is to be optimized. Henceforth we
will use the term 'vertical dir ection ' to refer to the direction of h (that is,
the direction perp endicular to the w x n rectangle) and not for the direction
of w.

One can easily see even in small instances like 4 x 1 or 2 x 2 th at a
routing is usually imp ossible unless eit her th e length n or the width w
may be extended by introducing ext ra rows or columns between rows and
columns of the original grid.

By a spacing of s., in direction n we are going to mean that we introduce
Sn - 1 pieces of ext ra columns between every two consecut ive columns (and
also to the right hand side of the rightmost column) of the original grid. A
spacing of Stu in direction w is defined analogously. Thi s way th e length of
the grid is extended to n' = Sn . n and th e width is extended to w' = Sw . w .

A very similar argument to that of Theorem 4 provides a lower bound
on th e height h in th e worst case.

Lemma 1. For any given n and S tu there exists a routing problem that
cannot be solved with height 11. smaller than -2

n
.

S w

Proof. Let , for simplici ty, the width and the length be even, let w = 2a and
n = 2b. Consider the following example. Suppose that each net consists of
two terminals in central-symmet ric position as shown in Fig. 4.

The numb er of nets is an. Since each net is cut into two by the cent ral
vertical line e, any rou ting with width w' = Stu . wand height h must satisfy

w'h 2:: an . Therefore h 2:: (w j2 w') n , hence h 2:: 2;w' •
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T he following lemma, on th e oth er hand, provides a trivial upp er bound
for the height .

Lemma 2. If 8w ~ 2 and 8 n ~ 2 then every routing problem can be solved
with height h ::; ~n.

Proof. We assign a separate layer to each net . For every terminal we
introduce a vertical (parallel with the height) wire segment to connect th e
terminal with the layer of its net . The interconnection of th e terminals of
each net can now be performed trivially on its layer using the ext ra rows
and columns guaranteed by the spacing in both direction s.

Since l -terrninal nets can be disregarded, th e numb er of nets is at most
~nw t hus h ::; ~n follows immediately. •

The above lemma is a partial explanation for the phenomenon that th e
nature of single active layer routing seems to depend fundamentally on
whet her only one of th e quantities Sw and 81/ is at least 2 or both of them.

3.1. The 8n = 1 case

An alternative interpretat ion of Lemma 2 is th at if we fix w then there is a
routing of height h = O(n), provided that 8w , Sn ~ 2. The t ruth of the same
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statement is not at all obvious in the Sn = 1 case. However, the following
result shows that such a statement is true if Sw ~ 8 holds.

Theorem 7 [9]. If Sw ~ 8 then for any fixed value of wand for any n a
single active layer routing problem can always be solved in time t = O(n)
and with height h = O(n) such that the length n is preserved or increased
by at most one. Both linear bounds are best possible.

Our algorithm gives t = O(w3n) and h = O(wn). (The straightforward
lower bound for the time is the length of the input, that is, t = D(wn) .)

The proof of the above theorem is somewhat lengthy and highly tech
nical. Nevertheless, the basic idea is again a 3-dimensional modification of
the Gallai algorithm. This is only illustrated by the following remarks.

Suppose at first that w = 1. Then what we have is essentially a single
row routing problem with density d. Each net determines an interval of
length at most n and these intervals can be packed in a vertex-disjoint
way into d parallel lines, usually called tracks, using the Gallai algorithm.
Using the classical 2-layer Manhattan model, we can arrange the tracks in a
horizontal plane, as shown in the top of Fig. 5, thus realizing a routing with
Wi = d and h = 2. However, alternatively these tracks can occupy either a
vertical plane , leading to Wi = 2 and h = d, or two vertical planes, leading
to Wi = 3 and h = rd/21, see the middle and the bottom drawing of Fig. 5,
respectively. (Theoretically one can pack the tracks to more vertical planes
and thus ensure h = r3d/ (2w')1for larger values of Wi as well but it does
not seem to be interesting.) Throughout in Figures 5 and 6 continuous lines
denote wires while dotted lines are for the indication of coplanarity only.

Similarly, if w = 2 then we have a channel routing problem with density
d and using the same linear time algorithm we can always realize a routing
with Wi = d + 1 and h = 3 or with Wi = 3 and h = d + 1, see Fig. 6.

Actually, it is the right hand side of Fig. 6 that shows the essential idea
of the proof of Theorem 7.

3.2. The Sn, Sw ~ 2 case

We have seen in Lemma 2 that every SALRP problem can trivially be
solved with height h = l~' if Sw, s., ~ 2. This provides an upper bound of
h = O(n2 ) in the n = w case. However, in 2000 Aggarwal et al. [1] proved
the following theorem using elaborate probabilistic methods.
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Fig. 5

Theorem 8 (A. Aggarwal, J . Kleinberg and D. P. Williamson, 2000) [1].
If each net consists of two terminals only then the nets of an n x n SALRP
can be partitioned into O(n log2n) classes such that each class of nets can
be routed on a copy of the grid (of size n x n) .

An easy corollary of this theorem is that if Sw = Sn = 2 and each net
consists of two terminals only than every SALRP can be solved with height
h = O(n log2n). The following result shows th at actually h = O(n) also
suffices , even if multi termin al nets are also allowed.

Theorem 9 [10] . Any SALRP can be solved witll Sn :2: r~1+ 1, Sw = 2
and height h = 6n . Furthermore, if each net consists of two terminals only
then h = 3n also suffices.
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Since the role of nand w is symmetric, n ~ w can be assumed without
loss of generality and thus we obtain the following corollary.

Corollary 1 [10]. Any SALRP can be solved with Sw = Sn = 2 and
height h = 6 max (n ,w). If eacb net consists of two terminals only then
h = 3 max (n ,w) also suffices.

The constructions of the above results can be performed by a polynomial
algorithm. (If w = 8(n) is assumed then the algorithms work in O(A~)
time, where A = w . n is the size of the input.)

Acknowledgement. Research parti ally support ed by the Hungarian Na
tional Science Foundation (Grant Numbers OTKA 42559 and 44733).
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1. INTRODUCTION

The set of the integers, nonnegative integers, resp. positive integers is de
noted by Z, No and N. A ,B, . . . denote (finite or infinite) subsets of No , and
their counting functions are denoted by A(n), B(n), . .. so that, e.g.,

A(n)=I{a: O<a:Sn, aEA}I.

The asymptotic density d(A) of the set A c No is defined by

d(A) = lim A(n)
n-++oo n

if this limit exists. Al +A2 +...+Ak denotes the set of the integers that can
be represented in the form al +a2+" +ak with al E A, a2 E A, ... ,ak E Ak;
in the special case Al = A 2 = ... = A k = A we write

•Partially supported by Hungarian National Foundation for Scientific Research, Grant
No. T 029759.
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For A c No, kEN the number of solutions of the equations

a1 +c: +...+ak = n, aI, a2, ... , ak E A,

A. Sarkozy

is denoted by Tl(A,n ,k) , T2(A,n,k), resp. T3(A,n,k), and in the special
case k = 2 we write Ti(n) = Ti(A, n) = Ti(A,n, 2) for i = 1,2,3. For
k, 9 E N, Bdg] denotes the class of all (finite or infinite) sets A C No such
that for all n E N we have r2(A ,n, k) ~ g, i.e., the equation

has at most 9 solutions.

If F(n) = O( G(n)) , then we write F(n) «G(n). Cl, C2, ... denote
positive absolute constants.

In [7], [8], [9] and [11] Paul Erdos, Vera T. Sos and I, and in [17] Vera
T . Sos and I studied the irregularity properties and the range of the additive
representation functions Ti(A,n,k). In this paper my goal is to give a survey
of these 5 papers and the most important related results. (We also studied
difference sets, Sidon sets and Ramsey type additive problems involving
general sequences in [10], [11], [12], [13] and [17]; these results have been
surveyed or will be surveyed elsewhere.)

2. THE EARLY DAYS

As an answer to a question of S. Sidon, in 1956 Erdos [3] proved the following
result :

Theorem 1. There is an infinite set A C N such that

(1) cj log n < rl(A ,n) < c2logn for n> no.

In two papers Erdos and I extended the problem by estimating

Irl(A,n) - F(n)1

for "nice" functions F(n) . First we proved [5]:
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Theorem 2. If F(n) is an arithmetic function satisfying
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(2)

(3)

and

(4)

then

(5)

cannot hold.

F(n) -7 +00,

F(n+ 1) 2 F(n) for n 2 no

F(n) = 0( n 2) '
(logn)

Indeed, we proved th is in the sharper form that (5) cannot hold in mean
square sense.

Lat er we proved [6] that if F(n) is a "nice" function , then there is an A
with

Irl (A ,n) - F(n)1 « (F(n) logn) 1/ 2 :

Theorem 3. If F(n) is an arithmetic function satisfying

F(n) > 36logn for n > no,

and there exist a real function g(x) , defined for a < x < +00, and real
numbers xo, n l , such that

(i) g'( .x) exists and it is continuous for a< x < +00 ,

(ii) g'(x) ~ a for x 2 xv,

(iii) 0 < g(x ) < 1 for x 2 xv,

n/2
(iv ) IF(n)-2 J g(x)g(n -x)dxl < (F(n)logn) 1/ 2 forn > nl, then there

o
exists a sequence A such that

!rl(A,n)-F(n)1 < 8(F(n)log n) 1/2 for n> n2.

In particular , it follows from this theorem that
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(i) there is an A satisfying (1);
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(ii) if w(n) is a "smooth" increasing function with w(n) -t + 00 (say,
w(n) = loglogn) , then there is an A with

rl(A ,n) rvw (n ) log n ;

(iii) for all 0 < 0' < 1, there is an A with

Ir l( A,n) - nQI «nQ/2(logn)1 /2.

3. V ERA JOINS US (AND A CU RE FOR AN INC URABLE DISEASE)

In the Janu ary of 1984, not much after completing our papers [5], [6] with
Erdos, the two of us and Vera T . 80S trave lled to India for a few weeks. It
was a long flight (18 hours or so) , we had to transfer twice. Thus to spend
the time, soon we started to discuss math ematics. Vera asked Erdos and
me on our most recent results. We to ld her about our results quoted as
Theorems 2 and 3 above . After learning our results, she asked a few more
exciting new questions on th e irregularities of the additive represent ation
functions r i (A ,n). Unfortunately, after 1 or 2 hours I was forced to quit the
discussion since I did not feel well. Soon I realized that I had a bac! case of
fl u, my fever approaching 39C ".

Nearly one day later we arrived. When our plane land ed in Madras,
a heavy monsoon rain had just endeed, the temperature was around 36
37C 0, and the tarmac of the airport was steaming. It was quite unpleasant ,
however, soon I was feeling better, and in one hour my flu was complete ly
over (and it never returned again) : the "steam bath" cured it! So that not
only we had a very pleasant and , as you will see, fruitful t ime in Indi a, but
as a byproduct of our trip I also discovered the cure of the incurable disease
of th e influenza. (Unfortunately, this discovery is of not much use: it is just
too cost ly, lengthy and complicated to travel to Ind ia for a cure, and while
you work on it , you have a good chance to recover spontaneously.)

Anyway, in India we continued the discussion, and we completed th e
work after our return to Hungary. We ended up with 3 triple papers. First
in [7] we st udied the following problem: what condit ion is needed to ensure

(6) limsuplrl(A,n+ 1) -rl(A,n)! = +00 7
n-++oo
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We gave such a condit ion in terms of the function

B(A,N)=I{n : n ~N, nEA, n - 1 ~ A} 1

Theorem 4. If
lim B(A,N)N- 1/ 2 = +00,

N-+ oo

then (6) holds.

We also showed that thi s result is nearly sharp:
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Theorem 5. For all c > 0 , there exists an infinite sequence A such that

B(A,N) » N 1/ 2- c:

and 1'1(A ,N) is bounded (so that I1'1 (A ,N +1)- 1'1(A ,N) I is also bounded) .

In [8] and [9] we studied the monotonicity properties of the three
represent at ion functions 1'1(n), 1'2(n), 1'3(n). Let A be a set of posi
tive integers which can be obt ained from N by dropping finitely many
integers (i.e., N\A is finite). Then clearly, each of the th ree functions
1'1(A, n),1'2 (A ,n),1'3(A ,n) is monotone increasing from a certain point on.
So the question is: are there any other "non-trivial" sets A (i.e., sets A for
which N\A is infinite) so that th e function 1'i(A,n) (i = 1,2 ,3) is monotone
increasing from a certain point on? Somewhat unexpectedly, the answer
depends very much on th at which of the three functions 1'1 (A ,n) , T'2 (A, n) ,
1'3 (A ,n) is considered. First in [8] we proved:

Theorem 6. Th e function 1'1(A, n ) is monotone increasing from a certain
point on for an infinite set A c N if and only if N\A is finit e.

Theorem 7. Th ere is an infinite set A C N such that

A(n) < n - C3 n1/3 for n > no

and 1'3(A ,n) is monotone increasing for n > n1 .

Theorem 8. If A c N is an infinite set with

A(n) = 0 (-1n ) ,
ogn

tIlen tIle functions 1'2 (A ,n) and 1'3 (A, n) cannot be monotone increasing
from a certain poin t on.
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(7)

Later in [9] we improved on Theorem 8 in case of the function T2(A, n):

Theorem 9. If A c N is an infinite set such that

. n - A(n)
lim I = +00,

n-+oo ogn

then the function T2 (A , n) cannot be monotone increasing from a certain
point 011.

Note that in [1] Balasubramanian (who learned on our results Theorems
6, 7 and 8 during our Indian visit) also proved Theorem 9 independently.
Interestingly enough, although his proof is different from ours, he has exactly
the same condition (7) in his theorem.

In [11] Erdos, Vera T. 80S and I studied the range of the additive
representation functions Ti(A, n). For i = 1,2,3 let Ri(A) denote the range
of the function Ti(A, n), i.e., Ri(A) denotes the set -of the integers m such
there is a number n E N with

(8) Ti(A,n) = m ,

and let Ri(A) denote the set ofthe integers m such that there are infinitely
many integers n satisfying (8). We proved :

Theorem 10. For a set B c No, there is a set A with

Ri(A)=B, AcN

if and only if either B = {O, I} or {O, 1,2} C B.

(The cases i = 2,3 could be handled similarly.)

Theorem 11. For each i = 1,2,3 and for all B C No, the eqnexior:

Ri(A) = B

can be solved.

In [17], one of the problems studied by Vera T. 80S and me was a
conjecture of Erdos and Freud [4] . They conjectured:

Conjecture 1. If A c N is an infinite set sncl: that T2(A,n) is bounded,
then T2(A, n) must assume the value 1 infinitely often, i.e., there are infi
nitely many integers n E 2A whose representation in the form

(9)

is unique.

a + a' = n , a, a' E A, a ~ a'
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Moreover, they wrote: "Probably there are "more" integers n with a
unique representation of the form (9) than integers n with more than one
representation" . We showed in [17] that this is not so, at least for A E B2 [g],
g 2 3:

Theorem 12. For every g E N,g 2 2 there is an infinite set A C No such
that A E B2 [g] and for E > 0, n> no we have

On the other hand, we conjectured that the following sharpening of
Conjecture 1 is true:

Conjecture 2. If r2(A, n) is bounded then we have

(10)
. I{n : n ~ N, r2(A ,n) = 1} I

hmsup > O.
N->oo I{ n : n ~ N, r2(A,n) 21} I

In [17] we also showed that for any fixed finite set U, there is an infinite
set A C N such that r2(A, n), apart from a "thin" set of integers n, assumes
only values from U with about the same frequency. For A C N,u E N,
denote the set of the integers n E N with

r2(A,n) = 'U

by Su(A) (so that U~~Su(A) = 2A).

Theorem 13. Let kEN and let 'UI < 'U2 < ... < Uk be positive integers.
Then there is an infinite set A C No such that writing

we have

and

'th log 3
Wl a = log4 '

(Here SUi (A, N) denotes the counting function of SUi (A).)
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4. RECENT DEVELOPMENTS AND UNSOLVED PROBLEMS
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Cs. Sandor [15] disproved Conjectures 1 and 2 above and , indeed, he
constructed an infinite set A C N such that r2(A, n) ::; 3 for all n but
T2(A,n) =1= 1 for n > no. However, it is still possible that Conjecture 1 is
true if the upper bound for T2(A, n) is 2, i.e., A E B2[2]:

Problem 1. Is it true that if A E B2[2], then T2(A, n) must assume the
value 1 infinitely often?

G. Horvath [14] extended Theorem 2 from sums a + a' of 2 terms to
sums of k terms. Note that Theorem 3 has no similar extension to the k
term case (with k > 2) yet . Namely, Theorem 3 (and all the other results of
similar nature) are proved by a probablisitic argument, and this approach
usually fails for k > 2 (because of the lack of independence of the events
involved).

Problem 2. Prove a result of type Theorem 3 for sums of k > 2 terms, i.e.,
a similar result with 1'1 (A, n, k) in place of Tl(A,n)( = Tl(A, n,2)) .

G. Dombi [2] constructed sequences A of density 1/2 for which Tl(A , n, k)
is monotone for large n if k: > 4. The point of his result is that he gave
constructions (using the Rudin-Shapiro and TIme-Morse sequences) , while
in all the other known results of similar nature existence proofs are given
(using probability theory) .

Finally, I will present a few further related unsolved problems selected
from [11], [16] and [17], and also a couple of new ones.

First a problem related to Theorems 2 and 3:

Problem 3. Does there exist an arithmetic function F(n) satisfying (2),
(3) and (4) and a set A C N such that

11'1 (A,n) - F(n)1 = o( (F(n)) 1/2)

holds on a sequence of integers n whose density is I?

The next problem is the extension of (6) to the case of more than 2
summands:

Problem 4. For kEN, k » 2, what condition is needed to ensure

lim sup ITl (A ,n + 1, k) - Tl (A ,n, k)I = +oo?
n-+oo

Some problems related to Theorems 6, 7, 8 and 9:
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Problem 5. Does there exist a set A c N such that N \ A is infinite and

Tl(A,n+ 1) 2:: q(A,n)

holds on a sequence of integers 11. whose density is I?

Problem 6. Does there exist an infinite set A such th at N \ A is infinite
and T2(A, 11. ) is increasing from a certain point on?

Problem 7. Does there exist an infinite set A c N such th at its lower (or
even upp er) asymptot ic density is less th an 1, and T3 (A, n) is monotone
increasing from a certain point on?

Problem 8. What condition (on A) is needed to ensure th at the function
Ti(A,n) (i = 1,2, 3) assumes infinitely many "locally small" , resp . "locally
large" values, i.e.,

Ti (A,n) < min { Ti(A, 11. - 1),Ti(A, 11. + I)} ,

resp.

Ti(A,n) > max {Ti(A, 11. - 1),Ti(A, 11. + I)} ?

Problem 9. What can one say on the monotonicity of th e functions
Ti (A, 11. , k) U= 1,2 , 3) in the case k > 2 ? In particular , I conjecture :

Conjecture.

(i) If k 2: 2 and ri (A , 11., k) (i = 1,2,3) is increasing (in 11.) from a certain
point on, then

cannot hold.

(i i) If k 2:: 2, th en there is a set A c N such that

and Ti(A, 11. , k) (i = 1,2 ,3) is increasing.

Problem 10. When and how th e results on th e monotoni city of Ti(A,11.)
(i = 1,2 ,3) can be extended from sums al + a2 + ...+ ak to linear forms
blal +b2a2 +...+bkak where bl ' b2," " bk are fixed positive integers?
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A LIFTING THEOREM ON FORCING LCS SPACES
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Denote by THIN (0:) the statement that there is an LCS space of height 0: and
width w. We prove, for each regular cardinal K, that if there is a "natural" c.c.c
poset P such that THIN(K) holds in v P then there is a "natural" c.c.c poset
Q as well such that THIN (6) holds in V Q for each 6 < K+.

1. INTRODUCTION

A topological space X is called scattered if its every non-empty subspace
has an isolated point. Denoting by I (Y) the isolated points of a subspace
Y c X for each ordinal a define the ath Gantor-Bendixson level of the
space X , Ia(X), as follows :

Ia(X) = I (X \ u{ IjJ(X) : f3 < a}).

The minimal a with Ia(X) = 0 is called the height of X and denoted by
ht (X) . Define the width of X, wd(X), as follows: wd(X) = sup {I Ia(X) I :

a < ht(X)} . The cardinal sequence of X, CS(X), is the sequence of the
cardinalities of its Candor-Bendixson levels, i.e.

CS(X) = (IIQ(X)I : a < ht(X)).

The following problem was first posed by R. Telgarsky in 1968 (unpub
lished): Does there exist a locally compact, scattered (in short: LGB) space

'The author was partially supported by Hungarian Foundation for Scientific Research,
grant No. 37758 and the Bolyai Scholarship of the Hungarian Academy of Sciences.
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with height WI and width w? After some consist ency results Rajagopalan ,
in [8], constructed such a space in ZFC.

To simplify the formulation of the forth coming results denote by
TH.IN (0:) t he st atement that there is an LCS space of height 0: and widt h
w. (A scattered space is called thin iff it has width w.)

In [4] 1. Juhasz and W. Weiss showed THIN (0:) for each 0: < W2.
W. Just proved, in [5]' that this result is sharp in the following sense. Add W2
Cohen reals to a ZFC model satisfying CR . Then, in the generic extension ,
2w = W2 and THIN (W2) fails. So you can not prove THIN (0:) for each
0: < (2W )+ in ZFC .

Ju st 's result was improved in [3] by I. Juhasz, S. Shelah, L. Soukup and
Z. Szentmiklossy: if we add Cohen reals to a model of set theory satisfying
CH, then, in the new model, every LCS space has at most WI many countable
levels.

The notion of ~-function (see definit ion 1.1 below) was introduced in [2].
In that paper Baumgar t ner and Shelah proved th at (a) the existence of a ~

function is consistent wit h ZFC , (b) if there is a ~-function t hen THIN (W2)
holds in a natural c.c.c forcing extension. We will explain later , in Sect ion 3,
what we mean und er "natural poset" . Roughly speaking, "natural" means
tha t th e elements of the posets are just finite approximations of the locally
compact right- separating neighbourhoods of the points of the desired space .
Building on their meth od , but using much more involved combina tor ics,
Martinez [6] proved that if there is a st rong ~-function , t hen for each 8 < W3

there is a c.c.c poset Po such that THIN (8) holds in V PJ • These results
naturally raised the following problem.

Problem 1. Does THIN (W2) imply THIN (8) for each 8 < W3?

Alth ough this question remains st ill open we prove a "lift ing theorem"
claiming that if there is a natural poset PW 2 such th at THIN (W2) holds in
V PW2 t hen for each 8 < W3 there is a natural poset Po such that THIN (8)
holds in V PJ: the posets used by Martinez can be const ructed direct ly from
the poset applied by Baum gar tn er and Shelah without even mentioning th e
~-function. Moreover, our lift ing theorem works for each cardinal x not
only for W2 ! Since th ere is no ~-function on W3 you can not expect to appl y
the method of Baumgar tner and Shelah to prove THIN (W3) ' However , if
anybody can construct a "natural" c.c.c poset P such that TH.IN (W3) holds
in v P th en our theorem gives immediately the consistency of THIN (0:)
for each 0: < W4 .
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To formulate this statement more precisely we introduce some notation ,
so we postpone th e formulation of our main result till Theorem 3.15.

First we recall some definition and results.

Definition 1.1. Let f : [W2] 2 - [W2] :S;w be a function with f{0',,6} C 0'n ,6
2for {0', ,6} E [W2] .

(1) We say that two finite subsets x and y of W2 are good for f provided
th at for 0' E x n y, ,6 E x \ y and, E y \ x we always have

(a) 0' < ,6" ==} et E f{ ,6, ,} ,

(b) et <,6 ==} f{ et,,} C f{ ,6,,} ,

(c) ,6 <, ==} f{et, ,6} C f{et,,}.

(2) The function f is a D.-function if every uncountable family of finite
subsets of W2 contains two elements x and y which are are good for f.

(3) The function f is a sironq D.-function if every uncountable family A
of finite subsets of W2 contains an uncountable subfamily B such th at any
two sets x and y from B are good for f.

Theorem (Velickovic). If O Wl holds then th ere is a strong D.-function.

For the proof see [1] .

2. A METHOD TO FORCE THIN LCS SPACES WITH PRESCRIBED

CAR DI NAL SEQUENCE

Recall that given a topological space (X, TX) a function f : X - 'Tx is
called neighbourhood assignment iff x E f( x) for each x E X.

Assum e that X is an LCS space. Define th e function ht : X - ht (X)
by th e formula x E Iht (x)(X). Since LCS spaces are O-dimensional , we can
fix a neighbourhood-assignment U : X - TX such that U (x) is a compact
open neighbourhood of x with

U (x) \ {x} C I<ht(x)(X) = U{In(X) : et < ht (x) } .

The family { U (x), X \ U (x) : x E X} is a subbase of X.
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The space is coherent iff we can choose U in such a way that x E
U (y) implies U (x) C U (y). Such a U is a called coherent neighbourhood
assignment.

If U is coherent then we can define a partial order <u on X by taking
x <lU y iff x E U (y). Since clearly U (x) = {y EX: y <lU ::r} we have that
<u determines the neighbourhood assignment U.

If <l is an arbitrary partial order on X then define the topology T<J on X
generated by the family { U<J(x) , X \ U<J(x) : x E X} as a subbase, where
U<J(::r) = {y EX : Y<lx}. As we have seen if U witnesses that (X,T) is
coherent then T<JU = T.

SO the topologies of coherent LCS spaces are determined by partial or
derings. We would like to determine certain properties of a partial ordering
in such a way that if some partial order (X, c) has those properties then
(X ,T<J) is an LCS-space with prescribed Cantor-Bendixson levels.

To formulate these properties we investigate some covering properties
of the family { U (x) : .1: EX} , where U is a coherent neighbourhood
assignment on some LCS-space X.

If x ~ U (y) and y ~ U (x) then

U(x)nu(y)cU{U(Z): zEU(x)nU(y)}.

Since U (x )nU (y) is compact there is a finite set i{x, y} E [U (x) n U (y)] <w

such that
U (.r) n U (y) c U{U (z) : Z E i{ x, y} } .

We will enumerate some properties of <l and the function i. Let 8 =
ht (X) and for a < 8 write X a = Ia(X).

(I) if x E Xa , y E X{3 and X<ly then either z = y or a < (3 ,

(II) V{x,y}E [X]2 Vz E X((Z<lX!\Z<lY) iff3tEi{x,y}z<lt).

(III) if x E Xa and (3 < a then the set {y E X{3 : y <l x} is infinite .

Proposition 2.1. Assume that {Xa : a < 8} is a partition of a given set
X, <l is a partial order on X and i : [X]2 ---1 [X(W is a function satisfying
(I)-(III). Then X = (X ,T<J) is a (coherent) LCS space with Io(X) = Xc< for
a < 8.
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Proof. X is right-separat ed, i.e. scat tered, witnessed by any well-ordering
extending the well-founded partial ordering <J because of (I).

For each x EX, the family

lU(x) = { U<l (x) \ UU<l(Y) : FE [U<l (x) \ {x }] <w}
yEF

is a neighbourhood base of x. Indeed, if x i= Y then U<l(x) n U<l (Y) = U<l (x)
provided x E U<l(Y) and

U<l (x) \ U<l(Y) = U<l (x) \ U U<l (z)
ZEi{x, y }

provided x ~ U<l(Y) , where i{x,y} E [U<l(x) \ {x}] <W.

Lemma 2.2. Ia(X) = Xa'

Proof. Firs t we show by induction on 0: th at if x E Xa, U E lIJ (x) and {3 ::; 0:

then Un X {3 i= 0. For {3 = 0: we have x E Un X {3 so we can assume {3 < 0: .

Assume th at U = U<l(x)\U { U<l(z) : Z E F} , where FE [U<l (x) \ {x}] <W .
Let /-l = max {v : F nXv i= 0} and 1 = max {l l ,{3}. Since 1 < 0: by (III) we
can pick t E (X/' n U<l(x)) \ F. Then U<l (t) \ U { U<l(z) : Z E F} C U is a
neighbourhood of t which intersects X {3 by t he induct ive hypothesis because
t E X/' and (3 ::; 1 < 0: .

Now prove the statement of the lemma by induction on 0: . Let Y =
X \ U{3<aI{3 (X ) = X \ U {3<aX{3 . If x E x; then U(x) n Y = {x} , so
X a C I (Y ). If x E X/' for some 1 > 0: then for any neighbourhood of U
we have u n x; =f 0, i.e. un Y =f {x} , and so x ~ I (Y ). Thus I (Y ) = X u
which was to be proved. •

Lemma 2.3. U<l( x) is compact ill X .

Proof. We prove this st at ement by induction on ht (x). By Alexand er 's
subbase lemma it suffices to show that any cover V of U<l(x) by members of
{ U<l(Y) : Y E X} and their complements has a finite subcover. Let V E V
be such that x E V. If V = U<l (Y) then U<l(x) C U<l(Y) so we have a one
element covering. So we can assume th at V = X \ U<l (Y)' Then

For each Z E i {x ,y } we have ht (z) < ht (x) and so U<l(z) is compact,
and so U<l (x) \ V is compact as well. Thus there is a finite W C V with
U<l(x) \ V C U W . Hence W U {V} is a finite cover of U<l(x) . •
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This completes the proof of Proposition 2.1. .2.1

1. Soukup

We say that <J is an LGB-order on X iff (X, T<J) is an LCS-space.

So our strategy to force an LCS space with a prescribed cardinal se
quence (I'\,Q : 0: < 6) is the following. Let XQ= {o:} X I'\,Q for 0: < 6 and put
X = U{Xa : 0: < 6}. Now we try to add generically a partial ordering <J

on X and a function i : [X]2 -1 [X]<w satisfying (I)-(III) using finite ap
proximations. That is, a typical forcing condition is a triple (a, ~, i) , where
a is a finite subset of X, ~ is a partial order on a, and i is a function on [af
such that (a,~, i) satisfies (I) and (II). (III) would be guaranteed by some
density argument. This type of forcing was introduced by Judy Roitmann
to get thin superatomic Boolean algebras (LCS spaces).

The main problem is that the poset of all the possible finite approxima
tions may not satisfy c.c.c. That is the point where the t.-function came
into the picture. Baumgartner and Shelah, and later Martinez, applied this
function to select a suitable subfamily of the conditions which satisfies c.c.c.
Our strategy will be different : we show that if there is a suitable poset which
introduces THIN (I'\,) then for each 6 < 1'\,+ there is a a suitable poset which
introduces THIN (6) .

This strategy will be carried out in the next section in a special situation.

3. LIFTING THEOREM

Fix a cardinal I'\, 2:: wand let 1f : 1'\,+ x w -1 1\;+ be the natural projection:
1f( (0:, n)) = 0:.

Define the poset pO = (pO, -<) as follows. The underlying set pO consists
of triples (a, ~,i) satisfying the following requirements:

(ii) ~ is a partial ordering on a,

(iii) V{x ,y} E [af if x ~ y the 1f(x) < 1f(Y) ,

(iv) i : [a]2 -1 P(a) is a function ,

(v) V{x ,y} E [a]2 if 1f(x) = 1f(Y) then i{x,y} = 0,

(vi) V{x ,y} E [a]2 if x ~ y then i{x,y} = {x} .
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Write p = (aP, ~P , iP) for p E t». Define th e function hP : aP ---t P(aP) by
the formula hP(x) = {y E aP : y ~P x}. For lJ CaP writ e h,p[lJ] = U{hP(x)
xElJ} .

Let p -< q iff aq C aP,

~q=~p n(aq x aq ) ,

i q C i P•

Clearly -< is a partial ordering on t».
Let

P* = {(a,~ , i) E pO : 'v'{ x ,y} E [af 'v'z E a

(z ~ x A z ~ y) iff ::It E i{x, y} z ~ t} .

Fact 3.1. For p E pO ,

P E P* iff 'v'{ x , y} E [aPfhP( x) n hP(y) = h'p[ iP {x ,y}] .

The elements of P* can be considered as the natural finite approxima
tions of an LCS-order on ",+ x w and the witnessing function i.

Definition 3.2. Two condit ion p, q E pO are twins iff (i)-(ii) below hold ,
where a = aPn aq

:

(i) ~pr a =~qr a,

(ii) iP r [0.]2 = iq r [0.] 2.

Definition 3.3. Let p, q E pO be twins. A condit ion r E po is an amalga
mat ion of p and q iff

(a) ar=aPUaq

(b) ~T is the parti al ordering on a T generat ed by ~P U ~q ,

Let
amalg (p,q) = {r' : r is an amalgamation of p and q}.

When we speak about amalgam ations of two conditions we will always
assume th at th ese condit ions are twins.



348

Fact 3.4. If r E pO is an amalgamation of p and q, then

L. Soukup

(1) ~r raP=~P,

(2) r -< p and r -< q,

(3) If x E aP and y E aq then x ~r y iff there is z E aPn aq such that
x ~P z ~q y.

Fact 3.5. If r E pO is an amalgamation of p and q, moreover p, q E P*
then

\I{x,y} E [aPj2 u[aqj2/{(x)n/{(y)=/{[i{x,y}].

Proof. Assume that {x,y} E [aPf and let z E (hr(x)nhF(y)) naq
. Then

there are u, v E apna q with z ~q u ~P x and z ~q v ~P y. Since q E P* there
is w E iq {u, v} with z ~q w. Since iP{u,v} = iq

{u,v} we have w E aPn a'',
Thus w E hP(x) n hP(y). Since q E P*, there is t E iP{.T, y} with w ~P t.
Thus z ~q w ~P t E iP{x,y} = iF{x,y} and hence z E hr[iF{:r,y}]. -3.5

For A c /'\;+ let

PA= {p E P* : aP C A x w}.

Next we introduce three properties, (I<+), Dt and D~, of posets (P, -<),
where P C PAfor some A C /'\;+. The first one is a strong version of property
(K), the two others are density requirements.

Definition 3.6. Let P C P*. The poset P = (P, -<) has property (K+) iff

p and q have an amalgamation in P.

Definition 3.7. For a condition p E pO and x E (/'\;+ x w) \ aP define
q = p l±J {x} E pO as follows:

• aq = aP U {x},

• ~q=~p u{ (x, x) } ,

• i q{x, y} = 0 for y E ol',
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Fact 3.8. p l±J {:r} E PA for each p EPA and x E (A x w) \ ol',

Definition 3.9. Let Pc PA ' Th e poset P = (P, -<) has property Df iff

p l±J {x} E P for each pEP and x E (A x w) \ aP•

Definition 3.10. For p EPA , X E aP, Yo, ;t}l, "" Yn-l E (A x w) \ aP

with 7T(YO) < 7T(Yd < ... 7T(Yn-l) < 7T( X) define the condit ion q = p l±Jx
(Yo , . . . ,Yn-l) E po as follows:

q - P { }• a - a U Yo , ·· · ,Yn-l ,

{

V. if x <Pz
• iq{Yi,Z} = t - for z E aP .

o otherwise

Fact 3.11. If p EPA' x E ol', Yo , Yl , . . . ,Yn-l E (A x w) \ aP with
7T(YO) < 7T(Yl) < . ..7T(Yn-d < 7T( X) , then q = pl±Jx (xo, .. . , Xn- l ) EPA'

Definition 3.12. Let P C PA. Th e poset P = (P, -< ) has property D~ iff

V{a , ,6} E A , a < ,6, there is a finite set of ordinals L P (a , ,6) =
{ao, . . . ,an-d E [A] <wsuch that a = ao < al < ... an- l < ,6 and if
pEP, x E aP with 7T( X) = ,6 and Xi E (A x w) \ aP with 7T( Xi) = ai
for i < n , then p Wx (Yo, . .. Yn-l) E P .

Definition 3.13. Let A c ~+ and P c P*. The poset P = (P, -<) is A -nice
iff P c PAand P has properties (1(+), (D f) and (Dt) . For 15 < ~+ let
NAT (15) be the st atement that there is c5-nice poset P8.

Proposition 3.14. If a poset P is c5-nice th en P has prop erty (K) and
THIN (15) holds in V p .

Proof. By Fact 3.4(2) property (I{+) implies property (K) . Let G c P be a
generic filter. Put A = U{aP : P EG} , i = U{i P : pEG} and -<= U{ -<P:
pEG}. Then A = 15 x w by (D~) . Th e partial ordering -< sat isfies (I)
because every pEP sat isfies (iii). Th e function i : [15 x wf --t [15 x w]<w
sat isfies (II) because every element of P is in P*. Finally (III) holds because
(D~) can be applied in a suitable density argument . Thus (0 x W , T -<. ) is an
LCS space with levels {a} x w for a < O. .3.14
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After this preparation we are able to formulate the main lifting theorem.

Theorem 3.15. N AT (~) implies NAT (0) for each cardinal r: and ordinal
o< ~+ .

First, in Lemma 3.16 below, we show that our lifting theorem works
downwards. Although THIN (~) clearly implies THIN (0) for 0 < r: we
should prove NAT (0) for 0 < ~ as well, because we will use the posets
witnessing this to prove NAT ('r) for I ~ r:

If p E pO and I c ~+ let

p r I = (aPn (I x w), :::? r (I x w), iP r [I x w]2) .

Observe that

• p r I E pO iff iP{x, y} C I x w for each {x, y} E [aPn (I x w)] 2,

• if P E P* and p r I E pO then p r I E P*.

Lemma 3.16. N AT (~) implies NAT (0) for 0 < n.

Proof. Fix P", c P: such that Plio= (P"" -<) has properties (I<+), (Dl)
and (D2). Let P5 = (P5, -<), where P5 = {p r 0 : pEP",}.

We should check that P5 also has has properties (I<+), (Df) and (Dg).

(J(+): Let {Pv r {) : v < wI} E [P.5t1
• We can assume that for

2each {v, J.L} E [WI] Pv and Pu have an amalgamation Tv,Jio E Pli' Hence
TV,Jl r {) E P.5 is an amalgamation of PI/ r0 and PJio rs.

(Df) is easy: (p r0) I±! {x} = (pI±! {x}) r0 for 7r(x) < O.

(Dg) is also easy: (p r 0) I±!x (Yo, ... ,Yn-l) = (p I±!.T (Yo , . . . ,Yn-l)) r 0
for 7r(x) < O. -3.16

Proof of Theorem 3.15. Since we know the statement for 0 < ~ we prove
the theorem by induction on 0 ~ n. When we constructed P5 we will also
have PA C PAfor each A C ~+ with order type <5 such that PA = (PA,-<)
has properties (I<+), (Dt) and (Dt)·

We will write LA(cy, (3) for LPA (cy, (3) . Let LA(cy, o) = 0.
Successor step:

Assume that P5 is constructed. Then we can get P5+1 as follows.

A p is in PHI iff

(i) p E P8+1,
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(ii) P r <5 E P6,

(iii) \f{x,y} E [aP]2 if 1l"(x) < <5 and 1l"(Y) = <5 then either i{ :c ,y} = x (i.e.
x ~P y) or i{x, y} = 0 (i.e. hP(x) n hP(y) = 0).

We show that PHI = (P6, -<) works, i.e. it satisfies properties (K+),
(Df+l) and (Dg+1).

Lemma 3.17. PHI satisfies (K+) .

Proof. Let {Pv : u < wI} E [PHlt 1
, Pv = (av, ~v, iv), li; = hP" . Without

loss of generality

(a) \f{v, f./,} E [wlf3rv,J.l E Pp·v,J.l is an amalgamation of Pv and Pw

(b) 3tav n ({<5} x w) = t.

(c) {av : v < WI} forms a Ll-system with kernel a.

(d) ~vr a =~Itr a for each {v,f./,} E [wr]2

(iii) and (d) together imply that

Now for each {v, f./,} E [Wl]2 the conditions Pv and PIL are twins and we
can define r E pO as follows:

• r is an amalgamation of Pv and Pit

• r r6 = r V,lt·

If {x, y} E [aT]2 \ ([aP]2 U [aq]2) then {x , y} E [aT",/-,f Hence rV,J.l E P;
and Fact 3.5 imply that r E P;+l' Thus r E PHI· -3.17

Lemma 3.18. P6+1 satisfies (Df+l).

Straightforward.

Lemma 3.19. PHI satisfies (Dg+1
) .

Proof. For 0: < (3 < <5 let L~:J = L~,{3' For 0: < <5 let L~~1 = {o}. - 3.19
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The successor st ep is done.

Limit step:

Assume that 8 is limit ordinal, and PAis constructed for each A C ",+
with order type < 8.

Fix a club C c 8, C = {'Y( : ( < cf(8)}. Let I( = ['Y( , 'Y(+d for
( < cf(<5).

Let p : 0 ~ cf(o) s.t. p(a) = ( iff a E 1(.

Let p E P.s iff

(<51) PEP; ,

(82) p feE Pc ,

(83) p f I( E PI ( for each ( < cf(8) ,

(04) 'Vx , y E aPif x 5:.Py , 'Y( < 1l"(x) < 'Y(+1 5:. 1l"(Y) then:Ju E aPx 5:.Pu 5:.P y
and 1l"(u) = 'Y(+l

(05) 'Vx , y E aP if x 5:.Pv . 1l"(x) < 'Yf, 5:. 1l"(Y) < 'Yf,+1 then :Jv E aPx 5:.Pv 5:.Py

and 1l" (v) = 'Yf,

(<56) 'Vx , y E ol' , 'Y( 5:. 1l"(x) < 'Y(+1 5:. 'Yf, 5:. 1l"(Y) < 'Yf, +I, x 1/ y then

We show that P.s = (P.s , -<) works , i.e. it satisfies properties (K+) , (Df)
and (D1).

Lemma 3.20. P.s satisfies (K+) .

Proof. Let {Pv : v < wd E [P.st1
, Pv = (av, 5:.v , iv), li; = hPv . Let

Cv = {17 < cf( 8) : av n II) =f. 0} . By thinning out the sequence {Pv :
u < WI} we can assume that

(a) {av : v E wd forms a b.-system with kernel d,

(b) there is a partial ordering 5:. d on d such that 5:.v f d = 5:. d for each v E WI ,

(c) {c, : v < WI} forms a b.-system with kernel c,
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(e) VT/ E cV{v, ft} E [wd 2 the condit ions PlI r IT} and Pj1. r IT} have an

amalgamation r3'IL = (a3'IL' :::;2,j1. , i3,IL ) in PI" .

(f) V{v, ft} E [wd 2 the condit ions PlI rC and PILrC have an amalgamation
c _ (C <c :c) · Por 1I,j1. - all,ILl -lI,IL' tll,IL In C·

(g) 'ill{x,y } = i j1. {x ,y } for each {x ,y} E [dJ2 and {v,ft} E [Wl r

2To ensure (g) fix {x,y} E [dJ . If p(:r: ) = p(y) = T/ then (g) holds by (e):

i ll{x, y} = i IL {X, y}. If {7f(x ),7f(y)} E [CJ2 th en i ll{x, y} = i j1. {x ,y} ~f
iC{x,y} by (f). If T/ = p(x) =I p(y) = (J then by (156) we have

i.e. i ll{x,y} is a subset of a fixed finite set for each v E WI. SO, by thinning
out our sequence we can guara ntee t hat (g) holds.

Claim 3.20.1. PlI and PILare twins for each {v , ft} E [wd 2.

Fix {v,ft} E [Wlr Define r = (a,:::; , i) E pOas follows:

(rl ) a = all U aj1. '

(1'2) :::; is t he partial ordering on a generated by :::;1I U :::;j1. ,

(1'3)

ill {:r,y} if {x,y} E [a llf ,

i IL {X, y} if {x,y} E [aIL]2 ,

i {x ,y} = if,IL{x,y} if {x,y} E [CJ 2
,

iZ,IL {x,y} if {x,y} E [I11J
2,

M(x,y) otherwise,

where

M(x,y)= U{i{u,v} : {u,v}E[a]2 , u :::;x, v :::; y,

Claim 3.20.2 . r is an amalgamation of PlI and Pw
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Claim 3.20.3. ~ rc x w =~f,w

Proof. Let x , y E an(Cxw) , x ~ y. We can assum e th at x E av and y E aj1 '
and p(x) < p(y) . Then, by Fact 3.4(3) , there is zEd with x ~v z ~j1 y .
Then, applying (<55) for x and z in Pv th ere is v E av such th at x ~v v ~v z
and 11"(v) = Ip(z) ' Since z E a we have p(z) E c and so v E cp(z) c d. T hus

X ~ f,j1 Y because x ~v V ~IL Y and v E d n (C x w) . . 3.20.3

Claim 3.20.4. r satisfies (<52) and (<53) .

Proof. r r1'1 = r~,j1 E PI'I is clear for each TJ < cf(<5) anel r rc = rf,j1 E Pc
follows from Claim 3.20.3. .3.20.4

Claim 3.20.5. r satisfies (<54) .

Proof. Assume th at { x , y} E [a]2 , x ~ y, 1"1 < 11"(x) < 171+1 ~ 11"(Y). We can
assum e that x E av \ aj1 and y E aiL \ avo Pick zEd such that x ~v z ~JL y .

If 1"1 < 11"(z) < 1'1+1 then appl ying (<54) for the pair {z, y} in PIL we
obtain U E aJL such that z ~IL U ~IL Y and 11"(u) = 1 '1 +1. Then this U works
for {x,V}.

If 1'/+1 ~ 11"(z) th en applying (<54) for th e pair {z, z} in Pv we obtain
v E a,/ such that x ~v v ~v z and 11"(v) = 1 '1+1· . 3.20.5

Claim 3.20.6. r satisfies (<55).

Proof. Assume tha t {x,y} E [a]2, x ~ y , 11"(x) < 1'1 ~ 11"(Y) < 1'/+1 . We can
assume that x E av \ aiL and y E all. \ avo Pick zEd such that x ~v z ~IL y .

If 1"1 ~ 11" (z ) < 171+ 1 then applying (<55) for the pair {:I:, z} in p., we
obtain an U E a., such that x ~v U ~v z anel11"(u) = 1"1' Then this u works
for {x,y}.

If 1"1+1 < 11"(z) th en applying (<55) for the pair { z,y} in PJL we obtain a

v E aj1 such that z ~IL v ~j1 y and 11"(v ) = 171 ' . 3.20.6

Claim 3.20.7. r sa t isfies (<56).

Straightforward from the construction of i .

Claim 3.20.8. r sat isfies (<51) : r E Pt.

Proof. Write h = hr. Let [z, y} E [a]2 be ~-incomparable elements. By
Fact 3.5 we can assume that x E av\aj1 and y E aj1 \av. Let z E h(x)nh(y) .

Case 1. p(x) = p(y).
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Let r/ = p(x) . Since r r 17) = r2,p, E Phi we can assume that 1f(z) < I ry '

Applying (05) for the pairs {z ,x } and {z ,y} we obtain u and v, respectively,
such that 1f(u) = 1f(v) =" 1' Z ~ U ~ .1:, Z ~ v ~ y. Since "I E cVncI1 = Cwe
have {u, v} c d. Since z E h(u) nh(v) we have u = v by Fact 3.5. Hence
there is t E i Z, ll {.1:, y} = i {x, y} with U ~Z,ll t. Thus z ~ t E i {x, y} .

Case 2. p(z) = p(x) < p(y), 1f(z) = I p(x) '

Applying (05) for the pair {z,y} there is u E a such th at z ~ u ~ y and
1f(u) = I p(y) . Then i {z ,u} = {z} and i {z, u} C i {x, y}.

Case 3. p(z) = p(x) < p(y), 1f(z) > Ip(x)'

Applying (04) for the pair {z, y} t here is u E a such that z ~ u ~ y

and 1f(u) = I p(x )+ l' If u E aiL then th ere is wEd n (Ip(X ) x w) such that
either z ~v W ~Il U or z ~J1 w ~v x by Fact 3.4(3). Hence p(x) E C and so
u E e p(x ) cdc avoThus u E avo Thus Z E hv(x)nhv(u), hence by Fact 3.5
and by (06) we have x ~v u . Hence z :S y , contradict ion, th is case is not
possible.

Case 4 . p(z) < p(x) < p(y).

Applying (04) for the pairs {z,x} and {z,y} we obtain u and v, respec
tively, such th at 1f(u) = 1f (v) = (J E C , z ~ u ~ x, z ~ 'U ~ y. Then
z E h(u) n h(v) so, by case 1, we have u = v. Applyin g (05) for th e pairs
{u,.1:} and {u,y} we obtain t and w such th at u ~ t ~ x, u ~ w ~ y,
1f(v) = I p(X)' 1f(w) = I p(y )' Since r rC = rf, ILE Pct here is s E i {t,w } with
'u :S s. Then z:S sand s E i {x , y} . - 3,20.8

Hence Po sat isfies ([{+). - 3.20

Lemma 3.21. Po satisfi es (Df).

Proof. Assume that p E Po and z E (0 x w) \ ol', Let q = p l±J {x} . We need
to show th at q E Po, i.e., q sat isfies (01) -(06).

(01) follows from Fact 3.8.

If z ~ C x w th en q rr C = p rC E Pc because p E Po . If z E C x w
th en q rC = (p rC) l±J { z} E Pc because p r C E Pc and Pc sati sfies (Df) ·
Hence (02) holds . Similar arguments work for (03) .

As for (04) , let {x,y} E [aq]2 with x ~q y. Then {x,y} E [aP]2 because
z and the elements of O,P are ~q-incomparable . So we can apply prop erty
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(04) for {x,y} in p to get a suitable u E aPC a,q. Similar arguments work
for (55) .

2As for (56), let x ,y E [a,q]. If z E {x,y} then iq{x,y} = 0 so the
required inclusion holds trivially. Otherwise {x, y} E [a,p]2 so we can use
property (56) for p to get the required inclusion. - 3.21

Lemma 3.22. P8 satisfies (D~).

Proof. If {a ,,6} E [II)]2 for some 1] then let L8(a,,6) = LI'7(a ,,6). Other
wise, if a E 11), ,6 E la , 1] < 0" , then let a+ = min (C \ a + 1) and put

Enumerate LP(a,,6) as a = ao < a1 < ... < an-1 <,6. Let p E P8 ,
z E a,P with 7I"(z) = ,6 and Zi E (5 x w) \ a,P with 7I"(Zi) = ai for i < n. Let

q = p l±Jz (zo, ... Zn-1).

We should show that q E P8, i.e. q satisfies (51)-(56).

We will consider only the harder case, i.e. when a E II) , ,6 E la ,
1] < 0". Fix 1 ::; rn < n such that LC(a+"a) = {al,' " ,ak-d and
LI" ha,,6) = {ak, ... ,am-d, i.e.

ao = a < a1 = a+ = 11)+1 < .. . < am = "[a < ... < an-1 <,6.

(151) follows from Fact 3.11.

(152): If Z t/: C x w then

q r C = ((p r C) l±J {zd) l±J {zk-d···l±J {ze} E Pc,

where f. = 1 if ao t/: C and f. = 0 if ao E C, because Pc satisfies Df·
If z E C x w then

q r C = (p r p) l±Jz (ze , . . . , Zk) E Pn,

where f. = 1 if ao t/: C and f. = 0 if ao E C, because Pc satisfies Df.

(53): Let ( < cf 5. If ( = 0" then

because PI" satisfies D~" . If I( = ai for some i E {a, . .. k - I} then
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because P1< satisfies D;<.

Otherwise q r I( = p r I( E P1<.

(64): Let {x ,y} E [aq]2 with x ~q y and I ( < 1f(x) < 1(+1 ~ 1f(Y) . If
x E aP then y E aP so we can apply (64) in P the get a suitable u. So we
can assume that x E {zo , . . . , zn-d · Since I ( < 1f(x) < 1( +1 ~ 1f(Y) we
have x = Zo or Z E {Zk+l ,"" zn- d . If x = Zo then u = ZI works. If x = z,
for some k < i < n then ~ = (J so 10"+1 ~ 1f(Y) implies y E al', Hence
10" < 1f(z) < 10"+1 ~ 1f(Y) and so applying (04) in p for the pair {z,y} we
get u E aP with Z ~P u ~y and 1f(u) = 10"+1. Thus this u works for {x,y}
in q.

(65): Let {x,y} E [aq]2 with x ~q y and 1f(x) < I~ ~ 1f(Y) < 1~+ I ' If
x E aP then y E aq so we can apply 04 in p the get a suitable v. So we can
assume that x E {zo , .. . , zn- d .

If ~ = (J then v = Zk works.

If ~ > (J then Z ~P Y and 1f(z) = 10" < I f, ~ 1f(Y) < 1( +1 so we can apply
(05) in p for the pair {z , y} to get a suitable v.

If ~ < (J then y E {ZI, '" zk- d so v = y works.

(66): Let {x, y} E [aP]2 If {x,y} E [aP]2 then we can apply (66) for p to
get the required inclusion . We can assume that x E {zo , . .. ,Zn- l } . Then
iq{z ,y} = 0 by the construct ion of q = p l±lz (zo , . . . ,Zn- l ) because x and y
are incomparable and so Z if y . . 3.22

Thus the limit st ep is done as well, which completes the inductive
construct ion, so Theorem 3.15 is proved. . 3.15

We conclude the paper with the result we quoted in the abstract .

Theorem 3.23. If th ere is a n-uice poset P for some regular cardinal K, then
there is a c.c.c poset Q such that THIN (0) uolds in V Q for each 0 < K,+.

Proof. Using Theorem 3.15 we fix, for each 6 < K,+ , a 6-nice poset Po .
Let Q be the finite-support product of {Po : 6 < K,+}. Since every Po has
property (K) , so has Q.

Let 9 be a Q-generic filter and let 0 < K,+ be arbit rary. Then 90 =
{ p(0) : p E 9 1\ 0 E dom p} is a Po-generic filter, hence THIN (0) holds in
V[90] winessed by some space x, by Proposition 3.14. Since V[90] C V[9]
the space x, witnesses TH.IN (6) in V[9]. •
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EXTREMAL FUNCTIONS FOR GRAPH NI INORS

A. THOMASON

Th e ext remal problem for graph minors is to det ermine, given a fixed graph If ,
how many edges a gra ph G can have if it does not have If as a minor. It turns
out that th e ext remal graphs are pseudo-random; the sense of this has best been
expressed by Vera T. Sos in a question answered by Joseph Myers.

This survey describes what is known about the ext remal funct ion and dis
cusses some related mat ters.

1. INTRODUCTION

We say that th e graph H is a minor or subcontmction of the graph G,
written G >- H, if H can be obtained from G by deleting some vert ices
and edges and by contracting some other edges. This is equivalent to the
statement that V (G) contains disjoint subsets WILl u E V(H) , such that the
subgraph G[Wu ] induced by Wu is connected for each u E V (H) and th ere
is an edge in G between Wu and WlI whenever 'uv E E(H) .

This survey describes what is currently known about the fundamental
extremal question regarding graph minors , namely, how many edges are
needed in G to ensure that G >- H? It is now possible to give a fairly
full answer to this question. In the first place, it turns out that there is
a close connection with the theory of random graphs and with the th eory
of pseudo-random graphs. This connect ion is expressed best by a question
of Vera T . S6s; her question , and the answer subsequently given by Joseph
Myers, are discussed in §5. Secondly, the variat ion of th e ext remal function
with H can be described in terms of a st ruct ura l property of H, reminiscent
of the way in which, in classical extr emal graph theory, the ext remal func-
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tion depends on the chromatic number. In the present case, the relevant
structural property is again a kind of partition of H , by means of weights ,
that is defined in §1.2 and discussed in detail in §6.

We also describe briefly (in §8 and §9) some other extremal problems for
minors, such as what connectivity or girth forces a graph to have a given
minor. This area has enjoyed some substantial recent advances, but there
remain significant open questions about which little, as yet , is known .

1.1. Background

The source of the basic extremal problem for minors is, arguably, the
remarkable paper of Wagner [38], in which he proved that the Four Colour
Theorem is equivalent to the assertion that G >- K 5 for every graph G that
needs five colours to colour it. Hadwiger [10] in 1943 famously conjectured
that G >- Ki for every graph G that needs t colours to colour it. This
assertion is trivial for t ~ 3, and Hadwiger proved it for t = 4. Much more
recently, Robertson, Seymour and Thomas [31] have proved the conjecture
for t = 6 by showing that it follows from the Four Colour Theorem. For a
good survey of Hadwiger's conjecture see Toft [37].

In 1964 Wagner [39] proved that G >- K; provided the chromatic number
of G is sufficiently large (2t - 3 will do) . Mader [22] then developed the
idea that the chromatic number might not be the significant parameter;
he showed that G >- K; provided merely that the average degree of G is
sufficently large . He therefore introduced the function

c(t) = min {c : e(G) 2: clGI implies G>- J(t},

proving that c(t) ~ 2t- 3 (see Lemma 2.1) and later [23] that c(t) ~

8rtlog2tl Thus we are led to the extremal problem for complete graph
mmors.

In fact , for small t, much more precise information is available. Write
F +G for the join of two graphs F and G, meaning their disjoint union with
all edges added between. Observe that the graph J(t-2 + J(n-t+2 does not
have a K, minor, and neither does the graph Kt - 5 + P if P is a maximal
planar graph. These graphs all have (t - 2)IGI - C~l) edges. Dir ac [7]
demonstrated that if t :S 5 then this is the exact maximum number of edges

in G if G 'f K t , and Mader [23] extended this to t ~ 7. But th e seductive
pattern stops here ; as Mader pointed out, the complete 5-partite graph
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with two vertices in each class has 40 = 61GI- 20 edges and no K s minor .
(Jorgensen [12] later proved that this is the maximum size of graphs with
no K s minor , and characterized the extremal graphs. He could thereby
(see [11]) extend to t ::; 8 the cases in which the following conjecture is
known to hold: that if G has a partition into Vi, ... ,Vi such that G[Vi UVj]
is connected for i # j, then G >- K t . This conjecture is one of several,
related to Hadwiger's conjecture, made by Las Vergnas and Meyneil [21] .)

For larger values of t the divergence of the extremal function from the
simple pattern just described is much greater. Random graphs provide
examples showing that c(t) is of order at least tJlogt. This was noticed
by several people at about the same time (for example Kostochka [15, 16],
and also Fernandez de la Vega [9] based on Bollobas, Catlin and Erdos [2]).
Kostochka [15, 16] proved that the correct order of growth for c(t) is indeed
tvlogt (see also [32]) .

1.2. Recent developments

Recently, the asymptotic value of c(t) was determined.

Theorem 1.1 ([34]). There exists a constant a = 0.3190863 .. . such that

c(t) = (a+o(I))tJlogt.

The constant a can be explicitly described (see §3); it is simply the best
constant that can be obtained from randomly generated lower bounds (note
that logarithms are natural unless stated otherwise).

It is evident from Theorem 1.1 that there is a connection between
random graphs and extremal functions for minors , though the connection
is still closer than first appears. The extremal graphs must be pseudo
random graphs of specified order and density, or else a more-or-less disjoint
union of such graphs ([34, 27]). The connection has been captured best
by Vera T. Sos in a question which, loosely speaking, is this: if a graph
of positive density has no minor bigger than what might be found in a
random graph of the same density, must the graph itself be pseudo-random?
Myers [26] has given a positive answer to this question . We explain this
question more precisely, together with its answer , in §5.

Even more recently, the asymptotic value of the average degree that
implies a general H minor has been determined, and the strong connection



362

with pseudo-random graphs persists. Let

c(H ) = min { c : e(G) 2: clGI implies G>- H} ,

A. Thomason

so that c(t ) = c(Kd . The results about c(H ) are expressed in terms of a
parameter ,,(H ) of the graph H , defined as the minimum average vertex
weight amongst weightings satisfying a certain condition.

Definition 1.2. Let H be a graph of order t. We define

1
,,(H ) = min - ~ w(u)

W t Z::
uEH

such that L t- w(u)w (ll ) ::; t,

uVEE( H)

where the minimum is over all assignments w V(H) -.. R+ of non-negative
weights to the vertices of H.

A uniform weight ing w shows that 0 ::; ,,( H ) ::; 1 for all H and, more
generally, ,,(H) ::; J7 if H has at most IHI 1+T edges. In §6.2 we shall
describe ways of est imat ing ,,(H) fairly precisely, but it is wort h pointing
out here th at , amongst H with IHIl+T edges, almost all H and all regular H
satisfy ,, (H) :::::; J7; indeed, ,, (H) will not be significant ly smaller than this
unless H has some very restrictive st ructure.

The ext remal result for H , if H has t vertices, is then this.

Theorem 1.3 ([28]). Th ere exists a constant a = 0.3190863 ... such that

c(H) = (,( H)a+o( l))tJlogt

for every graph H of order t , where the 0(1) term is a term tending to zero
as t -.. 00.

1.3. Contents of this article

We begin in §2 with some preliminary remarks about the extremal function;
in particular , it is seen why only dense graphs are of importance in the
st udy of the ext remal problem. T here follows in §3 a discussion of minors of
random graphs and in §4 an explanation of what lies behind T heorem 1.1.

The discussion of Sos's question in §5 should nevertheless be comprehensible
without first reading the earlier parts.
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After that, we go on in §6 to consider the general extremal problem
for contractions to a fixed graph H (not necessarily complete). In §7 we
comment on an application of the extremal problem to linking in graphs.
We finish with some remarks about other conditions on a graph that imply
it has large minors; in §8 it is seen how large girth can replace large minimal
degree as such a condition, and lastly in §9 we look at how large connectivity
might do the same.

2. INITIAL OBSERVATIONS

Here is a simple lemma that implies the existence of the function c(t) .

Lemma 2.1. Let d be an integer and let G be minimal, with respect to
taking minors, in the class

{G : e(G) ~ diG!} .

Tueii every edge of G is in at least d triangles; in particular, if H is the
neigllbourhood subgraph of some vertex, then e(H) ~ ~IHI.

Proof. If G is minimal then G is non-empty and, for every edge uv, the
graph Gjuv obtained by contracting uv satisfies e(Gjuv) < d(IGI- 1).
Thus more than d edges are lost by contracting uv, meaning that uv is in at
least d triangles. So, if H is the neighbourhood graph of u, then '8(H) ~ d.

•
The bound c(t) ~ 2t - 3 follows at once from Lemma 2.1 by induction on t ,

because a graph G with e(G) ~ 2t - 31GI contracts to a graph containing a
vertex u joined to a graph H with H >- J(t-l .

Now if G is minimal in {G : e(G) ~ dlGI} then e(G) = dlGI (else just
remove an edge), so if u is a vertex of minimal degree then IH I= 8(G) ~ 2d.
Thus, if we can find a large complete minor in any graph H with 8(H) ~

!Hjj2, we can find a large complete minor in any graph at all. In fact, the
function c(t) is completely determined by minors of dense graphs, as we
explain in §4.

The simple idea of Lemma 2.1 can be exploited further by considering
graphs minimal in the class {G : e(G) ~ f (IGI), IGI ~ m} where f(n) is

an integer-valued function chosen so that f(m) > (~) for some ni . Then the
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class contains no graph of order m so a minimal graph must , by the argument
above, satisfy G >- H where IHI ::; 2f( IGI) and 6(H) 2': f( IGI) - f( IGI-1) .
A couple of choices that are helpful in different contexts, both essentially
due to Mader [23], are th ese.

First , let f (IGI) = dlGI - kd. Provided k ::; d/2 we can take m = d.
This choice gives the same conclusion as Lemma 2.1 but with the extra
property that /\,(G) 2': k + 1, as can easily be shown. This choice is useful
when determining the extremal function c(t) .

Secondly, with the choice f(G) = r,6dlGI(1 + log ( IGI/,6d) ) / 21, where

,6 satisfies 1 = ,6(1 + log(2/,6)) , we can take m = r,6dl The function is
chosen both so that f(IGI) - f(IGI-1) is large for IGI ::; 2d and also so
that the graph H from Lemma 2.1, with IHI ::; 2d and 6(H) 2': d, lies in
the class. Applying the above arguments to this H produces, after a little
calculation, the following result.

Lemma 2.2. Let ,6 = 0.37 ... be as above. Let G be a graph with
e(G) 2': diGI . Then G >- H , where IHI::; d+2 and 26(H) 2': IHI + l,6dJ-1.

The main point of this lemma is that the minimum degree is bounded
below away from IHI/2. This has useful consequences, as we describe in §7.

3. R.ANDOM GRAPHS

Let G(n ,p) denote a graph of order n whose edges are chosen independently
and at random with probability p.

Theorem 3.1. Given e > 0 there exists T = T(c) with the following
property. Let t > T, let e < p < 1 - c, let q = 1 - p and let n

l(1- c) tJlogl/q tJ. Then G(n,p) >- ic, with probability less than c.

By choosing q = >. where>. = 0.284668 . .. is the root of the equation
1 - >. + 2>' log>. = 0, we obt ain from Theorem 3.1 graphs that have no K;
minor and that have average degree pn ,...., o:t J log t where a = (1 - >')/
2Jlog(1/A). This st ra ightaway gives half of Theorem 1.1, namely c(t) 2':
(0: + 0(1)) tJlogt .

Theorem 3.1 is best possible, as shown by Bollobas, Catlin and Erdos [2],

in the sense that if n = (1 + c) tJIOgl/q t then G(n,p) almost surely has a
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K, minor, but this follows in any case from the stronger Theorem 4.1 in §4.
For our purposes, random graphs are needed only as a supply of graphs
without H minors, for any specified H.

It is worth seeing what determines whether or not G(n,p) >- H with
high probability. Let the vertices of G(n,p) be partitioned into sets Wu ,

u E V(H). We need G[Wu ] to be connected and we need an edge between
Wu and Wv whenever uv E E(H) . The first of these is, in practice, easily
arranged - it is the second condition that is the harder to satisfy. The
probability that it is satisfied for a particular partition is

II (1- qlWullWvl) ~ exp {- L qIWuIIWvl} .

UVEE(H) uVEE(H)

So the partitions most likely to work are those where L.1tvEE(H) qlWullWvl is
minimized, and it is the way in which this sum minimizes, for a particular H,
that decides which random graphs have H minors and so, in turn, decides
the value of c(H).

By far the most common case is that where, in the minimizing choice,
alllWul are equal ; that is, IWul = n/t where t = IHI. The expected number
of successful partitions is then around t" exp { - e(H)qn

2
/t

2
} , there being

about t" possible partitions. For a graph with e(H) = tl+T edges this
expected value is small or large according to whether n is less than, or

greater than, ,fi tvlogl/q t, so this is the threshold value of n at which H

minors appear.

For general H , put w(u) = IWul/ )lOgl/q t, and write w = n/t)lOgl/q t

for the average value of w. Choosing IWul to minimize the sum above
is the same as choosing w to minimize LUVEE(H) Cw(u)w(v). Writing!l1
for this minimum value, the expectation becomes t" exp( -1'11); since n =

w t)lOgl/q t, the threshold region for n is when M is approximately t. It

can now be seen that the quantity w determining this threshold is precisely
the parameter ,(H) defined in §1.2.

4. COMPLETE MINORS OF DENSE GRAPHS

The main theorem relevant to the extremal properties of complete minors
is the following one, a slightly weakened version of that appearing in [34] .



366 A. Th omason

Theorem 4.1 ([34]). Given E> a th ere exists T = T(E) with th e following
property. Let t > T , let E < p < 1 - E, let q = 1 - p and let n =
r(l + E) tvlogl /q t1· Th en every graph G of order n and connectivity

K(G) 2: n(log log log n) / (log log n ) has a K, minor.

Thus , every graph of positive density (except thos e which are nearly dis
connected) has complete minors at least as large as those in random graphs
of the same density. Some kind of connect ivity requir ement is obviously re
quired since, for example, the minors of a union of two disjoint graphs of
order n/2 and density 1/2 are the minors in the individual components , and
they would not be expected to correspond to the minors in a typical graph
of order n and density 1/4.

To prove Theorem 4.1 we must find a partition of V(G) into sets Wu ,

u E V(Kt ) , such tha t each G[Wu ] is connected and such that there is an
edge between Wu and Wv whenever uu E E(Kt ) . Just as in §3, the first
requirement can be arranged fairly straight forwardly, and it is the second
th at needs care. A natural approach would be to take a random par tition of
the n vertices into t parts of size nit each, in the hope th at , even if not all
th e required edges mat erialize, at most o(t) of them fail, and by dropping
any vertex of K, th at is incident with one of these failed edges, we are st ill
left with a complete minor on t - o(t) vertices, which is good enough.

The reason this approach does not succeed directly is because the degrees
in the graph G may vary wildly. III order for the argument to work it is
necessary th at a rand omly chosen part of size l = J log t be joined to all
but not much more than nql vertices; a second random part would then fail
to have an edge to the first random par t with probability around ql xl , so
behaving much as if the graph were itself random. However, the expected
numb er of vert ices not joined to our first random part is L:xEG q(x / , where
x has q(x)n non-neighbours, and this expected value can be much larger
th an nql if the degrees differ.

It t ra nspires th at two properties of a randomly chosen par t are needed
to make things work : both th e par t itself, and its set of non-neighbours,
must be spread uniformly throughout the vertices of different degrees; that
is, t hese sets must contain their fair share of th e vertices of each degree,
in a sense th at can be made precise. All but o(t) of the parts, which can
be discarded, have both th ese two properties, and between the remaining
part s , a ll but o(t) of t he d esired edges materi al ize , a n d so we can proceed

according to our initi al strategy. (In the proof given in [34] , the parts are in
fact chosen at rand om only from th ose that arc spread uniformly through
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the vertices, and so only the spread of the non-neighbours is an issue. On the
other hand, in the proof given in [28] of Theorem 6.2 below, which extends
Theorem 4.1 to general H, the parts are chosen entirely at random.)

4.1. The extremal function c(t)

The remaining half of Theorem 1.1, that is, the upper bound on c(t), can be
derived from Theorem 4.1 in this way. Writing d = o:tJlog t, it is enough to
show that if G is minimal in the class { G : e(G) ~ dlGI} then G »- f{t . This
minimal graph G is either small and dense, or sparse but large . In the first
case, Theorem 4.1 implies straightaway that G »- f{t . In the second case,
we can assume by the arguments of §2 that G is reasonably well connected
and that each edge is in at least d triangles. A few judicious applications
of Theorem 4.1 then produce a large number of small minors that can be
combined to form a K, minor. In fact, a minor much larger than K, can be
formed , and from this it follows that extremal graphs arise only from the
first case, and they are therefore essentially disjoint unions of small dense
pieces.

4.2. Directed graphs

All the above arguments can be made to work for directed graphs, where the
minor being sought is D'Ki, the complete directed graph of order t with an
edge in each direction between each pair of vertices. The extremal digraphs
turn out just to be those obtained from the undirected case by replacing
each edge by a double edge - details are in [34].

5. PSEUDO-RANDOMNESS AND SOS'S QUESTION

As indicated in the §4.1, the extremal graphs for the function c(t) are formed
by first taking random-like graphs of the appropriate order and density, and
then forming as large a graph as desired by taking (almost) disjoint unions
of the random-like pieces. Thus extremal graphs must be looked for in the
class of pseudo-random, or quasi-random, graphs as discussed by Chung,
Graham and Wilson [4] or in [33] .



368 A. Thomason

Now it is not true that all pseudo-random graphs behave as well as
random graphs in terms of not having large minors. In fact , in [35] it
is shown that most of the standard examples of pseudo-random graphs
with n vertices have complete minors with 8(n) vertices, compared with
only 8(n]Vlogn) for random graphs. Indeed, Mader 's request [25] for
an explicit graph whose largest complete minor has o(n) vertices remains
unanswered; in general it seems hard to find a graph G whose largest minor
has o( b'(G)) vertices. Alon [1] has nevertheless shown that random Cayley

graphs have minors no larger than 8(n] Jlogn ).

Sos has expressed the connection between the extremal theorems and
quasi-randomness in the most succinct way. Although quasi-randomness
does not preclude the presence of large minors , she asked whether quasi
randomness is necessary for the absence of large minors. To be precise, she

asked whether a graph of density p and order t)logl/q t, and having no K,

minor, must necessarily be quasi-random.

The standard arguments about quasi-random graphs, even when prop
erly quantified, are not quite strong enough to answer Sos's question. The
issue has been settled by Myers [26] in the following way (at the same
time giving a more precise description of the extremal graphs for the func
tion c(t).)

To understand Myers' theorem, consider a graph G whose vertex set is
partitioned into two sets, X and Y , and define the three densities

e(X)
»x = (I~I)'

e(X, Y)
PXy = IXIIYI'

e(Y )
py = (I~I)

where e(X ), e(Y) and e(X, Y) are the numbers of edges of G spanned
by X, spanned by Y and joining X to r . Likewise define qx = 1 - Px ,
qXY = 1-pXY and qy = 1-py. It is the principal feature of quasi-random
graphs that G is quasi-random if and only if Px' differs little from PX for
every X' with IX'I = lXI, which of course implies that each of px . PXy

and py are close to P, the density of G. Note that, whether or not G is
quasi-random, the density of G satisfies

if G is large, where fJ = 1 - p and x = IXI/IGI ·
Consider now a randomly generated graph G(n,x,px,PXY ,Py), having

n vertices partitioned into two sets X and Y, where IXI = xn; the edges are
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chosen independently, with probability PX inside X, PXy between X and Y
and py inside Y . The proof of Theorem 3.1 is readily modified to show
that the threshold value of n at which a K, minor almost surely appears in
G(n,x,px,PXY,Py) is

n = (1 + 0(1)) tVlOgl/q* t where * x2 2x(1-x) y2
q = qx qXY qy.

By taking logarithms and applying Jensen's inequality it can be seen that

q ? q*

with equality if and only if qx = qXY = ov = q.

Thus, so far as the sizes of complete minors are concerned, the con
strained random graph G(n ,x,px,PXY ,Py) of density 1- q behaves like
the ordinary but denser random graph G(n , 1 - q*) .

We can now state Myers' generalization of Theorem 4.1.

Theorem 5.1 (Myers [26]). Given c > 0 there exists T = T(c) with the
following property. Let t > T, let c < p < 1 - c, let q = 1 - p and let

n = r(1 + c) tvlOgl/q t 1· Let G be a grapJl of order n and connectivity

n;(G) ? n(log log log n) / (log logn), having a vertex partition into X and Y
as described above, wbeie e < ax ,qXY, ov ::; 1 and q* < I-c. Then G ~ K,
where

s = r log(l/q*) t1·
log(l/q)

In other words, a graph G with a partition as described will have com
plete minors at least as large as those found in G(n, 1 - q*) . It follows
immediately that if a graph as described in Theorem 4.1 has no minor sig
nificantly larger than K; then ax is approximately equal to q for every
subset X of size xn, implying that G is quasi-random.

The proof of Theorem 5.1 is similar to that of Theorem 4.1, except that
the vertices of X and Yare ordered separately, and the parts Wu are chosen
so that each is sure to contain a representative sample of both X and Y. The
principal difficulty is that the ordering of X, say, must respect the number
of neighbours a vertex has both in X and in Y ; however, by ordering with
respect to a certain subtle parameter, a suitable linear order can be effected.
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6. THE EXTREMAL PROBLEM FOR GENERAL H

A. Thom ason

In this section we describe what is known about the function c(H) for
general H. Up until recently nothing was known, but although the situation
at the time of writing is still a little fluid, the following description should
be fairly accurate. Throughout this section t will st and for the numb er of
verti ces of H.

We would like to answer the following questions: (a) how does th e
function c(H) behave, (b) is there some reasonable structural prop erty th at
determines its value and (c) do the extremal graphs continue to be pseudo
random?

The answer to these questions appears to be that the function c(H)
behaves very similarly to c(t ) (indeed, for most graphs H , c(H ) is indis
tinguishable from c(t) ) and that, at least for graphs with more th an t H e:
edges, the extremal graphs behave in much the same way as before. When
asking for a structural prop erty tha t determines c(H) we have in mind the
classical situation of th e Erdos-Ston e-Simonovits theorem [8], in which th e
extremal function (for whether H must appear as an ordinary subgraph) is
determined by the chromat ic numb er of H.

The fact that the ext remal graphs here are pseudo-random, however ,
makes th e situation more complicated than th e classical case, for two rea
sons. First of all, th e results must necessarily be of an asymptot ic kind (th at
is, as IHI ~ 00, as opposed to th e classical case where perhaps n ~ 00 bu t
H is allowed to be fixed). Secondly, the ext remal function will be insensitive
to small changes in th e structure of H, such as the addit ion of an edge, or a
handful of edges. This is because such a change in H will have a negligible
effect on whether H appears as a minor of a random graph, and random
graphs are the extremal graphs . This insensitivity to change is in marked
contrast to the classical case, where of course th e addition of a single edge
can increase the chromati c numb er and so dr amatically affect the ext remal
function.

As evidenced by Theorem 1.3, c(H) can be described in terms of the
parameter "I(H ) defined in §1.2. The implication of the previous remarks
is that some leeway is possible in the definition; if "I' (H) were another
parameter with "I' (H ) = "I(H ) +0(1) , where 0(1 ) denotes something tending
to zero as t ~ 00, then "I'(H) could be used just as well as "I(H ) in all the
results. The definition given is chosen because it seems to be th e cleanest
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one that works, and its form is easily related to the appearance of H as a
minor in G(n ,p), as we noted in §3.

6.1. General H minors

Here are two theorems that generalize Theorems 3.1 and 4.1 to general H.
Th e way we state them, though, is slightly different to before.

Theorem 6.1 ([28]). Given E > 0 there exists T = T(E) with the following
property.

Let H be a graph with t > T vertices and with , (H ) ~ E. Let

E ::; P < 1 - E, let q = 1 - p and let n = l,(H) tvlOgl /q t j. Then H

is a minor of a random graph G(n,p - E) with probabili ty less than E.

The essence of th e proof of this theorem has already been given in §3.
More work is needed to prove the next th eorem, in which the density of G,
as usual, means IE(G)IjG)·
Theorem 6.2 ([28]). Given E > 0 there exists T = T (E) with the followin g

property.

Let H be a graph with t > T vert ices and with , (H ) ~ E. Let

E ::; P ::; l- E, let q = 1- p and let n = l,(H) tvlOgl /q t J. Let G be a grap h

of order ti , density P+ E and connectivity K:(G) ~ n (log log log n)j (log log n).
Th en H is a minor of G.

Theorems 3.1 and 4.1 show that th e threshold probability p at which
an H minor appears in G( n , p) is the threshold density at which H minors
appear in every reasonably connected graph of density p. This fact is at th e
heart of why Theorem 1.3 is true.

The modification to the proof of Th eorem 4.1 needed to prove Theo
rem 6.2 is that the size of the par ts Wu varies, being in fact proportional to
th e optimal weight w(1t) that determines , (H) . This is the reason behind
the change of approach remarked upon in §4.

Arguments similar to those in §4.1, in par ticular the separate t reatment
of dense and sparse minimal graphs and th e finding of large complete minors
in sparse minim al graphs, can be used to derive the ext remal function c(H)
from T heorem 6.2, so proving Theorem 1.3. The discussion in §5 can also
be carried over to general H minors, showing that, apart from a change in
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constants, the extremal graphs have the same pseudo-random structure as
they do when H is complete.

6.2. Estimating '"'((H)

It is straightforward to evaluate '"'((H) when H is complete or complete
bipartite, but otherwise it appears to be difficult. We know, though, that
if H has tl+r edges then assigning weight /T to every vertex shows that
'"'((H) :s; /T' Suppose that w is an optimal weighting of V(H) that realizes
'"'((H). Then there cannot be a significant proportion of edges uv such that
w(u)w(v) < T. SO, if we group together vertices of roughly equal weight ,
there will be almost no edges between the class containing u and the class
containing v if w(u )w(v) < T. This leads us to approximate H as a subgraph
of a blowup of a small graph, in the following way.

A shape is defined to be a pair (F, f) , where F is a graph (in which
loops, but not multiple edges, are allowed) and j : V(F) ---. R+ is a function
assigning non-negative numbers to the vertices such that EaEV(F) j(a) = 1.
We say that the graph H of order t is an E-fit to shap e (F, f) if there is
a partition of V(H) into sets Va, a E V(F) , such that lj(a)tJ :s; IVai <
rj(a)tl ' and

I{ uv E E(H) : u E Va , V E Vb and ab tt E(F)} I :s; r: IE(H)I ·

So H is an s-fit to (F, f) if there is a partition of H into classes indexed
by V(F) and of sizes proportional to I, so that all but a tiny fraction of
the edges of H lie between classes corresponding to edges of F . The fact
that F might have loops allows H to have edges within the corresponding
classes; in particular, every H fits the shape consisting of a single vertex
with a loop.

The parameter of the shape (F, f) that is related to '"'((H) is the para
meter m(F, f) , given by

m(F, f) = max min x(a)x (b).
x ·f=l abEE(F)

Here the maximum is over all functions x E [O ,oo)V(F) of V(F) , and x · j
stands for the standard inner product EaEF x(a)j(a). This definition allows
x(a) > 1 even though we always have j(a) :s; 1. The constant function
x(a) = 1 satisfies x . j = 1 and so m(F, f) :2: 1 always holds. Also, if F has
a single vertex a with a loop then j(a) = 1 and m(F, f) = 1.
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Some calculation then supplies the crucial fact that, if H has tl+T edges,
then H is an s-fit to some shape (F, f) with IFI :::; (l/e) and ,(H) ~

VT/m(F, f) - 4JE. SO a lower bound on , (H ) can be given by checking
that H is not an z-fit to any small shape (F, f) with m(F, f) large. In so
doing it is necessary only to check critical shapes: these are shapes (F , f)
for which m( F' ,1') < m( F, f) for any F' resultin g from F either by the
addit ion of an edge or by the m erger of two vert ices of F. (T he merger of
a, b E F is the replacement of a and b by a single vertex c joined to every
vertex previously joined to either a or b, with 1' (c) = f (a)+ f (b) and l' = f
on the other vertices of F'. ) This is because if H is an s-fit to (F, f) t hen
it is also an s-fit to (F/, f' ).

What makes these observat ions useful is th at the check required is quite
short; there are very few crit ical shapes, and we can describ e them explicit ly.

Theorem 6.3 ([28]). A shape (F, f) with IFI= k +1 is ci ii icnl if and only
if F is th e half-graph of order k + 1 that is ,

V(F) = {O,1, ... , k}

and m oreover f satis fies

and E(F ) = {ij : i + j ~ k},

f (k ) f (k -1) f( k - l( k -1)/2J)
-- < < < 1.
f( O) f (l ) f ( l(k - 1)/2J)

For these shapes,

k - 2

m(F, f) = { ~Vf (-i)f(k - i)}
So, if we know th e structure of H , it is fairly easy to check whether H is

an s-fit to a small crit ical shape, and hence to get a lower bound on , (H ).
The simplest, and commonest , case is where H fails to fit any shape apart
from the shape with one vertex and a loop. This case can be reformul at ed in
the statement th at H has a tail, which is a large subset T whose neighbours
lie almost entirely inside a smaller subset 8 ; here is a precise version.

Theorem 6.4 ([28]). Let e > 0 and let H be a graph of order t ~ 1/e2

witIl tl+T edges such tlwt ,(H) :::; JT - 5JE. Then H has an s-tall 
tllat is, V (H) has a parti tion R u 8u T, with ITI > 181 + ei, such tha t
IE (T ,T U R)I :::; tl+T-f: .
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Now regular graphs cannot have a tail, nor indeed can graphs that are
almost regular , and this includes almost all graphs. We have the following
conclusion.

Corollary 6.5. All regular graphs and alm ost all graphs H of order t with
tl+T edges have , (H) = .,fi + 0(1).

As a further corollary we can evaluate , (H ) for , for example, complete
mult ipartite gra phs; these all have , (H) ~ 1 unless the largest part has size
fJt wit h fJ > 1/2, in which case ,(H) ~ J4fJ(1 - fJ ).

It should be pointed out , however , tha t this meth od for approximating
, (H ) can somet imes give a bound much less than the correct value. This
is because th e property of being an s-fi t to a shape is insensitive to th e
introduction of a very sparse subgraph H* , th ough this subgraph might
be what actually determines , (H ). T he situatio n is analogous to th at in
the classical ext rema l theory where the chromatic numb er of H might be
dete rmined by X(H*) and not just by the chromatic number of some dense
subgraph. An example is when H is the union of J(t/8,7t/8 with a t 1/ 2-regular

graph H * on the same vertex set . We know tha t , (I<t/s ,7t/s) = V7/4+0(1)

whereas , (H* ) = 1/l2 + 0(1). So , (H ) ~ max(V7/4, 1/l2) + 0(1 ) =
1/l2 + 0(1 ). But, for every e > 0, if t is large this graph is an s-fit to a two
vertex shape with f = (1/8,7/8) and m(F, f) = 16/7, so our lower bound
meth od gives only ,(In ~ ,,/7/ 4 + 0(1).

We conclude this section with another lower bound on ,(H ) based just
on the density of the graph. T his shows that , (H) can never be close to
zero for graphs of positi ve density.

Theorem 6.6 ([28]) . Let H be a gmph of order t ~ (l/c)l /c and density p.

Th en , (H ) ~ p - 5y'c.

7. LINKING

A gra ph G is sa id to be k-linked if, for any sequence 81 , · .. ,8k, t1 , . .. , t k

of distinct vertices, we can find 8j-tj paths P; that are disjoint , 1 ::; i ::;
k . Lannan and Mani [20] and Jung [1 3] not iced that if K,(G) ~ 2k and
G cont ains a subdivided complete graph of order 3k t hen G is k-linked.

Mader [22] proved that if the average degree of a graph exceeds 2m then it
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contains a subdivided Kk' and so, if 1\:(G) is sufficiently large, G is k-linked.
(For a survey of subdivisions of graphs, see Mader [24].)

Robertson and Seymour [30], as part of their deep study of graph minors ,
established a connection between linking and graph minors; they strength
ened the above remarks by showing that G is k-linked if 1\:(G) ~ 2k and
G r K 3k . It follows from Theorem 1.1 that the connectivity required to
force k-linking is only 0 (k Jlog k ) .

Bollobas and Thomason [3] weakened the condition G r K3k still further
to G r H where H is any graph such that 2o(H) ~ IHI + 4k - 2. In
consequence of Lemma 2.2 they could then show that G is k-linked provided
I\:(G) ~ 22k.

The reason we point this out in this survey is to contrast the average
degree required to obtain some specific H with 2o(H) ~ IHI + 4k - 2, with
that needed to achieve just some H. By Theorem 1.3 and Theorem 6.6 the
former would still require average degree 8 (kJlog k ) , whereas Lemma 2.2
shows the latter to hold given average degree only 8(k).

Added in proof. Thomas and Wollan have recently shown that G is k
linked if 1\:(G) ~ 10k.

8. MINORS AND GIRTH

The simple fact underlying the observations in §2 is that contracting an
edge of a graph tends to increase the average degree unless the edge lies in
many triangles. In particular, if a graph has large girth then many edges
can be contracted, each contraction increasing the average degree.

Thomassen [36] made a systematic study of this phenomenon - his aim
was to show that many consequences of a graph having large average degree
could be derived also for graphs having minimum degree only three but
having large girth. His fundamental tool was the following theorem, whose
simple and elegant proof we include here. We use g(G) to denote the girth
of G.

Theorem 8.1 (Thomassen [36]). If o(G) ~ 3 and g(G) 2: 4k - 5 then
G r H where o(H) ~ k.
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Proof. We may assum e k ~ 4. Take a parti tion AI ,' :" At of V(G) with
t maximal such th at G[Ai ] is connected and JAil ~ 2k - 3 for 1 :s i :s t .
If G[Ad contains a cycle e, th en lei ~ 4k - 5, so by splitting e into two
paths we can partition Ai into AI and AT, with G[Ai] is connected and
IA~ I ~ 2k - 3 for 1 = 1,2; the maximality of t thus implies G[Ai] must in
fact be a tree. Suppose now we could find Ai and A j with 1 :s i < j :s t
for which there were three edges between Ai and Aj . Then we could find
vert ices u E Ai and v E Aj togeth er with three disjoint u-v path s PI , P2 , P3
in G[Ai U Aj ] . Any two of these paths have at least 4k - 5 edges between
them and so in particular two of them, say PI and P2, must have length at
least 2k - 2. So we could par tition Ai U Aj into three sets A1, A2, A3 , with
Al cont aining 2k - 3 vertices from PI - {u,v}, 1= 1,2, and A3 containing
the rest of PI U P2 U P3, such that G[AI] is connected and IAII ~ 2k - 3 for
1 = 1,2,3 . Hence th e maxim ality of t implies that th ere are at most two
edges between Ai and Aj for 1 :s i < j :s t .

Now, of course, we cont ract each A j to a single vertex aj. In the resultan t
multi graph H *, every pa ir of vertices is joined by at most two edges; throw
away one edge from each doubl e edge to obtain a graph H . T he degree of
a vertex ai in H* is at least 31Ad - 2(IAjl-l) ~ 2k -1, anel so its degree
in H is at least r(2k - 1)/21 = k , as desired . -

Diestel and Rempel [5] have redu ced the girth required here to 610g2 k +
4. More recently, Kuhn and Osthus [1 8] redu ced it to 410g2 k + 27. They
obtained results close to best possible for minors with specified minimum
degree and girth; an exam ple is this.

Theorem 8.2 (Kuhn and Osthus [18]). Let k ~ 1 and d 2: 3 be integers,
and let 9 = 4k + 3. If g(G) ~ 9 and 5(G) ~ d then G >-- H where

5(H) ~ (d - 1)(.9+ 1)/ 4/ 48.

As a further consequence of th eir methods they also show th at Had
wiger 's conjec ture holds for graphs of girth at least 19 (Kawarabayashi [1 4]
also found this resul t ).

One natural way of weakening the const ra int of large girth is to forbid
K s.s as a subgraph, in the hope that this constraint st ill yields comp lete
minors in graphs of low average degree. (Note tha t forbidding a non
bipartite subgraph will not help , since the ext remal graphs for complete
minors cont ain bipartite subgraphs with at least half as many edges .) Kuhn
and Osthus [19] have invest igated this condition, obtaining th e following
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result, which is again close to best possible provided a standa rd conjecture
about the extremal function for [{s,s is t rue ..

Theorem 8.3 (Kuhn and Osthus [19]). Given s ~ 2 there exists a cons tant
c = c(s), such th at every J(s,s-free graph of average degree at: least T has a
«, minor for t = lCTl+2/(s - 1) (log T) -3 j.

As might be expected, the proofs of these results are much more sub
stant ial t han t he proof of Theorem 8.1.

9. MINORS AND CONNECTIVITY

Large average degree is th e simplest property forcing a graph to have a
K, minor. Rob ertson and Seymour, in th eir series of papers on Graph
Minors, have investigated more complex struct ural properties that give rise
to minors; one of th eir fundamental results [29Jis that a graph has large tree
width if and only if it contains a large grid minor. Diestel, Jensen , Gorbunov
and Thomassen [6J gave a short proof of this result , and introduced the
notion of extern al connectivity: a set X C V( G) is externally k-connected

if IXI ~ k and for all subsets Y, Z c X with WI = IZj = k: there are
WI disjoin t Y -Z path s in G with out inner vertices or edges inside X. A
large grid that has high external connectivity yields a large complete minor ;
Kuhn [17J has shown that the same conclusion holds even if the large grid
is replaced by a large number of large disjoint binary trees, each having an
ext ra vertex joined to its leaves.

There is a simple, and as yet unsolved , problem relating (ordinary)
connect ivity to complete minors. Wh at connectivity is needed to force
a [{t minor? Since K,( G) ::; o(G) with equality for random gra phs, th e
answer to this question is (20: + o(I))tJlogt , by Theorem 1.1. But the
only examples achieving thi s are pseudo-random graphs of bounded (in t )
order; the extremal gra phs of larger order for Theorem 1.1 have very low
connect ivity. It might well be that, for graphs of large orde r , a lower
connectivity will suffice for a K, minor. Vie t herefore make the following
conject ure .

Conjecture 9.1. T here is an abso lute constant C and a funct ion n(t ) such
that if IGI ~ n(t) and K,( G) ~ Ct t hen G r J(t .
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Perhaps even 1\;( G) ~ t + 1 is enough (though 1\;(G) = t is not , as a 5
connected planar graph joined to K t- 5 shows). For t = 6 Jorgensen [12]
(see also [31]) has a related conjecture, that every 6-connected graph with
no KG minor has a vertex joined to all the others.

Myers [27] has a partial result in this area; if t is odd, a (t+1)-connected
graph G, with a long sequence of cutsets 51,52 , . . . of size t +1 such that 5j

separates 51 , . .. ,5j - 1 from 5j + l , 5j +2 , .. . , has a K t - 3 minor if the G[5j ]'s
are 2-edge-connected.

Added in proof. Bohme, Kawarayabashi , Maharry and Mohar have re
cent ly shown that every large 23t-connected graph has a K, minor.
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Periodicity and almost-periodicity are phenomena which play an important role in
most branches of mathematics and in many other sciences. This is a survey pap er!
on my work in this area and on related work. I restrict myself to period icity
questions in combinatorics on words (the main dish), but I start with a periodicity
problem from number theory (the ent ree) and at the end there is an Appendix
by Imre Ruzsa containing a partial answer to one of my problems (th e dessert).
Sections 1-10 concern one-dimensional results and open problems. Sections 11
16 deal with multi-dimensional analogu es. I do not claim completeness in any
sense.

Books providing background material and additional references for this pap er
are Lothaire 1 [30], Lothaire 2 [31] , and the Marseille book [5].

1. ENTREE

It is a problem to characterise the periodic functions f : N ~ Z such that
I:~=l f~~) = O. In his memoir [16J Dirichlet stated th at every arithmetic
progression in which initial term and difference have no common factor ,
includes infinitely many primes. The proof, which he completed few years
later (d. [15], p. 1), is based on the fact that th e Dirichlet L-series is non-zero

at 1. The Dirichlet series at s = 1 is of the form I:~=1 f~n) with f periodic
modulo some positive integer q and completely multiplicative and such that

lThis paper is an elaborate version of a talk given in Budapest on 10 June 2002 at a
workshop sponsored by the Neth erlands Organization for Scientific Research (NWO) and
the Hungarian Organization for Scientific Research (OTKA) .
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f(n) = 0 if gcd (n,q) > 1. A function f is called completely multiplicative
if f(rnn) = f(rn)f(n) for all positive integers rn, n. The conditions under

which L~=l f~) =1= 0 were studied by Chowla and Siegel. Baker , Birch and
Wirsing [2] showed that the sum is non-zero if q is prime. Okada [38] gave a
necessary and sufficient condition for the vanishing of the sum. The author
[58] showed that it suffices that f is periodic and completely multiplicative so
that the condition that f(n) = 0 if gcd (n, q) > 1 can be dropped. However,
the following problem (d. [26]) still remains open:

Problem 1 (Erdos, 1965). Does there exist an f : N --7 Z with period q

and L~=l f~n) = 0 such that f(n) = 0 if qln and If(n)1 = 1 otherwise?

The following recent result of Szabolcs Tengcly shows that it is possible
that the sum vanishes if If(n)I = 1 for every n, This makes it more likely
that the answer to Problem 1 is yes, opposite to Erdos' expectation.

Theorem 1 (Sz. Tengely). There exists a function f : N --7 {-I, I} with

period 36 such that L~=l f~) = O.

Proof. The choice f(n) = 1, -1, -1, -1 , -1 , 1, 1, 1, -1 , 1, -1 , -1 ,1, -1 ,
1, -1, -1, 1, 1, 1, -1 , 1, -1, -1 , 1, -1 , -1, -1 , -1, 1, 1, 1, 1, 1, -1, 1 for
n = 1,2, .. . , 36 satisfies the conditions of [38], Theorem 10. •

Actually Tengely showed by an exhaustive search that 36 is the smallest
period for which such a solution exists.

ONE-DIMENSIONAL WORDS

2. TILINGS

Let A be a finite set of integers . The basic problem is to decide whether
there exists a set B C Z such that every integer ti can be written in precisely
one way as a + b with a E A ,b E B. We write Z = A EB B and call A a tile
if such a decomposition of Z is possible.

Suppose A is a tile and A EB B = Z. Without loss of generality we
assume that 0 E A n B and that gcdoEA a = 1. In [52] I proved that if the
cardinality of A is nand h is an integer coprime to n then hA EB B = Z.
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I used it to prove that if n is prime, then every element of B is divisible
by n. Actually it follows from a result of Sands [43] that if n is a prime
power pt, then every element of B is divisible by p. An example of Szabo
[50] shows that this property need not hold for general n. Already in 1977
D. J. Newman [37] had given a necessary and sufficient condition for a finite
set A to be a tile when the cardinality n of A is a prime power. Recently
Coven and Meyerowitz [14] did so in case n has at most two prime factors.
The problem for general n is still open .

It follows from the box principle that if A is a tile, then B is periodic.
This principle yields that there is an upper bound for the minimal period
of B which is exponential in the diameter of A. However, the best example
I know has linear dependence on the diameter of A. For example, let m be
some positive integer and consider the tile A = {O, 1,2m, 2m + I}. Then
every complementary set B has to have period at least 4m which is about
twice the diameter of A. An example of such a B is: {O, 2, 4, . .. ,2m - 2} EB
4rnZ. The gap between upper and lower bound is huge.

Problem 2. What is the best upper bound for the period in terms of
diam (A)?

During the workshop Imre Ruzsa found the upper bound
exp (c/D log D) where D = (Ham (A) and c is some constant . The proof
of this result is given in the Appendix.

3. THE FINE AND WILF THEOREM

We consider functions f : I -t X where I is 1£ or N or some finite block of
integers and X is arbitrary. Suppose f has period q, that is f(n+q) = f(n)
whenever n, n+q E I. We call q the (minimal) period if no smaller q has this
property. Actually f is now determined by its values at a block of length q.

Now suppose f has two periods, p and q. If the cardinality III of I is
large, then f has period gcd (p,q), which implies that f has periods p and q.
Fine and Wilf [20] proved in 1965 that the minimal value of III for which
this holds equals p + q - gcd (p, q). Hence if p and q are coprime , then
there exists a non-constant word w of length p+q - 2 with periods p and q.
By distinguishing different residue classes mod (p,q) it is no restriction to
assume that p and q are coprime.
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Example 1. Consider p = 16, q = 9. According to the theorem of Fine and
Wilf there exists a non-constant word W with periods 16 and 9 of length 23,
but not of length 24. Because of the smaller period 9 it suffices to construct
the first 14 symbols:

W = e deb a i h 9 fed c b a I i h 9 fed c b a .

Moreover, the first 14 symbols should have periods 9 and 16 - 9 = 7, because
WI.; = WI.;+16 = WI.;+7 for k ::; 14. Hence h = a, 'i = b. Because of the period
7 it suffices to know the first 7 symbols;

W = 9 fed c b a I 9 fed c b a I bag fed c b a.

By a similar reasoning as above we have period 2 there. Hence 9 = e = c =
a, f = d = b. Thus the extremal word reads:

W = a b a b a b a a b a b a b a b a a b a b a b a.

This is a non-constant word with periods 9 and 16 indeed. Note that this
procedure is closely related to the continued fraction expansion of 16/9:

16 -1 = ~
9 9'

4. BI-SPECIAL WORDS

9 2
- -1 =-
7 7'

7 1
- - 3 =-.
2 2

The extreme Fine and Wilf words have several nice properties which make
them occur in various contexts. This explains that they have various names:
PER-sequences, Hedlund words, bi-special words. In the sequel we shall use
the latter expression which is nowadays the most common name. We state
some properties (cf. [32], [54], [24] Ch. 2) .

1) If the places of the letters are numbered, then the places where the
a's occur form a Beatty sequence (lo:n + ,BJ). Of course, the same is true
for the places where the b's occur. The value of 0: can be chosen by using
the euclidean algorithm to solve px - qy = ±1 with 0 < y < p, 0 < x < q
and then taking !1. or E!. or any number in between. If the solutions are

.'1: y
(Xl, yI) and (X2 , Y2) , then the number of a's in the extreme word equals
X2 + Y2 - 1 and the number of b's Xl + YI - 1. In Example 1 we have
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equation 16.1: - 9y = 1 with solution .1:1 = 4, Yl = 7. The places of the b's

are given by 19iJ = l16~-1 J for i = 1, . .. ,10. Similarly 16x - 9y = -1 has

solution X2 = 5, Y2 = 9 and the places of the a's are given by l!JiSI J = llZiJ
for i = 1, ... ,13. In the extreme word there are 5 + 9 - 1 = 13 a's and
4 + 7 - 1 = 10 b's .

2) The extreme words are balanced. A word consisting of the letters
a and b is called balanced if the number of occurrences of a in any two
subwords of equal lengths differs by at most 1. It is called left-special if the
word is still balanced both when the word is extended on the left side by an
a and when it is extended on the left side by a b. Right-special is defined
analogously. If the word is both left-special and right-special , it is called bi
special. The extreme Fine and Wilf words are bi-special and every bi-special
word is an extreme Fine and WiIf word for some coprime integers p and q.

The numbers p and q can be computed from the numbers of a's and b's in
the bi-special word as follows: Let m - 1 be the number of a's and n - 1
the number of b's in the bi-special word. Solve the equation rnx - ny = ±1
in integers x , y with 0 < x < n, 0 < y < m, Let (Xl , Yl) and ( X2 , Y2) be the
solutions. Then the periods are Xl +Yl and X2 +Y2 . In Example 1 we have
m = 14, n = 11. The equation 14x - 11y = ±1 admits the solutions (4,5)
and (7,9). This yields the periods 9 and 16.

3) Bi-special words are palindromes. It does not matter whether you
read them from left to right or from right to left .

4) [39]) If you extend a bi-special word on the right by ab and com
pute the corresponding p and q as in 2) , then the first p - 2 letters form a
palindrome as well as the last q + 2 letters. Only bi-special words have this
property. In Example 1 we have palindromes a b a b a b a a b a b a b a
and b a a b a b a b a a b of lengths p - 2 = 14 and q + 2 = 11, respec
ti vely. Of course, (a,p) and (b, q) can be interchanged: if we extend by
ba on the right then we can split into the palindromes a b a b a b a and
a b a b a b a b a a b a b a b a b a of lengths q - 2 = 7 and [J + 2 = 16,
respectively.

5. BALANCED WORDS

Consider a word f : 1: ---+ {a,b}. As mentioned above f is called balanced
if for each two finite subwords of equal lengths the numbers of occurring
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a's differ by at most 1. By the work of Morse and Hedlund [34], [35] and
of Coven and Hedlund [13] the balanced words are completely classified (d.
[54]). It suffices to classify all balanced Z-words, since every subword of a
balanced word is obviously balanced and , conversely, every balanced I-word
can be extended to a balanced Z-word (see e.g. [24] Theorem 2.3). The word
f is given by the sequence of the places where an a is read . There are three
classes of balanced words:

(a) (periodic case)
The places form a Beatty sequence (lan + ,6J)nEZ, Ctn+{3EJ with a E (Q>l,
,6 E~;

(b) (irrational case)
The places form a sturmian sequence ( lan + ,6J) nEZ,Ctn+{3E I or

( ran + ,61) nEZ,Ctn+{3EI with a E ~>l \ (Q, ,6 E ~;

(c) (skew case)
The places form a periodic Beatty sequence apart from one irregularity.
Skew words correspond two-to-one to bi-special words. The latter words
are by definition words of length p +q - 2 with two coprime periods p, q.
Skew words are obtained by extending a bi-special word on one side with 0. b.
on the other side with b 0., and subsequently extending into both directions
with period p + q.

Example 2. Let p = 4 and q = 7. Then the corresponding bi-special word
is isomorphic to

0. 0. b a a 0. b 0. a.

Therefore the corresponding skew Z-words are isomorphic to

. . . b 0. 0. 0. b 0. a 0. b a a baa. a b a a a baa. 0. b a a b a a a b a a a b . . .

and

. .. 0. b a a b a a a b a a a b a a b a a a b a a b a a a b a a a b a a b a . . ..

In the former word there is a triple a (J, a too many, in the latter word such
a triple is missing, when comparing the words with the periodic word with
periodic part a a abo. a a b a a b.

A classical way to construct balanced sequences is by approximating a
line in the plane as well as possible by a discrete line. The principle of the

so-called cutting line is as follows (cf. [45]) . Let the line y = ax + ,6 in
the x-y-plane be given where a E lR>o and ,6 E IR. Start at some integer
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point (xo ,YO) under the line, but at distance less than 1 from the line. If
Yo +1 ~ axo+(3 then move to (xo,Yo +1) and write an a, otherwise move
to the point (xo+ 1, YO) and write a b. Iterat e the procedure. Of course, the
word can also be extended into the negative direction so forming a Z-word.
If a is rational, then this yields a word from class (a). If a is irrational,
then we obt ain a word from class (b) with the l J brackets . If we require
Yo + 1 < axo + (3 instead, then we get a word from class (b) with the r1
brackets. The skew case is the case where a is ration al and the line passes
through an integer point where on the one hand of that point the strict
inequality criterion is used and on the other hand the ~-cri terion.

6. FRAENKEL WORDS

It is obvious that if a word of a's and b's is balanced with respect to
a, t hen it is also balanced with respect to b. We call a general word
f : I -t A balanced if the word is balanced with respect to each letter
from A. All balanced words on two letters a, b have been classified in the
previous section. VIe have seen th at the letter a always has some density
and that every density in [0,1] can occur . Hence there are uncount ably
many balan ced words on two let ters.

Wh at are the balanced words .f : Z -t A when 1.f(Z)I > 2? Obviously
each letter has again a density. If the densities of two let ters are equal, then
they can first be identified as one letter with double density, and then the
latter letter can be replaced alterna tely by the first and second letter. It
is therefore a crucial question to determine the balanced words the let ters
of which have disti nct densities, so-called Fraenkel words. The following
conjecture of Fraenkel suggests that Fraenkel words are very rare.

Problem 3 ([21], [18] p. 19). Prove that for n = 3,4, . . . the only balanced
word on n letters having distinct densit ies is isomorphic to the periodic word
with periodic part Fn induct ively defined by

H =1, F n = Fn-l n Fn-l for n = 2,3, . .. .

So for n = 3 we find the periodic part 1213121 and for n = 4 the periodic
part 1213121412 13121. Graham [23] showed th at the densities of a Fraenkel
word have to be rational. The Fraenkel conjecture has been proved in case
n = 3 by Morikawa [33], cf. [53], in case n = 4 by Altm an, Gaujal, and
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Hordijk [1], and in case n = 5,6 by the author [56] . Related results have
been obtained by a .o. Fraenkel, Morikawa, and Simpson, ef. [57] .

Recently Fagnot and Vuillon [19] have studied balancedness with respect
to subwords of given length instead of letters.

7. STIFF WORDS

Another way to measure the regularity of a word is to compute its com
plexity. For n = 1,2, ... the complexity P(n) of a word is defined as the
number of distinct subwords of length n. In our notation we suppress the
dependence of P on the word .

Example 3. We apply the substitution a --+ ab, b --+ a starting with an a:
a
ab
abo,
abaab
abaababa
This leads to the limit word
a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b. . . .
This is the famous Fibonacci word. The density of the a 's is successively 1,
1/2, 2/3, 3/5, 5/8 with the limit value ( J5 - 1)/2. Hence the word is not
periodic. In fact it is a sturmian word (class (b)). For the complexity we
find: P(2) = 3, P(3) = 4, . .. , P(n) = n + 1, . . .. Coven and Hedlund [13]
proved:

if P(n) :::; n for some n , then the word is ultimately periodic.

So the Fibonacci word is a non-periodic word with minimal complexity.

We call a word stiff if P(n) :::; n + 1 for all n. Thus the Fibonacci word
is stiff. In fact all balanced words are stiff. Again we only have to study
stiff Z-words, since on the one hand it is obvious that a subword of a stiff
word is stiff, and on the other hand it is true that every stiff I-word can be
extended to a stiff Z-word ([24]' Theorem 2.4) . Apart from the balanced
and therefore stiff words, which have been classified in Section 5, there is
one class of unbalanced stiff Z-words (cf. [54], [24] Theorem 2.6):
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(d) (Hedlund case)
Extreme Fine and Wilf words which extend into one direction with the one
period and into the other direction with the other. So again we start with
a bi-special word f of length p + q - 2 where p and q are coprime and f
has periods p and q. Then we extend into the positive and the negative
direction with the different periods.

Example 4. Let again p = 4 and q = 7. Then the corresponding bi-special
word is isomorphic to

a a b a a a baa.

Therefore the corresponding Hedlund words are isomorphic with

... a a a b a a a b a a a b a a a b a a a b a a b a a a b a a b a a a b a

and its reversed word. A Hedlund word has a left density of a's which is
different from the right density of the a's. Therefore the word cannot be
balanced.

Following a suggestion of Jean-Paul Allouche I shall call a word f repet
itive (instead of recurrent) if every subword w occurs infinitely often and
uniformly repetitive (instead of uniformly recurrent or almost periodic) if
for every subword there exists a number C such that every subword of length
C contains w as a subword, i.e. the "distance" between occurrences of any
subword w is bounded. It is easy to check that in the given classification
the classes (a) and (b) contain only uniformly repetitive words, but that the
words from classes (c) and (d) are not even repetitive, since they contain
only one copy of the hi-special word we started with.

Many stiff words are ultimately periodic. By the mentioned theorem of
Coven and Hedlund non-periodic stiff words have to satisfy P(n) = n + 1
for all n. The class (b) is the only class of stiff words which is not ultimately
periodic . The classes (c) and (d) are ultimately periodic, but nevertheless
they satisfy P(n) = n + 1 for all n. If we restrict our attention to N-words,
then class (b) is the only class with P( n) = n + 1 for all n.

8. THREE DISTANCES THEOREMS

The following construction method for sturmian words is very useful for the
study of the structure of such words. Let 0: > 1 and (3 be real numbers.
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Denot e by {X} th e fractional part x -lxJof x . For n E Z write an a at place
n if {n a + ,8} < a and otherwise b. Thi s yields a Z-word f which is st urmian
if a is irrational and a periodic balanced word if a is ra tion al. From the
definition it is clear th at the letter at place n equals a or b according to
whether ln a +,8J - l (n - l)a + ,8J equals 1 or O.

Suppose a is irr ation al. An easy argument shows that the complexity
of f equals P(n) = n + 1 for every n: Consider {O} , {a} , .. . , {na} . These
n+1 points split the torus [0, 1J, where the points 0 and 1 are identified, into
n + 1 half-open intervals. Observe that the sequence f m, f m+l , " " fm+n- l
of letters of f at places m , tti + 1, . .. , m + n - 1 is completely determined
by to which half-op en interval m a + ,8 belongs. Hence there are at most
n + 1 distinct subwords of length n . It follows from the th eorem of Coven
and Hedlund that P(n) > n, since otherwise f would be ultimately periodic
which is impossible in view of the irrational density.

A remarkable fact occurs when one studies the lengths of the half-open
intervals. As Sos [47J and also others observed at most three distin ct length s
occur , one being the sum of the two others.

The relevance of this fact for the st ructure of Sturmian words becomes
clear from the following result. Let n be a positive integer and f : Z ---t

{a, b} a sturmian word. Consider the n + 1 distinct subwords of length t i

of f. Compute th e densities of a in these words. Then th ere are at most
three distinct densi ties, one being the sum of the others. Berthe [4J has
given explicit expressions for the occur ring frequencies and the cardinality
of each frequency.

9. LINEAR COMP LEXIT Y WORDS

In fact the three densities result in the last paragraph of th e previous
sect ion is a special case of th e following result of Bosherni tzan [9J : Let
f : Z --t {a,b} be a repetitive word of complexity P. Then the densiti es of
the subwords of length n attain at most 3( P (n + 1) - P (n) ) values.

Many papers have been writt en on non-periodic words having linear
complexity. Words having complexity function P (n ) = n + k for some
cons t ant k were already stud ied by Co ven [12] in 1975 . Su ch words a re said
to be of minim al block growth and the minim al k is called the stiffness of
th e word. Coven characte rised th e structure of non-repetitive Z-words of
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minimal block growth. Heinis [24], Ch. 3, has given explicit formulas for
the stiffness of words of minimal block growth.

Let t be any positive integer. It is easy to construct a word f : Z ---..
{a, b} such that f has complexity P(n) = tn + 1 for all n. Hence for every
positive integer t there exists a word f the complexity of which satisfies
limn-+oo P~n) = t. It was a surprise when Heinis [24] showed that there are

no words f such that its complexity P satisfies limn-+oo P~t) E (1,2). He

also showed that if liminfn-+oo P~n) = ~ then limsuPn-+oo P~n) 2:: ~ and that
the value ~ is optimal. It is an open question whether there are words for
which the limit exists and attains a non-integral value:

Problem 4. Is the limit value limn-+oo P~:!) , if it exists, necessarily an
integer?

The definition of complexity can be extended to words f : Z ---.. A
where A = {I, 2, .. . , q} is an alphabet on q > 2 letters. For every positive
integer q > 1 there are words on q letters with complexity function P(n) =
(q - l)n + 1 for every n. For q = 2 this is the case for sturmian sequences,
for q = 3 for example for the so-called Arnoux-Rauzy sequences. More
precisely, for every pair of positive integers q, t with t ~ q there exist words
on q letters such that the irrationality degree of the densities of the q letters
is t and the complexity of the word equals P(n) = (n - l)(t - 1) + q for
every n. Such a word can be constructed in a similar way as sketched at
the beginning of the previous section . The following result shows that the
mentioned complexity is minimal [55]. If f : Z ---.. A is a word such that it
contains q distinct letters and the irrationality degree of the densities of the
letters equals t, then

P(n) 2:: (n - l)(t - 1) + q

for every n . For q = t = 2 this reduces to the theorem of Coven and
Hedlund.

Other notions to measure complexity have also been proposed. Let
Poo(n) denote the number of distinct subwords of length n which occur in
finitely often in the given word f. Both Nakashima, Tamura and Yasutomi
[36] and Heinis and Tijdeman [25] have studied this asymptotic complexity.
The former authors gave characterizations of both N-words and Z-words
having small Poo-complexity. They showed that in the case of N-words
there is no difference between "asymptot ically balanced" and "asymptoti
cally stiff" . The latter authors characterized all N-words which are asymp
totically stiff, that is, satisfy Poo ~ n +1 for every n:
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(i) The N-word I = hh ... with rational density 0: is a.symptotically stiff
if and only if there exists an ultimately monotonic sequence {gn}~=l with
gn+l - gn --t 0 as n --t 00 such that In = lno:- l +9nJ for n EN.
(ii) The N-word f with irrational density 0: is asymptotically stiff if and only
if there exists a sequence {gn}~=l with 9n+1 - gn --t 0 as n --t 00 such that
.in = lno:- l +gnJ for n EN.

Kamae and Zamboni [28] studied complexity not referring to a block of
places, but to a fixed pattern of places. Let f : N --t {O, I} be a word. Let
P*(kl , k2 ,"" kn ) denote the number of distinct vectors

(J(m + kI), I (m + k2) , . . . , f (m + kn ) )

for mEN and define the pattern complexity as

P*(n) = SUPkl ,...,k" P*(kl , . . . kn ) .

Kamae and Zamboni showed that if P* (n) < 2n for some n, then the word
is ultimately periodic, that every sturmian word satisfies P* (n) = 2n for
every n, but that there exist non-sturmian words with P*(n) = 2n for every
n . Again sturmian words are minimal non-periodic words, but the complete
set of non-periodic words which are minimal in this sense is not yet known.

Problem 5 (Karnae). Characterize all words having P*(n) = 2n for
every n.

10. FINE AND WILF WORDS FOR SEVERAL PERIODS

Let PI, . .. , Pr be positive integers. Let W = WI .. · wn be a word with
periods PI, ... ,Pr. This means that Wi+p = Wi for i = 1, ,n - p and
P E {PI, . . . ,Pr}. Suppose that w does not have period gcd (PI, 'PI")' The
case r = 2 has been treated in Section 3. In 1999 Castelli , Mignosi and
Restivo [11] studied the case r = 3. They defined some function h(x, y, z)
such that if a word f has periods PI , P2, P3 and length ~ h(pI ,P2, P3) ,
then f has period gcd (PI,P2 ,P3). They further showed that under suitable
conditions their bound h(.T, y, z) is the best possible. They also showed
that the set of subwords of these maximal words coincides with the set of
factors of the Arnoux-Rauzy sequences. Justin [27] generalized the results
of Castelli, Mignosi and Restivo to words with more than three periods.
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Notice th at th e periods PI, .. . ,PI' can only indu ce relations between
letters at places i and j when i and j are in th e same residue class modulo
gcd (PI, . . . ,p,. ). It is th erefore no restriction to consider such a residue class.
Hence we may assum e without loss' of generality that gcd (PI, . .. ' PI' ) =
1. We shall do so in th e sequel. If the maximal length of w under the
gcd-condition is n , th en th e maximal length in the general case equals
(n + 1) gcd (PI, . .. ' PI' ) - 1.

Tijdeman and Zamboui [59] have developed an algorit hm to compute th e
extreme nand w for any given periods PI , .. . ' PI' subject to gcd (PI , . . . ' PI') =
1. Here we illustrate th e algorithm by an example. Starting from th e six pe
riods 127, 189, 222, 235, 243, 248 th e method reveals th at the non-const ant
word of maximal length having these periods has length n i = 254, th at an
extreme word can have at most three distinct letters and in th at case has to
be isomorphic with the const ructed word. In Table 1 each tim e the smallest
posit ive period is und erlined and subt racted from th e oth ers. It s index is
written in the column g[k] and the subtracted number is added in the column
m[k]. The procedure is cont inued until in all columns with an underlined
numb er the value is at most 1. The last found value of m[k] is the sought
maximal length m . Subsequently th e column for n[k] is filled by comput ing
n[k] := m-m[k] for every k, In Example 5 we have m = m[9] = n[O] = 254.

Example 5. We const ruct the ext remal word for periods

PI = 127, P2= 189, P3 = 222, P4 = 235, P5 = 243, P6 = 248.

pdk] P2[k] P3[k] P4[k] P5[k] P6[k] k g[k] m[k] n[k]
127 189 222 235 243 248 0 0 254
127 62 95 108 116 121 1 1 127 127
65 62 33 46 54 59 2 2 189 65
32 29 33 13 21 26 3 3 222 32
19 16 20 13 s 13 4 4 235 19
11 8 12 Q 8 5 5 5 243 11
6 .:i 7 5 3 0 6 4 248 6
3 3 4 2 0 -3 7 2 251 3
1 1 2 2 -2 -5 8 4 253 1
1 0 1 1 - 3 -6 9 1 254 0

Table 1: Computation of th e maximal length

The ext reme word is found as follows. Write down th e column numb er
of th e lowest underlin ed numb er. In each next step compare th e underlined
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number lone row higher with the number of letters in the already con
structed word J[k]. If the latter number is smaller, then write the column
number of the underlined number l as next letter of the word and repeat
I[k]. Otherwise repeat the last l letters of J[k]. By 1 we indicate the stage
reached after each step; the symbols Iare not part of the word. The number
of added letters at level k equals n[k]- n[k + 1]. Therefore the number of
letters of J[k] equals n[k] for k = K - 1, K - 2, . . . , 0, respectively. Thus
the resulting extremal word has length 111. = n[O] .

114111411411411141411411411411414114113

1 41 141 41141 14141141 41141141411411

141 41141 14141141 4114114141141 3

1 41 141 41141 14141141 41141141411411

1 41 141 41141 14141141 4114114141141 3

1 41 141 41141 14141141 4114114141141

141 41141 14141141 4114114141141 3

1 41 141 41141 14141141 41141141411411

Extreme word expressed in letters 1, 3, 4

In [59] it is shown that the word found by the algorithm is indeed
the non-constant word of maximal length and among such words with a
maximum number of distinct letters. Furthermore, it is proved that the
extreme word is a palindrome and unique apart from isomorphy, The
case that the number of letters in the extreme word equals the number
of periods is precisely the case in which Castelli, Mignosi and Restivo in
case of three periods and Justin in case of more than three periods proved
that their bounds are the best possible ones. It is interesting that the
multi-dimensional continued fraction corresponding with the algorithm also
occurs in the study of ergodic properties of a dynamical system arising from
percolation theory.

MULTIDIMENSIONAL WORDS

From now on we consider multi-dimensional words I ?} --1 Q where we
usually will have k = 2, Q= {a, I}.
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Let A be a finite set in Z2. The problem is to decide whether for a given
set A there exists a set B such that A EB B = Zk. There are many results
about this problem most of which require that A has some connectedness or
convexity property. A rather general result is due to Beauquier and Nivat
[3] who characterized all tilings in case A is a polyomino and proved that
in that case B is periodic. We call a set B in 71} periodic if there exists a
v=1= 0 such that B + v= B. I state two open problems.

Problem 6 (cf. Lagarias and Wang [29]). Is it true that for every finite
set A c 71} it is possible to determine whether there is a set B such that
A EB B = Zk in time bounded in terms of diam (A)?

Problem 7 (Periodic Tiling Conjecture [29]). Is it true that for every tile
A c Zk there exists a periodic set B such that A EB B = Zk?

The answer to both problems is yes if k = 1, as mentioned in Section 2.
Szegedy [51] has provided algorithms for Problem 6 if IAI equals 4 or is a
prime number. In these cases the Periodic Tiling Conjecture holds true.

When more than one distinct tile may be used, then non-perodic sets B
are possible . This leads to the theory of quasi-crystals.

12 . BALANCEDNESS

We call a word f : 7L/" --1 {a, b} balanced if for any two k-dimensional
finite blocks with hyperfaces parallel to the axes and of the same shape,
the number of symbols a occurring in them differs by at most 1. Berthe
and Tijdeman [6] have given a complete characterisation of balanced words .
They prove that for each k > 1 there are only finitely many isomorphy
classes of balanced words and that all of them with density Q of a not equal
to 0 or 1 are fully periodic, that is, have k linearly independent period
vectors. In fact, Q has to be rational with denominator in {I, 2,3, 5} where
the 5 can only occur when k = 2.

From this result it follows that f has to be unbalanced if the letter a
has irrational density in f. It is not clear how unbalanced such a word has
to be.
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Problem 8. Consider f Z2 --. {a,b} such that the density of a's tends

to some irrational number ewhen considering blocks [-ml ' m2) x [-nl ' n2)

with ml, m2 , nl, n2 --. 00 in any way. What is the minimal measure of

unbalancedness as a function of m I +m2 and n I + n2?

13. COMPLEXITY

Let f : Z2 --. {a, b}. Define the complexity P(m,n) of f to be the number
of distinct patterns of f(x, y) of size m x n, that is, the number of distinct

arrays (f(x, y)) k~.'l:<k+m , l~y<l+n for k,l E Z. The following problem is still
open:

Problem 9 (Nivat-Vuillon). Suppose P(m, n) ::; mn for some m, n E N.
Does it follow that f is periodic?

The answer in case rn = 1 is yes because of the theorem of Coven and
Hedlund. Sander and Tijdeman [42] showed that the answer is also yes in
case m = 2. For m > 2 the answer is open. Epifanio, Koskas and Mignosi
[17] proved the slightly weaker result that if P( m , n) ::; ~~~ for some m, n,
then f is periodic. Sander (cr. [41] Example 5) gave a simple example that

the corresponding question has a negative answer when k > 2:

Example 6. Let k > 2 and let tii; > 1 for 1 ::; i ::; k be given integers. Let

a= { (al ," " ak) E Zk : 0::; ai < tn, (1::; i ::; k)} .

Hence A is a k-dimensional block with volume IAI = M := TI~'=1 mi. Define
f : Zk --. {a,b} by setting for x= (Xl , " " Xk),

f(x) := 1 ¢:::::} Xl = x2 ... = xk-l = 0 or x2 = m2, x3 = ... = xk = O.

It is easy to see that

M MIp(A)1 = - +- + 1.
tiu, ml

Consequently we have IP(A) I ::; IAI for ttu; > 2. But apparently f is not

periodic.

Sander and Tijdeman [41] also studied the multi-dimensional analogue
of pattern complexity. Cassaigne [10] characterised all two-dimensional
words with complexity P(m,n) = mn + 1. This can be compared with
the classification of stiff words in the one-dimensional case .
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In this section some results are mentioned which generalise those mentioned
in Section 3. Here we consider functions f : V ----; {a, b} where V c 'l} has
period vectors Va , . . . ,vI,;. Whereas in Section 3 we assumed without loss of
generality that the periods were coprime, we assume in this section that the
period vectors generate the full lattice 'l}.

Initially only periodicity lemmas were obtained. A periodicity lemma is
a statement that a function f defined on the integer points in some region
and having certain period vectors has to be constant, without indicating
how far the region can be reduced without affecting the conclusion. Papers
by Amir and Benson, Galil and Park and recently Mignosi, Restivo and Silva
provided periodicity lemmas for parallelograms and similar domains in JR2.
Regnier and Rostami provided a framework for the study of periodicity
lemmas in case of multi-dimensional patterns. Simpson and Tijdeman [46]
obtained the following periodicity lemma for arbitrary dimension:

Suppose VI , .. . ,vI,; E Zk generate Zk and Va E Zk given by

Va = /-LIVI +...+ /-LkVI,; with /-Li > 0 for i = 1, ... , k

is an integer point. Put

where Ii ~ 1 + /-Li for i = 1, . .. , k. Let f be periodic modulo Va , . . . ,vI,; on
V* . Then f is constant on V*.

It is an obvious question to ask how much V* can be reduced without
affecting the conclusion , in other words, what the k-dimensional generali
sation of the Fine and Wilf theorem is. Giancarlo and Mignosi [22] gave
a multi-dimensional generalisation of this theorem for connected subsets of
Cayley graphs. Simpson and Tijdeman [46] gave a generalisation of the
Fine and Wilf theorem of the following type. We use the notation as above.
Define

w = {,\ova+ )'1VI + ... + AkVI,; : O:S Ai :S 1, Ai E JR for i = 0, ... , k}.

Then some explicitly given set V C W n Zk with cardinality equal to the
Lebesgue measure of W has the property that if f : V ----; {a, b} has period
vectors Va, .. . ,vI,; generating Zk, then f is constant . The assertion remains
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true if one point of V is removed, but it is no longer true if two points of V
are removed which do not differ by some Vi . For k = 1 the result coincides
with the Fine and WiIf theorem.

Problem 10. Let VI, . . . , 'Ok E Zk be given. How small in size can V C Zk
be if only constant functions f : V ---t {a,b} admit periods VI , . .. , 'Ok on V ?

15. FROBENIUS ' LINEAR DIOPHANTINE P ROBL EM

In Frobenius' classical Linear Diophantine Problem, also known as the
Postage Stamp Problem and as the Coin-changing Problem, we are given
positive integers ao, .. . , ak with greatest common divisor 1, and asked to find
the least integer n such that every integer greater than n can be writ ten as
a sum of non-negative multip les of ao, . . . , ai: In the case k = 1 the answer
n = no := aOa1 - ao - a1 is due to Sylvester [49] . The case k = 2 has
been settled by Selmer and Beyer [44], see also Rodseth [40] . For k > 2 the
answer is only known in special cases and various estimates exist for the
general case.

Suppose Va, . . . ,'Ok defined as above generat e Zk and have the property
th at 0 cannot be writ ten as a non-t rivial non-negat ive linear combinat ion
of Va , . . . , 'Ok . In other words, the period vectors Va, .. . , 'Ok are on the same
side of some hyperplane. Let do be the smallest positive integer for which
posit ive integers d1, . . . , dk exist with

As an applicat ion of the results mentioned in the previous section Simpson
and Tijdeman [46] derived the following generalisat ion of Sylvester 's formula
in case of k + 1 vectors in Zk:

Put w= dovo - (va+ + 'Ok) . Every point in

X := { 81 VI + + 8kvk +w : 81 > 0, . .. , 8k > O} n Zk

can be writt en as AOVo +' . '+Akvk where AO, ... , Ak are non-negative integers,
but an int eger point of the form SlVI +...+SkVk +w with Sl ~ 0, . .. , Sk ~ 0,
S1S2 ' " Sk = 0 can be writt en in this way unless and only unless 8 1, · · . , 8k E

Z.
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For k = 1 the obtained value is the one due to Sylvester. In general X
is an open sector with corner point iii the shape of which is determined by
the outer vectors VI, ... ,vI. .

16. BV-WORDS

By approximking a plane in Z3 by a discrete plane as well as possible in
a similar way as explained at the end of Section 5 for a discrete line, one
obtains a two-dimensional analogue of Sturmian sequences. This kind of
words have been studied by Berthe and Vuillon [60], [7]' [8], and are often
called BV-words. BV-words are words f : Z2 ---t {a,b, c} such that the
densities of the letters a, b,c are linearly independent over Q. Vuillon [60]
proved that the complexity of the BV-words satisfy P(rn, n) = mn +m +n
for every m, n . He also derived a formula for the complexity on a triangle
in place of a rectangle. Berthe and Vuillon [7] characterised the doubly
uniformly repetitive words f : Z2 ---t {a, b} with complexity P(m, n) =
mn + n for all large m. These words are obtained by identifying two letters
in a BV-word. They further showed that these words f are the only non
periodic words from Z2 to {a,b} such that the density of a is irrational and
the complexity satisfies P( tn , 2) :S 2m + 2. They also classified all words
having complexity P( tn, n) = 111, +n. One of the results of [8] deals with the
distribution of the frequencies of the various subwords of size m x n and is
in the same vein as the three frequencies theorem in Section 8.

Problem 11. Let f : Zk ---t {1,2, ... , k} such that the densities of the
letters exist and are linearly independent over Z. Compute lower bounds
for the complexity of f.

From the beginning on, in 1772 by Bernoulli, the study of sturmian
sequences has been closely related with the theory of continued fractions .
In fact, the continued fraction expansion of a number 0: provides a recipe
to construct sturmian words in which the letter a has density 0: , as a limit
of finite words. See e.g. the survey paper of Stolarsky [48]. In a similar
way BV-words can be constructed as a limit of finite two-dimensional words
where each finite word is defined on the fundamental domain of a lattice and
where the sequence of lattices has to do with multi-dimensional continued
fractions. The construction, which can be given for any dimension, is subject
of a paper by Berthe and Tijdeman. (See added in Proof.)
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APPENDIX BY I. Z. RUZSA

R. Tijdeman

Proof of the result stated at the end of Section 2.
Let A C Z be a tile. Then there is aBc Z such th at A EEl B = Z, that is,
every integer is represented exactly once as a sum of an element of A and a
element of B . Assume that the smallest element of A is O. Let

B+ = B n [0,(0) ,

and let

c= {nEZ : n~O, n=a+b, aEA, bEB, b<O}.

Put

We have

f(x) = L z",
oEA

g(x) = L ,·i,
DEB

h(x) = L xe.
eEC

(1)
1

f( x)g(x) + h(x) = -.
I- x

(2)

Note that f and h are polynomials. An integer k is a period of B if
g(x)(1 - xk ) is a polynomial. We know that such a k exists. We want
to show that there is a small one. Let n be the largest element of A. Then
deg f = n, By (1) we have

(
x) = -2:x - h(x) = 1 - (1 - x)h(x) = p(x)

9 . f(x) (1 - x)f (x) q(x)'

where p, q are coprime polynomials . Hence

( )(
k) _ p(x)(1 - xk

)
g xl- x - () .q x

So

(3) q(x) 11 - xk = II 'l/Jd(:r)
dlk

where 'l/Jd is the d-th cyclotomic polynomial. Therefore

q(x) = II 'l/Jd(X),
dED
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where D is a set of divisors of k. Conversely, if (3) holds and we define
k = lcm [d : dE D], then q(k) 11 - x k

, so

1- xk

g(x)(1 - xk
) = p(x)-('-)

q x

is a polynomial. By (2) and (3) we have

n + 1 ~ deqq = L deg '!/Jd = L rj> (d).
dED dED

Let p~l , . . . , p~r be th e prime powers > L dividing k; we will specify
L later. Each pfi divides some d E D. By a repeat ed application of th e
inequality X1J > x + 1J , valid for X, 1J > 2, we find th at

n + 1 ~ L rj> (pfi ) ~ ~ L pfi

(we assume L > 2, which yields rj>(p fi) > 2). Hence r :::; 2(n +1)/Land

Consequently

if L = I nlogn.
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Added in proof (May 2005)

Section 2 and Appendix: A further improvement of Ruzsa's result has
been obtained by Andras Biro in a paper entitled: Divisibility of integer
polynomials and tilings of the integers. In this paper the bound for log k is

1
improved to n3+ e for any positive e and n > no(c).

Section 6: Fraenkel's conjecture for n = 7 has been proved in J. Barat
and P. P. Varjii, Partitioning the positive integers to seven Beatty sequences,
Indag . Math. N.S., 14 (2003), 149-161.

Section 9: A. Heinis has shown that in Problem 4 the limit value cannot
be in the open interval (2,3) (personal communication).

Section 13: The result by Epifanio, Koskas and Mignosi has been im
proved by A. Quas and L. Zamboni in the paper Periodicity and local com
plexity, Theor. Camput. Sc ., 319 (2004), 169-174.

Section 16: The construction mentioned in the last sentence of the
section can be found in V. Berthe and R. Tijdeman, Lattices and multi
dimensional words, Theaf'. Camput. Be., 319 (2004), 177-204.
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