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Preface

László Lovász, briefly called Laci by his friends, turned sixty on March 9,
2008. To celebrate this special birthday two conferences have been held in
Hungary, one in Budapest (August 5–9, 2008) with invited speakers only
and one in Keszthely (August 11–15, 2008). Several top mathematicians
and computer scientists have not only lectured at these meetings but also
dedicated (together with some coauthors) research papers to this occasion.
This volume is the collection of their articles. The contributions to the
conferences and this book honor a person who has not only made an al-
most uncountable number of fundamental contributions to mathematics and
computer science, but who also broke down many borders between mathe-
matical disciplines and built sustainable bridges between mathematics and
computer science.

Laci has been a role model for many young researchers, he inspired lots
of colleagues, and guided quite a few scientific careers. In addition, he is an
extremely nice person and very pleasant colleague, and that is why so many
researchers have come to the “Lovász meetings” in Hungary to present their
best recent work and celebrate with him.

In the Fazekas Mihály Gimnázium in Budapest, a breeding place of
world class mathematicians, Laci’s outstanding talent became visible at
very young age. He did not only win various mathematics competitions in
Hungary, Lovász also won three gold medals and one silver medal in the
International Mathematical Olympiad. The solution of an open problem
in lattice theory gained him his first international visibility and soon after,
in 1972, his proof of the perfect graph theorem earned him lasting fame in
graph theory. An unparalleled sequence of scientific achievements followed
and is continuing till today. It is impossible to mention even a small
fraction of Laci’s results here. The list of his publications (up to summer
2008) is contained in this volume to indicate the breadth and depth of his
contributions.

Being a combinatorialist at heart, like so many Hungarian mathemati-
cians, it has been natural for Laci to employ combinatorial techniques in
other areas of mathematics; but he also brought topology, algebra, analysis,
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stochastics and other mathematical fields to combinatorics, often in quite
unusual ways. In this way he opened up quite a number of new flourishing
fields of research. Algorithmic issues such as polynomial time solvability
and general complexity theory opened his eyes for computer science where
he particularly contributed to the interface between computer science and
discrete mathematics.

After a distinguished academic career with employments and visiting
positions in Szeged, Budapest, Waterloo, Bonn, Cornell, Princeton, Yale
(and guest professorships in many other places) Lovász had worked for
Microsoft Research in Redmond from 1998 to 2006. He returned thereafter
to Budapest to become director of the Mathematical Institute of Eötvös
Loránd University.

His international reputation is stellar. One proof of this claim is a re-
markable series of prestigious honors; among them are the Grünwald, Pólya,
Fulkerson, Wolf, Knuth, Gödel, von Neumann, Bolyai, and Széchenyi Prizes
and various other distinctions such as honorary degrees and professorships.
In 2006 László Lovász has been elected president of the International Math-
ematical Union for the years 2007 to 2010. A few more details can be found
in his (very brief) Curriculum Vitae on pages 11 to 13 in this volume.

Laci has always been a family man, a loving husband, father, and
meanwhile also grandfather. With Kati Vesztergombi, his wife for almost
40 years, he has not only shared family and friends; Kati and Laci are also
closely linked by their common love for mathematics. Their relationship
has not only resulted in three wonderful daughters and a son but also in
two joint books and quite a number of papers. Kati has been a mainstay
in Laci’s life since their common time in high school. That is why we have
chosen to display a husband and wife portrait of the couple on page 9 of
this volume.

Budapest
August 2008

Martin Grötschel
Gyula Katona
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Leipzig (1968), 99–106.

[7] L. Lovász: On chromatic number of graphs and set-systems, Acta Math. Hung., 19

(1968), 59–67.

[8] L. Lovász: On covering of graphs, in: Theory of Graphs (ed. P. Erdős, G. Katona),
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[75] L. Lovász: Gráfelmélet és diszkrét programozás (Graph theory and discrete pro-

gramming), Mat. Lapok, 27 (1979), 69–86.

[76] L. Lovász: Determinants, matchings, and random algorithms, in: Fundamentals of

Computation Theory, FCT’79 (ed. L. Budach), Akademie-Verlag Berlin (1979),

565–574.

[77] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, C. W. Rackoff: Random walks,

universal travelling sequences, and the complexity of maze problems, Proc. 20th

IEEE Ann. Symp. on Found. of Comp. Sci. (1979), 218–223.

[78] L. Lovász, J. Nesetril, A. Pultr: On a product dimension of graphs, J. Comb.

Theory B, 29 (1980), 47–67.

[79] L. Lovász: Selecting independent lines from a family of lines in a space, Acta Sci.

Math. Szeged, 42 (1980), 121–131.

[80] L. Lovász: Matroid matching and some applications, J. Comb. Theory B, 28 (1980),

208–236.

[81] L. Lovász: The matroid matching problem, in: Algebraic Methods in Graph Theory,

Coll. Math. Soc. J. Bolyai, 25 (1980), 495–517.

[82] L. Lovász: Matroids and Sperner’s Lemma, Europ. J. Combin., 1 (1980), 65–66.



20 Publications of László Lovász
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On the Power of Linear Dependencies

IMRE BÁRÁNY

Simple as they may be, linear dependencies have proved very useful in many

ways. In this survey several geometric applications of linear dependencies are

discussed, focusing on rearrangements of sums and on sums with ±1 signs.

1. Introduction

Linear algebra is a basic and powerful tool in many areas of mathematics. In
combinatorics, for instance, there are several cases when the size of a set can
be bounded by a number n because the elements of the set are associated
with vectors in R

n, and these vectors turn out to be linearly independent.
The excellent book [1] by Babai and Frankl (which is unfortunately, still
unpublished) contains thousands of beautiful applications of the so-called
linear algebra method.

This article describes another kind of use of linear algebra, this time in
geometry. The method uses linear dependencies and is often referred to as
the method of floating variables. The same method is used at other places
as well, for instance in discrepancy theory, in the Beck–Fiala theorem [7] or
[8], and in probability theory, [9]. Here we focus on rearrangement of sums
and on sums with ±1 signs.

In what follows the setting is the d-dimensional Euclidean space R
d,

together with a (Minkowski) norm, ‖ · ‖ whose unit ball is denoted by B

or B
d. We write N for the set of natural numbers and [n] for the set

{1, 2, . . . , n} where n ∈ N. We assume that V ⊂ B is a finite set.
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2. The Steinitz lemma

Assume V ⊂ B is finite and
∑

v∈V v = 0. The question, due to Riemann
and Lévy, is whether there is an ordering, v1, v2, . . . , vn, of the elements
of V such that all partial sums along this order are bounded by a number
that only depends on B. The answer is yes. An incomplete proof came
from Lévy [17] in 1905. The first complete proof, from 1913, is due to
Steinitz [20], and that’s why it is usually called the Steinitz Lemma.

Theorem 2.1. Given a finite set V ⊂ B with
∑

v∈V v = 0, where B is the

unit ball of a norm in R
d, there is an ordering v1, v2, . . . , vn of the elements

of V such that for all k ∈ [n]

k∑
1

vi ∈ dB.

So all partial sums are contained in a blown-up copy of the unit ball,
with blow-up factor d. We will return to the value of the blow-up factor
later. Let’s see first the proof of Theorem 2.1, which is our first application
of linear dependencies.

Proof. The key step is the construction of sets Vd+1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = V

where |Vk| = k, together with functions αk : Vk → [0, 1] satisfying∑
v∈Vk

αk(v)v = 0

∑
v∈Vk

αk(v) = k − d.

So the functions αk(.) are linear dependencies on Vk, with coefficients in
[0, 1] that sum to k − d.

The construction goes by backward induction. The starting case k = n

is easy: Vn = V and αn = (n− d)/n satisfy the requirements. Assume now
that Vk and αk have been constructed, and consider the auxiliary system∑

v∈Vk

β(v)v = 0,
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v∈Vk

β(v) = k − 1− d,

0 ≤ β(v) ≤ 1 for all v ∈ Vk.

Write P for the set of functions β : Vk → [0, 1] satisfying this auxiliary
system. The elements of P can and will be regarded as vectors in R

k whose
components are indexed by the elements of Vk.

Note that P is non-empty since β(v) = k−1−d
k−d αk(v) belongs to P . Thus

P is a convex polytope, lying in the unit cube of R
k. Let β

∗(.) be an extreme
point of P .

We claim now that β
∗(v) = 0 for some v ∈ Vk. Indeed, assume β

∗(v) > 0
for all v ∈ Vk. The auxiliary system has d + 1 equations and k variables, so
at least k − (d + 1) of the inequalities β

∗(v) ≤ 1 are satisfied as equalities
(the inequalities β

∗(v) ≥ 0 are all strict). Then
∑

v∈Vk
β
∗(v) > k − d − 1

(we use k > d+1 here), which contradicts one of the conditions defining P .

Let v
∗
∈ Vk be an element with β

∗(v∗) = 0, and define Vk−1 = Vk \ {v
∗
}

and αk−1(v) = β
∗(v) for all v ∈ Vk−1. All conditions are satisfied for Vk−1

and αk−1. The construction is finished.

Now we ready to order the elements of V . For k = n, n − 1, . . . , d + 2
we set, quite naturally,

vk = Vk \ Vk−1.

The remaining d + 1 vectors are ordered arbitrarily.

We check, finally, that all partial sums are contained in dB. This is
trivial for the first d partial sums. Assume now that k ≥ d + 1.

k∑
1

vi =
∑
v∈Vk

v =
∑
v∈Vk

v −

∑
v∈Vk

αk(v)v =
∑
v∈Vk

(
1− αk(v)

)
v.

Taking norms and using that 1− αk(v) ≥ 0 and ‖v‖ ≤ 1 gives

∥∥∥∥ k∑
1

vi

∥∥∥∥ ≤ ∑
v∈Vk

(
1− αk(v)

)
= k − (k − d) = d.

This splendid proof, due to Grinberg and Sevastyanov [13], is a stream-
lined version of an earlier one by Sevastyanov [21]. Steinitz’s original proof
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also used linear dependencies, and gave constant 2d instead of d. Yet an-
other proof, from Bárány [3], using linear dependencies again, gave blow-up
factor 1.5d.

It comes as a surprise that the norm plays a rather marginal role.
I describe now another proof, due to Kadets [15], in which the norm is
important. The proof works for the Euclidean norm B2 and gives the weaker
blow-up factor Cd =

√
(4d

− 1)/3. It goes by induction on dimension and
the case d = 1 is very simple: one takes positive elements as long as the sum
stays below 1, then one takes negative elements as long as the sum is above
−1, and so on. For the induction step d − 1 → d, let V ⊂ B2 be a finite
set with

∑
v∈V v = 0. We choose a subset W ⊂ V for which ‖

∑
v∈W v‖

is maximal among all subsets of V , and set a =
∑

v∈W v. For v ∈ V let v

denote its orthogonal projection onto the subspace A orthogonal to a, and
set va = v − v. It follows from the maximality of W that, for all v ∈W , va

points the same direction as a, and, for all v /∈ W , va points the opposite
direction. Further, each v ∈ A and has Euclidean norm at most one in A

which is the d− 1-dimensional Euclidean space. Also,
∑

v∈W v = 0. By the
induction hypothesis, there is an ordering v1, v2 . . . of the vectors in W with
all partial sums of the vi having Euclidean length at most Cd−1. The same
applies to the set V \W , so its elements can be ordered as w1, w2, . . . with all
partial sums of the wj shorter than or equal to Cd−1. The sequences v1, . . .

and w1, . . . are then interlaced making sure (using the method given for the
case d = 1) that the absolute value of the a-component of each partial sum
is at most 1. Then the square of each partial sum of the interlaced sequence
is at most 4C

2
d−1

+ 1 = C
2
d as one can easily see.

This is quite a neat proof, yet the other one is superior: it works for all
(even non-symmetric) norms, gives a far better bound, and is much more
elegant, as far as I can judge.

3. The story of the Steinitz lemma

The story actually began with Riemann who showed that a conditionally
convergent series (of real numbers) can be made to converge, by a suitable
rearrangement of the series, to any real number. What happens with a con-
ditionally convergent series of d-dimensional vectors? Let U = {u1, u2, . . . }

be the vectors in the series, and let σU be the set of points that it can be
made to converge by rearrangements. It turns out that σU is always an
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affine subspace of R
d. For d = 1 this is equivalent to Riemann’s result. In

higher dimensions the problem quickly reduces to the statement of what
is called now Steinitz Lemma, with arbitrary norm and arbitrary constant
depending only on dimension. This is what Steinitz proved in [20].

The smallest constant the Steinitz lemma holds with is a number, to be
denoted by S(B), that depends only on the unit ball B. It is called the
Steinitz constant of B. Theorem 2.1 says that S(B) ≤ d for all B in R

d.
This norm need not be symmetric: a quick look at the last step of the proof
shows that ‖λv‖ ≤ λ‖v‖ was only used with λ ≥ 0. For non-symmetric
norms, the estimate S(B) ≤ d is best possible. In the example proving this,
B is a simplex in R

d with its center of gravity at the origin, and V consists
of the vectors pointing to the vertices of this simplex.

Yet, of course, S(B) might be much smaller than d for any particular
norm. Write Bp for the unit ball of the �p norm in R

d, or B
d
p if we wish

to stress the dimension of the underlying space. It is easy to see that
S(B1) ≥ d/2, so the order of magnitude for symmetric norms cannot be
improved. In 1931 Bergström [9] proved that S(B2) =

√

5/2 for d = 2,
a surprisingly precise result. The lower bound comes from a construction
consisting of n/2 copies of the vector

(√
1− t

2
,−t

)
, n/2 copies of the vector(

−

√

1− t
2
,−t

)
where t = 1/n, and the vector (0, 1). This is essentially

n/2 copies of a slightly modified e1 and −e1 compensated by e2. In higher
dimensions, the analogous example shows that S

(
B

d
2

)
≥

√

d + 3/2. It has
been conjectured that

S

(
B

d
2

)
= O

(
d

1/2
)
.

But even the much weaker S

(
B

d
2

)
= o(d) estimate seems to be out of reach

though quite a few mathematicians have tried.

The case of the maximum norm, B∞, is also open. An example can
be built from a d + 1 by d + 1 Hadamard matrix: its first row is the all 1
vector, and the vectors in V are the d + 1 columns of this matrix with the
first coordinate deleted. It is not hard to see that the squared Euclidean
norm of the sum of k vectors from V is k(d + 1 − k). This shows, when
k = (d + 1)/2, that one coordinate of the sum is at least (d + 1)/

√

4d in
absolute value, implying that the conjecture,

S

(
B

d
∞

)
= O

(
d

1/2
)
,

if true, is best possible. But again, there is no proof in sight even for the
much weaker S

(
B

d
∞

)
= o(d) estimate.



36 I. Bárány

The Steinitz Lemma has many applications. It is used, or can be used
to prove Lyapunov’s theorem stating that the image of an atomless vector
valued measure is always convex. In Operations Research, the Lemma has
been applied to scheduling problems. In particular, it was used to find
optimal flow shop and job shop schedules in polynomial time under some
mild conditions, although these scheduling problems are NP-hard in general.
See the excellent survey by Sevastyanov [22], or some of the original works
[3], [21]. Halperin and Ando [14] cite 290 papers related to the Steinitz
Lemma up to 1989, by now the number must be much higher.

4. Signed sum

In this section V ⊂ B is a finite set, again, and we want to find signs ε(v) = 1
or −1 for all v ∈ V such that

∑
v∈V ε(v)v is not too large. In the following

theorem, which is from Bárány, Grinberg [4], we work with the Euclidean
ball B2.

Theorem 4.1. Under the above conditions there are signs ε(v) such that∑
v∈V

ε(v)v ∈
√

dB.

The example when V consists of d pairwise orthogonal unit vectors shows
that the above estimate is best possible.

Proof. The proof is in two steps. For the first one, consider the set of linear
dependencies α : V → [−1, 1], that is, functions satisfying∑

v∈V

α(v)v = 0 and − 1 ≤ α(v) ≤ 1 for all v ∈ V.

These functions form a convex polytope in the ±1 cube of R
V , of dimension

at least n − d (where |V | = n). This polytope is non-empty since it
contains the origin. At an extreme point, α

∗ say, of this polytope many
α
∗(v) ∈ {−1, 1}. Precisely, the set of vectors v ∈ V with −1 < α

∗(v) < 1 are
linearly independent since otherwise α

∗ is not an extreme point. For simpler
notation we assume that this happens for the vectors v1, . . . , vk, where,
obviously, k ≤ d. For the rest of the vectors vi (with i ∈ {k + 1, . . . , n}), we
have α

∗(vi) = αi ∈ {−1, 1}.
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Define now u =
∑n

k+1
αivi and set

(4.1) Q =

{ k∑
1

βivi : βi ∈ [−1, 1]

}
.

Clearly, Q is a parallelotope whose sides have Euclidean length at most 2.
What we have shown so far is that 0 ∈ u + Q.

The second step in the proof is geometric. We claim that if a point a lies
in a parallelotope Q defined by k linearly independent vectors v1, . . . , vk as
in (4.1) with ‖vi‖ ≤ 1, then Q has a vertex at distance at most

√

k from a.
The theorem follows from this since k ≤ d.

We prove the claim by induction on k. The case k = 1 is trivial. In
the induction step k − 1 → k, we assume that a is in the interior of Q as
otherwise a is on a facet of Q which is itself a parallelotope of dimension
k − 1 and the induction works. Now put a Euclidean ball, B(a), centered
at a, into Q and increase its radius as long as you can with B(a) still
remaining in Q. The maximal B(a) contained in Q has a point, say b, on
the boundary of Q. Then b is contained in a face F of Q which is a k − 1-
dimensional parallelotope, whose defining vectors are of unit length at most.
By induction, F has a vertex, w say, at distance at most

√

k − 1 from b.
Of course, w is a vertex of Q as well. As B(a) touches F at b, a − b is
orthogonal to F . Further, ‖a − b‖ ≤ 1 as otherwise a ball of radius larger
than 1 would be contained in Q which is impossible. Now

‖a− w‖
2 = (a− w)2 = (a− b)2 + (b− w)2 ≤ 1 + (k − 1) = k,

finishing the proof.

The first step of the proof works for every norm but the second, more
geometric step, does not. In general, in the second step one can only
guarantee distance d from a vertex. A point a in a parallelotope Q of
side length 2 in norm B, may be far away from all vertices of Q. The
straightforward example of the �1 norm shows that every vertex of the ±1
cube in R

d is at distance d from the origin.

The situation is better for the B∞ norm, because then every point of the
parallelotope Q is closer than 6

√

d from some of its vertices. This is a result
due to Spencer [19] and, independently to Gluskin[12], who was relying on
earlier work of Kashin [16]. It is an interesting fact that Spencer finds the
signs by a combination of the pigeon hole principle and random methods,
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while Gluskin and Kashin use volume estimates and Minkowski’s theorem
on lattice points in 0-symmetric convex bodies.

In connection with this we mention a striking question of J. Komlós (cf.
[2] or [19]). He asks whether there is a universal constant C such that for
every d ≥ 1 and for every finite V ⊂ B

d
2 , there are signs ε(v) for each v ∈ V

such that
∑

v∈V ε(v)v ∈ CB
d
∞. The best result so far in this direction is that

of Banaszczyk [2]. He showed the existence of signs such that the signed
sum lies in C(d)Bd

∞ where the constant C(d) is of order
√

log d.

5. Signing vector sequences

In this section U will denote a sequence, u1, u2, . . . from the unit ball
B ⊂ R

d. This time B is symmetric, and the sequence may be finite or
infinite. We wish to find signs εi ∈ {−1,+1} such that all partial sums∑n

1
εiui are bounded by a constant depending only on B. The following

result is from Bárány, Grinberg [4].

Theorem 5.1. Under the above conditions there are signs εi such that for

all n ∈ N

n∑
1

εiui ∈ (2d− 1)B.

Proof. We will only prove that all partial sums are in 2dB. The improve-
ment to 2d− 1 is explained in the remark after this proof.

We start again with a construction, which is the prime example of the
method of “floating variables”.

Define Uk = {u1, u2, . . . , uk+d}, k = 0, 1, 2, . . . . We are going to con-
struct mappings βk : Uk → [−1, 1] and subsets Wk ⊂ Uk with the following
properties (for all k):

(i)
∑

Uk
βk(u)u = 0,

(ii) βk(u) ∈ {−1, 1} whenever u ∈ Wk,

(iii) |Wk| = k and Wk ⊂Wk+1 and βk+1(u) = βk(u) if u ∈Wk.

The construction is by induction on k. For k = 0, W0 = ∅ and β0(·) = 0
clearly suffice. Now assume that βk and Wk have been constructed and
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satisfy (i), (ii), and |Wk| = k from (iii). The d + 1 vectors in Uk+1 \Wk are
linearly dependent, so there are γ(u) ∈ R not all zero such that∑

Uk+1\Wk

γ(u)u = 0.

Putting βk(uk+d+1) = 0, we have∑
Wk

βk(u)u +
∑

Uk+1\Wk

(
βk(u) + tγ(u)

)
u = 0

for all t ∈ R. For t = 0 all coefficients lie in [−1, 1]. Hence for a suitable
t = t

∗, all coefficients still belong to [−1, 1], and βk(u)+ tγ(u) ∈ {−1, 1} for
some u

∗
∈ Uk+1 \Wk. Set now Wk+1 = Wk ∪ {u

∗
} and βk+1(u) = βk(u), if

u ∈ Wk, and βk+1(u) = βk(u) + t
∗
γ(u), if u ∈ Uk+1 \Wk. Then Wk+1 and

βk+1 satisfy (i) and (ii) and |Wk+1| = k+1 from (iii). Moreover, Wk ⊂Wk+1

and βk+1(u) = βk(u) for all u ∈ Wk.

We now define the signs εi. Set εi = 1 if ui ∈ Wk and βk(ui) = 1 for
some k, and set εi = −1 if ui ∈ Wk and βk(ui) = −1 for some k. As
βk(u) stabilizes, that is, βk(u) = βk+1(u) = βk+2(u) = . . . once u ∈ Wk,
this definition is correct for all vectors that appear in some Wk. For the
remaining (at most d) vectors one can set εi = ±1 arbitrarily.

Again, we have to check the partial sums. The first d (actually, the first
2d) partial sums lie automatically in 2dB. For n > d define k = n − d.
Denoting εi by ε(ui) or simply by ε(u) we have

n∑
1

εiui =
∑
u∈Uk

ε(u)u =
∑
u∈Uk

ε(u)u−
∑
u∈Uk

βk(u)u

=
∑
u∈Uk

(
ε(u)− βk(u)

)
u =

∑
u∈Uk\Wk

(
ε(u)− βk(u)

)
u.

Note that the last sum has only d terms, because Uk \ Wk has exactly d

elements. We take the norm:

(5.1)

∥∥∥∥ n∑
1

εiui

∥∥∥∥ ≤ ∑
u∈Uk\Wk

∣∣
ε(u)− βn(u)

∣∣
≤ 2d,

since every term in the last sum is at most 2.
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Remark. Where can one get 2d−1 instead of 2d in this proof? Well, when
choosing the suitable t

∗ which gives u
∗
∈ Uk+1 the coefficient 1 or −1, we can

move from t = 0 to both positive or negative values of t, and this degree of
freedom helps. Here is a sketch of how this can be done. For each k ≥ 1 one
has a special element v ∈ Uk \Wk with the property that βk+1(v) ≥ βk(v)
if βk(v) > 0 and βk+1(v) ≤ βk(v) if βk(v) < 0. The special element remains
the same as long as v /∈ Wk. What can be reached this way is that βk(v)
has the same sign as long as v is special. Then

∣∣
ε(v) − βk(v)

∣∣
≤ 1 for the

special element in the sum over Uk \Wk in equation (5.1) and this is where
we get 2d− 1 instead of 2d. When the special v enters Wk we let v = uk+d

be the new special element, and the sign of βl(v) for l > k is going to be the
same as that of βk(v). There is no βl(v) for l < k so they can’t influence
the validity of (5.1) for the previous indices. The choice of the first special
element and the case when βk(v) never reaches ±1 needs extra care which
we leave to the interested reader.

The above proof gives, in fact, a good algorithm for finding a suitable
sign sequence. It is an almost on-line algorithm: it does not have to foresee
the whole sequence. At each moment, it only keeps a buffer of d vectors
with undecided signs. In fact, the previous remark shows that a buffer of
size d−1 suffices. But smaller buffer wouldn’t do. This was proved by Peng
and Yan [18].

The sign sequence constant, E(B), of the unit ball B is the smallest blow-
up factor for which Theorem 5.1 holds. By the same theorem, E(B) ≤ 2d−1
always holds for every symmetric norm in R

d. For individual norms, of
course, much better estimates are possible. The lower bounds for S(Bp)
with p = 1, 2,∞ apply also to E(B). We will return to this question in
connection with Chobanyan’s remarkable transference theorem in Section 7.

One can set up the problem leading to Theorem 5.1 more generally.
Namely, assume we are given a sequence of sets V1, V2, . . . , with Vi ⊂ B

and 0 ∈ conv Vi for each i ∈ N. Can one choose vectors, ui ∈ Vi for each
i such that each partial sum

∑n
1

ui lies in cB with a suitable constant c

that depends only on the norm. The answer is yes, with c = 2d, and the
proof is similar to the one above, see [4]. The case of Theorem 5.1 is when
Vi = {ui,−ui}. Several other questions treated in this paper have similar
generalizations.



On the Power of Linear Dependencies 41

6. Partitioning a sequence

We now formulate Theorem 5.1 in a different form, suitable for general-
ization. We need one more piece of notation: if U

′ = {ui1 , ui2 . . . } is a
subsequence of U with i1 < i2 < . . . , then let

∑
n U

′ denote the sum of all
uij with ij ≤ n. This unusual notation will be very convenient.

With this notation the statement of Theorem 5.1 is that U can be
partitioned into two subsequences U

+ and U
− such that for every n ∈ N∑

n

U
+
−

∑
n

U
−
∈ 2dB, and also

∑
n

U
−
−

∑
n

U
+
∈ 2dB.

The two statements here are equivalent since the norm is symmetric. Fur-
ther, of course, U

+ (U−) consists of elements of U for which ε = +1
(ε = −1).

Adding
∑

n U to both sides and dividing by 2 gives

∑
n

U
+
∈ dB +

1

2

∑
n

U and
∑
n

U
−
∈ dB +

1

2

∑
n

U.

The new formulation of the Theorem 5.1 is this. Under the same
conditions U can be partitioned into two subsequences U

1 and U
2 such

that for all j = 1, 2 and all n ∈ N

∑
n

U
j
∈ dB +

1

2

∑
n

U.

Can one partition U into r subsequences with similar properties? The
answer is yes. The following theorem is from [5], and is an improved version
of a similar result by Doerr and Srivastav [11].

Theorem 6.1. Assume U ⊂ B is a sequence, and r ≥ 2 is an integer. Then

U can be partitioned into r subsequences U
1
, . . . , U

r such that for all j ∈ [r]
and n ∈ N ∑

n

U
j
∈ CdB +

1

r

∑
n

U,

where C is a universal constant which is smaller than 2.0005.
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Proof. We only give a sketch. We set r = r0 + r1 with r0, r1 ∈ N whose
values will be chosen later. Then partition U into two subsequences U0 and
U1 so that, for all n ∈ N,

(6.1) r1

∑
n

U0 − r0

∑
n

U1 ∈ (r0 + r1)dB.

This is accomplished by the same construction as in the proof of Theo-
rem 5.1, only the bounding interval [−1, 1] is to be changed to [−r0, r1].
Then we add r0

∑
n U to both sides of (6.1) and divide by r = (r0 + r1) to

obtain ∑
n

U0 ∈ dB +
r0

r

∑
n

U.

The same way we have ∑
n

U1 ∈ dB +
r1

r

∑
n

U.

The proof proceeds from here recursively, by choosing r0 = r00 +r01 and
splitting U0 into subsequences U00 and U01, just as U was split into U0 and
U1, and then splitting U00 and U01 further.

This recursion gives rise to a recursion tree. It is a binary tree whose
root is marked by r, its two children by r0 and r1, etc. It has to have r

leaves, each marked by 1. For the jth leaf, let bj denote the sum of the
reciprocals of the numbers on the nodes from this leaf to the root (including
the leaf but excluding the root). The recursion gives then a partition of U

into subsequences U
1
, . . . , U

r such that for all j ∈ [r] and n ∈ N we have

∑
n

U
j
∈ bjdB +

1

r

∑
n

U.

Thus the recursion tree is to be built in such a way that all bj be small.
This can be achieved, giving bj ≤ 2.0005 for all j ∈ [r], see [11] and [5] for
the details.
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7. A transference theorem

The methods for the Steinitz constant S(B) and the sign-sequence constant
E(B) are similar, and so are the bounds. Is there some deeper connec-
tion between them? This is answered by the following beautiful result of
Chobanyan [10].

Theorem 7.1. Assume B is the unit ball of symmetric norm in R
d. Then

S(B) ≤ E(B).

The result shows that the sign-sequence problem is “easier” than the
rearrangement problem. One may wonder whether the opposite inequality,
that is, E(B) ≤ CS(B), holds with dimension independent constant C. It
does hold with C = 2d− 1 since S(B) ≥ 1 trivially and E(B) ≤ 2d− 1 by
Theorem 5.1, but this is not interesting.

We mention that Theorem 7.1 holds in any normed space, not necessary
finite dimensional. The proof below will show this.

Proof. Clearly both S(B) and E(B) are at least one. By the definition of
S(B), for every small η > 0 there is a is a finite V ⊂ B with

∑
v∈V v = 0,

such that V has an ordering v1, . . . , vn so that every partial sum along this
ordering lies in S(B)B, but for every ordering of V there is a partial sum
(along that ordering) which is outside of

(
S(B)− η

)
B.

Choose a small η > 0 together with the finite V with the above proper-
ties. Consider now the sign-sequence ε1, . . . , εn such that for all k ∈ [n],

k∑
1

εivi ∈ E(B)B.

By the definition of E(B) such a sign sequence exists. The vectors vi with
εi = +1, in the same order, form a sequence u1, u2, . . . , um, while the vectors
vi with εi = −1, in the opposite order, form a sequence um+1, um+2, . . . , un.
The sequence u1, . . . , un is a rearrangement of V . Then one partial sum,
the kth say, has norm greater than S(B)− η.

Assume k ≤ m. Then, clearly,

k∑
1

ui =
1

2

( k∑
1

vi +
k∑
1

εivi

)
∈

1

2

(
S(B) + E(B)

)
B.
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This shows that S(B)− η <
1

2

(
S(B) + E(B)

)
implying

(7.1) S(B) < E(B) + 2η.

Assume now that k > m. Then
∑k

1
ui = −

∑n
k+1

ui is outside
(
S(B)−

η

)
B. Consequently,

∑n
k+1

ui is outside
(
S(B)− η

)
B as well. But the last

sum is just the sum of the first n − k elements of the sequence v1, . . . , vn

that go with εi = −1. This sum is equal to

1

2

( n−k∑
1

vi −

n−k∑
1

εivi

)
∈

1

2

(
S(B) + E(B)

)
B,

again. This proves inequality (7.1) in all cases.

Finally, since (7.1) holds for all η > 0, we have S(B) ≤ E(B).
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Surplus of Graphs and the Lovász Local Lemma

JÓZSEF BECK

1. What is the Surplus?

1. Row-Column Games. The Surplus is a game-theoretic graph parame-
ter. To illustrate it in a special case, suppose that two players, called Maker
and Breaker, are playing on an n×n chessboard, and alternately mark pre-
viously unmarked little squares. Maker uses (say) mark X and Breaker uses
(say) O, exactly like in Tic-Tac-Toe; Maker’s goal is to achieve a large lead

in some line, where a “line” means either a row or a column. Let n
2

+ Δ
denote the maximum number of Xs (“Maker’s mark”) in some line at the
end of a play; then the difference (n

2
+ Δ)− (n

2
−Δ) = 2Δ is Maker’s lead ;

Maker wants to maximize Δ = Δ(n). Since Δ = Δ(n) can be a half-integer
(it happens when n is odd), and it is customary to work with integral graph
parameters (like chromatic number), I prefer to call 2Δ = 2Δ(n) the Sur-

plus of the n×n board (and refer to Δ = Δ(n) as the half-surplus). That is,
the Surplus is the maximum terminal lead that Maker can always achieve
against a perfect opponent. (In other words, Surplus is a game-theoretic
one-sided discrepancy concept.)

A closely related concept is the Maximum Temporary Lead, which is
the largest lead that Maker can always achieve at some instant of the
whole course of the play against a perfect opponent. We have the following
inequality:

Maximum Terminal Lead ≤ Maximum Temporary Lead ≤

≤ Maximum Terminal Lead + 1.
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The left-hand side inequality is trivial; the right-hand side inequality is
almost trivial, since Maker can save his temporary lead by filling up the
large-lead line; there is a possible loss of 1 at the end (by parity reason).

Of course, one can replace the n×n square board with any other n×m

rectangle board (say, n ≤ m). One can further generalize by allowing an
arbitrary number of “holes” in the board: assume that some of the nm little
squares of an n×m rectangle board are “holes”, meaning that the players
are forbidden to mark “holes”; “holes” are not legitimate moves.

The Row-Column Game played on a rectangle board with holes is equiv-
alent to the following Degree Game on Bipartite Graphs. Let G be an ar-
bitrary finite bipartite graph; it is natural to assume that G is simple (no
multiple edges and no loops). The Degree Game on G is played by two
players, Maker and Breaker, who alternately take previously untaken edges
of G, and color them: Maker uses red and Breaker uses blue. At the end
of a play Maker owns half of the edges (the red edges), so Maker’s graph
(the red subgraph) must have degree mi ≥ di/2 in some vertex i (where di

is the G-degree of i). Let Sur (G) be the largest integer S such that Maker
can always force a red degree mi ≥ (di + S)/2, where di is the G-degree.
Formally,

(1.1) Sur (G) = max
StrM

min
StrB

max
i

(mi − bi),

meaning that, Sur (G) is the largest integer S such that, playing the Degree
Game on G, Maker can always force a terminal lead ≥ S. That is, Maker
has a strategy StrM with the property that, whatever strategy StrB is used
by Breaker, at the end of the (StrM , StrB)-play there is always a vertex i

where Maker’s degree mi is ≥ bi + S (here bi is Breaker’s degree in i).

The last step of generalization is to drop the assumption that G is
bipartite: definition (1.1) does make perfect sense for any finite graph G.
It is natural to assume that G is simple, that is, no multiple edges and no
loops. Of course, the surplus of the empty graph is zero.

If G is regular (i.e., every degree is the same d) then Maker’s goal is
simply to build a large degree, substantially larger than d/2.

Let’s return to the special case of the Row-Column Game on an n × n

board, which is equivalent to the Degree Game on the complete symmetric
bipartite graph Kn,n. The family of 2n lines (n rows and n columns) forms
a particularly simple hypergraph: it is

(1) Almost Disjoint (any two lines intersect in at most one cell); and
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(2) has uniform Height 2, i.e., every cell belongs to exactly 2 lines.

Note that I reserve the term Degree for graphs; the analog concept in
hypergraphs is called Height throughout this paper. Since Height 1 means a
disjoint hypergraph, uniform Height 2 is the first nontrivial case – a Height
2 hypergraph is extremely sparse.

Switching from the n × n board (i.e. Kn,n) to an arbitrary finite and
simple graph G, the “lines” become the “stars”. The star-hypergraph of
any graph G also has properties (1)–(2): it is Almost Disjoint (because
any two stars have at most one common edge) and has uniform Height 2
(because every edge belongs to two stars).

There is an easy converse: if a finite hypergraph H is

(1) Almost Disjoint, and

(2) has uniform Height 2,

then H is the star-hypergraph of a simple graph G. Indeed, let A1, A2, . . . ,

An be the hyperedges of H. To construct the desired graph G, we associate
with each Ai a vertex vi, and two different vertices vi and vj are joined by
an edge if and only if Ai intersects Aj . Now let Si be the star of vi in graph
G; then

vj ∈ Si ⇔ vivj ∈ G ⇔ Ai ∩Aj �= ∅,

and the G-degree of vi is∣∣
{j : vj ∈ Si}

∣∣ =
∣∣
{j : Ai ∩Aj �= ∅}

∣∣ = |Ai|,

where in the last step we used both properties (1)–(2). Since the G-degree
of vi is exactly |Ai|, we obtain that the star-hypergraph of G is isomorphic
to H.

Any kind of “achieve majority” type game played on a disjoint hyper-
graph is trivial. The star-hypergraph of a graph represents the simplest
nontrivial hypergraph, and as the reader will find out below, this case is
already very challenging and interesting.

The Surplus is a natural “majority” type game-theoretic graph parame-
ter. At first glance it may seem as an easy parameter, but a closer look
at (1.1) explains the main difficulty: there are a huge number of strategies
even for a small graph, which means we cannot carry out exhaustive com-
puter experimentation! The surplus is far from easy, we don’t know the
exact value of the surplus even for the complete graph!

Our main result is that every dense graph has a (relatively) large Surplus,
see Theorem 1 below. This sounds like a simple result, but I don’t have a
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simple proof. The Almost Disjointness of the star-hypergraph (of a graph)
plays a key role in the proof. To emphasize this point I show a large class of
hypergraphs such that (1) the hypergraphs are very far from being Almost
Disjoint and (2) the Surplus is trivially zero. This is the class of Strictly-

Even Hypergraphs. The board V of a Strictly-Even Hypergraph is an even-
size set, say a 2M -element set, representing the inhabitants of a little town:
M married couples, M husbands and M wives. The citizens of this little
town have a habit of forming clubs, small and large. The same citizen
may have membership in many different clubs at the same time, but there
is a rule which is strictly enforced: if a citizen is the member of a club,
then his/her spouse is automatically a member, too. Each club represents
a hyperedge of a Strictly-Even Hypergraph (and vice versa). In technical
terms, a Strictly-Even Hypergraph has an underlying “pairing”, and if a
hyperedge intersects a “pair”, then the hyperedge must contain the whole
“pair”.

Note that in a Strictly-Even Hypergraph every hyperedge (“winning
set”) has even size, and in general, the intersection of an arbitrary family
of hyperedges has even size, too (explaining the name “strictly-even”).

The Maker–Breaker majority achieving game played on an arbitrary
Strictly-Even Hypergraph is trivial: Maker cannot even achieve a surplus of
one! Indeed, by using a pairing strategy, from each hyperedge Breaker can
take the exact half.

The main point here is that Almost Disjoint Hypergraphs are very
different from Strictly-Even Hypergraphs; in some sense they are opposite
classes. This is the intuitive reason why we can prove large surplus for
graphs.

In the rest of the paper “graph” always means a finite and simple graph;
also it is always assumed that Maker is the first player (unless I specifically
say otherwise).

2. Exact results. It is easy to determine the Surplus of some sparse graphs
such as

(1) a cycle Cn of length n has Surplus 2;

(2) a path Pn of length n has Surplus 2 if n ≥ 3, and has Surplus 1 if
n = 1 or 2.

There are a few more classes of graphs for which we know the exact value
of the Surplus:

(3) all trees;
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(4) all 4-regular graphs;

(5) very asymmetric complete bipartite graphs: Kd,n with n > (d +
2)2d−1.

These are less trivial, but still rather easy results. I put them in

Proposition 1.1. (a) The Surplus of a (nonempty) graph is always ≥ 1.

(b) Every tree has Surplus 1 or 2. The Surplus is 1 if and only if the

number of even degrees of the tree is 0 or 1.

(c) Every 4-regular graph has Surplus 2.

(d) Sur (Kd,n) = d holds for all asymmetric complete bipartite graphs

Kd,n with n > (d + 2) · 2d−1.

Proof. By definition (see (1.1)) the surplus is an integer ≥ 0. To prove (a)
note that if at least one degree is odd then in that vertex Maker can force
a surplus ≥ 1, so trivially Sur (G) ≥ 1.

Next let G be a connected graph where every degree is even. Note that if
the degrees of a graph G have the same parity then the surplus Sur (G) also
has the same parity; in particular, if every degree is even then the surplus
is also even. Thus after making an arbitrary opening move, in one of the
two endpoints of his opening edge Maker can always force a surplus ≥ 2.

(b) First I show that the surplus Sur (T ) of a tree T is always ≤ 2.
Fix an arbitrary vertex v of T ; starting from v (the root) there is a unique
orientation T (→) of the edges of the tree such that every vertex has in-degree
1 (except the root itself). Here is Breaker’s strategy to force Sur (T ) ≤ 2:
suppose Maker just took edge e; this edge is an arrow in T (→), and let w

be its tail, then Breaker’s next move is to take an arbitrary unselected edge
from vertex w. This way Breaker perfectly balances the out-degree, so the
largest surplus is ≤ 1+1 = 2, where the first “1” comes from the out-degree
(possible parity loss of 1) and the second “1” is the common in-degree in
T (→).

If a tree T has exactly one even degree vertex, say, v, then by choosing
v to be the root, the argument above gives Sur (T ) = 1.

If every degree of a tree T is odd then the surplus is also odd, and
Sur (T ) ≤ 2 implies Sur (T ) = 1.

If a tree T has ≥ 2 even degree vertices, then I prove Sur (T ) = 2. Let
u and w be two even degree vertices with the extra property that their
T -distance is the minimum (on every tree there is a unique well-defined
distance). If u and w are neighbors (i.e., the uw-edge is in T ) then Maker’s
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first move is the uw-edge, and either in u or in w he can always force a
surplus ≥ 2.

If u and w are not neighbors, then let u, v1, . . . , vk, w be the (unique)
T -path joining u and w. By the minimum property v1, . . . , vk all have odd
degrees; clearly each one is ≥ 3. Maker’s first move is the uv1-edge, then
Breaker has to respond in vertex u (otherwise Maker can force a surplus ≥ 2
in u). Maker’s second move is the v1v2-edge, then Breaker has to respond
in vertex v1 (otherwise Maker can force a surplus ≥ 3 in v1); . . . ; Maker’s
kth move is the vk−1vk-edge, then Breaker has to respond in vertex vk−1

(otherwise Maker can force a surplus ≥ 3 in vk−1); finally, Maker takes the
vkw-edge, which is a trap: Breaker has to respond in both vk (to prevent a
surplus ≥ 3 in vk) and w (to prevent a surplus≥ 2 in w), which is impossible.
This proves part (b).

Next I prove (c). If G is a 4-regular connected graph then every degree
is even, and G contains an Euler trail. Any fixed Euler trail defines an
orientation G(→) of the edges of G such that every in-degree is 2, and
similarly, every out-degree is 2. Breaker’s strategy to force Sur (G) = 2 is
in fact a Pairing Strategy using orientation G(→): when Maker just took
edge e then Breaker finds the orientation of e in G(→), and takes the other
out-edge of G(→) from the tail of e. This way Breaker has at least one edge
in each star, forcing Sur (G) ≤ 3− 1 = 2. By parity reason Sur (G) ≥ 1 has
to be even, so we have only one option: Sur (G) = 2. The result remains
true for non-connected G; I leave the trivial modification in the argument
to the reader.

Finally, I prove (d). I go back to the more geometric Row-Column
Game representation: the board is an extremely long rectangle with d

rows and n columns where n > (d + 2)2d−1. First I note that the upper
bound Sur (Kd,n) ≤ d is trivial: Breaker just plays “row-wise”, that is,
Breaker always responds in the same row where Maker’s last move was.
The lower bound Sur (Kd,n) ≥ d is less trivial: it is based on a simple
Halving Argument.

Initially Maker keeps playing in the first row until it is all filled. At
this point, if Maker’s surplus in the (long) first row is ≥ d, then of course
Maker is already done. Otherwise, there are at least (n−d)/2 columns that
are Breaker-free and contain exactly one mark of Maker at the top of each;
these ≥ (n− d)/2 columns are the only ones that Maker cares about in the
rest of the play.
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For the second row, Maker keeps on playing only in these ≥ (n − d)/2
columns, and he continues on afterward until this “relevant” part of the
second row is all filled. At this point – which is the end of the secound
round – if Maker did not get the surplus d in the second row, then out of
the ≥ (n− d)/2 columns of the first round, there are

≥

n−d
2
−

d
2

2
=

n− 2d

4

columns that are Breaker-free and contain exactly two marks of Maker at
the top of each; these ≥ (n − 2d)/4 columns are the only ones that Maker
cares about in the rest of the play.

Proceeding by induction, at the end of the ith round, if Maker did not
get the required surplus d in some row yet, there are

≥

n−2i−2d
2i−1 −

d
2

2
=

n− 2i−1
d

2i

columns that are Breaker-free and contain exactly i marks of Maker at the
top of each. Hence Maker can guarantee a surplus d if

n− 2d−1
d

2d
> 0,

which is equivalent to n > (d + 2) · 2d−1. This completes the proof of
Proposition 1.1.

Notice that in Propostion 1.1 the surplus is either bounded (≤ 2), or it
is logarithmically small in terms of the number of vertices, see part (d). Are
there graphs with relatively large surplus, larger than logarithmic? What
happens for an arbitrary graph? I will prove that every dense graph has a
relatively large surplus, much larger than logarithmic. Roughly speaking,
the surplus is larger than the square root of the maximum local density of
the graph.

3. The Core-Density and the Surplus. The Core-Density is simply
the maximum local density of a nonempty graph G. Let CG be a densest

subgraph of G, that is, CG ⊆ G is a subgraph for which the Edge/Vertex
ratio attains its maximum. We call CG(⊆ G) a Core of graph G. Note
that the Core itself is not necessarily uniquely defined (a graph may have
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several Cores), but the maximum Edge/Vertex ratio is uniquely defined.
The density of a Core is exactly what I call the Core-Density; I denote it
with cd (G). (If G is the empty graph then cd (G) = 0.)

I call the Average Degree of a Core CG the Core-Degree; of course it
is 2 cd (G), that is, the Core-Degree is twice as large as the Core-Density.
Here are a couple of easy facts.

If G is a connected d-regular graph then its Core is itself, the Core-
Degree is d, and so the Core-Density is cd (G) = d/2.

If T is a tree then again its Core is itself, and cd (T ) < 1.

Here is another easy fact about the Core that we are going to use
repeatedly.

Proposition 1.2. If CG ⊆ G is any Core of graph G, then the minimum

CG-degree is ≥ cd (G).

Proof. Let v be an arbitrary vertex of CG with CG-degree d. Removing v

from CG gives the new Edge/Vertex ratio (E − d)/(V − 1), where E is the
number of edges and V is the number of vertices of CG. By the maximum
density property of the Core CG:

E − d

V − 1
≤

E

V

= cd (G),

which implies d ≥ cd (G). (Here I assumed that cd (G) > 1/2; otherwise
the statement is trivial.)

It is easy to give an upper bound on the Surplus in terms of the Core-
Degree= 2 cd (G); we simply generalize the argument of the proof of Propo-
sition 1.1(b). This argument gives that for every graph G the surplus

(1.2) Sur (G) ≤ 1 + 2 cd (G)

To show (1.2) we basically repeat the well-known proof of the fact that
every planar graph has chromatic number ≤ 6. Let v1 be a minimum degree
vertex of G; the G-degree of v1 is clearly ≤ 2 cd (G) (the average degree of
the densest subgraph). By removing v1 from G (of course we remove all
edges from v1) we obtain a subgraph G1. Let v2 be a minimum degree
vertex of G1; the G1-degree of v2 is clearly ≤ 2 cd (G) (the average degree
of the densest subgraph). By removing v2 from G2 (of course we remove
all edges from v2 in G1) we obtain a new subgraph G2, and so on. At the
end of this process we obtain a permutation v1, v2, v3, . . . , vn of the vertices
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of G such that, with Gi = G \ {v1, . . . , vi}, vi+1 has Gi-degree ≤ 2 cd (G)
(the average degree of the densest subgraph). Now Breaker applies the
following strategy: if Maker just took the edge vivj with 1 ≤ i < j ≤ n,
then Breaker takes an arbitrary unoccupied edge of the type vkvj where
1 ≤ k < j ≤ n (vj is a common vertex!); if there is no such available
edge then Breaker makes an arbitrary move. To show why this strategy
guarantees that Sur (G) ≤ 1 + 2 cd (G), consider an arbitrary vertex vj ;
there are 2 types of edges from vj : (1) vivj-edges with 1 ≤ i < j ≤ n,
and (2) vjvl-edges with 1 ≤ j < l ≤ n. There are at most 2 cd (G) second
type edges, and Breaker has no control over these edges; in the first type
Breaker’s strategy guarantees a perfect balance, or possible a deficit ≤ 1
(due to parity reasons); altogether the surplus is ≤ 1 + 2 cd (G).

What Breaker uses to enforce (1.2) is an Orientation Strategy. Next
I show a nice trick that improves (1.2) by about a factor of two – I learned
this trick from Benjamin Sudakov. The new idea is to combine the Ori-
entation Strategy with the following “Orientation Lemma”. (Is it folklore?
Sudakov doesn’t remember the source of the lemma.)

Proposition 1.3 (Orientation Lemma). Let G be an arbitrary graph; then

there is an orientation of the edges of G such that the in-degree of every

vertex is at most
⌈
cd (G)

⌉
, the upper integral part of the Core-Density.

Proof. We apply Hall’s theorem (“Marriage Lemma”) to a particular bi-
partite graph B that I am going to construct as follows. As usual we call
the two vertex classes “girls” and “boys”. The “girls” are the edges of G;
the “boys” are the vertices of G in several copies: each one in k =

⌈
cd (G)

⌉
copies. A “boy” and a “girl” are joined by an edge in our bipartite graph
B if and only if the vertex, representing the “boy”, is an endpoint of the
edge representing the “girl”. The choice of multiplicity k =

⌈
cd (G)

⌉
guar-

antees that there is no “boy-shortage”: each subset of girls have enough
boys to choose from. Formally: if H ⊆ G is an induced subgraph, the E(H)
edges, representing a subset of girls, altogether have k · V (H) endpoints,
representing k · V (H) boys (to choose from). Since

k =
⌈
cd (G)

⌉
≥ cd (G) = max

H⊆G

E(H)

V (H)
,

the inequality E(H) ≤ k ·V (H) is trivial, that is, there is no “boy-shortage”.
Thus Hall’s theorem applies, and gives a perfect matching in bipartite
graph B. The perfect matching supplies the choice of “heads” in the desired
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orientation of G (each edge of G becomes an “arrow” with a “head” and a
“tail”).

If Breaker uses the orientation in Proposition 1.3, the corresponding
Orientation Strategy yields the following improvement of (1.2):

(1.3) Sur (G) ≤ 1 +
⌈
cd (G)

⌉
.

Indeed, we just repeat the end of the proof of (1.2): by using the Orientation
Strategy Breaker forces a perfect balance in the out-degree of every vertex
– with a possible loss of 1 by parity reason – and has no control over the
in-degree, which is ≤

⌈
cd (G)

⌉
, so altogether the surplus is ≤ 1 +

⌈
cd (G)

⌉
,

proving (1.3).

The first main result about the surplus is

Theorem 1. For every graph G

(1.4) c0

√
cd (G) ≤ Sur (G) ≤ 1 +

⌈
cd (G)

⌉
with some positive absolute constant c0; for example, c0 = 10−3 is a good

choice.

4. Remarks. The upper bound in (1.4) is simply a restating of (1.3).
Theorem 1 states, very roughly speaking, that the Surplus is “around” the
Core-Density. Since the Core-Density is exactly the maximum local density
of a graph, Theorem 1 clarifies the vague statement that “dense graphs have
large surplus”.

It is worth mentioning that the Core-Density (and the Core-Degree) is
almost identical to some other well-known graph-theoretic concepts such as

(1) the Arboricity, and

(2) the Greedy Coloring Number, or Degeneracy.

The Arboricity of graph G (here G can be any multigraph) is the forest-
partition number, that is, the minimum number of forests (set of disjoint
trees) forming a partition of G. The connection between the Surplus and
the Arboricity is clear from the fact that every forest has Surplus ≤ 2 (see
Proposition 1.1(b))

If a multigraph G can be partitioned into k forests then, of course, the
inequality

(1.5)

∣∣
G(U)

∣∣
|U | − 1

≤ k
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holds for every (at least 2-element) subset U of the vertex-set of G; here
G(U) denotes the induced subgraph (the set of edges of G with both end-
points in U). A well-known theorem of Nash-Williams [7] demonstrates
the perfect converse: if inequality (1.5) holds for every (at least 2-element)
vertex-set U , then multigraph G can be partitioned into ≤ k forests. It
follows that

(1.6) Arboricity (G) = max
H⊆G

⌈
E(H)

V (H)− 1

⌉
(upper integral part) where E(H) and V (H) are, respectively, the edge-
number and the vertex-number of the nonempty subgraph H ⊆ G.

The other maximum local density type concept, the Greedy Coloring
Number, comes from the simplest greedy way of finding a proper vertex-
coloring of a graph G. If G is d-regular then the chromatic number of G is
trivially ≤ 1 + d. If G is not regular then we have the analog inequality

(1.7) Chromatic Number (G) ≤ 1 + max
H⊆G

dmin(H),

where dmin(H) denotes the minimum degree of subgraph H. We call
maxH⊆G dmin(H) the Degeneracy of graph G, and the one larger value
1 + maxH⊆G dmin(H) is usually called the Greedy Coloring Number of
graph G. (Note that the left side and the right side in (1.7) can be very far
from each other; for example, if G = Kn,n then the left side is 2 and the
right side is n.)

Trivially maxH⊆G dmin(H) ≤ 2 cd (G) =Core-Degree; on the other hand,
by Proposition 1.2, the minimum degree of a Core CG of G is ≥ cd (G). It
follows that

(1.8) cd (G) ≤ Degeneracy (G) = max
H⊆G

dmin(H) ≤ 2 cd (G).

Another simple inequality comes from (1.6) and the definition of the Core-
Density:

cd (G) =
E(CG)

V (CG)
= max

H⊆G

E(H)

V (H)
<(1.9)

< max
H⊆G

⌈
E(H)

V (H)− 1

⌉
= Arboricity (G) ≤
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≤ max
H⊆G

2E(H)

V (H)
= 2 cd (G).

(The last inequality in (1.9) fails for E = E(H) = 1 and V = V (H) = 3, but
we can clearly assume that H is connected, implying E ≥ V − 1 ≥ 1, and
then the last inequality holds.) Comparing (1.8)–(1.9) we can justly say that
the five concepts: (1) the Arboricity, (2) the Greedy Coloring Number, (3)
the Degeneracy, (4) the Core-Degree, and (5) the Core-Density are basically
the same (differ by a factor ≤ 2). They describe the very same property –
the maximum local density – of a graph in slightly different terms.

It is very interesting to know that the Core-Density also shows up in
the theory of Random Graphs as a critical exponent. Let R(Kn, p) denote
the Random Graph on n vertices with edge-inclusion probability 0 < p < 1.
Note that a Random Graph R(Kn, p) – a random variable really – has
about

(
n
2

)
p edges. Now let G be an arbitrary fixed “goal graph”; we study

the event
{

G ⊂ R(Kn, p)
}

, meaning that “G is a subgraph of the Random
Graph R(Kn, p)”, as n → ∞ and p goes from 0 to 1 (“evolution of the
Random Graph”). A classic theorem of Erdős and Rényi [5] states that the
threshold probability for the event

{
G ⊂ R(Kn, p)

}
is

p ≈ n
−1/ cd (G)

,

as n →∞, explaining the term “critical exponent”.

5. Regular graphs – local randomness. The special case of regular
graphs is particularly interesting for a couple of reasons: (1) for regular
graphs the Core-Degree equals the common degree, and (2) the most in-
teresting and natural special case G = Kd,d – which corresponds to the
Row-Column Game on a square board – is regular.

If G is d-regular then Theorem 1 gives the following lower bound for the
Surplus: Sur (G) ≥ c0

√

d where c0 = 10−3. In the special case of regular
graphs the bad constant factor c0 can be substantially improved. Our second
main result is

Theorem 2. If G is a d-regular graph then we have the lower bound

Sur (G) ≥ 2

15

√

d.

If d ≥ 200 then we have the upper bound

(1.10) Sur (G) ≤ 4
√

d · (log d)2,
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assuming the vertex-number n of G is less than the gigantic upper bound

(1.11) n ≤ 222
·
·
·
2
d

= Giant (d),

where the height of the tower in (1.11) is 1 + log d (natural logarithm): the

tower consists of log d 2s and an extra d on the top.

The main point here is that the lower bound and the upper bound are
both around

√

d, assuming n ≤ Giant (d). This
√

d – a square root law –
suggests “local randomness”; I will return to this vague intuition below.

Notice that the function Giant (d), defined on the right side of (1.11),
deserves to be called gigantic: Giant (d) asymptotically beats

2d and 22d

and 222
d

and 222
2
d

and

all other towers of fixed height as d →∞.

But, whatever gigantic the function Giant (d) is, Theorem 2 still has an
obvious handicap: the upper bound does depend, though extremely weakly,
on the global size (i.e., the vertex-number n). What is the best upper bound
that does not depend on the global size n and depends only on the local
size d (i.e. the degree)? Of course, we have the general upper bound

(1.12) Sur (G) ≤ 1 +
⌈
cd (G)

⌉
= 1 + �d/2�

from (1.3). Note that (1.12) was discovered by Tibor Szabó a few years
ago, in fact in the slightly stronger form Sur (G) ≤ d/2 if d is divisible by 4
(by using the Euler trail argument); he also raised the following question:
Can one improve the upper bound d/2 for large d? Of course d/2 is best
possible for d = 4, but how about large values of d? Unfortunately there is
no progress in this very attractive problem.

Theorem 2 strongly suggests the possibility of a tremendous improve-
ment, at least asymptotically. I conjecture that d/2 can be improved to
something like 10

√

d · log d or 10
√

d · (log d)2. (But I don’t know how to get
rid of the annoying global condition vertex-number ≤ Giant (d) in (1.11).)

6. Can we use the Lovász Local Lemma in games? In view of (1.12)
the best known general upper bound on the Surplus of d-regular graphs is
d/2, and it is based on an Euler trail argument. Breaker’s strategy is to
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always reply in the (say) tail of Maker’s last move (the Euler trail defines an
orientation of the edges, so each edge becomes an “arrow” with a “tail” and
a “head”). Perhaps a random choice between the two endpoints of Maker’s
last move is more efficient than using a fixed Euler trail. This vague idea
motivates the following

Probabilistic Intuition. In each turn Breaker tosses a fair coin, and the
outcome determines the endpoint (of Maker’s last move) where Breaker is
going to respond: Breaker’s next move is to take a new edge from the chosen
endpoint. Let’s pick an arbitrary vertex v in the d-regular graph G. If
Maker owns x edges from v, then by the law of large numbers in probability
theory, roughly half of the time in the x random choices endpoint v should
come up, so Breaker must have at least

(
1− o(1)

)
x/2 edges from v. Since

x +
(
1 − o(1)

)
x/2 ≤ d, we conclude that x ≤

(
1 + o(1)

)
2d/3, that is, the

surplus in v is at most
(
1 + o(1)

)
2d/3 −

(
1 − o(1)

)
d/3 =

(
1 + o(1)

)
d/3.

This vague intuition, due to Tibor Szabó, may suggest the improvement(
1+ o(1)

)
d/3 from d/2. It is a natural idea to try to save this argument by

involving the well-known Lovász Local Lemma (a sophisticated tool of the
Probabilistic Method).

The Lovász Local Lemma (see Erdős–Lovász [4]) is a remarkable prob-
abilistic sieve argument, which is usually applied to prove the existence of
certain very complicated structures that we are unable to construct directly.
To be precise, let E1, E2, . . . , Es denote events in a probability space. In
the applications, the Eis are “bad” events, and we want to avoid all of
them, that is, we wish to show that Prob (∪s

i=1Ei) < 1. A trivial way
to guarantee this is to assume

∑s
i=1

Prob (Ei) < 1. A completely differ-
ent way to guarantee Prob (∪s

i=1Ei) < 1 is to assume that E1, E2, . . . , Es

are mutually independent and all Prob (Ei) < 1. Indeed, we then have
Prob (∪s

i=1Ei) = 1 −
∏s

i=1

(
1 − Prob (Ei)

)
< 1. The Lovász Local Lemma

applies in the very important case when we don’t have mutual independence,
but “independence dominates” in the sense that each event is independent
of all but a small number of other events.

Lovász Local Lemma. Let E1, E2, . . . , Es be events in a probability space.

If Prob (Ei) ≤ p < 1 holds uniformly for all i, and each event is independent
of all but at most 1

4p other events, then Prob (∪s
i=1Ei) < 1.

Every attempt we made along these lines – trying to use the Lovász Local
Lemma in games – failed so far. Can the reader turn the Probabilistic
Intuition into a precise proof? Can the reader involve the Lovász Local
Lemma and improve the upper bound d/2 in (1.12) to something better?
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7. When the Lovász Local Lemma successfully predicts the truth:

examples in Tic-Tac-Toe like games. Perhaps the best example is the
(Kn, Kq) Clique Achievement Game and its Avoidance version, that I often
call the Reverse Game. In both games the players alternately take new
edges of the complete graph Kn; in the Achievement version the players
are called Maker and Breaker, Maker’s goal is to occupy a large clique Kq;
Breaker simply wants to stop Maker (i.e., Breaker does not want to build a
clique of his own). In the reverse game (Avoidance version) the two players
are called Avoider and Forcer, Forcer’s goal is to force the reluctant Avoider
to occupy a Kq and Avoider’s goal is to avoid occupying a Kq (Forcer does
not want to build a clique of his own).

If q = q(n) is “very small” in terms of n, then Maker (or Forcer) can eas-
ily win. On the other hand, if q = q(n) is “not so small” in terms of n, then
Breaker (or Avoider) can easily win. Where is the game-theoretic break-
ing point? We call the breaking point the Clique Achievement (Avoidance)
Number.

For “small” n’s no one knows the answer, but for “large” n’s I know the
exact value of the breaking point! Indeed, assume that n is sufficiently large
like n ≥ 21010

. If one takes the lower integral part

q = �2 log2 n− 2 log2 log2 n + 2log2e− 3�

(log2 is the base 2 logarithm), then Maker (or Forcer) wins. On the other
hand, if one takes the upper integral part

q = �2 log2 n− 2 log2 log2 n + 2log2e− 3�,

then Breaker (or Avoider) wins.

For example, if n = 21010

then

2 log2 n− 2 log2 log2 n + 2log2e− 3 =

= 2 · 1010
− 66.4385 + 2.8854− 3 = 19, 999, 999, 933.446,

and so the largest clique size that Maker can build (Forcer can force Avoider
to build) is 19, 999, 999, 933.

This level of accuracy is particularly striking, because for smaller values
of n I don’t know the Clique Achievement Number. For example, if n = 20
then all that I know is that it can be either 4 or 5 or 6 (which one?); if
n = 100 then it can be either 5 or 6 or 7 or 8 or 9 (which one?); if n = 2100
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then it can be either 99 or 100 or 101 or . . . or 188 (which one?), that
is, there are 90 possible candidates. Even less is known about the small
Avoidance Numbers. I think we will (probably!) never know the exact
values of these game numbers for n = 20, or for n = 100, or for n = 2100,
but we know the exact value for a monster number like n = 21010

. This is
truly surprising! This is the complete opposite of the usual induction way
of discovering patterns from analysing the small cases.

The explanation for this unusual phenomenon comes from my proof
technique, which is a “fake probabilistic method”. Probability theory is
a collections of Laws of Large Numbers. Converting the probabilistic ar-
guments into a (deterministic!) potential strategy leads to certain “error
terms”, and these “error terms” become negligible compared to the “main
term” if the board is large.

It is also very surprising that the Clique Achievement Game and its
reverse have exactly the same breaking point: Clique Achievement Num-
ber=Clique Avoidance Number. I feel this contradicts common sense.
I think one would rather expect that an eager Maker in the “straight”
game has a better chance to build a large clique than a reluctant Avoider in
the Reverse version, but this “natural” expectation turnes out to be wrong.
I cannot give any a priori reason why the two breaking points coincide.
All that I can say is that the highly technical proof of the “straight” case
(around 30 pages long) can be easily adapted (e.g., maximum is replaced
by minimum) to yield the same breaking point for the Reverse game, but
this is hardly the answer that we are looking for.

What is the mysterious expression 2 log2 n − 2 log2 log2 n + 2log2e − 3?
An expert of the theory of Random Graphs immediately recognizes that
2 log2 n− 2 log2 log2 n + 2log2e− 3 is exactly 2 less than the Clique Number
of the symmetric Random Graph R(Kn, 1/2) (1/2 is the edge probability).

A combination of the first and second moment methods (standard Prob-
ability Theory) shows that the clique number ω

(
R(Kn, 1/2)

)
of the Ran-

dom Graph has a very strong concentration. Typically it is concentrated on
a single integer with probability → 1 as n →∞ (and even in the worst case
there are at most two values). Indeed, the expected number of q-cliques in
R(Kn, 1/2) equals

f(q) = fn(q) =

(
n

q

)
2−(q

2
)
.
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The function f(q) drops under 1 around q ≈ 2 log2 n. The real solution of
the equation f(q) = 1 is

(1.13) q = 2 log2 n− 2 log2 log2 n + 2 log2 e− 1 + o(1),

which is exactly 2 more than the game-theoretic breaking point

(1.14) q = 2 log2 n− 2 log2 log2 n + 2 log2 e− 3 + o(1)

mentioned above.

Building a clique Kq of size (1.13) by Maker (or Avoider in the Reverse
game) on the board Kn is that I call the majority outcome. The size of the
majority play outcome differs from the size of the optimal play outcome by
a mere additive constant 2, and this additive constant is motivated by the
Lovász Local Lemma – it is a local versus global phenomenon.

Notice that (1.14) is the real solution of the equation

(1.15)

(
n

q

)
2−(q

2
) = f(q) =

(
n
2

)
2
(
q
2

) .

The intuitive meaning of (1.15) is that the overwhelming majority of the
edges of the random graph are covered by exactly one copy of Kq. In other
words, the random graph may have a large number of copies of Kq, but they
are well-spread (un-crowded), in fact, there is room enough to be typically
pairwise edge-disjoint. This suggests the following intuition. Assume that
we are at a “last stage” of playing a clique game where Maker (playing the
Achievement Game) has a large number of “almost complete” Kq’s: “almost
complete” in the sense that, (a) in each “almost complete” Kq all but two

edges are occupied by Maker, (b) all of these edge-pairs are unoccupied yet,
and (c) these extremely dangerous Kq’s are pairwise edge-disjoint. If (a)–
(b)–(c) hold then Breaker can still escape from losing: he can block these
disjoint unoccupied edge-pairs by a simple Pairing Strategy.

This intuition emphasizes the “local size” over the “global size”, and this
is where the Lovász Local Lemma enters the story. A typical application of
the Lovász Local Lemma goes as follows.

Erdős–Lovász 2-Coloring Theorem (1975). Let F = {A1, A2, A3, . . . }

be an n-uniform hypergraph. Suppose that each Ai intersects at most 2n−3

other Aj ∈ F (“local size”). Then there is a 2-coloring of the “board”

V =
⋃

i Ai such that no Ai ∈ F is monochromatic.
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The conclusion (almost!) means that, by playing generalized Tic-Tac-
Toe (the player who occupies a whole winning set first is the winner) on
the hypergraph, there exists a drawing terminal position. I wrote “almost”,
because I cheated a little bit here: in a drawing terminal position the two
color-classes must have equal size. The very surprising message of the
Erdős–Lovász 2-coloring theorem is that the “global size” of hypergraph
F is irrelevant (it can even be infinite!), only the “local size” matters.

Of course, the existence of a single (or even several) drawing terminal
position does not guarantee at all the existence of a drawing strategy in
the generalized Tic-Tac-Toe game, or a Breaker’s (or Avoider’s) winning
strategy. But perhaps it is true that, under the Erdős–Lovász condition
(or under some similar but slightly weaker local condition), Breaker (or
Avoider) has a winning strategy, i.e. he can block every winning set in the
Achievement (or Avoidance) game on F . I refer to this “blocking strategy”
as a Strong Draw strategy.

This “exponentially bounded local size implies Strong Draw” conjecture
is a wonderful general problem; I call it the Neighborhood Conjecture.
Unfortunately the conjecture is still open in general, in spite of all efforts
trying to prove it during the last 25 years.

We know, however, several partial results, see the vaguely stated Local
Criterion below. A very important special case, when the conjecture is
“nearly proved”, is the class of Almost Disjoint hypergraphs: where any
two hyperedges have at most one common point – this is certainly the case
for geometric lines, the winning sets of the n

d Tic-Tac-Toe.

By the way, what do we know about the multidimensional n
d Tic-Tac-

Toe? We know that it is a draw game even if the dimension d is as large as
d = c1n

2
/ log n, that is, nearly quadratic in terms of (the winning size) n.

What is more, the draw is a Strong Draw: the second player can mark every
winning line (if they play till the whole board is occupied).

Note that this bound is nearly best possible: if d > c2n
2 then the second

player cannot force a Strong Draw (because the first player can occupy a
whole winning line, but not necessarily first – I call it a Weak Win).

How come that for the Clique Game we know the exact value of the
breaking point, but for the multi-dimensional Tic-Tac-Toe we couldn’t even
find the asymptotic truth (due to the extra factor of log n in the denomi-
nator)? The answer is somewhat technical. The winning lines in the multi-
dimensional n

d Tic-Tac-Toe form an extremely irregular hypergraph: the
maximum degree is much larger than the average degree. This is why one
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cannot apply the Blocking Criterions directly to the “nd hypergraph”. First
one has to employ a Truncation Procedure to bring the maximum degree
close to the average degree, and the price that one pays for this degree
reduction is the loss of a factor of log n.

However, if one considers the n
d Torus Tic-Tac-Toe, then the corre-

sponding hypergraph becomes perfectly uniform (since the torus is a group).
For example, every point of the n

d Torus Tic-Tac-Toe has (3d
− 1)/2 win-

ning lines passing through it. This uniformity explains why for the n
d Torus

Tic-Tac-Toe we can prove asymptotically sharp thresholds.

A “winning line” in the n
d Tic-Tac-Toe is a set of n points on a straight

line forming an n-term Arithmetic Progression. This motivates the “Arith-
metic Progression Game”: the board is the interval 1, 2, . . . , N , and the
goal is to build an n-term Arithmetic Progression. The corresponding hy-
pergraph is “nearly regular”; this is why we can prove asymptotically sharp
results.

Let us return to the n
d Torus Tic-Tac-Toe. If “winning line” is replaced

by “winning plane” (or “winning subspace of dimension ≥ 2” in general),
then we can go far beyond “asymptotically sharp”: we can even determine
the exact value of the game-theoretic threshold, just like in the Clique Game.
For example, a “winning plane” is an n × n lattice in the n

d Torus. This
is another rapidly changing 2-dimensional configuration: if n switches to
n+1, then n×n switches to (n+1)× (n+1), which is again a “square-root
size” increase just like in the case of the cliques. This formal similarity to
the Clique Game (both have “2-dimensional goals”) explains why there is
a chance to find the exact value of the game-theoretic breaking point (the
actual proofs are rather different).

It is very difficult to visualize the d-dimensional torus if d is large; here is
an easier version: a game with 2-dimensional goal sets played on the plane.

Two-dimensional Arithmetic Progression Game. A natural way to obtain a
2-dimensional arithmetic progression is to take the Cartesian product. The
Cartesian product of two q-term arithmetic progressions with the same gap
is a q × q Aligned Square Lattice. Let (N ×N, q × q square lattice) denote
the game where the board is the N × N chessboard, and the winning sets
are the q × q Aligned Square Lattices. Again we know the exact value of
the game-theoretic breaking point: if

(1.16) q = �
√

log2 N + o(1)�,
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then Maker can always build a q × q Aligned Square Lattice, and this is
the best that Maker can achieve: Breaker can always prevent Maker from
building a (q + 1) × (q + 1) Aligned Square Lattice. Again the error term
o(1) becomes negligible if N is large. For example, N = 21040+1020

is large
enough, and then

√
log2 N =

√
1040 + 1020 = 1020 +

1

2
+ O(10−20),

so
√

log2 N is not too close to an integer (in fact, it is almost exactly in the
middle), which guarantees that q = 1020 is the largest aligned square lattice
size that Maker can build.

Similarly, q = 1020 is the largest aligned square lattice size that Forcer
can force Avoider to build.

Another way to look at this “local versus global” phenomenon is to
consider it as some kind of “game-theoretic independence”; I can summarize
it in a nutshell as follows. We are studying Tic-Tac-Toe like games for
which the local size is much smaller than the global size. Even if the game
starts out as a coherent entity, either player can force it to develop into
smaller, local size composites. A sort of intuitive explanation behind it is the
Erdős–Lovász 2-coloring theorem, which itself is a sophisticated application
of statistical independence. Our “game-theoretic independence” is about
how to sequentialize statistical independence.

Let’s return to (1.14) and (1.16) one more time. These results describe
the exact values of infinitely many Achievement and Avoidance Numbers,
and they are special cases of the following vaguely stated

Game-theoretic Local Criterion for (at least) two-dimensional

goals. In each one of the “exact solution games” (games with two-
dimensional goals) the “phase transition” from Weak Win (i.e., Maker’
win) to Strong Draw (i.e., Breaker’s win) happens when the winning set
size equals the binary logarithm of the Set/Point ratio of the hypergraph,
formally, log2

(
|F|/|V |

)
.

For example, in the (Kn, Kq) Clique Game the Set/Point ratio is(
n
q

)(
n
2

)−1
, and the equation

(
q

2

)
= log2

((
n

q

)(
n

2

)−1
)
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has the real solution

q = q(n) = 2 log2 n− 2 log2 log2 n + 2log2e− 3 + o(1),

which is exactly (1.14). By contrast I call (1.13) the Majority-Play Number:
it gives the largest clique size in the majority of all possible plays (of course,
most of the plays are dull).

In the Aligned Square Lattice Game on an N × N board the Local
Criterion gives the equation

q
2 = log2

(
N

3

3(q − 1)
·N

−2

)
,

which has the real solution

q = q(N) =
√

log2 N + o(1),

that is, exactly (1.16).

We know that the Clique Achievement Number is 2 less than the
Majority-Play Clique Number – these two thresholds are strikingly close
to each other (see (1.13)–(1.14)). The Aligned Square Lattice Game is very
different: instead of a negligible additive constant, for the lattice game we
have a substantial constant factor larger than 1 Indeed, if the goal is a q× q

aligned square lattice, the Achievement Number is

q1 = q1(N) = �
√

log2 N + o(1)�,

and the corresponding Majority-Play Number is the solution of the equation

N
3

3(q − 1)
= 2q2

in q = q(N), which gives

q = q2 = q2(N) = �
√

3 log2 N + o(1)�.

Notice that they are not that close: the ratio q2/q1 is
√

3 > 1.

In these examples the Achievement Number is always less than the
Majority-Play Number: slightly less in the clique game and substantially
less in the lattice game. This is explained by a very general result, due to
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Erdős and Selfridge [6], which basically says that the Achievement Number
is always less than the Majority-Play Number; it holds for every finite
hypergraph. The Erdős–Selfridge theorem – a global inequality with a
simple proof – hardly ever gives the truth; our Local Criterion, on the
other hand, seems to predict the exact value of the game-theoretic breaking
point for surprisingly large and natural classes of games. Unfortunately,
the Local Criterion (that I didn’t even formulate precisely(!), missing many
technical conditions) has a very difficult proof (motivated by the Lovász
Local Lemma). Nevertheless one cannot overestimate the importance of the
Erdős–Selfridge theorem: it was the pioneering application of the potential
technique, the starting point of a long line of research.

For more about this (including precise statements, detailed proofs and
many more results) I refer the reader to my new book Tic-Tac-Toe Theory.

8. How sharp is Theorem 1? Theorem 2 is (nearly) satisfying in the sense
that for d-regular graphs the surplus is simply around

√

d, unless the global
size is truly gigantic. Theorem 1, on the other hand, has a linear upper
bound and a square-root size lower bound; these bounds are obviously far
from each other. In spite of this weakness, I have to defend Theorem 1: it
is (nearly) sharp for the family of all graphs. I begin with the linear upper
bound: it is sharp for the family of very asymmetric complete bipartite
graphs Kd,n with n > (d + 2)2d−1. Indeed, for such a Kd,n the Core is the
whole graph, so

cd (Kd,n) =
dn

n + d

≈

dn

n

= d;

on the other hand, by Proposition 1.1(d) the surplus Sur (Kd,n) = d. That is,
for the graphs G = Kd,n with n > (d+2)2d−1 the upper bound 1+

⌈
cd (G)

⌉
in Theorem 1 is d+O(1), and the surplus is d – basically best possible result.

Next consider the square-root size lower bound in Theorem 1: it is nearly
best possible for the family of d-regular graphs – see Theorem 2 – assuming
the global size of the graph is not gigantic.

For the most natural graph – the symmetric complete bipartite graph
Kd,d, i.e., the Row-Column Game on a square board – the following is
known.

Proposition 1.4. We have

(1.17)
2

15

√

d ≤ Sur (Kd,d) ≤ 2
√

d log d
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and

(1.18)
2

15

√

d ≤ Sur (Kd) ≤ 2
√

d log d.

We postpone the proof to Section 2.

It is somewhat embarrassing that we cannot determine the surplus for
the complete graphs Kd and Kd,d (which usually represent the “simplest
case”). It seems hard to get rid of the (small) factor

√

log d. My excuse is
that the surplus is not as easy as it looks; in fact, games are surprisingly
difficult!

Here is a simple but important observation that we are constantly using:
the Surplus is essentially monotone. Formally,

(1.19) if H ⊂ G then Sur (H) ≤ Sur (G) + 1.

Indeed, let Str denote Maker’s strategy such that, playing on subgraph H he
can always force a Surplus ≥ Sur (H). Playing on G Maker can use strategy
Str as follows: (1) he starts in H according to Str, (2) whenever Breaker
answers in subgraph H then Maker responds by using Str, (3) if Breaker’s
edge is disjoint from H then Maker responds arbitrarily, (4) if Breaker’s
edge is not in H but has one endpoint in H then Maker takes another edge
from the same endpoint in H, an edge which is not entirely in H (as long
as he can do it; otherwise moves arbitrarily). This way at the end Maker
can force a Surplus ≥ Sur (H)− 1, which is (1.19).

I conclude the section with a few historic notes. As far as I know the
question of determining the value of the surplus for the complete graph goes
back to Erdős; he frequently asked this question in his graph theory lectures
starting from the 1970s. An early publication is Székely [8]; the halving
argument in Proposition 1.1(d) is due to him. Székely also raised three
problems. I solved these problems starting with Beck [2] (where I showed
that Sur (Kn) > c ·

√

n ), and the rest was published in Section 16 of my
book Tic-Tac-Toe Theory. By the way, there is a considerable overlapping
between this paper and my book (especially Sections 16–17). However,
the two main results of this paper – Theorem 1 (the lower bound) and
Theorem 2 (the upper bound) – are new, and are published here for the
first time. The upper bound proof of Theorem 2 is based on a technique
that I originally developed in my book (I call it the “Big-Game&small-game
decomposition”); the new ingredient here is “iteration”. Finally a technical
question to the reader: my proof of Theorem 1 in the general case (see
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Section 3) is much harder than in the special case of regular graphs (see
Section 2). Do I overlook something simple here?

Most of the rest of the paper is devoted to the proofs of Theorems 1–2;
each one is about ten pages long.

2. Potential Technique

1. We use potential functions for proving game-theoretic upper and lower
bounds, see (2.2) and (2.3) below. Unfortunately the upper and lower
bounds do not coincide, not even for the complete graph (but at least then
they are close to each other, differ by a logarithmic factor). I start with the
upper bound; in fact, with a general hypergraph upper bound. The following
result, that I proved in 1981 (see Lemma 3 in Beck [1]), immediately gives
the desired upper bound in Proposition 1.4 (see (1.17)–(1.18)), and also it
will be a key ingredient in the long and complicated proof of the upper
bound in Theorem 2 (see Section 4).

Proposition 2.1. Let F be an arbitrary finite hypergraph, and let ε with

0 < ε ≤ 1 be an arbitrary real number. There are two players, Balancer

and Unbalancer, who play the (1 : 1) game on F : they alternate, and each

player takes one new point per move. Unbalancer’s goal is to achieve an ε-

majority: he wins if he owns ≥ 1+ε
2

part of some A ∈ F ; otherwise Balancer

wins. Here is a Balancer’s win criterion: if

(2.1)
∑
A∈F

(
(1 + ε)1+ε(1− ε)1−ε)−|A|/2

< 1,

then Balancer, as the first player, has a winning strategy.

If the upper bound 1 in (2.1) is replaced by 1

1+ε then Balancer can be

the second player, and still has a winning strategy.

I challenge the reader to show that the base (1 + ε)1+ε(1− ε)1−ε is
greater than 1 for every 0 < ε ≤ 1 – this fact is critical in the applications.

Notice that in the special case ε = 1, where Unbalancer’s goal is to
occupy a whole set A ∈ F , Proposition 2.1 gives back the well-known Erdős–
Selfridge theorem [6].

Not surprisingly, the proof of Proposition 2.1 is very similar to that of
the Erdős–Selfridge theorem. Assume that we are in the middle of a play:



Surplus of Graphs and the Lovász Local Lemma 71

Balancer occupied b1, b2, . . . , bt, and Unbalancer occupied u1, u2, . . . , ut; t is
the time parameter. Write B(t) = {b1, b2, . . . , bt}, U(t) = {u1, u2, . . . , ut},
and consider the function

(2.2) Pt =
∑
A∈F

(1 + ε)|A∩U(t)|− 1+ε
2
|A|(1− ε)|A∩B(t)|− 1−ε

2
|A|

,

which is very sensitive (in fact “exponentially sensitive”) to Unbalancer’s
lead. The core idea, taken from the Erdős–Selfridge proof, is that Balancer
can force the monotone decreasing property

(2.3) P0 ≥ P1 ≥ P2 ≥ · · · ≥ Pend,

so Pstart = P0 ≥ Pend. Indeed, Balancer’s next move bt+1 decreases sum
(2.2) and Unbalancer’s next move ut+1 increases sum (2.2), where the “de-
crease sum” is the same kind of term as the “increase sum” with the natural
distinction that the “decrease sum” depends on bt+1 and the “increase sum”
depends on ut+1. However, since Balancer comes first, he can choose the
“best” option, and so the damage caused by his move bt+1 is larger than
the gain caused by the opponent’s move ut+1 (also note that if a hyperedge
contains both bt+1 and ut+1, then the common effect (1 − ε)(1 + ε) < 1 is
again a decrease).

Here come the details. The effect of the (t+1)st moves bt+1 (by Balancer)
and ut+1 (by Unbalancer) is the following:

Pt+1 = Pt − ε

∑
A∈F : bt+1∈A

(1− ε)|A∩B(t)|− 1−ε
2
|A|(1 + ε)|A∩U(t)|− 1+ε

2
|A|

+ ε

∑
A∈F : ut+1∈A

(1− ε)|A∩B(t)|− 1−ε
2
|A|(1 + ε)|A∩U(t)|− 1+ε

2
|A|

− ε
2

∑
A0∈A0

(1− ε)|A0∩B(t)|− 1−ε
2
|A0|(1 + ε)|A0∩U(t)|− 1+ε

2
|A0|

,

where A0 ∈ F0 denotes the hyperedges containing both bt+1 and ut+1.

Since Balancer’s bt+1 is selected before Unbalancer’s ut+1, Balancer can
select the “best” point in the following sense: Unbalancer chooses that
bt+1 = z for which the sum∑

A∈F : z∈A

(1− ε)|A∩B(t)|− 1−ε
2
|A|(1 + ε)|A∩U(t)|− 1+ε

2
|A|
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attains its maximum. Then

Pt+1 ≤ Pt − ε
2

∑
A0∈A0

(1− ε)|A0∩B(t)|− 1−ε
2
|A0|(1 + ε)|A0∩U(t)|− 1+ε

2
|A0|

≤ Pt,

proving (2.3).

Notice that (2.3) easily completes the proof. Assume that Unbalancer
wins, then by (2.2) we have Pend ≥ 1, but this is impossible, since (2.1) and
(2.3) give Pend ≤ Pstart = P0 < 1. This is how (2.3) forces Balancer’s win.

Let us apply Proposition 2.1 to the star hypergraph of Kn: the hyper-
edges are the n stars (each star has n− 1 edges), so F is an (n− 1)-uniform
hypergraph with |F| = n. By choosing

ε =

√
c log n

n

with some unspecified (yet) constant c > 0, criterion (2.1), applied to the
star hypergraph of Kn, gives

∑
A∈F

(
(1 + ε)1+ε(1− ε)1−ε)−|A|/2

= ne
−((1+ε) log(1+ε)+(1−ε) log(1−ε))n−1

2 =

= ne

−
�
(1+ε)

�
ε− ε2

2
±···

�
+(1−ε)

�
−ε− ε2

2
−···

��
n−1

2 =

= ne
−(ε2+O(ε3))n−1

2 = ne
− c log n

2
(1+O(ε)) = n

1− c
2
(1+O(ε))

,

which is less than 1 if c > 2 and n is sufficiently large. So Proposition 2.1
applies with

ε =

√(
2 + o(1)

)
log n

n

,

and yields the upper bound in (1.18) for Kn.

The same calculation applies for Kn,n, and yields the upper bound in
(1.17).

In general we have the following corollary of Proposition 2.1.
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Proposition 2.2. Let F be an n-uniform hypergraph, and consider the

Balancer-Unbalancer game played on hypergraph F where Unbalancer’s

goal is to own at least n+Δ

2
points from some A ∈ F . If

Δ =

(
1 + O

(√
log |F|

n

))√
2n log |F|,

then Balancer has a winning strategy.

Proof. Let ε = Δ/n; in view of Proposition 2.1 we have to check the
inequality

(1 + ε)(n+Δ)/2
· (1− ε)(n−Δ)/2

≥ |F|.

Note that

(1 + ε)(n+Δ)/2
· (1− ε)(n−Δ)/2 = (1− ε

2)
n/2
·

(
1 + ε

1− ε

)Δ/2

≈

≈ e
−ε2n/2+εΔ = e

Δ2/2n
.

More precisely, we have

e
(1+O(Δ/n))Δ

2

2n = (1 + ε)(n+Δ)/2
· (1− ε)(n−Δ)/2

≥ |F| = e
log |F|

,

which implies (
1 + O(Δ/n)

) Δ2

2n

≥ log |F|,

or equivalently,

Δ ≥

(
1 + O

(√
log |F|

n

))√
2n log |F|,

which proves Proposition 2.2.

2. Next I switch to the lower bound in Theorem 2. Working with the
star hypergraph of a graph, the lower bound problem is equivalent to the
following.
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Proposition 2.3. Let F be a hypergraph which is (1) n-uniform, (2) Almost

Disjoint: |A1∩A2| ≤ 1 for any two different elements of hypergraph F , and

(3) the common height of F is 2: every point of the hypergraph is contained

in exactly two hyperedges. Maker and Breaker play the usual (1 : 1) game

on F . Then, at the end of the play, Maker can occupy at least n
2

+ c

√

n

points from some A ∈ F , where c = 1/15.

Remark. Proposition 2.3 is “Theorem 16.2” in my book Tic-Tac-Toe The-

ory. The proof below is my “second proof” there. The “first proof” there
is the motivation for the more complicated argument in the next section
to prove the general case of Theorem 1. The lower bound in Theorem 2 is
“Theorem 16.3” in my book.

Proof. Assume we are in the middle of a play, Maker already occupied
x1, x2, . . . , xt (t is the time) and Breaker occupied y1, y2, . . . , yt. Let X(t) =
{x1, x2, . . . , xt} and Y (t) = {y1, y2, . . . , yt}. We work with the exponential
expression

(2.4) Pt =
∑
A∈F

(1 + ε)|A∩X(t)|(1− ε)|A∩Y (t)|
,

which is the perfect analog of (2.2) for uniform hypergraphs. What is the
effect of the (t + 1)st moves xt+1 (by Maker) and yt+1 (by Breaker)? Well,
the answer is easy:

Pt+1 = Pt + ε

∑
A∈F : xt+1∈A

(1 + ε)|A∩X(t)|(1− ε)|A∩Y (t)|(2.5)

− ε

∑
A∈F : yt+1∈A

(1 + ε)|A∩X(t)|(1− ε)|A∩Y (t)|

− ε
2
· δ(xt+1, yt+1) · (1 + ε)|A0∩X(t)|(1− ε)|A0∩Y (t)|

,

where δ(xt+1, yt+1) = 1 if there is an A ∈ F containing both xt+1 and yt+1;
Almost Disjointness yields that, if there is one, then there is exactly one:
let A0 be this uniquely determined A ∈ F ; finally let δ(xt+1, yt+1) = 0 if
there is no A ∈ F containing both xt+1 and yt+1.

Since Maker’s xt+1 is selected before Breaker’s yt+1, Maker can select
the “best” point: Maker chooses that xt+1 = z for which the sum∑

A∈F : z∈A

(1 + ε)|A∩X(t)|(1− ε)|A∩Y (t)|
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attains its maximum. Then by (2.5)

(2.6) Pt+1 ≥ Pt − ε
2
· δ(xt+1, yt+1) · (1 + ε)|A0∩X(t)|(1− ε)|A0∩Y (t)|

.

Let Δ = Δ(n) denote the largest positive discrepancy that Maker can
achieve; it means n

2
+ Δ points from some A ∈ F . If Δ is the maximum

discrepancy then the inequality
∣∣
A ∩ X(t)

∣∣
−

∣∣
A ∩ Y (t)

∣∣
≤ 2Δ must hold

during the whole play (meaning every t) and for every A ∈ F . Indeed, if∣∣
A∩X(t)

∣∣
−

∣∣
A∩ Y (t)

∣∣
> 2Δ then Maker can keep this lead for the rest of

the play till the end, contradicting the maximum property of Δ. Combining
this observation with (2.6) we have

(2.7) Pt+1 ≥ Pt − ε
2
· δ(xt+1, yt+1) · (1 + ε)zt+Δ(1− ε)zt−Δ

,

where

zt =

∣∣
A0 ∩X(t)

∣∣ +
∣∣
A0 ∩ Y (t)

∣∣
2

.

Since P0 = Pstart = |F| = N and “total time”= T = nN/4, from (2.7) we
obtain

Pend = PT ≥ P0 − ε
2

nN/4∑
t=1

(1 + ε)zt+Δ(1− ε)zt−Δ =(2.8)

= N − ε
2

(
1 + ε

1− ε

)Δ ( nN/4∑
t=1

(1− ε
2)

zt

)
≥

≥ N − ε
2

(
1 + ε

1− ε

)Δ
nN

4
.

On the other hand, by definition

Pend = PT ≤ N(1 + ε)n/2+Δ(1− ε)n/2−Δ =(2.9)

= N

(
1 + ε

1− ε

)Δ

(1− ε
2)

n/2
.

Combining (2.8) and (2.9)

N − ε
2

(
1 + ε

1− ε

)Δ
nN

4
≤ N

(
1 + ε

1− ε

)Δ

(1− ε
2)

n/2
,
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or equivalently,

(2.10)

(
1 + ε

1− ε

)Δ

≥

1
ε2n
4

+ (1− ε
2)n/2

.

We want to minimize the denominator in the right-hand side of (2.10): we
are looking for an optimal ε in the form ε =

√
2β/n where β is an unspecified

constant (yet); then

ε
2
n

4
+ (1− ε

2)
n/2

≈

β

2
+ e

−β =
1 + log 2

2

if β = log 2. With this choice of β (2.10) becomes

e
2εΔ

≈

(
1 + ε

1− ε

)Δ

≥

1
β2n
4

+ (1− β
2)n/2

≥

1
1+log 2

2

,

implying

2
√

2 log 2 ·
Δ
√

n

≥ log

(
2

1 + log 2

)
,

that is,

Δ ≥

log
(

2

1+log 2

)
2
√

2 log 2

√

n ≥

√

n

15
.

This proves Proposition 2.3 with c = 1/15.

Proposition 2.3 implies the lower bound in Theorem 2, and also the lower
bound in (1.17)–(1.18) (as a special case). Since Proposition 2.2 implies the
upper bound in (1.17)–(1.18), the proof of Proposition 1.4 is complete.

The missing upper bound in Theorem 2 will be proved in Section 4.

I conclude this section with two remarks: (1) “socialism works perfectly
on graphs”, and (2) “the discrepancy is much easier than the surplus”;
I explain these vague statements as follows.

3. Inevitable surplus is trivial. Perhaps the reader is wondering: Is
Surplus the right concept to study? Well, here is an alternative concept that
the reader may find equally natural and interesting; I call it the “inevitable
surplus”. Assume that each one of the two players (Maker and Breaker) is an
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idealist (or socialist) who strongly believes in Equality and Fairness. They
are willing to cooperate to avoid large Surplus (that they consider unfair).
Two such idealist players, playing the Row-Column Game on an n×n board
with even n, can easily achieve perfect equality as follows. They cooperate:
Maker takes only the white cells and Breaker takes only the black cells in the
usual chessboard 2-coloring. This settles the special case Kn,n. The result
can be easily generalized to large classes of graphs. For example, let G be
an arbitrary d-regular bipartite graph with d even. Repeated application
of Hall’s theorem gives that G falls apart into d perfect matchings. If the
players cooperate, and each player takes d/2 perfect matchings, the Surplus
is zero.

If G is an odd cycle, then Maker (the first player) must have Surplus 2
even if the two players are willing to cooperate to avoid it. This moti-
vates the concept of Inevitable Surplus; every odd cycle has Inevitable
Surplus 2. What is the largest possible Inevitable Surplus? Well, I have
noticed that the Inevitable Surplus is a dull/bounded concept, and my
proof was based on a very general hypergraph theorem that we proved with
T. Fiala a long time ago (see Beck–Fiala [1]).

Hypergraph Balancing Theorem. Let H be an arbitrary finite hyper-

graph with Height ≤ h (i.e., every point is contained in at most h hyper-

edges). Then there is a 2-coloring of the points of H red and blue such

that ∣∣Red (A)− Blue (A)
∣∣

< 2h

holds for every A ∈ H.

A simple application of this general theorem gives that every finite graph
G has Inevitable Surplus ≤ 9. Indeed, let {1, 2, 3, . . . , n} denote the vertex
set of G, and let S1, S2, S3, . . . , Sn be the stars of G. I define a hypergraph
H as follows: the “points” of H are the edges of G, and the hyperedges are
the stars S1, S2, S3, . . . , Sn plus the whole graph G itself. H has Height 3,
so by the Balancing Theorem above, we can decompose G into two parts
G1 and G2 such that∣∣

|G1| − |G2|

∣∣
≤ 5 and

∣∣
|G1 ∩ Si| − |G2 ∩ Si|

∣∣
≤ 5 for all 1 ≤ i ≤ n.

We modify G1 and G2 by relocating at most two edges from the larger one
to the smaller one; thus we obtain a slightly modified new decomposition
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G
′
1 and G

′
2 of G such that∣∣

|G
′
1| − |G

′
2|

∣∣
≤ 5− 2− 2 = 1 and∣∣

|G1 ∩ Si| − |G2 ∩ Si|
∣∣
≤ 5 + 2 + 2 = 9 for all 1 ≤ i ≤ n.

Later Paul Seymour pointed out to me that my (clumsy) upper bound
≤ 9 can be pushed down to the best possible

(2.11) Inevitable Surplus ≤ 2

by using a surprisingly simple graph-specific argument (instead of the very
general hypergraph balancing theorem above).

The proof of (2.11) is an Euler trail argument with an extra technical
trick. The following edge-two-coloring result, which is clearly equivalent to
(2.11), was proved by Seymour in the 1970s (Seymour remarks that the
result might have been done earlier by others).

Proposition 2.4. Let G be a connected graph, and let u be any vertex

of G. There is a partition (A, B) of the edge set E(G) such that

(1) for every vertex v different from u, the number of A-edges at v differs

by at most one from the number of B-edges at v;

(2) the number of A-edges at u differs by at most two from the number

of B-edges at vertex u;

(3) |A| and |B| differ by at most one.

Remark. If the two players, playing on G, cooperate: one takes A and the
other one takes B, the Inevitable Surplus is ≤ 2. Socialism does work on
graphs! The worst case scenario is when G is an odd cycle.

Proof. If G has a closed Euler trail, i.e., every degree is even, let G = H.
If G has odd degrees (always an even number) then we apply the following
trick: let H be an extension of G by adding a new vertex x to G, x is adjacent
to every vertex of G with odd degree. Thus in either case H contains a
closed Euler trail. Take an Euler trail starting and ending at u, and color
its edges alternately C and D. (Thus the first and last edges of the trail
have the same/different color if

∣∣
E(H)

∣∣ is odd/even.) Let A = C ∩ E(G)
and B = D ∩ E(G), i.e., we throw away the edges from the extra vertex x.
We claim (A, B) satisfies requirements (1)–(2)–(3).
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Certainly
∣∣
|C| − |D|

∣∣
≤ 1, and |C| = |D| if

∣∣
E(H)

∣∣ is even. At the
extra vertex x (if it exists) the number of Cs and Ds are the same, and so∣∣
|A| − |B|

∣∣
≤ 1, proving (3).

Moreover, at every vertex v of H different from u the number of Cs and
Ds are the same, and so the number of As and Bs incident with v in G

differ by at most one, proving (1).

Finally, at u, the number of Cs and Ds in H differ by at most two, and
by two only if u has even degree in H. So in G the number of As and Bs
incident with u differ by at most two, proving (2).

What makes the concept of Surplus particularly interesting is that large
Surplus is not inevitable, it is not automatic. Proposition 2.4 tells us that,
if both players want to avoid surplus, then, by cooperation, they can always
achieve the inequality Surplus ≤ 2. Large surplus does not come for free:
one has to make a serious effort to achieve it!

4. Discrepancy and variance. The concept of Discrepancy means either
Surplus or Deficit, that is, Discrepancy is simply a deviation from the
expected value, but it does not distinguish between positive and negative.

Another way to put it is that Surplus is the one-sided version of Dis-
crepancy where Maker has the majority.

The following result demonstrates that Maker can rather easily force a
large Discrepancy, i.e., large Surplus or large Deficit. What is surprisingly
hard is how to force a large Surplus, i.e., large one-sided discrepancy (of
course we always assume that the underlying graph is dense enough).

Proposition 2.5. Let G be an arbitrary graph. Playing the Maker-Breaker

game on G, Maker can always achieve a Discrepancy ≥
√

E/V , where E/V

is the Density, that is, the Edge/Vertex ratio in graph G.

Remark. If Maker restricts the play to a Core of graph G, the Density
becomes the Maximum Local Density, that is, the Core-Density cd (G) of G.

Proof. Let 1, 2, 3, . . . , n denote the vertices of G. Assume that we are in
the middle of a play: each player owns (say) r edges from G; mi = mi(r)
and bi = bi(r) denote, respectively, Maker’s degree and Breaker’s degree in
vertex i at this stage of the play – I call it stage r. Of course

n∑
i=1

mi =
n∑

i=1

bi = 2r.
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Maker (the first player) simply wants to maximize the Discrepancy
maxi |mi − bi|, he does not care that it is a large Surplus or a large Deficit.
It is natural, therefore, to introduce the quadratic sum

(2.12) Q(r) =
n∑

i=1

(mi − bi)
2
,

which is a game-theoretic analog of the Variance in probability theory. What
happens to this quadratic sum after each player makes his (r + 1)st move?
Let e and f be the (r + 1)st move of Maker and Breaker, respectively; let
j, k be the endpoints of Maker’s edge e and let p, q be the endpoints of
Breaker’s edge f .

Case 1: Assume that j, k, p, q are four different vertices.

Then we have

Q(r + 1) = Q(r) +
(
(mj + 1− bj)

2
− (mj − bj)

2
)

+(2.13)

+
(
(mk + 1− bk)

2
− (mk − bk)

2
)

+

+
(
(mp − bp − 1)2 − (mp − bp)

2
)

+
(
(mq − bq − 1)2 − (mq − bq)

2
)

=

= Q(r) + 4 + 2(mj + mk − bj − bk)− 2(mp + mq − bp − bq).

Here the sum (mj +mk− bj − bk) is the “total signed lead of Maker” at the
two endpoints of his edge e, and the other sum (mp + mq − bp − bq) is the
“total signed lead of Maker” at the two endpoints of the opponent’s edge f

– both at stage r. Equality (2.13) suggests Maker’s strategy: since he comes
first, in his (r + 1)st move he can choose the best unoccupied edge. Here
best means the untaken edge with maximum “total signed lead”. Then

best = mj + mk − bj − bk ≥ mp + mq − bp − bq,

and so by (2.13),

(2.14) Q(r + 1) ≥ Q(r) + 4.

Next comes

Case 2: The four endpoints j, k, p, q represent only three different vertices.
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Then, by repeating the argument of Case 1, Maker can enforce (at least)
the following weaker version of (2.14):

(2.15) Q(r + 1) ≥ Q(r) + 2.

Let |G| denote the number of edges of graph G; then each player has |G|/2
turns, and by repeated application of (2.14)–(2.15) we obtain

Q(end) = Q

(
|G|/2

)
≥ Q(start) + 2 ·

|G|

2
= |G|,

or equivalently, the inequality below

(2.16) Q(end) =
n∑

i=1

(mi − bi)
2
≥ |G|

holds at the end of the play. By (2.16)

max
i

(mi − bi)
2
≥

|G|

n

= Density,

completing the proof.

Unfortunately, the squaring in the quadratic sum (2.16) kills the sign.
The argument above doesn’t give any information whether the large Dis-
crepancy comes from a large Surplus or from a large Deficit. Comparing
Theorem 1 with Proposition 2.5, we can roughly say that “the large dis-
crepancy can be converted into a large one-sided discrepancy (i.e., surplus)
by a mere constant factor loss”.

Note that there are many examples where the proof of a large one-sided
discrepancy (i.e., surplus) is much harder than the proof of a large discrep-
ancy. For example, Szemerédi’s famous density theorem can be interpreted
as a one-sided version of van der Waerden’s theorem on arithmetic pro-
gressions. There is a general agreement that Szemerédi’s theorem is much
deeper than van der Waerden’s theorem. For example, van der Waerden’s
theorem can be proved on 2 pages; on the other hand, Szemerédi’s theorem
has several proofs, but each one is at least 20 pages long.
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A second example is a famous old problem in classical Fourier Analysis:
estimating cosine sums. Let 1 ≤ k1 < k2 < · · · < kn be an arbitrary set of
n integers, and consider the cosine series

f(x) =
n∑

j=1

cos (2πkjx).

By Parseval’s formula ∫
1

0

f
2(x) dx =

n

2
,

implying

max
x

∣∣
f(x)

∣∣
≥

√
n/2.

What happens if we drop the absolute value? What can we say about the
minimum? Is it true that the inequality

(2.17)
∣∣min

x
f(x)

∣∣
≥ c ·

√

n

holds with some (small) positive absolute constant factor c? Perhaps (2.17)
is too much to expect; how about the much weaker lower bound

(2.18)
∣∣min

x
f(x)

∣∣
≥ n

c

with some (small) positive absolute constant power 0 < c < 1/2? Unfortu-
nately both (2.17) and (2.18) remain unsolved. The best known result has
the following sub-polynomial order of magnitude

(2.19)
∣∣min

x
f(x)

∣∣
≥ e

(log n)
c

,

It was Bourgain who first proved (2.19); he had a small constant c > 0
(very hard proof!). The current record is due to I. Ruzsa who proved
it with c = 1/2. It is shocking to see that for cosine sums a one-sided
problem, namely estimating the minimum, is so much more difficult than
the discrepancy problem.

There are many more examples of this strange phenomenon. The basic
challenge is that there is no general recipe to convert large discrepancy to
large one-sided discrepancy. In each particular case one has to invent a new
technique.
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3. Proof of Theorem 1

1. What is the difficulty in general? Unfortunately the proof technique
of Proposition 2.3 heavily relies on uniformity, and it is not clear how to
adapt it for non-uniform hypergraphs (which corresponds to non-regular
graphs, i.e., the general case in Theorem 1).

Indeed, assume that G is an arbitrary (not necessarily regular) finite
simple graph, and repeat the proof of Proposition 2.3 to the star-hypergraph
F = F(G) of G. Then we obtain the following perfect analog of (2.8):

(3.1) Pend ≥ N − ε
2

(
1 + ε

1− ε

)Δ
dN

4
,

where N = |F| is the vertex-number of graph G, d = (d1 + · · ·+ dN )/N is
the average degree of G, and dN/4 is the total length of the play.

On the other hand, if Δ denotes the largest positive discrepancy that
Maker can achieve at the end of the play (it means di

2
+ Δ edges from some

star of degree di), then we obtain the following version of (2.9):

Pend ≤

N∑
j=1

(1 + ε)dj/2+Δ
· (1− ε)dj/2−Δ =

(
1 + ε

1− ε

)Δ

·

( N∑
j=1

(1− ε
2)

dj/2

)
,

(3.2)

where dj , j = 1, 2, . . . , N are the degrees of graph G. Combining (3.1) and
(3.2)

(3.3) N − ε
2

(
1 + ε

1− ε

)Δ
dN

4
≤

(
1 + ε

1− ε

)Δ

·

( N∑
j=1

(1− ε
2)

dj/2

)
.

Simplifying (3.3) by N , and using the approximation 1±δ ≈ e
±δ, we obtain

(3.4) e
2εΔ

≥

1
ε2·d
4

+ 1

N

∑N
j=1

e
−ε2dj/2

.

Now we are ready to understand the technical difficulty in the general (non-
regular) case. If the overwhelming majority of degrees dj are very close to
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d/2, i.e., half of the average degree, then the right hand side of (3.4) is
close to

(3.5)
1

ε2·d
4

+ 1

N

∑N
j=1

e
−ε2(d/2)/2

=
1

y + e
−y

with y =
ε
2
d

4
.

Unfortunately the function f(y) = y + e
−y is monotone increasing for y ≥ 0

(since the derivative f
′(y) = 1− e

−y
≥ 0 for y ≥ 0), implying f(y) ≥ 1 for

all y ≥ 0, which means that inequality (3.5) is useless. Whatever way we
choose ε, we just cannot derive from (3.5) a nontrivial lower bound for Δ.

Note that there exist graphs for which the overwhelming majority of
degrees dj come very close to d/2, i.e., to the half of the average degree.
Consider, for example, the very asymmetric complete bipartite graph Km,r

where m is much larger than r. Then the average degree is 2mr/(m + r) ≈
2r, and the overwhelming majority of the degrees are r, coming very close
to the half of the average degree.

2. An alternative approach. To find a way around the technical difficulty
outlined above, we are going to define a complicated potential function,
which combines the variance with an exponential sum. The purpose of the
extra exponential sum (see (3.8) below) is to compensate for the bad effect
of squaring (which cannot distinguish “deficit” from “surplus”). Let G be
an arbitrary simple finite graph, and let H = CG be a core of G. Let d

denote the average degree of H, and let N denote the vertex-number of
graph H. By Proposition 1.2 the minimum degree of H is ≥ d/2. This fact
will be used in the definition (3.6) below.

We work with the star-hypergraph H = H(H) of graph H. Notice that
|H| = N . First we divide the hyperedges of H into classes according to their
sizes. We have a power-of-two classification: let

(3.6) Hj =
{

A ∈ H : d · 2j−1
≤ |A| < d · 2j

}
where j = 0, 1, 2, . . . , r.

Since every hyperedge A ∈ H represents a star, and has the size of the
degree, so trivially |A| < |H| = N (where N is the vertex-number); it
follows that parameter r in (3.6) satisfies the inequality r ≤ log2(N/d)
(base 2 logarithm).

Let

Vj =
⋃

A∈Hj

A
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denote the union set of Hj , and let Wj denote the set of those elements in
Vj which are contained by two sets A ∈ Hj (the height of H is two, so two
is the maximum here). Thus we have the multi-set equality

(3.7)
∗⋃

A∈Hj

A = Vj ∪
∗
Wj ,

where the mark * indicates that the elements of Vj are counted with multi-
plicity (i.e., with 1 or 2).

Assume we are in the middle of a play, Maker already occupied x1, x2,

. . . , xt and Breaker occupied y1, y2, . . . , yt; I refer to the elements as “points”
and call t the time. Let X(t) = {x1, x2, . . . , xt} and Y (t) = {y1, y2, . . . , yt}.

We define a modification of (2.12): the new potential function is

P (t) =
∑

Ai∈H

(
(
∣∣
Ai ∩X(t)

∣∣
−

∣∣
Ai ∩ Y (t)

∣∣)2
−(3.8)

− α · |Ai| · (1− λi)
|Ai∩X(t)|(1 + λi)

|Ai∩Y (t)|
)
−

−

r∑
j=0

α · |Vj | · (1− μj)
|Vj∩X(t)|(1 + μj)

|Vj∩Y (t)|

−

r∑
j=0

α · |Wj | · (1− ωj)
|Wj∩X(t)|(1 + ωj)

|Wj∩Y (t)|
,

where 0 < α < 1, 0 < λi < 1 for 1 ≤ i ≤ N = |H|, 0 < μj < 1 and
0 < ωj < 1 hold for 0 ≤ j ≤ r (note that r ≤ log2(N/d)); these parameters
will be specified later.

The basic idea, which will become very clear later, is that exponential

beats quadratic, and this way we will be able to turn a large deficit into
our benefit. Maker is going to force a global balance in every large set Vj

and Wj , and this way a large amount of deficit automatically implies large
surplus. We refer to this idea as Global Balancing.

By using potential function (3.9) we prove

Lemma 1. Maker can always achieve that at the end of the play

P (end) ≥ Nd

(
1

2
− 2α

)
,
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where N = |H| and d is the average size of the hyperedges of H.

Proof. We study the effect of the (t + 1)st moves xt+1 (by Maker) and
yt+1 (by Breaker) in potential (3.8). Since (3.8) is very complicated, for
simplicity, first consider only the quadratic part in (3.8):

(3.9) Q(t) =
∑
A∈H

(
∣∣
A ∩X(t)

∣∣
−

∣∣
A ∩ Y (t)

∣∣)2
,

and study the effect of the (t + 1)st moves xt+1 (by Maker) and yt+1 (by
Breaker) in (3.9). By using the trivial fact (m± 1)2 = m

2
± 2m + 1, we

have

(3.10)

Q(t + 1) = Q(t) +
∑

A∈H : xt+1∈A�	yt+1

(
2(

∣∣
A ∩X(t)

∣∣
−

∣∣
A ∩ Y (t)

∣∣) + 1
)

+

+
∑

A∈H : yt+1∈A�	xt+1

(
− 2(

∣∣
A ∩X(t)

∣∣
−

∣∣
A ∩ Y (t)

∣∣) + 1
)

=

= Q(t) + 2

( ∑
A∈H : xt+1∈A

(
∣∣
A ∩X(t)

∣∣
−

∣∣
A ∩ Y (t)

∣∣)−
−

∑
A∈H : yt+1∈A

(
∣∣
A ∩X(t)

∣∣
−

∣∣
A ∩ Y (t)

∣∣)) +

+
∑

A∈H : xt+1∈A�	yt+1

1 +
∑

A∈H : yt+1∈A�	xt+1

1.

Since the height of hypergraphH is uniformly two, there are two hyperedges
A ∈ H with xt+1 ∈ A, and by the almost disjointness of H at least one of
them does not contain yt+1. So we have

(3.11)
∑

A∈H : xt+1∈A�	yt+1

1 ≥ 1,

and similarly,

(3.12)
∑

A∈H : yt+1∈A�	xt+1

1 ≥ 1.
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Now we are ready to handle the long potential (3.8). We have the long
equality (a variant of (3.10)):

P (t + 1) = P (t) +(3.13)

+ 2

( ∑
Ai∈H : xt+1∈Ai

(
∣∣
Ai ∩X(t)

∣∣
−

∣∣
Ai ∩ Y (t)

∣∣)−
−

∑
Ai∈H : yt+1∈Ai

(
∣∣
Ai ∩X(t)

∣∣
−

∣∣
Ai ∩ Y (t)

∣∣)) +

+
∑

Ai∈H : xt+1∈Ai �	yt+1

1 +
∑

Ai∈H : yt+1∈Ai �	xt+1

1 +

+ α

∑
Ai∈H : xt+1∈Ai

|Ai| · λi · (1− λi)
|Ai∩X(t)|(1 + λi)

|Ai∩Y (t)|
−

− α

∑
Ai∈H : yt+1∈Ai

|Ai| · λi · (1− λi)
|Ai∩X(t)|(1 + λi)

|Ai∩Y (t)| +

+ α

∑
j : xt+1∈Vj

|Vj | · μj · (1− μj)
|Vj∩X(t)|(1 + μj)

|Vj∩Y (t)|
−

− α

∑
j : yt+1∈Vj

|Vj | · μj · (1− μj)
|Vj∩X(t)|(1 + μj)

|Vj∩Y (t)| +

+ α

∑
j : xt+1∈Wj

|Wj | · ωj · (1− ωj)
|Wj∩X(t)|(1 + ωj)

|Wj∩Y (t)|
−

− α

∑
j : yt+1∈Wj

|Wj | · ωj · (1− ωj)
|Wj∩X(t)|(1 + ωj)

|Wj∩Y (t)| +

+ some positive terms.

Here the “some positive terms” comes from the fact that 1−(1−λ)(1+λ) =
λ

2
≥ 0. Ignoring the “some positive terms”, we can rewrite the long equality

(3.13) in the form of a much shorter inequality:

P (t + 1) ≥ P (t) +
∑

Ai∈H : xt+1∈Ai �	yt+1

1 +
∑

Ai∈H : yt+1∈Ai �	xt+1

1 +(3.14)

+ Ft(xt+1)− Ft(yt+1),
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where Ft(z) is some positive function defined for all unoccupied points
z /∈ X(t) ∪ Y (t) before the (t + 1)st turn.

Since Maker’s xt+1 is selected before Breaker’s yt+1, Maker can select
the “best” point: Maker chooses that xt+1 = z /∈ X(t) ∪ Y (t) for which
the function Ft(z) attains its maximum. Then Ft(xt+1) ≥ Ft(yt+1), and by
(3.14),

P (t + 1) ≥ P (t) +
∑

Ai∈H : xt+1∈Ai �	yt+1

1 +
∑

Ai∈H : yt+1∈Ai �	xt+1

1 ≥(3.15)

≥ P (t) + 2.

In the last step we used (3.11)–(3.12).

Since each player takes one point per turn, the total time of the play
is T = Nd/4 where d = (d1 + · · · + dN )/N is the average hyperedge size
(note that |Ai| = di and 2 is the common height). By repeated application
of (3.15) we obtain

(3.16) P (end) = P (T ) ≥ P (0) + 2T = P (0) +
Nd

2
.

By definition (see (3.8))

P (0) = −α

N∑
i=1

|Ai| − α

r∑
j=1

(
|Vj |+ |Wj |

)
= −2α

N∑
i=1

|Ai| = −2αNd.

Using this in (3.16) we conclude

P (end) ≥ Nd

(
1

2
− 2α

)
,

which completes the proof of Lemma 1.

3. Global balancing. First we apply a standard average argument in
Lemma 1 as follows. By using the power-of-two decomposition of hyper-
graph H in (3.6), and applying the two convergent (telescoping) series

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · · =

(
1−

1

2

)
+

(
1

2
−

1

3

)
+

(
1

3
−

1

4

)
+ · · · = 1
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and

1

3 · 4
+

1

4 · 5
+

1

5 · 6
+ · · · =

(
1

3
−

1

4

)
+

(
1

4
−

1

5

)
+

(
1

5
−

1

6

)
+ · · · =

1

3

in Lemma 1, we obtain that there is an integer j0 in the interval 0 ≤ j0 ≤ r

(where r ≤ log2(N/d)) such that∑
Ai∈Hj0

(
(Mi −Bi)

2
− α|Ai| · (1− λi)

Mi(1 + λi)
Bi

)
−(3.17)

− α · |Vj0 | · (1− μj0)
M(Vj0

)(1 + μj0)
B(Vj0

)

− α · |Wj0 | · (1− ωj0)
M(Wj0

)(1 + ωj0)
B(Wj0

)
≥

≥

3

4
Nd(1

2
− 2α)

min
{

(r − j0 + 1)(r − j0 + 2), (j0 + 3)(j0 + 4)
} ,

where Mi =
∣∣
Ai ∩ X(t)

∣∣ is Maker’s part in Ai and Bi =
∣∣
Ai ∩ Y (t)

∣∣ is
Breaker’s part in Ai at this stage of the play; similarly, M(Vj) =

∣∣
Vj∩X(t)

∣∣ ,
B(Vj) =

∣∣
Vj ∩ Y (t)

∣∣ , M(Wj) =
∣∣
Wj ∩X(t)

∣∣ , and B(Wj) =
∣∣
Wj ∩ Y (t)

∣∣ .
It is time now to specify at least the first two of the parameters 0 <

α < 1, 0 < λi < 1 (for 1 ≤ i ≤ N = |H|), 0 < μj < 1 and 0 < ωj < 1 (for
0 ≤ j ≤ r where r ≤ log2(N/d)) in (3.8).

Let λi = 3/

√

di where |Ai| = di. Then

(1− λi)
Mi(1 + λi)

Bi = (1− λ
2
i )

di/2

(
1 + λi

1− λi

)(Bi−Mi)/2

≈(3.18)

≈ e
−9/2+3(Bi−Mi)/

√
di

.

Next let α = 1/10. Using the easy fact (I challenge the reader to verify it)

(3.19) 10u2
≤ e

−9/2+3u for all u ≥ 3

with u = (Bi −Mi)/
√

di, by (3.17)–(3.19) we easily have∑
Ai∈Hj0

: (Mi−Bi)≥−3
√

di

(Mi −Bi)
2
−(3.20)

−

1

10
|Vj0 | · (1− μj0)

M(Vj0
)(1 + μj0)

B(Vj0
)
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−

1

10
|Wj0 | · (1− ωj0)

M(Wj0
)(1 + ωj0)

B(Wj0
)
≥

≥

3

4
Nd(1

2
−

2

10)
min

{
(r − j0 + 1)(r − j0 + 2), (j0 + 3)(j0 + 4)

} =

=
9

40
Nd

min
{

(r − j0 + 1)(r − j0 + 2), (j0 + 3)(j0 + 4)
} .

Now we can see the first benefit of the complicated potential function (3.8).
The negative exponential terms involving λi neutralize the effect of the
very large deficits in the quadratic part; only the moderately large deficits
(namely those with Mi −Bi ≥ −3

√

di) survive in (3.20).

We still face the annoying possibility that the main contribution in the
quadratic part of (3.20) may well come exclusively from the moderately
large deficits; in that case it is not clear how to guarantee large surplus. To
overcome this second type of difficulty we use the two remaining exponential
terms involving the large sets Vj0 and Wj0 in (3.20). I call this technique
“global balancing”, and it goes as follows.

I begin with a trivial corollary of (3.20):

1

10
|Vj0 | · (1− μj0)

M(Vj0
)(1 + μj0)

B(Vj0
)
≤

∑
Ai∈Hj0

: (Mi−Bi)≥−3
√

di

(Mi −Bi)
2
.

(3.21)

If in the right side of (3.21) there is a term (Mi − Bi) ≥ 3
√

di for some i,
then of course Maker can keep this temporary lead till the end of the play,
and achieves a surplus ≥ 3

√

di ≥ 3
√

d/2, which is a much better constant
factor than what we claimed in Theorem 1. We can thus assume that∑

Ai∈Hj0
: (Mi−Bi)≥−3

√
di

(Mi −Bi)
2
≤

∑
Ai∈Hj0

9di =(3.22)

= 9
∑

Ai∈Hj0

|Ai| ≤ 9|Hj0 |d2j0
,

since |Ai| = di ≤ d2j holds for all Ai ∈ Hj (see (3.6)).
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On the other hand, since the common height of H is two, we trivially
have

(3.23) |Vj | =

∣∣∣∣ ⋃
A∈Hj

A

∣∣∣∣ ≥ 1

2

∑
A∈Hj

|A| ≥

1

2
|Hj |d2j−1

.

Using (3.23) with j = j0, and comparing it to (3.22), we obtain the following
consequence of (3.21):

(1− μj0)
M(Vj0

)(1 + μj0)
B(Vj0

)
≤ 360,

or equivalently,

(3.24) (1− μ
2
j0)
|Vj0

|/2

(
1 + μj0

1− μj0

)(B−M)/2

≤ 360,

where B = B(Vj0) and M = M(Vj0).

By choosing μj = 3/
√
|Vj | in (3.8), we can approximate the left side of

(3.24) as follows:

(3.25) 360 ≥ (1− μ
2
j0)
|Vj0

|/2

(
1 + μj0

1− μj0

)(B−M)/2

≈ e
−9/2+3(B−M)/

√

|Vj0
|
.

Comparing the two ends of (3.25) we obtain

(3.26) B −M = B(Vj0)−M(Vj0) ≤ 4
√
|Vj0 |,

which means that Breaker can never achieve a substantial lead in the large
set Vj0 . This is the “global balancing” that I was talking about.

By choosing ωj = 3/

√
|Wj | we can repeat the same argument for Wj0 ,

and obtain

(3.27) B(Wj0)−M(Wj0) ≤ 4
√
|Wj0 | ≤ 4

√
|Vj0 |,

By (3.7) and (3.26)–(3.27):
(3.28)∑
Ai∈Hj0

(Mi−Bi) =
(
M(Vj0)−B(Vj0)

)
+

(
M(Wj0)−B(Wj0)

)
≥ −8

√
|Vj0 |.
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4. An average argument. Combining (3.28) with (3.20) we can easily
finish the proof of Theorem 1 by using a standard average argument. First
we rewrite (3.28) as follows:∑

Ai∈Hj0
: Mi>Bi

(Mi −Bi) + 8
√
|Vj0 | ≥(3.29)

≥

∑
Ai∈Hj0

: Bi>Mi

(Bi −Mi) ≥
∑

Ai∈Hj0
: 0≤Bi−Mi≤3

√
di

(Bi −Mi).

Since |Ai| = di ≤ d2j0 holds for every Ai ∈ Hj0 , (3.29) trivially implies∑
Ai∈Hj0

: 0≤Bi−Mi≤3
√

di

(Bi −Mi)
2
≤

≤ 3
√

d2j0

( ∑
Ai∈Hj0

: Mi>Bi

(Mi −Bi) + 8
√
|Vj0 |

)
.

Combining the last inequality with (3.20)∑
Ai∈Hj0

: Mi>Bi

(Mi −Bi)
2
≥(3.30)

≥

9

40
Nd

min
{

(r − j0 + 1)(r − j0 + 2), (j0 + 3)(j0 + 4)
} −

− 3
√

d2j0
∑

Ai∈Hj0
: Mi>Bi

(Mi −Bi)− 24
√

d2j0 |Vj0 |.

It is more convenient to rewrite (3.30) in the form∑
Ai∈Hj0

: Mi>Bi

(Mi −Bi)
2 + 3

√

d2j0
∑

Ai∈Hj0
: Mi>Bi

(Mi −Bi) ≥(3.31)

≥

9

40
Nd

min
{

(r − j0 + 1)(r − j0 + 2), (j0 + 3)(j0 + 4)
} − 24

√
d2j0 |Vj0 |.

The obvious benefit of (3.31) is that the left side does not contain any
deficit. Of course we have to make sure that the right side of (3.31) is large
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positive. To check this, first notice that hypergraph H has exactly Nd/2
points, so trivially |Vj0 | ≤ Nd/2. Another trivial inequality is d2r

≤ N ,
and so

2j0
≤ 2j0−r

· 2r
≤ 2j0−r

·

N

d

.

Combining these trivial facts we have

d2j0
|Vj0 | ≤ 2j0−r

d

N

d

Nd

2
= 2j0−r−1

N
2
d,

and so

(3.32)
√

d2j0 |Vj0 | ≤ 2(j0−r−1)/2
N

√

d.

By (3.31) and (3.32)∑
Ai∈Hj0

: Mi>Bi

(Mi −Bi)
2 + 3

√

d2j0
∑

Ai∈Hj0
: Mi>Bi

(Mi −Bi) ≥(3.33)

≥

9

40
Nd

min
{

(r − j0 + 1)(r − j0 + 2), (j0 + 3)(j0 + 4)
} − 24 · 2(j0−r−1)/2

N

√

d ≥

≥

1

6
Nd

min
{

(r − j0 + 1)(r − j0 + 2), (j0 + 3)(j0 + 4)
} ,

assuming d ≥ 106; the worst case is j0 = r.

The last trivial step is to distinguish two cases.

The first case is when ∑
Ai∈Hj0

: Mi>Bi

(Mi −Bi)
2
≥(3.34)

≥

1

42
Nd

min
{

(r − j0 + 1)(r − j0 + 2), (j0 + 3)(j0 + 4)
} .

We need the trivial fact

|Hj0 |d2j0−1
≤

N∑
i=1

|Ai| = Nd,
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which implies

(3.35) |Hj0 | ≤ 2−j0+1
N.

Combining (3.34) and (3.35) we have

max
Ai∈Hj0

: Mi>Bi

(Mi −Bi)
2
≥

1

|Hj0 |

∑
Ai∈Hj0

: Mi>Bi

(Mi −Bi)
2
≥(3.36)

≥

2j0−1

N

1

42
Nd

min
{

(r − j0 + 1)(r − j0 + 2), (j0 + 3)(j0 + 4)
} =

=
1

42
2j0−1

min
{

(r − j0 + 1)(r − j0 + 2), (j0 + 3)(j0 + 4)
} d.

It follows that

max
Ai∈Hj0

: Mi>Bi

(Mi −Bi) ≥

√

d

200
,

which is a better constant factor than what we claimed in Theorem 1.

The second case is when (3.34) fails; then we clearly have

3
√

d2j0
∑

Ai∈Hj0
: Mi>Bi

(Mi −Bi) ≥(3.37)

≥

1

7
Nd

min
{

(r − j0 + 1)(r − j0 + 2), (j0 + 3)(j0 + 4)
} .

Then

max
Ai∈Hj0

: Mi>Bi

(Mi −Bi) ≥
1

3
√

d2j0 |Hj0 |

∑
Ai∈Hj0

: Mi>Bi

(Mi −Bi) ≥(3.38)

≥

1

3
√

d2j0 |Hj0 |

1

7
Nd

min
{

(r − j0 + 1)(r − j0 + 2), (j0 + 3)(j0 + 4)
} .

Again using (3.35) we obtain the following lower bound for the last term in
(3.38):

1

3
√

d2j02−j0+1
N

1

7
Nd

min
{

(r − j0 + 1)(r − j0 + 2), (j0 + 3)(j0 + 4)
} ≥

√

d

1000
,

(3.39)
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since j0 ≥ 0. Combining (3.38)–(3.39), Theorem 1 follows.

4. Proof of Theorem 2: the Upper Bound

Again we work with a “danger function”, which has the unfortunate side-
effect of (weakly) depending on the global size (i.e., the vertex number) of
the d-regular graph. We develop the potential technique of Propositions
2.1-2 in a new direction, that I call the

Big-Game&small-game decomposition. The first basic idea is a
decomposition of the Degree Game – played on a d-regular graph – into
two non-interacting games: the Big Game and the small game. The second
basic idea is iteration; in other words, the proof has a nested structure. Let
n be the vertex number of graph G, let {Si : i = 1, 2, . . . , n} be the n stars
of G, each containing d edges. In the star-hypergraph H = HG of G the
“points” are the edges of G, and the hyperedges are the stars Si, 1 ≤ i ≤ n.
So HG is a d-uniform hypergraph, |HG| = n, HG is Almost Disjoint, and
has uniform Height 2.

A play in the Degree Game on G is clearly equivalent to a play on the
star-hypergraph HG; I prefer to work with the hypergraph setup.

Consider now a concrete play on HG; let x1, x2, x3, . . . denote the points
(i.e., edges of G) taken by Maker and let y1, y2, y3, . . . denote the points taken
by Breaker. A hyperedge S ∈ HG (i.e., a star of G) becomes “dangerous”
when Maker’s lead equals 4

√

d log d for the first time; formally,

(4.1) |

∣∣
X(t) ∩ S

∣∣
− |

∣∣
Y (t) ∩ S

∣∣
| = 4

√

d log d,

where X(t) = {x1, x2, . . . , xt+1} and where Y (t) = {y1, y2, . . . , tt} (t is the
time parameter). The unoccupied part S \

(
X(t) ∪ Y (t)

)
of S is called

an “emergency set”. Whenever an “emergency set” arises, its points are
removed from the Big Board (i.e., the board of the Big Game), and they
are added to the small board (i.e., the board of the small game). This is
why the Big Game is “shrinking” and the small game is “growing”.

The “growing” small board is exactly the union of all emergency sets.
If a hyperedge S ∈ HG intersects the small board, but S is not “dangerous”
(yet), then I call S an “innocent bystander”, or simply an “innocent”.
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Every emergency set E = S \

(
X(t) ∪ Y (t)

)
has a unique superset

S ∈ HG; uniqueness follows from the almost disjointness of the hypergraph.
I denote this unique superset S (containing E) as Ẽ.

Let

Hsmall = {Ẽ ∈ HG : E is an emergency set } ∪

∪ {I : I ∈ HG : I is an innocent}.

I call Hsmall the small hypergraph; it is a sub-hypergraph of HG, formally,
Hsmall ⊂ HG.

The small hypergraph Hsmall may fall apart into several components C1,
C2, C3, . . . . Here comes the core idea of the proof: Breaker wants to force
that each component Ci of Hsmall consist of relatively few sets.

In order to control the components ofHsmall, Breaker defines an auxiliary
Big Hypergraph B. To motivate the (nontrivial!) definition of B, we assume
that at some stage of the play some component of Hsmall, say, C1, has “too
many” sets. Assume that C1 has M sets where M = E

∗+I
∗: E

∗ emergency
sets and I

∗ innocents, and M is “large”.

Step 1. We prove the inequality E
∗
≥ I

∗
/d, where d is the degree of the

regular graph G

Notice that the proof of this inequality is a routine double-counting
argument. Let P denote the number of intersecting pairs (Ẽ, I) where
Ẽ ∈ C1 and I ∈ C1 (Ẽ ∩ I �= ∅). Clearly E

∗
d ≥ P ≥ I

∗. Indeed,
every innocent I ∈ C1 intersects an emergency set; this proves the first half
P ≥ I

∗. On the other hand, every emergency superset Ẽ intersects at most d

innocents (because of the Almost Disjointness and the Height 2 property of
hypergraphHG). This proves the other half E

∗
d ≥ P , completing E

∗
d ≥ I

∗.

Next comes

Step 2 We select many disjoint emergency supersets by a greedy algorithm

Let Ẽ1 ∈ C1 be an arbitrary emergency superset; if |C1| = M ≥ d+1 then

by Step 1 we have such an Ẽ1. Assume that the 3rd C1-neighborhood of Ẽ1

is nonempty. If the 3rd neighborhood contains an emergency superset then
let Ẽ2 be one of them. If the 3rd neighborhood entirely consists of innocents,
then select one, say, I. Since every innocent intersects an emergency set,
there is an emergency superset Ẽ2 that is either the 2nd or 3rd or 4th
neighbor of Ẽ1. In any case Ẽ1 and Ẽ2 are disjoint.
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Next assume that the 3rd C1-neighborhood of {Ẽ1, Ẽ2} is nonempty. If

the 3rd neighborhood contains an emergency superset then let Ẽ3 be one
of them. If the 3rd neighborhood entirely consists of innocents, then select
one, say, I. Since every innocent intersects an emergency set, there is an
emergency superset Ẽ3 that is either the 2nd or 3rd or 4th neighbor of
{Ẽ1, Ẽ2}. In any case Ẽ1, Ẽ2, and Ẽ3 are disjoint.

Repeating this argument we obtain a sequence of disjoint emergency
supersets Ẽ1, Ẽ2, . . . , Ẽk, . . . from component C1 such that the C1-distance of
Ẽk from {Ẽ1, . . . , Ẽk−1} is either 2 or 3 or 4. This way we can sequentially
build a tree, where the edges are labeled by 2 or 3 or 4. The numbers
represent the C1-distance from the nearest neighbor among the predecessors.

Step 3 Analysis of the greedy algorithm

Suppose that the greedy algorithm described in Step 2 already produced
a sequence of disjoint emergency supersets Ẽ1, Ẽ2, . . . , Ẽk from component
C1; what can prevent us from obtaining a new member Ẽk+1? The union

Ẽ1 ∪ Ẽ2 ∪ . . . ∪ Ẽk

has kd points, so the first C1-neighborhood of {Ẽ1, Ẽ2, . . . , Ẽk} has at most

kd
2 sets, and the first and second C1-neighborhoods of {Ẽ1, Ẽ2, . . . , Ẽk}

together have at most kd
3 sets. Therefore, if |C1| > kd

3 then the 3rd C1-

neighborhood of {Ẽ1, Ẽ2, . . . , Ẽk} is nonempty, and by the greedy algorithm

we can find a new member Ẽk+1. It follows that the greedy algorithm pro-
duces at least r disjoint emergency supersets Ẽ1, Ẽ2, . . . , Ẽr from component
C1 with r = |C1|d

−3.

Next comes

Step 4 A counting argument

We say that a sub-hypergraph {S1, S2, . . . , Sr} ⊂ HG has the (2, 4)-
property if for every j = 2, 3, . . . , r, the HG-distance of Sj from {S1, S2, . . . ,

Sj−1} is 2 or 3 or 4. (It is a byproduct of ≥ 2 that the r sets are pairwise
disjoint.)

If a sub-hypergraph {S1, S2, . . . , Sr} ⊂ HG has the (2, 4)-property then
we can represent it with a (2-or-3-or-4 labeled) tree, where every distance
is 2 or 3 or 4. I call this tree the underlying tree of the sub-hypergraph.
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Given any r, we can easily estimate from above the number of r-element
sub-hypergraphs {S1, S2, . . . , Sr} ⊂ HG satisfying the (2, 4)-property:

(4.2) total number ≤ 4r−1
· n · (d4)

r−1
.

To prove (4.2) first note that there are less than 4r−1 unlabeled rooted trees
on r vertices. This well-known fact is a byproduct of the “depth-first search”
algorithm, which visits every edge of the rooted tree twice (starting from
the root). It associates with every rooted tree a (+1,−1) sequence of length
2(r−1) (“+1” for forward visit and “−1” for backward visit), and the total
number of such sequences is 22(r−1) = 4r−1.

Thus there are less than 4r−1 ways to fix the underlying tree of {S1, S2,

. . . , Sr}. There are |HG| = n ways to choose the first set S1. Since the HG-
distance of S2 from S1 is ≤ 4, there are ≤ d

4 ways to choose S2. Working
with a fixed underlying tree, there are ≤ d

4 ways to choose S3, there are
≤ d

4 ways to choose S4, and so on. This proves (4.2).

Step 5 Defining the Big Sets B ∈ B

Now we are ready to define the Big Hypergraph B. Every Big Set B

arises as the union set

(4.3) B =
r⋃

i=1

Si

of an arbitrary r-element sub-hypergraph {S1, S2, . . . , Sr} ⊂ HG satisfying
the (2, 4)-property. We will specify the value of parameter r later.

The Big Hypergraph B is simply the family of all possible Big Sets B

(defined by (4.3)).

By (4.2)

(4.4) |B| ≤ 4r−1
· n · (d4)

r−1
.

Step 6 Balancing Lemma

The following is just a restatement of Proposition 2.2.

Balancing Lemma. Let F be a k-uniform hypergraph, and consider the

Balancer-Unbalancer game played on hypergraph F where Unbalancer’s
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goal is to own at least k+Δ

2
points from some A ∈ F . If log |F| < k/8

and

Δ = 2
√

2k log |F|,

then Balancer has a winning strategy, that is, Balancer can prevent Unbal-

ancer from achieving his goal.

The proof is a straightforward application of Proposition 2.1; I leave the
details to the reader.

Step 7 Applying the Balancing Lemma to the Big Hypergraph

To prevent the appearance of a “too large” component C1 of Hsmall,
Breaker plays an auxiliary Big Game. The board of the Big Game, called
the Big Board, is the board of HG minus the emergency sets. In the Big
Game, Breaker restricts himself to the Big Board, and tries to prevent any
Big Set from becoming overwhelmingly owned by Maker.

Assume that, at some stage of the play, there is a “too large” component,
say, C1 of Hsmall. Here “too large” means |C1| ≥ rd

3. Then by Step 3 the
greedy algorithm applied to C1 produces r disjoint emergency supersets
Ẽ1, Ẽ2, . . . , Ẽr, which satisfies the (2, 4)-property. By Step 5 the union set

B =

r⋃
i=1

Ẽi

is a Big Set, and the intersection of this B with the Big Board (meaning:
we throw away the emergency sets) has a Maker’s lead r · 4

√

d log d (see the
definition of “dangerous” in (4.1)). On the other hand, if Breaker applies
the potential strategy of the Balancing Lemma (see Step 6) for the Big
Hypergraph B in the Big Game, then Breaker (as Balancer) can force that

Maker’s maximum lead ≤ 2
√

2d · r · log |B|,

assuming log |B| < d · r/8.

Therefore, if

(4.5) 4r
√

d log d > 2
√

2d · r · log |B|

and

(4.6) log |B| <
dr

8
,
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then we obtain a contradiction, so the assumption |C1| ≥ rd
3 is impossible.

In other words, if Breaker plays rationally in the Big Game, and (4.5)–(4.6)
hold, then every component Ci of Hsmall has less than rd

3 sets. This is how,
by playing rationally in the Big Game, Breaker can control the components
of Hsmall, making sure that no component grows too large.

Step 8 Specifying parameter r

Let r = log n = log |HG|. We show that if d ≥ 200 then inequality (4.6)
holds. Indeed, we recall (4.4):

(4.7) |B| ≤ 4r−1
· n · (d4)

r−1
,

and combining the logarithm of (4.7) with r = log n we have

log |B| ≤ log n + (r − 1)(4 log d + log 4) =(4.8)

= r + (r − 1)(4 log d + log 4) <

rd

8

if d ≥ 200.

Next we check (4.5): if r = log n then using the calculation in (4.8) we
have

2
√

2d · r · log |B| ≤ 2
√

2d · r · log
(
r + (r − 1)(4 log d + log 4)

)
<(4.9)

<

√

d · r · 4
√

2 log d + 1 < 4r

√

d log d

if d ≥ e
3. This shows that (4.5) holds if d ≥ e

3.

Combining (4.8)–(4.9) we see that, if Breaker plays rationally in the Big
Game, then he can force that, at every stage of the play, every component
of Hsmall has less than rd

3 = d
3 log n sets (“set” means emergency supersets

and innocents) if d ≥ 200.

Step 9 Iteration

Suppose that we are in the middle of a play, hypergraph Hsmall falls
apart into components C1, C2, . . ., Cj , . . . . Let Vj denote the union

⋃
E of

the emergency sets E for all Ẽ ∈ Cj . I refer to Vj as the jth Emergency
Room.

Let V denote the board of HG, that is, the set of all edges of graph G;
we could even write “V = G”. The term “iteration” means that we are
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going to repeat the whole argument above for every component (Vj , Cj) in
Hsmall (which is the “small game sub-hypergraph” of HG), where Vj plays
the role of V and Cj plays the role of HG. And we are going to repeat the
whole argument for every such component of every component (Vj , Cj), and
we are going to repeat the whole argument for every such component of
every such component of every component (Vj , Cj), and so on.

Let’s go back to the beginning of the iteration: consider an arbitrary
component (Vj , Cj). Playing in a component Breaker follows the Same
Board Rule. What it means is that, if Maker’s actual last move was in
the Big Board then Breaker replies – by using the potential strategy of the
Balancing Lemma, see Step 6 – in the Big Board. And similarly, if Maker’s
actual last move was in the small board, in particular in the jth Emergency
Room Vj , then Breaker replies in the same Vj .

Assume that we are in the middle of an actual play in a component
(Vj , Cj). Of course we can repeat the key definitions: a hyperedge A ∈ Cj

is said to become dangerous when Maker’s lead in the intersection A ∩ Vj

equals 4
√

d log d (see (4.1)); similarly, the unoccupied part in A∩Vj is called
an emergency set, and so on.

The main point is the enormous reduction in the maximum size of the
“components” in the next level:

(V,HG) −→ (Vj , Cj), j = 1, 2, 3, . . . −→ · · · −→ · · ·

which leads to the rapidly decreasing sequence (see Step 7)

n → d
3 log n → d

3 log(d3 log n) = d
3 log(log log n + 3 log d)→(4.10)

→ d
3 log

(
d

3 log(log log n + 3 log d)
)

=

=
(
1 + o(1)

)
d

3(log log log n + 4 log d) → · · · .

The key point in (4.10) is the sequence log n, log log n, log log log n, . . . . It
means, roughly speaking, that in every step of the iteration the size of the
new component is the logarithm of the previous size. We choose the number
of iterations to be log n; this explains the definition of the tower function
Giant (d) in (1.11).

Under the conditions of Theorem 2, if Breaker plays rationally in every
subgame, the surplus is clearly estimated from above by the product

4
√

d log d · log d = 4
√

d(log d)2,
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where the first factor 4
√

d log d comes from the definition of “dangerous”
in (4.1), and the second factor log d comes from the number of iterations.
Thus the proof of the upper bound in Theorem 2 is complete.
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Deformable Polygon Representation and

Near-Mincuts

ANDRÁS A. BENCZÚR∗ and MICHEL X. GOEMANS†

We derive a necessary and sufficient condition for a symmetric family of sets

to have a geometric representation involving a convex polygon and some of its

diagonals. We show that cuts of value less than 6/5 times the edge-connectivity of

a graph admit such a representation, thereby extending the cactus representation

of all mincuts.

1. Introduction

Given an undirected graph G = (V, E) possibly with multiple edges (or
nonnegative weights on the edges), let d(S) represent the size (or the weight)
of the cut (S : S) = {(i, j) ∈ E :

∣∣
{i, j} ∩ S

∣∣ = 1} (where S = V \ S).

The edge-connectivity λ of G is equal to min∅�=S �=V d(S), and any cut (S, S)
achieving the minimum is called a mincut. A cut (S, S) for which d(S) < αλ

for some α > 1 is called an α-near-mincut. In 1976, Dinitz, Karzanov and
Lomonosov [4] have given a compact representation of all mincuts; this is
known as the cactus representation. Informally, the cactus representation
is a multigraph H in which every edge is in exactly one cycle1 and every
vertex of G is mapped to a node2 of H (see Figure 1). This mapping does
not need to be bijective, surjective or injective. A node of H can correspond

∗Research supported under grant OTKA NK 72845.
†Research supported under NSF grant CCF-0515221 and ONR grant N00014-05-1-

0148.
1In descriptions of the cactus representation, the cycles of length 2 are sometimes

replaced by a single edge (bridge) of weight 2.
2To easily distinguish them, we use vertices for the graph G and nodes for the cactus H.



104 A. A. Benczúr and M. X. Goemans

to one, several or even no vertex of G; in the latter case, the node is said
to be empty. The set of all mincuts of size 2 in H, i.e. those obtained
by removing any two edges of the same cycle, correspond to the set of all
mincuts in G. Because of the presence of empty nodes, observe that several
mincuts in H can correspond to the same cut in G.

Fig. 1. A cactus of a graph with vertex set V = {a, b, c, d, e, f, g, h, i, j}.

The cactus is not necessarily unique, and Nagamochi and Kameda [15]
describe two canonical cactus representations, one with no cycles of length
3 and the other without precisely 3 cycles meeting at the same empty node.
Nagamochi and Kameda also show that these canonical representations (and
many others) have at most n = |V | empty nodes. A cactus representation
can be constructed efficiently, see [11, 8, 20, 16, 3, 7, 18, 17]. A 2-level
cactus representing all cuts of value λ and λ+1 in an unweighted graph has
been derived by Dinitz and Nutov [5].

In this paper, we consider extensions of the cactus representation to ar-
bitrary symmetric3 families F ⊆ 2V , in which every cycle is replaced by a
convex polygon P with some of its diagonals drawn and the elements of V

are mapped to the cells defined by the diagonals within the polygon, see
Figure 2. A cell can have 0, 1 or many elements mapped to it. To every
diagonal, one can associate a pair (S, S) of complementary sets correspond-
ing to those elements mapped to either side of the diagonal. Furthermore,
we will focus on the situation when the existence of the mapping of V to
the cells of the polygon does not depend on the exact (convex) location
of the polygon vertices; we call such polygons deformable, see Section 2.
Our representation links deformable polygons in a tree fashion, in an al-
most identical way as the cactus links cycles. To derive this tree structure,
we consider the cross graph associated with a symmetric family of sets: Its
vertex set has a representative for each pair of complementary sets in F
and two such pairs (S, S) and (T, T ) are joined by an edge if S and T cross.

3
A ∈ F iff A ∈ F .
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Recall that two sets S and T are said to cross if S ∩ T , S ∪ T , S \ T and
T \ S are all non-empty. We show that representations for each connected
component of the cross graph can be linked in a tree structure of linear
size; this is explained in Section 5, where we provide a geometric proof of a
(slightly modified) cactus structure of mincuts.

Fig. 2. A polygon representation. The bold diagonal corresponds to the sets {1, 2, . . . , 9}

and {10, 11}. This polygon is deformable; for example, this will follow from our

characterization.

The main result of this paper is to give a necessary and sufficient condi-
tion for a symmetric family to admit a representation as a tree of deformable
polygons. This characterization is in terms of excluded configurations. We
show that there are 3 families consisting of 4 pairs of complementary sets
each (

(
4

[2]

)
, C1 and C2, see the forthcoming Figure 5), and the family can

be represented by a tree of deformable polygons if and only if none of the
three families appear as an induced subfamily. This is stated in Section 2
and proved in Sections 3 and 5. We also show in Section 4 that for any
(weighted) undirected graph, the family of 6/5-near-mincuts — those cuts
of value less than 6/5 times edge-connectivity λ — satisfies the condition of
our main result, and therefore can be represented by a tree of deformable
polygons. This, for example, implies that there are at most

(
n
2

)
6/5-near-

mincuts, see Section 6; this is already known even for 4/3-near-mincuts
[19, 9].

This paper focuses on a characterization of those families with a tree
of deformable polygons, and does not consider efficient algorithms for its
construction or implications for connectivity problems, such as speeding up
algorithms for graph augmentation problems or the existence of splitting-off
which maintains near-mincuts. This is covered in the Ph.D. dissertation [3]
of the first author, see also [1, 2].
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Many proofs of the existence of the cactus have appeared. The approach
that is most useful in the context of this paper is due to Lehel, Maffray and
Preissmann [12] who show using characterizations of interval hypergraphs
that, for any undirected graph G = (V, E), there exists a cyclic ordering of
V such that every mincut corresponds to a partition of this cyclic ordering
into two (cyclic) intervals. This will be the basis of our construction of
deformable polygons, as we will first place a carefully selected subset of
the elements along the sides of our polygon in a circular way and then add
the remaining elements in cells farther inside the polygon (using Helly’s
theorem).

2. Deformable Polygon Representation

Given an arrangement of lines in R
2 and a set V of points in R

2 none of
them being on any of the lines, each line partitions R

2 into two halfplanes
and hence the set V into two sets S and S̄. We associate to this arrangement
of lines the symmetric family F of all sets defined by these lines. We say
that this family is representable as an arrangement of lines. For example, in
Figure 3:(a), a representation of

(
4

[2]

)
=

{
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4},

{3, 4}
}

, the family of all subsets of {1, 2, 3, 4} of cardinality 2, is given.

Fig. 3. (a): An arrangement of lines representing the family

F =
�

4

[2]

�
= {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}. (b): An equivalent polygon

representation.

A classical result of Schläfli [22] says that the maximum number of
partitions of an n-element set in R

2 by lines is
(n
2

)
+1, and thus at most

(
n
2

)
once we don’t count the trivial partition for which S = ∅ or S = V . This
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provides a bound on the size of any family representable as an arrangement
of lines.

Instead of considering representations as arrangements of lines, we con-
sider a bounded variant of it. In this case, we have a convex polygon
P with vertices a1, a2, . . . , ak (for some suitable k), a subset of diagonals
D ⊆

{
[ai, aj ] : 1 ≤ i < j ≤ k

}
, and the elements of V are placed in the cells

of P \D defined by the diagonals within the polygon. The sets represented
correspond to the sets of elements on either side of a diagonal. We refer to
such a representation as a polygon representation. Clearly, a polygon rep-
resentation can be transformed into an arrangement of lines representation,
and vice versa, see Figure 3 for a simple example.

For certain polygon representations, the polygon can be arbitrarily de-
formed in a convex manner without the cells containing elements of V van-
ishing. In this case, the actual positions of the polygon vertices a1, · · · , ak

are irrelevant, provided they are in convex position. We refer to this as a
deformable polygon representation. This is not the case for the polygon rep-
resentation of

(
4

[2]

)
given in Figure 3:(b), as shown in Figure 4. In fact, it

is easy to show that the family
(

4

[2]

)
does not admit a deformable polygon

representation.

Fig. 4. If the convex polygon is deformed, the cell containing the element 4 might

disappear.

In this paper, we provide a characterization in terms of excluded con-
figurations of those symmetric families that admit a deformable polygon
representation. To state our result, we first need to introduce two fami-
lies that do not have a polygon representation (or a representation by an
arrangement of lines). In fact, they cannot be represented by convex sets,
as any such representation for a symmetric family can be transformed into
a representation as an arrangement of lines by simply considering the line
separating the convex sets assigned to S and S.
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Lemma 1. The following two families of subsets of {1, 2, 3, 4, 5, 6} (see

Figure 5) do not have a polygon representation.

1. C1 =
{
{1, 2, 3}, {1, 2, 3}, {1, 4}, {1, 4}, {2, 5}, {2, 5}, {3, 6}, {3, 6}

}
,

2. C2 =
{
{1, 2, 3}, {1, 2, 3}, {1, 5, 6}, {1, 5, 6}, {2, 4, 6}, {2, 4, 6}, {3, 4, 5},

{3, 4, 5}
}

=
{
{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {5, 6, 1}, {6, 1, 2}, {1, 3, 5},
{2, 4, 6}

}
.

Fig. 5. Half of the sets (a) in C1 and (b) in C2. Combs, to be defined in Definition 2,

have either an induced C1 or an induced C2.

Proof. Assume that Ck for either k = 1 or k = 2 has a representation by
an arrangement of lines. We start with some notation for both cases. We
simply let 1, 2, . . . , 6 denote the points in R

2 in the cells of the arrange-
ment of lines corresponding to the elements of the ground set. For a pair of
complementary sets (U,U) in Ck, let �(U) = �(U) be the line in the arrange-
ment for Ck separating U from U ; furthermore let �

+(U) and �
−(U) denote

the open halfplanes containing U and U , respectively. For i ∈ {1, 2, 3}
and j ∈ {4, 5, 6}, let tij ∈ �

(
{1, 2, 3}

)
be the intersection point between

�

(
{1, 2, 3}

)
and the line segment extending between points i and j; tij is

well-defined as i and j are separated by {1, 2, 3} ∈ Ck.

Consider first the arrangement for C1. Consider the points t14, t25 and
t36. As t14 ∈ �

+
(
{1, 4}

)
while t25, t36 ∈ �

−
(
{1, 4}

)
and similarly for 14

replaced by 25 or 36, the points t14, t25 and t36 are distinct. Without
loss of generality, we can assume that t25 is between t14 and t36. But, by
convexity, t14, t36 ∈ �

−
(
{2, 5}

)
implies that t25 ∈ �

−
(
{2, 5}

)
contradicting

t25 ∈ �
+
(
{2, 5}

)
.

Assume now we have a representation for C2. Consider two complemen-
tary sets in our family, say U = {1, 3, 5} and U = {2, 4, 6}. The fact that
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U ⊂ �
+(U) and U ⊂ �

−(U) implies that the line segments [t15, t35] and
[t24, t26] do not intersect, and in particular that t15 �= t26. We can simi-
larly deduce that t15 �= t34 �= t26. Without loss of generality, let us assume
that t26 is between t15 and t34. But the disjointness of [t15, t35] and [t24, t26]
implies that t26 /∈ [t15, t35], while the same argument with the complemen-
tary sets {1, 2, 6} and {3, 4, 5} implies that t26 /∈ [t34, t35], which means that
t26 /∈ [t15, t34], a contradiction.

Given a family F of sets on V and a subset S ⊆ V , we define the family
F|S to be the family {F ∩S : F ∈ F}. We say that a family F of V contains

a family G as an induced family or simply contains the induced family G if
there exists S such that F|S contains G, i.e. F|S ⊇ G. In this case, if G
does not have a polygon representation then neither does F , and similarly
for deformable polygon representations. Thus, any family F which contains(

4

[2]

)
, C1 or C2 as an induced family does not have a deformable polygon

representation. We will show that the converse to that statement is also
true for families with connected cross graph.

Theorem 2. Let F be a symmetric family of sets with connected cross

graph. Then F admits a deformable polygon representation if and only if

F does not contain
(

4

[2]

)
, C1 or C2 as an induced family.

The “only if” part follows from Lemma 1 and the fact that
(

4

[2]

)
does not

admit a deformable polygon representation. The proof of the “if” part is
constructive, and will be the focus of the next section. Here is a brief sketch
of the construction proving the existence of the polygon representation.
First we identify a set O ⊆ V of elements that we would like to place along
the sides of the polygon; we refer to the elements of O as outside elements.
One non-trivial property of this set O is that every set S ∈ F contains
at least one outside element but not all of them; this is indeed a property
to expect if we place these outside elements along the sides of the polygon
and represent sets by diagonals. We then use Tucker’s characterization [23]
of interval hypergraphs to show that there exists a circular ordering of the
outside elements such that any set in F|O corresponds to an interval in that
circular ordering. As a first trial, one could take a k-gon P where k = |O|,
place the outside elements in their circular order along the sides of P , and
for each set S ∈ F add the diagonal that separates S ∩ O from O \ S.
This already provides a polygon representation of F|O. However, placing
the remaining elements of O appropriately inside the polygon in order to
represent F is not always possible for the following reason. Several sets
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of F could have the same intersection with O and thus would be mapped
to the same diagonal. We can, however, show that sets having the same
intersection with O form a chain, and we can then add vertices to the
polygon P so as to make the diagonals distinct (and non-crossing), and still
represent FO. We then need to consider the placement of the remaining
inside elements, those of O. For each inside element v, we know on which
side of each diagonal we would like to place it. We show that the intersection
of all these halfplanes is non-empty by proving that any two or three of
them have a non-empty intersection and then using Helly’s theorem. This
non-empty intersection gives a non-empty cell where to place v, and this
completes the construction and the proof.

In Section 5, we show that the connected components of any cross graph
can be arranged in a tree structure, and when each component can be
represented by a deformable polygon, we obtain a representation that we
call a tree of deformable polygons. If a family contains

(
4

[2]

)
, C1 or C2 as

an induced family then one of the connected components of its cross graph
must contain one of these subfamilies as an induced family. Therefore, after
proving Theorem 2 and deriving our tree structure, we will have shown the
following theorem.

Theorem 3. Let F be a symmetric family of sets. Then F admits a

representation as a tree of deformable polygons if and only if F does not

contain
(

4

[2]

)
, C1 or C2 as an induced family.

We would like to point out that we do not know of any necessary
and sufficient condition for the existence of a (not necessarily deformable)
polygon representation (or a representation by an arrangement of lines).

3. Construction and its Proof

In this Section, we focus on the case where the symmetric family has a
connected cross graph, or if this is not the case, we redefine F to be the
family corresponding to a single connected component of the cross graph.

Before we start, observe that we can group together any pair or set of
elements which are not separated by any set in our family. Indeed, this does
not affect the existence of a polygon representation as all these equivalent
elements would fall in the same cell defined by the diagonals of the polygon.
More formally, define two elements u and v to be equivalent if, for every
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set Si in our family, u ∈ Si iff v ∈ Si. Let the equivalence classes be called
atoms. Our representation is on the atoms of our family. For simplicity, for
the rest of this section, we simply refer to them as the elements; we’ll use
atoms when we consider several connected components of the cross graph
in Section 5.

We will first restate Theorem 2 without using any induced families. For
this, we need a few definitions.

Definition 1. 3 subsets C1, C2 and C3 form a 3-cycle (see figure 6) if (i)
C1 ∪ C2 ∪ C3 �= ∅ and (ii) (Ci ∩ Ci+1) \ Ci−1 �= ∅, for all i ∈ {1, 2, 3}.

Everywhere in the paper, indices should always be considered cyclic; for
example, C4 represents C1 in the above definition.

Fig. 6. A 3-cycle. Solid dots in a Venn diagram denote non-empty intersections; other

intersections could be empty or not.

Observe that a symmetric family F contains 3 sets that form a 3-cycle
if and only if it contains an induced

(
4

[2]

)
. We also need to define another

configuration of sets.

Definition 2. Four subsets H, T1, T2 and T3 form a comb with handle H

and teeth T1, T2 and T3 if (i) either H ∩

(
Ti \ (Ti−1 ∪ Ti+1)

)
�= ∅ for all

i = 1, 2, 3 or H ∩ (Ti−1 ∩ Ti+1 \ Ti) �= ∅ for all i = 1, 2, 3 and (ii) the same
holds for H replaced by H̄.

The above definition is such that any family of sets which contains (sets
forming) a comb must contain either an induced C1 or an induced C2, and
vice versa, see Figure 5; in both cases, the handle H gets restricted to
{1, 2, 3} or {4, 5, 6}. Thus, alternatively, we could reformulate Theorem 2
as follows.

Theorem 4. Let F be a family of sets with connected cross graph. Then

F admits a deformable polygon representation if and only if F does not

contain any 3-cycle or comb.

More generally, we define a k-cycle for k > 3 as follows.
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Definition 3. k subsets C1, . . . , Ck for k > 3 form a k-cycle (or simply

cycle) if (i) ∪k
i=1

Ci �= ∅, (ii) Pi = (Ci ∩ Ci+1) �= ∅ for i = 1, . . . , k, and
(iii) Ci and Cj are disjoint for j /∈ {i− 1, i, i + 1}. See Figure 7.

Fig. 7. A 5-cycle.

Because of condition (iii) in the definition of a k-cycle for k > 3 (which
we didn’t have for a 3-cycle), a family could contain an induced k-cycle but
no k-cycle itself. However, the next proposition shows that when there are
no 3-cycles and combs, we do not need to differentiate between cycles and
induced cycles.

Proposition 5. Consider a collection F of sets that does not contain any 3-

cycle or comb. Then any induced cycle C1, . . . , Ck contains a subcollection

which forms a cycle.

The proof is technical and can be skipped at first reading.

Proof. We assume that the collection is minimal, i.e. no subcollection of
the Ci’s forms an induced cycle. Let W be such that the Ci’s induce a cycle
in W . Define

Pi = W ∩

[
(Ci ∩ Ci+1)

]
= W ∩

[
(Ci ∩ Ci+1) \

⋃
j /∈{i,i+1}

Cj

]
�= ∅

for i = 1, . . . , k, the last equality following from the fact that Ci ∩W and
Cj ∩W are disjoint if i and j are neither consecutive nor equal.

Assume there exist two indices i and j /∈ {i − 1, i, i + 1} such that(
Ci \ (Ci+1 ∪ Ci−1)

)
∩ Cj �= ∅, i.e. (Ci ∩ Cj) \ (Ci+1 ∪ Ci−1) �= ∅. If j

is i − 2, we have a 3-cycle consisting of Cj , Ci−1 and Ci, a contradiction.
Similarly, if j is i+2, we have the 3-cycle (Cj , Ci, Ci+1). Thus we can assume
j /∈ {i − 2, i − 1, i, i + 1, i + 2}. We claim we have a comb with handle Ci

and teeth Ci−1, Ci+1 and Cj , a contradiction. This is because the following
sets are all non-empty:
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•

(
Cj \ (Ci+1 ∪ Ci−1)

)
∩ Ci = (Ci ∩ Cj) \ (Ci+1 ∪ Ci−1) �= ∅,

•

(
Ci+1 \ (Cj ∪ Ci−1)

)
∩ Ci ⊇ Pi as j /∈ {i, i + 1},

•

(
Ci−1 \ (Cj ∪ Ci+1)

)
∩ Ci ⊇ Pi−1 as j /∈ {i− 1, i},

•

(
Cj \ (Ci+1 ∪ Ci−1)

)
∩ Ci ⊇ Pj as j /∈ {i− 2, i− 1, i, i + 1},

•

(
Ci+1 \ (Cj ∪ Ci−1)

)
∩ Ci ⊇ Pi+1 as j /∈ {i + 1, i + 2},

•

(
Ci−1 \ (Cj ∪ Ci+1)

)
∩ Ci ⊇ Pi−2 as j /∈ {i− 2, i− 1}.

We can thus assume that for all i and all j /∈ {i− 1, i, i + 1}, we have

(1) Ci ∩ Cj ⊆ (Ci−1 ∪ Ci+1).

Observe that the Ci’s form a cycle unless condition (iii) of Definition 3
is violated, i.e. there exists i and j /∈ {i − 1, i, i + 1} with Ci ∩ Cj �= ∅.
Combining this with (1), we can assume that there exist i and j with
j /∈ {i− 1, i, i + 1} such that ∅ �= Ci ∩Cj ⊆ (Ci−1 ∪Ci+1). This means that
either Ci∩Ci+1∩Cj �= ∅ or Ci−1∩Ci∩Cj �= ∅. Depending on the value of j

and after possibly changing i, (i) we either have i and j /∈ {i−2, i−1, i, i+1}
with Ci−1 ∩ Ci ∩ Cj �= ∅, or (ii) we have i with Ci−2 ∩ Ci−1 ∩ Ci �= ∅. We
consider both cases separately.

1. Assume that Ci−1 ∩ Ci ∩ Cj �= ∅ for some i and j with j /∈ {i− 2,

i− 1, i, i + 1}. We claim that Ci−1, Ci and Cj form a 3-cycle, again a
contradiction. Indeed Ci−1 ∩Ci ∩Cj �= ∅, Ci−1 \ (Ci ∪Cj) ⊇ Pi−2 �= ∅

as j /∈ {i − 2, i − 1}, Ci \ (Ci−1 ∪ Cj) ⊇ Pi �= ∅ as j /∈ {i, i + 1}, and
Cj \ (Ci−1 ∪ Ci) ⊇ Pj−1 �= ∅ as j /∈ {i− 1, i, i + 1}.

2. Assume that Ci−2∩Ci−1∩Ci �= ∅ for some i. If Ci−1 \(Ci−2∪Ci) �= ∅,
we have a 3-cycle (Ci−2, Ci−1, Ci). Thus assume that Ci−1 ⊆ Ci−2∪Ci.
Furthermore, we can assume that Ci−2 ∩ Ci = Ci−2 ∩ Ci−1 ∩ Ci

since, otherwise, Ci−2, Ci−1 and Ci would form a 3-cycle. By our
minimality assumption, we cannot remove Ci−1 from our collection
and still have an induced cycle; this implies that Ci−2 ∩ Ci−1 ∩ Ci =
Ci−2 ∩ Ci ⊆ [

⋃
j /∈{i−2,i−1,i} Cj]. Thus, let l /∈ {i − 2, i − 1, i} be such

that Cl∩Ci−2∩Ci−1∩Ci �= ∅. If k > 4 then Ci−2, Ci and Cl can be seen
to form a 3-cycle (since we have (Ci−2 ∩Ci) \Cl = Ci−2 ∩Ci ∩Cl �= ∅,

(Ci−2 ∩ Cl) \ Ci ⊇ Pi−2, (Ci ∩ Cl) \ Ci−2 ⊇ Pi−1, and Ci ∪ Cl ∪ Ci−2

contains either Pl or Pl−1). On the other hand, if k = 4 and thus
l = i + 1 then Ci−2, Ci−1, Ci and Ci+1 form a comb with Ci−1 as
handle. Indeed, we have
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•

(
Ci−2 \ (Ci ∪ Ci+1)

)
∩ Ci−1 ⊇ Pi−1,

•

(
Ci \ (Ci−2 ∪ Ci+1)

)
∩ Ci−1 ⊇ Pi−2,

•

(
Ci+1 \ (Ci−2 ∪ Ci)

)
∩ Ci−1 = Ci−2 ∩ Ci−1 ∩ Ci ∩ Ci+1 �= ∅,

•

(
(Ci−2 ∩ Ci) \ Ci+1

)
∩ Ci−1 = Ci−2 ∪ Ci−1 ∪ Ci ∪ Ci+1 �= ∅,

•

(
(Ci ∩ Ci+1) \ Ci−2

)
∩ Ci−1 ⊇ Pi+1,

•

(
(Ci−2 ∩ Ci+1) \ Ci

)
∩ Ci−1 ⊇ Pi.

Definition 4. An element v ∈ V of the family F ⊂ 2V is said to be inside

if there exists a cycle C1, . . . , Ck of F such that v /∈ ∪iCi. Otherwise, v is
said to be outside. The set of outside elements is denoted by O.

A few remarks are in order. Given Proposition 5, we can replace “cycle”
by “induced cycle” in the above definition, provided that F does not contain
any comb or 3-cycle. For the rest of this section, we assume throughout
that F has no 3-cycle or comb, even if it is not explicitly stated. Also,
at this point, it is not obvious that O is non-empty; this will follow from
Proposition 10. This would not be true if our family could have 3-cycles;

(
4

[2]

)
for example has no outside elements. In fact, we will deduce from Corollary
14 that either |O| ≥ 4 or our family with its connected cross graph consists
of only one pair of complementary sets (S, S) (thus separating two outside
elements/atoms from each other). The latter case trivially gives rise to a
deformable polygon; just take a 4-gon with one diagonal. Therefore, we will
often implicitly assume in this Section that our family consists of more than
one complementary pair. Observe also that if our family does not contain
any cycles (as is the case for the family of mincuts in a graph, see Section 4)
then all elements are outside, i.e. O = V .

As a first step towards the contruction of the polygon representation,
we show now that the family restricted to the outside elements, F|O, is a
circular representable hypergraph [21] or a circular arc hypergraph, i.e. there
exists a circular ordering of O such that all sets in F|O correspond to arcs
of the circle. This is similar to the proof of the existence of the cactus
representation of all minimum cuts due to Lehel et al. [12].

Proposition 6. Consider a symmetric family F of sets with no cycles or

combs. Then F is a circular representable hypergraph.

By definition of outside elements, we can then derive the following
Corollary.
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Corollary 7. Consider a symmetric family F of sets that does not contain

any 3-cycle or comb, and let O be its set of outside elements. Then F|O is

a circular representable hypergraph.

Proposition 6 and Corollary 7 follow easily from Tucker’s characteriza-
tion [23] of interval hypergraphs, i.e. hypergraphs (or families of sets) for
which there exists a total ordering of the elements of the ground set such
that every hyperedge (set) corresponds to an interval in the ordering. Tucker
gives a necessary and sufficient condition for a 0-1 matrix to have the con-
secutive 1’s property, see Duchet [6] for a short proof of Tucker’s result in
terms of hypergraphs.

Theorem 8 (Tucker [23]). A family of sets define an interval hypergraph

if and only if it does not contain any of the families listed in Figure 8 as an

induced subfamily.

Fig. 8. List of excluded subhypergraphs for interval hypergraphs: Cn for n ≥ 3, O1, O2,

Nn for n ≥ 1 and Mn for n ≥ 1. Solid dots represent non-empty intersections.

Proof of Proposition 6. Select an element v0 arbitrarily and consider the
family C = {S ∈ F : v0 /∈ S}. We need to show that C is an interval hyper-
graph. By Tucker’s Theorem, we only need to show that C does not contain
any of the subfamilies of Figure 8. Observe that Cn is an induced cycle
not containing v0, and therefore is not present by assumption. Similarly,
an induced cycle can be obtained from Mn and Nn by complementing the
large sets; these cycles do not contain the element marked X in Figure 8.
O2 is a comb, and a comb can be obtained from O1 by complementing the
4-element set which would then contain the special element v0. As we have
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no comb in our family, O1 and O2 cannot arise. Therefore, C is an interval
hypergraph, and F is a circular representable hypergraph.

To construct the polygon representation, we start with a convex k-gon
with vertices a1, a2, . . . , ak (clockwise) where k = |O|, and place the outside
elements along the k sides in the circular order given by Proposition 7
so that any diagonal of the k-gon partitions the outside elements into 2
intervals in the circular ordering. From Proposition 10 stated and proved
below, we can derive that any set S ∈ F partitions O non-trivially, i.e.
S ∩ O �= ∅ and O \ S �= ∅. This means that we can associate with S one
of the diagonals of our polygon, corresponding to the way it partitions the
outside elements. Since we were assuming that any two elements (including
consecutive elements of O in the circular ordering) were separated by a set
S ∈ F (by our definition of atoms at the beginning of this Section), we have
at least one diagonal incident to every vertex of our k-gon.

The trouble though is that several pairs of complementary sets might
be assigned to the same diagonal. As an example, consider F4 consisting of
a 4-cycle together with the complementary sets:

F =
{
{1, 2}, {2, 3}, {3, 4}, {1, 4}, {3, 4, 5}, {1, 4, 5}, {1, 2, 5}, {2, 3, 5}

}
.

Element 5 is inside, while 1,2,3 and 4 are outside; however {1, 2}, {3, 4, 5}
and {1, 2, 5}, {3, 4} separate O = {1, 2, 3, 4} in the same way, and there is
no space between the corresponding diagonals to place element 5. We will
prove in Proposition 15 that all sets S having the same intersection with
O, say S ∩ O = A, form a chain S1 ⊇ S2 ⊇ · · · ⊇ Sp. So far, all these sets
correspond to the same diagonal, say from au to av. We modify the polygon
by replacing au by p vertices, say a

1
u, . . . , a

p
u clockwise, by replacing av by

p vertices, say a
1
v, . . . , a

p
v anticlockwise and by assigning Si to the diagonal

[ai
u, a

i
v] for i = 1, . . . , p, see Figure 9. The sets S1, . . . , Sp are now assigned

to p non-crossing diagonals (i.e. which do not intersect in the interior of
the polygon). Other diagonals incident to au, like [au, aw], are moved to be
incident to either a

1
u if w is between v and u (clockwise) or to a

p
u if w is

between u and v (clockwise), see Figure 9. The same process is repeated
for every diagonal which corresponds to more than one set. Overall, this
creates a polygon with |O| + |F| −

∣∣
F|O

∣∣ vertices. To reduce this number
of vertices, we could have replaced only au (or av) by p vertices instead of
replacing both; the proofs also carry through in that case.
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Fig. 9. For sets S having the same intersection with O, we expand the polygon and

introduce non-crossing diagonals.

In the example of F4 (4-cycle plus the complementary sets), we first
take a (convex) quadrilateral as there are 4 outside elements and then add
4 additional vertices to duplicate the two diagonals, see Figure 10.

Fig. 10. Construction of the polygon and placement of the outside elements for the

symmetrized 4-cycle; observe that there is a shaded cell to correctly place element 5.

At this point, we have constructed a convex q-gon a1, . . . , aq, placed all
the outside elements, and assigned every set S ∈ F to one of its diagonal, say
�(S) = [ai(S), ai(S)] for some indices i(S), i(S). Observe that this polygon

has the following important property (in addition to representing F|O):

Proposition 9. Let S1, S2 ∈ F . Then the corresponding diagonals �(S1)
and �(S2) do not cross (i.e. do not intersect in the interior of P ) if and only

if the sets S1 ∩ O and S2 ∩ O do not cross in O (i.e. S1 ∩ O ⊆ S2 ∩ O,

S2 ∩O ⊆ S1 ∩O, S1 ∩ S2 ∩O = ∅, or S1 ∪ S2 ⊇ O).

Indeed, this is true for our initial k-gon with k = |O|, and remains true
as we introduce additional vertices and diagonals.

We now need to prove (i) every S ∈ F partitions O non-trivially and
(ii) that sets that have the same intersection with O form a chain, and then
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prove that (iii) our (deformable) polygon representation can be correctly
completed, i.e. that inside elements can be placed appropriately within cells
of the arrangement of diagonals of our polygon and this should be true
independently of the position of the vertices a1, . . . , aq. We start with a
stronger statement than (i) which will be also useful for (ii) and (iii).

Proposition 10. Consider a family F of sets with a connected cross graph

that does not contain any 3-cycle or comb. Let S be a minimal set in F .

Then S ⊆ O.

This is the first time we require that the family has a connected cross
graph. This proposition implies that any (not necessarily minimal) set
S ∈ F must contain outside elements since all elements in any minimal
subset of S will be outside. Applying the same proposition to S̄, we see
that every set S ∈ F partitions O non trivially.

As a first (and main) step in the proof, we show the following lemma.

Lemma 11. Consider a family F that does not contain any 3-cycle or comb.

Let S ∈ F contain an inside element v, and let C1, . . . , Ck be a cycle for v

(i.e. v /∈ (∪Ci)). Then either

1. there exists i such that Ci ⊂ S, or

2. S is disjoint from ∪iCi.

Observe that we did not impose that the cross graph was connected. In
fact, in Lemma 12, we will show that 2. can only happen if S and the cycle
belong to different connected components of the cross graph.

Proof. Let us assume that Ci �⊂ S for all i = 1, . . . , k. We proceed in several
steps.

Claim 1. For all i, (Ci ∩ Ci+1) \ S �= ∅. If not (see Figure 11, (a)), there
exists i such that Ci∩Ci+1 ⊂ S and we claim that Ci, Ci+1 and S̄ form
a 3-cycle. Indeed Ci ∩ Ci+1 ∩ S = Ci ∩ Ci+1 �= ∅, v ∈ S \ (Ci ∪ Ci+1),
Ci \ (Ci+1 ∪ S) = Ci \ S �= ∅ by our assumption, and similarly
Ci+1 \ (Ci ∪ S) �= ∅.

Claim 2. For all i,
(
S \ (Ci−1 ∪ Ci+1)

)
∩ Ci = ∅. If not (see Figure 11,

(b)), we have a comb with handle Ci and teeth Ci−1, Ci+1 and S.
Indeed,

[
Ci∓1 \ (Ci±1 ∪ S)

]
∩ Ci = [Ci∓1 \ S] ∩ Ci �= ∅ by claim 1,[

S \ (Ci−1 ∪ Ci+1)
]
∩ Ci �= ∅ by assumption,

[
Ci∓1 \ (Ci±1 ∪ S)

]
∩

Ci = [Ci∓1 \ S] ∩ Ci ⊇ (Ci∓1 ∩ Ci∓2) \ S �= ∅ by claim 1, and
v ∈

[
S \ (Ci−1 ∪ Ci+1)

]
∩ Ci.
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Fig. 11. Cases in the proof of Lemma 11.

Claim 3. For all i, S is disjoint from Ci. If not, there exists i with
S ∩ Ci �= ∅. By Claim 2, ∅ �= S ∩ Ci = S ∩ Ci ∩ (Ci−1 ∪ Ci+1) =
(S ∩ Ci ∩ Ci−1) ∪ (S ∩ Ci ∩ Ci+1). Thus, S ∩ Cl−1 ∩ Cl �= ∅ for l = i

or l = i + 1. This implies that Cl−1, Cl and S̄ form a 3-cycle (see Fig-
ure 11, (c)) since v ∈ S\(Cl−1∪Cl), Cl\(Cl−1∪S) ⊇ (Cl∩Cl+1)\S �= ∅

by claim 1 and Cl−1 \ (Cl ∪S) ⊇ (Cl−1∩Cl−2)\S �= ∅ also by claim 1.

This completes the proof of the lemma.

Lemma 12. Consider a family F of sets with a connected cross graph

that does not contain any 3-cycle or comb. Let S ∈ F contain an inside

element v, and let C1, . . . , Ck be a cycle for v. Then there exists i such that

Ci ⊂ S.

Proof. From Lemma 11, assume that S is disjoint from all Ci’s. Since
the cross graph is connected, there exists a path in the cross graph from
S to one of the Ci’s. Take a shortest path from S to one of the Ci’s and
consider the last two sets P and Q on it (P might be S), see Figure 12.
We therefore have P disjoint from all Ci’s, Q crossing one of them, and P

and Q crossing. By Lemma 11 applied to Q and Q̄, we derive that Q ⊃ Cs

for some s and that Q is disjoint from Ct for some t. Therefore, we can
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find two non-consecutive (and hence disjoint) sets Ci and Cj which both
cross Q. However, this is a contradiction since we now have three sets, Ci,
Cj and P , all disjoint and all crossing Q, which therefore form a comb.

Fig. 12. Setting in the proof of Lemma 12.

Proposition 10 now follows straightforwardly from Lemma 12. We now
need to consider the intersection of two sets in our family; this will be useful
both for showing (ii) that sets having the same intersection with O form
a chain, and (iii) that inside elements can be placed appropriately in the
interior of the polygon. Throughout the rest of this section, we assume that
F ⊂ 2V is a symmetric family of sets with a connected cross graph that
does not contain any 3-cycle or comb. For brevity, the assumption will not
be stated in every statement.

Proposition 13. Let S1, S2 be two sets in F with S1∩S2 �= ∅ and minimal

in the following sense: there are no S3, S4 ∈ F with S3 ⊆ S1, S4 ⊆ S2 and

∅ �= S3 ∩S4 �= S1 ∩S2. Then either S1 ∪S2 = V or S1 ∩S2 ⊆ O, i.e. S1 ∩S2

only contains outside elements.

Proof. Assume that S1 ∩S2 contains an inside element v, corresponding to
a cycle C1, . . . , Ck. We would like to show that S1 ∪ S2 = V . By Lemma
12 applied to S1 and S2, we know the existence of Cs ⊂ S1 and Ct ⊂ S2.
We claim that Cs ⊆ S1 \S2; if not, replacing S1 by Cs would contradict the
minimality of S1, S2 as Cs ∩ S2 � S1 ∩ S2. Similarly, Ct ⊆ S2 \ S1.

Let p and q be such that Cp+1, . . . , Cs, . . . , Cq−1 ⊆ S1 \ S2, but Cp �⊆

S1 \ S2 and Cq �⊆ S1 \ S2. Since p and q cannot be consecutive (because of
the existence of t), we have that Cp and Cq are disjoint. Moreover, because
of minimality, we also have that Cp �⊂ S1 and Cq �⊂ S1. The fact that
Cp crosses Cp+1 ⊆ S1 \ S2 implies that (a) Cp ∩ (S1 \ S2) �= ∅ and (b)
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S1 \ (S2 ∪ Cp) �= ∅, and the same holds for Cp replaced with Cq (and Cp+1

replaced with Cq−1).

We consider two cases.

1. Assume first that Cp \ (S1 ∪S2) �= ∅. If Cq ∩ (S2 \S1) �= ∅ then Cq, S1

and S2 would form a 3-cycle, a contradiction: (S1 ∩ Cq) \ S2 �= ∅ by
(a) for Cq, (S2 ∩ Cq) \ S1 �= ∅ by assumption, (S1 ∩ S2) \ Cq �= ∅ as it
contains v, and S1 ∪ S2 ∪ Cq ⊇ Cp \ (S1 ∪ S2) �= ∅ since we assumed
it.

Thus we can assume that Cq ∩ (S2 \ S1) = ∅, which implies that
Cq \ (S1 ∪S2) = Cq \S1 �= ∅. We now claim that the teeth Cp, Cq and
S2 together with the handle S1 form a comb, a contradiction. Indeed,
the following six sets are non-empty:

•

(
Cp \ (Cq ∪ S2)

)
∩ S1 = Cp ∩ (S1 \ S2) �= ∅ by (a),

• similarly for
(
Cq \ (Cp ∪ S2)

)
∩ S1,

•

(
S2 \ (Cp ∪ Cq)

)
∩ S1 as it contains v,

•

(
Cp \ (Cq ∪ S2)

)
∩ S1 = Cp \ (S1 ∪ S2) �= ∅ by our assumption,

•

(
Cq \ (Cp ∪ S2)

)
∩ S1 = Cq \ (S1 ∪ S2) �= ∅ as we have derived,

•

(
S2 \ (Cp ∪ Cq)

)
∩ S1 = S2 \ (S1 ∪ Cp ∪ Cq) = S2 \ (S1 ∪ Cp) ⊇

Ct\Cp �= ∅ (the second equality following from Cq∩(S2\S1) = ∅).

2. We can therefore assume that Cp ⊆ (S1∪S2) and Cq ⊆ (S1∪S2). Now,
S1, S2 and Cp (or Cq) form a 3-cycle (v ∈ S1∩S2 \Cp, Cp∩S1 \S2 �= ∅

by (a), Cp ∩ S2 \ S1 = Cp \ S1 �= ∅) unless S1 ∪ S2 = V , proving the
result.

Corollary 14. Let S1, S2 be two sets in F with S1 ∩ S2 �= ∅. Then either

S1 ∪ S2 = V or S1 ∩ S2 ∩O �= ∅.

The corollary follows from Proposition 13 by considering a minimal pair
(S3, S4) within (S1, S2).

As a side remark, Corollary 14 implies that if there exists an inside
element v then we must have at least 4 outside elements; a cycle C1, . . . , Ck

for v (where k ≥ 4) shows the existence of outside elements in each Ci∩Ci+1.
On the other hand, if we have no inside element and fewer than 4 outside
elements then we must have |V | = |O| = 2 as a family on 3 elements could
not have a connected cross graph.

We can also deduce from Corollary 14 that sets with the same intersec-
tion with O form a chain.
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Proposition 15. Let A ⊆ O, and let C = {S ∈ F : S ∩O = A}. Then C is

a chain, i.e. the members of C can be ordered such that S1 ⊂ S2 ⊂ · · · ⊂ Sp.

Proof. Consider any two members S and T in C, and let S\T �= ∅ (if S ⊆ T

then simply exchange S and T ). By applying Corollary 14 to S and T , we
obtain that S ∪ T = V , i.e. T ⊆ S. As this is true for any two sets in C, we
have that C is a chain.

What remains now is to show that any inside element v can be placed
in one of the cells of P \

{
�(S) : S ∈ F

}
. Fix an inside element v, and

let Fv = {S ∈ F : v ∈ S}. For any S ∈ F , let R(S) be the intersection
of the interior of the polygon with the open halfplane on the left of the
line through aS and aS (i.e. the halfplane already containing the elements
S ∩ O). To prove that v can be placed adequately, we need to prove that
∩S∈Fv

R(S) �= ∅. Interestingly, this is an implication of Helly’s theorem in
2 dimensions (see e.g. [14]):

Theorem 16 (Helly). Let a collection of convex subsets of R
d have the

property that any collection of up to d + 1 of them have a non-empty

intersection. Then all of them have a common intersection.

To apply Helly’s theorem, we first consider the intersection of two such
regions, and then show that the intersection of three regions essentially
reduces to the intersection of two regions. In the proofs below, cl(·) denotes
the closure operator.

Proposition 17. Let S1, S2 ∈ Fv. Then R(S1) ∩R(S2) �= ∅.

Proof. If S1∪S2 = V then, by Proposition 9, the diagonals �(S1) and �(S2)
do not cross. If R(S1) and R(S2) were disjoint then the fact that S1 ∪ S2

contains all outside elements would imply that S1 and S2 have identical
intersections with O. But this case was taken care of when we introduced
additional polygon vertices, as we made sure that if S1 ∩ O = S2 ∩ O

and S1 ∩ S2 �= ∅ then R(S1) ∩ R(S2) �= ∅. In fact, R(S1) ∩ R(S2) is a
strip extending between �(S1) and �(S2); more formally, �(Si) ⊂ cl

(
R(S1)∩

R(S2)
)

for i = 1, 2.

If S1∪S2 �= V then Corollary 14 implies that S1∩S2 contains an outside
element w, and the result follows trivially as the cell containing w will be
in R(S1) ∩R(S2).
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Finally, we consider the intersection of 3 regions defined by sets in Fv.

Proposition 18. Let S1, S2, S3 ∈ Fv. Then R(S1) ∩R(S2) ∩R(S3) �= ∅.

Proof. If S1 ∩ S2 ∩ S3 contains an outside element, we are done. Thus, we
assume that S1 ∩ S2 ∩ S3 ∩O = ∅. We consider two cases.

Case 1. For every pair (i, j), Si ∪ Sj �= V . In this case, Corollary 14 im-
plies that Tij = Si ∩ Sj ∩O �= ∅ for 1 ≤ i < j ≤ 3. As the intersection
of any two of the Tij ’s is empty (S1∩S2∩S3∩O = ∅), we have that the
three sets Si−1∩Si+1 \Si are non-empty for i ∈ {1, 2, 3}. As S1, S2, S3

do not form a 3-cycle, we must have that S1 ∪ S2 ∪ S3 = V . We also
know that S1, S2, S3 do not form a 3-cycle, and as v /∈

⋃
i Si, we have

that Si ∩ Sj \ Sk = ∅ for some permutation i, j, k of {1, 2, 3}. The
fact that

⋂
l Sl = ∅ then implies that Si ∩Sj = ∅, i.e. that Si ∪Sj = V

contradicting our assumption.

Case 2. Si ∪ Sj = V for some i, j ∈ {1, 2, 3}, i �= j. As in the first part
of the proof of Proposition 17, we derive that both diagonals �(Si)
and �(Sj) are in cl

(
R(Si) ∩ R(Sj)

)
. Let k be the remaining index.

If �(Sk) crosses either �(Si) or �(Sj) then a segment of �(Sk) is in
cl

(
R(S1)∩R(S2)∩R(S3)

)
showing non-emptyness of the intersection.

On the other hand, if �(Sk) crosses neither �(Si) nor �(Sj) then either
R(Sk) ⊇ R(Si) ∩ R(Sj) (and we are done) or R(Sk) ∩ R(Si) = ∅ or
R(Sk) ∩ R(Sj) = ∅. In these latter cases, we obtain a contradiction
from Proposition 17.

Helly’s theorem thus shows that every inside element can be placed in
one of the cells. As we did not make any assumptions on the position
of the vertices a1, . . . , aq (except that they are in convex position), the
polygon representation obtained is deformable, and this completes our proof
of Theorem 2.

We now state a few more properties of the polygon representation. First,
we can strengthen Proposition 9.

Proposition 19. Consider a symmetric family with a connected cross graph

and no 3-cycles or combs, and consider its deformable polygon representa-

tion. Let S1, S2 ∈ F . Then the following are equivalent:

1. the diagonals �(S1) and �(S2) do not cross,

2. the sets S1 ∩O and S2 ∩O do not cross in O,

3. the sets S1 and S2 do not cross.
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Indeed, Proposition 9 says that 1. and 2. are equivalent, 3. always im-
plies 2., and 1. implies 3. simply by the existence of the polygon represen-
tation.

In Proposition 15, we have shown that sets with the same intersection
with O form a chain, and this was the basis for introducing new polygon
vertices after having placed the outside elements. We now show that this
can only happen if we have 4-cycles.

Proposition 20. If S1, S2 ∈ F with S1 �= S2 and S1 ∩O = S2 ∩O then F

contains a 4-cycle.

Proof. By Proposition 15, we can assume that S1 ⊂ S2. Let v ∈ S2 \ S1;
v must be inside as (S2 \ S1) ∩ O = ∅. Let C1, . . . , Ck be a cycle for v.
Remember that O ⊆ ∪iCi and that Ci ∩ Ci+1 ∩ O �= ∅ (by Corollary 14).
Thus, there is an index i so that Ci contains elements of both A and O \A,
where A = S1∩O = S2∩O. If Ci contains all elements of A then Ci and S2

do not cross in O (as S2∩O = A), and by Proposition 19, they do not cross
(in V ); thus either S2 ⊆ Ci or Ci ⊆ S2. This is a contradiction as v ∈ S2\Ci

and S2∩O � Ci∩O. Therefore, Ci crosses S1 and S2. Similarly, this implies
that there exists another index j such that Cj crosses S1 and S2. If i and
j are consecutive then we have a 3-cycle Ci, Cj and S1, a contradiction.
Otherwise, we have a 4-cycle composed of Ci, S1, Cj and S2.

If we have a chain S1 ⊂ · · · ⊂ Sk with S1 ∩ O = Sk ∩ O, we say that
the inside elements in Sk \ S1 are sandwiched by this chain. The next
proposition shows that any inside element can be sandwiched by at most
2 chains; otherwise, we would have a 3-cycle, a contradiction. This will
be useful when establishing a tight bound on the size of families with no
3-cycles or combs in Proposition 26.

Proposition 21. For v ∈ V , let A =
{
{A, O \A} : ∃ S1, S2 ∈ F s.t. v /∈ S1,

v /∈ S2, S1 ∩O = A, and S2 ∩O = O \A

}
. Then |A| ≤ 2.

Proof. Assume on the contrary that a given v ∈ V is sandwiched by 3
chains. Thus, we have Sik ∈ F for i = 1, 2, 3 and k = 1, 2 with v /∈ Sik for
all i and k, Si1 ∩O = Ai for all i, Si2 ∩O = O \Ai for all i, and the 6 sets
Ai’s and O \Ai’s are all distinct. Furthermore, possibly exchanging Si1 and
Si2 (replacing Ai by O \Ai), we can assume that w ∈ A1∩A2∩A3 for some
w ∈ O.
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We claim that, for any i, j ∈ {1, 2, 3} with i �= j, Ai and Aj cross in O.
Otherwise, suppose that Ai ⊂ Aj . Applying Proposition 19 to Si2 and Sj1

(recall that Si2 ∩ O = Ai and Sj1 ∩ O = Aj , we get that Si2 ⊂ Sj1, a
contradiction as v ∈ Si2 \ Sj1.

Therefore, the Ai’s are pairwise mutually crossing in O and correspond
all to circular intervals of O containing w. This means that their start
elements (of their circular interval) in O are distinct, so are their end
elements, and these elements are ordered in the same way among the 3 sets.
Say that A2 corresponds to the middle interval. Then A1, O \ A2 and
A3 are such that the intersection of any two of them minus the third one
is non-empty. This implies that S11, S22 and S31 form a 3-cycle for v, a
contradiction.

4. Mincuts and Near-Mincuts

In this section, we show that the main configurations discussed in the pre-
vious sections do not exist for families of cuts of sufficiently small value
compared to the edge-connectivity. In particular, we show that each con-
nected component of the cross graph of 6/5-near-mincuts has a deformable
polygon representation. Recall that λ denotes the edge-connectivity and an
α-near-mincut is a cut whose value is (strictly) less than αλ.

In what follows, let d(X, Y ) denote the total weight of edges connecting
X, Y ⊂ V in a weighted graph G = (V, E). We first show that sufficiently
near-mincuts have no short cycles as defined in Definitions 1 and 3.

Lemma 22 (Excluded Cycles). Let k δ-near-mincut sides Ci for i ≤ k form

a k-cycle. Then δ > 1 + 1/k.

Proof. For k = 3 the result follows from 3-way submodularity of the cut
function, see Lovász [13], exercise 6.48 (c):

3δλ > d(C1) + d(C2) + d(C3) ≥ d(C1 ∩ C2 \ C3) + d(C1 ∩ C3 \ C2)

+ d(C2 ∩ C3 \ C1) + d(C1 ∪ C2 ∪ C3) ≥ 4λ.

3-way submodularity can be established by observing that the contribution
of any edge is at least as large on the left-hand-side as on the right-hand-
side.
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For k ≥ 4, a similar edge counting argument gives:

d(∪iCi) +
∑
i≤k

d(Ci ∩ Ci+1) ≤
∑
i≤k

d(Ci).

Indeed, (i) an edge that contributes to the left-hand-side also contributes to
the right-hand-side,(ii) no edge contributes more than twice to the left-hand-
side, and (iii) an edge that contributes twice to the left-hand-side must be
either between some Ci∩Ci+1 and ∪jCj or between Ci∩Ci+1 and Cj∩Cj+1

for i �= j; in all cases, it contributes at least twice to the right-hand-side.
Since d(Ci) < δλ, d(Ci ∩ Ci+1) ≥ λ for i ≤ k and d(∪iCi) ≥ λ, the above
inequality implies that δ > 1 + 1

k as required.

In particular, 6/5-near-mincuts may not contain k-cycles for k ≤ 5, 4/3-
near-mincuts have no 3-cycles, and mincuts contain no cycles at all.

Lemma 23 (Excluded Combs). There are no four 6/5-near-mincut sides

T1, T2, T3 and H which form a comb as defined in Definition 2.

Proof. Definition 2 gives 3 disjoint and nonempty subsets C1, C2 and C3

of H: Either Ci is H ∩

(
Ti \ (Ti−1 ∪ Ti+1)

)
or Ci is H ∩ (Ti−1 ∩ Ti+1 \ Ti).

Similarly, it gives 3 disjoint nonempty subsets D1, D2 and D3 of H. By a
counting argument, one observes that

(2) d(T1) + d(T2) + d(T3) + 2d(H)

≥ d(C1) + d(C2) + d(C3) + d(D1) + d(D2) + d(D3).

Indeed, either an edge does not cross H and the counting argument is similar
to the derivation of 3-way submodularity, or the edge crosses H in which
case its multiplicity is at most 2 on the right-hand-side and at least 2 on
the left-hand-side. Inequality (2) now implies that 5δλ > 6λ.

We have thus derived that the symmetric family of 6/5-near-mincut sides
does not contain any comb and any k-cycles for k ≤ 5. Thus each connected
component of its cross graph admits a deformable polygon representation.
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5. Tree Hierarchy

In this section, we show that the connected components of the cross graph
of any symmetric family F ⊆ V of sets can be arranged in a tree struc-
ture. We first derive it for families with no combs and cycles, and in so
doing, rederive the tree structure of a (slightly modified) cactus representa-
tion. Then we show that the tree structure depends only on the connected
components of the cross graph and thus can be applied to arbitrary sym-
metric families, including those having deformable polygon representations
for each connected component of the cross graph. This tree structure will
then be used to derive bounds on the size of the representation and (in the
next section) on the cardinality of symmetric families with no 3-cycles or
combs.

To fix notation, let F1, . . . ,Fq represent the sets in each of the connected
components of the cross graph. Also, for any 1 ≤ i ≤ q, let Pi denote the
partition of V induced by Fi, i.e. the members of Pi correspond precisely to
the atoms of Fi as defined at the beginning of Section 3. Observe that, for
any i, the number of atoms in Pi can either be 2 or greater or equal to 4.
Indeed, if |Pi| was 3 the corresponding pairs of sets would not be crossing.

The tree structure on the connected components essentially follows from
laminarity. It is similar to the usual cactus representation for the mincuts
of a graph, except that, there, the cuts represented by a cycle of the cactus
do not quite form a single connected component of the cross graph. Indeed
the cut corresponding to a single atom (i.e. two consecutive edges of the
cycle) does not cross any of the other cuts represented by the cycle and
thus do not belong to the same connected component of the cross graph.
Here, however, we redefine the cactus representation and assume that the
cuts represented by a cycle of length k with k �= 2 of the cactus are the cuts
obtained by removing two non-consecutive edges of the cycle. The rest of
the definition is unchanged. It is rather easy to see using classical arguments
that the mincuts of a graph admit a cactus representation for this slightly
modified notion of a cactus representation. For completeness, we provide
here a somewhat different proof, of a geometric nature as in the rest of this
paper. For generality and to be able to later apply it to our deformable
polygons, we state it in terms of symmetric families with no cycles or combs
(recall that from Lemmas 22 and 23, mincut sides do not have any cycles
or combs).
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Proposition 24. Let F ⊆ 2V be a symmetric family of sets with no cycles

and no combs. Let Fi be the connected components of its cross graph and

let Pi be the partition of V corresponding to the atoms of Fi. Then there

exists a cactus H = (N, A) and a mapping φ : V → N such that

1. H has no cycle of length 3,

2. there is a 1-to-1 correspondence between the connected components

Fi of the cross graph and the cycles Ci of H,

3. the removal of the edges of Ci = u1 − u2 · · · − uk − u1 break H

into k (depending on i) connected components, A1, . . . , Ak ⊂ N where

uj ∈ Aj such that Pi =
{

φ
−1(Aj) : 1 ≤ j ≤ k

}
,

4. for each set S ∈ F , there is a unique cycle Ci in H and two edges

of Ci which are non-consecutive if the cycle is not of length 2, whose

removal partitions N into U and N \ U with S = φ
−1(N).

To complete the proof that mincuts admit a (modified) cactus repre-
sentation, it remains to show that the removal of any 2 edges of a cycle
– non-consecutive if the cycle has length different from 2 – gives a min-
cut of G. This follows from submodularity of the cut function (union or
intersection of crossing mincuts is a mincut); this is left to the reader.

Proof. From Proposition 6 and Lemmas 22 and 23, we know that F is
a circular representable hypergraph. Consider one such circular ordering
v1, . . . , vn where n = |V |. If there are several, take one in which the
elements in each atom of F appear consecutively in the ordering (one could
for example first shrink the atoms of F).

We provide a geometric construction of the cactus. Take a circle and
divide it into n arcs representing the vertices in the circular ordering. For
each pair of complementary sets S, S, draw the corresponding chord that has
S on one side and S on the other. Observe that two chords corresponding
to S1 and S2 will cross in the geometric sense (i.e. will have an intersection
in their relative interior) if and only if the sets S1 and S2 cross.

Consider any of the connected components of the cross graph, say Fi

with partition Pi. The chords defining Fi connect k = |Pi| points on the
circle, say p1, p2, . . . , pk, and the arcs between these points correspond to
the sets in Pi. See Figure 13. Let Ri be the convex hull of these points. The
fact that sets from different components do not cross imply that the chord
for a set of a different component Fj can only intersect Ri on its boundary.
This means that the relative interiors of any two such regions, Ri and Rj ,
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will be disjoint. Replace all the chords corresponding to Fi by a star with
root ri and k spokes connected to p1, . . . , pk. To make sure that the stars
for different components do not cross, place ri in the relative interior of Ri.
This gives a plane graph D with the outside region delimited by our circle.
Now define H to be its dual graph except that we do not create a node of H

for the outside face of D. The nodes of H corresponding to the inside faces
of D along the circle are labelled with the atoms of F . The node set N of
H is thus the set of bounded faces of D. Observe that H will be the union
of cycles, one for each vertex ri. Furthermore, every edge is in precisely one
cycle; thus, H is a cactus. All the claims in the statement of the Proposition
follow easily from the construction itself.

This construction of this modified cactus representation has slightly
more empty nodes than the usual constructions; the size is still linear as
shown below.

Proposition 25. The modified cactus representation for a symmetric family

F ⊆ 2V with no cycles and no combs has at most 3n− 4 nodes and at most

5n− 8 edges where n = |V | ≥ 2.

Proof. Let Np(n) and Ep(n) resp. represent the maximum number of nodes
and edges resp. of our cactus representation for families with at most p non-

trivial connected components, where we define a connected component as
non-trivial if it contains more than one pair of complementary sets. We
proceed by induction on p.

If F has no crossing sets (p = 0) then the number of chords in our
construction is at most 2n−3 (the maximum cardinality of a laminar family
with no complementary sets). Each chord will lead to 2 edges of the cactus
and the cactus will be a tree of cycles of length 2. Thus, its number of edges
will be at most E0(n) = 4n− 6 ≤ 5n− 8 for n ≥ 2 and the number of nodes
will be at most N0(n) = 2n− 2 ≤ 3n− 4.

Suppose F has p non-trivial connected components for p > 0. Let Fi

be a connected component of the cross graph which induces a partition
Pi with k ≥ 4 atoms. Let n1, . . . , nk be the cardinalities of these atoms.
Geometrically, we can partition F \Fi into k symmetric families G1, . . . ,Gk

in a natural way: for the jth family Gj , we only keep those chords that are
on the side of [pj , pj+1] opposite to Ri. Observe that [pj , pj+1] might be one
of the chords represented by this family. Collectively, the representations for
the Gj ’s account for all nodes and edges of the representation for F , except
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Fig. 13. Obtaining a cactus. (a): The cyclic ordering. The sets are represented by

chords. There are 12 connected components, the dashed one, the dotted one, and 10

others with only one chord. The dashed component connects p1, . . . , p5. (b): Replacing

every component by a star with root ri. (c): Inside faces along the circle are labelled

with the atoms of F , and the dual graph is the cactus.
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for the k edges of the cycle corresponding to Fi. Gj has at most nj + 1
atoms (and fewer non-trivial components), and by induction, we therefore
get that:

Np(n) ≤

k∑
j=1

Np−1(nj + 1) ≤
∑

j

(3nj − 1) = 3n− k ≤ 3n− 4

and

Ep(n) ≤
k∑

j=1

Ep−1(nj + 1) + k ≤

∑
j

(5nj − 3) + k = 5n− 2k ≤ 5n− 8,

since k ≥ 4.

The bounds given in Proposition 25 are tight whenever n is even, and
this is achieved when we have (n − 1)/2 disjoint cycles of length 4 in the
cactus linked by cycles of length 2, see Figure 14.

Fig. 14. A cactus with 3n − 4 nodes and 5n − 8 edges for a symmetric family with no

cycles or combs defined on a ground set of size n = 2k.

This cactus representation provides a way to combine representations
(i.e. cycles on partitions of V ) for each connected component of the cross
graph in a tree structure in which certain atoms of different connected
components (i.e. cycles) are identified (those corresponding to the same
node of the cactus). To highlight the tree T (and get rid of the cycles),
we can replace each cycle of the cactus H by a star rooted at a new node
representing this connected component of the cross graph. In other words,
the nodes of T consist of (i) one node in C for each connected component
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of the cross graph and also (ii) one node in N for each node of the cactus;
the latter ones correspond to atoms that have been identified from one or
several connected components of the cross graph. T has an edge between
a node c in C and a node u in N if one of the atoms of the connected
component corresponding to c is associated with node u of the cactus.

This can be generalized to any symmetric family (independently of
whether each connected component of the cross graph can or cannot be
represented by polygons). For any symmetric family F , consider the con-
nected components Fi of the cross graph and let Pi be the atoms of Fi.
Now, for each i, arbitrarily choose a cyclic ordering on the atoms in Pi and
define Gi to be the family of sets (with the same atoms as Fi) correspond-
ing to cyclic intervals containing at least 2 and at most ki − 2 of the atoms
in Pi, where ki = |Pi| ≥ 4 is the number of atoms of Fi; if ki = 2 (i.e.
the component is trivial), we simply let Gi = Fi. Observe that the family
G = ∪Gi has no cycles or combs since (i) the connected components of the
cross graph of G are still the Gi’s, (ii) any cycle or comb would need to be
contained within a connected component of the cross graph and (iii) the
Gi’s have no combs or cycles by construction. By Proposition 24, the family
G has a cactus representation, and this means that atoms of different con-
nected components of the cross graph of G, and thus of F , are identified.
This gives a tree T for G and thus also for F . If each connected component
of the cross graph has a deformable polygon representation, these polygon
representations together with the tree T form our representation as a tree

of deformable polygons.

6. Size of the Family

In this section, we deduce from the representation as a tree of deformable
polygons that any symmetric family of sets F ⊂ 2V with no 3-cycles and
no combs has at most

(
n
2

)
complementary pairs where n = |V |. For near-

mincuts, this shows that there are at most
(
n
2

)
6/5-near-mincuts, although

this is known even for 4/3-near-mincuts [19, 9] and a direct proof is simpler.
See also [10] for a proof that there are at most O(n2) 3/2-near-mincuts.

Proposition 26. Let F ⊆ 2V
\ {∅, V } be a symmetric family of sets with

no 3-cycles or combs. Then |F| ≤ n(n− 1) where n = |V |, i.e. the number

of complementary pairs is at most
(
n
2

)
.
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Proof. We will first focus on a connected component Fi of the cross graph
with k ≥ 4 atoms, and show that our construction of a deformable polygon
gives rise to at most k(k − 3)/2 diagonals. Let kout ≥ 4 and kin be the
number of outside and inside atoms respectively; thus k = kout + kin. If
Fi has no 4-cycles then our polygon has kout sides (see Proposition 20) and
its number of diagonals is at most kout(kout − 3)/2 ≤ k(k − 3)/2. If we
have 4-cycles then by Proposition 21, the number of diagonals is at most
kout(kout−3)/2+2kin ≤ k(k−3)/2 as (kout+1)(kout−2)/2−kout(kout−3)/2 ≥
2 for kout ≥ 3. Thus, a connected component of the cross graph on k ≥ 4
atoms has at most k(k − 3)/2 diagonals.

Consider now the various connected components of the cross graph and,
as in the proof of Proposition 25, we proceed by induction on p, the num-
ber of non-trivial connected components. Let Sp(n) denote the maximum
number of complementary pairs for families with at most p non-trivial com-
ponents. If p = 0 then we have S0(n) ≤ 2n− 3 ≤

(
n
2

)
complementary pairs,

see Proposition 25. If p > 0, let Fi be one of those non-trivial components
on k ≥ 4 atoms with cardinalities n1, . . . , nk where n =

∑k
j=1

nj . We use
the same notation as in Proposition 25. From the tree structure, we get
that:

Sp(n) ≤
k∑

j=1

Sp−1(nj + 1) +
k(k − 3)

2
≤

k∑
j=1

(
nj + 1

2

)
+

k(k − 3)

2

≤ (k − 1) +
(n− k + 2)(n− k + 1)

2
+

k(k − 3)

2

=

(
n

2

)
− (n− k)(k − 2) ≤

(
n

2

)
,

the third inequality follows from the fact that the maximum of a convex
function over nj ≥ 1 for j = 1, . . . , k and

∑
j nj = n is attained for all but

one nj equal to 1.

We should point out that the existence of a (non-deformable) polygon
representation is not enough to prove the bound of

(
n
2

)
; for example, all

cuts of K4 admit a representation as a tree of (non-deformable) polygons
although there are 7 >

(
4

2

)
of them. One can, however, prove a slightly

weaker bound by observing that a connected component of the cross graph
on k atoms has at most

(
k
2

)
complementary pairs (by Schläfli’s result)

and the same argument as in the proof above gives an overall bound of(
n
2

)
+ 2n− 4.
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7. Conclusion

We have derived a representation for symmetric families that do not contain
3-cycles or combs, and this applies to the family of 6/5-near-mincuts in
a graph. We refer the reader to the Ph.D. thesis [3] of the first author
for algorithmic issues and applications of this representation. It would be
interesting to find a representation for families that may contain combs but
do not have 3-cycles; this would allow to represent 4/3-near-mincuts.

Acknowledgements. The second author would like to thank the hospital-
ity of the Research Institute for Mathematical Sciences, Kyoto University,
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[22] L. Schläfli, Theorie der vielfachen Kontinuität, 1901. In: Gesammelte Mathematis-

che Abhandlungen, volume I (1950), pages 167–387. Verlag Birkhäuser.
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Variations for Lovász’ Submodular Ideas

KRISTÓF BÉRCZI and ANDRÁS FRANK∗

Dedicated to Lovász Laci on the occasion of his 60’th birthday

by his youngest and oldest mathematical descendants

In [18], L. Lovász provided simple and short proofs for two classic min-max

theorems of graph theory by inventing basic techniques to handle sub- or supermo-

dular functions. In this paper, we want to demonstrate that these ideas are alive

after thirty years of their birth.

1. Introduction

Sub- and supermodular set functions play an important role in proving
theorems in graph theory. L. Lovász [18] introduced a submodular technique
to derive the disjoint arborescences theorem of J. Edmonds [2] and another
one to prove a min-max result of C. Lucchesi and D. Younger [19] on
minimum coverings of dicuts of a digraph. It appears that this paper is
the first occurance of the so called uncrossing procedure (apart from a
Hungarian report reviewing Lovász’ solution to a problem of a math student
competition, see [16]). Uncrossing became later a particularly efficient proof
techniqe in submodular optimization.

In the last fifteen years it turned out that several results and techniques
developed for sub- or supermodular set functions can be extended to func-
tions defined on pairs of sets or on bi-sets. Given a ground-set V , we call a
pair X = (XO, XI) of subsets a bi-set if XI ⊆ XO ⊆ V where XO is the
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138 K. Bérczi and A. Frank

outer member and XI is the inner member of X. By a bi-set function we
mean a function defined on the set of bi-sets of V . We will tacitly identify
a bi-set X = (XO, XI) for which XO = XI with the set XI and hence bi-set
functions may be considered as straight generalizations of set functions.

While supermodular set functions are typically used for handling only
edge-connectivity problems, supermodular bi-set functions can be applied
for handling both node- and edge-connectivity problems. For example,
the directed edge-connectivity augmentation problem was solved in [9] via
crossing supermodular set functions while a solution to its node-connectivity
counterpart was derived from a min-max theorem on covering crossing
supermodular bi-set functions [11]. Similarly, an answer to the cheapest
rooted k-edge-connected subgraph problem followed from a min-max result
on covering intersecting supermodular functions by digraphs [5, 6] while the
rooted k-node-connected version was derived from an analogous result on
supermodular bi-set functions [10].

One goal of this work is to exhibit the evolution of Lovász’ proof tech-
nique given for proving Edmonds’ arborescences theorem. In particular, we
extend a theorem of L. Szegő [22] on disjoint coverings of set systems to
those of bi-set systems. This will imply a recent theorem of N. Kamiyama,
N. Katoh, and A. Takizawa [14] which is a proper extension of Edmonds’
disjoint arborescences theorem.

Second, by using the uncrossing technique, a new min-max theorem will
be proved on minimal coverings of two fully supemodular bi-set functions
by digraphs. This may be considered as a generalization of (the cardinality
version of) Edmonds’ (poly)matroid intersection theorem [1, 3]. It also
provides an answer to a simultaneous connectivity augmentation problem
where two given digraphs on the same node set is to be simultaneously
augmented by adding a minimum number of new edges so that the resulting
digraphs includes ki gi-independent paths from si to ti (i = 1, 2) where
gi-independence of paths is a notion including both edge-disjoint and node-
disjoint paths.

In the sequel we use the following notions and notation. The set of all
bi-sets on ground-set V is denoted by P2(V ) = P2. The intersection ∩ and
the union ∪ of bi-sets is defined in a staightforward manner: for X, Y ∈ P2

let X ∩ Y := (XO ∩ YO, XI ∩ YI), X ∪ Y := (XO ∪ YO, XI ∪ YI). We write
X ⊆ Y if XO ⊆ YO, XI ⊆ YI and this relation is a partial order on P2.
Accordingly, when X ⊆ Y or Y ⊆ X, we call X and Y comparable.
A family of pairwise comparable bi-sets is called a chain. Two bi-sets X
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and Y are independent if XI ∩ YI = ∅ or V = XO ∪ YO. A set of bi-sets
is independent if its members are pairwise independent. We call a set of
bi-sets a ring-family if it is closed under taking union and intersection.
Two bi-sets are intersecting if XI ∩ YI �= ∅ and properly intersecting

if, in addition, they are not comparable. Note that XO ∪YO = V is allowed
for two intersecting bi-sets. In particular, two sets X and Y are properly
intersecting if none of X ∩ Y, X − Y, Y − X is empty. A family of bi-sets
is called laminar if it has no two properly intersecting members. A family
F of bi-sets is intersecting if both the union and the intersection of any
two intersecting members of F belong to F . In particular, a family L
of subsets is intersecting if X ∩ Y , X ∪ Y ∈ L whenever X, Y ∈ L and
X ∩ Y �= ∅. A laminar family of bi-sets is obviously intersecting. Two bi-
sets are crossing if XI∩YI �= ∅ and XO∪YO �= V and properly crossing if
they are not comparable. A bi-set (XO, XI) is trivial if XI = ∅ or XO = V .
We will assume throughout the paper that the bi-set functions in question
are integer-valued and that their value on trivial bi-sets is always zero. In
particular, set functions are also integer-valued and zero on the empty set.

A directed edge enters or covers X if its head is in XI and its tail is
outside XO. An edge covers a family of bi-sets if it covers each member
of the family. For a bi-set function p, a digraph D = (V, A) is said to
cover p if �D(X) ≥ p(X) for every X ∈ P2(V ) where �D(X) denotes the
number of edges of D covering X. For a vector z : A → R, let �z(X) :=∑[

z(a) : a ∈ A, a covers X

]
. A vector z : A → R covers p if �z(X) ≥ p(X)

for every X ∈ P2(V ).

A bi-set function p is said to satisfy the supermodular inequality on
X, Y ∈ P2 if

(1) p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ).

If the reverse inequality holds, we speak of the submodular inequality.
p is said to be fully supermodular or supermodular if it satisfies the
supermodular inequality for every pair of bi-sets X, Y . If (1) holds for
intersecting (crossing) pairs, we speak of intersecting (crossing) super-

modular functions. Analogous notions can be introduced for submodular
functions. Sometimes (1) is required only for pairs with p(X) > 0 and
p(Y ) > 0 in which case we speak of positively supermodular functions.
Positively intersecting or crossing supermodular functions are defined anal-
ogously. A typical way to construct a positively supermodular function is
replacing each negative value of a fully supermodular functions by zero.
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Proposition 1.1. The in-degree function �D on P2 is submodular.

2. Packing Arborescences

2.1. Basic cases

An arborescence is defined to be a directed tree in which every node is
reachable from a specified root-node r0. The starting point is a classical
result of J. Edmonds [2]. A digraph D is called rooted (more specifically,
r0-rooted) k-edge-connected with respect to a root-node r0 ∈ V if the
in-degree of every non-empty subset of V − r0 is at least k. By the directed
edge-version of Menger’s theorem this is equivalent to requiring that there
are k edge-disjoint paths from r0 to every node of D.

Theorem 2.1 (Edmonds’ disjoint arborescences: weak form). Let D =
(V, A) be a directed graph with a designated root-node r0. D has k dis-

joint spanning arborescences of root r0 if and only if D is rooted k-edge-

connected, that is,

(2) �(X) ≥ k whenever X ⊆ V − r0, X �= ∅.

Edmonds actually proved his theorem in a stronger form where the goal
was packing k edge-disjoint branchings of given root-sets. A branching
is a directed forest in which the in-degree of each node is at most one.
The set of nodes of in-degree 0 is called the root-set of the branching.
Note that a branching with root-set R is the union of |R| node-disjoint
arborescences (where an arborescence may consist of a single node and no
edge but we always assume that an arborescence has at least one node).
For a digraph D = (V, A) and root-set ∅ ⊂ R ⊆ V a branching (V, B) is
called a spanning R-branching of D if its root-set is R. In particular, if
R is a singleton consisting of an element s, then a spanning branching is a
spanning arborescence of root s.

Theorem 2.2 (Edmonds’ disjoint branchings). In a digraph D = (V, A),
let R = {R1, . . . , Rk} be a family of k non-empty (not necessarily disjoint
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or distinct) subsets of V . There are k edge-disjoint spanning branchings

of D with root-sets R1, . . . , Rk, respectively, if and only if

(3) �(X) ≥ p(X) whenever ∅ ⊂ X ⊆ V

where p(X) denotes the number of root-sets Ri disjoint from X.

Remark. In the special case of Theorem 2.2 when each root-set Ri is a
singleton consisting of the same node r0, we are back at Theorem 2.1.
Conversely, when the Ri’s are singletons (which may or may not be distinct),
then Theorem 2.2 easily follows from Theorem 2.1. However, for general Ri’s
no reduction is known.

The original proof of Edmonds is pretty complex and does not seem to
transform into a polynomial time algorithm. However, R. E. Tarjan ob-
served [23] that Theorem 2.2 itself gives rise to such an algorithm provided
an MFMC subroutine is available. It should be emphasized that this ap-
proach does make use of the theorem and does not provide an alternative
proof of it. On the other hand, L. Lovász [18] gave a simple proof of Ed-
monds’ theorem and this proof is algorithmic. Although Lovász derived only
the weak form of Edmonds’ theorem, his proof carries over to the strong
one almost word for word.

It is interesting to formulate Edmonds’ Theorem 2.2 in the following
equivalent form. Let A0 denote the set of edges of D = (V, A) leaving the
root-node r0 and let A

∗ := A−A0.

Theorem 2.3 (Edmonds’ disjoint arborescences: strong form). Let D =
(V, A) be a directed graph with a designated root-node r0. Let A0 denote

the set of edges leaving r0 and A
∗ := A − A0. Let A = {A1, . . . , Ak} be a

partition of A0 into k sets. Then D has k disjoint spanning arborescences

F1, . . . , Fk of root r0 so that Fi ∩ A0 ⊆ Ai for i = 1, . . . , k if and only if

�A∗(X) ≥ p(X) for every non-empty subset X of V −r0 where p(X) denotes

the number of those members of A which contain no edges entering X.

Note that if the requested arborescences exist, then they can be chosen
in such a way that Fi ∩A0 = Ai. Yet another equivalent formulation of the
strong theorem is as follows.

Theorem 2.4 (Edmonds’ disjoint arborescences: equivalent strong form).
Let D = (V, A) be a digraph whose node set is partitioned into a root-set
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R = {r1, . . . , rk} and a terminal set T . Suppose that no edge of D enters

any node of R. There are k disjoint arborescences F1, . . . , Fk in D so that

Fi is rooted at ri and spans T + ri for each i = 1, . . . , k if and only if

�D(X) ≥ |R−X| for every subset X ⊆ V for which X ∩ T �= ∅.

This follows easily by applying Theorem 2.2 to the subgraph D
′ of

D induced by T with the choice Ri = {v: there is an edge riv ∈ A}

(i = 1, . . . , k). The same construction shows the reverse implication, too.

It has been tempting to find further extensions of the strong version
of Edmonds’ theorem but straightforward attempts failed. One natural
conjecture, for example, was already disproved by Lovász in his original
paper: even if there are k(= 2) edge-disjoint paths from a root-node r0

to every element of a specified terminal set T ⊆ V − r0, the digraph not
necessary includes k edge-disjoint arborescences of root r0 so that each of
them contains every node of T . Actually this problem can be shown to be
NP-complete. In another possible variation, there are k specified subsets Vi

of V each containing a root-node ri. The problem consists of finding disjoint
arborescences Fi (i = 1, . . . , k) so that each Fi is rooted at ri, contains no
node outside Vi, and spans Vi. This problem is NP-complete even in the
very special case when k = 2, V1 = V and V2 = V − t for a specified node
t. Indeed, it can be shown that a polynomial algorithm to this special case
gives rise to a polynomial algorithm for the two edge-disjoint paths problem
of a digraph, a well-known NP-complete problem.

However, we point out that the strong form of Edmonds’ theorem implies
its sharpening when the following result of Frank and Tardos [7] (which,
incidentally, had been motivated by another old paper of Lovász [17]) is
used.

Theorem 2.5. Let G = (V, U ; E) be a simple bipartite graph, p : 2V
→ Z+

a positively intersecting supermodular function, and g : V → Z+ an upper

bound function. There is a subset F ⊆ E of the edges of G for which

(4)
∣∣ΓF (X)

∣∣
≥ p(X) for every X ⊆ V

and

(5) dF (v) ≤ g(v) for every node v ∈ V

if and only if

(6)
∣∣ΓE(X)

∣∣ + g(Z) ≥ p(X ∪ Z)
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holds for every pair of disjoint subsets X and Z of V where ΓF (X) denotes

the set of neighbours of X in the graph induced by F ⊆ E.

Now the extension of Theorem 2.2 is as follows. Note that none of the
equivalent Theorems 2.2, 2.3, 2.4 implies it immediately.

Theorem 2.6. Let D = (V, A) be a directed graph and g : V → Z+ an

upper bound function. Let U = {U1, . . . , Uk} be a family of k subsets

of V . There is a family R = {R1, . . . , Rk} of non-empty subsets of V and

k disjoint spanning branchings of D with root sets R1, . . . , Rk, respectively,

in such a way that Ri ⊆ Ui for i = 1, . . . , k and each node v ∈ V belongs to

at most g(v) members of R if and only if

(7) u(X) + g(Z) ≥ k − �D(X ∪ Z)

for every pair X, Z of disjoint subsets of V with non-empty union where

u(X) denotes the number of U
′
is intersecting X.

Proof. Suppose first that the requested family R and the k branchings
exist. For disjoint subsets X and Z of V , at most u(X) members of R
intersect X due to Ri ⊆ Ui, and at most g(Z) members of R intersect Z

since each element z of Z belongs to at most g(z) members of R. Therefore
there must be at least k − u(X) − g(Z) members of R which are disjoint
from X ∪Z and hence the in-degree of X ∪Z must be at least this number,
that is, (7) is necesseary.

To see the sufficiency, construct a bipartite graph G = (V, U ; E) where
U = {u1, . . . , uk} and a node ui is connected with v ∈ V precisely if v ∈ Ui.
Let a set function p on V be defined by p(X) = k − �D(X) if ∅ ⊂ X ⊆ V

and p(∅) = 0. Then p is intersecting supermodular. Since u(X) =
∣∣ΓE(X)

∣∣ ,
(7) and (6) are equivalent. Hence Theorem 2.5 implies the existence of a
subset F of E meeting (4) and (5). For each ui, let Ri denote the neighbours
of ui in the subgraph induced by F . By the construction Ri ⊆ Ui, (4) is
equivalent to (3), while (5) implies that each node v ∈ V belongs to at most
g(v) members of R. By Theorem 2.2 the requested branchings exist.

For the special case g ≡ 1, we formulate the result in the following
equivalent version.

Theorem 2.7. Let D = (V, A) be a directed graph with a designated root-

node r0. Let A0 denote the set of edges leaving r0 and let A = {A1, . . . , Ak}

be a family of k (not-necessarily disjoint) subsets of A0. D has k disjoint
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spanning arborescences F1, . . . , Fk of root r0 so that Fj ∩ A0 ⊆ Aj if and

only if

(8) �A∗(Z) + �
′(Z) ≥ h

for every non-empty subset Z of V
∗ := V − r0 and for every choice of h

members Ai1 , . . . , Aih of A where �
′(X) denotes the number of edges in

Ai1 ∪ · · · ∪Aih entering X.

The following corollary is still a proper extension of Theorem 2.4.

Theorem 2.8. Let D = (V, A) be a digraph whose node set is partitioned

into a root-set R = {r1, . . . , rq} and a terminal set T . Suppose that no

edge of D enters any node of R. Let m : R → Z+ be a function and let

k = m(R). There are k disjoint arborescences in D so that m(r) of them

are rooted at r and spanning T + r for each r ∈ R if and only if

(9) �D(X) ≥ m(R−X) for every subset X ⊆ V for which X ∩ T �= ∅.

Proof. Contract R into a new node r0 and define k subsets of the edge set
A0 leaving r0 as follows. For each r ∈ R, take m(r) copies of the subset of
A0 corresponding to the set of edges of D leaving r. Then (9) is equivalent
to (8) and the result follows from Theorem 2.7.

2.2. Extensions

One may be wondering whether there is a direct proof of Theorem 2.7 which
follows the original lines of Lovász’ proof without relying on Theorem 2.5.
To understand better its nature, it has been tempting to extend Lovász’
technique to more abstract settings. For example, the following ‘abstract
form’ of the weak Edmonds theorem was derived in [5].

Theorem 2.9. Let D = (V, A) be a digraph and F an intersecting family

of subsets of V . It is possible to partition A into k coverings of F if and

only if the in-degree of every member of F is at least k.

Obviously, when F consists of every non-empty subset of V − r0, we
obtain the weak form of Edmonds’ theorem. A disadvantage of Theorem 2.9
is that it does not imply the strong version of Edmonds’ theorem. The
following result of L. Szegő [22], however, overcame this difficulty.
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Theorem 2.10 (Szegő). Let F1, . . . ,Fk be intersecting families of subsets

of nodes of a digraph D = (V, A) with the following mixed intersection

property:

X ∈ Fi, Y ∈ Fj , X ∩ Y �= ∅ ⇒ X ∩ Y ∈ Fi ∩ Fj .

Then A can be partitioned into k subsets A1, . . . , Ak such that Ai covers Fi

for each i = 1, . . . , k if and only if �D(X) ≥ p1(X) for all non-empty X ⊆ V

where p1(X) denotes the number of Fi’s containing X.

When the k families are identical, we are back at Theorem 2.9. When
Fi = 2V−Ri

− {∅}, we obtain Edmonds’ Theorem 2.2. The proof of Szegő
is based on the observation that the mixed intersection property implies
that p1 is positively intersecting supermodular and this is why Lovász’
approach works again. But Szegő’s theorem is still not general enough
to imply Theorem 2.7.

As a new contribution of the present work, we extend Szegő’s theorem to
k families of bi-sets and this will immeadiately yield Theorem 2.7. The proof
uses again the same technique. We say that the bi-set families F1, . . . ,Fk

satisfy the mixed intersection property if

X ∈ Fi, Y ∈ Fj , XI ∩ YI �= ∅ ⇒ X ∩ Y ∈ Fi ∩ Fj .

For a bi-set X, let p2(X) denote the number of indices i for which Fi

contains X. For X ∈ Fi, Y ∈ Fj , the inclusion X ⊆ Y implies X =
X ∩ Y ∈ Fj and hence p2 is monotone non-increasing in the sense that
X ⊆ Y , p2(X) > 0 and p2(Y ) > 0 imply p2(X) ≥ p2(Y ). We will need the
following preparatory lemma.

Lemma 2.11. If p2(X) > 0, p2(Y ) > 0 and XI ∩ YI �= ∅, then p2(X) +
p2(Y ) ≤ p2(X ∩ Y ) + p2(X ∪ Y ). Moreover, if there is an Fi for which

X ∩ Y ∈ Fi and X, Y /∈ Fi, then strict inequality holds.

Proof. Consider the contribution of one family Fi to the two sides of the
claimed inequality. If this contribution to the left hand side is two, that is,
if both X and Y are in Fi, then so are X ∩ Y and X ∪ Y and hence the
contribution to the right hand side is also two. Suppose now that X belongs
to Fi but Y does not. Since p2(Y ) > 0 is assumed, Y belongs to an Fj .
But then X ∩ Y belongs to Fi due to the mixed intersection property, that
is, in this case the contribution of Fi to the right hand side is at least one.
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An Fi with the properties in the second part contributes only to the right
hand side ensuring this way the strict inequality.

Theorem 2.12. Let D = (V, A) be a digraph and F1, . . . ,Fk intersecting

families of bi-sets on ground set V satisfying the mixed intersection property.

The edges of D can be partitioned into k parts F1, . . . , Fk in such a way

that Fi covers Fi for each i = 1, . . . , k if and only if

(10) �D(X) ≥ p2(X) for every bi-set X.

Proof. The condition is clearly necessary. We prove the sufficiency by
induction on

∑
i |Fi|. There is nothing to prove if this sum is zero so we

may assume that F1, say, is non-empty. Let U be a maximal member of F1.
Call a bi-set tight if �(X) = p2(X) > 0.

Claim 2.13. There is an edge e entering U in such a way that each tight

bi-set covered by e is in F1.

Proof. Suppose indirectly that no such an edge exists. Then each edge e

entering U enters some tight bi-set M /∈ F1. By the mixed intersection
property, we cannot have M ⊆ U . Select a minimal tight bi-set M /∈ F1

which intersects U . Since p2 is monotone non-increasing, we know that
p2(U ∩ M) ≥ p2(M). Here, in fact, strict inequality must hold since
U ∩ M ∈ F1 and M /∈ F1. The inequality p2(U ∩ M) > p2(M) implies
that D has an edge f = uv for which u ∈ M − U , v ∈ U ∩ M . By
the indirect assumption, f enters some tight bi-set Z /∈ F1. Lemma 2.11
implies that the intersection of M and Z is tight. Since neither of M and
Z is in F1, the second part of the lemma implies that M ∩ Z is not in F1

either, contradicting the minimal choice of M .

Let e be an edge ensured by the Claim. Let F ′1 := {X ∈ F1 : e does not
enter X}. Then F ′1 is an intersecting family of bi-sets. We claim that the
mixed intersection property holds for the families F ′1,F2, . . . ,Fk. Indeed,
let X ∈ F

′
1 and Y ∈ Fi be two intersecting bi-sets for some i = 2, . . . , k.

Since F ′1 ⊆ F1, one has X ∩ Y ∈ Fi. If indirectly X ∩ Y is not in F ′1, then
e enters X ∩ Y . Since e enters U and U was selected to be maximal in F1,
it follows that X ⊆ U . But then e must enter X as well, contradicting the
assumption X ∈ F

′
1.

Let p
′
2(X) denote the number of these families containing X (that is,

p
′
2(X) = p2(X)−1 if X ∈ F1 and e enters X and p

′
2(X) = p2(X) otherwise).
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Let �
′ denote the in-degree function on bi-sets with respect to D

′ := D− e.
The choice of e implies �

′
≥ p

′
2. By induction, the edge set of D

′ can be
partitioned into k parts F

′
1, . . . , Fk in such a way that F

′
1 covers F1 and Fi

covers Fi for i = 2, . . . , k. By letting F1 := F
′
1 + e, we obtain a partition of

A requested by the theorem.

Though not needed in the sequel, we point out that Theorem 2.12 can
be reformulated in terms of set families. For a subset T ⊆ V , we say that a
family F of subsets of V is T -intersecting if X, Y ∈ F and X ∩Y ∩T �= ∅

imply X ∩ Y, X ∪ Y ∈ F .

Theorem 2.14. Let D = (V, A) be a digraph with a specified subset T

of nodes containing the head of every edge of D. Let F1, . . . ,Fk be T -

intersecting families of subsets of nodes of a digraph D with the following

mixed intersection property: X ∈ Fi, Y ∈ Fj , X ∩ Y ∩ T �= ∅ ⇒ X ∩ Y ∈

Fi ∩ Fj . Then A can be partitioned into k subsets A1, . . . , Ak such that

Ai covers Fi for each i = 1, . . . , k if and only if �D(X) ≥ p1(X) for all

non-empty X ⊆ V where p1(X) denotes the number of Fi’s containing X.

Proof. The necessity is evident again. For the sufficiency, define a family
F
′
i of bi-sets as follows. For each set X ∈ Fi let the bi-set (X, X ∩ T ) be

a member of F ′i . Then each F ′i is intersecting and they meet the mixed
intersection property. Since the head of every edge is in T , an edge enters a
subset X precisely when it enters the bi-set (X, X ∩T ). Hence the partition
of A into k sets ensured by Theorem 2.12 meets the requirement of the
theorem.

The reverse implication is equally simple and is left to the reader.

Alternative proof of the sufficiency in Theorem 2.7. Let D
′ be a

digraph arising from D by subdividing first each edge e ∈ A0 by a node ve

and deleting then r0. Let V0 denote the set of the subdividing nodes and
let Vi denote the subset of V0 corresponding to the set Ai (i = 1, . . . , k).

For each j = 1, . . . , k, let Fj be a family of bi-sets (XO, XI) for which
∅ �= XI ⊆ V

∗, XI = XO∩V
∗, XO ⊆ V0∪V

∗ and XO∩Vj = ∅. Then Fj is an
intersecting family of bi-sets and it follows from the definition that these k

families meet the mixed intersecting property. It is also straightforward that
(8) is equivalent to requiring that the number of edges entering a bi-set X

is at least p2(X), the number of Fj ’s containing X. By Theorem 2.12, there
are disjoint subsets F

′
1, . . . , F

′
k of the edge set of D

′ so that F
′
j covers Fj .

We may assume that each Fj is a minimal covering of Fj (with respect to
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inclusion) which implies that an edge uv with u ∈ V0, v ∈ V
∗ can belong to

F
′
j only if u ∈ Vj . By the construction, the edges set Fj of D corresponding

to F
′
j is a spanning arborescence of D rooted at r0 so that Fj ∩A0 ⊆ Aj .

Recently, N. Kamiyama, N. Katoh, and A. Takizawa [14] were able
to find a surprising new proper extension of Theorem 2.7 (and hence the
strong Edmonds theorem). We are going to show that their result can
also be derived from Theorem 2.12. This is, however, a bit trickier due
to the fact that the corresponding set function p1 in their theorem is no
more supermodular (and for the same reason their original proof is rather
complicated). Similarly to Edmonds’ theorem, this new result has also
several equivalent formulations. One of them is as follows.

Theorem 2.15 (Kamiyama, Katoh, and Takizawa [14]). Let D = (V, A)
be a directed graph and let R = {r1, r2, . . . , rk} ⊆ V be a list of k possibly
not distinct root-nodes. Let Si denote the set of nodes reachable from ri.

There are edge-disjoint ri-arborescences Ai spanning Si for i = 1, . . . , k if

and only if

(11) �D(Z) ≥ p1(Z) for every subset Z ⊆ V

where p1(Z) denotes the number of sets Si’s for which Si∩Z �= ∅ and ri /∈ Z.

Proof. The necessity of the condition is evident.

For brevity, we call a strongly connected component of D an atom. It is
known that the atoms form a partition of the node set of D and that there
is a so-called topological ordering of the atoms so that there is no edge from
a later atom to an earlier one. By a subatom we mean a subset of an atom.
Clearly, a subset X ⊆ V is a subatom if and only if any two elements of X

are reachable in D from each other. Note that any atom is disjoint from or
included in Si for each i = 1, . . . , k.

Define k bi-set families Fi for i = 1, . . . , k as follows. Let Fi :={
(XO, XI) : XO ⊆ V − ri, XI = XO ∩ Si �= ∅ a non-empty subatom

}
.

For each bi-set X, let p2(X) denote again the number of Fi’s containing X.
It follows immediately that Fi is an intersecting bi-set family.

Proposition 2.16. The bi-set families Fi meet the mixed intersecting

property.
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Proof. Let X = (XO, XI) and Y = (YO, YI) be members of Fi and Fj ,
respectively, and suppose that X and Y are intersecting, that is, XI∩YI �= ∅.
Since a subatom and a subset with no leaving edges are never properly
intersecting, we obtain that XO ∩ Si ⊆ Si ∩ Sj and YO ∩ Sj ⊆ Si ∩ Sj . This
implies for the sets ZO := XO ∩ YO and ZI := XI ∩ YI that ZO ∩Si = ZI =
ZO ∩ Sj and hence X ∩ Y = (ZO, ZI) ∈ Fi ∩ Fj , as required.

Proposition 2.17. �(X) ≥ p2(X) for each bi-set X.

Proof. Let q := p2(X) and suppose that X belongs to F1,F2, . . . ,Fq. Let
Z :=

(
V − (S1 ∪ S2 ∪ · · · ∪ Sq)

)
∪ XI . Since no edge leaves any Si, every

edge entering Z must enter XI and hence also the bi-set X. Therefore
�(X) ≥ �(Z). By (11), �(Z) ≥ p1(Z). It follows from the definition of Z

that p1(Z) ≥ q = p2(X), and hence �(X) ≥ p2(X).

Therefore Theorem 2.12 applies and hence the edges of D can be parti-
tioned into sets F1, . . . , Fk so that Fi covers Fi for i = 1, . . . , k.

Proposition 2.18. Each Fi includes an ri-arborescence Ai which spans Si.

Proof. If the requested arborescence does not exist for some i, then there
is a non-empty subset Z of Si − ri so that Fi contains no edge from Si − Z

to Z. Consider a topological ordering of the atoms and let Q be the earliest
one intersecting Z. Since no edge leaving a later atom can enter Q, no edge
with tail in Z enters Q.

Let XO := (V −Si)∪ (Z ∩Q) and XI := XO ∩Si. Then XI = Z ∩Q is a
subatom and X = (XO, XI) belongs to Fi. Therefore there is an edge e = uv

in Fi which enters X. It follows that v ∈ XI ⊆ Z and that u ∈ Si − XI .
Since u is not in Z and not in V − Si, it must be in Si − Z, that is, e is an
edge from Si−Z to XI ⊆ Z, contradicting the assumption that no such an
edge exists.

Note that Theorem 2.8 can immediately be obtained from Theorem 2.15.
To this end, add m(i) new root-nodes to D and add an edge from each of
them to ri for i = 1, . . . , q. This way we will get k distinct (new nodes)
and each node of V is reachable from every new root. In this setting the
necesseary conditions in Theorems 2.15 and 2.7 coincide and each of the k

maximal arborescences ensured by Theorem 2.15 will span the whole V .

To describe the original form of the theorem of Kamiyama et al., we call
a branching B of D maximal if no edge of D leaves the node set of B.



150 K. Bérczi and A. Frank

Theorem 2.19 (Kamiyama, Katoh, Takizawa [14]). In a digraph D =
(V, A), let R = {R1, . . . , Rq} be a family of non-empty (not necessarily
disjoint or distinct) subsets of V and let Si denote the set of nodes of D

reachable from Ri. Let m1, . . . , mq be positive integers whose sum is k.

There are k edge-disjoint maximal branchings of D so that Ri is the root-

set of mi of them for i = 1, . . . , q if and only if

�(X) ≥
∑

[mi : Ri ∩X = ∅ and X is reachable from Ri](12)

for every X ⊆ V.

Proof. For each root-set Ri, let r
1
i , . . . , r

mi

i be new nodes and extend the

digraph by adding k new parallel edges from r
j
i to every element of Ri for

i = 1, . . . , q. An easy calculation shows that (11) is equivalent to (12) and
the k disjoint arborescences ensured by Theorem 2.15 when restricted to V

provide the requested maximal branchings of D.

In [12], Frank, Király, and Kriesell observed that Edmonds’ disjoint
arborescences theorem can be extended to dypergraphs. A subset F of a
ground-set V with a specified head-node in F is called a directed hyperedge,
or briefly a dyperedge. F is said to enter a subset X ⊆ V if its head is in
X but F �⊆ X. A dypergraph D = (V,D) is a hypergraph consisting of
dyperedges in which �D(X) denotes the number of dyperedges entering a
subset X. We call D rooted k-edge-connected with respect to a root-
node r0 if the in-degree of every non-empty subset of V − r0 is at least k.
In the special case k = 1, the dypergraph is root-connected. In [12], with
a rather easy reduction to Edmonds’ disjoint arborescences theorem, it was
shown that the dyperedges of a rooted k-edge-connected dypergraph can
always be decomposed into k root-connected dypergraphs. With a similar
approach, we can derive the following result.

Theorem 2.20. Let D = (V,D) be a dypergraph and R = {r1, . . . rk} a

root-set. Let Si denote the set of nodes reachable from r0 in D. Then D

includes k disjoint dypergraphs D1 = (S1,D1), . . . , Dk = (Sk,Dk) so that

each Di is root-connected at ri if and only if �D(X) ≥ p(X) for every X ⊆ V

where p(X) denotes the number of roots ri for which ri /∈ X and Si∩X �= ∅.
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3. Covering Supermodular Bi-set Functions by Digraphs

As mentioned in the introduction, the uncrossing technique was invented
by Lovász [18] in order to obtain a short proof of the Lucchesi-Younger
theorem. Later the method has become an indispensible tool for deriv-
ing combinatorial min-max theorems concerning sub- or supermodular set
functions.

As a new application of the uncrossing procedure, we derive a result on
covering simultaneously two supermodular bi-set functions by a digraph.
(Recall that these functions were assumed to have positive values only on
non-trivial bi-sets and they are integer-valued.) There have been two earlier
results of this kind. Frank and Jordán [11] proved (in an equivalent form)
the following result on minimum coverings of crossing supermodular bi-set
functions (whose special case for set-functions appeared in [9]).

Theorem 3.1. Let p be a positively crossing supermodular bi-set func-

tion. The minimum number of directed edges covering p is equal to

max{
∑[

p(X) : X ∈ F

]
: F an independent set of bi-sets}.

The other result of similar vein concerns cheapest coverings of inter-
secting supermodular bi-set functions (generalizing its set-function version
from [5, 6]).

Theorem 3.2 [10]. Let D = (V, A) be a digraph. Let p : P2 → Z be a

positively intersecting supermodular bi-set function and g : A → Z+ ∪ {∞}

a non-negative upper bound on the edges of D that covers p. The linear

system

(13) �x(Z) ≥ p(Z) for every bi-set Z ∈ P2, 0 ≤ x ≤ g

is totally dual integral.

3.1. Simultaneous coverings

Both theorems were motivated by and have several applications in network
design. Our new contribution is a min-max theorem on smallest simulta-
neous coverings of two fully supermodular bi-set functions. It is neither a
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special case nor a generalization of the two previous results and has no spe-
cial set function version known earlier. In what follows, we work throughout
with a ground-set V of cardinality n. Let D

∗ = (V, A
∗) denote the com-

plete digraph on V where A
∗ := {uv : u, v ∈ V } denotes the set of all the

n(n − 1) directed edges on V . Recall that P2(V ) = P2 denoted the set of
all bi-sets. A bi-set function p is positively supermodular if the supermod-
ular inequality holds for every pair {X, Y } of bi-sets for which p(X) > 0,
p(Y ) > 0. For example, if p is supermodular on a ring-family, and its value
is zero otherwise, then p is positively supermodular.

Theorem 3.3. Let p1 and p2 be two positively supermodular bi-set func-

tions which may be positive only on non-trivial bi-sets. Let p := max {p1, p2}

where p is defined by p(X) := max
{

p1(X), p2(X)
}

. Then p can be covered

by γ (possibly parallel) directed edges if and only if

(14) p1(X) + p2(Y ) ≤ γ

for every pair of independent bi-sets X, Y .

Note that, due to p(∅, ∅) = 0, (14) includes the necessary conditions
p1(X) ≤ γ and p2(Y ) ≤ γ so they need not be mentioned explicitly and a
similar statement holds for later variations of the theorem.

It is more convenient to prove this result in a slightly more general
form. We call a bi-set function p positively 2/3-supermodular if for
any choice of three bi-sets with positive p-value there are two of them
that satisfy the supermodular inequality. Clearly, the maximum of two
supermodular functions is 2/3-supermodular, but it turns out that there
are 2/3-supermodular functions not arising this way.

Theorem 3.4. A positively 2/3-supermodular bi-set function p can be cov-

ered by γ (possibly parallel) directed edges if and only if p(X)+p(Y ) ≤ γ for

every pair of independent bi-sets X, Y . Equivalently, the minimum num-

ber τ(p) of edges covering p is equal to ν(p) := max
{

p(X) + p(Y ) : {X, Y }

independent bi-sets
}

.

Proof. The necessity of the condition is obvious since an edge can cover at
most one of two independent bi-sets.

Lemma 3.5. Let C1 and C2 be two chains of nontrivial bi-sets and let

F = C1 ∪ C2 (in the sense that a bi-set belonging to both chains occurs in
two copies in F). Suppose that no edge of D

∗ covers more than h members
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of F . Then the members of F can be coloured by h colours so that each

edge enters at most one member of each colour class. Furthermore, each

colour class consists of at most two bi-sets.

Proof. Since two comparable bi-sets are not independent, the second state-
ment of the lemma is immediate.

Construct an undirected graph B = (U, A) whose nodes correspond to
the elements of F and two nodes are connected by an undirected edge if
the corresponding members X, Y of F can be covered by an edge of D

∗,
that is, if they are not independent. Since F consists of two chains, B is
the complement of a bipartite graph, and hence B is perfect.

Claim 3.6. Let Q ⊆ U be the node-set of a clique of graph B and let FQ

denote the members of F corresponding to the elements of Q. Then there

is an edge of D
∗ covering all members of FQ.

Proof. Assume first that FQ is a chain. Let t be any node in the inner set
of the smallest member of FQ while s any node outside the outer set of the
largest member of FQ. Then st covers all members of FQ. Therefore FQ

may be assumed to be the union of two non-empty chains C′1 and C′2. Let
X1 and X2 be the smallest members of C′1 and C′2.

As Q is a clique, X1 and X2 are not independent, so there is a node
t ∈ V in the intersection of their inner sets. Similarly, let Y1 and Y2 be the
largest members of C′1 and C′2. They are not independent either so there is
a node s ∈ V outside the union of their outer sets. Then st covers all the
members of C′1 and C′2.

The claim and the hypothesis of the lemma imply that the largest
clique of B has at most h elements. Since B is perfect, its node set can
be partitioned into h stable sets. Therefore F can be partitioned into h

independent sets of bi-sets families.

Let us turn to the proof of the non-trivial inequality τ(p) ≤ ν(p) in the
theorem. We proceed by induction on

∑[
p(X) : X ∈ P2

]
. If this sum is

zero, then the digraph (V, ∅) with no edge will cover p. Suppose now that

this sum is positive. For an edge e ∈ A
∗, let pe(X) :=

(
p(X) − 1

)+
if e

enters X and pe(X) := p(X) otherwise. Since the in-degree function (on
bi-sets) of a digraph is fully submodular, pe(X) is 2/3-supermodular.

Lemma 3.7. If p(Z) > 0 for a bi-set Z, then there is an edge e ∈ A
∗

entering Z such that ν(pe) < ν(p).
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Proof. Let A denote the set of edges entering Z and suppose on the contrary
that ν(pe) = ν(p) for each element e of A. That is, there is an independent
pair Fe := {X, Y } of bi-sets for which e enters neither X nor Y and
p(X) + p(Y ) = ν(p)

Let F ′ consist of bi-set Z plus all of the bi-sets which are members
of some Fe in the sense that each bi-set X is taken into F ′ in as many
copies as the number of pairs Fe containing X. Note that (∗) every edge of
D
∗ enters at most h := |A| members of F ′. The uncrossing procedure

consists of finding two non-comparable elements X, Y of F ′ for which
the supermodular inequality holds and replacing them by their intersection
and union. Apply the uncrossing procedure as long as possible. Because
the sum

∑[
|XI |

2 + |XO|
2 : X ∈ F

′
]

strictly increases at each uncrossing
step, the procedure terminates after a finite number of steps. Discard all
members with p-value zero and let F denote the resulting family. Clearly
|F| ≤ |F

′
|, p(Z) + hν(p) = p(F ′) ≤ p(F), and (∗) holds for F , too.

F cannot contain three pairwise non-comparable bi-sets for otherwise, by
the 2/3-supermodularity of p, two of them would satisfy the supermodular
inequality, and then they could have been uncrossed. If a partially ordered
set contains no three pairwise uncomparable elements, then, by Dilworth’s
theorem, there are two disjoint chains covering the ground-set of the poset.
Therefore the members of F can be partitioned into two chains C1 and
C2. By Lemma 3.5 the members of F can be partitioned into h independent
parts Ii (i = 1, . . . , h). So for one of these we must have p(Ii) ≥ �p(F)/h� >

ν(p), a contradiction.

For the edge e provided by Lemma 3.7, we have by induction τ(pe)−1 ≤
τ(p) ≤ ν(p) ≤ ν(pe)− 1 ≤ τ(pe)− 1 from which equality holds throughout,
and in particular τ(p) = ν(p).

Theorem 3.4 has a self-refining nature as it gives rise to its own extension.
Let S and T be two non-empty subsets of V . We call a directed edge st an
ST -edge if s ∈ S and t ∈ T . Two bi-sets X and Y are ST -independent if
there is no ST -edge covering both (or, equivalently, at least one of the sets
T ∩XI ∩ YI and S − (XO ∪ YO) is empty).

Theorem 3.8. Let q be a positively 2/3-supermodular bi-set function so

that q(X) can be positive only if there is an ST -edge covering X. Then q can

be covered by γ (possibly parallel) ST -edges if and only if q(X)+ q(Y ) ≤ γ

for every pair of ST -independent bi-sets X, Y .
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Proof. The necessity of the condition is evident since an ST -edge cannot
cover two ST -independent bi-sets. For the sufficiency, define a bi-set func-
tion p on P2, as follows.

p(X) :=

⎧⎪⎪⎨⎪⎪⎩
max{q(X ′) : X

′
∈ P2(V ), XI = X

′
I ∩ T,

XO =
(
X
′
O ∪ (V − S)

)
} if XI ⊆ T and V = XO ∪ S,

0 otherwise.

(15)

Proposition 3.9. p is positively 2/3-supermodular.

Proof. Let X, Y , and Z be bi-sets for which p(X) > 0, p(Y ) > 0, and
p(Z) > 0. By the definition of p, there is a biset X

′ for which p(X) = q(X ′)
and XI = X

′
I ∩T , XO =

(
X
′
O ∪ (V −S)

)
, and similarly there are bi-sets Y

′

and Z
′ with analogous properties.

It follows that

XI ∩ YI = (X ′
I ∩ Y

′
I ) ∩ T and XO ∩ YO = (X ′

O ∩ Y
′
O) ∪ (V − S)

from which q(X ′
∩ Y

′) ≤ p(X ∩ Y ), and analogously,

XI ∪ YI = (X ′
I ∪ Y

′
I ) ∩ T and XO ∪ YO = (X ′

O ∪ Y
′
O) ∪ (V − S)

from which q(X ′
∪ Y

′) ≤ p(X ∪ Y ).

Since q is positively 2/3-supermodular, among the three bi-sets X
′, Y

′,
Z
′, there are two, say X

′ and Y
′ satisfying the supermodular inequality.

Hence p(X)+p(Y ) = q(X ′)+q(Y ′) ≤ q(X ′
∩Y

′)+q(X ′
∪Y

′) ≤ p(X ∩Y )+
p(X ∪ Y ), as required.

If p(X) > 0, then p(X) = q(X ′) for some X
′ and hence p(X) =

q(X ′) ≤ γ. If p(X) > 0 and p(Y ) > 0 for independent X and Y , then
there are bi-sets X

′ and Y
′ for which p(X) = q(X ′) and p(X) = q(X ′).

The definition of p implies that X
′ and Y

′ are ST -independent and hence
p(X) + p(Y ) = q(X ′) + q(Y ′) ≤ γ. Therefore Theorem 3.4 implies the
existence of a set of γ edges covering p. The definition of p implies that
every edge covering a bi-set X with p(X) > 0 is necessarily an ST -edge,
moreover any set covering p also covers q, and hence the theorem follows.

As a corollary, we have the following extension of Theorem 3.3.
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Theorem 3.10. Let q1 and q2 be two positively supermodular bi-set func-

tions for which qi(X) can be positive only if there is an ST -edge covering X.

Let q := max {q1, q2}. Then q can be covered by γ ST -edges if and only if

q1(X) + q2(Y ) ≤ γ for every pair of ST -independent bi-sets X, Y .

We will point out in Subsection 3.3 that positively supermodular func-
tions do not behave well from an algorithmic point of view. In typical
applications, however, one encounters with fully supermodular functions
defined on a ring-family of bi-sets that may take negative values. For this
case, Theorem 3.10 specializes as follows.

Theorem 3.11. For i = 1, 2 let pi be a supermodular function on a ring-

family Ri of bi-sets and assume that pi(X) may be positive only if there is

an ST -edge covering X. There is a set of γ ST -edges covering both p1 and

p2 if and only if

(16) pi(X) ≤ γ for every X ∈ Ri (i = 1, 2)

and

p1(X
′) + p2(X

′′) ≤ γ for every ST -independent X
′
∈ R1, X

′′
∈ R2.

(17)

Equivalently, the minimum number of (possibly parallel) ST -edges covering

p1 and p2 is equal to ν := max{ν1, ν2, ν3, ν4} where

ν1 = max
{

p1(X
′) : X

′
∈ R1

}
ν2 = max

{
p2(X

′′) : X
′′
∈ R2

}
,

ν3 = max
{

p1(X
′) + p2(X

′′) : X
′
∈ R1, X

′′
∈ R2, X

′
I ∩X

′′
I ∩ T = ∅

}
,

ν4 = max
{

p1(X
′) + p2(X

′) : X
′
∈ R1, X

′′
∈ R2, S − (X ′

O ∪X
′′
O) = ∅

}
,

where the maximum on the empty set is defined to be zero.

This implies the following equivalent version of Edmonds’ polymatroid
intersection theorem [1] (which was originally formulated for submodular
functions).
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Theorem 3.12 (Edmonds). Let p1 and p2 be supermodular functions on

a common ground-set T . Then

min{z(T ) : z : T → Z+, z(X) ≥ max
{

p1(X), p2(X)
}

for every X ⊆ T}

= max
{

p1(X) + p2(Y ) : X ∩ Y = ∅

}
.

Proof. Let s be a new element, V := T + s and S := {s}. Apply
Theorem 3.11 for the special case when Ri :=

{
(XO, XI) : XO = XI ⊆ T

}
and observe that in this case ν = ν3 and the ST -edges can be identified
with the elements of T .

It should be noted that Edmonds extended the theorem for the more
general case as well when pi is intersecting supermodular only (that is, the
supermodular inequality is required only for intersecting sets). In this case
the maximum formula in the theorem is more complicated as it includes par-
titions rather then sets only. No extension of Theorem 3.11 is known to cover
this form. The difficulty is indicated by the fact that the following natural-
looking statement is false: For i = 1, 2 let pi be a non-negative integer-

valued intersecting supermodular function on an intersecting family Ri of

sets so that pi(X) may be positive only if there is an ST -edge covering X.

The minimum number of (possibly parallel) ST -edges covering p1 and p2 is

equal to max{
∑[

p1(X) : X ∈ F1

]
+

∑[
p2(X) : X ∈ F2

]
} : Fi ⊆ Ri is

laminar, F1 ∪ F2 is ST -independent.} (A family R of sets is intersecting
if it contains X ∩ Y and X ∪ Y whenever X, Y ∈ R, X ∩ Y �= ∅. R is
laminar if one of the sets X−Y , Y −X, X∩Y is empty for every two mem-
bers X, Y .) Let V = {v1, v2, v3, v4}, R1 :=

{
{v1}, {v2, v3}, {v1, v2, v3}

}
,

R2 :=
{
{v3, v4}, {v1, v3, v4}

}
, let pi be identically one on Ri, and let

S := T := V . Then the minimum value in the statement is 3 while the
maximum is only 2.

Edmonds’ intersection theorem extends to the weighted case, as well,
asserting, in a concise form, that the linear system {z ≥ 0, z(X) ≥

max
{

p1(X), p2(X)
}

for every X ⊆ T} is totally dual integral (TDI). The
min-cost version of Theorem 3.10 includes NP-complete connectivity aug-
mentation problems so it is unlikely to have a TDI-ness result concerning
Theorem 3.10. In other connectivity augmentation problems however [8] the
special case of node-induced costs were nicely solvable (where node-induced
means that the cost of an edge st arises as the sum of the given node-costs
of s and t). The corresponding problem in the enviroment of Theorem 3.10
remains open.
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3.2. Applications to bipartite graphs and digraphs

Let us derive a graphical consequence concerning bipartite matchings.

Theorem 3.13. For i = 1, 2, let Gi = (S, T ; Ei) be a bitpartite graph with

n = |S| = |T |. There is a set F of at most γ (undirected) ST -edges so that

both G1 + F and G2 + F has a perfect matching if and only if

(18) q1(Z
′) + q2(Z

′′) ≤ γ

holds for every two disjoint subsets Z
′
, Z
′′ of S and for every two disjoint

subsets Z
′, Z

′′ of T . Here qi(Z) := |Z| −

∣∣Γi(Z)
∣∣ where Γi(Z) (for Z ⊆ S

or Z ⊆ T ) denotes the set of nodes having at least one neighbour in Z in

the graph Gi (i = 1, 2).

Proof. The necessity of (18) is evident, we prove its sufficiency. For i = 1, 2,
define ring-families Ri of bi-sets as follows. Ri := {X = (XO, XI) : XI =
XO∩T , XO ⊇

(
XI∪Γi(XI)

}
. For simplicity we will not distinguish between

the directed ST -edges and the undirected edges connecting S and T . Since
an edge of Gi, when considered to be oriented toward T , cannot cover any
member of Ri, it follows that Ri is indeed a ring-family. For X ∈ Ri, let

pi(X) := 2|XI | − |XO|.

Clearly, pi is supermodular on Ri. For X ∈ Ri let Z := S − XO. Since
Γi(XI) ⊆ XO−XI we have pi(X) = |XI |−

(
|XO|−|XI |

)
≤ |XI |−

∣∣Γi(XI)
∣∣ =

qi(XI). Since Γi(Z) ⊆ T − XI , we have |XI | +
∣∣Γi(Z)

∣∣
≤ |T | = |S| =

|Z|+ |XO−XI | = qi(Z). Based on these, (18) implies (17). Since the bi-set
(∅, ∅) belongs to Ri and pi(∅, ∅) = 0, we conclude that (17) implies (16).

By Theorem 3.11, there is a set F of γ ST -edges covering both p1 and p2.
We claim that G

+

i := Gi + F satisfies the Hall condition. Indeed, if the set
Y
′ of neighbours of a subset Y ⊆ T in G

+

i had fewer elements than |Y |,
then pi(Y ∪ Y

′
, Y ) > 0 and F would not cover the bi-set (Y ∪ Y

′
, Y ). By

Hall’s theorem, G
+

i has a perfect matching, as required.

It should be noted that requiring (18) only for the subsets of T is not
sufficient (unlike the situation in Hall’s theorem on perfect matching in
bipartite graphs where Hall’s criterion |X| ≤

∣∣Γ(X)
∣∣ is violated by a subset

of S if and only if it is violated by a subset of T ). Given the simple condition
(18) in Theorem 3.13, one may feel tempted to derive the result from



Variations for Lovász’ Submodular Ideas 159

classical matching theory or matroid intersection, and, indeed, J. Pap [20]
found a short, elegant way to derive Theorem 3.13 directly from Edmonds’
matroid intersection theorem [3].

As another corollary, we exhibit a connectivity augmentation result con-
cerning simultaneous augmentations of two digraphs. In order to handle
edge-disjoint and node-disjoint paths uniformly, the following common gen-
eralization was introduced in [10].

Let D = (V, F ) be a digraph and g : V → Z+ a function. A set of
edge-disjoint st-paths is said to be g-bounded if each node v ∈ V − {s, t}

is used by at most g(v) of these paths. We stress that g-boundedness
automatically means that the paths are edge-disjoint. Let λg(s, t; D) denote
the maximum number of g-bounded st-paths. Note that for large g (say,
g ≡ |F |) λg(s, t; D) is the maximum number of edge-disjoint st-paths, while
for g ≡ 1, λg(s, t; D) is the maximum number of openly disjoint st-paths.

We will need the bi-set function μg defined by

(19) μg(X) :=
∑[

g(v) : v ∈ XO −XI

]
.

It is easily seen that for bi-sets X and Y

(20) μg(X) + μg(Y ) = μg(X ∩ Y ) + μg(X ∪ Y ).

The following characterization can be easily derived from the edge-
version of Menger’s theorem (and was done in [10]).

Proposition 3.14 (Variation of Menger’s theorem). In a digraph D =
(V, F ) there are k g-bounded st-paths if and only if

�F (X) ≥ k − μg(X) holds for every bi-set X = (XO, XI)(21)

with t ∈ XI and XO ⊆ V − s.

We say that D is (k, g)-connected from s to t if there are k g-bounded
paths from s to t.

Suppose now that Di = (V, Ai) are digraphs for i = 1, 2 on the same node
set V in which si and ti are designated source and sink nodes. Moreover, let
gi : V → Z+ be a function and ki positive integer. Consider the ring-family
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Ri :=
{

X ∈ P2(V ) : ti ∈ XI , XO ⊆ V − si

}
of bi-sets and define a bi-set

function pi on Ri by

pi(X) := ki − �Di
(X)− μgi

(X).

Since �Di
is submodular and μgi

is modular, pi is supermodular on Ri.
Let S and T be two non-empty subsets of V so that there is an ST -edge
covering each bi-set with positive p1- or p2-value. By Theorem 3.11, we get
the following.

Theorem 3.15. Given Di, si, ti, Ri gi, ki, pi S, T for i = 1, 2 as above,

there is a set F of γ ST -edges whose addition to Di results in a digraph

which is (ki, gi)-connected from si to ti if and only if

pi(X) ≤ γ for every X ∈ Ri, (i = 1, 2), and

p1(X
′) + p2(X

′′) ≤ γ for every ST -independent X
′
∈ R1

and X
′′
∈ R2.

3.3. Algorithmic aspects

Before sketching an algorithmic approach, we make some observations on
classes of supermodular functions.

Claim 3.16. If a positively 2/3-supermodular function is given by an

evaluation oracle, then its maximum cannot be computed in polynomial

time.

Proof. Let p be a set function which takes positive value on exactly one
subset and zero otherwise. This is positively 2/3-supermodular and to find
out its maximum one must, in worst case, call for the value of all subsets.

Therefore there is no polynomial algorithm for computing the extrema
in Theorem 3.4 if the 2/3-submodular function is given by an evaluation
oracle. The question arises whether the problem in Theorem 3.4 is more
general at all than the one in Theorem 3.11. The next claim shows that the
answer is yes.
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Claim 3.17. Not every 2/3-supermodular function arises from two posi-

tively supermodular functions as their maximum.

Proof. Let the ground-set V = {v1, v2, . . . , v5, s} have six elements so
that the first five elements are arranged around a circle according to their
subscripts. Define p(X) to be 1 if s ∈ X and the elements of X − s

are consecutive around the circle (in particular, if X = V or X = {s}),
otherwise let p(X) = 0. Then easy case-checking shows that p is 2/3-
supermodular but there cannot be two positively supermodular functions
p1 and p2 so that p(X) = max

{
p1(X), p2(X)

}
. Indeed, p(Vi) = 1 for

Vi := V − vi, 1 ≤ i ≤ 5. Since the non-consecutive pairs form a five-gon,
one of p1 and p2, say p1, must take value one on two sets Vi, Vj with non-
consecutive vi, vj . But then p1 cannot be positively supermodular since
p1(Vi ∩ Vj) ≤ p(Vi ∩ Vj) = 0 by definition and p1(Vi ∪ Vj) ≤ p(Vi ∪ Vj) ≤ 1.

An analogous question concerning positively supermodular functions
was answered by T. Király [15]:

Claim 3.18. Not all positively supermodular functions arise as the non-

negative part of a fully supermodular function.

Proof. Let X1, X2, X3 be three subsets of a ground-set V in general position.
Let p(Xi) = 1, p(Xi ∪Xj) = 2 (i �= j), p(X1 ∪X2 ∪X3) = 4 and p(X) = 0
on the remaining sets. Then p is positively supermodular and a simple
argument shows that it cannot be the nonnegative part of a supermodular
function.

The only general construction we know for positively supermodular
functions is taking the non-negative part of a supermodular function on
a ring-family, and likewise, we do not know any general class, let alone
applications, of 2/3-supermodular functions which are not the maximum
of two supermodular ones. On one hand, these function classes gave rise
to formally more general results and their use made the proofs technically
simpler, on the other hand they are not convenient for algorithmic handling.
This is why we formulated separately Theorem 3.11: there is a strongly
polynomial algorithm for computing the extrema in that theorem.

The very nature of the theorem makes it possible to compute a digraph
H covering p1 and p2 with a minimum number of edges, provided that a
subroutine is available for computing ν given in the theorem. With some



162 K. Bérczi and A. Frank

work, such a subroutine can indeed be constructed by making use of an
existing algorithm for maximizing supermodular functions [13, 21] (and
in the special case of Theorem 3.15 even a Max-flow Min-cut subroutine
suffices). So suppose that such a subroutine is available. The digraph H

with a minimum number of edges that covers p1 and p2 will be defined with
the help of a function z : A

∗
→ Z+ which tells us the number z(a) ≥ 0 of

parallel copies of every possible ST -edge a to be taken into H. The digraph
defined by z covers pi if �z ≥ pi for i = 1, 2.

For a given z, let ν(z) denote the optimum in Theorem 3.11 with respect
to the revised bi-set functions p1−�z and p2−�z. Call a function z : A

∗
→ Z+

good if

(22) ν = ν(z) + z(A∗).

By definition z ≡ 0 is good and the problem of finding a minimum z is
equivalent to construct a good z covering of p.

Consider the elements of A
∗ in an arbitrary order a1, . . . , am. At

the beginning z ≡ 0. At a general step, suppose that the values of
z(a1), . . . , z(ai−1) have already been computed in such a way that the vector
z =

(
z(a1), . . . , z(ai−1), 0, . . . , 0

)
is good. Compute ν(z). If this number is

zero, then z is a covering of p and the algorithm terminates by returning z.
Suppose now that ν(z) > 0. Let z

′ be a vector arising from z by setting
z(ai) to be a big enough number M and compute ν(z′). It follows from
Theorem 3.11 that by setting z(ai) to be ν(z) − ν(z′) the revised vector
keeps to be good and the algorithm may proceed to the next index i + 1.
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Eötvös University
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Random Walks, Arrangements, Cell Complexes,

Greedoids, and Self-organizing Libraries

ANDERS BJÖRNER

To László Lovász on his 60th birthday

The starting point is the known fact that some much-studied random walks on

permutations, such as the Tsetlin library, arise from walks on real hyperplane

arrangements. This paper explores similar walks on complex hyperplane arrange-

ments. This is achieved by involving certain cell complexes naturally associated

with the arrangement. In a particular case this leads to walks on libraries with

several shelves.

We also show that interval greedoids give rise to random walks belonging

to the same general family. Members of this family of Markov chains, based

on certain semigroups, have the property that all eigenvalues of the transition

matrices are non-negative real and given by a simple combinatorial formula.

Background material needed for understanding the walks is reviewed in rather

great detail.

1. Introduction

The following random walk, called Tsetlin’s library, is a classic in the theory
of combinatorial Markov chains. Consider books labeled by the integers
1, 2, . . . , n standing on a shelf in some order. A book is withdrawn according
to some probability distribution w and then placed at the beginning of
the shelf. Then another book is withdrawn according to w and placed at
the beginning of the shelf, and so on. This Markov chain is of interest
also for computer science, where it goes under names such as dynamic file

management and cache management.

Much is known about the Tsetlin library, for instance good descriptions
of its stationary distribution, good estimates of the rate of convergence to
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stationarity, exact formulas for the eigenvalues of its transition matrix Pw,
and more. These eigenvalues are nonnegative real and their indexing and
multiplicities, as well as their value, are given by very explicit combinatorial
data.

The Tsetlin library is the simplest of a class of Markov chains on per-
mutations that can be described in terms of books on a shelf. Instead of
one customer visiting the library to borrow one book which when returned
is placed at the beginning of the shelf, we can picture several customers
who each borrows several books. When the books are returned, the books
of the first borrower are placed at the beginning of the shelf in the induced
order (i.e. the order they had before being borrowed). Then the books of
the second borrower are placed in their induced order, and so on. Finally,
the remaining books that noone borrowed stand, in the induced order, at
the end of the shelf.

The analysis of such a “dynamic library” became part of a vastly more
general theory through the work of Bidigare, Hanlon and Rockmore [2],
continued and expanded by Brown and Diaconis [13, 14, 15, 16]. They
created an attractive theory of random walks on hyperplane arrangements
A in R

d, for which the states of the Markov chain are the regions making
up the complement of ∪A in R

d. When adapted to the braid arrangement,
whose regions are in bijective correspondence with the permutations of
{1, 2, . . . , n}, their theory specializes precisely to the “self-organizing”, or
“dynamic”, one-shelf library that we just described. The theory was later
further generalized by Brown [13, 14] to a class of semigroups.

The genesis of this paper is the question: what about random walks on

complex hyperplane arrangements? It is of course not at all clear what is
meant. The complement in C

d of the union of a finite collection of hyper-
planes is a 2d-dimensional manifold, so what determines a finite Markov
chain?

The idea is to consider not the complement itself, but rather a certain
finite cell complex determining the complement up to homotopy type. In
addition, we need that this complex extends to a cell complex for the whole
singularity link, since much of the probability mass is typically placed in
that extension. Such complexes were introduced by Ziegler and the author
in [11]. The construction and basic properties partly run parallel to a
similar construction in the real case, well-known from the theory of oriented
matroids.
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The complex hyperplane walks take place on such cell complexes in a
manner that will be described in Section 4.3. These cell complexes have a
semigroup structure to which the theory of Brown [13] applies. Thus we get
results for complex hyperplane walks analogous to those for the real case.

As mentioned, when specialized to the real braid arrangement the gen-
eral theory of walks on real arrangements leads to the one-shelf dynamic

library. What happens when we similarly specialize random walks on com-
plex arrangements to the complex braid arrangement? The pleasant answer
is that we are led to Markov chains modelling dynamic libraries with sev-

eral shelves. These are self-organizing libraries where the books are placed
on different shelves according to some classification (combinatorics books,
geometry books, etc.), and not only the books on each shelf but also the
shelves themselves are permuted in the steps of the Markov chain. Depend-
ing on the distribution of probability mass there are different versions.

Here is one. Say that a customer withdraws a subset E ⊆ [n] of books
from the library. The books are replaced in the following way. Permute
the shelves so that the ones that contain one of the books from E become
the top ones, maintaining the induced order among them and among the
remaining shelves, which are now at the bottom. Then, on each shelf move
the books from E to the beginning of the shelf, where they are placed in
the induced order.

The exact description is given in Section 4.4. These Markov chains may
be of interest also for file management applications in computer science.

In this paper we take a somewhat leisurely walk through the territory
leading to complex hyperplane walks, recalling and assembling results along
the way that in the end lead to the desired conclusions. We are not seeking
the greatest generality, the aim is rather for simplicity of statements and
illuminating ideas through special cases. Some proofs that would interfere
with this aspiration are banished to an appendix.

Several topics touched upon in this paper relate to joint work with László
Lovász. This is the case for the k-equal arrangements [8] in Section 2.4 and
for the greedoids [6] in Section 4.5. It is a pleasure to thank Laci for all the
pleasant collaborations and interesting discussions over many years.

Also, I am grateful to Persi Diaconis for inspiration and encouragement,
and to Jakob Jonsson for helpful remarks.
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2. Real Hyperplane Arrangements

We review the basic facts about real hyperplane arrangements. This ma-
terial is described in greater detail in many places, for instance in [7] and
[19], to where we refer for more detailed information. Also, we adhere to
the notation for posets and lattices in [20].

2.1. Basics

Let �1, . . . , �t be linear forms on R
d, and Hi =

{
x : �i(x) = 0

}
⊆ R

d the
corresponding hyperplanes. We call A = {H1, . . . , Ht} a real hyperplane

arrangement. The arrangement is essential if ∩Hi = {0}, and we usually
assume that this is the case.

The complement MA = R
d
\ ∪A consists of a collection CA of open

convex cones Ri called regions. They are the connected components of the
decomposition MA =

⊎
Ri into contractible pieces.

With A we associate its intersection lattice LA, consisting of all in-
tersections of subfamilies of hyperplanes Hi ordered by set inclusion. Each
subspace belonging to LA can be represented by the set of hyperplanes from
A whose intersection it is. In this way the elements of LA can be viewed ei-
ther as subsets of R

d or as subsets of A. The latter is for simplicity encoded
as subsets of [n] via the labeling i↔ Hi.

Let L
op

A denote LA with the opposite partial order, so in L
op

A the sub-
spaces of R

d are ordered by reverse inclusion. This is a geometric lattice,
whose atoms are the hyperplanes Hi.

The number of regions of A is determined by LA via its Möbius function
in the following way.

Theorem 2.1 (Zaslavsky [22]). |CA| =
∑

x∈LA

∣∣
μ(x, 1̂ )

∣∣ .
There is a useful way to encode the position of a point x ∈ R

d with
respect to A. Define the sign vector (position vector) σ(x) = {σ1, . . . , σt} ∈

{0,+,−}
t by

σi
def
=

⎧⎪⎪⎨⎪⎪⎩
0, if �i(x) = 0

+, if �i(x) > 0

−, if �i(x) < 0
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In words, the ith entry σi of the sign vector σ(x) tells us whether the point
x is on the hyperplane Hi, or on its positive resp. negative side.

Let FA
def
= σ(Rd) ⊆ {+,−, 0}t and make this collection of sign vectors

into a poset by componentwise ordering via

Thus, we have a surjective map σ : R
d
→ FA. Note that FA, called the

face semilattice, has minimum element (0, . . . , 0) and its maximal elements
FA∩{+,−}

t are in bijective correspondence with the regions, as is illustrated
in Figure 1.

Fig. 1. Face semilattice of an arrangement of three lines in R
2

The composition X◦Y of two sign vectors X, Y ∈ {0, +,−}
t is defined by

(X ◦ Y )i
def
=

{
Xi, if Xi �= 0

Yi, if Xi = 0

This operation on {0,+,−}
t is associative, idempotent, and has unit element

(0, . . . , 0). Furthermore, FA forms a closed subsystem: if X, Y ∈ FA then
X ◦ Y ∈ FA. Here is the geometric reason: choose points x, y ∈ R

d such
that σ(x) = X and σ(y) = Y . Move a small distance from x along the
straight line segment from x to y. The point z reached has the position
σ(z) = X ◦ Y .

Hence,

(2.1) (FA, ◦) is an idempotent semigroup.
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The combinatorics of sign vectors is systematically developed in oriented

matroid theory, where the elements of FA are called “covectors” and the
system (FA, ◦) is the basis for one of the fundamental axiom systems, see
[7, Section 3.7].

There is an important span map

(2.2) span: FA → LA

which can be characterized in two ways. Combinatorially, it sends the sign-
vector X to the set of positions of its non-zero components (a subset of [n]).
Geometrically, it sends the cone σ

−1(X) to its linear span.

The span map is a rank-preserving and order-preserving semigroup map,
meaning that

rkFA
(X) = rkLA

(
span (X)

)
(2.3)

X ≤ Y ⇒ span (X) ≤ span (Y )(2.4)

span (X ◦ Y ) = span (X) ∨ span (Y )(2.5)

Also, we have that

X ◦ Y = Y ⇔ X ≤ Y(2.6)

X ◦ Y = X ⇔ span (Y ) ≤ span (X)(2.7)

2.2. The braid arrangement

The braid arrangement Bn = {xi − xj | 1 ≤ i < j ≤ n} in R
n plays

an important role in this paper, due to its close connections with the
combinatorics of permutations and partitions. The hyperplanes in Bn all
contain the diagonal line (t, t, . . . , t). By intersecting with the hyperplane
orthogonal to this line we get an essential arrangement, now in R

d−1.

The intersection lattice LBn
is isomorphic to the partition lattice Πn,

i.e. the partitions of the set [n] ordered by reverse refinement. The corre-
spondence between a set partition and a subspace obtained by intersecting
some hyperplanes xi − xj is easily understood from examples, such as

(134 | 27 | 5 | 6) ↔

{
x1 = x3 = x4

x2 = x7
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and

(1345 | 267) < (134 | 27 | 5 | 6).

The face semilattice FBn
is isomorphic to the meet-semilattice of ordered

set partitions Πord
n (so, the order of the blocks matters), ordered by reverse

refinement. For instance,

〈134 | 6 | 27 | 5〉 ↔

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x1 = x3 = x4

x4 < x6 < x2

x2 = x7

x7 < x5

and

〈1346 | 257〉 < 〈134 | 6 | 27 | 5〉.

Under this correspondence the regions of R
n−1

\ ∪Bn are in bijection with
the ordered partitions into singleton sets, or in other words, with the per-
mutations of the set [n]. The span map (2.2) is the map Πord

n → Πn that
sends an ordered partition 〈. . .〉 to an unordered partition (. . .) by forgetting
the ordering of its blocks.

Composition in FBn
has the following description. If X = 〈X1, . . . , Xp〉

and Y = 〈Y1, . . . , Yq〉 are ordered partitions of [n], then X ◦ Y = 〈Xi ∩ Yj〉

with the blocks ordered lexicographically according to the pairs of indices
(i, j). For instance,

〈257 | 3 | 146〉 ◦ 〈17 | 25 | 346〉 = 〈7 | 25 | 3 | 1 | 46〉,

as can conveniently be seen from the computation table

(2.8)

◦ 1, 7 2, 5 3, 4, 6

2, 5, 7 7 2, 5

3 3

1, 4, 6 1 4, 6
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2.3. Cell complexes and zonotopes

The whole idea of random walks on complex hyperplane arrangements
rests on the idea of walking on the cells of an associated cell complex.
We therefore review the construction used in [11] of such cell complexes.
The basic idea is given together with two applications. The first one is
the construction of cell complexes for the complement of a linear subspace
arrangement in R

d at the end of this section. The other is the construction
of cell complexes for hyperplane arrangements in C

d, to which we return in
Section 3.2. See e.g. [4] for topological terminology.

A regular cell decomposition Γ of the unit sphere S
d−1 is said to be PL if

its barycentric subdivision (equivalently, the order complex of its face poset)
is a piecewise linear triangulation of S

d−1. Here is a simple combinatorial
procedure for producing regular cell complexes of certain specific homotopy
types from posets.

Proposition 2.2 [11, Prop. 3.1]. Suppose that Γ is a PL regular cell

decomposition of S
d−1, with face poset FΓ. Let T ⊆ S

d−1 be a subspace

of the sphere such that T = ∪τ∈Gτ for some order ideal G ⊆ FΓ. Then

the poset (FΓ \G)op is the face poset of a regular cell complex having the

homotopy type of the complement S
d−1

\ T .

Now, let A be an essential hyperplane arrangement in R
d. For a general

sign vector X ∈ FA the set σ
−1(X) is a convex cone in R

d which is open

in its linear span. Let τX
def
= σ

−1(X) ∩ S
d−1. The sets τX , for X ∈ FA \ 0̂,

partition the the unit sphere and are in fact the open cells of a regular CW
decomposition of S

d−1. Furthermore, the inclusion relation of their closures
τX coincides with the partial order we have defined on FA. Thus, FA \ 0̂ is
the face poset of a regular cell decomposition ΓA of the unit sphere in R

d,
namely the cell decomposition naturally cut out by the hyperplanes.

The cell complex ΓA = {τX}X∈FA

induced by a hyperplane arrange-
ment A is PL. Thus, via Proposition 2.2 we can construct cell complexes
determining the complement of a subcomplex up to homotopy type. Combi-
natorially the description is simple: erase from the face poset FA all the cells
that belong to the given subcomplex and then turn the remaining subposet
upside down. Done!

The cell complexes constructed this way from a hyperplane arrangement
A can be geometrically realized on the boundary of an associated convex
polytope. Namely, with A is associated its zonotope ZA = [−e1, e1]⊕ · · · ⊕
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[−et, et]. Here ei is a normal vector in R
d to the hyperplane Hi and the right-

hand side denotes Minkowski sum of centrally symmetric line segments.
Thus, ZA is a centrally symmetric convex polytope, determined this way
up to combinatorial equivalence. A key property of ZA is that there exists
an order-reversing bijection between the faces on its boundary and the cells
of ΓA. In other words, the poset of proper faces of ZA is isomorphic to the
opposite of the face poset of A:

(2.9) FZA

∼=
(
FA \ 0̂

)op

Suppose that A is an arrangement of linear subspaces of arbitrary di-
mensions in R

d. Say that we want to construct a cell complex having the
homotopy type of its complement R

d
\ ∪A. This complement is by radial

projection homotopy equivalent to its intersection with the unit sphere S
d−1.

Therefore the preceding construction is applicable. We just have to choose
an auxiliary hyperplane arrangement H into which A embeds, meaning that
each subspace in A is the intersection of some of the hyperplanes from H.
This is clearly always possible. Putting the various pieces of information
together and applying Proposition 2.2 we obtain the following description.

Theorem 2.3 [11]. Let A be an arrangement of linear subspaces in R
d.

Choose a hyperplane arrangement H into which A embeds. Then the

complement R
d
\ ∪A has the homotopy type of a subcomplex ZH,A of the

boundary of the zonotope ZH. The complex ZH,A is obtained by deleting

from the boundary of ZH all faces that correspond to cells τX contained in

∪A.

2.4. The permutohedron and the k-equal arrangements

We illustrate the general constructions of the preceding section by applying
them to the k-equal arrangements An,k = {xi1 = xi2 = · · · = xik : 1 ≤
i1 < i2 < · · · < ik ≤ n} in R

n. The topology of their complements
plays a crucial role in the solution of a complexity-theoretic problem in
joint work with Lovász and Yao [8, 9]. See also [10], where their homology
groups were computed. The k-equal arrangements embed into the braid
arrangement (the k = 2 case), so Theorem 2.3 is applicable. It tells us
that, up to homotopy type, the topology of the complement of the k-equal
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arrangement An,k is realized by some subcomplex of the zonotope of the
braid arrangement. This subcomplex can be very explicitly described.

Fig. 2. The permutohedron Z
perm

4

The zonotope of the braid arrangement Bn is the permutohedron Z
perm
n ,

that is, the convex hull of the n! points in R
n whose coordinates are given

by a permutation of the numbers 1, 2, . . . , n. Its n! vertices are in bijection
with the n! regions of Bn, in accordance with the duality (2.9).

We want to describe the subcomplex ZAn,k
of the boundary of Z

perm
n

which is homotopy equivalent to the complement Mn,k of An,k.

For this one argues as follows, keeping Section 2.2 in fresh memory. Let
f : Πord

n → Πn be the span map, i.e., the forgetful map that sends an ordered
partition of [n] to the corresponding unordered partition. The set Πord

n \ 0̂
ordered by refinement is the poset of proper faces of the permutohedron
Z

perm
n , whereas the set Πn ordered by refinement is the opposite of inter-

section lattice of the braid arrangement. The image f(π) for π ∈ Πord
n is a

partition determining the span of the corresponding cell (i.e., the smallest
intersection subspace of the braid arrangement in which the cell is con-
tained). More precisely, the span of π is the subspace obtained by setting
xi1 = xi2 = · · · = xij for each block {i1, i2 . . . , ij} of π. Thus, a cell π ∈ Πord

n

lies in the union of the k-equal arrangement if and only if some block has
size at least k.

It follows that the complex ZBn,An,k
consists of those cells on the bound-

ary of the permutohedron Z
perm
n that correspond to ordered partitions with

all blocks of size less than k. If an ordered partition has blocks of sizes
b1, . . . , be, then the corresponding face of Z

perm
n is the product of smaller
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permutohedra of dimensions b1 − 1, . . . , be − 1. Therefore, the final descrip-
tion of the cell complex ZBnAn,k

is that one should delete from Z
perm
n all

faces that contain a q-dimensional permutohedron, for q ≥ k − 1, in its
decomposition.

We are led to the following result, obtained independently by E. Babson
for k = 3 (see [1]) and the author [5].

Theorem 2.4. Delete from the boundary of the permutohedron Z
perm
n

every face that contains a d-dimensional permutohedron, d ≥ k − 1, in

its decomposition. Then the remaining subcomplex has the homotopy type

of the complement of the k-equal arrangement.

Thus, for k = 2 one deletes everything but the vertices, for k = 3 one
deletes all cells except those that are products of edges (equivalently, keep
only the cubical faces), for k = 4 one deletes all cells except those that are
products of edges (1-dimensional zonotope) and hexagons (2-dimensional
zonotope), and so on.

The case k = 3 is especially interesting. The complex is in that case
cubical. In particular, the fundamental group of Mn,3 is the same as the
fundamental group of the cell complex obtained from the graph (1-skeleton)
of Z

perm
n by gluing a 2-cell (membrane) into every 4-cycle.

Remark 2.5. What was just said is part of a more general result about
gluing 2-cells into 4-cycles of a zonotopal graph.

LetH be an arbitrary central and essential hyperplane arrangement, and
let A be the subspace arrangement consisting of codimension 2 intersections
of 3 or more planes from H (assuming that there are such).

Next, let G be the 1-skeleton of the zonotope ZH. The 2-cells of ZH are
2m-gons (corresponding to codimension 2 subspaces where m planes meet).
Let ΓA be the cell complex obtained by gluing 2-cells into the 4-cycles of the
graph G. Then the general construction above shows (since fundamental
groups live on 2-skeleta) that the fundamental group of ΓA is isomorphic to
that of the complement MA.

One can go on and describe the higher-dimensional cells needed to obtain
a cell complex having the homotopy type of the complement of such a
codimension 2 arrangement A. They are all the cubes in the boundary
of ZH, just like for the special case of the 3-equal arrangement.
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Remark 2.6. The two-dimensional faces of Z
perm
n are either 4-gons or 6-

gons. What happens if we take the graph of the permutohedron and glue in
only the hexagonal 2-cells? The answer is that we get a two-dimensional cell
complex whose fundamental group is isomorphic to that of the complement
of another subspace arrangement, namely the arrangement A[2,2] consisting
of codimension 2 subspaces of R

n obtained as intersections of pairs of
hyperplanes xi = xj and xk = xl, for all distinct i, j, k, l. Actually, for
A[2,2] a stronger statement is true: the 2-dimensional cell complex described
(i.e. the permutohedron graph plus all hexagonal 2-cells) has the homotopy
type of the complement of A[2,2].

It is an interesting fact that the codimension 2 arrangements An,3 and
A[2,2], corresponding to the two ways of gluing 2-cells into the permuto-
hedron graph, share a significant topological property, namely that their
complements are K(π, 1) spaces. See Khovanov [17].

3. Complex Hyperplane Arrangements

We now move the discussion to complex space. To begin with many of
the concepts and results are parallel to the real case. But new interesting
features soon start to appear. This whole chapter summarizes material
from [11].

3.1. Basics

We call A = {H1, . . . , Ht} a complex hyperplane arrangement if Hi ={
z : �i(z) = 0

}
⊆ C

d for some linear forms �1, . . . , �t on C
d. A particular

choice of defining linear forms is assumed throughout, so we can also write
A = {�1, . . . , �t}. The arrangement is essential if ∩Hi = {0}, and we usually
assume that this is the case. The real and imaginary parts of w = x+iy ∈ C

are denoted, respectively, by "(w) = x and #(w) = y.
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The position of a point z ∈ C
d with respect to A is combinatorially

encoded in the following way. Define the sign vector (position vector)

σ(z) = {σ1, . . . , σt} ∈ {0, +,−, i, j}
t by

σi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if �i(z) = 0

+, if #
(
�i(z)

)
= 0, "(�i(x) > 0

−, if #
(
�i(z)

)
= 0, "(�i(x) < 0

i, if #
(
�i(z)

)
> 0

j, if #
(
�i(z)

)
< 0

Let FA
def
= σ(Cd) ⊆ {0,+,−, i, j}

t and make this collection of sign vectors
into a poset, called the face poset, by componentwise ordering via

Proposition 3.1 [11].

(1) FA is a ranked poset of length 2d. Its unique minimal element is 0.

(2) The maximal elements of FA are the sign vectors in FA ∩ {i, j}
t.

(3) μ(Z, W ) = (−1)rk (W )−rk (Z)
, for all Z ≤W in FA ∪ 1̂.

Figure 3 (borrowed from [11]), shows the face poset of A = {z, w, w−z}

in C
2. The reason for marking the elements not containing any zero with

filled dots becomes clear in Section 3.2

The composition of two complex sign vectors Z ◦W ∈ {0,+,−, i, j}
t is

defined by

(3.1) (Z ◦W )i =

{
Zi, if Wi �> Zi

Wi, if Wi > Zi

Just as in the corresponding real case this operation on {0, +,−, i, j}
t is

associative, idempotent, and has unit element (0, . . . , 0). Also, for geometric
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Fig. 3. Face poset of an arrangement of three lines in C
2

reasons (analogous to the ones in the real case) X, Y ∈ FA implies that
X ◦ Y ∈ FA. Hence,

(3.2) (FA, ◦) is an idempotent semigroup.

For complex arrangements the notion of intersection lattice splits into
two.

1. The intersection lattice LA consists of all intersections of subfamilies
of hyperplanes Hi ordered by set inclusion.

2. The augmented intersection lattice LA,aug is the collection of all
intersections of subfamilies of the augmented arrangement

Aaug = {H1, . . . , Ht, H
R
1 , . . . , H

R
t }

ordered by set inclusion. Here, H
R
i

def
= {z ∈ C

d : #
(
�i(z)

)
= 0} is a (2d−1)-

dimensional real hyperplane in C
d ∼= R

2d containing Hi.

Again as in the real case, we denote by L
op

A and L
op

A,aug
the opposite

lattices, obtained by reversing the partial order.

Proposition 3.2. (1) L
op

A is a geometric lattice of length d.

(2) L
op

A,aug
is a semimodular lattice of length 2d.

There is a span map

(3.3) span: FA → LA,aug
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defined by sending the convex cone σ
−1(Z), for Z ∈ FA, to the intersection

of all subspaces in Aaug that contain σ
−1(Z). This map preserves poset and

semigroup structure as well as poset rank.

Proposition 3.3 [11].

rkFA
(Z) = rkLA,aug

(
span (Z)

)
(3.4)

Z ≤ W ⇒ W ◦ Z = W ⇔ span (Z) ≤ span (W )(3.5)

span (Z ◦W ) = span (Z) ∨ span (W )(3.6)

3.2. Cell complexes

The complement MA = C
d
\∪A is a complex manifold of real dimension 2d.

There is a huge literature on the topology of such spaces, see e.g. [19].
Among the basic results we mention that the Betti numbers of MA are
determined by LA via its Möbius function in the following way.

Theorem 3.4 [19, p. 20]. βi(MA) =
∑

x∈LA : rk (x)=d−i

∣∣
μ(x, 1̂ )

∣∣ .
Let A be an essential complex hyperplane arrangement in C

d, as before.
For every sign vector Z ∈ FA \ 0 the inverse image σ

−1(Z) is a relative-
open convex cone in C

d. The intersections of these cones with the unit
sphere S

2d−1 in C
d are the open cells of a PL regular cell decomposition of

S
2d−1 whose face poset is isomorphic to FA. Hence, as an application of

Proposition 2.2 we get part (3) of the following result. Part (2) can be seen
from the fact that x is an rk (x)-dimensional linear subspace, so x ∩ S

2d−1

is an
(

rk (x) − 1
)
-dimensional sphere, for all x ∈ LA,aug \ 0̂, where “rk”

denotes poset rank in LA,aug.

Theorem 3.5 [11].

1. The poset FA is the face poset of a regular cell decomposition of the

unit sphere in R
2d ∼= C

d.

2. The subposet span−1
(
(LA,aug)≤x

)
is the face poset of a regular cell

decomposition of the sphere S
rk (x)−1, for all x ∈ LA,aug \ 0̂.
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3. The subposet CA
def
= FA ∩ {+,−, i, j}

t
, with opposite order, is the

face poset of a regular cell complex having the homotopy type of the

complement MA.

For an example, have a look at Figure 3. The sign vectors in FA that
lack a zero component are shown by filled dots. Hence, the cell complex CA

can be viewed by turning the page upside-down and looking at the subposet
of filled dots only.

Combining some of this topological information with Theorem 5.1 of the
Appendix we obtain the following analogue of Zaslavsky’s theorem 2.1 for
the number of maximal cells in the complex case.

Theorem 3.6.
∣∣ max (FA)

∣∣ =
∑

x∈LA,aug

∣∣
μ(x, 1̂ )

∣∣ .
Proof. We apply Theorem 5.1 to the span map: FA → LA,aug. There are
six conditions to verify. With the exception of (5), they all follow from
Propositions 3.1 and 3.2. Condition (5) is the consequence for the Euler
characteristic of Theorem 3.5(2).

3.3. Complexified R-arrangements

This section concerns the special case when all the linear forms �i(z) have
real coefficients. The forms then define both a real arrangement AR in R

d

and a complex arrangement AC in C
d. These are of course related, and we

here summarize what expression this relation takes for the combinatorial
structures of interest.

First a few observations about complex sign vectors. A sign vector Z is
called real if all its entries come from {0,+,−}. Every complex sign vector
Z can be obtained as a composition Z = X ◦ iY

1 for two real sign vectors
X and Y . Only the vector Y is unique in this decomposition.

For any poset P , let Int (P ) denote the set of its closed intervals. In the
case of the face poset FAR of a real arrangement AR we make Int (FAR) into
a poset by introducing the following partial order:

(3.7) [Y, X] ≤ [R, S] ↔

{
Y ≤ R

R ◦X ≤ S

1 here i · 0 = 0, i · + = i, i · − = j.
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Proposition 3.7 [11]. The map φ : Int (FAR) → FAC given by [Y, X] $→
X ◦ iY is a poset isomorphism.

For example,

φ :
[
(0 −+ 0 0−), (−−+ 0 +−)

]
$→ (− j i 0 + j)

Hence, the entire structure of the complex face poset FAC can be dealt
with in terms of intervals in the real face poset FAR . In particular, the cells
in the complement of A, being the sign vectors without any zero coordinate,
get this description.

CAC

φ
↔ intervals [Y, X] with X ∈ max

(
FAR

)
Composition of complex sign vectors (3.1) takes the following form when
translated to intervals:

(3.8) [Y, X] ◦ [R, S] = [Y ◦R, Y ◦R ◦X ◦ S]

The augmented intersection lattice LAC,aug is similarly determined by
the intervals of LAR , namely

(3.9) LAC,aug
∼= Int (LAR),

this time with the partial order defined by

(x, y) ≤ (x′, y′) if and only if x ≤ x
′ and y ≤ y

′
.

The span map is the natural one

(3.10) Int (FAR) ∼= FAC → LAC,aug
∼= Int (LAR)

sending [Y, X] to
[

span (Y ), span (X)
]
. The Möbius function of Int (LAR) is

described in terms of the Möbius function of the lattice LAR in Appendix 5.2.

Example 3.8. The braid arrangement BC
n = {zi − zj | 1 ≤ i < j ≤ n}

in C
n is the complexification of the real braid arrangement, discussed in

Section 2.2. Hence we can translate its combinatorics into the language of
intervals, as outlined in this section.

We obtain that BC
n has face semilattice

FBC
n

∼= Int
(
FBR

n

)
∼= Int (Πord

n )
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and augmented intersection lattice

LBC
n,aug

∼= Int
(
LBR

n

)
∼= Int (Πn).

Thus, the complex sign vectors of BC
n are encoded into pairs [Y, X] of

ordered partitions, where X is an refinement of Y . The composition (3.8)
is illustrated in this computation table:

(3.11)

◦ 1 3 5 4 7 6 2

3, 7 3 7

1 1

2, 5, 6 5 6 2

4 4

from which we read that

〈37 | 1 || 256 | 4〉 ◦ 〈1 | 3 | 5 || 4 | 7 || 6 | 2〉 = 〈3 | 1 || 7 || 5 || 4 || 6 | 2〉

Here single bars denote the separation of the ground set [7] into ordered
blocks according to X, and double bars the coarser partition Y . The rule is
to read off the coarser partition of the composition by ordering the double
bar boxes lexicographically, and then read off the refinement by ordering
the single bar boxes within each double bar box lexicographically (empty
boxes are skipped).

Notice that the cells in the complement of the complex braid arrange-
ment, cf. Theorem 3.5 (3), correspond to block-divided permutations:

CBC
n
↔ sign vectors X ◦ iY without zero coordinates

↔ intervals [Y, X], X maximal

↔ permutations X divided into ordered blocks Y

4. Random Walks

This chapter begins with a summary of Brown’s theory for random walks
on a class of semigroups [13]. The motivating example, namely walks on
real hyperplane arrangements, is then recalled. After that comes a sequence
of applications.
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4.1. Walks on semigroups

A semigroup is a set with an associative composition. We also assume the
existence of an identity element, denoted “e”, and we write the composition
in multiplicative notation.

Definition 4.1. An LRB semigroup is a finite semigroup Σ with identity
satisfying

(1) x
2 = x for all x ∈ Σ,

(2) xyx = xy for all x, y ∈ Σ.

A left ideal of Σ is a subset I ⊆ Σ such that x ∈ Σ, y ∈ I ⇒ xy ∈ I.

The acronym LRB stands for “Left-Regular Band”, a name by which
this class of semigroups is sometimes known in the literature. Brown [13]
defined a class of random walks on semigroups of this type. This section
summarizes some material from [13], to where we refer for more information,
background and references.

Definition 4.2. Let I be a left ideal of Σ, and let w be a probability
distribution on Σ. A random walk on I is defined in the following way. If
the current position of the walk is at an element y ∈ I, then choose x ∈ Σ
according to the distribution w and move to xy.

Brown’s main theorem gives surprisingly exact information about such
random walks. In order to be able to state it we need to first introduce two
related poset structures.

Let Σ be an LRB semigroup. We define a relation “≤ ” on Σ by

(4.1) x ≤ y ⇔ xy = y

This turns out to be a partial order relation, so we may think of an LRB
semigroup also as a poset. The identity element e is the unique minimal
element. The set max (Σ) of maximal elements is a left ideal in Σ.

There is also another partial order significantly related to Σ.

Proposition 4.3 [13]. Let Σ be an LRB semigroup. Then there exists a

unique finite lattice Λ and an order-preserving and surjective map

(4.2) supp: Σ→ Λ

such that for all x, y ∈ Σ:
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(1) supp (xy) = supp (x) ∨ supp (y)

(2) supp (x) ≤ supp (y) ⇔ yx = y

We call Λ the support lattice and supp the support map. Observe that

supp−1(0̂) = {e} and supp−1(1̂ ) = max (Σ),

where 0̂ and 1̂ denote the bottom and top elements of Λ. In fact, the
following conditions on an element c ∈ Σ are equivalent:

(1) supp (c) = 1̂,

(2) c ∈ max (Σ),

(3) cx = c, for all x ∈ Σ.

Here is the main result on the random walks of Definition 4.2.

Theorem 4.4 (Brown [13]). Let Σ be an LRB semigroup and Λ its support

lattice. Furthermore, let {wx} be a probability distribution on Σ and Pw

the transition matrix of the induced random walk on the ideal max (Σ):

Pw(c, d) =
∑

x : xc=d

wx

for c, d ∈ max (Σ). Then,

(1) The matrix Pw is diagonalizable.

(2) For each X ∈ Λ there is an eigenvalue εX =
∑

y : supp (y)≤X wy.

(3) The multiplicity of the eigenvalue εX is mX =
∑

Y : Y≥X μΛ(X, Y )cY ,

where cY
def
=

∣∣ max (Σ≥y)
∣∣ , for any y ∈ supp−1(Y ).

(4) These are all the eigenvalues of P .

(5) Suppose that Σ is generated by {x ∈ Σ: wx > 0}. Then the random

walk on max (Σ) has a unique stationary distribution π.

By Möbius inversion the multiplicities can be determined also from the
relations

(4.3) cX =
∑

Y : Y≥X

mY .

Theorem 4.4 is a generalization from the special case of face semigroups
of real hyperplane arangements, to be briefly reviewed in the following
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section. In that case the theorem emanates from the work of Bidigare,
Hanlon and Rockmore [2] and was expanded by Brown and Diaconis [15].
The generalization to LRB semigroups was given by Brown [13, 14].

The cited papers also contain information about the rate of convergence
to stationarity and various descriptions of the stationary distribution, e.g.
via sampling techniques, see [2, 13, 14, 15, 16] for such information.

The following proposition describes two ways in which smaller LRB
semigroups are induced.

Proposition 4.5 [13]. Let Σ be an LRB semigroup with support lattice Λ.

Suppose that x ∈ Σ and X ∈ Λ. Then

(1) Σ≥x
def
= {y ∈ Σ: y ≥ x} is an LRB semigroup whose support lattice is

the interval
[
supp (x), 1̂

]
in Λ.

(2) If supp (x) = supp (y) then Σ≥x
∼= Σ≥y.

(3) FibΛ(X)
def
=

{
y ∈ Σ: supp (y) ≤ X

}
is an LRB semigroup (we call it

the fiber semigroup at X), whose support lattice is the interval [0̂, X]
in Λ.

4.2. Walks on R-arrangements

LetA be an essential hyperplane arrangement in R
d with face semilattice FA

and intersection lattice LA. The following is easily seen from observations
(2.1)–(2.5).

Proposition 4.6. (FA, ◦) is an LRB semigroup with support lattice LA

and support map span.

Let CA be the set of regions in the complement of A. There is a one-
to-one correspondence CA ↔ max (FA). Thus the general theory produces
a class of random walks on CA to which Theorem 4.4 is applicable. The
description of this case is as follows.

Random walk on CA: Fix a probability distribution w on FA.

If the walk is currently in region C ∈ CA, then choose a face

X ∈ FA according to w and move to the region X ◦ C.
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Let Pw be the transition matrix

Pw(C, D) =
∑

F : F◦C=D

wF

Theorem 4.4 specializes to the following, where part (3) relies on Zaslavsky’s
formula (Theorem 2.1) together with relation (4.3).

Theorem 4.7 (Bidigare–Hanlon–Rockmore [2], Brown-Diaconis [15]).

(1) Pw is diagonalizable.

(2) For each X ∈ LA there is an eigenvalue εX =
∑

F : span (F )⊆X wF .

(3) The multiplicity of εX is
∣∣
μLA

(X, 1̂ )
∣∣ .

(4) These are all the eigenvalues.

(5) Assume that the probability mass w is not concentrated on any single

hyperplane Hi. Then there is a unique stationary distribution π.

Remark 4.8. The following interesting result appears in [3]. Let w be the
uniform distribution on the set of vertices (minimal elements of FA \ {0})
of an arrangement in R

3. Then the probability (according to π) of being
in a region with k sides is proportional to k − 2. It is an open problem to
give any such geometric characterization of the stationary distribution for
arrangements in R

d, d ≥ 4.

4.3. Walks on C-arrangements

Let A be an essential hyperplane arrangement in C
d with face semilattice

FA and intersection lattices LA and LA,aug. The following strengthening of
observation (3.2) is immediate.

Proposition 4.9. (FA, ◦) is an LRB semigroup with support lattice LA,aug

and support map span.

Applying the general theory directly to FA and the ideal max (FA) we
get a walk on the maximal complex sign vectors which is a direct analogue
of the real walks in Section 4.2.
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Theorem 4.10. The statements of Theorem 4.7 are valid for the complex

walks, with the following replacements for items (2) and (3) :

(2) For each X ∈ LA,aug such that μLA,aug
(X, 1̂ ) �= 0 there is an eigenvalue

εX =
∑

F : span (F )⊆X wF .

(3) The multiplicity of εX is
∣∣
μLA,aug

(X, 1̂ )
∣∣ .

The proof of part (3) relies here on the generalized Zaslavsky formula
(Theorem 3.6) together with relation (4.3). Note that in the formulation of
Theorem 4.7 we need not demand that μ(X, 1̂ ) �= 0, since that is automat-
ically true for geometric lattices. However, in Theorem 4.10 all we know is
that the lattice is lower semimodular, which implies that the Möbius func-
tion alternates in sign but not that it is nonzero.

Specializing in various directions there are several semigroup-induced
random walks coming out of this situation. We describe two of them.

Case 1. Suppose that the probability mass w is concentrated on the real
sign vectors and let Z = X◦ iY ∈ FA, for real sign vectors X and Y . Choose
W ∈ FA ∩ {0, +,−}

t according to w and move to W ◦ Z = (W ◦X) ◦ iY .
Then Z and W ◦ Z have the same imaginary part iY . It can be checked
that the subset of FA consisting of sign vectors with fixed imaginary part
iY is an LRB semigroup. Note that it doesn’t come from a filter of a fiber,
as in Proposition 4.5.

For complexified real arrangements, where sign vectors correspond to
intervals, we have in this case that

[0, X] ◦ [R, S] = [0 ◦R, 0 ◦R ◦X ◦ S] = [R, R ◦X ◦ S]

So, probability mass concentrated on elements [0, X] (real sign vectors)
gives a random walk on the set of intervals [R, S], S maximal, for any fixed
element R.

Case 2. Let AC be the complexification of a real arrangement AR. We have
that LAC,aug

∼= Int
(
LAR

)
. The purpose here is to determine the transition

matrix eigenvalues for the fiber semigroup Fib (X) =
{

y ∈ FAC : supp (y) ≤

X

}
, for X = [π, 1̂ ] ∈ Int

(
LAR

)
. The support lattice of Fib (X) is the

interval [ 0̂, X] in LAC,aug, cf. Proposition 4.5.

Theorem 4.4 shows that the eigenvalues are indexed by intervals [α, β] ∈[
[ 0̂, 0̂ ], [π, 1̂ ]

]
, i.e., intervals [α, β] such that α ≤ π. Furthermore, the
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multiplicity of such an eigenvalue is, according to Theorems 4.10, 5.1 and
5.2, the absolute value of

μInt (L)

(
[α, β], [π, 1̂ ]

)
=

{
μL(α, π)μL(β, 1̂ ), if π ≤ β

0, otherwise.

Thus, eigenvalues of positive multiplicity occur only when α ≤ π ≤ β, and
we have proved the following.

Theorem 4.11. The statements of Theorem 4.4 are valid for the complex

hyperplane walks induced on fibers Fib (X), as explained, with the following

replacements for items (2) and (3) :

(2) For each (α, β) ∈ [0̂, π]× [π, 1̂ ] there is an eigenvalue ε(α,β).

(3) The multiplicity of ε(α,β) is
∣∣
μL(α, π)μL(β, 1̂ )

∣∣ .
The exact value of ε(α,β) can of course be stated as a special case of

Theorem 4.4, but we leave this aside.

4.4. Walks on libraries

This section concerns the walks produced by the braid arrangements, both
real and complex. By translating from permutation and partition structures
we can interpret the states of such walks as distributions of books on shelves.
This library terminology also provides a convenient image for picturing and
explaining these walks.

Real case. Here one obtains random walks on permutations governed by
probability distributions w on ordered partitions. This case is thoroughly
discussed and exemplified in the literature, see [2, 3, 13, 15, 16]. We mention
just two examples.

First, suppose that the probability mass is concentrated on the two-block
ordered partitions whose first block is a singleton. That is,

probability =

{
wi, for the partition {i} | [n] \ {i}

0, for all other ordered partitions.

Then the random walk is precisely the Tsetlin library, for which book i is
chosen with probability wi and moved to the beginning of the shelf.
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Second, more generally allow non-zero probability for all two-block or-
dered partitions:

probability =

{
wE , for the partition E | [n] \ E

0, for all other ordered partitions.

Then the steps of the random walk consist of removing the books belonging
to the subset E with probability wE and then replacing them in the induced
order at the beginning of the shelf.

In the general case, when non-zero probability is allowed for arbitrary
ordered partitions, we obtain the one-shelf dynamic library with several
borrowers described in the Introduction.

Complex case. Let us now see what happens in the case of the complex
braid arrangement. We work out the case of a particular fiber LRB semi-
group, namely the one determined by choosing X = [π, 1̂ ], where π is a
partition (B1, . . . , Bk) ∈ Πn and 1̂, is the partition into singletons.

In our library there are n books labeled by the integers 1 through n,
and k shelves labeled by the integers 1 through k. Think of π as a division
of the books into k groups corresponding to the blocks Bi. For instance,
B1 could be the set of books on combinatorics, B2 the set of algebra books,
and so on. We are going to consider placements of these n books on the k

shelves so that the books in any particular class Bi stand (in some order)
on some particular shelf dedicated to that class.

The inverse image supp−1(X) consists of pairs [p, s], where p is an or-
dered partition of the given blocks, p = 〈Bp1

, . . . , Bpk
〉, and s is a permu-

tation of [n] refining p. We interpret such an element [p, s] as a particular
placement of the books: the books in Bp1

stand on the top shelf in the order
assigned by s, then the books in Bp2

stand on the next shelf in the order
assigned by s, and so on.

The fiber semigroup Fib (X) = supp−1(Λ≤X) consists of pairs [q, t],
where q is an ordered partition such that supp (q) is a coarsening of the
given partition π = {B1, . . . , Bk}, and t is an ordered partition refining q.

A step in the Markov chain is of the form [p, s] $→ [q, t] ◦ [p, s] =
[q◦p, q◦p◦t◦s]. What is its combinatorial meaning? Well, q◦p is an ordered
partition with blocks B1, . . . , Bk, and q ◦ p ◦ t ◦ s is a permutation refining
q ◦ p. Hence, the combinatorial meaning of such a step in the Markov chain
is that we permute the shelf assignments for the blocks Bi according to q◦p,
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and then permute the books on each shelf as induced by the permutation
q ◦ p ◦ t ◦ s.

Here is a concrete example. Say we have 14 books of 4 types, namely
the algebra books Balg = {1, 4, 5, 7}, the combinatorics books Bcomb =
{2, 8, 11, 12, 14}, the geometry books Bgeom = {6, 13}, and the topology
books Btop = {3, 9, 10}. Furthermore, say that the present state of the
Markov chain is this library configuration:

(4.4)

11 14 2 12 8

6 13

4 7 5 1

10 9 3

So, in particular, we have the combinatorics books on the top shelf, the
geometry books on the next shelf, and so on.

Now, let

q = 〈Balg | Bcomb ∪Btop | Bgeom〉

and

t = 〈4, 5 | 1, 7 | 8, 9, 12 | 14 | 2, 3, 10, 11 | 6, 13〉

Then, [q, t] acting on the state (4.4) leads to the following configuration

(4.5)

4 5 7 1

12 8 14 11 2

9 10 3

6 13

From now on we specialize the discussion to what seems like a “realistic”
special case, in which the Markov chain is driven by choices of subsets
E ⊆ [n] of the books. This walk has the following description in words.

Library walk: A borrower enters the library and borrows a subset

E ⊆ [n] of the books with probability wE. These books may

come from several shelves. When returned the books are put

back in the following way. Permute the shelves so that the

ones that contained one of the borrowed books become the top

ones, maintaining the induced order among them and among

the remaining shelves, which are now at the bottom. Then, on

each shelf place the books belonging to E at the beginning of the
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shelf, in the induced order, followed by the remaining books in

their induced order.

For example, if this procedure is carried out on the library configuration
(4.4) for the choice E = {1, 2, 3, 4} we obtain the new configuration (4.6).

(4.6)

2 11 14 12 8

4 1 7 5

3 10 9

6 13

In mathematical language, the following is going on. For the subset

E ⊆ [n] let KE
def
= ∪i : Bi∩E �=∅Bi and

qE
def
=

〈
KE | [n] \KE

〉
and tE

def
=

〈
E | KE \ E | [n] \KE

〉
.

The mathematical description of the library walk is that we assign the
following distribution

probability =

{
wE , for the partition interval [qE , tE ], all E ⊆ [n]

0, for all other intervals of ordered partitions

to the elements of the fiber semigroup Fib
(
[π, 1̂ ]

)
, and then we refer to

Theorem 4.11 for the consequences.

To exemplify how the interval [qE , tE ] acts on a library configuration we
return once more to the configuration (4.4). Suppose that E = {1, 2, 3, 4}
and let the interval [qE , tE ] act on (4.4). This leads to the library configu-
ration (4.6), as shown by the following computation table

◦ 11 14 2 12 8 6 13 4 7 5 1 10 9 3

1, 2, 3, 4 2 4 1 3

5, 7, 8, 9, 10, 11, 12, 14 11 14 12 8 7 5 10 9

6, 13 6 13
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Summing up the discussion we obtain the following result.

Theorem 4.12. The statements of Theorem 4.11 are valid for the library

walk, with the following replacements for parts (2) and (3) :

(2) For each pair of unordered partitions (α, β) such that α ≤ π ≤ β (i.e.,

β refines π and π refines α) there is an eigenvalue ε(α,β). Furthermore,

ε(α,β) =
∑

wE ,

the sum extending over all E ⊆ [n] such that E is a union of blocks

from β and the totality of books standing on the shelves containing

some element of E is a union of blocks from α.

(3) The multiplicity of ε(α,β) is
∏

(pi − 1)!
∏

(qj − 1)!, where (p1, p2, . . .)
are the block sizes of β and (q1, q2, . . .) the block sizes of α modulo π.

Here part (3) uses the well-known formula for the Möbius function of
the partition lattice Πn in terms of factorials, see e.g. [20, p. 128]

Example 4.13. We exemplify the preceding with a worked-out example.
Let n = 3 and π = (1, 2 | 3). Then there are four library configurations
indexing the rows and columns of the transition matrix Pw:

1 2

3

2 1

3

3
1 2

3
2 1

1 2

3 w1 + w1,2 + w1,3 w1 + w1,3 w1 + w1,2 w1

2 1

3 w2 + w2,3 w2 + w1,2 + w2,3 w2 w2 + w1,2

3
1 2 w3 0 w3 + w1,3 w1,3

3
2 1 0 w3 w2,3 w3 + w2,3

We ignore the trivial choices E = ∅ and E = {1, 2, 3}, so six elementary
probabilities wE are assigned. For instance, the entry w2 +w1,2 records that
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if books E are removed from the library configuration
3
2 1 and replaced

according to the rules, then configuration
2 1

3 is obtained precisely if

E = {2} or E = {1, 2}.

We have that 0̂�π�1̂ (·�· indicates coverings), so according to Theorem
4.12 there are four pairs (α, β) indexing the eigenvalues, all of which have

multiplicity one, and these eigenvalues are

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ε
(�0,π)

= 0

ε
(�0,�1 )

= w1,3 + w2,3

ε(π,π) = w3 + w1,2

ε
(π,�1 )

= 1

It is instructive to also check how the elementary probabilities wE contribute
to the various eigenvalues ε(α,β) in terms of the associated intervals:

E [qE , tE ] contributes to ε(α,β)

1
[
〈12 | 3〉, 〈1 | 2 | 3〉

]
[α, β] = [π, 1̂ ]

2
[
〈12 | 3〉, 〈2 | 1 | 3〉

]
[α, β] = [π, 1̂ ]

3
[
〈3 | 12〉, 〈3 | 12〉

]
[α, β] = [π, 1̂ ] or [π, π]

1, 2
[
〈12 | 3〉, 〈12 | 3〉

]
[α, β] = [π, 1̂ ] or [π, π]

1, 3
[
〈123〉, 〈13 | 2〉

]
[α, β] = [π, 1̂ ] or [0̂, 1̂ ]

2, 3
[
〈123〉, 〈23 | 1〉

]
[α, β] = [π, 1̂ ] or [0̂, 1̂ ]

4.5. Walks on greedoids

Denote by E
∗ the set of repetition-free words α = x1x2 . . . xk in letters

xi ∈ E. A greedoid is a language L ⊆ E
∗ such that

(G1) if αβ ∈ L then α ∈ L, for all α, β ∈ E
∗,

(G2) if α, β ∈ L and |α| > |β|, then α contains a letter x such that βx ∈ L.

The words in L are called feasible and the longest feasible words are called
basic. All basic words have the same length, and L is determined by the
basic words as the collection of all their prefixes.

Greedoids were introduced in the early 1980s by Korte and Lovász, see
the accounts in [12] and [18]. The concept can equivalently be formulated in
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terms of set systems, but only the (ordered) language version will concern
us here.

Important examples of greedoids are provided by matroids (abstraction
of linear hull) and antimatroids (abstraction of convex hull). Other examples
come from branchings in rooted directed graphs and various optimization
procedures (involving some versions of “the greedy algorithm”).

If α, β ∈ L and |α| > |β|, then repeated use of the exchange property
(G2) shows that β can be augmented to a feasible word βx1x2 . . . xj with
j = |α| − |β| letters xi drawn from α. But the letters xi might not occur in
βx1x2 . . . xj in the “right” order, i.e., in the order induced by their placement
in α. This motivates defining an important subclass of greedoids.

Definition 4.14. An interval greedoid is a language L ⊆ E
∗ satisfying (G1)

and the following strong exchange property

(G3) if α, β ∈ L and |α| > |β|, then α contains a subword γ of length
|γ| = |α| − |β| such that βγ ∈ L.

By subword we mean what can be obtained by erasing some letters and
then closing the gaps. Matroids, antimatroids and branchings are examples
of interval greedoids.

Let L be a greedoid on the finite alphabet E. We define an equivalence
relation on L by

(4.7) α ∼ β ⇔ {γ ∈ E
∗ : αγ ∈ L} = {γ ∈ E

∗ : βγ ∈ L}.

So, α and β are equivalent if and only if they have the same set of feasible
continuations. The equivalence classes [α] ∈ L/ ∼ are the flats of the
greedoid, and the poset of flats

Φ
def
= (L/ ∼,≤)

consists of these classes ordered by

[α] ≤ [β] ⇔ αγ ∼ β, for some γ ∈ E
∗
.

For instance, the poset of flats of a matroid defined in this way is easily seen
to be isomorphic to the usual geometric “lattice of flats” of matroid theory.

The feasible words of a greedoid can be composed in the following
manner. If x1x2 . . . xj ∈ L and y1y2 . . . yk ∈ L then

(4.8) x1x2 . . . xj ◦ y1y2 . . . yk
def
= x1x2 . . . xjyi1yi2 . . . yie
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where i1 < i2 < . . . < ie is the lexicographically first non-extendable
increasing sequence such that x1x2 . . . xjyi1yi2 . . . yie ∈ L. Letting α =
x1x2 . . . xj it is equivalent to say that α ◦ y1y2 . . . yk = αyi1yi2 . . . yie is the
word obtained, starting from α, by processing the letters yi of y1y2 . . . yk

from left to right and adding at the end of the word being formed only those
letters yi whose inclusion at that stage preserves feasibility.

For instance, consider the greedoid on E = {x, y, z, w} whose 14 basic
words are the words in E

∗ of length 3 that do not begin with a permutation
of {x, y, z} or {z, w}. This greedoid is discussed on pp. 290–291 of [12]. Here
are two sample computations:

x ◦ yzw = xyw and (x ◦ z) ◦ w = xzw �= xz = x ◦ (z ◦ w)

This example shows that the composition (4.8) is not associative, and hence
does not in general produce a semigroup. For this reason we must limit the
discussion to a smaller class of greedoids.

Theorem 4.15. Let L be an interval greedoid. Then L with the composi-

tion (4.8) is an LRB semigroup. Its support lattice is the lattice of flats Φ,

and its support map L → Φ sends a feasible word α to its class [α].

That matroids give rise to LRB semigroups in this way was mentioned by
Brown [13, p. 891]. In the matroid case the result is quite obvious, whereas
for the general case some details turn out to be a little more tricky. The
proof is deferred to Appendix 5.3.

Being an LRB semigroup means that Brown’s theory of random walks,
summarized in Section 4.1, is applicable. What can be said about the
eigenvalue distribution when specialized to greedoid walks?

There is an eigenvalue εX for each X ∈ Φ whose value and multiplicity
mX are determined according to parts (2) and (3) of Theorem 4.4. How-
ever, as Example 4.16 shows, for greedoids the multiplicities do not depend
only on the structure of the interval [X, 1̂ ] in Φ, as was the case in the
corresponding situation for real and complex hyperplane walks.

We now illustrate greedoid walks for the important case of branchings.
Let G be a directed rooted graph with node set {r, 1, 2, . . . , n} and edge
set E. A branching is a tree directed away from the root node r. A subset
R ⊆ {1, 2, . . . , n} is reachable if it is the set of nodes of some branching.

The branching greedoid LG consists of ordered strings of edges such that
each initial segment is a branching. It models common search procedures
on graphs. See [12] and [18] for more information.
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The poset of flats of LG is the lattice ΦG of reachable sets ordered by
inclusion. This is, in fact, a join-distributive lattice, see the cited references.
The support map sends a branching to the reachable set of its nodes.

According to Theorem 4.4 there is an eigenvalue εX associated with
every reachable node set X. Its value is the sum of the probabilities for the
branchings that reach a subset of X, and its multiplicity is given by

mX =
∑

Y : Y≥X

μ(X, Y )cY

Here cX is the number of ordered edge sequences feasibly extending (any
branching reaching) X to a maximal branching.

Since ΦG is join-distributive its Möbius function takes the simple form

μ(X, Y ) =

{
(−1)|Y |−|X|, if the interval is Boolean,

0, otherwise.

For each reachable set X, let dom (X) denote the superset of all nodes
that are either in X or else can be reached from X ∪ {r} along a single
edge of G. It is clear that every set of nodes contained between X and
dom (X) is reachable, and that the domination set dom (X) is maximal
with this property. Hence, we get the following simplified expression for the
eigenvalue multiplicity at X:

(4.9) mX =
∑

X≤Y≤dom (X)

(−1)|Y |−|X|cY

Example 4.16. The rooted directed graph in Figure 4 gives a branching
greedoid of rank 3 with 9 basic words: abc, abd, acb, ace, aec, aed, bac, bad,
bda. All subsets of {1, 2, 3} except {2} are reachable.

Assign probabilities wα to the seven feasible words (ordered branchings)
of rank one and two: a, b, ab, ac, ae, ba, bd. A step in the random walk
on the nine ordered maximal branchings consists in choosing one of these
words α according to the given probabilities wα and then extending α to a
maximal branching by adding edges in sequence from the currently visited
maximal branching according to the composition rule (4.8).
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Fig. 4. Branching greedoid

Here are the eigenvalues for the walk on this branching greedoid:

X cX dom (X) mX εX

123 1 123 1 1
12 2 123 1 wa + wac

13 2 123 1 wa + wb + wab + wae + wba

23 1 123 0 wb + wbd

1 6 123 3 wa

3 3 123 1 wb

∅ 9 13 2 0

Remark 4.17. By copying the procedure that leads from the sign vec-
tor system of a real hyperplane arrangement to that of its complexification
(Section 3.3) we can formally introduce the complexification of any LRB
semigroup. Namely, let Σ be an LRB semigroup with support lattice Λ.
Define ΣC to be the set of intervals

{
[x, y] : x ≤ y in Σ

}
with the composi-

tion

[x, y][z, w]
def
= [xz, xzyw]

One readily verifies that this is an LRB semigroup and that its support
lattice is Int (Λ), with the partial order defined in Appendix 5.2.

This way one can complexify e.g. the greedoids walks.

5. Appendix

In this section we gather some proofs. Familiarity with the Möbius function
is assumed, a good reference is [20].
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5.1. A generalized Zaslavsky formula

A ranked poset R with 0̂ and 1̂ is said to be Eulerian if μR(x, y) =

(−1)rk (y)−rk (x) for all x < y in R. Denote by max (P ) the set of maxi-
mal elements of a poset P .

Theorem 5.1. Suppose that f : P → Q satisfies the following conditions:

(1) the posets P and Q are ranked and of the same length r,

(2) Q has a unique maximal element 1̂Q,

(3) P̂

def
= P % {0̂P , 1̂P } is Eulerian,

(4) f is an order-preserving, rank-preserving and surjective map,

(5) μP

(
f
−1(Q≤x)

)
= (−1)rk (x)

, for all x ∈ Q,

(6) (−1)r−rk (x)
μQ(x, 1̂Q) ≥ 0, for all x ∈ Q.

Then, ∣∣ max (P )
∣∣ =

∑
x∈Q��0

∣∣
μ(x, 1̂Q)

∣∣

Proof. According to the “Möbius-theoretic Alexander duality” formula [20,
p. 137] condition (3) implies that

μ(R) = (−1)r−1
μ(P \R)

for all subsets R ⊆ P . In particular,

(5.1)
∣∣max (P )

∣∣ = μ

(
max (P )

)
+ 1 = (−1)r−1

μ

(
P \max (P )

)
+ 1.

On the other hand, according to the “Möbius-theoretic fiber formula” [21,
p. 377] applied to the map f : P \max (P ) → Q \ 1̂ we have that

(5.2) μ

(
P \max (P )

)
= μ(Q \ 1̂ )−

∑
x∈Q\�1

μ

(
f
−1(Q≤x)

)
μ(x, 1̂Q).
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Thus,

∣∣max (P )
∣∣ = 1 + (−1)r−1

[
μ(Q \ 1̂ )−

∑
x∈Q\�1

μ

(
f
−1(Q≤x)

)
μ(x, 1̂Q)

]

= (−1)r
∑

x∈Q��0

(−1)rk (x)
μ(x, 1̂Q)

)
=

∑
x∈Q��0

∣∣
μ(x, 1̂Q)

∣∣
.

Applying this result to the span map FA → LA of a real hyperplane
arrangement A we obtain Zaslavsky’s theorem 2.1. Applying it to the
span map FA → LA,aug of a complex hyperplane arrangement A we obtain
Theorem 3.6.

5.2. Lattice of intervals

Let L be a lattice and Int (L)
def
=

{
(x, y) : x ≤ y

}
the set of its intervals

partially ordered by

(x, y) ≤ (x′, y′) if and only if x ≤ x
′ and y ≤ y

′
.

The poset Int (L) is itself a lattice with componentwise operations

(x, y) ∨ (x′, y′) = (x ∨ x
′
, y ∨ y

′) and (x, y) ∧ (x′, y′) = (x ∧ x
′
, y ∧ y

′).

Its Möbius function is related to that of L in the following way.

Theorem 5.2.

μInt (L)

(
(x, y), (x′, y′)

)
=

{
μL(x, x

′)μL(y, y
′), if x

′
≤ y

0, otherwise.

Proof. If x
′
≤ y then

[
(x, y), (x′, y′)

]
∼= [x, x

′]× [y, y
′], so this case follows

from the product property of the Möbius function.

Assume that x
′
�≤ y. We claim that the element [x′ ∧ y, x

′
∨ y] lacks a

lattice-theoretic complement in the interval
[
(x, y), (x′, y′)

]
. For, say that

[s, t] is such a complement. This means that

s ∨ (x′ ∧ y) = x
′

t ∨ (x′ ∨ y) = y
′

s ∧ (x′ ∧ y) = x t ∧ (x′ ∨ y) = y
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Then: s ≤ x
′
∧ t ≤ (x′ ∨ y) ∧ t = y

⇒ s ≤ x
′
∧ y

⇒ s = s ∧ (x′ ∧ y) = x

⇒ x
′ = x ∨ (x′ ∧ y) = x

′
∧ y

⇒ x
′
≤ y,

contradicting the assumption. Thus, the interval
[
(x, y), (x′, y′)

]
is not

complemented, so by Crapo’s complementation theorem [20, p. 160] its
Möbius function is zero.

5.3. Interval greedoids

The lattice-theoretical structure of semimodularity is closely related to in-
terval greedoids.

Theorem 5.3 [12, Thm. 8.8.7]. The poset of flats Φ of an interval greedoid

is a semimodular lattice. Conversely, every finite semimodular lattice arises

from some interval greedoid in this way.

This will be used in the proof of Theorem 4.15, to which we now turn.
For economy of presentation we assume familiarity with the notation, con-
ventions and results on pp. 332–334 of [12]. See particularly the proof of
Theorem 8.2.5 on p. 334.

Proof. Let α = x1 . . . xj and β = y1 . . . yk be feasible words of an interval
greedoid L. By letting Xi = [x1 . . . xi] and Yi = [y1 . . . yi], these words
correspond to edge-labeled unrefinable chains ∅ � X1 � · · · � Xj and ∅ �

Y1 � · · ·�Yk in the semimodular lattice Φ. In the same manner (cf. Lemma
8.8.8 of [12]) the composition x1x2 . . . xj ◦ y1y2 . . . yk corresponds to the
edge-labeled unrefinable chain

∅� X1 � · · ·� Xj ≤ Xj ∨ Y1 ≤ · · · ≤ Xj ∨ Yk.

Here, due to semimodularity, the relation Xj ∨ Yi ≤ Xj ∨ Yi+1 is either a
covering Xj ∨ Yi � Xj ∨ Yi+1 or an equality Xj ∨ Yi = Xj ∨ Yi+1, in which
case we omit it from the chain. This shows that

(5.3) [α ◦ β] = Xj ∨ Yk = [α] ∨ [β]
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which in turn is used to see that

(5.4) [β] ≤ [α] ⇔ [α] ∨ [β] = [α] ⇔ [α ◦ β] = [α] ⇔ α ◦ β = α

Thus, once associativity of the composition of feasible words has been
established the proof will be complete. The other identities required of
an LRB semigroup are trivially fulfilled, since feasible words lack repeated
letters. Relations (5.3) and (5.4) then show, in view of Proposition 4.3, that
Φ is indeed the support lattice of L as an LRB semigroup.

To deal with associativity, let γ be a third feasible word. We want to
show that

(5.5) (α ◦ β) ◦ γ = α ◦ (β ◦ γ)

By definition

(α ◦ β) ◦ γ = αβ
′
γ
′ and α ◦ (β ◦ γ) = αβ

′
γ
′′

where β
′ is a subword of β and γ

′ and γ
′′ are subwords of γ. Thus it remains

to convince ourselves that γ
′ = γ

′′. A crucial first step is to show that they
are of equal length.

Let ∅�Z1 � · · ·�Zl be the edge-labelled chain in Φ corresponding to γ.
Then (α ◦ β) ◦ γ corresponds to the chain

∅� X1 � · · ·� Xj ≤ Xj ∨ Y1 ≤ · · · ≤ Xj ∨ Yk ≤ (Xj ∨ Yk) ∨ Z1

≤ · · · ≤ (Xj ∨ Yk) ∨ Zl

and α ◦ (β ◦ γ) corresponds to

∅� X1 � · · ·� Xj ≤ Xj ∨ Y1 ≤ · · · ≤ Xj ∨ Yk ≤ Xj ∨ (Yk ∨ Z1)

≤ · · · ≤ Xj ∨ (Yk ∨ Zl).

Due to associativity of the lattice join operation · ∨ · these chains are
identical, and by construction the induced edge-labelings yield the words
αβ

′
γ
′ and αβ

′
γ
′′. Hence, being related to the same segment of the common

chain, γ
′ and γ

′′ are of the same length.

We now prove (5.5) by induction on the length of the word γ. Suppose
that γ = t is a single letter. Then γ

′ = γ
′′ since the subwords of t of length

0 and 1 are unique. Hence,

(α ◦ β) ◦ t = α ◦ (β ◦ t)
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Suppose now that γ = δt, meaning that the last letter of γ is t. Using the
induction assumption and the length one case we obtain

(α ◦ β) ◦ γ =
(
(α ◦ β) ◦ δ

)
) ◦ t =

(
α ◦ (β ◦ δ)

)
◦ t

= α ◦

(
(β ◦ δ) ◦ t

)
= α ◦

(
β ◦ (δ ◦ t)

)
= α ◦ (β ◦ γ).
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The Finite Field Kakeya Problem

AART BLOKHUIS and FRANCESCO MAZZOCCA

A Besicovitch set in AG(n, q) is a set of points containing a line in every direction.

The Kakeya problem is to determine the minimal size of such a set. We solve the

Kakeya problem in the plane, and substantially improve the known bounds for

n > 4.

1. Introduction

We denote by πq the projective plane PG(2, q) over the Galois field GF (q)
with q elements, q > 2 a prime power.

Let � be a line in πq and, for every point P on �, let �P be a line on P

other than �. The set

(1) K =

( ⋃
P∈	

�P

)
\ �

is called a Kakeya set, or a minimal Besicovitch set. The finite plane Kakeya

problem asks for the smallest size k(q) of a Kakeya set; it is the two-
dimensional version of the finite field Kakeya problem posed by T. Wolff

in his influential paper [11] of 1996.

In the following, unless explicitly mentioned otherwise, we will use the
same notation of (1) for the lines defining a Kakeya set K.

Let Ω be a set of q + 2 points in πq. A point P ∈ Ω is said to be an
internal nucleus of Ω if every line through P meets Ω in exactly one other
point. Internal nuclei of (q + 2)−sets were first considered by A. Bichara

and G. Korchmáros in [1]; here they proved the following result.
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Proposition 1 (1982). Let q be an odd prime-power. Every set of q + 2
points in πq has at most two internal nuclei.

The q + 2 lines defining a Kakeya set in πq can be viewed as a set of
q + 2 points with an internal nucleus in the dual plane π

∗
q . More precisely,

if K is a Kakeya set in πq, the lines � and �P , P ∈ �, give rise in π
∗
q to a

set Ω(K) of q +2 points with � as an internal nucleus. Vice versa, every set
of q + 2 points with an internal nucleus in πq defines in an obvious way a
Kakeya set in π

∗
q . Thanks to this duality, the finite plane Kakeya problem

is equivalent to ask for the smallest number k
∗(q) of lines in πq meeting a

set of q + 2 points with an internal nucleus; to be precise, we have

k
∗(q) = 1 + q + k(q).

2. Old and New Results in the Plane

Let us start by recalling that the first author and A. A. Bruen studied in
[2] the smallest number of lines intersecting a set of q + 2 points in πq; here
no assumption on the existence of internal nuclei is made. Nevertheless the
dual of the theorem 1.3 of [2] contains the following result as a special case.

Proposition 2 (1989). If q ≥ 7 is odd, then

|K| ≥

q(q + 1)

2
+

q + 2

3
,

for every Kakeya set K.

Example 1. Assume q is even and consider in πq a dual hyperoval H, i.e.
a (q + 2)−set of lines, no three of which are concurrent. Fix a line � ∈ H

and, for every point P ∈ �, let �P the line of H on P other than �. Then
the Kakeya set

K(H, �) =

( ⋃
P∈	

�P

)∖
�

is said to be associated to H and � and it is of size∣∣
K(H, �)

∣∣ =
q(q + 1)

2
.
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Example 2. Assume q is odd and consider in πq a dual oval O, i.e. a
(q + 1)−set of lines, no three concurrent. Let � be a fixed line in O. Every
point P on �, but one, belongs to a second line �P ∈ O other than �. If A is
this remaining point on �, let �A be a(ny) line through it different from �.
Then the Kakeya set

K(O, �, �A) =

( ⋃
P∈	

�P

)∖
�

is said to be associated to H, � and �A; moreover it is of size

∣∣
K(O, �, �A)

∣∣ =
q(q + 1)

2
+

q − 1

2
.

For any point A of a Kakeya set K, we denote by mA the number of
lines �P , P ∈ �, on A and we set

(2) σ(K) =
∑
A∈K

(mA − 1)(mA − 2)

2
.

In [7], X. W. C. Faber described special cases of Examples 1 and 2 and, by
a counting argument, proved the following result.

Proposition 3 (Incidence formula, 2006). The size of a Kakeya set K is

given by

(3) |K| =
q(q + 1)

2
+ σ(K).

Since σ(K) ≥ 0, for every Kakeya set K, a first consequence of (3) is
that

(4) |K| ≥

q(q + 1)

2
.

Let us note that T. Wolff in [11] proved that |K| ≥ q
2
/2; in fact his method

gives inequality (4). Equality in (4) is actually attained in Example 1 and
it is easy to see that this happens only in this case. So, when q is even,
our problem is quite simple: every Kakeya set K in πq, q even, satisfies

inequality (4) and equality holds iff K is associated to a dual hyperoval and

one of its lines. When q is odd the plane πq contains no hyperovals and
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σ(K) > 0, for every Kakeya set K. In this case the Kakeya set closest to
that of Example 1 is the set K(O, �, �A) described in Example 2. This is the
reason for the following conjecture recently raised and studied by X. W. C.

Faber in [7].

Conjecture 1 (2006). If q is odd, then

|K| ≥

q(q + 1)

2
+

q − 1

2
,

for every Kakeya set K.

We remark that the Blokhuis-Bruen inequality in Proposition 2 is not
so far from that of the conjecture. Moreover in [7], X. W. C. Faber ob-
tained the following two results; the second one is a slight improvement of
Proposition 2.

Proposition 4 (Triple point lemma, 2006). Let K be a Kakeya set in πq,

q odd. Then, for every point P ∈ �, except possibly one, there exists a point

A ∈ �P with mA ≥ 3.

Proposition 5 (2006). If q is odd, then

(5) |K| ≥

q(q + 1)

2
+

q

3
,

for every Kakeya set K.

The triple point lemma is the the main tool in the proof of Proposition 5
and it is worth to remark that it is just the dual of Proposition 1. Actually
it was proved by the same argument of Bichara and Korchmáros: the
celebrated Segre’s lemma of tangents, that was the key ingredient in his
famous characterization of the q + 1 rational points of an irreducible conic
in πq with q odd ([9]).

Let Ω be a (q + 2)−set in πq with an internal nucleus and let �∞ a line
through this nucleus. Then, in the affine plane AG(2, q) = πq \ �∞, the
point set Ω \ �∞ can be arranged as the graph {

(
a, f(a)

)
: a ∈ GF (q)}

of a function f , f being either a permutation or a semipermutation (i.e. a
function whose range has size q−1) of GF (q). This graph has been recently
introduced and studied by J. Cooper in [6] and the following improvement
to the Faber’s inequality (5) has been obtained.
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Proposition 6 (2006). If q is odd, then

(6) |K| ≥

q(q + 1)

2
+

5q

14
−

1

14
,

for every Kakeya set K.

Finally, we can settle Faber’s conjecture, also characterizing the unique
example realizing it. Actually we have the following sharp result.

Proposition 7. If q is odd, then

|K| ≥

q(q + 1)

2
+

q − 1

2
,

for every Kakeya set K. Equality holds if and only if K is of type

K(O, �, �A), as in Example 2.

The essential ingredients in the proof are the Segre’s lemma of tangents
and the Jamison–Brouwer–Schrijver bound on the size of blocking sets in
desarguesian affine planes ([3], [8]).

3. Solution of Kakeya’s Problem in the Plane

We will give the proof of Proposition 7. It is more convenient however to
phrase it in its dual form.

Proposition 8. Let Ω be a set of q +2 points in PG(2, q), with an internal

nucleus. Then the number of lines intersecting Ω is at least

k
∗(q) =

(q + 1)(q + 2)

2
+

q − 1

2
.

Equality implies that Ω consists of the points of an irreducible conic together

with an external point.
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Proof. Let ai be the number of lines in AG(2, q) intersecting Ω in i points.
Then: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
ai = q

2 + q + 1∑
i ai = (q + 2)(q + 1)∑(

i

2

)
ai = (q + 2)(q + 1)/2

The first equation counts the total number of lines in the affine plane. In
the second we count incident point-line pairs (P, �), where P is a point of Ω.
Finally in the third we count ordered triples (P, Q, �), where P and Q are
different points from Ω (and � the unique line joining them). It follows that

a0 + a3 + 3a4 + · · ·+

(
q

2

)
aq+1 = (q2

− q)/2.

Also, for later use we note that:

a1 = 3a3 + 8a4 + · · · =
∑
n>2

(n2
− 2n)an.

We aim for the situation where Ω is a conic together with an external point.
In that case a1 = (q − 1) + (q − 1)/2, a2 = (q2 + 5)/2, a3 = (q − 1)/2 and
a0 = (q − 1)2/2 (and the number of intersecting lines is (q2 + 4q + 1)/2).

Let the number of intersecting lines be (q + 2)(q + 1)/2 + f for some f ,
so that a0 = (q2

− q)/2− f . This gives us for f the equation

a3 + 3a4 + · · ·+

(
q

2

)
aq+1 = f,

and we would like to show that f ≥ (q − 1)/2.

We know from Bichara–Korchmáros result (Prop.1), that there are at
most 2 internal nuclei (in the example exactly 2) and by assumption there
is at least one. Every other point is therefore on at least one tangent, and
hence also on at least one (≥ 3)-secant. In particular f ≥ q/3, with equality
if every other point is on exactly one tangent and one three-secant (this
does happen if q = 3).

Every point, with the exception of the internal nucleus (nuclei), is on
an odd intersector. So the odd intersectors form a blocking set of the dual
affine plane if there is just one nucleus (this should maybe be called a dual
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blocking set, but we will use this term with a different meaning later). In
this case:

a1 + a3 + a5 + · · · ≥ 2q − 1,

and therefore

4a3 + 8a4 + 15a5 + · · · ≥ 2q − 1,

and hence f ≥ (2q − 1)/4, more than we want.

From now on we assume that there are two internal nuclei, N1 and N2.
Adding a random line on one of the internal nuclei, but not containing the
other one, we again get a blocking set of the dual affine plane, and we obtain

4a3 + 8a4 + 15a5 + · · · ≥ 2q − 2,

and hence f ≥ (2q − 2)/4 with equality if ak = 0 for k > 3. So we have
proved our lower bound, and we proceed to characterize the case of equality.

If f = (q − 1)/2 then we have (q − 1)/2 three-secants, and 3(q − 1)/2
tangents. Now if a point Q, is on exactly one tangent, and this happens
often, then also on a unique three-secant, and we will show, that their
intersection points with � are related: if one is (1 : λ) the other is (1 : −λ)),
where coordinates are chosen such that N1 = (1 : 0) and N2 = (0 : 1).

Consider a three-secant containing two points on a unique tangent.
Then these two tangents intersect in a point on the line joining the two
internal nuclei (�). This is true in the example and follows from a Segre-
type computation: if the three secant intersects the line � in (1 : λ : 0) then
the unique tangents go through (1 : −λ : 0)), where the coordinates are set
up in such a way that the two internal nuclei are (1 : 0 : 0) and (0 : 1 : 0).

We will use Segre-type computations a lot in the sequel. The general
setup is the following. Consider three points E1 = (1 : 0 : 0), E2 = (0 : 1 :
0), E3 = (0 : 0 : 1). Let X be any set of points such that no point of X is on
one of the coordinate lines EiEj . For x = (x1 : x2 : x3) write down the triple
x
′ = (x′1, x

′
2, x

′
3) := (x2/x1, x3/x2, x1/x3). It is clear from the definition that∏

x∈X x
′
1x
′
2x
′
3 = 1. On the other hand, it is sometimes possible, because of

geometric properties of X to say something about pi =
∏

x∈X x
′
i. Applying

this together with p1p2p3 = 1 is called Segre’ s lemma of tangents or a Segre

computation. In our case the argument runs as follows. Let U be a point on
a unique three-secant, further choose coordinates such that U = (0 : 0 : 1),
and some random fourth point equals (1 : 1 : 1). Recall that N1 = (1 : 0 : 0)
and N2 = (0 : 1 : 0). Let the three-secant through U intersect � in (1 : λ : 0)
and let the unique tangent intersect � in (1 : μ : 0). The remaining q − 1
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points of Ω (other than N1, N2 and U) have (homogeneous) coordinates
(ai : bi : ci) with aibici �= 0. We associate to such a point the triple
(bi/ai, ci/bi, ai/ci). Taking the product of all the entries in all triples we
clearly get 1, because that is the contribution of each triple. On the other
hand we have

∏
i ci/bi = −1, because on each line through N1 we have a

unique point of Ω so we just have the product of all non-zero field elements.
In the same way

∏
ai/ci = −1 by considering lines through N2. To compute∏

bi/ai we consider the lines through U = (0 : 0 : 1). The three secant
gives the value bi/ai = λ twice, but the value bi/ai = μ is absent. All
other nonzero field elements occur exactly once in the product, so for this
product we end up with −λ/μ, so (−1)(−1)(−λ/μ) = 1 and we conclude
that μ = −λ.

We will show that, unless q = 3, the three points of Ω on a three-
secant cannot all be points with a unique tangent, by applying again a
Segre computation.

Apart from the 2 internal nuclei our set has q points, and all of them
are on at least one tangent. The total number of tangents is

3(q − 1)/2 = q + (q − 3)/2

hence at least (q + 3)/2 points are on exactly one tangent (and one three-
secant). So we certainly find a three-secant with (at least) two unique-
tangent points on it.

Let N1 = (1 : 0 : 0) and N2 = (0 : 1 : 0) (as before) be the internal
nuclei.

Let U1 = (0 : 0 : 1) and U2 = (1 : 1 : 1) be two one-tangent points on a
common three-secant, and let V = (a : b : 1) be a one-tangent point not on
the line U1U2, so a and b are nonzero, and a �= b.

Note that in our example we have that N1, N2, U1 and U2 are on a
conic, and the tangents at U1,2 are also known. So the conic has to be:
−2x1x2 + x2x3 + x3x1 = 0. So we should expect that −2ab + a + b = 0 for
V = (a : b : 1).

The three-secant U1U2 meets N1N2 in (1 : 1 : 0) = N1 + N2, so the
tangents at U1 and U2 meet in N1 −N2 = (1 : −1 : 0). Let the tangent at
V pass through (1 : λ : 0), then the three-secant on V passes through the
point (1 : −λ : 0).

First we consider the triangle U1N1V . The tangent at V1 intersects
U1N1 in U1 +

(
(λa− b)/λ

)
N1, the three-line in U1 +

(
(λa + b)/λ

)
N1. The
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tangent through U1 intersects N1V in N1+
(
−1/(a+b)

)
V , the three-line in

N1 +
(
1/(b−a)

)
V . On V U1 there are no special ‘missing’ or ‘extra’ points.

Segre gives:

(a + b)(λa + b) = (b− a)(λa− b).

And we get the important fact λ = −b
2
/a

2.

Next we consider the triangle N1U2U1. Let the third point of Ω on U1U2

be U2 + μU1. On N1U2 we ‘miss’ the point (−1 : 1 : 1) = N1 + (−1/2)U2.
On U2U1 we ‘miss’ the point U2 + μU1, and finally on U1N1 the point
(2 : 0 : 1) = U1 + 2N1. Here we used that since the three-line on U1 goes
through (1 : 1 : 0), the tangent passes through (1 : −1 : 0). It follows from
the Segre product that μ = 1.

We now turn to the triangle U1U2V1. On U1U2 we find the ‘extra’ point,
the intersection with the three line through V :

U1 +
(b + aλ)/(1 + λ)

1− (b + aλ)/(1 + λ)
U2.

and ‘missing’ points U1 + U2 (the third point of Ω on U1U2) and the
intersection of the tangent through V with U1U2:

U1 +
(b− aλ)/(1− λ)

1− (b− aλ)/(1− λ)
U2.

This is of course just the expression for the three-secant with−λ instead of λ.
On U2V and V U1 we find ‘missing’ coordinates −2/(a+b) and −1+(a+b)/2.
The Segre computation gives us

(a + b)(b + aλ)(1− b + (a− 1)λ) = (a + b− 2)(b− aλ)(1− b− (a− 1)λ).

This we may rewrite as

a(a− 1)λ2 + (a + b− 1)(a− b)λ + b(1− b) = 0.

Now substitute λ = −b
2
/a

2, multiply by a
3 and divide by b. We get:

(a− b)(a + b)(2ab− a− b) = 0.

We already remarked that a �= b, but also a �= −b because otherwise V

would be on the tangent through U1. Hence 2ab − a − b = 0 and V is a
point on the conic we are aiming for. A direct computation shows that also
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the tangent is ‘right’ and that the three-secant through V passes through
the ‘special point’ (1 : 1 : 2) = U1 + U2.

Some counting to end the story. Let there be k points on a unique
tangent. This means that our special point U1 + U2 is on at least k/2
three-secants, and hence on at least k/2 tangents. What is left in Ω (apart
from the internal nuclei, the special point and the unique tangent points)
is a set of q − 1 − k points on at least 2 tangents, and a set of at most
3(q − 1)/2− k − k/2 tangents. So

3(q − 1)/2− k − k/2 ≥ 2(q − 1− k).

This means k ≥ q − 1, so all other points are on the conic, and we finished
the proof.

4. Applications to Dual Blocking Sets

A blocking set B in πq = PG(2, q) is a point set meeting every line and
containing none.

Definition 1. A dual blocking set S in πq is a point set meeting every
blocking set and containing no lines.

Example 3. A Kakeya set K = (
⋃

P∈	 �P ) \ � in πq contains no lines.
Moreover, for every blocking set B of πq, a point P exists on � \ B and so
K meets B in a point of �P \ �. It follows that K is a dual blocking set.

Example 4. The complement S = πq \ (�∪m) of the union of two distinct
lines � and m in πq contains no lines. Moreover, no blocking set is contained
in the union of two lines and so S meets every blocking set. It follows that
S is a dual blocking set.

Dual blocking sets were introduced by P. Cameron, F. Mazzocca and
R. Meshulam in [4]; the first of the two main results of this paper is the
following.

Proposition 9 (1988). Let S be a dual blocking set in πq. Then

|S| ≥

q(q + 1)

2
.
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Equality holds if and only if either

(i) S is the Kakeya set associated to a dual hyperoval and one of its lines;

or

(ii) q = 3 and S is the complement of the union of two distinct lines.

The argument in the proof of this proposition implicitly shows that every
minimal (with respect to inclusion) dual blocking set in πq is of one of types
described in examples (3) and (4). For the sake of completeness we give an
explicit proof of this result.

Proposition 10. Let S be a minimal dual blocking set in πq. Then one of

the two following possibilities occur:

(i) S = (
⋃

P∈	 �P ) \ � is a Kakeya set;

(ii) S = πq \ (� ∪m) is the complement of the union of two distinct lines

� and m.

Proof. First of all we observe that there is a line � disjoint from S, for if not,
then, since S does not contain a line, S and its complement are blocking
sets; a contradiction as S must meet every blocking set. Now we distinguish
the following two cases.

Case 1. Assume that S is disjoint from exactly one line �, and let P

be a point of this line. If, for every line m �= � through P , there is a point
Q �= P on m but not in S, then

B =
(
� \ {P}

)
∪

( ⋃
P∈m�=	

m

)

is a blocking set disjoint from S; a contradiction. Hence, for every point
P ∈ �, there exists a line �P through P with �P \{P} ⊆ S. Then S contains
the Kakeya set K = (

⋃
P∈	 �P ) \ �, which is a dual blocking set. From the

minimality of S it follows that S = K.

Case 2. Assume that there are two lines � and m disjoint from S. For
any point P /∈ � ∪m, let n be a line on P meeting � \m and m \ � in the
points L and M , respectively. Then

(
� ∪m ∪ {P}

)
\ {L, M} is a blocking

set contained in � ∪m ∪ {P}. It follows that P must belong to S and S is
the complement of � ∪m.
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By Propositions 9 and 10 we can conclude that all the bounds previ-
ously shown for the size of a Kakeya set give, in the case that q is odd,
corresponding new bounds for the size of a minimal dual blocking set, im-
proving the result of Proposition 9. In fact, as a corollary of Proposition 7,
we have the following sharp result.

Proposition 11. Let S be a dual blocking set in πq, q odd. Then

|S| ≥

q(q + 1)

2
+

q − 1

2

and equality holds if and only if S is a Kakeya set of type described in

Example 2.

5. Old and New Results in Higher Dimensions

In contrast to the plane case we only have bounds and conjectures for higher
dimensions. In [11] it is shown that the number of points in a Kakeya set
in AG(n, q) is at least c · q

(n+2)/2, which is good for n = 2 but probably not
for any larger n. The case n = 3 is the first open problem, but for n = 4
T.Tao has shown ([10]) that the exponent 3 can be improved to 3 + 1

16
. In

what follows we will show that for general n we get the lower bound c ·q
n−1,

where c = 1/(n − 1)!, so this improves the previous bounds when n is at
least 5 and comes close to the conjectured cnq

n. Unfortunately our ideas
are for several reasons very unlikely to lead to improvements in the case of
the ‘real’ Kakeya problem.

Very recently however, Zeev Dvir [5] has proved the finite field Kakeya
problem, by showing that the number of points of a Kakeya set in AG(n, q)
is at least

(
q+n−1

n

)
.

Since our result and proof are similar in nature but still slightly different,
we will include it for historical reasons, and with the hope that an improved
argument will give a bound equivalent or even slightly better than that of
Dvir. To improve the bound in higher dimensions we use a bound on the
dimension of a certain geometric codes.

Consider the line-point incidence matrix of PG(n, q). Number the points
(so the columns): first the points in the hyperplane at infinity, then the
points not in the Kakeya set, and finally the points in the Kakeya set. As
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usual we denote the number of points (and hyperplanes) in PG(n, q) by
θn = θn(q) = (qn+1

− 1)/(q − 1).

Let the first θn−1 rows be labeled by the lines defining the Kakeya set,
in the right order. The top consisting of the first θn−1 rows of the incidence
matrix now looks like this:

T = (I ; O ; K).

Here I is the identity matrix, and K is the θn−1 by |K| line-point incidence
matrix of Kakeya-lines versus Kakeya-points Let d = dn−1 be the dimension
of Cn−1, the GF (p)-code (where q = p

t) spanned by the lines of PG(n−1, q)
(the hyperplane at infinity). Then there is a subset C of the points, of size
θn−1−dn−1 that does not contain the support of a codeword (this is obvious:
after normalization a generator matrix for this code has the form (I ; A) and
every nonzero codeword has a nonzero coordinate in one of the first dn−1

positions, so no codeword has its support contained in the ‘tail’ of length
θn−1 − dn−1). It follows that the set of Kakeya points has at least this size:
Consider the θn−1−dn−1 rows of T corresponding to the Kakeya lines having
a direction in C. Suppose the corresponding rows of K are dependent (over
GF (p)). Then this dependency would produce a codeword in the line-point
code of PG(n, q) with support contained in the set C in the hyperplane at
infinity. But such a word is already in the point-line code of this hyperplane.
To see this, let Cn stand for the line code of PG(n, q), and Cn−1 for the line
code of the hyperplane H. Clearly C

⊥
n |H ⊆ C

⊥
n−1. We show that in fact

equality holds, for let u be a word in C
⊥
n−1, and now take a point P /∈ H

and form the cone with top P over u, but remove P . This defines in an
obvious way a word ũ in C

⊥
n whose restriction to H is u.

So we find |K| ≥ dimC
⊥
n−1. The dimension of Cn−1 is known, and equal

to something complicated. For us the bound

|K| ≥ dimC
⊥
n−1 ≥

(
q + n− 2

n− 1

)
≥ q

n−1
/(n− 1)!

suffices. In fact, if q is prime we have equality, if not we have a little
improvement, but not an essential one.
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An Abstract Szemerédi Regularity Lemma

BÉLA BOLLOBÁS∗ and VLADIMIR NIKIFOROV

We extend Szemerédi’s Regularity Lemma to abstract measure spaces.

1. Introduction

Szemerédi’s Regularity Lemma is one of the few truly universal tools in
modern combinatorics, with numerous important applications. In particu-
lar, this lemma is the cornerstone of the theory of convergent sequences of
dense graphs launched recently by Lovász and Szegedy [15], Borgs, Chayes,
Lovász, Sós and Vesztergombi [3], [4] and Borgs, Chayes and Lovász [5].
The germ of a similar theory for sparse graphs, started by Bollobás and Ri-
ordan [2], relies on variants of this lemma. The so-called weak version of this
lemma was proved by Frieze and Kannan [8], and Lovász and Szegedy [16]
gave a beautiful and suprising proof of a similar result. A number of its
extensions to sparse graphs were proved by Kohayakawa [12], Kohayakawa
and Rödl [13], Gerke, Kohayakawa, Rödl and Steger [9], and others; in a
different direction, Rödl and Skokan [17] and Gowers [10] proved deep hy-
pergraph variants. In several recent papers, including those by Lovász and
Szegedy [16], Tao [19], Ishigami [11], and Elek and Szegedy [7], the orig-
inal lemma was deduced from more abstract assertions. Our main result
here is close to that of Tao but is simpler an more axiomatic: distilling the
essential components of the original proof of Szemerédi, we obtain a regu-
larity lemma for abstract measure spaces, having a multitude of concrete
applications well beyond graph theory. Some of these results can be ob-

∗Research supported in part by NSF grants DMS-0505550, CNS-0721983 and CCF-

0728928
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tained in other ways, but others seem to be tailor made for our approach:
in particular, we are not aware of other ways of proving them.

Our notation follows [1].

1.1. Measure triples

A finitely additive measure triple or, briefly, a measure triple (X, A, μ)
consists of a set X, an algebra A ⊂ 2X , and a complete, nonnegative,
finitely additive measure μ on A with μ(X) = 1. Thus, A contains X and
is closed under finite intersections, unions and differences; the elements of
A are called measurable subsets of X.

Letting [n] = {1, . . . , n}, 2[n] be the power set of [n] and μ(A) = |A|/n

for every A ⊂ [n], we see that ([n], 2[n]
, μ) is a measure triple. For later

reference we first outline two specializations of this simple example.

Example 1. Let k, n ≥ 1, write 2[n]k for the power set of [n]k, and define μ
k

by μ
k(A) = |A|/n

k for every A ⊂ [n]k. Then ([n]k, 2[n]k
, μ

k) is a measure
triple.

Note that there is a bijection between undirected k-graphs on the vertex
set [n] and subsets G ⊂ 2[n]k such that if (v1, . . . , vk) ∈ G, then G contains
every permutation of (v1, . . . , vk). In view of this, we shall consider subsets

of 2[n]k as labelled directed k-graphs (with loops) on the vertex set [n].

Example 2. Let k ≥ 2, and let X1, . . . , Xk be finite nonempty disjoint
sets. Write 2X1×···×Xk for the power set of X1 × · · · × Xk, and define
μ

k by μ
k(A) = |A|/

(
|X1| · · · |Xk|

)
for every A ⊂ X1 × · · · × Xk. Then

(X1 × · · · ×Xk, 2
X1×···×Xk

, μ
k) is a measure triple.

Note that a subset of 2X1×···×Xk is naturally identified with a k-partite
k-graph with vertex classes X1, . . . , Xk.

Another essential, but less trivial example of a measure triple is the
k-dimensional unit cube.

Example 3. Let k ≥ 1, and let B
k be the algebra of the Borel subsets

of the unit cube [0, 1]k; write λ
k for the Lebesgue measure on B

k. Then(
[0, 1]k, Bk

, λ
k
)

is a measure triple.
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1.2. SR-systems

We now introduce the main objects of our study, SR-systems: measure
triples with a suitably chosen semi-ring. Here SR stands for “Szemerédi
regularity” rather than “semi-ring”.

Recall that a set system S is a semi-ring if it is closed under intersection
and for all A, B ∈ S, the difference A\B is a disjoint union of a finite number
of members of S.

A semi-ring S is called r-built if for all A, B ∈ S, the difference A\B is
a disjoint union of at most r members of S; we say that S is boundedly built

if it is r-built for some r.

An SR-system is a quadruple (X, A, μ, S), where (X, A, μ) is a measure
triple and S ⊂ A is a boundedly built semi-ring.

Clearly, the quadruple (X, A, μ, A) is an SR-system based on the mea-
sure triple (X, A, μ). For the rest of the section, let us fix an SR-system
(X, A, μ, S).

Given a set system Z and k ≥ 1, let Z
〈k〉 be the collection of products

of k elements of Z any two of which are either disjoint or coincide, i.e.,
(1)
Z
〈k〉 =

{
Z1×· · ·×Zk : Zi ∈ Z and Zi∩Zj = ∅ or Zi = Zj for all i, j ∈ [k]

}
.

The proof of the following lemma is given in Section 4.

Lemma 4. Given a boundedly built semi-ring S ⊂ A, the set system S
〈k〉 is

a boundedly built semi-ring.

Using this assertion, we can construct the following general SR-system.

Example 5. Let A be a set algebra, and for k ≥ 1, set

A
k =

{
A1 × · · · ×Ak : Ai ∈ A for all i ∈ [k]

}
.

Write A(Ak) for the algebra generated by the set system A
k, and μ

k for
the product measure on A(Ak). The quadruple (Xk

,A(Ak), μk
, A
〈k〉) is an

SR-system.

Let us outline three particular cases of the above construction.

Example 6. For k ≥ 1 set Gk(n) =
(
[n]k, 2[n]k

, μ
k
, (2[n])

〈k〉
)
, where

([n]k, 2[n]k
, μ

k) is the measure triple defined in Example 1, and (2[n])
〈k〉
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is the set of all products of k subsets of [n] any two of which are either
disjoint or coincide.

Example 7. For k ≥ 1 set Bk = ([0, 1]k, Bk
, λ

k
, B
〈k〉), where

(
[0, 1]k, Bk

, λ
k
)

is the measure triple defined in Example 3, and B
〈k〉 is the set of all products

of k Borel subsets of [0, 1] any two of which are either disjoint or coincide.

Example 8. For k ≥ 1 set BIk = ([0, 1]k, Bk
, λ

k
, I
〈k〉), where

(
[0, 1]k, Bk

,

λ
k
)

is the measure triple defined in Example 3, and I
〈k〉 is the set of all

products of k intervals [a, b) ⊂ [0, 1] any two of which are either disjoint or
coincide.

The construction Z
〈k〉 given in (1) is important in some applications,

but is otherwise nonessential to our general approach. Here is a general
SR-system, where this construction is not used.

Example 9. Suppose k ≥ 2 and X1, . . . , Xk are finite nonempty disjoint
sets. Set

PG(X1, . . . , Xk) =
(
X1 × · · · ×Xk, 2

X1×···×Xk
, μ

k
, P(X1, . . . , Xk)

)
,

where

P(X1, . . . , Xk) =
{

A1 × · · · ×Ak : Ai ⊂ Xi for all i ∈ [k]
}

and (X1×· · ·×Xk, 2
X1×···×Xk

, μ
k) is the measure triple defined in Example 2.

Then PG(X1, . . . , Xk) is an SR-system.

1.2.1. Using SR-systems to define ε-regularity. The primary goal
of introducing SR-systems is to extend the concept of ε-regular pairs of
Szemerédi [18] (for definitions and background see also [1] and [14]).

Suppose (X, A, μ, S) is a fixed SR-system. For every A, V ∈ A set

d(A, V ) =
μ(A ∩ V )

μ(V )

if μ(V ) > 0, and d(A, V ) = 0 if μ(V ) = 0.
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Definition 10. Suppose that 0 < ε < 1 and V ∈ S satisfies μ(V ) > 0. A set
A ∈ A is called ε-regular in V if∣∣

d(A, U)− d(A, V )
∣∣

< ε

for every U ∈ S such that U ⊂ V and μ(U) > εμ(V ).

Let us first see what Definition 10 says about k-partite k-graphs. Take
the SR-system PG(V1, . . . , Vk) from Example 9. The edge set E(G) of
a k-partite k-graph G with vertex classes V1, . . . , Vk is just a subset of
V1 × · · · × Vk. Given U1 ⊂ V1, . . . , Uk ⊂ Vk, write e(U1, . . . , Uk) for the
number of edges (v1, . . . , vk) ∈ E(G) such that vi ∈ Ui for i = 1, . . . , k.

Now if G is ε
1/k-regular in V1× · · · ×Vk, then, for every ordered k-tuple

(U1, . . . , Uk) such that Ui ⊂ Vi and |Ui| > ε|Vi| for i = 1, . . . , k, we obtain∣∣∣∣e(V1, . . . , Vk)

|V1| · · · |Vk|
−

e(U1, . . . , Uk)

|U1| · · · |Uk|

∣∣∣∣ < ε.

Note that for k = 2 this condition is equivalent to the traditional “ε-regular
pair” up to the choice of ε (see [1], [14], and [18]).

The ε-regularity for directed k-graphs is easily understood too. Indeed,
take the SR-system G

k(n) from Example 6. As suggested above, the edge
set E(G) of a directed k-graph G with V (G) = [n] is just a subset of [n]k.
Let (V1, . . . , Vk) be an ordered k-tuple of disjoint nonempty subsets of [n]. If
G is ε

1/k-regular in V1×· · ·×Vk, then, for every ordered k-tuple (U1, . . . , Uk)
such that Ui ⊂ Vi and |Ui| > ε|Vi| for i = 1, . . . , k, we obtain∣∣∣∣e(V1, . . . , Vk)

|V1| · · · |Vk|
−

e(U1, . . . , Uk)

|U1| · · · |Uk|

∣∣∣∣ < ε.

For convenience we shall extend ε-regularity to whole partitions.

Definition 11. Let 0 < ε < 1 and P be a partition of X into sets belonging
to S. We call a set A ∈ A ε-regular in P if∑{

μ(P ) : P ∈ P, A is not ε-regular in P

}
< ε.
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1.3. Partitions in measure triples

Given a collection Z of subsets of X, we write Π(Z) for the family of finite
partitions of X into sets belonging to Z. We shall be mainly interested in
Π(S). As usual, we write |P| for the number of elements of a partition P.

Let P, Q be partitions of X, and A ⊂ X. We say that P refines A (in
notation P ' A) if A is a union of members of P, and that P refines Q (in
notation P ' Q) if P refines each Q ∈ Q. We write P ∩Q for the partition
consisting of all nonempty intersections P ∩ Q, where P ∈ P and Q ∈ Q.
Finally, define the partition Pk of X

k as

P
k =

{
Pi1 × · · · × Pik : Pij ∈ P, for all j ∈ [k]

}
.

1.3.1. Bounding families of partitions. We say that a family of par-
titions Φ ⊂ Π(S) bounds Π(S) if for every P ∈ Π(S), there exists Q ∈ Φ
such that Q ' P and |Q| ≤ ϕ

(
|P|

)
, where ϕ : N → N is a fixed increasing

function, called the rate of Φ.

Here is an example of a bounding family: let (Xk
,A(Ak), μk

, S
〈k〉) be

the SR-system in Example 5, and let the family of partitions Φk
⊂ Π(S

〈k〉)
be defined as

Φk =
{
P

k : P ∈ Π(S)
}

.

Lemma 12. If S is r-built, then Φk bounds Π(S
〈k〉) with rate ϕ(p) ≤

(kpr)k2pr
.

Lemma 12 is proved in Section 4.

2. The main result

We are ready now to state our main theorem. Its proof is presented in 4.1.

Theorem 13. Suppose that 0 < ε < 1, l, p and r are positive integers

and ϕ : N → N is an increasing function. Then there exists an integer

q = q(ε, l, p, r, ϕ) such that the following assertion holds.

Let (X, A, μ, S) be an SR-system, where S is r-built, and let Φ be a

family of partitions bounding Π(S) with rate ϕ. For every collection L ⊂ A
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of l sets and every partition P ∈ Π(S) into p sets, there exists a partition

Q ∈ Φ such that:

(i) Q ' P;

(ii) every A ∈ L is ε-regular in Q;

(iii) |Q| ≤ q.

Our next goal is to show that Theorem 13 implies various types of
regularity lemmas. Let us emphasize the three steps that are necessary
for its application:

(1) select a measure triple (X, A, μ);

(2) introduce ε-regularity by fixing a boundedly built semi-ring S ⊂ A;

(3) select a bounding family of partitions Φ ⊂ Π(S) by demonstrating
an upper bound on its rate ϕ(·).

We turn now to specific applications.

3. Applications

To obtain more familiar versions of the Regularity Lemma, we extend the
concept of “ε-equitable partitions” and investigate when such partitions
form bounding families.

3.1. Equitable partitions

Given ε > 0 and a measure triple (X, A, μ), a partition P = {P0, . . . , Pp} ∈

Π(A) is called ε-equitable, if μ(P0) ≤ ε and μ(P1) = · · · = μ(Pp) ≤ ε.

Let k ≥ 2, take the SR-system (Xk
,A(Ak), μk

, S
〈k〉), and define a family

of partitions Φk(ε) ⊂ Π(S
〈k〉) as

(2) Φk(ε) =
{
P

k : P ∈ Π(A) and P is ε-equitable
}

.

It is possible to prove that under some mild conditions on (X, A, μ) the
family Φk(ε) bounds Π(S

〈k〉). To avoid technicalities, we shall illustrate

this claim for the SR-system G
k(n) in Example 6.
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Lemma 14. Let 0 < ε < 1 and n > 1/ε. Suppose that the family of par-

titions Φk(n, ε) is defined by (2) for the SR-system G
k(n) =

(
[n]k, 2[n]k

, μ
k
,

(2[n])
〈k〉

)
. Then Φk(n, ε) bounds Π

(
(2[n])

〈k〉
)

with rate

ϕ(p) =
(
�2/ε�+ 1

)k
2pk2

.

Lemma 14 is proved in 4.2. We mention without a proof a similar
statement for the SR-system B

k in Example 7.

Lemma 15. Let 0 < ε < 1. Suppose that the family of partitions

Φk
(
[0, 1], ε

)
is defined by (2) for the SR-system B

k = ([0, 1]k, Bk
, λ

k
, B
〈k〉).

Then Φk
(
[0, 1], ε

)
bounds Π(B

〈k〉) with rate

ϕ(p) =
(
�1/ε�+ 1

)k
2pk2

.

3.2. Regularity lemmas for k-graphs

We first state a regularity lemma for directed k-graphs, which, as mentioned
above, we represent as subsets of 2[n]k . Defining ε-regularity in terms of the
SR-system G

k(n) in Example 6, we obtain the following

Theorem 16. For all 0 < ε < 1 and positive integers k, l, there exist n0(k, ε)
and q(k, l, ε) such that if n > n0(k, ε) and L is a collection of l directed k-

graphs on the vertex set [n], then there exists a partition Q = {Q0, . . . , Qq}

of [n] satisfying

(i) q ≤ q(k, l, ε);

(ii) |Q0| < εn, |Q1| = · · · = |Qq| < εn;

(iii) every graph G ∈ L is ε-regular in at least (1−ε)qk sets Qi1×· · ·×Qik ,

where (i1, . . . , ik) is a k-tuple of distinct elements of [q].

As a consequence, we obtain a regularity lemma for undirected k-graphs.
For k = 2 this is the result of Szemerédi, for k > 2 this is the result of
Chung [6]. Recall that undirected k-graphs are subsets G ⊂ 2[n]k such that
if (v1, . . . , vk) ∈ G, then {v1, . . . , vk} is a set of size k and G contains each
permutation of (v1, . . . , vk).
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Theorem 17. For all 0 < ε < 1 and positive integers k, l, there exist n0(k, ε)
and q(k, l, ε) such that if n > n0(k, ε) and L is a collection of l undirected k-

graphs on the vertex set [n], then there exists a partition Q = {Q0, . . . , Qq}

of [n] satisfying:

(i) q ≤ q(k, l, ε);

(ii) |Q0| < εn, |Q1| = · · · = |Qq| < εn;

(iii) for every graph G ∈ L, there exist at least (1−ε)
(
q
k

)
sets {i1, . . . , ik}

of distinct elements of [q] such that G is ε-regular in Qj1 × · · · × Qjk
for

every permutation (j1, . . . , jk) of {i1, . . . , ik}.

3.2.1. A regularity lemma for k-partite k-graphs. Using the SR-
system PG(X1, . . . , Xk) in Example 9, we obtain a regularity lemma for
k-partite k-graphs.

Theorem 18. Let X1, . . . , Xk be disjoint sets with |X1| = · · · = |Xk| = n.

For all 0 < ε < 1 and positive integers k, l, there exist n0(k, ε) and q(k, l, ε)
such that if n > n0(k, ε) and L is a collection of l distinct k-partite k-

graphs with vertex classes X1, . . . , Xk, then for each i ∈ [k], there exists a

partition Qi = {Qi0, . . . , Qiq} of Xi, satisfying:

(i) q ≤ q(k, l, ε);

(ii) |Qi,0| < εn, |Qi,1| = · · · = |Qi,q| < εn;

(iii) for every graph G ∈ L, there exist at least (1 − ε)qk vectors

(i1, . . . , ik) ∈ [q]k such that G is ε-regular in Q1,i1 × · · · ×Qk,ik .

3.3. Regularity lemmas for the cube [0, 1]k

Using the SR-system B
k = ([0, 1]k, Bk

, λ
k
, B
〈k〉), we obtain a regularity

lemma for the k-dimensional unit cube.

Theorem 19. For all 0 < ε < 1 and positive integers k, l, there exists

q(k, l, ε) such that if L is a collection of l measurable subsets of the cube

[0, 1]k, then there exists a partition Q = {Q0, . . . , Qq} of [0, 1] into measur-

able sets satisfying:

(i) q ≤ q(k, l, ε);

(ii) μ(Q0) < ε, μ(Q1) = · · · = μ(Qq) < ε;

(iii) every set L ∈ L is ε-regular in at least (1− ε)qk sets Qi1 ×· · ·×Qik ,

where (i1, . . . , ik) is a k-tuple of distinct elements of [q].
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Finally, using the SR-system BI
k = ([0, 1]k, Bk

, λ
k
, I
〈k〉) in Example 8,

we obtain a result that seems to illustrate our approach particularly well.

Theorem 20. For all 0 < ε < 1 and positive integers k, l, there exists

q(k, l, ε) such that if L is a collection of l measurable subsets of the cube

[0, 1]k then there exists a partition Q = {Q0, . . . , Qq} of [0, 1] satisfying:

(i) q ≤ q(k, l, ε);

(ii) λ(Q0) < ε, and the sets Q1, . . ., Qq are intervals of equal length less

than ε;

(iii) Every set L ∈ L is ε-regular in at least (1−ε)qk sets Qi1×· · ·×Qik ,

where (i1, . . . , ik) is a k-tuple of distinct elements of [q].

3.4. Regularity lemmas for functions and matrices

Suppose (X, A, μ, S) is an SR-system and let
∫

be the integral defined in
(X, A, μ). As usual, write L1(X) be the space of real measurable functions
defined in X and with integrable absolute value. Write χU for the indicator
function of a set U ⊂ X.

Definition 21. Suppose ε > 0, V ∈ S, and μ(V ) > 0. A function f ∈ L1(X)
is said to be ε-regular in V if∣∣∣∣∫ f · χU

μ(U)
−

∫
f · χV

μ(V )

∣∣∣∣ < ε

for every U ∈ S such that U ⊂ V and μ(U) > εμ(V ).

As with sets, we extend ε-regularity of functions to partitions.

Definition 22. Let 0 < ε < 1 and P ∈ Π(S). We call a function f ∈ L1(X)
ε-regular in P if∑{

μ(P ) : P ∈ P, f is not ε-regular in P

}
< ε.

Remarks:

– if a function f is constant in V ∈ S, then f is ε-regular in V ;

– a set A ∈ A is ε-regular in V ∈ S iff χA is ε-regular in V ;

– a set A ∈ A is ε-regular in a partition P ∈ Π(S) iff χA is ε-regular
in P.
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Having extended all necessary definitions, we give next a regularity
lemma for L1-functions; the proof is in 4.3.

Theorem 23. Suppose that 0 < ε < 1, r is a positive integer and ϕ : N → N

is an increasing function. There exists q = q(ε, r, ϕ) such that the following

assertion holds.

Let (X, A, μ, S) be an SR-system, where S is r-built, and let Φ be a family

of partitions bounding Π(S) with rate ϕ. For every f ∈ L1(X) satisfying

|f | ≤ 1, there exists a partition Q ∈ Φ with |Q| ≤ q such that f is ε-regular

in Q.

3.4.1. A regularity lemma for matrices. Let PG
(
[m], [n]

)
be the SR-

system in Example 9 with X1 = [m], X2 = [n]. Then the set of L1 functions
defined in [m] × [n] is just the set of all real m × n matrices. It is worth
spelling out the definition for ε-regularity for this particular case.

Let P ⊂ [m], Q ⊂ [n]. An m× n matrix A = (aij) is ε-regular in P ×Q

if for every U ⊂ P , V ⊂ Q such that |U | |V | > ε|P | |Q|, we have∣∣∣∣
∑

i∈U, j∈V aij

|U | |V |

−

∑
i∈P, j∈Q aij

|P | |Q|

∣∣∣∣ < ε.

Thus, we obtain the following regularity lemma for real m×n matrices.

Theorem 24. For all 0 < ε < 1 and positive integers k there exist n0(k, ε)
and q(k, ε) such that if m > n0(k, ε), n > n0(k, ε), and A = (aij) is a

real m × n matrix, satisfying |aij | ≤ 1, then there exist partitions P =
{P0, . . . , Pp} of [m] and Q = {Q0, . . . , Qq} of [n] such that p ≤ q(k, ε),
q ≤ q(k, ε), and:

(i) |P0| < εm, |P1| = · · · = |Pp| < εm;

(ii) |Q0| < εn, |Q1| = · · · = |Qq| < εn;

(iii) A is ε-regular in at least (1− ε)pq sets Pi ×Qj , i ∈ [p], j ∈ [q].

Remark. Along the same lines we can obtain a regularity lemma for
multidimensional matrices, which can be thought also as weighted, directed,
multipartite, uniform hypergraphs.
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4. Proofs

Proof of Lemma 4. Let

A = A1 × · · · ×Ak, Ai ∈ S and Ai ∩Aj = ∅ or Ai = Aj for all i, j ∈ [k]

B = B1 × · · · ×Bk, Bi ∈ S and Bi ∩Bj = ∅ or Ai = Aj for all i, j ∈ [k]

Since

A ∩B = (A1 ∩B1)× · · · × (Ak ∩Bk),

we see that S
〈k〉 is closed under intersections.

Suppose now that S is r-built. We shall show that S
〈k〉 is (2r + 1)k2

-
built. For every i, j ∈ [k], there is a partition Pij of Ai ∪ Bj into at most
2r + 1 members of S. Define the family of sets R as

R =
{

R ∩ S : R ∈ Pij , S ∈ Pgh, i, j, g, h ∈ [k]
}

.

Clearly the sets in R belong to S. Since R partitions Ai and Bi for all
i ∈ [k], we see that R〈k〉 partitions A, B and A ∩ B, and so R〈k〉 partitions

A\B. The members of R〈k〉 belong to S
〈k〉; in view of |R| ≤ (2r + 1)k2

, we

see that A\B is a union of at most (2r + 1)k2

members of S
〈k〉, completing

the proof.

Proof of Lemma 12. Suppose that P = {P1, . . . , Pp} ∈ Π(S
〈k〉), and for

every i ∈ [p], let

Pi = Qi1 × · · · ×Qik, where Qij ∈ S for j = 1, . . . , k.

Observe that X = ∪i,jQij ; thus for every i ∈ [p], j ∈ [k], there exist disjoint
sets Rij1, . . . , Rijq ∈ S such that

X\Qij =

q⋃
s=1

Rijs

and q ≤ (kp − 1)r. Now setting Rij = {Qij , Rij1, . . . , Rijq}, we see that
Rij ∈ Π(S) and |Rij | < kpr for all i ∈ [p], j ∈ [k]. Finally, set

Q =
⋂

i∈[p],j∈[k]

Rij
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and note that Q refines each set Qij , Q belongs to Π(S) and |Q| < (kpr)kp.
Since Qk refines Pi for all i ∈ [p] and Qk

∈ Φk, we see that the rate of Φk

is at most |Qk
| < (kpr)k2pr, completing the proof of Lemma 12.

4.1. Proof of Theorem 13

Our proof is an adaptation of the original proof of Szemerédi [18] (see also
[1] and [14]). The following basic lemma is known as the “defect form of
the Cauchy–Schwarz inequality”; for a proof see [1].

Lemma 25. Let xi and ci be positive numbers for i = 1, . . . , n. Then

n∑
i=1

ci

n∑
i=1

cix
2
i ≥

( n∑
i=1

cixi

)2

.

If J is a proper subset of [n] and γ > 0 is such that

n∑
i=1

ci

∑
i∈J

cixi ≥

n∑
i=1

cixi

∑
i∈J

ci + γ,

then

n∑
i=1

ci

n∑
i=1

cix
2
i ≥

( n∑
i=1

cixi

)2

+ γ
2
/

(∑
i∈J

ci

∑
i∈[n]\J

ci

)
.

Let P = {P1, . . . , Pp} ∈ Π(S), and A ∈ A. Define the index of P with
respect to A as

indA P =
∑
Pi∈P

μ(Pi)d
2(A ∩ Pi).

Note that for every A ∈ A,

indA P =
∑
Pi∈P

μ(Pi)d
2(A ∩ Pi) ≤

∑
Pi∈P, μ(Pi)>0

μ(A ∩ Pi)μ(Pi)

μ(Pi)
= μ(A) ≤ 1.

(3)

Lemma 26. If P,Q ∈ Π(S), A ∈ A, and Q ' P then indAQ ≥ indA P.
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Proof. For simplicity we shall assume that P and Q consist only of sets of
positive measure. Fix P ∈ P and for every Qi ⊂ P , set

ci = μ(Qi) and xi = d(A ∩Qi).

Note that∑
Qi⊂P

ci =
∑

Qi⊂P

μ(Qi) = μ(P ) and
∑

Qi⊂P

cixi = μ(A ∩ P ).

The Cauchy–Schwarz inequality (the first part of Lemma 25) implies that

∑
Qi⊂P

μ(Qi)d
2(A ∩Qi) =

∑
Qi⊂P

cix
2
i ≥

1

μ(P )

( ∑
Qi⊂P

cixi

)2

=
μ

2(A ∩ P )

μ(P )
.

Summing over all sets P ∈ P, the desired inequality follows.

The next lemma supports the proof of Lemma 28.

Lemma 27. Suppose A, S, T ∈ A, T ⊂ S and μ(T ) > 0. If

(4)
∣∣
d(A ∩ T )− d(A ∩ S)

∣∣
≥ ε

then every partition U = {U1, . . . , Up} ∈ Π(A) such that U ' S and U ' T ,

satisfies ∑
Ui⊂S

μ(Ui)d
2(A, Ui) ≥ μ(S)d2(A, S) + ε

2
μ(T ).

Proof. Let the partition U = {U1, . . . , Up} ∈ Π(A) be such that U ' S and
U ' T . For every Ui ⊂ S, set

ci = μ(Ui), xi = d(A, Ui),

and observe that∑
Ui⊂S

ci =
∑
Ui⊂S

μ(Ui) = μ(S) and
∑
Ui⊂S

cixi =
∑
Ui⊂S

μ(A ∩ Ui) = μ(A ∩ S).

Similarly, we have∑
Ui⊂T

ci = μ(T ) and
∑

Ui⊂T

cixi =
∑

Ui⊂T

μ(A ∩ Ui) = μ(A ∩ T ).
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Inequality (4) implies that either

(5) d(A, T ) > d(A, S) + ε

or

d(A, S) > d(A, T ) + ε.

The arguments in the two cases are identical; thus assume that (5) holds.
Hence, μ(T ) �= μ(S), so T ⊂ S implies that μ(T ) < μ(S). Furthermore,∑

Ui⊂T

cixi = d(A, T )μ(T ) >

(
d(A, S) + ε

)
μ(T ) =

(
d(A, S) + ε

) ∑
Ui⊂T

ci

=

∑
Ui⊂Scixi∑
Ui⊂S ci

∑
Ui⊂T

ci + ε

∑
Ui⊂T

ci.

By the definition of ci and xi, we have∑
Ui⊂S

μ(Ui)d
2(A, Ui) =

∑
Ui⊂S

cix
2
i .

Therefore, setting

λ = ε

∑
Ui⊂S

ci

∑
Ui⊂T

ci = εμ(T )μ(S),

and applying the second part of Lemma 25, we find that

μ(S)
∑

Ui⊂S

μ(Ui)d
2(A, Ui) ≥

( ∑
Ui⊂S

cixi

)2

+ λ
2
/

( ∑
Ui⊂T

ci

∑
Ui⊂S\T

ci

)

= μ
2(A ∩ S) + ε

2 μ
2(S)μ(T )

μ(S)− μ(T )
.

Hence,∑
Ui⊂S

∑
Ui⊂S

μ(Ui)d
2(A, Ui) ≥ μ(S)d2(A, S) + ε

2 μ(T )

μ(S)
(
μ(S)− μ(T )

)
> μ(S)d2(A, S) + ε

2
μ(T )

and this is exactly the desired inequality.
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The following lemma gives a condition for an absolute increase of indA P

resulting from refining.

Lemma 28. Let 0 < ε < 1 and S be r-built. If P ∈ Π(S) and A ∈ A is not

ε-regular in P then there exists Q ∈ Π(S) satisfying Q ' P, |Q| ≤ (r+1)|P|,
and

(6) indAQ ≥ indA P + ε
4
.

Proof. Let P = {P1, . . . , Pp} and N be the set of all Pi for which A is not
ε-regular in Pi. Since A is not ε-regular in P, by definition, we have∑

Pi∈N

μ(Pi) ≥ ε.

For every Pi ∈ N , since A is not ε-regular in Pi, there is a set Ti ⊂ Pi

such that Ti ∈ S, μ(Ti) > εμ(Pi), and∣∣
d(A, Pi)− d(A, Ti)

∣∣
≥ ε.

Since S is r-built, for every Pi ∈ N , there is a partition of Pi\Ti into
r disjoint sets Ai1, . . . Ais ∈ S; hence {Ai1, . . . Ais, Ti} is a partition of Pi

into at most (r + 1) sets belonging to S. Let Q be the collection of all sets
Ai1, . . . Ais, Ti, where Pi ∈ N , together with all sets Pj ∈ P\N . Clearly
Q ∈ Π(S); also, Q ' Ti and Q ' Pi for every Pi ∈ N , and

|Q| ≤ (r + 1)|N |+ |P| − |N | ≤ (r + 1)|P|.

Thus, to finish the proof, we have to prove (6). Let Q = {Q1, . . . , Qq}.
For every Pk ∈ N , Lemma 27 implies that∑

Qi⊂Pk

μ(Qi)d
2(A, Qi) ≥ μ(Pk)d

2(A, Pk) + ε
2
μ(Tk)(7)

≥ μ(Pk)d
2(A, Pk) + ε

3
μ(Pk).

For any Pk ∈ P, Lemma 26 implies that

(8)
∑

Qi⊂Pk

μ(Qi)d
2(A, Qi) ≥ μ(Pk)d

2(A, Pk).
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Now, by (7) and (8), we obtain

indAQ =
∑

Qi⊂Q

μ(Qi)d
2(A, Qi) ≥

∑
Pi∈P

μ(Pk)d
2(A, Pi) + ε

3
∑

Pi∈N

μ(Pk)

≥

∑
Pi∈P

μ(Pk)d
2(A, Pi) + ε

4 = indA P + ε
4
,

completing the proof.

Proof of Theorem 13. Suppose that S is r-built, Φ bounds Π(S) with
rate ϕ(·) and set p = |P|. Define a function ψ : N → N by

ψ(1, p) = p;(9)

ψ(s + 1, p) = (r + 1)ϕ
(
ψ(s, p)

)
, for every s > 1.

We shall show that the partition Q ∈ Φ may be selected so that |Q| ≤
ψ

(
l�ε

−4
�, p

)
.

Select first a partition P0 ∈ Φ such that P0 ' P and |P0| ≤ ϕ

(
|P|

)
. We

build recursively a sequence of partitions P1,P2, . . . satisfying

Pi+1 ' Pi,(10)

|Pi+1| ≤ ϕ

(
(r + 1)|Pi|

)
,(11)

∃Ai ∈ G : indAi
Pi+1 ≥ indAi

Pi + ε
4(12)

for every i = 0, 1, . . . The sequence P1,P2, . . . is built according the following
rule: if all A ∈ L are ε-regular in Pi, then we stop; otherwise select a set
Ai ∈ L that is not ε-regular in Pi. Then, by Lemma 28, there is a partition
P
′
i ∈ Π(S) such that

P
′
i ' Pi,

|P
′
i| ≤ (r + 1)|Pi|,

indAi
P
′
i ≥ indAi

Pi + ε
4
.

Since Φ bounds S with rate ϕ, we can select a partition Pi+1 ∈ Φ such that
Pi+1 ' P

′
i and |Pi+1| ≤ ϕ

(
|P
′
i|
)
. Hence, (10), (11), and (12) hold.
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Set k = �ε
−4
�. If the sequence P0,P1, . . . has more than lk terms

then, by the pigeonhole principle, there exist a set A ∈ L and a sequence
Pi1 , . . . ,Pik+1

such that

indA Pij+1
≥ indA Pij + ε

4

for every j = 1, . . . , k. Hence we find that

indA Pik+1
≥ indA Pi1 + kε

4
> kε

4
≥ 1,

contradicting (3). Therefore, all A ∈ L are ε-regular in some partition
Q = Pi. By (11), |Q| ≤ ψ

(
l�ε

−4
�, p

)
, completing the proof.

4.2. Proof of Lemma 14

Proof. Select a partition P = {P1, . . . , Pp} ∈ Π
(
(2[n])

〈k〉
)
; for every i ∈ [p],

let

Pi = Ri1 × · · · ×Rik, Rij ⊂ [n], for j ∈ [k].

Let

R =
⋂

i∈[p], j∈[k]

{Rij , X\Rij}.

and set r = |R|. Clearly, r ≤ 2pk. Our first goal is to find an ε-equitable
partition Q ' R with

|Q| ≤

(
2

ε

+ 1

)
2pk

.

Suppose first that n ≥ 2r/ε. Partition every R ∈ R into sets of size
�εn/r� and a smaller residual set; write Q for the resulting partition. The
measure of each member of Q that is not residual is at most �εn/r�/n ≤ ε.
The total measure of all residual sets is less than

�εn/r�

n

r ≤ ε,
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thus, Q is an ε-equitable partition refining R. Since

|Q| ≤

n

�εn/r�

+ r ≤

2n

εn/r

+ r =

(
2

ε

+ 1

)
r ≤

(
2

ε

+ 1

)
2pk

,

Q has the required properties.

Let now n < 2r/ε and Q be the partition of [n] into n sets of size 1.
Since ε > 1/n, the partition Q is ε-equitable and refines R. Since

|Q| = n <

2

ε

r ≤

(
2

ε

+ 1

)
2pk

,

Q has the required properties.

To complete the proof observe that Qk
∈ Φk(n, ε), Qk

' R
k
' P, and

|Q
k
| ≤ |Q|

k
≤

(
2

ε

+ 1

)k

2pk2

.

4.3. Proof of Theorem 23

Proof. Set l = �4/ε�, δ = ε/(2l + 1). For every k ∈ [l], define the sets

Ak =

{
x :

k − 1

l

< f(x) ≤
k

l

}
, A−k =

{
x : −

k

l

≤ f(x) < −

k − 1

l

}

and let A0 =
{

x : f(x) = 0
}

. Since f is measurable, all sets A−l, . . . , Al

belong to A. Let q be the function defined in Theorem 13; applying The-
orem 13 with ε = δ, P = {X}, and L = {A−l, . . . , Al}, we see that there
exists a partition Q ∈ Φ such that Q ' X, |Q| ≤ q(δ, 2l + 1, 1, r, ϕ), and
every Ak is δ-regular in Q. We shall deduce that f is ε-regular in Q. Set

f̂ =
l∑

k=1

k − 1

l

χAk
−

l∑
k=1

k − 1

l

χA
−k
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and note that
∣∣
f(x) − f̂(x)

∣∣
< 1/l for every x ∈ X. Let Q ∈ Q be such

that all A−l, . . . , Al are δ-regular in Q, and let U ∈ S satisfies U ⊂ Q and
μ(U) > εμ(Q). Then, we have∣∣∣∣∫ f · χU

μ(U)
−

∫
f · χQ

μ(Q)

∣∣∣∣
≤

∣∣∣∣∣
∫

f̂ · χU

μ(U)
−

∫
f̂ · χQ

μ(Q)

∣∣∣∣∣ +

∣∣∣∣∣
∫ ∣∣

f − f̂

∣∣
· χU

μ(U)

∣∣∣∣∣ +

∣∣∣∣∣
∫ ∣∣

f − f̂

∣∣
· χQ

μ(Q)

∣∣∣∣∣
<

l∑
k=1

k − 1

l

∣∣∣∣∫ χAk
· χU

μ(U)
−

∫
χAk

· χQ

μ(Q)

∣∣∣∣
+

l∑
k=1

k

l

∣∣∣∣
∫

χA
−k
· χU

μ(U)
−

∫
χA

−k
· χQ

μ(Q)

∣∣∣∣ + 2

∫
|f − f̂ |

= 2

l∑
k=1

k − 1

l

δ +
2

l

= (l − 1)δ +
2

l

= (l − 1)
ε

2l + 1
+

2

4/ε

< ε.

This implies that f is ε-regular in every set Q ∈ Q such that all A−l, . . . , Al

are δ-regular in Q. On the other hand, all sets A−l, . . . , Al are δ-regular
in Q; hence, for every s, such that −l ≤ s ≤ l, we have∑{

μ(P ) : P ∈ Q, As is not δ-regular in P

}
< δ.

Therefore, ∑{
μ(P ) : P ∈ Q, f is not ε-regular in P

}
≤

∑{
μ(P ) : P ∈ Q, there exists s, −l ≤ s ≤ l,

such that As is not δ-regular in P

}
< (2l + 1)δ = ε.

Hence, f(x) is ε-regular in Q, completing the proof.
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Isotropic PCA and Affine-Invariant Clustering

S. CHARLES BRUBAKER and SANTOSH S. VEMPALA

We present an extension of Principal Component Analysis (PCA) and a new

algorithm for clustering points in Rn based on it. The key property of the

algorithm is that it is affine-invariant. When the input is a sample from a mixture

of two arbitrary Gaussians, the algorithm correctly classifies the sample assuming

only that the two components are separable by a hyperplane, i.e., there exists

a halfspace that contains most of one Gaussian and almost none of the other

in probability mass. This is nearly the best possible, improving known results

substantially [15, 10, 1]. For k > 2 components, the algorithm requires only

that there be some (k − 1)-dimensional subspace in which the overlap in every

direction is small. Here we define overlap to be the ratio of the following two

quantities: 1) the average squared distance between a point and the mean of its

component, and 2) the average squared distance between a point and the mean

of the mixture. The main result may also be stated in the language of linear

discriminant analysis: if the standard Fisher discriminant [9] is small enough,

labels are not needed to estimate the optimal subspace for projection. Our main

tools are isotropic transformation, spectral projection and a simple reweighting

technique. We call this combination isotropic PCA.

1. Introduction

We present an extension to Principal Component Analysis (PCA), which
is able to go beyond standard PCA in identifying “important” directions.
When the covariance matrix of the input (distribution or point set in Rn) is
a multiple of the identity, then PCA reveals no information; the second mo-
ment along any direction is the same. Such inputs are called isotropic. Our
extension, which we call isotropic PCA, can reveal interesting information
in such settings. We use this technique to give an affine-invariant clustering
algorithm for points in Rn. When applied to the problem of unraveling mix-
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tures of arbitrary Gaussians from unlabeled samples, the algorithm yields
substantial improvements of known results.

To illustrate the technique, consider the uniform distribution on the set
X = {(x, y) ∈ R

2 : x ∈ {−1, 1}, y ∈

[
−

√

3,

√

3
]
}, which is isotropic.

Suppose this distribution is rotated in an unknown way and that we would
like to recover the original x and y axes. For each point in a sample,
we may project it to the unit circle and compute the covariance matrix
of the resulting point set. The x direction will correspond to the greater
eigenvector, the y direction to the other. See Figure 1 for an illustration.
Instead of projection onto the unit circle, this process may also be thought
of as importance weighting, a technique which allows one to simulate one
distribution with another. In this case, we are simulating a distribution over
the set X, where the density function is proportional to (1 + y

2)
−1

, so that
points near (1, 0) or (−1, 0) are more probable.

Fig. 1. Mapping points to the unit circle and then finding the direction of maximum

variance reveals the orientation of this isotropic distribution.

In this paper, we describe how to apply this method to mixtures of ar-
bitrary Gaussians in R

n in order to find a set of directions along which the
Gaussians are well-separated. These directions span the Fisher subspace of
the mixture, a classical concept in Pattern Recognition. Once these direc-
tions are identified, points can be classified according to which component
of the distribution generated them, and hence all parameters of the mixture
can be learned.

What separates this paper from previous work on learning mixtures is
that our algorithm is affine-invariant. Indeed, for every mixture distribution
that can be learned using a previously known algorithm, there is a linear
transformation of bounded condition number that causes the algorithm to
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fail. For k = 2 components our algorithm has nearly the best possible guar-
antees (and subsumes all previous results) for clustering Gaussian mixtures.
For k > 2, it requires that there be a (k − 1)-dimensional subspace where
the overlap of the components is small in every direction (See section 1.2).
This condition can be stated in terms of the Fisher discriminant, a quan-
tity commonly used in the field of Pattern Recognition with labeled data.
Because our algorithm is affine invariant, it makes it possible to unravel a
much larger set of Gaussian mixtures than had been possible previously.

The first step of our algorithm is to place the mixture in isotropic
position (see Section 1.2) via an affine transformation. This has the effect of
making the (k−1)-dimensional Fisher subspace, i.e., the one that minimizes
the Fisher discriminant, the same as the subspace spanned by the means of
the components (they only coincide in general in isotropic position), for any

mixture. The rest of the algorithm identifies directions close to this subspace
and uses them to cluster, without access to labels. Intuitively this is hard
since after isotropy, standard PCA reveals no additional information. Before
presenting the ideas and guarantees in more detail, we describe relevant
related work.

1.1. Previous work

A mixture model is a convex combination of distributions of known type.
In the most commonly studied version, a distribution F in Rn is composed
of k unknown Gaussians. That is,

F = w1N(μ1, Σ1) + . . . + wkN(μk, Σk),

where the mixing weights wi, means μi, and covariance matrices Σi are
all unknown. Typically, k ( n, so that a concise model explains a high
dimensional phenomenon. A random sample is generated from F by first
choosing a component with probability equal to its mixing weight and then
picking a random point from that component distribution. In this paper,
we study the classical problem of unraveling a sample from a mixture, i.e.,
labeling each point in the sample according to its component of origin.

Heuristics for classifying samples include “expectation maximization”
[6] and “k-means clustering” [12]. These methods can take a long time and
can get stuck with suboptimal classifications. Over the past decade, there
has been much progress on finding polynomial-time algorithms with rig-
orous guarantees for classifying mixtures, especially mixtures of Gaussians
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[5, 16, 15, 18, 10, 1]. Starting with Dasgupta’s paper [5], one line of work
uses the concentration of pairwise distances and assumes that the compo-
nents’ means are so far apart that distances between points from the same
component are likely to be smaller than distances from points in different
components. Arora and Kannan [15] establish nearly optimal results for
such distance-based algorithms. Unfortunately their results inherently re-
quire separation that grows with the dimension of the ambient space and
the largest variance of each component Gaussian.

To see why this is unnatural, consider k well-separated Gaussians in R
k

with means e1, . . . , ek, i.e. each mean is 1 unit away from the origin along
a unique coordinate axis. Adding extra dimensions with arbitrary variance
does not affect the separability of these Gaussians, but these algorithms are
no longer guaranteed to work. For example, suppose that each Gaussian has
a maximum variance of ε ( 1. Then, adding O

∗(kε
−2) extra dimensions

with variance ε will violate the necessary separation conditions.

To improve on this, a subsequent line of work uses spectral projection
(PCA). Vempala and Wang [18] showed that for a mixture of spherical

Gaussians, the subspace spanned by the top k principal components of the
mixture contains the means of the components. Thus, projecting to this
subspace has the effect of shrinking the components while maintaining the
separation between their means. This leads to a nearly optimal separation
requirement of

‖μi − μj‖ ≥ Ω̃(k1/4) max {σi, σj}

where μi is the mean of component i and σ
2
i is the variance of component i

along any direction. Note that there is no dependence on the dimension of
the distribution. Kannan et al. [10] applied the spectral approach to arbi-
trary mixtures of Gaussians (and more generally, logconcave distributions)
and obtained a separation that grows with a polynomial in k and the largest
variance of each component:

‖μi − μj‖ ≥ poly (k) max {σi,max, σj,max}

where σ
2
i,max is the maximum variance of the ith component in any direction.

The polynomial in k was improved in [1] along with matching lower bounds
for this approach, suggesting this bound, in particular the dependence on
the maximum component variances, to be the limit of spectral methods.
Going beyond this “spectral threshold” for arbitrary Gaussians has been a
major open problem.
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The representative hard case is the special case of two parallel “pan-
cakes”, i.e., two Gaussians that are spherical in n− 1 directions and narrow
in the last direction, so that a hyperplane orthogonal to the last direction
separates the two. The spectral approach requires a separation that grows
with their largest standard deviation which is unrelated to the distance be-
tween the pancakes (their means). Other examples can be generated by
starting with Gaussians in k dimensions that are separable and then adding
other dimensions, one of which has large variance. Because there is a sub-
space where the Gaussians are separable, the separation requirement should
depend only on the dimension of this subspace and the components’ vari-
ances in it.

(a) Distance Concentration

Separability

(b) Hyperplane Separability (c) Intermean Hyperplane

and Fisher Hyperplane

Fig. 2. Previous work requires distance concentration separability which depends on the

maximum directional variance (a). Our results require only hyperplane separability,

which depends only on the variance in the separating direction (b). For non-isotropic

mixtures the best separating direction may not be between the means of the

components (c).

A related line of work considers learning symmetric product distribu-
tions, where the coordinates are independent. Feldman et al [7] have shown
that mixtures of axis-aligned Gaussians can be approximated without any
separation assumption at all in time exponential in k. Chaudhuri and Rao
[3] have recently given a polynomial-time algorithm for clustering mixtures
of product distributions (axis-aligned Gaussians) under mild separation con-
ditions. A. Dasgupta et al [4] and later Chaudhuri and Rao [2] gave algo-
rithms for clustering mixtures of heavy-tailed distributions.
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1.2. Results

We assume we are given a lower bound w on the minimum mixing weight
and k, the number of components. With high probability, our algorithm
Unravel returns a partition of space by hyperplanes so that each part (a
polyhedron) encloses almost all of the probability mass of a single compo-
nent and almost none of the other components. The error of such a set of
polyhedra is the total probability mass that falls outside the correct poly-
hedron.

We first state our result for two Gaussians in a way that makes clear the
relationship to previous work that relies on separation.

Theorem 1. Let w1, μ1, Σ1 and w2, μ2, Σ2 define a mixture of two

Gaussians. There is an absolute constant C such that, if there exists a

direction v such that

∣∣projv(μ1 − μ2)
∣∣
≥ C(

√
v

T Σ1v +
√

v
T Σ2v )w−2 log1/2

(
1

wδ

+
1

η

)
,

then with probability 1−δ algorithm Unravel returns two complementary

halfspaces that have error at most η using time and a number of samples

that is polynomial in n, w−1, log (1/δ).

So the separation required between the means is comparable to the
standard deviation in some direction. This separation condition of The-
orem 1 is affine-invariant and much weaker than conditions of the form
‖μ1 − μ2‖ � max {σ1,max, σ2,max} used in previous work. See Figure 2. The
dotted line shows how previous work effectively treats every component as
spherical. We also note that the separating direction does not need to be
the intermean direction as illustrated in Figure 2(c). The dotted line il-
lustrates hyperplane induced by the intermean direction, which may be far
from the optimal separating hyperplane shown by the solid line.

It will be insightful to state this result in terms of the Fisher discrim-
inant, a standard notion from Pattern Recognition [9, 8] that is used with
labeled data. In words, the Fisher discriminant along direction p is

J(p) =
the intra-component variance in direction p

the total variance in direction p

.
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Mathematically, this is expressed as

J(p) =
E[‖projp(x− μ	(x))‖

2
]

E[
∥∥projp(x)

∥∥2]
=

p
T (w1Σ1 + w2Σ2)p

p
T
(
w1(Σ1 + μ1μ

T
1
) + w2(Σ2 + μ2μ

T
2
)
)
p

for x distributed according to a mixture distribution with means μi and
covariance matrices Σi. We use �(x) to indicate the component from which
x was drawn.

Theorem 2. There is an absolute constant C for which the following holds.

Suppose that F is a mixture of two Gaussians such that there exists a

direction p for which

J(p) ≤ Cw3 log−1

(
1

δw
+

1

η

)
.

With probability 1−δ, algorithm Unravel returns a halfspace with error at

most η using time and sample complexity polynomial in n, w−1, log (1/δ).

There are several ways of generalizing the Fisher discriminant for k = 2
components to greater k [8]. These generalizations are most easily under-
stood when the distribution is isotropic. An isotropic distribution has the
identity matrix as its covariance and the origin as its mean. An isotropic
mixture therefore has

k∑
i=1

wiμi = 0 and
k∑

i=1

wi(Σi + μiμ
T
i ) = I.

It is well known that any distribution with bounded covariance matrix (and
therefore any mixture) can be made isotropic by an affine transformation.
As we will see shortly, for k = 2, for an isotropic mixture, the line joining
the means is the direction that minimizes the Fisher discriminant.

Under isotropy, the denominator of the Fisher discriminant is always 1.
Thus, the discriminant is just the expected squared distance between the
projection of a point and the projection of its mean, where projection is
onto some direction p. The generalization to k > 2 is natural, as we may
simply replace projection onto direction p with projection onto a (k − 1)-
dimensional subspace S. For convenience, let

Σ =
k∑

i=1

wiΣi.
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Let the vector p1, . . . , pk−1 be an orthonormal basis of S and let �(x) be the
component from which x was drawn. We then have under isotropy

J(S) = E

[
‖projS(x− μ	(x))‖

2
]

=

k−1∑
j=1

p
T
j Σpj

for x distributed according to a mixture distribution with means μi and
covariance matrices Σi. As Σ is symmetric positive definite, it follows that
the smallest k − 1 eigenvectors of the matrix are optimal choices of pj and
S is the span of these eigenvectors.

This motivates our definition of the Fisher subspace for any mixture
with bounded second moments (not necessarily Gaussians).

Definition 1. Let {wi, μi, Σi} be the weights, means, and covariance matri-
ces for an isotropic1 mixture distribution with mean at the origin and where
dim

(
span {μ1, . . . , μk}

)
= k − 1. Let �(x) be the component from which

x was drawn. The Fisher subspace F is defined as the (k − 1)-dimensional
subspace that minimizes

J(S) = E

[
‖projS(x− μ	(x))‖

2
]
.

over subspaces S of dimension k − 1.

Note that dim
(
span {μ1, . . . , μk}

)
is only k−1 because isotropy implies∑k

i=1
wiμi = 0. The next lemma provides a simple alternative characteri-

zation of the Fisher subspace as the span of the means of the components
(after transforming to isotropic position). The proof is given in Section 3.2.

Lemma 1. Suppose {wi, μi, Σi}
k
i=1

defines an isotropic mixture in R
n. Let

λ1 ≥ . . . ≥ λn be the eigenvalues of the matrix Σ =
∑k

i=1
wiΣi and let

1For non-isotropic mixtures, the Fisher discriminant generalizes to

k−1�

j=1

p
T
j (

k�

i=1

wi(Σi + μiμ
T
i ))

−1

Σpj

and the overlap to

p
T(

k�

i=1

wi(Σi + μiμ
T
i ))

−1

Σp.
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v1, . . . , vn be the corresponding eigenvectors. If the dimension of the span

of the means of the components is k − 1, then the Fisher subspace

F = span {vn−k+1, . . . , vn} = span {μ1, . . . , μk}.

Our algorithm attempts to find the Fisher subspace (or one close to it)
and succeeds in doing so, provided the discriminant is small enough.

The next definition will be useful in stating our main theorem precisely.

Definition 2. The overlap of a mixture given as in Definition 1 is

(1) φ = min
S : dim (S)=k−1

max
p∈S

p
T Σp.

It is a direct consequence of the Courant-Fisher min-max theorem that
φ is the (k − 1)th smallest eigenvalue of the matrix Σ and the subspace
achieving φ is the Fisher subspace, i.e.,

φ =
∥∥∥E

[
projF (x− μ	(x))projF (x− μ	(x))

T
]∥∥∥

2
.

We can now state our main theorem for k > 2.

Theorem 3. There is an absolute constant C for which that following holds.

Suppose that F is a mixture of k Gaussian components where the overlap

satisfies

φ ≤ Cw3
k
−3 log−1

(
nk

δw
+

1

η

)
with probability 1−δ, algorithm Unravel returns a set of k polyhedra that

have error at most η using time and a number of samples that is polynomial

in n, w−1, log (1/δ).

In words, the algorithm successfully unravels arbitrary Gaussians pro-
vided there exists a (k − 1)-dimensional subspace in which along every di-
rection, the expected squared distance of a point to its component mean is
smaller than the expected squared distance to the overall mean by roughly a
poly (k, 1/w) factor. There is no dependence on the largest variances of the
individual components, and the dependence on the ambient dimension is
logarithmic. This means that the addition of extra dimensions (even where
the distribution has large variance) as discussed in Section 1.1 has little
impact on the success of our algorithm.
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2. Algorithm

The algorithm has three major components: an initial affine transforma-
tion, a reweighting step, and identification of a direction close to the Fisher
subspace and a hyperplane orthogonal to this direction which leaves each
component’s probability mass almost entirely in one of the halfspaces in-
duced by the hyperplane. The key insight is that the reweighting technique
will either cause the mean of the mixture to shift in the intermean subspace,
or cause the top k−1 principal components of the second moment matrix to
approximate the intermean subspace. In either case, we obtain a direction
along which we can partition the components.

We first find an affine transformation W which when applied to F results
in an isotropic distribution. That is, we move the mean to the origin and
apply a linear transformation to make the covariance matrix the identity.
We apply this transformation to a new set of m1 points {xi} from F and then
reweight according to a spherically symmetric Gaussian exp

(
−‖x‖

2
/(2α)

)
for α = Θ(n/w). We then compute the mean û and second moment matrix
M̂ of the resulting set.2

After the reweighting, the algorithm chooses either the new mean or
the direction of maximum second moment and projects the data onto this
direction h. By bisecting the largest gap between points, we obtain a
threshold t, which along with h defines a hyperplane that separates the
components. Using the notation Hh,t = {x ∈ R

n : h
T
x ≥ t}, to indicate a

halfspace, we then recurse on each half of the mixture. Thus, every node
in the recursion tree represents an intersection of half-spaces. To make our
analysis easier, we assume that we use different samples for each step of the
algorithm. The reader might find it useful to read Section 2.1, which gives
an intuitive explanation for how the algorithm works on parallel pancakes,
before reviewing the details of the algorithm.

2This practice of transforming the points and then looking at the second moment

matrix can be viewed as a form of kernel PCA; however the connection between our

algorithm and kernel PCA is superficial. Our transformation does not result in any

standard kernel. Moreover, it is dimension-preserving (it is just a reweighting), and hence

the “kernel trick” has no computational advantage.
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Algorithm Unravel

Input: Integer k, scalar w.
Initialization: P = R

n.

1. (Isotropy) Use samples lying in P to compute an affine

transformation W that makes the distribution nearly

isotropic (mean zero, identity covariance matrix).

2. (Reweighting) Use m1 samples in P and for each compute a

weight e
−‖x‖2/2(n/w).

3. (Separating Direction) Find the mean of the reweighted

data μ̂. If ‖μ̂‖ >

√

w/(32α) (where α > n/w), let h = μ̂.

Otherwise, find the covariance matrix M̂ of the reweighted

points and let h be its top principal component.

4. (Recursion) Project m2 sample points to h and find the

largest gap between points in the interval [−1/2, 1/2]. If

this gap is less than 1/4(k − 1), then return P. Otherwise,

set t to be the midpoint of the largest gap, recurse on

P ∩Hh,t and P ∩H−h,−t, and return the union of the polyhedra

produces by these recursive calls.

2.1. Parallel pancakes

The following special case, which represents the open problem in previous
work, will illuminate the intuition behind the new algorithm. Suppose F
is a mixture of two spherical Gaussians that are well-separated, i.e. the
intermean distance is large compared to the standard deviation along any
direction. We consider two cases, one where the mixing weights are equal
and another where they are imbalanced.

After isotropy is enforced, each component will become thin in the inter-
mean direction, giving the density the appearance of two parallel pancakes.
When the mixing weights are equal, the means of the components will be
equally spaced at a distance of 1 − φ on opposite sides of the origin. For
imbalanced weights, the origin will still lie on the intermean direction but
will be much closer to the heavier component, while the lighter component
will be much further away. In both cases, this transformation makes the
variance of the mixture 1 in every direction, so the principal components
give us no insight into the inter-mean direction.

Consider next the effect of the reweighting on the mean of the mixture.
For the case of equal mixing weights, symmetry assures that the mean does
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not shift at all. For imbalanced weights, however, the heavier component,
which lies closer to the origin will become heavier still. Thus, the reweighted
mean shifts toward the mean of the heavier component, allowing us to detect
the intermean direction.

Finally, consider the effect of reweighting on the second moments of the
mixture with equal mixing weights. Because points closer to the origin are
weighted more, the second moment in every direction is reduced. However,
in the intermean direction, where part of the moment is due to the displace-
ment of the component means from the origin, it shrinks less. Thus, the
direction of maximum second moment is the intermean direction.

2.2. Overview of analysis

To analyze the algorithm, in the general case, we will proceed as follows.
Section 3 shows that under isotropy the Fisher subspace coincides with the
intermean subspace (Lemma 1), gives the necessary sampling convergence
and perturbation lemmas and relates overlap to a more conventional notion
of separation (Prop. 3). Section 3.3 gives approximations to the first and
second moments. Section 4 then combines these approximations with the
perturbation lemmas to show that the vector h (either the mean shift or the
largest principal component) lies close to the intermean subspace. Finally,
Section 5 shows the correctness of the recursive aspects of the algorithm.

3. Preliminaries

3.1. Matrix properties

For a matrix Z, we will denote the ith largest eigenvalue of Z by λi(Z) or
just λi if the matrix is clear from context. Unless specified otherwise all
norms are the 2-norm. For symmetric matrices, this is ‖Z‖

2
= λ1(Z) =

maxx∈Rn ‖Zx‖
2
/‖x‖

2
.

The following two facts from linear algebra will be useful in our analysis.

Fact 1. Let λ1 ≥ . . . ≥ λn be the eigenvalues for an n-by-n symmetric pos-

itive definite matrix Z and let v1, . . . vn be the corresponding eigenvectors.
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Then

λn + . . . + λn−k+1 = min
S : dim(S)=k

k∑
j=1

p
T
j Zpj ,

where {pj} is any orthonormal basis for S. If λn−k > λn−k+1, then

span {vn, . . . , vn−k+1} is the unique minimizing subspace.

Recall that a matrix Z is positive semi-definite if x
T
Zx ≥ 0 for all non-

zero x.

Fact 2. Suppose that the matrix

Z =

[
A B

T

B D

]
is symmetric positive semi-definite and that A and D are square submatri-

ces. Then ‖B‖ ≤
√
‖A‖ ‖D‖.

Proof. Let y and x be the top left and right singular vectors of B, so that
y

T
Bx = ‖B‖. Because Z is positive semi-definite, we have that for any

real γ,

0 ≤
[
γx

T
y

T
]
Z

[
γx

T
y

T
]T

= γ
2
x

T
Ax + 2γy

T
Bx + y

T
Dy.

This is a quadratic polynomial in γ that can have only one real root.
Therefore the discriminant must be non-positive:

0 ≥ 4
(
y

T
Bx

)2
− 4

(
x

T
Ax

)(
y

T
Dy

)
.

We conclude that

‖B‖ = y
T
Bx ≤

√
(xT

Ax)(yT
Dy) ≤

√
‖A‖ ‖D‖.
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3.2. The Fisher criterion and isotropy

We begin with the proof of the lemma that for an isotropic mixture the
Fisher subspace is the same as the intermean subspace.

Proof of Lemma 1. By definition for an isotropic distribution, the Fisher
subspace minimizes

J(S) = E

[
‖projS(x− μ	(x))‖

2
]

=

k−1∑
j=1

p
T
j Σpj ,

where {pj} is an orthonormal basis for S.

By Fact 1 one minimizing subspace is the span of the smallest k − 1
eigenvectors of the matrix Σ, i.e. vn−k+2, . . . , vn. Because the distribution
is isotropic,

Σ = I −

k∑
i=1

wiμiμ
T
i ,

and these vectors become the largest eigenvectors of
∑k

i=1
wiμiμ

T
i . Clearly,

span {vn−k+2, . . . , vn} ⊆ span {μ1, . . . , μk}, but both spans have dimension
k − 1 making them equal.

Since vn−k+1 must be orthogonal to the other eigenvectors, it fol-
lows that λn−k+1 = 1 > λn−k+2. Therefore, span {vn−k+2, . . . , vn} ⊆

span {μ1, . . . , μk} is the unique minimizing subspace.

It follows directly that under the conditions of Lemma 1, the overlap
may be characterized as

φ = λn−k+2(Σ) = 1− λk−1

( k∑
i=1

wiμiμ
T
i

)
.

For clarity of the analysis, we will assume that Step 1 of the algorithm
produces a perfectly isotropic mixture. Theorem 4 gives a bound on the
required number of samples to make the distribution nearly isotropic, and
as our analysis shows, our algorithm is robust to small estimation errors.

We will also assume for convenience of notation that the unit vectors
along the first k − 1 coordinate axes e1, . . . ek−1 span the intermean (i.e.
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Fisher) subspace. That is, F = span {e1, . . . , ek−1}. When considering this
subspace it will be convenient to be able to refer to projection of the mean
vectors to this subspace. Thus, we define μ̃i ∈ R

k−1 to be the first k − 1
coordinates of μi; the remaining coordinates are all zero. In other terms,

μ̃i =
[
Ik−1 0

]
μi.

In this coordinate system the covariance matrix of each component has
a particular structure, which will be useful for our analysis. For the rest of
this paper we fix the following notation: an isotropic mixture is defined by
{wi, μi, Σi}. We assume that span {e1, . . . , ek−1} is the intermean subspace
and Ai, Bi, and Di are defined such that

(2) wiΣi =

[
Ai B

T
i

Bi Di

]
where Ai is a (k−1)× (k−1) submatrix and Di is a (n−k+1)× (n−k+1)
submatrix.

Lemma 2 (Covariance Structure). Using the above notation,

‖Ai‖ ≤ φ, ‖Di‖ ≤ 1, ‖Bi‖ ≤
√

φ

for all components i.

Proof of Lemma 2. Because span {e1, . . . , ek−1} is the Fisher subspace

φ = max
v∈Rk−1

1

‖v‖
2

k∑
i=1

v
T
Aiv =

∥∥∥∥ k∑
i=1

Ai

∥∥∥∥
2

.

Also
∑k

i=1
Di = I, so ‖

∑k
i=1

Di‖ = 1. Each matrix wiΣi is positive
definite, so the principal minors Ai, Di must be positive definite as well.
Therefore, ‖Ai‖ ≤ φ, ‖Di‖ ≤ 1, and ‖Bi‖ ≤

√
‖Ai‖ ‖Di‖ =

√

φ using
Fact 2.

For small φ, the covariance between intermean and non-intermean di-
rections, i.e. Bi, is small. For k = 2, this means that all densities will have
a “nearly parallel pancake” shape. In general, it means that k − 1 of the
principal axes of the Gaussians will lie close to the intermean subspace.

We conclude this section with a proposition connecting, for k = 2, the
overlap to a standard notion of separation between two distributions, so
that Theorem 1 becomes an immediate corollary of Theorem 2.
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Proposition 3. If there exists a unit vector p such that∣∣
p

T (μ1 − μ2)
∣∣

> t(
√

p
T w1Σ1p +

√
p

T w2Σ2p ),

then the overlap φ ≤ J(p) ≤ (1 + w1w2t
2)
−1

.

Proof of Proposition 3. Since the mean of the distribution is at the origin,
we have w1p

T
μ1 = −w2p

T
μ2. Thus,∣∣

p
T
μ1 − p

T
μ2

∣∣2
=

(
p

T
μ1

)2
+

(
p

T
μ2

)2
+ 2

∣∣
p

T
μ1

∣∣ ∣∣
p

T
μ2

∣∣
=

(
w1p

T
μ1

)2

(
1

w2
1

+
1

w2
2

+
2

w1w2

)
,

using w1 + w2 = 1. We rewrite the last factor as

1

w2
1

+
1

w2
2

+
2

w1w2

=
w2

1 + w2
2 + 2w1w2

w2
1
w2

2

=
1

w2
1
w2

2

=
1

w1w2

(
1

w1

+
1

w2

)
.

Again, using the fact that w1p
T
μ1 = −w2p

T
μ2, we have that

∣∣
p

T
μ1 − p

T
μ2

∣∣2
=

(
w1p

T
μ1

)2

w1w2

(
1

w1

+
1

w2

)

=
w1

(
p

T
μ1

)2
+ w2

(
p

T
μ2

)2

w1w2

.

Thus, by the separation condition

w1

(
p

T
μ1

)2
+ w2

(
p

T
μ2

)2
= w1w2

∣∣
p

T
μ1 − p

T
μ2

∣∣2

≥ w1w2t
2
(
p

T w1Σ1p + p
T w2Σ2p

)
.

To bound J(p), we then argue

J(p) =
p

T w1Σ1p + p
T w2Σ2p

w1

(
p

T Σ1p + (pT
μ1)

2
)

+ w2

(
p

T Σ2p + (pT
μ2)

2
)

= 1−
w1(p

T
μ1)

2
+ w2(p

T
μ2)

2

w1

(
p

T Σ1p + (pT
μ1)

2
)

+ w2

(
p

T Σ2p + (pT
μ2)

2
)
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≤ 1−
w1w2t

2(w1p
T Σ1p + w2p

T Σ2p)

w1

(
p

T Σ1p + (pT
μ1)

2
)

+ w2

(
p

T Σ2p + (pT
μ2)

2
)

≤ 1− w1w2t
2
J(p),

and J(p) ≤ 1/(1 + w1w2t
2).

3.3. Approximation of the reweighted moments

Our algorithm works by computing the first and second reweighted moments
of a point set from F . In this section, we examine how the reweighting
affects the second moments of a single component and then give some
approximations for the first and second moments of the entire mixture.

3.3.1. Single Component. The first step is to characterize how the
reweighting affects the moments of a single component. Specifically, we
will show for any function f (and therefore x and xx

T in particular) that
for α > 0,

E

[
f(x) exp

(
−

‖x‖
2

2α

)]
=

∑
i

wiρiEi

[
f(yi)

]
,

Here, Ei[·] denotes expectation taken with respect to the component i,

the quantity ρi = Ei[ exp ( − ‖x‖2

2α )], and yi is a Gaussian variable with
parameters slightly perturbed from the original ith component.

Claim 4. If α = n/w, the quantity ρi = Ei[ exp (− ‖x‖2

2α )] is at least 1/2.

Proof. Because the distribution is isotropic, for any component i,
wiEi

[
‖x‖

2
]
≤ n. Therefore,

ρi = Ei

[
exp

(
−

‖x‖
2

2α

)]
≥ Ei

[
1−

‖x‖
2

2α

]
≥ 1−

1

2α

n

wi
≥

1

2
.

Lemma 5 (Reweighted Moments of a Single Component). For any α > 0,

with respect to a single component i of the mixture

Ei

[
x exp

(
−

‖x‖
2

2α

)]
= ρi

(
μi −

1

α

Σiμi + f

)
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and

Ei

[
xx

T exp

(
−

‖x‖
2

2α

)]

= ρ

(
Σi + μiμ

T
i −

1

α

(
ΣiΣi + μiμ

T
i Σi + Σiμiμ

T
i

)
+ F

)
where ‖f‖, ‖F‖ = O(α−2).

We first establish the following claim.

Claim 6. Let x be a random variable distributed according to the nor-
mal distribution N(μ,Σ) and let Σ = QΛQ

T be the singular value de-
composition of Σ with λ1, . . . , λn being the diagonal elements of Λ. Let
W = diag

(
α/(α+λ1), . . . , α/(α+λn)

)
. Finally, let y be a random variable

distributed according to N

(
QWQ

T
μ, QWΛQ

T
)
. Then for any function

f(x),

E

[
f(x) exp

(
−

‖x‖
2

2α

)]
= det (W )1/2 exp

(
−

μ
T
QWQ

T
μ

2α

)
E

[
f(y)

]
.

Proof of Claim 6. We assume that Q = I for the initial part of the proof.
From the definition of a Gaussian distribution, we have

E

[
f(x) exp

(
−

‖x‖
2

2α

)]

= det (Λ)−1/2(2π)−n/2

∫
Rn

f(x) exp

(
−

x
T
x

2α

−

(x− μ)T Λ−1(x− μ)

2

)
.

Because Λ is diagonal, we may write the exponents on the right hand side as

n∑
i=1

x
2
i α
−1 + (xi − μi)

2
λ
−1

i =
n∑

i=1

x
2
i (λ

−1 + α
−1)− 2xiμiλ

−1

i + μ
2
i λ
−1

i .

Completing the square gives the expression

n∑
i=1

(
xi − μi

α

α + λi

)2 (
λiα

α + λi

)−1

+ μ
2
i λ
−1

i − μ
2
i λ
−1

i

α

α + λi
.
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The last two terms can be simplified to μ
2
i /(α + λi). In matrix form the

exponent becomes

(x−Wμ)T (WΛ)−1(x−Wμ) + μ
T
Wμα

−1
.

For general Q, this becomes

(x−QWQ
T
μ)

T
Q(WΛ)−1

Q
T (x−QWQ

T
μ) + μ

T
QWQ

T
μα

−1
.

Now recalling the definition of the random variable y, we see

E

[
f(x) exp

(
−

‖x‖
2

2α

)]
= det (Λ)−1/2(2π)−n/2 exp

(
−

μ
T
QWQ

T
μ

2α

)
∫

Rn

f(x) exp

(
−

1

2
(x−QWQ

T
μ)

T
Q(WΛ)−1

Q
T (x−QWQ

T
μ)

)

= det (W )1/2 exp

(
−

μ
T
QWQ

T
μ

2α

)
E

[
f(y)

]
.

The proof of Lemma 5 is now straightforward.

Proof of Lemma 5. For simplicity of notation, we drop the subscript i

from ρi, μi, Σi with the understanding that all statements of expectation
apply to a single component. Using the notation of Claim 6, we have

ρ = E

[
exp

(
−

‖x‖
2

2α

)]
= det (W )1/2 exp

(
−

μ
T
QWQ

T
μ

2α

)
.

A diagonal entry of the matrix W can expanded as

α

α + λi
= 1−

λi

α + λi
= 1−

λi

α

+
λ

2
i

α(α + λi)
,

so that

W = I −

1

α

Λ +
1

α
2
WΛ2

.
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Thus,

E

[
x exp

(
−

‖x‖
2

2α

)]
= ρ(QWQ

T
μ)

= ρ(QIQ
T
μ−

1

α

QΛQ
T
μ +

1

α
2
QWΛ2

Q
T
μ)

= ρ(μ−
1

α

Σμ + f),

where ‖f‖ = O(α−2).

We analyze the perturbed covariance in a similar fashion.

E

[
xx

T exp

(
−

‖x‖
2

2α

)]
= ρ

(
Q(WΛ)QT + QWQ

T
μμ

T
QWQ

T
)

= ρ

(
QΛQ

T
−

1

α

QΛ2
Q

T +
1

α
2
QWΛ3

Q
T

+

(
μ−

1

α

Σμ + f

)(
μ−

1

α

Σμ + f

)T
)

= ρ

(
Σ + μμ

T
−

1

α

(
ΣΣ + μμ

T Σ + Σμμ
T
)

+ F

)
,

where ‖F‖ = O(α−2).

3.3.2. Mixture moments. The second step is to approximate the first
and second moments of the entire mixture distribution. Let ρ be the vector

where ρi = Ei[ exp ( − ‖x‖2

2α )] and let ρ̄ be the average of the ρi. We also
define

u ≡ E

[
x exp

(
−

‖x‖
2

2α

)]
=

k∑
i=1

wiρiμi −
1

α

k∑
i=1

wiρiΣiμi + f(3)
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M ≡ E

[
xx

T exp

(
−

‖x‖
2

2α

)]
(4)

=
k∑

i=1

wiρi

(
Σi + μiμ

T
i −

1

α

(ΣiΣi + μiμ
T
i Σi + Σiμiμ

T
i )

)
+ F

with ‖f‖ = O(α−2) and ‖F‖ = O(α−2). We denote the estimates of these
quantities computed from samples by û and M̂ respectively.

Lemma 7. Let v =
∑k

i=1
ρiwiμi. Then

‖u− v‖
2
≤

4k
2

α
2w

φ.

Proof of Lemma 7. We argue from Eqn. (2) and Eqn. (3) that

‖u− v‖ =
1

α

∥∥∥∥ k∑
i=1

wiρiΣiμi

∥∥∥∥ + O(α−2)

≤

1

α

√

w

k∑
i=1

ρi‖(wiΣi)
(√

wiμi

)
‖+ O(α−2)

≤

1

α

√

w

k∑
i=1

ρi

∥∥ [Ai, B
T
i ]

T∥∥
‖

(√
wiμi

)
‖+ O(α−2).

From isotropy, it follows that ‖
√

wiμi‖ ≤ 1. To bound the other factor, we
argue ∥∥ [Ai, B

T
i ]

T∥∥
≤

√

2 max
{
‖Ai‖, ‖Bi‖

}
≤

√
2φ.

Therefore,

‖u− v‖
2
≤

2k
2

α
2w

φ + O(α−3) ≤
4k

2

α
2w

φ,

for sufficiently large n, as α ≥ n/w.

Lemma 8. Let

Γ =

[∑k
i=1

ρi(wiμ̃iμ̃i
T + Ai) 0

0
∑k

i=1
ρiDi −

ρi

wiα
D

2
i

]
.
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If ‖ρ− 1ρ̄‖∞ < 1/(2α), then

‖M − Γ‖2
2
≤

162
k

2

w2
α

2
φ.

Before giving the proof, we summarize some of the necessary calculation
in the following claim.

Claim 9. The matrix of second moments

M = E

[
xx

T exp

(
−

‖x‖
2

2α

)]
=

[
Γ11 0
0 Γ22

]
+

[
Δ11 ΔT

21

Δ21 Δ22

]
+ F,

where

Γ11 =

k∑
i=1

ρi

(
wiμ̃iμ̃i

T + Ai

)

Γ22 =
k∑

i=1

ρiDi −
ρi

wiα
D

2
i

Δ11 = −

k∑
i=1

ρi

wiα
B

T
i Bi +

ρi

wiα

(
wiμ̃iμ̃i

T
Ai + wiAiμ̃iμ̃i

T + A
2
i

)

Δ21 =

k∑
i=1

ρiBi −
ρi

wiα
(Bi

(
wiμ̃iμ̃i

T
)

+ BiAi + DiBi)

Δ22 = −

k∑
i=1

ρi

wiα
BiB

T
i ,

and ‖F‖ = O(α−2).

Proof. The calculation is straightforward.
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Proof of Lemma 8. We begin by bounding the 2-norm of each of the
blocks. Since

∥∥wiμ̃iμ̃i
T
∥∥

< 1 and ‖Ai‖ ≤ φ and ‖Bi‖ ≤
√

φ, we can bound

‖Δ11‖ = max
‖y‖=1

k∑
i=1

ρi

wiα
y

T
B

T
i Biy

T

−

ρi

wiα
y

T
(
wiμ̃iμ̃i

T
Ai + wiAiμ̃iμ̃i

T + A
2
i

)
y + O(α−2)

≤

k∑
i=1

ρi

wiα
‖Bi‖

2 +
ρi

wiα

(
2‖A‖+ ‖A‖2

)
+ O(α−2)

≤

4k

wα

φ + O(α−2).

By a similar argument, ‖Δ22‖ ≤ kφ/(wα) + O(α−2). For Δ21, we observe
that

∑k
i=1

Bi = 0. Therefore,

‖Δ21‖ ≤

∥∥∥∥ k∑
i=1

(ρi − ρ̄)Bi

∥∥∥∥
+

∥∥∥∥ k∑
i=1

ρi

wiα

(
Bi(wiμ̃iμ̃

T
i ) + BiAi + DiBi

)∥∥∥∥ + O(α−2)

≤

k∑
i=1

|ρi − ρ̄| ‖Bi‖+

k∑
i=1

ρi

wiα
(
∥∥
Bi(wiμ̃iμ̃

T
i )

∥∥
+ ‖BiAi‖+ ‖DiBi‖) + O(α−2)

≤ k‖ρ− 1ρ̄‖∞

√
φ +

k∑
i=1

ρi

wiα
(
√

φ + φ

√
φ +

√
φ ) + O(α−2)

≤ k‖ρ− 1ρ̄‖∞

√
φ +

3kρ̄

wα

√
φ

≤

7k

2wα

√
φ + O(α−2).
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Thus, we have max
{
‖Δ11‖, ‖Δ22‖, ‖Δ21‖

}
≤ 4k

√

φ/(wα)+O(α−2), so that

‖M − Γ‖ ≤ ‖Δ‖+ O(α−2) ≤ 2 max
{
‖Δ11‖, ‖Δ22‖, ‖Δ21‖

}
≤

8k

wα

√
φ + O(α−2) ≤

16k

wα

√
φ.

for sufficiently large n, as α ≥ n/w.

3.4. Sample convergence

In this section, we collect some bounds on the convergence of the sample
mean u and sample matrix of second moments M to their expectations
û and M̂ . For the convergence of second moment matrices, we use the
following lemma due to Rudelson [13], which was presented in this form
in [14].

Lemma 10. Let y be a random vector from a distribution D in Rn, with

supD ‖y‖ = A and
∥∥E(yy

T )
∥∥
≤ 1. Let y1, . . . , ym be independent samples

from D. Let

η = CA

√
log m

m

where C is an absolute constant. Then,

(i) If η < 1, then

E

(∥∥∥∥ 1

m

m∑
i=1

yiy
T
i − E(yy

T )

∥∥∥∥
)
≤ η.

(ii) For every t ∈ (0, 1),

P

(∥∥∥∥ 1

m

m∑
i=1

yiy
T
i − E(yy

T )

∥∥∥∥ > t

)
≤ 2e

−ct2/η2

.

This lemma can be used to show that a mixture of k logconcave densities
can be made nearly isotropic using only O

∗(kn) samples. This is already
known for a single logconcave density [13, 11] and the extension to a mixture
is straightforward.
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Theorem 4. There is an absolute constant C such that for an isotropic

mixture of k logconcave distributions, with probability at least 1 − δ, a

sample of size

m > C

kn log2(n/δ)

ε
2

gives a sample mean û and sample covariance M̂ so that

‖û‖ ≤ ε and ‖M̂ − I‖ ≤ ε.

The isotropic transformation is computed simply by estimating the mean
and covariance matrix of a sample, and computing the affine transformation
that puts the sample in isotropic position.

Lemma 11. Let ε, δ > 0 and let û be the mean of a set of m points drawn

from an isotropic mixture of k Gaussians in n dimensions, where

m ≥

2nα

ε
2

log
2n

δ

.

Then

P
[
‖û− u‖ > ε

]
≤ δ

Proof. We first consider only a single coordinate of the vector û. Let
y = x1 exp

(
− ‖x‖

2
/(2α)

)
− u1. We observe that∣∣∣∣∣x1 exp

(
−

‖x‖
2

2α

)∣∣∣∣∣ ≤ |x1| exp

(
−

x
2
1

2α

)
≤

√
α

e

<

√

α.

Thus, each term in the sum mû1 =
∑m

j=1
yj falls the range

[
−

√

α − u1,

√

α− u1

]
. We may therefore apply Hoeffding’s inequality to show that

P[|û1 − u1| ≥ ε/

√

n ] ≤ 2 exp

(
−

2m
2
(
ε/

√

n

)2

m ·

(
2
√

α

)2

)
≤ 2 exp

(
−

mε
2

2αn

)
≤

δ

n

.

Taking the union bound over the n coordinates, we have that with proba-
bility 1− δ the error in each coordinate is at most ε/

√

n, which implies that
‖û− u‖ ≤ ε.
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Lemma 12. Let ε, δ > 0 and let M̂ be the sample covariance matrix of

m points drawn from an isotropic mixture of k Gaussians in n dimensions,

where

m ≥ C1

nα

ε
2

log
nα

δ

.

and C1 is an absolute constant. Then

P
[
‖M̂ − I‖ > ε

]
< δ.

Proof. We will apply Lemma 10. Define y = x exp
(
− ‖x‖

2
/(2α)

)
. Then,

y
2
i ≤ x

2
i exp

(
−

‖x‖
2

α

)
≤ x

2
i exp

(
−

x
2
i

α

)
≤

α

e

< α.

Therefore ‖y‖ ≤
√

2αn.

Next, since the mixture is in isotropic position, we have for any unit
vector v,

E
(
(vT

y)
2)
≤ E

(
(vT

x)
2)
≤ 1

and so
∥∥E(yy

T )
∥∥
≤ 1.

Now we apply the second part of Lemma 10 with η = ε

√
c/ ln (2/δ) and

t = η

√
ln (2/δ)/c. This requires that

η =
cε

ln (2/δ)
≤ C

√

2αn

√
log m

m

which is satisfied for our choice of m.

Lemma 13. Let X be a collection of m points drawn from a Gaussian with

mean μ and variance σ
2. With probability 1− δ,

|x− μ| ≤ σ

√
2 log m/δ.

for every x ∈ X.
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3.5. Perturbation lemma

We will use the following key lemma due to Stewart [17] to show that when
we apply the spectral step, the top k − 1 dimensional invariant subspace
will be close to the Fisher subspace.

Lemma 14 (Stewart’s Theorem). Suppose A and A + E are n-by-n sym-

metric matrices and that

A =

[
D1 0
0 D2

]
r

n− r

r n− r

E =

[
E11 E

T
21

E21 E22

]
r

n− r

r n− r

.

Let the columns of V be the top r eigenvectors of the matrix A+E and let

P2 be the matrix with columns er+1, . . . , en. If d = λr(D1) − λ1(D2) > 0
and

‖E‖ ≤

d

5
,

then

‖V
T
P2‖ ≤

4

d

‖E21‖2
.

4. Finding a Vector near the Fisher Subspace

In this section, we combine the approximations of Section 3.3 and the
perturbation lemma of Section 3.5 to show that the direction h chosen by
step 3 of the algorithm is close to the intermean subspace. Section 5 argues
that this direction can be used to partition the components. Finding the
separating direction is the most challenging part of the classification task
and represents the main contribution of this work.

We first assume zero overlap and that the sample reweighted moments
behave exactly according to expectation. In this case, the mean shift û

becomes

v ≡

k∑
i=1

wiρiμi.

We can intuitively think of the components that have greater ρi as gaining
mixing weight and those with smaller ρi as losing mixing weight. As long
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as the ρi are not all equal, we will observe some shift of the mean in
the intermean subspace, i.e. Fisher subspace. Therefore, we may use this
direction to partition the components. On the other hand, if all of the ρi

are equal, then M̂ becomes

Γ ≡

[∑k
i=1

ρi

(
wiμ̃iμ̃i

T + Ai

)
0

0
∑k

i=1
ρiDi −

ρi

wiα
D

2
i

]

= ρ̄

[
I 0

0 I −
1

α

∑k
i=1

1

wi
D

2
i

]
.

Notice that the second moments in the subspace span {e1, . . . , ek−1} are
maintained while those in the complementary subspace are reduced by
poly (1/α). Therefore, the top eigenvector will be in the intermean subspace,
which is the Fisher subspace.

We now argue that this same strategy can be adapted to work in gen-
eral, i.e., with nonzero overlap and sampling errors, with high probability.
A critical aspect of this argument is that the norm of the error term M̂ −Γ
depends only on φ and k and not the dimension of the data. See Lemma 8
and the supporting Lemma 2 and Fact 2.

Since we cannot know directly how imbalanced the ρi are, we choose
the method of finding a separating direction according the norm of the
vector ‖û‖. Recall that when ‖û‖ >

√

w/(32α) the algorithm uses û to
determine the separating direction h. Lemma 15 guarantees that this vector
is close to the Fisher subspace. When ‖û‖ ≤

√

w/(32α), the algorithm uses
the top eigenvector of the covariance matrix M̂ . Lemma 16 guarantees that
this vector is close to the Fisher subspace.

Lemma 15 (Mean Shift Method). Let ε > 0. There exists a constant C

such that if m1 ≥ Cn
4poly (k, w−1

, log n/δ), then the following holds with

probability 1− δ. If ‖û‖ >

√

w/(32α) and

φ ≤

w2
ε

214
k

2
,

then

‖û
T
v‖

‖û‖ ‖v‖

≥ 1− ε.
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Lemma 16 (Spectral Method). Let ε > 0. There exists a constant C

such that if m1 ≥ Cn
4poly (k, w−1

, log n/δ), then the following holds with

probability 1 − δ. Let v1, . . . , vk−1 be the top k − 1 eigenvectors of M̂ . If

‖û‖ ≤

√

w/(32α) and

φ ≤

w2
ε

6402
k

2

then

min
v∈span {v1,...,vk−1}, ‖v‖=1

∥∥projF (v)
∥∥
≥ 1− ε.

4.1. Mean shift

Proof of Lemma 15. We will make use of the following claim.

Claim 17. For any vectors a, b �= 0,

|a
T
b|

‖a‖ ‖b‖

≥

(
1−

‖a− b‖
2

max
{
‖a‖

2
, ‖b‖

2
} )1/2

.

By the triangle inequality, ‖û− v‖ ≤ ‖û− u‖+ ‖u− v‖. By Lemma 7,

‖u− v‖ ≤

√
4k

2

α
2w

φ =

√
4k

2

α
2w
·

w2
ε

214k
2
≤

√
wε

212
α

2
.

By Lemma 11, for large m1 we obtain the same bound on ‖û − u‖ with
probability 1− δ. Thus,

‖û− v‖ ≤

√
wε

210
α

2
.

Applying the claim gives

‖û
T
v‖

‖û‖ ‖v‖

≥ 1−
‖û− v‖

2

‖û‖
2

≥ 1−
wε

210
α

2
·

322
α

2

w

= 1− ε.



270 S. C. Brubaker and S. S. Vempala

Proof of Claim 17. Without loss of generality, assume ‖u‖ ≥ ‖v‖ and
fix the distance ‖u − v‖. In order to maximize the angle between u and v,
the vector v should be chosen so that it is tangent to the sphere centered
at u with radius ‖u − v‖. Hence, the vectors u, v, (u − v) form a right
triangle where ‖u‖2 = ‖v‖

2 + ‖u− v‖
2. For this choice of v, let θ be the

angle between u and v so that

u
T
v

‖u‖ ‖v‖

= cos θ = (1− sin2
θ)

1/2
=

(
1−

‖u− v‖
2

‖u‖
2

)1/2

.

4.2. Spectral method

We first show that the smallness of the mean shift û implies that the
coefficients ρi are sufficiently uniform to allow us to apply the spectral
method.

Claim 18 (Small Mean Shift Implies Balanced Second Moments). If ‖û| ≤
√

w/(32α) and √
φ ≤

w

64k

,

then

‖ρ− 1ρ̄‖
2
≤

1

8α

.

Proof. Let q1, . . . , qk be the right singular vectors of the matrix U =
[w1μ1, . . . ,wkμk] and let σi(U) be the ith largest singular value. As∑k

i=1
wiμi = 0, we have that σk(U) = 0 and qk = 1/

√

k. Recall that ρ

is the k vector of scalars ρ1, . . . , ρk and that v = Uρ. Then

‖v‖
2 = ‖Uρ‖

2

=
k−1∑
i=1

σi(U)2(qT
i ρ)

2

≥ σk−1(U)2
∥∥
ρ− qk(q

T
k ρ)

∥∥2

2

= σk−1(U)2‖ρ− 1ρ̄‖
2

2
.
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Since qk−1 ∈ span {μ1, . . . , μk}, we have that
∑k

i=1
wiq

T
k−1

μiμ
T
i qk−1 ≥ 1−φ.

Therefore,

σk−1(U)2 = ‖Uqk−1‖
2

= q
T
k−1

( k∑
i=1

w2
i μiμ

T
i

)
qk−1

≥ wq
T
k−1

( k∑
i=1

wiμiμ
T
i

)
qk−1

≥ w(1− φ).

Thus, we have the bound

‖ρ− 1ρ̄‖∞ ≤
1√

(1− φ)w
‖v‖ ≤

2
√

w
‖v‖.

By the triangle inequality ‖v‖ ≤ ‖û‖+ ‖û− v‖. As argued in Lemma 7,

‖û− v‖ ≤

√
4k

2

α
2w

φ =

√
4k

2

α
2w
·

w2

642
k

2
=≤

√

w

32α

.

Thus,

‖ρ− 1ρ̄‖∞ ≤
2ρ̄

√

w
‖v‖

≤

2ρ̄

√

w

(√
w

32α

+

√

w

32α

)
≤

1

8α

.

We next show that the top k − 1 principal components of Γ span the
intermean subspace and put a lower bound on the spectral gap between the
intermean and non-intermean components.

Lemma 19 (Ideal Case). If ‖ρ− 1ρ̄‖∞ ≤ 1/(8α), then

λk−1(Γ)− λk(Γ) ≥
1

4α

,

and the top k − 1 eigenvectors of Γ span the means of the components.
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Proof of Lemma 19. We first bound λk−1(Γ11). Recall that

Γ11 =
k∑

i=1

ρi

(
wiμ̃iμ̃i

T + Ai

)
.

Thus,

λk−1(Γ11) = min
‖y‖=1

k∑
i=1

ρiy
T
(
wiμ̃iμ̃i

T + Ai

)
y

≥ ρ̄− max
‖y‖=1

k∑
i=1

(ρ̄− ρi)y
T
(
wiμ̃iμ̃i

T + Ai

)
y.

We observe that
∑k

i=1
y

T
(
wiμ̃iμ̃i

T + Ai

)
y = 1 and each term is non-

negative. Hence the sum is bounded by

k∑
i=1

(ρ̄− ρi)y
T
(
wiμ̃iμ̃i

T + Ai

)
y ≤ ‖ρ− 1ρ̄‖∞,

so,

λk−1(Γ11) ≥ ρ̄− ‖ρ− 1ρ̄‖∞.

Next, we bound λ1(Γ22). Recall that

Γ22 =
k∑

i=1

ρiDi −
ρi

wiα
D

2
i

and that for any n−k vector y such that ‖y‖ = 1, we have
∑k

i=1
y

T
Diy = 1.

Using the same arguments as above,

λ1(Γ22) = max
‖y‖=1

ρ̄ +

k∑
i=1

(ρi − ρ̄)yT
Diy −

ρi

wiα
y

T
D

2
i y

≤ ρ̄ + ‖ρ− 1ρ̄‖∞ − min
‖y‖=1

k∑
i=1

ρi

wiα
y

T
D

2
i y.
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To bound the last sum, we observe that ρi − ρ̄ = O(α−1). Therefore

k∑
i=1

ρi

wiα
y

T
D

2
i y ≥

ρ̄

α

k∑
i=1

1

wi
y

T
D

2
i y + O(α−2).

Without loss of generality, we may assume that y = e1 by an appropriate
rotation of the Di. Let Di(�, j) be element in the �th row and jth column
of the matrix Di. Then the sum becomes

k∑
i=1

1

wi
y

T
D

2
i y =

k∑
i=1

1

wi

n∑
j=1

Dj(1, j)2

≥

k∑
i=1

1

wi
Dj(1, 1)2.

As
∑k

i=1
Di = I, we have

∑k
i=1

Di(1, 1) = 1. From the Cauchy–Schwartz
inequality, it follows( k∑

i=1

wi

)1/2( k∑
i=1

1

wi
Di(1, 1)2

)1/2

≥

k∑
i=1

√

wi
Di(1, 1)
√

wi
= 1.

Since
∑k

i=1
wi = 1, we conclude that

∑k
i=1

1

wi
Di(1, 1)2 ≥ 1. Thus, using the

fact that ρ̄ ≥ 1/2, we have

k∑
i=1

ρi

wiα
y

T
D

2
i y ≥

1

2α

Putting the bounds together

λk−1(Γ11)− λ1(Γ22) ≥
1

2α

− 2‖ρ− 1ρ̄‖∞ ≥
1

4α

.

Proof of Lemma 16. To bound the effect of overlap and sample errors
on the eigenvectors, we apply Stewart’s Lemma (Lemma 14). Define d =
λk−1(Γ)− λk(Γ) and E = M̂ − Γ.

We assume that the mean shift satisfies ‖û‖ ≤
√

w/(32α) and that φ is
small. By Lemma 19, this implies that

(5) d = λk−1(Γ)− λk(Γ) ≥
1

4α

.
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To bound ‖E‖, we use the triangle inequality ‖E‖ ≤ ‖Γ−M‖+‖M−M̂‖.
Lemma 8 bounds the first term by

(6) ‖M − Γ‖ ≤

√
162

k
2

w2
α

2
φ =

√
162

k
2

w2
α

2
·

w2
ε

6402
k

2
≤

1

40α

√

ε.

By Lemma 12, we obtain the same bound on ‖M − M̂‖ with probability
1− δ for large enough m1. Thus,

‖E‖ ≤

1

20α

√

ε.

Combining the bounds of Eqn. (5) and (6), we have√
1− (1− ε)2d− 5‖E‖ ≥

√
1− (1− ε)2

1

4α

− 5
1

20α

√

ε ≥ 0,

as
√

1− (1− ε)2 ≥
√

ε. This implies both that ‖E‖ ≤ d/5 and that

4‖E21‖/d <

√
1− (1− ε)2, enabling us to apply Stewart’s Lemma to the

matrix pair Γ and M̂ .

By Lemma 19, the top k−1 eigenvectors of Γ, i.e. e1, . . . , ek−1, span the
means of the components. Let the columns of P1 be these eigenvectors. Let
the columns of P2 be defined such that [P1, P2] is an orthonormal matrix
and let v1, . . . , vk be the top k− 1 eigenvectors of M̂ . By Stewart’s Lemma,
letting the columns of V be v1, . . . , vk−1, we have

‖V
T
P2‖2

≤

√
1− (1− ε)2,

or equivalently,

min
v∈span {v1,...,vk−1}, ‖v‖=1

‖projF v‖ = σk−1(V
T
P1) ≥ 1− ε.
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5. Recursion

In this section, we show that for every direction h that is close to the
intermean subspace, the “largest gap clustering” step produces a pair of
complementary halfspaces that partitions R

n while leaving only a small part
of the probability mass on the wrong side of the partition, small enough that
with high probability, it does not affect the samples used by the algorithm.

Lemma 20. Let δ, δ
′
> 0, where δ

′
≤ δ/(2m2), and let m2 satisfy m2 ≥

n/k log (2k/δ). Suppose that h is a unit vector such that

∥∥projF (h)
∥∥
≥ 1−

w

210(k − 1)2 log 1

δ′

.

Let F be a mixture of k > 1 Gaussians with overlap

φ ≤

w

29(k − 1)2
log−1 1

δ
′
.

Let X be a collection of m2 points from F and let t be the midpoint of the

largest gap in set {hT
x : x ∈ X}. With probability 1− δ, the halfspace Hh,t

has the following property. For a random sample y from F either

y, μ	(y) ∈ Hh,t or y, μ	(y) /∈ Hh,t

with probability 1− δ
′.

Proof of Lemma 20. The idea behind the proof is simple. We first show
that two of the means are at least a constant distance apart. We then
bound the width of a component along the direction h, i.e. the maximum
distance between two points belonging to the same component. If the width
of each component is small, then clearly the largest gap must fall between
components. Setting t to be the midpoint of the gap, we avoid cutting any
components.

We first show that at least one mean must be far from the origin in the
direction h. Let the columns of P1 be the vectors e1, . . . , ek−1. The span of
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these vectors is also the span of the means, so we have

max
i

(
h

T
μi

)2
= max

i

(
h

T
P1P

T
1 μi

)2

=
∥∥

P
T
1 h

∥∥2
max

i

((
P

T
1 h

)T

‖P1h‖
μ̃i

)2

≥

∥∥
P

T
1 h

∥∥2
k∑

i=1

wi

((
P

T
1 h

)T

‖P1h‖
μ̃i

)2

≥

∥∥
P

T
1 h

∥∥2
(1− φ)

>

1

2
.

Since the origin is the mean of the means, we conclude that the maximum
distance between two means in the direction h is at least 1/2. Without loss
of generality, we assume that the interval [0, 1/2] is contained between two
means projected to h.

We now show that every point x drawn from component i falls in a
narrow interval when projected to h. That is, x satisfies h

T
x ∈ bi, where

bi = [hT
μi −

(
8(k − 1)

)−1
, h

T
μi +

(
8(k − 1)

)−1]. We begin by examining
the variance along h. Let ek, . . . , en be the columns of the matrix n-by-
(n − k + 1) matrix P2. Recall from Eqn. (2) that P

T
1 wiΣiP1 = Ai, that

P
T
2 wiΣiP1 = Bi, and that P

T
2 wiΣiP2 = Di. The norms of these matrices

are bounded according to Lemma 2. Also, the vector h = P1P
T
1 h + P2P

T
2 h.

For convenience of notation we define ε such that ‖P T
1 h‖ = 1 − ε. Then

‖P
T
2 h‖

2
= 1− (1− ε)2 ≤ 2ε. We now argue

h
T wiΣih ≤

(
h

T
P1AiP

T
1 h + 2h

T
P2BiP1h + h

T
P

T
2 DiP2h

)
≤ 2

(
h

T
P1AiP

T
1 h + h

T
P2DiP

T
2 h

)
≤ 2(

∥∥
P

T
1 h

∥∥2
‖Ai‖+

∥∥
P

T
2 h

∣∣2
‖Di‖)

≤ 2(φ + 2ε).
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Using the assumptions about φ and ε, we conclude that the maximum
variance along h is at most

max
i

h
T Σih ≤

2

w

(
w

29(k − 1)2
log

1

δ
′
+ 2

w

210(k − 1)2
log

1

δ
′

)
≤

(
27(k − 1)2 log 1/δ

′
)−1

.

We now translate these bounds on the variance to a bound on the
difference between the minimum and maximum points along the direction
h. By Lemma 13, with probability 1− δ/2

|h
T (x− μ	(x))| ≤

√
2h

T Σih log (2m2/δ)

≤

1

8(k − 1)
·

log (2m2/δ)

log (1/δ
′)

≤

1

8(k − 1)
.

Thus, with probability 1 − δ/2, every point from X falls into the union of

intervals b1∪ . . .∪ bk where bi = [hT
μi−

(
8(k−1)

)−1
, h

T
μi +

(
8(k−1)

)−1].
Since these intervals are centered about the means, at least the equivalent
of one interval must fall outside the range [0, 1/2], which we assumed was
contained between two projected means. Thus, the measure of subset of
[0, 1/2] that does not fall into one of the intervals is

1

2
− (k − 1)

1

4(k − 1)
=

1

4
.

This set can be cut into at most k−1 intervals, so the smallest possible gap
between these intervals is

(
4(k − 1)

)−1
, which is exactly the width of an

interval.

Since we have m2 = k/w log (2k/δ), the set X contains at least one
sample from every component with probability 1− δ/2. Overall, with prob-
ability 1− δ every component has at least one sample and all samples from
component i fall in bi. Thus, the largest gap between the sampled points
will not contain one of the intervals b1, . . . , bk. Moreover, the midpoint t of
this gap must also fall outside of b1∪ . . .∪ bk, ensuring that no bi is cut by t.

By the same argument given above, any single point y from F is con-
tained in b1 ∪ . . . ∪ bk with probability 1− δ

′ proving the Lemma.
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In the proof of the main theorem for large k, we will need to have every
point sampled from F in the recursion subtree classified correctly by the
halfspace, so we will assume δ

′ considerably smaller than m2/δ.

The second lemma shows that all submixtures have smaller overlap to
ensure that all the relevant lemmas apply in the recursive steps.

Lemma 21. The removal of any subset of components cannot induce a

mixture with greater overlap than the original.

Proof of Lemma 21. Suppose that the components j+1, . . . k are removed
from the mixture. Let ω =

∑j
i=1

wi be a normalizing factor for the weights.

Then if c =
∑j

i=1
wiμi = −

∑k
i=j+1

wiμi, the induced mean is ω
−1

c. Let
T be the subspace that minimizes the maximum overlap for the full k

component mixture. We then argue that the overlap φ̃
2 of the induced

mixture is bounded by

φ̃ = min
dim(S)=j−1

max
v∈S

ω
−1

v
T Σv

ω
−1

∑j
i=1

wiv
T (μiμ

T
i − cc

T + Σi)v

≤ max
v∈span {e1,...,ek−1}\span {μj+1,...,μk}

∑j
i=1

wiv
T Σiv∑j

i=1
wiv

T (μiμ
T
i − cc

T + Σi)v
.

Every v ∈ span {e1, . . . , ek−1} \ span {μj+1, . . . , μk} must be orthogonal to
every μ	 for j + 1 ≤ � ≤ k. Therefore, v must be orthogonal to c as well.
This also enables us to add the terms for j +1, . . . , k in both the numerator
and denominator, because they are all zero.

φ̃ ≤ max
v∈span {e1,...,ek−1}\span {μj+1,...,μk}

v
T Σv∑k

i=1
wiv

T (μiμ
T
i + Σi)v

≤ max
v∈span {e1,...,ek−1}

v
T Σv∑k

i=1
wiv

T (μiμ
T
i + Σi)v

= φ.

The proofs of the main theorems are now apparent. Consider the
case of k = 2 Gaussians first. As argued in Section 3.4, using m1 =
ω

(
kn

4w−3 log (n/δw)
)

samples to estimate û and M̂ is sufficient to guar-
antee that the estimates are accurate. For a well-chosen constant C, the
condition

φ ≤ J(p) ≤ Cw3 log−1

(
1

δw
+

1

η

)
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of Theorem 2 implies that

√
φ ≤

w
√

ε

640 · 2
,

where

ε =
w

29
log−1

(
2m2

δ

+
1

η

)
.

The arguments of Section 4 then show that the direction h selected in step 3
satisfies

‖P
T
1 h‖ ≥ 1− ε = 1−

w

29
log−1

(
m2

δ

+
1

η

)
.

Already, for the overlap we have

√
φ ≤

w
√

ε

640 · 2
≤

√
w

29(k − 1)2
log−1/2 1

δ
′
.

so we may apply Lemma 20 with δ
′ = (m2/δ + 1/η)−1. Thus, with proba-

bility 1− δ the classifier Hh,t is correct with probability 1− δ
′
≥ 1− η.

We follow the same outline for k > 2, with the quantity 1/δ
′ = m2/δ +

1/η being replaced with 1/δ
′ = m/δ + 1/η, where m is the total number of

samples used. This is necessary because the half-space Hh,t must classify
every sample point taken below it in the recursion subtree correctly. This
adds the n and k factors so that the required overlap becomes

φ ≤ Cw3
k
−3 log−1

(
nk

δw
+

1

η

)
for an appropriate constant C. The correctness in the recursive steps is
guaranteed by Lemma 21. Assuming that all previous steps are correct, the
termination condition of step 4 is clearly correct when a single component
is isolated.
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6. Conclusion

We have presented an affine-invariant extension of principal components.
We expect that this technique should be applicable to a broader class of
problems. For example, mixtures of distributions with some mild properties
such as center symmetry and some bounds on the first few moments might
be solvable using isotropic PCA. It would be nice to characterize the full
scope of the technique for clustering and also to find other applications,
given that standard PCA is widely used.
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proceedings of FOCS 2008. This research was supported in part by NSF
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Small Linear Dependencies for Binary Vectors

of Low Weight

URIEL FEIGE

We show that every set of m � cn
√

n log log n vectors in {0, 1}
n

in which every

vector has Hamming weight 3 contains a subset of O(log n) vectors that form a

linear dependency. Our proof is based on showing that in every graph of average

degree at least c log log n, every legal edge coloring produces a cycle in which one

of the colors appears either once or twice. (In both results, c is some constant.)

The results proved are used (in a companion work) in refutation algorithms for

semirandom 3CNF formulas.

1. Introduction

The problem studied in this paper can be viewed either as a problem
involving linear dependencies among binary vectors, or as a problem on
hypergraphs. We present here the hypergraph formulation.

Definition 1.1. An even cover in a hypergraph is a nonempty set of
hyperedges that contains each vertex an even number of times (either not
at all, or twice, or four times, etc.). The size of an even cover is the number
of hyperedges in the even cover.

It is not hard to see that every hypergraph on n vertices with more
than n hyperedges has an even cover of size at most n + 1. This follows by
viewing each hyperedge as an indicator vector for its variables, noting that
this gives a vector space of dimension at most n, and that every minimal
set of linearly dependent binary vectors (addition performed modulo 2)
corresponds to an even cover. As the number of hyperedges in a hypergraph
increases, smaller even covers may appear. For r-uniform hypergraphs with
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r ≥ 3, it is reasonable to conjecture the following relation between number
of hyperedges and size of even covers. (The Õ notation is meant to suppress
an O(log n) multiplicative term, though the author would be happy to settle
also for somewhat larger low order multiplicative terms.)

Conjecture 1.2. Let c be sufficiently large. Then every r-uniform hyper-
graph on n vertices and m = cβn hyperedges (with 1 < β ≤ O(n(r−2)/2))
has an even cover of size at most Õ(n/β

2/(r−2)).

For graphs (r = 2), minimal even covers are simply cycles. The natural
analog of the conjecture for graphs would be that every graph of sufficiently
high constant average degree has a cycle of length O(log n), which is well
known to be true. For general r, the conjecture is not known to hold, except
of course at the very low density case when β < (log n)(r−2)/2, in which case
the conjecture is trivially true. When r is even, the conjecture is known
to be true also at the very high density case, say, when β = 2n

(r−2)/2 (see
Proposition 2.2). The current work addresses the very high density case of
Conjecture 1.2 when r is odd, and comes closer to proving the conjecture
in this case.

The case that motivates the current work is that of r = 3. In this case,
β can range from 1 to

√

n. As we shall explain in Section 1.1, this case
comes up in refutation of random 3CNF formulas. Some of the results in
this work are stated only for this special case, but easily extend to all odd r.

The following theorem is implicit in the work of Naor and Vastreate [11].
If not for the term log n in the value of β, it would prove the conjecture for
the very high density case.

Theorem 1.3. Every 3-uniform hypergraph with n vertices and βn hyper-

edges contains an even cover of size at most log n. Here β = c log n

√

n for

some sufficiently large universal constant c.

In our work, we improve over the value of β and show:

Theorem 1.4. Let H be an arbitrary 3-uniform hypergraph with n vertices

and m = βn hyperedges, and let c be a sufficiently large universal constant.

Then:

1. If β ≥ c

√
n log n/ log log n then H contains an even cover of size

O(log n/ log log n).

2. If β ≥ c

√

n log log n then H contains an even cover of size O(log n).
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Moreover, in both cases there is a polynomial time algorithm that finds

the respective even cover.

Our proof of Theorem 1.4 produces even covers which are of a special
form (correspond to linear dependencies over any field). See Corollary 4.5.
Our proof technique reduces the problem of even covers in hypergraphs to
an extremal problem in graphs.

Definition 1.5. Given a graph G and an arbitrary legal coloring of its
edges (incident edges have different colors), a simple cycle (namely, a cycle
that does not visit any vertex more than once) is called a 1-cycle (2-
cycle, respectively) if some color is used in order to color exactly one (two,
respectively) of its edges. We say that a cycle in an edge colored graph is
distinguished if it is either a 1-cycle or a 2-cycle.

The extremal problem is as follows: what is the maximum number of
edges that a legally colored n-vertex graph can have and still not contain
a distinguished cycle of length at most t? Observe that a graph may have
arbitrarily many edges and still not have a 2-cycle (if every edge is colored
by a different color). It may have Ω(n log n) edges and still not have a 1-
cycle (e.g, color edges of the hypercube by the name of the coordinate that
is flipped). However, once both 1-cycles and 2-cycles are forbidden, we show
that the number of edges is at most O(n log log n).

Theorem 1.6. For a sufficiently large constant c,

1. For every graph on n vertices and average degree at least c
log n

log log n ,

every legal edge coloring creates a distinguished cycle of length

O( log n
log log n).

2. For every graph on n vertices and average degree at least c log log n,

every legal edge coloring creates a distinguished cycle of length

O(log n log log n).

Moreover, in both cases there is a polynomial time algorithm that finds

the respective distinguished cycle.

As we shall see in the proof of Corollary 2.12, the correspondence be-
tween Theorem 1.6 and Theorem 1.4 is as follows. A degree of d in Theo-
rem 1.6 gives a density of β = O

(√
dn

)
in Theorem 1.4 for even covers that

are twice as large as the corresponding distinguished cycles. Hence item 1 of
Theorem 1.4 follows from item 1 of Theorem 1.6. Likewise, item 2 of The-
orem 1.4 almost follows from item 2 of Theorem 1.6, except for a log log n
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term in the size of the even cover. To remove this log log n term, we appeal
to some elementary properties of cycle bases in graphs.

1.1. Motivation and related work

The author’s motivation for studying small even covers comes from a se-
quence of works on refuting random 3CNF formulas. The goal of these works
is to design algorithms that when given a nonsatisfiable 3CNF Boolean for-
mula (conjunction of clauses, where each clause is a disjunction of three
literals such as x1 ∨ x̄2 ∨ x3) certifies that no satisfying assignment exists.
In general, this problem is coNP-hard, but it turns out that for sufficiently
dense random (or semirandom) formulas efficient refutation algorithms exist
(with high probability over the choice of the input formula). The methodol-
ogy developed in [8, 4, 7, 6, 5] to design such algorithms reduces the problem
of refuting 3CNF formulas to a stronger form of refutation but for an easier
problem, max-3LIN2. Namely, given an inconsistent system of linear equa-
tions with three Boolean variables per equation (such as x1 + x2 + x3 = 1
modulo 2), certify that the system is “far” from being satisfiable (in the
sense that every assignment leaves “many” equations not satisfied). We call
this strong refutation (though in a sense not as strong as that of [3]). Re-
futing satisfiability of 3LIN2 is easy (by Gaussian elimination), but strong
refutation is in general NP-hard (by a rephrasing of the known hardness
of approximation results [9] for max-3LIN2). However, the max-3LIN2 sys-
tems that are obtained from the reduction from random 3CNF formulas
are random rather than worst case instances, and hence there is hope for
strongly refuting them. Here is the approach developed in the above works.

Given a 3LIN2 system φ, let Hφ be the following 3-uniform hypergraph.
The vertices of Hφ are the variables of φ. The hyperedges are the equations
of φ. For example, the clause x1 + x2 + x3 = 0 gives rise to the hyperedge
(x1, x2, x3). The hypergraph does not represent the right hand side of the
equations. Assume that Hφ has an even cover of size 2� (observe that an even
cover always has an even number of hyperedges, because every hyperedge
contains three vertices, and every vertex appears an even number of times).
Consider the 2� linear equations that correspond to the hyperedges of the
even cover. Summing up all equations, the left hand side gives 0 (since
every variable appears an even number of times and addition is performed
modulo 2). As to the right hand side, if there is some randomness in the
equation in the sense that for every equation independently there is some
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small probability δ that its right hand side is random, then with probability
Ω(δ�) (or at least 1/4 if δ� > 1) the right hand side will sum up to 1, leading
to a contradiction. Moreover, if Hφ has many disjoint even covers that can
be found efficiently, this gives many disjoint subsystems, and if the original
3LIN system is somewhat random in the above sense, then many of them
are likely not to be satisfiable. This is exactly what we want to achieve by
strong refutation. Observe that a theorem such as Theorem 1.4 implies the
existence of many disjoint even covers (and not just one), because after a
small even cover is found, it can be removed from the hypergraph without
substantially changing the number of hyperedges, and then the theorem can
be applied again.

Theorem 1.4 plays a central role in the refutation algorithm presented
in [5]. Its proof was only sketched in [5] and is presented in full in the current
paper. (Remark: the bounds proved in the current paper are stronger than
the corresponding bounds claimed in [5].)

Results in [6] support Conjecture 1.2. There, the special case of r = 3
and β = n

0.4 was considered. If was shown that if the hypergraph is random,
then indeed it is likely to have even covers of size O(n/β

2) = O(n0.2). The
proof works for other values of β as well (except possibly for very small values
of β – this needs to be checked). We remark that random hypergraphs serve
as examples showing that Conjecture 1.2 cannot be improved upon. This
follows from a simple expectation computation. See for example [6].

The “super-high” density case of β = n
δ+(r−2)/2 for some δ > 0 was

studied in [11]. The motivation there comes from studying the Hamming
distance of codes that have low density parity check matrices (see more
details in [11]). When δ > 0 there are even covers of constant size, and
the goal is to figure out how this constant depends on δ. In our work
we slightly improve over the bounds proven in [11] when r is odd and
large (see the end of Section 2). More importantly, our proof technique,
though sharing some features with that of [11], works for a wider range
of parameters than the proof technique of [11]. Hence we start getting
meaningful results when β ≥ n

(r−2)/2
√

log log n, whereas the techniques
of [11] require β ≥ n

(r−2)/2 log n.

Some nontrivial upper bounds on the size of even covers can be obtained
by proving the existence of subhypergraphs that contain more hyperedges
than vertices, and on such a hypergraph invoking the argument that follows
Definition 1.1. For example, in [1] it is shown that every 3-uniform hyper-
graph with βn hyperedges has a set of � = O(n log n/β) vertices that induce
at least � + 1 hyperedges. It follows that even covers of size O(n log n/β)
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always exist. This line of work suggest the following conjecture as an inter-
mediate step towards proving Conjecture 1.2.

Conjecture 1.7. Let c be sufficiently large. Then every 3-uniform hyper-
graph on n vertices and m = cβn hyperedges (with 1 < β ≤ O

(√
n

)
) has

a set of n
′
≤ Õ(n/β

2) vertices that induce at least 2n
′
/3 hyperedges.

2. Distinguished Cycles Shorter than log n

This section contains the proof of item (1) of Theorem 1.4. It is based
on a simplification of the proof technique of [11], and works when β >√

n log n/ log log n. In passing, we also improve some other results of [11].
For this reason, the presentation will be for r-uniform hypergraphs for
general r, even though 3-uniform hypergraphs suffice for Theorem 1.4.

It will be convenient for us to view hyperedges of H as r-tuples of
vertices, rather than as sets of vertices. Hence we shall use the convention
that vertices of H are sorted in some arbitrary order, and likewise, the r

vertices in a hyperedge are sorted according to the same order. The r-tuple
corresponding to a hyperedge is this sorted list of vertices.

The following lemma is a result taken from [2]. (The result in [2] is
slightly stronger. Weaker results that would also suffice for the purpose of
our paper were known previous to [2].)

Lemma 2.1. In any n-vertex graph of average degree d > 2 there is a cycle

of length no longer than 2�, if d(d− 1)	−1
> n.

Proof. If the graph is d-regular, the proof follows easily by performing
breadth first search, starting from an arbitrary vertex. The (known) proof
for nonregular graphs is not as simple. See [2] for details.

The difficulty in proving Theorem 1.4 stems from the fact that it deals
with r-uniform hypergraphs with odd r = 3. It is instructive to first see
how a corresponding (in fact, stronger) theorem can be proved when r is
even. The following proposition is taken from [11].

Proposition 2.2. For even r and d > 1, every r-uniform hypergraph H

with m = dn
r/2 hyperedges contains an even cover of size O(log n).
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Proof. Construct the following auxiliary graph G. It has
(

n
r/2

)
≤ n

r/2

vertices, labelled by all possible sets of r/2 vertices of H. Every hyperedge
e of H contributes one edge e

′ to G, connecting the vertex in G that is
labelled by the set of r/2 vertices that make the prefix of the r-tuple that
labels e and the vertex labelled by the set of r/2 vertices that make the
suffix of the r-tuple that labels e. The average degree of G is (slightly larger
than) 2d > 2, and hence Lemma 2.1 implies that G has a cycle of length
O(log n). The hyperedges of H that correspond to the edges of G along this
cycle form an even cover in H.

We now return to the case that r is odd (in our case, r = 3), and consider
an r uniform hypergraph with m = dn

r/2 edges.

For given n, r and d, let h be maximal such that h and s are positive
integers satisfying n

h
< dn

r/2 and h + 2s = r. For example, when r = 3 we
have that h = s = 1, and for r = 5 we have that h = 1 when d <

√

n.

The following notion (used also in [11]) helps simplify later proofs.

Definition 2.3. For h and s as defined above, an r-uniform hypergraph
satisfies the small overlap condition if no two hyperedges share h+s vertices.

The following lemma (similar to [11]) shows that up to a negligible effect
on d, we may assume that the small overlap condition holds.

Lemma 2.4. Let H be an r-uniform hypergraph with dn
r/2 hyperedges, let

h and s be as above, and let ε > 0 satisfy εdn
r/2−s

> 1. Then either

• H has a subhypergraph with (d−2ε)nr/2 hyperedges that satisfies the

small overlap condition,

or

• H has an even cover of size 4�, where � is the smallest integer satisfying(
2εdn

r/2−s
) 	

> n
s. For example, when r = 3 and ε > 1/d this

corresponds to an even cover of size 8.

Proof. Given an r-uniform hypergraph H, consider an auxiliary graph G

whose vertices are the hyperedges of H, and two vertices of G are connected
by an edge if the respective hyperedges share at least h + s vertices (in H).
Consider an arbitrary maximal matching M in G. If the matching contains
less than εdn

r/2 edges, then remove the corresponding matched hyperedges
from H. The number of hyperedges in H remains essentially unchanged,
and H now satisfies the small overlap condition.
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If the matching M contains εdn
r/2 edges, then consider an auxiliary

multigraph F (it may have parallel edges). The vertices of F are s-tuples
of vertices of H. Every edge of the matching M contributes one edge to
F as follows. Let the matching edge correspond to two hyperedges e1 and
e2 in H, and without loss of generality, assume that e1 and e2 share their
first h + s vertices (in H). Then in F add an edge between the vertex that
is labelled by the last s vertices of e1 and the vertex that is labelled by
the last s vertices of e2. Observe that now any cycle in F corresponds in
a natural way to an even cover in H (with twice as many hyperedges in
H than edges if F ). The average degree in F is at least 2εdn

r/2−s, which
is greater than 2 by the conditions in the statement of the lemma. Hence
Lemma 2.1 implies that H has an even cover with 4� edges, where � is the

smallest value satisfying
(
2εdn

r/2−s
) 	

> n
s.

We shall assume that the hypergraph H satisfies the small overlap con-
dition. This assumption can be made essentially without loss of generality,
because results proved under this assumption easily generalize to arbitrary
hypergraphs with almost the same parameters, by Lemma 2.4.

Now is our main point of departure from [11]. We construct an auxiliary
graph G that is different from the one constructed in [11], and this leads
both to a considerable simplification in the proofs, and to a strengthening
of the results. The graph that we construct is similar to the one constructed
in [8] in their refutation algorithm for random 3SAT.

Each vertex of G corresponds to a set of 2s vertices of H. By our
convention that vertices of H are sorted, a vertex of G will be labelled by
a 2s-tuple of vertices of H, for which the prefix of size s is sorted and the
suffix of size s is sorted. The same vertex of H may appear both in the
prefix and in the suffix. Hence G has

(
n
s

)2
vertices. The edges of G are

derived from hyperedges of H as follows. Every hyperedge of H is an r-
tuple. Every two hyperedges e1 and e2 of H whose r-tuples agree on the last
h vertices contribute one edge to G. This edge connects the vertices v1 and
v2 in G, if the labels of v1 and v2 satisfy the following conditions. The tuple
labelling v1 agrees on its first s coordinates with the first s coordinates of
the tuple labelling e1, and agrees in its last s coordinates with coordinates
s + 1 up to 2s of the tuple labelling e2. The tuple labelling v2 agrees on its
first s coordinates with the first s coordinates of the tuple labelling e2, and
agrees in its last s coordinates with the coordinates s + 1 up to 2s of the
tuple labelling e1. Moreover, we color this edge by the color c, where c is
a tuple containing the last h vertices (the overlap vertices) in the tuples e1
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and e2. Hence every edge of G (together with its color and the labels of its
endpoints) uniquely determines which two hyperedges in H generated it.

Here are a few examples to illustrate the construction. When r = 3
we have that h = s = 1. Hence G contains n

2 vertices. Two hyperedges
e1 = (1, 2, 5) and e2 = (3, 4, 5) in H would contribute the edge

(
(1, 4)(3, 2)

)
to G, and this edge would be colored (5). When r = 5 and d is small, then

h = 1 and s = 2. Hence G contains
(
n
2

)2
< n

4 vertices. Two hyperedges
e1 = (1, 3, 4, 6, 8) and e2 = (2, 4, 5, 7, 8) in H would contribute the edge(
(1, 3, 5, 7)(2, 4, 4, 6)

)
to G, and this edge would be colored (8).

The following proposition is the key reason for introducing the small

overlap property.

Proposition 2.5. If H satisfies the small overlap condition, then the

coloring of the edges of G is a legal coloring (no two edges of the same

color are incident with the same vertex).

Proof. Otherwise there would be two hyperedges in H whose overlap is at
least h + s.

The key to finding even covers in H is by using cycles in G. Observe
that for every cycle in G, every vertex of H appears an even number of
times on this cycle (counting all its appearances in hyperedges of H that
generated the cycle in G). Hence a cycle in G corresponds to an even
cover in H. However, there is one potential problem in this correspondence.
A hyperedge in H may generate several edges in G. Hence it might be the
case that in a given cycle of G, some hyperedges of H appear more than
once. Two appearances of the same hyperedge in an even cover can (and
should) be removed – this still results in an even cover. Continuing in this
fashion, if it happens that every hyperedge of H appears on the cycle an
even number of times (say, either twice or not at all), all hyperedges are
removed and one remains with the empty even cover. In this case we say
that the cycle is trivial : it corresponds to the trivial even cover that contains
no hyperedges. Hence a cycle in G corresponds to an even cover in H if and
only if the cycle is not trivial. In this work, we shall consider one particular
class of nontrivial cycles in G, namely, the class of distinguished cycles, as
defined in Definition 1.5.

Lemma 2.6. A distinguished cycle in G of length � corresponds to an even

cover in H with at most 2� hyperedges.
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Proof. Every edge of G is generated by two hyperedges of H. Consider
one appearance of the color c that appears either once or twice in the
distinguished cycle, and the two hyperedges that generated this appearance.
If c appears only once, then these two hyperedges each appear only once on
the cycle (because any edge that any of them generates will be colored c).
If c appears twice, then in can not be that both appearances were generated
by the same pair of hyperedges, because then both appearances would
correspond to the same edge, contradicting the requirement that the cycle
is simple. Hence in a distinguished cycle there is at least one hyperedge that
appears exactly once on the cycle, and hence the cycle cannot be trivial.
A nontrivial cycle corresponds to an even cover, and the hyperedges of the
even cover are those hyperedges that generated the edges of the cycle. Hence
the corresponding even cover has at most 2� hyperedges (and possible less,
if some hyperedges generated more than one edge along the cycle).

To show that G has short distinguished cycles, we first bound from below
its average degree.

Lemma 2.7. The graph G has average degree at least (roughly) d
2.

Proof. Recall that G has
(
n
s

)2
vertices, that H has dn

r/2 hyperedges, and
that 2s + h = r. Group the hyperedges into

(
n
h

)
disjoint groups, one for

every possible h-suffix of a label of a hyperedge. A simple shifting argument
implies that the number of edges in G is minimized when all groups are of the
same size. Hence we assume that every group contains dn

r/2
/

(
n
h

)
hyperedges

(ignoring rounding issues). Each group then generates
(dnr/2/(n

h)
2

)
edges, and

the total number of edges in G is roughly d
2
n

r
/2

(
n
h

)
. The average degree is

at least as claimed because
(
n
s

)2(n
h

)
≤ n

r.

The discussion so far leads to the problem of providing bounds for
Lavg(N, D) as defined below.

Definition 2.8. Let Lavg(N, D) denote the minimum value of � such that
for every graph G with N vertices (in our case N ) n

r−h) and average
degree at least D (in our case D ≥ d

2), and for every legal coloring of its
edges, G must contain a distinguished cycle of length at most 2�.

In our application G need not be a simple graph. It may have parallel
edges. But if it does, then it contains a distinguished cycle of length two.
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When D > c
log N

log log N (here c is some sufficiently large constant) then
the existence of short distinguished cycles can be analyzed using the same
approach as that used for the existence of short cycles in general. As we do
not care for constant factors in the degree D, the analysis can be simplified
by the following proposition (also used in [11] for the same purpose).

Proposition 2.9. Every graph of average degree D has a subgraph of

minimum degree D/2.

Proof. Iteratively remove vertices of degree less than D/2 together with
their incident edges. The total number of edges that can be removed in this
process is strictly less than nD/2, and hence some subgraph remains.

We define Lmin(N, D) in a way similar to Definition 2.8, but with
minimum degree replacing average degree. Proposition 2.9 implies that
Lavg(N, D) ≤ maxN ′≤N

[
Lmin(N

′
, D/2)

]
. (Our upper bounds on

Lmin(N, D) will be nondecreasing in N , and hence the value of N
′ to be

used in the above inequality will be N .) The following lemma proves item 1
of Theorem 1.6.

Lemma 2.10. For Lmin(N, D) as defined above, Lmin(N, D) ≤ � where � is

the smallest integer for which D!/(D − �)! ≥ N , if such an integer � < D

exists.

Proof. Pick an arbitrary vertex r in G as the root, and develop a colorful

version of a breadth first search tree from r. The root r is at level 0.
All neighbors of r (there are at least D of them) are at level 1. Having
developed level i, level i + 1 is developed as follows. For every vertex v of
level i, consider all edges incident with it that have colors different from the
colors of the tree edges along the path from r to v. There are at least D− i

such edges. If any such edge connects to a different vertex v
′ at level i, then

this closes a distinguished cycle (going through v, v
′ and their least common

ancestor). Hence we may assume that all these edges go to level i + 1. It
follows that at level � at the latest (with � as in the lemma), some vertex
has two different ancestors at one level below. This closes a cycle. As no
color can appear more than twice on this cycle, it is a distinguished cycle.

Remark 2.11. The proof of Lemma 2.10 shows the existence of cycles in
which all colors on the cycle appear either once or twice, whereas for a cycle
to be distinguished it suffices that one color appears either once or twice.
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Corollary 2.12. Given n, r, d and s as defined above, let D = (d− 1)2/2
and let � < D be such that D!/(D − �)! ≥ n

2s. Then every r-uniform

hypergraph H on n vertices with m = dn
r/2 hyperedges has an even cover

with no more than 4� hyperedges. Moreover, such an even cover can be

found in time polynomial in n and m.

Proof. Given a hypergraph H, use Lemma 2.4 with ε = 1 to transform it
to a hypergraph satisfying the small overlap condition, with the value of d

replaced by d− 1. (The other alternative in Lemma 2.4, if it holds, already
implies an even cover of the desired size.) Construct from the resulting
hypergraph the graph G. By Lemma 2.7 the average degree in G is at
least (d− 1)2. By Proposition 2.9 G has a subgraph of minimum degree at
least D. By Lemma 2.10, this subgraph has a distinguished cycle of length
at most 2�. By Lemma 2.6 this corresponds to an even cover of size at
most 4� in H. By inspection one can verify that all parts of the proof are
algorithmic, leading to the desired polynomial time algorithm.

When D is much larger than �, then the degree condition in Corol-
lary 2.12 is essentially d

2	
≥ n

2s for the existence of an even cover of size
k = 4�. Hence, to have an even cover of size k a value of d = O(n4s/k)
suffices. We remark that in [11] a somewhat different value is proved for d.
Namely, for r divisible by 3, the bound in [11] is d = O(n4r/3k) (and an
error term is introduced in the exponent when k is not divisible by 3). For
large r, we can choose s ≤ (r + 3)/4 (or smaller, if r + 1 is divisible by 4)
and we get a better bound of d = O(nr/k+3/k).

Setting r = 3 and d )

√
log n/ log log n in Corollary 2.12 proves item 1

of Theorem 1.4.

3. Distinguished Cycles Longer than log n

This section contains the proof of item (2) of Theorem 1.6. Only parts of
this section (Proposition 3.3, Theorem 3.4 and Lemma 3.5) will be used in
the proof of item 2 of Theorem 1.4, which will appear in Section 4.

The proof of Lemma 2.10 assumes the minimum degree to be D =
Ω(log n/ log log n). The purpose of this section is to prove the existence of
distinguished cycles when the minimum degree is much lower. We note that
principles used in the analysis of [11] fail to work already when the minimum
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degree drops below log n, because (translating their proof technique to our
notation) they are using a stricter notion of distinguished cycle in which
some color needs to appear exactly once. A hypercube in which edges are
colored according to the coordinate of the bit that they flip is an example
of a graph of degree log n that is legally colored and does not have any
distinguished cycle in this stronger sense.

3.1. A digression

For the purpose of explaining our proof technique, let us temporarily change
the setting in which we seek to find a distinguished cycle. Rather than
having a legally-colored graph of minimum degree D, we shall assume that
we have a graph in which edges are colored (not necessarily legally) by D

colors, and every vertex is incident with at least one edge of every color.

Definition 3.1. Let Lcol(N, D) denote the minimum value of � such that
for every graph G with N vertices and any coloring of its edges by D

colors, if every vertex is incident with edges of all colors, then G contains a
distinguished cycle of length at most 2�.

It may be useful to notice that Lcol(N, D), Lavg(N, D) and Lmin(N, D)
have a common special case, namely D-regular graphs with a legal coloring
by D colors. Such colorings exist for all bipartite D-regular graphs.

Observe that the proof of Lemma 2.10 applies to Lcol(N, D) as well.
Hence for D >

2 log n
log log n we have that Lcol(N, D) ≤ 2 log n

log log n (the leading
constant 2 is for illustrative purposes only and is not meant to be best
possible). The following proposition improves the value of D.

Proposition 3.2. For D > log log N , Lcol(N, D) ≤ O(log3
N). Moreover,

a distinguished cycle of this length can be found in polynomial time.

Proof. Consider an arbitrary graph on N vertices, and an arbitrary coloring
of its edges by D colors such that every vertex is incident with all colors.
We will show that a distinguished cycle exists. Our proof also provides a
polynomial time algorithm for finding such a cycle.

Remove all edges from G and put them back in, one color class at
a time. We shall consider the minimum size of connected components
that are formed at various steps of this process. We shall show that the
assumption that there are no distinguished cycles implies the existence of
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a connected component of size larger than N , which is a contradiction.
Moreover, throughout our proof we shall control the diameter of connected
components, and this will lead to a proof that there is a distinguished cycle
of length O(log3

N).

Initially, all vertices are isolated and there are N components. After
adding edges of the first color class, every vertex has degree at least one.
We partition the graph into connected components as follows.

1. Iteratively, pick an arbitrary vertex that has not yet been marked.
Mark it as a center vertex, and mark all its neighbors and all their
neighbors as noncenter vertices.

2. Every center vertex will correspond to exactly one connected compo-
nent. It will be connected to all its neighbors. All other noncenter
vertices (those are at distant two from the set of center vertices) con-
nect to the center vertex that originally marked them (other choices
would work as well).

It is not hard to see that every connected component has size at
least s1 = 2 and diameter at most d1 = 5, where for convenience diameter is
measured here as the number of vertices (including endpoints) on the short-
est path between the two most distant vertices in a connected component.
(Hence for example, the diameter of C4, the cycle on four vertices, is 3.)

Consider now what happens when edges of the second color class are
added. If any such edge lies in an existing connected component, then this
component must contain a distinguished cycle with this edge being the only
edge of its color. Hence all second color edges join different components.
Moreover, if there are two components that are joined by two edges of the
second color, this leads to a distinguished cycle in which the second color
appears twice. Hence we may assume that there is at most one edge of the
second color joining any two components.

Consider now a graph for which the components after the first phase are
the vertices, and edges of the second color are the edges. This must be a
simple graph, and moreover, its minimum degree is 2 (because every vertex
in every component is incident with at least one edge of the second color).
Partitioning this new graph into connected components as described above
we get components of size at least s2 = s1(s1 + 1) = 6, and diameter at
most 5d1 = 25.

Likewise, after adding edges of the third color, all components are of
size at least s3 = s2(s2 + 1) = 42 and the diameter is at most 5d2 = 125.
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By induction, after the i + 1th color is added, all components are of size
larger than 22i

. Hence if there are more than log log N colors there must be
a distinguished cycle. The length of the distinguished cycle is at most twice
the size of the maximum diameter reached (plus two, for the two edges of
the last color connecting two components), and can readily be seen to be at
most essentially 5log log N , and hence O(log3

N).

3.2. Back to the main proof

We now return to the proof of item 2 in Theorem 1.6. The following technical
proposition will be used in the proof of our next theorem.

Proposition 3.3. For every integers 0 < b < a:

1. log a + b
a < log (a + b).

2. b
a <

log (b+1)

log (a+1)
.

3. log log a + b
a < log log

(
a(b + 1)

)
.

(All logarithms are in base 2.)

Proof.

1. For b = 0 and for b = a, log a + b
a = log (a + b). Hence the result for

0 < b < a follows by concavity of the logarithm function.

2. For b = 0 and for b = a, b
a = log (b+1)

log (a+1)
. Again, the result for 0 < b < a

follows by concavity of the logarithm function.

3. In the derivation below, the first inequality follows from item (2) and
the third inequality follows from item (1) (using log a as a).

log log a +
b

a

< log log a +
log (b + 1)

log (a + 1)
< log log a +

log (b + 1)

log a

< log
(

log a + log (b + 1)
)

= log log
(
a(b + 1)

)
.

We now want to prove a result similar to that of Proposition 3.2 also for
Lavg(N, D). We first do so without providing any bounds on the length of
the distinguished cycle.
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Theorem 3.4. For every graph on n vertices and average degree d >

4 log log 2n, every legal coloring of its edges creates at least one distinguished

cycle.

Proof. Given n and d, start with the empty graph on n vertices, and add
in the edges one color class at a time, under the assumption that there is
no distinguished cycle. We shall prove the following inductive hypothesis.

Inductive hypothesis. At no stage during the process there is a connected
component with n

′ vertices and average degree larger than d
′ = 4 log log 2n

′.

Base case. All connected components are of size 1, with average degree
4 log log 2 = 0.

Inductive step. Assume that the theorem is true before adding color
class c. When adding color class c, no new edge lies within an existing
connected component, as this edge could be used to close a distinguished
cycle with edges of previous colors. Likewise, no two previous components
are connected by two new edges, as again these two new edges can be used
to close a distinguished cycle with edges of previous colors. Hence any two
previous components are connected by at most one new edge.

For every new edge connecting two components, charge both endpoints
of the edge to the smaller of the two components (breaking ties arbitrarily),
and there spread the charge evenly among all vertices of the smaller com-
ponent. We show by induction that the total charge of a vertex v does not
exceed 4 log log 2n

′, where n
′ is the size of the component to which v be-

longs. Observe that for every connected component, the sum of the charges
of all vertices is equal to the sum of the degrees. Hence the fact that in a
component of size n

′ no charge exceeds 4 log log 2n
′ implies the same with

respect to average degree.

For a vertex v, let s be the size of its component before edges of color c

are added. By the induction hypothesis, its charge at this point is at most
4 log log 2s. Assume that when adding edges of color c, the number of edges
that are charged to the component of v is b. Hence the new charge for v

is 4 log log 2s + 2b
s . On the other hand, v must belong now to a component

of size at least s(b + 1), because each one of the b edges must connect to a
distinct component at least as large as s. Hence to establish the inductive
step, it remains to see that

4 log log 2s +
2b

s

≤ 4

(
log log 2s +

b

2s

)
≤ 4 log log

(
2s(b + 1)

)
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where the last inequality follows from item (3) in Proposition 3.3 (replacing a

by 2s).

We shall now show that when the degree is c log log 2n (for large enough
c) there is a distinguished cycle which is not too long, and that such a cycle
can be found efficiently. We shall use the following known lemma.

Lemma 3.5. There is a polynomial time algorithm that given any graph

on n vertices and m edges and a value k > 1, removes at most m/k edges

and produces a graph in which every connected component has diameter

O(k log n).

Proof. Pick an arbitrary vertex and grow a ball of radius r around it, where
r is the minimum value for which the number of boundary edges (that exit
the ball) is smaller than 1/k times the number of internal edges (within
the ball). Then discard the boundary edges (if any boundary edges exist).
Repeat the process starting at an arbitrary vertex not already within a ball,
as long as such vertices exist.

For every edge discarded, we keep at least k internal edges, and hence at
most a 1/k fraction of the edges are discarded. The radius of a component
cannot exceed k lnm because every new layer increases the number of edges
by a factor of (1 + 1/k), and we need to have (1 + 1/k)r ≤ m.

Our plan is to use Lemma 3.5, multiple times, once for each color class
used in the legal coloring. For this reason, we first show that it suffices to
consider legal colorings with only few colors.

Lemma 3.6. Consider an arbitrary N -vertex graph of average degree D and

an arbitrary legal coloring of it. Then there is a polynomial time procedure

that generates a new graph G with at most 2N vertices and average degree

at least D/4 together with a legal coloring of the edges of G using at most

4D colors, such that every distinguished cycle in G can be mapped back to

a distinguished cycle of the same length in the original graph.

Proof. Consider an arbitrary legally colored graph on N vertices with
average degree D. Modify the input graph to be nearly regular, with all
degrees between D and D/2. This can be done as follows. First, iteratively
removing vertices of degree at most D/2, resulting (as in Proposition 2.9) in
a graph of minimum degree at least D/2. Thereafter, iteratively split any
vertex of degree D

′
> D into two vertices, one of degree �D′

/2� and the other
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of degree �D′
/2�. The splitting operation preserves the number of edges.

Hence the resulting graph G
′ has minimum degree D/2, maximum degree D,

and at most 2N vertices. It is legally colored and every distinguished cycle
in G

′ corresponds to a distinguished cycle of at most the same length in the
original graph.

The legal coloring of G
′ is arbitrary and there is no a-priori bound on the

number of colors that it uses (other than not being larger than the number
of edges). We now describe a procedure for replacing this legal coloring by
a new legal coloring of the edges with only 4D new colors. This is done by
going over the original colors one by one. For each of the original colors Cold

pick one of the new colors Cnew and recolor all edges of original color Cold

by the color Cnew. If this new coloring introduces conflicts (this can happen
if an edge of Cold is incident with a vertex that already has some other
incident edge colored Cnew), then drop the edge of Cold that leads to the
conflict. To avoid dropping too many edges, we use the following rule when
mapping a color Cnew to Cold: we choose the new color that will result in
the smallest number of dropped edges from Cold (breaking ties arbitrarily).
As there are 4D new colors and only at most 2(D − 1) edges incident with
the endpoints of any edge, there must be a choice of Cnew that will result
in dropping at most half the edges of Cold. Hence eventually the resulting
graph is legally colored, and its average degree is at least D/4. Moreover,
every distinguished cycle in the new graph (with respect to the new colors)
is a distinguished cycle of the original graph (with respect to the original
colors).

We now reach the theorem that implies the proof of item (2) in Theo-
rem 1.6.

Theorem 3.7. Every legally colored graph on N vertices and average degree

D ≥ 32 log log 4N has a distinguished cycle of length O(log N log log N).
Moreover, such a cycle can be found in polynomial time.

Proof. By Lemma 3.6, instead of the input graph we may consider a new
graph G with at most 2N vertices, average degree at least 8 log log 4N , and
with a legal coloring that uses at most 4D = O(log log N) colors. Observe
that the average degree is at least twice as large as that used in the proof
of Theorem 3.4. This allows us to discard half the edges of the graph, and
there still would be a distinguished cycle. We shall use this slackness so
as to modify the proof of Theorem 3.4 so that after adding each color, no
component will have diameter larger than O(log N log log N). This is done
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by applying Lemma 3.5 after each color class is added. The parameter k

in the lemma is chosen to be 8D, so that even after the lemma is applied
4D times (once for each color), at most half of the edges are discarded in
total. The proof of Theorem 3.4 still works even though we discard at most
half the edges, because there was a factor 2 slackness in the average degree
that we started with. Hence eventually a distinguished cycle will be found
(when an edge of a new color is placed inside an existing component, or when
two edges of a new color join two existing components). The diameter of
every component at the time that the distinguished cycle is found is at most
O(log N log log N), and the length of the distinguished cycle need never be
more than two plus sum of diameters of two components that are connected
by two edges of the same color.

All steps of the proof are constructive and give a polynomial time algo-
rithm for finding a distinguished cycle of the appropriate length.

3.3. A negative example

A question that remains is whether for some constant average degree D

and any legal edge coloring there must be a distinguished cycle. The only
nontrivial negative result that the author is aware of is the following.

Proposition 3.8. There are 3-regular graphs whose edges can be colored

in such a way that no distinguished cycle exists.

Proof. Consider an infinite tiling of the plain by hexagons (later we will
modify the construction to be finite). This defines a 3-regular graph in a
natural way. Legally color its edges by three colors so that every hexagon
contains only two colors. This can be done by first coloring any two adjacent
edges, and then this determines uniquely the color of every other edge (by
alternating two colors along the edges of a hexagon, and using the third
color for the other edges incident with the vertices of the hexagon).

We now show that there is no distinguished cycle. W.l.o.g., let red be
the color that appears twice on a hypothetical distinguished cycle. (The
case that some color appears only once is even simpler, and omitted.) Then
the rest of the cycle is composed of paths that have only colors blue and
green, and each such path must lie on a single hexagon. This requires two
hexagons that are colored by the colors blue and green to be connected
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by two different edges of color red, but this never happens in the given
3-coloring.

Inspection shows that the coloring is periodic. Hence the infinite graph
can be replaced by a finite graph as follows. Picking some orientation
of edges as vertical, the hexagons are arranged in rows. Two even rows
sufficiently far from each other can be identified to be one row. Each column
makes a zigzag pattern. Two such columns sufficiently far from each other
(at a distance that is a multiple of three) can be identified to be one column.
This results in a finite graph.

Proposition 3.8 refers to distinguished cycles, but does not imply any-
thing for even covers. The graph there contains cycles of length 6, but it is
possible to show that any hypergraph that satisfies the small overlap con-
dition for which the corresponding graph has cycles of length 6 must have
an even cover of size at most 12. This leads to the following question.

Question 3.9. Is there is a 3-uniform hypergraph H satisfying the small
overlap condition that on the one hand does not contain any even cover, and
on the other hand, the graph G associated with H has a cycle (in which
case this cycle must be trivial)?

If the answer to Question 3.9 is negative, then item 2 of Theorem 1.4
can easily be improved: it would suffice to have β = Θ

(√
n

)
in order for

even covers of size O(log n) to exist.

3.4. Extensions

The bound on the degree stated in Theorem 3.7 is 32 log log 4N . The leading
constant of 32 is a consequence of our attempt to keep the proof simple,
rather than optimize the leading constant. It can be drastically reduced,
with only a modest loss in the cycle length (which will still asymptotically
remain O(log N log log N)). Let us mention a few places where there is
slackness in our analysis.

The leading constant in the bound on the degree in Theorem 3.4 can
be improved with more work. For example, the original reason for having
log log 2n in the theorem rather than log log n is to handle cases that n ≤ 2 in
a unified way. However, this later costs a factor of 2 in the leading constant.
Additional savings can be obtained by changing the charging mechanism.
Rather than charging both end points of an edge to the smaller of the two
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components, one can allocate part of the charge to the larger component (not
to mention the possibility of propagating the charge to other components).

In Lemma 3.6 we loose a factor of 4 in the average degree. However,
there is no need to loose more than a factor of (1 + ε) (for some small ε),
at the cost of having the new legal coloring use more colors (which will
eventually translate to longer distinguished cycles). This can be done by
allowing G

′ to have maximum degree roughly D/ε, and thereafter using
O(D/ε

2) new colors. (Possibly, with tighter analysis, the number of colors
would have a better dependency on ε than 1/ε

2.)

In the proof of Theorem 3.7 we may take k to be much larger (say 1/ε

times the number of colors), which again will reduce the degree requirement
at a cost of increasing the diameter of connected components (and hence
the length of the distinguished cycle).

Summarizing the above discussion, it should not be difficult to reduce
the degree requirement in Theorem 3.7 to c1 log log 4N with c1 being a
constant much smaller than 32 (possibly, nearly 1), at the cost of finding
distinguished cycles of length c2 log N log log N , with c2 being a constant
that depends on c1.

In special families of graphs (that are probably not relevant to the
application of refuting semirandom 3SAT instances), we can improve the
bounds of Theorem 3.4. We first briefly recall a few well known facts. A
graph H is a minor of graph G if it can be obtained from G by the operations
of contracting edges, deleting edges, and removing isolated vertices. As
shown by Robertson and Seymour, every minor closed family of graphs can
be characterized by a finite list of forbidden minors. For example, the family
of planar graphs is closed under minors, and the two forbidden minors are
K5 and K3,3 (this was proved by Wagner, and is related to Kuratowski’s
theorem). For a minor closed family of graphs, if some graph F on f vertices
is a forbidden minor, then so is Kf . Every graph of average degree d must
have Kf as a minor, for some f = Ω(d/ log d) [10, 12]. Hence the average
degree of any graph from a minor closed family is bounded by O(f log f),
where f is the size of the smallest forbidden minor. Theorem 3.4 is not
interesting (in an asymptotic sense) for minor closed families of graphs,
because the degree bound log log 2n in the theorem cannot be attained when
n is large. For such graphs, the following corollary replaces the dependency
on n by a similar dependency on f .
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Corollary 3.10. Let G be any graph with no Kf as a minor and of average

degree d, with d > c log log f +O(1), where c ≥ 1 is some universal constant.

Then for any legal coloring of the edges of G there is distinguished cycle.

Proof. The proof follows that of Theorem 3.4, with the following change.
When adding color c, let C be a new component formed by connecting some
previous components C1, C2, . . ., and let |Ci| denote the number of vertices
in component Ci. Redistribute the connecting edges so that every one of the
original components Ci is incident with at most min

[
|Ci|, s

]
edges, where

s = f log f . This is possible, because otherwise G has Kf as a minor. Now
apply the charging mechanism of Theorem 3.4.

We now compute how much a vertex v is charged overall. The total
charge until its component has size s is O(log log s), as in the proof of
Theorem 3.4. Thereafter, for the component to grow from size S to fS,
vertex v is charged at most s/S. Hence the total charge after size s is
reached forms a decreasing geometric series that sums up to O(1).

4. Nontrivial Cycles of Length O(log n)

Here we prove item 2 of Theorem 1.4.

We recall some known facts about cycle bases of graphs. Given a
connected graph with n vertices and m edges, order the edges in some
arbitrary order, and with each set of edges associate an indicator vector in
{0, 1}m in a natural way. For the purpose of the discussion here, a cycle
in a graph will be any collection of edges such that the degree induced on
each vertex is even. (In particular, the union of two edge disjoint cycles is a
cycle.) The vectors associated with all cycles in a graph form a vector space
of dimension m − n + 1 (with vector addition modulo 2). A basis for this
vector space can be obtained as follows. Consider an arbitrary spanning
tree T of the graph. For each edge e /∈ T , there is a unique cycle (called a
fundamental cycle) that is a simple cycle containing (some of the) edges of
the tree and the edge e. The m− n + 1 fundamental cycles form a basis for
the cycle space.

The radius R(G) of a graph G is defined to be the maximum distance
between a center vertex u and any other vertex in the graph, where a center
vertex u is any vertex that minimizes this maximum.
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Proposition 4.1. Every graph of radius R has a cycle basis in which every

cycle has length at most 2R + 1.

Proof. Let u be a center vertex for the graph, and consider the spanning
tree corresponding to the breadth first search tree rooted at u. Then the
fundamental cycles with respect to this tree each has length at most 2R+1.

Recall that Lemma 3.5 shows that for every graph with m edges, we may
discard half of its edges such that each connected component that remains
has radius O(log m).

Corollary 4.2. In every graph with m edges one may discard half the edges

such that the remaining graph has a cycle basis in which each cycle is of

length O(log m).

Proof. Use Lemma 3.5 to choose which edges to discard so that each
remaining component has radius O(log m). Thereafter, for each connected
component separately, find a cycle basis as in Proposition 4.1. The union
of these cycle bases is the desired cycle basis.

The following lemma motivates our degression to cycle bases of graphs.

Lemma 4.3. Let G be a graph constructed from a hypergraph H as

explained in Section 2. Let G
′ be an edge induced subgraph of G that

has a cycle basis in which every cycle is of length at most �. Then if G
′

has a distinguished cycle (of arbitrary length), then G
′ must also have a

nontrivial cycle of length �.

Proof. Label every edge of G
′ by the two hyperedges of H that generate

it. Then as we have shown in the proof of Lemma 2.6, there must be some
hyperedge e of H that labels only one of the edges of the distinguished cycle.
The distinguished cycle can be expressed as a sum (mod 2) of basis cycles.
Then it must be the case that at least on one of these basis cycles (which
has length at most �), e labels an odd number of its edges. Hence this basis
cycle must be nontrivial.

Note that the nontrivial cycle found in the proof of Lemma 4.3 need not
be a distinguished cycle (because addition of basis cycles is done modulo 2
which may lead to cancellations of edges).
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Theorem 4.4. Let G be a graph constructed from a hypergraph H as

explained in Section 2. If G has degree 8 log log 2n, then it contains a

nontrivial cycle of length O(log n).

Proof. Use Corollary 4.2 to remove half the edges and remain with a graph
G
′ of average degree at least 4 log log 2n and a cycle basis in which each cycle

has length O(log n). Theorem 3.4 implies that G
′ has a distinguished cycle.

Lemma 4.3 implies that G
′ has a nontrivial cycle of length O(log n). As G

′

is a subgraph of G, then also G has a nontrivial cycle of length O(log n).

The leading constant of 8 in Theorem 4.4 was chosen for concreteness
and simplicity. It can be reduced using arguments similar to those presented
in Section 3.4.

Item 2 of Theorem 1.4 follows from Theorem 4.4 in a way similar to the
proof of Corollary 2.12.

There is a straightforward correspondence between even covers in hy-
pergraphs and linear dependency modulo 2 in vectors. We note that our
proofs, going through the notion of nontrivial cycles, in fact correspond to
linear dependencies of {0, 1} vectors over any field (and this was also the
case in [11]). The reason is as follows. Orient the edges of the nontrivial
cycle so that it creates a directed cycle. An edge directed from v1 to v2

corresponds to two hyperedges. In the linear dependency we shall add one
of them and subtract the other according to the following convention. The
hyperedge whose prefix labels the prefix of v1 is added, and the hyperedge
whose prefix labels the prefix of v2 is subtracted. It is not hard to see that
going around the nontrivial cycle, all vertices cancel out.

Corollary 4.5. For a sufficiently large constant c, in any set of

cn

√

n log log n vectors in {0, 1}n of hamming weight 3, there are two dis-

joint multisets of O(log n) vectors (the same vector may appear more than

once in a multiset and then it is counted more than once) such that the two

respective sums of all vectors in the multisets are identical.
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Plünnecke’s Inequality for Different

Summands

KATALIN GYARMATI∗, MÁTÉ MATOLCSI† and IMRE Z. RUZSA‡

The aim of this paper is to prove a general version of Plünnecke’s inequality.

Namely, assume that for finite sets A, B1, . . . , Bk we have information on the

size of the sumsets A + Bi1 + · · · + Bil
for all choices of indices i1, . . . , il. Then

we prove the existence of a non-empty subset X of A such that we have ‘good

control’ over the size of the sumset X + B1 + · · · + Bk. As an application of

this result we generalize an inequality of [1] concerning the submultiplicativity of

cardinalities of sumsets.

1. Introduction

Plünnecke [4] developed a graph-theoretic method to estimate the density
of sumsets A + B, where A has a positive density and B is a basis. The
third author published a simplified version of his proof [5, 6]. Accounts of
this method can be found in Malouf [2], Nathanson [3], Tao and Vu [7].

The simplest instance of Plünnecke’s inequality for finite sets goes as
follows.

Theorem 1.1. Let l < k be integers, A, B sets in a commutative group

and write |A| = m, |A + lB| = αm. There exists an X ⊂ A, X �= ∅ such

∗Supported by Hungarian National Foundation for Scientific Research (OTKA), Grants
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No. T 43623, T 42750, K 61908.



310 K. Gyarmati, M. Matolcsi and I. Z. Ruzsa

that

(1.1) |X + kB| ≤ α
k/l
|X|.

Plünnecke deduced his results from a property of the directed graph
built on the sets A, A + B, . . . , A + kB as vertices (in k + 1 different
copies of the group), where from an x ∈ A + iB edges go to each x + b ∈

A + (i + 1)B. This property (which he called ‘commutativity’) is the
following. If x, y, z1, . . . , zm are distinct vetices such that there is an edge
from x to y, and from y to each zi, then there are distinct vertices y1, . . . , ym

such that there are vertices from x to each yi, and from yi to zi; also, the
same property is required for the graph obtained by reversing the direction
of all vertices. The fact that the addition graph has this property follows
from the possibility of replacing a path from x to x + b + b

′ through x + b

by a path through x + b
′, so commutativity of addition and the assumption

that we add the same set B repeatedly seemed to be central ingredients
of this method. Still, it is possible to relax these assumptions. Here we
concentrate on the second of them.

In [5] the case l = 1 of Theorem 1.1 is extended to the addition of
different sets as follows.

Theorem 1.2. Let A, B1, . . . , Bk be finite sets in a commutative group and

write |A| = m, |A + Bi| = αim, for 1 ≤ i ≤ k. There exists an X ⊂ A,

X �= ∅ such that

(1.2) |X + B1 + · · ·+ Bk| ≤ α1α2 . . . αk|X|.

The aim of this paper is to give a similar extension of the general case.
This extension will then be applied in Section 6 to prove a conjecture from
our paper [1].

Theorem 1.3. Let l < k be integers, and let A, B1, . . . , Bk be finite sets in

a commutative group G. Let K = {1, 2, . . . , k}, and for any I ⊂ K put

BI =
∑
i∈I

Bi,

|A| = m, |A + BI | = αIm.
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(This is compatible with the previous notation if we identify a one-element

subset of K with its element.) Write

(1.3) β =

( ∏
L⊂K, |L|=l

αL

)(l−1)!(k−l)!/(k−1)!

.

There exists an X ⊂ A, X �= ∅ such that

(1.4) |X + BK | ≤ β|X|.

The problem of relaxing the commutativity assumption will be the sub-
ject of another paper. Here we just mention without proof the simplest
case.

Theorem 1.4. Let A, B1, B2 be sets in a (typically noncommutative group)

G and write |A| = m, |B1 +A| = α1m, |A+B2| = α2m. There is an X ⊂ A,

X �= ∅ such that

(1.5) |B1 + X + B2| ≤ α1α2|X|.

The following result gives estimates for the size of this set X and a more
general property than (1.4), but it is weaker by a constant. We do not make
any effort to estimate this constant; an estimate could be derived from the
proof, but we feel it is probably much weaker than the truth.

Theorem 1.5. Let l < k be positive integers, and let A, B1, . . . , Bk be finite

sets in a commutative group G. Let K, BI , αI and β be as in Theorem 1.3.

For any J ⊂ K such that l < j = |J | ≤ k define

(1.6) βJ =

( ∏
L⊂J, |L|=l

αL

)(l−1)!(j−l)!/(j−1)!

.

(Observe that βK = β of (1.3).) Let furthermore a number ε be given,

0 < ε < 1. There exists an X ⊂ A, |X| > (1− ε)m such that

(1.7) |X + BJ | ≤ cβJ |X|

for every J ⊂ K, |J | ≥ l. Here c is a constant that depends on k, l and ε.

We return to the problem of finding large subsets in Section 5.
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2. The Case k = l + 1

First we prove the case k = l + 1 of Theorem 1.3 in a form which is weaker
by a constant.

Lemma 2.1. Let l be a positive integer, k = l+1, and let A, B1, . . . , Bk be

finite sets in a commutative group G. Let K, BI , αI be as in Theorem 1.3.

Write

β =

( ∏
L⊂K, |L|=l

αL

)1/l

.

(Observe that this is the same as β of (1.3) in this particular case.) There

exists an X ⊂ A, X �= ∅ such that

(2.1) |X + BK | ≤ ckβ|X|

with a constant ck depending on k.

Proof. Let H1, . . . , Hk be cyclic groups of order n1, . . . nk, respectively,
let H = H1 × H2 × · · · × Hk, and consider the group G

′ = G × H =
G × H1 × · · · × Hk. Introduce the notation B

′
i = Bi × {0} × · · · × {0} ×

Hi×{0}× · · ·×{0} which will be abbreviated as B
′
i = Bi×Hi, in the same

manner as A× {0} × · · · × {0} will still be denoted by A.

We introduce the notation i
∗ = K \ {i} = {1, . . . , i − 1, i + 1, . . . , k}

which gives naturally Bi∗ =
∑

j �=i Bj and, correspondingly,

αi∗ = α{1,2,...,i−1,i+1,...,k}.

Note that we have
∏

αi∗ = β
l.

Similarly, let Hi∗ = H1 × · · · × Hi−1 × {0} × Hi+1 × · · · × Hk, and
B
′
i∗ =

∑
j �=i B

′
i = Bi∗ ×Hi∗ .

Let q be a positive integer (which should be thought of as a large
number), and let ni = αi∗q. We restrict q to values for which these
are integers; such values exist, since the numbers αL are rational. Then
|H| = n =

∏
ni = β

l
q
k and |Hi∗ | = n/ni = (βq)l

/αi∗ . Hence |A + B
′
i∗ | =

|A + Bi∗ | |Hi∗ | = m(βq)l independently of i.

Now, let B
′ =

⋃k
i=1

B
′
i, and consider the cardinality of the set A +

(k − 1)B′. The point is that the main part of this cardinality comes from



Plünnecke’s Inequality for Different Summands 313

terms where the summands B
′
i are all different, i.e. from terms of the form

A + B
′
i∗ , i = 1, 2, . . . , k. There are k such terms, so their cardinality

altogether is not greater than

(2.2) km(βq)l
.

The rest of the terms all contain some equal summands, e.g. A + B
′
1 +

B
′
1 + B

′
2 + B

′
3 · · · + B

′
k−2

, containing two copies of B
′
1, etc. The number

of such terms is less than k
k, and each of them has ‘small’ cardinality for

the simple reason that Hi + Hi = Hi. For instance, in the example above
we have |A + B

′
1 + B

′
1 + B

′
2 + B

′
3 · · · + B

′
k−2
| ≤ m|B1|(

∏k−2

j=1
|Bj |nj) ≤

c(A, B1, . . . Bk)q
k−2 where c(A, B1, . . . Bk) is a constant depending on the

sets A, B1, . . . , Bk but not on q. Therefore the cardinality of the terms
containing some equal summands is not greater than

(2.3) k
k
c(A, B1, . . . , Bk)q

k−2 = c(k, A, B1, . . . , Bk)q
k−2 = o(ql)

Therefore, combining (2.2) and (2.3) we conclude that

(2.4)
∣∣
A + (k − 1)B′

∣∣
≤ 2km(βq)l

if q is chosen large enough.

Finally, we apply Theorem 1.1 to the sets A and B
′ in G

′. We conclude
by (2.4) that there exists a subset X ⊂ A such that

(2.5) |X + kB
′
| ≤ |X|

(
2k(βq)l)k/l

= ck|X|(βq)k
.

Also, observe that X + (BK × H) ⊂ X + kB
′, and

∣∣
X + (BK × H)

∣∣ =
n|X + BK |. From these facts and (2.5) we obtain

|X + BK | ≤ ck|X|(βq)k
/n = ckβ|X|

as desired.
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3. The General Case

In this section we prove Theorem 1.5.

As a first step we add a bound on |X| to Lemma 2.1.

Lemma 3.1. Let k = l+1, and let A, Bi, BI , αI and β be as in Lemma 2.1.

Let a number ε be given, 0 < ε < 1. There exists an X ⊂ A, |X| > (1−ε)m
such that

(3.1) |X + BK | ≤ c(k, ε)β|X|

with a constant c(k, ε) = ckε
− k

k−1 depending on k and ε.

Proof. Take the largest X ⊂ A for which (3.1) holds. If |X| > (1− ε)m, we
are done. Assume this is not the case. Put A

′ = A\X, and apply Lemma 2.1
with A

′ in the place of A. We know that |A′| ≥ εm. The assumptions will
hold with

α
′
I = |A

′ + Bi|/|A
′
| ≤ |A + Bi|/|A

′
| ≤ αI/ε

in the place of αI . We get a nonempty X
′
⊂ A

′ such that

|X
′ + BK | ≤ ckβ

′
|X
′
|

with

β
′ =

( ∏
L⊂K, |L|=l

α
′
L

)1/(k−1)

≤ βε
− k

k−1 .

Then X ∪X
′ would be a larger set, a contradiction.

Now we turn to the general case.

Lemma 3.2. Let J1, . . . , Jn be a list of all subsets of K satisfying l < |J | ≤

k arranged in an increasing order of cardinality (so that Jn = K); within a

given cardinality the order of the sets may be arbitrary.

Let A, Bi, BI , αI and βI be as in Theorem 1.5, and let the numbers

0 < ε < 1 and 1 ≤ r ≤ n be given. There exists an X ⊂ A, |X| > (1− ε)m
such that

(3.2) |X + BJ | ≤ c(k, l, r, ε)βJ |X|

for every J = J1, . . . , Jr with a constant c(k, l, r, ε) depending on k, l, r

and ε.



Plünnecke’s Inequality for Different Summands 315

Theorem 1.5 is the case r = n.

Proof. We shall prove the statement by induction on r. Since the sets are
in increasing order of size, we have |J1| = l + 1, and the claim for r = 1
follows from Lemma 3.1.

Now assume we know the statement for r − 1. We apply it with ε/2 in
the place of ε, so we have a set X ⊂ A, |X| > (1 − ε/2)m such that (3.2)
holds for J = J1, . . . , Jr−1 with c(k, l, r − 1, ε/2). Write A

′ = X. This set
satisfies the assumptions with

α
′
I = αI/(1− ε/2).

We have |Jr| = k
′ with some k

′, l < k
′
≤ k. We are going to apply

Lemma 3.1 with A
′, k

′ in the place of A, k and ε/2 in the place of ε. To this
end we need bounds for |A′ + BL| for every L such that |L| = l

′ = k
′
− 1.

By the inductive assumption we know

|A
′ + BL| ≤ c(k, l, r − 1, ε/2)βL|A

′
|.

Lemma 3.1 gives us a set X
′
⊂ A

′ such that

|X
′
| > (1− ε/2)|A′| > (1− ε)m

and

|X
′ + BJr

| ≤ c(l′, ε/2)β′|X ′
|,

where

β
′ =

( ∏
L⊂Jr, |L|=l′

c(k, l, r − 1, ε/2)βL

)1/l

= c(k, l, r − 1, ε/2)βJr
.

In the last step we used an identity among the quantities βJ which easily
follows from their definition (1.6).

The desired set X will be this X
′, and the value of the constant is

c(k, l, r, ε) = c(l′, ε/2)c(k, l, r − 1, ε/2).
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4. Removing the Constant

In this section we prove Theorem 1.3. This is done with the help of Theo-
rem 1.5 and the technique of taking direct powers of the appearing groups,
sets, and corresponding graphs.

Proof of Theorem 1.3. Consider the following bipartite directed graph G1.
The first collection of vertices V1 are the elements of set A, and the second
collection of vertices V2 are the elements of set A+BK (taken in two different
copies of the ambient group to make them disjoint). There is an edge in G1

from v1 = a1 ∈ V1 to v2 = a2 + b1,2 + · · ·+ bk,2 ∈ V2 if and only if there exist
elements b1,1, . . . , bk,1 such that a1 + b1,1 + · · ·+ bk,1 = a2 + b1,2 + · · ·+ bk,2.
The image of a set Z ⊂ V1 is the set im Z ⊂ V2 reachable from Z via edges.

The magnification ratio γ of the the graph G1 is min
{
| im Z|
|Z| , Z ⊂ V1

}
. The

statement of Theorem 1.3 in these terms is that γ ≤ β, with β as defined in
the theorem.

Consider now the direct power Gr = G
1
× G

1
× · · · × G

1 with collec-
tions of edges V

r
1 = V1 × · · · × V1 and V

r
2 = V2 × · · · × V2, and edges from(

v
1
1, v

1
2, . . . , v

1
r

)
∈ V

r
1 to

(
v

2
1, v

2
2, . . . , v

2
r

)
∈ V

r
2 if and only if there exist

G
1-edges in each of the coordinates. Observe that the directed graph Gr

corresponds exactly to the sets A
r and A

r +
(
B

r
1 + · · · + B

r
k

)
in the di-

rect power group G
r. Applying Theorem 1.5 in the group G

r to the sets
A

r
, B

r
1, . . . , B

r
k with any fixed ε, say ε = 1/2, we obtain that the magni-

fication ratio γr of Gr is not greater than cβ
r. On the other hand, the

magnification ratio is multiplicative (see [5] or [3]), so that we have γr = γ
r.

Therefore we conclude that γ ≤
r
√

cβ and, in the limit, γ ≤ β as desired.

5. Finding a Large Subset

We give an effective version of Theorem 1.5 in the original case, that is,
when only X + BK needs to be small.

Theorem 5.1. Let A, Bi, BI , αI and β be as in Theorem 1.3.
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(a) Let an integer a be given, 1 ≤ a ≤ m. There exists an X ⊂ A, |X| ≥ a

such that

|X + BK | ≤(5.1)

≤ βm
k/l(m−k/l + (m− 1)−k/l + · · ·+

+ (m− a + 1)−k/l +
(
|X| − a

)
(m− a + 1)−k/l).

(b) Let a real number t be given, 0 ≤ t < m. There exists an X ⊂ A,

|X| > t such that

|X + BK | ≤(5.2)

≤ βm
k/l

(
l

k − l

(
(m− t)1−k/l

−m
1−k/l

)
+

(
|X| − t

)
(m− t)−k/l

)
.

Proof. To prove (a), we use induction on a. The case a = 1 is Theorem 1.3.
Now suppose we know it for a; we prove it for a + 1. The assumption gives
us a set X, |X| ≥ a with a bound on |X + BK | as given by (5.1). We want
to find a set X

′ with |X ′
| ≥ a + 1 and

|X
′ + BK | ≤(5.3)

≤ βm
k/l(m−k/l + (m− 1)−k/l + · · ·+

+ (m− a)−k/l +
(
|X| − a− 1

)
(m− a)−k/l).

If |X| ≥ a + 1, we can put X
′ = X. If |X| = a, we apply Theorem 1.3 to

the sets A
′ = A \ X, B1, . . . , Bk. In doing this the numbers αI should be

replaced by

α
′
I =

|A
′ + BI |

|A
′
|

≤

|A + BI |

|A
′
|

= αI
m

m− a

.

This yields a set Y ⊂ A \X such that

|Y + BK | ≤ β
′
|Y |

with

β
′ =

( ∏
L⊂K, |L|=l

α
′
L

)(l−1)!(k−l)!/(k−1)!

≤ β

(
m

m− a

)k/l



318 K. Gyarmati, M. Matolcsi and I. Z. Ruzsa

and we put X
′ = X ∪ Y .

To prove part (b) we apply (5.1) with a = [t] + 1. The right side of

(5.2) can be written as βm
k/l

∫ |X|
0

f(x) dx, where f(x) = (m− x)−k/l for

0 ≤ x ≤ t, and f(x) = (m− t)−k/l for t < x ≤ |X|. Since f is increasing,
the integral is ≥ f(0) + f(1) + · · ·+ f

(
|X| − 1

)
. This exceeds the right side

of (5.1) by a termwise comparison.

6. An Application to Restricted Sums

We prove the following result, which was conjectured in [1].

Theorem 6.1. Let A, B1, . . . , Bk be finite sets in a commutative group, and

S ⊂ B1 + · · ·+ Bk. We have

(6.1) |S + A|
k
≤ |S|

k∏
i=1

|A + B1 + · · ·+ Bi−1 + Bi+1 + · · ·+ Bk|.

Two particular cases were established in [1]; the case when S is the
complete sum B1 + · · · + Bk, and the case k = 2. The proof in the sequel
is similar to the proof of the case k = 2, the main difference being that we
use the above generalized Plünnecke inequality, while for k = 2 the original
was sufficient.

Proof. Let us use the notation |A| = m, s =
∏k

i=1
|A + B1 + · · ·+ Bi−1 +

Bi+1 + · · ·+ Bk|. Observe that if |S| ≤ (s/m
k)

1

k−1 then

(6.2) |S + A| ≤ |S| |A| = |S|

1

k |S|

k−1

k m ≤

(
|S|s

) 1

k

and we are done.

If |S| > (s/m
k)

1

k−1 , then we will use Theorem 5.1, part (b) with l = k−1.
Note that the β of this theorem can be expressed by our s as

β = s
1/(k−1)

m
−k/(k−1)

.
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We take t = m − ( s
|S|k−1 )

1/k
. Then there exists a set X ⊂ A such that

|X| = r > t and (5.2) holds. For such an X we have

|S + X| ≤ |BK + X| ≤(6.3)

≤ (k − 1)s
1

k−1

(
(m− t)−

1

k−1 −m
− 1

k−1

)
+ (r − t)

(
s

(m− t)k

) 1

k−1

and we add to this the trivial bound

(6.4)
∣∣
S + (A \X)

∣∣
≤ |S| |A \X| = |S|(m− r).

We conclude that

|S + A| ≤ |S + X|+
∣∣
S + (A \X)

∣∣
≤(6.5)

≤ (k − 1)s
1

k−1

(
(m− t)−

1

k−1 −m
− 1

k−1

)
+ (r − t)

(
s

(m− t)k

) 1

k−1

+

+ |S|
(
(m− t)− (r − t)

)
= ks

1/k
|S|

1/k
− (k − 1)

(
s

m

) 1

k−1

≤ k

(
s|S|

)1/k

This inequality is nearly the required one, except for the factor k on the right
hand side. We can dispose of this factor as follows (once again, the method
of direct powers). Consider the sets A

′ = A
r, B

′
j = B

r
j (j = 1, . . . , k), and

S
′ = S

r in the r’th direct power of the original group. Applying equation
(6.5) to A

′, etc., we obtain

(6.6) |S
′ + A

′
| ≤ k

(
s
′
|S
′
|

)1/k
.

Since |S′ + A
′
| = |S + A|

r, s
′ = s

r and |S′| = |S|
r, we get

(6.7) |S + A| ≤ k
1/r

(
s|S|

)1/k
.

Taking the limit as r →∞ we obtain the desired inequality

(6.8) |S + A| ≤

(
s|S|

)1/k
.
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Decoupling and Partial Independence

RAVI KANNAN

1. Introduction

The initial motivation of this note was the question: How many samples
are needed to approximate the inertia matrix (variance-covariance matrix)
of a density on Rn? It first arose in a joint paper with L. Lovász and M. Si-
monovits on an algorithm for computing volumes of convex sets. Rudelson
proved a very interesting result (answering the question) based on a classical
theorem from Functional Analysis (see Square Form Theorem below) due to
Lust-Piquard, which is proved using the beautiful technique of Decoupling.
This note gives a self-contained proof of the theorem and its application
to this problem as well as a different question dealing with extending the
basic result of Random Matrix Theory to partially random matrices (see
Theorem 3) below.

Suppose y, y1, y2, . . . ym are independent identically distributed (i.i.d.)
samples, each drawn according to a log-concave probability density F with
mean 0 on Rn. The inertia matrix of F is the n × n matrix Eyy

T .1 It is
clear that as m →∞, the inertia matrix of the samples, namely 1

m

∑m
i=1

yiy
T
i

tends to the inertia matrix of F . The initial question raised in [4] was to
show upper bounds on ∥∥∥∥∥ 1

m

m∑
i=1

(
yiy

T
i − Eyy

T
)∥∥∥∥∥

1An element of Rn is to thought of as a column vector with n components. So, yy
T is

a rank 1 matrix. We let E denote expectation of the entire expression which follows it;

expectations of matrices are taken entry-wise.
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in terms of m. (‖ · ‖ denotes the spectral norm.) Such an upper bound can
then be used (in a straightforward manner) to derive an upper bound on
the number of samples needed to get a “relative error” approximation to
the inertia matrix from the samples. [We do not discuss the details here.]

[4] proved that m = O(n2) samples suffice. Bourgain [1] using delicate
geometric arguments showed that O

(
n(log n)3

)
samples suffice for certain

log-concave densities. Then Rudelson [9] showed that in fact O(n log n)
samples suffice for these densitities; Rudelson and Vershynin [10] have since
generalized these results. Lovász and Vempala [6] generalized Rudelson’s
results to all log-concave densities.

A different question was considered by Dasgupta, Hopcroft, Kannan
and Mitra [2]. There is a classical theory of Random Matrices – symmetric
matrices where the above-diagonal entries are mutually independent mean
zero random variables. [We call these “Fully Random Matrices”.] It is
known that the largest eigenvalue of an n × n fully random matrix is at
most

O

(
ν

√

n

)
,

where ν is the largest standard deviation of any entry. The theory started
in Physics with Wigner; Füredi, Komlös [3] and Vu [11] prove the bound
above. The upper bound on the largest eigenvalue has been widely used
in Clustering and other problems, where given the data, one needs to infer
the probabilistic model. More recently, similar probabilistic models have
been proposed for several practical situations where Full Independence does
not make sense. A typical example is when the columns of the matrix
represent documents in a large collection and the rows represent terms (used
in them) and the (i, j)-th entry is the number of occurrences of the term
i in document j; this so-called “document-term” matrix is widely used.
One often assumes that there is an underlying probabilistic model which
“generates” the document-term matrix. In applying the above to such a
situation, researchers had to assume full independence. But in this example,
while it makes sense to assume that the documents are independent, one
has to allow correlations between the terms occurring in each document.
Thus a more natural assumption is:

The columns of the matrix are independent vector-valued random vari-
ables. [The rows may be dependent.]

[2] proved a Wigner-type theorem under this assumption of only column-
independence, with almost the same bound as for the full-independence case
with some extra log factors. Their proof follows closely Rudelson’s. The
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connection between the two problems is simple: denote by y1, y2, . . . ym the
(independently generated) columns of the matrix A, for which we assume
without loss of generality that Eyi = 0. (After one replaces yi by yi−Eyi.)
We wish to upper bound ‖A‖. Since AA

T =
∑m

i=1
yiy

T
i and ‖AA

T
‖ = ‖A‖

2,
it suffices to bound ‖

∑m
i=1

yiy
T
i ‖ which is at most ‖

∑m
i=1

(
yiy

T
i −Eyy

T
)
‖+

m

∥∥
Eyy

T
∥∥ . The first term is precisely what Rudelson bounds and the second

is a known constant. Rudelson’s proof uses Theorem (1) below due to Lust-
Piquard [7]. The proof of Theorem (1) is based on the beautiful classical
technique of Decoupling. In a sense, the main purpose of this note is to
present Decoupling in a manner accessible to Computer Scientists (so they
need not spend as much time as the author did to understand it) and to
present a proof of the theorem. [In any case, the Theorem as stated in [7]
and used by [9] is only a special case of the statement here restricted to so-
called Rademacher sums.] Rudelson uses some more recent developments
(due to Lust-Piquard and Pisier [8]) to improve Cp in theorem to its best
value – namely O

(√
p

)
which we will not present.

p will be a power of 2 throughout. We need the following:

Proposition 1. For a matrix X, we let ‖X‖p = (
∑

j

(
σj(X)

)p)
1/p

(where

σj are the singular values). ‖X‖p is a norm (called a Schatten p−norm).

Hence it is a convex function of the entries of the matrix X.

It is also known that ‖X‖p ≤ ‖X‖q whenever p ≥ q. ‖X‖∞ (also denoted

‖X‖) is the spectral norm. Note that ‖X‖2
2

= Tr XX
T equal to the sum of

squares of all the entries and ‖X‖∞ is the spectral norm of X.

Theorem 1 ([7], Square-Form Theorem). Let X1, X2, . . . Xn be indepen-

dent matrix-valued random variables with EXi = 0. There is a constant Cp

depending only on p such that

E

∥∥∥∥ n∑
i=1

Xi

∥∥∥∥p

p

≤ (Cp)
p

(
E

∥∥∥∥ n∑
i=1

XiX
T
i

∥∥∥∥p/2

p/2

+ E

∥∥∥∥ n∑
i=1

X
T
i Xi

∥∥∥∥p/2

p/2

)
.

From this, we will see that we can get a version of Rudelson’s theorem
(all c are constants):

Theorem 2 [9]. Suppose y1, y2, . . . yn are i.i.d. samples, each drawn ac-

cording to a probability distribution F on Rm. Suppose |yi| ≤ M and M
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satisfies M ≤ c

√

n

∥∥
Eyy

T
∥∥1/2

p
. Then, we have that with high probability,

∥∥∥∥ n∑
i=1

(
yiy

T
i − Eyy

T
)∥∥∥∥ ≤ c2M

√

n(lnn + lnm)c′
∥∥
Eyy

T
∥∥1/2

.

We will also get a theorem on matrices whose columns are independent
(vector-valued) random variables.

Theorem 3 [2]. Suppose A is an m × n matrix with independent vector-

valued random variables – y1, y2, . . . yn as its columns, with Eyi = 0. Sup-

pose the maximum variance of yi in any direction is ν
2
i and with probability

at least 1− δ, we have |yi| ≤M for all i. Then for all t > 0,

Pr (‖A‖ ≥
(
c(log n + log m)

) c
t

(
M +

√

nMAXi νi

)
) ≤ δ +

1

n
log t/10

.

In the Full Independent case, we can take M = ν

√

n log n and δ very
small. So, we can recover a Wigner-type result from Theorem above but
with added log factors.

2. Proof of the Square-form Theorem

Proof. We will prove the Theorem with Cp = 10p
7 by induction on p. For

p = 2, we have

E

∥∥∥∥∑
i

Xi

∥∥∥∥2

2

= E Tr
∑
i,j

XiX
T
j = Tr E

∑
i,j

XiX
T
j = E Tr

∑
i

XiX
T
i ,

since EXiX
T
j = EXiEX

T
j = 0 for i �= j. Now since

∑
i XiX

T
i is p.s.d.,

all its eigenvalues are non-negative and so, Tr
∑

i XiX
T
i = ‖

∑
i XiX

T
i ‖

1

1

proving the case of p = 2.

We proceed to general p. We need the following (well-known) general-
ization of Hölder’s inequality to matrices:
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Proposition 2. Suppose A1, A2, . . . Am are matrices (of dimensions so that

their product is defined). We have for any positive reals r1, r2, . . . rm with∑m
i=1

1

ri
= 1:

‖A1A2 . . . Am‖p ≤ ‖A1‖pr1
‖A2‖pr2

. . . ‖Am‖prm
.

We introduce an important ingredient in Decoupling – let X
′
1, X

′
2, . . . X

′
n

be independent copies of X1, X2, . . . Xn respectively (all 2n random variables
are independent and X

′
i and Xi have the same distribution).

E

∥∥∥∥ n∑
i=1

Xi

∥∥∥∥p

p

= E

∥∥∥∥∑
i

Xi

∑
j

X
T
j

∥∥∥∥p/2

p/2

≤ 2p/2
E

∥∥∥∥∑
i

XiX
T
i

∥∥∥∥p/2

p/2

+ 8p/2
E

∥∥∥∥∑
i

XiY
T

∥∥∥∥p/2

p/2

where Y =
∑

j X
′
j and we have used “decoupling” – see Lemma below.

Note that EXiY
T = EXiEY

T = 0 since Xi, Y are independent. We now
use induction to get (with the notation that [X1 | X2 | . . . Xn] denotes the
matrix with X1, X2, . . . Xn written in that order):

E

∥∥∥∥∑
i

XiY
T

∥∥∥∥p/2

p/2

≤ 10p/2(p/2)3.5p

(
E

∥∥∥∥∑
i

(
Y X

T
i XiY

T
)∥∥∥∥p/4

p/4

+ E

∥∥∥∥∑
i

(
XiY

T
Y X

T
i

)∥∥∥∥p/4

p/4

)

= 10p/2(p/2)3.5p

(
E

∥∥∥∥Y

(∑
i

(XT
i Xi)

)
Y

T

∥∥∥∥p/4

p/4

+ E‖[X1 | X2 | . . . | Xn]Y T
Y [X1 | X2 | . . . Xn]T

)
‖

p/4

p/4

)

≤ 10p/2(p/2)3.5p

(
E‖Y ‖

p/2

p

∥∥∥∥∑
i

X
T
i Xi

∥∥∥∥p/4

p/2

+ E‖Y ‖
p/2

p

∥∥ [X1 | X2 | . . . Xn]
∥∥p/2

p

)
using Prop. 2
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≤ 10p/2(p/2)3.5p
E‖Y ‖

p/2

p

(∥∥∥∥∑
i

X
T
i Xi

∥∥∥∥p/4

p/2

+

∥∥∥∥∑
i

XiX
T
i

∥∥∥∥p/4

p/2

)

≤ 2 · 10p/2(p/2)3.5p

(
E

∥∥∥∥∑
i

Xi

∥∥∥∥p

p

)1/2

×

(
E

∥∥∥∥∑
i

XiX
T
i

∥∥∥∥p/2

p/2

+ E

∥∥∥∥∑
i

X
T
i Xi

∥∥∥∥p/2

p/2

)1/2

the last using Jensen and the fact that Y ,
∑

i Xi have same distribution.

Letting x =
√

E‖

∑
i Xi‖

p

p
and b = E‖

∑
i XiX

T
i ‖

p/2

p/2
+ E‖

∑
i X

T
i Xi‖

p/2

p/2
,

this yields the following quadratic inequality for x:

x
2
≤ 2p/2

b + 2 · 8p/210p/2(p/2)3.5p
√

b x

It is easy to see that this implies that

x
2
≤ 10p

p
7p

b,

completing the inductive proof.

2.1. Decoupling

We now introduce the beautiful technique developed by Probabilists and
Functional Analysts called “decoupling” which helps get rid of some de-
pendencies between random variables, making the analysis easier in many
contexts. (See for example [5]). [Decoupling looks like sleight of hand, but it
accomplishes a great deal. It has been extensively used precisely in contexts
like the one we have here.]

Suppose f is any convex function from the set of matrices to non-negative
reals with f(A) = f(−A) and satisfying the condition that there is some
p > 0 such that

f(A + B) ≤ 2p
(
f(A) + f(B)

)
.

[Typical examples of f will be p-th powers of norms.]
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Lemma 1. Suppose Xi, X
′
i are as above and assume EXi = 0. Then,

Ef

(∑
i

Xi

∑
j

X
T
j

)
≤ 8p

Ef

(∑
i

Xi

∑
j

X
′T
j

)
+ 2p

Ef

(∑
i

XiX
T
i

)
.

Remark 1. The point of the Lemma is that the first term on the r.h.s. is
easier to handle than the l.h.s., since now X

′
i, Xi are independent.

Proof. We let Yi = {Xi, X
′
i} (the set (without order) of the two el-

ements Xi, X
′
i) and Y = (Y1, Y2, . . . Yn). We define random variables

Z1, Z2, . . . Zn, Z
′
1, Z

′
2, . . . Z

′
n as follows: for each i, independently, with prob-

ability 1/2 each, we let (Zi, Z
′
i) = (Xi, X

′
i) or (Zi, Z

′
i) = (X ′

i, Xi). Then, we
clearly have

E

(
ZiZ

′T
j | Y

)
=

1

4

(
XiX

T
j + X

′
iX

T
j + XiX

′T
j + X

′
iX

′T
j

)
for i �= j

E

(
ZiZ

′T
i | Y

)
=

1

2

(
XiX

′T
i + X

′
iX

T
i

)
.

Ef

(∑
i

Xi

∑
j

X
T
j

)
≤ 2p

Ef

(∑
i

XiX
T
i

)
+ 2p

Ef

(∑
i�=j

XiX
T
j

)

≤ 2p
Ef

(∑
i

XiX
T
i

)

+ 2p
Ef

(∑
i�=j

(
XiX

T
j + EXiX

′T
j + EX

′
iX

T
j + EX

′
iX

′T
j

)

+ 2
∑

i

(
EXiX

′T
i + EX

′
iX

T
i

))

≤ 2p
Ef

(∑
i

XiX
T
i

)
+ 2p

Ef

(∑
i�=j

(
XiX

T
j + XiX

′T
j + X

′
iX

T
j + X

′
iX

′T
j

)

+ 2
∑

i

(
XiX

′T
i + X

′
iX

T
i

))
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using Jensen and convexity of f , so f(EX) ≤ Ef(X)

≤ 2p
Ef

(∑
i

XiX
T
i

)
+ 8p

Ef

((∑
i

Zi

∑
j

Z
′T
j

) ∣∣∣∣Y
)

≤ 2p
Ef

(∑
i

XiX
T
i

)
+ 8p

Ef

(∑
i

Zi

∑
j

Z
′T
j

)
Jensen again.

Now, the Lemma follows noting that
{

(Zi, Z
′
j) : i = 1, 2, . . . n

}
, and{

(Xi, X
′
j) : i = 1, 2, . . . n

}
have the same joint distributions.

3. Proof of Theorems 2 and 3

We will apply the Square Form theorem with

Xi = yyy
T
i − Eyiy

T
i .

We first note

E

∥∥∥∥ n∑
i=1

XiX
T
i

∥∥∥∥p/2

p/2

= E

∥∥∥∥∑
i

(
yiy

T
i − Eyy

T
)2

∥∥∥∥p/2

p/2

≤ E

∥∥∥∥∑
i

(
yiy

T
i

)2
+

(
Eyy

T
)2

∥∥∥∥p/2

p/2

≤ 2p/2
E

∥∥∥∥∑
i

(
yiy

T
i

)2

∥∥∥∥p/2

p/2

+ (2n)p/2
∥∥(

Eyy
T
)2∥∥p/2

p/2
,

since for psd matrices A, B,

∥∥(A−B)2
∥∥
≤ ‖A

2 + B
2
‖.

E

∥∥∥∥∑
i

(
yiy

T
i

)2

∥∥∥∥p/2

p/2

= E

∥∥∥∥∑
i

|yi|
2
yiy

T
i

∥∥∥∥p/2

p/2

≤ E

∥∥∥∥MAXi |yi|
2
∑

i

yiy
T
i

∥∥∥∥p/2

p/2

≤ E

∥∥ MAXi |yi|
2
I

∥∥p/2

p

∥∥∥∥∑
i

yiy
T
i

∥∥∥∥p/2

p
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≤ m
1/2

(
E MAXi |yi|

2p)1/2

(
E

∥∥∥∥∑
i

yiy
T
i

∥∥∥∥p

p

)1/2

≤

√

m M
p

(
2p/2

⎛⎝E

∥∥∥∥∑
i

Xi

∥∥∥∥p

p

)1/2

+ (2n)p/2
∥∥

Eyy
T
∥∥p/2

p

⎞⎠ .

∥∥(
Eyy

T
)2∥∥p/2

p/2
≤

∥∥
Eyy

T
∥∥p/2

∞
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p√

m
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Eyy
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p
.

So, we have

E

∥∥∥∥ n∑
i=1

XiX
T
i

∥∥∥∥p/2

p/2

≤ 2p
M

p√
m

(
E

∥∥∥∥ n∑
i=1

Xi

∥∥∥∥p

p

)1/2

+ 2p+1
M

p
n

p/2
∥∥
Eyy

T
∥∥p/2

p
.

Plugging this into Theorem (1), we get the quadratic inequality for x =

(E‖
∑n

i=1
Xi‖

p

p
)
1/2

:

x
2
≤ bx + a0 where,

b = (Cp)
p2p+1

M
p√

m ; a0 = (Cp)
p2p+1

M
p
n

p/2
√

m

∥∥
Eyy

T
∥∥p/2

p
.

This implies that

(1) E

∥∥∥∥ n∑
i=1

Xi

∥∥∥∥p

p

≤ b
2 + 2a0 ≤ (c1p)c2p

n
p/2

M
p√

m

∥∥
Eyy

T
∥∥p/2

p

under the assumption that M ≤ c

√

n

∥∥
Eyy

T
∥∥1/2

p
. Now taking p = c3(lnn+

lnm) and applying Markov inequality, we get Theorem (2).

To get Theorem (3), we first note that

‖A‖
p
p =

∥∥∥∥∑
i

yiy
T
i

∥∥∥∥p/2

p/2

≤ 2p/2

∥∥∥∥∑
i

Xi

∥∥∥∥p/2

p/2

+ 2p/2

∥∥∥∥∑
i

Eyiy
T
i

∥∥∥∥p/2

p/2

.
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Clearly,∥∥∥∥∑
i

Eyiy
T
i

∥∥∥∥p/2

p/2

≤ n
(p/2)−1

∑
i

‖Eyiy
T
i ‖

p/2

p/2
≤ n

(p/2)−1
m

∑
i

‖Eyiy
T
i ‖

p/2

≤ n
(p/2)−1

m

∑
i

ν
p
i .

To bound E‖

∑
i Xi‖

p/2

p/2
, we proceed similarly as above with a few mod-

ifications. [We do not supply all the details here.] Now the yi are not i.i.d.,
but only independent. So, instead of (1), we get

E

∥∥∥∥∑
i

Xi

∥∥∥∥p/2

p/2

≤ (cp)p
M

p
m + (cp)p

n
(p/4)+1

M
p/2

m

(∑
i

ν
p
i

)1/2

.

From this, it is not difficult to get the Theorem.
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Combinatorial Problems in Chip Design

BERNHARD KORTE and JENS VYGEN

The design of very large scale integrated (VLSI) chips is an exciting area of

applying mathematics, posing constantly new challenges.

We present some important and challenging open problems in various areas

of chip design. Although the problems are motivated by chip design, they are

formulated mathematically; understanding and solving them does not require

any knowledge of chip design. We give some partial results and argue why a full

resolution of one of the problems could result in an advance of the state of the

art in algorithms for chip design.

Introduction

This paper is dedicated to Laci Lovász on the occasion of his 60th birthday.
We have learned a lot from Laci about combinatorial problems and how
to solve them. However, the paper presents mainly open problems and
challenges the reader to solve them.

Chip design is one of the most interesting and important application
areas of mathematics, in particular discrete mathematics. Many different
mathematical techniques have been applied in chip design, and a lot of
practical design problems have led to new interesting theoretical results.
Still there are many challenging open problems, some of which known for
decades, others raised only recently because of technological advances.

For many years we have been designing algorithms for chip design that
are based on mathematics as much as possible. The resulting BonnTools
(Korte, Rautenbach and Vygen [36]) are widely used in industry, but also
competing industrial tools include more and more advanced algorithms.
Nevertheless we are convinced that there is still a lot of room for improve-
ment. We try to give several examples in this paper.
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We also hope to stimulate more theoretical research that is relevant
for practical problems. All examples in this paper are defined rigorously
as abstract mathematical problems, which can be understood without any
knowledge in chip design. Nevertheless we also mention the background
briefly and argue why these problems are important.

Almost all problems arising in chip design are NP-hard. Sometimes
it is not even clear whether exponential-time algorithms, or polynomial-
time approximation algorithms exist. Nevertheless one can prove interesting
positive results, for example by considering important special cases or by
decomposing a problem into well-solved subproblems.

The design of a chip consists of many steps, which are of course not in-
dependent of each other. The main steps are logic synthesis, floorplanning,
placement, timing optimization, clock tree design, and routing (roughly in
this order). Each of these steps is decomposed further into sub-tasks. For
example, routing is split into global and detailed routing; timing optimiza-
tion comprises at least fanout tree design and gate sizing, etc. Most of these
tasks will be explained briefly in later sections. For a detailed decscription
we refer to [36].

Let us mention one of the few examples where an important problem
can be solved optimally in polynomial time, and fast enough to be used in
practice: clock skew scheduling. While traditionally designers were aiming
for zero skew clock trees, i.e. simultaneously switching storage elements,
this is far from optimal. By optimizing the arrival times one can obtain
smaller cycle times and thus higher frequencies. Modelling the timing graph,
where arcs correspond to signal propagations, as a digraph G with delays
d : E(G) → R, and given a subset F ⊆ E(G) and a threshold Θ ∈ R, the
task is to find arrival times π : V (G) → R with π(x) + d(e) ≤ π(y) for
e = (x, y) ∈ E(G) \ F such that the vector of relevant slacks

(min
{

Θ, π(y)− π(x)− d(e)
}
)

e=(x,y)∈F
,

after sorting entries in non-decreasing order, is lexicographically maximal.
The edges in F are normally those incident to storage elements; their worst
slack will eventually determine what frequency can be achieved.

This problem can be solved in O(mn+n
2 log n) time (Albrecht et al. [3]),

where n =
∣∣
V (G)

∣∣ and m =
∣∣
E(G)

∣∣ . For reasonable thresholds Θ it
runs very fast in practice. See [28], [56], and [2] for generalizations and
implementation aspects. See Figure 1 for an example.
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Fig. 1. The effect of clock skew scheduling on the Apple G5 system controller [29]. The

left-hand side shows the timing result with zero skew, the right-hand side with optimal

arrival times. This improved the speed (i.e., cycle time) by 27%. Placement (top) and

slack histograms (showing the number of slacks in certain intervals) are colored in the

same way: signals at red modules arrive much too late, while signals at blue modules

have positive slack (i.e., arrive in time).

Held et al. [30] survey this and many other results that we achieved.
The present paper complements this with a focus on unsolved problems.

There are well-known open problems that we do not list although they
are very important for chip design (and many other applications). Examples
are the questions what is the fastest running time of an algorithm for
fundamental combinatorial optimization problems (such as the minimum
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cost flow problem), and of course whether P = NP. These problems have
been studied for decades and seem to be very hard.

The rest of this paper consists of ten sections, each with a challenging
open problem.

1. Floorplanning

Motivation

At an early design stage designers have a target chip area, i.e. a rectangle.
They also have a list of rectangular objects (modules or macros) and their
interconnection (the modules have pins, and sets of pins that must be
connected are called nets). The task is to place these objects without
overlaps such that an estimate of the interconnect length is minimized.
This is called floorplanning. In hierachical design the number of objects
is relatively small (about 20 to 200), as each object represents either a
large memory array or a logic macro (which itself consists of many small
objects). Another approach (flat design) is to deal with millions of small
objects directly. Although the problem formulation is essentially the same,
completely different approaches are needed due to the orders of magnitude
(cf. Problem 2).

Instance

• a finite set M (of modules or macros)

• a rectangular chip area A(�) = [0, xmax]× [0, ymax]

• an outline A(m) =
[
0, w(m)

]
×

[
0, h(m)

]
⊆ A(�) for m ∈M

• a finite setN of nets. Each net is a finite set with at least two elements;
these elements are called pins

• an assignment γ(p) ∈ M

.
∪ {�} and an offset

(
x(p), y(p)

)
for each

pin p (the pins p with γ(p) = � are fixed, e.g. I/O-ports). (M,N , γ)
is called a netlist ; it can be regarded as a hypergraph with a special
vertex �
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Task

Compute

• a placement (x, y) : M → A(�) such that
(
x(m) + w(m), y(m) +

h(m)
)
∈ A(�) for each m ∈ M , and for each m, m

′
∈ M at least

one of the following conditions holds: x(m) + w(m) ≤ x(m′) or
x(m′) + w(m′) ≤ x(m) or y(m) + h(m) ≤ y(m′) or y(m′) + h(m′) ≤
y(m)

• such that
∑

N∈N (maxp∈N (x
(
γ(p)

)
+ x(p)) − minp∈N (x

(
γ(p)

)
+

x(p))+maxp∈N (y
(
γ(p)

)
+ y(p))−minp∈N (y

(
γ(p)

)
+ y(p))) is min-

imum, where x(�) := y(�) := 0 (this is called the bounding box

netlength)

or decide that no solution exists.

Challenge

Find an O(k!4k
p

(
k, |N |, |P |

)
)-algorithm for this problem, where k = |M |

and p is a polynomial.

What is Known

The problem to decide whether a feasible placement exists is strongly NP-
complete as it includes bin packing.

Suppose that we know which of the four conditions shall be satisfied for
each pair of macros. Then one can formulate the problem as two separate
linear programs (one for x- and one for y-coordinates), by adding variables
representing the coordinates of the bounding box. These linear programs are
duals of uncapacitated minimum cost flow instances and can thus be solved
in O

(
n log n(m + n log n)

)
time [43], where n = |M | + |N | and m = |P |.

This was noted first by Cabot, Francis and Stary [13].

Of course one can enumerate all 4(k

2
) possibilities, but this is too slow and

many of these contradict each other. Murata et al. [42] proposed a more
efficient representation of the solution space by so-called sequence pairs:

given any two permutations π, ρ of M , we require that m is to the west
(south, north, east) of m

′ if m precedes m
′ in π and ρ (in π but not in ρ, in
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ρ but not in π, neither in π nor in ρ). They showed that for every feasible
placement there is a sequence pair implying constraints that are satisfied
for this placement. Hence one needs to enumerate only (k!)2 combinations.
The resulting running time of O

(
(k!)2n log n(m + n log n)

)
seems to be the

best known bound today.

Even with branch-and-bound techniques instances with k ≥ 15 currently
cannot be solved optimally. For larger instances local search heuristics (such
as simulated annealing) based on these representations have been proposed
and used in practice. There are hundreds of papers on floorplanning heuris-
tics in the engineering literature, but there is no substantial progress in
exact algorithms.

Other representations are more concise than sequence pairs but can
only represent compactified placements, where no object can be moved
downwards or to the left without destroying feasibility. The most efficient

ones are O-trees [25, 53] and B∗-trees [14], both with k!Ck ≈
(k−1)!4k

√
πk

combinations, where Ck = (2k)!

k!(k+1)!
is the k-th Catalan number. However, it

is not clear how to use them for finding a placement with minimum bounding
box netlength.

If we just want to find a feasible solution or decide that none exists, the
B∗-representation together with the binary tree enumeration algorithm of
Solomon and Finkel [51] does the job in O

(
(k−1)!4k

√

k

)
time. Polynomial-

time approximation algorithms in special cases where feasibility is trivial will
be discussed in Problem 2.

Extensions

• Macros can often be flipped horizontally and/or vertically. In rare
cases they can also be rotated, but normally not as this would require
an adapation of the routing structure on top of the macro.

• Some areas of the chip may be forbidden (or, equivalently, some
macros are pre-placed and must not be moved).

• Some of the objects may in fact be soft macros (also called random
logic macros, RLMs). They come with an (estimated) area but no
fixed aspect ratio. They have pins, but no pin locations. Soft macros
correspond to units that are not designed yet and will be part of
the chip. For each of them one needs to choose an aspect ratio
and assign its pins to locations within its outline. Then they can be
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placed just as hard macros. The aspect ratio can be subject to lower
and upper bounds or part of the objective function (approximately
squarish outlines are often preferable). Ibaraki and Nakamura [31]
observed that there is a finite algorithm even in the case of soft macros
by showing that this is a convex programming problem.

• Some soft macros may actually appear several times on a chip. In
this case all realizations, i.e. aspect ratios and pin locations must be
the same. In other words, for each group of identical soft macros one
needs to choose a realization as hard macro first, and then place copies
of this hard macro. The advantage is that this soft macro needs to
be designed and checked only once and can be plugged in at several
places on the chip.

Importance

Even an algorithm which can handle, say, twenty macros, would be useful.
It could be used as part of a heuristic which decomposes larger instances
and solves sub-instances optimally. Moreover, many practical instances are
easy except for a specific local area where the problem may be very hard,
but involves only relatively few macros.

Currently, due to the lack of good algorithms, floorplanning involves a
lot of manual work.

2. Lower Bounds for Placement

Motivation

Placement is one of the most important tasks in chip design, but also (as
shown in Problem 1) one of the hardest. Although studied for many decades,
not much is known theoretically. In fact, even simplified formulations of
the placement problem contain the notoriously hard quadratic assignment
problem as special case. In practice the most successful approaches heuristi-
cally combine optimally solved subproblems; see e.g. Brenner, Struzyna and
Vygen [9]. But almost nothing is known about how far from optimal they
are.
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Instance

• a graph G (whose vertices are called modules or cells and whose edges
are called nets),

• an array of feasible locations A = {1, . . . , xmax} × {1, . . . , ymax}

Task

Compute

• a placement π : V (G) → A satisfying π(v) �= π(w) for all v, w ∈ V (G)
with v �= w

• such that

(a)
∑
{v,w}∈E(G)

∣∣
π(v)− π(w)

∣∣ is minimum.

(b)
∑
{v,w}∈E(G)

(
π(v)− π(w)

)2
is minimum.

Challenge

Find an algorithm which computes the optimum value of (a) or (b) up to a
constant factor, or even an O( log

∣∣
V (G)

∣∣)-factor, in polynomial time.

What is Known

The best known approximation algorithm for (a) has a performance guar-
antee of O( log

∣∣
V (G)

∣∣ log log
∣∣
V (G)

∣∣) [19]. In the one-dimensional case
(ymax = 1) this is the famous optimum linear arrangement problem, for

which an O(
√

log
∣∣
V (G)

∣∣ log log
∣∣
V (G)

∣∣)-factor approximation algorithm

was found by Charikar et al. [15] and Feige and Lee [20]. However, the opti-
mum linear arrangement problem is not known to be MAXSNP-hard (but
see [5]). If some areas are forbidden, the problem has no constant-factor
approximation algorithm [48].

Case (b) might be easier, but there is no positive result either. However,
there are interesting connections to random walks and eigenvectors of the
Laplacian of G [57, 52], which could potentially help.
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Fig. 2. Quadratic placement for the same chip as in Figure 1. The cells are colored red.

Most cells are tiny and lie close to the center of the chip. Thus the placement is far from

being legal.

In practice, there are only two techniques to compute lower bounds
for large instances (which can be combined). The first one is to consider
each net separately and assume the cells of this net to be placed as closely
together as possible. The second one relaxes the problem by ignoring the
constraint that no two cells can be placed at the same position. Assuming
that some pins are fixed or some cells are preplaced, which is often the
case in practice, this relaxation yields a positive lower bound, but a very
weak one, in particular for (a). The relaxation for (b), called quadratic
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placement, is a basic ingredient of many placement tools [12]. See Figure 2
for an example.

Extensions

• To be really useful the algorithm should be fast enough to handle
millions of cells.

• In practice the problem is more complex. Cell sizes vary (as in Problem
1), although most cells have the same height (standard cells) and are to
be arranged in rows. Exceptions are macros where different problems
arise (see Problem 1). Even the problem to decide whether a feasible
solution exists is strongly NP-hard. But in practice it is very easy to
find a feasible solution because a substantial portion of the available
area is not used.

Normally 99% of the cells are small (their height is uniform and their
width varies by about a factor of ten), and different cell sizes typically
mix in a good placement. Moreover, many cell sizes are actually
determined only after placement (by a procedure called gate sizing,
which chooses one out of several logically equivalent implementions
for each cell). Hence it does not seem to be essential to work with
non-uniform cell sizes.

• Pre-placed macros (as output of floorplanning; cf. Problem 1) or,
equivalently, forbidden areas, also make the problem harder.

• In practice we have a hypergraph rather than a graph. Again, the ver-
tices are cells that are to be placed and hyperedges are nets encoding
the information that its pins need to be connected. More precisely, we
have a netlist as in Problem 1. The pin offsets are rather small and
can be ignored except at a very detailed level, but fixed pins really
change the problem — just as pre-placed macros or forbidden areas
do. But the number of fixed pins is typically quite small, and in some
cases, where the I/O-ports are not yet placed, zero.

It is common practice to represent hyperedges of cardinality more than
two (multi-terminal nets) by a set of edges (two-terminal nets), e.g. a
clique (cf. Brenner and Vygen [10]).

• Our formulation ignores important aspects like routing congestion and
timing constraints. Nevertheless just minimizing netlength has proved
a very useful model in practice.
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Importance

Although our problem formulation is a radical simplification, it is the best
approximation of the placement problem where we can hope for a positive
solution even if P �= NP.

It is not immediately clear how a positive answer would impact design
practice. But the current status is that we have essentially no means to
evaluate how close to optimum the placements that we compute are. Any
progress here would be extremely interesting.

3. Legalizing a Placement

Motivation

Placement is usually divided into two subtasks: global placement and le-
galization. After global placement (cf. Problem 2), the size of many cells
is changed and additional cells (in particular repeaters; cf. Problem 9) are
added. Then the placement needs to be legalized without moving any cell
too far. The (weighted) sum of quadratic movement is a good measure of
legalization quality.

Instance

• an array of feasible locations A = {1, . . . , xmax} × {1, . . . , ymax}

• a set C of cells to be placed, with |C| ≤ |A|

• an initial placement (x, y) : C → A

Task

Compute

• a legal placement (x̄, ȳ) : C → A, i.e. one with x̄(c) �= x̄(c′) or ȳ(c) �=
ȳ(c′) for c, c

′
∈ C with c �= c

′,
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• such that ∑
c∈C

(
∣∣
x̄(c)− x(c)

∣∣ +
∣∣
ȳ(c)− y(c)

∣∣)2

is minimum.

Challenge

Find an o

(
|C|

3
)

algorithm for this problem.

What is Known

This is a special case of the well-known linear assignment problem, which
can be solved in O

(
|A|

3
)

time even if the cost of assigning an element of C

to an element of A is arbitrary (see, e.g., Korte and Vygen [37]).

It seems that no better algorithms are known for the special case.
However, for linear movement costs (instead of quadratic) one can re-
duce the problem to an instance of the minimum cost flow problem, where
the underlying graph is the two-dimensional grid graph given by A (with
edges connecting nodes of Manhattan distance 1, oriented in both di-
rections). Unit costs, infinite capacities, and balance values defined by
b(a) := |

{
c ∈ C : (x, y)(c) = a

}
| − 1 for a ∈ A complete the instance.

An integral minimum cost flow exists and can be realized by moving cells.
This yields an O

(
|A|

2 log2
|A|

)
-algorithm for the variant with linear move-

ment costs. It seems plausible that |A| can be replaced by |C| in this time
bound as locations that are never used do not require any computation.

This minimum cost flow approach has been used a lot in practice [54, 11].
Of course, when used as a heuristic for minimizing quadratic movement
costs, the flow cannot be realized arbitrarily as it is better to move many
cells a little rather than one cell far.

Extensions

• Typically some locations are pre-occupied by large macros and must
not be used.
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• Some cells are more important (because of timing constraints); so one
has weights w : C → R+ and should minimize the weighted sum of
squared movements.

• Cells have different sizes, although in a typical legalization instance
they all have the same height. But even with varying widths the
problem to decide whether any feasible solution exists is strongly NP-
hard. In practice this is not an issue, as rarely more than 90% of
the chip area is used, and as the widths are typically small integer
multiples of some minimum width.

Nevertheless, with varying cell widths the problem becomes harder
and can probably no longer be formulated as an assignment problem.
Still [11] use the above minimum cost flow approach, construct an
appropriate (more sophisticated) minimum cost flow instance, and
solve knapsack problems to realize the flow. This paper also proposes
an integer programming formulation whose LP relaxation provides
reasonable lower bounds in practice.

Importance

Placement legalization is a key task in chip design and an increasing chal-
lenge with progressing technology. Poor legalization makes it hard to find
a solution satisfying all timing constraints. A solution to the above prob-
lem formulation, although not capturing different cell widths, would be a
significant step towards a practical and provably near-optimal solution.

4. Steiner Trees Minimizing Elmore Delay

Motivation

On a chip there are millions of signals that are generated at a certain place
(the source) and must be transmitted to several destinations (sinks). Each
net contains one source and at least one sink. The elements of a net need
to be connected by a network of copper wires, which can be approximated
well by a rectilinear Steiner tree (ignoring the third dimension). However,
a shortest Steiner tree is often not best possible to meet tight constraints
on the delay of the signal from the source to each sink.
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To estimate the delay from the source to a sink we use the popular
Elmore delay model [18] which is relatively simple and accurate (see below).
To account for different timing constraints we have an extra additive term
for each sink.

Instance

• a source s ∈ R
2

• a nonempty finite set of sinks T ⊂ R
2

• a delay adder at ∈ R for t ∈ T

• a source resistance rs > 0

• a sink capacitance ct > 0 for each t ∈ T

• the capacitance c > 0 and resistance r > 0 of a wire per unit length.

Task

Compute

• a rectilinear Steiner tree Y for {s} ∪ T , oriented as an arborescence
rooted at s whose vertices are elements of R

2

• such that

max
t∈T

(
at + ED (s, t)

)
is minimum,

where for t ∈ T the Elmore delay from s to t is

ED (s, t) := rsCs +
∑

e=(v,w)∈E(Y[s,t])

r‖v − w‖
1

(
c

2
‖v − w‖

1
+ Cw

)
,

Y[s,v] denotes the path from s to v ∈ V (Y ) in Y , and

Cv :=
∑

e=(x,y) : v∈V (Y[s,x])

c‖x− y‖
1
+

∑
t∈T : v∈V (Y[s,t])

ct.
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Challenge

Find a finite algorithm for this problem.

What is Known

The problem is known to be NP-hard [8]. For |T | = 1 it is trivial; a shortest
path does the job. For |T | ≤ 3 the problem can be solved in constant time
[34, 44].

But even for |T | = 2 there are instances in which the only optimal
solution is not part of the Hanan grid, the grid of horizontal and vertical
lines induced by the source and the sinks [8]. This is not true for the variant
in which

∑
t∈T at ED (s, t) is minimized for weights at > 0 (t ∈ T ); hence

this variant can be solved in exponential time. See also [16] and [35] for
other variants.

Extensions

• Actually we can choose the width of any wire (within a given range)
and have several (currently up to 10) routing planes with different
characteristics available. Routing planes normally have alternating
preference directions (horizontal/vertical).

Wider wires have smaller resistance but larger capacitance per unit
length (and they consume more space). Wires on upper planes are
often better, but the pins (source and sinks) are usually on the lower
planes and the resistance of vias (metal contacts connecting adjacent
planes) are not negligible.

In practice, most of the nets are realized by a set of wires almost
all of which (except short ones for pin access) have the same width
and lie on two adjacent planes (one horizontal and one vertical) with
similar electrical properties. Therefore the above planar simplification
is meaningful.

• Our formulation ignores routing blockages. Sometimes there are signif-
icant blockages (in particular on top of macros) that must be avoided.
But in most cases there are only small blockages (mostly due to the
power supply) which can be neglected here.
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• Pins are not single points but sets of metal shapes. Consequently we
have a group Steiner tree problem. But since each pin spans only a
small area, this is less important.

• The Elmore delay is the most accurate model with such a simple
description. More accurate models depend on more parameters (in
particular the so-called slew rate: the average rate of voltage changes);
we do not go into details here.

• In some cases, in particular for clock networks, signals must not arrive
too early either. In this case a reasonable objective function combines
latency (maximum delay) and skew (maximum difference of delays),
such as

(1 + α) max
t∈T

(
at + ED (s, t)

)
−min

t∈T

(
at + ED (s, t)

)
for some α > 0. This variant is also unsolved.

Importance

The task to transmit a signal as fast as possible to a given set of destinations
is a fundamental problem in chip design. Although shortest rectilinear
Steiner trees are often good enough, one would of course like to solve such
basic sub-tasks optimally.

5. Resource Sharing and Multiflows

Motivation

Routing is also a major task in chip design. Millions of nets have to be
connected by wires, which must satisfy many rules. Routing is typically split
into global routing and detailed routing. In global routing we determine a
corridor for each net which restricts the solution space explored in detailed
routing.

The simplest formulation of the global routing problem asks for pack-
ing Steiner trees for given terminal sets in a three-dimensional grid graph
with edge capacities. In the case of two-terminal nets this is an integer
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multicommodity flow problem. But besides routing space (reflected by edge
capacities) there are other resources that must be shared between nets, such
as time (for signal delay), and space for buffers (needed for repowering sig-
nals; cf. Problem 9). A general resource sharing problem models all this and
does not seem to be much harder than a standard multicommodity flow for-
mulation. The common approach is to solve the fractional relaxation first
and use randomized rounding for obtaining an integral solution.

Instance

• a finite set R of resources

• a finite set C of customers

• a number ur > 0 specifying how many units of resource r ∈ R are
available

• for each customer c ∈ C an implicitly given convex set

Ac ⊆

∏
r∈R

[0, ur]

of feasible resource allocation vectors (satisfying customer c). We
assume an oracle for computing a function fc : R

R
+ → Ac which ap-

proximately minimizes linear functions over Ac: for a customer c ∈ C

and a price vector ω ∈ R
R
+ we require that ω

�

fc(ω) ≤ (1+ε0) optc(ω),
where optc(ω) := mina∈Ac

ω
�

a and ε0 ≥ 0 is a constant

Task

Compute

• a feasible resource allocation vector for each customer

• such that the maximum relative utilization (or congestion) of all re-
sources is minimized:

min
(ac∈Ac)c∈C

max
r∈R

∑
c∈C (ac)r

ur
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Challenge

Find an algorithm which computes an (1 + ε0 + ε)-approximate solution in
O
∗(1

ε |C|γ) time, for any ε > 0, where γ denotes the time for an oracle call
and the O

∗-notation suppresses logarithmic terms.

What is Known

If ε0 can be chosen arbitrarily small, this is a special case of the equivalence
of weak optimization and weak separation [24].

Combinatorial approximation algorithms (some of which assume ε0 = 0)
were proposed by Plotkin, Shmoys and Tardos [46], Grigoriadis and
Khachiyan [23], Garg and Könemann [22], and Jansen and Zhang [32], based
on earlier similar algorithms for the special case of multicommodity flows.
All algorithms have a dependence on ε which is quadratic or worse. Müller
and Vygen [41] (see [1] and [55] for special cases) found an O( 1

ε2 |C|γ ln2
|R|)-

algorithm under some assumptions. Bienstock and Iyengar [7] showed how
to reduce the term from 1

ε2 to 1

ε , but by increasing the dependence on other
parameters. It is not clear whether these techniques can be combined.

Extensions

• All known algorithms also compute an approximate dual solution.
This can be useful in particular if the routing instance turns out to be
infeasible.

• In practice one is of course interested in an integral solution. The
corresponding problem includes the edge-disjoint paths problem and
is of course NP-hard. Randomized rounding works quite well unless
ar

ur
is large for some r ∈ R, c ∈ C and a ∈ Ac. However, this two-

stage approach (first solve the fractional relaxation approximately,
then apply randomized rounding) may not be optimal.

Importance

Sharing resources optimally is a fundamental problem with numerous ap-
plications. In chip design it models global routing very well and can also
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handle various constraints and objectives that make global routing today
much different from just packing Steiner trees subject to edge capacities.
For example, Vygen [55] and Müller [40] showed how to model timing con-
straints and even manufacturing yield by resource constraints. The full
value of this approach is yet to be explored.

6. Shortest Paths in Grids

Motivation

The main sub-task in detailed routing is to connect two sets of metal shapes
by a set of wires of minimum total length. Each of these sets of shapes can
be a pin or a previously routed set of wires connecting some pins. The
problem can be modelled as a shortest path problem in a three-dimensional
grid graph and solved by Dijkstra’s algorithm [17].

The main problem is that we need to find more than 20 million paths,
and the grid graph can have more than 100 billion vertices. Although the
considered subgraphs for each net are restricted as a result of global routing,
this remains an enormous computational challenge.

Routing layers normally have alternating preference directions (horizon-
tal/vertical). Edges orthogonal to the preference directions, edges corre-
sponding to vias (connecting adjacent planes), and edges on lower metal
planes have higher cost to account for waste of space, effects on manufac-
turing yield, and electrical properties. See Figure 3 for an example.

Instance

• positive integers xmax, ymax, and zmax

• for each odd z ∈ {1, . . . , zmax} and each y ∈ {1, . . . , ymax} an integer
i ≥ 0 and a list of coordinates 1 ≤ x1 < x2 < · · · < x2i−1 < x2i ≤

xmax defining i intervals
{

(x1, y, z), (x1 + 1, y, z), . . . , (x2, y, z)
}

, . . . ,{
(x2i−1, y, z), (x2i−1 + 1, y, z), . . . , (x2i, y, z)

}
• for each even z ∈ {1, . . . , zmax} and each x ∈ {1, . . . , xmax} an integer

i ≥ 0 and a list of coordinates 1 ≤ y1 < y2 < · · · < y2i−1 < y2i ≤

ymax defining i intervals
{

(x, y1, z), (x, y1 + 1, z), . . . , (x, y2, z)
}

, . . . ,{
(x, y2i−1, z), (x, y2i−1 + 1, z), . . . , (x, y2i, z)

}
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Fig. 3. This example shows a shortest path between source (green) and target (red) in a

subgrid with four layers determined by global routing (yellow). The cost of an edge

running in and orthogonal to the preference direction is 1 and 4, respectively, and the

cost of a via is 13. With these costs the blue path has length 153, which is shortest

possible. Note that the graph can be represented by relatively few intervals.

• G is defined as follows: V (G) is the union of all these intervals, and
E(G) := {

{
(x, y, z), (x′, y′, z′)

}
: (x, y, z), (x′, y′, z′) ∈ V (G), |x−x

′
|+

|y − y
′
|+ |z − z

′
| = 1}

• numbers cz,i ∈ N for z = {1, . . . , zmax} and i ∈ {1, 2, 3}, defining edge
weights c : E(G) → N by c(e) := cz,i for e =

{
(x, y, z), (x′, y′, z′)

}
∈

E(G) with z ≤ z
′, where i = 1 if x �= x

′, i = 2 if y �= y
′, and i = 3 if

z + 1 = z
′

• vertex sets S, T ⊆ V (G)



Combinatorial Problems in Chip Design 353

Task

Compute

• a shortest S-T -path in (G, c), i.e. a path P in G from a vertex s ∈ S

to a vertex t ∈ T such that
∑

e∈E(P )
c(e) is minimum.

Challenge

Find an algorithm with running time O(K log K), where K is the number
of intervals I for which there is an S-I-path of length L, where L is the
length of a shortest S-T -path.

What is Known

If all intervals are singletons, Dijkstra’s algorithm with a heap implementa-
tion does the job. For the general case there is an O(LK log K)-algorithm
by Peyer, Rautenbach and Vygen [45].

Extensions

• A well-known idea for speeding up Dijkstra’s algorithm in practice is to
replace the cost of an edge (v, w), originally c

(
{v, w}

)
, by c

′(v, w) :=
c

(
{v, w}

)
− π(v) + π(w), where π : V (G) → R satisfies π(t) = 0 for

t ∈ T and π(v) ≤ c

(
{v, w}

)
+ π(w) for {v, w} ∈ E(G) (and hence

π(v) is a lower bound on the length of a path from v to T ) [47, 50].
The better this lower bound is, the shorter is the distance from S to
T with respect to c

′, and the fewer vertices are labelled by Dijkstra’s
algorithm.

Of course, this technique (often called goal-oriented search) changes
the instance: it makes the graph directed and changes some of the
costs. By splitting intervals when necessary the edges within an
interval can be assumed to have constant cost in each direction. The
result of [45] extends to this more general situation.

• G may actually not be an induced subgraph of the complete three-
dimensional grid graph. Some edges, in particular some of those
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representing vias, are often missing (e.g. in order to model via distance
rules).

• Many nets have more than two terminals; we need a Steiner tree
connecting their pins. It may be possible to extend the algorithm to
k-terminal nets for any fixed constant k.

• Not all rules which must be followed in routing can be encoded by the
incomplete grid graph as above. An examples of such a rule is that
there must be a certain minimum amount of metal (i.e., horizontal
or vertical wiring) between two adjacent vias. As an approximate
formulation in graph-theoretic terms, each connected component of
the subgraph of the path that is induced by one routing layer must
have minimum size.

• The rules for pin access are quite involved and cannot be discussed
here, but the good news is that they require only local techniques and
can be ignored when searching for global (long) connections.

Importance

Many hours of computing time are spent with routing on a chip in leading-
edge technology. In particular long-distance paths in regions with many
obstacles are difficult to find. Computing such a path can take several
seconds. Speeding this up would have a great benefit.

7. Sink Clustering

Motivation

Some signals on a chip are distributed to thousands, and sometimes even
millions of receivers (sinks). An example is given by clock networks distrib-
uting a clock signal to all storage elements (registers, flip-flops, latches) in a
clock domain. Such networks consume a lot of resources, and in particular
a lot of electric power.

Often the network has two levels. A set of special drivers receives the
signal from a top-level network, and each of these drivers distributes it
further to a set of sinks. The placement of drivers and assignment of sinks
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to drivers is a kind of facility location problem that we call sink clustering
(cf. Figure 4).

The electrical capacitance of a net depends on the total length of the
wires and the input capacitance of its sinks. There is a limit on the electrical
capacitance that a driver can cope with. The overall power consumption
also depends on the total capacitance and on the number of drivers. This
yields the following problem formulation.

Fig. 4. Example for sink clustering (small part of a chip). The blue squares are the sinks

(here: input pins of storage elements which need to receive a periodic clock signal). The

red objects are the drivers that are to be placed. We may assume that each driver can

be placed on a shortest Steiner tree connecting the sinks that it drives (or very close).

The green objects are irrelevant here.
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Instance

• a finite set D ⊆ R
2 of sinks

• demands (sink capacitances) d : D → R+

• a facility opening cost f ∈ R+

• a capacity u ∈ R+

Task

Compute

• a partition D = D1∪̇ · · · ∪̇Dk,

• a rectilinear Steiner tree Ti for each Di (i = 1, . . . , k)

• such that c(Ti) +
∑

s∈Di
d(s) ≤ u for i = 1, . . . , k

• and

k∑
i=1

c(Ti) + kf

is minimum.

Here c(Ti) denotes the length of Ti.

Challenge

Find a polynomial-time 2-approximation algorithm.

What is Known

Maßberg and Vygen [39] found a 4-approximation algorithm which runs in
O

(
|D| log |D|

)
time. Unless P = NP there is no approximation algorithm

with performance guarantee better than 2, which can easily be seen by a
reduction from the NP-hard rectilinear Steiner tree problem [39]: it is NP-
complete to decide whether there is a feasible solution with k = 1.
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Extensions

• The above description uses just one type of drivers. In practice one
often has several types, cheaper ones that can drive less and stronger
ones that can drive more capacitance. This corresponds to several
pairs (ui, fi), i = 1, . . . , t. Then u := maxt

i=1 ui, and the objective
function becomes

k∑
i=1

(
c(Ti) + min

i : ui≥c(Ti)+d(Di)

fi

)

• Our description assumes that drivers can be placed anywhere. This is
a good approximation except for macros which block a larger part of a
chip. A proper formulation would take a list of rectangular blockages
into account, although we do not see the need for this in practice.

• The drivers must be connected by a top-level network, often a tree.
Therefore one could think of including the length of a Steiner tree
connecting the drivers in the objective function.

• The problem can also be considered in general metric spaces. Here the
best known approximation algorithm has a performance guarantee of
4.099 [39].

Importance

On many chips the clock networks consume a substantial portion of the
power. Reducing power consumption becomes more and more important.
The objective function of the sink clustering problem models power con-
sumption (of the lowest stage, which typically makes up more than 80% of
the clock tree’s overall power consumption) quite accurately.
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8. Octagon Representation

Motivation

An octilinear octagon is a nonempty set of the form
{

(x, y) ∈ R
2 : ix+ jy ≥

cij for (i, j) ∈ {−1, 0, 1}2
}

for some constants cij . In the special case when
cij = −∞ for |i|+ |j| �= 1 they are called rectilinear rectangles.

Octilinear octagons arise from �1-discs by subtracting blockages. More
precisely, consider all sets that can be generated from points by the following
operations: (a) replace X ⊆ R

2 by
{

y ∈ R
2 : ‖y − x‖

1
≤ d for some x ∈ X

}
for some d > 0; (b) replace X ⊆ R

2 by the closure of X \ R, where R is
a rectilinear rectangle. All such sets can be written as union of octilinear
octagons. They arise for example in clock tree design [29].

Instance

• a set S of n octilinear octagons

Task

Compute

• a set S
′ of octilinear octagons such that the union of S

′ equals the
union of S and the interiors of any two elements of S

′ are disjoint.

Challenge

Find an O(n log n + k)-algorithm, where k is the cardinality of a smallest
set S

′ which is a feasible output.

What is Known

This problem can be reduced to the so-called contour problem, asking for
the contour of the union of S: given the contour with k corners one can
generate a solution S

′ with |S′| ≤ k. As every corner of the contour must
be a corner of an element of S

′, this is optimum up to a factor of 8.
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There are simple examples for which k = Θ(n2), even when we restrict to
rectilinear rectangles. But such instances will probably not arise in practice.

For rectilinear rectangles (i.e. cij = −∞ for |i| + |j| = 2) the contour
problem can be solved by a sweepline algorithm [26] or by divide-and-
conquer [27].

Extensions

• Ideally the algorithm would compute a set S
′ of minimum possible

cardinality. Then there is no longer a simple reduction to the contour
problem.

• The most interesting instances are those that arise from a set S of n

octagons for which the interiors of any two elements are disjoint by an
operation (a) followed by a sequence of n

′ operations (b). Assuming
that S and the sequence of these operations is given explicitly, Then
an O

(
(n + n

′) log(n + n
′)
)
-time algorithm could be possible.

Importance

This is the task of a basic subroutine in bottom-up algorithms for clock
tree design and could also be used by fanout tree algorithms (cf. Section 9).
Currently we are using an algorithm with a quadratic worst-case running
time and apply heuristics to bound the number of octagons. This is not a
satisfactory solution.

9. Short and Fast Fanout Trees

Motivation

If a signal is sent over a large distance or distributed to many sinks (i.e.,
has a large fanout), it has to be re-powered. This is done by buffers or pairs
of inverters (implementing the identity function). Buffers and inverters are
also called repeaters. Optimal buffering makes the delay per unit distance
grow almost linearly. However, the delay along a path also depends on the
number of bifurcations (more precisely, on the electrical capacitance driven
by the repeaters).
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Designing trees with repeaters in an optimal way, such that signals arrive
in time but not too many resources are consumed, is an important task.
Traditional approaches started with a shortest Steiner tree and inserted
buffers and inverters, but this is far from optimal. Better trees are needed
to meet tight timing constraints.

Instance

• a source r ∈ R
2

• a finite set S ⊂ R
2 of sinks

• required arrival times as (s ∈ S), assuming that the signals starts at
r at time 0

• a delay d > 0 per unit distance

• a bifurcation cost c > 0

Task

Compute

• an arborescence A with {r}
.
∪ S ⊆ V (A) ⊂ R

2 and
∣∣
δ
+(r)

∣∣ = 1 and∣∣
δ
+(v)

∣∣ = 2 for v ∈ V (A) \
(
{r} ∪ S

)
• such that the worst slack

min
s∈S

(
as −

∑
e=(v,w)∈E(A[r,s])

d‖v − w‖
1
− c

(
|E

(
A[r,s]

)
| − 1

))

is as large as possible up to an additive constant of c,

• and among all such solutions
∑

e=(v,w)∈E(A)
‖v − w‖

1
is minimum.

Here A[r,s] denotes the unique r-s-path in A.

Challenge

Find a polynomial-time 3

2
-approximation algorithm.
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What is Known

Just maximizing the worst slack is trivial by Huffman coding as long as all
numbers as − d‖r − s‖

1
(s ∈ S) are integer multiples of c. Here all |S| − 1

Steiner points can be placed at the position of r. Defining the criticality of
a sink s by as − d‖r − s‖

1
, the arborescence is constructed in a bottom-up

fashion by iteratively replacing the two sinks with minimum criticality by a
new sink whose criticality is by c less than the smaller of the two.

It is easy to see that this yields optimum worst slack (up to a round-
ing error of at most c), but it will generally lead to intolerably large length.
Bartoschek et al. [6] showed how the length can be improved by successively
inserting the sinks at an optimal place, in an order of nondecreasing critical-
ity. However, this guarantees neither optimum worst slack nor short length.
If we always insert a sink that is closest to the current tree in a shortest
possible way, we get a well-known 3

2
-approximation algorithm (sometimes

called Prim heuristic) for the rectilinear Steiner tree problem.

The question is whether the two results can be combined somehow.
However, this will not be straightforward, as Alon and Azar [4] gave an
example showing that for the online rectilinear Steiner tree problem the
best appproximation ratio we can hope for is Θ(log n/ log log n), where n is
the number of terminals.

Extensions

• Ideally the algorithm should have at most quadratic runnning time.

• Some areas of the chip are blocked and must not be used. All vertices
and edges must be embedded in the remaining area. Other areas are
blocked by macros and cannot be used for inverters and buffers but
can be used for wiring. Maximal connected subtrees of the arbores-
cence that run across such blockages must not exceed a certain length
(corresponding to the capacitance that a repeater can drive).

• There are several routing planes available. Upper planes are faster
but also more expensive in terms of resource consumption. Moreover,
the planes can be used either only for horizontal or only for vertical
wires. The extended task includes the assignment of each edge to a
pair of orthogonal planes.
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• Of course it would be even better if one could directly find approxi-
mately optimal repeater trees rather than first constructing a topology
and then inserting inverters and buffers. However, this seems to be
even harder.

Importance

A state-of-the-art chip has millions of buffers and inverters, and timing
constraints are very hard to meet. Buffering, in particular designing fanout
trees, is a major part of timing optimization and a key problem in chip
design today.

10. Logic Synthesis

Motivation

Logic synthesis is the problem of implementing a given Boolean function
f : {0, 1}m

→ {0, 1}n by a Boolean circuit. A Boolean circuit can be
represented by an acyclic digraph with n sources and m sinks. The other
vertices are gates, each of which has an elementary Boolean function, such
as an inverter, AND, OR, NAND, NOR, XOR, etc. A Boolean circuit
computes a Boolean function in the natural way. It is essentially equivalent
to a netlist. f is typically given either in a certain hardware description
language (similar to a programming language), or by a Boolean circuit.

The main criteria for the quality of a solution are area (which is esti-
mated by the number of gates) and timing (see below).

In spite of its tremendous relevance, not much is known about algorithms
for logic synthesis. Quite simple heuristics are used in practice. Of course
it is coNP-complete to decide whether a given Boolean circuit implements
a constant function, but this does not mean that all problems are hopeless.

Instance

• a Boolean function f : {0, 1}m → {0, 1}n by a list of all 2m function
values (each consisting of n bits)
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Task

Compute

• a Boolean circuit (using some fixed library) with minimum number of
gates implementing f .

Challenge

Find a polynomial-time algorithm, or at least an approximation algorithm.

What is Known

Essentially nothing. Even in the case n = 1 we know no approximation
algorithm. The library is probably less important, for example we could
restrict to NANDs only. To the best of our knowledge the only known
theoretical results consider variants of this problem (see below).

Extensions

• As a variation, f might be given by some Boolean circuit using k

gates; now we ask for an algorithm whose running time is 2O(k).

• Often we also want to bound the depth, i.e. the length of a longest
path. This roughly corresponds to delay. The variation where the
Boolean circuit must have depth 2 was shown to be NP-complete by
Masek [38] and inapproximable by Feldman [21]. See also the work
of Kabanets and Cai [33]. The problem seems to be open even for
depth 3.

• The inputs 1, . . . , m may be associated with arrival times a1, . . . , am,
and the outputs have required times r1, . . . , rn. Then we want to
maximize mini,j(rj−ai−dij), where dij denotes the length of a longest
path from i to j. Rautenbach, Szegedy and Werber [49] suggested an
approximation scheme for a special case of the case n = 1.

• In fact we often have an incompletely specified Boolean function
f : {0, 1}m

→ {0, 1, d}
n, where d stands for don’t care. We look

for a Boolean circuit computing some concretion of f , i.e. some
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g : {0, 1}m
→ {0, 1}n with fi(x) ∈

{
gi(x), d

}
for all x ∈ {0, 1}m and

i = 1, . . . , n.

Importance

Logic synthesis is key for the quality of a netlist. The state of the art
is rather poor, compared to other areas of chip design. Therefore we see
much room for improvement here. While physical chip layout has improved
substantially in the last two decades due to better algorithms, logic synthesis
has not been approached seriously by mathematicians. Consequently an
improvement of logic synthesis by mathematical ideas is badly needed.

Conclusion

Although a lot of progress has been made, and many theoretical results and
new algorithms made their way to real design tools, chip design practice
is also a constant source of interesting problems, many of which are of
combinatorial nature. On the one hand, new problems come up or become
important due to technological advances. On the other hand, new ideas
lead to new formulations in classical problem areas. We hope that we could
demonstrate the variety of interesting problems and could give a fresh view
on some of the most important combinatorial problems in chip design.
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1. Introduction

In this chapter we briefly outline the main motivation of our work and we
relate it to other research. We do not include any definition here.

1.1. Dense graphs

Dense graphs have been extensively studied in the context of Extremal
Graph Theory. The outstanding Szemerédi Regularity Lemma [106] states
that any dense network has properties which are close to the ones of a ran-
dom graph. In particular, a large dense network cannot be too irregular.
This structural result is one of the cornerstones of contemporary combina-
torics (and one would like to say mathematics in general). It also led to
manifold applications and generalizations, see e.g. [63, 62, 69, 108, 38]. The
closest to our topic covered in this paper is the recent development which
is based on the study of homomorphisms of graphs (and structures). (It is
perhaps of interest note in how many different areas and a variety contexts
the notion of a homomorphism recently appeared, see [57]). Regularity is
viewed here as a structural approximation in a proper metrics and also as
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a convergence. For a survey of this development see [13]. The main idea
here is to study the local structure of a large graph G by counting the ho-
momorphisms from various small graphs F into G (this relates to the area
called property testing), and to study the global structure of G by counting

its homomorphisms into various small graphs H (sometimes interpreted as
templates). Very schematically this may be outlined by the schema:

F1

�������� H1

. . . ��
G

�������� ��
�������� . . .

Fp

��������
Hq

This approach proved to be very fruitful and relates (among others) to
the notion of quasi-random graph, see e.g. [21], and to the full characteri-
zations of testable graph properties, see e.g. [5, 13]. Nevertheless, such an
approach fails when the considered structures become too sparse. In par-
ticular, Szemerédi’s regularity lemma concerns graphs which have (at least
locally) a number m of edges which is quadratic with respect to the num-
ber n of vertices, or at least as large as n

1+ε if one consider extensions and
generalizations of this lemma to the sparse context, see e.g. [62]. It is our
ambition to deal exactly with sparse graphs which are not covered by this
spectrum of results. Yet our goals are similar: we are aiming for regular
and highly regular partitions.

1.2. Sparse graphs

We aim (as in the Szemerédi regularity lemma) for structural theorems for
all graphs. The dense graphs display a remarkable stability (and many
of their properties do not change by deletions and additions of a small
proportion of all edges, see e.g. [112]) and, as has been discovered recently,
they may be studied by number of homomorphisms and by limit objects of
geometrical nature, [13, 38]. But our graphs have typically linearly many
edges, large independent sets and exponentially many endomorphism. As a
consequence we do not consider statistical properties but rather existential
properties, i.e. properties defined by the existence (and non-existence) of
mappings. In other words we deal with the simplification of category of
graphs (or the homomorphism order), see e.g. [57]. But the first difficulty
we shall meet is the definition of what a “sparse graph” is. Let us consider
various approaches to this problem.
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Of course, if we consider any dense graph and break every link by
inserting a new vertex, the obtained graph has a number of links less than
twice its number of vertices and nevertheless inherit most of the structure
of the original graph. So the degeneracy (or maximal average degree of
a subgraph) of our graphs is not sufficient. This also indicates that tests
which contain a bounded number vertices are not sufficient to our purposes.

Another possible (and finer) restriction is to consider graphs with no
minor belonging to some fixed family. In this way we get for example the
class of all planar graphs. The interest of such a restriction is twofold:
first it ensures a number of efficient algorithms, and also a large scientific
literature. One way of describing such a family is the following: if you
consider disjoint connected parts, you will never be able to find more than
(fixed) p parts which are pairwise adjacent. In the other words the complete
graph Kp+1 is a forbidden minor. Classes like these are called proper minor

closed. Such restrictions are natural for geometric networks, but for our
purposes do not seem to be general enough. For instance, a very simple
operation which is to clone every vertex (with its incident edges) does not
preserve such properties. Another feature is the lack of parametrization:
one graph is “forbidden” at all levels.

Another interesting restriction is to consider bounded degree graphs.
Such graphs almost surely have nice properties when large (they are almost
surely expanders). Nevertheless, important real networks like the WEB
surely does not fit this restriction. And this class does not include even the
class of all trees (which should be considered as sparse graphs).

A more general framework (a framework which include the above exam-
ples) concerns proper topologically closed classes of graphs. These classes
are characterized as follows: whenever a subdivision of a graph G belongs
to the class then G belongs to the class; moreover, not every graph be-
long to the class. Such classes are obviously defined by a (maybe infinite)
set of forbidden configurations. These classes naturally catch the classes
from geometrical origin, and also appear as a good approximation base for
real-world networks. Notice that such graphs still have a number of edges
which is bounded by a linear function of their orders. But still this lacks a
parametrization and our classes will strictly include these classes.

Our principal notion for sparse graphs is the notion of bounded expansion

class of graphs. These classes are characterized by the fact that the average
degree of minors obtained by contracting disjoint subgraphs each of radius at
most r is bounded by a function of r only. This means that local contractions
cannot make the graphs too dense. These classes will be introduced in



Structural Properties of Sparse Graphs 373

detail in the next chapter and we shall also indicate the various equivalent
definition and regularity properties of graphs belonging to these classes.
The characterization theorems are then summarized in the last chapter of
this article.

1.3. Nowhere dense graphs

For any class with bounded expansion all graphs in the class have linear
number of edges. There is numerous evidence that graphs with n

1+ε edges
share many properties of random graphs (for example such graphs include
graphs with large girth and high chromatic number, a seminal result of
Erdős). Thus n

1+ε edges of a graph with n vertices seems to be a natural
bound for our investigations of sparse graphs. This bound is natural. As
we will show (and motivated by problems from model theory) a new type
of graph classes arises here: classes of nowhere dense graphs. These classes
are characterized by the fact that the number m of edges of a graph in the
class is bounded by n

1+o(1), where n is the order of the graph, and that
such a statement holds for the class of the minors obtained by contracting
disjoint balls of radius at most r for each fixed r. Again, this definition
should be compared with the fact that every sufficiently big graph G having
at least n

1+ε edges has a big dense minor obtained by contracting balls
of radius at most r(ε) (by dense we mean: having a quadratic number
of edges). But not only that; the classes of nowhere dense graphs have a
characterization which combines virtually all concepts which were developed
for the study of bounded expansion classes and expose them in the new light.
To demonstrate this explicitly we included all characterization theorem in
the final section of this article.

2. Measuring Sparsity

The distance in a graph G between two vertices x and y is the minimum
length of a path linking x and y (or ∞ if x and y do not belong to the same
connected component of G) and is denoted by distG(x, y). Let G = (V, E)
be a graph and let d be an integer. The d-neighborhood N

G
d (u) of a vertex

u ∈ V is the subset of vertices of G at distance at most d from u in G:
N

G
d (u) =

{
v ∈ V : distG(u, v) ≤ d

}
.
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We use standard graph theory terminology however we find it useful to
introduce the following: for a graph G = (V, E), we denote by |G| the order

of G (that is: |V |) and by ‖G‖ the size of G (that is: |E|).

2.1. Shallow minors and grads

Fig. 2.1. A shallow minor of depth r of a graph G is a simple subgraph of a minor of G

obtained by contracting vertex disjoints subgraphs with radius at most r

For any graphs H and G and any integer d, the graph H is said to be
a shallow minor of G at depth d ([95] attributes this notion, then called
low depth minor, to Ch. Leiserson and S. Toledo) if there exists a subset
{x1, . . . , xp} of G and a collection of disjoint subsets V1 ⊆ N

G
d (x1), . . . , Vp ⊆

N
G
d (xp) such that H is a subgraph of the graph obtained from G by con-

tracting each Vi into xi and removing loops and multiple edges (see Fig. 2.1).
The set of all shallow minors of G at depth d is denoted by G � d. In par-
ticular, G � 0 is the set of all subgraphs of G.

The greatest reduced average density (shortly grad) with rank r of a
graph G [84] is defined by formula

(1) ∇r(G) = max

{
‖H‖

|H|

: H ∈ G � r

}
.

Also we denote by ∇(G) = ∇∞(G) the maximum edge-density of a
minor of G. Notice that this last invariant is related to the order of the
largest complete graph which is a minor of G, that is: the so-called Hadwiger

number η(G) of G. It follows from the definition that

η(G) ≤ 2∇(G) + 1.
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By extension, for a class of graphs C, we denote by C � i the set of all
shallow minors at depth i of graphs of C, that is:

C � i =
⋃
G∈C

(G � i).

Hence we have

C ⊆ C � 0 ⊆ C � 1 ⊆ · · · ⊆ C � i ⊆ · · · ⊆ C �∞.

Here we denoted by C �∞ the class of all minors of graphs from C. This is
of course a minor closed class of graphs (which may coincide with the class
of all finite simple graphs; think e.g. of the class of all cubic graphs).

Also, for a class C of graphs we define the expansion of the class C as:

∇i(C) = sup
G∈C

∇i(G)

∇(C) = sup
G∈C

∇(G)

Notice that ∇r(G) = ∇0(G� r).

A proper minor closed class of graphs C is a minor closed class of graphs
excluding at least one minor, i.e. such that C is not the class of all finite
simple graphs. Every proper minor closed class of graphs C is such that
∇(C) < ∞. Conversely, if C is a class of graphs such that ∇(C) < ∞ then
C is a subclass of a proper minor closed class of graphs (the smallest being
C �∞).

Also, a grad of particular importance is∇0. It is related to the maximum

average degree (mad) of a graph by mad (G) = 2∇0(G). A class C of graphs
such that ∇0(G) < (k + 1)/2 (where k is an integer) is called k-degenerate.
The equivalent defining property of a k-degenerate class of graphs is that
every non-empty subgraph contains at least a vertex of degree at most k.
Thus there is also an easy (greedy) algorithm to determine ∇0(G).

It has to be noticed [35] that the determination of ∇r(G) is a difficult
problem whenever r ≥ 1.
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Fig. 2.2. A shallow topological minor of depth r of a graph G is a simple subgraph of a

minor of G obtained by contracting internally vertex disjoint paths of length

at most 2r + 1

2.2. Shallow topological minors and top-grads

Our approach makes it possible to treat minors and topological subgraphs
similarly. For any (simple) graphs H and G and any integer d, the graph H is
said to be a shallow topological minor of G at depth d if there exists a subset
{x1, . . . , xp} of G and a collection of internally vertex disjoint paths P1 . . . Pq

each of length at most d + 1 of G with endpoints in {x1, . . . , xp} whose
contraction into single edges define on {x1, . . . , xp} a graph isomorphic to
H (see Fig. 2.2).

The set of all the shallow topological minors of G at depth d is denoted
by G �̃ d. In particular, G �̃ 0 is the set of all the subgraphs of G. Notice
that for every graph G and every integer i we clearly have (G �̃ i) ⊆ (G� i).

The topological greatest reduced average density (top-grad) with rank r

of a graph G is:

(2) ∇̃r(G) = max

{
‖H‖

|H|

: H ∈ G �̃ r

}
.

Also, we denote by ∇̃(G) the limit value ∇̃∞(G).

By extension, for a class of graphs C, we denote by C �̃ i the set of all
shallow topological minors at depth i of graphs of C, that is:

C �̃ i =
⋃
G∈C

(G �̃ i).

Hence we have

C ⊆ C �̃ 0 ⊆ C �̃ 1 ⊆ · · · ⊆ C �̃ i ⊆ · · · ⊆ C �̃∞
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For a class C of graphs we define the topological expansion of C as:

∇̃i(C) = sup
G∈C

∇̃i(G);

∇̃(C) = sup
G∈C

∇̃(G).

Notice that ∇̃i(C) = ∇̃0(C �̃ i).

Also, a class C is topologically closed if C = C �̃∞. A topologically
closed class C is proper if it is different from the class of all simple finite
graphs. Notice that a class C is a subclass of a proper topologically closed
class of graphs if and only if ∇̃(C) <∞.

2.3. Hajós or Hadwiger?

Although any proper minor closed class of graphs is also a proper topologi-
cally closed class, the converse is not true. Also, some important properties
which holds from the former do not hold for the latter. A striking example
stands in the fundamental difference Hadwiger conjecture (which is at least
satisfied by almost every graphs) and Hajós conjecture (which is satisfied
by almost no graphs).

Hence it seems to be of great importance to decide whether we will
choose to define the sparsity of a class of graphs using the grad or the top-
grad. However, a bit surprisingly, this does not make a difference at all.
This is expressed by the following result of Zdeněk Dvořák, [35]:

Theorem 2.1. For every integer r, the invariants ∇r and ∇̃r are polyno-

mially equivalent. Precisely, for every graph G:

1

4

(
∇r(G)

4

) 1

(r+1)2

≤ ∇̃r(G) ≤ ∇r(G).

Similar correspondence as for edge density (expressed in terms of grads
and top-grads) but also for clique number ω(G):

Lemma 2.2 [87]. Let r ∈ N. For any graph G:

ω(G �̃ r) ≤ ω(G� r) ≤ 22r−1

(
ω

(
G �̃

9r+1
− 5

2

))2r+1

.
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Fig. 2.3. Dominance of Invariants (up to polynomial transformation)

These two results are related by the following theorem, which has been
proved by Z. Dvořák in his thesis [35]:

Theorem 2.3. For each ε (0 < ε ≤ 1) there exist integers n0 and c0

and a real number μ > 0 such that every graph G with n ≥ n0 vertices
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and minimum degree at least n
ε contains the c-subdivision of Knμ as a

subgraph, for some c ≤ c0.

2.4. Stability with respect to lexicographic product

Let G, H be graphs. The lexicographic product G •H is defined by

V (G •H) = V (G)× V (H)

E(G •H) = {
{

(x, y), (x′, y′) : {x, x
′
} ∈ E(G) or x = x

′

and {y, y
′
} ∈ E(H)

}
.

Note that the lexicographic product (or blowing up of vertices) is in-
compatible with minors, since it is easily seen that every graph is a minor
of G •K2 for some planar graph G. However the lexicographic product and
blow-up are natural constructions in the context of homomorphisms and
quasi-randomness.

The long and difficult proof of the following Lemma is omitted here.

Lemma 2.4 [84]. For every integer r there exists a polynomial Pr of degree

O( (2r+1)!

2rr! ) such that for every graphs G and H:

∇r(G •H) ≤ Pr

(
|H|∇r(G)

)
.

We may notice a slight difference between the treatment of dense and
sparse graphs: In the case of dense graphs, it is usual to consider that any
blow-up of the vertices of a graph G produce a graph which is intrinsically
equivalent to G (hence the definition of the distance in [13]). However, in
the sparse case, we only allow to blow the vertices of the graphs a bounded
number of times, and the obtained graphs although not “equivalent” have
characteristic which are polynomially equivalent to the ones of the original
graph.

Also, Lemma 2.4 is the core of the proof of the existence of bounded
transitive fraternal augmentations for graphs with bounded grads, the heart
of our decomposition result for sparse graphs (see Section 3.6).

Notice also that we have an easy inequality the other way:
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Lemma 2.5. For every integer r and for every graphs G and H:

∇r(G •H) ≥ ∇r(G)|H|.

Hence, for fixed r, ∇r(G)|H| and ∇r(G •H) are polynomially equivalent.

Proof. Consider a shallow minor G
′ of G of depth r such that∇r(G) = ‖G′‖

|G′| .

Then G
′
•H is obviously a minor of G•H and ‖G′•H‖

|G′•H| ≥
|H|2‖G′‖
|H| |G′| = |H|

‖G′‖
|G| .

3. Sparse Classes of Graphs

3.1. Basic definitions

A class C of graphs is hereditary if every induced subgraph of a graph in C
to C, and it is monotone of every subgraph of a graph in C belongs to C. For
a class of graphs C, we denote by H(C) the class containing all the induced
subgraphs of graphs in C, that is the inclusion-minimal hereditary class of
graphs containing C.

3.1.1. Limits. Let C be an infinite class of graphs and let f : C → R be a
graph invariant. Let Inj (N, C) be the set of all injective mappings from N

to C. Then we define:

lim sup
G∈C

f(G) = sup
φ∈Inj (N,C)

lim sup
i→∞

f

(
φ(i)

)
.

Notice that lim supG∈C f(G) always exist and is either a real number or ±∞.

If lim supG∈C f(G) = α ∈ R = R ∪ {−∞,∞} we have the following two
properties:

• for every φ ∈ Inj (N, C), lim supi→∞ f

(
φ(i)

)
≤ α;

• there exists φ ∈ Inj (N, C), lim supi→∞ f

(
φ(i)

)
= α.

The second property is easy to prove: consider a sequence φ1, . . . , φi, . . .

such that limi→∞ lim supj→∞ f

(
φi(j)

)
= α. For each i, let si(1) < · · · <

si(j) < . . . be such that lim supj→∞ f

(
φi(j)

)
= limj→∞ f(φi

(
si(j)

)
). Then
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iteratively define φ ∈ Inj by φ(1) = φ1

(
s1(1)

)
and φ(i) = φi

(
si(j)

)
, where

j is the minimal integer greater or equal to i such that φi

(
si(j)

)
will be

different from φ(1), . . . , φ(i− 1). Then lim supj→∞ f

(
φ(j)

)
= α.

3.1.2. Derived classes. Graph operations naturally define operations on
graph classes: for a class C, an integer r and a graph H, we define:

C � r =
⋃
G∈C

G � r;

Br(C) =
{

G ∈ C � 0: ρ(G) ≤ r

}
;

C •H =
{

G •H : G ∈ C

}
;

C + H = {G + H : G ∈ C}.

(Here G + H of course means the disjoint union of graphs G and H.)

3.2. When is a class sparse or dense?

Defining the boundary between sparse and dense classes is not an easy task.
Several definitions have been given for “sparse graphs”, which do not allow a
dense/sparse dichotomy (for instance: a graph is sparse if it has a size which
is linear with respect to its order, dense if it is quadratic). Instead of defining
what is a “sparse graph” or a “dense graph”, we define “sparse classes of
graphs” and “dense classes of graphs” by the limit behavior of the “biggest”
graphs in the class when their order tends to infinity. Moreover, we will
demand that our definition stays invariant in the context of derived classes,
i.e. when we perform lexicographic products with small graphs, contractions
of small balls, etc. It appears that the right measure of the growth of edge
densities is the fraction of logarithms. This leads to the following trichotomy

which is the starting point of our classification:

Lemma 3.1 [87]. Let C be an infinite class of graphs. Then

lim
r→∞

lim sup
G∈C�r

log ‖G‖

log |G|
∈ {0, 1, 2}

The first case of Lemma 3.1, that is: limr→∞ lim supG∈C�r
log ‖G‖
log |G| = 0

corresponds to a class of graphs C such that the number of edges of the
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graphs in C is bounded (for otherwise lim supG∈C�0

log ‖G‖
log |G| > 0). Then the

graphs in C only contain isolated vertices with the exception of a bounded
number of vertices. We say that such a class is a class of bounded size

graphs.

The third case of Lemma 3.1, that is: limr→∞ lim supG∈C�r
log ‖G‖
log |G| = 2

corresponds to a class of graphs C such that by considering shallow minors
at some “reasonable” depth, one will find infinitely many dense graphs.
Actually (as shown in [87]) the property of such classes is even stronger:
there exists some threshold integer rC such that C � rC contains all finite
graphs! Such classes we call classes of somewhere dense graphs.

Between these two extreme cases which seem to be well characterized
lie the classes C such that:

lim
r→∞

lim sup
G∈C�r

log ‖G‖

log |G|
≤ 1.

Such classes we call classes of nowhere dense graphs. They are alternatively
defined by the fact that there exists no integer r such that C � r contains all
finite graphs (i.e. such that ω(C � r) = ∞). The intrinsic structure of this
class and of its subclasses is the main subject of this paper. The situation
is summarized in the following diagram:

lim
r→∞

lim sup
G∈C�r

log ‖G‖

log |G|

=0

																	
=1

��

=2

������������������

Bounded Size��



Nowhere Dense��



Somewhere Dense��


supG∈C ‖G‖ < ∞ ∀r : ω(C � r) <∞

��



∃rC : ω(C � rC) = ∞
��


∀r : ω(C �̃ r) <∞ ∃r

′
C : ω(C �̃ r

′
C) = ∞
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3.3. Within the nowhere dense world

Why do we have to consider shallow minors (i.e. classes C � r)? Could a
possible way to classify classes of nowhere dense graphs be to look precisely
at the behavior of log ‖G‖

log |G| − 1 for G ∈ C and |G| → ∞? Alas, it happens

that this value can be equivalent to any function of |G| which tends to zero:

Lemma 3.2. Let ε : N → R be a function such that ε(n) > 0 and

limn→∞ ε(n) = 0. Then there exists an infinite hereditary class of nowhere

dense graphs Cε such that

lim sup
G∈C

(
log ‖G‖

log |G|
− 1

)
∼ ε

(
|G|

)
.

Proof. We can use well known constructions of expanders and even weaker
construction of [105], where a deterministic algorithm is given that con-
structs a graph of girth logk(n) + O(1) and minimum degree k− 1, n is the
number of vertices and number of edges is e = �nk/2� (where k <

n
3
). The

degree of each vertex is guaranteed to be k − 1, k, or k + 1, where k is the
average degree.

As limn→∞ ε(n) = 0, there exists N ∈ N such that ε(N) < 1 and
N

ε(N)
< N/3. For n ≥ N , let Gn be a graph of order n, average degree

n
ε(n) and girth gn = 1

ε(n)
+ O(1). Let C = {Gn}n∈N

� 0.

For n, p, r ∈ N, assume Kp ∈ Gn �̃ r. Then the girth of Gn is at most
3(2r+1) hence 1

ε(n)
+O(1) ≥ 6r thus n ≤ h(r) for some function h : N → N.

As obviously p ≤ n we deduce p ≤ h(r). It follows that ω(C �̃ r) ≤ h(r)
hence C is a class of nowhere dense graphs.

Hence we will be more modest in our tentative classification: we will base
the classification on the rough behavior of C with respect to bounded depth
contractions. From the fact that limr→∞ lim supG∈C�r

log ‖G‖
log |G| = 1, we can

prove that the grads are “almost bounded” in the sense that∇r(G) = |G|
o(1)

for G ∈ C and |G| → ∞. This property suggest to consider the particular
case where the function ∇r(G) is actually bounded for every integer r. The
classes for which ∇r(G) is bounded by some value f(r) independent of G

are called classes with bounded expansion. That is:

C has bounded expansion ⇐⇒ ∀i ≥ 0: sup
G∈C

∇i(G) < ∞.
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The expansion of a class C with bounded expansion is the function f de-
fined by:

f(r) = ∇r(C) = sup
G∈C

∇r(G).

Let us remark here that we are explaining our definitions in the reverse
chronological order. Classes with bounded expansions were defined in 2005
(see e.g. [79, 80] while the importance of nowhere dense classes was realized
recently (see e.g. [83]). An intermediate level between classes with bounded
expansion and general classes of nowhere dense graphs are classes with
bounded local expansion, defined by the fact that for every ρ, the class Bρ(C)
of all balls of radius ρ in graphs in C has bounded expansion. Alternatively,
this may be expressed as follows:

C has bounded local expansion ⇐⇒

⇐⇒ ∀ρ, i ≥ 0: sup
v∈G∈C

∇i(G
[
N

G
ρ (v)

]
) <∞.

The interest in these classes is limited by the fact that adding an apex (that
is: a new vertex linked to all the original vertices) to the graphs in the class
destroys the property that the class has bounded local expansion if it does
not actually have a bounded expansion. However classes with bounded local
expansion strictly contain classes with locally forbidden minors and they in
turn minor closed classes. They were studied extensively, see e.g. [27]. A
standard example of a class with bounded local expansion is the class G
of graphs G such that girth (G) ≥ Δ(G): consider any fixed integer r and
the subgraph Gv of G ∈ G induced by the r-neighborhood of v. Either
Δ(G) < 2r and thus |Gv| ≤ (2r)r or Δ(G) > 2r thus girth (G) > 2r hence
Gv is a tree. Thus, except for a bounded number of graphs, the class Br(G)
only includes forests.

Another approach to sparsity is to look for subsets of vertices which
are far away from each other. Intuitively, for any integer d, if a graph is
sparse and sufficiently large it will be sufficient to delete few vertices to find
a big subset of vertices, any two of which are at distance at least d. Such a
deletion is necessary (as we shall see) if we do not want to restrict “sparsity”
to “bounded degree”.

Let r ≥ 1 be an integer. A subset A of vertices of a graph G is r-

independent if the distance between any two distinct elements of A is strictly
greater than r. We denote by αr(G) the maximum size of an r-independent
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set of G. Thus α1(G) is the usual independence number α(G) of G. A subset
A of vertices of G is d-scattered if N

G
d (u)∩N

G
d (v) = ∅ for every two distinct

vertices u, v ∈ A. Thus A is d-scattered if and only if it is 2r-independent.

A class of graphs is wide if every sufficiently large graph in the class
contains an arbitrarily big d-scattered set. Following Dawar [26], a class
if almost wide if deleting at most some number of vertices (bounded inde-
pendently to d) makes it possible to find an arbitrarily big d-scattered set
in a sufficiently large graph in the class. The class is quasi-wide when the
number of vertices to delete may depend on d. Precisely:

C is wide ⇐⇒ ∀d ∈ N, lim inf
G∈C

αd(G) = ∞

C is almost wide ⇐⇒ ∃s ∈ N, ∀d ∈ N, lim inf
G∈C

max
|S|≤s

αd(G− S) = ∞

C is quasi wide ⇐⇒ ∃s : N → N, ∀d ∈ N, lim inf
G∈C

max
|S|≤s(d)

αd(G− S) = ∞.

It has been proved in [9] that classes with bounded degree are wide, and
in [25] that proper minor closed classes of graphs are almost wide. In [83]
we characterized these classes and showed how they relate to the classes of
nowhere dense graphs. In particular, we prove that a hereditary class of
graph is quasi-wide if and only if it is a class of nowhere dense graphs, see
Section 5.2.

3.4. Classes with bounded expansion

For an extensive study of bounded expansion classes we refer the reader to
[84, 85, 86, 35, 36].

Let us list some examples of classes with bounded expansion. Some
inclusions of these classes are schematically depicted on Fig 3.1. However,
we should remark that these classes may correspond to different expansion
functions.

• d-dimensional meshes with bounded aspect ratio. Classes of
graphs which occur naturally in finite-element and finite-difference
problems are introduced in [72]. Theses classes, the classes of d-

dimensional meshes with bounded aspect ratio, are formed by the in-
terior skeletons of a family of d-dimensional simplicial complexes with
bounded aspect ratio. As such graphs exclude Kh as a depth L minor
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bounded expansion��


















����������������

no Kp subdivisions highly subdivided�� ���������������������

bounded degree no Kp minors�� ����������������

d-dimensional meshes planar

with bounded aspect ratio

Fig. 3.1. Classes with Bounded Expansion

if h = Ω(Ld) [109] they form (for each d) a class with polynomially
bounded expansion. Our results (and particularly linear algorithm
for low tree depth decompositions, see Sections 3.5 and 3.6) present a
natural link of applicable results [72].

• bounded degree classes. Let Δ be an integer. Then the class of
graphs with maximum degree at most Δ has expansion bounded by
the exponential function f(r) = Δr+1.
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• planar graphs. Any planar graph graph G of order n has size at
most 3n− 6, hence ∇0(G) < 3 for every planar graph. As any minor
of a planar graph is also planar, ∇r(G) < 3 for every integer r ≥ 0 and
any planar graph G. Hence the class of planar graphs has bounded
expansion.

• proper minor closed classes. More generally, any proper minor
closed class of graphs has expansion bounded by a constant function.
Conversely, any class of graphs with expansion bounded by a constant
is included in some proper minor closed class of graphs.

• proper topologically closed classes. These classes are defined by
a (possibly infinite) set S of forbidden configurations, in the sense
of Kuratowski’s configurations: a graph G belongs to the class if
no subdivision of a graph in S is isomorphic to a subgraph of G.
Such classes have expansion bounded by a double exponential function

f(r) = 2r−1(minH∈S

∣∣
V (H)

∣∣)2r+1

(see [79]).

• highly subdivided cliques. For any non-decreasing function f :
N → N\{0, 1, 2} we may construct a class Cf of graphs with expansion
f by including (for each integer r) the complete graph of 2f(r) + 1
vertices whose edges are subdivided 3r

− 1 times.

• union of bounded expansion classes. Union of finitely many
classes each with bounded expansion is itself a class with bounded
expansion.

3.5. Proper minor closed classes

Minor closed classes have been extensively studied by Robertson and Sey-
mour (see [97] for instance). From our point of view, proper minor closed
classes of graphs (that is: minor closed classes excluding at least one minor)
form the very extreme case where the expansion of the class is uniformly
bounded by a constant.

Important results have been obtained concerning proper minor closed
graphs, such as the celebrated proof of Wagner’s conjecture (the minor
relation is a well quasi-order) and the Structure Theorem. This field is also
strongly connected to the study of another fundamental conjecture, namely
Hadwiger’s conjecture.
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In their study of classes of graphs excluding a minor, Robertson and
Seymour have shown the particular importance of the tree-width tw (G) and
of classes with bounded tree-width. Structural and algorithmic importance
of tree-width [98] also appeared in the context of Monadic Second-order
Logic (MSL) through the results of Courcelle [23, 24].

In [80], we introduced yet a more restrictive type of classes of graphs,
related to a new invariant: the tree-depth td (G). Although a class of graphs
has bounded tree-width if and only if it excludes some grid as a minor, it has
bounded tree-depth if and only if it excludes some path as a minor. Classes
with bounded tree-depth appear to behave like classes of “almost finite”
graphs. For instance, only a bounded number of graphs with tree-depth at
most fixed k have no non-trivial involutive automorphism (see Section 3.2).

3.6. The full picture

The hierarchy of some important properties of hereditary sparse classes of
graphs is depicted Fig. 3.2. It is interesting to note that all the properties
shown in Fig. 3.2 are preserved when considering depth 1 shallow minors.
This means that the considered properties are “weakly minor closed”. For
instance, C has bounded degree if and only if C � 1 has bounded degree. We
give a short proof for the case of bounded local tree-width for completeness
(a similar proof applies for locally excluded minors):

Lemma 3.3. Let C be a class of graphs. Then C has bounded local tree-

width if and only if C � 1 has bounded local tree-width.

Proof. It is sufficient to prove that if C has bounded local tree-width, so
has C � 1. Let f : N → N be such that for every connected H ⊆ G ∈ C

and every t ∈ N we have ρ(H) ≤ t =⇒ tw (H) ≤ f(t) (where ρ(H) is
the radius of H). Let G ∈ C and let H ∈ G � 1. Then there is G

′
⊆ G

such that H ∈ G
′
� 1 and ρ(G′) ≤ 3ρ(H). As tw is minor-monotone, we

deduce tw (H) ≤ tw (G′) ≤ f

(
ρ(G′)

)
≤ f

(
3ρ(H)

)
. It follows that C � 1

has bounded local tree-width.
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Fig. 3.2. The Nowhere Dense World: inclusion map of some important properties of

hereditary classes of graphs
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4. Regular Partitions of Sparse Graphs

4.1. Tree-width

The concept of tree-width [56, 96, 111] is central to the analysis of graphs
with forbidden minors of Robertson and Seymour. This concept gained
much algorithmic attention thanks to the general complexity result of Cour-
celle about monadic second-order logic graph properties decidability for
graphs with bounded tree-width [23, 24]. It appeared that many NP-
complete problems may be solved in polynomial time when restricted to
a class with bounded tree-width. However, bounded tree-width is quite a
strong restriction, as planar graphs for instance do not have bounded tree-
width.

Let k be an integer. A k-tree is a graph which is either a clique of size
at most k or a graph G inductively constructed from a k-tree G

′ with order
one less by adding a vertex adjacent to a clique of size at most k in G

′.
A partial k-tree is a subgraph of a k-tree. Although it is not the usual
definition of tree-width (but is equivalent to it) we define the tree-width of
a graph in terms of partial k-trees: The tree-width tw (G) of a graph G is
the minimum k such that G is a partial k-tree. Notice that a graph G with
tree-width k is k-degenerate is the sense that every non-empty subgraph of
G has at least one vertex of degree at most k (this of course does not hold
conversely).

It is NP-complete to determine whether a given graph G has tree-width
at most a given variable k [6]. However, when k is any fixed constant, the
graphs with tree-width k can be recognized in linear time [11].

The notion of tree-width is closely related to that of vertex-separator.
An α-vertex separator of a graph G of order n is a subset S of vertices such
that every connected component of G − S contains at most αn vertices.
It is proved in [98] that any graph of tree-width at most k has a 1

2
-vertex

separator of size at most k + 1.

4.2. Tree-depth

The concept of tree-depth has been introduced in [76, 80] to study general-
ized chromatic numbers of graphs (which will be introduced in Section 3.5).
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A rooted forest is a disjoint union of rooted trees. The height of a vertex
x in a rooted forest F is the number of vertices of a path from the root (of
the tree to which x belongs to) to x and is noted height (x, F ). The height

of F is the maximum height of the vertices of F . Let x, y be vertices of F .
The vertex x is an ancestor of y in F if x belongs to the path linking y and
the root of the tree of F to which y belongs to. The closure clos (F ) of a
rooted forest F is the graph with vertex set V (F ) and edge set

{
{x, y} : x is

an ancestor of y in F , x �= y

}
. A rooted forest F defines a partial order on

its set of vertices: x ≤F y if x is an ancestor of y in F . The comparability
graph of this partial order is obviously clos (F ).

The tree-depth td (G) of a graph G is the minimum height of a rooted
forest F such that G ⊆ clos (F ). This definition is analogous to the definition
of rank function of a graph which has been used for analysis of countable
graphs, see e.g. [91]. The concept also plays a key role in the recent beautiful
proof of Rossmann [100].

The tree-depth of a graph may alternatively be defined inductively as
follows: Let G be a graph and let G1, . . . , Gp be its connected components.
Then

td (G) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if

∣∣
V (G)

∣∣ = 1;

1 + min
v∈V (G)

td (G− v), if p = 1 and
∣∣
V (G)

∣∣
> 1;

p
max
i=1

td (Gi), otherwise.

The tree-depth is minor monotone: if H is a minor of G then td (H) ≤
td (G). The tree-depth td (G) of a graph G is related to the order l(G) of a
longest path of G by:

l(G) ≤ td (G) ≤ 2l(G)

and to its tree-width (see [80, 12]) by:

tw (G) + 1 ≤ td (G) ≤
(
tw(G) + 1

)
log2 n.

The upper bound is, for instance, attained for paths (see Fig 4.1).

The tree-depth is also related to vertex-separators: for a graph G of
order n and an integer i ≤ n, let sG(i) be the maximum size of a 1

2
-vertex
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Fig. 4.1. The tree-depth of a path is logarithmic in the order of the path

separator of a subgraph of G of order at most i. Then:

td (G) ≤

log2 n∑
i=1

sG

(
n

2i

)
what implies that every graph G of order n with no minor isomorphic to
Kh has tree-depth at most

(
2 +

√

2
)√

h
3
n (as a graph of order i with no

Kh minor has a 1

2
-vertex separator of size at most

√

h
3
i [4]).

Although there is an (easy) polynomial algorithm to decide whether
td(G) ≤ k for any fixed k, if P �= NP then no polynomial time approximation
algorithm for the tree-depth can guarantee an error bounded by n

ε, where
ε is a constant with 0 < ε < 1 and n is the order of the graph [12].

One of the strongest properties of tree-depth is “finiteness” of graphs
with bounded tree-depth. Precisely, there exists a function � : N× N → N

with the following property: For any integer N , any graph G of order
n > �

(
N, td (G)

)
and any coloring g : V (G) → {1, . . . , N}, there exists

a non trivial involuting g-preserving automorphism μ : G → G. As a
consequence, any asymmetric (or rigid) graph of tree-depth t has order
at most �(1, t). Also, any graph G is hom-equivalent to one of its induced
subgraph of order at most �

(
1, td (G)

)
. Hence the class Dk of all graphs

G with td(G) ≤ k includes a finite subset D̂k such that, for every graph
G ∈ Dk, there exists Ĝ ∈ D̂k which is hom-equivalent to G and isomorphic
to an induced subgraph of G.

The finiteness is a deep property of finite structures which are “spanned”
by a branching and it has many forms. For example we can consider the
category of all pairs (G, T ) where G is a graph (or a structure), T a rooted
tree (or branching) and G ⊆ clos (F ). Such objects can be called graphtr.
The morphisms between graphtrs are mappings which preserve both edges
of the graph and arcs of the branchings. The above results about involutive
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automorphisms and finitely many hom-equivalent objects hold also in this
category. Many variations are possible, see also [100] where tree depth
corresponds to the quantifier rank. At its place we want to mention that
the above function � grows as quickly as the Ackerman function.

The tree-depth is intimately related to special types of colorings:

A centered coloring of a graph G is a vertex coloring such that, for any
(induced) connected subgraph H, some color c(H) appears exactly once
in H. Note that a centered coloring is necessarily proper. Actually, the
minimum number of colors in a centered coloring of a graph G is exactly
td (G) [80].

We can also relate the minimum number of colors in a centered coloring
to the notion of vertex ranking number which has been investigated in
[28, 101]: The vertex ranking (or ordered coloring) of a graph is a vertex
coloring by a linearly ordered set of colors such that for every path in the
graph with end vertices of the same color there is a vertex on this path with
a higher color. A vertex-coloring c : V (G) → {1, . . . , t} with this property
is a vertex t-ranking of G. The minimum t such that G has a vertex t-
ranking is the vertex ranking number of G (see [28, 101]). This parameter
also equals td (G) [80].

4.3. Generalized coloring numbers

Consider the following ordering game played by Alice and Bob with Alice
playing first. The players take turns choosing vertices from the set of
unchosen vertices. This creates a linear order L of the vertices of G with
x < y if and only if x is chosen before y. Given a linear order L on V ,
the back degree of a vertex x relative to L is the number of neighbors of x

which precedes x in L. The back degree of L is the maximum back degree
of a vertex relative to L. Alice’s goal is to minimize the back degree of L,
while Bob’s goal is to maximize the back degree of L. This is a zero-sum
two person game. Therefore each player has an optimal strategy. The game

coloring number colg(G) is the smallest (largest) integer t for which Alice
(Bob) has a strategy to ensure that the linear order produced by playing
the game has back degree at most (at least) t− 1.

For instance, the complete bipartite graph Kn,n has game coloring num-
ber n+1. It was proved by Faigle et al. [44] that the game coloring number
of a forest is at most 4, and that the game coloring number of an interval
graph G is at most 3ω−2. It was proved by Zhu [113] that the game coloring
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number of the planar graphs is at most 19 and this bound has been further
reduced by Kierstead to 18 [59] and by Zhu to 17 [115]. It has also been
shown by Guan and Zhu [52] that the outerplanar graphs have game color-
ing number at most 7. The game coloring number of graphs with bounded
∇1 is bounded (see [81, 115, 35]).

As a generalization of both arrangeability and coloring number Kierstead
and Yang introduced in [60] two new series of invariants colk and wcolk, that
is: the coloring number of rank k and the weak coloring number of rank k.

Let L be a linear order on the vertex set of a graph G, and let x, y

be vertices of G. We say y is weakly k-accessible from x if y <L x and
there exists an x–y-path P of length at most k (i.e. with at most k edges)
with minimum vertex y with respect to <L (see Fig. 4.2). The vertex is
k-accessible from x if y <L x and there exists an x–y-path P of length at
most k with minimum vertex y and second minimum vertex x with respect
to <L.

Fig. 4.2. The vertex y is weakly 8-accessible from x

Let Qk(G, L, x) and Rk(G, L, x) be the sets of vertices that are respec-
tively weakly k-accessible and k-accessible from x:

Qk(G, L, x) = {y : ∃ x–y path P such that minP = y}

Rk(G, L, x) =
{

y : ∃ x–y path P such that minP = y

and min(P − y) = x

}
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The weak k-coloring number wcolk(G) and the k-coloring number

colk(G) of G are defined by:

wcolk(G) = 1 + min
L

max
v∈V (G)

∣∣
Qk(G, L, v)

∣∣
,

colk(G) = 1 + min
L

max
v∈V (G)

∣∣
Rk(G, L, v)

∣∣
.

These two graph invariants are polynomially dependent, as shown in [60]:

colk(G) ≤ wcolk(G) ≤
(

colk(G)
)k

They form two non-decreasing sequences, the sequence of weak-coloring
numbers having the tree-depth as its maximum:

col (G) = wcol1(G) ≤ wcol2(G) ≤ · · · ≤ wcolk(G) ≤ · · · ≤ wcol∞(G)

= td (G)

Generalized coloring numbers are strongly related to grads: it has been
proved by X. Zhu that there exists polynomials Fk such that the following
holds:

Theorem 4.1 [116]. For every integer k and every graph G:

∇ k−1

2

(G) ≤ wcolk(G) ≤ Fk(∇ k−1

2

(G))

4.4. Low tree-width coloring

A class C has a low tree-width coloring if, for any integer p ≥ 1, there
exists an integer N(p) such that any graph G ∈ C may be vertex-colored
using N(p) colors so that each of the connected components of the subgraph
induced by any i ≤ p parts has tree-width at most (i − 1). According to
this definition, the result of DeVos et al. may be expressed as

Theorem 4.2 [29]. Any minor closed class of graphs excluding at least one

graph has a low tree-width coloring.
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4.5. Low tree-depth coloring and p-centered colorings

As we introduced low tree-width coloring, we say that a class C has a low

tree-depth coloring if, for any integer p ≥ 1, there exists an integer N(p)
such that any graph G ∈ C may be vertex-colored using N(p) colors so that
each of the connected components of the subgraph induced by any i ≤ p

parts has tree-depth at most i. As td (G) ≥ tw(G) − 1, a class having a
low-tree depth coloring has a low tree-width coloring.

Vertex Partitions

Parameter Tree-Width Tree-Depth

1 proper coloring

2 acyclic coloring [14] star coloring [51]

p low tree-width decompo-
sition [29]

low tree-depth decompo-
sition [80]

Following [80], we will make use of the notation χp(G) for the minimum
number of colors need for a vertex coloring of G such that i < p parts induce
a subgraph of tree-depth at most i. These graph invariants (“generalized
chromatic numbers”) form a non-decreasing sequence:

χ(G) = χ1(G) ≤ χ2(G) ≤ · · · ≤ χp(G) ≤ · · · ≤ χ∞(G) = td (G).

Also, we say that a vertex coloring of a graph G is a p-centered coloring

if, for any (induced) connected subgraph H, either some color c(H) appears
exactly once in H, or H gets at least p colors.

The main result of [84] is the proof that these notions are related and that
asking for the χp’s to be bounded on a class of graph (with bounds depending
on p) is the same as requiring that the class has bounded expansion:

Theorem 4.3 [84]. Let C be a class of graphs. The following conditions

are equivalent:

(1) C has low tree-width colorings,

(2) C has low tree-depth colorings,

(3) for every integer p,
{

χp(G) : G ∈ C

}
is bounded,

(4) for every integer p, there exists an integer X(p) such that every graph

G ∈ C has a p-centered colorings using at most X(p) colors,

(5) C has bounded expansion.
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More precisely, the properties of having bounded χp and bounded ∇r

are related in [84] as shown Fig. 4.3:

bounded χ(G) bounded ∇0(G)�� (degenerate)

bounded χ2(G)

�� ����������������

bounded ∇1(G)��

��

bounded χp(G)

��

bounded ∇p(G)

��

bounded χ2p+2(G)

�� ����������������

bounded ∇pp(G)

����������������

��

χr(G) < g(r)

��

�� ��
∇r(G) < f(r)

��

(bounded expansion)

bounded td (G)

��

�� bounded ∇(G)

��

(proper minor closed)

Fig. 4.3. Invariant dependence

Further improvements have been obtained in bounding χp(G) in terms
of the grads of G [116, 35]. The best bound up to now is:

Theorem 4.4 [35]. For each p > 0, there exists a polynomial P of degree

O(8p) such that for each graph G,

χp(G) ≤ P

(
∇2p−1−1(G)

)
As a consequence of these results (and of the above dependency schema),

we also have the following equivalence:

Theorem 4.5 [87]. Let C be an infinite (and not size bounded) class of

graphs. The following conditions are equivalent:

• lim
p→∞

lim sup
G∈C

log χp(G)

log |G|
= 0,

• lim
r→∞

lim sup
G∈C

log∇r(G)

log |G|
= 0,
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• C is a class of nowhere dense graphs.

Further characterizations are stated in the final chapter.

4.6. Algorithmic considerations

The decomposition algorithms we present here are those described in [79,
85]. They are based on indegree bounded orientations and transitive frater-
nal augmentations of these (see [84] for the relation between transitive fra-
ternal augmentations and low tree-depth decompositions; see also [75, 78]).

Let �
G be a directed graph. A 1-transitive fraternal augmentation of �

G

is a directed graph �
H with the same vertex set, including all the arcs of �

G

and such that, for every vertices x, y, z,

• if (x, z) and (z, y) are arcs of �
G then (x, y) is an arc of �

H (transitivity),

• if (x, z) and (y, z) are arcs of �
G then (x, y) or (y, x) is an arc of �

H

(fraternity).

Fig. 4.4. The Transitive Fraternal Augmentation of a Graph

A 1-transitive fraternal augmentation �
H of �

G is tight if for each arc
(x, y) in �

H which is not in �
G there exists a vertex z so that (x, z) and at

least one of (z, y), (y, z) are arcs of �
G.

A transitive fraternal augmentation of a directed graph �
G is a sequence

�
G = �

G1 ⊆
�
G2 ⊆ · · · ⊆

�
Gi ⊆

�
Gi+1 ⊆ · · · , such that �

Gi+1 is a 1-transitive
fraternal augmentation of �

Gi for every i ≥ 1. The transitive fraternal
augmentation is tight if all the 1-transitive fraternal augmentations of the
sequence are tight.
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4.6.1. Computing a Transitive Fraternal Augmentation. We describe
an algorithm which computes, given any directed graph �

G of order n, a 1-

tight transitive fraternal augmentation �
H in O

(
Δ−(�

G)
2
n

)
-time, such that:

Δ−( �
H) ≤ f(Δ−

(
�
G,∇1(�

G)
)

∇r( �
H) ≤ gr

(
Δ−(�

G),∇2r+1(�
G)

)
for some polynomials f and gr (r ∈ N).

In the augmentation process, we add two kind of arcs: transitivity arcs
and fraternity arcs. Let us start with transitivity ones:

Require: D represents the directed graph to be augmented.
Ensure: D

′ represents the array of the added arcs.
Initialize D

′.
for all v ∈ {1, . . . , n} do

for all (u, e) ∈ D[v] do

for all (x, f) ∈ D[u] do

m ← m + 1; append (x, m) to D
′[v].

end for

end for

end for

This algorithm runs in O

(
Δ−(�

G)
2
n

)
time, where Δ−(�

G) is the max-
imum indegree of the graph to be augmented. It computes the list array
D
′ of the transitivity arcs which are missing in �

G, missing arcs may appear
more than once in the list, but the number of added edges cannot exceed

Δ−(�
G)

2
n.

Now, we shall consider the fraternity edges.

Require: D represents the directed graph to be augmented.
Ensure: L represents the list of edges to be added.

L = ().
for all v ∈ {1, . . . , n} do

for all (x, e) ∈ D[v] do

for all (y, f) ∈ D[v] do

if x < y then

append (x, y) to L.
end if
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end for

end for

end for

This algorithm runs in O(Δ−(�
G)

2
n)-time and computes the list of the

fraternity edges. Edges may appear in this list more than once but the

length of the list L cannot exceed Δ−(�
G)

2
n/2.

The simplification of L (that is the removal of multiple instances of a
same edge in the list), the computation of an acyclic orientation of the
graph with edge set L having minimum possible maximum indegree and
the merge/simplification with the arcs in D and D

′ may be achieved in

O(Δ−(�
G)

2
n)-time.

Let G be a graph. Define f(r) = ∇r(G) and F (x, y) = x
2 + 2y and let

R(p) = 1 + (p − 1)
(
2 + �log2 p�

)
. The tight fraternal augmentation �

G =
�
G1 ⊆

�
G2 ⊆ · · · ⊆

�
GR(p) of G computed by iterating R(p) times the tight 1-

transitive fraternal augmentation algorithm is such that any proper coloring
of GR(p) defines a p-centered coloring of G. Using the fact that a proper

coloring of GR(p) using at most �2∇0(GR(p))� + 1 colors may easily been
computed in O(n)-time, we get an algorithm which computes a p-centered
coloring of G using at most Cp

(
∇pp(G)

)
colors in time C

′
p

(
∇pp(G)

)
n where

Cp and C
′
p are polynomials.

From this follows, in particular that for every fixed p, our p-centered
coloring algorithm has the following properties:

p-centered coloring characteristics

Class type Max number of color Max running time

Classes with bounded expansion O(1) O(n)

Classes of nowhere dense graphs n
o(1)

≤ n
1+o(1)

5. Algorithmic Applications

In this Chapter we give a sample of algorithmic applications. Such applica-
tions seem to be typified by this situation: Results which were proved earlier
for planar graphs, and later sometimes generalized for proper minor closed
classes can be sometimes proved for general classes with bounded expan-
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sion. And for bounded degree graphs we can sometimes proceed similarly.
We review sample of such instances, for other applications see [79].

5.1. Subgraph isomorphism problem

Eppstein [41] gives a linear time algorithm to solve the subgraph isomor-
phism problem for a fixed pattern in a planar graph. He also gives a linear
time bound for a fixed pattern and an input graph with bounded tree width
decomposition. From this lemma and using our p-centered coloring algo-
rithm, we deduce an extension of Eppstein’s result of [41, 42] to classes with
bounded expansion:

Theorem 5.1. Let C be a class with bounded expansion and let H be a

fixed graph. Then there exists a linear time algorithm which computes,

from a pair (G, S) formed by a graph G ∈ C and a subset S of vertices

of G, the number of isomorphs of H in G that include some vertex in S.

There also exists an algorithm running in time O(n) + O(k) listing all such

isomorphism where k denotes the number of isomorphs (thus represents the

output size).

It is also possible to extend this result to classes of nowhere dense graphs,
with a complexity increasing from O(n) to n

1+o(1). All of these results are
summarized in the following table:

Subgraph isomorphism problem

Context Complexity Reference(s)

General O(n
0.792 |V (H)|) [88] using [22]

Bounded tree-width O(n) [41] (also [23, 24])

Planar O(n) [40] [41]

Bounded genus O(n) [42]

Bounded expansion O(n) [79, 85]

(includes the three

previous classes)

Nowhere dense ≤ n
1+o(1) [87]
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5.2. Small distance checking

The following result is a weighted extension of the basic observation that
bounded orientations allows O(1)-time checking of adjacency [20].

Theorem 5.2. For any class C with bounded expansion and for any in-

teger k, there exists a linear time preprocessing algorithm so that for

any preprocessed G ∈ C and any pair {x, y} of vertices of G the value

min
(
k, dist (x, y)

)
may be computed in O(1)-time.

Also, this result may be extended to classes of nowhere dense graphs,
using a preprocessing algorithm in n

1+o(1)-time allowing min
(
k, dist (x, y)

)
to be computed in n

o(1)-time.

5.3. Existential first-order properties

Monadic second-order logic (MSOL) is an extension of first-order logic
(FOL) that includes subsets of vertex sets (i.e. we expand our language by
monadic predicates). The following theorem of Courcelle has been applied
to solve many optimization problems.

Theorem 5.3 Courcelle [23, 24]. Let K be class of finite graphs G =
〈V, E, R〉 represented as τ2-structures, that is: by two sorts of elements

(vertices V and edges E) and an incidence relation R. Let φ be a MSOL(τ2)
sentence. If K has bounded tree width and G ∈ K, then checking whether

G � φ can be done in linear time.

From this theorem and our results (especially low tree depth decompo-
sition) we deduce (see e.g. [79]):

Theorem 5.4. Let C be a class with bounded expansion and let p be a

fixed integer. Let φ be an existential FOL(τ2) sentence. Then there exists

a linear time algorithms to check whether an input graph G ∈ C satisfies φ

or not.

Thus for instance we have([79]):

Theorem 5.5. Let K be a class with bounded expansion and let H be a

fixed graph. Then, for each of the next properties there exists a linear time

algorithm to decide whether a graph G ∈ K satisfies them:
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• H has a homomorphism to G,

• H is a subgraph of G,

• H is an induced subgraph of G.

5.4. Dominating sets

The Dominating Set problem (DSP) is defined as follows.

Input: A graph G = (V, E) and an integer parameter k.

Question: Does there exist a dominating set of size k or less for G, i.e., a
set V

′
⊆ V with |V ′| ≤ k and such that for all u ∈ V − V

′ there is a
v in V

′ for which uv ∈ E?

This is a classic NP-complete problem [47] which is also apparently not fixed
parameter tractable (with respect to the parameter k) because it is known to
be W[2]-complete in the W-hierarchy of fixed parameter complexity theory
[32]. In this theory, any graph problem for which there is an algorithm with
time complexity O(f(k)nα), for some problem parameter k, where n is the
number of vertices in the graph and where α is a constant independent of
k and n, is said to be fixed parameter tractable (fpt).

DSP is fixed parameter tractable with respect to, for example, tree-width
[6] and tree decompositions are computable in linear time, for fixed tree-
width [11]. DSP is similar in definition to the vertex cover problem (VCP),
but they seem to differ considerably in their fixed parameter tractability
properties. The Robertson-Seymour theory of graph minors [99] can be
used to show that VCP is a fixed parameter tractable problem because
vertex cover is closed with respect to taking minors, and fpt algorithms
have been described [32] for VCP. But DSP is not closed with respect to
taking minors.

DSP remains NP-complete when restricted to planar graphs [47]. Fel-
lows and Downey [31, 32] gave a search tree algorithm for this problem
which has time complexity O(11k

n), when the input is restricted to planar
graphs.

In [39] it is shown, using the search tree approach, that the dominating
set problem is fixed parameter tractable for graphs of bounded genus, with
time complexity of O

(
(4g + 40)k

n
2
)

for graphs of genus g ≥ 1.
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The idea to make this problem tractable, is to consider the strong
properties of small dominating sets on classes with bounded tree-depth.

Let G = (V, E) be a graph. A subset X ⊆ V of G is a dominating set of
G if every vertex of G not in X is adjacent to some vertex in X. We note
D(G) the family of all dominating sets of G and by Dk(G) the family of the
dominating sets of G having cardinality at most k.

For subsets X, W ⊆ V , we say that X dominates W if every vertex in
W \X has a neighbor in X. We denote Dk(G, W ) the family of the subsets
dominating W and having cardinality at most k.

Lemma 5.6. For every integers k, l ≥ 1 for every graph G = (V, E) with

tree-depth at most l and for every subset W ⊆ V of vertices, there exists

a (blocker) subset A = A(G, W ) ⊆ V of at most kl vertices meeting every

X ∈ Dk(G, W ). Moreover, if a rooted forest Y of height l is given such that

G ⊆ clos (Y ) then we can find the blocker set A in O(kl)-time.

From this Lemma, using a low tree-depth decomposition, we deduce:

Lemma 5.7. Let C be a class with bounded expansion. Then there exists a

function f : N → N such that for every integer k, for every G = (V, E) ∈ C
and for every W ⊆ V a set A(G, W ) of cardinality at most f(k) may be

computed in O(n)-time (where n is the order of G) which meets every set

in Dk(G, W ).

Hence, by an easy induction on k:

Theorem 5.8. Let C be a class with bounded expansion. Then there exists

a function g : N → N such that for every integer k, every G = (V, E) ∈ C
and every W ⊆ V one may compute in time O(g(k)n) a set X which is

either minimal set cardinality at most k dominating W or the empty set if

G has no dominating set of cardinality at most k.

Actually, we also deduce that any graph G has at most F

(
k,∇kk(G)

)
dominating sets of size at most k and that they may be all enumerated
in time O(φ

(
k,∇kk(G)

)
n). Notice that the result does not extend to the

problem of finding a set X of cardinality at most k such that every vertex
not in X is at distance at most 2 from X (consider k disjoint stars of order
n/k, giving (n/k)k possible solutions to the problem.
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5.5. Induced matchings

A matching in a graph G is a subset of pairwise non-adjacent edges. An
induced matching in a graph G is a matching of G which is an induced
subgraph of G, that is a matching with the property that no endpoint of
an edge in the matching is adjacent to an endpoint of another edge in the
matching.

The problem of finding a maximum induced matching (that is: an in-
duced matching with maximum cardinality) has been introduced by Stock-
meyer and Vazirani [103] as the “risk-free marriage problem” and it was
studied extensively [34, 43, 45, 50, 102]. For a graph G we denote by β

* (G)
the size of a maximum induced matching.

It is known that the problem of deciding whether a given graph has
an induced matching of size at least k (for given k) is NP-complete [103],
even for bipartite graphs of maximum degree 4. However, this problem
has been shown to be solvable in polynomial time for several graph classes
[15, 16, 17, 18, 19, 49, 50, 61, 70, 71] and even in linear time for trees
[46, 50, 117].

A vertex v of a graph G is a clone if G has a vertex u �= v with the same
neighborhood as v. In that say we say that v is a clone of u. We denoted
by ∼ be the equivalence relation defined by x ∼ y if x and y have the same
neighbors (i.e. are clones). The authors proved in [82] that clone-free graphs
with bounded ∇1(G) have an induced matching of linear size (that is: of
size ε

(
∇1(G)

)
|G|).

Theorem 5.9. Let G be a clone-free connected graph. Then

β
* (G) ≥

|G|

f

(
∇0(G),∇1(G)

)
where

f(x, y) = 4x(22y + y + 1)
(
2x(22y + y + 1) + 1

)2

Actually, a more general result is proved in [82]:

Theorem 5.10. For every integer k > 2 and every C > 0 there exists

ε > 0 such that every connected graph G of order n with no involutive

automorphism ϕ exchanging two connected Pk-free subgraphs and such that
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∇�k/2�(G) < C has a subset of kεn vertices inducing εn disjoint paths of

order k.

5.6. Vertex separators

A celebrated theorem of Lipton and Tarjan [68] states that any planar graph
has a separator of size O

(√
n

)
. Alon, Seymour and Thomas [4, 3] showed

that excluding Kh as a minor ensures the existence of a separator of size
at most O

(
h

3/2
√

n

)
. Gilbert, Hutchinson, and Tarjan [48] further proved

that graphs with genus g have a separator of size O

(√
gn

)
(this result is

optimal).

Plotkin et al. [95] introduced the concept of limited-depth minor exclu-
sion and have shown that exclusion of small limited-depth minors implies
the existence of a small separator. Precisely, they prove that any graph ex-
cluding Kh as a depth l minor has a separator of size O(lh2 log n+n/l) hence
proving that excluding a Kh minor ensures the existence of a separator of
size O

(
h

√

n log n

)
.

Plotkin et al. [95] proved that for graphs with m edges and n vertices,
and integers l and h, there is an O(mn/l) time algorithm that will either
produce a Kh-minor of depth at most l log n or will find a separator of size
at most O(n/l + 4lh

2 log n). We deduce that classes with sub-exponential
expansions have separators of sub-linear size. Random cubic graphs having
expansion bounded by f(x) = 2x and almost surely Ω(n) bisection width
[64] (thus Ω(n) separators) show that this result is optimal.

Theorem 5.11. Let C be a class of graphs with expansion bounded by a

function f such that log f(x) = o(x).

Then the graphs of order n in C have separators of size s(n) = o(n)
which may be computed in time O

(
ns(n)

)
= o(n2).

As random cubic graphs almost surely have bisection width at least
0.101n, they have almost surely no separator of size smaller than n/20 It
follows that if log f(x) = (log 2)x, the graphs have no sublinear separators
any more. This shows the optimality of Theorem 5.11. More: as proved by
Dvořák, the absence of small vertex separators implies that the expansion
of a class of graphs has to be sub-exponential. Precisely:
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Theorem 5.12 [35]. If C is a monotone class of graphs such that each

graph in C of order n has a vertex separator of size o( n
log n), then C has

subexponential expansion.

6. Homomorphisms and Logic

In this chapter we relate our theory to some problems treated in the con-
text of model theory and mathematical logic: In Section 6.1 we deal with
dualities and in Section 6.2 we deal with homomorphisms preservation theo-
rems. Both these questions were intensively studied in the unrestricted cases
[93, 100, 7] as well as under various restrictions (to minor closed classes and
classes of bounded degree graphs; see e.g. [8, 10, 25, 27, 33, 55, 80]. This
research continued by considering classes of bounded expansion and, more
recently, classes of nowhere dense graphs. A bit surprisingly, all the main
results may be generalized by restriction to these classes.

This is proper place to say that the results of this section hold for
more general structures than undirected graphs. They hold for oriented
graphs, for colored graphs, hypergraphs and finite relational structures. It
is easy to transform the results for graphs to results for hypergraphs and
relational systems. This can be done using incidence graphs and, in most
cases alternatively, using 2-sections (known in model theory as Gaifman

graphs), see [87]. However to keep the style of this paper uniform we state
most of the results for graphs only.

6.1. Restricted dualities

Recall that a homomorphism from a graph G to a graph H is a mapping
f : V → V (H) which preserves adjacency:

{
f(x), f(y)

}
∈ E(H) whenever

{x, y} ∈ E(G). We denote by G

f ��
H or f : G

��
H that f is a

homomorphism from G to H. The existence of a homomorphism from G to
H is denoted by G

��
H, while the non-existence of such a homomorphism

is denoted by G
��
H. Graphs G, G

′ are said to be homomorphism

equivalent if we have both G
��
G
′ and G

′ ��
G. It is also clear that

the relation G ≤ H defined as G
��
H is a quasiorder on the class of all

finite graphs. This quasiorder becomes a partial order if we restrict it to the
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class of all non-isomorphic minimal retracts (i.e. cores). This partial order
is called the homomorphism order. All graphs considered in this paper are
finite. A class is a (possibly infinite) class of finite graphs. See [57] for a
recent introduction to graphs and homomorphisms.

The following definition is the central definition of this section:

Definition 6.1. A class of graphs K has all restricted dualities if, for any
finite set of connected graphs F = {F1, F2, . . . , Ft}, there exists a set of
finite graphs DKF such that Fi

��
D for i = 1, . . . , t and every D ∈ D

K
F ,

and such that for all G ∈ K,

(Fi
��
G for all i = 1, 2, . . . , t) ⇐⇒

(
G

��
D for some D ∈ D

K
F

)
.(3)

Any instance of (3) is called a restricted finite duality (for the class K),
or K-restricted duality.

In the extremal case that F and DKF consists from single element sets
we speak about restricted singleton duality (this case is however the key to
the general case). Also note that if all graphs are connected then the set
D
K
F can be chosen with one element.

We now justify this general definition by the following two examples and
by the context in which this definition crystallized.

Example 6.2. Grötzsch’s celebrated theorem (see e.g. [110]) says that every
triangle-free planar graph is 3-colorable. In the language of homomorphisms
this says that for every triangle-free planar graph G there is a homomor-
phism of G into K3. Using the partial order terminology, Grötzsch’s theorem
says that K3 is an upper bound (in the homomorphism order) for the class
P3 of all planar triangle-free graphs. It is K3 /∈ P3 and this suggests a
natural question (first formulated in [74]): Is there yet a smaller bound?
The answer, which may be viewed as a strengthening of Grötzsch’s theo-
rem, is positive: there exists a triangle free 3-colorable graph H such that
G

��
H for every graph G ∈ P3. This has been proved in [80, 78] in a

stronger form for all proper minor-closed classes. (The case of triangle-free
planar graphs is interesting in its own and it has been related in [73] to a
conjecture by Seymour and to Guenin’s theorem [53] and seems to find a
proper setting in the context of TT -continuous mappings [90].) One can
view these results as restricted dualities (which hold in the class of planar
graphs). Restricted duality results have since been generalized not only to
proper minor closed classes of graphs and but also to other forbidden sub-
graphs, in fact to any finite set of connected graphs, [80]. This then implies
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that Grötzsch’s theorem can be strengthened by a sequence of even stronger
bounds and that the supremum (in the homomorphism order) of the class
of all triangle free planar graphs does not exist, [77].

Example 6.3. A graph is sub-cubic if the degrees of all its vertices are
≤ 3. By Brooks theorem (see e.g. [30]) every sub-cubic connected graph
is 3-colorable with the single exception of K4. What about the class of all
sub-cubic triangle-free graphs? Does there exists a triangle free 3-colorable
bound? The positive answer to this question is given in [33, 55]. In fact
for every finite set F = {F1, F2, . . . , Ft} of connected graphs there exists a
graph H with the following property:

G
��
H for every sub-cubic graph G ∈ Forbh(F).

(Here Forbh(F) is the class of all graphs G which satisfy Fi
��
G for

every i = 1, 2, . . . , t. Thus Forbh(K3) is the class of all triangle free graphs.)
It follows that the class of all sub-cubic graphs has all restricted dualities.

Note that while sub-cubic graphs, and more generally graphs with
bounded degrees, have all restricted dualities, this is not true for classes
of degenerate graphs [74, 77].

Where lies the boundary for validity of restricted dualities? This is the
central question of this area. We give a very general sufficient condition for
a class to have all restricted dualities. To motivate these results we first
introduce the original context of (unrestricted) dualities.

The following is a partial order formulation of an important homomor-
phism (or coloring; or Constraint Satisfaction) problem (this time we for-
mulate the definition for finite structures):

Definition 6.4. A pair F, D of structures is called a dual pair if for every
structure G,

(4) F
��
G ⇐⇒ G

��
D.

We also say that F and D form a duality, D is called (singleton) dual

of F . Dual pairs of graphs and of finite relational structures were char-
acterized in [93], the notion itself goes back to [89]. Equivalently, one can
describe a dual pair F, D by saying that the structure D is the maximum
graph in the class Forbh(F ) (maximum in the homomorphism order).
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It appears (and this is the main result of [93]) that (up to homomor-
phism equivalence) all the dualities are of the form (T, DT ) where T is a
finite (relational) tree. Every dual DT is uniquely determined (up to homo-
morphism equivalence) by the tree T (but its structure is far more difficult
to describe, see e.g. [94, 92, 66]). These results imply infinitely many ex-
amples of dualities. But a much richer spectrum (and in fact a surprising
richness of results) is obtained by restricting the validity of (4) to a partic-
ular class of graphs K. This then is expressed by the notion of a restricted
duality.

It is easy to see that using the homomorphism order we can reformulate
the restricted duality as follows: A class K has all restricted dualities
if for any finite set of connected graphs F = {F1, F2, . . . , Ft} the class
Forbh(F) ∩ K has an upper bound in the homomorphism order (namely
D
K
F ) which belongs to the class Forbh(F).

Bounded expansion classes of graphs and structures provide a rich spec-
trum of restricted dualities. This has been shown in [84, 85, 86, 79]. The
following may be see as one of the main results:

Theorem 6.5. Any class of graphs (and more generally structures) with

bounded expansion has all restricted dualities.

As both proper minor closed classes and bounded degree graphs form
classes of bounded expansion this result generalizes both Examples 1 and 2.
In fact the seeming incomparability of bounded degree graphs and minor
closed classes led us to the definition of bounded expansion classes.

6.2. Homomorphism preservation

Homomorphisms are one of the key concept of model theory as they are
naturally related to the satisfiability of formulas. This we shall illustrate
on homomorphism preservation theorems. This application provided the
motivation for the concept of nowhere dense graphs and structures.

Classical model theory studies properties of abstract mathematical struc-
tures (finite or not) expressible in first-order logic, see e.g. [58]. In this con-
text, three classical fundamental preservation theorems have been proved,
which connect syntactic and semantic properties of first-order formulas:

• the �Loś–Tarski theorem, which asserts that a first-order formula is pre-
served under extensions on all structures if, and only if, it is logically
equivalent to an existential formula;
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• Lyndon’s theorem, which asserts that a first-order formula is preserved
under surjective homomorphisms on all structures if, and only if, it is
logically equivalent to a positive formula;

• the homomorphism preservation theorem which asserts that a first-
order formula is preserved under homomorphisms on all structures if,
and only if, it is logically equivalent to an existential-positive formula.

The terms “all structures”, which means finite and infinite structures, is
crucial in the statement of these theorems.

Finite model theory is the study of the first-order logic (and its various
extensions) on finite structures [37, 67]. In this context, it has been proved
that the two first theorems fail when relativized to the finite, that is: there
exists a first-order formula that is preserved under extensions on finite
structures, but is not equivalent in the finite to an existential formula
[107, 54, 2] and there exists a first-order formula that is preserved under
surjective homomorphisms on finite structures, but is not equivalent in
the finite to a positive formula [1, 104]. However, a bit surprisingly, the
relativized version of the homomorphism preservation theorem to the finite
has been recently proved by B. Rossman [100].

Relativizations of homomorphism preservation theorem to specific
classes of structures have been studied and in this context e.g. in [9, 8, 10]
and in this context A. Dawar defined classes of graphs called wide, almost

wide and quasi-wide (see e.g. [25]) and they were introduced in Section 2.3.
Here we treat these interesting classes in a greater detail.

For instance, it has been proved in [8] that the extension preservation
theorem holds in any class C that is wide, hereditary (i.e. closed under taking
substructures) and closed under disjoint unions. Wide classes includes
classes with bounded maximum degree. We prove here (and see [83] that
an hereditary class of graphs is actually wide if and only if it has a bounded
degree (Theorem 6.6).

Also, it has been proved in [9, 10] that the homomorphism preservation
theorem holds in any class C that is almost wide, hereditary and closed
under disjoint unions. Almost wide classes of graphs include classes of
graphs which exclude a minor [65].

Dawar [26] recently announced that the homomorphism preservation
theorem holds in any hereditary quasi-wide class that is closed under disjoint
unions. This is a strengthening of the result proved in [9]. Clearly, quasi-
wide quasi-wide classes of graphs include classes of graphs locally excluding
a minor [27]. Using the theory developed for classes of sparse graphs we
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shall give a complete characterization of hereditary classes of graphs which
are wide, almost wide and quasi-wide. In fact this led us to the definition
of classes of nowhere dense structures.

We find it useful to study wide (and almost wide and quasi-wide) classes
(defined already in Section 2.3) by means of the following functions ΦC and
ΦC defined for classes of graphs. It is essential for our approach that we also
define the uniform version of these concepts.

Function ΦC. This function has domain N and range N ∪ {∞} and
ΦC(d) is defined for d ≥ 1 as the minimum s such that the class C satisfies
the following property:

“There exists a function F : N → N such that for every integer m, every
graph G ∈ C with order at least F (m) contains a subset S of size at most s

so that G− S has a d-independent set of size m.”

We put ΦC(d) = ∞ if C does not satisfy the above property for any value
of s. Moreover, we define ΦC(0) = 0.

Function ΦC. This function has domain N and range N∪{∞} and ΦC(d)
is defined for d ≥ 1 as the minimum s such that C satisfies the following
property:

“There exists a function F : N → N such that for every integer m, every
graph G ∈ C and every subset A of vertices of G of size at least F (m),
the graph G contains a subset S of size at most s so that A includes a
d-independent set of size m of G− S.”

We put ΦC(d) =∞ if C does not satisfy the above property for any value
of s. Moreover, we define ΦC(0) = 0.

Notice that obviously ΦC ≥ ΦC for every class C and for every integer d.

Using these functions we can formulate notions of wide, almost wide and
quasi-wide classes (which were defined in Section 3.3) as follows:

A class of graphs C is wide (resp. almost wide, resp. quasi-wide) if ΦC is
identically 0 (resp. bounded, resp. finite) [25]:

C is wide ⇐⇒ ∀d ∈ N : ΦC(d) = 0

C is almost wide ⇐⇒ sup
d∈N

ΦC(d) <∞

C is quasi-wide ⇐⇒ ∀d ∈ N : ΦC(d) < ∞

Notice that a hereditary class C is wide (resp. almost wide, resp. quasi-
wide) if and only if C � 0 is wide (resp. almost wide, resp. quasi-wide) as
deleting edges cannot make it more difficult to find independent sets.
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We introduce the following variation of the above definitions: A class
of graphs C is uniformly wide (resp. uniformly almost wide, resp. uniformly

quasi-wide) if ΦC is identically 0 (resp. bounded, resp. finite):

C is uniformly wide ⇐⇒ ∀d ∈ N : ΦC(d) = 0

C is uniformly almost wide ⇐⇒ sup
d∈N

ΦC(d) < ∞

C is uniformly quasi-wide ⇐⇒ ∀d ∈ N : ΦC(d) <∞

Notice that a class C is uniformly wide (resp. uniformly almost wide,
resp. uniformly quasi-wide) if and only if C � 0 is uniformly wide (resp. uni-
formly almost wide, resp. uniformly quasi-wide) as the property is hered-
itary in nature and deleting edges cannot make it more difficult to find
independent sets.

Theorem 6.6 [83]. Let C be a hereditary class of graphs. Then the

following are equivalent:

• Δ(C) <∞,

• C is wide,

• C is uniformly wide.

Before characterizing almost wide classes we state a quantitative result
relating these classes to bounded expansion.

Theorem 6.7 [83]. Let C be a class with bounded expansion. Then

Φd(C) ≤ ∇�d/2�−1(C).

As a consequence we have the following characterization of hereditary
almost wide classes of graphs, which gives a positive answer to a question of
Dawar whether classes of graphs more general than those excluding a minor
could be proved to be almost wide [25].

Theorem 6.8 [83]. Let C be a hereditary class of graphs. Then the

following are equivalent:

• C is almost wide;

• C is uniformly almost wide;

• There are s ∈ N and t : N → N such that Ks,t(r) /∈ C � r (for all r ∈ N).
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If C is actually a minor closed class the we can be more precise:

Theorem 6.9 [83]. Let C be a minor closed class of graphs and let s be an

integer. Then the following are equivalent:

• C is almost wide and ΦC(d) < s for every integer d ≥ 2;

• C is uniformly almost wide and ΦC(d) < s for every integer d ≥ 2;

• C excludes some graph Ks,t.

For instance, consider a surface Σ and let CΣ be the class of the graphs
which embed on Σ. It has been proved in [10] that CΣ is almost wide (for
every surface Σ) and that ΦCΣ(d) is at most equal to the order of the smallest
clique which does not embed on Σ. Actually, ΦCΣ(d) = ΦCΣ(d) = 2 for every
integer d, as every K2,n embed on any surface but not every K3,n does.

Finally, we have the following characterization of quasi-wide classes:

Theorem 6.10 [83]. Let C be a hereditary class of graphs. The following

conditions are equivalent:

• C is quasi-wide;

• C is uniformly quasi-wide;

• for every integer d there is an integer N such that KN /∈ C � d;

• C is a class of nowhere dense graphs.

This then implies (using the above mentioned result of Dawar and Molod
[26]) that the relativized homomorphism preservation theorem holds for all
classes of nowhere dense graphs. Perhaps these result indicate that classes
with bounded expansion and classes of nowhere dense graphs provide a
proper setting for this type of questions (about wide, semi-wide and quasi-
wide classes) and we obtain characterization theorems (which are reviewed
in the last chapter).

6.3. Richness of first order

A class K is said to be first order definable if there exists a first order
formula Φ such that K is the class of all structures which are models of Φ.
This can be obviously relativized: A subclass L of K is said to be first order

definable in the class K if L is just the class of all structures in K which
model Φ. However, if a class L is defined by an existentially positive first
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order formula then L is defined as the class of all structures in K for which
there exist a homomorphism from a finite set F of structures. This in turn
means that the complementary class L′ of L is the class of all structures
A for which there is no homomorphism F −→ A for any F ∈ F . In other
words the complementary class is the class Forbh(F). This setting is close
to (homomorphism) dualities and to homomorphism preservation theorems.

Combining the above Theorems 6.7, 6.5 we obtain the following:

Theorem 6.11. Let K be a bounded expansion class of structures. For a

homomorphism closed subclass L of K are the following statements equiva-

lent:

• L is first order definable in K;

• L
′ = Forbh(F) for a finite set F of structures;

• L is defined by a (finite) K-restricted duality.

Combining with the results of [86] we prove perhaps surprising fact
that any homomorphism closed first order property when restricted to a
class with bounded expansion is a restricted finite duality. It follows that
any First Order definable subset of a class with bounded expansion is a
restriction of a constrained satisfaction problem. This should be compared
with the following characterization of constrained satisfaction classes by
means of (unrestricted) dualities:

Theorem 6.12. For a subclass CSP (H) of graphs (structures) the following

statements are equivalent:

• CSP (H) is first order definable;

• CSP (H) = Forbh(F) for a finite set F of trees;

• CSP (H) is defined by a (finite) duality.

This is a combination of [93] and [7] (and also [100]).
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7. Summary (Characterization Theorems)

7.1. Polynomial dependence

Two graph invariants f and g are polynomially dependent, and we denote
this by f . g, if there exists polynomials P, Q such that for every graph G:

f(G) ≤ P

(
g(G)

)
and g(G) ≤ Q

(
f(G)

)
.

Notice that f . g is equivalent to log f = Θ(log g).

For instance, according to Section 1.3, Section 2.3 and Theorem 4.1:

∇̃r . ∇r . wcol2r+1 . col2r+1

Also, we may extend this property to functions of more than one graph
and express concisely the main result of Section 1.4:

∇r(G •H) . ∇r(G)|H|.

(This is a direct consequence of Lemma 2.4 and Lemma 2.5.)

We also consider a weaker form of dependence for invariant sequences:
(fi)i∈N

and (gi)i∈N
which are said to be weakly polynomially dependent,

and we denote this by (fi)i∈N

�
. (gi)i∈N

if there exists α, β : N → N and
polynomials (Pi)i∈N

, (Qi)i∈N
such that for every integer i and every graph G:

fi(G) ≤ Pi

(
gα(i)(G)

)
and gi(G) ≤ Qi

(
fβ(i)(G)

)
.

In this notation we have for instance:

(χi)i∈N

�
. (∇i)i∈N

and

(ωi)i∈N

�
. (ω̃i)i∈N

,

where ωi(G) = ω(G� i) and ω̃i(G) = ω(G �̃ i).
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7.2. Characterizations

In this section, we state some characterizations of sparse classes, which are
mainly consequences of two aspects:

• the polynomial dependence (and weak polynomial dependence) of
certain graph invariants, like ∇r, ∇̃r, χp, colp, wcolp, etc.

• the characterization of uniformly quasi-wide classes.

These three characterization theorems perhaps present a fitting conclu-
sion for this survey.

7.2.1. Classes of nowhere dense graphs.

Theorem 7.1 [87, 83]. Let C be an unbounded size infinite class of graphs.

Then the following conditions are equivalent:

(1) C is a class of nowhere dense graphs,

(2) for every integer r, C � r is not the class of all finite graphs,

(3) for every integer r, C �̃ r is not the class of all finite graphs,

(4) C is a uniformly quasi-wide class,

(5) H(C) is a quasi-wide class,

(6) lim
r→∞

lim sup
G∈C�r

log ‖G‖

log |G|
= 1,

(7) lim
r→∞

lim sup
G∈C ��r

log ‖G‖

log |G|
= 1,

(8) lim
r→∞

lim sup
G∈C

log∇r(G)

log |G|
= 0,

(9) lim
r→∞

lim sup
G∈C

log ∇̃r(G)

log |G|
= 0,

(10) lim
p→∞

lim sup
G∈C

log χp(G)

log |G|
= 0,

(11) lim
p→∞

lim sup
G∈C

log colp(G)

log |G|
= 0,
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(12) lim
p→∞

lim sup
G∈C

log wcolp(G)

log |G|
= 0,

(13) for every integer c, the class C •Kc = {G •Kc : G ∈ C} is a class of

nowhere dense graphs,

(14) for every integer p, every graph G ∈ C has a p-centered colorings using

at most |G|
o(1)

colors,

(15) for every polynomial P , the class C′ of the 1-transitive fraternal aug-

mentations of directed graphs �
G with Δ−(�

G) ≤ P

(
∇0(G)

)
and G ∈ C

form a class of nowhere dense graphs,

7.2.2. Bounded expansion classes.

Theorem 7.2 [84, 116]. Let C be a class of graphs. Then the following

conditions are equivalent:

(1) C has bounded expansion,

(2) for every integer r, supG∈C ∇r(G) <∞,

(3) for every integer r, supG∈C ∇̃r(G) <∞,

(4) for every integer p, supG∈C χp(G) < ∞,

(5) for every integer p, supG∈C colp(G) <∞,

(6) for every integer p, supG∈C wcolp(G) < ∞,

(7) for every integer c, the class C •Kc = {G •Kc : G ∈ C} has bounded

expansion,

(8) C has low tree-width colorings,

(9) C has low tree-depth colorings,

(10) for every integer p, there exists an integer X(p) such that every graph

G ∈ C has a p-centered colorings using at most X(p) colors,

(11) for every integer k, the class C′ of the 1-transitive fraternal augmen-

tations of directed graphs �
G with Δ−(�

G) ≤ k and G ∈ C form a class

with bounded expansion,

(12) the class C is a degenerate class of graphs (that is: ∇0(G) is bounded

on C) and there exists a function F such that every orientation �
G of a
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graph G ∈ C has a transitive fraternal augmentation �
G = �

G1 ⊆
�
G2 ⊆

· · · ⊆
�
Gi ⊆ · · · where Δ−(�

Gi) ≤ Q

(
Δ−(�

G), i
)
,

(13) there exists a function f such that every graph G ∈ C has a transitive

fraternal augmentation �
G = �

G1 ⊆
�
G2 ⊆ · · · ⊆

�
Gi ⊆ · · · where

Δ−(�
Gi) ≤ f(i).

7.2.3. Bounded tree-depth classes.

Theorem 7.3. Let C be a class of graphs. The following conditions are

equivalent:

(1) C has bounded tree-depth,

(2) there exists an integer l(C) such that no graph G ∈ C includes a path

of length greater than l(C),

(3) C is degenerate (i.e. ∇0(C) < ∞) and there exists an integer L(C) such

that no graph G ∈ C includes an induced path of length greater than

L(C),

(4) lim
p→∞

χp(C) <∞,

(5) lim
p→∞

colp(C) <∞,

(6) lim
p→∞

wcolp(C) < ∞.
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[15] A. Brandstädt, H.-O. Le and J.-M. Vanherpe, Structure and stability number of

chair-, co-P- and gem-free graphs revisited, Information Processing Letters, 86

(2003), 161–167.

[16] K. Cameron, Induced matchings, Discrete Applied Mathematics, 24 (1989), 97–102.

[17] K. Cameron, Induced matchings in intersection graphs, Discrete Mathematics, 278

(2004), 1–9.

[18] K. Cameron, R. Sritharan and Y. Tang, Finding a maximum induced matching in

weakly chordal graphs, Discrete Mathematics, 266 (2003), 133–142.

[19] J.-M. Chang, Induced matchings in asteroidal triple-free graphs, Discrete Applied

Mathematics, 132 (2004), 67–78.

[20] M. Chrobak and D. Eppstein, Planar orientations with low out-degree and com-

paction of adjacency matrices, Theoretical Computer Science, 86 (1991), 243–266.

[21] F. R. K. Chung, R. L. Graham and R. M. Wilson, Quasi-random graphs, Combi-

natorica, 9 (1989), no. 4, 345–362.



Structural Properties of Sparse Graphs 421

[22] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progres-

sions, J. Symbolic Comput., 9 (1990), 251–280.

[23] B. Courcelle, Graph rewriting: an algebraic and logic approach, in: Handbook of

Theoretical Computer Science (J. van Leeuwen, ed.), vol. 2, Elsevier, Amsterdam

(1990), pp. 142–193.

[24] B. Courcelle, The monadic second-order logic of graphs I: recognizable sets of finite

graphs, Information Computation, 85 (1990), 12–75.

[25] A. Dawar, Finite model theory on tame classes of structures, in: Mathematical

Foundations of Computer Science 2007 (L. Kučera and A. Kučera, eds.), Lecture
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[80] J. Nešetřil and P. Ossona de Mendez, Tree depth, subgraph coloring and homomor-

phism bounds, European Journal of Combinatorics, 27 (2006), no. 6, 1022–1041.
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[86] J. Nešetřil and P. Ossona de Mendez, Grad and classes with bounded expansion

III. restricted graph homomorphism dualities, European Journal of Combinatorics,

29 (2008), no. 4, 1012–1024.
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[94] J. Nešetřil and C. Tardif, Short answers to exponentially long questions: Extremal

aspects of homomorphism duality, SIAM Journal of Discrete Mathematics, 19

(2005), no. 4, 914–920.

[95] S. Plotkin, S. Rao and W. D. Smith, Shallow excluded minors and improved graph

decomposition, 5th Symp. Discrete Algorithms, SIAM (1994), 462–470.



Structural Properties of Sparse Graphs 425

[96] N. Robertson and P. D. Seymour, Graph minors. I. Excluding a forest, Journal of

Combinatorial Theory, Series B, 35 (1983), 39–61.

[97] N. Robertson and P. D. Seymour, Graph minors – a survey, in: Surveys in Combi-

natorics (I. Anderson, ed.), Cambridge University Press (1985), pp. 153–171.

[98] N. Robertson and P. D. Seymour, Graph Minors. II. Algorithmic aspects of tree-

width, Journal of Algorithms, 7 (1986), 309–322.

[99] N. Robertson and P. D. Seymour, Graph Minors. VIII., Journal of Combinatorial

Theory, Series B, 48 (1990), no. 2, 227–254.

[100] B. Rossman, Homomorphisms and first-order logic, Journal of the ACM (2007),

submitted.

[101] P. Schaffer, Optimal node ranking of trees in linear time, Information Processing

Letters, 33 (1989/90), 91–96.

[102] A. Steger and M.-L. Yu, On induced matchings, Discrete Mathematics, 120 (1993),

no. 1–3, 291–295.

[103] L. J. Stockmeyer and V. V. Vazirani, NP-completeness of some generalizations of

the maximum matching problem, Information Processing Letters, 15 (1982), no. 1,

14–19.

[104] A. Stolboushkin, Finite monotone properties, in: Proc. 10th IEEE Symp. on Logic

in Computer Science (1995), pp. 324–330.

[105] L. Sunil Chandran, A high girth graph construction, SIAM J. Discret. Math., 16

(2003), no. 3, 366–370.
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graphes, CNRS, 1976, pp. 399–401.

[107] W. Tait, A counterexample to a conjecture of Scott and Suppes, Journal of Symbolic

Logic, 24 (1959), 15–16.

[108] T. Tao, The dichotomy between structure and randomness, arithmetic progression

and the primes, in: Proceedings of the International Congress of Mathematicians

(Madrid 2006) (European Math. Society, ed.), vol. 1 (2007), pp. 581–608.

[109] S.-H. Teng, Combinatorial aspects of geometric graphs, Computational Geometry

(1998), no. 9, 277–287.

[110] C. Thomassen, A short list color proof of Grötzsch theorem, Journal of Combina-
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Recent Progress in Matching Extension

MICHAEL D. PLUMMER

Dedicated to László Lovász on the occasion of his 60th birthday

Let G be a graph with at least 2n+2 vertices, where n is a non-negative integer.

The graph G is said to be n-extendable if every matching of size n in G extends

to (i.e., is a subset of) a perfect matching. The study of this concept began

in earnest in the 1980’s, although it was born out of the study of canonical

matching decompositions carried out in the 1970’s and before. As is often the

case, in retrospect it is apparent that there are roots of this topic to be found

even earlier.

In the present paper, we will begin with a brief history of the subject and

then concentrate on reviewing results on n-extendability and closely related areas

obtained in the last ten-fifteen years, as there already exist two surveys of the

subject in 1994 and 1996, respectively.

1. Introduction and a Brief History

Let G denote a finite simple undirected graph with vertex set V (G) and edge
set E(G). A set M ⊆ E(G) is a matching if no two edges share a vertex.
A matching M is perfect if it covers all of V (G). A perfect matching is
also often called a 1− factor. Historically speaking, perfect matchings were
studied as early as the latter part of the nineteenth and early part of the
twentieth century with such names as Frobenius [34, 35], Petersen [87] and
König [51, 52], and later, in the 1960’s and 1970’s, Kotzig [53, 54, 55],
Edmonds [27], Gallai [36, 37], and Lovász [68, 69] figuring prominently.

A graph G is factor-critical if G − v has a perfect matching for every
vertex v ∈ V (G). A graph G is bicritical if G − u − v has a perfect
matching for every pair of distinct vertices u, v ∈ V (G). Factor-critical and
bicritical graphs play important roles in what we know today as a canonical
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decomposition theory for arbitrary graphs in terms of their matchings. We
will explore this in brief below. The interested reader is referred to [76] for
much more on this subject.

Strongly motivated by the importance of factor-critical and bicritical
graphs mentioned above, the present author was led to make the following
definition. Let n be a non-negative integer and let G be an even graph
with at least 2n + 2 vertices. Then G is said to be n-extendable if every
matching of size n in G extends to (i.e., is a subset of) a perfect matching
in G. (We will take “0-extendable” to mean simply that G contains a perfect
matching.) In particular, a 1-extendable graph denotes the same property
as the older term matching-covered. 1-extendable graphs are the graphs
which are natural candidates for the “brick-brace” decomposition which is
the main subject of Section 6 of this survey.

In [113, 114] we already find a matching extension property of sorts.
There the author defines a graph to have the uniform matching property

(or UMXP) if every matching of i edges extends to a matching of j edges
in the same number of ways.

The subject of n-extendability has been surveyed twice before [93, 95],
the most recent of these two papers appearing in 1996. For this reason, in
the present paper we will concentrate mostly on results which have been
obtained within the past ten-fifteen years.

In Section 2 we will discuss recent results dealing with n-extendability
in general. In Section 3 we will consider matching extension for graphs
embedded in surfaces. In Section 4 we will review recent work in the area
of restricted matchings. Here “restricted” means that not only do we want
to extend partial matchings to perfect matchings, but in addition, we want
to avoid other matchings. Restricted matchings will be discussed both in
general and in the framework of embedded graphs.

Section 5 deals with generalizations and variations which have grown out
of the original concept of n-extendability. In Section 6 we will review briefly
the deep results on brick and brace decomposition obtained in the last ten
years or so. This work then leads naturally to some powerful new results
on Pfaffian graphs and their connection with the motivating problem of
counting the number of perfect matchings in a graph. This will be surveyed
in our final Section 7.



Recent Progress in Matching Extension 429

2. n-extendability in General

Without doubt, the cornerstone of the theory of matchings in graphs is the
classical theorem of Tutte [106]. Let G be a graph and S ⊆ V (G). Denote
by co(G− S) the number of components of G− S having odd order.

Theorem 2.1 [106]. A graph G has a perfect matching if and only if for

every set S ⊆ V (G), co(G− S) ≤ |S|.

Yu [111] characterized n-extendable graphs in a similar manner.

Theorem 2.2 [111]. Let n ≥ 1. A graph G is n-extendable if and only if

for all S ⊆ V (G),

(1) co(G− S) ≤ |S| and

(2) co(G − S) = |S| − 2k, (0 ≤ k ≤ n − 1) implies that F (S) ≤ k, where

F (S) is the size of a maximum matching in G[S].

Let us first focus on several recent results involving n-extendability and
vertex degree. Perhaps the earliest theorem of this kind is the following
which gives a sufficient degree condition to guarantee n-extendability.

Theorem 2.3 [88]. Let G be a graph on 2p vertices and let n be an integer

such that 1 ≤ n ≤ p− 1. If δ(G) ≥ p + n, then G is n-extendable.

For the special case of bipartite graphs, Ananchuen and Caccetta proved
that a much lower minimum degree suffices for n-extendability.

Theorem 2.4 [16]. If G is a balanced bipartite graph on 2p vertices and

1 ≤ n ≤ p− 1, then if δ(G) ≥ (1/2)(p + n), G is n-extendable.

On the other hand, the same authors discovered the following necessary
degree condition for n-extendability which says essentially that for a certain
range of the value of n, a certain interval of values for the minimum degree
is forbidden.

Theorem 2.5 [16]. If G is n-extendable on 2p vertices, where 1 ≤ n ≤ p−1,

then either n + 1 ≤ δ(G) ≤ p or δ(G) ≥ 2n + 1. (In other words, if

n > (
∣∣
V (G)

∣∣
−2)/4, then δ(G) must lie in the union of two disjoint intervals

[n + 1,

∣∣
V (G)

∣∣
/2] ∪ [2n + 1,

∣∣
V (G)

∣∣
− 1].)
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Moreover, it is shown that for every value j in this union of intervals,
there is an n-extendable graph.

A graph G is said to be n-minimal if it is n-extendable, but G− e is not
n-extendable, for every edge e ∈ E(G). The same two authors have shown
the following.

Theorem 2.6 [12, 16]. Let G be an n-minimal graph on 2p vertices. Then:

(a) if G �= K2p, then δ(G) ≤ p + n− 1, while

(b) if G is bipartite, G �= Kp,p, and n ≤ p− 3, then δ(G) < (1/2)(p + n).

Next we turn to connectivity issues. Let κ(G) denote the vertex con-
nectivity of graph G. An early theorem involving the vertex connectivity of
n-extendable graphs was the following.

Theorem 2.7 [88]. If n ≥ 1 and G is an n-extendable graph on at least

2n + 2 vertices, then κ(G) ≥ n + 1.

Lou and Yu [67] have shown that if n is large enough with respect to∣∣
V (G)

∣∣ , the above bound on n can be significantly improved.

Theorem 2.8 [67]. If G is an n-extendable graph on 2p vertices and

n ≥ p/2, then either G is bipartite or κ(G) ≥ 2n.

The same authors also obtain the following corollary.

Corollary 2.9 [67]. If G is an n-extendable graph on 2p vertices and

n ≥ p/2, then G is Hamiltonian.

They conjecture that the bound p/2 in the above corollary can be
replaced by (p− 1)/3, but this remains open.

Another connectivity parameter which has been studied in connection
with n-extendability is cyclic connectivity. The cyclic connectivity of G,
denoted by cλ(G), is the size of a smallest edge cutset the deletion of
which leaves two components each containing at least one cycle. (If no such
cutset exists, we define cλ to be +∞.) In [43] it was proved that regular
bipartite graphs with cyclic connectivity sufficiently large are n-extendable.
In contrast to this result, it was shown in [65] that for every k ≥ 2 and
m ≥ 1, there exists a (k + 1)-regular (k + 1)-connected graph G having
cλ(G) ≥ m, which is not n-extendable. So large cyclic connectivity by itself
is not enough to guarantee n-extendability, even if the graph is regular.
So what other hypotheses taken together with cyclic connectivity might
be enough to guarantee n-extendability in regular graphs? One answer is
provided by the next theorem.
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Theorem 2.10 [1]. Suppose k ≥ 3 and
⌈
(k+1)/2

⌉
≤ n ≤ k−1. Then every

cyclically (k − 1)(2n− 1)-edge-connected transitive k-regular even graph is

n-extendable.

Degree sum conditions have been much studied in various areas of graph
theory such as the theory of Hamiltonian cycles. Xu and Yu [110] have
sharpened a sufficient degree sum condition for n-extendability from [91] by
excluding a certain family of graphs. On the other hand, Kawarabayashi,
Ota and Saito have obtained a result which says that an n-extendable graph
under certain conditions on its degree sums, will either be Hamiltonian or
be one of two small exceptional graphs. Let σ2(G) denote the minimum
taken over all non-adjacent pairs of vertices u and v in G of the quantity
d(u) + d(v).

Theorem 2.11 [47]. Let n be a non-negative integer and let G be a

connected n-extendable graph. If σ2(G) ≥ p− n− 1, then either

(1) G is Hamiltonian, or

(2) n = 1 and 2K1 + 3K2 ⊂ G ⊂ K2 + 3K2.

Independence number too has been studied in relation to n-extendability.
In the first result below, Maschlanka and Volkmann obtain an upper bound
on the independence number α(G) of any n-extendable graph.

Theorem 2.12 [77]. Suppose n ≥ 0 and let G be an n-extendable non-

bipartite graph on 2p vertices. Then α(G) ≤ p − n. Moreover, this bound

is sharp for all n and p.

On the other hand, in the next result it is shown that for a certain range
of possible values for n, the independence number can be used to give a
necessary and sufficient condition for the graph to be n-extendable.

Theorem 2.13 [14]. Let G be a graph of 2p vertices and n any positive

integer such that p/2 ≤ n ≤ p− 2 and p− n is even. Suppose further that

δ(G) ≥ p + n− 1. Then G is n-extendable if and only if α(G) ≤ p− n.

Lou has investigated local independence versus n-extendability and has
proved the following theorems. Here N2(v) denotes the set of vertices at
distance two from vertex v.

Theorem 2.14 [62, 63]. Let G be a connected graph of even order.

If for each vertex v ∈ V (G) and for each independent set S ⊆ N2(v),∣∣
N(v) ∩N(S)

∣∣
≥ |S|+ 2n, then G is n-extendable.
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Theorem 2.15 [64]. Let G be a triangle-free graph of finite girth and even

order. Then, if for each vertex v ∈ V (G), α(G
[
N2(v)

]
) ≤ d(v) − 1, G is

regular and
⌈
d(v)/4

⌉
-extendable.

Let us now turn to some algorithmic complexity questions. For a fixed
value of n, it is, of course, easy to see that testing whether or not a given
graph is n-extendable can be done in time polynomial in the size of the input
graph. But in 1989, Frank, Györi and Sebő [33] posed a more challenging
question: Suppose n0 denotes the maximum value of n for which a given
graph G is n-extendable. Is there a polynomial algorithm to determine n0?

In 1998 Lakhal and Litzler [56] found the first polynomial algorithm
to determine n0 in the case when G is bipartite. Their algorithm runs in
O

(
m×min {n3

0 +p, n0p}

)
time, where

∣∣
E(G)

∣∣ and p =
∣∣
V (G)

∣∣ . Zhang and
Zhang [116] subsequently gave a faster algorithm which is O(mn). However,
the complexity of determining n0 for non-bipartite graphs remains unsettled.

In [12] it was shown that a graph G on 2p vertices is (p−1)-extendable if
and only if it is K2p or Kp,p. The class of (p−2)-extendable graphs turns out
to have a much more complicated structure, but nevertheless these graphs
too have been characterized. (Cf. [13, 15].) However, for n < p − 2, no
similar characterization is known.

Two properties closely related to that of n-extendability are random
matchability and equimatchability. Sumner [102] defined a graph G to be
randomly matchable if every matching in G extends to a perfect matching.
He then showed that such graphs are very special indeed; namely, they must
be either a K2n or a Kn,n.

Generalizing this property, Lesk, Plummer and Pulleyblank [58] defined
a graph G to be equimatchable if every matching in G extends to a maximum
matching. Although the structure of such graphs is not so apparent, the
three authors showed that the recognition problem is polynomial. (See also
[29].) In [50] all equimatchable cubic and all equimatchable 3-connected
planar (i.e., polytopal) graphs were determined, there being exactly two
of the former type and twenty-three of the latter type. A further result
showing that equimatchable graphs of any fixed genus are bounded in size
appears in Section 3 below.
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3. Matching Extension in Embedded Graphs

Matching extension for graphs embedded in surfaces has various historical
roots. As early as 1973, Lovász and the author [73, 74, 75] discovered that
a family of planar graphs used by Halin in studying minimally 3-connected
graphs also provided an infinite family of examples of minimal bicritical
graphs. Let T be a tree in which every non-leaf has degree at least three.
Embed T in the plane and pass a cycle C through all leaves of T in such a
way that the resulting graph T ∪C is plane. (Not surprisingly, such graphs
have come to be called Halin graphs.) A bicritical graph G is said to be
minimal if G − e is not bicritical, for every e ∈ E(G). It turns out that
every even Halin graph H is minimal bicritical and, moreover, with a single
exception, that Φ(H) ≥ (2/3)(

∣∣
V (H)

∣∣
− 1) and this bound is sharp. (Here

and henceforth, Φ(G) denotes the number of perfect matchings in G.)

The subject of extending matchings in embedded graphs seems to have
then remained dormant for some time, until the following result appeared
in 1989.

Theorem 3.1 [90]. No planar graph is 3-extendable.

There soon followed a series of papers dealing with 1- and 2-extendability
in the plane. (Cf. [42, 41, 92, 94, 61].) For example, we have the next result.

Theorem 3.2 [92, 61]. Every 5-connected even planar graph is 2-extend-

able.

This result was only recently generalized by Lou and Yu as follows.

Theorem 3.3 [66]. Any graph of even order having a 5-connected spanning

planar subgraph is 2-extendable.

Somewhat earlier, the author [89] obtained an upper bound for the
extendability of a graph in terms of its (orientable) genus. Let μ(Σ) denote
the smallest integer such that no graph embeddable in the surface Σ is μ(Σ)-
extendable. (For example, μ = 3 for the sphere by Theorem 3.1 above.)
Dean [18] extended this work as follows.

Theorem 3.4 [18]. If Σ is any surface (orientable or non-orientable)

other than the sphere, then μ(Σ) = 2 + �
√

4− 2χ�, where χ is the Euler

characteristic of the surface.
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Thus in particular, μ(Σ) = 3, 4 and 4 for the projective plane, the torus
and the Klein bottle respectively.

Although there are clearly graphs of arbitrarily high extendability (K2n

and Kn,n, for example), the bound given by the above theorem is, in some
sense, rather misleading. For example, see part (1) of the following result
obtained quite recently by Aldred, Kawarabayashi and the author [4]. If
G is embedded in a surface Σ, the representativity (or face-width) of the
embedding is the minimum number of times any non-contractible curve in
the surface intersects the graph.

Theorem 3.5 [4].

(1) If G is embedded in a surface of Euler characteristic χ and the number

of vertices of G is large enough, then G is not 4-extendable;

(2) given g > 0 there are infinitely many graphs of orientable genus g

which are 3-extendable, and given g ≥ 2 there are infinitely many

graphs of non-orientable genus g which are 3-extendable, and

(3) if G is a 5-connected even triangulation with genus g > 0 and suffi-

ciently large representativity, then G is 2-extendable.

In some sense, it seems more likely that a set of independent edges in
a graph will extend to a perfect matching if they are mutually far enough
apart. Aldred and the author obtained the following theorem in this direc-
tion for graphs in the plane which should be contrasted with Theorem 3.1.
A matching M in graph G is said to be induced if no two edges in M are
joined by a third edge of G.

Theorem 3.6 [7]. Let G be a 5-connected even planar triangulation and

let M be an induced matching of size three. Then M extends to a perfect

matching.

Aldred and Jackson have studied similar edge proximity conditions for
extendability in the family of cubic bipartite graphs.

Theorem 3.7 [3]. Let G be a cubic bipartite graph containing a perfect

matching, M , a set of m edges in G and suppose cλ(G) ≥ 3m − 2. Then

M extends to a perfect matching whenever the edges of M are pairwise at



Recent Progress in Matching Extension 435

distance at least f(m) apart, where

f(m) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, m = 2

3, 3 ≤ m ≤ 4

4, 5 ≤ m ≤ 8

5, m ≥ 9.

Equimatchable graphs embedded in surfaces have also been investigated.
In [50] the precisely twenty-three 3-connected planar equimatchable graphs
were determined. Very recently, an extension [49] of this result shows that
equimatchable graphs on any fixed surface must have bounded order.

Theorem 3.8. Let G be a 3-connected equimatchable graph of genus g

(respectively, non-orientable genus g). Then if G is non-bipartite or if G

is bipartite and the representativity of the embedding is at least three,∣∣
V (G)

∣∣
≤ max

{
f1(g), f2(g), f3(g), f4(g)

}
, where

f1(g) =

(
7 +

√

1 + 48g

2

)(
8

3

)
(4g + 3) + 9,

f2(g) = 4(1 +
√

g )
(

8

3

)
(4g + 3) + 9,

f3(g) =

(
7 +

√

1 + 24g

2

)(
8

3

)
(2g + 3) + 9,

and

f4(g) = (4 + 2
√

2g )
(

8

3

)
(2g + 3) + 9.

We will present some additional results for embedded graphs in the next
section on so-called “restricted” matching.
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4. Restricted Matching Extension: the E(m,n)
Properties

Motivated by previous results on paths and cycles restricted to include, or
not include, sets of vertices and edges of a certain size, Porteous and Aldred
[97] extended the concept of n-extendability by means of the following
definition. Let m and n be non-negative integers and let G be a graph
on at least 2(m + n + 1) vertices which contains a perfect matching. Then
G is said to have the property E(m, n) (or simply, “G is E(m, n)”) if, for
every pair of disjoint matchings M and N with |M | = m and |N | = n, there
is a perfect matching F in G such that M ⊆ F , but F ∩N = ∅.

Clearly, this concept generalizes that of n-extendability since a graph is
E(m, 0) if and only if it is m-extendable. There are a number of implications
involving E(m, n) for various values of m and n. We list only a few; for
others see [97, 96, 81].

Theorem 4.1.

(1) For all m, n ≥ 0, if G is E(m, n), it is E(m, 0).

(2) If m ≥ 1, n ≥ 0 and G is E(m, n), then it is (m + 1)-connected.

Moreover, this bound is sharp.

(3) For all m ≥ 1, n ≥ 0, if G is E(m, n), then it is E(m− 1, n + 1).

More surprising, perhaps, is the following non-implication result.

Theorem 4.2 [97]. For m ≥ 1 and n ≥ 6m + 1, there exists a graph G

having property E(m, n), but not property E(m, n− 1).

However, such “bad” graphs must necessarily have m bounded by a
function of n as in the next result.

Theorem 4.3 [97]. If n ≤ 2m + 2 and graph G is E(m, n), then G is

E(m, n− 1).

In addition, these “bad” graphs are of bounded size as is seen by the
next theorem.

Theorem 4.4 [97]. Suppose m ≥ 1. If graph G has property E(m, n), but

not E(m, n− 1), then
∣∣
V (G)

∣∣
≤ 4(n− 1)− 2m.

The one missing case (m = 0) in the preceding theorem was settled
in [81].
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Theorem 4.5 [81]. Let n > n
′
≥ 0. Then:

(a) if n
′
< 3, E(0, n) implies E(0, n

′), while

(b) if n
′
≥ 3, there exists a graph which is E(0, n), but not E(0, n

′).

The following diagram illustrates a portion of the resulting lattice of
implications (and non-implications) involving E(m, n).

Fig. 4.1. The lattice of implications

Two recent results in the direction of sufficient conditions guaranteeing
E(m, n) are the following. The first deals with bipartite graphs and is an
extension of an earlier result (cf. [2]) of the same type.

Theorem 4.6 [5]. Let m, n and r be non-negative integers with r ≥

max {2n + 1, m + 2}. Let G be an r-regular bipartite graph with
∣∣
V (G)

∣∣
≥

2m + 2n + 2 and

cλ(G) ≥

{
0, when m = 0;

(m− 1)r + 2n + 1, for all m ≥ 1.

then G is E(m, n).

The second deals with so-called “star-free” graphs, a generalization of
the well-known family of claw-free graphs. As usual, let K1,n denote the
complete bipartite graph with one black vertex and n white vertices. (Graph
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K1,n is often called a star and K1,3, a claw.) A graph is said to be K1,n-free

if it does not contain K1,n as an induced subgraph.

A classical result of Sumner and Las Vergnas [100, 57] on matchings in
claw-free graphs is the following.

Theorem 4.7 [100, 57]. Every connected claw-free graph of even order has

a perfect matching.

The following result represents a generalization of Sumner and Las
Vergnas’s archetypal result to E(m, n). It generalizes two previous results
(cf. [17] and [2]).

Theorem 4.8 [5]. Let m, n and r be non-negative integers with m ≥ 1,

r ≥ 3 and let G be a (2m + n + r − 2)-connected K1,r-free graph of even

order at least 2m + 2n + 2. Then G is E(m, n).

We turn now to the properties E(m, n) as applied to graphs embedded
in surfaces. Theorem 3.1 above clearly translates into the language of this
section as “no planar graph is E(3, 0)”. We also see from Theorem 4.1
of the present section that property E(3, 0) implies property E(2, 1). The
following result [6], therefore, represents a strengthening of Theorem 3.1.

Theorem 4.9 [6]. No planar graph is E(2, 1).

The proof of this result appeals to the so-called theory of Euler contri-

butions (indeed, as did its predecessor Theorem 3.1).

If one consults the implications involving E(m, n) for various values of
m and n listed in Theorem 4.1 above, it is immediately apparent that the
possible cases of E(m, n) which can possibly hold for a planar graph are few
in number. In fact, we need only consider properties of the form E(2, 0),
E(1, n) and E(0, n), for n ≥ 0.

We note that a 3-connected even planar graph need not even be E(0, 0).
The well-known Kleetopes provide an infinite family of such graphs. Let
{w, x, y, z} be the vertices of a plane K4. Subdivide the edge wx in inserting
any even number (> 0) of new vertices and join each new vertex to both y

and z. Consider the vertices of the resulting triangulation T to be white.
Now insert a new black vertex inside each of the faces of T and join it
to each of the three white vertices bounding the face of T to which it
belongs. Clearly, there can be no perfect matching in the resulting graph
since it contains more black vertices than white and the black vertices are
independent. Hence it is of interest only to consider 4- and 5-connected
planar even graphs. For these classes, we have the following result.
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Theorem 4.10 [6].

(a) If G is a 4-connected even planar graph, then G is E(1, 1), E(1, 0),
E(0, 0), E(0, 1), E(0, 2) and E(0, 3).

(b) If G is a 5-connected even planar graph, then G is, in addition, E(2, 0),
E(1, 2) and E(0, 4).

These results are best possible.

On the other hand, if the planar graphs involved are triangulations, one
can do better in some cases.

Theorem 4.11 [7]. If G is a 5-connected even planar triangulation, then

G is E(1, 3) and E(0, 7).

It should be pointed out that if one assumes only 4-connectivity, then
there are even planar triangulations that are not E(1, 2).

More recently, similar restricted matching results have been obtained
for graphs of “small” genus; namely those which minimally embed on the
projective plane, torus or Klein bottle. The following is a summary of what
is known. (Cf. [8].)

Theorem 4.12.

(a) No projective planar even graph is E(2, 1) (and therefore, none is

E(3, 0)).

(b) If G is a k-connected even graph minimally embedded in the projective

plane, then G is E(m, n), where k, m and n are related as follows:

(b1) if k = 4 and m = 1, then n = 0;

(b2) if k = 4 and m = 0, then n = 0, 1, 2;

(b3) if k = 5 and m = 2, then n = 0;

(b4) if k = 5 and m = 1, then n = 0, 1, 2;

(b5) if k = 5 and m = 0, then n = 0, 1, 2, 3, 4.

In each of these cases, the results are best possible.

Theorem 4.13.

(a) No toroidal even graph is E(3, 1) (and therefore, none is E(4, 0)).

(b) If a toroidal even graph is E(3, 0), then it is a 4-regular quadrangula-

tion.
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(c) If a 5-connected even toroidal graph is E(2, 1), then it is a 6-regular

triangulation.

(d) If G is a k-connected even graph minimally embedded in the torus,

then G is E(m, n), where k, m and n are related as follows:

(d1) if k = 4 and m = 0, then n = 0, 1;

(d2) if k = 5 and m = 1, then n = 0, 1, 2;

(d3) if k = 5 and m = 0, then n = 0, 1, 2, 3, 4;

(d4) if k = 6 and m = 2, then n = 0, 1;

(d5) if k = 6 and m = 1, then n = 0, 1, 2, 3.

(d6) if k = 6 and m = 0, then 0, 1, 2, 3, 4, 5.

In cases (d1)–(d4), the results are best possible.

Theorem 4.14.

(a) No even graph on the Klein bottle is E(3, 1) (and therefore, none is

E(4, 0)).

(b) If a 5-connected even graph on the Klein bottle is E(2, 1), then it is a

6-regular triangulation.

(c) If G is a k-connected even graph minimally embedded in the torus,

then G is E(m, n), where k, m and n are related as follows:

(c1) if k = 4 and m = 0, then n = 0, 1;

(c2) if k = 5 and m = 1, then n = 0, 1, 2;

(c3) if k = 5 and m = 0, then n = 0, 1, 2, 3, 4;

(c4) if k = 6 and m = 2, then n = 0, 1;

(c5) if k = 6 and m = 1, then n = 0, 1, 2, 3.

(c6) if k = 6 and m = 0, then 0, 1, 2, 3, 4, 5.

In cases (c1)–(c4), the results are best possible.
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5. Variations on a Theme

The concept of n-extendability has recently been generalized in several
different directions. We briefly discuss some of these variations.

Yu [111] and Favaron [30] independently formulated the definition of a
k-factor-critical graph. For a given integer k, 0 ≤ k ≤ p, a graph of order
p is k-factor-critical if G − S has a perfect matching for every S ⊆ V (G)
with |S| = k. Each also independently produced the following Tutte-like
characterization of k-factor-critical graphs.

Theorem 5.1 [111, 30]. A graph G is k-factor-critical if and only if∣∣
V (G)

∣∣
≡ k (mod 2) and for all S ⊆ V (G) with |S| ≥ k, co(G−S) ≤ |S|−k.

Clearly, for p and k even, every k-factor-critical graph is k/2-extendable.
However, the converse is clearly false; simply consider bipartite graphs. For
non-bipartite graphs, the quest for a converse of sorts becomes more com-
plicated. However, building on a number of previous results (cf. [30, 31, 32,
60, 66, 112]), Zhang, Wang and Lou obtained the following characteriza-
tion, when the extendability is sufficiently large in terms of the order of the
graph.

Theorem 5.2 [115]. If n ≥ (
∣∣
V (G)

∣∣ + 2)/4, then a non-bipartite graph

G is n-extendable if and only if it is 2n-factor-critical.

Lou and Yu also generalized Theorem 3.2 above by obtaining the next
result for planar graphs.

Theorem 5.3 [66]. Let G be a 5-connected planar graph of order p. Then

G is (4− ε)-factor-critical, where ε = 0 or 1 and ε ≡ p (mod 2).

In the same vein as their earlier paper on n-extendable graphs,
Kawarabayashi, Ota and Saito [48] determined a degree sum criterion guar-
anteeing that a k-factor-critical graph have Hamiltonian cycle.

Theorem 5.4 [48]. Let n be a non-negative integer and let G be a 2-

connected n-factor-critical graph of order p. If σ3(G) ≥ (3/2)(p − n − 1),
then G is Hamiltonian.

Also motivated by the property of bicriticality, Ananchuen defined a
yet another new variation called strong extendability. (This is not to be
confused with another concept called “strong matching”, a term often used
to mean induced matching.) Given integers p and n with 0 ≤ n ≤ p− 2, a
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graph G on 2p vertices is strongly n-extendable (written “n∗-extendable”) if
G−u−v is n-extendable. The property of n

∗-extendability, at least for non-
bipartite graphs, turns out to be intermediate between (n+2)-extendability
and (n + 1)-extendability.

Theorem 5.5 [9]. Let G a graph on 2p vertices.

(a) Suppose 0 ≤ n ≤ p− 3 and G is non-bipartite. Then if G is (n + 2)-
extendable, G is n

∗-extendable.

(b) Suppose 0 ≤ n ≤ p− 2. Then if G is n
∗-extendable, G is t-extendable

for all t, 0 ≤ t ≤ n + 1.

Other properties of n
∗-extendable graphs are explored in [10, 11], where

many theorems paralleling similar results for n-extendability are derived.

6. Bricks and Braces: a Brief Outline

The problem of computing Φ(G), that is, determining the number of perfect
matchings in a graph G, was raised by Kasteleyn [44, 45, 46] who wanted to
count the number of matchings in the graphs of certain hydrocarbon mole-
cules. The number of such matchings is called by chemists the resonance

energy of the molecule.

In 1979, Valiant [107] proved that this counting problem is NP-hard
in general. Therefore, attention became increasingly focused on two main
related problems: (a) determining which graphs G admitted a polynomial
algorithm for determining Φ(G) exactly and (b) bounding Φ(G) for all
graphs.

Work on both of these problems has led to some of the deepest results
known in matching theory: the decomposition of matching covered graphs
into so-called “bricks” and “braces”. A brick is a 3-connected bicritical
graph and a brace is a 2-extendable (and therefore 3-connected) bipartite
graph. It is known [88] that every 2-extendable graph is either a brick or a
brace.

Work in both the areas of Pfaffians and the brick-brace decomposition
theory have been very recently, and very thoroughly, surveyed in several pa-
pers. For Pfaffians, we refer the reader to Thomas’s survey presented to the
International Congress in 2006 [104] and to McCuaig’s 2004 paper [79]. For
the theory of bricks and braces, the reader should consult the survey paper
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of de Carvalho, Lucchesi and Murty [24] on the subject of the matching lat-
tice, to McCuaig [78] for building braces, and to de Carvalho, Lucchesi and
Murty [26] and Norine and Thomas [86] for building bricks. Because these
excellent and recent surveys exist, we will confine ourselves to a skeletal
discussion of the subject.

Let us begin with bricks and braces. By the 1970’s, a beautiful decom-
position theory for graphs had developed which is based upon the max-
imum matchings in the graph. (See [76, 71] for more detailed historical
background.) Let D(G) ⊆ V (G) denote the set of vertices v such that G

has a maximum matching missing v. Let A(G) denote the set of neigh-
bors of vertices in D(G) which are not themselves in D(G) Finally, let
C(G) = V (G)\

(
D(G) ∪ A(G)

)
. The partition

{
D(G), A(G), C(G)

}
is

called the Gallai-Edmonds decomposition of the graph G and has a number
of very useful properties. For example, each component of D(G) is factor-
critical (and therefore of odd order) and every maximum matching M of
G decomposes into a near-perfect matching of each component of D(G),
a matching covering each vertex of A(G) and a perfect matching of each
component of C(G).

Three important extreme situations with respect to this decomposition
occur when (a) G is factor-critical in which case D(G) = V (G) (and hence
A(G) = C(G) = ∅), (b) G has a perfect matching in which case C(G) =
V (G) (and hence A(G) = D(G) = ∅), and (c) the bipartite graph obtained
from G by deleting C(G) and the edges spanned by A(G), and by contracting
each component of D(G) to a separate single vertex has “positive surplus”
when viewed from A(G). (Surplus is defined as follows. Let X be any subset
of A(G). Then the surplus of X = σG(X) =

∣∣
N(X)

∣∣
−|X| and the surplus

of G (viewed from A(G)) = min
{

σ(X) | X ⊆ A(G), X �= ∅

}
.)

Factor-critical graphs are, in some sense, the easiest class of “atoms”
in this decomposition to understand. For example, they have a nice “ear
structure”. (Cf. [70].) This ear structure leads to the following result, first
proved by Pulleyblank [98] in 1973.

Theorem 6.1 [98]. Every 2-connected factor-critical graph G contains at

least
∣∣
E(G)

∣∣ near-perfect matchings.

The class of graphs with perfect matchings presents a more difficult
challenge. From this point on, remembering that we are motivated by trying
to find a lower bound on Φ(G), we will discard all edges in the graphs in
this class that belong to no perfect matching. The resulting graphs were
originally called matching-covered, but of course in light of this survey, this is
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the same thing as 1-extendable. These 1-extendable graphs may be further
decomposed via a so-called “tight cut” procedure to arrive at graphs having
no “non-trivial tight cut”. (A cutset L of edges in G is said to be tight (also
sometimes called strict in the literature) if every perfect matching in G uses
exactly one edge of L. A cutset is trivial if it is the star at a vertex.) Lovász
proved a key result about these graphs.

Theorem 6.2 [72]. A 1-extendable graph has no non-trivial tight cut if

and only if it is a brick or a brace.

Using polyhedral theory, Edmonds, Lovász and Pulleyblank [28] were
able to show that if G is a 1-extendable graph, then

r(G) =
∣∣
E(G)

∣∣
−

∣∣
V (G)

∣∣ + 2− b(G),

where r(G) denotes the maximum number of perfect matchings in G the
incidence vectors of which are linearly independent over ", and b(G) denotes
the number of bricks resulting from any tight set (or “brick”) decomposition
of G. Thus a knowledge of the number of bricks in such a decomposition
yields a lower bound on Φ(G) for any 1-extendable graph. In particular, if
G is bipartite, we obtain r(G) =

∣∣
E(G)

∣∣
−

∣∣
V (G)

∣∣ + 2, whereas, if G is a
brick, r(G) =

∣∣
E(G)

∣∣
−

∣∣
V (G)

∣∣ + 1. It should be noted also that implicit
in the above result is the non-trivial fact that the number of bricks in any
brick decomposition of a 1-extendable graph G is an invariant of G. Later,
in a deep paper on the matching lattice [72], Lovász proved more, namely
that any two applications of the tight cut decomposition procedure on a
1-extendable graph results in the same list of bricks and braces (except for
possibly the multiplicities of edges). It is also important to note that the
tight cut decomposition procedure can be carried out in polynomial time.

An ear decomposition of a 1-extendable graph G is a sequence

K2 = G1 ⊂ G2 ⊂ · · · ⊂ Gr = G

where in this sequence one adds either a single ear (path of odd length) or
a double ear (simultaneous addition of two single ears) to obtain the next
larger graph in the sequence. It is proved in [76] that every 1-extendable
graph has an ear decomposition. Moreover, if the 1-extendable graph G is
bipartite, it has an ear decomposition consisting of all single ear additions.
(Cf. [40].)

A 1-extendable graph may have many different ear decompositions. It
turns out that we are most interested in those decompositions which have
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the smallest possible number of 2-ear additions. Such decompositions are
called optimal. The reason for this interest is clear from the next result.

Theorem 6.3 [21]. If a 1-extendable graph G has an ear decomposition

containing d double ears, then there exist
∣∣
E(G)

∣∣
−

∣∣
V (G)

∣∣ + 2− d perfect

matchings the incidence vectors of which are linearly independent over ".

It turns out that a certain special brick–namely the Petersen graph–
plays a special role in improving the above lower bound on the number of
perfect matchings in a 1-extendable graph. The three authors proceed to
show that every 1-extendable graph has an optimal ear decomposition which
contains exactly b + p double ears, where b is the number of all bricks and
p is the number of Petersen bricks in the brick decomposition of G.

The story does not stop here. There are a number of papers dealing
with further decomposition and generation of bricks. In addition to the
references already mentioned above, the interested reader is referred to
[19, 20, 22, 23, 25, 85]. In particular, we draw the reader’s attention to
[86, 26] on brick generation and to [78] for brace generation.

7. Pfaffian Graphs

Finally, we turn to the subject of Pfaffian graphs. The motivation again is
to try to decide for what graphs G can one determine Φ(G) in polynomial

time. Let G be any graph on n vertices. Let
−→

G be the oriented graph
obtained by orienting the edges of G in some arbitrary manner. Define next
a skew-symmetric n× n matrix Sk(G) = (aij)n×n as follows:

aij =

{
+1, if (ui, uj) ∈ E(

−→

G);

−1, if (uj , ui) ∈ E(
−→

G).

One then forms a certain algebraic quantity depending upon Sk(G)
called the Pfaffian of G and denoted by pf

(
Sk(G)

)
, the formulation of

which may be found in [76, Section 8.3]. The important fact about this
Pfaffian function is that it can be computed in polynomial time; more
precisely, we have the next result, due to Muir [82, 83].

Theorem 7.1 [82, 83]. If M is a skew-symmetric matrix, then pf(M) =
√

det M .
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Returning to our oriented graph
−→

G , it is easy to see that
∣∣
pf

(
Sk(

−→

G)
∣∣
≤

Φ(G). It is then a natural question to ask when in fact equality holds, for
if equality holds, we can then evaluate Φ(G) exactly in polynomial time by
evaluating a determinant.

Let us call any orientation of G which leads to the above equality a
Pfaffian orientation. Then call G Pfaffian if it admits a Pfaffian orientation.
(There are a number of equivalent ways of defining Pfaffian graphs; we will
be satisfied with one of these.)

Let us call a cycle C in G nice if G\V (C) contains a perfect matching.

Now let
−→

G denote any orientation of G. If C is any undirected cycle in G,
we shall say C is evenly oriented if it has an even number of edges oriented

in the direction of the orientation of
−→

G . Otherwise, C is oddly oriented.

The next result asserts that three different decision problems involving
Pfaffians are polynomial-time equivalent. (Cf. [76, 108, 109].)

Theorem 7.2. Let G be any graph of even order and
−→

G , an orientation

of G. Then the following decision problems are reducible to each other in

polynomial time:

(a)
−→

G is a Pfaffian orientation of G.

(b) Every nice cycle in G is oddly oriented relative to
−→

G .

(c) There exists a Pfaffian orientation for G.

Perhaps the most surprising aspect of this result is the equivalence of
(a) and (c). That they are polynomially reducible to each other was shown
in [108, 109]. The same authors also show that the number of Pfaffian
orientations of any graph is either zero or a power of two.

Unfortunately, no polynomial algorithm is known for checking whether
or not an arbitrary graph is Pfaffian. It is known that deciding if a graph
G has a Pfaffian orientation is in co-NP. (Cf. [76, 108, 109].) Whether or
not the problem is in NP, however, remains unsettled.

Kasteleyn showed that if the graph G is planar, it always has a Pfaffian
orientation and showed how to obtain one. (Cf. [76].) For the study of
Pfaffians of graphs embedded on surfaces of higher genus, see [38, 39, 103].

There has been remarkable success recently in the study of Pfaffian
bipartite graphs and this work involves bricks and braces.

Little obtained the first characterization of this class.
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Theorem 7.3 [59]. A bipartite graph is Pfaffian if and only if it contains

no even subdivision of K3,3.

Unfortunately, there is no known efficient way to algorithmically test for
such subdivisions of K3,3 and hence Little’s characterization does not seem
to lead to a polynomial algorithm for recognizing bipartite Pfaffian graphs.
This difficulty was recently overcome, however, by two teams of researchers
(McCuaig and Robertson-Seymour-Thomas) working independently, but at
nearly the same time.

Let us define a graph operation known as the 4-sum operation. Let
G0 be any graph and let C be a nice cycle in G0 of length four. Let G1

and G2 be two subgraphs of G0 such that G1 ∪ G2 = G0, G1 ∩ G2 = C,
V (G1)\V (G2) �= ∅, and V (G2)\V (G1) �= ∅. Now let G be obtained from
G0 by deleting some (possibly none) of the edges of cycle C. We then say
that G is a 4-sum of G1 and G2. The main theorem then can be stated as
follows.

Theorem 7.4 [79, 99, 80]. A brace has a Pfaffian orientation if and only

if either it is isomorphic to the Heawood graph (see Figure 7.1) or it can be

obtained from planar braces by repeated application of the 4-sum operation.

Fig. 7.1. The Heawood graph

The authors then design a polynomial algorithm for testing a bipartite
graph for the Pfaffian property using this decomposition theorem.

How does all this relate to bricks and braces? Very nicely, as is illustrated
by the next theorem. (See also [105].)

Theorem 7.5 [108, 109]. A graph G has a Pfaffian orientation if and only

if each of its bricks and braces has a Pfaffian orientation.

The study of bricks, braces and Pfaffian graphs continues.
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Graphes (Paris, 1974 ), Cahiers Centre Études Rech. Opér. 17 (1975), 257–260.

[58] M. Lesk, M. D. Plummer and W. R. Pulleyblank, Equi-matchable graphs, Graph

theory and combinatorics (Cambridge, 1983), Academic Press, London, 1984, 239–

254.

[59] C. H. C. Little, A characterization of convertible (0, 1)-matrices, J. Combin. Theory

Ser. B, 18 (1975), 187–208.

[60] G. Liu and Q. Yu, on N -edge-deletable and N -critical graphs, Bull. Inst. Combin.

Appl., 24 (1998), 65–72.

[61] D. J. Lou, On the 2-extendability of planar graphs, Acta Sci. Natur. Univ. Suny-

atseni, 29 (1990), 124–126.

[62] D. Lou, A local neighbourhood condition for n-extendable graphs, Australas.

J. Combin., 14 (1996), 229–233.

[63] D. Lou, Local neighborhood conditions for n-extendability of a graph, Kexu Tong-

bao, 41 (1996), 1899–1901 (Chinese).

[64] D. Lou, A local independence number condition for n-extendable graphs, Discrete

Math., 195, 263–268.

[65] D. Lou and D. A. Holton, Lower bound of cyclic edge connectivity for n-extend-

ability of regular graphs, Discrete Math., 112 (1993), 139–150.

[66] D. Lou and Q. Yu, Sufficient conditions for n-matchable graphs, Australas. J. Com-

bin., 29 (2004), 127–133.

[67] D. Lou and Q. Yu, Connectivity of k-extendable graphs with large k, Discrete Appl.

Math., 136 (2004), 55–61.

[68] L. Lovász, On the structure of factorizable graphs I, Acta Math. Acad. Sci. Hungar.,

23 (1972), 179–195.

[69] L. Lovász, On the structure of factorizable graphs II, Acta Math. Acad. Sci. Hun-

gar., 23 (1972), 465–478.

[70] L. Lovász, A note on factor-critical graphs, Studia Sci. Math. Hungar., 7 (1972),

279–280.

[71] L. Lovász, Factors of graphs, Proceedings of the Fourth Southeastern Conference

on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca

Raton, Fla., 1973), Utilitas Math., Winnipeg, Man., 1973, 13–22.

[72] L. Lovász, Matching structure and the matching lattice, J. Combin. Theory Ser. B,

43 (1987), 187–222.

[73] L. Lovász and M. D. Plummer, On a family of planar bicritical graphs, Combina-

torics (Proc. British Combinatorial Conf., Univ. Coll. Wales, Aberystwyth, 1973),

London Math. Soc. Lecture Note Ser., No. 13, Cambridge Univ. Press, London,

1974, 103–107.



452 M. D. Plummer

[74] L. Lovász and M. D. Plummer, On a family of planar bicritical graphs, Proc.

London Math. Soc., 30 (1975), 160–176.

[75] L. Lovász and M. D. Plummer, On bicritical graphs, Infinite and finite sets (Colloq.,
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To Laci Lovász on his 60th Birthday

The complex of maximal lattice free bodies associated with a well behaved matrix

A of size (n + 1)× n is generated by a finite set of simplicies, K0(A), of the form

{0, h
1
, . . . , h

k
}, with k ≤ n, and their lattice translates. The simplicies in K0(A)

are selected so that the plane a0x = 0, with a0 the first row of A, passes through

the vertex 0. The collection of simplicies {h
1
, . . . , h

k
} is denoted by Top. Various

properties of Top are demonstrated, including the fact that no two interior faces

of Top are lattice translates of each other. Moreover, if g is a generator of the cone

generated by the set of neighbors {h} with a0h > 0, then the set of simplicies

of Top which contain g is the union of linear intervals of simplicies with special

features. These features lead to an algorithm for calculating the simplicies in

K0(A) as a0 varies and the plane a0x = 0 passes through the generator g.

1. Introduction

The purpose of this paper is to demonstrate some elementary structural
properties of the simplicial complex of maximal lattice free bodies asso-
ciated with a “generic” matrix A with n + 1 rows and n columns. The
properties are quite easy to establish, but they are not properties that I
would have expected when I began studying this subject many years ago.

∗I am grateful to Sasha Barvinok, Dave Bayer, Anders Björner, Raymond Hemmecke,

Roger Howe, Bjarke Roune, David Shallcross, Bernd Sturmfels, and Kevin Woods for

their intellectual company over the course of many years. I would also like to acknowledge

my great debt to Imre Bárány, Ravi Kannan, Niels Lauritzen, Rekha Thomas and Zaifu

Yang for their thoughtful, patient and constructive reading of the material in this paper.
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The structure that is revealed permits an easy calculation of the simplicial
complex associated with matrices obtained by perturbing A if the perturbed
matrix is also generic. The calculation involves finding the generators of a
cone, and comparing simplicies to see whether they are lattice translates of
each other; no integer programs need be solved. The simplicity of the cal-
culation suggests that homotopy methods may be useful in computing this
simplicial complex and the test set for integer programming that is given by
its edges. But it is imperative that both the initial matrix and the perturbed
matrix be generic. The paper is silent if this is not correct.

Let A be a real matrix with n + 1 rows and n columns satisfying the
assumption:

A1. There exists a unique (aside from scale) strictly positive vector π such
that πA = 0.

This assumption implies that the n×n minors of A are non-singular and
that the bodies Kb = {x : Ax ≥ b} are bounded for any b. A maximal lattice

free body is such a body Kb containing no lattice points in its interior, and
such that any convex body that properly contains Kb does have a lattice
point in its interior.

Fig. 1. A Maximal Lattice Free Body

Each of the n+1 faces of a maximal lattice free body will contain at least
one lattice point. The possibility of several lattice points lying on a single
face is a nuisance that can be avoided by perturbing the matrix A slightly.
Let us assume that this has been done, and that the following assumption
of genericity holds:

A2. Each face of a maximal lattice free body contains precisely one lattice
point.
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According to this assumption, each maximal lattice free body will be
associated with n + 1 lattice points {h0

, h
1
, . . . , h

n
} with, say, aih

i = bi and
aih

j
> bi for all i and all j �= i. The simplicial complex K(A), occasionally

called the Scarf Complex, defined by A consists of these simplicies, and all
of their proper subsimplicies.

The Scarf Complex was introduced, of course under a different name,
as an essential ingredient in a constructive proof that a balanced n person
game has a non empty core [12]. In this treatment, the set of vertices Y

was an arbitrary finite set of points in R
n+1 rather than the lattice Y =

{Ah : h ∈ Z
n
}. The rule for finding an adjacent simplex, given in Section 3

of the current paper, was fully described. The term “Scarf Complex” was
first used in [3], and [2].

The complex can be illustrated by a figure which is quite familiar to
algebraic geometers. Let Y be the lattice generated by the columns of A.
Append a negative orthant to each point y ∈ Y .

The union of these translated negative orthants has a “staircase” struc-
ture as in Figure 2 in which n = 2. The maximal points on the upper surface
are the vectors in the lattice Y .

Fig. 2. The Staircase

In this example, each minimal point on the upper surface lies on 3
negative orthants associated with 3 different vectors, say y

j1
, y

j2
, y

j3
∈ Y .

Figure 3 shows a triangle whose vertices are one of these triples.
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Fig. 3. A Simplex

If we construct the triangle associated with every minimal point on this
surface we get a collection of triangles (and edges and vertices) that
forms the simplicial complex associated with this set Y .

Fig. 4. The Complex

If A is an (n + 1)× n matrix, then the simplicial complex will typically
be of dimension n. It will consist of n dimensional simplicies and all of their



The Structure of the Complex of Maximal Lattice Free Bodies 459

faces of arbitrary dimensions. As in the example with n = 2, we append a
negative orthant to each of the points

y ∈ Y

and take the union of these translated negative orthants. If A is generic,
each minimal point on the upper surface will be associated with a set of
n + 1 points

y
j0

, . . . , y
jn
∈ Y.

The simplicies S of maximal dimension in K(A) are these collections of n+1
vectors.

The edges of this complex provide the unique, minimal test set for the
family of integer programs

max a0h subject to

aih ≥ bi, for i = 1, . . . , n and h integral,

obtained by selecting a single row of A, say row 0, as the objective function
and imposing constraints derived from the remaining rows [13, 14]. More
specifically, let N(A) be the finite, symmetric set of those non-zero lattice
points k that are contained in a maximal lattice free body, one of whose
other vertices is the origin. The lattice points in N(A) are called neighbors

of the origin. (It is a consequence of Assumption A2 that ajh �= 0 for any
neighbor h.) It can be shown that a lattice point h satisfying the constraints
of this integer program is the optimal solution to the integer program if for
every neighbor of the origin, k, with a0k > 0, the lattice point h+k violates
at least one of the constraints. Moreover, under the assumption of genericity
this test set is minimal: If an arbitrary element, and its negative, of N(A)
are deleted, then some right hand side b, and some feasible solution h can
be found, such that h is not optimal, but its lack of optimality cannot be
detected using this smaller test set.

The minimal test set N(A) for an alternative formulation

min a0h subject to

aih = bi for i = 1, . . . , n, h ∈ N
n,

is given in [19]. This test set is shown to be a particular Gröbner basis for a
binomial ideal associated with the columns of A. Sturmfels and Thomas [18]
study the relationship between the set of optimal solutions of two families
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of integer programming problems, with identical constraint sets, but with
different objective functions a0 and â0. They show that the optimal solutions
to the two problems will be the same for each right hand side b, if, and only
if, the two associated matrices have indentical sets of neighbors.

Let c = (c1, . . . , cn) be a vector of positive integers with no common
factor. The Frobenius problem is to find the largest integer b, termed the
Frobenius number, which cannot be written as ch with h ∈ Z

n
+. In [16]

a direct relationship is exhibited between the Frobenius problem and the
simplicial complex K(A) where A is a matrix whose columns generate the
lattice L = {h ∈ Z

n : ch = 0}. There has recently been a considerable
renewal of interest in the Frobenius problem. A variety of techniques have
been developed to calculate the Frobenius number using Gröbner Bases [9],
[11] and the entirely novel approach taken in [8].

The simplicial complex K(A) has been carefully studied and its topo-
logical structure is quite well known [5], [7] and [4]. The complex (more
precisely, its realization in R

n) is homeomorphic to R
n. The immediate pre-

sentation of the complex obtained by drawing all of its simplicies in R
n

is quite intricate. Aside from a few elementary cases, many of the simpli-
cies overlap with each other, so that the embedding into R

n is elaborately
folded.

If B is another matrix with n + 1 rows and n columns such that

sign (aih) = sign (bih) for all i and h ∈ N(A),

then B has the same set of neighbors and the same simplicial complex as
A [6]. The result is also correct when the two matrices have m rows and n

columns with m > n.

An arbitrary lattice translate of a simplex in K(A) is also in the complex,
and it is frequently convenient to choose one simplex from each class of
lattice translates. We shall be concerned with the behavior of the collection
of simplicies, of arbitrary dimension, as the first row of the matrix a0 varies.
For this purpose it will be useful to select a specific representative from
each set of lattice translates by requiring the origin to lie on the plane
a0x = b0 = 0. In our notation, we consider the collection of simplicies in
K(A) of the form

{0, h
1
, . . . , h

k
},

with a0h
j

> 0 for j = 1, . . . , k. We give the name K0(A) to this special
subset of K(A).



The Structure of the Complex of Maximal Lattice Free Bodies 461

Fig. 5. K0(A)

It will be useful for us to have a simple example of an n + 1× n matrix
A for which K0(A) is easy to describe. Let A be an (n+1)×n matrix, with
rows 0, 1, . . . , n, columns 1, . . . , n, with the sign pattern

A =

⎡⎢⎢⎢⎢⎢⎣
+ + · · · +
− + · · · +
+ − · · · +
...

...
. . .

...
+ + · · · −

⎤⎥⎥⎥⎥⎥⎦
which satisfies ∑

j

aij < 0 for i = 1, . . . , n.

Then the full dimensional simplicies in K0(A) are given by

S =

(
0, e1, e1 + e2, . . . ,

∑
j=1,n

ej

)

for e1, e2, . . . , en an arbitrary permutation of the n unit vectors in R
n. The

neighbors of the origin are the non-zero lattice points h = {h1, . . . , hn} with
hj = 0, 1, and their negatives [15].

2. Top

Let us define Top to be the collection of simplicies {h1
, . . . , h

k
} such that

{0, h
1
, . . . , h

k
} is a simplex in K0(A), with the plane a0x = b0 passing

through the origin.
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Fig. 6. Top

The vertices of Top consist of the neighbors h with a0h > 0. Let C be the
cone generated by this half-set of neighbors. For each generator g of C, we
define Top [g] to be the collection of simplicies in Top, one of whose vertices
is that generator. We use the notation Top / Top [g] for the collection of n−1
simplicies in Top but not in Top [g].

The number of generators of C may be shown to be polynomial in the
bit size of A for fixed n [10].

Let us consider an example of Top based on the matrix

A =

⎡⎢⎢⎣
1 1 1

−101 31 43
29 −301 173
41 131 −203

⎤⎥⎥⎦

For this example, Top is the figure consisting of the following 6 triangles

{
(1, 0, 0), (1, 1, 0), (1, 1, 1)

}{
(1, 0, 0), (1, 0, 1), (1, 1, 1)

}{
(0, 1, 0), (1, 1, 0), (1, 1, 1)

}{
(0, 1, 0), (0, 1, 1), (1, 1, 1)

}{
(0, 0, 1), (1, 0, 1), (1, 1, 1)

}{
(0, 0, 1), (0, 1, 1), (1, 1, 1)

}
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Fig. 7. Top

The generators of Top are given by the following three neighbors

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

Let g = (1, 0, 0). Then Top [g], the set of simplicies containing g, is shown
in Figure 8.

Fig. 8. Top [(1, 0, 0)]

The plane a0x = 0 passes through the origin. The complex K(A) is
unchanged by a perturbation of this plane as long as the plane does not
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touch one of the generators of Top. But as soon as the plane passes through
one of the generators the entire complex is transformed into a new simplicial
complex. For example, if the plane a0x = 0 passes through the generator
g = (1, 0, 0) the new version of Top, say Top∗, can be shown to consist of
the 12 triangles

{
{1, 1, 0}, {0, 1, 0}, {1, 1, 1}

}{
{2, 1, 1}, {1, 1, 0}, {1, 1, 1}

}{
{4, 0, 1}, {4, 1, 1}, {3, 0, 1}

}{
{5, 1, 1}, {4, 1, 1}, {4, 0, 1}

}{
{1, 1, 1}, {0, 1, 0}, {−1, 0, 0}

}{
{4, 1, 1}, {3, 1, 1}, {−1, 0, 0}

}{
{3, 1, 1}, {2, 1, 1}, {−1, 0, 0}

}{
{2, 1, 1}, {1, 1, 1}, {−1, 0, 0}

}{
{4, 1, 1}, {−1, 0, 0}, {3, 0, 1}

}{
{1, 0, 1}, {−1, 0, 0}, {0, 0, 1}

}{
{2, 0, 1}, {−1, 0, 0}, {1, 0, 1}

}{
{3, 0, 1}, {−1, 0, 0}, {2, 0, 1}

}
shown in Figure 9.

Fig. 9. Top∗
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The new generators are

(1, 1, 0)

(4, 0, 1)

(−1, 0, 0)

Top∗[−g] is the collection of simplicies in Top∗ containing the new gen-
erator −g = (−1, 0, 0). It is displayed in Figure 10.

Fig. 10. Top∗[−g]

As we see Top∗[−g] contains 8 distinct simplicies.

2.1. The Structure of Top. An Informal Presentation

I would like to present an informal summary of the basic structure of Top,
reserving formal mathematical proofs for later sections. The two examples
that we have constructed, Top and Top∗, are quite different and the proper-
ties we are about to discuss may be seen more readily in the more complex
example.

Top is a connected n − 1 dimensional piece-wise linear manifold: every
n−2 dimensional face of Top is incident to either one or two n−1 dimensional
simplicies. Top is homeomorphic to the n− 1 ball [5].

An n− 2 facet of Top incident to a single n− 1 dimensional simplex is
on the boundary of Top, which we denote by ∂ Top. An n− 2 facet incident
to two n−1 dimensional simplicies is interior to Top. The simplicies of Top
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have faces of dimension 0, 1, . . . , n − 2. A k − 1 dimensional face of Top is
defined by a set F = {h

1
, . . . , h

k
} with a0h

j
> 0 such that the n− 2 facet

S = {h
1
, . . . , h

k
, α

k+1
, . . . , α

n−1
} ∈ Top

for some α
k+1

, . . . , α
n−1. There are, of course, many such α

k+1
, . . . , α

n−1

that can be used to complete F . (Section 4, and, in particular, Lemma 1)

• The face F is in the boundary of Top if, and only if, there is

some completion to a facet which is itself on the boundary

of Top.

The next set of features are unexpected (to me) properties of lattice
translates of interior faces of Top. Two faces E and F are lattice translates
if F = E + h for some lattice point h.

• No two interior k dimensional simplicies of Top are lattice

translates of each other (Lemma 3 in Section 5).

As a special case of this result, Top has a single interior vertex [4]. The
single interior vertex may be shown to be the lattice point h

∗ where h
∗ is

the solution to the integer program

min a0h subject to

aih < 0, for i = 1, . . . , n, and h integral.

• Every k dimensional simplex on the boundary of Top has a

lattice translate that is interior to Top (Lemma 2 in Section 4).

Each n − 2 simplex on the boundary of Top is a lattice translate of an
interior simplex, but many of them may also be lattice translates of other
boundary simplicies. Of particular interest are those n − 2 simplicies that
are translates by a generator of the cone C. Let g be such a generator. Two
n − 2 simplicies, E and F , of Top will be said to be congruent mod (g), if
F = E + jg, for some integral j.

• Lattice Translates of n − 2 simplicies by a generator. The

following properties are demonstrated in Theorem 4 of Sec-

tion 6.

Let g be a generator of the cone C. The set of n− 2 simplicies of Top [g]
that are congruent mod (g) to a specific n−2 simplex consists of an interval

E + g, . . . , E + ug,
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with E = {h
1
, . . . , not i, . . . , h

n
} a simplex in Top /Top [g]. (u = 0, if there

are no simplicies of this form.) Moreover

1. All of the n−2 simplicies E, E +g, . . . , E +(u−1)g are in the boundary
of Top.

2. All of the n− 1 simplicies {g, E + g}, . . . , {g, E + ug} are in Top [g].

3. The first n−2 simplex E is contained in an n simplex S = {0, h
1
, . . . , α,

. . . , h
n
} with α �= g.

The last simplex, E+ug, in such an interval may, or may not be interior

to Top. It is important to differentiate between these two cases; let us call
such a sequence of n−2 simplicies interior if the last simplex in the interval
is interior to Top, and call it a boundary sequence if the last simplex is on
the boundary. If u < t the interval is definitely a boundary interval. If u = t

the interval may be of either type.

Figure 11 illustrates a boundary sequence of Top∗[−g], with g = (1, 0, 0),
derived from our basic example using the matrix A. As we see, the first such
simplex is not in Top∗[−g] and the last simplex is on the boundary of Top∗.
I have taken the liberty, in this and in subsequent drawings, of including
the n − 1 simplicies containing the members of the sequence and also the
initial n− 1 simplex which does not belong to Top∗[−g].

Fig. 11. A Boundary Sequence

In this example, Top∗[−g] has three interior sequences which are shown
in the next three figures. Again I have included the n−1 simplicies containing
the edges of the sequence and the pair of n − 1 simplicies at the two ends
of the interior sequence.
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Fig. 12. Interior Sequence 1

Fig. 13. Interior Sequence 2

If {g, E} is an n − 1 simplex in Top [g], then E belongs either to an
interior or a boundary sequence. It would be extremely interesting if

the number of sequences in Top [g] could be shown to be small in

fixed dimension.



The Structure of the Complex of Maximal Lattice Free Bodies 469

Fig. 14. Interior Sequence 3

3. Adjacent n Simplicies

In order to differentiate the faces of Top which are interior to Top from those
which are on the boundary we begin by examining adjacent n simplicies in
K(A).

Let S = {h
0
, h

1
, . . . , h

n
} be an n simplex in K(A). For each such S we

introduce the (n + 1) by (n + 1) matrix

AH =
[
aih

j
]
, i, j = 0, . . . , n.

If the matrix A is generic, then the row minima of AH lie in different
columns. We have agreed to name the vectors {hj

} so that the row minima
lie on the main diagonal of AH. If this is done then the smallest body of
the form Ax ≥ b, containing S has

bi = aih
i
.

Let

{h
0
, h

1
, . . . not h

i
, . . . , h

n
}

be a particular n − 1 face of S. We remind the reader of the simple rule
for finding the unique, different maximal lattice free body which shares this
n− 1 face with S. Define j = j(i) to be the index j which gives the second
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smallest value of aih
j . Then the replacement for h

i is that unique lattice
point h which solves

max ajh subject to

akh > akh
k for k �= i, j and

aih > aih
j
.

4. Which k − 1 Faces are Interior to Top?

A k − 1 dimensional face of Top is defined by a set F = {h
1
, . . . , h

k
} with

a0h
j

> 0, for j = 1, . . . , k, such that

S = {h
1
, . . . , h

k
, α

k+1
, . . . , α

n
} ∈ Top

for some α
k+1

, . . . , α
n with a0α

l
> 0, for l = k + 1, . . . , n. There are, of

course, many such α
k+1

, . . . , α
n that can be used to complete F . If we take

any such completion

{h
1
, . . . , h

k
, α

k+1
, . . . , α

j
, . . . , α

n
}

and replace any particular α
j , then if F is interior to Top, the resulting

simplex will also be in Top. If F is not interior, there is some completion so
that if we replace a particular α

j the resulting simplex will not be in Top.

We have the following useful conclusion:

Lemma 1. Let F = {h
1
, . . . , h

k
} be a k − 1 dimensional face of Top. F is

interior if, and only if,

min
j=1,...,k

aih
j

< 0 for all i = 1, . . . , n.

Proof. Let us consider an arbitrary completion of F given by the simplex
in K0(A):

S = {0, h
1
, . . . , h

k
, α

k+1
, . . . , α

n
}.
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According to our convention the row minima of the matrix associated with
S lie on the main diagonal, so that in particular

min
j=1,...,k

aih
j = aih

i
< 0 for i = 1, . . . , k and

min
j=k+1,...,n

aiα
j = aiα

i
< 0 for i = k + 1, . . . , n.

Our first task is to show that if F is an interior k − 1 face then

min
j=1,...,k

aih
j

< 0 for i = k + 1, . . . , n as well.

Assume to the contrary that F is an interior face and minj=1,...,k aih
j

> 0
for some particular row i, with k+1 ≤ i ≤ n. Let us remove column α

i from
the simplex S and replace it with column α̂

i, obtaining a new simplex Ŝ.
According to the general properties of the replacement step, the smallest
entry in row i of the matrix associated with Ŝ is equal to the second smallest
element in row i of the corresponding matrix for S. There are two possible
cases:

1. The second smallest element in row i of the matrix associated with S

does not lie in any of the columns k+1, . . . , n. But since minj=1,...,k aih
j

> 0 the second smallest element in row i must therefore lie in column 0.
It follows that the replacement for α

i leads to a simplex not in K0(A)
and therefore F is not an interior face.

2. The second smallest element in row i of the matrix associated with
S does lie in one of the columns k + 1, . . . , n. In this case we reach
a new completion Ŝ in which the minimum entry in row i of the
associated matrix has strictly increased. This can only occur for a
finite number of steps; we therefore ultimately return to the previous
case and obtain a contradiction to the assumption that F is an interior
face and minj=1,...,k aih

j
> 0.

On the other hand if

min
j=1,...,k

aih
j

< 0

for all k + 1 ≤ i ≤ n, then the second smallest entry in row i ≥ k + 1 of any
completion

S = {0, h
1
, . . . , h

k
, α

k+1
, . . . , α

n
}
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of F will not lie in column 0 of the associated matrix. The replacement for
α

i will lead to a new simplex in K0(A) for any completion and F is therefore
an interior face.

The same argument can be used to produce the following property of
Top.

Lemma 2. Let F = {h
1
, . . . , h

k
} be a k − 1 dimensional boundary face of

Top. Then F has a lattice translate F + h, with a0h > 0, which is interior

to Top.

Proof. There may be several lattice translates of F on the boundary of
Top. Let us assume that F has been selected from this set so that no lattice
translate F + h with a0h > 0 is on the boundary of Top. Since F is on
the boundary there must be a completion S = {0, h

1
, . . . , h

k
, α

k+1
, . . . , α

n
}

with the replacement for a particular α
j leading to a simplex not in K0(A),

say

S

′

= {−h, h
1
, . . . , h

k
, α

k+1
, . . . , 0, . . . , α

n
}

with a0h > 0. But then F + h ∈ Top, and it must therefore be interior.

5. Lattice Translates of Interior Simplicies

We have the following remarkably simple conclusion:

Lemma 3. Let F = {h
1
, . . . , h

k
} with a0h

j
> 0 be a k − 1 dimensional

interior face of Top and let h ∈ Z
n with a0h > 0. Then {h1 +h, . . . , h

k +h}

is not a face of Top.

Proof. The smallest body of the form Ax ≥ b, containing 0, h1+h, . . . , h
k+h

has

b0 = 0 and

bi ≤ min
j=1,...,k

ai(h
j + h) < aih for i = 1, . . . , n,

because minj=1,...,k aih
j

< 0. But then h is contained in this body and
{h

1 + h, . . . , h
k + h} is not a face in Top.
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This result implies that if F and F + h, with a0h > 0 are both faces of
Top, then F ∈ ∂ Top. There cannot be a pair of lattice translates of a k− 1
face both of which are interior simplicies of Top.

6. Intervals in Top [g]

Let g be a generator of the smallest cone containing the set of neighbors
{h} with a0h > 0.

Theorem 4. Let E + g be the first n− 2 face of the form E + lg contained

in Top [g] and E + tg, with t ≥ 1, the last such face. Then the set of n− 2
simplicies E + lg ∈ Top [g], consists of an interval

E + g, . . . , E + tg.

Moreover the faces

E, E + g, . . . , E + (t− 1)g

are all in ∂ Top. The last face in the interval, E + tg, may be interior to

Top or on the boundary. If E + tg is a boundary interval, the value of t is

given by

t =
⌊

min
j

(
− ajh

j
/ajg

)
: j > 0, ajg > 0

)⌋
.

Proof. A Preliminary Observation. Let {g, E +g} be the first n−1 simplex
of the form {g, E + ug} in Top [g]. We assume, as customary, that the row
minima of

{0, g, E + g} = {0, h
1 + g, . . . , g, . . . , h

n + g} ∈ K0(A)

are on the main diagonal (with “g” in column i). Let us show that E is
also in Top. To obtain this conclusion we first observe that a0 can be varied
– without changing the simplicial complex – so that a0g, while positive, is
arbitrarily close to 0. This tells us that the second smallest entry in row 0
of the matrix associated with {0, g, E + g} is in column i. If column 0 is
removed from this simplex we obtain a new simplex

{g, h, E + g} = {g, h
1 + g, . . . , h, . . . , h

n + g},
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with row minima on the main diagonal and with g the smallest entry in
row 0. It follows that

{0, h− g, E} = {0, h
1
, . . . , h− g, . . . , h

n
}

is a maximal lattice free body, again with row minima on the main diagonal.
E is therefore in Top.

From the assumption that the row minima of {0, g, E + g} lie on the
main diagonal we also know that aig < 0.

Our next observation is that a completion of E + tg can be found with
row minima on the main diagonal. Let T = {0, h

1 + tg, . . . , β, . . . , h
n + tg}

be a completion of E + tg. There are two cases to consider:

1. E + tg is interior to Top. In this case, according to Lemma 2,
minj �=i ak(h

j + tg) < 0 for k = 1, . . . , n. For k �= i the minimum is
reached at j = k and we have

min
j �=i

ak(h
j + tg) = ak(h

k + tg) < 0.

On the other hand, if the smallest element in row i of T is in col-
umn i then the row minima of T lie on the main diagonal. If the
row minimum in row i of T is in column k then the smallest entry
in row k of T must be in column i and the second smallest entry
in row k is ak(h

k + tg). If we then replace β in T , we obtain a new
T
∗ = {0, h

1+tg, . . . , β
∗
, . . . , h

n+tg} ∈ K0(A) with row minima on the
main diagonal. In this event let the completion be T

∗ rather than T .

2. E + tg is on the boundary of Top. Then from Lemma 2 we must have
minj �=i ak(h

j + tg) > 0 for some k = 1, . . . , n. We shall show that this
k is equal to i. If k is different from i, the smallest entry in row k

of the matrix associated with T , being negative, must be in column i

and therefore ak(h
k + tg) > 0 > akg. But this is impossible since the

row minima of {0, g, E + g} lie on the main diagonal implying that
ak(h

k + g) < 0. It follows that k = i and the row minima of T lie on
the main diagonal.

Now let us turn to the main argument. Let 0 < s < t and define

Ts = {0, h
1 + sg, . . . , g, . . . h

n + sg}.
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We want to show by induction, starting with s = 1 and continuing to s = t,
that Ts is a simplex in K0(A), and that the row minima of Ts lie on the
main diagonal.

Let us assume that these two features are correct for T1, . . . , Ts−1 and
show that they are also correct for Ts. Since they hold for s = 1, by
assumption, this demonstrates the theorem.

The row minima of the matrix associated with {0, h
1
, . . . , h− g, . . . , h

n
}

lie on the main diagonal. Therefore for any k �= 0, i, we have

akh
k

< akh
j for j �= 0, k, i

It follows that

ak(h
k + sg) < ak(h

j + sg) for j �= 0, k, i.

We also know that

akh
k

< 0 for k �= 0, i and

ak(h
k + tg) < 0 for k �= 0, i.

If we average these inequalities we see that ak(h
k + sg) < 0 and also

ak

(
h

k + (s − 1)g
)

< 0, (from which it follows that ak(h
k + sg) < akg),

for 0 < s < t and k �= 0, i. Therefore the smallest element in row k �= 0, i of
Ts is in column k.

By induction E + (s − 1)g is a face of Top so that it must be in ∂ Top
and its associated matrix must have one row which is entirely positive. But
this must be row i, since, by induction,

ak

(
h

k + (s− 1)g
)

< 0 for k �= 0, i.

It follows that row i is the row with positive entries and

ai

(
h

j + (s− 1)g
)

> 0 for j �= 0, i and therefore

ai(h
j + sg) > aig

Combining this observation with the previous remark that ak(h
k+sg) < akg

for k �= 0, i we see that the row minima of Ts lie on the main diagonal.
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In order to show that Ts is a simplex in K0(A), we need to show that
there are no lattice points interior to the smallest body Ax ≥ b containing
the vertices of Ts. The vector b for this body is given by

b0 = 0

bk = ak(h
k + sg) for k �= 0, i and

bi = aig.

If the lattice point ξ, not a multiple of “g”, is strictly contained in this body
then

a0ξ > 0

akξ > ak(h
k + sg) for k �= 0, i and

aiξ > aig.

But then ξ − sg is strictly contained in the body

{0, h− g, E} = {0, h
1
, . . . , h− g, . . . , h

n
},

since

a0(ξ − sg) > 0 for a0g close to 0

ak(ξ − sg) > akh
k for k �= 0, i, and

ai(ξ − sg) > (1− s)aig ≥ 0 > ai(h− g)

This contradicts the fact that {0, h − g, E} ∈ K0(A) and demonstrates
that Ts is a simplex in K0(A). The induction is complete.

In order to complete the proof of Theorem 4, we need to show that if
E + tg is a boundary interval then

(∗) t =
⌊

min
j

(
− ajh

j
/ajg

)
: j > 0, ajg > 0

⌋
.

First of all, we know that Tt = {0, h
1 + tg, . . . , g, . . . , h

n + tg} ∈ K0(A),
with row minima on the main diagonal. Therefore aj(h

j+tg) < 0 for j �= 0, i.
Since ajh

j
< 0, for such j, this inequality is certainly correct if ajg < 0. But

if ajg > 0, the inequality implies that t <

(
− ajh

j
/ajg

)
, and therefore

t ≤

⌊
min

j

(
− ajh

j
/ajg

)
: j > 0, ajg > 0

⌋
.
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We shall show that if the inequality is strict then the row minima of the
matrix associated with

T(t+1) =
{

0, h
1 + (t + 1)g, . . . , g, . . . , h

n + (t + 1)g
}

lie on the main diagonal and that T(t+1) is a simplex in K0(A), contradicting
the assumption of Theorem 4.

If the inequality is strict so that

t + 1 ≤
⌊

min
j

(
− ajh

j
/ajg

)
: j > 0, ajg > 0

⌋
,

then aj

(
h

j + (t + 1)g
)

< 0 for j �= 0, i. Since aj(h
j + tg) < 0 for j �= 0, i, we

see that aj

(
h

j + (t + 1)g
)

< ajg for j �= 0, i, and therefore the row minima
of the matrix associated with T(t+1) lie on the main diagonal for all rows
other than possibly row i.

But since E + tg is on the boundary of Top, it follows from Lemma 1
that mink �=0,i(ajh

k + tg) > 0 for some row j and this can only be row i.
Therefore the row minimum in row i in the matrix associated with T(t+1) is
in column i, so that the row minima lie in different columns. The smallest
body Ax ≥ b containing the vertices of T(t+1) is therefore given by

b0 = 0

bk = ak

(
h

k + (t + 1)g
)

for k �= 0, i and

bi = aig.

Arguments identical to those previously given show that there are no lattice
points interior to this body. Therefore T(t+1) is a simplex in K0(A), again
contradicting the assumption of Theorem 4.

Note: We cannot have

min
j

(
− ajh

j
/ajg

)
: j > 0, ajg > 0 equal to an integer t,

because then

aj(h
j + tg) = 0 for some j.

Since h
j + tg is a neighbor, this violates the assumption of genericity A2.
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7. Recovering Top from Top / Top [g]

It is very easy to recover all of the simplicies in Top from a knowledge
of the simplicies in Top /Top [g]. It suffices, of course, to recover the n− 1
simplicies. We assume that a list, say L, of the n−1 simplicies of Top / Top [g]
is known. Figure 17 shows these simplicies in our standard example. Let us
begin by recovering the boundary intervals in Top.

7.1. Boundary Intervals in Top [g]

Begin by making a list of those n− 2 faces E of Top /Top [g], which are on
the boundary of Top. (We remind the reader that Lemma 1 permits us to
determine if a particular face E is on the boundary of Top, even if we do
not yet have a full list of the simplicies in Top.) Each such E is contained
in a simplex

{0, h
1
, . . . , h, . . . , h

n
} = {0, h, E} ∈ Top /Top [g],

with h in column i, arranged so that the row minima are on the main
diagonal. Because each such face is on the boundary the second smallest
entry in row i of the matrix associated with {0, h, E} is in column 0. We
are looking for those boundary faces E, of Top / Top [g] which initiate a
boundary interval

{h, E}, {g, g + E}, . . . , {g, tg + E}

with each E +ug in ∂ Top. In order to find the length of the interval we use
(∗) to calculate the appropriate value of

t =
⌊

min
j

(
− ajh

j
/ajg

)
: j > 0, ajg > 0

⌋
.

If t = 0, E does not initiate a boundary interval.
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7.2. Interior Intervals in Top [g]

Examine the n − 2 faces of Top / Top [g] to see if there is a pair E, E + tg

(with t > 0) which are congruent mod (g). Such a pair will give rise to an
interior interval

{h, E}, {g, g + E}, . . . , {g, tg + E}

with {g, g + E}, . . . , {g, tg + E} ∈ Top [g] and tg + E interior to Top.

After the interior intervals have been added there will be no remaining
pairs E, E + ug ∈ Top / Top [g].

8. The Behavior of Top under Continuous Changes in a0

The plane a0x = 0 supports the cone C generated by the set of neighbors
with a0h > 0. As we vary the normals to this plane, K0(A) will remain
the same until the plane touches one of the generators of the cone, say, g.
After the plane passes through g (and no other neighbor) the generator g

is replaced by −g; the other generators have more dramatic replacements.
In this section, I will describe, first without proofs, how to calculate the
changes in the entire simplicial complex Top after this perturbation. Let us
use the notation Top∗ for the simplicial complex after the perturbation, and
Top∗[−g] for the collection of simplicies in Top∗ containing −g as a vertex.
We shall recover Top∗[−g] using the techniques of the last section.

• Every n− 1 simplex in Top [g] disappears without an image in Top∗.

Let S = {0, h
1
, . . . , g, . . . , h

n
} be a simplex in K0(A), with row minima

on the main diagonal. After the plane passes through g (and no other neigh-
bor), a0g changes sign. The smallest body of the form Ax ≥ b containing
0, h

1
, . . . , g, . . . , h

n now has b0 = a0g so that 0 is properly contained in this
body and {0, h

1
, . . . , g, . . . , h

n
} is not a simplex.

• Each of the remaining n − 1 simplicies in Top /Top [g] (in this in-
stance 4 simplicies) is translated by an integral amount. Specifically,
if F = {h

1
, . . . , h

n
} is an n − 1 simplex in Top / Top [g] before this

perturbation, it is replaced by F + tg after the perturbation, where

t =
⌊

min
j

(
− ajh

j
/ajg

)
: j > 0, ajg > 0

⌋
.
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Fig. 15. Top

Fig. 16. Top / Top [g]

Let F = {h
1
, . . . , h

n
} ∈ Top /Top [g], and let Ax ≥ b be the smallest

body of this form containing S = {0, F}, with row minima of the matrix
associated with S on the main diagonal. The right hand side b does not
change after the plane passes though g, but −a0g > 0, and lattice points of
the form −ug (with u > 0) may now be contained in this body if

−uajg > ajh
j for j = 1, . . . , n, or

u ≤ t =
⌊

min
j

(
− ajh

j
/ajg

)
: j > 0, ajg > 0

⌋
.
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Since there are no other lattice points in this body, it follows that {−tg, h
1
,

. . . , h
n
} ∈ K

∗(A) and therefore F + tg ∈ Top∗.

As before, we cannot have

t = min
j

(−ajh
j
/ajg) for some j,

for this would violate the assumption that the matrix A is generic, after a0g

changes sign.

The above rule requires us to examine every simplex in Top / Top [g].
But it is very easy to work with and gives us a complete description of
Top∗ / Top∗[−g]. How can we find the simplicies in Top∗[−g]?

Fig. 17. Top∗

/ Top∗[−g]

Boundary Intervals We make a list of those n − 2 faces E of Top∗ /

Top∗[−g] which are on the boundary of Top∗ and such E + u(−g) is
not in Top∗ /Top∗[−g] for u > 0. Each such E initiates a boundary
interval

{h, E}, {−g,−g + E}, . . . ,

{
− g, t(−g) + E

}
of Top∗[−g], with

t =
⌊

min
j

(
ajh

j
/ajg

)
: j > 0, ajg < 0

)⌋
.

This is our earlier t with g replaced by −g.
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Fig. 18. Adding the Boundary Interval

Our example contains a unique boundary interval which we add to the
previous figure.

Interior Intervals As previously described, an interior interval of
Top∗[−g] is determined by a sequence

E + tg, E + (t− 1)g, . . . , E

with

1. The n−2 simplicies E+tg, E+(t−1)g, . . . , E+g in the boundary
of Top∗,

2. The n−1 simplicies
{
−g, E+(t−1)g

}
, . . . , {−g, E} in Top∗[−g],

3. E interior to Top∗,

4. The first simplex E + tg is not in Top∗[−g].

We have the full list of simplicies in Top∗ /Top∗[−g]. In order to find an
interior interval, we examine the list to find pairs of n− 2 simplicies

E + tg, E

in Top∗ / Top∗[−g]. Any such pair will generate an interior interval.
Our example has three interior intervals which are added one at a time
in each of the following figures.

This is the essential step in a homotopy algorithm.
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Fig. 19. Adding Interior Interval 1

Fig. 20. Adding Interior Interval 2

9. What is Next?

Let us return to the Frobenius problem based on the positive integer vector
c = (c1, c2, . . . , cn). Let

G = {b : b = ch, for some h ∈ Z
n
+},
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Fig. 21. Adding Interior Interval 3

and define the generating function

f(x) =
∑
b∈G

x
b
.

There are two remarkable results about f(x), which seem to be at arm’s
length. It would be extremely interesting to unite them.

In [1] the authors show that – for fixed n – the generating function f(x)
can be written as the sum of a polynomial number of rational functions.

To state the second result, let A be an n× (n−1) integral matrix whose
columns generate the lattice L =

{
h = (h1, . . . , hn) ∈ Z

n : ch = 0
}

and let
K0(A) be the associated set. Let S be a j dimensional simplex S ∈ K0(A)
defined by j +1 lattice points {0, h

1
, . . . , h

j
} with a0h

k
> 0 for k = 1, . . . , j.

The smallest body of the form Ax ≥ b containing {0, h
1
, . . . , h

j
} will have

b(S) = Min [0, Ah
1
, . . . , Ah

j ].

[2] and [17] showed that if A is generic, then

f(x) =

∑
S∈K0(A)

(−1)dim (S)
x
−c·b(S)∏

i(1− x
ci)

.

What is surprising about these two results is that in general dimension,
the number of simplicies in K0(A) is definitely not small in the size of the
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matrix A. This suggests that the complex K(A) has sufficient structure
so that we can combine the terms in the generating function into a small
number of rational functions. What can this structure be? Can it be related
to the collection of interior and boundary intervals that characterize Top [g]?
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[6] Imre Bárány and Herbert Scarf, Matrices with Identical Sets of Neighbors, Math-

ematics of Operations Research, Vol. 23, No. 4 (1998), 863–873.
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Graph Invariants in the Edge Model

ALEXANDER SCHRIJVER

To my always inspiring friend Laci

We sharpen the characterization of Szegedy of graph invariants

fb(G) =
�

φ : EG→[n]

�

v∈V G

b(φ(δ(v))),

where b is a real-valued function defined on the collection of all multisubsets

of [n] := {1, . . . , n}.

1. Introduction

Laci Lovász is a main inspirator of the new area of graph limits and graph
connection matrices and their relations to graph parameters, partition func-
tions, mathematical physics, reflection positivity, and extremal combina-
torics. Prompted by Lovász’s questions, Balázs Szegedy [5] characterized
graph invariants in the ‘edge model’. His proof is based on a highly original
combination of methods from invariant theory and real algebraic geometry.
It answers a question formulated in [1], which considers the corresponding
‘vertex model’.

In this paper we give a sharpening of Szegedy’s theorem and give a
slightly shorter proof, although parts of our proof follow the scheme of
Szegedy’s proof. New elements of the present paper are the connections
between linking of graphs and differentiation of polynomials and the use of
a deep theorem of Procesi and Schwarz [4] in real invariant theory.

Let G be the collection of all finite graphs, where two graphs are con-
sidered to be the same if they are isomorphic. Graphs may have loops
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and multiple edges. Moreover, ‘pointless’ edges are allowed, that is, loops
without a vertex. We use the notation

(1) [n] := {1, . . . , n}

for any n ∈ N, where N = {0, 1, 2, . . .}.

A graph invariant is any function f : G → R. In this paper, as in Szegedy
[5], we consider graph invariants obtained as follows. Let n ∈ N and let
An be the collection of all multisubsets of [n], that is, of all multisets with
elements from [n]. (So each element of [n] has a ‘multiplicity’ in any α ∈ An.
There is a one-to-one relation between An and N

n, given by the multiplicities
of i ∈ [n] in a multiset α ∈ An.)

For b : An → R define fb : G → R by

(2) fb(G) =
∑

φ : EG→[n]

∏
v∈V G

b(φ
(
δ(v)

)
)

for G ∈ G. Here V G and EG denote the sets of vertices and edges of G,
respectively, δ(v) is the set of edges incident with v, and φ

(
δ(v)

)
is the

multiset of φ-values on δ(v), counting multiplicities. (Actually, also δ(v) is
a multiset, as loops at v occur twice in δ(v).)

Several graph invariants are equal to fb for some appropriate b. For
instance, the number of proper n-edge-colourings of a graph G is equal to
fb(G), where, for α ∈ An, b(α) = 1 if all elements of [n] have multiplicity
0 or 1 in α, and b(α) = 0 otherwise. The number of perfect matchings in
G is equal to fb(G) for n = 2 and b(α) = 1 if the multiplicity of 1 in α is
equal to 1, and b(α) = 0 otherwise. For more background, see de la Harpe
and Jones [3] and Freedman, Lovász, and Schrijver [1].

We characterize which graph invariants f satisfy f = fb for some n ∈ N

and b : An → R, extending the characterizing of Szegedy [5]. We also prove
that fb = fc if and only if c arises from b by an orthogonal transformation.
(Szegedy proved sufficiency here.)

2. The Characterization

To describe the characterization, call a graph invariant f multiplicative if
f(K0) = 1 and f(GH) = f(G)f(H) for any G, H ∈ G. Here K0 is the
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graph with no vertices and no edges, and GH denotes the disjoint union
of G and H.

We also need the following operation. Let u and v be distinct vertices
of a graph G, and let π be a bijection from δ(u) to δ(v). (This obviously
requires that deg (u) = deg (v).) Let Gu,v,π be the graph obtained as follows
(where we consider the graph as topological space). Delete u and v from G,
and for each e ∈ δ(u), reconnect e to π(e). So the open ends of e and π(e)
are glued together with a new topological point (which however will not be
a vertex). It might be that e = π(e) (so e connects u and v), in which case
we create a pointless loop.

We need a repeated application of this operation, denoted as follows. Let
u1, v1, . . . , uk, vk be distinct vertices of graph G and let πi : δ(ui) → δ(vi) be
a bijection, for each i = 1, . . . , k. Then we set

(3) Gu1,v1,π1,...,uk,vk,πk
:=

(
· · · (Gu1,v1,π1

) · · ·
)

uk,vk,πk
.

Now define the G × G matrix Mf,k by

(4) (Mf,k)G,H :=
∑

u1,v1,π1,...,uk,vk,πk

f

(
(GH)u1,v1,π1,...,uk,vk,πk

)
for G, H ∈ G, where the sum extends over all distinct u1, . . . , uk ∈ V G,
distinct v1, . . . , vk ∈ V H, and bijections πi : δG(ui) → δH(vi), for i =
1, . . . , k.

Theorem 1. Let f : G → R. Then f = fb for some n ∈ N and some

b : An → R if and only if f is multiplicative and Mf,k is positive semidefinite

for each k = 0, 1, . . . .

The positive semidefiniteness of Mf,k can be seen as a form of ‘reflection
positivity’ of f . In Section 6, we derive Szegedy’s characterization from
Theorem 1. In Section 7 we prove that b is uniquely determined by f , up
to certain orthogonal transformations.

3. Some Framework

Let Q denote the collection of all formal real linear combinations
∑

G γGG of
graphs (with at most finitely many γG nonzero). These are called quantum
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graphs. By taking the disjoint union GH as multiplication, Q becomes a
commutative algebra. The function f can be extended linearly to Q.

For G, H ∈ G and k ∈ N, define the quantum graph λk(G, H) by

(5) λk(G, H) :=
∑

u1,v1,π1,...,uk,vk,πk

(GH)u1,v1,π1,...,uk,vk,πk
,

where the sum is taken over the same set as in (4). We can extend λk(G, H)
linearly to a bilinear function Q×Q → Q. As

(6) Mf,k(G, H) = f

(
λk(G, H)

)
,

the positive semidefiniteness of Mf,k is equivalent to the fact that

f

(
λk(γ, γ)

)
≥ 0

for each γ ∈ Q.

For each α ∈ An, we introduce a variable xα. For each G ∈ G, define
the following polynomial in R[xα | α ∈ An]:

(7) pn(G) :=
∑

φ : EG→[n]

∏
v∈V G

xφ(δ(v)).

So fb(G) = pn(G)(b) for any b : An → R. We extend pn linearly to Q.

Let O(n) be the group of (real) orthogonal n × n matrices. The group
O(n) acts (linearly) on R[y1, . . . , yn], and via the bijection

(8) xα ↔

∏
i∈α

yi

between the variables xα and monomials in R[y1, . . . , yn], O(n) also acts
on R[xα | α ∈ An]. Then, by the First Fundamental Theorem of invariant
theory for the orthogonal group O(n) (cf. Goodman and Wallach [2]), we
have

(9) pn(Q) = R[xα | α ∈ An]O(n)

(the latter denotes as usual the set of polynomials in R[xα | α ∈ An]
invariant under O(n)), as can be seen using the connection (8).
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4. Derivatives

For any polynomial p ∈ R[xα | α ∈ An], let dp be its derivative, being an
element of R[xα | α ∈ An]⊗R Ln, where Ln is the space of linear functions
in R[xα | α ∈ An]. Then d

k
p ∈ R[xα | α ∈ An]⊗R L

⊗k
n .

Let 〈., .〉 be the inner product on Ln given by

(10) 〈xα, xβ〉 := cαδα,β

for α, β ∈ An, where

(11) cα :=
n∏

i=1

μi(α)!,

where μi(α) denotes the multiplicity of i in α. This induces an inner product
on L

⊗k
n for each k. With the usual product of polynomials in R[xα | α ∈ An],

this gives an inner product on R[xα | α ∈ An] ⊗R L
⊗k
n with values in

R[xα | α ∈ An].

The following lemma is basic to our proof, and is used several times in it.

Lemma 1. For all graphs G, H and k, n ∈ N:

(12) pn

(
λk(G, H)

)
=

〈
d

k
pn(G), dk

pn(H)
〉
.

Proof. We expand d
k
pn(G):

d
k
pn(G) =

∑
α1,...,αk∈An

∑
φ : EG→[n]

d

dxα1

· · ·

d

dxαk

(13)

×

( ∏
v∈V G

xφ(δ(v))

)
⊗ xα1

⊗ · · · ⊗ xαk

=
∑

α1,...,αk∈An

∑
φ : EG→[n]

∑
u1,...,uk∈V G
∀i : φ(δ(ui))=αi

×

( ∏
v∈V G\{u1,...,uk}

xφ(δ(v))

)
⊗ xα1

⊗ · · · ⊗ xαk
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=
∑

u1,...,uk∈V G

∑
φ : EG→[n]

( ∏
v∈V G\{u1,...,uk}

xφ(δ(v))

)
⊗ xφ(δ(u1)) ⊗ · · · ⊗ xφ(δ(uk)).

Here u1, . . . , uk are distinct. Now for any φ : EG → [n] and ψ : EH → [n]
and any u ∈ V G and v ∈ V H, 〈xφ(δ(u)), xψ(δ(v))〉 is equal to the number of

bijections π : δ(u) → δ(v) such that ψ ◦ π = φ | δ(u). This implies (12).

5. Proof of Theorem 1

To see necessity, let b : An → R and f = fb. Then, trivially, f is multiplica-
tive. Positive semidefiniteness of Mf,k follows from

(14) fb

(
λk(G, H)

)
= pn

(
λk(G, H)

)
(b) =

〈
d

k
pn(G)(b), dk

pn(H)(b)
〉
,

using Lemma 1.

We next show sufficiency. First we have:

Claim 1. Let γ be a quantum graph consisting of k-vertex graphs. If
f

(
λk(γ, γ)

)
= 0 then f(γ) = 0.

Proof. We prove the claim by induction on k. So assume that the claim
holds for all quantum graphs made of graphs with less than k vertices.

We can assume that all graphs occurring in γ with nonzero coefficient
have the same degree sequence d1, . . . , dk, since if we would write γ = γ1+γ2,
where all graphs in γ1 have degree sequence different from those in γ2, then
λk(γ1, γ2) = 0, whence f

(
λk(γi, γi)

)
= 0 for i = 1, 2.

Now f

(
λk(γ, γ)

)
= 0 implies, by the positive semidefiniteness of Mf,k:

(15) f

(
λk(γ, H)

)
= 0 for each graph H.

Let P be the graph with 2k vertices 1, 1′, . . . , k, k
′, where for each i =

1, . . . , k, there are di parallel edges connecting i and i
′. If d1, . . . , dk are all

distinct, we are done, since then γ is a multiple of λk(γ, P ), implying with
(15) that f(γ) = 0 – but generally there can be vertices of equal degrees.
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The sum in (5) for λk(γ, P ) can be decomposed according to the set I of
those components of P with both vertices chosen among v1, . . . , vk and to
the set J of those components of P with no vertices chosen among v1, . . . , vk

(necessarily |I| = |J |). Let K denote the set of components of P , and for
J ⊆ K, let PJ be the union of the components in J . Then

(16) λk(γ, P ) =
∑

I,J⊆K
I∩J=∅, |I|=|J |

αI,JγIPJ ,

where αI,J ∈ N with α∅,∅ �= 0, and where

(17) γI := λ2|I|(γ, PI).

Now for each I ⊆ K, we have λk−2|I|(γI , γI) = λk(γ, γIPI). Hence

f

(
λk−2|I|(γI , γI)

)
= f

(
λk(γ, γIPI)

)
= 0,(18)

by (15). So by induction, if I �= ∅ then f(γI) = 0. Therefore, by (16), since
f

(
λk(γ, P )

)
= 0 and α∅,∅ �= 0, f(γ) = f(γ∅P∅) = 0.

Let O be the graph just consisting of the pointless loop.

Claim 2. f(O) ∈ N.

Proof. Suppose not. Then we can choose a k ∈ N with
(f(O)

k

)
< 0. For

each π ∈ Sk, let Gπ be the graph with vertex set [k] and edges
{

i, π(i)
}

for
i = 1, . . . , k. (So Gπ is 2-regular.) Define

(19) γ :=
∑
π∈Sk

sgn (π)Gπ.

Then for any n:

pn(γ) =
∑
π∈Sk

sgn (π)pn(Gπ) =
∑
π∈Sk

sgn (π)
∑

φ : EGπ→[n]

∏
v∈V Gπ

xφ(δ(v))(20)

=
∑
π∈Sk

sgn (π)
∑

φ : [k]→[n]

∏
v∈[k]

x
{φ(v),φ◦π−1(v)}

=
∑

φ : [k]→[n]

∑
π∈Sk

sgn (π)
∏

v∈[k]

x
{φ(v),φ◦π(v)}

.
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Now if φ is not injective, then φ = φ ◦π for some π ∈ Sk with sgn (π) = −1,
and hence the last inner sum is 0. So if n < k then pn(γ) = 0. If n = k,
then pn(γ) contains the term x{1,1} · · ·x{k,k} with nonzero coefficient, so
pk(γ) �= 0.

Since λk(γ, γ) is a sum of graphs with no vertices, we know that
λk(γ, γ) = q(O) for some polynomial q ∈ R[y], of degree at most k. Then,
if n < k,

q(n) = q

(
pn(O)

)
= pn

(
q(O)

)
= pn

(
λk(γ, γ)

)
= 0,(21)

with Lemma 1, as pn(γ) = 0. Moreover, q(k) = pk

(
λk(γ, γ)

)
> 0, as

pk(γ) �= 0 (again using Lemma 1). So q(y) = c

(
y
k

)
for some c > 0. Therefore,

f

(
λk(γ, γ)

)
= f

(
q(O)

)
= q

(
f(O)

)
= c

(
f(O)

k

)
< 0,(22)

contradicting the positive semidefiniteness condition.

This gives us n:

(23) n := f(O).

Then Claim 1 implies:

(24) there is linear function f̂ : pn(Q)→ R such that f = f̂ ◦ pn.

Otherwise, there is a quantum graph γ with pn(γ) = 0 and f(γ) �= 0. We
can assume that pn(γ) is homogeneous, that is, all graphs in γ have the
same number of vertices, k say. Hence, since λk(γ, γ) is a polynomial in O,
and since f(O) = n = pn(O),

f

(
λk(γ, γ)

)
= pn

(
λk(γ, γ)

)
= 0,(25)

by Lemma 1. So by Claim 1, f(γ) = 0. This proves (24).

In fact, f̂ is an algebra homomorphism, since for all G, H ∈ G:

f̂

(
pn(G)pn(H)

)
= f̂

(
pn(GH)

)
= f(GH) = f(G)f(H)(26)

= f̂

(
pn(G)

)
f̂

(
pn(H)

)
.
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Then for all G, H ∈ G, using Lemma 1:

f̂(
〈
dpn(G), dpn(H)

〉
) = f̂(pn

(
λ1(G, H)

)
)(27)

= f

(
λ1(G, H)

)
= (Mf,1)G,H .

Since Mf,1 is positive semidefinite, (27) implies that for each q ∈ pn(Q):

(28) f̂

(
〈dq, dq〉

)
≥ 0.

Now choose Δ ∈ N. Let GΔ be the set of graphs of maximum degree at
most Δ, and let QΔ be the set of all formal linear combinations of graphs
in GΔ. Define

(29) An,Δ :=
{

α ∈ An | |α| ≤ Δ
}

.

By (28) and since the inner product 〈., .〉 on Ln is O(n)-invariant, the
theorem of Procesi and Schwarz [4] (which we can apply in view of (9))
implies the existence of a b ∈ R

An,Δ such that f̂(p) = p(b) for each p ∈

pn(QΔ). So

(30) f(G) = f̂

(
pn(G)

)
= pn(G)(b) = fb(G)

for each G ∈ GΔ.

This can be extended to the collection G of all graphs. For each d, let

K
(d)

2
be the graph with two vertices, connected by d parallel edges. Then

any b : An → R with f = fb satisfies

(31) b(α)2 ≤ f

(
K

(|α|)
2

)
for α ∈ An.

For each Δ ∈ N, define

BΔ :=
{

b : An → R | f(G) = fb(G) for each G ∈ GΔ,(32)

b(α)2 ≤ f

(
K

(|α|)
2

)
for each α ∈ An

}
.

By the above, BΔ �= ∅ for each Δ. As each BΔ is compact by Tychonoff’s
theorem, and as BΔ ⊇ BΔ′ if Δ ≤ Δ′, we know

⋂
Δ

BΔ �= ∅. Any b in this
intersection satisfies f = fb.
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Note that the positive semidefiniteness of Mf,k for k �= 1 is only used to

prove Claims 2 and 1. If we know that f = f̂ ◦ pn for some linear function
f̂ : pn(Q) → R and some n, then it suffices to require that Mf,1 is positive
semidefinite and f is multiplicative.

6. Derivation of Szegedy’s Theorem

We now derive as a consequence the theorem of Szegedy [5]. Consider some
k ∈ N. A k-exit graph is a pair (G, u) of an undirected graph G and an
element u ∈ V G

k such that the ui are distinct vertices, each of degree 1.
Let Gk denote the collection of k-exit graphs.

If (G, u) and (H, v) are k-exit graphs, then (G, u)·(H, v) is the undirected
graph obtained by taking the disjoint union of G and H, and, for each
i = 1, . . . , k, deleting ui and vi and adding a new point connecting the ends
left by ui and vi.

Let Gk be the collection of k-exit graphs. For f : G → R, define the
Gk × Gk matrix Nf,k by

(33) (Nf,k)(G,u),(H,v)
:= f

(
(G, u) · (H, v)

)
for (G, u), (H, v) ∈ Gk. Then ([5]):

Corollary 1a. Let f : G → R. Then f = fb for some n ∈ N and some

b : An → R if and only if f is multiplicative and Nf,k is positive semidefinite

for each k ∈ N.

Proof. Necessity follows similarly as in Theorem 1. To see sufficiency, let
for any graph G and any d ∈ N, Gd be the quantum d-exit graph being the
sum of all d-exit graphs obtained as follows. Choose a vertex v of degree d,
delete v topologically from G, and add vertices of degree 1 to the loose ends.
Let F be the graph obtained this way. Order these new vertices in a vector
in u ∈ V F

d. The sum of these (F, u) makes Gd. So Gd is a sum of precisely
d!m d-exit graphs, where m is the number of vertices of degree d in G.

We can repeat this to define the quantum d1+· · ·+dk-exit graph Gd1,...,dk

for any d1, . . . , dk ∈ N, where we concatenate the exit vectors. Then

(34) λk(G, H) =
∑

d1,...,dk

cd1,...,dk
Gd1,...,dk

·Hd1,...,dk
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for some cd1,...,dk
> 0 (namely, the inverse of the number of permutations

π ∈ Sk with dπ(i) = di for each i ∈ [k]). Hence for any quantum graph γ:

f

(
λk(γ, γ)

)
=

∑
d1,...,dk

cd1,...,dk
f(γd1,...,dk

· γd1,...,dk
) ≥ 0,(35)

by the positive semidefiniteness of the Nf,l.

7. Uniqueness of b

We finally consider the uniqueness of b, and extend a theorem of Szegedy
[5] (who showed sufficiency). As usual, b

U denotes the result of the action
of U on b.

Theorem 2. Let b : An → R and c : Am → R. Then fb = fc if and only if

n = m and c = b
U for some U ∈ O(n).

Proof. Sufficiency can be seen as follows. Let n = m and c = b
U for some

U ∈ O(n). Then for any graph G, using (9),

(36) fb(G) = pn(G)(b) = pn(G)U−1

(b) = pn(G)(bU ) = fbU (G) = fc(G).

Conversely, let fb(G) = fc(G) for each graph G. Then n = fb(O) =
fc(O) = m. We show that for each Δ ∈ N, there exists U ∈ O(n) such that
c | An,Δ = b

U
| An,Δ, where An,Δ is as in (29). As O(n) is compact, this

implies that there exists U ∈ O(n) with c = b
U .

Suppose that c | An,Δ �= b
U
| An,Δ for each U ∈ O(n). Then the sets

(37) S :=
{

b
U
| An,Δ | U ∈ O(n)

}
and T :=

{
c
U
| An,Δ | U ∈ O(n)

}
are compact and disjoint subsets of R

An,Δ . So, by the Stone-Weierstrass
theorem, there exists a polynomial q ∈ R[xα | α ∈ An,Δ] such that q(s) ≤ 0
for each s ∈ S and q(t) ≥ 1 for each t ∈ T . Replacing q by

(38)

∫
O(n)

q
U
dμ(U)
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(where μ is the normalized Haar measure on O(n)), we can assume that
q
U = q for each U ∈ O(n). Hence by (9), q ∈ pn(Q), say q = pn(γ) with

γ ∈ Q. Then fb(γ) = pn(γ)(b) = q(b) ≤ 0 and fc(γ) = pn(γ)(c) = q(c) ≥ 1.
This contradicts fb = fc.

Acknowledgement. I am indebted to Jan Draisma for pointing out refer-
ence [4] to me.
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Incidences and the Spectra of Graphs
∗

JÓZSEF SOLYMOSI†

In this paper we give incidence bounds for arrangements of curves in F
2

q. As an

application, we prove a new result that if (x, f(x)) is a Sidon set then either A+A

or f(A) + f(A) should be large. The main goal of the paper is to illustrate the

use of graph spectral techniques in additive combinatorics.

1. Introduction

The main goal of the paper is to illustrate the use of graph spectral tech-
niques in additive combinatorics. The problem of finding non-trivial inci-
dence bounds on lines and curves in F

2
q is closely related to sum-product

estimates. In the first section we will prove Garaev’s sum-product bound
[14] using combinatorial arguments. Such techniques were used in similar
context by Vu [27] and by Vinh [26]. Vu gave incidence bounds on poly-
nomial curves and Vinh reproved Garaev’s result, an improvement on the
Bourgain–Katz–Tao incidence bound for large (larger than q) sets of points
and lines in F

2
q .

In Section 3 we sketch a spectral proof for Roth’s theorem, that every
dense set of integers contains three-term arithmetic progressions. There are
several examples where one can choose between the Fourier method or a
proof based on eigenvalues. A classical example is a discrepancy theorem
for arithmetic progressions by Roth [23], who used the Fourier transform.

∗The research was conducted while the author was member of the Institute for Ad-

vanced Study. Funding provided by The Charles Simonyi Endowment.
†The research was supported by NSERC and OTKA grants and by Sloan Research

Fellowship.
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Later, Lovász and Sós proved the theorem using eigenvalues. (see in [3] or
in [8] on page 20.)

In the third part of the paper we present new results. We partially an-
swer a question of Bourgain [6], giving incidence bounds similar to Garaev’s,
but for a more general family of curves. It is a finite field extension of
a theorem of Elekes, Nathanson, and Ruzsa. Applying Elekes’ incidence
method [11], Elekes, Nathanson, and Ruzsa proved in [13] the following.
Let f : R → R be a convex function. Then for any finite set A ⊂ R,

(1) max{|A + A|,

∣∣
f(A) + f(A)

∣∣
} ≥ c|A|

5/4

In the inequality A + A denotes the set of pairwise sums, A + A = {a +
b : a, b ∈ A} and f(A) =

{
f(a) : a ∈ A

}
. We don’t have the notion of a

convex function in Fq, so we will use a weaker condition on f to get results
in Fq similar to (1).

2. The Sum-Product Problem

An old conjecture of Erdős and Szemerédi states that if A is a finite set of
integers then the sumset or the productset should be large. The sumset of
A was defined earlier and the productset is defined in a similar way,

A ·A = {ab | a, b ∈ A}.

Erdős and Szemerédi conjectured that the sumset or the productset is almost
quadratic in the size of A, i.e.

max
(
|A + A|, |A ·A|

)
≥ c|A|

2−δ

for any positive δ.

Bourgain, Katz, and Tao proved a nontrivial, |A|1+ε, lower bound for
the finite field case [5]. Let A ⊂ Fp and p

α
≤ |A| ≤ p

1−α. Then there is an
ε > 0 depending on α only, such that

max
(
|A + A|, |A ·A|

)
≥ c|A|

1+ε
.

It is important that p is prime, otherwise one could select A being a
subring in which case both the product set and the sum set are small,
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equal to |A|. For the case, Fq, where q is a power of an odd prime, the best
known bound is due to Garaev [14]. It follows from a construction of Ruzsa,
that his bound is asymptotically the best possible in the range |A| ≥ q

2/3.
Garaev’s proof uses bounds on exponential sums. We are going to derive
similar sum-product estimates using spectral bounds for graphs.

Sum-product bounds have important applications, not only to number
theory, but to computer science, Ramsey theory, and cryptography.

2.1. The Sum-Product graph

The vertex set of the sum-product graph GSP is the Cartesian product of
the multiplicative subgroup and the field, V (GSP ) = F

∗
q×Fq (as before, q is

a power of an odd prime). Two vertices, u = (a, b) and v = (c, d) ∈ V (GSP ),
are connected by and edge, (u, v) ∈ E(GSP ), iff ac = b+d. This multigraph
(there are a few loops) has a very special structure which makes it easy to
compute the second largest eigenvalue of the graph. The set of eigenvalues
are given by the eigenvalues of the adjacency matrix of the graph. The
matrix is symmetric, so all q(q−1) eigenvalues are real, we can order them,
μ0 ≥ μ1 ≥ . . . ≥ μq2−q−1. The second largest eigenvalue, λ, is defined as
λ = max

(
μ1, |μq2−q−1|

)
. Using λ, one can write isoperimetric inequalities

on the graph. In order to do so, we give a bound on λ. First, observe that for
any two vertices, u = (a, b) and v = (c, d) ∈ V (GSP ), if a �= c and b �= d, then
the vertices have exactly one common neighbor, N(u, v) = (x, y) ∈ V (GSP ).

The unique solution of the system

(2)
ax = b + y

cx = d + y

}
is given by

x = (b− d)(a− c)−1

2y = x(a + c)− b− d.

If a = c or b = d, then the vertices, u, v, have no common neighbors. Let
M denote the adjacency matrix of GSP , that is aij = 1 if (vi, vj) ∈ E(GSP ),
and aij = 0 otherwise. M is a symmetric matrix, moreover

M
2 = J + (q − 2)I − E,

where J is the all-one matrix, I is the identity matrix, and E is the “error
matrix”, the adjacency matrix of the graph, GE , where for any two vertices,
vi = (a, b) and vj = (c, d) ∈ V (GSP ), (vi, vj) ∈ E(GE) iff a = c or b = d. As
GSP is a (q− 1)-regular graph, q− 1 is an eigenvalue of M with the all-one
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eigenvector,
−→

1 . The matrix M is symmetric, so that eigenvectors of other
eigenvalues are orthogonal to

−→

1 . It is a corollary of the Spectral Theorem,
that there is an orthonormal basis, V , consisting of eigenvectors of M . Let
θ denote the second largest eigenvalue of M . The graph, GSP , is connected
so the eigenvalue q − 1 has multiplicity one, and the graph is not bipartite,
so for any other eigenvalue, θ, |θ| < q − 1. A corresponding eigenvector is
denoted by −→vθ . Let us multiply both sides of the matrix equation above by
−→
vθ . The “trick” is that J

−→
vθ = 0, as the eigenvectors are orthogonal to the

all-one vector, so we get:

(θ2
− q + 2)−→vθ = E

−→
vθ .

Note that E has the same set of eigenvectors as M has. GE is a 2q − 1-
regular graph, so any eigenvalue of E is at most 2q − 1 in absolute value.

θ
2
− q + 2 ≤ 2q,

|θ| <

√
3q.

2.2. The spectral bound

The small value of the second largest eigenvalue shows us that GSP is
a quasirandom graph and we can bound the number of edges between
large vertex sets efficiently. We are going to use following Cheeger-type
discrepancy bound; For any two sets of vertices, S, T ⊂ V (GSP ),

(3)

∣∣∣∣e(S, T )−
|S| |T |

q

∣∣∣∣ ≤ λ

√
|S| |T |,

where e(S, T ) is the number of edges between S and T . (see e.g. in [10]
or [1].) Inequality 3 and the bound on λ imply that

(4) e(S, T ) ≤
|S| |T |

q

+
√

3q|S| |T |.

From (4) we can deduct Garaev’s sum-product bound [14]. We can suppose
that 0 /∈ A, WLOG. Set S = (AA) × (−A) and T = (A−1) × (A + A).
There is an edge between any two vertices (ab,−c) ∈ S and (b−1

, a+c) ∈ T ,
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therefore the number of edges between S and T is at least |A|3. On the
other hand

|A|
3
≤ e(S, T ) ≤

|S| |T |

q

+
√

3q|S| |T |

=
|AA| |A + A| |A|

2

q

+

√
3q|AA| |A + A| |A|

2
.

After rearranging the inequality we get the desired sum-product bound.

|A + A| |AA| 0 min

{
q|A|,

|A|
4

q

}
.

In particular, if |A| ≈ q
2/3, then max

{
|AA|, |A + A|

}
0 |A|

5/4.

3. 3-term Arithmetic Progressions

In the previous example it was enough to show that the second largest
eigenvalue is small. There are cases where we can not guarantee that the
second eigenvalue is small; however when it is large then we might find some
structure in the graph. To illustrate this, we will sketch one of the several
possible proofs of Roth’s theorem [22].

Theorem 3.1 (Roth’s Theorem). For any N ≥ 3 if S ⊂ [1, . . . , N ] and

|S| 0 N/ log log N then S contains a 3-term arithmetic progression.

Note, that it is enough to prove Roth’s theorem modulo a prime p.
For any p ≥ 3 if S ⊂ Fp and |S| 0 p/ log log p then S contains a 3-term
arithmetic progression. Indeed, choose p that p ≥ 3N and translate S that
it is in the middle third of the interval [1, . . . , p]. In this way any arithmetic
progression modulo q is also a “regular” arithmetic progression.

3.2. The 3-AP graph

To prove the “mod p” variant, we define a graph, G3AP , on 2p− 1 vertices.
We label the vertices by v0, v1, . . . vp−1, and v−1, v−2, . . . , v−p+1., A way to
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think of the vertices if they were the (2p − 1)-th roots of unity, assigning
vj to exp ( 2πı

2p−1
j). The neighbours of v0 are defined by the set S in the

following way; vi is connected to v0 by an edge iff |i| ∈ S. (Suppose that
0 /∈ S.) Extend the graph by adding the edges necessary that the mapping,
i $→ i + 1 (mod 2p − 1), is an automorphism of G3AP . Using the roots of
unity notation, it means that multiplying the vertices by exp( 2πı

2p−1
j) is an

automorphism of the graph for any integer j. (It is the Cayley graph of
Z/(2p − 1)Z with respect to S.) For graphs with a “nice” automorphism
group, finding the eigenvectors and eigenvalues is not a hard task. (see
Exercise 8. in [18], Chapter 16 in [4], or [19] for a more detailed description)
In our case it is easy to check that for this circulant graph, 2p − 1 linearly
independent eigenvectors are given by the vectors[
exp

(
2πık

2p− 1

)
, exp

(
4πık

2p− 1

)
, exp

(
6πık

2p− 1

)
, . . . , exp

(
2(2p− 1)πık

2p− 1

)]T

,

where 0 ≤ k ≤ 2p− 2. Then the eigenvalues of G3AP are given by the sums

θk =
∑
s∈S

exp

(
2πısk

n

)
+

∑
s∈S

exp

(
−2πısk

n

)
.

There are two possibilities. Either the second largest eigenvalue is large or
all eigenvalues but the largest, μ0 = 2|S|, are small. In the former case,
most of the summands have large positive real part. It implies that there is
a long arithmetic progression having a very large intersection with S. We
won’t explore this case here, instead we show that if all eigenvalues are small
then there is a 3-term arithmetic progression in S. The interested reader
will find the details for the density increment case in Roth’s original paper
[22], or in one of the many books discussing Roth’s theorem, like [15],[25],
or [16]. Our moderate plan here is to show that if |S|2/(2p− 1) > λ then S

contains a 3AP.

We can find a relation between the assumption that S has no 3-term
arithmetic progressions (it is 3AP-free) and the structure of the graph G3AP .
We show that if S is 3AP-free then there are large vertex sets spanning
less than expected edges. For every edge we can define its halving point.
Consider the edges as arcs between points on the unit circle. The points
are the vertices, represented by the roots of unity and the edges are the
shorter circular arcs. The halving point of the edge is the geometric halving
point of the circular arc. The number of possible halving points is 4p − 2.
The number of edges is |S|(2p− 1), so there is a point which is the halving
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point of at least
⌈
|S|/2

⌉
edges. Note that if we had two edges sharing the

same halving point, such that there is another edge between the two-two
endvertices separated by the halving point, that would imply that there is
a 3AP in S. Indeed, if there are two edges sharing the same halving point,
h, then the endpoints of the edges can be written as h + d1, h − d1 and
h + d2, h− d2. If h + d2 and h− d1 are connected by an edge, it means that
d1 + d2 is in S with 2d1 and 2d2, forming a 3AP.

If S is 3AP-free then between the two
⌈
|S|/2

⌉
-size sets of endvertices,

A and B, there are exactly
⌈
|S|/2

⌉
edges. Inequality 3 implies that∣∣∣∣∣e(A, B)−

2|S|
⌈
|S|/2

⌉2

2p− 1

∣∣∣∣∣ ≤ λl

⌈
|S|/2

⌉
,

from where we get that

|S|
2

2p− 1
≤ λ,

as we wanted to show.

4. Sidon functions

In this section we extend a result of Elekes, Nathanson, and Ruzsa [13] to
the finite field case.

Theorem 4.1 (Elekes, Nathanson, and Ruzsa). Let f : R → R be a convex

function. Then for any finite set A ⊂ R,

max{|A + A|,

∣∣
f(A) + f(A)

∣∣
} ≥ c|A|

5/4

4.2. Sidon functions

We need a notation which substitutes convexity in finite fields. The graph of
a convex function is a Sidon set in R

2, this is the property we are going to use
for finite fields. A set H ⊂ Fq×Fq is a Sidon set if for any hi, hj , hk, hl ∈ H

the equation

hi − hj ≡ hk − hl (mod q)
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implies i = k and j = l. A function, f : S → Fq for some S ⊂ Fq, is said
to be a Sidon function if its graph H = {

(
x, f(x)

)
: x ∈ S} is a Sidon set.

Note that the graph of any convex function in R
2 forms a Sidon set.

Theorem 4.3. For any integer, k, and for any S ⊂ Fq, |S| ≥ q − k, if

f : S → Fq is a Sidon function, then for any set A ⊂ S, and sets B, C ⊂ Fq,

|A + B|

∣∣
f(A) + C

∣∣
≥ min

{
q|A|

2
,

|A|
2
|B| |C|

8(k + 1)q

}
.

Using the right substitution for C and D, Theorem 4.3 gives the following
corollaries.

Corollary 4.4. For any integer, k, there is a constant, c = c(k), such that

for any S ⊂ Fq, |S| ≥ q − k, if f : S → Fq is a Sidon function, then for any

set A ⊂ S,

|A + A|

∣∣
f(A) + f(A)

∣∣
≥ c min

{
q|A|,

|A|
4

q

}
.

It is remarkable that the inequality above matches to the Elekes–
Nathanson–Ruzsa bound for sets A such that |A| ≈ q

2/3. It has a sin-
gle term variant, which we state in a separate statement.

Corollary 4.5. For any integer, k, there is a constant, c = c(k), such that

for any S ⊂ Fq, |S| ≥ q − k, if f : S → Fq is a Sidon function, then for any

set A ⊂ S, ∣∣
A + f(A)

∣∣
≥ c min

{√
q|A|,

|A|
2

√

q

}
.

4.6. A bipartite incidence graph

The proof of Theorem 4.3 is based on the following incidence bound. Let f

be a function, S → Fq, for some S ⊂ Fq. The graph of f is the set of points

{

(
x, f(x)

)
∈ Fq × Fq : x ∈ S}. A translate of f by a vector u = (u′, u′′) ∈

Fq × Fq, is the set Tu(f) = {
(
x + u

′
, f(x) + u

′′
)

: x ∈ S}. The translate of

the mirror graph of f is defined as Tu(f)τ = {
(
u
′
− x, u

′′
− f(x)

)
: x ∈ S}.
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Lemma 4.7. For any integer, k, and for any S ⊂ Fq, |S| = q− k if f : S →

Fq is a Sidon function, then for any set P ⊂ Fq×Fq, the number of incidences

between P and s translates of f , the set
{

Tui
(f)

} s

i=1
, ui = (u′i, u

′′
i ), is

bounded as follows;

s∑
i=1

|{x ∈ S :
(
x + u

′
i, f(x) + u

′′
i

)
∈ P}| ≤

|P |s

q

+
√

2(k + 1)q|P |s.

Proof. Define a bipartite graph, G(A, B), as follows. The vertex set of G

consists of two copies of Fq × Fq.

The edges of G(A, B) are given by the graph of f . Two vertices,
u = (u′, u′′) ∈ A = Fq × Fq, and v = (v′, v′′) ∈ B = Fq × Fq, are connected
by an edge in G if

(5) f(v′ − u
′) = v

′′
− u

′′
.

The neighborhood of a vertex u ∈ A is given by N(u) = Tu(f) ⊂ B,
and neighborhood of a vertex u ∈ B is described by N(v) = Tv(f)τ

⊂ A.
The graph, G(A, B), is a (q − k)-regular bipartite graph. The spectra of
G(A, B) is symmetric. For this graph the second largest eigenvalue is defined
as λ = μ1. As the graph is (q − k)-regular, the largest and the smallest
eigenvalues are q − k and k − q. Similarly as we did in the sum-product
example, we can bound λ by examining the q

2
× q

2 adjacency matrix of
G(A, B), denoted by M . The function f is a Sidon function, therefore
the neighborhoods of two vertices in A or in B intersect in at most one
vertex. A translate, Tu(f), covers

(
q−k
2

)
vertex pairs. All translates (the

neighborhoods of vertices) cover 2
(
q−k
2

)
q
2 pairs out of the 2

(
q2

2

)
vertex pairs

in A and in B. Let us define an error graph, H, which has two components,
one in A and one in B, and two vertices, u and v are connected by an edge
iff there is no vertex connected to both in G(A, B). The error graph, H, has

2(
(
q2

2

)
− q

2
(
q−k
2

)
) edges and it is regular of degree q

2
−1− (q−k)(q−k−1).

Its adjacency matrix is denoted by E.

M
2 =

[
J 0
0 J

]
+ (q − k − 1)I − E.

As in the first example, we can multiply the equation by an eigenvector
of M , which belongs to the second largest eigenvalue.

E
−→
vλ = (q − k − 1− λ

2)−→vλ.
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We know that H is (2kq + q − k
2
− k− 1)-regular, therefore any eigenvalue

of E is less or equal to 2kq + q − k
2
− k − 1.

|q − k − 1− λ
2
| ≤ 2kq + q − k

2
− k − 1,

so

λ <

√
2(k + 1)q.

4.8. The spectral bound

For bipartite graphs, like G(A, B), inequality (3) is slightly different. If
G(A, B) is a r-regular bipartite graph on n vertices, then for any subsets
A
′
⊂ A and B

′
⊂ B,∣∣∣∣e(A′, B′)− 2r|A

′
| |B

′
|

n

∣∣∣∣ ≤ λ

√
|A
′
| |B

′
|.

Now we are ready to complete the proof of Lemma 4.7, to state a bound
on incidences between a set of points, P , and s translates,

{
Tui

(f)
} s

i=1
, ui =

(u′i, u
′′
i ). An edge in the graph G(A, B) represents an incidence between a

point and a translate.

s∑
i=1

|{x ∈ S :
(
x + u

′
i, f(x) + u

′′
i

)
∈ P}| ≤

|P |s

q

+
√

2(k + 1)q|P |s.

Proof of Theorem 4.3. Let us consider the Cartesian product (A + B)×
(f(A)+C). It has |B| |C| translates of the smaller product A×f(A), which
contains an |A|-element subset of the graph of f . The |B| |C| translates
determine |A| |B| |C| incidences in (A + B) × (f(A) + C). Now we apply
Lemma 4.7 with substitutions s = |B| |C|, |P | = |A + B|

∣∣
f(A) + C

∣∣ , and
with |A| |B| |C| incidences.

Note that Theorem 4.3 generalizes Garaev’s point-line incidence bound,
since the mapping (x, y) $→ (x, y + x

2) maps any line, ax + by = c, a �= 0, to
a translate of the parabola, y = x

2, which is a Sidon function.

For any set P ⊂ Fq × Fq, the number of incidences between P and s

lines is bounded by

(6) O

(
|P |s

q

+
√

q|P |s

)
.
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5. Incidence Bounds on Pseudolines

Incidence bounds in geometries have various applications. The celebrated
theorem of Szemerédi and Trotter [24] gives sharp incidence bound for the
number of point-line incidences in the Euclidean plane. The Szemerédi–
Trotter Theorem was extended to pseudolines. For the details about vari-
ants of the planar Szemerédi–Trotter theorem we refer to [21].

Our goal here is finding non-trivial incidence bounds for pseudolines in
F

2
q . First we give a definition of pseudolines which form a partial geometry

in F
2
q . The incidence graph will be a strongly regular graph, therefore we

can use standard spectral bounds to estimate incidences.

5.1. The incidence bound

The following is a standard, (however not the only) definition of pseudolines
in the Eucledean plane, see in e.g. [2].

A collection L of x-monotone unbounded Jordan curves in the plane is
called a family of pseudolines if every pair of curves intersects in at most
one point.

To find a proper definition of pseudolines in finite fields isn’t so straight-
forward. We are going to use one possible definition which has interesting
applications. Instead of x-monotone unbounded Jordan curves we consider
“lines”, li = {

(
x, f(x)

)
: x ∈ Fq}, where f : Fq → Fq.

Definition 5.2. A collection L of subsets of F
2
q , L = {l1, l2, . . . , lk} is called

a family of pseudolines if the following conditions hold

a, For every a ∈ Fq, any set, li, has exactly one point with x-coordinate a.

b, Every pair of sets, li and lj , intersects in at most one point.

c, If li ∈ L, then its y-translates are also in the arrangement, li +(0, a) ∈
L for any a ∈ Fq.

The last condition implies that the size of a family of pseudolines is
divisible by q.

Theorem 5.3. Let a family of pseudolines, L, and a family of points, P ,

in F
2
q be given. Suppose that |L| = kq, and |P | = n. Then the number of
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incidences between m pseudolines and n points is bounded by

I(m, n) ≤ n

√
km/q +

√

qnm.

The incidence bound for pseudolines implies a new bound on point line
incidences. It is better than inequality 6 in line arrangements with a few
distinct slopes only.

Corollary 5.4. Let a family of pseudolines, L, and a family of points,

P , in F
2
q be given. Suppose that the lines have no more than k different

slopes. Then the number of incidences between the s lines and points of P

is bounded by

I

(
s, |P |

)
≤ |P |

√
ks/q +

√
q|P |s.

The bound is better than inequality (6) if k < s/q. To see how Theo-
rem 5.3 implies Corollary 5.4, observe that the set all lines with slopes from
a given set, forms a family of pseudolines.

The incidence bound in Theorem 5.3 is a corollary of the following
statement which is proved in the next subsection.

Theorem 5.5. Given a family of pseudolines, L, and two sets of points, P1

and P2 in F
2
q . Suppose that |L| = kq, |P1| = n1, and |P2| = n2. Then the

number of collinear pairs in P1 × P2 is bounded as

|

{
(pi, pj) : pi ∈ P1, pj ∈ P2, ∃ � ∈ L : pi, pj ∈ �

}
| ≤

kn1n2

q

+ q

√

n1n2.

Proof of Theorem 5.3. Suppose that the m pseudolines are incident to
t1, t2, . . . , tm points in P . Then, the number of copseudolinear pairs in P is
at least

∑m
i=1

(
ti
2

)
. On the other hand, I(m, n) =

∑m
i=1

ti, so the number

of copseudolinear pairs is at least m

(
I(m,n)/m

2

)
∼ I(m, n)2/m. Using the

inequality from Theorem 5.5 we have

I(m, n)2

m

≤

kn
2

q

+ qn,

concluding the proof of Theorem 5.3.
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5.6. Strongly regular graphs

In [7] Bose introduced the notation of partial geometries. A set of points
and lines is a finite partial geometry if there are integers such that:

i For each two different points p and q, there is at most one line incident
with both of them.

ii Each line is incident with r + 1 points.

iii Each point is incident with s + 1 lines.

iv If a point p and a line L are not incident, then there are exactly t

points on L collinear to p.

Lemma 5.7. Any family of pseudolines is a partial geometry.

The easy proof is left to the reader.

Proof of Theorem 5.5. The incidence graph, G(L), of a family of pseudo-
lines is defined as follows. G has q

2 vertices, the elements of F
2
q . Two

vertices v and u are connected iff the points are collinear, i.e. there is a line,
l ∈ L, such that v, u ∈ l. As we observed earlier, the number of lines is
divisible by q. There is an integer, k, 1 ≤ k ≤ q, such that |L| = kq.

G(L) is a strongly regular graph, where each vertex has degree k(q− 1).
Two collinear (adjacent) vertices have q − 2 + (k − 1)(k − 2) = q + k

2
− 3k

common neighbors and non-adjacent vertices have k
2
−k common neighbors.

The adjacency matrix of the graph is denoted by A.

A
2 = (q + k

2
− 3k)A + (k2

− k)(J −A− I) + k(q − 1)I.

The usual trick – multiplying both sides by an eigenvector – helps us
to find the eigenvalues. The adjacency matrix of this graph has only three
distinct eigenvalues. The largest is k(q − 1) and the other two are q − k

and −k. (For more details about such graphs we refer to [17].) In our
applications q 0 k, so the second largest eigenvalue is q − k. From this,
Theorem 5.5 follows immediately by applying inequality (3).

Acknowledgement. I am indebted to the anonymous referee for his valu-
able comments on my previous draft.
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The Maturation of the Probabilistic Method

JOEL SPENCER

In this historical review we discuss probability results of László Lovász and Svante

Janson. These results have, we feel, played a central role in the development of

the Probabilistic Method.

1. Introduction

As we celebrate the sixtieth birthday of László Lovász it is natural to
examine the many places where his theorems and insights have had a vital
influence on our field. In this note I examine the Local Lemma, discovered
by Lovász in the early 1970s. I also discuss the Janson Inequality, discovered
by Svante Janson July 2, 1989. Both results have short arguments which are
given (albeit, not in the most general forms) in this note. The similarities
of the arguments makes one wonder if they aren’t simply examples of some
deeper phenomenon which we have yet to understand. In this personal
account I shall include my own small role in these events.

2. Common Elements

Let Ai, i ∈ I be a finite set of events in some probability space. We say
that a graph G with vertex set I is a Dependency Graph for the events if for
every i the event Ai is mutually independent of the set of events Aj with
j �= i and j not adjacent to i.

The Dependency Graph is not uniquely defined. Indeed, the complete
graph on vertex set I is always trivially a dependency graph. However, in
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many situations there will be a natural Dependency Graph. Often we are
examining a random coloring of some finite set S. The colors of the s ∈ S

need not have the same distribution (though often they do) but they do
need to be mutually independent. Let Ai be an event that refers to the
coloring on a set Bi ⊂ C. For example, Ai could be that Bi is entirely Red.
We can then create a dependency graph by letting i, j be adjacent if and
only if Bi ∩Bj �= ∅.

For the Janson Inequality we have the above situation and in addition
we assume the following Correlation Inequalities.

1. For every i ∈ I and every J ⊆ I − {i}

(1) Pr

[
Ai

∣∣∣ ∧
j∈J

Aj

]
≤ Pr [Ai]

2. For every distinct i, k ∈ I and every J ⊆ I − {i, k}

(2) Pr

[
Ai

∣∣∣ Ak ∧

∧
j∈J

Aj

]
≤ Pr [Ai | Ak]

Here the frequent example is a random subset R of some finite set S.
Each s ∈ S can be in the subset with different probability (though often
these probabilities are the same) but the events s ∈ R need to be mutually
independent. The event Ai is that a certain Bi ⊆ S has all of its elements
in R.

In both cases our object of concern is the event we shall call NEEDLE.
We define

(3) NEEDLE = ∧i∈IAi

Our notion is that the Ai are our “bad” events and we want to “sieve
out” an object that has no bad events. In many interesting cases there are
many bad events and the probability of NEEDLE is exponentially small. We
have the notion of finding a needle in an exponential haystack. The Lovász
Local Lemma gives a lower bound on Pr [NEEDLE]. In application the critical
point is that this bound is not zero, so that NEEDLE �= ∅. Thus, by Erdős
Magic, there is an object with no bad events. In the Janson framework,
the Correlation Inequalities give an immediate lower bound. Pr [NEEDLE] is
at least what it would be if the events were mutually independent. The
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importance of the Janson Inequality is that it gives an upper bound on
Pr [NEEDLE]. In many (not all!) cases the upper and lower bounds are quite
close and one gets an asymptotic evaluation of Pr [NEEDLE].

The Lovász and Janson have another similarity. Label I = {1, . . . , n}

for convenience. Then

(4) Pr [NEEDLE] =
n∏

i=1

Pr

[
Ai

∣∣∣ i−1∧
j=1

Aj

]

(For i = 1 the term is simply Pr [A1].) The difficulty, and the beauty, lies
in finding a way to approximate the conditional probabilities in (4). Our
book [1] gives these results and generalities in more detail.

3. Lovász

Perhaps it is just human nature to believe that a subject really got started
at the time one began working in it. Probabilistic Methods had a clear
beginning, with the two page 1947 paper [4] of Paul Erdős giving the lower
bound on the Ramsey function R(k, k). For two decades Erdős gave a series
of beautiful results. The methods were ingenious, even brilliant, but in
retrospect we can see that the use of probability was fairly elementary.
Linearity of Expectation, Chernoff Bounds and Chebyschev’s Inequality
were the main tools. In the early 1970s this changed. A key event was
a sieve method, the Lovász Local Lemma.

Theorem 3.1. Let Ai, i ∈ I be events with a Dependency Graph G as

defined earlier. Let p ∈ [0, 0.25) and integer d ≥ 1 be such that:

1. Pr [Ai] ≤ p for all i ∈ I

2. Every vertex i of G has degree at most d

3. 4dp < 1

Then

(5) Pr [NEEDLE] > (1− 2p)|I|

In particular

(6) NEEDLE �= ∅
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The idea is to show that for every i and every J ⊆ I − {i}

(7) Pr

[
Ai

∣∣∣ ∧
j∈J

Aj

]
≤ 2p

Suppose this holds. For convenience, write I = {1, . . . , n}. All the con-
ditional probabilities in (4) would then have probability at least 1 − 2p so
that (5) follows. The result (7) is shown by induction on |J |, the number
of events in the conditioning. For J = ∅ we have simply Pr [Ai] ≤ p ≤ 2p.
Otherwise, for convenience, let us renumber so that J = {1, . . . , i− 1}. Let
us further renumber so that D = {1, . . . , d

′
} is the set of j ∈ J adjacent

to i. Thus d
′
≤ d. If D = ∅ then from the mutual independence

(8) Pr

[
Ai

∣∣∣ i−1∧
j=1

Aj

]
= Pr [Ai] ≤ p ≤ 2p

The heart of the argument is when D �= ∅. Given any three events A, B, C

we have Pr [A | B∧C] = Pr [A∧B | C]/Pr [B | C]. Here we let B = ∧j∈DAj ,
peeling off the “dependent part.”

(9) Pr

[
Ai

∣∣∣ i−1∧
j=1

Aj

]
=

Pr [Ai ∧
∧d′

j=1
Aj |

∧i−1

k=d′+1
Ak]

Pr [
∧d′

j=1
Aj |

∧i−1

k=d′+1
Ak]

Let NUM, DEN denote the numerator and denominator respectively of (9).
We bound the numerator from above. We first strip off the Aj , 1 ≤ j ≤ d

′

and then use that Ai is mutually independent of the Ak:

(10) NUM ≤ Pr

[
Ai

∣∣∣ i−1∧
k=d′+1

Ak

]
≤ Pr [Ai] ≤ p

We first switch the denominator to its complement:

(11) DEN = 1− Pr

[ d′∨
j=1

Aj

∣∣∣ i−1∧
k=d′+1

Ak

]
As the probability of a disjunction is at most the sum of the probabilities:

(12) DEN ≥ 1−

d′∑
j=1

Pr

[
Aj

∣∣∣ i−1∧
k=d′+1

Ak

]
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Now we use induction on |J |. Each of the addends in (12) has a conditioning
on fewer than |J | events. Thus each is at most 2p. Thus

(13) DEN ≥ 1−

d′∑
j=1

2p ≥ 1− 2pd
′
≥ 1− 2pd ≥

1

2

Thus

(14)
NUM

DEN
≤

p

1/2
≤ 2p

completing the induction hypothesis for (7).

I first heard about this result before I had met László Lovász. The early
1970s were part of the Cold War era and communication between West and
East was generally difficult. I had already met Paul Erdős and had begun
work on Probabilistic Methods. Thus it was with some joy that I received
a letter from János Komlós. He described the breakthrough of Lovász that
I have given above. The Local Lemma first appeared in joint work [3] with
Paul Erdős. One could see immediately that it would have wide application.
I recalled the already classic Erdős 1947 result [4]:

Theorem 3.2. Assume

(15)

(
n

k

)
21−(k

2
)

< 1

There exists a two-coloring of the edges of the complete graph Kn with no

monochromatic Kk.

Using now standard notation, the conclusion is that the Ramsey Func-
tion R(k, k) > n. The proof is today just two words: Color Randomly! For
each set S of k vertices let AS be the event that all of the edges of S are
the same color. Then

(16) Pr

[∨
S

AS

]
≤

∑
S

Pr [AS ] =

(
n

k

)
21−(k

2
)

< 1

Some calculation gives

(17) R(k, k) >

(
1 + o(1)

) e

k

√

2

√

2
k

But now there was an improvement!
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Theorem 3.3. Assume

(18) 4

(
k

2

)(
n

k − 2

)
21−(k

2
)

< 1

There exists a two-coloring of the edges of the complete graph Kn with no

monochromatic Kk.

There is a natural dependency graph on the events AS . S, T are adjacent
if |S ∩ T | ≥ 2. Otherwise, the events involve coloring of disjoint sets of
edges. For each S,

(
k
2

)(
n

k−2

)
is an upper bound on the number of adjacent T .

I rushed to make the calculation which gave:

(19) R(k, k) >

(
1 + o(1)

) e

√

2

k

√

2
k

This was disappointing. The upper bound, known to Erdős and Szekeres
from the earliest days, is roughly R(k, k) < 4n(1+o(1)). The true asymptotics
of R(k, k) remain a mystery. The lower bound (19) has never been improved.
My paper [7] was, of course, a trivial consequence of the deep result of
Lovász. It had the very positive effect for me of strengthening my relation
with Hungary and Hungarian Mathematics, a relationship that has been a
cornerstone of my professional and personal life.

4. Janson

The main importance of the Lovász result, Theorem 3.1, is in showing that
NEEDLE is nonempty. In the Janson set-up this follows immediate from the
Correlation Inequalities. The new result is the upper bound on Pr [NEEDLE].

We set

(20) M =
∏
i∈I

Pr [Ai]

We think of M as what Pr [NEEDLE] would be if the Ai were mutually
independent. We set

(21) μ =
∑
i∈I

Pr [Ai]
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Thus μ is the expected number of the events Ai to hold when a random
sample is taken from the distribution. We set

(22) Δ =
∑

Pr [Ai ∧Aj ]

where the sum is over those ordered pairs i �= j with {i, j} ∈ G. (The
expression Δ/2 is then the sum over unordered pairs.) The value Δ gives a
quantitative measure of the dependency of the Ai.

Theorem 4.1. Let Ai, i ∈ I with dependency graph G, satisfying the

Correlation Inequalities (1, 2) above, and with M, μ,Δ as above. Then

(23) M ≤ Pr [NEEDLE] ≤ e
−μ+(Δ/2)

For both upper and lower bounds we set I = {1, . . . , n} for convenience
and consider the product (4). Correlation Inequality (1) gives that the
conditioning can only increase Pr [Ai] so that

(24) Pr [NEEDLE] ≥

n∏
i=1

Pr [Ai] = M

In the other direction we need an upper bound on the probability of Ai

conditional on ∧j<iAj . Equivalently, we seek a lower bound on the proba-
bility of Ai conditional on ∧j<iAj . We use the inequality Pr [A | B ∧ C] ≥
Pr [A | C] Pr [B | A ∧ C]. Let i be fixed. Let D be the set of j < i which
are adjacent to i in G. Let E be the set of k < i which are not adjacent to
i in G. We pull the dependent events across the conditioning:

(25) Pr

[
Ai

∣∣∣ ∧
j<i

Aj

]
≥ Pr

[
Ai

∣∣∣ ∧
j∈E

Aj

]
Pr

[∧
D

Aj

∣∣∣ Ai ∧

∧
E

Ak

]

From the mutual independence Pr [Ai |
∧

j∈E Aj] = Pr [Ai]. The second
term in the product (25) is (similarly to Lovász!) bounded from below by

(26) Pr

[∧
D

Aj

∣∣∣ Ai ∧

∧
E

Ak

]
≥ 1−

∑
j∈D

Pr

[
Aj

∣∣∣ Ai ∧

∧
E

Ak

]
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Correlation Inequality (2) gives that each addend is at most Pr [Aj | Ai] so
that

(27) Pr

[
Ai

∣∣∣ ∧
j<i

Aj

]
≥ Pr [Ai]

(
1−

∑
j∈D

Pr [Aj | Ai]

)

Reversing

(28) Pr

[
Ai

∣∣∣ ∧
j<i

Aj

]
≤ 1− Pr [Ai] +

∑
j∈D

Pr [Aj ∧Ai]

We switch to exponentials, using the inequality 1 + z ≤ e
z, valid for all z.

Then

(29) Pr

[
Ai

∣∣∣ ∧
j<i

Aj

]
≤ exp

[
− Pr [Ai] +

∑
j∈D

Pr [Aj ∧Ai]

]

The product (4) then gives

(30) Pr

[∧
i

Ai

]
≤ exp

[∑
i

[
− Pr [Ai] +

∑
j∈D

Pr [Aj ∧Ai]
]]

The terms −Pr [Ai] sum to −μ. There is one term Pr [Aj ∧ Ai] for each
unordered pair i, j which are adjacent in G. Thus these terms sum to Δ/2.
Thus

(31) Pr

[∧
i

Ai

]
≤ e

−μ+(Δ/2)

as claimed.

My connection with the Janson Inequality was quite strong. Let G ∼

G(n, p) be the usual Random Graph and let NOTRI be the event that G

does not contain a triangle. Let μ =
(
n
3

)
p
3 denote the expected number of

triangles. Suppose, first, that p ∼
c
n with c a constant. Then μ ∼ c

3
/6.

Paul Erdős and Alfred Rényi, in their 1960 masterwork [5] showed that
Pr [NOTRI] ∼ e

−μ. They used the method of moments. Letting X denote
the number of triangles they showed that the factorial moments satisfied
E[X(r)

∼ μ
r for each fixed r. This implied that X had a limiting Poisson

distribution so that, in particular, Pr [NOTRI] = Pr [X = 0] ∼ e
−μ. But what
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happens when p0 n
−1 so that μ is not a constant but rather goes to infinity

with n. While the argument for each moment (as long as p is not too large)
goes through, the conclusion that X is asymptotically Poisson can no longer
be made. I had pondered this question for quite some time when I came
to the Random Structures and Algorithms meeting in Poznań, Poland in
1989. On the evening of July 2 (from Janson’s personal recollection) I spoke
with Janson about the question. How many times do we have mathematical
conversations that are fascinating at the time but ultimately lead nowhere.
Not this time! Janson came down the next morning with what we now call
Janson’s Inequality. His original proof used the Stein–Chen method, the
more elementary argument above is due to Ravi Boppana and myself [2]
and was derived from Janson’s approach.

Let G(n, p) be the underlying probability space. We think of G(n, p) as
a random subset of the set of

(
n
2

)
potential edges, thus fitting the Janson

scheme. Let the index set I be the set of triples of vertices and for each such
triple S = {x, y, z} let AS be the event that x, y, z forms a triangle. Now
NEEDLE is the event that G(n, p) has no triangles. The critical calculation is
of Δ, as defined in (22). Here the sum is over pairs of triangles S = {x, y, z},
T = {x, y, w} that overlap on an edge. There are

(
n
3

)
·3·(n−2) = Θ(n4) such

pairs and for each Pr [AS ∩AT ] = p
5, as five edges must lie in G(n, p). Thus

Δ = Θ(n4
p
5). (Note: The calculation of Δ looked only at pairs of events,

the more complex interactions which the Erdős-Rényi approach examined
did not concern us!) When p ∼ cn

−1, M ∼ e
−μ

∼ e
−c3/6, Δ ∼ 0, so

Theorem 4.1 gives the result of Erdős and Rényi that Pr [NEEDLE] ∼ e
−μ.

But now allow p to be much bigger, suppose only that p = o(n−4/5).
Calculation still gives M ∼ e

−μ. Most importantly, we still have Δ ∼ 0.
Therefore Theorem 4.1 still gives the result Pr [NEEDLE] ∼ e

−μ. Note that if,
say, p = n

−0.9, this probability is extremely small, yet Janson’s Inequality
gives its asymptotic values. This was greatly extended in [6] where bounds
on the probability that G(n, p) did not contain a copy of a fixed graph H

were given for all H and all p.
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[6] S. Janson, T. �Luczak and A. Ruciński, An exponential bound for the probability

of nonexistence of a specified subgraph in a random graph, in: Random graphs ’87
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A Structural Approach to Subset-Sum

Problems

VAN VU∗

To Kati and Laci

We discuss a structural approach to subset-sum problems in additive combina-

torics. The core of this approach are Freiman-type structural theorems, many of

which will be presented through the paper. These results have applications in

various areas, such as number theory, combinatorics and mathematical physics.

1. Introduction

Let A = {a1, a2, . . . } be a subset of an additive group G (all groups discussed
in this paper will be abelian). Let SA be the collection of subset sums of A

SA :=

{ ∑
x∈B

x | B ⊂ A, |B| < ∞

}
.

Two related notions that are frequently considered are

lA := {a1 + · · ·+ al | ai ∈ A}

l
∗
A := {a1 + · · ·+ al | ai ∈ A, i �= j}.

We have the trivial relations

l
∗
A ⊂ lA and ∪l l

∗
A = SA.

∗V. Vu is supported by NSF Career Grant 0635606.
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One can have similar definitions for A being a sequence (repetitions
allowed).

Example.

A = {0, 1, 4}, G = Z, 2A = {0, 1, 2, 4, 5, 8},

2∗A = {1, 4, 5}, SA = {0, 1, 4, 5}.

A = {0, 1, 4}, G = Z5, 2A = G, 2∗A = {0, 1, 4} = SA.

Now let A be a sequence:

A = {1, 1, 9}, G = Z, 3A = {3, 11, 19, 27},

3∗A = {11}, SA = {1, 1, 2, 9, 10, 11}.

Notice that for a large l, lA can be significantly different from SA and l
∗
A.

In general, it is easier to handle than the later two.

Many basic problems in additive combinatorics have the following form:

If A is sufficiently dense in G, then SA (or l
∗
A or lA) contains a

special element (such as 0 or a square), or a large structure (such as a

long arithmetic progression G itself).

The main question is to find the threshold for “dense”. As examples, we
present below a few well-known results/problems in the area. In the whole
paper, we are going to focus mostly on two special cases: (1) G = Zp, where
Zp denotes the cyclic group of residues modulo a large prime p; (2) G = Z,
the set of integers.

Following the literature, we say that A is zero-sum-free if 0 /∈ SA.
Furthermore, A is complete if SA = G and incomplete otherwise. The
asymptotic notation is used under the assumption that |A| → ∞.

A basic result concerning zero-sum-free sets is the following theorem of
Olson [53] and Szemerédi [60] from the late 1960s, addressing a problem of
Erdős and Heilbronn [23].

Theorem 1.1 (Olson–Szemerédi). Let A be a subset of Zp with cardinality

C

√

p, for a sufficiently large constant C. Then SA contains zero.

To see that order
√

p is necessary, consider A := {1, 2, . . . , n}, where
n ≈

√

2p is the largest integer such that 1 + · · ·+ n < p.

Concerning completeness, Olson [52], proved the following result
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Theorem 1.2 (Olson). Any subset A of Zp with cardinality at least
√

4p− 3 + 1 is complete.

To see that the bound is close to optimal, take A := {−m, . . . ,−1, 0, 1,

. . . , m} where m is the largest integer such that 1 + · · ·+ m < �p/2�.

Another classical result concerning zero sums is that of Erdős–Ginburg–
Ziv [42], again from the 1960s.

Theorem 1.3 (Erdős–Ginburg–Ziv). If A is a sequence of 2p−1 elements

in Zp, then p
∗
A contains zero.

This theorem is sharp by the following example: A = {0[p−1]
, 1[p−1]

}

Furthermore, instead of 0 and 1, one can use any two different elements
of Zp. (Here and later x

[k] means x appears with multiplicity k in A.)

Now we discuss two problems involving integers. Set [n] := {1, 2, . . . , n}.
An old and popular conjecture concerning subset sums of integers is Folk-
man’s conjecture, made in 1966 [25]. Folkman’s conjecture is a strengthen-
ing of a conjecture by Erdős [20] about finding a necessary and sufficient
condition for a sequence A such that SA contains all but finite exception of
the positive integers.

Conjecture 1.4 (Folkman’s conjecture). The following holds for any suffi-
ciently large constant C. Let A be an strictly increasing sequence of positive
integers with (asymptotic) density at least C

√

n (namely,
∣∣
A∩ [n]

∣∣
≥ C

√

n

for all sufficiently large n). Then SA contains an infinite arithmetic progres-
sion.

Cassels [10] and Erdős [20] showed that density
√

n is indeed needed;
thus, Folkman’s conjecture is sharp up to the value of C. For more discussion
about Folkman’s conjecture and its relation with Erdős’ conjecture, we refer
to [25] and the monograph [21] by Erdős and Graham.

Finally, a problem involving a non-linear relation, posed by Erdős in
1986 [19].

Problem 1.5 (Erdős’ square-sum-free problem). A set A of integers is
square-sum-free if SA does not contain a square. Find the largest size of a
square-sum-free subset of [n].

Erdős observed that one can construct such a square-sum-free subset of
[n] with at least Ω(n1/3) elements. To see this, consider A := {q, 2q, . . . , kq}

with q prime, (k + 1)k < 2q, kq ≤ n. Since the sum of all elements of A is
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less than q
2, SA does not contain a square. Erdős [19] conjectured that the

truth is close to this lower bound.

Problems involving subset sums such as the above (and many others)
have been attacked, with considerable success, using various techniques:
combinatorial, harmonic analysis, algebraic etc. The reader who is inter-
ested in these techniques may want to look at [3, 57, 64, 48] and the refer-
ences therein.

The goal of this paper is to introduce the so-called “structural approach”,
which has been developed systematically in recent years. This approach is
based on the following simple plan

Step I: Force a structure on A. In this step, one tries to show the
following: If A is relatively dense (close to the conjectured threshold but
not yet there) and SA does not contain the desired object, then A has a
very special structure.

Alternately, one can try to

Step I’: Find a structure in SA. If A is relatively dense (again close
to the conjectured threshold but not yet there) then SA contains a special
structure.

Step II: Completion. Since |A| is still below the threshold, we can add
(usually many) new elements to A. Using these elements together with the
existing structure, one can, in most cases, obtain the desired object in a
relatively simple manner.

The success of the method depends on the quality of the information
we can obtain on the structure of A (or SA) in Step I (or I’). In several
recent studies, it has turned out that one can frequently obtain something
close to a complete characterization of these sets. Thanks to these results,
one is able to make considerable progresses on many old problems and also
reprove and strengthen several existing ones (with a better understanding
and a complete classification of the extremal constructions).

The rest of this paper is devoted to the presentation of these structural
theorems and their representative applications.
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2. Freiman’s Structural Theorem

A corner stone in additive combinatorics is the structural theorem of
Freiman (sometime referred to as Freiman’s inverse theorem), which writes
down the structure of sets with small doubling.

A generalized arithmetic progression (GAP) of rank d in a group G is a
set of the form

{a0 + a1x1 + · · ·+ adxd | Mi ≤ xi ≤ Ni},

where ai are elements of G and Mi ≤ Ni are integers. It is intuitive to view
a GAP Q as the image of the d-dimensional integral box B := {(x1, . . . , xd) |
Mi ≤ xi ≤ Ni} under the linear map

Φ(x1, . . . , xd) = a0 + a1x1 + · · ·+ adxd.

We say that Q is proper if Φ is one-to-one. It is easy to see that if
Q is a proper GAP of rank d and A is a subset of density δ of Q, then
|2A| ≤ C(d, δ)|A|. Indeed,

|2A| ≤ |2Q| ≤ |2B| = 2d
|B| = 2d

|Q| ≤

2d

δ

|A|

since the volume of a box increases by a factor 2d if its sizes are doubled.

Freiman’s theorem shows that this is the only construction of sets with
constant doubling.

Theorem 2.1 (Freiman’s theorem) [27]. For any positive constant C, there

are positive constants d = d(C) ad δ = δ(C) such that the following holds.

Let A be a finite subset of a torsion-free group G such that |2A| ≤ C|A|.

Then there is a proper GAP Q of dimension d such that A ⊂ Q and

|A| ≥ δ|Q|.

Freiman theorem has been extended recently to the torsion case by
Green and Ruzsa [35]. [64, Chapter 5] contains a detailed discussion of
both theorems and related results.

One can use Freiman’s theorem iteratively to treat the sumset lA, for
l > 2. For simplicity, assume that l = 2s is a power of 2. Thus, the set
As := lA = 2s

A can be viewed as 2As−1 where As−1 := 2s−1
A. Using

a multi-scale analysis combined with Fremain’s theorem, one can obtain
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useful structural information about lA or A itself. For an example of this
technique, we refer to [61] or [64, Chapter 12].

The treatment of l
∗
A and SA is more difficult. However, one can still

develop structural theorems in these cases. While the content of most
theorems in this direction are quite different from that of Freiman’s, they do
bear a similar spirit that somehow the most natural construction happens
to be (essentially) the only one.

3. Structure of Zero-Sum-Free Sets

Let A be a zero-sum-free subset of Zp. We recall the example following
Theorem 1.1. Let A := {1, 2, . . . , n}. If 1 + · · ·+ n < p, then obviously SA

does not contain 0. This shows that a zero-sum-free set can have close to
√

2p elements. In [61], Szemerédi and Vu showed that having elements with

small sum is essentially the only reason for a set to be zero-sum-free. More
quantitative versions of this statement were worked out in [49] and [50]. For
example, we have [50, Theorem 2.2]

Theorem 3.1. After a proper dilation (by some non-zero element), any

zero-sum-free subset A of Zp has the form

A = A
′
∪A

′′

where the elements of A
′ (viewed as integers between 0 and p−1) are small,∑

x∈A′ x < p, and A
′′ is negligible, |A′′| ≤ p

6/13+o(1).

One can perhaps improve the constant 6/13 by tightening the analysis
in [50]. It is not clear, however, what would be the best constant here. In
most applications, it suffices to have any constant strictly less than 1/2.

The dilation is necessary. Notice that if A is zero-sum-free (incomplete),
then the set Ax := {xa | a ∈ A} is also zero-sum-free (incomplete) for any
0 �= x ∈ Zp.

We can also prove similar results for lA and l
∗
A, and for A being a

sequence (see [50] for details). In the rest of this section, we present few
applications of these results.
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3.1. The size of the largest zero-sum-free set in Zp

Let mp denote the size of the largest zero-sum-free set in Zp. The problem
of determining mp was posed by Erdős and Heilbronn [23] and has a long
history. Szemerédi proved that mp ≤ C

√

p, for some sufficiently large
C independent of p [60]. Olson showed that C = 2 suffices [53]. Much
later, Hamidoune and Zémor [37] showed that mp ≤

√

2p + 5 log p, which is
asymptotically sharp. Using an earlier version of Theorem 3.1, Szemerédi,
Nguyen and Vu [49] recently obtained the exact value of mp.

Theorem 3.2. Let np be the largest integer so that 1 + · · ·+ (np − 1) < p.

• If p �=
np(np+1)

2
− 1, then mp = np − 1.

• If p =
np(np+1)

2
− 1, then mp = np. Furthermore, up to a dilation, the

only zero-sum-free set with np elements is {−2, 1, 3, 4, . . . , np}.

The same result was obtained by Deshouillers and Prakash (personal
communication by Deshouillers) at about the same time.

3.2. The structure of relatively large zero-sum-free sets

Let us now consider the structure of zero-sum-free sets of size close to
√

2p.
Let ‖x‖ denote the integer norm of x. In [15], Deshouillers proved

Theorem 3.3. Let A be a zero-sum-free subset of Zp of size at least
√

p.

Then (after a proper dilation)∑
x∈A, x<p/2

‖x/p‖ ≤ 1 + O(p−1/4 log p)

∑
x∈A, x>p/2

‖x/p‖ ≤ O(p−1/4 log p).

Deshouillers showed (by a construction) that the error term p
−1/4 cannot

be replace by o(p−1/2). Using an earlier version of Theorem 3.1, Nguyen,
Szemerédi and Vu [49] improved Theorem 3.3 to obtain the best possible
error term O(p−1/2), under a stronger assumption on the size of |A|.
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Theorem 3.4. Let A be a zero-sum-free subset of Zp of size at least .99
√

2p.

Then (after a proper dilation)∑
x∈A, x<p/2

‖x/p‖ ≤ 1 + O(p−1/2)

∑
x∈A, x>p/2

‖x/p‖ ≤ O(p−1/2).

The constant .99 is, of course, ad-hoc and can be improved by redoing
the analysis carefully. On the other hand, it is not clear what the best
assumption on |A| should be.

3.3. Erdős–Ginburg–Ziv revisited

Using a version of Theorem 3.1 for sequences, Nguyen and Vu [50] obtained
the following characterization for a sequence of size slightly more than p

and does not contain a subsequence of p elements summing up to 0.

Corollary 3.5 [50, Theorem 6.2]. Let ε be an arbitrary positive constant.

Assume that A is a p-zero-sum-free sequence and p+p
12/13+ε

≤ |A| ≤ 2p−2.

Then A contains two elements a and b with multiplicities ma, mb satisfying

ma + mb ≥ 2
(
|A| − p− p

12/13+ε
)
.

The interesting point here is that the structure kicks in very soon, when
A has just slightly more than p elements. Few years ago, Gao, Panigrahi,
and Thangdurai [43] proved a similar statement under the stronger assump-
tion that |A| ≥ 3p/2.

It is easy to deduce Erdős–Ginburg–Ziv theorem from Corollary 3.5,
together with a complete characterization of the extremal sets. The reader
may want to consider as an exercise or check [50] for details.

4. Incomplete Sets

Now we turn our attention to incomplete sets, namely sets A where SA �= Zp.
The situation here is very similar to that with zero-sum-free sets. Szemerédi
and Vu [61] showed that having elements with small sum is essentially
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the only reason for a set to be incomplete. More quantitative versions of
this statement were worked out in [49] and [50]. For example, in [50], the
following analogue of Theorem 3.1 was proved

Theorem 4.1. After a proper dilation (by some non-zero element), any

incomplete subset A of Zp has the form

A = A
′
∪A

′′

where the elements of A
′ are small (in the integer norm),

∑
x∈A′ ‖x/p‖ < 1

and A
′′ is negligible, |A′′| ≤ p

6/13+o(1).

The reader can find similar results for lA and l
∗
A and for A being a

sequence in [50]. We next discuss some applications of these results.

4.1. The structure of relatively large incomplete sets

Theorem 4.1 enables us to prove results similar to those in the last section
for incomplete sets. The problem of determining the largest size of an
incomplete set in Zp was first considered by Erdős and Heilbronn [23] and
essentially solved by Olson (Theorem 1.2). da Silva and Hamidoune [12]
tightened the bound to

√

4p− 7 + 1, which is best possible. We are not
going to go into these results here, but note that one can perhaps obtain a
new proof (with a characterization of the extremal sets) using Theorem 4.1.

Concerning the structure of relatively large incomplete sets, Deshouillers
and Freiman [17] proved

Theorem 4.2. Let A be an incomplete subset of Zp of size at least
√

2p.

Then (after a proper dilation)

∑
x∈A

‖x/p‖ ≤ 1 + O(p−1/4 log p).

They conjectured that the error term may be replaced by O

(√
p

)
, which

would be best possible due to a later construction of Deshouillers [16].

Using Theorem 4.1, Nguyen and Vu [50] confirmed this conjecture,
provided that A is sufficiently close to 2

√

p.
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Theorem 4.3. Let A be an incomplete subset of Zp of size at least 1.99
√

p.

Then (after a proper dilation)∑
x∈A

‖x/p‖ ≤ 1 + O(p−1/2).

Similar to the constant .99 (in the previous section), the constant 1.99
is ad-hoc and can be improved by redoing the analysis carefully. On the
other hand, it is not clear what the best assumption on |A| is.

4.2. The structure of incomplete sequences

Let us now discuss (rather briefly) the situation with sequences. The main
difference between sets and sequences is that a sequence can have elements
with high multiplicities. It has turned out that when the maximum mul-
tiplicity of incomplete sequence A is determined, one can obtain strong
structural information about A.

Let 1 ≤ m ≤ p be a positive integer and A be an incomplete sequence of
Zp with maximum multiplicity m. Trying to make A as large as possible,
we come up with the following example,

Bm = { − n
[k]

, (n− 1)[m]
, . . . ,−1[m]

, 0[m]
, 1[m]

, . . . , (n− 1)[m]
, n

[k]
}

where 1 ≤ k ≤ m and n are the unique integers satisfying

2m(1 + 2 + · · ·+ n− 1) + 2kn < p ≤ 2m(1 + 2 + · · ·+ n− 1) + 2(k + 1)n.

It is clear that any subsequence of Bm is incomplete and has multiplicity
at most m. In [50], we proved that any incomplete sequence A with max-
imum multiplicity m and cardinality close to |Bm| is essentially a subset
of Bm.

Theorem 4.4. Let 6/13 < α < 1/2 be a constant. Assume that A is an

incomplete sequence of Zp with maximum multiplicity m and cardinality

|A| = |Bm| −O

(
(pm)α)

. Then after a proper dilation, we can have

A = A
′
∪A

′′

where A
′
⊂ Bm and |A′′| = O((pm)(α+1/2)/2).
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4.3. Counting problems

Sometime one would like to count the number of sets which forbid certain
additive configurations. A well-known example of problems of this type is
the Cameron–Erdős problem [11], which asked for the number of subsets of
[n] = {1, 2, . . . , n} which does not contain three different elements x, y, z

such that x + y − z = 0. Cameron an Erdős noticed that any set of odd
numbers has this property. Thus, in [n] there are at least Ω(2n/2) subsets
with the required property. They conjectured that 2n/2 is the right order of
magnitude. There were several partial results [2, 9, 22] before Green settled
the conjecture [34].

Using structural theorems such as Theorem 3.1, one can obtain results
of similar spirit for the number of zero-sum-free or incomplete sets and se-
quences. For example, using an earlier version of Theorem 3.1 and standard
facts from the theory of partitions [1], Szemerédi and Vu [61] proved

Corollary 4.5. The number of incomplete subsets of Zp is

exp

((√
2

3
π + o(1)

)
√

p

)
.

Using Theorem 4.4, one obtains the following generalizations [50].

Corollary 4.6. The number of incomplete sequences A with highest mul-

tiplicity m in Zp is exp
((√

(1− 1

m+1)
4

3
π + o(1)

)
√

p

)
.

It is an interesting question to determine the error term o(1).

5. Incomplete Sets in a General Abelian Group

Let us now consider the problem of finding the largest size of an incomplete
set in a general abelian group G, which we denote by In (G) in the rest
of this section. The situation with a general group G is quite different
from that with Zp, due to the existence of non-trivial subgroups. It is clear
that any such subgroup is incomplete. Thus, In (G) ≥ h, where h is the
largest non-trivial divisor of |G|. The intuition behind the discussion in this
section is that a large incomplete set should be essentially contained in a

proper subgroup.
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In 1975, Diderrich [13] conjectured that if |G| = ph, where p ≥ 3 is the
smallest prime divisor of |G| and h is composite, then c(G) = h + p − 2.
(The cases where p = 2 or h is a prime is simpler and were treated earlier,
some by Diderrich himself [13, 47, 14].) Didderich’s conjecture was settled
by Gao and Hamidoune in 1999 [29].

The following simple fact explains the appearance of the term p− 2.

Fact. If SA∩H = H for some maximal subgroup H of (prime) index q, then
|A| ≤ |H|+ q − 2.

To verify this fact, notice that A/H is a sequence in the group Zq. It is
easy to show (exercise) that if B is a sequence of q− 1 non-zero elements in
Zq, then SB ∪ {0} = Zq.

We say that subset A of G is sub-complete if there is a subgroup H of
prime index such that SA∩H = H.

Once we know that an incomplete set A is sub-complete, we can write
down its structure completely. There is a subgroup H with prime index q

such that |A\H| ≤ q − 2, and the sequence A/H is incomplete in Zq. (The
structure of such a sequence was discussed in the previous section.) It is
natural to pose the following

Problem 5.1. Find the threshold for sub-completeness.

Recently, Gao, Hamidoune, Lladó and Serra [30] showed (under some
weak assumption) that any subset of at least p

p+2
h + p elements is sub-

complete. Furthermore, one can choose H to have index p, where p is
the smallest prime divisor of |G|. Vu [68] showed (again under some weak
assumption)that 5

6
h is sufficient to guarantee sub-completeness. It is not

clear, however, that what the sharp bound is.

The situation is much better if we assume that |G| is sufficiently com-
posite. In particular, if the product of the two smallest prime divisors of
|G| is significantly smaller than

√
|G|, then one can determine the sharp

threshold for sub-completeness.

Theorem 5.2 [68]. For any positive constant δ there is a positive constant

D(δ) such that the following holds. Assume that |G| = p1 . . . pt, where

t ≥ 3 and p1 ≤ p2 · · · ≤ pt are primes such that p1p2 ≤
1

D(δ)

√
|G|/ log |G|.

Then any incomplete subset A of G with cardinality at least (1 + δ) n
p1p2

is

subcomplete. Furthermore, the lower bound (1 + δ) n
p1p2

cannot be replaced

by n
p1p2

+ n
1/4−α, for any constant α.
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6. Structures in SA

As mentioned in the introduction, an alternative way to implement our plan
is to find a structure in SA rather than in A (Step I’). A well-known result
concerning the structure of SA is the following theorem, proved by Freiman
[28] and Sárközy [55] independently.

Theorem 6.1. There are positive constants C and c such that the following

holds for all sufficiently large n. Let A be a subset of [n] := {1, . . . , n} with

at least C

√

n log n elements. Then SA contains an arithmetic progression

of length c|A|
2
.

It is clear that the bound on the length of the arithmetic progression
(AP) is optimal, as one can take A to be an interval. The lower bound
on |A|, however, can be improved to C

√

n, as showed by Szemerédi and
Vu [62].

Theorem 6.2. There are positive constants C and c such that the following

holds for all sufficiently large n. Let A be a subset of [n] := {1, . . . , n} with

at least C

√

n elements. Then SA contains an arithmetic progression of

length c|A|
2.

The assumption |A| ≥ C

√

n is optimal, up to the value of C, as one can
construct a set A ⊂ [n] of ε

√

n elements, for some small constant ε, such
that SA does not contain any arithmetic progression of length larger than
n

3/4 (see [62] or [63, Section 3.4]).

Theorem 6.2 can be extended considerably. Szemerédi and Vu [63]
showed that for any set A ⊂ [n] and any integer l such that l

d
|A| ≥ n

for some constant d, the sumset l
∗
A contains a large proper generalized

arithmetic progression (GAP). The parameters of this GAP is optimal, up
to a constant factor (see [63, Section 3] for more details).

Theorem 6.3 [63, Theorem 7.1]. For any fixed positive integer d there are

positive constants C and c depending on d such that the following holds.

For any positive integers n and l and any set A ⊂ [n] satisfying l
d
|A| ≥ Cn,

l
∗
A contains a proper GAP of rank d

′ and volume at least cl
d′
|A|, for some

integer 1 ≤ d
′
≤ d.

There are variants of Theorem 6.3 for finite fields, and also for sums
of different sets (see [63, Section 5] and [63, Section 10]). In the following
subsections, we discuss few applications of Theorems 6.2 and 6.3.
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6.1. Folkman conjectures on infinite arithmetic progressions

Let us recall to the conjecture of Folkman, mentioned in the introduction.

Conjecture 6.4 (Folkman’s conjecture). The following holds for any suf-
ficiently large constant C. Let A be an strictly increasing sequence of
positive integers with (asymptotic) density A(n) at least C

√

n (namely
A(n) :=

∣∣
A ∩ [n]

∣∣
≥ C

√

n for all sufficiently large n). Then SA contains an
infinite arithmetic progression.

Folkman [25] showed that the conjecture holds under a stronger assump-
tion that A(n) ≥ n

1/2+ε, where ε is an arbitrarily small positive constant.
(An earlier result of Erdős [20] on a closely related problem can perhaps be

adapted to give a weaker bound n
(
√

5−1)/2.) Hegyvári [45] and �Luczak and
Schoen [46], independently, reduced the density n

1+ε to C

√

n log n, using
Theorem 6.1.

Using the stronger Theorem 6.2, together with some additional argu-
ments, Szemerédi and Vu [62] proved the full conjecture.

Theorem 6.5. Conjecture 6.4 holds.

In the same paper [25], Folkman also made a related conjecture for
increasing, but not strictly increasing sequences. Let A(n) now be the
number of elements of A (counting multiplicities) at most n.

Conjecture 6.6 (Folkman’s second conjecture). The following holds for
any sufficiently large constant C. Let A be an increasing sequence of positive
integers with such that A(n) ≥ Cn for all sufficiently large n. Then SA

contains an infinite arithmetic progression.

Despite the huge change from
√

n to n in the density bound, this con-
jecture is also sharp [25], and (for some time) appeared more subtle than
the first one (see a discussion in [21, Chapter 6]). Folkman [25] proved the
conjecture under the stronger assumption that A(n) ≥ n

1+ε. It does not
seem that one can obtain the analogue of Hegyvári and �Luczak–Schoen re-
sults due to the lack of a “sequence” variant of Theorem 6.1. However, the
method in [63] is sufficiently robust to enable one to obtain such a variant
for the stronger Theorem 6.2. With the help of this result, one can settle
Conjecture 6.6

Theorem 6.7 [63, Section 6]. Conjecture 6.6 holds.
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The strategy for the proofs of Theorems 6.5 and 6.7 is the following. We
first find a sufficient condition for a sequence A such that SA contains an
infinite AP.

We say that an infinite sequence A admits a good partition if it can
be partitioned into two subsequences A

′ and A
′′ with the following two

properties

• There is a number d such that SA′ contains an arbitrary long arith-
metic progression with difference d.

• Let A
′′ = b1 ≤ b2 ≤ b3 ≤ . . . . For any number K, there is an index

i(K) such that
∑i−1

j=1
bj ≥ bi + K for all i ≥ i(K).

Lemma 6.8. If a sequence A admits a good partition then SA contains an

infinite AP.

The second assumption is easy to satisfied given that A has proper
density. Thus, the key is the first assumption. The main feature here is
that in this assumption, we only need to guarantee the existence of long
(but finite) APs. So, Theorem 6.2 and its variants can be used with full
power to achieve this goal.

6.2. Erdős conjecture on square-sum-free sets

In this section, we return to Erdős conjecture on square-sum-free sets,
mentioned in the introduction. Let SF (n) denote the size of the largest
subset A of [n] such that SA does not contain a square (or A is square-
sum-free). Erdős [19] observed that SF (n) = Ω(n1/3) and conjectured that
the truth is close to this lower bound. Since then, there have been several
attempts on his conjecture. Alon [4] proved that SF (n) = O( n

log n). In

[40] Lipkin improved the bound to SF (n) = O(n3/4+ε). Later, Alon and
Freiman [5] obtained another improvement SF (n) = O(n2/3+ε). About
fifteen years ago, Sárközy [56] showed SF (n) = O

(√
n log n

)
.

Let us now address the problem from our structural approach point
of view. Theorem 6.2 is no longer useful, as we are dealing with sets of
size around n

1/3, way below the lower bound
√

n required in this theorem.
Fortunately, we have a more general result, Theorem 6.3, which enables
us to find structures in SA for any set of size n

δ, for any constant δ. In
particular, we can deduce from this theorem the following corollary.
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Corollary 6.9. There are positive constants C and c such that the following

holds for all sufficiently large n. Let A be a subset of [n] with cardinality

at least Cn
1/3. Then SA contains either an AP of length c|A|

2
or a proper

GAP of rank 2 and volume c|A|
3.

Combining this corollary with some number theoretic arguments,
Nguyen and the author [51] can get close to the conjectured bound.

Theorem 6.10. There is a constant C such that SF (n) ≤ n
1/3 logC

n.

We strongly believe that the log term can be removed. Details will
appear elsewhere.

7. Inverse Littlewood–Offord Theorems and Random

Matrices

In this final section, we discuss a problem with a slightly different nature.
Let A be a sequence of non-zero integers. Now we are going to view SA as
a multi-set of 2n elements. We denote by MA be the largest multiplicity
in SA. For example, if A = {1, . . . , 1}, then MA =

(
n

�n/2�

)
= Θ

(
2n

/

√

n

)
.

The problem of bounding MA originated from Littlewood and
Offord’s work on random polynomials [41]. In particular, they proved that
MA = O

(
2n log n/

√

n

)
. The log term was removed by Erdős [18], who ob-

tained a sharp bound for MA. Many extensions of this result were obtained
by various researcher: Erdős–Moser [24], Sárközy–Szemerédi [58], Katona
[38] Kleitman [39], Halász [44], Griggs et. al. [36], Frankl–Füredi [26], Stan-
ley [59] etc. Among others, it was showed that the bound on MA keeps
improving, if one forbids more and more additive structures in A. For ex-
ample, Erdős and Moser [24] showed that if the elements of A are different
(i.e., A is a set), then MA = O

(
2n log n/n

3/2
)
. In general, the following can

be deduced from results of [44] (see also [64, Problem 7.2.8])

Theorem 7.1. For any fixed integer k there is a constant C such that the

following holds. Let A = {a1, . . . , an} and Rk be the number of roots of the

equation

ε1ai1 + · · ·+ ε2kai2k
= 0

with εi = ±1 and i1, . . . , i2k ∈ [n]. Then MA ≤ Cn
−2k−1/2

Rk2
n.
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In [66], Tao and Vu introduced the notion of Inverse Littlewood–Offord
theorems. The intuition here is that if MA is large (of order 2n

/n
C for any

constant C, say), then A should have a very strong structure.

The most general example we found with large MA is the following. Let
Q be a proper GAP of constant rank d and volume V . If A is a subset
of Q, it is easy to show that MA = Ω( 2n

nd/2V ) (in order to see this, view the
elements of SA as random sums

∑n
i=1

ξiai where ai are elements of A and ξi

are iid random variables taking values 0 and 1 with probability 1/2). Thus,
if the volume of Q is small, then MA is large.

In [66], Tao and Vu proved the inverse statement, asserting that having

A as a subset of a small GAP is essentially the only way to guarantee make

MA large.

Theorem 7.2 [66]. For any constant C and ε there are constants B and

d such that the following holds. Let A be a sequence of n elements in a

torsion-free group G. If MA ≥ 2n
/n

C for some constant C, then all but at

most n
1−ε elements of A is contained in a proper GAP Q of rank d and

cardinality n
B.

In a more recent paper [67], the same authors obtained a (near) opti-
mal relationship between the parameters C, ε, d and B. As a corollary,
one can deduce (asymptotic versions of) many earlier results, such as Theo-
rem 7.1. (In spirit, this process is somewhat similar to the process of using
Theorem 3.1 to reprove, say, Erdős–Ginburg–Ziv theorem.)

We would like to conclude this survey with a rather unexpected appli-
cation. Let us leave combinatorial number theory and jump to the (fairy
remote) area of mathematical physics. In the 1950s, Wigner observed and
proved his famous semi-circle law concerning the limiting distribution of
eigenvalues in a symmetric random matrix [69]. A brother of this law, the
so-called circular law for non-symmetric random matrices, has been conjec-
tured, but remains open since that time.

Conjecture 7.3 (Circular Law Conjecture). Let ξ be a random variable
with mean 0 and variance 1 and Mn be the random matrix whose entries are
iid copies of ξ. Then the limiting distribution of the eigenvalues of 1√

n
Mn

converges to the uniform distribution on the unit disk.

Girko [31] and Bai [6] obtained important partial results concerning this
conjecture. These results and many related results are carefully discussed
in the book [7]. There has been a series of rapid developments recently by
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Götze–Tikhomirov [32, 33], Pan–Zhou [54], and Tao–Vu [65]. In particu-
lar, Tao and Vu [65] confirmed the conjecture under the slightly stronger
assumption that the (2 + η)-moment of ξ is bounded, for any η > 0.

Theorem 7.4. The Circular Law holds (with strong convergence) under an

additional assumption that

E
(
|ξ|

2+η)
<∞

for some fixed η > 0.

The key element of this proof is a variant of Theorem 7.2, which enables
us to count the number of sequences A with bounded elements such that
MA (more precisely a continuous version of it) is large. For details, we refer
to [65].
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