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Preface

Serge Lang was an iconic figure in mathematics, both for his own important work
and, perhaps even more crucially, for the indelible impact he left on the field,
and on his students and colleagues. It would be difficult to find a mathematician
who came of age in the past forty years, who had not been exposed to Serge’s
articles, monographs, and textbooks. Serge’s writing shaped the mathematical
perspectives of all who came in contact with them. Many were challenged by
the glimpses of open problems and conjectures that Serge interweaved with his
expositions of established subjects. Serge’s exposition invariably transcended our
discipline’s preference for brevity and perfection, which often obscures the intuition
underlying the subject. Serge was never one to conform.

One of Serge’s uplifting qualities was his openness to new areas of mathematics
and his concurrent willingness, even eagerness, to learn novel concepts and
techniques. He was constantly reinventing himself, while sharing his accumulated
wisdom with students and young mathematicians. Over the course of his career,
he traversed a tremendous amount of mathematical ground. As he moved from
subject to subject, he found analogies that led to important questions in such areas
as number theory, arithmetic geometry, and the theory of negatively curved spaces.
Lang’s conjectures will keep many mathematicians occupied far into the future.

This memorial volume contains articles in a variety of areas of mathematics,
attempting to represent Serge’s breadth of interest and impact. We are happy to
publish here (for the first time) Serge’s final paper, The heat kernel, theta inversion,
and zetas on �nG=K , written jointly with one of us (J. Jorgenson). Except for
that one article, which was left in the form it assumed just before Serge’s passing,
every other entry here was thoroughly refereed. We thank all the authors for their
contributions to the volume and for their willingness to put up and comply with our
demands for revision. Thanks also to the anonymous referees for their excellent and
timely work.

We, the editors, are pleased to be a part of this production, especially since we
were all fortunate enough to know Serge personally. We thank Stacey Croomes, the
math administrator at Caltech, for her invaluable help in organizing the receipt of
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the articles, the refereeing process, and the revisions. We are grateful to Ann Kostant
and Elizabeth Loew of Springer for their enthusiasm and helpful advice during the
many months of editorial preparation. It took a village to produce this volume.

Columbia University Dorian Goldfeld
Yale University Peter Jones
The City College of New York Jay Jorgenson
Caltech Dinakar Ramakrishnan
University of California, Berkeley Kenneth A. Ribet
Harvard University John Tate
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Introduction

John Tate

This introduction is meant as a brief account of Serge Lang’s life and his enormously
varied contributions to mathematics. Much more about this remarkable man can be
found in two articles in the Notices of the AMS by Jay Jorgenson and Steven G.
Krantz. The first of these, “Serge Lang, 1927–2005” (May 2006) contains a fuller
account of Lang’s life than we can give here, and includes memories of Serge
by twenty-two of his friends, students, colleagues, and even some whom Serge
might have seen as adversaries. Read together, these short pieces give a vivid image
of Lang. The second article, “Mathematical Contributions of Serge Lang” (April
2007), contains an overview of his research, followed by discussions of its different
aspects by seven colleagues in the various fields. These articles, and conversations
with Lang’s friends Dick Gross, Dinakar Ramakrishnan, and Ken Ribet, have been
of great help to me in writing this introduction.

Lang spent his childhood in Saint-Germain-en-Laye, a western suburb of Paris
famous for its chateau and long terrace with a view over the valley of the Seine and
Paris in the distance. Lang’s teen years were spent in quite different surroundings.
After emigrating with his family to Los Angeles, he attended Beverly Hills High
and Caltech, graduating in 1946 with a BA in physics.

He then did a year and a half of military service with the U.S. Army in Europe.
This was of great help to him in his future career, for he served in a clerical position
in which he learned to type at incredible speed.

Next, Serge enrolled in the graduate philosophy program at Princeton. For-
tunately for mathematics he was disappointed by the quality of the philosophy
seminars, and managed to switch to the math graduate program the following year.
I don’t know why he chose mathematics, but the Princeton math program was an
outstanding one and student morale was very high.

J. Tate
Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
e-mail: tate@math.utexas.edu
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Though he was not particularly well prepared, Serge plunged right in. For
example, knowing little number theory, he attended Emil Artin’s seminar on class
field theory during his first year and was fascinated. Math, especially algebra and
number theory, were the subjects for him! He soon became one of Artin’s Ph.D.
students along with me and a few others that Artin had brought with him from
Indiana. We all felt very fortunate to have Artin as our advisor. In the foreword to
his collected works, Lang writes, “I take this opportunity to express once more my
appreciation for having been Artin’s student. I could not have had a better start in
my mathematical life.”

Lang got his Ph.D in 1951 with a thesis on quasi-algebraic closure in which he
proved that a field complete in a discrete valuation with algebraically closed residue
field is quasi-algebraically closed, and that the same is true for several kinds of dense
subfields of such a field. Another result in his thesis is a key ingredient in the proof
of the Ax–Kochen theorem,1 which can be viewed as a corrected version of Artin’s
conjecture that p-adic fields have property C2. For each degree d , this is true for all
but a finite set of primes p, but not necessarily for all, as Artin had guessed.

Lang stayed in Princeton for two more years, with postdoc positions at the
university and at the Institute for Advanced Study. Then, after two years of an
instructorship at the University of Chicago, where he interacted with Weil and
his circle, he accepted a permanent position at Columbia University. He stayed
there for the next fifteen years except for a Fulbright Fellowship year in Paris
during 1957–58. In 1970, Lang resigned his position at Columbia in protest of the
university’s handling of student unrest during 1968–69. After visiting professorships
at Princeton and Harvard, he accepted a permanent position at Yale. He retired from
Yale in 2005, a few months before his death. That is a bare-bones account of Lang’s
life and the way he got into mathematics.

Serge Lang contributed to mathematics in so many ways that it’s hard to know
where to begin. Let’s start with some remarks on his research, with no attempt to
cover it completely. He published his Collected Papers in five volumes with Springer
in 2000. They contain all of his research papers through 1999, together with reprints
of a few of his Springer Lecture Notes and two of his books that were out of print.
There are also some interesting accounts of some special topics on which Lang held
strong views, especially in Volume IV.

In a brief foreword in Volume 1, Lang gives his own classification of his work
into periods as follows:

1. 1951–1954 Thesis on quasi-algebraic closure and related matters.
2. 1954–1962 Algebraic geometry and abelian (or group) varieties; geo-

metric class field theory.2

1As Deligne pointed out, I misstated the Ax–Kochen theorem in my Notices article on Lang’s early
work, by interchanging “prime p” and “degree d .” I hope this “senior moment” misled no one.
2This work was the beginning of higher-dimensional class field theory and earned Lang a Cole
Prize in 1959.
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3. 1963–1975 Transcendental numbers and Diophantine approximation on
algebraic groups.

4. 1970 First paper on analytic number theory—jump to Jorgenson–
Lang.

5. 1975 SL2(R)—jump to Jorgenson–Lang.
6. 1972–1977 Lang–Trotter Frobenius distributions.
7. 1973–1981 Modular curves, Kubert–Lang modular units.
8. 1974, 1982–1991 Diophantine geometry, complex hyperbolic spaces, and Nevan-

linna theory.
9. 1985, 1988 Riemann–Roch and Arakelov theory.
10. 1992–2000+ Jorgenson–Lang (analytic number theory and connections

with spectral analysis, heat kernel, differential geometry, Lie
groups, and symmetric spaces).

The arrangement of the 2007 Notices article fits quite well with Lang’s scheme.
Here is a list of the authors in the order of their appearance, followed by the periods
of Lang’s work they discuss. Tate 1,2; Buium 1,2,3; Waldschmidt 3; Rohrlich 6,7;
Vojta 8,9; Jorgenson 10; and Kim, who wrote on the theme of the fundamental group
in Lang’s work, rather than on a specific period.

Lang wrote over 70 research papers and proved many important theorems, but of
at least equal significance were his conjectures, his points of view, and his way of
looking at things. Waldschmidt expresses this well (loc. cit.), writing about Lang’s
work on transcendental numbers:

With his outstanding insight and his remarkable pedagogical gifts, Lang comes into the
picture and contributes to the subject in at least two very different ways: on the one hand,
he simplifies the arguments (sometimes excessively) and produces the first very clear proofs
which can be taught easily; on the other hand, he introduces new tools, like group varieties,
which put the topic closer to the interests of many a mathematician.

Waldschmidt concludes his article as follows:

Among the contributions of Lang to transcendental number theory (also to Diophantine
geometry), the least are not his many conjectures which shed a new light on the subject.
On the contrary, he had a way of considering what the situation should be, which was
impressive. Indeed, he succeeded in getting rid of the limits from the existing results and
methods. He made very few errors in his predictions, especially if we compare them with the
large number of conjectures he proposed. His description of the subject will be a guideline
for a very long time.

As Vojta points out, the title of Lang’s magnum opus, Fundamentals of Dio-
phantine Geometry suggests that Serge’s outlook on number theory was decidedly
geometric. Mazur puts this beautifully in concluding his memory of Serge article in
the Notices:

Over the decades of mathematics, Lang was led, more specifically, by an over-arching
vision, which he pursued through the agency of various fields of mathematics. The vision,
baldly put, is that geometry is an extraordinarily striking dictator of qualitative dipohantine
behavior. The still open Conjecture of Lang in higher dimensions continues to serve as a
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guiding principle to the way in which the grand subjects of geometry and number theory
meet, just as Serge himself served as an inspiror of generations of mathematicians, and a
spokesman for intellectual honesty.

The conjecture of Lang to which Mazur refers is easy to state. A projective
algebraic variety V defined over a number field F � C is Mordellic if and only
if the corresponding complex space V (C) is hyperbolic. Here Mordellic means that
for each finite extension field E of F , the set V.E/ of points of V with coordinates
in E is finite. Hyperbolic meant for Lang, when he made the conjecture in 1974,
that the Kobayashi semidistance on V (C) is actually a distance, but we now know,
thanks to Brody (1978), that this property is equivalent to there being no nonconstant
holomorphic map C ! V (C). A Riemann surface is hyperbolic if and only if its
genus is � 2, so that for curves, Lang’s conjecture is equivalent to the famous
Mordell conjecture proved by Faltings in 1983. In higher dimensions the conjecture
is still open, though it has been proved for closed subvarieties of abelian varieties.

In the 1980s Lang thought deeply about the Mordellic–hyperbolic relationship
and introduced plausible variants of the above conjecture which have turned out
to have very interesting unexpected implications, such as the existence of a bound
B.g; F / depending only on g and F for the number of rational points on a curve of
genus g � 2 defined over a number field F .

Serge led a regular life. During the winter holidays he visited his sister in Los
Angeles. He spent the early summer in Europe and July–August in Berkeley, where
he had an apartment. In Europe he spent a month in one place, Paris in the early
years, Bonn later in his life, but also visited regularly other mathematical centers,
Zurich, Berlin, Moscow.... In Berkeley he interacted with the large community of
resident and visiting mathematicians.

Lang was an effective communicator, an excellent source of mathematical news.
Dick Gross likens his gathering and distributing information to the cross-pollination
of a bumblebee. Serge kept in touch with friends in many places, not only in person,
by traveling, but by phone. If he had a question or thought for anyone anywhere
in the world, he just picked up the phone. When Yale was considering an offer to
Serge, I remember warning the department that if he accepted, its phone bill would
at least double, but that in fact, the phoning he would be doing was just one more
reason for making the offer.

A more important reason for Yale’s doing so is that Lang was an excellent and
caring teacher. This was recognized by his being awarded the Dylon Hixon Prize
for Teaching Excellence in the Natural Sciences at Yale. We were reminded of the
esteem in which his former students held him by the testimony of so many of them
at the memorial meeting for Lang at Yale in February 2006. One of them, Anthony
Petrello, announced the establishment of a Yale fund for an annual prize in Lang’s
honor which he was launching with a large seed contribution, and the promise of
matching funds.

Another memorial to Lang is the Serge Lang Undergraduate Lecture Series at
Berkeley. There, when students returned to classes at the end of August, Serge
often gave talks to the Math Undergraduate Student Association (MUSA). His
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talks over the years were incorporated into his 1999 volume “Math talks for
Undergraduates.” These talks became formalized, and each year from 1999 to 2005
Serge gave a MUSA lecture at 4pm on the first day of classes. The lecture on
August 25, 2005, “Weierstrass–Dirac Families,” shortly before his death, was one
of Serge Lang’s last mathematics talks. In response to MUSA’s request to somehow
continue this tradition, the Department of Mathematics inaugurated the Serge Lang
Undergraduate Lecture Series, each fall inviting someone to give a lecture for
undergraduates. Ken Ribet made this happen and Anthony Petrello contributed a
major part of the initial funding.

Serge was known not only for his support of his students, but also of his younger
colleagues at the start of their careers. John Coates thought one of Serge’s most
remarkable qualities was his unstinting support of young mathematicians. Barry
Mazur, after recounting his first encounter with Serge, writes:

And Serge did this sort of thing through the decades, with many of the young; he would
proffer to them gracious, yet demanding, invitations to engage as a genuine colleague—not
teacher to student, but mathematician to mathematician; he did all this naturally, and with
extraordinary generosity and success.

Lang was awarded the 1999 AMS Leroy P. Steele Prize for Mathematical Expo-
sition “for his many mathematics books.” The amount of mathematical knowledge
that has been made accessible to students of all ages all over the world by Lang’s
more than 40 books is amazing to contemplate. Their range both in subject and in
level is astonishingly broad. Most were new and modern for their time with Lang’s
insistence on functoriality and axiomatization. He was almost unique in the way
he regularly learned new topics throughout his life, topics often not close to his
main interests (algebra and number theory), and wrote textbooks on them (such
as “Differentiable Manifolds” and SL2(R)), thereby influencing new generations of
students pursuing those fields. He brought excitement to his books that challenged
readers to rise above themselves by tackling them.

Lang’s Algebra is a classic, still the best reference book in algebra in print today.
The first edition in 1965 has been kept up-to-date with new editions and revisions.
The latest is the corrected fourth printing of the revised third edition (2004). For
Lang, the important thing in a book is its timeliness, and its global aspects, such as
arrangement of topics, and degree of abstraction. He did not worry much about an
occasional error in a proof, and was widely criticized for this. Given the short time
he spent writing a book, there are relatively few of these oversights, and when he
became aware of one he was highly attentive to its correction in the next edition
or the next printing. These oversights could be useful. I remember a few times first
recognizing a student who turned out to be very strong when s/he came for help in
understanding one of Lang’s faulty arguments.

Lang was driven to publish. In addition to his own writing, he saw to the
publication of at least two books which were not his own, namely Class Field Theory
by Artin and me, and the Collected Papers of Emil Artin. He should really have
been included among the authors of the former, for the main part of it is essentially
Serge’s rewriting of his own notes from the 1951–52 Princeton seminar, and the
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book’s publication would never have happened without Serge’s persistent prodding
and attending to the details. In the case of Artin’s papers, edited by Serge Lang
and John T. Tate, it was Lang who did all the work in collecting the material and
preparing it for publication. He assigned me the trivial task of writing a paragraph
on Artin’s conjectures to justify my sharing the editorship. In the first printing,
Addison-Wesley made the mistake of including Lang’s and my names on the cover,
below Artin’s. Lang hit the ceiling, insisting that the whole printing be redone.
Fortunately a solution was found. Our names are masked by a decorative strip which
was added to the cover, although they are discernible if you know they are there.

To touch on some of Serge’s personal characteristics: He did things fast. He typed
fast, ate fast, drove fast, walked fast. I still remember trying to keep up with him on
walks across campus. On a wintry day he used only earmuffs and gloves (no coat)
to keep warm. He seemed to have a hummingbird-like metabolism. Besides being
fast, he did not waste time. He hated small talk.

Serge cared about quality. His possessions and gifts were chosen thoughtfully.
He had impeccable taste and sought out fine things. I think of his leather jacket, his
gloves, his silk scarf and clothing generally, but also of his appliances, his collection
of rugs, and his furniture. In the summer of 1958, after a year in Paris, we each
went through Copenhagen to purchase Danish furniture. Serge chose from the best
collections, I from the mid-range.

Except for an occasional sip of a vintage wine, Lang did not drink, but he insisted
on supplying a fine cognac for Yale’s (and often Harvard’s as well) winter holiday
party eggnog. The batter for the crepes suzettes he served was beaten by hand with
a whisk, never with a mechanical mixer.

It is hard to imagine that Serge’s many mathematical activities left time for
much else, but he was an accomplished musician, playing piano and lute, and
in later years he spent much time and energy exposing cases of what he saw as
scientific, editorial or bureaucratic irresponsibility, by compiling and distributing,
at considerable personal expense for photocopying and postage, collections3 of
relevant original documents, in his aim to create transparency and promote clear
understanding of the facts of a case. He also supported many people and causes he
found to be worthy, in ways ranging from enthusiastic encouragement to assistance
in funding.

In Serge’s battles with the establishment, his positions were almost always
fundamentally sound, though the extremes to which he went and the vehemence
with which he pursued his points of view may have prevented some from realizing
this. Serge could be difficult. To him things were black or white. To compromise
was not his way.

Serge Lang devoted his life to advancing mathematics, to teaching, and to
fighting for honesty in science and politics.

3These collections were known as “files” to the people on Lang’s extensive “cc lists.”
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twisted curve X ! Spec.R/, a group scheme G ! X and a covering Y ! X
extending YK ! XK , with Y a stable curve, such that Y is a G-torsor.
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1 Introduction

1.1 Reduction of coverings of degree divisible by p

Let R be a discrete valuation ring of mixed characteristics, with spectrum
S D SpecR. Denote the generic point � with fraction field K , and the special
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point s with residue field k of characteristic p > 0. Consider a generically smooth,
stable pointed curve Y ! S with an action of a finite group G of order divisible
by p. Denote X D Y=G. We assume that G acts freely on the complement of the
marked points in Y�; it then follows that G respects the branches of all nodes of Ys.

In situations where the order of G is prime to the residue characteristic, the
reduced covering Ys ! Xs is an admissibleG-covering, and a nice complete moduli
space of admissible G-coverings exists. An extensive literature exists describing
that situation, see e.g., [H-M, Mo, Ek, W,@-C-V]. However, in our case where the
residue characteristic divides the order ofG, interesting phenomena occur (see e.g.,
[@-Oo]). The situation was studied by a number of people; we will concern ourselves
with results of Raynaud [Ra] and, in a less direct way, Henrio [He] and more
recently Maugeais [Ma]. Related work of Saidi [Sa1, Sa2, Sa3], Wewers and Bouw
[W1, W2, W3, Bo, B-W1, B-W2], Romagny [Ro] and others provides additional
inspiration. In [@-O-V2, Section 5] the curve Y is replaced by something which
could be much more singular, and therefore the results are somewhat orthogonal to
the situation here.

Thus, in our case where p
ˇ
ˇ jGj, the covering Y ! X is no longer generically

étale on each fiber. It is natural to consider some sort of group-scheme degeneration
G ! X of G, in such a way that Y might be considered something like an
admissible G-covering. In our main theorem we show this is the case under
appropriate assumptions:

Theorem 3.2.2. Assume p2 − jGj and the p-Sylow subgroup of G is normal.
There exist

(1) a twisted curve X ! X ,
(2) a finite flat group scheme G ! X ,
(3) a homomorphismGX ! G which is an isomorphism on XK ,
(4) a lifting Y ! X of Y ! X , and
(5) an action of G on Y through which the action of G factors,

such that Y ! X is a principal G-bundle.
The formation of G commutes with any flat and quasi-finite base changeR � R0.
It is important to note that, unlike the characteristic 0 case, X is not a stable

pointed curve in general.

1.2 Background

Raynaud ([Ra], Proposition 1.2.1) considered such a degeneration locally at the
generic points of the irreducible components of Xs , in the special case where
jGj D p; our first goal, see Theorem 3.1.1 below, is to work out its extension to the
smooth locus of X , and slightly more general groups, where as above p2 − jGj and
the p-Sylow subgroup of G is normal. The case where p2

ˇ
ˇ jGj remains a question

which I find very interesting. See Example 2.1.7 and the appendix by J. Lubin for a
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negative result in general, the discussion of question 2.1.5 for positive results in the
literature, and Remark 2.1.8 for a positive result for small ramification.

One still needs to understand the structure of Y ! X at the nodes of Xs and
Ys . Henrio, working p-adic analytically, derived algebraic data along Xs , involving
numerical combinatorial invariants and differential forms, which in some sense
classify Ys ! Xs . Our second goal in this note is to present a different approach to
such degenerations at a node, modeled on twisted curves, i.e. curves with algebraic
stack structures. Borrowing a metaphor from A. Ogus, these twisted curves have
served well in the past as a sort of “magic powder” one sprinkles over the “bad
locus” of certain structures, which brings about a hidden good property. The point
here is that, just as in [@-C-V], the introduction of twisted curves allows one
to replace Y ! X by something that is actually a principal bundle. Unlike the
case of residue characteristics prime to jGj, the twisted curves will in general be
Artin stacks rather than Deligne–Mumford stacks. See [Ol], [@-O-V2].

1.3 Towards a proper moduli space

The main theorem should be thought of as a first step in constructing a nice proper
moduli space of degenerate coverings in mixed characteristics - it gives a special
case of the valuative criterion for properness. In joint work with M. Romagny
we plan to complete this task. Foundations have only recently been developed in
[@-O-V,@-O-V2].

1.4 Brief introduction to twisted curves

A twisted pointed curve over a base scheme S is a diagram as follows:

†C
i
� � ��

��

C

��
†Ci

� � �� C

��
S:

Here we follow [@-O-V2, Section 2]:

• C ! S is a usual n-pointed nodal curve, with sections ˙C
i ; i D 1; : : : ; n;

• C is an algebraic stack with finite diagonal having C as its coarse moduli space;
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• †C
i � C are its markings, each of which a gerbe banded by some �ri

over
†Ci ' S ;

• C ! C is an isomorphism away from nodes and markings of C ;
• at a marking of C , where the strict henselization C sh is described by
.SpecS OS Œx�/

sh and ˙C
i is the vanishing locus of x, the twisted curve C is

described as
�

.SpecS OS Œu�/
sh =�ri

�

;

where �ri
acts on u via the standard character and uri D x, and˙C

i is the quotient
of the vanishing locus of u;

• at a node of C , where the strict henselization C sh is described by .SpecS OS

Œx; y�= .xy � f //sh with f 2 .OS /
sh, the twisted curve C is described as

h

. SpecS OS Œu; v� = .uv� g/ /sh =�r

i

for some r , where �r acts via

.u; v/ 7! .�ru; �
�1
r v/;

and ur D x; vr D y and gr D f .

Of course the description on the level of strict henselization descends to some
étale neighborhoods. In case p divides ri or r , the twisted curve C is not a
Deligne–Mumford stack, and it is a little bit of a miracle, following from [@-O-V2,
Proposition 2.3], that one can use such a nice description locally in the étale
topology (or on strict henselizations) rather than the f.p.p.f. topology. The reader
is warned that transition isomorphisms between the étale local charts are in general
not given in étale neighborhoods but rather in smooth or f.p.p.f. charts.

Near a marking ˙C
i , the twisted curve is determined, uniquely up to a unique

isomorphism, by the choice of ri . In fact locally in the Zariski topology of C we

can write C D ri

q

.C;˙C
i /, see [@-G-V] for notation and proof. Near a node, C is

still uniquely determined by r , but not up to a unique isomorphism - in fact AutC C
has a factor �r for each such twisted node of index r , see [@-C-V].
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2 Extensions of group-schemes and their actions
in dimension 1 and 2

2.1 Raynaud’s group-scheme

Raynaud (see [Ra], Proposition 1.2.1, see also Romagny, [Ro]) considers the
following construction: let U be integral and let V=U be a finite flat G-invariant
morphism of schemes, with G finite. Assume that the action of G on the generic
fiber of V=U is faithful. We can view this as an action of the constant group scheme
GU on V , and we consider the schematic image G of the associated homomorphism
of group-schemes

GU ! AutUV:

Since, by definition, the image GU ! U is finite, we have that G ! U is finite
as well. The scheme G ! U can also be recovered as the closure of the image of
the generic fiber of GU , which is, by the faithfulness assumption, a subscheme of
AutU V . By definition G acts faithfully on V .

Definition 2.1.1. We call the scheme G the effective model of G acting on V=U .

Note that a priori we do not know that G is a group-scheme. It is however
automatically a flat group-scheme if U is the spectrum of a Dedekind domain. This
follows because, in that case, the image of G �U G ! AutU V is also flat, and
therefore must coincide with G.

Also note that, if s is a closed point of U whose residue characteristic is prime
to the order of G, then the fiber of G over s is simply G. So this effective model is
only of interest when the residue characteristic divides jGj.

The following is a result of Raynaud, see [Ra], Proposition 1.2.1. The statement
here is slightly extended as Raynaud assumes jGj D p:

Proposition 2.1.2. Let U be the spectrum of a discrete valuation ring, with special
point s of residue characteristic p and generic point �. Let V ! U be a finite
and flat morphism, and assume that the fiber Vs of V over s is reduced (but not
assuming geometrically reduced). Assume given a finite group G, with normal p-
Sylow subgroup, such that p2 − jGj, and an action of G on V such that V ! U is
G-invariant, and such that the generic fiber V� ! f�g is a principal homogeneous
space. Let G ! U be the effective model of G acting on V=U .

Then V=U is a principal bundle under the action of G ! U .
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Remark 2.1.3. An analogous construction in a wider array of cases is given in
Romagny’s [Ro1, Theorem A]. Romagny does not aim to construct a principal
bundle; on the other hand he shows that an effective model for an action exists
even if V=U and G=U are not finite, under very mild hypotheses.

Proof. As in Raynaud’s argument, it suffices to show that the stabilizer of the
diagonal of Vs �U Vs inside the group-scheme Vs �U G is trivial. Since G acts
transitively on the closed points ti of Vs sending the stabilizer on ti to that over tj ,
it is enough to show that one of these stabilizers, say over t 2 Vs , is trivial. But this
stabilizer P is a group-scheme over the residue field k.t/ with degree degP j p,
and if nontrivial it is of degree exactly p. In such a case it must coincide with the
pullback of the unique p-Sylow group-subscheme of G; therefore that p-sylow acts
trivially, contradicting the fact that G acts effectively. ut
Remark 2.1.4. In case the inertia group is not normal, Raynaud passes to an
auxiliary cover, which encodes much of the behavior of V ! U .

Question 2.1.5. What can one say about the action of G on V in case the order
of G (and the degree of V ! U ) is divisible by p2, but the inertia group is still
normal? Specifically, what happens if jGj D p2?
In the latter case, consider a subgroup P � G of order p. It can be argued, as in
Raynaud’s proof, that the effective model P ! U of P acts freely on V , and thus
V ! V=P is a principal P-bundle. Similarly, if Q is the effective model of G=P
acting on V=P , then V=P ! U is a principal Q-bundle. At the same time, we have
an action of the effective model G of G on V=P , but it is not necessarily the case
that G=P ! Q is an isomorphism.

While the statement of Question 2.1.5 is somewhat vague, two definite answers
can already be given. First, if one concentrates on effective models of the action in
the sense of Romagny, a great deal can be said. The recent work of Tossici [To1,To2]
concentrates on the case where GK D Z=p2Z and OU contains a primitive root of
unity of order p2. The paper [To1] describes explicitly the possible models G of
GK ; in [To2] an explicit description of the effective model of GK acting on V is
provided. I think it would be of interest to see if results as in Theorems 3.1.1 and
3.2.2 can be obtained for more general effective models such as these.

Second, in general no model of G will act freely on V . This is the case even for
some of the prettiest actions one can consider. This makes giving a complete answer
to the previous Question 2.1.5 tricky, and underscores the importance of work such
as Tossici’s.

As probably the simplest example, consider an action of G0 D .˛p/
2 D

SpeckŒa; b�=.ap; bp/ on k.t/. Examples of liftings of a non-free action of the type

t 7! t C a C f .t/ b
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for any residue characteristic have been written down by Romagny (personal
communication) and Saidi (see [Sa4]). The case of

t 7! t C a C tp b (1)

is particularly appealing, as it involves torsion and endomorphisms of a formal
group. I therefore ask

Question 2.1.6. Can one lift the action (1) to characteristic 0?

A formal positive answer in arbitrary residue characteristics is given by Jonathan
Lubin in the appendix. Here I discuss explicitly the case of residue characteristic
2, where this action can be obtained as a reduction of an action of .Z=2Z/2 on a
smooth curve. I concentrate on the local picture (making it global is not difficult):

Example 2.1.7. Let R D Z2Œ
p
2�. Consider the group-scheme Y=R defined by

t � t 0 D t C t 0 C p2 t t 0

This is an additive reduction of the multiplicative group. The reduction of the
subgroup �2 is given as

Spec RŒa�
.�

a .aCp2/ �;

reducing to ˛2. It acts on Y by translation via the addition law as above:

t 7! t C a C p2 a t:

The reduction of the action of Z=2Z by inversion is the same group-scheme,
again reducing to ˛2, which we write as

Spec RŒb�
.�

b .b Cp2/ �:

This time the action is given by

t 7!
�

1Cp2 b
�

t � b t2

1Cp2 t :

Since 2-torsion is fixed by inversion, these actions commute. Explicitly, the
action of the product is given by

t 7! a C
�

1 C p2 b
�

t � b t2

1 C p2 t

C p2 a
��

1 C p2 b
�

t � b t2

1 C p2 t
	

:



8 D. Abramovich and J. Lubin

The reduction modulo
p
2 is given by

t 7! t C a C t2 b;

as required.

Remark 2.1.8. Raynaud’s arguments do work when p2
ˇ
ˇ jGj if the p-Sylow group-

scheme of G has only étale and cyclotomic Jordan–Hölder factors. This is because,
in that case, there are no nonconstant group subschemes in the reduction. In
particular this works whenever the absolute ramification index over Zp is < p.

2.2 Extension from codimension 1 to codimension 2

Consider now the case where U a Gorenstein noetherian scheme, dimU D 2, and
V=U finite flat and G-invariant as above. Consider the S2-saturation G0 ! G of the
effective model G of the G action on V=U . In Section 6.1.2 of [Va] Vasconcelos
considers such saturation (S2-ification in his terminology). His Proposition 6.21 on
page 318 applies in our situation, and gives the existence and a characterization of
the S2-saturation. We have

Lemma 2.2.1. If G0 ! U is flat, then G0 is a group-scheme acting on V .

Proof. We claim that the rational map G0 �U G0 Ü G0 induced by multiplication
in AutU V is everywhere defined. Indeed the graph of this map is finite over
G0 �U G0 and isomorphic to it over the locus where G0 ! G is an isomorphism,
whose complement has codimension � 2. Now G0 is S2 and of dimension 2, hence
Cohen–Macaulay. Pulling back to G0 the flat Cohen–Macaulay G0 ! U we get
that G0 �U G0 is Cohen–Macaulay, in particular S2. This implies that the graph of
G0 �U G0 Ü G0 is isomorphic to G0 �U G0, and therefore the map is regular. The
same works for the map defined by the inverse in AutUV . This makes G0 a group-
scheme, and the map G0 ! AutU V into a group-homomorphism. ut

This applies, in particular, when U is regular:

Lemma 2.2.2. If U is regular, the S2-saturation G0 of the effective model G is a
finite flat group-scheme acting on V .

Proof. Again G0, being 2-dimensional and S2, is Cohen–Macaulay, and being finite
over the nonsingular schemeU , it is finite and flat overU (indeed its structure sheaf,
being saturated, is locally free over the nonsingular 2-dimensional scheme U ). The
result follows from Lemma 2.2.1. ut

When the action on the generic fiber is free, we have more:

Proposition 2.2.3. Let U be a Cohen–Macaulay integral scheme with dimU D 2.
Let V ! U be a G invariant, finite, flat and Cohen–Macaulay morphism, and
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assume the action of G on the generic fiber is free. Let G ! U be the effective
model of the action. Assume that for every codimension�1 point �, the action of the
fiber G� on V� is free.

Then

(1) G ! U is a flat group-scheme, and
(2) The action of G on V is free.

Note that, by Raynaud’s result 2.1.2, the assumptions hold when U D V=G is
local of mixed characteristics .0; p/, the fibers V� are reduced, the p-Sylow of G is
normal and p2 − jGj.
Proof. Consider the S2-saturation G0 of G. Since V ! U is flat and Cohen–
Macaulay, the same is true for V �U V ! V and for G0�U V ! G0. Since G0 and V
are Cohen–Macaulay, we have that V �U V and G0�U V are Cohen–Macaulay, hence
S2, as well. The morphism G0�U V ! V �U V induced by the action G0 ! AutU V
is finite birational and restricts to an isomorphism in codimension 1. By the S2
property it is an isomorphism. In particular we have that G0 �U V ! V is flat, and
since V ! U is faithfully flat we have that G0 ! U is flat. By Lemma 2.2.1 we
have that G0 ! U is a finite flat group-scheme acting on V , and the isomorphism
G0 �U V ! V �U V shows that the action is free, in particular G0 ! G is an
isomorphism. ut

3 Curves

3.1 The smooth locus

The main case of interest for us is the following:
Let R be a complete discrete valuation ring of mixed characteristic, with fraction

field K of characteristic 0, residue field k of characteristic p > 0, and spectrum S .
Assume Y ! S is a stable pointed curve with smooth generic fiber,G a finite group
acting on Y over S , and denote

X D Y=G:

We assume that the closure of the locus of fixed points of G in YK forms a disjoint
union of marked sections of the smooth locus Ysm. Hence for every node y 2 Y ,
the stabilizer in G of y keeps the branches of Y at y invariant. We denote the
complement of the closure in Ysm of the fixed locus of the generic fiber by Ygen,
and the image in X by Xgen — the so called general locus.

Note that the morphism Ysm ! Xsm is flat.
The propositions above give:

Theorem 3.1.1. Assume p2 − jGj and the p-Sylow subgroup of G is normal.
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There exist

(1). a finite flat group-scheme Gsm ! Xsm,
(2). a homomorphism GXsm ! Gsm which is an isomorphism over XK , and
(3). an action of Gsm on Ysm through which the action of G factors,

such that Ygen ! Xgen is a principal Gsm-bundle.
The formation of Gsm commutes with any flat and quasi-finite base change

R � R0.
Proof. Let Gsm ! Xsm be the S2-saturation of the effective model of the action of
G on Ysm. As Xsm is smooth we can apply Lemma 2.2.2; therefore Gsm ! Xsm is a
finite flat group-scheme acting on Ysm, giving (1) and (3). Part(2) applies since over
K the groupG does not degenerate.

The assumptions on G mean we can apply Proposition 2.1.2, so the action of
GsmjXgen on Ygen is free in codimension-1. We can therefore apply Proposition 2.2.3,
and obtain that Ygen ! Xgen is a principal bundle.

The formation of Gsm clearly commutes with base change when restricted to the
locus where it acts freely, and also over XK . As it is flat and S2, its formation also
commutes with base change across the remaining codimension-2 locus. ut

It would be really interesting to see what happens for other groupsG.

3.2 The structure of Y and G over nodes and markings of X

What can be done about the singular points and markings of X and Y ? It is easy
to see that even in the case of characteristic 0, the cover Y ! X is not a principal
bundle in general; it is already not a principal bundle at the fixed points of YK ,
and rarely a principal bundle at the nodes. However, the behavior of Y ! X at
the nodes is very interesting. My suggested approach here is to follow the method
of [@-V1,@-V2,@-C-V, Ol,@-O-V2] using twisted curves. Let us first consider the
cover Y ! X itself and investigate its structure from this point of view.

Consider first a node P 2 X where étale locallyX sh is described by the equation
xy D �m, with � a uniformizer in S . Similarly, take a node Q 2 Y over P with
local equation st D �n. Say the local degree of Y ! X at Q is d , so without loss
of generality we can write x D sd� and y D td �, where � and � are units on Y sh.
Comparing the Cartier divisors of x; y; s; t and � on Y sh, we get that m D dn, and
�� D 1. Note that, since G acts transitively on the points of Y lying over P 2 X ,
the degree d is independent of the choice ofQ, and we may denote it dP , to indicate
its dependence on P .

Consider now the twisted curve X having index dP at each node P . Recall from
above that it has local description

h

. SpecS OS Œu; v� = .uv� �n/ /sh =�d

i

:
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Write Z D .SpecS OS Œu; v� = .uv � �n//sh. We stress again that up to a non-unique
isomorphism X does not depend on the choice of local coordinates.

Lemma 3.2.1. There is a lifting, unique up to a unique isomorphism, of Y ! X to
a finite flat Cohen–Macaulay morphism Y ! X .

Proof. Recall that the coordinate s on Y sh is related to x via x D sd� with � a unit.
Consider the �d -cover P ! Y sh given by

P D SpecOY sh Œw�=.wd � �/;

using the same unit �, where �d acts via w 7! �dw. Define a morphism P ! Z

via u D sw and v D t=w. This morphism is clearly equivariant, giving a morphism
Y sh ! ŒZ=�p� D X sh. Since .sw/p D x D up and .t=w/p D y D vp this
lifts the given map Y ! X . It is a tedious but straightforward exercise to show
that the morphism on strict henselization descends to give the required morphism
Y ! X . The uniqueness statement follows from the fact that X is a separated
stack. To check that Y ! X is flat it suffices to show P ! Z flat. This follows
from the local criterion for flatness: the fiber over u D v D 0 is given by
s D t D 0;wd D c where c is the constant coefficient of � at s D t D 0. This is a
scheme of degree precisely d as required. Since Y and X (or, for that matter, P and
Z) are Cohen–Macaulay, the morphism is Cohen–Macaulay. ut

We now have our main theorem:

Theorem 3.2.2. Assume p2 − jGj and the p-Sylow subgroup of G is normal.
There exist

(1) a twisted curve X ! X ,
(2) a finite flat group scheme G ! X ,
(3) a homomorphismGX ! G which is an isomorphism on XK ,
(4) a lifting Y ! X of Y ! X , and
(5) an action of G on Y through which the action of G factors,

such that Y ! X is a principal G-bundle.
The formation of G commutes with any flat and quasi-finite base changeR � R0.

Proof. There are two issues we need to resolve here: the construction of G at the
nodes, and the construction of X and G at the markings.

First we need to extend G over nodes. We have that Y ! X is flat and
Cohen–Macaulay at the nodes; by Theorem 3.1.1 we have that Ygen ! Xgen is a
principal bundle under Ggen. By Proposition 2.2.3 the effective model G ! X of the
action of GX on the X -scheme Y is a finite flat group-scheme over X , and away
from the markings Y is a principal bundle.

Next, we deal with the markings: the local picture of YK ! XK at a marking is
Y sh D .SpecRŒs�/sh and X sh D .SpecRŒx�/sh where x D sd , and the stabilizer in
G of s D 0 on Y is identified with �d , acting via s 7! �s. We give X the unique
structure of a twisted curve with index d along this marking; locally around the
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marking s D 0 we have X sh D Œ.SpecOS Œu�/sh=�d �. The discussion above shows
that YK ! XK is a principalG-bundle. Applying Proposition 2.2.3 again we obtain
that G is a group-scheme and Y is a principal bundle. ut

So, in view of the characteristic 0 discussion in [@-C-V], we might call Y ! QX
a twisted G-bundle.

This suggests an approach to lifting covers from characteristic p to characteristic
0, by breaking it in two stages: (1) lifting group-schemes over X , and (2) lifting the
covers. Recent work of Wewers [W3] seems to support such an approach.

Appendix A. Lifting a non-free action on a formal group

by Jonathan Lubin

The Question. In characteristic p > 0, consider the substitution t 7! aC t C btp ,
where ap D bp D 0. This clearly defines a group-scheme of rank p2, isomorphic
to ˛p � ˛p , and an action of the groups-cheme on a curve, in this case the affine
line. Question 2.1.6 asked whether this group-scheme and this action can be lifted
to characteristic zero, over a suitably ramified extension of Zp .

The Answer. It’s a partial yes, in that the example presented here shows an action
not on the affine line but on the formal version of this, the formal spectrum of OŒŒt ��,
where O is the ring of integers in a well-chosen ramified extension of Qp. But if the
question is whether there is any example of an action of ˛p � ˛p on a genuine
algebraic curve in characteristic zero, then I must plead ignorance.

In general, if R is a ring and f and g are power series in one variable over R,
then it makes no sense to compose the series, f ıg, unless g has zero constant term.
Yet, there are situations where R has a suitable complete topology, when f ı g can
make sense even when g.0/ ¤ 0. Let us detail one fairly general such situation:

If .o;m/ is a complete local ring, then on the category of complete local
o-algebras .R;M/ we define a group functor denoted B or Bo, such that B.R/
is the set of power series

f .t/ D
X

j�0
cj t

j 2 RŒŒt��

for which c0 2 M and c1 62 M . Our desire is that Bo.R/ should be a group
under composition of power series, and indeed the condition on c0 guarantees that
composition will be well defined, while the condition on c1 guarantees that the series
will have an inverse in B.R/. One sees now that if 	 is the characteristic-p field of
definition in Question 2.1.6, and if R is the local 	-algebra 	Œa; b�=.ap; bp/, then
the series aC t C btp is an element of B	.R/. The relation

.aC t C btp/ ı .a0 C t C b0tp/ D .aC a0/C t C .b C b0/tp

shows that the group-scheme that’s being described is finite and isomorphic to
˛p � ˛p .
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The Method. We take a formal group F of finite height that has a subgroup of
order p as well as a group of automorphisms of order p. Now, finite groups of
automorphisms of a formal group of finite height are always étale, but by taking
a slight blowup of F , we convert the automorphism subgroup to a local group-
scheme, without going so far as to make the above group of torsion points of F
étale as well. Then, allowing ourselves a slight abuse of language, our desired lifting
consists of all substitutions

t 7! a QCt QCŒb�F 0.t/;

where a is a torsion point of the blow-up of F , and 1 C b is a p-th root of 1. In
the displayed formula, F 0 is the blown-up version of F , the tilde over the plus-sign
indicates addition with respect to F 0, and as usual, Œb�F 0.t/ is the endomorphism
whose first-degree term is bt . I suppose that very confident people may be able to
look at the preceding explanation and say, Of Course, No Problem, End of Story.
But I’m not so confident, and the rest of this paper is devoted to filling in the gaps
and making sure, to my own satisfaction at least, that everything is on the up and
up. To those confident readers, everything from here on may thus be unnecessary,
though the summary 1–7 at the end of this note may be an aid to flagging assurance.

A.1 Some algebra

Let � D �p be a primitive p-th root of 1 in an algebraic extension of Qp, and let
o D ZpŒ��. Let also � D � � 1, a prime element of o, and let k be the fraction field
of o. In the ring oŒT �=.T p � 1/, let us call 
 the image of T , and let us consider
� D ��1

�
. Then the minimal polynomial for  is

T p C p

�
T p�1 C p.p � 1/

2�2
T p�2 C � � � C p.p � 1/

2�p�2
T 2 C p

�p�1
T; (�)

in which the coefficient of T is a unit in o congruent to �1 modulo � . Let us call
B the ring oŒ��; we need to establish a few facts about it. I will use capital Greek
letters for elements of B , lower case Greek letters for elements of o.

Lemma A.1.1. The ring B is isomorphic to o˚ o˚ � � � ˚ o, with p factors. In B ,
every element � satisfies the condition that ‚p �‚ 2 �B .

Proof. The minimal polynomial for , described above, is T p � T modulo � . By
Hensel’s lemma it splits into dinstinct linear factors over the complete local ring o,
so that the first part of the statement is verified. Since each element ˇ 2 o has the
property that ˇp � ˇ 2 �o, the corresponding property holds for elements of B as
well. It may be of interest to note that this is not true of the subring oŒ
� of B .
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A.2 Endomorphisms of the fundamental formal group

We start with the polynomial f .t/ D �t C tp 2 oŒŒt ��, which has associated to it
a unique formal group F.x; y/ 2 oŒŒx; y�� for which f 2 Endo.F /, as proved in
[LT]. The following is hardly surprising:

Lemma A.2.1. For each � 2 B , there is a unique series Œ��F .t/ 2 BŒŒt �� such
that Œ��0F .0/ D � and f ı Œ��F D Œ��F ı f ; this series is an element of EndB.F /.
In particular for � D � we have Œ��F D f .

This may be proved by using either of the halves of Lemma A.1.1; if one wishes
to use the fact that �p � � is always in �B , then the proof of the first Lemma in
[LT] goes through word-for-word. The statement Œ��F D f follows by uniqueness.

The endomorphism ring EndB.F / contains in particular the series Œ��F and
Œ
�F ; the p-fold iterate of the latter series is the identity series t . And since

 D 1C ��, our periodic series Œ
�F .t/ may also be written as

F . t; .Œ��F ı Œ��F / .t// :

If ˇ is an element of ker.Œ��F /, then the series �ˇ.t/ D F.t; ˇ/ commutes with both

Œ��F .t/ D F . t; Œ��F .t//

and
Œ
�F .t/ D F . t; .Œ�F ı Œ��F / .t// :

If only BD oŒ�� had not been an étale o-algebra, we could have taken
ker.Œ��F / � Spec.B/ as our desired lifting of ˛p � ˛p . After all, the points of
ker.Œ��F / are the ˇ’s mentioned above, and the points of Spec.B/ are essentially
the p-th roots of unity �, and the substitution

t 7! F .ˇ; Œ��F .t//

would be our lifting of the substitution mentioned in the introduction. There is the
additional problem that in case p D 2, F is of height one and so kerŒ�� is not a
lifting of ˛p , but the étaleness of the other factor is a much bigger obstacle.

Because of the form of f .t/ D Œ��F .t/ D �t C tp , not only F but also all the
B-endomorphisms Œ‚�F have the property that the only nonzero terms are in degrees
congruent to 1 modulo p � 1. Any such series can be written, that is, in the form
P

j�0 Hj where each Hj is a form or monomial of degree 1C j.p � 1/. For want
of a better term, I will call any series with this last property .p � 1/-lacunary.

Now I want to let O be any complete local o-algebra in which � is no longer
indecomposable, � D �� where both � and � are nonunits. Minimally, one may
take � D � D p� and O D oŒ

p
��. Or we may let O be the ring of integers in any

properly ramified algebraic extensionK of k, and � any element ofK with valuation
0 < v.�/ < v.�/ D 1. Or, generically, we can take O D oŒŒ�; �=���, a ring that can
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be described alternatively as oŒŒ�; ���=.�� � �/ or as the set of all doubly infinite
Laurent series

P

j2Z ˛j �j in the indeterminate � and with coefficients ˛j 2 o
satisfying the additional condition that j C v.˛j / � 0, where v is the (additive)
valuation on o and k normalized so that v.�/ D 1.

If G is a .p � 1/-lacunary series in one or more variables, I will call the
�-blowup of G, denoted by G.�/, the series formed from G in the following way:
if G D P

j�0 Hj , each Hj being homogeneous of degree 1 C j.p � 1/, then

G.�/ DPj�0 �jHj .
When we apply the above operation to F and its endomorphisms, here is what

happens: F .�/ becomes a formal group whose reduction modulo the maximal ideal
of O is just the additive formal group x C y. The maps Endo.F / ! EndO.F .�//

and EndB.F / ! EndB˝oO.F
.�// that take g.t/ to g.�/.t/ are injections. For any

� 2 B , I will write Œ��.�/ for Œ��F .�/ D .Œ��F /
.�/; then since Œ��.�/.t/ D �t C

�tp D �.�t C tp/, the new formal group F .�/ has at least one nontrivial finite
subgroup, namely the set of roots of �t C tp , under the group law furnished by
F .�/, and they certainly are the geometric points of Spec .OŒt �=.�t C tp//, but this
is not the kernel of Œ��.�/, since the standard construction of kernel in that case
leads to something that’s not flat. Rather, if we call g.t/ D �t C tp , then the finite
group-scheme we’re talking about is the kernel of g W F .�/ ! F .�2/.

Seeing just how a group scheme lifting ˛p acts on F .�/ is a little trickier and
more unusual. Our aim is to show that the automorphism Œ� �.�/.t/ of F .�/ lies in
OŒ�0�ŒŒt ��, where�0 D �� has the O-minimal polynomial

T p C p�

�
T p�1 C p.p � 1/�2

2�2
T p�2 C � � � C p.p � 1/�p�2

2�p�2
T 2 C p�p�1

�p�1
T (��)

D T p C p

�
T p�1 C p.p � 1/

2�2
T p�2 C � � � C p.p � 1/

2�p�2
T 2 C p

�p�1
T I

Note that this polynomial is congruent to T p modulo the maximal ideal M of O.
Now recall that � D 1C�� , so that the series Œ� �.t/, which is periodic of period

p with respect to substitution of series, whether we are talking about automorphisms
of the original F or of the blown-up F .�/, can be written

Œ� �.t/ D F . t; .Œ�� ı Œ�� /.t// :

Since every element of B is an o-linear combination of f1;�; : : : ; �p�1g, we may
write

Œ��F .t/ D �t C
X

j�1
Cj t

j.p�1/C1 2 BŒŒt ��;

where, as remarked, each coefficient Cj is an o-linear combination of the powers of
�, up to �p�1. It follows that Œ��.�/, the corresponding endomorphism of F , has
the form

Œ��F .�/ .t/ D �t C
X

j�1
Cj�

j tj.p�1/C1 2 OŒŒt ��;
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where the Cj ’s are the same in both displayed formulas. Now, what of Œ��.�/ ı
Œ��.�/ D Œ��.�/.�t C �tp/? Making the indicated substitution gives

� .�t C �tp/ C
X

j�1
Cj�

j .�t C �tp/j.p�1/C1

D �0 .�t C tp/ C
X

Cj�
jpC1.�t C tp/j.p�1/C1:

But now because Cj 2 B D oŒ��, we also have Cj�jpC1 2 �OŒ�0� D �OŒ���,
since the j ’s all are at least 1. This shows that Œ���.�/.t/ is a power series with
coefficients in OŒ�0�, and indeed, modulo M, this series is just �0tp . Finally, when
we add this series and the series t by means of the formal group F .�/.x; y/ �
xCy mod M, the result, namely Œ� �.�/.t/, has coefficients in B 0 D OŒ�0�, and is
congruent modulo M to t C �0tp . One more remark is necessary, the obvious one
that if �˛ C ˛p D 0, then Œ���.�/.˛/ D 0 and Œ� �.�/.˛/ D ˛.

In summary, this is what we now have:

(1) The ring o is ZpŒ��, where � D �p is a primitive p-th root of unity, and we use
the prime element � D � � 1.

(2) The ring O is any suitably ramified extension of o, the minimal example being
O D oŒ

p
��. This O is the ring over which our liftings and action are defined,

and we identify in it elements �;� 2 O with �� D � .
(3) The formal group F over o has �t C tp as an endomorphism and thus has o as

its ring of “absolute” endomorphisms (over the ring of integers of any algebraic
extension field of the fraction field of o). Allowing for abuse of language, there
is a unique o-subgroup-scheme of F of rank p, namely kerŒ��F D Spec.A/,
where A D oŒŒt ��= .Œ��F .t//.

(4) The finite o-algebra B is oŒ��, where the minimal polynomial for � over o is
given in formula (�). Algebraically, B is o˚p, and when we call
� D 1 C �� 2 B , we have � p D 1. The scheme Spec.B/ is a finite
étale group-scheme of order p; the element � 2 B is a generic p-th root of
unity, and the operation of the étale group-scheme on the formal-affine line is
t ! Œ� �F .t/ D F .t; .Œ�� ı Œ��/.t//.

(5) We use � 2 O to form a sort of blowup of F , which we call F .�/ and which is
described on the preceding page. This formal group has the subgroup-scheme
Spec.A0/, where A0 D OŒŒt ��=.�t C tp/, and this group-scheme acts on the
formal-affine line by the substitution t ! F.�/.a; t/ when a is any root of
�t C tp .

(6) We define �0 D �� 2 B ˝o O, and note that �0 has the minimal polynomial
over O given by (��) on the preceding page. Call B 0 D OŒ�0�. The periodic
power series Œ� �.�/.t/, originally defined to be in B ˝o OŒŒt ��, actually is in
B 0ŒŒt �� and as an element of this ring, it becomes t C�0tp in B 0˝O O=MŒŒt ��.

(7) Since the series Œ� �.�/.t/ and the F .�/.a; t/ mentioned in (5) commute, we
do indeed have a finite group-scheme, namely Spec.A0 ˝O B 0/, acting on the
formal-affine line in such a way that over O=M, the action is t 7! aC tC�0tp .
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Gttingen, 2004.

[Ek] T. Ekedahl, Boundary behaviour of Hurwitz schemes. The moduli space of curves
(Texel Island, 1994), 173–198, Prog. Math., 129, Birkhäuser Boston, Boston, MA,
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Abstract The modular degree and congruence number are two fundamental
invariants of an elliptic curve over the rational field. Frey and Müller have asked
whether these invariants coincide. We find that the question has a negative answer,
and show that in the counterexamples, multiplicity one (defined below) does not
hold. At the same time, we prove a theorem about the relation between the two
invariants: the modular degree divides the congruence number, and the ratio is
divisible only by primes whose squares divide the conductor of the elliptic curve.
We discuss the ratio even in the case where the square of a prime does divide
the conductor, and we study analogues of the two invariants for modular abelian
varieties of arbitrary dimension.
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1 Introduction

Let E be an elliptic curve over Q. By [BCDT01], we may view E as an abelian
variety quotient over Q of the modular Jacobian J0.N /, where N is the conductor
of E . We assume that the kernel of the map J0.N / ! E is connected, i.e., that E
is an optimal quotient of J0.N / (this can always be done by replacing E by an
isogenous curve if needed). The modular degree mE is the degree of the composite
map X0.N / ! J0.N / ! E, where we map X0.N / to J0.N / by sending P 2
X0.N / to ŒP � � Œ1� 2 J0.N /.

Let fE D P
anq

n 2 S2.�0.N /;C/ be the newform attached to E. The con-
gruence number rE of E is the largest integer such that there is an element g D
P
bnq

n 2 S2.�0.N // with integer Fourier coefficients bn that is orthogonal to fE
with respect to the Petersson inner product, and congruent to fE modulo rE (i.e.,
an � bn .mod rE/ for all n).

Section 2 is about relations between rE andmE . For example,mE j rE . In [FM99,
Q. 4.4], Frey and Müller asked whether rE D mE . We give examples in which
rE ¤ mE , and show that in these examples, there is a maximal ideal m of the
Hecke algebra T, such that J0.N /Œm� has dimension more than two over T=m (this
is the failure of multiplicity one alluded to above). We then conjecture that for any
prime p, ordp.rE=mE/ � 1

2
ordp.N /, and prove this conjecture when ordp.N / � 1.

In Section 3, we consider analogs of the modular degree and the congruence
number for certain modular abelian varieties that are not necessarily elliptic curves;
these include optimal quotients of J0.N / and J1.N / of any dimension associated to
newforms. Section 3 may be read independently of Section 2. In Sections 4 and 5 we
prove the main theorem of this paper (Theorem 3.6), and also give some examples
of failure of what we call multiplicity one for differentials (see Definition 5.13).

Acknowledgments The authors are grateful to M. Baker, F. Calegari, B. Conrad, J. Cremona,
G. Frey, H. W. Lenstra, Jr. and B. Noohi for discussions and advice regarding this paper. We
would especially like to thank B. Conrad for the material in the appendix and for his suggestions
concerning a number of technical facts that are inputs to our arguments. The first author is also
grateful to the Max-Planck-Institut für Mathematik for its hospitality during a visit when he partly
worked on this paper.

2 Elliptic curves

In Section 2.1, we discuss relationships between the modular degree and the
congruence number of an elliptic curve. In Section 2.2 we recall the notion of
multiplicity one and give new examples in which it fails.



The modular degree, congruence primes, and multiplicity one 21

2.1 Modular degree and congruence number

Let N be a positive integer and let X0.N / be the modular curve over Q that
classifies isomorphism classes of elliptic curves with a cyclic subgroup of order N .
The Hecke algebra T of level N is the subring of the ring of endomorphisms of
J0.N / D Jac.X0.N // generated by the Hecke operators Tn for all n � 1. Let f
be a newform of weight 2 for �0.N / with integer Fourier coefficients, and let If be
kernel of the homomorphism T! ZŒ: : : ; an.f /; : : :� that sends Tn to an. Then the
quotient E D J0.N /=If J0.N / is an elliptic curve over Q. We call E the optimal
quotient associated to f . Composing the embedding X0.N / ,! J0.N / that sends
1 to 0 with the quotient map J0.N / ! E, we obtain a surjective morphism of
curves �E W X0.N / ! E. Recall that the modular degree mE of E is the degree
of �E .

Let S2.Z/ denote the group of cuspforms of weight 2 on �0.N / with integral
Fourier coefficients, and if G is a subgroup of S2.Z/, let G? denote the subgroup
of S2.Z/ consisting of cuspforms that are orthogonal to f with respect to the
Petersson inner product. The congruence number of E (really, that of f ) is the
positive integer rE defined by either of the following equivalent conditions:

(i) rE is the largest integer r such that there exists g 2 .Zf /? with f �
g mod r .

(ii) rE is the order of the quotient group S2.Z/
ZfC.Zf /? .

We say that a prime is a congruence prime for E if it divides the congruence
number rE. Congruence primes have been studied by Doi, Hida, Ribet, Mazur and
others (see, e.g., [Rib83, �1]), and played an important role in Wiles’s work [Wil95]
on Fermat’s last theorem. Frey and Mai-Murty have observed that an appropriate
asymptotic bound on the modular degree is equivalent to the abc-conjecture
(see [Fre97, p.544] and [Mur99, p.180]). Thus, results that relate congruence primes
and the modular degree may be of great interest.

Theorem 2.1. Let E be an elliptic curve over Q of conductor N , with modular
degree mE and congruence number rE . Then mE j rE and if ordp.N / � 1, then
ordp.rE/ D ordp.mE/.

Thus any prime that divides the modular degree of an elliptic curve E is a
congruence prime for E, and if p is a congruence prime for E such that p2

does not divide the conductor of E, then p divides the modular degree of E. The
divisibilitymE j rE was first discussed in [Zag85, Th. 3], where it is attributed to the
second author (Ribet); however in [Zag85] the divisibility was mistakenly written
in the opposite direction. For some other expositions of the proof that mE j rE ,
see [AU96, Lem 3.2] and [CK04]. We generalize this divisibility and prove it
in Theorem 3.6(a). The second part of Theorem 2.1, i.e., that if ordp.N / � 1,
then ordp.rE/ D ordp.mE/, follows from the more general Theorem 3.6(b) below.
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Table 1 Differing Modular
Degree and Congruence
Number

Curve mE rE Curve mE rE Curve mE rE

54B1 2 6 99A1 4 12 128A1 4 32
64A1 2 4 108A1 6 18 128B1 8 32
72A1 4 8 112A1 8 16 128C1 4 32
80A1 4 8 112B1 4 8 128D1 8 32
88A1 8 16 112C1 8 16 135A1 12 36
92B1 6 12 120A1 8 16 144A1 4 8
96A1 4 8 124A1 6 12 144B1 8 16
96B1 4 8 126A1 8 24

Note that [AU96, Prop. 3.3–3.4] implies the weaker statement that if p − N , then
ordp.rE/ D ordp.mE/, since [AU96, Prop. 3.3] implies

ordp.rE/ � ordp.mE/ D ordp.#C/� ordp.cE/ � ordp.#D/;

and by [AU96, Prop. 3.4], ordp.#C/ D 0. Here cE is the Manin constant ofE, which
is an integer (e.g., see [ARS06]), and C and D are certain groups.

Frey and Müller [FM99, Ques. 4.4] asked whether rE D mE in general. After
implementing an algorithm to compute rE in Magma [BCP97], we quickly found
that the answer is no. The counterexamples at conductor N � 144 are given in
Table 1, where the curve is given using the notation of [Cre97].

For example, the elliptic curve 54B1, given by the equation y2 C xy C y D
x3 � x2 C x � 1, has rE D 6 andmE D 2. To see explicitly that 3 j rE , observe that
the newform corresponding toE is f D qCq2Cq4�3q5�q7C� � � and the newform
corresponding to X0.27/ is g D q � 2q4 � q7C � � � , so g.q/C g.q2/ appears to be
congruent to f modulo 3. To prove this congruence, we checked it for 18 Fourier
coefficients, where the sufficiency of precision to degree 18 was determined using
[Stu87].

It is unclear whether there is a bound on the possible primes p that occur. For
example, for the curve 242B1 of conductorN D 2 � 112 we have

mE D 24 ¤ rE D 24 � 11:

We propose the following replacement for Question 4.4 of [FM99]:

Conjecture 2.2. Let E be an optimal elliptic curve of conductor N and p be any
prime. Then

ordp

�
rE

mE

�

� 1

2
ordp.N /:

We verified Conjecture 2.2 using Sage [SC09] for every optimal elliptic curve
quotient of J0.N /, with N � 557.

If p � 5, then ordp.N / � 2, so a special case of the conjecture is

ordp

�
rE

mE

�

� 1 for any p � 5:
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2.2 Multiplicity one and its failure

We say that a maximal ideal m of T satisfies multiplicity one if J0.N /Œm� is of
dimension two over T=m. The reason one calls this “multiplicitly one” is that if
the canonical two-dimensional representation �m over T=m attached to m (e.g.,
see [Rib90, Prop. 5.1]) is irreducible, then J0.N /Œm� is a direct sum of copies of �m
[Rib90, Thm. 5.2], and a maximal ideal m of T satisfies multiplicity one precisely
if the multiplicity of �m in this decomposition is one. Even if �m is reducible, the
definition of multiplicity one given above is relevant (e.g., see [Maz77, Cor. 16.3]).
The notion of multiplicity one, originally found in Mazur [Maz77], has played an
important role in several places (e.g., in Wiles’s proof of Fermat’s last theorem: see
Thm. 2.1 in [Wil95]).

In [MR91, �13], the authors find examples of failure of multiplicity one in which
if p is the residue characteristic of m, then p3 j N , and �m is modular of levelN=p2.
Kilford [Kil02] found examples of failure of multiplicity one whereN is prime and
the residue characteristic of m is 2. See also [Wie07] and [KW08] for examples of
failure of multiplicity one in the �1.N / context. We now give examples of failure of
multiplicity one where the square of the residue characteristic of m divides the level
(the residue characteristic is often odd).

Proposition 2.3. Suppose E is an optimal elliptic curve over Q of conductor N
and p is a prime such that p j rE but p − mE . Then there is a maximal ideal m of T
with residue characteristic p such that dimT=m J0.N /Œm� > 2, i.e., multiplicity one
fails for m.

The proposition follows from the more general Proposition 5.9 below. It follows
from the proposition above that any example in Table 1 where simultaneously
a prime divides rE but does not divide mE provides an example of failure of
multiplicity one. In such examples, the associated representation �m may or may
not be irreducible. For example, for the elliptic curve 54B1 and p D 3, we have
ord3.rE/ D 1 but ord3.mE/ D 0, so there is a maximal ideal m with residue
characteristic 3 such that multiplicity one fails for m. The curve 54B1 has rational
3-torsion, so �m is reducible. On the other hand, for the elliptic curve 99A1, we have
ord3.rE/ D 1 but ord3.mE/ D 0, so again there is a maximal ideal m with residue
characteristic 3 such that multiplicity one fails for m. Moreover, J0.99/ is isogenous
to a product of elliptic curves, none of which admit a rational 3-isogeny. Hence �m
is irreducible.

The notion of multiplicity one at a maximal ideal m is closely related to
Gorensteinness of the completion of T at m (e.g., see [Til97]). Kilford [Kil02]
found examples of failure of Gorensteinness (and multiplicity one) at the prime 2
for certain prime levels. In the examples as above where multiplicity one fails for
some maximal ideal, it would be interesting to do computations (e.g., as in [Kil02])
to see if the completion of the Hecke algebra at the maximal ideal is Gorenstein
or not.
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3 Modular abelian varieties of arbitrary dimension

For N � 4, let � be either �0.N / or �1.N /. Let X be the modular curve over Q
associated to � , and let J be the Jacobian ofX . LetA andB be abelian subvarieties
of J such that AC B D J , A \ B is finite, and every endomorphism of J over Q
preserves A and B . In this section, we generalize the notions of the congruence
number and the modular degree to subvarieties A as above, and state a theorem
relating the two numbers, which we prove in Sections 4 and 5.

We first give a general example of A and B as above. Up to isogeny, J is the
product of factors J e.f /

f where f runs over the set of newforms of level dividingN ,
taken up to Galois conjugation, and e.f / is the number of divisors of N=N.f /,
where N.f / is the level of f . Here Jf is the standard abelian subvariety of J

attached to f by Shimura [Shi94, Thm. 7.14]. Let A0 be the sum of J e.f /f for
some set of f ’s (taken up to Galois conjugation), and let B 0 be the sum of all the
other J e.f /f ’s. Clearly A0 C B 0 D J . The Jf ’s are simple (over Q), hence A0 \ B 0
is finite. In view of the following lemma, A0 and B 0 provide an example of A and B
respectively as above. Note that by End.J / we mean the ring of endomorphisms
of J defined over Q.

Lemma 3.1. End.J / preserves A0 and B 0.

Proof. Suppose End.J / does not preserve A0 (the case of B 0 is symmetric). Then
since the Jf ’s are simple, that means that some abelian subvariety Jg of A0 is
isogenous to some abelian subvariety Jh of B 0, where g ¤ h. Pick a prime `.
If f is a newform, then let �f denote the canonical absolutely irreducible `-adic
representation attached to f . Now Q`˝V`.Jf /ß is a direct sum of copies of ��.f / as
� ranges over all embeddings into Q of the field generated by the Fourier coefficients
of f . Thus the above implies that there are distinct newforms g0 and h0 (of some
level dividing N ) such that �g0 Š �h0 . Now each �f satisfies tr.�f .Frobp// D
ap.f / for all p − N`. Thus for all p − N`, we have ap.g0/ D ap.h

0/. By the
multiplicity one theory (e.g., see [Li75, Cor. 3, pg. 300]), this means that g0 D h0, a
contradiction. ut

We now give a more specific example, which will include the case of elliptic
curves. Recall that T denotes the Hecke algebra. If f D P

an.f /q
n 2 S2.�/ is a

newform and If D ker.T! ZŒ: : : ; an.f /; : : :�/, thenAf D J=If J is the newform
quotient associated to f . It is an abelian variety over Q of dimension equal to the
degree of the field Q.: : : ; an.f /; : : :/. Let �2 denote the quotient map J ! A.
If C is an abelian variety, then we denote its dual abelian variety by C_. There is
a canonical principal polarization � W J Š J_. Dualizing �2, we obtain a closed
immersion �_2 W A_f ! J_, which when composed with ��1 W J_ Š J gives us an
injection �1 W A_f ,! J . One slight complication is that the isomorphism � does not
respect the action of T, because if T is a Hecke operator on J , then on J_ it acts as
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WNT WN , whereWN is the Atkin–Lehner involution (see e.g., [DI95, Rem. 10.2.2]).
However, on the new quotient J new, the action of the Hecke operators commutes
with that of WN , so since the quotient map J ! Af factors through J new, the
Hecke action on A_f induced by the embedding A_f ! J_ and the action on A_f
induced by the injection �1 W A_f ! J are the same. Hence A_f is isomorphic to
�1.A

_
f / as a T-module, and �1.A_f / D Jf (this follows from the characterization

of Jf in [Shi94, Thm. 7.14]). For simplicity, we will often denote �1.A_f / D Jf by

just A_f . Let � be the composite map A_f
�1�! J

�2�! Af ; then � is a polarization
(induced by dual of the polarization of J ). Thus A_f C If J D J and A_f \ If J is
finite. Hence, in view of Lemma 3.1, A_f and If J provide an example of A and B
as in the beginning of this section.

The exponent of a finite groupG is the smallest positive integer n such that every
element of G has order dividing n (i.e., such that for all x 2 G; nx D 0).

Definition 3.2. The modular exponent QnA of A is the exponent of A \ B and the
modular number nA of A is its order.

Note that the definition is symmetric with respect to A and B . In fact, the
definition depends on both A and B , unlike what the notation may suggest—we
have suppressed the dependence on B for ease of notation, with the understanding
that there is a natural choice of B (e.g., this is the case in the examples we gave
above). If f is a newform, then by the modular exponent/number of Af , we mean
that of A D A_f , with B D If J . In this situation, since � is a polarization, nAf is
a perfect square (e.g., see [AS05, Lemma 3.14]). When Af is an elliptic curve, �
is multiplication by the modular degree mE . Hence A \ B D ker.�/ is .Z=mEZ/2,
and so for elliptic curves, the modular exponent is equal to the modular degree and
the modular number is the square of the modular degree.

If R is a subring of C, let S2.R/ D S2.�IR/ denote the subgroup of S2.�IC/
consisting of cups forms whose Fourier expansions at the cusp1 have coefficients
in R. There is a T-equivariant bilinear pairing T � S2.Z/ ! Z given by .t; g/ 7!
a1.t.g//, which is perfect by [AU96, Lemma 2.1] (see also [Rib83, Theorem 2.2]).
The action of T on H1.J;Z/ is a faithful representation that embeds T into
Mat2d .Z/ Š Z.2d/

2
. But Z is Noetherian, so T is finitely generated over Z, and

hence so is S2.Z/. Let TA be the image of T in End.A/, and let TB be the image
of T in End.B/ (since T � End.J /, T preserves A and B). Since AC B D J , the
natural map T ! TA ˚ TB is injective, and moreover, its cokernel is finite (since
A\ B is finite).

Let SA D Hom.TA;Z/ and SB D Hom.TB;Z/ be subgroups of S2.Z/ obtained
via the pairing above. Let Ext1 D Ext1Z denote the first Ext functor in the category
of Z-modules.

Lemma 3.3. There is a canonical isomorphism of T-modules

Ext1..TA ˚ TB/=T;Z/ Š S2.Z/=.SA C SB/:
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The groups S2.Z/=.SA C SB/ and .TA ˚ TB/=T are isomorphic.

Proof. Apply the Hom.�;Z/ functor to the short exact sequence

0! T! TA ˚ TB ! .TA ˚ TB/=T! 0

to obtain a three-term exact sequence

0! Hom.TA ˚ TB;Z/! Hom.T;Z/! Ext1..TA ˚ TB/=T;Z/! 0: (1)

The perfect T-equivariant bilinear pairing T � S2.Z/ ! Z given by .t; g/ 7!
a1.t.g// transforms (1) into an exact sequence

0! SA ˚ SB ! S2.Z/! Ext1..TA ˚ TB/=T;Z/! 0

of T-modules, which proves the first claim in the lemma. Finally note that if G is
any finite abelian group, then Ext1.G;Z/ 	 G as groups, which gives the second
result of the lemma. ut
Definition 3.4. The exponent of either of the isomorphic groups S2.Z/=
.SA C SB/ and .TA ˚ TB/=T is the congruence exponent QrA of A and the order
of the groups is the congruence number rA.

Note that this definition is also symmetric with respect to A and B , and again,
the definition depends on both A and B , unlike what the notation may suggest —
we have suppressed the dependence onB with the implicit understanding that B has
been chosen (givenA). If f is a newform, then by the congruence exponent/number
of Af , we mean that of A D A_f , with B D If J . In this situation, TA D
T=If and SA D S2.Z/ŒIf �. Recall that a subgroup H of an abelian group G
is said to be saturated (in G) if G=H is torsion-free. Now Hom.TB;Z/ is the
unique saturated Hecke-stable complement of S2.Z/ŒIf � in S2.Z/, hence must equal
S2.Z/ŒIf �?, where we recall that S2.Z/ŒIf �? denotes the orthogonal complement of
S2.Z/ŒIf � in S2.Z/with respect to the Petersson inner product. Thus the congruence
exponent QrAf is the exponent of the group

S2.Z/
S2.Z/ŒIf �C S2.Z/ŒIf �? ; (2)

and the congruence number rAf is its order. In particular, our definition of rAf
generalizes the definition in Section 2.1 when Af is an elliptic curve.

Remark 3.5. If R is a subring of C, then S2.Z/ ˝Z R D S2.R/ (see, e.g., the
discussion in [DI95, �12]). Thus the analog of the group displayed in (2) with Z
replaced by an algebraic integer ring (or even Z) gives a torsion module whose
annihilator ideal meets Z in the ideal generated by the congruence exponent.
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The following generalizes Theorem 2.1:

Theorem 3.6. Let A and B be as in the first paragraph of Section 3. Then:

(a) QnA j QrA.
(b) Let � D �0.N /. If p − N , then ordp.QrA/ D ordp. QnA/. If f 2 S2.�0.N /;C/ is

a newform, then ordp.QrAf / D ordp. QnAf / whenever p2 − N .

We give the proof of part (a) of this theorem in Section 4 and of part (b) in
Section 5. The two sections may be read independently of each other.

Remark 3.7. Let f 2 S2.�;C/ be a newform. When Af is an elliptic curve,
Theorem 3.6 implies that the modular degree divides the congruence number (since
for an elliptic curve, the modular degree and modular exponent are the same), and
that nAf j r2Af (since for an elliptic curve, the modular number is the square of
the modular exponent). In general, for a higher dimensional newform quotient, the
divisibility nAf j r2Af need not hold. For example, there is a newform of degree 24
in S2.�0.431// such that

nAf D .211 � 6947/2 − r2Af D .210 � 6947/2:

Note that 431 is prime and mod 2 multiplicity one fails for J0.431/ (see [Kil02]).

4 Proof of Theorem 3.6(a)

Since End.J / preserves A and B , we have a map End.J / ! End.A/ ˚ End.B/;
moreover, since A C B D J , this map is injective. We have the following
commutative diagram with exact rows:

0 �� T ��

��

TA ˚ TB ��

��

TA ˚ TB
T

��

�� 0

0 �� End.J / �� End.A/˚ End.B/ �� End.A/˚ End.B/

End.J /
�� 0:

(3)
The first two vertical maps are clearly injections, and the rightmost vertical map is
defined naturally so that the diagram is commutative. Let

e D .1; 0/ 2 TA ˚ TB;

and let e1 and e2 denote the images of e in the groups .TA˚TB/=T and .End.A/˚
End.B//=End.J /, respectively. Since A \ B is finite (in addition to the fact that
ACB D J ), the two quotient groups on the right side of (3) are finite, so e1 and e2
have finite order.
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Lemma 4.1. The element e2 2 .End.A/ ˚ End.B//=End.J / defined above has
order QnA.

Proof. By the denominator of any ' 2 End.J /˝Q, we mean the smallest positive
integer n such that n' 2 End.J /. Let 	A; 	B 2 End.J / ˝ Q be projection onto A
and B , respectively. Let n be the order of e2, so n is the denominator of 	A, which
equals the denominator of 	B (since 	A C 	B D 1J , so that 	B D 1J � 	A). We
want to show that n is equal to QnA, the exponent of A \ B .

Let iA and iB be the embeddings of A and B into J , respectively. We view n	A
and n	B as morphisms J ! A and J ! B , respectively. Let ' D .n	A; n	B/ 2
Hom.J; A �B/; then ' ı .iA C iB/ D Œn�A�B : We have an exact sequence

0! A\ B x 7!.x;�x/������! A � B iACiB����! J ! 0:

Let 
 be the image of A\ B . Then by exactness,

Œn�
 D .' ı .iA C iB//.
/ D ' ı ..iA C iB/.
// D '.f0g/ D f0g;

so n is a multiple of the exponent QnA of A \ B .
To show the opposite divisibility, consider the commutative diagram

0 �� A \ B
x 7!.x;�x/

��

ŒQnA�

��

A � B

.ŒQnA�;0/

��

�� J ��

 

��

0

0 �� A \ B
x 7!.x;�x/

�� A � B �� J �� 0;

where the middle vertical map is .a; b/ 7! . QnAa; 0/ and the map  exists because
Œ QnA�.A\ B/ D 0. But  D QnA	A in End.J /˝Q. This shows that QnA	A 2 End.J /,
i.e., that QnA is a multiple of the denominator n of 	A. ut
Lemma 4.2. The element e1 2 .TA ˚ TB/=T has order QrA.

Proof. We want to show that the order r of e1 equals the exponent of M D .TA ˚
TB/=T. Since e1 is an element ofM , the exponent ofM is divisible by r . To obtain
the reverse divisibility, consider any element x of M . Let .a; b/ 2 TA ˚ TB be
such that its image in M is x. By definition of e1 and r , we have .r; 0/ 2 T, and
since 1 D .1; 1/ 2 T, we also have .0; r/ 2 T. Thus .Tr; 0/ and .0;Tr/ are both
subsets of T (i.e., are in the image of T under the map T! TA˚TB ), so r.a; b/ D
.ra; rb/ D .ra; 0/C .0; rb/ 2 T. This implies that the order of x divides r . Since
this is true for every x 2M , we conclude that the exponent of M divides r . ut



The modular degree, congruence primes, and multiplicity one 29

Proof of Theorem 3.6(a). Since e2 is the image of e1 under the rightmost vertical
homomorphism in (3), the order of e2 divides that of e1. Now apply Lemmas 4.1
and 4.2. ut
5 Proof of Theorem 3.6(b)

Let T0 be the saturation of T D ZŒ: : : ; Tn; : : :� in End.J /, i.e.,

T0 D End.J / \ .T˝Q/:

The quotient T0=T is a finitely generated abelian group because both T and End.J /
are finitely generated over Z. Since T0=T is also a torsion group, it is finite.

In Section 5.1, we introduce two ideals R and S of the Hecke algebra that are
generalizations of the notions of the congruence exponent and the modular exponent
respectively. We will see that R � S and show that there is a natural injection
S=R ,! T0=T. In Section 5.2, we will prove that T and T0 agree locally at a maximal
ideal of T under the condition that we call “multiplicity one for differentials”;
we also give examples where this condition does not hold. Theorem 3.6(b) itself
is proved at the end of Section 5.1, by applying the results of Section 5.1 and a
proposition that is proved in Section 5.2 to show that R D S locally at a prime p
such that p 6 jN (when A is the dual of newform quotient, the condition that p 6 jN
can be replaced by p2 6 jN ).

5.1 The congruence and intersection ideals

In this section, we work in slightly more generality, and take A and B to be as in
the first paragraph of Section 3 (so � can be �1.N /, and A need not be the dual of
a newform quotient). Let 	A W T! TA and 	B W T! TB be the natural projection
maps.

Definition 5.1. With the setup as above, we define the congruence ideal as R D
	A.ker.	B// � TA, and the intersection ideal as S D AnnTA.A\ B/.
Lemma 5.2. We have R � S .

Proof. By definition, R consists of restrictions to A of Hecke operators that vanish
on B , while S consists of restrictions to A of Hecke operators that vanish on A\B .
The lemma follows since the image in TA of an operator that vanishes on B also
vanishes on A \ B . ut
Remark 5.3. By Lemma 5.2, we have a surjection TA=R ! TA=S . Note that 	A
induces an isomorphism

T
ker.	A/C ker.	B/

'�! TA
R
;
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and we have an isomorphism

T
ker.	A/C ker.	B/

'�! TA ˚ TB
T

obtained by sending t 2 T to .	A.t/; 0/ 2 TA ˚ TB . Hence by Definition 3.4,
the exponent of TA=R is QrA and its order is rA. Also, QnA is the exponent of A \ B ,
and one expects that it is also the exponent of TA=S (certainly multiplication by QnA
annihilates TA=S ), which would give another proof that QnA j QrA. Instead of pursuing
this question, we record the following result, which will be needed later.

Proposition 5.4. If p is a prime such that the localizations of R and S at p
coincide, then ordp.QrA/ � ordp. QnA/.
Proof. Under the hypothesis, the surjection TA=R ! TA=S is an isomorphism
locally at p. The lemma follows from the observations above that QrA is the exponent
of TA=R and that QnA annihilates TA=S . ut
Lemma 5.5. There is a natural inclusion S=R ,! T0=T of T-modules.

Proof. We have

T˝Q Š .TA˝Q/˚ .TB˝Q/ � .End.A/˝Q/˚ .End.B/˝Q/ Š End.J /˝Q;

which we use to view T and TA as sitting inside End.J / ˝ Q. Also, the groups
End.J / and T0 sit naturally in End.J /˝ Q. By definition, R D TA \ T. Since an
endomorphism of A � B factors through A � B ! J if and only if it kills A \ B
embedded in A � B via x 7! .x;�x/, we have that S D TA \ End.J / and this
equals TA \ T0 (since a suitable multiple of any element of TA lands in T, when
both are viewed as subgroups of T˝Q � End.J /˝Q). Hence we haveR D S \T
with intersection taken inside T0 � End.J /˝Q. Thus

S=R D S=.S \ T/ Š .S C T/=T ,! T0=T: ut
If m is a maximal ideal of T, then we say that two Hecke modules, with one

contained in the other, agree locally at m if their localizations at m are the same.
Let IA denote the kernel of the map T ! TA. As an immediate consequence of
Lemma 5.5, we have:

Proposition 5.6. If m is a maximal ideal of T containing IA that is not in
SuppT.T

0=T/, then the corresponding maximal ideal m=IA of TA is not in the
support of S=R, i.e.: if T and T0 agree locally at m, thenR and S also agree locally
at m=IA.

Remark 5.7. The ring

T00 D End.J / \ .TA � TB/ D T0 \ .TA � TB/
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is often of interest, where the intersection is taken in End.J /˝Q. We proved above
that there is a natural inclusion S=R ,! T0=T. This inclusion yields an isomorphism

S=R
��! T00=T, as is clear from the “if and only if” statement in the proof of

Lemma 5.5. The ideals R and S are equal if the rings T and T00 coincide. Even
when T0 is bigger than T, its subring T00 may be not far from T.

The following lemma and proposition will not be used in the proof of Theorem
3.6(b), but they are of interest from the point of view of multiplicity one.

Lemma 5.8. Let p be a prime and let m be a maximal ideal of T with residue
characteristic p. Suppose m satisfies the multiplicity one condition (i.e., J Œm� is of
dimension two over T=m). Then the completions of T and T0 at m are isomorphic.

Proof. As in [Maz77, p.92], consider the Tate module Tam.J /, which is the
Pontryagin dual of the m-divisible group associated to J.Q/. Since J Œm� is of
dimension two over T=m, it follows that Tam.J / is free of rank 2 over Tm, where
the subscript denotes completion (see, e.g., [Til97, p. 332-333]). If r is an element
of T0m, then r operates Tm-linearly on Tam.J /, and thus may be viewed as a 2 � 2
matrix with entries in Tm. Further, some non-zero integer multiple of r operates
on Tam.J / as an element of Tm, i.e., as a scalar. Thus r must be a scalar to start
with, i.e., actually lies in Tm. Hence T0m D Tm as claimed. ut
Proposition 5.9. Let p be a prime such that all maximal ideals m of T with residue
characteristic p that contain IA satisfy multiplicity one. Then ordp.QrA/ D ordp. QnA/.
Proof. This follows from Lemma 5.8, Lemma 5.5, Proposition 5.4, and Theorem
3.6(a). ut
Proposition 5.10. Let � D �0.N /. Let p be a prime such that p2 − N , and let
m be a maximal ideal of T with residue characteristic p. If pjN , then assume that
If 
 m for some newform f . Then T and T0 agree locally at m.

Since the proof of this proposition is rather technical, we have postponed
it to Section 5.2. Admitting this proposition, we may now finish the proof of
Theorem 3.6(b).

Proof of Theorem 3.6(b). Recall that A and B are abelian subvarieties of J D
J0.N / such that ACB D J , A\B is finite, and every endomorphism of J over Q
preserves A and B .

We first want to show that if a prime p does not divide N , then ordp.QrA/ D
ordp. QnA/. In view of Theorem 3.6(a) and Proposition 5.4, it suffices to check that R
and S coincide locally at p. By Proposition 5.6, it suffices to check that T and T0 are
locally equal at all maximal ideals that divide p. If p − N , then this follows from
Proposition 5.10, which proves part of Theorem 3.6(b).

It remains to show that if f 2 S2.�0.N /;C/ is a newform and p k N , then
ordp.QrAf / D ordp. QnAf /. Note that the Hecke algebra T acts on S=R through its
quotient TA_f D T=AnnTA

_
f since the action of T on R and on S factors through

this quotient. Thus, in view of Theorem 3.6(a) and Proposition 5.4, it suffices to
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check thatR and S coincide locally at maximal ideals of T that divide p and contain
AnnTA

_
f D If (the equality follows since If is saturated). But this follows from

Proposition 5.6 and Proposition 5.10. ut

5.2 Multiplicity one for differentials

This section is devoted to the proof of Proposition 5.10 as well as a discussion of
the notion of multiplicity one for differentials (Definition 5.13). In this section, we
take � D �0.N /.

Let p be a prime such that p2 − N . Let M0.N/ denote the compactified coarse
moduli scheme associated to �0.N / (as in [DR73, � IV.3]) over Zp , and letX0.N /Zp
denote its minimal regular resolution obtained by suitable blow-up of the points
j D 0; 1728 in characteristic dividing N , when they are supersingular (cf. [Maz77,
p.63]). Let �X0.N/=Zp denote the relative dualizing sheaf of X0.N /Zp over Zp (it
is the sheaf of regular differentials as in [MR91, �7]). We denote by X0.N /Fp the
special fiber of X0.N /Zp at the prime p and by �X0.N/=Fp the relative dualizing
sheaf of X0.N /Fp over Fp .

The usual Hecke operators and the Atkin–Lehner involutions (corresponding
to primes dividing N ) of J0.N / over Q extend uniquely to act on the base
change to Zp of the Néron model of J0.N /, which we denote by JZp . The natural
morphism Pic0X0.N /=Zp ! JZp identifies Pic0X0.N /=Zp with the identity component
of JZp (see, e.g., [BLR90, �9.4–9.5]). Passing to tangent spaces along the identity
section over Zp , we obtain an isomorphism H1.X0.N /Zp ;OX0.N/Zp

/ Š Tan.JZp /.

Using Grothendieck duality, one gets an isomorphism Cot.JZp /ŠH0.X0.N /Zp ;

�X0.N/=Zp /, where Cot.JZp / is the cotangent space at the identity section (cf.
[Maz78, p. 140]). Now the Hecke operators and the Atkin–Lehner involutions act on
Cot.JZp /, and hence via the last isomorphism above, we get an action of the
Hecke operators and the Atkin–Lehner involutions on H0.X0.N /Zp ;�X0.N/=Zp /.
Following the proof of Prop. 3.3 on p. 68 of [Maz77], specialization induces an
isomorphism

H0.X0.N /Fp ;�X0.N/=Fp / Š H0.X0.N /Zp ;�X0.N/=Zp /˝Zp Fp:

In this way, we get an action of the Hecke operators and the Atkin–Lehner
involutions on H0.X0.N /Fp ;�X0.N/=Fp / as well.

The following lemma is implicit in [Maz77, p. 95].

Lemma 5.11 (Mazur). Let m be a maximal ideal of T of residue characteristic p
(recall that p2 − N ). Suppose

dimT=m H0.X0.N /Fp ;�X0.N/=Fp /Œm� � 1:

Then T and T0 agree locally at m.
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Proof. Let M denote the group H1.X0.N /Zp ;OX0.N//, where OX0.N/ is the
structure sheaf of X0.N /. As explained in [Maz77, p. 95], we have an action of
EndQJ0.N / on M , and the action of T on M via the inclusion T � EndQJ0.N /

is faithful, so likewise for the action by T0. Hence we have an injection � W T0 ,!
EndTM . Suppose m is a maximal ideal of T that satisfies the hypotheses of the
lemma. To prove that Tm D T0m it suffices to prove the following claim: ut
Claim: The map �jT is surjective locally at m.

Proof. It suffices to show that M is generated by a single element over T
locally at m, and in turn, by Nakayama’s lemma, it suffices to check that the
dimension of the T=m -vector space M=mM is at most one. Now M=mM is
dual to H0.X0.N /Fp ;�X0.N/=Fp/Œm�. Since we are assuming that dimT=mH

0

.X0.N /Fp ;�X0.N/=Fp /Œm� � 1, we have dimT=m.M=mM/ � 1, which proves the
claim.

Remark 5.12. Note that Lemma 5.8 may provide an alternate route to the conclu-
sion of the previous lemma (sometimes one can prove multiplicity one for a maximal
ideal without relying on multiplicity one for differentials, e.g., see [Dia97]). Observe
that in the proofs of Lemmas 5.11 and 5.8, all we needed was (locally) a non-zero
free T-module (of finite rank, say) that is attached functorially to J . In Lemma 5.11,
the module we used was H1.X0.N /Zp ;OX0.N//; locally, it is free because its
reduction modulo m is of the same dimension as its generic rank (namely 1). In
Lemma 5.8, we used the m-adic Tate module, whose reduction mod m is of the
same dimension as its generic rank (namely 2).

Definition 5.13. If m is a maximal ideal of the Hecke algebra T of residue
characteristic p, we say that m satisfies multiplicity one for differentials if

dimT=m.H0.X0.N /Fp ;�X0.N/=Fp/Œm�/ D 1:

The above condition, which first appeared in [Maz77], plays an important role
in several places, including Wiles’s proof of Fermat’s last theorem (see [Wil95,
Lemma 2.2]). It has been used to prove multiplicity one for m (as in Section 2.2)
and Gorensteinness of the completion of T at m (under certain hypotheses; see,
e.g., [Til97]).

5.2.1 Failure of multiplicity one for differentials

In this section, we digress to discuss examples of failure of multiplicity one for
differentials. The reader interested in the proof of Proposition 5.10 may jump to
Section 5.2.2 below.

By Lemma 5.11, if p2 − N and if the multiplicity one condition for differentials
holds at m, then T and T0 agree locally at m. It is thus of interest to compute the
quotient group T0=T for various N . We compute this index in Sage [SC09]. and
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Table 2 Nonzero Quotients T0=T for N � 325
44 C2 160 C3

2 ˚ C4 ˚ C8 245 C2
7

46 C2 162 C4
3 248 C7

2 ˚ C4 ˚ C8
54 C3 164 C3

2 250 C8
5

56 C2 166 C2 252 C2
2 ˚ C3

6 ˚ C12
60 C2 168 C5

2 ˚ C4 254 C2
2

62 C2 169 C13 256 C3
2 ˚ C2

4 ˚ C2
8 ˚ C16

64 C2 171 C2
3 260 C6

2

68 C2 172 C3
2 261 C4

3

72 C2 174 C2 262 C2
2

76 C2 175 C5 264 C7
2 ˚ C3

4

78 C2 176 C2
2 ˚ C2

4 ˚ C8 268 C5
2

80 C4 180 C2 ˚ C2
6 270 C9

3 ˚ C2
6

84 C2 184 C5
2 ˚ C4 ˚ C8 272 C3

2 ˚ C4
4 ˚ C8

88 C2 ˚ C4 186 C2
2 275 C4

5

92 C2
2 ˚ C4 188 C4

2 ˚ C2
4 276 C7

2 ˚ C2
4

94 C2
2 189 C5

3 278 C2
96 C3

2 190 C3
2 279 C4

3

99 C2
3 192 C3

2 ˚ C3
4 ˚ C8 280 C7

2 ˚ C3
4

104 C2
2 196 C14 282 C2

2

108 C2
3 ˚ C6 198 C4

3 284 C6
2 ˚ C3

4

110 C2 200 C3
2 ˚ C10 286 C4

2

112 C2 ˚ C4 204 C5
2 288 C7

2 ˚ C3
4 ˚ C12 ˚ C24

116 C2
2 206 C2

2 289 C2
17

118 C2 207 C4
3 290 C2

120 C3
2 ˚ C4 208 C2

2 ˚ C3
4 292 C5

2

124 C2
2 ˚ C4 210 C2 294 C4

7

125 C2
5 212 C4

2 296 C6
2 ˚ C2

4

126 C3 ˚ C6 214 C2 297 C8
3 ˚ C9

128 C2 ˚ C4 ˚ C8 216 C3 ˚ C5
6 ˚ C12 300 C2

2 ˚ C3
10

132 C3
2 220 C5

2 ˚ C4 302 C3
2

135 C3
3 224 C5

2 ˚ C2
4 ˚ C8 304 C4

2 ˚ C4
4 ˚ C8

136 C2
2 ˚ C4 225 C5 306 C6

3

140 C3
2 228 C5

2 308 C7
2

142 C3
2 230 C2

2 310 C3
2

144 C3
2 ˚ C4 232 C4

2 ˚ C2
4 312 C11

2 ˚ C2
4 ˚ C8

147 C7 234 C2
3 ˚ C2

6 315 C6
3

148 C2
2 236 C5

2 ˚ C4 316 C6
2 ˚ C2

4

150 C5 238 C4
2 318 C4

2

152 C3
2 ˚ C4 240 C7

2 ˚ C3
4 ˚ C8 320 C6

2 ˚ C3
4 ˚ C3

8 ˚ C16
153 C3 242 C2

11 322 C2
2

156 C3
2 ˚ C4 243 C4

3 ˚ C2
9 324 C7

3 ˚ C3
6 ˚ C18

158 C2
2 244 C4

2 325 C3
5

obtain Table 2, where the first column contains N for N � 325 and the second
column contains the quotient group T0=T, where Cn denotes a cyclic group of
order n.
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In each case in which a prime p divides ŒT0 W T� but p2 − N , Lemma 5.11
implies that there is some maximal ideal m of T of residue characteristic p for
which multiplicity one for differentials does not hold. For example, when N D 46,
we find that ŒT0 W T� D 2, and 22 − N ; thus there is a maximal ideal m of T of
residue characteristic 2 for which multiplicity one for differentials does not hold.

In Table 2, we observe that whenever p divides ŒT0 W T�, then p D 2 or p2 j N .
This raises the question: is it true that if p is odd and p2 − N , then multiplicity
one for differentials holds for maximal ideals m of T of residue characteristic p?
Lemma 5.20 below gives an affirmative answer in one direction (the other direction
is usually easy), but under the hypothesis that if p j N then Up acts as a non-zero
scalar on H0.X0.N /Fp ;�X0.N/=Fp /Œm�.

5.2.2 Proof of Proposition 5.10

The main point is to prove that the hypothesis

dimT=m H0.X0.N /Fp ;�X0.N/=Fp /Œm� � 1

of Lemma 5.11 holds for suitable maximal ideals m. This is achieved in Lemma 5.20
below, whose proof requires an Eichler–Shimura type relation for Up (Lemma 5.15
below). We obtain this relation by modifying the argument in [Wil80, �5], which is
in the �1.N / context, to the �0.N / situation. Let L denote the maximal unramified
extension of Qp and let OL denote the ring of integers of L. For the sake of
completeness, we state below a lemma that is well known (e.g., it is used implicitly
in [Wil80, p. 18]); the proof was indicated to us by F. Calegari.

Lemma 5.14. Let E be an elliptic curve over OL with good ordinary reduction.
Then the subgroup schemes of E of order p are p copies of Z=pZ and one copy
of �p .

Proof. Let G D EŒp�, and consider its connected-étale sequence

0! G0 ! G ! Get ! 0:

Now G0 is in the kernel of the reduction map, and we know that the reduction
of EŒp� has non-trivial order. Hence Get is non-trivial. By Cartier duality, G0 is
also non-trivial. Hence Get is a Z=pZ and by duality, G0 is a �p . Thus one of the
subgroup schemes of E of order p is a copy of �p. Let H be any other subgroup
scheme of E of order p. Then H0 has to be trivial, since otherwise H D H0 is
a non-trivial subgroup scheme of G0 D �p , hence is equal to G0 D �p, which
has already been accounted for. Thus H is étale, and hence is a copy of Z=pZ.
The lemma follows, since there are p C 1 subgroup schemes of order p in EŒp�,
hence in E . ut

We assume that pjjN until just after the proof of Lemma 5.18. Let M D N=p.
We will use the superscript h to denote the subscheme of M0.N/ obtained by
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removing the supersingular points in characteristic p. Following [DR73, VI.6.9]
and [DR73, � V.2], the Fp-valued points of M0.N/

h are in one-to-one correspon-
dence with isomorphism classes of triples consisting of

(a) a generalized elliptic curve E over Fp , whose smooth locus we denote Esm,
(b) a subgroup of EsmŒp� isomorphic to �p or to Z=pZ, and
(c) a subgroup Z=MZ of EsmŒM �,

such that the subgroup generated by the subgroups in .b/ and .c/ above meets
every irreducible component of every geometric fiber ofE over Fp. Also,M0.N/Fp
has two irreducible components, which may be described according as whether the
subgroup in (b) is isomorphic to �p or to Z=pZ. As mentioned earlier, X0.N /Fp is
obtained fromM0.N/Fp by suitable blowups and consists of two copies ofX0.M/Fp
identified at supersingular points, along with some copies of P1 (see the description
of X0.N /Fp on p. 175–177 of [Maz77] for details). One of the copies of X0.M/Fp
corresponds to the irreducible component of M0.N/Fp where the subgroup in (b)
is isomorphic to Z=pZ; we denote this copy by C0. The other copy of X0.M/Fp
corresponds to the irreducible component ofM0.N/Fp where the subgroup in (b) is
isomorphic to �p , and contains the cusp1; we denote this copy by C1. We denote
the copies (if any) of P1 by C2; : : : ; Cr , where r is one less than the total number of
irreducible components of X0.N /Fp .

The usual endomorphismsUp andWp of J0.N / over Q can be extended by base
change to L, and extend uniquely to act on the Néron model of J0.N / over OL.
Since the formation of Néron models is compatible with completions and unramified
base change, this action is compatible with the already-defined action on the Néron
model of J0.N / over Zp . The identity component of the special fiber of the Néron
model of J0.N / over OL is Pic0

X0.N /=Fp
, whose maximal abelian variety quotient

is
Qr
iD0 Pic0

Ci =Fp
(cf. [DR73, I.3.7] and [BLR90, �9.2, Example 8]). Thus we get an

action of Up and Wp on Pic0
X0.N /=Fp

and on
Qr
iD0 Pic0

Ci =Fp
. Let Frobp denote the

Frobenius morphism on C0=Fp .

Lemma 5.15. The endomorphisms Up and Wp of
Qr
iD0 Pic0

Ci =Fp
satisfy Up D

Frobp C .p � 1/Wp on Pic0
C0=Fp

.

Proof. The proof is a modification of the proof of Theorem 5.3 in [Wil80], along
with some details borrowed from the proof of Theorem 5.16 in B. Conrad’s appendix
to [RS01].

It suffices to check the desired identity on a Zariski dense subset of
Pic0

C0=Fp .Fp/ D J.C0/.Fp/, where J.C0/ is the Jacobian of C0. If g is the genus

of C0, then fixing a base point, we get a surjection Cg
0 ! J.C0/. Hence if U is

any dense open subset of C0.Fp/, then Ug hits a Zariski dense subset of J.C0/.Fp/.
Taking U to be the ordinary locus of C0.Fp/, it thus suffices to prove the desired
identity on divisors of the form .Q/� .Q0/, where the elliptic curves corresponding
to Q;Q0 2 C0.Fp/ are ordinary.
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Let M0.N / denote the algebraic stack over OL associated to �0.N / by [DR73,
IV.3.3, IV.4.2], whose associated coarse moduli scheme is M0.N/ (over OL). Let
	 WM0.N /!M0.N/ denote the associated natural map. If k D Fp or an algebraic
closure of L, then 	 is an isomorphism on k-valued points, and so we will often
identify points on M0.N/.k/ with points on M0.N /.k/. Let Q be an ordinary
point on C0.Fp/. Then Q is given by a triple .E; C ;D/, where E is an ordinary
elliptic curve over Fp , C is a subgroup isomorphic to Z=pZ, and D is a subgroup
isomorphic to Z=MZ. We can choose a Weierstrass model E ,! P2OL

lifting E;
thenE is canonically an elliptic curve by [KM85, Chap. 2]. By Lemma 5.14 and its
proof, there is a subgroup C of E isomorphic to Z=pZ that lifts C . Also, as argued
in [RS01, p. 219], there is a subgroup D of E isomorphic to Z=MZ that lifts D.
Then .E; C;D/ gives a point on M0.N /.OL/ (cf. [DR73, V.1.6]), whose image
in M0.N/.OL/ corresponds to a point P in X0.N /.OL/ (since E has ordinary
reduction). We will use a bar to denote specialization. Thus we have Q D P .
Similarly, given another point Q0 2 C0.Fp/, we will denote the corresponding
associated quantities by a prime superscript (thus P 0 in X0.N /.OL/ denotes a
lift of Q0, etc.). As mentioned in the previous paragraph, it suffices to prove the
relation claimed in the lemma for elements of the form .Q/� .Q0/ in Pic0

C0=Fp
.Fp/.

Viewing P and P 0 as relative effective Cartier divisors of degree one, we see
that Up..Q/ � .Q0// is the image of Up..P / � .P 0// under specialization, i.e.,
Up..Q/� .Q0// D Up..P / � .P 0//.

We next compute Up..P / � .P 0//. Now Pic0X0.N /=OL is the identity component
of J0.N /OL , and we have J0.N /OL.OL/ D J0.N /.L/ 
 J0.N /.L/, where L is an
algebraic closure of L. Denoting base change to L by a subscript L, we have

Up..EL; CL;DL/ � .E 0L; C 0L;D0L//
D
X

AL

.EL=AL; .CL C AL/=AL; .DL C AL/=AL/

�
X

A0
L

.E 0
L
=A0

L
; .C 0

L
C A0

L
/=A0

L
; .D0

L
C A0

L
/=A0

L
/; (4)

where AL runs through the subgroups of EL of order p except CL (and similarly
for A0

L
). Enlarging L by a finite extension if needed (which does not change the

residue field Fp) we may assume that there are p C 1 subgroups of order p in EL.
Their scheme-theoretic closures inE overOL are the subgroups schemes mentioned
in Lemma 5.14. If A is a subgroup scheme of E of order p, then we denote
the quotient map E ! E=A by ˛A. Consider the Cartier divisors corresponding
to Up..P / � .P 0// and to

�

	.E=�p; ˛�p
.C /; ˛�p

.D//C
X

B

	.E=B; cl.˛B.C //; ˛B.D//
�

�
�

	.E 0=�0p; ˛�0p
.C 0/; ˛�0p

.D0//C
X

B0

	.E 0=B 0; cl.˛B0.C
0//; ˛B0.D0//

�

;
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where B runs through the subgroups of E isomorphic to Z=pZ except for C , and
cl.˛B.C // denotes the Zariski closure of ˛B.C / in E=B (and similarly with prime
superscripts). These two divisors coincide since they induce the sameL-point by (4).

Passing to special fibers, and noting that the special fiber of the Néron model
of E=A is given by E=A, we find that

Up..Q/� .Q0// D Up..P / � .P 0//
D
�

.E=�p; ˛�p
.C /; ˛�p

.D//C
X

B

.E=B; cl.˛B.C //; ˛B.D//
�

(5)

�
�

.E 0=�0p; ˛�0p
.C 0/; ˛�0p

.D0//C
X

B0

.E 0=B 0; cl.˛B0.C 0//; ˛B0.D0//
�

; (6)

where B again runs through the subgroups of E isomorphic to Z=pZ except for C
(and a similar statment holds with prime superscripts).

Let Fp denote the relative Frobenius map E ! E
.p/

over Fp . Now �p is in
the kernel of Fp , and since the quotient map ˛�p

has the same degree as Fp ,

there is an isomorphism � W E=�p

Š! E
.p/

such that Fp D � ı ˛�p
. Also �

induces an isomorphism ˛�p
.C /

Š! C
.p/

and ˛�p
.D/

Š! D
.p/

. Thus the first

term in (5) is identified with .E
.p/
; C

.p/
;D

.p/
/, which is the image under Frobp

of P D .E; C ;D/. Similarly, the first term in (6) is Frobp.P 0/.
As for the sum over B in (5), note that in each term, we are quotienting by a

group B which is isomorphic to Z=pZ, and hence cl.˛B.C // is of �p-type. In a
manner similar to the computation of the action of Up, we find that

Wp..E;C ;D/ � .E 0; C 0;D0//
D .E=C ;EŒp�=C ; .D C C/=C/ (7)

� .E 0=C 0; E 0Œp�=C 0; .D0 C C 0/=C 0/: (8)

Considering that P D .E; C ;D/, with C isomorphic to Z=pZ, we see thatEŒp�=C
is isomorphic to �p . Also, if B is as in the sum in (5), thenB is a Z=pZ, but there is

only one copy of Z=pZ in E, since E has good ordinary reduction; hence B D C .
Thus each of the terms in the sum overB in (5) is the term in (7). A similar statment
holds with prime superscripts (viz., each of the terms in the sum over B 0 in (6) is
the term in (8)).

The lemma now follows from the previous two paragraphs. ut
Since we are assuming that pjjN , the curve X0.N /Fp has ordinary double

point singularities, and so the differentials in H0.X0.N /Fp ;�X0.N/=Fp / may be
identified with meromorphic differentials .!i /iD0;:::;r on

Qr
iD0 Ci whose only

possible poles are at points on
Qr
iD0 Ci lying over an intersection point of two

components in X0.N /Fp and where the sum of the residues at the points lying
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over an intersection point is zero; such differentials are called regular differentials
(see [Con00, �5.2] for the justification that the relative dualizing sheaf under
Grothendieck duality is indeed the sheaf of regular differentials). By a holomorphic
differential inH0.X0.N /Fp ;�X0.N/=Fp /, we mean a regular differential all of whose

corresponding !i have no poles at all (i.e., for all i , !i 2 H0.Ci ;�Ci=Fp / ). The

subspace of holomorphic differentials may be identified with
Qr
iD0 H0.Ci ;�Ci=Fp /

(which we will often do implicitly), and we let i1 denote the corresponding injection
Qr
iD0 H0.Ci ;�Ci =Fp / ,! H0.X0.N /Fp ;�X0.N/=Fp /.
In a manner similar to the description in the third paragraph of Section 5.2,

Grothendieck duality gives an isomorphism

‚ W H0.X0.N /OL;�X0.N/=OL/
Š! Cot.Pic0X0.N /=OL

/; (9)

where Cot denotes the cotangent space at the identity section. Since we have an
action of Up andWp on Pic0X0.N /=OL

(by viewing it as the identity component of the
Néron model of J0.N / over OL), we may use ‚ to get an action of these operators
on H0.X0.N /OL;�X0.N/=OL/. As before, Prop. 3.3 on p. 68 of [Maz77] implies
that base change to Fp gives an isomorphism

H0.X0.N /Fp ;�X0.N/=Fp / Š H0.X0.N /OL;�X0.N/=OL/˝OL Fp: (10)

From this, we get an action of Up andWp onH0.X0.N /Fp ;�X0.N/=Fp /.

Corollary 5.16. The endomorphisms Up and Wp of H0.X0.N /Fp ;�X0.N/=Fp / pre-

serve the subspace
Qr
iD0 H0.Ci ;�Ci=Fp /, and satisfy Up D ˙Frob�p C

.p � 1/Wp on H0.C0;�C0=Fp /, where Frob�p denotes pullback by Frobp and where
we have a possible sign ambiguity˙ (which will not affect us later).

Proof. The proof is based on the following diagram; we describe below some of the
maps in it that have not been defined yet.

H0.X0.N /OL;�X0.N/=OL/
‚

��

	1

��

Cot.Pic0X0.N /=OL
/

	2

��

H0.X0.N /Fp ;�X0.N/=Fp /
�

�� Cot.Pic0
X0.N /=Fp

/

Qr
iD0 H0.Ci ;�Ci=Fp /

��

i1

��

� 0

�� Qr
iD0 Cot.Pic0

Ci =Fp
/:

��

i2

��
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Firstly, Cot always denotes the cotangent space at the identity section. The
map 	1 is obtained by base change to Fp . By (10), 	1 is surjective. The map 	2 is
obtained by observing that Pic0

X0.N /=Fp
is the identity component of the special fiber

of the Néron model of J0.N / over OL, and hence maps to the identity component of
the Néron model of J0.N / over OL, which is Pic0X0.N /=OL . The map � is obtained
using Grothendieck duality. The compatibility of Grothendieck duality under base
change (see [Con00]) implies that the top square in the diagram above commutes.

Now we have already defined actions of Up and Wp on Pic0X0.N /=OL
and

on Pic0
X0.N /=Fp

(just before Lemma 5.15). Thus we get actions of Up and Wp

on Cot.Pic0X0.N /=OL
/ and on Cot.Pic0

X0.N /=Fp
/. From the definitions of these actions

we see that 	2 is compatible with the actions on its domain and codomain. Recall
that we used the isomorphism‚ to induce actions of Up and Wp onH0.X0.N /OL;

�X0.N/=OL/ and then used formula (10) to get actions onH0.X0.N /Fp ;�X0.N/=Fp /.
Thus ‚ and 	1 are also compatible with the actions of Up and Wp on their domain
and codomain. Let ! 2 H0.X0.N /Fp ;�X0.N/=Fp /, and let � 2 H0.X0.N /OL;

�X0.N/=OL/ be such that 	1.�/ D !. Then �.Up.!// D �.	1.Up.�/// D
	2.‚.Up.�/// D 	2.Up.‚.�/// D Up.	2.‚.�/// D Up.�.	2.�/// D
Up.�.!//. Thus we see that the isomorphism � is compatible with the action of Up
(and similarly for Wp) on its domain and codomain.

Now we turn to the bottom square in the diagram above. As mentioned earlier, the
injection i2 arises because

Qr
iD0 Pic0

Ci =Fp
is the maximal abelian variety quotient of

the identity component Pic0
X0.N /=Fp

of the special fiber of the Néron model of J0.N /

over OL. The map � 0 is the isomorphism coming from Serre duality.
Next, by [Con00, �5.2], the Grothendieck duality isomorphism � is the same

as the isomorphism coming from the duality theory of Rosenlicht (as in [Ser88,
Chap. IV]), perhaps up to multiplication by �1. Assume for the moment that
there is no sign ambiguity, so that � is indeed the isomorphism coming from the
duality theory of Rosenlicht. One can check that the Serre duality isomorphism � 0
is induced by the Rosenlicht duality isomorphism � via the inclusions i1 and i2 by
looking at the proof of the two dualities in [Ser88, Chaps. II and IV]. Note that
in [Ser88], the curve X over the field k (notation as in loc. cit.) is assumed to be
irreducible. This hypothesis is needed in loc. cit. (for our purposes) only to show
that H1.X; k.X// D 0 (p. 12, loc. cit.); the latter condition holds so long as X is
reduced (see top of p. 165 in [AK70], as well as the bottom of p. 138 and top of
p. 132 therein), which is true in our case (taking X D X0.N /Fp and k D Fp) .
We remark that our contention that the Serre duality isomorphism � 0 is induced by
the Rosenlicht duality isomorphism � via the inclusions i1 and i2 also follows from
Section 6 (an appendix provided to us by Brian Conrad), by taking C D X0.N /Fp
and C 0 to be any of the Ci in Section 6. In any case, we conclude that the bottom
square in the diagram above commutes as well, perhaps up to multiplication by �1.

Now the action of Up and Wp on
Qr
iD0 Pic0

Ci=Fp
was defined by identifying

it as the maximal abelian variety quotient of Pic0
X0.N /=Fp

. Thus we see that i2 is
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compatible with the action of Up andWp on its domain and codomain. Considering
that moreover the isomorphism � is compatible with the action of Up (andWp) and
the bottom square in the diagram above commutes, perhaps up to multiplication
by �1, we see that Up and Wp preserve

Qr
iD0 H0.Ci ;�Ci=Fp /. Now since � is

compatible with the action of Up and Wp on its domain and codomain, so is � 0.
Thus we may use the isomorphism � 0 to translate the identity in Lemma 5.15
from the right to the left of � 0 to get the desired identity in the corollary, where
the ˙ ambiguity in front of Frobp

� is really due to the sign ambiguity about the
compatibility of the action of Up andWp on the two sides of the isomorphism � 0. ut
Remark 5.17. We defined the action of the Hecke operators and the Atkin–Lehner
involution in characteristic p from their definition in characteristic 0 in a somewhat
indirect manner via the Néron mapping property, Grothendieck duality, etc (cf.
beginning of Section 5.2). This has made our proofs rather complicated, since we
have to show several compatibilities (as in the previous Corollary 5.16 and the
upcoming Lemma 5.18). After this article was written, B. Conrad pointed out to us
that one can define the action of the Hecke operators on suitable Artin stacks over Z
for �0.N /-structures (see [Con07]) in such a way that the definition agrees with the
usual definition of the Hecke operators over Q. This naturallly defines the action of
the Hecke operators on objects related toX0.N / such as differentials, Picard groups,
etc., in characteristic p and these definitions are automatically “compatible” with the
corresponding definitions in characteristic zero. This alternative method would have
been a less complicated way to proceed.

By [Maz77, Prop. II.3.3] we have an isomorphism

H0.X0.N /Fp ;�X0.N/=Fp / Š H0.X0.N /Fp ;�X0.N/=Fp/˝Fp Fp;

using which we may identify H0.X0.N /Fp ;�X0.N/=Fp / as a subspace of
H0.X0.N /Fp ;�X0.N/=Fp /. Just before Corollary 5.16, we defined an action of Up
(andWp) on H0.X0.N /Fp ;�X0.N/=Fp /.

Lemma 5.18. The action of Up (respectively Wp) on H0.X0.N /Fp ;�X0.N/=Fp /

preserves the subspace H0.X0.N /Fp ;�X0.N/=Fp /, and agrees with the action of Up
(respectively Wp) on this subspace that we defined earlier in the third paragraph of
Section 5.2.

Proof. We have the following diagram, obtained by the obvious base changes:

H0.X0.N /Fp ;�X0.N/=Fp / H0.X0.N /OL;�X0.N/=OL/
��

‚
�� Cot.Pic0X0.N /=OL

/

H0.X0.N /Fp ;�X0.N/=Fp/

��

H0.X0.N /Zp ;�X0.N/=Zp /

��

��
‚0

�� Cot.Pic0X0.N /=Zp /;

��
;
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where the map ‚0 is the isomorphism coming from Grothendieck duality as
discussed in the third paragraph of Section 5.2. Now the action of Up and Wp

on Cot.Pic0X0.N /=OL
/ D Cot.J0.N /OL/ (where J0.N /OL is the Néron model

of J0.N / over OL) was obtained by base changing from Zp . Considering that
the formation of Néron models is compatible with completions and unramified
base change, we see that the rightmost vertical map above is compatible under the
action of Up and Wp . Also, the action of Up and Wp on H0.X0.N /OL;�X0.N/=OL/

(respectively on H0.X0.N /Fp ;�X0.N/=Fp /) was obtained via the isomorphism ‚

(respectively‚0). Thus the rightmost two horizonal maps above are also compatible
under the action of Up and Wp on their domain and codomain. Finally, the
compatibility of Grothendieck duality under base change (see [Con00]) implies that
the right square in the diagram above commutes. Arguing as in the third paragraph
of the proof of Corollary 5.16, one sees then that the middle vertical map above is
compatible under the action of Up and Wp .

Now the already-defined action ofUp andWp on H0.X0.N /Fp ;�X0.N/=Fp / in the
third paragraph of Section 5.2 is obtained via the lower leftward pointing arrow in
the diagram above, and the action of Up andWp on H0.X0.N /Fp ;�X0.N/=Fp / is ob-
tained via the upper leftward pointing arrow in the diagram above. Thus the leftmost
two horizontal arrows are compatible under the action ofUp andWp on their domain
and codomain. Repeated applications of [Maz77, Prop. II.3.3] show that the left
square also commutes. Using all this, we see that the action of Up (respectivelyWp)
on H0.X0.N /Fp ;�X0.N/=Fp / viewed as a subspace of H0.X0.N /Fp ;�X0.N/=Fp /

agrees with the action of Up (respectivelyWp) on H0.X0.N /Fp ;�X0.N/=Fp/ defined
in the third paragraph of Section 5.2, and in particular that Up andWp preserve this
subspace. ut

We now revert to the assumption that p is a prime such that p2 − N (in
particular p may not necessarily divideN ). The Tate curve over FpŒŒq�� gives rise to
a morphism from Spec FpŒŒq�� to the smooth locus of X0.N /Fp ! Spec Fp . Since
the module of completed Kähler differentials for FpŒŒq�� over Fp is free of rank 1
on the basis dq, we obtain a map

q-exp W H0.X0.N /Fp ;�X0.N/=Fp /! FpŒŒq��:

If p − N , then by a holomorphic differential in H0.X0.N /Fp ;�X0.N/=Fp/, we
mean any differential in H0.X0.N /Fp ;�X0.N/=Fp/.

Lemma 5.19. Recall that p is a prime such that p2 − N , and m is a maximal
ideal of T with residue characteristic p. If pjN , then assume that Up acts as a
non-zero scalar on H0.X0.N /Fp ;�X0.N/=Fp /Œm�. Then the map q-exp restricted to
homomorphic differentials in H0.X0.N /Fp ;�X0.N/=Fp /Œm� is injective.

Proof. The essential argument is quite standard, going back to Mazur, so we
only sketch the ideas. For some of the details, we refer the reader to the proof
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of Lemma 4.2 in [ARS06]. If p − N , the injectivity follows from the q-
expansion principle. So suppose that p k N , and let M D N=p. Recall that
X0.N /Fp is obtained from M0.N/Fp by suitable blowups at supersingular points
and consists of two copies ofX0.M/Fp identified at supersingular points, along with

some copies of P1. Suppose ! 2 H0.X0.N /Fp ;�X0.N/=Fp /Œm� is a holomorphic
differential that is in the kernel of q-exp. Then the q-expansion principle implies
that ! vanishes on the copy of X0.M/Fp containing the cusp 1, i.e., on C1.
By Corollary 5.16 and Lemma 5.18, we have Up.!jC0/ D ˙Frobp

�.!jC0/ C
.p�1/Wp.!jC0/. But pullback by Frobp is the trivial map andWp swapsC0 andC1,
so Up.!jC0/ D .p � 1/.!jC1/ D 0. Now by hypothesis, Up acts as multiplication
by a non-zero scalar, hence ! is trivial on C0. Thus ! is trivial on both copies
of X0.M/Fp . One can show that then ! is trivial on the copies of P1 as well
(see the proof of Lemma 4.2 in [ARS06]). Thus ! is trivial on X0.N /Fp , hence
on X0.N /Fp . ut
Lemma 5.20. We continue our hypotheses that p is a prime such that p2 − N , m
is a maximal ideal of T with residue characteristic p, and if pjN , then Up acts as a
non-zero scalar on H0.X0.N /Fp ;�X0.N/=Fp /Œm�. Then

dimT=m H0.X0.N /Fp ;�X0.N/=Fp /Œm� � 1:

Proof. The idea behind the proof is the same as in the proof of Lemma 2.2 in [Wil80,
p. 485-487], which in turn builds on ideas from p. 94–95 of [Maz77]. However,
parts of our arguments are somewhat different, and may be considered alternatives
to some of the methods in the works cited in the previous sentence.

If ! 2 H0.X0.N /Fp ;�X0.N/=Fp/ and n � 1, then let an.!/ denote the coefficient
of qn in q-exp.!/. We have a pairing H0.X0.N /Fp ;�X0.N/=Fp/�T! Fp that takes
.!; T / to a1.T!/. This induces a map

 W H0.X0.N /Fp ;�X0.N/=Fp/Œm�! HomFp .T=m;Fp/;

which is a homomorphism of T=m-vector spaces.

Claim 1: If ! 2 ker. /, then q-exp.!/ is trivial.

Proof. Following the proof of Prop. 3.3 on p. 68 of [Maz77], we have

H0.X0.N /Fp ;�X0.N/=Fp / Š H0.X0.N /Zp ;�X0.N/=Zp /˝Zp Fp; (11)

and

H0.X0.N /.C/;�X0.N/.C/=C/ Š H0.X0.N /Zp ;�X0.N/=Zp /˝Zp C: (12)

The definition of the action of the Hecke operators on H0.X0.N /Zp ;�X0.N/=Zp /

defined in the third paragraph of Section 5.2 shows that this action is compatible
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with the action of the Hecke operators on H0.X0.N /.C/;�X0.N/.C/=C/ under (12).
Also, the action of the Hecke operators on H0.X0.N /Fp ;�X0.N/=Fp / was defined
in the third paragraph of Section 5.2 via their action on H0.X0.N /Zp ;�X0.N/=Zp /

using (11), so these actions are clearly compatible under (11). Now

H0.X0.N /.C/;�X0.N/.C/=C/ Š H0.J0.N /.C/;�J0.N/.C/=C/ Š S2.�0.N /;C/;

and thus a1.Tn!/ D an.!/ for ! 2 H0.X0.N /.C/;�X0.N/.C/=C/. Hence, by (11),
(12), and the discussion above, we also have the formula a1.Tn!/ D an.!/ for
! 2 H0.X0.N /Fp ;�X0.N/=Fp /.

Thus if ! 2 ker. /, then an.!/ D a1.Tn!/ D 0 for all n � 1, i.e., q-exp.!/ is
trivial, as was to be shown. ut
Claim 2: The T=m-dimension of the subspace of holomorphic differentials in
H0.X0.N /Fp ;�X0.N/=Fp/Œm� is at most 1.

Proof. If ! is a holomorphic differential in H0.X0.N /Fp ;�X0.N/=Fp /Œm� and  .!/
D 0, then by Claim 1, q-exp.!/ is trivial, and hence by Lemma 5.19, ! is trivial.
This proves that  is injective when restricted to the subspace of holomorphic
differentials. Now the group HomFp .T=m;Fp/ has the same size as T=m, which
completes the argument because  embeds the subspace of holomorphic differen-
tials in H0.X0.N /Fp ;�X0.N/=Fp /Œm� into HomFp .T=m;Fp/, which has dimension 1
as a T=m-vector space. ut

Claim 2 proves the lemma in the case when p − N . We now prove that
dimT=m H0.X0.N /Fp ;�X0.N/=Fp /Œm� � 1 when pjjN , which will finish the proof
of the lemma. Following the proof of Lemma 2.2 in [Wil95], we break the argument
into two cases:

Case I: There is no non-zero holomorphic differential in

H0.X0.N /Fp ;�X0.N/=Fp/Œm�:

Suppose !1 and !2 are two differentials in H0.X0.N /Fp ;�X0.N/=Fp /Œm�. Then we
can find a pair .�; / 2 .T=m/2 with .�; / ¤ .0; 0/ such that � .!1/ �
 .!2/ D 0, i.e.,  .�!1 � !2/ D 0. Hence by Claim 1, q-exp.�!1 �
!2/ D 0. Viewing �!1 � !2 as an element of H0.X0.N /Fp ;�X0.N/=Fp /, we
see that �!1 � !2 vanishes on C1 (recall that C1 is the copy of X0.N=p/Fp that
contains the cusp1) by the “q-expansion principle” (see the proof of Lemma 4.2
in [ARS06] for details). Now C2; : : : ; Cr (the copies of P1) arise as chains that
link C1 and C0 (recall that C0 is the copy of X0.N=p/Fp that does not contain the
cusp 1) and each of C2; : : : ; Cr has at most two points of intersection, with all
intersection points being ordinary double points (see the description ofX0.N /Fp on
p. 175–177 of [Maz77] for details). Taking into consideration the definition of
regular differentials and the residue theorem we see that �!1 � !2 is holomorphic
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on the curves among C2; : : : ; Cr that intersect C1 (for details, see the proof of
Lemma 4.2 in [ARS06] in a similar situation). Now a curve among C2; : : : ; Cr
that does not intersect C1 intersects exactly one curve among C2; : : : ; Cr that does
intersect C1. Hence by repeating the argument above, �!1 � !2 is holomorphic
on each curve in C2; : : : ; Cr that does not intersect C1 as well. Thus �!1 � !2 is
holomorphic on all ofX0.N /Fp except perhaps onC0. But the only possible poles of
�!1 � !2 on C0 are over points of intersection with other components, and again,
considering the definition of regular differentials, we see that there are no such poles,
i.e., �!1 � !2 is holomorphic on C0 as well. Thus �!1 � !2 is holomorphic
everywhere and is an element of H0.X0.N /Fp ;�X0.N/=Fp /Œm�. Hence it is trivial by
the hypothesis of this case. Thus !1 and !2 are linearly dependent. Since !1 and !2
were arbitrary, this shows that dimT=m H0.X0.N /Fp ;�X0.N/=Fp /Œm� � 1 in this case.

Case II: There is a non-zero holomorphic differential

! 2 H0.X0.N /Fp ;�X0.N/=Fp /Œm�:

By Lemma 5.19, q-exp.!/ is non-trivial, and so by Claim 1,  .!/ ¤ 0.
Let !0 2 H0.X0.N /Fp ;�X0.N/=Fp /Œm�. Then there is a  2 T=m such that
 .!0/ �  .!/ D 0, i.e.,  .!0 � !/ D 0. As in the proof of Case I, we
conclude that !0 � ! is holomorphic; in particular !0 is holomorphic. Thus
every differential in H0.X0.N /Fp ;�X0.N/=Fp /Œm� is holomorphic. Then by Claim 2,
dimT=m H0.X0.N /Fp ;�X0.N/=Fp /Œm� � 1 in this case as well. ut

(Proof of Proposition 5.10). Recall that the hypotheses of Proposition 5.10 are
that p is a prime such that p2 − N , m is a maximal ideal of T with residue
characteristic p such that if pjN , then If 
 m for some newform f . We wish
to show that then T and T0 agree locally at m.

If p − N , then the result follows from Lemmas 5.11 and 5.20. If f is a
newform and pjN , then Up acts as ˙1 on f , and hence Up ˙ 1 2 If . Thus if
pjN and If 
 m for some newform f , then Up acts as a non-zero scalar (˙1)
onH0.X0.N /Fp ;�X0.N/=Fp /Œm� (note that the action of Up on regular differentials
was defined compatibly with the usual action of Up on complex differentials, i.e., on
cuspforms; cf. the proof of Claim 1 in the proof of Lemma 5.20). The proposition
follows again from Lemmas 5.11 and 5.20. ut

6 Duality theory: an appendix by Brian Conrad

Let k be a field and let C be a proper reduced k-scheme with pure dimension 1.
Assume that C is generically smooth, and let C 0 
 C be a non-empty reduced
closed subscheme with pure dimension 1 (so C 0 is also generically smooth). The
case of most interest to us is when C is a geometrically connected and semistable
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curve andC 0 is a smooth geometrically irreducible component. The inclusionC 0 !
C induces a natural map of k-groups PicC=k ! PicC 0=k , and on tangent spaces at
the identity this is the canonical pullback map

� W H1.C;OC /! H1.C 0;OC 0/

(as we see by computing with dual numbers over k). Each of C and C 0 satisfies
Serre’s condition (S1) by reducedness, so each is Cohen–Macaulay. Thus, by Serre
duality we can identify the map of cotangent spaces with the map H0.C 0; !C 0=k/!
H0.C; !C=k/ dual to � . We wish to give a concrete description of this latter map. To
do this, we first review some basic definitions and identifications in duality theory.

In what follows we use Grothendieck’s approach to duality theory, which has the
merit of permitting more localization operations than in Serre’s approach. Since
C and C 0 are Cohen–Macaulay with pure dimension 1, their relative dualizing
complexes over k are naturally identified with !C=kŒ1� and !C 0=kŒ1� respectively
[Con00, 3.5.1]. Since (by construction) the formation of the relative dualizing
complex is compatible with Zariski-localization on the source, we have canonical
isomorphisms !C 0=k jC 0sm ' �1

C 0sm=k
and !C=kjC sm ' �1

C sm=k that coincide on the

open locus U D C sm \ C 0 that is dense in C 0 (and supported in C 0sm). If we let
j W C sm ! C and j 0 W C 0sm ! C 0 denote the canonical dense open immersions
then, by [Con00, 5.2.1] the natural maps

!C 0=k ! j 0�.�1
C 0sm=k/; !C=k ! j�.�1

C sm=k/

are injective. By construction this is compatible with the natural isomorphism
!C=kjU ' !C 0=kjU . Letting � W Spec.K/ ! C and �0 W Spec.K 0/ ! C 0 denote
the canonical maps from the schemes of generic points, !C 0=k maps isomorphically
onto a coherent subsheaf of �0�.�1

K0=k/ and likewise for !C=k in ��.�1
K=k/; these

image subsheaves are the so-called sheaves of regular differentials, and a classical
result of Rosenlicht describes these images explicitly using residues when k is
algebraically closed [Con00, 5.2.3]. We will not require Rosenlicht’s result for the
statement or proof of the theorem below.

Using Grothendieck’s theory of relative trace maps, the canonical closed im-
mersion � W C 0 ! C over k induces a trace morphism Tr� W ��.!C 0=k/ ! !C=k
whose formation commutes with Zariski-localization on C , so over the dense open
U D ��1.C sm/ 
 C 0 it induces the natural isomorphism !C 0=kjU ' !C=kjU ,
or equivalently it is the identity map on �1

U=k . Hence, Tr� is compatible with the

canonical inclusions !C 0=k ,! �0�.�1
K0=k/ and !C=k ,! ��.�1

K=k/. In particular,
the map Tr� is compatible with the natural identification of meromorphic 1-forms on
C 0 with meromorphic 1-forms on C (i.e., compatible with the injection �1

K0=k ,!
�1
K=k).
Having summarized some inputs from duality theory, we can now state the result

we want to prove.
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Theorem 6.1. The pullback H1.C;OC /! H1.C 0;OC 0/ is dual to the natural map

H0.C 0; !C 0=k/ D H0.C; ��.!C 0=k//! H0.C; !C=k/:

Proof. Let TrC W H1.C; !C=k/ ! k and TrC 0 W H1.C 0; !C 0=k/ ! k be the
canonical trace maps, so our problem is to prove that for s 2 H1.C;OC / and
� 0 2 H0.C 0; !C 0=k/ 
 �1

K0=k ,

TrC 0.� 0 [ sjC 0/ D TrC .Tr�.� 0/[ s/

in k. By the functoriality of Grothendieck’s trace map, TrC 0 D TrC ı H1.Tr�/ as
maps H1.C 0; !C 0=k/! k. Thus, it suffices to show that the map H1.C 0; !C 0=k/ !
H1.C; !C=k/ induced by Tr� carries � 0 [ sjC 0 to Tr�.� 0/[ s. We may view dualizing
sheaves as subsheaves!C=k 
 ��.�1

K=k/ and!C 0=k 
 �0�.�1
K0=k/ in terms of which

we have seen that the abstract trace map Tr� is induced by the natural inclusion
�1
K0=k 
 �1

K=k .

To do the computation we work with Čech theory. Let fUng be an ordered finite
open affine cover of C and let U 0n D Un \ C 0, so fU 0ng is an open affine cover of
C 0. The cohomology class s corresponds to a Čech 1-cocycle fsn;mgn<m with sn;m 2
OC .Un \ Um/, so s0 corresponds to fs0n;mg with s0n;m D sn;mjU 0n\U 0m . Identifying � 0
with an element of�1

K0=k , � 0[sjC 0 2 H1.C 0; !C 0=k/ corresponds to fs0n;m� 0gn<m and

Tr�.� 0/ [ s 2 H1.C; !C=k/ corresponds to fsn;m� 0gn<m, where � 0 is viewed in �1
K=k

in the natural way. The product sn;m� 0 at the generic points of Un \ Um vanishes at
generic points not in C 0, so the required equality is clear even at the level of Čech
1-cocycles. ut
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Le théorème de Siegel–Shidlovsky revisité

Daniel Bertrand

À la mémoire de Serge Lang

Abstract We give a new proof of the Siegel–Shidlovsky theorem, which is based
on a new version of Shidlovsky’s lemma and on M. Laurent’s interpolation
determinants. We also establish a dual version of the lemma, and yet another proof
of the theorem when the monodromy around 0 is trivial (as in the Lindemann–
Weierstrass case).

Key words Algebraic independence

Mathematics Subject Classification (2010): 11J81

1 Introduction

Dans cet article, nous dirons à la suite de Serge Lang [L2] qu’une fonction entière
holonome f est une E-fonction si les coefficients de son développement de Taylor
à l’origine˙n�0an zn

nŠ
engendrent un corps de nombresKf , et si la hauteur du point

.a0; : : : ; an/ de Pn.Kf / croı̂t au plus géométriquement avec n. Nous n’aborderons
pas la question, toujours ouverte, de comparer cette notion à la définition initiale de
Siegel (voir à ce propos [R] et [A2.I]). Étant donné un corps de nombres K , nous
dirons avec Shidlovsky [Sh] que f est une KE-fonction si, de plus, Kf � K . Ces
définitions s’étendent sans difficulté aux solutions entières de systèmes différentiels
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linéaires, et permettent, à l’aide des résultats de [A2.I], de parler de KE-vecteurs
horizontaux d’un fibré à connexion sur P1=K .

Soient n > 0 un entier,K un corps de nombres, de degré � sur Q, j:j1 la valeur
absolue attachée à un plongement complexe deK (sous-entendu dans les extensions
des scalaires de K à C qui suivent), M un fibré de rang n sur P1=K , muni d’une
connexion à singularités r, et S la réunion des points 0;1 et de l’ensemble des
singularités de r. On suppose que le point � D 1 de P1.K/ n’appartient pas à S , et
on note M1 la fibre de M en 1, et OM1 le complété formel en 1 du faisceau associé
à M. Soit par ailleurs E 2 OM1 ˝K C une section horizontale formelle de rC au
voisinage de 1. On note n.E/ le rang du plus petit sous-fibré de MC dont E soit une
section locale, et r1.E/ la dimension du plus petitK-sous-espace vectorielW1 deM1

dont E.1/ soit un point complexe. En d’autres termes, les coordonnées E1; : : : ; En de
E relativement à un repère de M au-dessus d’un voisinage affine du point 1 forment
une solution d’un système différentiel

d

d z

0

B
@

E1
:::

En

1

C
A D A.z/

0

B
@

E1
:::

En

1

C
A ; A.z/ 2 gln

�

K.z/\KŒŒz � 1���I .�/

elles engendrent dans C..z � 1// un C.z/-espace vectoriel de dimension n.E/, et
leurs valeurs en 1 engendrent dans C un K-espace vectoriel de dimension r WD
r1.E/. Dans ces conditions, on a:

Théorème 1 (Théorème de Siegel–Shidlovsky). on suppose que E s’étend par
prolongement analytique en 0 en un KE-vecteur. Alors, r1.E/ � n.E/

�
.

Par passage aux puissances symétriques, on en déduit de la façon habituelle l’égalité
des degrés de transcendance de C.z/.E1; : : : ; En/ sur C.z/, et de Q.E1.1/; : : : ; En.1//
sur Q.

Le théorème de Siegel–Shidlovsky généralise le classique théorème de
Lindemann–Weiestrass sur les valeurs de la fonction exponentielle en des points
algébriques. Il a connu un regain d’intérêt ces dernières années, à la suite de la
preuve adélique que Bézivin et Robba [BR] ont donnée de son avatar originel,
puis de son extension au cas général par Y. André [A2.II] et, tout récemment, du
raffinement suivant, qu’avait conjecturé Serge Lang ([L2], p.100), et que F. Beukers
a déduit de la preuve de [A2] : on peut, dans la conclusion du théorème 1, supprimer
le facteur 1=�, de sorte que r1.E/ est en fait égal à sa valeur maximale n.E/, même
si K ¤ Q.

Dans cet article, nous donnons une nouvelle preuve du théorème 1 lui-même,
au moyen des déterminants d’interpolation de M. Laurent. À partir de paramètres
L; T0; T1 dont la signification est précisée au �3 ci-dessous, il s’agit donc.

(i) de construire un “morphisme d’évaluation” � de l’espace � .L/ des sections
d’un fibré sur P1=K , à valeur dans un K-espace vectoriel Ev.T0; T1/;

(ii) de montrer (lemme de zéros; voir �2) que � est injectif dès que les dimensions
de ces espaces le permettent (à une constante près), c’est-à-dire ici dès que
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T0 C rT1 � nL >> 0, d’où en prenant des bases, un déterminant mineur
� 2 K , d’ordre� nL, non nul;

(iii) et de majorer les différentes valeurs absolues de �, avec un soin particulier
(méthode de M. Laurent) pour j�j1. La formule du produit, et un choix
convenable de L; T0 et T1, fournissent alors l’inégalité recherchée.

Une construction de ce type a déjà été proposée par A. Sert [S] pour le théorème
de Lindemann–Weierstrass. Mais sa construction,“duale” de la nôtre (les rôles des
paramètres nL et T0 C rT1 y sont inversés), s’appuie sur un critère de surjectivité
pour �. Nous y revenons au �6 de l’article.

Le point (iii) de notre nouvelle preuve fait l’objet du �4. À ce propos, rappelons,
selon J-B. Bost [Bo], que tout l’art d’une preuve de transcendance consiste à choisir
judicieusement des métriques sur les espaces source et but de l’application �, ou
de façon moins canonique, des bases de ces espaces. Nous proposons au �5 de
l’article une base de 	.L/ différente de celle du �4, qui, jointe au théorème de
pureté d’André [A 2.I], devrait fournir encore une autre preuve du théorème 1,
mais que je ne sais faire aboutir pour l’instant que dans le cas du théorème de
Lindemann–Weierstrass1. Ainsi, la preuve du �5 suit mot à mot le schéma précédent;
seule varie la technique d’évaluation de la hauteur de� au point (iii). Et si le coeur
lui en dit, le lecteur pourra déduire du �6 des variations de ces démonstrations, en
remplaçant simplement la condition d’injectivité de � au point (ii) par la condition
de surjectivité nL � .T0 C rT1/� 0.

On peut finalement voir ce travail comme un pont jeté entre, d’une part, la preuve
usuelle [L2], [Sh] du théorème 1, qui démarre par une construction auxiliaire au
point 0, et dont, à la fin du �4, nous reprenons le choix de paramètres T0 >> T1
pour conclure, et d’autre part, la preuve d’Y. André [A2], qui démarre par une
construction auxiliaire au point 1, et dont, à la fin du �5, nous reprendrons le choix
de paramètres T1 >> T0. Dans chacune des preuves présentées ici, les constructions
sont au contraire globales, et les points 0 et 1 jouent des rôles parallèles, en reflet
des outils sur lesquels elles reposent, à savoir :

• une version du lemme de zéros de Shidlovsky relative à plusieurs points: voir le
�2, ainsi que l’énoncé dual (lemme d’annulation) du �6;

• le lemme d’interpolation de M. Laurent, énoncé au cours du �3, qui tient
simultanément compte des points 0 et 1, et fournit aux deux preuves la même
majoration de j�j1.

2 Le lemme de zéros

Le lemme de zéros dont nous aurons besoin se déduit de la relation de Fuchs
généralisée (pour une démonstration plus proche de celle du lemme de Shidlovsky,
voir [B2], �4.i). Nous allons en donner une formulation générale, dans un style

1Ce texte est une version allégée de [B2], où sont discutées les difficultés liées à son extension au
cas général.
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familier en théorie de Baker. Avec les notations de l’introduction, soient L un entier
> 0, et M�.L/ le tordu par O.L/ du fibré à connexion dual de M. Il est encore
muni d’une connexion à singularités, qu’on note r�; pour M de type .a1; : : : ; an/,
où les ai sont des entiers � L, ses sections globales s’interprètent comme des n-
uplets s D .s1; : : : ; sn/ de polynômes de degré� L� a1; : : : ; L� an, à coefficients
dansK , et r�d=d z.s/ est représenté par d=d z.s1; : : : ; sn/C .s1; : : : ; sn/A.

Soit R un ensemble de points de P1.K/ à distance finie, éventuellement
singuliers pour r. Pour tout ˛ 2 R, soit OW˛ un K-sous-espace vectoriel de
OM˛ formé de sections horizontales pour r, c’est-à-dire, dans un repère local, de

solutions dans KnŒŒz � ˛�� du système différentiel .�/; si ˛ … S , cela revient à se
donner un sous-espace vectoriel W˛ de l’espace des “conditions initiales” M˛ . On
dit qu’une section s de M�.L/ s’annule à un ordre � T le long de OW˛ si pour tout
Z 2 OW˛ , la série formelle s:Z est divisible par .z � ˛/T , c’est-à-dire si son image
dans OO˛ŒT � WD OO˛=.z � ˛/T OO˛ est nulle.

Théorème 2 (Lemme de zéros). Il existe un nombre réel c.r/, effectivement
calculable en fonction de M;r et card .R/, vérifiant la propriété suivante. Soient
fT˛; ˛ 2 RILg une collection d’entiers � 0, et s une section non nulle de M�.L/
s’annulant, pour tout ˛ 2 R, à un ordre � T˛ le long de OW˛ . Il existe un sous-fibré
M0 de M dont la restriction hors de S est stable sous r, sur lequel s s’annule, et
tel que

X

˛2R
dim. OW˛= OW˛ \ OM0̨ /:T˛ � rk.M=M0/:LC c.r/:

[Lorsque ˛ … S , on pourra remplacer le quotient du terme de gauche parW˛=W˛ \
M 0̨ .]

Démonstration. SoientM leK.z/-vectoriel à connexion défini parM,D l’opérateur
rd=d z surM ,M 0 le plus grand sous-espace vectoriel deM stable sousD et contenu
dans l’hyperplan Ker.s/ deM ,M le quotientM=M 0, muni de la connexion quotient
D, et 
 sa dimension. Montrons que le sous-fibré M0 de M de fibre génériqueM 0,
sur lequel s s’annule, répond à la question.

Par passage au quotient, s définit une forme linéaire s sur M , qui est un vecteur
cyclique pour la connexion duale D

�
sur M

�
: en effet, l’orthogonal dans M du

K.z/ŒD
�
�-module engendré par s est stable sous D, et contenu dans Ker.s/, donc

nul par maximalité deM 0. L’annulateur dansK.z/Œd=d z� de s est donc un opérateur
différentiel L D P.d=d z/ de rang 
 D rk.M=M0/.

Pour tout vecteur horizontal Z 2 OW˛ de M , s:Z est solution de l’équation
différentielle L.s:Z/ D .P.D�/.s//:Z D 0. De plus, s:Z D 0 si et seulement si s
annule l’orbite de Z sous l’action du groupe de Galois différentiel d’une extension
de Picard–Vessiot F˛=C.z/ de r en ˛. Comme cette orbite engendre l’espace des
vecteurs horizontaux d’un K.z/-sous-espace vectoriel MZ de M stable sous D,
on déduit de la maximalité de M 0 que l’image de MZ dans M est nulle, et la
dimension �˛ de l’image de OW˛ sous s est égale à dim. OW˛= OW˛ \M 0.F˛//; soit
�˛ D dim. OW˛= OW˛ \ OM0̨ /:



Le théorème de Siegel–Shidlovsky revisité 55

Pour tout ˛ 2 R, l’équation différentielle Ly D 0 admet ainsi dansKŒŒz�˛�� au
moins�˛ solutions linéairement indépendantes d’ordre� T˛ . La collection de ses 

exposants en ˛ est donc formée de�˛ entiers� T˛ , et de 
��˛ nombres complexes
dont les parties réelles sont minorables en fonction de A (et � 0 si ˛ … S ). De
même, les parties réelles de ses exposants à l’infini sont, à l’addition près d’une
constante ne dépendant que du type de M et de A, toutes minorées par �L. Enfin,
les parties réelles de ses exposants aux autres singularités � de L sont� 0 si � … S ,
et minorées en fonction de A sinon. La relation de Fuchs généralisée (voir [B1],
Thm. 2) entraı̂ne donc

�
LC˙˛2R �˛T˛ � c.r/;

où c.r/ désigne la somme des opposés des constantes énumérées plus haut, de
l’irrégularité globale de End.r/, et de jRjn.n � 1/, et le théorème 2 est démontré.

Nous nous restreignons désormais au cas où R D f0; 1g, et où dim. OW0/ D 1,
et nous posons r D dim. OW1/. Pour la preuve du �4, on pourrait suivre l’usage,
courant en transcendance, qui consiste à éviter les passages aux quotients auxquels
conduisent naturellement les lemmes de zéros grâce à des contraintes numériques
sur les paramètres (ici, L � T1). Mais cette contrainte n’est pas satisfaite dans la
preuve du �5, où la notion suivante s’avère utile: on dit que OW1 est non dégénéré
si pour tout sous-fibré M0 ¤ M génériquement stable sous r, les quantités n0 D
rk.M=M0/ et r 0 D dim. OW1= OW1 \ OM0

1/ vérifient:

r 0

n0
WD dim. OW1= OW1 \ OM0

1/

rk.M=M0/
� dim. OW1/

rk.M/
WD r

n
: .��/

Pour ˛ D 0, où dim. OW0/ D 1, la condition de non-dégénérescence correspondante
revient à demander que OW0 ne soit pas inclus dans un sous-fibré à connexion propre
de M. En reprenant l’expression c.r/ du théorème 2, on en déduit :

Proposition 1 (Corollaire du lemme de zéros). Soient fT0; T1; Lg trois entiers � 0,
et s une section de M�.L/ s’annulant, pour ˛ D 0; 1, à un ordre � T˛ le long de
OW˛. On suppose que la droite OW0 n’est pas incluse dans un sous-fibré à connexion

propre de M, et que l’une ou l’autre des hypothèses suivantes est satisfaite :

(i) T0 C rT1 > nLC c.r/ et L � T1;
(ii) T0 C rT1 > nLC nc.r/ et OW1 est non dégénéré.

Alors, s D 0.

Démonstration. Dans le cas contraire, il existerait un sous-fibré M0 vérifiant la
conclusion du théorème 2. Mais c’est impossible, puisque l’hypothèse faite sur OW0

entraı̂ne OW0 \ OM0
0 D 0 (comme M0 � Ker.s/, il aurait d’ailleurs suffi d’imposer

s. OW0/ ¤ 0), et qu’avec les notations n0; r 0 introduites ci-dessus, on peut minorer,
dans sa conclusion, l’expression dim. OW0= OW0\ OM0

0/:T0C dim. OW1= OW1\ OM0
1/:T1
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• dans le cas (i), par

T0CrT1�dim. OW1\ OM0
1/:T1 � T0CrT1�rk. OM0/:T1 > nLCc.r/�rk. OM0/:L;

• dans le cas (ii), par

n0
�
1

n0
T0 C r 0

n0
T1

�

� n0
�
1

n
T0 C r

n
T1

�

> n0LC n0c.r/;

et donc toujours strictement par rk.M=M0/LC c.r/.

3 Les deux premières étapes, et le lemme d’interpolation
de M. Laurent

Nous pouvons maintenant préciser les deux premières étapes de la preuve du
théorème 1. Nous reprenons les notationsM;r; S; E ; n D rk.M/; n.E/; r1.E/; � D
ŒK W Q� de l’introduction. Le point 0 est en général une singularité de r, mais par
hypothèse, la section horizontale E y admet un prolongement analytique en unKE-
vecteur, qui appartient donc à OM0. Nous choisissons pour OW0 le K-sous-espace
vectoriel de dimension 1 que E y engendre. Au point 1 … S , nous notons W1 le
K-sous-espace vectoriel de dimension r WD r1.E/ deM1 engendré par E.1/, et nous
choisissons pour OW1 le sous-espace horizontal de OM1 correspondant à W1.

Deux réductions nous seront utiles. Tout d’abord, on peut sans perte de généralité
supposer que les composantes E1; : : : ; En de la solution étudiée sont linéairement
indépendantes sur K.z/, c’est-à-dire que n.E/ D n ; en effet (cf. [Sh], 4, lemme 2),
le saturé QM du fibré à connexion que E engendre dans M n’a pas de singularité au
point � D 1 … S . Appliqué à ce saturé, dont le rang Qn est égal à n.E/, la preuve
aboutit à l’inégalité r1.E/ � Qn

�
, qui est bien la conclusion recherchée. (En d’autres

termes, on peut supposer que OW0 est non dégénéré.)
La seconde réduction ne s’avère nécessaire que pour la preuve du �5, où la

contrainte numérique L � T1 du �4 n’est pas vérifiée, mais par souci de symétrie,
nous la ferons dans les deux cas. Sans perte de généralité, on peut également
supposer que OW1 est non dégénéré. En effet, si ce n’est pas le cas, il existe un
sous-fibré M0 ¤ M génériquement stable sous r tel qu’avec les notations de
.��/, r 0

n0
< r

n
, et on peut choisir M0 de telle sorte qu’il réalise le minimum

de ces expressions. Considérons alors le fibré quotient M D M=M0, qui est

muni de la connexion à singularités quotient r, et relativement auquel OW1 WDOW1= OW1 \ OM0
1 est non dégénéré: en effet, ses sous-fibrés sont de la forme M00,

avec M0 � Ker.s/, et les quantités n00 WD rk.M=M00/ D rk.M=M00/ WD n00 et

r 00 D dim. OW1= OW1 \ OM00
1/ D dim. OW1= OW1 \ OM00

1/ WD r 00 vérifient : r
00

n00
D r 00

n00
� r 0

n0

par minimalité de ce dernier quotient. On vérifie de plus, en complétant en une base
deM�.P1�1/ un système primitif d’équations deM0, quer n’a pas de singularité
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en 1, et que l’image E de E dans M est encore un KE-vecteur en 0. Le théorème

1, appliqué à M et E et au sous-espace non dégénéré OW1, fournit la conclusion
� � n0

r 0 . Comme n0

r 0 >
n
r
, on a bien r � n

�
.

Ces réductions étant acquises, soient c le plus petit entier supérieur à nc.r/, et
T0; T1; L trois entiers tels que

T0 C rT1 D nLC c .� � �/

Dans ces conditions,

(i) la première étape de la preuve consiste à choisir:

• pour 	.L/ l’espace des sections de M�.L/, qui, pour L assez grand, est de
dimension h0.L/ D n.LC 1/� deg.M/ � nL;

• pour Ev.T0; T1/ l’espace vectoriel HomK. OW0; OO0ŒT0�/ ˚ HomK. OW1;OO1ŒT1�/, qui est de dimension dim. OW0/:T0 C dim. OW1/:T1 D T0 C rT1;
• pour � l’application K-linéaire de 	.L/ dans Ev.T0; T1/ somme directe

sur ˛ D 0; 1, des composées des applications canoniques 	.L/ ! OM�̨,
OM�

˛ ! Hom. OW˛; OO˛/, OO˛ ! OO˛ŒT˛�. Pour s dans � .L/, �.s/ représente
donc la collection des T0 premiers coefficients de Taylor en 0 de s.E/ et des
T1 premiers coefficients de Taylor en 1 de s.Z/, où Z parcourt OW1. On
trouvera plus bas une expression matricielle de �: une matrice ˚ à T1C rT0
lignes et h0.L/ � nL colonnes.

(ii) la seconde étape consiste à remarquer que puisque T0 C rT1 D nL C c >
nL C nc.r/, le deuxième cas de la proposition 1, joint aux hypothèses
n D n.E/ et OW1 non dégénéré auxquelles nous nous sommes ramenés, entraı̂ne
que pour s 2 � .L/, �.s/ ne peut s’annuler que si s D 0, autrement dit
que � est injective. L’une des coordonnées de h0.L/� dans une base de
h0.L/Hom.� .L/;Ev.T1IT0// (c’est-à-dire l’un des mineurs d’ordre h0.L/
de ˚) est ainsi un élément � de K non nul. Reste

(iii) à évaluer la hauteur de�, c’est-à-dire ses valeurs absolues pour les différentes
places v 2 VK de K .

Pour le facteur local en la place 1, cette dernière étape repose sur l’énoncé
suivant, dont on trouvera diverses variantes dans [La], [S], Lemme 4.4.1, [LP],
Lemme 7, [H].

Théorème 3 (Lemme d’interpolation de M. Laurent). Soient D un disque de C
centré à l’origine, �0; �1 deux points de D, T0; T1 deux ensembles d’entiers � 0

et majorés respectivement par T0 � 1; T1 � 1, h la somme des cardinaux de T0 et de
T1, et f1; : : : ; fh des fonctions analytiques sur D. Posons Qc D T0CT1�h. Alors, la

fonction ı.z/ D det

 �

.@tfi /.�0z/
�

t2T0;1�i�h�

.@tfi /.�1z/
�

t2T1;1�i�h

!

s’annule en 0 avec une multiplicité

�T0T1 � Qc.T0 C T1/.
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Démonstration. En effectuant des combinaisons linéaires des colonnes, on peut
supposer que fi .z/ 2 zi�1 OO0. L’ordre de ı en 0 est alors minoré par ˙iD1;:::;h.i �
1/�˙t2T0 t �˙t2T1 t � h.h�1/

2
� T0.T0�1/

2
� T1.T1�1/

2
D T0T1� Qc.T0CT1/C Qc.QcC1/2

.

Appliqué aux points �0 D 0 et �1 D 1 (dont on notera qu’ils interviennent
ici sur un pied d’égalité), cet énoncé fournit, tant au �4 qu’au �5, une majoration
très précise des valeurs absolues en 1 de mineurs d’ordre � T0 C T1 de �.
Avant de débuter cette estimation et celles des j�jv; v 2 VK , je signale pour la
commodité du lecteur que les paramètres T0; T1 seront en fin de preuve choisis de
façon proportionnelle à L, et que les termes dominants des majorations sont de
la forme e�L

2LogL. C’est � qu’il convient de contrôler précisément. D’autre part,
je désignerai par c0; c1; : : : des entiers � 2 qui ne dépendent que de M;r; E ,
et que l’on pourrait d’ailleurs majorer de façon effective en termes de la matrice
A.z/ et de E .

4 Conclusion de la première preuve (cas général)

Matriciellement, � s’exprime comme suit: fixons une base .s1; : : : ; sh0.L// de 	.L/,
et considérons la base de l’espace but de � construite à partir d’une base Z1; : : : ;Zr
de OW1, de la base E de OW0, et de la base de l’espace OO˛ŒT˛�, ˛ D 0; 1 formée des
monômes f 1

t Š
.z � ˛/t I t D 0; : : : ; T˛ � 1g. Alors, � est représentée par la matrice à

T0 C rT1 lignes et h0.L/ colonnes à coefficients dansK:

ˆ D

0

B
B
@

ˆ0
ˆ1
: : :

ˆr

1

C
C
A
;

0

B
B
@

˚0 D
�

@t .si :E/.0/
�

0�t�T0�1I1�i�h0.L/
: : :

˚� D
�

@t .si :Z�
�

.1/
�

0�t�T1�1I1�i�h0.L/
: : : .�D1;:::;r/

1

C
C
A
;

où @ désigne le champ de vecteurs d=d z.
Du côté de l’espace source, identifions le fibré M à O.a1/ ˚ 	 	 	 : ˚ O.an/,

choisissons un repère adapté .e1; : : : ; en/ de sections de M au-dessus de P1 n 1,
d’où l’écriture E D ˙n

�D1E�e� D t .E1; : : : ; En/, Z� D˙n
�D1Z�;�e� pour � D 1; : : : ; r ,

et une décomposition � .L/ D ˚�D1;:::;n � .O.L� ai //e�� . Pour toutL0, choisissons
pour base de � .O.L0// les monômes f 1

`Š
z` I ` D 0; : : : ; L0g (une autre base fera

l’objet du �5). Dans la base f 1
`Š

z`e�� I � D 1; : : : ; n; ` D 0; : : : ; L � a�g de � .L/ D
H0.M˝O.L// indexant ses h0.L/ D n.LC 1/�˙n

�D1a� colonnes, notre matrice
se réécrit:

˚ D

0

B
B
@

˚0
˚1
: : :

˚r

1

C
C
A
;

0

B
B
@

˚0 D
�

@t . 1
`Š

z`E�/.0/
�

0�t�T0�1I1���n;0�`�L�a�
: : : :

˚� D
�

@t . 1
`Š

z`Z�;�/.1/
�

0�t�T1�1I1���n;0�`�L�a�
: : : .�D1;:::;r/

1

C
C
A
:
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Quitte à remplacer L par LC c0 dans les estimations qui suivent, on peut, comme
je vais le faire, supposer les a� tous nuls (fibré trivial). Soit alors � l’un des
déterminants mineurs d’ordre maximal h0.L/ D n.LC 1/ de ˚ non nul.

(A) Majoration de j�jv (v 2 VK quelconque)

Elle repose sur une majoration terme à terme des valeurs absolues v-adiques des
coefficients de �.
A1: Coefficients des lignes de � situées dans ˚0: les prolongements analytiques
à l’origine E�.z/ D ˙k�0a�;k zk

kŠ
sont par hypothèse des KE-séries. Comme le

coefficient

@t .
1

`Š
z`E�/.0/ D

�

t

`

�

a�;t�` si t � `;

et s’annule si t < `, sa valeur absolue v-adique est majorée par jdT0�1j�1v si v est
finie, par cT02 si v est archimédienne. Ici, dT0�1 désigne un dénominateur commun
des a�;k ; k D 0; : : : :; T0 � 1, qu’on majore suivant la définition de Lang par cT01 .
(Le produit c1c2 est relié à la taille des transformées de Laplace des séries E�.z/.)
A2: Coefficients des lignes de � situées dans les ˚�; � D 1; : : : ; r : pour tout
s 2 � .L/ et tout Z horizontal, @t .s:Z/ D �

.r�@ /t s
�

:Z . Comme 1 est un point
ordinaire, on en déduit que si v est une place finie, le coefficient @t . 1

`Š
z`Z�;�/.1/ a

une valeur absolue v-adique � jLŠj�1v jc3j�T1v jc5jv ; si v est archimédienne, elle est
� T1ŠcT14 c6. 2(Le produit c3c4 est relié à la taille du “transformé de Fourier” de r ;
le produit c5c6 à la hauteur de W1.)
� est somme de h0.L/Š monômes où apparaissent les coefficients du premier

type au plus T0 fois, du deuxième type au plus rT1 fois. Ainsi

Y

v2VK;v¤1
j�jv �

�

.n.LC 1//Š .c1c2/T 20 .c3c4/rT 21 .c5c6/rT1.LŠT1Š/rT1
��
:

Le terme prépondérant de cette majoration est donc .LŠT1Š/rT1� , dont le logarithme
croı̂t comme �.LC T1/T1LogL.

(B) Majoration de j�j1 (méthode de M. Laurent)

Comme on l’a dit, elle repose sur le théorème 3. Quelques préparatifs avant de
l’appliquer à certains mineurs (d’ordre h � T0CT1) de�. Tout d’abord, E 2 OM1˝
C étant une combinaison linéaire à coefficients complexes �1Z1C	 	 	C�rZr , avec,
disons, �1 ¤ 0, on ne change guère � quand on remplace dans ˚ le bloc ˚1 par la
combinaison linéaire correspondante ˚ 01 D �1˚1 C 	 	 	 C �r˚r . Plus précisément,
� se déduit de ˚ en rayant c0 WD T0 C rT1 � h0.L/ D c � n lignes (cf. .� � �/).
Par conséquent, les indices t d’au moins T1 � c0 lignes de ˚1 intervenant dans �

2Il est possible que le théorème de pureté d’André permette de se débarrasser des termes en T1Š
dans ce calcul archimédien. Je reviens sur ce point au �5. Ici, le gain serait faible puisqu’on prendra
L � T1.
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sont également indices de lignes de ˚2, de ˚3,. . . et de ˚r intervenant dans
�. Notons T1 l’ensemble, de cardinal �1 � T1 � c0, de ces indices communs, et
T0 l’ensemble, de cardinal �0 � T0� c0, des indices de ligne de ˚0 intervenant dans
�. À division par˙��11 près,� est donc égal au déterminant Q� de la matrice carrée
d’ordre h0.L/ D n.LC 1/ :

Q̊ D
0

@

Q̊
0 � ˚0
Q̊ 0
1 � ˚ 01Q‰ � ˚

1

A ;

0

@

Q̊
0 D

�

@t .si :E/.0/
�

t2T0I1�i�h0.L/Q̊ 0
1 D

�

@t .si :E/.1/
�

t2T1I1�i�h0.L/Q‰

1

A :

où les lignes de Q� sont, pour au plus T0 � �0 d’entre elles, des lignes de ˚0, et pour
au plus rT1 � �1 d’entre elles, des lignes de ˚1, ˚2, . . . ., ou ˚r .

Suivant [S], nous majorons maintenant la valeur absolue du nombre complexe
Q� en calculant son développement de Laplace suivant les mineurs d’ordre maximal

de Q� :
B1: Valeur absolue en1 des mineurs d’ordre maximal de Q‰ : la considération de
leur format et les calculs précédents sur j�jv, avec v D 1, montrent que chacun
d’eux est � .n.LC 1/� �0 � �1/Š c.T0��0/T02 .c6c

T1
4 T1Š/

rT1��1 . Comme T0� �0 � c0,
ils sont donc majorés par .n.LC 1/� .�0 C �1//Šcc0T0

2 .c6c
T1
4 T1Š/

rT1 .
B2: Valeur absolue en1 des mineurs d’ordre maximal h WD �0 C �1 de la matrice
� Q̊

0

Q̊ 0
1

�

: ils sont tous de la forme ı.1/, pour des fonctions ı.z/ du type étudié au

lemme d’interpolation : prendre �0 D 0; �1 D 1, fi D si :E , où i parcourt une
partie à h éléments de l’ensemble Œ1; h0.L/�, et reprendre les notations ci-dessus
pour T0; T1 ; en particulier, h D T0 C T1 � Qc, avec Qc � 2c. En vertu du lemme de
Schwarz, appliqué sur des disques de rayon 1 et R > 1, chacun d’eux admet une
majoration de la forme

jı.1/j � R�T0T1C2c.T0CT1/hŠ .supt<T0;i j@tfi .0/j/�0 .supt<T1;i j@tfi jR/�1 :

La première parenthèse se majore comme on l’a fait des coefficients de j�jv en
A1. Pour la seconde, noter que les E-fonctions E� sont des fonctions entières de
type exponentiel. Si c7 � 1 désigne un majorant de leurs types, on déduit des
inégalités de Cauchy j@tfi jR � t Š

Rt
jfi j2R que pour fi D 1

`Š
z`E� et R D T1,

ce dernier terme est majoré par .sup`�L
.2T1/

`

`Š
e2c7T1 /T1 � e4c7T

2
1 . Ainsi jı.1/j �

T
�T0T1
1 hŠL2c.T0CT1/cT

2
0

2 e
4c7T

2
1 . En définitive, la formule de Laplace donne, avec

R D T1 :

j�j1 � T �T0T11 
 .n.LC 1//ŠcrT16 L2c.T0CT1/crT
2
1

4 c
2T 20
2 e4c7T

2
1 :.T1Š/

rT1 :

Le terme prépondérant de cette majoration est donc T �T0T11 .T1Š/
rT1 , dont le loga-

rithme croı̂t comme .�T0 C rT1/T1LogT1.
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(C) Formule du produit et choix des paramètres

Nous faisons maintenant croı̂tre L indéfiniment, et supposons que T0 et T1, qui
étaient jusqu’à présent soumis à la seule contrainte T0 C rT1 D nLC c de .� � �/,
croissent linéairement avec L. Comme � ¤ 0, la formule du produit entraı̂ne :

T0T1 � r�LT1 C r.� C 1/T 21 CO.L2=LogL/;

donc T0
L
� r� C r.� C 1/T1

L
C O. L

T1LogL/. Choisissant, à l’instar de Siegel et
Shidlovsky, T0 D .n � �/L; T1 D .�L C c/=r avec � petit, on obtient: n � � �
r�.1CO.�//, et finalement la conclusion n � r� souhaitée.

5 Conclusion de la seconde preuve (cas de
Lindemann–Weierstrass)

Dans la preuve précédente, l’hypothèse que E est un vecteur de E-fonctions est
intervenue à deux reprises : au point A1 pour majorer la hauteur des coefficients
des séries entières si :E 2 KŒŒz�� ; au point B2 pour majorer la croissance à l’infini
des fonctions entières si :E . Nous n’avons utilisé des sections horizontales Z� 2 OW1

de r que la propriété de convergence au voisinage du point 1. Or le théorème de
pureté d’Y. André sur les séries Gevrey de type négatif ([A2.I], Théorèmes 4.2 et
4.3.iii) affirme que dès que n.E/ D n, toutes les solutions de r relèvent de la
théorie des E-fonctions. Plus précisément (voir [A2.I], corollaire 4.4), r admet
alors un système fondamental de solutions en 0 de la forme U.z/zC , où e2i�C 2
GLn.C/ représente la monodromie de r au point 0, et U.z/ est une matrice dont
tous les coefficients sont des E-fonctions. Nous allons maintenant faire usage de
cette propriété, en supposant, pour éviter la présence au voisinage de 1 de produits
de E-fonctions par des G-fonctions, que la monodromie de r en 0 est triviale.

Jointe à l’existence d’un E-vecteur solution de r, cette hypothèse limite
en pratique les applications aux cas couverts par le théorème de Lindemann–
Weiesrtrass. Elle permet en tous cas, par torsion par une puissance entière de z,
de supposer que r admet une base de solutions constituée de E-vecteurs, et qu’en
particulier, toutes ses sections horizontales Z� 2 OW1 admettent des prolongements
analytiques en des fonctions entières de type exponentiel.

Mais pour exploiter cette idée, encore faut-il contrôler les hauteurs des coeffi-
cients des séries entières si :Z� 2 KŒŒz � 1��. Ceci conduit (voir A02 ci-dessous) à

remplacer les monômes z`

`Š
de la base de 	.O.L0// D SymL0

.	.O.1// choisie au
début du �4 par f 1

`Š
.z � 1/`I ` D 0; : : : ; L0g, d’où une nouvelle matrice

˚ D

0

B
B
@

˚0
˚1
: : :

˚r

1

C
C
A
;

0

B
B
@

˚0 D
�

@t . 1
`Š
.z � 1/`E�/.0/

�

0�t�T0�1I1���n;0�`�L�a�
: : : :

˚� D
�

@t . 1
`Š
.z� 1/`Z�;�/.1/

�

0�t�T1�1I1���n;0�`�L�a�
: : : .�D1;:::;r/

1

C
C
A

représentant �.
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Cette nouvelle matrice se déduit de celle du �4 par multiplication à droite
par un élément de SLh0.L/. En rayant les T0 C rT1 � h0.L/ mêmes lignes que
précédemment, on obtient donc le même déterminant mineur � 2 K�. Mais de
nouvelles estimations apparaissent pour j�jv:
(A0) Majoration de j�jv, v 2 VK quelconque

A01: Coefficients des lignes de � situées dans ˆ0: si v est une place finie, les
factorielles ne se simplifient plus, et on doit multiplier le majorant trouvé en A1,
par jLŠj�1v ; celui des places archimédiennes devient 2LcT02 .
A02: Coefficients des lignes de � situées dans les ˚�; � D 1; : : : ; r : on remarque

maintenant que @t
�

. 1
`Š
.z � 1/`Z�;�

�

.1/ D
�
t

`

�

@t�`Z�;�.1/, et que 1 est un point

ordinaire der. On peut donc supprimer le facteur jLŠj�1v de la majoration de A2 aux
places finies. De plus, on peut, aux places v infinies, en supprimer le facteur T1Š : en
effet, les fonctions induites par Z�;� sur Kv � C sont entières de type exponentiel;
si c8 � 1 désigne un majorant de leurs types, les inégalités de Cauchy, appliquées à
un disque de rayon T1, entrainent que j@t �. 1

`Š
.z � 1/`Z�;�

�

.1/jv � eT1C1ec8T1 .
Le terme prépondérant du produit˘v¤1j�jv devient donc .LŠ/�T0 � e�LT0LogL.

(B0) Majoration de j�j1 (méthode de M. Laurent)

On reproduit la démonstration du �4.B jusqu’à l’étude du développement de
Laplace, qu’on modifie comme suit.

B01: Valeur absolue en 1 des mineurs d’ordre maximal de Q� : pour les mêmes
raisons qu’en A02, on peut supprimer le facteur .T1Š/rT1 de la majoration de B1;
B02: Valeur absolue en 1 des mineurs d’ordre maximal h WD �0 C �1 de la

matrice

� Q̊
0

Q̊ 0
1

�

: pas de changement par rapport à B2, si ce n’est que les fonctions

fi s’écrivent maintenant fi D 1
`Š
.z � 1/`E�. On peut alors majorer la première

parenthèse comme dans A01, et la seconde en appliquant l’inégalité de Cauchy sur
un disque de rayon R D T1.

Le terme prépondérant du majorant de j�j1 devient donc T �T0T11 .
(C0) Formule du produit et choix des paramètres

La formule du produit donne cette fois

T0T1 � �T0LCO.L2=LogL/;

donc T1
L
� � C O. L

T0LogL/. Choisissant, à l’instar d’André [A2.II], T1 D
. n
r
� �/L; T0 D �rLC c, on aboutit à la conclusion n

r
� � souhaitée.

Remarque 1. On voit en combinant les deux approches avant de fixer les
paramètres que T0:rT1

.T0CrT1/ inf.T0;rT1/
� r

n
�.1 C o.1//. C’est bien en prenant rT1

(comme au �4) ou T0 (comme ici) aussi petit que possible qu’on obtient le meilleur
résultat.
Remarque 2. Le choix de paramètres rT1 � nL fait dans ce �5 évoque la méthode
de Gel’fond–Dèbes utilisée dans [A1] et [A2.II]. Yves André me signale d’ailleurs
que la démarche présentée ici permet de retrouver ses résultats d’indépendance
linéaire [A1] sur les valeurs de G-fonctions.
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6 L’approche duale

Restreinte au cas de Lindemann–Weierstrass E�.z/ D e˛�z; � D 1; : : : ; n, la preuve du
�4 est “duale” de celle de [S], qui l’a fortement inspirée3. Plus précisément, A. Sert
étudie la fonction ez aux points ˛1; : : : ; ˛n, et considère une matrice O̊ à n.LC 1/
lignes et T0 C rT1 colonnes, construite à partir d’une base fb1; : : : ; brg de W1 dans
M1, et des matrices

Ô
0 D

�
1

`Š
@`zt .˛�/

�

1���n;0�`�LI0�t�T0�1
;

Ô
1 D

�

e�˛�
1

`Š
@`.zt ez/.˛�/

�

1���n;0�`�LI0�t�T1�1
:

(Pour passer de mes notations à celles de [S], utiliser le dictionnnaire: O̊ !
M;L! J; T0 ! S; T1 ! T; n! m; r ! n.) Comme

1

`Š
@`zt .˛�/ D @t

�
1

`Š
zl e˛�z

�

.0/ ; e�˛�
1

`Š
@`.zt ez/.˛�/ D @t

�
1

`Š
zl e˛�.z�1/

�

.1/;

O̊ est essentiellement la transposée de la matrice ˚ du �4. Mais malgré sa
ressemblance avec celui du �2, le “lemme de zéros” utilisé par Sert ([S], Lemme 4.2)
n’est pas de même nature : il énonce l’existence d’une constante Oc D n2=4 telle que
(pourL � T1), O̊ est de rang maximal T0C rT1, dès que nL � T0C rT1C Oc. C’est
un lemme d’interpolation au sens de D. Masser : une condition suffisante pour que
le morphisme d’évaluation � lui-même (et non son transposé) soit surjectif.

Comme me l’ont fait remarquer M. Laurent et S. Fischler, les formules supra (du-
alité de Fourier–Borel) montrent qu’un lemme d’interpolation s’interprète comme
un lemme de zéros lorsqu’on se restreint à l’ensemble des exponentielles-polynômes,
c’est-à-dire à des systèmes différentiels à coefficients constants. Je me propose
maintenant d’étendre l’énoncé de surjectivité de [S] au cas d’un système différentiel
général. Il est possible que la dualité que fournit la transformation de Fourier (voir
[A2.I], �6) y conduise, mais j’établirai cette extension par un argument élémentaire,
proche de ceux de Masser et de [F]. Pour des raisons expliquées plus bas, je préfère
d’ailleurs appeler “lemme d’annulation” cette généralisation.

Pour alléger, je ne traiterai que de la situation rencontrée à la Proposition 1 du �2,
et en supposant le fibré M trivial. On reprend les notations nDrk.M/;r;R; OW˛

.˛ 2 R/; c.r/ du �2, avec donc R D f0; 1g et dim. OW0/ D 1. On pose
r D dim. OW1/, et on note E (resp.fZ1; : : : ;Zrg) une base OW0 (resp. OW1) sur K .
Outre les hypothèses de non-dégénérescence faites à la Proposition 1, on devra

3C’est d’ailleurs une mesure d’indépendance algébrique entièrement explicite que [S] obtient dans
ce cas. Dans cet ordre d’idées, je ne sais si la méthode du �4 permettra d’établir, à l’instar de [L1],
une version quantitative du théorème 1.
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ici supposer que E.0/ ¤ 0, et que 1 est un point ordinaire de r, de sorte que
fZ1.1/; : : : ;Zr .1/g forme une base de W1.

Proposition 2 (Lemme d’annulation). Il existe une constante Oc.r/ effectivement
calculable en fonction de M et de r et vérifiant la propriété suivante. Soient
T0; T1; L un triplet d’entiers � 0 et fa0;t ; 0 � t � T0 � 1; ai;t ; 1 � i � r; 0 �
t � T1 � 1g un .T0 C rT1/-uple d’éléments de K . Supposons que la droite OW0 ne
soit pas incluse dans un sous-fibré à connexion propre de M, et que E.0/ ¤ 0.
Supposons par ailleurs que 1 soit un point ordinaire de r, et que l’une ou l’autre
des hypothèses suivantes soit satisfaite:

(i) L1 � T1;
(ii) OW1 est non dégénéré.

Supposons enfin que nL � T0 C rT1 C Oc.r/. Alors, il existe une section s de
M�.L/ telle que @t .s:E/.0/ D a0;t pour tout t � T0 � 1 et @t .s:Zi /.1/ D ai;t pour
tout i D 1; : : : ; r; t � T1 � 1.
Démonstration. Il s’agit de montrer que sous ces hypothèses, les T0 C rT1 formes
linéaires sur � .L/ WD H0.M�.L// définies par

ev0;t .s/ D @t .s:E/.0/.t D 0; : : : ; T0 � 1/I
evi;t .s/ D @t .s:Zi /.1/.i D 1; : : : ; r I t D 0; : : : ; T1 � 1/

sont linéairement indépendantes sur K (c’est-à-dire que les T0 C rT1 lignes de la
matrice ˆ du �4 le sont; le lemme de zéros du �2 exprimait, pour T0 C rT1 �
nLC c.r/, l’indépendance linéaire de ses n.LC 1/ colonnes). Fixons une matrice
représentative A.z/ de la connection r, dont on suppose que le dénominateurQ.z/
ne s’annule pas en 1, et est d’ordre � minimal en 0, et notons deg.r/ le maximum
des degrés de Q et des coefficients de QA.

Supposons tout d’abord que T1 D 0, et que 0 n’est pas une singularité de
r (autrement dit, que Q ne s’annule pas en 0; la condition ev0;0 ¤ 0 est alors
automatique), et construisons un nombre réel c00.r/ tel que pour tout L et tout
T0 � nL � c00.r/, les éléments ev0;t WD evt I 0 � t � T0 � 1 de � .L/� sont
linéairement indépendants sur K .

Soit �0 � 1 le plus grand entier tel que les evt I 0 � t � �0�1 soient linéairement
indépendants. Si un élément s de � .L/ s’annule à l’ordre �0 (sous entendu : le long
de OW0), il s’annulera alors à l’ordre �0C1. SoitL0 tel que �0Cn > n.L0C1/ � �0.
Par algèbre linéaire, il existe � 2 � .L0/ non nul annulant les evt ; t � �0 � 1. Pour
tout k tel que L0 C kdeg.r/ � L, .r�Q@/k.�/ est dans � .L/. Notons k1 la partie
entière de .L� L0/= deg.r/.

Comme Q.0/ ¤ 0, on déduit de la relation 8s; .r�
Q@s/:E D Q@.s:E/ et de

l’hypothèse sur ev�0 que � s’annule à l’ordre �0 C k1. Le lemme de zéros donne
�0Ck1 � nL0Cc.r/. Ainsi, k1 � c.r/, et �0 � nL0 � n

�

L� .c.r/C1/deg.r/�.
Pour T0 < nL � c00.r/ avec c00.r/ D n.c.r/ C 1/ deg.r/, on peut donc affirmer
que les evt I 0 � t � T0 � 1 sont linéairement indépendants.
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Si 0 est une singularité de r, on modifie l’argument de la façon suivante, qui
revient à tordre le fibré M par O.�c�/. Soit Q D z�Q1, avec Q1.0/ ¤ 0, et
soit c un entier � 2c.r/. Pour �0 � c� � nL0, il existe � 2 � .L0/ s’annulant
à l’ordre �0 � c� le long de OW0. Alors, Q� WD zc�� 2 � .L0 C c�/ s’annule à
l’ordre �0. Pour tout k < c tel que L0 C c� C kdeg.r/ � L, .r�Q1@

/k. Q�/ est dans
� .L/. Il en découle comme supra que Q� s’annule à l’ordre �0 C k, � à l’ordre
�0 � c� C k, donc �0 � c� C k < nL0 C c.r/. On en déduit en notant k1 la partie
entière de .L � L0 � c�/=deg.r/ que inf.c; k1/ � c.r/, donc k1 < c.r/. Ainsi,
�0 > nL

0 C c� > nL � .n � 1/c� � c00.r/, et c000 .r/ D 2nc00.r/� convient.
Montrons maintenant que si rT1 < nL � c01.r/ avec c01.r/ D 3nc.r/deg.r/,

les evi;t ; i D 1; : : : ; r; 0 � t � T1 � 1 sont linéairement indépendants. Soit �1 � 1
le plus grand entier tel que tous les evi;t ; i D 1; : : : ; r; t < �1 sont indépendants,
tandis que (disons) ev1;�1 en dépende. Soit encore c > 2c.r/ et soit L0 tel que
r�1 C .r � 1/c � nL0. Par algèbre linéaire, il existe � 2 � .L0/ non nul s’annulant
à l’ordre �1 C c le long des Zi ; i D 2; : : : ; r , et à l’ordre �1 le long de Z1. Par
l’argument supra, � s’annule à l’ordre �1 C k le long de tous les Zi tant que k < c

et queL0Ckdeg.r/ � L, et cela impose sous ces contraintes que r.�1Ck/ � nL0C
c.r/ � r�1C.r�1/cCc.r/, d’où k � .1� 1

2r
/c < c. Ainsi, Œ L�L0

deg.r/ � � .2� 1
r
/c.r/

et r�1 � nL � c01.r/.
Le cas général enfin: on va vérifier que la constante Oc.r/ WD sup.c01.r/; c00.r//

répond à la question. Si T0CrT1 � nL� Oc.r/, on a en particulier rT1 � nL�c01.r/,
donc les rT1 évaluations de � .L/ le long de OW1 sont linéairement indépendantes.
Soit �0 le plus grand entier tel que les ev0;t ; t � �0� 1 les complètent en un système
libre. Supposons pour simplifier que 0 n’est pas une singularité (suivre le 2e pas pour
le cas général). Pour c D 2c.r/ et L0 tel que �0 C r.T1 C c/ � nL0, on construit
� 2 � .L0/ s’annulant à l’ordre T1 C c le long de OW1, à l’ordre �0 le long de OW0.
D’où pour tout k < c tel queL0Ck deg.r/ � L, �0CkCr.T1Cc/ � nL0Cc.r/,
imposant k � c.r/, et �0 C rT1 � nL � c00.r/.
Remarque 3. Je préfère donner au lemme la dénomination “annulation” (vanishing
lemma) plutôt qu’“interpolation”, d’abord pour éviter une confusion avec le lemme
d’interpolation du �3, mais surtout parce qu’il exprime l’annulation d’un H1. Plus
précisément, soit JT0;T1 le sous-faisceau de M� des germes de sections s’annulant à
un ordre � T0 le long de OW0, à un ordre � T1 le long de OW1. Supposons M trivial,
de sorte que H1.M�.L// D 0 dès que L > 0. La suite exacte 0 ! JT0;T1 !
M� !M�=JT0;T1 ! 0 fournit après tensorisation par O.L/ une suite exacte

H0.JT0;T1.L// ,! H0.M�.L//! H0..M�=JT0;T1 /.L//!H1.JT0;T1 .L//!0;

où l’on reconnaı̂t en deuxième terme � .L/, en troisième l’espace Ev.T0; T1/ '
CT0 ˚CrT1 (ce toujours sous l’hypothèse E.0/ ¤ 0, qui signifie que OM0= OO0˝ OW0

est sans torsion – condition automatiquement satisfaite au point ordinaire 1), et en
deuxième flèche notre application �.

Un fibré de degré négatif ne peut être engendré génériquement par ses sections
globales. En itérant l’action de la connexion sur les sections de JT 0

0 ;T
0

1
.L0/, on en
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déduit des preuves plus naturelles du lemme de zéros et du lemme d’annulation.
Par exemple, dans le cas élémentaire où r est irréductible et avec c.r/ D
.2deg.r/C 1/n2 D Oc.r/:
– le fibré JT0��n;T1�n.LCndeg.r// est de degré� nL�T0� rT1Cc.r/; donc si

cette expression est négative,H0.JT0;T1 .L// doit s’annuler: de façon équivalente,
� est injective;

– dès que nL�T0� rT1 � Oc.r/, le fibré JT0C�n;T1Cn.L�ndeg.r// a une section
non nulle, donc JT0;T1 .L/ est engendré génériquement par son H0, et son H1

s’annule: de façon équivalente, � est surjective.

Même dans le cas général, la situation est plus simple que pour les groupes
algébriques [F]: si nos fibres sont de dimension n plutôt que 1, notre base, de
dimension 1, ne nécessite pas de recourir à la théorie de l’intersection; elle devrait
de plus permettre de passer par dualité de Serre de l’un à l’autre des énoncés.

Remarque 4 (en guise de conclusion). Le fait que le théorème de Siegel–Shidlovsky
porte sur des connexions à singularités irrégulières a limité son impact en géométrie
algébrique. Était-ce dans cette direction qu’allait la suggestion proposée par P.
Cartier à S. Lang, et dont personne ne se souvient (voir [W], �1) ? On peut en tous
cas espérer que l’ébauche esquissée par Deligne d’une théorie de Hodge irrégulière
lui fournira de nouveaux champs d’applications. Ainsi (voir [D], I.�4 ou II.�8), les
valeurs J0.�/ D Res0.etC

�
t dt/ de la fonction de Bessel (resp. de sa dérivée J1.�/)

s’interprètent dans cette théorie comme des quotients par 2i� de périodes de formes
de première (resp. deuxième) espèce généralisées le long d’un cycle invariant sous
la monodromie, et le théorème de Siegel montre que—comme pour une courbe
elliptique définie sur Q.�/—ces périodes sont linéairement indépendantes sur Q
quand � est un nombre algébrique. Leur transcendance, et celle de leurs autres
périodes, ne sont pas encore connues.
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Abstract Let G D SO3.C/, � D SO3.ZŒi�/, K D SO.3/, and let X be the locally
symmetric space � nG=K . In this paper, we present a relationship between the
heat kernel on SL3.C/ and SO3.C/. We write down explicit equations defining a
fundamental domain for the action of � on G=K . The fundamental domain is well
adapted for studying the theory of � -invariant functions on G=K . We write down
equations defining a fundamental domain for the subgroup �Z D SO.2; 1/Z of �
acting on the symmetric space GR=KR, where GR is the split real form SO.2; 1/
of G and KR is its maximal compact subgroup SO.2/. We formulate a simple
geometric relation between the fundamental domains of � and �Z so described.
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General introduction

While Serge Lang and Jay Jorgenson were working towards a derivation of a
theta relation and the Selberg zeta function associated to SLn.ZŒi�/nSLn.C/=SU.n/
from the Selberg trace formula applied to the heat kernel (see the books [20],
[18], [17], and [19]) they envisioned a similar “ladder” of trace formulas and zeta
functions associated to the groups SOn.ZŒi�/nSOn.C/=SOn.R/ (see the introduction
to [19]). They suggested to us that we attempt to complete that project, starting with
the base case of SO3.ZŒi�/nSO3.C/=SO3.R/. This paper consists of two distinct
but interrelated parts of this project that have been completed to date. Section
1 constructs the heat gaussian (from which the heat kernel may be derived in
an entirely standard way, as on p. 48 of [19]) on SO3.C/. In analogy with the
� nSL2.C/=SU.2/ project, this section has the same purpose (though it follows a
different method) as �2.5 of [19]. Section 2 constructs a fundamental domain for
the action of the discrete group. In particular, it investigates the group structure
and a fundamental domain for SO3.ZŒi�/ acting on the symmetric space. Also,
considered in this section is the “real form” SO.2; 1/ZnSO.2; 1/=SO3.R/ (shown
to be a hyperbolic surface with one cusp), which can be considered the base case
of another ladder SO.p; q/ZnSO.p; q/=SO.p C q/ of locally symmetric spaces.
This section corresponds in function to Chapter VI and parts of Chapter IX of [19],
although again the method is different, relying directly on an explicit isomorphism
of � D SO.3;ZŒi�/with a particular Kleinian group (described in �2.1) rather than a
direct construction. For much more extensive comments concerning the motivation,
context, methods, and possible continuation of the work towards the theta relation,
see the introductions preceding each of the two parts.

Acknowledgements We would like to thank the editors for providing this opportunity to honor
Serge’s memory and legacy, and to thank Jay Jorgenson in particular with whom we spent much
time thinking about the ideas related to this paper. The first author gratefully acknowledges the
financial support of the Center for Advanced Studies in Mathematics at Ben-Gurion University,
which made this collaboration possible.

1 Obtaining the heat kernel by integration over
a normal bundle

We take as our starting point knowledge of the heat gaussian via explicit formulas,
on SLn.C/=SU.n/, for which see [20] in general and [19], �2.5, for the special
case of n D 2. Our viewpoint will be that one can obtain the heat kernel of the
noncompact symmetric space SOn.C/=SO.n/ by embedding SOn.C/ in the larger
group SLn.C/ and integrating the heat gaussian on SLn.C/=SU.n/ along certain
normal fibers.

Consider the following general setup. LetG1 � G be noncompact real reductive
Lie groups. It is possible to choose a maximal compact subgroup K of G so that
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K1 WD G1 \K is a maximal compact subgroup of G1. In our setup we also assume
there exists another, not necessarily reductive, group H � G such that G has a
smooth decomposition G D HG1K . This then yields a product decomposition on
the level of symmetric spaces G=K ' Y � G1=K1, where Y is some quotient of
H . Projecting onto the second component, one obtains a projection � W G=K �!
G1=K1. Viewing the heat kernel as a probability measure�t onG=K , the question is
whether the push-forward of �t under � is equal to the heat kernel onG1=K1. If one
prefers to think of the heat kernel (or more precisely, heat gaussian) as a family of
functions ht , then the push-forward becomes “integrating over the normals.” More
precisely, define the function hHt on G1=K1 by

hHt .g1/ D
Z

H

ht .hg1/dh: (1)

The question is under what conditions on G, G1 is hHt the heat gaussian on G1.
There are two main classes of examples where one does in fact obtain the heat

kernel on G1 in this fashion. The specific example SO3.C/ � SL3.C/ in this paper
does not belong to either class and seems to be a low-dimensional coincidence. See
comments at the end of the paper for further discussion.

The simplest class is that in which G1 is a Levi component of a parabolic
subgroup ofG andH is the nilradical of the parabolic. The push-forward is realized
as an integral over the orbits of the nilpotent group H that are perpendicular to
G1=K1. Note that the case of .2n � 1/-dimensional hyperbolic space sitting inside
2n-dimensional hyperbolic space has a similar, though distinct, setup.

The second main class is what Flensted-Jensen worked on, where G1 is a real
form of G and H D KC

1 , the complexification of a maximal compact subgroup of
G1. Here the push-forward becomes integrals over spaces traced by the H -orbits of
points in G1=K1. Except for the H -orbit through eK1, which is isomorphic to the
symmetric space H=K1, these H -orbits are not composed of geodesics. They are
rather built of paths that are perpendicular to G1=K1 and that maintain a constant
distance from symmetric space which is the H -orbit through the identity. In this
case there is a subtlety as to how the above integral describes the heat Gaussian: the
value of the heat Gaussian at g1g�1 2 G1=K1 is actually determined by the H -orbit
through the coset determined by g1.

The case of SO3.C/ � SL3.C/ examined here is structurally very similar to
Flensted-Jensen’s case. The decomposition he uses, G D HG1K , depends only on
G1 being the fixed-point set of an involution of G, and not necessarily a real form.
This naturally led to the hope of expanding Flensted-Jensen’s results to encompass
any G1 � G which is the fixed point set of an involution. Unfortunately, it does
not seem to work in general, with the present case SO3.C/ � SL3.C/ being a low-
dimensional exception. It is noteworthy that in this case, it is the value of the heat
Gaussian at .g1g�1 /2 2 G1=K1 that is determined by the H -orbit through the coset
determined by g1. For further discussion of this phenomenon, see comments at the
end of the paper.
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Finally, we mention that in both of the above cases, there is also a functorial
action in the other direction: the pull-back under � takes eigenfunctions of the
invariant differential operators on G1=K1 to eigenfunctions on G=K . In the case
that G1 comes from a parabolic subgroup this corresponds to parabolic induction
of representations. When G1 is a real form of G there seems to be some kind of
base-change principle at work. It is not yet clear whether the new example here has
some similar interpretation, perhaps being related to the symmetric square lifting.

A closed-form formula for the heat kernel on SO3.C/ can already be deduced
from the formulas of Gangolli for the heat kernel on a complex Lie group: cf. [12].
The point of this paper is to show how a relationship between the heat kernel on
classical groups may arise naturally through the push-forward of the heat kernel
under projection along orbits of the linear group and to place this fact in the context
of similar phenomena for different projections. Though Serge’s original hope of
obtaining all heat kernels of symmetric spaces as the “homomorphic image” of the
heat kernel of SLn.C/ seems to be too much to ask for, it would be nice to have a
more fundamental understanding of precisely what specific conditions are needed
on a double coset decompositionG D HG1K to ensure that the resulting projection
does map the heat kernel of G to the heat kernel of G1.

1.1 Setup and notation

Let G D SL3.C/ and let �.g/ D .g�/�1 define the standard Cartan involution.
Then K D G� D SU.3/ is a maximal compact subgroup of G. We let A and N
be the subgroups of positive real diagonal matrices and upper triangular unipotent
matrices respectively. As is well known, G has the Iwasawa decomposition G D
NAK , which is unique, and the Cartan decomposition G D KAK , in which the A
component is unique up to permutation of its entries.

Let J be the symmetric matrix given by antidiag.1;�1; 1/. Then J defines a
conjugation of G by g� D J NgJ�1, where bar denotes complex conjugation of each
entry of g. Note that J D J�1. We then obtain a third involution, 	 , by composing
� and � : g	 D g�� D J tg�1J . The group fixed by 	 , G1 D G	 , is then a J
conjugate of the standard embedding of SO3.C/. The advantage of working with
this conjugate is that its Iwasawa decomposition is compatible with the standard
Iwasawa coordinates of G. On the Lie algebra level we have 	.X/ D �J tXJ and
g1 is the set of all matrices of the form

0

@

a b 0

d 0 b

0 d �a

1

A :

G1 has Iwasawa and Cartan decompositions just like G, where N1;A1; and K1 are
obtained by intersecting N;A, and K with G1.
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Let H D G� , which is isomorphic to SL3.R/. There is a generalized Cartan
decomposition G D HA1K in which the A1 component is unique up to the action
of W1, the Weyl group of SO3.C/. This result is due to Flensted-Jensen [9], though
the main content can already be found in Mostow [22]. Later, we will use this
decomposition to compare the Casimir operators of G and G1. First we need to
decompose g and g1 under the bracket action of a1.

It is immediate that a1 acts on n1, the Lie algebra ofN1, by scalar multiplication.
If Y1 2 a1 is the matrix diag.t; 0;�t/, then for any element Z 2 n1, ŒY;Z� D
˛1.Y /Z D tZ. Furthermore, the corresponding eigenspace is of real dimension 2.

Decomposing all of n, the Lie algebra of N , under a1 is only slightly more
complicated. The eigencharacter ˛1 corresponds to an eigenspace of real dimension
4, and the eigencharacter ˛2 D 2˛1 has eigenspace of real dimension 2. Observe
that of the ˛1 eigenspaces, two are fixed by 	 , and two have eigenvalue�1 under 	 .
For ˛2, both eigenspaces have eigenvalue�1 under 	 .

1.2 Integral formulas

For the main result, we will need to fix a normalization of measures and obtain
an integral formula for the generalized Cartan decomposition above. We fix the
invariant measure to be 1 on all nondiscrete compact groups and spaces. LetB (resp.
B1) be a positive multiple of the Killing form of g (resp. g1). Then Bjg1 D c0B1.
The form B (resp. B1) is positive definite on a (resp. a1) and we use the exponential
map to push forward the Euclidean measure on a (resp. a1) to a Haar measure da
on A (resp. da1 on A1). We now define the Haar measure dg on G such that

Z

G

f .g/dg D
Z

K

Z

A

Z

K

f .kak0/J.a/dk da dk0

for any continuous f with compact support. Here, J.a/ is the standard Jacobian
of the Cartan decomposition G D KAK , cf. [15] for example. We normalize the
measure on G1 in the same way and note that in this case, the Jacobian J1 is simply

J1.a1/ D sinh2 ˛1.log a1/:

The exponent 2 comes from the fact that the ˛1-eigenspace has dimension 2.
Fix an arbitrary Haar measure dh onH . Flensted-Jensen computed the Jacobian

for the generalized Cartan decomposition above; cf. [10] Theorem 2.6. In our
specific case, the relevant integral formula becomes the following.

Proposition 1.1. Given the above normalization of measures, there exist a function
J 0 and a constant c such that for all continuous functions on G with compact
support we have:

1.
R

G
f .g/dg D R

H

R

A1

R

K
f .ha1k/J

0.a1/dkda1dh:
2. J 0.a1/ D cJ1.a41/:
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Proof. The first statement is standard abstract nonsense following from the smooth
decompositionG D HA1K . That the Jacobian J 0 does not depend on theH andK
coordinates is a simple consequence of theG-bi-invariance of the Haar measure dg.
The specific form of J 0 is immediate from [10], Theorem 2.6, the fact that ˛2 D 2˛1,
and basic hyperbolic trigonometric identities. Note that the constant c will depend
on the specific measure dh that was selected.

1.3 Differential operators and the heat kernels

With measures fixed, all that is needed to define the heat kernel is the second-order
Casimir operator. Given an element Z 2 g, define the left-invariant differential
operator

QZ.f /.g/ D @tf
�

getZ
�jtD0;

where f is any smooth function on G. The form B introduced above is nondegen-
erate on g and positive definite on a, so we can use it to identify a and its dual. In
particular, we define Y˛ to be the unique element in a such that B.Y˛;X/ D ˛.X/

for every X 2 a. We remind the reader that the second-order Casimir operator of
SL3.C/, !, is defined by

! D
dimg
X

iD1
QZ0i QZi ; (2)

where fZi g is any basis of g and fZ0ig is the dual basis under B . The second-order
Casimir of SO3.C/, !1, is obtained by inserting subscripts 1 everywhere in (2),
taking care to use the form B1 in calculating the dual basis. Note that there is some
positive constant c0 such that Bjg1 D c0B1.

For our main result, we will compare the direct images of ! and !1 to A1.
Suppose we are given a function f1 on A1 that is invariant under the action of
W1. Using the generalized Cartan decomposition G D HA1K , we extend f1 to
a function on G by defining Qf1.ha1k/ D f1.a1/: Given a differential operator D
which is right K- and left H -invariant, the function D Qf1 is again a W1 invariant
function onA1. Given anH -left-invariant,K-right-invariant differential operator on
G, we can now project it to a differential operator on A1. Given such a differential
operatorD, we define its A1 projection QD by QDf1.a1/ D D Qf1.a1/, which is then a
differential operator on A1; cf. [25] for a more formal treatment.

Applying this to !, it is a result of van den Ban and Schlichtkrull [25] that the
direct image of ! to A1 is

Q! D 1

c0
�

!A1 C 2.coth˛1 C tanh˛1/ QY˛1 C 2.tanh˛2/ QY˛2
�

; (3)
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where !A1 is the Casimir (i.e., Laplacian) of A1 determined by the form B1 and
the Y˛i are the vectors dual to ˛i under B1 for i D 1; 2. Since coth x C tanhx D
2 coth 2x and 2 QY˛1 D QY˛2 , we can simplify to obtain

Q! D 1

c0
.!A1 C 8 coth 4˛1 QY˛1/: (4)

We remind the reader of the standard result, cf. [15], that the direct image of !1 to
A1 using the G1 D K1A1K1 decomposition (i.e., the radial component of !1) is
given by

Q!1 D !A1 C 2 coth˛1 QY˛1 : (5)

We can now state the main theorem.

Theorem 1.2. Let f be a K1-bi-invariant function on G1 and F be an H -left-
invariant,K-right-invariant function on G such that for a1 2 A1,

F.a1/ D f .a41/:

Then

.!F /.a1/ D 16

c0
.!1f /.a

4
1/:

Proof. This is essentially freshman calculus. It is easier to work on a1, with
a1 D eY1 and viewing F and f as functions on a1. Under this transformation, !A1
becomes the standard Laplacian on a1, which we denote by 
a1 , and QY˛1 becomes
the standard directional derivative in the Y˛1 direction.

As a mental aid for the computation, we write F D f ı 4, where “4” means
multiply the variable by 4. Evaluating .!F /.Y1/ term by term, we get

.
a1F /.Y1/ D .
a1f ı 4/.Y1/ D 16.
a1f /.4Y1/; (6)

8 coth 4˛1.Y1/.@Y˛1 F /.Y1/ D 32 coth4˛1.Y1/.@Y˛1 f /.4Y1/: (7)

Combining (4), (6) and (7) and using the fact that 4˛1.Y1/ D ˛1.4Y1/, the theorem
is immediate.

This relationship between Casimir operators on G and G1 leads immediately to
a relationship between the solutions of their respective heat equations. We remind
the reader that the heat Gaussian ht ; t > 0 on G is the unique family of positive
K-bi-invariant functions such that !ht D @tht , with total integral 1 for all t , and
such that ht approaches the Dirac distribution as t approaches zero.

Theorem 1.3. Let ht be the heat Gaussian of G. Then the restriction to A1 of the
heat Gaussian of G1 is given by

h1;t .a41/ D
4

c

Z

H

h tc0

16
.ha1/dh:
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Proof. We first verify that h1;t satisfies the heat equation on G1. Let

gt .g/ D
Z

H

h tc0

16
.hg/dh

denote the left H -average of h tc0

16
considered as a function on all of G. Then

.@th1;t /.a41/ D .@t gt /.a1/ D
Z

H

@th tc0

16
.ha1/dh D c0

16

Z

H

!h tc0

16
.ha1/dh

D c0

16
!

Z

H

h tc0

16
.ha1/dh D .!h1;t /.a41/:

Let F and f be as in Theorem 1.2. To see that the total integral of h1;t is equal to
1 for all t , we use the integration formulas associated to the Cartan and generalized
Cartan decompositions. Using the fact that ˛2 D 2˛1, we see that

Z

G

F.g/dg D c
Z

a1

F .eY1 / sinh2 ˛1.4Y1/dY1 D c

4

Z

a1

f .eY1 / sinh2 ˛1.Y1/dY1

D c

4

Z

G1

f .g1/dg1:

This proves the theorem. ut
We have deliberately left the constants c and c0 undetermined so that one can

see directly how their choice of normalizations will affect the relationship between
heat gaussians. However, the exponent of 4 on the left-hand side of Theorem 1.3 is
structural and cannot be modified. Note that the number 4 also makes an appearance
in Proposition 1.1 that is critical to the above proof.

The number 4 appears in another context that we have not yet mentioned. Let �
(resp. �1) be the sum of all the characters occurring in the decomposition of a (resp.
a1) acting on n (resp. n1). Then

�ja1 D 4�1:

Though it is not clear exactly how these two coefficients are related, it is more than
coincidence. Indeed, in the case of Flensted-Jensen’s work, where G1 is a real form
of G, the exponent of a1 occurring in the theorem analogous to Theorem 1.3 above
(cf. [9] Theorem 6.1) is 2. There is a similar relationship between �’s given by

�ja1 D 2�1:

Finally, in the case that G1 arises as the semisimple part of a parabolic subgroup of
G, no exponent is needed on a1, and we have

�ja1 D �1:
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It was stated in the introduction that it is not possible to extend Flensted-Jensen’s
results to the case that G1 is the fixed-point set of an arbitrary involution. The next-
simplest case to check is that of G1 D SO5.C/ � SL5.C/ D G. Though there is a
nice decompositionG D HG1K , the associated projection of differential operators
does not yield a relationship between Casimir’s, similar to that of Theorem 1.2 so
one cannot even get started in relating the heat kernels. We also note that in this case,
the restriction of � to a1 is not a multiple of �1. One encounters similar obstructions
for other cases.

2 Fundamental Domains for SO3.ZŒi�/nSO3.C/=SO.3/,
and for SO.2 ; 1/ZnSO.2 ; 1/=SO.2/

The first author has undertaken, in Chapter 1 of [6], a generalization of the classical
theory of Ford fundamental domains (see �2.2 of [16]) for Fuchsian groups to
a wide class of group actions including, in particular, �n D SLn.ZŒi�/ acting
on Gn D SLn.C/=SU.n/ and GL.n;Z/ acting on GL.n;R/=SO.n/. The present
section carries out this theory in a very explicit manner in one concrete, low-
dimensional case. This endeavor lies sufficiently outside the mainstream of the
modern theory of automorphic forms that we find it necessary to preface the
exposition with some remarks concerning the envisioned uses of such an explicit
fundamental domain.

In the case of GL.n;Z/ acting on GL.n;R/=SO.n/, the fundamental domains
obtained in [6] coincide with the Fn studied by D. Grenier in [13] and [14] (allowing
for the isomorphism of the symmetric space G=K with the quadratic model P ).
For this reason, we adopt the terminology Grenier domains for the generalized
Ford domains. A major theme of Grenier’s work in these articles is that the Fn
for different n are best considered as part of an inductive scheme, since Fm for
m < n appear both in the definition of Fn and in his construction of the Satake
compactifications of the locally symmetric space GL.n;Z/nGL.n;R/=SO.n/. The
base case of Grenier’s inductive scheme is (ignoring the center of GL.n;R/)
provided by Dirichlet’s classical fundamental domain for SL2.Z/ acting on the
upper half-plane. The results of this paper may be viewed as providing the base case
for an inductive scheme of the same type corresponding to the sequence of locally
symmetric spaces in (93), below. Note that the base case for this “orthogonal”
sequence is considerably more complicated than the base case for Grenier’s “general
linear” sequence.

We take advantage of the well-known isomorphism

SL2.C/=f˙I g Š�! SO3.C/;

specified at the beginning of �2.1, to identify the lattice SO3.ZŒi�/ with a group of
fractional linear transformations acting on H

3. The concrete outcome of the present
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section is to state explicitly what this arithmetic subgroup is in explicit matrix
terms (Proposition 2.8) and give an appropriate fundamental domain, F .G /, for
the natural action on hyperbolic 3-space (Proposition 2.19). The reader who is solely
interested in this result may wish simply to read 2.3, which is self-contained, and see
the interactive graphics representation of the fundamental domain F .G /, available
on the internet at [3].

Following J.S. Friedman, A.B. Venkov, and A. Selberg, one defines the three-
dimensional vector Selberg zeta function associated to a Kleinian group � and
a unitary representation � of � by

Z�;�.s/ D
Y

fg

1Y

kD0
det.1� �./N0./�s�k/; for Res � 0: (1)

In (1), called an “Euler project” expression, fg ranges over � -conjugacy classes
of primitive hyperbolic elements in � and N0./ denotes the length of the closed
geodesic on � nG=K corresponding to  . The meromorphic continuation of Z�;�
(or, more precisely, of its logarithmic derivativeZ0=Z) to the entire complex domain
is closely related to an explicit form of the Selberg trace formula, worked out, for
example, in [11] in parallel to [8]. It is of obvious interest to obtain relations between
the Z�;� of the members of a pair of lattices .�; � 0/, where � and � 0 are related
in various ways. For example, in the case of .�; � 0/ a pair of Fuchsian groups, with
� 0 � � and Œ� W � 0� <1 (with Z�;� defined similarly for Fuchsian groups), [26]
gave a formula which is loosely called a “factorization formula,” because in the case
� 0 normal in � , it specializes to a bona fide factorization of Z� 0;� as the product
of the Z�;�i , where �i ranges over the irreducible direct summands of Ind�� 0�.
In [5], we extended the factorization formula, now called “Artin formalism”, to
arbitrary pairs .�; � 0/ of commensurable Kleinian groups, dropping the assumption
of normality. It is clear from the definition (1) that in order to apply the Artin
formalism to particular pairs, such as

�

c�1.SO3.ZŒi�//;PSL2.ZŒi�/
�

, one needs to
develop concrete understanding of the relations between the hyperbolic conjugacy
classes of the groups in question. Proposition 2.8, below, lays the foundations for
that study. In �7 of [4] we derive formulas for the Selberg zeta function of SO3.ZŒi�/
(resp. SO.2; 1/Z) in terms of PSL2.ZŒi�/ (resp. PSL2.Z/).

In �2.6, we discuss the application of fundamental domains to the study of a more
general class of spectral zeta functions.

Based on the SLn=GLn examples in the literature, one can speculate on future
applications of exact fundamental domains to traditional problems in number theory.
Some diverse examples of applications of Grenier’s domain for GLn.Z/, acting on
the space of positive definite real matrices Pn, include the proof in [7] of a bound
on the first nontrivial eigenvalue of the Laplacian for the case n D 3 and the inves-
tigations of [23] into the minima of Epstein’s zeta function. D. Hejhal’s pioneering
work in the 1970s on explicit computer calculations of eigenvalues of the Laplacian
acting on Maass forms relied on an explicit reduction algorithm for identifying an
element of the quotient SL2.Z/nH2 with a point in the Dirichlet domain. As part
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of ongoing renaissance of this field of explicit computer computations related to
automorphic forms (for a broad survey of which see the speakers and talks of
the 2009 Séminaire de Mathématiques Supérieures, “Automorphic Forms and L-
Functions: Computational aspects”, [24]), several generalizations of this explicit
reduction algorithm have been developed and more will be needed. At the moment
the subject of explicit computation of automorphic forms for groups of higher-rank
remains in its infancy. It seems likely that as the detailed study of automorphic
functions on quotients of SOn.C/ and its real forms becomes more developed, the
exact fundamental domains, which the present paper specifies in the “base case”
n D 2, will play a large role in investigating certain zeta functions associated to
these arithmetic quotients.

We mention the relation of Propositions 2.8, 2.19, and 2.27, below, to some
results already in the literature. First, M. Babillot, in Lemma 3.2 of [1], constructs a
fundamental domain for SO.2; 1/Z acting naturally on the hyperboloid of one sheet.
The method there bypasses results like Propositions 2.8 and 2.19 by embedding
SO.2; 1/Z as a subgroup of a triangle group of index two. The fundamental domain
so obtained is used to give a constructive proof that SO.2; 1/Z acts with finite
covolume, so that a general theorem can be applied to solve a lattice-point counting
problem. Also, there is a well-developed theory of splines, which are models for
the arithmetic quotients of Q-rank-one groups, in a way different from, but related
to, (Grenier) fundamental domains. For a recent treatment with a general existence
theorem and references, see [27]. It would be interesting (and possibly useful for
cohomology calculations of the sort undertaken in [28]) to determine precisely the
relation of “duality” that seems to exist between the splines and Grenier fundamental
domains. However, this is more relevant to higher rank, and therefore, belongs more
to the continuation of the study undertaken in [6] than to the study at hand.

The verifications of all the principal propositions of the present paper are
elementary, though lengthy, and they are not needed for the envisioned applications
of the results. Accordingly, many details of proofs are omitted and the interested
reader is referred to the electronically archived preprint [2] for them.

2.1 Representation of SO3.ZŒi�/ as a lattice in SL2.C/

We begin by establishing some basic notational conventions. Let n be a positive
integer and o a ring. We will use Matn.o/ to denote the set of all n � n square
matrices with coefficients in o. We reserve use the Greek letters ˛, and so on, for the
elements of Matn.o/, and the roman letters a; b; c; d , and so on, for the entries of the
matrices. We will denote scalar mutliplication on Matn.o/ by simple juxtaposition.
Thus, if o D ZŒi�, ` 2 ZŒi�, and ˛ 2 Mat2.ZŒi�/, then

˛ D
�

a b

c d

�

implies `˛ D
�

`a `b

`c `d

�

:
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The letters p; q; r; s will be reserved to denote a quadruple of elements of o such that
ps � rq D 1. In what follows, we normally have o D ZŒi� whenever ˛ is written
with entries p through s. Therefore,

˛ D
�

p q

r s

�

2 SL2.ZŒi�/;

unless stated otherwise.
We will denote a conjugation action of a group on a space V by cV when the

context makes clear what this action is. For example, if H is a linear Lie group and
h the Lie algebra ofH , then we have

ch.h/X D hXh�1; for all h 2 H; X 2 h:

Note that the morphism ch.h/ is the image under the Lie functor of the usual
conjugation cH.h/ on the group level. Using SL.V / to denote the group of
unimodular transformations of a vector space V , it is easy to see that

ch W H ! SL.h/ is a Lie group morphism: (2)

Henceforth, wheneverH is a group acting on a Lie algebra h by conjugation, we
will omit the subscript h. Thus, we define

c WD ch

when we are in the situation of (2).
Except in �2.2, we will use the notationG D SO3.C/, � D SO3.ZŒi�/. We use B

to denote the half-trace form on sl2.C/, the Lie algebra of traceless 2 � 2 matrices.
That is,

B.X; Y / D 1

2
Tr.XY /:

We use the notation ˇ0 D fX 01; X 02; Y 0g for the “standard” basis of sl2.C/, where

X 01 D
�
0 1

0 0

�

; X 02 D
�
0 0

1 0

�

; and Y 0 D
�
1 0

0 �1
�

: (3)

The following properties of B are verified either immediately from the definition
or by straightforward calculations.

B1 B is nondegenerate.
B2 Setting

X1 D X 01 CX 02; X2 D i.X 01 �X 02/; and Y D Y 0; (4)

we obtain an orthonormal basis ˇ D fX1;X2; Y g with respect to the bilinear
form B .
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B3 B is invariant under the conjugation action of SL2.C/, meaning that

B.X; Y / D B.c.g/Z; c.g/W /; for all Z;W 2 sl2.C/; g 2 SL2.C/:

By B3, c is a morphism of SL2.C/ into G. The content of part (a) of
Proposition 2.1 below is that the morphism c just described is an epimorphism.

As a consequence of B1 and B2, we have that

B.x11X1Cx12X2Cy1Y; x21X1Cx22X2Cy2Y / D x11x21Cx12x22Cy1y2; xij ; y 2 C:

(5)
For any bilinear form B on a vector space V , we use O.B/ to denote the group
of linear transformations of V preserving B , and we use SO.B/ to denote the
unimodular subgroup of O.B/. If B is as in (5), then the isomorphism

SO.B/ Š G (6)

induced by the identification of the vector space sl2.C/ with ChX1;X2; Y i puts a
system of coordinates on G. Part (b) of Proposition 2.1, below, will describe the
epimorphism c W SL2.C/! G in terms of these coordinates.

Proposition 2.1. With G, c as above, we have

(a) The map c induces an isomorphism

SL2.C/=f˙I g Š�! G

of Lie groups.
(b) Relative to the standard coordinates on SL2.C/ and the coordinates on G

induced from the orthonormal basis ˇ of sl2.C/, as defined in (4), the
epimorphism c W SL2.C/! G has the following coordinate expression:

c
��
a b

c d

��

D

0

B
B
@

a2�c2Cd2�b2
2

i.a2�c2Cb2�d2/
2

cd � ab
i.b2Cd2�a2�c2/

2
a2Cc2Cb2Cd2

2
i.ab C cd/

�ac C bd i.ac C bd/ ad C bc

1

C
C
A
: (7)

We establish some further notational conventions regarding conjugation mappings.
Whenever a matrix group H has a conjugation action cV on a finite-dimensional
vector space V over a field F , each basis ˇ of V naturally induces a morphism

cV;ˇ W H ! GLN .F /; where N D dimV: (8)

Let ˇ, ˇ0 be two bases of V . Write ˛ˇ 7!ˇ0 for the change-of-basis matrix from ˇ to
ˇ0. That is, if ˇ, ˇ0 are written as N -entry row vectors, then

ˇ˛ˇ 7!ˇ0 D ˇ0: (9)



82 E. Brenner and A. Sinton

Then elementary linear algebra tells us that

cV;ˇ D cGLN .F /

��

˛ˇ 7!ˇ0
��1�

cV;ˇ0 D cGLN .F /

�

˛ˇ
0 7!ˇ

�

cV;ˇ0 : (10)

Assuming that cV is injective, and writing c�1V for the left inverse of cV , we calculate
from (10) that

cV;ˇc�1V;ˇ0 2 Aut.GLN .F // is given by cGLN .F /

�

˛ˇ 7!ˇ0
�

: (11)

In keeping with the practice established after (2), we will omit the subscript h when
H is a Lie group acting on its Lie algebra by conjugation. Thus, for any basis ˇ
of h,

cˇ WD ch;ˇ:

Generally speaking, whenever we fix a single basis ˇ for h we will blur the
distinction between c and cˇ . For example, in this paper, whenever H D SL2.C/
and V D Lie.H/, we will write c to denote both the “abstract” morphism c of
H into Aut.V / and the linear morphism cˇ of H into GL3.C/, where ˇ is the
orthonormal basis for Lie.H/ defined in (4). Whenever the linear morphism into
GL3.C/ is induced by a basis ˇ0 ¤ ˇ, the notation cˇ0 will be used.

We now turn our attention to the description of the inverse image c�1.� / as
a subset of SL2.C/=f˙I g with respect to the standard coordinates of SL2.C/.
According to Proposition 2.1, this amounts to describing the quadruples

.a; b; c; d / 2 C
4; with ad � bc D 1, and the entries of the right side

of (7) integers. (12)

Describing the quadruples meeting conditions (12) will be the subject of the
remainder of this section, culminating in Proposition 2.8.

Conventions regarding multiplicative structure ofZŒi�. Before stating the propo-
sition, we establish certain conventions we will use when dealing with the multi-
plicative properties of the Euclidean ring ZŒi�. First, it is well known that ZŒi� is a
Euclidean, hence principal, ring. That ZŒi� is principal means that all ideals I of
ZŒi� are generated by a single elementm 2 ZŒi�, so that every I is of the form .m/.
However, there is an unavoidable ambiguity in the choice of generators caused by
the presence in ZŒi� of four units, ij , for j 2 f0; : : : ; 3g, in ZŒi�. We will adopt the
following convention to sidestep the ambiguity caused by the group of units.

Definition 2.2. We refer to the following subset of C� as the standard subset:

fz 2 C
� j Re.z/ > 0; Im.z/ � 0g: (13)
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That is, the standard subset of C� is the union of the interior of the first quadrant
and the positive real axis. An element of ZŒi� in the standard subset will be referred
to as a standard Gaussian integer, or more simply as a standard integer when the
context is clear.

Because of the units in ZŒi�, each nonzero ideal I of ZŒi� has precisely one
generator which is a standard integer. Henceforth, we refer to the generator of I
which is a standard integer as the standard generator of I . Unless otherwise
stated, whenever we write I D .m/, to indicate the ideal I generated by an
m 2 ZŒi�, it will be understood that m is standard. Conversely, whenever we write
an ideal I in the form .m/, it will be understood that m is the standard generator
of I . Thus, for example, since .1 � i/ D i3.1 C i/ with 1 C i standard, we write
I DW .1� i/ZŒi�, defined as the ideal of Gaussian integers divisible by 1� i, in the
form I D .1C i/.

Similar comments apply to Gaussian primes, factorization, and greatest common
divisor in ZŒi�. By a “prime in ZŒi�” we will always mean a standard prime. By
“prime factorization” in ZŒi� we will always mean factorization into a product of
standard primes, multiplied by the appropriate unit factor. Note that the convention
regarding standard primes uniquely determines the unit factor in a prime factoriza-
tion. For example, since

2 D i3.1C i/2

and .1 C i/3 is standard, the above expression is the standard factorization of the
Gaussian integer 2, and i3 is uniquely determined as the standard unit factor in the
prime factorization of 2 2 ZŒi�.

By convention, unless stated otherwise, the “trivial ideal” ZŒi� will be understood
to belong to the set of ideals of ZŒi�. The standard generator of the trivial ideal ZŒi�
is, of course, 1.

To facilitate the statement of Proposition 2.8, we estblish the following conven-
tions. First, we use !8 to denote the unique primitive eighth root of unity in the
standard set of C�. Observe that

!8 D
p
2

2
.1C i/; and !28 D i: (14)

The SL2.ZŒi�/-space MN
2

.

Definition 2.3. For N 2 ZŒi�, MN
2

will denote the subset of Mat2.ZŒi�/ consisting
of the elements with determinant N . Since the group SL2.ZŒi�/ acts on MN

2 by
multiplication on the left, MN

2 is an SL2.ZŒi�/-space.

It is not difficult to see that the action of SL2.ZŒi�/ on MN
2 fails to be transitive,

so MN
2 is not an SL2.ZŒi�/-homogeneous space. The purpose of the subsequent

definitions and results is to give a description of the orbit structure of the SL2.ZŒi�/-
space MN

2 .
Let

˝y WD a fixed set of representatives of ZŒi�=.y/; for all y 2 ZŒi�: (15)
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It is clear that for each y 2 ZŒi�, there exists a number of possible choices for ˝y .
For the general result, Proposition 2.6, below, the choice of ˝y does not matter,
and we leave it unspecified. However, in the specific applications of Proposition
2.6, where y is always of the form y D .1C i/n for n a positive integer, it will be
essential to give an ˝y explicitly, which we now do.

So let n 2 N, n � 1. In the definition of ˝.1Ci/n , we use the “ceiling” notation,
defined by

dqe D smallest integer � q, for q 2 Q.

Now set

˝.1Ci/n D
n

r C si with r; s 2 Z, 0 � r < 2d n2 e, 0 � s < 2n�d n2 e
o

: (16)

The definition is justified by Lemma 2.4, below.

Lemma 2.4. For n � 1 an integer, let ˝.1Ci/n be defined as (16). Then

˝.1Ci/n is a complete set of representatives of ZŒi�=..1C i/n// for all n:

Definition 2.5. Let N 2 ZŒi� be fixed, and for each y 2 ZŒi� let ˝y be as in (15).
Define the matrix ˛N.m; x/ 2 MN

2 as follows:

˛N.m; x/ D
�
m x

0 N
m

�

; for m 2 ZŒi�; mjN; x 2 ˝N
m
: (17)

It is trivial to verify that ˛N.m; x/ as given by (17) indeed has determinant N , i.e.,
˛N.m; x/ 2 MN

2 . The point of Definition 2.5 is given by the following proposition.

Proposition 2.6. For N 2 ZŒi� � f0g, let MN
2 be the SL2.ZŒi�/-space of matrices

with entries in ZŒi� and determinant N . Define the matrices ˛N.m; x/ as in (17).
Then

MN
2 D

[

m2ZŒi�j mjN;
N
m standard

	
[

x2˝N
m

	 SL2.ZŒi�/˛N.m; x/; (18)

and (18) gives the decomposition of the SL2.ZŒi�/-space MN
2 into distinct SL2.ZŒi�/-

orbits.

We now make some comments concerning the significance of Proposition 2.6.
First, a statement equivalent to Proposition 2.6 is that an arbitrary ˛ 2 MN

2 has a
uniquely determined product decomposition of the form

˛ D
�
a b

c d

�

D
�
p q

r s

��
m x

0 N
m

�

; withm 2 o; mjN; N
m

standard;

x 2 ˝N
m
; pr � qs D 1: (19)
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The uniqueness is derived from Proposition 2.6 as follows. The second matrix in the
product of (19) is uniquely determined by the matrix ˛ because of the disjointness
of the union in (18). The first matrix in the product appearing in (19) is therefore
also uniquely determined.

The second remark is that Proposition 2.6 may be thought of as the Gaussian-
integer version of the decomposition of elements of Mat2.Z/ of fixed determinant
N , sometimes known as the Hecke decomposition. Occasionally we refer to (19)
as the Gaussian Hecke decomposition, to distinguish it from this classical Hecke
decomposition in the context of the rational integers.

The proof is the same as that of the classical decomposition except for some care
that has to be taken because of the presence of additional units in ZŒi�. For the
classical Hecke decomposition, see page 110, �VII.4, of [21], which is the source of
our notation for the Gaussian version.

Statement of the Main Result of �2.1. Let � be an arbitrary subset of SL2.ZŒi�/.
Suppose, at first, that� is actually a subgroup of SL2.ZŒi�/. Since SL2.ZŒi�/˛N.m; x/

is an SL2.ZŒi�/-space, it is also a �-space. For general subgroups � , however, the
action of � on SL2.ZŒi�/˛N.m; x/ fails to be transitive, i.e., SL2.ZŒi�/˛N.m; x/

is not a �-homogeneous space. We will now describe the orbit structure of
SL2.ZŒi�/˛N.m; x/ for a specific subgroup � . In order to make the description
of the subgroup and some related subsets of SL2.ZŒi�/ easier, we introduce the
epimorphism

red1Ci W SL2.ZŒi�/! SL2.ZŒi�=.1C i//

by inducing from the reduction map

red1Ci W ZŒi�! ZŒi�=.1C i/:

That is, we “extend” red1Ci from elements to matrices by setting

red1Ci

��
p q

r s

��

D
�

red1Cip red1Ciq

red1Cir red1Cis

�

: (20)

Since ˝1Ci D f0; 1g, we may identify ZŒi�=.1 C i/ with f0; 1g. Similarly to the
convention with p; q; r; s 2 ZŒi�, we use .p; q; r; s/ to denote a quadruple of
elements of ZŒi�=.1C i/ such that

p s � r q D 1:

There are two elements of SL2.ZŒi�=.1C i// of particular interest:

I WD
�
1 0

0 1

�

; S WD
�
0 1

1 0

�

2 SL2.ZŒi�=.1C i//: (21)
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The notation in (21) is chosen to remind the reader that I D red1Ci.I / and S D
red1Ci.S/, where I; S are the standard generators of SL2.Z/, as in �VI.1 of [19].

Since S
2 D I , it is easy to see that fI ; Sg is a subgroup of SL2.ZŒi�=.1C i//. Now

define
�12 D red�11Ci.fI ; Sg/: (22)

Since red1Ci is a morphism,�12 is a subgroup of SL2.ZŒi�/.
Also, using the epimorphism red1Ci, we define the following subsets of SL2.ZŒi�/:

�1 D red�11Ci

���
0 1

1 1

�

;

�
1 1

0 1

�	�

;

�2 D red�11Ci

���
1 1

1 0

�

;

�
1 0

1 1

�	�

:

(23)

(The subscripts on the � of (22) and (23) are chosen in order to remind the
reader of the column in which zeros appear in the matrices of red1Ci.�/.) Since
SL2.ZŒi�=.1C i// consists of the elements I ; S and the four elements appearing on
the right-hand side of (23), and red1Ci is an epimorphism, we have

SL2.ZŒi�/ D �1
[

	 �2
[

	 �12: (24)

Unlike �12, the subsets �1 and �2 of SL2.ZŒi�/ are not subgroups.
All three subsets � in (22) and (23), though, have a description of the following

sort, which gives some insight into the reason for Sublemma 2.7, below. For fixed

�

p q
�

;
�

r s
� 2

8

<̂

:̂

�

1 1
�

;
�

1 0
�

;
�

0 1
�

9

>=

>;

� .SL2.ZŒi�=.1C i///2;

we have

� D red�11Ci

���
p q

r s

�

;

�
r s

p q

�	�

: (25)

For example, we obtain �12 by taking

�

p q
� D �1 0� and

�

r s
� D �0 1�

in (25).
The reason for introducing the subsets � of (23) is that they allow us, in

Sublemma 2.7 below, to describe precisely the orbit structure of the �12-space
SL2.ZŒi�/˛N.m; x/.
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Sublemma 2.7 Using the notation of (17) and (23), we have

SL2.ZŒi�/˛N.m; x/ D
[

�D�1;�2;�12
	 �˛N.m; x/: (26)

Each of the three sets in the union (26) is closed under the action, by left-
multiplication, of �12 on SL2.ZŒi�/˛N.m; x/ and equals precisely one �12-orbit in
the space SL2.ZŒi�/˛N.m; x/.

Proposition 2.8. Let c be the morphism from SL2.C/ onto G as in (7). Let � D
SO3.ZŒi�/ be the group of integral points of G in the coordinatization of G induced
by the isomorphism (6). Let the subsets �1; �2; �12 of SL2.ZŒi�/ be as defined in
(22) and (23). Let the matrices ˛N.m; x/ be as in (17). Let !8 2 C be as in (14).
Then we have

c�1.� / D
[

ı;D0;1
	

 

1

!ı8
�12˛

iı.iı; 0/
[

	
 
[

�D0;1
	 1

!ı8.1C i/
�2˛

2i1Cı.i1Cı; i�/
!!

:

(27)

Remarks

(a) We use ZŒ!8� to denote the ring generated overZ by !8. By (14) we have ZŒi� �
ZŒ!8� and ZŒ!8� D ZŒ!8; i�. It follows from Proposition 2.8 that c�1.� / �
SL2.C/ is in fact a subset of SL2.Q.!//. More precisely, of the two parts of the
right-hand side of (27), we have

1

!ı8
�12˛

iı .iı; 0/ � SL2.ZŒi; !8�/ for ı 2 f0; 1g; (28)

while
 
[

�D0;1
	 1

!ı8.1C i/
�2˛

2i1Cı .i1Cı; i�/
!

� SL2

�

Z




i; !8;
1

1C i

��

for ı 2 f0; 1g:
(29)

(b) One can easily verify that the set on the left-hand side of (28) is closed under
multiplication, while the set on the left-hand side of (29) is not. More precisely,
through a rather lengthy calculation, not included here, one verifies that

for .x; y/ a pair of elements of the form of (29), xy is

8

ˆ̂
<

ˆ̂
:

of form (29)

or

of form (28).

(30)

with each possibility in (30) being realized for an appropriate pair .x; y/. These
calculations amount to a brute-force verification of the fact that the right-hand
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side of (27) is closed under multiplication. But because � is a group and c a
morphism, this fact also follows from Proposition 2.8.

The explicit representation of c�1.� / in Proposition 2.8 allows us to read off
certain group-theoretic facts relating c�1.� / to SL2.ZŒi�/. In Lemma 2.9 below we
use the notation

ŒG W H� is the index of H in G, for any group G with subgroupH:

Lemma 2.9. Let c�1.� / be the subgroup of SL2.C/ described above, given
explicitly in matrix form in (27). All the other notation is also as in
Proposition 2.8.

(a) We have
c�1.� /\ SL2.ZŒi�/ D �12:

(b) We have
Œc�1.� / W �12� D 6; ŒSL2.ZŒi�/ W �12� D 3: (31)

Explicitly, the six right cosets of �12 in c�1.� / are the two cosets obtained by
letting ı range over f0; 1g in

1

!ı8
�12˛

iı.iı; 0/ D 1

!ı8
�12

�
iı 0
0 1

�

and the four cosets obtained by letting ı; � range over f0; 1g independently in

1

!ı8.1C i/
�12

�
1 0

1 1

�

˛2i1Cı.i1Cı; i�/ D 1

!ı8.1C i/
�12

�
i1Cı i�

i1Cı 2C i�

�

:

2.2 Good Grenier fundamental domains for arithmetic groups
� 2 AutC.H3/

We begin with the following definition, which is fundamental to everything that
follows.

Definition. Let X be a topological space. Suppose that � is a group acting
topologically on X , i.e., � � Iso.X/. A subset F of X is called an exact
fundamental domain for the action of � on X if the following conditions are
satisfied:

FD 1. The � -translates of F cover X , i.e.,

X D �F :
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FD 2. Distinct � -translates of F intersect only on their boundaries, i.e.,

1; 2 2 �; 1 ¤ 2 implies 1F \ 2F � 1@F ; 2@F :

Henceforth, we will drop the word exact and refer to such an F simply as a
fundamental domain.

For the current section, �2.2, only, G, instead of denoting SO3.C/, will denote
SL2.C/. Likewise, instead of denoting SO3.ZŒi�/ or c�1.SO3.ZŒi�//, � will denote
an arbitrary subgroup of SL2.C/ satisfying certain conditions to be given below.
The main examples to keep in mind are first, � D SL2.Z/, the integer subgroup of
SL2.C/, and second,� D c�1.SO3.ZŒi�//, the inverse image of the integer subgroup
of SO3.C/, described explicitly as a group of fractional linear transformations in
Proposition 2.8.

Iwasawa decomposition of SL2.C/. For the reader’s convenience, we recall only
those results in the context of SL2.C/ which we need to proceed. For proofs and the
statements for SLn.C/, see the “Notation and Terminology” section of [20]. Let

U D
� �

1 x

0 1

� ˇ
ˇ
ˇ
ˇ
x 2 C

	

; upper triangular unipotent matrices in SL2.C/;

A D
� �

y 0

0 y�1
� ˇ
ˇ
ˇ
ˇ
y 2 RC

	

;
diagonal elements of SL2.C/ with positive
diagonal entries;

K D SU.2/ D fk 2 SL2.C/ j kk� D 1g:

Here x� denotes the conjugate-transpose xt of x.
We have the Iwasawa decomposition

SL2.C/ D UAK;

and the product map U �A �K ! UAK is a differential isomorphism.
The Iwasawa decomposition induces a system of coordinates � on the symmetric

space SL2.C/=K . The mapping � is a diffeomorphism between SL2.C/=K and R
3.

The details are as follows. The Iwasawa decomposition gives a uniquely determined
product decomposition of gK 2 SL2.C/=K as

gK D u.g/a.g/K; where u.g/ 2 U; a.g/ 2 A are uniquely determined by gK:

Define the Iwasawa coordinates x1.g/, x2.g/ 2 R, y.g/ 2 R
C by the relations

u.g/ D
�
1 x1.g/C ix2.g/
0 1

�

; a.g/ D
 

y.g/
1
2 0

0 y.g/� 1
2

!

:
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By the Iwasawa decomposition, the Iwasawa coordinates of g are uniquely deter-
mined. We emphasize that while x1.g/ and x2.g/ range over all the real numbers,
y.g/ ranges over the positive numbers. As functions onG, x1 x2, and y are invariant
under right-multiplication by K . Thus x1, x2, and y induce coordinates on G=K .
Now define the coordinate mappings �i W SL2.C/=K ! R, for i D 1; 2; 3, by

�1 D � logy; �2 D x1; �3 D x2; (32)

and set
� D .�1; �2; �3/ W G=K ! R

3:

The mapping � is a diffeomorphism of G=K onto R
3, because the Iwasawa

coordinate system is a diffeomorphism, as is log. Thus, there exists the inverse
diffeomorphism

��1 W R3 ! G=K:

By (32), we can write, explicitly,

��1.t1; t2; t3/ D t2 C t3iC e�t1j; for all t D .t1; t2; t3/ 2 R
3: (33)

The quaternion model and the coordinate system on SL2.C/=K . We will use
the model G=K as the upper half-space H3, defined as the following subset of the
quaternions:

H3 D fx1 C x2iC yj; where x1; x2 2 R; y 2 R
Cg: (34)

Recall that SL2.C/ acts transitively on H3 by fractional linear transformations. See
�VI.0 of [19] for the details of the action. We note the relation

gj D x1.g/C x2.g/iC y.g/j: (35)

As a result of (35) and the Iwasawa decomposition, we may identify SL2.C/=K
with H3. So � W G=K ! R

3 induces a diffeomorphism

� W H3 Š�! R
3:

Because of (35), if g is any element of G such that gj D z, then �.g/ D �.z/.
Further, beause of the way we set up the coordinates on H3, � W H3 ! R

3 is given
explicitly by the same formulas as (32).

As explained in, for example, �VI.0 of [19], the kernel of the action of SL2.C/
on H3 is precisely the set f˙I g, consisting of the identity matrix and its negative.

For any oriented manifold X equipped with a metric, use the notation

AutC.X/ D group of orientation-preserving isometric automorphisms of X .
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It is a fact that every element of AutC.H3/ is realized by a fractional linear
transformation in SL2.C/, unique up to multiplication by ˙1. Therefore, the action
of SL2.C/ on H3 by fractional linear transformations induces an isomorphism

SL2.C/=f˙I g Š AutC.H3/: (36)

The stabilizer in � of the first j �-coordinates. In all that follows, if i; j 2 N,
the notation Œi; j � is used to denote the interval of integers from i to j , inclusive.
The interval Œi; j � is defined to be the empty set if i > j .

Definition 2.10. For i; j 2 f1; 2; 3g, with i � j , let �Œi;j � be the projection of H3

onto the Œi; j � factors of R3. In other words, we let

�Œi;j � D .�i ; �iC1; : : : ; �j /:

Since � is a diffeomorphism of H3, �Œi;j � is a smooth epimorphism of H3 onto
R
i�jC1.
If K is any subset of f1; 2; 3g, of size jK j, then we can generalize in the obvious

way to define the smooth epimorphism

�K W H3 ! R
jK j:

Let � be a group acting by diffeomorphisms of H3. For  2 � we also use  to
denote the diffeomorphism of H3 defined by the left action of  on H3. Therefore,
for l 2 f1; : : : ; 3g the composition �l ı  is the R-valued function on H3 defined by

�l ı .z/ D �l.z/ for all z 2 H3:

We use � �Œ1;j � to denote the subgroup of � whose action stabilizes the first i
coordinates. In other words, we set

� �Œ1;j � D f 2 � j �Œ1;j � D �Œ1;j � ı g:

We extend the definition of � �Œ1;j � to j D 0; 4 by adopting the conventions

� �Œ1;0� D � and � �Œ1;4� D 1:

Note that by definition, we have the descending sequence of groups

� D � �Œ1;0� � � �1 � � �Œ1;2� � � �Œ1;3� � � �Œ1;4� D 1:

Note that the penultimate group in this sequence, namely � �Œ1;3� , equals, by
definition, the kernel of the action of � on H3. Assuming that � � SL2.C/, i.e.,
that � consists of fractional linear transformations, we always have

� �Œ1;3� D � \ f˙1g: (37)
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Because the � �Œ1;j � form a descending sequence, for k; j 2 f1; 2; 3g with k < j ,
we can consider the left cosets of � �Œ1;k� in � �Œ1;j � . The left cosets are the sets of
the form � �Œ1;j �k for k 2 � �Œ1;k� . Now let i; j; k 2 f1; 2; 3g, l � j , k < j . By
the definition of � �Œ1;j � , the function �l ı k depends only on the left � �Œ1;j �-coset
to which k belongs. Therefore, for fixed z we may consider �l ı k.z/ to be a
well-defined function on the set of left cosets � �Œ1;j �k of � �Œ1;k� in � �Œ1;j � . We may
therefore speak of the R-valued function �l ı � �Œ1;j �k .

In what follows we will most often apply the immediately preceding paragraph
when l D j and k D j � 1. For  2 � �Œ1;j�1� and 
 an arbitrary subset of � �Œ1;j � ,
we have

�j .
z/ D f�j .z/g: (38)

Therefore, by setting
�j ı � Œ1;j �.z/ D �j .z/;

we obtain a well-defined function

�j ı � �Œ1;j � W H3 ! R:

The function �j ı � �Œ1;j � depends only on the � �Œ1;j �-coset to which  belongs.
For  2 � �Œ1;j�1� , the R-valued function �j ı� �Œ1;j � gives the effect of the action

of  2 � �Œ1;j�1� on the j th coordinate of a point. It is clear from the definition that

�j D �j ı  if and only if � �Œ1;j � is the identity left coset of � �Œ1;j � in � �Œ1;j�1� :

(39)

Sections of projections and induced actions of � . As before, suppose that � is a
group acting by diffeomorphisms on H3, and let � �Œ1;j � for j 2 f1; 2; 3g be defined
as above.

For any subset K of the interval of integers Œ1; 3�, we let K c D Œ1; 3� �K be
the complement of K in Œ1; 3�.

Definition 2.11. Let f be a real-valued function

f W H3! R:

Let K a subset of Œ1; 3�. We say that f is independent of the K coordinates if
for every x; y 2 H3,

�K c .x/ D �K c .y/ implies f .x/ D f .y/:

In other words, f is independent of the coordinates in K if and only if f is
constant on the fibers of the projection �K c onto the R-factors indexed by K c .

For the next observation, we need to introduce the notion of a section of a
projection �K . It will not really matter which section we use, so for simplicity,
we choose the zero section. For a subinterval Œi; j � of f1; 2; 3g of size j � i C 1,
define
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�0Œi;j � W Rj�1C1 ! H3

by
�0Œi;j �.x1; : : : ; xj�iC1/ D .0; : : : ; 0„ ƒ‚ …

i�1
; x1; : : : ; xj�iC1; 0; : : : ; 0

„ ƒ‚ …

3�j
/:

The map �0Œi;j � is called the zero section of the projection �Œi;j �. The terminology
comes from the relation

�Œi;j ��
0
Œi;j � D Id

Ri�jC1 ; (40)

which is immediately verified. The concept of the zero section of the projection can
be generalized from the case of a projection associated with an interval Œi; j � to that
of an arbitrary subset K of f1; 2; 3g, in the obvious way, although we will not have
any use for this generalization in the present context.

By use of the zero section, we are able to make a useful reformulation of the
condition that f W H3 ! R is independent of the first j � 1 coordinates. Let
j 2 f2; 3g and f a real-valued function on H3. Then

f is independent of the first j � 1coordinates if and only if f �0Œj;3��Œj;3�

D �0Œj;3��Œj;3� f: (41)

The reformulation (41) allows us to prove the following result.

Lemma 2.12. Let 
 be a group acting on H3, and for j 2 f1; 2; 3g, let �Œj;3� be
the projection of H3 onto the last 3 � j C 1 coordinates and let �0Œj;3� be the zero
section of �Œj;3�. Suppose that for all l 2 Œj; 3� and ı 2 
 the functions �l ı ı are
independent of the first j �1 coordinates. Then
 has an induced action on R

3�jC1
defined by

ıŒj;3�.t/ D �Œj;3�.ı�0Œj;3�.t//; for all t D .t1; : : : ; t3�jC1/ 2 R
3�jC1: (42)

It is an immediate consequence of the definitions that for any group Q� acting on
H3 by diffeomorphisms, and any subgroup � of Q� , we have, for 1 � i � j � 3,

� �Œi;j � D . Q� /�Œi;j � \ �: (43)

Applying (43) to the case of Q� D SL2.C/ and i D 1, we deduce that

� �Œ1;j � D � \ SL2.C/�Œ1;j � ; (44)

for any subgroup � � SL2.C/. Because of (44) it is very useful to have an explicit
expression for SL2.C/�1 . We carry out the calculation using the relations of (32).

Let z 2 H3 with
z D x1 C x2 C yj;
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as in (34). Let

g 2 SL2.C/ with g D
�
a b

c d

�

:

Define

y.c; d I z/ D y.z/

kczC dk2 ; (45)

where in (45) and from now on, for a quaternion z, kzk2 denotes the squared norm
of z, so that kzk2 D zz. Then we have

y.gz/ D y.c; d I z/: (46)

For the details of such calculations, see �VI.0 of [19]. Since

�1 W H3! R is defined as � logy.	/;

and log is injective, (46) implies that

g 2 SL2.C/�1 if and only if y.c; d I z/ D y.z/ for all z 2 H3. (47)

By (47) and (45), we have

g 2 SL2.C/�1 if and only if kczC dk2 D 1 for all z 2 H3: (48)

Clearly, the condition kczC dk2 D 1 is satisfied for all z 2 H3 if and only if c D 0
and kdk D 1. We therefore deduce from (48) that

SL2.C/
�1 D

� �
!�1 x
0 !

� ˇ
ˇ
ˇ
ˇ
x; ! 2 C; k!k D 1

	

: (49)

As a result of (49), we can easily verify that for  2 � �1 , l 2 Œ2; 3�, the functions
�l ı ı are independent of the first coordinate. So we can apply Lemma 2.12, in this
case, with j D 2 and deduce the following:

Lemma 2.13. Let � � AutC.H3/, let �Œ2;3� be the projection of H3 onto the last
two coordinates, and let �0Œ2;3� be the zero section of �Œ2;3�. Then � has an induced

action on R
2 defined by

Œ2;3�.t/ D �Œ2;3�.�0Œ2;3�.t//; for all t D .t1; t2/ 2 R
2: (50)

The following theorem is a special case of the main result of the first chapter
of [6].

Theorem 2.14. Let � be a subgroup of SL2.C/, acting on H3 on the left by
fractional linear transformations. Suppose that � is commensurable with SL2.ZŒi�/.
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Let G be a fundamental domain for the induced action of � �Œ2;3�=f˙1g on R
2.

Assume further that G D Int.G /. Define

F1 D fz 2 H3 j �1.z/ � �1.z/; for all  2 � g: (51)

Set
F .G / D ��1Œ2;3�.G /\F1: (52)

(a) We have F .G / a fundamental domain for the action of � =f˙1g on H3.
(b) We have

F .G / D Int
�

F .G /
�

: (53)

(c) Further, Int
�

F1

�

and Int
�

F .G /
�

have explicit descriptions as follows:

Int
�

F1

� D fz 2 H3 j �1.z/ < �1.z/; for all  2 � � � �1g (54)

and
Int
�

F .G /
� D ��1Œ2;3�

�

Int.G /
� \ Int.F1/: (55)

Considering the coordinate system � on H3 as fixed, we may think of the
fundamental domain F for � �Œ1;3�n� to be a function of the fundamental domain G
for the induced action of � �1 on R

2. When we wish to stress this dependence of F
on G , we will write F .G / instead of F .

Definition 2.15. Suppose that � � AutC.H3/ is commensurable with SL2.ZŒi�/.
Let G be a fundamental domain for the induced action of � �Œ1;3�n� �1 on R

2

satisfying G D Int.G /. Then the fundamental domain F .G / for the action of
� �Œ1;3�n� defined in (52) is called the good Grenier fundamental domain for the
action of � on H3 associated to the fundamental domain G .

The reference to the fundamental domain G is often omitted in practice.
Henceforth, we drop the explicit reference to � �Œ1;3� and speak of a fundamental

domain of � �Œ1;3�n� as a fundamental domain of � . By (37), � is at worst a twofold
cover of � �Œ1;3�n� , so this involves only a minor abuse of terminology.

We will give an expression for a good Grenier fundamental domain F .G / for
c�1.SO3.ZŒi�// in terms of explicit inequalities, in (73), and again as a convex
polytope in H3, in Proposition 2.19, below.

Example: The Picard domain F for SL2.ZŒi�/. Define the following rectangle
in R

2:

GSL2.ZŒi�/�1 D
�

.t1; t2/ 2 R
2

ˇ
ˇ
ˇ
ˇ
t1 2




�1
2
;
1

2

�

; t2 2



0;
1

2

�	

: (56)

It is easy to verify, from an explicit description of SL2.ZŒi�/�1 deduced from (49),
that GSL2.ZŒi�/�1 is a fundamental domain for the action of SL2.ZŒi�/�1=f˙1g.
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Further, it is obvious that

GSL2.ZŒi�/�1 D Int.GSL2.ZŒi�/�1 /:

Therefore, Theorem 2.14 applies. We deduce that with F1, F .GSL2.ZŒi�/�1 /

defined as in Theorem 2.14, we have

F WD F .GSL2.ZŒi�/�1 / is a good Grenier fundamental domain for SL2.ZŒi�/.

The fundamental domain F is defined in �VI.1 of [19], where, in keeping with
classical terminology, F is called the Picard domain.

In order to complete the example, we now give an explicit description of the
set F1, which will allow the reader to see that “our” F is exactly the same as the
Picard domain. It can be shown that F1 is the subset of R3 whose image under the
diffeomorphism ��1 is given as follows:

��1.F1/ D fz 2 H3 j kz �mk � 1; for allm 2 ZŒi�g: (57)

Of the infinite set of inequalities defining F1, all except the one with d D 0,
i.e., kzk2 � 1, are trivially satisfied on ��1Œ2;3�

�

GSL2.ZŒi�/�1
�

. Thus, from (57), (56), and
(52), we recover the description of the Picard domain by finitely many inequalities
given in �VI.1 of [19]:

F .GSL2.ZŒi�/�1 / D
�

z 2 H3

ˇ
ˇ
ˇ
ˇ
x1 2




�1
2
;
1

2

�

; x2 2



0;
1

2

�

y; kzk2 � 1
	

: (58)

2.3 Explicit description of the fundamental domain
for the action of SO3.ZŒi�/ on H3

We now proceed to consider the special case of c�1.SO3.ZŒi�// in Theorem 2.14
above. In keeping with the general practice of the present paper, we will go back
to using G to denote SO3.C/ exclusively, and � to denote the group SO3.ZŒi�/.
Since we are always in this section in the setting of subgroups of SL2.C/, we will
abuse notation slightly and use � to denote the isomorphic inverse image c�1.� /
of � D SO3.ZŒi�/ in SL2.C/.

Also, we treat R2, the image of the projection �Œ2;3�, as C, by identifying the point
.t1; t2/ 2 R

2 with t1 C it2. Thus, our “new” �Œ2;3� is defined in terms of the “old”
�-coordinates by

�Œ2;3�.z/ D �2.z/C i�3.z/: (59)

Proposition 2.16. First form of F1. Let F1 be as defined in (51). All other
notation has the same meaning as in Theorem 2.14. Then we have
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F1 D fz D x.z/Cy.z/j 2 H3 j kx.z/�dk2Cy.z/2 � 2; for d 2 1C .1C i/ZŒi�g;
(60)

and Int.F1/ is the same as in (60), but with strict inequality instead of nonstrict
inequality.

Fundamental domain G for � �1 . In order to complete the explicit determination
of a good Grenier fundamental domain F for � , it remains to describe a suitable
fundamental domain G for � �1 . Using (44), (49), and the description of � in (27),
we deduce that

� �1 D
� �

!ı8 !
ı
8b

0 !�ı8

� ˇ
ˇ
ˇ
ˇ
b 2 .1C i/ZŒi�; ı 2 f0; 1g

	

: (61)

It follows from (61) that the subgroup of unipotent elements of � �1 is

.� �1/U D
�
1 .1C i/ZŒi�
0 1

�

: (62)

We make note of certain group-theoretic properties of � �1 and .� �1/U that are used
in determining the fundamental domains. First, we define the following generating
elements:

R�
2
D
�
!8 0

0 !�18

�

; T1Ci D
�
1 1C i
0 1

�

; and T1�i D
�
1 1 � i
0 1

�

: (63)

It is easily verified, using (61) and (62), that

.� �1/U D hT1Ci; T1�ii; � �1 D hR�
2
; T1Ci; T1�ii: (64)

We calculate, from the definition of R�
2

and (64), that

c.R�
2
/.� �1/U D .� �1/U :

Since � �1 is generated by .� �1/U and R�
2
, and R�

2
has order 4, we deduce that

.� �1/U is normal in � �1 with Œ� �1 W .� �1/U � D 4. (65)

Let T be any element of .� �1/U . Then we have a more precise version of (65):

The group hTR�
2
i of order 4 is a set of representatives

for the coset group � �1=.� �1/U . (66)
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Applying (66) to the case T D T1�i, we have the following: The group hT1�iR�
2
i

of order 4 is a set of representatives for the coset group � �1=.� �1/U .
(67)

It is easily verified that the action of R�
2

on C is rotation by an angle �=2 about
the fixed point 0. Furthermore, we calculate from (63) that

T1�iR�
2
D c.T1/R�

2
:

Therefore,

The action of T1�iR�
2

on C is rotation by �=2 about 1. (68)

The following statement is a special case of Lemma 2.2.7 of [2].

Lemma 2.17. Let GU be a fundamental domain for the action of .� �1/U on H3

satisfying
T1CiR�

2
.GU / D GU :

Let G be a fundamental domain for the action of hT1CiR�
2
i on G . Then G a

fundamental domain for the action of � �1 on H3.

In order to define and work with the sets GU and G which will be fundamental
domains for the action of � �1

U and � �1 , it is useful to introduce the notion of a
convex hull in a totally geodesic metric space.

A metric space .X; d/ will be called totally geodesic if for every pair of points
p1; p2 2 X , p1 ¤ p2 there is a unique geodesic segment connecting p1; p2. In
this situation, the (closed) geodesic segment connecting p1; p2 will be denoted by
Œp1; p2�d . A point x 2 X is said to lie between p1 and p2 when x lies on Œp1; p2�d .
We then say that S � X is convex when p1; p2 2 C and p3 between p1 and p2
implies that p3 2 S . Let p1; : : : ; pr be r points in X . The points determine a set

Cd .p1; : : : ; pr /;

called the convex closure of p1; : : : ; pr , described as the smallest convex subset of
X containing the set fp1; : : : ; prg.

Obviously, we can apply the notion of convex hull to any set S , rather than
a finite set of points. The definition remains the same, namely that Cd .S / is the
smallest convex subset of X containing S . In general we will use the notation

Cd .S1; : : : ;Sr / D Cd

 
[

iD1;:::;r
Si

!

:

In particular, if we apply these notions to X D R
2 with the ordinary Euclidean

metric Euc, then the geodesic segment Œp1; p2�Euc is just the line segment joining
p1; p2. Further, provided that not all the pi are collinear, C .p1; : : : pr/ is a closed
convex polygon whose vertices are located at a subset of fp1; : : : ; prg.
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We first use the notion of convex closure to record an elementary facts concerning
the fundamental domains of groups of translations acting on R

2, identified with C

in the usual way. Let !1; !2 2 C be linearly independent over R. Then Z!1 C Z!2
is a lattice in C, and it is well known that all lattices in C are of this form for suitable
!1; !2. Let T denote the group of translations by elements of Z!1 C Z!2 acting on
C. Then we have

C .0; !1; !2; !1 C !2/ is a fundamental domain for the action of Z!1 C Z!2 on C:

(69)
Now we define the following polygons in C Š R

2. Let

GU D CEuc.0; 2; 1C i; 1 � i/;

and let
G D CEuc.1; 2; 1C i/: (70)

The relation between the polygons is that GU is a square centered at 1, while G is
an isosceles right triangle inside GU , with vertices at the center of GU and two of the
corners of GU . Therefore, it follows from (68) that we have

GU D
[

iD0;1;2;3
.T1CiR�

2
/iG ; with .T1CiR�

2
/iG \ G � @G ; for i 6
 0 mod 4:

(71)
The relations (69) and (71) lead to the following lemma.

Lemma 2.18. Let � �1 be as given in (61) and .� �1/U as given in (62).

(a) The set GU is a fundamental domain for the induced action of .� �1/U on
C Š R

2.
(b) G is a fundamental domain for the induced action of hT1CiR�

2
i on GU .

(c) The set G is a fundamental domain for the induced action of � �1 on C Š R
2.

Form of F in terms of explicit inequalities. Combining Part (c) of Lemma 2.18,
Proposition 2.16, and (52), we deduce that

F .G / D fz 2 H3 j �Œ2;3�.z/ 2 CEuc.1; 2; 1C i/; kx.z/ �mk2 C y.z/2 � 2;
for m 2 1C .1C i/ZŒi�g:

By (59), the first condition in the description of F .G / above may be replaced by

x.z/ 2 CEuc.1; 2; 1C i/: (72)

Let z 2 C satisfy (72). The element m D 1 is the element of 1C .1C i/ZŒi� closest
to x.z/. Therefore, for z satisfying (72), the condition

kx.z/ �mk2 C y.z/2 � 2; for all m 2 1C .1C i/ZŒi�
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reduces to kx.z/� 1k2C y.z/2 � 2. So we may rewrite the description of F .G / in
the form

F .G / D fz 2 H3 x.z/ 2 CEuc.1; 2; 1C i/; kx.z/ � 1k2 C y.z/2 � 2g: (73)

Additional facts regarding convex hulls and totally geodesic hypersurfaces
in H3. We now extend our “geodesic hull” treatment of F from the boundary into
the interior of H3. We first recall certain additional facts regarding convex hulls and
totally geodesic hypersurfaces in H3.

The description of the geodesics in H2 is well known, but the corresponding
description of the totally geodesic surfaces in H3 perhaps not as well known, so we
recall it here. Henceforth we abbreviate “totally geodesic” by t.g. Although all t.g.
surfaces are related by isometries, in our model they have two basic types. The first
type is a vertical upper half-plane passing through the origin with angle � measured
counterclockwise from the real axis, which we denote by H2.�/. The second type
is an upper hemisphere centered at the origin with radius r , which we will denote
by S

C
r .0/. The t.g. surfaces of H3 are the H2.�/, the S

C
r .0/, and their translates

by elements of C. For each of the basic t.g. surfaces, we produce an isometry g 2
Aut.H3/, necessarily orientation-reversing, such that Fix.g/ is precisely the surface
in question. The existence of such a g shows that the surface is a t.g. surface.

We define
H3 D H3 [ C[1

to be the usual closure of H3 and extend the action of fractional linear transforma-
tions and the notion of the convex hull in the usual way. For any subset S of H3,
S will denote the closure in H3. For g 2 Aut.H3/, we will likewise use g to denote
the extension of g to the closure H3. Henceforth, we will work exclusively in the
setting of the closure H3 of H3. Thus, we will actually identify the closures of the
t.g. surfaces.

The basic orientation-reversing isometry of H3 may be denoted by R�. With
x1 C x2iC yj 2 H3, we have

R�.x1 C x2iC yj/ D x1 � x2iC yj:

Clearly, we have Fix.R�/ D H2.0/. To obtain isometries corresponding to the other
vertical planes, let

R� D
�
ei�=2 0

0 e�i�=2

�

:

Because R�H2.0/ D H2.�/, we have

Fix.c.R�/R�/ D H2.�/:
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To define the isometry I such that Fix.I / is the basic hemisphere S
C
0 .1/, let

z denote the conjugate of the quaternion z, i.e., if z D x1 C x2i C yj, then z D
x1 � x2i � yj. For z 2 H3, set

I.z/ D 1=z:

We have the equality z=I.z/ D kzk2. Observe that SC1 .0/ is precisely the set of

quaternions in H3 of norm one. Thus, Fix.I / D S
C
1 .0/. For the more general

hemispheres SCr .0/, set

A.r/ D
 p

r 0

0 1p
r

!

:

Then, since A.r/SC1 .0/ D SCr .0/, we have Fix.c.A.r//I / D SCr .0/.
In order to denote the convex hull in H3, we use the notation CH. Therefore, if

ds2 is the hyperbolic metric on H3, we have

CH.p1; : : : ; pr / D C ds2 .p1; : : : ; pr /;

in terms of our original notational conventions.
Let p1; : : : ; pr 2 H3, for r > 3, not lying on the same totally geodesic surface,

such that for each i , 1 � i � r ,

pi … CH.p1; : : : ; pi�1; piC1; : : : ; pr /:

Then the set CH.p1; : : : ; pr / will be called the solid convex polytope with vertices
at p1; : : : ; pr . It is clear that for any p1; : : : pr 2 H3 not lying in the same totally
geodesic surface, CH.p1; : : : ; pr / is a solid convex polytope with vertices consisting
of some subset of the r points.

Description of F .G / as a solid convex polytope.

Proposition 2.19. The solid convex polytope with four vertices in H3 given by

F .G / D CH.1C
p
2j; 2C j; 1C iC j;1/ (74)

is a good Grenier fundamental domain for the action of � D c�1.SO3.ZŒi�// on H3.

In the interactive graphical representation, [3], F .G / is the solid region inside
the triangular prism and above the red sphere.
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2.4 SO.2 ; 1/Z as a group of fractional linear transformations

We will now use the results of �2.1 and �2.2 to deduce a realization of �Z D
SO.2; 1/Z as a group of fractional linear transformations, as well as a description
of a fundamental domain for �Z acting on H2 that is in some sense (to be explained
precisely below) compatible with the fundamental domain of � acting on H3.

We maintain the notational conventions established in �2.1. In particular, G D
SO3.C/ and � D SO3.ZŒi�/. It is crucial, for the moment, that we observe the
distinction between G;� and their isomorphic images under c�1.

Definition 2.20. Set

�Z D c.SL2.R/ \ c�1.� //: (75)

Remark 2.21. Note that the elements of �Z do not have real entries! The naı̈ve
approach to the definition of �Z would be to take the elements of � with real
entries, as in the case of SL2.ZŒi�/ and SL2.Z/. However, this clearly cannot be the
right definition because the resulting discrete group would be contained in SO.3/,
hence compact, and hence finite. The justification for Definition 2.20 is contained
in Proposition 2.22, below.

Recall the orthonormal basis ˇ for Lie.SL2.C// defined in (4). Define a new
basis � by specifying the change-of-basis matrix

˛ˇ 7!� D diag.1;�i; 1/: (76)

Let VR be a real vector space of dimension 3. Let SO.2; 1/ denote the group of
unimodular linear automorphisms of VR preserving a form BR on VR of bilinear
signature .2; 1/. For definiteness, we will take

VR D R-span.�/ � Lie.SL2.C//; BR D BjVR ;

where ˇ0 is the basis of Lie.SL2.C// defined at (3), and B is as usual the Killing
form on Lie.SL2.C//. From the fact that ˇ is an orthonormal set under B and from
(76), it is immediately verified that BjR has signature .2; 1/. Note also that

V WD VR ˝C D Lie.SL2.C//:

By considering SO2;1 as a subset of GL3.R/ we obtain the standard represen-
tation of SO.2 ; 1/. We define SO.2; 1/Z to be the matrices with integer coefficients
in the standard representation of SO.2; 1/.

Recall from (8) the definition of the morphism

c� WD cV;� W SL2.C/! SL3.R/:
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Proposition 2.22. Let �Z be as defined in (2.20). Then the restriction of c� to VR
provides an isomorphism

c� W SL2.R/=f˙I g ! SO.2; 1/0 (77)

of Lie groups. The isomorphism of (77) further restricts to an isomorphism of
discrete subgroups

c� W c�1.�Z/! SO.2; 1/Z: (78)

As a result, c�c�1 exhibits an isomorphism

�Z Š SO.2; 1/Z: (79)

The next proposition, Proposition 2.24, is the analogue of Proposition 2.8 for
the real form of the complex group. Proposition 2.24 below is, in contrast, almost
a triviality to prove at this point, since it can be deduced rather readily from
Proposition 2.8.

For Proposition 2.24, it is necessary to recall the �-subsets of SL2.ZŒi�/ defined
in (22) and (23). For each of the three �-subsets, we define

.�/Z D � \ SL2.R/: (80)

The following result both justifies this notation and clarifies the meaning of
Proposition 2.24, below.

Lemma 2.23. Each .�/Z-group can be given the following description:

For suitable fixed
�

p q
�

;
�

r s
� 2

8

<̂

:̂

�

1 1
�

;
�

1 0
�

;
�

0 1
�

9

>=

>;

� .SL2.ZŒi�/=.2//2;

� D red�12
���

p q

r s

�

;

�
r s

p q

�	�

:

(81)

In order to obtain �12 in this manner, we may take, in (81),

�

p q
� D �1 0� and

�

r s
� D �0 1� :

Further, we may take

�

p q
� D �1 1� ; in order to obtain �1 and �2,

and �

r s
� D �0 1� ; in order to obtain �1;

�

r s
� D �1 0� ; in order to obtain �2:
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Proposition 2.24. With �Z defined as in Definition 2.20, we have

c�1.�Z/ D .�12/Z
[ 1p

2
.�2/Z

�
1 �1
0 2

�

: (82)

From (82), we deduce the following analogue of Lemma 2.9

Lemma 2.25. Let c�1.�Z/ be the discrete subgroup of SL2.R/ defined in (75), and
given explicitly in matrix form in (82). All the other notation is also as in Proposition
2.24.

(a) We have
c�1.�Z/\ SL2.Z/ D .�12/Z:

(b) We have
Œc�1.�Z/ W .�12/Z� D 2; ŒSL2.Z/ W �12� D 3: (83)

Explicitly, a representative of the unique nonidentity right coset of .�12/Z in
c�1.� / is

1p
2

�
1 0

1 1

��
1 �1
0 2

�

D 1p
2

�
1 �1
1 1

�

:

2.5 Fundamental domain for SO.2 ; 1/Z acting on H2

and its relation to that of SO3.ZŒi�/

The main point of this section is that, provided the fundamental domain GR of the
standard unipotent subgroup of c�1.�Z/ is chosen in a way that is compatible with
the choice of G in (70), then the good Grenier fundamental domain FR.GR/ for
c�1.�Z/ corresponding to GR will have a close geometric relationship to F .G /.
Based on the classical example of Dirichlet’s fundamental domain for SL2.Z/ acting
on H2 and the Picard domain, one might guess that we would have the equality

FR.GR/ D F .G /\H2: (84)

In fact, this intersection property cannot hold, because of the presence of additional
torsion elements (the powers of !8I2) in c�1.� /. However, in a sense which will
be made precise in Proposition 2.27, below, the next best thing holds. Namely,
the intersection of the set consisting of two � -translates of F .G / with H2 equals
FR.GR/, for the choice of GR in (85), below.

In the case of �Z � AutC.H2/, commensurable with SL2.ZŒi�/, we have the
obvious analogue of Theorem 2.14, defining a good Grenier fundamental domain
for the action of �Z. In order to distinguish the real case �Z � AutC.H2/ from
the complex case, we add the subscript R to the sets G F1, F .G /, and so write
GR F1;R, FR.GR/. In this case, the good Grenier fundamental domain coincides



Some aspects of harmonic analysis on locally symmetric spaces 105

with the classical notion of the Ford fundamental domain for a discrete subgroup of
AutC.H2/ of finite covolume. See, for example, [16], p. 44. However, we use the
terminology Grenier domain even in this context, in order to stress the eventual
connections with the higher-rank case.

Explicit Descriptions of GR and FR.GR/.

Lemma 2.26. (a) We have

.�Z/
�1 D

�

1 2Z

0 1

�

:

(b) The interval

GR WD Œ0; 2� (85)

is a fundamental domain for the action of � �1
Z

on R satisfying

GR D IntGR:

(c) With GR as defined in (85), part (b) implies that

FR .GR/ Dfz 2 H2 j 0 � x.z/ � 2; y.z/2 C .x � 1/2 � 2g D CH.i; 2C i;1/:
(86)

Geometric relation of FR.GR/ to F .G /. In order to relate the fundamental
domain of a subgroup of SL2.R/ acting on H2 to the fundamental domain of a
subgroup of SL2.C/ acting on H3, we consider H2 embedded in H3 as the totally
geodesic surface H2.0/. Note that

H2.0/ D fxiC yj j y > 0g;

and the actions of SL2.R/ on H2 and H2.0/ are equivariant with the obvious
isomorphism

H2 Š�! H2.0/; mapping x C yj 7! xiC yj:

Under this isomorphism of SL2.R/-homogeneous spaces, FR.GR/ corresponds to

CH.j; 2iC j;1/ in H2.0/: (87)

Because of the isomorphism, we can safely ignore the distinction between the forms
of FR.GR/ in (86) and (87).

Because, as can be verified readily,

GR D
�

G [ c.T1/
�

R2�
2

�

G
�

\H2
j ; (88)
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we cannot hope that we will have the straightforward relation

FR .GR/ D F .G /\H2
j

that we find in the classical case of SL2.ZŒi�/ and SL2.Z/. However, we do have the
next best possible relation between the fundamental domains.

Proposition 2.27. We have the relation

F .GR/ D
�

F .G / [ c.T1/
�

R2�
2

�

F .G /
�

\H2
j :

Remark 2.28. We note for possible future reference that FR.GR/ is the normal

geodesic projection of the union of F .G / and one translate c.T1/
�

R2�
2

�

F .G /

of F .G /. This relation between the fundamental domains is connected to the one
given in Proposition 2.27, though neither relation implies the other, in general. The
relation may be of some use in relating spectral expansions in the complex case to
spectral expansions in the real case. We explored one aspect of this topic in �1 of
this paper, above.

In the interactive graphical representation [3], the front face of the “cut-off prism”
solid amounts to one half of FR.GR/.

2.6 Spectral zeta functions

This section discusses a potential application of the results of this paper and
indicates a future line of investigation building on this work. Jorgenson and Lang, in
works such as [17], [19] (see the introduction to the latter work especially), and [20],
have laid out and begun to pursue an ambitious program of using heat kernel analysis
to associate additive spectral zeta functions to quotients of symmetric spaces. When
completed, this theory would subsume the basic theory of the Riemann zeta function
and Selberg zeta function (among others), and clarify the relationship between the
zeta functions arising at different geometric levels. The main component of the
program is obtaining a theta inversion formula.

In [19], which carries out the derivation of the theta inversion formula for the
special case of

X D � nG=K D SL2.ZŒi�/nSL2.C/=SU.2;C/;

the authors compute the regularized trace of an integral operator on functions on X .
The kernel of the integral operator is Kt;X .z;w/, the heat kernel on X . The trace of
such an integral operator is defined to be the integral on the diagonal
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Z

X

Kt;X.z; z/ dz:

Although this integral is infinite, because of the cusp of X , the integrals over sets
XY approximating by coveringX only up to some fixed finite “distance” in the cusp
are finite and diverge logarithmically in Y . That is,

lim
Y!1

Z

XY

Kt;X .z; z/ dz � c1.t/ logY exists as a C-valued function of t , (89)

where c1.t/ is a factor, constant in Y , and determined in [19]. For the purposes
of such an integration, we can replace X with a suitable fundamental domain F .
Similarly, we replace the truncationXY of X with a matching truncation FY of F .

To obtain the theta inversion formula, the limit of (89) is computed in two ways.
One computation is from the expression of the heat kernel as the periodized heat
kernel on the universal covering space H3. This method of computing the limit in
(89) yields

e�2t .4t/� 12 �NC.1=t/C�Cus.1=t/: (90)

In (90), �NC.1=t/, the inverted theta series, is defined in terms of invariants of
certain � -conjugacy classes in � , while �Cus.1=t/, the inverted theta integral, is
a sum of products composed of special values of �Q.i/, constants similar to Euler’s
 , and single integrals whose Gauss transforms are exact. (We refer to �XIV.7, of
[19], for exact definitions of �NC.1=t/, �Cus.1=t/ and the other terms in the theta
relation.) The other method of computing the limit in (89) is from the expansion of
Kt;X.z; z/ dz in terms of the spectrum of the Laplacian �X . This second method of
computing the limit of (89) yields

�Cus.t/C 1C �Eis.t/; (91)

where �Cus.t/ is the theta series
P1

jD1 e��j t and �j are the eigenvalues of �X , and
�Eis.t/ is what remains as the limit of the integral of the convolution of Kt;X .z;w/
with certain Eisenstein series once the term c1.t/ log.Y / has been subtracted. Setting
equal the two expressions (90) and (91), for the same limit (89), we obtain the theta
inversion formula for X :

e�2t .4t/�
1
2 �NC.1=t/C�Cus.1=t/ D �Cus.t/C 1C �Eis.t/: (92)

Next, note that there is an infinite sequence of arithmetic quotients

Xn D SLn.ZŒi�/nSLn.C/=SU.n/; n > 1;

having X D X2 as its first nontrivial member. Generalizations of (92) to Xn
for n > 2 are discussed in [20]. In order to obtain exact formulas analogous to
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(92), we would have to integrate over a fundamental domain, rather than over an
appoximating Siegel set, which is a more common analytic model in the literature.

In the present work, we initiate an extension of the Jorgenson–Lang project to
the sequence of arithmetic quotients

SOn.ZŒi�/nSOn.C/=SO.n/ (93)

and related arithmetic quotients of real forms of the symmetric spaces. The main
results of the present paper are restricted to the group theory (Propositions 2.8
and 2.24) and fundamental domains (Propositions 2.19 and 2.27) in the first case
of n D 2. Nevertheless, some of the intermediate results are couched in a more
general terminology and notation, with a view towards building upwards from the
case n D 2, to the case of a general n. Thus, our project includes a natural extension
and generalization of Grenier’s work in [13] and [14] to a different sequence of
symmetric spaces.

The identification

SL2.C/=f˙I g Š�! SO3.C/

allows us to view the theta inversion relation (conjecturally) associated with the
case n D 2 in (93) as a theta inversion relation associated with a quotient of
SL2.C/=K by an arithmetic subgroup different from, but still commensurable with,
the “standard” arithmetic subgroup SL2.ZŒi�/. The results of this paper will, it is
hoped, enable future investigations to apply the machinery developed in [19] to
this “nonstandard” arithmetic subgroup c�1.SO3.ZŒi�// of SL2.C/ to obtain the
corresponding theta function.
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France, Paris (2002). With an appendix by Emmanuel Breuillard.

2. Brenner, E.: A fundamental domain of Ford type for some integer subgroups of orthogonal
groups. Preprint, arXiv:math.NT/0605012.

3. Brenner, E.: Interactive graphics available for download (2011). URL http://megamachine.
org/?p=158.

4. Brenner, E., Spinu, F.: Artin formalism, for Kleinian groups, via heat kernel methods (2007).
URL http://megamachine.org/?p=158.

5. Brenner, E., Spinu, F.: Artin formalism for Selberg zeta functions of co-finite Kleinian groups.
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Abstract The ı-characters of an abelian variety [B95] are arithmetic analogues
of the Manin maps [M63]. Given a smooth projective curve X of genus at least
2 embedded into its Jacobian A, one can consider the restrictions to X of the ı-
characters of A; the maps so obtained are referred to as ı-characters of X . It is
easy to see that the ı-characters of X have a remarkable symmetry property at the
origin. The aim of this paper is to prove that this symmetry property completely
characterizes the ı-characters of X .
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Mathematics Subject Classification (2010): 11620, 14H25

1 Introduction

In [M58, M63] Manin introduced some remarkable additive characters of the
group of points of an Abelian variety defined over a complex function field; these
characters are referred to as Manin maps and were used by Manin in his proof of the
complex function field analogue of the Mordell conjecture [M63]. Manin’s result
had been conjectured by S. Lang in [Lan56]. In [B95] arithmetic analogues of the
Manin maps were introduced; they were called ı-characters and in their definition
Manin’s horizontal differentiation was replaced by a Fermat quotient operator, ı,
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which on integers acts as n 7! ın WD n�np
p

, where p is a fixed prime. More

generally, if R WD OZur
p is the completion of the maximum unramified extension

of the ring Zp of p-adic integers, then one considers the operator ı W R ! R

defined by

ıx WD �.x/� xp
p

;

where � W R! R is the unique lift of the p-power Frobenius map on k WD R=pR.
(Morally one views ı as an arithmetic analogue of a derivation.) Then, if X is a
smooth scheme over R and f W X.R/ ! R is a function, one says that f is a
ı-function of order r if for any point in X.R/ there is a Zariski open neighborhood
U � X , a closed embedding u W U � AN , and a restricted power series F with
R-coefficients in .r C 1/N variables such that

f .P / D F.u.P /; ı.u.P //; : : : ; ır .u.P ///; P 2 U.R/:
Here we view u.P / 2 AN .R/ D RN and we say F is restricted if its coefficients
tend to 0. If G is a group scheme over R, then by a ı-character one understands a
ı-function  W G.R/ ! R which is also a group homomorphism into the additive
group Ga.R/ D R. For the construction of ı-characters on Abelian schemes we
refer to [B95]; there always exist ı-characters of order 2, there sometimes exist ı-
characters of order 1 and, of course, there are no non-zero ı-characters of order 0.
Note that ı-characters were used in [B95] to prove an arithmetic analogue of the
Manin theorem of the kernel [M63] and they also have a number of applications to
dynamical systems and modular forms; cf. [B05] and the bibliography therein.

Now if X is a smooth projective curve over R of genus g � 2, then one can
compose the ı-characters of the Jacobian of X with Abel–Jacobi maps of X into
its Jacobian. What one gets are ı-functions X.R/ ! R which we shall call ı-
characters of X . If f is a ı-character (corresponding to an embedding of X into its
Jacobian that sends the point P0 into the origin), then the “formal germ” of the map

X.R/�X.R/! R

.P1; P2/ 7! f .P1/C f .P2/; (1)

at .P 0; P 0/ satisfies a certain symmetry property which we shall refer to as ı-
symmetry. The aim of this paper is to prove that, somewhat surprisingly, the converse
of the above is also true: if a ı-function f W X.R/ ! R vanishing at a point P0 is
such that the “formal germ” of the map (1) at .P 0; P 0/ is ı-symmetric, then f is
a ı-character. What we have here is that formal behavior of a function at one point
guarantees the correct global behavior of the function.

We refer to the body of the paper for the precise definition of ı-symmetry and
further discussion of this concept. We content ourselves here with a few remarks:

Remark 1. (1) For ı-functions f of order 0 (i.e., for functions f arising from
usual algebraic geometry) on an affine curve X the ı-symmetry of the formal
germ of the map in Equation (1) will be automatic; it will be a consequence of
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the usual fundamental theorem of symmetric functions. However the analogue
of the fundamental theorem of symmetric functions fails for ı-functions of order
� 1 and consequently ı-symmetry of formal germs of ı-functions will be far
from automatic.

(2) As we shall see, there exist ı-functionsX.R/! R which are not p-adic limits
of polynomials in ı-characters.

(3) In [B08] it is shown that ı-symmetry, in the special case of modular curves, is
closely related to the action of the Hecke operator T .p/ on ı-modular forms (in
the sense of [B05]).

In Section 2 below we will introduce the main concepts and notation and we will
state our main theorem. Section 3 is devoted to the proof of the theorem.

Acknowledgement While writing this paper the author was partially supported by NSF grant
DMS 0552314.

2 Main concepts and statement of the theorem

Let R D OZur
p , k D R=pR, �; ı W R ! R, be as in the introduction. We denote

by K D RŒ1=p� the fraction field of R. We will assume throughout the paper
that p ¤ 2. For X a smooth scheme over R we denote by Or .X/ the ring of ı-
functions X.R/ ! R of order r . For G a smooth group scheme over R we denote
by Xr .G/ the R-module of ı-characters G.R/ ! R of order r . There are natural
inclusions Or�1.X/ � Or .X/, Xr�1.G/ � Xr .G/. Also there are natural maps
ı W Or�1.X/ ! Or .X/, f 7! ı ı f , and � W Xr�1.G/ ! Xr .G/,  7! � ı  .
Recall from [B95] (or [B05], Definition 3.5) that there exists a projective system of
formal schemes

: : :! J r.X/! J r�1.X/! : : :! J 0.X/ D OX;

called the p-jet spaces of X , such that the ring Or .X/ naturally identifies with the
ring O.J r .X// of global functions on J r.X/. Here O stands for p-adic completion;
on the other hand, completion with respect to a maximal ideal will be denoted, as
a rule, by the superscript for. By a ı-morphism f W X ! Y of order r between
two smooth schemes we understand a morphism of formal schemes J r.X/ ! Y .
The latter induces unique morphisms of formal schemes J rCs.X/ ! J s.Y / that
commute (in the obvious sense) with ı; this allows one to compose ı-morphisms
of orders r1 and r2 to get a ı-morphism of order r1 C r2. Note that the set of ı-
morphisms X ! A1 of order r identifies with the set of ı-functionsX.R/! R of
order r . We shall repeatedly use the fact ([B05], Corollary 3.16) that if U � X is
open, X0 WD X ˝ k is irreducible, and U0 ¤ ;, then Or .X/! Or .U / is injective
with torsion-free cokernel.
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Definition 1. Let X be a smooth projective curve over R of genus g � 1 and let
P0 2 X.R/ be an R-point. A ı-morphism f W X ! A1 is called a ı-character
centered at P0 (of order r) if

f D  ı ˇ;
where ˇ W X ! A WD Jac.X/ is the Abel–Jacobi map P 7! O.P � P0/ and
 W A! Ga D A1 is a ı–character of A (of order r).

Remark 2. It follows from [B95], pp. 325–326, that the R-module of ı-characters
of order r on X centered at P0 has rank between .r � 1/g and rg. Note that any
ı-character on X centered at P0 vanishes at P0 and actually vanishes on the set
of torsion points X.R/tors WD ˇ�1.A.R/tors/. More generally any ı-character on X
takes the same value at P;Q 2 X.R/ whenever P � Q is torsion in the divisor
class group. In particular the p-adic closure Cr .X/ of the R-subalgebra of Or .X/

generated by all ı-characters of X (centered at various points) does not separate
points whose difference is torsion in the divisor class group. On the other hand if
the genus is g � 2 and r � 1, then by [B96], p. 365, Or .X/ separates the points
of X.R/. So, for all r � 1, we have Cr .X/ ¤ Or .X/ provided there exist distinct
points P;Q 2 X.R/ such that P �Q is torsion in the divisor class group.

Let T D fT 1; : : : ; T gg be a g-tuple of variables. (Later in the paper g will be the
genus of our curve.) By a (smooth) local formal scheme (of relative dimension g)
we understand a formal scheme of the form X for ' Spf RŒŒT��. If T0; : : : ;T.r/ are
additional g-tuples of variables, then the local formal scheme

J r.X for/ WD Spf RŒŒT; : : : ;T.r/��

will be referred to as the p-jet space of X for of order r . One defines the maps

ı W RŒŒT; : : : ;T.i/��! RŒŒT; : : : ;T.iC1/��

by the formula

ı.F.T; : : : ;T.i/// WD F .�/.Tp C pT0; : : : ; .T.r//p C pT.iC1// � F.T; : : : ;T.i//p
p

I

the upper .�/ means “twisting coefficients by �”. A ı-morphism X for ! Y for of
order r is a morphism of formal schemes J r.X for/ ! Y for. Any such morphism
induces unique morphisms J rCi .X for/ ! J i .Y for/ for all i � 0 such that the
corresponding ring homomorphisms commute, in the obvious sense, with ı. This
allows one to define, in an obvious way, the composition of two ı-morphisms of
local formal schemes.

Let F 2 RŒŒT1;T2��g be a formal group law in g variables (always assumed
commutative); the local formal scheme Gfor WD Spf RŒŒT�� equipped with the
formal group law Gfor � Gfor ! Gfor defined by F will be referred to as a local
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formal group. In particular we denote by Gfor
a D Spf RŒŒz�� the local formal group

defined by the formal group law z1 C z2. By [B05], Proposition 4.39, for any local
formal groupGfor and any r � 0 we may consider the formal group law in g.rC 1/
variables

.F ; ıF ; : : : ; ırF/ 2 RŒŒT;T0; : : : ;T.r/��g.rC1/: (2)

(That this tuple is a formal group law follows from an obvious universality property
argument.) The formal group law (2) defines a local formal group J r.Gfor/ which
can be referred to as p-jet space of Gfor of order r . By a ı-character Gfor ! Gfor

a

of a local formal group Gfor we understand a ı-morphism Gfor ! Gfor
a which is

compatible in the obvious sense with the group laws.

Remark 3. Assume g D 1. If F has coefficients in an unramified extension O of
Zp with residue field NO D O=pO of size p� and if NF 2 NOŒŒT1;T2�� has either
infinite height or height h, then there always exists at least one non-zero ı-character
Gfor ! Gfor

a of order � �h; this is a consequence of the proof of Proposition 4.26
in [B05].

Definition 2. A ı-morphism

f for W X for ! A1;for WD Spf RŒŒz��

from a local formal scheme will be called a ı-character if there exists a morphism
ˇfor W X for ! Gfor into a local formal group Gfor and a ı-character  for W Gfor !
Gfor
a D A1;for such that

f for D  for ı ˇfor:

Let t1; : : : ; tm be a tuple of variables and s1; : : : ; sm another tuple of variables,
m � 2. Let Sj WD Sj .t1; : : : ; tm/ be the fundamental symmetric polynomials in
t1; : : : ; tm,

S1 D t1 C � � � C tm; � � � ; Sm D t1 : : : tm:
Remark 4. The R-algebra homomorphism

RŒŒs1; : : : ; sm; : : : ; s
.r/
1 ; : : : ; s

.r/
m ��! RŒŒt1; : : : ; tm; : : : ; t

.r/
1 ; : : : ; t .r/m �� (3)

s
.i/
j 7! ıiSj ;

is injective. Indeed it is enough to check the corresponding statement with R

replaced by K , the quotient field of R. But

KŒt1; : : : ; tm; : : : ; t
.r/
1 ; : : : ; t .r/m � D KŒt1; : : : ; tm; : : : ; �r.t1/; : : : ; �r .tm/� (4)

and similarly for the si ’s. Also we have an equality of ideals

.t1; : : : ; tm; : : : ; t
.r/
1 ; : : : ; t .r/m / D .t1; : : : ; tm; : : : ; �r .t1/; : : : ; �r .tm//



116 A. Buium

so Equation (4) holds with polynomials replaced by power series. So we are led to
check that

KŒŒs1; : : : ; sm; : : : ; �
r .s1/; : : : ; �

r .sm/��! KŒŒt1; : : : ; tm; : : : ; �
r .t1/; : : : ; �

r .tm/��

is injective. We claim the latter map is faithfully flat and this will prove its injectivity.
Now the claim follows from the fact that the inclusion

KŒs1; : : : ; sm; : : : ; �
r .s1/; : : : ; �

r .sm/�! KŒt1; : : : ; tm; : : : ; �
r.t1/; : : : ; �

r .tm/�

is finite and flat and the ideal .t1; : : : ; tm; : : : ; �r .t1/; : : : ; �r.tm// is the only
maximal ideal above .s1; : : : ; sm; : : : ; �r.s1/; : : : ; �r .sm//.

In what follows we shall view the map (3) as an inclusion.

Definition 3. A series in RŒŒt1; : : : ; tm; : : : ; t
.r/
1 ; : : : ; t

.r/
m �� is ı-symmetric if it is in

the image of RŒŒs1; : : : ; sm; : : : ; s
.r/
1 ; : : : ; s

.r/
m ��.

Let t be a variable. For any series F 2 RŒŒt; t 0; : : : ; t .r/�� and anym � 2 one can
consider the series

˙mF WD
mX

iD1
F
�

ti ; t
0
i ; : : : ; t

.r/
i

�

2 R
hh

t1; : : : ; tm; : : : ; t
.r/
1 ; : : : ; t .r/m

ii

:

These series are not ı-symmetric in general. For example, the series˙2.t
0/2 is not ı-

symmetric. On the other hand, for instance,˙mt
0 is ı-symmetric for anym � 2. An

obvious class of examples of series F such that ˙mF are ı-symmetric is provided
by the series in

rX

iD0
�i .tRŒŒt ��/:

A less obvious class of examples of series F such that ˙mF are ı-symmetric is
provided by Lemma 1 below. Let us also note that if˙mF is ı-symmetric then˙iF

is ı-symmetric for all i � m. Also it is worth noting that if F 2 RŒt; t 0; : : : ; t .r/�O,
then one always has

˙mF 2 RŒs1; : : : ; sm; : : : ; s.r/1 ; : : : ; s.r/m ;��1�O

where

� WD
Y

i<j

.ti � tj /2 2 RŒs1; : : : ; sm�

is the discriminant polynomial; this is an immediate consequence of [B05], Proposi-
tion 3.27. So, morally, what prevents ˙mF from being ı-symmetric is the possible
“occurrence of� in the denominators”.
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Definition 4. Let f for W X for ! A1;for D Spf RŒŒz�� be a ı-morphism with X for

of relative dimension 1 and let

˙mf
for W .X for/m

.f for/m�! .A1;for /m
C! A1;for

be the induced ı-morphism, m � 2. Fix an isomorphism X for ' Spf RŒŒt �� and
consider the series

f for;�z 2 RŒŒt; t 0; : : : ; t .r/��:
We say that ˙mf

for is ı-symmetric if the series

˙mf
for;�z 2 RŒŒt1; : : : ; tm; : : : ; t .r/1 ; : : : ; t .r/m ��

is ı-symmetric. (The definition does not depend on the choice of the isomorphism
X for ' Spf RŒŒt ��.)

Now if X is a smooth curve over R and P0 2 X.R/ is a point with reduction
mod p denoted by P0

0 2 X.k/, then the completion X for of X at P0
0 is isomorphic

to Spf RŒŒt �� so it is a local formal scheme. Fix such an isomorphism and let

f W X ! A1

be a ı-morphism with f .P 0/ D 0. Then f naturally defines a ı-morphism of local
formal schemes

f for W X for ! A1;forI
cf. [B05], p. 126.

The main result of this paper is the following:

Theorem 1. Let X be a smooth projective curve of genus at least 2 over R and let
f W X ! A1 be a ı-morphism vanishing at some point P0 2 X.R/. The following
are equivalent:

(1) f is a ı-character centered at P0;
(2) f for is a ı-character;
(3) ˙mf

for is ı-symmetric for all m � 2;
(4) ˙2f

for is ı-symmetric.

The implications 1 ) 2 and 3 ) 4 are clear. The rest of this paper is devoted
to the proof of 2) 3 and 4) 1. Before proceeding, let us remark that conditions
2, 3 and 4 in the Theorem look a priori much weaker than condition 1; indeed,
the R-module of ı-characters of order r on X for has infinite rank whereas the R-
module of ı-characters on X centered at P0 has finite rank. What morally makes
the implication 4 ) 1 hold is the additional assumption that f is a global object,
defined on the whole of X .
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3 Proof of the theorem

The next lemma settles the implication 2) 3 in Theorem 5:

Lemma 1. Let f for W X for ! A1;for be a ı-character where X for has relative
dimension 1. Then ˙mf

for is ı-symmetric for all m � 2.

Proof. Assume we are in the situation of Definition 2 with

X for D Spf RŒŒt ��;

Gfor D Spf RŒŒT��;

A1;for D Spf RŒŒz��:
Here T is a g-tuple of variables. Let the morphism ˇfor W X for ! Gfor be given by

ˇfor;�T D ˚.t/ 2 RŒŒt��g

and let  for W Gfor ! Gfor
a be given by

 for;�z D � D �.T; : : : ;T.r// 2 RŒŒT; : : : ;T.r/��:
Let Fm 2 RŒŒT1; : : : ;Tm��g be the tuple of series defining the m-fold addition

.Gfor/m ! Gfor:

Then (by a universality property argument) the tuple of series

.Fm; ıFm; : : : ; ırFm/
defines the m-fold addition

.J r .Gfor//m ! J r.Gfor/:

Recall the classical fundamental theorem of symmetric polynomials saying that
the symmetric polynomials inRŒt1; : : : ; tm� belong to the ringRŒs1; : : : ; sm�. By this
theorem applied to the homogeneous components of

G WD Fm.˚.t1/; : : : ; ˚.tm//;
we have G 2 RŒŒs1; : : : ; sm��g . Then, using the fact that � defines homomorphism,
we get

mX

iD1
�.˚.ti /; : : : ; ı

r˚.ti // D �.Fm.˚.t1/; : : : ; ˚.tm//; : : : ; ırFm.˚.t1/; : : : ; ˚.tm///

D �.G; : : : ; ırG/
2 RŒŒs1; : : : ; sm; : : : ; s.r/1 ; : : : ; s

.r/
m ��:
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Lemma 2. Let Y be a smooth scheme over R, with irreducible fibers, and let
U � Y be an open set. Let Y0 WD Y ˝ k, U0 WD U ˝ k, and assume Y0nU0
has codimension� 2 in Y0. Then Or .Y / D Or .U / for all r � 0.

Proof. For r D 0, O0.Y / D O. OY /, where Omeans p-adic completion, and the result
is well known. (For convenience we recall the argument. We may assume Y is affine.
Take f 2 O. OU /. Then the image Nf 2 O.U0/ extends uniquely to some Ng1 2 O.Y0/.
Since Y is affine Ng1 is the image of some g1 2 O. OY /. So f D g1Cpf1, f1 2 O. OU /.
Similarly one finds g2 2 O. OY / and f2 2 O. OU / such that f1 D g2Cpf2. Continuing
we get, in a similar way, f D g1 C pg2 C : : : C pn�1gn C pnfn, gi 2 O. OY /,
fn 2 O. OU /. Clearly the restriction of

P
pi�1gi 2 O. OY / to OU is f .) Now assume r

arbitrary and recall that Or .Y / D O.J r .Y //, where J r.Y / is thep-adic completion
of some smooth scheme. So it is enough to check that J r .U /˝ k has codimension
� 2 in J r.Y /˝k. This follows immediately from the fact that J r.Y /˝k is a locally
trivial bundle over Y˝k with fibers affine spaces and J r.U /˝k is the inverse image
of U ˝ k in J r.Y /˝ k; cf. [B05], Proposition 3.13 and Corollary 3.16.

Lemma 3. LetX be a smooth projective curve overR, letXn be the n-fold product
of X (n � 2), let Sn � Xn ! Xn be the natural action of the symmetric group,
and let X.n/ D Xn=Sn be the n-fold symmetric product of X . Let � D �n W
Xn ! X.n/ be the natural projection. Let f 2 Or .X/ an let P0 2 X.R/ be
such that f .P 0/ D 0. Let f n 2 Or .Xn/ be defined by

f n.P1; : : : ; Pn/ D f .P1/C � � � C f .Pn/; Pi 2 X.R/:
Assume ˙2f

for is ı-symmetric. Then f n descends to a function f .n/ 2 Or .X.n//

(i.e., f n D f .n/ ı �).

Proof. View the k-points of X.n/ as effective divisors on X0 WD X ˝ k. Let H �
X.n/ be the image of the union QH D [Xij of all “principal diagonals” Xij � Xn;
so, for i < j , Xij is the image of

Xn�1 ! Xn;

.P1; : : : ; Pn�1/ 7! .P1; : : : ; Pi�1; Pi ; PiC1; : : : ; Pj�1; Pi ; PjC1; : : : ; Pn/:

ThenH0 WD H ˝ k is the image of X.n�1/
0 , hence is an irreducible divisor on X.n/

0 .
The projection

Xnn QH ! X.n/nH
is a finite Galois étale morphism so by [B05], Proposition 3.27, f n descends to a
function f .n/

1 2 Or .X.n/nH/. Choose a reduced divisor D0 on X0 of degree n � 2
whose support does not contain P0

0 and consider the k-point 2P 0
0 CD0 2 H0.k/.

Claim 1. There exists a neighborhood U of 2P 0
0 CD0 2 X.n/.k/ in X.n/ such that

f n descends to a function f .n/
2 2 Or .U /.

Note that Claim 1 can be used to end the proof of our lemma. Indeed,
f
.n/
1 2 Or .X.n/nH/ and f .n/

2 2 Or .U / obviously coincide on the R-points of
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U \ .X.n/nH/ so they yield a function f .n/
3 2 Or .U [ .X.n/nH//. Since H0

is an irreducible divisor on X.n/
0 , the complement of U0 [ .X.n/

0 nH0/ in X.n/
0 has

codimension� 2. By Lemma 2, f .n/
3 extends to a function f .n/ 2 Or .X.n//. Since

f .n/ ı� D f n on an open set with non-empty fibers overR it follows that the latter
equality holds on the whole of Xn.

We will now prove Claim 1.
Choose an affine neighborhood U of 2P 0

0 C D0 in X.n/ such that the divisor
H \ U is given in U by one equation h 2 O.U /. By shrinking U we may assume
that U has étale coordinates

s1; s2; t3; : : : ; tn;

where s1 D t1 C t2, s2 D t1t2 such that t1; t2 come from an étale coordinate t on
X around P0

0 and t3; : : : ; tn come from étale coordinates on X around the points in
the support of D0. Let A D O.U / and denote by � the variables s1; s2 and by 	 the
variables t3; : : : ; tn. (By the way, we may assume the image of h in RŒŒ�; 	�� equals
s21 � 4s2; we will not need this explicit expression for the image of h.) By [B05],
Proposition 3.13, we have identifications

Or .U / D OAŒ� 0; 	 0; : : : ; �.r/; 	 .r/�O; (5)

Or .U nH/ D .Ah/OŒ� 0; 	 0; : : : ; �.r/; 	 .r/�O: (6)

We may view f
.n/
1 as an element in the ring (6). On the other hand, by our

assumption that˙2f
for is ı-symmetric, we may view f .n/

1 as an element in the ring

RŒŒ�; 	; � 0; 	 0; : : : ; �.r/; 	 .r/��: (7)

The rings (5), (6), (7) are subrings of the ring

.RŒŒ�; 	��h/OŒŒ� 0; 	 0; : : : ; �.r/; 	 .r/��: (8)

So Claim 1 will be proved if we prove

Claim 2. The intersection of the rings (6) and (7) inside the ring (8) equals the
ring (5).

In order to prove Claim 2 we prove a series of other claims. Let

Nh WD h˝ 1 2 NA WD A˝ k:

Claim 3. kŒŒ�; 	�� \ NA Nh D NA.

To check the non-obvious inclusion “�” consider the maximal ideal NM WD
.�; 	/ � NA. Then the NM -adic completion of NA NM is kŒŒ�; 	�� so the extension
NA NM � kŒŒ�; 	�� is faithfully flat. So if Q. NA/ is the fraction field of NA, then

kŒŒ�; 	�� \Q. NA/ D NA NM :



Differential characters on curves 121

In particular
kŒŒ�; 	�� \ NA Nh � NA NM \ NA Nh D NA;

which ends the proof of Claim 3. (The last equality holds because any element
in NA NM \ NA Nh defines a rational function u on Spec NA D U0 D U ˝ k which is
regular at the point NM and also outside the hypersurfaceH0 \ U0; since H0 \ U0
is irreducible, u is regular outside a closed subset of codimension � 2, hence is
regular on the whole of U0.)

Claim 4. RŒŒ�; 	�� \ .Ah/O D OA.
The non-obvious inclusion is, again, “�”. Now if u 2 RŒŒ�; 	�� \ .Ah/O, then its

reduction mod p satisfies Nu 2 kŒŒ�; 	�� \ NA Nh. By Claim 3 there exists a1 2 A such
that u � a1 2 p.Ah/O \ pRŒŒ�; 	�� so u � a1 D u1 with u1 2 RŒŒ�; 	�� \ .Ah/O.
Repeating the procedure we find, for any n, that

u D a1 C pa2 C � � � C pn�1an C pnun;

where ai 2 A, un 2 RŒŒ�; 	�� \ .Ah/Owhich clearly implies u 2 A.
Let us prove Claim 2. Any element F in the intersection of the rings (6) and (7)

is an element in the ring

.RŒŒ�; 	�� \ .Ah/O/ŒŒ� 0; 	 0; : : : ; �.r/; 	 .r/��: (9)

By Claim 4 the ring (9) equals the ring

OAŒŒ� 0; 	 0; : : : ; �.r/; 	 .r/��: (10)

So F is in the intersection of the ring (10) with (6), hence is a series in
� 0; 	 0; : : : ; �.r/; 	 .r/ with coefficients in OA which tend to 0 in the ring .Ah/O. Since
NA! NA Nh is injective, p.Ah/O \ OA D p OA, so pn.Ah/O \ OA D pn OA for any n. So the

coefficients of F tend to 0 in OA and hence F is in the ring (5) which ends our proof.

Lemma 4. Let Y be a smooth scheme over R, E a locally free sheaf on Y , and
PY .E/ the associated projective bundle over Y . Then, for all r � 0, the natural map
Or .Y /! Or .PY .E// is an isomorphism.

Proof. We may assume E is trivial so PY .E/ D Y � PN . If Y D Spec R then our
assertion was proved in [B96]. For arbitrary Y pick a point Q0 2 PN .R/ and let
f 2 Or .Y � PN /. Denote by s W Y ! Y � PN the map s.P / D .P;Q0/. If
� W Y � PN ! Y is the first projection, then

.f ı s ı �/.P;Q/ D f .P;Q0/ D f .P;Q/
because the map

PN .R/! R; Q 7! f .P;Q/

is constant (by the case Y D Spec R of the lemma). We just proved surjectivity of
the map Or .Y /! Or .PY .E//. Injectivity is obvious.

We are ready to prove the implication 4) 1 in Theorem 5.
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Proof. Assume condition 4 holds. For n � 1 let ˇn W X.n/ ! A D Jac.X/ be
the Abel–Jacobi map which, at the level of geometric points, sends a divisor D of
degree n into (the isomorphism class of) O.D � nP 0/. By Lemma 3 the induced
ı-morphism f n W Xn ! A1 descends to a ı-morphism f .n/ W X.n/ ! A1. Recall
that for any n � 2g � 1 (where g is the genus of X ) we have X.n/ D PA.En/
for some locally free sheaf En on A. By Lemma 4, f .n/ descends to a ı-morphism
 n W A! A1. If ˇ D ˇ1 W X ! A, then for any P 2 X.R/,

. n ı ˇ/.P / D  n.O.P � P0//

D  n.O..n � 1/P 0 C P � nP 0//

D f .n/..n� 1/P 0 C P/

D .n � 1/f .P 0/C f .P /

D f .P /:
So  n ı ˇ D f .

We claim that  n is a ı-character and this will end our proof. Fix the integer
n � 2g � 1 in what follows. Recall that ˇg W X.g/ ! A induces an isomorphism
ˇ�1g .U / ! U where U � A is some open set with non-empty fibers over R. So
there is an open set V � U with non-empty fibers over R such that if �g W Xg !
X.g/ is the canonical projection then QV WD ��1g ˇ�1g .V / ! V is étale. So any R-
point 
 of V lifts to an R-point of Xg , i.e., there exist P1; : : : ; Pg 2 X.R/ such
that ˇg.P1 C � � � C Pg/ D 
. Hence, if D
 WD P1 C � � � C Pg C .n � g/P 0, then
ˇn.D
/ D 
. Now let 
1; 
2 2 V.R/ be such that 
1 C 
2 2 V.R/. Then

.D
1 � nP 0/C .D
2 � nP 0/ � D
1C
2 � nP 0;

where�means linear equivalence on the geometric generic fiber ofX . SoD
1CD
2

andD
1C
2 C nP 0 correspond to R-points of X.2n/ that map to the same R-point of
A via ˇ2n. Hence we have:

 n.
1/C  n.
2/ D f .n/.D
1 /C f .n/.D
2/

D f .2n/.D
1 CD
2/

D f .2n/.D
1C
2 C nP 0/

D f .n/.D
1C
2/C nf .P 0/

D f .n/.D
1C
2/

D  n.
1 C 
2/:
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The above identity holds for all R-points of the open set .V � V / \ ��1.V / where
� W A � A ! A is the addition hence it holds on A � A hence  n is a ı-character
and our claim is proved.
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Weyl group multiple Dirichlet series of type A2

Gautam Chinta and Paul E. Gunnells

In memory of Serge Lang

Abstract A Weyl group multiple Dirichlet series is a Dirichlet series in several
complex variables attached to a root system ˆ. The number of variables equals the
rank r of the root system, and the series satisfies a group of functional equations
isomorphic to the Weyl group W of ˆ. In this paper we construct a Weyl group
multiple Dirichlet series over the rational function field using nth order Gauss sums
attached to the root system of type A2. The basic technique is that of [10, 11];
namely, we construct a rational function in r variables invariant under a certain
action of W , and use this to build a “local factor” of the global series.
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1 Introduction

Weyl group multiple Dirichlet series are Dirichlet series in r complex variables
s1; s2; : : : ; sr that have analytic continuation to C

r , satisfy a group of functional
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whose coefficients are products of nth order Gauss sums. The study of these series
was introduced in [2], which also suggested a method for proving their analytic
continuation and functional equations.

Recently a complete proof of these expected properties has been given in [12].
In this paper we describe in detail the construction for the root system A2: There
exist alternate constructions of the series defined here. For A2 and n � 2 one falls in
the stable range, and therefore our result follows from the work of [3]. (In fact, this
case was treated earlier in [2].) Nevertheless there are several reasons why a new
treatment of A2 is desirable. First, the methods used here are completely different
from those of [3] and give an alternative technique to construct Weyl group multiple
Dirichlet series. Second, the technique presented here works for a root system ˆ of
arbitrary rank and for arbitrary n, with no stability restriction. This is the subject of
[12]; one of the main goals of the present paper is an exposition of our method in
the simplest nontrivial case, namely ˆ D A2.

With this latter goal in mind we also adopt certain assumptions to make the
exposition simpler. For instance, we work over a rational function field to avoid the
annoyance of having to deal with Hilbert symbols. We also focus on the untwisted
case (see �2 for an explanation of this terminology) to avoid some notational
complexities. A comparison with the methods of [2, 10, 11] indicates how to extend
our methods to an arbitrary global field containing the 2nth roots of unity and to
arbitrary twists.

We now describe our main result in greater detail. Let F be a finite field whose
cardinality q is congruent to 1 mod 4n. Let K be the rational function field F.t/,
and let O D FŒt �. Let Omon � O be the subset of monic polynomials. We let
K1 D FŒŒt�1�� denote the field of Laurent series in t�1.

For x; y 2 O relatively prime, we denote by
�
x
y

�

the nth order power residue

symbol. We have the reciprocity law

�x

y

�

D
�y

x

�

(1.1)

for x; y monic. The reciprocity law takes this particularly simple form because of
our assumption that the cardinality of F is congruent to 1 mod 4.

Let y 7! e.y/ be an additive character on K1 with the following property: if
I � K is the set of all y 2 K such that the restriction of e to yO is trivial, then
I D O. Fix an embedding � from the the nth roots of unity in F to C

�: For r; c 2 O
we define the Gauss sum g.r; �; c/ by

g.r; �; c/ D
X

y mod c

�
��y

c

��

e
�ry

c

�

:

We will also use the notation gi .r; c/ D g.r; �i ; c/ and g.r; c/ D g.r; �; c/: Note
that �i is not necessarily an embedding.



Weyl group multiple Dirichlet series of type A2 127

We are now ready to define our double Dirichlet series. Put

Z.s1; s2/ D .1 � qn�ns1/�1.1 � qn�ns2/�1.1 � q2n�ns1�ns2/�1

�
X

c12Omon

X

c22Omon

H.c1; c2/

jc1js1 jc2js2 ; (1.2)

where the coefficientH.c1; c2/ is defined as follows:

(1) (Twisted multiplicativity) If gcd.c1c2; d1d2/ D 1, then

H.c1d1; c2d2/

H.c1; c2/H.d1; d2/
D
� c1

d1

��d1

c1

�� c2

d2

��d2

c2

�� c1

d2

��1�d1
c2

��1
: (1.3)

(2) (p-part) If p is prime, then

X

k;l�0
H.pk; pl /xkyl D 1C g.1; p/x C g.1; p/y C g.1; p/g.p; p/xy

C g.1; p/g.p; p2/xy2 C g.1; p/g.p; p2/x2y
C g.1; p/2g.p; p2/x2y2: (1.4)

Our main result is

Theorem 1.1. The double Dirichlet seriesZ.s1; s2/ converges absolutely for Re.si /
sufficiently large and has an analytic continuation to all .s1; s2/ 2 C

2. Moreover,
Z.s1; s2/ satisfies two functional equations of the form

�1W .s1; s2/ 7! .2 � s1; s1 C s2 � 1/ and �2W .s1; s2/ 7! .s1 C s2 � 1; 2� s2/: (1.5)

These two functional equations generate a subgroup of the affine transformations of
C
2 isomorphic to the symmetric group S3.

The precise statement of the functional equations involves a set of double
Dirichlet series Z.s1; s2I i; j /, where 0 � i; j � n � 1, and where Z.s1; s2/ DP

i;j Z.s1; s2I i; j /; we refer to Theorem 4.1 for details. Moreover, one can explic-
itly write down Z.s1; s2/ as a rational function in q�s1 ; q�s2 : For n D 2; this was
first done by Hoffstein and Rosen [16] (in the case of the rational function field with
q congruent to 1 mod 4), and later by Fisher and Friedberg [13] (over a general base
field). For n > 2; again working over the rational function field, the A2 series have
been computed by Chinta [8].

As stated above this theorem follows from the work of [2, 3]. In [6], the authors
study the harder problem of constructing twisted Weyl group multiple Dirichlet
series associated to the root system Ar . They construct such series for A2 and
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present a conjectural description of the series associated to Ar for arbitrary r and n.
Recently, Brubaker, Bump and Friedberg have given two different proofs of their
conjectures [4, 5], thereby giving a complete definition of Weyl group multiple
Dirichlet series associated to Ar: In fact, in [4] the authors prove that the series they
construct are Fourier–Whittaker coefficients of Eisenstein series on a metaplectic
n-fold cover of GLrC1; thereby establishing Conjecture 1.4 of [3], in the case
G D GLrC1: Consequently, these Weyl group multiple Dirichlet series inherit from
the Eisenstein series functional equations and analytic continuation. Contrastingly,
the techniques used in [5] make no use of the connection to Eisenstein series other
than in the rank 1 case.

This is also the case in our paper. Our method has the advantage that functional
equations are essentially built-in to our definition. As in the case of [2, 3, 6, 10, 11]
the Weyl group multiple Dirichlet series are completely determined by their p-parts
and the twisted multiplicativity satisfied by the coefficients. Our approach is to show
that if the p-parts (which can be expressed as rational functions in the jpj�si ) satisfy
certain functional equations, then the global multiple Dirichlet series satisfies the
requisite global functional equations. This leads us to define a certain action of W ,
the Weyl group of the root system ˆ, on a certain subring of the field of rational
functions in r indeterminates. This approach, first introduced in [7], has been carried
out in the quadratic case for an arbitrary simply-laced root system, see [10, 11].
We extend this approach to arbitrary ˆ and n in [12]. However, although the basic
ideas are clear, the non-obvious group action required on rational functions can
appear unmotivated and complicated in the general setting. Therefore, we feel it is
worthwhile in this paper to work out in detail the simplest nontrivial case, the rank
two root system A2:

Here is a short plan of the paper. Section 2 describes the Weyl group action on
rational functions that leads to a p-part (1.4) with the desired functional equations.
Although the focus of this paper is untwisted A2, we work more generally at
first and state the full action for a general (simply laced) root system. We then
specialize to untwisted A2. Section 3 reviews the Dirichlet series of Kubota; in the
current framework, these series are Weyl group multiple Dirichlet series attached
to A1. The main result of this section is Theorem 3.4, which shows that a certain
Dirichlet series E.s;m/ built from the function H.c; d/ from (1.3)–(1.4) satisfies
the same functional equations as Kubota’s. Finally, in Section 4 we use Theorem
3.4 to complete the proof of Theorem 1.1. The basic idea is that the (one variable)
functional equations of the E.s;m/ induce a bivariate functional equation in the
double Dirichlet series.

Acknowledgements GC wishes to thank the NSF for support of this research through the FRG
grant DMS-0652605. GC also gratefully acknowledges the support of the Alexander von Humboldt
Foundation.

PG wishes to thank the NSF for support through Grant DMS-0801214.
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2 A Weyl group action

Let ˆ be an irreducible simply laced root system of rank r with Weyl group W .
Choose an ordering of the roots and let ˆ D ˆC [ ˆ� be the decomposition into
positive and negative roots. Let

� D f˛1; ˛2; : : : ; ˛r g
be the set of simple roots and let �i be the Weyl group element corresponding to
the reflection through the hyperplane perpendicular to ˛i . We say that i and j are
adjacent if i ¤ j and .�i�j /3 D 1. The Weyl group W is generated by the simple
reflections �1; �2; : : : ; �r , which satisfy the relations

.�i�j /
r.i;j / D 1 with r.i; j / D

8

<

:

3 if i and j are adjacent,
1 if i D j , and
2 otherwise,

(2.1)

for 1 � i; j � r . The action of the generators �i on the roots is

�i˛j D
8

<

:

˛i C ˛j if i and j are adjacent,
�˛j if i D j , and
˛j otherwise.

(2.2)

Define
sgn.w/ D .�1/length.w/

where the length function on W is with respect to the generators �1; �2; : : : ; �r : Let
ƒ be the lattice generated by the roots. Any ˛ 2 ƒ has a unique representation as
an integral linear combination of the simple roots:

˛ D k1˛1 C k2˛2 C � � � C kr˛r : (2.3)

We denote by
d.˛/ D k1 C k2 C � � � C kr

the usual height function on ƒ and put

dj .˛/ D
X

i�j
ki ;

where i � j means that the nodes labeled by i and j are adjacent in the Dynkin
diagram ofˆ: Introduce a partial ordering onƒ by defining ˛ 	 0 if each ki � 0 in
(2.3). Given ˛; ˇ 2 ƒ, define ˛ 	 ˇ if ˛ � ˇ 	 0.

Let A D CŒƒ� be the ring of Laurent polynomials on the lattice ƒ. Hence A
consists of all expressions of the form f DP

ˇ2ƒ aˇxˇ , where aˇ 2 C and almost

all are zero, and the multiplication of monomials is defined by addition inƒ: xˇx� D
xˇC�. We identify A with CŒx1; x

�1
1 ; : : : ; xr ; x

�1
r � via x˛i 7! xi .
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Let p be a prime in O of norm p. Let eA be the localization of A at the
multiplicative subset of all expressions of the form

f1� pnd.˛/xnd.˛/; 1 � pnd.˛/�1xnd.˛/ j ˛ 2 ˆCg:

The group W will act on eA, and the action will involve the Gauss sums gi .1; p/.1

There is one further parameter necessary for the definition. Let ` D .l1; : : : ; lr / be
an r-tuple of nonnegative integers. The tuple ` is called a twisting parameter; it
should be thought of as corresponding to the weight

P
.lj C 1/$j , where the $j

are the fundamental weights of ˆ. The case ` D .0; : : : ; 0/ is called the untwisted
case. For each choice of ` we will define an action of the Weyl groupW on eA.

We are now ready to define theW -action. First, we define a “change of variables”
action on eA as follows. for x D .x1; x2; : : : ; xr / define �ix D x0, where

x0j D
8

<

:

pxixj if i and j are adjacent,
1=.p2xj / if i D j , and
xj otherwise.

(2.4)

One can easily check that if fˇ.x/ D xˇ is a monomial, then

fˇ.wx/ D qd.w�1ˇ�ˇ/xw�1ˇ: (2.5)

Next, write f 2 A as
f .x/ D

X

ˇ

aˇxˇ:

Given integers k; i; j , define

fk.xI i; j / D
X

ˇkDi mod n
dk.ˇ/Dj mod n

aˇxˇ:

We define the action of a generator �k 2 W on f as follows:

.f j`�k/.x/ D .pxk/
lk

n�1X

iD0

n�1X

jD0

�Pij .xk/fk.�kxI i; j � lk/

C Qij .xk/fk.�kxI j C 1 � i; j � lk/
�

; (2.6)

1We remark that our normalization for Gauss sums follows [3,6] and not [10,11]. See [11, Remark
3.12] for a discussion of this.
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where

Pij .x/ D .px/1�.�2iCjC1/n 1 � 1=p
1 � pn�1xn ;

Qij .x/ D �g�2i�j�1.1; p/.px/1�n
1 � pnxn
1 � pn�1xn ;

g�i .1; p/ D
(

gi .1; p/=p if n − i ,
�1 otherwise.

Here .i/n 2 f0; : : : ; n � 1g is the remainder upon division of i by n. We extend
this action to all of eA first extending (2.6) to all of A by linearity, and then given
f=g 2 eA by defining

�
f

g

ˇ
ˇ
ˇ
`
�k

�

.x/ D .f j`�k/.x/
g.�kx/

:

One can show that this action of the generators extends to an action of W on eA; in
particular the defining relations (2.1) are satisfied.

Now we specialize to the focus of this paper: we set ˆ D A2 and ` D .0; 0/. To
simplify notation we write x; y for the variables ofeA. With these simplifications the
action of �1 on f 2 A takes the form

.f j�1/.x; y/ D
n�1X

iD0

n�1X

jD0

�

Pij .x/f1
�

1
p2x
; pxyI i; j

�

CQij .x/f1

�
1
p2x
; pxyI j C 1 � i; j

��

I (2.7)

the action of �2 is similar. An invariant rational function for this action is

h.x; y/ D N.x; y/

.1 � pn�1xn/.1 � pn�1yn/.1 � p2n�1xnyn/ ; (2.8)

where the numeratorN.x; y/ is

N.x; y/ D N.p/.x; y/ D 1C g1.1; p/x C g1.1; p/y C g1.1; p/g1.p; p/xy
C pg1.1; p/g2.1; p/xy2 C pg1.1; p/g2.1; p/x2y
C pg1.1; p/2g2.1; p/x2y2: (2.9)
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To compare this with (1.4), note that pg2.1; p/ D g1.p; p2/. Also note that only the
numerator of (2.8) appears in (1.4) because the denominator is incorporated in the
factors appearing at the front of (1.2).

Let us write h.x; y/ as

h.x; y/ D
X

k;l�0
a.pk; pl /xkyl(2.10)

D
X

l�0
yl

 
n�1X

iD0

X

kDi mod n

a.pk; pl /xk

!

D
X

l�0

n�1X

iD0
ylh.p;l/.xI i/:

The following two lemmas are proved by a direct computation.

Lemma 2.1. We haveN.p/.x; 0/ D 1Cg1.1; p/x;N .p/.0; y/ D 1Cg1.1; p/y and
for j D l mod n; and 0 � i � n � 1,

h.p;l/.xI i/ D .px/lPij .x/h
�

1
p2x
I i
�

C .px/lQij .x/h
�

1
p2x
I l C 1 � i

�

:

Lemma 2.2. Let

f .p;l/.xI i/ D h.p;l/.xI i/ � ıg2i�l�1.1; p/p.2i�l�2/nx.2i�l�1/nh.p;l/.x; l C 1 � i/

where ı D 0 if l � 2i D �1 mod n and is 1 otherwise. Then

f .p;l/.xI i/ D .px/l�.l�2i/nf .p;l/
�

1
p2x
I i
�

:

3 Kubota’s Dirichlet series

The basic building blocks of the multiple Dirichlet series are the Kubota Dirichlet
series constructed from Gauss sums [17, 18]. Let m be a nonzero polynomial in O
and let s be a complex variable. These series are defined by

(3.1) D.s;m/ D .1 � qn�ns/�1
X

d2Omon

g.m; d/

jd js

and

(3.2) D.s;mI i/ D .1 � qn�ns/�1
X

deg dDi mod n
d2Omon

g.m; d/

jd js :
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Kubota proved that these series have meromorphic continuation to s 2 C with
possible poles only at s D 1 ˙ 1=n and satisfy a functional equation. Actually,
Kubota worked over a number field, but the constructions over a function field are
identical.

If the degree ofm is nkCj , where 0 � j � n�1, this functional equation takes
the form

(3.3) D.s;m/ D jmj1�s
X

0�i�n�1
Tij .s/D.2 � s;mI i/;

where the Tij .s/ are certain quotients of Dirichlet polynomials. For fixed s the
Tij depend only on 2i � j: We will not need to know anything more about the
functional equation, but a more explicit description can be found in Hoffstein [15]
or Patterson [20].

Given a set of primes S; we define

(3.4) DS.s;m/ D .1 � qn�ns/�1
X

.d;S/D1
d2Omon

g.m; d/

jd js :

If m0 DQp2S p we sometimes write Dm0.s;m/ for DS.s;m/:

We record some properties of Gauss sums that we will use repeatedly.

Proposition 3.1. Let a;m; c; c0 2 O:

(i) If .a; c/ D 1, then gi .am; c/ D
�
a
c

��1
gi .m; c/:

(ii) If .c; c0/ D 1, then

gi .m; cc
0/ D gi .m; c/gi .m; c0/

� c

c0
�2i

:

Using this proposition we can relate the functions DS to the functions DS 0 for
different sets S and S 0: This is the content of the following two lemmas.

Lemma 3.2. Let p 2 Omon be prime of norm p: For an integer i with 0 � i � n�1
andm1;m2; p all pairwise relatively prime, we have

Dm1.s;m2p
i / D Dpm1.s;m2p

i /C g.m2p
i ; piC1/

p.iC1/s
Dpm1

 

s;m2p
.n�i�2/n

!

:

More generally,

D.s;m/ D
X

S0�S

 
Y

p2S0

g.m; piC1/
jpj.iC1/s

!

DS

 

s;
Y

p2Sc0
pi jjm

pi �
Y

p2S0
pi jjm

p.n�i�2/n
!

:
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Proof. We prove only the first part of the lemma. For p; m1;m2 as in the statement,

.1 � qn�ns/Dm1.s;m2p
i / D

X

.d;m1/D1
d2Omon

g.m2p
i ; d /

jd js

D
X

k�0

X

.d;m1p/D1
d2Omon

g.m2p
i ; dpk/

jd jspks

D
X

k�0

X

.d;m1p/D1
d2Omon

g.m2p
i ; d /g.m2p

i ; pk/

jd jspks
� d

p2k

�

D
X

.d;m1p/D1
d2Omon

g.m2p
i ; d /

jd js

0

@
X

k�0

g.m2p
i ; pk/

pks

� d

p2k

�

1

A :

The Gauss sum in the inner sum vanishes unless k D 0 or i C 1: This proves the
lemma. ut

Inverting the previous lemma, we obtain

Lemma 3.3. If 0 � gi � n � 2 and m1;m2; p as above,

Dpm1.s;m2p
i / D Dm1.s;m2p

i /

1� jpjn�1�ns �
g.m2p

i ; piC1/
jpj.iC1/s

Dm1.s;m2p
n�i�2/

1 � jpjn�1�ns ;

and if i D n � 1,

Dpm1.s;m2p
i / D Dm1.s;m2p

i /

1� jpjn�1�ns :

Now suppose thatN.x; y/ D N.p/.x; y/ is the polynomial from (2.9). We define
a function H on pairs of powers of p by setting H.pk; pl / to be the coefficient of
xkyl in N.x; y/:

N.x; y/ D
X

H.pk; pl /xkyl :

We extend H to all pairs of monic polynomials by the twisted multiplicativity
relation: if gcd.cd; c0d 0/ D 1, then we put

(3.5) H.cc0; dd 0/ D H.c; d/H.c0; d 0/
� c

c0
�2� d

d 0
�2� c

d 0
��1�c0

d

��1
:

In particular, note that

(3.6) H.d; 1/ D g.1; d/:
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Now consider the Dirichlet series

(3.7) E.s;m/ D .1 � qn�ns/�1
X

d2Omon

H.d;m/

d s
:

That E.s;m/ satisfies the same functional equation as D.s;m/ is the main result of
this section.

Theorem 3.4. Let m 2 Omon be a monic polynomial of degree nk C j , where
0 � j � n � 1. Then

E.s;m/ D jmj1�s
X

0�i�n�1
Tij .s/E.2 � s;mI i/:

Proof. Before tackling the general case, we first considerm D pl for a prime p and
l > 0: Then

E.s; pl / D .1 � qn�ns/�1
X

d2Omon
.d;p/D1

X

k�0

H.dpk; pl /

d sjpjks

D .1 � qn�ns/�1
X

d2Omon
.d;p/D1

X

k�0

H.pk; pl /g.1; d/

jpjksd s
� d

p2k�l
�

; by (3.5) and (3.6)

D
X

k�0

H.pk; pl /

jpjks Dp.s; p
.l�2k/n/

D
n�1X

jD0
Dp.s; p

.l�2j /n/

0

@
1

jpjjs
X

k�0

H.pjCnk; pl /
jpjnks

1

A

D
n�1X

jD0
Dp.s; p

.l�2j /n/h.p;l/.jpj�sI j /;

where h.p;l/ was introduced in (2.10). Using Lemma 3.3 the previous expression
becomes

n�1X

jD0
D.s; p.l�2j /n/h.p;l/.jpj�sI j /

�
n�1X

jD0
ıj
g.p.l�2j /n; p.l�2j /nC1/
jpj..l�2j /nC1/s D.s; p.2j�l�2/n/h.p;l/.jpj�sI j /;(3.8)
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where ıj D 0 if l � 2j 
 n � 1.n/ and is 1 otherwise. Replace j by l C 1 � j in
the second summation and regroup to conclude

(3.9) E.s; pl / D
n�1X

jD0
D.s; p.l�2j /n/f .p;l/.jpj�sI j /:

(Note the use of the identity n�2� .l�2j /n D .2j � l�2/n:) Using the functional
equations (3.3) of D and f .p;l/ (Lemma 2.2), we write

E.s; pl /jpj�.1�s/l

D
n�1X

jD0

n�1X

iD0
Ti;.l�2j /n degp.s/D.2 � s; p.l�2j /n I i/f .p;l/.2 � sI j /

D
n�1X

i;jD0
Ti�j degp;.l�2j /n degp.s/D.2 � s; p.l�2j /n I i � j deg p/f .p;l/.2 � sI j /

D
n�1X

iD0
Ti;l degp.s/

2

4

n�1X

jD0
D.2 � s; p.l�2j /n I i � j deg p/f .p;l/.2 � sI j /

3

5

D
n�1X

iD0
Ti;l degp.s/E.2� s; pl I i/;(3.10)

where the third equality comes from our remark that the Tij depend only on 2i � j:
This is the functional equation we wished to prove, in the special case m D pl :

The argument for general m is similar. Let m D pl11 p
l2
2 � � �plrr where the pi are

distinct primes and the li are positive. Then

E.sIm/ D .1 � qn�ns/�1
X

d2Omon

H.d;m/

jd js

D .1 � qn�ns/�1
X

d2Omon
.d;m/D1

X

k1;:::;kr�0

H.dpk11 � � �pkrr ; pl11 � � �plrr /
jd jsjp1jk1s � � � jpr jkr s

D .1 � qn�ns/�1
X

d2Omon
.d;m/D1

X

k1;:::;kr�0

H.d; 1/H.pk11 ; p
l1
1 / � � �H.pkrr ; plrr /

jd jsjp1jk1s � � � jpr jkr s

�
� d

m

��1� d

pk11 � � �pkrr
�2Y

a¤b

�pkaa

pkbb

��plaa

plbb

��pkaa

plbb

��1
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D
Y

a¤b

�plaa

plbb

� n�1X

j1D0
� � �

n�1X

jrD0
Dm.s; p

.l1�2j1/n
1 � � �p.lr�2jr /nr /

�h.p1;l1/.sI j1/ � � �h.pr ;lr /.sI jr /
Y

a¤b

�p
ja
a

p
jb
b

��p
ja
a

plbb

��1
:(3.11)

Denote for the moment byC.j1/ D C.j1; : : : ; jr / the product of residue symbols

(3.12) C.j1/ D
Y

a¤b

�p
ja
a

p
jb
b

��p
ja
a

plbb

��1
:

Letting Ji D .li � 2ji /n for i D 1; : : : ; r; we have

(3.13)

.1 � jp1jn�1�ns/Dm.s; p
J1
1 � � �pJrr /C.j1/ D Dp2			pr .s; p

J1
1 � � �pJrr /C.j1/

�ıj1
g.pJ11 � � �pJrr ; pJ1C11 /

jp1j.J1C1/s Dp2			pr .s; p
.2j1�l1�2/n
1 pJ22 � � �pJrr /C.j1/

by Lemma 3.3. In the second term on the right-hand side, replace j1 by l1C 1� j1:
For ıj1 ¤ 0 this gives

(3.14)

g.p
.2j1�l1�2/n
1 pJ22 � � �pJrr ; p.2j1�l1�1/n1 /

jp1j..2j1�l1�1/n/s Dp2			pr .s; p
J1
1 pJ22 � � �pJrr /C.l1 � j1 C 1/:

The Gauss sum can be written as

(3.15)
�pJ22 � � �pJrr
p
2j1�l1�1
1

��1
g.p

.2j1�l1�2/n
1 ; p

.2j1�l1�1/n
1 /;

and C.l1 � j1 C 1/ is

(3.16)
�pJ22 � � �pJrr
p
l1�j1C1
1

��1�pj22 � � �pjrr
pl11

��1
 
Y

a¤b
a;b¤1

�p
ja
a

p
jb
b

��p
ja
a

plbb

��1
!

:
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Taking the product of (3.15) and (3.16) yields

(3.17)

�pJ22 � � � pJrr
p
j1
1

��1�pj22 � � �pjrr
pl11

��1
g.p

.2j1�l1�2/n
1 ; p

.2j1�l1�1/n
1 /

 
Y

a¤b
a;b¤1

�p
ja
a

p
jb
b

��p
ja
a

plbb

��1
!

D g.p.2j1�l1�2/n1 ; p
.2j1�l1�1/n
1 /C.j1/:

Therefore, continuing from the last line of (3.11),

(3.18)

E.s;m/ D
Y

a¤b

�plaa

plbb

� n�1X

j1D0
� � �

n�1X

jrD0
Dm0.s; p

.l1�2j1/n
1 � � �p.lr�2jr /nr /

�
Y

a¤b

�p
ja
a

p
jb
b

��p
ja
a

plbb

��1
f .p1;l1/.sI j1/h.p2;l2/.sI j2/ � � �h.pr ;lr /.sI jr /;

where m0 D pl22 � � � plrr : Repeating this procedure to remove the primes from m one
at a time, we find that up to a constant of modulus one, E.s;m/ is equal to

n�1X

j1D0
� � �

n�1X

jrD0
D.s; pJ11 � � �pJrr /

 
rY

aD1
f .pa;la/.sI ja/

!
Y

a¤b

�p
ja
a

p
jb
b

��p
ja
a

plbb

��1
:(3.19)

We may now apply the functional equations of D and the f .pa;la/ as in (3.10) to
conclude that E.s;m/ satisfies the functional equation

(3.20) E.s;m/ D jmj1�s
n�1X

iD0
Ti;degm.s/E.2 � s;mI i/:

This completes the proof of the theorem. ut
For later use, we record the following bound:

Proposition 3.5 For all � > 0; m 2 O and 0 � i < n;

.s � 1 � 1
n
/.s � 1C 1

n
/E.s;mI i/��

8

<̂

:̂

1 for Re.s/ > 3
2
C �

jmj 12C� for 1
2
� � < Re.s/ < 3

2
C �

jmj1�sC� for Re.s/ < 1
2
� �
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Proof. Use the meromorphy and functional equation of E.s;m/ together with the
convexity principle, cf. [14, Eq. (2.3)] and [19, Propostion 8.4]. ut

4 The double dirichlet series

Recall the definition of the double Dirichlet series from (1.2)–(1.4). In this section
we show that Z.s1; s2/ has a meromorphic continuation to s1; s2 2 C and satisfies
a group of functional equation isomorphic to W: In [2], the authors show in detail
how the analytic continuation of a Weyl group multiple Dirichlet series follows from
the functional equations. Therefore we concentrate on establishing the functional
equations of Z.s1; s2/:

Actually we need to consider slightly different series. For integers 0 � i; j �
n � 1 we define

Z.s1; s2I i; j / D .1 � qn�ns1/�1.1 � qn�ns2/�1.1 � q2n�ns1�ns2/�1(4.1)

�
X

m2Omon
degmDi mod n

X

d2Omon
deg dDj mod n

H.d;m/

jmjs1 jd js2 :

We further introduce the notation

Z.s1; s2I i;�/ D
X

j

Z.s1; s2I i; j /

and
Z.s1; s2I �; j / D

X

i

Z.s1; s2I i; j /:

These series are absolutely convergent for Re.s1/;Re.s2/ > 3=2: In fact, we can do
a little better. Summing over d first yields

(4.2)

Z.s1; s2I i;�/ D .1 � qn�ns1/�1.1 � qn�ns2/�1.1 � q2n�ns1�ns2 /�1

�
X

m2Omon
degmDi mod n

0

@
1

jmjs1
X

d2Omon

H.d;m/

jd js2

1

A

D .1 � qn�ns1/�1.1 � q2n�ns1�ns2/�1
X

m2Omon
degmDi mod n

E.s2;m/

jmjs1 :
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By the convexity bound of Proposition 3.5, this representation of Z.s1; s2I i;�/ is
seen to be meromorphic for Re.s1/ > 0;Re.s2/ > 2:Alternatively, summing overm
first we deduce that Z.s1; s2I i;�/ is meromorphic for Re.s2/ > 0;Re.s1/ > 2: Let
R be the tube domain that is the union of these three regions of initial meromorphy:

R D fRe.s1/;Re.s2/ > 3=2g [ fRe.s1/ > 0;Re.s2/ > 2g
[ fRe.s2/ > 0;Re.s1/ > 2g:

Let the Weyl groupW act on C
2 by

(4.3) �1 W .s1; s2/ 7! .2� s1; s1C s2 � 1/; �2 W .s1; s2/ 7! .s1C s2 � 1; 2� s2/:
Let F be the real points of a closed fundamental domain for the action ofW on C

2:

F D fRe.s1/;Re.s2/ � 1g:
One can easily see that R X F \ R is compact. Therefore, by the principle of
analytic continuation and Bochner’s tube theorem [1], to prove that Z.s1; s2/ has a
meromorphic continuation to C

2 it suffices to show that the functionsZ.s1; s2I i; j /
satisfy functional equations as .s1; s2/ goes to .2 � s1; s1 C s2 � 1/ and .s1 C s2 �
1; 2� s2/: For details, we refer to [2, Section 3].

To prove the �2 functional equation, we begin with (4.2) and write

Z.s1; s2I i;�/ D .1 � qn�ns1/�1.1 � q2n�ns1�ns2/�1
X

m2Omon
degmDi mod n

E.s2;m/

jmjs1

D .1 � qn�ns1/�1.1 � q2n�ns1�ns2/�1

�
X

m2Omon
degmDi mod n

jmj1�s2
jmjs1

n�1X

jD0
Tj i .s2/E.2� s2;mI j /; by Thm. 3.4

D
n�1X

jD0
Tj i .s2/Z.s1 C s2 � 1; 2 � s2I i; j /

The �1 functional equation is proved similarly.
We conclude that

Theorem 4.1. The double Dirichlet series has a meromorphic continuation to
s1; s2 2 C and is holomorphic away from the hyperplanes

s1 D 1˙ 1

n
; s2 D 1˙ 1

n
and s1 C s2 D 2˙ 1

n
:



Weyl group multiple Dirichlet series of type A2 141

Furthermore, Z.s1; s2/ satisfies the functional equations

Z.s1; s2/ D
X

i;j

Tj i .s2/Z.s1 C s2 � 1; 2 � s2I i; j /

D
X

i;j

Tij .s1/Z.2 � s1; s1 C s2 � 1I i; j /:
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The motivation for this question is the fact that certain equations of mathematical
physics (like the inviscid Burgers equation from gas dynamics, the Euler equation
of hydrodynamics, the Camassa–Holm equation from shallow water theory) were
shown to be re-expressions of geodesic flow for right-invariant metrics on groups
of smooth diffeomorphisms, and for such complex systems the need for more
elegant formulations becomes an issue of paramount importance. The infinite-
dimensional Lie groups of smooth diffeomorphisms are not Hilbert manifolds but
Fréchet manifolds (their topology is not induced by an inner product but by a
countable family of seminorms), situation which raises a number of highly non-
trivial technical issues since basic analytic results (like the existence and uniqueness
of local solutions for ordinary differential equations with a smooth right-hand side,
or like the inverse function theorem) are known not to be valid in general within this
setting [12]. Nevertheless, rigorous analytical results can be obtained.

We illustrate the approach by considering the example of the diffeomorphism
group of the circle. The presented results are to a large extent the fruit of our
joint research effort over the last five years, through which we benefited from the
generous encouragement and support of Professor Serge Lang.

1 Introduction

In 1966 Arnold [2] showed that the Euler equations of hydrodynamics can be
obtained as the geodesic equations for the infinite-dimensional Lie group of smooth
volume- and orientation-preserving diffeomorphisms of the fluid domain D with
respect to the right-invariant L2 inner-product, given on the corresponding Lie
algebra of divergence-free vector fields tangent to the boundary of D by

hu; vi D
Z

D

.u � v/ d�:

Subsequently, other equations from mathematical physics were found to have an
interpretation as geodesic flows on diffeomorphism groups (see for example [13,14,
20,21]). Our aim is to explain the setting presented by the diffeomorphism group of
the circle. Why study Euler equations on the diffeomorphism group of the circle?
For two reasons: On the one hand, it is the simplest of the diffeomorphisms groups
and it is expected that understanding some mechanisms within this setting can give
insight to deal with more ambitious situations. On the other hand, because it is
already the configuration space of two famous equations arising in fluid mechanics:
the inviscid Burgers equation and the Camassa–Holm equation.

Before proceeding with this concrete example in Section 3, we first discuss some
fundamental aspects in the general case of an abstract Lie group in Section 2.
Section 4 is devoted to the study of bi-Hamiltonian structures for Euler’s equations
on the diffeomorphism group of the circle. A final section deals with the case of the
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Virasoro group and the KdV equation: a case which has been considered prior to the
case of the diffeomorphism group of the circle but which, from a didactic point of
view, has to be studied afterwards because of additional technical difficulties.

2 Invariant metrics on an abstract Lie group

2.1 Left-invariant metrics

A left-invariant metric on a Lie group G is determined by its value at the unit
element e of the group, that is, by an inner product on the Lie algebra g, expressed
in terms of a symmetric1 linear operator

A W g! g�;

called the inertia operator. If t 7! g.t/ is a geodesic2 with g.0/ D e, denote by
Pg.t/ the derivative with respect to t , and let

m.t/ D< Pg.t/; � >g 2 T �
g G:

2.2 Angular velocities and momenta

Introducing the left and right angular velocities by

uL D Lg�1 Pg; uR D Rg�1 Pg;

and the left and right angular momenta by

mL D L�
gm; mR D R�

gm ;

the following relations hold between these four geometrical objects3:

mL D AuL; uR D Adg uL; mR D Ad�
g mL; (2.1)

where L, R stand for left, respectively right translation.

1A is symmetric if .Au; v/ D .Av; u/ for all u; v 2 g�, where the round brackets stand for the
pairing of elements of the dual spaces g and g�.
2Notice that geodesics issuing from some g0 2 G are obtained via left translation by g0 from
geodesics issuing from e.
3The coadjoint action of G on g� is defined by .Ad�g m; u/ D .m;Adg�1 u/.
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2.3 Noether’s theorem

In its initial formulation by Emmy Noether in 1918, the theorem states that to each
infinitesimal transformation which leaves the Lagrangian of a variational problem
invariant there corresponds a first integral of the motion. In the sixties, Souriau [24]
extended this result to the more general setting of Symplectic Mechanics. Before
giving a (weak4) statement of this theorem let us recall the following fact. If a group
G acts smoothly on a manifold M , to each vector v 2 g corresponds a vector field
on M defined by

Xv.x/ D d

ds

ˇ
ˇ
ˇ
ˇ
sD0

exp.sv/.x/:

Theorem 2.1 (Noether theorem). Let .M;!/ a symplectic manifold such that
! D d� (� 2 ˝1.M/). Let G be a Lie group acting smoothly on M and such
that g�� D � for all g 2 G. Then, for each G-invariant function H 2 C1.M/,
and each v 2 g, the function �.Xv/ is a first integral of the Hamiltonian vector
field XH .

2.4 Euler’s equations

A Riemannian metric on a Lie group G induces an isomorphism between TG and
T �G which permits to pullback on TG the canonical 1-form of T �G. We will
call it � . The exterior derivative ! D d� is a symplectic form on TG, and the
Hamiltonian flow of the function

H.Xg/ D 1

2
< Xg;Xg >; Xg 2 TgG

corresponds to the geodesic flow of the metric. If the Riemannian metric is invariant
by the natural left action of G on itself, so are � and H . If eX v is the vector field on
TG ' G � g induced by v 2 g, we get

�.g;u/.Xv/ D
�

Ad�
g .Au/; v

�

;

where A is the inertia operator defined previously. In particular

�.g.t/;uL.t//.Xv/ D .mR.t/; v/;

4The strong version does not require ! to be an exact form. It only assumes that ! is G-invariant
and that the symplectic group action of G on M has a moment map.
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and an application of Noether’s theorem leads us to Euler’s first theorem

dmR

dt
D 0: (2.2)

This may be considered as a generalization of the angular momentum conservation
law of a free rigid body.

Taking the time derivative of the third relation of (2.1), we then obtain Euler’s
second theorem

dmL

dt
D �ad�

uLmL; (2.3)

where ad�
um represents the coadjoint action5 of g over g�.

2.5 The contravariant formulation

It is useful to have a contravariant formulation of (2.3). With this purpose in mind,
let us introduce the bilinear operator B W g � g! g defined by

< adu v;w >D< B.w; u/; v >; u; v;w 2 g:

Equation (2.3) can then be rewritten as a quadratic differential equation on g,

PuL D B.uL; uL/: (2.4)

This may be considered as a generalization of the evolution equation for the angular
velocity of a free rigid body with a fixed point.

Therefore, integration of the geodesic equations may be reduced to two succes-
sive quadratures

� Pg D Lg uL ;
PuL D B.uL; uL/ : (2.5)

Remark 2.2. The Levi-Civita connection of a left invariant metric is also left-
invariant. It is thus completely defined by the knowledge of

�rLgu Lgv
�

.e/ D 1

2
Œu; v�� 1

2
.B.u; v/C B.v; u// :

When the metric is bi-invariant, B is skew-symmetric and PuL D 0. In that case, the
geodesics through the unit element are just the one-parameter subgroups of G.

5It is defined by .ad�! m; u/ D �.m; ad! u/.
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2.6 Right-invariant metrics

In the case of a right-invariant metric, relations (2.1) become

mR D AuR; uR D Adg uL; mR D Ad�
g mL; (2.6)

and Euler’s equations become

dmL

dt
D 0; dmR

dt
D ad�

uR
mR: (2.7)

The contravariant formulation of second Euler’s equation becomes

PuR D �B.uR; uR/; (2.8)

3 Right-invariant metrics on the diffeomorphism group
of the circle

In his landmark treatise [18], Serge Lang succeeded in fursning an elegant in-depth
study of differential geometry on manifolds modeled on an abstract Banach space,
proving fundamental results corresponding to the classical theorems known in the
finite-dimensional case.

In this section, we will deal with the group Diff.S1/ of smooth diffeomorphisms
of the circle that are orientation-preserving. This group is naturally equipped with a
Fréchet manifold structure. More precisely, we can cover Diff.S1/with charts taking
values in the Fréchet vector space6 C1.S1/ and in such a way that the change of
charts are smooth maps (see [5] for more details).

Since the composition and the inverse are smooth maps for this structure we say
that Diff.S1/ is a Fréchet-Lie group. Its “Lie algebra” Vect.S1/ is isomorphic to
C1.S1/ with the Lie bracket given by

Œu; v� D uxv � uvx:

6A topological vector space E has a canonical uniform structure. When this structure is complete
and when the topology of E may be given by a countable family of semi-norms, we say that E is a
Fréchet vector space. In a Fréchet space, such classical results like the Cauchy–Lipschitz theorem
or the local inverse theorem are no longer valid in general as they are in on Banach manifold. the
typical example of a Fréchet space is the space of smooth functions on a compact manifold where
semi-norms are just the Ck-norms (k D 0; 1; : : : ).
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3.1 Right-invariant metrics on Diff.S1/

A right-invariant metric on Diff.S1/ is defined by an inner product a on the Lie
algebra of the group Vect.S1/ D C1.S1/. If this inner product is local,7 then
according to a result of Peetre [22], it is given by

a.u; v/ D
Z

S1

uA.v/ dx u; v 2 C1.S1/;

where A is a symmetric linear differential operator. This operator A, that will
be assumed invertible, is called the inertia operator. The corresponding bilinear
operator B defined in Section 2 is then given by

B.w; u/ D A�1 Œ2A.w/ux C uA.w/x� u;w 2 C1.S1/:

An important special case is when the inner product is given by the Hk-Sobolev
norm on C1.S1/ (k � 0),

ak.u; v/ D
Z

S1

�

uvC uxvx C � � � C u.k/x v.k/x
�

dx u; v 2 C1.S1/:

In that case, the inertia operator is

Ak D 1 � d2

dx2
C � � � C .�1/k d

2k

dx2k
:

3.2 Examples

For k D 0 (that is for the L2-metric), the corresponding Euler’s equation (2.8) is the
inviscid Burgers equation

ut C 3uux D 0: (3.1)

For k D 1 (that is for the H1-metric), the corresponding Euler’s equation (2.8) is
the Camassa–Holm equation

ut � utxx C 3uux � 2uxuxx � uuxxx D 0: (3.2)

7That is, for all u; v 2 C1.S1/, Supp.u/\ Supp.v/ D ; ) a.u; v/ D 0.
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3.3 Regular dual

Since the topological dual of the Fréchet space Vect.S1/ is isomorphic to the space
of distributions on the circle, we use a subspace of this topological dual, called the
regular dual, denoted Vect�.S1/ and consisting of the linear functionals of the form

u 7!
Z

S1

mu dx

for some function m 2 C1.S1/. The regular Vect�.S1/ is naturally isomorphic
to the space of quadratic differentials m.x/dx2 (m 2 C1.S1/) on the circle, the
pairing being given by

.m; u/ D
Z

S1

mu dx

for u 2 g D C1.S1/ and m 2 Vect�.S1/.
The coadjoint action of Diff.S1/ on Vect�.S1/ is given by

Ad�
' m D

m ı '�1

.'x ı '�1/2
; m 2 g�; ' 2 Diff.S1/;

and the coadjoint action of Vect.S1/ on Vect�.S1/ by

ad�
u m D � .2mux Cmxu/ ; m 2 g�; u 2 Vect.S1/:

3.4 The momentum

The conservation of the left momentum

mL D Ad�
'�1

mR

leads [5] to the following conservation law

.A.u/ ı '/ � '2x D A.u0/;

along each geodesic curve ' issued from the unit element Id in the direction u0.

3.5 The Cauchy problem

Since there are no general local existence theorem for evolution equations on a
Fréchet space, the first step in the study of a geodesic flow on the diffeomorphism
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group is to prove the short-time existence and uniqueness. This was achieved by the
authors [5] for the right-invariant metric on Diff.S1/ generated by the Hk Sobolev
norm for k � 1.

Theorem 3.1 (Constantin and Kolev 2003). Let k � 1. For all T > 0, there exists
a neighborhood of the origin V in Vect.S1/ such that for all u0 2 V , there exists a
unique geodesic

' 2 C1 �

Œ0; T /IDiff.S1/
�

for the metric Hk , starting at '.0/ D Id 2 Diff.S1/ in the direction u0 2
TIdDiff.S1/. Moreover, the solution depends smoothly on the initial data u0 2
C1.S1/.

Remark 3.2. For k D 0, which corresponds to the inviscid Burgers equation, one
can show the short-time existence by the method of characteristics but the proof
below does not apply.

Remark 3.3. The spirit of the proof given in [5] is to study the evolution equation
on each Hilbert space Hn obtaining well-posedness on a maximal interval Œ0; Tn/.
Thereafter one checks that the decreasing sequence Tn does not go to 0 as n! C1,
ensuring thus the short-time existence on C1 D TC1

nD0 Hn.
Notice that it is advisable to avoid considering directly the Euler equation

ut D �Bk.u; u/ D �A�1
k Œ2Ak.u/ux C uAk.ux/� : (3.3)

The reason is that Ak is a differential operator of degree 2k, and therefore the right-
hand side of (3.3) is a pseudo-differential operator of degree 1 because of the “bad
term” uAk.ux/. Hence the Cauchy problem for this equation has no meaning inHn.

The following approach was used in [5] to overcome this difficulty. The operator

Ck.u/ D Ak.uux/� uAk.ux/

is a quadratic differential operator of degree 2k. Therefore, if k � 1, the right-hand
side of

ut C uux D �A�1
k Œ2Ak.u/ux � Ck.u/� (3.4)

is a pseudo-differential operator of degree 0. Moreover, ut C uux is just vt ı '�1,
where v D 't D u ı ' is the Lagrangian velocity.

Sketch of proof. The proof is divided into three steps.

Step 1. For each n � 2kC 1, we have a well-posed Cauchy problem on the Hilbert
manifold Dn �Hn.S/:

(

't D v;

vt D R' ı Pk ıR'�1 .v/;
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where Pk D �A�1
k ıQk andQk.u/ D 2Ak.u/ux � Ck.u/. In fact, the map

QP.'; v/ 7!
�

';R' ı Pk ıR'�1 .v/
�

is a well-defined smooth (C1) vector field on the manifold Dn �Hn.S/ as shown
in Lemma 3.3.

Step 2. Let " > 0. By the Cauchy theorem applied on Dn�Hn.S/, which is an open
set of a Hilbert space, we know that there exists a positive number Tn, such that for
each u0 in the ball Bn.0; "/ in Hn.S/ there exists a unique solution of the Cauchy
problem with initial data '.0/ D Id and v.0/ D u0, defined on som e time interval
Œ0; Tn� with Tn > 0. Each solution of the Cauchy problem PnC1 is itself a solution
of the Cauchy problem Pn. What could happen is that the upper bound T �

nC1.u0/
of the maximal time interval of the solution of PnC1 is smaller than T �

n .u0/. The
second step consists in showing that in fact we have

T �
n .u0/ D T �

2kC1.u0/

for each n � 2k C 1.

Step 3. The previous steps permit us to define for each n � 2k C 1 a map

Fn W Hn.S/ \ B2kC1.0; "/! C1.Œ0; T2kC1�IDn/

which associates to each initial data u0 the solution ' of the Cauchy problem. This
map depends smoothly on u0 as a consequence of the Cauchy theorem since Pk is
smooth. Moreover, we have

FnjHnC1 D FnC1
from which we deduce that the inductive limit

F W C1.S/ \ B2kC1.0; "/! C1.Œ0; T2kC1�ID/

is also a smooth map. ut
Lemma 3.3. For each k � 1 and each n � 2k C 1, the operator

QPk.'; v/ D
�

';R' ı Pk ıR'�1 .v/
�

is a smooth map from Dn �Hn.S/ to Hn.S/ �Hn.S/.

Remark 3.4. We cannot conclude directly from the smoothness of Pk that QPk is
smooth because neither the composition nor the inversion are smooth maps on
Hn.S1/.
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Proof. To prove the smoothness of QPk , we write it as the composition QPk D QA�1
k ıQQk, where

QAk.'; v/ D
�

'; R' ı Ak ıR'�1 .v/
�

and

QQk.'; v/ D
�

'; R' ıQk ıR'�1 .v/
�

:

Note first that

R' ı Ak ıR'�1 .v/ D
kX

pD0
.�1/p .v ı '�1/.2p/ ı '

is a polynomial expression in the variables

1

'x
; 'xx; : : : ; '

.2k/; v; vx; : : : ; v
.2k/:

For example for k D 1, we get

R' ı A1 ıR'�1 .v/ D vC vx
'xx

'3x
� vxx

1

'2x
;

and to prove the general case, we let ap D .v ı '�1/.p/ ı ', and use the recurrence
relation

apC1 D 1

'x
a0
p:

A similar reasoning for R' ıQk ıR'�1 .v/, where

Qk.u/ D 2Ak.u/ux �
kX

pD0
.�1/p

2p
X

iD1
C i
2pu.i/u.2p�iC1/;

shows that it is also a polynomial expression in the variables

1

'x
; 'xx; : : : ; '

.2k/; v; vx; : : : ; v
.2k/:

To conclude that QAk and QQk are smooth maps from Dn � Hn.S/ to Dn �
Hn�2k.S/, we use the following known facts (see for example [1]):

(1) For n � 1, Hn.S/ is a Banach algebra and hence polynomial maps on Hn.S/

are smooth.
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(2) For n � 1, the map Hn.S/! Hn�1.S/, v 7! vx is smooth.
(3) For n � 1, the map Hn.S/ \ fv > 0g ! Hn.S/, v 7! 1=v is smooth.

To show that QA�1
k W Dn �Hn�2k.S/! Dn �Hn.S/ is smooth, we compute the

derivative of QAk at an arbitrary point .'; v/, obtaining

D QAk.'; v/ D
�
Id 0

� R' ı Ak ıR'�1
�

:

It is clearly a bounded linear operator in view of the preceding analysis. Moreover,
it is an invertible operator since Ak is itself invertible. The application of the local
inversion theorem in Banach spaces achieves the proof. ut

3.6 The exponential map

In classical Riemannian geometry, the exponential chart and normal coordinates
play a very special role. This is a key tool in the study of geodesics.

On Diff.S1/ the existence of this privileged chart is not ensured automatically.
One may find it useful to recall on this occasion that the group exponential of
Diff.S1/ is not a local diffeomorphism.8 We have a similar negative result for the
Riemannian exponential map of theL2 metric but a positive result for theHk metric
if k � 1.

Theorem 3.6 (Constantin and Kolev 2002). The Riemannian exponential map
exp for the L2-metric on Diff.S1/ is not a local C1-diffeomorphism near the origin.

Sketch of proof. Assuming exp to be a C1 local diffeomorphism from a neighbor-
hood of zero to a neighborhood of the identity map of Diff.S1/, one can show
(see [4]) that the derivativeDexp.0/ of exp at zero is the identity map, while

.Dexpv w/.x/ D 1

2c

Z x

x�2c
w.y/ dy

for v.x/ � c (constant). But this yields the contradiction

Dexpvn wn � 0
for

wn D sin.�nx/ 2 C1.S1/ and vn D 1

n
; n � 1;

8Indeed, this map is not locally surjective. Otherwise, every diffeomorphism sufficiently near to
the identity (for the C1 topology) would have a square root. However one can build (see [19])
diffeomorphisms arbitrary near to the identity which have exactly 1 periodic orbit of period 2n. But
the number of periodic orbits of even periods of the square of a diffeomorphism is always even.
Therefore, such a diffeomorphism cannot have a square root.
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since vn ! 0 in C1.S1/ as n!1, while Dexp.v/ is supposed to be invertible
in a neighborhood of 0 2 C1.S1/. ut
Theorem 3.7 (Constantin and Kolev 2003). For k � 1, the Riemannian exponen-
tial map exp for the Hk-metric on Diff.S1/, is a smooth local diffeomorphism near
the origin.

Sketch of proof. The approach relies on two important consequences of the con-
servation law obtained in Section 3.4. [5], namely that whenever n � 2k C 1 we
have:

(i) Firstly, in the scale provided by the Sobolev spaces Hn, the geodesic 'u0 .t/

issuing from the identity in the direction of u0 inherits at each instant t > 0

exactly the regularity of u0 (that is, if u0 62 HnC1, then 'u0 .t/ 62 HnC1 for
t > 0);

(ii) Secondly, for u0 2 C1.S1/ there is no function w 2 Hn n HnC1 such that
Dexpu0 .w/ 2 HnC1.

Taking these two facts for granted, we proceed as follows. Since Dexp is
the identity map, the regularity properties of exp established in Section 3.5 in
conjunction with the inverse function theorem in Hilbert spaces ensure the existence
of two open neighborhoods V2kC1 and O2kC1 of 0 2 H2kC1, respectively of the
identity inH2kC1, such that exp W V2kC1! O2kC1 is a smooth diffeomorphism with
Dexpu0 W H2kC1 ! H2kC1 bijective for every u0 2 V2kC1. We now claim that exp
is a smooth diffeomorphism from V D V2kC1 \ C1.S1/ to O D O2kC1 \ C1.S1/.
Indeed, let u0 2 V . The regularity properties of exp ensure thatDexpu0 is a bounded
linear operator from Hn to Hn for every n � 2k C 1. We now prove inductively
that it is a bijection. For n D 2k C 1 this is so by our choice of V2kC1 andO2kC1. If
it is true for 2kC1 � j � n, thenDexpu0 is injective as a bounded linear map from
HnC1 to HnC1 since its extension to Hn is injective. The second fact emphasized
above ensures its surjectivity. Using now the inverse function theorem on Hilbert
spaces, both exp and its inverse are smooth maps from V \Hn to V \Hn. Letting
n!1 we obtain that exp is a smooth diffeomorphism near 0 2 C1.S1/. ut

4 Integrability of the Euler equations

4.1 Lie-Poisson structure

On the dual g� of a Lie algebra, there is a canonical Poisson structure9, defined by

ff; ggLP .m/ D m.Œdmf; dmg�/; f; g 2 C1.g�/:

9If g is the Lie algebra of a Lie groupG, this structure corresponds to the reduction of the canonical
symplectic structure on T �G by the left action of G on T �G.
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and called the Lie-Poisson structure (see [25]). Each Euler equation on g� is
Hamiltonian relatively to this structure.

In the case of the Lie algebra Vect.S1/ of vector fields on the circle, this bracket
is represented by the family of operators

J.m/ D �.mD CDm/;

where D D d=dx. For an inertia operator A W Vect.S1/ ! Vect�.S1/, the
Hamiltonian is given by

HA.m/ D 1

2

Z

S1

mA�1.m/; m 2 g�;

the corresponding Hamiltonian vector field being

XA.m/ D �.mD CDm/.A�1m/:

4.2 Bi-Hamiltonian structure

One remarkable property shared by Burgers and Camassa–Holm equation is the
existence of an infinite number of conservation laws for these equations. For
example, the following functionals are commuting first integrals for the Burgers
equation

Hk.m/ D
Z

S1

mk dx; .k D 1; 2; : : : /:

The mechanism which is at the origin of the existence of these conservation
laws is known as the Lenard scheme or bi-Hamiltonian formalism (see [23] for
an excellent historical survey). It is characteristic of evolution equations in infinite
dimension known as formally integrable, in analogy with classical integrable
systems (in the sense of Liouville) in finite dimension.

Two Poisson brackets f; gP and f; gQ on the same manifold M , defined by
Poisson bi-vectors P and Q are said compatible, if every linear combination of
these brackets

ff; g g�;� D �ff; g gP C �ff; g gQ; �; � 2 R;

is itself a Poisson bracket; that is, it is anti-symmetric, bilinear and it satisfies the
Jacobi identity.

When a vector field is Hamiltonian relatively to two compatible Poisson brackets,
we say that this vector field is bi-Hamiltonian. In the good cases, this leads to the
existence of a hierarchy .Hn/n2N of commuting first integrals (relatively to both
structures). These functions are defined recursively by the so-called Lenard scheme:

P dHn D QdHnC1; n D 1; 2; : : :
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4.3 Affine Poisson structures on g�.

On the dual of a Lie algebra g�, one obtains a Poisson bracket by choosing a skew-
symmetric bilinear functional � on g and letting

ff; g g� .m/ D �.dmf; dmg/; f; g 2 C1.g�/:

This bracket is compatible with the Lie–Poisson bracket if and only if � is a 2-
cocycle,10 that is:

�.Œu; v�;w/C �.Œv;w�; u/C �.Œw; u�; v/ D 0;
for all u; v;w 2 g.

For instance, it happens that the Burgers equation is Hamiltonian relatively to the
following cocycle of Vect.S1/

�.u; v/ D
Z

S1

uDv dx

and the Camassa–Holm equation relatively to

�.u; v/ D
Z

S1

u.D �D3/v dx:

In fact, these examples are essentially unique (see [6], [16]).

Theorem 4.1 (Constantin and Kolev, 2005). The only continuous, linear, invert-
ible differential operators A W Vect.S1/ ! Vect�.S1/ with constant coefficients,
whose corresponding Euler vector field XA is bi-Hamiltonian relatively to some
modified Lie–Poisson structure are

A D aI C bD2;

where a; b 2 R satisfy a�bn2 ¤ 0 for all n 2 Z. The second Hamiltonian structure
is induced by the operator

Q D �DA D �aD � bD3;

where D D d=dx and the Hamiltonian function is

H3.m/ D 1

2

Z

S1

�

au3 � bu.ux/
2
�

dx;

where m D Au.

10A special case occurs when this cocycle � is a coboundary i.e. �.u; v/ D m0.Œu; v�/ for some
m0 2 g� (freezing structure).
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5 The Virasoro group and Korteweg-de Vries equation

Historically, the bi-Hamiltonian formalism has been introduced11 at the end of the
1970s for the Korteweg-de Vries equation

ut C 3uux � cuxxx D 0; c 2 R:

Notice that the expression 3uux � cuxxx is not quadratic in u and therefore cannot
be written as an Euler equation on Vect.S1/. However, it has been shown in [14]
that it can be written as an Euler equation for the L2 metric on the Virasoro group,12

which is a central extension of Diff.S1/ by R. This equation was already known in
the seventies to be bi-Hamiltonian relatively to the two brackets on C1.S1/ defined
by the operatorsD and �.DmCmD/C cD3.

The Lie–Poisson bracket on the regular dual Vir� D C1.S1/˚R of the Virasoro
algebra is represented by matrix

J.m; ˛/ D
��Dm �mD C ˛D3 0

0 0

�

:

The functions F.m; ˛/ on Vir� which depend only on ˛ are therefore Casimir
functions for the canonical structure on Vir�. In particular, the Hamiltonian flow
for the L2 right-invariant metric leaves invariant each hyperplane ˛ D c (constant).
The canonical structure induces on the hyperplane ˛ D c, which is isomorphic to
C1.S1/, a Poisson structure represented by the operator �.Dm C mD/ C cD3,
which gives a geometric explanation for this operator. Notice that for c D 0, we
recover the canonical Poisson structure on Vect.S1/ and the Burgers equation.

A similar approach can be pursued for the general Camassa–Holm equation

ut � utxx C 3uux � 2uxuxx � uuxxx C cuxxx D 0; c 2 R:

This equation can be obtained as the Euler equation for theH1 right-invariant metric
on the Virasoro group.

11By Gel’fand, Dorfman, Magri. See the review [23].
12The composition in the Virasoro group Vir D Diff.S1/� R is given by

.�; ˛/ ı . ; ˇ/ D
�

� ı  ; ˛ C ˇ CB.�;  /
�

where

B.�;  / D �1
2

Z 1

0

log.�. .x///x d log x.x/

is the Bott cocycle.
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The theorems which were stated for the diffeomorphism group Diff.S1/ in
Section 3 on the short-time existence of the geodesic flow and on the Riemannian
exponential map for Hk metrics are still true on the Virasoro group but the chart
property of the Riemannian exponential map is true only for k � 2 in this case
(see [8]).
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Abstract We give a construction of harmonic differentials that uniquely represent
cohomology classes of a non-compact Riemann surface of finite topology. We
construct these differentials by cutting off all cusps along horocycles and solving
a suitable boundary value problem on the truncated surface. We then pass to the
limit as the horocycle in each cusp recedes to infinity.
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question was motivated by an approach, used by Katsuda–Sunada [3] and Phillips–
Sarnak [5]), to the problem of counting of closed geodesics in a fixed cohomology
class. The approach is based on the Selberg trace formula applied to sections of
the flat line bundle E� over X induced by the character � of the fundamental
group. The characters are parametrized by the elements of the Jacobian torus
H1.X;R/=H1.X;Z/ and the cohomology classes in turn are parametrized, at least
for compact surfaces, by the harmonic forms. In this approach, cf.[3] the harmonic
forms are also used to “untwist” the Laplacian�� acting on sections of the bundles
E�, replacing it by the unitarily equivalent operator L� acting on functions on
X or equivalently on automorphic functions on the upper half-plane. If � D �!
corresponds to the harmonic form !, then the operator

L�f D �f � 4�ihdf; !i C 4�2k!k2f;

where the inner product and the norm are induced by the Poincaré metric of the
upper half-plane. Thus the twisted Laplacians appear as a family of operators acting
on a fixed Hilbert space and one can apply perturbation theory to this family.
This works very well for compact hyperbolic manifolds since Hodge theory gives
good control of harmonic forms. The program was successfully carried out by
McGowan–Perry [4] for infinite volume hyperbolic manifolds without cusps and
of arbitrary dimension. Their proof relied on an unpublished result of Mazzeo
about representing cohomology classes in H1.X;R/ for such manifolds (or more
generally for conformally compact manifolds) by bounded harmonic forms.

We hope to apply the results of this paper to the case of Riemann surfaces that
have both funnels and cusps. We remark that the case of hyperbolic manifolds of
finite volume was handled by Epstein [2] by a different method.

2 Statement of the result and an outline of the method

Let X D �nH2 be a geometrically finite Riemann surface with n cusps and k
funnels. We will describe a construction of harmonic 1-forms on X representing
cohomology classes. Every cohomology class is determined by its periods, i.e., its
values on cycles. We are going to describe and construct harmonic forms with nice
properties representing cohomology classes. We only consider the case where X
is noncompact, i.e., n C k > 0 since the compact case is fully covered by Hodge
theory. Let ”1; : : : ; ”k be cycles at bases of cusps C1; : : : ; C k . Fix a cohomology
class c 2 H1.X;R/ and let pi D hc; ”i i.

We have

Theorem 2.1. For every class c as above there exists a unique form ! with the
following properties.

1. ! is harmonic, i.e., d! D 0 and d � ! D 0.
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2. Periods of ! are determined by c, i.e.,
R

z ! D hc; zi for every cycle z in X .
3. Let X 0 be X with arbitrarily small neighborhoods of those punctures for which

the period pi is not equal to zero removed. The form ! is in L2 on X 0.
4. On every cusp C i choose coordinates .r; t/ so that the metric on the cusp takes

the form ds2 D dr2Ce�2rdt2 and ”i is determined by r D 0. The form !�pidt
is in L2 on C i .

5. ! has a smooth extension to the surface X obtained by adding circles at infinity
to all funnels of X and has the normal component equal to zero along these
circles.

Moreover, for every cusp C i , there exists a constant Ai > 0 such that

j! � pidt j.r;t / � Aiere�2�.er�1/:

Our construction of ! will proceed as follows. We parametrize all cusps so that
they are isometric with

C D Œ� ln 2;1/ � T
1 with the metric dr2 C e�2rdt2; (1)

where T
1 D R=Z. According to [1, Theorem 4.4.6], the cusps are disjoint. For

every positive a we denote by Xa the original surface with all cusps cut off at
r D a. Consider XR for large R. XR is a hyperbolic surface with boundary all
of whose components have length e�R. The surface XR has a natural conformal
compactification XR whose boundary consists of horocycles cutting off the cusps
and the circles at infinity added to funnels. The cohomology of XR is naturally
isomorphic to the cohomology of X and we use the de Rham-Hodge theory for
manifolds with boundary [7, Proposition 4.2, Corollary 5.7] to construct a harmonic
form !R on XR that represents c and satisfies absolute boundary conditions
.!R/n D 0 on the boundary. Since � operator is a conformal invariant, !RjXR
is an L2 harmonic form on XR with periods prescribed by c. We now track !R as
R!1 andXR develops intoX . We show that for a subsequence ofR, the limiting
form ! exists and has the required properties. The convergence will be uniform on
Xa for every fixed a > 0 and the L2 norms of !R will blow up when R !1 only
in those truncated cusps for which the corresponding period is not equal to 0.

3 Preliminaries

In this section we set up notation, review conformal invariance of certain objects
and justify several statements made in the introduction. Recall that for a positive
function � on a Riemannian manifold .X; ds2/, the metric �2ds2 is said to be
conformally equivalent to ds2. IfX is a surface, then the Hodge � operator acting on
differential forms of degree one depends only on the conformal class of the metric.
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The � operator is used to define the L2 norm and harmonicity of forms. Namely, a
differential (a form of degree one) ! is harmonic if and only if

d! D d � ! D 0 (2)

and the inner product of two differentials is given by

.!; �/ D
Z

X

! ^ ��: (3)

It follows that the harmonicity and the L2 inner product together with the
associated norm are conformally invariant. Moreover, the normal direction at the
boundary is clearly a conformal invariant. Thererefore, vanishing of the normal
component of a differential at a boundary point is a conformally invariant condition
as well. According to the definition (2) above a harmonic function is locally
constant. This is too restrictive and we call a functionh harmonic if dh is a harmonic
differential, i.e., if d � dh D 0 which is equivalent to the usual definition of a
harmonic function.

Every Riemannian surface .X; ds2/ admits isothermal coordinates. More pre-
cisely, every point of X has a coordinate neighborhood U and two function x
and y defined on U such that .x; y/ are local coordinates on U and the metric
ds2 is conformal to the Euclidean metric dx2 C dy2. Now a restriction of a
harmonic differential ! to U can be expressed as a.x; y/dx C b.x; y/dy and
�!jU D �.adx C bdy/ D ady � bdx. The equations (2) translate to

bx D ay and ax D �by
which are Cauchy-Riemann equations for the function f D a � ib. Thus, locally,
we get a one-to-one correspondence between harmonic differentials adxCbdy and
holomorphic functions f D a � ib of z D x C iy. Under this correspondence

k!k2U D
Z

U

! ^ �! D
Z

U

.a2 C b2/ dxdy D
Z

U

jf j2 dxdy: (4)

As a consequence, if U is a punctured disk, we see thatL2 harmonic differentials on
a punctured disk have a removable singularity. We also note that ! can be recovered
from f as follows:

! D Re.f .z/d z/: (5)

For a cusp C and an interval I , we will write CI D I � T
1, and to

simplify the notation we set CRDCŒR;1/. We now describe a convenient conformal
parametrization of cusps. In particular, we will be interested in CŒ0;1/ with the
metric as in (1). Of course CŒ0;R� is conformally equivalent to an annulus in the
Euclidean plane and CŒ0;1/ is equivalent to a punctured disk. We will make this
equivalence explicit. If .	; 
/ are polar coordinates in the plane, we set 
 D 2�t
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and 	 D 	.r/ with 	.0/ D 1. We would like to map the cusp so that the base
r D 0 is mapped onto the unit circle and the horocycle r D R goes onto a small
circle around the origin. Thus, we need 	 to be a decreasing function of r . An easy
calculation shows that the metric (1) written in terms of 	 and 
 is given by

ds2 D
�
dr

d	

�2
 

d	2 C
�
d	

dr

�2
e�2r

4�2
d
2

!

:

The Euclidean metric is expressed in terms of polar coordinates as d	2 C 	2d
2. It
follows that the two metrics are conformal if and only if

	2 D
�
d	

dr

�2
e�2r

4�2
:

Taking into account that 	.0/ D 1 and d	

dr
< 0 we solve this equation to obtain

	 D e�2�.er�1/: (6)

Finally, we observe that the expanding ends ofX , so called funnels, are compact
from the conformal point of view. Namely, let F D .�1;1/ � T

1 with the
hyperbolic Riemannian metric

ds2 D dr2 C `2 cosh2 r dt2: (7)

Here ` is the length of the geodesic at the “waist” of the funnel. A calculation similar
to the one for the cusp shows that F is conformally equivalent to an annulus in the
plane, and thus can be compactified by adding boundary circles. The conformal
equivalence is given by the equations


 D 2�t , 	 D e.2�=`/
R r
0

du
cosh u : (8)

Since the limits of 	.r/ at ˙1 are finite these equations define the mapping of F
onto an annulus that can be compactified by adding boundary circles. We can use
this procedure to compactify all funnels of X by adding a circle at infinity to each
to obtain the surface with boundaryX .

We make a comment about the behavior of L2 harmonic differentials near the
boundary points of X . Since every circle in the z D x C iy plane can be mapped
by a Möbius transformation onto the real axis, every boundary point of X has a
neighborhood that is conformally equivalent to the intersection of a diskD centered
at the origin intersected with the closed lower half-plane. Writing a differential !
as ! D adx C bdy we see that the requirement that the normal component of !
vanishes on the boundary is equivalent to b.x; 0/ � 0. It follows that the associated
holomorphic function f D a�ib is real on the real axis so that Schwartz’s reflection
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principle applies. Therefore both f .z/ and ! extend toD and theL2 norms of either
one on the upper and lower half-disks are equal. In addition, ! D dh in D for a
harmonic function h determined uniquely up to an additive constant and satisfying
h.x; y/ D h.x;�y/. In our conformal identification of a funnel with an annulus
we mapped the added circle at infinity into the outer boundary of the annulus in the
complex plane. The remark above implies that both ! and f extend analytically
with boundedL2 norms to a larger annulus containing the image of the funnel in its
interior. Moreover, if ! is exact on the whole annulus, then its primitive h extends
as well and has equal values at points symmetric with respect to the boundary circle.

Finally we recall the following elementary inequality,

jf .0/j � 1

R
p
�
kf kL2.DR/ (9)

that holds for every holomorphic function f on a closed disk DR centered at the
origin in the complex plane.

4 Proof of the theorem

We first prove the existence of !. k�kA will denote the L2 norm of a differential �
on the set A � X . Now, for every a > 0 consider the harmonic differential !a on
Xa as in the introduction.

Lemma 4.1. For every a � 0, there exists a constant m.a/ > 0 such for all R �
aC 2,

k!R � !aC1kXa � m1.a/:

Let C be one of the cusps Ci , 1 � i � k, p D pi . For every R > 2

k!R � pdtkCŒ0;R� � m2;

where m2 > 0 is a constant independent of R.

Proof. We prove the second estimate first since the proof in this case is somewhat
simpler but contains all the essential aspects. The harmonic form !R � pdt is exact
on CŒ� ln 2;R� since it is closed and its only period is equal to zero. Moreover, its
normal component vanishes on the outer boundary ”R of CŒ0;R�. We use the notation
”r D frg � T

1. If !R � pdt D dg, then d � g D 0 on CR. Therefore

k!R � pdtk2CŒ0;R� D
Z

�0

g � dg

by Stokes’ formula. Observe that the function g is determined only up to an additive
constant. Thus after adding a suitable constant we can assume that infCŒ� ln 2;1� g D 1.
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It follows from the Harnack inequality [6, Theorem 21] that jgj is bounded on
CŒ�.1=2/ ln 2;1=2� by a constant independent ofR. Now for a harmonic function, bounds
on the function imply bounds on derivatives [6, Section 13]. Therefore jdgj is
bounded on ”0 as well. This proves the second inequality in the lemma.

Consider the form !R � !aC1 on XaC1. This form is harmonic and has normal
component equal to zero along all circles added to compactify the funnels. By the
discussion at the end of Section 3 this form has an extension to anL2 harmonic form
� defined on the surface Y obtained by adding annuli to the funnels. The homology
of Y is carried by XaC1 and therefore all periods of � are equal to zero. It follows
that � is exact, i.e., � D dh for a harmonic function h on Y . Since � D !R � !aC1
onXaC1, the normal component of dh vanishes on circles that bound funnels. Using
Stokes’ formula and the fact that dh ^ �dh D d.h � dh/ we see as above that

k!R � !aC1k2Xa D
Z

Xa

dh ^ �dh D
X

i

Z

�ai

h � dh; (10)

where ”ia is the cycle r D a in C i . We now need to estimate h and dh on ”ai .
The function h is determined only up to an additive constant. Therefore we can
assume that minhjXaC1 D 1. As we saw above, h extends to a harmonic function
h1 on Y that satisfies the same lower bound as h, i.e., h1 � 1. By the Harnack
inequality there exists a constant A > 0 that depends only on the geometry so that
h.p/ � A for every p 2 XaC1=2. Now, for a harmonic function, the bounds on the
function on a disk around a point can be translated into bounds on partial derivatives
at the center. It follows that we can bound dh uniformly on �ia by a constant that
depends only on the original surface X and on a. This finishes the proof. ut

It follows from the first inequality in the lemma that for a fixed a the norms
k!RkXa are bounded independently of R. Locally L2 harmonic forms can be
identified with L2 holomorphic functions. A uniform bound on L2 norms implies
via (9) that the family !R is a “normal family.” All the estimates apply via the
reflection principle up to the boundary of Xa. A standard diagonal argument shows
there exists a sequence Rj ! 1 such that !Rj converges uniformly on Xa for
every fixed a > 1 to a harmonic form !. Obviously, ! is harmonic, has prescribed
periods, and its normal component on circles at infinity vanishes.

It remains to investigate the behavior of ! in cusps. On a given cusp C D C i ,
consider the form �Rj which is equal to !Rj � pdt extended by zero to CŒRj ;1/.
By Fatou’s lemma, using the second inequality in Lemma 4.1, its pointwise limit
! � pdt is in L2 on CŒ0;1/. This finishes the existence part of the proof.

The uniqueness is easy. If !1 and !2 are two forms satisfying our conditions,
then � D !1 � !2 is an L2 harmonic differential on X with vanishing periods.
Singularities of � in cusps are removable. Consider the Riemann surfaceZ obtained
from X by closing the punctures and adding circles at infinity to funnels. The form
� extends to Z, is harmonic, has zero periods and satisfies the absolute boundary
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conditions �n D 0 on the boundary of Z. Therefore, � D dh on Z, h is a harmonic
function and

k�k2
X1
D
Z

X1

dh ^ �dh D
Z

X1

h�h D 0

and !1 � !2 D � D 0.
Finally, we prove the decay estimate of ! � pidt in cusps. We identify C i with

a punctured disk with coordinate z D 	ei
 and use the correspondence between L2

harmonic differentials andL2 harmonic forms!�pdt D Re.f .z/d z/. The function
f .z/ must have a removable singularity at zero and is therefore bounded. Thus it is
enough to estimate the pointwise norm of d z D d.	ei
 / D ei
d	 C 	iei
d
 in
terms of the hyperbolic metric ds2 D dr2C e2rdt2. A calculation using (1) and (6)
yields

jd	j D 2�ere�2�.er�1/ and jd
 j D 2�jdt j D 2�er :
Thus jd zj � jd	j C 2�er	 which in view of (6) implies our estimate.
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About the ABC Conjecture and an alternative
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In memory of Serge Lang

Abstract After a detailed discussion of the ABC Conjecture, we discuss three al-
ternative conjectures proposed by Baker in 2004. The third alternative is particularly
interesting, because there may be a way to prove it using the methods of linear forms
in logarithms.
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logarithms
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1 Introduction

I met Serge first around 1990 in Utrecht, when he gave a talk there and I was a
student in Nijmegen. I asked him a question during the break, and at some point
during the second half, he suddenly pointed a finger at me, asking “let’s see what
they teach in Nijmegen: when you have a meromorphic function with simple poles
and integer residues, what do you do?” After the talk I was surprised and happy
when he insisted that I join the group to a restaurant. On the way back in the train, we
talked about mathematics, and about a week or two later I was even more surprised
when a small box full of books arrived. Since then, we have been in contact regularly
until Serge passed away.
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During my thesis research, I asked Serge by email if I could visit him at Yale.
He immediately called back by phone, saying “No, it’s impossible, I cannot find
a place for you to stay.” Half an hour later he called again: he had found a place
for me.

I fondly remember the lunches while at Yale. One day, I explained to him
the theorem of Stewart and Tijdeman that the error term in the ABC Conjecture
is of order h1=2, and my idea that this should be related to the fact that the
zeros of the Riemann zeta function have real part 1=2. He looked at me for
a moment and then said: “This is insight! Now you have to work until you
prove it.”

These and other experiences with Serge have been truly inspiring for me. I
consider Serge to be one of the greatest teachers that I have had. He is the one
who taught me how to do research (“Formulate the theorem and prove it!”), and
how to write it up (when I asked him one time how he wrote so many books,
he looked at me with a puzzled expression as if to say “just start and never
stop!”).

Serge had a great insight into the interconnection of questions of geometry and
Diophantine analysis, thus contributing to the field of Diophantine geometry. One
of his latest insights was to emphasize the difference between the error terms in
the Vojta Height Inequality and the radicalized version of this inequality. This is
well explained in the manuscript Questions about the error term of Diophantine
inequalities [La05], which, I think, has been left unfinished. We were in contact
about this shortly before Serge died. The paper [vF06] was initiated by his question
whether the implication of the title is true (Serge’s intuition shines through the fact
that when he contacted me by phone about this question, I was not sure immediately
if this could be proved, but soon I realized how the argument of [vF04] could be
modified). Other papers were also inspired by Serge’s generous sharing of ideas and
enormous drive.

In this paper, we explore another of Serge’s questions, asked around the same
time, about an alternative to the ABC Conjecture proposed by Baker. We first
explain the ABC Conjecture, and illustrate it with several diagrams. Then we explain
and discuss Baker’s alternative.

I sent an early draft of this paper to Serge shortly before he passed away. The
draft contained some graphs and a very incomplete text, which quite upset Serge to
my regret. The present paper explains much clearer the available data. The reader
will see that no firm conclusion can be arrived at. More data, obtained by a larger
exhaustive search of abc sums, is needed for a more definite conclusion. Such data
is being assembled in the project Reken mee met ABC [LPS09].

Acknowledgement We thank the referee for suggesting a number of important improvements to
this paper. David Masser and Joseph Oesterlé kindly shared their recollection of the origins of the
ABC Conjecture, and Hendrik Lenstra improved the paper by asking some insightful questions.
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2 The ABC Conjecture

In 1985, Masser attended a talk by Oesterlé that involved elliptic curves (and
possibly Szpiro’s conjecture, which is closely related, see (5) below). It reminded
him of another recent development, a theorem for polynomials by Mason [Ma84]
(see also [Si84, Sto81]), and he formulated the ABC Conjecture in July 1985 at a
London conference in honour of Roth’s sixtieth birthday. Only the “Open Problems”
were published in some form,1 but in 1986, as a possible approach to Fermat’s Last
Theorem, Oesterlé formulated the ABC Conjecture in the Bourbaki seminar [O88].

The height of an abc sum P W a C b D c of coprime integers is

h.P / D maxflog jaj; log jbj; log jcjg; (1)

and the (logarithmic) radical of P is defined by

r.P / D
X

pjabc
logp: (2)

With these definitions, the ABC Conjecture can be formulated as follows.

Conjecture 1. There exists a function  such that limh!1  .h/=h D 0 and

h.P / � r.P / �  .h.P // (3)

for all abc sums P .

Smirnov explains in [Sm93] that the ABC Conjecture can be interpreted as
a Riemann–Hurwitz inequality for rational numbers, interpreted as functions on
spec Z (see also the appendix of [Mas02]).

In [StTi86], using an extension of Baker’s theory of bounds for logarithmic
forms, Stewart and Tijdeman obtain that the height of every abc sum is bounded
by a power of its exponential radical:

h.P /� e15r.P /: (4)

Apart from subsequent improvements of the exponent 15 to eventually 1=3C "
[StY01], this is still the best known result. With this result, one sees that if the radical
is fixed, i.e., if a, b and c are to be formed using only prime factors from a fixed set
of prime numbers, then a, b and c are bounded, and hence there exist only finitely

1See [GdS07], which is also of interest to non-Dutch readers for a photographic reproduction of
the relevant page.
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many such abc sums.2 Equivalently, in every infinite sequence of abc sums, r.P / is
unbounded. However, (4) is too weak to imply Fermat’s Last Theorem.

It is easy to deduce Fermat’s Last Theorem from the ABC Conjecture, provided
the function  is explicitly known.3 We will give the argument here, to make the
point that, roughly speaking, the ABC Conjecture says that the exponents of the
prime factors of a, b and c are at most 3C " on average. Suppose that xnCyn D zn

and n � 4. Then we have an abc sum P of height n log z and radical

r.P / D
X

pjxyz

logp � logxyz < 3 log z:

By the ABC Conjecture, .n�3/ log z �  .n log z/. Since  .h/ D o.h/, there exists
an h0 such that  .h/ < h=4 for h > h0. Then, for z > eh0=4 we have n log z > h0,
and we conclude that n�3 < n=4, and hence n < 4. There remain only finitely many
values for z to check, and for each of these values, we need only check exponents
n � h0= log z.

We see that the ABC Conjecture does not allow us to prove Fermat’s Last
Theorem for exponent 3. However, we can get arbitrarily close to exponent 3.
Indeed, letting z ! 1 in the above argument, we see that n � 3 � o.1/. Szpiro
conjectured that

lim sup
log.abc/

r.P /
D 3; (5)

where the limsup is over all abc sums P .
Defining the quality of an abc sum P as q.P / D h.P /=r.P /, one could state

the ABC Conjecture alternatively as

lim sup q.P / D 1:

Also in the paper [StTi86], Stewart and Tijdeman prove that there exist infinitely
many abc sums such that the height is larger than the radical. Their result was
subsequently improved by the author [vF00] to

for infinitely many abc sums P : h.P / � r.P / � 6:07
p

h.P /

logh.P /
: (6)

2In other words, (4) implies the classical result of Siegel and Mahler on the S-unit equation. The
innovation of Stewart and Tijdeman was to use Baker’s theorem on linear forms in logarithms,
generalized to p-adic logarithms, to make this result effective.
3If  is not explicitly known, one would deduce that there could only be finitely many
counterexamples to Fermat’s Last Theorem, but one would not know when to stop looking for
one.



About the ABC Conjecture and an alternative 173

It follows that there exist infinitely many abc sums with q.P / > 1. We computed
the quality from two tables. The first table, by Benne de Weger, lists all abc sums
with q.P / > 1:2 up to c D 232 (i.e., up to height 22:18; our diagrams reflect
this by a high density of data points up to this height), and the second table lists
abc sums with q.P / > 1:28 up to a height of 50, compiled by the author from
Abderrahmane Nitaj’s tables [N09]. The first table is obtained by an exhaustive
search, but the second table is not exhaustive.4 These data indicate that the quality
might be bounded by 1:6299, the quality of the abc sum 2C310�109 D 235 of height
15:6775. However, at present, even a proof of a statement such as q.P / < 1;000 for
every P would be a great theorem.

The disadvantage of the quality is that for any bound q > 1, one expects only
finitely many abc sums of quality larger than q. Thus up to height 22:18, and
as Figure 1 suggests, probably well beyond this height, one finds many sums for
which q.P / is about 1:2. One would like to discard those and only record the
more interesting sums with q.P / > 1:4. But for larger heights, probably when
h.P / > 100, there may not be any point with q.P / > 1:4, and already examples
with q.P / > 1:2 are interesting. Thus one would like to have a criterion that adapts
with the height and would tell us which abc sums are interesting and which ones
should be regarded as “common” or “too abundant”, a criterion that becomes less
restrictive as the height increases.

By (6), if a function  as in Conjecture 1 exists, then  .h/ � 6:07
p
h= logh.

This provides us with the kind of adaptive criterion as was mentioned at the end of
the previous paragraph5 (see the curved line in Figure 1). Thus, we regard an abc
sum as interesting if h� r � 6:07ph= logh. In terms of the quality, this means that
interesting abc sums have a quality of at least

q.P / �
 

1 � 6:07
p

h.P / logh.P /

!�1
:

Thus up to height 22:18, interesting abc sums have a quality of at least 1:72 (hence
in this sense, there are no interesting abc sums of height less than 22:18). The first
interesting abc sum is

53 C 29 � 317 � 132 D 115 � 17 � 313 � 137;
with a height of 30:0446, and for heights between 30 and 50, a quality of 1:28
already makes an abc sum interesting.

4We have omitted from our table all abc sums with h > 50, since beyond a height of 50 our table
is definitely not exhaustive and therefore useless. By November 2009, the project [LPS09] had
resulted in an exhaustive search up to height 29:9337 (i.e., up to c D 1013, apparently improved to
1020 [N09]). Schulmeiss has found some very large abc sums that satisfy (6), the largest of which
has a height of 5;114. Since these sums were not obtained by an exhaustive search, they are less
useful to check different versions of the ABC Conjecture.
5This criterion is closely related to the “merit”, see [GdS07, dS09]. See also (7) below, which
contains the same information as an inequality for the merit.
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Fig. 1 The points .h.P /; h.P /� r.P // and the graph of 6:07
p
h= logh.

In Figure 1, the points .h.P /; h.P / � r.P // are compared with the graph of
6:07
p
h= logh. This diagram seems to indicate that h � r grows linearly in h for

infinitely many abc sums, which would contradict the ABC Conjecture. However,
only a small portion of the sums in the tables satisfy the inequality (6). We expect
that as more abc sums become available that satisfy (6), it will become clear that
h.P / � r.P / is never much larger than

p

h.P /. Indeed, in [vF95], the author has
given a heuristic argument showing that

h.P / � r.P /� p

h.P /= logh.P / (7)

for all abc sums P (see also [StTe]).
Clearly, by (6),

lim sup
log.h.P / � r.P //

logh.P /
� 1

2
:
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Fig. 2 log.h� r/ compared with log h.

In view of the heuristic inequality (7), we expect that actually, equality holds here.6

The double logarithmic plot in Figure 2 of the points

�

logh.P /;
log.h.P / � r.P //

logh.P /

�

suggests that the maximum of log.h� r/= logh is 0:733258, for the abc sum

19 � 1307C 7 � 292 � 318 D 28 � 322 � 54;

6As alluded to in the introduction, the value 1=2may be related to the Riemann Hypothesis. Michel
Waldschmidt pointed out to me that the most accessible approach to such a connection may be to
construct a sequence of abc sums such that h.P /� r.P / � h.P /��", given a hypothetical zero of
the Riemann zeta function with real part � > 1=2.
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of height 36:1524, logh D 3:3877. It is clear however that the available data is
insufficient to reach a definite conclusion, and one expects more definite information
to emerge from a complete table of abc examples up to a height of at least about 80.

3 Baker’s alternative conjectures

Let !.n/ be the number of prime factors of the natural number n. By the
prime number theorem, !.n/ is at most of size logn= log logn, and by [HW60,
Theorem 430], !.n/ � log logn on average. Clearly, for an abc sum aC b D c, the
number of prime factors of abc equals !.abc/ D !.a/ C !.b/C !.c/. In [B04],
Baker proposes the following conjecture:

Conjecture 2. There exists a constantK such that

h.P / � r.P / � ! log r.P / � .! C 1=2/ log! C ! CK
for all abc sums P W aC b D c composed of ! D !.abc/ different prime numbers.

In Figure 3, we compare Baker’s conjecture with the available data from our
tables. Clearly, the diagram indicates that the constant K in Conjecture 2 could
probably be taken to be �0:8.

Remark 1. By Chen’s theorem [C73, C78], there are infinitely many n and prime
numbers p; q and r such that 2n D p C qr . Thus, !.abc/ is bounded (by 4) for
an infinite sequence of abc sums. In these examples, the radical r.P / D log.2pqr/
is about 2h.P /. On the other hand, for the examples in our table with h.P / >
r.P /, especially those that satisfy (6), !.abc/ is always a relatively large value.
Indeed, if Conjecture 2 holds, those abc sums are composed of at least !.abc/ D
O
�p
h=.logh/3=2

�

primes.

Our formulation of Conjecture 2 is not Baker’s original formulation. Baker gives
two formulations, one based on �.R/, the number of integers � R composed of
prime factors of R. This is equivalent to Conjecture 2 (see [B96, �7]). Baker states
this conjecture in an exponential form involving !Š, where we have used Stirling’s
formula to replace log!Š by .!C1=2/ log!�!. Our formulation seems to exhibit
more clearly the relative importance of the different terms. Ignoring all terms of
lower order, one could rephrase the conjecture in a weaker form as follows:

Conjecture 3. There exists a constant � such that for all abc sums P W aC b D c
composed of ! D !.abc/ different prime numbers,

h.P / � r.P / � �! log.r.P /=!/:

At present, it seems hopeless to prove the ABC Conjecture itself. It derives its
interest mainly from the fact that it allows us to test other conjectures. However,
Baker continues by stating his most interesting conjecture. It has the same strength
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Fig. 3 The size of �D .h� r/� .! log.r/� .! C 1=2/ log.!/C !/.

as the ABC Conjecture in the sense that it implies Fermat’s Last Theorem, and it
may be possible to prove it using the methods of linear forms in logarithms, as Baker
explains in [B04, �2] and [B96].

Conjecture 4. There exists a constant � such that for all abc sums P W a C b D c,

h.P / � r.P / � �!.ab/ log.r.P /=!.ab//:

Remark 2. The estimate for linear forms in logarithms that is discussed in [B96,
�4] involves a product of logarithmic heights. If one could obtain a similar estimate
with the product replaced by a sum of the logarithmic heights, one could deduce
Conjecture 4. The reader can find an example where a product is successfully
replaced by a sum in the Remark on page 37 of [LC90].
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For the connection with linear forms in logarithms, it is essential that !.ab/ in
Conjecture 4 only depends on two of the variables. Baker does not specify on which
two variables, so permuting a, b and c (and adjusting the signs), the weakest form
of Conjecture 4 is obtained when !.ab/ has the maximal value,

!.ab/ D !max D maxf!.ab/; !.bc/; !.ac/g;

and the strongest form is obtained for

!.ab/ D !min D minf!.ab/; !.bc/; !.ac/g:

Clearly, Conjecture 4 implies Conjecture 3 with the same value for �, and
Conjecture 4 with � D 1 implies Conjecture 2. On the other hand, for the weakest
form of Conjecture 4, with !max for !.ab/, we have7

!.abc/ � 3

2
!max ;

so Conjecture 2 implies Conjecture 3 with � D 3=2 and !.ab/ D !max.
In Figure 4, we graph .h� r/=�!min log.r=!min/

�

. Thus one could probably take
� D 2:04, even in the strongest form of Conjecture 4. The extreme example is the
abc sum

1C 26 � 3 � 5 � 7 � 134 � 17 D 2394;
of height 21:9058.

Reasoning as before, each one of the conjectures 2, 3 and 4 imply Fermat’s Last
Theorem. Indeed, let xn C yn D zn. Then

!.abc/ D !.xyz/ � 3 log z= log log z:

Also !.ab/ � 3 log z= log log z. Using Conjecture 3 or 4, one obtains

.n � 3/ log z � 3� log z log log log z= log log z:

It follows that n�3 � o.1/, which implies, as before, that there remain only finitely
many cases to check. And if � is explicitly known, this can be done in a finite
search.

7If !.c/ is the least value among !.a/, !.b/ and !.c/, then !max D !.a/C !.b/ and !.abc/ D
!max C !.c/ � !max C 1

2
.!.a/C !.b//.
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Abstract Belyi’s Theorem states that every curve defined over the field of algebraic
numbers admits a map to the projective line with at most three branch points. This
paper describes a unifying framework, reaching across several different areas of
mathematics, inside which Belyi’s Theorem can be understood. The paper explains
connections between Belyi’s Theorem and (1) The arithmetic and modularity of
elliptic curves, (2) abc-type problems and (3) moduli spaces of pointed curves.
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1 Introduction

Belyi’s Theorem, the main object of our study, states:

Theorem 1.1 (Belyi [Bel80], [Bel02]). Let X be a connected, smooth, projective
curve defined over the field of algebraic numbers Q. Then there exists a morphism

' W X �! P1 (1.0.1)

with
Branch Locus .'/ � f0; 1;1g: (1.0.2)
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Belyi’s Theorem is an elementary result about curves defined over the algebraic
numbers Q. One surprising aspect of Belyi’s Theorem is that not only is the
statement of the theorem elementary, but so are the only two known proofs (both
due to Belyi himself). Nothing but the rudiments of the theory of ramification for
maps between curves is called upon. These notions were known to Riemann, yet
Belyi’s Theorem was only discovered in 1979, more than a hundred years later.

This paper describes a unifying framework, reaching across several different ar-
eas of mathematics, to understand Belyi’s Theorem. The paper explains connections
between Belyi’s Theorem and (1) the arithmetic and modularity of elliptic curves,
(2) abc-type problems and (3) moduli spaces of pointed curves.

First, �2 presents Belyi’s two different proofs of his theorem. In each proof we
attempt to motivate Belyi’s key constructions. Next, �3 is devoted to the connection
between Belyi’s Theorem and the abc Polynomial Theorem. �4 discusses theorems
and conjectures that offer generalizations of Belyi’s theorem to characteristic p
(�4.1), function fields (�4.2) and higher dimensions (�4.3). In Section 5, we give
an exposition of a question of C. Khare, which is an attempt to relate the modularity
of elliptic curves to Belyi’s Theorem.

The first half of this paper (��2,3) is completely elementary. The second half
(��4,5) uses a bit of algebraic geometry. Some knowledge of automorphic forms is
helpful for Section 5.

2 Belyi’s Proofs

Section 2 is devoted to the presentation of Belyi’s two proofs of his theorem. For a
map ' W C1! C2 of smooth, projective curves, we write B.'/ for the branch locus
of ' and for a point P 2 C1, we let e'.P / denote the ramification index of ' at P .
Given X as in Theorem 1.1, we call a map ' satisfying (1.0.1) and (1.0.2) a Belyi
map for X .

2.1 Outline of section 2 and the proofs

In the interest of making the exposition self-contained, we begin by recording the
well-known fact (Lemma 2.1 below) that ramification indices are multiplicative
under a composition of morphisms. The basic structure of both of Belyi’s proofs
is the same. The general strategy is to start with an arbitrary map h0 W X �! P1

and “refine” it by composing it with a sequence of maps from P1 to itself, which
gradually reduce the complexity of the branch locus, until it becomes f0; 1;1g, the
simplest it could possibly be. The complexity of the branch locus is reduced in two
steps, which we call the “Q to Q step” and the “Q to f0; 1;1g step”, stated and
proved as Theorems 2.2 and 2.4 respectively. Belyi’s two proofs are the same as far
as the “Q to Q step” is concerned. However the two proofs offer genuinely different
approaches to the “Q to f0; 1;1g step”.
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We present Belyi’s proofs in the opposite order from that in which they were
historically discovered by Belyi. We do this for two reasons. First, we believe that,
although it is more sophisticated and harder to understand at first, Belyi’s second
proof (Proof 1 of Theorem 2.4 below) offers more insight and is more efficient (see
also Question 2.7), whilst it is not less elementary than Belyi’s first proof (Proof 2 of
Theorem 2.4 below). For example, Belyi’s second proof of the “Q to f0; 1;1g step”
requires a single self-map of P1, whereas the first proof requires (possibly) many
such maps. Our second reason for the order of presentation is that Belyi’s second
proof has gone almost unnoticed1, while the first proof from [Bel80] is well known
and many expositions of it are available. To our knowledge, there is no reference
containing Belyi’s second proof other than Belyi’s original paper [Bel02].

Since Belyi’s second proof uses Vandermonde determinants, we have included a
subsection which briefly recalls the basic properties of Vandermonde determinants
needed in the proof.

Finally, section 2 ends with some further remarks about Belyi’s theorem and its
proofs.

2.2 The Two Proofs

We shall make repeated use of the following well-known property of ramification
indices, which we state as a lemma.

Lemma 2.1 (Multiplicativity of Ramification Indices). Suppose

C1
'�! C2

 �! C3 (2.2.1)

is a composition of maps of smooth projective curves. Then for all P 2 C1, one has

e ı'.P / D e .'.P //e'.P /: (2.2.2)

Theorem 2.2 (Branching Reduction from P1.Q/ to P1.Q/). Let h0 W X ! P1 be
a morphism satisfying B.h0/ � P1.Q/. Then there exists a morphism hB W P1 ! P1

such that the composition

hB ı h0 W X ! P1 satisfies B.hB ı h0/ � P1.Q/: (2.2.3)

Proof. We begin by recursively defining a sequence of polynomials and branch
sets. For a finite set S � Q, we use the notation mS;Q.x/ to denote the minimal
polynomial of S over Q i.e., mS;Q.x/ is the monic polynomial of smallest degree

1Apparently one reason for this is that [Bel02] was an MPI preprint for several years that was
difficult to access before it was published.



184 W. Goldring

with rational coefficients having all the elements of S as roots. Note that since we
do not require the elements of S to be Galois conjugate, the minimal polynomial
mS;Q.x/ may be reducible. Put

B0 D B.h0/� f1g , h1.x/ D mB0;Q.x/; (2.2.4)

and define recursively

Bi D B.hi /� f1g , hi .x/ D mBi�1;Q.x/: (2.2.5)

For i � 1, one can think of the hi as maps hi W P1 ! P1, totally ramified at1.

Claim 1: For all i � 1, if deghi � 1, then deghiC1 � deghi � 1. The point here
is that the branch sets Bi are Galois stable for i � 1 i.e., for all � 2 Gal.Q=Q/
and ˛ 2 Bi one has �˛ 2 Bi . Indeed, for all i � 1 the finite branch sets Bi can be
described by means of derivatives as

Bi D fhi.a/jh0
i .a/ D 0g: (2.2.6)

If ˛ 2 Bi , say ˛ D hi .a/, then

�˛ D �.hi .a// D hi .�a/

since hi 2 QŒx� and

h0
i .�a/ D �.h0

i .a// D �.0/ D 0

since h0
i 2 QŒx� and hi .a/ 2 Bi .

Since Bi is Galois stable, we have

hiC1.x/ D
Y

˛2Bi
.x � ˛/ (2.2.7)

for all i . In particular deghiC1 D jBi j. From (2.2.6) we see that if deghi � 1, then
jBi j � deghi � 1, so the claim is true.

By the claim, there is a positive integer ` such that h` is linear, i.e., degh` D 1.
Consider

hB WD h`�1 ı h`�2 ı � � � ı h1 (2.2.8)

and put h D hB ı h0.
Claim 2: B.h/ � P1.Q/. To see this, we use the multiplicativity of ramification
indices (Lemma 2.1). Suppose h is ramified at P 2 X aboveQ 2 P1 and Q ¤ 1.
By Lemma 2.1, there exists i , 0 � i � ` � 1, such that

ehi ..hi�1 ı hi�2 ı � � � ı h1 ı h0/.P // > 1: (2.2.9)
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Case I: i < ` � 1. By definition of Bi , (2.2.9) implies that

.hi ı hi�1 ı � � � ı h1 ı h0/.P / 2 Bi ; (2.2.10)

so
.hiC1 ı hi ı � � � ı h1 ı h0/.P / D 0: (2.2.11)

Since hi 2 QŒx� for all i � 1, it follows that

.h`�1 ı � � � ı hiC1 ı hi ı � � � ı h1 ı h0/.P / D h.P / D Q 2 Q; (2.2.12)

as desired.

Case II: i D ` � 1. Since h` is linear and h`.x/ D mQ;B`�1 .x/, we must have
jB`�1j D 1 and B`�1 � Q. But Q 2 B`�1 so Q 2 Q. ut

As an interlude between the two steps of Belyi’s proofs, we recall some basic
facts about Vandermonde determinants.

Vandermonde determinants. Let K be a field. Given ˛1; : : : ; ˛n 2 K , the
Vandermonde determinant of ˛1; : : : ; ˛n is

V.˛1; : : : ; ˛n/ D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1 ˛1 ˛21 : : : ˛n�1
1

1 ˛2 ˛22 : : : ˛n�1
2

:::
:::

:::
: : :

:::

1 ˛n ˛2n : : : ˛n�1
n

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

: (2.2.13)

The Vandermonde determinant satisfies Vandermonde’s Identity:

Lemma 2.3. One has

V.˛1; : : : ˛n/ D
Y

j<i

.˛i � ˛j /: (2.2.14)

Proof. The proof is by induction on n. Observe that (2.2.14) holds for n D 2, as
both sides of the equation are equal to ˛2 � ˛1. We may assume that ˛i ¤ ˛j for
i ¤ j since otherwise both sides of (2.2.14) are 0.

Define a polynomial v.t/ of one variable t by v.t/ D V.˛1; : : : ; ˛n�1; t/. The
degree of v.t/ is n � 1. Let c be the leading coefficient of v.t/. By expanding the
determinant defining v.t/ along the bottom row, we see that c D V.˛1; : : : ; ˛n�1/.
Now v.˛i / D 0 for 1 � i � n� 1, since the determinant giving V.˛1; : : : ; ˛n�1; ˛i /
has the i th and nth rows equal. Hence t�˛i divides v.t/ and since the ˛j are distinct,
we obtain

v.t/ D c
n�1Y

iD1
.t � ˛i /: (2.2.15)
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Using induction to express c as a product, (2.2.15) becomes

v.t/ D
Y

1�k<j�n�1
.˛j � ˛k/

n�1Y

iD1
.t � ˛i /: (2.2.16)

Substituting ˛n into (2.2.16) gives (2.2.14). ut
The Vandermonde determinant also satisfies a scalar translation invariance

property: For all ˇ 2 K , translating all the entries ˛1; : : : ; ˛n by ˇ does not affect
the Vandermonde determinant. More precisely,

V.˛1 C ˇ; : : : ; ˛n C ˇ/ D V.˛1; : : : ; ˛n/: (2.2.17)

This translation invariance is an immediate consequence of the Vandermonde
Identity (2.2.14), since each term in the factorization of the left-hand side of (2.2.17)
is of the form .˛iCˇ/�.˛j Cˇ/ D ˛i �˛j . The translation invariance (2.2.17) can
also be seen directly from the definition of the Vandermonde determinant, without
using the Vandermonde identity, by means of the multilinearity of the determinant.
We will make use of the translation invariance property of the Vandermonde
determinant at the end of the first proof of Theorem 2.4.

We now come to the second part of Belyi’s proofs, the “Q to f0; 1;1g step”.

Theorem 2.4 (Branching Reduction from P1.Q/ to f0; 1; 1g). Assume h W X !
P1 is a morphism with B.h/ � P1.Q/. Then there exists a map g W P1 ! P1 such
that the composite g ı h is a Belyi map for X .

Before embarking on the proofs of this theorem, let us note the following
equivalent formulation. Suppose g W P1 ! P1 and put S D B.h/. By the
multiplicativity of ramification indices, we see that g ı h is a Belyi map for X if
and only if g satisfies the two conditions:

(i) g.S/ � f0; 1;1g
(ii) B.g/ � f0; 1;1g.
First proof of Theorem 2.4: This is Belyi’s second construction, which uses
Vandermonde determinants. We proceed to construct a function g W P1 ! P1

satisfying conditions (i) and (ii). Let S D B.h/ � P1.Q/. By composing with a
fractional linear transformation (which is everywhere unramified) we may assume

S D f�1 < �2 < � � � < �ng [ f1g (2.2.18)

with �i 2 Z and �1 D 0.
Consider

g.x/ D
mY

iD1
.x � �i /mi (2.2.19)

with

mi D .�1/i�1V .�1; : : : ; b�i ; : : : ; �n/ (2.2.20)
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where the term with a hat (b�i ) is to be omitted. By choosing g to have the above
form, we immediately ensure that g satisfies condition (i), regardless of our choice
of exponentsmi

2. In fact, g maps �i to 0 or1 according to whether mi is positive
or negative and the fact that g is monic implies that g.1/ is either 0, 1, or 1
depending on whether the degree of g is negative, zero, or positive, respectively.
Although it is not necessary for the proof, we will determine which of the above
cases occurs for each element of S .

The purpose of our particular choice of exponents mi made in (2.2.20) is to
ensure that g satisfy (ii) as well. We shall try to motivate the choice of exponents
later in the proof.

Before proving (ii), we determine explicitly the values of g on elements of S . By
Vandermonde’s Identity (2.2.14) and the fact that the �i are increasing, we have that

V.�1; : : : ; b�i ; : : : ; �n/ > 0 (2.2.21)

for all i since every term in the factorization of V.�1; : : : ; b�i ; : : : ; �n/ is positive.
Hence:

g.�i / D
�
0 if i � 1 .mod 2/
1 if i � 0 .mod 2/:

(2.2.22)

Next we show
Pn

iD1 mi D 0, which gives g.1/ D 1. Consider the auxiliary matrix

A D

0

B
B
B
@

1 1 �1 �21 : : : �n�2
1

1 1 �2 �22 : : : �n�2
2

:::
:::

:::
:::

: : :
:::

1 1 �n �2n : : : �n�2
n

1

C
C
C
A
: (2.2.23)

Since the first two columns of A are identical, detA D 0. Expanding detA along
the first column gives

Pn
iD1 mi D 0.

Now we return to verifying (ii) for g. Consider the logarithmic derivative of g:

g0

g
D

nX

iD1

mi

x � �i : (2.2.24)

Since the ramification points of g that are not above infinity are the roots of g0, the
ramification points of g are contained in the set of zeros and poles of g0=g.

Claim. We have the identity

nX

iD1

mi

x � �i D .�1/
n�1 V .�1; : : : ; �n/

Qn
iD1.x � �i /

: (2.2.25)

2This is true so long as mi ¤ 0 for all i which holds by (2.2.14) and (2.2.18).
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The important point is that the numerator on the right-hand side of (2.2.25) is a
constant; its value does not matter for proving (ii). The choice of exponents that
we made in (2.2.20) is what makes the numerator of the right-hand side of (2.2.25)
constant; for an arbitrary choice of exponents, the numerator of the right hand side
of (2.2.25) would be a complicated polynomial of degree n � 1.

Before proving the claim, let us see why it implies that g satisfies (ii). Assuming
the claim, we see that g0=g has simple poles at �i , a zero of order n at 1 and no
other zeros or poles. Hence any ramification point of g either lies above1 or lies
in S . By (i) for g, the branch points of g are contained in f0; 1;1g, as was to be
shown.

We are left with proving the claim. By putting the left-hand side of (2.2.25) over
a common denominator, the claim is equivalent to

nX

iD1
mi

Y

j¤i
.x � �j / D .�1/n�1V .�1; : : : ; �n/: (2.2.26)

We shall prove (2.2.26) in two steps: First we will show that the constant term of the
left hand side is equal to the right-hand side and then we will prove the full identity
by using a change of variables trick suggested by B. Mazur. Equality of constant
terms in (2.2.26) states that

nX

iD1
mi .�1/n�1Y

j¤i
�j D .�1/n�1V .�1; : : : ; �n/: (2.2.27)

We now use that �1 D 0 to simplify (2.2.27). If i ¤ 1, then
Q

j¤i �j D 0 since
�1 D 0, so (2.2.27) becomes

m1

Y

j¤1
�j D V.�1; : : : ; �n/: (2.2.28)

Keeping in mind that �1 D 0, expand V.�1; : : : ; �n/ along the first row: All but the
first term are zero, so we get

V.�1; : : : ; �n/ D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

�2 �22 : : : �n�1
2

:::
:::

: : :
:::

�n �2n : : : �n�1
n

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

: (2.2.29)

D
Y

j¤1
�j

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1 �2 : : : �n�2
2

:::
:::

: : :
:::

1 �n : : : �n�2
n

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

(2.2.30)

by multilinearity of the determinant. This proves (2.2.27).
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We regard (2.2.27) as an identity of independent variables f�i g3 and make the
change of variables

�i 7! �x C �i (2.2.31)

to get

nX

iD1
.�1/i�1V .�x C �1; : : : ;3�x C �i ; : : : ;�x C �n/

Y

j¤i
.�x C �j / D V.�x C �1; : : : ;�x C �n/: (2.2.32)

We are now in a position to apply the translation invariance property of the
Vandermonde determinant explained above. Applying (2.2.17) to (2.2.32) gives

nX

iD1
.�1/i�1V .�1; : : : ; b�i ; : : : ; �n/

Y

j¤i
.x��j / D .�1/n�1V .�1; : : : ; �n/: (2.2.33)

This proves the claim which completes the proof of Belyi’s theorem. ut
Second proof of Theorem 2.4: This is Belyi’s original construction. The idea here
is to reduce the size of the branch locus by one at a time, until the size of the
branch locus is at most 3. Again set S D B.h/ � P1.Q/. We first show by
induction on jS j that it suffices to construct g satisfying (i) and (ii) when jS j D 4.
The crux of the argument is then to treat the case jS j D 4 by constructing g
explicitly.

Suppose there exists g satisfying (i) and (ii) for all S with jS j D 4. Let
s 2 S and set U D S � s. By induction there exists a function gU W P1 ! P1

satisfying (i) and (ii) for U i.e., gU .U / � f0; 1;1g and B.gU / � f0; 1;1g. Let
T D f0; 1;1; gU .s/g. By our assumption on jS j D 4, there exists gT W P1 ! P1

satisfying (i) and (ii) for T i.e., gT .T / � f0; 1;1g and B.gT / � f0; 1;1g. Now
consider gS D gT ı gU . By (i) for gT and gU , we have gS.S/ � f0; 1;1g and we
see from the multiplicativity of ramification indices that B.gS / � f0; 1;1g. This
completes the induction.

We now show that there exists g satisfying (i) and (ii) when jS j D 4. By using a
fractional linear transformation, we may assume S D f0; 1;1; sg with 0 < s < 1.
Note that s 2 Q. There exist unique positive integers m; n such that s D m

mCn and
.m; n/ D 1. We claim that

g.x/ D .mC n/mCn

mmnn
xm.1 � x/n (2.2.34)

3In other words, regard (2.2.27) as an identity in QŒ�1; : : : ; �n�.
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satisfies (i) and (ii). We will try to motivate this construction and in the process
prove that it works.

To begin with, it makes sense to consider functions given by polynomials of the
form

fc;k;`.x/ D cxk.1 � x/`; (2.2.35)

with c 2 Q
�

a non-zero constant, as possible candidates for g. For all c ¤ 0 and
k; ` � 1, we have fc;k;`.0/ D fc;k;`.1/ D 0 and fc;k;`.1/ D 1. For any choice of
k; `, there will be a unique choice of c to make fc;k;`.s/ D 1. This takes care of (i).
As for (ii), the finite branch values of fc;k;` are given by

B.fc;k;`/ � f1g D ffc;k;`.a/jf 0
c;k;`.a/ D 0g: (2.2.36)

But

f 0
c;k;`.x/ D cxk�1.1 � x/`�1Œk.1 � x/ � `x�; (2.2.37)

so f 0
c;k;` has just one zero other than zero and one. The value of this exceptional

zero depends on the exponents k; ` and is given by x D k
kC` . Hence we choose

k D m and ` D n so that the root of f 0
c;k;` different from 0 and 1 is m

mCn D s. The
corresponding branch value is then fc;m;n.s/. As was said above, there is a choice

of c, namely c D .mCn/mCn
mmnn

so that fc;m;n.s/ D 1. This is one way to see how to
arrive at

g.x/ D fc;k;`.x/ with c D .mC n/mCn

mmnn
; k D m and ` D n: (2.2.38)

ut

2.3 Remarks

The most interesting point in both of Belyi’s proofs of Theorem 2.4 is that the
exponents in the functions g satisfying (i) and (ii) are constructed from the elements
of S , which are the branch values of h. These constructions use the fact that the
branch values of h are integers (or rational numbers) together with the very special
property of the ring Z that its elements are exponents of rational functions. By
the latter we mean that, for example, f .x/ D x˛ is a rational function if and
only if ˛ 2 Z. This presents a major difficulty in generalizing Belyi’s theorem
to other situations, such as the function field case, which we discuss in the next
section.

The converse of Belyi’s theorem is also true:

Theorem 2.5 (Weil [Wei56], Converse of Belyi’s theorem). Suppose X is a
connected, smooth, projective curve that admits a map ' W X ! P1 with B.'/ �
f0; 1;1g. Then X is defined over Q.
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The converse of Belyi’s theorem follows from Weil’s descent theory. It is curious
that, as far as we know, Weil did not ask whether the converse to Theorem 2.5 is
true, thus conjecturing Belyi’s theorem, especially that Weil did so much pioneering
work in the arithmetic and geometry of covers of curves.

Theorem 2.5 is more clearly understood in terms of descent for the étale
fundamental group, (part of) Grothendieck’s vast generalization of Weil’s theory,
which can be found in [Gro71].

Theorem 2.6 (Descent for the étale fundamental group). Suppose L is an
algebraically closed field of characteristic 0 and K is an algebraically closed
subfield of L. Let S be a variety overK . Then

� ét
1 .S/ Š � ét

1 .S ˝K L/: (2.3.1)

Define the Belyi degree of a curve X defined over Q to be the smallest degree
of a Belyi map for X . Both proofs of Belyi’s Theorem give a bound for the Belyi
degree of X in terms of the height of the branch values of the original function h0.
The first proof presented here (Belyi’s second proof) is more efficient in the sense
that it gives a better bound on the Belyi degree.

Question 2.7. What can be said about the behavior of the function

Belyi Degree W
�

connected, smooth, projective
curves defined over Q

�

�! ZC‹ (2.3.2)

For example, how close is the bound on the Belyi degree given by Belyi’s second
proof to the best possible?

We know of only one lower bound for the Belyi degree, which was kindly
communicated to us by Zapponi. To state his result, we need the notions of field
of moduli and semistable reduction. Suppose X is a curve defined over Q. The
Galois group Gal.Q=Q/ acts on the set of isomorphism classes of curves defined
over Q, and the stabilizer of the isomorphism class ofX in Gal.Q=Q/ is of the form
Gal.Q=K/ for some number field K . The field of moduli of X is defined to be K .
The field of moduli may also be described as being the intersection of all fields of
definition forX . The field of moduli of other geometric objects defined over Q, such
as a cover f W X �! Y of varieties, is defined analogously. The field of moduli is
not always a field of definition, but in many cases it is, and understanding precisely
when it is is a rather subtle problem, see [DD97].

Suppose X is a curve with field of moduli a number field K . Let p be a prime of
K and let OKp denote the ring of integers of the completion of K at p. We say that
X has good (resp. semistable) reduction at p, if X admits a model over Spec OKp

whose special fiber is smooth (resp. a model whose special fiber has at worst nodal
singularities and finitely many automorphisms). If X does not have good reduction
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at p, then we say X has bad reduction at p. We say X has good (resp. semistable)
reduction over a prime p 2 Z if X has good (resp. semistable) reduction at all
primes of K lying above p. Finally, there is the question of how the reduction type
of X changes as the base field varies. We shall use only that good and semistable
reduction do not change if one passes to a larger field.4

Again these definitions extend to covers. However it is important to note that,
for example, X may have good reduction at a prime p of a field F , while a cover
consisting of X and a map from X to P1, may have bad reduction at p.

Theorem 2.8 (Zapponi, [Zap08a]). Let X be a curve defined over Q, with field of
moduliK . Then the Belyi degree ofX is greater or equal to the largest prime p 2 Z
over which X has semistable bad reduction.

Note added in Proof: This result can now be found in a preprint of Zapponi, “On
the Belyi degree(s) of a curve defined over a number field”, available at http://www.
math.jussieu.fr/�zapponi.

The lower bound of Theorem 2.8 cannot be sharp since, for example, there exists
infinitely many number fields F and elliptic curvesE=F withE having everywhere
good reduction over F .

The proof of Theorem 2.8 is a simple application of a theorem of Beckmann
[Bec89] relating the primes of bad reduction of X to the Galois groups of Belyi
maps for X . In turn, Beckmann’s theorem may be obtained as a corollary of
Grothendieck’s theory of the tame fundamental group. For Grothendieck’s theory
of the tame fundamental group, see [Ser92] and [Gro71].

Theorem 2.9 (Beckmann, [Bec89]). Assume .X; '/ is a pair consisting of a curve
X and a Belyi map ' for X . Let M be the field of moduli of the pair .X; '/. Let
G be the Galois group of the Galois closure of the cover ' W X �! P1. For every
prime p 2 Z, if p does not divide jGj, then X has good reduction at primes of M
above p. Moreover p is unramified in M .

We do not give a proof of Beckmann’s Theorem, as that would take us too far
afield.

Proof of Theorem 2.8. Let ' be a Belyi map for X of degree n. Let K (resp. M )
be the field of moduli of X (resp. .X; '/). Then M is a (possibly non-trivial) finite
extension ofK . LetG be as in Theorem 2.9 and let p be a prime ofK , above p 2 Z,
where X has bad semistable reduction. Then X also has bad semistable reduction
at some prime } of M , lying above p. Hence the pair .X; '/ has bad reduction at
}. By Theorem 2.9, p divides jGj. But G ,! Sn, the symmetric group on n letters.
Now jSnj D nŠ, so jGjjnŠ. Hence pjnŠ, so p � n. ut

4The deep result here, which we do not use, is the Semistable Reduction Theorem of Deligne-
Mumford, which says that every curve acquires semistable reduction over some finite extension
of the base field (see [DM69]). However this result is the reason why in Theorem 2.8 we say
“semistable bad reduction” rather than simply “bad reduction”, which would have been a stronger
statement.

http://www.math.jussieu.fr/~zapponi.
http://www.math.jussieu.fr/~zapponi.
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3 The abc Polynomial Theorem

Let K be an algebraically closed field of characteristic 0. Let f 2 KŒx�. Then the
radical R.f / of f is the product of the distinct irreducible factors of f . In other
words

R.f / D
Y

pjf
p: (3.0.3)

We denote the degree of the radical of f by r.f /, i.e., degR.f / D r.f /. The
height h.f1; : : : ; fn/ of a finite set ff1; : : : ; fng � KŒx� of polynomials is the
maximum of the degrees:

h.f1; : : : ; fn/ D maxfdegf1; : : : ; degfng: (3.0.4)

The abc Polynomial Theorem states:5

Theorem 3.1 (Stothers [Sto81]-Mason [Mas84]). Suppose e; f; g 2 KŒx� are not
all constant, pairwise relatively prime and satisfy

e C f D g: (3.0.5)

Then
h.e; f; g/ � r.efg/ � 1: (3.0.6)

Theorem 3.2. Equality holds in (3.0.6) if and only if f=g is a Belyi map for P1 and
.f=g/.1/ 2 f0; 1;1g.
Proof. Set h D h.e; f; g/ and ' D f=g. Then deg' D h. Further, we may assume
without loss of generality that deg e D degf D h. There are then two cases,
degg < h or degg D h, which correspond to whether '.1/ D 1 or not. Our
assumptions on the degrees of e; f; g imply that in both cases '.1/ ¤ 0; 1. By the
Riemann–Hurwitz formula applied to ',

� 2 D �2hC
X

x2P1

.e'.x/ � 1/: (3.0.7)

The crucial observation now is that the branching behavior ' over f0; 1;1g is tied
to the radical of efg.

We break up the ramification divisor

R D
X

x2P1

.e'.x/ � 1/ (3.0.8)

5So called because it is the function field analogue which motivated the famous ‘abc Conjecture’
of Masser and Oesterlé (see [Oes89]).
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as R D Rf0;1;1g CRP1�f0;1;1g with

Rf0;1;1g D
X

x2'�1.f0;1;1g/
.e'.x/ � 1/ (3.0.9)

and

RP1�f0;1;1g D
X

x2'�1.P1�f0;1;1g/
.e'.x/� 1/: (3.0.10)

Now we focus on Rf0;1;1g. We have

X

x2'�1.0/
.e'.x/ � 1/ D

X

x2'�1.0/
e'.x/ �

X

x2'�1.0/
1 (3.0.11)

D h � j'�1.0/j D h� r.f /:

Similarly, since '.x/ D 1 if and only if .g � f /.x/ D e.x/ D 0, we have

X

x2'�1.1/
.e'.x/ � 1/ D h � r.e/: (3.0.12)

If '.x/ D 1, then either x D 1 or g.x/ D 0. If degg D h, then '.1/ ¤ 1, so
as above

X

x2'�1.1/

.e'.x/ � 1/ D h � r.g/: (3.0.13)

On the other hand, if degg < h, then '.1/ D1, so we have

X

x2'�1.1/

.e'.x/ � 1/ D h � .r.g/C 1/: (3.0.14)

The extra contribution of 1 this time comes from x D 1, namely in this case
j'�1.1/j D r.g/C 1.

Putting together these calculations, we see that

Rf0;1;1g D
�

3h� r.e/ � r.f /� r.g/ if degg D h
3h� r.e/ � r.f /� r.g/ � 1 if degg < h

(3.0.15)

By (3.0.7), 2h� 2DR and RP1�f0;1;1g � 0, so 2h� 2�Rf0;1;1g. Hence (3.0.15)
implies that 2h� 2 � 3h� r.e/ � r.f /� r.g/ � 1, so

h � r.e/C r.f /C r.g/ � 1:
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Since e; f; g are pairwise relatively prime, r.efg/ D r.e/ C r.f / C r.g/.
This proves (3.0.6). We also see that equality holds in (3.0.6) if and only if degg < h
and RP1�f0;1;1g D 0. Now degg < h means that '.1/ D 1 and RP1�f0;1;1g D 0

means that ' is a Belyi map. This proves Theorem 3.2. ut

4 Generalizations

In this section, we present some theorems and conjectures which may be viewed
as generalizations of Belyi’s Theorem in several different directions. In �4.1, two
analogues of Belyi’s Theorem in characteristic p are given, which we call “The wild
p-Belyi Theorem” (Theorem 4.1 ) and “The tame p-Belyi Theorem” (Theorem 4.6).
It is interesting to note that, regarding the tame p-Belyi question, it is only a
theorem for p > 2, while it remains an open problem for p D 2. Then �4.2 states
Question 4.12, which is concerned with generalizing Belyi’s Theorem to function
fields. Finally, �4.3 considers Belyi’s Theorem in the framework of moduli spaces
of pointed curves. This is used to explain Braungardt’s Question (Question 4.17),
which offers a generalization of Belyi’s Theorem to higher dimensions.

4.1 Characteristic p

Let k be a (not necessarily finitely generated) perfect field of characteristic p > 0

and let ' W C1 �! C2 be a map of smooth projective curves defined over k. Recall
that there is the dichotomy of tame and wild ramification in characteristic p. Given
P 2 C1, the map ' is tamely ramified (resp.wildly ramified) at P if p 6 je'.P / (resp.
pje'.P /). For a divisor D on a curve C , the reduced divisor associated to D (resp.
the support of D) will be denoted by Dred (resp. supp.D/). We let D D D0 �D1
be the unique decomposition ofD as a difference of disjoint effective divisors.

We now state the first of two characteristic p analogues of Belyi’s Theorem,
which we call “The Wild p-Belyi Theorem”. We give two proofs of this result,
following [Kat88], [Zap08b]. See also [Kat88] for applications of the “Wild p-Belyi
Theorem” to the Langlands correspondence for function fields.

Theorem 4.1 (Wildp-Belyi, [Kat88], [Zap08b]). LetC=k be a connected, smooth,
projective curve. Then there exists a map

' W C �! P1 with B.'/ D f1g: (4.1.1)

In other words, C is birational to an étale cover of the affine line A1.

In case a map ' satisfies (4.1.1), we call ' a wild p-Belyi map of C . The tame
fundamental group of the affine line A1 is trivial. Hence, if C is not isomorphic to
P1, then any wild p-Belyi map of C is wildly ramified over1, whence the name
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“wild p-Belyi map”. On the other hand, this is one of the major differences between
characteristic 0 and characteristic p –the full étale fundamental group of the affine
line is a huge, non-finitely generated group. This may seem counter-intuitive at least
at a superficial level, given our geometric intuition concerning A1.C/. The Wild
p-Belyi Theorem is one manifestation of the fact that, indeed, there are “many” étale
covers of the affine line in characteristicp. The study of the (full) fundamental group
of the affine line forms an interesting subject in its own right. One of the deepest
conjectures in this area was Abhyankar’s Conjecture [Abh57], which was proved by
Raynaud [Ray94] using many sophisticated techniques from algebraic geometry.
For an introduction to the basic problems regarding � ét

1 .A
1/ and Abhyankar’s

Conjecture in particular, see the Bourbaki exposé of Serre [Ser92].6

Proof 1 (after [Kat88]). The idea here is to use that, given a finite subgroupG of the
Nk-points of the additive group scheme Ga, the natural action ofG on A1 satisfies:

1. A1=G Š A1.
2. The projection map � W A1 �! A1=G is a finite étale cover.
3. Over Nk, when G is viewed as a subset of A1, the restriction of � to the

complement A1 �G,

�j.A1�G/ W .A1 �G/ �! Gm;

is a finite étale cover of Gm.

By the Riemann-Roch Theorem, there exists a non-constant function f 2 K.C/
which has only simple poles.7 Now f defines a map f W C �! P1 which is
unramified above1 by construction. Hence f is étale over A1 � B.f /. Let G be
the subgroup of Ga. Nk/ generated by B.f /. Now we use that char.k/ D p > 0, to
attain that G is finite, since G D spanFpfB.f /g. It follows from (1-3) above that

the composite .� ı f / W C �! P1 is étale over Gm. The following lemma allows
us to conclude the proof.

Lemma 4.2. The map
� W Gm �! A1

� W x 7�! .xp C 1
x
/

(4.1.2)

is a finite étale cover of the affine line by the multiplicative group scheme Gm.

Proof. The lemma follows from a simple computation that is left to the reader. ut
Indeed, .� ı � ı f / W C �! P1 is étale over A1, which proves Theorem 4.1. ut

6The only downside to [Ser92] is that it was written before Raynaud [Ray94] proved Abhyankar’s
conjecture, so it is a bit dated and does not include the most recent developments in the field.
7If n � gC 1 and P1; : : : ; Pn are distinct points on C , then the divisor D D P1 C � � �Pn satisfies
`.D/ D degD � g C 1C `.K �D/ � degD � g C 1 � 2 by Riemann–Roch, so one can find
the desired function in L.D/ D H0.C;OC .D//.



Unifying themes suggested by Belyi’s Theorem 197

Proof 2 (after [Zap08b]). Zapponi obtains Theorem 4.1 as a consequence of a more
general result relating the existence of maps to P1 with restricted ramification to the
existence of exact rational differentials with restricted divisor type. Zapponi’s result
is the following:

Theorem 4.3. Let S be a non-empty finite subset of C . Then there exists a finite
étale map .C �S/ �! A1 if and only if there exists an exact rational differential !
whose divisor’s support is contained in S .

One source of motivation for such a connection to exist is the following simple
fact.
Lemma 4.4. SupposeC is a connected, smooth, projective curve and f 2 K.C/�
K.C/p is a rational function that is not a p-th power. Then the ramification divisor
R.f / of the map f W ' W C �! P1 defined by f is related to the divisor of the
differential df by

.df / D R.f / � R.f /red: (4.1.3)

Theorem 4.1 follows immediately from Theorem 4.3. Indeed, let f 2 K.C/ be a
rational function that is not a pth power, i.e., f 62 K.C/p. Put ! D df and let S be
the support of !. By construction! is a non-zero exact differential whose support is
contained in S . By Theorem 4.3, there exists a finite étale mape' W .X �S/ �! A1.
Nowe' extends to a map ' satisfying (4.1.1).

To complete Zapponi’s proof of Theorem 4.1, it remains to prove Theorem 4.3.
Following Zapponi, we first prove a general lemma about exact differentials on
curves and then use the lemma to finish off the proof of Theorem 4.3.

Lemma 4.5. Let ! 2 ˝1
C be a non-zero exact rational differential. Then for all

P 2 C there exists a function g 2 K.C/, satisfying dg D !, whose set of poles is
contained in the union of fP g and the set of poles of !.

Proof. Let T be the union of fP g and the set of poles of !. Since ! is exact and
non-zero, there exists g0 2 K.C/ �K.C/p with dg0 D !. The argument is now to
show, by induction on the degree of the part of .g0/1 disjoint from T , that one can
modify g0 by h 2 K.C/p so that g0 C h satisfies the theorem. Note that char.k/ D
char.K.C // D p implies dh D 0 for all h 2 K.C/p .

Let Z be the set of poles of g0. If Z � T , there is nothing to prove. So assume
there exists Q 2 Z � T . Put n D �ordQ.g0/, so n 2 ZC. Now n is divisible by
p, since otherwise ! would have a pole at Q, contrary to Q 62 T . Write n D pm,
withm 2 ZC and consider the divisorsD D .2g� 1/P CmQ andD�Q. BothD
and D �Q are non-special, since deg.D �Q/ D Œ..2g � 1/Cm/� 1� > 2g � 2.
That is `.�C � D/ D `.�C � .D � Q// D 0, with �C the canonical class of C .
Applying the Riemann–Roch Theorem to D and D �Q and comparing the results
yields `.D/� `.D�Q/ D 1. Hence there exists u 2 L.D/�L.D�Q/. Therefore
there is a non-zero constant c 2 Nk� such that �ordQ.g0 � cup/ < n. Put h0 D cup

and g1 D g0 � h0. Then h0 2 K.C/p and dg1 D dg0 D !. Furthermore,the degree
of the part of .g1/1 disjoint from T is strictly smaller than the degree of the part of
.g0/1 disjoint from T . By induction, there exist h and g as desired. ut
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Proof of Theorem 4.3. .(H/: Suppose f0 2 K.C/ �K.C/p and supp.df0/ � S .
Put ! D df0. Choose P 2 S and let T be as in the proof of Lemma 4.5. By
Lemma 4.5, there exists fP 2 K.C/�K.C/p such that dfP D ! and fP is regular
outside T . We now modify fP to get a primitive of ! which has a pole at every
element of S (fP may be regular at some point(s) of S ). The map to P1 determined
by this primitive will be the map we are looking for.

Let m be a positive integer and consider the divisor D1 D mP CPQ2.S�P/ Q.
As long as m � 2g C 1, the Riemann–Roch Theorem guarantees that there exists
a function g such that .g/ D D2 � D1, with D2 an effective divisor. For c 2 Nk�,
consider the functions hc D fP C cgp . For all Q 2 S , gp has a pole at Q, so
there is at most one value of c for which hc is regular at Q. Since S is finite and Nk�
is infinite, there exists c 2 Nk� such that hc has a pole at every element of S . Also,
dhc D !. Now think of hc as a map hc W C �! P1. By construction, hc.S/ D f1g,
so hc is étale over A1 by Lemma 4.4.
.H)/: Conversely, assume f W .X � S/ �! A1 is finite étale. Let t be the

usual uniformizing parameter on A1, so that .t/ D .0/ � .1/ on P1. Let ! be the
differential of the pull back of t from P1 to X by means of f , i.e., ! D d.f �.t//.
By construction ! is exact. Since differentiation commutes with pull backs, ! D
f �.dt/. Hence supp.!/ � f �.supp.dt// D f �.f1g/. So ! satisfies the properties
required by Theorem 4.3. ut

Having proved Theorem 4.3, the proof of Theorem 4.1 is now complete. ut
We now come to the tame p-Belyi Theorem.

Theorem 4.6 (Tame p-Belyi, [Sai97]). Let p be an odd prime. Let X be con-
nected, smooth, projective curve defined over Fp. Then there exists a tamely ramified
morphism

' W X �! P1 (4.1.4)

with
B.'/ � f0; 1;1g: (4.1.5)

If ' is a tamely ramified morphism that satisfies (4.1.4) and (4.1.5), we call ' a
tame p-Belyi map of C .

Saidi’s proof amounts to the observation that Theorem 4.6 is a corollary of
the following lemma, which was known to F. Klein and A. Hurwitz, but was first
rigorously proved in all characteristics different from two by Fulton [Ful69].

Lemma 4.7 (Fulton [Ful69], p.569, Prop. 8.1). Let p be an odd prime and let k
be an algebraically closed field of characteristic p. Then every connected, smooth,
projective curve X over k admits a simply branched morphism to P1, i.e., there
exists

 W X �! P1 with e .P / D 1 or 2 for all P 2 X: (4.1.6)

Proof of Theorem 4.6. Take k D Fp. Let  W X �! P1 be a simply branched
cover, as provided by Lemma 4.7. Since p is odd,  is tamely ramified. Also, B. /



Unifying themes suggested by Belyi’s Theorem 199

is a finite subset of P1.Fp/, so there exists an integer m such that B. / � Fpm .
Consider the function f given by

f W P1 �! P1

f W x 7�! xp
m�1;

and form the composite ' D f ı  . Now f is totally ramified at 0 above 0, at
1 above1 and unramified everywhere else. Since ef .0/ D ef .1/ D degf D
pm � 1, the map f is tame. Also, f .b/ D 1 for all b 2 B . By Lemma 2.1, '
satisfies (4.1.5). ut

The above proof is not applicable in the case p D 2, but the result should still
hold for p D 2.

Conjecture 4.8 (Tame 2-Belyi). Theorem 4.6 is also true for p D 2.

There is only a partial result known in the direction of Conjecture 4.8 (see
Theorem 4.10 below). It has been asked whether the proof of Theorem 4.6 could
be modified so as to work in characteristic two by using triple ramification instead
of double (simple) ramification. More precisely:

Question 4.9. Suppose k is an algebraically closed field of characteristic different
from three. Does every curve X over k admit a map

	 W X �! P1 with e	 .P / D 1 or 3 for all P 2 X ? (4.1.7)

Note that, in case char.k/ D 2, if a map 	 satisfying (4.1.7) exists for a curveX ,
then 	 is tamely ramified, and so, by the proof of Theorem 4.6, Conjecture 4.8 holds
for X . Thus a positive answer to Question 4.9 would imply Conjecture 4.8.

In this direction, Schroer [Sch03] has given a lower bound for the dimension of
the locus, in the moduli space Mg of curves of genus g, of those curves admitting
a map 	 as in (4.1.7).

Theorem 4.10 (Schroer [Sch03]). Let k be an algebraically closed field of char-
acteristic¤ 3. Define Tri.Mg/ to be the closure of the locus of curves X that admit
a map 	 as in (4.1.7). Then,

1. dim Tri.M1;1/ D 1.
2. dim Tri.Mg/ � 2g � 3 for g � 2.

As a final piece of evidence to support Question 4.9, we mention the following
result regarding the case k D C.

Theorem 4.11 (Artebani-Pirola, [AP04], p.339, Th. 2 ). The Locus Tri.Mg/.C/
is a Zariski open subset of Mg.C/

The proof of Artebani–Pirola uses complex analysis, so it is not clear whether
their method can be modified to prove the same statement for any field k, char k¤ 3.
Still, we believe that Theorem 4.11 shows at least that Question 4.9 is reasonable.
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4.2 The Function Field Case

In this section, we search for a Belyi-type theorem for curves defined over Q.t/.
Let X be a curve defined over Q.t/. By the converse to Belyi’s Theorem, if X is
generic, then there is no map ' W X ! P1 with B.'/ � f0; 1;1g. By Belyi’s
Theorem, there therefore cannot even be such a map with B.'/ � Q. However one
can ask:

Question 4.12. For every curve X defined over Q.t/, does there exist a map

' W X ! P1 with jB.'/j D 4‹ (4.2.1)

For a more general question along the lines of Question 4.12, see [Par02]8.
We illustrate the nature of this question with two examples, one for which the

question can be seen to have a positive answer, the other for which the answer is
unknown.

Example 4.13. Elliptic curves over Q.t/.

Let E=Q.t/ be an elliptic curve. Then the hyperelliptic degree 2 map E ! P1

(given, for instance, by quotient by the hyperelliptic involution) is branched over
2g.E/C 2 D 4 points so the answer to Question 4.12 in this case is yes.

Example 4.14. Genus two curves over Q.t/.

Let C=Q.t/ be a genus 2 curve, which is necessarily hyperelliptic. In this case I
do not know the answer to Question 4.12. We can consider again the hyperelliptic
degree 2 map h W C ! P1. This time jB.h/j D 2g.C /C 2 D 6. Taking the proof
of Belyi’s Theorem as our guide, we may ask:

Question 4.15. Does there exist g W P1 ! P1 such that jB.g ı h/j D 4? That is, is
there a way of reducing the number of branch points from 6 to 4 in this case?

4.3 Higher Dimensions

The purpose of this section is to explain a question of V. Braungardt [Bra04]
(see Question 4.17), which suggests a generalization of Belyi’s theorem to higher
dimensional varieties.9 The origin of Braungardt’s question is the observation that
the space P1 � f0; 1;1g appearing in Belyi’s theorem is a moduli space of curves:

8We thank the referee for bringing this reference to our attention.
9A generalization of Belyi’s theorem for surfaces in a different direction than the one considered
here can be found in [Par02]. Since we believe the generalization in [Par02] is less natural and of
a more technical nature, we have chosen not to state it here.
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It is the moduli space of genus 0 curves with 4 ordered marked points, since any 3
points in P1 can be mapped to f0; 1;1g by a fractional linear transformation, unique
up to permutation of f0; 1;1g.

Thus we open this section with a brief discussion of moduli spaces of curves
with marked points. Then we state Braungardt’s Question. This is followed by an
explanation of partial results in low dimension, some remarks on high dimension
and a note on fundamental groups of hypersurface complements.

Moduli spaces of curves. Let Mg;n (resp. Mg;Œn�) denote the moduli space of
genus g curves with n ordered marked points (resp.with a subset of cardinality n).
The moduli problem describing Mg;n is not representable in the category of
schemes when n is sufficiently small compared to g. Moreover, the moduli problem
describingMg;Œn� is never represented by a scheme. When the moduli problem is not
representable, there does not exist a fine moduli space in the category of schemes.
The principal obstruction to the representability of a moduli problem is (lack of)
rigidity. This means that if the objects being classified by the moduli problem
have non-trivial automorphisms, then the moduli problem is not representable in
the category of schemes. For all values of g and n other than the three pairs
.g D 1; n D 0/, .g D 0; n D 1/, .g D 0; n D 2/, there does exist a scheme
which is a coarse moduli space for genus g curves with n marked points.

However, our interest in the moduli spaces of curves lies with their covers and
fundamental groups. For this aspect of moduli spaces of curves it is essential to
work with fine moduli, since passing to a coarse moduli space often annihilates
much of the fundamental group. For this reason we find ourselves forced to view
Mg;n (resp. Mg;Œn�) as a fine moduli algebraic stack and to consider �1.Mg;n/ as
the stack fundamental group.

The theory of stacks, moduli spaces and their representability in various cat-
egories is very deep and sophisticated. Since we want to keep the exposition as
self-contained as possible, while at the same time not veering off course to discuss
unnecessary technical issues, we proceed as follows. We recall what it means for
a map of algebraic stacks to be étale in terms of schemes, which suffices, as far
as stacks are concerned, for understanding this paper. Then we illustrate some of
the points made above with an example: The moduli space of elliptic curves M1;1,
which will also reappear in �5. For more on moduli problems we refer to the three
classic works [KM1], [DR73] and [DM69].

A map ' W X �! Y of algebraic stacks is étale if, for every pair .S; ˛/ consisting
of a scheme S and a map ˛ W S �! Y , the pull-back S �Y X of X to S is a scheme:

S �Y X �����! X
?
?
y

?
?
y'

S
˛�����! Y

: (4.3.1)

For example, one can check that the map Mg;n �!Mg;Œn�, given by forgetting
the ordering, is étale as a map of algebraic stacks. For this reason, we will for the
most part restrict attention to Mg;Œn�, rather than Mg;n from this point on.
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Example 4.16. The Moduli space of Elliptic Curves. In terms of the above, the
moduli space of elliptic curves is the moduli space M1;1 of genus 1 curves with
1 marked point (the 1 marked point being the origin, i.e., the identity for the
group law). It is the quintessential example of a moduli space, in many ways the
raison d’etre of moduli theory. Every elliptic curve has a non-trivial automorphism,
namely the map called �1 which sends an element x to �x. The existence of non-
trivial automorphisms of elliptic curves shows that the moduli problem for elliptic
curves is not rigid and hence not representable: There does not exist a fine moduli
scheme for elliptic curves.

There are two ways to recover a fine moduli space. One way is to consider the
moduli space of elliptic curves as a stack, as was mentioned in the general paragraph
above. The other way is to impose level structure. This means that one modifies the
moduli problem to that of classifying pairs .E;L/whereE is an elliptic curve andL
is some additional structure arising from E, such as a basis of the N -torsion points
of E for some positive integerN . Adding level structure to the moduli problem is a
way of “rigidifying” the moduli problem (eliminating non-trivial automorphisms),
which is then often sufficient for proving that the modified moduli problem is
representable and thus admits a fine moduli scheme.

For example, if instead of classifying elliptic curves, we aim to classify pairs
.E;L/, with L a basis of the N -torsion of E, then for N � 3 there exists a fine
moduli scheme for this moduli problem: It is the modular curve denoted Y.N /.

At the same time, there does exist a coarse moduli scheme for elliptic curves,
called the j -line. The j -line is isomorphic to the affine line A1 by means of the map
j which sends an isomorphism class of elliptic curves to its j -invariant. Over the
complex numbers, the coarse moduli scheme of elliptic curves is also isomorphic to
SL.2;Z/ nH and the j line can be seen as giving a complex-analytic isomorphism
of (open) Riemann surfaces

j W SL.2;Z/ nH Q�!C: (4.3.2)

Since the coarse moduli space of elliptic curves is isomorphic to A1, it is simply
connected. By means of (4.3.2), we see that SL.2;Z/ nH is also simply connected.
The (topological) fundamental group of SL.2;Z/ n H is not SL.2;Z/ because the
action of SL.2;Z/ on the upper half-plane H is not free. However if we consider
SL.2;Z/ n H as a stack over C, or as an orbifold, then the stack or orbifold
fundamental group of SL.2;Z/ nH is SL.2;Z/ (cf. [BN06]).

Braungardt’s Question. The main question of this section is:

Question 4.17 (Braungardt, [Bra04] ). Is every connected, quasi-projective vari-
ety X that is defined over Q birational to a finite étale cover of some moduli space
of curves Mg;Œn�?

There are only a few limited partial results regarding Braungardt’s Question,
which we now describe.

Dimension 1. Belyi’s theorem gives a complete affirmative answer in the case
that X is a curve. Indeed, every connected, quasi-projective curve is birational to
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a connected, smooth projective curve and by Belyi’s Theorem every connected
smooth projective curve defined over Q is birational to a finite unramified cover
of P1 � f0; 1;1g ŠM0;4.

Dimension 2. The moduli spaces Mg;Œn� of dimension two are M0;Œ5� and M1;Œ2�.
There is an étale cover of algebraic stacks

M1;Œ2�

ˇ�!M0;Œ5� (4.3.3)

which we now describe. Let .EI fq1; q2g/ represent a point 
 2 M1;Œ2�. Then, up
to fractional linear transformation, there is a unique degree 2 map 'E W E �! P1

satisfying 'E.q1/ D 'E.q2/. We define ˇ.
/ 2M0;Œ5� to be the point represented by
.P1I fr1; : : : ; r5g/, where B.'/ D fr1; : : : ; r4g and r5 D '.q1/ D '.q2/. Therefore
in dimension 2 Braungardt’s question is equivalent to: Is every connected, smooth
projective surface birational to a finite étale cover of M0;Œ5�?

Here is a concrete description of M0;5 as a subvariety of P1 � P1. Let

S D Œ.P1 � f0; 1;1g/� .P1 � f0; 1;1g/���; (4.3.4)

where � denotes the diagonal of the product. Then M0;5 Š S . A point .a; b/ 2 S
corresponds to the 5-pointed projective line .P1I 0; 1;1; a; b/.

An embedding M0;5 ,! P2 is given explicitly in the last paragraph of this
section.

Summary of results of Braungardt on his question for surfaces. Braungardt has
shown that his question has a positive answer for some special classes of surfaces.

Theorem 4.18 (Braungardt, [Bra04]). 1. All abelian surfaces10 defined over Q
are birational to finite et́ale covers of M0;Œ5�.

2. All ruled surfaces, all fiber bundles of fiber genus � 2 and all elliptic fibrations
defined over Q are birational to finite étale covers of M0;5.

3. If there is a positive answer to Question 4.12, then every smooth irreducible
surface fibered over a curve with connected fibers is birational to a finite étale
cover of M0;5.

From the classification of surfaces, we see that the surfaces not treated in
Theorem 4.18 are the non-elliptic K3 surfaces and surfaces of general type. To the
best of our knowledge, Braungardt’s question is open in these cases.

We only give a proof of the assertion about abelian surfaces. However, note that
the proofs of the other parts of Theorem 4.18 are similar in that they use the way the

10In this paper abelian surface will always mean algebraic abelian surface.
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given surface is related to some curve to reduce to Belyi’s theorem for that curve.
Indeed, observe that the surfaces covered by Braungardt are exactly those whose
geometry is controlled by some underlying curve.

Proof of Theorem 4.18 (1). The essential ingredient in the proof is a well-known
dichotomy for abelian surfaces: Every principally polarized abelian surface is either
a product of two elliptic curves or is the Jacobian of a genus 2 curve. In fact, every
principally polarized abelian surface is the Jacobian of its theta divisor. Furthermore,
every abelian surface over an algebraically closed field of characteristic 0 is
isogenous to an abelian surface that admits a principal polarization. One can also see
that the relevant dimensions happen to coincide. The dimension of Ag , the moduli
space of abelian varieties of dimension g is g.g C 1/=2. On the other hand, for
g � 2, we have dimMg D 3g � 3. So dimAg D dimMg if and only if g D 2

or g D 3. The comparison of dimensions also shows why this proof for abelian
surfaces cannot generalize to abelian varieties of dimension greater than 3.

Let A be an abelian surface defined over Q. By composing with an isogeny
(which is finite and everywhere unramified) we may assume, without loss of
generality, that A admits a principal polarization.

Case I: A is a product E1 � E2 of two elliptic curves. Since A is defined over Q
also E1 and E2 are defined over Q. Applying Belyi’s Theorem to E1 and E2 gives
Belyi maps ˛ W E1 ! P1 and ˇ W E2 ! P1. Putting together the maps ˛, ˇ gives a
map  W A! P1 � P1 given by

 W A ˛�ˇ�! P1 � P1: (4.3.5)

Now, since ˛ and ˇ are Belyi maps, their branch loci are contained in f0; 1;1g.
Hence  restricts to a finite unramified cover  W  �1.S/ ! S , where S is the
image of the embedding of M0;5 into the quadric surface P1 �P1 defined in (4.3.4).
Since the complement of S in P1 � P1 is a proper closed subvariety (it is a union of
lines) so is the complement of  �1.S/ in A. Hence  �1.S/ is an open subset of A,
so  �1.S/ is birational to A.

Case II: A is the Jacobian of some genus 2 curveC . The Jacobian ofC is birational
to the symmetric square Sym2.C / of C . Since A is defined over Q, C is defined
over Q too. Let ' W C ! P1 be a Belyi map for C . By functoriality of symmetric
powers, there is an induced map Sym2.'/ W Sym2.C / ! Sym2.P1/, whose branch
locus is contained in Sym2.f0; 1;1g/. Hence the map Sym2.'/ is unramified over
the quotient U of M0;5 by the transposition that interchanges the fourth and fifth
marked points. Now U is a cover of M0;Œ5�, so A is birational to a finite unramified
covering of M0;Œ5�. ut
Some remarks on dimension at least six. Given the content of Braungardt’s
Question, it will be convenient to have the following notation. Given a variety V ,
let buc.V / denote the set of all varieties W such that W is birational to a finite,
unramified cover of V . If V and W are two varieties satisfying both V 2 buc.W /
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andW 2 buc.V /, then we will say that V andW are BUC, written also V 	BUC W .
On the other hand, if V andW satisfy both V 62 buc.W / andW 62 buc.V /, then we
will say that V and W are Ibuc,11 or that V is Ibuc with W .

In terms of this notation, Braungardt’s Question may be rephrased as
[

f.g;n/j dimMg;nDkg
buc.Mg;Œn�/ D VARk

Q
, (4.3.6)

where VARk
Q

is the set of varieties of dimension k defined over Q.

Conjecture 4.19. 1. The moduli space M3 of curves of genus 3, is Ibuc with the
other moduli spaces Mg;Œn� of curves of dimension 6, namely M0;Œ9�, M1;Œ6� and
M2;Œ3�.

2. More generally, assume .g1; n1/ and .g2; n2/ are two distinct pairs of nonnegative
integers satisfying 3g1 � 3C n1 D 3g2 � 3C n2. Then Mg1;Œn1� and Mg2;Œn2� are
Ibuc if and only if fg1; g2g 6� f0; 1; 2g.
The “Only if” part of Conjecture 4.19 is true. This can be seen by using the degree

2 hyperelliptic maps to P1 that genus 1 and genus 2 curves admit to construct maps
between the moduli spaces, of the same dimension, of curves of genus 0,1 and 2
with marked points. This was done above explicitly in the dimension 2 case.

The moduli space of curves Mg is of general type for sufficiently large g
[HM82]. On the other hand, the moduli spaces M0;n are rational, since M0;n

embeds into P1 � � � � � P1 (n � 3 copies) as a Zariski open set, via the natural
generalization of (4.3.4), namely

M0;n ,! P1 � � � � � P1

.P1Ip1; : : : ; pn/ 7! .�.p4/; : : : ; �.pn//;
(4.3.7)

where � 2 Aut.P1/ is the unique element satisfying �.p1/ D 0, �.p2/ D 1 and
�.p3/ D 1. This shows that, if g is sufficiently large, M0;n 62 buc.Mg/. We are
not aware of any other results regarding Conjecture 4.19.

As J. Harris pointed out to us, there are several known instances in algebraic
geometry where proving the non-existence of birational maps has proved to be a
daunting task. For example, the general cubic hypersurface in P5 is conjectured to be
not rational, yet it has not been proved that a single such hypersurface is irrational.

Suppose for a moment that the answer to Braungardt’s Question is “yes” and that
Conjecture 4.19 holds true. This assumption has a surprising consequence. Namely,
it would entail that to every variety V defined over Q is attached a discrete invariant,
namely the non-empty finite set

mc.V / D f.g; n/ 2 Z�0 � Z�0jV 2 buc.Mg;Œn�/g: (4.3.8)

If this is indeed the case, then it would be interesting to characterize the invariant
mc.V / independently of moduli spaces of curves.

11“I” for incomparable.
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Fundamental groups of hypersurface complements. Let H be a hypersurface in
a projective space Pm. It is a basic problem to understand the fundamental group
�1.Pm � H/ in terms of the geometry of H . When m D 1, H is a finite set of
points, and it is classical that, as an abstract group �1.P1.C/�H/ is the free group
on jH j � 1 generators. Although the general problem goes back to Zariski, whenm
is greater than one, it remains mysterious. As far as we know, the only general result
about the fundamental group of the complement of a hypersurface in projective
space is the following theorem of Fulton–Deligne in the case m D 2.

Theorem 4.20 (Fulton–Deligne, [Ful80], [Del80]). Let C 2 P2.C/ be a nodal
plane curve, i.e., either C is smooth, or the only singularities of C are nodes (also
known as ordinary double points). Then the fundamental group �1.P2.C/�C/ of the
complement of C in P2.C/ is abelian. More precisely, if the irreducible components
of C have degrees d1; : : : ; dk, then

�1.P2.C/ � C/ Š Z=d1Z � � � � � Z=dkZ: (4.3.9)

Fulton [Ful80] proved that the algebraic fundamental group �alg
1 .P

2.C/�C/ (which
is the profinite completion of the topological �1.P2.C/ � C/) is abelian. Then
Deligne used Fulton’s results to deduce (4.3.9) and also gave an exposition of
Fulton’s work in [Del80].12

The connection between fundamental groups of hypersurface complements and
Braungardt’s question is that in certain cases Mg;n or Mg;Œn� can be realized as
Pm � H , for some hypersurface H . In fact, for M0;n this can be done with m D
n � 3 and H a finite union of hyperplanes. For M0;4, this is the above mentioned
isomorphism M0;4 Š P1 � f0; 1;1g. More generally, one has.

Theorem 4.21. Suppose n � 1. Let S D fp1; : : : ; pnC2g be a collection of nC 2
points in general position in Pn. Let H be the union of the

�
nC2
2

�

hyperplanes
spanned by subsets of S of cardinality n. Then

M0;nC3 Š Pn �H: (4.3.10)

In particular, setting n D 2 gives:

Corollary 4.22. M0;5 is isomorphic to the complement, in P2, of any 6 lines
through 4 points, no 3 of which are collinear.

In view of Corollary 4.22, we see that an affirmative answer to Braungardt’s
question in dimension 2 would not contradict the Fulton–Deligne Theorem: The
union of 6 lines through 4 points in general position is not a nodal curve; its singular
locus consists of 4 ordinary triple points and 3 ordinary double points.

12As is explained in [Ful80] and [Del80], Zariski gave a proof of Theorem 4.20, but it was
incomplete because it relied on a flawed argument of Severi.
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Proof of Theorem 4.21. Let K be the hyperplane in Pn spanned by p1; : : : ; pn
and let L be the line spanned by pnC1 and pnC2. Since S is in general position
K intersects L in a point; call this point z. Now let P 2 Pn � H . We will
associate to P a sequence '.P / D .'1.P /; : : : ; 'n.P // of n distinct points lying on
L � fpnC1; pnC2; zg in such a way that the map

ˆ W Pn �H �!M0;nC3
P 7�! .LIpnC1; pnC2; z; '1.P /; : : : ; 'n.P //

(4.3.11)

is an isomorphism.
To define 'i.P /, consider the set Si .P / D .S � fpig/ [ fP g. Since S is in

general position and P 62 H , the set Si .P / spans a hyperplaneKi.P / in Pn. Using
again that P 62 H , it follows that Ki.P / intersects L in a point and that that point
is distinct from pnC1, pnC2 and z. Set 'i.P / to be the unique point of intersection
of Ki.P / and L.

Now it is straightforward to check that 'i .P / ¤ 'j .P / for all i ¤ j , so that ˆ
is well defined, and also that ˆ is a bijection.

If 'i .P / D 'j .P / and i ¤ j , then 'i.P / 2 Ki.P / \Kj .P /, so .Si .P / � pj /
[ 'i.P / D .Sj .P / � pi/ [ 'j .P /. This yields an equality of hyperplanes
Ki.P / D span.Si .P / � pj / [ 'i .P / D span.Sj .P / � pi / [ 'j .P / D
Kj .P /. But Ki.P / D Kj .P / implies K D Ki.P / D Kj .P /, so P 2 K ,
contradiction.

To see thatˆ is injective, note that for all P 2 Pn�H , the n hyperplanesKi.P /,
1 � i � n, are in general position, so they intersect in a single point, butP 2 Ki.P /

for all i , so \niD1Ki.P / D fP g. Thus '.P / D '.Q/ implies fP g D \niD1Ki .P / D
\niD1Ki.Q/ D fQg, so P D Q. Finally, if .y1; : : : ; yn/ are n distinct points in
L� fpnC1; pnC2; zg, then the n hyperplanes spanfSi [ yi g, 1 � i � n, intersect in
a point, call it P . By constructionˆ.P / D .LIpnC1; pnC2; z; y1; : : : ; yn/. Henceˆ
is surjective.

It is apparent from the construction of ˆ that both ˆ and ˆ�1 are morphisms, so
that ˆ is in fact an isomorphism.13 ut

5 Modularity of elliptic curves and a question of Khare

In this section we explain a question of Khare ([Kha04]). There are two results that,
when viewed in conjunction, lead naturally to Khare’s question. The first result is
an equivalent formulation of Belyi’s Theorem, while the second is the modularity
of elliptic curves over Q (see Lemma 5.1 and Theorem 5.2 below).

13An alternative proof of Theorem 4.21 can be gotten by using (4.3.7), followed by a Segre
embedding, to embed M0;n into a large projective space. Then one projects onto a suitably chosen
hyperplane. The composite is the desired embedding. We leave the details to the reader.
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5.1 Subgroups of SL.2; Z/

To state these results we recall some terminology about subgroups of SL.2;Z/. Let
N � 1 be an integer. Consider

.N/ D ker.SL.2;Z/! SL.2;Z=NZ//: (5.1.1)

A subgroup  of SL.2;Z/ is called a congruence subgroup if  contains .N/ for
some N . An important class of congruence subgroups is given by the subgroups
0.N /, which are defined by

0.N / D f
�
a b

c d

�

2 SL.2;Z/jN divides cg: (5.1.2)

A congruence subgroup is necessarily a finite index subgroup. The converse is not
true.14 Given a finite index subgroup  of SL.2;Z/, the congruence hull c of  is
the intersection of all congruence subgroups containing  . The quotient  nH has a
compactification obtained by adding finitely many points to  nH. We will denote
the compactification of  n H by  nH. When  D 0.N /, we follow standard
notation by writing 0.N / nH D Y0.N / and 0.N / nH D Y0.N / D X0.N /:

5.2 Reformulation of Belyi’s theorem as uniformization

The following lemma is an equivalent formulation of Belyi’s theorem in terms
of quotients of the upper half-plane by finite index subgroups of SL.2;Z/. It is
easy to prove and has been observed, in various slighly different forms, by many
people. Nevertheless, this reformulation of Belyi’s theorem plays an important
conceptual role, and therefore should not be underestimated, as explained by Mazur
in [Maz91].

Let

free.4/ D
� �

a b

c d

�

2 .2/
ˇ
ˇ
ˇ
ˇ
a � d � 1 .mod 4/

�

: (5.2.1)

Then free.4/ is a level 4 congruence subgroup, i.e., free.4/ 
 .4/.
Lemma 5.1. Let X be a connected, smooth, projective curve defined over Q. Then
there exists a finite index subgroup  of free.4/ such that

X Š  nH: (5.2.2)

14Indeed, in a sense which can be made precise, “most” finite index subgroups of SL.2;Z/ are not
congruence subgroups. (See [LS03] for a discussion of this topic.)
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Proof. The equivalence of Lemma 5.1 and Belyi’s theorem (Theorem 1.1) is a
simple application of the Galois theory of covering spaces, coupled with the
observation that free.4/ acts freely on H and free.4/ nH Š P1 � f0; 1;1g.

Let us indicate why the latter holds. One has �1 2 .2/, �1 62 free and Œ.2/ W
free.4/� D 2. Hence

.2/ D f˙1g � free.4/: (5.2.3)

The stabilizer of every point in H for the action of .2/ is f˙1g, so (5.2.3) implies
that free acts freely on H. Now it is elementary and classical that .2/ has three
cusps, which can be mapped to f0; 1;1g, so .2/ nH Š P1 � f0; 1;1g. However,
by (5.2.3), the action of .2/ factors through that of free.4/. Therefore free.4/ n
H Š P1�f0; 1;1g. In particular, this observation yields that �1.P1�f0; 1;1g/ Š
free.15

Next, we prove that Belyi’s theorem implies Lemma 5.1. Suppose X is a curve
defined over Q. By Belyi’s theorem there exists a Belyi map ' W X ! P1. This
means that the restriction 'jU W U ! P1 � f0; 1;1g is a finite unramified covering,
where U D '�1.P1 � f0; 1;1g/. Since P1 � f0; 1;1g Š free.4/ nH and �1.P1 �
f0; 1;1g/ Š free, the Galois theory of covering spaces implies that �1.U / is a
finite index subgroup of free.4/ and �1.U /nH Š U . By compactifying we see that

X Š �1.U / nH: (5.2.4)

Conversely, suppose that for some  � free.4/ we have (5.2.2). The inclusion
 ,! free.4/ induces a covering  nH! free.4/ nH, which extends uniquely to
a Belyi map X ! P1. ut

It is interesting to compare Lemma 5.1 with the classical uniformization theorem
that every curve of genus at least two is uniformized by the upper half-plane, in
the sense that such a curve is a quotient of the upper half-plane by some discrete
subgroup of SL.2;R/.

5.3 Modularity of Elliptic Curves over Q

The following theorem is the Shimura–Taniyama–Weil Conjecture, proved by Wiles
[Wil95], Taylor–Wiles [TW95] in the semistable16 case and completed in full
generality by Breuil–Conrad–Diamond–Taylor [BCDT01].

Theorem 5.2 (Modularity of elliptic curves over Q). Suppose E is an elliptic
curve defined over Q. Then there exists an integer N (called the conductor of E)
and a non-constant map

X0.N / �! E: (5.3.1)

15In particular, this argument shows, in a roundabout way, that as an abstract group free.4/ is
isomorphic to the free group on two generators.
16The definition of semistable was given in �2, in the discussion preceding Theorem 2.8.
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5.4 Congruence Defects

Following Khare, we define the congruence defect cd./ of a finite index subgroup
 of free.4/ to be the index of  in its congruence hull i.e., cd./ D Œc W �. The
congruence defect measures how far  is from being a congruence subgroup. The
congruence defect of  is 1 if and only if  is a congruence subgroup. Next, we
define the congruence defect cd.E/ of an elliptic curve E to be

cd.E/ D min

�

cd./

ˇ
ˇ
ˇ
ˇ

 � free.4/ and  nH admits
a non-constant map to E

�

: (5.4.1)

The existence of the congruence defect of an elliptic curve defined over Q follows
from the reformulation of Belyi’s Theorem (Lemma 5.1).

Question 5.3 (Khare). Let K=Q be a number field. Does there exist a constant
cd.K/, the congruence defect ofK , such that for every elliptic curveE=K , we have
cd.E/ � cd.K/? In other words, is the congruence defect bounded independently
of the elliptic curve and solely in terms of the field of definition?

By the modularity of elliptic curves over Q, the congruence defect of Q exists and
is equal to 1. The existence of the congruence defect for any number field different
from Q is not known.

5.5 Modularity over general number fields

Khare’s question 5.3 can be seen as a possible generalization of the modularity of
elliptic curves over Q to arbitrary number fields. There is a more standard conjec-
ture, coming from the Langlands correspondence, which offers a generalization of
the modularity of elliptic curves over Q to modularity, or automorphy, of elliptic
curves over general number fields.

Conjecture 5.4. Let K=Q be a number field and AK the adeles of K . Let E be
an elliptic curve over K . Then there exists a automorphic representation �E of
GL.2;AK/ which “corresponds” to E in the sense that:

1. The L-functions of E and �E are equal: L.E; s/ D L.�E; s/.
2. As ` ranges over primes of Q, the (duals of the) Tate modules T`.E/ form a

compatible system of `-adic Galois representations f�`g attached to �E .
3. For all but finitely many primes p of K , the characteristic polynomial of
�`.Frob p/ is .x � ˛p/.x � ˇp/, where ˛p; ˇp are the Langlands parameters of
the local component .�E/p of �E at p.

For an introduction to the Langlands correspondence between Galois represen-
tations and automorphic representations, see Taylor’s ICM talk [Tay02] and its
expanded version [Tay04]. In particular, all of the terms used in the statement of the
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conjecture above are explained in loc. cit. For the third condition in the conjecture,
see also [Tay94]. Conjecture 5.4 has been proved completely for K D Q and for
totally real fields17 satisfying certain technical conditions, using the techniques of
modularity lifting theorems, as described in loc. cit. When the current machinery
of modularity lifting theorems is perfected—there is reason to believe that this
will happen in the next few years—it should allow one to prove, as a corollary,
Conjecture 5.4 for all CM fields.18 Beyond that, if K is not a CM field, then
Conjecture 5.4 is wide open and appears to require genuinely new ideas.

In the simplest case of K D Q, both the answer, cd.Q/ D 1, to Khare’s
Question and Conjecture 5.4 are equivalent to the modularity of elliptic curves
over Q (Theorem 5.2). However, it is hard to say whether such a relationship
between Khare’s question and Conjecture 5.4 persists over any other number field.
For example, for number fields K where Conjecture 5.4 is known, it is not known
whether this has any implication towards Khare’s question for those K . Let K be
a number field different from Q. It would be extremely interesting if an affirmative
answer to Khare’s question (Question 5.3) could be used to say something about
Conjecture 5.4.

One significant advantage of Khare’s question is that, like (5.3.1), it is geometric,
in that it asserts the existence of maps between algebraic varieties. Conjecture 5.4, at
least as stated above, lacks the same kind of geometric flavor. WhenK is totally real,
there sometimes exists a geometric equivalent of Conjecture 5.4, in analogy with the
K D Q case. When this analogy works, the modular curves of (5.3.1) are replaced
by Shimura curves, which can be thought of as arithmetic quotients of the upper
half-plane by groups of units of quaternion algebras. It would be very interesting to
find a connection, for some totally real fields, between parameterizations of elliptic
curves by Shimura curves on the one hand, and the maps involving modular curves
afforded by a positive answer to Khare’s question.

However, even in the totally real case, one does not always have a parametrization
by a Shimura curve. Moreover, when K is not totally real, there is no known idea
of how to parameterize elliptic curves over K by Shimura varieties. This makes
the possibility of Khare’s question providing such a parametrization over arbitrary
number fields all the more exciting.

6 Some personal remarks

When I met Lang, I was 16 years old and he was 77. He was giving two talks in one
day, on two totally different subjects, with only an hour break in-between, to give the
audience a chance to catch its breath. Never again have I seen anyone captivate and

17Recall that a number field K is totally real if the images of all its complex embeddings are
contained in the real numbers.
18Recall that a CM field is a totally imaginary quadratic extension of a totally real field, the
prototypical example of CM fields being imaginary quadratic fields.
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inspire an audience, generating such electricity in the room, as when Lang lectured
on the ABC Conjecture and the Heat Kernel. I walked out of the talks feeling, “I
want to work on this stuff!”.

The next day Lang made sure that I became his student by showing up at my
home in Los Angeles. He wasted no time and started doing mathematics with me
on the spot. And so it went on day after day, with Lang continuously surprising
me, showing up at my house, calling me early in the morning and late at night to
do mathematics. That was Lang’s approach to mathematics: A unified process of
learning, talking and doing research at the same time.

Since Lang passed away, mathematicians often tell me things like “This problem
is too hard,” and so on. But then I think of Lang. I immediately hear, “Stop fooling
around and get back to work!” As I start working, I also hear Lang saying “It’s
possible, let’s do it, let’s do it right now!”, and then I feel I’ve got to try, as Lang
would have done if he were around.
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Abstract We relate the local `-divisibility of a Heegner point on an elliptic curve
of conductor N, at a prime p which is inert in the imaginary quadratic field, to the
first `-descent on a related abelian variety of level Np.
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1 Introduction

Heegner points on the modular curve X0.N /, and their images on elliptic curve
factors E of the Jacobian, enjoy many remarkable properties. These points are
the moduli of level structures with endomorphisms by the ring of integers of an
imaginary quadratic field K . Their traces to E.K/ have height given by the first
derivative at s D 1 of the L-function of E over K (cf. [GZ86]), and their `-
divisibility in the Mordell–Weil group controls the first `-descent on E over K (cf.
[Gro]).

In this paper, we show how their `-divisibility in the local group E.Kp/, where
p is a prime that is inert in K , often determines a first descent over K on a related
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abelian variety A over Q. The abelian variety A is associated to a modular form
of weight 2 and level Np that is obtained by Ribet’s level-raising theorem from
the modular form of level N associated to E. This descent result is Theorem 2
below. To prove the descent theorem, we compare the local conditions defining
a certain Selmer group for A with those defining the `-Selmer group for E. The
conditions agree at places of K prime to p, and at p the condition changes from
the unramified local condition to a transverse condition. The parity lemma proved
in �5.3 then compares the ranks of the corresponding Selmer groups in terms of the
`-divisibility of P in E.Kp/ and allows us to understand a first descent on A=K
based on Kolyvagin’s determination of the first `-descent on E=K .

Some related work on the Selmer group can be found in [BD99, Prop 1.5] and
[BD05]; a comparison with the value of the L-function at s D 1 is given in [BD99,
Thm 1.3].

2 The main theorem

2.1 Heegner points and Kolyvagin’s descent

Let E be an elliptic curve over Q of conductor N . It is now known that E is
modular (cf. [BCDT01]): the L-function L.s;E/ D P

n�1 ann�s of E over Q is
the Mellin transform of a modular form f .�/ D P

n�1 ane2�in� of weight 2 on
�0.N /. Together with the isogeny theorem of [Fal83], this implies that there is a
dominant morphism

� W X0.N /! E

over Q, where X0.N / is the modular curve classifying elliptic curves with a cyclic
N -isogeny (cf. [BSD75]). We will assume � has minimal degree, and that it maps
the cusp1 to the origin of E. Then � is determined up to sign.

Let K be an imaginary quadratic field where all primes dividingN are split, and
choose a factorization .N / D n � n with gcd.n; n/ D 1 in the ideals of the ring of
integers OK ofK . The isogeny of complex elliptic curves C=OK ! C=n�1 defines
a point x 2 X0.N /.C/. By the theory of complex multiplication, x is defined over
the Hilbert class field H of K . We define

P D TrH=K �.x/ in E.K/:

Then P is defined up to sign by E andK . For these facts and a general introduction
to Heegner points, see [Gro84].

We will assume in the rest of this paper that P has infinite order in E.K/. By the
main result in [GZ86], this condition holds precisely when L0.1; E=K/ 6D 0. Since
E.K/ is finitely generated, P can be divisible only by a finite number of primes `
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in E.K/. Kolyvagin showed that the group E.K/ has rank 1, and he completed the
first `-descent at the primes that do not divide P . More precisely, assume that

(a) ` is an odd prime that does not divide P in E.K/,
(b) the Galois representation

� W Gal.Q=Q/! Aut.EŒ`�.Q//

is surjective.

Recall that the `-Selmer group Sel.E=K; `/ is the subgroup of classes in H1.K;EŒ`�/

consisting of classes c whose local restrictions cv 2 H1.Kv; EŒ`�/ lie in the
images of the local Kummer maps E.Kv/ ! H1.Kv; EŒ`�/. Kolyvagin showed the
following:

Theorem 1. Assume that P has infinite order in E.K/ and that conditions (a) and
(b) hold. Then the `-Selmer group Sel.E=K; `/ has dimension 1 over Z=`Z, and it
is generated by the image of P 2 E.K/ under the global Kummer map E.K/ !
H1.K;EŒ`�/.

A proof is given in [Gro].

2.2 Level-raising and local divisibility of P

Now let p 6D ` be a prime that is inert in K . Then p does not divide N . Under the
conditions of Theorem 1, we will consider the local divisibility of P by ` inE.Kp/.
The following observation motivates the analysis below:

Lemma 1. If the Heegner point P is not divisible by ` in E.Kp/, then

(c) ap � ˙.p C 1/ .mod `/.

More precisely, the sign in c) can be taken to be ��, where � is the sign of the
functional equation of L.s; f /.

Proof. Since P is not divisible by ` in E.Kp/, it has non-zero image in E.Kp/=

`E.Kp/. As p does not divideN`, the latter group is isomorphic to E.Fp2 /=`E.Fp2/,
where Op is the ring of integers ofKp and E=Op is the Néron model. Since E.Fp2 /
is a finite group, the elliptic curve E=Fp2 has a rational `-torsion point. Therefore,
Frob2p acts on EŒ`�.Q/ with eigenvalues .1; p2/. Since the determinant of Frobp on

EŒ`�.Q/ is p, its eigenvalues on EŒ`�.Q/ are .˙1;˙p/. As the trace of Frobp on
EŒ`�.Q/ is equal to ap modulo `, this completes the proof of (c).

The more precise statement about the sign follows from the formula

P D ��P C t;
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where t 2 E.Q/ is a torsion point (cf.[Gro84]): by assumption (b), the order of t is
prime to `, and so the image of P in E.Kp/=`E.Kp/ satisfies Frodp.P / D ��P .
Consequently, E=Fp2 has a rational `-torsion point in the �� eigenspace for Frobp ,
and the eigenvalues of Frobp are �� and ��p. ut

From now on, we assume that condition (c) holds, which is automatic when P is
not divisible by ` inE.Kp/ by the lemma. Conditions (b) and (c) are the hypotheses
of the level-raising Theorem 1 of [R]. This theorem produces a normalized newform
g of level dividing Np that is p-new and that has trivial Nebentypus character. The
theorem also constructs a place 	 of Q over `, and g and 	 have the property that
for all rational primes q ¤ p, one has

aq.f / � aq.g/ .mod 	/: (2.1)

2.3 The Eichler–Shimura construction

Let h 2 S2.�0.M/;C/ be a normalized newform, and let F D Q.h/ be the
subfield of C generated by its Hecke eigenvalues. The Eichler–Shimura construction
associates to h a pair .A; i/, where A is an abelian variety up to isogeny over Q of
dimension ŒF W Q�, and where i W F ! End0.A/ is an isogeny action of F on A
that is defined over Q.

Recall the construction: corresponding to the newform h, one has an algebra
homomorphismQ˝ZT! F , where T is the Hecke algebra at levelM . The object
.A; i/ is HomQ˝T.F; J0.M//, suitably interpreted, where J0.M/ is considered as
an abelian variety over Q up to isogeny with action of Q ˝ T as endomorphisms.
Since J0.M/ has good reduction at finite places of Q not dividing M , so does
A. Let ! be a finite place of F over the place w of Q. The !-adic Tate module
V!.A; i/ D F! ˝Qw Vw.A/ is a 2-dimensional vector space over F! , which admits
an action of Gal.Q=Q/ that is unramified away fromM and w. The Eichler–Shimura
relation implies that for any finite place v of Q prime toM and w, the characteristic
polynomial of (arithmetic) Frobenius at v acting on V!.A; i/ is T 2 � av.h/T C qv,
where the Hecke eigenvalue av.h/ is considered as an element of Q.h/ D F � F! .

2.4 The theorem

Let .A; i/ be the object associated by the Eichler–Shimura construction to the
newform g provided by Ribet’s level-raising theorem. There is an abelian variety
over Q in the isogeny class A such that the maximal order R � F D Q.g/ acts
on A compatibly with i (cf.[Shi98], �7.1, Proposition 7). We fix one such abelian
variety in the isogeny class, and we write .A; i/ for it as well. Many constructions
below depend on the action i W R ! End.A/, but since it is fixed throughout, we
will generally omit it from the notation.
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Let I be the maximal ideal of R induced by the finite place 	 of Q provided by
Ribet’s theorem. The main result below compares the first I -descent on A=K with
the first `-descent on E=K . The I -descent structures on A are very similar to the `-
descent structures on an elliptic curve. Since I need not be principal, however, one
must often tensor with powers of theR-modules I and I�1 to define maps whose `-
descent analogues would involve multiplying by powers of the generator ` of .`/ �
Z. For example, for an R-module M , the R-linear analogue of the multiplication-
by-` endomorphism is the homomorphism I ˝R M ! M : if I is principal,
then the choice of a generator x, which can also be viewed as an isomorphism
x W R ! I , converts I ˝R M ! M into the endomorphism of multiplication by
x on M .

To complete the first I -descent, we define an I -Selmer group of A=K as
follows: let I�1 ˝R A be the K-scheme that represents the functor T 7! I�1 ˝R
A.T / D HomR.I; A.T //. We show that this functor is representable, and we give
more details on the abstract formalism of I -descent in the appendix below. Then
I�1 ˝R A is an abelian variety of the same dimension as A=K , on which R acts as
endomorphisms. For example, if A.C/ D C

ŒF WQ�=ƒ, then the lattice ƒ has a natural
R-module structure, and I�1 ˝R A.C/ D C

ŒF WQ�=I�1 ˝R ƒ. (The embedding of
I�1 ˝R ƒ as a lattice in C

ŒF WQ� is the unique extension of the embedding of its
finite-index subgroupƒ.)

The inclusionR! I�1 induces an isogenyA! I�1˝R A defined overK with
kernel AŒI �, the group scheme of I -torsion sections of A. We thus have the exact
sequence

0 �����! AŒI � �����! A �����! I�1 ˝R A �����! 0

of group schemes over Spec.K/. Passing to Galois cohomology, we find a global
Kummer (boundary) map

I�1 ˝R A.K/! H1.K;AŒI �/:

In the familiar situation of `-descent, the boundary map E.K/ ! H1.K;EŒ`�/

maps a point x 2 E.K/ to the EŒ`�-torsor composed of the points f`�1xg � E.K/.
In the I -descent formalism, we would replace x 2 E.K/ with .`�1/˝x 2 .`/�1˝
E.K/. The image of .`�1/ ˝ x under the Kummer map is the fiber over this point
of the isogeny E ! .`/�1 ˝ E.

For each place v of K , there are analogous local Kummer maps

I�1 ˝R A.Kv/! H1.Kv; AŒI �/:

The I -Selmer group of .A; i/, denoted Sel.A=K; I /, is the group of classes c 2
H1.K;AŒI �/ such that the restriction cv 2 H1.Kv; AŒI �/ is in the image of I�1 ˝R
A.Kv/ for all places v of K . Evidently the global Kummer map factors through
Sel.A=K; I / � H1.K;AŒI �/.
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Just as for standard `-descent, one can show that Sel.A=K; I / is a finite group
and hence a finite-dimensionalR=I -vector space. The kernel of the global Kummer
map I�1 ˝R A.K/! Sel.A=K; I / is the image of the natural map

R˝R A.K/! I�1 ˝R A.K/;

and so the image of the Kummer map is I�1=R˝R A.K/ or, equivalently,

I�1 ˝R .R=I ˝R A.K//:

The R=I -dimension of Sel.A=K; I / is thus an upper bound on the rank of A.K/
as R-module, just as the Z=`Z-dimension of Sel.E=K; `/ is an upper bound on the
rank of E.K/ as Z-module.

Let us impose the following additional assumptions on p;N; and E:

(d) ` is prime to N ,
(e) For each prime q dividing N , the dimension of the q-inertia invariants of the

modulo-` Galois representation

� W Gal.Q=Q/! Aut.EŒ`�.Q//

is 1, if E has multiplicative reduction at q, and is 0, if E has additive reduction
at q,

(f) p2 6� 1 .mod `/.

Since ` is prime to N , condition (e) is equivalent to the statement that the
conductor of � in the sense of [Ser87] is equal to the conductorN ofE=Q. By level-
lowering theorems (cf. [Dia95]), condition (e) means that f is a form of minimal
level among those giving rise to the modulo-` representation �. It also implies that
the form g constructed by level raising has levelNp.

We will deduce the following result about the I -descent on A=K from Kolyva-
gin’s result stated in Theorem 1:

Theorem 2. Assume that P 2 E.K/ has infinite order and that conditions (a)–(f)
hold. Then

dimR=I Sel.A=K; I / D 0; if P is not divisible by ` in E.Kp/, and

dimR=I Sel.A=K; I / D 2; if P is divisible by ` in E.Kp/:

The I -adic Tate module

TI .A; i/ D lim �.I
˝n ˝R AŒI n�.Q//

is a lattice in V	.A; i/ and is thus free of rank 2 over the I -adic completion
of R. Therefore, R=I ˝R TI .A; i/ D I ˝R AŒI �.Q/ and hence AŒI �.Q/ is
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2-dimensional over R=I . By the Eichler–Shimura relation and (2.1), the charac-
teristic polynomials of prime-to-Np` Frobenius elements on R=I ˝ EŒ`�.Q/ and
AŒI �.Q/ agree. Thus, by the Brauer–Nesbitt principle, these Galois modules have
isomorphic semi-simplifications. By assumption (b), the Galois module R=I ˝
EŒ`�.Q/ is irreducible, and so the two .R=I /ŒGal.Q=Q/�-modules are isomorphic.
We choose and fix such an isomorphism for the rest of the paper.

The plan for proving Theorem 2 is to compare the local conditions defining
Sel.A=K; I / � H1.K;AŒI �/ and

R=I ˝ Sel.E=K; `/ � R=I ˝ H1.K;EŒ`�/ D H1.K;R=I ˝ EŒ`�/;

by means of the fixed isomorphismR=I ˝ EŒ`�=Q D AŒI �=Q. Using assumptions
(a)–(f), we describe these local conditions entirely in terms of the Galois module

AŒI �.Q/ D R=I ˝ EŒ`�.Q/:

The local conditions agree at all places v of K except at v D p, where the two
conditions are transverse. By combining this local analysis with a global parity
lemma, proved in �5.3, we deduce Theorem 2 from Theorem 1. In �4 we study
the local conditions defining the Selmer groups at places v ¤ p of K , and in �5
we study the conditions at v D p and use the parity lemma to prove the theorem.
In �6 below, we make explicit the compatibility with the parity predictions of the
conjecture of Birch and Swinnerton-Dyer.

3 Néron models of abelian varieties with real multiplication

This section contains preliminary remarks that will be applied in Sections 4 and 5
to Néron models of E and A in order to describe the images of the local
Kummer maps entirely in terms of the Galois modules underlying EŒ`�=Q and
AŒI �=Q.

3.1 Semi-stable case

Let L be the quotient field of a Henselian discrete valuation ring OL with residue
field kL, and let B=L be an abelian variety. Let F0 be a number field with maximal
order R0. Assume that the dimension of B=L is ŒF0 W Q�. Let j W R0 !
End.B=L/ be a faithful action of R0. In what follows, we will use F0 D Q and
F0 D F .

Let B=OL be the Néron model of B=L. We consider first the case when B=L
has semi-stable reduction. This condition means that the identity component B0=kL
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of the special fiber of the Néron model is an extension of an abelian variety by a
torus T=kL. Let kL be a separable closure of kL. The torus T=kL is determined
by its geometric character lattice X�.T=kL/, which is a free Z-module of rank
dim.T /, with the induced action of Gal.kL=kL/ on this lattice. The semi-stable
abelian variety B=L has good reduction, if the torus component of the special fiber
is trivial. In this case, the special fiber is connected and is an abelian variety, and so
B=OL is an abelian scheme. If the abelian-variety component of B0=kL is trivial,
then B=L has purely toric reduction.

Lemma 2. If B=L has semi-stable reduction, then B=L has either good reduction
or purely toric reduction. In the purely toric-reduction case, the functorial action of
R0 on X�.T=kL/ makes this lattice an invertible R0-module.

Proof. By functoriality of the Néron model, the action j induces a (unital) ring
homomorphismR0 ! End.T=kL/ D End.X�.T=kL//. Tensoring with Q, we find
an F0-vector-space structure on Q˝X�.T=kL/. Therefore, the dimension of T=kL
is a multiple of ŒF0 W Q� D dim.B/. Since dim.T / � dim.B=L/ D dim.B0=kL/,
we see that either T D 0 or T D B0=kL. In the first case, B=L has good reduction.
In the second case, B=L has purely toric reduction, and X�.T=kL/ is an R0-lattice
in the 1-dimensional F0-vector space Q˝ X�.T=kL/. Thus the character lattice is
an invertibleR0-module, since R0 is the maximal order of F0. ut

Consider the purely-toric reduction case of the lemma. Since T is split over kL,
we have the natural isomorphism

T=kL D Hom.X�.T=kL/;Gm/;

which is a functorial expression of the fact that T=kL is isomorphic to a product of
copies of the multiplicative group Gm indexed by any basis of X�.T=kL/. Thus for
any ideal I0 of R0, we have

T ŒI0�=kL D Hom.X�.T=kL/;Gm/ŒI0� D Hom.R0=I0 ˝R0 X�.T=kL/;Gm/:

Therefore, we have

T ŒI0�.kL/ D HomZ.R0=I0 ˝R0 X�.T=kL/; kL
�
/:

As an abstract group, kL
�

is isomorphic to
Q
q¤q0 Qq=Zq , where q runs over primes

not equal to the characteristic q0 of kL. Consequently, if I0 is a maximal ideal such
that the order of R0=I0 is invertible in kL, then T ŒI0�.kL/ is 1-dimensional over
R0=I0. We state this fact as a lemma for later reference.

Lemma 3. Assume that B=L has purely toric reduction. Let I0 be a maximal
ideal of R0 such that the order of R0=I0 is invertible in kL. Then B0ŒI0�.kL/ is
1-dimensional over R0=I0.
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3.2 Component groups in the general case

We now consider abelian varieties B=L with endomorphisms j W R0 ! End.B/ as
above, but we allow arbitrary (not necessarily semi-stable) reduction. Let B=OL be
the Néron model ofB=L, and let B0=kL be the connected component of the identity
of B=kL. In the general case B0=kL is a successive extension of an abelian variety,
a torus, and a connected unipotent group. In this section, we are concerned with the
component group scheme ˆ D B=B0 of the special fiber. It is a finite, étale R0-
module scheme over kL. Let B0=OL be the smooth group scheme whose generic
fiber is B=L and whose special fiber is B0=kL, i.e., B0=OL is the complement in
B=OL of the non-identity components of B=kL.

Let I0 � R0 be a maximal ideal such that the order of R0=I0 is invertible in
OL and thus in L and kL. Let us see how the group ˆŒI0�.kL/ appears in the
Galois moduleBŒI0�=L. Consider theR0-module extension ofˆŒI0�.kL/ by B0.kL/
obtained by restricting

0! B0.kL/! B.kL/! ˆ.kL/! 0

to ˆŒI0�.kL/. We claim that this extension of R0-modules splits. Since the group
ˆŒI0�.kL/ is a direct sum of copies of R0=I0 as R0-module, it suffices to show that

Ext1R0.R0=I0;B0.kL// D 0: (3.1)

To see this vanishing, we consider the homomorphismB! I�10 ˝R0B of smooth
group schemes overOL, as in the formalism of I0-descent discussed in the appendix.
On the relative Lie algebras, this morphism is the natural homomorphism of free
OL-modules

Lie.B=OL/! Lie.I�10 ˝R0 B=OL/ D I�10 ˝R0 Lie.B=OL/:

The kernel and cokernel are annihilated by I0; since I0 contains the order of R0=I0,
which is a unit inOL, the map is an isomorphism. Consequently, the homomorphism
of smooth group schemes B ! I�10 ˝R0 B over OL is étale. Since the geometric
fibers of B0 and I�10 ˝R0 B0 over OL are connected, the homomorphism B0 !
I�10 ˝R0 B0 is thus étale and surjective. In particular, B0.kL/! I�10 ˝R0 B0.kL/ is
surjective.

Consider the projective resolution

0 �����! I0 �����! R0 �����! R0=I0 �����! 0

of the R0-module R0=I0. From the long exact ExtR0 -sequence with coefficients
B0.kL/, we find that Ext1R0 .R0=I0;B0.kL// is the cokernel of

HomR0.R0;B0.kL// �����! HomR0.I0;B0.kL//:
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Since the map

B0.kL/ D HomR0.R0;B0.kL//! HomR0.I0;B0.kL// D I�10 ˝R0 B0.kL/

is surjective, we obtain the desired vanishing (3.1).
If we choose a splitting, then we find an R0=I0-module isomorphism

BŒI0�.kL/ D B0ŒI0�.kL/˚ˆŒI0�.kL/: (3.2)

Let eL be a maximal unramified extension of L with residue field kL, and let OeL be
the valuation ring of eL. By the Néron property, we have BŒI0�.eL/ D BŒI0�.OeL/.
Since BŒI0�=OL is étale (as the kernel of an étale homomorphism B ! I�10 ˝R0 B
over OL) and OL is Henselian, the reduction map BŒI0�.OeL/ ! BŒI0�.kL/ is an
isomorphism. Therefore BŒI0�.eL/ D BŒI0�.kL/. The R0=I0-module BŒI0�.eL/ is
the space of inertia invariants in BŒI0�.L/, where L is a separable closure of L
containing eL. In summary, we have

Lemma 4. If the order of R0=I0 is invertible in OL, then as R0=I0-module, the
space of inertia invariants in BŒI0�.L/ is B0ŒI0�.kL/˚ˆŒI0�.kL/.

3.3 Reduction of E and A at finite places of K

We now describe some aspects of the reduction of E and A at primes q of Q and at
finite places v ofK using the results of this section and hypotheses (a)–(f). Since N
is the conductor ofE=Q, if q and v are prime toN , thenE=Q has good reduction at
q, and E=K has good reduction at v. Let v be a place of K dividing N and let q be
the prime of Q lying under v. The elliptic curve E=Q then has either multiplicative
or additive reduction at q. Since, by assumption, q is unramified and splits in K ,
we have Qq D Kv, and the elliptic curve E=K has the same reduction at v as
E=Q at q. If E=Q has additive reduction, then by condition (e), there are no non-
zero inertia invariants in EŒ`�.Qq/. Thus by Lemma 4, since ` is prime to N , the
component group of the reduction at q has no `-torsion. If E=Q has multiplicative
reduction at q, then the inertia invariants in EŒ`�.Qq/ are 1-dimensional over Z=`Z
by assumption (e). By Lemma 3 and 4, all of these inertia invariants come from the
torus part of the reduction, and the component group of the reduction at q again has
no non-zero `-torsion.

If q and v are prime to Np, then the abelian variety A=Q has good reduction at
q, and A=K has good reduction at v, since A=Q is an isogeny factor of J0.Np/=Q,
which has good reduction away from Np. It follows from the construction of the
semi-stable model of J0.Np/=Qp over Zp (cf. [DR73]) that the new quotient of
J0.Np/=Q has purely toric reduction at p. Since the eigenform g used to construct
A=Q is new at p, the abelian variety A=Q thus has purely toric reduction at p.
Therefore, A=K has purely toric reduction at places v of K dividing p.
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By condition (e), the Galois moduleEŒ`�.Q/ is ramified at primes q dividingN .
Since R=I ˝ EŒ`�.Q/ D AŒI �.Q/ as Galois modules, the Galois module AŒI �.Q/
is also ramified at primes q dividing N . Therefore, A=Qq has bad reduction at all
primes q dividing N . As above, if v is a place of K dividing N and lying over the
rational prime q, then q is unramified and split in K . Therefore Kv D Qq , and so
the reduction of A=K at v is the same as the reduction of A=Q at q. If q divides
N but q2 does not divide N , then A=Q has semi-stable reduction at q (and hence
v), since it is an isogeny factor of J0.Np/=Q, which has semi-stable reduction at
q. Since A=Q has bad reduction at q, it has purely toric reduction by Lemma 2.
The inertia invariants in AŒI �.Qq/ are 1-dimensional over R=I by assumption (e)
and the isomorphism R=I ˝ EŒ`�.Q/ D AŒI �.Q/. Therefore, by Lemmas 3 and 4,
the component group of the reduction of A=Q at q has no I -torsion. On the other
hand, if q2 divides N , then E=Q has additive reduction at q, the inertia invariants
in AŒI �.Qq/ are 0-dimensional over R=I by assumption (e) and the isomorphism
R=I ˝ EŒ`�.Q/ D AŒI �.Q/. Therefore, by Lemma 4, the component group of the
reduction of A=Q at q has no I -torsion.

4 Proof of Theorem 2: local conditions at v ¤ p

To prove Theorem 2, we will compare

R=I ˝ Sel.E=K; `/ � R=I ˝H1.K;EŒ`�/ D H1.K;R=I ˝EŒ`�/

with Sel.A=K; I / � H1.K;AŒI �/. Here we identify H1.K;R=I ˝ EŒ`�/ with
H1.K;AŒI �/ using the fixed isomorphism R=I ˝ EŒ`� D AŒI � over Q from
�2.4. We compare these two Selmer groups by comparing the local conditions in
H1.Kv; AŒI �/ that define them. Let Lv � H1.Kv; AŒI �/ be the R=I -span of the
image of

E.Kv/! H1.Kv; EŒ`�/ � H1.Kv; AŒI �/:

Then R=I ˝ Sel.E=K; `/ consists of the classes c 2 H1.K;AŒI �/ such that each
restriction cv 2 H1.Kv; AŒI �/ belongs to Lv. Let L0v � H1.Kv; AŒI �/ be the image
of the local Kummer map I�1 ˝R A.Kv/ ! H1.Kv; AŒI �/, so that Sel.A=K; I / is
the set of classes c 2 H1.K;AŒI �/ such that cv 2 L0v for all places v ofK .

The remainder of the present section is devoted to proving

Lemma 5. For v ¤ p, we have Lv D L0v.

We prove the lemma by deducing from assumptions (a)–(f) descriptions of Lv

and L0v entirely in terms of the Galois modules EŒ`�=Q and AŒI �=Q. The fixed
isomorphism R=I ˝ EŒ`� D AŒI � over Q then allows us to identify the local
conditions as in the lemma. In �5 below, we complete the local comparison by
analyzingLp and L0p , which is the only place at which the defining local conditions
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for the two Selmer groups differ. With the local comparison in hand, we use a parity
lemma based on local and global duality theory in Galois cohomology to deduce
Theorem 2 from Theorem 1.

4.1 Types of local conditions

Let OL be a discrete valuation ring with quotient field L and residue field kL. Let
V be a locally constant constructible sheaf of abelian groups on the small étale site
of Spec.L/. The data of V is carried equivalently by the finite-order ZŒGal.L=L/�-
module V.L/, where L=L is a separable closure.

The subspace of H1.L; V / composed of classes that split over an unramified
extension of L is denoted H1

unr.L; V /. Alternatively, if j W Spec.L/ ! Spec.OL/

denotes the inclusion, the unramified classes are

H1
ét.Spec.OL/; j�V / � H1

ét.Spec.L/; V / D H1.L; V /:

From either description, it is clear that formation of unramified classes is functorial
in V .

Suppose that there is a finite, free group scheme G= Spec.OL/ whose restriction
to Spec.L/ represents V . One then has the subspace of flat classes valued in G=OL

H1
fl.Spec.OL/;G/ � H1

fl.Spec.L/;G/ D H1.L; V /:

The formation of such a subspace is functorial in the flat model G over Spec.OL/.

4.2 Identifying local conditions for I0-descent on abelian
varieties

We return briefly to the general notation of �3: OL is a Henselian discrete valuation
ring with quotient field L and residue field kL; one has an abelian variety B=L,
equipped with an action of the ring of integersR0 of a number field F0 such that ŒF0 W
Q� D dim.B=L/. Let B=OL be the Néron model, and let ˆ=kL be the component
group scheme of B=kL. Let I0 � R0 be a maximal ideal such that the order ofR0=I0
is invertible in L. Then the homomorphism B ! I�10 ˝R0 B is an étale isogeny
with kernel BŒI0�, and we have the Kummer map I�10 ˝R0 B.L/ ! H1.L;BŒI0�/.
The following two lemmas identify the image of the Kummer map under certain
restrictions on the reduction of B=L. The cases with R0 D Z are entirely standard
facts (cf. [Maz72], for instance).

Lemma 6. If the order of R0=I0 is invertible in OL and ˆŒI0� D 0, then the image
of the Kummer map in H1.L;BŒI0�/ is H1

unr.L;BŒI0�/.
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Proof. Since the order of R0=I0 is invertible in OL, as in �3.2, we find that the
homomorphismB! I�10 ˝R0B is étale and that B0 ! I�10 ˝R0B0 is surjective and
étale. Since ˆŒI0� D 0 and ˆ=kL is finite étale, the natural map ˆ ! I�10 ˝R0 ˆ
is an isomorphism, and so B ! I�10 ˝ B is surjective and étale. One thus has
the Kummer maps for B=L and B=OL, as discussed in the appendix, which are
connected by restriction maps in étale cohomology:

I�10 ˝R0 B.OL/ �����! H1
ét.Spec.OL/;BŒI0�/

?
?
y

?
?
y

I�10 ˝R0 B.L/ �����! H1
ét.Spec.L/; BŒI0�/:

(4.1)

By the Néron mapping property we have B.OL/ D B.L/, and so the left vertical
arrow in an isomorphism. Furthermore, the top arrow is surjective, which one sees
as follows:

The cokernel of the top arrow is the kernel of

H1
ét.Spec.OL/;B/ �����! H1

ét.Spec.OL/; I
�1
0 ˝R B/;

and so to see surjectivity, it suffices to check that H1
ét.Spec.OL/;B0/ D 0 and that

ˆ ! I�10 ˝R0 ˆ is an isomorphism. The second fact follows from ˆŒI0� D 0, as
noted above. To see the first fact, recall that a class in H1.Spec.OL/;B0/ can be
represented by a right torsor under the étale sheaf represented by B0. Since the base
OL is a discrete valuation ring and B0 is smooth overOL, this torsor is representable
by a scheme over Spec.OL/ by a theorem of Raynaud (cf. [Mil80], Chapter III,
Theorem 4.3). It suffices therefore to show that any scheme P over Spec.OL/

that is a right B0-torsor has a section. Since B0=kL is connected, Lang’s theorem
(cf. [Lan56], Theorem 2) implies that P.kL/ is non-empty. As B0= Spec.OL/ and
hence P= Spec.OL/ are smooth and OL is Henselian, the map P.OL/! P.kL/ is
surjective. Consequently, the element of P.kL/ provided by Lang’s theorem lifts to
a section over OL.

Since the left vertical arrow in (4.1) is an isomorphism and the top arrow is a
surjection, the image of the Kummer map in H1.L;BŒI0�/ is H1

ét.Spec.OL/;BŒI0�/.
The Néron mapping property identifies j�B D B as sheaves on the small étale site
of Spec.OL/. Thus

BŒI0� D .j�B/ŒI0� D j�.BŒI0�/;
and H1

ét.Spec.OL/;BŒI0�/ D H1
unr.L;BŒI0�/. ut

Alternatively, assume that the order ofR0=I0 is invertible only in L, but consider
only B=L with good reduction. The Néron model B=OL is then an abelian scheme.

Lemma 7. If B=L has good reduction, then BŒI0�=OL is finite and locally free.
Furthermore, the image of the Kummer map I�10 ˝R0 B.L/ ! H1.L;BŒI0�/ is
H1

fl.Spec.OL/;BŒI0�/.
Proof. As explained in the appendix, since B=OL is an abelian scheme, the
homomorphism B ! I�10 ˝R0 B is flat and surjective. Furthermore, the kernel
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BŒI0�=OL is finite and locally free. To complete the proof othe lemma, one can
apply the same argument as in Lemma 6, replacing étale cohomology with flat
cohomology. ut

4.3 Proof of Lemma 5

For v the infinite place of K , we have Kv D C, and so H1.Kv; AŒI �/ D 0 and
Lv D L0v D 0.

Next consider a finite place v ofK prime to p`. Let E=Ov andA=Ov be the Néron
models of E=Kv and A=Kv, respectively. Let ˆE and ˆA be the component group
schemes of the special fibers of E=Ov and A=Ov, respectively. By the discussion in
�3.3, we have ˆEŒ`� D 0 and ˆAŒI � D 0. Therefore, Lemma 6 implies that

Lv D R=I ˝H1
unr.Kv; EŒ`�/ and L0v D H1

unr.Kv; AŒI �/:

Consequently, Lv D L0v.
Finally, let v be a place ofK dividing `. Let E=Z` and A=Z` be the Néron models

of E=Q` and A=Q`, respectively. Since ` is prime to Np, these models are abelian
schemes. Furthermore, the base changes E=Ov and A=Ov are the Néron models
of E=Kv and A=Kv, respectively. The R=I -vector schemes R=I ˝Z E Œ`�=Z` and
AŒI �=Z` are finite, free models of AŒI �=Q`. Since ` > 2, by Theorem 3.3.3 of
[Ray74], the identification of their generic-fiber Galois modules extends uniquely
to an isomorphism R=I ˝ E Œ`� D AŒI � over Z`. By Lemma 7, we have

Lv D R=I ˝ H1
fl.Spec.Ov/; E Œ`�/ and L0v D H1

fl.Spec.Ov/;AŒI �/:
Therefore, Lv D L0v.

5 Proof of Theorem 2: local condition at v D p

and the parity lemma

5.1 The conditions at v D p

The Gal.Kp=Kp/-module EŒ`�.Kp/ is unramified at p, since p is prime to the
conductor N of E=Q. By assumption (c), the eigenvalues of Frobp2 on EŒ`�.Kp/

are 1 and p2. By assumption (f), we have p2 6� 1 .mod `/, and so EŒ`�.Kp/ splits
as a sum of the Frobp2 -eigenspaces for the eigenvalues 1 and p2. Therefore, we have
an isomorphism of R=I -vector schemes (or .R=I /ŒGal.Kp=Kp/�-modules):

AŒI �=Kp D R=I ˚R=I.1/;

where R=I.1/ is the R=I -vector scheme R=I ˝ 
`.
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Lemma 8. The spaces H1.Kp;R=I / and H1.Kp;R=I.1// are each 1-dimensional
over R=I . Furthermore,

Lp D H1.Kp;R=I / and L0p D H1.Kp;R=I.1//:

Proof. We have H1.Kp;R=I / D Hom.Gal.Kp=Kp/;R=I /. Since R=I is ab-
stractly a sum of copies of Z=`Z and ` ¤ p, any such homomorphism is
tamely ramified. Furthermore, by assumption (f), any tamely ramified homomor-
phism is unramified. Therefore all classes in H1.Kp;R=I / are unramified, and
H1.Kp;R=I /! R=I , sending a cohomology class to the image of Frobp2 in R=I ,
is an isomorphism.

By Kummer theory, we have H1.Kp; 
`/ D K�p =.K�p /`, and the unramified
classes are O�p =.O�p /`. Thus by assumption (f), we have H1

unr.Kp; 
`/ D 0, and
H1.Kp; 
`/ is 1-dimensional over Z=`Z, generated by the class of a uniformizer in
K�p =.K�p /`. Since E=Kp has good reduction we have, by Lemma 6,

Lp D R=I ˝ H1
unr.Kp;EŒ`�/;

and so we find that Lp is the summand H1.Kp;R=I / of H1.Kp;AŒI �/.
To see thatL0p D H1.Kp;R=I.1//, we will use the rigid-analytic uniformization

of A=Kp. Since it is an isogeny factor of the new quotient of J0.Np/=Q, the
abelian variety A=Qp has purely toric reduction. Let A=Zp be its Néron model. By
Lemma 2, the F -vector space Q˝ZX

�.A0=Fp/ is 1-dimensional, and so the group
Gal.Fp=Fp/ acts on it via a continuous F �-valued character. Since F is totally
real, this character must be quadratic. The group scheme A0=Fp2 is thus a split
torus.

Since A=Qp has semi-stable reduction, the (split) torus A0=Fp2 is identity
component of the special fiber of the Néron model of A=Kp. Let T=Kp be
the split torus whose character group is X�.A0=Fp2/. Let R act as endomor-
phisms of T=Kp dual to the action of R on X�.A0=Fp2/. One then has the
rigid-analytic uniformization T an ! Aan over Kp (cf. [BL91]), which yields
a surjection of RŒGal.Kp=Kp/�-modules T .Kp/ ! A.Kp/. The kernel ƒ of
T .Kp/ ! A.Kp/ is a free Z-module of rank dim.A/, on which Gal.Kp=Kp/ acts
trivially.

Consider the following diagram comparing the Kummer maps for T=Kp and
A=Kp, where the vertical maps come from the analytic uniformization T .Kp/ !
A.Kp/:

I�1 ˝R T .Kp/ �����! H1.Kp; T ŒI �/
?
?
y

?
?
y

I�1 ˝R A.Kp/ �����! H1.Kp;AŒI �/:

(5.1)

Since ƒŒI � D 0, the uniformization induces an injection T ŒI �! AŒI � overKp .
As X�.A0=Fp2/ is locally free of rank 1 over R, the R=I -module scheme T ŒI �
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is abstractly R=I.1/. Thus the image of T ŒI � in AŒI � is the R=I.1/ summand of
AŒI � D R=I ˚R=I.1/. Consequently, the image of the right vertical arrow in (5.1)
is the summand H1.Kp;R=I.1// of H1.Kp;AŒI �/. The cokernel of the top arrow is
contained in H1.Kp; T /, which vanishes by Hilbert Theorem 90, since T=Kp is a
split torus. Finally, the left vertical arrow is surjective, since H1.Kp;ƒ/ D 0. These
three observations imply that the image L0p of the Kummer map in H1.Kp;AŒI �/ is
the summand H1.Kp;R=I.1//. ut

5.2 Comparing the Selmer groups

To prove Theorem 2, we compare the subspacesR=I˝Sel.E=K; `/ and Sel.A=K; I /
of H1.K;AŒI �/. Let Sels.A=K; I / � Sel.A=K; I / (with s for “strict”) be the
intersection of these two Selmer groups. By Lemmas 5 and 8, the Selmer group
Sels.A=K; I / is the space of classes c 2 H1.K;AŒI �/ such that for v ¤ p the
local restriction cv belongs to Lv D L0v and such that the local restriction xp is 0.
Since the spaces Lp and L0p are both 1-dimensional over R=I , the codimension
of Sels.A=K; I / in each of R=I ˝ Sel.E=K; `/ and Sel.A=K; I / is at most 1.
More precisely, by Theorem 1, the Selmer group Sels.A=K; I / is 1-dimensional,
if the Heegner point P is divisible by ` in E.Kp/: in this case the restriction to
p of the image of P in Sel.E=K; `/ vanishes, and so R=I ˝ Sel.E=K; `/ D
Sels.A=K; I /. Therefore, if P is divisible by ` in E.Kp/, the R=I -dimension of
Sel.A=K; I / is either 1 or 2. Similarly, if P is not divisible by ` in E.Kp/, then
Sels.A=K; I / is 0-dimensional; in this case, the R=I -dimension of Sel.A=K; I / is
either 0 or 1.

As explained in �6 below, the conjecture of Birch and Swinnerton-Dyer suggests
that the R=I -dimension of Sel.A=K; I / should be even. In order to finish the proof
of Theorem 2, we must exclude the possibility that Sel.A=K; I / is 1-dimensional
overR=I , in harmony with the conjecture. In order rule out the 1-dimensional case,
we present in �5.3 a variant of an argument which was shown to us by Benjamin
Howard.

5.3 The parity lemma

Let k be a finite field of characteristic ` and let M be a totally imaginary number
field. In what follows, we will take k D R=I andM D K . Let V be locally constant
constructible étale sheaf of k-vector spaces over Spec.M/, equipped with a perfect,
alternating, k-bilinear pairing V � V ! k.1/. In the application to Theorem 2, we
will take V D AŒI � and use the pairing coming from the Weil pairing on EŒ`�. For
each finite place v of M one then has the perfect, symmetric, k-bilinear Tate-local-
duality pairing H1.Mv; V /�H1.Mv; V /! k mapping x�y 7! hx; yiv. The duality
pairing is the composition of the product H1.Mv; V /�H1.Mv; V /! H2.Mv; k.1//
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with the reciprocity isomorphism H2.Mv; k.1// ! k. For each finite place v of
M , let ƒv � H1.Mv; V / be a k-subspace. Assume that for almost all v, one has
ƒv D H1

unr.Mv; V /. Assume furthermore that each ƒv is its own annihilator under
the Tate pairing. This assumption implies that each H1.Mv; V / has even dimension
over k and that each ƒv is a totally isotropic subspace of half the dimension of
H1.Mv; V /. Thus the Tate pairing on H1.Mv; V / is a split symmetric bilinear form,
andƒv is a maximal totally isotropic subspace.

We distinguish one fixed finite place w of M , which will be the place p of K in
the proof of Theorem 2. Assume that H1.Mw; V / is 2-dimensional over k, so that
H1.Mw; V / equipped with the Tate pairing is a hyperbolic plane. There are then
exactly two maximal totally isotropic subspaces (lines), namely, the given ƒw and
another subspaceƒ0w. (Recall that k has characteristic ` ¤ 2.)

We consider four Selmer groups contained in H1.M; V /, defined by the local
conditions ƒv for v ¤ w and differing only in their defining local conditions at w.
Let Selu.V / (“unramified”) be defined by the local conditionsƒv at all places v, i.e.,
Selu.V / � H1.M; V / is the space of classes x such that the restriction xv belongs
to ƒv for all finite places v ofM . Let Selt .V / (“transverse”) be defined by the local
conditions ƒv at v ¤ w and by ƒ0w at w. Let Selr .V / (“relaxed”) be defined by the
local conditionsƒv at v ¤ w and no condition at w. Let Sels.V / (“strict”) be defined
by the local conditions Lv at v ¤ w and local vanishing at w.

Lemma 9. The k-dimensions of Selu.V / and Selt .V / differ by exactly 1; moreover,
either

Selu.V / D Selr .V / and Selt .V / D Sels.V /; or

Selu.V / D Sels.V / and Selt .V / D Selr .V /:

Proof. Let x; y 2 Selr .V /. By global class field theory, one has

X

v

hxv; yviv D 0;

where xv; yv 2 H1.Mv; V / are the restrictions of x and y. Since x; y restrict to
elements of the totally isotropic spaces ƒv for v ¤ w, one has

hxw; ywiw D
X

v

hxv; yviv D 0:

Therefore, the image of Selr .V / in H1.Mw; V / under the restriction map is a totally
isotropic subspace. Consequently this image is contained in ƒw or ƒ0w, and

Selr .V / D Selu.V / or Selr .V / D Selt .V /:

On the other hand, it follows from the global Euler characteristic formula and
global duality (cf. [DDT94], Theorem 2.19) that the k-codimension of Sels.V /
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in Selr .V / is 1: the local conditions for Sels.V / are obtained by relaxing the
local condition at w from the self-dual, 1-dimensional ƒw to the 2-dimensional
H1.Mw; V /, and the dual of the relaxed condition at w is the strict condition at
w defining Sels.V /. As Sels.V / D Selu.V / \ Selt .V / in Selr .V /, one cannot have
Selr .V / D Selt .V / D Selr .V /. Therefore, one has either Selr .V / D Selu.V /
and Sels.V / D Selt .V / or Selr .V / D Selt .V / and Sels.V / D Selu.V /. These
relations and the fact that the k-codimension of Sels.V / in Selr .V / is 1 prove the
lemma. ut

5.4 Completion of the proof of Theorem 2

To finish the proof the theorem, we apply the parity lemma to AŒI �=K to compare
the subspaces R=I ˝ Sel.E=K; `/ and Sel.A=K; I / of H1.K;AŒI �/. The transfer
of the Weil pairing on R=I ˝ EŒ`� via the isomorphism R=I ˝ EŒ`� D AŒI �

to AŒI � provides a perfect, alternating pairing AŒI � � AŒI � ! R=I.1/. The fact
that the spaces Lv � H1.Kv; AŒI �/ are their own annihilators under the Tate
pairing follows from Tate local duality for the elliptic curve E=K . Alternatively,
one can deduce it directly from the description Lv D H1

unr.Kv; AŒI �/ for v prime
to ` and Lv D H1

fl.Spec.Ov;AŒI �/ for v dividing ` (cf. [Mil86], Theorem I.2.6,
Corollary II.1.10(b), and Theorem III.1.8(b)). As we observed above in Lemma 8,
conditions (c) and (f) imply thatAŒI �=Kp D R=I ˚R=I.1/ and that H1.Kp;AŒI �/

is 2-dimensional over R=I . Each 1-dimensional summand R=I and R=I.1/ is
isotropic for the (alternating) Weil pairing, and so the 1-dimensional summands
H1.Kp;R=I / and H1.Kp;R=I.1// of H1.Kp;AŒI �/ are isotropic for the Tate
pairing.

We now apply the parity lemma with M D K , the étale sheaf V D AŒI �,
equipped with the Weil pairing, and the local conditionsƒv D Lv. These structures
satisfy the hypotheses of �5.3. We take the distinguished place w to be the place p of
K . By the discussion in �5.1, we haveƒ0p D L0p . Since for v ¤ p, we haveLv D L0v,
the parity lemma compares the Selmer groups Selu.AŒI �/ D R=I ˝ Sel.E=K; `/
and Selt .AŒI �/ D Sel.A=K; I / in H1.K;AŒI �/. By Kolyvagin’s result stated in
Theorem 1, we know that Sel.E=K; `/ is 1-dimensional over Z=`Z, generated by
the image of the Heegner point P under the Kummer map. Therefore, the parity
lemma implies Theorem 2. ut

6 Compatibility with the functional equation

In this section we study the signs of the functional equations for L-functions
related to f and g. Let � D ˙1 be the sign of the complete L-function of
f , i.e., if ƒ.s; f / D .2�/�s�.s/L.s; f / is the complete L-function of f , then
ƒ.s; f / D �N 1�sƒ.2 � s; f /. If W is the Fricke involution of level N , then
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Wf D ��f by Theorem 3.66 of [Shi94]. Let � be the quadratic Dirichlet character
corresponding to K=Q. By [Shi94], Theorem 3.66 and Lemma 3.63 (2), the sign of
the complete twisted L-functionƒ.s; f; �/ D .2�/�s�.s/L.s; f; �/ is �.�N/ � �.
That is,

ƒ.s; f; �/ D .�.�N/ � �/.r2N /1�sƒ.2 � s; f; �/;
where r is the conductor of �. Since the primes dividing N split in K and K is
imaginary quadratic, one has �.�N/ D �.�1/ D �1, and so the sign of ƒ.f; s; �/
is ��. Therefore, the sign ofƒ.s; f /�ƒ.s; f; �/, which is the completeL-function
of the base change of f to K , is �1. By the compatibility of the Eichler–Shimura
construction with the local Langlands correspondence (cf. [Car86]), the complete
L-functionƒ.s;E=K/ D ƒ.s;E=Q/�ƒ.s;E=Q; �/ isƒ.s; f /�ƒ.s; f; �/. Thus
the functional equation forƒ.s;E=K/ has sign�1, which is what one would expect
from the Birch and Swinnerton-Dyer conjecture and Theorem 1, sinceEŒ`�.K/ D 0
by condition (b).

Recall that the new level of the newform g is Np by condition (e). Let �0 be the
sign of the functional equation of ƒ.s; g/. Then, as in the case of f , the sign of the
functional equation ofƒ.s; g; �/ is �.�Np/� �0 D �0, since the primes dividingN
split in K , the fieldK is imaginary quadratic, and p is inert inK=Q. Consequently,
the sign ofƒ.s; g/�ƒ.s; g; �/, which is the completeL-function of the base change
of g to K , isC1.

The Birch and Swinnerton-Dyer conjecture for A=K , when combined with the
conjecture of Deligne and Gross [D79, Conj 2.7], predicts that the dimension of
of the F -vector space F ˝R A.K/ is equal to the order of vanishing of L.s; g/ �
L.s; g; �/ at s D 1. From the sign of the functional equation, one thus expects
F ˝R A.K/ to have even dimension. Theorem 2 implies that the dimension is 0, if `
does not divideP inE.Kp/, since I�1=R˝RA.K/ injects into Sel..A; i/=K; I / D
0. If ` does divide P in E.Kp/, then by Theorem 2, the group Sel..A; i/=K; I /
is 2-dimensional over R=I . If �.A=K/ is finite, then one can check using the
Cassels–Tate pairing that the dimensions of Sel.A=K; I / and of I�1=R ˝R A.K/
have the same parity; thus F ˝R A.K/ has dimension 2 or 0, according to whether
�.A=K/ŒI � D 0 or not.

Note that if ` does not divide P in E.Kp/, then, since the dimension of F ˝R
A.K/ is 0, one finds that the rank of A=Q is 0. The following lemma shows that this
conclusion is compatible with the parity prediction of the Birch and Swinnerton-
Dyer conjecture over Q.

Lemma 10. Suppose that ` does not divide P in E.Kp/. Then the sign �0 of the
functional equation ofƒ.s; g/ isC1.

Proof. Owing to the congruence between f and g, we have

ap.f / � ap.g/.p C 1/ .mod 	/; (6.1)
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as one sees by comparing the local Galois representations at p associated to f
and g. According to Lemma 1, the congruence in (6.1) holds with ap.g/ replaced
by ��. Since p C 1 is invertible modulo ` by assumption f), we have, therefore,
ap.g/ � �� .mod 	/. As ap.g/ D ˙1 and ` ¤ 2, we conclude that ap.g/ D ��.

Let ˛ be the root in Q` of the Hecke polynomial T 2 � ap.f /T C p that is
congruent to �� modulo 	, and let ˇ be the other root. Consider the oldform with
coefficients in Z`

h.z/ D f .z/ � f̌ .pz/

in the old space for f at level Np. The form h.z/ is an eigenfunction of the Hecke
operators Tq for q prime to Np and of Uq for q dividing Np; the eigenvalues at q
prime to p agree with those of f , and at p, we have Uph D ˛h. Since ˛ � ��
.mod 	/, the reductions g; h 2 S2.�0.Np/;F`/ are eigenfunctions for the Hecke
operators Tq for q prime toNp andUq for q dividingNp with the same eigenvalues.
Since both of these cuspidal eigenforms have a1 D 1, we have g D h by the q-
expansion principle.

For a prime q dividing N , let Wq be the Atkin–Lehner involution at q for level
N . Since f is a newform with new level N , it is an eigenfunction of all of the Wq .
Let Wqf D �qf . Then the sign � is �Q

qjN �q .
For each q dividingNp, let W 0q be the Atkin–Lehner involution at q at level Np.

Since g is a newform at level Np, it is an eigenfunction for all of the W 0q . One has
W 0p D �Up, and so W 0pg D �g. For q dividing N , we have W 0qh D �qh, and so

W 0qg D W 0qh D �qg. Therefore, W 0qg D �qg for q dividing N . The sign �0 of the
functional equation forƒ.s; g/ is thus

�� �
Y

qjN
�q D �2 D C1: ut

7 Examples

We now give two examples. The data consist of a 4-tuple .E;K; p; `/ satisfying
hypothesis (a)–(f). The examples are chosen so that the lifted form g has rational
Fourier coefficients. In this case, we have Q.g/ D Q andR D Z; the abelian variety
.A; i/ is an elliptic curve, and the I -descent on .A; i/ is simply the `-descentA. We
wish to thank Noam Elkies and William Stein for help with the computations.

The first example is:

E D X0.57/=hW3;W19i N D 57
K D Q.

p�59/ h D 3
p D 2 a2 D �2
` D 5
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The minimal equation of E is (cf. [BK75]):

y2 C y D x3 � x2 � 2x C 2 � D �32:19;

and the modular form f associated to E has q-expansion

f D q � 2q2 � q3 C 2q4 � 3q5 C 2q6 � 5q7 C : : : :

The sign in the functional equation of L.s;E/ D L.s; f / is � D �1, and E.Q/ is
free of rank 1, with generator e D .2; 1/. The Heegner point P associated to K is
equal to ˙2e. This is not divisible by ` D 5 in E.Kp/ D E.K2/.

There is a unique newform g of weight 2 and level 114 D Np where W 03 D
W 019 D C1 and W 02 D � D �1. It has q-expansion

g D q C q2 � q3 C q4 C 2q5 � q6 C 0q7 C : : :

congruent (mod 5) to the old form f .�/�2f .2�/. The elliptic curveA has minimal
equation

y2 C xy C y D x3 C x2 � 352x � 2431 � D 220:33:19:

The Selmer group Sel.A=K; 5/ D 0, and A.K/ has rank 0.
The second example is

E D X0.26/=hW2i N D 26

K D Q.
p�79/ h D 5

p D 3 a3 D 1

` D 5

The minimal equation of E is (cf. [BK75]):

y2 C xy C y D x3 � 5x � 8 � D �23:133

and the modular form f associated to E has q-expansion beginning

f D q � q2 C q3 C q4 � 3q5 � q6 � q7 C : : : :

The sign in the functional equation of L.s;E/ D L.s; f / is � D C1, and E.Q/ '
Z=3Z:

The Heegner point P associated to K has x-coordinate x.P / D 1700=711, and
generates the free group E.K//torsion. On the other hand, since the denominator
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of x.P / is divisible by p D 3, the point P reduces to the identity (mod 3) and is
divisible by ` D 5 in E.K3/. We note that E has three points over the field with
p D 3 elements, and fifteen points over the field with p2 D 9 elements.

In this case, g is the unique newform of weight 2 and level 78 D Np. It has
Fourier expansion beginning

g D q � q2 � q3 C q4 C 2q5 C q6 C 4q7 C : : :

and is congruent to the old form f .�/ C 3f .3�/ (mod 5). The elliptic curve A has
minimal equation

y2 C xy D x3 C x2 � 19x C 685 � D �216:35:13

and rank 0 over Q. Since P is locally divisible by 5 in E.K3/, the Selmer group
Sel.A=K; 5/ has dimension 2 over Z=5Z. In fact, A.K/ has rank 2. In the twisted
model over Q:

y2 C xy C y D x3 � 121830x � 341716424
� D �216:35:13:796

the points
.x; y/ D .2732; 139056/
.x; y/ D .410357;�263076219/

generate the Mordell–Weil group modulo torsion.

Appendix A. Descent with endomorphisms

In this appendix, we give an expanded discussion of the I -descent used on the
abelian variety A=K and its Néron model above. In order to have results general
enough to apply easily to group schemes such as the Néron model, we begin very
generally with some abstract constructions on sheaves. We then specialize to the
sheaves represented by smooth group schemes, explaining how to apply the abstract
results to such cases.

A.1 First descent with endomorphisms

Let R be a commutative, unital ring, and let I � R be an ideal. Let A be a sheaf
of R-modules on some site S , and assume that A is I -injective in the sense that the
map of sheaves

A D HomR.R;A/! HomR.I; A/
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is surjective. (Note that for any R-moduleM , the presheaf T 7! HomR.M;A.T //

is a sheaf.) The kernel of this map is HomR.R=I;A/. Associating to a sheaf
homomorphism R=I ! A the image of the Section 1 identifies HomR.R=I;A/

with AŒI �, the sheaf of sections of A killed by elements of I . We thus have an exact
sequence of sheaves

0 �����! AŒI � �����! A �����! HomR.I; A/ �����! 0:

The boundary map
HomR.I; A.S//! H1.S; AŒI �/

in the associated long exact sequence in cohomology is the Kummer map. From
the long exact sequence, we see that the kernel of the Kummer map is the image
of HomR.R;A.S// D A.S/ in HomR.I; A.S//. Similarly, the cokernel of the
Kummer map is the kernel of

H1.S; A/! H1.S;HomR.I; A//:

If I is invertible as an R-module, then we have

HomR.I; A/ D I�1 ˝R A;

where I�1 D HomR.I;R/. Here I�1 ˝R A denotes the presheaf

T 7! I�1 ˝R A.T /;
which is a sheaf since I�1 is a flat R-module. Thus we have the exact sequence of
sheaves

0 �����! AŒI � �����! A �����! I�1 ˝R A �����! 0:

The kernel of the Kummer map

I�1 ˝R A.S/! H1.S; AŒI �/

is the image ofR˝RA.S/ D A.S/, and so the Kummer image is .I�1=R/˝RA.S/,
or, equivalently, it is I�1 ˝R .R=I ˝R A.S//. In this case, we also have

H1.S; I�1 ˝R A/ D I�1 ˝R H1.S; A/:

The cokernel of the Kummer map is then the kernel of

H1.S; A/! I�1 ˝R H1.S; A/;

which is H1.S; A/ŒI �, the I -torsion of the R-module H1.S; A/.
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If S is the small étale site of Spec.K/ for a number field K , we define
Sel.A=K; I /, the I -Selmer group of A, to be the subspace of classes x 2
H1.K;AŒI �/ whose local restrictions xv 2 H1.Kv; AŒI �/ lie in the image of
HomR.I; A.Kv// under the local Kummer map for all places v of K . As in the
standard case with R D Z and I D .`/, the global Kummer map

HomR.I; A.K//! H1.K;AŒI �/

factors through Sel.A=K; I /.
In topology the most familiar analogue of the above formalism is the following:

letM be anR-module that has no I -torsion, so thatM ! HomR.I;M/ is injective.
Let N be the cokernel, so that we have the exact sequence of constant sheaves of
R-modules on any topological space X

0 �����! M �����! HomR.I;M/ �����! N �����! 0:

Passing to cohomology, we find

: : : �����! Hi .X;M/ �����! Hi .X;HomR.I;M// �����!
Hi .X;N / �����! HiC1.X;M/ �����! : : : ;

which is a Bockstein-type sequence in the case R D Z and I D .`/.
To recast the above discussion in this style, we replace the sheaves A and

HomR.I; A/ with the complexes

M D AŒ�1� and M 0 D HomR.I; A/Œ�1�;

concentrated in degree 1. The I -injectivity of A translates into something like
I -torsion freeness of M : the exact sequence of sheaves

0 �����! AŒI � �����! A �����! HomR.I; A/ �����! 0

gives rise to a distinguished triangle

M !M 0 ! AŒI �!MŒ1�:

The sheaf AŒI � thus plays the same role as the cokernel N in the picture over a
topological space X , and the Kummer map is

Hom.I; A.S// D H1.S;M 0/! H1.S; AŒI �/:

For a concrete example, let S be the fppf site of a field K , and let A is the
sheaf represented by an abelian variety overK on whichR acts as endomorphisms.
Assume that I is invertible as an R-module. Then, as explained in the next section,
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HomR.I; A/ D I�1 ˝R A is also represented by an abelian variety, on which R
acts as endomorphisms. Furthermore, the natural map A! I�1˝R A of sheaves is
surjective. The complexes M and M 0 are the 1-motives associated to these abelian
varieties, and the surjection of sheaves A ! HomR.I; A/ becomes an injection of
motives M ! M 0. The sheaf AŒI � (in degree 0) stands in for the (hypothetical)
torsion motive coker.M !M 0/.

A.2 Smooth R-module schemes

Let R and I be as in �A.1. Assume moreover that I is finitely presented as an R-
module. Let X be a scheme and let G=X be an R-module scheme. The choice of
a presentation of I produces a scheme representing the fppf sheaf HomR.I;G/: let
R˚r ! R˚s ! I ! 0 be an R-module presentation. Then the kernel of G˚r !
G˚s represents HomR.I;G/. We fix a presentation of I and write HomR.I;G/

for the representing scheme as well as the sheaf. Many scheme-theoretic properties
of G=X carry over to HomR.I;G/. For instance, if G=X is separated (resp. quasi-
compact, quasi-separated, locally of finite type, locally of finite presentation, proper,
...), then so is HomR.I;G/=X . Note finally that if I is invertible as an R-module
and G=X has connected geometric fibers, then so does HomR.I;G/: the surjection
R˚s ! I splits, and so HomR.I;G/=X is a factor ofG˚r=X , which has connected
geometric fibers.

Assume from now on thatG=X is smooth and that I is invertible as anR-module.
It follows from the functorial criterion for smoothness that HomR.I;G/ is smooth
over R. Furthermore, there is a natural isomorphism HomR.I;Lie.G=X// D
Lie.HomR.I;G/=X/, and so the relative dimensions of G=X and HomR.I;G/=X

agree.
The kernel and cokernel of the map on Lie algebras

Lie.G=X/! Lie.I�1 ˝R G=X/ D I�1 ˝R Lie.G=X/

are coherent sheaves on X on which R acts and that are annihilated by I . Thus
if I contains the image of ` 2 Z such that ` is invertible on X , this map is an
isomorphism, and G ! I�1 ˝R G is étale. By [SGA70], Exposé VIB, Proposition
3.11, if G=X has connected geometric fibers, the map G ! HomR.I;G/ is étale
and surjective, and so the sheaf on the small étale (or fppf or fpqf) site of X
represented by G=X is I -injective.

Alternatively, assume that G=X has connected and semi-abelian geometric
fibers, and that I contains the image of any non-zero ` 2 Z. The multiplication-
by-` endomorphism of G is then surjective. Since G ! I�1 ˝R G factors
through multiplication by `, the geometric fibers of I�1 ˝R G=X are connected,
and the relative dimensions of G=X and I�1 ˝R G=X agree, the homomorphism
G ! I�1 ˝R G is also surjective. By [SGA70], Exposé VIB, Proposition 3.11, the
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homomorphismG ! I�1˝R G is then flat and surjective. Consequently, the sheaf
on the fppf (or fpqf) site of X represented by G=X is I -injective.

In either of these cases, since G ! I�1 ˝R G is flat, the kernel GŒI �=X is
flat and quasi-finite for dimensional reasons. If G=X is proper, then GŒI �=X is
moreover finite and locally free.

References

[BCDT01] Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modu-
larity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001),
no. 4, 843–939 (electronic).

[BD99] M. Bertolini and H. Darmon, Euler systems and Jochnowitz congruences, Amer. J.
Math. 121 (1999), no. 2, 259–281.

[BD05] M. Bertolini and H. Darmon, Iwasawa’s main conjecture for elliptic curves over
anticyclotomic Zp-extensions, Annals of Mathematics 162 (2005), 1–64.

[BK75] B. J. Birch and W. Kuyk (eds.), Modular functions of one variable. IV, Springer-
Verlag, Berlin, 1975, Lecture Notes in Mathematics, Vol. 476.

[BL91] Siegfried Bosch and Werner Lütkebohmert, Degenerating abelian varieties, Topology
30 (1991), no. 4, 653–698.

[BSD75] B. J. Birch and H. P. F. Swinnerton-Dyer, Elliptic curves and modular functions,
Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp,
Antwerp, 1972), Springer, Berlin, 1975, pp. 2–32. Lecture Notes in Math., Vol. 476.

[Car86] Henri Carayol, Sur les représentations l-adiques associées aux formes modulaires de
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elliptic divisibility sequences
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Abstract Let P be a nontorsion rational point on an elliptic curve E, given by
a minimal Weierstrass equation, and write the first coordinate of nP as An=D2

n,
a fraction in lowest terms. The sequence of values Dn is the elliptic divisibility
sequence (EDS) associated to P . A prime p is a primitive divisor ofDn if p divides
Dn, and p does not divide any earlier term in the sequence. The Zsigmondy set for
P is the set of n such that Dn has no primitive divisors. It is known that Z is finite.
In the first part of the paper we prove various uniform bounds for the size of the
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Zsigmondy set is bounded independently ofE and P , and (2) if the abc Conjecture
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1 Introduction

Let E=Q be an elliptic curve given by a Weierstrass equation

y2 C a1xy C a3y D x3 C a2x2 C a4x C a6; a1; : : : ; a6 2 Z (1)

and let P 2 E.Q/ be a point of infinite order. For each n � 1 the nth iterate of P
has the form

nP D
�
An

D2
n

;
Bn

D3
n

�

;

where the fractions are written in lowest terms and we assume that Dn > 0. The
sequence DE;P D .Dn/n�1 is called the elliptic divisibility sequence associated
to E and P . It is a divisibility sequence in the sense that if mjn, then DmjDn, and
in fact it satisfies the stronger divisibility relation

Dgcd.m;n/ D gcd.Dm;Dn/ for all m; n � 1.

(See Section 1.1 for a general statement over Dedekind domains.)
The study of the arithmetic properties of elliptic divisibility sequences was

initiated by Morgan Ward in the 1940’s [34, 35] and has seen a surge of interest
in recent years, see for example [1, 2, 5, 6, 8–13, 18, 23, 31–33].

If C D .Cn/n�1 is any divisibility sequence, one says that a prime p is a primitive
divisor of Cn if pjCn but p − C1C2 � � �Cn�1. Primitive divisors of certain divisibility
sequences were studied by Zsigmondy [37] in the 19th century. We define the
Zsigmondy set of a divisibility sequence C to be

Z.C/ D fn � 1 W Cn does not have a primitive divisorg:
Zsigmondy was especially interested in divisibility sequences defined by binary
linear recurrences satisfying appropriate growth conditions. Bilu, Hanrot, and
Voutier [4] recently completed the proof that all of these Lucas and Lehmer
sequences satisfy maxZ.C/ � 30, and there are examples to show that this bound
is sharp. They also completely describe all such sequences with maxZ.C/ � 12.
We note that Lucas divisibility sequences are associated to singular elliptic curves,
so the material in this paper is, in some sense, a direct generalization of these
earlier results.

It is a nontrivial fact that the Zsigmondy set Z.DE;P / of an elliptic divisibility
sequence is finite, see [29]. It is natural to ask if there is a uniform bound
for Z.DE;P / as there is for the case of binary linear recurrences. The answer is no
unless some care is taken, since a simple change of variables .x; y/ 7! .u2x; u3y/
allows one to multiply every term of the sequence by a power of u. This is the
same trick that allows the creation of elliptic curves with arbitrarily many integer
points, and the solution to both problems is the same, namely restrict attention to
minimal Weierstrass equations. With this restriction, we prove a reasonably strong
uniform bound for the number of elements in the set Z.DE;P /, and assuming the
abc-conjecture, we show that #Z.DE;P / is bounded independently of E and P .
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Theorem 1. Let E=Q be an elliptic curve given by a minimal Weierstrass equa-
tion (1), let P 2 E.Q/ be a point of infinite order, and let DE;P be the associated
elliptic divisibility sequence.

(a) #Z.DE;P / is bounded by a constant depending only on the number of primes at
which E has split multiplicative reduction.

(b) If the abc-conjecture over Q is true, then there is an absolute bound for
#Z.DE;P / that is completely independent of E and P .

Remark 1. Primes of split multiplicative reduction necessarily divide the denom-
inator of the j -invariant, so a slightly weaker version of (a) is that #Z.DE;P /

is bounded by a constant depending only on the number of primes dividing the
denominator of j.E/. So, for example, it is unconditionally true that there is an
absolute bound for #Z.DE;P / as E varies over all elliptic curves with integral j -
invariant.

For (b), we prove an unconditional theorem that implies the stated result. We
show that #Z.DE;P / is bounded by a constant depending only on the Szpiro ratio
of E=Q defined by

Szpiro Ratio.E=Q/ D log jDiscriminantE=Qj
log jConductorE=Qj :

It is well known that the (weak) abc-conjecture implies that the Szpiro ratio
is bounded independently of E. More precisely, Szpiro has conjectured that for
any � > 0 there are only finitely many elliptic curves E=Q whose Szpiro ratio
exceeds 6C �. See [16] for a discussion.

Remark 2. We actually prove a general version of Theorem 1 over number fields.
See Theorem 7 in Section 1.3 for the exact statement.

Theorem 1 gives uniform bounds for the size of the Zsigmondy setZ.DE;P /, but
it does not provide an effective bound for the largest element. Such upper bounds
are not known in general for elliptic divisibility sequences, but various partial results
are known. For illustrative purposes, we quote a result due to the first author.

Theorem 2. (Ingram [18]) LetN be a squarefree integer, letE be the elliptic curve
y2 D x3 �N2x, and let P 2 E.Q/ be a point of infinite order. Then

Z.DE;P /\ 2Z � f2g and Z.DE;P /\ 5Z D ;:
Further, if P 2 2E.Q/ or if x.P / < 0, then Z.DE;P / � f1; 2g.

The main contribution of [18] is to provide, for fixed n � 3, an effective method
for finding all elliptic divisibility sequences DE;P arising from curves of the above
form, such that n 2 Z.DE;P /. The problem of finding all such sequences is reduced
to that of solving a certain Thue–Mahler equation involving the binary form

Y

Q

.X � xQY /;
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where Q ranges over points on E. NQ/ of exact order n. Note that this is entirely
analogous to the method used in [4], originally outlined by Schinzel [21], wherein
the problem of finding all Lucas sequences C such that n 2 Z.C/ is reduced
to solving a Thue-Mahler equation involving the nth cyclotomic polynomial.
Unfortunately, the analogy to [4] does not provide a bound on maxZ.DE;P /, but
bounds produced by ad hoc methods in [10] can be reduced, using the above
observation, to those presented in Theorem 2.

This idea rests on the observation that the points of order n onE vary predictably
as E runs over a family of quadratic twists of a fixed curve. Thus, one may show
that, for fixed n � 3, the collection of elliptic divisibility sequences DE;P such that
n 2 Z.DE;P /, where E runs over the quadratic twists of any fixed elliptic curve, is
finite and effectively computable. In Section 1.4, we present a result to this effect
over number fields. Note that the proof can easily be modified to treat families of
curves defined by quartic or sextic twisting, as in [18].

The methods used in [10] to obtain bounds on the largest element of Z.DE;P /

\ 2Z make critical use of the existence of rational points of order two on the
curves in question, affording one a strong, explicit lower bound on the denominators
of points that are divisible by two in the Mordell–Weil group. If one is willing
to forsake the effective computability of these bounds, one may generalize these
techniques. In the proof of theorem 6 we use Roth’s theorem on diophantine
approximation to show that

max.Z.DE;P / \ pZ/
may be bounded for any sufficiently large prime p if E ranges, again, over the
quadratic twists of a fixed elliptic curve.

Finally, in Section 1.5 we turn our attention back to elliptic divisibility sequences
over Q with the aim of seeing what certain common conjectures tell us about
maxZ.DE;P /. We show that if Hall’s Conjecture is true, then Z.DE;P / �
f1; 2; 3; 4g for all but finitely many elliptic divisibility sequences arising from
(minimal) curves of the form E W y2 D x3CM . Analogous results can be obtained
for other families with fixed j -invariant if one accepts a generalization of Hall’s
Conjecture due to Lang. Even with these generous assumptions, a uniform bound
on Z.DE;P / seems out of reach.

Acknowledgements The first author’s research supported in part by a grant from NSERC of
Canada. The second author’s research supported by NSA grant H98230-04-1-0064.

1.1 Elliptic divisibility sequences over Dedekind domains

In this section we prove some basic theorems concerning elliptic divisibility
sequences over characteristic 0 Dedekind domains R. Let K be the fraction field
of R and let E=K be an elliptic curve given by a Weierstrass equation (1) with
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coefficients ai 2 R. For any nonzero point P D .xP ; yP / 2 E.K/ we define the
denominator ideal of P to be the ideal DP � R specified by

ordp.DP / D 1

2
max

˚

0;� ordp.xP /
�

for all 0 ¤ p 2 Spec.R/.

Here ordp W K� � Z is the normalized valuation associated to p. The elliptic
divisibility sequence (EDS) associated to a nontorsion point P 2 E.K/ is the
sequence of ideals

DE;P D .DnP /n�1:

Proposition 1. Let DE;P be an EDS as above and let p 2 Spec.R/ be a nonzero
prime ideal. Let p be the characteristic of R=p and let ep D ordp.p/ be the
ramification index of p.

(a) ordp.Dgcd.m;n/P / D min
˚

ordp.DmP /; ordp.DnP /
�

for all m; n � 1.

(b) If ordp.DnP / > ep=.p � 1/, then

ordp.DknP / D ordp.DnP /C ordp.k/ for all k � 1.

Proof. It suffices to prove the proposition after localizing and completing R and K
at p. For each integer i � 1 let

Ei.K/ D
˚

Q 2 E.K/ W � ordp.xQ/ � 2i
�

:

We also let E0.K/ D E.K/, which is not quite standard notation, but suffices
for our purposes. Then all of the Ei.K/ are subgroups of E, see for example [27,
Chap. IV]. We also observe that

ordp.DQ/ D maxfi � 0 W Q 2 Ei.K/g:

Letm and n be positive integers and let d D gcd.m; n/. Write d D amC bn for
some a; b 2 Z. Further let

i D ordp.DmP /; j D ordp.DnP /; and k D ordp.DdP /:

Thus mP 2 Ei.K/ and nP 2 Ej .K/. The fact that the Ei.K/ are subgroups
of E.K/ allows us to conclude that

dP D a.mP/C b.nP / 2 Ei.K/C Ej .K/ D Eminfi;j g.K/:

Hence

k D ordp.DdP / � minfi; j g:
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For the opposite inequality, we use the fact that d jm to conclude that

mP D m

d
� dP 2 m

d
Ek.K/ � Ek.K/;

so i D ordp.DmP / � k. Similarly j � k, which completes the proof of (a).
In order to prove (b), we use the fact that the subgroup E1.K/ has the structure

of a formal group and the Ei.K/ form a filtration of subgroups of E1.K/. Further,
for i > ep=.p � 1/, there are filtration compatible isomorphisms

Ei.K/ �! pi ; (2)

where the group structure on pi is simply addition. (See [27, Chap. IV] for proofs
of these basic facts.)

Now suppose that ordp.DnP / > ep=.p�1/. Then we can identify nP with some
z 2 R satisfying ordp.z/ D ordp.DnP /, and the formal group isomorphism (2) tells
us that

ordp.DknP / D ordp.kz/ D ordp.k/C ordp.z/ D ordp.k/C ordp.DnP /:

This completes the proof of (b).

Definition 1. Let DE;P be an elliptic divisbility sequence as above. The rank of
apparition of DE;P at the prime p is the smallest integer rp D rp.E; P / with the
property that p dividesDrpP .

Definition 2. We say that a prime p is exceptional for the elliptic divisibility
sequence DE;P if

ordp.DrpP / �
ep

p � 1:

We define a modified rank of apparition sp by

sp D min

�

s � 1 W ordp.DsP / >
ep

p � 1
�

: (3)

Thus p is exceptional if and only if sp > rp.

Remark 3. If p is exceptional, then necessarily

1 � ordp.DrpP / �
ep

p � 1 �
ŒK W Q�
p � 1 ;

so p � ŒK W Q�C 1. In particular, if K is a number field, then there are only finitely
many exceptional primes.

Remark 4. If the given Weierstrass equation forE has good reduction at p, then rp
is the order of P in the groupE.Fp/.

Proposition 2. Let K=Q be a number field of degree d and let DE;P be an elliptic
divisibility sequence. Suppose that m 2 Z.DE;P / is in the Zsigmondy set of DE;P .
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Then eitherm D sp for some exceptional prime p or else

log NK=QDmP �
X

kjm with
m=k prime

log NK=QDkP C d log
�

2d
�C d log.m/:

Proof. Let p be a prime dividingDmP , let r D rp be the rank of apparition of p, and
and let s D sp be the modified rank of apparition of p defined by (3). We consider
several cases:

Case 1. s − m.
We know that r jm, so in particular we see that s ¤ r . In other words, the prime p is
exceptional. Using the strong divisibility property Proposition 1(a), we find that

ordp
�

Dgcd.s;m/P
� D min

˚

ordp.DsP /; ordp.DmP /
�

:

The assumption that s − m implies that gcd.s;m/ is strictly smaller than s, so the
definition of the modified rank of apparition tells us that

ordp
�

Dgcd.s;m/P
� � ep

p � 1 < ordp.DsP /:

We conclude that

ordp.DmP / D ordp
�

Dgcd.s;m/P
� � ep

p � 1 :

Hence the product over all primes in Case 1 satisfies

Y

p
sp−m

pordp.DmP /

ˇ
ˇ
ˇ
ˇ
ˇ

Y

p

Y

pjp
pbep=.p�1/c

ˇ
ˇ
ˇ
ˇ
ˇ

Y

p�ŒKWQ�C1
p1=.p�1/ � 2ŒK W Q�:

(For our purposes, it would suffice to know that the penultimate product is bounded
by a constant depending only on ŒK W Q�. We do not actually need the sharp bound
of 2ŒK W Q�.)
Case 2. sjm and s < m.
In this case we can apply Proposition 1(b) to obtain the estimate

ordp.DmP / D ordp.Ds.m=s/P / D ordp.DsP /C ordp.m=s/:

We also note that if spjm with sp ¤ m, then sp necessarily divides some divisor k
of m having the property that m=k is prime. Hence the product over all primes
satisfying Case 2 is bounded by

Y

p
spjm
sp¤m

pordp.DmP /

ˇ
ˇ
ˇ
ˇ
ˇ

Y

kjm with
m=k prime

Y

p

pordp.DkP /Cordp.m=k/

ˇ
ˇ
ˇ
ˇ
ˇ
m

Y

kjm with
m=k prime

DkP :

(In this last expression, the factor ofmmay be replaced by the squarefree part ofm.)
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Case 3. s D m.
If p is exceptional, we have ruled this out by assumption. And if p is not exceptional,
then s D r , and the assumption that m is in the Zsigmondy set implies that m ¤ r .
Hence Case (3) cannot occur.

We now combine the three cases to estimate the norm of DmP . To ease notation,
we let d D ŒK W Q�. Then

log NK=QDmP D
X

p2Case 1

ordp.DmP / log NK=QpC
X

p2Case 2

ordp.DmP / log NK=Qp

� d log
�

2d
�C d log.m/C

X

kjm with
m=k prime

log NK=QDkP :

This completes the proof of Proposition 2.

We next prove an inequality relating the terms in an elliptic divisibility se-
quence DE;P to the heights of the multiples of P . Roughly speaking, the quan-
tity log NK=QDQ is the nonarchimedean contribution to the canonical height OhE.Q/,
so we would expect log NK=QDQ to be bounded by OhE.Q/. This is indeed true, and
we can make the dependence on E explicit by using standard results relating naive
heights to canonical heights. Thus the following result is comparatively elementary
compared to Theorem 3 that we prove in Section 1.2.

Proposition 3. Let E=K be an elliptic curve given by a Weierstrass equation (1),
let P 2 E.K/ be a nontorsion point, and define the height of E to be

h.E/ D 1C h�Œ1; a121 ; a62; a43; a34; a26�
�

:

Then

1

ŒK W Q� log NK=QDP � OhE.P /CO
�

h.E/
�

;

where the big-O constant is absolute.

Proof. With appropriate normalizations on the absolute values in K , the absolute
logarithmic Weil height of x.P / is

h
�

x.P /
� D

X

v2MK

max
˚

0;�v.x.P //
�

:

If we sum over only the nonarchimedean places we obtain

h
�

x.P /
� �

X

v2M0
K

max
˚

0;�v.x.P //
� D 2

ŒK W Q� log NK=QDP :
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Finally, we use a uniform estimate for the difference between the Weil height and
the canonical height

Oh.P / D 1

2
h
�

x.P /
�CO�1C h.E/�; (4)

see [7, 30, 36] for example, where the big-O constant is absolute.

1.2 A uniform quantitative version of Siegel’s integrality theorem
for elliptic curves

A famous theorem of Siegel says that an elliptic curve has only finitely many integral
points. Siegel actually proved something much stronger. For any point P 2 E.Q/,
we write x.P / D AP=D2

P in lowest terms with DP � 1 and we set

h.P / D 1

2
log max

˚jAP j;D2
P

�

:

Then Siegel proved that

lim
P2E.Q/
h.P /!1

logD2
P

h.P /
D 1: (5)

(See [27, IX.3.3].) Using the fact that h.nP / � n2 Oh.P /, where Oh is the canonical
height onE , this shows that elliptic divisibility sequences over Q grow very rapidly,

lim
n!1

logDnP

n2
D Oh.P / > 0: (6)

And indeed it is an easy exercise using Siegel’s deep result (6) and the elementary
estimates given in Proposition 1 to prove that the Zsigmondy set Z.DnP / of an
elliptic divisibility sequence is finite, see [29] or [27, Exercise 9.4].

Siegel’s proof of the finiteness of E.Z/ can be used to give an upper bound
for #E.Z/, but the bound depends rather badly on the equation defining E.
Dem’janenko in a special case and Lang in general [19] made the following
conjecture.

Conjecture 1. (Lang–Dem’janenko) Let E=Q be an elliptic curve given by a
minimal Weierstrass equation. Then #E.Z/ is bounded by a constant that depends
only on the rank of E.Q/.

As in Siegel’s work, rather than simply bounding the size of E.Z/, one can ask
for a uniform bound for the number of points in E.Q/ that do not satisfy some
inequality related to the limit (5). A bound of this sort was proven by the second
author in [28], and in this section we apply the results from [28] to deduce uniform
information about Zsigmondy sets of elliptic divisibility sequences.
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However, we need to take some care, because an elliptic curve E=Q and a
nontorsion point P 2 E.Q/ do not completely determine an elliptic divisibility
sequence. The reason is that the definition of the associated EDS uses a specific
Weierstrass equation for E=Q. One solution is to take a global minimal Weierstrass
equation, which works fine over Q, but unfortunately if K has class number larger
than 1, then there exist elliptic curves E=K that do not have a global minimal
Weierstrass equation [3, 26]. In this case one could work with a Néron model
forE=K , but instead we will simply put the dependence on the choice of Weierstrass
equation into our notation.

Let K be a number field and let RK be its ring of integers. For a given 5-tuple
of values a D .a1; a2; a3; a4; a6/ 2 R5K , let Ea denote the Weierstrass equation (1)
with the given coefficients and define the height of Ea to be

h.Ea/ D 1C h
�

Œ1; a121 ; a
6
2; a

4
3; a

3
4; a

2
6�
�

:

The canonical height Oh is a positive definite quadratic form on the Mordell–Weil
groupEa.K/ modulo torsion, and we write

�.Ea=K/ D min
˚ Oh.Q/ W Q 2 Ea.K/; Q nontorsion

�

:

In the language of the geometry of numbers, �.Ea=K/ is the first minimum of the
quadratic form Oh on the lattice Ea.K/=Ea.K/tors.

We can now state the special case of [28] which we need to give a uniform bound
for the size of the Zsigmondy set of an EDS.

Theorem 3. With notation as above, for all � > 0 and all d � 1 there is a
constant C D C.�; d/ with the following property: Let K=Q be a number field
of degree at most d , let a 2 R5K be a 5-tuple so that Ea is an elliptic curve,
let P 2 Ea.K/ be a nontorsion point, and let M � 1. Form the elliptic divisibility
sequence .DnP /n�1 as described in Section 1.1. Then the set

�

n � 1 W 1

ŒK W Q� log NK=Q.DnP / � .1 � �/n2 Oh.P /CMh.Ea/

�

has at most C
p

Mh.Ea/=�.Ea=K/ elements.

Proof. This is a version of Theorem 4.1 in [28], see also [14] for similar results with
explicit (albeit huge) constants. We briefly indicate how the results in [28] imply our
statement. A direct application of [28, Theorem 4.1] to the family of Weierstrass
equations E ! P

5 yields

#

�

P 2 Ea.K/ W
X

v2S
�Ea;.O/.P; v/ � � OhEa.P / �Mh.Ea/

�

� #Ea.K/tors � C1C#SCrankEa.K/

�
Mh.Ea/

�.Ea=K/

� 1
2 rankEa.K/

: (7)
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(We refer the reader to [28] for a complete description of the notation. In particular,
the constant C depends only on ŒK W Q� and �.) This is not quite what we want,
since we are dealing with a rank-one torsion-free subgroup of Ea.K/, namely the
subgroup generated by a particular point P 2 Ea.K/. However, the proof in [28]
is easily adapted to subgroups of E.K/, so in (7) we can replace Ea.K/ by the
set fnP W n 2 Zg, which also means that we put #Ea.K/tors D 1 and rankEa.K/ D
1. Further, we take S D M1K to be the set of archimedean places of K , so we can
absorb the dependence on #S into the constant C . Then for P 2 Ea.K/ we have
the estimate (for a new constant C D C.ŒK W Q�; �/)

#

�

n � 1 W
X

v2M1K
�Ea;.O/.nP; v/ � � OhEa.nP / �Mh.Ea/

�

� C
s

Mh.Ea/

�.Ea=K/
: (8)

The local height function �Ea;.O/ is given by

�Ea;.O/.Q; v/ D
1

2
maxf0;�v.x.Q//g;

where the valuations are normalized so that the absolute logarithmic height of ˛ 2
K� is given by the formula h.˛/ DPv maxf0;�v.˛/g. Hence

X

M1K

�Ea ;.O/.Q; v/ D
1

2

X

M1K

maxf0;�v.x.Q//g

D 1

2
h.x.Q//� 1

2

X

M0
K

maxf0;�v.x/g

D 1

2
h.x.Q//� 1

ŒK W Q� log NK=Q.DQ/

D OhEa.Q/CO.h.Ea// � 1

ŒK W Q� log NK=Q.DQ/:

(For the last line we have again used (4). Note that the big-O constant is absolute.)
Putting Q D nP yields

X

M1K

�Ea ;.O/.nP; v/ D OhEa.nP / �
1

ŒK W Q� log NK=Q.DnP /CO.h.Ea//:

Substituting this into (8) gives

#

�

n � 1 W .1 � �/ OhEa.nP /C .M � C 0/h.Ea/ � 1

ŒK W Q� log NK=Q.DnP /

�

� C
s

Mh.Ea/

�.Ea=K/
; (9)
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where C 0 � 0 is an absolute constant. Finally, we replace M by M C C 0, use the
inequalityMCC 0 � .1CC 0/M , and increase the value of C accordingly. Then (9)
and the canonical height property Oh.nP / D n2 Oh.P / give the desired result, which
completes the proof of Theorem 3.

1.3 A uniform Zsigmondy estimate

We have now assembled all the tools needed to prove a uniform bound for the size
of the Zsigmondy set of an elliptic divisibility sequence.

Theorem 4. Continuing with the notation from Sections 1.2 and 1.1, let a 2 R5K so
that Ea is an elliptic curve and let P 2 Ea.K/ be a nontorsion point. Then there is
a constant C D C �ŒK W Q�� such that

#Z.DEa;P / � Ch.Ea/=�.Ea=K/:

Proof. As noted in Remark 3, the number of exceptional primes is bounded by a
constant depending only on ŒK W Q�, so without loss of generality we may discard
from Z.DEa ;P / all m with the property that m D sp for some exceptional prime p.

Let m 2 Z.DEa ;P /. Then Theorem 3 (with � D 1
4

and M D 1) says that with at

most O
�p

h.Ea/=�.Ea=K/
�

exceptions, we have

1

ŒK W Q� log NK=Q.DmP / � 3

4
m2 Oh.P /: (10)

In the other direction, Propositions 2 and 3 allow us to estimate

1

ŒK W Q� log NK=QDmP

�
X

kjm; k¤m

1

ŒK W Q� log NK=QDkP C log
�

2ŒK W Q��Cpm log.m/

�
X

kjm; k¤m

� Oh.kP /CO.h.Ea//
�C log

�

2ŒK W Q��Cpm log.m/

�
X

kjm; k¤m
k2 Oh.P /CO.mh.Ea//: (11)

We also have the trivial estimate

X

kjm; k¤m
k2 � m2

X

kjm; k�2

1

k2
� m2

�

�.2/� 1�: (12)
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Combining (10), (11) and (12) yields

�
7
4
� �.2/�m2 Oh.P / � O�mh.Ea/

�

:

Since 7
4
� �.2/ 	 0:105 > 0, we find that

m � O�h.Ea/= Oh.P /
� � O�h.Ea/=�.Ea=K/

�

:

All of the big-O constants depend only on ŒK W Q�, so this completes the proof of
Theorem 4.

In order to apply Theorem 4, we need some sort of upper bound for the
ratio h.Ea/=�.Ea=K/. The denominator depends only on the K-isomorphism class
of Ea, while the numerator depends on the particular Weierstrass model. For
example, if we let

u ? a D Œ1; ua1; u2a2; u3a3; u4a4; u6a6�;

then Eu?a is K-isomorphic to Ea, but it is not hard to see that h.Eu?a/ D h.Ea/C
12h.u/ C O.1/. Thus in order to obtain a completely uniform upper bound in
Theorem 4, we must put some restriction on the choice of a.

Definition 3. Put a partial order on R5K by setting a 
 b if

Ea Š=K Eb and NK=Q Disc.Ea/ � NK=Q Disc.Eb/:

A Weierstrass equation Ea is called K-quasiminimal if a is a minimal element for
this partial order.

It is clear that every elliptic curve has a quasiminimal Weierstrass equation. The
following is a natural generalization of a conjecture of Lang [19], which he made
based on some preliminary work of Dem’janenko.

Conjecture 2. (Lang) LetK=Q be a number field. There is a positive constantC D
C.K/ such that for all K-quasiminimal Weierstrass equations Ea overK we have

�.Ea=K/ � Ch.Ea/:

Clearly Lang’s Conjecture 2 combined with Theorem 4 imply that the size of
the Zsigmondy set of an elliptic divisibility sequence on a K-quasiminimal elliptic
curve is bounded by a constant depending only on K=Q. We mention two other
conjectures that turn out to be related to Lang’s conjecture.

Definition 4. The Szpiro ratio of an elliptic curve E=K is the quantity

�.E=K/ D log NK=Q Disc.E=K/

log NK=Q Cond.E=K/
;
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where Cond.E=K/ is the conductor of E=K . (For our purposes, it would suffice
to replace Cond.E=K/ with the product of the primes at which E=K has bad
reduction.)

Conjecture 3. (Szpiro) For any � > 0 there are only finitely many elliptic
curves E=K satisfying �.E=K/ � 6C �.

It is well known that the abc-conjecture of Masser and Osterlé implies Szpiro’s
conjecture. Less obvious is the fact that Lang’s conjecture is a consequence of
Szpiro’s conjecture.

Theorem 5. (Hindry–Silverman [16]) Szpiro’s Conjecture 3 implies Lang’s Con-
jecture 2. More precisely, there is a positive constant C D C.K/ such that for all
K-quasiminimal Weierstrass equationsEa overK we have

�.Ea=K/ � C1C�.Ea/h.Ea/:

We also quote another partial result on Lang’s conjecture in which the constant
depends in a mild way on the elliptic curve.

Theorem 6. (Silverman [25]) With notation as above, let �.Ea/ be the number of
primes of K at which Ea has split multiplicative reduction. Then

�.Ea=K/ � C1C�.Ea/h.Ea/:

Combining all of this material yields a number field version of the result
(Theorem 1) stated in the introduction.

Theorem 7. Let K=Q be a number field, let E=K be an elliptic curve given by a
K-quasiminimal Weierstrass equation, let �.E=K/ be the Szpiro ratio ofE=K , and
let �.E=K/ be the number of primes of K at which E=K has split multiplicative
reduction. Let P 2 E.K/ be a point of infinite order, let DE;P be the associated
elliptic divisibility sequence, and consider its Zsigmondy set Z.DE;P /. There is a
constant C D C.K/ depending only on K such that:

(a) #Z.DE;P / � C1Cn.E=K/.

(b) #Z.DE;P / � C1C�.E=K/.

If Szpiro’s conjecture or the abc-conjecture is true, then #Z.DE;P / is bounded by a
constant that depends only on K .

Proof. The estimate in (a) follows by combining Theorems 4 and 6, and the estimate
in (b) follows similarly by combining Theorems 4 and 5. The final statement is clear,
since Szpiro’s conjecture says that �.E=K/ is bounded independently of E, and it
is well known that the abc-conjecture implies Szpiro’s conjecture. (Note that we
actually only need a weak version of either conjecture, i.e., it suffices to have any
exponent, we do not need 6C� in Szpiro’s conjecture or 1C� in the abc-conjecture.)
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1.4 Results for quadratic twists

Theorem 7 bounds #Z.DE;P / for all curves E=K given by a K-quasiminimal
Weierstrass equation with at most a fixed number of primes dividing the denomi-
nator of j.E/. It is certainly true, then, that #Z.DE;P / is bounded as E varies over
the K-quasiminimal quadratic twists of a fixed curve. It is natural to ask whether,
in this specific context, one can bound maxZ.DE;P / uniformly. Although a result
of this sort seems out of reach at the moment, we can prove a strong bound in the
case in which P is in the image of an isogeny. In particular, if we consider, for a
sufficiently large prime p, nontorsion points P 2 pE.K/ as E runs over (minimal)
quadratic twists of some fixed curve, we can show that maxZ.DE;P / is bounded by
a constant depending only on j.E/ and p.

Explicit results along these lines, over Q and with p D 2, are given in [10], and
we use similar techniques to obtain the more general results described above. In
[18], the first author gave sharpened estimates for maxZ.DE;P / when P 2 E.Q/
and j.E/ 2 f0; 1728g. Specifically, if we consider minimal E=Q of the form

y2 D x3 C Ax or y2 D x3 C A;

then for a fixed integer k greater than 3 in the first case and 4 in the second, it
was proven that the set of pairs f.A; P / W k 2 Z.DE;P /g is finite and effectively
computable. Thus any bound on maxZ.DE;P / for a family of elliptic divisibility
sequences arising from these curves may be, with a finite number of exceptions,
reduced to a bound of 3 or 4, respectively. Furthermore, this finite set of exceptions is
effectively (although often not practically) computable. We will extend these results
to families of twists over number fields. For the remainder of the section we will, for
simplicity, work with elliptic curves in short Weierstrass form (i.e., with a1 D a2 D
a3 D 0, in the notation above). We will say that such a model is K-quasiminimal
if it has minimal discriminant among K-isomorphic curves in the same form. Such
curves might not be K-quasiminimal in the sense above, but will be away from
primes dividing 2 or 3.

To prove the next two theorems, we require tools that trace back, in spirit, to
the original paper of Ward [35]. Ward considers sequences .hn/n2Z satisfying the
relation

hmCnhm�n D hmC1hm�1h2n � hnC1hn�1h2m; (13)

with h0 D 0, h1 D 1, and h2jh4 (a definition that makes sense over any integral
domain). It is worth noting that the sequences described in [35] do not correspond
directly to the sequences discussed here, and we reserve the term elliptic divisibility
sequence for the latter. For example, if we consider the elliptic divisibility sequence
DE;P defined by the point .12; 36/ on the elliptic curve y2 D x3 � 36x, we have

DP D .1/; D2P D .2/; D3P D .23/; D4P D .140/; D5P D .52487/ : : :
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It is clear that we cannot choose generators hn 2 Z of the ideals DnP which satisfy
the recursion (13), in particular because this would require (setting m D 3 and
n D 2)

52487 D jh5j � jh4h32j C jh33h1j D 13287:
Although our sequence DE;P is not necessarily an elliptic divisibility sequence

in the sense of Ward, one may associate a Ward-type sequence to it. Recall (from,
e.g., [27, p. 105]) the division polynomials of an elliptic curve

E W y2 D x3 C Ax C B:

They are elements of the function field K.E/ defined by setting

 0 D 0;  1 D 1;  2 D 2y;  3 D 3x4 C 6Ax2 C 12Bx �A2;
 4 D 4y.x6 C 5Ax4 C 20Bx3 � 5A2x2 � 4ABx � 8B2 � A3/;

and then using the recursion (13) to define the other  n. It is an easy exercise to
show that  2n may be written as a polynomial in x for all n. More precisely,  n
(respectively  n=y) may be written as a polynomial in x if n is odd (respectively
even). We will abuse notation by writing either  n.P / or  n.xP / when  n 2 K.x/.

If P 2 E.K/, then . n.P //n2Z is a sequence (in K) satisfying (13), by
construction. While we would like to consider sequences in R, rather thanK , which
relate to DE;P , it is difficult to do this if R is not a principal ideal domain. Note that
if S0 is a finite set of primes of R, it is always possible to extend S0 to a finite set S
such that the localization RS of R at S is a principal ideal domain. If the RS -ideal
DPRS is principal, and is generated by t , then a simple induction shows that the
sequence

hn D tn2�1 n.P / (14)

is a sequence in RS satisfying (13). This sequence depends on the choice of t , but
only up to multiplication by S -units. The following proposition, due essentially to
Ward [35] and Ayad [1, 2], indicates how this sequence relates to DE;P .

Proposition 4. Let E be an elliptic curve as above, let P 2 E.K/ be a point of
infinite order, let S be a finite set of primes such that RS is a PID, and let p 2
Spec.RS/ be a nonzero prime ideal.

(a) For all n,
ordp.hn/ � ordp.DnP =DP /:

(b) If ordp.hn/ > ordp.DnP =DP / for any n, then p is a prime of bad reduction for
E , and P has singular reduction modulo p.

Proof. To prove (a), we note that if t 2 RS is a generator forDPRS , and we set

kn D t2n2
�

xP n.P /
2 �  nC1.P / n�1.P /

� 2 RS;
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for each n, then xnP D kn=.thn/
2 (see [27, p. 105]). As kn and hn are S -integral,

and

ordp.DnP / D 1

2
max

˚

0;� ordp.xnP /
�

it follows at once that ordp.DnP / � ordp.thn/, and part (a) follows. Part (b) follows
from Théorème A of [1].

We now turn our attention to families of quadratic twists of a fixed elliptic curve
overK . Let A;B 2 R be non-zero, and let

E W y2 D x3 CAx C B

be a K-quasiminimal elliptic curve. Another elliptic curve

E 0 W y2 D x3 C A0x C B 0

withA0; B 0 2 R, is a quadratic twist ofE if there is aK-isomorphism fromE toE 0.
Writing down the possible isomorphisms between curves of this form [27, p. 49],
we see that we must have A0 D �4A and B 0 D �6B , for some � 2 K. Furthermore,

�2 D AB 0

A0B
2 K:

Note that if S � Spec.R/ is a set of nonzero primes containing all primes dividing
AB.4A3 C 27B2/, and such that RS is a principal ideal domain, then E 0 can be
K-quasiminimal only if �2 2 RS , and ordp.�2/ � 1 for all p 62 S . If S is such a set
of primes, if P 2 E.K/, and if hn is defined as in (14), then

ordp.hn/ D ordp.DnP =DP /

for all p 62 S and all n, by Proposition 4. This is, however, not the case for sequences
.hn/n�Z and DE0;P corresponding to points on twists of E, since E 0 may have bad
reduction at primes outside of S . The following proposition allows us to restrict
the amount by which the orders of these quantities vary at primes of bad reduction
for E 0.

Proposition 5. Let E be as above, and let S be a finite set of primes containing all
divisors of AB.4A3 C 27B2/ and all ramified primes, such that RS is a principal
ideal domain. Let E 0 be a K-quasiminimal twist of E, and let P 2 E 0.K/ be a
point of infinite order. If P has bad reduction at p 62 S , then

ordp.hn/ D
(
n2�1
2

if 2 − n
n2�4
2
C ordp.h2/C ordp.n/ if 2 j n:
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Proof. Let � 2 K be as above, so that �2 2 RS
E 0 W y2 D x3 C �4Ax C �6B:

The isomorphism 	 W E ! E 0 is given by

	.x; y/ D �x�2; y�3� :

As E 0 has bad reduction at p 62 S , and as Disc.E 0/ D �12 Disc.E/, we have
ordp.�2/ D 1. Note that P can have singular reduction at p only if ordp.xP / � 1. If
ordp.xP / > 1, then we have ordp.x3P C �4AxP / > 3, and so

2 ordp.yP / D ordp.y2P / D ordp.x3P C �4AxP C �6B/ D ordp.�6B/ D 3

(recalling that ordp.B/ D 0 for p 62 S ). This is impossible, as ordp.yP / 2 Z, and
hence we must have ordp.xP / D 1.

Let L D K.�/, let p D q2 in the ring of integers of L, and let Q D 	�1.P / 2
E.L/. While Q is not K-rational, it should be noted that xQ D xP =�

2 2 K . As
ordp.xP / D 1, we have ordp.xQ/ D 0, and in particular q − DQ. From this, and the
fact that E has good reduction at q, we see from Proposition 4 that

ordq.DnQ/ D ordq. E;n.Q//

for all n (where  E;n is the nth division polynomial for E). In particular,

ordq.D2Q/ D ordq.yQ/

D ordq.yP /� 3 ordq.�/:

We have seen that

ordq.yP / D 2 ordp.yP / D ordp.x
3
P C �4AxP C �6B/ � 3;

and so (as ordq.yP / is even)
ordq.D2Q/ > 0:

Because p 62 S , we must have ep D 1, and thus eq D 2 (in the extension L=Q). It
follows from Proposition 1(b) that

ordq. E;n.Q// D ordq.DnQ/ D
(

0 if 2 − n
ordq.D2Q/C ordq.n/ if 2 j n:

An examination of the division polynomials shows that

 E0 ;n.P / D �n2�1 E;n.Q/;
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and so (recalling that ordp.DP / D 0),

ordq.hn/ D ordq. E0 ;n.P //

D �

n2 � 1� ordq.�/C ordq. E;n.Q//:

For n odd, the proposition follows immediately, since ordq.�/ D 1, and p D q2. For
n even, note that

ordq.D2Q/ D ordq.yP / � 3 ordq.�/ D ordq.h2/ � 3;

and so
ordq.hn/ D

�

n2 � 1�C ordq.h2/� 3:
Again, we are done as p D q2.

Theorem 8. Let E be as above, and fix an integer k � 3. Then there are only
finitely many pairs .P;E 0/ such thatE 0 is aK-quasiminimal twist ofE,P 2 E 0.K/
is a point of infinite order, and k 2 Z.DE0 ;P ).

Proof. Let S be a set of primes of R which contains all prime divisors of
kAB.4A3 C 27B2/, all ramified primes, and such that RS is a PID.

By Möbius inversion we write the division polynomials of E as

 E;n D
Y

d jn
 �E;n;

for some functions  �E;n 2 K.E/, and the same for E 0. Note that for n � 3,  �
E0 ;n
2

K.x/. For functions f .x/ 2 K.x/, we will write

Qf .x; y/ D ydeg.f /f .x=y/:

Now suppose that P 2 E 0.K/ is as in the statement of the theorem, so that
DkP has no primitive divisors. As RS is a principal ideal domain, we will select
s; t 2 RS with .t/ D DP and s D xP t

2. Our first observation, from the definition
of the division polynomials, is that

Q E0 ;n.s; t2/ D Q E;n.s; t2�2/

for all n (recall that �2 2 RS is square-free in RS ). Again, to simplify notation, we
will set hn D Q E0 ;n.s; t2/.

Let p 62 S be a prime of R, and consider ordp. Q �E;k.s; t2�2//. There are several
cases.

Case 1. P has good reduction at p and rp D 1: In this case, by Proposition 4, we
see that

ordp.DnP =DP / D ordp.hn/
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for all n. Note that rp D 1 implies p j t , and hence p − s. It is an easy exercise [27,
p. 105] to show that

 2E0 ;m.x/ D m2xm
2�1 C lower order terms

for each m. Recalling that S contains all divisors of k, we have ordp.d 2sd
2�1/ D 0

for any d j k, and so ordp.hd / D 0 for any d j k. It follows at once that

ordp. Q �k .s; t2// D 0:

Case 2. P has good reduction at p and rp > 1: In this case ordp.DP / D 0, and so
Proposition 4 gives us

ordp.DnP / D ordp.hn/

for all n. Furthermore, p is not a primitive divisor ofDkP , and so either p − DkP , or
else rp is a proper divisor of k. In the former case it is clear that ordp. �E0;n.s; t

2//

D 0, and so we will suppose that we are in the latter case. We have

ordp.DrpmP / D ordp.DrpP /C ordp.m/

for all m, and so if 
 is the Möbius function, then

ordp. Q �E0 ;k.s; t2// D
X

d jk

 .d/ ordp.h k

d
/

D
X

d jk

 .d/ ordp.D k

d P
/

D
X

d j.k=rp/

 .d/ ordp.D k

d P
/;

as ordp.DmP / D 0 if rp − m. Writing k D k0rp, we obtain

ordp. Q �E0;k.s; t2// D
X

d jk0

 .d/ ordp.Drpk0

d P
/

D
X

d jk0

 .d/

�

ordp.DrpP /C ordp.k0=d/
�

D 0;

as ordp.k/ D 0, and as
P

d jm 
 .d/ D 0 for anym � 2.

Case 3. P has bad reduction at p: In this case, Proposition 5 ensures that
ordp.t/ D 0, ordp.s/ D 1 D ordp.�2/. Also, we have
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ordp.hn/ D
(
n2�1
2

if 2 − n
n2�4
2
C ordp.h2/C ordp.n/ if 2 j n:

If k is odd, we have

ordp. Q �E0 ;n.s; t2// D
X

d jk

 .d/ ordp.h k

d
/

D
X

d jk

.d/ deg. E0;k=d / D deg. �E0 ;n/:

If k is even, we have (recall that ordp.k/ D 0)

ordp. Q �E0 ;n.s; t2// D
X

d jk

 .d/ ordp.h k

d
/

D
X

d jk

.d/ deg. E0 ;k=d /C

X

d jk
k=d even


.d/

�

ordp.h2/ � 3
2

�

D deg. �E0 ;n/:

The second term in the penultimate line vanishes as
P

d j.k=2/ 
.d/ D 0.

We now have a value for ordp. Q �E0 ;n.s; t2// in each case. To summarize, if we
choose a generator .g/ D sRS C �2RS , we have

ordp. Q �E0 ;n.s; t2// D deg. �E0 ;n/ ordp.g/

for each p 62 S . In particular,

Q �E;n.s=g; t2�2=g/ D g� deg. �
E0 ;n

/ Q �E0 ;n.s; t2/ (15)

is an S -unit. But s=g and t2�2=g are S -integers, and

 �E;n.x/ D Q �E;n.x; 1/

has at least three distinct roots for n � 3. Thus (15) defines a Thue–Mahler equation,
which has only finitely many solutions. Each solutions traces back to a unique pair
.E 0;˙P/, proving the result.

We now turn our attention to the claim that, for a sufficiently large prime p,
maxZ.DE0 ;P / may be bounded for points P 2 pE 0.K/ as E 0 varies through a
family of quadratic twists. Translating the problem back to E, this will require us to
obtain a lower bound on sizes of the ‘denominators’DQ of pointsQ 2 E.K/ such
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that ŒK.Q/ W K� � 2. As mentioned above, Siegel’s theorem allows us to conclude
that

.1 � �/ Oh.Q/ � 1

ŒK.Q/ W Q� log NK.Q/=QDQ CO.1/;

but the implied constant depends on the particular field K.Q/. This is insufficient
for our needs. It turns out, though, that if p is large enough, we can obtain more
uniform estimate for points Q D pQ0 with Q0 2 E.K/ such that xQ0 2 K .

Proposition 6. Let E be as above, fix a rational prime p � 3, and let ı > 0. Let
Q 2 E.K/ be such that xQ 2 K . Then

�

1 � ŒK W Q�.2C ı/
p2

�

Oh.pQ/ � 1

ŒK.Q/ W Q� log NK.Q/=QDpQ CO.1/;

where the implied constant depends only on E, K , ı, and p.

Proof. We begin by noting that there is a map f W P1 ! P
1 of degree p2 such that

xpQ D f .xQ/
for all Q 2 E.K/. Explicitly, in terms of the division polynomials, we may write

f D x �  nC1 n�1
 2n

:

This is, a priori, an element of K.E/, but is easily shown to lie in K.x/.
Writing kxkv D jxjŒKvWQv�

v for all v 2 MK , and letting S denote the set of
archimedean places of K , we have

1

ŒK.Q/ W Q� log NK.Q/=QDpQ D 1

ŒK W Q�
X

v 62S

1

2
max

˚

0; log kxpQkv
�

D 1

2
h.xpQ/� 1

2ŒK W Q�
X

v2S
max

˚

0; log kxpQkv
�

:

We have (by the basic properties of heights; see Theorems 5.6 and 9.3(e) of [27])

h.xpQ/ D h.f .xQ// D p2h.xQ/ D 2p2 Oh.Q/CO.1/;

where the implied constant depends on E and p.
We will now apply a version of Roth’s Theorem to the poles of f .x/. Specifically,

by Theorem D.9.3 of [17] applied to 1
f
2 K.x/, we find that there is a constant

c > 0 such that

X

v2S
min

�

0; log

	
	
	
	

1

f .x/

	
	
	
	

v

�

� �ŒK W Q�#S.2C �/h.x/ � log c
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for all x 2 K . In particular, we have

�1
2ŒK W Q�

X

v2S
max

˚

0; log kf .xQ/kv
� � �#S.2C �/ Oh.Q/� c0;

for some constant c0 depending only on E, p, and K . Combining these estimates,
and noting that #S � ŒK W Q�, we see that

1

2
h.xpQ/ � 1

2ŒK W Q�
X

v2S
max

˚

0; log kxpQkv
�

� �p2 � ŒK W Q�.2C �/� Oh.Q/� c00;

for some c00. This proves the proposition, as Oh.pQ/ D p2 Oh.Q/.
Ultimately, under the assumption that the nth term of DE0 ;P has no primitive

divisor, we wish to apply Proposition 2 to derive an upper bound on DmP . The
proposition provides no such bound, though, if m D sp for some exceptional
prime p. In the proof of Theorem 4 we overcame this by employing the observation
that the number of exceptional primes is bounded in terms of ŒK W Q�. The next
proposition shows that, once attention is restricted to a family of quadratic twists,
maxfsp W p is exceptionalg may be similarly constrained.

Proposition 7. Let E 0 be an elliptic curve over K , let P 2 E 0.K/, and let p be an
exceptional prime for DE0 ;P . Then sp � M , for some quantity M depending only
on K and j.E 0/.

Proof. Let p be an exceptional prime for DE0;P , and let p be the characteristic of
R=p. Let

E 0i .K/ D fQ 2 E 0.K/ W � ordp.xQ/ � 2ig;
as in Proposition 1, and note that sp is simply the order of P in E 0.K/=E 0N.K/, for
N the least integer greater than ep=.p � 1/. Note, as per [27, Ch. IV] and the proof
of Proposition 1, that E 01.Kp/ is isomorphic to a formal group, and that if z is the
coordinate corresponding to Q 2 E 01.K/, then ordp.z/ D ordp.DQ/. Furthermore,
the multiplication-by-p map in the formal group is given by a power series of the
form

Œp�z D pzCO.z2/:
Now suppose that Q 2 E 01.K/ is not trivial modulo E 0N .K/, i.e., that ordp.DQ/ �
ep=.p � 1/. Then

ordp.DpQ/ D ordp.Œp�z/ D ordp.z/C ordp.p CO.z// � 2 ordp.z/;

since

ordp.z/ � ep

p � 1 � ep D ordp.p/:
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By induction, the order of Q in E 01.K/=E 0N .K/ is at most pn, where n is the least
integer greater than log2 N . This bounds the order of any element ofE 01.K/=E 0N.K/
in terms of ep and p.

It now suffices to bound rp, which is the order of P in E 0.K/=E 01.K/. If E 0 has
good reduction at p, then

E 0.K/=E 01.K/ Š QE.R=p/;

where QE is the reduction ofE 0 modulo p. Thus, by Hasse’s theorem the order ofP in
E 0.K/=E 01.K/ is at most .

p

#.R=p/C1/2. IfE 0 has bad reduction at p, letE 00.K/ �
E 0.K/ be the subgroup of points with nonsingular reduction modulo p. Hasse’s
theorem again bounds the size of E 00.K/=E 01.K/, while the size of E 0.K/=E 00.K/
is at most maxf4;� ordp.j.E 0//g, by a theorem of Kodaira and Néron [27, Theorem
6.1].

Thus, for each p, we have sp � Mp for some quantity Mp depending only on p
and j.E 0/ (in fact, we have not yet needed the fact that p is exceptional). As noted in
Remark 3, p can be exceptional only if p � ŒK W Q�C1. Considering the maximum
of the Mp over the finitely many primes p with p � ŒK W Q� C 1, we have our
boundM .

Theorem 9. Let E be a K-quasiminimal elliptic curve, let � > 0, and let p �
p

ŒK W Q�.4C �/ be a rational prime. Then for eachK-quasiminimal twist E 0 of E
and each nontorsion point P 2 pE 0.K/, maxZ.DE0 ;P / < C for some constant C
which depends on E, K , and p, but not on E 0 or P .

Proof. Suppose that DmP has no primitive divisor. By Proposition 7 there is a
quantity M , depending only on K and j.E 0/ D j.E/, such that sp � M for all
exceptional primes p. As our goal is to provide a bound on m that depends only on
E and K , we will assume thatm > M . By Proposition 2, then we see that

log jNK=QDmP j �
X

kjm with
m=k prime

log NK=QDkP C d log
�

2d
�C d log.m/;

where d D ŒK W Q�. Note that

X

kjm with
m=k prime

log NK=QDkP �
X

kjm with
m=k prime

d

2
h.xkP /

�
X

kjm with
m=k prime

.d Oh.kP /CO.h.E 0///

� d Oh.mP/
X

qjm

1

q2
CO.log.m/h.E 0//:
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As before, we have an isomorphism E ! E 0 by .x; y/ 7! .x�2; y�3/ for some
� 2 K with �2 2 K . Taking d to be fixed, and noting that h.E 0/ � 1C h.�/, we
have (if m 2 Z.DE0 ;P /),

log jNK=QDmP j � d�.m/ Oh.m2P /CO� log.m/.1C h.�//�;
where �.m/ DPqjm q�2.

On the other hand, we have xmQ D xmP=�2, and so

1

ŒK.Q/ W K� log NK.Q/=QDmQ � log NK=QDmP C dh.�/:

Finally, if P 2 pE.K/, we may write P D pP 0, for some P 0 2 E.K/, and set
Q0 D 	�1.P 0/. It follows from Proposition 6 (applied with Q D Q0 and ı D �=2)
that

�

1 � d.2C �=2/
p2

�

d Oh.mP/ D
�

1 � d.2C �=2/
p2

�

d Oh.mQ/

� 1

ŒK.Q/ W K� log NK.Q/=QDmQ CO.1/

� log NK=QDmP CO.h.�//
� d�.m/ Oh.m2P /CO� log.m/h.�/

�

: (16)

By Theorem 6, there is a constant ı > 0 depending only on j.E/ and K such
that Oh.P / � ı.1C h.�// (on the assumption that P is not a point of finite order).
Dividing both sides of (16) by m2 Oh.P / then yields

1 � d.2C �=2/
p2

� �.m/CO
�

log.m/

m2

�

; (17)

where the implied constant depends only on E, K , and p. But

�.m/ �
X

q prime

q�2 � 1

22
C 1

32
C � � � C 1

132
C
1X

nD17

1

n2
<
1

2
;

and so (17) boundsm, since our condition on p ensures that

d.2C �=2/
p2

� 1

2
:

This proves the result.
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Finally, we should note that the restriction in this section to curves in short
Weierstrass form is not, strictly speaking, necessary. Any elliptic curve over K
may be written in short Weierstrass form with a change of variables. If DE;P is
a given elliptic divisibility sequence, we may choose this transformation such that
the values of DnP are unchanged at primes not dividing 6. By enlarging the set S
in the statement of Theorem 8, then we can treat all K-quasiminimal models of
elliptic curves in a given family of quadratic twists (as long as the finiteness in the
conclusion of the theorem is now interpreted as finiteness up to this sort of change of
variables). Similarly, Theorem 9 may be made independent of finitely many primes
(for example, those above 2 and 3) by increasing the set S appearing in the proof
of Proposition 6 to include these primes. In this case, however, we must require that
p >

p

#S.4C �/ (where S contains at least all infinite primes).

1.5 Speculative results over Q

As we have seen in Theorem 7, there is a uniform bound on the size of the
set Z.DE;P / if one is prepared to accept the conjecture of Szpiro. It seems, not
surprisingly, rather more difficult to establish a uniform bound on the largest element
in the set Z.DE;P /. However, if one restricts attention to certain families of elliptic
curves, then a bound may be obtained under similar assumptions. For simplicity, we
work over Q.

Conjecture 4. (Hall [15]) For every � > 0 there exists a constant C� such that
whenever x, y, andM ¤ 0 are integers satisfying

y2 D x3 CM;
then there is a bound of the form jxj < C�M2C�.

Theorem 10. Suppose Hall’s Conjecture 4 holds. Then there is a finite set E such
that if M is a sixth-power free integer, E W y2 D x3 C M , and P 2 E.Q/ is
nontorsion, then .M;P / 2 E or

Z.DE;P / � f1; 2; 3; 4g:

Proof. In light of Theorem 3 of [18] (the analogue of Theorem 8 in this paper), it
suffices to produce a uniform bound on maxZ.DE;P / for all E of the above form.
SupposeQ 2 E.Q/ is a point of infinite order, and let

Q D
 

AQ

D2
Q

;
BQ

D3
Q

!
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as usual. We have B2
Q D A3QCMD6

Q, and thus, for a fixed � > 0, the conjecture of
Hall tells us that

jAQj < C�.MD6
Q/

2C�:

It follows that
hx.Q/ � 6.2C �/ log jDQj CO.log jM j/;

where the implied constant depends on �. So we have, for anyQ 2 E.Q/ of infinite
order,

log jDQj � 1

3.2C �/
Oh.Q/CO.log jM j/: (18)

Now let P 2 E.Q/. We have by Propositions 2 and 3 that n 2 Z.DE;P / only if

log jDnP j � �.n/n2 Oh.P /CO.log.n/ log jM j/; (19)

with explicit constants. Consider (18) with Q D nP . Noting that

log jM j � O. Oh.P //;

we have
1

3.2C �/n
2 < �.n/n2 CO.log.n//:

If we take � � 1, we see that n is bounded by some N as long as �.n/ < 0:1, say.
The latter condition is ensured if .n; 6/ D 1. Appealing to Theorem 6, our bound is

maxfN;max.Z.DE;P /\ 2Z/;max.Z.DE;P /\ 3Z/g:

Remark 5. Note that, much as in Theorem 7, we only really need the weaker
assumption that Hall’s Conjecture holds for sufficiently large �. If (18) holds for
any value of �, then (19) yields an upper bound on the values n 2 Z.DE;P / such
that �.n/ < 1

6.2C�/ , for example. But it is easy to check that if �.n/ � 1
6.2C�/ , then

n has a prime divisor p � 6.2C �/. Computing a bound as in Theorem 6 for each
such p, we obtain a uniform bound on maxZ.DE;P / for j.E/ D 0.

Extending this idea, one can prove a general result if one accepts two stronger
conjectures, both due to Lang. The first was already stated over number fields
(Conjecture 2), but we restate it here over Q for the convenience of the reader, while
the other is a genarlization of Conjecture 4.

Conjecture 5. (Lang [19]) There is an absolute constant C > 0 such that for every
minimal E=Q and every nontorsion P 2 E.Q/,

Oh.P / > Ch.E/:
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Conjecture 6. (Hall–Lang [20]) There exist absolute constants C1 and C2 such that
if x; y;A;B are integers with 4A3 C 27B2 ¤ 0 and

y2 D x3 C Ax C B;

then jxj < C1 maxfjAj; jBjgC2.
Theorem 11. Suppose that Conjectures 5 and 6 hold. Then there exist absolute
constants M1 and M2 such that for all E=Q and P 2 E.Q/, if n 2 Z.DE;P / then
either n < M1 or there is a prime p < M2 such that pjn.

The proof of this theorem is nearly identical to the proof of Theorem 10.

Remark 6. If one restricts attention to a given family of quadratic twists, then
Conjecture 5 is known to hold. Thus, if one assumes that Conjecture 6 holds, at least
for the given family of twists, one may apply Theorems 8 and 6 to obtain a statement
analogous to Theorem 10. That is, one deduces that except for a finite number of
exceptions, elliptic divisibility sequences DE;P arising from this family of twists
satisfy Z.DE;P / � f1; 2g. Note also that, under the assumption of Conjecture 6
for all elliptic curves, a uniform version of Theorem 6 would provide a uniform
bound on Z.DE;P / for curves E=Q. Such a uniform statement, however, requires a
refinement of Roth’s theorem that is far beyond current Diophantine analysis.
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The heat kernel, theta inversion
and zetas on �nG=K

Jay Jorgenson and Serge Lang

Abstract Direct and precise connections between zeta functions with functional
equations and theta functions with inversion formulas can be made using various
integral transforms, namely Laplace, Gauss, and Mellin transforms as well as their
inversions. In this article, we will describe how one can initiate the process of
constructing geometrically defined zeta functions by beginning inversion formulas
which come from heat kernels. We state conjectured spectral expansions for the
heat kernel, based on the so-called heat Eisenstein series defined in [JoL 04]. We
speculate further, in vague terms, the goal of constructing a type of ladder of zeta
functions and describe similar features from elsewhere in mathematics.

Key words Zeta function • heat kernel • spectral expansion
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The survey article “Riemann’s zeta function and beyond” [GeM 03] and the book
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where K2 is the unitary group SU.2/. Actually, even this case is already one level
above the most classical case of 2�ZnR, i.e., the case of the circle with which we
start our exposition.

The heat kernel is present as the ubiquitous and fundamental object [JoL 01b].
As will be seen, one may summarize its manifestation in this survey by saying that
the t in the heat kernel Kt is the same t as in the Poisson theta inversion formula

t�1=2�1.1=t/ D �2.t/:

We shall describe a way to zeta objects through theta objects, starting with the
most classical case on the circle as above. The procedure takes five steps:

• Start with the heat kernel on G=K .
• Periodize with respect to � .
• Determine the eigenfunction expansion on �nG=K .
• Regularize the expansion and integrate over �nG.
• Apply the Gauss transform.

This yields what amounts to the logarithmic derivative, with fudge terms. It may
be viewed as preparing the ground for seeing how the functions so obtained fit into
ladders (cf. Section 6), whenever one has a sequence of suitable embeddings

� � � ! Gn=Kn ! GnC1=KnC1! � � � :

The most important case for us will be with Gn D SLn, or certain subgroups
isomorphic to products of certain SLm (m < n) called parabolics. We shall proceed
stepwise. We concentrate on what seems a special case with the groups SLn;
however, we will describe a general theory whereby SLn.C/ becomes a controlling
group for semisimple Lie groups; see Section 6. Other classical groups also play
such a controlling role, such as SO.p; q/ and Sp.n/.

Acknowledgements Jorgenson acknowledges support from several PSC-CUNY and NSF grants.
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manuscript in TeX. Lang also thanks Petrello for his support of the Yale Mathematics Department.

1 The circle and Riemann’s functional equation1

The Riemann zeta function �Q.s/ can be defined in two ways:

�Q.s/ D
X

n�s or via the Euler product
Y

.1 � 1=ps/�1:

1The present article was completed by Jorgenson and Lang during the summer of 2005 shortly
before Lang passed away on September 12, 2005. As such, this article is the last mathematics
paper written by Lang. At the time the article was written, it was the intention to describe the
future direction that Jorgenson and Lang envisioned for their research.
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The first way reflects analytical properties, and the second exhibits a number-
theoretic connection with the primes. The analytic connection, which will become
relevant in Section 2, is that n can be viewed as the square root of an eigenvalue
n2 for the positive Laplacian on the functions einx . We return to this later. Here, we
want to indicate the way to basic analytic properties of the zeta function.

In general, we define a theta series to be a series of the form

�.t/ D
X

ane
��nt ;

where fang is a sequence of complex numbers, and f�ng is a sequence of real
numbers tending to infinity. In practice, these �n are > 0. They increase sufficiently
fast so that the series converges absolutely. The notation suggests that often the �n
will be related to eigenvalues. We consider the universal covering

R! R=2�Z:

Here � D 2�Z is the discrete group of translations by integral multiples of 2� .
Given a function f on R, its �-periodization is the function defined by

f 2�Z.x/ D
X

n2Z

f .x C 2�n/:

What do we do with a periodic function? Advanced calculus says we expand it in a
Fourier series. Are there best possible functions to do this with? The answer depends
on what we want to do with them. For some purposes, one wants to deal with non-
smooth functions, e.g., the sawtooth function whose Fourier series is †einx=n. For
our purposes, we want a priori better behavior than that. There is essentially a unique
class of functions that work out most easily while having extensive applications,
e.g., to zeta functions, namely the gaussians 'c.x/ D e�x2=c , with some positive
constant c, and linear combinations of these, or simply constant factors times these
functions. The constant factor is normalized to get the probabilistic condition that
the total integral is 1, i.e., for an arbitrary positive function f we let

I.f / D
Z

R

f .x/dx;

so f=I.f / is probabilistic. This still leaves a choice for the positive constant c. As
far as we are concerned, there is a best way to express this constant, namely c D 4t ,
in which case I.f / D p4�t , and thus we let

gt .x/ D
1p
4�t

e�x2=4t : (1)

In any case, whether we put c D 4t or not, let  c D 'c=I.'c/. Then f cg is a
Weierstrass–Dirac family, or fgt g is a Weierstrass–Dirac family, which we define
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as follows. Let fgt gt>0 be a family of continuous functions on R. We call fgt g a
Weierstrass–Dirac family if it satisfies the following conditions:

WD 1. gt = 0.
WD 2.

R

R
gt .x/dx D 1.

WD 3. Given ı > 0, we have lim
t!0

R

d.x;0/=ı
gt .x/dx D 0.

Here, d.x; 0/ is the distance between x and 0. But with this notation, generalizations
can be immediately formulated, e.g., to euclidean space and onward.

A Dirac family is also called an approximation of the identity because of the
following approximation theorem, whose first manifestation is in [Wei 1885].

Let f be a measurable function on R. Let fgtg be a Weierstrass–Dirac family.
Define the convolution

.gt � f /.x/ D
Z

R

gt .y/f .x � y/dy:

Then gt � f ! f uniformly on every set where f is uniformly continuous.

In particular, we get pointwise convergence where f is continuous.
Now a word about using the parameter t instead of c. The floating constant

is uniquely determined by the Dirac family condition and a differential equation,
called the heat equation, namely if !x D .@=@x/2, then

.�!x C @t /gt .x/ D 0:
This is the structural explanation for formula (1) defining the heat gaussian. We then
take the following steps:

• Start with the heat gaussian gt .
• Periodize it, to get g�t .
• Expand the periodization in a Fourier series.

A calculus computation shows that the Fourier series is what occurs on the right of
the following relation

1p
4�t

X

n2Z

e�.xC2�n/2=4t D 1

2�

X

n2Z

e�n2t einx:

Observe that the left side is an inverted theta series times the power t� 1
2 . The right

side is a theta series. Both have variable coefficients depending on x. We then
perform a fourth step:

• Put x D 0, yielding a theta inversion relation

X

n2Z

1p
4�t

e�.2�n/2=4t D 1

2�

X

n2Z

e�n2t ;
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also called the Poisson inversion formula. [Note: Because of the special abelian
nature of R, one gets away with a misleading technical trick to eliminate the variable
x by setting x D 0.]

Having such an inversion formula, what does one do with it? Riemann applied
the Mellin transform, defined by

.M�/.s/ D
1Z

0

�.t/t s
dt

t
:

Then easy calculus shows that one gets the zeta function with some fudge factors.
The inversion relation (with t; 1=t on the two sides of the relation) becomes the
functional equation interchanging s and 1 � s:

ƒ�.s/ D ƒ�.1� s/ defining ƒ�.s/ D ��s=2�.s=2/�Q.s/;

with fudge factors ��s=2, �.s=2/ (� boldfaced to distinguish from a discrete
subgroup).

We work with another transform, which we call the Gauss transform, defined by

Gauss.�/.s/ D 2s
1Z

0

e�s2t �.t/dt:

Never mind the fact that the integrals don’t converge for the moment. In the
monograph [JoL 94] (reproduced in [LanJo 01] Vol. V) we explain how to regularize
this integral. Formally the integral is easily evaluated on functions of the form
e�n2t . The Gauss transform of this term for n ¤ 0 is 1=.s2 C n2/, and Gauss.�/
is essentially the logarithmic derivative of sine. Thus the Gauss transform has an
additive structure (Mittag-Leffler type) in contrast with the multiplicative structure
for the ordinary zeta function. The functional equation of Gauss.�/.s/ is given by
the obvious symmetry coming from the invariance of the integral under s 7! �s.

2 The next case: SL2.C/, eigenfunction expansion

We have a choice: SL2.R/ or SL2.C/. From the point of view of freshman calculus,
SL2.R/ is “easier”. From any more ambitious point of view, SL2.C/ is easier, for
the following main reason. We want gaussians analogous to those on R. For SL2.C/,
the gaussians are “split” in a way that they look like those on R. For SL2.R/, one
needs an extra integral which at first looks disagreeable, but which can be explained
structurally. We now go into such structures.

We start with the basic question: what is the analogue of Fourier expansion?
Here is where the eigenfunction property of einx (or eixy for the theory of Fourier
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transform on R itself) becomes central. One does not know in general how to
write down a priori elementary functions by a formula that will play the role of
these exponentials. But thanks to insights of Bargman, Harish-Chandra, Selberg,
Maass, Roelcke and Langlands, one does know that such functions exist as eigen-
functions of a laplacian. We shall now describe how one gets to the eigenfunction
expansion.

From complex analysis, everybody knows that the group G D SL2.R/ acts by
fractional linear transformations on the upper half-plane h2. The subgroup leaving
i fixed is the unitary subgroup K (which is maximal compact). Thus we have an
isomorphism of homogeneous spaces

G=K
��! h2 sending z 7�! g.z/ D .azC b/.czC d/�1

if g D
�
a b

c d

�

2 SL2.R/. The action on the coset space G=K is just translation.

The non-commutativity is analyzed via a product decomposition of G. Let

U D subgroup of upper triangular matrices u.x/ D
�
1 x

0 1

�

with x 2 R.

A D subgroup of diagonal matrices a D diag.a1; a2/ with diagonal elements
a1; a2 > 0.

K D real unitary subgroupK.R/.

Then the product map
U �A �K �! UAK D G

is a bijection (real analytic isomorphism). Each element g 2 G has a unique
decomposition g D uak, called the Iwasawa decomposition, with u 2 U; a 2
A; k 2 K .

The group A is isomorphic to the positive reals RC. For ulterior purposes, we
write the isomorphism with notation fitting the additive version on the R-space of
real diagonal matricesH D diag.h1; h2/ with h1; h2 2 R. We let ˛ be the character
defined by ˛.H/ D h1�h2. Then ˛ is an isomorphism of the diagonal space with R.
Its exponential is the isomorphism we want of A with RC. The map �˛ W A �! RC
sending

a 7�! ya D a˛ D e˛.log a/ D a1=a2 D a21
is a group isomorphism of A with RC. We call y the Iwasawa coordinate on A.

The two subgroups U and A are used to provide eigenfunction expansions on
G=K , thus reducing such expansions to abelian groups.

We shall state the eigenfunction expansion formula, but first we comment on
gaussians, for which we want to carry out the explicit steps of Section 1. Being on
R causes all the possible formulas to be twisted in a somewhat disagreeable manner.
Going to SL2.C/ makes life much easier, and we shall explain below the method
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for recovering SL2.R/ afterwards. Thus instead of the upper half-plane, we use the
upper half 3-space h3, defined as the set of quaternions

z D x C jy D x1 C ix2 C jy

with x 2 C; y > 0 and k-coordinate equal to 0. We let G D SL2.C/. Then G acts
on h3 by

z 7�! .azC b/.czC d/�1:
Brute force shows that the image of the fractional transformation does indeed lie
in h3 (i.e., has k-coordinate 0). The isotropy group of j is K.C/, the usual unitary
group over C. When dealing both with R and C simultaneously, we have to keep
them in the notation, but working with one case for a continued period, we omit this
extra notation. We now suppose that we are over C, unless otherwise specified.

We have the three groups:

U D U.C/ consisting of elements u.x/ with x complex, so U � C.
A D same group as for SL2.R/!
K D unitary group.

The product map U � A � K �! UAKis a bijection with G D SL2.C/, again
called the Iwasawa decomposition. We have the same character ˛ as before on A,
with coordinate y. We call .x; y/ the Iwasawa coordinates.

We can now define gaussians. The group G also admits a polar decomposition,
G D KAK; g D k1bk2 with k1; k2 2 K and b 2 A, uniquely determined up to a
permutation of the diagonal elements. We define the polar height 	 by

	.g/2 D .log yb/
2:

Then a gaussian on G/K is a positive multiple of a function having the form

'c.g/ D e�	2.g/=2c logy

.y � y�1/=2 D e
�v2=2c v

sinh v

D e�	2=2c 	

sinh 	
;

with c > 0 with additive variable v D logy, and y D yb is the polar y. The factor
on the right is a Jacobian factor but we do not need to go into this.

We use the Iwasawa Haar measure given by d
.z/ D dx1dx2dy=y
3. Then we

can define the total integral I.f / for a function f onG=K D h3, and also the notion
of Dirac family, using the distance function on G=K ,

d.z;w/ D 	.z�1w/
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which is G-invariant. We can then define  c D 'c=I.'c/ as we did on R. Then
f cg is a Dirac family, using the same definition as on R, except that for the third
condition WD 3, one takes the distance d.x; e/ between x and the unit element of
G, or the unit coset eK , because the distance is K-bi-invariant. The approximation
theorem is valid. Furthermore, the vector space generated by gaussians is dense
in anything one wants, see [JoL 03b]. This space can be used to develop the
general spherical inversion theory by explicit formulas [JoL 03a]. Most importantly,
it contains the heat kernel discussed below.

As to the laplacian, it is easier here to use the group theory to define a Casimir
operator (which would turn out to be a scaling of the laplacian if we used the
language and context of Riemannian metrics). Casimir is defined entirely in terms
of a G-conjugation invariant scalar product on the Lie algebra g of G as follows.
The Lie algebra is just the vector space of matrices having trace 0, with the bracket
product ŒX; Y � D XY � YX . We use the real trace form for the scalar product of
matrices Z1;Z2 2 g, that is, we put

B.Z1;Z2/ D Re tr.Z1Z2/:

Let Z 2 g. One can define a left-invariant differential operator denoted QZ or D.Z/
(the directional derivative in the direction of Z) by the formula

. QZf /.g/ D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

f .g exp.tZ//:

If fZi g is a basis for g over R, and fZ0ig the dual basis, then Casimir is defined by

! D
X QZi QZ0i ;

which is independent of the choice of basis. Given an invariant Riemannian metric
on G=K.D h3/, Casimir is equal to a constant times the laplacian with respect to
this metric, but one can also carry out everything in terms of the group structure as
we have done above.

The heat equation for Casimir is then �!ht C @tht D 0. There is a unique heat
gaussian (gaussian satisfying the heat equation and the Dirac properties) given by

gt .g/ D .8�t/�3=2e�2t e�	2.g/=8t
	

sinh 	
; (2)

which is in line with the euclidean heat gaussian. The general analysis of which this
is a special case was done by Gangolli [Gan 68].

What we have defined above suffices to formulate the first two steps, the
periodization being with respect to the group SL2.ZŒi�/ in the complex case, and
the group SL2.Z/ in the real case. For the remainder of this section, we set
� D SL2.ZŒi�/
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There remains to explain what the eigenfunction expansion is analogous to the
Fourier expansion on R (or euclidean space). This comes originally from Roelcke
[Roe 66] in the context of functional analysis on SL2.R/. Because of the more
complicated structure of the group, the expansion has a series like a Fourier series,
but it also has a continuous version analogous to the Fourier integral. We give the
definitions needed to state the expansion.

A function on �nG=K is �U -periodic .�U D � \ U � ZŒi�/. Hence it has an
ordinary Fourier expansion on C=ZŒi�. We say that a function f is cuspidal if the
constant term of this Fourier series is 0, that is,

Z

�U nU
f .ug/d
.g/ D 0 for all g 2 G:

The cuspidal subspaceL2cus.�nG=K/ then has an orthonormal basis f j g consisting
of eigenfunctions of Casimir, with negative eigenvalues��j .

On the other hand, to get the continuous part, we use the Eisenstein series,
depending on a complex parameter s, and defined by

Es.z/ D E.s; z/ D
X

�U n�
.�z/s˛A D

X

�U n�
y.�z/s ;

where .�z/A is the projection on A from the Iwasawa decomposition, so we can
apply the character �s˛ to this projection, writing this application exponentially. We
can write each term as we did in terms of the Iwasawa y-coordinate. The Eisenstein
series is thus the �U n�-periodization of the character �s˛ . The series is absolutely
convergent for Re.s/ > 2, and has a meromorphic continuation. The character �s˛
is an eigenfunction of Casimir with eigenvalue 2s.s � 2/, and so is the Eisenstein
series.

Convolution on G itself is defined by

.f � h/.z/ D
Z

G

f .zw�1/h.w/d
.w/:

Given a function of two variables F.z;w/, the convolution is defined by

.F � h/.z/ D
Z

G

F.z;w/h.w/d
.w/:

We superimpose �-periodization on this. For a function f on G, we let

f �.w/ D
X

�2�
f .�w/:
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Then we have the group Fubini theorem

Z

G

f .w/d
.w/ D
Z

�nG
f �.w/d
�nG.w/ D

Z

�nG

X

�2�
f .�w/d
�nG.w/:

Lt F be G-invariant (meaning F.gz; gw/ D F.z;w/ for all g; z;w 2 G). Define
the periodization

F �.z;w/ D
X

�2�
F.�z;w/ D

X

�2�
F.z; �w/:

If h is a function on �nG, then

Z

G

F.z;w/h.w/d
.w/ D
Z

�nG
F �.z;w/h.w/d
�nG.w/;

where 
�nG is the natural homogeneous space measure induced by d
 on G,
coming from the fact that G and �nG are locally measure isomorphic.

For convolution purposes, it is useful to deal with the integral kernel in two
variables derived from a function in one variable via the group law. Thus we now
define the heat kernel

Kt .z;w/ D gt .z
�1w/:

The heat kernel is rightK-invariant in each variable, so defined on G=K �G=K . Its
�-periodization is given by

K�
t .z;w/ D

X

�2�
Kt .z; �w/ D

X

�2�
Kt .�z;w/ D

X

�2�
gt .z
�1�w/:

Eigenfunctions of Casimir are also eigenfunctions of convolution by the heat
kernel. If !f D ��f , then

Kt � f D e��tf:
In particular, !�s˛ D 2s.s � 2/�s˛, so

Kt �Es D e2s.s�2/tEs:

Convolution can of course be defined using any function of two variables, for
instance E.s; z/, taking the integral with respect to either variable. We have

.E � f /.Ns/ D hf;Esi�nG D
Z

�nG
f .w/Es.w/d
�nG.w/;
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so it is the hermitian scalar product (Eisenstein coefficient up to a constant). Of
course, all these formulas hold under assumptions of absolute convergence which
have to be specified or proved.

Theorem 2.1. Eigenfunction expansion. For f 2 C1c .�nG=K/, one has the
eigenfunction expansion

f .z/ D
1X

jD1
hf; j i j C c0.f /C cE

Z

Re.s/D1
.E � f /.Ns/E.s; z/d Im.s/:

With the Iwasawa measure, the constants are c0.f / D res2.E � f / and cE D
1=16� . (Notation: res2 means residue at 2.)

We have written the convolutionE�f , viewingE as an integral kernel function,
but of course it has here the interpretation as the scalar product as above. So the
Eisenstein series forms a continuous family playing the role of the exponential eixy

on the line. The integral is actually on the imaginary line s D 1 C ir; r 2 R.
The eigenfunction expansion is originally due to Roelcke [Roe 66], in the context
of functional analysis and spectral decomposition, so it is usually called spectral
expansion. The factor 1=16 D 1=42 cancels a quadruplication due to the units of
ZŒi� in our definition of Eisenstein series.

To avoid disagreeable convergence problems, the eigenfunction expansion was
stated for C1 functions with compact support, using the space of test functions
which go as far as possible in eliminating convergence problems. However, in real
life, interesting functions do not have compact support, for instance the gaussians,
especially the heat gaussian. However, gaussians have quadratic exponential decay,
but Eisenstein series have only linear exponential growth, so no convergence
problem arises for their convolutions.

We may now state the eigenfunction expansion for the heat kernel.

Theorem 2.2. With the Iwasawa measure and c0 D 1=vol.�nG/,

K�
t .z;w/ D

1X

jD1
e��j t j .z/ j .w/C c0

C cE
1Z

�1
e�2.r2C1/tE.1C ir; z/E.1 � ir;w/dr:

Note that the exponent�2.r2 C 1/ is the eigenvalue 2s.s � 2/ on the line 1C ir
.r 2 R/, which is the imaginary line at the middle of the critical strip 0 < Re.s/ < 2.
Thus the formula is an expansion of the heat kernel in terms of its eigenfunction
components, the first part being discrete, and the second part being continuously
dependent on the parameter r , in a manner similar to Fourier series and Fourier



284 J. Jorgenson and S. Lang

integrals. Putting z D w gives the heat kernel on the diagonal. The periodization on
the left is then

K�
t .z; z/ D

X

�2�
Kt .�z; z/ D

X

�2�
gt .z
�1�z/:

This periodization is therefore expressed in terms of conjugation, and we are led to
investigate conjugacy classes.

For any group G and g 2 G, we let c.g/ be conjugation by g. Let � be a
subgroup ofG and � 0 a subset of � which is c.�/-invariant. Then � 0 is the union of
�-conjugacy classes. We denote the set of such classes by

CC�.� 0/;

and its elements by c. Then � 0 is the disjoint union of the classes

c 2 CC�.� 0/:

We apply these general considerations to our concrete case of SL2.C/ and the
heat gaussian, together with the heat kernel. We decompose � into two c.�/-
invariant subsets. We define the standard cuspidal subgroup of � to be the subgroup
of upper triangular matrices in � , denoted by �1. We define the cuspidal and non-
cuspidal subsets by

Cus� or �Cus D c.�/�1 and its complement NC� D � � �Cus :

The trace K�
t can then be decomposed into two series, non-cuspidal and cuspidal

respectively,

KNC
t .z; z/ D

X

�2NCus�

Kt .�z; z/ and KCus
t .z; z/ D

X

�2Cus�

Kt .�z; z/;

so we can rewrite the eigenfunction expansion of K�
t in the form:

Theorem 2.20.

KNC
t .z; z/CKCus

t .z; z/

D
1X

jD1
e�i�j t j j .z/j2 C c0 C cE

1Z

�1
e�2.1Cr2/t jE.1C ir; z/j2dr:

This is the form of the eigenfunction expansion which we shall use in the next
section. On the left, the two sums KNC

t and KCus
t are inverted theta series with

variable coefficients. On the right, we have a theta series with variable coefficients,
and a theta integral, also with the variable z as a parameter. The series converge
absolutely.
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3 The theta inversion formula

We want to integrate the eigenfunction expansion term-by-term over �nG, which
has finite volume. Formally, this will give us a theta inversion identity. The main
problem is that out of five terms, the integral of two of them is not convergent.
Before explaining what to do with them, we first describe what the integration gives
in the two cases for which the integral is convergent, namely the non-cuspidal series
on the left and the theta series with variable coefficients on the right.

Having picked f j g to be an orthonormal basis of L2cus.�nG=K/, using the fact
that �nG=K has finite measure, there is no problem integrating the series, and we
get a theta series with constant coefficients,

.1/ �Cus .t/ D
1X

jD1
e��j t ;

where we remind the reader that��j is an eigenvalue of Casimir on L2cus.�nG=K/.
The integral of the non-cuspidal trace of the heat kernel is absolutely convergent,

and can be computed explicitly, giving an inverted theta series:

.2/

Z

�nG
KNC
t .z; z/d
.z/ D e�2t .4t/� 12 ‚NC.1=t/

where ‚NC is the non-cuspidal inverted theta series using � 0 D NCus�:

.2a/ ‚NC.1=t/ D
X

c2CC�.�0/

ace
�jlog bcj2=4t ;

with constants ac; j log bcj2 that are determined explicitly. Cf. [JoL 03], [JoL 04].
Specifically, let �c be a representative of c, and �� the centralizer of an element
� 2 � . Then bc D A-polar component of �c, and

ac D 1

jTor.c/j log j�c;0j2 .2�/� 32
j�c � ��1c j2

;

where

jTor.c/j D order of the torsion group of ��c , which is finite;
�c D eigenvalue of elements in c;
�c;0 D eigenvalue of absolute value >1 for a primitive element of ��c

(which is infinite cyclic modulo the torsion group).
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This explicit determination can actually take several forms. The form we use in
the above reference is in terms of invariants associated with each conjugacy class
in the group � . There are different ways of expressing these completely in terms
of number-theoretic invariants over the rational numbers or over ZŒi�. These two
alternatives are reminiscent of theories that establish a bijection between conjugacy
classes in a Galois group and objects associated directly with the base (class field
theory, covering space theory, etc). This direction deserves a separate treatment
elsewhere. It connects with the work of Zagier [Zag 79], [Zag 82], Szmidt [Szm 83],
[Szm 87], and Venkov [Ven 73].

This leaves the cuspidal trace and the Eisenstein term to be dealt with. Their
integrals over �nG are divergent. However, both of these divergences are “the
same” in the following precise sense. There is a natural fundamental domain F
for �nG=K D �nh3. This domain has a tube structure in terms of the coordinates
.x; y/; x 2 C; y > 0; precisely,

�1
2

5 x1 5 1

2
; 0 5 x2 5 1

2
; x21 C x22 C y2 = 1:

Let F.Y/ be the subset of F consisting of those points such that y 5 Y for Y large.
Let

Eist .Y / D 1

16�

Z

F.Y/

1Z

�1
e�2.1Cr2/t jE.1C ir; zj2drd
.z/;

and

Cus t .Y / D
Z

F.Y/

KCus
t .z; z/d
.z/:

Theorem 3.1. Eist .Y / and Cus t .Y / have asymptotic expansions of the form

c1.t/ log Y C c2.t/C o.1/ for Y !1;

the factor c1.t/ being the same for both functions, namely

c1.t/ D e�2t

.2�t/1=2
:

Therefore the term c1.t/ logY causing divergence cancels, and we can integrate
the rest over all of F (representing �nG=K) letting Y ! 1. What results are a
theta integral and an inverted theta series respectively,

�Eis.t/ D lim
Y!1ŒEist .Y /� c1.t/ log Y �

‚Cus .1=t/ D lim
Y!1ŒCus t .Y /� c1.t/ log Y �:
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These are called the regularized Eisenstein and cuspidal terms respectively. For the
regularized Eisenstein term we get

.3/ �Eis.t/ D �e�2t C 1

�

1Z

�1
e�2.1Cr2/t .011=11/.1C ir/dr;

where, putting F D Q.i/, the function 11 is defined by

11.s/ D ƒ�F.2 � s/
ƒ�F.s/

and ƒ�F.s/ D ��s�.s/�F.s/:

The use of ƒ is classical to denote the “completed” zeta function, with its fudge
factors needed for the functional equation. Thus the Riemann–Dedekind zeta
function appears!

Finally, the regularized cuspidal inverted theta series is computed. For this, we
let

u.r/ D
�
1 r

0 1

�

and ft .r/ D gt .u.r//:

With this, we compute explicit constants a1, a2, a3 and ar such that

.4/ ‚Cus .1=t/ D a1
1Z

0

ft .r/rdr C a2
1Z

0

ft .r/ log.r/rdr

Ca3
1Z

0

ft .r/ log

�
r2 C 4
r

�

rdr C a4:

The constants a1, a2, a3, and ar are explicitly computed using classical known
numbers, meaning rational numbers, � , log 2, log� , and � which is the Euler
constant, as well as an Euler constant �Q.i/ associated to the number field Q.i/ (see
also [Szm 83] and [Ven 73]). As we show, the appearance of the Euler constants
comes from the asymptotic expansion of the summation of the appropriate harmonic
series, either for the integers or the Gauss integers. An elementary exercise in
analytic number theory connects the asymptotic expansion of harmonic series with
special values of the corresponding zeta function. On a deeper level, the integrals in
(4) can be explicitly evaluated using the general Parseval formula from [JoL 93b],
which expresses the series ‚Cus .1=t/ as integrals of classical functions times
(euclidean) gaussinas.

In summary, we thus obtain

Theorem 3.2. The theta relation holds:

e�2t .4t/�
1
2 ‚NC.1=t/C‚Cus .1=t/ D �Cus .t/C 1C �Eis.t/:
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Readers may compare our explicit theta relation with Arthur’s version of Sel-
berg’s trace formula [Art 74] in the context of representation theory, and adelization,
with test functions having compact support (Assumption 3.5). See also Kubota
[Kub 73], Appendix; [Zag 79] and [Szm 83].

We are ready to take the fifth step, which is to take the Gauss transform to
yield a function L.s/ satisfying a functional equation. Actually, this function is a
logarithmic derivative

L.s/ D Z0=Z.s/:
If one carries out the above procedure with SL2.R/=K2.R/ and a co-compact

discrete subgroup � , what one gets forZ is essentially the Selberg zeta function for
a compact Riemann surface. This follows from a theorem of McKean [McK 72].

It is relevant to note here a comment of Iwaniec [Iwa 95]. He writes down the
functional equation of the Selberg zeta function in multiplicative form (10.40)

Z.s/ D ‰.s/Z.1 � s/;

and then says on pp. 169:

If you wish, the Selberg zeta-function satisfies an analogue of the Riemann
hypothesis. However, the analogy with the Riemann zeta function is superficial.
First of all, it fails badly when it comes to development into Dirichlet’s series.
Furthermore, the functional equation (10.40) resists any decent interpretation as
a kind of Poisson’s summation principle.

Readers can evaluate for themselves whether “the analogy with the Riemann zeta
function is superficial.” Whether decent or indecent, our procedure shows the way
to get systematically a construction of zeta functions in the most general case of
semisimple or reductive Lie groups.

One can then apply the Gauss transform [JoL 94], already mentioned at the end
of Section 1, to get a zeta object. We return to this below in higher rank.

4 SLn and Eisenstein series

We shall describe conjecturally the direction we are taking. We consider “ladders”
of spaces of type �nG=K , with appropriate groupsG. To avoid fancier terminology,
we describe some conjectures about the way certain spaces �nnGn=Kn fit into each
other in the concrete case when

Gn D SLn.C/; Kn D unitary subgroup; �n D SLn.ZŒi�/:

We expect these to be both typical examples and also controlling the more general
context with semisimple or reductive groups, in a manner which will be discussed
in the last section.
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Preliminaries

We start with the fact that SLn has the same type of Iwasawa decomposition that we
saw on SL2. We let Gn D SLn.C/ but usually omit the index n. Let

U D subgroup of upper triangular unipotent matrices (1’s on the diagonal).
A D subgroup of diagonal matrices with components ai > 0 for i D 1; : : : ; n.
K D subgroup of unitary matrices.

Then the product map U �A�K ! UAK D G is a bijection, called the Iwasawa
decomposition.

As on SL2, we let B be the real trace form on the Lie algebra g of G, consisting
of the matrices of trace 0.

In addition, we have the Lie algebras n; a; k, where n is the vector space of
strictly upper triangular matrices, a is the space of diagonal matrices, k is the
space of skew-hermitian matrices, all of them with trace 0. We have the direct sum
decomposition

g D nC aC k:

The conjugation action of G on itself induces a conjugation action (functorially)
on g. Its restriction to A induces an action cn.A/ on n, which is completely
reducible into eigenspaces of R-dimension 2, with eigencharacters. In fact, let
Eij .i < j / be the matrix with .ij /-component 1 and all other components 0. Then
Eij ; iEij (complex case!) are an R-basis of an eigenspace, and the corresponding
eigencharacter �ij is determined by

aEij a
�1 D .ai =aj /Eij ; that is �ij .a/ D ai =aj :

The conjugation action ofA on n corresponds to the regular Lie representation of
a on n, that is the homomorphism reg W a! End.n/ such that reg.H/Z D ŒH;Z�.
Thus corresponding to the Iwasawa decompositionG D UAK; g D nCaCk, we let

R.n/ D set of .a; n/-characters, also called the regular characters,

these being the characters occurring in the semisimple decomposition of n over the
Lie-regular action of a. These characters are the ˛ D ˛ij such that for a diagonal
matrixH D diag.h1; : : : ; hr / we have

˛ij .H/ D hi � hj :

The multiplicative characters can be indexed by the additive ones, namely,

� D �˛ and �˛.a/ D e˛.log a/ so that �ij .a/ D a˛ij :
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We let

S.n/ D subset of what are called the simple characters, ˛i;iC1, .i D 1; : : : ; r/.
Every regular character is a linear combination with positive integer coefficients of
simple characters. The simple characters form a basis of the dual space a_.

The theory of SLn is built up from subgroups SLm withm < n as follows. Given
an integer n = 2, let P denote a partition of n, that is

n D n1 C : : :C nrC1; letting r D rP
with positive integers n1; : : : ; nrC1. If r D n�1, we deal with the maximal partition.
We consider blocks of ni � ni matrices along the diagonal, with indices i ranging
from 1 to r C 1. We let

UP D subgroup of the unipotent triangular group with nonzero elements strictly
above the square blocks, except for the diagonal element equal to 1.

AP D subgroup of the diagonal groupA with positive diagonal elements that are
constant in each block, the whole matrix having determinant 1.

GP D
rC1Q
iD1

SLni D
rC1Q
iD1

Gni D direct product of the block groups.

KP D
rC1Q
iD1

Kni D unitary subgroup of GP .

Thus both GP and AP have product structure, which we may write each as

GP D diag.Gn1; : : : ; GnrC1
/ and AP D diag.a1In1 ; : : : ; arC1InrC1

/:

The components aj .j D 1; : : : ; r C 1/ are subject to the determinant condition

rC1Y

jD1
a
nj
j D 1:

We define a standard reduced parabolic subgroup of H to be a subgroup of the
form

P D UPAPGP also written P D UPAPGP :
This is a subgroup. Indeed,GP and AP centralize each other. Furthermore,AP and
GP normalize UP , so P is a subgroup of G. The analysis we are considering on
G=K is built up inductively from these subgroups.

Let � D �n D SLn.ZŒi�/. Then � is a discrete subgroup of G, and the
homogeneous space

�nG D SLn.ZŒi�/nSLn.C/

has finite volume for its Haar measure, i.e., the G-invariant measure induced from
the action of G.
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Let H be a subgroup of G. We use the notation

�H D � \H:

Thus we obtain the subgroups �P ; �UP ; �GP . Note that �AP is the trivial group. For
a reduced standard parabolic subgroup P as above, we have the semidirect product
decomposition

�P D �UP �GP :
For n D 2, the groupU is abelian. For n > 2, it is not abelian, but it is decomposable
into a Jordan–Hölder sequence of abelian groups, actually vector groups. In any
case, �U nU and so �UP nUP is compact, and behaves like a “non-abelian torus”,
even though it is not even a group.

The groupsAP ;GP ;KGP ; UGP are block groups of the same type as A;G;K;U
respectiely. We have their Lie algebras

nP D Lie.UP /; aP D Lie.AP /; gGP D Lie.GP /; kGP D Lie.KGP /:

One obtains the corresponding relevant characters, for instance,

R.nGP / D subset of characters ˛ 2 R.n/ such that ˛.aP / D 0, or equivalently
a˛ D 1 for all a 2 AP .

R.nP / D subset of characters ˛ 2 R.n/ occurring in the a-semisimple
decomposition

nP D
M

nP;˛;

i.e., such that the ˛-eigenspaces nP;˛ are¤ 0. We have the disjoint union

R.n/ D R.nGP / [R.nP/:

We define the traces

� D �G D
X

˛2R.n/
m.˛/˛ and ı.a/ D e�.loga/

and
�P D

X

˛2R.nP /

m.˛/˛ and ıP .a/ D e�P .loga/:

The half traces

� D 1

2
� and similarly �P and �GP

play a significant role, as lying the the middle of a “critical strip” familiar in classical
contexts of analytic number theory.
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Eisenstein series

We are ready for the main course, which concerns the Eisenstein series. Let P be
a reduced standard parabolic of G D SLn.C/, and � D SLn.ZŒi�/. Let � be a
character on AP . For � 2 a_P;C (complexification of the real dual space of aP ), we
let �� be the character of AP such that for a 2 AP we have ��.a/ D a� . The
product map

UP � AP �GP=KGP ! G=K given by .u; a; gKGP / 7! uagK;

is a differential isomorphism. Therefore we have its three projections on the three
factors, denoted by putting any one of them as an index, for instance zAP . We define
the character Eisenstein series by

EP .��/.z/ D EP .�; z/ D
X

�2�P n�
.�z/�AP

D
X

�2�P n�
��..�z/AP /:

We must now describe a half space of convergence. We have remarked that the
simple characters f˛1; : : : ; ˛rg .r D n� 1/ form a basis of a_. Similarly the simple
characters ˛P;1; : : : ; ˛P;rP form a basis of a_P . We let ˛0P;1; : : : ; ˛0P;rP be the dual
basis of a_P relative to the trace form originally given in a, restricted to aP , and
inducing a form on a_P in the natural way. A real character � 2 a_P is defined to be
positive, written � > 0, if

� D
X

	i˛
0
P;i with 	i > 0 for all i:

This notion of positivity defines a partial ordering on a_P . A complex character � 2
a_P;C can be written

� D � C i�; where �; � 2 a_P are real characters:

We let � D Re.�/ and � D Im.�/. We can write � as a linear combination

� D
X

si˛
0
P;i with si 2 C:

Then Re.�/ > 0 is equivalent with Re.si / > 0 for all i .

Theorem 4.1. For Re.�/ > 2�P , the Eisenstein series EP .�/ is absolutely
convergent, uniformly for z in a compact subset of G=K .

This theorem for a much wider class of groups (semsimple) is proved in
Langlands [Lgld 76], see also [Har 68]. Langlands’ monumental work proves the
meromorphic continuation and functional equation in this general case, leaving



The heat kernel, theta inversion and zetas on �nG=K 293

many details to the reader, so access is difficult. The attempt to fill a needed
complement [MoW 94] does not really make Langlands’ theory easily accessible.
One of the participants of the seminar giving rise to this attempt is referred to in
the introduction as holding the opinion that “the purpose of the seminar was to
render obscure what is not so clear.” So foundational material to these theories is
not yet in a form that provides relatively easy access, which is one reason why we
are concentrating on the basic special case of SLn. It is not the only reason; see the
comments at the end.

Let F0 be a function on �GP nGP =KGP . Let � D �� with Re.�/ > 2�P . We
define the F0-twisted Eisenstein series EP .F0; �/ by the series

EP .F0; �/.z/ D
X

�2�P n�
F0..�z/XGP /.�z/�AP ;

where we abbreviatedGP=KGP D XGP . The main twisting function we shall use is
the heat gaussian or heat kernel, on which we now comment.

First, on SL2, the groupGP is the trivial group for the standard parabolic UA, so
the only way to define the heat kernel on GP in this case is the constant 1. Twisting
is not visible on SL2. It is a construction which takes hold in higher dimension.

The heat kernel

We fix the real trace form on the Lie algebra of SLn.C/. This determines a
Riemannian metric on G=K . We can define the Casimir operator exactly as we did
on SL2, via a basis and the dual basis of the Lie algebra, and the corresponding
invariant differential operator, again denoted by !. The heat operator is then

Hz;t D �!z C @t :

We may also fix a Haar measure, usually taken to be the one associated with
the metric volume form, but it is useful to allow the scalings depending on
different choices of Haar measures, as we did on SL2. The heat gaussian is
then defined as a Weierstrass–Dirac family satisfying the heat equation. A general
theorem of Dodziuk [Dod 83] guarantees its existence and uniqueness on a complete
Riemannian manifolds with Ricci curvature bounded from below. However, the heat
kernel can be reached on spaces G=K via spherical inversion theory. It was so
determined and analyzed by Gangolli in the general case of semisimple Lie groups
[Gan 68]. We carry this out in a self-contained way for SL2.C/ in [JoL 03a]. In the
complex case, it is obtained from a specific formula for the heat gaussian, which is
theK-bi-invariant function such that for all b 2 A under Gangolli’s normalizations,
and a bilinear form B_,

gt .b/ D
1

.4�t/dim.G=K/=2
e�j log bj2=4t e��2t

Y

˛2R.n/

2�

B_.˛; �/
˛.log b/

sinh.˛.log b//
;
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where �2 D B_.�; �/, and in the present case, dimG=K D n2 � 1. The formula
is written in such a way that it is the Gangolli formula in the most general case.
Different normalizations may introduce a constant in front, as when we pick the
Iwasawa Haar measure for SL2. In any case, gaussians are defined asK-bi-invariant
functions given on b 2 A by the formula

e�j log bj2=c Y

˛2R.n/

˛.log b/

sinh.˛.log b//

with c > 0, and positive multiples of such functions. We may then first satisfy the
Weierstrass-Dirac property by dividing such functions by their total integral, and
finally adjust the remaining constant so the heat equation is satisfied, in a manner
entirely like the one we described for SL2, thus obtaining the heat gaussian gt . One
then defines the heat kernel by the universal recipe

Kt .z;w/ D gt .z
�1w/:

The heat kernel on a product space being the (tensor) product of the heat kernel
on the factors, we have a heat kernel onGP for eachP . We have already commented
on the convention in the completely degenerate case of trivial GP . Since the heat
kernel is a function of two variables, we are led to define the two-character heat
Eisenstein series

EP;�;K.t; �1; �2; z;w/

D
X

�1;�22�P n�
K
�GP
XGP ;t

..�1z/XGP ; .�2w/XGP /.�1z/
�1
AP
.�2w/

�2
AP
:

In the simplest case of SL2, the heat Eisenstein series collapses to the product of
two Eisenstein series as defined in Section 2, namely for P D UA,

EP;�;K;t .�1; �2; z;w/ D E.�1; z/E.�2;w/:

There is no K or t .
For simplicity, one may omit the subscripts XGP andAP , viewing the heat kernel

KGP and the characters as defined on G=K via the projections on XGP and AP
respectively.

Let FP be the function defined by

FP .t; �; N�; z;w/ D KXGP ;t
.zXGP

;wXGP
/z�AP w

N�
AP
:

For any eigenfunctionF of the heat operator, with eigenvalue�, we define its heated
function (satisfying the heat equation) by

F # D e��tF:
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Theorem 4.2. The function FP in the variables .t; z/ or .t;w/ is an eigenfunction
of the Heat operator, with eigenvalue �ev.!; ��/ (minus the eigenvalue of Casimir
on the character ��). This eigenvalue is explicitly

�P;� D ev.!; ��/ D B_.�; �/� B_.�; �P /:

The heated function F #
P satisfies the heat equation in the variables .t; z/ and

.t;w/. The Eisenstein series is an eigenfunction of the heat operator, with the same
eigenvalue as above, and its heated function

E#
P;�;K.t; �;

N�; z;w/ D e��P;� tEP;�;K.t; �; N�; z;w/

satisfies the heat equation.

5 Conjectures on eigenfunction expansion, theta inversion
and zetas

In this section, we reproduce conjectures from [JoL 03].
By BC we abbreviate the property of being bounded continuous. Let f 2

BC.�nG=K/. Let P be a standard parabolic subgroup of G. We define f to be
P -cuspidal if Z

�UP nUP
f .uz/du D 0 for all z 2 G:

Let � > 2�P D �P . We say that f is .P; �/-admissible if fEP;�;K .�; N�/ is in
L1.�nG=K/ for Re.�/ D �. We make the same definition for all � after assuming
the meromorphic continuation of the Eisenstein series.

Suppose f is .P; �/-admissible. The property that f is P -cuspidal is equivalent
with the property that for Re.�/ D �,

EP;�;K.�; N�/ � f D 0:

The above property is still phrased within the half space of absolute convergence
of the Eisenstein series. We now need to assume the existence of a meromorphic
continuation, so that we can work on the critical space Re.�/ D �P itself.

We define L2dis.�nG=K/ to be the closure of the subspace of L2 generated
by eigenfunctions of Casimir, and call this subspace the discrete part of L2. We
define a function to be cuspidal if it is P -cuspidal for all P , and call the space
of such functions the cuspidal space. It is contained in the discrete part of L2. Its
orthonormal complement will be called the residual space L2res.�nG=K/.

For n D 2, the discrete part of L2 is the cuspidal subspace plus the con-
stants. For n > 2, it involves more, namely a bigger residual part, for which
the only available basic reference is the “jungle” of Langlands [Lgld 76], �7.
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Gelfand–Piatetski–Shapiro proved that convolution on the cuspidal space with an
L1 function is a compact operator, and Borel–Garland [BoG 83] extended this to
the full discrete part.

Conjecture 5.1 Suppose that for all � with Re.�/ D �P ; t > 0; z 2 G we have

.EP;�;K � f /.t; �; N�; z/ D 0:
Then f is in the P -cuspidal + discrete subspace.

The convolution is on �nG. The integral implicit in this convolution is taken over
the second �nG variable. As for the test function, one needs it in a space which will
include the heat kernel, e.g. the space of gaussians.

Pushing the need for analytic continuation, we define the anti-discrete kernel

JP;�;�P ;t .z;w/ D
Z

Re.�/D�P
E#
P;�;K.t; �;

N�; z;w/d Im.�/

D
Z

Re.�/D�P
e��P;� tEP;�;K.t; �; N�; z;w/d Im.�/:

Conjecture 5.2 The map t 7! JP;�;�P ;t .z;w/ satisfies the semigroup property under
convolution on �nG. For f in the appropriate space (containing the gaussians,
possibly .P; �/-admissible for �P 5 � 5 .2C "/�P ) the function

f � lim
t!0 cP JP;�;�P ;t � f

is in the P -cuspidal subspace + residual space, for some constant cP .

Considering the anti-Eisenstein product
Y

.I � JP /
taken over all P , we are led to:

Conjecture 5.3 There exist real numbers c0P such that the function

f �
X

P

c0P lim
t!0 JP;�;�P ;t � f

is in the cuspidalC residualD discrete subspace.

We are now in a position to state the conjectural form of the eigenfunction
expansion for the heat kernel. Let f j g be an orthonormal basis for the discrete
part of L2.�nG=K/ consisting of Casimir eigenfunctions, so ! j D �j j .
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Conjecture 5.4 For X D G=K , there exist constants c00P such that

K�
X.t; z;w/ D

X

j¤0
e��j t j .z/ j .w/

C c0 C
X

P

c00P
Z

Re.�/D�P
e��P;� tEP;�;K.t; �; N�; z;w/d Im.�/:

In the above formulation, we took  0 for j D 0 to be a constant function. The
value of the constants c0 and c00P depend on various normalizations. However, no
matter what, c0 has to be 1=vol.�nG/.

Conjecture 5.4 is the conjectured formula for the eigenfunction expansion of the
heat kernel.

We have reached the stage of Theorem 2.2 on SLn.C/. Then one has to carry out
the regularization, the cancellation procedure between the cuspidal part KCus

t of the
heat kernel and the Eisenstein integral, in order to reach the theta inversion formula,
thus completing the first four steps listed in the case of SL2.

The fifth step will consist in taking the Gauss transform to yield zeta objects with
an additive structure. This will exhibit the ladder structure, in which the fudge terms
of the functional equation of the zeta object Ln at level n will be mostly the zeta
objects Lm at lower levels m < n, including the vey bottom object which will be
011=11 (cf. Section 3 (3)), thus bringing in explicitly the number theoretic zeta.
The other fudge terms will be gamma type functions, powers of � , exponentials.
The general theory of the Gauss transform from [JoL 94] Chapter V will apply.

In this way, the theory of explicit formulas for regularized series merges with the
theory of eigenfunction expansions on reductive Lie groups, starting with what first
appears as a special case, the SLn ladder. This broader context was the principal
motivation for the axiomatization that we started in [JoL 93], [JoL 94] to make
the entire set up (regularized products or series and explicit formulas) applicable
simultaneously to the cases of classical analytic number theory and the geometric
cases that arise from groups like SLn (reductive groups).

Note that at levels higher than n D 2, the main contributions to the fudge
terms arise from the parabolics, which are like the original group SLn but of lower
dimension or rank. Thus the fudge terms, not factors because we are carrying on
in an additive setting, correspond to zeta objects associated with lower steps in the
ladder, in the present case the SLn ladder.

We view spec.ZŒi�/ as lying at the bottom of the geometric ladder, that is at
the first level. The existence of such a ladder shifts the focus of attention from a
single level to the way all levels affect each other, especially the way the bottom
level interacts with all levels (providing a fudge factor), emphasizing the number-
theoretic significance.

TheGn=Kn having negative curvature, it is fruitful to view spec.ZŒi�/, or spec.o/
for the ring of integers of a number field, as having “negative curvature,” whatever
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that means. This point of view led us to conjecture that every abelian subgroup of
the Galois group of the algebraic closure of Q is topologically cyclic, in analogy
with Preissmann’s theorem in differential geometry. It then turned out that the
above statement is a theorem proved by Geyer in the late 60s [Gey 69], thus giving
a strong indication that the heuristic point of view may have a more substantial
content.

In any case, we may summarize the above pattern with

Gn D SLn.C/; Xn D Gn=Kn; �n D SLn.ZŒi�/

assigning zeta object to �nnXn D �nnGn=Kn by the five steps procedure:

• Start with the heat kernel on Xn.
• Periodize by �n to �nnXn.
• Give explicitly the eigenfunction expansion of the heat kernel.
• Regularize the divergent terms to get a theta inversion relation, by integrating

over �nnGn.
• Apply the Gauss transform.

6 Further connections

Representation theory per se forms a motivating force for a whole establishment.
We are motivated differently, namely by the development of zeta functions via
theta inversion relations, and their analysis via regularized products, regularized
series, and explicit formulas. It has been realized in different contexts (Selberg
trace formula [Sel 56], Gangolli’s construction of the heat kernel on generalG=K’s
with co-compact discrete �) that theta inversion formulas can be viewed as part
of a much larger context, stemming from the theory of semisimple Lie groups,
symmetric spaces, and the heat kernel. Roughly speaking, the general setting for
what we described above is that of such groups which have a structure like that
of SLn but more (or occasionally much more) complicated. If G is such a group,
its associated symmetric space is G=K , where K is the (compact) subgroup in the
Iwasawa decompositionG D UAK . One essential aspect of these spaces is that they
are Cartan–Hadamard: complete, simply connected, with seminegative curvature in
the language of differential geometry. The subgroup� is a discrete subgroup, which
may or may not be such that �nG is compact, but always volume.�nG/ is assumed
finite. Of special interest are “‘arithmetic” subgroups such as SLn.Z/ in SLn.R/
and SLn.ZŒi�/ in SLn.C/, which are not co-compact and introduce number theory
in various ways, from the bottom up, as we saw in Section 5.

In the Iwasawa decomposition, U is unipotent (its elements are exponentials of
nilpotent elements in the Lie algebra), and in particular solvable. The group A is
isomorphic to a product of positive real multiplicative groups. The subgroup K is
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maximal compact, or better unitary for an appropriate scalar product just as on SLn.
If n; a; k are the respective Lie algebras, then n is stable under the conjugation action
by A, and thus U is normal in UA. The Lie algebra n decomposes semismply into
1-dimensional subspaces, giving rise to eigencharacters˛ just as for SLn. A positive
definite scalar product is given a priori on a, and there is a polar decomposition
G D KAK , just as for SLn, so that for b 2 A, one has log b 2 a and the norm
j logbj is defined.

Gaussians. One may thus define gaussians when G is a complex group just as
we did in the case of SLn.C/. Gangolli [Gan 68] showed that the heat kernel in
this complex case is a gaussian with the formula we gave in Section 4. Gaussians
actually serve (at least) three purposes:

• One of them is to serve as test functions in a new general development of
the theory of semisimple or reductive Lie groups. Indeed, we expect the space
generated by the gaussians to be dense in anything one wants (for the case of
SL2, see [JoL 03b]).

• Another is to provide the basis for explicit formulas in this theory.
• The third is to lead immediately into the heat kernel.

The controlling effect of the complex case. Gelfand–Naimark first treated the
representation theory in the complex case of the classical groups [GeN 50/57], and
Harish-Chandra completed this for all complex groups, and then all real groups
[Har 54], [Har 58a] and [Har 58b], by means of the Harish-Chandra series, taking
his motivation from linear differential equations. This method was followed in the
standard references [Hel 84], [GaV 88], and also in [JoL 01a] for SLn. However, in
Chapter XII of [JoL 01a] for spherical inversion, we suggested the possibility of an
entirely different approach to the general case, having its origins in the Flensted-
Jensen method of reduction to the complex case [FlJ 78], [FlJ 86]. This program
is in the process of being carried out, using the normal transform and its relation
to spherical inversion and the heat gaussian, as investigated in collaboration with
A. Sinton. As we developed, the Flensted-Jensen method can be placed in a much
more general context of a totally geodesic embedding or an Iwasawa embedding
(compatible with the Iwasawa decomposition up to conjugacy) of one space G1=K1

into another G=K . Then the analysis on G1=K1 is related to the analysis on
G=K by a commutative diagram, via a projection operator from the larger space
to the smaller, namely integrating over the normal directions. For instance, the
heat kernel of G1=K1 is so obtained form the heat kernel on G=K , and so is the
theory of spherical inversion. This also gives a rapid insight into the real case as a
“homomorphic image” of the complex case.

Since any semisimple Lie group can be naturally embedded into some SLn.C/
via its Killing representation (conjugation representation on its Lie algebra), it
thus appears that SLn.C/ is not only an example but a controlling object for all
semisimple Lie groups. Thus the pedagogically effective approach of working out
the concrete case of SLn.C/ first is also mathematically effective to get at the general
case.
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Ladders. The natural way groups SLn are embedded in each other is part of a more
general system giving rise to other kinds of what we call ladders. Each symmetric
space Gn=Kn is embedded in a GnC1=KnC1, in a totally geodesic way, preserving
the Iwasawa decomposition (after possibly a conjugation). Thus we may have a
sequence of geometric objects which can be displayed vertically as a ladder:

ˇ
ˇ

GnC1=KnC1
ˇ
ˇ

Gn=Kn

ˇ
ˇ

Gn�1=Kn�1
ˇ
ˇ

On the other hand, we have the ladder of associated zeta functionsLn.s/, according
to the general five steps summarized at the end of Section 5. The L-notation
suggests logarithmic derivatives as well as classical L-functions. The fudge terms,
written additively in our set up so we do not say fudge factors, in the additive
functional equation of our zeta objects (logarithmic derivatives), will conjecturally
come mainly from the zeta functions of lower level in the ladder. Other fudge
factors will include higher-dimensional versions of gamma functions. Thus we
have a zeta ladder in parallel to the ladder of spaces. The spaces Gn=Kn are not
compact, but can be compactified by the spaces Gm=Km with m < n. A special
case arises when these come from parabolic subgroups. Thus the occurrence of
functions Lm.s/ as fudge terms for Ln.s/ reflects the geometric construction of
compactification.

Furthermore, a new connection arises between classical number-theoretic objects
and objects coming from geometry and analysis, because classical Dedekind zeta
functions will occur as fudge factors of geometric zetas. In particular, to so-called
“trivial” zeros or poles at a given level, i.e. those belonging to the fudge factors, are
the main zeros or poles of lower levels. Thus the zeros of the ordinary Riemann zeta
are “trivial” zeros for higher level zetas. More appropriately, they might be called
fudge zeros for higher levels.

Connections with geometry. Similar ladders should occur with certain types of
spaces arising from algebraic geometry and differential geometry, in various ways.

(a) First, moduli spaces in algebraic geometry have a tendency to be of type
�nG=K or to be naturally embeddable to some�nG=K (G reductive or semisimple,
and K the unitary subgroup). For instance, the moduli space of curves of genus
=2 is embedded in the moduli space of its associated jacobian because of Torelli’s
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theorem (two curves are isomorphic if and only if their jacobians are isomorphic).
As for abelian varieties, their moduli spaces are obtained as quotients ofG=K where
G is a symplectic group Sp2g (with g equal to the dimension).

Another possible ladder over the moduli space of curves of genus 1 starts with
the moduli space of K3-surfaces, which is a �nG=K corresponding to the group
G D SO0.2; 19/, followed by Calabi–Yau manifolds moduli spaces, with their more
complicated moduli structure embeddable in �nG=K’s, or also possibly involving
(b) below. Finally, we mention the moduli ladder of forms of higher degree as in
a paper of Jordan [Jor 1880]. Thus analytic properties of Mellin.�/ (essentially a
spectral zeta) or of Gauss.�/ (a broader context for Selberg’s zeta), associated to
such spaces will conjecturally get related to the algebraic geometry and differential
geometry of such spaces in ways in which both complement those in the past, and
new ways in the future.

In any case, the geometric ladder and the ladder of zeta functions reflect
each other, thereby interlocking the theory of spaces coming from algebraic and
differential geometry, with analysis and a framework whose origins to a large extent
stem from analytic number theory. On the other hand, for some purposes, and in any
case as a necessary preliminary for everything else, the purely analytic aspects have
to be systematically available.

(b) There are other manifestations of ladder-like stratifications. A theorem of
Griffiths [Gri 71] states that given a projective variety V over C, there is a Zariski
open subset which is a quotient of a bounded domain (of holomorphy), and this
bounded domain is C1 isomorphic to a cell (euclidean space). We propose to go
further, namely that Zariski open subset can be chosen so that its universal covering
space is real analytically aG=K withG semisimple or reductive, so the Zariski open
subset is a �nG=K with discrete � . Thus any projective variety could be stratified
by a �nG=K . This gives rise to the possibility of considering the classification of
varieties or manifolds via stratification structures by such �nG=K . In particular,
what is the minimal Zariski closed subset of the moduli space of Calabi–Yau mani-
folds which one has to delete to get the complement expressible as a �nG=K? How
does this symmetric space relate to the symmetric space in which the moduli space
i naturally embedded? Same question for the moduli space of curves of genus�2.

Topologists have concentrated on the classification problem via connected sums,
but we find indications that the stratification structure and its connection with
eigenexpansion analysis deserves greater attention. Thurston’s conjecture for 3-
manifolds fits into this ladder scheme.

Having a stratification as suggested above, one may then define an associated zeta
function following the five steps listed previously, and related the analytic properties
of these zeta functions with the algebraic-differential geometry of the variety.

(c) The trace formula and the spectral zeta function in connection with index the-
orems, have some history dating back to the seventies and eighties. We mention only
a few papers: Atiyah–Bott–Patodi [AtBP 73], Atiyah–Donnelly–Singer [AtDS 83],
Barbasch–Moscovici [BaM 83], Müller [Mul 83], [Mul 84], [Mul 87]. For a more
complete bibliography, cf. Müller’s Springer Lecture Notes [Mul 87]. These papers
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are partly directed toward index theorems and the connection with number-theoretic
invariants, as in the proof of a conjecture of Hirzebruch in [AtDS 83] and [Mul 87].
In retrospect, we would interpret the Atiyah–Donnelly–Singer paper as working on
two steps of a ladder, with the compactification of one space by another, and the
index theorem being applied on this compact manifold. A reconsideration of the
above mentioned papers in light of the present perspective is now in order.

Readers can compare Müller’s formula for the heat kernel [Mul 84] Theorem
4.8 and [Mul 87], (9.5), obtained in the context of functional analysis, with our
explicit formula. Working as we do in the complex case, where it is possible to use
an explicit gaussian representation for the heat kernel, and using the Gauss transform
rather than the Mellin transform, puts a very different slant on the whole subject, and
allows us to go in a very different direction, starting with the explicit theta inversion
relation and its Gauss transform.

Towers of ladders. The structure goes still further. To concentrate on certain aspects
of analysis in the simplest case of G=K , we already picked the number field Q.i/
instead of Q itself, so we used ZŒi� instead of Z. However, one may consider an
arbitrary number field, and the Hilbert–Asai symmetric space associated with it
[Asa 70], [JoL 99]. Thus we may go up a tower of number fields fFmg (finite
extensions), and then ladders over these fGm;n=Km;ng, giving rise to a tower of
ladders, so a quarter lattice combining even more extensively geometric structures
with classical number theoretic ones.

Going up a tower ipso facto introduces questions of number theory. Already for
quadratic fields, the Eisenstein series gives rise to a whole direction as in [EGM 85],
[EGM 87], [EGM 98], with the theory of special values.

However, we place emphasis on the extent to which the geometric structure is
affecting the number theory by having number-theoretic objects at the bottom of
geometric ladders. The main new question, as we see it, is how does the existence of
a rigid sequence of zeta functions up the ladder force certain regularities of behavior
on the arithmetic bottom?
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[Kub 68] T. Kubota, Über diskontinuierlicher Gruppen Picardschen Typus und zugehörige

Eisensteinsche Reihen, Nagoya Math. J. 32 (1968), 259–271.
[Kub 73] T. Kutoba, Elementary Theory of Eisenstein series, Kodansha and John Wiley,

Tokyo-New York, 1973,
[Lan 73/87] S. Lang, Elliptic functions, Addison Wesley, 1973; Second Edition, Springer Verlag,

1987.
[Lan 75/85] S. Lang, SL2.R/, Addison Wesley 1973, Springer Verlag 1985.
[Lan 93] S. Lang, Real and Functional Analysis, Springer Verlag, 1993.
[Lan 70/94] S. Lang, Algebraic Number Theory, Addison Wesley 1970; Second Edition, Springer

Verlag, 1994.
[Lan 97] S. Lang, Undergraduate Analysis, Second Edition, Springer Verlag, 1997.
[Lan 99] S. Lang, Math Talks for Undergraduates, Springer Verlag, 1999.
[Lan 02] S. Lang, Introduction to Differentiable Manifolds, Second Edition, Springer Verlag

2002.
[LanJo 01] S. Lang, Collected Papers, Volume V, with Jay Jorgenson, 1993–1999, Springer

Verlag, 2001.
[Lgld 66] R. P. Langlands, Eisenstein Series, Proc. Symposium in Pure Mathematics, AMS,

Boulder Colorado 1966, Algebraic Groups and Discontinuous Subgroups, Borel and
Mostow, editors, 235–252.

[Lgld 76] R. P. Langlands, On the functional equations satisfied by Eisenstein series, Springer
Lecture Notes 544, 1976.
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Applications of heat kernels on abelian groups:
�.2n/, quadratic reciprocity, Bessel integrals

Anders Karlsson

In memory of Serge Lang

Abstract The discussion centers around three applications of heat kernel
considerations on R, Z and their quotients. These are Euler’s formula for �.2n/;
Gauss’ quadratic reciprocity law, and the evaluation of certain integrals of Bessel
functions. Some further applications are mentioned, including the functional equa-
tion of Riemann’s �-function, the reflection formula for the � -function, and certain
infinite sums of Bessel functions.
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1 Introduction

It was a well-known open problem at the beginning of the 18th century to determine
the value of 1X

kD1

1

k2
:

In fact, Wallis and Leibniz failed in their attempts and the question was much
discussed among the Bernoullis. It was therefore a sensation when the solution came
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in 1734 from the young Euler, who later also found the general formula for �.2n/,
see Theorem 1 below.

Now consider instead the problem of solving quadratic equations mod p. A
general quadratic equation reduces to studying

x2 D q mod p

for any two distinct primes p and q. The main theorem for answering when this
equation has a solution is the quadratic reciprocity law proved by Gauss in 1796;
see Theorem 3 below.

It is a striking fact that both these two classic theorems of number theory, on
the surface so different in character, can be deduced from one single analytical
formula. We will see this in Sections 3 and 4. The analytical formula in question is
the classical Poisson–Jacobi theta inversion identity which expresses the heat kernel
on R=2�Z in two ways. This proof of Gauss’s theorem is known and can be found
in e.g., [4], while the deduction of Euler’s evaluation of �.2n/ appears to be new
(this proof is analogous to how Selberg’s zeta function with functional equation is
derived in [17]).

In Section 6 we will moreover see how to evaluate integrals of Bessel functions
such as

Z x

0

Jn.t/dt or
Z x

0

Jn.t/Jm.x � t/dt

through a determination of the heat kernel on the space consisting of two(!) points.
Of course there are several other extraordinary applications of heat kernels and

theta inversion, even on R; see e.g., [15]. Here I selected the evaluation of �.2n/
because the proof is both appealing and suggestive, and I chose to include the case
of quadratic reciprocity because Lang liked it particularly much and he told me that
one should try to do the same to every theta inversion in sight.

As will be clear, the approach is influenced by the ideas of Jorgenson and Lang.
In Sections 2 and 5 I try to put the material in the framework of their program, where
R and Z correspond to the lowest (or next to lowest) levels in the ladder structures.
See [12] and [13] for more details on this.

Acknowledgements Support from the Swedish Research Council (VR) grant 2002-4771 and from
the Göran Gustafsson Foundation is gratefully acknowledged.

2 Theta inversion on R

The Poisson summation formula is usually stated in the following way:

1X

nD�1
f .n/ D

1X

nD�1
bf .n/; (1)
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where bf is the Fourier transform of f , an infinitely differentiable function such
that f and all its derivatives decrease rapidly at infinity, which means that
limjxj!1 jxjm f .k/.x/ D 0 for every m, k � 0. Although elegant as this
formula no doubt is, it comes especially alive when one takes f to be the heat
kernel on R;

KR.t; x/ WD 1p
4�t

e�x2=4t :

Actually, as Lang pointed out to me, two important features are left out in the “roof
formula” (1) as compared to e.g. (2) below: first, the spectral expansion on the
quotient present in the proof is hidden, and second, the crucial t-variable structure
is missing. In more detail, we start with KR.t; x/, which we periodize to make it
2�-periodic in x (see e.g., [15]). As such it has a Fourier series expansion, and one
has after a computation of Fourier coefficients that

1p
4�t

1X

nD�1
e�.xC2�n/2=4t D 1

2�

1X

nD�1
e�n2t einx: (2)

Now specializing by letting x D 0 one gets the Poisson–Jacobi theta inversion
formula:

1p
4�t

1X

nD�1
e��2n2=t D 1

2�

1X

nD�1
e�n2t ; (3)

proved for t > 0; but a posteriori valid for Re.t/ > 0 since both sides are analytic
in that region. Riemann attributes this formula to Jacobi, who in turn attributes it to
Poisson (see [7, p. 15]). Note that (3) is what we would get from (1) with f .x/ D
KR.t; 2�x/.

Define the theta function �.t/ DP1kD�1 e��k2t : Then the identity (3) becomes
in a more compact form

1p
t
�

�
1

t

�

D �.t/; (4)

which explains the name theta inversion.
In the many applications of these formulas t plays a crucial role. The theorems of

Euler and Gauss are discussed below, and then there is also the original Riemann’s
meromorphic continuation and functional equation of his zeta function, which is
recalled without the proof in Section 3.

Note that although these theorems of Euler, Gauss, and Riemann are discussed
in most basic textbooks on number theory (e.g., [3], [7], [11], and [19]), it seems
that nowhere is it pointed out that, remarkably, all three are consequences of the
Poisson-Jacobi theta inversion formula. Considering this, we may be well-advised
to study analogs of this formula more closely, which is what we do in Section 5
although only to a modest extent.
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3 Special values of Riemann’s zeta function

What follows is a proof of the following theorem:

Theorem 1 (Euler). For any k > 0,

�.2k/ WD
1X

nD1

1

n2k
D .�1/k�1 .2�/

2kB2k

2.2k/Š
;

where Bn denotes the Bernoulli numbers.

Recall that the Bernoulli numbers Bk are defined via

x

ex � 1 D
1X

kD0
Bk
xk

kŠ
D 1 � 1

2
x C

1X

kD1
B2k

x2k

.2k/Š
:

See [11, Ch. 15] for more information on Bernoulli numbers, and in this reference
it is also remarked that the theorem above “constitutes one of [Euler’s] most
remarkable calculations,” which in Euler’s case does not mean little. Since B2 D
1=6, B4 D �1=30, and B6 D 1=42, we get for example that �.2/ D �2=6,
�.4/ D �4=90, and �.6/ D �6=945.

Let f be a measurable function such that jf .t/j D O.ebt / for some b as t !1:
The Gauss transform of f .t/ following Jorgenson–Lang, see e.g., [16, p. 301] or
[13, p. 1], is

Gf.s/ D 2s
Z 1

0

f .t/e�s2t dt

and is an analytic function in s for Re.s2/ > b. From [6, p. 25] one has that the
Laplace transform of

1p
�t
e�a2=4t ; for a � 0; is

1p
�
e�a
p
� :

Now if we take the Gauss transform of the left-hand side LHS of (3), we get
for s > 0; by repeatedly interchanging the order of sums and integrals (justified
by absolute and uniform convergence of the series and integrals in question),
that

G.LHS/.s/ D 2s
1X

nD�1

Z 1

0

1p
4�t

e��2n2=t e�s2t dt D 2s

2

1X

nD�1

1

s
e�2�jnjs

D
1X

nD�1
e�2�jnjs D 1C 2 e�2�s

1 � e�2�s D
1C e�2�s
1 � e�2�s :
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The right-hand side RHS becomes

G.RHS/.s/ D 2s

2�

1X

nD�1

Z 1

0

e�tn2e�s2tdt D 2s

2�

1X

nD�1

"

e�.n2Cs2/t

�.n2 C s2/

#1

0

D 1

2�

1X

nD�1

2s

s2 C n2 :

Therefore we have that the Gauss transform of the theta identity on R gives:

Proposition 1. For real s ¤ 0,

1C e�2�s
1� e�2�s D

1

2�

1X

nD�1

2s

s2 C n2 :

We now expand both sides in series expansions in s, for small s > 0:

1

2�

1X

nD�1

2s

s2 C n2 D
1

�s
C 2

�s

1X

nD1

s2

n2 C s2 D
1

�s
C 2

�s

1X

nD1

.s=n/2

1C .s=n/2

D 1

�s
C 2

�s

1X

nD1

1X

kD1
.�1/k�1

� s

n

�2k

D 1

�s
C 2

�s

1X

kD1

 1X

nD1

1

n2k

!

.�1/k�1s2k:

On the other hand, in view of the definition of Bn, the left-hand side becomes

1C e�2�s
1� e�2�s D �1 �

2

e�2�s � 1 D �1C
1

�s

�2�s
e�2�s � 1

D �1C 1

�s
C 1C 1

�s

1X

kD1
B2k

.�2�s/2k
.2k/Š

D 1

�s
C 1

�s

1X

kD1
B2k

.2�/2ks2k

.2k/Š
:

Hence for integers k > 0

1X

nD1

1

n2k
D .�1/k�1.2�/2k

2.2k/Š
B2k;

which proves the theorem.
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Let �.s/ D ��s=2� .s=2/�.s/. It is worth recalling here that Riemann applied the
Mellin transform to the theta inversion on R, see [7, pp. 15–16] or [15], proving:

Theorem 2 (Riemann). The function �.s/ admits an analytic continuation for all
s ¤ 0; 1 and

�.s/ D �.1 � s/:
From this and Theorem 1, it follows that

�.1� 2n/ D �B2n
2n

;

and, because of the poles of �; that at the negative even integers �.�2n/ D 0. These
special values were found by Euler in 1749.

4 Quadratic reciprocity

We consider the following equation:

x2 D q mod p

for any two distinct primes p and q. The Legendre symbol

�
q

p

�

is defined to be 1 if the above equation has a solution for some integer x and
�1 otherwise unless q D 0 mod p in which case the symbol is 0. The quadratic
reciprocity law is:

Theorem 3 (Gauss). For any two distinct odd primes p and q,

�
p

q

��
q

p

�

D .�1/.p�1/.q�1/=4:

Euler stated the theorem in 1783 but without proof. Legendre wrote only a partial
proof, and the first correct proof was published by Gauss in 1796. This theorem was
perhaps Gauss’s favorite in number theory, which is also indicated by the name he
attached to it: theorema aureum — the golden theorem.

The proof we present is based on a beautiful formula, due to Schaar from 1848,
and which is of independent interest. It will here arise as the asymptotics expansion
in the theta inversion formula for t D " C ip=q, " ! 0. We follow Bellman [4],
who attributes this proof to Landsberg. A similar method of proof was employed by
Hecke [10] to establish quadratic reciprocity for an arbitrary number field; see also
[8], [3], and [18]. This might indicate that it is one of the better proofs out of the
hundred or so published proofs of Gauss’s theorem.
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Let

S.p; q/ WD
q�1
X

rD0
e�i�r2p=q:

Proposition 2. Let p and q be two relatively prime integers. Then

1p
q
S.p; q/ D e�i�=4p

p
S.q; p/;

or written out in full,

1p
q

q�1
X

kD0
e�i�k2p=q D e�i�=4p

p

p�1
X

lD0
ei�l

2q=p:

Proof. Let

�.t/ D
1X

kD�1
e��k2t D 1C 2

1X

kD1
e��k2t :

For " > 0 we have

�."Cip=q/ D 1C2
1X

kD1
e��k2"e�i�k2p=q D 1C2

q�1
X

kD0

 

e�i�k2p=q
1X

lD0
e��.kClq/2"

!

:

The inner sum can be interpreted as a Riemann sum as "! 0 so that

1X

lD0
e��.kClq/2" D

Z 1

0

e��.kCxq/2"dx C o.1/ D 1

�q
p
"

Z 1

�k
p
"

e�w2dwC o.1/

D 1

�q
p
"

�p
�

2
C o.1/

�

:

Hence

�."C ip=q/ D 1C 2 1

�q
p
"

�p
�

2
C o.1/

�

S.p; q/ D 1

q
p
�"

.S.p; q/C o.1//

as "! 0.
On the other hand, start by noting that

1

t
D 1

"C ip=q D
"

"2 C p2=q2 � i
p=q

"2 C p2=q2 D "
q2

p2
� i q

p
CO."2/:
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Therefore by the same argument, although with some extra care due to the presence
of O."2/ above, we get the asymptotics as "! 0 for

�

�
1

"C ip=q
�

D 1

p
p

�"q2=p2
.S.�q; p/C o.1// D 1

q
p
�"
.S.q; p/C o.1//:

Finally, in view of that

1p
t
D 1
p

"C ip=q D e
�i�=4

r
q

p
C o.1/

and comparing the two asymptotics in the theta inversion formula (4), the proposi-
tion is proved. ut

Let the quadratic Gauss sum be

G.n;m/ D S.2n;m/ D
m�1X

rD0
ei2�r

2n=m:

We have:

Lemma 1. Let p and q be two distinct primes. Then

G.1; pq/ D G.p; q/G.q; p/:

Proof. Note that k2p2 C l2q2 equals .kp C lq/2 mod pq, so we see that

G.p; q/G.q; p/ D
q�1
X

kD0
ei2�k

2p=q

p�1
X

lD0
ei2�r

2q=p D
p�1
X

lD0

 
q�1
X

kD0
ei2�k

2p=q

!

ei2�l
2q=p

D
p�1
X

lD0

q�1
X

kD0
ei2�.k

2p2Cl2q2/=pq D G.1; pq/;

since kp C lq runs through all the values 0 to pq � 1 mod pq exactly once. ut
The connection to the Legendre symbol comes next:

Lemma 2. Let p be an odd prime and assume that p does not divide n. Then

G.n; p/ D
�
n

p

�

G.1; p/:

Proof. This is a simple calculation keeping in mind that as r runs from 1 to p�1, r2

mod p goes through all the quadratic residuesQ, exactly twice because .p� r/2 D
r2 mod p:

G.n; p/ D 1C 2
X

k2Q
ei2�kn=p:
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Now if n is a quadratic residue then clearly kn is a quadratic residue, and so

G.n; p/ D 1C 2
X

m2Q
ei2�m=p D G.1; p/ D

�
n

p

�

G.1; p/:

On the other hand, if n is a quadratic nonresidue then kn runs through the quadratic
nonresiduesQ0, and we get

G.n; p/ D 1C 2
X

m2Q0

ei2�m=p D �1 � 2
X

l2Q
ei2�l=p D

�
n

p

�

G.1; p/;

where the second equality comes from the evaluation of a geometric series:

1C
X

m2Q
ei2�m=pC

X

m2Q0

ei2�m=p D
p�1
X

mD0
ei2�m=p D 0: ut

We now prove Gauss’s theorem. First we have using Proposition 2 for an odd
numberm that

G.1;m/ D S.2;m/ D
p
mp
2
ei�=4.1C e�i�m=2/ D i .m�1/2=4pm:

In view of the two lemmas we finally get

�
p

q

��
q

p

�

D G.p; q/

G.1; q/

G.q; p/

G.1; p/
D G.1; pq/

G.1; q/G.1; p/
D .�1/.p�1/.q�1/=4

as required.

Finally, note that also the two so-called supplements come out directly from
Proposition 2:

��1
p

�

D G.1; p/

G.1; p/
D .�i/.p�1/2=4pp

i.p�1/2=4pp D .�1/.p�1/2=4 D .�1/.p�1/=2

and for an odd prime p,

�
2

p

�

D G.2; p/

G.1; p/
D
p
p

2
ei�=4

�

1C ei�p=4 C ei�p C ei�9p=4�

i .p�1/2=4pp

D ei�.pC1/=4 C ei�.9pC1/=4
2i .p�1/2=4

D .�1/.p2�1/=8:
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5 Theta inversion on Z

The heat kernelKZ.t; x/ on Z is the fundamental solution of

�

�C @

@t

�

f .t; x/ D 0;

where

�g.x/ D g.x/ � 1
2
.g.x � 1/C g.x C 1//:

It is easily verified that
KZ.t; x/ D e�t Ix.t/;

where x 2 Z, t � 0, and I is the Bessel function

I	.z/ D
1X

kD0

z	C2k

2	C2kkŠ� .	 C k C 1/ :

(The relation to the more standard J -Bessel funtion is In.z/ D .�i/nJn.iz/:/ This
can basically be found in Feller [9, pp. 58–60], see also my paper with Neuhauser
[14] for a discussion. When passing to a quotient Z=mZ, we obtain the analogy of
(2), except for a cancellation of the factor e�z;

1X

kD�1
IkmCx.z/ D 1

m

m�1X

jD0
ecos.2�j=m/zC2�ijx=m; (5)

for any z 2 C and integers x and m > 0, as was proved in [14]. Specializing to
x D 0, we have the theta inversion formula on Z,

1X

kD�1
Ikm.z/ D 1

m

m�1X

jD0
ecos.2�j=m/z; (6)

or in more perfect analogy with (3),

e�t
1X

kD�1
Ikm .t/ D 1

m

m�1X

jD0
e�2 sin2.�j=m/t .

The beautiful formula (6) was in fact established earlier by Al-Jarrah, Dempsey, and
Glasser [2] (compare also with Theorem 9 in [5]) by a very different method. Note
however that these formulas do not seem to have been noticed previously in the vast
classical literature on Bessel functions.

If we take the Gauss transform on this identity (now again multiplied by e�t )
it is possible, see [14], to get an explicit formula, which is thus the analog of
Proposition 1:
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Proposition 3. For real s ¤ 0; andm > 0 an integer,

2sp
s4 C 2s2

1C
�

s2 C 1 �ps4 C 2s2
�m

1�
�

s2 C 1 �ps4 C 2s2
�m D

1

m

m�1X

jD0

2s

s2 C 2 sin2.�j=m/
:

This is the logarithmic derivative (up to the factor m) of a Selberg-type zeta
functionZZ=mZ (the analogy coming from [17]). In this way we obtain the following
[14]:

22�m sinh2
�m

2
arccosh.s2 C 1/

�

D ms2
m�1Q
nD1

�

1C s2

2 sin2.�n=m/

�

DW ZZ=mZ.s/

which holds for any s 2 C.
In the case of R; one gets (cf. the remarks on p. 5 in [13]) in an analogous fashion

2 sinh�s D 2�s
1Q
nD1

�

1C s2

n2

�

DW ZR=2�Z.s/: (7)

This in turn can be recast into the well-known reflection formula due to Euler:

Proposition 4. For z 2 C n Z;
�

sin�z
D � .z/� .1� z/:

Proof. Recall that the gamma function can be defined through a Weierstrass product
(where 
 is Euler’s constant):

1

� .z/
D ze
z

1Q
nD1

�

1C z

n

�

e�z=n:

In view of this and using � .wC 1/ D w� .w/; the formula (7) with s D iz becomes
the desired identity. ut

I hope this brief discussion further illustrates the wealth of identities which come
out of formulas like (3) or (6).

6 Integrals of Bessel functions

Already the fact that e�t Ix.t/ is the heat kernel on Z gives an alternative way of
looking at Bessel functions; for example the addition theorem

Jn.t C s/ D
1X

kD�1
Jn�k.t/Jk.s/

becomes obvious if one thinks probabilistically.
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From one of the basic recurrence formulas for J ,

J	�1.z/ � J	C1.z/ D 2J 0	.z/;

one can deduce that [1, 11.1.2] for 	 > �1,

Z x

0

J	.t/dt D 2
1X

kD0
J2kC	C1.x/:

In the cases where 	 D l an integer, this latter sum can be simplified to a finite sum
from the theta inversion formula for Z with m D 2, recalling that I�n D In. One
gets that

Z x

0

J2l .t/dt D
Z x

0

J0.t/dt � 2
l�1X

kD0
J2kC1.x/;

Z x

0

J2lC1.t/dt D 1 � J0.x/ � 2
lX

kD1
J2k.x/;

which are [1, 11.1.3] and [1, 11.1.4] respectively.
Other examples, even more adapted to our formula, are the convolution-type

integrals
Z x

0

Jl .t/Jn.x � t/dt:

Here the following formula holds [1, 11.3.37]:

Z x

0

Jl .t/Jn.x � t/dt D 2
1X

kD0
.�1/kJ2kClCnC1.x/;

for integers l; n � 0. We now carry out an example of how to compute this in detail.
First we rewrite the sum in terms of I -Bessel functions:

Z x

0

Jl .t/Jn.x � t/dt D 2
1X

kD0
.�1/ki2kClCnC1I2kClCnC1.�ix/

D 2i lCnC1
1X

kD0
I2kClCnC1.�ix/:

We continue, but now assuming that l C n is even, and then using (5) with m D 2,
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Z x

0

Jl .t/Jn.x � t/dt D .�1/ lCn
2

0

@i

1X

kD�1
I2kC1.�ix/ � 2i

.lCn/=2�1
X

kD0
I2kC1.�ix/

1

A

D .�1/ lCn
2

0

@
i

2

�

e�ix C eixCi�� � 2i
.lCn/=2�1
X

kD0
I2kC1.�ix/

1

A

D .�1/ lCn
2

0

@sin x � 2
.lCn/=2�1
X

kD0
.�1/kJ2kC1.x/

1

A :

Similarily, if l C n is odd, one gets

Z x

0

Jl .t/Jn.x � t/dt D .�1/ lCnC1
2

0

@cosx C J0.x/ � 2
.lCn�1/=2
X

kD0
.�1/kJ2k.x/

1

A :

In the special cases n D �l; or n D 1 � l with l D 0 these formulas become (com-
pare with [1, 11.3.38] and [1, 11.3.39] which hold also for nonintegers�1 < l < 1)

Z x

0

J0.t/J0.x � t/dt D sin x;

Z x

0

J0.t/J1.x � t/dt D J0.x/ � cos x:

7 Personal remarks

I had the great privilege to attend in total around ten semesters of mathematics
courses taught by Serge Lang. Like many others I am grateful to him for his
teaching, generosity, and constant encouragement. During the spring semester of
2005, when I was his office neighbor at Yale — a very special and interesting
experience in itself — we often had conversations on topics related to the present
paper. I was struck by the sad news of his death on September 12, 2005. I miss
Serge, in particular his great sense of humor, and I feel fortunate for having known
him.
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Report on the irreducibility of L-functions
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Abstract In this paper, in honor of the memory of Serge Lang, we apply ideas of
Chavdarov and work of Larsen to study the Q-irreducibility, or lack thereof, of var-
ious orthogonalL-functions, especially L-functions of elliptic curves over function
fields in one variable over finite fields. We also discuss two other approaches to these
questions, based on work of Matthews, Vaserstein, and Weisfeller, and on work of
Zalesskii-Serezkin.
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1 Introduction

By the pioneering work of Dwork [Dw-Rat] and Grothendieck [Gr-Rat], we know
that zeta functions of varieties over finite fields, as well as L-functions attached to
quite general algebro-geometric situations over finite fields, are rational functions.
In many cases, either this function or its “interesting part” is a polynomial with
Q-coefficients. In such cases, it is natural to wonder about the factorization
properties of this Q-polynomial. This question was first investigated by Chavdarov
[Chav, Theorems 2.1, 2.3, 2.5], who used monodromy techniques to show that for
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a fixed genus g � 1, most genus g curves over a large finite field Fq have the
numerator of their zeta functionQ-irreducible, i.e., the fraction of the genus g curves
over Fq with this irreducibility property tends to 1 as q grows. [Strictly speaking,
Chavdarov’s literal result requires q to be a power of a fixed prime p.] Recently
Kowalski [Kow-LSM] combined Chavdarov’s monodromy methods with large sieve
techniques to give quantitative refinements of Chavdarov’s results.

It occurred to the author in the fall of 2001 that one might apply Chavdarov’s
ideas to study the irreducibility properties of L-functions of elliptic curves E over
one-variable function fields K over finite fields Fq . Here one knows that, as long as
the j -invariant is non-constant, the L-function is a polynomial with Z-coefficients,
of known degree d , of the form

L.T / D det.1 � qTA/

for a (necessarily unique up to conjugacy) elementA in the compact real orthogonal
groupO.d;R/. The unitarized L-function,

Lu.T / WD L.T=q/ D det.1 � TA/

thus has coefficients in ZŒ1=q�. Being the reversed characteristic polynomial of an
element A in O.d;R/, it satisfies the functional equation

T dLu.1=T / D det.�A/Lu.T /:

Here det.�A/ D ˙1 is the “sign in the functional equation”. With this normal-
ization, the point T D 1 is the Birch and Swinnerton-Dyer point. The Birch and
Swinnerton-Dyer conjecture states that the Mordell–Weil rank of E=K , MWrk:

.E=k/, is equal to the multiplicity of T D 1 as a zero of Lu.T / (which has come to
be called the “analytic rank” of E=K , an:rk:.E=k/. One has (in the function field
case) the a priori inequality

MWrk:.E=k/ � an:rk:.E=k/:

The analytic rank is odd if and only if the sign in the functional equation is �1, in
which case the analytic rank, being odd, is at least 1. On the other hand, if the sign
in the functional equation isC1, then the analytic rank, being even, has “no reason”
to be nonzero. There is a general expectation that, in any reasonable enumeration
sense, “most” elliptic curves will have the lowest possible analytic rank, i.e., 0 or 1,
that is compatible with the sign in their functional equations. We refer the reader to
[deJ-Ka, 9.7], [Ka-TLFM, 8.3, 9.11, 10.3] and [Ka-MMP, 13.1.7] for one approach
to this sort of question.

One knows that, depending on the parity of d and on the sign in the functional
equation, either 1 or �1 or both or neither necessarily occur as “imposed”
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eigenvalues of an element A in O.d;R/. More precisely, for d odd, �det.�A/ is
always an eigenvalue of A. For d even and det.�A/ D �1, both ˙1 are always
eigenvalues of A. So it is natural to introduce the “reduced” polynomial

Rdet.1 � TA/ WD det.1 � TA/=.1 � T /I d odd; sign � 1;

Rdet.1 � TA/ WD det.1 � TA/=.1C T /I d odd; signC 1;

Rdet.1 � TA/ WD det.1 � TA/=.1 � T 2/I d even; sign � 1;

Rdet.1 � TA/ WD det.1 � TA/I d even; signC 1;

and the reduced (unitarized) L-function

Lu;red .T / WD Rdet.1 � TA/

We propose to show that in various settings, “most” elliptic curves have their
reduced L-functions Q-irreducible. The relevance to the Birch and Swinnerton-
Dyer Conjecture is simply this: so long as the reduced L-function has degree
� 2, if it is Q-irreducible, then it cannot have T D 1 as a root, and hence its
analytic rank is as low as possible. This consequence for analytic rank gives nothing
better than the already cited results [deJ-Ka, 9.7], [Ka-TLFM, 8.3, 9.11, 10.3]
and [Ka-MMP, 13.1.7], the only interest is in the methods. [Work of Emmanuel
Kowalski [Kow-RQT], Chris Hall [Ha], and Florent Jouve [Jo], using related
ideas together with large sieve technology, allows one to do better.] It would be
interesting to understand what is the analogue, if any, in the number field case, of
the irreducibility of the reduced L-function.

To end this introduction, let us mention briefly a natural question that we do
not discuss at all; given that “most” elliptic curves have their reduced L-functions
Q-irreducible, what are the galois groups (of the splitting fields, over Q, of)
the Q-irreducible polynomials which arise? A natural guess is that for d odd,
say d D 2n C 1, we should “usually” get the Weyl group of the root system Bn,
independent of the sign in the functional equation. For d even and sign C1, say
d D 2n, we should “usually” get the Weyl group of the root system Dn. But for
d even and sign �1, say d D 2nC 2, we should “usually” get1 the Weyl group of
the root system Cn. The analogous question for families of curves of genus g, where
we have symplectic monodromy, was posed and answered by Chavdarov [Chav] and
made more quantitative by Kowalski [Kow-LSM]; here the galois group is “usually”
the Weyl group of the root system Cg .

1The reason we expect this Weyl group is the fact [Weyl, (9.15) on p. 226] that in the compact
orthogonal group O.2nC 2;R/, the space of conjugacy classes of sign (here signD determinant)
�1 is, with its “Hermann Weyl measure” of total mass one, isomorphic to the space of conjugacy
classes in the compact symplectic group USp.2n/, with its “Hermann Weyl measure” of total
mass one.
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These results were worked out in the author’s Princeton graduate courses of
Fall, 2001 and of 2004–2005, and were presented in lectures at the University of
Minnesota (2001), NYU (2001), the Newton Institute (2004), the University of
Tokyo (2004), and Brown University (2005). It is a pleasure to thank the listeners
for their stimulating questions.

2 The general setup, and the basic examples

We work over an integral domain R which is normal, finitely generated as a
Z-algebra, and whose fraction field has characteristic zero. Typically,R will simply
be ZŒ1=N � for some integerN � 1. OverR, we are given a smoothR-schemeM=R
of relative dimension � � 1 with geometrically connected fibres. Over M , we are
given a proper smooth curve C=M and a closed subscheme D � C which is finite
etale overM . We denote by U=M the open curve

U WD C �D:

Finally, over U we are given a relative elliptic curve E=U .
Before going further, let us give the two basic examples we have in mind.
The first example is the universal family of good degree d polynomial twists of

the Legendre curve. Here R is ZŒ1=2�. We fix an integer d � 3, and take for M
the open set Twistd in the affine space A

d
R of all monic, degree d polynomials

in one variable � consisting of those polynomials f .�/ for which the product
f .0/f .1/Discrim.f / is invertible. Over this Twistd we have the universal such
polynomial, funiv, and we have the constant curve P

1=Twistd , with coordinate �,
in which we take forD the disjoint union of the sections1; 0; 1 and the zero locus
of funiv. So D is finite etale over Twistd of degree d C 3. Here we have

U D A
1
Twistd Œ1=�.� � 1/funiv.�/�:

Over this U , we take for E=U the twisted Legendre curve in P
2
U whose affine

equation is
y2 D funiv.�/x.x � 1/.x � �/:

For each finite field k of odd characteristic, and for each k-valued point f in
Twistd .k/, we obtain a relative elliptic curve Ek;f over the punctured �-line
A
1
kŒ1=�.��1/f .�/�, namely the twisted Legendre curve y2 D f .�/x.x�1/.x��/:

Its L-function is a polynomial of degree 2d if d is even, and of degree 2d � 1 if
d is odd. We will show that as #k grows, the fraction of twisting polynomials f
in Twistd .k/ for which the reduced L-function of the twisted Legendre curve is Q-
irreducible tends to 1. On the other hand, we have at present no means of addressing
the following extremely natural question. Fix a finite field k of odd characteristic,
and consider, as the integer d grows, the fraction of twisting polynomials f in
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Twistd .k/ for which the reduced L-function of the twisted Legendre curve is Q-
irreducible. Does this fraction tend to 1 as d grows but k stays fixed? To some other
nonzero limit (cf. [Poonen] for an analogous situation)? To any limit?

The second example is the universal family of good Weierstrass curves with
g2 and g3 of at most specified degrees d2 and d3 respectively. Here R is ZŒ1=6�.
We fix integers d2 � 3 and d3 � 3, and we suppose that either d2 � 5 or that
d3 � 7. We take for M the open set W.d2; d3/ in the affine space A

1Cd2
R � A

1Cd3
R

consisting of those pairs of polynomials .g2.t/; g3.t// of degrees at most .d2; d3/,
for which the auxiliary polynomial �.g2; g3/ WD g2.t/

3 � 27g3.t/2 has degree
exactly Max.3d2; 2d3/ and has its discriminant invertible. Over W.d2; d3/ we
have the universal pair .g2;univ.t/; g3;univ.t//, the constant curve P1=W.d2; d3/ with
coordinate t , and the divisorD which is the disjoint union of the section1 and the
zero locus of �.g2;univ.t/; g3;univ.t//. So D is finite étale over W.d2; d3/ of degree
1CMax.3d2; 2d3/. Here we have

U D A
1
W.d2;d3/

Œ1=�.g2;univ.t/; g3;univ.t//�:

Over this U , we take for E=U the relative elliptic curve given in P
2
U whose affine

equation is the universal Weierstrass equation

y2 D 4x3 � g2;univ.t/x � g3;univ.t/:

For each finite field k in which 6 is invertible, and for each k-valued point
.g2.t/; g3.t// in W.d2; d3/.k/, we obtain the relative elliptic curve Ek;g2;g3 over
the punctured t-line A

1
kŒ1=�.g2; g3/�, namely the Weierstrass curve y2 D 4x3 �

g2.t/x � g3.t/. Its L-function is a polynomial of degree Max.3d2; 2d3/ � 2 if
12 divides Max.3d2; 2d3/, otherwise of degree Max.3d2; 2d3/ � 4. We will show
that as #k grows, the fraction of points .g2.t/; g3.t// in W.d2; d3/.k/ for which
the reduced L-function of the corresponding Weierstrass curve is Q-irreducible
tends to 1. Just as in the first example, if we fix a finite field k in which 6 is
invertible, and vary the integers .d2; d3/ in such a way that, say, Min.d2; d3/ grows,
we have no understanding of the limiting behavior, if any, of the fraction of points
in W.d2; d3/.k/ whose reduced L-function is Q-irreducible.

3 Back to the general setup; axiomatics

We return to the general setup. Thus R is an integral domain which is normal,
finitely generated as a Z-algebra, and whose fraction field has characteristic zero,
and M=R is smooth of relative dimension � � 1 with geometrically connected
fibres. Over M , we are given a proper smooth curve C=M and a closed subscheme
D � C which is finite étale overM . U=M is the open curve

U WD C �D;
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and over U we are given a relative elliptic curve E=U . So our picture is

E ! U � C !M ! Spec.R/:

Let us name these morphisms, say

f W E ! U;

j W U � C;
� W C !M:

If k is a finite field and m 2 M.k/ is a k-valued point of M , then by base
change we obtain from E=U=M an open curve Uk;m=k and a relative elliptic curve
Ek;m=Uk;m=k. Let us recall the cohomological genesis of its unitarized L-function.

For a prime number `, and A any of the rings F`, Z`, Q` or Q`, consider the lisse
sheaf on U Œ1=`� given by

FA WD R1f?A:
It is a sheaf of free A-modules of rank 2, whose determinant is canonically the
Tate-twisted constant sheaf A.�1/. So we have a canonical symplectic autoduality
paring

FA �FA ! A.�1/:
Because R and hence M are normal and connected of generic characteristic zero,
any lisse A-sheaf on U Œ1=`� (here FA) is tamely ramified along the finite étale
divisorDŒ1=`�. We next consider its extension by direct image,

GA WD j?FA;

on C Œ1=`�. The autoduality pairing on FA extends by direct image to a pairing

GA � GA ! j?A.�1/ Š A.�1/:

The formation of GA on C Œ1=`� commutes with arbitrary base change on MŒ1=`�,
and its restriction to DŒ1=`� is a lisse sheaf of free A-modules on DŒ1=`�. We then
form the Tate-twisted higher direct image sheaf

HA WD R1�?GA.1/

on MŒ1=`�. This is a lisse sheaf of (not necessarily free, when A is Z`) A-modules
of finite type. Its formation commutes with arbitrary base change on MŒ1=`�. It is
endowed with an A-linear cup product pairing

HA �HA ! R2�?A.1/ Š A:
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When A is a field, this pairing makes HA orthogonally self-dual. When A is Q` or
Q`, then HA is, in addition, pure of weight zero. We view the lisse sheaf HA as a
representation of �1.M Œ1=`�/.

Theorem 3.1 In the general setup E=U=M=R as above, there exist integers d � 0
and N � 1 such that for ` not dividing N , HZ`

is a lisse sheaf of free Z`-modules
of rank d on MŒ1=`� which, by the cup product pairing

HZ`
�HZ`

! Z`;

is orthogonally self-dual over Z`.

Proof. Pick an embedding of R into C, and make the extension of scalars from R

to C. We denote by the superscript an the corresponding analytic objects. Thus we
have the locally constant sheaf Han

Z
of finitely generated abelian groups on M an,

endowed with the cup product pairing to Z
an. If we tensor it with Q, we obtain

the locally constant sheaf Han
Q

on M an, which by cup product is orthogonally self-
dual. We take for d the rank of Han

Q
. If we invert a suitable integer N � 1, and

tensor Han
Z

with ZŒ1=N � to obtain (by the flatness of ZŒ1=N � over Z) Han
ZŒ1=N �,

we find that Han
ZŒ1=N � is a locally constant sheaf of free ZŒ1=N �-modules of rank

d which under cup product is orthogonally self-dual over ZŒ1=N �. We can take this
N to be the N of the theorem. Indeed, for any ` not dividing N , we can make
the flat extension of scalars from ZŒ1=N � to Z` and infer that Han

Z`
is a lisse sheaf

of free Z`-modules of rank d on M an which is orthogonally self-dual over Z`. By
the comparison theorem, the restriction to MC of HZ`

is therefore a lisse sheaf of
free Z`-modules on MC which is orthogonally self dual over Z`. It follows that
the lisse sheaf HZ`

on MŒ1=`� itself is torsion-free and Z`-autodual under the cup
product pairing. Indeed, it suffices to check both the torsion-freeness of the lisse
sheaf in question, namely HZ`

, and the Z`-nondegeneracy of the pairing, at a single
geometric point of MŒ1=`�.

We now consider two fibrewise conditions that may or may not hold in our
general setup. Both of these conditions do hold in both of the examples given
above (Legendre twists and Weierstrass families), cf. [Ka-MMP, 8.2.3 and 10.2.13]
respectively for these two cases.

(1) For every finite field k, and for every k-valued point m in M.k/, the relative
elliptic curve Ek;m=Uk;m=k has non-constant j -invariant.

(2strong) For every finite field k and every ring homomorphism� W R! k, denote
by Mk;�=k the fibre of M=R above .k; �/. For every ` invertible in k, consider
the restriction toMk;� of the lisse sheaf HQ`

onMŒ1=`�. View this lisse sheaf as a
representation �k;�;` W �1.Mk;�/! O.d;Q`/. Under every such homomorphism
�k;�;`, the image in O.d;Q`/ of the geometric fundamental group

�
geom
1 .Mk;�/ WD �1.Mk;� ˝k k/ C �1.Mk;�/

is Zariski dense in O.d;Q`/.
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In certain applications, cf. [Ka-MMP, 7.2.7, 8.2.5, 10.2.15] and [Ka-TLFM,
8.5.7, 8.6.7], one knows only that the following weaker version of the second
condition holds.

(2weak) For every finite field k and every ring homomorphism � W R! k, denote
by Mk;�=k the fibre of M=R above .k; �/. For every ` invertible in k, consider
the restriction toMk;� of the lisse sheaf HQ`

onMŒ1=`�. View this lisse sheaf as a
representation �k;�;` W �1.Mk;�/! O.d;Q`/. Under each such homomorphisms
�k;�;`, the image in O.d;Q`/ of the geometric fundamental group

�
geom
1 .Mk;�/ WD �1.Mk;� ˝k k/ C �1.Mk;�/

is Zariski dense in either SO.d;Q`/ or in O.d;Q`/.

If the first condition holds, then for every ` invertible in k, the lisse sheaf FQ`
on

Uk;m=k is geometrically irreducible, and (hence) the unitarized L-function is given
by the action of the Frobenius conjugacy class Frobk;m in �1.M Œ1=`�/ on the lisse
sheaf HQ`

:
Lu.Ek;m=Uk;m; T / D det.1 � TFrobk;mjHQ`

/:

[If we do not impose the first condition, the lisse sheaf FQ`
on Uk;m=k could

be geometrically constant (e.g., if E/U were a constant elliptic curve), in which
case the unitarized L-function would not be a polynomial, but rather a rational
function whose numerator is given by the right hand side.] Since these unitarized
L-function have rational coefficients which “do not know about `”, we see that the
sheavesHQ`

onMŒ1=`� form, as ` varies, a “compatible system of orthogonal `-adic
representations” on M . Moreover, and this is the import of the previous theorem,
there exists a single orthogonal group O.d/=ZŒ1=N �, corresponding to a quadratic
form over ZŒ1=N � in d variables whose discriminant is invertible in ZŒ1=N �, such
that for every ` we land in its Q`-points, and such that for ` prime to N , we land
in its Z` points. What is essential here is“only” the following (apparently weak)
consequence of this last fact: for almost all ` (namely those ` prime to N ), we are
landing in the Z` points of an orthogonal group over Z` corresponding to a quadratic
form over Z` in d variables whose discriminant is invertible in Z`.

For each finite field k and each homomorphism � W R ! k, denote by
IrrFrac.k; �/ 2 Q the fraction of the k-valued points m in the fibre Mk;�=k for
which the reduced unitarized L-function Lu;red.Ek;m=Uk;m; T / is Q-irreducible.

4 Statement of the main theorem

Theorem 4.1 In the general setup E=U=M=R, suppose that the fibrewise condi-
tions (1) and (2weak) of the previous section hold. Suppose also that d , the common
degree of the L-functions, is � 3. Given a real number 	 > 0, there exists a real
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constant X D X.	;E=U=M=R/ such that for any finite field k with #k > X , and
any homomorphism � W R! k, we have

IrrFrac.k; �/ � 1 � 	:

5 Statement of an abstract version of the main theorem

Let us now consider an abstract version of our situation. We are given a finitely
generated Z-algebra R. Over R, we are given a smooth R-scheme M=R of relative
dimension � � 1 with geometrically connected fibres. We are given an integer
d � 3. For every prime ` such that MŒ1=`� is nonempty, we are given a lisse
Q`-sheaf HQ`

on MŒ1=`� of rank d , together with a symmetric autoduality pairing

HQ`
�HQ`

! Q`:

These sheaves are assumed to form a compatible system of `-adic representations
on M (in the sense that each characteristic polynomial of Frobenius has rational
coefficients which are independent of the auxiliary choice of allowed `). Each sheaf
HQ`

is assumed pure of weight zero. For all but finitely many `, say for all ` outside
a finite set S of primes, we are given a lisse Z`-sheaf HZ`

on MŒ1=`� of free Z`

modules of rank d , together with a symmetric autoduality pairing over Z`,

HZ`
�HZ`

! Z`;

which is an integral form of HQ`
with its autoduality pairing.

For each finite field k and each homomorphism � W R ! k, denote by
IrrFrac.k; �/ 2 Q the fraction of the k-valued points m in the fibre Mk;�=k for
which the reduced characteristic polynomial Rdet.1�TFrobk;mjH/ is Q-irreducible.

Theorem 5.1 In the abstract version given above, with d � 3, suppose that the
fibrewise condition (2weak) of the previous section holds. Given a real number
	 > 0, there exists a real constant X D X.	;R/ such that for any finite field k
with #k > X , and any homomorphism � W R! k, we have

IrrFrac.k; �/ � 1 � 	:

We will fix 	 >0, and prove the theorem for this value of 	. We reduce
immediately to the case when R is reduced. If we have a finite decomposition
of Spec.R/ as the disjoint union of finitely many locally closed, reduced affine
subschemes Spec.Ri/, it suffices to prove the theorem (for our fixed 	 > 0), over
each Spec.Ri / separately. Indeed, then we can take X.	;R/ to be Maxi .X.	;Ri //.
So by noetherian induction on Spec.R/, it suffices to prove that the theorem holds,
for our fixed 	 > 0, in some affine open neighborhood of some maximal point of
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Spec.R/. Any sufficiently small such open neighborhood is of the form Spec.R1/,
with R1 a normal integral domain which is a finitely generated Z-algebra. Making
the extension of scalars from R to R1, we are reduced to proving the following
“generic” version of the theorem.

Theorem 5.2 In the abstract version given above, with d � 3, suppose that the
fibrewise condition (2weak) of the previous section holds. Suppose in addition that
R is a normal integral domain which is a finitely generated Z-algebra. Given a real
number 	 > 0, there exists a real constant X D X.	;R/ and a nonzero element
r D r.	/ 2 R, such that for any finite field k with #k > X , and any homomorphism
� W R! k for which �.r/ ¤ 0, we have

IrrFrac.k; �/ � 1 � 	:

6 Interlude: Review of orthogonal groups over finite fields
of odd characteristic

In this section, we fix an integer d � 1, a finite field E D Fq of odd characteristic,
and a nondegenerate quadratic form in d variables over E, i.e., a d -dimensional E
vector space V endowed with a symmetric E-bilinear form ‰ W V � V ! E which
makes V autodual. We denote by O.V;‰/ WD AutE.V;‰/ the corresponding finite
orthogonal group.

One knows that for fixed d and E, there are precisely two isomorphism classes
of nondegenerate quadratic form, distinguished by whether or not the discriminant
is a square in E�. When d is odd, the two isomorphism classes give rise to the same
orthogonal group; indeed if .V;‰/ represents one class, then for any nonsquare
˛ 2 E�, .V; ˛‰/ represents the other, while visibly their orthogonal groups
coincide. So we may speak unambiguously of the groupO.d;E/ when d is odd.

When d D 2n is even, then the two cases are called the split case and the
nonsplit case. The standard model for the split case is given by the quadratic
form

Pn
iD1 xi xnCi (so here .�1/nDiscriminant is a square), which we will denote

.split2n; std/. A convenient model for the nonsplit case is to take V WD Fq2n as our
Fq vector space, endowed with the symmetric bilinear form

‰.x; y/ WD .1=2/TraceFq2n=Fq .xy
qn /;

and quadratic form

‰.x; x/ D TraceFqn =Fq .NormF
q2n

=Fqn .x//:

For ease of later reference, we will refer to this model as the standard nonsplit
model, and denote it .Fq2n ; std/. The split and nonsplit orthogonal groups are not
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isomorphic; they even have different orders. We will denote them Ospl.d;E/ and
Ononspl.d;E/ respectively when we need to distinguish them.

On the Clifford algebra C l WD C l.V;‰/ attached to .V;‰/, we have the
E-algebra involution I which is v 7! �v on V , and theE-algebra anti-automorphism
x 7! t.x/ which is the identity on V . We have its unit group C l�. The unit
group acts on the Clifford algebra by the sign-twisted conjugation action: u 2 C l�
acts as x 7! I.u/xu�1. Inside C l� we have the (twisted) Clifford group, namely
the subgroup C� consisting of those elements which map V to itself. Every
nonisotropic v 2 V lies in C�, for the map x 7! I.v/xv�1 is then, for x 2 V ,
reflection in v. Moreover, one knows that every element of C� is a nonzero scalar
times a (possibly empty) product of nonisotropic vectors v 2 V ; this corresponds
to the fact that in the orthogonal group O.V;‰/, every element is a product of
reflections in nonisotropic vectors. For u 2 C�, its “norm” N.u/ WD t.u/u lies in
E�, and x 7! N.x/ is a group homomorphism. Its kernel is the group Pin.V;‰/:

Pin.V;‰/ WD Ker.N W C� ! E�/:

The subgroup of Pin.V;‰/ consisting of the elements fixed by the involution I is
the group Spin.V;‰/.

Remarks 6.1 The reader should be warned of a possible source of serious confu-
sion. In the older literature, e.g., [Artin-GA], [Bour-AlgIX] and [Chev-Spin], the
unit group is made to act on the Clifford algebra by the literal conjugation action:
u 2 C l� acts as x 7! uxu�1, and one takes the (untwisted) Clifford group, denoted

 in [Chev-Spin, 2.3], accordingly. This leads to unpleasant difficulties, centered on
the fact that when V is odd-dimensional, there are nonscalar elements of
 which act
trivially on V , and the “norm” of an element of 
 need not be a scalar. Contorsions
are adopted to get around these difficulties; one obtains the group Spin.V;‰/, but
there is no Pin.V;‰/ in the older theory. The sign-twisted approach, and the group
Pin, first appeared in [AtBS-Clif, 1.7, 3.1], cf. also [Kar-Clif, 1.1.4-8].

We have an exact sequence

f1g ! ˙1! Pin.V;‰/! O.V;‰/!˙1;

in which the last map is the spinor norm, denoted

sp W O.V;‰/!˙1:

The spinor norm is determined by its value on reflections Rf lv in nonisotropic
vectors v 2 V (since these elements generate O.V;‰/). For these, we have the
explicit formula

sp.Rf lv/ D the class of ‰.v; v/ in E�=.E�/2 Š ˙1:
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If d � 2, the spinor norm is surjective, and we have a short exact sequence

f1g ! ˙1! Pin.V;‰/! O.V;‰/! ˙1! f1g;

under which the inverse image of SO.V;‰/ in Pin.V;‰/ is Spin.V;‰/. So we also
have the more standard short exact sequence

f1g ! ˙1! Spin.V;‰/! SO.V;‰/! ˙1! f1g:

We also have the determinant homomorphism

det W O.V;‰/! ˙1:

The simultaneous kernel of these two homomorphisms, sp and det, is denoted
�.V;‰/.

When d � 5, or when d D 4 and we are in the nonsplit case, or when
d D 3 and the characteristic is � 5, the group �.V;‰/ is, modulo its center, a
nonabelian simple group, cf. [Artin-GA, Theorems 4.9, 5.20, 5.21, 5.27]. Moreover,
in these cases, the only proper normal subgroups of �.V;‰/ are subgroups of its
center, and consequently �.V;‰/ is its own commutator subgroup. The center of
�.V;‰/ is trivial if either d is odd or if the discriminant is a nonsquare, otherwise
it is ˙1. When d D 4 and the characteristic is � 5 and we are in the split case,
then �.V;‰/= ˙ 1 is the product PSL.2;E/ � PSL.2;E/ of the simple group
PSL.2;E/ with itself, cf. [Artin-GA, Theorem 5.22], and �.V;‰/ is its own
commutator subgroup [being a quotient of Spin.V;‰/ Š SL.2;E/ � SL.2;E/,
which is its own commutator subgroup].

One knows [Artin-GA, Theorems 5.14, 5.17] that �.V;‰/ is the commutator
subgroup ofO.V;‰/; indeed this was its definition before Chevalley introduced the
use of Clifford algebras in these questions, cf. [Die-GC, Chpt. III, Section 12, p.23].
For d � 2, the quotient group O.V;‰/=�.V;‰/ is, by the pair of maps .det; sp/
the group f˙1g�f˙1g. We will need to know, in each of the four cosets of�.V;‰/
in O.V;‰/, lower bounds for the numbers of elements A whose reduced reversed
characteristic polynomials Rdet.1 � TA/ have, as E-polynomials, certain imposed
factorization patterns. For each .˛; ˇ/ 2 f˙1g � f˙1g, we denote by

O.V;‰/.det D ˛; sp D ˇ/

the corresponding coset.
There is a further cautionary remark we need to make at this point. Suppose

d � 2; we are given a subgroup H of GL.V / WD AutE.V /, and we are told that
H D O.V;‰/ for some symmetric autoduality‰. Then the subgroup�.V;‰/ is an
intrinsic subgroup of H , namely its commutator subgroup. The det homomorphism

det W H !˙1
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is intrinsic on H as a subgroup of GL.V /. However, the spinor norm homomor-
phism

sp W H !˙1
depends on the choice of ‰. Indeed, if we replace ‰ by a nonzero scalar multiple
˛‰ with ˛ a nonsquare, the orthogonal group does not change, but the two spinor
norms are related by

sp.V;˛‰/.h/ D det.h/sp.V;‰/.h/:

On the other hand, since the quotient group H=�.V;‰/ is of type .2; 2/, with det
and sp.V;‰/ an F2-basis of its character group, we see that for any ‰1 on V with
O.V;‰/ D O.V;‰1/, we have either sp.V;‰1/.h/ D sp.V;‰/.h/ for every h 2 H ,
or we have sp.V;‰1/.h/ D det.h/sp.V;‰/.h/ for every h 2 H . Thus each of the two
cosets of �.V;‰/ in H \ SL.V / D SO.V;‰/ is intrinsic, e.g., one is a subgroup
and one isn’t, but the two cosets of �.V;‰/ in H n H \ SL.V / D O.V;‰/ n
SO.V;‰/ may be interchanged by different choices of ‰. In the discussion below,
we work with particular models of our orthogonal groups, i.e., we make specific
choices of ‰. But we prove only statements which are invariant under replacing sp
by det� sp.

Lemma 6.2 Fix d D 2n � 2. Suppose q WD #E � 7. In each of the two cosets
of �.d;E/ in SOnonspl.d;E/, the fraction of elements A for which Rdet.1� TA/ is
E-irreducible is at least 1=2n.

Proof. In the standard nonsplit model .Fq2n ; std /, the group�1Cqn WD �1Cqn.Fq2n/,
acting by homothety on Fq2n , lies in SOnonspl.2n;E/. Moreover, we know [Saito-sign,
Lemma 1, parts 4 and 5] that the spinor norm, restricted to �1Cqn , is trivial
precisely on the subgroup �.1Cqn/=2 of squares. We also remark that every
Fq2n-homothety which lies in the orthogonal group lies in �1Cqn . It follows that if
 2 �1Cqn is an element such that the field Fq./ is Fq2n , then its characteristic
polynomial is an Fq-irreducible palindromic polynomial, and its centralizer in
Ononspl.2n;E/ is the subgroup�1Cqn [simply because any Fq-linear endomorphism
A of Fq2n which commutes with  is Fq2n-linear, so an Fq2n-homothety]. So for
any such , its conjugacy class in Ononspl.2n;E/ contains #Ononspl.2n;E/=.1C qn/
elements, all of which have the same Fq-irreducible palindromic characteristic
polynomial as , as well as the same spinor norm and determinant as . If we
take a second such element 1 which is not one of the 2n Galois conjugates
of , then its characteristic polynomial is a different Fq-irreducible palindromic
polynomial, so certainly its conjugacy class in Ononspl.2n;E/ is disjoint from that
of . [Conversely, Galois conjugate elements of�1Cqn areOnonspl.2n;E/-conjugate,
since the Galois automorphisms of Fq2n=Fq lie in the orthogonal group, and their
conjugation action on elements of �1Cqn is the same as their Galois action.] Denote
temporarily by N˙ the number of elements  2 �1Cqn of spinor norm ˙ 1 such
that the field Fq./ is Fq2n . Taking the union of their conjugacy classes, we obtain
#Ononspl.2n;E/N˙=2n.1 C qn/ elements in Ononspl.2n;E/.det D 1; sp D ˙ 1/
with an E-irreducible palindromic characteristic polynomial.
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One sees easily if  2 �1Cqn is such that Fq./ is a proper subfield of of Fq2n ,
then either  D ˙ 1, or Fq./ is Fq2a for some divisor a < n of n,  2 �1Cqa and
n=a is odd. Thus, denoting Œx� WD Floor.x/, at most 2C Œn=3�qŒn=3� of the elements
in �1Cqn fail to generate Fq2n over Fq . So we have the estimates

N˙ � .1C qn/=2� 2 � Œn=3�qŒn=3�:

Treating separately the cases Œn=3� D 0 and Œn=3� � 1, we see that so long as q � 7,
we have

N˙ � .1C qn/=4:
Thus we obtain at least

#Ononspl.2n;E/=8nD #Ononspl.2n;E/.det D 1; sp D ˙1/=2n

elements in Ononspl.2n;E/.det D 1; sp D ˙1/ with an E-irreducible palindromic
characteristic polynomial.

Lemma 6.3 Fix d D 2n � 4. Suppose q WD #E � 7. In each of the two cosets
O.d;E/.det D �1; sp D ˙1/, the fraction of elements A for which Rdet.1 � TA/
is E-irreducible is at least 1=4.2n� 2/.
Proof. We take as model of our quadratic space

.Fq2n�2 ; std /˚ .Fq2 ; std/

in the split case, and
.Fq2n�2 ; std /˚ .split2; std/

in the nonsplit case. Corresponding to these direct sum decompositions, we have
inclusions of the corresponding orthogonal groups

O.2n� 2;E/ �O.2;E/ � O.2n;E/:

In the orthogonal group of the first factor, take an element  2 �1Cqn�1 which
generates Fq2n�2 over Fq . In the orthogonal group of the second factor, take a
reflection R of spinor norm one, e.g., take the reflection in a vector of square
length one. The centralizer in O.2n;E/ of the element .; R/ is the product group
�1Cqn�1 � f˙1;˙Rg. [Indeed, if an element A in an orthogonal group over a field
of characteristic not 2 has a (reversed or not, the two agree up to sign) characteristic
polynomial which is a product

Q
i fi .T / of pairwise prime polynomials, each of

which has its roots stable by x 7! 1=x, then the decomposition of the ambient
vector space V as the direct sum of the spaces Vi WD Ker.fi .A// is an orthogonal
decomposition. Any endomorphismB of V which commutes with A preserves this
decomposition, say B D ˚i .Bi on Vi /, and on each Vi , Bi commutes with AjVi .
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Moreover, if B is orthogonal, then so is each Bi .] The counting argument used to
prove the lemma above then gives the asserted result. ut
Lemma 6.4 Fix d D 2nC 1 � 3. Suppose q WD #E � 7. In each of the four cosets
O.d;E/.det D ˙1; sp D ˙1/, the fraction of elements A for which Rdet.1 � TA/
is E-irreducible is at least 1=4n.

Proof. We take as model of our quadratic space

.Fq2n ; std/˚ .Fq; x2/;

and repeat the previous argument, now using elements of the form .;˙1/. ut
Lemma 6.5 Fix d D 2n � 6. Suppose q WD #E � 7. Fix a partition of n as
n D a C b with 1 � a < b. In each of the two cosets of �.d;E/ in SOspl.d;E/,
the fraction of elements A for which Rdet.1 � TA/ is of the form

.E � irreducible of degree 2a/.E � irreducible of degree 2b/

is at least 1=32ab.

Proof. We take as model of our quadratic space

.Fq2a ; std/˚ .Fq2b ; std /;

and repeat the previous argument, now using elements of the form .a 2 �1Cqa ; b 2
�1Cqb /. If a (respectively b) has full degree 2a (respectively 2b) over Fq , the
centralizer of this element inO.2n;E/ is the product group �1Cqa ��1Cqb , and the
argument concludes as before. ut
Lemma 6.6 Fix d D 2n � 4. Suppose q WD #E � 7. In each of the two cosets of
�.d;E/ in SOspl.d;E/, the fraction of elementsA for which Rdet.1�TA/ is of the
form

.E � irreducible P.T / of degree n/.E � irreducibleQ.T / of degree n/;

with P andQ relatively prime, and with

Q.T / D .some constant in E�/T nP.1=T /;

is at least 1=2n.

Proof. We take as model
V WD Fqn ˚ Fqn;

with the split quadratic form

‰.x ˚ y; x ˚ y/ WD TraceFqn=Fq .xy/:
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The group F
�
qn is then a subgroup of SO.V;‰/, with  2 F

�
qn acting as

.; �1/ W x ˚ y 7! x ˚ �1y:

By [Saito-sign, Lemma 1.1, part 2], the spinor norm, restricted to this F�qn subgroup,
is trivial precisely on the squares. Take an element .; �1/ such that  has full degree
n over Fq , and such that  and �1 have different irreducible polynomials over Fq
(i.e., such that  and �1 are not Galois conjugate). Then the centralizer of .; �1/
in O.V;‰/ is precisely the subgroup F

�
qn . Moreover, knowing the characteristic

polynomial of .; �1/ determines  up to replacing it by either one of its n
conjugates or by one of the n conjugates of �1.

The ’s which fail the first condition are those which lie in a proper subfield Fqa

for some divisor a < n of n. Those which fail the second condition are those which
lie in some subgroup �1Cqa , with 2ajn. For q � 7, a routine counting shows that
the number of ’s which fail one or both of the two conditions is at most .qn�1/=4.
The argument now concludes as before.

With these preliminary lemmas established, we get the following product
theorems.

Theorem 6.7 Fix an odd integer d D 2nC 1 � 3, an integer r � 1, and a list of r
primes

7 � `1 < `2 < � � � < `r :
Denote by G the subgroup of the product group

Q
i O.d;F`i / consisting of those

elements .A1; : : : ; Ar/ all of whose determinants, viewed in ˙1, coincide. In
any coset of

Q
i �.d;F`i / in G, the fraction of elements .A1; : : : ; Ar/ such that

Rdet.1� TAi / is F`i -irreducible for some i is at least

1 � .1 � 1=4n/r :

Proof. The point is that the quotient G=
Q
i �.d;F`i / is naturally the prod-

uct of r C 1 copies of ˙1, by means of the common value of the determi-
nant and the spinor norms of the factors. So any coset is a product, either
of cosets O.d;F`i /.det D 1; sp D ˛i /, or of cosets O.d;F`i /.det D �1;
sp D ˛i /. The assertion is now immediate from Lemma 6.4.

Theorem 6.8 Fix an even integer d D 2n � 4, an integer r � 1, and a list of r
primes

7 � `1 < `2 < � � � < `r :
Denote by G the subgroup of the product group

Q
i Ononspl.d;F`i / consisting of

those elements .A1; : : : ; Ar/ all of whose determinants, viewed in ˙1, coincide. In
any coset of

Q
i �.d;F`i / in G, the fraction of elements .A1; : : : ; Ar/ such that

Rdet.1 � TAi / is F`i -irrreducible for some i is at least

1 � .1 � 1=8n/r :
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Proof. By the product structure of the coset, the assertion is immediate from
Lemmas 6.2 and 6.3.

Theorem 6.9 Fix an even integer d D 2n � 4, an integer r � 1, and a list of r
primes

7 � `1 < `2 < � � � < `r :
Denote by G the subgroup of the product group

Q
i O.d;F`i / consisting of those

elements .A1; : : : ; Ar/ all of whose determinants, viewed in˙1, coincide; the factor
groups may be separately split or nonsplit at will. In any coset of

Q
i �.d;F`i / in

G for which the common value of the determinant is �1, the fraction of elements
.A1; : : : ; Ar/ such that Rdet.1 � TAi / is F`i -irrreducible for some i is at least

1 � .1 � 1=8n/r :

Proof. By the product structure of the coset, the assertion is immediate from
Lemma 6.3.

Theorem 6.10 Fix an even integer d D 2n � 6, an integer r � 1, and a list of r
primes

7 � `1 < `2 < � � � < `r :
Choose a partition of n, say n D aC b with 1 � a < b. Denote by G the subgroup
of the product group

Q
i Ospl.d;F`i / consisting of those elements .A1; : : : ; Ar/ all

of whose determinants, viewed in ˙1, coincide. In any coset of
Q
i �.d;F`i / in

G for which the common value of the determinant is C1, the fraction of elements
.A1; : : : ; Ar/ such that Rdet.1 � TAi / is of the form

.E � irreducible of degree 2a/.E � irreducible of degree 2b/

for some i , AND such that Rdet.1 � TAj / is of the form

.E � irreducible of degree n/.a different E � irreducible of degree n/

for some j, is at least

1 � .1 � 1=32ab/r � .1 � 1=2n/r :

Proof. By the product structure of the coset, the assertion is immediate from
Lemmas 6.5 and 6.6. ut

Theorem 6.11 Fix d D 4, an integer r � 1, and a list of r primes

7 � `1 < `2 < � � � < `r :
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Denote by G the subgroup of the product group
Q
i Ospl.4;F`i / consisting of those

elements .A1; : : : ; Ar/ all of whose determinants, viewed in ˙1, coincide. In any
coset of

Q
i �.4;F`i / in G for which the common value of the determinant is C1,

the fraction of elements .A1; : : : ; Ar/ such that Rdet.1 � TAi / is, for some i , of the
form

P.T /Q.T /

with P.T / andQ.T / relatively prime F`i -irreducibles of degree 2, neither of which
is palindromic, and such that

Q.T / D .some constant in E�/T 2P.1=T /;

is at least
1 � .1 � 1=4/r :

Proof. If we omitted the requirement that neither P.T / nor Q.T / be palindromic,
the assertion would be immediate from the product structure of the coset, and
Lemma 6.6. But the nonpalindromicity is automatic. Indeed, the fact that

Q.T / D .some constant in E�/T 2P.1=T /;

tells us that if  2 F
�
`2i

is a root of P.T /, then 1= is a root of Q.T /, hence

cannot be a root of P.T /, since P.T / and Q.T / are relatively prime. But the two
roots of a palindromic polynomial of degree two are reciprocals. Thus P.T / is not
palindromic, and similarly for Q.T /. ut

7 Proof of Theorem 5.2, via a theorem of Larsen

Let us put ourselves in the situation which Theorem 5.2 purports to treat. Choose
a finite field k and a ring homomorphism � W R ! k (for instance, take a
maximal ideal I of R, take k to be R=I, and take � to be canonical map of R
onto R=I). Making the extension of scalars � W R ! k, we get the space Mk;� .
On Mk;� , we have the restrictions of the sheaves HQ`

, for all ` invertible in k,
as well as of the restrictions of the sheaves HZ`

, for all such ` not in the finite
set S . For each ` invertible in k, let us denote by 
` the image in O.d;Q`/ of
the arithmetic fundamental group �1.Mk;�/ under the homomorphism which “is”
HQ`
jMk;� . Meanwhile, consider the composite map

Spin.d;Q`/! SO.d;Q`/ � O.d;Q`/:

According to a striking theorem of Larsen [Lar-Max, 3.17], the inverse image of 
`
in Spin.d;Q`/ is, for a set of primes ` of Dirichlet density one, a “hyperspecial”
maximal compact subgroup of Spin.d;Q`/. Now for all ` invertible in k and not
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in S , 
` lies in O.d;Z`/, and so its inverse image lies in Spin.d;Z`/. Whenever
this inverse image is a maximal compact subgroup of Spin.d;Q`/, it must, by its
maximality, be equal to the possibly larger compact subgroup Spin.d;Z`/. Thus we
infer that among the primes ` invertible in k and not in S , there is a set of Dirichlet
density one, the “good primes” over .k; �/, for which the inverse image of 
` in
Spin.d;Z`/ is the entire group Spin.d;Z`/.

For each of these good `, which we may take to all be � 5, let us denote by

mod ` the image in O.d;F`/ of the arithmetic fundamental group �1.Mk;�/ under
the homomorphism which “is” HZ`

˝Z`
F`jMk;� . Then by Larsen’s theorem, 
mod `

contains�.d;F`/ for these good `. Thus we have

�.d;F`/ � 
mod ` � O.d;F`/:
Let us denote by 
geom; mod ` the image in O.d;F`/ of the geometric fundamental
group �geom

1 .Mk;�/. Then


geom; mod ` C 
mod `;

and the quotient is cyclic, being a quotient of Gal.k=k/. We claim that for each
good `, we have

�.d;F`/ � 
geom; mod `:

Indeed, the intersection�.d;F`/\
geom; mod ` inside 
mod ` is a normal subgroup of
�.d;F`/ with cyclic quotient. As d � 3,�.d;F`/ is its own commutator subgroup,
so it has no proper normal subgroup which gives a cyclic quotient. Thus for each
good ` we have

�.d;F`/ � 
geom; mod ` � 
mod ` � O.d;F`/:
Suppose we are given an integer r � 1, and a list of r good primes

7 � `1 < `2 < � � � < `r :

Denote byG the subgroup of the product group
Q
i O.d;F`i / consisting of those el-

ements .A1; : : : ; Ar/ all of whose determinants, viewed in˙1, coincide. Denote by


geom; mod `1;`2;:::`r � G �
Y

i

O.d;F`i /

the image of the geometric fundamental group �geom
1 .Mk;�/ under the direct sum of

the various mod `i representations.
A key point is the following result of Goursat–Ribet type, cf. [Ribet-Gal, 5.2.2].

Lemma 7.1 The group 
geom;mod `1;`2;:::;`r contains
Q
i �.d;F`i /:

Y

i

�.d;F`i / � 
geom;mod `1;`2;:::;`r � G �
Y

i

O.d;F`i /:
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Proof. The projection of 
geom;mod `1;`2;:::;`r �
Q
i O.d;F`i / to each O.d;F`i /

factor contains �.d;F`i /, as we have noted above. Now consider the commutator
subgroup D WD D
geom;mod `1;`2;:::`r of 
geom;mod `1;`2;:::;`r . As each group �.d;F`i /
is its own commutator subgroup,D is a subgroup of

Q
i �.d;F`i / which maps onto

each factor.
Suppose first that either d ¤ 4, or that d D 4 and all our groups are nonsplit.

Then the individual groups �.d;F`i / are simple modulo their centers, and the
corresponding simple groups are pairwise non-isomorphic. So by Goursat’s lemma
[Ribet-Gal, 5.2.1],D maps onto each pair of factors�.d;F`i / ��.d;F`j /; i < j .
Since each�.d;F`i / has no nontrivial abelian quotients, Ribet’s lemma [Ribet-Gal,
5.2.2] shows that D is the full product

Q
i �.d;F`i /.

In the remaining case, when d D 4 and all the groups are split, each
�.4;F`i /=˙ 1 is PSL.2;F`i / � PSL.2;F`i /. We first note that as PSL.2;F`i / is
simple and nonabelian, the only quotient groups of �.4;F`i /=˙ Š PSL.2;F`i / �
PSL.2;F`i / are the four obvious ones (f1g�f1g, f1g�PSL.2;F`i /, PSL.2;F`i /�
f1g,PSL.2;F`i /�PSL.2;F`i /). So the only quotient groups of�.4;F`i / are either
these groups or, possibly, double covers of them. There is no quotient of order 2,
since �.4;F`i / is its own commutator subgroup. Thus the only quotient groups
Hi ¤ f1g of �.4;F`i / have the property that `i is the largest prime dividing
the order of Hi (since `i is the largest prime dividing the order of PSL.2;F`i /).
Therefore if `i ¤ `j , then no quotient Hi ¤ f1g of �.4;F`i / is isomorphic to
any quotient Hj ¤ f1g of �.4;F`j /, simply because these quotients have different
orders. So by Goursat’s lemma [Ribet-Gal, 5.2.1],D maps onto each pair of factors
�.4;F`i / � �.4;F`j /; i < j , and the proof then concludes as before, by invoking
Ribet’s lemma [Ribet-Gal, 5.2.2]. ut

We now make a choice of the integer r � 1, and of the list of r good primes

7 � `1 < `2 < : : : < `r :
Recall the real 	 > 0 in the statement of the theorem we are to prove.
There are three separate cases to consider.

If d D 2nC 1 is odd, we choose r large enough that

.1 � 1=4n/r < 	=2;
and we take any list of r good primes

7 � `1 < `2 < � � � < `r :
If d D 2n is even, we first look to see whether or not there are infinitely many

good primes ` where our orthogonal group O.d;F`/ is nonsplit. If there are, we
choose r large enough that

.1 � 1=8n/r < 	=2;
and we take any list of r good primes

7 � `1 < `2 < � � � < `r
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at which the corresponding orthogonal group is nonsplit.
If d D 2n is even, and there are at most finitely many good primes ` where our

orthogonal groupO.d;F`/ is nonsplit, then we choose r large enough that

.1 � 1=32n/r < 	=4;
and we take any list of r good primes

7 � `1 < `2 < � � � < `r
at which the corresponding orthogonal group is split.

We now study what happens in the geometric generic fibre of M=R. Denote by
K the fraction field ofR, byK an algebraic closure ofK , and byM� theK-scheme
obtained by the extension of scalars R � K .

Denote by

�;geom;mod `1;`2;:::;`r � G �

Y

i

O.d;F`i /

the image of the geometric fundamental group �geom
1 .M�/ under the direct sum

of the various mod `i representations. By a fundamental specialization result of
Pink [Ka-ESDE, 8.18.2, (1)], this group contains (an

Q
i O.d;F`i /-conjugate of)

the group 
geom;mod `1;`2;:::;`r we obtained by looking at the image of �geom
1 .Mk;�/.

As
Q
i �.d;F`i / is a normal subgroup of

Q
i O.d;F`i /, being its commutator

subgroup, we therefore have

Y

i

�.d;F`i / � 
�;geom;mod `1;`2;:::;`r � G �
Y

i

O.d;F`i /:

By this same result of Pink [Ka-ESDE, 8.18.2, (2)], there is a dense open set U
in Spec.R/ such that for any geometric point s in U , the group


s;geom;mod `1;`2;:::;`r � G �
Y

i

O.d;F`i /;

obtained by looking at the image of �geom
1 .Ms/, is equal to (an

Q
i O.d;F`i /-

conjugate of) 
�;geom;mod `1;`2;:::;`r . As every subgroup of
Q
i O.d;F`i / containingQ

i �.d;F`i / is normal, we therefore have equality:


s;geom;mod `1;`2;:::;`r D 
�;geom;mod `1;`2;:::;`r

for every geometric point s in U . Each of the primes `1; : : : ; `r is nonzero in R
(because each is invertible in k under �), so by shrinking U we may further assume
that each of them is invertible on U .

We will show that the theorem holds, for the fixed 	 > 0, if we take for r 2 R
any nonzero element such that Spec.RŒ1=r�/ � U . Denote by
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arith;mod `1;`2;:::;`r � G �
Y

i

O.d;F`i /

the image of the arithmetic fundamental group �1.M Œ1=r�/. We now apply the
Chebotarev density theorem in the uniform version given in [Ka-Sar, 9.7.13] to this
situation, our MŒ1=r�=RŒ1=r� taken as the X=S there, and with our groups


�;geom;mod `1;`2;:::;`r � 
arith;mod `1;`2;:::;`r

taken as the groups K � Karith there. In our situation, the quotient Karith=K is
abelian, so the sets Karith;� there are just the cosets of K in Karith. For a given pair
.k; �/ consisting of a finite field k and a ring homomorphism � W RŒ1=r� ! k,
all the Frobenius conjugacy classes attached to the k-points of Mk;� lie in a single
coset of K in Karith, say Karith;� . Inside this coset Karith;� , take the subset W which
is defined as follows.

If d D 2nC 1 is odd, or if d D 2n and all the r orthogonal groupsO.d;F`i / are
nonsplit, W consists of all elements .A1; : : : ; Ar/ in the coset Karith;� such that for
some i , Rdet.1 � TAi / is F`i -irreducible.

If d D 2n � 6 and all the r orthogonal groupsO.d;F`i / are split, then W is the
disjoint union of two sets, W� and WC, defined as follows. The set W� consists of
those elements .A1; : : : ; Ar/ in the cosetKarith;� such that the common value of their
determinant is �1 and such that for some i , Rdet.1 � TAi / is F`i -irreducible. The
set WC consists of those elements .A1; : : : ; Ar/ in the coset Karith;� such that the
common value of their determinant is C1 and such that for some i , Rdet.1 � TAi /
is of the form

.F`i � irreducible of degree 2/.F`i � irreducible of degree 2n � 2/;

AND such that for some j , Rdet.1 � TAj / is of the form

.F`j � irreducible of degree n/.a different F`j � irreducible of degree n/:

If d D 4 and all the r orthogonal groups O.4;F`i / are split, then W is again
the disjoint union of two sets, W� and WC. The set W� is defined exactly as in the
paragraph above. The set WC consists of those elements .A1; : : : ; Ar / in the coset
Karith;� such that the common value of their determinant is C1 and such that for
some i , Rdet.1 � TAi / is of the form

P.T /Q.T /

with P.T / andQ.T / relatively prime F`i -irreducibles of degree 2, neither of which
is palindromic, and such that

Q.T / D .some constant in F
�̀

i
/T 2P.1=T /:
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Decompose theK-cosetKarith;� into cosets under the smaller group
Q
i �.d;F`i /,

say
Karith;� D

a

a

Coseta:

In view of Theorems 6.7 through 6.10, we see that in each such coset, we have

#.W \ Coseta/=#Coseta � 1 � 	=2:

Summing over the cosets, we find that

#W=#Karith;� � 1 � 	=2:

By the Chebotarev density theorem in the uniform version given in [Ka-Sar, 9.7.13],
there exist constants C and A such that if #k � 4A2, then

j#W=#Karith;� � #fm 2Mk;�.k/jFrobk;m 2 W g=#Mk;�.k/j

� 2C#Karith=Sqrt.#k/:

For #k sufficiently large, we obviously have

2C#Karith=Sqrt.#k/ � 	=2;

and hence for #k sufficiently large we have

#fm 2Mk;�.k/jFrobk;m 2 W g=#Mk;�.k/ � 1 � 	:

It remains only to show that whenever Frobk;m lies inW , then Rdet.1�TFrobk;m/
is Q-irreducible. To see this, we argue as follows. This polynomial has coefficients
in ZŒ1=#k�. If either d is odd, or d is even and each O.d;F`i / is nonsplit, or d is
even and the sign in the functional equation is�1, then for some i the reduction mod
`i of this polynomial Rdet.1 � TFrobk;m/ is F`i -irreducible, this being the defining
property of W , and hence Rdet.1 � TFrobk;m/ is Q-irreducible.

It remains to treat the case in which d is even, each O.d;F`i / is split and the
sign in the functional equation is C1. Suppose first that d D 2n � 6. Then for
some i the reduction mod `i of Rdet.1 � T Frobk;m/ is the product of two F`i -
irreducibles, of degrees 2 and d � 2, while for some j the reduction mod `j of
Rdet.1 � T Frobk;m/ is the product of two F`j -irreducibles, both of degree n, this
being the defining property of W in this case. So once again Rdet.1 � TFrobk;m/
must be Q-irreducible. [For if it were Q-reducible, its Q-factorization would
simultaneously be of the form .degree 2 irred:/.degree d � 2 irred:/ and of the
form .degree n irred:/.degree n irred:/.] Suppose now that d D 4. Then for some i ,
Rdet.1 � T Frobk;m/ is the product

P.T /Q.T /
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with P.T / andQ.T / relatively prime F`i -irreducibles of degree 2, neither of which
is palindromic, and such that

Q.T / D .some constant in F
�̀

i
/T 2P.1=T /:

This implies that Rdet.1�T Frobk;m/ is Q-irreducible. For if it were Q-reducible, its
Q-factorization would be as the product of two relatively prime Q-irreducibles
of degree 2, neither of which is palindromic. But Rdet.1 � T Frobk;m/ has all its
eigenvalues on the unit circle (because pure of weight zero), hence both its Q-
irreducible quadratic factors have roots stable by inversion  7! 1=. Since these
Q-irreducible factors have degree 2, none of their roots is fixed by inversion (i.e.,
no root is ˙1), and hence each Q-irreducible factor has roots of the form .; 1=/,
hence is palindromic.

8 Another application of Theorem 5.1: Universal families of
hypersurface sections

Let R be a finitely generated Z-algebra, P D P
N=R the projective space of some

dimension N , and X � P a closed subscheme which is smooth over R with
geometrically connected fibres, all of some common odd dimension � D 2nC1 � 3.
Fix an integer d � 1. Denote by M=R the parameter space for smooth, degree d
hypersurfaces in the ambient P which are transversal to X , by Hd =M � P=M the
universal family of these hypersurfaces, and by � W X\Hd !M the corresponding
universal family of smooth, degree d hypersurface sections ofX . Concretely, if k is
a field and � W R! k is a ring homomorphism, thenMk;� is the parameter space for
smooth, degree d hypersurfaces which are transversal toXk;� . For each prime `, we
have the lisse (but not necessarily torsion-free) Z`-sheaf R2n�?Z`.n/ on MŒ1=`�,
together with its cup product pairing

R2n�?Z`.n/ � R2n�?Z`.n/! R4n�?Z`.2n/ Š Z`;

which is an orthogonal autoduality modulo torsion. Let us denote by � W X !
Spec.R/ the structural morphism of X=R. On Spec.RŒ1=`�/, we have the lisse Z`-
sheafR2n�?Z`.n/, and we denote byR2n�?Z`.n/MŒ1=`� its pullback toMŒ1=`�. The
canonical restriction map on cohomology gives an inclusion

R2n�?Z`.n/MŒ1=`� � R2n�?Z`.n/:

We denote by
EvZ` � R2n�?Z`.n/
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the orthogonal toR2n�?Z`.n/MŒ1=`� under the cup product pairing. The lisse sheaves
EvZ` on MŒ1=`�,carry the induced cup product pairing

EvZ` � EvZ` ! Z`:

If we tensor this situation with Q`, the Hard Lefschetz Theorem [De-Weil II, 4.1.2]
tells us that this pairing on EvQ` WD EvZ` ˝Z`

Q` is an orthogonal autoduality. By
the Riemann Hypothesis for projective smooth varieties over finite fields [De-Weil I,
1.6], we know that the sheavesEvQ` are pure of weight zero, and form a compatible
system. By Gabber’s theorem [Gab-Tors], for all but finitely many primes `, the
sheaves R2n�?Z`.n/, R2n�?Z`.n/MŒ1=`�, and EvZ` are all torsion free, and the cup
product pairing makesEvZ` orthogonally self dual over Z`. A fundamental result of
Deligne [De-Weil II, 4.4.1,4.4.2s,and 4.4.9], amplified by [Ka-LAMM, 2.2.4] and
[Ka-Pan, Corollaries 2 and 3], tells us that the condition (2 strong) holds for the
compatible system given by the EvQ` , provided that d � 3 if 2n � 4, or that d � 4
if 2n D 2, and that, under these conditions, the common rank of the sheaves EvQ`
is � 9. So Theorem 5.1 applies to this situation.

Let us spell out the simplest case of this situation. We take R to be Z, and we
take X D P D P

2nC1=Z, 2n � 2, with the identical embedding of P into itself. We
fix an integer d with d � 3 if 2n � 4, or d � 4 if 2n D 2. For a finite field k D Fq ,
and a smooth hypersurface Hd=k of degree d and dimension 2n over k, we know
that its Zeta function is of the form

Zeta.Hd=k; T / D 1=P.Hd=k; T /

2nY

iD0
.1 � qiT /:

Here P.Hd=k; T / 2 ZŒT � is the polynomial whose unitarization

Pu.Hd=k; T / WD P.Hd=k; T=q
n/

is given by
Pu.Hd=k; T / D det..1 � T Frobk;Hd jEvQ`/;

for any prime ` invertible in k. The reduced unitarization Pu;red is defined by

Pu;red.Hd=k; T / WD Rdet..1 � T Frobk;Hd jEvQ`/:

For each finite field k, we denote by IrrFrac.k; d; 2n/ the fraction of the smooth
hypersurfacesHd=k of degree d and dimension 2n over k for which the polynomial
Pu;red.Hd=k; T / is Q-irreducible. Then Theorem 5.1 gives us the following result.

Theorem 8.1 In any sequence i 7! ki of finite fields whose cardinalities are strictly
increasing, the sequence of fractions i 7! IrrFrac.ki ; d; 2n/ tend to 1.
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9 Alternative approaches

The Chavdarov approach to studying irreducibility requires knowledge of mod `
monodromy for infinitely many primes `. We have used Larsen’s theorem [Lar-Max,
3.17] to infer, from information about the `-adic monodromy for all (invertible
on the base) `, information about mod ` monodromy for a set of primes ` of
Dirichlet density one. There are two other approaches, which, when they apply,
give information about mod ` monodromy for all but finitely many primes `.

The first is based on the theorem of Mathews, Vaserstein, and Weisfeller
[MVW]2, which concerns a smooth groupscheme G=ZŒ1=N � whose complex fibre
GC is a connected, semisimple, simply connected group, and a finitely generated
subgroup 
 � G.ZŒ1=N �/ which is Zariski dense in GC. For any ` which is prime
to N , we have a “reduction mod `” homomorphism


 � G.ZŒ1=N �/! G.F`/:

The theorem asserts that 
 maps onto G.F`/ for all sufficiently large `.
Let us explain an instance of when we can apply this method, and what kind of

result it gives. Let us put ourselves in the general setup E=U=M=R of Section 3,
and assume that conditions (1) and (2weak) of that section hold, and that d � 3.
Pick an embedding of R into C, and make the corresponding extension of scalars.
As explained in the proof of Theorem 3.1, we have, for some integer N � 1, an
orthogonally self-dual lisse sheaf Han

ZŒ1=N � on M an. Enlarging N , we will further
suppose that N is even. Let us denote by

�an
C
W �1.M an/! O.d;ZŒ1=N �/

the corresponding “transcendental” monodromy representation attached to Han
ZŒ1=N �.

For every prime ` not dividing N , we also have the algebro-geometric `-adic
monodromy of HZ`

jMC,

�C;` W �1.MC/! O.d;Z`/:

By the comparison theorem, the algebro-geometric fundamental group �1.MC/ is
the profinite completion of �1.M an/. For every ` not dividing N , the `-adic image
�C;`.�1.MC// � O.d;Z`/ is the closure (in O.d;Z`/ with its profinite topology)
of the topological image �an

C
.�1.M

an// � O.d;ZŒ1=N �/. By Pink’s specialization
theorem [Ka-ESDE, 8.18.2, (2)] applied to HZ`

on MŒ1=`�, we may infer from
condition (2weak) that the `-adic image �C;`.�1.MC// is Zariski dense in either
O.d;Q`/ or in SO.d;Q`/. By the `-adic continuity of polynomial functions, it then

2Unlike the Larsen result or the Zalesskii–Serezkin result to be discussed below, this result [MVW]
depends upon the classification of finite simple groups.
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follows that the topological image �an
C
.�1.M

an// � O.d;ZŒ1=N �/ is Zariski dense
in the same group, either O.d;Q`/ or SO.d;Q`/. Picking an embedding of fields
Q` � C, we see that the topological image is Zariski dense in either O.d;C/ or in
SO.d;C/. Since the topological fundamental group �1.M an/ is finitely generated,
its image


1 WD �an
C
.�1.M

an// � O.d;ZŒ1=N �/
is a finitely generated subgroup of O.d;ZŒ1=N �/ which is Zariski dense in either
O.d/ or SO.d/. We cannot yet apply [MVW], because the orthogonal groupO.d/
is not connected and its identity component SO.d/ is not simply connected. We get
around this difficulty following an argument of Ron Livne. First, replace 
1 by the
subgroup 
2 � 
1 of index 1 or 2 consisting of the elements of determinant C1.
Then 
2 is a finitely generated, Zariski dense subgroup of SO.d;ZŒ1=N �/. Next
consider the Spin group attached to our orthogonal group. The spinor norm gives an
exact sequence

f1g ! ˙1! Spin.d;ZŒ1=N �/! SO.d;ZŒ1=N �/! ZŒ1=N ��=.ZŒ1=N ��/2;

in which the last term, ZŒ1=N ��=.ZŒ1=N ��/2, is finite, generated by �1 and by the
primes dividingN . Now consider the composite homomorphism


2 � SO.d;ZŒ1=N �/! ZŒ1=N ��=.ZŒ1=N ��/2:

Its image is finite. So the subgroup


3 WD Ker.
2 ! ZŒ1=N ��=.ZŒ1=N ��/2/ � 
2
is a subgroup of finite index in 
2, so is still Zariski dense in SO , and still finitely
generated. Every element of 
3 lifts, in two different ways, to Spin.d;ZŒ1=N �/.
Denote by


 � Spin.d;ZŒ1=N �/

the complete inverse image of 
3. This group 
 is finitely generated (because 
3
is), and, as it maps onto 
3, it is Zariski dense in Spin. We may now apply the
theorem of Mathews, Vaserstein, and Weisfeller [MVW], to 
 � Spin.d;ZŒ1=N �/,
to conclude that for all sufficiently large ` prime to N , say for all ` not in the
finite set S , 
 maps onto Spin.d;F`/. For any such `, 
3 maps onto the image of
Spin.d;F`/ in SO.d;F`/, i.e., 
3 maps onto�.d;F`/. So for any such `, the image
of 
1 in O.d;F`/ contains �.d;F`/. Because the algebro-geometric fundamental
group �1.MC/ is the profinite completion of �1.M an/, this last image is also the
image of �1.MC/ in O.d;F`/. Thus we find that the image of �1.MC/ in O.d;F`/
contains�.d;F`/ for every ` not in S .

So far, all of this is taking place on the complex fibre of M=R. Let us say that
M=R is nicely compactifiable if there exists a proper smooth R-scheme M^=R
and a divisor D � M^ which has normal crossings relative to R, such that M Š
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M^ nD. By resolution over the characteristic zero fraction field ofR, we know that
there exists a nonzero r 2 R such that MŒ1=r�=RŒ1=r� is nicely compactifiable.
[This passage, from R to some RŒ1=r�, is not entirely harmless. For instance, in
the second example, of Weierstrass families, where we start, for a given .d2; d3/,
with R D ZŒ1=6� and the corresponding M D Md2;d3=ZŒ1=6�, we do not know
which, if any, other primes p we need to invert to get a nice compactification, nor
do we know how this set of p depends on .d2; d3/. In our 2004–2005 course, we
followed the [MVW] method when M=R was nicely compactifiable, as explained
in the next paragraph, but then invoked the Larsen method to handle separately each
of the finitely many unknown bad p.]

When M=R is nicely compactifiable, with R a normal integral domain whose
fraction field has characteristic zero, Abhyankar’s lemma [SGA 1, XIII, 5.5] assures
us that for any lisse sheaf onMŒ1=`�, and any geometric point s of Spec.RŒ1=`�/, its
restriction to the geometric fibre Ms of MŒ1=`�=RŒ1=`� is tamely ramified at each
maximal point ofDs . We apply this to the lisse sheaf HZ`

˝F` onMŒ1=`�, for each
` not in S . The Tame Specialization Theorem [Ka-ESDE, 8.17.14] then tells us that
for every ` not in S , and for every geometric point s of Spec.RŒ1=`�/, the image of
�1.Ms/ in O.d;F`/ contains�.d;F`/.

We now turn to a second approach3 to controlling the mod ` monodromy for all
but finitely many `. This approach is based on the Zalesskii-Serezkin classification
[Zal-Ser, Theorem, page 478] of irreducible subgroups of GL.n;F`/; ` � 3; n � 3,
which are generated by reflections and which contain no transvections (:=unipotent
pseudoreflections). We can apply this to describe all irreducible subgroups of
orthogonal groups in odd characteristic generated by reflections because such
orthogonal groups contain no transvections. Here is a baby version of their result
in this case.

Theorem 9.1 (Zalesskii–Serezkin) Given an integer n � 3, there exists a constant
C.n/ with the following property. Let ` � 3, and .V;‰/ an n-dimensional
F`-vector space with a symmetric autoduality ‰. Let G � O.V;‰/ be an
irreducible subgroup generated by reflections. Denote by NO.G/ the normalizer
of G in O.V;‰/. Then either �.V;‰/ � G, or we have the divisibility estimate
#NO.G/jC.n/. Moreover, if n � 9, we can take C.n/ D 2n.nC 2/Š.
Proof. We begin by recalling that if G � O.V;‰/ is an irreducible subgroup
generated by reflections, then G is absolutely irreducible (i.e., G acts irreducibly
after extending scalars from F` to F`). Now for any absolutely irreducible subgroup
G � O.V;‰/, we have the divisibility estimate

#NO.G/j2#Aut.G/;

simply because the kernel of the conjugation action homomorphism

3A third approach would be to appeal to the results of Hall [Ha].
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NO.G/! Aut.G/

lies in the subgroup of scalars in O.V;‰/, which is˙1.
It is immediate from [Zal-Ser, Theorem, page 478] that for n � 9, there are

at most two primitive such groups G which fail to contain �.V;‰/, namely the
symmetric group SnC1, if ` is prime to n C 1, and the symmetric group SnC2,
if ` divides n C 2. For these G, every automorphism is inner. For 3 � n �
8, there are finitely many more such primitive G, and these we handle by the
#NO.G/j2#Aut.G/ divisibility.

We now consider the imprimitive such G. For n � 5, any imprimitive such
group has a unique [Zal-Ser, 4.1] system of imprimitivity consisting of the lines Li
spanned by-linearly independent vectors ei , and the induced homomorphism maps
G onto the symmetric group Sn. For each of n D 3 and n D 4, there is at most one
imprimitive G for which the system of imprimitivity is not unique [Zal-Ser, 4.1],
and these cases are handled by the #NO.G/j2#Aut.G/ divisibility.

It remains to treat the case of an imprimitive such G which admits a unique
system of imprimitivity. By uniqueness, the system of imprimitivity is respected by
NO.G/, so we have a homorphism of NO.G/ onto Sn. It remains only to show the
following claim: in the basis given by the vectors ei , any element g 2 NO.G/ which
lies in the kernel of this homomorphism, i.e., which is diagonal, has entries each˙1.
Indeed, we will show that any element g 2 O.V;‰/ which is diagonal in this basis
has entries˙1. Let us denote by �i the diagonal entries of g.

From the fact that G induces every possible permutation of the lines Li , we see
that

(1) Either all square lengths‰.ei ; ei / are nonzero, or they are all zero.
(2) Either all cross terms ‰.ei ; ej / are nonzero, for all i ¤ j , or they are all zero.

If all ‰.ei ; ei / are nonzero, our claim is obvious, since

�2i ‰.ei ; ei / D ‰.g.ei /; g.ei // D ‰.ei ; ei /:

If all ‰.ei ; ei / vanish, then by nondegeneracy all ‰.ei ; ej / are nonzero, for all i ¤
j . From the identity

�i�j‰.ei ; ej / D ‰.g.ei /; g.ej // D ‰.ei ; ej /;

we then infer that for every i ¤ j , we have �i�j D 1, which in turn forces all �i to
be equal to each other, with common value˙1. ut

Armed with this result, we can prove an “almost all `” result about the mod
` monodromy of Lefschetz pencil of even fibre dimension 2n � 2. Let us put
ourselves in the situation of Section 8, but taking now the base ring R to be a finite
field k. We take the degree d of the hypersurface sections large enough that the
common rankN of the sheavesEvQ` , for every ` invertible in k, is� 3. We suppose
that the condition (2 strong) holds, and that there exist, over k, Lefschetz pencils on
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X of hypersurface sections of degree d for which (2 strong) holds as well. [As noted
above, the first condition is automatic if d � 3 and d C 2n � 6, in which case we
have N � 9. Moreover, in this case Lefschetz pencils exist, and sufficiently general
ones will satisify (2 strong).]

Theorem 9.2 For all sufficiently large primes `, the image of the geometric
fundamental group �1.Mk/ in O.N;F`/ under the monodromy representation of
EvZ` ˝ F` contains �.N;F`/. More precisely, it is the following subgroup of
O.N;F`/: if .�1/n2 is a square in F`, it is the subgroup of elements of spinor
norm one. If not, it is the subgroup of elements having sp D det. Moreover, for
any (sufficiently general, if char.k/ D 2) Lefschetz pencil satisfying (2 strong), we
have the same results for the image of its geometric monodromy, with a possibly
larger set of “bad” `.

Proof. By Gabber’s theorem [Gab-Tors], applied both to X and to any single
smooth hypersurface section X \Hd of degree d , we know that for all but finitely
many `, both spaces have their Z`-cohomology torsion-free, and the hard Lefschetz
theorem holds mod ` on both. These are the “good `” for the theorem. Because the
fibre dimension 2n is even, we know, by [SGA 7 II, XV 3.4, XVIII 6.2 and 6.3],
that “condition A” of [SGA 7 II, XVIII 5.3.5] holds for any Lefschetz pencil on
X . An attentive reading of the entire exposé [SGA 7 II, XVIII] then shows that for
all these good `, the mod ` geometric monodromy of any (sufficiently general, if
char.k/ D 2) Lefschetz pencil is an irreducible subgroup of O.N;F`/ (this uses
the conjugacy of the vanishing cycles [De-Weil II, 4.2.7]) which is generated by
reflections in various vectors ıi with square length ıi � ıi D .�1/n2 (this is the
Picard-Lefschetz formula [SGA 7 II, XV 3.4]).

Let us begin with a Lefschetz pencil, defined over k and hence over some finite
extension E=k, for which (2 strong) holds. Since the statements to be proven are
geometric, we may extend scalars, and reduce to the case when our Lefschetz
pencil satisfying (2 strong) is defined over k. From the theorem of Zalesskii–
Serezkin above, we see for a given good `, there are only two possibilities: either
the image 
geom;mod ` of the geometric monodromy group of our Lefschetz pencil
is the asserted group, or its normalizer NO.
geom;mod `/, which contains the mod
` image 
arith;mod ` of the arithmetic monodromy group, is a group whose order
divides C.N/. We will show that this can happen for only finitely many good `.
Indeed, we will show that the inequality #
arith;mod ` � C.N/ can hold for only
finitely many good `. For this, we argue as follows.

Because our pencil satisfies (2 strong), we know by Deligne’s equidistribution
theorem, cf. [Ka-GKM, 3.6], that as we run over larger and larger finite extensions
E=k, and consider all the smooth, degree d hypersurface sections X \Hd defined
over E , the (unique conjugacy classes having) reversed characteristic polynomials

det.1 � T Frobk;X\Hd jEvn/ 2 ZŒ1=#k�ŒT �

become equidistributed, for (the direct image of) Haar measure, in the space
O.N;R/# of conjugacy classes in the compact orthogonal group O.N;R/. The
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space O.N;R/# is a compact metric space [namely, the set of all degree N

polynomials in 1CTRŒT � all of whose roots lie on the unit circle], every nonempty
open set has strictly positive measure, and it is infinite. So if we take 1 C C.N/
distinct points Ai in O.N;R/#, and tiny open balls Bi around Ai which are
pairwise disjoint, then for E sufficiently large, we can find 1 C C.N/ different
smooth, degree d hypersurface sections X \ Hd;i defined over E such that the
reversed characteristic polynomial of Frobk;X\Hd;i lands in Bi . So these reversed
characteristic polynomials are pairwise distinct. Let us enumerate these polynomi-
als, say P0.T /; P1.T /; : : : ; PC.N/.T /. Now consider the product polynomial

R.T / WD
Y

0�i<j�C.N/
.Pi .T /� Pj .T //:

This is a nonzero polynomial in ZŒ1=#k�ŒT �, hence it is nonzero mod all sufficiently
large primes `. For any good prime ` mod which it is nonzero, the 1 C C.N/

Frobenius conjugacy classes Frobk;X\Hd;i must have distinct images in 
arith;mod`,
since they have distinct mod ` characteristic polynomials. So certainly we have
#
arith;mod` � 1C C.N/ for these good `.

To treat the situation over M itself, we note that our single Lefschetz pencil
above shows us for all sufficiently large good primes `, the image of the geometric
fundamental group �1.Mk/ in O.N;F`/ under the monodromy representation of
EvZ` ˝ F` contains the asserted subgroup of O.N;F`/. To see that this image can
be no bigger, use the fact that for any given good prime `, Bertini’s theorem says that
already a sufficiently general Lefschetz pencil will have the same mod ` geometric
monodromy as doesM itself. Since other choices of Lefschetz pencils may require
omitting fewer good ` than did our initial choice, the result overM may have fewer
bad ` that the result for some particular choice of Lefschetz pencil. ut
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Diophantine methods for hyperbolic curves
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Abstract In a letter from Grothendieck to Faltings, it was suggested that a positive
answer to the section conjecture should imply finiteness of points on hyperbolic
curves over number fields. In this paper, we point out instead the analogy between
the section conjecture and the finiteness conjecture for the Tate-Shafarevich group
of elliptic curves. That is, the section conjecture should provide a terminating
algorithm for finding all rational points on a hyperbolic curve equipped with a
rational point.
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In earlier articles [8–10] attention was drawn to the parallel between the ideas
surrounding the well-known conjecture of Birch and Swinnerton-Dyer (BSD) for
elliptic curves, and the mysterious section conjecture of Grothendieck [6] that
concerns hyperbolic curves. We wish to explain here some preliminary ideas for
“effective non-abelian descent” on hyperbolic curves equipped with at least one
rational point. We again follow in an obvious manner the method of descent on
elliptic curves and therefore rely on conjectures. In fact, the main point is to
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substitute the section conjecture for the finiteness of the Tate–Shafarevich group.
That is to say, the input of the section conjecture is of the form

section conjecture) termination of descent.

At a number of different lectures delivered by the author on the topic of fundamental
groups and Diophantine geometry, the question was raised about the role of surjec-
tivity in the section conjecture as far as Diophantine applications are concerned. The
demonstration of this implication is intended as something of a reply.

To start the descent, on the other hand, requires the use of p-adic Hodge theory
and the unipotent Albanese map. In this process, in general, another conjecture
is unfortunately needed. It could be, for example, the Bloch–Kato conjecture on
surjectivity of the p-adic Chern class map that has been referred to in [9]. In other
words, via the construction of Selmer varieties and Albanese maps, one deduces an
implication

Bloch–Kato conjecture) beginning of descent.

The main caveat here arises from the lack of actual knowledge of computational
issues on the part of the author. To avoid misleading anyone about what is being
achieved here, we have in the following section separated out the questionable
portions as hypotheses [H] and [H0]. That is to say, the objects that mediate this
process, namely Galois cohomology groups/varieties and maps between them, seem
in principle to be computable. But even to the algorithmically illiterate perspective,
it is obvious that actual computation would be daunting to the point of impossibility
given the technology of the present day. Nevertheless, it is perhaps not entirely
devoid of value to point out one direction of investigation in effective methods, in
the hope that even incompetent strategies may eventually be improved through the
focusing of sharper skills obviously available in the community. Hence the present
paper.

One point of some theoretical interest concerns the comparison with “effective
Mordell conjectures” in the usual sense where upper bounds for heights are
proposed. If we fix a point b on the curve and measure heights with respect to
the corresponding divisor, the height of another point measures the inverse distance
from b at all places. So an upper bound for the height corresponds to a lower bound
for the distance from b at all places. On the other hand, what the p-adic Hodge
theory provides (in principle) is a lower bound for the p-adic distance between all
pairs of points at one place. This lower bound is exactly what is required to start the
descent.

Finally, we make the obvious point that the use of conjectures is probably not
a serious obstacle from the computational perspective (that is, in comparison to
the problem of feasibility). This is in the same spirit as the standard algorithms
for computing Mordell–Weil groups of elliptic curves where the BSD conjecture is
employed with just a few misgivings [3].
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Foundation and a visiting professorship at RIMS. He is grateful to Kazuya Kato, Shinichi
Mochizuki, and Akio Tamagawa for a continuing stream of discussions on topics related to this
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1 Brief review

Here we will be intentionally brief, referring the reader to [4] and [9] for a more
thorough discussion.

Let X=Q be a proper smooth hyperbolic curve of genus g with a point b 2 X.Q/
and let S be the set of primes of bad reduction for X . In the following, we shall
be a bit sloppy and mostly omit separate notation for an integral model of X .
Choose a prime p … S and let U ét D �

ét;Qp
1 .X; b/ be the Qp-unipotent étale

fundamental group of NX WD X �Spec.Q/ Spec. NQ/ and U ét
n D .U ét/nC1nU ét its

quotient by the .n C 1/th level of the descending central series normalized so that
.U ét/1 D U ét. Let � be the Galois group of NQ over Q. We have defined the Selmer
varieties

H1
f .�; U

ét
n /

[9, 10] classifying �-equivariant torsors for U ét
n that are unramified at all places not

in fpg[S and crystalline at p. (This isH1
f .�T ; U

ét
n�1/ in the notation of [8] and [9],

where T D S [ fpg.) These are affine algebraic varieties over Qp whose algebraic
structures are defined inductively starting from

H1
f .�; U

ét
1 / ' H1

f .�;H
ét
1 .
NX;Qp//;

which is a Qp vector space. Recall the fundamental diagram ([9], end of section 2)

X.Q/ � � X.Qp/

H1
f .�; U

ét
n /

�
ét;glob
n

�
locp� H1

f .Gp; U
ét
n /

�
ét;loc
n

�
D� U dr

n =F
0

� dr=crn

�

Here, H1
f .Gp; U

ét
n / classifies Gp WD Gal. NQp=Qp/-equivariant torsors for U ét

n that

are crystalline, while U dr
n =F

0 classifies compatible pairs T dr
n ' T cr

n of torsors for
the de Rham and crystalline fundamental groupsU dr

n and U cr
n equipped with Hodge

filtrations and Frobenius endomorphisms compatible with the torsor structures. The
maps associate to each point x 2 X.Q/ the class of the torsor of paths from b to x
in the appropriate category. So

� ét;glob
n .x/ D Œ� ét;Qp

1 . NX I b; x/n�

with �-action,

� ét;loc
n .x/ D Œ� ét;Qp

1 . NX I b; x/n�
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with Gp-action, and

�dr=cr
n .x/ D Œ�dr

1 .X ˝QpI b; x/ ' �cr
1 .Y I Nb; Nx/�;

where Y is the reduction mod p of a smooth ZŒ1=S� model for X .
In contrast to this mass of notation, the section conjecture considers just one map

O� W X.Q/!H1.�; O�1. NX; b//

that sends a point x 2 X.Q/ to the class of the profinite torsor of paths

O�1. NX I b; x/

with �-action. It proposes that this map should be a bijection. The injectivity is
already known as a consequence of the Mordell–Weil theorem for the Jacobian J of
X , while the surjectivity seems to be a very deep problem. The question mentioned
in the introduction arises exactly because the injectivity appears, at first glance, to
be more relevant for finiteness than the surjectivity. The idea for using the bijectivity
seems to have been to create a tension between the compact profinite topology of
H1.�; O�1. NX; b// and the “discrete nature” ofX.Q/. At present it is unclear how this
intuition is to be realized. But as mentioned, when the finiteness is obtained through
a different approach, we wish to explain the use of the surjectivity for finding the
full set of points.

Using the exact sequence

0!UnC1nUn!UnC1!Un!0

for each of the fundamental groups, the global Selmer variety is fibered according
to the sequence

0!H1
f .�; .U

ét/nC1n.U ét/n/!H1
f .�; U

ét
nC1/!H1

f .�; U
ét
n /;

which means that the kernel acts on the variety in the middle with orbit space a
subset of the third object. If we denote by rn the dimension ofUn, there is a recursive
formula [11]

˙i jniri D .g C
p

g2 � 1/n C .g �
p

g2 � 1/n

which implies in particular that

rn D .g C
p

g2 � 1/n=nCO.gn=2/

for some O.gn=2/ that can be explicitly computed.
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The global Selmer variety has its dimension controlled by the Euler characteristic
formula for the cohomology of the group �T DGal.QT =Q/, where T DS [ fpg
and QT is the maximal extension of Q unramified outside T ([9], Section 3).
It reads

dimH1.�T ; .U
ét/nC1n.U ét/n/ � dimH2.�T ; .U

ét/nC1n.U ét/n/

D dimŒ.U ét/nC1n.U ét/n��;

where the minus in the superscript refers to the sign for the action of complex
conjugation. The dimension of this minus part can be estimated as follows. The
action of complex conjugation on the étale fundamental group U ét is compatible
with its action on the Betti realization UB of the motivic fundamental group [4],
according to which

.U B/nC1n.U B/n

has a pure Hodge structure of weight n. So when n is odd, we get

dimŒ.U ét/nC1n.U ét/n�� D rn=2:

But when n D 2m is even, there is the contribution from the .m;m/ component
to consider, which can be complicated. This .m;m/ component is a quotient of the
.m;m/-part of

H1.X.C/;C/
˝2m;

which has dimension
�
2m
m

�

g2m. So for simplicity, we will just use the tautological
estimate

dimŒ.U ét/nC1n.U ét/n�� � rn
for n even.

In [9], Section 3, we analyzed the use of the corresponding Tate–Shafarevich
groups

�
2..U ét/nC1n.U ét/n// WD KerŒH2.�T ; .U

ét/nC1n.U ét/n/

!˚v2T H2.Gv; .U
ét/nC1n.U ét/n/�;

which is dual to

�
1...U ét/nC1n.U ét/n/�.1// WD KerŒH1.�T ; ..U

ét/nC1n.U ét/n/�.1//

!˚v2T H1.Gv; ..U
ét/nC1n.U ét/n/�.1//�:
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There is a Chern class map [1]

chn;1 W K.1/
2�n�1.X

n/˝Qp!H1.�;Hn. NXn;Qp.1///

for n ¤ 1 whose image lies in a “geometric” subspace

H1
g .Gal;Hn. NXn;Qp.1///

that contains

�
1.Hn. NXn;Qp.1///:

In fact,

�
1.Œ.U ét/nC1n.U ét/n/��.1//

is a subspace of�1.Hn. NXn;Qp.1/// because the representation .U ét/nC1n.U ét/n

is a direct summand of Het
1 .
NX;Qp/

˝n; which, in turn, is a direct summand of
.Hn. NXn;Qp//

�. But Bloch and Kato conjecture that

chn;1 W K.1/
2�n�1.X

n/˝Qp!H1
g .Gal. NQ=Q/;Hn. NXn;Qp.1///

is an isomorphism. Thus, when n � 2, we get

�
1.Œ.U ét/nC1n.U ét/n/��.1// D 0:

We recall the explicit bound for the local H2 ([9], Section 3). For v ¤ p, we
have

dimH2.Gv; .U
ét/nC1n.U ét/n/ � ngn C n.n � 1/

2
.2g/2gn�2;

while

dimH2.Gp; .U
ét/nC1n.U ét/n/ � ngn:

Finally, as regards the contribution of the Hodge filtration, we saw in [9] that

F 0..U dr/nC1n.U dr/nC1/ � gn;

so that

dim.U dr/nC1n.U dr/nC1=F 0 � rn � gn D .gC
p

g2 � 1/n=n� gn CO.gn=2/:
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2 Beginning the descent

Since it costs very little extra work to define, we will in fact consider the refined
Selmer variety

H1
f;0.�; U

ét
n / � H1

f .�; U
ét
n /

consisting of classes whose images in

H1
f .�; U

ét
1 /

go to zero under all localization maps

H1
f .�; U

ét
1 /

locv! H1.Gv; U
ét
1 /

for v ¤ p. As explained in [10], the image of X.Q/ under � ét;glob
n lies in

H1
f;0.�; U

ét
n /. From the estimates of the previous section, it is obvious that

assuming the Bloch–Kato conjecture, there is an effectively computable t such
that

dimH1
f;0.�; U

ét
n / < dimU dr

n =F
0

for n � t .
Of course the computation starts out with an estimate for dimH1

f;0.�; U
ét
1 / which

according to the usual BSD is the same as the Mordell–Weil rank of J . After that, the
dimension of dimH1

f;0.�; U
ét
n / grows as a function of nwith an explicit upper bound,

while the dimension ofU dr
n =F

0 grows with an explicit (and eventually bigger) lower
bound. Written out, the estimate for growth looks like

dimH1
f;0.�; U

ét
2nC1/ � dimH1

f;0.�; U
ét
2n/

Cr2n=2C jS jŒ.2n/g2n C .2n/.2n � 1/
2

.2g/2g2n�2�C .2n/g2n

and

dimH1
f;0.�; U

ét
2nC2/ � dimH1

f;0.�; U
ét
2nC1/C r2nC1

CjS jŒ.2nC 1/g2nC1 C .2nC 1/.2n/
2

.2g/2g2n�1�C .2nC 1/g2nC1;

while

dimUnC1 � dimUn C rn � gn:
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We eventually get an inequality in the right direction because of the asymptotic
behavior of rn. In this regard, note that g Cpg2 � 1 > g for g � 2.

As a consequence of the discrepancy in dimension, the image of

D ı locp W H1
f;0.�; U

ét
t /!U dr

t =F
0

is not Zariski dense. In contrast to difficult sets like X.Q/, the classifying spaces
for torsors and the maps between them are algebro-geometric objects which can be
computed in principle. This should work in the manner of computations with the
usual method of Chabauty as appears, for example, in [7] (cf. the discussion of �
in the introduction). In case this is not convincing, we will adopt it as an additional
hypothesis:

ŒH �: The map

D ı locp W H1
f;0.�; U

ét
t /!U dr

t =F
0

can be computed.

The end result of this is that assuming B-K and [H], we can find an algebraic
function ˛ on U dr

t =F
0 that vanishes on the image of H1

f;0.�; U
ét
t /. Now, when we

restrict ˛ to X.Qp/ it becomes a linear combination of p-adic iterated integrals.
To elaborate on this point a little more, recall ([9], Section 1) the description of
the coordinate ring of the de Rham fundamental group U dr;0 for an affine curve X0

obtained by deleting some rational divisor from X . In this case, when we choose a
collection a1; a2; : : : ; ak of algebraic differential forms on X0 inducing a basis of
H1

dr.X
0/, the coordinate ring of U dr;0 has the form

Qphawi;

the Qp vector space generated by symbols aw, one for each finite sequence w of
numbers from f1; 2; : : : ; kg. Furthermore, on X0.Zp/, there is a lifting (depending
on the previous choice of basis)

U dr;0
t

X0.Zp/ �

�

U dr;0
t =F 0

�

such that the restriction of aw for w D .i1; i2; : : : ; il / to X0.Zp/ has the form

aw.z/ D
Z z

b

ai1ai2 � � �ail :
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Also, there is a functorial map

U
dr;0
t !U dr

t

compatible with the Hodge filtration so that the function ˛ on U dr
t =F

0 can be lifted
to U dr;0

t . That is to say, one can construct a diagram

U
dr;0
t

X0.Zp/ �

�
U dr
t =F

0

�

enabling us to compute the restriction of ˛ to X0.Zp/ in terms of the aw. The
idea would be to carry this process out for two separate affine X0 so as to cover
X.Zp/ and then to express ˛ in terms of iterated integrals on each affine open set.
Of course, the problem of explicitly computing the local liftings is also a daunting
task, although possible in theory. The author makes no pretense of knowing, as yet,
how to reduce this to a tractable process. Perhaps it is safer to state it also explicitly
as a hypothesis:

[H0]: The map

U dr;0
t

� U dr
t =F

0

can be computed.

Choose a representative y 2 X.Qp/ for each point in Y.Fp/ (D X mod p) and a
coordinate zy centered at y. We must then approximate the zeros of ˛ on X.Qp/ by
expressing it as a power series in the zy . This needs to be carried out to a sufficiently
high degree of accuracy so that we can find anM and a finite collection yi 2 X.Qp/

for which

�yi ŒM WD fx 2 X.Qp/jzyi .x/ � p�M g

contains at most one zero of ˛. That is to say, we need to separate the zeros of ˛
modulo pM . Note that even at this point, since all expressions will be approximate,
there would be no way to determine which of the yi relate to actual points of X.Q/,
even though an upper bound for the number of points may be available, as was
emphasized by Coleman [2]. In fact, the process of separating the points using
small disks already seems to occur, at least implicitly, in the method of Coleman–
Chabauty. In the next section we will see how to combine that separation with the
section conjecture.
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We summarize the preceding passages as follows:

Observation 1 Assuming the Bloch–Kato conjecture and the hypotheses [H] and
[H0], there is an effectively computableM such that the map

X.Q/,!X.Qp/!X.Z=pM/
is injective.

In our view, this statement is one rather essential justification for studying the
Selmer varieties and unipotent Albanese maps. That is, Faltings’ theorem as it stands
does not seem to give, even in principle, a way of getting at this sort of effectivity.
To belabor the obvious, the point is that the map

X.Q/!X.Qp/

is not a priori (i.e., before finding X.Q/) computable, even in principle, in contrast
to the algebraic map

H1
f;0.�; U

ét
t /!U dr

t =F
0:

When we embed X.Q/ inside J.Q/ using the base point b, we see then that we
have an injection

X.Q/,!J.Z=pM /:

But the kernel of the reduction map

J.Q/!J.Z=pM /

is of finite index, and hence contains NJ.Q/ for some N . For example, one could
take N D jJ.Z=pM/j, which, in turn, can be computed from the formula

jJ.Z=pM/j D p2g.M�1/jJ.Fp/j;

since p is a prime of good reduction. So finally, we arrive at an effectively
computableN such that

X.Q/!J.Q/!J.Q/=NJ.Q/

is injective. Let T0 be S together with the set of primes dividing N , and �T0 the
fundamental group of Spec.ZŒ1=T0�/ with base point given by ZŒ1=T0�,!Q,! NQ.
Thus we get an injection

X.Q/,!H1.�T0 ; J ŒN �/

that allows us to begin descent.
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3 Non-abelian descent and its termination

Once we have the final conclusion of the previous section, we can dispense entirely
with the unipotent machinery and start to deal with the profinite formalism. There
are many ways to construct a cofinal system for

� WD O�1. NX; b/;

of which we will use one described in a letter from Deligne to Thakur [5]. Let
Kn � � be the intersection of all open subgroups of index� n. It is a characteristic
open subgroup, and hence we can form the finite quotient �.n/ WD �=Kn. The
order of this quotient has all prime divisors � n. Let �n denote the fundamental
group of Spec.ZŒ1=nŠ�/. We also denote by �.n/ the quotient of O�1.X; b/ by Kn, a
group that fits into the exact sequence

0!�.n/!�.n/!�!0:

For n larger than any prime in S , there is a pull-back diagram ([12], proof of
Theorem 2.8)

0 � �.n/ � �.n/ � � � 0

0 � �.n/

D

�
� O�1.X n/=Kn

�
� �n

�
� 0

where Xn is a proper smooth model for X over Spec.ZŒ1=nŠ�/. Therefore, we see
that any point x 2 X.Q/ defines a class in

H1.�n;�.n//

and that we have a commutative diagram

X.Q/ �
O�� H1.�;�/

H1.�n;�.n//

�
�� H1.�;�.n//

�

(1)

There is a sequence of subsets containing X.Q/,

H1.�;�/i � H1.�;�/;
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consisting of those classes whose projection to H1.�;�.i// lies in the image of

H1.�i ;�.i//,!H1.�;�.i//:

Let n0 be larger than the primes in T0. Then we have diagrams

H1.�;�/i � � H1.�;�/

H1.�i ;�.i//

�
�� H1.�;�.i//

�

H1.�T0; J ŒN �/
�� H1.�i ; J ŒN �/

�

(2)

for i � n0. Using this, we can define a decreasing sequence of subsets

H1.�T0 ; J ŒN �/n � H1.�T0; J ŒN �/

for n � n0 consisting of those classes whose images in H1.�i ; J ŒN �/ lift to
H1.�i ;�.i// for all n0 � i � n. For n � n0, we also have a commutative diagram

X.Q/ � � H1.�n;�.n//

H1.�T0 ; J ŒN �/

�

\

�� H1.�n; J ŒN �/

�

(3)

Meanwhile, there is an increasing sequence

X.Q/n � X.Q/ � H1.�T0 ; J ŒN �/

consisting of the points with height (in some projective embedding) � n. We
visualize the situation using the sort of filtration familiar from the arithmetic theory
of elliptic curves:

� � �X.Q/n � X.Q/nC1 � � � � � H1.�T0 ; J ŒN �/mC1
� H1.�T0; J ŒN �/m � � � � � H1.�T0 ; J ŒN �/: (4)
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Observation 2 The section conjecture implies that

X.Q/n D H1.�T0 ; J ŒN �/m

for n;m sufficiently large. At this point, X.Q/ D X.Q/n.
That is to say, we know when to stop searching. The simple proof is written out

just to make sure the author is not confused.

Proof. Assume the section conjecture. Then by diagrams (1) and (2), we have

H1.�;�/i D H1.�;�/

for all i and we actually have maps

H1.�;�/!H1.�i ;�.i//

for each i . Therefore,

H1.�;�/ D lim �H
1.�;�.i// D lim �H

1.�i ;�.i//:

Claim: Suppose c 2 H1.�T0 ; J ŒN �/ is not in X.Q/. Then c … H1.�T0 ; J ŒN �/m
for some m.

Proof of claim. If c 2 H1.�T0 ; J ŒN �/m for each m, then H1.�;�.m//c�H1.�m;

�.m//c , the classes in H1.�;�.m// that lift c 2 H1.�T0; J ŒN �/�H1.�; J ŒN �/

are non-empty for each m. Thus, the inverse limit lim �m H
1.�;�.m//c� lim �mH

1

.�m;�.m//c, containing an inverse limit of non-empty finite sets, is itself non-
empty. Therefore, c would be in the image ofH1.�;�/, and hence, in the image of
X.Q/. ut

Thus, eventually, X.Q/ D H1.�T0; J ŒN �/m. Of course eventually X.Q/n D
X.Q/. Now suppose

X.Q/n D H1.�T0 ; J ŒN �/m

at any point. Then classes not in H1.�T0 ; J ŒN �/m cannot lift to H1.�;�/m. And
hence, they are not in X.Q/. That is to say, X.Q/n D X.Q/. ut

All the cohomology sets occurring in diagram (3) are finite and thereby have
the nature of being computable through explicit Galois theory. Thus, the filtra-
tion (4) can be computed in principle. As mentioned in the introduction, the
actual implementation of such an algorithm is obviously an entirely different
matter.
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Ranks of elliptic curves in cubic extensions

Hershy Kisilevsky

Dedicated to the memory of S. Lang

Abstract Let E=Q be an elliptic curve defined over the rational field Q: We
examine the rank of the Mordell–Weil group E.K/ as K ranges over cubic
extensions of Q:

Key words Elliptic curves • cubic fields • Mordell–Weil groups
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1 Introduction

Let E=Q be an elliptic curve defined over the rational field Q: For any finite
extension K=Q; the Mordell–Weil group E.K/ of K-rational points of E is a
finitely generated abelian group and we denote by rE.K/ the Z-rank of E.K/; i.e.,
the number of copies of Z in its standard decomposition as a direct sum of cyclic
groups. In [F-K-K] we studied the behaviour of rE.K/ as K ranged over cyclic
cubic extensions of Q and showed that the condition rE.K/ > rE.Q/ is controlled
by the rational points on a certain K3-surface defined over Q: For many curves E,
we showed that rE.K/ > rE.Q/ for an infinite number of cyclic cubic extensions
K=Q; and asked whether this was the case for every elliptic curve E: Assuming
the Birch & Swinnerton-Dyer conjecture, this question translates to the following:
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If L.E; s/ is the L-function of E=Q; then does the twisted L-series L.E; �; s/
vanish at s D 1 for an infinity of Dirichlet characters � of order three?

In the present paper we consider this question as K=Q ranges over all cubic
extensions.

We define the families F of fields we will consider. Let k be a global field and
let k be an algebraic closure of k: Suppose that F=k is a separable extension of
degree 1 or 2.

Definition 1.1. Define F .F / to be the collection of all separable cubic extensions
K=k (in k) whose Galois closures are M D K � F:

We will consider all number fields to be subfields of the complex numbers C; so
that we consider Q � C:

In this paper, given a cubic extensionK=k;we will always writeM for the Galois
closure of K=k; and F for the quadratic resolvent field (so F D k is permitted).
In the case that k D Q; then either F D Q or F D Q.

p
D/, where D ¤ 1 is

a fundamental discriminant. We write F .F / D F .1/ if F D Q; and F .F / D
F .D/ if F D Q.

p
D/; with F=Q a quadratic extension.

The family F .1/ of cyclic cubic extensions K=Q was studied in [F-K-K] and
the family F .�3/ has been considered by T. Dokchitser [DoT], where

F .�3/ D fK D Q.!im
1
3 / j m 2 Z; m not a cube; i D 0;˙1g

and where ! is a primitive cube root of unity.
The results of this paper are contained in the following theorem.

Theorem 1.1. Let E be an elliptic curve defined over Q; and let D D 1 or let
D ¤ 1 be a fundamental discriminant. Let ED denote the (quadratic) twist of E
by D: Then rE.K/ > rE.Q/ for an infinite number of K 2 F .D/ if any of the
following hold:

(a) Both rE.Q/ � 1 and rED.Q/ � 1:
(b) D > 0 and rank ZETr.K0/ � 1 for some K0 2 F .D/:

(c) D < 0 and rank ZETr.K0/ � 1 for some K0 2 F .D/: We must also assume
that the density hypothesis holds (and in the case that E has CM, we assume
also that Q.

p
D/ is distinct from F 0 D End.E/˝Z Q).

(d) (T. Dokchitser)D D �3:
(e) D < 0; and E is a semistable elliptic curve of conductorNE; prime to D; such

that sign.E;Q.
p
D// D �1 and L0.E=Q.

p
D/; 1/ ¤ 0:

Here ETr.K0/ is the group of points of E defined over K0 and with trace zero to
E.Q/; sign.E; F / is the sign of the functional equation of the L-function of E
viewed as an elliptic curve over the field F; and the density hypothesis is defined in
Section 3.

Conjecture 1. For every elliptic curve E=Q and for every family F .D/; there is
an infinite number of K 2 F .D/ for which rE.K/ > rE.Q/.
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Question 1. Let k be a global field. Then for every elliptic curve E=k and for
every family F .F / as above, is there an infinite number of K 2 F .F / for which
rE.K/ > rE.k/‹

When ŒF W Q� D 2; the corresponding analytic question concerns the vanishing
at s D 1 of the twist L.E; �; s/ of L.E; s/ by the character of the (unique)
irreducible two-dimensional Artin representation associated with M: The situation
for these L-functions differs from the cyclic case treated in [F-K-K] because
the signs of the functional equations of the L.E; �; s/ are (to a large degree)
independent of � in the families F .D/;D ¤ 1.

Acknowledgments This work was supported in part by a grant from NSERC.

2 Cubic families

Fix a fundamental discriminant D; i.e., either D D 1; or D is an integer which
is either square-free and � 1 .mod 4/ or 4 times a square-free integer � 2; 3

.mod 4/; and let F D Q.
p
D/:We consider the family F .D/ of all cubic extension

fieldsK=Q whose Galois closureM contains F; i.e., M D K � F D K.pD/:
Unless otherwise stated, we assume, for the remainder of the paper, that D is a

fundamental discriminant and that D ¤ 1; i.e., we assume that F D Q.
p
D/ is a

quadratic extension of the rational field Q.
Let M3.D/ be the composite of all cyclic cubic extensions of F: Then

M3.D/=Q is a Galois extension. Let G3.D/ denote the Galois group Gal.M3.D/=F /

and let � be an automorphism of M3.D/ of order 2 which lifts the non-trivial
element of Gal.F=Q/: Then G3.D/ splits under the natural action of � as a direct
sum

G3.D/ D G3.D/C ˚ G3.D/�:
Here G3.D/˙ D f� 2 G3.D/ j �.�/ D � �� ���1 D �˙g: If M3.D/

˙ is the subfield
of M3.D/ fixed by G3.D/�; then M3.D/

C is the composite with F of all cyclic
cubic extensions of Q and is the maximal abelian (over Q) subfield of M3.D/; and
M3.D/

� is the composite of all S3-extensions of Q having F as quadratic subfield.
It then follows that K 2 F .D/ if and only if its Galois closure M is contained in
M3.D/

�:
Suppose that K=Q is a finite extension and let Tr W E.K/ �! E.Q/ denote the

trace map. We denote by ETr.K/ the kernel of the trace map.
We record the following lemmas.

Lemma 2.1. let E be an elliptic curve defined over Q: The following are
equivalent:

(i) rE.K/ > rE.Q/I
(ii) E.K/ contains a trace zero point of infinite order;

(iii) #.ETr.K// D 1:
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Proof. Since E.K/ is a finitely generated abelian group, it follows from the exact
sequence

0 �! ETr.K/ �! E.K/ �! Tr.E.K// �! 0

that rE.K/ D rank Z Tr.E.K//C rank ZETr.K/: But since ŒE.Q/ W Tr.E.K//� <
1; it follows that rE.Q/ D rank Z Tr.E.K//; and hence that

rE.K/ D rE.Q/C rank ZETr.K/:

The statement of the lemma follows. �

In light of Lemma 2.1, the conjecture is equivalent to the statement that for every
elliptic curveE=Q; and for every fundamental discriminantD; #.ETr.K// D1 for
infinitely manyK 2 F .D/:

Suppose now that E is an elliptic curve defined over Q; and that K=Q is a non-
Galois cubic extension whose Galois closure is M: Let F be the subfield of M of
degree 2 such that M D K � F:
Lemma 2.2. The following are equivalent:

(i) rE.K/ > rE.Q/I
(ii) rE.M/ > rE.F /:

Proof. Let G D Gal.M=Q/ D h�; �i ' S3; where �2 D �3 D 1 and �� D
��1�: Let V be a Q-vector space which has an action by G ' S3: Then there is a
decomposition

V D V 0 ˚ V � ˚ V �;

where V 0; V �; and V � are the subspaces of V corresponding to the trivial
representation �0 of G, the non-trivial abelian representation � of G; and the
irreducible two-dimensional representation � of G; respectively. The subspaces
which are pointwise fixed by the groups G; h�i and h�i are V 0; V 0 ˚ V �; and
V 0 ˚ V � respectively. Applying this decomposition to V D E.M/˝Z Q; we see
that

rE.K/ > rE.Q/, dimQ.V
0 ˚ V �/ > dimQ.V

0/

, dimQ.V
0 ˚ V � ˚ V �/ > dimQ.V

0 ˚ V �/

, rE.M/ > rE.F /: �

3 Associated surfaces

Let a Weierstrass model for E=Q be given by

y2 D x3 C Ax C B

with A;B 2 Z:
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Now suppose that K is an extension of Q of degree 3; and that P D .˛; ˇ/ is a
point in E.K/: Since ŒK W Q� is odd, we see that ˇ 2 Q.˛/ and therefore Q.˛/ D
Q.P / D Q orK: In either case, there exist a; b; c 2 Q with ˇ D aC b˛C c˛2:We
note that the condition that c D 0 is equivalent to the statement that P lies on the
intersection of E with the line La;b with equation y D aC bx: This is equivalent to
the fact that ˛ is a root of the cubic polynomial

fa;b.x/ D x3 C Ax C B � .aC bx/2:
The discriminant of fa;b is a square in Q if and only if either a root of fa;b.x/

generates a cyclic cubic extension of K=Q; or fa;b.x/ has three rational roots. This
is the case D D 1; i.e., K 2 F .1/; and this was treated in [F-K-K].

Let SDE D SDE .d; a; b/ be the affine surface defined by the equation

D � d2 D discriminant.x3 C Ax C B � .aC bx/2/
D �27a4 � 4b3a3 C .54B � 30Ab2/a2 C .36Bb3 C 24A2b � 4Ab5/a
C A2b4 � 4A3 � 27B2 C 4Bb6 � 18ABb2:

Recall that for K 2 F .D/; M D K.
p
D/ denotes the Galois closure of K

and � 2 Gal.M=Q/ the non-trivial automorphism of order 2 of M fixing K: Also
F D Q.

p
D/ �M is the quadratic subfield ofM and let � be an automorphism of

order 3 which generates Gal.M=F /; so Gal.M=Q/ D h�; � j �2 D �3 D 1i ' S3;

and �� D ��1�:
Suppose that .d; a; b/ is a Q-rational point on SDE : If ˛ is a root of fa;b.x/; and

ˇ D a C b˛; then P D .˛; ˇ/ 2 E.Q.˛//: Since the discriminant of fa;b.x/ is
Dd2; it follows that either Q.˛/ D Q or F and fa;b.x/ has a rational root, and two
conjugate roots in F; or Q.˛/ D K is an extension of Q of degree 3; with K 2
F .D/ and P 2 ETr.K/; a point of trace zero. Thus .d; a; b/ 2 SDE .Q/ determines
either a triple of points fP;Q;Q�g with Q;Q� conjugate points in E.F / and P D
�.QCQ�/ 2 E.Q/; or a point P 2 ETr.K/ of trace zero.

Conversely, suppose that K=Q is a cubic extension with K 2 F .D/ and that
P 2 ETr.K/ is a point of trace zero. Then the points P;P � ; and P�2 lie on a
line L: Since the automorphism � fixes P and interchanges P� and P�2; the set
fP; P � ; P �2g is invariant under the action of Gal.M=Q/; and therefore the line
L D La;b is defined over Q: It follows that P D .˛; ˇ/ with ˇ D aC b˛ and with
a; b 2 Q: Similarly, if we have a triple of points fP;Q;Q�g with Q;Q� conjugate
points in E.F / and P D �.QCQ�/ 2 E.Q/; then this determines a rational line
La;b intersecting E in these three points.

Therefore we have the following result:

Proposition 3.1. The Q-rational points of SDE are in one-to-one correspondence
with rational lines intersecting E either in a triple of points fP;Q;Q�g withQ;Q�

conjugate points inE.F / and P D �.QCQ�/ 2 E.Q/; or in a point P 2 ETr.K/

of trace zero on a cubic field K 2 F .D/:
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Let ED denote the quadratic twist of E by D: If ED is given by the model
Dy2 D x3 C Ax C B; then the map � W ED.Q/ �! E.F / which takes a point
Q D .x; y/ to �.Q/ D .x;

p
Dy/ is an injective homomorphism of groups such

that � acts as �1 on the image �.ED.Q// � E.F /: In fact �.ED.Q// D fP 2
E.F /jP � D �P g:

Let � W SDE �! A
2 be the projection onto affine 2-space given by �..d; a; b// D

.a; b/ 2 A
2:We give conditions under which we can prove that �.SDE .Q// is Zariski

dense in A
2:

Suppose first that D > 0:

Proposition 3.2. Suppose that D > 0: Assume either that rank ZETr.K0/ � 1 for
some K0 2 F .D/ or that both rE.Q/ � 1 and rED.Q/ � 1: Then the image of
Q–rational points SDE .Q/ under � is Zariski dense in A

2: (In fact, �.SDE .Q// is
dense in the usual topology in an open subset of A2.R/:/

Proof. Suppose first that K0 2 F .D/ is a cubic field and that P0 2 ETr.K0/ is a
point of trace zero and of infinite order. Let M0 be the Galois closure of K0: Since
Tr.P0/ D 0; it follows that P D P0 and P 0 D P�

0 generate a subgroup of E.M0/

of rank 2 over Z which is stable under Gal.M0=Q/: Then for any n 2 Z; the line
joining nP; nP 0 also contains nP �2 and so is defined over the rational field. In the
case that both rE.Q/ � 1 and rED.Q/ � 1; let M0 D F D Q.

p
D/: If P0 and P1

are points of infinite order on E.Q/ and ED.Q/ respectively, let P D P0 C �.P1/
and P 0 D P0 � �.P1/ in E.M0/: Then P 0 D P � ; and P and P 0 again generate a
rank-two subgroup ofE.M0/ which is stable under Gal.M0=Q/: In this case for any
n 2 Z; the line joining nP; nP 0 contains �2nP0 2 E.Q/: Therefore it intersects E
in two conjugate points of E.F / and a point in E.Q/ and so is also defined over the
rational field.

The assumption that D > 0 ensures that M0 is a totally real field.
Let 	E � C be the period lattice associated to E and let

C=	E �! E.C/

z.mod	E/ 7�! P D .}.z/; } 0.z//

be the analytic parametrization of E:
Let O.D/ denote the interior of the set �.SDE .R//;

O.D/ D f.a; b/ 2 A
2.R/ j discriminant.fa;b.x// > 0g:

Then O.D/ consists of those .a; b/ 2 A
2.R/ such that the line La;b intersects E

in three distinct real points, and is a non-empty open subset of R2: Let O.D/C �
O.D/ be the set of points corresponding to lines La;b intersecting E.R/ at three
(distinct) real points P1; P2; and P3; on the connected component of the identity.
Then O.D/C is open in O.D/:

Let z and z0 2 R be real lifts of P and P 0 with respect to the analytic
parametrization, and let !1 be a (non-zero) real period of E. Since P and P 0 are
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independent over Z, it follows that z; z0; and !1 are Q-linearly independent in R:

Kronecker’s theorem then implies that given any x; y 2 R and 
 > 0; there are
integers m; n1; n2 2 Z such that jx � mz � n1!1j < 
 and jy � mz0 � n2!1j < 


simultaneously (see Hardy & Wright Theorem 442, [H-W]). It follows that the
multiples of .z; z0/ .mod 	2

E/ are dense in R
2=.Z!1/

2: Therefore given any two
points Q1;Q2 in the connected component of the identity of E.R/ there is an
integer m 2 Z such that mP and mP 0 are arbitrarily close to Q1 and Q2; and
so the line joining Q1 and Q2 can be approximated arbitrarily closely by the line
joining mP and mP 0 which is defined over Q by the above. It now follows that
�.SDE .Q// is dense (in the Euclidean topology) in O.D/Cand is therefore Zariski
dense in A

2: �

Suppose now that D < 0: In this case the above proof fails because we cannot
apply Kronecker’s theorem. We appeal to the following:

Definition 3.1. (Density hypothesis.) LetE=Q be an elliptic curve defined over the
rational field Q: Suppose that P is an algebraic point on E.C/ such that no integer
multiple ofmP is real .mP D mP/ or purely imaginary (i.e.,mP D �mP ), and if
E has CM, then P is not the division of a real or a purely imaginary algebraic point
by any (complex) endomorphism. Then the cyclic subgroup of E.C/ generated by
P is dense (in the usual topology) in the complex points E.C/ of E: The density
hypothesis can be restated more compactly as follows: Suppose P 2 E.Q/ is such
that �.P / … E˙.C/ for any 0 ¤ � 2 End.E/: Then the cyclic subgroup generated
by P is dense in E.C/: Here EC.C/ and E�.C/ are the subgroups of E.C/ on
which complex conjugation acts byC1 and �1 respectively.

In this regard, Waldschmidt had already introduced the “density property” for
commutative algbraic groups in [Wa1] and [Wa2]. He has shown for elliptic curves
E defined over Q, which are not isogenous to their complex conjugates, that a
subgroup of rank � 3 of E.Q/ is dense in E.C/: He has also pointed out that the
density hypothesis above follows from the “elliptico-toric” conjecture of Cristiana
Bertolin [Be].

Proposition 3.3. Suppose that D < 0: Assume either that rank ZETr.K0/ � 1 for
someK0 2 F .D/ and that the density hypothesis holds (and in the case that E has
CM, we assume also that Q.

p
D/ is distinct from F 0 D End.E/˝ZQ), or that both

rE.Q/ � 1 and rED.Q/ � 1: Then the image of Q-rational points SDE .Q/ under �
is Zariski dense in A

2: (In fact, �.SDE .Q// is dense in the usual topology in an open
subset of A2.R/:/

Proof. Suppose that P0 2 ETr.K0/ is a point of infinite order for some cubic field
K0 2 F .D/: We may suppose that P0 is a real point and that its conjugates P�

0

and P�2

0 are complex conjugate points. Then we show that P D P�
0 satisfies the

conditions of the density hypothesis. We note that the subgroup ofE.M0/ generated
by fP0; P �

0 ; P
�2

0 g is a group of Z-rank 2 with the relation P0CP�
0 CP�2

0 D 0: If a
multiple of P�

0 were real or purely imaginary, there would be a second independent
relation of the form mP�

0 D ˙mP�2

0 : Since this would imply that the group had
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Z-rank at most 1; it follows that mP0 … E˙.M/ for any 0 ¤ m 2 Z: Furthermore,
if E has CM by the quadratic field F 0 ¤ F; let M 0 D M0 � F 0; so that

Gal.M 0=Q/ ' Gal.F 0=Q/ � Gal.M0=Q/ D h� 0i � h�; �i:
Then � fixes K0F

0 and complex conjugation on M 0 is given by �� 0: Now P0 2
E.K0/ is a real point and its conjugates P�

0 and P�2

0 are complex conjugate points
in E.M 0/: Suppose that �.P0/ 2 E˙.M 0/ for some endomorphism � 2 End.E/ '
OF 0 : Then˙�.P �

0 / D �.P �
0 / D �.P �2

0 /; so that applying �2; we see that �.P0/ D
˙�.P �

0 /: Since �.P0/C �.P �
0 /C �.P �2

0 / D 0 we find that

.�˙ �/.P �
0 /C �.P �2

0 / D 0:

Applying � and adding, we see that

.2�˙ �/.P �
0 C P�2

0 / D 0:

But since P�
0 C P�2

0 D �P0 has infinite order, it follows that 2� ˙ � D 0; and
therefore � D 0: Hence the density hypothesis implies that the multiples of P�

0 are
dense in E.C/:

In the case that both rE.Q/ � 1 and rED.Q/ � 1; then E.Q/ is dense in the real
points E and �.ED.Q// is dense in the purely imaginary points of E and so their
sum E.F / D E.Q/C �.ED.Q// is dense in E.C/:

As before, let .a; b/ D �..d; a; b// 2 A
2.R/ for some .d; a; b/ 2 �.SDE .Q//:

If La;b is the corresponding line, then La;b intersects E in one real point (P1, say)
and a pair of conjugate complex points (Q1 and Q1/: Then the density hypothesis
assumed above implies that there is a pointQ either inE.M0/ or inE.F / arbitrarily
close to Q1; and so Q� is close to Q1 and hence the line L0 joining Q;Q� and
�.Q C Q�/ is close to La;b: But since the set fQ;Q�;�.Q C Q�/g is stable
under the action of Gal.M0=Q/ or Gal.F=Q/; the line L0 is defined over Q and
so �.SDE .Q// is dense (in the Euclidean topology) in O.D/ and is therefore Zariski
dense in A

2: �

We can now prove Conjecture 1 under the assumptions of Propositions 3.2
and 3.3.

For fixed b 2 Q, the fibre over b, XE;b D XE;b.d; a/ is a curve of genus at
most 1: Our strategy is to try to find b 2 Q such that XE;b is either an elliptic curve
of positive rank or a rational curve with infinitely many Q-rational points. We then
show that for almost all such b, only a finite number of rational points on any XE;b
can correspond to a given cubic extensionK 2 F .D/; so in the event thatXE;b.Q/
is infinite, we obtain the conclusion of Conjecture 1 that there is an infinite number
of fieldsK 2 F.D/ for which rE.K/ > rE.Q/:

Recall that a Q-rational point Q D .d; a; b/ 2 SDE .Q/ corresponds to the three
roots ˛; ˛1; ˛2 (distinct if d ¤ 0) of the polynomial fa;b.x/ D x3 C Ax C B �
.a C bx/2: In addition there are two possibilities: either one of the roots is rational
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and the other pair are conjugate elements in Q.
p
D/; or Q.˛/;Q.˛1/; and Q.˛2/

are conjugate cubic fields in F .D/:

The following results appear in Section 3 of [F-K-K].

Proposition 3.4. Fix a field K for which Faltings’ theorem holds. Then for any
fixed b ¤ 0; there are only finitely many a 2 Q such that the polynomial fa;b.x/ D
x3 C Ax C B � .aC bx/2 has three distinct roots in K .

Proof. Fix b. Suppose that

fa;b.x/ D x3 C Ax C B � .aC bx/2 D .x � ˛1/.x � ˛2/.x � ˛3/

with ˛1; ˛2; and ˛3 2 K: Hence ˛1; ˛2; and ˛3 satisfy the following equations:

x1 C x2 C x3 D b2I
x1x2 C x2x3 C x3x1 D A � 2abI

x1x2x3 D a2 � B:

This is a system of three equations in the four variables x1; x2; x3; and a which
defines a curve in (say) x1 and x2: A (Maple) calculation shows this to be a curve
Cb
0 D Cb

0.x1; x2/ of degree 4 in both x1 and x2 for which an affine equation is
given by

Cb
0 W 0 D� x41 C .�2x2 C 2b2/x31 C .�3x22 � b4 � 2A/x21

C .�2x2AC 2x2b4 C 2b2A� 2x32/x1
�A2 � 2x22A� x42 C 2x2b2A� x22b4 C 2x32b2 C 4Bb2:

For generic values of b; the curve Cb 0 has genus 3 . The set of b for which
the genus can be less than three is finite and is a subset of the set of roots of the
polynomial (in b)

�b4.27B2 C 4A3/.�27A2 C 18b4AC 108Bb2 C b8/

(the ramification locus of Cb 0/: The root b D 0 gives rise to C00 W 0 D �.x21 C
x1x2 C x22 C A/2: The roots of �27A2 C 18b4A C 108Bb2 C b8 are distinct for
all A and B with 27B2 C 4A3 ¤ 0; and correspond to the slopes of the tangents
to E at the non-trivial 3-torsion points of E and result in curves Cb 0 of genus 2: It
follows that for all b ¤ 0; Cb

0 has genus at least 2; and so by Faltings’ theorem
there is only a finite number of K-rational points .x1; x2/ 2 Cb 0.K/: Therefore, for
b ¤ 0; the number of a such that fa;b.x/ has three (distinct if d ¤ 0) roots in K
is finite. �

Proposition 3.5. Fix b0 2 Q; b0 ¤ 0; and letK=Q be a fixed finite extension. Then
there is only a finite number of pointsQ D .d; a; b0/ 2 SDE .Q/ for which the points
in E.Q/ corresponding to Q (by Proposition 3.1) are defined overK:

Proof. This follows immediately from Proposition 3.4.
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We now prove the following:

Theorem 3.6. Assume either that rank ZETr.K0/ � 1 for some K0 2 F .D/ or
that both rE.Q/ � 1 and rED.Q/ � 1: IfD < 0; assume also the density hypothesis
in the first case (and in the case that E has CM, we assume also that F is distinct
from F 0 D End.E/ ˝Z Q). Then rank ZE.K/ > rank ZE.Q/ for infinitely many
cubic fieldsK 2 F .D/:

Proof. Let  W SDE �! A
1 denote the map takingQ D .d; a; b/ 2 SDE to  .Q/ D

b with fibres, the curves XE;b; generically of genus one. The desingularization
bSDE of SDE is obtained by blowing up (twice) the nine rational double points of
SDE , corresponding to nine 3-torsion points of E: Let J be the associated Jacobian
fibration with corresponding map  0 W J �! A

1: Then for generic b 2 Q;  0�1.b/
is an elliptic curve defined over Q which is isomorphic over Q to XE;b if XE;b
has a Q-rational point. There is a degree-four map defined over Q (see [F-K-K],
Lemma 5.5) from f W bSDE �! J which is a dominant map. By Propositions 3.2
and 3.3, SDE .Q/ is Zariski dense in SDE ; so f .bSDE .Q// is Zariski dense in J since f
is dominant. By Mazur’s theorem [Ma] on the boundedness of the torsion over Q;
the set of Q-rational points of J which are torsion points on the fibres is a Zariski
closed subset of J: Since f .bSDE .Q// is Zariski dense in J , there are infinitely many
Q 2 bSDE .Q/ such that f .Q/ is a non-torsion point in infinitely many fibres in J: For
such a pointQ,  �1.Q/ is isomorphic over Q to the elliptic curve  0�1.Q/, which
contains a Q-rational point of infinite order. Thus,  �1.Q/ also contains infinitely
many Q-rational points. It follows that for infinitely many b 2 Q; the curves XE;b;
have an infinite number of rational points. Proposition 3.4 then implies that there is
an infinite number of fields K 2 F.D/ for which rE.K/ > rE.Q/. �

Remark 3.1. In [F-K-K] we use an alternative argument proving the Zariski
density of Propositions 3.2 and 3.3 and we get the same result without appealing
to the density hypothesis.

4 Rational three torsion

If E has a 3-torsion point rational over Q; then E has a Weierstrass equation of the
form E W y2 C 3uxy C ty D x3 with u; v 2 Q (see Knapp, p. 146, [Kn]). In this
case, the surface SDE can be described by the affine equation

Dd2 D discriminant.x3 � .aC bx/2 � 3u.aC bx/x � t.aC bx//:

Then SDE D SDE .d; a; b/ has a degenerate fiber over b D �3u which is the rational
conic XE;�3u.d; a/;

Dd2 D �27.aC t/2.a2 C 4u3aC 4tu3/;
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and which becomes

Dz2 C 3w2 D 12u6 � 12tu3

in the variables z D d=3.aC t/ and w D aC 2u3:
This conic has a rational point if and only if 3.u4�ut/ is a norm fromQ.

p�3D/:
If .w0; z0/ is a solution to this norm equation, we obtain a parametrization given by

a D a.r/ D w � 2u3 D .Dr2w0 � 2Drz0 � 3w0 � 2u3Dr2 � 6u3/=.Dr2 C 3/

and
d D �3.Dr2z0 C 6w0r � 3z0/.a.r/C t/=.3CDr2/:

Substituting this value a D a.r/ into the original elliptic curve gives the family
of cubic equations

.aC bx/2 C 3ux.aC bx/C t.a C bx/ D x3;

or
x3 C 3u.t C a/x � a.aC t/ D 0;

whose root ˛ D ˛.r/ is the x-coordinate of the point P D .˛; a C b˛/ 2
E.Q.˛.r///: These expressions provide points of infinite order on the parametrized
family of cubic fields Kr D Q.˛.r// 2 F .D/ for rational values of r:

In the caseD D �3 the norm condition is trivially satisfied and we obtain points
of infinite order on a parametrized family of fields Kr of the form Kr D Q.m

1
3 /;

where

m D 2.r C 1/.r � 1/2
t r � t C 2u3

and where

x D �2.r � 1 � um
1
3 /

m
2
3

and

y D 4u3 � t.r � 1/2
r2 � 1 � 3ux:

Having such parametrized families allows us to give lower bounds for the number
of K 2 F .D/ (counted by increasing discriminant) over which E acquires points.
See [F-K-K] �7 for such results for certain elliptic curves E=Q and for the family
F .1/:

5 Theorems of T. Dokchitser and V. Dokchitser

In this section we take note of some work of T. Dokchitser [DoT] and V. Dokchitser
[DoV] which tends to support Conjecture 1. In fact, the result of T. Dokchitser
provides a proof of Conjecture 1 forD D �3.
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Let E be an elliptic curve defined over Q and suppose that L=Q is a Galois
extension. Let � be an Artin representation of Gal.L=K/ D G; and let �� denote
the contragredient representation. V. Dokchitser [DoV] has computed the global root
number of L.E; s; �/ (the twist of the L-function L.E=Q; s/ by �) when � ' ��
and no prime of additive reduction for E is bad for �.

He shows (Corollary 2, [DoV]) that if � is the irreducible 2-dimensional Artin
representation associated toK 2 F.D/;D ¤ 1; and ifE is an elliptic curve defined
over Q whose conductorNE is coprime to D; then

w�;E D sign.D/

�
D

NE

�

;

where w�;E is the sign of the functional equation for L.E=Q; s; �/ and where
� �
�
�

is
the Jacobi symbol.

This implies that for an elliptic curveE=Q of conductorNE; ifD ¤ 1 is coprime
to NE; there are infinitely manyK 2 F.D/ for which w�;E D �1, and so the Birch
& Swinnerton-Dyer conjecture would then predict that for such fields K we have
rE.K/ > rE.Q/:

In particular, he shows that for E D E19A (the elliptic curve over Q of conductor
19 labelled 19A in Cremona [Cr]), L.E=Q; s; �m/ D 0 for every m prime to 19;
where �m is the irreducible 2-dimensional Artin representation associated to the
field Q.m

1
3 /: Since rE19.Q/ D 0; the Birch & Swinnerton-Dyer conjecture predicts

that rE19A.Q.m
1
3 // � 1 for all integersm:

T. Dokchitser [DoT] proves the following theorem:

Theorem 5.1. (Dokchitser, T.) For any number field k and elliptic curve E defined
over k there is an infinite number of cubic extensions K D k.˛

1
3 /=k; ˛ 2 k; such

that rE.K/ > rE.k/:

This provides a proof of Conjecture 1 forD D �3:

6 Heegner points

In this section we follow a suggestion of Darmon to use Heegner points to
verify Conjecture 1 in certain cases. Fix an elliptic curve E=Q of conductor NE
and fix a negative fundamental discriminant D < 0 with D and NE relatively
prime. Then F D Q.

p
D/ is an imaginary quadratic field, and we denote by

OF and Oc the maximal order of F and its suborder of conductor c; c 2 Z

respectively. We use the notation of Darmon [Da], and let sign.E; F / be the sign
of the functional equation satisfied by L.E=F; s/: Then we use the following ([Da]
Theorem 4.18):
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Theorem 6.1. Let E be a semistable elliptic curve of conductor NE; and F an
imaginary quadratic field of discriminant D prime to NE: If sign.E; F / D �1;
then there is a non-trivial Heegner system fPng attached to .E; F /:

We will need the following lemma, which is proved in [K-S], Lemma 2.1.
Let L be a number field, p a finite prime of L, Ip the group of fractional ideals

prime to p, Pp the group of principal fractional ideals in Ip, Pp;1 the group of
principal fractional ideals in Pp generated by elements congruent to 1 mod p. Then
CL D Ip=Pp is the class group of L, CL;p D Ip=Pp;1 is the ray class group with
conductor p, and P p D Pp=Pp;1 is the principal ray with conductor p. We have a
short exact sequence

1 �! P p �! CL;p �! CL �! 1: (1)

Let q be a prime, and consider the exact sequence of q-primary components

1 �! P
.q/

p �! C.q/L;p �! C.q/L �! 1: (2)

We are interested in primes p for which the sequence (2) splits. Let a1; : : : ; as 2
Ip be such that their images ai in C.q/L form a basis of the finite abelian q-group C.q/L .

Let qmi be the order of ai , i D 1; : : : ; s. Then a
qmi

i D .ai / 2 Pp, i D 1; : : : ; s.
Let L1 D L.qm; qmi

p
ai j1 	 i 	 s/ with qm a primitive qmth root of unity, and

m D maxf1;m1; : : : ; msg.
Lemma 6.2. (Splitting lemma) In order that the sequence (2) split, it is sufficient
that p split completely in L1.

Let E be a curve satisfying the hypotheses of Theorem 6.1, and let fPng be the
(non-trivial) Heegner system attached to .E; F /:

Theorem 6.3. Let E be an elliptic curve of conductor NE; and F an imaginary
quadratic field of discriminant D prime to NE: If there is a non-trivial Heegner
system fPng attached to .E; F /; and if L0.E=F; 1/ ¤ 0; then there is an infinite
number of cubic fieldsK 2 F .D/ for which rE.K/ > rE.Q/:

Proof. Let fPng be a non-trivial Heegner system attached to .E; F /; soPn 2 E.Hn/

whereHn is the ring class field over F of conductor n (n prime to NE:) The Galois
groupGn D Gal.Hn=F / is described by the exact sequence

(3) 0 �! .OF =nOF /
�

.Z=nZ/�.OF /�
�! Gn �! CF �! 0;

where CF is the ideal class group of the ring of integers OF of F: Taking q D 3 and
L D F; the splitting lemma shows that there is set S of positive density of primes
` 2 Z satisfying the following properties:

` � 1 .mod 3/I
the 3-primary part of the exact sequence (3) splits for n D `I
` �OF D l � l splits into principal ideals in OF :
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In addition, since the set of primes p 2 Z for which ap.E/ D 2 has density 0
(Serre [Se]), we may also suppose that the primes ` 2 S have a` ¤ 2: For such
primes `; H` contains a subfieldM` which is a cyclic cubic extension of F , disjoint
from the Hilbert class field H1; and Galois over Q with Gal.M`=Q/ ' S3: Then
from the properties of Heegner systems (cf. Darmon, Proposition 3.10, [Da]) we
have

TraceH`=H1.P`/ D .a` � �l � ��1l /P1 D .a` � 2/P1;
since l is a principal ideal in OF : Therefore

TraceH`=F .P`/ D .a` � 2/TraceH1=F .P1/:

If we set Q` D TraceH`=M`
.P`/, then TraceM`=F .Q`/ D TraceH1=F .P1/: Since we

assumed thatL0.E=F; 1/ ¤ 0; the Gross–Zagier theorem implies that TraceH1=F .P1/
has infinite order. Hence Q` 2 E.M`/ is also a point of infinite order. Finally, if
we had rE.M`/ D rE.F /; then Gal.M`=F / would act trivially on E.M`/ modulo
torsion, and we would have that Q` is the 3-division of a point of E.F / modulo
torsion. Since the torsion in a cubic extension of F is bounded, this would account
for only a finite number of fields. But theM` are distinct for different primes `; so we
see that there must be infinitely many fields M`=F for which rE.M`/ > rE.F /: By
Lemma 2.1, we conclude that there is an infinite number of cubic fieldsK` 2 F .D/

for which rE.K`/ > rE.Q/: �

Corollary 6.4. Let E be a semistable elliptic curve of conductor NE; and F an
imaginary quadratic field of discriminantD prime to NE: If sign.E; F / D �1; and
L0.E=F; 1/ ¤ 0; then there is an infinite number of cubic fields K 2 F .D/ for
which rE.K/ > rE.Q/:
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On effective equidistribution of expanding
translates of certain orbits in the space of lattices

D. Y. Kleinbock and G. A. Margulis

In memory of Serge Lang

Abstract We prove an effective version of a result obtained earlier by Kleinbock
and Weiss [KW] on equidistribution of expanding translates of orbits of horospher-
ical subgroups in the space of lattices.

Key words homogeneous flows • exponential mixing • equidistribution

Mathematics Subject classification (2010): 37A17; 37A25

1 Introduction

The motivation for this work is a result obtained recently in [KW]. Fix m; n 2 N,
set k D mC n and let

G D SLk.R/; � D SLk.Z/; uY D
�
Im Y

0 In

�

; H D fuY jY 2Mm;ng ; (1.1)

where Mm;n stands for the space of m � n matrices with real entries. Then H is a
unipotent abelian subgroup of G which is expanding horospherical with respect to

gt D diag.et=m; : : : ; et=m; e�t=n; : : : ; et=n/; t > 0: (1.2)
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The latter, by definition, means that the Lie algebra of H is the span of eigenspaces
of Ad.gt /, t > 0, with eigenvalues bigger than 1 in absolute value.

The space X
defD G=� can be identified with the space of unimodular lattices in

R
k , on which G acts by left translations. Denote by � the natural projection G !

X; g 7! g� , and for any z 2 X let �z W G ! X be defined by �z.g/ D gz. Also
denote by N� theG-invariant probability measure onX and by� the Haar measure on
G such that ��� D N�. Fix a Haar measure � on H . Note that the H -orbit foliation
is unstable with respect to the action of gt , t > 0. It is well known that for any Borel
probability measure � 0 on H absolutely continuous with respect to � and for any
z 2 X , gt -translates of .�z/��0 become equidistributed, that is, weak-� converge
to N� as t ! 1. An effective version of this statement was obtained in [KM1,
Proposition 2.4.8]. In order to state that result, it will be convenient to introduce
the following notation: for f 2 L1.H; �/, a bounded continuous function  on X ,
z 2 X and g 2 G define

If; .g; z/
defD
Z

H

f .h/ .gthz/ d�.h/:

In other words, If; .g; z/ is the result of evaluation of the g-translate of .�z/��0 at ,
where d�0 D f d�. Then equidistribution of gt -translates of .�z/��0 amounts to the
convergence of If; .gt ; z/ to

R

H
f � R

X
 as t !1 (unless it causes confusion, we

will omit measures in the integration notation for the sake of brevity).
The following is a slightly simplified form of [KM1, Proposition 2.4.8]:

Theorem 1.1. There exists � > 0 such that for any f 2 C1comp.H/,  2 C1comp.X/

and for any compact subset L of X there exists a constant C D C.f; ;L/ such
that for all z 2 L and any t � 0

ˇ
ˇ
ˇ
ˇ
If; .gt ; z/�

Z

H

f

Z

X

 

ˇ
ˇ
ˇ
ˇ
� Ce��t : (1.3)

The proof used the exponential decay of correlations of theG-action onX (called
“condition (EM)” in [KM1]). See Section 2 for more detail.

Motivated by some questions in simultaneous Diophantine approximation, the
first named author and Barak Weiss considered translates of H -orbits on X by
diagonal elements of G other than gt . Specifically, following [KW], let us denote
by aC the set of k-tuples t D .t1; : : : ; tk/ 2 R

k such that

t1; : : : ; tk > 0 and
mX

iD1
ti D

nX

jD1
tmCj ;

and for t 2 aC define

gt
defD diag

�

et1 ; : : : ; etm; e�tmC1 ; : : : ; e�tk
� 2 G (1.4)
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and

btc defD min
iD1;:::;k ti

(the latter, roughly speaking, measures the distance between t and the walls of the
cone aC � R

k).
The theorem below is a reformulation of [KW, Theorem 2.2].

Theorem 1.2. For any f 2 L1.H; �/, any continuous compactly supported  W
X ! R, any compact subset L of X and any " > 0 there exists T > 0 such that

ˇ
ˇ
ˇ
ˇ
If; .gt; z/ �

Z

H

f

Z

X

 

ˇ
ˇ
ˇ
ˇ
< "

for all z 2 L and t 2 aC; btc � T .

That is, gt-translates ofH -orbits become equidistributed as btc ! 1 uniformly
in z when the latter is restricted to compact subsets of X . The proof relies on
S. G. Dani’s classification of measures invariant under horospherical subgroups and
the so-called linearization method. The purpose of the present paper is to prove an
effective version of the above theorem:

Theorem 1.3. There exists Q� > 0 such that for any f 2 C1comp.H/,  2 C1comp.X/

and for any compact L � X there exists QC D QC.f; ;L/ such that for all z 2 L
and all t 2 aC

ˇ
ˇ
ˇ
ˇ
If; .gt; z/ �

Z

H

f

Z

X

 

ˇ
ˇ
ˇ
ˇ
� QCe�Q�btc:

Note that the above statement follows from Theorem 1.1 when k D 2, that is,
G D SL2.R/, but is new for k > 2. The proof uses the “exponential mixing”
approach of [KM1, KM3] together with effective nondivergence estimates obtained
in [KM2]. We will describe these two parts Sections 2 and 3 respectively, and then
proceed with the proof of Theorem 1.3 in Section 4. We remark that the method
of proof readily extends to the set-up more general than (1.1). Note also that, as
observed by N. Shah in [S, Remark 1.0.2], Theorem 1.3 can be used to strengthen
one of the main results of [KW], that is, [KW, Theorem 1.4], which constitutes a
diophantine application of Theorem 1.2.

Acknowledgements The authors are grateful to the Fields Institute for Research in Mathematical
Sciences (Toronto, Canada), where this project has commenced, and to the referee for useful
remarks. The work of the first named author was supported in part by NSF Grants DMS-0239463
and DMS-0801064, and that of the second author by NSF Grants DMS-0244406 and DMS-
0801195.
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2 Exponential mixing and gt-translates

Notation: We will fix a right-invariant metric dist on G, giving rise to the
corresponding metric on X . B.x; r/ will stand for an open ball of radius r centered
at x. If a metric space is G or its subgroups, we will abbreviate B.e; r/ to
B.r/. When necessary, we will use subscripts denoting the ambient metric spaces.
k � k` and k � kC` will stand for the .2; `/-Sobolev and C l norms respectively.
We define

W 2;1.X/ D f 2 C1.X/ W k k` <18 ` 2 NgI

clearlyC1comp.X/ � W 2;1.X/. In fact,W 2;1.X/ coincides with the set of functions
 2 C1.X/ such that D 2 L2.X/ for any D from the universal enveloping
algebra of Lie.G/. We let h�; �i stand for the inner product in L2.X/. We also denote
by k kLip the Lipschitz constant of a function  on X ,

k kLip
defD sup

x;y2X; x¤y
j .x/ �  .y/j

dist.x; y/
;

and let Lip.X/
defD f W k kLip <1g.

The following property of the G-action on X is deduced in [KM3] from the
spectral gap on L2.X/:

Theorem 2.1 (KM3, Corollary 3.5). There exist � > 0 and ` 2 N such that for any
two functions '; 2 W 2;1.X/ and for any t � 0 one has

ˇ
ˇ
ˇ
ˇ
hg'; i �

Z

X

'

Z

X

 

ˇ
ˇ
ˇ
ˇ
	 k'k`k k` � e�� dist.g;e/:

Here and hereafter the implicit constants in	 depend only on the dimensions of
the corresponding spaces and the choices of the metric. Taking g D gt as in (1.2),
it follows that

ˇ
ˇ
ˇ
ˇ
hgt';  i �

Z

X

'

Z

X

 

ˇ
ˇ
ˇ
ˇ
	 k'k`k k` � e��t : (2.1)

An estimate analogous to (2.1) was used in [KM1] to derive Theorem 1.1. In
this section we apply Theorem 2.1 to prove a statement similar to Theorem 1.1,
providing some information as to howC in (1.3) depends on f andL. The argument
follows the lines of the proof in [KM1]; in fact, the statement below is basically
an intermediate step in the proof of [KM1, Proposition 2.4.8]. However we have
decided to include details for the sake of making this paper self-contained.
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To pass from hgt';  i to If; .gt ; z/, we need to thicken f into a suitable function
' on X . To explain this process, we need to introduce some more notation. Let

H� D
� �

Im 0

Y In

�ˇ
ˇ
ˇ
ˇ
Y 2Mn;m

�

and

H0 D
� �

A 0

0 B

�ˇ
ˇ
ˇ
ˇ
A 2 GLm.R/; B 2 GLn.R/; det.A/ det.B/ D 1

�

:

The product mapH� �H0�H ! G is a local diffeomorphism; we will choose r0
so that the inverse of this map is well defined onBG.r0/. Note thatH� is expanding
horospherical with respect to g�t , t > 0, while H0 is centralized by fgt g. Thus, the

inner automorphismˆt of G given by ˆt.g/
defD gth.gt /

�1 is non-expanding on the
group

QH defD H�H0 D
��
A 0

Y B

��

I

in fact, one has

8 r > 0 8 t > 0 ˆt
�

B QH.r/
� � B QH.r/: (2.2)

Let us choose Haar measures ��, �0 on H�, H0 respectively, normalized so
that � is locally almost the product of ��, �0 and �. By the latter, in view of
[B, Ch. VII, �9, Proposition 13], we mean that � can be expressed via ��, �0 and �
in the following way: for any ' 2 L1.G/
Z

H�H0H

'.g/ d�.g/ D
Z

H��H0�H
'.h�h0h/�.h0/ d��.h�/ d�0.h0/ d�.h/;

(2.3)

where� is the modular function of (the non-unimodular group) QH .
The “thickening” will be based on the following properties of the Sobolev norm,

cf. [KM1, Lemma 2.4.7]:

Lemma 2.2. (a) For any r > 0, there exists a nonnegative function 	 2
C1comp.R

N / such that supp.	/ is inside B.r/,
R

RN
	 D 1, and k	k` 	

r�.`CN=2/.
(b) Given 	1 2 C1comp.R

N /, 	2 2 C1comp.R
N /, define 	 2 C1comp.R

N / by 	.x/ D
	1.x/	2.x/. Then k	k` 	 k	1k`k	2kC` .

(c) Given 	1 2 C1comp.R
N1/, 	2 2 C1comp.R

N2/, define 	 2 C1comp.R
N1CN2/ by

	.x1; x2/ D 	1.x1/	2.x2/. Then k	k` 	 k	1k`k	2k`.
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We will apply the above lemma to functions supported on small enough balls
centered at identity elements in G, H , H0, H�.

Theorem 2.3. Let f 2 C1comp.H/, 0 < r < r0=2 and z 2 X be such that

(i) suppf � BH.r/, and
(ii) �z is injective on BG.2r/.

Then for any  2 W 2;1.X/\ Lip.X/ with
R

X
 D 0 there exists E D E. / such

that for any t � 0 one has

ˇ
ˇIf; .gt ; z/

ˇ
ˇ � E

�

r

Z

H

jf j C r�.2`CN=2/kf k`e��t
�

; (2.4)

where � and ` are as in Theorem 2.1 and N D m2 CmnC n2 � 1 D dim QH .

Proof. Using Lemma 2.2, one can choose nonnegative functions 	� 2 C1comp.H
�/,

	0 2 C1comp.H
0/ with

Z

H�
	� D

Z

H0

	0 D 1 (2.5)

such that

supp.	�/ � supp.	0/ � B QH.r/; (2.6)

and at the same time

k Q	k` 	 r.2`CN=2/; (2.7)

where Q	 2 C1comp.
QH/ is defined by

Q	.h�h0/ defD 	�.h�/	0.h0/�.h0/�1:

Also define ' 2 C1comp.X/ by '.h�h0hz/ D Q	.h�h0/f .h/; the definition makes
sense because of (2.6) and assumptions (i), (ii) of the theorem. Then If; .gt ; z/ can
be reasonably well approximated by hgt';  i D h'; g�t i:
ˇ
ˇIf; .gt ; z/ � h'; g�t i

ˇ
ˇ

D
(2.3)

ˇ
ˇ
ˇ
ˇ

Z

H

f .h/ .gt hx/ d�.h/ �
Z

G

Q	.h�h0/f .h/ .gth�h0hx/ d�.h�h0h/
ˇ
ˇ
ˇ
ˇ

D
(2.5)

ˇ
ˇ
ˇ
ˇ

Z

G

	�.h�/	0.h0/f .h/
�

 .gthx/ �  
�

ˆt .h
�h0/gthx

�	

�.h0/�1 d�.h�h0h/

ˇ
ˇ
ˇ
ˇ

�
(2.2), (2.6)

sup
g2B QH .r/; y2X

j .gy/�  .y/j
Z

G

ˇ
ˇ	�.h�/	0.h0/f .h/�.h0/�1

ˇ
ˇ d�.h�h0h/

�
(2.3)

k kLip � r �
Z

H

jf j:
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On the other hand, in view of Lemma 2.2 and �z being a local isometry,

k'k` D k Q	 � f k` 	 k Q	k`kf k` 	
.2:7/

r�.2`CN=2/kf k`;

hence by (2.1)

jhgt';  ij 	 r.2`CN=2/kf k`k k`e��t ;

finishing the proof. ut
Remark 2.4. In order to derive Theorem 1.1 from Theorem 2.3 it suffices to
choose r D e�ˇt for some suitable ˇ. The same trick will help us in the proof
of Theorem 1.3. Note that t needs to be taken large enough so that condition (ii) of
Theorem 2.3 is satisfied for all z 2 L. The latter is possible because, in view of the
compactness of L and discreteness of � in G, the value

r.L/
defD inf

z2L supfr > 0 j �z W G ! X is injective on B.r/g

is positive; we will call it the injectivity radius of L.

Remark 2.5. It is worthwhile to point out that H being the expanding horospheri-
cal subgroup relative to gt , t > 0, was crucially important for the proof. When gt is
replaced with gt where t is an arbitrary element of aC, one can still talk about ˆt,
the inner automorphism of H given by

ˆt.h/
defD gth.gt/

�1: (2.8)

It is expanding on H , since the latter is contained in the expanding horospherical
subgroup relative to gt; however it is not non-expanding on QH in the sense of (2.2);
thus there is no guarantee that If; .gt ; z/ is close to h'; g�t i for ' constructed as
in the above proof. We bypass this difficulty by means of an additional step, based
on the nondivergence phenomenon, to be described in the next section.

3 Quantitative nondivergence

For any " > 0 consider

K"
defD �

�˚

g 2 G ˇ
ˇ kgvk � " 8 v 2 Z

k X f0g
� :

In other words, K" consists of lattices in R
k with no nonzero vector of length less

than ". These sets are compact by virtue of Mahler’s Compactness Criterion (see
[R, Corollary 10.9] or [BM]). Here k � k can be any norm on R

k which we will from
now on take to be the standard Euclidean norm.
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It was proved in [KM2], refining previous work on nondivergence of unipotent
flows [M, D], that certain polynomial maps from balls in Euclidean spaces to X
cannot take values outside of K" on a set of big measure. Namely, the following
is a special case of [BKM, Theorem 6.2] (see also [KLW, KT, K] for further
generalizations):

Theorem 3.1. For d 2 N, let ' be a map R
d ! GLk.R/ such that

(i) all coordinates (matrix elements) of '.�/ are affine (degree 1 polynomials), and
let a ball B � R

d and 0 < 
 � 1 be such that
(ii) for any j D 1; : : : ; k � 1 and any w 2Vj

.Zk/ X f0g one has

k'.x/wk � 
 for some x 2 B:

Then for any positive " � 
 one has

�
�˚

x 2 B j ��'.x/� … K"


�	
�
"




�1=d.k�1/
�.B/: (3.1)

Here � is Lebesgue measure on R
d , and the Euclidean1 norm k � k is naturally

extended from R
k to its exterior powers. We remark that the way assumption (i)

is used in the proof is by verifying that all the functions x 7! k'.x/wk, where
w 2 Vj

.Zk/, are .C; ˛/-good on R
d , with some fixed C D C.d; k/ > 0 and

˛ D 1=d.k � 1/, the exponent appearing in (3.1). See [KM2] for more detail.
Our plan is to apply Theorem 3.1 with ' WMm;n ! G given by

'.Y / D gtuY g (3.2)

for some g 2 G and t 2 aC. It is clear that assumption (i) holds. As for (ii),
we will need to have uniformity in t 2 aC and in g such that �.g/ belongs
to a compact subset of X . This can be extracted from the next lemma, which
is immediate from [KW, Proposition 2.4] applied to the representations of G on
Vj

.Rk/, j D 1; : : : ; k � 1:

Lemma 3.2. There exists ˛ > 0 with the following property. Let B be a ball
centered at 0 inMm;n. Then one can find b > 0 such that for any j D 1; : : : ; k � 1,
any w 2 Vj

.Rk/ and any t 2 aC one has

sup
Y2B

�
�gtuY w

�
� � be˛btckwk:

1In [KM2] the statement of Theorem 5.2 involved the sup norm instead of the Euclidean one, which
resulted in a restriction for 
 to be not greater than 1=k; thus we chose to refer to [BKM] for the
Euclidean norm version.
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Corollary 3.3. Let B be a neighborhood of 0 in Mm;n and let L � X be compact.
Then there exists b > 0 such that for any j D 1; : : : ; k� 1, any w 2Vj

.Zk/X f0g,
any g 2 ��1.L/ and any t 2 aC one has

sup
Y2B

�
�gtuY gw

�
� � be˛btc:

Proof. Apply the above lemma with w replaced by gw; it follows from the
compactness of L and discreteness of

Vj
.Zk/ in

Vj
.Rk/ that

inf
n

kgwk ˇˇ �.g/ 2 L; w 2
^j

.Zk/ X f0g; j D 1; : : : ; k � 1
o

is positive. ut
Corollary 3.4. LetL � X be compact and letB � H be a ball centered at e � H .
Then there exists T D T .B;L/ such that for every 0 < " < 1, any z 2 L and any
t 2 aC with btc � T one has

�
�˚

h 2 B j gthz … K"


�	 "
1

mn.k�1/ �.B/:

Proof. Define T by be˛T D 1, where ˛ is given by Lemma 3.2 and b by
Corollary 3.3 applied to log.B/ � Mm;n and L. (Note that the exponential map
fromMm;n toH is an isometry.) Take ' as in (3.2) with g 2 ��1.L/. Then, in view
of Corollary 3.3, assumption (ii) of Theorem 3.1, with d D mn, will be satisfied
with 
 D 1 as long as btc � T . ut

We conclude this section by an estimate of the injectivity radius ofK", to make it
possible to combine the above corollary with Theorem 2.3. Observe that any lattice
ƒ 2 K" can be generated by vectors of norm	 1="k�1; if gƒ D ƒ and g ¤ e, then
for one of those vectors v one has kgv � vk � ". This implies that dist.e; g/
 "k .
We arrive at

Proposition 3.5. There exists positive c D c.k/ such that r.K"/ � c � "k 8 " > 0.

4 Proof of Theorem 1.3

Our goal in this section will be to find Q� > 0 such that for any f 2 C1comp.H/,

 2 W 2;1.X/ \ Lip.X/ with
R

X  D 0 and compact L � X there exists QC > 0

such that for all z 2 L and all t 2 aC one has
ˇ
ˇIf; .gt; z/

ˇ
ˇ � QCe�Q�btc: (4.1)

Then Theorem 1.3 will follow by applying (4.1) with  replaced by  � RX  .
Note also that, by increasing QC if needed, it is enough to prove (4.1) for t with large
enough btc.
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Given t 2 aC, define t
defD btc=2, and let

u D u.t/
defD t �

�
t

m
; : : : ;

t

m
;
t

n
; : : : ;

t

n

�

: (4.2)

Note that u 2 aC, buc � btc=2 D t , and gt D gtgu (here gt and gu are defined
via (1.4), and gt is as in (1.2)).

Take a function 	 supported onBH.r/ as in Lemma 2.2(a), with r D e�ˇt where
ˇ is to be specified later; since

R

H
	 D 1 and � is translation-invariant, one can write

If; .gt; z/ D
Z

H

f .h/ .gthz/ d�.h/
Z

H

	.y/ d�.y/

D
Z

H

Z

H

f
�

ˆ�1u .y/h
�

	.y/ 
�

gtguˆ
�1
u .y/hz

�

d�.y/ d�.h/

D
Z

H

Z

H

f
�

ˆ�1u .y/h
�

	.y/ 
�

gtyguhz
�

d�.y/ d�.h/:

Note that ˆ�1u is a contracting automorphism of H , in fact, one has

dist
�

e;ˆ�1u .h/
� � e�2buc dist.e; h/ � e�2t dist.e; h/

for any h 2 H . Choose B D B.r/ containing suppf . Then the supports of all
functions of the form h 7! f

�

ˆ�1u .y/h
�

are contained in

QB defD B
�

r C e�.2Cˇ/t �:
By taking t large enough it is safe to assume that

e�ˇt < r0=2; (4.3)

�. QB/ � 2�.B/, and also that t > T
defD T . QB;L/ as in Corollary 3.4. Now define "

by

" D
�
2

c
e�ˇt

�1=k

; (4.4)

where c is from Proposition 3.5, and denote

A
defD ˚

h 2 QB j guhz … K"




:

Then for any u 2 aC with buc � T and any z 2 L one knows, in view of
Corollary 3.4, that

�.A/	 "
1

mn.k�1/ �. QB/:
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Hence the absolute value of

Z

A

Z

H

f
�

ˆ�1u .y/h
�

	.y/ 
�

gtyguhz
�

d�.y/ d�.h/

is

	 "
1

mn.k�1/ �. QB/ sup jf j sup j j
Z

H

	 	 sup jf j sup j j�.B/ � e� ˇ
mnk.k�1/ t :

Now let us assume that h 2 QB XA, and apply Theorem 2.3 with r D e�ˇt , guhz
in place of z and

fh.y/
defD f

�

ˆ�1u .y/h
�

	.y/

in place of f . Clearly condition (i) follows from (4.3), and, since guhz 2 K"

whenever h … A, condition (ii) is satisfied in view of Proposition 3.5 and (4.4).
Also, because ˆ�1u jH is contracting, partial derivatives of f will not increase after
precomposition with ˆ�1u , and thus

kfhk` 	
Lemma 2.2(b)

kf kC`k	k` 	
Lemma 2.2(a)

r�.`Cmn=2/kf kC` : (4.5)

This way one gets

ˇ
ˇ
ˇ
ˇ

Z

QBXA

Z

H

f
�

ˆ�1u .y/h
�

	.y/ 
�

gtyguhz
�

d�.y/ d�.h/

ˇ
ˇ
ˇ
ˇ

�
Z

QBXA

ˇ
ˇIfh; .gt ; guhz/

ˇ
ˇ d�.h/

�
(2.4)

E. /

�

r

Z

H

jfhj C r�.2`CN=2/kfhk`e��t
�

�. QB/

	
(4.5)

E. /
�

sup jf j � e�ˇt C kf kC` � e�.��.2`CN=2/ˇ/t
�

�.B/:

Combining the two estimates above, one can conclude that

ˇ
ˇIf; .gt; z/

ˇ
ˇ	 C1e

� ˇ
mnk.k�1/ t C C2e�ˇt C C3e�.��.2`CN=2/ˇ/t

� max.C1; C2/e
� ˇ
mnk.k�1/ t C C3e�.��.2`CN=2/ˇ/t ;
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where Ci , i D 1; 2; 3, depend on f ,  and L. An elementary computation shows
that choosing ˇ equalizing the two exponents above will produce

Q� D �

1C mnk.k � 1/.2`CN=2/

such that (4.1) will hold with QC 	 max.C1; C2; C3/. ut
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1 Introduction

1.1 Background and main results

The theory of Eisenstein series plays a prominent role in the theory of automorphic
functions and automorphic forms. Classically, in the theory of holomorphic modular
forms, the Eisenstein series of weight 2k (k 2 N, k � 2) for the full modular group
PSL2.Z/ are defined by

E2k.z/ WD 1

2

X

.c;d/2Z2
.c;d/D1

1

.czC d/2k .z D x C iy 2 C; y > 0/:

The arithmetic significance of these series is reflected by the fact that their Fourier
coefficients are given by certain divisor sums.

More generally, in the theory of automorphic functions for Fuchsian subgroups
� of the first kind of PSL2.R/, Eisenstein series are defined by

E.z; s/ WD
X

�2�1n�
Im.�z/s .s 2 C; Re.s/ > 1/I

here �1 denotes the stabilizer of the cusp i1 in the group � . For s 2 C with
Re.s/ > 1, the Eisenstein series E.z; s/ are C1-functions in x; y. For z 2 C with
Im.z/ > 0, the series E.z; s/ are holomorphic functions in s as long as Re.s/ > 1.
It can be shown that the Eisenstein series E.z; s/ admit a meromorphic continuation
to the whole s-plane. The significance of E.z; s/ relies on the fact that these series
are eigenfunctions of the hyperbolic Laplacian �hyp for the continuous spectrum.
The classical approach to establishing the meromorphic continuation is based on
the explicit knowledge of the Fourier expansion of E.z; s/. Other approaches rely on
the meromorphic continuation of the resolvent kernel of�hyp or Colin de Verdière’s
method given in [3].

Observing that the series E.z; s/ are associated to the cusp i1, S. Kudla
and J. Millson introduced in [11] so-called hyperbolic Eisenstein series Ehyp.z; s/
associated to geodesics in the upper half-plane H, and proved a partial meromorphic
continuation and a Kronecker limit-type formula for these series. Following this
point of view, J. Jorgenson and the first author were led to consider so-called elliptic
Eisenstein series Eell.z; s/ associated to elliptic fixed points z0 2 H for � . In fact,
these series were introduced in [9] (see also the unpublished paper [8]) in order to
derive optimal sup-norm bounds for cusp forms of weight 2 for the subgroup � .
An alternative, more elementary proof for these sup-norm bounds avoiding elliptic
Eisenstein series is given in [7].

The elliptic Eisenstein series associated to an elliptic fixed point z0 2 H for the
subgroup � is defined by
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Eell.z; s/ D
X

�2�z0n�
sinh

�

%
�

��1z0
�z
���s

.z ¤ z0/;

where �z0 denotes the stabilizer of z0 in � , �z0 2 PSL2.R/ is a scaling matrix for z0,
i.e., �z0 .i/ D z0, and %.z/ denotes the hyperbolic distance from z to i . In the Ph.D.
thesis [13] by the second named author, the meromorphic continuation of the elliptic
Eisenstein series Eell.z; s/ for any Fuchsian subgroup � of the first kind to the whole
s-plane is proven using a variation of Colin de Verdière’s method mentioned above.
Moreover, various expansions of the series Eell.z; s/ are computed and a Kronecker
limit type formula is established there.

In this paper we study elliptic Eisenstein series in the special case � D PSL2.Z/
and z0 D i . Following the classical approach, the main goal of this paper is
to establish the meromorphic continuation of the series Eell.z; s/ by means of its
Fourier expansion thereby complementing work carried out in [13] in the special
case � D PSL2.Z/. In order to achieve our goal, the Fourier expansion of Eell.z; s/
has to be explicitly computed and the growth of the Fourier coefficients has to be
controlled.

1.2 Outline of the paper

The paper is organized as follows. In Section 2, we recall and summarize basic
notation and definitions used in this article.

In Section 3, we recall the classical Poincaré series Pm.z; s/ and relate them to
the more recent Poincaré-type series Vm.z; s/ studied in [14]. We review how the
meromorphic continuation of Pm.z; s/ can be obtained via its spectral expansion.
Via the aforementioned relation, we obtain the meromorphic continuation of
Vm.z; s/ to the whole s-plane.

In Section 4, we define the elliptic Eisenstein series Eell.z; s/ associated to the
elliptic fixed point i of PSL2.Z/. We show that it is holomorphic for Re.s/> 1
and an automorphic function for PSL2.Z/. In contrast to the parabolic situation, the
elliptic Eisenstein series fails to be an eigenfunction of �hyp; instead it satisfies the
differential equation

�

�hyp � s.1 � s/
�Eell.z; s/ D �s2Eell.z; s C 2/:

In Section 5, we calculate the Fourier coefficients of Eell.z; s/. In order to simplify
the exposition, we restrict our study to the case z 2 H with Im.z/ > 1.

In Section 6, we obtain the meromorphic continuation of Eell.z; s/ via its Fourier
expansion. The main task here is to first meromorphically continue the mth Fourier
coefficients am.y; s/ of Eell.z; s/ and then to achieve suitable bounds for am.y; s/
with respect to m. The main result is stated in Theorem 6.10.
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2 Preliminaries

2.1 Basic notation

Let � WD PSL2.Z/ be the modular group acting by fractional linear transformations
on the upper half-plane H WD fz D x C iy 2 C j y > 0g, i.e., for � D �

a b
c d

� 2 �
and z 2 H, we have

�z WD azC b
czC d :

We denote by F� a fundamental domain of � in H. By �z WD Stab�.z/ we denote
the stabilizer of z 2 H in � , and we set

�1 WD
��
1 n

0 1

� ˇ
ˇ
ˇ
ˇ
n 2 Z

�

:

As usual, we put e.z/ WD exp.2�iz/ and denote by �.s/ the Riemann zeta
function.

In the rectangular coordinates x; y, the hyperbolic line element ds2hyp, the
hyperbolic volume element �hyp, and the hyperbolic Laplacian�hyp on H are given
by

ds2hyp D
dx2 C dy2

y2
; �hyp D dx dy

y2
; �hyp D �y2

�
@2

@x2
C @2

@y2

�

:

We recall that the hyperbolic volume volhyp.F�/ of F� is given by

volhyp.F�/ D
Z

F�

�hyp.z/ D �

3
:

By dhyp.z;w/ we denote the hyperbolic distance from z 2 H to w 2 H.
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2.2 Hyperbolic polar coordinates

For z D xCiy 2 H, we define the hyperbolic polar coordinates % D %.z/; # D #.z/
centered at i 2 H by

%.z/ WD dhyp.i; z/; #.z/ WD ].L; Tz/;

where L denotes the positive y-axis and Tz is the tangent at the unique geodesic
passing through i and z at the point i .

The relation between the x; y-coordinates and the %; #-coordinates is expressed
through the formulas

x D sinh.%/ sin.#/

cosh.%/C sinh.%/ cos.#/
; y D 1

cosh.%/C sinh.%/ cos.#/
: (1)

Using the above formulas, the hyperbolic line element and the hyperbolic Laplacian
in terms of the hyperbolic polar coordinates take the form

ds2hyp D sinh2.%/d#2 C d%2; �hyp D � @
2

@%2
� 1

tanh.%/

@

@%
� 1

sinh2.%/

@2

@#2
:

From the well-known formula for the hyperbolic distance (see [Bea91], p. 131)

cosh
�

dhyp.z;w/
� D 1C jz � wj2

2Im.z/Im.w/
;

we obtain for z D x C iy 2 H and � D � a bc d
� 2 � ,

cosh
�

%.�z/
� D cosh

�

dhyp.z; �
�1i/

� D 1

2y

�

2y C .a2 C c2/ˇˇz� ��1i ˇˇ2
	

:
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A straightforward computation yields

cosh
�

%.�z/
� D 1

2y

�

.a2 C c2/.x2 C y2/C 2.abC cd/x C .b2 C d2/�: (2)

2.3 Hypergeometric functions

For a; b; c 2 C, c ¤ �n (n 2 N), and w 2 C, we denote Gauss’s hypergeometric
function by F.a; bI cIw/. For w 2 C with jwj < 1 it is defined by the series

F.a; bI cIw/ WD
1X

kD0

.a/k � .b/k
.c/k � kŠ � w

k;

where .	/k WD �.	 C k/=�.	/ (	 2 C, k 2 N) is the Pochhammer symbol; for
k 2 N with k > 0, we note the alternative formula .	/k D Qk�1

jD0.	 C j /. For
Re.c/ > Re.b/ > 0, the hypergeometric function F.a; bI cIw/ has the integral
representation (see [1], formula 15.3.1)

F.a; bI cIw/ D �.c/

�.b/�.c � b/

1Z

0

tb�1.1 � t/c�b�1.1 � tw/�a dt: (3)

2.4 Parabolic Eisenstein series

For z 2 H and s 2 C, the parabolic Eisenstein series Epar is given by

Epar.z; s/ WD
X

�2�1n�
Im.�z/s :

The parabolic Eisenstein series is known to be holomorphic for s 2 C with Re.s/ >
1 with Fourier expansion given by

Epar.z; s/ D ys C '.s/y1�s C
X

n¤0
'.n; s/y1=2Ks�1=2.2�jnjy/e.nx/; (4)

whereKs�1=2.�/ is the modified Bessel function of the second kind,

'.s/ D
p
� �.s � 1=2/
�.s/

� �.2s � 1/
�.2s/

D ƒ.2s � 1/
ƒ.2s/

;
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and

'.n; s/ D 2�sjnjs�1=2
�.s/�.2s/

X

d jn
d�2sC1 D 2

ƒ.2s/

X

abDjnj

�a

b

	s�1=2I

here we set ƒ.s/ WD ��s=2�.s=2/�.s/. The Fourier expansion (4) provides the
meromorphic continuation of Epar.z; s/ to the whole s-plane with a simple pole
at s D 1 with residue ressD1Epar.z; s/ D 1= volhyp.F�/ D 3=� , and other poles
contributed by the non-trivial zeros of �.2s/ in the strip 0 < Re.s/ < 1=2. From
the functional equation ƒ.s/ D ƒ.1 � s/, we get '.s/'.1 � s/ D 1, and hence the
relation

'.s/'.n; 1 � s/ D 2ƒ.2s � 1/
ƒ.2s/ƒ.�2s C 2/

X

abDjnj

�b

a

	s�1=2

D 2

ƒ.2s/

X

abDjnj

�a

b

	s�1=2 D '.n; s/; (5)

which, using (4), proves the functional equation

Epar.z; s/ D '.s/ Epar.z; 1 � s/: (6)

3 Poincaré series

In this section we recall results for two types of Poincaré series that are mostly
known to the experts. However, for lack of complete reference, some proofs have to
be elaborated.

Definition 3.1. For z 2 H, s 2 C, and m 2 Z, the Poincaré series Pm is defined by

Pm.z; s/ WD
X

�2�1n�
Im.�z/s exp

��2�jmjIm.�z/
�

e
�

mRe.�z/
�

:

The Poincaré series is known to be holomorphic for s 2 C with Re.s/ > 1, since it
can be majorized by P0.z;Re.s// D Epar.z;Re.s//.

Remark 3.2. For m ¤ 0, the Poincaré series Pm.z; s/ is bounded on H (see [10],
p. 83) and hence admits a spectral expansion in terms of the eigenfunctions  j
associated to the discrete eigenvalues 	j of�hyp and the parabolic Eisenstein series
Epar, namely

Pm.z; s/ D
1X

jD0
aj;m.s/  j .z/C 1

4�

Z 1

�1
a1=2Cir;m.s/ Epar.z; 1=2C ir/ dr; (7)



404 J. Kramer and A.-M. von Pippich

where the coefficients aj;m.s/, resp. a1=2Cir;m.s/, are given by

aj;m.s/ D
Z

F�

Pm.z; s/ j .z/�hyp.z/; resp.

a1=2Cir;m.s/ D
Z

F�

Pm.z; s/Epar.z; 1=2C ir/�hyp.z/:

The expansion (7) is absolutely and locally uniformly convergent for s 2 C with
Re.s/ > 1.

As ususal, we enumerate the eigenvalues of the discrete spectrum by 0 D 	0 <

	1 � 	2 � : : :; since � D PSL2.Z/, we have 	j D 1=4C t2j D sj .1 � sj /, i.e.,
sj D 1=2C i tj with tj > 0, as long as j > 0. For j D 0, the eigenfunction is given
by  0.z/ D

p

3=� . For j > 0, the eigenfunction  j is a cusp form and admits a
Fourier expansion of the form

 j .z/ D
X

n¤0

j .n/y

1=2Ksj�1=2.2�jnjy/e.nx/: (8)

The eigenvalues of the continuous spectrum are of the form 	 D 1=4Cr2 D s.1�s/,
i.e., s D 1=2C ir with r 2 R. The corresponding eigenfunctions are given by the
parabolic Eisenstein series Epar.z; 1=2C ir/.

Proposition 3.3. For z 2 H, s 2 C with Re.s/ > 1, andm ¤ 0, the Poincaré series
Pm.z; s/ has the following explicit spectral expansion:

Pm.z; s/ 2
2s�1�s�1�.s/jmjs�1=2 D

1X

jD1
�.s � sj /�.s C sj � 1/
j .m/ j .z/

C 1

4�

Z 1

�1
�.s � 1=2� ir/�.s � 1=2C ir/'.m; 1=2C ir/ Epar.z; 1=2C ir/ dr:

(9)

Proof. The proof can easily be deduced from the spectral expansion given for the
function ePm.z; s/ D �s�1=2�.s C 1=2/�1jmjs�1=2Pm.z; s/ in [12], p. 58. ut
Proposition 3.4. For z 2 H and m ¤ 0, the Poincaré series Pm.z; s/ admits a
meromorphic continuation to the whole s-plane with simple poles at s D sj � N
and s D �sj �N C 1 (N 2 N) with residues

ressDsj�NPm.z; s/

D .�1/N 2�2sjC2NC1��sjCNC1�.2sj �N � 1/
N Š �.sj �N/jmjsj�N�1=2

X

s`Dsj

`.m/ `.z/
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and

ressD�sj�NC1Pm.z; s/

D .�1/N 22sjC2N�1�sjCN�.�2sj �N C 1/
N Š �.�sj �N C 1/jmj�sj�NC1=2

X

s`Dsj

`.m/ `.z/;

respectively.

Proof. Due to the lack of reference for the claimed residues, we have to discuss
the proof briefly. In order to obtain the desired meromorphic continuation we will
follow closely [12] and [10], and base our argument on the spectral expansion (9).

We start by discussing the meromorphic continuation of the discrete part

D.s/ WD
1X

jD1
�.s � sj /�.s C sj � 1/
j .m/ j .z/

of the spectral expansion (9). The argument given in [10], p. 87, shows thatD.s/ has
a meromorphic continuation to the whole s-plane with simple poles at s D sj � N
and s D �sj � N C 1 (N 2 N) arising from the �-factors. For later purposes, we
note the bound (see [10], p. 87, adapted to the present situation)

ˇ
ˇD.s/

ˇ
ˇ� y�3=2; (10)

where the implied constant depends only on s (not a pole), but is independent of
z and m. The dependence of the implied constant on s is uniform as long as s is
contained in a compact set not containing sj �N or �sj �N C 1 for some N 2 N.
For the residues we compute

ressDsj�ND.s/ D
.�1/N
N Š

�.2sj �N � 1/
X

s`Dsj

`.m/ `.z/

and

ressD�sj�NC1D.s/ D
.�1/N
N Š

�.�2sj �N C 1/
X

s`Dsj

`.m/ `.z/;

respectively.
We now turn to the meromorphic continuation of the continuous part

Q.s/ WD 1

4�

Z
1

�1

�.s � 1=2 � ir/�.s � 1=2C ir/'.m; 1=2C ir/ Epar.z; 1=2C ir/ dr

(11)
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of the spectral expansion (9). By substituting t WD 1=2C ir, the integral (11) can be
rewritten as

Q.s/ D 1

4�i

Z 1=2Ci1

1=2�i1
�.s � t/�.s � 1C t/'.m; 1 � t/ Epar.z; t/ dt: (12)

By construction, the integral (12) exists for s 2 C with Re.s/ > 1 and represents
a holomorphic function in this range. The argument given in [10], p. 89, shows that
Q.s/ extends to a holomorphic function for s 2 C with Re.s/ ¤ �N C 1=2, and
for s D �N C1=2, whereN 2 N. In order to extendQ.s/ to the whole s-plane, we
rewrite the integral (12) by means of a different path of integration (see [12], p. 51)
using the residue theorem as follows. Let s0 2 C with Re.s0/ D �NC1=2 for some
N 2 N and Im.s0/ > 0, and let C.s0/ denote the integration path, which runs on the
vertical line with Re.t/ D 1=2 from�1 to1 as before, but passes on the left-hand
side around �s0 � N C 1 and on the right-hand side around s0 C N in such a way
that the only poles of the integrand being encircled by this new integration path are
located at t D �s0 �N C 1 and t D s0 CN . For s with Re.s/ > �N C 1=2 being
sufficiently close to s0 such that �s � N C 1 and s C N are still encircled by the
path C.s0/, we set

eQ.s/ D 1

4�i

Z

C.s0/

�.s � t/�.s � 1C t/'.m; 1� t/ Epar.z; t/ dt;

which is well defined by construction. Using the residue theorem and recalling (6)
and (5), we then compute

Q.s/ D 1

4�i

Z

C.s0/

�.s � t/�.s � 1C t/'.m; 1� t/ Epar.z; t/ dt

� .�1/
N

2N Š
�.2s CN � 1/'.m;�s �N C 1/ Epar.z; s CN/

C .�1/N
2N Š

�.2s CN � 1/'.m; sCN/ Epar.z;�s �N C 1/ D eQ.s/:

For s with Re.s/ < �N C 1=2 being sufficiently close to s0, we define eQ.s/ as
above and verify again Q.s/ D eQ.s/, now using Cauchy’s theorem. By the choice
of the integration path C.s0/ it turns out that the integral

eQ.s0/ D 1

4�i

Z

C.s0/

�.s0 � t/�.s0 � 1C t/'.m; 1 � t/ Epar.z; t/ dt

is also well defined. Proceeding in an analogous way for s0 2 C with Re.s0/ D
�N C 1=2 for some N 2 N, but Im.s0/ < 0, we obtain the analytic continuation of
Q.s/ to the whole s-plane.
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All in all, these considerations show that Pm.z; s/ admits a meromorphic
continuation to the whole s-plane with simple poles at s D sj � N and
s D �sj � N C 1 (N 2 N). The stated formulas for the residues are easily
obtained from the residue computations forD.s/, taking into account that the factor
2�2sC1��sC1�.s/�1jmj�sC1=2 does not contribute further poles.

Before finishing the proof, we recall for later purposes that for s 2 C, we have
the bound (see [10], p. 90)

ˇ
ˇQ.s/

ˇ
ˇ� y1=2; (13)

where the implied constant depends only on s (not a pole), but is independent of z
andm. ut
Definition 3.5. For z 2 H, s 2 C, and m 2 Z, the Poincaré series Vm is defined by

Vm.z; s/ WD
X

�2�1n�
Im.�z/se

�

mRe.�z/
�

: (14)

The Poincaré series is known to be holomorphic for s 2 C with Re.s/ > 1, since it
can be majorized by V0.z;Re.s// D Epar.z;Re.s//.

Lemma 3.6. For z 2 H, s 2 C with Re.s/ > 1, and m ¤ 0, we have the relation

Vm.z; s/ D
1X

kD0

.2�jmj/k
kŠ

Pm.z; s C k/:

Proof. We first check the absolute and local uniform convergence of the series in
the claimed relation for fixed z 2 H and s 2 C with Re.s/ > 1. Using the estimate

jczC d j � C jci C d j;

where C D C.z/ is a positive constant depending on z but which is independent of
.c; d / 2 R

2, we obtain the bound

1X

kD0

ˇ
ˇ
ˇ
ˇ
ˇ

.2�jmj/k
kŠ

Pm.z; s C k/
ˇ
ˇ
ˇ
ˇ
ˇ
�
1X

kD0

.2�jmj/k
kŠ

X

�2�1n�
Im.�z/Re.s/Ck

D
1X

kD0

.2�jmj/k
kŠ

X

�2�1n�

yRe.s/

jczC d j2Re.s/
� yk

jczC d j2k

�
1X

kD0

.2�jmjyC�2/k
kŠ

X

�2�1n�

yRe.s/

jczC d j2Re.s/
� 1

.c2 C d2/k

� exp.2�jmjyC�2/ � Epar
�

z;Re.s/
�

:
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This proves that the series in question converges absolutely and locally uniformly
for s 2 C with Re.s/ > 1.

Now the claimed relation can easily be derived by changing the order of
summation; namely, we compute

1X

kD0

.2�jmj/k
kŠ

Pm.z; s C k/

D
X

�2�1n�
Im.�z/s exp

��2�jmjIm.�z/
�

e
�

mRe.�z/
�
1X

kD0

.2�jmj/k
kŠ

Im.�z/k

D
X

�2�1n�
Im.�z/s exp

��2�jmjIm.�z/
�

e
�

mRe.�z/
�

exp
�

2�jmjIm.�z/
�

D Vm.z; s/:

This completes the proof of the lemma. ut
Proposition 3.7. For z 2 H and m ¤ 0, the Poincaré series Vm.z; s/ admits a
meromorphic continuation to the whole s-plane with simple poles at s D sj � 2N
and s D �sj � 2N C 1 (N 2 N) with residues

ressDsj�2NVm.z; s/ D
22N�1��sjC2NC1�.sj �N � 1=2/
.2N /Š �.�N C 1=2/jmjsj�2N�1=2

X

s`Dsj

`.m/ `.z/ (15)

and

ressD�sj�2NC1Vm.z; s/ D
22N�1�sjC2N �.�sj �N C 1=2/
.2N /Š �.�N C 1=2/jmj�sj�2NC1=2

X

s`Dsj

`.m/ `.z/;

(16)

respectively.

Proof. We start by proving that the Poincaré series Vm.z; s/ has a meromorphic
continuation to the half-plane

H0N WD fs 2 C jRe.s/ > �N g

for any N 2 N. By Lemma 3.6, we can write

Vm.z; s/ D
NX

kD0

.2�jmj/k
kŠ

Pm.z; s C k/C
1X

kDNC1

.2�jmj/k
kŠ

Pm.z; s C k/: (17)



Elliptic Eisenstein series for PSL2.Z/. 409

We show that the series

1X

kDNC1

.2�jmj/k
kŠ

Pm.z; s C k/

is a holomorphic function on the half-plane H0N . For this we estimate as in the proof
of Lemma 3.6, assuming s 2 C with Re.s/ > �N ,

1X

kDNC1

ˇ
ˇ
ˇ
ˇ
ˇ

.2� jmj/k
kŠ

Pm.z; s C k/
ˇ
ˇ
ˇ
ˇ
ˇ

D
1X

kDNC1

ˇ
ˇ
ˇ
ˇ
ˇ

.2� jmj/NC1
kŠ=.k �N � 1/Š �

.2� jmj/k�N�1
.k �N � 1/Š Pm

�

z; .s CN C 1/C .k �N � 1/�
ˇ
ˇ
ˇ
ˇ
ˇ

� .2� jmj/NC1
1X

kD0

ˇ
ˇ
ˇ
ˇ
ˇ

.2� jmj/k
kŠ

Pm.z; s CN C 1C k/
ˇ
ˇ
ˇ
ˇ
ˇ

� .2� jmj/NC1 � exp.2� jmjyC�2/ � Epar
�

z;Re.s/CN C 1�:

This proves that the series in question converges absolutely and locally uniformly
for s 2 C with Re.s/ > �N , and hence the holomorphicity statement.

Since the finite sum
PN

kD0.2�jmj/k=kŠ Pm.z; s C k/ is a meromorphic function
on the whole s-plane by Proposition 3.4, we conclude that Vm.z; s/ has a meromor-
phic continuation to the half-plane H0N . Since N was chosen arbitrarily, this proves
the meromorphic continuation of Vm.z; s/ to the whole s-plane.

In order to determine the poles of Vm.z; s/, we calculate its poles in the strip

S 0N WD fs 2 C j �N < Re.s/ � �N C 1g

for any N 2 N. By considering Vm.z; s/ with its decomposition (17) in the strip
S 0N , we see that the poles come from the finite sum FN .z; s/ WDPN

kD0.2�jmj/k=kŠ
Pm.z; s C k/. By Proposition 3.4, FN .z; s/ has poles in the strip S 0N at s D sj �N
and s D �sj � N C 1. The explicit formula for the residues of Pm.z; s/ given in
Proposition 3.4 now leads to the following residue of FN .z; s/ at s D sj �N :

ressDsj�NFN .z; s/ D
NX

kD0

.2�jmj/k
kŠ

ressDsj�.N�k/Pm.z; s/

D
NX

kD0

.2�jmj/k
kŠ

.�1/N�k2�2sjC2.N�k/C1��sjC.N�k/C1�.2sj � .N � k/� 1/
.N � k/Š �.sj � .N � k//jmjsj�.N�k/�1=2

�
X

s`Dsj

`.m/ `.z/
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D
NX

kD0

.�1/N�k2�2sjC2N�kC1��sjCNC1�.2sj �N C k � 1/
kŠ .N � k/Š �.sj �N C k/jmjsj�N�1=2

X

s`Dsj

`.m/ `.z/

D .�1/N 2N�1��sjCNC1�.sj �N=2� 1=2/
N Š �.�N=2C 1=2/jmjsj�N�1=2

X

s`Dsj

`.m/ `.z/:

This shows that the residue in question vanishes if N is odd, and that the residue of
Vm.z; s/ at s D sj � 2N is given by (15). Analogously, it is shown that the residue
of FN .z; s/ at s D �sj �N C 1 is zero if N is odd, and that the residue of Vm.z; s/
at s D �sj � 2N C 1 is given by (16). ut

4 Elliptic Eisenstein series

Definition 4.1. For z 2 H with z ¤ �i for any � 2 � , and s 2 C, the elliptic
Eisenstein series Eell is defined by

Eell.z; s/ D
X

�2�in�
sinh

�

%.�z/
��s
:

Lemma 4.2. (i) For z 2 H with z ¤ �i for any � 2 � , the elliptic Eisenstein
series Eell.z; s/ converges absolutely and locally uniformly for s 2 C with
Re.s/ > 1, and hence defines a holomorphic function.

(ii) The elliptic Eisenstein series Eell.z; s/ is invariant under the action of � , i.e.,
we have Eell.�z; s/ D Eell.z; s/ for any � 2 � .

(iii) For fixed s 2 C with Re.s/ > 1, the elliptic Eisenstein series Eell.z; s/
converges absolutely and uniformly for z in compacta K 	 H not containing
any translate �i of i by � 2 � .

Proof. (i) To ease notation, we write s D � C i t 2 C; we assume that � D
Re.s/ > 1. We fix z 2 H such that z ¤ �i for any � 2 � . Since � acts properly
discontinuously on H and z ¤ �i for any � 2 � , the minimum

R1.z/ WD min
�2� dhyp.i; �z/

exists and is strictly positive. Introducing the quantity

C1.z/ WD 1 � exp
��2R1.z/

�

2
> 0;

we derive the inequality

1 � exp
��2%.�z/

�

2
� C1.z/
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for all � 2 � . From this we obtain the estimate

sinh
�

%.�z/
� D exp

�

%.�z/
� � 1 � exp

��2%.�z/
�

2
� C1.z/ � exp

�

%.�z/
�

;

again for all � 2 � . From this we derive the estimate

X

�2�i n�

ˇ
ˇ
ˇsinh

�

%.�z/
��sˇˇ
ˇ D

X

�2�in�
sinh

�

%.�z/
���

� C1.z/�� �
X

�2�in�
exp

���%.�z/
�

:

In order to complete the proof of (i), we are left to show the local uniform
convergence of the series

X

�2�in�
exp

���%.�z/
�

for � > 1. To do this, we introduce for r 2 R�0 the quantities

G.r/ WD ˚� 2 �in�
ˇ
ˇ %.�z/ < r




; N.r/ WD ]G.r/:

We note that the number N.r/ is finite, since � acts properly discontinously on H

and z ¤ �i for any � 2 �; in particular, we have N.r/ D 0 for 0 � r � R1.z/.
For fixed r 2 R>0, we are next going to estimate the number N.r/. Let Br .i/

denote the open hyperbolic disk of radius r centered at i containing the finitely many
translates �z of z for � 2 G.r/. Then there exists a constant ".z/ > 0, depending on
z, such that the open hyperbolic disks B".z/.�z/ of radius ".z/ centered at �z do not
intersect for all � 2 G.r/ and are contained in Br .i/. Consequently, we obtain

N.r/ � volhyp
�B".z/.�z/

� � volhyp
�Br .i/

� �

� 2 G.r/�:

This yields the estimate

N.r/ � 4� sinh2
�

r=2
�

4� sinh2
�

".z/=2
� D cosh.r/ � 1

2 sinh2
�

".z/=2
� D exp.r/C exp.�r/� 2

4 sinh2
�

".z/=2
�

< exp.r/ � 1C exp.�2r/
4 sinh2

�

".z/=2
� < C2.z/ � exp.r/ (18)

with a suitable constant C2.z/ > 0 depending on z.
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For fixed R 2 R>0, the monotone increasing step function N W Œ0; R� �!
N induces a Stieltjes measure dN.r/ on the interval Œ0; R�. Since the function
exp.��r/ W Œ0; R� �! R>0 is continuous and the function N.r/ is of bounded
variation, the function exp.��r/ is Riemann–Stieltjes integrable with respect to
N.r/ on the interval Œ0; R�. Furthermore, since N.r/ and exp.��r/ are bounded on
Œ0; R�, the theorem of partial integration can be applied to give

X

�2�in�
�2G.R/

exp
�

��%.�z/
	

D
Z R

0

exp.��r/dN.r/

D
h

N.r/ exp.��r/
iR

0
�
Z R

0

N.r/d
�

exp.��r/�

D
h

N.r/ exp.��r/
iR

0
C
Z R

0

�N.r/ exp.��r/dr: (19)

Using (18), the first summand of (19) can be bounded as

h

N.r/ exp.��r/
iR

0
D N.R/ exp.��R/ < C2.z/ exp

�

.1 � �/R�:

On the other hand, again using (18), the integral in (19) can be bounded as

Z R

0

�N.r/ exp.��r/dr < �C2.z/
Z R

0

exp
�

.1 � �/r�dr

D �C2.z/

1 � �
�

exp
�

.1 � �/R� � 1
	

:

Summing up, we arrive at

X

�2�i n�
exp

���%.�z/
� D lim

R!1
X

�2�i n�
�2G.R/

exp
���%.�z/

�

� lim
R!1

�

C2.z/ exp
�

.1 � �/R�

C �C2.z/

1� �
�

exp
�

.1 � �/R� � 1
	�

D �C2.z/

� � 1 ;

keeping in mind that � > 1. The absolute and local uniform convergence of the
elliptic Eisenstein series Eell.z; s/ now follows for s 2 C with Re.s/ > 1.
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(ii) From definition 4.1 we immediately deduce for s 2 C with Re.s/ > 1,

Eell.�z; s/ D Eell.z; s/

for all � 2 � , provided that z ¤ �i for any � 2 � .
(iii) Finally, let K 	 H be a compact subset not containing any translate �i

of i by � 2 � . Then the constants C1.z/ and C2.z/ constructed in the first part
of the proof can be chosen uniformly for all z 2 K . For fixed s 2 C with
Re.s/ > 1, the series Eell.z; s/ therefore converges absolutely and uniformly on
K 	 H. ut
Lemma 4.3. For z D x C iy 2 H with z ¤ �i for any � 2 � , and s 2 C with
Re.s/ > 1, the elliptic Eisenstein series Eell.z; s/ is twice continuously differentiable
with respect to x; y.

Proof. In order to prove the claim, we have to show in a first step that the series of
partial derivatives

X

�2�in�

@

@x
sinh

�

%.�z/
��s
;

X

�2�in�

@

@y
sinh

�

%.�z/
��s

(20)

converge absolutely and uniformly on compactaK 	 H not containing any translate
�i of i by � 2 � provided that � D Re.s/ > 1. To do this, we introduce for
functions f 2 C1.H/ the notation

rhypf .z/ WD y2
��@f .z/

@x

	2 C
�@f .z/

@y

	2	

:

Letting '.x; y/ WD .a2Cc2/.x2Cy2/C2.abCcd/xC .b2Cd2/, we have by (2),

sinh
�

%.�z/
� D

q

cosh2
�

%.�z/
� � 1 D

s
�'.x; y/

2y

	2 � 1;

from which we derive

@

@x
sinh

�

%.�z/
� D cosh

�

%.�z/
�

sinh
�

%.�z/
� � @

@x

'.x; y/

2y

D coth
�

%.�z/
� � .a

2 C c2/x C .ab C cd/
y

;

and

@

@y
sinh

�

%.�z/
� D coth

�

%.�z/
� �
�

.a2 C c2/� '.x; y/
2y2

	

:
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A straightforward computation yields

rhyp sinh
�

%.�z/
� D cosh2

�

%.�z/
�

; (21)

from which we deduce

ˇ
ˇ
ˇ
@

@x
sinh

�

%.�z/
�
ˇ
ˇ
ˇ � y�1

q

rhyp sinh
�

%.�z/
� D y�1 cosh

�

%.�z/
�

;

ˇ
ˇ
ˇ
@

@y
sinh

�

%.�z/
�
ˇ
ˇ
ˇ � y�1

q

rhyp sinh
�

%.�z/
� D y�1 cosh

�

%.�z/
�

:

By the choice of the compact set K , there is a positive constant CK such that the
inequality cosh

�

%.�z/
� � CK �sinh

�

%.�z/
�

holds for all z 2 K . Therefore, we obtain
for z 2 K ,

ˇ
ˇ
ˇ
@

@x
sinh

�

%.�z/
��sˇˇ
ˇ � CK � jsj � y�1 � sinh

�

%.�z/
���

;

ˇ
ˇ
ˇ
@

@y
sinh

�

%.�z/
��sˇˇ
ˇ � CK � jsj � y�1 � sinh

�

%.�z/
���

:

The absolute and locally uniform convergence for the series (20) now follows from
Lemma 4.2 provided that � > 1.

To ease notation, we put for the second step x1 WD x and x2 WD y. We will then
show that for j; k D 1; 2, the series

X

�2�in�

@2

@xj @xk
sinh

�

%.�z/
��s

(22)

converges absolutely and uniformly on compacta K 	 H not containing any
translate �i of i by � 2 � provided that � D Re.s/ > 1. Setting f .z/ WD
sinh

�

%.�z/
�

, we estimate for z 2 K ,

ˇ
ˇ
ˇ

@2

@xj @xk
sinh

�

%.�z/
��sˇˇ
ˇ

D
ˇ
ˇ
ˇ.�s/.�s � 1/ � f .z/�.sC2/ � @f .z/

@xj
� @f .z/
@xk

C .�s/f .z/�.sC1/ � @
2f .z/

@xj @xk

ˇ
ˇ
ˇ

� js2 C sj � f .z/�.�C2/ �
ˇ
ˇ
ˇ
@f .z/

@xj

ˇ
ˇ
ˇ �
ˇ
ˇ
ˇ
@f .z/

@xk

ˇ
ˇ
ˇC jsj � f .z/�.�C1/ �

ˇ
ˇ
ˇ
@2f .z/

@xj @xk

ˇ
ˇ
ˇ

� C2
K � js2 C sj � x�22 � f .z/�� C jsj � f .z/�.�C1/ �

ˇ
ˇ
ˇ
@2f .z/

@xj @xk

ˇ
ˇ
ˇ:
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We are left to estimate the term j@2f .z/=@xj @xk j. For this, we use the fact that for
real functions g.z/ D g.x1; x2/ defined on H with continuous first- and second-
order partial derivatives, the inequality

ˇ
ˇ
ˇ
ˇ

@2g.z/

@xj @xk

ˇ
ˇ
ˇ
ˇ
� x�22

0

B
@

q

rhypg.z/C
q

r2hypg.z/
prhypg.z/

C j�hypg.z/j

1

C
A

holds for all z D x1 C ix2 2 H provided that rhypg.z/ ¤ 0 (see [5]). Using (21),
we obtain

r2hyp sinh
�

%.�z/
� D rhyp cosh2

�

%.�z/
� D 4 cosh2

�

%.�z/
�

sinh2
�

%.�z/
�

;

which yields

r2hyp sinh
�

%.�z/
�

rhyp sinh
�

%.�z/
� D 4 sinh2

�

%.�z/
�

:

This, together with the relation j�hyp sinh
�

%.�z/
�j D 2 sinh

�

%.�z/
�Csinh

�

%.�z/
��1

,
leads to

q

rhypf .z/C
q

r2hypf .z/
prhypf .z/

C j�hypf .z/j

D cosh
�

%.�z/
�C 4 sinh

�

%.�z/
�C sinh

�

%.�z/
��1
:

Therefore, by the choice of the compact set K , there is a positive constant C 0K such
that the inequality

ˇ
ˇ
ˇ
@2f .z/

@xj @xk

ˇ
ˇ
ˇ � C 0K � x�22 � sinh

�

%.�z/
�

holds for z 2 K . Again, the absolute and locally uniform convergence for the series
(22) now follows from Lemma 4.2 provided that � > 1. This concludes the proof
of the lemma. ut
Lemma 4.4. For z 2 H with z ¤ �i for any � 2 � , and s 2 C with Re.s/ > 1, the
elliptic Eisenstein series Eell.z; s/ satisfies the differential equation

�

�hyp � s.1 � s/
�Eell.z; s/ D �s2Eell.z; s C 2/:
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Proof. Since the differential operator

�hyp D � @
2

@%2
� 1

tanh.%/

@

@%
� 1

sinh2.%/

@2

@#2

is invariant under the action of � , it suffices by Lemma 4.3 to prove the equality

�

�hyp � s.1 � s/
�

sinh.%/�s D �s2 sinh.%/�.sC2/:

This follows immediately from the subsequent calculation

�hyp sinh.%/�s D s.�s � 1/ sinh.%/�.sC2/ cosh2.%/C s sinh.%/�s

C s sinh.%/�.sC2/ cosh2.%/

D .�s2 � s C s/ sinh.%/�.sC2/
�

1C sinh2.%/
�Cs sinh.%/�s

D �s2 sinh.%/�.sC2/ C s.1 � s/ sinh.%/�s : ut

5 Fourier expansion of the elliptic Eisenstein series

Lemma 5.1. For z 2 H with Im.z/ ¤ Im.��1i/ for any � 2 � , and s 2 C with
Re.s/ > 1, the elliptic Eisenstein series Eell.z; s/ admits the Fourier expansion

Eell.z; s/ D
X

m2Z
am.y; s/e.mx/;

where

am.y; s/ D
X

�D
�
a b
c d

�

2�in�=�1
e
�

m
abC cd

a2 C c2
	

�
Z 1

�1

�

�1C
�a2 C c2

2y
t2 C .a2 C c2/2y2 C 1

2.a2 C c2/y
	2	�s=2

e.�mt/dt:

Proof. Since Eell.z C 1; s/ D Eell.z; s/, the series Eell.z; s/ admits the Fourier
expansion

Eell.z; s/ D
X

m2Z
am.y; s/e.mx/;
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where

am.y; s/ D
Z 1

0

Eell.z; s/e.�mx/dx D
X

�D
�
a b
c d

�

2�in�

Z 1

0

sinh
�

%.�z/
��s
e.�mx/dx

D
X

�D
�
a b
c d

�

2�in�=�1

X

n2Z

Z 1

0

sinh
�

%.�.zC n//��se.�mx/dx

D
X

�D
�
a b
c d

�

2�in�=�1

Z 1

�1
sinh

�

%.�z/
��s
e.�mx/dx:

Now, writing sinh2
�

%.�z/
� D �1C cosh2

�

%.�z/
�

, using (2), and substituting t WD
x C abCcd

a2Cc2 , we obtain

cosh
�

%.�z/
� D 1

2y

�

.a2 C c2/t2 C .a2 C c2/y2 C 1

a2 C c2
	

D a2 C c2
2y

t2 C .a2 C c2/2y2 C 1
2.a2 C c2/y :

From this the claimed formula for am.y; s/ follows immediately. �

Proposition 5.2. For z 2 H with Im.z/ > 1, and s 2 C with Re.s/ > 1, we have

a0.y; s/ D 2s
p
� �.s � 1=2/
�.s/

� y1�s
1X

kD0

.s � 1
2
/k � . s2 /k

. s
2
C 1

2
/k � kŠ

� y�2k � V0.s C 2k/;

where

V0.s/ WD
X

�D
�
a b
c d

�

2�in�=�1

1

.a2 C c2/s :

Proof. Letting m D 0, we derive from Lemma 5.1

a0.y; s/ D
X

�D
�
a b
c d

�

2�in�=�1
b0;� .y; s/;

where

b0;� .y; s/ WD 2
Z 1

0

�

�1C
�a2 C c2

2y
t2 C .a2 C c2/2y2 C 1

2.a2 C c2/y
	2	�s=2

dt

D
Z 1

0

�

�1C
�a2 C c2

2y
t C .a2 C c2/2y2 C 1

2.a2 C c2/y
	2	�s=2 dtp

t
:
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Substituting

r WD ..a2 C c2/y C 1/2
.a2 C c2/2

�

t C ..a2 C c2/y C 1/2
.a2 C c2/2

	�1
;

we obtain

b0;� .y; s/ D 2sys.a2 C c2/s�1
..a2 C c2/y C 1/2s�1

Z 1

0

rs�3=2.1 � r/�1=2

�
�

1 � 4.a2 C c2/y
..a2 C c2/y C 1/2 � r

	�s=2
dr:

Now using the integral representation (3) of Gauss’s hypergeometric function
F.a0; b0I c0Iw/ with

a0 WD s

2
; b0 WD s � 1

2
; c0 WD s; and w WD 4.a2 C c2/y

..a2 C c2/y C 1/2 ;

which is justified since Re.c0/ > Re.b0/ D Re.s/ � 1=2 > 0, we obtain

b0;� .y; s/ D 2sys.a2 C c2/s�1
..a2 C c2/y C 1/2s�1 �

p
� �.s � 1=2/
�.s/

� F
�
s

2
; s � 1

2
I sI 4.a2 C c2/y

..a2 C c2/y C 1/2
�

:

Since � D PSL2.Z/ and y > 1, we have

4.a2 C c2/y
..a2 C c2/y C 1/2 < 1;

and so the hypergeometric function in question can be represented as a series, which
shows that

F
� s

2
; s � 1

2
I sI 4.a2 C c2/y

..a2 C c2/y C 1/2
	

D F
�

s � 1
2
;
s

2
I sI 4.a2 C c2/y

..a2 C c2/y C 1/2
	

:

Now the hypergeometric function under consideration is of the form F.b0; a0I
2a0Iw/, which allows us to apply the following formula (see [1], formula 15.3.17):
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F.b0; a0I 2a0Iw/

D 22b0.1Cp1 � w/�2b0F

0

@b0; b0 � a0 C 1

2
I a0 C 1

2
I
 

1 �p1 � w

1Cp1 � w

!2
1

A :

(23)

Again, since y > 1, we have

s

1 � 4.a2 C c2/y
..a2 C c2/y C 1/2 D

.a2 C c2/y � 1

.a2 C c2/y C 1;

which leads to

F

�

s � 1
2
;
s

2
I sI 4.a2 C c2/y

..a2 C c2/y C 1/2
�

D 22s�1
�

2.a2 C c2/y
.a2 C c2/y C 1

��2sC1
F

�

s � 1
2
;
s

2
I s
2
C 1

2
I 1

.a2 C c2/2y2
�

D ..a2 C c2/y/�2sC1..a2 C c2/y C 1/2s�1F
�

s � 1
2
;
s

2
I s
2
C 1

2
I 1

.a2 C c2/2y2
�

:

(24)

Adding up, we obtain

b0;� .y; s/ D 2s
p
� �.s � 1=2/
�.s/

� y1�s

.a2 C c2/s � F
�

s � 1
2
;
s

2
I s
2
C 1

2
I 1

.a2 C c2/2y2
	

:

Introducing the notation

g.s/ WD 2s
p
� �.s � 1=2/
�.s/

;

we arrive at

a0.y; s/

D g.s/ � y1�s
X

�D
�
a b
c d

	

2�in�=�1

1

.a2 C c2/s F
�

s � 1
2
;
s

2
I s
2
C 1

2
I 1

.a2 C c2/2y2
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D g.s/ � y1�s
X

�D
�
a b
c d

�

2�i n�=�1

1

.a2 C c2/s
1X

kD0

.s � 1
2
/k � . s2 /k

. s
2
C 1

2
/k � kŠ

�
1

.a2 C c2/2y2
�k

D g.s/ � y1�s
1X

kD0

.s � 1
2
/k � . s2 /k

. s
2
C 1

2
/k � kŠ

� y�2k � V0.s C 2k/:

This completes the proof of the proposition. ut
Remark 5.3. The statement of Proposition 5.2 can easily be generalized to the case
z 2 H with Im.z/ ¤ Im.��1i/ for any � 2 � as follows: When applying formula
(23) in the case y < .a2 C c2/�1, formula (24) becomes

F
�

s � 1
2
;
s

2
I sI 4.a2 C c2/y

..a2 C c2/y C 1/2
	

D ..a2 C c2/y C 1/2s�1F
�

s � 1
2
;
s

2
I s C 1

2
I .a2 C c2/2y2

	

:

Therefore, we arrive at

a0.y; s/

D g.s/ � y1�s
X

�D
�
a b
c d

�

2�in�=�1
y>.a2Cc2/�1

.a2 C c2/�s
1X

kD0

.s � 1
2
/k � . s2 /k

. s
2
C 1

2
/k � kŠ

� �.a2 C c2/y��2k

C g.s/ � ys
X

�D
�
a b
c d

�

2�in�=�1
y<.a2Cc2/�1

.a2 C c2/s�1
1X

kD0

.s � 1
2
/k � . s2 /k

.s C 1
2
/k � kŠ

� �.a2 C c2/y�2k:

Proposition 5.4. For z 2 H with Im.z/ > 1, s 2 C with Re.s/ > 1, and m ¤ 0,
we have

am.y; s/ D 2sys
1X

k1D0

1X

k2D0

. s
2
/k1 � . s2 /k2
k1Š � k2Š � I�m.y; sI k1; k2/ � V�m.s C 2k1 C 2k2/;

where

Im.y; sI k1; k2/ WD
Z 1

�1
.y C it/�s�2k1 .y � it/�s�2k2e.mt/ dt
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and

Vm.s/ D
X

�2�in�=�1
Im.��1i/se

�

mRe.��1i/
�

:

Proof. For m ¤ 0, we derive from Lemma 5.1

am.y; s/ D
X

�D
�
a b
c d

�

2�in�=�1
e
�

m
abC cd

a2 C c2
	

bm;� .y; s/;

where

bm;� .y; s/ WD
Z 1

�1

�

�1C
�a2 C c2

2y
t2 C .a2 C c2/2y2 C 1

2.a2 C c2/y
	2	�s=2

e.�mt/ dt:

(25)

We write

� 1C
�a2 C c2

2y
t2 C .a2 C c2/2y2 C 1

2.a2 C c2/y
	2

D .a2 C c2/2
.2y/2

�

t2 C
�

y C 1

a2 C c2
	2	�

t2 C
�

y � 1

a2 C c2
	2	

D .a2 C c2/2
.2y/2

�

itC y C 1

a2 C c2
	�

�itC y C 1

a2 C c2
	�

itC y � 1

a2 C c2
	

�
�

�itC y � 1

a2 C c2
	

D .a2 C c2/2
.2y/2

.y C it/2.y � it/2
�

1 � 1

.a2 C c2/2.y C it/2

	

�
�

1 � 1

.a2 C c2/2.y � it/2

	

: (26)

Since y > 1, we have the estimate

max�1<t<1
� 1

j.a2 C c2/2.y ˙ it/2j
	

D 1

.a2 C c2/2y2 < 1;

and hence we can write

�

1 � 1

.a2 C c2/2.y ˙ it/2

	�s=2 D
1X

kD0

. s
2
/k

kŠ.a2 C c2/2k � .y ˙ it/�2k:
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Therefore, we obtain

bm;� .y; s/ D .2y/s

.a2 C c2/s
1X

k1D0

1X

k2D0

. s
2
/k1 � . s2 /k2

k1Š � k2Š � .a2 C c2/2.k1Ck2/

�
Z 1

�1
.y C it/�s�2k1.y � it/�s�2k2e.�mt/ dt; (27)

from which the statement follows. ut
Remark 5.5. The statement of Proposition 5.4 can be generalized to the case z 2
H with Im.z/ ¤ Im.��1i/ for any � 2 � . In this case the Fourier coefficient in
question becomes

am.y; s/ D
X

�D
�
a b
c d

�

2�i n�=�1
y>.a2Cc2/�1

e
�

m
abC cd

a2 C c2
	

b.>/m;� .y; s/

C
X

�D
�
a b
c d

�

2�in�=�1
y<.a2Cc2/�1

e
�

m
abC cd

a2 C c2
	

b.</m;� .y; s/;

where

b.>/m;� .y; s/ D
2sys

.a2 C c2/1�s
1X

k1D0

1X

k2D0

. s
2
/k1 � . s2 /k2
k1Š � k2Š �I�m=.a2Cc2/

�

.a2 C c2/y; sI k1; k2
	

;

(28)

b.</m;� .y; s/ D
2sy1�s

.a2 C c2/s
1X

k1D0

1X

k2D0

. s
2
/k1 � . s2 /k2
k1Š � k2Š � I�my

� 1

.a2 C c2/y ; sI k1; k2
	

:

(29)

Here b.>/m;� .y; s/ is obtained as in the proof of Proposition 5.4 (after a suitable

substitution in (27)), whereas b.</m;� .y; s/ is obtained by rewriting (26) as

� 1C
�a2 C c2

2y
t2 C .a2 C c2/2y2 C 1

2.a2 C c2/y
	2

D .a2 C c2/2y2
4

� 1

.a2 C c2/y C
it

y

	2� 1

.a2 C c2/y �
it

y

	2

�
 

1 �
� 1

.a2 C c2/y C
it

y

	�2
! 

1 �
� 1

.a2 C c2/y �
it

y

	�2
!

;
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which, after using the expansion

 

1 �
� 1

.a2 C c2/y ˙
it

y

	�2
!�s=2

D
1X

kD0

. s
2
/k

kŠ
�
� 1

.a2 C c2/y ˙
it

y

	�2k
;

yields the claimed formula (again after a suitable substitution in the corresponding
integral).

Remark 5.6. The series Vm.s/ (m 2 Z) of Propositions 5.2 and 5.4 can be rewritten
as follows: Consider the anti-isomorphism � W � ! � given by � 7! ��1. Since
�.�1/ D �1 and �.�i/ D �i , we have �.�1n�=�i / D �in�=�1. Therefore,
we obtain

Vm.s/ D
X

�2�in�=�1
Im.��1i/se

�

mRe.��1i/
� D

X

�2�1n�=�i
Im.�i/se

�

mRe.�i/
�

D 1

2
Vm.i; s/

with the Poincaré series (14) evaluated at z D i . Note that the series V0.s/multiplied
by �.2s/ equals the Dedekind zeta function associated to the field of Q.i/.

6 Meromorphic continuation of the elliptic Eisenstein series

Lemma 6.1. The series

V0.s/ D
X

�D
�
a b
c d

�

2�in�=�1

1

.a2 C c2/s

converges absolutely and locally uniformly for s 2 C with Re.s/ > 1, and hence
defines a holomorphic function. It has a meromorphic continuation to the whole s-
plane with a simple pole at s D 1 and poles at s D 
=2, where 
 is a non-trivial
zero of �.s/. Furthermore, we have V0.1=2/ D 0.

Proof. Since V0.s/ D Epar.i; s/=2, the claimed assertions immediately follow
from the known properties of the parabolic Eisenstein series Epar.z; s/ recalled in
Section 2.4. In particular, the vanishing of V0.s/ at s D 1=2 follows from the
functional equation (6) by observing that '.1=2/ D �1. ut
Lemma 6.2. For z 2 H with Im.z/ > 1, and N 2 N, the series

1X

kDNC1

.s � 1
2
/k � . s2 /k

�. s
2
C 1

2
C k/ � kŠ � y

�2k � V0.s C 2k/
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converges absolutely and locally uniformly for s 2 C with Re.s/ > �2N � 1, and
hence defines a holomorphic function.

Proof. Fix N 2 N, and let s 2 C with Re.s/ > �2N � 1. Then, for k 2 N, we
define the functions

fk.y; s/ WD gk.y; s/ � V0.s C 2k/; where gk.y; s/ WD
.s � 1

2
/k � . s2 /k

�. s
2
C 1

2
C k/ � kŠ � y

�2k:

If k � N C 1, we have Re.s C 2k/ � Re.s/C 2N C 2 > 1, whence the functions
V0.s C 2k/ are holomorphic. Since the functions gk.y; s/ are also holomorphic in
the range under consideration, the functions fk.y; s/ are holomorphic for s 2 C

with Re.s/ > �2N � 1 as long as k � N C 1. We now estimate

1X

kDNC1

ˇ
ˇfk.y; s/

ˇ
ˇ � V0

�

Re.s/C 2N �
1X

kDNC1

ˇ
ˇgk.y; s/

ˇ
ˇ:

Since the ratio of successive terms in the latter series has limit

lim
k!1

jgkC1.y; s/j
jgk.y; s/j D lim

k!1

ˇ
ˇ
ˇ
ˇ
ˇ

�

s � 1
2
C k�� s

2
C k�

�
s
2
C 1

2
C k�.1C k/ �

1

y2

ˇ
ˇ
ˇ
ˇ
ˇ
D 1

y2
< 1;

we derive from d’Alembert’s criterion that the series
P1

kDNC1 fk.y; s/ converges
absolutely and locally uniformly for s 2 C with Re.s/ > �2N � 1, which proves
the claim. ut
Proposition 6.3. For z 2 H with Im.z/ > 1, the function a0.y; s/ has a
meromorphic continuation to the whole s-plane with possible poles at s D 1� 2N ,
s D 
=2 � 2N , s D 1=2 � 2N , and s D �1=2 � 2N (N 2 N), where 
 is a
non-trivial zero of �.s/.

Proof. We start by proving that the function a0.y; s/ has a meromorphic continua-
tion to the half-plane

HN WD fs 2 C jRe.s/ > �2N � 1g

for any N 2 N. By Proposition 5.2 and the duplication formula for the �-function,
we can write, using the notation from the proof of Lemma 6.2,

a0.y; s/ D
2s
p
� �.s � 1

2
/�. s

2
C 1

2
/

�.s/
� y1�s

 
NX

kD0
fk.y; s/C

1X

kDNC1
fk.y; s/

!

D 2� �.s � 1
2
/

�. s
2
/

� y1�s
 

NX

kD0
fk.y; s/C

1X

kDNC1
fk.y; s/

!

: (30)
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Since Re.s/ > �2N � 1 by assumption, Lemma 6.2 proves that the series
P1

kDNC1 fk.y; s/ is a holomorphic function on the half-plane HN . Since the finite

sum
PN

kD0 fk.y; s/ is a meromorphic function on the whole s-plane by Lemma
6.1, we conclude that a0.y; s/ has a meromorphic continuation to the half-plane
HN . Since N was chosen arbitrarily, this proves the meromorphic continuation of
a0.y; s/ to the whole s-plane.

In order to determine the poles of a0.y; s/, we calculate its poles in the strip

SN WD fs 2 C j � 2N � 1 < Re.s/ � �2N C 1g

for any N 2 N. By considering a0.y; s/ with its decomposition (30) in the strip
SN , we see that the poles come from the finite sum

PN
kD0 fk.y; s/, which has poles

in the strip SN arising from the function fN .y; s/, more precisely from the factor
V0.s C 2N/ at s D 1 � 2N and s D 
=2 � 2N , where 
 is a non-trivial zero of
�.s/, and from the �-factor �.s � 1=2/ at s D 1=2 � 2N and s D �1=2 � 2N .
Therefore, the possible poles of a0.y; s/ in the strip SN are located at s D 1 � 2N ,
s D 
=2� 2N , s D 1=2� 2N , and s D �1=2� 2N , as claimed. ut
Remark 6.4. Using Remark 5.3, one can establish the meromorphic continuation
of a0.y; s/ to the whole s-plane in the more general case Im.z/ ¤ Im.��1i/ for
any � 2 � , using the same techniques as in Lemma 6.2 and Proposition 6.3 applied
accordingly to the modified situation. The poles of a0.y; s/ turn out to be same as
in the case Im.z/ > 1.

Lemma 6.5. For y > 1, s 2 C, m ¤ 0, and k1; k2 2 N, let Im.y; sI k1; k2/ denote
the integral

Im.y; sI k1; k2/ WD
Z 1

�1
.y C it/�s�2k1 .y � it/�s�2k2e.mt/ dt:

Then the following assertions hold:

(i) The integral Im.y; sI k1; k2/ converges absolutely and locally uniformly for
s 2 C with Re.s/ > 1=2� k1 � k2, and hence defines a holomorphic function.

(ii) The integral Im.y; sI k1; k2/ admits a holomorphic continuation to the whole
s-plane.

(iii) Let	C be a compact subset and let d 2N be such that	fs 2 C jRe.s/ >
1=2� k1 � k2 � d=2g. Then, we have for all s 2  the bound

ˇ
ˇIm.y; sI k1; k2/

ˇ
ˇ� .k1 C k2/d

jmjd � y�2.Re.s/Ck1Ck2Cd=2/C1;

where the implied constant depends on  and d , but is independent of m and
k1, k2.
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Proof. (i) For s 2 C with Re.s/ > 1=2� k1 � k2, we have the estimate

ˇ
ˇIm.y; sI k1; k2/

ˇ
ˇ �

Z 1

�1

ˇ
ˇ.y C it/�s�2k1.y � i t/�s�2k2 e.mt/

ˇ
ˇ dt

D
Z 1

�1
.y2 C t2/�Re.s/�k1�k2 dt

D y�2.Re.s/Ck1Ck2/C1
Z 1

�1

�

1C t2

y2

	�Re.s/�k1�k2 dt

y

D y�2.Re.s/Ck1Ck2/C1 � �
�

Re.s/� 1=2C k1 C k2
�

�
�

Re.s/C k1 C k2
�

� � � y�2.Re.s/Ck1Ck2/C1: (31)

For all s 2 , where 	 fs 2 C jRe.s/ > 1=2� k1 � k2g is a compact subset, we
therefore obtain the bound

ˇ
ˇIm.y; sI k1; k2/

ˇ
ˇ � �;

which shows that the integral Im.y; sI k1; k2/ converges absolutely and locally
uniformly for s 2 C with Re.s/ > 1=2� k1 � k2.

(ii) Let Re.s/ > 1=2� k1 � k2. Integration by parts yields

Im.y; sI k1; k2/ D
�

.y C it/�s�2k1 .y � it/�s�2k2 e.mt/

2�im

�1

tD�1

C 1

2�m

Z 1

�1
.s C 2k1/.y C it/�s�2k1�1.y � it/�s�2k2e.mt/ dt

� 1

2�m

Z 1

�1
.s C 2k2/.y C it/�s�2k1 .y � it/�s�2k2�1e.mt/ dt:

In absolute values, the boundary term equals

ˇ
ˇ
ˇ
ˇ
.y C it/�s�2k1 .y � it/�s�2k2

e.mt/

2�im

ˇ
ˇ
ˇ
ˇ
D .y2 C t2/�Re.s/�k1�k2

2�jmj :

Since Re.s/ > 1=2� k1 � k2 and y2 C t2 > 1 for t 2 .�1;1/, we have

.y2 C t2/�Re.s/�k1�k2 < .y2 C t2/�1=2;

from which we conclude that the boundary term vanishes. Therefore, we obtain the
recurrence formula
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Im.y; sI k1; k2/ D .s C 2k1/
2�m

Im

�

y; sI k1 C 1

2
; k2

	

� .s C 2k2/
2�m

Im

�

y; sI k1; k2 C 1

2

	

: (32)

By part (i), both terms on the right-hand side are holomorphic for s 2 C with
Re.s/ > �k1 � k2. In this way we obtain the holomorphic continuation of
Im.y; sI k1; k2/ to the half-plane fs 2 C jRe.s/ > �k1 � k2g.

Let d 2 N. Applying relation (32) d times, we arrive at a formula of the type

Im.y; sI k1; k2/ D 1

.2�m/d

dX

jD0
Pd;j .sI k1; k2/

� Im
�

y; sI k1 C j

2
; k2 C d � j

2

	

; (33)

where Pd;j .sI k1; k2/ is a polynomial in s and k1; k2 of degree d . In fact, one can
prove by induction on d that

Pd;j .sI k1; k2/ D .�1/d�j �
 

d

d � j

!

� .s C 2k1/j � .s C 2k2/d�j

.0 � j � d/:

Now all the terms in (33) are holomorphic for s 2 C with

Re.s/ > 1=2� .k1 C j=2/� .k2 C .d � j /=2/ D 1=2� k1 � k2 � d=2:

Therefore formula (33) yields the holomorphic continuation of Im.y; sI k1; k2/ to
the half-plane fs 2 C jRe.s/ > 1=2 � k1 � k2 � d=2g. Since d 2 N was chosen
arbitrarily, this proves the holomorphic continuation of Im.y; sI k1; k2/ to the whole
s-plane.

(iii) Let  	 C be a compact subset and let d 2 N be such that  	 fs 2
C jRe.s/ > 1=2� k1 � k2 � d=2g. For s 2 , the function Im.y; sI k1; k2/ is given
by formula (33). Since Re.s/ > 1=2� k1 � k2 � d=2 D 1=2� .k1 C j=2/� .k2 C
.d � j /=2/, the bound (31) provides the estimate

ˇ
ˇ
ˇ
ˇ
Im

�

y; sI k1 C j

2
; k2 C d � j

2

	
ˇ
ˇ
ˇ
ˇ
� y�2.Re.s/Ck1Ck2Cd=2/C1;

where the implied constant is universal. Furthermore, letting s 2 , we have the
bound

ˇ
ˇPd;j .sI k1; k2/

ˇ
ˇ� k

j
1 � kd�j2 � .k1 C k2/d .0 � j � d/;
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where the implied constant depends on  and d , but is independent of m and k1,
k2. Altogether, as long as s 2 , we have the bound

ˇ
ˇIm.y; sI k1; k2/

ˇ
ˇ� .d C 1/ � .k1 C k2/d � y

�2.Re.s/Ck1Ck2Cd=2/C1

.2�jmj/d

� .k1 C k2/d
jmjd � y�2.Re.s/Ck1Ck2Cd=2/C1;

where the implied constant depends on  and d , but is independent of m and
k1, k2. ut
Lemma 6.6. For m ¤ 0, the following assertions hold:

(i) The function Vm.s/ admits a meromorphic continuation to the whole s-plane
with possible simple poles at s D sj � 2N and s D �sj � 2N C 1

(N 2 N).
(ii) Let N 2 N and  	 fs 2 C jRe.s/ > �2N � 1g a compact subset not

containing any pole of Vm.s/. Then, for all s 2 , we have the bound

ˇ
ˇVm.s/

ˇ
ˇ� jmj2NC2;

where the implied constant depends on and N , but is independent ofm.
(iii) Let N 2 N and Qs a pole of Vm.s/ with Re.Qs/ D �2N C 1=2. Then, the residue

of Vm.s/ at Qs is bounded by

ˇ
ˇressDQsVm.s/

ˇ
ˇ� jmj2N ;

where the implied constant depends on Qs and N , but is independent ofm.

Proof. (i) Since we have Vm.s/ D Vm.i; s/=2 by Remark 5.5, the claim follows
immediately from Proposition 3.7.

(ii) We will prove the claim more generally for the Poincaré series Vm.z; s/ for
any z 2 H. For s 2 , we then consider the decomposition

Vm.z; s/ D
2NC1X

kD0

.2�jmj/k
kŠ

Pm.z; s C k/C
1X

kD2NC2

.2�jmj/k
kŠ

Pm.z; s C k/: (34)

From the proof of Proposition 3.7 we recall that the series on the right-hand side
converges absolutely for s 2 . Hence, we can rearrange the summation and find
for s 2 ,
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ˇ
ˇ
ˇ
ˇ
ˇ

1X

kD2NC2

.2�jmj/k
kŠ

Pm.z; s C k/
ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ

1X

kD0

.2�jmj/2NCkC2
.2N C k C 2/Š Pm.z; s C 2N C k C 2/

ˇ
ˇ
ˇ
ˇ
ˇ

D .2�jmj/2NC2
ˇ
ˇ
ˇ
ˇ
ˇ

1X

kD0

.2�jmj/k
.2N C k C 2/Š

X

�2�1n�
Im.�z/sC2NCkC2

� exp
��2�jmjIm.�z/

�

e
�

mRe.�z/
�

ˇ
ˇ
ˇ
ˇ
ˇ

D .2�jmj/2NC2
ˇ
ˇ
ˇ
ˇ
ˇ

X

�2�1n�
Im.�z/sC2NC2

� exp
��2�jmjIm.�z/

�

e
�

mRe.�z/
�
1X

kD0

.2�jmjIm.�z//k

.2N C k C 2/Š

ˇ
ˇ
ˇ
ˇ
ˇ

� .2�jmj/2NC2
X

�2�1n�
Im.�z/Re.s/C2NC2 exp

��2�jmjIm.�z/
�

�
1X

kD0

.2�jmjIm.�z//k

kŠ

D .2�jmj/2NC2 � Epar.z;Re.s/C 2N C 2/� jmj2NC2;

where the implied constant depends on z, , and N , but is independent of m.
In order to estimate the finite sum in the decomposition (34), we multiply the

bounds (10) and (13) by the factor 2�2sC1��sC1�.s/�1jmj�sC1=2, and derive from
the spectral expansion (9) of Pm.z; s/ for all s 2  the bound

ˇ
ˇPm.z; s C k/

ˇ
ˇ� jmj�Re.s/�kC1=2 � jmj2N�kC3=2 .k D 0; : : : ; 2N C 1/;

where the implied constant depends on z and, but is independent ofm. Hence, for
all s 2 , we obtain

ˇ
ˇVm.z; s/

ˇ
ˇ�

2NC1X

kD0
jmjk � jmj2N�kC3=2 C jmj2NC2 � jmj2NC2;

where the implied constant depends on z, , and N , but is independent of m. This
proves the second claim.
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(iii) In order to prove the third claim, we recall formulas (15), resp. (16), together
with the bound (see [10], p. 86, adapted to our situation)

ˇ
ˇ
`.m/

ˇ
ˇ
2 � jtj j exp.�jtj j/ .` 2 N W s` D sj D 1=2C itj /;

where the implied constant is universal. Then we obtain

ˇ
ˇressDsj�2NVm.z; s/

ˇ
ˇ� jmj�Re.sj /C2NC1=2 � jmj2N ;

resp.

ˇ
ˇressD�sj�2NC1Vm.z; s/

ˇ
ˇ� jmjRe.sj /C2N�1=2 � jmj2N ;

where the implied constants depend on z, sj , and N , but are independent of m. ut
Lemma 6.7. For z 2 H with Im.z/ > 1, m ¤ 0, and N 2 N, the series

2sys
1X

nDNC1

X

k1Ck2Dn

. s
2
/k1 � . s2 /k2
k1Š � k2Š � I�m.y; sI k1; k2/ � V�m.s C 2k1 C 2k2/

converges absolutely and locally uniformly for s 2 C with Re.s/ > �2N � 1, and
hence defines a holomorphic function.

Proof. Let  	 fs 2 C jRe.s/ > �2N � 1g be a compact subset. For s 2  and
k1; k2 2 N, we define the functions

fmIk1;k2.y; s/ WD 2sys
. s
2
/k1 � . s2 /k2
k1Š � k2Š � I�m.y; sI k1; k2/ � V�m.s C 2k1 C 2k2/:

If k1 C k2 � N C 1, we have Re.s C 2k1 C 2k2/ � Re.s/C 2N C 2 > 1, whence
the functions V�m.s C 2k1 C 2k2/ are holomorphic for s 2 . By Lemma 6.5 (ii),
the functions I�m.y; sI k1; k2/ are holomorphic for s 2 C. Therefore, the functions
fmIk1;k2 .y; s/ are holomorphic for s 2 , as long as k1C k2 � N C 1. Now choose
d 2 N with d > 2N C1; then we have 	 fs 2 C jRe.s/ > 1=2�k1�k2�d=2g,
as long as k1 C k2 � N C 1. Using Lemma 6.5 (iii), we estimate for s 2 ,

1X

nDNC1

X

k1Ck2Dn

ˇ
ˇfmIk1;k2 .y; s/

ˇ
ˇ

� V0.Re.s/C 2N C 2/2
Re.s/y�Re.s/�dC1

jmjd
1X

nDNC1

X

k1Ck2Dn

j. s2 /k1 j � j. s2 /k2 j
k1Š � k2Š � .k1 C k2/

d

y2.k1Ck2/

� y�Re.s/�dC1
jmjd

1
X

nDNC1

nd

y2n

n
X

k1D0

.j s2 j/k1 � .j s2 j/n�k1
k1Š � .n� k1/Š D y�Re.s/�dC1

jmjd
1
X

nDNC1

nd

y2n
.jsj/n
nŠ

;



Elliptic Eisenstein series for PSL2.Z/. 431

where the implied constants depend on , d , and N , but are independent of m and
k1, k2. Since the ratio of successive terms in the latter series has limit

lim
n!1

ˇ
ˇ
ˇ
ˇ
ˇ

.nC 1/d � .nC jsj/
nd � .nC 1/ � 1

y2

ˇ
ˇ
ˇ
ˇ
ˇ
D 1

y2
< 1;

we derive from d’Alembert’s criterion that the series in question converges abso-
lutely and locally uniformly for s 2 C with Re.s/ > �2N � 1, which proves the
claim.

For later purposes, we note for s 2  the bound

ˇ
ˇ
ˇ
ˇ
ˇ

1X

nDNC1

X

k1Ck2Dn
fmIk1;k2.y; s/

ˇ
ˇ
ˇ
ˇ
ˇ
� jmj�d ; (35)

where d 2 N with d > 2N C1, and where the implied constant depends on z,, d ,
and N , but is independent of m. ut
Proposition 6.8. For z 2 H with Im.z/ > 1, and m 6D 0, the following assertions
hold:

(i) The function am.y; s/ admits a meromorphic continuation to the whole s-
plane with possible simple poles at s D sj � 2N and s D �sj � 2N C 1
(N 2 N).

(ii) Let N 2 N and  	 fs 2 C jRe.s/ > �2N � 1g a compact subset not
containing any pole of am.y; s/. Then, for all s 2 , we have the bound

ˇ
ˇam.y; s/

ˇ
ˇ� jmj�d ;

where d 2 N with d > 2N C 1, and where the implied constant depends on z,
, d , and N , but is independent of m.

(iii) Let N 2 N and Qs a pole of am.y; s/ with Re.Qs/ D �2N C 1=2. Then, the
residue of am.y; s/ at Qs is bounded by

ˇ
ˇressDQsam.y; s/

ˇ
ˇ� jmj�d ;

where d 2 N with d > 2N C 3, and where the implied constant depends on z,
Qs, d , and N , but is independent ofm.

Proof. (i) As before, we obtain the meromorphic continuation of am.y; s/ to the
whole s-plane by constructing its meromorphic continuations to the half-planes

HN WD fs 2 C jRe.s/ > �2N � 1g
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for any N 2 N. Applying Proposition 5.4 and using the notation from the proof of
Lemma 6.7, we can write

am.y; s/ D
NX

nD0

X

k1Ck2Dn
fmIk1;k2.y; s/C

1X

nDNC1

X

k1Ck2Dn
fmIk1;k2.y; s/: (36)

Since Re.s/ > �2N � 1 by assumption, Lemma 6.7 proves that the series

1X

nDNC1

X

k1Ck2Dn
fmIk1;k2 .y; s/

is a holomorphic function on the half-plane HN . Since the first double sum in (36)
is a meromorphic function on the whole s-plane, we conclude that am.y; s/ has a
meromorphic continuation to the half-plane HN .

In order to determine the poles of am.y; s/, we calculate its poles in the strip

SN WD fs 2 C j � 2N � 1 < Re.s/ � �2N C 1g

for anyN 2 N. By considering am.y; s/ with its decomposition (36) in the strip SN ,
we see that the poles come from the finite sum

NX

nD0

X

k1Ck2Dn
fmIk1;k2.y; s/ D 2sys

NX

nD0
V�m.s C 2n/

nX

k1D0

. s
2
/k1 � . s2 /n�k1

k1Š � .n � k1/Š

� I�m.y; sI k1; n � k1/;

which has possible simple poles at s D sj � 2N and s D �sj � 2N C 1 in the strip
SN arising from the factors V�m.s C 2n/ (n D 0; : : : ; N ). Therefore, the possible
poles of am.y; s/ in the strip SN are located at s D sj � 2N and s D �sj � 2N C 1
(N 2 N).

(ii) In order to prove the second claim, we let s 2 , where 	 HN is a compact
subset not containing any pole of am.y; s/, and we decompose am.y; s/ as in (36).
Choosing now d 0 2 N with d 0 > 4N C 3 and applying the bounds obtained in
Lemma 6.5 (iii) (note that Re.s/ > 1=2� n � d 0=2 for n D 0; : : : ; N ) and Lemma
6.6 (ii) (note that Re.s/ C 2n > �2.N � n/ � 1 for n D 0; : : : ; N ) to the finite
double sum in (36) and the bound (35) to the remaining series in (36), we obtain the
estimate

ˇ
ˇam.y; s/

ˇ
ˇ�

NX

nD0

ˇ
ˇV�m.s C 2n/

ˇ
ˇ

nX

k1D0

ˇ
ˇI�m.y; sI k1; n � k1/

ˇ
ˇC jmj�d 0

�
NX

nD0
jmj2.N�n/C2 � jmj�d 0 C jmj�d 0 � jmj�.d 0�2N�2/;
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where the implied constants depend on z, , d 0, and N , but are independent of m.
Setting d WD d 0 � 2N � 2 and observing that d > 2N C 1, the proof of part (ii) is
complete.

(iii) As in the proof of (ii), we work from the decomposition (36). We let Qs be a
pole of am.y; s/ with Qs D �2N C 1=2, i.e., Qs 2 SN . As before, choosing d 0 2 N

with d 0 > 4N C 3, the bounds obtained in Lemmas 6.5 (iii) and 6.6 (iii) give the
estimate

ˇ
ˇressDQsam.y; s/

ˇ
ˇ�

NX

nD0

ˇ
ˇressDQsV�m.s C 2n/

ˇ
ˇ

nX

k1D0

ˇ
ˇI�m.y; QsI k1; n � k1/

ˇ
ˇ

�
NX

nD0
jmj2.N�n/ � jmj�d 0 � jmj�.d 0�2N/;

where the implied constants depend on z, Qs, d , and N , but are independent of m.
Setting d WD d 0 � 2N and observing that d > 2N C 3, the proof of part (iii) is also
complete. ut
Remark 6.9. By means of Remark 5.5, one can establish the meromorphic con-
tinuation of am.y; s/ (m ¤ 0) to the whole s-plane in the more general case
Im.z/ ¤ Im.��1i/ for any � 2 � by applying Lemma 6.5 (noting that this lemma
also holds for y > 0 andm 2 R,m ¤ 0) as well as by using the same techniques as
in Lemma 6.7 and Proposition 6.8 applied according to the modified situation. The
poles of am.y; s/ and their residues turn out to be same as in the case Im.z/ > 1.
Moreover, also the statements (ii) and (iii) of Proposition 6.8 generalize to the case
Im.z/ ¤ Im.��1i/ for any � 2 � .

Theorem 6.10. For z 2 H with Im.z/ > 1, the elliptic Eisenstein series Eell.z; s/
has a meromorphic continuation to the whole s-plane with possible poles at s D
s� � 2N , s D sj � 2N , and s D �sj � 2N C 1 (N 2 N), where s� is a pole of
�.s�1=2/Epar.i; s/, and sj D 1=2C i tj with tj > 0 and sj .1�sj / D 	j a discrete
eigenvalue of �hyp.

Proof. Let z 2 H with Im.z/ > 1. For s 2 C with Re.s/ > 1, we represent the
elliptic Eisenstein series Eell.z; s/ by its Fourier expansion

Eell.z; s/ D
X

m2Z
am.y; s/e.mx/; (37)

where the coefficients am.y; s/ are explicitly given by Propositions 5.2 and 5.4 for
m D 0 andm ¤ 0, respectively. By Propositions 6.3 and 6.8, the functions am.y; s/
admit a meromorphic continuation to the whole s-plane.

In order to prove the meromorphic continuation of Eell.z; s/ to the whole s-plane,
let s 2 , where  	 fs 2 C jRe.s/ > �2N � 1g for some N 2 N is acompact
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subset not containing any pole of am.y; s/ for all m 2 Z. Choosing d 2 N,
d > 2N C 2, we have by Proposition 6.8 (ii) the bound

X

m2Z
m¤0

ˇ
ˇam.y; s/e.mx/

ˇ
ˇ�

X

m2Z
m¤0

jmj�2;

where the implied constant depends on z, , d , and N , but is independent of m.
Therefore, the Fourier expansion (37) converges absolutely and uniformly in .
This proves that Eell.z; s/ is holomorphic in s 2 C away form the poles of am.y; s/
form 2 Z.

Now let Qs 2 C be a pole of am.y; s/ for m ¤ 0 as in Proposition 6.8 (i); then,
Re.Qs/ D �2N C 1=2 for some N 2 N. Choosing d 2 N, d > 2N C 3, we estimate
using Proposition 6.8 (iii),

lim
s!Qs

.s � Qs/
X

m2Z
m¤0

am.y; s/e.mx/�
X

m2Z
m¤0

ˇ
ˇressDQsam.y; s/

ˇ
ˇ�

X

m2Z
m¤0

jmj�2;

where the implied constant depends on z, Qs, d , and N , but is independent of m.
In this way we obtain the meromorphic continuation of Eell.z; s/ to the whole

s-plane with possible poles at s D s� � 2N , s D sj � 2N , and s D �sj � 2N C 1
(N 2 N). The poles at s D s� � 2N are contributed by a0.y; s/; here s� denotes a
pole of �.s � 1=2/Epar.i; s/. ut
Remark 6.11. Using Remark 6.9, one can establish the meromorphic continuation
of Eell.z; s/ to the whole s-plane in the more general case Im.z/ ¤ Im.��1i/ for any
� 2 � . The poles of Eell.z; s/ and their residues turn out the be same as in the case
Im.z/ > 1.

Remark 6.12. The elliptic Eisenstein series Eell.z; s/ has a simple pole at s D 1

with residue

ressD1Eell.z; s/ D ressD1a0.y; s/ D 2�ressD1
�

V0.s/

�.s=2C 1=2/
�

D �ressD1Epar.i; s/ D 2�

]�i
� 1

volhyp.F�/ D 3I

here we used the decomposition (30) for a0.y; s/ with N D 0.
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Consequences of the Gross–Zagier formulae:
Stability of average L-values, subconvexity,
and non-vanishing mod p
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In memory of Serge Lang

Abstract Applying the celebrated results of Gross and Zagier for central values of
L-series of holomorphic forms of prime level, we deduce an exact average formula
for suitable twists of such L-values, with a relation to the class number of associated
imaginary quadratic fieds, thereby strengthening a result of Duke. We also obtain a
stability result, as well as subconvexity (in this setting), and certain non-vanishing
assertions.

Key words Average L-values • Gross–Zagier formulae • Non-vanishing •
Subconvexity • Stability
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1 Introduction

In this paper we investigate some consequences of the Gross–Zagier type formulae
which were introduced by Gross and Zagier and then generalized in various
directions by Hatcher, Zhang, Kudla, and others [1,11,12,14,40]. Let us now recall
these formulae in the classical context. Denote byK an imaginary quadratic field of
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discriminant �D, associated quadratic character ��D D .�D� /, and ring of integers
OK . For any character ‰ of the ideal class group Pic.OK/ of K , let g‰ be the
associated weight one theta series attached to ‰ on the upper half plane H given by

g‰.z/ D
X

m�0
r‰.m/q

m; q D exp.2��z/; z 2 H;

where, for m � 1,

r‰.m/ D
X

N.a/Dm
‰.a/

and a � OK ranges over the OK -ideals of norm m. We will denote the trivial
character of Pic.OK/ by 1K .

Now let f be a holomorphic new cusp form of level N coprime with D, trivial
nebentypus and weight 2k:

f .z/ D
X

m�1
am.f /q

m:

Depending on how the primes dividing N split in K , the Gross–Zagier formula
expresses the central value at s D k (or the derivative there) of the Rankin–Selberg
L-function

L.s; f;‰/ WD L.2s � 2k C 1; ��D/
X

m�1
am.f /r‰.m/m

�s

in terms of an intersection/height pairing of the f -isotypic component e‰;f of a
cycle e‰ living in some Hecke moduleM DMk;N : Denoting this pairing by h�; �iM
and the Petersson inner product on S2k.N / by

hf; gi D
Z

Y0.N /

f .z/g.z/y2k
dxdy

y2
;

where Y0.N / denotes the open modular curve �0.N /nH, one has

ck;K
L.i/.k; f;‰/

hf; f i D he‰;f ; e‰;f iM (1)

for some constant ck;K > 0 and the order of derivative i D iK;N is 0 or 1 (depending
on the sign of the functional equation). Originally the formula was proven as follows
(for i D 0): let M2k.N / (resp. S2k.N /) denote the space of holomorphic forms
(resp. cusp forms) of weight 2k levelN and trivial nebentypus. The map

f 7! L.k; f;‰/;
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being linear on S2k.N /, can be represented by a kernel f 7! hf;G‰i for some
G‰ 2M2k.N / (same for the first derivative). By the Rankin–Selberg theory

L.k; f;‰/ D
Z

Y0.N /

f .z/g‰.z/ E2k�1.z/y.2kC1/=2
dxdy

y2

for a suitable holomorphic Eisenstein seriesE2k�1 of weight 2k�1. The determina-
tion of G‰ amounts to first taking the trace from level N 0 D lcm.4;N / to N , and
then computing the projection of g‰.z/E2k�1.z/ onM2k.N /. This can be done, and
one infers from the computation of the Fourier expansion of g‰.z/E2k�1.z/ that the
Fourier coefficients am.G‰/ of G‰ are relatively elementary expressions involving
the arithmetical functions r‰ and variants thereof: see below for an example. One
the other hand, using the theory of complex multiplication, Gross and Zagier, and
subsequently other people, showed by an auxiliary computation that

G‰.z/ D a0.G‰/C
X

m�1
hTme‰; e‰iM qm;

where Tm denotes the m-th Hecke operator acting on the module M . The final
result then follows from a formal argument involving the multiplicity one theo-
rem. The main observation underlying this paper is that the above computation
provides formally an expression for the average of the central values L.k; f;‰/.
Namely, if F2k.N / denotes the set of arithmetically normalized new forms, then
ff=hf; f i1=2gf 2F2k.N / may be completed to an orthonormal basis of S2k.N /. Then
decomposing G‰ along such an orthonormal basis, and taking the m-th Fourier
coefficient in the above decomposition, one deduces, for anym � 1,

X

f 2F2k.N /

L.k; f;‰/

hf; f i am.f / D am.G‰/CAold.m/CAEis.m/;

where Aold.m/, resp. AEis.m/, is the contribution from the old forms, resp. the
Eisenstein series, of weight 2k and level N . In principle, the Eisenstein series
contribution could be evaluated explicitly, while the old forms contribution could
be computed by induction on N by following the same scheme, although there is
an added complication of finding a suitable orthonormal basis. We shall consider
here the nicest possible situation in which these additional contributions have a
particularly simple expression, in fact where the old part vanishes! Therefore we
obtain, by the first step of the proof of the Gross–Zagier type formulae, a simple
expression for the first moment

X

f 2F2k.N /

L.k; f;‰/

hf; f i am.f /:

Let us now turn to a more specific statement.
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ForK D Q.
p�D/, denote by OK its ring of integers, by Pic.OK/ its ideal class

group,

h D hK D jPic.OK/j;
its class number, and

u D jO�K=f˙1gj:
Given any ideal class group character ‰, recall that we have set for m � 1

r‰.m/ D
X

N.a/Dm
‰.a/I

for ‰ D 1K the trivial character, we shall also denote r1K .m/ by

R.m/ D r1K .m/ D
X

a�OK
N.a/Dm

1:

We extend the definition of r‰.m/ to m D 0 by setting

r‰.0/ D
(

0; if ‰ 6D 1K
h=2u; if ‰ D 1K:

We also set

�N .m/ D
X

d jm
.d;N /D1

d:

Specializing the formulas of Gross–Zagier and Gross [11, 12], and averaging over
newforms f , we obtain

Theorem 1. Let �D < 0 be an odd fundamental discriminant; let N be a prime
which is inert in K D Q.

p�D/ and let k � 1 be an integer. For ‰ a character of
Pic.OK/, and for any positive integerm, we have the following exact identity:

2.2k � 2/ŠD1=2u2

.4�/2k

X

f 2F2k.N /

L.k; f;‰/

hf; f i am.f /

D �ı 12h
2

N � 1�N .m/C umk�1r‰.mD/hC u2mk�1
mD
NX

nD1
ˆk.n;‰;N /: (2)

Here

ˆk.n;‰;N / D d..n;D//ı1.‰/R.n/r‰.mD � nN/Pk�1.1 � 2nN
mD

/;
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with Pk�1 denoting the .k � 1/-th Legendre polynomial; d.n/ is the number of
divisors of n; ı 2 f0; 1g is 1 if and only if .k;‰/ D .1; 1K/; ı1.‰/ 2 f0; 1g is 1 if
D is prime, and when D is composite, it is 1 if and only if ‰2 D 1K and there exist
ideals a; b, of respective norms mD � nN and n, such that, for a prime ideal q of
norm q congruent to �N mod D, the class of abq is a square in Pic.OK/.

An asymptotic formula involving the average on the left was first established for
k D 1;‰ D 1K by W. Duke ([6]), which spurred a lot of other work, including that
of Iwaniec and Sarnak ([19]) relating it to the problem of Siegel zeros forL.s; ��D/.
In the work of the second named author with J. Rogawski ([32]), a different proof
of Duke’s result was given (for all weights), using Jacquet’s relative trace formula
involving the integration of the kernel over the square of the split torus, and in
addition, the intervening measure was identified.

It is important to note that one obtains a stability theorem when N is sufficiently
large compared with D and m, and this could perhaps be considered the most
unexpected consequence of our approach. Indeed, when N > mD, the sum on
the far right of the identity furnished by Theorem 1 becomes zero, and our exact
average simplifies as follows:

Corollary 1 (Stability). With the above notations and assumptions, suppose, more-
over, that N > mD. Then one has

2.2k � 2/ŠD1=2u2

.4�/2k

X

f 2F2k.N /

L.k; f;‰/

hf; f i am.f /

D �ı 12h
2

N � 1�N .m/C umk�1r‰.mD/h:

We call the range N >mD the stable range. As one can check with other
instances of the Gross–Zagier formulas, such as for the derivative in the case of
odd order of vanishing, this phenomenon appears to be quite general. It has been
recently generalized to Hilbert modular forms of square-free level by B. Feigon and
D. Whitehouse ([9]), using the relative trace formula, now by integrating the kernel
over a non-split torus; they are also able to treat more general characters ‰.

When ‰ D 1K , we have the factorization

L.s; f; 1K/ D L.s; fK/ D L.s; f /L.s; f ˝ ��D/;

where fK denotes the base change of f to K , L.s; f / the Hecke L-function of f ,
and f ˝ ��D the twist of f by ��D . Thus for m D 1 and N > D, we get the
following explicit identity involving the class number of K:

2.2k � 2/ŠD1=2u

.4�/2k

X

f 2F2k.N /

L.k; f /L.k; f ˝ ��D/
hf; f i D h

�

1 � ı 12h

u.N � 1/
�

:
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In the weight 2 case, as N is taken to be a prime here, the cardinality of F2.N / is
just the genus g0.N / of the compactificationX0.N / of Y0.N /. It is amusing to note
that when g0.N / is zero one finds that

h D .N � 1/u
12

;

implying that h D 1 when .�D;N/ is .�3; 5/, .�7; 13/, .�8; 13/ or .�11; 13/,
agreeing with known data. Similarly, X0.11/ is an elliptic curve E=Q, and if we
denote by E�D the �D-twist of E, we see, for D D 3, that the algebraic special
value A.1;E/A.1;E�3/ is just 1=5. (We recall that the algebraic special value
A.1;E/ of an elliptic curveE over Q is the ratio of L.1;E/ by the real fundamental
period of E .) In general one gets more complicated identities, involving average
central values, which are all compatible with the Birch and Swinnerton-Dyer
conjecture for E , E�D , and the Shafarevich–Tate groups Sh.E/, Sh.E�D/.

1.1 Application to the subconvexity problem

We will now discuss some simple applications of the above exact average formula,
the first one being a subconvex estimate for the central values L.k; f;‰/. We refer
to [20] for a general discussion on the subconvexity problem. By the work of
Waldspurger, the central value L.k; f;‰/ is non-negative and the convexity bound
is given by

0 � L.k; f;‰/�" .kND/
"kN 1=2D1=2;

for any " > 0. We prove here.

Corollary 2 (Subconvexity). Preserve the notations of Theorem 1. Then for any
" > 0, we have

L.k; f;‰/�" .kDN/
"kN 1=2D1=2

� 1

N 1=2
C N1=2

D1=2

�

:

In particular this improves on convexity as long as

.kD/ı � N � D.kD/�ı

for some fixed ı > 0.

Note that this breaks convexity when N is in a suitable range depending on k;D
in which case the bound is subconvex in all parameters: such bounds are called
hybrid. We refer to [29] of other hybrid subconvex bounds valid in quite general
circumstances. The present bound however does not seem to be implied by [29].
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At this point we do not know of any application of these subconvex estimates,
but we are intrigued by them because they come for free and seem to be hard to
prove with the current methods of analytic number theory (e.g., see [5, 24]). Note
also that such bounds are fundamentally limited to the critical center s D k. For a
generalization to the Hilbert modular case, where ‰ is allowed to be any ray class
character, see [9].

1.2 Application to non-vanishing problems

Another line of application addresses the existence of f for which L.k; f;‰/ does
not vanish. Indeed several variants of such problems have been considered in the
past by various methods [6,19,23,30,37]. Here we obtain non-vanishing results that
are valid with a fairly large uniformity in the parameters, and again such uniformity
seems hard to achieve by purely analytic methods.

Theorem 2. Preserve the hypotheses of Theorem 1. Suppose further that

N �ı D
1=2Cı

for some ı > 0. Then there exists f 2 F2k.N / such that

L.k; f;‰/ 6D 0:
The same conclusion holds as long as N > D and either k 6D 1 or ‰ 6D 1K .

When ‰ D 1K , we also obtain a non-vanishing result in a somewhat greater
range:

Theorem 3. Suppose‰ D 1K , k D 1 and

h <
N � 1
12

:

Then there exist f such that

L.k; f /L.k; f ˝ ��D/ 6D 0:

Non-vanishing theorems of this kind, with an explicit dependence between N
and D (like N > D or N � 1 > 12h), are of some interest. For instance, in the
paper [27], Merel needs to consider the following problem: Given a prime p and
a character � of conductor p which is not even and quadratic, does there exist an
f 2 F2.p/ such that L.1; f ˝ �/ 6D 0? In the appendix of that paper, the first
named author and E. Kowalski prove that this is the case when p is greater than
an explicit but very large number. In particular, it has so far not been possible to
answer the problem numerically in the finitely many remaining cases; this has been
answered, however, for p < 1000 [26].
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Closer to the main concern of the present paper, Ellenberg [7, 8] uses analytic
methods to prove the non-vanishing of the twisted L-function L.1; f ˝ ��4/ for
some f in F2.N / forN of the form p2 or 2p2 (p an odd prime) and with prescribed
eigenvalues at the Atkin–Lehner operators w2;wp , subject to an explicit lower bound
on p. Ellenberg concludes from this the non-existence of primitive integral solutions
to the generalized Fermat equation A4 C B2 D Cp as long as p > 211; that this
equation has only a finite number of primitive solutions is a theorem of Darmon and
Granville. (Since this article was written, there has been further progress in “The
Diophantine equation A4 C 2dB2 D Cn” by M.A. Bennett, J. Ellenberg, and N.C.
Ng, to appear in Int. J. Number Theory.) Another related set of examples is in the
work of Dieulefait and Urroz ([4]). In a sequel to this paper under preparation ([28]),
we will develop a suitable generalization of the exact average formula to a class of
composite levels N , and investigate similar questions by modifying the method.
This extension is subtle for three reasons: N is not square-free, D is not odd, and
N;D are not relatively prime.

1.3 Nonvanishing modulo p

The exactness of the Gross–Zagier formulae even enable us to obtain average non-
vanishing results for the algebraic part of the L.k; f;‰/ modulo suitable primes p.
Again, such a question has been considered in the past, see for example [2, 37].
However, these earlier works addressed the question of the existence of the non-
vanishing of L.k; f;‰/ mod p when the form f is fixed and when the character �
varies. Here our results go in the other direction as we fix p and let N and f vary.
Given f 2 F2k.N / and g‰ as above, we denote by Lalg.k; f;‰/ the algebraic part
of L.k; f;‰/ (see Section 6, (11), for a precise definition). It follows from the work
of Shimura that Lalg.k; f;‰/ is an algebraic number satisfying the reciprocity law

Lalg.k; f;‰/� D Lalg.k; f � ;‰�/

for any � automorphism of C [33].

Theorem 4. Let p > 2kC1 be a prime, let P be a chosen place in Q above p, and
let N;D be as in Theorem 1. Suppose, moreover, that p does not divide h D h�D ,
that N > D, and that N is greater than some absolute constant. Then there exists
f 2 F2k.N / such that

Lalg.k; f;‰/ 6	 0 .mod P/:

The question of the integrality of Lalg.k; f;‰/ is quite subtle, and our result only
concerns the numerator of the L-value. When‰ D 1K , we also prove the following
variant:
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Theorem 5. Notations and assumptions as in Theorem 4. Suppose moreover that
‰ D 1 and N > pD. Then there exists f 2 F2k.N / such that

p
D.2�/�2k

L.k; f /L.k; f ˝ ��D/
hf; f i ap.f / 6	 0 .mod P2k�1/:

The assertion makes sense because the left-hand side is (see Section 6.1) a p-unit
times ap.f / times Lalg.k; f; 1K/.

There are two fundamental periods cC.f / and c�.f / associated to f such that
for any Dirichlet character �, the special value Lalg.k; f ˝ �/, defined as L.k;
f ˝ �/=csgn.�.�1//.f / times a simple factor (see Section 6, (12)) is an algebraic
number. One gets the near-factorization

	f L
alg.k; f; 1K/ D Lalg.k; f /Lalg.k; f ˝ ��D/;

where 	f is essentially the order of the congruence module considered by Hida,
Wiles, Taylor, Flach, Diamond, and others, which measures the congruences f has
with other modular forms modulo p. The needed non-divisibility properties of 	f
(for suitable p) are understood (at least) if f is ordinary or k D 1. Now finally, let
us suppose we are in the classical weight 2 situation, i.e., with ‰ D 1K and k D 1.

Theorem 6. Let p an odd prime not dividing Dh�D , with D odd. Then there exist
infinitely many newforms of f of prime level N and weight 2 such that

num

�
Lalg.1; f ˝ ��D/

	f

�

6	 0 .mod p/;

where 	f is the order of the congruence module of f .

See Section 6 for a discussion of 	f , which measures the congruences that f
may have with other modular forms of the same weight and level. An analogue of
Theorem 6 should also hold in a suitable range of p, for forms of higher weight, and
this question will be taken up elsewhere.
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2 The weight 2 case

It may be instructive to explain why the exact average formula holds in the weight
2 case when ‰ D 1. Let B be a quaternion division algebra over Q, ramified only at
(a prime) N and1, with maximal order O. Let Y be the associated rational curve
such that Aut.Y / D B�=Q�. Put

X D B�nY 
 OB�= OO� D [njD1�jnY;

where OB� D Q

p

0B�p and OO� D Q

p

O�p , with each �j being a finite group. Then

Pic.X/ is isomorphic to Z
n with natural basis fe1; e2; : : : ; eng, where each ej is

the class of �jnY . Since N is inert in K D Q.
p�D/, there is an embedding

f 2 Hom.K;B/ D Y.K/. It results in certain Heegner points,

x D B�nB�:.f; b/ 2 X

of discriminant �D, with b 2 OB�= OO�. The set of these Heegner points is acted on
transitively by Pic.OK/, and for A 2 Pic.OK/ and x a Heegner point, we denote by
xA the corresponding translate; let

c D
X

A

xA;

for A running over ideal classes of K . For any weight 2 eigenform f , let cf denote
the f -component c. Then by a beautiful theorem of B. Gross ([12, Prop.11.2]),
providing an analogue for the L-value of the Gross-Zagier theorem for the first
derivative, one has

hcf ; cf iX D u2
p
D

8�2
L.1; f /L.1; f ˝ ��D/

hf; f i ;

where h�; �iX is a natural height pairing on Pic.X/. We have by orthogonality,

hc; TmciX D hcE; TmcEiX C
X

f

hcf ; Tmcf iX;
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where Tm is the operator corresponding to the m-th Hecke operator on M2.N/, f
runs over newforms in M2.N/, and E denotes the unique (holomorphic) Eisenstein
series (of weight 2 and levelN ). Using the fact that f andE are Hecke eigenforms,
and that hcE; cEiX D 12h2

N�1 (cf. [12, (11.7)]), we get, by averaging Gross’s formula,

u2
p
D

8�2

X

f

L.1; f /L.1; f ˝ ��D/
hf; f i D ��N .m/ 12h

2

N � 1 C hc; TmciX :

One has

hc; TmciX D
X

A

X

B

hxB; TmxABiX ;

and ([12, Prop. 10.8])

X

B

hxB; TmxAB iX D uhrA.m/C
mD=N
X

nD1
rA.mD � nN/d..n;D//Rf�NAg.n/I

here rA.n/ is the number of OK -ideals of norm n in the class A and Rf�NAg.n/
is a variant of rA.n/ whose definition is recalled in (3) below; when D is prime,
Rf�NAg.n/ is just rA.n/.

The assertion of Theorem 1 now follows by summing over A 2 Pic.OK/.
Moreover, whenmD is less thanN ,

P

B

hxB; TmxAB iX simply equals uhRA.m/, and

this furnishes Corollary 1 (stability) in the weight 2 case.

3 Proof of the main identity for all 2k � 2

3.1 Preliminaries

For N � 1, let M2k.N / (resp S2k.N /) denote, as usual, the space of holomorphic
modular forms (resp. cuspforms) of weight 2k, level N and trivial character. For
f 2M2k.N /, we write the Fourier expansion at the infinite cusp as

f .z/ D
X

m�0
am.f /q

m; q D exp.2�{z/:

We denote by F2k.N /, the set of cuspidal newformsf (normalized in the usual way,
so that the first Fourier coefficient a1.f / is 1.) Whenever it converges, we denote
the Petersson inner product on M2k.N / by

hf; gi D
Z

Y0.N /

f .z/g.z/y2k
dxdy

y2
:
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With notations as in the introduction, define, for any ideal class A 2 Pic.OK/,

rA.m/ D
(

jfa � OK;N.a/ D m; a 2 Agj if m � 1
1
2u if m D 0:

We also need a slight variant Rf�NAg.m/ defined as follows: given q a prime such
that q 	 �N.modD/, when q splits and writing qOK D qq, we set

Rf�NAg.n/ D jfI W N.I/ D n; qAI 2 Pic.OK/
2gj: (3)

Observe that this definition is independent of the choice of q and that when D is
prime, Rf�NAg.n/ is just RA.n/.

The theta series


A.z/ D
X

m�0
rA.m/q

m; q D exp.2�{z/

is a modular form of weight 1, level D and central character ��D . Moreover, for
any ‰ 23Pic.OK/, put


‰.z/ D
X

A

‰.A/
A.z/;

whose Fourier coefficients are then given by

am.
‰/ D
X

A

‰.A/rA.m/ D r‰.m/ D r‰.m/:

In particular, the constant term a0.
‰/ equals 1
2u

P

A ‰.A/, which is, by orthogo-
nality, zero if and only if ‰ ¤ 1K , when 
‰ is a cusp form. Setting

L.s; f; A/ WD L.N/.1C 2.s � k/; ��D/
X

m�1

am.f /rA.m/

ms
;

with

L.N/.s; ��D/
X

n>1
.n;N /D1

��D.n/
ns

;

one has

L.s; f;‰/ D
X

A2Pic.OK/

‰.A/L.s; f; A/:
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Define a holomorphic function GA on the upper half plane H, invariant under z !
zC 1, by means of its Fourier expansion at infinity:

GA.z/ WD
1X

mD0
bm;Aq

m; (4)

where

bm;A D mk�1 h
u
rA.mD/ (5)

Cmk�1
mD=N
X

nD1
ı.n/rA.mD � nN/Rf�NAg.n/Pk�1

�

1 � 2nN
mD

�

:

In this definition, u and R.n/ D P

A rA.n/ are as in the introduction, Rf�NAg as
in (3), ı.n/ is 1 (resp. 2) if .m;D/ D 1 (resp. ¤ 1), and for r � 0; Pr is the r-th
Legendre polynomial defined by

Pr.x/ WD 1

2r

Œr=2�
X

mD1
.�1/m

�
r

m

��
2r � 2m

r

�

xr�2m:

The following result, due to Gross and Zagier, is crucial here:

Theorem 7. GA is a modular form of weight 2k, level N , and trivial character; it
is cuspidal if k > 1, and for every newform f of weight 2k and level N , we have

L.k; f; A/ D .4�/2k

2.2k � 2/ŠD1=2
hf;GAi:

For k D 1, see [12, p.291, Prop. 9.1], and for general k, this is in [11, Thm (5.6),
p. 291].

3.2 Correction of a small error in [11], Theorem 5.6

We take this opportunity to correct a small error in [11]: The factor .k � 1/Š should
not be present in the numerator of the right-hand side of the second formula of
Theorem (5.6) on p. 291 of [11]; it is “canceled” by the .k � 1/Š term in the
denominator on the right-hand side of the formula in Prop. (4.4) on p. 283 of loc.
cit. This does not affect anything concerning the weight 2 case (when k D 1), which
was the main thrust of [11]. Even for general k, it is of little consequence when k
is fixed. It is however crucial for us, especially since we would like to study the
behavior on average when k becomes large, and so we give a detailed discussion
here.
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To begin, in the statement of Theorem 5.5 (on page 290 of [11]), the formula
should read

LA.f; 2k � 1 � r/ D .�1/k�r .2�/2.2k�1�r/
.2k � 2 � r/Š

22k�1

.2k � 2/Š
".N /rŠ

jDj2k�r�1=2

 hf;

X

bm;rq
mi; (�)

with

bm;r D
mjDj=N
X

nD0
rA.mjDj � nN/Pk;r .Nn;mjDj/�2k�2r�2;A.n/:

The only difference from the formula of Gross–Zagier is the appearance of .2k�
2� r/Š in the denominator, instead of what they have in [11], namely .2k�2�2r/Š.

To see that .�/ is the right formula, note that by Proposition 1.2 of [11], which is
used in the proof (see p. 272),

.4�/�s�2kC1N s�.s C 2k � 1/LA.f; 2k � 1 � r/ D hf; Q̂ si:

To get Theorem 5.5 (of [11]), Gross and Zagier apply their Proposition 1.2 with
s D �r , and so, using �.2k � 1 � r/ D .2k � 2 � r/Š, one obtains

LA.f; 2k � 1 � r/ D .4�/2k�1�rN r

.2k � 2 � r/Š .f;
Q̂ �r /: .��/

By Corollary 3.4 on page 281 (of loc. cit.),

Q̂ �r .z/ D
1X

mD0
am;r .y/e

2�imz;

where

am;r .y/ D
mı=N
X

nD0
en;r .y/rA.mı � nN/;

with en;r .y/ being given by the formulae on the top of page 282.
When r D 0, the form Q̂ �r .z/ is holomorphic. For k > 1 and r > 0, we may

apply Proposition 5.1 on page 288 (of [11]) to conclude that

hf; Q̂ �r i D hf;ˆ�r i;
whereˆ�r is the holomorphic projection given by

ˆ�r .z/ D
1X

mD1
am;re

2�imz
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with

am;r D .4�m/2k�1

.2k � 2/Š
Z 1

0

am;r .y/e
�4�myy2k�2dy:

Working through the calculation of Gross and Zagier on the bottom of page 289
and the top of page 290, making use of Prop. 5.1, Cor. 3.4 and Prop. 4.4, we get
exactly the same expression for the coefficients of ˆ�r as Gross and Zagier do on
page 290, namely,

am;r D .�1/k�r22k�1".N /rŠ�2k�1�r
.2k � 2/ŠN r jDj2k�r�1=2 bm;r ;

with

bm;r D
mjDj=N
X

nD0
rA.mjDj � nN/Pk;r .Nn;mjDj/�2k�2r�2;A.n/;

where Pk;r .x; y/, resp. �2`;A.n/, is given by (5.3), resp. (5.4), on page 290.
It is important to pause and note that the expression for bm;r correctly involves

�2k�2r�2;A.n/ (and not �2k�r�2;A.n/). The source of this is that en;r .y/ (occurring
in the definition of am;r .y/) is e�r .n; Nyı /e

2�Nny=ı (see the top of page 282 of [11]),
and for n ¤ 0, we have from page 279,

es.n; y/ D iı�s�2kC1=2Ln.s/y�s�2kC2Vs.ny/;

where

Ln.s/ D
X

DDD1D2;D2jn
"D1.�N/�D1D2.A/

X

mjn=ı2;m>0

"D1.mı2/"D2.n=mı2/

.mı2/2sC2k�2
:

Thus Ln.s/ is a sum of Dirichlet series at the argument 2s C 2k � 2, and we are
letting s D �r .

In any case, from the expression above for am;r , we get

hf; Q̂ �ri D .�1/k�r22k�1".N /rŠ�2k�1�r
.2k � 2/ŠN r jDj2k�r�1=2 .f;

X

bm;rq
m/:

Plugging this in .��/, canceling Nr , and consolidating the powers of 2� , we get
.�/ as asserted.

These calculations extend to the case r D k � 1, when we get a fortuitous
cancelation as the rŠ in the numerator and the .2k � 2 � r/Š in the denominator
are the same in .�/. If one had .2k � 2� 2r/Š in the denominator, it would become
1 when r D k � 1, and this is why the formula in Theorem 5.6 (on page 291) has
a spurious .k � 1/Š in the numerator. Again, this was not of major concern to Gross
and Zagier as they were mainly considering k D 1 with a dramatic application to
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elliptic curves. It is amusing that it also doesn’t matter for the k D 2 example Gross
and Zagier work out at the bottom of page 291. We care only because the appearance
of the unwanted .k � 1/Š in the numerator would contradict the general RH.

It follows, after the simplifications Gross and Zagier indicate in [11], that
Theorem 5.6 holds when the expression for LA.f; k/ is corrected to be the
following:

LA.f; k/ D .2�/2k22k�1

.2k � 2/ŠjDjk�1=2 hf;
X

bm;Aqmi;

where bm;A is as in the beginning of Theorem 5.6 of loc. cit.

3.3 The exact average formula

Let

E D E2;N D
1X

nD0
an.E/q

n

denote a holomorphic Eisenstein series for �0.N / of weight 2. Since N is prime,
the modular curve Y0.N / has only two cusps, namely1 and 0. It then follows that
E is unique up to scalar multiple, and so E.z/=a0.E/ is well defined with constant
term 1 at1. To be specific, we will take

E.z/ D N � 1
12

C
1X

mD1
�N .m/q

m;

where �N .m/ DPd jm;.d;N /D1 d .
For A 2 Pic.OK/, with GA being as in the previous section, put

G
cusp
A .z/ WD GA.z/� ıkD1 b0;A

a0.E/
E.z/: (6)

Then Gcusp
A is a holomorphic cuspform of level N , weight 2k, and trivial character,

with coefficients am.G
cusp
A /.

Lemma 3.1. For �D an odd fundamental discriminant and N a prime inert in K ,
we have, for any m � 1,

2.2k � 2/ŠD1=2

.4�/2k

X

f 2F2k.N /

L.k; f; A/

hf; f i am.f /

D am.Gcusp
A / D bm;A � ıkD1 b0;A

a0.E/
am.E/:

In order to prove this, we first need the following
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Lemma 3.2. Assume that N is a prime that is inert in K D Q.
p�D/. Let f be

any old form in S2k.N /. Then we have, for every A 2 Pic.OK/,

hf;Gcusp
A i D 0:

Such a lemma will not in general hold for composite N .

3.4 Proof of Lemma 3.2

There is nothing to prove when k < 6, since S2k.1/ is zero in that case. Suppose
that k � 6; since f is cuspidal, it suffices to prove that hf;GAi D 0. Put

G‰ WD
X

A2Pic.OK/

‰.A/GA:

It is sufficient to show that hf;G‰i D 0 for all ideal class characters ‰ of K . If
f DP1nD1 an.f /qn, put

D.s; f 
 
‰/ D L.N/.1C 2.s � k/; ��D/
1X

nD1

an.f /an.
‰/

ns
: (7)

Then the Rankin–Selberg method ([11, IV, �1]) gives the identity

.4�/�k�.k/D.k; f 
 
‰/ D hf;TrND=N .
‰E2k�1;N /i (8)

where E2k�1;N is the result of slashing a holomorphic Eisenstein series of weight
2k � 1 (and character ��D) with the Atkin involution wN , and TrND=D denotes
the trace from QM2k.ND/ to QM2k.N /, where QMr.M/ denotes the space of non-
holomorphic modular forms of level M and weight r . Moreover, the calculations
of Gross and Zagier ([11, IV, �5]) show that G‰ is the holomorphic projection of
TrND=N .
‰E2k�1;N /; so that

hf;G‰i D hf;TrND=N .
‰E2k�1;N /i:
Let f be a newform of level 1 (and weight 2k). Then since N is prime, it defines

two old forms of level N , namely f1.z/ D f .z/ and fN .z/ D f .N z/, so that
am.fN / is zero unless N jm, and amN .fN / D am.f /. Since the new and old forms
are orthogonal to each other under h�; �i, and since the space of old forms of levelN
are spanned by ffd ; d D 1;N g with f running over all the cuspforms of level 1, it
suffices to prove that each D.k; fd 
 
‰/ D 0. For d D 1, one has

D.s; f1 
 
‰/ D .1� ��D.N /
N s

/L.s; f 
 
‰/: (9)



454 P. Michel and D. Ramakrishnan

This reduces to checking the vanishing of the right-hand side. Since f has level 1,
the root number of L.s; f 
 
‰/ is �1, yielding the requisite vanishing. When
d D N , D.k; f2 
 
‰/ is still a multiple of L.k; f 
 
‰/ and is therefore zero. �

3.5 Proof of Lemma 3.1

We may choose an orthogonal basis B of S2k.N / to be of the form F2k.N / [ B0,
where B0 consists of old forms. Clearly we have

X

f 2B

hf;Gcusp
A i

hf; f i f D Gcusp
A : (10)

In view of Lemma 3.2, the sum on the left-hand side needs to run only over
newforms f . Applying Theorem 7, and using (10), we obtain

2.2k � 2/ŠD1=2

.4�/2k

X

f 2F2k.N /

L.k; f; A/

hf; f i f D Gcusp
A :

The lemma now follows by taking the m-th coefficient of the above identity. �

3.6 Proof of Theorem 1

The exact average formula follows by performing the averaging process
P

A2Pic.OK/
‰.A/ : : : on both sides of the formula in Lemma 3.1, using the formula

(5) for the coefficients bm;A, and by noting that

am.E/

a0.E/
D 12

N � 1�N .m/

and that, when k D 1, b0;A D h
2u2

. �

4 Subconvex Bounds

In this section, we prove Corollary 2. By the work of Waldspurger, Guo and Jacquet
[13, 38] (see also [22] for ‰ D 1K ),

L.k; f;‰/ � 0:
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Thus from formula (2) form D 1, we have

2.2k � 2/ŠD1=2

.4�/2k
L.k; f;‰/

hf; f i � h

u
C

D
NX

nD1
jˆk.n;‰;N /j:

Since jPk�1.x/j � 1 for jxj � 1 and R.n/; jr‰.n/j � d.n/, so that

R.n/jr‰.D � nN/j � d.n/2 C d.D � nN/2;
we see that the n-sum on the right side is bounded by D

N
.logD/3. From the class

number formula, we have

h� D1=2 logD

and

hf; f i � .4�/�2k.2k � 1/ŠN.logN/3

as follows from [21, (2.31)]. Unlike the corresponding bound for Maass forms
([18]), this upper bound is elementary since f is holomorphic and by Deligne its
Fourier coefficients satisfy the Ramanujan–Petersson bound. Thus we see that

L.k; f;‰/� .logkN logD/3k.N CD1=2/:

�

5 Application to non-vanishing

We prove here Theorem 2. Arguing exactly as above we have

2.2k � 2/ŠD1=2

.4�/2k

X

f 2F2k.N /

L.k; f;‰/

hf; f i D h

u
� ı 6.h=u/2

N � 1 CO
�
D

N
.logD/3

�

D h

u
CO

�
D

N
.logD/3

�

:

By Siegel’s theorem, which gives h D D1=2Co.1/, we see that the right side is
positive as soon as N > D1=2Cı for some ı > 0. If N > D, then we are in the
stable range and we have

2.2k � 2/ŠD1=2

.4�/2k

X

f 2F2k.N /

L.k; f;‰/

hf; f i D h

u

�

1 � ı 6.h=u/

N � 1
�

: (11)

When ı D 0, this concludes the proof of Theorem 2 since h � 1. �
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Suppose now that ı D 1 (i.e., k D 1;‰ D 1K). Then we remark that

D
NX

nD1
ˆ1.n; 1;N / � 0;

so that
D1=2

8�2

X

f 2F2k.N /

L.k; f;‰/

hf; f i � h

u

�

1 � 6.h=u/

N � 1
�

completing the proof of Theorem 3. �

6 Non-vanishing mod p

6.1 Algebraic Parts of L-values

Let us put

Lalg.k; f;‰/ D .�1/k.2�/�2k.k � 1/Š2g.��D/L.k; f;‰/hf; f i ; (12)

where g.��D/ DPx.modD/ ��D.x/ exp.2�i x
D
/ is the Gauss sum. Then it is known

by Shimura ([33], see also [16]), that Lalg.k; f;  / is an algebraic number obeying
the reciprocity law:

Lalg.k; f � ;‰�/ D Lalg.k; f;‰/� ;

for every automorphism � of C.
Next recall that for ‰ D 1K , we have the factorization L.k; f;‰/ D L.k; f /

L.k; f ˝ ��D/. For any Dirichlet character �, the algebraic part of L.k; f ˝ �/ is
given by

Lalg.k; f ˝ �/ D g.�/.k � 1/Š L.k; f ˝ �/
.�2�i/kc˙.f / ; (13)

where c˙.f / is a fundamental period of f , with ˙ D �.�1/. Again, one has for
any automorphism � of C, Lalg.k; f � ˝ ��/ is Lalg.k; f ˝ �/� .

This leads to the near-factorization

	f L
alg.k; f; 1K/ D Lalg.k; f /Lalg.k; f ˝ ��D/; (14)

where 	f equals – thanks to a series of papers of Hida (cf. [16], [17]), Wiles ([39]),
Taylor–Wiles ([35]), and Diamond–Flach–Guo ([3]) – the order of the congruence
module of f , i.e., the number which counts the congruences of f with other
modular forms of the same weight and level.
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6.2 Proof of Theorems 4 and 5

From the definition of the algebraic part, the hypothesis of Theorem 4 and the
formula (11), used in conjunction with ı D 0, we have (up to multiplication by
a p-unit)

X

f 2F2k.N /

Lalg.k; f;‰/ D h

u
:

The conclusion of Theorem 4 is immediate.
For the proof of Theorem 5, we have, assuming that N > pD,

X

f 2F2k.N /

Lalg.k; f; 1K/ D h

u

�

1 � ıkD1 12.h=u/

N � 1
�

:

Therefore the conclusion holds except possibly if pj.1 � 12.h=u/
N�1 /. Suppose we are

in that latter case. Then we apply the exact formula of Corollary 1 with m D p and
get

X

f 2F2k.N /

Lalg.k; f; 1K/ap.f / D h

u

�

R.p/ � 12.h=u/

N � 1 .p C 1/
�

:

R.p/ is either 0 or 2, if it is zero, then the left-hand side of the previous formula
is not divisible by p. If R.p/ D 2, then 2 � 12.h=u/

N�1 is not divisible by p since by

assumption pj.1 � 12.h=u/
N�1 /. So we are done in all cases. �

6.3 Proof of Theorem 6

Here we are restricting to the weight 2 case, and by the theory of modular symbols,
cf. Stevens [34] and Vatsal [36] (see also Prasanna [31]), we know that for any
Dirichlet character �, the special value Lalg.1; f ˝ �/ is integral except possibly at
the Eisenstein primes; these are the primes dividing

QN WD
Y

qjN
q.q2 � 1/;

which is related to the order of the cuspidal divisor class group, studied for modular
curves, among others, by Kubert and Lang.

We may, and we will, choose N to lie in the infinite family of primes that are
inert in K and are such that p − QN .

Now Theorem 6 follows by the near-factorization (14) of Lalg.1; f; 1K/. It may
be useful to note that when f has Q-coefficients, with associated elliptic curve E
over Q, one knows (cf. Flach [10]) that any prime dividing 	F also divides the
degree of the modular parametrizationX0.N /! E.
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A variant of the Lang–Trotter conjecture

M. Ram Murty and V. Kumar Murty

in memory of Serge Lang

Abstract In 1976, Serge Lang and Hale Trotter formulated general conjectures
about the value distribution of traces of Frobenius automorphisms acting on an
elliptic curve. In this paper, we study a modular analog. More precisely, we consider
the distribution of values of Fourier coefficients of Hecke eigenforms of weight
k � 4.

Key words Lang-Trotter conjecture • abc conjecture • Ramanujan �-function •
Atkin-Serre conjecture
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1 Introduction

Let E be an elliptic curve over a number field K . If p is a prime of OK and E has
good reduction at p, denote by ap.E/ the integer

N pC 1 � jE.Fp/j:
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In 1976, Lang and Trotter [4] formulated some conjectures about how often ap.E/
takes a fixed value. More precisely, they conjectured that there is a constant cE;a
(possibly zero) such that for x !1,

�E;a.x/ WD #fp W N p � x and ap.E/ D ag � cE;a
p
x

logx
;

provided we are in the generic case, that is, a ¤ 0 or E does not have complex
multiplication. The constant cE;a depends on the Galois representation attached to
E . In 1981, Serre [13] proved that for any � > 0,

�E;a.x/�� x=.logx/5=4�� ;

in the generic case. The exponent 5=4 was improved to 2 by Daqing Wan [17]. A
further refinement was obtained by the second author in [5] where it is shown that

�E;a.x/� x.log logx/2

.logx/2
:

The case ap.E/ D 0 corresponds to E having supersingular reduction at p. A
classical result of Deuring shows that if E has complex multiplication by an order
in an imaginary quadratic field F , the set of supersingular primes of K has density
1=2 if F is not contained in K and zero if F � K . If E does not have complex
multiplication, then Elkies, Kaneko, and R. Murty (see [1]) showed that

�E;0.x/� x3=4:

Recently, R. Taylor has announced the meromorphic continuation of symmetric
power L-series attached to E (in the case that K is totally real and E has
multiplicative reduction at some prime p). It is conjectured that these symmetric
power L-functions extend to entire functions. If we assume this, together with an
analogue of the Riemann hypothesis for them, K. Murty [6] has shown that

�E;a.x/� x3=4

if a ¤ 0 orE does not have CM. A substantial generalization and reinterpretation of
the Lang–Trotter conjecture can be found in [7], where a more general formulation
in terms of Galois representations is made.

In this paper, we consider a normalized Hecke eigenform of weight k � 4 for the
full modular group. We write

f .z/ D
1X

nD1
�f .n/e

2�inz

for its Fourier expansion at i1. The field Kf generated by the values �f .n/ as n
ranges over all positive integers is of finite degree over Q. We write Of for the ring
of integers ofKf . In an earlier paper [9], we showed that if ˛ 2 Of is coprime to 2,
then the number of solutions of the equation

�f .n/ D ˛ (1)
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is bounded. Moreover, there is an effectively computable constant c D c.˛/ > 0

such that all solutions n of the equation satisfy

n � exp.jN.˛/jc/;
whereN.˛/ is the norm of ˛ fromKf to Q. This means that for any given ˛, all the
solutions of (1) can be effectively determined. If, in addition, we assume the abc
conjecture for the number field Kf , then it was shown that the exponential bound
can be improved to a polynomial bound of the form c1jN.˛/jc, for some constant
c1 > 0 and the same c as before. In the special case of the Ramanujan �-function,
we deduced that the number of solutions of the equation �.n/ D a with a odd is
finite, a result obtained earlier in our joint work with Shorey [11]. Our methods are
sufficiently versatile to be applied to related problems. For example, in [10], we
study the greatest prime ideal factor of the ideal generated by �f .pn/ for fixed p
and varying n using similar techniques.

In this paper, we want to study the number vf .a/ of solutions of the equation

jN.�f .n//j D a

for a given natural number a. We prove the following Theorem:

Theorem 1 Let f be a normalized Hecke eigenform of weight k � 4 for the full
modular group. Assume the abc conjecture for Kf . Let d D ŒKf W Q�. Then, for
any � > 0,

X0

a�x
vf .a/� x2=d.k�3/C� ;

where the dash on the summation indicates that we sum over odd, positive a.

We immediately deduce the following corollary:

Corollary 2 For any normalized Hecke eigenform f of weight k � 4 for the full
modular group,

�f .a/� a2=d.k�3/C� ;

provided a is odd and the abc conjecture holds for Kf .

What is interesting about this corollary is that it is consistent with the Atkin–Serre
conjecture (see p.244 of [14]). This conjecture predicts that if f is of weight k � 4
and is not of CM type, then for sufficiently large primes p,

j�f .p/j � p.k�3/=2��: (2)

As (2) is conjectured to hold for all conjugates f � of f , it implies that

jN.�f .p//j � p
d.k�3/

2 ��
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and so

vf .a/� jaj 2
d.k�3/C�:

As was shown in [9], �f .p/ is divisible by 2 for all odd primes p in the level-one
case. This is a key fact, since it implies that for ˛ coprime to 2, the equation�f .n/ D
˛ forces n to be a perfect square (see [9]). Thus, Theorem 1 can be extended to
higher levels, provided this property holds for all sufficiently large primes. Indeed,
Ono and Taguchi [12] have shown that this is the case for all forms of level 2aN0
with a arbitrary and N0 D 1; 3; 5; 15; or 17. We record this observation in the
following.

Theorem 3 Let f be a normalized Hecke eigenform of weight k � 4 and level N .
Suppose that for all primes sufficiently large, �f .p/ is divisible by 2. Assuming the
abc conjecture forKf , we have for any � > 0,

X0

a�x
vf .a/� x2=d.k�3/C� ;

where the dash on the summation indicates that we sum over a coprime to 2 and
d D ŒKf W Q�.

Acknowledgements We would like to thank the referee for useful comments on an earlier version
of this paper.

2 Preliminaries

We begin by reviewing results proved in an earlier paper [9].

Proposition 4 Let f be a normalized cuspidal eigenform of weight k � 4 and
levelN . There is an effectively computable constant c1 > 0 such that form � 2 and
every prime p, we have

j�f .pm/j � j	f .p;m/jp k�1
2 .m�c1 logm/;

where 	f .p;m/ D 1 if m is even and �f .p/ if m is odd.

Proof. This is Proposition 2.2 of [9]. ut
In particular, we see from this proposition that �f .pm/ ¤ 0 when m is even and

sufficiently large.

Proposition 5 Let f be a Hecke eigenform of weight k and level N . Then, for all
p sufficiently large, either �f .p/ D 0 or �f .pa/ ¤ 0 for all a � 1. Moreover,
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for each m, there is a binary form fm of degree Œm=2�, with integeral coefficients
such that

�f .p
m/ D 	f .p;m/fm.�f .p/2; pk�1/:

Proof. The first part of the assertion follows from the previous proposition or from
Lemma 2.3 of [9]. The second part follows from the proof of the same lemma. The
binary form fm.x; y/ is

Œm=2�
Y

rD1
.x � 4y cos2.�r=.mC 1///;

which is easily seen to have integer coefficients by simple field-theoretic considera-
tions. ut

We will also have need of a version of Roth’s theorem, which we record in the
following lemma.

Lemma 6 (Roth’s theorem) Let f be a binary form with integer coefficients and
degree d � 3. If f has distinct irrational roots, then,

jf .x; y/j � max.jxj; jyj/d�2��;

where the implied constant depends only on the coefficients of f .

Proof. This essentially follows from Roth’s theorem. See also [8]. ut
A number-field version of this lemma will also be needed in the later sections,

and this will be recalled in Section 4.
Our line of argument has its origins in [9] and [11]. In [11], it was observed that

the Ramanujan �-function has the fortuitous property that �.p/ is even for every
prime p. By an analogue of Proposition 5 for the �-function, we see that �.pm/ is
even for every odd m. Hence, if we are interested in the equation

�.n/ D a

for a odd, it follows that n must be a perfect square, by virtue of the multiplicativity
of � . This was the key fact that enabled the application of results from Baker’s
theory to establish that the number of solutions to the equation �.n/ D a, with a
odd, is finite. This argument was extended to any normalized eigenform for the full
modular group in [9]. As indicated in [9], results of Tate [15] imply that �f .p/ is
divisible by 2 for every prime p. This enabled us to extend the results of [11] to the
full modular case. As indicated in [9], the method can be generalized to arbitrary
level provided that �f .p/ is divisible by 2 for all primes p sufficiently large. With
this background information in place, we now outline our basic strategy.
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We fix a positive integer a coprime to 2 and study the equation

jN.�f .n//j D a:

As �f .n/ is multiplicative, we see that �f .pm/ is coprime to 2 for pmjjn. Now
suppose that �f .p/ is divisible by 2 for all primes p � c0. Then by Proposition 5,
we see that �f .pm/ is divisible by 2 for all odd m and p � c0. Thus, if we write
n D n0n1n2, where the prime factors of n1 are < c0 satisfying �f .p/ ¤ 0, the
prime factors p of n0 are < c0 with �f .p/ D 0, and the prime factors of n2 are
� c0, then we see that n2 is a perfect square. For primes pjn1, we have p < c0 and
�f .p/ ¤ 0, so that Proposition 4 shows that

j�f .pm/j � j	f .p;m/jp k�1
2 .m�c1 logm/:

This means that n1 is bounded, since the primes and prime powers that divide it are
bounded. If we look at n0, then �f .p/ D 0 for each pjn0. Since pmjjn, m must be
even, for otherwise �f .n/ D 0. Thus, n0 is a perfect square. In any case, n has the
form ab2 with a; b coprime and a bounded and �f .b2/ ¤ 0. Thus, we are motivated
to study the Dirichlet series

Df .s/ D
1
X0

nD1
jN.�f .n2//j�s;

where the dash in the summation means we go over those n such that �f .n2/ ¤ 0.
Since �f .n2/ is multiplicative, we may write this as an Euler product:

Df .s/ D
Y0

p

 1X

mD0

1

jN.�f .p2m//js
!

;

where the dash on the product indicates we go over primes p such that �f .p2m/ ¤ 0
for any m � 0. Our objective is to determine a half-plane in which this series
converges absolutely.

We remark that if the series

1X

aD1

�f .a/

as

converges absolutely for <.s/ > c, then

X

n�x
�f .a/�

X

n�x
�f .a/.x=n/

cC� � xcC� ;

for any � > 0. We will use this remark in our discussion below.
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Let us note also that as

jN.�f .n2//j � n.k�1/dd.n2/;

where d.n/ denotes the number of divisors of n, the series does not converge for

<.s/ � 1

d.k � 1/ :

Moreover, asDf .s/ is a Dirichlet series with non-negative coefficients, it must have
a singularity at its abscissa of convergence, by a celebrated theorem of Landau. In
particular, we have

X

a�x
vf .a/ D 
.x1=d.k�1//:

3 The special case of Ramanujan’s �-function

For the sake of clarity, we will first consider a special case, namely, the study of the
Dirichlet series

D�.s/ D
1
X0

nD1

1

j�.n2/js :

Since �.n2/ is a multiplicative function, we can expand the series as an infinite
product over the primes:

D�.s/ D
Y0

p

 1X

mD0
j�.p2m/j�s

!

:

Our goal is to determine a region of convergence for this series. By Proposition 4,
we see that

j�.p2m/j � p11m.1��/
form � m0 (say). This means that the series

X

m�m0
j�.p2m/j�<.s/ �

X

m�m0
p�11m.1��/<.s/

converges for<.s/ > 0. To deal with the other part of the series, we need to estimate
�.p2m/ for 2 � m � m0. We can use Propostion 5 combined with Roth’s theorem to
derive a lower bound for j�.p2m/j for 6 � m � m0. Indeed, Roth’s theorem allows
us to deduce that

jfm.�.p/2; p11/j � p11.m=2�2��/:
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We need to discuss lower bounds for �.p2/ and �.p4/. For this, we need to invoke
the abc conjecture. To this end, let us define the radical of a natural number n,
denoted by rad.n/, to be the product of the distinct primes dividing n. The abc
conjecture predicts that for any two coprime integers a; b,

rad.ab.aC b//� max.jaj; jbj/1��;

for any � > 0. The implied constant will depend on � but not on a; b.

Lemma 7 Suppose that �.p/ ¤ 0. The abc conjecture implies that for any � > 0,

j�.p2/j � p9=2��

and
j�.p4/j � p10��:

Proof. We first apply the abc conjecture to the equation

�.p2/ D �.p/2 � p11:

Suppose first that p is coprime to �.p/. From the abc conjecture, we deduce that

rad.�.p/2�.p2/p11/� p11.1��/:

Using j�.p/j � 2p11=2, we obtain

j�.p2/j � rad.j�.p2/j/� p9=2.1��/;

as desired. If pj�.p/, write �.p/ D pavp with vp coprime to p. As �.p2/ ¤ 0, we
deduce that

rad.v2pp
11�2a.v2p � p11�2a//� p11�2a�� ;

so that

�.p2/ D p2a.v2p � p11�2a/� p9=2Ca�� :

This completes the proof of the first part. For the second part, consider

.2�.p/2 � 3p11/2 D 4�.p4/� 5p22:

Assuming first that p is coprime to �.p/, we can apply the abc conjecture to this
equation to deduce

j�.p4/j � p10.1��/:
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If pj�.p/, then we write, as before, �.p/ D pavp with vp coprime to p. Then, we
have

4�.p4/ D p4aŒ.2v2p � 3p11�2a/2 C 5p22�4a�:
Applying the abc conjecture to the term in the square brackets, we obtain

j�.p4/j � p10C2a�� ;

so that the result is proved in this case also. ut
We are now in a position to study the convergence of

X

m�m0
j�.p2m/j�s:

We break the sum into three parts:

j�.p2/j�s C j�.p4/j�s C
X

3�m�m0
j�.p2m/j�s:

By our earlier discussion, the last sum is bounded by p�33<.s/. By the previous
lemma, the first two terms are

� p�
9
2 .1��/<.s/:

This result immediately implies that D�.s/ converges for <.s/ > 2=9. Thus,

X0

a�x
v�.a/� x2=9C� :

We record the following corollary for its own intrinsic interest.

Corollary 8 If a is an odd number, the number of solutions of �.n/ D a is bounded
by O.jaj2=9C�/, assuming the abc conjecture.

4 The abc conjecture for number fields

Let K be an algebraic number field. Suppose a; b; c 2 K� such that aC bC c D 0
Define

radK.a; b; c/ D
Y

p

NK=Q.p/;



470 M.R. Murty and V.K. Murty

where the product is over those prime ideals for which the numbers

jjajjp; jjbjjp; jjcjjp
are unequal. We will also write rad .a/ to be the product of norms of the distinct
prime ideal divisors of .a/. We define

HK.a; b; c/ D
Y

v

max.jjajjv; jjbjjv; jjcjjv/;

where the product is over all valuations of K (both finite and infinite and we
normalize the archimedean valuations by jjxjjv D jxjdv

v with dv D 1 or 2
according as v is real or complex, and the nonarchimedean valuations by jjxjjv D
NK=Q.p/

�v.x/). The abc conjecture forK is the following assertion. For any � > 0,
there is a constant CK;� such that

HK.a; b; c/ � CK;�.radK.a; b; c//
1C� :

A stronger version predicts that one may replace CK;� by

C ŒKWQ�
� D1C�

K ;

where DK is the absolute value of the discriminant of K . We will not be using this
stronger version of the abc conjecture in our discussion below. We refer the reader
to Vojta [16] for further details.

We first derive a consequence of the abc conjecture for number fields that will
be applied in the subsequent discussion.

Lemma 9 LetK be an algebraic number field and suppose that d D gcd ..a/; .b//.
Suppose for all finite primes p, jjajjp ¤ jjbjjp Assuming the abc conjecture for K ,
we have

rad.a/rad.b/rad.aCb/=.rad.d//2 � �

max.jN.a/j; jN.b/j; jN.aC b/j/=N.d/2�1��;

where N stands for NK=Q and the implied constant depends on K and �.

Proof. Suppose first that d D 1. From the definition, we have

radK.a; b; aC b/ D
Y

pjab.aCb/
N.p/;

since a; b; .aC b/ are mutually coprime. Let us note that for every finite v, we also
have that one of

jjajjv; jjbjjv; jjaC bjjv;
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is 1, so that

HK.a; b; aC b/ � max.jN.a/j; jN.b/j; jN.aC b/j/:

The abc conjecture now implies the result in this case. If d ¤ 1, let p be a prime
ideal dividing d. By our assumption, p enters into the radical.N.p/ enters three times
into the product rad.a/rad.b/rad.a C b/, and to remove two of the occurences, we
can divide by N.p/2. This completes the proof. ut

In our estimations below, we will need a number field version of Lemma 6, and
this we record here.

Lemma 10 Let K be an algebraic number field and f a binary form in OKŒx; y�

with no repeated factors. Then, assuming the abc conjecture for K , we have

radK.f .u; v//� HK.u; v/
d�2��;

where d is the degree of f and u; v 2 K�.
Proof. This is proved on page 105 of [2]. ut

We remark that if we replace radK.f .u; v// by jf .u; v/j, this is essentially Roth’s
theorem for number fields. Thus, the abc conjecture is making a stronger assertion
than that implied by Roth’s theorem. Indeed, since jN.f .u; v//j � radK.f .u; v//,
we deduce the following:

Corollary 11 LetK be an algebraic number field and f a binary form in OKŒx; y�.
Then,

jN.f .u; v//j � HK.u; v/
d�2��;

where d is the degree of f and u; v 2 K�, assuming the abc conjecture for K .

Lemma 12 Suppose that �f .p/ ¤ 0. Assume the abc conjecture for Kf . Then,

jN.�f .p2//j � pd.k�3/=2��

and
jN.�f .p4//j � pd.k�2/��;

where d D ŒKf W Q� and p is unramified in Kf .

Proof. As before, we apply the abc conjecture to the equation

�f .p
2/ D �f .p/2 � pk�1:

First suppose that �f .p/ and p are coprime. By Lemma 9 applied to the field Kf ,
we obtain

radKf .�f .p/
2; pk�1; �f .p2//� pd.k�1/�� ;
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where d D ŒKf W Q�. We obtain

pd jN.�f .p//N.�f .p2//j � pd.k�1/��;

from which we deduce, using the Ramanujan bound jN.�f .p//j � 2dpd.k�1/=2,
that

jN.�f .p2//j � pd.k�3/=2��:

Now suppose that pajj.�f .p//, with a � 1. Then by taking norms, we obtain the

inequality

pda � pd.k�1/=2;
implying a � .k � 1/=2. Since k is even, this is a strict inequality. Thus, a <

.k � 1/=2. Since p is unramified,

jjpk�1jjp D N.p/�.k�1/ ¤ jj�f .p/2jjp D N.p/�2a:

By Lemma 9, we obtain as before,

jN.�f .p2//j � pd.k�3/=2��:

The lower bound for jN.�f .p4//j is derived similarly. We apply the abc conjecture
to the equation

.2�f .p/
2 � 3pk�1/2 D 4�f .p4/ � 5p2k�2: ut

5 The Dirichlet series Df .s/

We will now study the series Df .s/ and determine where it converges. Since
N.�f .n

2// is multiplicative, we have the Euler product

Df .s/ D
Y

p

 1X

mD0

1

jN.�f .p2m//js
!

:

Our goal is to determine the region where the Euler product converges absolutely.
We split the product into two parts: p � c0 and p > c0, for which we have that
�f .p/ is divisible by 2. The first product is finite and is over those p for which
the �f .pm/ are all coprime to 2. This product converges for <.s/ > 0. Let us
now consider the other product. We proceed as in the case of the �-function. By
Proposition 4, we see that for m � m0 (say),

j�f .p2m/j � pm.k�1/.1��/:
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A similar estimate holds with f replaced by any conjugate form f � . Thus the series
in the Euler product converges for <.s/ > 0 if we restrict m � m0. By Corollary
11, we have

jfm.�f .p/2; pk�1/j � p.k�1/.m=2�2��/

for 6 � m � 2m0. Thus,

j�f .p2m/j � p.k�1/.m�2��/

for 3 � m � m0. We deduce that

jN.�f .p2m//j � p.k�1/d.m�2��/;

for 3 � m � m0. To complete our estimates, we need lower bounds for j�f .p2/j
and j�f .p4/j, which are provided by Lemma 12. From that lemma, we get that

jN.�f .p2//j � pd.k�3/=2�� ; jN.�f .p4//j � pd.k�2/��:

Putting all this together shows the following:

Theorem 13 Assume the abc conjecture for Kf . Let d D ŒKf W Q�. Then, the
Dirichlet series Df .s/ converges absolutely for <.s/ > 2=d.k � 3/. In particular,

X0

a�x
vf .a/� x2=d.k�3/C� ;

for any � > 0, where the summation is over odd, positive a.
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Abstract We discuss the problems of interpolation and multiplicity estimates on
compactifications of commutative algebraic groups. We consider two extremal
cases: one where multiplicity is imposed at a single point and the other where
the conditions are imposed on an asymptotically growing set of points. Some
conjectures and new results are given in both cases.
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1 Introduction

One of Serge Lang’s most memorable qualities was his incredible vision of
mathematical structures. Whether studying diophantine approximation, rational
points on algebraic varieties, or the far-reaching consequences of the heat kernel
in number theory, Serge always had a simple, elegant vision of how, and often
why, the mathematical universe behaves, what objects one might hope to find, and
how to go about finding them. In this article we would like, to the best of our
ability, to adopt a similarly broad point of view and study the global geometric
properties of algebraic varieties which govern the behavior of multiplicity estimates
and interpolation estimates on them.

Suppose that G is a commutative algebraic group of dimension d defined over
the complex numbers. Let X be an equivariant compactification of G and A an
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ample line bundle on X . If � � G is a finite set, then we let

� .S/ D fx1 C : : :C xS W xi 2 � for all ig:

For simplicity, we will assume that � contains the identity eG of G. Interpolation
asks to find the maximal order jets which a multiple of A can simultaneously
generate at the points of � .S/. Multiplicity estimates, on the other hand, seek the
maximal order to which a non-zero section of a multiple of A can vanish at the set
of points � .S/. We will consider only the two extreme cases, where � D eG and
where � contains non-torsion elements of G and S is large.

We consider first the case where � is reduced to a point. In this case, the fact
that X is an equivariant compactification of a group variety is irrelevant, except
insofar as the open subset G � X is a homogeneous space for the action of G, and
consequently eG 2 G � X may be viewed as a very general point. Suppose then
thatX is a smooth projective variety and � 2 X is a general point. We now introduce
formally the two numerical invariants of the pair .X;A/ which will be studied.

Definition 1.1.1. SupposeX is a smooth projective variety, x 2 X , andA an ample
line bundle on X . Then

�.x; A/ D inf
C3x

degA.C /

multx.C /
I

here the infimum runs over all integral curves C � X passing through x.

The invariant �.x; A/ is called the Seshadri constant of A at x. The reader is
encouraged to consult [L], Volume I, Chapter 5 for the basic properties of Seshadri
constants, the geometric information they encode, as well as some very interesting
problems, both solved and unsolved, regarding Seshadri constants. This numerical
definition is equivalent (see [L] Theorem 5.1.17 for details) to a more intuitive
geometric definition. In particular, �.x; A/ is the supremum of all non-negative
rational numbers ˛ such that the linear series jnAj separates n˛-jets at x for n
sufficiently large and divisible. Any irreducible subvariety V � X , of positive
dimension and maximal with respect to the relation of inclusion, satisfying

�
degA.V /

multx.V /

� 1
dim.V /

D �.x; A/

is called Seshadri exceptional at x relative to A. An important result of Campana
and Peternell [CP] asserts that a Seshadri exceptional subvariety always exists. Note
finally that solving the interpolation problem for X and A at a point � is equivalent
to bounding the Seshadri constant �.�; A/ from below.

Next, for an ample divisor A on X we let

m.A/ D sup
D�A

˚

mult�.D/ j D 2 Div.X/˝Q effective
� W
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here � denotes numerical equivalence and � is a very general point of X . To see
that the invariant m.A/ is well-defined, choose a very ample divisor B . For any
Q-divisor D � A, we can choose general divisors B1; : : : ; Bd�1 from the linear
system jBj, containing �, so that the intersection

support.D/ \ B1 \ � � � \ Bd�1
is proper. It follows that

mult�.D/ � c1.A/ \ c1.B/d�1;
establishing that the supremum exists in the definition of m.A/.

The two invariants m.A/ and �.�; A/ are closely related. Indeed, as we will
establish at the end of �1.2

�.�; A/ � d
p

degA.X/ � m.A/ (1)

with equality holding on the one side if and only if it holds on the other. More
generally, the smaller �.�; A/ is the more sparse will be the jets generated by jkAj
at �, and consequently the larger m.A/ will be. We can quantify this relationship
precisely on a surface.

Theorem 1.1.2. Suppose X is a smooth surface and � 2 X a very general point.
Then for any ample line bundle A on X we have

degA.X/

2
� m.A/�.�; A/ � degA.X/:

For higher dimensional varieties, the analogue of Theorem 1.1.2 requires the
introduction of new invariants.

Definition 1.1.3. For 1 � i � d let

˛i .A/ D sup
n

˛ 2 Q W dim
�

BS
ˇ
ˇ
ˇkA˝mk˛

�

ˇ
ˇ
ˇ

�

< i for k � 0
o

I

here BS denotes the base locus and m� � OX the maximal ideal associated to the
point �.

Note that ˛1.A/ D �.�; A/ and ˛d .A/ D m.A/. As in Theorem 1.1.2 one can
establish the upper bound

dY

iD1
˛i .A/ � degA.X/:

A lower bound is harder to come by, however, since the proof of Theorem 1.1.2
uses in a fundamental way in order to establish (4) below the fact that the Seshadri
exceptional curve C� is a divisor. Along the lines of Theorem 1.1.2, we make the
following conjecture:
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Conjecture 1.1.4. Suppose A is an ample line bundle on a smooth projective
variety X of dimension d . Then

dY

iD1
˛i .A/ � degA.X/

d Š
:

As in the case of surfaces, Conjecture 1.1.4 is the best possible result. We will see
that Conjecture 1.1.4 is true, as in the surface case, if there is a divisorial Seshadri
exceptional subvariety of A at �. The interest of Conjecture 1.1.4 is that it gives a
connection between m.A/ and �.�; A/. In particular, Conjecture 1.1.4 says that if
m.A/ is small, then �.�; A/ cannot be too small. Thus any upper bound on m.A/
entails a lower bound on �.�; A/ and, conversely, if �.�; A/ is small, then m.A/
cannot be too small.

We will now consider non-zero values of the parameter S . Here the most refined
results are due to Philippon [P1,P2]. From the geometric viewpoint, the one manner
in which Philippon’s zero estimates might be strengthened is to distinguish the
cases where S is small from those where S is large. Indeed, these two cases are
qualitatively very different. When S D 1, since no hypothesis is made concerning
the finite set � � G, no meaningful conclusion can be drawn without imposing
vanishing along � .r/ for r > 1. For example, if G D A2 and � consists of
1;000;000 points on a smooth conic C � G, then of course there is a regular
function of degree two, namely the function defining the conic C , which vanishes
to order one along all 1;000;000 points. Meanwhile, if the 1;000;000 points were
general points of G, there would be no polynomial of degree smaller than roughlyp
2;000;000 vanishing at each of the points.
Thus the main goal, in this case, of Philippon’s construction is to replace � with

� .2/, thus allowing the group law on A2 to spread the points on C around. If,
however, as may sometimes be assumed in applications, the set along which one
imposes vanishing is already of the form � .S/ for S > 1, then a much stronger
result can be expected to hold since regardless of the position of the points of � ,
they have already been distributed by the group law on G.

In order to evaluate how well the points of � .S/ will be distributed inside G, we
will use a line of reasoning which grows out of the work of Faltings and Wüstholz
[FW] on the Schmidt subspace theorem.

Definition 1.1.5. Suppose H � G is a non-trivial subgroup. Let � .1/ be the
subgroup of G generated by � and set

�.H/ D rank.� .1/\H/:

Setting d.H/ D dim.H/ we also define

�.�;H/ D �.H/

d.H/
:
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A subgroupH is called the � -exceptional subgroup if �.�;H/ � �.�;H 0/ for all
non-trivial subgroupsH 0 � G and if H is maximal among such subgroups.

The same notion is defined, with the notation ��.�;H/, and used in a similar
fashion by Masser [M] and, not suprisingly given the relationship with [FW], it
is closely related to a second invariant used by Masser and Wüstholz [MW] and
Waldschmidt [Wal] to study related diophantine problems. In �2 we will show that a
� -exceptional subgroupH always exists and, moreover, that there is an increasing
sequence of subgroups

H1 � � � � � Hr

with H1 the � -exceptional subgroup, Hr D G, and �.�;H1/ > : : : > �.�;Hr/.
Moreover if H � G is a subgroup with �.H/ D �.Hi/ then,H � Hi .

In order to study the generation of jets along � .S/ when S is large, we need
a notion of Seshadri exceptional subvariety for the set of points � .S/. First, the
Seshadri constant of A along a finite subset Z � X is defined by

�.Z;A/ D inf
C

�
degA.C /

P

x2Z multx.C /

�

where the infimum is taken over all irreducible curves C � X containing at least
one point of Z. An irreducible subvariety V � X of positive dimension is called
Seshadri exceptional for A relative to Z if

�
degA.V /

P

x2Z multx.V /

� 1
dim.V /

D �.Z;A/

and if V is maximal with respect to the relation of inclusion.

Theorem 1.1.6. Suppose the � -exceptional subgroup H � G is proper. Then for
all S sufficiently large, a translate of each Seshadri exceptional subvariety of A
relative to � .S/ is contained in H .

Theorem 1.1.6 is nearly optimal but once S is sufficiently large one might ask
whether or not there are criteria for when the subgroupH is the Seshadri exceptional
subvariety:

Question 1.1.7. With hypotheses as in Theorem 1.1.6, is the subgroup H the
Seshadri exceptional subvariety for A relative to � .S/ for all S sufficiently large?

Quantitatively, an affirmative answer to Question 1.1.7 leads to an improvement
of interpolation estimates involving factors of dim.G/ and the rank of � , as we
will see in Theorem 1.5.1 below. Qualitatively, however, an affirmative answer to
Question 1.1.7 is much stronger than Theorem 1.5.1 as it identifies the obstruction
to the interpolation problem in terms of the subgroups of G.
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We are left to address the interpolation question in the case where

�.�;G/ � �.�;H/

for all subgroupsH � G. In this case, there are no obstruction subgroups and thus
the points of � .S/ are well distributed with respect to subgroups of G.

Conjecture 1.1.8. Suppose X is the compactification of a commutative algebraic
group G and � � G is not contained in Gtors. Suppose G is � -exceptional. Then
for all S sufficiently large

�.� .S/; A/ �
d

q
degA.X/j� .S/j
d

:

More generally, it is reasonable to look for the best possible lower bound for

lim inf
S!1

�.� .S/; A/ d
pj� .S/j

d
p

degA.X/
;

and attempt to characterize when the limit is close to 1. If the limit were always 1,
then Question 1.1.7 would have an affirmative answer, in asymptotic form at least,
without the hypothesis that the � -exceptional subgroup H is a proper subgroup
of G: in other words, as S becomes larger and larger the Seshadri constant for A
relative to � .S/ is closer and closer to maximal and thusX itself is becoming closer
and closer to being Seshadri exceptional.

Finally we would like to address zero estimates when the parameter S is large.
Let hi D dim.Hi / for 1 � i � r . As in Definition 1.1.3 we also introduce a constant

to measure the dimension of the base locus ofH0
�

kA˝ Ik˛� .S/
�

for different values

of ˛: for 1 � i � r

˛i .S;A/ D sup
n

˛ > 0 W dim
�

BS
�

A˝k ˝ Ik˛� .S/
��

< hi for some k > 0
o

:

Only the dimensions of the subgroups Hi are considered in the definition of
˛i .S;A/ since, conjecturally, when S � 0 only translates of these subgroups will
appear as obstructions:

Conjecture 1.1.9. Suppose X is the compactification of a commutative group
variety and � is not contained in Gtors. Suppose G is not � -exceptional so that
r � 2. Then for 1 � j � r � 1 and 1 � � > 0 there exists S sufficiently large so
that

BS
�

kA˝ Ik.˛jC1.S;A/��/
� .S/

�
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consists of translates ofHk where 0 � k � j . Moreover, given 0 < ˇ < 1, for each
1 � j � r � 1 and for all S sufficiently large,

.˛jC1.S; A/ � ˛j .S;A//cj card.� .bSˇc/CHj=Hj / degA.Hj / � degA.X/:

where cj D codim.Hj ;G/ and bSˇc is the greatest integer less than or equal to Sˇ .

Both parts of Conjecture 1.1.9 can be cleaned up and strengthened by enlarging
the set � .S/ and this will be examined in �2. As stated, the degree inequality
of Conjecture 1.1.9 would be an improvement of joint work with Ratazzi [NR].
The arguments of the article [NR] prove the best known results in the direction of
Conjecture 1.1.9.

The organization of the paper is as follows. In �1 we prove Theorem 1.1.2 and
its analogue in the higher dimensional case when there is a divisorial Seshadri
exceptional subvariety for A at �. In �2 we discuss the basic properties of the
invariant �.�;H/ and the filtration which it induces on G. We then study one
example of this filtration carefully and relate this to Conjecture 1.1.9. In �3 we
prove Theorem 1.1.6 while �4 is devoted to a discussion of Conjecture 1.1.8 and
Conjecture 1.1.9. In particular, Conjecture 1.1.8 can be established up to explicit
factors involving dim.G/ and �.G/ and similarly for Conjecture 1.1.9, except that
we cannot necessarily isolate each subgroup Hj and thus the inequality obtained
involves an unknown subgroup containing Hj . Due to space constraints, we can
only sketch the main ideas of the arguments in some cases but we have tried to
include all important ideas. One aspect of this story which we do not have time to
address here but which, particularly for applications in transcendence theory, merits
serious attention is the issue of giving effective bounds, as a function of S , for zero
estimates and interpolation estimates.

Acknowledgements As is clear from the testimony in �5, my greatest mathematical debt is to
Serge Lang and it is with great affection that I dedicate this work to his memory. Others to whom I
am endebted for many discussions involving the material of this paper are D. Bertrand, S. Fischler,
P. Philippon, and N. Ratazzi.

1.2 Surfaces

Proof of Theorem 1.1.2.
One of the inequalities of Theorem 1.1.2 is trivial, namely

m.A/�.�; A/ � degA.X/:

Indeed, choose an effective Q-divisor D � A with multiplicity at least m.A/ � ı
at �. Choose a general effective Q-divisor E � A with multiplicity at least
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�.�; A/�ı at �. By definition of �.�; A/we may assume thatD andE meet properly
at � and, by Bézout’s theorem,

.�.�; A/ � ı/.m.A/� ı/ � degA.X/:

Allowing ı to approach zero establishes the upper bound on m.A/�.�; A/.
For the lower bound we use the counting methods of [N2] and a key observation

of [EKL] also used in [N2]. Suppose that C� is a Seshadri exceptional curve for
A at �: if the Seshadri exceptional subvariety were X itself, then we would be in
the situation where �.�; A/ D m.A/ D p

degA.X/ and there would be nothing to
prove.

Suppose D 2
ˇ
ˇ
ˇkA˝mk˛

�

ˇ
ˇ
ˇ. Then D vanishes along C� if ˛ > �.�;A/. In fact,

using [N2] Lemma 1.3, which is in turn a variant of [EKL] Proposition 2.3, we have

multC�.D/ � k˛ � k�.�; A/ � 1: (2)

We now define a sequence of vector spaces as follows. For each integer a � 0 let

Va D H0
�

X; kA˝ma
�=m

aC1
�

�

:

We have the trivial upper bound

dim.Va/ � aC 1; 1 � a � dk�.�; A/C 1e: (3)

On the other hand, for a > dk�.�; A/C 1e we can apply (2) to conclude that

multC�.D/ � a � dk�.�; A/C 1e:
In a worst case scenario, from the point of view of the counting, C� is smooth at �.
In this case, writing

D D .a � dk�.�; A/C 1e/C CD0;
and then removing the multiple of C gives an inclusion

Va � H0
�

X; kA� .a � dk�.�; A/C 1e/ C ˝mdk�.�;A/C1e� =mdk�.�;A/C2e�

�

:

In particular, for all a > dk�.�; A/C 1e,

dim.Va/ � k�.�; A/C 2: (4)

We have

h0
�

X; kA˝mk˛
�

�

D h0.X; kA/�
kX̨

iD0
h0
�

X; kA˝mi
�=m

iC1
�

�

:
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Applying (3) for each 1 � i � dk�.�; A/C 1e, and (4) for each i � dk�.�; A/C 2e
we find, up to factors of O.k/,

h0
�

X; kA˝mk˛
�

�

D h0.X; kA/� k
2�.�; A/2

2
� .k˛ � k�.�; A//k�.�; A/

D h0.X; kA/� k2˛�.�; A/C k2�.�; A/2

2
:

By Riemann-Roch h0.X; kA/ D k2 degA.X/
2

CO.k/. In particular, for k � 0 we see

that h0
�

X; kA˝mk˛
�

�

> 0, and consequentlym.A/ > ˛, as long as

˛�.�; A/ � �.�; A/
2

2
<

degA.X/

2
:

Thus we conclude that

m.A/ � degA.X/

2�.�; A/
C �.�; A/

2
:

This concludes the proof of Theorem 1.1.2. Note that when �.�; A/ is small the
lower bound becomes sharper.

Note that Theorem 1.1.2 is the best possible result of this type. Indeed, the right-
hand side can be an equality as we see by taking X D P2 and A D OP2.1/. On the
other hand the left-hand side becomes closer and closer to being an equality with
X D P1 	 P1 and A D O.a; b/ with a 
 b. Indeed, in this case m.A/ D a C b
and �.�; A/ D a with Seshadri exceptional subvariety being P1 	 	2.�/. We have
degA.X/ D 2ab and thus degA.X/

2
D ab is only slightly less than m.A/�.�; A/ D

ab C a. According to [N1] this scenario only arises when the Seshadri exceptional
curve is a fibre of a surjective map 	 W X ! Y where Y is a curve.

We now discuss the analogue of Theorem 1.1.2 for the case where dim.X/ > 2

and where there is a Seshadri exceptional divisor D� of A relative to � .S/ at �.
In this case we have direct analogues of the three key estimates (2), (3), and (4).

SupposeD 2 H0
�

X;A˝mk˛
�

�

. Then we have as before

multD�.D/ � k˛ � k�.�; A/ � 1: (5)

With Va defined precisely as in the surface case we have

dim.Va/ �
�
aC dim.X/� 1

dim.X/ � 1
�

; 1 � a � dk�.�; A/C 1e: (6)

Lastly, for a > dk�.�; A/C 1e we have

dim.Va/ �
� dk�.�; A/C 1e C dim.X/� 1

dim.X/� 1
�

: (7)
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Combining (6) and (7) we find, up to O.kd�1/,

h0
�

X; ka˝mk˛
�

�

� kd degA.X/

d Š
�k

d �.�; A/d

d Š
�.k˛�k�.�; A//k

d�1�.�; A/d�1

.d � 1/Š :

Arguing, as in the surface case, we deduce that

m.A/ � degA.X/

d�.�; A/d�1
C �.�; A/d � 1

d
: (8)

Since the Seshadri exceptional subvarietyD� is a divisor, we have ˛i .A/ D �.�; A/
for 1 � i � d � 1 and thus (8) implies that

dY

iD1
˛i .d/ D �.�; A/d�1m.A/ � degA.X/

d
C �.�; A/d

�
d � 1
d

�

:

To conclude this section, we prove (1) from the introduction, generalizing the
argument given on surfaces in the first paragraph of this section. The fact that
m.A/ � �.�; A/ is clear as m.A/ measures the maximum asymptotic multiplicity
of a section of kA at �, while �.�; A/measures the maximum asymptotic separation
of jets of kA at �. Moreover, [L] Volume I, Proposition 5.1.9 asserts that

�.�; A/ � d
p

degA.X/: (9)

The fact thatm.A/ � d
p

degA.X/ is a simple counting argument using the Riemann-
Roch theorem on X . We will show that

�.�; A/d�1 �m.A/ � degA.X/: (10)

Combining (9) and (10) shows that if �.�; A/ D d
p

degA.X/, then m.A/ D
d
p

degA.X/. The opposite implication, that if m.A/ D d
p

degA.X/, then �.�; A/ D
d
p

degA.X/ is more subtle and is the content of the last section of [N2]. As for (10),
given ı > 0, choose k > 0 and sections s1; : : : ; sd 2 H0.X; kA/ with the following
properties:

(a.) mult�.si / � .�.�; A/ � ı/k; 1 � i � d � 1,
(b.) mult�.sd / � .m.A/� ı/k,
(c.) the tangent cones of the sections si at � meet properly.

LettingDi be the zeroes of si , by (c.) the intersectionD1 \ � � �Dd is proper and by
(a) and (b) the intersection multiplicity at � will be at least

.�.�; A/ � ı/d�1.m.A/� ı/kd :

Since this intersection multiplicity is at most the total degree of the intersection,
kd degA.X/, (10) follows taking the limit as ı approaches zero.
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1.3 Filtrations

In order to justify why, in the language of Definition 1.1.5, there is a � -exceptional
subgroup H � G, suppose H1;H2 � G are two distinct subgroups with
�.�;H1/ D �.�;H2/ both maximal. We may assume that neither subgroup contains
the other. It is sufficient then to show that

�.�;H1 CH2/ D �.�;H1/ D �.�;H2/: (11)

If H1 \ H2 D f0g, then d.H1 C H2/ D d.H1/ C d.H2/ and �.H1 C H2/ D
�.H1/ C �.H2/ and thus (11) is true. Thus we may assume that H1 \ H2 is non-
trivial.

Since �.�;H1/ and �.�;H2/ are maximal we have

�.�;H1 CH2/ � �.�;H1/:

If �.�;H1 CH2/ < �.�;H1/, then we claim that

�.H1 \H2/

d.H1 \H2/
>
�.H1/

d.H1/
; (12)

contradicting the maximality assumption on H1. Note that

�.�;H1 CH2/ D �.H1 CH2/

d.H1 CH2/
D �.H1/C �.H2/ � �.H1 \H2/

d.H1/C d.H2/ � d.H1 \H2/
: (13)

If a; b; c; d are positive numbers with a > c and b > d , then

a � c
b � d <

a

b
if and only if

a

b
<
c

d
: (14)

Combining (14) with (13) establishes (12) and concludes the proof that there is a
unique maximal subgroupH � G with �.H/ maximal.

LetH1 be the � -exceptional subgroup ofG. IfH1 D G, then we are done. If not,
let �2 be the largest value, strictly smaller than �.�;H1/, such that �.�;H/ D �2
for some subgroup H � G. Among all subgroups, choose H2 maximal so that
�.�;H2/ D �2. As above we consider H1 CH2. If H1 \H2 D f0g; then �.H1/ >

�.H1CH2/ > �.H2/, contradicting the choice ofH2. ThusH1\H2 is non-trivial.
By choice ofH1 we have �.H1\H2/ � �.H1/. If �.H1\H2/ D �.H1/, then (13)
gives the contradiction

�.H1/ > �.H1 \H2/ > �.H1 CH2/

unless H1 \H2 D H1. But if H1 \H2 D H1, then we are done since this implies
that H1 � H2. Thus we may assume that �.H1 \ H2/ < �.H1/ and so, by the
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choice of H2, �.H1 \H2/ � �.H2/. Using (13) again will show that

�.H1 CH2/ > �.H2/; (15)

unless H1 \ H2 D H1. In either case we are finished since (15) contradicts the
choice of H2.

If H2 D G we are done. If not, choose the largest value �3 < �2 so that there is a
subgroupH3 � G with �.H3/ D �3. We chooseH3 maximal and arguing precisely
as in the previous paragraph shows that H2 � H3. The chain terminates when we
find Hr D G.

In the rest of this section, we would like, in order to motivate Conjecture 1.1.9, to
consider a special case of G and � where we can compute base loci explicitly. Let
G D A3 and X D P3. Let v1 D .1; 0; 0/, v2 D .0; 1; 0/, and v3 D .0; 0; 1/. Choose

� D f0; a11v1; : : : ; a1r1v1; a21v2; : : : ; a2r2v2; a31v3; : : : ; a3r3v3g;

where the aij are algebraically independent over Q and r1 � r2 � r3. In this
scenario we have

H1 D A1 	 f0g 	 f0g;
H2 D A1 	 A1 	 f0g;
H3 D A1 	 A1 	 A1:

We also have

�.�;H1/ D r1;
�.�;H2/ D r1 C r2

2
;

�.�;H3/ D r1 C r2 C r3
3

:

Finally, let

�1 D f0; a11v1; : : : ; a1r1v1g;
�2 D f0; a21v2; : : : ; a2r2v2g;
�3 D f0; a31v3; : : : ; a3r3v3g:

For this example it is useful to introduce a slightly larger set than � .S/, namely

� .S/ D fa1x1 C : : :C alxl W 0 � ai � S for all i ; xi 2 � g:
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Conjectures 1.1.8 and 1.1.9 should still hold with � .S/ in place of � .S/. Consider,
for S > 0 fixed and k large, the linear series

ˇ
ˇ
ˇOX.k/˝ Ik˛

� .S/

ˇ
ˇ
ˇ : (16)

Suppose ˛ < .S C 1/�r1 . We claim that the base locus of (16) is � .S/. Choose
coordinates x1; x2; x3 on A3 where xi is the coordinate from the i th factor A1. Let
	i W A3 ! A be the projection to the i th factor. Note that 	i .� .S// D � i .S/. Let
fi .xi / be a polynomial of degree k which vanishes along � i .S/ to order k˛. In
order to verify that such a non-zero polynomial fi .xi / exists, note that j� i .S/j D
.S C 1/ri . The cost of vanishing to order at least k˛ at a point is dk˛e. On the other
hand, polynomials of degree at most k in xi form a vector space of dimension kC1.
Thus as long as

dk˛e.S C 1/�ri � k C 1
a non-zero polynomial fi .xi / exists satisfying the required vanishing conditions.
Using the hypothesis that r1 � r2 � r3 and looking at the common zeroes of the
polynomials f1.x1/; f2.x2/; and f3.x3/ shows that the base locus of (16) is exactly
� .S/ when ˛ < .S C 1/�r1 .

When ˛ > .SC1/�r1 we claim that A1	fP2g	fP3g is in the base locus of (16)
for all P2 2 � 2.S/ and P3 2 � 3.S/. Indeed, if 
 2 H0.X;OX.k// vanishes to
order at least k˛ along � .S/, then 
 jA1 	 fP2g 	 fP3g is a polynomial of degree at
most k with order of vanishing larger than k.S C 1/�r1 at .S C 1/r1 points, and this
is impossible unless 
 jA1 	 fP2g 	 fP3g D 0. Using the functions f2.x2/, f3.x3/
defined above, we see that when .S C 1/�r2 > ˛ > .S C 1/�r1 the base locus of
(16) is precisely

[

P22� 2.S/;P32� 3.S/
A1 	 fP2g 	 fP3g;

where A1 	 fP2g 	 fP3g denotes the Zariski closure of A1 	 fP2g 	 fP3g in P3.
Suppose now that ˛ > .S C 1/�r2 . We claim that for P3 2 � 3.S/ the subvariety

A1 	 A1 	 fP3g is in the base locus of (16) for each P3 2 � 3.S/. Suppose f is a
polynomial of degree k vanishing to order at least dk˛e at � .S/. Suppose that f
does not vanish identically along A1 	 A1 	 fP3g and let

g D f jA1 	 A1 	 fP3g:

We claim that for each P1 2 � 1.S/ g vanishes at fP1g 	 A1 	 fP3g. Indeed, if not,
then gjfP1g 	A1 	 fP3g has degree k and order of vanishing at least ˛ at .S C 1/r2
points, and this is impossible. Thus g is divisible by

h.x1/ D
Y

P12� 1.S/
.x1 � P1/:
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Consider the quotient g.x1; x2/=h.x1/. This polynomial has degree k � j� 1.S/j
and order of vanishing at least dk˛e � 1 at .x; y/ for x 2 � 1.S/ and y 2 � 2.S/.
Note that the argument applied to establish that g is divisible by h applies more
generally. Indeed, if r.x1; x2/ is any polynomial with order of vanishing at least t
along � 1.S/ 	 � 2.S/, with t j� 2.S/j > deg.r/, then r vanishes at fP1g 	 A1 for
each P1 2 � 1.S/. Dividing g.x1; x2/ by h.x1/ drops the degree of g by j�1.S/j,
while the order of vanishing along � 1.S/ 	 � 2.S/ has gone down by 1. Thus we
conclude, setting r.x1; x2/ D g.x1; x2/=h.x1/, that r.x1; x2/ is also divisible by
h.x1/ and the argument can then be repeated until we reach a contradiction. We
conclude that for ˛ > .S C 1/�r2 the base locus of (16) contains

[

P32� 3.S/
A1 	 A1 	 fP3g:

Using the function f3.x3/ defined above, we see that the base locus of (16) for
.S C 1/�r2 < ˛ < .S C 1/�r3 is precisely

[

P32� 3.S/
A1 	 A1 	 fP3g:

Suppose now that ˛ > .S C 1/�r3 and that f is a polynomial of degree k
vanishing at � .S/ to order at least k˛. Using the argument of the previous case
we will establish that f is divisible by the polynomial

h.x1/ D
Y

P12� 1.S/
.x1 � P1/:

For P1 2 � 1.S/ consider f jfP1g 	 A1 	 A1. This has order of vanishing at least
˛ at � 2.S/ 	 � 3.S/ and so, repeating the argument of the previous paragraph,
f vanishes identically on fP1g 	 A1 	 A1. We then repeat the same argument for
f .x/=h.x1/ which has degree k� j� 1.S/j and order of vanishing at least dk˛e � 1
along � .S/. We eventually reach a contradiction, concluding that f does not exist.

In this particular case it is easy to verify that Conjecture 1.1.9 holds with � .S/ in
place of � .S/. Indeed, we have provided explicit polynomials, for any � > 0, with
the specified base locus. As indicated after the statement of Conjecture 1.1.9 the
base locus of the linear series (16) is exactly translates of Hj , where j will depend
on ˛.

What happens in this example for Conjecture 1.1.9 when � .S/ is used instead
of � .S/? Qualitatively we will find the same result since we have the inclusions

� .S/ � � .S/ � � .dS/;
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but the quantitative sharpness of the estimate will be lost. To better understand
what goes wrong, we will consider the same example but with � .S/ in place of
the enlarged � .S/.

When ˛ > .S C 1/�r1 the subvariety A1 	 f0g 	 f0g will enter the base locus
precisely as before. For other values of P2; P3 2 � .S/, however, the curve A1 	
fP2g	fP3g enters the base locus at a later point. For example, ifP2 D 0 andP3 D x
for some x 2 � the argument above will only establish that A1	fP2g	fP3g enters
the base locus once ˛ > S�r3 . Thus as ˛ grows, more and more curves of the form
A1	fP2g	fP3gwill enter the base locus. Eventually, the surface A1	A1	f0g enters
the base locus quickly to be followed by fibres over other points P3 2 � 3.S/. The
values where the base locus jumps in dimension will be comparable asymptotically
in S , but the structure is much more involved and does not lend itself to a simple
statement as in Conjecture 1.1.9.

1.4 The � -exceptional subgroup

In this section we will prove Theorem 1.1.6. Note first that for S large, the existence
of a proper � -exceptional subgroup H forces the Seshadri constant �.� .S/; A/ to
be highly submaximal. Indeed, for S large, using the subgroup H to estimate the
value of �.� .S/; A/, we have by [L] Volume I, Proposition 5.1.9

�.� .S/; A/ �
�

deg.H/

j� .S/\H j
� 1

dim.H/

:

Recalling that �H D rank.� .1/\H/, the right-hand side grows likeO
�

S
� �H

dim.H/

�

,

while the maximal value possible for �.� .S/; A/ is

�
deg.G/

j� .S/j
� 1

dim.G/

D O
�

S
� �G

dim.G/

�

:

Since H is � -exceptional and is a proper subgroup of G we have �H
dim.H/ >

�G
dim.G/

and consequently for S large

�.� .S/; A/

�

deg.G/

j� .S/j
� 1

dim.G/

: (17)

We claim that for k sufficiently large the linear series

ˇ
ˇ
ˇkA˝ Idk�.� .S/;A/Cd� .dS/�� .dS/

ˇ
ˇ
ˇ (18)
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is non-empty. Note that � � � generates the same subgroup of G as � and in
particular j� .S/ � � .S/j and j� .S/j both grow like polynomials in S of degree
�G . Thus, according to (17), for k; S � 0 the linear series (18) is non-empty.

We will also need to study the growth of j� .S/� � .S/j on subgroups. Suppose
H � G is an irreducible non-trivial subgroup. Choose a basis x1; : : : ; x�G for the
free part of � .1/. Choose r > 0 so that each non-torsion element x 2 � can be
expressed as

x D tx C
�GX

iD1
aixi ;

where tx 2 � .1/tors and jai j � r . Let

A.S/ D
(

�GX

iD1
aixi W jai j � Sr

)

:

For all S > 0 if x 2 � .S/, then there is an element y 2 � .1/tors and z 2 A.S/ so
that

x D y C z:

Thus we have

jH \ � .S/j � j� .1/torsjjH \ � .S/ \ � .1/freej
� j� .1/torsjjH \A.rS/j

Let �H be the rank of H . Then jH \ A.rS/j � .2rS C 1/�H . In particular it is
possible to choose S sufficiently large so that the linear series (18) is non-empty
restricted to any subgroupH which satisfies �.H/ < �.G/.

Proof of Theorem 1.1.6. Suppose that V is Seshadri exceptional for A relative to
� .S/ for some S � 0. Thus by definition

�.� .S/; A/ D
 

degA.V /
P

y2� .S/ multy.V /

! 1
dim.V /

: (19)

Let 
 be a non-zero section of the linear series (18). We will outline a proof that


 vanishes on t�x.V /C : : :C t�x.V / � Z.
/ with d summands (20)

for each x 2 � .S/. We will review here the argument to establish (20) for one and
two summands and indicate how it extends to the general case.

We first claim that for g 2 G if V is Seshadri exceptional for A relative to � .S/
then V C g is Seshadri exceptional for A relative to � .S/ C g. Note that for all
positive dimensionalW � X

degA.g CW /
P

y2� .S/ multgCy.g CW / D
degA.W /

P

y2� .S/ multy.W /
(21)
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because the degree is translation invariant. AsW varies over all curves, the infimum
of the right-hand side is �.� .S/; A/ by definition, while the infimum of the left hand
side is �.g C � .S/; A/ and thus

�.� .S/; A/ D �.g C � .S/; A/:
Using (19) and (21) we conclude that V C g is Seshadri exceptional for A relative
to � .S/C g as claimed.

Suppose now that x 2 � .S/. Since V �x is Seshadri exceptional forA relative to
� .S/� x, and since 
 vanishes to order> k�.� .S/; A/ at � .S/�� .S/ it follows
from [NR] Proposition 3.2 that 
 vanishes on V �x for each x 2 � .S/, establishing
(20) for one summand. To establish (20) for two summands, note that for all x; y 2
� .S/, yCV � 2x is Seshadri exceptional for A relative to yC� .S/� 2x. Since 

vanishes to order> 2k�.� .S/; A/C2 along yC� .S/�2x we deduce that 
 must
vanish along y C V � 2x. Using the differentiation argument of [NR] Proposition
3.2 shows that in fact 
 has order of vanishing at least k�.� .S/; A/ C 1 along
� .S/CV �2x. In particular, 
 vanishes along V CV �2x as desired. This process
can be iterated, using the fact that 
 vanishes to order at least kd�.� .S/; A/ C d
along � .dS/ � � .dS/, to establish (20).

Choose x 2 � .S/\V : we know such an x exists since V is Seshadri exceptional
forA relative to � .S/. LetW D t�x.V / so thatW contains eG and letW C: : :CW ,
with d summands, be the Zariski closure in X of .W \G/C : : :C .W \G/. Then
from the previous paragraph we conclude that 
 vanishes on W C : : :CW . Since

 ¤ 0 it follows that W \G is degenerate. Let HW � G be the smallest subgroup
containing W . Then V � x C W � x C HW is still Seshadri exceptional for
Aj.x C HW / relative to � .S/ \ x C HW . Thus V � x is Seshadri exceptional
relative to � .S/ � x for AjHW . If �.HW / < �.H/ then, according to (18), for S
sufficiently large, but not depending on W , the linear series

ˇ
ˇ
ˇkAjHW ˝ Idk�.� .S/;A/Cd� .dS/�� .dS/

ˇ
ˇ
ˇ

is non-empty. Repeating the above argument will show that V � x is degenerate
inside HW which is impossible by definition of HW . Thus �.HW / D �.H/, and so
we haveHW � H . This concludes the proof of Theorem 1.1.6 since we have shown
that V � x � HW .

Note that if dim.G/ D 2 then Theorem 1.1.6 implies that for all S sufficiently
large a translate of the � -exceptional subgroup is Seshadri exceptional. This
generalizes [NR] Théorème 1.5.

1.5 What can be shown

The obstruction to the interpolation problem is the subgroup H where �.�;H/
is maximal or in other words where � .1/ \ H is most densely distributed. For
multiplicity estimates, on the other hand, there are in general several possible
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choices for an obstruction subgroup, namely Hi; 1 � i � r � 1. The best choice
among the possible obstruction subgroups, from the point of view of the inequality
in Conjecture 1.1.9, is the subgroup Hj for which ˛jC1 � ˛j is largest. Stated
qualitatively, the best choice for the obstruction to multiplicity estimates is the
subgroup K in which � .1/ \ K is most densely distributed by comparison to
� .1/\K 0 for all subgroupsK 0 properly containingK .

Here we would like to discuss what can be shown in the direction of Question
1.1.7 and Conjectures 1.1.8 and 1.1.9. First, regarding Question 1.1.7, Theorem
1.1.6 is, at least qualitatively, already a large step in the right direction, for even
if the � -exceptional subgroupH is not itself Seshadri exceptional relative to � .S/
for large S , it remains the source of the interpolation problem and provides a good
lower bound for the interpolation exponent. Concerning Conjecture 1.1.8 we have

Theorem 1.5.1. Suppose G is a commutative algebraic group with compactifica-
tion X and A an ample line bundle on X . Let � � G be a finite set and let H be
the � -exceptional subgroup and dH its dimension. For all S sufficiently large,

�.� .S/; A/ � 1

dH

�
degA.H/

j� .dHS/ \H j
� 1

dH

:

Similarly we have

�.� .S/; A/ � 1

dH

�
degA.H/

j� .dHS/ \H j
� 1

dH

:

The penalty to be paid for not knowing that H is Seshadri exceptional is that
j� .S/jmust be replaced with j� .dHS/j. Otherwise this would be Conjecture 1.1.8.

Proof of Theorem 1.5.1. Let V be the Seshadri exceptional subvariety for A relative
to � .S/ for some S � 0. The proof of Theorem 1.1.6 shows that for some
x 2 � .S/ we have V � x C H 0 where H 0 � H and �.H 0; � / D �.H; � /.
We assume that H 0 is the smallest subgroup containing a translate of V . We
know that V is Seshadri exceptional for A relative to � .S/ and in particular V
is still Seshadri exceptional for Ajx CH 0 relative to � .S/ \H 0. If �.� .S/; A/ <

1
dH

�
degA.H/j� .dHS/\H j

� 1
dH , then the same inequality holds with dH 0 in place of dH :

�.� .S/; A/ <
1

dH 0

�
degA.H/

j� .dH 0S/ \H j
� 1

dH 0

: (22)

The argument from the proof of Theorem 1.1.6, which we will repeat here without
translations by a multiple of �x, will now provide a contradiction, giving a non-
zero section 
 2 H0.dH 0xCH 0; kA/ which vanishes on dH 0xCH 0 D .xCV /C
: : : .x C V / with dH 0 summands. Note that if dH 0 D 1, then V D x C H 0 with
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x 2 � .S/. Since V is Seshadri exceptional for A relative to � .S/ we have

�.� .S/; A/ D degA.x CH 0/
j� .S/\ .x CH 0/j

and this violates (22) for S � 0. Thus we may assume that dH 0 � 2.

Suppose 0 ¤ s 2 H0
�

2x CH 0; kA˝ I2k�.� .S/;A/C22xC.� .2S/\H 0/
�

: such a section exists,

for k � 0, by (22). We claim that for each y 2 � .S/ \H 0 the section s vanishes
on 2xC y C V . If not, then, since 2xC y C .� .S/\H 0/ � 2xC .� .2S/\H 0/,
we have

s 2 H0
�

2x C y CH 0; kA˝ I2k�.� .S/;A/C22xCyC.� .S/\H 0/
�

:

By hypothesis V is Seshadri exceptional for A relative to � .S/, and so 2xCyCV
is Seshadri exceptional for Aj2x C y CH 0 relative to 2x C y C .� .S/ \H 0/. In
particular, sj2x C y C V D 0. The same argument will show that all derivatives
of s up to order k�.� .S/; A/ C 1 vanish along 2x C � .S/ C V . Since the order
of vanishing of s along 2x C � .S/C V is at least k�.� .S/; A/C 1 we conclude,
using again the fact that V is Seshadri exceptional for A relative to � .S/, that s
vanishes along 2x C V C V . This argument extends to show that if 0 ¤ 
 2
H0

�

dH 0x CH 0; kA˝ IdH 0 �.� .dH 0S/;A/CdH 0dH 0xC.� .dH 0S/\H 0/
�

, then 
 vanishes along V C : : :C V
with dH 0 summands of V . By hypothesis, however, V C : : :CV D dH 0xCH 0 and
thus 
 vanishes identically on dH 0x C H 0. This is a contradiction, violating (22),
and this establishes Theorem 1.5.1. The same proof can be copied line for line with
� .S/ in place of � .S/.

We now consider multiplicity estimates. There are two cases to consider,
according to whether or not the � -exceptional subgroup H is a proper subgroup
of G. When H D G this means that the points in � .S/ for S large are
well-distributed, and consequently one expects a very strong upper bound on the
maximum multiplicity a section 
 2 H0.X; kA/ can have along � .S/.

Theorem 1.5.2. Suppose X is an equivariant compactification of a commutative
group variety G. Let � � G be a finite set and assume that G is the � -exceptional
subgroup. Then for S � 0

m.� .S/; A/ �
�

degA.X/

j� .S/j
� 1

d

 

j� .dS/j
j� .S/j

d�1
d

!

dd�1:

Proof of Theorem 1.5.2. This is a straightforward consequence of Theorem 1.5.1.
Indeed, Theorem 1.5.1 implies that

�.� .S/; A/ � 1

d

�
degA.X/

j� .dS/j
� 1

d

:
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On the other hand we always have, by the multipoint analogue of (10),

m.� .S/; A/�.� .S/; A/d�1j� .S/j � degA.X/:

Thus

m.� .S/; A/ � degA.X/

j� .S/j�.� .S/; A/d�1 :

Plugging in the lower bound for �.� .S/; A/ from Theorem 1.5.1 gives Theorem
1.5.2.

Note that the first part of the right-hand side of Theorem 1.5.2

�
degA.X/

j� .S/j
� 1

d

represents the minimal value possible for m.� .S/; A/. The second term is pre-
sumably unnecessary, while the third term, though certainly not optimal, is likely
necessary in some form.

We will next study the case where the � -exceptional subgroup H is a proper
subgroup of G so that the ultimate goal is Conjecture 1.1.9. As is normally the case
with multiplicity estimates, one falls rather short of Conjecture 1.1.9 as, although it
is easy to establish, using Theorem 1.5.2 for example, that there are many translates
of subgroups in a given base locus, it is very difficult to show that these are not
properly contained in some other base components.

We will outline, following [NR], what can be done toward improving the classical
multiplicity esimates when we assume that S is large and that � is not contained
inside the torsion subgroup of G. We begin with the key tool that will be used to
enforce vanishing along subgroups and their translates.

Lemma 1.5.3. SupposeH � G is the � -exceptional subgroup. Suppose 1� � >

0 is fixed and let


 2 H0
�

X; kA˝ IkS��.�;H/C�� .S/

�

:

Then 
 jH D 0 for S � 0.

Proof of Lemma 1.5.3. We must show that, given � > 0, for S sufficiently large

m.� .S/; AjH/ � S��.�;H/C�:

By Theorem 1.5.2 for all S � 0,

m.� .S/; AjH/ �
�

degA.X/

j� .S/\H j
� 1

dH

0

@
j� .dS/ \H j
j� .S/\H j

dH�1
dH

1

A d
dH�1
H

� 1

S�.�;H/
c.G; � /; (23)
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where the constant c.G; � / does not depend on S . If


 2 H0
�

X; kA˝ IkS��.�;H/C�� .S/

�

as in the statement of Lemma 1.5.3 and 
 jH ¤ 0, then m.� .S/; AjH/ �
S��.�;H/C� which is impossible for S � 0 according to (23).

Lemma 1.5.3 also holds with t�x .A/ in place of A since the proof depends only
on the numerical equivalence class of A. Suppose

0 ¤ 
 2 H0
�

X; kA˝ IkS��.�;H2/C�� .S/

�

with 0< �
 1 as in Lemma 1.5.3. According to Lemma 1.5.3 and the differentia-
tion process of [NR], Proposition 3.2, 
 vanishes to order at least k.S��.�;H2/�� �
S��.�;H1/C�/ along H where H D H1. Choose 0 < ˇ < 1 and suppose
x 2 � 	cSˇ
 for c D codim.H;G/. Note that for each y 2 � .bS � cSˇc/ we have
x C y 2 � .S/. Using the fact that m.� .S/; A/ does not depend on the numerical
equivalence class of A, we have for x 2 � 	cSˇ


m.� .S/; Ajx CH/ D m.� .S/; t��x.A/jx CH/
� m 	� 	x C bS � cSˇc
 ; t��x.A/jx CH




D m
	

�
	bS � cSˇc
 ; AjH 
 :

Thus


 jx CH D 0 if m
	

�
	bS � cSˇc
 ; AjH 
 � S��.�;H/C�:

This is deduced from Theorem 1.5.2 just as Lemma 1.5.3. Provided S � 0 then,
using [NR] Proposition 3.2, 
 vanishes on x CH for all x 2 � .cbSˇc/ to order at
least

k
	

S��.�;H2/�� � S��.�;H1/C�
 :
Running the normal argument for zero estimates, as in [NR] �4, shows that there

exists a subvariety V � X so that �
	bSˇc
C V can be cut out by derivatives and

translates of 
 , each having order of vanishing at least

k
	

S��.�;H2/�� � S��.�;H1/C�


c

along �
	bSˇc
 C V . The same is true for �

	bSˇc
 C HV where HV is the
connected component of the stabilizer of V containing the origin. Thus we find
an inequality of the form

˛ccard
	

�
	bSˇc
CHV =HV




degA.HV / � degA.X/; (24)
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with ˛ D k.S��.�;H2/���S��.�;H1/C�/
c

. Moreover, we claim that HV � H . Since any
section of kA vanishing to order at least

k
	

S��.�;H2/�� � S��.�;H1/C�


c

along �
	bSˇc
C y vanishes alongH C y, it is sufficient to apply Lemma 1.5.3 to

� .bSˇc/C x for each x 2 V . ThusH � HV , as desired.
In order to apply this argument to force vanishing along Hi and its translates

for i � 2 there is a problem as one does not necessarily control m.� .S/; AjHi/

in this case: indeed, for i D 1 we have Lemma 1.5.3 but this requires that H be
the � -exceptional subgroup. On the other hand, one can certainly apply the same
argument with m.� .S/; A/� � in place of S��.�;H2/�� . The conclusion would then
be that there is a subgroupH 0, containingH , so that �

	bSˇc
CH 0 can be cut out
by translates and derivatives of 
 and so

ˇcodim.H 0;G/card
	

�
	bSˇc
CH 0=H 0
 degA.H

0
/ � degA.X/; (25)

with ˇ D m.� .S/;A/��
d

. Formulas (24) and (25) fall short of Conjecture 1.1.9 in two
respects. First is the superfluous factor of involving the dimension of X on the left-
hand side which is inherent to all of the arguments. Secondly, the subgroup in (25)
can not necessarily be identified with one of the obstruction subgroupsHi .

1.6 In Memoriam

“Hi this is Serge Lang. So what are you doing?” These were the first words ever
spoken to me by Serge, with a thick French accent, on the phone during the winter
of 1990. I was applying to graduate schools and had written to Serge, whom
I knew about through his many books, to inquire about the program at Yale. I
never could have imagined the consequences of the small, innocent letter I sent
to Serge. Indeed, as I would later learn, one of Serge’s most remarkable qualities
was that he did not recognize the legitimacy of any form of “innocent” interchange.
Every conversation, every statement, engages us in a commitment to some world
view, to some normative judgment. Serge demanded that we recognize this density
of discourse and consequently take full responsibility for all implications and
presuppositions implied in the statements and claims that we make.

While at other prestigious institutions I was readily dismissed (after all, how
could an individual from a small liberal arts college with a degree in French brazenly
pretend to do serious mathematics?), Serge made every effort humanly possible to
stimulate and nourish my love for mathematics. He sent books and called several
times each week to answer questions and help to guide my studies. Serge even
lobbied on my behalf, to no avail, at the NSF as well as a few top graduate programs.
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Once I decided to begin graduate school at Yale, Serge paid out of his own pocket to
bring me down to Berkeley for the summer so that I could get started on my Ph.D.
work.

Shortly after my arrival in Berkeley, I was given a preliminary version of
Faltings’ paper [F1] proving a generalization of the Mordell Conjecture. My initial
project was to generalize this result to all subvarieties of abelian varieties, as was
to be accomplished by Faltings [F2], and eventually to what Serge so fondly called
pseudocanonical varieties. This did not seem like a very reasonable project at the
time but, not knowing any better, I studied Faltings’ paper [F1] closely and set to
work trying to generalize it to the case of arbitrary subvarieties of abelian varieties.
Being more of a geometer than a number theorist, I tried to solve the problem with
more sophistocated methods from higher dimensional geometry, not realizing that
the necessary tools did not exist (or required much greater ingenuity than I was
capable of), and so began the road toward becoming an algebraic geometer.

Modern algebraic geometry was not Serge’s area of expertise and, caring first
and foremost about the development of his students, he sent me away to Berkeley
for my third year of graduate school, in order to profit from a year long program in
algebraic geometry at MSRI, and then to Harvard for my fourth and final year. Thus
it is that I spent a grand total of a mere 13 months in New Haven and saw Serge only
three times after graduating in 1994. Yet the impact of the few moments I spent with
Serge has been immense.

For me, Serge was first and foremost the only person who ever truly believed in
my mathematical abilities and consequently he always encouraged me to set lofty
goals. Perhaps even more importantly in practice, he will always be a professional
role model for me. Serge Lang was the embodiment of integrity, in academics, and
more generally in life. He did not, like so many others in the same position, make
judgments based on external trappings: Serge always looked beneath the surface
and supported those whose talent he could sense, regardless of their particular
circumstances.

It is my sincerest hope that, in memory of Serge and the ideals he stood for, those
in positions of influence and authority will exercise their power honestly and without
prejudice to help all those who desire to contribute to the growth of mathematics.
When education and knowledge become the monopoly of an elite class, the entire
world, academic and otherwise, suffers and it should be a moral imperative for every
teacher to reach out to the larger community without discrimination.

Though in recent years I have largely withdrawn from the mathematical commu-
nity, I have not abandoned my dream. One day in January 1997 I received a call
from Serge. After his usual greeting, “Hi, it’s me,” I told him that I had just been
through surgery on a catastrophic brain tumor. Serge’s reply: “So can you still do
math?” I did not have the heart to tell Serge the truth, namely that it did not matter
and had not mattered since the first day I got up in front of a wonderful group of
Math 122 students at Harvard. At that moment I had discovered my most fulfilling
passion, namely teaching mathematics. I never told Serge, as I felt he would have
been disappointed since he had such great hopes for my mathematical career and
since he devoted so much time and energy to helping me.
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Perhaps I was mistaken as Serge undoubtedly would have appreciated my desire
to help others as opposed to pursuing greater success as a mathematician. On the
other hand, Serge would certainly have chastised me for “chickening out” and with
reason as I have assuredly not put my heart and soul into doing mathematics. In the
end, there are simply too many other beautiful things in the world which I am not
willing to sacrifice in order to prove better theorems. My admiration, however, for
those who are willing to sacrifice is in no way lessened, particularly for someone
like Serge who was always fully conscious of his intentions, desires, and needs, and
was still willing to put everything aside in order to develop his mathematical vision.
Having enjoyed a life of passionate pursuit of truth and equity, I hope that Serge
rests now in peace, admiring the immense beauty of the mathematical world which
he loved so much.
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Sampling spaces and arithmetic dimension

Catherine O’Neil

To Serge. It was an honor to be your favorite sophomore.

Abstract This paper introduces the twin concepts of sampling spaces and arith-
metic dimension, which together address the question of how to count the number,
or measure the size of, families of objects over a number field or global field. It
can be seen as an alternative to coarse moduli schemes, with more attention to
the arithmetic properties of the ambient base field, and which leads to concrete
algorithmic applications and natural height functions. It is compared to the definition
of essential dimension.

Key words essential dimension • coarse moduli • elliptic curves
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1 Introduction

This paper is the result of fomalizing a concept which was introduced to the
author by her thesis advisor, Barry Mazur. Namely, it is the idea of a kind of
parameter space which includes every example of a certain arithmetic type, and
which can be studied in its own right. This leads directly to the definition of a
“sampling space.” Here are a few motivations for this definition. First, one wishes to
formalize and standardize the many discussions surrounding the ‘average behavior’
of arithmetic objects. Second, one wishes to find comparison theorems of various

C. O’Neil (�)
15 Claremont Avenue #91, New York, NY 10027
e-mail: cathy.oneil@gmail.com

D. Goldfeld et al. (eds.), Number Theory, Analysis and Geometry:
In Memory of Serge Lang, DOI 10.1007/978-1-4614-1260-1 23,
© Springer Science+Business Media, LLC 2012

499



500 C. O’Neil

different families of arithmetic objects. Third, one can ask for efficiency in these
families; this question leads to the definition of arithmetic dimension.

When dealing with classes of objects such as Galois extensions, elliptic curves,
class numbers, or some kind of cohomology classes over a number field, one often
feels somewhat stuck between a geometric point of view and a discrete point of view,
owing to the inherent arithmetic. One may want to ask for the growth of a function
related to a kind of complexity, such as the rank of a Mordell–Weil group or the size
of a class group. However, the answer may well depend on how you count. What
is inherent in the discussion is the concept of listing all examples of a certain type,
usually with some equivalence relation in effect, and taking averages. However, the
way you list the examples matters. For example, in listing elliptic curves over Q (up
to isomorphism) you may list all curves up to a given discriminant, or you may list
all curves with coefficients smaller than a given size. Each of these is natural but the
answer you get will typically depend on which one you chose.

Comparison theorems are intended to help us sort out the issue raised above of
counting the same things in different ways. We shall see that many sampling spaces
have natural height functions, as they are sometimes projective or quasi-projective
schemes. Because of this, if we have two different sampling spaces for the same
arithmetic objects, we can directly compare their heights. Since we are interested
ultimately in listing all objects of a certain kind, then it obviously in our interest
to make sure we have as little redundancy as possible. That is why we would like
our sampling spaces to have minimal dimension. Indeed this can lead us to far more
interesting and nuanced sampling spaces, as we will see in Section 5.

We are primarily interested in functors which are not representable. One standard
way around this problem is to introduce stacks. Although many of the same issues
will arise as in the theory of stacks (such as group actions), one can think of sampling
spaces as being much more algorithmically motivated. Indeed, sampling spaces are
intended to be concrete and, when possible, explicit.

One way to view a sampling space for a non-representable functor H is as
an alternative to a coarse moduli scheme. In some sense, sampling spaces trade
efficiency for completeness. A sampling space lives above its functor (i.e., maps to
H ) and loses no arithmetic information. By contrast, a coarse moduli scheme lives
below its functor and does lose arithmetic information. The arithmetic dimension
of a functor is the minimal dimension of a sampling space for that functor. The
difference between the arithmetic dimension of H and the dimension of a coarse
moduli scheme forH , if both exist, can be viewed as an arithmetic “bloating factor,”
i.e., the number of extra parameters that one needs to, say, program a computer to
completely list all arithmetic objects of a given type over a number field versus over
the complex numbers. A good example is given by the functor El l , which associates
to a base scheme S in the category CK of finite-type schemes over a field K; the
elliptic curves over S up to isomorphism. The coarse moduli scheme for El l is the
j -line, a curve. However, to actually list all elliptic curves (up to isomorphism) over
Q; for example, one needs both the j -invariant and a separate parameter to take
into account all the quadratic twists of a fixed elliptic curve (see the example in the
next section). It is not hard to see that this forces any sampling space for El l with



Sampling spaces and arithmetic dimension 501

respect to the field Q to have dimension at least 2. Therefore there is one dimension
of arithmetic bloat for elliptic curves over Q.

This is, as described above, not a new idea. There have been many interesting
definitions which try to measure the complexity of a functor based on the dimension
of a parameter space for the objects involved. However, the definition we give below
is new, in that it is more specific to the arithmetic of the base field. In particular,
in Section 3.1 we compare our definition with that of the ‘essential dimension’
of a group, and we show that the two are measuring different phenomena; in
particular, our definition is sensitive to the existence of rational points on quadratic
hypersurfaces in large projective spaces over number fields.

Acknowledgements The author would like to acknowledge the many conversations with Mira
Bernstein which led to the definitions contained in this paper and conversations with Barry Mazur
which motivated the investigation of these ideas.

2 Definitions

Let K be a field. Let CK be the category of schemes of finite-type overK .

Definition 2.1. An arithmetic object is a contravariant functor F from CK to the
category of sets.

Definition 2.2. A sampling space for an arithmetic object F is the data of a scheme
T in CK with a natural transformation ˆ from the functor HomCK .�; T / to F which
is required to be surjective on L-points whenever L is a finite extension of K:

Remark. We denote by ˆ W T � F the fact that T is a sampling space for F via
the map ˆ: When the map ˆ is obvious we simply write T � F :
Definition 2.3. The arithmetic dimension of an arithmetic object is the minimum
dimension of a sampling space for that object.

Example. We will prove that the functor El l over a number field has arithmetic
dimension 2 and over a finite field has arithmetic dimension at most 2. When K
is a field of characteristic away from 2 and 3, every elliptic curve over K can be
modelled (non-uniquely) by a Weierstrass equation of the form E W y2 D x3 C
AxCB; whereA;B 2 K and where we assume� D 27B2C4A3 6D 0: In the case
thatK has characteristic 3, when E is ordinary then one can always write E W y2 D
x3CAx2CB; we can deal with the supersingular case separately with a finite union
of points. Similarly, when K has characteristic 2 and when E is ordinary, one can
writeE W y2Cxy D x3CAx2CB .1 Therefore Spec.KŒA;B; 1=��/ � El l ; and so
the arithmetic dimension of El l is bounded above by 2. We will now show that there
is no 1-dimensional sampling space for El l over a number field. Suppose we have a

1Thanks to René Schoof for these models.
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curve sampling space T I then T will map (by composition with the map El l ! P
1
j )

to the j -line: T � El l . The size of a fiber of this map is bounded on the one hand
by the degree d of this map of curves. On the other hand, above a given j -invariant
away from j D 0 or 1728; the fiber above a K-rational j -value corresponds to the
set of all quadratic twists of a single elliptic curve with that j -invariant, i.e., with
the set H1.K; f˙1g/ Š K�=K�2: By the functoriality condition this would imply
that for all finite separable extensionsL=K the set L�=L�2 is bounded (by d ). This
is clearly untrue for number fields.

As stated in the introduction, the above definitions allow us to make precise a
measurement of the “dimension of pure arithmetic” of the functor El l; namely
the discrepancy between the arithmetic dimension of El l and that of its coarse
moduli scheme, 1. Also, the example of elliptic curves nicely illustrates some of
the following more general observations:

Remarks. (1) WhenH is representable by a schemeX in CK , thenX is a sampling
space for H: Moreover, the arithmetic dimension of H is just the dimension of
X : any sampling space Y of H comes with a morphism � W Y ! X which
is surjective on K points. Since the closure of the image of � has dimension at
most dim.Y /, and since the image has dimension equal to that of the dimension
of X we know dim.Y / � dim.X/.

(2) A sampling space T of F comes with a tautological object: namely, take the
image of the identity map IdT 2 T .T / to the corresponding T -valued point
of F .

(3) If there is a scheme “below the functor”, then the arithmetic dimension of
the functor is bounded below by the dimension of that scheme. For example
if there is a finite-type K-scheme M and a transformation of functors F !
HomCK .�;M / whose values on L-points ŒL W K� < 1 form a Zariski dense
collection of points in M , then the arithmetic dimension of F is at least the
dimension ofM . This will typically be the case ifM is a coarse moduli scheme
of F .

(4) Say we have a “arithmetic surjection” from an object F to an objectH I this just
means that there is a transformation of functors which is surjective on L-points
whenever L is a finite extension of K: Then the arithmetic dimension of H is
bounded above by the arithmetic dimension of F:

(5) We do need to assume the surjectivity for all finite field extensions. For
example, in [7], it is proven that for any finite field F there exists a curve over F
which is “space-filling,” i.e., which has as many F-valued points as its ambient
space A

n
F

for n > 1: However, it is impossible to produce a curve which is
a sampling space for the functor associated to A

n
F
; since the number of points

in affine n-space over a finite field grows asymptotically much faster than the
number of points of a curve.

(6) In particular, an infinite disjoint union of copies of Spec.K/ has no arithmetic
dimension.
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3 Important example: cohomology groups

Let G be a group scheme over K: Let H1
K.G/ denote the functor taking a scheme

X of finite type over K to the pointed set (which under certain restriction on G
will have a natural group structure) H1

Ket.X;G/: When X is connected and G is a
finite étale group scheme we can identify elements of this set with G-torsors over
X; i.e., Galois coverings Y ! X with an isomorphism G Š AutX.Y /: When
X D Spec.L/ for L a separable extension ofK; this is just Galois cohomology and
is denoted byH1.L;G/:

Lemma 3.1. A sampling space T=K of H1
K.G/ has a “tautological” G-torsor

Y ! T: Moreover, whenever L=K is an algebraic extension, the surjective map
ˆL W T .L/! H1.L;G/ is given by pullback as follows, for p 2 T .L/ thought of
as a morphismp W Spec.L/! T mapping to theG-torsorˆL.p/ W Yp ! Spec.L/:

Yp ! Y

ˆL.p/ # � #
Spec.L/

p! T

:

Proof. By Remark 2 above, we take the image under this map of the identity map
on T to get the G-torsor Y ! T: Next, given p W Spec.L/ ! T we get a map
T .T /! T .L/ by composition: ˛ W T ! T maps to ˛ ı p (note that idT map to p
itself). The above diagram then follows from functoriality and the fact that the map
H1
Ket.T;G/! H1.L;G/ is defined by pullback. ut

3.1 Comparison with essential dimension

We refer to the many papers of Zinovy
Reichstein available at http://www.math.ubc.ca/$nsim$reichst/pub.html. The es-

sential dimension of a finite groupG with respect to a fieldK is defined in [2] as the
least dimension of a K-variety Y which is the target of a dominant G-equivariant
rational map of a faithful linear representation of G. This definition is generalized
in [13] to algebraic groups and in [1] is given a functorial perspective. Namely it can
be shown using the results in that paper that the following definition is equivalent
(at least when K is infinite).

Definition 3.2. Let X ! Y be a morphism in CK such that X is a G-torsor over
Y . This gives a transformation of functors Hom.�; Y / ! H1.�; G/. The essential
dimension of G over K is the least dimension of an Y as above such that the map
Hom.Spec.K 0/; Y /! H1.K 0; G/ is surjective for all field extensionsK 0=K .

The above immediately implies:

Theorem 3.3. The essential dimension of G is an upper bound for the arithmetic
dimension of H1

K.G/:

http://www.math.ubc.ca/$sim $reichst/pub.html.
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Remark. The essential dimension of G over K is sometimes unequal to the
arithmetic dimension of H1

K.G/.

Remark. The above theorem is obvious when K D K; since the arithmetic
dimension of H1

K.G/ is zero if K D K and G is finite. We show that even over
number fields these two concepts are essentially different. In fact we show the
following:

Theorem 3.4. Let K be a totally imaginary number field and let n � 4I the
essential dimension of .�52;K/ is 5 but the arithmetic dimension of H1

K.�
5
2/ is at

most 4.

Sketch of proof. We want to show that there is a four-dimensional scheme which
maps onto .K�=K�2/5: So take .ai /1�i�5 2 .K�=K�2/5: Form the equationP5

iD1 aix2i D 0: This always has a point overK since we assumedK to be a totally
imaginary number field. But then we can basically take the 4-dimensional sampling
space to be

Spec.KŒXi ; X
�1
i �1�i�5=.

5X

iD1
aix

2
i D 0//:

To be complete, we would need to take into consideration the fact that the solution
to

P5
iD1 aix2i D 0 may have some xi D 0: This will add a finite number of

4-dimensional components to our sampling space.

Question. What is the actual arithmetic dimension of H1
K.�

5
2/ for a number field

K? How does the arithmetic dimension of H1
K.�

n
2/ grow as a function of n? Note

that when the base field K has a trivial Brauer group the arithmetic dimension of
H1.�dn / is probably much smaller than d I see the section below on Brauer groups
for the relationship and the section below on finite fields for such an example.

3.2 Brauer groups

As a special case of the above, when K is a number field, we have an identification
H1
K.PGLn/ Š Br.K/Œn�; where Br.K/Œn� is the n-torsion of the Brauer group of

the fieldK . Consider the functor on CK given byX 7! H2
Ket.X;Gm/Œn� (the n-torsion

in the cohomological Brauer group of X ). We will denote this functor by BrKŒn�.

Theorem 3.5. Let K be a number field which contains the nth roots of unity. Then
the arithmetic dimension of BrKŒn� is 2.

Proof. The arithmetic dimension of BrKŒn� is at most two, since every division
algebra D of order n in the Brauer group of a number field containing a primitive
nth root of 1 is cyclic. Namely, it can be written as D Š hx; yjxn D a; yn D
b; xyx�1y�1 D �i. Therefore Gm � Gm is a sampling space for BrKŒn�: Next, say
there is a 1-dimensional finite type K-scheme C which is a sampling space for
BrKŒn�. Denote by � the corresponding tautological object in Br.C /Œn�. This Brauer



Sampling spaces and arithmetic dimension 505

group element will manifest every cyclic algebra over any finite extension L of
K as some fiber, since it is the tautological object of a sampling space. However,
Tsen’s theorem implies (with a bit of work) that the Brauer group of the base change
C �Spec.K/ Spec.K/ is trivial. This means there is some finite extension L of K
over which � becomes trivial. It is clear that there doesnot exist such an L which
simultaneously trivializes all cyclic algebras. ut
Corollary 3.6. Let K be a number field containing the nth roots of unity. Then the
arithmetic dimension of H1

K.�
2
n/ is 2.

Proof. First, Gm � Gm is clearly a sampling space for H1
K.�

2
n/ over any field.

Next, use remark 4 on page 502 above and the fact that the “norm symbol map”
H1
K.�

2
n/! H2.K;�n/ D Br.K/Œn� is surjective. ut

Notice that the above proof is specific to number fields- in general, an Azumaya
algebra is only a finite product of cyclic algebras even if we assume roots of unity.

Question. What if I don’t assume any roots of unity? By Observation (3) below,
since adjoining a pth root of unity to a field induces a prime-to-p extension, there
is an upper bound on the arithmetic dimension of the functor BrQŒp� of 2.p � 1/:
Can this be improved?

Observations.

1. There is no sampling space for the entire Brauer group over a number field.
Namely, a given element of the Brauer group (cohomological or not) of a finite-
type scheme over a field has a given (finite) order. But elements of the Brauer
groups of number fields have arbitrary order.

2. When G is a finite group scheme over K of degree n the arithmetic dimension
of H1

K.G/ is bounded above by n. Namely, the regular representation (which is
the action of G on � .G;OG/) is faithful, and then the results of [2] imply the
essential dimension of the group scheme G overK is bounded by its dimension,
which is n. Hence also the arithmetic dimension is bounded by n.

3. Let G be a finite commutative group scheme of order n over K . Let K 0=K be
a finite separable extension of degree d prime to n. For any finite extension

L=K we get a sequence H1.L;G/
res! H1.L ˝K K 0; G/ cor! H1.L;G/ whose

composition is multiplication by d . On the other hand, suppose that T 0 is a finite
type K 0-scheme with a transformation HomCK0 .�; T 0/ ! H1

K0.GK0/ which is
a sampling space over K 0. Set T D ResK0=K.T 0/. For a finite field extension
K � L consider the composition

T .L/ D T 0.L˝K K 0/! H1.L˝K K 0; G/ cor! H1.L;G/:

By what was said above and since .d; n/ D 1 this is surjective. Hence we see that
T is a sampling space forH1

K.G/, provided we can show these maps fit together
and come from a transformation of functors Hom.�; T /! H1

K.G/. Granted that
this is indeed the case we see that dim.T / D ddim.T 0/. In other words we
see that the arithmetic dimension of H1

K.G/ is at most d times the arithmetic
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dimension of H1
K0
.GK0/. To construct the transformation Hom.�; T / ! H1

K.G/

we have to construct a G-torsor over T . Let X 0 ! T 0 be the G-torsor
corresponding to the transformation Hom.�; T 0/ ! H1

K0
.GK0/. Consider the

morphism ResK0=K.X 0/ ! T D ResK0=K.T 0/. This is a ResK0=K.GK0/-torsor.
Since G is abelian there is a “norm” map ResK0=K.GK0/ ! G which is a
homomorphism of group schemes overK . The push-out of ResK0=K.X 0/ by this
norm map gives the desired torsor.

4. IfG is a group scheme and if we can embedG into an “H1-trivial group scheme”
H (such as GLn or SLn), then we have 0 ! G ! H ! H=G ! 0: There is
no guarantee that the scheme H=G is a group, but it still makes sense to take
the long exact sequence of cohomology to the extent that we get 0 ! G.K/!
H.K/ ! .H=G/.K/ ! H1.K;G/ ! H1.K;H/ D 0: That is, we get the
sampling spaceH=G: For example, if G D �n; we can takeH D Gm to recover
sampling space Gm forH1

K.�n/:

4 Over a finite field

Let p be an odd prime, let Fp be the finite field with p elements, and let d be a
positive integer. For i ranging between 0 and d , define the map fi W Fpnf�ig !
F
�
p=F

�2
p ; sending the element x to ŒxCi �: Katz proves (Corollary 1.4.2.2, page 25 of

[8]) that as p goes to infinity, the maps fi have “equidistributed” and independent
values. In other words, the map .f0; f1; : : : ; fd / W Fpnf0;�1;�2; : : : ;�d g !
.F�p=F�2p /dC1 will asymptotically send x to any given element of Z=2ZdC1 with
equal likelihood.

The following theorem says nothing about equidistribution, but it generalises
Katz’s result in that it works modulo nth powers, and also because the conditions on
the functions are very weak.

Theorem 4.1. Let F be a finite field of characteristicp: For an integer n prime to p;
the arithmetic dimension of H1

F
.�dn / is 1. In other words, there is a curve sampling

space defined over F which parameterizes d “independent” nonzero elements of F
mod nth powers.

Lemma 4.2. Let f1; f2; : : : ; fd 2 FŒt � be functions with the property that the ring

R D F.t/ŒY1; Y2; : : : ; Yd �=.Y
n
1 D f1; Y n2 D f2; : : : ; Y nd D fd /˝F F

is actually a field. Define the set S D f˛ 2 Fjfi .˛/ D 0 for some 1 � i � d g: The
curve A1nS is a scheme defined over F; and becomes a sampling space forH1

L.�
d
n /

whenever L is a sufficiently large field extension of F:

Proof. Fix fi as above, and for any field extension L=F; define the map

A
1
LnS ! .L�=L�n/d
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sending ˛ to the element .Œf1.˛/�; : : : ; Œfd .˛/�/: This will be a sampling space if, for
an arbitrary element .Œa1�; Œa2�; : : : ; Œad �/ 2 .L�=L�n/d ; there is an ˛ and there are
yi ; 1 � i � d; such that for all i; aiyni D fi .˛/: These equations define the function
field of a curve C.Œa1�;Œa2 �;:::;Œad �/ which is a cover, say by the map 	; of P1 given by
sending the pair .˛; .y1; y2; : : : ; yd // to ˛. Moreover, since the ring R above is a
field, this curve is irreducible (a geometric condition, and so we can assume that
all of the ai are perfect nth powers). In order to get a sampling space, we need to
show that the curve C.Œa1�;Œa2�;:::;Œad �/ has an L-rational point outside the fibers above
S whenever L is large enough. We will make use of the Riemann Hypothesis for
curves over finite fields:

#C.F/ D q C 1 �
X

˛i ;

where the ˛i are the eigenvalues of the Frobenius operator. The absolute value of
each ˛i is bounded by

p
q; and the number of eigenvalues is 2g; where g is the

genus of C: Moreover, the genus of C.Œa1�;Œa2 �;:::;Œad �/ depends only on the degrees of
the fi ’s and the degree, nd ; of the map 	: Finally, the number of rational points
“hiding” above points in S is bounded again by the degrees of the fi and by n and
d: Thus when the size of L is large enough, we are assured of a choice of ˛ and yi
as above. ut

We can view the above results as saying that over number fields, we have a
stronger version of Kummer theory, and over finite fields we have a very strong
version of Kummer theory.

5 Models of genus one curves

Let n � 3 be an odd integer, and let K be a field of characteristic prime to n: For
an elliptic curve E with origin OE defined overK; fix a “base diagram” fE W E !
P
n�1 given by the full linear series associated to the line bundle n � OE: A choice

of fE induces, by passing to automorphism group schemes (see [11]), the following
commutative diagram of group schemes, where each the row is exact and the upper
row is a theta group as defined in [9], page 221:

0! Gm ! Gn ! EŒn� ! 0

# # #
0! Gm ! GLn ! PGLn ! 0:

(5.1)

Definition 5.1. Define the map Ob W H1
K.EŒn�/ ! H1

K.PGLn/ ! H2
K.Gm/ by

composing two induced maps on cohomology from diagram (5.1) above.

Definition 5.2. The functorHOb is the set-theoretic kernel of the map Ob:
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Remarks. (1) An element of HOb.K/ can be seen to correspond to a certain kind
of twist of the base diagram f; namely a diagram “of index n;” C ! P

n�1
where C is a genus-one curve whose Jacobian is isomorphic to E: A general
element of H1.K;EŒn�/; not necessarily lying in HOb.K/; would be a more
general twist, namely a diagram “of period n;” C ! S; where S is a Brauer–
Severi variety of dimension n � 1: Moreover, every index-n object will be
represented in HOb:

(2) For example, when n is 3, the elements in HOb correspond to all cubic curves
(up to PGL3-action) whose Jacobian elliptic curve is isomorphic to E:

(3) The map Ob is quadratic, so HOb.X/ is not generally a group.
(4) All of the elements of the n-Selmer group for E will appear in HOb: For this

reason we are interested in finding small sampling spaces for HObI it would be
the first step towards finding a sampling space for the Selmer group of E:

(5) Assume that n is odd and the characteristic of K is prime to n: Assume that
E is an elliptic curve over K with EŒn�.K/ � E.K/; i.e., as group schemes,
EŒn� Š Z=nZ � Z=nZ: Then HOb � H1

K.EŒn�/ � H1
K.Z=nZ � Z=nZ/: In

[12], it is proved that the arithmetic dimension of HOb is at most n; and in the
cases of n D 3 and n D 5 an explicit sampling space of dimension n has been
found for this situation (see also Corollary 5.12 below for an improvement when
n D 2). The image of the map HOb ! H1

K.Z=nZ/ �H1
K.Z=nZ/ is the set of

trivial norm symbols of level n:

5.1 The general case: lower bound

Theorem 5.3. Let K be a number field, n � 2 an integer, and E an elliptic curve.
The arithmetic dimension of HOb;n is at least 2.

Proof. First we reduce to the case that we have “rational n-torsion,” i.e., thatEŒn� Š
Z=nZ � Z=nZ W this is so after a finite extension, and any 1-dimensional sampling
space for HOb;n would base change to a sampling space for the rational n-torsion
case, so it is enough to show that no such sampling space exists. We will make use
of the fact that in the case of rational n-torsion, Ob is a norm symbol map.

Lemma 5.4. Let K be a number field. Given a nontrivial element a 2 K�=K�n;
the set of b 2 K�=K�n such that the corresponding norm symbol .a; b/ is trivial is
the infinite set NK. npa/=K.K. n

p
a/�/=K�n:

Proof of lemma. That the set described in the lemma is as claimed is the definition
of the norm symbol. That it is infinite follows from local considerations. ut

Now assume that we have a one-dimensional sampling space T for HOb;n: It
consists of a finite union of schemes of dimension 0 and 1. By the pigeonhole
principle and the above lemma, there exists some irreducible component of T , a
curve C; such that the rational points of C are responsible for many of the trivial
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norm symbols, i.e., that for infinitely many classes a 2 K�=K�n and infinitely many
b 2 NK. n

p
a/=K.K.

n
p
a/�/=K�n there exist rational points x.a;b/ 2 C.K/mapping to

their respective points in HOb;n:

The tautological object of T is an element ofH1
Ket.T; �n ��n/; and as such gives

rise to a �n��n field extensionL.T /=K.T /;whereK.T / is the function field of T:
Similarly we get a field extension L.C /=K.C /: Since �n 2 K; by Kummer theory
there exist elements d1 and d2 2 K.C/ whose nth roots give the extension L.C /:
Moreover, the functions di define maps f of C onto Gm: We may now construct

the map C ! Gm�Gm

	2! Gm where the second part is the second projection map.
But by construction, the composite map is both nontrivial and has infinite fibers, so
C cannot be a curve of finite type, a contradiction. ut

5.2 The general case: upper bound

As above, fix a “base diagram,” an embedding f W E ! P
n�1: Then the finite

group scheme EŒn� acts on E and extends to a faithful action on P
n�1I in other

words, we get an injective map of group schemes i W EŒn� ! PGLn; and we
can define the scheme P

n�1=EŒn�: This will not be smooth, because although
the EŒn� action is faithful, there are points with nontrivial stabilizer. Denote by
P
n�1=EŒn�sm the smooth (open) part of this quotient. A lift Qv 2 P

n�1.K/ of a point
v 2 P

n�1=EŒn�sm.K/ is “almost rational,” meaning that for each 
; there exists
T .
/ 2 EŒn�.K/ such that Qv
 D i.T .
//.Qv/: In this way we can form a cocycle
�v for any such v; and we can map �v to H1.K;EŒn�/: Moreover, a different choice
of a lift of v will differ by a coboundary. Thus we have defined a map of functors
� W .Pn�1=EŒn�/sm ! HOb:

Theorem 5.5. The scheme .Pn�1=EŒn�/sm is a sampling space forHOb; via � W

� W .Pn�1=EŒn�/sm � HOb:

Moreover, the following diagram commutes:

E ! E=EŒn� Š E � E=nE

# # # #
P
n�1 ! P

n�1=EŒn� � HOb ! H1
K.EŒn�/

; (5.2)

where the rightmost column comes from cohomology, sending P 2 E.K/=nE.K/
to the cocycle Q
 �Q if nQ D P:
Proof. We know that EŒn� � PGLn (see diagram (5.1) above) and we can extend
this to an exact sequence of schemesEŒn�! PGLn ! PGLn=EŒn�; since the action
is fixed-point free. Note that since EŒn� is not normal inside PGLn; the quotient
scheme is not a group scheme. However, we can still make sense of the first part of
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an exact sequence of cohomology:

PGLn.K/! PGLn=EŒn�.K/! H1.K;EŒn�/
Ob! H1.K;PGLn/:

We immediately see that the scheme PGLn=EŒn� is a sampling space for HOb:

We can cut down the dimension considerably by noting that the group PGLn acts
faithfully on P

n�1; so we can replace PGLn=EŒn� by its compression P
n�1=EŒn�.2

Concretely, any lift of a rational point of the scheme PGLn=EŒn� to PGLn.K/ is a
matrix M which is almost rational, just as above: for every element 
 2 GK; we
have M
 D i.T .
// �M: The image of M in PGLn=EŒn�.K/ maps to the cocycle

 7! T
: Moreover, such an M can be thought of as moving C to E in the sense
that, starting with equations Fi .x/ for E, the equations for C will be Fi .Mx/: For
more on this perspective see [10]. The above compression amounts to the fact that
one column of such anM will suffice to represent the cocycle 
 7! T
:Or indeed, if
v is any rational point in C -space, thenM �v; the image of v inE-space, will suffice.
See the examples worked out below for an explicit representation of the matrix M
starting only with one of its columns.

Now for the commutativity of the diagram. The composite of the first two maps
on the first line is multiplication by n, a rational point of E=EŒn� is just the class of
a point Q 2 E.K/ such that nQ D P is rational. The third map sends the class of
Q to nQ D P; and the connecting map from cohomology on the right divides P by
n again. On the other hand, the map E=EŒn� ! P

n�1=EŒn� is defined over K and
sends the class ofQ to some rational point of Pn�1=EŒn� and then associates to that
point a cocycle which is clearly equivalent. ut
Corollary 5.6. The arithmetic dimension of HOb;n is at most n � 1:
Corollary 5.7. Let K be a number field. The arithmetic dimension ofHOb;3 is 2:

5.3 Visualizing elements of HOb

We take a definition from Section 3 of [5]: Let � 2 H1.GK;E/ for an elliptic curve
over the number field K: Suppose we have an exact sequence of abelian varieties
0 ! E ! J ! B ! 0: We define � to be visible when � is in the kernel of the
induced map H1.GK;E/! H1.GK; J /:

We will specialize the situation a bit. Since H1.GK;E/ is a torsion group, the
element � has some order nI we will assume that n is odd and at least 3. Moreover,
assume that we have found another elliptic curve E 0 such that EŒn� Š E 0Œn�: Then
we can construct the following exact sequence: 0! E ! .E�E 0/=EŒn�! E 0 !
0; where we have glued E and E 0 together along their common subgroup scheme
EŒn� and we have identified E 0 with E 0=E 0Œn�:

2This idea of compression in the case of a faithful representation comes from the papers of
Reichstein.
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Then � is visualised by the abelian variety .E � E 0/=EŒn� exactly when � lifts
to a point P of E 0.K/ D H0.GK;E

0/: This means that there is a pointQ 2 E 0.K/
where nQ D P and where �.
/ D Q
 � Q: This in turn is exactly the condition
that the following diagram holds:

P 7! .
 7! Q
 �Q/
0! E 0.K/=nE 0.K/! H1.GK;E

0Œn�/ ! H1.GK;E
0/Œn�! 0

Š#
0! E.K/=nE.K/ ! H1.GK;EŒn�/ ! H1.GK;E/Œn� ! 0

.
 7! Q
 �Q/ 7! �

We will abuse notation slightly by saying that in this case, � is visualised by E 0.

Remark. The above approach to visualisation was explained to the author in a talk
by Tom Fisher at the “Explicit Arithmetic Geometry” conference in Paris, December
2004.

Now let E be an elliptic curve defined overK , and let X.n/E denote the twisted
modular curve parameterizing pairs .E 0=S;EŒn�S Š E 0Œn�/, where E 0 is an elliptic
curve over a base S and EŒn�S ! E 0Œn� is an isomorphism of group schemes over
S respecting the Weil pairings. Let E denote the total space of the universal elliptic
curve over X.n/E: Then EŒn� acts on E in a natural way.

Theorem 5.8. The base diagram f W E ! P
n�1 gives rise to a map E ! P

n�1;
which for n D 3 is a birational map and which for larger odd n is an embedding of
E : Moreover, the following diagram (of functors) commutes:

E ! E=EŒn� Š E � E=nE
# # # #

P
n�1 ! P

n�1=EŒn� � HOb ! H1
K.EŒn�/:

(5.3)

Proof. First assume that the map E ! P
n�1 exists and fits in the above diagram.

Assume that there is a geometric point x in the intersection of two elliptic curves
E 0 and E 00 in the family of elliptic curves E : The first map on the top row above
sends x to the intersection of E 0=EŒn� and E 00=EŒn�I since this is essentially the
multiplication by n map, a degree n2 map, we know that the n2 preimages of the
image of x all lie on the intersection. Now we will show that two curves intersecting
in n2 points will be forced to be the same curve when n is at least 4. If there is a point
y lying on E 0 but not on E 00; we can project away from that point to land in P

n�2
space, andE 0 will now be a degree-n�1 curve andE 00 will still be a degree n curve.
Now we project away from points lying off of E 0 and E 00 until we get down to the
projective plane; then the two curves will intersect in n � .n� 1/ points by Bézout’s
theorem, a contradiction. Note that this argument does not work for n D 3; and
indeed it is well known that in this case E is birational to P

2I with our construction,
the elliptic curves in E will all intersect in their 9 flex points.
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Now we need to show such a map exists. We sketch how to produce the morphism
E ! P

n�1. Namely, letE 0 be an elliptic curve over a field extensionK 0=K endowed
with an isomorphism ˛ W EŒn�K0 ! E 0Œn� compatible with the Weil pairings. Recall
that we have fixed the base diagram fE W E ! P

n�1 which gives rise to an action
of EŒn� on P

n�1 by the associated map i W EŒn� ! PGLn which reproduces the
Weil pairing via (5.1). Choosing a basis of � .E 0;OE0.n �O// gives rise to a similar
diagram fE0 W E 0 ! P

n�1
K0 and i 0 W E 0Œn� ! PGLn;K0 reproducing the Weil pairing

on E 0Œn�. We claim that there is a unique automorphism ˇ W Pn�1K0 ! P
n�1
K0 such

that ˇ intertwines the action of EŒn�K0 via i and base change with the action of
EŒn�K0 via ˛ and i 0. Although we leave this to the reader, we point out that it is
straightforward to prove this over the algebraic closure and then deduce the general
case using that a solution ˇ is unique since there are no automorphisms of Pn�1
commuting with the action i . The upshot is that there is a unique choice of the
embedding fE0 W E 0 ! P

n�1
K0 so that the resulting action i 0 agrees with the action

i via ˛. Doing this procedure over the base X.n/E gives a canonical morphism
E ! P

n�1.

Commutativity of the diagram. By construction the morphism E ! P
n�1 is EŒn�-

equivariant, which gives us the first commutative square. The last commutative
square is obvious. To see that the middle square commutes, consider a fibre E 0
of E over someK 0 point ofX.n/E . By (5.2) the diagram commutes withE replaced
by E 0. Hence it suffices to see that the obstruction map Ob only cares about the
isomorphism class of the pair .EŒn�; e/ where e is the Weil pairing. This follows
from the results in Section 4 of [11]. ut
Definition 5.9. Denote by H1

K.EŒn�/
E the image of E in H1

K.EŒn�/: This is the
visualised part of H1

K.EŒn�/:

An open question is to what extent H1
K.EŒn�/

E contains the n-Selmer group of
E: To this end we can recover one result from [5]:

Corollary 5.10. The 3-part of the Selmer group of an elliptic curve is always
visualized.

Proof. In fact the above proves that all of HOb is visualised, and we know that the
3-torsion in the Selmer group lies inside HOb: ut
Corollary 5.11. When n D 3, the universal elliptic curve E as defined above can
be seen as a sampling space for HObI it is a rational surface.

Remark. We already knew that P2=EŒ3� is a sampling space forHOb when n D 3:
It is a unirational surface, and it is known to be rational overK: The above corollary
tells us that it is in fact rational overK; at least when the modular curve X.n/E has
a rational point, as it does here by construction, since we constructed it so that the
point corresponding toE itself is rational. See the next section for explicit equations
for n D 3 in the case where EŒ3� Š Z=3Z � �3:



Sampling spaces and arithmetic dimension 513

5.3.1 Example

When n D 3 and EŒ3�.K/ D EŒ3�.K/; we will explicitly compute a rational
parameterization of the sampling space T3 forHOb and the tautological curve above
it. We will also compute the generic trivial level-3 norm symbol.

Let � denote a fixed primitive third root of unity. We may standardize the action of
the 3-torsion as follows: take a basis hS; T i ofEŒ3� such that S sends the coordinate
x to x; y to �y; and z to �2z; and such that T sends the coordinate x to y; y to
z; and z to x: Define s D xyz; t D x3 C y3 C z3; u D x3y3 C y3z3 C z3x3; v D
x6y3Cy6z3Cz6x3; and v D x3y6Cy3z6Cz3x6: These are clearly invariant under the
above action, and they satisfy the relations f1 W vCv D tu�3s3 and f2 W vv D 9s6�
6tus3C u3C t3s3: Our surface T3 is an open part of P roj.KŒs; t; u; v; v�=.f1; f2//;
where s and t are of weight 1, u is of weight 2, and v and v are of weight 3.

Note the above action of EŒ3� forces E D E� to lie in the family

E� W X3 C Y 3 CZ3 � 3�XYZ D 0
for some � 2 K: Fix O D .1I �1I 0/:

We will find a rational parameterization of S by identifying S birationally with
E as in Section 5.3. To be exact, note that if we choose a rational point of P2; we
can (almost always) uniquely solve for � above: � D X3CY 3CZ3

3XYZ
D t

3s
:3

Note that E also has a natural elliptic curve family in P
2
K sitting over it: a rational

point P of E lies on an elliptic curve E 0I over such a point P the elliptic curve is
simply E 0 embedded in P

2 by the line bundle corresponding to 2 � O C P: This is
not the family we are looking for; rather, we are looking for the family of genus-one
curves all of which have Jacobian isomorphic to the fixed E: The fact that two such
curves lie above each point means that their corresponding cocycles are visualised
(see below).

From Theorem 5.8 we see that if we identify E birationally with P
2; we can

express the multiplication by 3 map on P
2; denoted by Œ3�, as a function on P

2=EŒ3�

and this will give us its birational model. On the level of points, we are taking a
rational point P of P2 and finding the elliptic curve EP it lies on as above; we then
extract a Q on EP such that 3 �Q D P; and form the cocycleQ
 �Q:

Note that even with the general Weierstrass equations for elliptic curves, this
makes sense, but would require knowing how to extract this cube root in general.

The function Œ3� vanishes on the hyperplane Z D 0 exactly at those points Q
such that 3 �Q D O; S; or �S: Similarly, Œ3� vanishes on the hyperplane X D 0

3What if we can’t solve for �? This happens when one and more of X; Y , andZ is zero. Two being
zero would mean the point is rational, which gives us the trivial cocycle. Acting by T above if
necessary (which only changes the cocycle mod coboundaries) we can assume our point looks like
.0I 1I˛/; and so the corresponding cocycle � sends 
 to .0I 1I 
.˛//; but on the other hand sends
it to itself acted on by �.
/ 2 EŒ3�: We see then that �.
/ D i � S for some i; so � pulls back
toH1.GK;Z=3Z/ Š K�=K�3: However these cocycles are also covered by the points .1I˛I˛2/;
which have well-defined �:
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exactly at those pointsQ such that 3 �Q D T; T CS; or T �S; and Œ3� vanishes on
the hyperplane Y D 0 exactly at those point Q such that 3 �Q D �T;�T C S; or
�T � S:

For every T 2 EŒ3�; there is a cubic form aT which intersects E� in exactly
those pointsQ such that 3 �Q D T: By work in [4] we can easily compute such aT ;
well-defined up to (the same) scalar, when T 6D O as Tv �MT �v;where v is the point
.xIyI z/ 2 P

2 represented by the column vector .x y z/� ; and Tv is the tangent
plane to v represented by the row vector .x2��yz y2��xz z2��xy/:Moreover we
can take aO to be the Hessian cubic taking v to �2�2.x3Cy3Cz3/C .8�2�3/xyz:
Then the composite birational map Œ3� W P2 ! P

2=EŒn� Š P
2 is given by

Œ3� W x 7! ..aT aTCSaT�S /.x/I .a�T a�TCSa�T�S/.x/I .aOaSa�S /.x//:

We know that these functions can be written as functions on S , i.e., as functions of
s; t; u; v; and v as above, and indeed we have the following:

.aT aTCSaT�S /.x/ D .1 � �3/.v � 3s3/
.a�T a�TCSa�T�S /.x/ D .1 � �3/.v � 3s3/

.aOaSa�S /.x/ D .t2 � 3u/.�2�2t C .8 � 2�3/s/:
(5.4)

We can substitute � D t
3s

, and the map simplifies to

Œ3� W .x; y; z/ 7! .v � 3s3I v � 3s3I 8s.t2 � 3u//:

This map factors through T3 � Proj.KŒs; t; u; v; v�=.f1; f2//; namely by sending
a point .sI t I uI vI v/ to .v � 3s3I v � 3s3I 8s.t2 � 3u//: Since all the scheme maps
in Theorem 5.8 in the case n D 3 are birational, this gives us a birational model
of our sampling space; indeed we will now compute the inverse map. Starting with
.aI bI c/ 2 P

2; we will compute its inverse image in T3: First, over an open part
of our surface we may assume s D 1; in which case we can recover v D b C 3
and v D c C 3: Moreover, since both .aI bI c/ and its preimage .xIyI z/ lie on the
same curve E�; we know that � D t.a; b; c/=3s.a; b; c/ D a3Cb3Cc3

3abc
D t

3s
D t=3:

In other words, t D a3Cb3Cc3
abc

: Finally, we can solve for u to get u D �a=24 C
1=3.a

3Cb3Cc3
abc

/2:

Next we will explicitly compute the tautological genus-one curve lying over T3:
To do so, start with a rational point P 2 T3.K/ and a lift .xIyI z/ in P

2.K/: The
matrix MP which takes f W E ! P

2 to the fiber above P , fP W C ! S; satisfies
the following property: for any 
 2 GK;

M

P DMT.
/MP ; ”

0

@
x

y

z

1

A




D MT.
/

0

@
x

y

z

1

A ;
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and any such matrixM 2 PGLn which satisfies that property will bring f W E ! P
2

to some diagram equivalent to fP W C ! S: With that in mind, we will define

MP D
0

@
x 0 0

0 y 0

0 0 z

1

A .x3I C y3M�1T C z3MT /:

A calculation shows that it satisfies the above property. To find the tautological curve
over T3 it remains to act by MP ; that is, to expand FC .x/ D F.MP .x//; where
F.X; Y;Z/ D X3CY 3CZ3� 3�XYZ is the cubic givingE: By construction the
coefficients will be functions on T3: A calculation gives us:

FC .X; Y;Z/ D .t4 � 4ut2 C 2u2 C 3s3t/X3 C .vt � u2/Y 3 C .vt � u2/Z3

C.2vt � 3u2 C 3s3t/X2Y C .3s3t � vt/Y 2Z C .3u2 � vt � 6s3t/
�Z2X C .2vt � 3u2 C 3s3t/X2Z C .3u2 � vt � 6s3t/Y 2X
C.3s3t � vt/Z2Y C .3t2u � t4/XYZ:

Corollary 5.12. The generic level-three trivial norm symbol is given by a rational
map P

2=EŒ3� Š T3 ! G
2
m which sends the image of x 2 P

2 to .aS .x/3; aT .x/3/;
where S and T generate EŒn�: Explicitly, it sends .sI t I uI vI v/ to

.3�2vC 3�vC t3 � 2ut � v � vC 6s3; vC 3suC 3s2t C 6s3/:

Proof. The function aT can be computed as aT D Tv �MT � v: For any 
 2 GK;
we then have a
T D .Tv/


 �M

T � v
 D Tv
 �MT � v
 ; since the GK action on EŒn�

and thusMT is trivial, and since the entries of Tv are polynomials in the coordinates
of v: By construction, v
 D MT.
/v; and a calculation yields Tv
 D TvM

�1
T .
/; so

a
T D ŒMT ;MT.
/� � Tv �MT � v: By work in [10], ŒMT ;MT.
/� D e.T; T .
//: ut
What if we assume a slightly less stringent condition, namely that EŒn� Š

Z=nZ � �n‹ By previous observations, we can “base change” to K.�n/ and use
the corestriction map to get a sampling space overK: However, the dimension gets
multiplied by the degree of the field extensionK.�n/=K; which divides �.n/:

In fact, when EŒn� Š Z=nZ � �n, then H1
K.EŒn�/ D H1

K.Z=nZ/ � H1
K.�n/I

the arithmetic dimension of H1
K.�n/ is of course 1 whenK is a number field (since

its set of K points is infinite but a sampling space is Gm). However, the arithmetic
dimension of H1

Q
.Z=nZ/ is bounded by the essential dimension of Z=nZ, which is

expected to be unbounded (and related to �.n/). Note that this is equivalent to asking
for the dimension of a versal family of Z=nZ-extensions of Q; a classical problem
from inverse Galois theory. In other words, the functorHOb; which is carved out of
the functorH1.EŒn�/; seems to get more complicated as the Galois action on EŒn�
becomes more complicated. The conjecture says that in spite of this, HOb becomes
no more complicated than growing linearly with n.
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6 Further remarks

• I would like to compare arithmetic dimensions over number fields with those over
p-adic fields and finite fields. Since many schemes automatically have points
over such fields, the arithmetic dimensions of functors such asH1

K.G/ over such
fields should generally speaking be smaller. Of course I would like to make this
precise. Certainly such things as the (functor associated to the) Brauer group over
such fields is understood to be smaller.

• A major motivation for the definitions in this paper is to explore the question
of finding a sampling space for the Tate–Shavarevich group of a fixed elliptic
curve E over a number field K (suitably extended to a functor on the category
CK ) or prove that no such sampling space exists. Note we have some freedom
in extending the functor to the full category CK . However, the most obvious
approach would have X 2 CK map to Ker.H1

Ket.X;E/ !
Q

v2K H1
Ket .X ˝K

Kv; G/: In this case, we would have a tautological genus-one curve lying over
any sampling space. It is not hard to see that this would imply that there is a
(uniform) bound for the order of elements of the Tate-Shafarevich group of E
over all finite extensions of K , a very strong result. However, there may be more
nuanced ways to extend the functor. What is probably an easier task is to find a
series of sampling spaces for the p-power torsion of the Tate–Shavarevich group,
for all primes p:

In an analogy for Hilbert symbols, if the ground field K is large enough to
admit rational pn torsion for all n (in which case K is not a number field),
then an element of �.E/ would correspond to a coherent sequence of trivial
Hilbert symbols of level pn for all n: The above assumption on the ground field
is Iwasawa-like; if possible we will work without such an assumption, so as to
stay over number fields.

• One major goal is to not only have a sampling space for a functor but to have a
nice sampling space, namely one that is as close as possible to A

n: As we have
seen, this is often attainable. We want nice sampling spaces primarily because
then the points are extremely accessible (i.e., so we really have an analogy with
the concept of a “parameter space”), but also because we have a well-defined
notion of height of a point. This could be useful in quantifying the arithmetic
objects that we are parameterizing. Often we have a different notion of height
on the objects already, for example by looking at the size of the coefficients of
the objects. We would want to prove “comparison theorems” in order to justify
the height measurements coming from our sampling space. An example of a
comparison theorem would state that if the maximal height of a coefficient of a
model of a cubic equation C is D; then there is a point of the height at most
f .D/ on the sampling space of cubics which maps to C; where f .D/ is a
simple function ofD:With the aid of a comparison theorem we would be able to
compute the asymptotic behavior of our arithmetic objects.
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Another benefit of having a good sampling space for objects, especially with
an accompanying explicit tautological model of the objects, is simply that we can
test for, say, local points on the models.

• There are numerous simple questions one can ask about sampling spaces which
give rise to interesting and basic questions about elliptic curves and the arithmetic
of number fields. For example, we know that the arithmetic dimension ofH1

K.�n/

is 1 when K is a number field, but is Gm (with the standard map) the only
sampling space? Is there an elliptic curve, an open part of which acts (with an
appropriate map) as a sampling space? First note that any sampling space would
have to map (rationally) through Gm with the standard map after we adjoin the
nth roots of unity, since Kummer theory will supply us with an element in the
function field of the sampling space. Then (an open part of) an elliptic curve
sampling space would map through Gm; clearly it would not be possible for the
map to be a homomorphism of the group schemes, since the Mordell–Weil group
is finitely generated. However, it is possible it could be some other map, like
sending a point .x; y/ 2 E.K/ to say y 2 Gm.K/: This raises the question of
“growth” of rational points as K grows: the functor H1

K.�n/.K/ Š K�=K�n
enlarges with any non-trivial extension L=K; and so would any sampling space.
Therefore we couldn’t possibly have an elliptic curve sampling space unless
we found an elliptic curve whose rank grew with every extension. This is very
unlikely but I don’t know a proof that no such elliptic curve exists except over
Q: Note finally that by Faltings’ theorem no genus-2 (or higher) curve could be a
sampling space for H1

K.�n/I another related question would be, is there another
map (whose degree is larger than 1) making Gm a sampling space in a different
way?
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Abstract We develop the global theory of a strategy to tackle a program initiated
by Bogomolov in 1990. That program aims at giving a group-theoretical recipe by
which one can reconstruct function fieldsKjk with td.Kjk/ > 1 and k algebraically
closed from the maximal pro-` abelian-by-central Galois group ˘ c

K of K , where `
is any prime number¤ char.k/.
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1 Introduction

Recall that the birational anabelian conjecture originating in ideas presented in
Grothendieck’s Esquisse d’un Programme [11] and Letter to Faltings [12] asserts
roughly the following: First, there should exist a group-theoretical recipe by which
one can recognize the absolute Galois groupsGK of finitely generated infinite fields
K among all profinite groups. Second, ifG D GK is such an absolute Galois group,
then the group-theoretical recipe should recover the fieldK fromGK in a functorial
way. Third, the recipe should be invariant under open homomorphisms of absolute
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Galois groups. In particular, the category of finitely generated infinite fields (up
to Frobenius twist) should be equivalent to the category of their absolute Galois
groups and open outer homomorphisms between these groups. A first instance of
this situation is the celebrated Neukirch–Uchida theorem, which says that global
fields are characterized by their absolute Galois groups. I will not go into further
detail about the results concerning Grothendieck’s (birational) anabelian geometry,
but the interested reader can find more about this in Szamuely’s Bourbaki Séminaire
talk [34], Faltings’ Séminaire Bourbaki talk [10], Stix [35], and newer results by
Mochizuki [19], Saidi–Tamagawa [33], Minhyong Kim [13], and Koenigsmann [15]
concerning the (birational) section conjecture.

The idea behind Grothendieck’s anabelian geometry is that the arithmetical
Galois action on rich geometric fundamental groups (such as the geometric absolute
Galois group) makes objects very rigid, so that there is no room left for non-
geometric open morphisms between such rich fundamental groups endowed with
arithmetical Galois action.

On the other hand, Bogomolov [2] advanced at the beginning of the 1990s the
idea that one should have anabelian-type results in total absence of an arithmetical
action as follows: Let ` be a fixed rational prime number. Consider function
fields Kjk over algebraically closed fields k of characteristic ¤ `. For each such
function field Kjk, let ˘ c

K WD Gal.K 00jK/ be the Galois group of a maximal pro-`
abelian-by-central Galois extension K 00jK . Note that if G.1/ D GK and G.iC1/ WD
ŒG.i/; GK�.G

.i//`
1

for i � 1 are the central `1 terms of the absolute Galois group
GK of K , then we have that ˘K D G.1/=G.2/ is the Galois group of the maximal
pro-` abelian subextension K 0jK of K 00jK , and ˘ c

K D G.1/=G.3/; and denoting
by G.1/ the intersection of all the G.i/, it follows that GK.`/ WD GK=G

.1/ is the
maximal pro-` quotient ofGK . Now the program initiated by Bogomolov [2] has as
ultimate goal to recover function fields Kjk with td.Kjk/ > 1 as above from ˘ c

K

in a functorial way. (Note that Bogomolov denotes ˘ c
K by PGalcK .) If successful,

this program would go far beyond Grothendieck’s birational anabelian conjectures,
as k being algebraically closed implies that there is no arithmetical action in the
game. The program initiated by Bogomolov is not completed yet, and this paper is a
contribution towards trying to settle that program; see the historical note below for
more about this.

Since this paper is quite abstract, let me announce the following “concrete” result,
whose proof relies in an essential way on the Main Theorem of this paper (see
Pop [30] for a complete proof):
Theorem I LetKjk be a function field with td.Kjk/ > 1 and k an algebraic closure
of a finite field. Then the following hold:

(1) There exists a group-theoretical recipe which recovers Kjk from ˘ c
K .

(2) The above group-theoretical recipe is functorial in the following sense: Let Ljl
be a function field with l an algebraically closed field, and let ˚ W ˘K ! ˘L

be the abelianization of some isomorphism ˚ c W ˘ c
K ! ˘ c

L. Then denoting by
Li and K i the perfect closures, there exist an isomorphism of field extensions
{ W Lijl ! K ijk and an `-adic unit " 2 Z

�̀ such that " � ˚ is induced by {.
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Moreover, the isomorphism { is unique up to Frobenius twists, and the `-adic
unit " is unique up to multiplication by p-powers, where p D char.k/.

(3) For a function fieldLjl as above, let IsomF.L;K/ be the set of isomorphisms of
field extensions { W Lijl ! K ijk up to Frobenius twists, and let Isomc.˘K;˘L/

be the set of abelianizations of continuous group isomorphisms ˘ c
K ! ˘ c

L up
to multiplication by `-adic units " 2 Z

�̀. Then there is a canonical bijection

IsomF.Ljl; Kjk/! Isomc.˘K;˘L/:

A sketch of a strategy to functorially recover Kjk from pro-` Galois information,
in particular to prove the above Theorem I, can be found essentially already in (the
notes of) Pop [25], and has as starting point the following simple idea: Let bK be
the `-adic completion of the multiplicative groupK� ofKjk.1 Since the cyclotomic
character ofK is trivial, one can identify the `-adic Tate module TK;` of K with Z`

(non-canonically), and let {K W TK;` ! Z` be a fixed identification. Via Kummer
theory, one has isomorphisms of `-adically complete groups:

bK D Homcont.˘K;TK;`/
{K�!Homcont.˘K;Z`/;

i.e., bK can be recovered from ˘K , hence from ˘ c
K via the projection ˘ c

K ! ˘K .
On the other hand, since k� is divisible, bK equals the `-adic completion of the free
abelian groupK�=k�. Now the idea of recoveringKjk is as follows:

(a) First, give a recipe to recover the image |K.K
�/ D K�=k� of the

`-adic completion functor |K W K� ! K�=k� � bK inside the “known”
bK D Homcont.˘K;Z`/.

(b) Second, interpreting K�=k� DW P.K/ as the projectivization of the infinite-
dimensional k-vector space .K;C/, give a recipe to recover the projective
lines lx;y WD .kx C ky/�=k� inside P.K/, where x; y 2 K are k-linearly
independent.

(c) Third, apply the fundamental theorem of projective geometries of Artin [1], and
deduce that Kjk can be recovered from P.K/ endowed with all the lines lx;y .

(d) Finally, show that the recipes above are functorial, i.e., they are invariant under
isomorphisms of profinite groups ˘K ! ˘L which are abelianizations of
isomorphisms ˘ c

K ! ˘ c
L. In particular, such isomorphisms ˘K ! ˘L

originate actually from geometry.

The strategy from Pop [25] to tackle the above problems (a), (b), (c), (d), above
is in principle similar to the strategies (initiated by Neukirch and Uchida) for
tackling Grothendieck’s anabelian conjectures. It has two main parts, as follows,
the terminology being as introduced later:

1Recall that for an abelian group A, its `-adic completion is by definition bA WD lim
 �
e

A=`e .
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Local theory: It has as input the Galois/group-theoretical information ˘ c
K . It

should be a recipe which in a first approximation recovers from ˘ c
K the decom-

position/inertia groups of prime divisors ofKjk in ˘K (N.B., not in ˘ c
K ). The final

output of the local theory should be the total decomposition graph GD tot
K

of Kjk.
This recipe should be invariant under isomorphisms˘K ! ˘L which are induced
by some isomorphisms˘ c

K ! ˘ c
L.

Global theory: Its input is the total decomposition graph GD tot
K

ofKjk. It should be
a recipe which in a first approximation recovers the geometric decomposition graphs
GDK (together with some of their special properties) forKjk from GD tot

K
together with

their sets of rational quotientsAK D f˚�xg�x . In a second approximation, this recipe
should recover P.K/ and its projective lines from the GDK endowed with their
rational quotients AK D f˚�xg�x . It thus should finally recover the function field
Kjk. Moreover, this recipe should be functorial, i.e., invariant under isomorphisms
of total decomposition graphs GD tot

K
! GD tot

L
.

This paper deals mainly with questions of the above global theory, precisely,
recovering the geometric decomposition graphs (together with some of their special
properties) from the total decomposition graph, and finally proving the main result
of the paper, which is to show that morphisms of (total) decomposition graphs that
are compatible with rational projections originate in a precise way from geometry.

Before announcing the main result here, let us briefly introduce the main concepts
and objects, which will be discussed/studied in detail later.

� Prime divisor graphs (see Section 3 for more details)

Recall that in the context above, a (Zariski) prime divisor of a function field Kjk
is a discrete valuation v of K whose valuation ring is the local ring OX;x1 of the
generic point x1 of some Weil prime divisor of some normal modelX ! k ofKjk.
If so, then the residue field Kv of v is the function field Kv D �.x1/, and therefore,
td.Kvjk/ D td.Kjk/ � 1. A set of Zariski prime divisors D of Kjk is called a
geometric set if there exists a quasiprojective normal model X ! k of Kjk such
that D D DX is the set of valuations vx1 defined by the generic points x1 of all the
Weil prime divisors of X . We next generalize the prime divisors of Kjk as follows:
First, for a valuation v of K the following are equivalent:

(i) v is trivial on k, the residue field has td.Kvjk/ D td.Kjk/� r , and there exists
a chain of valuations v1 < � � � < vr WD v.

(ii) v is the valuation-theoretical composition v D vr ı � � � ı v1, where v1 is a prime
divisor of K , and inductively, viC1 is a prime divisor of the residue function
field �.vi / jk.

A valuation v of K which satisfies the above equivalent conditions is called a
prime r-divisor of Kjk; and a sequence of prime divisors .vr ; : : : ; v1/ as above
will be called a Parshin r-chain of Kjk. By definition, the trivial valuation will be
considered a generalized prime divisor of rank zero, and the corresponding Parshin
chain is the trivial Parshin chain. Finally, note that r � td.Kjk/, and that in the
above notation, one has vi D vi ı � � � ı v1 for all i � 1.
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The total prime divisor graph D tot
K of K is the following half-oriented graph:

(a) the vertices of D tot
K are the residue fields Kv of all generalized prime divisors v

of Kjk viewed as distinct function fields.
(b) For given v D vr ı � � � ı v1 and w D ws ı � � � ıw1, the edges fromKv to Kw are

as follows:

(i) If v D w, i.e.,Kv D Kw, then the trivial valuation v=w D w=v is the only
edge fromKv D Kw to itself; and it is by definition a non-oriented edge.

(ii) If Kv ¤ Kw, then the set of edges from Kv to Kw is non-empty iff s D
rC1 and vi D wi for 1 � i � r ; and if so, then ws D w=v is the only edge
fromKv to Kw, and it is by definition an oriented edge.

A geometric prime divisor graph for Kjk is any connected subgraph DK of D tot
K

which satisfies the following conditions: First, for each vertex Kv of DK , the set
Dv of all non-trivial edges of DK originating from Kv is a geometric set of prime
divisors ofKv jk. Second, all maximal branches of non-trivial edges of DK originate
atK and have length equal to td.Kjk/. Equivalently, DK is a half-oriented connected
graph havingK D K0 as origin and satisfying:

(a) the vertices of DK are distinct function fields Ki jk over k;
(b) for every vertex Ki , the trivial valuation of Ki is the only edge from Ki to

itself. And the set of non-trivial edges vi originating at Ki� is a geometric set
of prime divisors of Ki� jk, and if vi is a non-trivial edge from Ki� to Ki , then
Ki D Ki�vi ;

(c) the only cycles of the graph are the non-oriented edges, and all the maximal
branches consisting of oriented edges only have length equal to td.Kjk/.

The functorial behavior of geometric prime divisor graphs is as follows:

(1) Embeddings. Let Ljl ,! Kjk be an embedding of function fields which
maps l onto k. Then the canonical restriction map of valuations ValK ! ValL,
v 7! vjL, gives rise to a morphism of the total prime divisor graphs
'{ W D tot

K ! D tot
L , which moreover is surjective. The relation between geometric

prime divisor graphs DK and DL is a little bit more subtle; see Proposition 37:
Given geometric prime divisor graphs DK and DL, there exist geometric prime
divisor graphs D0

K and D0
L containing DK , respectively DL, such that '{ defines

a surjective morphism of geometric prime divisor graphs:

'{ W D0
K ! D0

L :

(2) Restrictions. Given a generalized prime divisor v of Kjk, let D tot
v be the set of

all generalized prime divisors w of Kjk with v � w. Then the map

D tot
v ! D tot

Kv ; w 7! w=v;
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is an isomorphism of D tot
v onto D tot

Kv . Moreover, if Kv is a vertex of some
geometric prime divisor graph DK for Kjk, then one has that the maximal
subgraph DKv of DK whose initial vertex is Kv is a geometric graph of prime
divisors of Kv.

� Decomposition graphs (see Section 3 for more details)

Let Kjk be as considered above. Then we have the following, see e.g., Pop [28],
Introduction, for a discussion of these facts: For every prime divisor v of Kjk one
has Tv Š T`;K , and for every prime r-divisor v one has Tv Š T

r
`;K . Further, for

generalized prime divisors v and w one has Zv \ Zw ¤ 1 if and only if v;w
are not independent as valuations, i.e., O WD Ov Ow ¤ K; and if so, then O is
the valuation ring of a generalized prime divisor u of Kjk which turns out to be
the unique generalized prime divisor with Tu D Tv \ Tw, and also the unique
generalized prime divisor of Kjk maximal with the propertyZv; Zw � Zu.

In particular, v D w iff Tv D Tw iff Zv D Zw. Further, v < w iff Tv � Tw
strictly iff Zv 	 Zw strictly, and Tw=Tv Š Z

s�r
` if v is a prime r-divisor and w is

a prime s-divisor.
We conclude that the partial ordering of the set of all generalized prime divisors

v of Kjk is encoded in the set of their inertia/decomposition groups Tv � Dv.
In particular, the existence of the trivial, respectively a non-trivial, edge fromKv to
Kw in D tot

K is equivalent to Tv D Tw, respectively to Tv � Tw and Tw=Tv Š Z`.
Via the Galois correspondence and the functorial properties of the Hilbert

decomposition theory for valuations, we attach to the total prime divisor graph D tot
K

of Kjk a graph GD tot
K

whose vertices and edges are in bijection with those of D tot
K as

follows:

(a) The vertices of GD tot
K

are ˘Kv, viewed as distinct pro-` groups (all v).
(b) If the edge from Kv to Kw exists, the corresponding edge from ˘Kv to ˘Kw

is endowed with the pair of groups Tw=v � Zw=v viewed as subgroups of ˘Kv;
thus˘Kw D Zw=v=Tw=v.

The graph GD tot
K

will be called the total decomposition graph of Kjk, or of ˘K .
If DK � D tot

K is a geometric graph of prime divisors of Kjk, the corresponding
subgraph GDK � GD tot

K
will be called a geometric decomposition graph for Kjk, or

for˘K .
Next recall that the isomorphy type of (the maximal abelian pro-` quotient of)

the fundamental group ˘1.X/ WD �
ab;`
1 .X/ of complete regular models X ! k,

if such models exist, depends on Kjk only, and not on X ! k. Moreover, one
can recover ˘1.X/ as being ˘1.X/ D ˘K=TK , where TK is the subgroup of GK
generated by all the inertia groups Tv with v a prime divisor of Kjk. This justifies
calling the group ˘1;K WD ˘K=TK the birational fundamental group for Kjk. As
discussed at Fact 57, there always exist quasiprojective normal models X ! k for
Kjk such that TK D TDX , where TDX is the closed subgroup of ˘K generated by
all Tv with v 2 DX . We will say that a model X ! k of Kjk and=or that DX is
complete regular-like if TK D TDX and the rational rank rr.Cl.X// of the divisor
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class group Cl.X/ is positive, and for every normal quasiprojective model QX with
DX � D QX one has that rr

�

Cl. QX/� D rr.Cl.X//C jD QXnDX j. Note that a complete
regular like curve is a complete normal curve and viceversa. We say that a geometric
decomposition graph GDK is complete regular-like if, for all vertices v of DK with
td.Kvjk/ > 0, one has that the set Dv of 1-edges of GDKvjk is complete regular-like.

As shown in Proposition 22, there exists a group-theoretical recipe by which one
can recover the geometric decomposition graphs (and the property of being complete
regular-like) from the total decomposition graph GD tot

K
. Further, by Proposition 39,

that recipe is invariant under isomorphisms ˚ W GD tot
K
! GD tot

L
, i.e., every such

isomorphism gives rise by restriction to isomorphisms of the (complete regular-like)
decomposition graphs forKjk onto the (complete regular-like) ones for Ljl .

The functorial properties of the graphs of prime divisors translate to the following
functorial properties of the decomposition graphs:

(1) Embeddings. Let { W Ljl ,! Kjk be an embedding of function fields which
maps l onto k. Then the canonical projection homomorphism ˚{ W ˘K ! ˘L

is an open homomorphism, and for every generalized prime divisor v of Kjk
and its restriction vL to L, one has that ˚{.Zv/ � ZvL is an open subgroup, and
˚{.Tv/ � TvL satisfies ˚{.Tv/ D 1 iff vL is the trivial valuation. Therefore, ˚{
gives rise to a morphism of total decomposition graphs, which we denote by the
same symbol

˚{ W GD tot
K
! GD tot

L
:

In turn, for given geometric decomposition graphs DK and DL, for which { gives
rise to a morphism of geometric decomposition graphs DK ! DL, the above ˚{
morphism of total decomposition graphs gives rise to a morphisms of geometric
decomposition graphs ˚{ W GDK ! GDL , as defined later in Sections 4 and 5.

(2) Restrictions. Given a generalized prime divisor v of Kjk, let prv W Zv ! ˘Kv

be the canonical projection. Then for eveary w � v we have that Tw � Zw are
mapped onto Tw=v � Zw=v. Therefore, the total decomposition graph of Kv jk
can be recovered from that of Kjk in a canonical way via prv W Zv ! ˘Kv.

� Rational quotients (see Section 5 for more details). Let Kjk be a function field
as above satisfying td.Kjk/ > 1. For every non-constant function t 2 K , let �t be
the relative algebraic closure of k.t/ in K . Since td.�t jk/ D 1, it follows that �t
has a unique complete normal model Xt ! k, which is a projective smooth curve.
Therefore, the set of prime divisors of �t jk is actually in bijection with the (local
rings at the) closed points of Xt , thus with the set of Weil prime divisors of Xt .
Therefore, the total prime divisor graph D tot

�t
for �t jk is actually the unique maximal

geometric prime divisor graph for �t jk. We denote D tot
�t

simply by D�t .
Let {t W �t ! K be the canonical embedding, and ˚�t W ˘K ! ˘�t the

(surjective) canonical projection. Then by the functoriality of embeddings, ˚�t
gives rise canonically to a morphism ˚�t W GD tot

K
! G�t . Moreover, if GDK is

a geometric decomposition graph for Kjk, then ˚�t restricts to a morphism of
geometric decomposition graphs ˚�t W GDK ! G�t .
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In the above context, if �t D k.t/, we say that ˚�t is a rational quotient of
GD tot

K
as well as of every geometric decomposition graph GDK for Kjk. We call such

t 2 K “general elements” of K , and usually denote general elements of K by x,
in order to distinguish them from the “usual” non-constant t 2 K . A “birational”
Bertini-type argument shows that there are “many” general elements in K; see
Lang [18], Ch. VIII, and=or Roquette [30], � 4, respectively Fact 43 in Section 5:
For any given algebraically independent functions t; t 0 2 K , not both inseparable,
ta0;a WD t=.a0t 0 C a/ is a general element of K for almost all a0; a 2 k. A set of
general elements ˙ � K is a Bertini set if ˙ contains almost all elements ta0;a for
all t; t 0 as above. We denote by AK D f˚�xg�x the set of all the rational quotients
of Kjk, and consider subsets A � AK containing all the ˚�x 2 A, x 2 ˙ , with ˙
some Bertini set of general elements, and call them, for short, Bertini-type sets of
rational quotients.

The relation between rational projections and morphisms of geometric de-
composition graphs is as follows: Let { W Ljl ,! Kjk be an embedding of
function fields with {.l/ D k, such that Kj{.L/ a separable field extension, and
td.Ljl/ > 1. Then there exists a Bertini-type set B D f˚�y g�y for Ljl such that
�x WD {.�y/ is relatively algebraically closed in K for all �y . Hence for all ˚�y 2 B
and the corresponding ˚�x 2 AK , �x WD {.�y/, we get that the isomorphism
˚�x�y W G�x ! G�y defined by {�x�y WD {j�y satisfies the condition

˚�y ı ˚{ D ˚�x�y ı ˚�x :

Because of this property, we will say that ˚{ is compatible with rational quotients.

� Abstract decomposition graphs

It is one of our main tasks in the present manuscript to define and study abstract
decomposition graphs, which resemble the geometric decomposition graphs GDK

(this will be done in Section 2) and to define proper morphisms of such abstract
decomposition graphs, in particular their rational quotients (which will be done in
Section 4). The abstract decomposition graphs, which endowed with families of ra-
tional quotients resemble the complete regular-like geometric decomposition graphs
as introduced above, will be called complete regular-like abstract decomposition
graphs.

The main result of this manuscript is the following; see Theorem 45 for a
more general assertion, and Definition 21, Fact/Definition 43 (2), Definition 33
(and Definitions 12 and 9), and Definition/Remark 34 for the definitions of all the
terms:

Main Theorem LetKjk andLjl be function fields with td.Kjk/ > 1. Let GD tot
K

and
HD tot

L
be their total decomposition graphs, which we endow with Bertini-type sets

of rational quotients A, respectively B. Then the following hold:

(1) There exists a group-theoretical recipe which recovers Kjk from GD tot
K

endowed
with A. Moreover, this recipe is invariant under isomorphisms in the following
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sense: Up to multiplication by `-adic units and composition with automor-
phisms ˚{ of GD tot

K
defined by automorphisms { W K ijk ! K ijk, there exists

at most one isomorphism ˚ W GD tot
K
! HD tot

L
of abstract decomposition graphs

which is compatible with the sets of rational quotients A and B.
(2) The following more precise assertion holds: Suppose that td.Ljl/ > 1. Let GDK

and HDL be geometric complete regular-like decomposition graphs for Kjk,
which endowed with A, respectively B, are viewed as complete regular-like
abstract decomposition graphs. Then for every morphism

˚ W GDK !HDL

which is compatible with the sets of rational quotientsA andB, there exist an `-adic
unit " 2 Z

�̀ and an embedding of field extensions

{ W Lijl ! K ijk

such that ˚ D " � ˚{ , where ˚{ W GDK ! HDL is the canonical morphism defined
by { as above.

Further, {.l/ D k, and { is unique up to Frobenius twists, and " is unique up to
multiplication by powers of p, where p D char.k/.

We notice that the Main Theorem above (together with Propositions 22 and 39)
reduces the problem of functorially recovering Kjk from ˘ c

K , thus completing the
proof of the above Theorem I, to recovering the total decomposition graph GD tot

K

of Kjk and its rational quotients. In the case that k is an algebraic closure of a
finite field, both these problems were solved in Pop [27], but working with the full
pro-` Galois group GK.`/ instead of ˘ c

K . Nevertheless, the methods of Pop [27] to
recover GD tot

K
and its rational quotients used only the set of all divisorial groups

Tv � Zv inside ˘K . Using the local theory developed in Pop [28] instead of
the local theory of Pop [27], a complete proof of Theorem I above is given in
Pop [30].

Historical note

The idea to recoverKjk from˘ c
K originates from Bogomolov [2], and a first attempt

to do so can be found in his fundamental paper [2]. Although that paper is too
sketchy to make clear what the author precisely proposes, a thorough inspection
shows that it provides a fundamental tool for recovering inertia elements of
valuations v ofK (which nevertheless may be non-trivial on k). This is Bogomolov’s
theory of commuting liftable pairs; see Bogomolov–Tschinkel [3] for detailed
proofs. On the other hand, it is not at all clear how and whether one could develop
a “global theory” along the lines (vaguely) suggested in [2], and there was virtually
no progress on the problem for about a decade.

A sketch of a viable global theory —at least in the case that k is an algebraic
closure of a finite field— was proposed in the notes of my MSRI talk in the fall of
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1999; see Pop [25]. In the second part of Pop [26], the technical details concerning
the global theory hinted at in Pop [25] were worked out. Actually, this paper is
an elaboration of parts of Pop [26], and the main theorem here, more precisely
Theorem 45, is the Hom-form of the Isom-form of Theorem 5.11 of [26]. However,
I should mention that in [26] the mixed “arithmetic + geometric situation” was
considered as well as non-abelian Galois groups, which is of interest in the case
that k is not algebraically closed.

In the case that k is an algebraic closure of a finite field, let me finally mention:

• In the paper Pop [27], a recipe to functorially recover Kjk from GK.`/, in par-
ticular a proof of (a slightly stronger form of) the above target result was given.
First, the assertion one proves using GK.`/ instead of ˘ c

K is stronger, namely, if
˚ W ˘K ! ˘L is the abelianization of an isomorphism ˚.`/ W GK.`/! GL.`/,
then there exists an isomorphism { W Lijl ! K ijk (unique up to Frobenius
twists) which defines ˚ ; thus one does not need to “adjust” ˚ by multiplying
by an `-adic unit " 2 Z

�̀. I should also observe that the full GK.`/ was used
in Pop [27] essentially only in order to recover the divisorial subgroups of ˘K

via the canonical projection GK.`/ ! ˘K , whereas all the other steps of the
local and global theory are virtually identical with the ones in the case of ˘ c

K .
(The recipe to recover the divisorial subgroups of ˘K via ˘ c

K ! ˘K is given in
Pop [28] and uses Bogomolov’s theory of commuting liftable pairs as a “black
box.” That recipe is used in Pop [30].)

• Bogomolov–Tschinkel [4], [5], consider the case K D k.X/, where X is a
projective smooth surface over k. In the initial variant of their manuscript [4],
they considered only the case that �1.X/ is finite, and proved that if ˘ c

K and˘ c
L

are isomorphic, thenKjk andLjl are isomorphic up to pure inseparable closures,
provided k and l are algebraic closures of finite fields with chat ¤ 2 (which is
less precise than what the above target result gives in this case). Nevertheless,
in the published version [5] of their earlier manuscript [4], they announce their
main result for surfaces in a form almost identical with the target result above
and use a strategy of proof which is in many ways very similar to that announced
in Pop [25], and used in Pop [27].
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2 Pro-` abstract decomposition graphs

In this section we develop an abelian pro-` prime divisor decomposition theory
for “abstract function fields” which is similar in some sense to the abstract class
field theory. Throughout ` is a fixed prime number, and ı � 0 is a non-negative
integer.

2.1 Axioms and definitions

Definition 1. A level-ı (pro-`) abstract decomposition graph is a connected half-
oriented graph G whose vertices are endowed with pro-` abelian groups Gi and
whose edges vi are endowed with pairs of pro-` abelian groups Tvi � Zvi satisfying
the following:
Axiom (I): The vertices of G are pro-` abelian free groupsGi , and G has an origin,
which we denote by G0 D G.
Axiom (II): The edges vi and the corresponding Tvi � Zvi satisfy the following:

(i) For every vertex Gi there exists a unique non-oriented edge vi0 from Gi to
itself, and the corresponding pair of pro-` groups is f1g DW Tvi0 � Zvi0 WD Gi .
For all other vertices Gi� ¤ Gi there exists at most one edge vi from Gi� to
Gi . If vi exists, we say that vi is the oriented edge from Gi� to Gi , and vi is
endowed with a pair Tvi � Zvi of subgroups of Gi� such that Tvi Š Z` and
Gi D Zvi =Tvi .

The edges of G are also called valuations of G; in particular, the edges
originating from Gi are called valuations of Gi . The non-oriented edge vi0
from Gi to itself is called the trivial valuation of Gi , whereas the oriented
edges vi originating from Gi� are called non-trivial valuations of Gi� .

The groups Tvi � Zvi are called the inertia, respectively decomposition,
groups of vi ; and Gi WD Zvi =Tvi is called the residue group of vi .

(ii) For distinct non-trivial edges vi ¤ vi 0 originating from Gi� , one has
Zvi \Zvi 0 D 1, hence Tvi \ Tvi 0 D 1 holds as well.

For every cofinite subset Ui of the set of non-trivial edges vi originating
from Gi� , let TUi be the closed subgroup of Gi� generated by all the Tvi , vi 2
Ui . A system .Ui;˛/˛ of such cofinite subsets is called cofinal, if every finite set
of valuations vi as above is contained in the complement of Ui;˛ for some ˛.

(iii) There exist cofinal systems .Ui;˛/˛ such that Tvi \ TUi;˛ D 1 for all ˛ and
all vi 62 Ui;˛.

Axiom (III): The non-oriented edges vi0 are the only cycles of the graph G , and all
maximal branches of non-trivial edges of G have length equal to ı.

Definition/Remark 2. Let G be an abstract decomposition graph of level-ıG on
a pro-` group G D G0. We will say that G is a level-ıG abstract decomposition
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graph onG. A valuation of G D G0 will be called a 1-edge of G . If no confusion is
possible, we will denote the 1-edges of G simply by v; thus the corresponding pro-`
groups involved are denoted by Tv � Zv and Gv WD Zv=Tv.

(1) Consider any ı such that 0 � ı � ıG . By induction on ı it is easy to see that G
has a unique maximal connected abstract decomposition subgraph containing
the origin G of G and having all branches of oriented edges of length ı.

(2) Let v D .vr ; : : : ; v1/ be a path of length ıv WD r of non-trivial valuations
originating atG D G0. This means by definition that v1 is a non-trivial valuation
of G0, and if r > 1, then for all i < r one has inductively that Gi is the residue
group of vi , and viC1 is a non-trivial valuation of Gi . In particular, Gr is the
residue group of vr . Then there exists a unique maximal connected subgraph
Gv of G having Gv WD Gr as origin. Clearly, Gv is in a natural way an abstract
decomposition graph of level ıG � ıv on Gv.

We say that Gv is an r-residual abstract decomposition graph of G . In
particular, the unique 0-residual abstract decomposition graph of G is G itself.

(3) For every path v D .vr ; : : : ; v1/ of length ıv D r as above, we will say that
Gv is an r-residual group of G , precisely that Gv is the v-residual group of G .
One can further elaborate as follows: For r > 1 we set w D .vr�1; : : : ; v1/,
and suppose that the inertia/decomposition groups Tw � Zw � G0 of w have
been defined inductively such that the residue group Gw WD Zw=Tw of w is
Gw D Gvr�1 . We then define the inertia/decomposition groups Tv � Zv of v in
G0 as being the preimages of Tvr � Zvr � Gvr�1 via Zw ! Zw=Tw D Gvr�1 .
Note that by definition we have Zv=Tv DW Gv and Tv Š Z

ıv
` .

We call v D .vr ; : : : ; v1/ a generalized valuation of G D G0, or a multi-
index of length ıv WD r of G . And we will say that ıv is the rank of v or that v
is a generalized r-valuation if r D ıv.

Given generalized valuations v D .vr ; : : : ; v1/, w D .ws ; : : : ;w1/, we will
say that w � v if s � r , and vi D wi for all i � s. From the definitions one gets
that if w � v, thenZv � Zw and Tw � Tv. On the other hand, by Axiom II (ii),
it immediately follows that the converse of (any of) these assertions is also true.
We will say that v and w are dependent if there exists some q > 0 such that
vi D wi for i � q. For dependent generalized valuations v and w as above, the
following are equivalent:

(a) q is maximal such that vi D wi for i � q.
(b) Tv \ Tw Š Z

q

` .
(c) q is maximal such that Zv; Zw are both contained in the decomposition

group of some generalized q-valuation of G D G0.
(4) In order to have a uniform notation, we take v D v0 to be the trivial multi-index,

or the trivial path, of G as the unique one having length equal to 0. We further
set Zv0 WD G0 and Tv0 D f1g. In particular, one has Gv0 D Zv0=Tv0 D G0,
which is compatible with the other notations/conventions. Further, v0 � v for
all multi-indices v.
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Definition/Remark 3. Let G be a level-ıG abstract decomposition graph on the
abelian pro-` group G D G0. In notation as above, we consider the following:

(1) Define b�G WD Hom
�

G;Z`
�

. Since G is a pro-` free abelian group, b�G is a free
`-adically complete Z`-module (in `-adic duality with G).

From now on suppose that ıG > 0. Recall that Tv � Zv and Gv D Zv=Tv denote
respectively the inertia, the decomposition, and the residue groups at the 1-edges v
of G , i.e., at the valuations v of G.

(2) Denote by T � G the closed subgroup generated by all the inertia groups Tv

(all v as above). We set˘1;G WD G=T and call it the abstract fundamental group
of G . One has a canonical exact sequence

1! T ! G ! ˘1;G ! 1:

Taking continuous Z`-Homs, we get an exact sequence of the form

0! bUG WD Hom
�

˘1;G ;Z`
� can�!b�G WD Hom

�

G;Z`
� |G

�!b�T WD Hom
�

T;Z`
�

:

We will call bU G WD Hom
�

˘1;G ;Z`
�

the unramified part of b�G . And if no

confusion is possible, we will identify bU G with its image in b�G .
(3) Next we have a closer look at the structure of b�G . For every 1-edge v as above,

the inclusions Tv ,! Zv ,! G give rise to restriction homomorphisms as
follows:

| v W b�G

resZv��!b�Zv WD Hom
�

Zv;Z`
� resv��!b�Tv WD Hom

�

Tv;Z`
�

:

(a) We set bU
1

v D ker.resZv/ and bU v D ker.| v/ and call them the principal v-
units, respectively the v-units, in b�G . And observe that the unramified part
of b�G is exactly bU G D \v ker.| v/.

(b) The family .| v/v gives rise canonically to a continuous homomorphism
c̊v |

v of `-adically complete Z` -modules

c̊v |
v W b�G ! b�T ,! c̊v b�Tv

Thus identifying b�T with its image inside c̊v b�Tv , one has |G D c̊v |
v

on b�G . We define bDivG WD c̊v b�Tv and call it the `-adic abstract divisor
group of G .

(c) Finally, we set bClG D coker.|G / and call it the `-adic abstract divisor class
group of G . And observe that we have a canonical exact sequence

0! bU G ,! b�G
|G

�! bDivG
can�! bClG ! 0 :
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(4) Let b�G;fin WD f x 2 b�G j | v.x/ D 0 for almost all v g. We notice that
by Axiom II (iii), the Z`-module b�G;fin is dense in b�G . Indeed, let .U˛/˛ be
a cofinal system of 1-edges v. Then setting G˛ D G=TU˛ and T˛ D T=TU˛ , we
have a canonical exact sequence

1! T˛ ! G˛ ! ˘1;G ! 1 ;

and T˛ is generated by the images Tv;˛ of Tv (all v 62 U˛) in G˛ . Clearly, the
image of the inflation homomorphism inf˛ W Hom

�

G˛;Z`
� ! Hom

�

G;Z`
�

is
exactly

�˛ WD fx 2 b�G j | v.x/ D 0 for all v 2 U˛ g D \v2U˛ ker.| v/:

Taking inductive limits over the cofinal system .U˛/˛ , the density assertion
follows.

We observe that |G .b�G;fin/ Š b�G =bU G is a Z`-submodule of the Z`-free
module˚vb�Tv Š ˚v Z`v; hence |G .b�G;fin/ is a free Z`-module too. Therefore,
for every Z`-submodule � � b�G , its image |G .�/ under |G is a free Z`-
module. The rank of |G .�/ will be called the corank of �.

We notice that a Z`-submodule� � b�G has finite corank iff � is contained
in ker.| v/ for almost all v. Clearly, the sum of two finite corank submodules of
b�G is again of finite corank. Thus the set of such submodules is inductive, and
one has

b�G;fin D [� (all finite corank�) D [˛�˛:

(5) We say that G is complete curve-like if the following holds: There exist
generators �v of Tv such that

Q

v �v D 1, and this is the only pro-relation satisfied
by the system of elements T D .�v/v. We call such a system T D .�v/v a
distinguished system of inertia generators.

We notice the following: Let G be complete curve-like, and let T D .�v/v
and T0 D .� 0v/v be distinguished systems of inertia generators. Then � 0v D �"v

v for
some `-adic units "v 2 Z`, because both �v and � 0v are generators of Tv. Hence
we have 1 D Q

v �
0
v D

Q

v �
"v
v . By the uniqueness of the relation

Q

v �v D 1, it
follows that "v D " for some fixed `-adic unit " 2 Z`.

Next consider some ı with 0 < ı � ıG . We say that G is level-ı complete
curve-like if all the .ı � 1/-residual abstract decomposition graphs Gv are
residually complete curve-like. In particular, “level 1 complete curve-like” is
the same as “complete curve-like.”

(6) For every 1-vertex v consider the exact sequence 1 ! Tv ! Zv ! Gv ! 1

given by Axiom II (i). Let infv W Hom
�

Gv;Z`
�! Hom

�

Zv;Z`
�

be the resulting

inflation homomorphism. Since Tv D ker.Zv ! Gv/, it follows that resZv.
bU v/

is the image of the inflation map inflv. Therefore there exists a canonical exact
sequence

0! bU
1

v �! bU v
|v�!Hom

�

Gv;Z`
� D b�Gv ! 0;

and we call |v the v-reduction homomorphism.
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(7) In particular, if ıG > 1, then ıGv D ıG � 1 > 0 for every 1-vertex v, and we
have the corresponding exact sequence for the residual abstract decomposition
graph Gv

0! bU Gv ,! b�Gv

|Gv�! bDivGv :

We will say that G is ample if ıG > 0 and the following conditions are satisfied:

(i) |˙ W b�G �! ˚v2˙ �Tv is surjective for every finite set ˙ , where
|˙ WD ˚v2˙| v.

(ii) If ıG > 1, then the following hold:

(a) |v.bU G / � bU Gv and bU Gv C |v.b�G;fin \ bU v/ D b�Gv;fin for every v.
(b) For every finite-corank submodule � � b�G , there exists v such that

� � bU v, and � and |v.�/ have equal coranks.

Notice that the condition (ii) above is empty in the case ıG D 1. Thus if
ıG D 1, then condition (i) is necessary and sufficient for G to be ample.

Next consider 0 < ı � ıG . We say that G is ample up to level ı if all the
residual abstract decomposition graphs Gv for v such that 0 � ıv < ı are ample.
In particular, “ample up to level 1” is the same as “ample.”

2.2 Abstract Z.`/ divisor groups

Definition 4. (1) Let M be the `-adic completion of a free Z-module. A Z.`/-
submodule M.`/ � M of M is called a Z.`/-lattice in M (for short, a lattice)
if M.`/ is a free Z.`/-module, it is `-adically dense in M , and it satisfies the
following equivalent conditions:

(a) M=` DM.`/=`.
(b) M.`/ has a Z.`/-basis B which is `-adically independent in M .
(c) Every Z.`/-basis of M.`/ is `-adically independent in M .

(2) Let N � M.`/ � M be Z.`/-submodules of M such that N and M=N are `-
adically complete and torsion-free. We call M.`/ an N -lattice inM , if M.`/=N

is a lattice in M=N .
(3) In the context above, a true lattice in M is a free abelian subgroup M of M

such that M.`/ WDM ˝ Z.`/ is a lattice in M in the above sense. And we will
say that a Z-submodule M � M is a true N -lattice in M if N � M and
M =N is a true lattice in M=N .

(4) Let M be an arbitrary Z`-module. We say that subsets M1;M2 of M are `-
adically equivalent if there exists an `-adic unit " 2 Z` such that M2 D " �M1

insideM . Further, given systems S1 D .xi /i and S2 D .yi /i of elements ofM ,
we will say that S1 and S2 are `-adically equivalent if there exists an `-adic unit
" 2 Z` such that xi D " yi (all i ).

(5) We define correspondingly the `-adicN -equivalence of N -lattices, etc.
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Construction 5. Let G be an abstract decomposition graph on G which is level-ı
complete curve-like and ample up to level ı for some given ı > 0. Recall the last
exact sequence from point (4) from Definition/Remark 3:

0! bUG ,! b�G
|G

�! bDivG
can�! bClG ! 0:

The aim of this subsection is to describe the `-adic equivalence class of a lattice
DivG in bDivG , in case it exists, which will be called an abstract divisor group of G .
In case the lattice DivG �bDivG exists, it satisfies

DivG ˝ Z` D ˚v �Tv :

Further, the existence (of the equivalence class) of the lattice DivG will turn out to
be equivalent to the existence (of the equivalence class) of a bU G -lattice �G in b�G ,
which will turn out to be the preimage of DivG in b�G . In particular, if �G exists, it
satisfies

�G ˝ Z` D b�G;fin:

The case ı D 1, i.e., G is complete curve-like and ample.
In the notation from Definition/Remark 3 (5) above, let T D .�v/v be a distinguished
system of inertia generators. Further, let FT be the abelian pro-` free group on the
system T (written multiplicatively). Then one has a canonical exact sequence of
pro-` groups

1! �Z` ! FT ! T ! 1;

where � D Q

v �v in FT is the pro-` product of the generators �v (all v). Observing

that Hom
�

FT;Z`
� Š bDivG in a canonical way, and taking `-adically continuous

Homs, we get an exact sequence

0! b�T D Hom
�

T;Z`
�!bDivG D Hom

�

FT;Z`
�! Z` D Hom

�

�Z` ;Z`
�! 0;

where the last homomorphism maps each ' to its “trace”: ' 7! �

� 7! P

v '.�v/
�

.
Thus b�T consists of all the homomorphisms ' 2 Hom

�

FT;Z`
�

with trivial trace.
Consider the system B D .'v/v of all the functionals 'v 2 Hom

�

FT;Z`
� D

bDivG defined by 'v.�w/ D 1 if v D w, and 'v.�w/ D 0 for all v ¤ w. We denote by

DivT D hBi.`/ �bDivG

the Z.`/-submodule of Hom
�

FT;Z`
� D bDivG generated by B. Then DivT is a

lattice in bDivG , and B is an `-adic basis of bDivG . We next set

Div0T WD f
P

v av 'v 2 DivT jPv av D 0 g D DivT \ b�T :

Clearly, Div0T is a lattice in b�T . And moreover, the system .ew D 'w � 'v/w¤v is
an `-adic Z.`/-basis of Div0T for every fixed v.
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The dependence of DivT on T D .�v/v is as follows. Let T0 D .� 0v/v D T" with
" 2 Z

�̀ be another distinguished system of inertia generators. If B0 D .' 0v/v is the
dual basis to T0, then " �B0 D B. Thus B and B0 are `-adically equivalent, and we
have DivT D " � DivT0 and Div0T D " � Div0T0 .

Therefore, all the subgroups of bDivG of the form DivT, respectively Div0T, are
`-adically equivalent (for all distinguished T). Hence the `-adic equivalence classes
of DivT and Div0T do not depend on T, but only on G .

Fact 6. In the above context, denote by �T the preimage of Div0T, thus of DivT,
in b�G . Consider all the finite-corank submodules � � �G;fin with bU G � �. Then
the following hold:

(i) �T is a bU G -lattice in b�G , and �T � b�G;fin.
(ii) � \�T is a bUG -lattice in � (all � as above).

Moreover, | v.�T/ D Z.`/'v (all v).

Proof. Clear. ut
Definition 7. In the context of Fact 6 above, we define objects as follows:

(1) A lattice of the form DivT � bDivG will be called an abstract divisor group
of G . We will further say that Div0T is the abstract divisor group of degree 0 in
DivT.

(2) The bUG -lattice �T is called a divisorial bU G -lattice for G in b�G . And we will
say that �T and DivT correspond to each other, and that T defines them.

� Note that �G � b�G;fin and �G ˝ Z` D b�G;fin. Indeed, if x 2 �G , then
| v.x/ D 0 for almost all v, etc.

The case ı > 1.
We begin by mimicking the construction from the case ı D 1, and then conclude the
construction by induction on ı. Thus let T D .�v/v be any system of generators for
the inertia groups Tv (all 1-edges v). Further let FT be the abelian pro-` free group
on the system T (written multiplicatively). Then T is a quotient FT ! T ! 1

in a canonical way. Observing that Hom
�

FT;Z`
� Š bDivG in a canonical way, by

taking `-adic Homs we get an exact sequence

0! Hom
�

T;Z`
�! Hom

�

FT;Z`
� DbDivG :

Next let B D .'v/v be the system of all the functionals 'v 2 Hom
�

FT;Z`
�

defined
by 'v.�w/ D 1 if v D w, and 'v.�w/ D 0 for all v ¤ w. We denote by

DivT D hBi.`/ � Hom
�

FT;Z`
�

the Z.`/-submodule generated by B. Then B is an `-adic basis of Hom
�

FT;Z`
�

,

i.e., DivT is `-adically dense in bDivG D Hom
�

FT;Z`
�

, and there are no non-trivial
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`-adic relations between the elements of B. We will call B D .'v/v the “dual basis”
to T, and remark that DivT is a lattice in Hom

�

T;Z`
�

.
Finally, let T0 D .� 0v/v be another system of inertia generators, and suppose that
T0 D T" for some " 2 Z`. If B0 D .' 0v/v is the dual basis to T0, then " ' 0v D 'v

inside Hom
�

T;Z`
�

. Thus " � B0 D B. In other words, B and B0 are `-adically
equivalent, and we have DivT D " � DivT0 .

Fact 8. In the notations from above let a bU Gv -lattice �Gv � b�Gv with bU Gv � �Gv

be given for every valuation v of G . Then the following hold:

(1) Up to `-adic equivalence, there exists at most one bU G -lattice �G in b�G such
that first, bU G � �G � b�G;fin, and second, for every finite-corank submodule
� of b�G;fin with bU G � � and the corresponding �v WD |v.� \ bU v/ C
bU Gv � b�Gv;fin the following hold:

(i) �� WD � \�G is a bU G -lattice in �.
(ii) |v.�� \ bU v/ C bUGv is a bU Gv -lattice in �v, which is `-adically bU Gv -

equivalent to �Gv \�v.

Moreover, if the bU G -lattice�G exists, then its `-adic equivalence class depends
only on the `-adic equivalence classes of the bU Gv -lattices �Gv (all v).

(2) In the above context, suppose that G is ample, and that the bU G -lattice �G

satisfying the conditions (i), (ii), exists. Then bU Gv C |v.�G \ bU v/ is a bU Gv -
lattice, which moreover is `-adically bU Gv -equivalent to �Gv (all v).

Proof. To (1): Let �G ; �
0
G be bU G -lattices in b�G satisfying the conditions from (1)

above. Let � 2 b�G;fin have finite non-zero corank, and satisfy bU G � �. By the
ampleness of G , it follows that there exists v such that, first, � � bU v, and second,
� and�v WD |v.�/CbU Gv have equal coranks. Therefore, |v defines an isomorphism
of �=bUG onto�v=bUGv , and one has

.
/ ker.|v/\� � bUG ; |v.�/ \ bU Gv � |v.bU G /:

For� as above, set�0� D �\�0G . Then by hypothesis (i), it follows that�� and�0�
are both bUG -lattices in �. Further, by hypothesis (ii), both ��v WD bU Gv C |v.��/

and �0�v
WD bU Gv C |v.�

0
�/ are bU Gv lattices in �v, which are both equivalent to the

bU Gv-lattice �Gv \�v. Therefore, there exists " 2 Z
�̀ such that �0�v

D " ���v .

Claim. �0� D " ���.

Indeed, �0�v
D " � ��v implies that |v.�

0
�/ � " � |v.��/C bU Gv . Hence for every

e0 2 �0� there exist e 2 �� and uv 2 bU Gv such that |v.e
0/ D " |v.e/ C uv.

Therefore we have uv D |v.e
0 � " e/ 2 |.�/, and hence uv 2 |v.�/ \ bUGv .

Hence by assertion .
/ above, there exists u 2 bU G such that |v.u/ D uv; thus
|v.u/ D |v.e

0 � " e/. But then we have e0 � ." e C u/ 2 ker.|v/ \ �, thus
e0�." eCu/ 2 bU G by assertion .
/. We conclude that e0 2 " eCbU G . Since e0 2 �0�
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was arbitrary, we have �0� � " � �� C bU G . On the other hand, by hypothesis we
have bU G � �� and bU G � �0�. Hence the above inclusion is actually equivalent
to �0� � " � ��. By symmetry, the other inclusion also holds, and we finally get
�0� D " ���.

We also observe that " is unique up to multiplication by rational `-adic units,
because �0�=bU G D " ��0�=bUG are `-adically equivalent lattices in the non-trivial
Z`-module �=bUG . Hence recalling that �G D [� �� and �0G D [� �0�, and
taking into account the uniqueness of ", one immediately gets that �0G D " ��0G , as
claimed.

To (2): First, since �G D [� �� as mentioned above, it follows from
hypotheses (i), (ii), that bU Gv C |v.�G \ bU v/ is `-adically equivalent to some
bU Gv-sublattice of �Gv , as this is the case for all the bU Gv C |v.�� \ bU v/. After
replacing �Gv by some properly chosen `-adic multiple, say " � �Gv with " 2 Z

�̀,

without loss of generality, we can suppose that |v.�G \ bU v/ � �Gv , and thus
bU Gv C |v.�G \ bU v/ � �Gv . For the converse inclusion, let 	 � b�Gv be a finite-
corank submodule. Then by the ampleness of G , see Definition/Remark 3 (7) (ii),
there exists a finite-corank submodule� � b�G such that 	 � bU Gv C |v.� \ bU v/.
But then by properties (i), (ii), we get 	 \ �Gv � bU Gv C |v.�� \ bU v/ �
bU Gv C |v.�G \ bU v/. Since 	 was arbitrary and �Gv D bU Gv C [	 .	 \ �Gv/,
the converse inclusion follows. ut

Let G be an abstract decomposition graph which is both level-ı complete curve-
like and ample up to level ı for some ı > 1. In particular, all residual abstract
decomposition graphs Gv to non-trivial indices v of length ıv < ı are both level-
.ı � ıv/ complete curve-like and ample up to level .ı � ıv/; and if ıv D ı � 1, then
Gv is complete curve-like and ample. Hence if ıv D ı � 1, then Gv has an abstract
divisor group DivGv

as defined/introduced in Definition 7. In the above context, let
us fix notation as follows:

Definition 9. In the above context, we define an abstract divisor group of G (if it
exists) to be the lattice defined by any system T of inertia generators as above,

DivG WD DivT �bDivG ;

which together with its preimage �G in b�G satisfies inductively on ı the
following:

(i) Abstract divisor groups DivGv exist for all residual abstract decomposition
graphs Gv. Let �Gv be the preimage of DivGv in b�Gv (all v).

(ii) �G satisfies conditions (i), (ii) from Fact 8 for all finite corank submodules
� � b�G with respect to the preimages�Gv defined at (i) above.

• Note that if �G exists, then �G � b�G;fin and �G ˝ Z` D b�G;fin. Indeed, if
x 2 �G , then | v.x/ D 0 for almost all v, etc.
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Remarks 10. Let G be an abstract decomposition graph which is level-ı complete
curve-like and ample up to level ı for some ı > 0. Suppose that an abstract divisor
group DivG WD DivT for G exists, and let �G be its preimage in b�G . Then one
has:

(1) The homomorphism | v W b�G D Hom
�

G;Z`
� resv��!Hom

�

Tv;Z`
� D Z`'v gives

rise by restriction to a surjective homomorphism

| v W �G ! Z.`/ 'v:

Indeed, by condition (i) of the ampleness, see Definition/Remark 3 (7), it
follows that | v.b�G / D Z` 'v. Further, since �G is `-adically dense in b�G ,
it follows that | v.�G / is dense in Z` 'v. Thus the assertion.

(2) Moreover, the bU G -lattice �G endowed with all the homomorphisms | v deter-
mines DivG as the additive subgroup

DivG DPvZ.`/'v DPv |
v.�G / �bDivG

generated by the | v.�G / for all the v. Therefore, giving an abstract divisor
group DivG is equivalent to giving a bU G -lattice�G in b�G such that inductively
we have:

(i) �G satisfies conditions (i), (ii) from Fact 8 with respect to the preimages
�Gv of some abstract divisor groups DivGv (all v).

(ii) | v.�G / Š Z.`/ (all v), and �G is the preimage of˚v|
v.�G / via |G .

(3) Finally, for an abstract divisor group DivG for G and its preimage �G in b�G ,
we set Cl�G D DivG =|

G .�G / and call it the abstract ideal class group of�G .
Thus one has a commutative diagram of the form

.
/
0! bU G ,! �G

|G

�! DivG
can�! Cl G ! 0

?
y

?
y

?
y

?
y

0! bU G ,! b�G
|G

�! bDivG
can�! bClG ! 0

where the first three vertical morphisms are the canonical inclusions, and the
last one is the `-adic completion homomorphism.

Proposition 11. Let G be an abstract decomposition graph which is level-ı com-
plete curve-like and ample up to level ı > 0. Then any two abstract divisor groups
DivG and Div0G for G are `-adically equivalent as lattices in bDivG . Equivalently,
their preimages�G and�0G in b�G are `-adically equivalent bUG -lattices in b�G . In
particular, there exist distinguished systems of inertia generators T and T0 defining
DivG , respectively Div0G , which are `-adically equivalent, i.e., T0 D T" for some
`-adic unit " 2 Z

�̀.
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Proof. We prove this assertion by induction on ı. For ı D 1, the uniqueness is
already shown, see Fact 6, and Definition 7 in case ı D 1. Now suppose that ı >
1. Let DivGv and Div0Gv

be abstract divisor groups for G used for the definition
of DivG , respectively Div0G (all v). By the induction hypothesis, DivGv and Div0Gv

are `-adically equivalent. Thus their preimages �v and �0v in b�G ;v are `-adically
equivalent bU G ;v-lattices. Therefore, by Fact 8, the lattices �G and �0G (which are
the preimages of DivG respectively Div0G in b�G ) are `-adically equivalent. Finally,
use Remark 10 (2), above to conclude. ut
Definition 12. Let G be an abstract decomposition graph which is level-ı complete
curve-like and ample up to level ı. We will say that G is a divisorial abstract
decomposition graph if it has abstract divisor groups DivG D DivT as introduced
above. If this is the case, we will denote by �G the preimage of DivG in b�G , and
call it a divisorial bU G -lattice in b�G .

3 Abstract decomposition graphs arising from algebraic
geometry

3.1 Some general valuation-theoretical nonsense

Let K be an arbitrary field. The space of all equivalence classes of valuations ValK
of K is in a canonical way a partially ordered set by v � w iff Ow � Ov iff
mv � mw, and if so, then mv � Ow is a prime ideal of Ow, and Ov is the localization
Ov D .Ow/mv . The unique minimal element of ValK is the trivial valuation v0 which
has Ov0 D K as valuation ring. Further, the minimal non-trivial elements of ValK are
exactly the rank-one valuation rings ofK (which then correspond to the equivalence
classes of non-archimedean absolute values ofK). Note that if v � w, then Ow=mv is
a valuation ring in the residue field Kv of v. We denote the corresponding valuation
of Kw by w=v, and call it the quotient of w by v. Conversely, given v 2 ValK and a
valuation w of Kv, the preimage O of Ow under Ov ! Kv is a valuation ring of a
valuation w � v such that w=v D w. We define wıv WD w, and call it the composition
of w and v. ValK has in a canonical way the structure of a (half-oriented) graph with
originK D Kv0 as follows:

(a) The vertices are the residue fieldsKv indexed by v 2 ValK .
(b) The set of edges from Kv to Kw is non-empty if and only if v � w and

rank.w=v/ � 1. If so, then w=v is the unique edge from Kv to Kw. We say
that w=v is a non-trivial oriented edge if rank.w=v/ D 1, respectively we call
w=v a trivial non-oriented edge if v D w, i.e., w=v is the trivial valuation
of Kv.

We will call the graph defined above the valuation graph for K . There are two
functorial constructions one should mention here:
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(1) Embeddings. Let { W L ,! K be a field embedding and '{ W ValK ! ValL,
v 7! vL WD vjL, the canonical restriction map. Then '{ is surjective and com-
patible with the ordering of valuations. And if v � w in ValK , then vL � wL
in ValL, and rank.wL=vL/ � rank.w=v/. Hence if the edge w=v fromKv to Kw
exists, then the edge wL=vL from LvL to LwL exists too. Therefore, '{ defines
a canonical projection from the valuation graph of K onto the valuation graph
of L, under which Kv is mapped to LvL, and the edge w=v from Kv to Kw (if
it exists) is mapped to the edge wL=vL from LvL to LwL. Note that if w=v is a
non-trivial oriented edge such that wL D vL, then w=v is mapped to the trivial
non-oriented edge of LwL D LvL.

(2) Restrictions. LetKv be the residue field of v, and let Valv D fw 2 ValK j w � vg
be the set of all refinements of v. Then Valv ! ValKv, w 7! w=v, is a
canonical bijection which respects the ordering, thus defines an isomorphism
of the subgraph Valv of the valuation graph for K onto the valuation graph
ValKv forKv.

� The Galois decomposition theoretical side
Let ` be a fixed prime number as above. For every field K which contains the `1
roots of unity, let K 0jK be a maximal pro-` abelian extension, and we denote by
˘K D Gal.K 0jK/ its Galois group. For v 2 ValK and prolongations v0 of v toK 0, we
have that the inertia/decomposition groups Tv0 � Zv0 of the several prolongations
v0jv are conjugated under˘K ; hence these groups are equal, as˘K is commutative.
We will denote them by Tv � Zv, and call them the inertia=decomposition groups
at v. Recall that ˘Kv D Zv=Tv canonically.

Via the Galois correspondence and using the functorial properties of Hilbert
decomposition theory, we attach to ValK a graph GValK which is in bijection with
ValK and has vertices and edges as follows: The vertices of GValK are indexed by
the (distinct) pro-` abelian groups˘Kv. Concerning edges, if v=w is the unique edge
from some Kw to some Kv (hence, either w D v and v=w is the trivial valuation on
Kv D Kw, or v < w and rank.w=v/ D 1 on Kv), then the unique edge from ˘Kv

to ˘Kw is the pair of groups Tw=v � Zw=v viewed as subgroups of ˘Kv. Note that
in case w=v is the trivial valuation, we have merely by definition that Tw=v D 1 and
Zw=v D ˘Kw.

We will call GValK the valuation decomposition graph of K , or of ˘K .
Note that the above functorial constructions concerning embeddings and restric-

tions give rise functorially to corresponding functorial constructions on the Galois
side as follows:

(1) Embeddings. Let { W L ,! K be an embedding of fields, and consider
a prolongation { 0 W L0 ,! K 0 of {. Then { 0 gives rise to a projection
˚{ W ˘K ! ˘L, which in turn gives rise canonically to a morphism of valuation
decomposition graphs, which we denote by ˚{ again:

˚{ W GValK ! GValL:
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Note that ˚{ maps the profinite group ˘Kv at the vertex Kv into the profinite
group ˘LvL at the corresponding vertex LvL. And concerning edges, ˚{
maps Tw=v � Zw=v into the pair TwL=vL � ZwL=vL of the corresponding
inertia/decomposition subgroups of wL=vL in ˘LvL .

(2) Restrictions. For w 2 Valv, one has Zw � Zv and Tv � Tw. And under the
canonical projection Zv ! ˘Kv, every Tw � Zw is mapped onto Tw=v � Zw=v

in ˘Kv, etc.

3.2 Recovering the geometric decomposition graphs
from the total decomposition graph

LetKjk be a function field as introduced in the introduction. We notice that the total
graph of prime divisors D tot

K of Kjk, as defined in the introduction, is the subgraph
of ValK whose vertices are the generalized prime divisors of Kjk and whose non-
trivial edges are of the form w=v with w > v generalized prime divisors. (If so,
then w=v is a prime divisor of Kv jk.) We also recall that a subgraph DK of D tot

K

was called a geometric graph of prime divisors forKjk if for every vertex v of DK ,
the following hold: First, the trivial edge from Kv to itself is an edge of DK , and
second, the set of non-trivial edgesDv originating fromKv form a geometric set of
prime divisors of Kv jk.

Concerning the Galois theoretical side, the total decomposition graph GD tot
K

ofKjk, or of˘K , is the subgraph of the valuation decomposition graph GValK which
is defined by the total prime divisors graph D tot

K . And a geometric decomposition
graph for Kjk, or for ˘K , is any subgraph GDK of GD tot

K
which corresponds to a

geometric graph DK of prime divisors.
In this subsection we give a recipe to recover/describe the geometric decompo-

sition graphs GDK for Kjk inside the total decomposition graph GD tot
K

of Kjk using
only the Galois theoretical information encoded in GD tot

K
.

We begin by recalling a criterion for the description of the geometric sets of
prime divisors of a function field Kjk, as presented in Pop [24], Subsection 2 D),
an idea which was used in essence already in Pop [27].

Let Kjk be a function field over an algebraically closed base field as usual. For
every normal model X ! k of Kjk, we denote by DX the set of all the prime
divisors of Kjk defined by the Weil prime divisors of X .

Fact 13. For a set D of prime divisors of Kjk, the following conditions are
equivalent:

(i) For all normal modelsX ! k ofKjk one has thatD andDX are almost equal.
.Recall that two sets are almost equal if their symmetric difference is finite./

(ii) D is geometric, i.e., there exists a quasi-projective normal model X ! k of
Kjk such that D D DX .
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Recall that a line on a k-varietyX is an integral k-subvariety of X , which is a curve
of geometric genus equal to 0: We denote by X line the union of all the lines on X .

We will say that a varietyX ! k is very unruly if the set X line is not dense in X .
In particular, a curve X is very unruly iff its geometric genus gX is positive.
Further recall that being very unruly is a birational notion. In particular, it makes
sense to say that a function field Kjk with td.Kjk/ D d > 0 is very unruly if Kjk
has models X ! k which are very unruly.

Suppose that d > 1. We call a prime divisor v ofKjk very unruly ifKv jk is very
unruly as a function field over k. A prime divisor v of Kjk is very unruly iff there
exist a normal model X ! k of Kjk and a very unruly prime Weil divisor X1 of X
such that v D vX1 .

The following is a more precise form of Proposition 2.6 from Pop [27], but see
rather Pop [24], Section 3, for details:

Proposition 14. With the usual notation, the following hold:

(1) A set D of prime divisors of Kjk is geometric iff there exists a finite `-
elementary subextension K0jK of K 0 jK of degree `d such that for every
`-elementary subextension K1jK of K 0 jK of degree `2d containing K0, one
has that D consists of almost all prime divisors v of Kjk whose prolongations
v1jv to K1jL are very unruly prime divisors of K1.

(2) Let LjK be a finite subextension of K 0 jK . Then a set DL of prime divisors of
Ljk is geometric iff there exists a geometric set of prime divisorsD ofKjk such
that DL is almost equal to the prolongation of D to L.

Proof. The proof is more or less identical with the one from Pop [24]; thus we
refer the reader to that work for the details: Choose some transcendence basis
.t1; : : : ; td / of Kjk and a “sufficiently general” separable polynomial p.T / 2 kŒT �
of degree � 3. For m D 1; : : : ; d , consider um 2 K 0 with u`m D p.tm/. Then
K0 D KŒu1; : : : ; ud � has degree `d over K , and it does the job; see [24] for details.

ut
Using the proposition above, one deduces the following inductive procedure on

d D td.Kjk/ for deciding whether a given set D of prime divisors of Kjk is
geometric, respectively whether a finite subextension LjK of K 0jK viewed as a
function field Ljk is very unruly.

Criterion 15. By induction on d , we consider criteria P
.d/
geom.D/ and P

.d/
v:u:.LjK/

for sets of prime divisors D of Kjk to be geometric sets of prime divisors,
respectively for finite subextensionsLjK ofK 0 jK to be very unruly, as follows:

(1) Case d D 1:

• P
.1/
geom.D/: D is almost equal to the set of all prime divisors of Kjk.

• P
.1/
v:u:.LjK/: The genus of the complete normal model of Ljk satisfies

g
Ljk > 0.
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(2) Case d > 1:

• P
.d/
geom.D/: With K0jK and K1jK as in Proposition 14, the set D is almost

equal to the set of all prime divisors v of Kjk whose prolongations v1jv to
K1jK satisfy P

.d�1/
v:r .K1v1jKv/.

• P
.d/
v:u:.LjK/: There exists a set D of prime divisors of Kjk such that

P .d/
geom.D/ holds, and for almost all v 2 D, the prolongations wjv of v to

LjK satisfy P
.d�1/
v:u: .Lw jKv/.

Remarks 16. (1) As mentioned in the introduction, if v is a generalized prime
divisor of Kjk, then via the canonical projection prv W Zv ! ˘Kv, one can
recover the total decomposition graph of Kv jk as follows: The generalized
prime divisors of Kv jk are precisely the valuations of the from w=v with w
a generalized prime divisor satisfying v � w. In turn, these are exactly the
generalized prime divisors w such that Tv � Tw, or equivalently Zw � Zv. If
so, then Tw=v � Zw=v are the images of Tw � Zw; thus the total decomposition
graph ofKv jk can be recovered from the total decomposition graph ofKjk via
prv.

(2) The finite subextensions LjK of K 0jK are in bijection with all the open
subgroups� � ˘K . And if v is a generalized prime divisor of Kjk, and w is a
prolongation of v toL, then under the canonical projection prv W Zv ! ˘Kv we
have that if LjK corresponds to � � ˘K , then the finite residual subextension
Lw jKv of Kv0jKv corresponds to the open subgroup �v WD prv.Zv \ �/ of
˘Kv.

(3) Let G � GD tot
K

be a connected full subgraph containing the origin ˘K of GD tot
K

and having all maximal oriented branches of length d D td.Kjk/. (Here “full”
means that for all vertices˘Kv and˘Kw of G one has that if the edge w=v from
Kv to Kw exists, then this edge endowed with Tw=v � Zw=v is contained in G .)
In particular, the following hold:

(a) For for every vertex˘Kv of G , the trivial edge from˘Kv to itself endowed
with the inertia/decomposition group of the trivial valuation f1g � ˘Kv

belongs to G .
(b) If ˘Kv and ˘Kw belong to G , and w=v is a prime divisor of Kv, then the

edge w=v endowed with Tw=v � Zw=v belongs to G .
(c) All maximal branches of non-trivial edges have length d WD td.Kjk/.

(4) Let D � D tot
K be the (connected full) subgraph defined by G . For every vertex

Kv of D , or equivalently a vertex˘Kv of G , let Dv be the set of prime divisors
v of Kv jk which are the non-trivial edges of D originating from Kv. Then by
the definitions one has the following:
G is a geometric decomposition graph iffDv is a geometric set of prime divisors
ofKv jk for every vertexKv of D , and all maximal oriented branches of G have
length td.Kjk/.
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(5) We conclude that recovering/describing the geometric decomposition graphs
inside GD tot

K
is equivalent to recovering/describing the geometric sets of prime

divisors of the function fields Kv jk for all generalized prime divisors v.

We do this by showing that the geometric Criterion 15 can be recovered from,
respectively interpreted in, the group-theoretical information encoded in GD tot

K
.

Gal-Criterion 17.
By induction on dv WD td.Kv jk/, we give criteria GalP .d/

geom.D/ and

GalP .d/
v:u:.LjKv/ for sets of prime divisorsD of Kvjk to be geometric sets of prime

divisors, respectively for finite subextensions LjKv of .Kv/0 jKv to be very unruly,
as follows:
Case dv D 1:
ThenKv jk is the function field of a complete smooth curve Xv ! k with function
field �.Xv/ D Kv. And the set of all non-trivial generalized prime divisors equals
the set of prime divisors of Kv jk, which is DXv

. Let .Tv/v be the system of all
divisorial inertia groups in ˘Kv (which is part of the hypothesis, as ˘Kv comes
endowed with the total decomposition graph of Kv jk, hence encodes the set of all
the Tv, v 2 DXv

), and let TKv be the closed subgroup of ˘Kv generated by all Tv.
Then ˘Kv=TKv D �

`;ab
1 .Xv/ is the pro-` abelian fundamental group of Xv. Since

char.k/ ¤ `, it follows that �`;ab
1 .Xv/ Š Z

2gv
` , where gv is the genus of Xv. For

every non-empty set D � DXv
of prime divisors of Kv jk, let TD be the closed

subgroup of ˘Kv generated by Tv, v 2 D. Then ˘Kv=TD is a pro-` abelian free
group on 2gv C r � 1 generators, where r D jDXv

nDj. Since D is geometric iff r
is finite, we get that D is geometric iff ˘Kv=TD is topologically finitely generated.
Hence P

.1/
geom.D/ is equivalent to:

• GalP .1/
geom.D/: ˘Kv=TD is finitely generated.

Let LjKv be a finite subextension ofKv0 jKv corresponding to � � ˘Kv as above,
and let �L W ˘Kv ! ˘Kv=� D Gal.LjKv/ be the corresponding finite quotient.
For every prime divisor v of Kv jk and a prolongation wjv of v to L, we have that
the inertia group of wjv in G D Gal.LjKv/ is precisely Tw WD �L.Tv/; hence the
ramification index of wjv is eL;v WD j�L.Tv/j. Further, by the fundamental equality,
the number nL;v of prolongations of v toL can be computed as ŒL W Kv� D nL;v�eL;v.
Thus applying the Hurwitz genus formula, one has 2gL � 2 D ŒL W Kv�.2gv � 2/C
P

v nL;v
�

eL;v � 1
�

. And since nL;v D ŒL W Kv�=eL;v, we see that gL > 0 iff either
gv > 0 or

P

v.1� 1=eL;v/ � 2. Therefore, taking into account that eL;v D j�L.Tv/j,
and that g

Ljk D 0 iff ˘Kv D TKv, we get that the geometric criterion P .1/
v:r .D/ is

equivalent to

• GalP .1/
v:r .LjKv/: Either˘Kv ¤ TKv or otherwise

P

v

�

1 � 1=j�L.Tv/j
� � 2.

Case dv > 1:
Recall that the total decomposition graph of Kv jk can be recovered from GD tot

K

as mentioned above. Hence without loss of generality (and in order to simplify
notions), we can suppose that Kv D K . In particular, we will denote by v the
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prime divisors of Kjk, and for finite subextensions LjK of K 0jK , we denote by
wjv the prolongations of v to L. Note that since LjK is abelian, thus Galois, all
the prolongations wjv are conjugated under Gal.LjK/, and thus have the same
ramification indices and residue function fields Lw jk, which are isomorphic over
Kv jk.

Now letD be a set of prime divisors v ofKjk. Then P
.d/
geom.D/ is equivalent to

• GalP .d/
geom.D/: With K0jK and K1jK as in Proposition 14, the set D is almost

equal to the set of all prime divisors v of Kjk whose prolongations v1jv to K1jK
satisfy GalP .d�1/

v:r .K1v1jKv/.

Similarly, letLjK be a finite subextension ofK 0jK . Then the geometric criterion
P

.d/
v:r .LjK/ is equivalent to the following:

• GalP .d/
v:r .LjK/: There is a setD of prime divisors ofKjk satisfying GalP .d/

geom.D/

such that for almost all prime divisors v 2 D, all the prolongations wjv of v to
LjK satisfy GalP .d�1/

v:r .Lw jKv/.

This concludes the proof of the claim that the geometric sets of prime divisors
of each Kv jk can be recovered from the total decomposition graph of Kv jk, thus
from that of Kjk.

3.3 Geometric decomposition graphs as abstract
decomposition graphs

Let Kjk be a function field over an algebraically closed field k with char.k/ ¤ `.
Generalizing the divisor graphs of prime divisors from the introduction, we define a
level-ı geometric prime divisor graph for Kjk as being a (half) oriented graph DK
defined as follows:

(I) The vertices of DK are distinct function fields Ki jk over k. And DK has an
origin which is K0 WD K .

(II) For every vertexKi , the trivial valuation vi0 ofKi is the only edge fromKi to
itself, and we view this edge as a non-oriented one, or a trivial edge. Further,
the set of all the oriented edges starting atKi� is a geometric setDi� of prime
divisors vi of Ki� . We call these edges non-trivial, and if vi 2 Di� is such a
non-trivial edge from Ki� to Ki , then Ki D Ki�vi . In particular, td.Ki jk/ D
td.Ki� jk/ � 1.

(III) The trivial valuations are the only cycles of DK , and all the maximal branches
of non-trivial edges of DK have length equal to ı, hence ı � td.Kjk/.

As indicated above, we attach to DK the corresponding subgraph GDK � GValK .
Hence by definition one has:
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(I) The vertices of GDK are in bijection with the vertices of DK , via the Galois
correspondence, i.e., the vertices of GDK are the pro-` groups ˘Ki with Ki

vertex of DK . In particular,˘K0 WD ˘K is the origin of GDK .
(II) The edges of GDK are in bijection with the edges of DK . The trivial edge vi0

from Ki to itself is endowed with f1g DW Tvi0 � Zvi0 WD ˘Ki , i.e., with
f1g � ˘Ki . Every non-trivial edge vi is endowed with the inertia/decomposi-
tion groups Tvi � Zvi . In particular, if vi is an edge from Ki 0 to Ki D Ki 0vi ,
then˘Ki D Zvi =Tvi .

(III) The trivial valuations are the only cycles of GDK , and all the maximal branches
originating from˘K0 and consisting of non-trivial edges of GDK have length ı.

Proposition 18. With the above notation, GDK is a level-ı abstract decomposition
graph.

Proof. Indeed, all the axioms of an abstract decomposition graph are more or
less well-known facts concerning Hilbert decomposition theory for valuations. For
instance, if vi is a prime divisor of Ki� jk, then all the prolongations v0i of vi to
K 0i� are conjugated under˘Ki�

; therefore, their inertia, respectively decomposition,
groups are equal, say equal to Tvi � Zvi . Further, Tvi Š Z`, and the residue field
K 0i�v

0
i equals .Ki�vi /0, thus .Ki�vi /0 D Zvi =Tvi , etc. Moreover, for prime divisors

vi ¤ wi of Ki� jk one has the following; see e.g., Pop [28], Introduction, and
especially Proposition 2.5 (2): The decomposition groups Zvi and Zwi have trivial
intersection. And finally, if Xi� ! k is any quasiprojective normal variety, and
DXi�

is the set of Weil prime divisors of Xi� , then every open subgroup of ˘Ki�

contains almost all inertia groups Tvi . Indeed, in every finite separable extension of
Ki� only finitely many Weil prime divisors of Xi� are ramified, etc. ut
Remarks 19. Let GDK be a level-ı abstract decomposition graph as above, and to
simplify notation a little bit, set b�DK WD b�GDK

, bUDK WD bU GDK
, bDivDK WDbDivGDK

,

and bClDK WD bClGDK
. We next analyze/describe the abstract objects bUDK , b�DK ,

bDivDK and bClDK and relate the abstract exact sequence

1! bUDK ! b�DK

|DK�!bDivDK ! bClDK ! 0

to the geometry of Kjk as reflected in the geometric information encoded in the
prime divisor graph DK . In order to do so, let us consider some normal model
X ! k of Kjk such that D WD DX is the set of 1-edges of the given DK .
Without loss of generality, we can and will suppose that X is quasi-projective.
Then by Krull’s Hauptidealsatz, UD WD 	 .X;OX/

� depends on D only, and not
on X ; HD.K/ WD K�=UD is isomorphic to the group of principal divisors on X .
Hence since Div.D/ WD Div.X/ depends on D only, and not on X , it follows that
Cl.D/ WD Cl.X/ depends on D only, and not on X ; one has a canonical exact
sequence

0!HD.K/
divD�!Div.D/

pr�! Cl .D/! 0;
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and the resulting exact sequence of `-adically complete groups:

0! T`;Cl.D/ �!bHD.K/
divD�!bDiv.D/�! bCl .D/! 0;

where T`;Cl.D/ D lim �n n
Cl .D/, with n D `e and e � 0, is the `-adic Tate module

of Cl .D/. Since 1 ! UD=k
�! K�=k�! HD.K/ ! 1 is an exact sequence of

free abelian groups, so is 1 ! bU D ! bK ! bHD.K/ ! 1. Hence if bUD � bK is
the preimage of T`;Cl.D/ ,! bHD.K/ under bK ! bHD.K/, we finally get an exact

sequence of the form 0 ! bUD ! bK ! bDiv.D/ ! bCl.D/ ! 0, and therefore,
bUD fits canonically into an exact sequence 1! bU D ! bUD ! T`;Cl.D/ ! 0.

(1) By Kummer theory we have an identification: b�DK WD Hom
�

˘K;Z`
� D bK.

(2) Concerning/describingbUDK : Recall that we defined bUDK WD Hom
�

˘1;DK ;Z`
�

,
where ˘1;DK WD ˘K=TDK and TDK is the group generated by all the inertia
groups Tv with v all the 1-edges of DK . By the definitions, we have TDK D TD
and ˘1;DK D ˘1;D . Further, in the notations from Fact 55, it follows that ˘1;D

is the Pontryagin dual of �1, which fits canonically in the exact sequence

0! UD ˝Q`=Z` ! �1 ! `1Cl.D/! 0:

Let �0 � �1 be the maximal divisible subgroup. Since UD ˝ Q`=Z` is
divisible, it follows by Fact 54 that �0 fits into an exact sequence of the form

0! UD ˝Q`=Z` ! �0 ! `1A0.X/! 0;

and �1=�0 finite. Hence ˘1;D has finite torsion, bUDK WD Hom
�

˘1;DK ;Z`
�

is

the Pontryagin dual of �0, and we get an exact sequence 1! bU D ! bUDK !
T`;Cl.D/ ! 0. Finally bUDK D bUD , and this gives the precise description of
bUDK in geometric terms.

(3) Concerning bDivDK : For every prime divisor v one has a commutative diagram

.
/v
bK

v�! cvK
?
y

?
y
 v

Hom
�

˘K;Z`
� |v

�! Hom
�

Tv;Z`
�

The diagrams .
/v with v 2 D give rise canonically to a commutative diagram

bK !bDiv.D/ D c̊v vK ! bCl .D/! 0

# ?
y
b̊
 v #

Hom
�

˘K;Z`
� |G

���!c̊v Hom
�

Tv;Z`
� can��!cPDK ! 0
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where the vertical maps are isomorphisms, and cPDK is simply the quotient
of the middle group by the first one. Therefore, the resulting canonical
identification bK ! Hom

�

˘K;Z`
� DW b�DK gives rise a canonical isomorphism

bDiv.D/! c̊v Hom
�

Tv;Z`
� DWbDivDK .

(4) Finally, the above identifications bK ! Hom
�

˘K;Z`
�

and bDiv.D/ ! bDivDK

give rise to an identification bCl.D/ ! cPDK DW bClDK . Hence by the structure
of Cl.D/ WD Cl.X/ given in Fact 54, it follows that bClDK Š bCl.D/ D bA1.X/,
and is thus a finite Z`-module.

Fact 20. With the above notation, let Div0.D/ be the preimage in
Div.D/ WD Div.X/ of the maximal `-divisible subgroupCl0.D/ of Cl.D/ WD Cl.X/.
Then one has:

(1) Div0.D/ ,! Div.D/ gives rise to an embedding bDiv0.D/ ,!bDiv.D/.
(2) bDiv0.D/ D ker

�
bDiv.D/ ! bCl.D/

� D divD.bK/, and Div0.D/ D bDiv0.D/ \
Div.D/.

(3) Let QD � D be geometric sets with ˘1;D D ˘1; QD . Then Div0. QD/ � Div0.D/
has finite bounded index. Finally, for everyD large enough, Div0.D/ � Div.X/

depends on Kjk only, and bCl. QD/ Š bCl.D/˚ Z
j QDnDj
` .

Proof. To (1) and (2): We get a commutative diagram of the form

0! HD.K/! Div0.D/! Cl0.D/! 0

k # #
0! HD.K/! Div.D/ ! Cl.D/ ! 0

# #
D ! C

where D D Div.D/=Div0.D/, C D Cl.D/=Cl0.D/, and D ! C is an
isomorphism. By the structure of Cl.D/ D Cl.X/ in Fact 54, C WD Cl.X/=Cl0.X/
is of the form C D C1 C C2 with C1 a finite abelian `-group, and C2 a finitely
generated free abelian group. Hence we get embeddings of the `-adic completions
C ,! bC and D ,! bD . Further, since Cl.D/0 is `-divisible, its `-adic completion
is trivial, hence bCl.D/ ! bC is an isomorphism. And finally, the middle (exact)
column defines an exact sequence bDiv0.X/ ,!bDiv.X/ ! bD ! 0. The remaining
assertions follow easily in the same way, by chasing in the commutative diagram
above.

To (3): Let D D DX and QD D DY for some normal modelsX ! k and Y ! k

of Kjk. By Fact 55, especially assertion (4), it follows that UX D UY , and with
Y ! k as in Fact 55 we have that Ators.Y / � A0.Y / � A�.Y / are birational
invariants of Kjk, etc. ut
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Definition/Remark 21. Consider notation as above.

(1) A geometric setD WD DX of prime divisors forKjk is called complete regular-
like, if ˘1;D D ˘1;K and bCl.D/ has positive rational rank and for every

geometric set of prime divisors QD � D one has bCl. QD/ Š bCl.D/˚ Z
j QDnDj
` .

• Note that if X ! k is a complete regular variety, then DX is complete regular-
like, but the converse is not true in general. Nevertheless, if X is a curve, then
DX is complete regular-like iff X is a complete regular curve.

(2) Let DK be a level-ı geometric graph of prime divisors forKjk. For each vertex
v of DK , let Dv is the set of non-trivial 1-edges of D with origin Kv. We
say that DK is complete regular-like, if Dv is complete regular-like for all v
with td.Kvjk/ > 0.

(3) The complete regular-like prime divisor graphs for Kjk are abundant. More-
over, for every geometric prime divisor graph D 0K � D tot

K there exist complete
regular-like decomposition graphs DK with D 0K � DK . Indeed, we proceed by
induction on the transcendence degree as follows: LetD0 be the set of 1-indices
of D 0K . Let D � D0 be any complete regular-like set of prime divisors of K .
Then td.Kvjk/ < td.Kjk/ for all v 2 D, hence for every v 2 D by induction
one has the following: There exists complete regular-like prime divisor graphs
DKv for Kvjk. Moreover, if v 2 D0, then there exists a complete regular-like
prime divisor graph DKv which contains the residual prime divisor graph D 0Kv
of D 0K . Then the resulting prime divisor graph DK having D as set of 1-indices
and DKv as residual prime divisor graph at each v 2 D is by definition complete
regular-like.

Combining the above discussion with the one in the previous subsection, we get:

Proposition 22. In the above notations and context, the following hold:

(1) The geometric decomposition graphs GDK forKjk can be recovered by a group-
theoretical recipe from the group-theoretical information encoded in GD tot

K
.

(2) Moreover, given a geometric decomposition graph GDK , the fact that GDK is
complete regular-like can be recovered from the total decomposition graph GD tot

K

endowed with GDK .
(3) In particular, the complete regular-like decomposition graphs GDK for Kjk can

be recovered from the group-theoretical information encoded in GD tot
K

.

Proof. To (1): This is more or less the Gal-Criterion 17 combined with Remarks 16.
To (2): Let DK be a geometric graph of prime divisors for Kjk, and GDK the

corresponding geometric decomposition graph forKjk. For every vertexKv of DK ,
let Xv ! k be a normal model of Kv jk such that Dv D DXv

. Let TDv
� ˘Kv

be the closed subgroup generated by all the inertia groups Tv, v 2 Dv. Further,
by Remark 16 (1), the total decomposition graph of Kv jk can be recovered from
GD tot

K
. In particular, the set of the inertia groups Tw of all the prime divisors w of

Kv jk, hence the closed subgroup TKv generated by all these inertia groups, can be
recovered from GD tot

K
endowed with GDK . Therefore, from GD tot

K
endowed with GDK

one can check whether the following hold:
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(a) fTv j v 2 Dvg equals the set fTw j w all the prime divisors of Kv jkg.
(b) TKv D TDv

.
(c) bCl.Dv/ is not finite.

(d) bCl. QDv/ Š bCl.Dv/ ˚ Z
j QDvnDvj
` for every geometric set QDv � Dv of prime

divisors of Kvjk.

Note that (a) holds iff Xv is a complete normal curve. Indeed, if dim.Xv/ > 1,
then for every given normal model Yv ! k of Kv jk there exist infinitely many
prime divisors of Kv jk which are not Weil prime divisors of Yv. And if Xv is
a normal curve over k, then the set of prime divisors of Kv jk is in bijection
with the set of all the points in the normal completion of Xv, etc. Further, the
conditions (b), (c), (d), are by definition the necessary conditions for Dv to be
complete regular-like. This concludes the proof of assertion (2).
To (3): This follows immediately by combining assertions (1) and (2) above. ut
Proposition 23. With the above notation, let GDK be a complete regular-like
decomposition graph forKjk. Then the following hold:

(1) GDK viewed as an abstract decomposition graph of level ı WD td.Kjk/ is ı
complete curve like and ample up to level ı. Thus GDK is divisorial.

(2) Let D be the set of 1-edges of GDK . Then the following hold:

(a) bUDK is the `-adic dual of ˘1;K D ˘1;D , and thus it depends onKjk only,
and not on GDK . Therefore we denote bUK WD bUDK .

(b) Div.D/.`/ WD Div.D/˝Z.`/ is an abstract divisor group of GDK , which we
call the canonical abstract divisor group of GDK .

(c) The preimage �DK of Div.D/.`/ in bK will be called the canonical
divisorial bUDK -lattice of GDK , and it has the following description:

• Let Div0.D/ � Div.D/ be the preimage of the `-divisible subgroup Cl0.D/
of Cl.D/. Then Div0.D/.`/ D divD.�DK / and divD.�DK /=HD.K/.`/ D
Cl0.D/.`/.

(3) Up to multiplication by `-adic units, the canonical bUK-lattice �K WD �DK

depends only on Kjk, and not on DK .

Proof. To (1): First, the fact that GDK is complete curve-like follows from the fact
that all the .ı � 1/ residual function fields Kvjk have td.Kvjk/ D 1, and the facts
that GDK is complete regular-like. In order to show that GDK is ample up to level
ı D td.Kjk/, we have to show that conditions (i), (ii), from Definition/Remark 3 (7)
are satisfied. First, condition (i) follows immediately from the weak Approximation
Lemma. To check condition (ii) is a little bit more technical though. Since GDK

is complete regular-like, for every multi-index v of GDK , there exists a complete
regular-like model Xv ! k of Kvjk such that DXv

is the set of 1-vertices of GDKv ;
hence in particular, one has ˘1;Kv D ˘1;DXv

. And we will denote by X ! k the
corresponding model of Kjk; thus˘1;K D ˘1;DX .

We carry out induction on d D td.Kjk/ > 1 as follows.
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Let � � bK be an `-adically closed submodule. Then � gives rise functorially
to a subextensionK�jK of K 0jK by setting K� WD [nKn, where Kn WD KŒn

p
�n �,

and�n � K�=n is the image of� inK�=n D bK=n for all n D `e . (Note that since
� � bK is closed, � is the projective limit of the �n’s inside bK.) We notice that
KnjK is Z=n elementary abelian with Galois group equal to Hom.�n; �n/; thus
K�jK has Galois group Homcont.�;T`/, where T` is the Tate module of the �`1
roots of unity, which we have identified with Z`.

Further, let v be an arbitrary valuation of K , and v� a prolongation to K�. Then
under the above correspondence one has the following: The decomposition field of
v�jv is K�0 , where �0 WD � \ ker.|v/, and the inertia field of v�jv is K�1 , where
�1 WD � \ bU v. In particular, v is unramified in K�jK iff � � bU v.

Checking condition (ii) (a) from Definition/Remark 3 (7): The main technical
tool for the proof is Theorem B from Pop [29], which implies the following: Since
� WD bUDK is the `-adic dual of ˘1;K , it follows by the definition of ˘1;K that the
corresponding subextension K�jK is the maximal subextension of K 0jK in which
all prime divisors v of Kjk are unramified. But then by [29] it follows that all the
k-valuations ofKjk are unramified inK�jK . And correspondingly, the same is true
for all the residue function fields Kvjk of DK . Now for v a fixed prime divisor of
Kjk, let V be the set of the k-valuations v D w ı v of Kjk, with w 2 DXv the set
of prime divisors defined by the complete regular-like model Xv ! k mentioned at
the beginning of the proof. Since bU v � bU v and |v.bU v/ D bU w for v D w ı v, it
follows that setting �v WD \v2V bU v, we have

�v � bU v and |v.�v/ D |v
�\v

bU v

� � \v |v.bU v/ D \w bU w D bUDKv:

On the other hand, by the discussion above, all the k-valuations of Kjk are
unramified in K�jK . Hence in particular so are all the v 2 V ; thus � � bU v

for all v 2 V . We conclude that � � �v. Therefore, |v maps bUDK DW � into
|v.�v/ � bUDKv , as claimed.

For the second assertion of condition (ii) (a) from Definition/Remark 3 (7),
let bKfin � bK be the union of all the finite-corank submodules of bK, and define
cKvfin � cKv correspondingly. We then have to show that bUDKv �|v.bKfin\bU v/ DcKvfin.
Let� � bKfin be a finite-corankZ`-submodule. Since� has finite corank, there exits
a cofinite subset D0 � DX such that v0.�/ D 0 for every v0 2 D. Therefore, if xv

is the center of v on X , for every sufficiently small open neighborhood X 0 � X ,
we have v0.�/ D 0 for all v 2 DX 0 , v0 ¤ v. In particular, since X is normal, thus
smooth at xv, we can chooseX 0 � X to be smooth such that xv 2 X 0 and w.�/ D 0
for all w 2 DX 0 , w ¤ v. Since � \ bU v is contained in bUDX0

, it is sufficient to

show that |v.bUDX0
/ is contained in cKvfin, hence mutatis mutandis, we can suppose

that � WD bUDX0
. If so, K�jK is the maximal subextension of K 0jK in which all

v0 2 DX 0 are unramified. Let QX ! k be a projective normal completion of X (note
that QX ! k exists, because X 0 � X , and X is normal quasi-projective), and set
QS WD QXnX 0; hence S is a proper closed subset of X which does not contain xv. Let



552 F. Pop

further Xxv � QX be the closure of xv in QX , and set S WD QS \ Xxv , thus S � Xxv is
a proper closed subset. Further, we view Xxv ! k as a projective, thus proper (not
necessarily normal) model of Kvjk. For every k-valuation w of Kvjk we claim the
following:

Claim. Suppose that w
�

|v.�/
� ¤ 0. Then the center xw of w on Xxv lies in S .

Indeed, since w
�

|v.�/
� ¤ 0, it follows that setting v D w ı v as a valuation

of Kjk, we have v.�/ ¤ 0. Therefore, by the introductory discussion above, it
follows that v is ramified in K�jK . We claim that the center xv of v on QX lies
in QS . By contradiction, let xv 2 X 0. Since X 0 is smooth, hence regular, by the
purity of the branch locus, one has ˘1;DX0

D ˘1.X/. Hence every finite cover
Y 0 ! X 0 defined by some open subgroup of ˘1;X 0 is étale. Hence the cover
Y 0 �X Spec Ov ! Spec Ov is étale, thus unramified. Therefore, v is unramified
in K�jK , contradiction! Since Ov � Ov, by the valuative criterion for properness,
we have O QX;xv � O QX;xv

, and xv lies in the closure of fxvg in QX , hence in Xxv .

In particular, since v has no center on X 0, it follows that xv 2 S D Xxv \ QS .
Finally, using the valuative criterion for properness again, it follows that viewing
Xxv as a projective (not necessarily normal) model of Kvjk, the center of w on Xxv

is precisely xv. This concludes the proof of the Claim.
Using the claim above, we finish the proof of (ii) (a) from Definition/Remark 3 (7)

as follows: For every geometric set of prime divisorsDv ofKvjk, only finitely many
w 2 Dv have center in S . Hence by the claim, only finitely many w 2 Dv satisfy
w
�

|v.�/
� ¤ 0. From this we conclude that |v.�/ has finite corank.

Checking (ii) (b) from Definition/Remark 3 (7): Let � � bKfin be a finite corank
Z`-module. Further let X 0 � X be a smooth open subvariety such that � � bUDX0

.
As in the proof of (ii) (a), mutatis mutandis, it sufficient to check (ii) (b) for the
Z`-submodule of finite-corank� WD \v2DX0bU v.

In order to do so, let X 0 � QX be a normal projective completion of X 0, and
QX ,! P

N
k a projective embedding. If H is a general hyperplane, and

Z WD QX \ H and Z0 WD X 0 \ H are the corresponding hyperplane sections,
it follows that Z0 ,! X 0 is a prime Weil divisor such that Z0 ! k is smooth,
because X 0 ! k was so. Further, Z0 ,! X 0 gives rise to a surjective group
homomorphism ˘1.Z

0/ ! ˘1.X
0/, which is an isomorphism if dim.X 0/ > 2.

Hence sinceX 0 andZ0 are smooth, thus regular, by the purity of the branch locus we
have ˘1;DX0

D ˘1.X
0/ and ˘1;DZ0

D ˘1.Z
0/; thus we get a surjective projection

˘1;DZ0
! ˘1;DX0

. Let v WD vZ0 be the prime divisor of Kjk defined by the
Weil prime divisor Z0 of X 0. Then taking `-adic duals, it follows as in the proof
of (ii) (a) above that the surjectivity of the projection˘1;DZ0

! ˘1;DX0
implies that

|v W bUX 0 ! bUZ0 is injective, as claimed.
To (3): It follows immediately from (the proof of) assertion (1) above, together

with Remarks 19 (2), (3), and (4) and Fact 20 and Fact 55 (4). ut
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4 Morphisms and rational quotients of abstract
decomposition graphs

4.1 Morphisms

Let G and H be given abstract decomposition graphs of levels ıG and ıH , based on
G D G0, respectively H D H0. We denote as usual by Tv � Zv and Gv D Zv=Tv

the 1-edges, respectively the 1-vertices, of G , and correspondingly by Tw � Zw and
Gw D Zw=Tw those for H . Further, Gv and Hw are the corresponding 1-residual
abstract decomposition graphs, which have then level ıG � 1, respectively ıH � 1.
We also recall that v0 and w0 are the trivial valuations ofG, respectivelyH , and that
their inertia groups are trivial by definition.

Definition/Remark 24. In the above context we define:

(1) Let ˚ W G0 ! H0 be a (continuous) group homomorphism. Let v and w be
multi-indices for G and H . We define inductively on the length of v the fact
that w corresponds to v via ˚ as follows; see Definition/Remark 2, especially
points (3) and (4), to recall notation:

(i) The trivial multi-index w D w0 corresponds to v if and only if ˚.Tv/ D 1

and ˚.Zv/ is open in H0. And the only w which corresponds to the trivial
multi-index v D v0 is the trivial multi-index w D w0.

(ii) Suppose that w D .ws; : : : ;w1/ and v D .vr ; : : : ; v1/ are both non-
trivial, and let us set v D .v1; v1/ and w D .w1;w1/ with v1 and w1 the
corresponding multi-indices for the residual abstract decomposition graphs
Gv1 , respectively Hw1 . (Note that v1 and/or w1 might be trivial.) Then we say
that w corresponds to v if and only if one of the following hold:

(a) If ˚.Tv1/ D 1, then under ˚v1 W Gv1 D Zv1=Tv1 ! H0, inductively one
has that w corresponds to v1.

(b) If ˚.Tv1 / ¤ 1, then ˚.Tv1 / � Tw1 and ˚.Zv1 / � Tw1 are open
subgroups, and under ˚v1 W Gv1 D Zv1=Tv1 ! Zw1=Tw1 D Hw1 ,
inductively one has that w1 corresponds to v1.

(2) Let w correspond to some v. Then for every w0 � w, there exists v0 � v such
that w0 corresponds to v0. The proof of this assertion follows easily by induction
on the length of v, and we will omit it.

(3) Finally, let VG and VH be the sets of the multi-indices v of G , respectively w
of H , and let VG ;˚ � VG be the set of all v 2 VG such that there exists some
wv 2 VH which corresponds to v. Then the correspondence defined at (1)
above gives rise to a map '˚ W VG ;˚ ! VH ; v 7! '˚.v/ D w WD wv.

(4) If '˚.v/ D w, we say that ˚ maps v to w, or that w is the image of v
under ˚ .
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Definition 25. With the above notation, let ı � ıG ; ıH be a non-negative integer.
We define a level-ı morphism ˚ W G !H inductively on ı and ıG as follows:

(1) A level-zero morphism˚ W G !H is any group homomorphism˚ W G ! H

under which w0 corresponds to v0. Equivalently,˚ is open.
(2) A level-ı morphism ˚ W G ! H is any level-zero morphism ˚ W G ! H

which inductively on ıG and on ı > 0 satisfies the following:

(i) Almost all 1-vertices of H correspond to some 1-vertices of G , and every
1-vertex of H corresponds to only finitely many (maybe to none) of the
1-vertices of G .

(ii) If the trivial valuation w0 corresponds to a 1-edge v, then ıGv D ıG �1 � ı,
and the canonical group homomorphism ˚v W Gv D Zv=Tv ! H0 defines
a level-ı morphism of the corresponding residual abstract decomposition
graphs Gv and H .

(iii) If w is a 1-edge corresponding to the 1-edge v, then the group homomor-
phism˚v W Gv D Zv=Tv ! Zw=Tw D Hw defines a level-.ı�1/morphism
of the corresponding residual abstract decomposition graphs Gv and Hw.

Remarks 26. In the above context, let ˚ W G ! H be a level-ı morphism of
abstract decomposition graphs.

(1) The morphism ˚ gives rise to a Kummer homomorphism

b�H WD Hom
�

H;Z`
� O��!Hom

�

G;Z`
� DW b�G ; ' 7! ' ı ˚:

Since ˚ has an open image, and b�G and b�H are torsion-free, O� is injective.

From now on suppose that ı > 0, and that v and w are the multi-indices of G ,
respectively H , which correspond to each other. Let ıv and ıw be their lengths, and
suppose that ıw < ı.

(2) ˚v W Gv ! Hw has level .ı � ıw/ and the resulting residual Kummer
homomorphism O�v W b�Hw

! b�Gv
is injective by the remark above applied

to ˚v.
(3) To simplify notation, let us set b�Zv

D Hom
�

Zv;Z`
�

and b�Tv D Hom
�

Tv;Z`
�

,

thus in particular, b�Tv Š Z
ıv
` . The inclusions Tv ,! Zv ,! G and the

canonical exact sequence 1 ! Tv ! Zv ! Gv ! 1 give rise in the same
way as at Definition/Remark 3, points (3) and (6), to morphisms of `-adically
complete Z`-modules as follows:

|v W b�G
resZ��! b�Zv

resT��! b�Tv and 0! b�Gv

inf�! b�Zv

resT��!b�Tv ! 0:

In particular, setting bU
1

v WD ker.resZ/ and bU v D ker.|v/, we get exact
sequences

0! bU v �! b�G
|v�! b�Tv ! 0 and 0! bU

1

v ,! bU v

|v�!b�Gv
! 0:
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The surjective morphism |v W bU v ! b�Gv
is called the canonical v-reduction

homomorphism.
(4) By induction on ıv and ıw, one gets the following: ˚.Zv/ � Zw and ˚.Zv/

is open in Zw, and ˚.Tv/ � Tw and ˚.Tv/ is open in Tw. Hence since ˚ is
open and restricts to an open homomorphism Zv ! Zw and Tv ! Tw, by
taking `-adic duals we get commutative diagrams with injective columns and
exact rows as follows:

bUw �! b�Zw
�! b�Tw

bU
1

w ,! bUw

|w�! b�Hw
?
yO�

?
yO�

?
yO�v and

?
yO�

?
yO�

?
yO�v

bU v �! b�Zv
�! b�Tv

bU
1

v ,! bU v

|v�! b�Hv

(5) A special case of the above discussion is that v D v and w D w are 1-vertices.
If �v and �w are inertia generators at v, respectively w, there exists a unique
avw 2 Z` such that ˚.�v/ D �avw

w . And we have commutative diagrams dual to
each other:

Tv �! G b�H
|w

�! Z`'w
?
ẙ

?
ẙ and

?
yO�

?
yavw

Tw �! H b�G
|v

�! Z`'v

where 'w and 'v are as in Construction 5. Further, the horizontal maps in the
first diagram are the inclusions, and the last vertical map in the second diagram
denotes the Z`-morphism defined by 'w 7! avw'v.

Definition/Remark 27. Let ˚ W G ! H be a level-ı morphism of abstract
decomposition graphs. We will say that:

(1) ˚ is proper if first each w corresponds to some v and every v has an image w,
and second, inductively on ıG , for every 1-edge v of G and the corresponding
edge w of H (which could be the trivial edge), the residual morphism
˚v W Gv ! Gw is a proper one.

(2) ˚ defines H as a level-ı quotient of G , or that H is a level-ı quotient of G
via ˚ , if ˚ is proper, and we have ˚.G/ D H .

(3) We notice that a level ı morphism ˚ W G !H is a proper morphism iff in the
notations from Definition/Remark 24 (3), for every w and v which correspond
to each other one has VGv;˚v

D VGv
and the residual map '˚v

W VGv
! VHw

is onto.
(4) If ˚ W G ! H is a proper morphism, and w and v correspond to each other,

then the corresponding residual morphism ˚v W Gv ! Gw is proper.

Remarks 28. Let ˚ W G !H be a level ı > 0 proper morphism.

(1) Let v be a multi-index of G , and let Tv Š Z
ıv
` be the inertia group at v, as

defined in Remark/Definition 2 (3). Then ˚.Tv/ is a free Z`-module of rank
ı0 � ıv. Suppose that ı0 � ı. Then using the properness of ˚ , one checks by
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induction on ıv that there exists a unique multi-index w such that the following
hold: ˚.Zv/ � Zw and ˚.Tv/ � Tw are open subgroups. Thus in particular,
w corresponds to v.

(2) Denote by TG the subgroup of G generated by all the inertia elements
of G, and define TH � H correspondingly. Then in the notation from
Definition/Remark 3 (2), ˚ gives rise to a commutative diagram as follows:

1! TG �! G �! ˘1;G ! 1
?
ẙ

?
ẙ

?
y

1! TH �! H �! ˘1;H ! 1:

Next suppose that G and H are divisorial, and let TG D .�v/v and TH D .�w/w
be distinguished systems of generators for G , respectively H , which give rise to
abstract divisor groups DivTG and DivTH for G , respectively H , and abstract
divisorial lattices �G and �H .

(3) For every w, denote by Xw the set of all the v to which w corresponds. Then
Xw is finite non-empty (by the fact that ˚ is proper). For every w and v 2 Xw,
there exists a unique avw 2 Z` such that ˚.�v/ D �avw

w . Equivalently, denoting
BG D .'v/v and BH D .'w/w the dual bases to TG D .�v/v and TH D .�w/w
as defined/introduced at Construction 5, by Remark 26 (4) above via O� we have

'w 7!P

v2Xw
avw'v;

and therefore O� gives rise to a morphism

div˚ WbDivH !bDivG

which maps DivTH ˝ Z` into DivTG ˝ Z` and fits into the following
commutative diagram:

.
/
0! bUH�!b�H

|H

�!bDivH�!bClH ! 0
?
yO�

?
yO�

?
ydiv˚

?
ycan

0! bU G�!b�G
|G

�!bDivG�!bClG ! 0

(4) Recall that for every divisorial bU G -lattice �TG in b�G one has the following:
b�G;fin D �TG ˝Z`, and therefore b�G;fin is exactly the preimage of DivTG ˝Z`

under |G. Hence from the commutative diagram .
/ above it follows that

.

/b�H;fin D O��1.b�G;fin/; O�.b�H;fin/\bUG D O�.bUH /; O�.b�H;fin/ D O�.b�H /\b�G;fin:

In particular, O� maps finite-corank submodules into such, and preimages of
finite-corank submodules under O� are again such.
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(5) With the above notation, the following are equivalent:

(a) There exist TG D .�v/v, TH D .�w/w such that avw 2 Z.`/ for all
w, v 2 Xw.

(b) div˚.DivTH / � DivTG .
(c) O�.�H / � �G .

And if the above equivalent conditions are satisfied, one has equalities as
follows:

.


/ DivTH
D div�1˚ .DivTG

/; �TH
D O��1.�TG

/; O�.�TH
/ D O�.b�H /\�TG

:

Thus in particular,�TH can be recovered from�TG via O�.

Proof of (5): The implication (a)) (b) follows immediately from the definition of
div˚ , and the implication (b)) (c) follows from the definition of �H and �G . In
order to prove (c)) (a), let v 2 Xw be given. Then combining Remark 10 (1), with
the second diagram from Remark 26 (4), we get a commutative diagram of the form

�TH

|w

�! Z.`/'w
?
yO�

?
yavw

�TG

|v

�! Z.`/'vI

hence it follows that avw 2 Z.`/, as claimed. Finally, let us show that in case
the equivalent conditions (a), (b), (c), are satisfied, the equalities .

/ hold. First
observe that since O� and div˚ are injective, all the above equalities are equivalent.
Thus it is enough to prove one of them, say the first one: Recall that by point (3)
above, DivTH ˝Z` and DivTG˝Z` are free Z`-modules on the bases BH D .'w/w,
respectively BG D .'v/v, and that div˚ maps the former Z`-module into the latter
one. Hence div�1˚ .DivTG / � DivTH ˝ Z`. Now let x DPw bw'w with bw 2 Z` be
an element of div�1˚ .DivTG /. Then div˚.x/ D P

w

P

v2Xw
bwavw'v lies in DivTG ;

hence bwavw 2 Z.`/ for all w and v 2 Xw. On the other hand, since avw 2 Z.`/,
it follows that bw are rational numbers. Since they lie in Z` as well, it follows that
bw 2 Z.`/. But then we finally get that x DPw bw'w lies in �TH as claimed.

Definition/Remark 29. Let ˚ W G ! H be a level-ı proper morphism of
divisorial abstract decomposition graphs with ı > 0.

(1) We say that ˚ is divisorial, if all residual morphisms ˚v W Gv ! Hw with w
of length < ı satisfy the equivalent conditions (a), (b), (c) from (5) above.

(2) If˚ W G !H is divisorial, the residual Kummer morphism O�v maps divisorial
lattices for Hw into divisorial lattices for Gv. And the commutative diagram .
/
from Remarks 28 above gives rise to a commutative sub-diagram:

.

/
0! bUH�!�H

|H

�!DivH�!ClH ! 0
?
yO�

?
yO�

?
ydiv˚

?
ycan

0! bU G�!�G
|G

�!DivG�!ClG ! 0
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(3) It is not too difficult to give examples of proper morphisms ˚ of divisorial
abstract decomposition graphs such that ˚ are not divisorial. Indeed, one can
give such examples even in the case that both G and H are complete curve
like, and ˚ is a proper morphism of level ı D 1. The next proposition shows
that actually the case ı D 1 is the “generic” source for proper non-divisorial
morphisms.

Proposition 30. Let ˚ W G ! H be a level-ı proper morphism of divisorial
abstract decomposition graphs, where ı D ıH > 0. Then the following hold:

(1) Let v, w be all pairs of multi-indices of G , respectively of H , such that w
has length ıH � 1 and corresponds to v. Suppose that for all such pairs v;w
the residual morphism ˚v W Gv ! Hw is divisorial. Then ˚ W G ! H is
divisorial.

(2) If ˚ is an isomorphism, then O� is an isomorphism too, and ˚ is a divisorial
morphism of abstract decomposition graphs. Hence for any abstract divisor
groups DivG and DivH of G , respectively H , there exists " 2 Z

�̀ such that
the diagram below is commutative:

.
 
 
/
0! bUH�!�H

|H

�!DivH�!ClH ! 0
?
y"� O�

?
y"� O�

?
y"�div˚

?
y"�can

0! bU G�!�G
|G

�!DivG�!ClG ! 0

Proof. To (1): One carries out induction on ıG .
Case (1) ıG D 1. Then 1 D ıG � ı D ıH > 0; hence all these numbers

equal 1, and the assertion follows from/by the definitions and the hypothesis of the
proposition.

Case (2) ı > 1 arbitrary. Let v be some 1-index of G , and w the image of v
under ˚ . Note that w is either the trivial valuation w0, or otherwise w is a 1-index
of H . We show that the resulting residual morphism ˚v W Gv ! Hw satisfies
the hypothesis of the proposition: First ˚v W Gv ! Hw is a proper morphism,
as ˚ W G ! H was so by hypothesis. Second, let ww be a multi-index of Hw of
length ıHw�1, and vw a multi-index of Gv such that ww corresponds to vw under˚v.

Claim 1. ˚vw W Gvw !Hww is divisorial.

Indeed, let us first suppose that w D w0 is the trivial valuation. Then Hw DH , and
w WD ww is a multi-index of H of length ı � 1. Further, .vw; v/ is a multi-index
of G which corresponds to w. And we have that Gvw D G.vw;v/, Hww D Hw, and
˚vw W Gvw ! Hww is actually the same as ˚.vw;v/ W G.vw;v/ ! Hw. But then the
claim follows from the hypothesis of the Proposition. Next suppose that w ¤ w0 is
a 1-index of H . Then ˚v has level ı � 1 D ıH � 1 D ıHw . Moreover, if ww is a
multi-index of Hw of length ıHw � 1, then .ww;w/ is a multi-index of H of length

.ıHw � 1/C 1 D ıHw D ıH � 1:
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And since ww corresponds to vw, and w to v, it follows that .ww;w/ corresponds to
.vw; v/. But then by the hypothesis of the proposition, the residual morphism

˚.vw;v/ W G.vw;v/ !H.ww;w/

is divisorial. On the other hand, by definitions we have identifications G.vw;v/ D Gvw

and H.ww;w/ DHww , and ˚.vw;v/ D ˚vw . This completes the proof of the Claim 1.
Coming back to the proof of assertion 1 of the proposition, let �H and �G

be divisorial lattices in b�H , respectively b�G . For 	 � b�H of finite corank and
satisfying 	 \ bUH D .0/, set � WD O�.	 /.
Claim 2. O� W b�H ! b�G maps 	 isomorphically onto its image �, and further
one has that � \ bU G D .0/, and � is a finite-corank Z`-submodule of b�G .

Indeed, by the diagram .
/ from Remark 28 (3), and in the notation from there, we
have that |H is injective on 	 , since 	 \ bUH D .0/. Since cdiv˚ is injective,
it finally follows that |H .	 / is mapped injectively into bDivG . Therefore, O� maps
	 injectively into b�G , and � WD O�.	 / has trivial intersection with bU G . Now let
us check that � has finite corank in b�G : First let v be a 1-edge of G such that
| v.	 / ¤ .0/. Equivalently,� D O�.	 / has a non-trivial image under

| v ı O� W b�H

O��!b�G
|v

�!Z`'v:

Hence | v ı O�.�/ is non-trivial. Since the above sequence is `-adically dual to
Tv ,! G

˚�!H , it follows that ˚.Tv/ ¤ 1 in H . Since ˚ is proper by hypothesis,
it follows that there exists w such that ˚.Tv/ � Tw, and ˚.Tv/ is open in Tw. Hence
finally w corresponds to v. Therefore, if | v.�/ ¤ .0/, then there exists some w ¤ w0
corresponding to v.

Next, by the commutativity of the second diagram in Remark 26 (4), it follows
that | v.�/ ¤ .0/ if and only if |w.	 / ¤ .0/. Now since 	 has finite corank, there
exist only finitely many valuations w ofH such that |w.	 / ¤ .0/. Finally, for each
such w there exist only finitely many v’s such that w corresponds to one of the v’s.
Thus finally there are only finitely many valuations v of G such that | v.�/ ¤ .0/.
This completes the proof of Claim 2.

Now suppose that 	 is non-trivial. Then we have the following situation: 	
and its isomorphic image � are non-trivial finite-corank submodules of b�H ,
respectivelyb�G . Since�\bU G D .0/, it follows that�\�G is a lattice in� which
completely determines the divisorial lattice�G in the `-adic equivalence class of all
the divisorial lattices of G . Correspondingly, the same is true for 	 \bUH and�H ,
etc. On the other hand, since� has finite corank, by the ampleness of G , there exist
valuations v of G such that the following are satisfied:

(j) � � bU v and |v maps� injectively into b�Gv , and for such v set �v WD |v.�/.
(jj) �v \ bU Gv D .0/, because � \ bU G D .0/ by the discussion above.
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For such a valuation v, the lattice � \ �G is mapped by |v isomorphically onto
a lattice in �v. Hence by the properties (i), (ii), from Fact 8, we get that there exists
a unique divisorial bU Gv-lattice �Gv of Gv such that |v.�\�G / D �v \�Gv . For v
as above we analyze the following cases:
Case (a): ˚.Tv/ D 1. Then the trivial valuation w0 corresponds to v, and for the
residual morphism ˚v W Gv ! H we have that ˚v is divisorial by Claim 1. Hence
by Remark 28 (5), there exists a unique divisorial bUH -lattice �H of H such that
the Kummer homomorphism O�v W b�H ! b�Gv maps�H into �Gv .
Case (b): ˚.Tv/ ¤ 1. Then there is a non-trivial valuation w corresponding to
v, and for the corresponding residual morphism ˚v W Gv ! Hw we have that ˚v

is divisorial by Claim 1. Hence by Remark 28 (5), there exists a unique divisorial
bUHw -lattice �Hw of Hw such that the Kummer homomorphism O�v W b�Hw ! b�Gv

maps �Hw into �Gv . Moreover, since O� maps 	 isomorphically onto its image �,
and |v maps� isomorphically onto its image�v, we get that since |v ı O� and |w ı O�v

coincide on 	 , it follows that |w maps 	 isomorphically onto its image 	w, and
that O�v maps 	w isomorphically onto �v. Therefore, w satisfies mutatis mutandis
the conditions (j), (jj), above with respect to 	 . Hence 	w \�Hw is a lattice in 	w.
Hence there exists a unique divisorial bUH -lattice �H of H such that 	 \�H is
mapped isomorphically onto 	w \�Hw .

Claim 3. In both cases above, O� maps�H into �G .

First, with the notation from above, it is clear by the discussion above that O� maps
	 \�H isomorphically onto�\�G . Now let 	 0 be a finite-corankZ`-module such
that 	 0\bUH D 1 and 	 � 	 0. Let�0H be the divisorial bUH -lattice given by the
construction above when starting with 	 0 instead of 	 . Then we have that 	 \�0H
is a lattice in 	 , which is `-adically equivalent to 	 \�H . Hence O�.	 \�H / and
O�.	 \ �0H / are `-adically equivalent lattices in � D O�.	 /, and both of them are
contained in �G . Hence O�.	 \�H / D O�.	 \�0H /, thus 	 \�H D 	 \�0H .
Hence finally �H and �0H are equal. In other words, for every finite-corank Z`-
module 	 0 of H as above we have that if 	 � 	 0, then 	 0 \�H is mapped into
�G . But then �H D bUH C[	 0.	 0 \�H / is mapped into �G , as claimed.

To (2): Since ˚ is an isomorphism, it follows that ıG D ı D ıH , hence ˚ gives
rise to a bijection of the multi-indices v and w of length ı � 1 of G , respectively of
H ; and if v and w are such indices, then the residual morphism ˚v W Gv !Hw is
by definition an isomorphism of compete curve-like abstract decomposition graphs.
Thus by assertion 1, it is sufficient to prove that all ˚v W Gv ! Hw as above are
divisorial. Let .v/v be a distinguished system of inertia generators for Gv, where
the v are the 1-edges of Gv. If w is the 1-edge of Gw corresponding to v, then setting
�w WD ˚v.v/, the system .�w/w is a distinguished system of inertia generators of
Hw. In particular, condition (a) from Remark/Definition 28 (5), is satisfied. Thus
˚v is divisorial by definition, etc. ut
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4.2 Rational quotients and geometric like abstract decomposition
graphs

We begin by first defining rational quotients of divisorial abstract decomposition
graphs. The point is that (divisorial) abstract decomposition graphs that arise from
geometry have “sufficiently many” rational quotients; and morphisms of (divisorial)
abstract decomposition graphs arising from geometry are compatible with the
rational quotients. This suggests that for applications, one should consider/study
divisorial abstract decomposition graphs endowed with “sufficiently many” rational
quotients, and morphisms of such enriched structures.

To begin with, let G˛ be a level-one complete curve-like abstract decomposition
graph. Recall the notation from Construction 5, Case ı D 1: For every distinguished
system of generators T˛ D .�v/v of G˛, we have an exact sequence

0! bU G˛ ,! �T˛

|G˛

�! DivT˛
can�! ClT˛ Š Z.`/ ! 0 :

Definition/Remark 31. With the notation from above we define:

(1) A level-one divisorial abstract decomposition graph G˛ is called rational if
bU G˛ D .0/ for some (thus every) distinguished system of inertia generators
T˛ of G˛, as introduced in Construction 5, Case ı D 1.

We notice the following: Since bU G˛ D .0/, every bU G˛ -lattice in G˛ is actually a
lattice in b�G˛ . Let T˛ D .�v/v be a distinguished system of inertia generators, and
B˛ D .'v/v the corresponding Z.`/-basis of DivT˛ . An element of the form

x D 'v0 � 'v

is called a generating element of �G˛ . We set .x/0 WD v0 and .x/1 WD v, and call
these the zero, respectively the pole, of x. Further, we define

Pv D f x 2 �T˛ j x generating, and .x/1 D v g D f 'v0 � 'v j all v0 ¤ v g;

and call it a generating set at v for �T˛ . Clearly, Pv defines a Z.`/-basis of �T˛

for every v. And if T0̨ D T"˛ is another distinguished system of inertia generators,
and P 0

v is correspondingly defined, then " 2 Z
�̀ is the unique `-adic unit such that

" �P 0
v DPv.

(2) Let G be a level-ı divisorial abstract decomposition graph, where ı > 0.
We will consider quotients ˚˛ W G ! G˛ of G together with their Kummer
homomorphisms O�˛ W b�G˛ ! b�G , and in order to simplify notation we set

b�˛ WD O�˛.b�G˛ / � b�G :

Further, for every multi-index v of G , let |v W bU v ! b�v be the canonical
reduction homomorphism; see Remark 26 for definitions.
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With the above notation, we say that ˚˛ W G ! G˛ is a rational quotient of G , if G˛
is rational, and ˚˛ is divisorial and satisfies the following:

(i) For all multi-indices v the following hold: If |v is non-trivial on b�˛ \ bU v,
then b�˛ � bU v, and |v is injective on b�˛ , or equivalently, |vı O�˛ is injective
on b�G˛ .

(ii) For every finite Z`-module� � b�G;fin with bU G � �, there exist 1-edges v
such that | v.b�˛/ ¤ 0 and ker.�

|v�! b�Gv/ D � \ b�˛ .

Fact 32. Let ˚˛ W G ! G˛ be a rational quotient. Then bU G \ b�˛ D 0, and one
has:

(1) Let �G be a divisorial bU G -lattice in b�. Then there exists a unique divisorial
lattice�G˛ in b�G˛ such that O�˛.�G˛ / is contained in�G . Moreover, the images
�˛ WD O�˛.�G˛ / can be recovered from b�˛ D O�˛.b�G˛ / and �G as follows:

.
/ �˛ WD O�˛.�G˛ / D b�˛ \�G :

(2) One can recover�˛ from �G using the maps | v and |v as follows:

.

/�˛ D fx 2�G jFor all v with | v.b�˛/ ¤ 0 and | v.x/D 0, one has |v.x/D 0g:
Proof. First, since G˛ is rational, by definition we have bU G˛ D 0. But then by
Remark 28 (3), one has 0 D O�.bUG˛ / D bU G \ b�˛ , as claimed.
To (1): Since˚˛ defines G˛ as a rational quotient of G , it is divisorial (by definition),
and bU G˛ D 0. Hence we can conclude by applying Remark 28 (5).
To (2): Clearly, if x 2 �˛ , then it satisfies the hypothesis from .

/, i.e., for all v
with | v.b�˛/ ¤ 0 and | v.x/ D 0 one has |v.x/ D 0. For the converse, let x 2 �G

satisfy hypothesis .

/, i.e., be such that for all v with | v.b�˛/ ¤ 0 and | v.x/ D 0

one has |v.x/ D 0. Since bU G \ b�˛ D 0, by condition (ii) in the definition of ˚˛ , it
follows that there exist v such that | v.b�˛/ ¤ 0 and |v is injective on bU G . Therefore,
by the hypothesis .

/, it follows that x 62 bU G . By contradiction, suppose that
x 62 �˛ . Let � D bU G C Z`x. Since x 2 b�G;fin, we have � � b�G;fin, and since
x 62 bU G , the inclusion bU G � � is strict.

Case (a). � \ b�˛ D .0/.
Then by property (ii) of ˚˛ it follows that there exists v such that | v.b�˛/ ¤ 0,

and � � bU v and |v is injective on �. In particular, x 2 bU v and |v.x/ is non-trivial.
Contradiction!

Case (b). � \ b�˛ ¤ .0/.
Then there exist u 2 bU G , b 2 Z` and z 2 b�˛, z ¤ 0, such that uC bx D z. In

particular, since z 2 � � �G � b�G;fin, we have z 2 b�G;fin. Further, b ¤ 0, because
bU G \ b�˛ D 0. Setting �0 WD bU G , we have �0 � �, and �0 \ b�˛ D 0. Hence
there exists v such that | v.b�˛/ ¤ 0, and � � bU v, and |v is injective on �0 D bU G .
Thus we have

|v.�u/ D |v.z � u/ D b|v.x/;
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hence |v.u/ ¤ 0 iff |v.x/ ¤ 0, because b ¤ 0. First, if u ¤ 0, then |v.u/ ¤ 0,
hence |v.x/ ¤ 0. Since | v.b�˛/ ¤ 0, this contradicts the hypothesis .

/. Second,
if u D 0, then bx D z 2 b�˛ . Since b�G =b�˛ is torsion-free, it follows that x 2 b�˛ ,
as claimed. ut
Definition 33. Let G be a divisorial abstract decomposition graph, and let �G �
b�G be a fixed divisorial bU G -lattice. Let A0 D f˚˛g˛ be the set of rational quotients
of G . For every subset A � A0, we define

�A DP˚˛2A �˛

as the Z.`/-submodule of �G � b�G generated by all the �˛ with ˚˛ 2 A.

(1) We say that A is an ample set of rational quotients of G , if the following hold:

(i) For all ˛; ˛0 one has that if ˚˛ ¤ ˚˛0 , then b�˛ \ b�˛0 D .0/.
(ii) �A \ bU G D .0/ and�A is `-adically dense in b�G .

(2) Suppose that A is an ample set of rational quotients of G . We will say that G is
geometric like with respect to A if for every ˛; ˛0 there exists a multi-index v of
G such that:

(j) b�˛ and b�˛0 are contained in bU v.
(jj) |v maps b�˛ and b�˛0 injectively into �Gv

, and |v.b�˛/ D |v.b�˛0/.

(3) In the above context, we will call �A an A-arithmetical lattice. Its `-adic
equivalence class depends in general on A, and not only on equivalence class of
�G . Further,

bU G C�A � �G

is a bU G -lattice in b�G , and therefore�G = .bUG C�A/ is a torsion free divisible
group, hence a Q-vector space. But in general, bU G C �A is not necessarily a
divisorial bU G -lattice.

Definition/Remark 34. Let G and H be geometric-like abstract decomposition
graphs with respect to some sets of rational quotients A0 D f˚˛g˛, respectively
B0 D f˚ˇgˇ, and let a proper morphism ˚ W G !H of level ı WD ıH be given.

(1) We say that ˚ is compatible with rational quotients if there exist ample subsets
A � A0 and B � B0 satisfying the following: First, G and H are geometric-
like with respect to A, respectively B. Second, for each �ˇ 2 B there exist
˚˛ 2 A and an isomorphism ˚˛ˇ W G˛ ! Hˇ such that the following diagram
is commutative:

.
/
G

˚�! H
?
ẙ

˛

?
y�ˇ

G˛
˚˛ˇ�! Hˇ
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(2) We observe that in the above context, for every �ˇ 2 B there exists a unique
˚˛ satisfying hypothesis .
/. Indeed, if ˚˛0 together with ˚˛0ˇ also satisfy
hypothesis .
/, then b�G˛ D O�˛ˇ.b�Hˇ

/, and therefore we get

b�˛ WD O�˛.b�G˛ / D O�˛
� O�˛ˇ.b�Hˇ

/
� D O�� O ˇ.b�Hˇ

/
� D O�.b�ˇ/:

Since the same is true correspondingly for ˛0, we finally get b�˛ D O�.b�ˇ/ D b�˛0 .
But then by Definition 33 (1) (i) it follows that ˚˛ D ˚˛0 , as claimed.

In the above context, we say that ˛ corresponds to ˇ if the hypothesis .
/ is
satisfied for �ˇ and ˚˛ . Thus ˛ corresponds to ˇ if and only if O�.b�ˇ/ D b�˛ .

Proposition 35. In the above context, let ˚ W G ! H be a level-ı proper
morphism of geometric-like abstract decomposition graphs which is compatible
with the rational quotients A and B, where ı WD ıH . Then ˚ is divisorial.

(1) More precisely, let O� W b�H ! b�H be the Kummer homomorphism of ˚ . Let
�B be an arithmetical lattice for H defined by B. Then there exists a unique
arithmetical lattice �A for G defined by A such that O�.�B/ � �A, and one
has

O�.�B/ D O�.b�H /\�A:

(2) Suppose that O�.�B/ � �A, and for each ˛ and ˇ consider the unique
divisorial lattices �Hˇ

� b�Hˇ
and�G˛ � b�G˛ such that �ˇ WD O�ˇ.�Hˇ

/ D
O�ˇ.b�Hˇ

/ \ �B and �˛ WD O�˛.�G˛ / D O�˛.b�G˛ / \ �A. Then for all ˛; ˇ it

follows that ˚˛ 2 A corresponds to �ˇ 2 B if and only if O�˛ˇ.�Hˇ
/ D �G˛

and O�.�ˇ/ D �˛.

Proof. It is clear that assertion (2) follows from assertion (1) and previous discus-
sion. Therefore we will concentrate on the proof of assertion (1).
First recall that by Definition/Remark 34 (2), we have that ˛ corresponds to ˇ if and
only if O�.b�ˇ/ D b�˛. Using this we deduce the following:

- O� maps b�B WDP�ˇ2B b�ˇ into b�A WDP˚˛2A b�˛ .
- Let �B and �A be fixed arithmetical lattices of H , respectively G . For a given
ˇ, choose ˛ corresponding to it. By Definition/Remark 31 (3) above, and with
the notation from there we have that there exists a unique divisorial lattice �G˛ in
b�G˛ such that O�˛ maps �G˛ into �A, and actually O�˛.�G˛ / D b�˛ \ �A. And
correspondingly, the same is true for ˇ, i.e., there exists a unique �Hˇ

in b�Hˇ

such that O ˇ.�Hˇ
/ D b�ˇ \�B.

Since ˛ corresponds to ˇ, with the notation from Definition 34, let O�˛ˇ be the
Kummer isomorphism defined by ˚˛ˇ . Then O�˛ˇ.�Hˇ

/ is a divisorial lattice in
b�G˛ . Thus there exists an `-adic unit "˛ˇ such that

O�˛ˇ.�Hˇ
/ D "˛ˇ ��G˛ :
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On the other hand, the commutativity of the diagram .
/ from Definition/Remark 34
translated in terms of Kummer homomorphisms means that the above equality is
equivalent to the following: For all ˇ and its corresponding ˛ one has

.˛ˇ/ O�.�ˇ/ D "˛ˇ ��˛ :

Let ˇ and ˇ0, and the corresponding ˛ and ˛0 be given. Hence O� maps b�ˇ and b�ˇ0

isomorphically onto b�˛, respectively b�ˇ0 . Since G is geometric-like with respect to
the family of rational projections A, it follows that there exists some multi-index v
of G which has the properties (j), (jj), of Definition 33 (2).

Before moving on, we recall that by Fact 8 (2), the fixed divisorial bU G -lattice
�G of G defines uniquely a v-residual bU Gv

-lattice �Gv
by setting

�Gv
WD bU Gv

C |v.�G \ bU v/:

We further remark that condition (j) from Definition 33 (2) implies that
˚˛.Tv/ D 1. Hence ˚˛ gives rise to a residual morphism ˚v˛ W Gv ! G˛. And
if O�v˛ W b�G˛ ! �Gv

is the Kummer homomorphism of ˚v˛, then |v ı O�˛ D O�v˛.
Therefore we have

|v.b�˛/ D O�v˛.�G˛ /; |v.�˛/ D O�v˛.�G˛ /:

Now since ˚˛ is divisorial, ˚v˛ is so by definition. Hence by Remark 28, 5), we
have:

O�v˛.�G˛ / D O�v˛.b�G˛ / \�Gv
:

Thus combining the assertions above, we finally get

|v.�˛/ D |v.b�˛/ \�Gv
:

On the other hand, both ˛ and ˛0 satisfy condition j) from Definition 33 (2). Hence
by symmetry, the equalities above hold correspondingly for ˛0 too. And since by
condition jj) of Definition 33 (2), one has O�v˛.b�G˛ / DW b�v;˛˛0 WD O�v˛0.b�˛0/, we get

.˛/ |v.�˛/ D b�v;˛˛0 \�Gv
D |v.�˛0/ :

On the other hand, since ˚ is proper, there exists some w corresponding to v. Recall
the second diagram in Remark 26 (3), from which we bring forward

bUw

|w�! b�Hw
?
yO�

?
yO�v

bU v

|v�! b�Gv
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and recall that O�, O�v are injective. Since b�ˇ D O�.b�G˛ /, b�ˇ0 D O�.b�G˛0 /, we get:

(c) b�ˇ;b�ˇ0 � bUw.
(d) b�ˇ and b�ˇ0 are mapped by |w W bUw ! b�Hw

injectively into b�Hw
, and have

equal images |w.b�ˇ/ DW b�w;ˇˇ0 WD |w.b�ˇ0/.

And note that O�v maps �w;ˇˇ0 isomorphically onto �v;˛˛0 . Then going through
the same steps as above and using notation correspondingly, we get as above

.ˇ/ |w.�ˇ/ D |w.�ˇ0/ :

We conclude the proof of the proposition as follows: For ˇ; ˇ0 and ˛; ˛0 correspond-
ing to them, with the notation from above, we have by relation .˛/ above,

"˛ˇ ��˛ D O�.�ˇ/ and "˛0ˇ0 ��˛0 D O�.�ˇ0/

for some `-adic units "˛ˇ and "˛0ˇ0 . Applying |v to the above equalities, and taking
into account that by the commutativity of the diagram above one has |vı O� D O�vı|w
on bUw, thus on �ˇ; �ˇ0 � bUw, we finally get

|v."˛ˇ ��˛/ D |v
� O�.�ˇ/

� D .|v ı O�/.�ˇ/
� D . O�v ı |w/.�ˇ/

� D O�v
�

|w.�ˇ/
�

and correspondingly

|v."˛0ˇ0 ��˛0/ D |v
� O�.�ˇ0/

� D .|vı O�/.�ˇ0/
� D . O�vı|w/.�ˇ0/

� D O�v
�

|w.�ˇ0/
�

:

On the other hand, |w.�ˇ/ D |w.�ˇ0/ by remark .ˇ/ above; hence the last two
terms of the equalities above are equal. Thus we get

|v."˛ˇ ��˛/ D |v."˛0ˇ0 ��˛0/; hence "˛ˇ � |v.�˛/ D "˛0ˇ0 � |v.�˛0/:

On the other hand, |v.�˛/ D |v.�˛0/, by equalities .˛/ above. Thus finally

"˛ˇ � |v.�˛/ D "˛0ˇ0 � |v.�˛/ :

Next recall that if O�v˛ W b�G˛ ! b�Gv
is the Kummer homomorphism of the residual

morphism ˚v˛ W Gv ! G˛ , then we have |v.�˛/ D O�v˛.�G˛ /, and the latter is a
bU Gv

-sublattice of�Gv
. Hence finally "˛ˇ="˛0ˇ0 must be a rational `-adic unit. Since

ˇ; ˇ0 were arbitrary, we conclude that for every fixed ˇ0 and the corresponding
˛0, after setting " WD "˛0ˇ0 , one has O�.�ˇ/ D " � �˛. Equivalently, O� maps
�B DPˇ �ˇ into " ��A D " �Pˇ �˛ . ut
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5 Morphisms arising from algebraic geometry

5.1 Morphisms

Let k and l be algebraically closed fields of characteristic¤ `. Let Kjk and Ljl be
function fields, and let

{ W Ljl ,! Kjk
be an embedding of function fields such that l is mapped isomorphically onto k, and
Kj{.L/ is a separable field extension; see e.g., Lang [18] for a thorough discussion
of this situation.

As defined in the introduction, let D tot
K and D tot

L be the total graphs of prime
divisors onK , respectively onL. Then { gives rise in a canonical way to a morphism
of the total prime divisor graphs

'{ W D tot
K ! D tot

L :

The precise definition of '{ is as follows: First let v be a prime divisor ofKjk. Then
either the restriction vL WD vjL of v to Ljl is the trivial valuation w0 of Ljl , or vL is
a prime divisor of Ljl otherwise. In both cases, { gives rise to an embedding of the
residue function fields

{v W LvLj l ,! Kv jk :
Inductively, we deduce from this that if v D vr ı � � � ı v1 is a prime r-divisor ofKjk
as defined in the Introduction, then w WD vjL is a prime s-divisor of Ljl for some
non-negative integer s � r . Moreover, by general valuation theory, it follows that
every generalized prime divisor of Ljl is the restriction of some generalized prime
divisor of Kjk; hence '{ is surjective, etc.

The situation will become clearer after we analyze in more detail how geometric
prime divisor graphs DK of Kjk behave under '{ .

First, observe that if Kj{.L/ is finite, then for every generalized prime divisor
w of Ljl , its fiber is finite of cardinality bounded by ŒK W {.L/�. From this one
immediately deduces that the image of every geometric decomposition graph for
Kjk under '{ is a geometric decomposition graph for Ljl , etc.

Therefore, let us assume from now on thatKj{.L/ is not algebraic. Then denoting
by K1jk the relative algebraic closure of {.L/ in K , we have that K1j{.L/ is
finite separable, and KjK1 is a regular function field extension. The situation of
Ljl ,! K1jk was explained above. Thus mutatis mutandis, let Kj{.L/ be a regular
field extension.

Lemma 36. Let X be a projective normal model for Kjk, and D � DX a set of
prime divisors with DnDX finite. Then there exist a projective normal model QX for
Kjk and a dominant k morphism � W QX ! X such that D � D QX ; hence D is
geometric.

Proof. Clear. ut
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Using the lemma above, we have that there exist projective normal models
X ! k for Kjk such that DX contains the 1-edges of DK and X is complete
regular-like. And correspondingly, the same holds for Ljl and DL. On the other
hand, the regular embedding of function fields { W Ljl ! Kjk is the generic fiber of
a dominant rational map f W X - - -> Y which factors through { W l ! k. And note
that since X and Y are normal, f is defined at all points x1 of codimension one of
X . Moreover, replacing X ! k by a properly chosen blowup, and normalizing
the resulting k-variety, we can suppose that f W X ! Y is a k-morphism of
projective normal varieties. And sinceKj{.L/ is a regular field extension, it follows
that f W X ! Y has geometric generic integral fibers. Hence by the characterization
of (the dimension of) the fibers the following hold:

• At almost all points x1 of codimension one inX , f .x1/ is either the generic point
of Y , or y1 D f .x1/ is a point of codimension one of Y otherwise.

• On a Zariski open subset V � Y , the fiber Xy at y 2 V is irreducible, and if
Xy � X is the Zariski closure, one has the following:

codim.y/C dim.Xy/ D dim.X/ :

Hence for almost all points y1 of codimension one in Y , the closure of the fiberXy1

is irreducible and has dim.Xy1/ D dim.X/ � 1. Equivalently, Xy1 is a Weil prime
divisor ofX , and its generic point x1 has codimension one inX and is mapped to y1.

In birational terms this means the following: For every prime divisor v D vx1 2
DX let w WD vjL D '{.v/ be its restriction to L. Then the center of w on Y is
y1 D f .x1/, and one of the following holds:

(a) w is the trivial valuation of Ljl . This is so iff y1 is the generic point of Y .
(b) w is a prime divisor of Ljl . Then either y1 has codimension one in Y , and if so,

then w is the Weil prime divisor defined by y1, or y1 has codimension> 1.

In particular, we see that the following hold: First, all w 2 DY have preimages
v in DX , and for almost all w the preimage v is unique. Second, there are at most
finitely many “exceptional” v 2 DX for which '{.v/ does lie in DY . Let ˙f be that
set.

We now claim that for the given projective models X ! k and Y ! l as above,
there exist quasi-projective normal models QX ! k and QY ! l dominating X ! k

and Y ! l , and a morphism Qf W QX ! QY above f W X ! Y , and having the
following property:

.
/ '{.D QX [ fv0g/ D D QY [ fw0g;

where v0 and w0 are the trivial valuations. In particular,DX � D QX and DY � D QY .
Indeed, if '{.DX [ fv0g/ D DY [ fw0g, i.e., if the exceptional set ˙f is empty,
then there is nothing to prove. Hence consider some v WD vx1 2 ˙f such that
the center yv of w D '{.v/ has codimension > 1. Let Yv � Y be the closure of
yv in Y . Setting Y1 WD Y , and Z1 WD Yv, we consider a sequence of blowups
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� � � ! YnC1 ! Yn ! : : : as follows: Zn � Yn is the closure of the center of w on
Yn. We stop if Zn has codimension 1, and blow up Zn otherwise. Then the above
sequence is finite. Moreover, if codim.Zn/ > 1, then YnC1 ! Yn is an isomorphism
outside Zn. But then if the process above stops say at Yn, it follows that Zn is the
center of w on Yn, and codim.Zn/ D 1. An easy Noether induction shows that one
gets models QY 0 dominating Y such that '{.DX/ � D QY 0 [ fw0g. On the other hand,
f W X ! Y can be interpreted as a dominant rational map Qf W X - - -> QY 0. SinceX is
normal, and QY 0 is complete, Qf is defined at all points v 2 DX and maps these points
into D QY by the discussion above. To conclude, let SY � QY 0 be the Zariski closure
of the (finite) complement of D QY 0n'{.DX/, and SX the preimage of SY under f .
Finally, set QY WD QY 0nSY , and QX D U.f /nSX , where U.f / is the the domain
of f . Then by the choices made, it follows that f defines a dominant morphism
Qf W QX ! QY which has the required property .
/.

Now using the fact .
/ above and proceeding by induction on the transcendence
degree of the residual function fields Lwjl ,! Kvjk, a straightforward Noether
induction argument shows finally the following.

Proposition 37. In the above context, let DK � D tot
K and DL � D tot

L be geometric
graphs of prime divisors for Kjk, respectively Ljl . Then there exists a unique
maximal geometric subgraph D 0K � DK such that '{ defines by restriction a
morphism of graphs of prime divisors

'{ W D 0K ! DL:

Moreover, for given geometric graphs DK � D tot
K and DL � D tot

L as above, there
exist geometric graphs of prime divisors D0

K � DK and D0
L � DL for Kjk,

respectively Ljl , such that '{ defines by restriction a surjective morphism of graphs
of prime divisors

'{ W D0
K ! D0

L :

Using Galois theory and decomposition theory of valuations, the above facts
have the following translation in terms of abstract decomposition graphs: Let
{ 0 W L0 ! K 0 be a prolongation of { W Ljl ! Kjk to L0, and let

˚{ W ˘K ! ˘L

be the corresponding canonical projection of Galois groups. Then since
{ W Ljl ! Kjk is a morphism of function fields, it follows that the relative algebraic
closure L1 of Ljl in Kjk is a finite extension of L, thus a function field over l . But
then it follows that ˚{ is an open homomorphism.

Moreover, if '{.v/ D w, and v0 is a prolongation of v to K 0, then the restriction
w0 of v0 to L0 satisfies, first, that w0 is a prolongation of w to L0. Second, let Tv � Zv

and Tw � Zw be the corresponding decomposition groups. Then ˚{.Zv/ � Zw and
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˚{.Tv/ � Tw are open subgroups. (This discussion includes the case that w is the
trivial valuation of L.) Moreover, if w is non-trivial, then wL � vK has finite index
e.vjw/. Hence we have commutative diagrams of the form

L
w�! wL � cwL D Hom

�

Tw;Z`
�

?
y{

?
ye.vjw/

K
v�! vK � cvK D Hom

�

Tv;Z`
�

Therefore, if �w and �v are the unique positive generators of vK , respectively
wL, then �w is mapped to e.vjw/ � �v. Thus if �v 2 Tv and �w 2 Tw are
the arithmetical inertia generators as defined=introduced at Remark 19 (2), then
from the commutativity of the above diagrams and definitions it follows that
˚{.�v/ D �e.vjw/w .

Now combining these observations with Proposition 37 above and Remark 28,
especially (5), we obtain the following by merely applying the definitions:

Proposition 38. In the notation from Proposition 37, the embedding of function
fields { W Ljl ,! Kjk and the resulting canonical homomorphism ˚{ W ˘K ! ˘L

give rise in a natural way to a level-td.Ljl/ morphism ˚{ W GDK ! GDL of the
corresponding abstract decomposition graphs.

(1) Moreover, if '{ W DK ! DL is a proper morphism of graphs of prime divisors,
then the corresponding ˚{ W GDK ! GDL is a proper morphism of abstract
decomposition graphs.

(2) Further, if ˚{ W GDK ! GDL is proper, and both GDK and GDL are complete
regular-like, hence divisorial by Proposition 23, then ˚{ is divisorial.

(3) The Kummer homomorphism O� W bL! bK of˚ is actually the `-adic completion
of the embedding of function fields { W Ljl ,! Kjk. In particular, { defines ˚{
uniquely.

(4) Moreover, ˚{ defines { uniquely up to Frobenius twists.

Proof. Assertions (1), (2), and (3) follow from the discussion above.

To (4): Recall that in the Introduction we considered an identification {K WT`;K ! Z`

of the `-adic Tate module of K with Z`, and via that identification one gets
the identification bK D Homcont.˘K;Z`/. Explicitly, this identification works as
follows: For each x 2 K�, let ı.x/ W ˘K ! T`;K be the corresponding
character defined in Kummer theory. Then ıx WD {K ı ı.x/ is the homomorphism
ıx W ˘K ! Z` defined by x. Given the embedding { W Ljl ,! Kjk, by the functo-
riality of Kummer theory one has ı

�

{.y/
� D { ı ı.x/ ı ˚ . Therefore, if we choose

the identifications {K W T`;K ! Z`, {L W T`;L ! Z` compatible with {, i.e., such that
{L D {Kı{, it follows that one has ı{.y/ D ıuı˚ ; hence the Kummer homomorphism
defined by ˚{ is

O� W bL D Hom.˘L;Z`/! Hom.˘K;Z`/ D bK; ıy 7! ı{.y/

and therefore, O� is exactly the `-adic completion of the embedding { W L� ! K�.
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Now let { 0 W Ljl ,! Kjk be a further embedding of function fields such that
˚{0 D ˚{ . Then choosing { 0K W T`;L ! Z` such that { 0L D {K ı { 0, it follows that the
Kummer homomorphism O�0 of˚{0 D ˚{ in this new setting is the `-adic completion
of { 0. On the other hand, there exists an `-adic unit " 2 Z

�̀ such that { 0L D " � {L. If

so, then we have O�0 D " � O� on bL. Since O� is the `-adic completion of {, and O� 0 is
the `-adic completion of { 0, if we denote by |K W K� ! bK the `-adic completion
homomorphisms, we have

|K
�

{ 0.y/
� D " � |K

�

{.y/
�

; y 2 L� :

Therefore, " must be a rational `-adic unit, say " D m=n with n;m natural numbers
relatively prime to `. Equivalently, there exists ay 2 k such that { 0.y/ D ay{.y/m=n
in K , hence { 0.y/ is of the form { 0.y/ D um=n in K , as k is algebraically closed.
But then { 0.y/ is an nth power in K . Since this is the case for all { 0.y/ 2 { 0.L/, it
finally follows that n D pk is a power of the characteristic exponent p of k and l .
By symmetry, the same is true form. Hence finally " is a power of the characteristic
exponent of k and l . Equivalently, { 0 is a Frobenius twist of {. ut

Before studying the rational quotients in more detail in the next subsection,
we mention the following weak version of the main result mentioned in the
introduction. By Proposition 23, if GDK is a complete regular-like decomposition
graph for Kjk, the canonical sequence 1 ! bUDK ! �DK ! Div.DK/.`/ !
ClDK ! 0 can be recovered from GDK up to multiplication by `-adic units " 2 Z

�̀.

Proposition 39. LetKjk andLjl be function fields over algebraically closed fields
of characteristic ¤ `, and ˚ W GD tot

K
! GD tot

L
be an isomorphism. The following

hold:

(1) For every geometric decomposition graph GDK for Kjk there exists a geo-
metric decomposition graph GDL for Ljl such that ˚ defines an isomorphism
GDK ! GDL , and GDK is complete regular-like .hence abstract divisorial / iff
GDL is so.

(2) Let ˚ W GDK ! GDL be an isomorphism as above, GDK and GDL be complete
regular-like decomposition graphs with sets of 1-edgesDK andDL. Then ˚ is
divisorial, and there exists " 2 Z

�̀ such that the Kummer isomorphism O� of ˚
makes the diagram below commutative

0! bUDL�!�DL

divDL��!Div.DL/.`/�!ClDL ! 0
?
y"� O�

?
y"� O�

?
y"�div˚

?
y"�can

0! bUDK�!�DK

divDK��!Div.DK/.`/�!ClDK ! 0:

Proof. Assertion (1) follows immediately by sorting through the proof of Propo-
sitions 22, as the group-theoretical recipe given there is invariant under group
isomorphisms. Assertion (2) follows immediately from assertion (1) above, com-
bined with Propositions 23 and 30. ut
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5.2 Rational quotients

Next we turn our attention to rational projections of abstract decomposition graphs
GDK as above. Let t 2 K be an arbitrary non-constant function, and let �t be the
relative algebraic closure of k.t/ in K . Then �t jk is a function field in one variable.
We endow �t jk with its unique complete normal model Xt ! k, which is also
projective, and consider the corresponding graph of prime divisors D�t for �t and
the resulting complete regular-like decomposition graph G�t for ˘�t . Then G�t has
level ı D 1 and is divisorial, by Proposition 23. Moreover, if gt is the geometric
genus of Xt , then we have:

(a) bClG�t Š Z`.

(b) bU G�t Š Z
2gt
` as the `-adic dual of ˘1.Xt / Š Z

2g

` , thus gt is encoded in G�t .
(c) The canonical (surjective) projection ˚�t W ˘K ! ˘�t defines a level-

one morphism of abstract decomposition graphs ˚�t W GDK ! G�t , by
Proposition 38.

Before going into the details of characterizing the rational projections, let us
mention the following fact for later use:

Proposition 40. With the above notation, suppose that �t ,! K is a regular field
extension, i.e., K is separably generated over �t , and K \ �t D �t . For normal
models X and Xt of Kjk, respectively of �t jk, let f W X - - -> Xt be a rational map
defining �t ,! K . Then:

(1) There exists on open subset U � Xt such that the fibers fx W Xx - - -> �.s/ D k

of f at s 2 U.k/ are integral, and the generic point xs of Xs is the center
of the unique prime divisor vs 2 DX which restricts to s 2 Xt . In particular,
vs.K/ D vs.�t /.

(2) Let LjK be a finite separable extension of K which is linearly disjoint from �t
over K , i.e., L \ �t D �t . Then for almost all s 2 U.k/ the prime divisor vs
has a unique prolongation ws to L, and moreover, wsjvs is totally inert, i.e.,
Lws jKvs is separable and ŒLws W Kvs� D ŒL W K�.

(3) Let � � bK be a Z`-submodule of finite corank such that � \ b�t D 1. Then
for almost all s 2 U.k/ one has that � � bU vs and |vs maps � injectively
into cKv.

Proof. To (1): SinceKj�t is a regular, it follows that the generic fiber f�t WX�t - - -> �t
of f is geometrically integral. Hence the fiber fs W Xs ! �.s/ of f is geometrically
integral for s in a Zariski open subset s 2 U � Xt . The remaining facts are just the
(valuation-theoretical) birational interpretation of this fact.

To (2): This is just a souped-up version of assertion (1), using the fact that sinceLjK
is separable, the fundamental equality ŒL W K� DPi e.wi jv/f .wi jv/ is satisfied for
every discrete valuation v of K and the set of its prolongations wi jv to L.

To (3): Choose some projective normal model X ! k of Kjk such that the rational
map X - - -> Xt is defined on the whole X , and˘1;K D ˘1;DX . ThenK�=��t embeds
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in the divisor group Div.X�t / of the generic fiber X�t ! �t of X ! Xt . Hence
K�=��t is a free abelian group, and we have an exact sequence of free abelian
groups

1! ��t =k�! K�=k�! K�=��t ! 1;

and its `-adic completion 1 ! b�t ! bK ! cK ! 1, where K WD K�=��t .
Note that since � \ b�t D 1 by hypothesis, the map bK ! cK is injective on �.
For n D `e , consider the exact sequence 1 ! ��t =n ! K�=n ! K =n ! 1,
and let �n � K�=n be the image of � in K�=n. Then � is the projective limit
of .�n/n. Further, setting �n WD �n \ .��t =n/, the projective limit of .�n/n equals
�\b�t D 1. Hence for every n0 there exists n > n0 such that the image of�n ! �n0
is trivial.

The Kummer theory interpretation of the facts above is: Let Kn WD KŒn
p
�n �

be the corresponding Z=n elementary abelian extension of K . Then Gal.KnjK/
is isomorphic to Hom.�n; �n/, and setting �n WD Kn \ �t one actually has
�n D �t Œ n

p
�n �. And further, Gal.�nj�t / is canonically isomorphic to Hom.�n; �n/,

and the canonical projection Gal.KnjK/ ! Gal.�nj�t / is given by
Hom.�n; �n/ ! Hom.�n; �n/, which is defined by the inclusion �n ,! �n. In
particular, setting Mn WD K�n, it follows that KnjMn is a Z=n elementary abelian
extension with Gal.KnjMn/ canonically isomorphic to Hom.�n=�n; �n/.

Now recall that� is the projective limit of .�n/n; hence for n0 sufficiently large,
the map � ! �=` factors through � ! �n0 . Second, for any fixed n0, if n > n0
is sufficiently large, the image of �n ! �n0 is trivial. Therefore, the canonical map
�n ! �n0 factors through �n=�n; and therefore, the canonical map � ! �=`

factors through �n=�n. We conclude that if ı > 0 is the rank of the finite free
Z`-module�, i.e., � Š Z

ı
`, then Gal.KnjMn/ has .Z=`/ı as a quotient.

In order to simplify and fix notation, for n > n0 as above, set M WD Mn,
L WD Kn, and � WD �n; hence M D K� and Lj� is a regular field extension,
because �n D Kn\�t . And denoting by�M �M�=n the image of� inM�=n, one
has L D MŒn

p
�M �, and in particular �M Š �n=�n by the fact that Gal.LjM/ is

canonically isomorphic to both Hom.�n=�n; �n/ and Hom.�M ;�n/. In particular,
�M has .Z=`/ı as a quotient.

Changing gears, let Zt ! Xt be the normalization of Xt in the function field
extension �t ,! �, and Z ! X the normalization of X in the field extension
K ,!M . Then the morphismX ! Xt is dominated byZ ! Zt , and the following
holds: Since M j� is a regular field extension, the generic fiber of Z ! Zt is
geometrically integral. Therefore, there exists an open subvariety V � Zt such
that for all s 2 V.k/, the fiber Zs ! �.s/ D k is integral. Consequently, the prime
divisor vs of M defined by the Weil prime divisor Zs � Z is the unique prime
divisor in DZ which restricts to the point s 2 V.k/.
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Further, let Y ! Z be the normalization of Z in M ,! L. Then arguing as
above, it follows that for almost all s 2 V.k/, the fiber Ys ! �.s/ D k of Y ! Zt
at s 2 V.k/ is integral, and the prime divisor ws of Ljk defined by the Weil prime
divisor Ys � Y is the only prime divisor inDY which restricts to the point s 2 V.k/.

But then ws must restrict to vs too, and moreover, ws is the only prolongation of
vs fromM to L and wsjvs is inert. By the fundamental equality we conclude that

Gal.LjM/ D Zws jvs ! Gal
�

LwsjMvs
�

is an isomorphism. By general valuation theory one has Lws D M vsŒ
n
p
�M vs �,

where�M vs is the image of�M �M�=n under the residue map Uvs =n!M vs=n
induced by |vs W Uvs ! M vs. By Kummer theory applied to both LjM and
Lws jM vs, we conclude that Gal.LjM/ ! Gal.LwsjM vs/ is an isomorphism iff
�M ! �M vs is an isomorphism. From this we finally conclude that .Z=`/ı is a
quotient of �M vs . Therefore from the commutativity of the diagram of surjective
morphisms

� ! �n ! �M
?
y|v

?
y|v

?
y|vs

|v.�/! �nv! �M vs

it follows that |v.�/ has .Z=`/ı as a quotient, because�M vs does so. But then since
� Š Z

ı
`, and |v.�/ has no torsion, being a submodule of the torsion free Z`-module

cKv, it follows that |v maps� isomorphically onto |v.�/. ut
Proposition 41. Let GDK be a complete regular-like decomposition graph, which we
view as a divisorial abstract decomposition graph, as indicated in Proposition 23.
Then with the above notation, and that of Definition/Remark 31, for t 2 K the
following are equivalent:

(i) ˚�t W GDK ! G�t is a rational quotient of GDK .
(ii) �t is a rational function field.

Proof. To (i) ) (ii): First recall that bU G�t Š Z
2gt
` , where gt is the genus of Xt .

Hence G�t is rational if and only if g D 0, or equivalently, �t is a rational function
field.

For (ii)) (i), we first claim that G�t is rational. Indeed, by the discussion above,
bU G�t D 0 and bClG�t Š Z`, thus the claim. Next we claim that ˚�t W GDK ! G�t
defines G�t as a quotient of GK . Indeed, first ˚�t W ˘K ! ˘�t is surjective by
the definition of �t . Thus it is left to show that ˚�t is proper, i.e., to show that if
˚v W Gv ! G�t is a level-one residual morphism for ˚�t , then the following hold:

(a) Each 1-index of Gv is mapped under ˚v to some multi-index of G�t .
(b) Each multi-index of G�t corresponds to some multi-index of Gv.

To prove (a), let Xv ! k be a normal model of Kvjk such that DXv
is the set

of all the 1-vertices of Gv. Then the embedding of k function fields { W �t ,! Kv is
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defined by some dominant rational map f W Xv - - -> Xt . Since Xv is normal and Xt
is complete, it follows that f is defined at all points of codimension 1. This means
that for every v 2 DXv

, if v is trivial on �t , then f .v/ is the generic point of Xt , and
hence v is mapped to the trivial valuation of G�t ; and if v is non-trivial on �t , then
f .v/ is a closed point in Xt .

To prove (b), we proceed by induction on dv D td.Kvjk/. If dv D 1, then
Xv is a normal curve. Since GDK was assumed to be divisorial, Gv is divisorial
too by definition. Hence by Proposition 23 (1), Xv ! k is a complete normal
curve. But then the dominant rational map f W Xv - - -> Xt is a surjective morphism.
Finally, if dv > 1, then there exist “many” v 2 DXv

which are trivial on �t . But
then ˚v gives rise to a level-one residual morphism ˚v W Gv ! G�t of Gv. Since
td.Kvjk/ < dv, by induction ˚v is proper. On the other hand, the set of multi-
indices VGv of Gv is contained in the set of multi-indices VGv

. Hence finally, every
vertex of G�t corresponds to some vertex of Gv.

Finally, it is left to check properties (i), (ii), Remark/Definition 31 (2).
Checking property (i) form Remark/Definition 31 (2): If |v.bU v \ b�t / is non-

trivial, then |v maps b�t injectively into cKv. Indeed, let v D vr ı � � � ı v1 with vi
prime divisors. Then if v is not trivial on ��t , then �tv D k, and hence |v is trivial
on b�t \ bU v. Second, if v is trivial on ��t , then �tv D �t ; hence b�t � bU v, and |v is
injective on b�t .

Checking property (ii) form Remark/Definition 31 (2): Let us view K as a
function field over the rational function field �t ; hence td.Kj�t / D td.Kjk/�1 > 0,
and �t is relatively algebraically closed inK . Moreover, after replacing �t by a finite
purely inseparable extension (which is of the form �y with yp

e D t for some power
pe of p D char.k/, which does not change the Galois theory of the situation), we
can suppose thatKj�t is actually a regular field extension. LetX ! k be any normal
model of Kjk, and let P1

k be the projective t-line over k. Since Kj�t is regular, by
Fact 40 there exists a cofinite subset S � k such that the prime divisor va of Kjk
defined by the fiber Xs � X at the point s 2 P

1
k defined by a 2 S restricts to the

.t � a/-adic valuation of �t , and t � a is a uniformizing parameter of va. Now recall
thatKj�t is a (regular) function field over �t with td.Kj�t/ D td.Kjk/� 1 positive,
and one has an exact sequence of the form

1! ��t ! K� ! K�=��t ! 1:

And note that the last group is a free abelian group, since it is contained in the group
of Weil prime divisors of any projective normal model Y ! �t of Kj�t . Therefore,
��t has complements, say K � K� in K�, and hence we have K� D ��t �K with
K a free abelian subgroup with K \ ��t D f1g. Moreover, we can “adjust” K
in such a way as to have va.K / D 0 for all a 2 S as above. Indeed, if .˛i /i is a
Z-basis of K , then replacing each ˛i by ˇi WD ˛i Qa2S .t � a/�va.˛i /, the resulting
system .ˇi /i generates freely a Z-submodule K1 of K such that va.K1/ D 0 for
all a 2 S , and K1 is a complement of ��t in K�.
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Therefore, we may and will suppose that K � K� is a complement of ��t inK�
such that va.K / D 0, or equivalently K � Uva , for all a 2 S ; and taking `-adic
completions, cK is a complement of b�t in bK with the same property, i.e., cK � bU va
for all a 2 S .

Now let � � bKfin be a Z`-submodule of finite corank, which means that
v.�/ D 0 for almost all v 2 DX . In particular, this implies that � � bU va for
almost all a 2 S . Let �1 � cK and �2 � b�t be the projections of � on cK ,
respectively b�t . We claim that both �1 and �2 have finite corank, i.e., v.�1/ D 0

and v.�2/ D 0 for almost all v. Indeed, let ˙ � DX be the finitely many v 2 DX

such that vj�t is non-trivial, and v ¤ va for all a 2 S . Every x 2 � has a unique
presentation of the form x D x1x2 with xi 2 �i , and clearly, v.x/ D v.x1/C v.x2/
for all v. Then for v 2 DXn˙ satisfying v.�/ D 0, since v.x1/Cv.x2/ D v.x/ D 0,
we must have v.x1/ ¤ 0 iff v.x2/ ¤ 0 for v 2 DX . On the other hand, if v.x2/ ¤ 0,
then vj�t is non-trivial; hence v D va for some a 2 S , by the fact that v 2 DXn˙ .
And if v D va for some a 2 S , then v.cK / D 0; hence v.x1/ D 0. We conclude that
for v 2 DXn˙ we have v.�/ D 0 iff v.�i/ D 0 for i D 1; 2. Thus both �1 and �2

have finite corank.
Now since �1 \ b�t D 1, it follows by Proposition 40 (3) that |va maps �1

injectively into cKva for almost all a 2 S . Further, we notice that |va is trivial on
�2 for almost all a 2 S . (Indeed, f 2 �t is a va-unit iff a is neither a zero nor a
pole of f ; and if so, then |va .f / D |va

�

f .a/
� D 1, because |va

�

f .a/
� 2 k�, and

|va is trivial on k�.) Therefore, for x D x1x2 2 � with xi 2 �i as above, one has
|va .x/ D |va .x1/. Hence for x 2 � as above we have |va .x/ D 1 iff |va .x1/ D 1 iff
x 2 �2, as claimed. ut
Notations 42. We introduce notation as follows:

(1) Let f�x D k.x/ j x general element of Kg be the set of all the subfields of K
generated by general elements x 2 K . Note that �x D �x0 if and only if x0 is a
linear transformation x0 D .ax C b/=.cx C d/ of x.
Further, let AK D f˚�xg�x be the set of the corresponding rational quotients of
GDK , and note that˚�x D ˚�x0 if and only if x0 D .axCb/=.cxCd/ is a linear
transformation of x.

(2) In order to simplify notation, we identify �x with the corresponding subfield of
K . This identification defines a canonical embeddingb�x ,! bK which turns out
to be the inflation map defined by the canonical projection ˚�x W ˘K ! ˘�x .
Therefore, the `-adic completion homomorphism |K W K� ! bK then identifies
|�x .�

�
x / with |K.��x / inside bK .

(3) Let { W Ljl ! Kjk be an embedding of function fields such that {.l/ D k and
Kj{.L/ a separable field extension. Let AK D f˚�xg�x and BL D f��yg�y the
sets of all rational quotients of Kjk, respectively Ljl . Finally, let B{ � BL be
the set of all ��y such that {.�y/ is relatively algebraically closed in K . Thus in
the context of Proposition 38, by taking into account Fact 41, for ��y 2 B{ and
the corresponding˚�x 2 AK , one has commutative diagrams in which ˚�x�y is
an isomorphism:
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˘K

˚{�! ˘L GDK

˚{�! GDL
?
ẙ �x

?
y��y and

?
ẙ �x

?
y��y

˘�x

˚�x�y�! ˘�y G�x
˚�x�y�! G�y

Fact/Definition 43. In the context from Notation 42 above, the following hold:

Birational Bertini: Let x; t 2 K be algebraically independent over k, and let x be
separable in K , i.e., x is not a p-power in K , where p D char.k/. Then for all but
finitely many a 2 k, the element ax C t is a general element of K , i.e., k.ax C t/
is relatively algebraically closed in K; see e.g. Lang [18], Ch. VIII, Lemma in the
proof of Theorem 7, or Roquette [32], �4.

(1) We will use the above “birational Bertini” repeatedly in the following form: Let
x; t 2 K be fixed algebraically independent functions over k, with x separable,
e.g., general. Then the following hold:

(a) ta WD ax C t is a general element of K for almost all a 2 k.
(b) ta0;a WD t=.a0x C a/ is a general element of K for all a0 2 k� and almost

all a 2 k.
(c) ta00;a0;a WD .a00t C a0xC aC 1/=.t C a0xC a/ is a general element of K for

all a00 2 k and almost all a0; a 2 k.

(2) For x; t 2 K as above, the general elements of the form ta, ta0;a, ta00;a0;a,
will be called general elements of Bertini type defined by x; t . Further, a set
˙ � K� will be called a Bertini set, if for all x; t 2 K which are algebraically
independent over k, and x is separable, one has ta; ta0;a; ta00;a0;a 2 ˙ for all
a00 2 k, and almost all a0; a 2 k. Clearly, ˙ generates the multiplicative group
K� by assertion (1) (b) above.

We say that a set of rational quotients A � AK is of Bertini type, if A has a
subset of the form A˙ WD f˚�x j x 2 ˙g for some Bertini set ˙ � K�.

(3) Next let { W Ljl ! Kjk be an embedding of function fields such that {.l/ D k

and Kj{.L/ separable. Then for every separable element y 2 L, one has that
x WD {.y/ is a separable element ofKjk. Further, directly from the definition of
a general element of Bertini-type one gets the following: Let ub; ub0;b; ub00;b0;b 2 L
be general elements of Bertini type defined by some y; u 2 L. Then for all
b00 2 l and almost all b0; b 2 l , the images tb WD {.yb/, tb0;b WD {.ub0;b/,
tb00;b0;b D {.ub00;b0;b/ are general elements of Bertini type in Kjk defined by
x WD {.y/; t WD {.u/.

(4) From this we deduce that there exist Bertini sets � � L� and ˙ � K� such
that {.�/ � ˙ . Therefore, for the corresponding Bertini-type sets of rational
quotients B� and A˙ , we have that if �y 2 B�, then �x WD {.�y/ lies in
A˙ , etc.

Proof. The only assertions which are perhaps not obvious are (1) (b) and c).
To (1) (b): ta0;a is general if and only if 1=ta0;a D a0.x=t/ C a.1=t/ is general.

Now note that if x=t; 1=t 2 K are algebraically independent over k, and because
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x is separable, it follows that at least one of the two elements is separable. Finally
apply the “birational Bertini”.

To (1) (c): Let ˛ WD 1� a00. Then ta00;a0;a D a00C .˛a0xC ˛aC 1�=.t C a0xC a/
is a general element if and and only if t 0 WD .˛a0x C ˛a C 1/=.t C a0x C a/

is so. Note that t C a0x C a is a general element for all a 2 k� and almost all
a0 2 k by the “birational Bertini.” Hence if ˛ D 0, then t 0 WD 1=.t C a0x C a/
is a general element. Finally, if ˛ ¤ 0, then x0 is a general element if and only if
1=t 0 D .t � 1

˛
/=.˛a0x C ˛a C 1/ C 1

˛
is a general element, thus if and only if

.t � 1
˛
/=.˛a0x C ˛a C 1/ is a general element. And the latter is a general element

for all ˛aC 1 2 k� and almost all a0 2 k, by Case (1) (b). ut
Proposition 44. With the above notation, the following hold:

(1) Suppose that td.Kjk/ > 1, and let GDK be a complete regular-like geometric
decomposition graph, which we view as a divisorial abstract decomposition
graph. Then endowing GDK with a Bertini-type set A � AK of rational
projections, GDK becomes a geometric like abstract decomposition graph
satisfying the following:K�

.`/ WD |K.K�/˝Z.`/ is an arithmetical lattice defined

by A inside bK, which we call the canonical arithmetical lattice.
(2) Let { W Ljl ! Kjl be an embedding of function fields such that {.l/ D

k, and Kj{.L/ is separable. Let HDL be a complete regular-like abstract
decomposition graph for Ljl such that

˚{ W GDK !HDL

gives rise to a proper morphism of abstract decomposition graphs. Then
there exist Bertini-type sets B of rational quotients for HDL such that ˚{ is
compatible with the rational projections B and A.

Proof. To (1): Let us check that A satisfies the conditions from Definition 33. Let
X ! k be a quasiprojective normal model of Kjk such that DX is the set of all
1-vertices of GK .

Step 1. A is an ample family of rational quotients for GDK . Indeed, first recall
that by Fact 43 (2), the set ˙A generates K�. Therefore, with the notation from
Definition 33 we have �A˙ D K�.`/, hence �A D K�.`/ too. From this we deduce,

first, that�A is `-adically dense in bK , as |K.K�/ itself is so. Second, since DK was
supposed to be complete regular-like, for every non-constant x 2 K there exists
v 2 DX such that v.x/ ¤ 0. Equivalently, for every non-trivial x 2 K�.`/, there exists

v 2 D1
DK

such that v.x/ ¤ 0. But this means exactly thatK�.`/\bU GK is trivial. From
this discussion, condition (ii) of Definition 33 follows. For condition (i), observe that
˚�x ¤ ˚�x0 implies that �x ¤ �x0 . But then �x \ �x0 D k; henceb�x andb�x0 have

trivial intersection inside bK.

Step 2. GDK endowed with A is geometric like.
Indeed, let �x and �x0 be given. If �x D �x0 , then there is nothing to prove. Hence

let �x ¤ �x0 . Since �x and �x0 are relatively algebraically closed inK , it follows that
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x; x0 are actually algebraically independent over k. Therefore, by the “birational
Bertini,” it follows that for almost all a; a0 2 k we have that t WD ax � a0x0 gives
rise to a dominant rational map f W X - - -> P1t such that for general points t D b,
the fiber Xb is a Weil prime divisor of X , and x; x0 are non-constant on Xb. The
birational translation of this is the following: If v WD vXb 2 DX is the corresponding
prime divisor of K , then x; x0 are v-units such that |v.x/, |v.x

0/ are not constant in
the residue field Kv of v. But then ��x and ��x0 consist of non-principal v-units, and
are mapped isomorphically into the residue field Kv. Moreover, since t D ax�a0x0
has v.t/ > 0, it follows that ax  a0x0 .modmv/, hence |v.�x/ D |v.�x0/. Taking
`-adic completions, we deduce from this that conditions j), jj) of Definition 33 are
satisfied at v.

To (2): Apply Fact 43 (3), (4), and the commutative diagrams from Nota-
tions 42 (3). ut

6 Proof of Main Theorem

In this section we will give a proof of the Main Theorem from the introduction. We
will actually prove a slightly more general result than the Main Theorem announced
in the introduction, in the sense that the first part of the theorem proved below
compares complete regular-like geometric decomposition graphs with geometric-
like abstract decomposition graphs.

Theorem 45. Let Kjk be a function field with td.Kjk/ > 1, and let GDK be a
complete regular-like geometric decomposition graph for Kjk. We endow GDK with
a Bertini-type set A of rational quotients, and view it as a geometric like abstract
decomposition graph.

(1) Let H endowed with a family of rational quotients B be a geometric like
abstract decomposition graph. Then up to multiplication by `-adic units and
composition with automorphisms ˚{ W GDK ! GDK defined by embedding of
function fields { W Kjk ! Kjk such that Kj{.K/ is purely inseparable, there
exists at most one isomorphism ˚ W GDK ! H of abstract decomposition
graphs which is compatible with the rational quotients A and B.

(2) Let Ljl be a further function field with td.Ljl/ > 1, and let HDL be a complete
regular-like abstract decomposition graph for Ljl . We endow HDL with a
Bertini-type set B of rational quotients, and view it as a geometric like abstract
decomposition graph. Let

˚ W ˘K ! ˘L

be an open group homomorphism which defines a proper morphism
˚ W GDK !HDL of abstract decomposition graphs compatible with the ratio-
nal quotients B and A. Then there exist an `-adic unit " and an embedding of
function fields

{ W Ljl ! Kjk
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such that ˚ D " � ˚{ , where ˚{ W GDK ! HDL is the functorial morphism
of decomposition graphs defined by { as indicated above. Further, {.l/ D k, {
is unique up to Frobenius twists, and " is unique up to multiplication by pn-
powers, where p D char.k/ and n 2 Z.

Proof. Since (1) follows from (2), it suffices to prove assertion (2).
Recall that by Proposition 44, K�.`/ WD |K.K

�/˝ Z.`/ and L�.`/ WD |L.L
�/˝ Z.`/

are arithmetical lattices for GDK endowed with A, respectively for HDL endowed
with B. Now by Proposition 35, it follows that O�.L�.`// is contained in a unique
arithmetical lattice of GDK . Since the arithmetical lattices of GDK are `-adically
equivalent to K�.`/, there exists an `-adic unit " such that

O�.L�.`// � " �K�.`/ :

Therefore, after replacing ˚ by " � ˚ , without loss of generality we can make the
following hypothesis:

Hypothesis I. O� maps L�.`/ isomorphically into K�.`/.

We further recall that |K.K
�/ D K�=k� and |L.L

�/ D L�=l� are true lattices in
K�
.`/, respectively L�.`/. In order to simplify notation, we denote by

x D |K.x/ D k�x; y D |L.y/ D l�y

the image of x 2 K� under |K , respectively that of y 2 L� under |L. Further, we
will always denote elements of K�

.`/, respectively of L�.`/, in boldface:

x 2 K�.`/; y 2 L�.`/ :

Next we want to remark the following: Let ˚�x 2 A correspond to some
˚�y 2 B, and let �x;.`/ � b�x and �y;.`/ � b�y be the unique divisorial lattices such

that O��x .�x;.`// � K�.`/, respectively O��y .�y;.`// � L�.`/. Then by Proposition 35 (2),

we get O��x�y .�y;.`// D �x;.`/, O�ı O��y .�y;.`// D O��x .�x;.`//. Hence taking into account

the identifications from Notations 42, i.e., �x;.`/ D K�.`/\ O��x.b�x/ inside bK D b�GDK
,

and �y;.`/ D L�.`/ \ O��y .b�y/ inside bL D b�HDL
, the above assertion is equivalent to

the fact that if ˚�x 2 A corresponds to ˚�y 2 B, then

O�.�y;.`// D �x;.`/ :

Hence we have |L.��y / � �y;.`/ and |K.��x / � �x;.`/, and the task now is to

understand the precise relation between O� ı |L.�y�/ and |K.��x / inside �x;.`/.

Lemma 46. Let ˚�x 2 A correspond to some ˚�y 2 B. Then there exist unique
relatively prime and prime to ` integersm; n > 0 such that the following hold:
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(1) O��n �|L.lyC l/�
� D m �|K.kxCk/� and O��n �|L.��y /

� D m �|K.��x / in �x;.`/.

(2) O��n �|L.y/
� D m �|K.x/, provided Z.`/ �|L.y/ is mapped by O� into Z.`/ �|K.x/,

and such a choice of a generator x for �x is always possible.

Proof. We begin by considering the systems of arithmetical inertia generators T�y
of G�y , respectively T�x of G�x , as introduced at Definition/Remark 19 (2). We let
.y/ D w0 � w be the divisor of y 2 �y D l.y/, and .x/ D v0 � v be the divisor of
x 2 �x D k.x/. Then �x D k.x/, and in the notations from Definition/Remark 31 (1),
we have:

(a) y WD |L.y/ D 'w0 � 'w, and Py WD Pw D |L.ly C l/� � �y;.`/ is the
generating set at w with respect to T�y .

(b) x WD |K.x/ D 'v0 � 'v, and Px WD Pv D |K.kx C k/� � �x;.`/ is the
generating set at v with respect to T�y .

Moreover, we can choose x from the beginning in such a way that v0; v are the
preimages of w0;w under˚�x�y . Equivalently, we have O�.Z.`/�y/ D Z.`/�x. Therefore
there exist unique relatively prime integersm; n > 0 such that

.
/ O�.n � y/ D m � x :

On the other hand, the image˚�x�y .T�y / of T�y under the isomorphism˚�x�y is a

distinguished system of inertia generators for �x such that O�.Pw/ is the generating
set at v with respect to˚�x�y .T�y /. By the uniqueness up to `-adic equivalence of the
distinguished systems of inertia generators we have ˚�x�y .T�y / D T"�x for a unique

`-adic unit " 2 Z
�̀. Hence O�.Pw/ D "�1 �Pv, and in particular, O�.y/ D "�1 � x

inside �x;.`/. Then by the fact .
/ above, it follows that " D n=m; hence both m; n
are relatively prime to `. Finally, we get

.
/0 O�.n �Py/ D m �Px :

Clearly, if m0; n0 are relatively prime integers such that O�.n0 �Py/ D m0 �Px, then
we must have O�.n0 � y/ D m0 � x. Therefore, .m; n/ D .m0; n0/ by the uniqueness
of m; n.
Finally, since Py and Px generate ��y = l� inside �y;.`/, respectively ��x =k� inside
�x;.`/, we deduce that for the uniquem; n above, one has

.
/00 O��n � |L.��y /
� D m � |K.��x / :

This completes the proof of the lemma. ut
Norming 47. In the context of Lemma 46 above, suppose that Z.`/�|L.y/ is mapped
by O� into Z.`/ � |K.x/. Then we will say that O� is y-normed if O� ı |L.y/ D |K.x/.
Clearly, a priori, O� might not be normed with respect to any ˚�y 2 B and the
corresponding ˚�x 2 A. Nevertheless, we can “artificially” remedy this as follows:



582 F. Pop

With the notation from Lemma 46 above, suppose that we have chosen the generator
x such that Z.`/ �|L.y/ is mapped by O� into Z.`/ �|K.x/. Hence we have O� ı|L.y/ D
.m=n/ � |K.x/. Further, notice that � O� WD m=n is an `-adic unit. And replacing the

morphism ˚ W ˘K ! ˘L by its � O� -multiple ˚ 0 WD � O� � ˚ amounts to replacing O�
by its .1=� O�/-multiple O�0 WD .1=� O�/ � O�. In particular, we have � O�0 D 1; hence O�0 is
y-normed.

Hence we have the following: Let �y 2 B and its corresponding �x 2 A be given
such that Z.`/ � |L.y/ is mapped by O� into Z.`/ � |K.x/. Then after replacing ˚ by a
properly chosen multiple � �˚ with � 2 Z.`/, the resulting Kummer homomorphism
.1=�/ � O� is y-normed. Hence mutatis mutandis, we can suppose that O� satisfies the
following norming hypothesis:

Hypothesis II. �x 2 A corresponds to �y 2 B, and O� ı |L.y/ D |K.x/, hence O� is
y-normed.

Remark/Notation 48. If O� is y-normed, then by Lemma 46, O� defines bijections

.�/ O� W |L.ly C l/� ! |L.ky C k/�; O� W |L.��y /! |L.�
�
x /:

We set MK WD O�
�

|L.L
�/
� \ |K.K�/, and let ML � |L.L

�/ be the preimage of

MK under O�. Then |L.��y / � ML and |K.��x / � MK by the fact .�/ above, and
notice that

O� WML !MK

is an isomorphism which maps |L.��y / isomorphically onto |K.��x /. We will say
that u 2 L� and t 2 K� correspond to each other if the following hold:

|L.u/ 2 ML; |K.t/ 2MK; and O� ı |L.u/ D |K.t/ :

Finally we notice that ML ˝ Z.`/ D L�.`/ inside bL.

Lemma 49. Suppose that t 2 K and u 2 L correspond to each other via O�. Then
Pt WD .k tCk/�=k�D|K.k tCk/� �MK , Pu WD .l uCl/�=l�D|L.l uCl/��ML.

Proof. Case 1: u 2 �y . Then t 2 �x , and we are in the situation of Lemma 46
above with m D n D 1, from which the assertion follows.

Case 2: u … �y . Since �y D l.y/ is relatively algebraically closed in L, it follows
that u; y are algebraically independent over l . Correspondingly, the same is true
for t; x, i.e., t; x are algebraically independent over k. Then by the Fact 43 (1),
we have:

(i) ta0;a WD t=.a0x C a/ is a general element of K for almost all a0; a 2 k.
(ii) ub0;b WD u=.b0x C b/ is a general element of L for almost all b0; b 2 l .
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Hence by condition .�/ of Remark/Notation 48, we conclude the following: For
a0; a as at (i), let ya0;a 2 .ly C l/� be such that O� ı |L.ya0;a/ D |K.a

0x C a/. Then
by (ii), ua0;a WD u=ya0;a is a general element of L for almost all a0; a 2 k. And note
that

O� ı |L.ua0;a/ D O� ı |L.u=ya0;a/ D |K
�

t=.a0x C a/� D |K.ta0;a/:
In particular, since A and B contain some Bertini-type subsets, we can suppose
that �ta0;a 2 A and �ua0;a 2 B, and �ta0;a corresponds to �ua0;a under ˚ . On the
other hand, since by hypothesis we have |K.t/ 2 MK and |L.u/ 2 ML, and by
Remarks/Notation 48 above, |K.kx C k/ � MK and |L.ly C l/ � ML, it follows
that for almost a; a0 2 k, the following hold:

(a) ta0;a 2 K and ua0;a 2 L, respectively ta0; aC1 2 K and ua0; aC1 2 L, are general
elements which correspond to each other under O�.

(a)0 Hence O� is normed with respect to both ua0;a and ua0; aC1.

For b; b0 as at (ii), let xb0;b 2 kx C k be such that O��|L.b0y C b/
� D |K.xb0;b/.

Then by (i), for all b and almost all b0, the element tb0;b WD t=xb0;b is general, and
note that

|K.tb0;b/ D |K.t=xb0;b/ D O� ı |L
�

u=.b0y C b/� D O� ı |L.ub0;b/:
In particular, �tb0;b 2 A and �ub0;b 2 B, and �tb0;b corresponds to �ub0;b under ˚ , and O�
is normed with respect ub0;b . Reasoning as above, for almost b0; b 2 l one has:

(b) tb0;b 2 K� and ub0;b 2 L, respectively tb0; bC1 2 K and ub0; bC1 2 L, are general
elements which correspond to each other under O�.

(b)0 Hence O� is normed with respect to both ub0;b and ub0; bC1.

But then by the fact .�/ from Remark/Notation 48 applied to the functions
ta0;a 2 K� and ua0;a 2 L, it follows that |K.��ta0;a / D O� ı |L.��ua0;a / � O� ı |L.L�/,
and therefore we also have |K.��ta0;a / � O� ı |L.L�/ \ |K.K�/ D MK ; and the
same holds correspondingly for the other three pairs of functions which correspond
to each other under O�. Thus finally we get

|K.�
�
ta0;a
/ �MK; |K.�

�
ta0; aC1

/ �MK; |L.�
�
ub0;b
/ �ML; |K.�

�
ub0; bC1

/ �ML:

Finally, for a; a0; a00 2 k, consider the functions

ta00;a0;a D .a00t C a0x C aC 1/=.t C a0x C a/ :

Then by Fact 43 (1), it follows that for all a00, and almost all a0; a, the function ta00;a0;a
is a general element of K too. On the other hand, a direct computation shows that

ta00;a0;a D a0x C aC 1
a0x C a � a

00ta0; aC1 C 1
ta0;a C 1 :
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Since the images via |K of both the denominators and the numerators of the fractions
above lie in MK , we get |K.ta00;a0;a/ 2 MK . Reasoning as previously in the case of
ta0;a, we find general elements ua00;a0;a 2 L such that �ta00;a0;a corresponds to �ua00;a0;a , etc.
And we further define correspondingly functions

ub00;b0;b D b0x C b C 1
b0x C b � b

00ub0; bC1 C 1
ub0;b C 1 ;

and find functions tb00;b0;b 2 K , etc. Finally one gets |K.�ta00;a0;a / � MK for all
a00 2 k, and almost all a0; a 2 k. And correspondingly |L.�ub00;b0;b / � ML for all
b00 2 l , and almost all b0; b 2 l .

Now we conclude the proof of the fact that |K.k tCk/� �MK as follows: First,
since |K.��ta00;a0;a / �MK , we have |K.ta00;a0;a � 1/ 2 MK . On the other hand,

ta00;a0;a � 1 D Œ.a00 � 1/t C 1�=.t C a0x C a/ :

Now observe that t C a0x C a D .a0x C a C 1/=t0;a0; a. Hence
|K.tCa0xCa/ 2MK , as |K.t0;a0; a/; |K.a0xCaC1/ 2 MK . Thus we finally deduce
that |K

�

.a00 � 1/t C 1� 2 MK for all a00 2 k. Hence Pt D |K.k t C k/� � MK ,
as |K.t/ 2 MK by hypothesis. In a completely similar way, one concludes that
Pu D |L.l uC l/� �ML. ut
Lemma 50. Let K0 D |�1K .MK/ [ f0g � K and L0 D |�1L .ML/ [ f0g � L be
the preimages ofMK , respectivelyML, inK , respectively L, together with 0 added.
Then K0 � K and L0 � L are function subfields.

Proof. Indeed, since MK is a subgroup of bK, its preimage |�1K .MK/ in K� is a
subgroup too. We check that K0 is closed with respect to addition: For t; t 0 2 K0

non-zero, t 00 D t 0=t 2 K0, and t C t 0 D t.t 00C 1/. On the other hand, by Lemma 49
we have t 00 C 1 2 K0. Hence finally we get t C t 0 D t.t 00 C 1/ 2 K0. The proof of
the assertion concerning L0 is similar, and we omit it. ut

Next we observe that MK D |K.K
�
0 / D K�0 =k� can be viewed in a canonical

way as the projectivization P.K0/ WD K�0 =k� of the infinite-dimensional k-vector
space .K0;C/. And correspondingly, ML D |L.L

�
0 / D L�0 = l� DW P.L0/ is the

projectivization of the infinite-dimensional l-vector space .L0;C/. And since the
Kummer homomorphism O� W bL! bK mapsML bijectively ontoMK , the restriction
of O� defines a bijection:

� WD O�jP.L0/ WP.L0/ DML !MK DP.K0/:

Notice that the lines in P.K0/ are subsets of the form lt0;t1 WD .kt0Ckt1/�=k� with
t0; t1 k-linearly independent functions inK0. In particular, setting t WD t1=t0, we see
that lt0;t1 D t0 �Pt , where Pt WD .k t C k/�=k� D |K.k t C k/�. Further note that
lt0;t1 depends only on t0 D |K.t0/ and t1 WD |K.t1/, and not on the functions t0; t1
themselves. We will therefore also write lt0;t1 for the line lt0;t1 , and Pt for Pt .



Recovering function fields from their decomposition graphs 585

Correspondingly, the same holds for lines in P.L0/.

Lemma 51. The morphism � W P.L0/ ! P.K0/ respects colineations; more
precisely, � maps each line lu0;u1 � P.L0/ bijectively onto lt0;t1 � P.K0/, where
t0 D �.u0/, t1 D �.u1/.
Proof. Setting t D �.u/, we get lt0;t1 D t0 � lt and lu0;u1 D u0 � lu. Hence taking into
account that � respects the multiplication, it follows that it is sufficient to show that
� maps Pu bijectively onto Pt, provided t WD �.u/.

Recall that O� is y-normed, and O�.y/ D x, where y D |L.y/, x D |K.x/,
for x and y corresponding to each other under O�. Moreover, by fact .�/ from
Remark/Notations 48, O� maps Py D Py bijectively onto Px D Px . Recall
that for every 1-index v of GDK , and the corresponding 1-index w of HDL , one has
commutative diagrams of the form, see Remark 26 (3), and (4)

bU w
|w�! cLw bL

|w

�! Z`'w
?
yO�

?
yO�v and

?
yO�

?
yavw

bU v
|v�! cKv bK

|v

�! Z`'v:

Let �t be the relative algebraic closure of k.t/ in K0. We claim that
�.Pu/ � |K.�t /. Indeed, let v be such that v.t0/ ¤ 0 for some t0 D �.u0/
with u0 2 Pu. Then by the commutativity of the second diagram above we get
w.u0/ ¤ 0. But then it follows that |w is trivial on l.u/� \ Uw. Hence by the
commutativity of the first diagram above, it follows that |v is trivial on �ı|L

�

l.u/�
�

,
in particular on �.Pu/. By contradiction, suppose that �.Pu/ 6� |K.�t /. Then 9
u1 2 Pu and t1 2 K0 such that t and t1 are algebraically independent over k, and
|K.t1/ DW t1 D �.u1/. On the other hand, since t; t1 are algebraically independent
over k, there exist “many” v satisfying the following: v is not trivial on k.t/ and
t is a v-unit, and v is trivial on k.t1/. Note that v being non-trivial on k.t/ and t
being a v-unit implies that the residue of t at v lies in k; hence |v.t/ D 0. Now
let w correspond to v under ˚ . Then by the commutativity of the above diagrams,
u D |L.u/ is a w-unit, and |w.u/ D 0. Therefore, w is non-trivial on l.u/. Further,
u1 D |L.u1/ is a w-unit, and |w.u1/ ¤ 0. Hence w satisfies both that w is non-trivial
on l.u/ and that |w is non-trivial on Uw \ l.u/�. Contradiction!

Now choose a prime divisor v of Kjk such that the following are satisfied:

(i) v is trivial on �x , and t is a v-unit.
(ii) x and t have equal residues in Kv; hence |v.x/ D |v.t/.

Note that (ii) implies that v is trivial on �t too, hence |v maps both �x� and ��t
injectively into the residue field Kv.
Now let w correspond to v under the proper morphism ˚ W GDK!GDL . Then
reasoning as in the proof of Proposition 35, it follows that the following hold:

(j) w is trivial on �y .
(jj) y and u have equal residues in Lw; hence |w.u/ D |w.y/.
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Further, since |w and |v respect addition and multiplication, the following hold:

|v.Pt / DP|v.t/; |v.Px/ DP|v.x/; and |w.Pu/ DP|w.u/; |w.Py/ DP|w.y/ :

Hence by (i), (ii), respectively (j), (jj), we get P|v.t/ DP|v.x/ and P|w.u/ DP|w.y/.
Since O�.Py/ DPx by the choice of x and y, it follows from O�v ı |w D |v ı O� that

O�v.P|w.y// D O�v
�

|w.Py/
� D |v

� O�.Py/
� D |v.Px/ DP|v.x/ :

Since |v ı O� D O�v ı |w, from the equalities above we finally get

|v
� O�.Pu/

� D O�v
�

|w.Pu/
� D O�v

�

P|w.u// D O�v.P|w.y// DP|v.x/ DP|v.t / D |v.Pt / :

Hence |v
� O�.Pu/

� D |v.Pt /. Since both O�.Pu/ and Pt are subsets of |K.��t /, and

|v is injective on |K.��t /, we get O�.Pu/ DPt , as claimed. ut
In order to conclude the first part of the proof of Theorem 45 we proceed as follows:
By Lemma 50 above, � respects colineations. Therefore, by the fundamental
theorem of projective geometries, see e.g, Artin [1], � is the projectivization
� DP.�0/ of some linear {0-isomorphism �0 W .L0;C/ ! .K0;C/, i.e., there
exists a field isomorphism {0 W l ! k, and �0 is an isomorphism of abelian groups,
such that �0.au/ D {0.a/�

0.u/ for all a 2 l and u 2 L0. Moreover, �0 is unique up
to composition by homotheties of the form la ı �0 ı lb (all a 2 k, b 2 l). Further,
since k� D ker.|K/ and l� D ker.|L/, it follows that �0.l/ D k. We set

�0 WD
�

1=�0.1/
�

�0 ;

and claim that �0 is a field isomorphism which maps l isomorphically onto k. In-
deed, for a fixed y 2 L0, consider �y W L0 ! K0 defined by �y.u/ WD �0.yu/. Then
�y is a linear {0-isomorphism. Set x D �0.y/. Then considering projectivizations,
and using the fact that � D P.�0/ is multiplicative, it follows that for all u 2 L0
we have

P.�y/.u/ DP.�0/.yu/ DP.lx/ ıP.�0/.u/ ;

where lx is the multiplication by x onK0. Therefore, there exist a 2 k� and b 2 l�
such that lb ı�y ı lb D lx ı�0. In other words, a �0.y bu/ D x �0.u/ for all u 2 L0.
Setting u D 1, and taking into account that �0.1/ D 1, we have a {0.b/ x D x. Thus
a {0.b/ D 1, and hence the effects of la and lb cancel each other. Hence we have

�0.y u/ D x �0.u/ D �0.y/ �0.u/; (all u; y 2 L0),

hence �0 is a field morphism. And since �0.L0/ D K0 and �0.l/ D k, it follows
that �0 W L0jl ! K0jk is an isomorphism of field extension, as claimed.
Finally, in order to conclude the proof of Theorem 45 we prove the following:
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Lemma 52. LjL0 is a purely inseparable field extension.

Proof. First, recall that by the last assertion mentioned at Remark/Notations 48, we
have ML ˝ Z.`/ D L�.`/ inside bL. Equivalently, for every u 2 L� there exists a
prime to ` integer nu > 0 such that unu 2 L0. This means in particular that LjL0 is
an algebraic extension. Since Ljl is a function field over the (algebraically closed)
field l , it follows that L0jl is so, and LjL0 is actually a finite field extension, of
degree ŒL W L0� D n > 0. From this we deduce that if nu is minimal such that
unu 2 L, then nujn. In particular, all the nth powers un, u 2 L, are contained in L0.
But then n D ŒL W L0� must be a power of the characteristic, as claimed. ut

For the uniqueness of { up to Frobenius twists, one uses the last lemma above,
and applies Proposition 38. This completes the proof of Theorem 45. ut

7 Appendix

Here we recall a few facts concerning the pro-` abelian quotient of the fundamental
group, and facts concerning the structure of the divisor class group as an abstract
group. All these seem to be folklore and might be well be known to the experts, but
I cannot give a quick reference. Throughout this section,Kjk is a function field over
an algebraically closed field k of characteristic p � 0.

7.1 The Kummer interpretation of nCl.X/

Let Kjk be a function field, and X ! k a normal model of Kjk. Recall that DX

is the set of prime divisors of Kjk which are defined by the Weil prime divisors
of X , and divX W K�! Div.X/ the corresponding divisor map. Then denoting by
UX WD 	 .X;OX/

� the invertible global functions on X , one has ker.divX/ D UX ,
and UX=k

� is a finitely generated free abelian group. Finally, one has an exact
sequence of the form

1! UX ! K�=k�!HX.K/! 0;

where HX.K/ WD divX.K/ is the group of principal (Weil) divisors of X , and the
exact sequence defining the divisor class group is

1!HX.K/! Div.X/! Cl.X/! 0:

We now want to recall the Kummer interpretation of the prime to the characteristic
torsion of Cl.X/, which is as follows: Let char.k/ D p � 0 be the characteristic of
k, and n a positive integer not divisible by p. Then tensoring the last exact sequence
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with Z=n, we get the exact sequence

0! nCl.X/ ,!HX.K/=n! Div.X/=n! Cl.X/=n! 0;

where nCl.X/ is the n-torsion of Cl.X/. In particular, if we denote by �n the
preimage of nCl.X/ � HX.F /=n in HX.K/, it follows that we have a canonical
exact sequence

0! �n ,! K�=n! Div.X/=n! Cl.X/=n! 0;

because K�=n Š .K�=k�/=n by the fact that k being algebraically closed. Notice
also that �n fits into an exact sequence of the form 1 ! UX=n ! �n ! nCl
.X/! 0; thus it is a quotient of .Z=n/I for some index set I .

Fact 53. In the above context, set Kn WD KŒ n
p
�n�. ThenKnjK is an n-elementary

abelian extension of K satisfying:

(1) Gal.KnjK/ Š Hom.�n; �n/ canonically.
(2) KnjK is the maximal n-elementary abelian extension ofK in which all v 2 DX

are unramified.
(3) In particular, for ` ¤ char.k/, let K`1 jK be the maximal pro-` abelian

extension in which all v 2 DX are unramified. Then

Gal.K`1 jK/ D ˘1;DX D Hom.�1; �`1/;

where �1 D lim�!
n

�n fits canonically in 0 ! UX ˝ Q`=Z` ! �1 !
`1Cl.X/! 0.

(4) Finally, nCl.X/ andKnjK are finite by Fact 54 below.

Proof. The first assertion is clear by Kummer theory. For the second assertion,
consider the following commutative diagram:

1! �n ! K�=n ! Div.X/=n! Cl.X/=n! 0

# # k k
0! nCl.X/! HX.K/! Div.X/=n! Cl.X/=n! 0

We first show that all v 2 DX are unramified in KnjK . Equivalently, we have to
prove that for all f 2 K� whose images lie in �n, all v 2 DX are unramified
in K.n

p

f /jK . Now if the image of f 2 K� lies in �n, then the image of f in
HX.K/ lies actually in nCl.X/. Therefore, the divisor .f / of f has trivial image
in Div.X/=n; in other words, there exists some divisor P 2 Div.X/ such that
nP D .f /, i.e., v.f / 2 n � vK for all v 2 DX . But then by Hilbert decomposition
theory, it follows that every v 2 DX is unramified in K.n

p

f /jK . Since f was
arbitrary, it follows that all v 2 DX are unramified in KnjK .

Conversely, for f 2 K�, suppose that all v 2 DX are unramified in K.n
p

f /jK .
Equivalently, v.f / 2 n � vK for all v 2 DX ; hence divX.f / 2 n � Div.X/. Thus
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there exists some divisor P 2 Div.X/ such that divX.f / D nP in Div.X/. But
then divX.f / 2 HX.K/ has a trivial image in Div.X/=n, and therefore, the image
of f in K�=n lies actually in �n, as claimed.

Finally, the proof of assertion (3) follows from assertion (2) by “taking limits.” ut

7.2 On the Weil divisor class group Cl.X/

We want to say a few words about the divisor class groupCl.X/ WD Div.X/=HX.K/

(as an abstract group) of a normal model X ! k of Kjk in more detail.

Fact 54. Let k be an algebraically closed field, and X ! k be an integral normal
variety. Then the divisor class group Cl.X/ can be written as a (direct) sum:

.
/ Cl.X/ Š A0.X/CA1.X/;
where A0.X/ is the maximal divisible subgroup of Cl.X/, and A1.X/ is a finitely
generated abelian group. Further:

(1) The maximal torsion divisible subgroupAt.X/ � A0.X/ of Cl.X/ is a quotient
of .Q=Z/r for some r � 0.

(2) If k is an algebraic closure of a finite field, then A0.X/ D At.X/.
Proof. First, since A0.X/ � Cl.X/ is the maximal divisible group, it follows that it
has complements A.X/; hence Cl.X/ D A0.X/C A.X/ as a direct sum. Let K be
the function field of X . Let Y ! k and X ! k be normal models of Kjk such that
DX � DY . We first claim the following:

Claim 1. Cl.X/ satisfies .
/ iff Cl.Y / satisfies .
/.
Indeed, let A0.X/ � Cl.X/ and A0.Y / � Cl.Y / be the (unique) maximal divisible
subgroups. Setting S WD DY nDX , we have that S is finite, DY D DX [ S ,
and the canonical projection map pr W Div.Y / ! Div.X/ has as kernel �S WDP

v2S Zv. Thus the canonical projection pr W divY .K
�/ ! divX.K

�/ has kernel
US WD divY .K

�/ \ �S , which a finitely generated group, and the canonical map
pr W Cl.Y / ! Cl.X/ has kernel �S=US . Further note that pr

�

A0.Y /
� � A0.X/,

because the former group is divisible, thus contained in the unique maximal divisible
subgroup A0.X/ of Cl.X/, and pr W A0.Y / ! A0.X/ has kernel �S;0 WD
.�S=US / \ A0.Y /, which is a finitely generated group, as �S=US is so. Hence
setting AS WD .�S=US /=�S;0, we finally get an exact sequence of the form:

.�/ 0! AS ! A.Y /! A.X/! 0:

Since AS is a finitely generated group, it follows that A.Y / if finitely generated iff
A.X/ is so. This concludes the proof of Claim 1.

We next notice that the assertion of the above Claim 1 holds in the same form for
the Cartier divisor class group CaCl.X/, and the proof of this fact is word-by-word
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the same as in the case of Cl.X/. Further, if X is smooth (enough factorial), then
CaCl.X/ D Cl.X/.

We conclude the proof of Fact 54 as follows: Let X ! k be an arbitrary normal
integral variety. Further, let QX ! k be a projective normal model of the function
field K WD �.X/ of X ! k. Then QX and X are birational, and hence they have
isomorphic open subsets U � X and QU � QX . Moreover, we can suppose that
U Š QU are actually smooth over k. By Claim 1 and its Cartier form, it follows
that, first, Cl.X/ has the structure .
/ iff Cl.U / does, and second, CaCl. QX/ has the
structure .
/ iff CaCl. QU/ does. On the other hand, since U Š QU is smooth over k,
hence factorial, we have Cl.U / Š CaCl. QU/. Thus finally, it is sufficient to show that
CaCl. QX/ has the structure .
/. In order to conclude, recall that for QX ! k projective
integral normal, the structure of CaCl. QX/ is known: Indeed, by Kleiman [14],
Theorem 4.8, Theorem 5.4, Corollary 6.17, Remark 6.19, it follows that CaCl. QX/ D
Pic. QX/.k/ has the structure .
/. This concludes the proof of Fact 54. ut
Fact 55. In the above context and notation, let X ! k and Y ! k be
normal models of Kjk such that DX � DY . In the notations from the proof
of Claim 1, let Ator.X/ � A0.X/ be the torsion subgroup, whence Ator.X/ is
divisible too; and let A�.X/ � Cl.X/ be the preimage of the torsion group of
Cl.X/=A0.X/, hence A�=A0.X/ is finite, and Cl.X/=A�.X/ is finitely generated
free abelian. The projection pr W Cl.Y / ! Cl.X/ gives rise to homomorphisms
pr� W A�.Y /! A�.X/, pr0 W A0.Y /! A0.X/, prtor W Ator.Y /! Ator.X/, and the
following hold:

(1) prtor has finite kernel and cokernel isomorphic to .Q=Z/r , where r the rational
rank of .�S=US/\A0.Y /. Therefore, Ator.X/ Š Ator.Y /˚.Q=Z/r as abstract
groups.

(2) The rational ranks of A1.Y /, A1.X/ satisfy rr
�

A1.Y /
� D rr

�

A1.X/
�C jS j � r .

Hence one has rr
�

A1.Y /
� D rr

�

A1.X/
�C jS j iff US is trivial iff UY D UX .

(3) If the equivalent conditions from (2) above are satisfied, then prtor and pr0 are
isomorphisms, and pr� maps A�.Y /=A0.Y / injectively into A�.X/=A0.X/.

(4) Suppose that X has/satisfies the following equivalent properties:

(i) A�.X/=A0.X/ and Ator.X/ are minimal.
(ii) A1.Y / Š A1.X/ ˚ Z

jDY nDX j for all normal models Y ! k of Kjk with
DX � Y .

(iii) jA�.X/=A0.X/j is minimal and rr.A1.Y // D rr.A1.X// C jDY nDX j for
all Y as above.

Then Ator � A0.X/ � A�.X/ are birational invariants of the function field
k.X/.

Proof. Everything follows immediately from the proof of Claim 1. For asser-
tions (2), (3) and (4), use the exact sequence .�/. In particular, note that if the
equivalent conditions from assertions (2) are satisfied, then US trivial, and therefore
�S;0 D � \ A0.X/ is a torsion subgroup of the free abelian group �S . Hence
�S;0 is trivial, and AS D �S is a finite free Z-module. Thus the exact sequence .�/
becomes 0! �S ! A.Y /! A.X/! 0, etc. ut
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7.3 On the .pro-` abelian/ “birational” fundamental
group ˘1;K

Let Kjk be a function field. It is well known that if Kjk has regular complete
models X ! k, then the “usual” fundamental group �1.X/ whose open subgroups
parametrize all the étale connected covers of X is a birational invariant of Kjk,
in the sense that �1.X/ does not depend on the particular regular complete model
X ! k. In general, one can consider the following replacement for the fundamental
group of complete regular models: Let DKjk be the set of prime divisors of Kjk.
For every v 2 DKjk , let v be prolongations of v to an algebraic closure K of K , and
Tv � GK the inertia group of v in the separable closure KsjK of K in K . Then the
prolongations v are conjugated under GK ; thus the set of all the inertia groups Tv is
closed under GK -conjugation. Therefore, the closed subgroup TK � GK generated
by all the Tv for all v 2 DKjk and all their prolongations v toK is a normal subgroup
of GK . Moreover, setting

�1;K WD GK=TK;
we see by the functoriality of Hilbert decomposition theory that the fixed field QK of
TK in Ks is the maximal field extension of K in which all the prime divisors v of
Kjk are not ramified. We will call �1;K the birational fundamental group for Kjk.

More generally, let D � DKjk be any set of prime divisors of K , e.g., D D DX

is the set of prime divisors defined by the Weil prime divisors of a normal model
X ! k of Kjk. Then we denote by TD � GK the subgroup generated by all the Tv

with v 2 D and v all the prolongations of v to K. As above, TD is normal in GK ,
and the quotient

�1;D WD GK=TD
will be called the fundamental group for D. We notice that open subgroup of
�1;D parametrize all the finite extensions LjK of K in which all v 2 D are not
ramified.

In the same way, we introduce/define the pro-` abelianizations of the fundamen-
tal groups introduced above,

˘1;K WD ˘K=TDKjk and ˘1;D WD ˘K=TD;

and call them the pro-` abelian birational fundamental group for Kjk, respec-
tively for D.

Remarks 56. Let X ! k be a normal model of Kjk, and �1.X/ ! ˘1.X/ WD
�
`;ab
1 .X/ the canonical projection. In the above context and notation, the following

hold:

(a) For everyD � DK there are canonical surjective projections �1;D ! �1;K , and
�1;DX ! �1.X/, which by the functoriality of Hilbert decomposition theory
give rise to surjective projections˘1;D ! ˘1;K and ˘1;DX ! ˘1.X/.
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(b) Nevertheless, if X is regular, then �1;DX D �1.X/, thus also ˘1;DX D ˘1.X/,
by the purity of the branch locus.

(c) And if X is complete and regular, then �1;K D �1.X/, thus also
˘1;K D ˘1.X/, by the purity of the branch locus.

Fact 57. In the above context, the following hold:

(1) Let X ! k be a complete normal model of Kjk, and U � X is a regular
open subvariety. Then there are canonical surjective projections �1.U / !
�1;K ! �1.X/.

(2) There exists a geometric set DX such that ˘1;DX ! ˘1;K is an isomorphism.
Hence ˘1;DX0

! ˘1;K is an isomorphism, provided DX � DX 0 .
(3) Let X be an affine normal curve with ˘1;DX D ˘1;K . Then either X Š A

1
k , or

X is isomorphic to Enfptg with E a complete curve of genus one.
(4) If X is a normal model of Kjk such that ˘1;DX D ˘1;K , then the group of

global invertible sections on X is UX WD k�.

Proof. To (1): The existence and surjectivity of �1.U / ! �1;K follow from (a)
and (b) above. For the existence and surjectivity of �1;K ! �1.X/, we notice first
that since X ! k is a complete variety, for every v 2 D1

K , there exists a dominant
canonical k-morphism Spec Ov ! X . On the other hand, since a base change of
an étale cover is étale, we have that if Y ! X is some finite connected étale cover
defined by some finite quotient of �1.X/, then Y is integral, and Y �X Spec Ov is
étale over Ov. Equivalently, v is unramified in the field extension k.X/ ,! k.Y /;
hence the image of the inertia group Tv in �1.X/ is trivial, etc.

For assertion (2), first consider a small enough affine open subset X0 � X 0
such that X0 is regular. Then X0 ! k is a quasi-projective regular model for Kjk;
hence �1;DX0 D �1.X0/, by the purity of the branch locus. Therefore, �1;DX0 is
finitely generated, hence a finite module as Z`, as it is an abelian pro-` group. Since
˘1;DX0

! ˘1;K is surjective,˘1;K is a finite Z`-module too. But then

� D ker.˘1;DX0
! ˘1;K/

is also a finite Z`-module. Finally, by the definition of ˘1;K , it follows that for
every g 2 � there exists some v 2 D1

K such that g 2 Tv. Since � is finitely
generated, there exists a finite set ˙ � D1

K such that the images of Tv (all v 2 ˙)
in ˘1;DX0

generate �. In order to conclude, consider any quasi-projective normal
model X ! k such that DX 0 ; ˙ � DX (hence in particular,DX0 � DX too).

Assertion (3) follows immediately from the structure theorem for (the abelian
pro-` quotient of the) fundamental groups of a normal curve.

Finally, assertion (4) follows from the following: By contradiction, let f 2 UX
be a non-constant global invertible section. For every n D `e with e � 0, consider
the normalization Xn ! X of X in the finite subextension Kn WD KŒn

p

f � of
K ,! K 0. Then since f is a v-unit for all v 2 DX , it follows that v is unramified in
Xn ! X , and therefore, Gal.KnjK/ is a quotient of ˘1;DX . On the other hand, if w
is a prime divisor of Kjk with w.f / > 0, then w is ramified in KnjK for n � 0;
hence Gal.KnjK/ is not a quotient of˘1;K . Contradiction! ut
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Abstract We give a representation-theoretic decomposition of the group of mod-
ular units of prime level. Apart from the formulation, the results obtained are
contained in those of Gross [3].
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Introduction

The group SL.2;Z/ of 2 � 2 matrices with integer coefficients and determinant
1 acts on the complex upper half-plane H by fractional linear transformations,
and if � � SL.2;Z/ is a subgroup of finite index then the orbit space of H
under � will be denoted Y.�/ and endowed with the unique complex structure for
which the quotient map � W H ! Y.�/ is holomorphic. As a Riemann surface,
Y.�/ is noncompact but of finite type: Y.�/ D X.�/ X C , where X.�/ is a
compact Riemann surface and C � X.�/ the finite nonempty subset of cusps of
� . A modular function for � is the pullback under � of the restriction to Y.�/
of a meromorphic function on X.�/. We denote the field of modular functions for
� by M� .
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Now fix � and let O � M� be the subring of holomorphic functions. Its unit
group O� will be denoted U , and an element of U will be called a modular unit.
Thus a modular unit is a modular function which is holomorphic and nowhere
vanishing on H . If we identify M� with the function field of X.�/ then U

corresponds to the multiplicative group of meromorphic functions on X.�/ with
divisorial support in C . Writing C

� for the subgroup of constant functions in U , we
deduce that the free abelian group U=C� has rank at most jC j � 1.

A theorem of Manin [8] and Drinfeld [2] asserts that the rank is exactly jC j�1 if
� is a congruence subgroup of SL.2;Z/, in other words a subgroup containing the
kernel of the reduction-mod-N map SL.2;Z/ ! SL.2;Z=NZ/ for some integer
N > 1. The kernel itself is called the principal congruence subgroup of levelN and
denoted �.N/, and the proof of the Manin–Drinfeld theorem immediately reduces
to the case � D �.N/. It is at this juncture that the work of Kubert and Lang [6]
enters the picture, providing a refinement of the Manin–Drinfeld theorem which is
crucial if one is concerned, as we shall be here, with the action of SL.2;Z=NZ/ on
U arising from the identification SL.2;Z=NZ/ Š SL.2;Z/=�.N /.

The refinement introduced by Kubert and Lang is a parametrization of the group
U=C�, or at least of some large subgroup of it, using the “Siegel functions”

ga.z/ D �qb� e�ia2.a1�1/.1 � qz/
Y

n>1
.1 � qn� qz/.1� qn� =qz/ (1)

([6], p. 29, formula K4), where the parameter a D .a1; a2/ is an ordered pair of
rational numbers a1 and a2, not both integers, while qz D e2� iz with z 2 H and
q� D e2� i� with � D a1z C a2. Also b D .a21 � a1 C 1=6/=2 and qb� D e2� ib� .
If a1; a2 2 N�1Z then ga is in general a modular function only for �.12N 2/, but
Kubert and Lang give a criterion for a product of such Siegel functions to be a
modular function for �.N/, hence by virtue of the product expansion (1) a modular
unit for �.N/. We state the criterion only when N is relatively prime to 6; for the
general case see [6], pp. 76–78. Suppose that

g D
Y

a

gm.a/a ; (2)

where a runs over N�1Z2 X Z
2 and m.a/ 2 Z with m.a/ D 0 for all but

finitely many a. (If one prefers, the product can be taken to run over a set of coset
representatives for Z2 in N�1Z2 X Z

2: up to a constant factor, ga depends only on
aC Z

2.) The Kubert–Lang criterion states that g is modular of level N if and only
if X

a

m.a/ � 0 .mod 12/ (3)

and

X

a

m.a/.Na1/
2 �

X

a

m.a/.Na2/
2 �

X

a

m.a/.Na1/.Na2/ � 0 .mod N/:

(4)
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Kubert and Lang refer to (4) as the “quadratic relations,” but they are actually linear
relations in the exponents m.a/. It is only the coefficients of these linear relations
that are quadratic in the parameter. Be that as it may, let us use the term Siegel group
for the subgroup of U=C� consisting of the cosets of all products (2) satisfying
(3) and (4). Kubert and Lang prove that the Siegel group has the maximal rank
jC j � 1, thereby recovering the Manin–Drinfeld theorem, and in the optimal case
where N D pn with a prime p > 5 and an integer n > 1 they show that the Siegel
group is the full group of modular units modulo constants, so that (2), (3), and (4)
give a complete description of U=C� ([6], p. 83, Theorem 1.3).

The present note gives an application of their result. Henceforthp is a fixed prime
>7 and U is the group of modular units for �.p/. Also G D PSL.2;Fp/. We shall
determine the structure of the natural representation ofG on the vector spaceU=Up

over Fp . Most of what we prove is already contained in the results of Gross [3], but
this may not be obvious, because our point of view is quite different. In [3] the
goal is to understand the Galois module structure of the subgroup of the Jacobian of
X.p/ generated by the cusps. Furthermore, the Galois group at issue in [3] is the full
arithmetic Galois group GL.2;Fp/=f˙1g of the cover X.p/ ! P1, where X.p/ is
viewed as a curve overQ.e2�i=p/ and P1 as the j -line over Q. In the present note, by
contrast, we consider only the geometric subgroup G D PSL.2;Fp/ of this Galois
group, because the applications we have in mind involve regular Galois extensions,
as in [7] and [9]. This point of view dictates the formulation of our final result,
which can be summarized as follows: Every irreducible nontrivial representation of
G over Fp occurs with multiplicity one in the maximal semisimple subspace of the
“noncongruence part” of U=Up (to be defined).

The proof of this assertion includes a purely representation-theoretic component,
which is divided into three steps—Proposition 2, Propositions 3 and 4, and
Proposition 5—and may appear inefficient, particularly in comparison to the proof
of the corresponding facts for GL.2;Fp/=f˙1g in [3] (p. 73, Proposition 5.1). On
the other hand, the three steps do illustrate three different tools—Brauer–Nesbitt
theory, Frobenius reciprocity, and orthogonal idempotents respectively—while
Gross’s argument rests on yet a fourth tool, namely highest weight vectors. The
more important point, however, is that here as in [3], the really crucial input is
not abstract representation theory but rather the explicit parametrization of modular
units provided by Kubert and Lang. To appreciate this point it is helpful to recall that
the natural representation of G on the space of modular forms of weight 2 and level
p was decomposed into irreducibles in two papers of Hecke [4], [5]. As one would
expect, most of the work in these papers goes into decomposing the space of cusp
forms, but it is actually the space of Eisenstein series—dealt with by Hecke in a few
lines—which has some bearing on the present note. The reason is simple: if f 2 U
then .d logf /=d z is an Eisenstein series of weight 2 and level p. In fact the space
of all such Eisenstein series is simply C ˝Z .d logU /=d z. Furthermore, since the
kernel of f 7! .d logf /=d z is the subgroup of constant functions C� � Up , we
see that U=Up is isomorphic as an FpŒG�-module to Fp˝Z .d logU /=d z. Thus the
representation of G on U=Up arises via tensor product with Fp from a G-stable
Z-form of the space of Eisenstein series. It follows that the semisimplification
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of U=Up can be computed directly from Hecke’s decomposition of the space of
Eisenstein series into irreducibles. But computing the structure of U=Up itself is
another matter entirely, and in attempting to do so we will find that the Kubert–
Lang parametrization of modular units is an indispensable tool.

Whatever else it may accomplish, the real value of this note to its author is the
opportunity it provides to acknowledge an enormous personal debt to Serge Lang,
to whom I owe my career in mathematics. I also take this opportunity to thank the
referee of [9], whose suggestion for simplifying the proof of Proposition 7 of [9]
turned out to be an essential ingredient of the present work.

1 The module of parameters

The ZŒG�-module M introduced below is a first approximation to the domain of
the Kubert–Lang map parametrizing U . Our goal is to decompose the associated
representation of G on the vector space V DM=pM over Fp .

1.1 Preliminaries

The irreducible representations of G in characteristic p can be classified using
a single invariant: their dimension. Indeed for each integer k satisfying 0 6
k 6 .p � 1/=2 there is an absolutely irreducible representation �k of G over Fp
of dimension 2k C 1, and �k is unique up to isomorphism. Furthermore, every
irreducible representations of G in characteristic p is isomorphic to some �k . In
order to work with an explicit model we shall take �k to be the .2k/th symmetric
power of the tautological two-dimensional projective representation of G. Then the
space of �k consists of binary homogeneous polynomials f .x; y/ of degree 2k over
Fp, and the action of G is given by the formula

.�k.g/f /.x; y/ D f .ax C cy; bx C dy/; (5)

where g is the image in G of the element

Qg D
�
a b

c d

�

(6)

of SL.2;Fp/.
Put R D F

2
p X f.0; 0/g. We defineM to be the free Z-module of rank .p2� 1/=2

consisting of functions m W R ! Z such that m.�r/ D m.r/ for r 2 R. An action
of G onM is given by the formula

.g �m/.r/ D m.r Qg/; (7)
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where Qg is either of the two lifts of g to SL.2;Fp/ and r Qg is the product of the
1 � 2 row vector r and the matrix Qg. Of course this action is formally the same
as (5), except that m is now an even function R ! Z rather than a homogeneous
polynomial over Fp.

Given a field F , put VF D F ˝Z M and extend the action (7) by linearity
to a representation �F of G on VF . We can identify VF with the vector space of
dimension .p2�1/=2 over F consisting of even functionsm W R! F , and then the
action of G is again formally the same as in (5) and (7). We are primarily interested
in the case F D Fp, and in this case we write VF and �F simply as V and � .

1.2 Irreducible constituents

Write B for the image in G of the upper triangular subgroup of SL.2;Fp/ and
N � B for the image of the strictly upper triangular subgroup (i.e., the subgroup
defined by the conditions c D 0, a D d D 1 in (6)). We denote the trivial one-
dimensional character of any group by 1, leaving both the group and the implicit
field of scalars to be inferred from the context. In the following proposition, for
example, 1 is the trivial one-dimensional character ofN with values in F , and indGN1
is the representation of G over F which it induces.

Proposition 1. �F Š indGN 1.

Proof. Take the space of indGN1 to consist of functions f W G ! F satisfying
f .ng/ D f .g/ for n 2 N and g 2 G, with G acting by right translation. As
we have already noted, VF is also a space of functions, namely the space of even
functions m W R ! F . Furthermore, given f in the space of indGN1, we obtain an
element mf 2 VF by setting mf .r/ D f .g/ if e Qg D ˙r , where e is the row vector
.0; 1/ 2 R. The map f 7! mf is readily verified to be G-equivariant and injective,
and its domain and range both have dimension .p2 � 1/=2. ut

We now take F D Fp and compute the semisimplification of � :

Proposition 2. The multiplicity of �k as a constituent of � is 1 if k D 0 or k D
.p � 1/=2 and 2 if 1 6 k 6 .p � 3/=2.

Proof. Given t 2 F
�
p , let a.t/ denote the image in B of the diagonal matrix with

diagonal entries t , t�1. The map t 7! a.t/ induces an isomorphism of quotient
groups F

�
p =f˙1g Š B=N , and we can compose the inverse of this isomorphism

with even powers of the Teichmüller character ! W F�p ! Z
�
p to obtain characters of

B . More precisely, we define �k W B ! Q
�
p (0 6 k 6 .p � 3/=2) by setting

�k.a.t/n/ D !.t/2k .t 2 F
�
p ; n 2 N/:

Then indBN1 Š ˚.p�3/=2kD0 �k; whence Proposition 1 and the identification indGN1 D
indGB.indBN1/ give
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�Qp Š ˚.p�3/=2kD0 �k (8)

with �k D indGB�k (cf. formula (22) of [4]). We remark that �0 Š 1 ˚ � with an
absolutely irreducible representation � of dimension p over Qp , while if p � 1

mod 4 then �.p�1/=4 decomposes over Qp as the direct sum of two inequivalent
irreducible representations 	 and 	 0 of dimension .p C 1/=2. Apart from these
exceptions, the direct summands in (8) are absolutely irreducible (although not
distinct, as �k Š �.p�1�2k/=2 for 1 6 k 6 .p � 3/=2).

Put M D Zp ˝Z M . Then M is a G-stable Zp-lattice in VQp and V D
Fp ˝M. Hence the semisimplification of V can be read from (8) and the mod-p
decomposition numbers ofG. These decomposition numbers are implicit in Brauer–
Nesbitt [1] (p. 590) and explicitly computed by Srinivasan [10] (pp. 107–108). In
applying [10], note that for n D 1 her ˆ.r0/ and '.r0/ coincide. Hence taking
r0 D 2k in formula (3.5) of [10], we find that the character of our �k coincides
on p-regular conjugacy classes with the sum of the Brauer characters of our �k and
�.p�1�2k/=2. In the first instance this conclusion holds only when 1 6 k 6 .p�3/=2
and k ¤ .p � 1/=4, but in fact it holds also when k D 0 (by the first three lines on
p. 108 of [10]) and when k D .p � 1/=4 (by formula (3.7) of [10]). The upshot is
that in all cases, the semisimplification of the reduction modulo p of �k coincides
with �k ˚ �.p�1�2k/=2. Hence the proposition follows from (8). ut

1.3 Irreducible subspaces and quotient spaces

Next we determine the multiplicity of �k as a quotient representation of � . Given
representations ˛ and ˇ of a group J on vector spaces W˛ and Wˇ over a field F ,
write HomF ŒJ �.˛; ˇ/ for HomF ŒJ �.W˛;Wˇ/.

Proposition 3. For 0 6 k 6 .p � 1/=2,

dimFp HomFpŒG�.�; �k/ D 1:

Proof. Proposition 1 and Frobenius reciprocity give

HomFpŒG�.�; �k/ Š HomFpŒN �.1; resGN�k/:

Now N is generated by the element u corresponding to the choices a D b D d D 1
and c D 0 in (6), so it suffices to see that the subspace of vectors fixed by �k.u/
is one-dimensional. Let A be the matrix of �k.u/ relative to the ordered basis
x2k; x2k�1y; : : : ; y2k , and let aij be the .i; j /-entry of A for 1 6 i; j 6 2k C 1.
Using (5) to write .�k.u/f /.x; y/ D f .x; x C y/, one readily verifies that A is
upper triangular, that aii D 1 for all i , and that ai;iC1 ¤ 0 for 1 6 i 6 2k. It
follows that the Jordan normal form of A consists of a single Jordan block, whence
x2k is the unique eigenvector of �k.u/ up to scalar multiples. ut
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A similar statement holds for subrepresentations:

Proposition 4. For 0 6 k 6 .p � 1/=2,

dimFp HomFpŒG�.�k; �/ D 1:

Proof. In view of Proposition 3 it suffices to see that both �k and � are self-dual.
The self-duality of �k follows from the fact that irreducible representations of G
over Fp are determined up to isomorphism by their dimension. The self-duality of
� follows from the fact that the symmetric bilinear form

hm;m0i D
X

r2R
m.r/m0.r/ .m;m0 2 V / (9)

is nondegenerate and G-invariant. ut

1.4 Homogeneous components

Recall that M D Zp˝ZM and that ! W F�p ! Z
�
p is the Teichmüller character. We

shall view the elements of M as even functionsm W R! Zp . We defineM.k/ �M
to be the Zp-submodule consisting of all m 2M such that

m.tr/ D !.t/2km.r/

for t 2 F
�
p and r D .r1; r2/ 2 R, where tr D .tr1; tr2/. The linear endomorphisms

e.k/ of M given by

.e.k/m/.r/ D 1

p � 1
X

t2F�p
!�2k.t/m.tr/ (10)

(0 6 k 6 .p � 3/=2) form a family of orthogonal idempotents projecting M onto
the respective submodules M.k/ and summing to the identity, so we have

M D ˚.p�3/=2kD0 M.k/: (11)

In fact (11) is a decomposition into ZpŒG�-submodules, because the idempotents
e.k/ commute with the action of G. Hence the space of � likewise decomposes into
G-stable subspaces:

V D ˚.p�3/=2kD0 V .k/ (12)

with V .k/ D Fp˝Zp M.k/. Let �.k/ denote the representation ofG on V .k/. We have
assumed that p > 7 rather than merely p > 5 to ensure the validity of the following
statement (and several others hereafter):
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Proposition 5. If 1 6 k 6 .p � 3/=2 then �.k/ has a unique irreducible
subrepresentation and a unique irreducible quotient representation, and they are
equivalent to �k and �.p�1�2k/=2 respectively. On the other hand, �.0/ Š �0 ˚
�.p�1/=2.

Proof. The first point is that the free Zp-module M.k/ has rank p C 1. Indeed for
each of the p C 1 lines ` through the origin in F

2
p , fix an element r` 2 R which

spans `, and define a function f`;k 2M.k/ by

f`;k.r/ D
(

!.t/2k if r D tr` with t 2 F
�
p

0 if r … `.
For fixed k the pC1 functions f`;k have pairwise disjoint supports and are therefore
linearly independent over Zp . Hence M.k/ has rank at least pC 1. But M has rank
.p C 1/.p � 1/=2, so we deduce from (11) that M.k/ has rank exactly p C 1, as
claimed.

It follows that V .k/ has dimension p C 1 over Fp. But an irreducible represen-
tation of G over Fp has dimension 6 p, so V .k/ has a proper irreducible subspace
and hence at least two irreducible constituents. On the other hand, V has exactly
p� 1 irreducible constituents (Proposition 2), so we deduce from (12) that V .k/ has
exactly two constituents.

To identify these constituents up to isomorphism, we introduce a ZŒG�-submodule
Nk of M for 0 6 k 6 .p � 3/=2. Given m 2 M, let m W R ! Fp denote the
reduction ofmmodulo p. We define Nk �M to be the submodule consisting of all
m such that m coincides with a binary homogeneous polynomial of degree 2k over
Fp. Strictly speaking, we should say “coincides with the function R ! Fp defined
by” such a polynomial, but the distinction is moot: a homogeneous polynomial of
degree < p which vanishes on R is zero. Thus the map m 7! m determines an
embedding of Nk=.Nk \ pM/ into the space of �k . In fact this embedding is
surjective and hence a G-isomorphism, because any even function R ! Fp can
be lifted to an even function R! Zp .

Now put N .l/

k D e.l/Nk (0 6 l 6 .p � 3/=2). It is readily verified that if

l ¤ k then the image of N .l/

k under m 7! m is f0g. On the other hand, we have
just seen that the mapm 7! m gives a G-isomorphism of Nk=.Nk \ pM/ onto the
space of �k . It follows that the domain of this G-isomorphism can be replaced by
N .k/

k =.N .k/

k \pM.k//. But the latter can be viewed as aG-stable subspaceW .k/ of
V .k/, and the representation ofG onW .k/ is therefore equivalent to �k . Furthermore,
we have seen that V .k/ has exactly two irreducible constituents, so the quotient
V .k/=W .k/ is also irreducible. Since its dimension is .pC1/�.2kC1/ D p�2k, we
deduce that the quotient representation is equivalent to �.p�1�2k/=2. In summary, the
representation ofG onW .k/ and on V .k/=W .k/ is equivalent to �k and to �.p�1�2k/=2
respectively.

To see that �.0/ Š �0 ˚ �.p�1/=2, we observe that the set of indices k satisfying
1 6 k 6 .p�3/=2 is stable under k 7! .p�1�2k/=2. It follows that �0 and �.p�1/=2
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occur as constituents of V .k/ if and only if k D 0. On the other hand, �0 and �.p�1/=2
occur not merely as constituents but as subrepresentations of � (Proposition 4). It
follows that they occur as subrepresentations of �.0/, whence �.0/ Š �0 ˚ �.p�1/=2.

Finally, suppose that 1 6 k 6 .p � 3/=2. If W is an irreducible subspace of
V .k/ then the representation ofG onW is equivalent to an irreducible constituent of
�.k/, hence either to �k or to �.p�1�2k/=2. But if W ¤ W .k/ then the first possibility
is excluded, because �k occurs as a subrepresentation of � with multiplicity one
(Proposition 4). As for the second possibility, it coincides with the first (and is
therefore excluded when W ¤ W .k/) if k D .p � 1/=4. Otherwise it is excluded
by Proposition 4 again, because �.p�1�2k/=2 already occurs as a subrepresentation
of �..p�1�2k/=2/, and the spaces V ..p�1�2k/=2/ and V .k/ are linearly independent. We
conclude that W .k/ is the unique irreducible subspace of V .k/, and since V .k/ has
just two irreducible constituents it follows that V .k/=W .k/ is the unique irreducible
quotient. ut

2 The quadratic relations

To move a step closer to U we turn fromM to the ZŒG�-submoduleQ ofM defined
by the quadratic relations of Kubert and Lang. As before, our primary concern is the
representation of G on the associated vector space over Fp, which is now the space
V 0 D Q=pQ.

2.1 Preliminaries

To define Q, recall that givenm 2 M we write m W R! Fp for the reduction of m
modulo p. We will also let N denote the ZŒG�-submodule of M consisting of all n
for which n has the form

n.r/ D ar21 C br1r2 C cr22 (13)

with a; b; c 2 Fp, where r D .r1; r2/. Since N is a Z-form of the ZpŒG�-module
previously denoted N1, it might be more logical to denote it N1, but for simplicity
we omit the subscript (and thereby void our previous use of N as a positive integer
or as the subgroup of G corresponding to strictly upper triangular matrices). We
defineQ to consist of those m 2M such that

X

r2R
m.r/n.r/ D 0 (14)

for all n 2 N .
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It is immediate from this description that Q contains pM . Thus M=Q is a
quotient of the finite-dimensional vector space V D M=pM over Fp. In fact
since Q is defined by the vanishing of three linearly independent linear forms on
M=pM (namely those corresponding to the choices .a; b; c/ D .1; 0; 0/, .0; 1; 0/,
and .0; 0; 1/ in (13) and (14)) we see that M=Q has dimension three over Fp .
In particular Q has finite index in M , so by the Brauer–Nesbitt theorem, the
representation � 0 of G on the space V 0 D Q=pQ has the same semisimplification
as � . Thus Proposition 2 holds with � replaced by � 0. This is not quite true of
Proposition 5, however, and our next proposition gives an analogue of Proposition 5
valid for � 0.

2.2 Homogeneous components

Put Q D Zp ˝Z Q. Then Q is stable under e.k/ (cf. (10), (13), and (14)). Hence

Q D ˚.p�3/=2kD0 Q.k/

with Q.k/ D e.k/Q. Thus putting V 0.k/ D Q.k/=pQ.k/ we have

V 0 D ˚.p�3/=2kD0 V 0.k/; (15)

a decomposition of V 0 into G-stable subspaces. Let � 0.k/ denote the representation
of G on V 0.k/.

Proposition 6. If 1 6 k 6 .p � 5/=2 then � 0.k/ has a unique irreducible
subrepresentation and a unique irreducible quotient representation, and they are
equivalent to �k and �.p�1�2k/=2 respectively. On the other hand, � 0.0/ Š �0 ˚
�.p�1/=2 and � 0..p�3/=2/ Š �1 ˚ �.p�3/=2.
Proof. Suppose first that k ¤ .p�3/=2. We claim that M.k/ � Q, whence M.k/ D
Q.k/. To see this, take m 2M.k/ and n 2 N , and write

X

r2R
m.r/n.r/ D

X

`2ƒ

X

r2R\`
m.r/n.r/;

whereƒ is the set of lines through the origin in F
2
p . For each ` 2 ƒ choose a vector

r` 2 R spanning `. Then the inner sum on the right-hand side can be written as a
sum over t 2 F

�
p , with r D tr`. The homogeneity of m and n then gives

X

r2R
m.r/n.r/ D

X

`2ƒ
m.r`/n.r`/

X

t2F�p
t2kC2:

Since k ¤ .p � 3/=2 the exponent of t on the right-hand side is < p � 1 and
consequently the inner sum is 0. Thus M.k/ � Q and M.k/ D Q.k/, as claimed.
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It follows that if k ¤ .p � 3/=2 then � 0.k/ Š �.k/, whence the assertions at hand
reduce to those of Proposition 5. To handle the remaining case k D .p � 3/=2,
we recall that � and � 0 have isomorphic semisimplifications and are direct sums of
their respective homogeneous components �.k/ and � 0.k/. Since � 0.k/ Š �.k/ for k ¤
.p � 3/=2, we deduce that the semisimplifications of � 0..p�3/=2/ and �..p�3/=2/ are
likewise isomorphic. Thus by Proposition 5, � 0..p�3/=2/ has exactly two irreducible
constituents, namely �.p�3/=2 and �1.

Now M and Q are also the direct sums of their homogeneous components
M.k/ and Q.k/, and we have seen that the vector space M=Q D M=Q has
dimension three over Fp (cf. (13) and (14)) while M.k/ D Q.k/ for k ¤
.p � 3/=2. Consequently M..p�3/=2/=Q..p�3/=2/ is also three-dimensional over Fp ,
as is therefore the subspace Y D pM..p�3/=2/=pQ..p�3/=2/ of V 0..p�3/=2/. Since
� 0..p�3/=2/ has just the two irreducible constituents �1 and �.p�3/=2 of dimensions 3
and p � 2 respectively, we deduce that the representation of G on Y is �1. Thus
�1 is a subrepresentation of � 0..p�3/=2/ and �.p�3/=2 is the corresponding quotient
representation.

It remains to see that �1 is also a quotient representation of � 0..p�3/=2/, whence
�.p�3/=2 is a subrepresentation and � 0..p�3/=2/ Š �1˚�.p�3/=2. To this end, consider
the bilinear pairing � �;� 	W Q �N ! Z given by

� m; n 	D 1

p

X

r2R
m.r/n.r/ .m 2 Q; n 2 N/:

Write L for the ZŒG�-submodule of Q consisting of those m such that

� m; n 	� 0 .mod p/

for all n 2 N . Put L D Zp˝ZL. ThenL is stable under e.k/, so puttingL.k/ D e.k/L
we have

L D ˚.p�3/=2kD0 L.k/:

We claim that L..p�3/=2/ contains pQ..p�3/=2/ and that the quotient space Z D
Q..p�3/=2/=L..p�3/=2/ of V 0.p�3/=2 is of positive dimension 6 3. An immediate
consequence of the claim is that the representation of G on Z is equivalent to �1, so
verifying the claim will complete the proof.

It is immediate from the definitions thatL contains pQ and hence that L contains
pQ. On the other hand, L does not contain pM: for ifm 2 M is the function taking
the value 1 on .˙1; 0/ and 0 elsewhere then � pm; n 	6� 0 mod p for any n 2 N
satisfying (13) with a ¤ 0. It follows that for some k with 0 6 k 6 .p � 3/=2 we
have pM.k/ 6� L.k/. But we have seen that pQ � L and that pQ.k/ D pM.k/ for
k ¤ .p� 3/=2. Hence L..p�3/=2/ does not contain pM..p�3/=2/, and we deduce that
L..p�3/=2/=pQ..p�3/=2/ is a subspace of V 0..p�3/=2/ of positive codimension. On the
other hand, the codimension is 6 3, because the subspace is defined by the vanishing
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of three linear forms on V 0..p�3/=2/, namely the forms sending m C pQ..p�3/=2 to
� m; n 	modulop with n as in (13) and .a; b; c/ D .1; 0; 0/, .0; 1; 0/, and .0; 0; 1/.
Our claim follows. ut

3 The Kubert–Lang map

Given a matrix Q
 2 SL.2;Z/, we identify its image 
 2 PSL.2;Z/ with the
fractional linear transformation ofH defined by 
 . Thus if f is a function onH and
Q
 is the right-hand side of (6) then f ı 
 is the function z 7! f ..azC b/=.czCd//.
Since the image of �.p/ in PSL.2;Z/ has quotient G and fixes the elements of U
we can make U into a ZŒG�-module by setting

g � f D f ı 
�1

for g 2 G and f 2 U , where 
 2 PSL.2;Z/ is any lift of g. The resulting
representation of G on the vector space V 00 D U=Up over Fp will be denoted � 00.

Given a 2 p�1Z2 X Z
2, define the Siegel function ga as in (1). For r 2 R we

put fr D g12a , where a 2 p�1Z2 is chosen so that r coincides with the residue class
of pa modulo pZ2. Since a can be replaced by any element of the coset a C Z

2,
the function g12a is determined only up to multiplication by a pth root of unity ([6],
p. 28, Formula K2), but the coset frU p is uniquely determined by r because Up

contains C�. Furthermore, if m 2 Q then the function

f m WD
Y

r2R
f m.r/
r

belongs to U (cf. (3) and (4), or in other words [6], p. 76, Theorem 5.2). Hence the
assignmentmC pQ 7! f mU p defines an Fp-linear map ˆ W V 0 ! V 00.

Proposition 7. The map ˆ is surjective with one-dimensional kernel, and it
intertwines � 0 with � 00.

Proof. The argument echos the proof of Proposition 0 of [9], which in turn merely
assembles a number of results from [6]. Let us at least recall the relevant citations:
The surjectivity ofˆ follows from [6], p. 83, Theorem 1.3, because p is prime to 12
and thus the map f U p 7! f 12U p is an automorphism of U=Up. That the kernel
of ˆ is one-dimensional follows from the surjectivity, because V 0 has dimension
.p2 � 1/=2 over Fp while V 00 has dimension .p2 � 3/=2 ([6], p. 42, Theorem 3.2).
Finally, the G-equivariance of ˆ follows from [6], p. 27, Formula K1. ut

Put V 00.k/ D ˆ.V 0.k//, so that

V 00 D ˚.p�3/=2kD0 V 00.k/:

We write � 00.k/ for the representation of G on V 00.k/.
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Proposition 8. If 1 6 k 6 .p � 5/=2 then � 00.k/ has a unique irreducible
subrepresentation and a unique irreducible quotient representation, and they are
equivalent to �k and �.p�1�2k/=2 respectively. On the other hand, � 00.0/ Š �.p�1/=2
and � 00..p�3/=2/ Š �1 ˚ �.p�3/=2.
Proof. Combine Propositions 6 and 7 and observe that V 0 has exactly one G-stable
subspace of dimension one. ut

We conclude with some remarks which will lead to a slight reformulation of
Proposition 8. Since p > 7, the two direct summands of � 00..p�3/=2/ are inequivalent,
so there is a unique subspaceW 00..p�3/=2/ of V 00..p�3/=2/ on which the representation
of G is equivalent to �.p�3/=2. We shall refer to the subspace

V 00non D
�

˚.p�5/=2kD0 V 00.k/
�

˚W 00..p�3/=2/

of V 00 as the noncongruence part of V 00. The congruence part of V 00 is the unique
subspace V 00cong of V 00..p�3/=2/ on which the representation of G is equivalent to �1.
Thus

V 00 D V 00non ˚ V 00cong: (16)

To explain the terminology, write K for the field M�.p/ of modular functions for
�.p/, and given a subspace W of V 00 write KW for the Kummer extension of K
obtained by adjoining the pth roots of all f 2 U such that f U p 2 W . (Note that
K�p \ U D Up , whence Gal.KW =K/ is dual to W under the Kummer pairing. In
particular, ŒKW W K� D jW j.) Also put

Mcong D
[

N>1
M�.N/;

so that Mcong is the compositum of the modular function fields for all congruence
subgroups of SL.2;Z/. We claim that

KV 00 \Mcong D KV 00cong
: (17)

Together, (16) and (17) justify the designation “noncongruence part” for V 00non.
To prove (17), we recall from the proof of Proposition 6 that the subspace of

V 0..p�3/=2/ on which G acts via �1 is pM=pQ (strictly speaking we should identify
this subspace as pM..p�3/=2/=pQ..p�3/=2/, not pM=pQ, but M.k/ D Q.k/ for k ¤
.p � 3/=2). Thus ˆ.pM=pQ/ D V 00cong. It follows (see [9], Proposition 2, p. 12)
that KV 00cong

is the field of modular functions for �.p2/, whence the right-hand side of
(17) is contained in the left-hand side. For the reverse inclusion, put

� D f
 2 SL.2;Z/ W f ı 
 D f for all f 2 KV 00 \Mcongg:
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Then the field of modular functions for � is the left-hand side of (17). In particular,
since the left-hand side of (17) is a subfield ofMcong it follows that� is a congruence
subgroup. But the least common multiple of the cusp amplitudes of � divides p2,
because the field KV 00 is generated over K by pth roots of elements of K. Thus the
Wohlfahrt level of � divides p2, and since � is a congruence subgroup its Wohlfahrt
level equals its congruence level by the Fricke–Wohlfahrt theorem [11]: �.p2/ � �:
Taking modular function fields of the two sides reverses the inclusion and thus gives
the inclusion of the left-hand side of (17) in the right-hand side.

Now put W 00.0/ D V 00.0/, and for 1 6 k 6 .p � 5/=2 let W 00.k/ be the unique
irreducible subspace of V 00.k/. Then the maximal semisimple subspace or socle of
V 00non is˚.p�3/=2kD0 W 00.k/, and we may describe its structure as follows:

Proposition 9. The representation of G on the maximal semisimple subspace of
V 00non is equivalent to˚.p�1/=2kD1 �k .
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1 Introduction

The usual Weil height of a rational number x=y, where x and y are integers without
a common prime factor, is defined as

h.x=y/ D log max.jxj; jyj/:
More generally, one can define the usual Weil height h.ˇ/ of an algebraic number
ˇ in a number field K by summing log max.jˇjv; j1j/ over all of the absolute values
v ofK . Mahler [Mah60] has proved that if F is a nonzero irreducible polynomial in
ZŒt � with coprime coefficients such that F.ˇ/ D 0, then

deg.F /h.ˇ/ D
Z 1

0

log jF.e2�i� /jd�: (1.1)

The quantity
R 1

0
log jF.e2�i� /jd� is often referred to as the Mahler measure of F .

It is easy to see that h.ˇ2/ D 2h.ˇ/ for any algebraic number ˇ. Similarly, it is
easy to check that for any continuous function g on the unit circle, we have

Z 1

0

g..e2�i� /2/d� D
Z 1

0

g.e2�i� /d�:

Furthermore, the unit circle is the Julia set of ' W x ! x2. Thus, Mahler’s formula
says that one obtains the height of an algebraic number by integrating its minimal
polynomial against the unique measure � such that '�� D � and � is supported on
the Julia set of '.

Now let ' W P1
C
�! P

1
C

be any nonconstant rational map. Brolin [Bro65] and
Lyubich [Lyu83] have constructed a totally '-invariant probability measure�' (that
is, we have '�� D �) with support on the Julia set of '; Freire, Lopes, and Mañe
[FLM83] have demonstrated that this measure is the unique totally '-invariant
probability measure with support on the Julia set of '. When ' is defined over a
number field K , Call and Silverman [CS93] have constructed a height function h'
with the properties that (1) h'.'.x// D .deg'/h'.x/ and (2) there is a constant
C' such that jh.x/ � h'.x/j < C' for all x 2 P

1.K/. In [PST04], it is shown that
Mahler’s formula (1.1) generalizes to the adelic formula

.degF /h'.x/ D
X

places v of K

Z

P1.Cv/

log jF jv d�';v; (1.2)

where ˇ is an algebraic point, F is a nonzero irreducible polynomial in QŒt �

such that F.ˇ/ D 0, the measure �';v at an archimedean place is the totally '-
invariant probability measure constructed by Brolin and Lyubich, and the integral
R

P1.Cv/
log jF jv d�';v at a finite place v is defined so that its value is the v-adic

analog of the value at an archimedean place (note that as defined in [PST04], these
are not integrals per se). Favre and Rivera-Letelier have also given a proof of 1.2,
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using actual integrals on Berkovich spaces; Piñeiro [Piñ05] and Chambert-Loir and
Thuillier [CLT04, Thu06] have recently proved higher-dimensional generalizations
of 1.2.

Lyubich [Lyu83] has also proved that for any continuous function g and any
archimedean place v, the integrals

R

P1.Cv/
g d�';v can be computed by averaging g

on the periodic points of '; that is,

lim
k!1

1

.deg'/k
X

'k.w/Dw

g.w/ D
Z

P1.Cv/

g d�';v: (1.3)

Autissier [Aut01], Bilu [Bil97], Szpiro, Ullmo, and Zhang [SUZ97], and others have
obtained generalizations and variations of this result. The most recent generaliza-
tion, proved independently by Baker and Rumely [BR06], Chambert-Loir [CL06],
and Favre and Rivera-Letelier [FRL04] and [FRL06] states that (1.3) continues to
hold when the periodic points w such that 'k.w/ D w are replaced by the conjugates
of any infinite nonrepeating sequence of algebraic points with height tending to 0
and when the measure �';v is the totally '-invariant measure without point masses
at classical points on the v-adic Berkovich space (see [Ber90]) for a finite place v.

The function log jF j, for F a nonconstant polynomial, is not continuous in
general, of course. Thus, the equidistribution results cited above do not allow us
to compute Mahler measures by averaging log jF jv over points of small height. One
can, however, show that for any ˇ 2 NQ, we have

ŒQ.ˇ/ W Q�h.ˇ/ D lim
k!1

1

dk

X

�nD1
log jF.�/j D

Z 1

0

log jF.e2�i� /jd�; (1.4)

where F is a nonzero irreducible polynomial in ZŒt � with coprime coefficients such
that F.ˇ/ D 0 (see [EW99, Chapter 1], [Sch74]). Everest, Ward, and Nı́ Fhlathúin
have proved similar results for maps that come from multiplication on an elliptic
curve [EW99, Chapter 6], [EF96]. The proofs of these results make use of the
theory of linear forms in logarithms [Bak75], [Dav95], which is used to show that
the periodic points of the maps in question have strong Diophantine properties. It
is not clear how to apply the theory of linear forms in logarithms in the case of
more general rational maps. In this paper, we use Roth’s theorem [Rot55] from
Diophantine approximation in place of the theory of linear forms in logarithms.
This allows us to work in greater generality.

1.1 Statements of the main theorems

The main results of this paper extend (1.4) to a formula that holds for all rational
maps. Let K be a number field or a function field of characteristic zero, let v be a
place of K , and let ' W P1K �! P

1
K be a nonconstant rational map of degree d > 1.

We prove the following equidistribution result for the periodic points of '.
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Theorem 5.7. For any nonzero polynomial F with coefficients in K , we have

Z

P1.Cv/

log jF jv d�';v D lim
k!1

1

dk

X

'k.ŒwW1�/DŒwW1�
F .w/ 6D0

log jF.w/jv:

This allows us to show that for any point ˇ 2 K, the canonical height h'.ˇ/ can
be computed by taking the average of the log of the absolute value of a minimal
polynomial for ˇ over the periodic points of '.

Theorem 5.10. For any ˇ 2 K and any nonzero irreducible F 2 KŒt� such that
F.ˇ/ D 0, we have

.degK/.degF /.h'.ˇ/� h'.1//

D
X

places v ofK

lim
k!1

1

dk

X

'k.ŒwW1�/DŒwW1�
F .w/ 6D0

log jF.w/jv:

In both the theorems, the w are counted with multiplicity. We explain what
multiplicity means in this context in Section 1.

We are also able to prove that
R

P1.Cv/
log jF jv d�';v is the limit as n goes to

infinity of the average of log jF jv on the points w for which 'n.w/ D ˛, where ˛ is
an algebraic point that is not an exceptional point for '. We state this in Theorem
5.6. This enables us to prove Theorem 5.9, which is the analog of Theorem 5.10 for
the points w such that 'n.w/ D ˛.

The strategy of the proof of the main theorems is fairly simple. By additivity, it
suffices to prove our results for polynomials of the form F.t/ D t � ˇ for ˇ 2 K.
After Section 3, we are reduced to showing that

lim
k!1

1

dk

X

'k.ŒwW1�/DŒwW1�
w 6Dˇ

log jw � ˇjv D lim
k!1

log max.jPk.ˇ; 1/jv; jQk.ˇ; 1/jv/
dk

� lim
k!1

log max.jPk.1; 0/jv; jQk.1; 0/jv/
dk

;

(1.5)

where 'k is written as

'k.ŒT0 W T1�/ D ŒPk.T0; T1/ W Qk.T0; T1/�

for coprime homogeneous polynomials Pk and Qk in KŒT0; T1�. The points w for
which 'k.w/ D w are just the solutions to the equation Pk.w; 1/ � wQk.w; 1/ D 0.
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Thus, we get the left-hand side of (1.5) by taking the limit of log jPk.ˇ; 1/
� ˇQk.ˇ; 1/jv=dk as k goes to1. For each k, we rewrite this as

log jQk.ˇ; 1/jv
dk

C
log

ˇ
ˇ
ˇ
Pk.ˇ;1/

Qk.ˇ;1/
� ˇ

ˇ
ˇ
ˇ
v

dk

and use Diophantine approximation to show that the second term in the equation
above usually goes to 0 as k ! 1; our theorems then follow after a bit of
calculation. The Diophantine approximation result we use is Roth’s theorem, which
we state in Section 4.3 as theorem 4.1. We use Roth’s theorem to derive Lemma
5.2, which is the key lemma in our proofs of the main theorems. The idea for the
proof of Lemma 5.2 comes from Siegel’s famous paper [Sie29]. We should note
that after writing this paper we discovered that Silverman [Sil93] has used methods
very similar to those found here at the beginning of Section 5; we require a slight
modification of his results along these lines, however, so we present the necessary
argument here in full.

Propositions 5.4 and 5.5 deal with the additional complications that may arise
when the ˇ in (1.5) is preperiodic. These complications are overcome with
somewhat lengthy – but essentially basic – calculations that are very similar to some
of the computations carried out by Morton and Silverman in [MS95].

In Section 6, we construct a simple counterexample that shows that Theorem 5.7
will not hold in general when the polynomial F does not have algebraic coefficients
(it is likely that the theorem will also fail if the point ˛ is not algebraic). We construct
a transcendental number ˇ such that the limit limk!1 1

2k

P

�2
kD1 log j� � ˇj does

not exist. This means that there is no way to prove the main results of this paper
without using some special properties of algebraic numbers.

Acknowledgements We would like to thank M. Baker, A. Chambert-Loir, L. DeMarco,
C. Petsche, R. Rumely, and S. Zhang for many helpful conversations. In particular, we thank
M. Baker, L. DeMarco, and R. Rumely for suggesting some of the applications mentioned in
Section 7. The first author was partially supported by NSF Grant 0071921. The second author was
partially supported by NSF Grant 0101636.

2 Notation and terminology

We fix the following notation:

• K is a number field or a function field of characteristic 0 (by function field we
mean a finite algebraic extension of a field of the form Kcons.T / where Kcons is
algebraically closed in K);

• v is a place of K;
• Kv is the completion of K at v;
• Cv is the completion of an algebraic closure of Kv at v;
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• K is the algebraic closure of K in Cv (note that this means that v extends to all
of K);

• nv D ŒKv W Qv� if K is a number field;
• nv D 1 if K is a function field;
• degK D ŒK W Q� if K is a number field;
• degK D 1 if K is a function field.

We let j � jv be an absolute value on Cv corresponding to v. WhenK is a function
field and �v generates the maximal prime Mv in the local ring ov corresponding to
v, we specify that

j�vjv D e�Œ.ov=Mv/WKcons�;

where Kcons is the field of constants in K . When K is a number field and v is
nonarchimedean, we normalize j � jv so that

jpjv D p�nv

when v lies over p. When K is a number field and v is archimedean we normalize
so that j � jv D j � jnv on Q, where j � j is the usual archimedean absolute value on Q.

Throughout this paper, we will work with a nonconstant morphism ' W P1K �!
P
1
K of degree d > 1. We choose homogeneous polynomials P;Q 2 KŒT0; T1� of

degree d without a common factor along with a coordinate system Œs W t � for P1
K

such that

'.ŒT0 W T1�/ D ŒP.T0; T1/ W Q.T0; T1/�;
where P andQ have no common zero in P

1.K/. We let P1 D P andQ1 D Q, and
for k � 2 we define Pk and Qk recursively by

Pk.T0; T1/ D Pk�1.P.T0; T1/;Q.T0; T1//

and

Qk.T0; T1/ D Qk�1.P.T0; T1/;Q.T0; T1//:

Having chosen coordinates, we can define the usual Weil height as

h.Œa W b�/ D 1

degK

X

places v of K

log max.jajv; jbjv/

when a; b 2 K . When a and b lie in an extension L of K , this definition extends to

h.Œa W b�/ D 1

ŒL W K�.degK/

X

places w of L

ŒLw W Kv� log max.jajw; jbjw/; (2.1)

where Lw is the completion of L at w and the absolute value j � jw restricts to some
j � jv on K .
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As in [CS93], we define the canonical height h' as

h'.Œa W b�/ D lim
k!1

h.'k.Œa W b�//
dk

: (2.2)

We say that ˛ 2 P
1.K/ is a periodic point for ' if there exists a positive integer

n such that 'n.˛/ D ˛. If ˛ is periodic, we define the period of ˛ to be the smallest
positive integer ` such that '`.˛/ D ˛. We say that ˛ is perperiodic if there exists a
positive integer n such that 'n.˛/ is periodic.

We will use a small amount of the theory of dynamics on the projective plane; for
a more thorough account of the subject, we refer the reader to Milnor’s [Mil99] and
Beardon’s [Bea91] books on the subject. We say that ˛ 2 P

1.K/ is an exceptional
point for ' if '2.˛/ D ˛ and '2 is totally ramified at ˛. This is equivalent to saying
that the set

S1
kD1.'k/�1.˛/ is finite (see [Bea91, Chapter 4.1]). If ˛ is exceptional,

then at each place v, there is a maximal v-adically open set U containing ˛ such that
the sequence .'`k.ˇ//k converges to ˛ for each ˇ 2 U , where ` is the period of ˛
(which is either 1 or 2). We call U the attracting basin of ˛ (see [Bea91, Chapter
6.3], which uses the terminology “local basin”).

We always count points with multiplicities in this paper. The multiplicity of a
point Œz W 1� in the multiset fw j 'k.w/ D wg is the highest power of t � z that
divides the polynomial Pk.t; 1/ � tQk.t; 1/. The multiplicity of a point Œz W 1� in
the multiset fw j 'k.w/ D Œs W u�g is the highest power of t � z that divides the
polynomial uPk.t; 1/ � sQk.t; 1/ (here s, u, and z are taken to be elements of K,
while t is taken to be a variable).

We note that everything done in this paper depends upon our choice of coordi-
nates. In particular, our integrals are closely related to the canonical local heights
(see [CG97]) for the point Œ1 W 0� at infinitely, so our choice of the point at infinity
affects all of our integrals. To emphasize the fact that we treat Œ1 W 0� as the point at
infinity, we denote it as1 where appropriate.

3 Brolin–Lyubich integrals and local heights

We will work with the limits

lim
k!1

log max.jPk.a; b/jv; jQk.a; b/jv/
dk

(3.1)

for .a; b/ 2 Cv nf.0; 0/g. For a proof that these limits exist, see [PST04], [BR06], or
[CG97] (the proof is essentially an exercise in using telescoping sums and geometric
series). Note that Call and Goldstine [CG97, Theorem 3.1] have shown that

Oh';v.Œˇ W 1�/ D lim
k!1

log max.jPk.ˇ; 1/jv; jQk.ˇ; 1/jv/
dk
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is the unique Weil function for Œ1 W 0� at v (see [Lan83, Chapter 10] for a definition
of Weil functions) that satisfies

Oh';v.'.Œa W b�// D d Oh';v.Œa W b�/C log
ˇ
ˇ
ˇQ
�a

b
; 1
�ˇ
ˇ
ˇ
v
;

for any Œa W b� 6D Œ1 W 0� (see [CG97, Theorem 2.1]). The function Oh';v.�/ is called a
canonical local height for '.

As noted in the introduction, Brolin [Bro65] and Lyubich [Lyu83] have con-
structed a totally '-invariant measure �';v with support on the Julia set of ', when
v is an infinite place (see also [FLM83]). More recently, Baker and Rumely [BR06],
Chambert-Loir [CL06], and Favre and Rivera-Letelier [FRL04] and [FRL06] have
constructed a '-invariant measure�';v on the Berkovich space associated to P

1.Cv/;
this is the unique '-invariant measure without point masses at classical points on the
v-adic Berkovich space (see [Ber90]) for a finite place v.

Proposition 3.1. Let v be a place of an algebraically closed field Cv that is
complete with respect to v, and let F.t/ D t � ˇ for ˇ 2 Cv. Then

Z

P1.Cv/

log jF jvd�';v D lim
k!1

log max.jPk.ˇ; 1/jv; jQk.ˇ; 1/jv/
dk

� lim
k!1

log max.jPk.1; 0/jv; jQk.1; 0/jv/
dk

: (3.2)

Proof. We will prove this following the methods of Baker and Rumely [BR06,
BR10]. The proposition could also be proved using the work of Favre and Rivera-
Letelier [FRL06] or Chambert-Loir and Thuillier [CLT04,Thu06], who proved more
general Mahler formulas (but do not formulate them in terms of limits such as (3.1)).
In [BR06], Baker and Rumely show that for w 2 Cv, the functionHw defined by

Hw.Œa W b�/ D � log jwb � ajv C lim
k!1

log max.jPk.1; 0/jv; jQk.1; 0/jv/
dk

is subharmonic on P
1.Cv/ n fŒw W 1�g. Furthermore, if � is a suitably normalized

distributional Laplacian (i.e., a suitable multiple of�ddc considered in the distribu-
tional sense, which can be extended to the setting of Berkovich spaces as described
in [BR10]), then

�Hw D ��';v C ıw (3.3)

where ıw is the usual Dirac point mass at w. Similarly, we have

� log jt � ˇjv D ıŒ1W0� � ıˇ
(see [FRL06, Section 5.1] or the same reasoning that gives (3.3)). Now, since
log jt � ˇjv and Hw are both subharmonic on P

1.Cv/ n fŒ1 W 0�; Œw W 1�; Œˇ W 1�g,
we have
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Z

P1.Cv/

log jt � ˇjvd�';v D
�Z

P1.Cv/

log jt � ˇjv .��Hw/

�

C log jw � ˇjv

D
�Z

P1.Cv/

Hw .�� log jt � ˇjv/
�

C log jw � ˇjv

D Hw.Œˇ W 1�/ �Hw.Œ1 W 0�/C log jw � ˇjv; (3.4)

by the self-adjoint property of � (which follows from [BR10, Proposition 5.28]
when v is nonarchimedean and is simply integration by parts when v is archimedean).
Thus, we have

� log jw � ˇjv C lim
k!1

log max.jPk.ˇ; 1/jv; jQk.ˇ; 1/jv/
dk

C log j1j

� lim
k!1

log max.jPk.1; 0/jv; jQk.1; 0/jv/
dk

C log jw � ˇjv

D lim
k!1

log max.jPk.ˇ; 1/jv; jQk.ˇ; 1/jv/
dk

� lim
k!1

log max.jPk.1; 0/jv; jQk.1; 0/jv/
dk

;

as desired. ut
Note that although our integrals are defined for points in Cv, the results we prove in
Section 5 only apply to points in K, where K is a number field or function field of
characteristic 0.

4 Preliminaries from Diophantine approximation

The following well-known theorem of Roth [Rot55] is the principal tool from
Diophantine approximation that is used in this paper.

Theorem 4.1. (Roth). If ˛ 2 C is algebraic over Q, then for any � > 0, there is a
constant C such that

ˇ
ˇ
ˇ˛ � a

b

ˇ
ˇ
ˇ >

C

jbj2C� ;

for all a=b 2 Q such that a=b 6D ˛.

We will need to work in slightly greater generality. In the terminology of the
previous section, Roth’s theorem admits the following generalization (see [Lan83,
Theorem 7.1.1]), which holds when K is number field or a function field of
characteristic 0.
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Theorem 4.2. Let ˛1; : : : ; ˛n be elements ofK and let L � K be a finite extension
of K . Then, for any � > 0 and any places v of K and w of L such that wjv, we have

1

ŒL W K�.degK/

nX

iD1
max.0;� log j˛i � ˇjŒLwWKv�nv

v / � .2C �/h.ˇ/CO.1/;

for all ˇ 2 L not in the set f˛1; : : : ; ˛ng.
Let Œa W 1� be a point in P

1.K/. Then for any Œb W 1� 6D Œa W 1� in P
1.Cv/, we let

	ŒaW1�;v.Œb W 1�/ D max.� log jb � ajv; 0/:

We extend this definition to the point at Œ1 W 0� by letting

	ŒaW1�;v.Œ1 W 0�/ D 0

and

	Œ1W0�;v.Œb W 1�/ D max.0; log jbjv/: (4.1)

We will work with divisors on P
1

K
rather than elements of K. Let D D

Pn
iD1 mi˛i , where ˛i 2 P

1.K/ and mi 2 Z. We let

	D;v.ˇ/ D
X

mi	˛i ;v.ˇ/

for points ˇ 2 P
1.Cv/ that are not in SuppD. Then 	D;v is a Weil function for D

at v as defined in [Lan83, Chapter 10]. It is easy to check that for any divisorD and
any rational map ' on P

1, we have

	D;v.'.ˇ// D 	'�D;v.ˇ/CO.1/; (4.2)

for all ˇ 2 P
1.K/ away from the support ofD and '�D. This is a general functorial

property of Weil functions, as explained in [Lan83, Chapter 10].
For a divisorD DPn

iD1 mi˛i , where ˛i 2 P
1.K/, we define

r.D/ D max
i
.mi/:

With this terminology, it follows from Theorem 4.2 that for any � > 0, any finite
extension L of K , and any positive divisorD on P

1.K/ with r.D/ D 1, we have

1

ŒL W K�.degK/
	D;v.ˇ/ � .2C �/h.ˇ/CO.1/
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for all ˇ 2 P
1.L/ away from the support of D. Hence, for any positive divisor D

we have

1

ŒL W K�.degK/
	D;v.ˇ/ � r.D/.2C �/h.ˇ/CO.1/: (4.3)

5 Main results

We begin with a simple lemma on how r..'n/�.D/ behaves as n!1 when D is
a divisor that does not contain an exceptional point of '. We recall that in general
if D D Pn

iD1 mi˛i is a divisor on P
1 and  W P1 �! P

1 is a nonconstant rational
map, then

 �D D
nX

iD1

X

 .ˇi /D˛i
mie.ˇi=˛i /ˇi (5.1)

where e.ˇi=˛i / is the ramification index of  at ˇi .

Lemma 5.1. LetD be a divisor such that SuppD does not contain any exceptional

points of '. Then limk!1 r..'k/�D/

dk
D 0:

Proof. Recall that ˛ is an exceptional point if and only if '2.˛/ D ˛ and ' is
totally ramified at both ˛ and '.˛/. Since ' has at most two totally ramified points,
it follows that if ˛ is not exceptional, then one of ˛, '.˛/, and '2.˛/ is not a totally
ramified point of '. Since the degree of '3 is d3, this means that for any divisor
E such that SuppE does not contain an exceptional point, we have r..'3/�E/ <
d3r.E/ (by (5.1)), so r..'3/�E/ � d2.d � 1/r.E/ Now, since SuppD does not
contain an exceptional point, Supp.'k/�D does not contain an exceptional point

for any k. Thus, for any k � 3, we see that r..'
k/�D/

dk
is less than or equal to ..d �

1/=d/.k�2/=3r.D/; which goes to zero as k goes to infinity. ut

5.1 Using Roth’s theorem

Roth’s Theorem allows us to prove the following lemma. The idea of the proof
is that if 'kC`.ˇ/ approximates D very closely, then 'k.ˇ/ approximates .'`/�D
very closely. Since 'k.ˇ/ has height approximately equal to 1=d` times the height
of 'kC`.ˇ/, this makes h.'k.ˇ// small relative to 	.'`/�D.ˇ/. Repeating this for
infinitely many 'k.ˇ/ gives a contradiction to Roth’s theorem. This idea is due to
Siegel [Sie29]; similar arguments can be found in [Sil93].
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Lemma 5.2. Let D be a positive divisor on P
1 such that SuppD does not contain

any of the exceptional points of '. Let ˇ be a point in P
1.K/ for which there is a

strictly increasing sequence of integers .ei /1iD1 such that 'ei .ˇ/ … SuppD. Then

lim
i!1

	D;v.'
ei .ˇ//

d ei
D 0: (5.2)

Proof. Let L be a finite extension of K for which ˇ 2 P
1.L/. Choose ı > 0. By

Lemma 5.1, we may pick an integer ` such that r..'
`/�D/

d`
< ı=2. We may then write

r..'`/�D/.2C�/
d`

D ı for some � > 0. For any ei , we have 'ei�`.ˇ/ … Supp.'`/�D
since 'ei .ˇ/ … SuppD. Thus, applying Roth’s Theorem (as expressed in (4.3)), we
find that for all ei we have

1

ŒL W K�.degK/
	.'`/�D;v.'

ei�`.ˇ// � r..'`/�D/.2C �/h.'ei�`.ˇ//CO.1/:

Using (4.2) and the fact that h.'ei .ˇ// � d`h'.'ei�`.ˇ//CO.1/, we then obtain

1

ŒL W K�.degK/
	D;v.'

ei .ˇ// � 1

ŒL W K�.degK/
	.'`/�D;v.'

ei�`.ˇ//CO.1/

� r..'`/�D/.2C �/h.'ei�`.ˇ//CO.1/

� r..'`/�D/.2C �/
d `

h.'ei .ˇ//CO.1/
� ıh.'ei .ˇ//CO.1/
� ıd ei h.ˇ/CO.1/:

Dividing through by dei gives

lim
i!1 sup

	D;v.'
ei .ˇ//

d ei
� ŒL W K�.degK/ıh.ˇ/:

Since 	D;v.'ei .ˇ// � 0, letting ı go to zero gives (5.2), as desired. ut
This allows us to prove the following proposition, which will be used to prove

Theorems 5.6 and 5.7.

Proposition 5.3. Let ˛ D Œs W u� be a nonexceptional point in P
1.K/. Then for any

point ˇ D Œa W b� in P
1.K/ and any strictly increasing sequence of integers .ei /1iD1

such that 'ei .ˇ/ 6D ˛, we have

lim
i!1

log juPei .a; b/� sQei .a; b/jv
dei

D lim
i!1

log max.jPei .a; b/jv; jQei .a; b/jv/
d ei

:

Proof. Note that we know that the limit on the right-hand side of the equation above
exists by the discussion at the beginning of Section 3.
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If Œ1 W 0� is an exceptional point of ', let U be its attracting basin; if Œ1 W 0�
is not exceptional, let U simply equal fŒ1 W 0�g. We will divide .ei /1iD1 into two
subsequences: one consisting of the ei for which 'ei .ˇ/ … U and one consisting
of the remaining integers in the sequence .ei /1iD1. Let .`j /1jD1 be the subsequence

consisting of all integers `j in .ei /1iD1 such that '`j .ˇ/ … U (this subsequence may
be empty). We have

lim
j!1

max.log jP`j .a; b/=Q`j .a; b/jv; 0/
d `j

D 0: (5.3)

If Œ1 W 0� is not exceptional, this follows from Lemma 5.2 applied to D D Œ1 W 0�,
along with (4.1). If Œ1 W 0� is exceptional, the fact that '`j .ˇ/ … U for all j implies
that jP`j .a; b/=Q`j .a; b/jv is bounded for all j , so (5.3) clearly holds. It follows
immediately from (5.3) that

lim
j!1

log max.jP`j .a; b/jv; jQ`j .a; b/jv/
d `j

D lim
j!1

log jQ`j .a; b/jv
d`j

: (5.4)

Note that if u D 0, then

uP`j .a; b/� sQ`j .a; b/ D sQ`j .a; b/;

so we are done. Otherwise, by Lemma 4.2, we have

lim
j!1

max

�

0;� log
ˇ
ˇ
ˇ
P`j .a;b/

Q`j .a;b/
� s

u

ˇ
ˇ
ˇ
v

�

d`j
D 0:

Combining this with (5.3), we see that

lim
j!1

log
ˇ
ˇ
ˇ
P`j .a;b/

Q`j .a;b/
� s

u

ˇ
ˇ
ˇ
v

d`j
D 0:

Thus, using (5.4), we obtain

lim
j!1

log juP`j .a; b/� sQ`j .a; b/jv
d`j

D lim
j!1

log

�

jQ`j .a; b/jvjujv
ˇ
ˇ
ˇ
P`j .a;b/

Q`j .a;b/
� s

u

ˇ
ˇ
ˇ
v

�

d`j

D lim
j!1

log jQ`j .a; b/jv
d`j

C lim
j!1

log
ˇ
ˇ
ˇ
P`j .a;b/

Q`j .a;b/
� s

u

ˇ
ˇ
ˇ
v

d`j

D lim
j!1

log max.jP`j .a; b/jv; jQ`j .a; b/jv/
d `j

;

as desired.
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Now let .mj /
1
jD1 be the subsequence of .ei /1iD1 consisting of all integers mj in

.ei /
1
iD1 such that 'mj .ˇ/ 2 U (this subsequence may also be empty). If ˛ D Œ1 W 0�,

then Œ1 W 0� is not exceptional by assumption, so there are no mj and we are done.
Otherwise, we have

lim
j!1

jsQmj .a; b/jv
juPmj .a; b/jv

D 0;

since
Pmj .a;b/

Qmj .a;b/
goes to infinity and u 6D 0. This implies that

lim
j!1

log juPmj .a; b/� sQmj .a; b/jv
dmj

D lim
j!1

log juPmj .a; b/jv
dmj

D lim
j!1

log max.jPmj .a; b/jv; jQmj .a; b/jv//
dmj

:

Since every element of the sequence .ei /1iD1 is in .`j /1jD1 or .mj /
1
jD1, this

completes our proof. ut

5.2 Preperiodic points

Proposition 5.3 provides all the information we need when 'k.Œa W b�/ D Œs W
u� for at most finitely many k; this will always be the case when Œs W u� is not
periodic. When Œs W u� is periodic, however, there may be infinitely many k such
that 'k.Œa W b�/ D Œs W u�. New complications arise when this is the case; we treat
these complications in Propositions 5.4 and 5.5.

Suppose that .bT0 � aT1/wk is the highest power of .bT0 � aT1/ that divides
uPk.T0; T1/� sQk.T0; T1/ in KŒT0; T1�. We write

uPk.T0; T1/� sQk.T0; T1/ D .bT0 � aT1/wkGk.T0; T1/;

where Gk is a polynomial in KŒT0; T1� such that Gk.a; b/ 6D 0.

Proposition 5.4. Let Œs W u� be a nonexceptional point of '. Then, with notation as
above, we have

lim
k!1

log jGk.a; b/jv
dk

D lim
k!1

log max.jPk.a; b/jv; jQk.a; b/jv/
dk

: (5.5)

Proof. By Proposition 5.3, equation (5.5) holds if we restrict to the k for which
'k.Œa W b�/ 6D ˛. If there are only finitely many k such that 'k.Œa W b�/ D ˛,
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we are therefore done. Otherwise, let j be the smallest positive integer such that
'j .Œˇ W 1�/ D ˛ and let ` be the period of ˛. Then 'k.Œˇ W 1�/ D ˛ precisely when
k is of the form j C m` for some integer m � 0. If '`.Œs W u�/ D Œs W u�, then
uT0 � sT1 divides uP`.T0; T1/� sQ`.T0; T1/.

Suppose that u 6D 0. Then, expandingQ` in the variables uT0 � sT1 and T1, we
see that since uT0 � sT1 cannot divide Q`.T0; T1/ (because if it did, then it would
also divide P`.T0; T1/ and we know that Q` and P` have no factors), we have

Q`.T0; T1/ D g0T d`1 C .uT0 � sT1/W.T0; T1/

for some nonzero g0 2 K and some W.T0; T1/ 2 KŒT0; T1�. For any m � 1 we
thus have

Qm` D g0.Q.m�1/`/d
` C .uP.m�1/` � sQ.m�1/`/W.P.m�1/`;Q.m�1/`/:

Using induction, we see then that

Qm`.T0; T1/ D g
Pm�1
iD0 d

i`

0 T d
m`

1 C .uT0 � sT1/Wm.T0; T1/; (5.6)

for some polynomialWm.T0; T1/ 2 KŒT0; T1�. Similarly, we may write

uP`.T0; T1/ � sQ`.T0; T1/

D .uT0 � sT1/rfrT d�r1 C .uT0 � sT1/rC1V .T0; T1/; (5.7)

for some nonzero fr 2 K , some integer r > 0, and some V.T0; T1/ in KŒT0; T1�.
Since Œs W u� is not an exceptional point of ', we have r < d` (note that if r
were equal to d`, then ' would have to ramify totally at '.Œs W u�/; : : : ; '`Œs W u�,
which would imply that ` D 2 and that Œs W u� is therefore an exceptional point, as
explained in Section 2). Then for anym, we have

uPm` � sQm` D .uP.m�1/` � sQ.m�1/`/rfrQd�r
.m�1/`

C .P.m�1/` � sQ.m�1/`/rC1V .P.m�1/`;Q.m�1/`/;

so, using (5.6), (5.7), and induction, we obtain

uPm`.T0; T1/ � sQm`.T0; T1/

D .uT0 � sT1/rmf
Pm�1
iD0 r

i

r T d
m`�rm

1 g
Pm�1
iD0 .d

i`�ri /
0

C .uT0 � sT1/rmC1Zm.T0; T1/; (5.8)

for Zm a polynomial in KŒT0; T1�. Since r < d`, we have

lim
m!1

log jf
Pm�1
iD0 r

i

r g
Pm�1
iD0 .d

i`�ri /
0 jv

dm`
D lim

m!1
log jg

Pm�1
iD0 d

i`

0 jv
dm`

D log jg0jv
d` � 1 :
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Now, let � be the highest power of aT0 � bT1 that divides uPj � sQj . Using
(5.8), we see that we have

uPjCm`.T0; T1/� sQjCm`.T0; T1/ D .bT0 � aT1/�rmGjCm`.T0; T1/

for a polynomial GjCm` 2 KŒT0; T1�. Letting m go to infinity, we see from (5.8)
that

lim
m!1

log jGjCm`.a; b/jv
djCm`

D log jg0jv
dj .d ` � 1/ C

log jQj .a; b/jv
dj

:

Similarly, (5.6) yields

lim
m!1

log jQjCm`.a; b/jv
djCm`

D log jg0jv
dj .d ` � 1/ C

log jQj .a; b/jv
dj

:

Moreover, since uPjCm`.a; b/ D sQjCm`.a; b/ for everym, we have

lim
m!1

log jPjCm`.a; b/jv
djCm`

D lim
m!1

log jQjCm`.a; b/jv
djCm`

:

Hence

lim
m!1

log jGjCm`.a; b/jv
djCm`

D lim
m!1

log max.jPjCm`.a; b/jv; jQjCm`.a; b/jv/
d jCm`

;

which completes our proof in the case u 6D 0. The proof in the case u D 0 proceeds
in exactly the same way, using T0 in place of T1. ut

We have a similar result for the polynomials T0Pk � T1Qk. We write

T0Pk.T0; T1/� T1Qk.T0; T1/ D .bT0 � aT1/nkHk.T0; T1/

where Hk is a polynomial in KŒT0; T1� such that Hk.a; b/ 6D 0. The proof of
the following proposition is similar to Morton’s and Silverman’s proof of [MS95,
Lemma 3.4], but it requires a bit more detail since it yields information about
Hk.a; b/ as well as nk .

Proposition 5.5. With notation as above, we have

lim
k!1

log jHk.a; b/jv
dk

D lim
k!1

log max.jPk.a; b/jv; jQk.a; b/jv/
dk

: (5.9)

Furthermore, nk remains bounded as k goes to infinity.

Proof. If .ei /1iD1 is a strictly increasing sequence of integers such that 'ei .Œa W b�/ 6D
Œa W b� for each ei , then

Hei .T0; T1/ D T0Pei .T0; T1/ � T1Qei .T0; T1/
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for all ei . Hence, by Proposition 5.3, we have

lim
i!1

log jHei .a; b/jv
dei

D lim
i!1

log max.jPei .a; b/jv; jQei .a; b/jv/
d ei

:

If Œa W b� is not periodic, this finishes the proof. Thus, we may assume that Œa W b� is
periodic. The rest of the proof is a computation. We divide it into three steps.

Step I. We begin by changing variables so that Œa W b� becomes Œ0 W 1�. If b D 0, we
write U0 D T1=a and U1 D �T0. We then let

R.U0; U1/ D 1

a
Q.T0; T1/

and

S.U0; U1/ D �P.T0; T1/
(this is simply the inverse of the transformation we defined on T0 and T1; our change
of variables is obtained by conjugation by a change-of-basis matrix). If b 6D 0, we
write U1 D 1

b
T1 and

U0 D bT0 � aT1:
We then let S.U0; U1/ D Q.T0; T1/=b and

R.U0; U1/ D bP.T0; T1/ � aQ.T0; T1/:
We define Rk and Sk recursively by letting R1 D R, S1 D S , and setting

RkC1.U0; U1/ D Rk.R.U0; U1/; S.U0; U1//

and

SkC1.U0; U1/ D Sk.R.U0; U1/; S.U0; U1//:
By the construction of our change of variables, we have

U1Rk.U0; U1/� U0Sk.U0; U1/ D T0Pk.T0; T1/ � T1Qk.T0; T1/ (5.10)

as polynomials in T0 and T1. Hence, if Unk
0 is the highest power of U0 that divides

U1Rk.U0; U1/ � U0Sk.U0; U1/ and 
k is the coefficient of the Unk
0 U

dk�nk
1 term in

U1Rk.U0; U1/ � U0Sk.U0; U1/, then


k D Hk.a; b/:

Now let ` be the smallest positive integer for which '`.Œa W b�/ D Œa W b�. Note
that jSm`.1; 0/jv D jQm`.a;b/jv

jbjv if b 6D 0 and

jSm`.1; 0/jv D jPm`.a; b/jv=jajv
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otherwise. Since

ŒPm`.a; b/ W Qm`.a; b/� D Œa W b�
for everym, it follows that

lim
m!1

log jSm`.0; 1/jv
dm`

D lim
m!1

log max.jPm`.a; b/jv; jQm`.a; b/jv/
dm`

:

Thus, it will suffice to show that

lim
m!1

log j
m`jv
dm`

D lim
m!1

log jSm`.0; 1/jv
dm`

: (5.11)

We write

R`.U0; U1/ D
d`X

iD1
fiU

i
0U

d`�i
1

(note that U0 divides R` by our change of variables) and

S`.U0; U1/ D
d`X

iD0
giU

i
0U

d`�i
1 :

Using induction, we see that

Rm`.U0; U1/ � f m
1 g

.
Pm�1
jD0 d

j`/�m
0 U0U

dm`�1
1 .mod U 2

0 /

and

Sm`.U0; U1/ � g
Pm�1
jD0 d

j`

0 U dm`

1 .mod U 2
0 /:

Thus, we have

U1Rm`.U0; U1/� U0Sm`.U0; U1/

� g
Pm�1
jD0 d

j`

0 ..f1=g0/
m � 1/U0U dm`

1 .mod U 2
0 /: (5.12)

Step II. We will now treat the m for which .f1=g0/m 6D 1. We have

j log j.f1=g0/m � 1jv � h..f1=g0/m � 1/ � 2mŒK.f1=g0/ W K�h.f1=g0/

for all m such that .f1=g0/m 6D 1 (this is a simple version of Liouville’s
theorem), so

lim
m!1

.f1=g0/
m 6D1

log j.f1=g0/m � 1jv
dm`

D 0:
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Thus, dividing (5.12) through by U0, we obtain

lim
m!1

.f1=g0/
m 6D1

log j
m`jv
dm`

D lim
m!1

log jg
Pm�1
jD0 d

j`

0 jv
dm`

D lim
m!1

log jSm`.0; 1/jv
dm`

;

as desired.

Step III. We are left with treating the m for which .f1=g0/m D 1. Let � be the
smallest positive integer m such that .f1=g0/m D 1 and write ! D �`. For q � 1
we write

Rq!.U0; U1/ D
dq!X

iD1
x
Œq�
i U

i
0U

dq!�i
1

(the summation starts at 1 since U0 divides Rq!) and

Sq!.U0; U1/ D
dq!X

iD0
y
Œq�
i U

i
0U

dq!�i
1 :

Since f �
1 D g

�
0 by assumption, we have yŒ1�0 D x

Œ1�
1 by (5.12). Multiplying R!

and S! through by a constant will change all of the limits we are calculating by the
same fixed amount, so we may assume that yŒ1�0 D x

Œ1�
1 D 1. Let r be the smallest

integer greater than 0 such that xŒ1�r 6D y
Œ1�
r�1 (we have r � 2 since .f1=g0/m D 1).

Then U r
0 divides U1R! � U0S! , which in turn divides U1Rq! � U0Sq! for any q;

henceU r
0 dividesU1Rq!�U0Sq! for every q, so xŒq�j D yŒq�j�1 for j < r . To calculate

x
Œq�
r � yŒq�r�1, we introduce some notation: we let

 
MX

iD0
tiU

i
0U

M�i
1

!

j

D tj

for any polynomial
PM

iD0 tiU i
0U

M�i
1 . We have

xŒq�r � yŒq�r�1 D
rX

iD1
x
Œq�1�
i

�

.R!/
i .S!/

d.q�1/!�i�

r

�
r�1X

jD0
y
Œq�1�
j

�

.R!/
j .S!/

d.q�1/!�j�

r�1 : (5.13)

For any i < r , we have xŒ1�i D yŒ1�i�1, so .U0R!/i D .U1S!/i . Hence, we have

�

.R!/
j .S!/

d.q�1/!�j
�

r�1 D
�

.R!/
jC1.S!/d

.q�1/!�j�1
�

r
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for j > 0. For j D 0, we have

�

Sd
.q�1/!

!

�

r�1 D
��

R! C .xŒ1�r � yŒ1�r�1/U r
0 U

d!�r
1

�

Sd
.q�1/!�1

!

�

r

D
�

R!S
d.q�1/!�1
!

�

r
C .xŒ1�r � yŒ1�r�1/;

since yŒ1�0 D xŒ1�1 D 1.
Using equation (5.13), we see that

xŒq�r � yŒq�r�1 D
rX

iD1
x
Œq�1�
i

�

.R!/
i .S!/

dq!�i�

r

�
r�1X

jD0
x
Œq�1�
jC1

�

.R!/
jC1.S!/d

.q�1/!�j�1�

r
C .xŒ1�r � yŒ1�r�1/.xŒq�1�1 /

C .xŒq�1�r � yŒq�1�r�1 /
�

.R!/
r .S!/

d.q�1/!�r
�

r

D .xŒ1�r � yŒ1�r�1/.xŒq�1�1 /C .xŒq�1�r � yŒq�1�r�1 /;

We have yŒq�1�0 D xŒq�1�1 D 1, since yŒ1�0 D xŒ1�1 D 1. Thus, assuming inductively
that

xŒq�1�r � yŒq�1�r�1 D .q � 1/.xŒ1�r � yŒ1�r�1/;
we have

xŒq�r � yŒq�r�1 D q.xŒ1�r � yŒ1�r�1/: (5.14)

Note in particular that nq! D r for all q, so nk is bounded for all k, as desired.
Now

lim
q!1

log jq.xŒ1�r � yŒ1�r�1/jv
dq!

D 0

and 
q! D xŒq�r � yŒq�r�1. Since Sq!.1; 0/ is simply yŒq�1�0 D 1, we have

lim
q!1

log j
q!jv
dq!

D 0 D lim
q!1

log jSq!.0; 1/jv
dq!

;

which gives us (5.11) and thus completes our proof. ut
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5.3 Proofs of the main theorems

Now we can show that the integral
R

P1.Cv/
log jt � ˇjvd�';v can be computed by

taking the limit of the average of log jˇ � wjv on the points in '�k.˛/, as k ! 1,
for any nonexceptional point ˛.

Theorem 5.6. Let ˛ D Œs W u� be a nonexceptional point in P
1.K/. Then for any

nonzero polynomial F.t/ 2 KŒt� we have

Z

P1.Cv/

log jF jv d�';v D lim
k!1

1

dk

X

'k.ŒwW1�/D˛
F.w/ 6D0

log jF.w/jv;

where the Œw W 1� for which 'k.Œw W 1�/ D ˛ are counted with multiplicity.

Proof. The polynomial F factors as F.t/ D �
Qn
iD1.t � ˇi /, where � and

ˇ1; : : : ; ˇn are elements ofK . For each ˇi , the multiplicity of ˇi in .'k/�˛ is at most
r..'k/�˛/ (where r..'k/�˛/ is defined as in Section 4). Since ˛ is not exceptional,

we have limk!1 r..'k/�˛/

dk
D 0; by Lemma 5.1. Thus,

lim
k!1

1

dk

X

'k.ŒwW1�/D˛
w 6Dˇj

log jw� ˇj jv D lim
k!1

1

dk

X

'k.ŒwW1�/D˛
F.w/ 6D0

log jw � ˇj jv

for each ˇj . Hence, it suffices to show that

Z

P1.Cv/

log jt � ˇjv d�';v D lim
k!1

1

dk

X

'k.ŒwW1�/D˛
w 6Dˇ

log jw � ˇjv (5.15)

for any ˇ 2 K.
Note that 'k.Œw W 1�/ D Œs W u� if and only if uPk.w; 1/ � sQk.w; 1/ D 0. Thus,

as polynomials in t , we have

uPk.t; 1/ � sQk.t; 1/ D k
Y

'k.ŒwW1�/DŒsWu�
.t � w/;

where k 2 K. We write

uPk.t; 1/ � sQk.t; 1/ D .t � ˇ/wkGk.t; 1/
for a polynomialGk such that Gk.ˇ; 1/ 6D 0, as in Proposition 5.4. Note that

Gk.t; 1/ D k
Y

'k.ŒwW1�/D˛
w 6Dˇ

.t � w/:
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Plugging ˇ in for t and taking logs of absolute values gives

log jGk.ˇ; 1/jv D log jkjv C
X

'k.ŒwW1�/DŒsWu�
w 6Dˇ

log jw� ˇjv: (5.16)

Applying Proposition 4.4 therefore yields

lim
k!1

1

dk

X

'k.ŒwW1�/D˛
w 6Dˇ

log jw � ˇjv C log jkjv
dk

D lim
k!1

log max.jPk.ˇ; 1/jv; jQk.ˇ; 1/jv/
dk

: (5.17)

Now, writing

uPk.T0; T1/ � sQk.T0; T1/ D T wk
1 Vk.T0; T1/

for some polynomialVk such that Vk.1; 0/ 6D 0, we see that k D Vk.1; 0/. Applying
Proposition 4.4, we obtain

lim
k!1

log jkjv
dk

D lim
k!1

log max.jPk.1; 0/jv; jQk.1; 0/jv/
dk

:

Substituting this equality into (5.17) gives

lim
k!1

1

dk

X

'k.ŒwW1�/D˛
ŒwW1�6Dˇ

log jw� ˇjv D lim
k!1

log max.jPk.ˇ; 1/jv; jQk.ˇ; 1/jv/
dk

� lim
k!1

log max.jPk.1; 0/jv; jQk.1; 0/jv/
dk

:

(5.18)

Using Proposition 3.1, we obtain (5.15). ut
Now we show that the same result holds when we average log jˇ � wjv over

periodic points rather than inverse images of a point.

Theorem 5.7. For any any polynomial F 2 KŒt� we have

Z

P1.Cv/

log jF jv d�';v D lim
k!1

1

dk

X

'k.ŒwW1�/DŒwW1�
F .w/ 6D0

log jF.w/jv;

where the Œw W 1� for which 'k.Œw W 1�/ D w are counted with multiplicity.
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Proof. As in the proof of Theorem 5.6, it will suffice to show that

Z

P1.Cv/

log jt � ˇjv d�';v D lim
k!1

1

dk

X

'k.ŒwW1�/DŒwW1�
w 6Dˇ

log jw� ˇjv (5.19)

for any ˇ 2 K (this follows from the fact that the multiplicity of each ˇi as a
k-periodic point is bounded for all k by Proposition 5.5).

We have 'k.Œw W 1�/ D Œw W 1� if and only if Pk.w; 1/ � wQk.w; 1/ D 0. Thus,

Pk.t; 1/ � tQk.t; 1/ D �k
Y

'k.ŒwW1�/DŒwW1�
.t � w/;

for some �k 2 K . We write

Pk.t; 1/ � tQk.t; 1/ D .t � ˇ/nkHk.t; 1/

for a polynomialHk such that Hk.ˇ; 1/ 6D 0. We have

Hk.t; 1/ D �k
Y

'k.ŒwW1�/DŒwW1�
w 6Dˇ

.t � w/:

Then, pluggingˇ in for t , taking logs of absolute values, and applying Proposition
4.5 gives

lim
k!1

1

dk

X

'k.ŒwW1�/DŒwW1�
w 6Dˇ

log jˇ � wjv C log j�kjv
dk

D lim
k!1

log max.jPk.ˇ; 1/jv; jQk.ˇ; 1/jv/
dk

: (5.20)

Writing

T1Pk.T0; T1/ � T0Qk.T0; T1/ D T nk1 Wk.T0; T1/

for a polynomial Wk such that Wk.1; 0/ 6D 0, we see that �k D Wk.1; 0/. By
Proposition 4.5, we have

lim
k!1

log j�kjv
dk

D lim
k!1

log max.jPk.1; 0/jv; jQk.1; 0/jv/
dk

:

Combining this equality with (5.20) and Proposition 3 yields (5.19). ut
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We are now ready to prove the results regarding the computation of the canonical
height h'.ˇ/. First, we’ll need a lemma. Note that the lemma does not follow
directly from the work of Call and Goldstine [CG97], since they only prove that in
a fixed number field, the local canonical heights sum to the global canonical height.
What is required here is slightly different.

Lemma 5.8. Let ˇ D Œa W b� in P
1.K/. Let Œa1 W b1�; : : : ; Œan W bn� be the conjugates

of Œa W b� under the action of Gal.K=K/. Then

ŒK.ˇ/ W K�.degK/h'.Œa W b�/

D
X

places v of K

lim
k!1

nX

iD1

log max.jPk.ai ; bi /jv; jQk.ai ; bi /jv/
dk

: (5.21)

Proof. For all but finitely many v, we have jai jv D jbi jv D 1. Furthermore, for all
but finitely many v, we have

log max.jPk.s; t/jv; jQk.s; t/jv/ D 0 (5.22)

for all k whenever jsjv D jt jv D 1. This is true, for example, at all nonarchimedean
v of good reduction for ' in the sense of [PST04]. Indeed, when v is a finite place,
(5.22) will hold for all jsjv D jt jv D 1 unless either jRes.P.T0; 1/;Q.T0; 1//jv or
jRes.P.1; T1/;Q.1; T1//jv is less than 1, where Res is the usual resultant of two
polynomials (see [BK86, p. 279, Proposition 4]). Thus, we can interchange the limit
and the sum on the right-hand side of (5.21) so that

lim
k!1

X

places v of K

nX

iD1

log max.jPk.ai ; bi /jv; jQk.ai ; bi /jv/
dk

D
X

places v of K

lim
k!1

nX

iD1

log max.jPk.ai ; bi /jv; jQk.ai ; bi /jv/
dk

: (5.23)

Now let L be the field K.ˇ/ and let w be a place of L that extends the place v ofK;
we write w j v. The field L has n embeddings i W L ,! Cv; for exactly ŒLw W Kv�

of these embeddings, we have ji.x/jv D jxjw for all x 2 L. This yields ŒLw W Kv�

conjugates Œa0 W b0� of Œa W b� such that jajw D ja0jv and jbjw D jb0jw. Hence,
we see that

nX

iD1
log max.jPk.ai ; bi /jv; jQk.ai ; bi /jv/

D
X

wjv
ŒLw W Kv� log max.jPk.a; b/jw; jQk.a; b/jv/:
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Thus, we have

X

places v of K

nX

iD1
log max.jPk.ai ; bi /jv; jQk.ai ; bi /jv/

D ŒK.ˇ/ W K�.degK/h.'k.Œa W b�//;
by (1.0.6). It follows from (1.0.7) and (4.8.3) that we therefore have

X

places v of K

lim
k!1

nX

iD1

log max.jPk.ai ; bi /jv; jQk.ai ; bi /jv/
dk

D ŒK.ˇ/ W K�.degK/ lim
k!1

h.'k.Œa W b�//
dk

D ŒK.ˇ/ W K�.degK/h'.Œa W b�/: ut
Theorem 5.9. Let ˛ be any point in P

1.K/ that is not an exceptional point of '.
Then, for any ˇ 2 K and any nonzero irreducible F 2 KŒt� such that F.ˇ/ D 0,
we have

.degK/.degF /.h'.ˇ/ � h'.1//

D
X

places v of K

lim
k!1

1

dk

X

'k.ŒwW1�/D˛
F.w/ 6D0

log jF.w/jv;

where the Œw W 1� for which 'k.Œw W 1�/ D ˛ are counted with multiplicity.

Proof. Write F.t/ D �
Qn
iD1.t � ˇi / where � 2 K and the ˇi are the

conjugates of ˇ under the action of Gal.K=K/. By the product formula, we have
P

places v of K log j� jv D 0. Thus, using Theorem 4.6 and Proposition 2.1, we see that

X

places v ofK

lim
k!1

1

dk

X

'k.ŒwW1�/D˛
F.w/ 6D0

log jF.w/jv

D
X

places v of K

lim
k!1

1

dk

X

'k.ŒwW1�/D˛
F.w/ 6D0

log

ˇ
ˇ
ˇ
ˇ
ˇ

nY

iD1
.w � ˇi /

ˇ
ˇ
ˇ
ˇ
ˇ
v

D
nX

iD1
lim
k!1

log max.jPk.ˇi ; 1/jv; jQk.ˇi ; 1/jv/
dk

�.degF / lim
k!1

log max.jPk.1; 0/jv; jQk.1; 0/jv/
dk

: (5.24)
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By Lemma 4.8, the quantity on the last two lines is equal to

.degF /.degK/.h'.ˇ/ � h'.1//;
as desired. ut
Theorem 5.10. For any ˇ 2 K and any nonzero irreducible F 2 KŒt� such that
F.ˇ/ D 0, we have

.degK/.degF /.h'.ˇ/ � h'.1//

D
X

places v of K

lim
k!1

1

dk

X

'k.ŒwW1�/DŒwW1�
F .w/ 6D0

log jF.w/jv;

where the Œw W 1� for which 'k.Œw W 1�/ D w are counted with multiplicity.

Proof. The proof is the same as the proof of Theorem 4.9, using Theorem 5.7 in
place of Theorem 5.6. ut

6 A counterexample

The main theorems of this paper are not true when we work over the complex
numbers C rather than K. Let K D Q and let '.Œx W y�/ D Œx2 W y2� be the
usual squaring map. Let v be the archimedean place of Q, so that Cv is just the usual
complex numbers C. We define the function  on the positive integers recursively
by  .1/ D 2 and  .n/ D 2.n .n�1//. Let ˛ D P1

nD1 1= .n/ and let ˇ D e2�i˛ .
Note that for any t , we have je2�it �1j � �.t � Œt �/ (where Œt � is the greatest integer
less than or equal to t). Letting `n D log2  .n/, we then have

1

2`n

X

w2`nD1
log jw � ˇjv D log jˇ .n/ � 1j

 .n/

� 1

 .n/
log.� . .n/˛ � Œ .n/˛�//

� 1

 .n/
log

0

@�
 .n/

 .nC 1/
1X

jD0

1

2j .nC1/

1

A

� log� C 1 � n log 2C log 2:
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Thus, 1

2`n

P

w2`nD1 log jˇ � wjv goes to �1 as n!1, so

lim
k!1

1

2k

X

w2kD1
log jw � ˇjv

does not exist.

7 Applications and further questions

7.1 Lyapunov exponents

The Lyapunov exponent L.'/ of a rational map ' W P1
C
�! P

1
C

(see [Mañ88]) can
be defined as follows. Choosing coordinates ŒT0 W T1� for P1

C
, letting t D T0=T , and

writing '.t/ D P.t/=Q.t/ for polynomials P andQ, we define

L.'/ D
Z

P1.C/

log j' 0.t/jd�';

where �' is the unique measure of maximal entropy measure for ' on P
1; this

measure of maximal entropy is the same as the Brolin–Lyubich measure discussed
in Section 3 (see [Mañ83]).

The Lyapunov exponent can be computed via equidistribution on certain sub-
sequences of inverse images of nonexceptional points in P

1.C/ (see [DeM03],
[Mañ88]). That is, given a nonexceptional point ˛ in P

1.C/, there is an infinite
strictly increasing sequence of integers .mi /

1
iD1 such that

L.'/ D lim
i!1

1

.deg'/mi

X

'mi .ˇ/D˛
'0.ˇ/ 6D0
ˇ 6D1

log j' 0.ˇ/j:

It is not known, however, whether L.'/ can be computed by taking the limit of the
average ' 0 on the periodic points of '.

When ' is defined over a number fieldK , however, we obtain the following result
as a corollary of 5.17 Theorem.

Corollary 7.1. Let K be a number field and let ' W P1
C
�! P

1
C

be a nonconstant
rational map that is defined via base extension from a map ' W P1K �! P

1
K . Let ' 0

be defined as above. Then

L.'/ D lim
k!1

1

.deg'/k
X

'k.�/D�
'0.�/ 6D0
� 6D1

log j' 0.�/j:
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Proof. We may write ' 0 as a quotient of polynomials A.t/=B.t/ with coefficients
in K . This yields log j' 0.t/j D log jA.t/j � log jB.t/j. The corollary then follows
immediately from Theorem 5.7. ut

This corollary says that if ' is a rational function defined over a number field,
then the Lyapunov exponent of ' is completely determined by the derivative of ' at
the periodic points of '. This means that the derivative of ' at the periodic points of
' also determines the Hausdorff dimension of the Julia set (see [FLM83]).

7.2 Computing with points of small height

The results in [Bil97], [Aut01], [BR06], [FRL04], [FRL06], and [CL06] all apply
not only to the periodic points and backwards iterates of a point that we treat in this
paper but to all points of small height in the algebraic closure of a number field K .
For example, one of the main theorems in [BR06], [FRL04], [FRL06], and [CL06]
states that for any continuous function g on P

1.Cv/ and any infinite nonrepeating
sequence of points .˛n/ in P

1.K/ such that limn!1 h'.˛n/ D 0, one has

lim
n!1

1

jGal.˛n/j
X

�2Gal.˛n/

g.˛�n / D
Z

P1.Cv/

g d�v;' ; (7.1)

where Gal.˛n/ is the Galois group of the Galois closure ofK.˛n/ overK .
Baker, Ih, and Rumely [BIR08] and Autissier ([Aut06]) have produced coun-

terexamples that show that (6.1.1) does not always hold when the function g is
replaced with log jF jv for F a polynomial. All of these examples involve infinite
nonrepeating sequences of points .˛n/ 2 NQ such that limn!1 h.˛n/ D 0 and

lim
n!1

1

jGal.˛n/j
X

�2Gal.˛n/

log j˛�n � 2j 6D
Z 1

0

log je2�i� � 2jd�:

The points .˛n/ are not preperiodic in any of these examples. Thus, it may be
possible to prove that the main results of this paper continue to hold when we work
with any nonrepeating sequence of Galois orbits of preperiodic points. This would
imply the following conjectured generalization of Siegel’s theorem for integral
points.

Conjection 7.2 (Ih). For any nonpreperiodic point ˇ 2 P
1
oK
.K/, there are at most

finitely many preperiodic points of ' in P
1
oK
.K/ that are integral relative to ˇ. (Here,

oK is the ring of integers ofK and ˛ is said to be integral relative to ˇ if the Zariski
closure of ˛ does not meet the Zariski closure of ˇ in P

1
oK

.)
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Baker, Ih, and Rumely have proven that this is true when ' is a Lattès map or the
usual squaring map x 7! x2 . Using Theorem 5.10 and arguing as in [BIR08] (or
as in [Sil93], which presents a related result), it is possible to derive the following
weak version of Ih’s conjecture in general.

Proposition 7.3. For any nonpreperiodic point ˇ 2 P
1.K/, there are at most

finitely many n such that all ˛ 2 P
1.K/ of period n are ˇ-integral.
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[FLM83] A. Freire, A. Lopes, and R. Mañé, An invariant measure for rational maps, Bol. Soc.
Brasil. Mat. 14 (1983), no. 1, 45–62.



638 L. Szpiro and T. J. Tucker
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Abstract We give some properties of admissible smooth representations of a
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1 Introduction

La théorie des représentations lisses des groupes réductifs p-adiques sur un corps de
caractéristique p en est à ses débuts, et un expert des représentations sur un corps de
caractéristique différente de p est désemparé sans mesure de Haar. Nous avons réuni
ici quelques propriétés de l’admissibilité, qui sont des applications assez faciles de
trois théories: la dualité de Pontryagin, bien connue des arithméticiens p-adiques,
l’équivalence de catégories de Ollivier pour GL.2;Qp/=p

Z, et les propriétés de
finitude des Z-algèbres de Hecke d’un pro-p-sous-groupe d’Iwahori.
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Soit L un corps commutatif localement compact de caractéristique 0, d’anneau
des entiers OL, d’uniformisante pL, de corps résiduel kL de caractéristique p.
Posons A WD L;OL ou kL.

Soit G un groupe analytique p-adique, ou ce qui est équivalent: G contient un
pro-p-sous-groupe ouvert isomorphe à un sous-groupe fermé deGLd .Zp/ for some
d � 1 [4] 8.33 page 201 et Interlude A (o),(n) page 97.

Une A-représentation V de G est un A-module topologique sur lequel G opère
continûment. Selon que A D L;OL; kL, on dit que V est p-adique, p-adique
entière, modulo p.

Pour toute partie H de G, on note V H le A-sous-module des v 2 V fixes par
chaque élément de H . Lorsque V D [HV H où H parcourt les sous-groupes
ouverts compacts de G, on dit que V est lisse.

Une A-représentation lisse V telle que V H est un A-module de type fini pour
tout sous-groupe ouvert compactH de G, est appelée admissible.

Si V est un OL-module discret de torsion, l’action continue de G sur V est lisse;
on dit que V est une représentation p-adique de torsion de G.

Soit
0! V1 ! V2 ! V3 ! 0

une suite exacte de A-représentations lisses de G. Si V2 est admissible, alors V1 est
admissible, et si V1 et V3 sont admissibles, alors V2 est admissible, car l’anneau A
est noetherien.

Si A D L, l’existence d’une mesure de Haar sur G à valeurs dans L implique
l’exactitude du foncteur V ! V H , et la stabilité de l’admissibilité par quotient.
Pour A D OL; kL, le foncteur V ! V H n’est pas exact à droite et l’on se demande
si la stabilité par quotient de l’admissibilité reste vraie.

Nous allons montrer que la réponse est oui si V est une représentation
p-adique entière annulée par une puissance de p, en particulier si V est une
représentation modulo p, en utilisant la dualité de Pontryagin et le lemme de
Nakayama topologique [1].

Soit U un pro-p-sous-groupe ouvert fixé de G et soit V une représentation
p-adique entière de G telle que pkV D 0 pour un entier k � 1. Le dual de
Pontryagin V _ est toujours annulé par pk , et par restriction à U c’est un module
profini sur la OL-algèbre d’Iwasawa de U . La dualité de Pontryagin échange les
U -invariants V U et les U -coinvariants .V _/U et respecte la propriété d’être fini.
En appliquant le lemme de Nakayama topologique, on obtient le théorème 4 qui
implique les deux théorèmes suivants.

Théorème 1. V est admissible si et seulement si V U est fini.

On comparera avec le résultat de Paskunas [6]: toute représentation lisse V sur
un corps k de caractérisque p d’un groupe topologiqueG contenant un pro-p-sous-
groupe ouvert U telle que dimk V

U < 1 est admissible. La démonstration basée
sur les enveloppes injectives, n’utilise ni la dualité de Pontryagin ni le lemme de
Nakayama.

Théorème 2. Si V est admissible, tout sous-quotient de V est admissible.
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Un groupe réductif p-adique est le groupe des points rationnels d’un groupe
réductif connexe sur une extension finie de Qp; c’est un groupe analytiquep-adique.
Le groupe des points rationnels d’un groupe réductif connexe sur corps local de
caractéristique p n’est pas un groupe analytique p-adique.

Corollaire 1. Si V est une représentation admissible d’un sous-groupe de Levi
d’un sous-groupe parabolique P d’un groupe réductif p-adique G, alors tout sous-
quotient de l’induite parabolique indG

P V est admissible.

En effet [9] I.V.6, l’induction parabolique respecte l’admissibilité puisque G=P
est compact par la décomposition d’Iwasawa, la propriété d’être entière et annulée
par pk .

La seule représentation irréductible deU sur kL est isomorphe à la représentation
triviale de dimension 1, et le foncteur d’induction compacte indG

U est exact. Cette
remarque et le théorème 2 impliquent

Corollaire 2. Une représentation de type fini V de G sur kL admet une filtration
G-équivariante finie de quotients cycliques engendrés par un vecteur U -invariant.
Si V est admissible, les quotients sont aussi admissibles.

Dans le cas très particulier où G D GL.2;Qp/=p
Z; l’on sait beaucoup plus. La

raison est la suivante:
Soit I1 le sous-groupe des matrices de GL.2;Zp/ congrues au sous-groupe

strictement triangulaire supérieur deGL.2;Fp/modulop, appelé unp-sous-groupe
d’Iwahori deGL.2;Qp/, et qui tient lieu de p-sous-groupe de Sylow. On l’identifie
à son image (isomorphe) dans G. Sa Z-algèbre de Hecke HZ.GL.2;Zp/; I1/ est un
module de type fini sur un anneau commutatif de type fini ([10] th.3), c’est donc
une algèbre noetherienne. Soit Fp une clôture algébrique de kL. Par le théorème
d’équivalence de Ollivier [7], la catégorie des modules à droite de HFp .G; I1/ est

équivalente à celle des représentations lisses de G sur Fp qui sont engendrées par
leur vecteurs invariants par I1 [7].

En utilisant la filtration (corollaire 2) nous obtenons le résultat (bien connu pour
les représentations complexes ou modulo ` d’un groupe réductif p-adique):

Théorème 3. La catégorie des Fp-représentations de GL.2;Qp/=p
Z est noetheri-

enne, et une Fp-représentation de GL.2;Qp/=p
Z est admissible de type fini si et

seulement si elle est de longueur finie.

On peut remplacer les données Fp ou GL.2;Qp/=p
Z du théorème par kL ou

GL.2;Qp/, si le théorème d’équivalence de Ollivier est valable avec ces nouvelles
données.

On ne sait pas si une représentation irréductible V d’un groupe réductif p-adique
G sur un corps algébriquement clos C de caractéristique p, est admissible ou a un
caractère central (c’est vrai si la caractéristique deC est différente de p). On sait que
V irréductible a un caractère central siC est non dénombrable (preuve classique), ou
si V est admissible (V I1 de dimension finie contient une droite stable par le centre),
ou si G est déployé et leHFp .G; I1/-module V I1 contient un module simpleM (car
M a un caractère central ([11] 5.3 plus [10])).



642 M.-F. Vignéras

2 Dualité de Pontryagin

On note Modtor la catégorie abélienne des OL-modules discrets de torsion et
des applications OL-linéaires, et Modprof la catégorie abélienne des OL-modules
profinis et des applicationsOL-linéaires continues.

Tout V 2 Modtor est la limite inductive de ses OL-sous-modules finis W , muni
de la topologie de la limite inductive [2] AII.93; les applications de transition étant
les inclusions. ToutM 2 Modprof est la limite projective de ses quotients M=N par
les OL-sous-modules ouverts N , muni de la topologie de la limite projective; les
applications de transition sont les surjections.

Une application linéaire continue dans Modprof est fermée car un OL-module
profini est compact et séparé [3] I.63.

La dualité de Pontryagin

E_ WD HomOL.E;L=OL/

pour E D V ou M , satisfait .E_/_ D E, elle échange limites inductives
et projectives (topologies comprises), L=OL et OL, et induit une équivalence
contravariante entre Modtor et Modprof.

On considère les sous-catégories abéliennes Modtor.G/ � Modtor et Modprof

.G/ � Modprof des OL-modules discrets de torsion ou profinis munis d’une
application continue de G. Le groupe G agit continuement sur E D V ou M si
l’application

.g; x/! gx W G �E ! E

est continue comme fonction des deux variables. Alors V 2 Modtor.G/ est la limite
inductive de ses OL-sous-modules finis W stables par G, et M 2 Modprof.G/ est la
limite projective de ses quotients par lesOL-sous-modules ouvertsN stables par G.
L’action contragrédiente du groupe G sur le dual de PontryaginE_ est définie par

.gx�; gx/ D .x�; x/ .g 2 G; x 2 E; x� 2 E�/:

La dualité de Pontryagin induit une équivalence contravariante entre Modtor.G/ et
Modprof.G/.

Soit H un groupe profini topologiquement de type fini (par exemple un sous-
groupe fermé de G [4] prop. 3.11, page 51). Soit E D V 2 Modtor.H/ ou E D
M 2 Modprof.H/ .

Le submodule EH � E des H -invariants de E est fermé car l’action de H est
continue. Le module EH des H -coinvariants de E est E=E.H/ où E.H/ est le
OL-sous-module de E engendré par

gx � x .g 2 H;x 2 E/:
Proposition 1. (1) E.H/ est fermé dans E.
(2) La dualité de Pontryagin échange invariants et coinvariants

.EH/_ D .E_/H ; et .E=EH/_ D E_.H/ :
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Preuve. (1) Tout sous-module de E D V est fermé (la topologie est discrète) et le
problème ne se pose que pour E D M . Soit XH un ensemble fini engendrant
un sous-groupe dense H 0 de H . Le OL-sous-module M 0 de M engendré par
.h � 1/M pour h 2 XH est fermé car M est compact. On a M.H 0/ D M 0 car
l’égalité

h1 : : : hrm �m D h1h2 : : : hrm � h2 : : : hrmC h2 : : : hrm �m

pour h1; : : : ; hr 2 XH et m 2 M , montre par induction sur r que h1 : : : hrm �
m 2 M 0. La continuité de l’action de H implique que M.H 0/ D M.H/. Donc
M.H/ D M 0 est fermé dansM .

(2) f 2 E_ s’annule sur E.H/ si et seulement si f est invariant par H ,

.E_/H D .EH/_:
Remplaçons E par E_, puis prenons le dual de Pontryagin et l’on obtient
.EH/_ D .E_/H . Ceci implique .E=EH/_ D E_.H/ car l’on a la suite
exacte

1! .E=EH/_ ! E_ ! .EH/_ ! 0:

3 Le lemme de Nakayama

Module signifiera module à gauche. Si A est un anneau et N un A-module, on note
dA.N / 2 N[1 le nombre minimal de générateurs du A-module N .

Proposition 2. [1] �3 (Lemme de Nakayama)
Soient A un anneau topologique compact, N un A-module profini et I un idéal

bilatère topologiquement nilpotent de A. Alors

dA.N / D dA=I .N=I /:
Soit U un pro-p-sous-groupe de rang fini (par exemple un pro-p-sous-groupe

fermé de G). Un OL-module profini muni d’une action continue de U s’identifie à
un module profini sur la OL-algèbre d’Iwasawa

� WD OLŒŒU �� D lim �
U 0

OLŒU=U
0�

où U 0 parcourt les sous-groupes distingués d’indice fini de U . Comme U est de
rang fini, un sous-groupe est ouvert si et seulement s’il est d’indice fini, l’anneau
compact � est local, sa topologie est celle donnée par les puissances de son
radical, et � est noetherien à gauche et à droite [8] �2.2.7. Tout idéal propre de �
est topologiquement nilpotent. Le noyau IU de l’homomorphisme d’augmentation
�! OL est l’idéal à gauche engendré par

u � 1 .u 2 XU /
où XU est un sous-ensemble fini de U engendrant topologiquement U . Le radical
de � est l’idéal engendré par IU et pL [5] 2.1.8.



644 M.-F. Vignéras

Proposition 3. SoitN 2 Modprof.U /. Pour tout sous-groupe distingué d’indice fini
U 0 � U , on a

d�.N / D dOLŒU=U 0 �.NU 0/:

En particulier d�.N / D dOL.NU /.
Preuve. Soit IU=U 0 le noyau du morphisme canonique surjectif � ! OLŒU=U

0�.
Comme idéal à gauche, IU=U 0 est engendré par u� 1 pour u dans un sous-ensemble
XU 0 fini de U 0 engendrant topologiquement U 0. L’espace des U 0-coinvariants de
N est

NU 0 D N=IU=U 0N:

On applique le lemme de Nakayama à .�;N; IU=U 0/.

Corollaire 3. Les propriétés suivantes sont équivalentes:

i. N est un �-module de type fini,
ii. NH est un OL-module de type fini pour un sous-groupe d’indice finiH de U .

iii. NH est un OL-module de type fini pour tout sous-groupe d’indice fini H de U .

Preuve. Un sous-groupe d’indice finiH deU contient un sous-groupe distinguéU 0
d’indice fini de U . La proposition 3 implique que N est un �-module de type fini
si et seulement si NU 0 est un OL-module de type fini. Il reste à montrer que NH est
un OL-module de type fini si et seulement si NU 0 est un OL-module de type fini.
La OL-algèbre d’Iwasawa de H est un module libre de type fini sur celle de U 0,
engendrée par les images d’un système de représentants de H=U 0. Donc

dOLŒŒH��.N / � dOLŒŒU 0 ��.N / � ŒH W U 0�dOLŒŒH��.N /:
On applique le cas particulier de la proposition 3 à U 0 et à H et le corollaire est
démontré.

Corollaire 4. Soit U 0 un sous-groupe ouvert distingué de U . Alors

dOL.NU / � dOL.NU 0/ � ŒU W U 0� dOL.NU /:

4 Application à l’admissibilité

Soit V une OL-représentation lisse de G annulée par pk pour un entier k � 1. Soit
U un pro-p-sous-groupe ouvert de G.

Théorème 4. (1) Les propriétés suivantes sont équivalentes:

i. V est admissible.
ii. Le dual de Pontryagin V _ restreint àH est unOLŒŒH��-module de type fini,

pour tout sous-groupe ouvert compactH de G.
iii. Le dual de Pontryagin V _ restreint à U est unOLŒŒU ��-module de type fini.
iv. V U est fini.
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(2) Si U 0 est un sous-groupe d’indice fini distingué dans U , alors

dOL.V
U / � dOL.V U 0

/ � ŒU W U 0� dOL.V U /:

Preuve. La dualité de Pontryagin respecte la propriété d’être fini (et non d’être un
OL-module de type fini), d’être annulé par pk (et non d’être de torsion), et échange
U -invariants etU -coinvariants (proposition 1). UnOL-module de torsion est de type
fini si et seulement s’il est fini. On en déduit que V est admissible si et seulement
si .V _/H est un OL-module de type fini, pour tout sous-groupe ouvert compact H
de G. On applique alors les corollaires 3, 4.

Nous démontrons le théorème 2. Un quotient W de V est annulé par pk .
La dualité de Pontryagin est contravariante donc W _ est un sous-module de V _.
L’anneau OLŒŒU �� est noetherien donc si V _ est un OLŒŒU ��-module de type fini, il
en est de même du OLŒŒU ��-sous-module W _. Si V est admissible, W l’est aussi
par le théorème 4.

5 Représentations de type fini

Soit U un pro-p-sous-groupe ouvert de G et soit V une représentation de type fini
de G sur kL. Nous allons montrer que V admet une filtration G-équivariante finie
de quotients de type fini engendrés par leur U -invariants.

Soient v1; : : : ; vr un système fini de générateurs de V , et soitW la représentation
de U engendrée par ces éléments dans V . Comme V est lisse, dimk W est fini.
La représentation V est quotient de la représentation induite compacte indG

U .W /.
La seule représentation irréductible de U sur kL est isomorphe à la représentation
triviale de dimension 1, et le foncteur d’induction compacte indG

U est exact. La
représentation finie W de U sur kL a une filtration U -equivariante de longueur
r D dimk W ,

0 � W1 � � � � � Wr D W avec dimk Wi=Wi�1 D 1 ;

induisant une filtration G-equivariante,

0 � indG
H.W1/ � � � � � indG

U .Wr/ D indG
U .W /

de quotients isomorphes

indG
U .Wi/= indG

U .Wi�1/ ' indG
U .1kL/

pour tout 1 � i � r . L’image de cette filtration par l’application surjective
canonique indG

U .W /! V est une filtration G-equivariante de V ,

0 � V1 � � � � � Vr D V
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de quotients isomorphes à des quotients (éventuellement nuls) du “module uni-
versel” indG

U .1kL/. Si de plus V est admissible, les quotients sont admissibles
(théorème 2). Le corollaire 2 est démontré.

Nous remarquons que si V 0 est une sous-représentation de G, la filtration induite
par celle de V sur V 0,

0 � V 01 � � � � � V 0r D V 0 ; V 0i WD V 0 \ Vi ;

a ses quotients isomorphes à des sous-quotients du module universel indG
U .1kL/. On

déduit de la démonstration du corollaire 2 et de cette remarque:

Proposition 4. Si tout sous-quotient de indG
U .1kL/ est de type fini, alors la catégorie

des représentations de G sur kL est noetherienne.
Si tout quotient admissible de indG

U .1kL/ est de longeur finie, alors toute
représentation admissible de type fini de G sur kL est de longeur finie.

Ces propriétés sont vérifiées pour G D GL.2;Qp/=p
Z, par l’équi-valence de

catégories [7] et la noetheriannité de HkL.G; I1/ [10]. Le théorème 3 est démontré.
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approximation, with a sheaf of ideals in place of the normal crossings divisor. This
is done by using a correction term involving a multiplier ideal sheaf. This new
conjecture trivially implies earlier conjectures in Nevanlinna theory or diophantine
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not provide anything new, it may be a more convenient formulation for some
applications.
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in the number field case, and a similar inequality is conjectured for Nevanlinna
theory. Here a is the ideal sheaf associated to D and I �.a/ is a type of multiplier
ideal sheaf. For other notations, see Sections 1 and 2 and Conjectures 4.1 and 4.2.

Dropping the condition on D is possible here because of the additional term
�mS.I �.a/; P / on the left-hand side of the inequality.

This may be a more convenient formulation for some applications. Also, this
conjecture shows how multiplier ideal sheaves may have a role in Nevanlinna theory
and diophantine approximation, and therefore may give more information on the
structure of the situation.

Section 1 briefly describes multiplier ideal sheaves, and gives a variant definition
specific to this situation. It also includes related definitions. Section 2 recalls the
standard definitions in Nevanlinna theory, as well as their counterparts in number
theory, that are needed in this paper. Section 3 describes proximity functions for
sheaves of ideals, using work of Silverman and Yamanoi. Sections 4 and 5 form the
heart of the paper, giving the conjectures and showing their equivalence to previous
conjectures.

Throughout this paper, X is a smooth complete variety over C (in the case
of Nevanlinna theory) or over a global field of characteristic zero (in the case
of Diophantine approximation). For the purposes of this paper, a global field is a
number field or a function field of dimension one.

Acknowledgements Supported by NSF grants DMS-0200892 and DMS-0500512.

1 Multiplier ideal sheaves

Definition 1.1. Let f WX ! Y be a morphism of smooth varieties. Then the
relative canonical divisor KX=Y of X over Y is defined to be the divisor class

KX=Y D KX � f �KY ;

where KX and KY are the canonical divisor classes on X and Y , respectively. As
Lazarsfeld notes [3, below (9.1)], if f is a proper birational morphism then KX=Y

is represented by a unique effective divisor supported on the exceptional locus of
f ; a local equation is given by the determinant of the derivative, det.df /. In other
words, this is the ramification divisor.

Definition 1.2. A Weil divisor D on X is reduced if it is effective and all prime
divisors occurring in it have multiplicity 1. IfD DP niDi is a Weil divisor, written
such that the Di are distinct prime divisors and ni ¤ 0 for all i , then Dred denotes
the divisor

P
Di .

Definition 1.3. A subset of X has normal crossings if it is defined in a neigh-
borhood of any point by an equation in local analytic coordinates of the form
z1 � � � zr D 0 (and therefore is of pure codimension 1). A divisorD onX is a normal
crossings divisor if it is reduced and if its support has normal crossings.
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Definition 1.4. Let D D P
niDi be a Weil Q-divisor, where ni 2 Q for all i and

the Di are distinct prime Weil divisors. Then the floor of D is the divisor

bDc D
X

bnicDi :

Note that this definition does not respect linear or numerical equivalence.

Definition 1.5. Let a be a nonzero sheaf of ideals on X , and let c 2 R�0. Let
�WX 0 ! X be a proper birational morphism such that X 0 is a smooth variety and

��.a/ D OX 0.�F /
for a divisor F onX 0 with normal crossings support. Then the multiplier ideal sheaf
associated to a and c is the ideal sheaf

I .ac/ D ��OX 0
�

KX 0=X � bcF c
�

:

By a theorem of Esnault and Viehweg [3, Thm. 9.2.18], this definition is
independent of the choice of �.

For our purposes we need a slightly different definition.

Definition 1.6. Let a and c be as above. We then define

I �.ac/ D lim
�!0C

I .ac��/:

Here we use the discrete topology on the set of ideal sheaves on X , and note that
the limit exists because there are only finitely many coefficients in b.c � �/F c.

We also write I .a/ D I .a1/ and I �.a/ D I �.a1/.

Example 1.7. Let D be a normal crossings divisor on X and let a D O.�D/. Then
we can take X 0 D X , in which case F D D and

KX 0=X D b.1 � �/F c D 0;
so I �.a/ D OX (the ideal sheaf corresponding to the empty closed subscheme).
More generally, if D is effective and has normal crossings support but is not
necessarily reduced, then b.1 � �/F c D D �Dred, and therefore

I �.O.�D// D O.�.D �Dred//:

2 Definitions from Nevanlinna theory

This section gives, for the convenience of the reader, various standard definitions
from Nevanlinna theory, as well as their counterparts in number theory.
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We start with the standard definitions of Nevanlinna theory. First, a Weil function
for a divisorD on X is a continuous function �D WX n SuppD ! R such that if D
is locally represented by a principal divisor .f / on an open set U , then �DC log jf j
extends to a continuous function on all of U .

For a holomorphic curve f WC ! X whose image does not lie in SuppD, the
proximity function for f relative to D is then defined as

mf .D; r/ D
Z 2�

0

�D.f .re
i� //

d�

2�

for all r > 0. This depends on the choice of Weil function �D forD, but this affects
the proximity function only by a bounded amount (depending only on the two Weil
functions).

To define the counting function of f relative to D, we first let ordz � denote the
multiplicity of an analytic divisor � on C at a point z. The counting function for f
with respect to D is then

Nf .D; r/ D
X

0<jzj<r
.ordz f

�D/ log
r

jzj C .ord0 f �D/ log r; (2.1)

and the characteristic (or height) function is defined to be

TD;f .r/ D mf .D; r/CNf .D; r/:
It is well known that the latter depends up to O.1/ only on the linear equivalence
class ofD, so it is possible to define the characteristic function TD;f .r/ for a divisor
class D (or for a line sheaf).

Definition 2.2. A divisor D on X is big if there is a constant c > 0 such that
h0.X; nD/ � cndimX for all sufficiently large and divisible integers n.

It is known, and easy to check, that the proximity, counting, and height functions
are linear inD. Moreover, ifD is a big divisor and f has Zariski-dense image, then
the height is as big as possible, up to a multiplicative constant. If D is big and D0
is another divisor, then TD0;f .r/ � c TD;f .r/ C O.1/ for some constant c. Thus,
heights relative to big divisors occur frequently in error terms. For details on these
assertions, see [7, � 11].

A slightly more general situation involves finite ramified coverings. These
correspond to considering algebraic points instead of rational points in number
theory. The general setup is that B is a connected Riemann surface, pWB ! C

is a proper surjective holomorphic map, and f WB ! X is holomorphic.

B
f�����! X

?
?
yp

C

(2.3)
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For real r > 0 let

Bhri D fb 2 B W jp.b/j D rg
and B.r/ D fb 2 B W jp.b/j < rg;

and let 	 be the measure

	 D 1

degp
p�
 

d�

2�

!

on Bhri.
Then the proximity function can be defined in this context as

mf .D; r/ D
Z

Bhri
�d ı f � 	;

and the counting function can be defined as

Nf .D; r/ D Nf �D.r/;
where

N�.r/ D 1

degp

0

@
X

b2B.r/np�1.0/
.ordb �/ log

r

jp.b/j C
X

b2p�1.0/
.ordb �/ log r

1

A

(2.4)

for an analytic divisor � on B . We also define the ramification counting function
for p to be

NRam.p/.r/ D NR.r/ ;
where R is the ramification divisor of p.

For more details on these definitions, see [7, � 26].
The corresponding definitions in the number field (or global field) case are as

follows.
Let k be a global field, and let Mk denote its set of places. If k is a number field,

then Mk is the disjoint union of a set S1, which is in one-to-one correspondence
with the set of embeddings 	 W k ,! C modulo complex conjugation, and a set which
is in one-to-one correspondence with the set of nonzero prime ideals of the ring of
integers Ok of k. Norms k � kv associated to places v 2 Mk are normalized so that
if v 2 S1, then kxkv D j	.x/jŒkvWR
, where v corresponds to 	 W k ,! C and kv is
the local field at v; and if v … S1, then k�kv D .Ok W p/�1, where v corresponds
to p � Ok and � 2 p n p2. For function fields, the set of places and their associated
norms is assumed to be given with the function field, and S1 D ;. For either type
of field, the product formula

Y

v2Mk

kxkv D 1

holds for all x 2 k� (by assumption, in the case of function fields).
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Let D be a divisor on X . A Weil function �D is a real-valued function on
`

v2Mk
.X n SuppD/. Nkv/; its restriction to .X n SuppD/. Nkv/ is denoted �D;v. Each

�D;v is similar to a Weil function in Nevanlinna theory, normalized like � log kf kv,
but there are additional conditions as v varies, as well as extra considerations due to
the fact that Nkv is not locally compact. The details are too extensive to give here; see
[2, Ch. 10]. Another (incomplete) reference is [7, � 8].

Now let P 2 X.k/ be a point not lying on the support of D, and let S � S1 be
a finite set of places of k. Then the proximity function for P relative to D (and S ) is
defined as

mS.D;P / D
X

v2S
�D;v.P /;

the counting function is defined as

NS.D;P / D
X

v…S
�D;v.P /;

and the height is defined as

hD;k.P / D mS.D;P /CNS.D;P / D
X

v2Mk

�D;v.P /:

These are linear in D, and again the height depends up to O.1/ only on the linear
equivalence class of D. These definitions depend on the choice of Weil function
�D , but only up to a constant depending only on the Weil functions involved. The
definitions also depend on k, but k may be omitted from the notation since it is
usually fixed.

As in the case of Nevanlinna theory, if ˙ � X.k/ is a set for which all infinite
subsets are Zariski-dense, if D is a big divisor, and if D0 is any other divisor,
then hD0;k.P / � c hD;k.P / C O.1/ for some constant c. For more details, see
[7, Sects. 9–10].

These definitions generalize to points P 2 X. Nk/ as follows. Assume P …
SuppD, and let L be a finite extension of k containing k.P /. For places w 2 ML

we write w j S if w lies over a place v 2 S , and w − S otherwise. Noting that
NLw D Nkv if w j v, we write �D;w D ŒLw W kv
�D;v. We then define the proximity,
counting, and height functions as

mS.D;P / D 1

ŒL W k

X

w2ML
wjS

�D;w.P /;

NS.D;P / D 1

ŒL W k

X

w2ML
w−S

�D;w.P /;
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and

hD;k.P / D mS.D;P /CNS.D;P / D 1

ŒL W k

X

w2ML

�D;w.P /:

These expressions do not depend on the choice of L.
Corresponding to NRam.p/.r/ in Nevanlinna theory, we consider the discriminant

of k.P / for an algebraic point:

dk.P / D log jDk.P/j
Œk.P / W k
 � log jDkj;

where Dk denotes the discriminant of the number field k. The corresponding
definition in the function field case involves the ramification divisor of the morphism
of curves corresponding to the field inclusion k ,! L; it is left to the reader as an
exercise. For more details on discriminants, see [7, � 23].

3 Proximity functions for ideal sheaves

Silverman [5, 2.2] introduced Weil functions associated to sheaves of ideals on X .
By [5, Thm. 2.1], there is a unique way to associate to each ideal sheaf a ¤ .0/ of
X a Weil-like function �a on X nY , where Y is the closed subscheme associated to
a, such that �a D �D is a Weil function in the usual sense if a D O.�D/ for some
effective Cartier divisor D, and �aCb D minf�a; �bg for all nonzero ideal sheaves
a and b of X . Here uniqueness and equality are up to addition of functions bounded
by Mk-constants. An Mk-constant is a function v 7! cv from Mk to R such that
cv D 0 for all but finitely many v.

Weil functions of ideal sheaves also satisfy the following conditions:

(3.1) They are functorial in the sense that if f WX 0 ! X is a morphism of complete
varieties with f .X 0/ ª Y , then �f �a D �a ı f .

(3.2) If a � b are ideal sheaves on X , then �a � �b.

See also Noguchi [4] and Yamanoi [8, 2.2]. They used similar Weil functions to
define proximity functions relative to ideal sheaves. These are defined as follows.
Let f WC! X be a holomorphic curve whose image is not entirely contained in Y .
Then we define the proximity functionmf .a; r/ in the usual way:

mf .a; r/ D
Z 2�

0

�a.f .re
i� //

d�

2�
;

with the obvious adaptations in the case of (2.3). Similarly, if X is a variety over a
global field k, if P 2 X.L/ for some finite extension L of k, and if S � S1 is a
finite set of places of k, then

mS.a; P / D 1

ŒL W k

X

w2ML
wjS

�a;w.P /:
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This expression is independent of the choice of L. Again, these proximity functions
agree (up to O.1/) with mf .D; r/ and mS.D; r/, respectively, when a D O.�D/.
They also satisfy (3.1) and (3.2) (again, up to O.1/).

4 Conjectures

In Nevanlinna theory, we make the following conjecture:

Conjecture 4.1. Let X be a nonsingular complete complex variety, let K be the
canonical divisor class on X , let a ¤ .0/ be an ideal sheaf on X , let A be a big
divisor on X , and let � > 0. Then there is a proper Zariski-closed subset Z of X ,
depending only on X , a, A, and �, such that if pWB ! C and f WB ! X are as in
(2.3) and the image of f is not contained in Z, then

TK;f .r/Cmf .a; r/ �mf .I
�.a/; r/ �exc � TA;f .r/CNRam.p/.r/CO.1/:

Here the subscript “exc” means that the inequality holds outside of a set of r of finite
Lebesgue measure. The implicit constant in O.1/ is independent of r but depends
on all other data.

The corresponding conjecture in number theory is:

Conjecture 4.2. Let k be a global field of characteristic zero, let S � S1 be a finite
set of places of k, let r be a positive integer, letX be a nonsingular complete variety
over k, let K be the canonical divisor class of X , let a ¤ .0/ be an ideal sheaf on
X , let A be a big divisor on X , and let � > 0. Then there is a proper Zariski-closed
subset Z of X , depending only on k, S , X , a, r , A, and �, such that

hK;k.P /CmS.a; P / �mS.I
�.a/; P / � � hA;k.P /C dk.P /CO.1/

for all P 2 .X nZ/. Nk/ with Œk.P / W k
 � r . Again, the implicit constant in O.1/ is
independent of P but depends on all other data.

These conjectures obviously generalize earlier conjectures in each case. Indeed,
let D be a normal crossings divisor and let a D O.�D/. Then mf .I �.a/; r/ D
O.1/ and mf .a; r/ D mf .D; r/, and likewise in the diophantine case.

Proposition 4.3. Conjectures 4.1 and 4.2 are equivalent to their respective special
cases in which a D O.�D/ with D as above.

Proof. Let �WX 0 ! X , KX 0=X , and F be as in the definition of multiplier ideal
sheaf, and choose � > 0 such that I �.a/ D I .a1��/. In the Nevanlinna case, let
gWB ! X 0 be a lifting of f ; then
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TKX ;f .r/Cmf .a; r/ �mf .I
�.a/; r/

�TKX0 ;g.r/�mg.KX 0=X ; r/Cmg.F; r/�mg.�KX 0=XCb.1��/F c; r/
CO.1/
D TKX0 ;g.r/Cmg.Fred; r/CO.1/
�exc � TA;f .r/CNRam.p/.r/CO.1/:

Here we use the fact that

��I .a1��/ D ����OX 0.KX 0=X � b.1 � �/F c/ � OX 0.KX 0=X � b.1 � �/F c/
and therefore

mf .I .a1��/; r/ � mg.OX 0.KX 0=X � b.1 � �/F c/; r/CO.1/
D mg.�KX 0=X C b.1 � �/F c; r/CO.1/ :

The diophantine case is similar and is left to the reader. ut
Remark 4.4. Although an arbitrary complete variety may not have a big line sheaf
(or any nontrivial line sheaf) [1, pp. 25–26 and p. 72], a nonsingular complete variety
always does. Indeed, let U be a nonempty open affine on a nonsingular complete
varietyX , pick generators x1; : : : ; xr for the affine ring OX.U /, and letD be a Weil
divisor whose support contains the polar divisors of all xi . ThenD is big.

5 Truncated counting functions

Variations of the above conjectures using truncated counting functions can also be
made. Truncated counting functions are defined in Nevanlinna theory as follows.

Definition 5.1. Let t be a positive integer, let D be an effective divisor on X , and
let f WC! X be a holomorphic curve whose image is not contained in the support
of D. Then the truncated counting function for f relative to D is

N
.t/

f .D; r/ D
X

0<jzj<r
minfordz f

�D; tg log
r

jzj Cminford0 f �D; tg log r

(cf. (2.1)). In the more general situation of (2.3), the truncated counting function is
N
.t/

f .D; r/ D N.t/

f �D
.r/, where in place of (2.4) we have

N
.t/
� .r/ D

1

degp

 
X

b2Bhrinp�1.0/
minfordb �; tg log

r

jp.b/j

C
X

b2p�1.0/
minfordb �; tg log r

!

:
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Still more generally, if a ¤ .0/ is an ideal sheaf on X and if f WB ! X is a
holomorphic map whose image is not contained in the closed subscheme associated
to a, then f �a is a nonzero analytic ideal sheaf on B . Since B is smooth and of
dimension 1, any such ideal sheaf is of the form O.��/ for an analytic divisor �
on B , and we define

Nf .a; r/ D N�.r/ and N
.t/

f .a; r/ D N.t/
� .r/:

Finally, we also define a height function

Ta;f .r/ D mf .a; r/CNf .a; r/:

The conjecture in Nevanlinna theory is then:

Conjecture 5.2. Let pWB ! C be as in (2.3), let X be a nonsingular complete
complex variety, let K be the canonical divisor class on X , let a ¤ .0/ be a sheaf
of ideals on X , let A be a big divisor on X , and let � > 0. Then there is a proper
Zariski-closed subset Z of X , depending only on degp, X , a, A, and �, such that
the inequality

N
.1/

f .a; r/CNRam.p/.r/ �exc TK;f .r/C Ta;f .r/� TI�.a/;f .r/� � TA;f .r/�O.1/

holds for all nonconstant holomorphic curves f WB ! X whose images are not
contained in Z. The implicit constant in O.1/ is as in Conjecture 4.1.

In the diophantine case, the corresponding definition and conjecture are as
follows.

Definition 5.3. Let t be a positive integer, let S � S1 be a finite set of places of
k, let D be an effective divisor on X , let �D be a Weil function for D, let P 2
X. Nk/ n SuppD, and let L D k.P /. Then the truncated counting function of P
relative to D is

N
.t/
S .D;P / D

1

ŒL W k

X

w2ML
w−S

minf�D;w.P /;�t log k�wkwg;

where �w denotes an element of OL that lies in the prime ideal associated to w,
but not in the square of that ideal. Note that, because ramification may affect the
truncation, L is fixed in the above expression. More generally, if a is a nonzero
ideal sheaf on X and if �a is a Weil function associated to it, then the truncated
counting function relative to a is defined as

N
.t/
S .a; P / D

1

ŒL W k

X

w2ML
w−S

minf�a;w.P /;�t log k�wkwg;
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and its non-truncated counterpart is defined analogously. Finally, we define a height
relative to a in the usual way as

ha;k.P / D mS.a; P /CNS.a; P / D 1

ŒL W k

X

w2ML

�a;w.P /:

Conjecture 5.4. Let k be a global field of characteristic zero, let S � S1 be a finite
set of places of k, let r be a positive integer, letX be a nonsingular complete variety
over k, let K be the canonical divisor class of X , let a ¤ .0/ be an ideal sheaf on
X , let A be a big divisor on X , and let � > 0. Then there is a proper Zariski-closed
subset Z of X , depending only on k, S , X , a, r , A, and �, such that

N
.1/
S .a; P /C dk.P / � hK;k.P /C ha;k.P / � hI�.a/;k.P / � � hA;k.P / �O.1/

for all P 2 .X n Z/. Nk/ with Œk.P / W k
 � r . The implicit constant is as in
Conjecture 4.2.

In each case, if a D O.�D/ with D a normal crossings divisor, then the above
conjectures reduce to conjectures that have already been posed; see [6] for the
diophantine case.

Again, we have a converse:

Proposition 5.5. Conjectures 5.2 and 5.4 are equivalent to their respective special
cases in which a D O.�D/ with D as above.

Proof. In the diophantine case this follows by the same argument as before. Indeed,
let �WX 0 ! X , F , and � be as before; assuming that [6, Conj. 2.3] holds for Fred

on X 0, we have

N
.1/
S .a; P /C dk.P / D N.1/

S .Fred; P
0/C dk.P 0/

� hKX0CFred.P
0/� � h��A.P 0/ �O.1/

D hK0X .P 0/ � hKX0=X .P 0/C hF .P 0/� h�KX0=XCb.1��/F c.P 0/
��hA.P / �O.1/

� hKX .P /C ha.P / � hI�.a/.P / � �hA.P / �O.1/; (5.5)

whereP 0 2 X 0 lies overP 2 X . The proof in the Nevanlinna case is analogous. ut
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Introduction

The history of Diophantine approximation is quite old: it includes, for instance,
early estimates for � , computations related to astronomical studies, and the theory
of continued fraction expansion.

There are positive results: any irrational number has good rational approxi-
mations. One of the simplest tools to see this is Dirichlet’s box principle; other
methods are continued fraction expansions, Farey series; and geometry of numbers
(Minkowski’s Theorem). There are negative results: no number has too good (and at
the same time too frequent) approximations. Some results are valid for all (irrational)
numbers, others only for restricted classes of numbers, like the class of algebraic
numbers. There is a metric theory (�1.2) which deals with almost all numbers in the
sense of the Lebesgue measure.

One main goal of the theory of Diophantine approximation is to compare, on the
one hand, the distance between a given real number � and a rational number p=q,
with, on the other hand, the denominator q of the approximant. An approximation
is considered sharp if j� � p=qj is small compared to q. This subject is a classical
one; there are a number of surveys, including those by S. Lang [78, 80–82]. Further
general references are [26, 36, 46, 59, 60, 68, 75, 124].

The works by J. Liouville, A. Thue, C.L. Siegel, F.J. Dyson, A.O. Gel’fond,
Th. Schneider and K.F. Roth essentially solve the question for the case where � is
algebraic. In a different direction, a lot of results are known which are valid for
almost all numbers, after Khintchine and others.

Several questions arise in this context. One may consider either asymptotic or
else uniform approximation. The former asks to only for infinitely many solutions
to some inequality, while the latter requires that occurrences of such approximations
be not too lacunary. As a consequence, one introduces in �1.1 two exponents for the
rational approximation to a single real number �, namely !.�/ for the asymptotic
approximation and b!.�/ for the uniform approximation; a lower bound for such an
exponent means that sharp rational approximations exist, an upper bound means that
too sharp estimates do no exist. To indicate with a “hat” the exponents of uniform
Diophantine approximation is a convention which originates in [41].

In this context a new exponent, �.�/, inspired by the pioneering work of R. Apéry
in 1976 on �.3/, has been introduced recently by T. Rivoal and S. Fischler (�1.3).

After rational approximation to a single real number, several other questions
naturally arise. One may investigate, for instance, the algebraic approximation
properties of real or complex numbers, replacing the set of rational numbers by
the set of real or complex algebraic numbers. Again, in this context, there are two
main points of view: either one considers the distance j� � ˛j between the given
real or complex number � and algebraic numbers ˛, or else one investigates the
smallness of jP.�/j for P a non-zero polynomial with integer coefficients. In both
cases there are two parameters, the degree and the height of the algebraic number
or of the polynomial, in place of a single one in degree 1, namely q for � � p=q or
for P.X/ D qX � p. Algebraic and polynomial approximations are related: on the
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one hand (Lemma 9), the irreducible polynomial of an algebraic number close to �
takes a small value at �, while on the other hand (Lemma 10), a polynomial taking a
small value at � is likely to have a root close to �. However, these connections are not
completely understood yet: for instance, while it is easy (by means of Dirichlet’s box
principle – Lemma 15) to prove the existence of polynomialsP having small values
jP.�/j at the point �, it is not so easy to show that sharp algebraic approximations
exist (cf. Wirsing’s conjecture 37).

The occurrence of two parameters raises more questions to investigate: often one
starts by taking the degree fixed and looking at the behaviour of the approximations
as the height tends to infinity; one might do the opposite, fix the height and let
the degree tend to infinity: this is the starting point of a classification of complex
numbers by V.G. Sprindžuk (see [36] Chap. 8 p. 166). Another option is to let the
sum of the degree and the logarithm of the height tend to infinity: this is the choice of
S. Lang who introduced the notion of size [79] Chap. V, in connection with questions
of algebraic independence [78].

The approximation properties of a real or complex number � by polynomials of
degree at most n (�2.3) will give rise to two exponents, !n.�/ and b!n.�/, which
coincide with !.�/ andb!.�/ for n D 1. Gel’fond’s transcendence criterion (�2.2) is
related to an upper bound for the asymptotic exponent of polynomial approximation
b!n.�/ valid for all transcendental numbers.

The approximation properties of a real or complex number � by algebraic
numbers of degree at most n (�2.5) will give rise to two further exponents, an
asymptotic !�n .�/ and a uniform b!�n.�/, which also coincide with !.�/ and b!.�/
for n D 1.

For a real number �, there is a third way of extending the investigation of rational
approximation, which is the study of simultaneous approximation by rational
numbers of the n-tuple .�; �2; : : : ; �n/. Once more there are an asymptotic exponent
!0n.�/ and a uniform b!0n.�/; again they coincide with !.�/ and b!.�/ for n D 1.
These two new exponents suffice to describe the approximation properties of a real
number by algebraic numbers of degree at most n (the star exponents), thanks to a
transference result (Proposition 40) based on the theory of convex bodies of Mahler.

Several relations among these exponents are known, but a number of problems
remain open: for instance, for fixed n > 1 the spectrum of the sextuple

.!n.�/; b!n.�/; !
0
n.�/; b!

0
n.�/; !

�
n .�/; b!

�
n.�// 2 R6

is far from being completely understood. As we shall see for almost all real numbers
� and for all algebraic numbers of degree > n,

!n.�/ D b!n.�/ D !�n .�/ D b!�n.�/ D n and !0n.�/ D b! 0n.�/ D 1=n:

A review of the known properties of these six exponents is given in [41]. We shall
repeat some of these facts here (beware that our notation for !0n and b! 0n are the �n
andb�n from [41], which are the inverses of their w0n andbw0n, also used by Y. Bugeaud
in �3.6 of [36]; here we wish to be compatible with the notation of M. Laurent in
[91] for the higher-dimensional case).
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Among a number of new results in this direction, we shall describe those
achieved by D. Roy and others. In particular, a number of results for the case n D 2
have been recently obtained.

Simultaneous approximations to a tuple of numbers is the next step. The subspace
theorem of W.M. Schmidt (Theorem 1B in Chapter VI of [124]), which is a powerful
generalisation of the Thue–Siegel–Roth Theorem, deals with the approximation of
algebraic numbers. It says that tuples of algebraic numbers do behave like almost all
tuples. It is a fundamental tool with a number of deep consequences [29]. Another
point of view is the metrical one, dealing with almost all numbers. Further questions
arise which should concern all tuples, and these considerations raise many open
problems. We shall report on recent work by M. Laurent who introduces a collection
of new exponents for describing the situation.

We discuss these questions mainly in the case of real numbers. Most results
(so far as they are not related to the density of Q into R) are valid also for
complex numbers with some modifications (however see [40]), as well and for non-
Archimedean valuations, especially p-adic numbers but also (to some extent) for
function fields. We make no attempt to be exhaustive. There are a number of related
issues which we do not study in detail here — sometimes we just give a selection of
recent references. Among them are

• Questions of inhomogeneous approximation.
• Littlewood’s Conjecture ([36], Chap. 10).
• Measures of irrationality, transcendence, linear independence, algebraic inde-

pendence of specific numbers. Effective refinements of Liouville’s Theorem are
studied in [30] (see also Chap. 2 of [36]).

• Results related to the complexity of the development of irrational algebraic
numbers, automata, normality of classical constants (including irrational alge-
braic numbers) — the Bourbaki lecture by Yu. Bilu [29] on Schmidt’s subspace
Theorem and its applications describes recent results on this topic and gives
further references.

• Connection between Diophantine conditions and dynamical systems.
• Diophantine questions related to Diophantine geometry. Earlier surveys dealing

extensively with this issue were written by S. Lang. A recent reference on this
topic is [70].

• In a preliminary version of the present paper, the list of topics which were
not covered included also refined results on Hausdorff dimension, Diophantine
approximation of dependent quantities and approximation on manifolds, and
hyperbolic manifolds, also the powerful approach initiated by Dani and Margulis,
developed by many specialists. We quote here V.V. Beresnevich, V.I. Bernik,
H. Dickinson, M.M. Dodson, D.Y. Kleinbock, É.I. Kovalevskaya, G.A. Margulis,
F. Paulin, S.L. Velani. However, thanks to the contribution of Victor Beresnevich
and Maurice Dodson who kindly agreed to write Sections 2.7 and 3.6 (and also
to contribute by adding remarks, especially on �1.2), these topics are no longer
excluded.
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We discuss only briefly a few questions of algebraic independence; there is
much more to say on this matter, especially in connection with Diophantine
approximation. Although we quote some recent transcendence criteria as well as
criteria for algebraic independence, we do not fully cover this topic either (and do
not mention criteria for linear independence).

Acknowledgments Many thanks to Boris Adamczewski, Victor Beresnevich, Yann Bugeaud,
Maurice Dodson, Michel Laurent, Claude Levesque, Damien Roy for their enlightening remarks
and their comments on preliminary versions of this paper. Sections 2.7 and 3.6, as well as part of
Section 1.2, have been written by Victor Beresnevich and Maurice Dodson. I wish also to thank
Dinakar Ramakrishnan who completed the editorial work in a very efficient way.

1 Rational approximation to a real number

1.1 Asymptotic and uniform rational approximation: ! and b!

Since Q is dense in R, for any � 2 R and any � > 0 there exists b=a 2 Q for which

ˇ
ˇ
ˇ
ˇ
� � b

a

ˇ
ˇ
ˇ
ˇ
< �:

Let us write the conclusion
ja� � bj < �a:

It is easy to improve this estimate: Let a 2 Z>0 and let b be the nearest integer to
a� . Then

ja� � bj 6 1=2:

A much stronger estimate is due to Dirichlet (1842) and follows from the box or
pigeonhole principle; see for instance [78], [60], [124] Chap. I, sTh. 1A:

Theorem 1 (Uniform Dirichlet’s theorem). For each real number N > 1, there
exist q and p in Z with 1 6 q < N such that

jq� � pj < 1

N
�

As an immediate consequence ([124] Chap. I Cor. 1B):

Corollary 2 (Asymptotic Dirichlet’s theorem). If � 2 R is irrational, then there
exist infinitely many p=q 2 Q for which

ˇ
ˇ
ˇ
ˇ
� � p

q

ˇ
ˇ
ˇ
ˇ
<
1

q2
�
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Our first concern is to investigate whether it is possible to improve the uniform
estimate of Theorem 1 as well as the asymptotic estimate of Corollary 2.

We start with Corollary 2. Using either the theory of continued fractions or Farey
series, one deduces a slightly stronger statement, proved by A. Hurwitz in 1891
(Theorem 2F in Chap. I of [124]):

Theorem 3 (Hurwitz). For any real irrational number �, there exist infinitely
many p=q 2 Q such that ˇ

ˇ
ˇ
ˇ
� � p

q

ˇ
ˇ
ˇ
ˇ
<

1p
5q2
�

For the golden ratio 	 D .1Cp5/=2 and for the numbers related to the golden
ratio by a homographic transformation .ax C b/=.cx C d/ (where a, b, c, d are
rational integers satisfying ad � bc D ˙1), this asymptotic result is optimal.
For all other irrational real numbers, Hurwitz proved that the constant

p
5 can be

replaced by
p
8 ([124] Chap. I Cor. 6C). These are the first elements of the Lagrange

spectrum:
p
5,
p
8,
p
221=5,

p
1517=13, . . . , (references are given in Chap.I, �6 of

[124]; the book [47] is devoted to the Lagrange and Markov spectra).
Lagrange noticed as early as 1767 (see [59] Chap. 1, Theorem 1.2) that for all

irrational quadratic numbers, the exponent 2 in q2 in the conclusion of Corollary 2 is
optimal: more generally, Liouville’s inequality (1844) produces, for each algebraic
number � of degree d > 2, a constant c.�/ such that for all rational numbers p=q,

ˇ
ˇ
ˇ
ˇ
� � p

q

ˇ
ˇ
ˇ
ˇ
>
c.�/

qd
�

Admissible values for c.�/ are easy to specify (Th. 1 Chap. 1 �1 of [128], [60] p. 6,
Th. 1E of [125], Th. 1.2 of [36]).

A Liouville number is a real number � for which the opposite estimate holds: for
any 
 > 0, there exists a rational number p=q such that

0 <

ˇ
ˇ
ˇ
ˇ
� � p

q

ˇ
ˇ
ˇ
ˇ
<
1

q

� (4)

A very well approximable number is a real number � for which there exists 
 > 2

such that the inequality (4) has infinitely many solutions. A nice example of such a
number is

�
 WD 2
1X

nD1
3�d
ne

for 
 a real number > 2. This number belongs to the middle-third Cantor set K,
which is the set of real numbers whose base-three expansions are free of the digit
1. In [95], J. Levesley, C. Salp, and S.L. Velani show that �
 is an element of K
with irrationality exponent �.�
/ D 
 for 
 > .3C p5/=2 and > 
 for 2 < 
 6
.3 C p5/=2. This example answers a question of K. Mahler on the existence of
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very well approximable numbers which are not Liouville numbers in K. In [38],
Y. Bugeaud shows that �.�
/ D 
 for 
 > 2, and more generally, that for 
 > 2 and
� > 0, the number

��;
 WD 2
1X

nDn0
3�d�
ne

has �.��;
/ D 
.
Given 
 > 2, denote by E
 the set of real numbers � satisfying the following

property: the inequality (4) has infinitely many solutions in integers p and q, and
for any c < 1 there exists q0 such that, for q > q0,

ˇ
ˇ
ˇ
ˇ
� � p

q

ˇ
ˇ
ˇ
ˇ
>
c

q

� (5)

Then for any 
 > 2 this set E
 is not empty. Explicit examples were given by
Jarnı́k in 1931 (see [2] for a variant). In [20], V.V. Beresnevich, H. Dickinson and
S.L. Velani raised the question of the Hausdorff dimension of the setE
 . The answer
is given by Y. Bugeaud in [35]: this dimension is 2=
.

We now consider the uniform estimate of Theorem 1. Let us show that for any
irrational number �, Dirichlet’s theorem is essentially optimal: one cannot replace
1=N by 1=.2N /. This was already observed by Khintchine in 1926 [74]:

Lemma 6. Let � be a real number. Assume that there exists a positive integer N0
such that for each integer N > N0, there exist a 2 Z and b 2 Z with 1 6 a < N

and

ja� � bj < 1

2N
�

Then � is rational and a� D b for each N > N0.

Proof. By assumption for each integerN > N0 there exist aN 2 Z and bN 2 Z with
1 6 aN < N and

jaN � � bN j < 1

2N
�

Our goal is to check aN � D bN for each N > N0.
Let N > N0. Write .a; b/ for .aN ; bN / and .a0; b0/ for .aNC1; bNC1/:

ja� � bj < 1

2N
.1 6 a 6 N � 1/; ja0� � b0j < 1

2N C 2 .1 6 a0 6 N/:

Eliminate � between a� � b and a0� � b0: the rational integer

ab0 � a0b D a.b0 � a0�/C a0.a� � b/

satisfies jab0 � a0bj < 1I hence it vanishes and ab0 D a0b.
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Therefore the rational number bN=aN D bNC1=aNC1 does not depend on
N > N0. Since

lim
N!1 bN=aN D �;

it follows that � D bN=aN for all N > N0. ut

Remark. As pointed out to me by M. Laurent, an alternative argument is based on
continued fraction expansions.

Coming back to Theorem 1 and Corollary 2, we associate to each real irrational
number � two exponents ! and b! as follows.

Starting with Corollary 2, we introduce the asymptotic irrationality exponent of
a real number �, which is denoted by !.�/:

!.�/ D sup
n

wI there exist infinitely many .p; q/ 2 Z2

with q > 1 and 0 < jq� � pj 6 q�w
o

:

Some authors prefer to introduce the irrationality exponent �.�/ D !.�/ C 1 of �
which is denoted by �.�/:

�.�/ D sup
n

�I there exist infinitely many .p; q/ 2 Z2

with q > 1 and 0 <

ˇ
ˇ
ˇ
ˇ
� � p

q

ˇ
ˇ
ˇ
ˇ

6 q��
o

:

An upper bound for !.�/ or �.�/ is an irrationality measure for �, namely a lower
bound for j� � p=qj when p=q 2 Q.

Liouville numbers are the real numbers � with !.�/ D �.�/ D 1.
Since no set E
 (see property (5)) with 
 > 2 is empty, the spectrum

˚

!.�/ I � 2
R nQ

�

of ! is the whole interval Œ1;C1�, while the spectrum
˚

�.�/ I � 2 R nQ
�

of � is Œ2;C1�.
According to the theorem of Thue–Siegel–Roth [29], for any real algebraic

number � 2 R nQ,
!.�/ D 1:

We shall see (in �1.2) that the same holds for almost all real numbers.
The other exponent related to Dirichlet’s Theorem 1 is the uniform irrationality

exponent of �, denoted by b!.�/:

b!.�/ D sup
n

wI for any N > 1, there exists .p; q/ 2 Z2

with 1 6 q 6 N and 0 < jq� � pj 6 N�w
o

:
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In the singular case of a rational number � we set !.�/ D b!.�/ D 0. It is plain from
the definitions that for any � 2 R nQ,

!.�/ > b!.�/ > 1:

In fact Lemma 6 implies that for any � 2 R nQ, b!.�/ D 1. Our motivation to
introduce a notation for a number which is always equal to 1 is that it will become
non–trivial in more general situations (b!n in �2.3,b!0n in �2.4,b!�n in �2.5).

1.2 Metric results

The metric theory of Diophantine approximation provides statements which are
valid for almost all (real or complex) numbers, which means for all numbers outside
a set of Lebesgue measure 0. Among many references on this topic, we quote
[26, 36, 69, 129, 130]. See also �2.7 and �3.6 below.

One of the early results is due to Capelli: for almost all � 2 R,

!.�/ D b!.�/ D 1 and �.�/ D 2:

This is one of many instances where irrational algebraic numbers behave like almost
all numbers. However one cannot expect that all statements from Diophantine
approximation which are satisfied by all numbers outside a set of measure 0 will
be satisfied by all irrational algebraic numbers, just because such an intersection of
sets of full measure is empty. As pointed out to me by B. Adamczewski, S. Schanuel
(quoted by S. Lang in [78] p.184 and [83] Chap. II �2 Th. 6) gave a more precise
formulation of such a remark as follows.

Denote by K (for Khintchine) the set of non-increasing functions from R>1 to
R>0. Set

Kc D
(

 2 K I
X

n>1
.n/ converges

)

; Kd D
(

 2 K I
X

n>1
.n/ diverges

)

:

Hence K D Kc [Kd .
A well-known theorem of A. Ya. Khintchine in 1924 (see [73], [75] and Th.

1.10 in [36]) has been refined as follows (an extra condition that the function x 7!
x2.x/ be decreasing has been dropped) – see Beresnevich, Dickinson, and Velani
[21]:

Theorem 7 (Khintchine). Let  2 K. Then for almost all real numbers �, the
inequality

jq� � pj < .q/ (8)



668 M. Waldschmidt

has

• only finitely many solutions in integers p and q if  2 Kc

• infinitely many solutions in integers p and q if  2 Kd .

S. Schanuel proved that the set of real numbers which behave like almost all
numbers from the point of view of Khintchine’s theorem in the convergent case has
measure 0. More precisely, the set of real numbers � such that for any smooth convex
function 2 Kc , the inequality (8) has only finitely many solutions is the set of real
numbers with bounded partial quotients (badly approximable numbers – see [124]
Chap. I �5; other characterisations of this set are given in [83] Chap. II �2 Th. 6).

Moreover B. Adamczewski and Y. Bugeaud noticed that given any irrational �,
either there exists a  2 Kd for which

jq� � pj < .q/

has no integer solutions or there exists a  2 Kc for which

jq� � pj < .q/

has infinitely many integer solutions.

1.3 The exponent � of S. Fischler and T. Rivoal

Let � 2 R nQ. In [63], S. Fischler and T. Rivoal introduce a new exponent �.�/
which they define as follows.

When u D .un/n>1 is an increasing sequence of positive integers, define another
sequence of integers v D .vn/n>1 by jun� � vnj < 1=2 (i.e. vn is the nearest integer
to un�) and set

˛�.u/ D lim sup
n!1

junC1� � vnC1j
jun� � vnj

, ˇ.u/ D lim sup
n!1

unC1
un
�

Then

�.�/ D inf log
q

˛�.u/ˇ.u/;

where u ranges over the sequences which satisfy ˛�.u/ < 1 and ˇ.u/ < C1: Here
we agree that inf; D C1.

They establish a connection with the irrationality exponent by proving

�.�/ 6 1 � logˇ.u/

log˛�.u/
�

As a consequence, if �.�/ < C1, then �.�/ < C1.
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If � is quadratic, Fischler and Rivoal produce a sequence u with ˛�.u/ˇ.u/ D 1,
hence �.�/ D 0.

This new exponent � is motivated by Apéry-like proofs of irrationality and
measures. Following the works of R. Apéry, A. Baker, F. Beukers, G. Rhin and
C. Viola, and M. Hata among others, S. Fischler and T. Rivoal deduce

�.21=3/ 6 .3=2/ log2; �.�.3// 6 3; �.�2/ 6 2; �.log2/ 6 1:

Also �.�/ 6 21.
The spectrum of �.�/ is not yet known. According to [63], for any � 2 R nQ,

the inequalities 0 6 �.�/ 6 C1 hold. Further, for almost all � 2 R, �.�/ D 0.
Furthermore, S. Fischler and T. Rivoal, completed by B. Adamczewski [1], proved
that any irrational algebraic real number � has �.�/ < C1.

There are examples of � 2 R nQ for which �.�/ D C1, but all known examples
with �.�/ D C1 so far have �.�/ D C1.

Fischler and Rivoal ask whether it is true that �.�/ < C1 implies �.�/ D 2.
Another related question they raise in [63] is whether there are numbers � with
0 < �.�/ < C1.

2 Polynomial, algebraic, and simultaneous approximation
to a single number

We define the (usual) height H.P / of a polynomial

P.X/ D a0 C a1X C � � � C anXn

with complex coefficients as the maximum modulus of its coefficients, while its
length L.P / is the sum of the moduli of these coefficients:

H.P / D max
06i6n

jai j; L.P / D
nX

iD0
jai j:

The height H.˛/ and length L.˛/ of an algebraic number ˛ are the height and length
of its minimal polynomial over Z.

2.1 Connections between polynomial approximation
and approximation by algebraic numbers

Let � be a complex number. To produce a sharp polynomial approximation to � is
to find a non-zero polynomial P 2 ZŒX� for which jP.�/j is small. An algebraic
approximation to � is an algebraic number ˛ such that the distance j� � ˛j between
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� and ˛ is small. There are close connections between both questions. On the one
hand, if jP.�/j is small, then � is close to a root ˛ of P . On the other hand, if
j� � ˛j is small then the minimal polynomial of ˛ assumes a small value at �. These
connections explain that the classifications of transcendental numbers in S , T , and
U classes by K. Mahler coincide with the classifications of transcendental numbers
in S�, T �, and U � classes by J.F. Koksma (see [128] Chap. III and [36] Chap. 3).

The easy part is the next statement (Lemma 15 Chap. III �3 of [128], �15.2.4 of
[138], Prop. 3.2 �3.4 of [36]).

Lemma 9. Let f 2 CŒX� be a non-zero polynomial of degree D and length L, let
˛ 2 C be a root of f and let � 2 C satisfy j� � ˛j 6 1. Then

jf .�/j 6 j� � ˛jLD.1C j�j/D�1:

The other direction requires more work (see Chap. III �3 of [128], �3.4 of [36]).
The next result is due to G. Diaz and M. Mignotte [52] (cf. Lemma 15.13 of [138]).

Lemma 10. Let f 2 ZŒX� be a non–zero polynomial of degree D. Let � be a
complex number, ˛ a root of f at minimal distance of � and k the multiplicity of ˛
as a root of f . Then

j� � ˛jk 6 D3D�2H.f /2Djf .�/j:

Further similar estimates are due to M. Amou and Y. Bugeaud [7].

2.2 Gel’fond’s transcendence criterion

The so-called transcendence criterion, proved by A.O. Gel’fond in 1949, is an
auxiliary result in the method he introduced in [64–66] (see also [67] and [68]) for
proving algebraic independence results. An example is the algebraic independence

of the two numbers 2
3
p
2 and 2

3
p
4. More generally, he proved that if ˛ is a non–zero

algebraic number, log˛ a non-zero logarithm of ˛ and ˇ an algebraic number of
degree d > 3, then at least 2 among the d � 1 numbers

˛ˇ; ˛ˇ
2

; : : : ; ˛ˇ
d�1

are algebraically independent. Here ˛z stands for exp.z log˛/.
While the Gel’fond–Schneider transcendence method for solving Hilbert’s sev-

enth problem on the transcendence of ˛ˇ relies on a Liouville type estimate, namely
a lower bound for a non-zero value jP.�/j of a polynomialP at an algebraic point �,
Gel’fond’s method for algebraic independence requires a more sophisticated result,
namely the fact that there is no non-trivial uniform sequence of polynomials taking
small values at a given transcendental number.

Here is a version of this transcendence criterion [93, 131].
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Theorem 11 (Gel’fond’s transcendence criterion). Let � 2 C. Assume there is a
sequence .PN /N>N0 of non–zero polynomials in ZŒX�, where PN has degree 6 N

and height H.PN / 6 eN , for which

jPN .�/j 6 e�6N2

:

Then � is algebraic and PN .�/ D 0 for all N > N0.

Proof (sketch of). The idea of the proof is basically the same as for Lemma 6 which
dealt with degree-1 polynomials: one eliminates the variable using two consecutive
elements of the sequence of polynomials. In degree 1 linear algebra was sufficient.
For higher degrees the resultant of polynomials is a convenient substitute.

Fix N > N0. Since jPN .�/j is small, � is close to a root ˛N of PN , hence PN is
divisible by a powerQN of the irreducible polynomial of ˛N and jQN.�/j is small.
The resultant of the two polynomialsQN and QNC1 has absolute value < 1; hence
it vanishes and therefore ˛N does not depend on N . ut

In 1969, H. Davenport and W.M. Schmidt ([49] Theorem 2b) prove the next
variant of Gel’fond’s transcendence criterion, where now the degree is fixed.

Theorem 12 (Davenport and Schmidt). Let � be a real number and n > 2 a
positive integer. Assume that for each sufficiently large positive integer N there
exists a non–zero polynomial PN 2 ZŒX� of degree 6 n and usual height 6 N for
which

jPN .˛/j 6 N�2nC1:

Then � is algebraic of degree 6 n.

The next sharp version of Gel’fond’s transcendence criterion 11, restricted to
quadratic polynomials, is due to B. Arbour and D. Roy, 2004 [8].

Theorem 13 (Arbour and Roy). Let � be a complex number. Assume that there
exists N0 > 0 such that for any N > N0, there exists a polynomial PN 2 ZŒX� of
degree 6 2 and height 6 N satisfying

jPN .�/j 6 1

4
N�	�1:

Then � is algebraic of degree 6 2 and PN .�/ D 0 for all N > N0.

Variants of the transcendence criterion have been considered by D. Roy in
connection with his new approach towards Schanuel’s conjecture [138] �15.5.3:

Conjecture 14 (Schanuel). Let x1; : : : ; xn be Q-linearly independent complex
numbers. Then n at least of the 2n numbers x1; : : : ; xn; ex1 ; : : : ; exn are alge-
braically independent.

In [111, 112], D. Roy states a Diophantine approximation conjecture, which he
shows to be equivalent to Schanuel’s Conjecture 14.
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Roy’s conjecture involves polynomials for which bounds for the degree, height,
and absolute values at given points are assumed. The first main difference with
Gel’fond’s situation is that the smallness of the values is not as strong as what
is achieved by Dirichlet’s box principle when a single polynomial is constructed.
Hence elimination arguments cannot be used without further ideas. On the other
hand, the assumptions involve not only one polynomial for each n as in Theorem 11,
but a collection of polynomials, and they are strongly related. This new situation
raises challenging questions on which some advances have already been achieved.
In particular in [93] Laurent and Roy obtain variants of Gel’fond’s criterion 11
involving multiplicities. Further progress has been subsequently made by D. Roy
in [120, 121].

We shall consider extensions of the transcendence criterion to criteria for
algebraic independence in �3.1.

2.3 Polynomial approximation to a single number

A simple application of Dirichlet’s box principle (see the proof of Lemma 8.1 in
[36]) yields the existence of polynomials with small values at a given real point:

Lemma 15. Let � be a real number and n a positive integer. Set cD .n C 1/

maxf1; j�jgn. Then, for each positive integer N , there exists a non-zero polynomial
P 2 ZŒX�, of degree 6 n and usual height H.P / 6 N , satisfying

jP.�/j 6 cN�n:

Variants of this lemma rely on the geometry of numbers: for instance from Th.
B2 in [36] one deduces that in the case 0 < j�j < 1=2, ifN > 2, then the conclusion
holds also with c D 1 (see the proof of Prop. 3.1 in [36]).

Theorem 1 in �1 yields a refined estimate for the special case n D 1. The
statement is plain in the case where � is algebraic of degree 6 n as soon as N
exceeds the height of the irreducible polynomial of �; this is why when n is fixed
we shall most often assume that � is either transcendental or else algebraic of
degree > n.

The fact that the exponent n in Lemma 15 cannot be replaced by a larger
number (even if we seek such a solution only for infinitely manyN ) was proved by
Sprindžuk [129], who showed in 1965 that for � outside a set of Lebesgue measure
zero and for each � > 0, there are only finitely many non–zero integer polynomials
of degree at most n with

jP.�/j 6 H.P /�n�� :

We introduce, for each positive integer n and each real number �, two exponents
!n.�/ and b!n.�/ as follows.
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The number !n.�/ denotes the supremum of the real numbers w for which there
exist infinitely many positive integersN for which the system of inequalities

0 < jx0 C x1� C � � � C xn�nj 6 N�w; max
06i6n

jxi j 6 N (16)

has a solution in rational integers x0; x1; : : : ; xn. The inequalities (16) can be written

0 < jP.�/j 6 H.P /�w;

where P denotes a non-zero polynomial with integer coefficients and degree 6 n.
A transcendence measure for � is a lower bound for jP.�/j in terms of the height
H.P / and the degree degP of P . Hence one can view an upper bound for !n.�/ as
a transcendence measure for �.

These numbers arise in Mahler’s classification of complex numbers ([128]
Chap. III �1 and [36] �3.1).

A uniform version of this exponent is the supremumb!n.�/ of the real numbers w
such that, for any sufficiently large integer N , the same system (16) has a solution.
An upper bound for b!n.�/ is a uniform transcendence measure for �.

Clearly, from the definitions, we see that these exponents generalize those from
�1.1: for n D 1, !1.�/ D !.�/ and b!1.�/ D b!.�/. From Lemma 15 one deduces,
for any n > 1 and any � 2 R which is not algebraic of degree 6 n,

n 6 b!n.�/ 6 !n.�/: (17)

Moreover, !n 6 !nC1 and b!n 6 b!nC1. As a consequence, Liouville numbers have
!n.�/ D C1 for all n > 1.

The value of the exponents !n and b!n for almost all real numbers and for
all algebraic numbers of degree > n is n. The following metric result is due to
V.G. Sprindžuk [129]:

Theorem 18 (Sprindžuk). For almost all numbers � 2 R,

!n.�/ D b!n.�/ D n for all n > 1:

As a consequence of W.M. Schmidt’s subspace theorem one deduces (see [36]
Th. 2.8 and 2.9) the value of !n.�/ andb!n.�/ for � algebraic irrational:

Theorem 19 (Schmidt). Let n > 1 be an integer and � an algebraic number of
degree d > n. Then

!n.�/ D b!n.�/ D n:
The spectrum of the exponent !n is Œn;C1�. Forb!n it is not completely known.

From Theorem 12 one deduces:

Theorem 20 (Davenport and Schmidt). For any real number � which is not
algebraic of degree 6 n,

b!n.�/ 6 2n� 1:
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For the special case n D 2 a sharper estimate holds: from Theorem 13 of
B. Arbour and D. Roy one deduces

b!2.�/ 6 	 C 1 (21)

(recall that 	 denotes the golden ratio .1Cp5/=2).
In [49], Davenport and Schmidt comment:

“We have no reason to think that the exponents in these theorems are best possible.”

It was widely believed for a while that b!2.�/ would turn out to be equal to 2 for
all � 2 R which are not rational or quadratic irrationals. Indeed, otherwise, for 
 in
the interval 2 < 
 < b!2.�/, the inequalities

0 < jx0 C x1� C x2�2j 6 cN�
 ; maxfjx0j; jx1j; jx2jg 6 N; (22)

would have, for a suitable constant c > 0 and for all sufficiently large N ,
a non-trivial solution in integers .x0; x1; x2/ 2 Z3. However, these inequalities
define a convex body whose volume tends to zero as N tends to infinity. In such
circumstances one does not expect a non–trivial solution to exist.1 In general
b!2.˛; ˇ/ may be infinite (Khintchine, 1926; see [46]). However, here we have the
restriction ˇ D ˛2.

Hence it came as a surprise in 2003 when D. Roy [113] showed that the estimate
(21) is optimal, by constructing examples of real (transcendental) numbers � for
which b!2.�/ D 	 C 1 D 2:618 : : : :

By means of a transference principle of Jarnı́k (Th. 2 of [72]), Th. 1 of [115] can
be reformulated as follows (see also Th. 1.5 of [116]).

Theorem 23 (Roy). There exists a real number � which is neither rational nor
a quadratic irrational and which has the property that for a suitable constant
c > 0, for all sufficiently large integers N , the inequalities (22) have a solution
.x0; x1; x2/ 2 Z2 with 
 D 	 C 1. Any such number is transcendental over Q and
the set of such real numbers is countable.

In [118], answering a question of Y. Bugeaud and M. Laurent [41], D. Roy shows
that the exponents b!2.�/, where � ranges through all real numbers which are not
algebraic of degree 6 2, form a dense subset of the interval Œ2; 1C 	�.

D. Roy calls extremal a number which satisfies the conditions of Theorem 23;
from the point of view of approximation by quadratic polynomials, these numbers
present a closest behaviour to quadratic real numbers.

Here is the first example [113] of an extremal number �. Recall that the Fibonacci
word

w D abaababaabaababaababaabaababaabaab : : :

1Compare with the definition of singular systems in �7, Chap. V of [46].
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is the fixed point of the morphism a 7! ab, b 7! a. It is the limit of the sequence of
words starting with f1 D b and f2 D a and defined inductively by concatenation
as fn D fn�1fn�2. Now let A and B be two distinct positive integers and let
� 2 .0; 1/ be the real number whose continued fraction expansion is obtained from
the Fibonacci word w by replacing the letters a and b by A and B:

Œ0IA;B;A;A;B;A;B;A;A;B;A;A;B;A;B;A;A; : : : �:

Then � is extremal.
In [113, 115, 119], D. Roy investigates the approximation properties of extremal

numbers by rational numbers, by quadratic numbers as well as by cubic integers.

Theorem 24 (Roy). Let � be an extremal number. There exist positive constants
c1; : : : ; c5 with the following properties:

(1) For any rational number ˛ 2 Q we have

j� � ˛j > c1H
�2.logH/�c2

with H D maxf2;H.˛/g.
(2) For any algebraic number ˛ of degree at most 2 we have

j� � ˛j > c3H.˛/�2	�2:

(3) There exist infinitely many quadratic real numbers ˛ with

j� � ˛j 6 c4H.˛/�2	�2:

(4) For any algebraic integer ˛ of degree at most 3 we have

j� � ˛j > c5H.˛/
�	�2:

Moreover, in [114], he shows that for some extremal numbers �, property (4)
holds with the exponent�	 � 1 in place of �	 � 2.

In [116] D. Roy describes the method of Davenport and Schmidt and he gives a
sketch of proof of his construction of extremal numbers.

In [119] he gives a sufficient condition for an extremal number to have bounded
quotients and constructs new examples of such numbers.

The values of the different exponents for the extremal numbers which are
associated with Sturmian words (including the Fibonacci word) have been obtained
by Y. Bugeaud and M. Laurent [41]. Furthermore, they show that the spectrum
fb!2.�/I � 2 RnQg is not countable. See also their joint works [42,43]. Their method
involves words with many palindromic prefixes. S. Fischler in [61, 62] defines new
exponents of approximation which allow him to obtain a characterization of the
values ofb!2.�/ obtained by these authors.
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In [3], B. Adamczewski and Y. Bugeaud prove that for any extremal number �,
there exists a constant c D c.�/ such that for any integer n > 1,

!n.�/ 6 exp
˚

c
�

log.3n/
�2�

log log.3n/
�2�
:

In particular, an extremal number is either a S -number or a T -number in Mahler’s
classification.

Recent results on simultaneous approximation to a number and its square, on
approximation to real numbers by quadratic integers and on quadratic approxima-
tion to numbers associated with Sturmian words have been obtained by M. Laurent,
Y. Bugeaud, S. Fischler, D. Roy, and other.

2.4 Simultaneous rational approximation to powers of a real
number

Let � be a real number and n a positive integer.
We consider first the simultaneous rational approximation of successive powers

of �. We denote by !0n.�/ the supremum of the real numbers w for which there exist
infinitely many positive integersN for which the system

0 < max
16i6n

jxi � x0�i j 6 N�w; with max
06i6n

jxi j 6 N; (25)

has a solution in rational integers x0; x1; : : : ; xn.
An upper bound for !0n.�/ yields a simultaneous approximation measure for

�; �2; : : : ; �n.
Next the uniform simultaneous approximation measure is the supremum b!0n.�/

of the real numbers w such that for any sufficiently large integerN , the same system
(25) has a solution in rational integers x0; x1; : : : ; xn.

Notice that for n D 1, !01.�/ D !.�/ andb!01.�/ D b!.�/.
According to Dirichlet’s box principle, for all � and n,

1

n
6 b!0n.�/ 6 !0n.�/:

Khintchine’s transference principle (see Th. B.5 in [36] and Theorem 61 below)
yields relations between !0n and !n. As remarked in Theorem 2.2 of [41], the same
proof yields similar relations between b!0n andb!n.

Theorem 26. Let n be a positive integer and � a real number which is not algebraic
of degree 6 n. Then

1

n
6 !n.�/

.n � 1/!n.�/C n 6 !0n.�/ 6 !n.�/ � nC 1
n
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and
1

n
6 b!n.�/

.n � 1/b!n.�/C n 6 b!0n.�/ 6 b!n.�/ � nC 1
n

�

The second set of inequalities follows from the inequalities (4) and (5) of
V. Jarnı́k in Th. 3 of [72], with conditional refinements given by the inequalities
(6) and (7) of the same theorem.

In particular, !n.�/ D n if and only if !0n.�/ D 1=n. Also, b!n.�/ D n if and
only if b!0n.�/ D 1=n.

The spectrum of !0n.�/, where � ranges over the set of real numbers which are
not algebraic of degree 6 n, is investigated by Y. Bugeaud and M. Laurent in [42].
Only the case n D 2 is completely solved.

It follows from Theorem 18 that for almost all real numbers �,

!0n.�/ D b! 0n.�/ D
1

n
for all n > 1:

Moreover, a consequence of Schmidt’s theorem 19 is that for all n > 1 and for all
algebraic real numbers � of degree d > n,

!0n.�/ D b! 0n.�/ D
1

n
D 1

!n.�/
�

Theorems 2a and 4a of the paper [49] by H. Davenport and W.M. Schmidt (1969)
imply that upper bounds for b! 0n.�/ are valid for all real numbers � which are not
algebraic of degree 6 n. For instance,

b! 01.�/ D 1; b!02.�/ 6 1=	 D 0:618 : : : ; b! 03.�/ 6 1=2:

A slight refinement was obtained by M. Laurent [88] in 2003 (for the odd values of
n > 5).

Theorem 27 (Davenport and Schmidt, Laurent). Let � 2 R nQ and n > 2.
Assume � is not algebraic of degree 6 dn=2e. Then

b! 0n.�/ 6 dn=2e�1 D
(

2=n if n is even,

2=.nC 1/ if n is odd.

The definition ofb!0n with a supremum does not reflect the accuracy of the results
in [49]; for instance, the upper bound b!02.�/ 6 1=	 is not as sharp as Theorem 1a
of [49] which is the following:

Theorem 28 (Davenport and Schmidt). Let � be a real number which is not
rational or a quadratic irrational. There exists a constant c > 0 such that for
arbitrarily large values of N , the inequalities

maxfjx1 � x0�j; jx2 � x0�2jg 6 cN�1=	 ; jx0j 6 N;

have no solution .x0; x1; x2/ 2 Z3.
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Before restricting ourselves to the small values of n, we emphasise that there is
a huge lack in our knowledge of the spectrum of the set

�

!n.�/; b!n.�/; !
0
n.�/; b!

0
n.�/

� 2 R4;

where � ranges over the set of real numbers which are not algebraic of degree 6 n.
Consider the special case n D 2 and the question of quadratic approximation. As

pointed out by Y. Bugeaud, a formula due to V. Jarnı́k (1938) (Theorem 1 of [72];
see also Corollary A3 in [118] and [91]) relates b!2 and b!02:

b!02.�/ D 1 �
1

b!2.�/
� (29)

Therefore the properties of b!2 which we considered in �2.3 can be translated into
properties of b! 02. For instance, b! 02.�/ D 1=2 if and only if b!2.�/ D 2, and this
holds for almost all � 2 R (see Theorem 18) and for all algebraic real numbers � of
degree > 3 (see Theorem 19). If � 2 R is neither rational nor a quadratic irrational,
Davenport and Schmidt have proved

b!02.�/ 6 1=	 D 0:618 : : : : (30)

The extremal numbers of D. Roy in Theorem 23 satisfy b!02.�/ D 1=	 . More
precisely, they are exactly the numbers � 2 R which are not rational or quadratic
irrationals and satisfy the following property: there exists a constant c > 0 such that
for any sufficiently large number N , the inequalities

maxfjx1 � x0�j; jx2 � x0�2jg 6 cN�1=	 ; 0 < maxfjx0j; jx1j; jx2jg 6 N;

have a solution in rational integers x0; x1; x2. (This was the original definition).
In [118], using Jarnı́k’s formula (29), D. Roy shows that the set of

.b!02.�/;b! 02.�// 2 R2, where � ranges over the set of real numbers which are not
algebraic of degree 6 2, is dense in the piece of curve

f.1� t�1; t/ I 2 6 t 6 	 C 1g:

We conclude with the case n D 3 and the question of cubic approximation. When
� 2 R is not algebraic of degree 6 3, the estimate for b! 03.�/ by Davenport and
Schmidt [49] is

1

3
6 b!03.�/ 6 1

2
�

As we have seen, the lower bound is optimal (equality holds for almost all numbers
and all algebraic numbers of degree > n). The upper bound has been improved by
D. Roy in [119]

b! 03.�/ 6 1

2
.2	 C 1 �

p

4	2 C 1/ D 0:4245 : : : :
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2.5 Algebraic approximation to a single number

Let � be a real number and n a positive integer.
Denote by !�n .�/ the supremum of the real numbers w for which there exist

infinitely many positive integers N with the following property: there exists an
algebraic number ˛ of degree 6 n and height 6 N satisfying2

0 < j� � ˛j 6 N�w�1: (31)

An upper bound for !�n .�/ is a measure of algebraic approximation for �. These
numbers arise in Koksma’s classification of complex numbers (Chap. III �3 of [128]
and �3.3 of [36]).

Next, denote by b!�n.�/ the supremum of the real numbers w such that, for any
sufficiently large integer N , there exists an algebraic number ˛ of degree 6 n and
height 6 N satisfying

j� � ˛j 6 H.˛/�1N�w:

An upper bound forb!�n.�/ yields a uniform measure of algebraic approximation
for �.

From Schmidt’s subspace theorem one deduces, for a real algebraic number � of
degree d and for n > 1,

b!�n.�/ D !�n .�/ D minfn; d � 1g:

See [36] Th. 2.9 and 2.11.
That there are relations between !n and !�n (and, for the same reason, between

b!n andb!�n ) can be expected from Lemmas 9 and 10. Indeed, a lot of information on
these numbers has been devised in order to compare the classifications of Mahler
and Koksma. The estimate

!n.�/ > !�n .�/;

which follows from Lemma 9, was known by Koksma (see also Wirsing’s paper
[139]). In the reverse direction, the inequalities

!�n .�/ > !n.�/ � nC 1; !�n .�/ > !n.�/C 1
2

(32)

and

!�n .�/ > !n.�/

!n.�/ � nC 1 (33)

were obtained by E. Wirsing in 1960 [139] (see �3.4 of [36]).

2The occurrence of �1 in the exponent of the right-hand side of (31) is already plain for degree 1
polynomials, comparing j˛ � p=qj and jq˛ � pj.
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A consequence is that for a real number � which is not algebraic of degree 6 n,
if !n.�/ D n then !�n .�/ D n.

The inequality (33) of Wirsing has been refined in Theorem 2.1 of [41] as follows.

Theorem 34 (Bugeaud and Laurent). Let n be a positive integer and � a real
number which is not algebraic of degree 6 n. Then

b!�n.�/ > !n.�/

!n.�/ � nC 1 and !�n .�/ > b!n.�/

b!n.�/ � nC 1 �

A number of recent papers are devoted to this topic, including the survey given
in the first part of [41] as well as Bugeaud’s papers [5, 31, 34, 37, 39], where further
references can be found.

We quote Proposition 2.1 of [41], which gives connections between the six
exponents !n, b!n, !0n, b!0n, !�n , b!�n .

Proposition 35. Let n be a positive integer and � a real number which is not
algebraic of degree 6 n. Then

1

n
6 b! 0n.�/ 6 minf1; !0n.�/g

and

1 6 b!�n.�/ 6 min
˚

!�n .�/; b!n.�/
�

6 max
˚

!�n .�/; b!n.�/
�

6 !n.�/:

A further relation connecting !�n and b!0n has been discovered by H. Davenport
and W.M. Schmidt in 1969 [49]. We discuss their contribution in �2.6. For our
immediate concern here we only quote the following result:

Theorem 36. Let n be a positive integer and � a real number which is not algebraic
of degree 6 n, Then

!�n .�/b! 0n.�/ > 1:

The spectral question for !�n is one of the main challenges in this domain.
Wirsing’s conjecture states that for any integer n > 1 and any real number � which
is not algebraic of degree 6 n, we have !�n .�/ > n. In other terms:

Conjecture 37 (Wirsing). For any � > 0 there is a constant c.�; n; �/ > 0 for
which there are infinitely many algebraic numbers ˛ of degree 6 n with

j� � ˛j 6 c.�; n; �/H.˛/�n�1C� :

In 1960, E. Wirsing [139] proved that for any real number which is not algebraic
of degree 6 n, the lower bound !�n .�/ > .n C 1/=2 holds: it suffices to combine
(32) with the lower bound!n.�/ > n from (17) (see [124] Chap. VIII Th. 3B). More
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precisely, he proved that for such a � 2 R there is a constant c.�; n/ > 0 for which
there exist infinitely many algebraic numbers ˛ of degree 6 n with

j� � ˛j 6 c.�; n/H.˛/�.nC3/=2:

The special case n D 2 of this estimate was improved in 1967 when H. Davenport
and W.M. Schmidt [48] replaced .nC 3/=2 D 5=2 by 3. This is optimal for
the approximation to a real number by quadratic algebraic numbers. This is the
only case where Wirsing’s conjecture is solved. More recent estimates are due to
V.I. Bernik and K. Tishchenko [28,132–136]. This question is studied by Y. Bugeaud
in his book [36] (�3.4) where he proposes the following main problem:

Conjecture 38 (Bugeaud). Let .wn/n>1 and .w�n/n>1 be two non–decreasing se-
quences in Œ1;C1� for which

n 6 w�n 6 wn 6 w�n C n � 1 for any n > 1:

Then there exists a transcendental real number � for which

!n.�/ D wn and !�n .�/ D w�n for any n > 1:

A summary of known results on this problem is given in �7.8 of [36].
The spectrum

˚

!n.�/ � !�n .�/ I � 2 R not algebraic of degree 6 n
� � Œ0; n � 1�

of !n�!�n for n > 2was studied by R.C. Baker in 1976 who showed that it contains
Œ0; 1�.1=n/�. This has been improved by Y. Bugeaud in [34]: it contains the interval
Œ0; n=4�.

Most results concerning !�n .�/ and b!�n.�/ for � 2 R have extensions to complex
numbers, only the numerical estimates are slightly different. However, see [40].

2.6 Approximation by algebraic integers

An innovative and powerful approach was initiated in the seminal paper [49] by
H. Davenport and W.M. Schmidt (1969). It rests on the transference principle arising
from the geometry of numbers and Mahler’s theory of polar convex bodies and
allows one to deal with approximation by algebraic integers of bounded degree. The
next statement includes a refinement by Y. Bugeaud and O. Teulié (2000) [45] who
observed that one may treat approximations by algebraic integers of given degree;
the sharpest results in this direction are due to M. Laurent [88].

From the estimate !�n .�/b! 0n.�/ > 1 in Theorem 36 one deduces the following
statement. Let n be a positive integer and let � be a real number which is not
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algebraic of degree 6 n. Let � satisfy b! 0n.�/ < �. Then for 
 D .1=�/C 1, there is
a constant c.n; �; 
/ > 0 such that the equation

j� � ˛j 6 c.n; �; 
/H.˛/�
 (39)

has infinitely many solutions in algebraic numbers ˛ of degree n. In this statement
one may replace “algebraic numbers ˛ of degree n” by “algebraic integers ˛ of
degree nC 1” and also by “algebraic units ˛ of degree nC 2.”

Proposition 40. Let 
 > 1 be a real number, n a positive integer and � be a real
number which is not algebraic of degree 6 n. Assume b! 0n.�/ < 1=.
 � 1/. Then
there exists a constant c.n; �; 
/ > 0 such that there are infinitely many algebraic
integers ˛ of degree nC 1 satisfying (39) and there are infinitely many algebraic
units ˛ of degree nC 2 satisfying (39).

Suitable values for 
 are deduced from Theorem 27 and estimate (21). For
instance, from Theorem 36 and the estimateb!02.�/ 6 1=	 of Davenport and Schmidt
in (30) one deduces !�2 .�/ > 	 . Hence for any 
 < 1 C 	 the assumptions of
Proposition 40 are satisfied. More precisely, the duality (or transference) arguments
used by Davenport and Schmidt to prove Theorem 36 together with their Theorem
28 enabled them to deduce the next statement ([49], Th. 1).

Theorem 41 (Davenport and Schmidt). Let � 2 R be a real number which is
neither rational nor a quadratic irrational. Then there is a constant c > 0 with the
following property: there are infinitely many algebraic integers ˛ of degree at most
3 which satisfy

0 < j� � ˛j 6 cH.˛/�	�1: (42)

Lemma 9 shows that under the same assumptions, for another constant c > 0

there are infinitely many monic polynomialsP 2ZŒX� of degree at most 3 satisfying

jP.�/j 6 cH.P /�	 : (43)

Estimates (42) and (43) are optimal for certain classes of extremal numbers [114].
Approximation of extremal numbers by cubic integers is studied by D. Roy in [114,
115]. Further papers dealing with approximation by algebraic integers include [4,
45, 122, 135].

Another development of the general and powerful method of Davenport and
Schmidt deals with the question of approximating simultaneously several numbers
by conjugate algebraic numbers: this is done in [122] and refined in [117] by D. Roy.
Also in [117] D. Roy gives variants of Gel’fond’s transcendence criterion involving
not only a single number � but sets f	 C �1; : : : ; 	 C �mg or f	�1; : : : ; 	�mg. In two
recent manuscripts [120,121], D. Roy produces new criteria for the additive and for
the multiplicative groups.

A different application of transference theorems is to link inhomogeneous
Diophantine approximation problems with homogeneous ones [42].
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2.7 Overview of metrical results for polynomials

Here we give a brief account of some significant results that have produced new
ideas and generalisations, as well as some interesting problems and conjectures.
We begin with the probabilistic theory (that is, Lebesgue measure statements)
and continue with the more delicate Hausdorff measure/dimension results. Results
for multivariable polynomials, in particular, the recent proof of a conjecture of
Nesterenko on the measure of algebraic independence of almost all real m-tuples,
will be sketched in � 3.6, as will metrical results on simultaneous approximation.
Note that many of the results suggested here have been established in the far
more general situation of Diophantine approximation on manifolds. However, for
simplicity, we will only explain this Diophantine approximation for the case of
integral polynomials.

Mahler’s problem [96], which arose from his classification of real (and complex)
numbers, remains a major influence over the metrical theory of Diophantine
approximation. As mentioned in �2.3, the problem was settled by Sprindzuk in
1965. Answering a question posed by A. Baker in [9], Bernik [25] established a
generalisation of Mahler’s problem akin to Khintchine’s one-dimensional conver-
gence result in Theorem 7, involving the critical sum

1X

hD1
.h/ (44)

of values of the function  W N! R
C that defines the error of approximation.

Theorem 45 (Bernik, 1989). Given a monotonic  such that the critical sum (44)
converges, for almost all � 2 R the inequality

jP.�/j < H.P /�nC1.H.P // (46)

has only finitely many solutions in P 2 ZŒx� with degP 6 n.

In the case n D 1, inequality (46) reduces to rational approximations of real
numbers and is covered by Khintchine’s Theorem 7 [73]. Khintchine’s Theorem
7 also covers the solubility of (46) when n D 1 and (44) diverges. For arbitrary
n the complementary divergence case of Theorem 45 has been established by
Beresnevich, who has shown in [13] that if (44) diverges then for almost all real
� inequality (46) has infinitely many solutions P 2 ZŒx� with degP D n. In fact
the latter statement follows from the following analogue of Khintchine’s Theorem
7 for approximation by algebraic numbers, also established in [13].

Theorem 47 (Beresnevich, 1999). Let n 2 N,  W N! R
C be a monotonic error

function and An./ the set of real � such that

j� � ˛j < H.˛/�n.H.˛// (48)
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has infinitely many solutions in real algebraic numbers of degree deg˛ D n. Then
An./ has full Lebesgue measure if the sum (44) diverges and zero Lebesgue
measure otherwise.

Bugeaud [32] has proved an analogue of Theorem 47 for approximation by algebraic
integers:

Theorem 49 (Bugeaud, 2002). Let n 2 N, n > 2,  W N ! R
C be a monotonic

error function and In./ be the set of real � such that

j� � ˛j < H.˛/�nC1.H.˛// (50)

has infinitely many solutions in real algebraic integers of degree deg˛ D n. Then
In./ has full Lebesgue measure if the sum (44) diverges and zero Lebesgue
measure otherwise.

No analogue of Theorem 45 is known for the monic polynomial case; however,
see the final section of [23].

Unlike Theorem 45, the convergence parts of Theorems 47 and 49 are rather
trivial consequences of the Borel–Cantelli lemma, which also implies that the
monotonicity condition is unnecessary in the case of convergence. The intriguing
question now arises whether the monotonicity condition in Theorem 45 and in
the divergence part of Theorems 47 and 49 can be dropped. Beresnevich [16] has
recently shown that the monotonicity condition on  can indeed be safely removed
from Theorem 45. Regarding Theorems 47 and 49, removing the monotonicity
condition is a fully open problem - [16]. In fact, in dimension n D 1, removing
the monotonicity from Theorem 47 falls within the Duffin and Schaeffer problem
[56]. Note, however, that the higher -dimensional Duffin–Schaeffer problem has
been settled in the affirmative [108].

It is interesting to compare Theorems 47 and 49 with their global counterparts.
In the case of approximation by algebraic numbers of degree 6 n, the appropriate
statement is known as the Wirsing conjecture 37 (see � 2.5). The latter has been
verified for n D 2 by Davenport and Schmidt but is open in higher dimensions.
Theorem 47 implies that the statement of the Wirsing conjecture 37 holds for almost
all real � – the actual conjecture states that it is true at least for all transcendental
�. In the case of approximation by algebraic integers of degree 6 n, Roy has
shown that the statement analogous to Wirsing’s conjecture is false [114]. However,
Theorem 49 implies that the statement holds for almost all real �, In line with the
recent “metrical” progress on Littlewood’s conjecture by Einsiedler, Katok, and
Lindenstrauss [57], it would be interesting to find out whether the set of possible
exceptions to the Wirsing–Schmidt conjecture is of Hausdorff dimension zero. A
similar question can also be asked about approximation by algebraic integers; this
would shed light on the size of the set of exceptions, shown to be non-empty by Roy.
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A. Baker [10] suggested a strengthening of Mahler’s problem in which the height
H.P/ D maxfjanj; : : : ; ja0jg of the polynomial P.x/ D anxn C � � � C a1x C a0 is
replaced by

H�.P / D
nY

iD1
maxf1; jai jg1=n:

The corresponding statement has been established by Kleinbock and Margulis [76]
in a more general context of Diophantine approximation on manifolds. Specialising
their result to polynomials gives the following.

Theorem 51 (Kleinbock & Margulis, 1998). Let " > 0. Then for almost all � 2 R

the inequality
jP.�/j < H�.P /�n�" (52)

has only finitely many solutions in P 2 ZŒx� with degP 6 n.

A multiplicative analogue of Theorem 45 with H.P/ replaced by H�.P / has
been obtained by Bernik, Kleinbock and Margulis [27] (also within the framework
of manifolds). Note that in their theorem the convergence of (44) must be replaced
by the stronger condition that

P1
hD1 .h/.logh/n�1 < 1. This condition is

believed to be optimal but it is not known if the multiplicative analogue of
Theorem 47, when H.P/ is replaced by H�.P /, holds. In [23], Beresnevich and
Velani have proved an inhomogeneous version of the theorem of Kleinbock and
Margulis and, in particular, an inhomogeneous version of Theorem 51.

With [11], A. Baker and W.M. Schmidt pioneered the use of Hausdorff dimension
in the context of approximation of real numbers by algebraic numbers with a natural
generalisation of the Jarnı́k–Besicovitch theorem:

Theorem 53 (Baker & Schmidt, 1970). Let w > n. Then the set of � 2 R for
which

j� � ˛j < H.˛/�w (54)

holds for infinitely many algebraic numbers ˛ with deg˛ 6 n has Hausdorff
dimension .nC 1/=.wC 1/.

In particular, Theorem 53 implies that the set

A.w/ D
n

� 2 R W jP.�/j < H.P /�w for infinitely many P 2 ZŒx�; degP 6 n
o

(55)

has Hausdorff dimension at least .nC 1/=.wC 1/. Baker and Schmidt conjectured
that this lower bound is sharp, and this was established by Bernik in [24]:

Theorem 56 (Bernik, 1983). Let w > n. Then dimA.w/ D nC 1
wC 1 .

This theorem has an important consequence for the spectrum of Diophantine
exponents already discussed (see Chap. 5 of [36]). Bugeaud [32] has obtained an
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analogue of Theorem 53 in the case of algebraic integers. However, obtaining an
analogue of Theorem 56 for the case of algebraic integers is as yet an open problem.

Recently, Beresnevich, Dickinson, and Velani have established a sharp Hausdorff
measure version of Theorem 53, akin to a classical result of Jarnı́k. In order to avoid
introducing various related technicalities, we refer the reader to [21, �12.2]. Their
result implies the corresponding divergent statement for the Hausdorff measure of
the set of � 2 R such that (46) holds infinitely often. Obtaining the corresponding
convergent statement represents yet another open problem.

There are various generalisations of the above results to the case of complex and
p-adic numbers and more generally to the case of S -arithmetic (for instance by
D. Kleinbock and G. Tomanov in [77]).

3 Simultaneous Diophantine approximation in higher
dimensions

In �2.3, we considered polynomial approximation to a complex number �, which
is the study of jP.�/j for P 2 ZŒX�. As we have seen, negative results on the
existence of polynomial approximations lead to transcendence measures. A more
general situation is to fix several complex numbers x1; : : : ; xm and to study the
smallness of polynomials in these number; negative results provide measures of
algebraic independence to x1; : : : ; xm.

This is again a special case, where �i D xa11 � � �xamm , of the study of linear
combinations in �1; : : : ; �n, where �1; : : : ; �n are given complex numbers. Now
negative results are measures of linear independence to �1; : : : ; �n.

There are still more general situations which we are not going to consider
thoroughly but which are worth mentioning, namely the study of simultaneous
approximation of dependent quantities and approximation on a manifold (see for
instance [26]).

We start with the question of algebraic independence (�3.1) in connection with
extensions to higher dimensions of Gel’fond’s Criterion 11. Next (��3.2 and 3.3) we
discuss a recent work by M. Laurent [91], who introduces further coefficients for the
study of simultaneous approximation. The special case of two numbers (�3.4) is best
understood so far.

There is a very recent common generalisation of the question of Diophantine
approximation to a point in Rn which is considered in �3.3 on the one hand, and of
the question of approximation to a real number by algebraic numbers of bounded
degree considered in �2.5 on the other hand. It consists in the investigation of the
approximation to a point in Rn by algebraic hypersurfaces, or more generally alge-
braic varieties defined over the rationals. This topic has been recently investigated
by W. M. Schmidt in [127] and [126].
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3.1 Criteria for algebraic independence

In �2.2 we quoted Gel’fond’s algebraic independence results of two numbers of
the form ˛ˇ

i
(1 6 i 6 d � 1). His method has been extended in the work of

several mathematicians including A.O. Gel’fond, A.A. Smelev, W.D. Brownawell,
G.V. Chudnovsky, P. Philippon, Yu.V. Nesterenko, G. Diaz (see [68], [79], [131],
[101, 102], [104, 107], [59] Chap. 6 and [103]). So far the best known result, due to
G. Diaz [50], proves “half” of what is expected.

Theorem 57. Let ˇ be an algebraic number of degree d > 2 and ˛ a non–zero
algebraic number. Moreover, let log˛ be any non-zero logarithm of ˛. Write ˛z in
place of exp.z log˛/. Then among the numbers

˛ˇ; ˛ˇ
2

; : : : ; ˛ˇ
d�1

;

at least d.d C 1/=2e are algebraically independent.

In order to prove such a result, as pointed out by S. Lang in [78], it would have
been sufficient to replace the transcendence criterion theorem 11 by a criterion
for algebraic independence. However, an example, going back to A.Ya. Khintchine
in 1926 [74] and quoted in J.W.S. Cassels’s book ([46] Chap. V, Th. 14; see also
the appendix of [104] and Appendix A of [121]), shows that in higher dimensions,
some extra hypothesis cannot be avoided (and this is a source of difficulty in the
proof of Theorem 57). After the work of W.D. Brownawell and G.V. Chudnovsky,
such criteria were proved by P. Philippon [104, 107], Yu.V. Nesterenko [101, 102],
M. Ably, C. Jadot (further references are given in [59] and [138] �15.5). Reference
[103] is an introduction to algebraic independence theory which includes a chapter
on multihomogeneous elimination by G. Rémond [109] and a discussion of criteria
for algebraic independence by P. Philippon [107].

Further progress was made by M. Laurent and D. Roy in 1999, who produced
criteria with multiplicities [92, 93] (see also [94]) and considered questions of ap-
proximation by algebraic sets. Moreover, in [93] they investigate the approximation
properties, by algebraic numbers of bounded degree and height, of a m-tuple which
generates a field of transcendence degree 1. This means that the corresponding point
in Cm belongs to an affine curve defined over Q. For m D 1 they proved in [92] the
existence of approximation; this has been improved by G. Diaz in [51]. Further
contributions are due to P. Philippon (see for instance [106]).

A very special case of the investigation of Laurent and Roy is a result related to
Wirsing’s lower bound for !�n (see �2.5), with a weak numerical constant, but with
a lower bound for the degree of the approximation. Their result (Corollary 1 of �2
of [93]) has been improved by Y. Bugeaud and O. Teulié (Corollary 5 of [45]) who
prove that the approximations ˛ can be required to be algebraic numbers of exact
degree n or algebraic integers of exact degree nC 1.
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Theorem 58 (Bugeaud and Teulié). Let � > 0 be a real number, n > 2 an integer
and � a real number which is not algebraic of degree n. Then the inequality

j� � ˛j 6 H.˛/�..nC3/=2/C�

has infinitely many solutions in algebraic integers ˛ of degree n.

The � in the exponent can be removed by introducing a constant factor. Further,
for almost all ˛ 2 R, the result holds with the exponent replaced by n, as shown by
Y. Bugeaud in [33].

There are close connections between questions of algebraic independence and si-
multaneous approximation of numbers. We shall not discuss this subject thoroughly
here; it would deserve another survey. We just quote a few recent papers.

Applications of Diophantine approximation questions to transcendental number
theory are considered by P. Philippon in [105]. M. Laurent [87] gives heuristic
motivations in any transcendence degree. Conjecture 15.31 of [138] on simultaneous
approximation of complex numbers suggests a path towards results on large
transcendence degree.

In [110] D. Roy shows some limitations of the conjectures of algebraic ap-
proximation by constructing points in Cm which do not have good algebraic
approximations of bounded degree and height, when the bounds on the degree
and height are taken from specific sequences. The coordinates of these points are
Liouville numbers.

3.2 Four exponents: asymptotic or uniform simultaneous
approximation by linear forms or by rational numbers

Let �1; : : : ; �n be real numbers. Assume that the numbers 1; �1; : : : ; �n are linearly
independent over Q. There are (at least) two points of view for studying approxima-
tion to �1; : : : ; �n. On the one hand, one may consider linear forms (see for instance
[78])

jx0 C x1�1 C � � � C xn�nj:
On the other hand, one may investigate the existence of simultaneous approximation
by rational numbers

max
16i6n

ˇ
ˇ
ˇ
ˇ
�i � xi

x0

ˇ
ˇ
ˇ
ˇ
:

Each of these two points of view has two versions, an asymptotic one (with exponent
denoted by !) and a uniform one (with exponent denoted by b!). This gives rise to
four exponents introduced in [42] (see also [91]),

!.�/; b!.�/; !.t �/; b!.t�/;
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where

� D .�1; : : : ; �n/ and t � D

0

B
@

�1
:::

�n

1

C
A :

We shall recover the situation of ��2.1 and 2.4 in the special case where �i D �i ,
1 6 i 6 n: for � D .�; �2; : : : ; �n/,

!.�/ D !n.�/; b!.�/ D b!n.�/; !.t �/ D !0n.�/; b!.t�/ D b!0n.�/:

Notice that the index n is implicit in the notation involving !, since it is the number
of components of � .

We start with the question of asymptotic approximation by linear forms. We
denote by !.�/ the supremum of the real numbers w for which there exist infinitely
many positive integers N for which the system

jx0 C x1�1 C � � � C xn�nj 6 N�w; 0 < max
06i6n

jxi j 6 N; (59)

has a solution in rational integers x0; x1; : : : ; xn. An upper bound for !.�/ is a linear
independence measure for 1; �1; : : : ; �n.

The hat version of !.�/ is, as expected, related to the study of uniform
approximation by linear forms: we denote by b!.�/ the supremum of the real
numbers w such that for any sufficiently large integer N , the same system (59) has
a solution.

Obviously b!.�/ 6 !.�/.
The second question is that of asymptotic simultaneous approximation by

rational numbers. Following again [91], we denote by !.t�/ the supremum of the
real numbers w for which there exist infinitely many positive integers N for which
the system

max
16i6n

jxi � x0�i j 6 N�w; with 0 < max
06i6n

jxi j 6 N (60)

has a solution in rational integers x0; x1; : : : ; xn. An upper bound for !.t �/ is a
simultaneous approximation measure for 1; �1; : : : ; �n.

The uniform simultaneous approximation by rational numbers is measured by
the hat version of !: we denote by b!.t�/ the supremum of the real numbers w such
that for any sufficiently large integer N , the same system (60) has a solution.

Again b!.t�/ 6 !.t�/.
Transference principles provide relations between !.�/ and !.t�/. The next

result (Khintchine, 1929 [74]) shows that !.�/ D n if and only if !.t�/ D 1=n.
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Theorem 61 (Khintchine transference principle). If we set ! D !.�/ and t! D
!.t�/, then we have

! > n t! C n � 1 and t! > !

.n � 1/! C n �

In order to study these numbers, M. Laurent introduces in [91] further exponents
as follows.

3.3 Further exponents, following M. Laurent

For each d in the range 0 6 d 6 n � 1, M. Laurent [91] introduces two exponents,
one for asymptotic approximation!d.�/ and one for uniform approximationb!d.�/,
which measure the quality of simultaneous approximation to the given tuple � D
.�1; : : : ; �n/ from various points of view. First embed Rn into Pn.R/ by mapping
� D .�1; : : : ; �n/ to .�1 W � � � W �n W 1/.

Now for 0 6 d 6 n � 1, define

!d.�/ D sup
n

wI there exist infinitely many vectors

X D x0 ^ � � � ^ xd 2 �dC1.ZnC1/ for which jX ^ � j 6 jX j�w
o

and

b!d .�/ D sup
n

wI for any sufficiently large N , there exists

X D x0 ^ � � � ^ xd 2 �dC1.ZnC1/

such that 0 < jX j 6 N and jX ^ � j 6 N�w
o

:

Hence !d.�/ > b!d.�/.
The multivector X D x0 ^ � � � ^ xd is a system of Plücker coordinates of the

linear projective subvariety L D hx0; : : : ; xd i � Pn.R/. Then

jX ^ � j
jX jj� j

is essentially the distance d.�; L/ D minx2L d.�; x/ between the image of � in
Pn.R/ to L. As a consequence, equivalent definitions are as follows, where H.L/
denotes the Weil height of any system of Plücker coordinates of L.

!d.�/ D sup
n

wI there exist infinitely many L, rational over Q,

dimL D d and d.�; L/ 6 H.L/�w�1
o
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and

b!d.�/ D sup
n

wI for any sufficiently large N , there exists L, rational over Q,

dimL D d; H.L/ 6 N and d.�; L/ 6 H.L/�1N�w
o

:

In the extremal cases d D 0 and d D n � 1, one recovers the exponents of � 3.2:

!0.�/ D !.t �/; b!0.�/ D b!.t�/; !n�1.�/ D !.�/; b!n�1.�/ D b!.�/:

The lower bound

b!d .�/ > d C 1
n � d for all d D 0; : : : ; n � 1

valid for all � (with 1; �1; : : : ; �n linearly independent over Q) follows from the
results of W.M. Schmidt in his foundational paper [123] (see [44]). In particular for
d D n � 1 and d D 0 respectively, this lower bound yields

b!.�/ > n and b!.t�/ > 1=n

and in the special case �i D �i (1 6 i 6 n) one recovers the lower bounds

b!n.�/ > n and b! 0n.�/ > 1=n;

which we deduced in � 2.3 and � 2.4 respectively from Dirichlet’s box principle.
It was proved by Khintchine in 1926 [74] that !.�/ D n if and only if

!.t�/ D 1=n. In [91], M. Laurent slightly improves on earlier inequalities due
to W.M. Schmidt [123], splitting the classical Khintchine’s transference principle
(Theorem 61) into intermediate steps.

Theorem 62 (Schmidt, Laurent). Fix n > 1 and � D .�1; : : : ; �n/ 2 Rn. Set
!d D !d.�/, 0 6 d 6 n � 1. The “going up transference principle” is

!dC1 > .n � d/!d C 1
n � d � 1

, 0 6 d 6 n � 2;

while the “going down transference principle” is

!d�1 > d!d

!d C d C 1
, 1 6 d 6 n � 1:

Moreover, these estimates are optimal.
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As a consequence of Theorem 62, one deduces that if !d D .d C 1/=.n � d/
for one value of d in the range 0 6 d 6 n � 1, then the same equality holds for all
d D 0; 1; : : : ; n � 1. Hence, for almost all � 2 Rn,

!d.�/ D b!d.�/ D d C 1
n � d for 0 6 d 6 n � 1:

A complement to Theorem 62, involving the hat coefficients, is given in [91] Th. 3.
A problem raised in [91] is to find the spectrum in .R [ fC1g/n of the n-tuples

�

!0.�/; : : : ; !n�1.�/
�

;

where � ranges over the elements .�1; : : : ; �n/ in Rn with 1; �1; : : : ; �n linearly
independent over Q. Partial results are given in [91].

In [42] Y. Bugeaud and M. Laurent define and study exponents of inhomogeneous
Diophantine approximation. Further progress on this topic has been achieved by
M. Laurent in [89].

3.4 Dimension 2

We consider the special case n D 2 of �3.3: we replace .�1; �2/ by .�; �/. So let �
and � be two real numbers with 1; �; � linearly independent over Q.

Khintchine’s transference Theorem 61 reads in this special case

!.�; �/

!.�; �/C 2 6 !

�
�

�

�

6 !.�; �/ � 1
2

�

V. Jarnı́k studied these numbers in a series of papers from 1938 to 1959 (see [36,42,
90]). He proved that both sides are optimal. Also Jarnı́k’s formula (of which (29) is
a special case) reads

b!

�
�

�

�

D 1 � 1

b!.�; �/
� (63)

The spectrum of each of our four exponents is as follows:

!.�; �/ takes any value in the range Œ2;C1�,
!

�

�

�

�

takes any value in the range Œ1=2; 1�,

b!.�; �/ takes any value in the range Œ2;C1�,
b!

�
�

�

�

takes any value in the range Œ1=2; 1�.
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Moreover, for almost all .�; �/ 2 R2,

!.�; �/ D b!.�; �/ D 2; !

�
�

�

�

D b!
�
�

�

�

D 1

2
�

A more precise description of the spectrum of the quadruple is due to M. Laurent
[90]:

Theorem 64 (Laurent). Assume 1; �; � are linearly independent over Q. The four
exponents

! D !.�; �/; !0 D !
�

�

�

�

; b! D b!.�; �/; b!0 D b!
�

�

�

�

are related by

2 6 b! 6 C1; b!0 D b! � 1
b!

, !.b! � 1/
! Cb! 6 !0 6 ! �b! C 1

b!

with the obvious interpretation if ! D C1. Conversely, for any .!; !0;b!;b!0/ in
.R>0 [ fC1g/4 satisfying the previous inequalities, there exists .�; �/ 2 R2, with
1; �; � linearly independent over Q, for which

! D !.�; �/; !0 D !
�

�

�

�

; b! D b!.�; �/; b! 0 D b!
�

�

�

�

:

As a consequence:

Corollary 65. The exponents ! D !.�; �/, b! D b!.�; �/ are related by

! > b!.b! � 1/ and b! > 2:

Conversely, for any .!;b!/ satisfying these conditions, there exists .�; �/ for which

!.�; �/ D ! and b!.�; �/ D b!:

Corollary 66. The exponents !0 D !
�
�

�

�

, b!0 D b!
�
�

�

�

are related by

!0 > b! 02

1 �b! 0 and
1

2
6 b!0 6 1:

Conversely, for any .!0;b!0/ satisfying these conditions, there exists .�; �/ with

!

�

�

�

�

D !0 and b!

�

�

�

�

D b!0:
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The next open problem has been raised by M. Laurent:

Open Problem 67 (Laurent). Is there an extension of Jarnı́k’s equality (63) in
higher dimensions relatingb!.�/ and b!.t�/ for � 2 Rn?

3.5 Approximation by hypersurfaces

In dimension 1 an irreducible hypersurface is nothing else than a point. The
exponents !n.�/ and their hat companions in � 2.3 measure jP.�/j for P 2 ZŒX�,
while !�n .�/ of �2.5 measure the distance between a point � 2 C and algebraic
numbers ˛.

A generalisation of these questions in higher dimensions, where � 2 Cn, is the
study of jP.�/j forP 2 ZŒX1; : : : ; Xn� and of min˛ j��˛j, where ˛ runs over the set
of zeros of such P . As already mentioned in the introduction of �3, a lower bound
for jP.�/j when the degree of P is fixed is nothing else than a linear independence
measure for .�; : : : ; �n/. To consider such quantities also when the degree of P
varies yields a generalisation of Mahler’s classification to several variables, which
has been considered by Yu Kunrui [140]. A generalisation to higher dimensions
of both Mahler and Koksma classifications has been achieved by W.M. Schmidt in
[126], who raises a number of open problems suggesting that the close connection
between the two classifications in dimension 1 does not extend to the classification
of tuples.

In [127] W.M. Schmidt deals with approximation to points � in Rn or in Cn by
algebraic hypersurfaces, and more generally by algebraic varieties, defined over the
rationals.

Let M be a nonempty finite set of monomials in x1; : : : ; xn with jMj elements.
Denote by P.M/ the set of polynomials in ZŒx1; : : : ; xn� which are linear com-
binations of monomials in M. Using Dirichlet’s box principle or Minkowski’s
theorem on linear forms, one shows the existence of nonzero elements in P.M/

for which jP.�/j is small. It is a much more difficult task to get the existence of
nonzero elements in P.M/ for which the distance ı

�

�; A.P /
�

between � and the
hypersurfaceA.P / defined by P D 0 is small.

W.M. Schmidt asks whether given � and M, there exists c D c.�;M/ > 0 such
that there are infinitely many P 2 P.M/ with ı

�

�; A.P /
�

6 cH.P /�m , where
m D jMj in the real case � 2 Rn and m D jMj=2 in the complex case � 2 Cn.
He proves such an estimate when jMj D n C 1, and also in the real case when
jMj D n C 2. In the case jMj D n C 1 he proves a uniform result, in the sense
of Y. Bugeaud and M. Laurent [41]: given N > 1, there is a P 2 P.M/ with
height H.P/ 6 N for which ı

�

�; A.P /
�

6 cN 1�mH.P /�1. A number of further
results are proved in which the exponent is not the conjectured one. The author also
investigates the approximation by algebraic hypersurfaces (another reference on this
topic is [94]).
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Special cases of the very general and deep results of this paper were due to
F. Amoroso, W.D. Brownawell, M. Laurent and D. Roy, and P. Philippon. Further
previous results related with Wirsing’s conjecture were also achieved by V.I. Bernik
and K.I. Tishchenko.

An upper bound for the distance ı.�; A/ means that there is a point on the
hypersurface A (or more generally the variety A) close to �. The author also
investigates the “size” of the set of such elements. The auxiliary results proved in
[127] on this question have independent interest.

3.6 Further metrical results

The answer to the question of Schmidt on approximation of points � 2 R
m by

algebraic hypersurfaces A.P / is almost surely affirmative. This follows from a
general theorem established by Beresnevich, Bernik, Kleinbock and Margulis. With
reference to Section 3.5, let M be a set of monomials of cardinality m D jMj in
variables x1; : : : ; xk , where we naturally assume that m > 2. Further, let P.M/ be
the set of polynomials in ZŒx1; : : : ; xk� which are linear combinations of monomials
in M. Given a function  W N! .0;C1/, let

Ak.;M/ D
n

.�1; : : : ; �k/ 2 Œ0; 1�k W jP.�1; : : : ; �k/j < H.P /�mC2.H.P //

for infinitely many P 2 P.M/
o

:

We are interested in jAk.;M/j, the k-dimensional Lebesgue measure of
Ak.;M/.

Theorem 68 (Beresnevich, Bernik, Kleinbock and Margulis). For any decreas-
ing  ,

jAk.;M/j D
8

<

:

0 if
P1

hD1 .h/ <1 ;

1 if
P1

hD1 .h/ D1 :

The convergence case of this theorem has been independently established by Beres-
nevich [15] and Bernik, Kleinbock and Margulis [27] using different techniques.
The multiplicative analogue of the convergence part of Theorem 68, whereH.P/ is
replaced withH�.P /, has also been obtained in [27]. In addition, Theorem 68 holds
when M is a set ofm analytic functions defined on .0; 1/k and linearly independent
over R. The analyticity assumption can also be relaxed towards a non-degeneracy
condition.

The divergence case is established in [19] in the following stronger form
connected with �3.5, where the notation ı and A.P / are explained.
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Theorem 69 (Beresnevich, Bernik, Kleinbock and Margulis). Let  be decreas-
ing and such that

P1
hD1 .h/ diverges. Then for almost all � D .�1; : : : ; �k/ 2

Œ0; 1�k ,
ı.�; A.P // < H.P /�mC1.H.P //

has infinitely many solutions P 2 P.M/.

Taking .h/ D h�1 log�1 h, we get the following corollary which answers
Schmidt’s question in �3.5 in the affirmative for almost all points:

Corollary 1. For almost all � D .�1; : : : ; �k/ 2 R
k , the inequality

ı.�; A.P // < H.P /�m log�1 H.P / (70)

has infinitely many solutions P 2 P.M/.

Another interesting corollary corresponds to the special case of M being the
set of all monomials of degree at most d . In this case we simply have the case of
approximation by multivariable polynomials of degree at most d , where now

m D
 

k C d
d

!

:

In the case of convergence in Theorem 68, a lower bound for the Hausdorff
dimension of Ak.;M/ is implied by a general theorem for manifolds of Dickinson
and Dodson [53]. Obtaining the corresponding upper bound in general remains an
open problem but see Theorem 56 and [12, 17, 54]. The Hausdorff measure version
of Theorem 69 has been established in [21].

Yet another class of interesting problems concerns the measure of transcendence
and algebraic independence of numbers. Recall that complex numbers z1; : : : ; zm are
called algebraically independent if for any non-zero polynomialP 2 ZŒx1; : : : ; xm�,
the value P.z1; : : : ; zm/ is not 0. Actually, P.z1; : : : ; zm/ can still get very small
when z1; : : : ; zm are algebraically independent. Indeed, using Dirichlet’s pigeonhole
principle, one can readily show that there is a constant c1 > 0 such that for any real
numbers x1; : : : ; xm, there are infinitely many polynomialsP 2 ZŒx1; : : : ; xm� such
that

jP.x1; : : : ; xm/j < e�c1t.P /mC1 ; (71)

where t.P / D degP C logH.P/ is called the type of P . A conjecture of Mahler
[97] proved by Nesterenko [100] says that in the case m D 1 for almost all real
numbers x1 there is a constant c0 > 0 such that jP.x1/j > e�c0t.P /2 for all non-
zero P 2 ZŒx�. Nesterenko has also shown that for � D m C 2, for almost all
.x1; : : : ; xm/ 2 R

m there is a constant c0 > 0 such that

jP.x1; : : : ; xm/j > e�c0t.P /� for all non-zero P 2 ZŒx1; : : : ; xm� (72)
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and conjectured that the latter is indeed true with the exponent � D mC 1. This has
been verified by Amoroso [6] over C, but the “real” conjecture has been recently
established by Nesterenko’s student Mikhailov [99]:

Theorem 73 (Mikhailov, 2007). Let � D mC1. Then for almost all .x1; : : : ; xm/ 2
R
m there is a constant c0 > 0 such that (72) holds.

We conclude by discussing the interaction of metrical, analytic, and other
techniques in the question of counting and distribution of rational points near a
given smooth planar curve � . In what follows we will assume that the curvature
of � is bounded between two positive constants. Let N� .Q; ı/ denote the number
of rational points .p1=q; p2=q/, where p1; p2; q 2 Z with 0 < q 6 Q, within a
distance at most ı from � .

Huxley [71] has proved that for any " > 0, N� .Q; ı/ � Q3C"ı C Q. Until
recently, this bound has remained the only non–trivial result. Furthermore, very little
has been known about the existence of rational points near planar curves for ı <
Q�3=2, that is whether N� .Q; ı/ > 0 when ı < Q�3=2. An explicit question of
this type motivated by Elkies [58] has been recently raised by Barry Mazur who
asks : “given a smooth curve in the plane, how near to it can a point with rational
coordinates get and still miss?” (Question (3) in [98, � 11]). When ı D o.Q�2/, the
rational points in question cannot miss � if � is a rational quadratic curve in the
plane (see [26]). This leads toN� .Q; ı/ vanishing for some choices of � when ı D
o.Q�2/. For example, the curve � given by x2Cy2 D 3 has no rational points [22].
When ı � Q�2, a lower bound on N� .Q; ı/ can be obtained using Khintchine’s
transfer principle. However, such a bound would be far from being close to the
heuristic count of Q3ı (see [26]). The first sharp lower bound on N� .Q; ı/ has
been given by Beresnevich [14], who has shown that for the parabola � D .x; x2/,
N� .Q; ı/� Q3ı when ı � Q�2.

Recently, Beresnevich, Dickinson, and Velani [22] have shown that for an
arbitrary smooth planar curve � with non-zero curvature N� .Q; ı/ � Q3ı when
ı � Q�2. Moreover, they show that the rational points in question are uniformly
distributed in the sense that they form a ubiquitous system (see [18] for a discussion
on ubiquity and related notions). They further apply this to get various metric results
about simultaneous approximation to points on � . These include a Khintchine-type
theorem and its Hausdorff measure analogue. In particular, for any w 2 .1=2; 1/
they explicitly obtain the Hausdorff dimension of the set of w-approximable points
on � :

dim
n

.x; y/ 2 � W maxfkqxk; kqykg < q�w

for infinitely many q 2 N

o

D 2 � w

1C w
� (74)

Here � is a smooth planar curve with non–vanishing curvature. Using analytic
methods, Vaughan and Velani [137] have shown that " > 0 can be removed from
Huxley’s estimate for N� .Q; "/. Combining the results of [22] and [137] gives the
following natural generalisation of Khintchine’s theorem.
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Theorem 75 (Beresnevich, Dickinson, Vaughan, Velani). Let  W N! .0;C1/
be monotonic. Let � be a C .3/ planar curve of finite length ` with non–vanishing
curvature and let

A2. ; � / D
n

.x; y/ 2 � W maxfkqxk; kqykg <  .q/

holds for infinitely many q 2 N

o

:

Then the arclength3 jA2. ; � /j of A2. ; � / satisfies

jA2. ; � /j D
8

<

:

0 if
P1

hD1 h .h/ <1 ;

` if
P1

hD1 h .h/ D 1 :

Furthermore, let s 2 .0; 1/ and let Hs denote the s-dimensional Hausdorff measure.
Then

Hs.A2. ; � // D
8

<

:

0 if
P1

hD1 h2�s .h/s <1 ;

C1 if
P1

hD1 h2�s .h/s D 1 :
(76)

Note that (74) is a consequence of (76).
In higher dimensions, Druţu [55] has studied the distribution of rational points

on non-degenerate rational quadrics in R
n and obtained a result similar to (76) in

the case  .q/ D o.q�2/. However, simultaneous Diophantine approximation on
manifolds as well as the distribution of rational points near manifolds (in particular
algebraic varieties) is little understood.4 In other words, the higher-dimensional
version of the “near-misses” question of Mazur mentioned above has never been
systematically considered.
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128. T. SCHNEIDER – Einführung in die transzendenten Zahlen, Springer-Verlag, Berlin, 1957,

French Transl., Introduction aux nombres transcendants, Gauthier-Villars, Paris (1959).
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