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Preface

This text sprung from a course we have taught jointly over
the last 8 years at Rice University to students from Rice
and Baylor College of Medicine. The goal of our course,
and this text, is to develop mathematical methods that are
most relevant to neuroscience, in a fashion that deepens
the student’s knowledge of each.

Regarding the mathematics, this means working in
concrete incremental steps that enable the student to
parse and extend the MATLAB code provided for each of
the 232 computational examples and exercises. Regard-
ing the neuroscience, this means establishing basic mod-
els of stimuli and molecular, cellular, and circuit level
phenomena prior to their systematic elaboration and inte-
gration. The degree to which we have succeeded in this
goal is, in large measure, due to the perspicacity of our
many devoted students.

We have also benefited from Houston’s rich neuro-
science climate and happily acknowledge the leader-
ship of Jack Byrne, Mike Friedlander, Marty Golubitsky,

and Kathy Matthews in promoting dialog between
mathematics and neuroscience. This dialog has been sus-
tained by our close collaboration with fellow members
of the Gulf Coast Consortium for Theoretical and Com-
putational Neuroscience. In particular, we thank Mark
Embree, Kreso Josic, Weiji Ma, Peter Saggau, and Harel
Shouval for detailed feedback on a number of our chap-
ters. It is also a pleasure to acknowledge comments
received from Maurice Chacron, Stephen Coombes, Greg
DeAngelis, Brent Doiron, Hans van Hateren, Leonard
Maler, Victor Matveev, and Ralf Wessel and his group.

Our deepest thanks go to our wives, Sibylle and Laura,
for nurturing the early stages of our work and for accept-
ing our near single mindedness during our final year of
writing.

We also thank Colin Cox for an early animation that
catalyzed a good fraction of our course and Simon Cox
for coordinating our code and figures at a time when they
appeared to be taking on a life of their own.
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Faced with the seemingly limitless qualities of the brain, Neuroscience has eschewed provincialism and instead
pursued a broad tack that openly draws on insights from biology, physics, chemistry, psychology, and mathematics in
its construction of technologies and theories with which to probe and understand the brain. These technologies and
theories, in turn, continue to attract scientists and mathematicians to questions of Neuroscience. As a result, we may
trace over one hundred years of fruitful interplay between Neuroscience and mathematics. This text aims to prepare
the advanced undergraduate or beginning graduate student to take an active part in this dialogue via the application
of existing, or the creation of new, mathematics in the interest of a deeper understanding of the brain. Requiring no
more than one year of Calculus, and no prior exposure to Neuroscience, we prepare the student by

1. introducing mathematical and computational tools in precisely the contexts that first established their importance
for Neuroscience and

2. developing these tools in concrete incremental steps within a common computational environment.

As such, the text may also serve to introduce Neuroscience to readers with a mathematical and/or computational
background.

Regarding (1), we introduce ordinary differential equations via the work of Hodgkin and Huxley (1952) on action
potentials in the squid giant axon, partial differential equations through the work of Rall on cable theory (see Segev et al.
(1994)), probability theory following the analysis of Fatt and Katz (1952) on synaptic transmission, dynamical systems
theory in the context of Fitzhugh’s (1955) investigation of action potential threshold, and linear algebra in the context
of the work of Hodgkin and Huxley (1952) on subthreshold oscillations and the compartmental modeling of Hines
(1984) on dendritic trees. In addition, we apply Fourier transforms to describe neuronal receptive fields following
Enroth-Cugell and Robson’s (1966) work on retinal ganglion cells and its subsequent extension to Hubel and Wiesel’s
(1962) characterization of cat cortical neurons. We also introduce and motivate statistical decision methods starting
with the historical photon detection experiments of Hecht et al. (1942).

Regarding (2), we develop, test, and integrate models of channels, receptors, membranes, cells, circuits and sensory
stimuli by working from the simple to the complex within the MATLAB computing environment. Assuming no prior
exposure to MATLAB, we develop and implement numerical methods for solving algebraic and differential equations,
for computing Fourier transforms, and for generating and analyzing random signals. Through an associated web site
we provide the student with MATLAB code for 144 computational figures in the text and we provide the instructor with
MATLAB code for 98 computational exercises. The exercises range from routine reinforcement of concepts developed
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2 1. INTRODUCTION

in the text to significant extensions that guide the reader to the research literature. Our reference to exercises both in
the text and across the exercises serve to establish them as an integral component of this book.

Concerning the mathematical models considered in the text, we cite the realization of Schrödinger (1961) that “we
cannot ask for more than just adequate pictures capable of synthesizing in a comprehensible way all observed facts
and giving a reasonable expectation on new ones we are out for.” Furthermore, lest “adequate” serve as an invitation
to loose or vague modeling, Schrödinger warns that “without an absolutely precise model, thinking itself becomes
imprecise, and the consequences derived from the model become ambiguous.”

As we enter the 21st century, one of the biggest challenges facing Neuroscience is to integrate knowledge and to
craft theories that span multiple scales, both in space from the nanometer neighborhood of an ion channel to the
meter that action potentials must travel down the sciatic nerve, and in time from the fraction of a millisecond it takes
to release neurotransmitter to the hours it takes to prune or grow synaptic contacts between cells. We hope that this
text, by providing an integrated treatment of experimental and mathematical tools within a single computational
framework, will prepare our readers to meet this challenge.

1.1 HOW TO USE THIS BOOK

The book is largely self-contained and as such is suited for both self-study and reference use. The chapters need not
be read in numerical order. To facilitate a selection for reading, we have sketched in Figure 1.1 the main dependencies
between the chapters. The four core chapters that underlie much of the book are Chapters 2–4 and 11. For the reader
with limited prior training in mathematics it is in these chapters that we develop, by hand calculation, MATLAB
simulation and a thorough suite of exercises, the mathematical maturity required to appreciate the chapters to come.
Many of the basic chapters also contain more advanced subsections, indicated by an asterisk, ∗, which can be skipped
on a first reading. Detailed solutions are provided for most exercises, either at the end of the book or through the
associated web site. We mark with a dagger, †, each exercise whose solution is not included in this text.

Over the past eight years, we have used a subset of the book’s material for a one semester introductory course
on Mathematical Neuroscience to an audience comprised of Science and Engineering undergraduate and graduate
students from Rice University and Neuroscience graduate students from Baylor College of Medicine. We first cover
Chapters 2–5, which set and solve the Hodgkin–Huxley equations for isopotential cells and, via the eigenvector
expansion of the cell’s subthreshold response, introduce the key concepts of linear algebra needed to tackle the
multicompartment cell in Chapters 6 and 8–9. We then open Chapter 11, introduce probabilistic methods and apply
them to synaptic transmission, in Chapter 12, and spike train variability, in Chapter 15. We conclude this overview
of single neuron properties by covering Chapter 10 on reduced single neuron models. We transition to Systems
Neuroscience via the Fourier transform of Chapter 7 and its application to visual neurons in Chapters 20 and 21.
Finally, we connect neural response to behavior via the material of Chapters 24 and 25. An alternative possibility is to
conclude with Chapters 22 and 23, after an informal introduction to stochastic processes, and power and cross spectra
in Chapters 16 and 18.

We have also used the following chapters for advanced courses: 13, 14, 16–19, and 26. Chapter 13 provides a
comprehensive coverage of calcium dynamics within single neurons at an advanced level. Similarly, Chapter 14
introduces the singular value decomposition, a mathematical tool that has important applications both in spike
sorting and in model reduction. Chapters 16 and 18 introduce stochastic processes and methods of spectral analysis.
These results can be applied at the microscopic level to describe single channel gating properties, Chapter 17, and at
the macroscopic level to describe the statistical properties of natural scenes and their impact on visual processing,
Chapter 19. Finally the chapters on population codes and networks, Chapters 26 and 27, address the coding and
dynamical properties of neuronal ensembles.

To ease the reading of the text, we have relegated all references to the Summary and Sources section located at the
end of each chapter. These reference lists are offered as pointers to the literature and are not intended to be exhaustive.

1.2 BRAIN FACTS BRIEF

The brain is the central component of the nervous system and is incredibly varied across animals. In vertebrates, it
is composed of three main subdivisions: the forebrain, the midbrain, and the hindbrain. In mammals and particularly
in humans, the cerebral cortex of the forebrain is highly expanded. The human brain is thought to contain on the
order of 100 billion (1011) nerve cells, or neurons. Each neuron “typically” receives 10,000 inputs (synapses, §2.1)

MATHEMATICS FOR NEUROSCIENTISTS



1.2 BRAIN FACTS BRIEF 3

from other neurons, but this number varies widely across neuron types. For example: granule cells of the cerebellum,
the most abundant neurons in the brain, receive on average four inputs while Purkinje cells, the output neurons of
the cerebellar cortex, receive on the order of 100,000. In the mouse cerebral cortex, the number of neurons per cubic
millimeter has been estimated at 105, while there are approximately 7 ×108 synapses and 4 km of cable (axons, §2.1)
in the same volume. Brain size (weight) typically scales with body size, thus the human brain is far from the largest.
At another extreme, the brain of the honey bee is estimated to contain less than a million (106) neurons within a
single cubic millimeter. Yet the honey bee can learn a variety of complex tasks, not unlike those learned by a macaque
monkey for instance. Although it is often difficult to draw comparisons across widely different species, the basic
principles underlying information processing as they are discussed in this book appear to be universal, in spite of
obvious differences in implementation. The electrical properties of cells (Chapter 2), the generation and propagation
of signals along axons (Chapters 4 and 9), and the detection of visual motion (Chapters 21 and 25) or population codes
(Chapter 26), for instance, are observed to follow very similar principles across very distantly related species.

Information about the environment reaches the brain through five common senses: vision, touch, hearing, smell,
and taste. In addition, some animals are able to sense electric fields through specialized electroreceptors. These include
many species of fish and monotremes (egg-laying mammals) like the platypus. Most sensory information is gathered
from the environment passively, but some species are able to emit signals and register their perturbation by the
environment and thus possess active sensory systems. This includes bats that emit sounds at specific frequencies and
hear the echoes bouncing off objects in the environment, a phenomenon called echolocation. In addition some species
of fish, termed weakly electric, possess an electric organ allowing them to generate an electric field around their body
and sense its distortion by the environment, a phenomenon called electrolocation.

Ultimately, the brain controls the locomotor output of the organism. This is typically a complex process, involving
both commands issued to the muscles to execute movements, feedback from sensors reporting the actual state of the
musculature and skeletal elements, and inputs from the senses to monitor progress towards a goal. So efficient is this
process that even the tiny brain of a fly is, for instance, able to process information sufficiently fast to allow for highly
acrobatic flight behaviors, executed in less than 100 ms from sensory transduction to motor output.

To study the brain, different biological systems have proven useful for different purposes. For example, slices of the
rat hippocampus, a structure involved in learning and memory as well as navigation, are particularly adequate for
electrophysiological recordings of pyramidal neurons and a detailed characterization of their subcellular properties,
because their cell bodies are tightly packed in a layer that is easy to visualize. The fruit fly Drosophila melanogaster and
the worm Caenorhabditis elegans (whose nervous system comprises exactly 302 neurons) are good models to investigate
the relation between simple behaviors and genetics, as their genomes are sequenced and many tools are available to
selectively switch on and off genes in specific brain structures or neurons. One approach that has been particularly
successful to study information processing in the brain is “neuro-ethological,” based on the study of natural behaviors
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FIGURE 1.1 Chapter dependencies. Each arrow points to a chapter that depends significantly on the content of the current chapter. The asterisk
is used to denote chapters that cover advanced material.
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4 1. INTRODUCTION

(ethology) in relation to the brain structures involved in their execution. Besides the already mentioned weakly electric
fish and bats, classical examples, among many others, include song learning in zebrafinches, the neural control of
flight in flies, sound localization in barn owls, and escape behaviors in a variety of species, such as locust, goldfish,
or flies.

1.3 MATHEMATICAL PRELIMINARIES

MATLAB. Native MATLAB functions are in typewriter font, e.g., svd. Our contributed code, available on the book’s
web site, has a trailing .m, e.g., bepswI.m.

Numbers. The counting numbers, {0,1,2, . . .}, are denoted by N, while the reals are denoted by R and the complex
numbers byC. Each complex number, z∈C, may be decomposed into its real and imaginary components. We will write

z=x+ iy, where x =�(z), y =�(z), and i ≡ √−1.

Here x and y are each real and ≡ signifies that one side is defined by the other. We denote the complex conjugate and
magnitude of z by

z∗ ≡x− iy and |z|≡
√

x2 +y2,

respectively.

Sets. Sets are delimited by curly brackets, {}. For example the set of odd numbers between 4 and 10 is {5,7,9}.
Intervals. For a,b∈R with a<b the open interval (a,b) is the set of numbers x such that a<x<b. The closed interval
[a,b] is the set of numbers x such that a≤x ≤b. The semiclosed (or semiopen) intervals [a,b) and (a,b] are the set of
numbers x such that a≤x<b and a<x ≤b, respectively.

Vectors and matrices. Given n real or complex numbers, x1,x2, . . . ,xn, we denote their arrangement into a vector, or
column, via bold lower case letters,

x =

⎛
⎜⎜⎜⎝

x1
x2
...

xn

⎞
⎟⎟⎟⎠. (1.1)

The collections of all real and complex vectors with n components are denotedRn and Cn, respectively. The transpose
of a vector, x, is the row,

xT = (x1 x2 · · · xn),

and the conjugate transpose of a vector, z ∈Cn, is the row

zH = (z∗
1 z∗

2 · · · z∗
n).

We next define the inner, or scalar, or “dot,” product for x and y in Cn,

xHy ≡
n∑

j=1

x∗
j yj,

and note that as

zHz =
n∑

i=1

|zi|2 ≥0

MATHEMATICS FOR NEUROSCIENTISTS



1.3 MATHEMATICAL PRELIMINARIES 5

it makes sense to define the norm

‖z‖≡
√

zHz.

To gain practice with these definitions you may wish to confirm that

‖(yHy)x−(yH x)y‖2 =‖y‖2(‖y‖2‖x‖2−|xHy|2).

As the left hand side is nonnegative the right hand side reveals the important Schwarz inequality

|xHy|≤‖x‖‖y‖. (1.2)

We will transform vectors in Cn to vectors in Cm via multiplication by m×n matrices, A∈Cm×n, of the form

A=

⎛
⎜⎜⎜⎝

A11 A12 · · · A1n
A21 A22 · · · A2n

...
...

. . .
...

Am1 Am2 · · · Amn

⎞
⎟⎟⎟⎠

where each Aij ∈C. Thus, y =Ax means that yi =∑n
j=1 Aijxj for i =1, . . .m. We will consistently denote matrices by bold

upper case letters. Given A∈Cm×n and B ∈Cn×p we define their product C∈Cm×p via

C=AB where Cjk =
n∑

l=1

AjlBlk.

If we reflect A about its diagonal we arrive at its transpose, AT ∈Cn×m, where (AT )ij =Aji. The associated conjugate
transpose is denoted AH , where (AH )ij =A∗

ji . We will often require the conjugate transpose of the product AB, and so
record

(AB)Hjk =
n∑

l=1

A∗
klB

∗
lj = (BHAH)jk, i.e., (AB)H =BHAH . (1.3)

Similarly, (AB)T =BTAT .
The identity matrix, denoted I, is the square matrix of zeros off the diagonal, and ones on the diagonal,

I≡

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0

0
. . . . . .

...
...

. . . 1 0
0 · · · 0 1

⎞
⎟⎟⎟⎟⎠.

We often use the Kronecker delta

δjk ≡
{

1, if j = k
0, otherwise

(1.4)

to denote the elements of I. A matrix B ∈Cn×n is said to be invertible if there exists a matrix B−1 ∈Cn×n such that

BB−1 =B−1B = I. (1.5)

In this case B−1 is called the inverse of B.

MATHEMATICS FOR NEUROSCIENTISTS



6 1. INTRODUCTION

Functions. We will make frequent use of the characteristic function

1(a,b)(x)≡
{

1, if a<x<b
0, otherwise

(1.6)

of the interval, (a,b). In the common case that (a,b) is the set of nonnegative reals we will simply write 1(x) and refer
to it as the Heaviside function.

We will often need to differentiate the running integral,

F(x)=
x∫

0

f (y)dy.

To see that

F′(x)= f (x) (1.7)

when f is continuous at x, note that the mean value theorem establishes the second equality in

F(x+h)−F(x)
h

= 1
h

x+h∫
x

f (y)dy= f (xh) (1.8)

for some xh ∈ (x,x+h). As h → 0 the left hand side approaches F′(x) while on the right xh → x and so, by continuity,
f (xh)→ f (x).

We will often need to sample, or discretize, scalar valued functions, f :R→R, of time and/or space. For example,
if time is divided into increments of size dt then we will denote the samples of f (t) by superscripted letters in the
“typewriter” font

fj ≡ f (( j−1)dt), j =1,2,3, . . . .

Similarly, we will denote the samples of a vector valued function, f :R→Rn, by superscripted letters in the bold
typewriter font

fj ≡ f(( j−1)dt), j =1,2,3, . . . .

The elements of fj are samples of the elements of f. We express this in symbols as fj
m = fm(( j−1)dt). Where the

superscript, j, may interfere with exponents we will be careful to make the distinction.

Random variables. In chapters dealing with random variables, we will try whenever possible to use upper case
letters for a random variable and lower case letters for a specific value of the same random variable. We denote the
expectation or mean of a random variable X by E [X]. The variance is the expectation of the squared deviation of
X from the mean: E [(X−E [X])2]. A Gaussian or normal random variable of mean μ and variance σ 2 is denoted by
N (μ,σ 2). An estimator of, e.g., the mean mX of a random variable X is denoted by m̆X .

Fourier transforms. The Fourier transform of a function f (t) of time, t, is denoted by f̂ (ω):

f̂ (ω)≡
∞∫

−∞
f (t)e−2π iωt dt.

The variable ω is the ordinary frequency. If t has units of seconds (s) then ω has units of 1/s=Hz (Hertz). The
convolution of two functions f and g is denoted by f � g:

( f � g)(t)≡
∞∫

−∞
f (t1)g (t− t1)dt1. (1.9)
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1.4 UNITS 7

Landau symbols. Let ε be a small real number. For a function f (ε), we write

f (ε)=O(ε) (ε→ 0)

when there exists a constant C>0 such that for ε sufficiently small,

| f (ε)|≤C|ε| equivalently lim
ε→0

| f (ε)/ε|≤C.

Intuitively, this means that f (ε) decays no slower than ε as ε tends to zero. The notation extends naturally to other
functions of ε; e.g., f (x+ε)= f (x)+O(ε2) means that for ε sufficiently small,

|f (x+ε)− f (x)|≤C |ε2|.
Similarly, f (ε)= o(ε) for ε→ 0 means that

lim
ε→0

f (ε)/ε=0.

Intuitively, this means that the function f decays faster than ε as ε tends to zero.

1.4 UNITS

All units are based on the Système International (SI). The main ones used in this book and their prefixes are briefly
summarized here.

The length of subcellular components, such as the length of the synaptic cleft, are expressed in nanometers
(1 nm=10−9 m), while cellular components are expressed in micrometers (1 μm=10−6 m) and centimeters
(1 cm=10−2 m).

An angle denotes the length of a circular arc divided by its radius, r. The radius is also the distance of the arc to the
point of observation. Equivalently, an angle denotes the length of the arc projected on the corresponding unit circle.
Angles are dimensionless since they are the ratio of two distances, but they are often assigned “units” of radians
(rad), with the angle subtended by a full circle from its center equal to 2π (since the circumference of a circle is 2πr).
One degree (deg) is equal to 2π/360 rad or 360 deg=2π rad. A solid angle denotes the area of a spherical cap, divided
by its squared radius, or equivalently the area projected on the corresponding unit sphere. Solid angles are measured
in steradians (sr) with the solid angle subtended by the full sphere from its center equal to 4π (since the area of a
sphere is 4πr 2).

Temperature is in degrees Kelvin (K), with 0 K =−273.15 ◦C (degrees centigrade).
Mass is measured in kilograms (kg) with 1 kg=1000 g (grams) being approximately equal to the mass of one liter

(one cubic decimeter, 1 dm3) of pure water.
The amount of a substance is measured in moles, with one mole corresponding to 6.0221415×1023 (Avogadro’s

number) atoms or molecules of pure substance. One mole of substance, in grams, is given by the atomic (or molecular)
weight of the substance under consideration; e.g., one mole of sodium is equal to 22.99 g, as may be determined from
the periodic table of elements.

Concentration of a solute in a solution, is measured in mole/liter and is abbreviated by M: 1 M =1 mole/liter.
In the context of this book, we will typically consider ions like Na+,K+, or Cl− dissolved in water and denote their
concentration by enclosing them in square brackets, e.g., [Na+].

Time is measured in second (s) or millisecond (1 ms=10−3 s) and its inverse, frequency, in Hertz (1 Hz=1 s−1).
Current is measured in micro-, nano-, or picoampere (1 pA=10−12 A). One ampere (A) corresponds approximately

to the flow of 6.242×1018 protons at a given point per second.
The corresponding charge, Q , passing at that point in one second is one coulomb (C). In other words, 1 A=1 C/s. By

definition, positive current corresponds to the flow of positive charge in a given direction and thus a negatively charged
particle will flow in the opposite direction. When considering the current flowing across the membrane of a cell, we
define by convention positive current as the flow of positive charge outwards. Therefore the flow of positive charge
inwards corresponds to a negative current. The elementary charge of the proton and electron are ±1.602×10−19 C,
respectively. We will often consider current densities, i.e., currents per unit area.

In the SI system, force (mass times acceleration) is measured in newton (N) and work (force times distance) or
energy in joule (1 J =1 N m). Since the electrical (Coulomb’s) force is proportional to charge, electrical potential

MATHEMATICS FOR NEUROSCIENTISTS



8 1. INTRODUCTION

energy is measured in joule/coulomb or volt (1 V=1 J/C). We will use most often the unit of millivolt (mV) to
measure electrical potential energy differences, e.g., between the inside and outside of a single neuron.

Resistance to current flow in a conductor is measured in ohm (�) according to Ohm’s law: R = V/I, where V is
the electrical potential difference and I the current. In other words, 1 � is the resistance of a conductor that passes a
current of 1 A under an electrical potential difference of 1 V. Neurophysiologists often restate Ohm’s law in term of
conductance: I = gV, where g = 1/R. The unit of conductance is the siemens (1 S =1 �−1). We will most often deal
with megaohm (1 M� = 106 �) and mS or μS.

Capacitance is the ability to store charge under a given electrical potential difference. For example, given two
conducting plates separated by an insulator and maintained at a fixed potential difference V, the stored charge per
plate will be proportional to V, i.e., C =Q/V, where the capacitance, C, is measured in farad (F), with 1 F=1 C/V. We
will mainly deal with the microfarad, μF, but also with the femtofarad in Chapter 13 (1 fF=10−15 F).

The luminous intensity measures the integrated light power emitted by a point source per unit solid angle,
weighted by the varying sensitivity of the human eye to light wavelength. It is measured in candela (cd). The precise
definition of the candela is given in §19.1.

1.5 SOURCES

For a history of the interplay between Neuroscience and Mathematics see the chapter by Rall in Schwartz (1990).
An elementary introduction to brain anatomy is contained in Squire et al. (2008, Chapter 2). Anatomical figures on
the mouse brain are taken from Braitenberg and Schüz (1998). A good reference on neuron numbers is Williams
and Herrup (1988). The facts on honey bees are taken from Menzel and Giurfa (2001). The following web page
also has an extensive list of data on the human and other brains, including references to the original literature:
http://faculty.washington.edu/chudler/facts.html. For an overview of neural information processing, see
Gabbiani and Midtgaard (2001) and for classical case studies in neuroethology, see Carew (2000) and Heiligenberg
(1991). North and Greenspan (2007) offers a broad overview of invertebrate neurobiology, including chapters on
C. elegans and D. melanogaster. The web page “Constants, Units and Uncertainty” from the Physics Laboratory of
the National Institute of Standards and Technology (http://physics.nist.gov/cuu) or the web site of the Bureau
International des Poids et Mesures (http://www.bipm.org) contain further information on the units used in this
book.

A companion website for this book can be found at: www.elsevierdirect.com/companions/9780123748829.
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2.1 INTRODUCTION

Modern neuroscience can be traced back to the work of Camillo Golgi, an Italian physician and scientist who
invented, in the late 1890s, a method for staining neural tissue. As the Golgi stain only “took” to a small and
well-separated population of cells it permitted, for the first time, one to see the trees for the forest. The Spanish
neuroanatomist Santiago Ramón y Cajal took quick advantage of the Golgi method to systematically describe the
different types of neurons contained in the brain of many animal species. By demonstrating that neurons, though
widely varying in shape, nonetheless share common structural components, from which function may be inferred,
Ramón y Cajal can be said to have founded modern neuroscience. With reference to Figure 2.1, Ramón y Cajal iden-
tified the cell body, or soma, that contains the cell nucleus, the axon that carries electrical impulses to downstream
neurons, and the dendrites, where a neuron typically receives inputs from other, upstream neurons through electrical
or chemical synapses. Pyramidal neurons, such as that illustrated in Figure 2.1, are the most prevalent neuron type in
the mammalian cortex and are characterized by the presence of a single apical dendrite, usually with a larger diameter
than the other basal dendrites, that extends towards the brain’s surface.

The neuron interacts with its extracellular environment by controlling the flow of ions that pass through pumps,
exchangers, and channels that perforate the lipid bilayer that comprises the cell membrane. In Figure 2.2 we offer
a schematic of a cross section of a simplified spherical cell and a magnified segment of membrane depicting such a
pump, exchanger, or channel.

The pumps and exchangers are constantly at work to maintain a significant imbalance between the intracellular
and extracellular concentrations of the principal anion, Cl− (chloride), and cations, Na+ (sodium), K+ (potassium),
and Ca2+ (calcium). In particular, at rest,

[K+]in � [K+]out, (2.1)

i.e., the intracellular concentration of K+ is significantly greater than its extracellular concentration, while the situation
is the opposite

[Na+]in � [Na+]out, [Cl−]in � [Cl−]out, and [Ca2+]in � [Ca2+]out, (2.2)

9
Mathematics for Neuroscientists. DOI: 10.1016/B978-0-12-374882-9.00002-2
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10 2. THE PASSIVE ISOPOTENTIAL CELL

Cell Body

Synapse

Dendritic Arbor

Axon

Myelin

Presynaptic Axon

Apical Dendrite

Basal Dendrites

FIGURE 2.1 Schematic illustration of a pyramidal neuron and its main compartments. Input from an action potential in an upstream neuron
arrives via the (red) axon and is delivered at synapses that, here, reside on the heads of spines that stud the dendrites. The action potential liberates
neurotransmitter from the red axon. Neurotransmitter molecules then bind to channels, in the spine head, that then open and permit ions to flow
into the (black) dendrite. These ionic currents are then conducted to the cell body and (black) axon. The initial segment of axon is typically the
most “excitable” part of the cell, and hence, if the received currents reach a certain threshold this segment will ignite an action potential that will
travel down the axon, to signal downstream neurons, and up into its dendrites, to signal synapses that contributed to its creation. Those axons that
communicate with cells outside of their immediate neighborhoods are typically wrapped, with periodic breaks, in layers of insulating fat (myelin)
from neighboring glial cells.

a

Cin

Cout

lstim

�out

�in

�

Lipid Bilayer

FIGURE 2.2 A cross section of a spherical cell with radius a and membrane thickness δ. The inner and outer concentrations of a particular
ion are denoted cin and cout while the inner and outer potentials are denoted φin and φout. Given this simplified geometry we make the further
assumption that cin and φin do not vary with position within the cell. This permits us to define a single membrane potential, V ≡ φin −φout,
and as such we refer to our cell as isopotential. We have also impaled the cell with a sharp, needle-like intracellular electrode ready to deliver the
current Istim . The zoom at right depicts the passage of ions through a protein (pump, exchanger, or channel) that spans the membrane.

for the other species. One net effect of this imbalance is to induce a difference in electrical potential across the
cell membrane. In particular, we will see that the inside of the cell is typically 70 millivolts (mV) less than the
outside. We will refer to this potential difference (in minus out) as the cell’s membrane potential. These imbal-
ances in concentration and resulting rest potential set the stage for ion channels, the main actors in our neuronal
drama.

We have schematized such a channel, and its surrounding lipid bilayer, in the right side of Figure 2.2. These
channels are typically ion selective, e.g., we speak of chloride channels and sodium channels, and they are further
categorized into passive, active (or voltage-gated), and ligand-gated. Passive signifies that the conductance of the
channel does not depend on the cell’s membrane potential. Active signifies that it does, and so we say that the channel
is voltage-gated. A ligand-gated channel is one that requires the binding of a helper molecule (the ligand) to open the
channel. The ligands we will see first will be molecules of neurotransmitter that have been liberated by an upstream
action potential, as discussed in Figure 2.1. We will begin our modeling and analysis of passive and ligand-gated
channels in this chapter in preparation for our study of active channels in Chapter 4.

In the sections to follow we will interpret the schematic in Figure 2.2 in terms of an electrical circuit diagram that
can then be quantified by a differential equation that may be solved for the membrane potential, V(t), in terms of the
stimulus, Istim(t), and the cell’s effective electrical properties.
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2.2 THE NERNST POTENTIAL

The gradients, Eqs. (2.1) and (2.2), in both concentration and charge trigger associated Fickian and Ohmic fluxes
through the membrane. These fluxes have dimensions of mole/(area time). To fix ideas we will consider the flux
of a single species, namely chloride. Fick’s law states that the flux of matter across a surface is proportional to its
concentration gradient, i.e.,

JFick(r)=−D
dc
dr
(r) (2.3)

where r denotes distance from the center of the cell, c(r) denotes concentration (in units of M ≡ mole/liter) of
Cl− at r, and D (area/time) denotes diffusivity. The sign convention in Eq. (2.3) corresponds to positive flux in the
direction of decreasing concentration. The diffusivity is typically decomposed into D=μkT where T is temperature
(K), k is Boltzmann’s constant (1.381×10−23 joule/K), and μ denotes mobility (time/mass). Mobility is a measure of
the average drift speed acquired by a Cl− ion per unit applied external force between collisions with other particles.
Its units can be understood by noting that it is proportional to the mean time between collisions (the larger the time,
the higher the speed) and inversely proportional to mass (the smaller the mass, the higher the acquired speed).

Ohm’s law states that the flux of ions in solution across a surface is proportional to the potential gradient, to the
charge density, and to mobility, i.e.,

JOhm(r)=−μzec(r)
dφ
dr
(r) (2.4)

where z denotes the ion’s valence (z=−1 for Cl−), e denotes the elementary electronic charge (1.602×10−19 C), and
so zec is a measure of charge density. The combined or net flux is therefore given by the Nernst-Planck equation

J(r)=−μkT
dc
dr
(r)−μzec(r)

dφ
dr
(r). (2.5)

This will now permit us to deduce the resting potential gradient from the resting concentration gradient. At rest we
expect the net flux, J, to vanish. As such, we note that Eq. (2.5) takes the form

−kT
d
dr
(logc(r))= ze

dφ
dr
(r).

We next integrate each side through the membrane, i.e., from r = a−δ to r = a (see Figure 2.2), and arrive at

ze(φ(a−δ)−φ(a))= kT log(c(a)/c(a−δ)). (2.6)

In terms of in-out notation of Figure 2.2 and V ≡φin −φout, Eq. (2.6) takes the form

V = kT
ze

log
cout

cin
. (2.7)

At room temperature, T =27 ◦C, the leading coefficient is kT/e=25.8 mV. If c is indeed pegged to chloride concentration
then noting that its valence, z, is −1, and adopting the concentrations

cin = [Cl−]in =0.04 M and cout = [Cl−]out =0.56 M

associated with the squid giant axon, we find

VCl =−68 mV (2.8)

for the value of the chloride Nernst potential, i.e., the value of the membrane potential at which the net chloride flux,
Eq. (2.5), is zero.
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12 2. THE PASSIVE ISOPOTENTIAL CELL

2.3 MEMBRANE CONDUCTANCE

When the transmembrane potential, V, is different from VCl we expect a flux of ions to cross the membrane and for
an associated current to flow. Our goal here is to establish an associated membrane conductance. In fact the membrane
is an insulating sheet perforated with a significant number of channels through which chloride ions may pass fairly
easily. This conductor/insulator composite presents an effective bulk resistivity (largely independent of V) of

ρCl = 1
3

1010 �cm

to current flow. Resistivity is the resistance to current flow exerted by the membrane, multiplied by its area, A, and
divided by its thickness, δ, or RCl =ρClδ/A. It is a specific property of the membrane, since we expect its resistance
to be proportional to thickness and inversely proportional to area. When scaled by the membrane thickness, e.g.,
δ=10 nm, we arrive at the effective membrane conductance (per unit area)

gCl = 1
ρClδ

=0.3 mS/cm2

where S is for siemens, the reciprocal of�. Next to VCl, the membrane conductance takes its place in the simple circuit
diagram of Figure 2.3.

gCI

ICI

VCI

�out�in �mid

FIGURE 2.3 The equivalent circuit model of the cell’s leaky biased membrane. We interpret VCl as a “battery,” or voltage source, that drives
or “biases” current flow across the cell’s resistive membrane. We have labeled the intermediate potential solely for clarity. The arrow indicates the
direction of positive current flow when V>VCl.

We may now use Ohm’s law to represent the associated current density. We take potential differences in the direction
of the arrow, namely, tail minus head. As such, in accordance with the convention of the previous section,

φin −φmid =VCl

and so Ohm’s law reveals

ICl =gCl(φmid −φout)=gCl(φin −VCl −φout)=gCl(V −VCl), (2.9)

in units of μA/cm2. We shall abide by these conventions throughout the remainder of the text. In particular, outward
currents are positive and the polarity of the battery is the tail potential minus the head potential.

2.4 MEMBRANE CAPACITANCE AND CURRENT BALANCE

In addition to presenting significant resistance, biological membranes form good dielectrics between their con-
ducting surfaces. The effective dielectric constant is

ε=10−12 F/cm.

The dielectric constant is the capacitance of the membrane per unit area multiplied by its thickness (C =εA/δ) and is a
specific property of the membrane, since capacitance is proportional to area and inversely proportional to thickness.
When scaled by the membrane thickness, δ=10 nm, we arrive at the membrane capacitance (per unit area)

Cm =ε/δ=1 μF/cm2.

The associated displacement current operates in parallel, see Figure 2.4, with the Ohmic current.
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VCI

ICI

gCI

IC

Cm

Istim �in �mid �out

FIGURE 2.4 The equivalent circuit model of the cell’s leaky biased and dielectric membrane. The two currents IC and ICl will balance the
injected current, Istim.

The current density associated with a membrane capacitance is proportional to the rate of change of the potential
across the capacitor. That is

IC(t)=Cm
d
dt
(φin(t)−φout(t))=Cm

dV
dt
(t). (2.10)

Our interest is in tracking how these two membrane currents respond to an injected pulse of current. In order to apply
Kirchhoff’s Current Law we scale the membrane current densities by membrane surface area, A, and find

Istim(t)=AIC(t)+AICl(t). (2.11)

On substituting (2.9) and (2.10) this becomes an ordinary differential equation for the membrane potential V. Namely,

Istim(t)=ACmV ′(t)+AgCl(V(t)−VCl). (2.12)

It is common to divide this equation by AgCl and rearrange it to read

τV ′(t)=VCl −V(t)+ Istim(t)/(AgCl), (2.13)

where

τ ≡Cm/gCl (2.14)

is known as the membrane time constant. As we shall see in the coming chapter, it follows from Eq. (2.13) that in
the absence of stimuli V(t) returns to VCl at the exponential rate 1/τ . Given our estimates for Cm and gCl we find
τ =10/3 ms. We illustrate in Figure 2.5 the computed response of such a cell to a typical current pulse.
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FIGURE 2.5 The solution (A) to (2.12) and the associated membrane currents (B) for a cell of radius 10 μm, with Cm = 1 μF/cm2 and
gCl = 0.3 mS/cm2, subject to a 20 ms, 10 pA current injection. (bepswI.m)

MATHEMATICS FOR NEUROSCIENTISTS



14 2. THE PASSIVE ISOPOTENTIAL CELL

This model is indeed rich enough to replicate the passive response of actual cells. In coming chapters we shall
spend considerable effort developing detailed models of more complicated, active, membrane conductances.

2.5 SYNAPTIC CONDUCTANCE

As ligand-gated channels bind and unbind neurotransmitter, they produce a transient conductance change biased
by an associated reversal potential. This is modeled, see Figure 2.6, by adding a third parallel branch to the membrane
circuit of Figure 2.4.

VCI

ICI

gCI

IC

Cm

Vsyn

Isyn

gsyn

�out�mid�in

FIGURE 2.6 The circuit diagram for the passive cell with synapse. The arrow through the synaptic conductance is there to indicate that its
conductance density varies with time, in a manner that reflects the concentration of available neurotransmitter.

Kirchhoff’s Current Law, in the absence of injected current, now reveals that V must satisfy

CmV ′(t)+gCl(V(t)−VCl)+gsyn(t)(V(t)−Vsyn)=0. (2.15)

The synaptic reversal potential is determined by the equilibrium concentrations of the ions that the associated channel
selects. The principal neurotransmitters in the mammalian central nervous system are glutamate and γ -aminobutyric
acid, or GABA. The simplest glutamate receptor is the AMPA-type receptor, named after AMPA, or α-amino-3-
hydroxyl-5-methyl-4-isoxazole-propionate, which mimics the effect of glutamate on the receptor. The channel associ-
ated with the AMPA-type glutamate receptor has a voltage-independent conductance and is selective for Na+ and K+.

We find Vampa
syn ≈0 mV. The associated GABA channel is selective for Cl− and we find Vgaba

syn ≈−68 mV. As we will learn
in more detail in Chapter 12, the conductance, gsyn, is a consequence of the transient dose of neurotransmitter released
by the presynaptic terminal in the synaptic cleft (the ≈50 nm gap that separates the presynaptic and postsynaptic
cells) and its binding to postsynaptic receptors. Let us denote by gsyn the peak synaptic conductance. The synaptic
conductance is often approximated as either a step function, built from the 1 function of Eq. (1.6),

gsyn(t)=gsyn1(t1,t2)(t) (2.16)

or an α-function

gsyn(t, t1)=gsyn((t− t1)/τα)exp(1−(t− t1)/τα)1(t1,∞)(t) (2.17)

or by more careful consideration of the interaction of the receptor with the neurotransmitter. In the latter case we
suppose that the binding of neurotransmitter to the closed receptor causes it to open while the unbinding of neuro-
transmitter from the open receptor causes it to close. We denote the concentration of neurotransmitter, closed receptors,
and open receptors by T , C, and O respectively. If k± denotes the rate at which neurotransmitter binds and unbinds
respectively, then we write

T +C k+�
k−

O, (2.18)

and translate this into a differential equation for O by invoking the law of mass action. More precisely, we see that O
is produced in the forward reaction and consumed in the latter (backward reaction). The law of mass action permits
us to equate its rate of production with the product of the forward rate, k+, and the product of the concentrations of
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FIGURE 2.7 We first drive the cell with an excitatoryα-synapse with gsyn = 0.2 mS/cm2, τα = 2 ms, t1 = 5 ms, and Vsyn = 0 mV. The conductance

is graphed in black in A and its response is graphed in black in B. We then precede this with an inhibitory α-synapse with gsyn = 0.2 mS/cm2,
τα = 2 ms, t1 = 4 ms, and Vsyn =−68 mV. The new conductance is graphed in red in A while the additional (original) excitatory conductance is
graphed in dashed red in A. The response to the pair of inputs is graphed in red in B. We see that inhibitory input diminishes the response to the
excitatory input by ≈ 20%. (trapsyndrive.m)

the two reactants. That is, the rate of production of O is k+T C. With regard to the reverse reaction we find that the
rate of consumption of O is simply k−O and so the number of open receptors obeys the differential equation

O′(t)= k+T (t)C(t)−k−O(t). (2.19)

If the total number of receptors is fixed then O+C is constant and the fraction of open receptors, R ≡O/(O+C), obeys

R′(t)= k+T (t)(1−R(t))−k−R(t). (2.20)

The resultant synaptic conductance is then

gsyn(t)=gsynR(t), (2.21)

where gsyn is the product of a single channel conductance and the number of receptors per unit area. We will contrast
these three conductances, Eqs. (2.16), (2.17), and (2.21), in the next chapter, once we have acquired a bit more knowledge
about differential equations like Eq. (2.15). As a preview, we close in Figure 2.7 with an example of the interaction of
excitatory and inhibitory α-synapses.

Figure 2.7 indicates the subtlety associated with the interaction of synaptic inputs. This interaction is nonlinear
in the sense that the response to a pair of synapses is not the sum of the individual responses. We will see further
illustration of this in the exercises.

2.6 SUMMARY AND SOURCES

We progressed, via the laws of circuit and chemical equilibrium, from a descriptive view of neuronal form and
function to a quantitative model of the passive isopotential cell’s response to synaptic input. Fundamental neuroscience
sourcebooks that provide comprehensive background information on synapses, neurons, and circuits are the texts
of Kandel et al. (2008) and Squire et al. (2008). For a thorough account of the membrane electrophysiology of §§2.2–
2.5 we recommend Hille (2001). Golgi and Cajal were awarded the 1906 Nobel Prize in Medicine for their work.
Nernst received the 1920 Nobel Prize for Chemistry. The press releases announcing the prizes and the Nobel laureate
lectures are available at http://nobelprize.org. The giant axon of the squid, mentioned at the end of §2.2, is
the setting in which theory and experiment together first gave us a clear picture of action potential generation and
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16 2. THE PASSIVE ISOPOTENTIAL CELL

propagation. We will pursue these questions beginning in Chapter 4. The exercises below, 3–6, on the steady-state
model of synaptic integration are based on the work of Rall (1964). The exercises, 7 and 8, on nonlinear synaptic
interaction in nonisopotential cells, follow Vu and Krasne (1992). For an introduction to the basics physics concepts
used in this chapter see, e.g., Feynman et al. (1970, Chapters I-43 and II-10).

2.7 EXERCISES

1. The stimulus used in Figure 2.5 is on long enough for the response V to level off. Deduce from Eq. (2.12) the
maximum value of V. Hint: V ′(t)=0 there.

2. Regarding the gsyn of Eq. (2.17), compute (i) its maximum value and the time at which it attains this value, and
(ii) its integral over all time.

3. Steady-state model of synaptic integration. If gsyn is constant show that the synaptic response equation,
Eq. (2.15), takes the form

τeff V ′(t)+V(t)=Vss . (2.22)

How does this effective time constant, τeff differ from the τm of Eq. (2.14)? As V reaches a steady state its derivative
vanishes and so approaches Vss. Set Vsyn =0, and express Vss as an algebraic function of the relative synaptic
strength, ce =gsyn/gCl. Graph it as in Figure 2.8.
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FIGURE 2.8 Steady-state potential associated with steady synaptic input. VCl = −68 mV. Excitatory input, Eq. (2.22) with Vsyn = 0. Note
the distinctly nonlinear response. (sse.m)

4. The differential equation for the membrane potential of a cell receiving input from two synapses is given by

Cm
dV
dt

+gCl(V −VCl)+gsyn1(V −Vsyn1)+gsyn2(V −Vsyn2)=0. (2.23)

Suppose that gsyn1 and gsyn2 are constant and write Eq. (2.23) as

τeff ,2
dV
dt

+V =Vss. (2.24)

Express τeff , 2 and Vss as functions of the normalized synaptic conductances, c1 =gsyn1/gCl and c2 =gsyn2/gCl.

5. With regard to the previous exercise show that if gsyn1 =gsyn2 =ge and Vsyn1 =Vsyn2 =0 then

Vss =Vss, 2e = VCl

1+2ce
=VCl − 2ce

1+2ce
VCl (2.25)

where ce = ge/gCl. Compare, by plotting as in Figure 2.9, this response to that generated (as computed in
Exercise 3) by a single excitatory synapse

Vss, e =VCl − ce

1+ce
VCl, (2.26)
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FIGURE 2.9 Steady-state depolarization as a function of normalized conductance for a single, Vss,e , and two excitatory, Vss,2e , synapses,
and the relative sum, Vss,e2, of the responses to a single excitatory synapse. Synaptic inputs are said to sum “sublinearly” in the sense that
Vss,2e ≤ Vss,e2. (ss2e.m)

as well as that associated with the sum (relative to VCl) of the two single excitatory synaptic inputs

Vss, e2 =VCl −2
ce

1+ce
VCl . (2.27)

6. †Let us now investigate the interaction of steady excitatory and inhibitory synaptic currents. The equation for Vss
in this case takes the form

Vss −VCl +ce (Vss −Ve)+ci (Vss −Vi)=0, (2.28)

where ce and ci are the relative excitatory and inhibitory synaptic strengths and Ve and Vi are the respective
reversal potentials. Set Ve =0 and Vi =VCl and solve for Vss as a function of ce and ci. Plot, as in Figure 2.10, Vss
as a function of ce for ci =0, 25, and 50. Show that, for ci>>1+ce, the steady-state membrane potential may be
approximated by Vss ≈VCl −(ce/ci)VCl. Thus, in that regime inhibition has a divisive effect on membrane potential.

0 5 10 15
�70

�60

�50

�40

�30

�20

�10

0

V
ss

 (m
V

)

ce

ci�0

ci�25

ci�50

FIGURE 2.10 Steady-state potential associated with steady synaptic input. VCl =−68 mV. Excitatory and inhibitory input, Eq. (2.28).
Inhibition has a “linearizing” effect. (ssEI.m)

7. Illustration of the “veto property” of proximal inhibition. Consider a two-compartment model representing
sites proximal and distal to the spike initiation zone of a neuron. We suppose, as in Figure 2.11A, that the distal
compartment receives excitation while the proximal compartment receives inhibition.

(i) Derive the system of coupled differential equations for the membrane potentials

Vp ≡φp −φ0 and Vd ≡φd −φ0.
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18 2. THE PASSIVE ISOPOTENTIAL CELL
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FIGURE 2.11 A. Passive model of a two-compartment cell with proximal conductance, gp, and capacitance cp and distal conductance,
gd , and capacitance cd and a coupling conductance, gc. An excitatory synapse (ge,Ve) is located in the distal compartment and an inhibitory
one (gi,Vi) in the proximal compartment. B. The relative proximal potential, vp per Eq. (2.31), as a function of the normalized excitatory
conductance at several values of the normalized inhibitory conductance. (Comp2syn1.m)

In particular, derive

cpV ′
p +gp(Vp −VCl)+gi(Vp −Vi)=gc(Vd −Vp)

cdV ′
d +gd(Vd −VCl)+ge(Vd −Ve)=gc(Vp −Vd). (2.29)

(ii) Assume that ge and gi are constant and that inhibition is silent (Vi =VCl). Solve for vp ≡Vp −VCl, the proximal
membrane potential relative to rest at steady state. In particular, confirm that

vp = gcgeve

(gc +gp +gi)(gc +gd +ge)−g2
c

, where ve ≡Ve −VCl. (2.30)

(iii) With ve =100 mV, gp =gd, and gc =gp/9 show that Eq. (2.30) may be expressed in terms of the normalized
excitatory, ce ≡ge/gd, and inhibitory, ci ≡gi/gd, conductances as

vp = (100/9)ce

(ci +10/9)(ce +10/9)−1/81
. (2.31)

Plot vp, as in Figure 2.11B, as a function of ce at three values of ci.
(iv) Show that in the limit of a large excitatory conductance vp becomes

lim
ge→∞vp = gcve

gc +gp +gi
. (2.32)

This shows that, no matter how large the distal excitatory input, the proximal inhibitory input can effectively
veto it: it is always possible to increase the inhibitory conductance, gi, and overcome the effect of excitation.

8. †Distal inhibition. Consider the two-compartment circuit of Figure 2.12A where now the distal compartment
receives both inhibition and excitation while the proximal compartment is unstimulated. Proceeding as in the
previous exercise,

(i) Derive the analogous system of differential equations for Vp and Vd.
(ii) Confirm that the steady-state membrane potential in the proximal compartment satisfies

vp = gcgeve

(gc +gp)(gc +gd +ge +gi)−g2
c

. (2.33)
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(iii) Adopting the choices of Exercise 7 show that

vp = (100/9)ce

(10/9)(ce +ci +10/9)−1/81
(2.34)

and reproduce the graph in Figure 2.12B.
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FIGURE 2.12 A. Passive model of a two-compartment cell with distal excitatory and inhibitory conductances. B. The relative proximal
potential, vp per Eq. (2.34), as a function of the normalized excitatory conductance at several values of the normalized inhibitory conductance.
(Comp2syn2.m)

(iv) Show that in the limit of a large excitatory conductance Eq. (2.33) becomes

lim
ge→∞vp = gcve

gp +gc
. (2.35)

The important difference with Eq. (2.32) is that distal inhibition cannot veto excitation. In other words, an
increase of excitation can always overcome distal inhibition since the limiting value is independent of gi.

9. Divide Eq. (2.19) by O+C and explain how one arrives at Eq. (2.20).
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In constructing a model of the voltage response to a stimulated passive isopotential cell we encountered three
linear ordinary differential equations, Eqs. (2.12), (2.15), and (2.20). As we progress from the passive isopotential cell
to the active multipotential dendritic tree, these same three equations will continue to determine the background local
membrane potential. As preparation for the more complex case, we analyze our three equations in some detail from
multiple points of view. In particular we pursue exact analytical integration, approximate numerical integration,
as well as solution via the Laplace transform. We also develop one simple consequence of our analysis, namely a
method for representing the coefficients in Eq. (2.12) in terms of moments of the solution. Such methods permit
the experimentalist to infer their cell’s effective electrical properties from measurement of the voltage response to a
prescribed current.

3.1 EXACT SOLUTION

To begin, we write Eq. (2.12) as

V ′(t)+V(t)/τ = f (t) V(0)=b, (3.1)

where τ is the membrane time constant in Eq. (2.14), b=VCl , and f (t)=VCl/τ+ Istim(t)/(ACm). If τ =∞ then we may
simply integrate

T∫
0

V ′(t)dt =
T∫

0

f (t)dt and find V(T)=b+
T∫

0

f (t)dt.

When τ is finite we strive to make V ′ +V/τ look like a derivative. More precisely, we note that

(V(t)et/τ )′ = (V ′(t)+V(t)/τ )et/τ

and so

(V(t)et/τ )′ =et/τ f (t) V(0)=b.

21
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Now integrate each side from 0 to T and find

V(T)eT/τ −b=
T∫

0

et/τ f (t)dt

which, on multiplying through by e−T/τ gives

V(T)=be−T/τ +
T∫

0

e(t−T)/τ f (t)dt

=VCle−T/τ +
T∫

0

e(t−T)/τ{Istim(t)/(ACm)+VCl/τ }dt

=VCl + 1
ACm

T∫
0

e(t−T)/τ Istim(t)dt.

(3.2)

For simple stimuli we may compute this integral by hand. We consider two examples here and then two more in the
exercises.

Square pulse stimulus. With regard to our previous chapter, we choose t1< t2 and consider the response to

Istim(t)= Q
t2 − t1

1(t1,t2)(t). (3.3)

Here 1(t1,t2)(t) is the characteristic function, Eq. (1.6), of the interval (t1, t2). Hence Istim is a pulse that begins at t1, ends
at t2 and delivers a total charge of Q to the cell. Its response is then

V(t)=VCl + Qτ
(t2 − t1)ACm

⎧⎪⎪⎨
⎪⎪⎩

0 when t ≤ t1 and

1−e(t1−t)/τ when t1 ≤ t ≤ t2

e(t2−t)/τ −e(t1−t)/τ when t2 ≤ t.

This is indeed the solution approximated in Figure 2.5.
There is considerable interest in the case of very fast pulses. We achieve this by fixing t1, evaluating

V(t2)=VCl + Qτ
(t2 − t1)ACm

(1−e(t1−t2)/τ ),

and noting that this approaches

V(t1)=VCl + Q
ACm

as t2 → t1. Using the same reasoning for t> t2, it follows that the full response to this “impulse” is

Vimp(t)=VCl + Q
ACm

e(t1−t)/τ1(t1,∞)(t). (3.4)

As we shall invoke impulsive stimuli throughout the rest of the text it seems wise to develop one or two other essential
properties. Let us then consider the integral of the product of Istim and a continuous function, u,

∞∫
0

Istim(t)u(t)dt = Q
t2 − t1

t2∫
t1

u(t)dt =Qu(t̃)
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3.2 MOMENT METHODS∗ 23

for some t̃ which, by the mean value theorem, lies between t1 and t2. It follows that

∞∫
0

Istim(t)u(t)dt → Qu(t1) as t2 → t1. (3.5)

We speak of this limit by saying that Istim converges to the Dirac delta function, centered at t1, with magnitude Q. The
Dirac delta function is defined by the pair of conditions

δ(t)=0 when t �=0 and

∞∫
−∞

δ(t)u(t)dt =u(0) (3.6)

for all functions u that are continuous at 0. The Dirac delta function, centered at t1, with magnitude Q is then simply
Qδ(t− t1).

Sinusoidal stimulus. For our next example we compute the response to the sinusoidal input

Istim(t)= I0 sin(2πωt).

Namely,

V(T;ω)=VCl + I0

ACm

T∫
0

e(t−T)/τ sin(2πωt)dt

=VCl + I0

ACm

2πωe−T/τ −2πωcos(2πωT)+(1/τ)sin(2πωT)
(2πω)2 +1/τ 2

=VCl + I0

ACm

2πωe−T/τ +√
(2πω)2 +1/τ 2 sin[2πωT − tan−1(2πωτ)]

(2πω)2 +1/τ 2 .

For large time, T, after the exponential transient dies away we see that V oscillates about VCl with amplitude
I0/(ACm

√
(2πω)2 +1/τ 2). If we divide this by the strength of the input current we arrive at the so-called input resistance

of the cell,

Rin(ω)= 1

ACm
√
(2πω)2 +1/τ 2

. (3.7)

We also see that the membrane potential oscillates with a phase lag equal to tan−1(2πωτ) relative to the input current.
We plot these results in Figure 3.1.

3.2 MOMENT METHODS∗

We derived Eq. (3.2) in order to express the response, V, of the passive isopotential cell, with known parameters
A, Cm, gCl, and VCl, to the known stimulus Istim. However, in the case where one can measure V for a given Istim we
may instead view Eq. (3.2) as a means for determining, or “reverse engineering,” the model parameters. We illustrate
below that Cm and gCl may be “read” from simple geometric descriptors (moments) of the stimulus and response. We
define the nth moment of the function f to be

Mn( f )≡
∞∫

0

tnf (t)dt.

The zeroth moment is often called the “strength” of the signal while the ratio of the first to the zeroth is referred to as
the “centroid” or “characteristic time,” and denoted

τc( f )≡M1( f )/M0( f ). (3.8)
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FIGURE 3.1 The input resistance (A) and phase lag (B) of the membrane potential relative to sinusoidal current injection as a function of
frequency. As the response, Rin, decreases with frequency we speak of the passive isopotential cell as a low-pass filter. (ffreq.m)

Regarding moments of the response we find after integrating by parts

M0(V −VCl)= 1
ACm

∞∫
0

T∫
0

e(t−T)/τ Istim(t)dtdT

= 1
ACm

∞∫
0

e−T/τ

T∫
0

et/τ Istim(t)dtdT

= 1
ACm

⎧⎨
⎩−τe−T/τ

T∫
0

et/τ Istim(t)dt
∣∣∣∣T=∞

T=0
+τ

∞∫
0

e−t/τ Istim(t)et/τ dt

⎫⎬
⎭

= τ

ACm

∞∫
0

Istim(t)dt = 1
AgCl

M0(Istim)

(3.9)

and so one may infer the chloride conductance, gCl, from the ratio of the strengths of the stimulus and response.
That is,

AgCl = M0(Istim)

M0(V −VCl)
. (3.10)

Regarding the next moment, we find

M1(V −VCl)= 1
ACm

∞∫
0

Te−T/τ

T∫
0

et/τ Istim(t)dtdT

= 1
ACm

{
−τ(T +τ)e−T/τ

T∫
0

et/τ Istim(t)dt
∣∣∣∣
T=∞

T=0
+τ

∞∫
0

(t+τ)e−t/τ Istim(t)et/τ dt
}

= τ

ACm

∞∫
0

(t+τ)Istim(t)dt = M1(Istim)+τM0(Istim)

AgCl

(3.11)
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and so τ is simply the lag between the characteristic times of the response and stimulus, i.e.,

τ = τc(V −VCl)−τc(Istim). (3.12)

As above, this gives one an experimental means for estimating τ . For example, the strength of the impulse, Istim(t)=
Qδ(t− t1) is Q and its characteristic time is t1. The strength of the relative response, via Eq. (3.4), is Q/(AgCl) and its
characteristic time is t1 +τ .

3.3 THE LAPLACE TRANSFORM∗

The Laplace transform is typically credited with taking dynamical problems into static problems. The Laplace
transform of V is

L(V)(s)≡
∞∫

0

e−stV(t)dt (3.13)

where s is a complex variable. We will have occasion to evaluate the Laplace transform of a number of functions, e.g.,
for constant c

L(c)(s)= c
s

, L(e−ct)(s)= 1
s+c

, and L(sin(ct))(s)= c
s2 +c2 . (3.14)

Regarding its effect on the derivative we find, on integrating by parts, that

L(V ′)=
∞∫

0

e−stV ′(t)dt =V(t)e−st
∣∣∣∣
∞

0
+s

∞∫
0

e−stV(t)dt. (3.15)

Supposing that V and s are such that V(t)e−st → 0 as t →∞ we arrive at

L(V ′)= sL(V)−V(0). (3.16)

It is natural to define v(t)=V(t)−VCl and write Eq. (2.12) as

τv′(t)+v(t)= Istim(t)/(AgCl). (3.17)

If we now take the Laplace transform of each side of Eq. (3.17) we find

sτL(v)+L(v)=L(Istim)/(AgCl),

and so

L(v)= 1
1+sτ

L(Istim)

AgCl
. (3.18)

We have expressed the Laplace transform of the response in terms of the Laplace transform of the stimulus. It remains
to invert L and recover v. This is, in general, a difficult task. It is made easy here by first recognizing that the factor
1/(1+sτ) in Eq. (3.18) is itself the Laplace transform of exp(−t/τ)/τ (recall Eq. (3.14)). Our second and final step in the
recovery of v is to associate the product of transforms with convolution. We denote the convolution of two functions,
f and g, as in Eq. (1.9), by

( f �g)(t)=
t∫

0

f (t−r)g(r)dr, (3.19)
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FIGURE 3.2 An illustration of the convolution in Eq. (3.20) with τ1 = 1 and τ2 = 2 ms. (convex.m)

where f and g are presumed zero for negative arguments. For example, the convolution of two exponentials, see
Figure 3.2, is their weighted difference,

exp(−t/τ1)�exp(−t/τ2)= τ1τ2

τ1 −τ2
(exp(−t/τ1)−exp(−t/τ2)). (3.20)

On taking the Laplace transform of each side of Eq. (3.19) we find

L( f �g)=
∞∫

0

t∫
0

f (t−r)g(r)dr e−st dt

=
∞∫

0

g(r)e−sr

∞∫
0

f (t−r)e−s(t−r)dtdr, as g(r)=0 for r<0 and f (t−r)=0 for r> t

=
∞∫

0

g(r)e−sr

∞∫
0

f (y)e−sy dy dr, using y = t−r and f (y)=0 for y<0

=L( f )L(g). (3.22)

This identity, L( f �g)=L( f )L( g), is known as the Convolution Theorem. Applying this to Eq. (3.18) we conclude
that

v(t)= exp(−t/τ)� Istim(t)
τAgCl

= 1
ACm

t∫
0

e(r−t)/τ Istim(r)dr

as in Eq. (3.2).
We next demonstrate that the Laplace transform provides an alternate path to our moment identities,

Eqs. (3.10)–(3.12). The connection stems from the identities

M0( f )=L( f )(0) and M1( f )=−L( f )′(0). (3.23)

The first of these follows from simply setting s=0 in Eq. (3.13). The second requires that we first differentiate
Eq. (3.13) with respect to s, i.e.,

L( f )′(s)= d
ds

∞∫
0

e−stf (t)dt =
∞∫

0

f (t)
d
ds

e−st dt =−
∞∫

0

f (t)te−st dt,
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and then set s=0. From the first identity in Eq. (3.23) we now set s=0 in Eq. (3.18) and find

M0(v)=M0(Istim)/(AgCl) (3.24)

in agreement with Eq. (3.10). To exploit the second moment identity we differentiate Eq. (3.18) with respect to s and
find

L(v)′(s)= −τ
(1+sτ)2

L(Istim)(s)
AgCl

+ 1
1+sτ

L(Istim)
′(s)

AgCl
. (3.25)

Setting s=0 here and then applying Eq. (3.24) brings

−M1(v)= τ

AgCl
M0(Istim)− 1

AgCl
M1(Istim)= τM0(v)−M0(v)M1(Istim)/M0(Istim).

On dividing through by M0(v) we arrive at Eq. (3.12).

3.4 NUMERICAL METHODS

We consider numerical methods with which to systematicallyapproximate the solution of Eq. (3.1). By approximate
we mean that we partition time into small intervals of length dt and produce a discrete sequence of voltages, V1, V2, . . .
that approximate the true voltage at integer multiples of dt. In other words,

Vj ≈V(( j−1)dt) j =1,2,3, . . . (3.26)

These Vj will be the solution of a difference approximation to the associated differential equation. We consider three
natural means for constructing such difference equations.

The forward Euler scheme. We express Eq. (3.1) as

(Vj −Vj−1)/dt+Vj−1/τ =fj−1 j =1,2,3, . . .

and note that the derivative looks beyond ( forward) the time point at which the remaining functions are approximated
or evaluated. This results in the simple march

Vj = (1−dt/τ)Vj−1 +dtfj−1 j =2,3, . . . (3.27)

starting from V1 =b. We have coded this in MATLAB, see feps.m, with a 1 pA stimulus for 18 ms. This routine asks the
user to specify the time step, dt, and the final time, Tfin. One naturally asks: does this routine work for every dt and,
when it works, how does the answer differ from the exact solution computed in the previous section. To answer the
first question we denote a≡1−dt/τ and execute the step (3.27) by hand

V2 = aV1 +dtf1

V3 = aV2 +dtf2 = a2V1 +dt(af1 +f2)

V4 = aV3 +dtf3 = a3V1 +dt(a2f1 +af2 +f3)

until we recognize the pattern

Vj = aj−1V1 +dt
j−1∑
i=1

aj−i−1fi.

We see that this sequence is bounded so long as |a|<1, i.e., so long as

dt<2τ . (3.28)

What does this mean in practice? Run feps(7,180) and watch the potential grow without bound. When the iterates
of a marching scheme take bounded inputs to bounded outputs one calls the scheme stable. In our case, forward
Euler is stable when dt obeys (3.28).
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The backward Euler scheme. We approximate Eq. (3.1) via

(Vj −Vj−1)/dt+Vj/τ =fj j =2,3, . . .

and note that the derivative now looks back from where the remaining functions are approximated or evaluated. The
resulting marching scheme is

Vj = Vj−1+dtfj

1+dt/τ
(3.29)

starting from V1 =b. We shall see that this scheme is stable for every choice of dt. We have coded this in beps.m with
our same 1 pA stimulus for 18 ms.

The trapezoid scheme. We integrate Eq. (3.1) across one time step,

V(( j−1)dt)−V(( j−2)dt)+(1/τ)
( j−1)dt∫
( j−2)dt

V(s)ds =
( j−1)dt∫
( j−2)dt

f (s)ds

and approximate each integral via the trapezoid rule, i.e., by the product of the mean of the integrand and the length
of the base. This produces

Vj −Vj−1+(1/τ)(dt/2)(Vj−1 +Vj)= (dt/2)(fj−1+fj)

which, upon rearrangement takes the form

Vj = (2−dt/τ)Vj−1+dt(fj−1+fj)

2+dt/τ
. (3.30)

This routine is also stable for all dt. In the exercises to come we will find it accurate to order (dt)2 while backward
(and forward) Euler are only accurate to order dt.

3.5 SYNAPTIC INPUT

In the case that the cell receives synaptic input rather than current injection we recall Eq. (2.15) and so must instead
solve

V ′(t)+a(t)V(t)=b(t), V(0)=VCl (3.31)

where

a(t)= (gCl +gsyn(t))/Cm and b(t)= (gClVCl +gsyn(t)Vsyn)/Cm.

This too has an exact solution, for V ′ +aV is transformed into an exact derivative by multiplication. In particular

(V ′(t)+a(t)V(t))e
∫ t

0 a(s)ds = (V(t)e
∫ t

0 a(s)ds)′ =b(t)e
∫ t

0 a(s)ds

and so

V(t)=VCle−∫ t
0 a(s)ds +

t∫
0

b(s)e−∫ t
s a(y)dy ds. (3.32)

Although explicit, this expression is cumbersome for all but the most simple gsyn, and so one often resorts to the
trapezoid scheme

Vj −Vj−1+(dt/2)(ajVj +aj−1Vj−1)= (dt/2)(bj +bj−1)
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which leads to the update rule

Vj = (2/dt−aj−1)Vj−1 +bj +bj−1

2/dt+aj
. (3.33)

We have coded this in trapsyn.m and used it to achieve Figure 2.7 in the previous chapter.
We note that the product term, a(t)V(t), in Eq. (3.31), prohibits the direct application of both the Laplace transform

and moment methods to problems with time-varying synaptic conductances.

3.6 SUMMARY AND SOURCES

We have presented three attacks on Eq. (2.12), the linear ordinary differential equation that governs the response
of a passive cell to current injection. Each of our methods, exact integration, the Laplace transform, and numerical
integration are developed in full in the beautiful introductory text of Redheffer and Port (1992). The Laplace transform
is also an effective tool for studying renewal point processes, as we will learn in the exercises of Chapters 11, 15, and 16.
Regarding MATLAB programming there is no substitute for practice, for few can learn a language strictly from reading
a grammar book. We intend to give the reader considerable practice. For a more systematic introduction to MATLAB
in a neuroscience context see Wallisch et al. (2008). To learn more about the mathematics behind the curve-fitting in
Exercise 12 see Cheney and Kincaid (2007).

3.7 EXERCISES

1. Find the exact solution to Eq. (3.1) with Istim(t)= te−t .

2. †Find the exact solution to Eq. (3.1) with Istim(t)=e−t/τ1 −e−t/τ2 .

3. Establish the validity of the three transforms in Eq. (3.14).

4. Show that L(t)(s)=1/s2 and L(t2)(s)=2/s3. Hint: Use Eq. (3.16).

5. †Generalize the result of Exercise 4 to arbitrary positive integers n:

L(tn)(s)= n!
sn+1 . (3.34)

6. Establish the validity of the two basic scaling properties of the Laplace transform.
(i) If g(t)= f (t−a) and a>0 then L(g)(s)=L( f )(s)e−as.

(ii) If g(t)= f (t/a) and a>0 then L(g)(s)= aL( f )(as).

7. Show that the Laplace transform of the gamma density distributions, to be studied in Chapters 11, 15, and 16,

pn(t)= �(�t)n−1

(n−1)!
exp(−�t), n=1,2, . . .

is given by

L(pn)(s)= �n

(s+�)n .

Hint: Proceed by induction, showing the assertion for n=1 and then showing thatL(pn+1)(s)= (�/(s+�))L(pn)(s).
This last equality may be derived by integrating by parts.

8. †Use Eq. (3.32) when

gsyn(t)=
gsyn

ε
1(0,ε)(t)

and evaluate
lim
ε→0

V(ε),

the response to a conductance “impulse,” g(t)=gsynδ(t).
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9. Show that the backward Euler and trapezoid schemes are each stable for every positive dt.

10. Let us contrast, by example, the accuracies of the backward Euler and trapezoid schemes. Using V, the exact
solution when Istim(t)=2(t/τ)exp(−t/τ)/105 μA, we compute the maximum absolute error

E(dt)≡ max
1≤j≤T/dt

|V( jdt)−Vj|

as a function of the time step, dt, over a time span of T =20 ms. Write a program that evaluates this error for a
given dt for both the backward Euler and trapezoid schemes and produces Figure 3.3.
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FIGURE 3.3 Contrasting the error in backward Euler and trapezoid approximations. The former decays like dt and the latter like dt2.
(be_vs_trap.m)

11. We will here contrast current injection and synaptic input. The comparison is made easier in terms of v ≡V −VCl,
for v obeys

Cmv′(t)+gClv(t)+gsyn(t)v(t)=gsyn(t)E, v(0)=0,

where E=Vsyn −VCl. Please check that the trapezoid scheme leads to

vj = (2Cm/dt−gCl −g
j−1
syn )v

j−1 +(gj
syn +g

j−1
syn )E

2Cm/dt+gCl +g
j
syn

.

If we denote by w the response, with respect to VCl, then w obeys

Cmw′(t)+gClw(t)=gsyn(t)E, w(0)=0,

where E=Vsyn −VCl. Please check that the trapezoid scheme leads to

wj = (2Cm/dt−gCl)wj−1 +(gj
syn +g

j−1
syn )E

2Cm/dt+gCl
.

The difference here is that in the latter, current approximation, the synaptic conductance acts on the “driving
force” E, while in the former, the driving force is E−v. In situations where v deviates appreciably from rest, i.e.,
v =0, we say that the cell experiences a loss of driving force. As a result, we may expect this loss to produce less
depolarization than the current approximation.
Confirm this loss of driving force by modifying trapsyn.m to accommodate the square wave conductance

gsyn(t)=gsyn1(0,sp)(mod(t,sT )) (3.35)
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with amplitude, gsyn mS/cm2, pulsewidth, sp ms, and period, sT ms. Here mod is the MATLAB function, mod(t,sT )≡
t−
t/sT�sT , where 
x� is the greatest integer that does not exceed x. Reproduce Figure 3.4.
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FIGURE 3.4 Response to square wave synaptic input, with amplitude gsyn = 0.1 mS/cm2 and pulsewidth sp = 1 ms and periods
sT = 2 ms at left and sT = 4 ms at right. The square waves are inset and we contrast the true synaptic response, v, and the approximate
response, w. In the high frequency case, A, the voltage does not have enough time to return to rest before the next input, and hence each
input acts on a reduced driving force, and so v−w is much larger in A than in B. (curvssyn.m)

12. †Please solve the transmitter equation, (2.20), and find

R(t)= T0

T0 +Kd
exp(k− min(0, t2 − t)){1−exp((k+T0 +k−)(t1 −min(t, t2))}1(t1,∞)(t) (3.36)

where Kd = k−/k+ is the dissociation constant. As we have stated above, the associated gsyn(t)=GsynR(t) is often
approximated by an α-function. We accomplish this approximation via lsqcurvefit in MATLAB. In particular,
we solve the least-squares problem

min
gsyn,τα

Nt∑
j=1

|gsyn( jdt)−gsyn( jdt/τα)exp(1− jdt/τα)|2

where Nt is the number of time samples. For example, with T0 =1 mM, t1 =0, t2 =4, Tfin =20, dt =0.1 ms, and the
AMPA receptor parameters k+ =1.1 (mM ms)−1, k− =0.18 (ms)−1 , and Gsyn =100 mS/cm2, reproduce Figure 3.5.
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FIGURE 3.5 The best fit of an α-function to the transmitter response, gsyn = 0.017 mS/cm2 and τα = 2.943 ms. (alphafit.m)

The GABA receptor binds so fast that R quickly saturates. To illustrate this, increase k+ from 1.1 to 5 and run
alphafit.m and observe the plateau. Argue that this plateau value is T0/(T0 +Kd).
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The passive model constructed in Chapter 2 provides a fairly accurate prediction of the cell’s response to “small”
current and/or synaptic input. For inputs of moderate size the passive model, however, fails to capture the charac-
teristic oscillatory overshoot and undershoot, as in Figure 4.1A, while for large inputs it cannot reproduce the cell’s
characteristic “action potential,” see Figure 4.1B.

Following Hodgkin and Huxley, the oscillations and action potential stem from voltage-gated conductances in the
cell’s plasma membrane that permit the coordinated influx of sodium, Na+ , and the efflux of potassium, K+. As with
chloride, the respective concentration gradients beget associated Nernst potentials, and we are compelled to consider
a more complex circuit diagram, Figure 4.2.
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FIGURE 4.1 Voltage response, with respect to rest, of the space-clamped squid giant axon to “moderate” (A) and “large” (B) current stimulus,
recorded by Hodgkin and Huxley (1952, Figs. 23 and 13).
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FIGURE 4.2 The equivalent circuit model of the cell’s active membrane. We have added two membrane currents to the passive circuit of
Figure 2.4. The arrows through the new conductances signify that they are gated by the membrane potential itself.

The Nernst potentials for the two new currents are derived, as in Eq. (2.7), from the respective inner and outer ionic
concentrations (in mM),

[K+]in =400, [K+]out =20, [Na+]in =50, [Na+]out =440. (4.1)

These lead, at T =27 ◦C, to

VK = kT
ze

log
[K+]out

[K+]in
≈−77 mV and VNa = kT

ze
log

[Na+]out

[Na+]in
≈56 mV. (4.2)

Determination of the conductances, gK and gNa, is considerably more difficult. We take them up in §§4.1 and 4.2
respectively. We integrate these channel models in §4.3 and arrive at the full (space-clamped) system of Hodgkin and
Huxley. We then introduce, apply, and study numerical methods for its solution. The channel types expressed in the
squid giant axon have now been found to be but two among a vast array of voltage-gated channels. It is remarkable
that the formalism developed by Hodgkin and Huxley has survived application to each of these channels. We close
this chapter with an application to the transient potassium channel.

4.1 THE DELAYED RECTIFIER POTASSIUM CHANNEL

Hodgkin and Huxley observed that the potassium conductance varied with time and voltage. At a fixed voltage,
however, they observed that the conductance grew monotonically in time to a steady level. They therefore postulated
a potassium conductance of the form

gK =gKnp(t;V) (4.3)

where gK is the conductance/area of open K+ channels and np(t;V) is the probability that a K+ channel is open at
time t. To say that n approaches a steady (voltage dependent) level, n∞(V(t)), at the (voltage dependent) rate, τn(V(t)),
is to ask that

n′(t)= n∞(V(t))−n(t)
τn(V(t))

. (4.4)

Hodgkin and Huxley determined the exponent, p =4, and the functional forms of n∞ and τn via an ingenious com-
bination of theory and experiment. Regarding the latter, they could chemically and electrically rig their (squid
giant axon) preparation in such a way that IK was the only current. This meant doctoring the bath to eliminate
other ions, achieving a space clamp by inserting a long axial conductor along the axon’s interior, and, most impor-
tantly, using a voltage clamp to simultaneously thwart the capacitive current and so measure the K+ current over
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4.1 THE DELAYED RECTIFIER POTASSIUM CHANNEL 35

a range of physiological voltages. More precisely, they could hold the membrane at some fixed prestep potential,
Vps, and then “activate” the chosen current by stepping to a new holding potential, Vs, and recording the cur-
rent necessary to maintain this potential. As IK was the only uninterrupted current their measured current was
indeed IK . If we denote by {t1, t2, . . . , tN} the times at which the current was measured then we can invert Ohm’s law
and find

gK(tj;(Vps,Vs))= IK (tj)/(Vs −VK) j =1, . . . ,N. (4.5)

The simulated voltage clamp and gK curves presented in Figure 4.13A and B offer, among many other things, an
explanation for the adjective “delayed rectifier,” as the conductance changes after a delay following a step in potential.
In fact, this delay was the main motivation for introducing the exponent p in Eq. (4.3) as Hodgkin and Huxley
observed that an exponent p>1 effectively delays the conductance rise.

Next, in order to reconcile the data, Eq. (4.5), with the model, Eq. (4.3), we note that if V(t)=Vs independent of t
and n(0)=n∞(Vps) then Eq. (4.4) implies that

n(t;(Vps,Vs))=n∞(Vs)+exp(−t/τn(Vs))(n∞(Vps)−n∞(Vs)). (4.6)

This led Hodgkin and Huxley to determine gK, p, n∞, and τn by minimizing (for fixed p) the sum of the squared
differences

∑
(Vps,Vs)

N∑
j=1

|gK(n∞(Vs)+exp(−tj/τn(Vs))(n∞(Vps)−n∞(Vs)))
p −gK(tj;(Vps,Vs))|2 (4.7)

where the outer sum is over all experimental pairings of Vps and Vs. They then chose the power p that yielded the
smallest misfit.

Once the functionals have been determined they are further interpolated by combinations of exponentials. In
particular, Hodgkin and Huxley found

gK =36 mS/cm2, τn(V)= 1
αn(V)+βn(V)

, and n∞(V)=αn(V)τn(V) (4.8)

where

αn(V)= 0.01(61+V)
1−exp(−(61−V)/10)

and βn(V)= exp(−(V +71)/80)/8 (4.9)

are illustrated in Figure 4.3.
The expression of n∞ and τn in terms of αn and βn permits one to express the gating equation, (4.4), as

n′(t)=αn(V(t))(1−n(t))−βn(V(t))n(t). (4.10)
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FIGURE 4.3 The gating functions that govern the potassium channel. (hhfuncs.m)
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36 4. THE ACTIVE ISOPOTENTIAL CELL

Recalling our work in Chapter 2, in particular Eq. (2.20), we recognize αn as the rate at which a closed K+ channel
opens and βn as the rate at which an open K+ channel closes.

4.2 THE SODIUM CHANNEL

With sodium back in the bath the response is considerably different. Applying the identical voltage clamp proce-
dure, Hodgkin and Huxley discovered that the associated sodium conductance rose quickly and then fell off. They
chose to model this via two, independent, voltage-gated processes; m to capture the upstroke or “activation” and h
to capture the downstroke or “inactivation.” Presuming activation and inactivation to be dependent on voltage and
yet independent of one another, the resulting sodium conductance took the form

gNa =gNampm(t;V)hph(t;V) (4.11)

where m and h obey, as in Eq. (4.4),

m′(t)= m∞(V(t))−m(t)
τm(V(t))

and h′(t)= h∞(V(t))−h(t)
τh(V(t))

.

As above if the membrane potential is stepped to Vs from a fixed prestep value, Vps, then m and h take the form

m(t;(Vps,Vs))=m∞(Vs)+exp(−t/τm(Vs))(m∞(Vps)−m∞(Vs))

h(t;(Vps,Vs))=h∞(Vs)+exp(−t/τh(Vs))(h∞(Vps)−h∞(Vs)).

(We will simulate these experiments in Exercise 1 and arrive at Figure 4.13A and C.) For fixed powers, pm and ph, we
then minimize the full trace

∑
(Vps,Vs)

N∑
j=1

|gNampm(t;(Vps,Vs))hph(t;(Vps ,Vs))−gNa(tj ;(Vps,Vs))|2 (4.12)

to arrive at the maximal conductance,

gNa =120 mS/cm2, (4.13)
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FIGURE 4.4 The gating functions that govern the sodium channel. A. Activation. B. Inactivation. (hhfuncs.m)
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the activation functionals, m∞ and τm, and the inactivation functionals, h∞ and τh. These are illustrated in Figure 4.4
and parametrized in terms of

τm(V)= 1
αm(V)+βm(V)

and m∞(V)=αm(V)τm(V)

τh(V)= 1
αh(V)+βh(V)

and h∞(V)=αh(V)τh(V)

where

αm(V)= 0.1(51+V)
1−exp(−(51+V)/10)

and βm(V)=4 exp(−(V +71)/18)
(4.14)

αh(V)=0.07 exp(−(V +71)/20) and βh(V)= 1
exp(−(41+V)/10)+1

.

4.3 THE HODGKIN–HUXLEY EQUATIONS

Returning to the circuit diagram of Figure 4.2 we apply Kirchhoff’s Current Law and arrive at the system of ordinary
differential equations

CmV ′(t)=−gNam3h(V −VNa)−gKn4(V −VK)−gCl(V −VCl)+ Istim/A

n′(t)=αn(V)(1−n)−βn(V)n

m′(t)=αm(V)(1−m)−βm(V)m

h′(t)=αh(V)(1−h)−βh(V)h

(4.15)

and note that, in the absence of stimulus, the membrane sits at a resting potential, Vr. This potential is the value of V
for which the steady-state membrane current

Iss(V)≡gKn4∞(V)(V −VK)+gNam3∞(V)h∞(V)(V −VNa)+gCl(V −VCl) (4.16)

vanishes. We graph this function in Figure 4.5 and estimate Vr =−71 mV. More accurate values may of course be
found by solving the nonlinear equation, Iss(V)=0, numerically. We demonstrate below how to use MATLAB’s fsolve
routine for this task.

Once the rest state is computed we may proceed to solve Eq. (4.15). Recalling the discretization schemes of the
previous chapter, we choose a time step, dt, and note that forward Euler would be cheap, not necessarily stable, and
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FIGURE 4.5 The steady ionic current of the squid giant axon. (hhfuncs.m)
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only accurate to order dt. Backward Euler is stable, but at a great cost, namely we would have to solve a nonlinear
system at each advance of dt. The trapezoid rule suffers the same cost but with the advantage of second order accuracy.
Fortunately, Hines has discovered a fourth way. By staggering the discretization of the voltage and gating equations
he delivers a second order scheme that does not require the solution of any nonlinear equations. In particular, we
define

Vj ≈V(( j−1)dt), nj ≈n(( j−3/2)dt), and Ij = I(( j−3/2)dt) j =1,2,3, . . . (4.17)

and initialize via

V1 =Vr and n1 =n∞(Vr), m1 =m∞(Vr), h1 =h∞(Vr).

We begin by advancing the gating variables via the trapezoid-like approximation of the n-equation in Eq. (4.15),

nj −nj−1 =αn(V
j−1)dt−(αn(V

j−1)+βn(V
j−1))(nj +nj−1)dt/2.

This permits the explicit representation

nj = (1/dt−(αn(Vj−1)+βn(Vj−1))/2)nj−1 +αn(Vj−1)

1/dt+(αn(Vj−1)+βn(Vj−1))/2
(4.18)

or, equivalently

nj = (2τn(Vj−1)−dt)nj−1+2n∞(Vj−1)dt
2τn(Vj−1)+dt

. (4.19)

After updating the remaining gating variables we update the voltage via the half-step backward Euler rule

Cm
Vj−1/2−Vj−1

dt/2
=−gNa(m

j)3hj(Vj−1/2−VNa)−gK(n
j)4(Vj−1/2−VK)−gCl(V

j−1/2−VCl)+Ij/A. (4.20)

This permits the explicit update

Vj−1/2 = 2CmVj−1/dt+gK(n
j)4VK +gNa(m

j)3hjVNa +gClVCl +Ij/A

2Cm/dt+gK(n
j)4 +gNa(m

j)3hj +gCl

and finally we advance another half-step via

Vj =2Vj−1/2−Vj−1. (4.21)

We have coded this staggered Euler scheme in stEdemo.m. If we deliver a 40 pA current pulse for 2 ms, commencing
at t =2 ms, and use a time step dt =0.01 ms, we arrive at the traces in Figure 4.6.

We may discern from the above simulation that 40 pA for 2 ms is sufficient current to elicit an action potential. In
Figure 4.7 we use stE.m to reproduce the cell’s response to moderate input and to ascertain the precise threshold at
which “moderate” becomes “large.”

Regarding the accuracy of the staggered Euler scheme, and the related question of how small the time step, dt,
must be chosen, we have solved the Hodgkin–Huxley system, with a 40 pA, 2 ms stimulus at dt =10−k for k =1,2,3,4,
and 5. We denote the associated solution by Vk. Absent an exact analytical solution we measure the accuracy of each
Vk against our best candidate, V5, by computing the maximal absolute error

E(k)≡max
j

∣∣∣∣Vj
k −V

j×105−k

5

∣∣∣∣ . (4.22)

We plot this error in Figure 4.8.
Since Hodgkin and Huxley, molecular and cellular biologists have identified an incredible variety of voltage-gated

ion channels. For example, there are sodium channels that do not inactivate and potassium channels that do.
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FIGURE 4.7 A. The response to a 5 pA, 20 ms current step. This moderate stimulus reproduces the measured oscillatory overshoot and
undershoot of Figure 4.1A. (stEdemo2.m) B. We fix the current on and off times at 1 and 3 ms and examine the maximum depolarization (black),
and the time at which it was achieved (red), as the current amplitude is increased from 10 to 100 pA. The threshold at which the cell fires is
approximately 35 pA. At this current the cell however takes 6 ms, after termination of the stimulus, to fire. As the stimulus amplitude is increased,
this lag in firing time approaches zero. (stEthresh.m)
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FIGURE 4.8 Illustration of the second order accuracy of the staggered Euler scheme. The error function of Eq. (4.22) decreases by two orders
of magnitude when the time step, dt, decreases by one order of magnitude. (stEerr.m)

4.4 THE TRANSIENT POTASSIUM CHANNEL*

Channels that activate and then inactivate, at a fixed potential, are referred to as “transient.” Even within the family
of transient potassium channels there is considerable variation. We here develop a channel model of a transient, or
so-called “A-type,” potassium current that has been observed in stellate neurons of the cerebellum. We suppose that
it has fast (in fact instantaneous) activation and slow inactivation,

IA =gAa∞(V)b(V −VK), τbb′ =b∞(V)−b, τb =15 ms,

a∞(V)= 1
1+exp(−(V +27)/8.8)

, b∞(V)= 1
1+exp((V +68)/6.6)

.
(4.23)

We illustrate these functionals in Figure 4.9.
To investigate the shape of the resulting current, and its role in shaping the associated action potential we adopt

sodium and delayed rectifier potassium currents of the form

INa =gNam∞(V)h(V −VNa), τh(V)h′ =h∞(V)−h

IK =gKn(V −VK), τnn′ =n∞(V)−n
(4.24)

with gating functionals

m∞(V)= 1
1+exp(−(V +35)/4)

, n∞(V)=m∞(V), τn =0.5,

h∞(V)= 1
1+exp((V +35)/4)

, τh(V)= 12992
4π(V +74)2 +784

−0.15,
(4.25)

and parameters,

gNa =30, gK =7, gCl =1, gA =16 mS/cm2

VNa =45, VK =−90, VCl =−70 mV, Cm =1.5 μF/cm2.
(4.26)

Regarding the solution of the system of ordinary differential equations for V, h, n, and b, we advance the gating vari-
ables exactly as in Eq. (4.18) but note that the voltage equation offers more difficulty here. In particular, instantaneous
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FIGURE 4.10 The action potential (A) and associated membrane currents (B) for the cell described by Eqs. (4.23)–(4.26). (stmolidemo.m)

activation introduces explicit nonlinearities into the voltage equation. In order to avoid having to solve a nonlinear
equation, at each increment of dt, we replace the implicit rule, Eq. (4.20), with the mixed rule

Cm
Vj −Vj−1

dt
=−gNam∞(Vj−1)hj(Vj −VNa)−gKn

j(Vj −VK)

−gAa∞(Vj−1)bj(Vj −VNa)−gCl(V
j −VCl)+Ij/A,

(4.27)

and so arrive at

Vj = CmVj−1/dt+gNam∞(Vj−1)hjVNa +gKn
jVK +gAa∞(Vj−1)bjVNa +gClVCl +Ij/A

Cm/dt+gNam∞(Vj−1)hj +gKn
j +gAa∞(Vj−1)bj +gCl

.

We have coded this hybrid Euler scheme in stmolidemo.m and illustrated its results in Figure 4.10 with a 300 pA,
2 ms, current injection, with dt =0.01 ms.

As may be expected from the use of a mixed update rule, application of this hybrid scheme results in a loss of
second order accuracy, see Figure 4.11.
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FIGURE 4.12 Response of the cell described by Eqs. (4.23)–(4.26) to synaptic input. A. Dynamic response to square wave gsyn of amplitude
0.5 mS/cm2, period 5 ms, and Vsyn = 0. Although an individual pulse is subthreshold, when they arrive at the “right” frequency they eventually fire
the cell. (stmolisyn.m) B. Steady-state membrane potential response as a function of steady synaptic conductance, with Vsyn = 0, and with (black)
and without (red) the A-current. This demonstrates that IA has a linearizing effect on the cell’s membrane potential. Figure 2.10A. (molisynss.m)

If we wish to drive the cell with synaptic input rather than current injection then the Ij/A term in Eq. (4.27) is

simply replaced with −g
j
syn(V

j −Vsyn). We investigate, in Figure 4.12, the associated response when gsyn is the periodic
pulse of Eq. (3.35), as well as when gsyn is simply constant. For the latter case we return to Exercise 2.3, and ask for
the associated steady-state potential, i.e., the solution to

(Vss −VCl)+cNam∞(Vss)h∞(Vss)(Vss −VNa)

+{cAa∞(Vss)b∞(Vss)+cKn∞(Vss)}(Vss −VK)+csyn(Vss −Vsyn)=0
(4.28)

where each of the conductances cNa, cA, cK , and csyn has been scaled by gCl so that, in particular, csyn =gsyn/gCl.
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4.5 SUMMARY AND SOURCES

We have constructed phenomenological models of a sodium channel and two potassium channels. These models
permit us to predict the conductance of the channel as a function of the cell’s transmembrane potential difference.
We combined these channel models in a well-defined system of four (or more) ordinary differential equation, and
derived and tested a numerical approximation method that permitted us to discern the threshold, in both amplitude
and frequency, at which current injection yielded an action potential. Figure 4.1, as well as most of the first three
sections, is drawn from the fundamental work of Hodgkin and Huxley (1952), who were awarded the 1963 Nobel Prize
in Medicine. The preparation of a squid giant axon and actual recordings are presented in videos available at www.iac-
usnc.org/Methods. This web site contains videos of several other classical electrophysiological preparations. Hille
(2001) synthesizes this material, addresses the value of model building, and considers challenges to a number of the
assumptions in Hodgkin and Huxley (1952), notably that of independence of the sodium gating variables, m and h.
Willms et al. (1999) extend and improve the fitting of voltage clamp data. The lovely staggered Euler scheme of §4.3
is due to Hines (1984). The model of §4.4 with the A-type potassium channel is adapted from Molineux et al. (2005).
Exercise 6 is from Fitzhugh (1955). This exercise is a gateway into the very rich world of phase plane analysis of neural
models, see, e.g., Izhikevich (2007).

4.6 EXERCISES

1. Let us attempt to simulate the voltage clamp experiments of Hodgkin and Huxley. More precisely, suppose

V(t)= 1(2,15)(t)Vc ,

where Vc is the desired clamp potential, and modify stEdemo.m to solve for the associated gating variables and
plot, as in Figure 4.13, V and

gK(t)=gKn4(t) and gNa(t)=gNam3(t)h(t)

for a range of clamp potentials.
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FIGURE 4.13 Simulated voltage clamp experiments of Hodgkin and Huxley. A. Command potential. B. Potassium conductance. C. Sodium
conductance. (clamp.m)
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2. The next two exercises will help us understand the rate at which our cell may fire. To begin, modify stE.m to
deliver 60 pA, 2 ms current pulses at t1 =1 ms and a variable t2. Experiment with several values of t2 and reproduce
Figure 4.14.
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FIGURE 4.14 Illustration of the refractory period observed in the Hodgkin–Huxley model. In A the second stimulus is delivered at
t2 = 17 ms and produces a slight depolarization. In B the second stimulus is delivered at t2 = 18 ms and produces a full action potential. This
period, of roughly 17 ms, in which the cell does not spike when subjected to suprathreshold stimulus, is known as the refractory period.
(stErefracdrive.m)

3. We notice that for sustained current input our cell enters a regime of periodic firing. For example, if Istim(t)=
1001(2,∞)(t) pA we observe the response in Figure 4.15A.

Modify stE.m to calculate the interspike interval and reproduce the “f /I” curve in Figure 4.15B.
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FIGURE 4.15 A. Periodic spiking of the Hodgkin–Huxley model when subjected to constant suprathreshold current. B. The number of
spikes per second as a function of (constant) stimulus amplitude. (stEfreq.m)

4. The f /I curve of the previous exercise exhibits clear thresholds in both amplitude and frequency. We will demon-
strate here that addition of the A-current removes the frequency threshold. In particular, show that the cell of §4.4
can fire at arbitrarily low frequencies by modifying stmolidemo.m, in the manner of the previous exercise, and
reproduce Figure 4.16.
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FIGURE 4.16 The number of spikes per second as a function of (constant) stimulus amplitude for the cell of §4.4 with the A-type potassium
current. (molifreq.m)

5. One may excite a cell without impaling it, by instead upsetting the balance of extracellular ions. Modify stE.m to
deliver a pulse of extracellular potassium ions, of concentration Kstim, in the time interval [t1, t2], and so reproduce
Figure 4.17. This stimulus resets the reversal potential, via (recall Eq. (4.2))

[K+]out(t)=20+Kstim1(t1,t2)(t), EK =25.8 log([K+]out/400),

where [K+]out =20 and [K+]in =400 mM are drawn from Eq. (4.1).
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FIGURE 4.17 Depolarization of the Hodgkin–Huxley model by a 2 ms pulse of extracellular potassium ions. A. Kstim = 5 mM is subthreshold.
B. Kstim = 10 mM elicits a spike. (stEKstimdrive.m)

6. Returning to Figure 4.6 we pursue a pair of simple observations. First, m, the gating variable of sodium activation is
so fast that perhaps we can simply presume that it instantaneously reaches its steady-state level, m∞(V(t)). That is

m(t)≈m∞(V(t)).
Second, we observe that n+h is fairly flat. In, particular.

h(t)≈0.87 −n(t). (4.29)
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FIGURE 4.18 Response of the FitzHugh model, Eq. (4.30). A. Membrane potential as a function of time. B. Phase diagram of n and V.
(stE2d.m)

With these approximations, the Hodgkin–Huxley system Eq. (4.15) reduces to

CmV ′(t)=−gNam3∞(V)(0.87 −n)(V −VNa)−gKn4(V −VK)−gCl(V −VCl)+ Istim/A

n′(t)=αn(V)(1−n)−βn(V)n.
(4.30)

Modify stE.m to solve this two-variable reduced system and graph its response to Istim =50 1(2,∞)(t) pA in the
“phase plane” as in Figure 4.18. This reduced model is sometimes called the FitzHugh model.

7. One great feature of planar systems, like that of the previous exercise, is that the equations, when interpreted
graphically, dictate how the solution must behave. The principal objects are the two nullclines. These are the
curves on which V and n respectively, do not change. With reference to Eq. (4.30), the n nullcline is simply those
points, (V,n), for which n′(t)=0, i.e., it is the graph of n∞, namely (V,n∞(V)). The V nullcline is a bit more
complicated. We recognize it as a quartic in n with coefficients that depend on V. We arrive at a very simple quartic
if we replace our initial approximation, Eq. (4.29), with the arguably better

h(t)=0.7 −n2(t). (4.31)

For in this case, the V nullcline is the set of points (V,n1(V, Istim)) where n1(V, Istim) is the lone positive root of the
biquadratic

a(V)n4 +b(V)n2 +c(V)+ Istim/A, (4.32)

for constant Istim.

i. Please write out a(V), b(V), and c(V) and argue that Eq. (4.32) indeed has only one root

n1(V, Istim)=
√

−b(V)−√
b2(V)−4a(V)(c(V)+ Istim/A)

2a(V)
(4.33)

for each V for which VK<V<VNa.
ii. Graph, as in Figure 4.19A the n nullcline and V nullcline for Istim =0, 10, and 20 pA. Argue that these curves

constrain the resulting dynamics by explaining why the solution, (V(t),n(t)) can only cross the n nullcline when
moving horizontally and that it can only cross the V nullcline when moving vertically.
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FIGURE 4.19 A. The n nullcline (red) and V nullclines (black) for Istim = 0, 10, and 20 pA. The three V nullclines coincide outside of
the interval −75<V<−55 mV. In this interval, increasing Istim serves to “lift” the V nullcline and so produce more depolarized rest states.
B. The I −V rest curve associated with Eq. (4.34). (fhpp.m)

iii. Next argue that the system is at rest only where its two nullclines cross. Argue that this occurs when V and Istim
satisfy

Istim =−A(a(V)n4∞(V)+b(V)n2∞(V)+c(V)), (4.34)

and graph this as in Figure 4.19B.

iv. Now address, as in Figure 4.20, the stability of a pair of rest states by incrementing Istim by 1 pA at the 2 ms mark.
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FIGURE 4.20 Voltage traces and phase planes of the modified FitzHugh system for Istim = 20+ 1(2,∞)(t) pA (A, B) and Istim = 30+
1(2,∞)(t) pA (C, D). In the former case the incremental current brought us to a nearby rest state, while in the latter the same increment
produced a large excursion and eventual periodic spiking. The mathematics developed in the next chapter will permit us to take a closer
look at this threshold. (fhpp.m)
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The passive model is a severe reduction of the active cell. In this chapter we establish a middle ground by lin-
earizing the full Hodgkin–Huxley system, Eq. (4.15), about its rest state. This will help both determine the stability
of the rest state and to predict the response to subthreshold stimuli. In addition, the resulting four-dimensional lin-
ear system of ordinary differential equations is amenable to careful mathematical and computational analysis. In
particular, we introduce and compute determinants, eigenvalues, eigenvectors, the matrix exponential, and the LU
factorization and apply these methods to two new channels, responsible for the persistent sodium current, INaP, and
the hyperpolarization activated nonspecific cation current, Ih.

5.1 THE QUASI-ACTIVE MODEL

The full set of Hodgkin–Huxley equations, Eq. (4.15), is often said to model the “active” or “excitable” cell. With
regard to this active system we suppose that ε is small and that our current stimulus is Istim =εĨ(t). We note that at
rest, V =Vr where Iss(Vr)=0 (recall Eq. (4.16)), and

m(0)=m∞(Vr)≡m, h(0)=h∞(Vr)≡h, and n(0)=n∞(Vr)≡n.

In response to Istim it seems natural to assume that

V(t)=Vr +εṼ(t)+O(ε2)

m(t)=m+εm̃(t)+O(ε2)
(5.1)

h(t)=h+εh̃(t)+O(ε2)

n(t)=n+εñ(t)+O(ε2)

and to attempt to solve for the unknown “first order” or “quasi-active” variables, Ṽ, m̃, h̃, and ñ. Here O(ε2) signifies
terms of size ε2. On substituting Eq. (5.1) into the Hodgkin–Huxley equations, (4.15), and identifying terms of order
ε we will arrive at a consistent linear system of ordinary differential equations for the quasi-active variables. In
particular, we note that each gating equation takes the form

τm(Vr +εṼ +O(ε2))
d
dt
(m+εm̃+O(ε2))=m∞(Vr +εṼ +O(ε2))−(m+εm̃+O(ε2)).

49
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50 5. THE QUASI-ACTIVE ISOPOTENTIAL CELL

Applying the time derivative on the left and developing τm and m∞ in Taylor series about Vr we find

(
τm(Vr)+εdτm

dV
(Vr)Ṽ

)
ε

dm̃
dt

=
(

m∞(Vr)+εdm∞
dV

(Vr)Ṽ
)

−(m+εm̃)+O(ε2).

Identifying terms of order ε then yields

τm(Vr)
dm̃
dt
(t)= dm∞

dV
(Vr)Ṽ(t)−m̃(t).

Equations with identical structure govern the evolution of ñ and h̃. Regarding current balance, we note that the
potassium contribution is

n4(V −VK)= (n+εñ+O(ε2))4(Vr +εṼ +O(ε2)−VK)

=n4(Vr −VK)+{n4Ṽ +4n3ñ(Vr −VK)}ε+O(ε2),

while the sodium term contributes

m3h(V −VNa)= (m+εm̃+O(ε2))3(h+εh̃+O(ε2))(Vr +εṼ +O(ε2)−VNa)

=m3h(Vr −VNa)+{m3hṼ +(3m2hm̃+m3h̃)(Vr −VNa)}ε+O(ε2).

Combining these forms we arrive at the so-called quasi-active model

CmṼ ′ =−gNa{m3hṼ +(3m̃m2h+m3h̃)vNa}−gK{n4Ṽ +4ñn3vK}−gClṼ + Ĩ/A

m̃′ = (dm∞(Vr)/dV)Ṽ −m̃
τm(Vr) (5.2)

h̃′ = (dh∞(Vr)/dV)Ṽ − h̃
τh(Vr)

ñ′ = (dn∞(Vr)/dV)Ṽ − ñ
τn(Vr)

where

vNa ≡Vr −VNa and vK ≡Vr −VK.

Although simpler than the full Hodgkin–Huxley system, Eq. (4.15), the behavior of this system is not immediately
apparent. To begin, we express Eq. (5.2) as the linear system

y′(t)=By(t)+f(t), where y = (m̃ h̃ ñ Ṽ)T (5.3)

where f = (0 0 0 Ĩ/A)T , and B is the matrix

B =

⎛
⎜⎜⎜⎜⎝

−1/τm 0 0 m′∞/τm

0 −1/τh 0 h
′
∞/τ h

0 0 −1/τn n′∞/τn

−3m2hvNa/τNa −m3vNa/τNa −4n3vK/τK −m3h/τNa−n4/τK −1/τCl

⎞
⎟⎟⎟⎟⎠ (5.4)
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with

m′∞ ≡dm∞(Vr)/dV, τm ≡ τm(Vr), τNa =Cm/gNa, τK =Cm/gK , and τCl =Cm/gCl.

Given expressions for m∞, n∞, and h∞ we invoke the symbolic toolbox in MATLAB to compute the requisite derivatives
in Eq. (5.4). We implement this in hhsym.m and, using the functions and parameters of §4.3, arrive at

B =

⎛
⎜⎜⎝

−4.2097 0 0 0.0265
0 −0.1175 0 −0.0041
0 0 −0.1833 0.0028

77.2344 2.3133 −28.2822 −0.6822

⎞
⎟⎟⎠. (5.5)

If, rather than direct current injection, we instead wish to consider subthreshold synaptic input over a steady back-
ground conductance, i.e.,

gsyn(t)=gss +εg̃syn(t)

then we must develop

Isyn(t)=gsyn(t)(V(t)−Vsyn)= (gss +εg̃syn(t))(Vr +εṼ)=gss(Vr −Vsyn)+ε(gssṼ + g̃syn(Vr −Vsyn))+O(ε2).

This then subtracts an additional gss/Cm from B44 in Eq. (5.4) and causes f to take the form

f(t)= (0 0 0 g̃syn(t)(Vr −Vsyn))
T . (5.6)

We now consider the two standard means by which Eq. (5.3) is solved.

5.2 NUMERICAL METHODS

With B in hand, we set fj = f((j−1)dt) and construct a marching scheme for yj ≈y((j−1)dt). We note, in particular,
that y1 =y(0)=0 as y measures perturbation from rest. The trapezoid scheme applied to Eq. (5.3) requires

yj −yj−1 =B(yj +yj−1)dt/2+(fj +fj−1)dt/2

and so yields the update procedure

((2/dt)I−B)yj = ((2/dt)I+B)yj−1 +fj +fj−1 (5.7)

where I is the 4-by-4 identity matrix (ones on the diagonal, zeros elsewhere). Eq. (5.7) requires us to solve four
simultaneous linear equations at each step. We pause to develop the standard approach to the solution of such
systems.

Gaussian Elimination is a simple procedure for decoupling simultaneous linear equations. It succeeds by replacing
rows with linear combinations of rows. For example, taking up the B of Eq. (5.5), if dt =0.1 then

A≡ (2/dt)I−B =

⎛
⎜⎜⎝

24.2097 0 0 −0.0265
0 20.1175 0 0.0041
0 0 20.1833 −0.0028

−77.2344 −2.3133 28.2822 20.6822

⎞
⎟⎟⎠

and we may view Eq. (5.7) as an instance of Ay =b. The elimination procedure of Gauss is best viewed as sequential
transformation by very simple “row mixers.” For example, the matrix that multiplies row 1 by a≡−A41/A11 and then
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adds that to row 4 is

E1 ≡

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
a 0 0 1

⎞
⎟⎟⎠.

On applying it to both sides of Ay =b we find E1Ay =E1b where

E1A=

⎛
⎜⎜⎝

24.2097 0 0 −0.0265
0 20.1175 0 0.0041
0 0 20.1833 −0.0028
0 −2.3133 28.2822 20.5978

⎞
⎟⎟⎠

indeed has eliminated one of A’s nonzeros. If we continue in this vein to eliminate the remaining two nonzeros below
the diagonal, via E2 and E3, then we arrive at the “upper triangular” matrix

U=E3E2E1A=

⎛
⎜⎜⎝

24.2097 0 0 −0.0265
0 20.1175 0 0.0041
0 0 20.1833 −0.0028
0 0 0 20.6022

⎞
⎟⎟⎠. (5.8)

In general, it is possible that elimination in columns 1 through j may inadvertently eliminate the diagonal element
of the subsequent column. In this case we exchange row j+1 with a later row that possesses a nonzero in its (j+1)st
column. For example, if

B =
⎛
⎝2 2 2

1 4 0
0 5 3

⎞
⎠

then elimination in column one brings

E1B =
⎛
⎝2 2 2

0 0 −4
0 5 3

⎞
⎠.

Rather than eliminating the 5 in column 2 we simply exchange rows 2 and 3 and find

U=P2E1B =
⎛
⎝2 2 2

0 5 3
0 0 −4

⎞
⎠ where P2 =

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠ (5.9)

is the elementary permutation matrix obtained by exchanging the corresponding rows of the identity matrix.
The diagonal elements of U are referred to as the pivots of A. If each of these pivots is nonzero then we say that

A is invertible and note that we may solve Uy =E3E2E1b by elementary back substitution. For this latter system is
“uncoupled” in the sense that the last equation has but one unknown and solving for it leaves the previous equation
with but one unknown, and so on. MATLAB accomplishes this reduction to U and subsequent back substitution with
its “backslash” command, i.e., the solution, y, to Ay =b is computed via y =A\b. This is algebraically equivalent to
y =A−1b where A−1 is the inverse of A. The inverse however is typically expensive to compute and rarely worth the
effort, though see Exercises 2–3 for nice examples and a general approach.

We have invoked the MATLAB backslash in our implementation of Eq. (5.7), and illustrate our findings in Figure 5.1
for current injections of increasing magnitude.

We quantify the quasi-active model’s ability to capture the frequency response of the active cell by contrasting, in
Figure 5.2, the active and quasi-active responses to

Istim(t)= I0 sin(2πωt) (5.10)
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FIGURE 5.1 The full (black) and quasi-active (red) response to step current injection at four different levels (A–D). On recalling Figure 4.1 we
see that the quasi-active model accurately reproduces the oscillatory components in the response to small to moderate stimulus. (stEqa.m)
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FIGURE 5.2 Input resistance, Eq. (5.11), as a function of frequency, given the stimuli Eq. (5.10) with I0 = 1 pA, for the full (black) and quasi-active
(red) models. We see that the low-pass nature of the passive cell, as depicted in Figure 3.1A, has shifted to a band-pass filter with resonant peak
near 45 Hz. (stEqafreq.m)

over a wide range of ω values. We quantify the active response in terms of the input resistance

Rin ≡ 1
I0

max
t>T

|V(t)−Vr| (5.11)

where T is chosen to suppress the transient term. For the quasi-active response we simply replace V(t)−Vr with Ṽ.
We see that the quasi-active model does an excellent job of capturing the band-pass feature of the active cell. To

further illustrate this we next contrast, in Figure 5.3, the active response to input trains at three distinct frequencies.
The resonance exhibited in Figure 5.3 is reminiscent of that seen in Figure 4.12.Although these are active phenomena,

the quasi-active model properly identifies the resonant frequency. To better appreciate this feature of the quasi-active
approach we now turn to exact methods.
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FIGURE 5.3 Active response to periodic train of current pulses, Istim(t)= I01(0,w)(mod(t,1/f )), where I0 = 35 pA, the pulsewidth is w = 2 ms,
and the frequency is f = 30 Hz (A), 45 Hz (B), and 60 Hz (C). (stEperdrive.m)

5.3 EXACT SOLUTION VIA EIGENVECTOR EXPANSION

Recalling the exact solution, Eq. (3.2), to a single linear differential equation, we may ask if

y(t)=
t∫

0

exp((t−s)z)f(s)ds (5.12)

solves, for some scalar z, our system, Eq. (5.3), of four differential equations. On differentiating each side of Eq. (5.12)
we find y′(t)= f(t)+zy(t) and so z must satisfy By(t)= zy(t), or

(B−zI)y(t)=0, (5.13)

where I is the identity matrix. Now Eq. (5.13) requires that either y(t)=0 or that B−zI annihilates a nonzero vector. As
the former is not the case then B−zI must annihilate a nonzero vector. In that case, (B−zI)y =0 is often expressed as

y1(B−zI)1 +y2(B−zI)2 +y3(B−zI)3 +y4(B−zI)4 =0 (5.14)

where (B−zI)j is the jth column of B−zI. If not all of the yj =0 then Eq. (5.14) states that the columns of B−zI are
linearly dependent. This then gives us our first hint at how to choose z – namely, choose it to create dependencies
among the columns of B−zI. In order to actually compute z we next argue that one may instead create dependencies
among the rows of B−zI. To see this, note that if in the solution of (B−zI)y =0 via Gaussian Elimination each pivot is
nonzero then y =0 is the only solution. It follows then that the columns of B−zI are linearly dependent if B−zI has
a zero pivot. In this case we say that B−zI is noninvertible. For example, if

B =
(

B11 B12

B21 B22

)
then B−zI=

(
B11 −z B12

B21 B22 −z

)

and so, if B21 =0 then the pivots are B11 −z and B22 −z and so z=B11 and z=B22 render the columns of B−zI linearly
dependent. If B21 �=0 then one step of Gaussian Elimination produces

(
B11 −z B12

0 B22 −z−B12
B21

B11−z

)

and so the zero pivot condition reveals that z must obey

B22 −z−B12
B21

B11 −z
=0,
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i.e., z must be a root of the quadratic,

(B11 −z)(B22 −z)−B12B21 =0. (5.15)

While for B three dimensional

B−zI=
⎛
⎜⎝B11 −z B12 B13

B21 B22 −z B23

B31 B32 B33 −z

⎞
⎟⎠

and so if B21 =B31 =0 then z=B11 produces a zero pivot. If both are nonzero then Gaussian Elimination in the first
column yields

⎛
⎜⎝B11 −z B12 B13

0 B22 −z−B21B12/(B11 −z) B23 −B21B13/(B11 −z)
0 B32 −B31B12/(B11 −z) B33 −z−B31B13/(B11 −z)

⎞
⎟⎠ .

Elimination of the (3,2) element yields the (3,3) element of the form

B33 −z− B31B13

B11 −z
− (B32 −B31B12)(B23 −B21B13/(B11 −z))

B22 −z−B21B12
.

This vanishes when z is a root of the cubic

((B33 −z)(B11 −z)−B31B13)(B22 −B21B12 −z)−(B32 −B31B12)(B23(B11 −z)−B31B12)=0 (5.16)

In general, if B is N-by-N then the Nth pivot in Gaussian Elimination of (B−zI) will vanish when z is the root of an
associated Nth order polynomial. By the Fundamental Theorem of Algebra this polynomial has N complex (possibly
coincident) roots, {zn}N

n=1. We call these roots the eigenvalues of B. The German prefix may be translated as “self” for
the eigenvalues depend solely on B itself.

We are now half way to unraveling the consequences of our hopeful guess, Eq. (5.12). The fact that there is more
than one z that renders the columns of (B−zI) dependent suggests that Eq. (5.12) is too naive. The resolution comes
from making these dependencies explicit, i.e., by solving

(B−zjI)wj =0 (5.17)

for the nontrivial eigenvectors, wj. As Bwj = zjwj we call wj the eigenvector of B associated with zj . These are typically
determined by Gaussian Elimination. For small matrices this is easier done than said. For example, if

B =
(

1 3
0 2

)
then the eigenvalues are z1 =1 and z2 =2

and w1 must solve (B−z1I)w1 =0, i.e.,(
0 3
0 1

)(
w11
w12

)
=

(
0
0

)
and so w1 =

(
1
0

)
,

while w2 must solve (B−z2I)w2 =0, i.e.,(−1 3
0 0

)(
w21
w22

)
=

(
0
0

)
and so w2 =

(
3
1

)
.

Although we have made concrete choices of w1 and w2 please note that each may be multiplied by any nonzero scalar
and still remain an eigenvector. We observe that w1 is independent of w2, i.e., neither is a multiple of the other. This
notion is generalized to larger sets of vectors, each with N components via
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Definition. The collection of vectors {u1,u2, . . .um}⊂RN is said to be linearly independent if the only solution, a, to
a1u1 +a2u2 +· · ·+amum =0 is a =0.

It follows that if the N columns of an N-by-N matrix U are linearly independent then U is invertible. Hence given
any b∈RN there exists a unique c∈RN such that Uc=b. These notions, coupled with the Theorem below, will help
us “expand” both the stimulus, f, and response, y, in terms of the eigenvectors of B.

Theorem 1. If an N-by-N matrix has N distinct eigenvalues then its N associated eigenvectors are linearly independent.

To see whether this criterion applies to our quasi-active cell we call on MATLAB to compute the associated eigenpairs
of eigenvalues and eigenvectors. The command [W,Z] =eig(B) delivers the four eigenvectors as the columns of W
and the four eigenvalues as the associated diagonal entries of Z. In this case, the eigenvalues are

z1 =−4.72, z2 =−0.12, z3 =−0.18+0.28i, and z4 =−0.18−0.28i (5.18)

where i =√−1. It follows from Theorem 1 that the associated eigenvectors are linearly independent, and hence, for
each t, there is a unique solution c(t) to

Wc(t)= f(t). (5.19)

In components, this takes the form of an eigenvector expansion of the stimulus,

N∑
j=1

cj(t)wj = f(t).

We next attempt a similar expansion of the response

y(t)=
N∑

j=1

aj(t)wj . (5.20)

To determine the coefficients aj we equate

y′(t)=
N∑

j=1

a′
j(t)wj

and

By(t)+f(t)=B
N∑

j=1

aj(t)wj +
N∑

j=1

cj(t)wj =
N∑

j=1

(zjaj(t)+cj(t))wj ,

and so find that the aj must obey the familiar initial value problem

a′
j(t)= zjaj(t)+cj(t), aj(0)=0.

We solved this equation in §3.1 and found

aj(t)=
t∫

0

exp((t−s)zj)cj(s)ds.

Returning to Eq. (5.20) we find

y(t)=
N∑

j=1

wj

t∫
0

exp((t−s)zj)cj(s)ds. (5.21)

where c satisfies Eq. (5.19).
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Resonance*. As each of the zk in Eq. (5.18) has negative real part we see that y in Eq. (5.21) decays to zero exponentially.
For those nonreal eigenvalues we will now show that there will be oscillatory terms “near” the frequency

ωk = 1000
2π


zk . (5.22)

The significance of “near” will be made precise in Eq. (5.26) below. The factor 2π in Eq. (5.22) converts from circular
to temporal frequency (see, e.g., Eq. (5.10)) and the factor 1000 from kHz to Hz, since each τ in Eq. (5.4) is measured
in ms. Note, using z3 from Eq. (5.18), that ω3 =44.1 Hz, is close to the resonant frequency identified in Figure 5.2.

To better understand this connection between eigenvalues and resonance we now take a close look at both the
structure of the eigenvectors and the nature of the characteristic polynomial. The arrowhead structure of B in Eq. (5.4)
permits us to deduce that solutions of the eigenproblem Bw = zw take the form

w =

⎛
⎜⎜⎜⎝

m′∞/(1+zτm)

h
′
∞/(1+zτ h)

n′∞/(1+zτn)

1

⎞
⎟⎟⎟⎠ (5.23)

where the eigenvalues, z, are roots of the quartic polynomial

P(z)= (z+γ )(1+zτm)(1+zτ h)(1+zτ n)+3m2hvNam′∞(1+zτ h)(1+zτ n)/τNa (5.24)
+m3vNah

′
∞(1+zτm)(1+zτ n)/τNa +4n3vKn′∞(1+zτm)(1+zτ h)/τK

and γ =m3h/τNa +n4/τK +1/τCl. It then follows from Eq. (5.21) that

Ṽ(t)=
4∑

j=1

t∫
0

exp((t−s)zj)cj(s)ds. (5.25)

Moreover, when f = (0 0 0 Ĩ/A)T then Exercise 9 reveals that c=W\f has components

cj(t)= Ĩ(t)
A

(1+zjτm)(1+zjτ h)(1+zjτn)

τmτ hτn
∏

k �=j(zj −zk)
. (5.26)

We now suppose, as in Eq. (5.18), z1 and z2 to be real, z3 = z3,r + iz3,i, and z4 = z∗
3 and we show how z3,i leads to

resonance. If Ĩ(t)= sin(2πωt) and j =1 or 2 then

t∫
0

exp((t−s)zj)sin(2πωs)ds=
exp(zj t)+

√
(2πω)2 +z2

j sin(2πωt+arctan(2πω/zj))

(2πω)2 +z2
j

and so the associated gain is the familiar (recall Eq. (3.7)) low-pass function 1/
√
(2πω)2 +z2

j . We next write c3(t)=
(c3,r + ic3,i)sin(2πωt), note that c4 = c∗

3 and so
t∫

0

{exp((t−s)z3)c3(s)+exp((t−s)z4)c4(s)}ds

=2

t∫
0

exp((t−s)z3,r){c3,r cos((t−s)z3,i)−c3,i sin((t−s)z3,i)}sin(2πωs)ds

=2

√√√√ (z3,rc3,r +z3,ic3,i)2 +c2
3,r(2πω)

2

(z2
3,r +(z3,i +2πω)2)(z2

3,r +(z3,i −2πω)2)
sin(2πωt+θ)+exp(z3,rt)φ(t)

where θ is a phase shift and φ, as the coefficient of an evanescent term, need not concern us here. The associated gain

G34(ω)≡
√√√√ (z3,rc3,r +z3,ic3,i)2 +c2

3,r(2πω)
2

(z2
3,r +(z3,i +2πω)2)(z2

3,r +(z3,i −2πω)2)
(5.27)
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indeed peaks at ω= z3,i/(2π) when the associated real part, z3,r, vanishes. When z3,r �=0 the associated peak in G34
shifts and broadens, precisely as in Figure 5.2.

The matrix exponential*. We close this section by noting that Eq. (5.21) is often written much more compactly as

y(t)=
t∫

0

exp((t−s)B)f(s)ds (5.28)

where exp(tB), the matrix exponential of tB, is built from the eigendecomposition of B. In particular, Eq. (5.17) may be
written in matrix fashion as BW =WZ. As the columns of W are linearly independent it follows that W is invertible,
and so multiplication of BW =WZ by W−1 from the left brings the representation

B =WZW−1. (5.29)

Now if Taylor’s theorem is to hold in the matrix case we may expect that

exp(tB)= I+ tB+(tB)2/2+(tB)3/3!+· · · (5.30)

These powers are made easy by Eq. (5.29). In particular,

B2 =BB =WZW−1WZW−1=WZ2W−1

where Z2 is simply the diagonal matrix comprised of the squares of the eigenvalues. In a similar fashion we find
Bk =WZkW−1 and so

exp(tB)=W exp(tZ)W−1 (5.31)

where exp(tZ) is the diagonal matrix comprised of exp(tzj) as j runs from 1 to 4. On substituting (5.31) into (5.28) we
find

y(t)=
t∫

0

W exp((t−s)Z)W−1f(s)ds=
t∫

0

W exp((t−s)Z)c(s)ds=
4∑

j=1

wj

t∫
0

exp((t−s)zj)cj(s)ds

which indeed is nothing other than Eq. (5.21). Finally, we observe that these integrals are well behaved, for the real
part of each of the zj , recall Eq. (5.18), is negative. As this dictates that small perturbations from the rest state, Vr, will
vanish over time we say that Vr is a stable rest point.

5.4 A PERSISTENT SODIUM CURRENT*

The methods we have developed so far apply readily to a vast array of active models. In this and the next section we
will construct and study active and quasi-active models of the Hodgkin–Huxley system augmented by two important
currents.

The first of these is a fast activating and noninactivating sodium current. It is therefore referred to as a persistent
sodium current. As a concrete example, we study

INaP =gNaPp∞(V)(V −VNa), p∞(V)= 1
1+exp(−(V +49)/5)

. (5.32)

We contrast p∞ and m∞, the steady-state activation functional of the transient sodium current, in Figure 5.5A. We
now add INaP to the Hodgkin–Huxley system and ask how this changes the cell’s rest potential, resonant frequency,
and action potential. We do this by computing the rest potential and the eigenvalues of the augmented quasi-active
system over a range of channel conductances. Its effect on the latter is felt through the addition of (p′

∞vNa +p∞)/τNaP
to B44 in Eq. (5.4). We illustrate our findings in Figure 5.4.

We next illustrate, in Figure 5.5, the recruitment of this current during a spike.
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5.5 A NONSPECIFIC CATION CURRENT THAT IS ACTIVATED BY
HYPERPOLARIZATION*

We consider a fascinating channel that passes both sodium and potassium, has a reversal potential well above rest
and so acts to depolarize the cell, but is gated in a fashion that permits activation only upon hyperpolarization. The
associated current is denoted Ih, and we here study the concrete form

Ih =ghq2(t)(V −Vh), τq(V(t))q′(t)=q∞(V(t))−q(t)

q∞(V)= 1
1+exp((V +69)/7.1)

(5.33)

τq(V)= 1000
exp((V +66.4)/9.3)+exp(−(V +81.6)/13)

ms, Vh =−40 mV.
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to increasing amounts of hyperpolarization. In each case we used gh = 1 mS/cm2 and delivered the current stimulus for 18 ms. In A and B we
observe, as expected, the quasi-active response to track the full, active, response to small to moderate stimulus. The overshoot and action potential
exhibited in C and D following sustained hyperpolarization, or inhibition, is known as “postinhibitory rebound.” (stEqah.m)

In Figure 5.6 we illustrate its gating functionals and track its effect on the Hodgkin–Huxley system as gh is increased.
We note that the associated quasi-active system is now five dimensional.

We next contrast, in Figure 5.7, the response of the quasi-active and active cells, with Ih, to single hyperpolarizing
current pulses.

5.6 SUMMARY AND SOURCES

We have linearized the Hodgkin–Huxley system about its rest state and arrived at a linear system of ordinary
differential equations for the so-called quasi-active response. Their numerical solution led us to a system of algebraic
equations, which we solved via Gaussian Elimination, while their exact solution was represented in terms of eigen-
values and eigenvectors of the underlying matrix. We found the nonreal eigenvalue with the largest real part to be an
excellent predictor of the active cell’s resonant frequency. The determinant serves as a natural link between Gaussian
Elimination and eigenvalues. We develop its properties in a sequence of exercises.
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The quasi-active model appears already in Hodgkin and Huxley (1952). Our mix of linear algebra and systems of
differential equations is well supported by Redheffer and Port (1992). For more on persistent sodium currents, currents
activated by hyperpolarization, and their interaction with other currents that are “active” near rest, see Desjardins
et al. (2003). We will consider their role in the bursting of thalamic relay neurons in Chapter 10. Newton’s method
for root finding, Exercise 1, and the LU matrix factorization, Exercise 2, are both discussed at length by Cheney and
Kincaid (2007). Exercise 11 is based on Morris and Lecar (1981).

5.7 EXERCISES

1. The derivatives required to specify the quasi-active model can be used to accelerate the computation of the rest
potential. We recall that Vr is the value of V for which the steady- state function

Iss(V)≡gKn4∞(V)(V −VK)+gNam3∞(V)h∞(V)(V −VNa)+gCl(V −VCl) (5.34)

vanishes. Given a guess, Vj, we may follow Newton in improving this guess by writing the Taylor approximation
of Iss at the better guess, Vj+1,

Iss(Vj+1)= Iss(Vj)+ dIss

dV
(Vj)(Vj+1 −Vj)+O((Vj+1 −Vj)

2).

On setting the left hand side to zero and ignoring the second order terms we arrive at the explicit expression

Vj+1 =Vj − Iss(Vj)/(dIss(Vj)/dV) (5.35)

for the improved guess. Newton’s method is little more than repeated application of Eq. (5.35) until |Iss(Vj)| is
sufficiently small. MATLAB has implemented a variant of this scheme in its fsolve routine. In its default mode
fsolve presumes that the user has not provided any derivative information and so resorts to brute force finite
difference approximation. We offer in getVrJac.m an example of the computation of Iss, for a reduced cell, with
specification of dIss/dV. Modify (and test) this code by adding in the Hodgkin–Huxley sodium current.

2. Recalling Eq. (5.8) (i) please find E2 and E3. (ii) Show that

E−1
1 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0

−a 0 0 1

⎞
⎟⎟⎠

and find E−1
2 and E−1

3 . (iii) Working, at the algebraic level, show that U=E3E2E1A may be written E−1
1 E−1

2 E−1
3

U=A. (iv) Argue, in general, that the product of two lower triangular matrices, each with ones on their diagonal,
is itself lower triangular with ones on its diagonal. (v) Conclude that A=LU where L is lower triangular, with
ones on its diagonal, and U is upper triangular. (vi) In general we may need to intersperse our elimination
matrices with elementary permutation matrices, e.g., U=E2P2E1P1A, where Pj exchanges row j and Ej conducts
elimination in column j. Argue that F1 ≡P2E1P2 is lower triangular, define P≡P1P2, and conclude that A enjoys
the factorization A=PLU. What is L? MATLAB achieves this “LU factorization” via the command[L,U,P] =lu(A).

3. †We have used Gaussian Elimination in a top-down fashion to arrive at a lower triangular system. If we then
follow this with a bottom-up sweep we arrive at a method, deemed Gauss–Jordan, for assembling the inverse of
a matrix. To illustrate this we begin in the 2-by-2 case and augment our B matrix with the identity,

(
B11 B12 1 0
B21 B22 0 1

)
.

The process of transforming B to I on the left will simultaneously transform I to B−1 on the right. Elimination in
the (2,1) slot produces

(
B11 B12 1 0
0 B22 −B12B21/B11 −B21/B11 1

)
. (5.36)
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Dividing the first row by B11 and the second row by B22 −B12B21/B11 yields

(
1 B12/B11 1/B11 0
0 1 −B21/(B22B11 −B21B12) 1/(B22 −B12B21/B11)

)
. (5.37)

Finally, elimination in the (1,2) slot yields

(
1 0 1/B11 +(B12/B11)B21/(B22B11 −B21B12) B12/(B22B11 −B21B12)

0 1 −B21/(B22B11 −B21B12) 1/(B22 −B12B21/B11)

)
. (5.38)

(i) Show that the matrix on the right is

B−1 = 1
B22B11 −B21B12

(
B22 −B12

−B21 B11

)
(5.39)

and confirm that indeed B−1B =BB−1 = I.

(ii) Given

B =
(−2 1

1 −2

)
(5.40)

compute B−1 via Eq. (5.39).

(iii) We may also interpret the Gauss–Jordan method as a sequence of elementary transformations. In particular,
explain how Eq. (5.36) obeys E1B =U, how Eq. (5.37) is then M2M1E1B =M2M1U and finally how Eq. (5.38)
is then E2M2M1E1B =E2M2M1U= I. Reversing the process, please explain how

B =E−1
1 M−1

1 M−1
2 E−1

2 , (5.41)

by producing each of the Ej , Mj and their inverses. These Mj may be called elementary row multipliers. We
offer

M1 =
(

1/B11 0
0 1

)
and M−1

1 =
(

B11 0
0 1

)
. (5.42)

4. †Show that if B is invertible then so too is its transpose and that the inverse of its transpose is the transpose of its
inverse, i.e., (BT)−1 = (B−1)T . We typically denote this common value by B−T .

5. †Suppose that P∈Rn×n is an elementary permutation matrix obtained by exchanging two rows of the identity
matrix.

(i) Argue that PP= I.
(ii) Prove that z=1 and z=−1 are the only eigenvalues of P and that to z=1 are associated n−1 eigenvectors

and to z=−1 is associated 1 eigenvector.

6. Compute, by hand, the eigenvalues and eigenvectors of the B in Eq. (5.40). To witness the action of B, and the role
played by its eigenvalues and eigenvectors, please reproduce Figure 5.8.
Argue that the area of the ellipse in (A) is 3π and that the area of the parallelogram in (B) is 3. In each case our
matrix scaled the area of the original shape by factor of 3 and in each case we see that B stretched its subject by z1
in eigendirection w1 and by z2 in eigendirection w2. This fact is a consequence of the general statement that each
matrix B ∈Rn×n scales the n-dimensional volume of its subject by |det B| where det is short for “determinant” and
is the product of the eigenvalues of B, i.e.,

det B ≡
n∏

j=1

zj . (5.43)
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FIGURE 5.8 The unit circle and unit square (black dots) and their images under the matrix B (red dots). In (A)we have also plotted scaled
unit eigenvectors zjwj for j= 1 and 2. (distort.m)

Please confirm that in the general 2-by-2 case, if

B =
(

B11 B12

B21 B22

)
(5.44)

then det B = z1z2 =B11B22 −B12B21. In addition, check that the matrix trace, trB ≡B11 +B22, obeys trB = z1 +z2.

7. (i) †Argue that if zj is an eigenvalue of B then zj −z is an eigenvalue of B−zI. Use this to deduce from Eq. (5.43)
that the eigenvalues of B are the roots of the characteristic polynomial

det(B−zI)=
n∏

j=1

(zj −z). (5.45)

(ii) If one had a definition of det that was independent of eigenvalues then one could use Eq. (5.45) to compute
the eigenvalues. We offer the telescoping definition

det(B)≡
n∑

j=1

Bij(−1)i+jdet(B¬i,¬j) (5.46)

where i is at the user’s discretion, {¬i,¬j} indicates the removal of row i and column j, and the determinant
of a scalar is that scalar. The term (−1)i+jdet(B¬i,¬j) is often called a cofactor of B, in which case Eq. (5.46) is
referred to as the “cofactor expansion of det B along row i.” Please confirm that this agrees with the previous
exercise for the 2-by-2 B of Eq. (5.44) and that, if B is 3-by-3, that expansion along row 1

det B =B11det
(

B22 B23
B32 B33

)
−B12 det

(
B21 B23
B31 B33

)
+B13 det

(
B21 B22
B31 B32

)
=B11{B22B33 −B23B31}−B12{B21B33 −B23B31}+B13{B21B32 −B23B31},

indeed agrees with the expansion along row 2.

8. (i) †Deduce from Eq. (5.46) that if B is triangular then

det B =
n∏

j=1

Bjj. (5.47)

(ii) Show that if P is an elementary permutation matrix then

det(PB)=−det(B)=det(P)det(B). (5.48)
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(iii) Show that if E is an elementary elimination matrix then

det(EB)=det(B)=det(E)det(B). (5.49)

(iv) Show that if M multiplies row k by m then

det(MB)=mdet(B)=det(M)det(B). (5.50)

(v) Show that

det(AB)=det(A)det(B). (5.51)

(vi) Conclude that if C is invertible

det(C−1)=det(C)−1 �=0.

9. Assemble, in MATLAB’s symbolic toolbox, the matrix W = (w1 w2 w3 w4) where wk is Eq. (5.23) with z= zk . With
f = (0 0 0 Ĩ/A)T now solve Wc= f for c and confirm Eq. (5.26).

10. We will now use our quasi-active analysis to determine the so-called threshold current, Iθ , i.e., the greatest value
of Istim at which the cell does not spike. We computed this empirically in Figure 4.7B. We will now derive it
analytically for the reduced model of Exercise 4.7 by calculating the value of Istim at which the eigenvalues of the
quasi-active system cross into the right half plane.

Derive the quasi-active counterpart to the reduced system of Exercise 4.7. Note that rest is determined by
Eq. (4.34) and show that the quasi-active matrix, Eq. (5.4), is

B =
( −αn(V)−βn(V) (1−n)α′

n(V)−nβ ′
n(V)

4a(V)n3 +2b(V)n a′(V)n4 +b′(V)n2 +c′(V)

)
.

The eigenvalues of B cross into the right half plane when trB =0, i.e., when V is a root of

S(V)≡ a′(V)n4 +b′(V)n2 +c′(V)−αn(V)−βn(V). (5.52)

Graph S as in Figure 5.9, and show that it has a root at Vθ ≈−68.23 mV. Now return with this voltage to the
I −V rest curve, Figure 4.19B and conclude that the threshold for spiking in the modified FitzHugh system is
Iθ ≈23.925 pA.
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FIGURE 5.9 The S curve, Eq. (5.52), associated with the modified FitzHugh system. As the trace of the quasi-active matrix, its roots are
the potentials at which the eigenvalues are a conjugate pair of imaginary numbers.

11. Derive the quasi-active counterpart to the system of Morris and Lecar

CmV ′(t)=−gCam∞(V)(V −VCa)−gKw(V −VK)−gL(V −VL)+ Istim/A

w′(t)= (w∞(V)−w)/τw(V)
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where

Cm =10 μF/cm2, gCa =44, gK =80, gL =20 mS/cm2,

VCa =100, VK =−70, VL =−50 mV,

and the gating functional are

m∞(V)= 1+ tanh((V +1)/15))
2

, w∞(V)= 1+ tanh(V/30))
2

, and τw(V)= 2
cosh(V/60)

.

Compute the rest potential, Vr, the associated 2×2 matrix B, and its eigenvalues. Is Vr stable?

12. †Prove Theorem 1 by assembling these parts. (i) Show that if z1 �= z2 then w1 is not a multiple of w2.
(ii) Show that if z1, z2, and z3 are distinct then {w1,w2,w3} is a linearly independent set. Hint: Show that if this
set were dependent then we would violate (i).
Generalize (ii) to sets with more than three vectors.

13. We now attack the quasi-active system, Eq. (5.2), with the Laplace transform.

(i) Take the Laplace transform of each gating equation in Eq. (5.2) and solve the transformed gating variable in
terms of the transformed potential. In particular, show that

Lm̃= m′∞
1+sτm

LṼ. (5.53)

(ii) Transform the potential equation in Eq. (5.2) and substitute your results from part (i) to arrive at the input
conductance

Gin(s)≡ LĨ

ALṼ
= sCm +gCl +gNa

{
m3h−

(
3m2hm′∞
1+sτm

+ m3h
′
∞

1+sτh

)
vNa

}
+gK

{
n4 − 4n3vKn′∞

1+sτn

}
.

(iii) As in §3.3 we view this equation as an opportunity to reverse engineer the quasi-active parameter set
{Cm,gCl,gNa,gK} from moments of the stimulus, Ĩ and response, Ṽ. With that in mind, please confirm

Gin(0)=gCl +gNa(m
3h−(3m2hm′∞ +m3h

′
∞)vNa)+gK(n

4 −4n3vKn′∞)

G′
in(0)=Cm +gNa(3m2hm′∞τm +m3h

′
∞τ h)vNa +gK4n3vKn′∞τn (5.54)

G′′
in(0)=−2gNa(3m2hm′∞τ 2

m +m3h
′
∞τ 2

h)vNa −2gK4n3vKn′∞τ 2
n

G′′′
in(0)=6gNa(3m2hm′∞τ 3

m +m3h
′
∞τ 3

h)vNa +6gK4n3vKn′∞τ 3
n.

This “exposes” the desired parameter set. To establish the moment connection please confirm, arguing as in
Eq. (3.23), that

AGin(0)= M0(Ĩ)

M0(Ṽ)

AG′
in(0)=

M1(Ṽ)AGin(0)−M1(Ĩ)

M0(Ṽ) (5.55)

AG′′
in(0)=

M2(Ĩ)+2M1(Ṽ)AG′
in(0)−M2(Ṽ)AGin(0)

M0(Ṽ)

AG′′′
in(0)=

3M1(Ṽ)AG′′
in(0)−3M2(Ṽ)AG′

in(0)+M3(Ṽ)AGin(0)−M3(Ĩ)

M0(Ṽ)
.

(iv) With Eq. (5.55) we recognize Eq. (5.54) as four linear equations in the four unknowns, {Cm,gCl,gNa,gK}. Write
a program that takes the response computed by stEqa.m, computes the moments used in Eq. (5.55) and
solves the resulting linear system for {Cm,gCl,gNa,gK}. How well does this approach tolerate added noise in
the response and stimulus?
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The Passive Cable
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Up to this point we have assumed that membrane potential varies in time but not in space. No cell fits this hypothesis
exactly and very few cells even fit it approximately, for most neurons resemble dendritic trees or bushes with tens
or hundreds of fine thin branches. As each branch resembles, both geometrically and electrically, Lord Kelvin’s RC
model of the transatlantic telegraph cable, the mathematical study of dendritic branches has come to be called “cable
theory.” The electrical analogy to Kelvin, however, only holds in the subthreshold, in fact passive, regime, for Kelvin’s
cables possessed nothing like our ion channels. In this chapter, our first step into space is softened by the fact that we
limit ourselves to uniform, unbranched, passive cables. This permits us to develop analytical and numerical methods
with minimal distraction. We will then argue in Chapters 8 and 9 that these survive the extension to active dendritic
trees.

We proceed by first deriving the discrete, or compartmental, passive cable equation. We construct its exact (via an
eigenvector expansion) and approximate (via the trapezoid rule) solution to current injection. As the compartment
size shrinks, and the number of compartments grows, we arrive at the passive cable equation. Methods for studying
partial differential equations of this form have been under continuous development for over 150 years. We construct
and analyze its exact solution (via an eigenfunction expansion) to current injection in a manner that permits us
to reconcile the discrete and continuous formulations. In the final section we consider synaptic input onto a spine
appended to the cable.

6.1 THE DISCRETE PASSIVE CABLE EQUATION

We consider a cable of length � and radius a. We choose an integer N and divide the cable into N compartments
each of length dx =�/N and surface area 2πa dx and cross-sectional area πa2. We suppose that each compartment is
isopotential but permit this potential to vary from compartment to compartment, see Figure 6.1. The only new object
here is the coupling resistance between compartments. We express it in terms of Ra in �cm, the resistivity of the
cytoplasm. The circuit elements are then

C = (2πadx)Cm, G= (2πadx)gCl, and R =dxRa/(πa2).

Current balance at the first node in Figure 6.1 now reads

Istim = I1 + I2 + I3 =C(φ1 −φ0)
′ +G((φ1 −VCl)−φ0))+(φ1 −φ2)/R

67
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FIGURE 6.1 The compartmentalization of a simple cable.

which, in terms of the relative transmembrane potential

vn ≡φn −φ0 −VCl, n=1, . . . ,N

reads

Istim =Cv′
1 +Gv1 +(v1 −v2)/R. (6.1)

On recalling the time constant, τ =C/G, and defining the “space constant”

λ≡
√

a
2RagCl

(6.2)

division of Eq. (6.1) by G produces

τv′
1 +v1 −λ2(v2 −v1)/dx2 = Istim/G. (6.3)

Current balance at the second node requires I4 + I5 = I3 − I6, that is

Cv′
2 +Gv2 = (v1 −v2)/R−(v2 −v3)/R (6.4)

or, on division by G,

τv′
2 +v2 −λ2(v1 −2v2 +v3)/dx2 =0.

Similarly, at the nth compartment,

Cv′
n +Gvn = (vn+1 −2vn +vn−1)/R

or

τv′
n +vn −λ2(vn+1 −2vn +vn−1)/dx2 =0. (6.5)

Current balance at the final compartment reads I3N−2+ I3N−1 = I3N−3, that is

Cv′
N +GvN = (vN−1 −vN)/R
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or

τv′
N +vN −λ2(vN−1−vN)/dx2 =0. (6.6)

Collecting the potentials in the column vector

v(t)= (v1 v2 . . . vN)
T

we may express the above as

v′(t)=Bv(t)+f(t) (6.7)

where

B = (λ2S−I)/τ , (6.8)

S is the second difference matrix

S= 1
dx2

⎛
⎜⎜⎜⎜⎝

−1 1 0 0 · · · 0
1 −2 1 0 · · · 0
· · · · · ·
0 · · · 0 1 −2 1
0 · · · 0 0 1 −1

⎞
⎟⎟⎟⎟⎠ (6.9)

and the forcing term is

f = Istim(t)
(2πa dx)Cm

ek where ek ≡ (0 0 . . . 0 1 0 . . . 0)T , (6.10)

is associated with current injection into compartment k. Our illustration, Figure 6.1, uses k =1 but we will be interested
in the general case. We also presume that each compartment starts from rest, i.e.,

v(0)=0. (6.11)

As in the previous chapter, we solve Eq. (6.7) both exactly, via eigenvectors of B, and approximately, via Euler’s
method.

6.2 EXACT SOLUTION VIA EIGENVECTOR EXPANSION

The second difference matrix, S, is symmetric, i.e., obeys S=ST , and negative semidefinite, i.e., obeys uT Su≤0 for
every u∈RN . As such, its eigenvalues are real and nonpositive (Exercises 1–3). It is also noninvertible and so 0 is an
eigenvalue. We may therefore order the eigenvalues as

0 = θ0 ≥ θ1 ≥· · ·≥ θN−1

and denote the corresponding eigenvectors by

q0, q1, . . . , qN−1.

Together they obey

Sqn = θnqn (6.12)

and we note that regardless of whether or not these eigenvalues are distinct (they are) every N-by-N symmetric matrix
has an orthonormal basis of N eigenvectors (Exercise 4). That is, the qn obey

qT
mqn = δmn, (6.13)
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where δmn is the Kronecker delta of Eq. (1.4). As B (recall Eq. (6.8)) is simply an affine function of S it follows that its
eigenvalues are

zn = (λ2θn −1)/τ , (6.14)

and that its eigenvectors remain qn (Exercise 5). Recalling Eq. (5.18) it remains to solve Qc(t)= f(t) where

Q = (q0 q1 · · · qN−1) (6.15)

is the N-by-N matrix composed of the orthonormal eigenvectors of S. Now by orthonormality we note (Exercise 6)
that Q−1 =QT and so, recalling the f of Eq. (6.10),

c(t)= Istim(t)
2πa dxCm

QTek = Istim(t)
2πa dxCm

(q0,k q1,k · · · qN−1,k)
T .

We see that QTek is comprised of the kth component of each of the eigenvectors. Now, following the lead of Eq. (5.21),
we conclude that

v(t)= N
2πa�Cm

N−1∑
n=0

qnqn,k

t∫
0

Istim(s)exp((t−s)zn)ds. (6.16)

Although cumbersome in appearance, this expression is the sum of elementary objects that should be familiar from
our isopotential work back in Chapter 3. More precisely, Eq. (6.16) states that v(t) is a weighted sum of convolutions,
Istim
exp(tzn), that differ from the isopotential case, Eq. (3.2), only in the sense that the membrane time constant, τ , has
been replaced with −1/zn. This difference in fact permits us to interpret the N eigenvalues, zn, as a sequence of decay
rates for the N-compartment cable. These rates, however, are not specific to individual compartments but instead to
individual eigenvectors, qn, for these (together with the signature, qn,k, of the stimulus location) serve as the weights
for the individual convolutions. We will soon derive exact expressions for the zn and qn. For now, we invoke eig in
MATLAB and illustrate in Figure 6.2 the first few eigenvectors as “functions” of cable length.

As a concrete application of Eq. (6.16) let us consider the cable

�=1 mm, a=1 μm, Cm =1 μF/cm2, gCl =1/15 mS/cm2, Ra =0.3 k�cm (6.17)
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FIGURE 6.2 The first four eigenvectors of S for N = 20 (A) and N = 40 (B) on a cable of length �= 0.1 cm. These eigenvectors appear to
approximate (scalar multiples of) 1, cos(x/�), cos(2x/�), and cos(3x/�) while the associated eigenvalues of S are very close to integer multiples of
(π/�)2. (evecS.m)
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FIGURE 6.3 A. The steady-state solution, Eq. (6.18), for the cable parameters in Eq. (6.17) and I0 = 1 nAand N = 41 and stimulus at compartments
k = 1, black, and k = 21, red. (steady.m) B. Dynamic response, Eq. (6.20), of the same cable to the stimulus of Eq. (6.19), I0 = 10 nA, t1 = 1, and
t2 = 2 ms at x = 0.06 cm, with N = 100. (eigcab.m)

and suppose that Istim(t) takes the constant value I0. In this case, Eq. (6.16) reduces to

v(t)= I0N
2πa�Cm

N−1∑
n=0

qnqn,k

zn
(eznt −1)

which, as t →∞, converges to

v∞ = −I0N
2πa�Cm

N−1∑
n=0

qnqn,k

zn
(6.18)

as illustrated in Figure 6.3A. As a second example, if we inject the pulse

Istim(t)= I01(t1,t2)(t) (6.19)

at compartment k then Eq. (6.16) takes the form

v(t)= −I0N
2πa�Cm

N−1∑
n=0

qnqn,k

zn
(emax(t−t2,0)zn −emax(t−t1,0)zn) (6.20)

as presented in Figure 6.3B. We will establish below that the attenuation in the steady response away from the site of
stimulation is of the form exp(−x/λ). In other words, the response drops by factor of 1/e within one space constant,
λ, from the stimulus. Note that λ=0.05 cm for the cable specified in Eq. (6.17).

6.3 NUMERICAL METHODS

We formulate three straightforward marching schemes for the

stimulus fj = f((j−1)dt) and response vj ≈v((j−1)dt)

associated with the discrete cable equation, Eq. (6.7). The forward Euler scheme reads

(vj −vj−1)/dt =Bvj−1+fj−1, i.e., vj = (I+dtB)vj−1 +dtfj−1 (6.21)
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while the backward Euler scheme requires

(vj −vj−1)/dt =Bvj +fj , i.e., (I−dtB)vj =vj−1+dtfj (6.22)

and the trapezoid scheme that

vj −vj−1 =B(vj +vj−1)dt/2+(fj +fj−1)dt/2

or

(I−(dt/2)B)vj = (I+(dt/2)B)vj−1+(dt/2)(fj +fj−1). (6.23)

At first sight it appears that Eq. (6.23) requires one additional (over backward Euler) matrix-vector product per
iteration. To see that this is not the case note that Eq. (6.23) is equivalent to

set r2 = (dt/2)(f2 +f1)

and for j =2,3, . . .,

solve (I−(dt/2)B)vj = rj and set rj+1 =2vj −rj +(dt/2)(fj+1 +fj). (6.24)

Regarding implementation, we note that both Eq. (6.22) and Eq. (6.24) require the solution of a linear system of
equations at each step in time. As the matrix in each case does not depend on j we may decompose it, once and for
all, into lower and upper triangular factors. This provides significant acceleration of the associated time marching
scheme. MATLAB constructs these factors (recall Exercise 4.2) via [L,U]=lu(speye(N)-(dt/2)B) and so the solution
of Eq. (6.24) is reduced to two triangular solves, vj =U\(L\rj ). We have coded this in trapcab.m and illustrate it in
Figure 6.4 in the case of dual injection

Istim(t)= I0{ec1 1(t1,1,t2,1)+ec2 1(t1,2,t2,2)} (6.25)

at compartments c1 and c2. These compartment indices are computed from the specified cable length, �, space-step,
dx, and stimulation locations x1 and x2 via ci =round(xi/dx).
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FIGURE 6.4 Response of the cable of Eq. (6.17), as revealed by the trapezoid scheme (dx = 1 μm, dt = 0.05 ms), Eq. (6.24), to the double
stimulation in Eq. (6.25), I0 = 100 pA, x1 = 0.06 cm, t1,1 = 1, t2,1 = 2 ms, and x2 = 0.04, t1,2 = 3, t2,2 = 4. The proximity of the two stimuli, in both
space and time, leads to significant boosting of the latter response. A. The full space-time response. B. The response in time at the early site, x1
(black), and the late site, x2, (red). (trapcab.m)
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FIGURE 6.5 Illustration of the fact that backward Euler is accurate to O(dt) while trapezoid is accurate to O(dt2). N = 100. (cndrive.m,
cnpfib.m)

We next compare the accuracy of the trapezoid and backward Euler schemes, under the assumption that

f(t)= e−t −e−2t

10Cm2πa
q1.

In this case, the exact solution, recall Eq. (6.16), is

v(ex)(t)= ez1t −e−t(z1 +2)+e−2t(z1 +1)
10Cm2aπ(z1 +1)(z1 +2)

q1

and so, with sc denoting either the backward Euler or trapezoid scheme, we compute the maximum absolute error by

E(dt,sc)≡max
j

max
n

|vj
n(sc)−v(ex)

n ((j−1)dt)|

and illustrate our findings in Figure 6.5.

6.4 THE PASSIVE CABLE EQUATION

We have examined the role of the time step dt in our resolution of the voltage response of the discrete passive cable.
We now investigate the role of the space step, dx. To begin, we let the number, N, of compartments approach ∞. As
dx =�/N this limit is equivalent to dx → 0. In this limit we will pass from a spatially discrete set of potentials, v(t)=
(v1(t) v2(t) · · ·vN(t))T , to a continuous set of potentials, v(x, t), 0 ≤x ≤�. For small dx we expect v((n−1/2)dx, t) to be the
potential at the center of the nth compartment, i.e., vn(t). To begin, we will suppose that current is injected into the first
compartment. Discrete current balance at the left end, Eq. (6.1), in terms of our approximation v((n−1/2)dx, t)≈vn(t),
takes the form

Cm(2πadx)
∂v
∂t
(dx/2, t)+gCl(2πadx)v(dx/2, t)− πa2

Ra

v(3dx/2, t)−v(dx/2, t)
dx

= Istim(t). (6.26)

As dx approaches zero this takes the form

∂v
∂x
(0, t)=− Ra

πa2 Istim(t), 0< t. (6.27)
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By identical reasoning at the cable’s far end, we find

∂v
∂x
(�, t)=0, 0< t. (6.28)

Now at an interior point, x, we deduce from Eq. (6.5) that

τ
∂v
∂t
(x, t)+v(x, t)−λ2 v(x+dx, t)−2v(x, t)+v(x−dx, t)

dx2 =0 (6.29)

which, as dx approaches zero becomes (Exercise 10)

τ
∂v
∂t
(x, t)+v(x, t)−λ2 ∂

2v
∂x2 (x, t)=0, 0<x<�, 0< t. (6.30)

Finally, if the entire cable is initially at rest then

v(x,0)=0 0<x<�. (6.31)

The cable equation, (6.30), together with its boundary conditions, Eqs. (6.27) and (6.28), and initial condition, Eq. (6.31),
is an instance of a well-studied class of partial differential equations.

The steady-state solution to end-point stimulus. To begin, we suppose a constant current stimulus, Istim(t)= I0, and
search for the steady-state solution v∞(x)≡v(x, t →∞). In this limit we may ignore the time derivative in the cable
equation, (6.30), and so find that v∞ must obey the ordinary differential equation

λ2v′′∞(x)=v∞(x), (6.32)

subject to the boundary conditions,

v′∞(0)=− Ra

πa2 I0, v′∞(�)=0. (6.33)

In Exercise 11 the reader will construct the solution

v∞(x)= I0Raλcosh((�−x)/λ)
πa2 sinh(�/λ)

(6.34)

and contrast it to the discrete steady state, Eq. (6.18), computed in the previous section. This function takes its maximum
value at the site, x =0, of stimulation, and so it is natural to define the associated input resistance

Rin(0)≡ v∞(0)
I0

= Raλcosh(�/λ)

πa2 sinh(�/λ)
. (6.35)

We note that this decreases with cable length �.

The transient solution to end-point stimulus. We now return to the full cable equation and derive an eigenrepresen-
tation of v reminiscent of Eq. (6.16). The basic idea is to separate variables, i.e., to suppose that v may be written as a
product of univariate functions of space and time. Note that if we substitute the guess

v(x, t)=q(x)p(t) (6.36)

into the cable equation, Eq. (6.30), we find

τq(x)p′(t)+q(x)p(t)=λ2q′′(x)p(t).

If we now divide this through by qp we arrive at

τp′(t)/p(t)+1 =λ2q′′(x)/q(x).
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Now note that the function on the right depends solely on x while that on the left depends solely on t. Taking then
an x derivative of each side we find that q′′(x)/q(x) must be constant. We write this constant as ϑ and so arrive at

q′′(x)=ϑq(x), 0<x<�. (6.37)

This eigenvalue problem will be the infinite dimensional analog of the matrix eigenvalue problem, Eq. (6.12), once
we prescribe the domain of permissible q. More precisely, it remains to translate the top and bottom rows of S into
boundary conditions on Eq. (6.37). Recalling Eq. (6.28) it seems “natural” to prescribe q′(�)=0. At the near end, where
Istim is applied, the correct prescription is less obvious. If q is, however, to be an eigenfunction of d2/dx2 we expect
it to be independent of the stimulus. An indication of the “right” way forward can be glimpsed from Figure 6.2. The
“cosinesque” functions indeed suggest the prescription q′(0)=0. Appending

q′(0)=q′(�)=0 (6.38)

to Eq. (6.37) we arrive, via Exercise 12, at the eigenvalues and eigenfunctions

ϑ0 =0, q0(x)=1/
√
�,

ϑn =−n2π2/�2, qn(x)=
√

2/�cos(nπx/�), n=1,2, . . . (6.39)

We note that these qn are orthonormal in the sense that
�∫

0

qn(x)qm(x)= δmn. (6.40)

Finding many q we modify our naive guess, Eq. (6.36), to

v(x, t)=
∞∑

n=0

qn(x)pn(t) (6.41)

and proceed to determine the pn. First, thanks to orthonormality, we may multiply each side of Eq. (6.41) by an
eigenfunction, integrate, and arrive at

pn(t)=
�∫

0

qn(x)v(x, t)dx. (6.42)

We now use the cable equation to derive an ordinary differential equation for each of the pn.

τp′
n(t)= τ

�∫
0

qn(x)
∂v
∂t
(x, t)dx =

�∫
0

qn(x)

(
λ2 ∂

2v
∂x2 (x, t)−v(x, t)

)

(6.43)

=λ2

�∫
0

qn(x)
∂2v
∂x2 (x, t)dx−pn(t).

We unravel the remaining integral by twice integrating by parts. Namely,
�∫

0

qn(x)
∂2v
∂x2 (x, t)dx =qn(x)

∂v
∂x
(x, t)

∣∣∣∣
�

x=0
−

�∫
0

q′
n(x)

∂v
∂x
(x, t)dx

=−qn(0)
∂v
∂x
(0, t)−

�∫
0

q′
n(x)

∂v
∂x
(x, t)dx

=−qn(0)
∂v
∂x
(0, t)−q′

n(x)v(x, t)
∣∣�
x=0 +

�∫
0

q′′
n(x)v(x, t)dx

=qn(0)RaIstim(t)/(πa2)+ϑnpn(t).
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It follows that each pn(t) obeys the initial value problem

τp′
n(t)+(1−λ2ϑn)pn(t)=λ2qn(0)RaIstim(t)/(πa2), pn(0)=0. (6.44)

We note that the time-varying stimulus now appears as a driving term in the time-varying component of v. This
equation is exactly the one we derived back in Chapter 2 for the isopotential cell. Recalling Eq. (3.2), we find

pn(t)= qn(0)
2πaCm

t∫
0

Istim(s)exp((t−s)ζn)ds

where

ζn = (λ2ϑn −1)/τ

and so, returning to Eq. (6.41), we conclude that

v(x, t)=
∞∑

n=0

qn(0)qn(x)
Cm2aπ

t∫
0

Istim(s)exp((t−s)ζn)ds. (6.45)

This is identical in structure to the solution, Eq. (6.16), of the discrete passive cable. We will investigate in
Exercise 13 the sense in which this sum converges.

The transient solution to interior-point stimulus. In the case that we deliver the stimulus at x =xs the discrete current
balance there takes the form

(2πadx)
(

Cm
∂v
∂t
(xs, t)+gClv(xs, t)

)
− πa2

Ra

v(xs +dx, t)−2v(xs, t)+v(xs −dx, t)
dx

= Istim(t),

or, after division by 2πa dx,

τ
∂v
∂t
(xs, t)+v(xs, t)−λ2 v(xs +dx, t)−2v(xs, t)+v(xs −dx, t)

dx2 = Istim(t)
2πa dxgCl

.

As we pass to the limit we see that the spatial “footprint” of the injection is of length dx and magnitude 1/dx. Recalling
our work in Chapter 3, in particular Eq. (3.6), we see that this footprint converges to the delta function centered at xs.
It follows that our cable equation now takes the form

τ
∂v
∂t
(x, t)+v(x, t)−λ2 ∂

2v
∂x2 (x, t)= Istim(t)δ(x−xs)/(2πagCl) (6.46)

and that both ends are now sealed, i.e.,

∂v
∂x
(0, t)= ∂v

∂x
(�, t)=0.

To solve Eq. (6.46) we retrace each of the steps in our previous derivation and find that Eq. (6.45) retains its form but
shifts its attention from qn(0) to qn(xs). That is, the solution to Eq. (6.46) is

v(x, t)=
∞∑

n=0

qn(xs)qn(x)
Cm2aπ

t∫
0

Istim(s)exp((t−s)ζn)ds, (6.47)

where qn and ζn are exactly as above.
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The steady-state solution given interior-point current injection. If Istim is held constant at I0 then the potential will
approach the solution of the steady-state equation

v∞(x)−λ2v′′∞(x)= I0δ(x−xs)/(2πagCl), (6.48)

subject to v′∞(0)=v′∞(�)=0. Arguing as in Exercise 11 we find that v∞ is proportional to cosh(x/λ) for x<xs and
proportional to cosh((�−x)/λ) for x>xs. The ambiguity is resolved by enforcing continuity of v∞ and current balance
at xs. The latter follows from integrating Eq. (6.48) in a vanishingly small interval about xs. More precisely,

−λ2(v′∞(x+
s )−v′∞(x−

s ))= I0/(2πagCl).

These observations lead us to

v∞(x)= I0

2πaλgCl

1
sinh(xs/λ)+cosh(xs/λ) tanh((�−xs)/λ)

⎧⎨
⎩

cosh(x/λ) if 0 ≤x ≤xs

cosh(xs/λ) cosh((�−x)/λ)
cosh((�−xs)/λ)

if xs ≤x ≤�.

This attains its maximum at xs, the site of stimulation, and so the associated input resistance takes the form

Rin(xs)≡ v∞(xs)

I0
= 1

2πaλgCl

1
tanh(xs/λ)+ tanh((�−xs)/λ)

. (6.49)

We graph this in Figure 6.6 for the cable at hand.

Reconciling the discrete and the continuous. Given the eigenfunctions, Eq. (6.39), of the cable we might guess that
the jth component of the nth eigenvector of the discrete cable (neglecting the normalization constant) is the value that
the nth eigenfunction takes at the center of the jth compartment. That is,

qn,j =qn((j−1/2)dx)= cos(nπ(j−1/2)/N). (6.50)

This indeed agrees with the eigenvectors of Figure 6.2 and, on substituting Eq. (6.50) into Eq. (6.12) we indeed find
equality so long as the associated compartmental eigenvalues obey

θn =−4(N/�)2 sin2(nπ/(2N)). (6.51)

This is welcome news in that we now have exact knowledge of every term in the solution, Eq. (6.16), to the discrete
cable equation. In addition, by contrasting θn and ϑn we see that the eigenvalues of the discrete cable accurately
capture only the lowest N/3 of the true eigenvalues, as illustrated in Figure 6.7.
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FIGURE 6.6 The input resistance, Rin, Eq. (6.49), as a function of stimulus site, xs, for the cable described by Eq. (6.17). We see a marked increase
in Rin as the stimulus moves away from the center and toward a sealed end. (Rinxs.m)
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FIGURE 6.7 The eigenvalues of the discrete, θn, and continuous, ϑn, cable of length �= 1 mm for N = 100 and dx = 10 μm (A) and N = 1000
and dx = 1 μm (B). (thvsvth.m)

6.5 SYNAPTIC INPUT

If rather than current injection we instead have synaptic input, with conductance gsyn (in units of mS) and reversal
potential Vsyn (in mV), at xs then the cable equation, Eq. (6.46), takes the form

τ
∂v
∂t
(x, t)+v(x, t)−λ2 ∂

2v
∂x2 (x, t)+csyn(t)(v(x, t)−vsyn)δ(x−xs)=0 (6.52)

where

vsyn ≡Vsyn −VCl and csyn(t)≡ gsyn(t)
2πagCl

.

The time dependence of gsyn here defeats the separation of variables that led to our clean representations in Eqs. (6.45)
and (6.47). We turn therefore to approximate means. We choose a spatial step, dx, and a time step, dt, and build a
consistent linear system for the discrete potentials

v
j
n ≈v((n−1/2)dx,(j−1)dt), n=1,2, . . . ,N (6.53)

where N =�/dx is the number of compartments and (n−1/2)dx is the midpoint of the nth compartment. With regard
to Eq. (6.52) we approximate the second space derivative via action of our second difference matrix, S, and the time
derivative by the trapezoid rule. If the synapse is located at compartment k then our discrete system takes the form

2τ
v

j
n −v

j−1
n

dt
+v

j
n +v

j−1
n −λ2 v

j
n+1 −2vj

n +v
j
n−1

dx2 −λ2 v
j−1
n+1 −2vj−1

n +v
j−1
n−1

dx2
(6.54)

+(cjv
j
n +cj−1v

j−1
n )δnk = (cj +cj−1)vsynδnk

where cj = csyn((j−1)dt)/dx. Here 1/dx denotes the height of the discrete Dirac delta associated with the synaptic
footprint at compartment k. We express Eq. (6.54) more compactly as

((2τ/dt)I−B+cjekeT
k )v

j = ((2τ/dt)I+B−cj−1ekeT
k )v

j−1+(cj +cj−1)vsynek (6.55)
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where B =λ2S−I and vj = (vj
1 v

j
2 · · · vj

N)
T . We solve Eq. (6.55) by setting v1 =0 and then

rj ≡
{
(c1 +c2)vsynek if j =2,
2(2τ/dt)vj−1−rj−1 +(cj +cj−1)vsynek if j>2,

and ((2τ/dt)I−B+cjekeT
k )v

j = rj .

We note that this procedure generalizes easily to the polysynaptic case

τ
∂v
∂t
(x, t)+v(x, t)−λ2 ∂

2v
∂x2 (x, t)=

M∑
m=1

csyn,m(t)(vsyn,m −v(x, t))δ(x−xs,m) (6.56)

where csyn,m(t) is the normalized conductance change associated with a synapse at xs,m with relative reversal potential
vsyn,m. We have coded its solution in trapcabsyn.m and illustrate its use in Figure 6.8.

On cortical pyramidal cells and several other neuron types, the vast majority of excitatory synaptic contacts are
made not onto the soma or dendrites but onto the heads of small spines, as illustrated in Figure 6.9. We suppose that
the spine head is isopotential, with transmembrane potential W, and we describe the spine geometry in terms of �sn ,
the spine neck length, asn, the spine neck radius, and Ash, the surface area of the spine head. We adopt the typical
values

�sn =1 μm, asn =0.1 μm, Ash =1 μm2. (6.57)

The spine neck presents an axial resistance while the spine head sports both a membrane capacitance and conductance
and a synapse. In particular,

Rsn =�snRa/(πa2
sn), Gsh =gClAsh, and gsyn =gsyn(t)ρsynAsh

where gsyn is in mS and ρsyn is the number of conductances per unit area. With w≡W −VCl and

csyn(t)=gsyn(t)/Gsh , and γ1 =1/(RsnGsh) and γ2 =1/(Rsn2πagCl)

current balance at the spine head reads

τw′(t)+w(t)+csyn(t)(w(t)−vsyn)=γ1(v(xs, t)−w(t)) (6.58)

while the associated cable equation reads

τ
∂v
∂t
(x, t)+v(x, t)−λ2 ∂

2v
∂x2 (x, t)=γ2(w(t)−v(x, t))δ(x−xs ). (6.59)
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FIGURE 6.8 Response to α-function synaptic input with gsyn = 100 nS, τα = 1/2 ms at x = 0.06 cm at t1 = 1 ms and x = 0.04 at t1 = 3.
(trapcabsyn.m)
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FIGURE 6.9 A schematic of synaptic contact onto the head of a spine emanating from compartment k of our discrete cable, and its associated
circuit diagram. The red circles are synaptic vesicles. Depolarization of the presynaptic bouton causes one or more of these vesicles to fuse with
the plasma membrane and deliver their payload of neurotransmitter to the synaptic cleft. Upon diffusion across the cleft the neurotransmitter then
gates ion channels on the spine head.

To solve this coupled cable/spine system we first apply the trapezoid rule to the spine equation, Eq. (6.58), finding

wj = (2τ/dt−1−cj−1
syn −γ1)wj−1+vsyn(c

j−1
syn +cj

syn)+(vj−1
k +v

j
k)γ1

2τ/dt+1+cj
syn +γ1

(6.60)

and then apply the trapezoid rule to the cable equation, Eq. (6.59), bringing

((2/dt)I−B+γ2ekeT
k )v

j = ((2/dt)I+B−γ2ekeT
k )v

j−1+γ2(w
j +wj−1)ek. (6.61)

The latter suggests that we compile

wj +wj−1 = (4τ/dt+cj
syn −cj−1

syn )w
j−1 +vsyn(c

j−1
syn +cj

syn)+(vj−1
k +v

j
k)γ1

2τ/dt+1+cj
syn +γ1

.

This now permits us to write Eq. (6.61) as

((2/dt)I−B+ξ jekeT
k )v

j = ((2/dt)I+B−ξ jekeT
k )v

j−1 +fj (6.62)

where

ξ j =γ2 − γ1γ2

2τ/dt+1+cj
syn +γ1

and fj =γ2
(4τ/dt+cj

syn −cj−1
syn )w

j−1 +vsyn(c
j−1
syn +cj

syn)

2τ/dt+1+cj
syn +γ1

ek.

Arguing as above, we initialize v1 =w1 =0, evaluate f2, set r2 = f2, and solve

((2/dt)I−B+ξ 2ekeT
k )v

2 = f2

for v2. We then evaluate Eq. (6.60) for w2, set

r j ≡ ((4/dt)I+(ξ j−1−ξ j)ekeT
k )v

j−1−r j−1+f j , j =3,4, . . .
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FIGURE 6.10 Response of the passive cable to two α-function synaptic inputs at spines with gsyn = 100 nS, τα = 1/2 ms at x = 0.06 cm at
t1 = 1 ms and x = 0.04 cm at t1 = 3 ms. A. The full space-time response. B. The time response at the early site, x = 0.06 cm (black), and the late
site, x = 0.04 cm, (red). The solid curves depict the cable potential, v(xs, t), at that site while the dashed depict spine head potential, w(t). The
spine increases the input resistance at xs and so amplifies w over v. This may have important consequences for active channels in the spine head.
(trapcabspine.m)

and solve

((2/dt)I−B+ξ jekeT
k )v

j = rj j =3,4, . . .

Finally, we solve Eq. (6.60) for wj and repeat. We have coded this in trapcabspine.m and illustrate it in Figure 6.10.

6.6 SUMMARY AND SOURCES

We derived the discrete passive cable equation and expressed its solution, when driven by current injected at
a single compartment, in terms of the eigenvalues and eigenvectors of the associated second difference matrix. The
expression is simply a weighted sum of convolutions familiar from our single compartment work – where the weights
are eigenvectors and the constituents of the convolutions are the current stimulus and exponentials with decay rates
parametrized by the eigenvalues. This representation persists as the number of compartments grows. In fact, it is
the limiting case that permits exact, closed form, solution. In the case that input is delivered through changes in
conductance rather than direct current injection our analytical techniques become unwieldy and we return to the
trapezoid rule to build a time marching approximation scheme. This scheme permitted us to explore the interaction
of synaptic input onto distinct spines.

Dendritic Cable Theory was developed by Wilfrid Rall, see Rall and Agmon-Snir (1998) for a modern survey and
Segev et al. (1994) for the original papers. We have argued that the eigenvectors of the second difference matrix, S,
and eigenfunctions of the second order differential operator, ∂xx, permit us to represent the response of the cable
to current stimuli. We will see in Exercise 16, that these eigenvectors, and values, also permit us to analyze the
performance of the associated approximation schemes. The separation of space and time variables executed in §6.4
was pioneered by Fourier, Sturm, and Liouville. We will hear more from Fourier in Chapter 7. Redheffer and Port
(1992) provides an excellent introduction to Sturm–Liouville theory. The cable equation is an instance of the well-
studied heat, or diffusion, equation. As such, there exist a number of alternate approaches, e.g., Green’s functions,
that have been exploited by neuroscientists. We recommend Strauss (2007) for the mathematics and Tuckwell (1988)
for the applications. The spine model of §6.5 is drawn from Baer and Rinzel (1991). For a rigorous presentation of
the perturbation argument invoked in Exercise 4 to prove that every symmetric matrix in RN×N has N orthonormal
eigenvectors, see §17.3 in Redheffer and Port (1992). For a deeper look at the Cholesky decomposition of Exercise 5 see
Golub and van Loan (1996). The Weierstrass M-test for uniform convergence, Eq. (6.74), is proven in Redheffer and
Port (1992). The determination of the cable parameters in Exercise 9 from moments of the end potential and current
is drawn from Cox (1998). The summation identities, Eqs. (6.66), (6.69), and (6.72) are consequences of the Residue
theorem, see Spiegel et al. (2009).
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6.7 EXERCISES

1. Show that the N-by-N second difference matrix, S, is negative semidefinite by confirming the identity

uTSu=−
N−1∑
j=1

(uj −uj+1)
2/dx2.

2. Prove that the eigenvalues of a real symmetric matrix are real by following these steps. Suppose A=AT is real
and that

Au= zu. (6.63)

(i) Take the complex conjugate of each side and arrive at

Au∗ = z∗u∗. (6.64)

(ii) Multiply Eq. (6.63) by uH ≡ (u∗)T and Eq. (6.64) by uT , and take the difference of the two resulting products
and use the symmetry of A to reduce this difference to 0 = z−z∗.

3. †Prove that the eigenvalues of a symmetric negative semidefinite matrix are nonpositive. Hint: Write Au= zu
and multiply each side by uT .

4. †(i) Prove that the eigenvectors, associated with distinct eigenvalues, of a symmetric matrix are orthogonal to
one another by following these steps. Write Au1 = z1u1 and Au2 = z2u2 and suppose that z1 �= z2. Now as
above, multiply the former by uT

2 and the latter by uT
1 , take the difference of the products and conclude that

0 = (z1 −z2)uT
1 u2.

(ii) In the case that A does not possess distinct eigenvalues we note A must be very close to a symmetric matrix
that does possess distinct eigenvalues. For example, the double eigenvalue of the 2×2 identity matrix stems
from the degenerate characteristic polynomial (1−z)2 and is easily split by perturbing I to

Iε ≡
(

1 ε

ε 1

)
.

Compute, by hand, its eigenvalues and eigenvectors and show that they converge, as ε→ 0, to the eigenvalue,
and two orthogonal eigenvectors, of the 2×2 identity matrix.

5. †Given Au= zu and two constants, α and β, show that u is also an eigenvector of αI+βA and that α+βz is
the associated eigenvalue. If A is also invertible explain how the eigenvalues and eigenvectors of A−1 may be
determined by those of A.

6. Use Eq. (6.13) to show that the Q defined in Eq. (6.15) indeed obeys QT =Q−1.
7. If A is symmetric and positive definite then its LU factorization, recall Exercise 5.2, simplifies to A=LLT

where L is lower triangular, but not necessarily with ones on its diagonal. A=LLT is known as the Cholesky
factorization.

(i) Show that any A may be written A=LDU where L is lower triangular, D is diagonal, U is upper triangular,
and both L and U have ones on their diagonal.

(ii) If A=AT show that LDU=UT DLT and then L−1UTD =DUL−T .
(iii) Observe, in this last equation, that the left is lower triangular while the right is upper triangular and so

conclude that each side is diagonal. Given ones on the diagonals of L and U establish in fact that L−1UT D =D
and conclude that U=LT and A=LDLT .

(iv) If, in addition, A is positive definite conclude that each element of D is positive and so D =D1/2D1/2 and
A= (LD1/2)(LD1/2)T .

8. †Suppose that A∈Rn×n is symmetric and positive definite. If λ1 and λn are its largest and smallest eigenvalues,
respectively, then show that

λnxTx ≤xTAx ≤λ1xTx ∀ x ∈Rn.

9. We now generalize the moment calculations of §3.2 to the cable.
(i) First deduce from Eq. (6.45) that

M0(v(0, ·))= M0(Istim)

2πaCm

∞∑
n=0

q2
n(0)
ζn

. (6.65)
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Next define L≡�/λ and use

∞∑
n=1

1
c2 +n2 = π

2c
coth(πc)− 1

2c2 (6.66)

to deduce that

∞∑
n=0

q2
n(0)
ζn

= τ

�
+ 2τ
�

∞∑
n=1

1
1+n2π2/L2 = τ

λ
coth(L)

and so conclude that

M0(v(0, ·))
M0(Istim)

= coth(L)
2πaλgCl

. (6.67)

(ii) Deduce from Eq. (6.45) that

M1(v(0, ·))= M1(Istim)

2πaCm

∞∑
n=0

q2
n(0)
ζn

+ M0(Istim)

2πaCm

∞∑
n=0

q2
n(0)
ζ 2

n
(6.68)

and use

∞∑
n=1

1
(c2 +n2)2

= π2c+π cosh(πc)sinh(πc)

4c3 sinh2(πc)
− 1

2c4 (6.69)

to evaluate

∞∑
n=0

q2
n(0)
ζ 2

n
= τ 2

�

{
1+2

L4

π4

∞∑
n=1

1
((L/π)2 +n2)2

}
= τ 2

λ

L+cosh(L)sinh(L)

2 sinh2(L)

and so arrive at

M1(v(0, ·))
M0(v(0, ·)) − M1(Istim)

M0(Istim)
= τ

2

(
1+ 2L

sinh(2L)

)
. (6.70)

(iii) Finally, deduce from Eq. (6.45) that

M2(v(0, ·))= M2(Istim)

2πaCm

∞∑
n=0

q2
n(0)
ζn

+ M1(Istim)

πaCm

∞∑
n=0

q2
n(0)
ζ 2

n
+ M0(Istim)

πaCm

∞∑
n=0

q2
n(0)
ζ 3

n
(6.71)

and use

∞∑
n=1

1
(c2 +n2)3

= 3π2c+2π3c2 coth(πc)+(3/2)sinh(2πc)

16c5 sinh2(πc)
− 1

2c6 (6.72)

to evaluate

∞∑
n=0

q2
n(0)
ζ 3

n
= τ 3

λ

3L+2L2 coth(L)+(3/2)sinh(2L)

8 sinh2(L)
.

Use this expression together with Eqs. (6.67) and (6.70) to write a single equation for L, namely

F(L)= M2(v0)/M0(v0)−M2(I)/M0(I)−2τc(I)(τc(v0)−τc(I))
(τc(v0)−τc(I))2
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where

F(L)≡ sinh2(2L)
(sinh(2L)+2L)2

3L tanh(L)+2L2 +3 sinh2(L)

sinh2(L)
.

It follows that the first three moments of the stimulus and response uniquely determine L if their combination
above strikes F where it is monotone. Over what interval is F monotone?

10. †Develop both f (x+dx) and f (x−dx) in Taylor series about x. Add these two series and conclude that

f (x+dx)−2f (x)+ f (x−dx)
dx2 → f ′′(x) as dx → 0.

This justifies our passage from Eqs. (6.29) to (6.30).
11. To solve the steady-state cable equation, Eq. (6.32), we attempt the educated (linear equations are solved by

exponentials) guess v∞(x)=eαx.
(i) Insert this guess into Eq. (6.32), find that α=±1/λ, and deduce that v∞(x)= c1ex/λ+c2e−x/λ.

(ii) Determine the values of the two constants c1 and c2 from the boundary conditions, Eq. (6.33).
(iii) Confirm that your answer agrees with Eq. (6.34) where

sinh(x)= ex −e−x

2
and cosh(x)= ex +e−x

2
.

Plot Eq. (6.34) and compare with Figure 6.3.
12. †We approach the eigenvalue problem, Eq. (6.37), via the same tack as that of the previous exercise.

(i) Attempt q(x)= exp(αx) and show that q(x)= c1 exp(
√
ϑx)+c2 exp(−√

ϑx).
(ii) Show that q′(0)=0 translates into c1 = c2 while q′(�)=0 requires that exp(2

√
ϑ�)=1. Argue that this requires

2
√
ϑ�= i2πn for n=0,1,2, . . . and conclude that ϑ=−(nπ/�)2 .

13. Regarding the convergence of the infinite sum in Eq. (6.45), suppose that Imax
stim =max{|Istim(s)|;0 ≤ s≤∞} and show

that ∣∣∣∣∣∣
t∫

0

Istim(s)exp((t−s)ζn)ds

∣∣∣∣∣∣≤ Imax
stim

t∫
0

exp((t−s)ζn)ds≤ τ Imax
stim

1+(nπ(λ/�))2 . (6.73)

Deduce from Eq. (6.66) that this sequence is summable. Finally, invoke the

Weierstrass M-Test. If each vn(x, t) obeys max{|vn(x, t)| : x ∈ [0,�],0 ≤ t}≤Mn and Mn is summable then there exists
a function v(x, t) such that given any ε>0 there exists an index N such that

max
x∈[0,�],0≤t

∣∣∣∣∣v(x, t)−
m∑

n=1

vn(x, t)

∣∣∣∣∣≤ ε (6.74)

whenever m≥N.

In particular, use the Weierstrass M-test to conclude that the sum in Eq. (6.45) indeed converges. In this case we
say that the sum of the vn converges uniformly to v. As each vn is continuous it then follows that so too is v,
and although integrals of the vn will sum to integrals of v the same cannot be said for derivatives. To see this,
differentiate each side of Eq. (6.45) with respect x and then set x =0.

14. We now show that our analytical methods are general enough to accommodate an arbitrary spatio-temporal
current stimulus, I (μA/cm). In particular, solve

τ
∂v
∂t
(x, t)+v(x, t)−λ2 ∂

2v
∂x2 (x, t)= I(x, t)/(2πagCl), (6.75)

subject to vx(0, t)=vx(�, t)=v(x,0)=0 by mimicking our separation of variables argument. First show that pn
obeys

τp′
n(t)+(1+λ2ϑn)pn(t)= In(t)/(2πagCl), pn(0)=0, (6.76)
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where

In(t)=
�∫

0

I(x, t)qn(x)dx. (6.77)

You should then arrive at

v(x, t)=
∞∑

n=0

qn(x)
Cm2aπ

t∫
0

In(s)exp((t−s)ζn)ds. (6.78)

Please show that if

I(x, t)=−√
2/�cos(πx/�)(e−t −e−2t)/500 (6.79)

then v is simply

v(x, t)=−
√

2/�cos(πx/�)
Cm2aπ

e−t(ζ1 −2)+e−2t(1−ζ1)+e−ζ1t

500(ζ1 −1)(ζ1 −2)
. (6.80)

Use meshgrid and mesh to illustrate this solution as in Figure 6.11.
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FIGURE 6.11 The graph of the v in Eq. (6.80) using passive parameters defined in Eq. Eq. (6.17). (pfibexact.m)

15. We show that our moment methods allow us to ascertain the location of synaptic input from indirect measure-
ments. In particular, we suppose that v obeys Eq. (6.52) with sealed ends and that we have recorded both end
potentials, v(0, t) and v(�, t).

(i) Define the left and right moments

ML(x)≡
∞∫

0

v(x, t)dt, 0 ≤x ≤xs and MR(x)≡
∞∫

0

v(x, t)dt, xs ≤x ≤�

and use Eq. (6.52) to conclude that λ2M′′
L(x)=ML(x) and λ2M′′

R(x)=MR(x).
(ii) Using known information about ML at x =0 and MR at x =� show that

ML(x)=M0(v(0, ·))cosh(x/λ) and

MR(x)=M0(v(�, ·))cosh((�−x)/λ).
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(iii) Explain why ML(xs)=MR(xs) and use this to derive the following equation for xs,

σ(xs)≡ cosh((�−xs)/λ)

cosh(xs/λ)
= M0(v(0, ·))

M0(v(�, ·)) . (6.81)

Demonstrate that σ is a monotone function of xs and hence that the end moments uniquely determine the
site of synaptic input.

16. Let us investigate the stability of the unforced (i.e., without current or synaptic inputs) forward Euler scheme

vj = (I+dtB)vj−1.

As above, it follows thatvj = (I−dtB)j−1v1 and so we look for a condition on dt that will guarantee that (I−dtB)j−1

remains bounded. We label this forward Euler matrix

F≡ I+dtB = I+(dt/τ)(λ2S−I)

and deduce from Exercise 5 that Fqn =γnqn where the qn are the eigenvectors of S and

γn =1+(dt/τ)(λ2θn −1).

Show that if � =diag(γ ) then FQ =Q� and moreover that

F=Q�QT . (6.82)

We are now prepared to study powers of F. Use Eq. (6.82) to show that

Fj−1 =Q�j−1QT

and note that to raise a diagonal matrix to a power is simply to raise each of its elements to that power. Argue
then that forward Euler is stable so long as |γN−1|, the magnitude of the largest eigenvalue of F, is less than 1. Use
Eq. (6.51) to derive an explicit stability bound for dt.

17. †Few cables are uniform in shape. Most branches taper with distance from their cell body. In the compartmental
case, if the radius of compartment n is an please show that the current balance, Eq. (6.5), takes the form

a2
n−1vn−1−(a2

n−1 +a2
n)vn +a2

nvn+1

2Radx2 = an(Cmv′
n +gClvn). (6.83)

Next show, that as dx → 0 and n→∞ this takes the form of the tapered cable equation

∂

∂x

(
a2(x)

∂v
∂x
(x, t)

)
=2Raa(x){Cm

∂v
∂t
(x, t)+gClv(x, t)}. (6.84)
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The series expansion and integral transform named after Joseph Fourier are powerful techniques for decomposing
complex signals into simpler, and often biologically salient, components. These components are typically sine waves
oscillating at a fixed frequency. We observed in §§5.2–5.5 that ion channels tune neurons to respond best to input
delivered at a specific resonant frequency. The cochlea of the vertebrate inner ear in fact distributes its key receptors,
called hair cells, such that their resonant frequencies increase steadily with distance from the auditory canal. In this
way the cochlea generates a tonotopic map by decomposing the pressure wave arriving at the ear into its individual
frequency components. We take a closer look at such hair cells in Exercise 13.3 and, in Chapters 20 and 21, study a
number of cells in the visual pathway that are tuned to specific temporal and/or spatial frequencies of visual stimuli. In
this chapter we present the mathematical and computational aspects of the Fourier analysis of signals, with particular
emphasis on its role in convolution and its application to the cable equation.

7.1 FOURIER SERIES

The eigenfunctions of the passive sealed cable are cosine functions and the exact solution, Eq. (6.45), is an example
of a Fourier cosine series. The cosines were “chosen” (as opposed to sines) by our sealed end conditions. In general,
we will expand functions into combinations of both sines and cosines and so find it most convenient to begin with
the complex exponentials

e2π inx = cos(2πnx)+ i sin(2πnx). (7.1)

For integers m and n these functions enjoy the orthogonality relation

1/2∫
−1/2

e2π inxe−2π imx dx =
1/2∫

−1/2

e2π i(n−m)x dx = δmn, (7.2)

87
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88 7. FOURIER SERIES AND TRANSFORMS

where δmn is the Kronecker delta of Eq. (1.4). For a function f with period 1, we develop it in a Fourier series

f (x)=
∞∑

n=−∞
f̂ne2π inx (7.3)

and note that multiplication of each side by e−2π imx followed by integration, thanks to Eq. (7.2), allows us to express
the Fourier coefficients

f̂m =
1/2∫

−1/2

f (x)e−2π imx dx. (7.4)

For example, if f (x)= 1(−a,a)(x) is the characteristic function (recall Eq. (1.6)) of the interval (−a,a) and a=1/(2π) then
Eq. (7.4) yields

f̂m = sin(m)
mπ

and so f (x)= 1
π

+2
∞∑

n=1

sin(n)
nπ

cos(2πnx). (7.5)

As this step narrows and grows in height, i.e., as a→ 0 and f (x)= 1(−a,a)(x)/(2a), we arrive at the Dirac delta function
f (x)= δ(x) of Eq. (3.6). In this case Eq. (7.4) reveals

f̂m =1 and so δ(x)=1+2
∞∑

n=1

cos(2πnx). (7.6)

It is natural to ask in what sense, and at what rate, these series expansions approach their limits. We truncate both
sums at the Nth term and plot the results in Figure 7.1.

The partial sum in the expansion of the Dirac delta is in fact amenable to hand calculation. In particular, we will
establish in Exercise 1 that

1+2
N∑

n=1

cos(2πnx)= sin((N +1/2)2πx)
sin(πx)

(7.7)

and so find Eq. (7.6) equivalent to

lim
N→∞

sin((N +1/2)2πx)
sin(πx)

= δ(x). (7.8)
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FIGURE 7.1 Fourier series representations of the step (A) and the Dirac delta function (B) upon truncation of Eq. (7.5) and Eq. (7.6) at the levels
indicated in the respective legends. (fourierex2.m)
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We next examine the interaction of two Fourier expansions. In particular, if

f (x)=
∞∑

n=−∞
f̂ne2π inx and g(x)=

∞∑
n=−∞

ĝne2π inx

then we arrive, on exchanging the order of integration and summation, at the so-called reciprocity formula,

1/2∫
−1/2

f (x)g(x)dx =
1/2∫

−1/2

f (x)
∞∑

n=−∞
ĝne2π inx dx =

∞∑
n=−∞

ĝn

1/2∫
−1/2

f (x)e2π inx dx =
∞∑

n=−∞
ĝnf̂−n. (7.9)

From this formula we will derive, in Exercises 2 and 3, two very important special cases, namely Parseval’s identity,

1/2∫
−1/2

| f (x)|2 dx =
∞∑

n=−∞
| f̂n|2 (7.10)

and the Convolution Theorem

( f �g)(y)≡
1/2∫

−1/2

f (x)g(y−x)dx =
∞∑

n=−∞
f̂nĝne2π iny. (7.11)

Parseval’s identity is often interpreted as conservation of energy or information between the original and Fourier
representation of f , while the Convolution Theorem reveals that the Fourier coefficients of the convolution of two
functions, f and g, are simply the products of the Fourier coefficients of f and g.

7.2 THE DISCRETE FOURIER TRANSFORM

If we truncate the sum, as well as discretize our interval, in the Fourier expansion, Eq. (7.3), we arrive at the discrete
Fourier transform. Let us first, however, permit more general intervals and periods. To be precise, we suppose a signal
u to have period T, i.e., u(t+T)=u(t) for each t and that we have sampled the signal at an even number, N, of equally
spaced instants in time. In particular, dt ≡T/N, tm =mdt, and um ≡u(tm). We now attempt to develop u in a discrete
Fourier series of the form

u(tm)= 1
N

N−1∑
n=0

cn exp(2π intm/T). (7.12)

On defining

w≡ exp(2π i/N)

and using the relation m= tmT/N, we note that Eq. (7.12) takes the very simple form,

1
N

N−1∑
n=0

wmncn =um. (7.13)

This in turn may be written as the matrix equation

1
N

Fc=u (7.14)
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where, noting that wN =1,

F=

⎛
⎜⎜⎜⎜⎝

1 1 1 · 1
1 w w2 · wN−1

1 w2 w4 · w2(N−1)

· · · · ·
1 wN−1 w2(N−1) · w(N−1)2

⎞
⎟⎟⎟⎟⎠ . (7.15)

We now exploit this very special structure of F and arrive at an elegant solution to Eq. (7.14). To begin we examine
the jk element of FHF, i.e., row j of FH (the conjugate transpose of F) times column k of F,

(FHF)jk =1 ·1+(w∗) j−1wk−1 +(w∗)2(j−1)w2(k−1)+· · ·+(w∗)(N−1)( j−1)w(N−1)(k−1).

If j = k then (w∗)m(j−1)wm(k−1)= exp(−2π im( j−1))exp(2π im( j−1))=1 for each m and (FHF)jj =N. If j �= k we let
z= (w∗)(j−1)w(k−1) and find the finite geometric series

(FHF)jk =1+z+z2 +· · ·+zN−1 = 1−zN

1−z
=0, (7.16)

where the final equality stems from zN =1. Gathering the above computations, we have shown that

FHF=NI and so F−1 = 1
N

FH and c=FHu (7.17)

is the solution to Eq. (7.14). We speak of c as the discrete Fourier transform of u, and to make the connection clear we
often write û for c. With this convention, the latter equation in (7.17) may be expressed in component form as

ûm = cm =
N−1∑
n=0

(w∗)mnun =
N−1∑
n=0

e−2π imn/Nun =
N−1∑
n=0

e−2π iωmtnu(tn) (7.18)

where ωm =m/T is the associated discrete frequency. The best implementations of Eq. (7.18) take still further
advantage of the gorgeous structure of the Fourier matrix, F, and assume that N is a power of 2, i.e., N =2M. The
resulting algorithm is known as the fast Fourier transform, or fft in MATLAB. The choice, however, of whether to
place the dimension, N, in the forward or inverse transform, is implementation dependent. Our Eq. (7.18) matches
the definition uhat = fft(u) in MATLAB. We illustrate the computation of the fast Fourier transform with a small
data set in Figure 7.2.

We observe from Figure 7.2B, and then confirm using Eq. (7.18), that

ûN/2+j = û∗
N/2−j, j =1,2, . . . ,N/2−1, (7.19)
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FIGURE 7.2 A. N = 10 samples of u(t)= t(4− t)(10− t) on the interval [0,T = 10]. B. The real and imaginary components of its discrete Fourier
transform, as a function of the index, m. C. As in B but now with zero frequency centered by circshift. The numerical index in B is now replaced by
true frequency, ωm = m/T where m =−N/2+1 : N/2. The inset illustrates how indices corresponding to frequencies above the Nyquist frequency,
1/2, are wrapped around. (fftexcoarse2.m)
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since u is real (Exercise 13). More generally, Eq. (7.18) implies that the discrete Fourier transform is periodic, û−j = ûN−j,
j =1, . . . ,N/2+1. For graphical purposes the latter half of the frequency content is typically wrapped around to the
“front” of the vector. This is done via fftshift or circshift in MATLAB, which center the discrete Fourier transform
around zero frequency and so permit a monotonic ordering of the true frequency

ωm =m/T, m=−N/2+1, . . . ,−1,0,1, . . . ,N/2−1,N/2.

These considerations should also explain the common practice of only presenting the real and imaginary parts of
û0 through ûN/2. The example in Figure 7.2 also suggests that we should be careful to choose enough sample points
to properly capture the full frequency content of the data. More precisely, if the signal possesses oscillations up to a
frequency of ωmax , then one needs at least two samples in each interval of length 1/ωmax. In other words, we require
N ≥2ωmaxT samples in the full interval [0,T]. The number 2ωmax is known as the Nyquist rate. We offer a concrete
example in Figure 7.3.

We next note that it follows immediately from Eq. (7.17) that one may recover u from its discrete Fourier trans-
form via

u= 1
N

Fû. (7.20)

We therefore refer to application by (1/N)F as the inverse discrete Fourier transform. In MATLAB this is achieved by
the ifft function. We next consider a common application of this transform pair.

The band-pass filter. We suppose that our signal has been corrupted by noise in a known frequency band. We mask
this band and so clean our dirty signal via the sequence of transformations

uclean =FMF−1udirty

where M is the “mask” matrix. In the simplest case M is the identity matrix with ones masked by zeros if their indices
jibe with unwanted frequencies. In the low-pass case we specify a cut-off frequency, ωcut, and then simply zero out

0 0.5 1

(A) (B)

�1

0

1

0 2 4 6 8

Time (s) Time (s)

�1

0

1

0 0.5 1
�2

0

2

0 0.5 1 1.5

0.1

0.2

0.3

0.4

� (Hz)

|u
|

u

N � 16

N � 32

(C) (D)

Time (s)

FIGURE 7.3 Illustration of the aliasing phenomenon. A. If f (t)= sin(2πt) (black) is sampled at intervals dt = 0.5 s (black crosses), it is indis-
tinguishable from g(t)= sin(2π(3t)) (red line). B. Similarly f (t)+g(t) (black) is indistinguishable from 2f (t) at the same sampling points. C, D.
Sampling u(t)= sin(2πt) on either side of the Nyquist rate. Here ωmax = 1 and T = 10 and so we need 20 samples to reliably capture its frequency
content. Sampling u with 16 or 32 samples (C) and magnitude of the respective discrete Fourier transforms (D). We recognize the black peak,
associated with the undersampled signal, as an “alias” of the red, oversampled signal. (aliascombined.m)
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FIGURE 7.4 Low-pass filtering of udirty (t)= utrue(t)+ν(t) where utrue = t2(1− t)(5− t)(5.1− t)(9− t)(10− t)2/3000 and the noise, ν, is drawn
from the standard normal distribution. A. The true, dirty, and cleaned signals with N = 128 samples and a cut-off frequency ωcut = 0.5 Hz. B. The
frequency content of the dirty signal. (fftexfine.m)

the elements of ûdirty associated with frequencies in excess of ωcut. A discrete frequency version of this is spelled out
in fftexfine.m and illustrated in Figure 7.4.

Discrete convolution. We have seen in §3.3 and §7.1 that both the Laplace transform and Fourier series turned
convolutions into products. We now develop the discrete analog. As the convolution of two functions is the integral
of a shifted product we define the convolution of two vectors u and v to be

u�v ≡C(u)v

where C(u) is the circulant matrix built from shifted copies of u, i.e.,

C(u)=

⎛
⎜⎜⎜⎜⎜⎜⎝

u0 uN−1 uN−2 · · u1
u1 u0 uN−1 · · u2
u2 u1 u0 · · ·
· · · · · ·
· · · · · uN−1

uN−1 uN−2 · · u1 u0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (7.21)

The components of u�v are given by

(u�v)l =
N−1∑
k=0

ul−kvk, l =0, . . . ,N −1,

with the understanding that indices l−k on the right hand side are periodic modulo N, i.e., −1 → N−1, −2 → N −2,
etc. The connection to the discrete Fourier transform is revealed on computing C(u)F. Let us take this one column at
a time. As F:,1, the first column of F, is simply the column of ones, we find

C(u)F:,1 =F:,1

N−1∑
n=0

un =F:,1û0.
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The second column requires more care,

C(u)F:,2 =

⎛
⎜⎜⎜⎜⎝

u0 +wuN−1 +w2uN−2 +· · ·+wN−1u1
u1 +wu0 +w2uN−1+· · ·+wN−1u2

u2 +wu1 +w2u0 +· · ·+wN−1u3
· · ·

uN−1 +wuN−2+w2uN−3+· · ·+wN−1u0

⎞
⎟⎟⎟⎟⎠ . (7.22)

Each of these rows on the right hand side of Eq. (7.22) resemble scrambled version of û1. To unscramble we need only
(see Exercise 7)

ww∗ =1 and wN−j = (w∗)j . (7.23)

In particular, this permits us to recognize the first row in Eq. (7.22) as

u0 +(w∗)N−1uN−1+(w∗)N−2uN−2 +· · ·+w∗u1 = û1.

In the second row of Eq. (7.22) we find u0 scaled by w and so we factor

w(w∗u1 +u0 +w∗w2uN−1+· · ·+w∗wN−1u2)=w(w∗u1 +u0 +(w∗)N−1uN−1 +· · ·+(w∗)2u2)=wû1.

In the third row in Eq. (7.22) we find u0 scaled by w2 and so we find w2(C(u)F:,2)3 =w2û1. This pattern continues
and so

C(u)F:,2 =F:,2û1.

As subsequent columns of F are simply powers of its second column we find

C(u)F:,n =F:,nûn−1. (7.24)

That is, the nth column of F is an eigenvector of C(u) and its associated eigenvalue is ûn−1. We may collect these into

C(u)F=Fdiag(û).

Multiplying on the right by F−1 reveals C(u)=Fdiag(û)F−1 and so

û�v=F−1C(u)v =diag(û)F−1v = ûv̂

where the final product is elementwise. This is the discrete Convolution Theorem. As a simple application of these
ideas let us consider the “autaptic” cable.

The discrete cable of length � and N compartments that loops back on itself produces the circulant second difference
matrix, of the form Eq. (7.21),

So = 1
dx2

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 1 0 · 0 1
1 −2 1 0 · 0
0 1 −2 1 · 0
· · · · · ·
0 · 0 1 −2 1
1 0 · 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎠
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where dx =�/N. It follows from Eq. (7.24) that the eigenvalues of So are simply the discrete Fourier transform of the
first column of So. That is

θo
n = −2+exp(−2π indx/�)+exp(−2π in(N −1)dx/�)

dx2

= exp(−2π in/N)+exp(2π in/N)−2
dx2

=−4(N/�)2 sin2(nπ/N), n=0,1, . . . ,N −1.

The bulk of these are double eigenvalues, for θo
n = θo

N−n when n=1,2, . . . ,N/2−1. In addition, for such n we note that
θo

n<θn where θn (recall Eq. (6.51)) is the nth eigenvalue of the sealed cable. As a result, the same stimulus delivered to
both the sealed and autaptic cables (of the same length, radii and space, and time constants) will decay faster in the
latter than the former.

7.3 THE CONTINUOUS FOURIER TRANSFORM

Given the expansion, Eq. (7.3), of a 2π-periodic function in terms of an infinite sum of oscillating exponentials, it
seems natural to attempt to represent a general, nonperiodic, function, u, in the form

u(t)=
∞∫

−∞
û(ξ )e2π iξt dξ (7.25)

for some function û. To uncover this û we multiply each side by exp(−2π iωt) and integrate in t over the finite interval
[−T,T]. This brings

T∫
−T

e−2π iωtu(t)dt =
T∫

−T

∞∫
−∞

û(ξ )e2π i(ξ−ω)t dξ dt

=
∞∫

−∞
û(ξ )

T∫
−T

e2π i(ξ−ω)t dtdξ

=
∞∫

−∞
û(ξ )

sin(2πT(ξ −ω))
π(ξ −ω) dξ .

It remains to let T →∞. Here we note that

lim
T→∞

sin(2πT(ξ −ω))
π(ξ−ω) → δ(ξ−ω)

in the same sense as Eq. (7.8). Recalling the fundamental properties of the delta function, Eq. (3.6), we find

û(ω)=
∞∫

−∞
e−2π iωtu(t)dt (7.26)

and we speak of û as the Fourier transform of u. It follows that the inverse Fourier transform is given by Eq. (7.25).
Note that the choice of the sign in the exponential exp(−2π iωt) is arbitrary, as is the inclusion of the factor 2π in the
exponent. Our definition allows a simple transition from continuous to discrete transforms, as explained in the next
section. Regarding examples, we note that the Fourier transform of the constant function was implicitly computed
above. To make it explicit, u(t)= a has the Fourier transform

a

∞∫
−∞

e−2π iωt dt = a lim
T→∞

T∫
−T

e−2π iωtdt = a lim
T→∞

sin(2πωT)
πω

= aδ(ω). (7.27)

MATHEMATICS FOR NEUROSCIENTISTS



7.4 RECONCILING THE DISCRETE AND CONTINUOUS FOURIER TRANSFORMS 95

If instead u is the scaled pulse

u(t)= 1(−a,a)(t)
2a

, then û(ω)= 1
2a

a∫
−a

e−2π iωtdt = sin(2πωa)
2πωa

.

In the limit as a→ 0 this reveals

u(t)= δ(t) and û(ω)=1.

From here one may argue, precisely as in §3.3, that the Fourier transform, like the Laplace transform, is well suited to
differentiation and convolution. Namely, the Fourier transform of the derivative of a function is simply 2π iω times
the Fourier transform of that function,

û′(ω)=2π iωû(ω), (7.28)

and the Fourier transform of a convolution of two functions is the product of their Fourier transforms,

û�v= ûv̂. (7.29)

7.4 RECONCILING THE DISCRETE AND CONTINUOUS FOURIER TRANSFORMS

We now derive a numerical estimate of the continuous Fourier transform of a function g(t) defined over R, based
on the results from the previous sections. The first step is to select an interval [−T/2,T/2] over which the function
will be discretized. If g is different from zero only over a finite interval [a,b], then any choice of T/2>max(|a|, |b|) will
do. Otherwise, the value of T needs to be sufficiently large to include a “representative” sample of g, and its selection
may require some experimentation. The next step is to select a discretization step h so as to define the discrete samples

gj =g(−T/2+ tj), tj = jh, j =0, . . . ,N −1.

The step h determines the Nyquist frequency ωNyquist =1/(2h) above which frequencies will be folded over to lower
ones, as explained in §7.2. Therefore, h needs to be small enough that the frequency components of g above ωNyquist
are negligible. When a continuous waveform like the membrane potential of a neuron is recorded experimentally,
this is achieved by low-pass filtering to zero any component above the Nyquist frequency before sampling. Note that
the Nyquist frequency is half the sampling frequency ωs =1/h. The sampling step in the frequency domain is given
by dω=1/(Nh) and the frequency samples by ωk = kdω, k =0, . . . ,N −1. As explained in §7.2, frequencies above the
Nyquist frequency correspond to negative frequencies greater than −ωNyquist through the correspondence ĝ−j = ĝN−j
for j =1, . . . ,(N/2)−1.

We now apply the trapezoid rule to the continuous definition of ĝ(ωk)

ĝ(ωk)=
∞∫

−∞
g(t)e−2π iωkt dt ≈

T/2∫
−T/2

g(t)e−2π iωkt dt

≈e2π iωkT/2
N−1∑
j=0

gje−2π iωktj(tj+1 − tj)=eπ ikh
N−1∑
j=0

gje−2πkj/N.

Thus, we see that the continuous Fourier transform ĝ(ωk) is approximated by the discrete transform ĝk via ĝ(ωk)≈
heπ ikĝk. The phase factor eπ ik stems from our choice of the time origin at −T/2, and would equal one if our time origin
was T =0. As an application of the mixing of discrete and continuous Fourier transforms we finish the work begun
in Exercise 6.15.
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Recovery of a synaptic conductance from end potentials.∗ Recall that with respect to the passive sealed cable with
synaptic input at xs, i.e.,

λ2vxx = τvt +v+csyn(t)δ(x−xs)(v−vsyn), (7.30)

we showed that xs may be determined by knowledge of the “strength” of the associated end potentials,

v(0, t)≡v0(t) and v(�, t)≡v1(t).

We will now use the Fourier transforms of v0 and v1 to determine the time course, csyn(t), of the normalized synap-
tic conductance. To begin, we integrate Eq. (7.30) over a vanishingly small interval about xs, use the fundamental
properties, Eq. (3.6), of the Dirac delta function, and arrive at the representation

csyn(t)=λ2 vx(x+
s , t)−vx(x−

s , t)
v(xs, t)−vsyn

(7.31)

of the unknown time course. We now use the Fourier transform to propagate the known end potentials inward to
the known synaptic location and so arrive at the quantities on the right side of Eq. (7.31). As in Exercise 6.15 we start
from the left and note that v satisfies

λ2vxx = τvt +v, 0<x<xs, v(0, t)=v0(t), vx(0, t)=0.

On taking the Fourier transform of each side we find that

v̂(x,ω)=
∞∫

0

v(x, t)exp(−2π itω)dt,

obeys the ordinary differential equation

λ2v̂xx(x,ω)= (2π iτω+1)v̂(x,ω) 0<x<xs, v̂(0,ω)= v̂0(ω), v̂x(0,ω)=0. (7.32)

We have used the derivative rule, Eq. (7.28), for differentiation in t and the fact that differentiation in x may pass
untouched through integration in t. We next set μ(ω)≡√

1+2π iτω/λ and argue, as in Exercise 6.11, that v̂ has the
exact solution

v̂(x,ω)= v̂0(ω)cosh(xμ(ω)), 0<x<xs. (7.33)

We may now differentiate this in x and arrive at (the Fourier transform) of the necessary flux

v̂x(x,ω)= v̂0(ω)μ(ω)sinh(xμ(ω)), 0<x<xs. (7.34)

It remains only to invert these transforms. As high frequency noise in the measurement of v0 may undermine this
transform we introduce a cut-off frequency, �, in our representation

v(xs, t)=
�∫

−�
v̂0(ω)cosh(xsμ(ω))exp(2π itω)dω,

(7.35)

vx(x−
s , t)=

�∫
−�

v̂0(ω)μ(ω)sinh(xsμ(ω))exp(2π itω)dω.

The choice of � is dictated by examination of the frequency content of the measured end potentials. In a similar
fashion the transformed (distal) cable equation reads

λ2v̂xx(x,ω)= (2π iτω+1)v̂(x,ω) xs<x<�, v̂(�,ω)= v̂1(ω), v̂x(�,ω)=0,
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and so, arguing as above,

v̂(x,ω)= v̂1(ω)cosh((�−x)μ(ω)),

from which we deduce that

v(xs, t)=
�∫

−�
v̂1(ω)cosh((�−xs)μ(ω))exp(2π itω)dω,

(7.36)

vx(x+
s , t)=

�∫
−�

v̂1(ω)μ(ω)sinh((�−xs)μ(ω))exp(2π itω)dω.

We compute the quantities in Eqs. (7.35) and (7.36) in the manner discussed in our band-pass example. Namely,
FMF−1, where the mask matrix implements low-pass filtered discrete versions of cosh(xsμ(ω)), μ(ω)sinh(xsμ(ω)), and
μ(ω)sinh((�−xs)μ(ω)). We have coded this in trapcabsyninv.m and illustrated its use in Figure 7.5.
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FIGURE 7.5 Recovery of the synaptic location and time course from knowledge of the two end potentials. A. Computed end potentials, sullied
by multiplicative Gaussian noise, for the cable described by Eq. (6.17) with an α-synapse at xs = 0.03 cm with gsyn = 5 nA and τα = 1 ms. B. The
magnitude of the Fourier transform of the end potential. This suggests a cut-off frequency near 350 Hz. C. The σ - function (black) and the computed
strength ratio (red) cross at the synapse location as predicted by Eq. (6.81). D. The true gsyn and that recovered through Eqs. (7.31), (7.35), and (7.36)
using a cut-off frequency of �= 350 Hz. (trapcabsyninv.m)

MATHEMATICS FOR NEUROSCIENTISTS



98 7. FOURIER SERIES AND TRANSFORMS

7.5 SUMMARY AND SOURCES

We have defined Fourier series and transforms, considered numerous analytical as well as computational examples,
derived their most basic properties and offered a taste of their applicability to neuroscience data and models. We will
see many more examples in the chapters to come. In particular, we will see in Chapter 16 how Fourier methods can
be extended to study random functions and in Chapters 20 and 21 how Fourier transforms are applied to characterize
the receptive fields of sensory neurons. The role of the cochlea in discerning the frequency components of sound
is expounded in the text of von Bekesy (1960). He was awarded the 1961 Nobel Prize in Physiology or Medicine
for his contributions to these discoveries. Our application of Fourier analysis to the estimation of the time course of
distal synaptic conductance is drawn from Cox (2004). Regarding the analytical scope of these tools, we note that
convergence of the Fourier series, Eq. (7.3), is not well defined for functions with unbounded oscillations and that
convergence of the Fourier transform, Eq. (7.26), is not well defined for functions that do not decay sufficiently fast
at ∞. These matters are resolved in Pinsky (2002). For a detailed treatment of Fourier transforms and series, see also
Rudin (1991) and Zygmund (1959). See Briggs and Henson (1987) for further development of the discrete Fourier
transform. See Strauss (2007) for an introduction to distributions and their derivatives, as briefly touched upon in
Exercises 20 and 21 below. Further references include Rudin (1991) or the original work of Schwartz (1966).

7.6 EXERCISES

1. Confirm the validity of Eq. (7.7) by first showing that the left hand side is proportional to a geometric series. In
particular, show that the left side equals

e−2π iNx(1+e2π ix +e2π i2x +· · ·+e2π i2Nx).

Now recall, as in Eq. (7.16), that such sums are simply expressed. Finally, multiply top and bottom by e−2π ix/2 to
produce the specified ratios of sines.

2. †Deduce Parseval’s identity, Eq. (7.10), from the reciprocity formula, Eq. (7.9).
3. Deduce the Convolution Theorem, Eq. (7.11), from the reciprocity formula, Eq. (7.9).

4. Differentiate the Fourier expansion, Eq. (7.3), and deduce that, (̂ f ′)n =2π inf̂n. Use this result with the Convolution
Theorem, Eq. (7.11), to prove that f ′�g = (f �g)′.

5. †Compute, by hand, the Fourier coefficients, f̂m, for the function f (x)=x on the interval [−1/2,1/2]. Graphically
compare, as in Figure 7.1, the partial sums for two values of N. Show that Parseval’s identity, in this case, reveals
that

∞∑
n=1

1
n2 = π2

6
. (7.37)

This is a special case of Eq. (6.66).

6. Use Eq. (7.24) to show that eigenvalues and eigenvectors of the circulant matrix

B =

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎠

are (2 0 2 0) and

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
i

−1
−i

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
−1
1

−1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
−i
−1
i

⎞
⎟⎟⎠ . (7.38)
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Argue that as B and its eigenvalues are real then the real and imaginary parts (when nontrivial) of the vectors in
Eq. (7.38) are also eigenvectors. Show that this permits you to garner a set of four real eigenvectors (two corres-
ponding to λ=2 and two to λ=0) that is complete in the sense that each is orthogonal to the other three.

7. †Establish the validity of the two statements in Eq. (7.23).
8. Establish the validity of the transform derivative formula, Eq. (7.28), by arguing along the lines used in Eqs. (3.15)

and (3.16).
9. †Establish the validity of the Convolution Theorem, Eq. (7.29), by arguing along the lines used in Eq. (3.22).

10. Argue, based on the Convolution Theorem, Eq. (7.29), that the convolution operation is commutative and
associative:

u�v =v�u and u� (v�w)= (u�v)�w.

11. Show that the Fourier transform of cos(2πat) is 1
2(δ(a−ω)+δ(a+ω)). Hint: Use Eq. (7.1) to represent the cosine

as a sum of complex exponentials and then argue as in Eq. (7.27). What is the corresponding expression for
sin(2πat)?

12. †Show that the Fourier, like the Laplace, transform follows the simple scaling laws:

(i) If g(t)= f (t−a) then ĝ(ω)= f̂ (ω)e−2π iaω.

(ii) If g(t)= f (t/a) then ĝ(ω)= af̂ (aω).

13. Show that if u(t) is real then its Fourier transform satisfies û(ω)= û(−ω)∗ , where ∗ denotes complex conjugation.
Hint: Use the fact that (

∫
f (x)dx)∗ =∫

f (x)∗ dx.
14. †Show that if u is even, i.e., u(t)=u(−t), then so too is its Fourier transform, i.e., û(ω)= û(−ω).
15. †Show that the Fourier transform of the Gaussian,

u(t)=e−t2/2

is the Gaussian

û(ω)=√
2πe−(2πω)2/2

by completing

(i) Show that u obeys the differential equation u′(t)=−tu(t).
(ii) Differentiate the Fourier transform, with respect to its only variable, ω, and find

û′(ω)=−2π i

∞∫
−∞

e−2π iωttu(t)dt,

(iii) Now replace −tu with u′ per (i), integrate by parts, and arrive at the differential equation û′(ω)=−4π2ωû(ω).

(iv) Conclude that û(ω)= û(0)e−(2πω)2/2 and prove the gorgeous identity

∞∫
−∞

e−t2/2 dt =√
2π, (7.39)

to complete the exercise. Hint: By squaring each side of Eq. (7.39) arrive at the equivalent identity

∞∫
−∞

e−(x2+y2)/2 dx dy =2π .

Compute the left hand side by transforming to polar coordinates.
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16. †Assume that VCl =0 in Eq. (3.2). How must the function w(t) be defined so that V(T) can be written as the
convolution of Istim(t) with w(t), that is,

V(T)=
∞∫

−∞
w(T − t)Istim(t)dt

(Hint: Use Istim(t)=0 for t<0)? Compute the Fourier transform of w(t). If m(ω) and φ(ω) are the modulus and
phase of ŵ(ω), i.e., ŵ(ω)=m(ω)eiφ(ω) show that m(ω) is equal to Eq. (3.7) and that φ(ω)=− tan−1(2πτω).

17. †Now show that

Vf (T)=
∞∫

−∞
w(T − t)f (t)dt

defines a linear and time invariant mapping from f to Vf , that is

Vαf +βg(T)=αVf (T)+βVg(T)

and if g(t)= f (t+ t0), then Vg(T)=Vf (T + t0).

18. †Next, compute numerically the Fourier transform of w(t) using fft in MATLAB and reproduce the graphs of
Figure 3.1. Use the following parameters: A=4π 10−6 cm2, Cm =1 μF/cm2, and gCl =0.3 mS/cm2. To compute
the discrete Fourier transform, use a sampling step of 1/8 ms, and 8192 time samples.

19. †Prove the identity

N−1∑
k=0

e2π ik(m−l)/N =Nδml, (7.40)

where δml is the Kronecker delta. Use it to show directly that

gl = 1
N

N−1∑
k=0

ĝke2π ilk/N, l =0, . . . ,N −1 (7.41)

is the inverse transform of

ĝk =
N−1∑
l=0

gle−2π ikl/N, k =0, . . . ,N −1. (7.42)

20. Although the Dirac impulse cannot be defined as a continuous function, it can be defined as a linear mapping from
a set of functions to the real (or complex) numbers. Such a mapping is usually called a functional or distribution.
Let D be the set of differentiable functions that vanish outside of a closed, bounded interval.

Definition. For a function f (t)∈D define δ( f )= f (0).
Show that this functional is linear, i.e., δ(αf +βg)=αδ( f )+βδ(g), for functions f ,g ∈D and α,β∈R.
We can now formally write the Dirac distribution in integral form,

δ( f )=
∞∫

−∞
δ(t)f (t)dt
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and the corresponding integrand behaves in many ways as a regular function. For example, show that if we define
the distribution δτ (f )= f (τ ) we can identify it with δ(t−τ). (Hint: Change of variables).
For a differentiable function g(t) define

Dg( f )=
∞∫

−∞
g(t)f (t)dt, f ∈D.

Show that Dg is a distribution.
21. For a distribution d define its derivative through

d′( f )=d(−f ′), f ∈D.

Show that d′ is a distribution as well and that this definition generalizes the derivative of a differentiable function
in the sense that

D
′
g =Dg′ .

(Hint: Integration by parts). Define the Heaviside distribution through

1( f )=
∞∫

−∞
1(x)f (x)dx =

∞∫
0

f (x)dx,

where 1(x) is the Heaviside function, Eq. (1.6). Show that the derivative of the Heaviside distribution is the Dirac
distribution, i.e., 1′ = δ.
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As we observed at the outset of Chapter 6, the straight cable is an idealization. In reality, neurons exhibit an
incredible variety of branching patterns. We offer six representatives in Figure 8.1 and note that though they vary
greatly in both size and number of dendritic branches, each cell is a tree (no closed loops) with a well-defined cell
body, or soma. In this chapter we append a soma and a pair of branches to the simple passive cable of Chapter 6. We
demonstrate that each of the mathematical and computational tools developed for the cable have natural extensions
to the tree. We proceed to investigate synaptic integration and attenuation, with particular attention to the role played
by tree eigenfunctions. We also specify and analyze the conditions under which the response of the tree may be well
approximated by that of a simple straight cable.

8.1 THE DISCRETE PASSIVE TREE

We work in the concrete context of Figure 8.2 on the way to a more general understanding. We have indexed the
compartments, following an observation of Hines, in a manner that leads to minimal fill-in in the LU factorization,
Exercise 5.2, of the resulting linear system associated with the backward Euler and trapezoid schemes. The physical
lengths and radii of the three fibers are

�1, �2, �3 and a1, a2, a3

respectively, while the length of each compartment, except the soma, is dx. The soma is presumed to have surface
area As and is not typically further compartmentalized.

If we inject Istim at the soma then Kirchhoff’s Current Law, at the node with potential v3,4, requires

Istim =CmAsv′
3,4 +gClAsv3,4 +a2

3π(v3,4 −v3,3)/(dxRa) (8.1)

where, as in §6.1, vi,j =Vi,j −VCl, while at the branch point (v3,1) we find

πa2
3(v3,2 −v3,1)

Radx
= πa2

2(v3,1 −v2,4)

Radx
+ πa2

1(v3,1 −v1,4)

Radx
+2πa3dx(Cmv′

3,1 +gClv3,1).

103
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(C)(B)(A)

(F)(E)(D)

FIGURE 8.1 Dendritic diversity. A. A neuron of the vagal motor pathway, part of the autonomic nervous system. B. A neuron of the olivary
body in the brainstem. C. A pyramidal cell of the cortex, from layer 2/3. D. A pyramidal cell of the cortex, from layer 5. E. A Purkinje cell from the
cerebellum. F. An α-motorneuron from the spinal cord. Each scale bar is 100μm long. Adapted from Segev (1998).

Current balance at the remaining nodes proceeds exactly as before, recall Eq. (6.5). In particular, with λ2
j ≡ aj/(2RagCl),

the squared space constant of branch j, we find

τv′
1,1 +v1,1 −λ2

1(v1,2 −v1,1)/dx2 =0

τv′
1,2+v1,2 −λ2

1(v1,3 −2v1,2 +v1,1)/dx2 =0

τv′
1,3+v1,3 −λ2

1(v1,4 −2v1,3 +v1,2)/dx2 =0

τv′
1,4 +v1,4 −λ2

1(v3,1 −2v1,4 +v1,3)/dx2 =0

τv′
2,1 +v2,1 −λ2

2(v2,2 −v2,1)/dx2 =0

τv′
2,2+v2,2 −λ2

2(v2,3 −2v2,2 +v2,1)/dx2 =0

τv′
2,3+v2,3 −λ2

2(v2,4 −2v2,3 +v2,2)/dx2 =0

τv′
2,4 +v2,4 −λ2

2(v3,1 −2v2,4 −v2,3)/dx2 =0

τv′
3,1+v3,1 + a2λ

2
2(v3,1 −v2,4)−a3λ

2
3(v3,2 −v3,1)+a1λ

2
1(v3,1 −v1,4)

a3dx2 =0

τv′
3,2+v3,2 −λ2

2(v3,3 −2v3,2 +v3,1)/dx2 =0

τv′
3,3+v3,3 −λ2

3(v3,4 −2v3,3 +v3,2)/dx2 =0

τv′
3,4 +v3,4 −(A3/As)λ

2
3(v3,3 −v3,4)/dx2− Istim/(gClAs)=0

(8.2)

where A3 =2πa3dx. We write this collection of equations as the linear system

v′(t)=Bv(t)+f(t), B = (H−I)/τ , f(t)= Istim(t)e12/(CmAs) (8.3)
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V1,1

V2,2 V2,1

V1,2

V3,4

V3,3 V3,2
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V1,2

V2,1

V1,1
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V1,4 V1,3

V2,4 V2,3

FIGURE 8.2 The compartmentalization of a branched cell with soma, and its associated circuit diagram.

and H is the Hines matrix

H = 1
dx2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ2
1 λ2

1 0 0 0 0 0 0 0 0 0 0

λ2
1 −2λ2

1 λ2
1 0 0 0 0 0 0 0 0 0

0 λ2
1 −2λ2

1 λ2
1 0 0 0 0 0 0 0 0

0 0 λ2
1 −2λ2

1 0 0 0 0 λ2
1 0 0 0

0 0 0 0 −λ2
2 λ2

2 0 0 0 0 0 0

0 0 0 0 λ2
2 −2λ2

2 λ2
2 0 0 0 0 0

0 0 0 0 0 λ2
2 −2λ2

2 λ2
2 0 0 0 0

0 0 0 0 0 0 λ2
2 −2λ2

2 λ2
2 0 0 0

0 0 0 r1λ
2
1 0 0 0 r2λ

2
2 −c λ2

3 0 0

0 0 0 0 0 0 0 0 λ2
3 −2λ2

3 λ2
3 0

0 0 0 0 0 0 0 0 0 λ2
3 −2λ2

3 λ2
3

0 0 0 0 0 0 0 0 0 0 ρλ2
3 −ρλ2

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where

r1 = a1/a3, r2 = a2/a3, c = r1λ
2
1 +r2λ

2
2 +λ2

3, and ρ=A3/As.

The genius of H is at least double – it factors easily and is similar to a symmetric matrix. Regarding the former, we note
that, as in the tridiagonal S of Chapter 6, Gaussian Elimination applied to this matrix requires only one elimination
per column.

8.2 EIGENVECTOR EXPANSION

We now describe the solution of Eq. (8.3) in terms of a series expansion in the eigenvectors of B. Our expansion
in the single fiber case made great use of the symmetry of S and the resulting orthonormality of its eigenvectors.
We recognize that although the soma and the branch point have rendered H asymmetric it is nonetheless similar
to a symmetric matrix. Let us unpack that last remark in the slightly more general context in which fiber j has Nj
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106 8. THE PASSIVE DENDRITIC TREE

compartments. We note that

dx =�j/Nj and N ≡N1 +N2 +N3 +1,

define the diagonal matrix

D=diag([a1ones(N1 ,1) a2ones(N2 ,1) a3ones(N3 ,1) a3/ρ])

and note that DH = (DH)T =HTD. This implies (Exercise 1) that

A≡D1/2HD−1/2 (8.4)

is symmetric. It follows, (Exercise 2), that if {μn,qn}N
n=1 is the sequence of eigenpairs of A, i.e., Aqn =μnqn then

Hwn =μnwn where wn =D−1/2qn (8.5)

and so the eigenvectors of H are orthonormal in the weighted sense,

wT
n Dwm = δmn. (8.6)

We illustrate, in Figure 8.3, the first nine nonconstant eigenvectors for the symmetric fork with

a1 = a2 = a3 =1μm, �1 =�2 =�3 =250μm, and As =400π μm2. (8.7)

and passive cable parameters

Cm =1μF/cm2, gCl =1/15 mS/cm2, and Ra =0.3 k	cm. (8.8)
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0 500
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�10

0

10
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0 500
�10
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FIGURE 8.3 The first nine (nonconstant) eigenvectors, wn, and associated eigenvalues, μn, arranged in decreasing order of the Hines matrix
H for the cell described by Eqs. (8.7) and (8.8) and dx = 1μm. Here the mother, branch 3, is depicted in red over the initial 250μm segment and the
daughters, branch 1 in black and branch 2 in dashed red, are plotted over the second 250μm. These eigenvectors appear in two varieties. Either
the two daughters are equal and opposite and the mother silent, or the daughters coincide and the mother plays along (in which case her slope at
the soma is nonzero). (bevec.m)
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Regarding the representation of f in terms of w, we write

f(t)=
N−1∑
n=0

cn(t)wn =D−1/2
N−1∑
n=0

cn(t)qn

and so find that c=WTDf. Hence, with zn = (μn −1)/τ , and f(t)= Istim(t)eN/(CmAs), it follows from Eq. (5.21) that

v(t)= 1
2πdxCm

N−1∑
n=0

wnwn,N

t∫
0

Istim(s)exp((t−s)zn)ds (8.9)

is the solution of the discrete passive dendrite equation, Eq. (8.3), with current injection at the soma. If we instead
inject Im(t) at compartment cm, where m=1, . . . ,M, then the above takes the form

v(t)= 1
2πdxCm

N−1∑
n=0

wn

M∑
m=1

wn,cm

t∫
0

Im(s)exp((t−s)zn)ds.

With this we investigate the interaction of pairs of simple inputs. In particular if we place the pair of equal impulses

I1(t)= I2(t)=γ δ(t− t1)

at compartments c1 and c2 then

v(t)= γ1(t1,∞)(t)
2πdxCm

N−1∑
n=0

wn(wn,c1 +wn,c2)exp((t− t1)zn). (8.10)

We quantify their interaction by considering the strength of the soma response

S(c1,c2)≡
∞∫

0

vN(t)dt = −γ
2πdxCm

N−1∑
n=0

wn,N

zn
(wn,c1 +wn,c2). (8.11)

We see that the strength at the soma, associated with simultaneous impulsive current injections, is a weighted average
of the individual eigeninteractions, wn,N(wn,c1 +wn,c2), of the input elements, c1 and c2, and the output element, N. We
can “see” these terms, for small n, in the eigenvectors plotted in Figure 8.3. Note that the Nth component, corresponding
to the soma, appears at the far left in each plot. As w2,N =w5,N =w8,N =0 and the other wn,N are small compared to w1,N
we may be able to capture the salient interactions by retaining only the w0 and w1 terms in Eq. (8.11). This surmise
is further supported by the fact that the interactions are scaled by zn = (μn −1)/τ where the μn are eigenvalues, see
Figure 8.3, that increase rapidly in magnitude. It follows that w1,N/z1 is more than 20 times its next term, w3,N/z3. We
exploit these observations in Figure 8.4 where we contrast the full strength, Eq. (8.11), with the leading order strength
associated with retaining the n=0 and n=1 terms.

8.3 NUMERICAL METHODS

We may solve Eq. (8.3) via the trapezoid rule, precisely as in Eq. (6.24). As an application we investigate the
integration of 10 current pulses at distinct times and places. More precisely, we suppose that our right hand side takes
the form

f(t)= I0

2πa1dxCm

10∑
k=1

eck1(tk ,tk+1)(t) (8.12)

where ck denotes the compartment number of the kth stimulus, eck is defined as in Eq. (6.10), and compute, see
Figure 8.5, the response at the cell body.
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FIGURE 8.4 The strength as a function of input location for the cell described by Eqs. (8.7) and (8.8). Compartments 1 to 250 correspond to
daughter 1, 251 to 500 to daughter 2, and 501 to 750+1 to the mother and soma. We see that the strongest interactions occur for proximal (close to
soma) inputs. For a fixed choice of c1 the strength increases as c2 approaches the soma. A. The full strength, Eq. (8.11). B. The strength computed
by retaining only the n= 0 and n= 1 terms. We see that the leading order strength indeed captures all of the important detail of the full strength,
and hence the first nonconstant eigenvector, w1, is seen as the arbiter of synaptic integration. (bevec.m)
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FIGURE 8.5 The somatic response, in B, of the cell described by Eqs. (8.7) and (8.8) to current injection of the form Eq. (8.12) of amplitude
I0 = 100 pA at the sites and times indicated in A and C. We observe smooth integration of distal early inputs punctuated by sharp increases
immediately following proximal input. (trapfork.m)

If rather than multisite current injection we suppose polysynaptic input then we must solve

v′(t)+
K∑

k=1

csyn,k(t)(v(t)−vsyn)eck =Bv(t) (8.13)

where, with abk denoting the radius of the branch that receives the kth input,

csyn,k(t)=
gsyn,k(t)

2πabk dxCm
.
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We solve this via the trapezoid rule precisely as we did in §6.5. In particular, we implement Eq. (6.55) where, now,
B = (H−I)/τ , and gsyn,k(t) is an α-function

gsyn,k(t, tk)=gsyn((t− tk)/τα)exp(1−(t− tk)/τα)1(tk ,∞)(t)

that commences from tk. We illustrate our findings in Figure 8.6.
We observe, in Figure 8.6, that the early stimulus into branch 1 indeed depolarizes branch 2 and that the combined

response attenuates as it approaches the soma. We investigate, in Figure 8.7, the difference between peak synaptic
and peak somatic potentials as the synapse moves away from the soma.

0.05

(A)
0

0.01
0.02

0.03
0.04

0
2

4
6

8

0

1

2

3

4

5

v 
(m

v)

Time (ms)
x (cm)

(B)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

v 
(m

v)

Time (ms)

FIGURE 8.6 The response of the cell described by Eqs. (8.7) and (8.8) to α-synaptic input onto the two daughter branches, with gsyn = 1 nS,
τα = 1 ms, t1 = 1, and t2 = 3 ms and reversal potential vsyn,k = 70 mV. Both inputs are located 100 μm from the branch ends. A. Full space-time
response. The response of the mother (branch 3) is plotted in red over the first 250μm. The response of the two daughters is plotted over the second
250 μm with the response of branch 1 in black and that of branch 2 in red. B. The response in time at the two sites of stimulation, with black and
red denoting branches 1 and 2 respectively, as in A. (trapforksyn.m)
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FIGURE 8.7 Peak somatic and synaptic potentials for the cell described by Eqs. (8.7) and (8.8), as a function of the distance from the soma to
the site of a single α-synapse, with gsyn = 0.5 nS and τα = t1 = 1 ms. The steep decrease in peak soma potential as the synapse travels away from the
soma diminishes as the synapse enters a daughter branch and the peak synaptic potential grows as the synapse approaches the sealed end. We
have seen such “end effects” before in Figure 6.3A. (trapforksyngain.m)
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8.4 THE PASSIVE DENDRITE EQUATION

As we pass to the limit of infinitely many infinitely short compartments we arrive (precisely as in §6.4) at three
cable equations

τ
∂vj

∂t
(x, t)+vj(x, t)=λ2

j
∂2vj

∂x2 (x, t), 0<x<�j, j =1,2,3,

for the three space-time potential functions, v1, v2, and v3. The two daughters are sealed at their distal ends, i.e.,

∂v1

∂x
(0, t)= ∂v2

∂x
(0, t)=0.

The mother’s proximal end reflects the soma condition

τ
∂v3

∂t
(�3, t)+v3(�3, t)+a3λ

2
3(2π/As)

∂v3

∂x
(�3, t)= Istim(t)/(gClAs).

At the junction where the three branches meet we enforce current balance

a1λ
2
1
∂v1

∂x
(�1, t)+a2λ

2
2
∂v2

∂x
(�2, t)= a3λ

2
3
∂v3

∂x
(0, t),

and continuity of potential

v1(�1, t)=v2(�2, t)=v3(0, t).

It can be advantageous to work in the nondimensional variables

X ≡x/λj, Lj ≡�j/λj, T ≡ t/τ , and h ≡ a3λ3(2π/As). (8.14)

For then the associated response and stimulus,

uj(X,T)≡vj(x, t), J(T)≡ Istim(t)

obey

∂uj

∂T
(X,T)+uj(X,T)= ∂2uj

∂X2 (X,T), 0<X<Lj (8.15)

subject to the two sealed end conditions

∂u1

∂X
(0,T)= ∂u2

∂X
(0,T)=0, (8.16)

the soma condition

∂u3

∂T
(L3,T)+u3(L3,T)+h

∂u3

∂X
(L3,T)= J(T)/(gCl As), (8.17)

and the junction conditions

a3/2
1
∂u1

∂X
(L1,T)+a3/2

2
∂u2

∂X
(L2,T)= a3/2

3
∂u3

∂X
(0,T)

u1(L1,T)=u2(L2,T)=u3(0,T).
(8.18)

Before proceeding to solve this general problem we pause to consider an important special case.
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8.5 THE EQUIVALENT CYLINDER∗

We observe that the fork can be collapsed to a single cable, or cylinder, under a pair of simple geometric assumptions.
We assume, for ease of presentation, that the only stimulus is current into the soma.

(EC1) If the two daughters have equal electrotonic lengths, i.e., L1 =L2, we may define

U(X,T)=

⎧⎪⎨
⎪⎩

a3/2
1 u1(X,T)+a3/2

2 u2(X,T)

a3/2
1 +a3/2

2

, 0<X<L1

u3(X−L1,T), L1<X<L1 +L3

(8.19)

and note that it obeys, with L≡L1 +L3,

∂U
∂T

(X,T)+U(X,T)= ∂2U
∂X2 (X,T), 0<X<L1, L1<X<L

U(L−
1 ,T)=U(L+

1 ,T)

(a3/2
1 +a3/2

2 )
∂U
∂X

(L−
1 ,T)= a3/2

3
∂U
∂X

(L+
1 ,T)

∂U
∂X

(0,T)=0,
∂U
∂T

(L,T)+U(L,T)+h
∂U
∂X

(L,T)= J(T)/(gCl As).

The third condition predicts a break in the slope of U if a3/2
1 +a3/2

2 �= a3/2
3 .

(EC2) If the cell obeys the “3/2 law,” i.e., a3/2
1 +a3/2

2 = a3/2
3 then U is simply the solution to

∂U
∂T

(X,T)+U(X,T)= ∂2U
∂X2 (X,T), 0<X<L, 0<T

∂U
∂X

(0,T)=0, 0<T

∂U
∂T
(L,T)+U(L,T)+h

∂U
∂X

(L,T)= J(T)/(gClAs), 0<T

U(X,0)=0, 0<X<L.

(8.20)

This system, Eq. (8.20), is known as the equivalent cylinder problem. We solve it, as in §6.4, by proceeding from the
hope that U(X,T)=q(X)p(T). This hope necessitates

p′(T)/p(T)+1 =q′′(X)/q(X), 0<X<L

q′(0)=0, p′(T)/p(T)+1+hq′(L)/q(L)= J(T)/(gCl Asp(T)q(0)).

If, as in §6.4, we label by ϑ the common value of q′′(X)/q(X) and p′(T)/p(T)+1 then we see that it too must appear in
the boundary condition for q. That is, we are compelled to consider

q′′(X)=ϑq(X), q′(0)=0, and hq′(L)+ϑq(L)=0. (8.21)

This produces only a minor inconvenience, for the eigenfunction must still be of the form

qn(X)=bn cos(
√−ϑnX) (8.22)

and ϑn is chosen to guarantee hq′
n(L)=−ϑnqn(L). More precisely, ϑn is the negative of the square of each root of

F(z)≡ z+h tan(zL). (8.23)
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We shall demonstrate (in Exercise 5) that these roots are simple and deduce (in Exercise 6) that

(ϑm −ϑn)

⎛
⎝qm(L)qn(L)/h+

L∫
0

qm(X)qn(X)dX

⎞
⎠= 0, (8.24)

and hence that the eigenfunctions are orthogonal with respect to the inner product

〈 f ,g〉≡ f (L)g(L)/h+
L∫

0

f (X)g(X)dX. (8.25)

We next normalize these eigenfunctions by choosing the bn in Eq. (8.22) such that 〈qn ,qn〉=1, i.e., such that

b2
n

⎛
⎝cos2(

√−ϑnL)/h+
L∫

0

cos2(
√−ϑnX)dX

⎞
⎠=1. (8.26)

As with the straight cable, the naive guess that U(X,T)=q(X)p(T) has led us to the better guess

U(X,T)=
∞∑

m=0

pm(T)qm(X). (8.27)

On taking the inner product, Eq. (8.25), of each side with qn we deduce from 〈qm,qn〉= δmn that

〈U,qn〉=U(L,T)qn (L)/h+
L∫

0

U(X,T)qn(X) dX =pn(T)〈qn ,qn〉=pn(T). (8.28)

We now differentiate this with respect to time, T, and use Eq. (8.20) to replace time derivatives of U with space
derivatives of U, and arrive at

p′
n(T)=

∂U
∂T

(L,T)qn(L)/h+
L∫

0

∂U
∂T

(X,T)qn(X)dX

=
{

J(T)/(gClAs)−U(L,T)−h
∂U
∂X

(L,T)
}

qn(L)/h+
L∫

0

{
∂2U
∂X2 (X,T)−U(X,T)

}
qn(X)dX

=
{

J(T)/(gClAs)−h
∂U
∂X

(L,T)
}

qn(L)/h−pn(T)+
L∫

0

∂2U
∂X2 (X,T)qn(X)dX.

To this we apply integration by parts, in Exercise 7, to shift derivatives from U onto qn and so find

L∫
0

∂2U
∂X2 (X,T)qn(X)dX = ∂U

∂X
(L,T)qn(L)+ϑnpn(T). (8.29)

It then follows that pn obeys the familiar, Eq. (2.12), ordinary differential equation

p′
n(T)+(1−ϑn)pn(T)= J(T)qn (L)/(gClAsh). (8.30)

Its solution, per Eq. (3.2), is the simple convolution,

pn(T)= qn(L)
gClAsh

T∫
0

J(s)exp((T −s)(ϑn −1))ds.
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On inserting this into Eq. (8.27) we find that

U(X,T)=
∞∑

n=0

qn(L)qn(X)
gClAsh

T∫
0

J(s)exp((T −s)(ϑn −1))ds (8.31)

solves the equivalent cylinder with soma problem, Eq. (8.20).

8.6 BRANCHED EIGENFUNCTIONS∗

We return to the full nondimensional system of §8.4 and pose and solve the eigenproblem for

q(X)= (q1(X) q2(X) q3(X))T .

Each component obeys the elemental branch condition

q′′
j (X)=ϑqj(X), 0<X<Lj (8.32)

subject to the joint and seal conditions

q′
1(0)=q′

2(0)=hq′
3(L3)+ϑq3(L3)=0

q1(L1)=q2(L2)=q3(0) (8.33)

a3/2
1 q′

1(L1)+a3/2
2 q′

2(L2)= a3/2
3 q′

3(0).

Just as eigenvectors of the Hines matrix were orthogonal in the weighted sense, Eq. (8.6), we find (Exercise 10) that
qm is orthogonal to qn in the weighted inner product

〈( f1 f2 f3),(g1 g2 g3)〉≡ a3/2
3 f3(L3)g3(L3)/h+

3∑
j=1

a3/2
j

Lj∫
0

fj(X)gj(X)dX. (8.34)

Arguing in precisely the same fashion as the previous section, we find that the full solution of the passive dendrite,
subject to somatic current injection, may be expressed as

u(X,T)=
∞∑

n=0

qn(X)qn,3(L3)

gClAsh

T∫
0

J(s)exp((T −s)(ϑn −1))ds. (8.35)

This is the natural three-dimensional analog of the response, Eq. (8.31), of the equivalent cylinder. To help fix ideas
we now compute these branched eigenfunctions for dendrites whose branches have equal electrotonic lengths, i.e.,
L1 =L2 =L3 =L.

Without soma. We begin, for simplicity, by removing the soma. As As → 0 we find h →∞ and so q′
3(L)=0. In this

case,

q1 =b1 cos(
√−ϑX), q2 =b2 cos(

√−ϑX), and q3 =b3 cos(
√−ϑ(L−X))

and so continuity at the joint requires

b1 cos(
√−ϑL)=b2 cos(

√−ϑL)=b3 cos(
√−ϑL) (8.36)

while Kirchhoff’s Current Law at the joint requires

−a3/2
1

√−ϑb1 sin(
√−ϑL)−a3/2

2

√−ϑb2 sin(
√−ϑL)= a3/2

3

√−ϑb3 sin(
√−ϑL). (8.37)
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There now appears a natural splitting. In particular, if cos(
√−ϑL)=0 then Eq. (8.36) holds and the bj are constrained

by Eq. (8.37). This is one linear equation in three unknowns and so defines a plane. The upshot is that each eigenvalue
has two linearly independent eigenfunctions. To be precise

ϑn =−n2π2

4L2 , qn(X)=b1
nq1

n(X)+b2
nq2

n(X) n=1,3,5, . . . (8.38)

where

q1
n(X)=

⎛
⎜⎝

cos(
√−ϑnX)

0

−(a1/a3)
3/2 cos(

√−ϑn(L−X))

⎞
⎟⎠

and

q2
n(X)=

⎛
⎜⎝

0

cos(
√−ϑnX)

−(a2/a3)
3/2 cos(

√−ϑn(L−X))

⎞
⎟⎠. (8.39)

We note that the continuity equation is satisfied by the vanishing of each term in the second condition of Eq. (8.33).
The analogous satisfaction of current balance at the joint, Eq. (8.37), requires sin(

√−ϑL)=0 in which case continuity
requires b1 =b2 =b3 and we find

ϑn =−n2π2

4L2 n=2,4,6, . . .

qn(X)=b

⎛
⎜⎝

cos(
√−ϑnX)

cos(
√−ϑnX)

cos(
√−ϑn(L−X))

⎞
⎟⎠

where b is the arbitrary normalization constant. In summary, we note that the eigenvalues are −n2π2/(2L)2 for
n=0,1,2, . . . and that these are simple for even n and double for odd n.

With soma. If we now attach the soma we find that the eigenfunction of branch 3 must be of the form

q3(X)=b3{cos(
√−ϑ(L−X))+(√−ϑ/h)sin(

√−ϑ(L−X))}.
It follows that continuity at the joint requires

b1 cos(
√−ϑL)=b2 cos(

√−ϑL)=b3{cos(
√−ϑL)+(√−ϑ/h)sin(

√−ϑL)} (8.40)

while Kirchhoff’s Current Law there requires

−a3/2
1 b1 sin(

√−ϑL)−a3/2
2 b2 sin(

√−ϑL)= a3/2
3 b3{sin(

√−ϑL)−(√−ϑ/h)cos(
√−ϑL)}. (8.41)

As above, there is a natural splitting. If cos(
√−ϑL)=0 then Eq. (8.40) implies that b3 =0 and Eq. (8.41) then requires

that a3/2
1 b1 +a3/2

2 b2 =0 and so, with b an arbitrary normalization constant,

ϑn =−n2π2

4L2 n=1,3,5, . . .

qn(X)=bcos(
√−ϑnX)

⎛
⎜⎝

1
−(a1/a2)

3/2

0

⎞
⎟⎠.
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We recognize these eigenfunctions in panels μ2, μ5, and μ8 in Figure 8.3. The zero in qn (third component) has
interesting consequences for branch to branch communication. In particular, any stimulus of the form

J(X,T)=
∞∑

m=1

Jm(T)q2m−1(X), (8.42)

with Jm(T) arbitrary, will be invisible to the mother and therefore the soma. See Exercise 9.
Next, if cos(

√−ϑL) �=0 then Eq. (8.40) implies that

b1 =b2 =b3(1+(√−ϑ/h) tan(
√−ϑL))

and Eq. (8.41) that

−a3/2
1 b1 tan(

√−ϑL)−a3/2
2 b2 tan(

√−ϑL)= a3/2
3 b3(tan(

√−ϑL)−√−ϑ/h).
Combining these two we find that ϑ is the negative of the square of each root of

F(z)≡ (1+(z/h) tan(zL)) tan(zL)(a3/2
1 +a3/2

2 )+a3/2
3 (tan(zL)−z/h),

the branched analog of Eq. (8.23). The associated eigenfunction is

qn(X)=b

⎛
⎜⎜⎝

cos(
√−ϑnX)

cos(
√−ϑnX)

cos(
√−ϑn(L−X))

1+(√−ϑn/h) tan(
√−ϑnL)

⎞
⎟⎟⎠

where b is the normalization constant. We recognize these eigenfunctions in panels μ1, μ3, μ4, μ6, μ7 , and μ9 in
Figure 8.3.

8.7 SUMMARY AND SOURCES

We have added a soma and a pair of branches to our passive cable and demonstrated that each of the analytical
and computational approaches developed for the cable apply, with little change, to the passive dendrite with soma.
The only real change is the replacement of the second difference matrix with the Hines matrix and the fact that
the eigenvectors of the latter are considerably more complicated than those of the straight cable. We have restricted
attention to the three branched fork solely for reasons of exposition. For each of the fundamental constructs makes
perfect sense in larger trees. In particular, Hines (1984), solves the compartmental ordering problem for general trees.
Rall, see Segev et al. (1994), solves the equivalent cylinder problem for reducible trees and von Below (1988) establishes
the inner product in which the branched eigenfunctions of general trees are orthogonal. Exercise 11 is drawn from
Nicaise (1987).

8.8 EXERCISES

1. Regarding the lead up to Eq. (8.4), show that DH is indeed symmetric and deduce the symmetry of A from this.
Do this by hand (without numbers) by drawing and exploiting the block structure of H.

2. †Show that Eq. (8.5) and Eq. (8.6) indeed follow from Eq. (8.4).
3. †Integrate the response of the soma component to dual simultaneous current impulses and explain how Eq. (8.11)

arises from Eq. (8.10).
4. †Although dendritic cable diameters and branching do not permit one to space-clamp an extended cell, it is not

uncommon for experimentalists to employ voltage clamps at one or more sites. The most common site is the soma.
With regard to our concrete compartmental system, Eq. (8.2), note that if we clamp the soma potential, v3,4, to the
value vc, then the penultimate equation in Eq. (8.2) takes the form

τv′
3,3 +v3,3 −λ2

3(−2v3,3 +v3,2)=λ2
3vc/dx2, (8.43)
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and that the final equation in Eq. (8.2) is no longer a constraint on the system (for v3,4 is already constrained) but
is rather an expression for the current, Ic, that is necessary to hold v3,4 at vc. In particular

Ic =gClAsvc −gClA3λ
2
3(v3,3 −vc)/dx2. (8.44)

The upshot of these two equations is that we now remove the last row and column of the Hines matrix, H, and
replace the stimulus vector, f in Eq. (8.3) with

f(t)= (λ3/dx)2vce11/τ .

Please modify trapforksyn.m to permit a somatic voltage clamp and produce results like Figure 8.8.
Hint: Note that the rest potential is nonzero and decreases away from the clamp. To find it, return to Eq. (8.3)
and solve Bvr +f =0. This nonzero rest also has implications for the initialization of our trapezoid rule. Return to
Eq. (6.23) to get it right.
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FIGURE 8.8 A. Space-time illustration of the potential in the fork with the soma potential clamped at vc = 2 mV, and a distal (400 μm)
α-synapse with gsyn = 1 nS, τα = t1 = 1 ms and vsyn = 70 mV. Color scheme as in Figure 8.6A. B. The associated clamp current at the soma,
as computed by Eq. (8.44). This is a beautiful signature of the distal excitatory input. On dividing it by the clamp potential we arrive, as in
Chapter 4, at an estimate of the time varying conductance. In particular, in C and D we plot (in black) the “received” conductance g(t)=
(Ic(t)− Ic(0))/(vc −vsyn). C corresponds to the synapse of A while D is the same conductance but placed proximal (50 μm). For comparison
purposes we have included the true synaptic conductance, in red. The figures provide yet another window on the attenuation, or dendritic
filtering, of synaptic inputs. (trapforksynclamp.m)

5. The eigenvalues, ϑn, of the equivalent cylinder with soma are determined by zn, the roots of z/h+ tan(zL), via
ϑn =−z2

n . For representative L and h carefully graph the functions f (z)= tan(zL) and g(z)=−z/h and argue that
these two graphs intersect at infinitely many points, 0 = z0< z1< z2< · · ·. What number is zn close to for large n?
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6. Establish the orthogonality, Eq. (8.24), of the eigenfunctions of the equivalent cylinder with soma by demonstrating
that

ϑn

L∫
0

qn(X)qm(X)dX =
L∫

0

q′′
n(X)qm(X)dX

=qm(L)qn(L)(ϑm −ϑn)/h+ϑm

L∫
0

qn(X)qm(X)dX.

7. †Establish the validity of Eq. (8.29).
8. Consider a cell that satisfies the equivalent cylinder conditions. Rather than injecting current at the soma, we now

inject equal current into the two daughters. In particular, we suppose

∂uj

∂T
(X,T)+uj(X,T)− ∂2uj

∂X2 (X,T)= Istim(X,T), j =1,2

for some function Istim. Derive a system of equations for the U of Eq. (8.19).
9. Modify trapfork.m to accept distributed current input. Assume equal electrotonic branch lengths and apply a

stimulus of the form Eq. (8.42) and show, as in Figure 8.9, that the mother is indeed kept in the dark.
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FIGURE 8.9 An example of a stimulus (A) that does not reach the soma, see response in B. Color scheme as in Figure 8.8A.
(trapforkd.m)

10. †Establish the orthogonality of the branched eigenfunctions, qn obeying Eqs. (8.32) and (8.33), with regard to the
inner product defined in Eq. (8.34).

11. It can be shown under fairly general hypotheses that the eigenvalues of a branched tree fall in two camps, ϑ=
−n2π2 and cos(

√−ϑ)= zj where zj is an eigenvalue, less than 1 in magnitude, of the adjacency matrix associated
with the tree. For our simple fork, the adjacency matrix is

A= 1√
a3/2

1 +a3/2
2 +a3/2

3

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 a3/4
1

0 0 0 a3/4
2

0 0 0 a3/4
3

a3/4
1 a3/4

2 a3/4
3 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Confirm, using, e.g., the symbolic toolbox in MATLAB, that 0,0,1,−1 are the eigenvalues of A. Reconcile this result
with our findings in Eqs. (8.38)–(8.39).
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We are now prepared to assemble models that are capable of reproducing the great variety of responses, seen in
the laboratory, to synaptic input distributed in space and time. This requires only that we add ion channels to our
passive dendrite. A combination of the numerical methods of Chapters 4 and 8 will permit us to generate the action
potential launched by suprathreshold current injection and to study its propagation from the spike initiation zone
down the cell’s axon and back up into the soma and the dendritic tree, in agreement with the recordings in Figure 9.1.

We then build a model for determining the extracellular current induced by such traveling action potentials and
study its effect on neighboring cables like axons or dendrites. We next move on to synaptic initiation of somatic spikes
and investigate the role of a specialized glutamate receptor, called the NMDA receptor, in acknowledging action

100�m

Soma

Axon

Dendrite

Soma

1ms

20 mV

(A) (C)

(B)

FIGURE 9.1 Action potential initiation in pyramidal cells from layer 5 of the rat neocortex. A. Example of a reconstructed cell and approx-
imate location of two electrodes in two separate recordings. Electrodes were placed either in dendrite and soma (B) or in axon and soma (C).
B. Simultaneous recordings of action potential initiation by synaptic stimulation indicates that the action potential propagates from the soma, with
attenuation, back into the dendrites ≈ 270μm in ≈ 1 ms. C. Simultaneous recordings from soma and axon shows that the action potential originates
in the axon and propagates back to the soma ≈ 17μm in ≈ 0.1 ms, before reaching the dendrites (see B).
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120 9. THE ACTIVE DENDRITIC TREE

potential back propagation into the dendrites. We next develop and study the quasi-active cable and demonstrate
its ability to capture the cell’s subthreshold response and resonant frequency. We then investigate synaptic attenua-
tion and integration on our active fork prior to introducing and demonstrating MATLAB tools for the simulation of
arbitrarily branched cells. Finally, we move on to the fully branched case, where we study synaptic integration.

9.1 THE ACTIVE UNIFORM CABLE

If we add the sodium and potassium currents of Chapter 4 to the passive cable of Chapter 6 we arrive at the active
cable system

Cm
∂V
∂t

=Ga
∂2V
∂x2 −gNam3h(V −VNa)−gKn4(V −VK)−gCl(V −VCl)+ Istim/(2πa)

mt =αm(V)(1−m)−βm(V)m

ht =αh(V)(1−h)−βh(V)h

nt =αn(V)(1−n)−βn(V)n

(9.1)

where Ga = a/(2Ra) is the axial conductance. We assume that the cable is sealed

∂V
∂x
(0, t)= ∂V

∂x
(�, t)=0,

and that it begins at rest

V(x,0)=Vr, m(x,0)=m∞(Vr), h(x,0)=h∞(Vr), n(x,0)=n∞(Vr).

If the ionic conductances are uniformly distributed, i.e., their conductance densities do not vary with position, then
the rest potential is in fact the same Vr as that in Eq. (4.16).

As Eq. (9.1) does not yield to elementary mathematical analysis we pursue its approximate solution. In particular,
we choose a space step, dx, and so study a cable with Nx =�/dx compartments, and then choose a time step, dt, and
final time T and so march through Nt =T/dt units of time. We evaluate our stimulus and approximate the response
on the associated space-time grid

Vj
i ≈V((i−1/2)dx,( j−1)dt)

m j
i ≈m((i−1/2)dx,( j−3/2)dt) (9.2)

Ij
i = Istim((i−1/2)dx,( j−3/2)dt)/(2πa), i =1, . . . ,Nx, j =1, . . . ,Nt

where (i−1/2)dx is the midpoint of the ith compartment, as in Eq. (6.53), and the staggering of voltage and gating
time grids conforms to our original choice, Eq. (4.17).

Arguing precisely as in Chapter 4 we may advance the gating variables via

m j
i = (1/dt−(αm(V

j−1
i )+βm(V

j−1
i ))/2)m j−1

i +αm(V
j−1
i )

1/dt+(αm(V
j−1
i )+βm(V

j−1
i ))/2

i =1, . . . ,Nx . (9.3)

We now collect the compartmental terms into columns

Vj = (Vj
1 V

j
2 · · · Vj

Nx
)T , m j = (m j

1 m
j
2 · · · m j

Nx
)T , etc.,

and advance the voltage vector Vj−1 by the half-step backward Euler rule (per Eq. (4.20))

Cm
Vj−1/2−Vj−1

dt/2
=GaSVj−1/2−gNa(m

j)3hj(Vj−1/2−VNa)−gK(n
j)4(Vj−1/2−VK)−gCl(V

j−1/2−VCl)+Ij

where S is our standard second difference matrix, Eq. (6.9). We write this as a linear system for Vj−1/2,

(diag(dj +2Cm/dt)+GaS)Vj−1/2 = (2Cm/dt)Vj−1+fj (9.4)
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where the elements of d and f are

dj
i =gNa(m

j
i )

3hj
i +gK(n

j
i)

4 +gCl and f j
i =gNa(m

j
i )

3hj
iVNa +gK(n

j
i)

4VK +gClVCl +Ij
i

respectively. We conclude, as in Eq. (4.21), with the final additional half-step update

Vj =2Vj−1/2−Vj−1. (9.5)

We have coded this and illustrated its use in Figure 9.2 on the cable with size and passive parameters as in Eq. (6.17),
active parameters and functionals as detailed in §§4.1 and 4.2, and a 1 ms stimulus

Istim(x, t)= I01(1,2)(t)δ(x−xs) (9.6)

of amplitude I0 delivered at x =xs. We see that a 1 ms current pulse at midcable ignites an action potential when I0
exceeds the threshold, Iθ , of approximately 150 pA and we note that the Vmax/I0 curve differs very little from the
isopotential case, Figure 4.7B. In the case of a cable, however, stimulus location can also play a major role. For current
delivered near a sealed end sees a greater resistance and hence yields a greater depolarization. We make this precise
in Figure 9.3.
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FIGURE 9.2 Response of the active cable described by Eqs. (6.17), (4.8), (4.9), (4.13), and (4.14) to a current pulse described by Eq. (9.6) with
xs = 0.05 cm. A. Full space-time response to suprathreshold input, I0 = 400 pA. This stimulus has initiated an action potential that propagates at
constant velocity in each direction. (stEcab.m) B. A plot of the maximum depolarization at xs, and the time at which it occurred, as a function of
stimulus amplitude, I0. (stEcabthresh.m)
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FIGURE 9.3 A plot of stimulus threshold, Iθ , as a function of stimulus location, xs, for the cable described by Eqs. (6.17), (4.8), (4.9), (4.13), and
(4.14) and a current pulse of the form Eq. (9.6). (stEcabthreshloc.m)
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The speed of the action potential wave illustrated in Figure 9.2A depends on both the geometry of the cable and
the mix of currents crossing its lateral surface. We will investigate these dependencies in the exercises.

9.2 ON THE INTERACTION OF ACTIVE UNIFORM CABLES∗

There is ample evidence, see Figure 9.4, to support the investigation of the nonsynaptic influence that an action
potential traveling down a cable may have on its neighbors. These interactions are often deemed “ephaptic” and arise,
e.g., from extracellular currents and excess extracellular potassium associated with traveling action potentials.

In Exercise 4.5 we demonstrated that increased extracellular potassium depolarizes nearby cells. We here build
and analyze a model, see Figure 9.5, of two parallel cables of radii a1 and a−1, separated by a distance 2a0, in which
extracellular current may flow. If dx is the length of a compartment then current balance at the nodes marked φ2,1 and
φ2,−1 yields

2πa1dx{Cm(φ2,1 −φ2,0)
′ + Iion(φ2,1 −φ2,0)}= πa2

1
Radx

(φ1,1 −2φ2,1 +φ3,1)

2πa−1dx{Cm(φ2,−1 −φ2,0)
′ + Iion(φ2,−1 −φ2,0)}= πa2−1

Radx
(φ1,−1 −2φ2,−1 +φ3,−1).
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FIGURE 9.4 A. A schematic of two parallel cables. B. The electrical stimulation of fiber 1 and its effect on the threshold of fiber 2. Action
potentials in fibers 1 and 2 are elicited by short electric pulses. An illustration of an action potential recorded from fiber 1 is on top. The threshold
change is expressed as a percentage of the baseline value (100) observed in fiber 2 without stimulation of fiber 1 and is measured as a function of
the stimulation interval between fiber 1 and fiber 2. Initially the threshold is raised by the traveling action potential in fiber 1, but then the second
fiber becomes more excitable followed by a period of slightly reduced excitability. In vitro preparation of a limb nerve of the crab. Adapted from
Katz and Schmitt (1940).
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FIGURE 9.5 A circuit diagram, corresponding to Figure 9.4A, of two cables and the extracellular fluid that separates them. Here Re is the
effective axial resistance of the extracellular fluid, φj,±1 denote the intracellular potentials of the respective cables, φ0,±1 denote the associated
extracellular potentials, and the membrane currents, at each compartment, have been lumped into the Iion boxes.

Next, as the fibers are separated by a distance of 2a0, current balance at the node marked φ2,0 yields

2πa1dx{Cm(φ2,1 −φ2,0)
′ + Iion(φ2,1 −φ2,0)}+2πa−1dx{Cm(φ2,0 −φ2,−1)

′ + Iion(φ2,0 −φ2,−1)}

=− πa2
0

Redx
(φ1,0 −2φ2,0 +φ3,0).

If we now define the transmembrane potentials

Vn ≡φn,1 −φn,0 and Wn ≡φn,−1 −φn,0

the above become

CmV ′
2 + Iion(V2)= a1

2Ra

V1 −2V2 +V3

dx2 + a1

2Ra

φ1,0 −2φ2,0 +φ3,0

dx2 (9.7)

CmW ′
2 + Iion(W2)= a−1

2Ra

W1 −2W2 +W3

dx2 + a−1

2Ra

φ1,0 −2φ2,0 +φ3,0

dx2 (9.8)

and

a1{CmV ′
2 + Iion(V2)}+a−1{CmW ′

2 + Iion(W2)}=− a2
0

2Re

φ1,0 −2φ2,0 +φ3,0

dx2 .

On substituting this equation into Eqs. (9.7) and (9.8) we find

a2
0Ra +a2

1Re

a2
0Ra

{CmV ′
2 + Iion(V2)}+ a1a−1Re

a2
0Ra

{CmW ′
2 + Iion(W2)}= a1

2Ra

V1 −2V2 +V3

dx2 (9.9)

a2
0Ra +a2

−1Re

a2
0Ra

{CmW ′
2 + Iion(W2)}+ a−1a1Re

a2
0Ra

{CmV ′
2 + Iion(V2)}= a−1

2Ra

W1 −2W2 +W3

dx2 . (9.10)

Now (a2
0Ra +a2−1Re)/(a1a−1Re) times Eq. (9.9) minus Eq. (9.10) brings

CmV ′
2 + Iion(V2)= c1

a1

2Ra

V1 −2V2 +V3

dx2 −c2
a−1

2Ra

W1 −2W2 +W3

dx2 , (9.11)

where the coupling parameters are

c1 = a2
0Ra +a2

−1Re

a2
0Ra +(a2

1 +a2−1)Re
and c2 = a1a−1Re

a2
0Ra +(a2

1 +a2−1)Re
. (9.12)
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Similarly, (a2
0Ra +a2

1Re)/(a1a−1Re) times Eq. (9.10) minus Eq. (9.9) brings

CmW ′
2 + Iion(W2)= c−1

a−1

2Ra

W1 −2W2 +W3

dx2 −c2
a1

2Ra

V1 −2V2 +V3

dx2 , (9.13)

where

c−1 = a2
0Ra +a2

1Re

a2
0Ra +(a2

1 +a2
−1)Re

.

Current balance at the remaining nodes proceeds exactly as above. As such we may express the full coupled system as

Cmu′(t)+gCl(u(t)−VCl)+gKn4(u−VK)+gNam3h(u−VNa)=Bu(t)+f(t), (9.14)
where

u(t)=
(

v(t)
w(t)

)

with v(t)= (V1(t), . . . ,Vn(t))T and w(t)= (W1(t), . . . ,Wn(t))T . The matrix B is defined by

B =
(

c1G1S −c2G−1S
−c2G1S c−1G−1S

)
,

with G±1 = a±1/(2Ra) and S is our familiar second difference matrix. The gating variables continue to obey equations
of the form

m′(t)= m∞(u(t))−m(t)
τm(u(t))

where

m∞(u(t))= (m∞ (u1(t)), . . . ,m∞(un(t)))T and τm(u(t))= (τm (u1(t)), . . . ,τm(un(t)))T .

We recognize that the off-diagonal elements of B capture the interaction of the two cables. In particular, each cable
“stimulates”the other through a current that is proportional to the spatial second difference of its membrane potential.
In addition, as c±1<1, we note that the effective individual axial conductances, c±1G±1, are each smaller than their
original values.

We may proceed, as in the case of a single cable, to apply the staggered Euler scheme to Eq. (9.14). We have
implemented this in stE2cab.m and demonstrate its findings in Figure 9.6. In reality both cables would be receiving
independent input and rather than the first cable fully exciting the second, it is more likely that activity in the first
serves to lower the second’s threshold for excitation. This is the scenario illustrated in Figure 9.4 and we will investigate
it further in the exercises.

It may perhaps be easier to visualize the interaction terms by passing to the limit, dx → 0, in Eq. (9.14) and so
arriving at the coupled active cable equations

Cm
∂V
∂t

+gCl(V −VCl)+gKn4
1(V −VK)+gNam3

1h1(V −VNa)= c1G1
∂2V
∂x2 −c2G−1

∂2W
∂x2 + Istim/(2πa1)

Cm
∂W
∂t

+gCl(W −VCl)+gKn4
2(W −VK)+gNam3

2h2(W −VNa)= c−1G−1
∂2W
∂x2 −c2G1

∂2V
∂x2

where

∂tm1 = m∞(V)−m1

τm(V)
and ∂tm2 = m∞(W)−m2

τm(W)
,

and similarly for the remaining gating equations. The two potential equations now make it clear that it is the axial
current in a cable that stimulates its neighboring cables. In particular, with regard to Figure 9.6E, we see that as the top
cable fires, its membrane potential, V, at fixed time t, progresses from a single concave bump to two concave bumps
traveling away from the site of initiation. Where V is concave we know that ∂2V/∂x2 ≤0 and so the stimulus to the
lower cable is positive. Hence, as the V wave travels in the upper cable it reinforces, and is likewise reinforced by, the
W wave in the lower cable.
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FIGURE 9.6 The full space-time potentials of the two cables (top at left and bottom at right) separated by 2a0. Each cable is identical to that
examined above in Figure 9.2 and the resistivity of the extracellular medium is Re = 0.1 k�cm. We stimulate the top cable with a suprathreshold
pulse as in Eq. (9.6) with I0 = 400 pA. This causes an action potential traveling wave in the cable. A. With a0 = 1.5μm the wave in the top cable
delivers a complex, but ultimately subthreshold stimulus to the lower cable, as illustrated in B. The influence of this upon the top cable appears
negligible. C. With a0 = 1μm the wave in the top cable produces a small disturbance in the bottom cable that eventually brings its two ends to
threshold. These two end waves travel inward and annihilate each other at the midpoint, see D. This latter wave causes a notable, but subthreshold,
disturbance in the top cable. E. With a = 0.5μm the wave in the top cable quickly ignites a wave in the bottom cable, see F. The bottom wave likely
lies in the refractory wake of the top wave and therefore provides negligible feedback. (stE2cab.m)

9.3 THE ACTIVE NONUNIFORM CABLE

Neurons are not simply nonuniform in their geometry and branching patterns, they are also highly nonuniform
with regard to their distribution of channels. One simple nonuniformity stems from the observation that many cells
partition their “input end” from their “output end” for the obvious reasons that action potentials have a metabolic
cost and several inputs ought to arrive in a small window if the subsequent output spike is to mean anything. This
partition is often achieved by distributing channels in such a way as to create a weakly excitable dendrite and a
strongly excitable cell body and axon initial segment. For example, see Figure 9.7, Purkinje and CA3 cells achieve
this by decreasing gNa with distance from the soma, while CA1 and mitral cells achieve this by increasing gK with
distance from the soma.
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FIGURE 9.7 Channel densities, as a function of distance from the soma, for a variety of cell types and channel types. Here Purkinje denotes the
large inhibitory cells of the cerebellum (see Figure 8.1E), the mitral cell is a cell type found in the olfactory bulb, CA1 and CA3 refer to pyramidal cells
found in two distinct regions of the hippocampus. A. Distribution of sodium channels. In B, IKA and KA refer to the A-type potassium conductance
of §4.4, while KDR signifies the delayed rectifier current of §4.3. C. Distribution of Ih, the inward rectifier investigated in §5.5. D. Distribution of
three types of calcium conductances (T, N, and L). We will construct models of each of these calcium currents in §13.1. See also §10.3 for a model
of IT . From Migliore and Shepherd (2002).

Before opening the door to wildly branched cells with exotic channel distributions we focus on the straight cable
and mimic a weakly excitable dendrite and a highly excitable cell body by assuming that both sodium and potassium
peak conductances are constant, except for an excitable “hot spot”:

gK(x)=40−201siz(x) and gNa(x)=44+5601siz(x) where siz = (0.005,0.01) (9.15)

denotes the spike initiation zone and the cable has length �=0.1 cm. We first compute the associated nonuniform rest
potential by solving GaV ′′

r (x)= Iss(x) where

Iss(x,Vr)≡gNa(x)m
3∞(Vr)h∞(Vr)(Vr −VNa)+gK(x)n

4∞(Vr)(Vr −VK)+gCl(Vr −VCl), (9.16)

subject to V ′
r(0)=V ′

r(�)=0. We solve this, as before, via Newton’s method with fsolve in MATLAB, although here,
with perhaps thousands of compartments, this is a much more difficult task. The Jacobian, ∇Iss ∈RNx×Nx ,

(∇Iss)ij = ∂Iss
i (V)

∂Vj
(9.17)
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that springs from the quasi-active counterpart (see §9.4) greatly eases the burden. In particular, writing the discretized
rest equation as GaSV−Iss(V)=0 we note that Newton’s method converges to the (discrete) rest potential via the
update rule

Vk+1 =Vk −(GaS−∇Iss(Vk))\(GaSVk −Iss(Vk)).

We have coded this in stEcabnon.m and illustrate its use in Figure 9.8.
We see in both panels of Figure 9.8 a direct reflection of the cable’s nonuniform channel distribution. To better

appreciate the impact of Figure 9.8B we show in Figure 9.9 the full spatio-temporal response to a stimulus that is
subthreshold when delivered distally but suprathreshold when delivered proximally.

Although the stimulus in Figure 9.9B was delivered to a weak segment of the cable we see that the entire cable is
excitable enough to support a traveling action potential. In addition, as in Figure 9.1, we note that the action potential
in the distal region is smaller than that at the siz.

We now focus on the synaptic machinery that detects the presence of such a back-propagating action potential
in the postsynaptic cell shortly following presynaptic activity. In particular, we place a spine (recall §6.5) at xs and
endow its head with two types, AMPA and NMDA, of glutamate receptors. The abbreviation NMDA stands for
N-methyl-D-aspartic acid, which is a selective activator (or agonist) of the NMDA receptor (NMDAR), just as AMPA
is for the AMPA receptor. We built a model for AMPA receptors in §2.5. The methodology for NMDARs is similar to a
point, for the associated conductance has a strong voltage dependence. If W denotes the spine head transmembrane
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FIGURE 9.8 Rest potential (A) and threshold current (B) for the cable with the nonuniform channel distribution specified in Eq. (9.15).
(stEcabnon.m and stEcabthreshloc.m)
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FIGURE 9.9 Response to injection of 200 pA for 1 ms at x = 0.06, (A), and x = 0.04 cm, (B). This is not merely a three-dimensional view of
Figure 9.8B, for here we see that the proximal stimulus did not elicit an action potential at the stimulation site (where the cable is only weakly
excitable), but rather was sufficiently strong that it eventually reached the highly excitable zone. (stEcabnon.m)
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potential our cable equation takes the form

Cm
∂V
∂t

=Ga
∂2V
∂x2 −gNam3h(V −VNa)−gKn4(V −VK)−gCl(V −VCl)+γ2(W(t)−V(x, t))δ(x−xs)

while the spine potential, W, obeys

CmW ′(t)+gCl(W(t)−VCl)+(gA(t)+gN(t)M(W(t)))(W(t)−Vsyn)=γ1(V(xs, t)−W(t)). (9.18)

The coupling parameters, as in §6.5, are

γ1 =1/(RsnAsh) and γ2 =1/(Rsn2πa)

while the AMPA and NMDA conductances obey

gA(t)=gARA(t) and gN(t)=gNRN(t) (9.19)

where RA and RN are the respective fractions of activated AMPA and NMDA receptors. We suppose, as in Eq. (2.20),
that they obey the first order equations

R′
A(t)= k+

A T (t)(1−RA(t))−k−
A RA(t) and R′

N(t)= k+
NT (t)(1−RN (t))−k−

N RN(t)

where T (t) is the dosage of glutamate received at the spine head. We encode the voltage dependence of the NMDA
receptor in

M(W)= 1
1+ [Mg2+]e exp(−0.062W)/3.57

, (9.20)

where [Mg2+]e (in units of mM) denotes the extracellular concentration of magnesium ions and is normally equal
to 2 mM. These ions block the channel pore associated with the NMDAR from the outside at resting levels of W
(Figure 9.10A). This magnesium block is relieved upon sufficient spine depolarization in a manner that is well captured
by Eq. (9.20) (Figure 9.10B). As a result, the current flow across the NMDAR channel is a highly nonlinear function
of W (Figure 9.10C).

Regarding initial conditions, it follows from Eq. (9.18) that the resting spine potential obeys

gCl(Wr −VCl)=γ1(Vr(xs)−Wr), e.g., Wr = gClVCl +γ1Vr(xs)

gCl +γ1

and so the cable rest potential obeys

GaV ′′
r =gNam3∞(Vr)h∞(Vr)(Vr −VNa)+gKn4∞(Vr)(Vr −VK)+gCl(Vr −VCl)− γ2gCl

gCl +γ1
(VCl −Vr)δ(x−xs).

We solve this for Vr precisely as in Eq. (9.17).
If T is simply a pulse we may invoke the exact solution for RA and RN in Eq. (3.36). Let us, however, proceed more

generally and define

T j =T (( j−1)dt), and R
j
A ≈RA((j−1)dt),

and update RA via the backward Euler scheme

R
j
A = R

j−1
A +dtk+

AT j

1+(k+
AT j +k−

A )dt
.

Given the explicit nonlinearity, M in Eq. (9.20), we update W by the hybrid backward Euler scheme

Cm(W
j −Wj−1)/dt+gCl(W

j −VCl)+(g j
A +g j

NM(Wj−1))(Wj −Vsyn)=γ1(V
j−1
k −Wj)
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FIGURE 9.10 A. Schematic illustration of the block of the NMDA receptor channel by magnesium. At potentials near rest, magnesium enters
the pore and blocks the channel (bottom). At depolarized potentials the magnesium is ejected and the channel is free to pass Na+, K+, and, most
importantly, Ca2+. B. Dependence of gN M on W. C. Dependence of gN M(W)(W −Vsyn) on W.

or

Wj = (Cm/dt)Wj−1+gClVCl +(g j
A +g j

NM(Wj−1))Vsyn +γ1V
j−1
k

(Cm/dt)+gCl +g j
A +g j

NM(Wj−1)+γ1

.

We apply the same scheme to the gating variables, e.g.,

m
j
i = m

j−1
i +dtαm(V

j−1
i )

1+dt(αm(V
j−1
i )+βm(V

j−1
i ))

,

and finally update the cable potential via an honest backward Euler scheme

Cm(Vj −Vj−1)/dt = (GaS−diag (dj))Vj +fj

where the elements of dj and fj are

d
j
i =gNa(m

j
i )

3hj +gK(n
j
i)

4 +gCl +γ2δik and

f
j
i =gNa(m

j
i )

3hjVNa +gK(n
j
i)

4VK +gClVCl +γ2W
jδik
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FIGURE 9.11 Potentials (A), and currents (B), at the spine, on the nonuniform active cable. Following the BPAP, we see the strong late
depolarization of the spine head free the magnesium block at the NMDAR and so permit a sizable, inward, NMDA current. This current is the
signature of near coincident pre- and postsynaptic activity, and as such forms a natural substrate for the Hebbian learning algorithm of §12.6.
To lend it even greater specificity, this current is rich in calcium ions. We will take a careful look at the complex role of Ca2+ in spine heads in
Chapter 13. (stEcabspine.m)

and k is the number of the compartment at which the spine is attached. We now consider a concrete example. We
place a spine at xs =0.04 cm, with the geometric parameters as in Eq. (6.57), and receptor and conductance parameters

k+
A =1.1 (mMms)−1, k−

A =0.19 ms−1, and gA =200 mS/cm2,

k+
N =0.072 (mMms)−1, k−

N =0.0066 ms−1, and gN =100 mS/cm2,

and synaptic reversal potential Vsyn =20 mV. On stimulating the spine with a 1 ms pulse of 1 mM glutamate we
find, as in Figure 9.9B, slow progression of subthreshold depolarization toward the hot zone followed by a rapid
back-propagating action potential (BPAP). We plot the salient features in Figure 9.11.

9.4 THE QUASI-ACTIVE CABLE∗

If the injected current is small, say εIstim, we may develop V and its gating variables in power series, as in Eq. (5.1),
in ε. For example, V(x, t)=Vr(x)+εṼ(x, t)+O(ε2), where Vr(x) is the rest potential. As in Eq. (5.2), the linear terms in
this expansion obey what we call the quasi-active system

∂m̃
∂t

= (m′∞Ṽ −m̃)/τm

∂h̃
∂t

= (h′
∞Ṽ − h̃)/τ h

∂ñ
∂t

= (n′∞Ṽ − ñ)/τn

Cm
∂Ṽ
∂t

=λ2 ∂
2Ṽ
∂x2 −gNa{m3hṼ +(3m̃m2h+m3h̃)vNa}−gK{n4Ṽ +4ñn3vK}
−gClṼ + Istim(x, t)/(2πa),

(9.21)

where m(x)≡m∞(Vr(x)), τm ≡ τm(Vr(x)), and m′∞ ≡m′∞(Vr(x)). We gather the unknowns in y ≡ (m̃ h̃ ñ Ṽ)T and rep-
resent Eq. (9.21) as

∂y
∂t

=By+f (9.22)
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where f = Istim(x, t)/(2πaCm)(0 0 0 1)T and B is the matrix differential operator

B =

⎛
⎜⎜⎜⎝

−1/τm 0 0 m′∞/τm

0 −1/τh 0 h
′
∞/τh

0 0 −1/τn n′∞/τn

−3m2hvNa/τNa −m3vNa/τNa −4n3vK/τK (λ2/τ)∂xx −γ

⎞
⎟⎟⎟⎠ (9.23)

where γ =m3h/τNa+n4/τK +1/τCl. We have discretized (precisely as in the past three sections) and coded this system
in stEQcab.m. We contrast the quasi-active and active responses of the uniform cable to random current stimuli in
stEcabQandA.m and illustrate our findings in Figure 9.12.

Figure 9.12 indicates that the quasi-active model is an accurate predictor of the cumulative response to subthreshold
spatio-temporal input. We next investigate its ability to predict the cell’s resonant frequency.

Resonance. We expect the resonant frequencies of the active cable to be reflected in the imaginary parts of the eigen-
values of B. As in §5.3 we write

Bw(x)= ζw(x) with w ≡ (μ(x) η(x) ν(x) q(x))T

and deduce that

m′∞q−μ= ζτmμ so μ= m′∞
1+ζτm

q.

The other gating variables follow suit, namely

η= h
′
∞

1+ζτ h
q and ν= n′∞

1+ζτn
q

and so the equation for the quasi-potential, q, reads

(λ2/τ)q′′ −
(
γ + 3m2hvNam′∞

τNa(1+ζτm)
+ m3vNah

′
∞

τNa(1+ζτ h)
+ 4n3vKn′∞
τK(1+ζτ n)

)
q= ζq. (9.24)
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FIGURE 9.12 The voltage response at x = 0, for both the active and quasi-active uniform cable, to 10 current stimuli, each 1 ms in duration and
20 pA in amplitude, with random start times and locations. Compare with Figure 5.1. (stEcabQandA.m)
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If the cable is uniform then the large bracketed term is independent of x and we may choose q to be the nth eigen-
function, Eq. (6.39), of the passive uniform cable. As q′′

n =ϑnqn Eq. (9.24) becomes

(λ2/τ)ϑnqn −
(
γ + 3m2hvNam′∞

τNa(1+ζτm)
+ m3vNah

′
∞

τNa(1+ζτ h)
+ 4n3vKn′∞
τK(1+ζτn)

)
qn = ζqn.

On canceling the common qn we find that the eigenvalue, ζ , must be a root of the quartic

Pn(ζ )= (ζ +γ −(λ2/τ)ϑn)(1+ζτm)(1+ζτ h)(1+ζτ n)+3m2hvNam′∞(1+ζτ h)(1+ζτ n)/τNa

+m3vNah
′
∞(1+ζτm)(1+ζτ n)/τNa +4n3vKn′∞(1+ζτm)(1+ζτ h)/τK.

(9.25)

We label these roots

ζn,j, n=0,1,2, . . . , j =1,2,3,4

and illustrate them in Figure 9.13 for uniform cables of differing lengths. As ϑ0 =0 it follows that the roots of P0 are
precisely those of the space-clamped isopotential cable (recall Eq. (5.24)). As in §5.3, the associated eigenfunctions of
B for the uniform cable are

wn,j(x)=
(

m′∞
1+ζn,jτm

qn(x)
h
′
∞

1+ζn,jτ h
qn(x)

n′∞
1+ζn,jτn

qn(x) qn(x)

)T

(9.26)

and so if

Istim(x, t)=
∞∑

n=0

Istim,n(t)qn(x), i.e., Istim,n(t)=
�∫

0

Istim(x, t)qn(x)dx,

then the full stimulus vector enjoys the expansion

f =
∞∑

n=0

4∑
j=1

cn,j(t)wn,j(x)
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FIGURE 9.13 The roots of the quartic Pn, Eq. (9.25), for n= 0,1,2,3,4. The radius of the enclosing circle is proportional to n+1.
A. �= 1 mm. B. �= 2 mm. Regarding resonance, our interest is in nonreal eigenvalues with large real part (arrows on plot). We observe that
these occur for n= 0 and so correspond to the constant eigenvector, q0. We also observe that although the longer cable possesses more nonreal
eigenvalues, the nonreal eigenvalue with the largest real part is the same in the two cases. Note that the cable length, �, enters Pn via ϑn =−(nπ/�)2
and so is not seen by P0. (quasicabspec.m)
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where, recalling Eq. (5.26),

cn,j(t)= Istim,n(t)
2πaCm

(1+ζn,jτm)(1+ζn,jτ h)(1+ζn,jτn)

τmτ hτn
∏

k �=j(ζn,j −ζn,k)
. (9.27)

It follows that

Ṽ(x, t)=
∞∑

n=0

qn(x)
3∑

j=0

t∫
0

cn,j(s)exp((s− t)ζn,j)ds (9.28)

is the response, with respect to rest, of the quasi-active uniform cable.
We next investigate, in Figure 9.14, the impact of nonuniform channel distribution on the eigenvalues and eigen-

vectors of the quasi-active system. In this case, although the eigenvectors retain the functional form in Eq. (9.26), the
nonuniformity of the coefficients in Eq. (9.24) prohibit its exact solution. We therefore turn to numerical means. We
have coded the discretized nonuniform eigenvalue problem in Qcabnon.m.

We now investigate the correspondence between the spectra of the uniform and nonuniform quasi-active cables
and the associated resonance, or input resistance, curves of the corresponding active cables. In particular, we drive
the uniform and nonuniform active cables with the distributed current

Istim(x, t)= I0 sin(2πωt)�(q0(x)) (9.29)

where �(q0) is the real part of the eigenvector of B associated with the nonreal eigenvalue of greatest real part for the
uniform, and nonuniform quasi-active cables, respectively. These two spatial distributions of current will maximize
the respective resonances. We drive the cable until time T, where T is large enough to get past the initial transient,
then compute

Vmax,∞ ≡ max
0≤x≤�
t>T/2

V(x, t) (9.30)

and examine, in Figure 9.15, the dependence of the associated input resistance on input frequency.

�0.3 �0.25 �0.2 �0.15 �0.1 �0.05
�0.2

�0.15

�0.1

�0.05

0

0.05

0.1

0.15

0.2

Real

(A) (B)

Im
ag

in
ar

y

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0

0.05

0.1

0.15

0.2

x (cm)

q0 (real)

q0 (imag)

q1 (real)

q1 (imag)

FIGURE 9.14 Eigenvalues (A), and eigenvectors (B), of the quasi-active operator B when the active conductances are distributed per Eq. (9.15).
Regarding panel A: since the nonreal eigenvalue with the greatest real part has moved right in comparison to Figure 9.13 (see arrows on plot),
we expect the associated input resistance to have a sharper peak. The eigenvectors in B, labeled q0 and q1, correspond to the two pair of nonreal
eigenvalues in A, with q0 associated with the nonreal eigenvalue of greatest real part. Compare Figure 6.2. (Qcabnon.m)
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FIGURE 9.15 Input resistance, Rin(ω)= Vmax,∞/I0, of the active cable where I0 = 10 pA and ω are prescribed in Eq. (9.29) and Vmax,∞ in
Eq. (9.30). As predicted by the two quasi-active spectra, the nonuniformity has yielded a sharper resonant peak. (stEcabResdrive.m)
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FIGURE 9.16 Action potential propagation in the active uniform fork. A 1 ms suprathreshold current pulse was delivered near the distal end
of the black daughter at 0.5 ms. We see her depolarize and initiate a wave that travels in both directions. As it reaches the branch point the wave
splits and travels down the mother and up the other daughter (both in red). (stEfork.m)

9.5 THE ACTIVE DENDRITIC TREE

We return to the forked cell with geometric and passive parameters as in Eq. (8.7) and Eq. (8.8). To this we add the
standard Hodgkin–Huxley channels and investigate action potential wave propagation (see Figure 9.16), threshold,
attenuation, and synaptic integration.

The minimum current required to elicit such a wave is revealed in Figure 9.17A. We next repeat the experiment of
Figure 8.7. That is, we compute the maximal somatic and synaptic potentials arising from a single α-synaptic input,
as the synapse is placed at successively more distal locations. We illustrate our findings in Figure 9.17B.

We next investigate the active tree’s integration of two synaptic inputs. For simplicity we will illustrate our findings
for the uniform active tree. In each case, each synapse will be described by an α-function with gsyn =0.5 nS and
τα=1 ms, though typically inhibitory GABA synapses have longer time constants (≈5 ms) than excitatory AMPA
synapses. For excitatory synapses we use Vsyn =0 and for inhibitory Vsyn =−70 mV.

In our first simulation we contrast the response at the soma to simultaneous excitatory input into the two daugh-
ters with the sum of the responses to individual input. The placement of the synapses is illustrated in the inset to
Figure 9.18A. The corresponding curves demonstrate the cell’s strong nonlinear amplification of the two inputs.

In our second simulation we contrast distal and proximal inhibition of a fixed excitatory input. The placement is
illustrated in the inset to Figure 9.18B. The red diamond marks the excitatory synapse while the inhibitory synapse
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FIGURE 9.17 The active uniform fork. A. Threshold at which a 1 ms current pulse will generate an action potential, as a function of stimulation
site. B. Peak somatic and synaptic potentials. (stEforksyngain.m and stEforkthreshloc.m)
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FIGURE 9.18 The response at the cell body of the active uniform fork to a pair of synaptic inputs. A. Comparison of response to simultaneous
dual excitation (red) to the sum of the responses to individual excitations (black). In these two cases we report the relative soma potential,
V(�3, t)−Vr(�3). B. Comparison of response to distal (red) and proximal (black) inhibition of a fixed excitatory input. C. Comparison of distal
before proximal excitatory input to proximal before distal excitatory input. (stEforksyndrive.m)

is placed at either, but not both, the proximal or distal black x. The corresponding curves demonstrate that proximal
inhibition offers significantly more attenuation.

In our two previous examples our two synapses were presumed to fire simultaneously. For our third simulation
we contrast the timing of distal and proximal excitatory input. The placement of the synapses is illustrated in the inset
to Figure 9.18C. The two inputs were separated in time by 2 ms. The corresponding curves demonstrate that distal
before proximal offers a greater boost than proximal before distal.

Using the active fork we have been able to illustrate the basic notions of action potential propagation and synaptic
integration. Most cells, recall Figure 8.1, however, possess tens and often hundreds of tapered branches. The modeling
of such structures proceeds as above, i.e., we compartmentalize, balance currents, and construct the associated Hines
matrix. The compartmentalizationis, however, preceded by a manual or automatic “tracing” of the cell’s morphology.
There are now two standard formats, asc and swc, for files that represent these tracings, see Cannon et al. (1998). We
have included converters for both types, ascconverter.m and swcconverter.m, as well as routines that make the
common morphology data structure and Hines matrix, makemd.m and makeH.m, and finally a routine for viewing the
tree, treeplot.m. With these we may extend stEforksyn.m to stEtreesyn.m and so permit the MATLAB simulation
of practically all traced cells. For example, we examine in Figure 9.19 a pyramidal cell from the CA1 region of the
rodent hippocampus.
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FIGURE 9.19 The response at the cell body to 12 synaptic inputs. The cell model is weakly excitable, gK = 40, gNa = 40 mS/cm2, with a highly
excitable cell body gK = 20 and gNa = 600 mS/cm2. A. Alpha synapses, gsyn = 0.75 nS and τα = 1 ms, are placed at the locations shown. Red for
excitatory, Vsyn = 0, and black for inhibitory, Vsyn =−70 mV. The number indicates the activation time (in ms). B. The resulting response at the cell
body. (stEtreesyn.m)

9.6 SUMMARY AND SOURCES

We have constructed a mathematical model of a uniform active cable and combined our computational approaches
to the active isopotential cell and passive cable to produce an efficient means for investigating (a) the threshold at
which current injection ignites a traveling action potential and (b) the impact of this traveling wave upon neighboring
cables. As in the isopotential case the quasi-active approximation performs well in the subthreshold regime. We
examine this system more closely in §14.4. We extended our model to active, branched, nonuniform, spiny cables and
demonstrated how distal subthreshold synaptic input may be transferred by the cable to a region where it suffices to
ignite an action potential that travels both down the cell’s axon and up into its dendritic tree. As the action potential
reaches the spine(s) that spawned its ignition it opens synaptic NMDA channels that permit calcium into those spines
whose presynaptic activity lead the cell to fire. We will see that spinal calcium may in turn trigger synaptic plasticity.

The active cable equation was posed and studied by Hodgkin and Huxley (1952). Through a mix of analytical and
computational methods they demonstrated that the equation was consistent with action potentials that traveled at
speeds very close to those observed in the giant axon of the squid. The section on ephaptic interaction of two cables
was suggested by Scott (2002). For further background see Jefferys (1995). The kinetic schemes and parameters of the
AMPA and NMDA receptors in §9.3 are drawn from Destexhe et al. (1998). Although we have adopted MATLAB as a
platform for modeling, simulation, and analysis, there are excellent software tools that are tailored for both modeling
and simulation of single neurons as well as circuits. The two most commonly used are GENESIS, see Bower and
Beeman (1998), and NEURON, see Carnevale and Hines (2006). We examine the impact of myelin on axonal wave
propagation in Exercises 3–5. FitzHugh (1962) is one of the first models of the myelinated axon. For a recent historical
review of myelin, see Hartline and Colman (2007).Exercise 6 considers large scale synaptic input into a finely branched
cell in a manner motivated by Destexhe et al. (2001).

9.7 EXERCISES

1. Investigate the impact of cable radius and gNa on the velocity of the action potential that propagates down the
active uniform cable. In particular, modify stEcab.m to produce Figure 9.20.

2. †Investigate the extent to which an excited cable lowers the threshold of its neighbors. In particular, modify
stE2cab.m to produce Figure 9.21.

3. We have seen that wave speed along cables can be increased by increasing either the cable radius or the density of
sodium channels. As each of these comes with high metabolic costs a third way, based on insulation, has evolved.
Many long axons in the nervous system of vertebrates (and invertebrates as well) are wrapped with layers of fat,
known as myelin.
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FIGURE 9.20 A. Travelling action potential wave speed of the active uniform cable of Figure 9.2 as a function of cable radius. B. Rest
potential and action potential wave speed of the active uniform cable of Figure 9.2 as a function of maximal sodium conductance, gNa.
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FIGURE 9.21 The maximum midcable depolarization, and the time at which it occurs, in an active uniform cable of radius 1μm, e.g., 2μm
away from a second cable of radius 1μm. This second cable receives a midcable, 1 ms, 400 pA current stimulus, while the first cable receives
a midcable, 1 ms current injection of amplitude I0. On comparing with Figure 9.2B we find that the active neighbor lowers the threshold from
150 to 120 pA. (stE2cabthresh.m)

These layers are outgrowths of neighboring glial cells. As myelin is only a passive conductor, in order for the
wrapped axon to support a traveling action potential the myelin is periodically perforated, exposing the underlying
cable at what are known as nodes of Ranvier, see Figure 9.22A. The distribution of Na+ and K+ channels at nodes
of Ranvier is highly specific, as illustrated in Figure 9.22B. We will build and investigate, in a series of exercises, a
simple model of a myelinated cable. In particular, we will assume that the roughly 100 layers of myelin serve to
decrease both the membrane capacitance and conductance by a factor of 100 and that the cable expresses active
conductances only at the nodes of Ranvier. Modify stEcab.m to accept two new parameters, id, the internodal
distance, and nnor, the number of nodes of Ranvier and so reproduce Figure 9.23.
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FIGURE 9.22 A. Schematic cross section of a segment of myelinated cable. B. Double-labeled micrograph of myelinated axons in the optic
nerve illustrating the distribution of channels at nodes of Ranvier. The staining is for Na+ channels in red, and Kv1.2 K+ channels in gray. The
Na+ channels are localized at the nodes which typically measure 1μm in length along the nerve fiber. The K+ channels are localized in the
paranodal region. Micrograph courtesy of Dr. M.N. Rasband, Dept. of Neuroscience, Baylor College of Medicine, Houston, TX.
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FIGURE 9.23 The rest potential, (A), and traveling action potential, (B), in a myelinated cable of radius 1μm with 10 nodes, an internodal
distance id = 2 mm, a node length of 2μm, and a step size dx = 1μm. Two of the ten nodes appear at the cable’s two ends. The cable was driven
with a 1 ms, 50 pA current pulse at the first node. The membrane capacitance was 1μF/cm2 in each nodal compartment and 0.01 in each inter-
nodal compartment. The membrane conductance was 0.3 mS/cm2 in each nodal compartment and 0.003 in each internodal compartment. The
sodium conductance density was 120 mS/cm2 in each nodal compartment and 0 in each internodal compartment. The potassium conductance
density was 36 mS/cm2 in each nodal compartment and 0 in each internodal compartment. (myelins.m)
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4. †We note in Figure 9.23B that the potential dips between nodes. Please modify your code from the previous exercise
in order to ascertain, as in Figure 9.24, the dependence of action potential wave speed on internodal distance and
cable radius.
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FIGURE 9.24 Action potential wave speed of the myelinated cable. The wave slows as the internodal distance grows. (myelinsdriver.m)

5. Diseases such as multiple sclerosis are characterized by the systematic, and typically irreversible, loss of myelin.
To understand how this can lead to loss of function please modify your code from Exercise 3 to reflect the loss of
the sixth segment of myelin and so reproduce the findings of Figure 9.25.
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FIGURE 9.25 Conduction block in a partial demyelinated cable. This is the cable used in Figure 9.23 except that Cm = 1μF/cm2 and
gCl = 0.3 mS/cm2 in the sixth internodal segment. A. With an internodal distance id = 300μm we see conduction slow in the demyelinated
segment and then recover. B. With an internodal distance of id = 400μm the wave stagnates in the demyelinated segment. (demyelin.m)

6. We now consider the impact of large scale synaptic input onto a realistic cell. The cell’s asc file is called sep12a.asc
and has been plotted using treeplot.m in Figure 9.26A. Please modify stEtreesyn.m to reproduce the remaining
panels in Figure 9.26 and Figure 9.27.

With a compartment size of 2μm the cell is subdivided in 945 compartments. We assume the branches to be
weakly excitable, gK =gNa =40 mS/cm2, and the cell body to be strongly excitable, gK =20 and gNa =600 mS/cm2.
The leakage conductance is everywhere 1/15 mS/cm2. We place anα-synapse at every compartment. Eighty percent
are presumed excitatory, Ve =0 mV and τe =0.5 ms, and the remainder are inhibitory, Vi =−80 mV and τi =1 ms.
Their locations and start times are randomly chosen from the uniform distribution. The maximal excitatory conduc-
tance, ge, is normally distributed with mean 1 nS and variance 0.01 nS, while the maximal inhibitory conductance,
gi, is normally distributed with mean 2 nS and variance 0.01 nS. We illustrate the cell and the mean conductance
waveforms and their activation in space and time in Figure 9.26.

MATHEMATICS FOR NEUROSCIENTISTS



140 9. THE ACTIVE DENDRITIC TREE

�100�50 0 50 100 150 200 250 300 350 400
�500

�400

�300

�200

�100

0

100

Distance (�m)

D
is

ta
nc

e 
(�

m
)

0 1 2 3 4 5 6 7 8 9 10
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Time (ms)

(A) (B)

C
on

du
ct

an
ce

 (
nS

)

g
e

g
i

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

900

1000

Time (ms)

C
om

pa
rt

m
en

t N
um

be
r

C
om

pa
rt

m
en

t N
um

be
r

0 20 40 60 80 100 120 140 160 180 200

Time (ms)

(C) (D)

FIGURE 9.26 A. Pyramidal cell from the rat entorhinal cortex. B. Unitary excitatory and inhibitory conductance time courses. C and D.
Two instances of random synaptic input into the cell of A. Each black + corresponds to an excitatory input, ge as in B, at the associated
compartment at the designated time. Each red x corresponds to an inhibitory input, gi as in B, at the associated compartment at the designated
time. (drfsenoper.m)
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FIGURE 9.27 A. The current required to clamp the soma at V = Vc throughout synaptic bombardment. When clamped at −65 mV we used
the synaptic schedule of Figure 9.26C while when clamping at −55 mV we used the synaptic schedule of Figure 9.26D. B. Effective excitatory
and inhibitory conductances derived from A and Eq. (9.31). C and D. Histograms of the solution to Eq. (9.31) associated with the data in A.
(drfsenoper.m)
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FIGURE 9.28 Power spectra of the excitatory and inhibitory conductances plotted in black and red, respectively. The peak value has been
normalized to one. (drfsenoper.m)

In order to discern the “effective” synaptic impact we clamp the soma, as in Exercise 8.4, at Vc,1 and record the
ensuing clamp current, Ic,1(t), and then repeat this at a second clamp potential, Vc,2, and record the ensuing clamp
current, Ic,2(t). These currents are plotted in Figure 9.27A. With this data we may reverse engineer the effective
conductances by solving

ge(t)(Vc,1 −Ve)+gi(t)(Vc,1 −Vi)= Ic,1(t)

ge(t)(Vc,2 −Ve)+gi(t)(Vc,2 −Vi)= Ic,2(t)
(9.31)

for ge and gi. The results are presented in Figure 9.27B, C, and D. As a preview of §17.4 we also record the associated
power spectra in Figure 9.28.

MATHEMATICS FOR NEUROSCIENTISTS



C H A P T E R

10
Reduced Single Neuron Models

O U T L I N E

10.1 The Leaky Integrate-and-Fire Neuron 143

10.2 Bursting Neurons 146

10.3 Simplified Models of Bursting Neurons 147

10.4 Summary and Sources 152

10.5 Exercises 153

A principle that has proven fruitful in modeling neural systems is to consider the simplest model capable of
predicting the experimental phenomenon under consideration. This approach allows one to capture the essential
points of a particular phenomenon without obscuring the picture with unnecessary details. This is precisely the
approach taken by Hodgkin and Huxley to model action potential propagation along the squid giant axon in terms
of sodium and potassium conductances. We have also seen how a simplification of the Hodgkin–Huxley model to a
two-variable reduced FitzHugh model allows one to characterize the firing properties of the Hodgkin–Huxley system
in terms of phase plane analysis (Exercise 4.6). A set of simplified models are often used as a first pass to study issues
related to synaptic integration or the impact of subthreshold membrane conductances on the processing of sensory
inputs by neurons. In this chapter, we first present the most elementary model usually employed to simulate neurons,
called the leaky integrate-and-fire model. Next, we introduce a class of neurons that have the ability to fire short
bursts of spikes and briefly discuss their role in information processing in the nervous system. Finally, we analyze
two simplified models of bursting neurons that highlight different mechanisms of burst generation within a single
neuron.

10.1 THE LEAKY INTEGRATE-AND-FIRE NEURON

The most widespread simplified model for the activity of single neurons in response to various inputs is the leaky
integrate-and-fire neuron (LIF neuron). In this model, the conductances responsible for spike generation (gNa and gK in
the Hodgkin–Huxley model) are ignored and the spiking mechanism is replaced by a potential threshold, vthres. This
means that the membrane potential follows the differential equation,

C
dv
dt

=− v
R

+ I, t>0, (10.1)

where I = I(t) is some stimulation current and we adopt the initial condition v(0)=0. When v(t1)=vthres reaches
threshold, a spike is emitted at t1 and the potential is reset to zero. Note that at steady state and without input current
the membrane potential is equal to zero which corresponds to the resting membrane potential value of the model.

Subthreshold behavior. Below threshold, the membrane potential satisfies a linear differential equation that is none
other than the passive patch equation of Chapters 2 and 3 (e.g., Eqs. (2.12) and (3.1)). Thus, the approximation made in
the leaky integrate-and-fire model amounts to neglecting all active membrane conductances as well as the electrotonic
structure of a neuron’s dendritic tree. Furthermore, the subthreshold membrane potential of the LIF neuron is a low-
pass filtered version of its input, as in the example of §3.1.
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144 10. REDUCED SINGLE NEURON MODELS

f-I curve for constant current injection. We now compute the steady-state firing rate in response to a constant current
pulse starting at t =0. Eq. (10.1) implies an exponential relaxation to the steady-state value v∞ = IR,

v(t)= IR(1−exp(−t/τ))

with τ =RC, the membrane time constant in Eq. (2.14). Thus, the injected current I has to be larger than the threshold
current Ithres =vthres/R if the cell is to fire. For current above this value, the threshold potential is reached at that time,
tthres, for which vthres = IR(1−exp(−tthres/τ)). That is, at

tthres =−τ log(1−vthres/(IR)).

To mimic the refractory period observed in real neurons and in the Hodgkin–Huxley model, recalling Exercise 4.2,
we enforce a period tref after the spike during which the membrane potential remains fixed at its reset value. If the
model is endowed with such an absolute refractory period, tref , the firing rate is obtained from

f = 1
tref + tthres

= 1
tref −τ log(1−vthres/(IR))

. (10.2)

We infer from this formula that the firing rate saturates at a frequency f∞ =1/tref in the limit of large injected currents
(Figure 10.1).

Perfect integrator limit. In the limit of very high membrane resistance, we obtain a perfect integrator, or integrate-
and-fire (IF) neuron, governed by the differential equation

C
dv
dt

= I(t).

In this case, past inputs are not forgotten over time and sum up perfectly. Under constant current injection the
membrane potential grows at a rate I/C and thus reaches threshold when vthres = Itthres/C or equivalently the firing
rate (without refractory period) is given by f = I/Cvthres. When is the perfect integrator a reasonable approximation
to the leaky integrate-and-fire neuron? This is only the case when the average time interval between inputs is small
compared to the leaky integrate-and-fire membrane time constant τ , so that the output firing rate of the model is large
compared to 1/τ . In this case, the capacitance does not have time to discharge significantly so that inputs do not get
forgotten.

Synaptic inputs. Synaptic inputs to a LIF neuron can be simulated as simple instantaneous current inputs,

Isyn(t)=
nex∑

n=1

qexδ(t− tex,n)+
nin∑

n=1

qinδ(t− tin,n). (10.3)

This corresponds to nex excitatory inputs at times tex,n and nin inhibitory inputs at times tin,n. Here qex and qin represent
the charge transferred instantaneously to the membrane capacitance by an excitatory or inhibitory input, respectively.
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FIGURE 10.1 Firing frequency of a LIF neuron (black solid line; R = 20 M�, τ = 30 ms, tref = 1 ms, vthres = 16 mV), the corresponding IF neuron
(red line) and an LIF with vreset = 8 mV. (fi_curves.m)
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On recalling Eq. (3.4) we note that each excitatory input spike increments the potential by qex/C. In order to compute
the corresponding response we choose a time step, dt, and apply the backward Euler scheme to Eq. (10.1), with
increments when an input spike has arrived in the last dt interval, and checks on refractoriness and threshold. More
precisely, with vj ≈v((j−1)dt), we march according to

If not refractory then vj =vj−1/(1+dt/τ).
If fresh input has arrived then vj =vj +(q/C)/(1+dt/τ). (10.4)
If vj ≥vthres then vj =vreset .

The reader will have an opportunity to code this in Exercises 1 and 2 and so reproduce panels A and B in Figure 10.2.
As synaptic input is more accurately modeled as a conductance change, we also consider stimuli of the form

Isyn(t)=
nex∑

n=1

gex(t, tex,n)(v−vex)+
nin∑

n=1

gin(t, tin,n)(v−vin), (10.5)

where, e.g., each g is an α-function as in Eq. (2.17). Integration of this stimulus, in Exercises 3 and 4, will produce
panels C and D in Figure 10.2.

Membrane potential reset after an action potential. The usual choice for the reset membrane potential vreset after an
action potential is the resting membrane potential, vrest , which is equal to zero in Eq. (10.1). However, nothing forbids
us from choosing a different reset value. If vreset �=vrest , then the f-I curve of Eq. (10.2) depends on θ =vthres −vreset and
its slope for high step currents is ≈1/Cθ (assuming tref =0 and using log(1+x)≈x for x small). Thus, the value of
the reset potential allows one to control the slope of the f-I curve independently of vthres. A second consequence of a
high reset value is that the membrane potential hovers close to threshold and is thus much more sensitive to transient
coincident inputs. This typically increases the variability of the spike train under random inputs.

Relative refractory period and threshold fatigue. Real neurons typically exhibit an absolute refractory period during
which they will not fire and a relative refractory period during which the threshold for firing is elevated (Exercise 4.2
and Figure 15.3). A relative refractory period is sometimes implemented by incrementing the threshold after each
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FIGURE 10.2 LIF membrane potential in response to random excitatory current-type synaptic inputs (A), a mixture of excitatory and inhibitory
current-type synaptic inputs (B), excitatory conductance-type synaptic inputs (C) and a mixture of excitatory and inhibitory conductance-type
inputs (D). See Exercises 1–4 for model parameters. Size of spikes is arbitrarily set 30 mV above rest. (lif_rand_inp.m)
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parameters). Spike height has been arbitrarily set to 50 mV above rest. (thresh_fatigue.m)

action potential and letting it decay towards its steady-state value. More precisely,

If spiked

vthres =vthres +δvthres

else (10.6)
dvthres

dt
=−vthres −vthres0

τvthres

end.

We will put this scheme to use in Exercise 5 and achieve Figure 10.3.

Additional subthreshold conductances. Another common practice is to add additional subthreshold conductances
to the LIF neuron to study their effect on the firing characteristics of the model. For example, instead of modeling a
relative refractory period as explained above, one can introduce a conductance that hyperpolarizes the cell following
an action potential (abbreviated AHP for after-hyperpolarization) with a dependence on a slow varying variable
like the calcium concentration. We will encounter such a conductance in our model of CA3 hippocampal pyramidal
neurons in the next section, as well as in Figure 13.8.

10.2 BURSTING NEURONS

An important property of many neurons is their ability to generate short bursts of spikes. This points to the existence
of ionic conductances that are able to activate and deactivate periodically on a time scale much slower than the action
potential duration and thus drive the firing of small “packets” or bursts of spikes.

Intrinsic properties lead to different bursting behaviors. The ionic conductances responsible for bursting have been
investigated in different cell types. It is now clear that several distinct mechanisms are at play.

1. Bursting can be caused by the activation of low-threshold conductances that are usually inactivated or closed at
rest, such as the calcium permeable T conductance (IT). Hyperpolarization of the membrane potential removes the
inactivation or opens the channels and allows a depolarizing current to turn on, leading to “rebound excitation.”
Aprominent example of this bursting mechanism are relay neurons in the thalamus discussed in the next section. In
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FIGURE 10.4 Intracellular recording from a chattering neuron in the visual cortex of the cat. In response to a depolarizing current pulse
(0.9 nA) the cell generates a repetitive burst discharge of action potentials. The panel on the right is at an expanded time scale and shows an
after-depolarization following the burst. Adapted from Gray and McCormick (1996).

addition, other low-threshold conductances such as, e.g., the Ih current of §5.5 can play a similar role (see Figures 5.6
and 10.9 below).

2. A second widespread mechanism of bursting involves spatial interactions between the soma and dendritic com-
partments of a neuron. An example is given by CA3 pyramidal cells of the hippocampus that possess calcium
channels localized in the dendritic compartments, but not the soma. A two-compartment model of this bursting
mechanism is analyzed in the next section. Upon current injection in the soma, the depolarization of the dendritic
compartment is delayed in time with respect to the soma, causing significant current flow to and from the soma.
Delayed activation of dendritic calcium conductances eventually sustains the depolarization of the soma causing
the cell to burst (see Figures 10.10–10.12 below). A similar mechanism of bursting has been described in cortical
neurons called chattering cells (Figure 10.4). In these neurons the burst frequency can be unusually high (up to
40 Hz) and relies on an interaction between soma and dendrites based on fast sodium conductances, instead of
calcium conductances.

3. Dendritic morphology can play an important role in determining firing characteristics given a fixed set and distri-
bution of conductances in various functional compartments of a neuron. An example that has been investigated in
some detail includes various types of excitatory neurons of the cerebral cortex (pyramidal cells of different sizes,
smooth, and stellate cells). It has been shown by simulations that larger neurons with decoupled somatic and
dendritic compartments are more prone to bursting than more compact neurons (Figure 10.5).

4. Although intrinsic properties can cause cells to burst, such effects are typically observed within networks of cells
and the properties of bursts are thus in part determined by interactions among different neurons of a network
(Figure 10.6).

Functional role of bursts. Bursts are thought to fulfill various functional roles in the nervous system. These include:

1. Rhythm generation. Many tasks such as, e.g., locomotion, swimming, or digestion of food involve the rhythmic
activation of muscles. Such rhythms are typically generated by networks of neurons activated in definite sequences.
Thus, both the intrinsic properties of nerve cells and their pattern of synaptic connections influence the generation
of rhythms.

2. Safety against unreliable synapses. Bursts have long been thought to be effective at safely signalling important events.
One reason is that synaptic transmission is stochastic and therefore often unreliable. Thus, stimulating repetitively
a synaptic target offers a way to overcome this problem and assure that a message is delivered reliably. Therefore
bursts of spikes could represent a “safety factor” in synaptic transmission. In cortex, e.g., layer 5 pyramidal cells
are those most prone to burst and typically send long range connections toward other cortical or subcortical areas.

3. Detection of sensory events. Bursts could be used in sensory systems to signal important events; e.g., the occurrence
of a salient object in the visual field (Figure 10.7).

10.3 SIMPLIFIED MODELS OF BURSTING NEURONS

We analyze two models in detail. The first one is a single-compartment model of bursting in thalamic relay neurons
that receive inputs from the sensory periphery and send their axons to cortical neurons. The second model is a two-
compartment model of pyramidal neurons of the hippocampus, a structure at the edge of the cerebral cortex that is
thought to be involved in learning and memory as well as navigation.
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FIGURE 10.5 Model neurons with identical ion channel distributions generate distinct firing patterns according to their morphology. A. Layer
3 spiny stellate cell of the rat somatosensory cortex. B–D. Layer 4 spiny stellate cell, layer 3 pyramidal cell, and layer 5 pyramidal cell of the cat
visual cortex, respectively. Scale bars: 250 μm, 100 ms, 25 mV. Adapted from Mainen and Sejnowski (1996).

Model of thalamic relay neuron bursting. Thalamic relay neurons have been extensively investigated as a model
of bursting. We consider a single-compartment model comprising several active conductances generating distinct
currents: the fast sodium, INa, and delayed rectifier currents, IK , that are responsible for action potentials, as well
as a persistent sodium current, INaP, a low-threshold calcium current, IT , and a hyperpolarization activated mixed
sodium/potassium current, Ih, like that encountered in §5.5. The differential equation governing the model is thus,

Cm
dV
dt

=−IT − Ih − INa − IK − INaP − IL + Iinj, (10.7)

where IL is a leak (passive) current and Iinj represents the current injected through an electrode in the model.
The steady-stateactivation, s∞, and inactivation, h∞, variables for the low-threshold calcium current, IT , are plotted

in Figure 10.8 (Exercise 6). IT is excitatory with a reversal potential VCa =120 mV. Furthermore, IT is essentially
inactivated around the resting membrane potential of the model (≈−65 mV), and thus does not influence the neuron’s
response to depolarizing inputs.

The steady-state activation, q∞, and time constant, τq, functionals associated with Ih are plotted in Figure 5.6A. We
recall, §5.5, that Ih is excitatory as well, since its reversal potential is above rest (Vh =−40 mV). However, it is only
partially activated at rest. It also has the unusual property of further closing at depolarizing potentials and therefore
plays a minor role in shaping the spike pattern of the neuron when it is depolarized from rest. Consequently, a
constant, positive current pulse will mainly activate INa and IK (and INaP to a lesser extent), causing regular spiking
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FIGURE 10.6 In the weakly electric fish Apteronotus, pyramidal neurons in the pyramidal cell layer (PCL) of a hindbrain structure called the
electrosensory lateral line lobe encode information on random amplitude modulations of an external electric field (Stimulus). If a single cell is
stimulated locally, it fires action potentials that are irregular, leading to an interspike interval distribution with a single peak (middle left). In
contrast, simultaneous activation of many pyramidal cells through an extended (Global) stimulus, leads to two peaks in the interspike interval
distribution resulting from bursting patterns of action potentials (middle right). This is caused by activation of strong inhibitory feedback (top
left, red). Feedback activation by global stimuli also causes the pyramidal cells to synchronize or oscillate (bottom panels). These simulations
summarize experimental results on the role of feedback described in Doiron et al. (2003).
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FIGURE 10.7 Burst spikes of visual cortical neurons recorded in monkeys reflect more clearly than all spikes what the animal was seeing.
Bursts are defined as events consisting of two spikes less than 10 ms apart. The object was a static white disk on a black background (top). The
screen of the video monitor covered 60 by 45 degrees of visual angle. The monkey was rewarded for following a fixation point, so that the receptive
field of the cell could be positioned over the stimulus. Spikes were mapped in the lower panels according to the position of the recorded neuron’s
receptive field in space at their moment of occurrence. Adapted from Livingstone et al. (1996).

(Figure 10.9B; Exercise 7). In contrast a negative current pulse will activate Ih and relieve IT from inactivation, causing
a rebound depolarization leading to a burst of spikes well after termination of the current pulse (Figure 10.9A).

Note that since bursting can be described by a single-compartment model it does not involve the more complex
somatodendritic interactions necessary to describe bursting in other cell types. In addition bursting in the model
occurs on two different time scales: 7–14 Hz and 0.5–4 Hz, respectively, as observed in real neurons. These time
scales correlate well with the kinetics of the T-type calcium current and the h-type mixed sodium/potassium current,
respectively. Thus, the model suggests that activation of these currents is sufficient to explain the intrinsic bursting
properties of thalamic relay neurons.
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FIGURE 10.8 A. Steady-state activation, s∞, and inactivation, h∞, of IT . B. Time constant of inactivation of IT . (wang_ss.m)
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FIGURE 10.9 A. Response of the thalamic neuron model to a hyperpolarizing current pulse (−1 μA/cm2, 90 ms long). From top to bottom:
membrane potential, squared activation variable of Ih, inactivation variable of IT and current pulse as a function of time. B. Response to a
depolarizing current pulse (+3 μA/cm2). (wang_mod.m)

Model of CA3 hippocampal pyramidal neuron bursting. This model is based on two compartments representing
the soma and dendritic tree, respectively (Figure 10.10A). The somatic compartment corresponds to a fraction p of
the total membrane surface area of the neuron and the dendritic compartment to (1−p). To fit experimental data,
the model requires 1/2 of the surface area to be assigned to the somatic compartment. The somatic compartment is
endowed with fast sodium and delayed rectifier conductances that can generate action potentials while the dendritic
compartment has a voltage-activated calcium conductance that can generate calcium spikes on a much slower time
scale (Figure 10.10B). The differential equations for the somatic, Vs, and dendritic, Vd , potentials are as follows:

CmV ′
s =−gL(Vs −VL)− INa(Vs)− IK(Vs)+ gc(Vd −Vs)+ Is

p

CmV ′
d =−gL(Vd −VL)− ICa(Vd)− IK,AHP(Vd)− IK,C(Vd)−

Isyn −gc(Vs −Vd)− Id

1−p
.

(10.8)

All currents and conductances are expressed as densities, in units of μA/cm2 and mS/cm2, respectively. Thus, the
coupling current between the two compartments that is proportional to Vd −Vs and the injected somatic, Is, and
dendritic, Id, currents, as well as the synaptic current, Isyn, are scaled by the fractional area of their respective com-
partments (p and 1−p for soma and dendrite, respectively). The parameters of the model are given in Exercise 8.
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FIGURE 10.10 A. Schematic of the model, leak currents have been omitted for clarity. Id and Is represent currents injected through an electrode.
B. Sodium (black) and calcium (red) spikes elicited in the isolated somatic and dendritic compartments (gc = 0). The calcium spike was obtained
by injecting a current of 0.68 μA/cm2, while the somatic spike results spontaneously. (pr_sodca_spike.m)
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FIGURE 10.11 A. Somatic membrane potential in response to a somatic current injection (0.75 μA/cm2). B. Time course of the q variable
governing activation of IK,AHP (in black) and calcium concentration (in red, arbitrary units, scaled down by a factor one thousand). C, D. Same as
A, B but for a current injection of 2.5 μA/cm2. (pr_modes.m)

In the dendritic compartment, both potassium currents, IK,C and IK,AHP, depend on the intracellular calcium con-
centration of the dendritic compartment, c = [Ca2+]d. We suppose, for simplicity, that it is dimensionless. Its rate of
change increases with −ICa and decreases, e.g., through pumping mechanisms (see §13.2), that depend on c itself.
To be precise, we suppose

c′ =−0.13ICa −0.075c. (10.9)

The leading minus sign reflects the convention that inward currents are negative. In the absence of calcium current,
c decreases exponentially towards zero with a time constant of 1/0.075 =13 ms.

The model possesses several distinct firing modes. For low somatic current injections, the model generates low
frequency bursts (Figure 10.11A), whereas for higher currents the model generates regular spiking after an initial
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transient period (Figure 10.11C). In the first mode, a burst is triggered when the slow, hyperpolarizing current activa-
tion variable decreases below a threshold (Figure 10.11B), triggering a calcium spike in the dendrites. In the second
mode, IK,AHP remains sufficiently high to prevent a dendritic spike (Figure 10.11D).

The dynamics of a burst is illustrated in Figure 10.12. It is initiated by a somatic spike because INa has a lower
threshold than ICa (Figure 10.10B). This results in an initial current flow from the soma to the dendrite (Figure 10.12D, i)
that activates ICa, below threshold for a calcium spike (Figure 10.12C, ii). As the soma repolarizes the current flow
reverses from dendrite to soma (Figure 10.12D, iii), causing a second, smaller, somatic spike that stops the current drain
from dendrite to soma (Figure 10.12D, iv) and allows a calcium spike to develop. The calcium spike triggers damped
spikes in the soma as the sodium current is partially inactivated (Figure 10.12B, v) and the burst is finally terminated
by the calcium-dependent current IK,C. After the burst, when the more powerful active conductances are turned off,
the much smaller current IK,AHP controls again the dynamics of the interburst interval. Thus, in hippocampal CA3
pyramidal cells, bursting results from a complex interaction between active conductances in somatic and dendritic
compartments.

10.4 SUMMARY AND SOURCES

In this chapter, we have introduced several reduced single cell models. The leaky integrate-and-fire model goes
back to Lapicque (1907). See Gerstner and Kistler (1992) for a thorough treatment. The leaky integrate-and-fire model
is a basic workhorse used in countless theoretical studies of single neurons. The two bursting models of §10.3 capture
the essence of bursting based on two distinct biophysical mechanisms. The model of thalamic relay neurons is taken
from Wang (1994) and that of CA3 pyramidal cells from Pinsky and Rinzel (1994). Both models are based on several
decades of experimental and theoretical work. For extensive modeling of the hippocampus network, see Traub and
Miles (1991). For a review of cellular and network mechanisms underlying thalamic activity see McCormick and Bal
(1997). Bursting in thalamic relay neurons was originally studied by Jahnsen and Llinàs (1984). Weakly electric fish
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is one of the systems where the mechanisms, the information content, and the behavioral implications of bursting
have been best studied. See Turner et al. (1994) and Fernandez et al. (2005) for the biophysics of bursts in pyramidal
cells and Laing et al. (2003) for a dynamical system perspective. For the implications of bursting on information coding
and behavior, see Doiron et al. (2003), Oswald et al. (2004), Chacron and Bastian (2008), and Marsat et al. (2009). Krahe
and Gabbiani (2004) reviews bursting across several sensory systems. We will return to simplified neuron models in
§14.4 where we introduce a principled way of reducing the complexity of a high-dimensional compartmental model.
The impact of random synaptic input on the membrane potential and firing rate of leaky integrate-and-fire neurons
was briefly touched upon in Figure 10.2. We will study again the impact of random synaptic inputs on neuronal firing
properties in Chapter 15 and with the help of reduced models in §17.4, once we have more powerful modeling tools
at hand.

10.5 EXERCISES

1. Simulate an LIF neuron receiving random excitatory current-type synaptic inputs with parameters τ =20 ms,
R =10M�, vthres =10 mV, tref =0, and vreset =0. Simulate the model over 1 s, with a time step of 0.05 ms and
assume that it receives nex =500 excitatory inputs whose activation times are uniformly distributed over that
interval, each with an associated charge qex =2 pCb. Use the marching scheme of Eq. (10.4) to reproduce Fig-
ure 10.2A.

2. Modify the model of the previous exercise to include current-type inhibition. Use the same model parameters, but
assume that qin =4 pCb and that the number of excitatory and inhibitory inputs over the 1 s interval is nex =660
and nin =100, respectively (Figure 10.2B).

3. Replace the current-type synapse of Exercise 1 by an α-synapse. Assume τα=1 ms and a reversal potential
vex =70 mV above rest. Use a peak conductance gmax =Kqex , where K is such that the total charge transferred
by the synapse equals qex when the potential is clamped at its resting value. Use nex =600 (Figure 10.2C).

4. Add inhibitory α-synapses. Use the same factor K as in the previous exercise and qin =4 pCb as in Exercise 2.
Assume vin =0 mV, nex =690, and nin =100 (Figure 10.2D).

5. Simulate the response of a LIF neuron with threshold fatigue to a 250 ms long, 2 nA current pulse. Assume C =2 nF,
τ =20 ms, vthres0 =8 mV, δvthres =4 mV, τvthres =80 ms (Figure 10.3, top). Hint: Use a simple forward Euler integration
scheme with dt =0.1 ms.

6. Plot the steady-state activation and inactivation variables for IT , given by s∞(V)=1/(1+exp(−(V +65)/7.8)) and
h∞(V)=1/(1+exp((V −θh)/kh)), with θh =−81 mV and kh =6.25 mV−1. Plot the effective inactivation time constant,
τh/φh, with τh(V)=h∞(V)exp((V +162.3)/17.8)+20.0, and φh =2.

7. Implement the model of Eq. (10.7) using a hybrid Euler scheme. Compute the response to 90 ms long −1 μA/cm2

and +3 μA/cm2 current pulses, respectively (Figure 10.9). In Eq. (10.7), Cm =1μF/cm2 and all variables are nor-
malized per unit area (e.g., in the case of Iinj, μA/cm2).

The T-type calcium current is described by IT =gTs3∞(V)h(V −VCa), where the activation s is assumed to be
instantaneously at equilibrium. The inactivation h and the other activation and inactivation variables described
below are governed by the differential equation

dX/dt =φX(X∞ −X)/τX(V) (10.10)

with X =h,q,n. φX is a temperature scaling factor that determines the effective time constant, τX/φX, of X. Assume
gT =0.3 mS/cm2, VCa =120 mV and see Exercise 6 for other values.

The h-current is described by Ih =ghq2(V −Vh) with gh =0.04 mS/cm2 and Vh =−40 mV. The steady-state
activation and time constant functionals are specified in Eq. (5.33). We assume φh =1.

The potassium current is given by IK =gKn4(V −VK), with

αn(V)= 0.01(V +45.7 −σK)

1−exp(−0.1(V +45.7 −σK))
and βn(V)=0.125 exp(−(V +55.7 −σK)/80)

with φn =200/7, gK =30 mS/cm2, VK =−80 mV, and σK =10 mV.
The sodium current is given by INa =gNam3∞(V)(0.85−n)(V −VNa). The activation is assumed to be instantaneous

and is replaced by its steady-state value. The inactivation h has been replaced by (0.85−n) as per Exercise 4.6. The
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constituents of m∞ are

αm(V)= 0.1(V +29.7 −σNa)

1−exp(−0.1(V +29.7 −σNa))

βm(V)=4 exp(−(V +54.7 −σNa)/18)

(10.11)

with gNa =42 mS/cm2, VNa =55 mV, and σNa =3 mV.
The persistent sodium current is given by INaP =gNaPm3∞(V)V −VNa) with gNaP =9 mS/cm2 and σNa =−5 mV

in Eq. (10.11).
The leak current is given by IL =gL(V −VL) with gL =0.1 mS/cm2.

8. Implement the CA3 model of Eq. (10.8) using the MATLAB function ODE23 based on a Runge–Kutta integration
scheme. The various currents of the model are defined as follows:

INa(Vs)=gNam2∞(Vs)h(Vs −VNa), IK(Vs)=gKn(Vs −VK), ICa(Vd)=gCas2(Vd −VCa),

and two calcium-dependent potassium currents

IK,C(Vd)=gK,Cχ(c)r(Vd −VK) and IK,AHP(Vd)=gK,AHPq(Vd −VK).

The activation and inactivation variables obey

w′(V)= (w∞(V)−w)/τw(V), w∞(V)=αw(V)/(αw(V)+βw(V)), τw(V)=1/(αw(V)+βw(V)),

with w=h,n,s,r, and q, respectively. The functions αw and βw are

αm = 0.32(13.1−Vs)

exp((13.1−Vs)/4)−1
and βm = 0.28(Vs −40.1)

exp((Vs −40.1)/5)−1

αn = 0.016(35.1−Vs)

exp((35.1−Vs)/5)−1
and βn =0.25 exp(0.5−0.025Vs)

αh =0.128 exp((17 −Vs)/18) and βh = 4
1+exp((40−Vs)/4)

αs = 1.6
1+exp(−0.072(Vd −65))

and βs = 0.02(Vd −51.1)
exp((Vd −51.1)/5)−1

and

αc =
{

exp((Vd −10)/11−(Vd−6.5)/27)/18.975 when Vd ≤50
2 exp((6.5−Vd)/27) otherwise

βc =
{

2 exp((6.5−Vd)/27)−αc when Vd ≤50
0 otherwise

with αq =min(0.00002c,0.01), and βq =0.001 and maximal conductances (in mS/cm2)

gL =0.1, gNa =30, gK =15, gCa =10, gK,AHP =0.8, gK,C =15,

and reversal potentials (in mV),

VNa =120, VCa =140, VK =−15, and VL =0.

The coupling parameters are p =0.5, and gc =2.1 mS/cm2. The capacitance is Cm =3 μF/cm2 and χ(c)=
min(c/250,1). The stable rest state of the model is at the state-variable values of (Vs,Vd,h,n,s,r,q,c)=
(−4.6,−4.5,0.999,0.001,0.009,0.007,0.01,0.2), with the membrane potentials Vs and Vd relative to −60 mV.

Use the model to reproduce Figures 10.10B, 10.11, and 10.12 using the parameters given in the figure legends.
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A fundamental property of nervous systems is that their components do not often operate reliably. Thus, the
release of neurotransmitter at synapses is usually stochastic, and so is the generation of action potentials in neu-
rons operating within their natural, in vivo, environment. At the level of whole animals, behavior under identi-
cal conditions also exhibits random components. To describe this “randomness” and study it, we need the tools
of probability theory. This chapter introduces random variables and their basic properties as well as the homo-
geneous Poisson process, that is the most basic tool to describe random events occurring over extended time
periods.

11.1 EVENTS AND RANDOM VARIABLES

Probabilities are essential to describe experiments whose outcome is uncertain. The first required ingredient is the
sample space of events, �, or possible outcomes of an experiment. For concreteness we consider the case of a single
synaptic vesicle, filled with neurotransmitter molecules and docked at a presynaptic terminal, that can either be
released or not in the synaptic cleft upon arrival of an action potential (Figure 11.2). In this simple example,� consists
of two elementary events,

�={released,not-released}.

Each event is assigned a probability, P, of occurrence. The assignment has to satisfy several constraints to be mean-
ingful:

1. P(�)=1. The space � represents all possible outcomes: in the previous example, either the vesicle is released
following an action potential or not. Thus, the probability of the vesicle being either released or not must be equal
to one.

155
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156 11. PROBABILITY AND RANDOM VARIABLES

2. If an event consists of two (or more) mutually exclusive or disjoint events, then their probabilities add. In the
previous example, a vesicle is either released or not following an action potential, thus

P({released,not-released}=P({released})+P({not-released}).

According to property 1 the left hand side of this equation is equal to 1. In the following we will abbreviate the
“released” event by r, the “not-released” event by r and their probabilities by P({r})=p, P({r})=q with q=1−p.

A random variable is a function that maps events in � onto real numbers. In the above example, we can define a
random variable X as the number of released vesicles, or equivalently

X({r})≡1, X({r})≡0.

In this simple case, the probability that X equals 1 or 0 is immediately determined from the above definition to be

P(X =1)=p, P(X =0)=q.

We can now define the mean, mX , or expected number, E[X], of released vesicles by

mX =E[X] ≡0 ·q+1 ·p =p. (11.1)

The variance, σ 2
X , is defined as the expected value of the squared difference between X and its mean:

σ 2
X =E[(X−mX)

2] ≡ (0−p)2 ·q+(1−p)2 ·p =p ·q. (11.2)

In other words, the variance is a measure of the fluctuation of a random variable around its mean, because it measures
the average squared deviation from the random variable’s mean.

More generally, let �={e1, . . . ,en} be a probability space consisting of n distinct events, each of probability pei and
such that

∑n
i=1 pei =1. Let X be a random variable mapping � into a set of real numbers a1, . . . ,ak . We denote by

{X = a1} the subset of events ei such that X(ei)= a1. Then pj =P(X = aj) can be obtained by summing the probabilities
pei of each individual event ei ∈{X = aj} and

mX =E[X] =
k∑

i=1

aipi, σ 2
X =

k∑
i=1

(ai −mX)
2pi

(see Figure 11.1).

� � event space

e2
e1

e3

e4

en a2 a3 a1 a4

R � real numbers

X � random variable

FIGURE 11.1 Schematic illustration of the relation between an event space,�, a random variable, X, and its target values (real numbers a1, a2,
etc). In this example {X = a2}= {e1,e3} (dashed ellipse).
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11.2 BINOMIAL RANDOM VARIABLES

A synapse often contains more than one release site (Figure 11.2). In the general case of n release sites, the sample
space of events,�, consists of all n-tuplets such as (r1,r2, . . . ,rn), where ri or ri specifies whether the i-th vesicle has been
released or not following an action potential. Thus, the sample space, �, contains 2n elements, since each component
of a n-tuplet in � can take either one of the two values r or r. If we assume that the release of the i-th vesicle is
independent of the release of the other vesicles in the releasable pool and that each vesicle has the same probability of
release p, the probability of an event (r1,r2, . . . ,rn) is given by

P({(r1,r2, . . . ,rk)})=plqm, (11.3)

where l is equal to the number of released vesicles (the number of r’s in the n-tuplet (r1,r2, . . . ,rn)) and m is the number
of vesicles not released (the number of r’s), with l+m=n. In general, two events A and B in � are independent if their
probabilities satisfy the equation

P(A∩B)=P(A)P(B). (11.4)

This equation states that the probability of events A and B occurring in conjunction (A∩B) is given by multiplying
the probabilities of A and B occurring separately. To illustrate this point and how Eq. (11.3) arises, consider the case of
a synapse containing two release sites, i.e., k =2. The events A={(r1,r2);(r1,r2)} and B={(r1,r2);(r1,r2)} correspond
respectively to the first or second vesicle being released, regardless of what happens to the remaining one. By assump-
tion, both P(A) and P(B) equal p, since this is the probability of release of a single vesicle. The event A∩B={(r1,r2)}
corresponds to the simultaneous release of both vesicles and according to (11.4) has probability p ·p. Eq. (11.3) can be
derived by similar arguments.

The concept of independence generalizes naturally to random variables. Let X and Y be two random variables
taking values a1, . . . ,an, and b1, . . . ,bm, respectively. X and Y are said to be independent if

P(X = ak ,Y =bl)=P(X = ak)P(Y =bl)

for all ak’s and bl’s. For example, let X1, X2, and X3 denote three random variables that take the values 1 or 0 depending
on whether vesicle 1, 2, or 3 is released or not for three independent release sites. By definition, X1 is independent of
X2 +X3 but not of X1 +X3. An equivalent definition of independence states that

P(X ≤ a,Y ≤b)=P(X ≤ a)P(Y ≤b)

for a and b arbitrary. In this equation, X ≤ a,Y ≤b is a short hand for the event {X ≤ a}∩{Y ≤b}. This latter definition
generalizes to continuous random variables such as those that we will encounter in §11.4.

The random variable representing the total number of vesicles or quanta released, Sn, is given by

Sn =X1 +· · ·+Xn,

Vesicle

Release
Site

Syn
aptic

 C
left

Postsynaptic
Receptor

Presynaptic
Terminal

FIGURE 11.2 Schematic illustration of a synapse between two cells. In this example, the synapse has two release sites, each able to release one
vesicle into the synaptic cleft when an action potential invades the presynaptic terminal.
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FIGURE 11.3 Illustration of two discrete probability distributions (binomial and Poisson) and a continuous probability density function
(normal, or Gaussian with zero mean, unit standard deviation). A. Binomial distribution with parameters n= 100, p = 0.1. B. Poisson distribution
with parameter λ= 100 ·0.1. C. Binomial with parameters n= 12, p = 0.83. D. Normal distribution (μ= 0, σ = 1). (prob_pdfs.m)

where Xi is defined as above to be 1 if vesicle i is released and 0 otherwise. Thus, the number of quanta that can be
released ranges from Sn =0 (for the event (r1, . . . ,rn)∈�) to Sn =n (for the event (r1, . . . ,rn)∈�). When the number of
released vesicles lies between 0 and n, say 3, there are several possible elementary events in � that lead to Sn =3, e.g.,
the release of vesicles 1, 2, and 3 or 2, 3, and 4 and so on. The probability of k vesicles being released, i.e., P(Sn = k)=pk
for 0 ≤ k ≤n is given by the binomial theorem:

pk = n!
k!(n−k)!

pkqn−k, k =0, . . . ,n (11.5)

(Exercise 1). The corresponding probability distribution is called the binomial distribution of size n and parameter p
(Figure 11.3A and C).

Two important properties of the binomial random variable Sn are its mean and variance, corresponding in the case
of a synapse with n release sites to the mean and variance of the number of released quanta,

mSn =E[Sn] =
n∑

k=0

kpk and σ 2
Sn

=E[(Sn −mSn)
2] =

n∑
k=0

(k−mSn )
2pk,

respectively. These two quantities can be computed from the corresponding values for X in the single release site
example (see Eqs. (11.1) and (11.2)), and the fact that for independent random variables X1, . . . ,Xn the mean of the
sum equals the sum of the means and the variance of the sum equals the sum of the variances (Exercise 2),

mSn =
n∑

k=1

mXk , σ 2
Sn

=
n∑

k=1

σ 2
Xk

. (11.6)

Thus, mSn =np, as expected: on average the number of vesicles released should be n times the release probability of a
single site, p. The variance is given by: σ 2

Sn
=npq.
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11.3 POISSON RANDOM VARIABLES

In the limit where the number of release sites n is large and the release probability per release site, p, is small, the
binomial distribution can be approximated by the Poisson distribution (Exercise 3). This limit is of interest because
certain synapses like the neuromuscular junction discussed in the next chapter possess a large number of release sites
and some experiments characterizing it were performed under conditions where the release probability p was very
low. Let us denote by S the random variable representing the number of released quanta. In the case of a Poisson
distribution, S depends only on one parameter, λ, and is given by

P(S= k)=e−λ λk

k!
, k ∈N (11.7)

(Figure 11.3B). Note that in this equation, the number of released quanta is unrestricted (k can be arbitrarily large),
in contrast to the binomial random variable. Thus, the Poisson random variable can only approximate the binomial
random variable in the limit of large n. The probability of a high number of quanta being released decays, however,
very fast because of the factorial term, k!, in the denominator of Eq. (11.7). The mean and variance of this distribution
can be computed directly (Exercise 4),

mS =E[S] =
∞∑

k=0

ke−λ λk

k!
=λ,

σ 2
S =E[(S−λ)2] =E[S2]−E[S]2 = (λ2 +λ)−λ2 =λ.

Thus, λ is the mean of S or the mean number of released quanta and corresponds to np in the binomial model. The
parameter λ is often called the quantal content. The variance in the number of released quanta is equal to the mean. In
contrast, in the binomial model mean and variance are different.

A quantity that will be important in comparing the Poisson model to experimental data is the coefficient of variation,
defined as the ratio of the standard deviation, σS (the square root of the variance) and the mean mS,

CVPoisson ≡ σS

mS
= 1√

λ
. (11.8)

The coefficient of variation is thus a measure of variability of a probability distribution, normalized by its mean.

11.4 GAUSSIAN RANDOM VARIABLES

The random variables encountered up to now only took discrete values, such as 0,1,2, . . . . In many cases, random
variables take a continuum of values. Consider, e.g., the postsynaptic depolarization elicited in a neuron or at the
neuromuscular junction by the release of a single vesicle of neurotransmitter. The measure used in such a case is often
the peak depolarization recorded by the intracellular electrode, and is variable from one trial to the next. The recorded
values typically follow a distribution similar to that of Figure 11.3D (see the inset of Figure 12.4A). This variability
could be due to many factors. For example, variations in the number of neurotransmitter molecules contained in
individual synaptic vesicles and reaching the postsynaptic receptors or variability in the properties of postsynaptic
channels. Modeling this variability requires the use of a probability density function because the membrane potential
is a continuous variable. By definition, the probability density function, p(v), allows us to write the probability of the
membrane potential, V, taking a value between v0 and v1 as,

P(v0<V ≤v1)=
v1∫

v0

p(v)dv. (11.9)

The probability density of the random variable V is thus the probability per unit membrane potential. A satisfactory
description is usually obtained by assuming that the membrane potential in response to the release of single vesicle
follows the distribution of a Gaussian random variable. The Gaussian density is given by,

p(v)= 1

σ
√

2π
exp(−(v−μ)2/(2σ 2)), (11.10)
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(see Figure 11.3D). The Gaussian density depends on two parameters, μ and σ 2. We will prove shortly that they
represent the mean and variance of the distribution of membrane potential values, respectively. Thus the Gaussian
density is uniquely characterized by its mean and variance. The Gaussian density is also often called the normal
density and a random variable X that follows such a density is also called a normal random variable, abbreviated by
X ∼N (μ,σ 2). When X ∼N (0,1) we say that X is a standard Gaussian (normal) random variable.

To show that μ and σ 2 represent the mean and variance of the Gaussian distribution, we first need to define the
mean and variance of a continuous random variable. The definition is analogous to the one used for discrete random
variables, but now the sum over probabilities is replaced by the integral over the probability density, since the range
of values is continuous:

mX =E[X] ≡
∞∫

−∞
xp(x)dx,

σ 2
X =E[(X−mX )

2] ≡
∞∫

−∞
(x−mX)

2p(x)dx,

=E[X2]−m2
X .

Proof that μ and σ 2 are the mean and variance of X. First, one shows by direct calculation that the mean and variance of
a standard normal variable (X ∼N (0,1)) are equal to 0 and 1, respectively,

mX =0, σ 2
X =1, [X ∼N (0,1)]

(Exercise 6(i)).
Second, one shows that a Gaussian random variable with parameters μ and σ can be obtained from a stan-

dard Gaussian random variable by translation and scaling and vice-versa. In other words, if X is standard normal,
X ∼N (0,1), then Y =σX+μ∼N (μ,σ 2 ). Conversely, if Y ∼N (μ,σ 2), then X = (Y −μ)/σ ∼N (0,1) (Exercise 6(ii)).

Third, one shows that when any random variable (i.e., not necessarily Gaussian) is scaled and translated by
constant factors, Y = aX+b, then the mean scales and translates accordingly: mY = amX +b, and the variance is given
by σ 2

Y = a2σ 2
X (Exercise 6(iii)).

Summing up these three facts, we obtain

mX =μ, σ 2
X =σ 2, or X ∼N (μ,σ 2).

11.5 CUMULATIVE DISTRIBUTION FUNCTIONS

The cumulative distribution function of a random variable X is defined by

F(x)≡P(X ≤x).

The cumulative distribution function is monotone increasing, meaning that x1 ≤x2 implies F(x1)≤F(x2). This follows
simply from the fact that {X ≤x2}={X ≤x1}∪{x1<X ≤x2} and the additivity of probabilities for disjoint events. Fur-
thermore, if X takes values between −∞ and ∞, like the Gaussian random variable, then F(−∞)=0 and F(∞)=1. If
the random variable X is continuous and possesses a density, p(x), like the Gaussian random variable does, it follows
immediately from the definition of F, and since F(−∞)=0, that

F(x)=
x∫

−∞
p(y)dy.

Conversely, according to the fundamental theorem of calculus, Eq. (1.7), p(x)=F′(x). Thus, the probability density
is the derivative of the cumulative distribution function. This in turn implies that the probability density is always
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nonnegative, p(x)≥0, because F is monotone increasing. The cumulative distribution function of the standard normal
distribution is, up to constant factors, the error function,

erf(x)≡ 2√
π

x∫
0

exp(−y2)dy,

(Exercise 7). The error function is not an elementary function, meaning that it cannot be built explicitly in terms of
simple functions like the exponential, the logarithm or nth roots by means of the four elementary operations (addition,
subtraction, multiplication, and division).

11.6 CONDITIONAL PROBABILITIES*

If B is an event in a probability space� such that P(B) �=0 we define the conditional probability of event A given B as

P(A|B)≡ P(A∩B)
P(B)

.

Note first that P(·|B) is a bona fide probability measure on the event space � since it satisfies properties 1 and 2
enumerated in §11.1. For example,

P(�|B)= P(�∩B)
P(B)

= P(B)
P(B)

=1.

Property 2 is also easily verified. The conditional probability P(A|B) of an event A is a measure of its dependence
on B. If A and B are independent, P(A∩B)=P(A)P(B), Eq. (11.4), then

P(A|B)= P(A∩B)
P(B)

=P(A).

Consider, e.g., two adjacent release sites with the following release probabilities upon arrival of an action potential:

P( · ; · ) r2 r2

r1 pq+ε p(1−q)−ε

r1 (1−p)q−ε (1−p)(1−q)+ε
with p =1/3, q=1/4, and ε=1/6. What is the probability of release of vesicle 1 given that vesicle 2 has been released?
By summing the columns and rows of the table we see that P({r1})=p, P({r1})=1−p, P({r2})=q, and P({r2})=1−q.
The conditional probability for release of vesicle 1 given the release of vesicle 2 is

P({r1}|{r2})= P({r1,r2})
P({r2}) = pq+ε

q
=p+ ε

q
.

We substitute the values p =1/3, q=1/4, and ε=1/6 into this equation and conclude that P({r1}|{r2})=1. Therefore
the release of vesicle 1 is not independent of the release of vesicle 2.

An important property of conditional probabilities is known as Bayes formula stating that

P(A|B)=P(B|A) · P(A)
P(B)

. (11.11)

Bayes formula can be immediately derived from the definition of P(A|B) and is often used to infer posterior prob-
abilities of events. The posterior probability of an event is its conditional probability, given the knowledge of events
affecting its occurrence. For example, assume that we know the probability of an action potential (event B) in a post-
synaptic neuron given the release of a vesicle (A) from a presynaptic neuron, i.e., P(B|A). If we know the unconditional
probability of release, P(A), as well as that of action potential generation, P(B), we can compute the probability that
release actually occurred given an action potential in the postsynaptic neuron using Eq. (11.11).
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In the case of continuous random variables X and Y possessing a joint probability density p(x,y), we may define the
conditional probability density of y given x as p(y|x)≡p(x,y)/p(x), provided p(x) �=0. The probability density, p(x), is
obtained from p(x,y) by integrating out the y dependence, p(x)=∫

p(x,y)dy and is often called the marginal density of
X. We will see in §11.9 that in the case of two random variables that are jointly Gaussian, the conditional density of
one given the other is again Gaussian.

11.7 SUM OF INDEPENDENT RANDOM VARIABLES*

We now turn to the question of determining the distribution function of the sum Z =X+Y of two independent
random variables X and Y. If X and Y take only nonnegative values (0,1, . . . ) like the binomial or Poisson distribution
then

P(Z = k)=
k∑

n=0

P(X =n,Y = k−n),

since the events X =n,Y = k−n, n=0, . . . ,k are mutually exclusive. Because X and Y are independent, P(X =n,Y =
k−n)=P(X =n)P(Y = k−n) and setting P(X = k)=pXk , P(Y = k)=pYk , and P(Z = k)=pZk we obtain the convolution
formula

pZk =
k∑

n=0

pXnpYk−n. (11.12)

For two independent Poisson random variables X and Y with parameters λ and μ, respectively, this formula allows
us to conclude that Z is Poisson as well, with parameter λ+μ (Exercise 5). If X and Y are two independent continuous
random variables with probability densities pX(x), pY(y), we obtain the probability density pZ(z) of Z =X+Y from
the continuous version of the convolution formula,

pZ(z)=
∞∫

−∞
pX(x)pY(z−x)dx =

∞∫
−∞

pX(z−y)pY(y)dy.

The continuous convolution formula may be derived by computing the cumulative distribution FZ(z)=P(Z ≤ z) of Z
using the joint density p(x,y) of X and Y:

FZ(z)=
z∫

−∞
pZ(t)dt =

+∞∫
−∞

z−x∫
−∞

p(x,y)dydx,

where p(x,y) is the joint probability density of X and Y. The last equality follows from the fact that for each value
of x, Z =X+Y will be smaller than z if and only if y ≤ z−x. The fundamental theorem of calculus, Eq. (1.7), tells us
that

d
dz

z−x∫
−∞

p(x,y)dy =p(x,z−x).

Therefore,

pZ(z)=
∞∫

−∞
p(x,z−x)dx, (11.13)

and since X and Y are independent, p(x,z−x)=pX(x)pY(z−x).
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If X and Y are Gaussian random variables with zero means and standard deviations σ1, σ2, then

p(x,z−x)=pX(x)pY(z−x)= 1
2πσ1σ2

exp

(
− x2

2σ 2
1

− (z−x)2

2σ 2
2

)
, (11.14)

and the convolution formula allows us to compute the probability density of the sum exactly. In this case, Z is a
Gaussian random variable as well, with mean (resp. variance) equal to the sum of the means (resp. variances) of X
and Y (Exercise 8).

11.8 TRANSFORMATION OF RANDOM VARIABLES*

Let X be a continuous random variable with probability density pX(x) taking values over the interval I = (a,b) (with
possibly infinite boundary values a and b). If g(x) is a smooth function we can define a new random variable Y =g(X).
Y is the transform of X through the function g. One question arises: what is the probability distribution of Y given that
of X? Let us assume first that g(I)= (c,d) and that dg/dx �= 0 over I (e.g., g(x)=αx). According to the inverse function
theorem, g is invertible over (a,b) and dg−1(g(x))/dy =1/g′(x) over (c,d). We are looking for an explicit formula for
the probability density,

P(Y ≤y0)=
y0∫

c

pY(y)dy, (11.15)

in terms of the probability density of X. The probability that Y ≤y0 is given by the probability (over the random
variable X) that the characteristic function (recall Eq. (1.6)), 1(c,y0)(g(x)), is equal to 1. That is

P(Y ≤y0)=
b∫

a

1(c,y0)( g(x))pX(x)dx.

We now perform the change of variable x → y =g(x) so that dx →|dx/dy|dy =dy/|g′(x)| and hence

P(Y ≤y0)=
d∫

c

1(c,y0)(y)
pX( g−1(y))
|g′( g−1(y))| dy

=
y0∫

c

pX( g−1(y))
|g′( g−1(y))| dy.

Comparing with Eq. (11.15) we obtain

pY(y)= pX( g−1(y))
|g′( g−1(y))| . (11.16)

This equation can be generalized to the case where g is locally invertible over an open set I. For example, if X is a
random variable taking values in the interval (−b,b) (with b>0) and g(x)=αx2 then dg/dx �=0 over (−b,0)∪ (0,b)
where g can be inverted (Figure 11.4). Let f±( y)=±√

y/α denote these local inverses. For y0>0,

P(Y ≤y0)=
0∫

−b

1(c,y0)( g(x))pX(x)dx+
b∫

0

1(c,y0)( g(x))pX(x)dx,

and by the arguments presented above,

pY(y)=pX( f−(y))
∣∣∣∣df−

dy

∣∣∣∣+pX( f+(y))
∣∣∣∣ df+

dy

∣∣∣∣ .
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Y

X

�

FIGURE 11.4 Schematic illustration of a transformation of random variables. In the first example, Y = g(X) is a linear function of X (Y =αX,
dash dotted line). In the second example, Y is a quadratic function of X (Y =αX2, dashed line).

11.9 RANDOM VECTORS*

In §11.2, we considered a synapse consisting of n release sites that could either release or not release a synaptic
vesicle upon arrival of an action potential. The associated random variables Xi took the value of 0 or 1 depending on
whether vesicle i was released or not. In this case, the random vector vX = (X1, . . . ,Xn)

T describes all possible release
outcomes triggered by the action potential. More generally, if X1, . . . ,Xn is a collection of jointly defined random
variables, then vX = (X1, . . . ,Xn)

T is called a random vector. The function FvX (x1, . . . ,xn)=P(X1 ≤x1, . . . ,Xn ≤xn) is called
the distribution function of vX and is a direct generalization of the distribution function of random variables defined
in §11.4. In the case of continuous random variables and when there exists a function pvX(x1, . . . ,xn) such that

FvX (x1, . . . ,xn)=
x1∫

−∞
· · ·

xn∫
−∞

pvX ( y1, . . . ,yn)dy1 · · ·dyn,

we call pvX the probability density of vX .

Transformation of random vectors. If z =g(x)= ( g1(x), . . . ,gn(x))T is a transformation of the vector x = (x1, . . . ,xn)
T

onto z = (z1, . . . ,zn)
T over the open set U ⊆Rn, then just as in the one-dimensional case, using the transformation of

variables formula for multidimensional integrals,

pvZ(z)=pvX (g
−1(z))|det∇g−1(z)|, (11.17)

where det is the determinant defined in Eq. (5.45) and ∇g−1 is the so-called Jacobian matrix with entries

(∇g−1(z))ij ≡
∂g−1

i (z)
∂zj

.

Two-dimensional Gaussian random vectors. For concreteness, we will consider the example of a two-dimensional
Gaussian random vector (X1,X2)

T with probability density

p(x1,x2)= 1
2π(det C)1/2

exp(−(x−m)T C−1(x−m)/2), (11.18)

where

x =
(

x1
x2

)
, m =

(
m1
m2

)
, and C=

(
σ 2

1 σ12

σ12 σ 2
2

)
.

Note that the matrix C in Eq. (11.18) is assumed to be symmetric, C=CT , and invertible, det C �=0 (Exercise 5.8). We
will also see shortly that C is required to be nonnegative, meaning that its two eigenvalues λ1, λ2 ≥0. The probability
density (11.18) is plotted in Figure 11.5C and D for m1 =−1, m2 =−2, σ1 =2, σ2 =3, and σ12 =1. From the figure, it is
clear that the expected value of the random vector vX = (X1,X2)

T is E[vX] =m.
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FIGURE 11.5 Probability densities of two-dimensional Gaussian random vectors. The two-dimensional density is a product of two
1-dimensional densities in A, but not in C (ρ= 0.8). The two-dimensional contour lines of constant density are plotted in B and D, respectively.
(gauss_fig.m)

To understand the significance of C, consider first the case where σ12 =0. The corresponding density is plotted in
Figure 11.5A and B. As is clear from the figure, p(x1,x2) is the product of two 1-dimensional Gaussian densities with
means m1, m2 and variances σ 2

1 , σ 2
2 , respectively: p(x1,x2)=pX1(x1)pX2(x2). In this case, the random variables X1 and

X2 are independent since PvX =PX1 ·PX2 , where PX1 and PX2 are the one-dimensional probabilities associated with
the densities pX1 and pX2 , see Eq. (11.9). Furthermore,

C=
(
σ 2

1 0
0 σ 2

2

)
=

(
E[(X1 −m1)

2] 0
0 E[(X2 −m2)

2]

)
=E[(vX −m)(vX −m)T ]. (11.19)

The matrix E[(vX −m)(vX −m)T ] is called the covariance of vX . Its off-diagonal element E[(X1 −m1)(X2 −m2)] =0 for
two independent Gaussian random variables. Conversely, Eq. (11.19) implies that if the off-diagonal element of the
covariance matrix is equal to zero for a two-dimensional Gaussian random vector, then its components X1 and X2 are
independent. Note that according to Eq. (11.19) λ1 =σ 2

1 ≥0 and λ2 =σ 2
2 ≥0. The case λi =σ 2

i = 0, i =1,2, corresponds to
degenerate random variables Xi , that are essentially identical to their means, mi . If either one of Xi , i =1,2 is degenerate,
then the random vector (X1,X2) does not possess a probability density according to Eq. (11.18), since the associated
matrix C is not invertible.

The relation E[(vX −m)(vX −m)T] =C remains valid for a two-dimensional Gaussian random vector, even if
σ12 �=0. To see this, consider first a linear, invertible transformationz =Ax+b. The probability density of vZ is obtained
by applying the transformation rules for densities under the integral sign (Eq. (11.17) and §11.8),

pvZ(z)=
1

|det A|pvX (A
−1(z−b)). (11.20)

Thus, vZ is again a two-dimensional Gaussian random vector, since its probability density is of the same functional
form as in Eq. (11.18), with C replaced by ACAT . Since C is symmetric, we now choose A to be a rotation (an orthogonal
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transformation with AT =A−1 and det A=1, Exercise 14) such that

ACAT =
(
λ1 0
0 λ2

)
, AC−1AT =

(
λ−1

1 0
0 λ−1

2

)
,

and b=−Am so that vZ =A(vX −m). Using the transformation law, Eq. (11.20), we see immediately that the density
of vZ is the product of two 1-dimensional Gaussian densities and thus Z1, Z2 are independent Gaussian random

variables with covariance
(
λ1 0
0 λ2

)
. Just as in §11.4, mvZ =Am+b and

E[(vX −m)(vX −m)T] =E[(AT vZ)(AT vZ)
T)=AT E[vZvT

Z]A=AT
(
λ1 0
0 λ2

)
A=C.

When σ12 �=0 X1 and X2 are said to covary or equivalently to be correlated. The joint density of correlated pairs of
Gaussian random variables is illustrated in Figure 11.5C and D.

Correlation coefficient. When σ1σ2 �=0 we define the correlation coefficient of X1 and X2 as

ρ≡ σ12

σ1σ2
.

An important property of ρ is that it lies between −1 and 1 irrespective of the values of σ1, σ2. To see this, note that

C=
(

σ 2
1 σ1σ2ρ

σ1σ2ρ σ 2
2

)
, det C=σ 2

1 σ
2
2 (1−ρ2). (11.21)

Thus, det C>0 (σ1 �=0, σ2 �=0) implies that −1<ρ<1. If σ1 (or σ2) is equal to zero, the random vector vX is degenerate,
as explained above. In this case X1 (or X2) is essentially equal to its mean value and the vector vX = (X1,X2)

T does
not have a proper density since C is not invertible (see Eq. (11.18)). If σ1, σ2 �=0, and ρ=±1 then det C=0 and vX is
degenerate as well. In this case, a rotation matrix A that diagonalizes C will yield an eigenvalue λ1 (or λ2) equal to
zero. The corresponding random variable Z1 (or Z2) is then essentially equal to its mean or equivalently X1 and X2
are proportional to each other. For example, if ρ=1 and σ1 �=0 it is easy to see that E[(σ2

σ1
(X1 −m1)−(X2 −m2))

2] =0,
meaning that X1 −m1 is proportional to X2 −m2. The above arguments can be summarized as follows: let ρ be the
correlation coefficient between two jointly Gaussian random variables X1 and X2. Then −1 ≤ρ≤1. If ρ=1 then
X1 −m1 is proportional to X2−m2 and if ρ=−1 then X1−m1 is proportional to m2−X2. Thus, the correlation coefficient
is a measure of linearity between the two Gaussian random variables.

Conditionally Gaussian random variable. If det C �=0 we may compute C−1 in term of its components, Eq. (11.21),
and arrive at the following alternate expression for the probability density of vX , Eq. (11.18),

p(x1,x2)= 1

2πσ1σ2
√

1−ρ2
e

−1
2(1−ρ2 )

(
(x1−m1)

2

σ2
1

+ (x2−m2)
2

σ2
2

− 2ρ(x1−m1)(x2−m2)
σ1σ2

)
. (11.22)

This expression allows us to compute the conditional probability density p(x2|x1) and to conclude that X2 is Gaussian
conditional on the value of X1, following the distribution N (m2 + ρσ2

σ1
(x1 −m1),σ2(1−ρ2)) (Exercise 11).

Sum of two jointly Gaussian correlated random variables. An important generalization of the result described in
§11.7 is that the linear combination α1X1 +α2X2 of two jointly Gaussian random variables is again Gaussian. This can
be seen by first noting that if X1, X2 are jointly Gaussian (means mi, variances σ 2

i , i =1,2, and covariance σ12) then α1X1

and α2X2 are jointly Gaussian as well, with means αimi , variances α2
i σ

2
i , i =1,2, and covariance α1α2σ12, respectively

(Exercise 10). Thus, it is sufficient to prove that for X1, X2 jointly Gaussian, X1 +X2 is Gaussian with mean m1 +m2
and variance σ 2

1 +2ρσ1σ2 +σ 2
2 (Exercise 12).

n-dimensional Gaussian random vectors. The probability density of an n-dimensional Gaussian random vector vX =
(X1, . . . ,Xn)

T is defined similarly as in Eq. (11.18) above. The matrix C is now n×n dimensional and represents the
covariance of vX as in the two-dimensional case. The significance of its elements is identical to the two-dimensional
case, Cii is the variance of Xi and Cij (i �= j) is the covariance of Xi and Xj. The results described above for two-
dimensional Gaussian random vectors carry over at once to multidimensional Gaussian random vectors. Thus, if any
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two components of a multidimensional Gaussian random vector are uncorrelated, E[(Xi −mi)(Xj −mj)] =0, then they
are also independent random variables. This is not true in general for random vectors that are not Gaussian. Similarly,
any linear combination of their components, a1X1 +· · ·+anXn, is a Gaussian random variable.

Non-Gaussian random vectors. For an arbitrary random vector, the covariance matrix is still defined by C≡
E[(vX −m)(vX −m)T ] and is symmetric by definition, although no explicit formula for the probability density of
the random vector exists in general. The eigenvalues of C are positive or zero, λi ≥0, i =1, . . . ,n, just as in the Gaus-
sian case (Exercise 15). The off-diagonal elements of the covariance matrix remain a measure of the statistical relation
between their corresponding random variables. In general, X1 and X2 are said to be uncorrelated when σ12 =0, although
this does not imply their independence as in the Gaussian case. The coefficient of correlation of X1 and X2 is defined as
usual, ρ≡σ12/σ1σ2. By definition, ρ is the covariance of the centered and normalized random vector associated with
vX : define vZ = (Z1,Z2)

T , with Z1 = (X1 −m1)/σ1, Z2 = (X2 −m2)/σ2 then the covariance of Z is given by

CZ =
(

1 ρ

ρ 1

)
. (11.23)

As in the Gaussian case, the coefficient of correlation ρ is confined to values between −1 and 1: −1 ≤ρ≤1. It can also
be shown that when ρ=1 the two random variables X1 and X2 are linearly related, X2 = aX1 +b with a≥0. Conversely,
ρ=−1 implies X2 = aX1 +b with a≤0 (Exercise 16). Thus, in general the correlation coefficient is a measure of linearity
between two random variables.

11.10 EXPONENTIAL AND GAMMA DISTRIBUTED RANDOM VARIABLES

We now introduce a family of positive random variables used to describe the time intervals separating two random
events such as the time interval between successive releases at a synaptic site, for example. The first of these random
variables has an exponential distribution, given by

p1(t)=
 exp(−
t)1(t). (11.24)

Note that the density is equal to zero for negative values of t. This is expected for the probability distribution of a
time interval, since time intervals cannot be negative. The parameter 
 of the exponential distribution determines its
mean value:

mt =
∞∫

0

tp1(t)dt =1/
. (11.25)

Thus, if 1/
 is the mean value separating two events,
 is the rate at which the events occur. The cumulative distribution
function corresponding to the exponential density is given by

F(t)= (1−exp(−
t))1(t).

A family of probability densities that generalizes the exponential density is given by:

pn(t)= 
(
t)n−1

(n−1)!
exp(−
t)1(t), n=2,3, . . . .

Each such density is called a gamma density with parameters 
 and n (Figure 11.6). The gamma density is similar to
an exponential distribution (which corresponds to the special case n=1) in that it decays exponentially fast for large
t. For small values of t it differs from the exponential density by increasing from a value of 0 for t =0 because of the
power term, tn−1. The mean of the gamma distribution is given by:

mt =n/
.

An important distinction between gamma distributions with different n values is their relative variability: the larger
n, the smaller the variability. This can be seen by computing the variance of the distribution,

σ 2
t =n/
2,
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FIGURE 11.6 Plot of gamma distributions of order n= 1,2,5, and 10 with identical mean equal to 20 ms. (gamma_distr.m)

and the coefficient of variation,

CVgamma = σt

mt
= 1√

n
.

Thus, we see that for an exponential distribution, the coefficient of variation is equal to 1, whereas for a gamma
distribution with n=4 and the same mean value, the coefficient of variation is only equal to 1/2. In §15.4 and Exercise
15.7 we will show that the sum of n independent and identically distributed exponential random variables is a gamma
random variable of order n.

11.11 THE HOMOGENEOUS POISSON PROCESS

The homogenous Poisson process is a model describing the occurrence of random events in time. As we will see in the
next chapters, it is often used to describe spontaneous synaptic release or the spontaneous activity of neurons. The
model is based on the following two assumptions:

1. Each event is isolated, i.e., no two (or more) events can occur at the same moment in time.
2. Events are generated randomly and independently of each other with a mean rate 
 that is uniform in time.

Specifically, for each interval (a,b] the mean number of events is given by 
(b−a) and follows a Poisson distribution,

P(N(a,b)= k)=e−
(b−a) (
(b−a))k

k!
.

Independence is guaranteed if the number of events generated in any two disjoint intervals (a,b] and (c,d] (i.e.,
(a,b]∩ (c,d] =∅) are independent random variables. Thus,

P(N(a,b),N(c, d))=P(N(a, b))P(N(c,d)).

Ten samples from such a Poisson process are illustrated in Figure 11.7.
From assumptions 1 and 2 we first derive a formula for the probability density of the interevent distribution of the

homogeneous Poisson process. Let us assume that we observe an event at time a. The probability that the interval
�t0 to the next event is greater than (b−a) is simply the probability that no new event occurs in the interval (a,b],
i.e., P(�t0>(b−a))=P(N(a,b)=0). Since P(�t0 ≤ (b−a))=1−P(�t0>(b−a)), we have

P(�t0 ≤ (b−a))=1−e−
(b−a).
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FIGURE 11.7 Plot of ten spike trains belonging to a Poisson process with a mean rate of 50 Hz. (plot_pp.m)
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FIGURE 11.8 Schematic illustration of the intervals I1, . . . , I5 used in the proof of Eq. (11.26). The intervals I2 and I4 are centered around t1 and
t2, respectively, and of length �t → 0.

But the probability density is the derivative of this probability distribution,

P(�t0 ≤ (b−a))=
b−a∫
0

p(�t0)d�t0.

For simplicity set �t =b−a in the previous two equations and take the derivative:

p(�t)=
e−
�t for �t>0.

In other words, the interevent distribution of a homogeneous Poisson process is exponential, just as in §11.10.
Let us now compute the probability density of registering exactly n events at times t1, . . . , tn (with t1< t2< · · ·< tn),

during the observation interval (0,T]. We call this probability density p(0,T](t1, . . . , tn). For this purpose we consider
a sufficiently small interval �t around each ti and compute the probability of observing one event in each of these
intervals and no event outside these intervals. We then take the limit for �t → 0. For simplicity, we derive only the
formula for p(0,T](t1, t2), the general formula can be derived in exactly the same manner. We set h = (�t)/2 and consider
the five intervals I1 = (0, t1 −h], I2 = (t1 −h, t1 +h], I3 = (t1 +h, t2 −h], I4 = (t2 −h, t2 +h], and I5 = (t2 +h,T] (Figure 11.8).
Because these intervals are disjoint, the event probabilities are independent and

P(0,T](t1, t2)=P(N(I1)=0)P(N(I2)=1)P(N(I3)=0)P(N(I4)=1)P(N(I5)=0).

We can now set the probabilities for each interval according to the Poisson distribution. For notational simplicity
let us write |I| for the length of interval I. For example: |I3|= (t1 +h)−(t2 −h)= t1 − t2 −�t. We obtain

P(0,T](t1, t2)=e−
|I1| e−
|I2|(
|I2|)e−
|I3| e−
|I4|(
|I4|)e−
|I5|.

Rearranging,

P(0,T](t1, t2)=e−
(|I1|+|I2|+|I3|+|I4|+|I5|)(
|I2|)(
|I4|).
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But the sum of all interval lengths is simply the length of (0,T] and I2, I4 have length�t. Therefore,

P(0,T](t1, t2)=e−
T(
�t)2.

Dividing by�t2 (and taking the limit �t → 0) we obtain,

p(0,T](t1, t2)=e−
T
2.

This formula immediately generalizes to

p(0,T](t1, . . . , tn)=e−
T
n. (11.26)

Thus the probability density of observing exactly n events at times t1, . . . , tn is proportional to the product of the event
rate, 
, at those time points. The proportionality factor, e−
T , ensures the proper normalization since the sum of all
possible spike observations at all possible times must be equal to 1,

∞∑
n=0

T∫
0

T∫
t1

T∫
tn−1

p(0,T](s1, . . . ,sn)ds1 · · ·dsn =1 (11.27)

(Exercise 13). When n=1, Eq. (11.26) implies that the probability of observing a spike in any small interval of length
�t is proportional to 
�t and independent of the occurrence of spikes outside �t. This fact may be used to simulate
a homogeneous Poisson process, but an alternative method is discussed in Exercise 21.

11.12 SUMMARY AND SOURCES

This chapter provided a general overview of the tools of probability theory. We will use these tools extensively
in the subsequent chapters and extend their scope in Chapter 16. Several additional constraints, besides those given
in §11.1, are required to obtain a mathematically complete theory of probability. There are many books available
on probability theory that will fill in the gaps in our presentation. For the mathematically inclined, we recommend
Brémaud (1994) or Chung (2000). Feller (1968) is a classic with many historical references. See Papoulis and Pillai
(2002) or Bendat and Piersol (2000) for an engineering perspective. Regarding conditional probability densities, we
will see in §22.2 that the conditional distribution of a subset X1, . . . ,Xm of jointly Gaussian random variables X1, . . . ,Xn
(m<n) is again Gaussian, a result that generalizes that of Exercise 11.

11.13 EXERCISES

1. Show that P(Sn = k)=pk , as given in Eq. (11.5).
2. Let X and Y be two random variables taking values x1, . . . ,xn and y1, . . . ,ym, with probabilities P(xi ,yj). Show that

E[X+Y] =E[X]+E[Y].

Assume furthermore that X and Y are independent. Show that

E[(X+Y −mX −mY)
2] =E[(X−mX)

2]+E[(Y −mY)
2],

where E[X] =mX and E[Y] =mY.
3. Compute the probability distribution of a Poisson random variable from that of a binomial random variable under

the assumption that λ=n ·p with n→∞, p → 0 for λ fixed. Hint: Compute first logp0 under the assumption p → 0
by using the power series

log(1−x)=−x−x2/2+O(x3)

and compute pk/pk+1 under the same assumption to recursively derive p1,p2, . . . .
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4. Compute the mean and variance of the Poisson distribution.
5. Show that the sum of two independent Poisson random variables of parameters λ and μ is again Poisson with

parameter λ+μ. Hint: Use the discrete convolution formula, Eq. (11.12), after deriving the identity

(λ+μ)k =
k∑

n=1

k!
n!(k−n)!

λnμk−n. (11.28)

6. (i) Compute the mean and variance of the standard normal distribution.
(ii) Show that if Y = aX+b and X ∼N (0,1) then Y ∼N (b,a2) and vice-versa. Hint: Use the results of §11.8.

(iii) Show that for arbitrary random variables X and Y = aX+b, we have mY = amX +b and σ 2
Y = a2σ 2

X . Hint: The
expectation is a linear function.

7. †Show that the cumulative distribution function of the standard normal distribution is given by:�(x)= (1/2)(1+
erf(x/

√
2).

8. Show using the convolution formula that the probability density of the sum of two independent Gaussian random
variables with means m1, m2 and variances σ 2

1 , σ 2
2 is Gaussian with mean m1 +m2 and variance σ 2

1 +σ 2
2 . Hint: First

use Exercises 7.12 and 7.15 to show that if X ∼N (μ,σ) then

p̂(ω)=E[e−2π iωX] =
∞∫

−∞
e−2π iωxp(x)dx

=e−2π iωμe−4π2σ 2ω2/2.

Next note that the convolution formula implies that p̂Z(ω)= p̂X(ω) · p̂Y(ω).
9. †If X ∼N (0,1) is standard normal then Y =X2 is called a chi-squared random variable. Compute pY(y) and show

that E[Y] =1 and σ 2
Y =2. Hint: Use the results of §11.8 and the easily derived properties of the Gamma function

�(t)=
∞∫

0

xt−1e−x dx,

�(3/2)=√
π/2, �(t+1)= t�(t) for t>0.

10. †Show that if vX = (X1,X2)
T is a Gaussian random vector with mean m = (m1,m2)

T and covariance matrix

C=
(
σ 2

1 σ12
σ12 σ2

)

then vZ = (α1X1,α2X2)
T is Gaussian with mean (α1m1,α2m2)

T and covariance matrix(
α2

1σ
2
1 α1α2σ12

α1α2σ12 α2
2σ2

)
.

11. Derive Eq. (11.22) from Eqs. (11.18) and (11.21). Show next that

p(x2|x1)= 1√
2πσ2

√
1−ρ2

exp

(
− 1

2σ 2
2 (1−ρ2)

(
(x2 −m2)− ρσ2

σ1
(x1 −m1)

)2
)

.

12. Show by integrating directly the convolution formula, Eq. (11.13), that the sum of two correlated Gaussian random
variables is again Gaussian, with mean m1 +m2 and variance σ 2

1 +2ρσ1σ2 +σ 2
2 . Hint: First convince yourself that it

is sufficient to prove the assertion in the case m1 =m2 =0. Next, start with the simple case σ1 =σ2 and ρ=0. Carry
out the integration of the density, Eq. (11.14), by “completing the square” for the integration variable x. Finally,
treat the general case in the same manner.

13. Prove Eq. (11.27).
14. Show that if A∈R2×2 and AAT = I and det A=1 then

A=R(θ) with R(θ)=
(

cosθ sinθ
−sinθ cosθ

)
with θ ∈ [0;2π).

Hint: Recall Exercise 5.6.
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15. Show that the covariance matrix of a random vector is positive definite. Hint: Proceed as in Exercises 6.1–6.3.
16. Show that in general, the correlation coefficient between two random variables satisfies −1 ≤ρ≤1 and that values

of ±1 correspond to X2 = aX1 +b with a≷0, respectively.
17. †Plot a bar histogram of the binomial probability distribution for n=200 release sites and single release site

probabilities p =0.01,0.05, and 0.1. What are the parameters of the associated Poisson limit distribution? Add to
each of these three graphs a bar histogram of the corresponding Poisson distribution. Compute in each case the
maximal relative absolute error between both distributions for probability values of the binomial distribution
exceeding 0.05 (i.e., if pk is the probability of k vesicles being released under the binomial distribution and qk the
corresponding value for the Poisson distribution, compute max{k |pk≥0.05} |pk −qk|/pk). Explain the results. Repeat in
the case of n=4 and p =0.1,0.5, and 0.75. Compare the results in both cases. Hint: Take advantage of the following
MATLAB functions: poisspdf, binopdf, bar.

18. †If X is a random variable with density pX(x), show that the random variable

Z(X)=
X∫

−∞
pX(y)dy

is uniformly distributed between 0 and 1. Use this formula to generate random samples of an exponentially
distributed random variable from those of a uniformly distributed one. Generate 1000 random samples of the
exponential distribution with mean interval 10 ms and compute from these samples an estimate of the probability
density between 0 and 50 ms by sampling in 10 bins centered at 0,5, . . . ,45 ms. Compare your estimate with
the true density, Eq. (11.24), by plotting them simultaneously, as in Figure 11.9. Finally, compare your inversion
formula with the MATLAB code for generating exponentially distributed random variates by typing type exprnd
at the MATLAB prompt. Can you explain the difference with your formula? Hint: Use the results of §§11.8 and
11.5 to compute the density of Z. Invert the transformation between X and Z and use rand to generate uniformly
distributed (pseudo-)random numbers.
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FIGURE 11.9 Plot of the theoretical exponential distribution, the numerical estimate based on MATLAB’s exprnd function (red crosses)
and the estimate obtained as in Exercise 18 (black dots). (exp_rand.m)

19. †(i) Show that if vX ∼N (0,I) then vZ =LvX +m ∼N (m,D) where D =LLT is the Cholesky factorization of D
(recall Exercise 6.7). Hint: Use the transformation formula, Eq. (11.20).

(ii) Compute by hand the Cholesky factorization of the covariance matrix

D =
(

4 2
2 25

)
.

and compare your result with that of the MATLAB function chol.
(iii) Use this result and the MATLAB function randn to generate and plot ns =1000 random samples of vZ with

mean m = (1 2)T and covariance D. Plot on the same graph the ellipse of constant probability xTD−1x =1, as
in Figure 11.10A below.
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(iv) Compute from the ns samples a1, . . . ,ans an estimate of m and D according to the formulas

m̆ = 1
ns

ns∑
i=1

ai, D̆= 1
ns

ns∑
i=1

(ai −m̆)(ai −m̆)T .

(v) Plot the mean squared error (1/2)
∑2

i=1(mi −m̆i)
2 and (1/4)

∑2
i,j=1(Dij −D̆ij)

2 as a function of the number of
samples ns =102, . . . ,105 to arrive at plots like those in Figure 11.10B and C.
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FIGURE 11.10 A. Samples of vZ and contour of constant probability density (as specified in Exercise 19). B, C. Mean square error in the
estimate of m̆ and D̆ as a function of the number of samples. (chol_gauss.m)

20. Let X1 and X2 be nonnegative, independent random variables with densities p1(x) and p2(x), respectively. If
Y =X1 +X2 has density q(x), show that the Laplace transform of q obeys

L(q)(s)=L(p1)(s)L(p2)(s).

Hint: Use the fact that L(q)(s)=E[e−sY ]. Generalize this result to the sum of an arbitrary number of such random
variables, Y =X1 +· · ·+Xn.

21. Plot 10 sample Poisson spike trains with a mean rate of 50 Hz and of duration 0.5 s, as in Figure 11.7. Hint:
Generate a sufficient number of exponentially distributed interspike intervals and use the MATLAB function
cumsum.

22. Show that the sum of two homogeneous Poisson processes of rates 
1 and 
2 is a homogeneous Poisson process
of rate 
3 =
1 +
2. Hint: Use the result of Exercise 5 to verify directly properties 1 and 2 of §11.11.
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Up to now, we have essentially described synaptic transmission as a deterministic process, by which a presynap-
tic neuron usually excites its postsynaptic target through activation of an α-conductance. There is, however, much
more to synaptic transmission than α-conductances. As briefly alluded to in the previous chapter, neurotransmitter
molecules are packed in vesicles and their release is stochastic (Figure 11.2). After an overview in §12.1, we present in
§§12.2–12.5 the classical work that characterized this fundamental aspect of synaptic transmission. We cover first the
neuromuscular junction and then synapses in the central nervous system. In addition to being stochastic, synaptic
transmission is dynamic: §§12.6 and 12.7 describe how the strength of synapses varies over time.

12.1 BASIC SYNAPTIC STRUCTURE AND PHYSIOLOGY

Neurons are isolated from each other and from the extracellular environment by a high resistance, high capacitance
lipid bilayer membrane. Synapses are the specialized structures that allow one neuron to influence the electrical and
biochemical activity of another neuron. We have encountered a few examples in the previous chapters, but synapses
come in a large variety of configurations: the two main classes are electrical and chemical. In electrical synapses
(also called gap junctions), a channel allows intracellular ions to flow directly from one neuron to the next following
electrochemical gradients. Current flow can either be bidirectional, or unidirectional when electrical gap junctions
are “rectifying.” Chemical synapses, in contrast, are essentially unidirectional allowing chemical neurotransmitter
substances released by the presynaptic neuron to influence its postsynaptic target.

Chemical synapses are often, but not exclusively, found between the axonal terminal endings of the presynap-
tic neuron and dendrites of postsynaptic neurons (Figure 2.1). At the electron microscopic level, they consist of a
presynaptic ending that contains synaptic vesicles (about 50 nm in size), a synaptic cleft separating the presynaptic
and postsynaptic endings and the postsynaptic membrane that contains specialized receptor proteins. The width of
the synaptic cleft is 20–30 nm at synapses between neurons in the central nervous system and about 50 nm at the
neuromuscular junction. Chemical synaptic transmission occurs when one or more synaptic vesicles in the presynap-
tic ending fuse with the cellular membrane and release their chemical content in the synaptic cleft, a process called
exocytosis. This process is calcium dependent: lowering the extracellular calcium concentration (this is usually done
by replacing Ca2+ with Mg2+ ions to keep the total concentration of divalent cations constant) reduces the release of

175
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176 12. SYNAPTIC TRANSMISSION AND QUANTAL RELEASE

neurotransmitter. Following exocytosis, the neurotransmitter molecules diffuse in the cleft toward the postsynaptic
membrane where they bind at the receptor sites.

The effect of neurotransmitters on their target neurons upon binding to receptors can be mediated by several distinct
mechanisms. In the simplest case, the receptor site is directly attached to an ion-selective channel (or ionotropic receptor)
and binding causes the channel to open, thus allowing ions to flow in or out of the cell. In other cases, the receptors
will activate second messenger pathways that mediate their action indirectly by phosphorylating other membrane
channels, for example. Some such pathways are sketched in Figure 12.1. An important aspect of chemical transmission
is that the same transmitter molecule can activate distinct pathways depending on the type of receptors inserted
in the postsynaptic membrane. Thus, glutamate, the most common excitatory neurotransmitter of the vertebrate
central nervous system, activates various types of receptors directly coupled to ion permeable channels (iGluRs) such
as AMPA (§2.5), NMDA (§9.3), and kainate/quisqualate receptors. In addition, metabotropic or G-protein coupled
receptors (mGluRs) couple to various intracellular second messenger pathways.

The effect of neurotransmitters on postsynaptic terminals is terminated either by degradation of the neurotrans-
mitter substance in the synaptic cleft or by reuptake mechanisms in both neurons and glial cells. Acetylcholine, the
neurotransmitter released at the neuromuscular junction of vertebrates and a major excitatory neurotransmitter in
the central nervous system of invertebrates, is degraded by acetylcholinesterase into two components, one of which

Neurotransmitters

Presynaptic Membrane Potential

G-protein Coupled or Metabotropic
Receptors

Ionotropic ReceptorsGap Junctions

PLC

DAG

PKC

K� Channels

Postsynaptic Membrane Potential

Voltage-activated Ca2� Channels

IP3

Ca2� Release
from Internal Stores

[Ca2�]i

Adenylyl
Cyclase

cAMP

PKA

Calmodulin

Calmodulin-dependent
Enzymes

FIGURE 12.1 Overview of synaptic transmission mechanisms. Gap junctions (left) directly couple the presynaptic and postsynaptic mem-
brane potentials. Ionotropic receptors open ion-selective channels that can modify the postsynaptic membrane potential as well as pass calcium
ions, which play an important role in intracellular second messenger pathways. G-protein coupled receptors, also called metabotropic receptors,
can directly affect the properties of ion channels such as K+ or Ca2+ channels. They can also cause calcium to be released from internal stores
through activation of phospholipase C (PLC) and generation of inositol 1,4,5-triphosphate (IP3). In addition, diacylglycerol (DAG) can activate
protein kinase C (PKC) which in turns affects the function of K+ and Ca2+ channels. Finally, protein kinase A (PKA) can affect the function of
Ca2+ channels following activation by adenylyl cyclase and cyclic AMP (cAMP). Intracellular calcium can in turn activate calmodulin and a range
of calmodulin-dependent enzymes. Adapted from Nicholls (1994).
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is taken up again by the presynaptic nerve terminal and used to synthesize new neurotransmitter molecules. GABA,
a major inhibitory neurotransmitter both in vertebrate and invertebrate central nervous systems, is taken up directly
from the synaptic cleft by an efficient sodium-dependent transporter.

Release of neurotransmitters can also have a direct effect on the presynaptic terminal itself when receptors for the
released neurotransmitter are present on the presynaptic membrane as well. This turns out to be rather common both
at excitatory and inhibitory central synapses in vertebrates and invertebrates. Presynaptic receptors are thought to
provide feedback mechanisms to the presynaptic terminal.

It should be clear from this brief summary that the mechanisms of synaptic transmission in the central nervous
system can be complex. Further illustrations of the technical complexity hampering the study of synaptic transmission
at central synapses will be presented in the following sections.

12.2 DISCOVERY OF QUANTAL RELEASE

The first detailed studies of synaptic transmission were performed in the 1950s by Katz and colleagues on a
preparation somewhat simpler and more accessible than synapses between neurons. They studied the neuromuscular
junction in frogs, typically using leg muscles such as the sartorius and gastrocnemius. The neuromuscular junction
is responsible for triggering muscle fiber contractions upon arrival of action potentials at the axonal endings of
presynaptic motor neurons. The neuromuscular junction is a synapse between a neuron and a muscle fiber; therefore
not all the experimental results gathered from such a preparation extend without changes to synapses between
neurons. By recording with intracellular electrodes the membrane potential of single muscle fibers (Figure 12.2), Katz
and colleagues were able to make the following observations.

1. The membrane potential of muscle fibers fluctuates in time: small depolarizations were observable in the absence of
nervous activity and were particularly evident close to the junction of the nerve fiber with the muscle fiber. Because
of its plate-shaped structure in mammals and lizards, this junction is also called an end-plate. They therefore called
these membrane potential fluctuations miniature end-plate potentials (m.e.p.p.s) and concluded that neurotransmitter
“leaks” or is released spontaneously from the nerve terminal. The release process appeared to be completely random
with a probability of release constant in time. Subsequent releases occurred independently of each other without
any clear refractory period (i.e., no dead time between individual release events).

2. Synaptic release was known to be dependent on the availability of extracellular calcium. By decreasing the extra-
cellular calcium concentration, they were able to reduce the amount of spontaneous release. However, the size
of individual miniature end-plate potentials did not change and was observed to occur in discrete steps. Evoked
potentials obtained by stimulating the nerve under these conditions were multiples of the miniature end-plate
potentials.

Figure 12.3 shows a schematic drawing of a vertebrate neuromuscular junction. Synaptic vesicles cluster around
dense cytoplasmic formations and face on the other side the postsynaptic end-plates on the muscle fibers. Katz and
colleagues formulated the hypothesis that acetylcholine is contained in the vesicles and that during a spontaneous
event, triggered by calcium entry in the presynaptic terminal, the content of one or more of these vesicles was released

(A) (B)

FIGURE 12.2 A. Spontaneous activity recorded from a muscle fiber at the end-plate of the frog neuromuscular junction (top). The response to
a nerve impulse is shown at the bottom. B. Same as in A, but recorded 2 mm away from the end-plate. Scale bars: 50 mV and 2 ms (bottom), 3.6 mV
and 47 ms (top). Adapted from Fatt and Katz (1952).
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FIGURE 12.3 Schematic drawing of the neuromuscular junction. The presynaptic terminal contains synaptic vesicles filled with acetylcholine.
The dense bars represent active zones where synaptic vesicles are released in the synaptic cleft. Acetylcholine receptors are located opposite to the
active zones in the muscle cell membrane. Acetylcholine esterase is contained in the postsynaptic folds of the synaptic cleft. The basal lamina is
part of the extracellular matrix material coating the muscle fiber.

in the cleft. Variability in miniature end-plate potentials would then correspond to variability in the number of vesicles
released and would therefore naturally occur in steps. This is the quantum hypothesis of synaptic release.

Some additional information on the experimental results of Fatt and Katz and a quick calculation can immediately
give us a better idea of what is going on at the end-plate following nerve activation. The usual miniature end-plate
potentials measured by Fatt and Katz typically ranged from 0.4–1.0 mV in size. A typical end-plate potential elicited
by stimulation of the nerve reached at least 50 mV, with typical values closer to 70–80 mV. Thus, during normal
function, according to the quantum hypothesis, the nerve ending must release >100 vesicles to generate the normal
end-plate potential. This suggests that there are at least 100 release zones, and probably more, if the release probability
is smaller than 1, as suggested by the random events observed spontaneously.

12.3 COMPOUND POISSON MODEL OF SYNAPTIC RELEASE

The observations described in the previous section provide the experimental basis for a model describing the
statisticalproperties of synaptic release at the neuromuscular junction. As explained in §11.2, each synapse is assumed
to have n release sites (also called active zones) and during a spontaneous or evoked event, each site is assumed to release
a single synaptic vesicle independently of other sites, with probability p. Since the synapse has n release sites, the total
number of quanta released, Sn, is a binomial random variable.

In the limit where the number of release sites is large and the release probability per release site is small, the
binomial distribution is well approximated by the Poisson distribution (§11.3). This limit is of interest because synapses
at the neuromuscular junction possess a large number of release sites (probably more than 200) and some studies,
including the ones summarized above, were performed under conditions where the release probability was very low.
The Poisson distribution is given in Eq. (11.7) and depends only on one parameter, λ, the quantal content. If S denotes
the number of released quanta, its mean is equal to its variance: mS =λ and σ 2

S =λ.
In conditions where only single quanta are released from the end-plate, the size of miniature end-plate potentials,

typically measured as the peak depolarization recorded by the intracellular electrode, is variable from one trial to
the next. Thus, there is not only variability in the number of quanta released by the presynaptic terminal, but also in the
postsynaptic response to a single quantum. This variability could be due to many factors. For example, it could be due
to variations in the number of neurotransmitter molecules contained in individual synaptic vesicles and reaching the
postsynaptic receptors or to variability in the properties of postsynaptic receptors or channels. The unitary miniature
end-plate potentials typically follow the distribution of a Gaussian random variable, given in Eqs. (11.9) and (11.10)
(Figure 12.4A inset). Recall that the Gaussian density depends on two parameters, its mean μ and variance σ 2.
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FIGURE 12.4 A. Histograms of e.p.p.s and spontaneous potential amplitude distribution (inset) in a fiber in which neuromuscular transmission
was blocked by increasing the magnesium concentration to 12.5 mM. Red lines indicate the model fit described in §12.4. Arrow indicates expected
number of failures in response to nerve stimuli. B. Comparison of the two methods of obtaining the quantal content λ according to Eqs. (12.5)
(abscissa) and (12.7) (ordinate). Adapted from Boyd and Martin (1956). (boyd_martin2.m)

We can now combine the Poisson model of vesicle release with the Gaussian description of unitary miniature
end-plate potential events to obtain the probability distribution of the postsynaptic potential during evoked release.
We discuss only the Poisson presynaptic model, but the binomial model could be handled in the same way. The
postsynaptic membrane potential is assumed to be the sum of the response evoked by each released quantum,

V =
{

0, if S=0,
V1 +V2 +· · ·+VS, if S>0.

(12.1)

Both the number of quanta released, S, and the membrane potential depolarization in response to each quantum,
Vi, are random variables. We can write the probability density for the membrane potential, p(v), as a function of the
probability of k quanta being released, P(S= k), and the probability density of the membrane potential given that k
quanta were released, p(v|S= k). The probability densities p(v|S= k) are conditional probability densities (§11.6). The
formula is:

p(v)=p(v|S=0)P(S=0)+p(v|S=1)P(S=1)+p(v|S=2)P(S=2)+· · ·
In this equation the individual terms add because the events S=0, S=1, and so on, are mutually exclusive (i.e., either 1
quanta is released or 2, and so on; see §11.1). The values P(S= k) are obtained from the Poisson distribution (Eq. (11.7))
and it remains only to compute the p(v|S= k) for k ∈N. If no quanta are released (S=0) the membrane potential is
equal to 0 with probability 1 (Eq. (12.1)); as we will see, this is a very convenient fact that can be used to test explicitly
the validity of the Poisson model. We represent this by a Dirac “density” δ(v) that is zero for every value of v except
for v =0 where it is infinite but integrates to 1:

∞∫
−∞

δ(v)dv =1

(Eq. (3.6), Exercise 7.20). The probability density p(v|S=1) is the Gaussian density (Eq. (11.10)). When two quanta are
released p(v|S=2) is the sum of two independent Gaussian variables (V =V1 +V2), each with mean μ and vari-
ance σ 2. We already know (Eq. (11.6)) that this variable has mean 2μ and variance 2σ 2. As explained in §11.9,
an important property of Gaussian random variables is that their sum V is also Gaussian and thus its density is
given by

p(v|S=2)= 1√
2σ

√
2π

e− (v−2μ)2

2·2σ2 .
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The same result holds for S=3, in other words, p(v|S=3) is Gaussian with mean 3μ and variance 3σ 2, and so on.
Combining these results together we obtain:

p(v)=e−λδ(v)+e−λ
∞∑

k=1

λk

k!
1√

2πkσ 2
e− (v−kμ)2

2kσ2 . (12.2)

The mean and the variance of the membrane potential distribution are given by:

mV =mSμ=λμ, (12.3)

and

σ 2
V =σ 2

Sμ
2 +mSσ

2 =λ(μ2 +σ 2). (12.4)

These two equations will prove important to compare the model with experimental data.

12.4 COMPARISON WITH EXPERIMENTAL DATA

Eq. (12.2) represents the prediction for the distribution of end-plate potentials in response to nerve stimulation at
the neuromuscular junction under the following assumptions:

1. Release is quantal and follows a Poisson distribution.
2. The postsynaptic effects of quanta are independent and sum linearly.

To compare the prediction of Eq. (12.2) with experimental data we need to compute the parametersλ that represents
the mean number of quanta released per nerve stimulation as well as the mean, μ, and the variance, σ 2, of a single
unitary miniature end-plate potential. This program was first carried out at the neuromuscular junction in conditions
where the probability of release was diminished. Under these conditions, spontaneous release consists essentially of
single quanta with typical mean depolarizations μ of 0.4–1.0 mV and standard deviations σ equal to about 0.2 ·μ
(i.e., the coefficient of variation of the m.e.p.p.s is approximately of 0.2; Figure 12.4A, inset). To compute the quantal
content λ during evoked synaptic release one can now take advantage of Eq. (12.3) above. This equation tells us that
the mean membrane potential depolarization during nerve stimulation should be proportional to the quantal content
and the proportionality constant is none other than μ, the mean spontaneous depolarization for a single spontaneous
quantal event. Thus,

λ= mean amplitude of the e.p.p. response
mean amplitude of spontaneous potentials

. (12.5)

From these three measurements (two from spontaneously occurring miniature end-plate potentials and one from
evoked release) we can now fit the probability density distribution of evoked end-plate potentials (Figure 12.4). The
validity of the Poisson assumption can be verified by two additional tests sometimes called the method of failures and
CV method.

The method of failures. Once the quantal content λ has been obtained from experimental data, the Poisson distribution
is in principle completely determined, since it depends only on the value of λ (see Eq. (11.7)). Thus, it is possible to test
the validity of the Poisson assumption by comparing the probability of k packets being released with the prediction of
Eq. (11.7). In practice, the quantity most easily compared with the theoretical prediction is the probability of failures,
P(S=0), since a failure to respond to nerve stimulation is easy to observe and record (no deflection of the postsynaptic
end-plate potential after electrical stimulation of the nerve). More precisely, it follows from Eqs. (11.7) and (12.5) that

log(fraction of failures)=− mean amplitude of the e.p.p. response
mean amplitude of spontaneous potentials

. (12.6)

To compare this prediction with experimental data, a series of experiments is done with different nerve fibers to
obtain a range of failure values. The negative logarithm of the fraction of failures is plotted against the experimentally
determined quantal content (according to Eq. (12.5)). If the prediction of Eq. (12.6) is right, the points should fall on a
straight line of slope 1 through the origin (Figure 12.4B).

MATHEMATICS FOR NEUROSCIENTISTS



12.5 QUANTAL ANALYSIS AT CENTRAL SYNAPSES 181

The CV method. The starting point for the second method consists in computing the coefficient of variation of the
evoked end-plate potentials, CVepps . From Eqs. (12.3) and (12.4) it follows that,

CVepps = 1√
λ

√
1+σ 2/μ2. (12.7)

Recalling the value of the CV of the Poisson distribution (Eq. (11.8)), we see that, up to a constant K =√
1+σ 2/μ2, it

coincides with the CV of the e.p.p.s:

CVepps =CVPoissonK.

Taking the logarithm on both sides of Eq. (12.7), we see that:

logCVepps =−1
2

logλ+ log(K). (12.8)

Therefore, if one performs a series of experiments, computes for each experiment the coefficient of variation of the
evoked e.p.p.s, and plots them as a function of the quantal content,λ (computed from Eq. (12.5)) on a logarithmic scale,
they should fall on a straight line of slope −1/2. Fatt and Katz proceeded slightly differently: instead of computing
the coefficient of variation of the e.p.p.s directly, they first assigned each e.p.p. to its class (i.e., decide from the value
of the e.p.p. whether a single quantum was released or two quanta and so on) and they computed the coefficient of
variation from the resulting distribution. This corresponds to (artificially) setting the variability of e.p.p.s to zero (i.e.,
set σ equal to 0 in Eq. (12.7)), which is equivalent to setting the constant log(K) to zero in Eq. (12.8). Their results support
the Poisson hypothesis, at least in the case of fibers that have a quantal content smaller than ≈10. For larger quantal
contents, the predictions of the compound Poisson model start to fail. One possible reason is that the assumption
of linear summation of m.e.p.p.s (see Eq. (12.1)) is incorrect for larger depolarizations. In other words, the second
assumption formulated at the beginning of this paragraph is violated.

12.5 QUANTAL ANALYSIS AT CENTRAL SYNAPSES

Following the success of quantal analysis at the neuromuscular junction, quantal analysis has also been performed
at many central synapses in the nervous system. The first objective has been to assess whether the quantal theory
also holds there. The second objective has been to estimate the quantal parameters governing release at single central
synapses, that is, the number of release sites, the probability of release (quantal content), and the size of the postsynaptic
response elicited by a single release (quantal size).

Technically, the application of quantal analysis to central synapses is much more difficult than at the neuromuscular
junction. One reason is that neurons typically receive thousands of input synapses at various positions in their dendritic
tree. Isolating a single synapse and its miniature excitatory or inhibitory postsynaptic potentials (mepsps and mipsps,
respectively) is thus difficult. In many cases the size of mepsps or mipsps falls within the range of background noise
in the recordings. When mepsps or mipsps cannot be isolated from background noise, three critical parameters of the
Poisson (and binomial) model cannot be estimated (the quantal size, its variance, and the rate of failures) complicating
significantly the analysis. The situation has been improved by the invention of the patch-clamp technique (Figures 13.21
and 17.1B) that allows for considerably lower access resistances to the intracellular potential as compared to sharp
electrodes and thus results in much higher signal-to-noise ratios in the recordings. In some cases, this technique
could also be used to voltage-clamp the neuron and the postsynaptic terminal, thus giving direct access to miniature
excitatory or inhibitory postsynaptic currents. This is a significant advantage over recording mepsps/mipsps because
postsynaptic currents allow one to circumvent one of the assumptions of the release model, namely that postsynaptic
potentials add linearly. This assumption cannot be true for large depolarizations, whereas currents always add linearly.

Quantal analysis has in general been most powerful at central synapses when combined with complementary
anatomical or pharmacological techniques. We illustrate this with the example of the release statistics at input synapses
to the Mauthner cell, a neuron in fish involved in generating fast tail-flips underlying turning and escape responses.
One of the first outcomes of quantal analysis on Mauthner cell synapses that has often been verified at other central
synapses is that the Poisson limit is not an appropriate description of quantal release. Hence the more general binomial
model with its two parameters N and p has to be used. Structural studies of the same synapses used for quantal
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FIGURE 12.5 A. Fits with binomial and Poisson distributions of inhibitory postsynaptic potentials elicited by stimulation of interneurons onto
the Mauthner cell of goldfish. Adapted from Korn et al. (1982). B. Summary plot of the number of release sites determined from the binomial model
as a function of histologically determined release sites in the same neurons. Adapted from Korn (1984).

analysis were also made using electron microscopy. This allowed the investigators to count the number of release
sites Nanat and to compare it with the value of N obtained by fitting the binomial model to spontaneous and evoked
synaptic potentials. In most cases, the two turned out to be close, N ≈Nanat, thus leading to the one release-site one
quantum hypothesis, stipulating that each active zone in a synaptic contact releases exactly one quantum (or one
vesicle) per action potential (Figure 12.5). Here it is important to note that the use of electron microscopy is crucial:
synaptic boutons, the apposition of presynaptic and postsynapticelements between two neurons can be determined by
light-microscopic methods, but the identification of synaptic vesicles and the zones where they are released requires
electron microscopy (Figure 12.6). Although in many cases each bouton contains a single release site, it is possible for
a synaptic bouton to contain more than one release site.

The reason for the failure of the Poisson approximation at many central synapses is that both the assumption of a
large number of release sites and a low probability of release are violated.

1. The number of release sites, N, per synaptic contact between two neurons can be very low. In some cases, it is
thought that only one synaptic release site exists between two cells. This is the case between CA3 pyramidal cells
in the hippocampus and their target inhibitory interneurons, for example. At the other extreme, synapses like the
calyx of Held (in the cochlear nucleus of the auditory system) or the climbing fiber synapse made by inferior olive
axons on Purkinje cells of the cerebellum are estimated to contain ≈500 release sites, a situation similar to the
neuromuscular junction.

2. The probability of release, p, is often variable across synapses and is in many cases quite high. The range of synaptic
release probabilities estimated for central synapses ranges from p =0.05 to p close to 1, depending on the junction
studied. Even in single neurons release probabilities of individual synapses can be highly variable.

Another important aspect of quantal analysis at central synapses is that there is evidence for violation of some of
the central assumptions underlying the model:

1. The release probability at different release sites of a single synaptic contact is not always uniform. When this is the
case the assumption of a single p value for all release sites is violated. Under these conditions both the Poisson and
binomial models are no longer valid approximations to the synaptic release process.

2. Release of vesicles is assumed to be independent at different release sites. There is evidence that this is probably
not true at several central synapses.

3. There is evidence that a single release site can in some instances release more than one vesicle per action potential.
4. In some cases, the variability of postsynaptic responses is much lower than what would be expected from addition

of independent mepsps. This has been suggested to be due to saturation of postsynaptic receptor sites by the
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FIGURE 12.6 Electron micrograph of a giant reticulospinal synapse in the lamprey. The axon is on top (a) and the dendrite below it (d).
Two large clusters of synaptic vesicles are visible in the presynaptic axon (arrow heads) and an active zone is indicated by the asterisked arrow
head. The scale bar on top is about twice the size of the smallest resolvable extent by light microscopy (200–300nm). Courtesy of A.E. Foldes and
Dr. J. Morgan, Molecular Cell and Developmental Biology Department, University of Texas at Austin.

neurotransmitter released from the vesicles. When this is the case, the quantization of the postsynaptic response is
likely to be determined in part by the number of postsynaptic receptors rather than the number of released vesicles.

Because of this, the use of quantal models has to be considered with care, since the interpretation of results depends
critically on these assumptions.

12.6 FACILITATION, POTENTIATION, AND DEPRESSION
OF SYNAPTIC TRANSMISSION

Synaptic transmission is not static in time: in cases where sequences of action potentials arrive at the presynaptic
terminal, the strength of the responses measured postsynaptically varies. The time course of these variations depends
on the specific synapse studied. Three main types of synaptic changes have been described (Figure 12.7):

1. Facilitation is used to describe the progressive increase in response during a short train of action potentials, typically
lasting a few seconds. Facilitation is observed at central synapses but also at the neuromuscular junction. As
explained in more detail below, facilitation is thought to be due to an accumulation of calcium in the presynaptic
terminal that increases the probability of transmitter release. Recovery from facilitation is rapid, arising in few
hundreds of milliseconds following the termination of stimulation.

2. Potentiation describes an increase in response following repetitive stimulation of a synapse. Potentiation is more
slow to develop than facilitation and typically outlasts the stimulus. A protocol that is able to elicit potentiation
of synaptic transmission is to deliver a short train of high frequency action potentials to the presynaptic terminal,
which is often called a tetanus. The potentiation observed following such a pulse is therefore called posttetanic
potentiation (PTP). This type of synaptic transmission change is observed at central synapses and also at the
neuromuscular junction. Under certain conditions potentiation at central synapses can last for a very long
amount of time, typically over the entire course of an experiment (i.e., hours). This phenomenon is thought to
represent a permanent change in synaptic strength and is termed long-term potentiation (LTP). The mechanisms
underlying LTP are thought to be different from those underlying PTP.
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FIGURE 12.7 Schematic illustration of the hypothetical time course of facilitation, potentiation, and depression of neurotransmitter release at
a synapse. These effects can occur simultaneously, leading to a complex time-dependent modulation of synaptic release.

3. Depression is the opposite of potentiation and describes a progressive decrease in response over the course of
stimulation. Long-term synaptic depression (LTD) has been described at central synapses and can also last over
long periods of time.

Quantal analysis has been used to investigate these changes in synaptic transmission and in particular to clarify
whether they are due to presynaptic changes such as an increase or decrease in release probability or to postsynaptic
changes such as in increase or decrease in postsynaptic response strength. The methods used are very similar to the
ones described above and will be summarized here using the binomial model of synaptic transmission, since this
model is usually more appropriate to describe synaptic transmission at central synapses.

Recall from §11.2 that for the binomial model, the mean number of vesicles released is mSn =np, and the variance
in the number of released vesicles is given by σ 2

Sn
=np(1−p). Assuming, as in the Poisson model, a mean quantal

postsynaptic responseμwith variance σ 2, the mean evoked response is the product of the number of packets released
and the mean quantal response,

mV =mSnμ=npμ. (12.9)

The variance of the postsynaptic response is attributable to both the variance in the number of released packets and
the variance of unitary potentials,

σ 2
V =σ 2

Sn
μ2 +mSnσ

2. (12.10)

Direct determination of release parameters. One can use Eqs. (12.9) and (12.10) to study changes in synaptic transmis-
sion by determining the parameters n, p, andμbefore and after a protocol that elicits a change in synaptic transmission.
If, e.g., a protocol is used that induces LTP at a given synapse, one can investigate whether strengthening of the synapse
corresponds to changes in the number of release sites n, or the probability of release, p, or the response to a single
quantum, μ. The analysis proceeds as follows: μ, σ 2, mV , and σ 2

V are determined directly by experiments before and
after applying the protocol. The mean number of released vesicles can then be obtained from Eq. (12.9). From here we
determine the variability in the release process, σ 2

Sn
, using Eq. (12.10). The release probability is then obtained from

σ 2
Sn

=npq=np(1−p). Finally the number of release sites is computed from mSn =np.
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Method of failures. A second method that can be used to demonstrate changes in release probability is to monitor
the fraction of failures before and after the protocol used to elicit changes in synaptic transmission. In the binomial
model, the probability of a failure to respond is given by

p0 = (1−p)n.

Thus, if the probability of release changes, the failure rate should change accordingly. This method is only applicable
if transmission failures can be reliably established, i.e., unitary responses are well above the recording noise.

Variants of the CV method. If we neglect the variability in postsynaptic responses (i.e., assume σ =0) we see from
Eq. (12.10) that

1
σ 2

Sn

= μ2

σ 2
V

.

Multiplying both sides of this equation by (np)2 and using Eq. (12.9) we see that

m2
V

σ 2
V

= np
1−p

.

The left hand side of this equation is equal to 1/C2
Vev.resp.

, i.e., the squared reciprocal of the coefficient of variation of
the evoked synaptic responses. This quantity can be measured directly by recording the activity of a postsynaptic
neuron. The right hand side shows that this quantity depends only on presynaptic parameters, under the assumption
that the binomial model of release is correct. Thus a change in 1/C2

Vev.resp.
after a protocol used to induce changes in

synaptic transmission is interpreted as evidence for a presynaptic change in synaptic efficacy. Assuming n fixed, this
corresponds to a change in release probability (Figure 12.8).

We can use Eq. (12.9) to rewrite Eq. (12.10) for the variability of the postsynaptic response in terms of the mean
postsynaptic response,

σ 2
V =μ(

1+C2
Vminis

)
mV − m2

V
n

, (12.11)

where CVminis is the coefficient of variation of the quantal response, equal to σ/μ. Because the coefficient of variation
CVminis is typically of the order of 0.2−0.4, its square represents a small (5–15%) correction to the quantal size μ. This
equation states that variance in evoked responses is a parabola whose slope for low responses (mV) is proportional to
the quantal size μ. Thus one can monitor changes in quantal size by monitoring changes in the slope of the relation
between σ 2

V and mV before and after a protocol inducing changes in synaptic transmission. Typically, several pairs
of (mV ,σ 2

V) values are sampled by varying the Ca2+/Mg2+ concentration resulting in increased release and thus
increased mV . Figure 12.9 illustrates the process in a voltage-clamp experiment which allows one to extract the peak
synaptic conductance from the measured peak current and to bypass the nonlinear effects mentioned at the beginning
of this section.

Comparison with experimental data. The methods described above have been applied on experimental data in a
number of different preparations. It has been found that many changes in synaptic strength are consistent with
changes in presynaptic release. In particular facilitation, depression, and potentiation are often thought to be due
to presynaptic changes in the release probability or in the number of released vesicles. The models described in
the next section illustrate this point. Short-term depression has also been attributed in part to postsynaptic effects
such as desensitization of postsynaptic receptors under repeated stimulation. LTP appears to rely on several distinct
presynaptic and postsynaptic mechanisms. Postsynaptically, the activation of the NMDA receptor often plays an
important role in triggering LTP. Since NMDA receptor activation requires coincident presynaptic and postsynaptic
activity (§9.3), the resulting synaptic plasticity is termed to be Hebbian, after D.O. Hebb who postulated that coincident
presynaptic and postsynaptic activity should lead to synaptic strengthening. Following NMDA receptor activation,
the best described postsynaptic mechanism involves the insertion of new receptors in the postsynaptic membrane,
thus converting synapses that are “silent,” because no AMPA receptors are present, into active ones. In addition,
biochemical pathways can enhance the efficacy of AMPA receptors already present in the postsynaptic membrane by
phosphorylating them. We will present a model of the biochemical pathway involved in this process in §13.4.
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FIGURE 12.8 A. Induction of LTP by paired stimulation (40 times, twice a second) and postsynaptic depolarization (from −70 mV to 0 mV) of
a CA1 pyramidal cell in the hippocampus. Excitatory postsynaptic currents (EPSCs) measured by stimulating the “test” pathway at low frequency
are illustrated in i). The arrow indicates the time at which this pathway is tetanically stimulated while the postsynaptic cell is simultaneously
depolarized. EPSCs measured as the “control” pathway is stimulated at low frequency are illustrated in ii). The arrow indicates the time of
tetanic stimulation without simultaneous postsynaptic depolarization. Representative EPSCs in the test pathway before, iii), and after, iv), tetanic
stimulation are illustrated on top. The boxed inset, v), is a schematic illustration of the recorded cell and the two stimulated axonal pathways
(stimulation electrodes illustrated in red). B. The paired “test” pathway shows increased synaptic currents (top, mean) and increased squared
mean-to-variance ratio, consistent with a presynaptic change in transmitter release parameters. Adapted from Malinow and Tsien (1990).
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FIGURE 12.9 Change in variance as a function of mean conductance at the climbing fiber synapse onto a cerebellar Purkinje cell. Mean
conductance and variance were measured at the peak of the EPSC obtained by stimulating repeatedly the climbing fiber at 0.2 Hz (black circles)
and 0.033 Hz (white circle). Different mean conductances were obtained by changing the calcium to magnesium ratio ([Ca2+]/[Mg2+] from 0.1 to
8 ([Ca2+] from 4 mM to 0.05 mM). Solid line is fit with the binomial model (Eq. (12.11) with CVminis = 0, μ= 0.61 nS, and n= 285). Adapted from
Silver et al. (1998).

12.7 MODELS OF SHORT-TERM SYNAPTIC PLASTICITY

As discussed above, synapses between neurons exhibit short-term plasticity. In addition, when a neuron makes
synapses on several different cells, each synapse can be expected to have its own characteristic time-varying properties,
as illustrated in Figure 12.10. Some synapses may be facilitating while others, synapsing onto adjacent neurons will
be depressing. The biophysical basis underlying this diversity is thought to originate in the existence of two distinct
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FIGURE 12.10 A. Biocytin stain of three neurons recorded simultaneously in the rat somatosensory cortex. Pyramidal neuron P1 projects
to pyramidal neuron P2 and bipolar interneuron I. B. Simultaneous response of both target neurons to a train of action potentials elicited in
pyramidal neuron P1. The pyramidal neuron to interneuron synapse facilitates,eventually leading to an action potential (AP), while the pyramidal
to pyramidal neuron synapse depresses rapidly. Note the different vertical scales for the three plots. Adapted from Markram et al. (1998).

pools of synaptic vesicles in the presynaptic terminal, the readily releasable pool, or RRP, and the slowly releasable
pool, or SRP. The relative size and dynamics of their release probabilities, as well as the rate of replenishment and
vesicle conversion between the pools is thought to underlie this diversity. The involvement of the RRP and SRP in
vesicle release will be investigated in §13.5.

Here, we confine our attention to a simple model of short-term depression that successfully describes this phe-
nomenon at many synapses. Subsequently, the model will be extended to include short-term facilitation. We will
for simplicity neglect the variability in synaptic release that has been the focus of the previous sections and track
only the average number of vesicles released as a function of time. Let n(t) denote the average number of vesicles
available for release at time t and u0 the fraction that is effectively released on average as an action potential invades
the presynaptic terminal. Thus, immediately after the action potential n(t) is updated to n(t+)=n(t)−u0n(t) (i.e., the
average number of available vesicles minus the average number of released ones). In addition, we assume that the
pool of available vesicles slowly recovers towards its equilibrium value, nmax between action potentials with a time
constant τrec . Equivalently, n′(t)= (nmax −n)/τrec . To simplify the notation, we define the fraction of available vesicles
or resources as r(t)≡n(t)/nmax , and note that it satisfies the differential equation

dr
dt

= 1−r(t)
τrec

. (12.12)

Immediately after an action potential at time t, r(t) is reset to the value r(t+)= r(t)−u0r(t). We also assume that
the release of neurotransmitter, u0r(t), results in an instantaneous current or charge input q(t)=qmaxu0r(t) on the
postsynaptic cell. Thus the synaptic depression model has three parameters: the time constant of vesicle recovery, τrec ,
the synaptic use of resources per action potential, u0, and the maximal postsynaptic charge, qmax. The postsynaptic
cell is modeled as a leaky integrate-and-fire neuron with membrane time constant τ and input resistance Rin. Thus,

τv′ =−v+RinIsyn(t), Isyn(t)=
N∑

i=1

q(ti)δ(t− ti). (12.13)

Equivalently, v satisfies the differential equation τv′ =−v and immediately after an action potential at time ti, the
membrane potential v is instantaneously reset to the value v(t+i )=v(ti)+(Rin/τ)q(ti).

Figure 12.11A illustrates the response of the model to a constant train of action potentials. The available resources
start at their maximal value of one and gradually decrease towards a steady-state value within a few hundred
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FIGURE 12.11 Synaptic depression model. A. The top panel illustrates the time course of r(t) during a train of action potentials delivered
at 10 Hz. The third and fourth panel from top illustrate the postsynaptic membrane potential and the synaptic charge, respectively. B. From
top to bottom, the three panels depict the steady-state charge, the steady-state peak membrane depolarization, and the steady-state average
membrane depolarization as a function of the presynaptic action potential frequency. The solid black curves are obtained by numerical simulation
(Exercise 2) and the red dots correspond to analytical predictions. The dashed solid lines are limit values for the average and peak membrane
potential obtained from the analytical predictions (Exercise 3). (mt_mod6.m)

milliseconds following the train onset. Consequently, both the charge delivered to the postsynaptic membrane and
the peak depolarization converge to a steady-state value as well. Figure 12.11B plots as a function of the presynaptic
action potential frequency, the steady-state values of the charge delivered by the synapse, the peak membrane potential
following each release event, and the time-averaged membrane potential. Since the model consists of a pair of linear
differential equations with varying jump conditions, the steady-state values of these variables can be computed
analytically and are plotted in Figure 12.11B as well (Exercise 3). For large values of the stimulation frequency, the
steady-state charge delivered by the synapse decays as 1/f (top panel of Figure 12.11B; Exercise 3). Consequently,
both the peak and average postsynaptic membrane depolarization converge towards a constant value independent
of f . This means that a depressing synapse operating in this regime does not convey changes in the presynaptic action
potential frequency to the postsynaptic cell in its steady state. However, such a synapse will initially generate a few
transient EPSPs as the presynaptic frequency is switched, as illustrated in the third panel of Figure 12.11A and can
therefore best signal changes in the presynaptic firing rate by transient changes in the postsynaptic depolarization.

The synaptic depression model described in the previous paragraph can easily be modified to generate facilitation
in the release of neurotransmitter. Although this is most likely not the only reason, facilitation is often thought to be
caused by residual calcium in the presynaptic terminal. During a single action potential, calcium enters the presynaptic
terminal and causes vesicle release. It is then cleared by various mechanisms such as pumps and buffers that will
be studied in §13.2. If, however, a small fraction of the calcium remains in the terminal (residual calcium), it will
add to the calcium entering upon the next action potential, causing an increase in release. This mechanism fits well
with the observation that the amount of vesicle release depends nonlinearly on the external calcium concentration,
and thus presumably also on the internal calcium concentration. To illustrate this point, let’s assume that the calcium
concentration is normalized in such a way that at rest it is equal to zero and rises to one immediately after an
action potential. If synaptic release depends, e.g., on the fourth power of the calcium concentration, then a residual
calcium concentration of 5% will have a negligible effect on spontaneous vesicle release after the action potential
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FIGURE 12.12 Synaptic facilitation model. A. The top two panels illustrate the time course of r(t) and u(t) in response to the spike train
depicted in the third panel (stimulation frequency: 10 Hz). The last two panels illustrate the membrane potential and the synaptic charge, respec-
tively. B. From top to bottom, the three panels depict the steady-state charge, the steady-state peak membrane depolarization, and the steady-state
average membrane depolarization as a function of the presynaptic action potential frequency. The solid black curves are obtained by numerical
simulation (Exercise 4) and the red dots correspond to analytical predictions. The dashed solid lines are limit values for the average and peak
membrane potential obtained from the analytical predictions (Exercise 5). (mt_mod12.m)

(0.054 =6.25 ·10−6), but will have a large effect on evoked release upon the next action potential ((1+0.05)4 =1.22).
To model facilitation we assume that the synaptic use term, which was constant and equal to u0, is now dynamic
as well,

du
dt

= u0 −u
τfacil

. (12.14)

Immediately after an action potential, u is increased from its current value, u(t), to u(t+)=u(t)+u0(1−u(t)) and
decays back towards its baseline value u0 with a time constant τfacil between action potentials (Eq. (12.14)). Note that the
update rule guarantees that u(t)<1. Figure 12.12Aillustrates a simulation of this model.As the synaptic resources, r(t),
decrease, the use term, u(t), increases and both reach a steady state after approximately 1500 ms. Both the membrane
potential and charge transferred by the synapse increase over the course of the pulse. Figure 12.12B shows that the
dependence of the charge, peak depolarization, and average depolarization at steady state is qualitatively different
from that of the depression model of Figure 12.11. There is now an optimal nonzero frequency for the synaptic charge
transferred by the synapse at steady state. In addition, both the peak and average steady state membrane potential are
linearly dependent on the stimulation frequency before saturating at frequencies above 30 Hz. Thus, in this example, a
facilitating synapse is able to encode linearly at steady state the presynaptic action potential frequency in the average
peak membrane depolarization of the postsynaptic cell.

12.8 SUMMARY AND SOURCES

This chapter described basic models for various aspects of synaptic transmission and quantal release. We will
consider more detailed models, including coupling to calcium signalling pathways, in the next chapter (§§13.4 and
13.5). Katz shared the 1970 Nobel Prize in Medicine for his work on quantal synaptic release. Figure 12.7 is inspired by
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the book of Levitan and Kaczmarek (2001) which provides many additional biological details on synaptic transmission.
A recent confirmation of the one release-site one quantum hypothesis is given by Silver et al. (2003). This article also
contains references on multivesicular release, postsynaptic receptor saturation, and the CA3 to interneuron synapse
properties discussed in §12.5. See Rosenmund et al. (1993) and Murthy et al. (1997) for studies of nonuniform
release probability at central synapses. See Toth et al. (2000) for a study on the differences between synapses made
onto distinct postsynaptic target neurons. Postsynaptic receptor saturation is reported, e.g., in Edwards et al. (1990).
Synaptic transmission at the calyx of Held is described in Scheuss et al. (2002) and at the climbing fiber synapse in
Silver et al. (1998). Our treatment of synaptic facilitation and depression at neocortical synapses is based on Tsodyks
and Markram (1997) and Markram et al. (1998). These two articles provide references to earlier work reporting similar
phenomena at a variety of synapses, including the neuromuscular junction. See §5.8 in Abbott and Dayan (2001) for an
introduction to short-term synaptic plasticity from a different perspective. The mechanisms and implications of long-
term potentiation for memory formation have been extensively studied. We recommend the following three recent
review articles for their complementary perspectives: Blundon and Zakharenko (2008), Malinow and Malenka (2002),
and Feldman (2009). The consequences of synaptic plasticity on neuronal processing within networks of neurons will
be addressed in §14.3 and in Chapter 27.

12.9 EXERCISES

1. Fit the Poisson model to the experimental data of Boyd and Martin (1956) to reproduce Figure 12.4.

(i) Fit the spontaneous data histogram to a normal distribution and reproduce the inset of Figure 12.4A. The
spontaneous data histogram is

{(0.2 1)(0.3 25)(0.4 30)(0.5 20)(0.6 2)},

where each pair consists of a measured depolarization (in mV) and the number of observations.
(ii) Estimate the quantal size using the standard method (Eq. (12.5)) and the method of failures (Eq. (12.6)). What

is the relative error of the method of failures (with respect to the standard method)? Which one of those two
methods would you expect to be more accurate? Use the following evoked data histogram:

{(0 18)(0.3 11)(0.4 20)(0.5 13)(0.6 6)(0.7 14)(0.8 18)(0.917)(1.06)
(1.1 11)(1.2 10)(1.3 9)(1.4 4)(1.5 7)(1.6 9)(1.7 5)(1.8 5)(1.9 3)(2.0 2)

(2.1 2)(2.2 1)(2.3 1)(2.4 2)(2.5 1)(2.6 1)(2.7 1)(2.8 0)(2.9 0)(3.0 1)}.
(iii) Fit the evoked activity histogram using the results of (i) and (ii) and reproduce the main plot of Figure 12.4.

2. Implement the synaptic depression model of Eqs. (12.12) and (12.13) using a backward Euler numerical integration
scheme and reproduce the solid black curves in Figure 12.11A and B. The model parameters are τrec =800 ms,
u0 =0.55, qmax =1.5 pCb, τ =50 ms, and Rin =250 M�. The initial conditions are r(0)=1 and v(0)=0. Time of first
presynaptic action potential: 20 ms. Hint: Use Eq. (10.4) as the basic recipe for setting up your model.

3. Show that in response to a presynaptic spike train of frequency f , the steady-state resources rss are given by

rss = 1−e− 	t
τrec

1−(1−u0)e
− 	t
τrec

,

where 	t =1/f is the time interval between two presynaptic action potentials. Use this result to derive similar
expressions for the steady-state charge delivered by the synapse, qss, the steady-state peak depolarization, vpeak,ss,
and the corresponding time-averaged depolarization, vav,ss. Use these analytical formulas to show that when
	t � τrec and τ ,

qss ≈ qmax	t
τrec

vpeak,ss ≈ qmaxRin

τrec
, vav,ss ≈ qmaxRin

τrec
.

Use these results to reproduce the red dots as well as the dashed lines on Figure 12.11B. Hint: Use the solution
to the differential equation (12.12) to write down a formula for the resources rn+1 at the time, tn+1, of the n+1st
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action potential as a function of the resources, rn, at the time, tn, of the nth action potential. Note that at steady
state, rss = rn+1 = rn. Proceed similarly for vpeak,ss. To compute vav,ss compute the mean of the steady-state potential
over the time interval 	t between two presynaptic action potentials.

4. Modify the synaptic depression model (Exercise 2) to implement synaptic facilitation as in Eq. (12.14). Use the
model to reproduce the solid black traces in Figure 12.12. Use the following parameters: τrec =130 ms, u0 =0.03,
qmax =3.08 pCb, τ =60 ms, and Rin =1 G�. The initial conditions are r(0)=1, u(0)=u0, and v(0)=0. Time of the
first presynaptic action potential: 20 ms. Hint: As in Exercise 2, use Eq. (10.4) as the basic recipe for setting up your
model.

5. Show that under the synaptic facilitation model

uss = u0

1−(1−u0)e
− 	t
τfacil

, rss = 1−e− 	t
τrec

1−(1−uss)e
− 	t
τrec

.

Use these results to reproduce the red circles and dashed lines on Figure 12.12B.
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We learned in the previous chapter that neurotransmitter released into the synaptic cleft is the initial, often noisy,
messenger of presynaptic information to the postsynaptic cell. Although this message is transcribed into a transient
conductance change its effect remains transient unless supported by the postsynaptic cell’s network of second mes-
sengers. Ca2+, the most important of the second messengers, triggers change that activates a host of biochemical
pathways (recall Figure 12.1) that have been found necessary for many (but not all) forms of presynaptic and post-
synaptic plasticity. In this chapter we will work from the outside in. In the first section we develop and illustrate the
principal types of currents that carry calcium across the plasma membrane. In the subsequent section we discuss the
buffering, diffusion, exchange, and extraction of cytosolic calcium and its modulatory effect on the cell’s firing rate.
We then consider the remarkable ability of cytosolic calcium to trigger its own release from the cell’s endoplasmic
reticulum (ER), see Figures 13.1 and 13.2. We then build and integrate models of ryanodine, IP3, and metabotropic
glutamate receptors and demonstrate that the ER functions as a “neuron within a neuron” in the sense that it supports
the active propagation of intracellular calcium waves.

In the final two sections of this chapter we focus on the crucial role played by calcium at both the postsynaptic and
presynaptic terminals. On the postsynaptic side we demonstrate how buffered calcium in the spine head may trigger
the autophosphorylation of an important Ca2+/calmodulin-dependent kinase of type II, CaMKII, and so extend the
duration of a calcium signal long after it has returned to its resting level. On the presynaptic side we investigate a
model of calcium’s role in orchestrating the release of two distinct pools of synaptic vesicles.

Our goal throughout this chapter is to first develop and then integrate representative models of the key components
in the cell’s calcium handling machinery. We emphasize representative because we do not pause to consider the large
variation within individual components.
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FIGURE 13.1 The ER, red, forms a continuous network within a neuron that reaches up into the dendritic tree, down through its axonal tree
and even into spines and presynaptic terminals. The insets on the right illustrate various specializations of the ER. Top: the ER forms the spine
apparatus in ≈ 50% of spines (PSD, postsynaptic density; SRRC, synapse-associated polyribosome complex, involved in local protein synthesis).
Middle: the ER comes in close contact with the plasma membrane to form subsurface cisterns (SSC). Bottom: in the axon, the ER extends up to the
presynaptic terminal where it is often associated with a mitochondrion. Adapted from Berridge (1998).
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FIGURE 13.2 Extracellular calcium enters the cytosol through both voltage and receptor operated channels, VOC and ROC respectively. Once
there it is pumped into the ER and released from the ER via ryanodine and IP3 receptors, RYR and InsP3R respectively. As the rate of release
depends strongly on the presence of cytosolic calcium (in conjunction with two other second messengers, cyclic ADP-ribose and InsP3) this process
is termed “calcium induced calcium release,” or CICR. Adapted from Berridge (1998).
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13.1 VOLTAGE-GATED CALCIUM CHANNELS

As in Chapter 4 we will model calcium currents as the product of a driving force and a gating mechanism. While
the gating functionals will echo those developed earlier for sodium and potassium currents, the driving force will
here take on a different form. This difference arises from the dramatic disparity between the nominal extracellular
and intracellular concentrations of Ca2+,

co ≡ [Ca2+]ext =1 mM and ci ≡ [Ca2+]int =0.05 μM. (13.1)

At these levels one may not expect to discern any outward current at physiological membrane potentials. In other
words, there is no practically discernable reversal potential for the calcium current. As such we must modify the
simple Ohmic assumption that ICa =gCa(V −VCa). To accomplish this we return to the Nernst–Planck equation,

J(r)=−μkT
dc
dr
(r)−μzec(r)

dφ
dr
(r) (13.2)

for the flux, J, arising from the concentration gradient, dc/dr, and potential gradient, dφ/dr, of Ca2+. Here, as in §2.2,
e is the elementary charge, z=2 is the valence, μ is mobility, k is Boltzman’s constant, and T is temperature. Where in
§2.2 we were interested solely in computing the potential gradient associated with rest, i.e., at J =0, we here prescribe
the potential gradient

φ′(r)=−V/δ, 0< r<δ, (13.3)

where δ is the thickness of the membrane, and compute the associated J. This approach will yield an I −V relationship
that we may use to supplant Ohm’s, as J is proportional to current density (ICa = zeNAJ, where NA is Avogadro’s
number). On substituting Eq. (13.3) and

D=μkT and VT = kT/e,

into Eq. (13.2) it follows that we must solve

c′(r)− zV
VTδ

c =−J/D

and so (cexp(−zVr/(VT δ)))
′ =−( J/D)exp(−zVr/(VT δ)) or on integrating from r =0 to r = δ, and using c(0)= ci and

c(δ)= co, we find

exp(−zV/VT)co −ci =− JVT

DzVδ
(1−exp(−zV/VT)).

After slight rearrangement we arrive at

J = D
δ

zV
VT

ci −exp(−zV/VT)co

1−exp(−zV/VT )
.

We next factor out co, multiply top and bottom by exp(zV/VT) and lump the leading constant into the conductance
term and so arrive at the Goldman–Hodgkin–Katz equation,

ICa =gCa�(ci/co,V), �(u,V)≡V
1−uexp(zV/VT )

1−exp(zV/VT)
(13.4)

illustrated in Figure 13.3. This plot shows that at negative membrane potentials the current is nearly a linear function
of potential, as expected from Ohm’s law. As the membrane potential increases beyond 0 mV, however, the slope of
the curve dramatically decreases, a phenomenon called rectification. The current predicted by Eq. (13.4) equals zero
at the Nernst potential for calcium (VCa =128.1 mV, according to Eqs. (13.1) and (2.7)) but no discernible outward
current is experienced beyond that value.
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FIGURE 13.3 I-V curve for the non-Ohmic, nonreversing driving force, Eq. (13.4), with VT = 25.8 mV (T = 27 ◦C), z = 2, and u= 5×10−5 per
Eq. (13.1). (ghk.m)

We next turn to the gating properties of calcium currents. Early experiments on a variety of cells led to the iden-
tification of several distinct types of calcium currents. We will consider three major ones: ICa,L, where L denotes
Long-lasting, ICa,T, where T denotes Transient, and ICa,N , where N denotes Neither L nor T. We distinguish them by
their associated conductances

gCa,L =gCa,Lm2
L, gCa,N =gCa,Nm2

NhN , and gCa,T =gCa,Tm2
ThT

where m and h, as in §4.2, signify activation and inactivation respectively. Each of these gating variables obeys the
canonical first order rule

τu,X(V)u′
X =u∞,X(V)−uX , u=m or h, X =L, N, or T,

where the associated gating functionals,

τu,X(V)= 1
αu,X(V)+βu,X(V)

and u∞,X(V)=αu,X(V)τu,X(V)

αm,X(V)= aX(bX −V)
exp((V −bX)/10)−1

and βm,X(V)= cX exp(−V/dX)

αh,X(V)= eX exp(−V/fX) and βh,X(V)= 1
1+exp((gX −V)/10)

are parametrized by

aL =15.69 (mVms)−1, bL =81.5 mV, cL =0.29 ms−1, dL =10.86 mV,

aN =0.19, bN =19.88, cN =0.046, dN =20.73, eN =1.6×10−4 ms−1, fN =48.46 mV, gN =39 mV,

aT =0.2, bT =19.26, cT =0.009, dT =22.03, eT =10−6, fT =16.26, gT =29.79,

and illustrated in Figure 13.4.
We next add these three channels to our active uniform cable model of §9.1 and assess their associated currents.

This application is straightforward, save for the fact that the shift from the linear Ohmic driving force, V −VCa, to
the nonlinear driving force, Eq. (13.4), spoils the second-order in time accuracy of our staggered Euler scheme. As a
result, we have adopted the hybrid Euler scheme of §4.4. We have coded this in hyEcabCa1.m and illustrated its use
in Figure 13.5, with conductances

gCa,T =0.25, gCa,N =2.5, and gCa,L =2.5 mS/cm2 (13.5)

along the active uniform cable of §9.1.
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13.2 DIFFUSION, BUFFERING, AND EXTRACTION OF CYTOSOLIC CALCIUM

We have so far considered voltage-gated entry of calcium. Once in the cell, however, calcium is subject to a host
of regulatory processes. In this section we pay close attention to several of them. (i) Diffusion, via Fick’s Law. (ii)
Buffering, via first order reactions with calcium binding proteins, like calmodulin, parvalbumin, or calbindin for
example. For simplicity, we will consider only a single type of buffer. (iii) Exchange of calcium for sodium, via a
membrane protein that exploits the like-directed sodium gradient to replace a single intracellular calcium ion with
three sodium ones. And, (iv) extraction of intracellular calcium, via an ATP driven membrane pump. We schematize
the principal fluxes in and out of a representative cable segment in Figure 13.6. The balance of these fluxes will lead
to a nonlinear diffusion equation for intracellular, or cytosolic, calcium.

We consider calcium flux in, out, and within a cylinder of radius a and length 2dx. The basic balance law for
the concentration of intracellular calcium, c = [Ca2+] (μM), states that the rate of change of the numbers of moles (in
nmole/ms) of Ca2+ in our representative segment is the net sum of the associated fluxes. As these fluxes enter through
volume terms, lateral membrane terms, and cross-sectional terms they must be scaled by their associated volume,
2dxπa2, or areas, 4πa dx, and πa2, in order to achieve moles. More precisely, we find

(πa2)(2dx)
∂c
∂t
(x, t)= (πa2)(F1 −F2)+(4πadx)(JCa − JNaCa − JPMCA)

+(πa2)(2dx)(k2b−k1cB)
(13.6)

where F1 and F2 are the two Fickian axial fluxes, JCa is the surface flux associated with the total calcium current, ICa,
JNaCa is the surface flux associated with the exchanger current, INaCa, JPMCA is the surface flux associated with the ATP
driven plasma membrane Ca2+ pump, and k1 and k2 are the rates that calcium binds/unbinds the free buffer, B, to
form/unform the complex, b. Here the product term, cB, is a consequence of the law of mass action.

If Dc denotes the diffusivity (in cm2/ms, §2.2) of free calcium, then Fick’s law, at each end, reads

F1 =−Dc
∂c
∂x
(x−dx, t) and F2 =−Dc

∂c
∂x
(x+dx, t).

The exchange flux, JNaCa, is driven by a membrane protein that exploits the fact that Na+, like Ca2+, is much more
abundant outside the cell than inside. In particular, it exchanges one intracellular Ca2+ for three extracellular Na+.
The conformational change that flips the exchange gate is voltage dependent. Moreover, as the exchanger itself will
be electrogenic (i.e., alter the membrane potential), we express it as a current

INaCa(ci ,V)= INaCa(([Na+]i/[Na+]o)
3 exp(V/(2VT))−(ci/co)exp(−V/(2VT)))

INaCa =100 μA/cm2, [Na+]i/[Na+]o =50/440.
(13.7)

The exchange of three Na+ for one Ca2+ is apparent in Eq. (13.7).

F1

JPMCA JCa JNaCa

a
F2

c � B b

xx � dx � dxx

FIGURE 13.6 Calcium fluxes in a representative cable segment. JPMCA : Ca2+ flux associated with the plasma membrane calcium pump.
JNaCa: Ca2+ flux associated with the calcium–sodium exchanger (also located in the plasma membrane). JCa: Ca2+ flux associated with calcium
conductances. B, b: free and bound buffer, respectively. F1 and F2: diffusion fluxes.
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Next, as ICa and INaCa are in terms of μA/cm2, it follows that

JCa =− ICa

2F
and JNaCa =− INaCa

2F
.

In this equation, Faraday’s constant F = eNA =105 C/mole will carry the proper units (nmole/ms/cm2) and the
negative signs reflect our convention that outward currents are positive. Note also that we use ICa to denote the sum
of all voltage-gated calcium currents, e.g., ICa = ICa,L + ICa,T + ICa,N .

Each plasma membrane Ca-ATPase (PMCA) ejects one Ca2+ from the cell, against its gradient, at the cost of reducing
a molecule of ATP to ADP. This one-to-one stoichiometry yields a behavior that is well represented by the first order
Hill function

JPMCA(c)= jpmca
c

1+c
, jpmca =2×10−6 μmole

cm2ms
.

Having established the principal fluxes, we now divide Eq. (13.6) by compartment volume (2dxπa2) and arrive at

∂c
∂t
(x, t)= DCa

2dx

{
∂c
∂x
(x+dx, t)− ∂c

∂x
(x−dx, t)

}
+2(JCa − JNaCa − JPMCA)/a+k2b−k1cB.

As the compartment size decreases, i.e., dx → 0, we arrive at the nonlinear diffusion equation

∂c
∂t
(x, t)=Dc

∂2c
∂x2 (x, t)+2(JCa − JNaCa − JPMCA)/a+k2b−k1cB. (13.8)

To “close” this system we must incorporate the evolution of both the buffer, B, and its bound state, b. Arguing as
above, we find that mass balance of these two species requires

∂B
∂t
(x, t)=DB

∂2B
∂x2 (x, t)+k2b−k1cB,

∂b
∂t
(x, t)=Db

∂2b
∂x2 (x, t)−k2b+k1cB.

As the buffer B, e.g., calmodulin, is typically several orders of magnitude larger than a calcium ion we may presume
that its diffusivity is not affected by its binding to Ca2+. Hence, we set DB =Db and sum the two equations above to
arrive at a simple diffusion equation for the total amount of buffer, B+b,

∂(B+b)
∂t

=Db
∂2(B+b)
∂x2 ,

∂(B+b)
∂x

(0, t)= ∂(B+b)
∂x

(�, t)=0, (B+b)(x,0)=BT

where BT is the initial buffer concentration. If BT is uniform, i.e., independent of x, then in fact B(x, t)+b(x, t)=BT for
all x and t and so we need only keep track of b, for B=BT −b. Our system now takes the form

∂c
∂t
(x, t)=Dc

∂2c
∂x2 (x, t)+k2b−k1c(BT −b)+(2/a)(JCa − JNaCa − JPMCA)

∂b
∂t
(x, t)=Db

∂2b
∂x2 (x, t)−k2b+k1c(BT −b).

(13.9)

In order to determine a uniform rest state, c(x, t)= cr and b(x, t)=br , this system requires that

br =BT
cr

cr +k2/k1
(13.10)

and

JCa(Vr ,cr)= JNaCa(Vr,cr)+ JPMCA(cr). (13.11)
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Although this arguably couples the resting membrane potential, Vr, to the resting level of [Ca2+] we recall from
the previous section that each of our calcium currents was negligible near Vr . As such, we compute Vr, as above,
assume JCa(Vr,c)=0 and so determine cr via the balance of JNaCa and JPMCA. This is sensible, for at small levels of ci
we recognize from Eq. (13.7) that INaCa>0. That is, the exchanger reverses and brings one Ca2+ into the cell in return
for three Na+, with a net outward current and a net influx of Ca2+. This influx is balanced by the PMCA efflux, given
the parameter set above, when

cr =0.05 μM. (13.12)

Finally, it is natural to presume that the cable ends are sealed, i.e.,

∂b
∂x
(0, t)= ∂c

∂x
(0, t)= ∂b

∂x
(�, t)= ∂c

∂x
(�, t)=0, (13.13)

throughout the simulation. We now develop a numerical scheme, to be coupled to our active cable scheme, for
approximating the solution to the nonlinear diffusion system, Eq. (13.9), subject to the initial conditions, c(x,0)= cr
and b(x,0)=br , and boundary conditions Eq. (13.13). In particular, we write

c
j
i ≈ c((i−1/2)dx,(j−1)dt) and b

j
i ≈b((i−1/2)dx,(j−1)dt)

and use the hybrid trapezoid scheme to represent Eq. (13.9) via

(2/dt)
(
cj −cj−1

bj −bj−1

)
=

(
DcS−k1BT I k2I

k1BTI DbS−k2I

)(
cj +cj−1

bj +bj−1

)
+2

(
k1cj−1bj−1 +p(cj−1)

−k1cj−1bj−1

)

where S is the standard second difference matrix, Eq. (6.9), and p =2(Jca − JNaCa − JPMCA)/a. We rearrange and write
this as a system

(2−dtR)uj = (2+dtR)uj−1 +dtfj−1, for uj ≡
(
cj

bj

)
(13.14)

where

R=
(

DcS−k1BTI k2I
k1BT I DbS−k2I

)
and fj−1 =2

(
k1cj−1bj−1 +p(cj−1)

−k1cj−1bj−1

)
. (13.15)

We have coded this system in hyEcabCa2drive.m and illustrated its use in Figure 13.7, given the parameter set

Dc =220×10−11 cm2/ms, Db =110×10−11 cm2/ms, BT =500 μM

k1 =1.5×10−3 1/ms/μM, and k2 =0.3×10−3 1/ms.
(13.16)

We note that in this case, Eq. (13.10) predicts that Ca2+ will be buffered at br =100 μM.
We will consider a number of processes that are triggered by rises in intracellular calcium. Its most immediate

consequence is to gate calcium-dependent potassium channels. This produces an outward current that serves to
accentuate after hyperpolarization and so decrease the cell’s firing rate. Such a current may be modeled by

IKCa =gKCamKCa(V −EK), gKCa =10 mS/cm2,

∂mKCa

∂t
=αKCa(V,c)(1−mKCa)−βKCa(V,c)mKCa ,

αKCa(V,c)= 0.28c
c+0.48 exp(−1.7V/VT)

and βKCa(V,c)= 0.48
1+7692cexp(2V/VT)

ms−1.

We have plotted the associated activation and time constant functionals in Figure 13.8. We have added this channel
to the active uniform cable, see hyEcabCa3.m, and illustrated its use in Figure 13.8. Its effect on spike frequency will
be investigated in Exercise 1.
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FIGURE 13.7 Calcium influx and regulation at midcable, following a brief suprathreshold injection at the quarter point, to the uniform active
cable with calcium channels, exchanger, pump, and buffers. A. In viewing top to bottom, the action potential, V, opens calcium channels that bring
Ca2+ into the cell via the total ICa (μA/cm2). The exchange current, INaCa (μA/cm2), is initially outward but then soon reverses as V decreases
and c increases. Finally, the increase in c begets an increase in the amount, b, bound to the intracellular buffer. B. Here we tease apart those terms
that shape the Ca2+ signal. In the absence of buffering, pumping, and exchange, c simply grows and then plateaus (dashed red line). We see that
the buffer is a fast effective attenuator and that the pump and exchanger are slower and less dramatic. (hyEcabCa2drive.m)
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FIGURE 13.8 A. Gating functionals for IKCa as functions of membrane potential at three levels of cytosolic Ca2+. (gKCa.m) B. The action
potential and potassium currents at midcable following a brief suprathreshold current injection at the quarter point. (hyEcabCa3.m)

13.3 CALCIUM RELEASE FROM THE ER

The ER is the organelle in which membrane and secretory proteins are synthesized and folded. As both of these
processes are calcium dependent the ER contains a considerable store of calcium. More precisely it is large, roughly
10% of the cell’s volume, geometrically contiguous (enveloping the nucleus and reaching into all dendrites and even
up into many spines) with a resting level of free calcium concentration near 0.5 mM. This is four orders of magnitude
greater than the resting cytosolic level, Eq. (13.12). This source is tapped by two classes of ER membrane bound
channels. As the gating of these channels is itself calcium dependent we may view the ER membrane, by analogy
with voltage, as an active membrane. Furthermore, as this active membrane is contiguous throughout the cell we
may view the ER as a “neuron within a neuron.” As the ER also expresses a separate pump mechanism, contains
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FIGURE 13.9 The principal calcium fluxes in a cable segment of radius a and length 2dx. The inner cable is a segment of the ER. Its radius is
ae. We use s (for store) to denote the concentration of free ER calcium. We denote the concentrations of free and bound ER Ca2+ buffer by Q and
q respectively. Calcium diffuses axially along the ER via Fick’s law and it may leave the ER via IP3 and ryanodine receptors and it may enter the
ER via sarco-ER Ca2+–ATPase (SERCA) pumps.
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FIGURE 13.10 Kinetic scheme for the ryanodine receptor. The associated channel is closed in states C1 and C2 and open in states O1 and O2.
The transition from C1 to O1 requires four cytosolic Ca2+ and that from O1 to O2 requires an additional three cytosolic Ca2+. When open, the
channel permits Ca2+ to follow its gradient from ER to cytosol, i.e., from s to c.

distinct calcium buffers, and permits the diffusion of free calcium, the simple flux diagram of Figure 13.6 now takes
the form of Figure 13.9. Balancing the cytosolic fluxes in Figure 13.9 requires

π(a2 −a2
e )2dx

∂c
∂t
(x, t)=π(a2 −a2

e )(F1 −F2)+4πadx(JCa − JNaCa − JPMCA)

+π(a2 −a2
e )2dx(k2b−k1cB)+4πaedx(JRYR + JIP3 − JSERCA).

On dividing by (a2 −a2
e )2dx and letting dx → 0 we arrive at the diffusion equation

∂c
∂t
(x, t)=Dc

∂2c
∂x2 +2a(JCa − JPMCA − JNaCa)/(a2 −a2

e )

+k2b−k1cB+2ae(JRYR + JIP3 − JSERCA)/(a
2 −a2

e ).
(13.17)

The first three J terms are familiar from the previous section. We develop the new ones one at a time.

The ryanodine flux. The ryanodine receptor is a calcium-gated calcium channel that was first identified with the help
of the plant toxin, ryanodine. We will develop and implement a model based on the scheme of Figure 13.10, in which
two closed states can transition, in the presence of cytosolic calcium, to two open states.

The driving force for the flux through the associated calcium channel is the ER membrane calcium gradient, s−c,
and, as we argue in Exercise 4, the gating depicted in Figure 13.10 may be reduced to a single variable. If we denote
this variable by w then we arrive at

JRYR =νryrw
1+(c/Kb)

3

1+(Ka/c)4 +(c/Kb)
3 (s−c) (13.18)
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where s denotes the ER calcium concentration and w obeys

τw(c)w′ =w∞(c)−w (13.19)

with

w∞(c)= 1+(Ka/c)4 +(c/Kb)
3

1+(1/Kc)+(Ka/c)4 +(c/Kb)
3 , τw(c)=104w∞(c). (13.20)

The constants are

νryr =10−6 cm/ms, Ka =0.372 μM, Kb =0.636 μM, and Kc =0.057. (13.21)

The SERCA flux. The flux, JSERCA, is due to the sarco-ER calcium ATPase that pumps calcium, against its gradient,
from the cytosol to the ER, at the price of one molecule of ATP per two calcium ions. This two-for-one stoichiometry
is typically represented by a second order Hill function of the form

JSERCA = ν̄serca
c2

K2
serca +c2 , Kserca =2 μM, ν̄serca =2×10−4 nmole/(cm2ms). (13.22)

We pause to examine the impact of JRyR and JSERCA on c before developing our model for JIP3. As the ryanodine
receptor flux depends on store calcium we must first couple our cytosolic system for c and b to the ER system for s
and q. This involves no new ideas. In particular we may argue as above and find

∂s
∂t
(x, t)=Ds

∂2s
∂x2 +2(JSERCA − JRYR)/ae +ke

2q−ke
1s(QT −q)

(13.23)
∂q
∂t
(x, t)=Dq

∂2q
∂x2 −ke

2q+ke
1s(QT −q)

where QT denotes the total concentration ER calcium buffer. As above, we note that the resting levels of s and q obey

qr =QT
sr

sr +ke
2/k

e
1

and JRYR(cr ,sr)= JSERCA(cr).

The latter reads

νryr
1+(cr/Kb)

3

1+(cr/Kb)
3 +(1/KC)+(Ka/cr)4

(sr −cr)=νserca
c2

r

K2
serca +c2

r

which, given our parameter set, yields

sr =500μM

for the concentration of resting free calcium in the store. We now augment our u of Eq. (13.14) and f of Eq. (13.15) to

u=

⎛
⎜⎜⎝
c
b
s
q

⎞
⎟⎟⎠ and f =2

⎛
⎜⎜⎝

k1cb+pi(c,s)
−k1cb

ke
1sq+pe(c,s)

−ke
1sq

⎞
⎟⎟⎠

where pi and pe encode the nonlinear interactions

pi(c,s)=2a(JCa(c)− JNaCa(c)− JPMCA(c))/(a2 −a2
e )+2ae(JRYR(c,s)− JSERCA(c))/(a2 −a2

e )

pe(c,s)=2(JSERCA(c)− JRYR(c,s))/ae .
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FIGURE 13.11 Calcium release from the ER associated with an action potential triggered at midcable. A. As the action potential travels away
from midcable it opens Ca2+ channels which in turn induce Ca2+ release from the ER through ryanodine receptors. This calcium is simultaneously
buffered and pumped out of the cytosol. B. We trace the key players in time at midcable. We note the rise in buffered cytosolic calcium, b, and
fall of free store calcium, s, as Ca2+ enters the cytosol through both plasma membrane calcium channels and ER membrane ryanodine receptors.
(hyEcabCa4.m)

Finally, we upgrade our reaction diffusion matrix, R of Eq. (13.15), to

R=

⎛
⎜⎜⎜⎝

DcS−k1BTI k2I 0 0
k1BTI DbS−k2I 0 0

0 0 DsS−ke
1QTI ke

2I
0 0 ke

1QT I DqS−ke
2I

⎞
⎟⎟⎟⎠.

We have coded the (now four dimensional) reaction diffusion system, Eq. (13.14), coupled to the uniform active cable
with calcium channels, in hyEcabCa4.m and illustrated its use in Figure 13.11 using the parameters stated above and

ae =0.5 μm, QT =BT , ke
j = kj , Ds =Dc , and Dq =Db .

To disentangle the contribution of the ER from the electrical events at the cell’s plasma membrane one seeks a more
controlled stimulus. We here consider the case where the cell has been loaded with calcium bound to a light-sensitive
cage. In its bound, or caged, state it does not interact with any of our calcium handling machinery. When light of the
proper wavelength is delivered at x =xs for t ∈ (t1, t2) we arrive at the source term in

∂c
∂t
(x, t)=Dc

∂2c
∂x2 −2a(JPMCA + JNaCa)/(a2 −a2

e )+k2b−k1cB

+2ae(JRYR − JSERCA)/(a2 −a2
e )+c01(t1,t2)(t)δ(x−xs)

(13.24)

where the amplitude, c0, is dependent on the intensity of the light source and the concentration of caged calcium.
We solve this system, still coupled to the ER dynamics, Eq. (13.23), and illustrate our findings in Figure 13.12. This
propagating calcium wave depends on a subtle balance of calcium induced calcium release from the ER through
ryanodine receptors and the delivery, via diffusion and buffering, of fresh cytosolic calcium to neighboring receptors.
Its initiation, however, required a spark of calcium. We will now argue that IP3 receptors are capable of providing
such a spark.

The IP3 flux. Inositol trisphosphate, or IP3, is a cytosolic second messenger that is produced after the binding of
glutamate to a metabotropic glutamate receptor via a pathway whose central constituents interact according to the
reaction scheme illustrated in Figure 13.13 and expressed in Eq. (13.25).
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FIGURE 13.12 Release from the ER following a brief calcium stimulus (t1 = 3, t2 = 4 ms, and c0 = 1 μM/ms) at midcable (xs = �/2). A. We see
that Eq. (13.24) coupled to Eq. (13.23) sustains a cytosolic calcium wave. B. Although we lack direct electrical stimulus, the calcium machinery
effects membrane potential via INaCa and IKCa. Here we note the inhibitory impact of high cytosolic [Ca2+]. (hyEcabCa4.m)
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Here the transmitter, glu, binds to the receptor, mgluR0, leading to its activated form, mgluRA, and inactivated form,
mgluRI. Its associated G-protein is then transformed (in a reaction catalyzed by mgluRA) from an inactive form, G0,
to an activated form, G, that in turn promotes the transformation, by phospholipase C, of phosphatidylinositol 4,5-
bisphosphate (PIP2), into IP3 and diacylglycerol, DAG. G and IP3 are then degraded at rates α5 and α8, respectively. If
we assume, as in Exercise 5, that G0 is abundant and that the concentrations of the complices mgluRAG0 and GPIP2
are steady then we may translate Eq. (13.25) into

m′
A =γ1[glu](1−mA −mI)−γ2mA +γ3mI

m′
I =γ4mA −γ3mI

[G]′ =γ6mA −γ5[G]

[IP3]′ =γ8[G]−γ7[IP3]

(13.26)

where mA and mI denote the respective fractions of active and inactive mgluR and the rate constants γ1, . . . ,γ7 are
derived from the α’s and β’s of Eq. (13.25). Here [glu] is the transient stimulus and we adopt the rate set

γ = (0.66 20 5.3 17 17 7.9 5 10) (13.27)

where each is in units of 1/s, except for γ5 which is in μM/s. We have discretized this via the Trapezoid rule, see
ip3gen.m, and illustrated its solution in Figure 13.14.

It remains to develop a model of the IP3 receptor. The receptor is a trimer and each subunit has three binding
sites, one for IP3 and two for Ca2+. The associated channel opens when IP3 is bound and Ca2+ is bound to one but
not both sites. The occupancies of these three sites suggest the eight-state model of Figure 13.15. The network in
Figure 13.15 has 24 edges and is therefore parametrized by 24 rates. We reduce this set by supposing first that the
rates are independent of whether Ca2+ is bound or not to the active site. This yields

k14 = k23, k41 = k32, k15 = k26, k51 = k62

k58 = k67, k85 = k76, k48 = k37 , k84 = k73.
(13.28)

We next presume that the rates of Ca2+ activation are independent of IP3 binding and Ca2+ inactivation. This yields

k12 = k56 = k87 = k43 and k21 = k65 = k78 = k34. (13.29)
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FIGURE 13.14 Generation of IP3 via Eq. (13.26). Here [glu] is a 20 Hz train of 2 ms, 1 mM doses. (ip3gen.m).
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FIGURE 13.15 A. The eight states of the model of the IP3 receptor subunit. Each state is numbered and represented by three circles (black a
and i for the active and inactive Ca sites, respectively; red circle for IP3 site). Occupied sites are shaded. The native state is 1. From there it can bind
calcium at the activating site and so reach state 2, or the inactivating site and reach state 4, or it may instead bind i= [IP3] and achieve state 5. State
6 is the unique state with i bound, c bound to the activating site and not bound to the inactivating site. The subunit transitions from the inner ring
to the outer ring when Ca2+ binds to the inactivating site. B. The probability of achieving state 6 (on all three subunits) as predicted by Eq. (13.34),
as a function of [Ca2+] at several fixed levels of IP3. (ip3fundrive.m).

The remaining rates (in ms−1) are fit to data. We obtain, with i denoting the IP3 concentration and c the calcium
concentration,

k15 = k48 =0.4i, k58 = k14 =2×10−4c, k12 =0.02c, k51 =0.052,

k85 =2.1×10−4, k84 =0.3772, k41 =2.9×10−5, k21 =1.64 ·10−3.
(13.30)

Some of these rates are much faster than others so we suppose the transitions 1−5−6−2−1 and 4−8−7 −3−4 to
have reached steady state long before the 1−4, 5−8, 6−7, and 2−3 transitions. In other words, on the inner ring we
find, with differential equations on the left and equilibrium conditions on the right,

x′
1 = k41x4 −k14x1, (k15 +k12)x1 = k51x5 +k21x2

x′
2 = k32x3 −k23x2, (k21 +k26)x2 = k12x1 +k62x6

x′
5 = k85x8 −k58x5, (k51 +k56)x5 = k15x1 +k65x6

x′
6 = k76x7 −k67x6, (k62 +k65)x6 = k26x2 +k56x5.

(13.31)

Similarly, we find on the outer ring,

x′
3 = k23x2 −k32x3, (k34 +k37)x3 = k43x4 +k73x7

x′
4 = k14x1 −k41x4, (k43 +k48)x4 = k34x3 +k84x8

x′
7 = k67x6 −k76x7, (k73 +k78)x7 = k37x3 +k87x8

x′
8 = k58x5 −k85x8, (k84 +k87)x8 = k48x4 +k78x7.

(13.32)

We collect their sums in

y =x1 +x2 +x5 +x6 and 1−y =x3+x4 +x7 +x8.
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In Exercise 6 we express each inner ring state as a multiple of y and each outer state as a multiple of 1−y and find

y′ = k41x4 −k14x1 +k32x3 −k23x2 +k85x8 −k58x5 +k76x7 −k67x6

= 1−y
(k84 +k48)(k12 +k21)

(k41k84k12 +k32k21k84 +k85k48k12 +k76k21k48)

− y
(k15 +k51)(k12 +k21)

(k14k21k51 +k23k51k12 +k58k21k15 +k67k15k12)

= (1−y)
2.19c+0.179+16.85ic+1.38i

1000(3.77 +4i)(20c+1.64)
−y

0.171c+2.08c2+1.31ic+16ic2

1000(4i+0.52)(20c+1.64)

≡ y∞(c, i)−y
τy(c, i)

.

(13.33)

The IP3 receptor is open when all three subunits are in state x6. Hence, the open probability is

xO =x3
6 =

(
k15k12y

(k15 +k51)(k12 +k21)

)3

=
(

ciy
(i+0.13)(c+0.082)

)3

. (13.34)

On replacing y with y∞ we arrive at the steady state functional illustrated in Figure 13.15B. We may now insert the
associated flux (with s≡ calcium concentration in ER)

JIP3 ≡νIP3

(
ciy

(i+0.13)(c+0.082)

)3

(s−c), νIP3 =3×10−7cm/ms

into Eqs. (13.17) and (13.23) and augment this pair of reaction diffusion systems with the associated diffusion equation
for IP3,

it =Diixx +γ8[G](t)δ(x−xs)−γ7i (13.35)

where [G](t) is the concentration of active G-protein derived from transient stimulation of mgluRs, recall Eq. (13.25),
at the synapse location, xs. The associated source and degradation coefficients are expressed in Eq. (13.27). Finally,
for purposes of simulation, we have supposed that, Di, the diffusivity of IP3 coincides with that of Ca2+. We have
coupled the resulting five diffusion equations to our active uniform cable in hyEcabCa5.m and illustrated its findings,
upon focal stimulation of metabotropic glutamate receptors, in Figure 13.16.
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FIGURE 13.16 A. An intracellular calcium wave triggered by four 2 ms pulses of glutamate at 50 ms intervals delivered midcable. B. We
observe that midcable IP3 reaches a critical level at about 140 ms. At this point (compare Figure 13.15B) Ca2+ is released by both IP3 and colocalized
ryanodine receptors. Via diffusion and mobile buffering this Ca2+ is then delivered to neighboring ryanodine receptors and the wave commences.
(hyEcabCa5.m)
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FIGURE 13.17 The space-time evolution of IP3 in the simulation described in Figure 13.16. (hyEcabCa5.m)

We wish to stress that the stimulus, via Eq. (13.35), is delivered only at x =xs and that we have no influx of calcium
from the extracellular environment. Moreover, as IP3 diffuses slowly and is degraded rather than buffered it is not
likely to travel far from its source. This observation is supported by Figure 13.17.

We note that intracellular calcium waves have been observed in pyramidal cells in both hippocampal and cortical
slices. One proposed function of such waves is the delivery of calcium to the cell body where it may serve to activate
transcription factors that regulate the genes that govern the morphological changes associated with long-term synaptic
plasticity.

13.4 CALCIUM IN SPINES

We observed in §9.3 that NMDA receptors on the heads of spines, via their dependence on both presynaptic
glutamate release and postsynaptic depolarization, serve as exquisite coincidence detectors. The NMDA receptor
signals coincidence via the Ca2+ component of the resulting NMDA current. The role that this Ca2+ signal then plays
in modulating the spine’s synaptic conductance is one of the central questions in the study of synaptic plasticity. One
of the most well-studied forms of plasticity, already introduced in §12.6, is known as long-term potentiation (LTP). It
can be induced by several protocols, one being a short (a few seconds) volley of high frequency stimulation, and results
in a long (30 or more minutes) sustained enhancement, or potentiation, of the synaptic conductance. The question of
how a short burst of activity may have lasting effects receives an answer in the role Ca2+ may play in the autophos-
phorylation of calcium/calmodulin-dependent protein kinase II, or CaMKII. To phosphorylate a protein is to attach
a phosphate group to it. An enzyme that catalyzes such an attachment is known as a kinase. This attachment typically
requires a conformational change in the recipient which results in a change of function. For example, the activated
(autophosphorylated) form of CaMKII may in turn phosphorylate individual AMPA receptors and thereby increase
their conductances. We now construct a mathematical model for the autophosphorylation of CaMKII by Ca2+. We
will show that this model exhibits a stable steady state in which autophosphorylated CaMKII persists upon transient
elevation of the calcium concentration at levels expected from the activation of NMDA receptors. This elevated and
persistent level of autophosphorylated CaMKII can in turn maintain AMPA receptors in a high conductance state.

With regard to the block diagram of Figure 12.1, the first step following entry of Ca2+ into the spine via
NMDA channels, is the binding of four Ca2+ to the large mobile buffer calmodulin, CaM, to form the (Ca2+)4CaM
complex. We will henceforth denote this (Ca2+)4CaM complex by C. CaMKII is presumed to possess 10 subunits,
with 8–12 being typical. Autophosphorylation involves two adjacent subunits, with one subunit acting as a catalyst
and the other as a substrate. A subunit may become catalytic only through either phosphorylation or the binding of
C. A subunit may serve as a substrate only after binding C. Moreover, we assume that this process may occur only
between neighboring subunits and that it may progress in but one direction. In Figure 13.18 we depict the first two
steps of autophosphorylation, propagating clockwise along the CaMKII ring. To move from the inactive kinase, P0 to
the (first) activated level P1 requires two molecules of C. Each C may bind to CaMKII only after all four Ca2+ sites on
CaM are filled, and so the rate of binding C to CaMKII is assumed proportional to

([Ca2+]/KH1)
4

1+([Ca2+]/KH1)4
.
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FIGURE 13.18 A schematic of the first two steps in the autophosphorylation of CaMKII. The left column represents the initiation of phos-
phorylation (from top to bottom). The middle and right columns represent two routes for the propagation of autophosphorylation. Note that the
position of the newly added P group is constrained to be clockwise from the first one. Here C denotes the (Ca2+)4CaM complex and P denotes
orthophosphate.

Here, KH1 is the Hill dissociation constant for Ca2+ from CaM. As two Cs are required and there are 10 possible
adjacent pairs we conclude that

P0
f1�
b1

P1 where f1 = 10k1([Ca2+]/KH1)
8

(1+([Ca2+]/KH1)4)2
.

Here k1 is the rate at which P0C2 yields P1C2. This is the bottom irreversible reaction in the first column of Figure 13.18.
The binding of one additional C complex to P1 is enough to trigger a subsequent phosphorylation. The resultant

then offers twice the number of targets for dephosphorylation. In symbols,

P1
f2�
b2

P2 where f2 = k1([Ca2+]/KH1)
4

1+([Ca2+]/KH1)4
.

Subsequent C driven autophosphorylation also occurs at multiple sites. Namely, P2 exists in 10(10−1)/2 =45 configu-
rations, of which z2,1 =10 consist of adjacent phosphorylated sites, as illustrated in the example of Figure 13.18. These
configurations offer one new phosphorylation site immediately adjacent in the clockwise direction. The remaining
z2,2 =35 nonadjacent configurations offer two phosphorylation sites immediately adjacent in the clockwise direction.
These configurations arise from the dephosphorylation of CaMKII at random positions through the reaction to be
described in Eq. (13.38) below. Hence,

P2
f3�
b3

P3 where f3 = z2,1 +2z2,2

z2,1 +z2,2
f2.
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In general, for i =2,3, . . . ,9,

Pi
wif2�
bi+1

Pi+1 where wi =w10−i =
∑i

j=1 jzi,j∑i
j=1 zi,j

(13.36)

and zi,j is the number of ways to distribute i items leaving j clockwise neighbors. We offer

z=

⎛
⎜⎜⎜⎜⎝

10 · · · ·
10 35 · · ·
10 60 50 · ·
10 71 100 29 ·
10 80 120 40 2

⎞
⎟⎟⎟⎟⎠

and so

w1 =w9 =1, w2 =16/9, w3 =7/3, w4 =284/105, w5 =25/9. (13.37)

Regarding the reverse reactions characterized by the reverse rates bi , we suppose that phosphatase, D, strips or
dephosphorylates Pi via

iPi +D
d1�

d−1
PiD

d2−→Pi−1 +D i =1,2, . . . ,10. (13.38)

The factor i in front of Pi accounts for the i possible binding sites. If we assume the complex, PiD, achieves rapid
equilibrium then

P′
i−1 =d2[PiD], (13.39)

i[Pi][D] =KM[PiD], KM = (d2 +d−1)/d1, (13.40)

where KM is the Michaelis constant for the phosphatase.Hence, if we define the total active phosphataseconcentration

[D]0 = [D]+
10∑

j=1

[PjD] (13.41)

and use Eq. (13.40) to replace [D], we arrive at the linear system

[PiD]KM/(i[Pi])+
10∑

j=1

[Pj D] = [D]0, i =1,2, . . . ,10 (13.42)

for [PiD]. This system possesses considerable structure and so permits the simple solution

[PiD] = i[Pi][D]0

KM +∑10
j=1 j[Pj]

. (13.43)

Using Eq. (13.39), we may now express the reverse rates

bi = id2[D]0

KM +∑10
j=1 j[Pj]

, (13.44)

where d2 is the dephosphorylation rate of Eq. (13.39). We so arrive at the system of ordinary differential equations

[P0]′ =b1[P1]− f1[P0]

[Pi]
′ = fi[Pi−1]+bi+1[Pi+1]−(bi + fi+1)[Pi]

[P10]′ = f10[P9]−b10[P10].
(13.45)
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To close this system we must constrain the dynamics of [D]0, the concentration of active phosphatase. We do this
via its interaction with I, a [Ca2+]-dependent inhibitor of the phosphatase. In particular, we assume a total pool of
phosphatase of size [D]T . The phosphatase can bind to the inhibitor through a first order reaction, and [D]T − [D]0
represents the quantity bound to I. The rates of binding and unbinding are k3 and k4, respectively. The inhibitor
is produced from its inactive form I0 by protein kinase A (PKA) at a rate νPKA and inactivated through action of
calcineurin at a rate νCaN . Calcineurin itself requires binding of three Ca2+ to be active, through binding of three
Ca2+/CaM, with Hill coefficient KH2. In symbols,

[D]′0 =−k3[I][D]0 +k4([D]T − [D]0)

[I]′ =−k3[I][D]0 +k4([D]T − [D]0)+νPKAI0 − νCaN[I]([Ca2+]/KH2)
3

1+([Ca2+]/KH2)3
.

(13.46)

Our principle interest is in the number of relevant steady states achievable by Eqs. (13.45) and (13.46). Toward that
end, it follows from Eq. (13.46) that the D− I system is steady at

[D]0 = k4[D]T

k3[I]+k4
and [I] =νPKAI0

1+([Ca2+]/KH2)
3

νCaN([Ca2+]/KH2)3
(13.47)

and that the P system is steady at

[P1] = (f1/b1)[P0], [P2] = f1f2
b1b2

[P0], and [Pj] = f1 · · ·fj
b1 · · ·bj

[P0].

On noting that bj = jb1 and fj =wj−1f2, we then find

[Pj] =b−j
1 cj[P0] where cj ≡ f1f j−1

2 w1 · · ·wj−1/j! . (13.48)

Let [P]T be the total amount of CaMKII, i.e.,

[P]T =
10∑

j=0

[Pj]. (13.49)

If we use this in Eq. (13.48), we may solve for [P0]

[P]T

[P0]
=1+

10∑
j=1

cjb
−j
1 , (13.50)

and if now we place Eqs. (13.48) and (13.50) in Eq. (13.44) with i =1 we find

(k2[D]0b−1
1 −KM)

⎛
⎝1+

10∑
j=1

cjb
−j
1

⎞
⎠= [P]T

10∑
j=1

jcjb
−j
1

which we recognize as an eleventh order polynomial for b1,

(k2[D]0 −KMb1)

⎛
⎝b10

1 +
10∑

j=1

cjb
10−j
1

⎞
⎠= [P]T

10∑
j=1

jcjb
11−j
1 , (13.51)

where [P]T is the fixed total concentration of CaMKII and [D]0, the steady activated level of phosphatase, is set in
Eq. (13.47) by [Ca2+]. The coefficients, cj, are likewise set in terms of the forward rates, f1 and f2, by [Ca2+]. Adopting
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FIGURE 13.19 The bistability curve of Zhabotinsky (2000). For small (< 0.1 μM) and large (> 0.7 μM) levels of [Ca2+] there is but one steady
state while for 0.1 ≤ [Ca2+] ≤ 0.7 μM there are three steady states. The middle state is known to be unstable and so CaMKII is said to be bistable.
(camk2ss.m)

the parameters

k1 =5 ·10−1ms−1,KH1 =4 mM, d2 =2 ms−1, KM =0.4 mM

k3 =1 (mMms)−1, k4 =1 ·10−3ms−1,KH2 =0.7 mM, νCaN =1 ms−1, νPKA =1 ms−1

[P]T =20, [D]T =0.05, and I0 =0.1 mM

(13.52)

we find that this polynomial has three distinct positive roots for [Ca2+] within a physiologically relevant window.
For each such root, the total amount of active CaMKII

[P]A ≡
10∑

j=1

j[Pj] =d2[D]0b−1
1 −KM

is graphed in Figure 13.19. This curve provides a possible answer to the query that opened this section. More precisely,
if a brief high frequency stimulus elevates spinal [Ca2+] above 0.7 μM then CaMKII will reach its high state. Most
importantly, as spinal [Ca2+] returns to normal resting levels, the high state of CaMKII persists. The reader will have
a chance to test these ideas in Exercise 7.

13.5 PRESYNAPTIC CALCIUM AND TRANSMITTER RELEASE

The previous chapter made numerous references to the fact that transmitter release, through exocytosis, is depen-
dent on the presence of Ca2+ in the presynaptic terminal. With regard to the schematic in Figure 13.20, depolarization
of the presynaptic terminal opens voltage-gated calcium channels. This calcium binds to a “calcium sensor” on the
outer surface of the vesicular membrane. The bound sensor then binds several SNARE (soluble N-ethylmaleimide-
sensitive fusion protein receptor) proteins that facilitate the fusion of the vesicular and cellular membranes and the
subsequent secretion of neurotransmitter. The goal of this section is to present a mechanistic model of synaptic fusion
and experiments suggesting that the protein synaptotagmin-1 is part of the calcium sensor.

We illustrate the experiments that we will model in Figure 13.21, based on recordings from chromaffin cells of
the mouse adrenal gland. These are neurosecretory cells that receive synaptic inputs from other neurons, which
can cause them to fire an action potential. This, in turn, causes calcium influx and subsequent release of hormones,
like epinephrine, stored in secretory vesicles. Rather than using synaptic or electrical stimulation to trigger vesicle
release, it is possible to use flash-photolysis to uncage Ca2+ that has been previously injected into the cell as a caged
compound. The fusion of vesicles can be monitored by measuring changes in membrane capacitance. More precisely,
as the vesicular and cellular membranes fuse the resulting surface area of the cell “grows” by one vesicle.As membrane
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FIGURE 13.20 A depiction of the calcium-dependent exocytotic event. Calcium enters through voltage-gated calcium channels and binds to
vesicular proteins that trigger membrane fusion and eventual transmitter secretion.
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FIGURE 13.21 The top panel shows two isolated chromaffin cells (typical diameter:≈ 10−15μm) with the top right one being accessed
through a glass electrode visible on its right. This allows delivery of the caged Ca2+ compound and measurement of capacitance changes during
uncaging. The black electrode on the right is able to measure directly the release of hormones through a technique called amperometry. The middle
panel reports the change in calcium concentration immediately before and after the light flash (red arrow at bottom). The bottom panel shows that
the change in membrane capacitance has a rapid, a slow, and a sustained component. Adapted from Neher (2006).

capacitance is proportional to surface area, vesicle fusion may be inferred fromCm, the change in membrane capaci-
tance obtained using a recording electrode, by measuring the voltage response to a simple current step. Recall, e.g.,
that Eqs. (3.10) and (3.12) permit us to write ACm in terms of strengths and centroids of the stimulus and response.
If the recording electrode also contains a calcium indicator, it is possible to simultaneously measure the intracellular
calcium concentration, as in Exercise 8. Such measurements show that vesicle release consists of three distinct phases:
a fast, a slow, and a sustained phase (Figure 13.21). Since the fast and slow phases appear largely independent of each
other, this leads to a two pool model of vesicle release: vesicles either belong to a rapidly releasable pool (RRP) or a
slowly releasable pool (SRP) that proceed towards exocytosis largely independently of each other. Such a two pool
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release model is also thought to capture the properties of synaptic release at presynaptic terminals. The late sustained
component corresponds to the release of new vesicles as they are made available by the cell fabrication machinery
following depletion of the RRP and SRP pools. We assume that vesicles belonging to the SRP require the binding of
three Ca2+ ions to be exocytosed while those of the RRP require four.

If we denote the respective steady populations by SRP0 and RRP0, and then increment their subscripts when their
vesicles bind a calcium ion we obtain the over-all scheme

k2(Ca2+)
�
k−2

SRP0
k1�

k−1
RRP0 RRP0 +Ca2+ 4αr�

βr
RRP1

SRP0 +Ca2+ 3αs�
βs

SRP1 RRP1 +Ca2+ 3αr�
2βrb

RRP2

SRP1 +Ca2+ 2αs�
2βs

SRP2 RRP2 +Ca2+ 2αr�
3βrb2

RRP3

SRP2 +Ca2+ αs�
3βs

SRP3
γs→ESRP RRP3 +Ca2+ αr�

4βrb3
RRP4

γr→ERRP

(13.53)

where ESRP and ERRP denote “exocytosed,” from the SRP and RRP respectively. The first two pairs of reactions are
associated with pool maintenance, with k2 credited with “priming” the vesicles, i.e., making them ready for release.
The second pair corresponds to the transformation of a vesicle from the SRP to the RRP. The rates are given by

k2 = rmax[Ca2+]

KD + [Ca2+]
, rmax =55 f F/s, KD =2.3, k−2 =0.005, k1 =0.12, k−1 =0.1

where all concentrations are in μM and all rates are in s−1. Note that we measure pool filling rates in femtofarads
per second and that the transformation rates k1 and k−1 between the two pools are slow compared to the exocytosis
rates given below. As mentioned above, fusing and emptying of the slowly releasable pool is assumed to require the
binding of three Ca2+ ions, per vesicle, and is parametrized by

αs =0.8 (mMs)−1, βs =4 s−1, and γs =20 s−1. (13.54)

The last fusion step and its rate, γs, are calcium independent. Fusing and emptying of the readily releasable pool is
assumed to require four Ca2+ ions, in a cooperative fashion, and is parametrized by

αr =4.9, βr =56, γr =1450, and b=0.55. (13.55)

Here b is the cooperativity parameter that effectively reduces the rate of calcium unbinding as more Ca2+ ions are
bound to the vesicle. These parameters were chosen to fit the response in Figure 13.22A.

One way of discerning the contribution of synaptotagmin-1 to vesicle release, is to conduct experiments in chromaf-
fin cells of both wild type (WT) mice and mice that carry a mutation (R233Q) in the calcium-dependent phospholipid
binding domain of synaptotagmin-1. As illustrated in Figure 13.22, this mutation causes a delay in exocytosis (vertical
dashed lines) that suggests a higher Ca2+ threshold for the release sensor. In addition, overall change in membrane
capacitance is reduced in the mutants, suggesting that synaptotagmin-1 may also have an effect on the priming and
unpriming of vesicles.

To investigate whether model parameter changes can reproduce the experimental results, we apply the law of mass
action to Eq. (13.53) to arrive at the linear system of ordinary differential equations

x′(t)= ([Ca2+](t)A+B)x(t)+k2([Ca2+](t))e1 (13.56)

for x = (SRP0 SRP1 SRP2 SRP3 ESRP RRP0 RRP1 RRP2 RRP3 RRP4 ERRP)
T where A and B are two constant matrices

and e1 is the first column of the identity matrix. We have coded this system in exocytosis.m, under the assumption
that Ca2+ is uncaged in the ramplike fashion (as in Figure 13.22)

Ca2+(t)=min{exp((t−1.5) log(10)/2.5),20} (13.57)

MATHEMATICS FOR NEUROSCIENTISTS



216 13. NEURONAL CALCIUM SIGNALING*

10

1

800

600

400

200

0

0 2 4

Time (s)

(A)

6 8 0 2 4

Time (s)

(B)

6 8

[C
a

21
]  

(�
M

)
D

C
m

 (
fF

)

SRP exo

RRP exo

SRP exo

RRP exo

10

1

400

300

200

100

0

[C
a

21
]  (

�
M

)
D

C
m

 (
fF

)

R233QWT

10

FIGURE 13.22 Capacitance change during an increase in intracellular calcium in both (A) wild type and (B) mutant chromaffin cells. The
calcium ramp was delivered via flash photolysis. The dashed black lines are fits to the slope of the experimental curves and permit us to determine
the activation delay. The corresponding vertical dashed lines determine the Ca2+ concentration threshold. The solid gray line is the fit from the
model in Eq. (13.53), while the dashed gray lines show the time course of exocytosis from the SRP and RRP. Adapted from Sørensen et al. (2003).
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FIGURE 13.23 A. The Ca2+ ramp stimulus of Eq. (13.57) and the predicted response in both the wild type (B) and mutant (C) cells. Panel
B was achieved with the parameter set Eqs. (13.54) and (13.55). Its red traces correspond to the dashed and dotted traces of Figure 13.22A. The
mutant simulation in panel C required modification of the single model parameter, αr , the rate at which Ca2+ binds to vesicles in the RRP. The
change from αr = 4.9 in wild type to αr = 2.4 in the mutant serves to quantify the role of synaptotagmin-1 as a link between intracellular Ca2+ and
the SNARE apparatus leading to exocytosis. (exocytosis.m)

and illustrate its use in Figure 13.23 for both wild type and mutant cells. The model shows that a single modification
to the calcium binding rate of the rapidly releasable pool (αr) is sufficient to explain the experimental results. This
modification also corresponds to a higher threshold for the calcium sensor since the Ca2+ dissociation constant is
equal to KD =βr/αr.
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13.6 SUMMARY AND SOURCES

We have pursued the notion, championed by Berridge (1998), that the ER comprises a “neuron within a neuron,”
where the calcium gradient across the ER membrane is analogous to the voltage gradient across the plasma membrane.
The section on voltage-gated calcium channels is drawn from Jaffe et al. (1994). For more on pumps and exchangers
see Chapter 3 in Fall et al. (2005). The factor of 2 in the two voltage terms of Eq. (13.7) for the sodium–calcium
exchanger stems from a symmetry assumption in the underlying barrier model, see Keener and Sneyd (1998) for
details. Hudspeth and Lewis (1988a,b) argue that the interplay of calcium and calcium activated potassium currents
underlies the “electrical tuning” displayed by hair cells in the auditory and vestibular systems. We reproduce their
model in Exercise 3. The most relevant calcium buffers are surveyed in Baimbridge et al. (1992). The design of
fluorescent buffers as calcium indicators is discussed in Grynkiewicz et al. (1985). Exercise 8 is derived from this
work. Shimomura, Chalfie, and Tsien shared the 2008 Nobel Prize in Chemistry for the discovery and development
of such fluorescent indicators. See http://nobelprize.org. The rapid buffer approximation of Exercise 9 is due to
Wagner and Keizer (1994). The ryanodine receptor model and the constants characterizing it, Eq. (13.21), are due to
Keizer and Levine (1996).

The model of the metabotropic glutamate receptor is built along the lines of the metabotropic GABA receptor in
Destexhe et al. (1998). For an alternate treatment see Fiala et al. (1996). The IP3 receptor model is due to Young and
Keizer (1992). Intracellular calcium waves in neurons were first observed by Jaffe and Brown (1994). For a careful
study of the initiation and propagation of such waves see Peercy (2008). The CaMKII model is due to Zhabotinsky
(2000). The two pool model of exocytosis is due to Sørensen et al. (2003). See Rizo and Rosenmund (2008) for a recent
overview of the structural complexity of the synaptic release machinery.

13.7 EXERCISES

1. Drive hyEcabCa3.m with a periodic train and show, as in Figure 13.24, that the calcium-dependent potassium
current can alter the spike rate.
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FIGURE 13.24 The calcium-dependent potassium current leads to spike skipping when the cable of §13.2 is driven by a 50 Hz train of
1 ms current injections, at x2 = �/4, and of amplitude 300 pA. We here plot the response at midcable. The black trace corresponds to gKCa = 0
and the red trace to gKCa = 10 mS/cm2. The latter exhibits a long period of “after-hyperpolarization” that serves to decrease the spike rate.

2. †Closer examination of the L-type calcium channel has determined that it inactivates through a process that is
dependent on the concentration of cytosolic calcium. Modify hyEcabCa3.m to incorporate calcium-dependent
inactivation, via

gCa,L =gCa,Lm2
LhL, hL = kL

kL +c
(13.58)

and experiment, as in Figure 13.25, with the regulatory parameter, kL.
3. Sound is detected by the deflection of hair bundles attached to mechanosensitive ion channels in so-called “hair

cells.” The differentiation of sound into its frequency components is accomplished via mechanical filtering in the
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FIGURE 13.25 The effect of calcium-dependent inactivation of the L-type calcium channel on the cable of §13.2. Here ICa,L and c are
midcable traces stemming from a 1 ms, 300 pA current injection at �/4. (hyEcabCa3Ldrive.m)

inner ear and electrical filtering in individual hair cells. We here reconstruct a model of a bullfrog hair cell in which
the interaction of calcium currents and calcium activated potassium currents are seen to explain the cell’s frequency
response. The potential, V, in the (isopotential) hair cell obeys

CmV ′ +gL(V −EL)+ ICa + IKCa = Istim,

where

Cm =15 pF, gL =1 nS, EL =−30 mV

and the calcium current is of the form

ICa =gCam3(V −ECa), gCa =4.14 nS, ECa =100 mV,
m′ =αm(V)(1−m)−βm(V),

αm(V)=α0 exp((V +V0)/VA)+KA, βm(V)=β0 exp(−(V +V0)/VB)+KB

α0 =0.00097, β0 =22.8, KA =0.94, KB =0.51 ms−1,

VA =6.17, V0 =70, VB =8.01 mV

and a calcium-gated potassium current

IKCa =gKCa(O2 +O3)(V −EK), gKCa =16.8 nS, EK =−80 mV

where O2 and O3 are the two open states in the five-state scheme

C0
k1c
�
k−1

C1
k2c
�
k−2

C2
βC�
αC

O2
k3c
�
k−3

O3

k−1 =0.3, k−2 =5, k−3 =1.5 ms −1,

kj = k−j/Kj(V), Kj(V)=Kj(0)exp(δjzV/VT), VT =25.8 mV

K1(0)=0.006, K2(0)=0.045, K3(0)=0.02 mM, δ1 =0.2, δ2 =0, δ3 =0.2,

αC(V)=αC(0)exp(−V/Va), βC =1, αC(0)=0.45 ms−1, Va =33 mV.
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Here c denotes the intracellular calcium concentration, in mM, and is presumed to obey

c′ =γ ICa −Ksc, γ =0.0024 M/pC, KS =2.8 ms−1.

Apply the law of mass action to the five-state scheme and arrive at a system of ordinary differential equations for
(V,C0,C1,C2,O2,O3,c). Solve this system using two classes of inputs and reproduce the results in Figure 13.26. In
the first case, use a simple 50 ms current pulse of amplitude I0,

Istim(t)= I01(0,50)(t). (13.59)

In the second case, we mimic the transduction of the mechanosensitive hair receptor by supposing that the periodic
deflection of the hair bundle

x(t; f )=x0 sin(2π ft), x0 =20 nm

generates the associated current

Istim(t, f )= −gTV
1+exp(a1 −a2x(t; f ))(1+exp(a3 −a4x(t; f ))

(13.60)

with gT =3 nS, a1 =1.2674, a2 =0.0169 nm−1, a3 =0.4238, and a4 =0.0034 nm−1. We capture the resonant nature of
the cell by computing, for each frequency, f , the maximal peak-to-peak response

P( f )≡max
t>t0

V(t; f )−min
t>t0

V(t; f )

where t0 denotes the duration of the transient, see Figure 13.26B.
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FIGURE 13.26 A. The response of the hair cell to current pulses, Eq. (13.59), of amplitude 20 and 80 pA. Note that the frequency of
the depolarization increases with the size of the stimulus. (haircell1.m) B. The resonant peak associated with the transduced deflection,
Eq. (13.60). (haircell2.m)

4. Apply the law of mass action to the reaction scheme, Figure 13.10, of the ryanodine receptor in your derivation of

C1
′ =−k+

a c4C1 +k−
a O1

O1
′ = k+

a c4C1 −(k−
a +k+

b c3 +k+
c )O1 +k−

b O2 +k−
c C2

O2
′ = k+

b c3O1 −k−
b O2

1=O1 +O2 +C1 +C2.

(13.61)

If the a and b transitions are fast compared to c argue why

O1 = (c/Ka)
4C1 and O2 = (c/Kb)

3O1 = (c/Kb)
3(c/Ka)

4C1. (13.62)
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Next define O≡O1 +O2 and w≡1−C2 and show that C1 =w−O and

O=O1 +O2 = (c/Ka)
4(1+(c/Kb)

3)C1 = (c/Ka)
4(1+(c/Kb)

3)(w−O), (13.63)

and so

O=w
1+(c/Kb)

3

1+(Ka/c)4 +(c/Kb)
3 . (13.64)

Similarly, show that w′ =−C2
′ = k−

c C2 −k+
c O1 and proceed to confirm that w obeys Eq. (13.19) where w∞ is given

by Eq. (13.20).
5. †Apply the law of mass action to Eq. (13.25) to find

[mgluRA]′ =α1[glu][mgluR0]+β2[mgluRI]−(β1 +α2)[mgluRA]

−α3[mgluRA][G0]+(β3 +α4)[mgluRAG0]

[mgluRI]
′ =α2[mgluRA]−β2[mgluRI]

[G]′ =α4[mgluRAG0]−α5[G]−α6[G][PIP2]+(β6 +α7)[PIP2G]

[IP3]′ =α7[PIP2G]−α8[IP3]

(13.65)

while the complices obey

[mgluRAG0]′ =α3[G0][mgluRA]−(β3 +α4)[mgluRAG0]

[PIP2G]′ =α6[G][PIP2]−(β6 +α7)[PIP2G].
(13.66)

We now suppose that Eq. (13.66) is steady with respect to Eq. (13.65). In particular, set the derivatives in Eq. (13.66)
to zero, solve for [mgluRAG0] and [PIP2G] and insert these values into Eq. (13.65). Finally, let [mgluRT] denote the
total concentration of metabotropic glutamate receptors. Note that [mgluR0] = [mgluRT]− [mgluRA]− [mgluRI] and
divide your simplified Eq. (13.65) through by [mgluRT] and discuss how one arrives at Eq. (13.26).

6. †Regarding our reduction, see Eq. (13.33), of the IP3 receptor model, use MATLAB’s symbolic toolbox to show that⎛
⎜⎜⎝

x1
x2
x5
x6

⎞
⎟⎟⎠= y

(k15 +k51)(k12 +k21)

⎛
⎜⎜⎝

k21k51
k51k12
k21k15
k15k12

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

x3
x4
x7
x8

⎞
⎟⎟⎠= 1−y

(k84 +k48)(k12 +k21)

⎛
⎜⎜⎝

k21k84
k84k12
k21k48
k48k12

⎞
⎟⎟⎠.

7. Show that the CaMKII dynamical system, Eq. (13.45), may be written

p′ =Fp+b1([Ca2+])Bp

where

F=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−f1 0
f1 −f2 0
0 f2 −f3 0

· · ·
0 f8 −f9 0

0 f9 −f10 0
0 f10 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 −1 2 0
0 0 −2 3 0

· · ·
0 −8 9 0

0 −9 10
0 0 −10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and that the associated phosphatase/inhibitor system for q= ([D] [I])T, takes the form

q′ =Cq+d(q)+g, where C=
(−k4 0

−k4 −νCaN([Ca2+])

)

d(q)=−k3q1q2

(
1
1

)
and g=

(
k4[D]T

k4[D]T +νPKAI0

)
.
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Code this coupled system, using the model parameters specified in Eq. (13.52), and with a calcium stimulus of
the form

[Ca2+](t)=0.1+100(exp(−t)−exp(−2t)) μM, (13.67)

arrive at Figure 13.27.
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FIGURE 13.27 The dynamic response of the CaMKII system to a transient Ca2+ stimulus. (camk2.m)

8. Intracellular calcium concentration is typically inferred from its action on one or more calcium buffers that have
been engineered to fluoresce upon the binding of calcium. As in §13.2 we denote calcium concentration by c and
use B and b to denote the respective concentrations of free and bound buffer and suppose that

c+B
k1�
k2

b. (13.68)

We suppose that our buffer, like Fura-2, shifts its excitation spectra with increasing c and that we have measured
its fluorescence, F1 and F2, at two distinct frequencies. We write each as a linear combination of b and B,

F1 =Sf1 B+Sb1b and F2 =Sf2B+Sb2 b, (13.69)

and note that the S coefficients are typically determined via a calibration experiment using known low concentra-
tions of b and B. We now describe how to use Eq. (13.69) to infer c from the ratio R =F1/F2.

(i) Use the law of mass action in Eq. (13.68) to write a differential equation for b. Set the derivative to zero and
confirm that

b = cB/Kd where Kd ≡ k2/k1 (13.70)

is the dye’s dissociation constant. Deduce from Eq. (13.70) that Kd is also the concentration of c at which b = B,
or, in other words, the concentration of c at which half of the buffer is occupied. The latter interpretation
helps explain the frequent use of the word affinity in this context. A buffer is said to have high (low) affinity
for calcium if it has a small (large) dissociation constant where small and large are to be interpreted with
respect to the resting level cr ≈ 0.05μM of Eq. (13.12). For example, among the native (or endogenous) buffers,
calmodulin (Kd ≈ 1μM) is low affinity while parvalbumin (Kd ≈ 0.4 nM) is high affinity, while among the
engineered Ca2+ indicators, Fura-2 (Kd ≈ 0.4 μM) and Ca2+ Green–1 (Kd ≈ 0.2 μM), are each low affinity.

(ii) Substitute Eq. (13.70) into Eq. (13.69) and find

c =Kd
R−(Sf1/Sf2)

(Sb1/Sb2)−R

Sf2

Sb2

. (13.71)
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(iii) In the case of very low c argue from Eq. (13.69) that F1/F2 =Sf1/Sf2 and call this number Rmin. In the case of
very high c argue from Eq. (13.69) that F1/F2 =Sb1/Sb2 and call this number Rmax. Combine these findings and
conclude that Eq. (13.71) takes the form

c =Kd
R−Rmin

Rmax −R

Sf2

Sb2

. (13.72)

9. †The argument that led to Eq. (13.70) is often termed the rapid buffer approximation. We will now show how it may
be used to reduce the dimensionality of the reaction–diffusion system

∂c
∂t
(x, t)=Dc

∂2c
∂x2 (x, t)+k2b−k1c(BT −b)+ J

∂b
∂t
(x, t)=Db

∂2b
∂x2 (x, t)−k2b+k1c(BT −b)

(13.73)

where J is some input flux.
(i) Deduce from Eq. (13.73) that

∂c
∂t

+ ∂b
∂t

=Dc
∂2c
∂x2 +Db

∂2b
∂x2 + J. (13.74)

(ii) Deduce from Eq. (13.70) that

∂c
∂t

+ ∂b
∂t

= (Kd +c)2 +KdBT

(Kd +c)2
∂c
∂t

(13.75)

and

Dc
∂2c
∂x2 +Db

∂2b
∂x2 = 1

(Kd +c)2

(
(Dc(Kd +c)2 +DbKdBT)

∂2c
∂x2 − 2DbKdBT

Kd +c

(
∂c
∂x

)2
)

. (13.76)

(iii) Conclude that c obeys the nonlinear diffusion equation

((Kd +c)2 +KdBT)
∂c
∂t

= (Dc(Kd +c)2 +DbKdBT)
∂2c
∂x2 − 2DbKdBT

Kd +c

(
∂c
∂x

)2

+(Kd +c)2J. (13.77)

(iv) Under the additional assumptions that the buffer is immobile, Db =0, and low affinity, Kd 
 c, conclude that
c obeys

(1+BT/Kd)
∂c
∂t

=Dc
∂2c
∂x2 + J. (13.78)

This equation is very similar to the cable equation, Eq. (6.75), and as such may be solved by an eigenfunction
expansion. In particular, with sealed ends, Eq. (13.13), a zero rest state, c(x,0)=0, and a point interior stimulus,
J(x, t)= Jstim(t)δ(x−xs), argue that

c(x, t)= 1
1+BT/Kd

∞∑
n=0

qn(xs)qn(x)

t∫
0

Jstim(s)exp((t−s)ζn)ds (13.79)

where the rates are

ζn = Dc

1+BT/Kd
ϑn (13.80)

and the eigenfunctions, qn, and eigenvalues, ϑn, are precisely those of Eq. (6.39). Argue that the buffer serves
to diminish and retard the response, c, to the stimulus, J.
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The singular value decomposition (SVD) is a natural matrix factorization that offers one a quantitative means of
discerning what is, and what is not, of importance in the underlying data or model. We build this factorization from
ingredients we assembled in our study of the eigendecomposition of symmetric matrices in Chapter 6. We apply this
factorization, in its guise as principal component analysis (PCA), to data reduction in the context of sorting spikes that
reach a single recording electrode from multiple sources. PCA is a technique for choosing coordinates in which the
data exhibit maximal variance. We observe that a simple Hebbian learning rule achieves the same outcome. We then
demonstrate how the SVD may be used to reduce the dimension of dynamical models. We show that a 400-dimensional
quasi-active cable may be accurately simulated with as few as five variables.

14.1 THE SINGULAR VALUE DECOMPOSITION

The SVD is, in a sense, the eigendecomposition of a rectangular matrix. Of course if A is m-by-n and m �=n then
it does not make sense to speak of the eigenvalues of A. We turn then to two natural square and symmetric relatives
of A,

AT A and AAT .

We will argue that the eigenvalues of AAT and AT A are nonnegative and that their nonzero eigenvalues coincide.
Let us first confirm this for

A=
(

1 0 1
0 1 0

)
. (14.1)

The respective products are

AAT =
(

2 0
0 1

)
and AT A=

⎛
⎝1 0 1

0 1 0
1 0 1

⎞
⎠.

223
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Analysis of the first is particularly simple. Its eigenpairs are

λ1 =2, y1 = (1 0)T and λ2 =1, y2 = (0 1)T .

Regarding AT A we note that

det (AT A−λ)= (1−λ)3 −(1−λ)=λ(1−λ)(λ−2)

and so its eigenvalues are λ1 =2, λ2 =1, and λ3 =0. Upon evaluating AT A−λjI you may confirm that the associated
eigenvectors are

x1 = (1 0 1)T/
√

2, x2 = (0 1 0)T , and x3 = (−1 0 1)T/
√

2.

Hence, for this A, the nonzero eigenvalues of AAT and ATA indeed coincide. As, however, their eigenvectors have
different dimensions it would seem difficult to compare them. In fact they also are intimately related. In particular,
please check that

yj =
Axj√
λj

, j =1,2.

In preparation for the general SVD we will need the full strength of the eigendecomposition in Exercise 6.4. Recall
that we argued there that every symmetric matrix has an orthonormal basis of eigenvectors. To apply this we require
a bit more notation. We suppose that B ∈Rn×n is symmetric and that its characteristic polynomial, p(λ)≡det(B−λI),
has h ≤n distinct roots, e.g., λ1>λ2> · · ·>λh. We say that λj is an eigenvalue of multiplicity nj if p and its first nj −1
derivatives all vanish at λj. It is a deep and beautiful fact that there will then exist precisely nj mutually orthogonal
eigenvectors, xj,k, k =1,2, . . . ,nj, associated with λj, and that these multiplicities, nj , sum to the ambient dimension, n.

Proposition 1. We suppose that A is real and m-by-n. The eigenvalues of AAT and AT A are nonnegative. Their nonzero
eigenvalues, including multiplicities, coincide.

Proof. If ATAx =λx then xTAT Ax =λxTx, i.e., ‖Ax‖2 =λ‖x‖2 and so λ≥0. A similar argument works for AAT .
Now suppose that λj>0 and xj, ‖xj‖2 =1, constitute an eigenpair of AT A, i.e.,

ATAxj =λjxj. (14.2)

We find, on multiplying through (from the left) by A that

AAT Axj =λjAxj,

i.e., λj is an eigenvalue of AAT with eigenvector Axj , so long as Axj �=0. It follows from the first paragraph of this
proof that ‖Axj‖=√

λj, which, by hypothesis, is nonzero. Hence,

yj ≡
Axj√
λj

, (14.3)

is a unit eigenvector of AAT associated with λj. In general, if λj was an eigenvalue of AT A of multiplicity nj then
for each xj,k in an orthonormal basis for the associated eigenspace of AT A the above procedure will generate nj

eigenvectors, yj,k, of AAT . Let us now show that these vectors are indeed orthonormal for fixed j.

yT
j,iyj,k = 1

λj
xT

j,iA
T Axj,k =xT

j,ixj,k =0.

We have now demonstrated that if λj>0 is an eigenvalue of ATA of multiplicity nj then it is an eigenvalue of AAT of
multiplicity at least nj . Reversing the argument, i.e., generating eigenvectors of AT A from those of AAT we find that
the multiplicities must indeed coincide.
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Let us now gather together some of the separate pieces of the proof. For starters, we order the eigenvalues of ATA
from high to low,

λ1>λ2> · · ·>λh

and write

AT A=X�nXT (14.4)

where

X = (X1 · · ·Xh), and Xj = (xj,1 · · ·xj,nj)

and �n is the n-by-n diagonal matrix with λ1 in the first n1 slots, λ2 in the next n2 slots, etc. Similarly

AAT =Y�mYT (14.5)

where

Y = (Y1 · · ·Yh), and Yj = (yj,1 · · ·yj,nj)

and �m is the m-by-m diagonal matrix with λ1 in the first n1 slots, λ2 in the next n2 slots, etc. The yj,k were defined in
Eq. (14.3) under the assumption that λj>0. If λj =0 let Yj denote an orthonormal basis for the associated null space,
{y ∈Rm : AAT y =0}. Finally, call

σj =
√
λj

and let � denote the m-by-n diagonal matrix with σ1 in the first n1 slots and σ2 in the next n2 slots, etc. Notice that

�T� =�n and ��T =�m. (14.6)

Now recognize that Eq. (14.3) may be written

Axj,k =σjyj,k

and that this is simply the column by column rendition of

AX =Y�.

As XXT = I we may multiply through (from the right) by XT and arrive at the SVD of A,

A=Y�XT. (14.7)

Let us confirm this on the A matrix in Eq. (14.1). We have

X = 1√
2

⎛
⎝1 0 −1

0
√

2 0
1 0 1

⎞
⎠ , Y =

(
1 0
0 1

)
, and � =

(√
2 0 0

0 1 0

)

and so A=Y�XT . It also agrees with what one receives upon typing [Y,SIG,X] =svd(A) in MATLAB, where SIG=�.
As a second example, we suppose that A=a ∈Rn is a single column. In that case, the inner product, aT a is a scalar,

while the outer product, aaT is n-by-n. Regarding the former we note that the nontrivial solution to

aTax =λx is x =1 and λ1 =aT a
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while a solution to

aaTy =λy is y =a and λ1 =aTa.

The remaining n−1 eigenvalues of aaT are zeros and the eigenvectors may be chosen to be any orthonormal basis for,
a⊥, the orthogonal complement of a,

a⊥ ≡{y ∈Rn : aTy =0}.

For example, if a = (1 0 −1)T then y2 = (0 1 0)T and y3 = (1 0 1)T/
√

2 comprise an orthonormal basis for a⊥. As such

Y = 1√
2

⎛
⎝ 1 0 1

0
√

2 0
−1 0 1

⎞
⎠ , X =1, and � =

⎛
⎝

√
2

0
0

⎞
⎠

are the ingredients in the SVD of a.

14.2 PRINCIPAL COMPONENT ANALYSIS AND SPIKE SORTING

In the processing of high dimensional noisy data the SVD is often used to automatically select prominent features.
In one important case, this is done via transforming to coordinates in which the data exhibits extreme variances. To
begin, we suppose that we have n observations a1,a2, . . . ,an of an m-dimensional process. We compute the sample
mean

ă = 1
n

n∑
j=1

aj, (14.8)

and construct the empirical covariance matrix

C̆= 1
n

AAT where A≡ (ã1 ã2 · · · ãn), ãj =aj − ă (14.9)

(recall Exercise 11.19). This C̆∈Rm×m and we search for the unit vector u∈Rm that maximizes the variance

var(u)≡uT C̆u.

We attack this problem by writing u as a linear combination of the eigenvectors of C̆. In particular, from

C̆yj =λjyj , u=
n∑

j=1

ujyj , and
n∑

j=1

u2
j =1

we find

var(u)=
n∑

j=1

ujyT
j

n∑
j=1

ujC̆yj =
n∑

j=1

ujyT
j

n∑
j=1

ujλjyj =
n∑

j=1

λju2
j . (14.10)

Recalling that the λj are ordered in a decreasing fashion we find that var(u)≤λ1 and that this maximum is attained
by choosing u=y1, the leading eigenvector of C̆. We call y1 the first principal component and call the jth element of
s1 ≡AT y1 the score for the jth observation on the first principal component.

We next seek that unit vector u that maximizes var(u) subject to the additional constraint that it be uncorrelated
with the first principal component. We measure correlation via the covariance

cov(u,y1)≡uT C̆y1 =λ1uT y1
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and so uncorrelated means orthogonal, i.e., uTy1 =0. Inserting this into Eq. (14.10) we find that

max
uT y1=0

var(u)≤λ2,

with equality when u=y2. As such, the second principal component is the second eigenvector of C̆ and the score for
jth observation on the second principal component is the jth element of s2 ≡AT y2.

We now apply this method to the problem of distinguishing the spikes of individual cells within a population from
knowledge only of their cumulative impact. This problem occurs when one places an electrode into the extracellular
space, common to several adjacent neurons, and records the so-called multi-unit activity over time. The large trans-
membrane action potentials of the neighboring cells are attenuated by the attending glia and extracellular fluid to
the degree that one typically only receives a noisy echo of a spike. As this low amplitude oscillatory echo resembles
(recall Chapter 5) the quasi-active response to intracellular excitation we synthesize such records by distorting the
sum of the quasi-active responses of three distinct trains of stimuli. In particular, we suppose the cells to have distinct
conductances and we suppose each to be driven by a periodic current of the form

I(t)= I0(exp(−t/τ1)−exp(−t/τ2)), I(t )= I(t+T ).

The precise values of the conductance and current parameters may be found in Table 14.1. We have coded these
cells and illustrated our findings in Figure 14.1. Each of the 98 spikelets in Figure 14.1B contains 601 samples. We
consider each trace to be a column aj ∈R601. We next remove the sample mean and construct the data matrix A per
Eq. (14.9). We need not physically construct C̆, for [Y,Sig,X]=svd(A) will return the desired principal components
in Y. The singular value decomposition of Y, see Figure 14.2, indeed permits us to cluster the spikes emanating from
distinct cells.

TABLE 14.1 The conductance and current
parameters of the three synthetic cells.

Cell gK gNa gCl I0 τ1 τ2 T

1 36 140 2 0.95 0.6 0.5 50

2 38 120 1 0.9 0.5 0.4 90

3 40 100 0.3 0.7 0.7 0.6 70
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FIGURE 14.1 A. The three spike trains and their tainted sum, corrupted by additive Gaussian noise of zero mean and standard deviation
equal to 0.1 mV. The experimentalist only has access to the latter. B. The spikelets are excised from the long train and aligned. The challenge is to
determine both how many cells are firing and to identify which spike belongs to which cell. The eye detects at least five potentially distinct clusters.
(spikepca.m)
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FIGURE 14.2 A. The singular values of the data matrix exhibit very rapid decay. This suggests that the greatest variance in the traces is captured
by the first three, and possibly four, associated singular vectors, yj . B. We compute the three score vectors, sj = ATyj , j= 1,2,3, and plot (black +)
their triples, (s1,k ,s2,k,s3,k) for the traces k = 1, . . . ,98. As we generated the spikes we know which cell gave rise to which spike. In red we used
circles to mark the spikes from cell 1, squares to mark the spikes from cell 2, and diamonds to mark the spikes from cell 3. We note that these fall
into easily separated clusters in the space of score coordinates. (spikepca.m)

14.3 SYNAPTIC PLASTICITY AND PRINCIPAL COMPONENTS

In §12.6 we learned that synapses can undergo long-term potentiation (LTP), a strengthening based on coincident
presynaptic and postsynaptic activity. LTP and the opposite change, long-term depression (LTD), are thought to be
one of the biophysical mechanisms by which learning may be implemented in neuronal networks. In this section, we
illustrate how LTP and LTD may be involved in learning associations about external inputs. We focus on the learning
stage in the simplest context. We suppose the neuron is linear and that time is discrete. In particular, vj, the neuron’s
scalar output at “time” j is assumed to be a weighted sum of its n inputs, xj ∈Rn. If we denote these weights by w ∈Rn

we find

vj =wTxj. (14.11)

We suppose that the inputs, {x1,x2, . . .}, are independent zero mean and identically distributed, and denote the common
correlation matrix by

C≡E[xjxT
j ]. (14.12)

The collection, {xj}∞j=1, is an example of a stochastic process, indexed by j. (We will devote all of Chapter 16 to such
processes). We may think of vj as the firing rate of the neuron, relative to its spontaneous value, within a short time
interval around the time point indexed by j.

Regarding rules for updating w, the natural scheme, first popularized by Hebb, is to reward cooperation by
incrementing those weights that bring about “activity” in the output, vj, from “activity” in the input, xj. As their
product, vjxj, is the simplest indicator of such “coactivity,” we posit a Hebbian learning rule of the form

wj+1 =wj +γjvjxj, (14.13)

where γj is the degree of reinforcement. As this rule can lead to runaway weight gain, it is often either clipped or
normalized via

wj+1 = wj +γjvjxj

‖wj +γjvjxj‖ . (14.14)
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For small γj this rule takes the form (see Exercise 5)

wj+1 =wj +γjvj(xj −vjwj)+O(γ 2
j )

(14.15)
=wj +γj(xjxT

j −wT
j xjxT

j wjI)wj +O(γ 2
j ).

With Eq. (14.12) and

ξ j ≡ (xjxT
j −C)wj −wT

j (xjxT
j −C)wjwj (14.16)

Eq. (14.15) takes the form

wj+1 =wj +γj(C−wT
j CwjI)wj +γjξ j +O(γ 2

j ). (14.17)

There is a sizable literature on Stochastic Approximation Methods devoted to showing that the solution to such a
stochastic difference equation is well approximated by an associated deterministic differential equation (see §14.5). In
our case, the independence of {xj}j=1,2... ensures that if γj → 0 like 1/j then solutions to the difference equation (14.17)
converge to solutions to the differential equation

w′(t)= (C−w(t)T Cw(t)I)w(t). (14.18)

We first show that solutions to Eq. (14.18) remain bounded. On multiplying each side by wT we find

d
dt

‖w(t)‖2 =2w(t)TCw(t)(1−‖w(t)‖2).

As C is positive semidefinite this states that ‖w(t)‖ is decreasing whenever ‖w(t)‖>1. To investigate the asymptotic
behavior we recall the eigendecomposition CQ =Q� and express w(t)=Qu(t). It follows that u obeys

u′(t)=�u(t)−(u(t)T �u(t))u(t) (14.19)

and so v ≡u/u1 obeys

v′(t)= (�−λ1I)v (14.20)

and so, if λ1>λ2 then ui/u1 → 0 for each i>1. As the terms are also bounded we have shown that u(t)→ e1 and so
w(t)→ q1. In other words, the normalized Hebbian rule Eq. (14.14) produces a synaptic weight vector that approaches
the principal eigenvector of the correlation matrix of the cell’s stochastic input.

The previous arguments do not rely on {xj}j=1,2... being zero mean or equivalently on C being the covariance matrix
of {xj}j=1,2.... For example, we note that if xj = s+nj where s is a fixed unit vector and the nj are independently drawn
from a zero mean distribution with covariance σ 2I, then

C=E[xjxT
j ] = ssT +E[njnT

j ] = ssT +σ 2I

and the largest eigenvalue of C is 1+σ 2 with s the associated eigenvector. As C−1s= s/(1+σ 2)we recognize that this
neuron behaves like the classical matched filter of Exercise 7.

For a slightly richer example, we sample yj,1 ∈N (0,1) and yj,2 ∈N (0,16) and then stack and rotate by π/6 to obtain

xj =
(

cos(π/6) sin(π/6)
−sin(π/6) cos(π/6)

)(
yj,1
yj,2

)
. (14.21)

We have plotted these points in Figure 14.3A for three distinct trials, each of length 500. For each trial we construct
the 2-by-2 empirical correlation matrix

C̆= 1
499

(x1 x2 · · · x500)(x1 x2 · · · x500)
T (14.22)
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FIGURE 14.3 A. Three data trials, black x points, and the associated leading eigenvectors (stretched for better visibility), in red, of the empirical
correlation matrix, Eq. (14.22). B. The associated trajectories of wj, per Eq. (14.15), for each of the three trials. The trajectories indeed converge to
the leading eigenvector of their respective empirical correlation matrices. (ojasim.m)

and plot its leading eigenvector in red. Figure 14.3B shows the convergence of the weights towards (a scaled version
of) the leading eigenvector under the update rule of Eq. (14.15).

14.4 NEURONAL MODEL REDUCTION VIA BALANCED TRUNCATION

We start from the general linear autonomous dynamical system (i.e., with time-independent coefficients B and C),

x′(t)=Bx(t)+Cu(t), x(0)=x0, y(t)=Dx(t), (14.23)

where x(t)∈Rn is the state of the system, u(t)∈Rm is the control or stimulus variable, and y(t)∈Rp represent obser-
vations. In the example to be treated below, x will be the membrane potential and conductance state variables in
the compartments of the quasi-active cable of §9.4, u the current injected in the cable, and y the membrane potential
observed in one of the cable compartments. We recall two classical results of Modern Control Theory regarding the
control and observation of the solution, x. Namely, one can find a stimulus u that drives the initial disturbance, x(0),
to zero so long as the Controllability Gramian

P≡
∞∫

0

exp(tB)CCT exp(tBT)dt (14.24)

is invertible. In a similar fashion, the initial disturbance may be recovered from the observation, y, so long as the
Observability Gramian

Q ≡
∞∫

0

exp(tBT )DTD exp(tB)dt (14.25)

is invertible. Recall that the matrix exponential, exp(tB), was defined in Eq. (5.30). As P and Q will be central to our
reduction we pause to develop a number of their key properties. To begin we note that they are both symmetric and
positive semidefinite. Next, we note that the integrand of P,

E(t)≡ exp(tB)CCT exp(tBT) (14.26)

satisfies the matrix differential equation

E′(t)=BE(t)+E(t)BT , E(0)=CCT (14.27)
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(Exercise 8). If we now integrate each side we find

E(∞)−E(0)=B

⎛
⎝ ∞∫

0

E(t)dt

⎞
⎠+

⎛
⎝ ∞∫

0

E(t)dt

⎞
⎠BT .

If the eigenvalues of B are in the left half plane, i.e., have negative real parts, then exp(tB)→ 0 as t →∞ and hence
E(∞)=0. Therefore P must obey

BP+PBT +CCT =0. (14.28)

In a similar fashion, we note that the integrand of Q,

F(t)≡ exp(tBT)DT D exp(tB) (14.29)

satisfies

F′(t)=BT F(t)+F(t)B, F(0)=DTD. (14.30)

If we now integrate each side we find

F(∞)−F(0)=BT

⎛
⎝ ∞∫

0

F(t)dt

⎞
⎠+

⎛
⎝ ∞∫

0

F(t)dt

⎞
⎠B.

Arguing as above, we find F(∞)=0, and so conclude that Q must obey

BTQ+QB+DTD =0. (14.31)

These linear systems for P, Eq. (14.28), and Q, Eq. (14.31), are referred to as Lyapunov equations.
The balancing act in balanced truncation is achieved by a transformation,�, that reduces both P and Q to a common

diagonal matrix. To begin, we gather the Cholesky factors (recall Exercise 6.7)

P=UUT and Q =LLT (14.32)

and compute the SVD of the mixed product

UT L=Y�XT. (14.33)

Here � is a diagonal matrix whose entries are the eigenvalues of UT QU, Y is an orthogonal matrix whose columns are
the eigenvectors of UTQU, and X is an orthogonal matrix whose columns are the eigenvectors of LTPL. The diagonal
elements of � are nonnegative and in descending order and are known as the Hankel Singular Values of system
Eq. (14.23). We now compose

�=�−1/2XTLT and �−1 =UY�−1/2,

and note that the transformed gramians

P̃≡�P�T and Q̃ =�−TQ�−1

are balanced and diagonal in the sense that

P̃= Q̃ =� (14.34)
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(Exercise 11). Moreover they are the gramians of the transformed state, x̃ ≡�x, which itself is governed by the trans-
formed dynamical system as

x̃′(t)= B̃x̃(t)+ C̃u(t), y(t)= D̃x̃(t) (14.35)

where B̃ =�B�−1, C̃=�C, and D̃ =D�−1 (Exercise 12). Based on the decay of the singular values in �, we can
construct a reduced model by using only the k largest singular values. This corresponds to approximating Eq. (14.35)
with

x′
�(t)=B�x�(t)+C�u(t) y�(t)=D�x�(t), (14.36)

where B� is the initial k×k submatrix of B̃, C� is the first k rows of C̃, and D� is the first k columns of D̃.
Let us now put this method into practice on the quasi-active cable of §9.4. The matrix B is a discrete version (with

S for ∂xx) of Eq. (9.23) while C, the matrix that marks the equations and compartments that may receive input, is the
identity on the current equations coordinates and zero elsewhere. In particular, with reference to the block structure
in Eq. (9.23),

C=

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 I

⎞
⎟⎟⎠.

Here each block is N-by-N where N is the number of compartments. The identity in the bottom right block will permit
independent current injection into each compartment. Finally, if our output variable of interest is the potential at
x =	/10 then D is the 1-by-4N vector of zeros save for a one in the associated voltage compartment, i.e., at index
3N +N/10. We have coded the full and reduced systems in stEQcabBT.m and illustrate its use in Figure 14.4.

We stress that the remarkable fit in Figure 14.4(B) of the response to two such widely different systems is not
dependent on our choice of stimulus. As the reduction was built solely from the associated (B,C,D) system its
performance is not affected by the choice of input, u. It is, however, limited to reproducing the response only at those
sites specified in the D matrix. We will pursue this limitation in the exercises. Regarding implementation, we note
that other than the SVD of Eq. (14.33) we must compute the Cholesky factors of the solution to the two Lyapunov
equations, (14.28) and (14.31). MATLAB’s control toolbox contains a function lyapchol that delivers exactly what we
need.
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FIGURE 14.4 A. Rapid decay of the singular values of the quasi-active cable of §9.4 with N = 100 compartments. B. Response of the full,
400-dimensional, and reduced, five-dimensional, quasi-active cable subjected to 50 randomly distributed (in space and time) current injections,
each of 1 ms duration and 10 nA amplitude. (stEQcabBT.m)
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14.5 SUMMARY AND SOURCES

We have established the SVD and discussed its importance to three central problems of Computational Neuro-
science: Spike Sorting, Synaptic Plasticity, and Neuronal Model Reduction. For more on this decomposition, as well
as the Schur decomposition of Exercise 9, see Golub and van Loan (1996). Goldman (2009) has exploited the Schur
decomposition to build a class of functionally feedforward networks that achieve sustained, memory-like, behavior
without positive feedback. The challenges of spike sorting are well documented in Buzsáki (2004) and the connection
to PCA is surveyed in Lewicki (1998). Eq. (14.18) is known as the Oja Rule after Oja (1982). The proof that solutions
of the difference equation (14.17) converge to solutions of the differential equation (14.18) relies on Theorem 2.3.1
of Kushner and Clark (1978). In our case, the independence of {xj}j=1,2... ensures that E[ξ j|ξ i, i< j,wi, i ≤ j] =0, and it
follows from Theorem 2.3.1 that if γj → 0 like 1/j then solutions to the difference equation (14.17) converge to solutions
to the differential equation (14.18). The concept of a matched filter will be encountered again in §24.4, when we study
the detection of multidimensional Gaussian signals. Model reduction via balanced truncation goes back to Moore
(1981). The results in §14.4 are drawn from Kellems et al. (2009).

14.6 EXERCISES

1. Let us construct, by hand, the SVD of

A=
(

1 0 1 0
0 1 0 1

)
. (14.37)

As AAT is simply twice the 2-by-2 identity matrix argue that

λ1 =λ2 =2 and y1 = (1 0)T and y2 = (0 1)T .

Turning to AT A we find

ATA=

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎠.

We know from Proposition 1 that its eigenvalues are 2, 2, 0, and 0. The latter two are apparent from the fact that
ATA possesses only two linearly independent rows. For j =1 and 2 use Eq. (14.3) to find x1 and x2. Solve AT Ax =0
to find an orthonormal pair, x3 and x4. Please complete the triad by specifying � and confirming that A=Y�XT .

2. The SVD suggests a simple procedure for addressing equations of the form Ax =b in situations where either the
solution x does not exist or the solution is not unique. The idea is to construct a pseudoinverse of A∈Rm×n by
reciprocating its nonzero singular values. Because m is not necessarily n we must also be careful with dimensions.
To be precise, let �+ denote the n-by-m matrix whose first n1 diagonal elements are 1/σ1, whose next n2 diagonal
elements are 1/σ2 and so on. In the case that σh =0, set the final nh diagonal elements of �+ to zero. Now, one
defines the pseudoinverse of A to be

A+ ≡X�+YT . (14.38)

Our pseudosolution to Ax =b is naturally A+b. Though it is too much to hope that AA+b=b we shall see that
our pseudosolution is in fact the actual solution to a related linear system. Please justify each of the following
steps

(AT A)A+b=X�nXTX�+YTb

=X�n�+YTb

=X�T��+YTb

=X�TYTb

=AT b.
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We have shown that x =A+b is a solution to ATAx =AT b. This latter system is typically called the set of normal
equations. They arise in searching for that x that yields the least squared error, ‖Ax−b‖2.

3. †Use Eq. (14.38) to compute, by hand, the pseudoinverse of the A in Eq. (14.37). Confirm that your answer agrees
with what pinv returns in MATLAB. Use your pseudoinverse to pseudosolve Ax = (1 1)T . Show in fact that it is a
true solution, but note that it is not unique by finding a second solution, z. Please confirm that ‖x‖≤‖z‖.

4. †Show that xLS =A+b is the vector that minimizes ‖Ax−b‖2 with the smallest norm. First, suppose that the first
k singular values are nonzero and justify the following steps:

‖Ax−b‖2 =‖YT(Ax−b)‖2

=‖�XTx−YTb‖2

=
k∑

i=1

(σi(X
Tx)i −(YT b)i)

2 +
m∑

i=k+1

((YT b)i)
2.

Deduce from this last equation that (XTx)i = (YTb)i/σi for i ≤ k. For i> k, XTx will have smallest norm if (XTx)i =0.
Show that this endows x with smallest norm by arguing that ‖XTx‖=‖x‖. Argue that the resulting x is indeed
A+b.

5. Given Eq. (14.11), assume that γj is small and argue that

1
‖wj +γjvjxj‖ = 1

‖wj‖ −γj
v2

j

‖wj‖3 +O(γ 2
j ).

Now argue that this yields Eq. (14.15) when ‖wj‖=1.

6. †Show that if w obeys Eq. (14.18) and w =Qu where CQ =Q� then u must satisfy Eq. (14.19). Furthermore, show
that if v =u/u1 then v must satisfy Eq. (14.20). Finally, deduce from this that u(t)→ e1.

7. †We consider a signal, s∈Rm, corrupted by additive noise, n∈Rm. The matched filter is that choice of w ∈Rm that
maximizes the signal-to-noise ratio,

SNR(w)≡ (wTs)2

E[(wTn)2]
.

(i) Argue that if C=E[nnT ] then

SNR(w)= (wTs)2

wTCw
.

(ii) Now factor C=UUT per Cholesky (Exercise 6.7) and arrive at

SNR(w)= ((UT w)TU−1s)2

wTUUT w
.

(iii) Next apply the Schwarz inequality, Eq. (1.2), to the numerator to find

SNR(w)≤ sT C−1s,

and argue that this bound is achieved when w =αC−1s, for any α �=0. The scale, α, is often chosen to render
E[(wTn)2] =1. Show that

α= 1√
sT C−1s

does the job.
8. Use Eq. (5.29) to confirm that E and F as defined in Eqs. (14.26) and (14.29) satisfy the stated differential equations,

(14.27) and (14.30).
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9. There is another matrix decomposition, due to Schur, with wide application. It states that for each B ∈CN×N there
exists a unitary matrix X ∈CN×N and an upper triangular matrix U∈CN×N for which

B =XUXH. (14.39)

We are working here with complex matrices because, lacking any symmetry, real matrices have complex eigen-
values. Here XH denotes conjugate transpose of X and to say X is unitary is to say that XHX = I.

We now establish Eq. (14.39) by induction. We note that it is trivially true when N =1. We must then deduce that
if it is true for matrices of size N −1 then it is true for matrices of size N. To make this step suppose that y1 is a unit
eigenvector of B with eigenvalue λ and that {yn}N

n=2 comprises an orthonormal basis for y⊥ ≡{x ∈CN : xHy =0}.
Lay these yn into the columns of the matrix Y and argue that the product BY may be decomposed like

BY = (By1 By2 · · · ByN)=Y
(
λ v
0 V

)
(14.40)

for some v ∈C1×N−1 and V∈CN−1×N−1. These are simply names for pieces of the matrix. The crucial piece, for
you to justify, is the set of N −1 zeros in the first column. For this is the step that permits induction. In particular,
as V∈CN−1×N−1 and the Schur decomposition is assumed to hold in dimension N −1 there exists a unitary Z and
an upper triangular W for which V=ZWZH . From here argue that

X ≡Y
(

1 0
0 Z

)

is unitary and that XHBX is indeed upper triangular.
10. †We use the Schur decomposition to simplify the Lyapunov equation, (14.28). Substitute B =XUXH into

Eq. (14.28), multiply the result on the left by XH and on the right by X and arrive at the simple system

UP +PUH +CCH =0. (14.41)

How do P and C relate to P and C? Use the triangular nature of U to show that Eq. (14.41) may be solved by back
substitution. In particular, if B ∈Rn×n give exact formulas for Pn,n and Pn,n−1 and sketch an algorithm for the rest.

11. †Confirm the key balance identity, Eq. (14.34).
12. †Confirm that the transformed state, x̃, indeed obeys Eq. (14.35).
13. Modify stEQcabBT.m to accommodate observation of the potential at both x =	/10 and x =9	/10. The D matrix

will now be 2-by-4N. Reproduce Figure 14.5.

0 10 20 30 40 50 60 70 80 90 100
10�20

10�15

10�10

10�5

100

Index

S
in

gu
la

r 
V

al
ue

0 5 10 15 20 25 30 35 40 45 50

�3

�2

�1

0

1

2

3

4

5

Time (ms)

V
 (

m
V

)

(A) (B)

FIGURE 14.5 A. Significantly less rapid decay of the singular values of the quasi-active cable of §9.4 with N = 100 compartments.
B. Response (at 	/10 in black and at 9	/10 in red) of the full (solid), 400-dimensional, and reduced (dashed), five-dimensional, quasi-active
cable subjected to 50 randomly distributed (in space and time) current injections, each of 1 ms duration and 10 nA amplitude. (stEQcabBT2.m)
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Many sensory neurons are spontaneously active when recorded in vivo or in vitro, i.e., they generate action potentials
at random intervals in time. For sensory neurons, spontaneous activity is usually defined as that activity recorded
in the absence of any experimental sensory stimulation. Spontaneous activity is in part due to the random release
of neurotransmitter at synapses, but other mechanisms presumably also contribute. In sensory receptor cells, the
random activation of the transduction machinery such as isomerization of light-sensitive pigments in photoreceptors
will cause the activation of downstream neurons. Similarly, ion channels in the membrane of nerve cells spontaneously
open and close and thus probably also contribute to fluctuations in membrane potential that could sometimes elicit
spontaneous action potentials.

Spontaneous activity and the ensuing spike train variability is important for several reasons.

1. Spontaneous activity can be thought of as noise that will limit the reliability at which neural signals can be trans-
mitted. For example, if a photoreceptor spontaneously generates signals in the absence of light, these signals can
be confused with a true (faint) light change. Thus, this noise poses a fundamental limit to the ability of an animal to
detect light. Similarly, if a sensory neuron is spontaneously active, its action potentials could be a source of “noise”
for downstream neurons processing its output. In the case of central neurons the situation is a bit less clear than
at the receptor level, since what we characterize as spontaneous activity or “noise” could be of significance to a
downstream neuron in a manner that we do not appreciate.

2. Spontaneous activity most probably contributes to the development of neuronal circuits and to the maintenance
and regulation of synaptic connections between neurons in mature circuits.

3. Different neurons exhibit different patterns of spontaneous activity. Thus spontaneous activity must be related to
the characteristics of neurons such as their morphology, ion channel distribution, and their pattern of synaptic
connections. Spontaneous activity therefore offers a way to gain information about neuronal characteristics.

We first introduce the methods used to describe spike train variability of nerve cells and present examples of
spontaneous activity patterns encountered in neurons. As we will see, these methods also help describe the variability
of neuronal spike trains in responses to external stimuli.

237
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238 15. QUANTIFICATION OF SPIKE TRAIN VARIABILITY

15.1 INTERSPIKE INTERVAL HISTOGRAMS AND COEFFICIENT OF VARIATION

The simplest way to describe the variability in spontaneous activity of neurons is to plot a histogram of the time
intervals separating two action potentials. That is, if ti is the time of occurrence of the i-th action potential recorded
in the sequence t1, . . . , tn+1, one defines the i-th interspike interval (ISI) as�ti = ti+1− ti , i =1, . . . ,n and plots the relative
frequency of occurrence of ISIs in small time interval bins (equally separated bins of 1 or 0.5 ms length, for example).
Such a plot is an approximation to the probability density distribution of the ISIs, p(�t). The distribution p(�t) is
often called the ISI distribution.

When ISI probability densities are determined experimentally, one usually finds a large range of distributions
among different types of neurons and even within a single class of neurons thought to be functionally equivalent
(Figure 15.1). A distribution that is often observed experimentally is a high probability for short intervals with an
exponential decay for longer intervals, as in the case of unit 259-2 in Figure 15.1. Such a distribution resembles the
exponential distribution introduced in §11.10. As explained in Eq. (11.25), the parameter� of the exponential distribution
is the reciprocal of the mean ISI, or the mean rate of discharge (in spikes/s). Thus, the exponential distribution can
be fit to experimental data by determining its mean ISI. The exponential distribution has been shown to fit accurately
the distribution of time intervals between spontaneous releases at the frog neuromuscular junction (Figure 15.2). We
will see shortly that it has to be slightly modified when describing neuronal firing to take into account an important
property of spike generation: the refractory period (see §15.4). The exponential distribution is the ISI distribution of
the homogeneous Poisson process introduced in §11.11, which is a simple model for spontaneous activity in neurons or
spontaneous release of neurotransmitter at synaptic release sites. In other neurons such as units R-4-10 and 240-1 in
Figure 15.1, the ISI distribution is better fit by a gamma distribution with parameters � and n (Figure 11.6). Such ISI
distributions are more regular with lower coefficients of variation. On the other hand, an example of neurons that
have very irregular spike trains are bursting neurons whose biophysical characteristics have been discussed in §§10.2
and 10.3. Such cells will typically fire a short “burst” of a few action potentials separated by much longer intervals.
ISI distributions of bursting neurons therefore often have two peaks, one corresponding to the typical ISI during
the burst (also called the intraburst interval) and a second peak corresponding to the typical interval between two
different bursts (also called the interburst interval). An example is provided by unit 261-1 in Figure 15.1. The CV of
the ISI distribution of such bursting neurons can be quite high, up to two or more.
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FIGURE 15.1 A. ISI histograms for the spontaneous activity of four auditory nerve units recorded in the cat. B. Same data plotted in logarithmic
units, showing that the decay of the ISI distribution for unit 259-2, and to a lesser extent unit 240-1, is closely approximated by an exponential.
Adapted from Rodieck et al. (1962).
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FIGURE 15.2 A. Distribution of intervals between two successive miniature end-plate potentials at the frog neuromuscular junction (ns = 800
samples). B. Cumulative distribution of intervals fitted to an exponential function ns(1−exp(−t/T )), where T is the mean interval. Adapted from
Fatt and Katz (1952).
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FIGURE 15.3 Relativerefractory period in the Hodgkin–Huxley model. A. A1 ms long pulse of 67 pAat time t1 = 2 ms elicits an action potential
in the Hodgkin–Huxley model of Chapter 4 (Exercise 4.2). A second, identical pulse at t2 = 15 ms requires at least 573 pA to generate an action
potential, while at t2 = 40 ms the minimal required current is 68 pA. B. Ratio, I2/I1, of the minimal current (I2) at time t2 required to generate an
action potential relative to I1 at time t1 = 2 ms as a function of t2 − t1. The dashed line corresponds to I2/I1 = 1. (ref_period2.m)

15.2 REFRACTORY PERIOD

The exponential distribution discussed in §15.1 assumes a high probability density for very short ISIs. Neurons,
however, cannot fire immediately after an action potential because the sodium channels responsible for the fast
membrane potential depolarization need first to recover from inactivation, a process that requires some time. Thus,
all nerve cells possess a refractory period during which they are hardly excitable (recall Exercise 4.2). When firing is
elicited by injecting current close to the spike initiation zone of a neuron, the refractory period can usually be divided
into an absolute refractory period, during which it is impossible to obtain any action potential with physiological current
injections and a relative refractory period, during which the threshold current eliciting spikes is increased (Figure 15.3).
Both the length of the absolute and relative refractory period depend on the nerve cell under consideration, but typical
values in the central nervous system are 0.5−1 ms and ≈10 ms, respectively.

The exponential distribution can be easily modified to take into account the (absolute) refractory period of a neuron
by assuming that the probability of firing is equal to zero for�t< tref and follows an exponential distribution for larger
values of t:

p1 ref (�t)= 1(�t− tref )� exp(−�(�t− tref )).

An important effect of the refractory period is that it regularizes the spike train: i.e., a neuron having a refractory
period but otherwise the same mean ISI as a neuron without refractory period will have a more regular spike train.
This can be seen in the case of the exponential distribution by computing the coefficient of variation of p1 ref from the
mean and variance. Because the probability density function p1 ref is simply a translation of p1 along the time axis
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240 15. QUANTIFICATION OF SPIKE TRAIN VARIABILITY

(p1 ref (�t)=p1(�t− tref )) it is easy to see that the mean shifts accordingly and the variance is unchanged:

m�t, tref =m�t + tref and σ 2
�t, tref

=σ 2
�t.

This means that in term of the original CV ,

CVref = σ�t, tref

m�t, tref

= m�t

m�t + tref

σ�t

m�t
=

(
1− tref

m�t, tref

)
CV .

Thus, the closer the mean ISI, m�t, tref , is to the refractory period, the smaller the coefficient of variation.

15.3 SPIKE COUNT DISTRIBUTION AND FANO FACTOR

Another method to characterize the spontaneous activity of a neuron and its variability is to compute the mean
number of spikes, mN(0,T ), occurring during an interval of length T and its variance, σ 2

N(0,T ). The ratio of the variance
to the mean is often called the Fano factor and is a measure of the variability in the number of spikes in relation to the
mean number of spikes:

F(T)≡ σ 2
N(0,T )

mN(0,T )
.

Let us start by considering the example of a neuron that fires on average n independent spikes in an interval of length
T according to a Poisson distribution (e.g., a homogeneous Poisson process, §11.11):

P(N(0,T )= k)= exp(−n)nk/k!, k =0, . . . ,∞.

We know from §11.3 that the mean of the Poisson distribution is identical to its variance and thus the Fano factor
F(T ) is equal to one in this case. If we further assume that spikes are generated at a constant mean rate � so that
n=�T, then we see that the Fano factor is equal to 1 for each value of T:

F(T)=1 independent of T for a homogeneous Poisson process.

What happens if spikes are generated at a mean rate � but a refractory period is added after each spike? As we saw
in the previous section, the mean ISI m�t, ref increases and thus the effective rate decreases: �ref =�/(1+�tref ). The
variance in the spike number during an interval of length T also decreases and it turns out that the Fano factor is less
than 1. Thus the regularizing effect of the refractory period is also seen in the Fano factor.

Experimentally, the mean and variance of spike counts have been described in a number of systems. In general,
there is a considerable heterogeneity between the Fano factors reported in different brain regions. In cortical neurons
of the visual system, Fano factors are often above 1, and are thus more variable than expected from a Poisson process
with or without refractory period (Figure 15.4).

15.4 RENEWAL PROCESSES

The homogeneous Poisson process is very useful as a basic model of spontaneous activity, but it relies on assump-
tions that are unlikely to be satisfied by nerve cells and that therefore need to be discussed in more detail. One of
these assumptions is that spikes are generated independently of each other. This is of course not very plausible: we
have already seen that nerve cells possess a refractory period and therefore will not fire for a certain amount of time
following an action potential. Thus, as soon as a refractory period is introduced, the time of the next spike will depend
on the time of the preceding spike since it cannot occur before the refractory period has passed. We have also seen
that this refractory period can significantly alter the properties of the spike train.

The simplest way to relax the assumption of independence is to assume that the time of occurrence of a spike only
depends on the time of occurrence of the previous spike. When this is the case, the ISI histogram fully characterizes
the process of spike generation and such a process is called a renewal process. A simple way of obtaining a renewal
process is to use the following model neuron:
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FIGURE 15.4 Plot of response variance as a function of mean response for a cat visual cortical neuron (a simple cell, Chapter 21) stimulated
with a drifting sinusoidal grating (2 Hz temporal frequency, see §20.4). The black squares were obtained by averaging 100 trials (500 ms long) at
11 different contrast values. The solid line represents the best fit, with a slope of 1.11 and a variance about 2.8 times the mean (for a mean of 1
spike/trial). The circles break down the hundred trials at each contrast level in subsets of ten trials closest in time, thus minimizing long-term
fluctuations in the variance. In this case, the variance is about 1.5 times the mean. The dashed line is the best fit, with a slope of 1. The black circles
illustrate the trial-to-trial variability for ten individual trials at a fixed contrast level. Adapted from Tolhurst et al. (1983).

1. The neuron receives random inputs according to a Poisson process.
2. The neuron “counts” or integrates n of these inputs and fires a spike when n inputs have arrived.
3. Immediately after the spike, the memory of the n inputs is reset to zero.

This model is very simple. It is not entirely realistic, because as we know, neurons integrate inputs with a leaky time
constant over an extended dendritic tree. It will, however, allow us to make several interesting observations. First,
note that this model is a renewal process, because it counts the number of inputs arriving since the last action potential
(and only the last one). What is its ISI distribution? It can be computed in exactly the same way as we computed the
ISI distribution of the homogeneous Poisson process in §11.11. Namely observe that for the interval (a,b) of length�t,

Pn(�t0>�t)=P(N(a, b)<n).

Therefore, as the events {N(a,b)= k} are mutually exclusive,

Pn(�t0 ≤�t)=1−P(N(a,b)<n)=1−
n−1∑
k =0

P(N(a,b)= k)= 1−
n−1∑
k =0

exp(−��t)
(��t)k

k!
(15.1)

for n≥1 and �t>0. The probability density is obtained by differentiating:

pn(�t)= �(��t)n−1

(n−1)!
exp(−��t) for�t>0. (15.2)

Therefore the ISI distribution of a neuron that sums n Poisson inputs before generating a spike is a gamma process
of order n. This result also shows that the spike train variability as measured by the CV of such a neuron is much
reduced compared to a Poisson neuron. This is due to the temporal averaging of the inputs that effectively takes place
and reduces variability by a factor

√
n (Figure 15.5).

Typically, neurons receive several thousand excitatory inputs. If their spike trains were generated by integrating or
summing many of these inputs, as described above, one would expect their spike trains to be very regular, even if their
inputs were highly irregular, like homogeneous Poisson spike trains. Yet, this is typically not the case. For example,
pyramidal neurons in visual cortex typically receive 10,000 excitatory inputs, but recordings in vivo in response to
visual stimulation possess coefficients of variation about as high as could be expected from a homogeneous Poisson
process (Figures 15.4 and 15.6). Thus, we are led to the conclusion that neurons are far from functioning as simple
integrators of excitatory inputs.
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FIGURE 15.5 A. Example spike trains corresponding to renewal processes of order n for n= 1,2,5, and 10 with a refractory period of 2 ms. In
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What about variability measured by the Fano factor? Since a renewal process is completely determined by its ISI
distribution, we would expect the variability computed from the Fano factor to be entirely determined by the ISI
variability. This turns out to be the case (see §15.6), although the proof of this result would take us too far afield. We
can, however, make a simple argument based on the assumption that the time interval T on which we observe the spike
count is much larger than the mean ISI m�t. In this case, we expect approximately mN(0,T )≈T/m�t action potentials.
The variance of the time interval during which these mN(0,T ) action potentials arrive is given by σ 2 ≈mN(0,T)σ

2
�t,

since the ISIs are independent. Equivalently, σ =√
mN(0,T)σ�t . In this time interval, the average number of action

potentials we expect to see is equal to σ/m�t. Therefore the variability in the number of action potentials is given by
σ 2

N(0,T)≈σ 2/m2
�t =mN(0,T)σ

2
�t/m

2
�t. We can now combine these results:

σ 2
N(0,T )

mN(0,T )
≈ mN(0,T)σ

2
�t

m2
�t

· 1
mN(0,T )

= σ 2
�t

m2
�t

.

In other words, for large time intervals the Fano factor of a renewal process is equal to the squared coefficient of
variation of the ISI distribution:

F(T)≈C2
V .

This result actually gives us one method of testing if the action potentials of a neuron form a renewal process: pick the
ISI sequence generated by the neuron, reshuffle them at random, and compute the Fano factor for large T. This Fano
factor will be constant and equal to C2

V , since after reshuffling the ISI are independent. If the original Fano factor differs
from a constant C2

V value, the original spike train cannot be a renewal process. This also shows that the Fano factor
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FIGURE 15.6 Coefficient of variation as a function of mean ISI for visual neurons in area V1 and MT of the monkey visual cortex responding
to various types of stimuli. Adapted from Softky and Koch (1993).

measures variability over long time scales whereas the CV captures variability over short time scales on the order of
a single ISI. The Fano factor often increases with time, exhibiting long-term correlations that cannot be described by
a renewal process (Figure 15.7).

15.5 RETURN MAPS AND EMPIRICAL CORRELATION COEFFICIENT

As seen above, in many cases the assumption of independent ISIs is inadequate to describe the firing pattern
of a neuron. This can, e.g., result from membrane currents that are slowly activated and inactivated over a time
span comprising several action potentials. The ionic mechanisms that underlie bursting in neurons represent such
an example. A simple geometrical way to detect dependencies between successive ISIs is to make a two-dimensional
plot of pairs of successive ISIs, (�ti ,�ti+1), i =1, . . . ,n. Such plots, see Figure 15.8C and D, are called return maps. If the
successive ISIs are independent, the probability distribution of the pairs will be symmetric around the 45 degree line
because

P(�ti ,�ti+1)=P(�ti)P(�ti+1).

A quantitative way of assessing the relation between successive ISIs is to compute their correlation coefficient. We
introduced the correlation coefficient of two random variables in §11.9. We now give an empirical definition directly
based on pairs of experimental observations of two random variables. We then show how the empirical correlation
coefficient can be interpreted geometrically and derive its relation to the definition of §11.9. Finally, we apply this
concept to ISIs. Let us consider pairs of measurements (xi ,yi), i =1, . . . ,n, of two random variables X and Y. The means
of X and Y, mX , mY and their standard deviations σX , σY can be approximated by:

m̆X = 1
n

n∑
i=1

xi, m̆Y = 1
n

n∑
i=1

yi,

σ̆X =
(

1
n

n∑
i=1

(xi −m̆X)
2

)1/2

, σ̆Y =
(

1
n

n∑
i=1

(yi −m̆Y)
2

)1/2

.

We define the empirical correlation coefficient between x = (x1, . . . ,xn)
T and y = (y1, . . . ,yn)

T as

ρ̆n ≡
1
n
∑n

i=1(xi −m̆X)(yi −m̆Y)

σ̆Xσ̆Y
. (15.3)

In this equation, the numerator is the empirical covariance of X and Y (see Exercise 11.19). To appreciate the geometrical
significance of the empirical correlation coefficient, note that if we define the vectors x0 =x−m̆X and y0 =y−m̆Y then
the previous equation is none other than the scalar product of x0 and y0 divided by their lengths,

ρ̆n = xT
0 y0

‖x0‖‖y0‖ .
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FIGURE 15.7 Fano factor computed from the spontaneous activity of four cells in the primary visual cortex of cats (top), four insect neurons
(middle; descending contralateral movement detector neuron of the locust), and a Poisson process with refractory period (dead time modified
Poisson or DTMP process, bottom). Note that the Fano factor of the DTMP process is less than 1 and independent of time, as expected from a
renewal process. In contrast the Fano factor of both cortical and insect neurons increases with time, suggesting long-term correlations between the
spikes that cannot be described by a renewal process. Adapted from Teich et al. (1996).

But the scalar product of two vectors is equal to the product of their lengths and their relative angle: xT
0 y0 =

cos(�x0,y0)‖x0‖‖y0‖. Therefore the empirical correlation coefficient ρ̆n = cos(�x0,y0) is a number between −1 and 1
that indicates the relative alignment between the two vectors. It is equal to 1 if the two vectors are perfectly aligned
or perfectly correlated, x0 =y0 and –1 if x0 =−y0. The correlation coefficient is equal to zero if the two vectors are
orthogonal.

Of course, this geometrical interpretation of the empirical correlation coefficient is in agreement with the definition
of §11.9 since as the number of observations increases,

ρ̆n →ρ= E
[
(X−mX)(Y −mY)

]
σXσY

= E
[
XY

]−mXmY

σXσY
(n→∞).

If ρ=0 we say that X and Y are uncorrelated. This holds in particular when the random variables X and Y are
independent since then E[XY] =E[X]E[Y], but the opposite is not true (i.e., uncorrelated does not necessarily mean
independent, see §11.9).

Let us now apply this to ISIs. If we measure a sequence of ISIs�t1, . . . ,�tn+1, we can look at pairs of measurements
(�ti ,�ti+1) and define the empirical correlation coefficient exactly as in Eq. (15.3):

ρ̆n =
1
n
∑n

i=1(�ti −m̆1−n)(�ti+1 −m̆2−(n+1))

σ̆1−nσ̆2−(n+1)

where m̆1−n (σ̆1−n) is the mean (standard deviation) over the first n ISIs and m̆2−(n+1) (σ̆2−(n+1)) is the mean (standard
deviation) over the last n ISIs, respectively. Of course, for a large number of intervals, we can simply replace these
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means and standard deviations by those of the entire ISI sequence,

m̆�t = 1
n+1

n+1∑
i=1

�ti , σ̆�t =
(

1
n+1

n+1∑
i=1

(�ti −m̆�t)
2

)1/2

,

since they will be almost identical. We therefore obtain the following definition for the ISI correlation coefficient at lag 1,

ρ̆L1 =
1
n
∑n

i=1(�ti −m̆�t)(�ti+1 −m̆�t)

σ̆ 2
�t

.

Correlation coefficients for higher lags (2, . . . , etc) are defined accordingly. An example of ISIs yielding a negative
serial correlation coefficient is illustrated in Figure 15.8.

15.6 SUMMARY AND SOURCES

This chapter introduced the basic methods used to quantify spike train variability. Spike train variability has
long intrigued experimental and theoretical neuroscientists alike. Certainly, whether variability is “pure noise” or a
“hidden neural code,” has important implications for the way the nervous system processes information. To this day,
the issue remains unresolved, with most neurophysiologists believing that, at least in the visual system, spike train
variability represents noise, e.g., Shadlen and Newsome (1998). On the other side of the debate, see Butts et al. (2007)
for a study of spike train precision in the visual system and its potential role in coding. This article contains references
to many earlier articles on the subject. In the auditory or in auditory-like sensory systems like the electrosensory
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FIGURE 15.8 A. Example spike trains from a leaky integrate-and-fire neuron exhibiting threshold fatigue (red, §10.1) and a fixed threshold
(black) driven by a random current stimulus (bottom panel). B. ISI distribution for both models. C, D. Plots of the n+1st interspike as a function
of the n-th one. The corresponding correlation coefficients are –0.28 and 0, respectively. (neg_corr.m)
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system of weakly electric fish, spike train variability can be exceptionally low and is used to convey precise timing
information, see Kawasaki (1997). Chapter 15 of Koch (1999) provides an introduction to the subject of spike train
variability, see also Gabbiani and Koch (1998). The general relation between the Fano factor and the coefficient of
variation of the ISI distribution alluded to in §15.4 is given by

lim
T→∞F(T )=C2

V

⎛
⎝1+2

∞∑
j=1

ρLj

⎞
⎠ , (15.4)

where ρLj is the correlation coefficient at lag j. Thus, spike trains exhibiting long-range negative ISI correlations will
have Fano factors that may be considerably lower than expected from the coefficient of variation of the ISI distribution.
Such long-range correlations have been observed in weakly electric fish. Ratnam and Nelson (2000) and Chacron et al.
(2001) study their implications for the coding of information in neuronal spike trains. For a proof of Eq. (15.4), see Cox
and Lewis (1966, Chapter 4, §6). This reference also contains a good discussion of the subtleties related to the analysis
of sequences of events in the stationary case (§16.1). Exercises 5–15 below are based on Cox (1962), which is a basic and
practical introduction to renewal processes. In §15.1 and Figure 15.2 spontaneous vesicular release has been described
as a homogeneous Poisson process. There is, however, more recent evidence pointing to long-term correlations in
spontaneous release, see Lowen et al. (1997). Regarding the role of spontaneous activity in the development of visual
neural circuits alluded to in the introduction: we note that it is thought to be involved in conjunction with synaptic
plasticity mechanisms, but that molecular cues play an important role as well. For reviews see McLaughlin and
O’Leary (2005) and Shah and Crair (2008). We will address the impact of spike train variability on various aspects of
sensory and psychophysical performance in Chapters 22–26.

15.7 EXERCISES

1. †Compute the ISI correlation coefficient at lag 1 for a Poisson process of mean rate 40 spk/s and an absolute
refractory period of 2 ms. Use 1000 random ISIs. Use the same ISI sequence�ti to generate a new sequence of ISIs
�t′i as follows:�t′1 =�t1 and

�t′i =
{
�ti +5 ms if �ti−1<m�t ,
�ti −5 ms if �ti−1 ≥m�t ,

for i>1 and where m�t is the mean ISI of the original sequence. Compute the correlation coefficient at lag 1.
Explain the difference between the two results.

2. †Plot the variance in the spike count, σ 2
N(0,T), as a function of the mean spike count, mN(0,T), for a homogeneous

Poisson process and a gamma renewal process of order 2 with mean rates of 40 spk/s starting at t =0 (see
Figure 15.9). Specifically, simulate 1000 random spike trains 1 s long (hint: use the functions exprnd, gamrnd, and
cumsum). Then compute mN(0,T ) and σ 2

N(0,T ) on the intervals (0, 50] ms, (0, 100] ms, … up to (0, 1000] ms, in steps
of 50 ms. Compare the curves obtained in this manner with the theoretical formulas, mN(0,T )=σ 2

N(0,T )=T/m�t for
the Poisson process and

mN(0,T )= 1
2
�T − 1

4
+ 1

4
e−2�T, σ 2

N(0,T )=
1
4
�T + 1

16
− 1

2
�Te−2�T − 1

16
e−4�T (15.5)

for the gamma renewal process, where m�t =n/� is the mean ISI. Plot the corresponding Fano factors as a function
of time.

3. †Plot the coefficient of variation of the ISI distribution for gamma distributions of order 1, 2, 5, and 10 with a
refractory period of 2 ms to arrive at the plot of Figure 15.10 below. Hint: Use the results of §15.4.

4. Compute the ISI correlation coefficient at lag 1 of a leaky integrate and fire neuron with and without threshold
fatigue firing in response to a random current input. Reproduce the plots of Figure 15.8. Use the following
parameters: Cm =2 nF, τ =20 ms. The random current has a mean of 1 nA and a standard deviation of 1.5 nA, with
new samples selected each dt =0.1 ms from a normal distribution. The threshold parameters for the model with
threshold fatigue are vthres0 =8 mV, δvthres =4 mV, and τv hres =80 ms (see Eq. (10.6)). The model without threshold

MATHEMATICS FOR NEUROSCIENTISTS



15.7 EXERCISES 247

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

Mean Number of Spikes

V
ar

ia
nc

e

0 100 200 300 400 500 600 700 800 900 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time (ms)

F
an

o 
F

ac
to

r

(A) (B)

FIGURE 15.9 A. Spike count variance as a function of spike count mean for a Poisson (circles) and renewal gamma process of order 2
(crosses). The red lines are the corresponding theoretical formulas. B. Fano factor as a function of the time window length. (gamma2_ex1.m)
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FIGURE 15.10 Coefficient of variation of the ISI distribution for gamma processes of order 1 (Poisson), 2, 5, and 10 with a refractory
period of 2 ms as a function of the mean ISI. (cv_ref_ex.m)

fatigue has a fixed threshold of 10.4 mV. Total simulation time: 100 s in both cases (yielding approximately 1200
spikes); number of bins for the ISI distributions in B: 20. Hint: Use a simple forward Euler integration scheme
with a time step of dt =0.1 ms.

5. Consider the situation in which we observe beginning at time t =0 the spikes associated with a stationary process
that started a long time ago (tstart →−∞). The time interval between the observation start time, t =0 (no spike is
assumed to occur at that time), and the next spike is called the forward recurrence time (Figure 15.11A). Its probability
density, f1(t), can be computed by the following argument for a renewal process. First note that if the probability
density of the ISI distribution is f (�t) with mean m�t then the probability density of a spike occurring in a given
small interval is χ =1/m�t where m�t is the mean of f (�t). Next, if a spike occurred u ms before t =0 then the
probability density of observing the next spike x ms after t =0 is (1/m�t) f (u+x). Finally, we need to integrate this
expression over all possible times u for the previous spike to occur:

f1(x)=
∞∫

0

1
m�t

f (u+x)du= 1
m�t

∞∫
x

f (y)dy = 1−F(x)
m�t

, (15.6)

where F(�t) is the cumulative distribution associated with f (�t). Show that if the renewal process is a homoge-
neous Poisson process, f1(x)= f (x). Show that for a gamma process of order 2, f1(x)= (�/2)(�x+1)exp(−�x). Plot
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f1(x) and f (x) for the gamma process of order two for a mean ISI m�t =25 ms, to arrive at Figure 15.11B. Interpret
the difference between the two distributions.
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FIGURE 15.11 A. Definition of the forward recurrence time, x (distributed as f1(x)), and the backward recurrence time, u. The ISI
probability density is f (y). B. Plot of f (x) (black) and f1(x) (red) for a stationary gamma process of order two with a mean ISI of 25 ms.
(gamma_frect.m)

6. Show that the Laplace transform of f1 in Eq. (15.6) is given by

L( f1)(s)= 1−L( f )(s)
m�t

.

7. †Derive the probability density distribution of the ISIs for a gamma renewal process, Eq. (15.2), using Laplace
transforms. Hint: Compute the Laplace transform of the probability density function for Y =X1 +· · ·+Xn, where
Xi are independent exponential distributions and compare with the result of Exercise 3.7.

8. Let mN(0,t)=E[N(0, t)] be the expectation of the number of spikes in the interval (0, t] for a gamma renewal process
starting at time t =0. Show that

mN(0,t)=
∞∑

l=1

Kl(t), where Kl(t)=
t∫

0

kl(x)dx (15.7)

is the cumulative distribution function of the l-th interval, Sl =X1 +· · ·+Xl. Hint: By definition, mN(0,t)=∑∞
l=1 lP(N(0, t)= l ). Show using arguments similar to those of §15.4 that P(N(0, t)= l )=Kl(t)−Kl+1(t) and insert

this result into the above definition.
9. Use Eq. (15.7) to show that for a gamma renewal process of order n starting at time t =0

L(mN(0,T))(s)= 1
s

L(pn)(s)
1−L(pn)(s)

, (15.8)

where pn(�t) is the ISI distribution of the process. Hint: Apply the Laplace transform term by term to Eq. (15.7).
Since kl(x) is the probability density of the sum of independent random variables, its Laplace transform is the
product of the Laplace transforms of the respective densities (Exercise 11.20). Finally, use the identity

∑∞
l=1 xl =

x/(1−x) for |x|<1.
10. Use Eq. (15.8) to show that for n=2, mN(0,t) is given by Eq. (15.5). Hint: Show that

L(mN(0,T ))(s)= �2

s2(s+2�)

and split this expression in partial fractions. That is, find constants A, B, and C so that

L(mN(0,T ))(s)= A
s2 + B

s
+ C

s+�2 .

Then use the results of Exercises 3.3–3.8 to arrive at the result.
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11. Let mN(0,t)=E[N(0, t)] be the mean spike count of a renewal process starting at t =0. Show that

σ 2
N(0,t)=E[(N(0, t)−E[N(0, t)])2 ] = ξ(t)−mN(0,t)−m2

N(0,t),

with ξ(t)=E[N(0, t)(N(0, t)+1)].
12. Show that for a renewal process of order n,

L(ξ )(s)= 2
s

∞∑
l=1

lL(kl)(s)= 2
s

L(pn)

(1−L(pn)(s))2
.

Hint: Adopt the same strategy as in Exercises 8 and 9. Derive an infinite series for ξ(t) in terms of the cumulative
distribution functions Kl(t) and take the term by term Laplace transform, using the fact thatL(Kl)(s)= (1/s)L(kl)(s)
since Kl(0)=0. To sum the series use

∑∞
l=1 lx l =x/(1−x)2.

13. †Show that if the renewal process is gamma of order 2,

L(ξ )(s)= 2�2(s+�)2
s3(s+2�)2

and, by carrying out a partial fraction expansion,

L(ξ )(s)= �2

2s3 + �

2s2 − 1
8s

+ 1
8(s+2�)

− �

4(s+2�)2
. (15.9)

Use this result in combination with those of Exercises 10 and 11 to derive Eq. (15.5) for σ 2
N(0,T).

14. Show that for a stationary renewal process, mN(0,t)= t/m�t where m�t is the mean ISI. Hint: Compute the Laplace
transform of mN(0,t) as in Exercise 9. The difference with Eq. (15.8) is that for a stationary process observed from
time t =0, the interval to the first spike is given by the forward recurrence time (Exercise 5). This leads to a slightly
different expression for the Laplace transform of kl(x) and application of the identity

∑∞
l=0 xl =1/(1−x) for |x|<1.

15. Show that for a stationary gamma process of order n

L(ξ )(s)= 2
m�ts2

1
1−L(pn)(s)

.

Hint: Proceed as in Exercise 12, using the Laplace transform for kl obtained in the previous exercise.
16. Show that for a stationary gamma process of order 2

ξ(t)= �2t2

4
+ 3�t

4
+ 1

8
− 1

8
e−2�t

and consequently

σ 2
N(0,t)=

�t
4

+ 1
8

− 1
8

e−2�t. (15.10)

Hint: Apply the result of the previous exercise and carry out a partial fraction expansion to invert the Laplace
transform term by term.

17. Compare the mean vs. variance curve of a stationary process of order 2 (Exercises 14 and 16) with those of a
gamma process starting at t =0 (Exercise 2) by plotting them on the same graph. Use a mean ISI of 25 ms. Interpret
the result.
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In analyzing neural data, we often have to deal with quantities that fluctuate randomly in time, like the intra-
cellular membrane potential of a neuron recorded in vivo or a sequence of extracellular action potentials. Variables
that fluctuate randomly in time are called stochastic processes or random functions. In this chapter, we define two
types of stochastic processes that are used, respectively, to describe continuous variables, such as random potential
fluctuations, and events, like random sequences of action potentials. We have already encountered the simplest such
processes in previous chapters in the form of the homogeneous Poisson and gamma renewal processes. We delve into
the characteristics of stochastic processes and introduce several examples that will subsequently play a central role
in the analysis of random fluctuations of continuous variables and discrete spike trains: the Wiener process, white
noise and the inhomogeneous Poisson process. Finally, we study the application of Fourier transforms to stochastic
processes, which will allow us to characterize their frequency content, a topic called spectral analysis. The subjects
covered in this chapter are further generalized in the exercises.

16.1 DEFINITION AND GENERAL PROPERTIES

A stochastic process is a collection or ensemble of random variables indexed by a variable t, usually representing
time. For example, random membrane potential fluctuations (e.g., Figure 10.2) correspond to a collection of random
variables X(t), for each time point t. This may be made explicit by specifying an event space � for the ensemble and
for each event μ∈� writing X(μ, t) for the value taken by X at time t given the event μ. Thus, when the event μ
is fixed and t is varied X(μ, t) is a random function. Conversely, at each fixed time point t, X(μ, t) spans the range
of all possible values of X as the event μ∈� varies and is thus a random variable. In practice, a random process is
characterized by the set of its joint distributions p (X(μ, t1), . . . ,X(μ, tn)) of values taken at fixed times t1, . . . , tn.

Stochastic processes are thus a direct generalization of random vectors as defined in §11.9. Indeed, we will see
a close parallel in the next section, when we consider Gaussian stochastic processes in more detail. Several of the
tools used to characterize random vectors can be extended to stochastic processes. For example, the mean value of a
stochastic process and its “covariance” are defined by

mX(t)≡E[X(t)] and CX (t1, t2)≡E[(X(t1)−mX(t1))(X(t2)−mX(t2))].

Usually, for a stochastic process X, CX is called the autocovariance function of the process and the term covariance is
reserved for the correlation between two different stochastic processes. The term “autocorrelation” is also often used
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252 16. STOCHASTIC PROCESSES

instead of autocovariance, but a more consistent approach is to define the autocorrelation function as the autocovariance
normalized by the respective standard deviations,

RX(t1, t2)= CX(t1, t2)

CX(t1, t1)1/2CX(t2, t2)1/2
.

Stationarity. A large number of stochastic processes have the property that their average statistical properties are
independent of where they are formed along the time axis. Such stochastic processes are said to have various types
of stationary properties. For example, the mean mX(t)=E[X(t)] can be independent of t. When in addition the autoco-
variance function CX(t1, t2)=E[(X(t1)−mX)(X(t2)−mX)] depends only on the time difference, τ = t2 − t1, a stochastic
process is called weakly stationary. In this case, the autocovariance function is usually written as

CX(τ )=E[(X(t)−mX )(X(t+τ)−mX)].

Note that the right hand side of this equation is independent of t and this implies that CX is symmetric, i.e., CX(τ )=
CX(−τ) (Exercise 1). More generally, X is said to be stationary if p(X(t1), . . . ,X(tn))=p(X(t1 +τ), . . . ,X(tn +τ)) for all τ ,
i.e., the joint probabilities of X at different times are independent of the reference point τ . This implies in particular
that both the mean and autocovariance functions are independent of the reference time point. Thus, a stationary
process is also weakly stationary.

Ergodicity. Another important property of certain stochastic processes is that averages over the ensemble of values
taken at a fixed time, e.g., E[X(t)], can be replaced by an average over time on any sample function X(μ0, t) from the
stochastic ensemble (with μ0 fixed). Let us denote by X0(t)=X(μ0 , t) a particular sample random function from the
stochastic process X. If X is ergodic then

E[X(t)] = lim
T→∞

1
T

T/2∫
−T/2

X0(s)ds. (16.1)

Of course, this implies that E[X(t)] =mX is independent of t since this is the case for the right hand side of Eq. (16.1).
For the autocovariance function, CX(τ ), ergodicity means that:

CX(τ )= lim
T→∞

1
T

T/2∫
−T/2

X0(s)X0(s+τ)ds. (16.2)

Intuitively, ergodicity means that each sample function is “sufficiently diverse” over long time periods to be repre-
sentative of the variability that is encountered locally across the whole sample of functions belonging to the stochastic
ensemble. In the case of neurophysiological experiments, the validity of the ergodicity assumption, i.e., replacing
ensemble averages by time averages, is often implicitly assumed. This is very convenient since it permits one to use
a single stimulus presentation instead of repeated presentations of stimuli from the same ensemble. As is clear from
Eqs. (16.1) and (16.2), ergodicity can only hold in the case of stationary (time-invariant) processes and is likely to be
at best only a (useful) approximation in the case of neurophysiological experiments.

16.2 GAUSSIAN PROCESSES

A stochastic process X(μ, t) is called Gaussian if for each subset of time points t1, . . . , tn (with n arbitrary) the random
vector (X(t1), . . . ,X(tn))

T is Gaussian. Thus, a Gaussian stochastic process is a direct generalization of the Gaussian
random vectors introduced in §11.9. Just as for Gaussian random vectors, Gaussian processes have several special
properties. For example, a Gaussian process is entirely determined by its mean mX(t) and its autocovariance function
CX(t,s).
The Wiener process is a Gaussian process that was first used to describe the random, or “Brownian,” motion of
particles in a fluid. The Wiener process W(t) is defined for t ≥0 and has the following properties:

1. W(0)=0 with probability 1.
2. For 0 ≤ s< t the random variable W(t)−W(s), also called the increment of W between s and t, is normally distributed

with mean zero and variance t−s.
3. For 0 ≤ s< t<u<v the increments W(t)−W(s) and W(v)−W(u) are independent.
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Note that by setting s=0 in property 2 and using property 1, we immediately see that W(t) is a Gaussian random
variable with zero mean and variance t. Thus, although the mean of W is independent of t, its variance is not: it
increases linearly with t. In particular, W is not (weakly) stationary, according to the definition of §16.1. It also follows
from property 3 that for 0 = t0< t1< t2 · · ·< tn the vector (W(t1),W(t2)−W(t1), . . . ,W(tn)−W(tn−1))

T is Gaussian with
probability density,

p(dW1,dW2, . . . ,dWn)= 1
(2π)n/2

1√
dt1dt2 · · ·dtn

exp

(
−dW2

1
2dt1

− dW2
2

2dt2
−· · ·− dW2

n
2dtn

)
, (16.3)

where dWj =W(tj)−W(tj−1) and dtj = tj − tj−1. The function

f : (x1,x2, . . . ,xn)→ (x1,x1 +x2,x2 +x3, . . . ,xn−1+xn)

transforms

(W(t1),W(t2)−W(t1), . . . ,W(tn)−W(tn−1))
T → (W(t1),W(t2), . . . ,W(tn))

T .

Thus, by applying the transformation law described in §11.9, it follows that the random vector (W(t1), . . . ,W(tn))
T is

Gaussian with density

p(w1, . . . ,wn)= 1
(2π)n/2

1√
dt1dt2 · · ·dtn

exp

(
− w2

1
2dt1

− (w2 −w1)
2

2dt2
−· · ·− (wn −wn−1)

2

2dtn

)
. (16.4)

This shows that the Wiener process is indeed a Gaussian stochastic process.
What does a typical sample path of Brownian motion look like over the interval [0,T]? We can take advantage

of the fact that the increments of W are independent (or, equivalently, of Eq. (16.3)) to answer this question numer-
ically. First, select a small interval �t and equally spaced points (�t,2�t, . . . ,n�t =T). For each i, set Wi =W(i�t)
and select a Gaussian random number �Wi =Wi −Wi−1 with zero mean and variance �t. Then, as explained
above,

Wn =W0 +
n∑

i=1

�Wi . (16.5)

This equation permits the computation of a sample path at each time point i�t. Some example sample paths as well
as sample means and variances are illustrated in Figure 16.1A and B.

White noise. According to Eq. (16.5), the sample paths of Brownian motion can be approximated numerically by
considering the increments, �Wi , of the Wiener process. A natural question that arises is whether it is possible to
define the derivative of the Wiener process through the limit Z(ti)= lim�t→0�Wi/�t. If this were at all possible, we
would expect the stochastic process Z(t) to derive several of its properties from those of W(t). In particular, since�Wi
is a Gaussian stochastic process with zero mean, we expect Z(t) to be one as well. Furthermore,

E
[
�Wi�Wj

]=0

implies that Z(ti) should be independent of Z(tj) for ti 	= tj (remember from §11.9 that two uncorrelated, jointly Gaussian
random variables are independent). Finally, the variance of Z(t) should be increasingly well approximated by

E

[
(�Wi)

2

�t2

]
= 1
�t

.

However, this expression becomes infinite as �t → 0, and therefore Z(t) cannot be a stochastic process in the usual
sense. It is nonetheless possible to make sense of the last two equations by noting that they represent the discrete
approximation to a δ-function (recall §3.1 and Exercise 7.20). We can therefore interpret them as implying that the
autocovariance function of the white noise process is given by

E[Z(t1)Z(t2)] = δ(t1 − t2). (16.6)
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FIGURE 16.1 A. Three sample paths of a Wiener process. These paths were obtained by summing up and scaling by �t the white noise paths
in C. B. Sample mean and mean ± one standard deviation of 100 Wiener sample paths. Note the time dependence of the standard deviation,
implying that the Wiener process is not stationary. C. Three sample paths of white noise sampled at a time step �t = 1 ms. For clarity, two of
the paths have been shifted above and below the horizontal zero line (dashed). D. Mean and mean ± one standard deviation of 100 white noise
samples (solid and dotted lines, respectively). (rand_fig2.m)

Thus, we can think of white noise as being a stationary, zero mean Gaussian stochastic process whose autocovariance
function is given by Eq. (16.6). Although this represents only a formal construction, it will prove useful for analytical
calculations. In practice, white noise can always be approximated numerically by the procedure outlined above,
through independent increments �Wi of the Wiener process for a sufficiently small time step�t.

Autocovariance function of the Wiener process. The computation of the autocovariance function of white noise raises
the question of what the autocovariance function of the Wiener process is. To answer this question, we use Eq. (16.4):
for t1< t2 we know that

E[W(t1)W(t2)] =
∫ ∞∫
−∞

p(w1,w2)w1w2dw1dw2.

This integral can easily be computed to yield E[W(t1)W(t2)] = t1 (Exercise 3). Since we assumed t1< t2, this implies that
E[W(t1)W(t2)] =min(t1, t2) if t1, t2 are arbitrary. Note that since the Wiener process is not stationary, the autocovariance
function is not a function of t2 − t1.

16.3 POINT PROCESSES

Another important class of stochastic processes arises when we want to describe random discrete events in time.
For example, consider the action potentials generated by a neuron whose spontaneous activity is recorded in vivo. Each
action potential is associated with a specific point in time, e.g., the peak of the membrane potential depolarization, so
that in a given observation interval we obtain a sequence {t1, . . . , tn}of time points. If we were to repeat the measurement
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over the same interval we would obtain a different set of spike occurrence times, {t′1, . . . , t′m}. In other words, the spike
occurrence times are random. There are several possible ways to describe the properties of such point processes. We
can consider the sample paths associated with each sequence of action potentials, similar to those considered for
Brownian motion in the previous paragraph. The sample paths are obtained from the sequence of action potential
occurrence times by defining a function l(t) equal to zero at t =0 and such that it is incremented by 1 at each action
potential, i.e., l(t)=0 for 0 ≤ t< t1, l(t)=1 for t1 ≤ t< t2, and so forth. Some example sample paths are illustrated in
Figure 16.2. Note that in contrast to the sample paths of Brownian motion, the sample paths of a point process are
discontinuous since they possess discrete jump points associated with each event occurrence time. The function l(t)
is called the counting function associated with a sequence of occurrence times. If we denote by L(t) the associated
stochastic process, then by definition L(t)=N(0, t), where N(0, t) is the number of spikes in the interval (0,T]. Thus,
just as Gaussian stochastic processes can be described by their distribution of values taken at time points (t1, . . . , tn),
a point process can be described by the distribution of the number of events occurring in any time interval (0,T]. We
introduced the simplest type of point process, the homogeneous Poisson process, in this way (§11.11).

Formally, the derivative of l(t) is given by a sum of δ-functions, since the derivative of a step function is the
δ-function (Exercise 7.21):

dl
dt

=
n∑

i=1

δ(t− ti). (16.7)

This is the spike train, m(t), associated with the sequence of occurrence times. By extension, we denote by M(t)=∑n
i=1 δ(t− ti) the spike trains associated with a point process, where both n and {ti} are now random variables, and

M(t)=dL/dt.
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FIGURE 16.2 Three sample paths of a homogeneous Poisson process. Below each path the jump times are indicated by spikes. (rand_fig3.m)
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Autocovariance function of the homogeneous Poisson process. If we denote by MP(t)=∑n
i=1δ(t− ti) the spike trains

associated with a homogeneous Poisson process (MP(t)=0 if n=0), we can formally compute E[MP(ta)MP(tb)] using
Eqs. (11.26) and (11.27) (Exercise 4). We find E[MP(ta)MP(tb)] =�δ(tb − ta)+�2. It is also easy to see that E[MP(t)] =�
and the autocovariance function of the Poisson process spike train is therefore given by

E[(MP(ta)−�)(MP(tb)−�)] =�δ(tb − ta). (16.8)

Note that this autocovariance function is equal to that of white noise when �=1. Just as in the case of white noise,
this results from the fact that two events in a Poisson process are independent, regardless of how close they are. Thus,
we expect on average zero correlation between events occurring at two different times ta and tb. This calculation also
shows that two stochastic processes with widely different sample functions can have identical correlation functions.

Stationarity. An important assumption that was made in formulating the homogeneous Poisson process (§11.11)
and renewal processes (§15.4) is that the rate at which action potentials are generated does not change over time. In
the case of a point process, stationarity means that for any intervals (a1,b1), . . . ,(an,bn) the probability distribution of
spikes in these intervals is identical to the one obtained after translating the intervals by a fixed time t0:

P(N(a1 ,b1), . . . ,N(an ,bn))=P(N(a1 + t0,b1 + t0), . . . ,N(an + t0,bn + t0)),

for all t0. In practice this is of course impossible to verify. What can be checked, e.g., is that the mean number of spikes
in different intervals remains the same over the course of time. Furthermore, the assumption of stationarity is not
always realistic since neurons often have firing rates that evolve over time. This is the case, e.g., when a stimulus is
presented and adaptation reduces neuronal activity.

Autocovariance function of a stationary point process. In general, the autocovariance function of the spike train
associated with a stationary point process also contains a δ-function, just as that of the homogeneous Poisson process.
To illustrate this point, first note that the rate of events of a stationary point process is constant and its probability
is given by χ�t for a sufficiently small interval �t, just as for the homogeneous Poisson process. More precisely, if
we denote by �Lt =L(t+�t)−L(t) the increments of a stationary point process, then P(�Lt =1)=χ�t+o(�t). The
second term, o(�t), denotes a function of�t with the property that it tends to zero faster than�t: lim�t→0 o(�t)/�t =0.
This condition ensures that no two events occur at the same time. Furthermore, if �Lt takes only the values 0 and 1
then (�Lt)

2 =�Lt. This is expected when�t is sufficiently small and hence,

E[�Lt] =P(�Lt =1)=χ�t+o(�t), E
[
(�Lt)

2
]
=χ�t+o(�t) (�t → 0). (16.9)

From these two equations we derive the following expression for the variance of�Lt :

var(�Lt)=χ�t+o(�t).

Since the spike train is formally obtained by dividing �Lt by �t and taking the limit �t → 0 (Eq. (16.7)), its autoco-
variance function at time zero is approximated by var(�Lt)/�t2. This expression diverges like χ/�t as �t tends to
zero. Just as in the case of the Wiener process, we interpret the limit as a δ-function, χδ(τ). At times greater than zero,
the autocovariance function is approximated by

E[(�Lt −E[�Lt])(�Lt+τ −E[�Lt+τ ])]

�t2 . (16.10)

If we define the conditional density

χc(τ )= lim
�t→0

P(spike in (t+τ , t+τ+�t)|spike at t)
�t

, (16.11)

we can write

E[�Lt�Lt+τ ] =P(�Lt =1, �Lt+τ =1)+o(�t2)

= (χ�t)P(�Lt+τ =1|�Lt =1)+o(�t2)

=χχc(τ )(�t)2 +o(�t2).
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FIGURE 16.3 A. Autocovariance function of a gamma renewal process of order 2, with a mean rate of 80 spk/s. The delta function spike at
time 0 is not illustrated. Inset: χc for the same process. B. Autocovariance function of a gamma process of order 10. (gamma_corr.m)

Substituting this result and Eq. (16.9) in Eq. (16.10) and taking the limit �t → 0 yields χ(χc(τ )−χ) so that the auto-
covariance function of the spike train is given by

CM(τ )=E[(M(t)−χ)(M(t+τ)−χ)] =χδ(τ)+χ(χc (|τ |)−χ), (16.12)

since CM(τ )=CM(−τ). By definition, χc(τ )�t is the probability of observing a spike (any, not only the first one) in
the interval �t starting at a time τ following a spike. Thus, values of χc(τ )<χ or equivalently CM(τ )<0 for τ 	=0
correspond to a suppressed probability of spiking as compared to the mean χ , while values of χc(τ )>χ or CM(τ )>0
correspond to an increased probability of spiking.

We illustrate two examples of autocovariance functions for stationary renewal gamma processes of orders 2 and 10
in Figure 16.3. The interspike interval distribution of the gamma process of order 2 has a reduced probability for short
intervals compared to a Poisson process (Figure 15.5B). This translates into a reduced probability of firing following
a spike and thus χc<χ at short values of τ . Consequently the autocovariance function is <0 at short time intervals
(Figure 16.3A). The gamma process of order 10 has a very regular spike train. This leads to positive correlations at
multiples of the firing period (Figure 16.3B).

16.4 THE INHOMOGENEOUS POISSON PROCESS

The homogeneous Poisson process is based on a constant rate of events, �. We generalize this model by assuming
a time-dependent event rate, �(t). Formally the definition of the inhomogeneous Poisson process is identical to the
one given in §11.11, except for the replacement of � by �(t). In particular, this means that for each interval (a,b] the
number of events has a mean given by

κ≡
b∫

a

�(t)dt

and follows the Poisson distribution,

P(N(a,b)= k)=e−κ κk

k!
.

Repeating exactly the same calculation presented in §11.11 and using the fact that for �t sufficiently small,

a+�t/2∫
a−�t/2

�(t)dt ≈�(a)�t
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we obtain the probability density of observing spikes at times t1, . . . , tn during the observation interval (0,T]:

p(0,T](t1, . . . , tn)=�(t1) · · ·�(tn)exp(−κ). (16.13)

This equation reflects the fact that at each time point t1, . . . , tn the probability density of observing an event is propor-
tional to the instantaneous rate and these probabilities are to be multiplied since they are independent of each other.
The final exponential factor is again a normalization constant ensuring that the probability of observing an arbitrary
number of events within the interval at arbitrary times sums to 1 (Eq. (11.27)).

Numerical simulation of inhomogeneous Poisson processes. Equation (16.13) suggests one way to simulate an
inhomogeneous Poisson process: split the time axis in small intervals of length �t such that �(t) is approximately
constant and the probability of encountering two or more events in each interval is negligible. The probability of
an event occurring in the interval will then be well approximated by �(t)�t, and the probability of no event by
1−�(t)�t. Draw a random number, r ∈ (0,1), for each interval and place an event in the interval when r ≤�(t)�t.
This method is inefficient because it requires the use of a random number generator for each interval �t. We now
describe a more accurate and efficient method based on the probability distribution of successive interevent times.

Assume that an event occurs at time a. Just as in §11.11, the probability density of the interval up to the next event
is obtained from

P(�t0<(b−a))=1−P(�t0 ≥ (b−a))=1−P(N(a, b)=0)

=1−e−κ =1−e−∫ b−a
0 �(t+a)dt.

Setting again b−a=�t and taking the derivative we obtain

pa(�t)=�(a+�t)e−∫ �t
0 �(t+a)dt.

This equation directly generalizes the formula derived in §11.11 for the homogeneous Poisson process. To make
effective use of this formula, we define

y =y(�t)=
�t∫

0

�(t+a)dt.

The probability density of y is obtained from the probability density of�t and the transformation law for probability
densities under a smooth variable change,

p(y)=pa(�t)
(

dy
d�t

)−1

= exp(−y)

(see §11.8). This equation tells us that y is an exponentially distributed random variable with rate 1.
We can thus simulate a sequence of events corresponding to the inhomogeneous Poisson process with rate �(t)

using the following procedure:

1. Set a=0.
2. Select an exponentially distributed random threshold value yi, for the starting index i =0.
3. Integrate

Y(t)=
t∫

0

�(a+s)ds

until the threshold Y(t)=yi (i =0) is reached. Call this time point ti (i =0).
4. Generate an event at ti, set a= ti (i =0), and repeat this recipe from point 2 on for index i = i+1 (i.e., 1,2,3, . . . , and

so forth).
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FIGURE 16.4 Simulation of an inhomogeneous Poisson process whose instantaneous rate is given in the bottom panel. The middle panel
shows 10 spike trains obtained using the algorithm described above. On top is the mean instantaneous firing rate computed over 10 ms bins by
simulating 1000 spike trains. (rand_fig3.m)

Note that we have implicitly assumed in the previous algorithm that an event occurs at time point zero by setting
a=0 as a starting value. Note also that the algorithm presented in steps 1–4 is identical to that used to simulate a
perfect integrate-and-fire neuron satisfying the differential equation v′(t)=�(t) and a threshold vthres that is updated
randomly according to an exponential distribution after each spike (see §10.1). Figure 16.4 illustrates the simulation
of an inhomogeneous Poisson process with a sinusoidal time-varying rate using this method.

16.5 SPECTRAL ANALYSIS

The autocovariance function of a stochastic process CV(t1, t2) defined in §16.1 is a measure of the statistical depen-
dence of the random values taken by a stochastic process at two time points. We have seen two examples (white
noise and the Poisson process) for which no dependence exists between random values taken at different time points.
Most processes encountered in reality will have a more complex structure, as illustrated, e.g., by the Wiener process.
Another measure equivalent to the autocovariance function can be defined in the case of weakly stationary stochastic
processes, i.e., those for which the autocovariance function, C(τ ), depends only on the time difference, τ = t2 − t1. This
measure is called the power spectrum and is defined as the Fourier transform of the autocovariance function,

S(ω)≡ Ĉ(ω)=
∞∫

−∞
C(τ )e−2π iωτ dτ . (16.14)
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We know from Fourier analysis of deterministic functions that the Fourier transform decomposes a function into its
frequency components (Chapter 7). Thus, the power spectrum is also a decomposition of the autocovariance function
into its frequency components. However, the power spectrum is not the Fourier transform of just any function: because
of the definition of the autocovariance, the power spectrum turns out to have very special properties. First, note that
since C(τ ) is real and symmetric, the same holds true for the power spectrum S(ω) (Exercise 7). We will shortly see that
the power spectrum is even more constrained: it is always positive, S(ω)≥0. Thus, the power spectrum is a measure
of the strength of each frequency component in the autocovariance function of the stochastic process.

Power spectrum of the Poisson process. Before justifying more precisely the last statement, let us start by computing
the power spectrum of the Poisson process or, equivalently, of white noise since they have the same autocovariance
function. We simply substitute the autocovariance function, Eq. (16.8), into the definition of the power spectrum,
Eq. (16.14):

S(ω)=
∞∫

−∞
�δ(τ )e−2πωτ dτ =�. (16.15)

Thus, the power spectrum is equal to � independent of frequency. Note that S(ω)≥0, as promised. The fact that each
frequency has the same power spectral value implies that each frequency is equally represented in the autocovariance
function. This is intuitively reasonable. In the case of white noise, changes in the value of a sample white noise path
can occur at any time scale with equal probability and thus all frequencies should be equally represented. Indeed, the
term “white” in white noise originates from this property (remember that if all frequencies are equally represented
in an electromagnetic wave, the resulting color of light is white). Similarly, in the case of the Poisson process a new
event can occur at any time scale, implying equal representation for each frequency.

Figure 16.5 below illustrates the power spectra of gamma renewal processes of orders 2 and 10, which are the
Fourier transforms of the autocovariance functions illustrated in Figure 16.5. For the process of order 2, the reduced
probability of spiking at short time intervals leads to a dip in the power spectrum at low frequencies, a characteristic
manifestation of refractory effects. In the case of regular spiking, like in the gamma process of order 10, we observe a
peak at the firing frequency of the model (close to 80 Hz in Figure 16.5B).

Wiener–Khinchin theorem.* The power spectrum has been defined as the Fourier transform of the autocovariance
function. We now give an alternative way of computing S(ω) directly from the sample functions of the underlying
stochastic process. This will be the starting point for the numerical estimation of the power spectrum in §18.3 and will
also show as a byproduct that S(ω) is positive at all frequencies. For simplicity we assume the stochastic process to
have zero mean and it must of course be at least weakly stationary. Let X(μ, t) be a sample path of a stochastic process
indexed by μ∈� and set

XT(μ, t)=X(μ, t)1[−T/2,T/2](t). (16.16)
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FIGURE 16.5 A. Power spectrum of a gamma renewal process of order 2, with a mean rate of 80 spk/s. B. Power spectrum of a gamma process
of order 10. (gamma_powersp.m)
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Let us denote by X̂T(μ,ω) the Fourier transform of XT(μ, t). The Fourier transform always exists, because XT is nonzero
only over a finite time interval. Each sample path yields a different Fourier transform and thus X̂T(·,ω) is a random
variable for each frequency ω. Now define

ST (ω)= E[|X̂T (ω)|2]

T
,

i.e., the average square modulus of the frequency component X̂T(ω), normalized by interval length. The Wiener–
Khinchin theorem states that in the limit of long intervals T,

lim
T→∞

ST(ω)=S(ω).

Note that ST(ω) is always nonnegative and thus the same is true of S(ω).

Proof. We show that

ST(ω)=
T∫

−T

(1−|τ |/T)C(τ )e−2π iωτ dτ

(16.17)

=
∞∫

−∞
gT(τ )C(τ )e−2π iωτ dτ ,

with gT(τ )= (1−|τ |/T)1[−T,T]. Since 0 ≤gT(τ )≤1 and gT(τ )→ 1 as T →∞ this in turn implies that

ST(ω)→
+∞∫

−∞
C(τ )e−2π iωτ dτ as T →∞,

provided C(τ ) decays sufficiently fast as τ →∞. First,

X̂T(μ,ω)∗ =
T/2∫

−T/2

XT(μ, t1)e2π iωt1dt1, X̂T (μ,ω)=
T/2∫

−T/2

XT(μ, t2)e−2π iωt2dt2,

so that

|X̂T(μ,ω)|2 = X̂T(μ,ω)∗X̂T(μ,ω)

=
T/2∫

−T/2

T/2∫
−T/2

XT(μ, t1)XT (μ, t2)e−2π iω(t2−t1)dt2dt1

=
∫
B

f (t1, t2)dt1dt2,

where f (t1, t2)=XT (μ, t1)XT (μ, t2)e−2π iω(t2−t1) and B is a two-dimensional square, as sketched in Figure 16.6A. We now
perform the change of variables {t1, t2}→{t1,τ = t2 − t1} which converts B into a parallelogram with upper and lower
boundaries determined by the lines (α,±T/2−α)with α∈ [−T/2,T/2], respectively, as illustrated in Figure 16.6B.

Therefore,

∫
B

f (t1, t2)dt1dt2 =
0∫

−T

T/2∫
−T/2−τ

f (t1, t1 +τ)dt1dτ +
T∫

0

T/2−τ∫
−T/2

f (t1, t1 +τ)dt1dτ
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FIGURE 16.6 A. Integration boundaries of the square B in {t1 , t2} coordinates. B. Integration boundaries after the transformation {t1 , t2}→{t1,τ}.

and if we now substitute into the definition of f ,

|XT(μ,ω)|2 =
0∫

−T

T/2∫
−T/2−τ

XT(μ, t1)XT (μ, t1 +τ)e−2π iωτ dt1dτ

+
T∫

0

T/2−τ∫
−T/2

XT(μ, t1)XT (μ, t1 +τ)e−2π iωτ dt1dτ .

Taking expectations on both sides and using E[XT (t1)XT(t1 +τ)] =C(τ ) we obtain

E[|XT(ω)|2]=
0∫

−T

T/2∫
−T/2−τ

C(τ )e−2π iωτ dt1dτ +
T∫

0

T/2−τ∫
−T/2

C(τ )e−2π iωτ dt1dτ

=
T∫

−T

(T −|τ |)C(τ )e−2π iωτ dτ ,

and after division by T we arrive at Eq. (16.17).

16.6 SUMMARY AND SOURCES

This chapter offers a basic introduction to stochastic processes. In the next two chapters, we will encounter addi-
tional examples of relevance to neuroscience and tackle the problem of estimating numerically the power spectrum
of a stochastic process. In addition to the references given in §11.12, Doob (1953) is a classical reference for the math-
ematically inclined. We like the first two chapters of Goodman (1985). Cox and Isham (1980) provide an accessible
introduction to point processes and Tuckwell (1988) surveys the application of stochastic processes to theoretical neu-
roscience up to its publication. Our derivation of the autocovariance function of a stationary point process is similar
to that of Cox and Lewis (1966, Chapter 4, §4). The proof of the Wiener–Khinchin theorem follows Bendat and Piersol
(2000, §5.2.2). For a more rigorous treatment, see Priestley (1981, Chapter 4) and Percival and Walden (1993, Chapter 4).
The time rescaling theorem introduced in Exercise 24 is often used to test the adequacy of models for the discharge
(conditional intensity) of a given neuron. See Johnson (1996) and Brown et al. (2002) for further relevant information.

16.7 EXERCISES

1. Show that for a weakly stationary stochastic process, CX(τ )=CX(−τ).
2. Generate 100 sample paths of the discrete approximation to white noise, 100 ms long, with a sampling step
�t =1 ms and a standard deviation 1/

√
�t. Plot three of them to reproduce Figure 16.1C. Compute the sample
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mean and standard deviation and replicate Figure 16.1D. Sum the samples after multiplying them by�t to obtain
100 sample paths of the discrete approximation to the Wiener process. Compute the sample mean and standard
deviation and reproduce Figure 16.1A and B.

3. Compute the autocovariance function of the Wiener process.
4. Compute the autocovariance function of the homogeneous Poisson process. Hint: Use the formal identity

T∫
0

δ(ta − t)δ(tb − t)dt = δ(ta − tb) (= δ(tb − ta))

for ta, tb ∈ (0,T).
5. Reproduce the plots of Figure 16.3 for the autocovariance function of the stationary gamma renewal process of

orders n=2 and n=10, respectively. Assume a mean rate χ=80 spk/s and use the formula

χc(τ )= �

n

(
1+

n−1∑
k =1

zke�(zk−1)

)
(16.18)

with zk = exp(2π ik/n) for k =1, . . . ,n−1.
6. Simulate 1000 sample spike trains from an inhomogeneous Poisson process with rate

�s(t)=10(sin(2π fst−π/2)+1)

with fs =4 Hz and t ∈ (0,1] s. Use the algorithm described in §16.4 and forward Euler integration with a time step
dt =0.1 ms. Compute the average instantaneous firing rate by dividing the interval (0,1] in 100 bins 10 ms long
and averaging the number of spikes in each bin. Use this to reproduce Figure 16.4.

7. Show that the power spectrum is a real symmetric function. Hint: Combine the results of Exercises 7.13 and 7.14.
8. Reproduce the plots of Figure 16.5 for the power spectrum of the stationary gamma renewal processes of order

n=2 and n=10, respectively. Assume a mean rate χ=80 spk/s and use the formula

S(ω)=χ
(

1−2χ
n−1∑
k=1

�(zk −1)zk

(2πω)2 +(�(zk −1))2

)
(16.19)

with zk = exp(2π ik/n) for k =1, . . . ,n−1.
9. Argue, starting from the definition of χc , Eq. (16.11), that

χc(τ )= d
dτ

E[N(0,τ)],

where N(0,τ) is the spike count of the same process, but with time shifted so that a spike occurs at time t =0.
Hint: Start from the equation

P(spike in (t+τ , t+τ+�t)|spike at t)=E[N(t+τ +�t, t)−N(t+τ , t)]+o(�t2 ). (16.20)

10. Show that for a gamma renewal process of order n the Laplace transform of χc is given by

L(χ)(s)= L(pn)(s)
1−L(pn)(s)

,

where pn is the probability density of the ISI distribution. Hint: Use the results of Exercises 9 and 15.9 and
Eq. (3.16).

11. Show that the roots, sk, of 1−L(pn)(s) are given by sk =�(zk −1), where zk = exp(2π ik/n) for k =0, . . . ,n−1.
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12. With the notation g(s)=L(pn)(s), L(χc)(s)=g(s)/(1−g(s)), show that

g(s)
1−g(s)

= 1
n

n−1∑
i=0

�zi

s−si
.

Hint: First convince yourself that the roots of 1−g(s) derived in the previous exercise are simple so that the
following partial fraction expansion holds

g(s)
1−g(s)

=
n−1∑
i=0

αi

s−si
. (16.21)

Next show that αi =−1/g′(si). For this purpose, multiply both sides of Eq. (16.21) by (s−si) and let s→ si. Use
L’Hôpital’s rule to compute the left hand side. Finally, show that g′(si)=−n/(�+si) and use the value of si derived
in the previous exercise.

13. Show that χc(τ ) is given by Eq. (16.18). Hint: Compute the inverse Laplace transform based on the result of
Exercise 10. Treat separately the root s0 from the roots si, i =1, . . . ,n−1.

14. †Show that if C(τ )=χδ(τ)+χ(χc (|τ |)−χ) is the autocovariance function of a stationary point process, then its
power spectrum is given by

S(ω)=χ+χ (L(φc)(2π iω)+L(φc)(−2π iω)) , (16.22)

where φc(|τ |)=χc(|τ |)−χ .
15. †Show that for a stationary, gamma renewal process of order n, the power spectrum, S(ω), is given by Eq. (16.19).

Hint: Compute the Laplace transform of φc using the results of Exercise 12 and insert this in Eq. (16.22).
16. †Modify the code written for Exercise 6 to use a threshold that is not exponentially distributed. Instead, use a

random threshold distributed as a gamma random variable with orders 1–10 and a mean of 1. Plot a figure similar
to Figure 16.4 but for the gamma order 10 threshold. Compute and plot the Fano factor for the spike count over
the entire 1 s interval as a function of the gamma order to arrive at Figure 16.7.

0
5

10
15
20
25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
5

10
15
20
25

Time (s)

In
st

an
ta

ne
ou

s 
F

iri
ng

 R
at

e 
(s

pk
/s

)

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma Order

F
an

o 
F

ac
to

r

(A) (B)

FIGURE 16.7 A. Simulation of an integrate-and-fire neuron with random, gamma distributed threshold of order 10 stimulated with
a sinusoidal current as in Exercise 6. Top: instantaneous firing rate estimated using 1000 trials. The red curve is a theoretical fit derived in
Exercise 17. Middle: 10 sample spike trains. Bottom: stimulus. B. Fano factor as a function of the gamma order of the threshold. (rand_gamma.m)

17. Let Ns(0, t) be the spike count of the integrate-and-fire neuron with gamma random threshold stimulated with
the sinusoidal input

�s(t)=10(sin(2π fst−π/2)+1).
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Let χsc(t)=dE[Ns(0, t)]/dt be its instantaneous rate, as plotted in Exercise 16. Show that

χsc(t)= d
dt

E[Ns(0, t)] =χc(s(t))�s(t), (16.23)

where χc(t) is the instantaneous rate of the corresponding unmodulated process (Eq. (16.18)) and s(t) is the
transformed time variable

s(t)=
t∫

0

�s(y)dy.

Hint: The random threshold values x1, . . . ,xl determine the spike times t1, . . . , tl through the equations

xi =
ti∫

ti−1

�s(y)dy i =1, . . . , l, (16.24)

with t0 =0. Therefore, the following equation holds for the transformed time variable s(t):

s(tl)=x1 +· · ·+xl.

Now argue as in Exercise 15.8 that E[Ns(0, t)] =∑∞
l=1 Kl(s(t)).

18. Plot the prediction, Eq. (16.23), to arrive at the red curve in Figure 16.7.
19. Argue that if the integrate-and-fire neuron with gamma distributed random threshold of Exercise 17 has started

in the infinite past (tstart →−∞), then its instantaneous rate χsc(t) is proportional to the stimulus �s(t). Hint: Prove
the claim in two different ways. First by using directly Eq. (16.23). Second, from the distribution of transformed
spike times s(ti) and using the conservation of probabilities, χ�s=χsc�t.

20. †Generalize the result of Exercise 4 to compute the autocovariance function of the inhomogeneous Poisson process.
21. If the rate of an inhomogeneous Poisson process is itself a stationary random variable, the resulting point process

is called a doubly stochastic Poisson process. We will encounter such processes when we describe the spike trains
of neurons in response to random stimuli in Chapter 23. If E�[�(t)] = �̄ and N(0, t) is the number of spikes of such
a process in the interval (0, t], show that

E[N(0, t)] = �̄t, E
[
(N(0, t)−E[N(0, t)])2

]
= �̄t+2

t∫
0

(t−u)C�(u)du,

where C�(t) is the autocovariance function of �(t). Conclude from this equation that the Fano factor of a doubly
stochastic point process is always greater than one. Hint: Compute the expectation in two steps, first for a fixed
rate and then over the ensemble of rates:

E[N(0, t)] =E� [E[N(0, t)|�(t)]].
22. Show that if X is a stochastic process with a white power spectrum up to a cut-off frequency fN its power spectral

density and autocovariance function are given by

S(ω)= σ 2

2fN
1(−fN ,fN )(ω), and C(τ )=σ 2 sin2π fNτ

2π fNτ
,

respectively. Hint: By definition, the spectral power density is constant over the interval [−fN ; fN] and σ 2 =C(0).
23. We define for a renewal process the hazard function as the probability rate of the next spike occurring at interval t

given that the interval is at least that long,

h(t)= p(t)∫ ∞
t p(s)ds

(16.25)
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where p(t) is the interspike interval distribution. Show that for a gamma renewal process of order 2 with rate
parameter �,

h(t)= �2t
1+�t

. (16.26)

24. The arguments of Exercises 17 and 19 can be generalized as follows. Remember from §16.3 that L(t)=N(0, t)
denotes the number of spikes in the interval (0,T] and assume that we are given the entire history of the process
up to time t, Ht ={0< t1< t2 · · ·tn< t}, i.e., the exact spike times ti, i =1, . . . ,n, preceding t and up to it. Define the
conditional intensity of the point process as

�i(t|Ht)≡ d
dt

E[L(t|Ht)] = lim
�t→0

P(�Lt|Ht)

�t
.

The time rescaling theorem states that given spike times tj , j =1, . . . ,m, and the conditional intensity, �i(t|Ht), from
which they originate, the transformation

s(tj)=
tj∫

0

�i(t|Ht)dt (16.27)

results in sj = s(tj) being a homogeneous Poisson process with unit rate. For a stationary renewal process, the
conditional intensity at time t depends only on the previous spike time, tlast, and is given by the hazard function,
Eq. (16.25),

�i(t|tlast)=h(t− tlast).

(i) Show that for a stationary gamma process of order 2 with parameter �

s(tj)= s(tj−1)+�(tj − tj−1)− log
(
1+�(tj − tj−1)

)
. (16.28)

Hint: Use Eq. (16.26).
(ii) Check that Eq. (16.26) indeed yields a Poisson process with unit rate by generating a gamma order 2 spike

train with parameter�=40. Then compute the transformed spike times and estimate numerically the resulting
interspike interval distribution. Superpose on your plot the expected exponential distribution with unit rate.
Hint: Generate 100,000 gamma distributed intervals using gamrnd. Use hist with 100 bins to estimate the ISI
distribution.
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The electrical current flowing through voltage-activated or synaptic conductances is generated by channels inserted
across the lipid bilayer membrane of neurons (Figure 2.2). The current passing through single channels can be resolved
by means of the patch-clamp technique, in which a fairly blunt (≈1μm diameter) electrode is sealed onto the cell’s
membrane allowing it to sense directly the current developing across one or a few channels immediately below it
(Figure 17.1A, B).

Such recordings show that single channels behave in a stochastic manner, randomly transitioning between two or
more different states (Figure 17.1C). In this chapter, we start by introducing a new class of stochastic processes called
Markov processes which capture the random properties of single channels. We then introduce a simple and efficient
algorithm to simulate numerically one or more such channels. In §17.3 we define the simplest continuous Markov
process called the Ornstein–Uhlenbeck, or OU process. We show in §17.4 how the OU process can be used to model
random synaptic inputs impinging over extended dendritic trees in simplified neuron models. This allows us in turn
to investigate how random background synaptic activity affects the properties of single neurons under conditions
resembling those they experience in vivo.

17.1 TWO-STATE CHANNEL MODEL

We consider a simple channel with open and closed states and transition probabilities α, β �=0 (Figure 17.1C).
Specifically, let X(t)=0 or 1 if the channel is closed or open, respectively. We assume channel transitions between
states to be independent of time, t, and for �t sufficiently small (i.e., in the limit �t → 0),

p12(�t)=P(X(t+�t)=1 | X(t)=0)=α�t, p11(�t)=1−α�t

p21(�t)=P(X(t+�t)=0 | X(t)=1)=β�t, p22(�t)=1−β�t.

Note that p11 +p12 =p21 +p22 =1.

Markov property. We assume that the future state of the channel is independent of its past states up to the last known
state. For t3> t2> t1,

P(X(t3)=S3 | X(t2)=S2,X(t1)=S1)=P(X(t3)=S3 | X(t2)=S2)

with Si =0,1, for i =1,2,3. This property generalizes to arbitrary sequences tn+1> tn> · · ·> t1.

267
Mathematics for Neuroscientists. DOI: 10.1016/B978-0-12-374882-9.00017-4
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FIGURE 17.1 A. Schematic illustration of the patch-clamp technique. An electrode with a large (≈ 1μm) tip diameter (see Figure 13.20) is
brought in close contact with the cell membrane so as to form a high resistance seal. This permits one to measure single channel currents flowing
in and out of the patch. B. Single channel recording of an NMDA receptor. Adapted from Dravid et al. (2008). C. Simple two-state channel model
(state 1: closed; state 2: open).

The Markov property allows us to derive a differential equation for p11. Namely,

p11(t1 +�t)=P(X(t1 +�t)=0 | X(t1)=0)p11(t1)+P(X(t1 +�t)=0 | X(t1)=1)p12(t1)

= (1−α�t)p11(t1)+β�tp12(t1),

or with�t → 0,

p′
11 =−αp11 +βp12.

Similarly, p′
22 =−βp22 +αp21, p′

12 =αp11 −βp12, and p′
21 =βp22 −αp21, with the initial conditions p11(0)=1, p12 =0,

p21(0)=0, and p22(0)=1. Define τ =1/(α+β), p∞ =α/(α+β), and q∞ =β/(α+β). The solutions to these equations
are, Exercise 1,

p11(t)=q∞ +p∞e−t/τ , p12(t)=1−p11(t)=p∞ −p∞e−t/τ ,

p22(t)=p∞ +q∞e−t/τ , p21(t)=1−p22(t)=q∞ −q∞e−t/τ .
(17.1)

These transition probabilities allow us to compute the time evolution of the open and closed channel probabilities
from an arbitrary initial state. If P(X(0)=0)=π0 and P(X(1)=1)=π1, π0 +π1 =1, then

P(X(t)=0)=P(X(0)=0)p11(t)+P(X(0)=1)p21(t)

=q∞ +(π0p∞ −π1q∞)e−t/τ ,
P(X(t)=1)=P(X(0)=0)p12(t)+P(X(0)=1)p22(t)

=p∞ +(π1q∞ −π0p∞)e−t/τ .

Therefore, any initial distribution (π0,π1) converges exponentially towards the steady-state distribution (q∞,p∞).

Matrix formulation. If we set

Q=
(

q11 q12
q21 q22

)
=

(−α α

β −β
)

and P=
(

p11 p12
p21 p22

)
(17.2)

the differential equation and initial conditions for pij, i, j =1,2 can be written more compactly as P′ =PQ, P(0)= I. In
addition, PQ=QP (Exercise 2). If P(t) and Q were scalars then the solution of this differential equation would be
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P(t)= exp(tQ). This analogy, recall Eq. (5.30), carries over to matrices. In particular

P(t)= exp(tQ)≡U exp(tZ)U−1 (17.3)

where Z is the diagonal matrix of eigenvalues of Q and U is the corresponding matrix of eigenvectors. Because Q
in Eq. (17.2) is two dimensional we can compute, by hand, its exponential (Exercise 3). Looking back, however, we
recognize that Eq. (17.1) reveals

exp(tQ)=
(

q∞ p∞
q∞ p∞

)
+

(
p∞ −p∞

−q∞ q∞

)
e−t/τ . (17.4)

Steady-state vector. In matrix notation, if πT(0)= (π0 π1) is the initial probability distribution of channels, then
πT(t)=π T(0)P(t) and πT (t) satisfies the differential equation dπT/dt =πT Q. At steady-state dπT

ss/dt = 0 or equiva-
lently πT

ssQ =0. Therefore the steady-statedistribution πT
ss = (q∞ p∞) is a left eigenvector of Q with eigenvalue zero. By

transposing this last equation, QTπ ss =0, we see that, equivalently, π ss is an eigenvector of QT with eigenvalue zero.

Distribution of open and closed states. Let F2(t) be the probability that the time spent by the channel in the open
state is less than or equal to t and p2(t) the corresponding probability density so that

F2(t)=
t∫

0

p2(s)ds.

Thus R2(t)=1−F2(t) is the probability that the time spent in the open state is larger than t. We can now derive a
differential equation for R2 in a similar manner as for pij above:

R2(t+�t)=R2(t)P(X(t+�t)=1 | X(t)=1)=R2(t)(1−β�t).

Hence, as �t → 0, R′
2 =−βR2, and R2(t)= exp(−βt), since R2(0)=1. This implies F2(t)=1−exp(−βt) and p2(t)=

β exp(−βt). Since this is an exponential distribution, the mean open state duration equals 1/β. Similarly, the dis-
tribution of closed states is f1(t)=α exp(−αt) and the mean closed state duration is 1/α. The probability distributions
of open and closed states permit one to simulate the sample trajectory of a single channel. The algorithm can be
extended to efficiently simulate multiple independent single channels (Figure 17.2, Exercise 4).

Current noise. We now assume that a single open channel passes current i =γ (V −Vrev)where γ is the single channel
conductance and Vrev the channel equilibrium potential. The membrane potential is assumed to be clamped at V. At
equilibrium, the mean current through a single channel will thus be ip∞. Many properties of the channel can be derived
by observing the current fluctuations of a channel population. For n independent channels at equilibrium, the current
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FIGURE 17.2 Top: simulation of a single channel transitioning between closed and open states with rates α= 100 1/s and β= 500 1/s. Bottom:
simulation of 200 identical channels with 100 of them initially open. The dashed line indicates the average number of open channels at steady state.
(twostatechan.m)
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is I(t)= i
∑n

j=1 Xj(t), where Xj(t) tracks the closed/open state of channel j. The mean current is Ī =E[I(t)] =nip∞. Since
the channels’ openings and closings are independent of one another, they are uncorrelated, E[(Xj(t)−p∞)(Xk(t+h)−
p∞)] =0 for j �= k. If we define the current autocovariance function C(h)=E[(I(t)− Ī)(I(t+h)− Ī)], then

C(h)= i2E

⎡
⎣ n∑

j=1

(Xj(t)−p∞)
n∑

k=1

(Xk(t+h)−p∞)

⎤
⎦

= i2
n∑

j,k=1

E[(Xj(t)−p∞)(Xk (t+h)−p∞)]

= i2
n∑

j=1

E[(Xj(t)−p∞)(Xj(t+h)−p∞)]

=ni2(E[X1(t)X1(t+h)]−p2∞).

(17.5)

We have used the fact that distinct channels are uncorrelated to derive the third line from the second and the fact that
all channels are identical to obtain the fourth line. Since X1 takes only values 0 or 1, we have, for h>0

E[X1(t)X1(t+h)] =P(X1(t)=1,X1(t+h)=1)

=P(X1(t)=1)P(X1(t+h)=1 | X1(t)=1)
=p∞p22(h).

Similarly, for h<0, E[X1(t)X1(t+h)] =p∞p22(−h). Substituting these results into Eq. (17.5) and using Eq. (17.1),

C(h)=ni2p∞q∞e−|h|/τ .

This equation shows that we can compute the channel’s time constant τ of relaxation to steady state by recording
current noise and fitting its autocovariance function to an exponential. Equivalently, the Fourier transform of C(h) is

Ĉ(ω)=ni2p∞q∞
2τ

1+(2πτω)2 (17.6)

(Exercise 5) and can be fit to a Lorentzian ∝1/(1+(2πτω)2).
The current variance is equal to σ 2

I =C(0)=ni2p∞(1−p∞). This is expected since at each time point the channels’
open and closed states will be binomially distributed (§11.2). If the recording conditions are such that p∞ � 1, e.g.,
low V for a voltage-activated channel, then σ 2

I ≈ni2p∞ and γ =σ 2
I /Ī(V −Vrev), allowing one to compute the single

channel conductance from the mean and variance of the current fluctuations (Exercise 6).

17.2 MULTISTATE CHANNEL MODELS

In the previous chapters, we encountered several kinetic models similar to the simple two-state model of §17.1. For
example, the synaptic model of §2.5, the Hodgkin–Huxley sodium and potassium conductance models of §4.2 or the
kinetic models of Chapter 13. Their stochastic properties can be simulated with the methods introduced in §17.1. We
use the Hodgkin–Huxley sodium channel as an example. In §4.2 we learned that the open channel probability is given
by the product m3h of three activation gates and one inactivation gate. Each of these gates behaves as an independent
two-state subunit, as in the previous section. Instead of tracking each subunit separately, we consider states mihj,
i =0,1,2,3 and j =0,1 characterized by the total number of open activation and inactivation subunits. Thus, the state
m3h1 is the open state of the channel. Each state transition involves a single gate. Hence a state like m2h0 can transition
to the adjacent states m1h0, m3h0, or m2h1. The transition rate to m3h0 is equal to αm, since the only closed m gate has
to open for the transition to occur. In contrast, one of two open m gates has to close to transition to m1h0 and therefore
the transition rate is 2βm. The resulting model is summarized in Figure 17.3. We number the different states, S, from
1 to 8 and define qij for i �= j as the transition rate from state i to j. In addition let qi =∑

j �=i qij which is the total escape
rate from state i (transition rate to another state, P(S(t+�t) �= i | S(t)= i)/�t as �t → 0), and qii =−qi . Just as in the

MATHEMATICS FOR NEUROSCIENTISTS



17.3 THE ORNSTEIN–UHLENBECK PROCESS 271
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�m 2�m 3�m
�h �h

1 32 4

5 6 7 8

FIGURE 17.3 Equivalent eight states kinetic model of the Hodgkin–Huxley sodium channel.

two-state model, the resulting matrix Q= (qij) determines the evolution of the transition probabilities: P′ =QP so that
P(t)= exp(tQ). Direct computation of P(t) is illustrated in Exercise 7.

Numerical simulations: Gillespie’s algorithm. Just as in the previous section, the distribution of times in state i is
given by fi(t)=qi exp(−qit), where qi is the total escape rate from state i. In addition, once a transition out of state
i occurs, the probability of transitioning to state j is:

P(S(t+�t)= j | S(t)= i)
P(S(t+�t) �= j | S(t)= j)

= qij�t

qi�t
= qij

qi
.

Therefore, starting from state i, the simulation of a single channel trajectory proceeds by drawing first an exponentially
distributed random number according to fi to determine the time of the next transition. To determine which transition
occurred, a random number, r uniformly distributed between zero and one is then drawn. The state j that satisfies

j−1∑
k=1

qij/qi< r ≤
j∑

k=1

qij/qi

is the new updated state. This algorithm can be extended to efficiently simulate multiple independent channels
(Exercise 14).

17.3 THE ORNSTEIN–UHLENBECK PROCESS

We now introduce a stochastic process that will allow us to efficiently simulate random synaptic noise. The OU
process, X, is a generalization of the Wiener process described in §16.2. If dt represents an infinitesimal time step, we
know from Eq. (16.4) that the value of W(t+dt) is given by W(t+dt)=W(t)+dW(t)where dW(t) is a Gaussian random
variable independent of W(t)with variance dt. Equivalently, since dW(t)∼N (0,dt)we may write dW(t)=N(t)(dt)1/2,
where N(t)∼N (0,1). We now generalize this equation by assuming that the stochastic variable X satisfies the stochastic
differential equation

X(t+dt)=X(t)− 1
τ

X(t)dt + c1/2N(t)(dt)1/2 (17.7)

and X(t0)=x0. To understand the meaning of this equation, first note that if c1/2 =0 it has the solution X(t)=
x0 exp(−(t− t0)/τ ) and therefore X(t) relaxes exponentially towards x0. When c1/2 �=0 and τ →∞ the last term is
the same random drift as for the Wiener process, up to a constant scaling. Therefore, in general, X(t) will fluctuate
randomly, with the last term driving it away from zero, while the second term acts as a damping factor tending to
bring X back towards zero.

It follows from Eq. (17.7) that X(t) is a Markov process, since its value at t+dt depends only on its value at t.
Furthermore X(t+dt)will be Gaussian, provided X(t) is, since it is the sum of two Gaussian, independent variables.
This is certainly the case for X(t0)=x0 ∼N (x0,0) and therefore for any t ≥ t0.

Distribution of X(t). Although it is possible to simulate X(t) by discretizing Eq. (17.7) (i.e., replace dt by �t, a small,
but finite time step) we can also solve exactly for the distribution of X(t), which then yields an exact update for
X(t+�t) from X(t). Since X(t) is Gaussian, we need only compute its mean m(t)=E[X(t)], m(t0)=x0 and its variance
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FIGURE 17.4 Simulations of three OU processes with the steady-state variance cτ/2 = 1, but different ratios for c/τ (1, 9, and 1/9, respectively).
The solid lines denote ± one standard deviation of X(t) (i.e.,

√
v(t)). (ou_f1.m)

v(t)=E[(X(t)−m(t))2 ], v(t0)=0. Taking means on both sides of Eq. (17.7) yields

E[X(t+dt)] =E[X(t)]− 1
τ

E[X(t)]dt

or m′ =−m(t)/τ and so m(t)=x0 exp(−(t− t0)/τ ). Similarly, v(t)= (cτ/2)(1−exp(−2(t− t0)/τ )) (Exercise 15). Hence,
X(t)∼N (m(t),v(t)). Note that the mean converges to zero and the variance to cτ/2 when t  t0. We now use the
Markov property to compute X(t+�t): replace t by t+�t, t0 by t, and x0 by X(t) to obtain

X(t+�t)∼N (X(t)e−�t/τ , cτ
(

1−e−2�t/τ
)
/2)

or, equivalently, if n is a sample from a unit Gaussian distribution,

X(t+�t)=X(t)e−�t/τ +n
√

cτ(1−e−2�t/τ )/2.

Simulations of the OU process using this update formula are illustrated in Figure 17.4.

Autocovariance and power spectrum. The autocovariance of X(t) can be computed analytically,

C(t1, t2)=E[X(t1)X(t2)]−m(t1)m(t2)= cτ
2

e−(t2−t1)/τ
(

1−e−2(t1−t0)/τ
)

for t0 ≤ t1 ≤ t2, Exercise 17. As t0 →∞, C depends only on h = t2 − t1: C(h)= (cτ/2)exp(−|h|/τ). Thus, as was the case
for the two-state channel, Eq. (17.6), the power spectrum is a Lorentzian: Ĉ(ω)= (cτ/2) ·2τ/(1+(2πτω)2).

17.4 SYNAPTIC NOISE

We can now use the OU process to approximate the random synaptic input fluctuations experienced by extended
neurons like neocortical pyramidal cells in vivo. Recall from Exercise 9.6 that we can replace the random synaptic bom-
bardment experienced by a neuron across its dendritic tree by two effective synaptic conductances localized at the
soma, one being excitatory and the other one inhibitory. These effective conductances are derived by voltage clamping
the soma at two different membrane potentials (Figure 9.27) and solving a pair of linear equations, Eq. (9.31), in terms
of the clamp currents. Figure 17.5 illustrates the properties of the effective excitatory and inhibitory conductances
obtained by simulating the synaptic bombardment impinging onto a neocortical pyramidal neuron as it receives ran-
dom spontaneous inputs over its entire dendritic tree. Specifically, the model neuron received ≈16,500 fast excitatory
(AMPA) and 3400 fast inhibitory (GABA) synaptic inputs randomly activated at a rate of 1 and 5.5 events/s, respec-
tively. Each input was modeled as a homogeneous Poisson process and any two excitatory or inhibitory inputs were
weakly correlated with each other to mimic in vivo experimental observations (we will learn how to generate pairwise
correlated homogeneous Poisson processes in Exercise 18.10). Both the excitatory and inhibitory conductances can be
approximated by OU processes plus a constant (X(t)+C). The constant value corresponds to the mean excitatory (ge0)

and inhibitory (gi0) conductance produced at the soma by the synapses distributed over the dendritic tree. The time
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FIGURE 17.5 Properties of two OU processes that reproduce well the excitatory and inhibitory conductances measured at the soma of a
neocortical pyramidal neuron and resulting from spontaneous activation of synapses over its entire dendritic tree. A. Time course of excitatory
(top) and inhibitory (bottom) conductances. B. Corresponding histograms of conductance values. C. Corresponding power spectra. Note that these
properties differ from those illustrated in Figures 9.27 and 9.28 for the model studied in Exercise 9.6. The parameters of the processes are: ge0 =
0.012μS, τe = 2.7 ms, and σe = 0.003μS for the excitatory process; gi0 = 0.057μS, τi = 10.5 ms, and σi = 0.0066μS for the inhibitory process. (ou_f2.m)

constants of the two OU processes (τe and τi) depend on the time constant of the individual excitatory and inhibitory
synapses. Typically, the excitatory events are faster and thus have a shorter time constant. The standard deviation of
the OU processes (σe and σi) mainly depends on the correlation level between individual excitatory and inhibitory
inputs.

Subthreshold properties. We now study the impact of spontaneous background activity by simulating its
effect in a single-compartment model of a pyramidal neuron described by the following differential equation
(Exercise 19):

Cm
dV
dt

=−gL(V −EL)− INa − IKdr − IM − 1
a

Isyn, (17.8)

where INa and IKdr are the fast sodium and delayed rectifier currents generating action potentials, and IM is a
voltage-dependent potassium current that generates spike frequency adaptation. The synaptic currents, Isyn = Ie + Ii
are scaled by the total surface area of the neuron, a. The excitatory synaptic current is Ie = (ge0 +Xe(t))(V −Ve),
where Xe is an OU process with parameters τe, σe, and Ve is the synaptic reversal potential. The inhibitory synap-
tic current is defined analogously. Spontaneous activity has several sizable effects on the subthreshold membrane
properties of the model. First, it shifts the resting membrane potential from −80 mV to a mean value of approxi-
mately −65 mV and causes the membrane potential to fluctuate randomly around that value (Figure 17.6A and B). It
also considerably modifies the input resistance of the membrane and its time constant (Figure 17.6C and D). These
changes are a result of the constant synaptic bombardment experienced by neurons in vivo, which increases mem-
brane conductance, rendering them more “leaky” and thus less prone to depolarize or hyperpolarize in response
to current or synaptic inputs. In addition, their responses to such stimuli tend to be much faster since the mem-
brane time constant is decreased at higher conductances, an observation familiar from earlier, simpler models
(Exercise 2.3).

Suprathreshold properties. When the cell fires in response to a depolarizing current pulse, the random background
activity generates variability in the spike occurrence times and the interspike interval distribution (Figure 17.7A).
This variability depends on how strong the current is relative to that generated by spontaneous synaptic activ-
ity. Thus, as the injected current increases and the mean interspike interval decreases, the coefficient of variation
of the interspike intervals decreases as well (Figure 17.7B). In addition, changing the parameters of the sponta-
neous conductances changes the firing frequency vs. injected current (f-I) curve of the model. If the mean back-
ground inhibitory conductance is changed, the f-I curve typically shifts horizontally (Figure 17.7C). This effect is
quite different from that of inhibition seen in the subthreshold regime, as in Exercise 2.6, for example. Roughly
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FIGURE 17.6 Impact of spontaneous synaptic activityon membrane potential. A. Membrane noise generated by spontaneous synaptic activity.
B. Histogram of membrane potential values (mean: −69 mV, standard deviation: 1.81 mV). C. Response to a −0.25 μA/cm2 pulse. The membrane
potential hyperpolarizes from −80.8 to −86 mV for a difference of 5.2 mV. D. Response to the same pulse in the presence of background activity
(average over 1000 repetitions). The mean membrane potential before and during the pulse is approx. −69 and −70 mV, respectively, for a mean
difference of 1 mV. (destex_f1.m)
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FIGURE 17.7 Suprathreshold effects of spontaneous synaptic activity. A. Irregular firing elicited by a 5μA/cm2 current in the presence of
spontaneous activity. B. Coefficient of variation as a function of mean interspike interval in response to currents ranging from 4 to 9μA/cm2. As
current increases, the mean interspike interval and the CV decrease. C. Changes in the mean inhibitory conductance to twice (red circles) or half
(white circles) their standard value shift the current firing frequency curve along the horizontal axis. D. Simultaneous changes in the mean and
standard deviation of the excitatory and inhibitory conductances change the gain of the firing frequency curve. (destex_f2.m)
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speaking, it results from the fact that during spiking the membrane potential is mainly controlled by the cell’s
intrinsic conductances. This causes the change in inhibitory conductance to effectively act like a constant current
change. In contrast, changing both the mean and standard deviations of the excitatory and inhibitory currents
leads to changes in the slope of the f-I curve (Figure 17.7D). This effect mainly arises from a broadening of the
distribution of membrane potential fluctuations when the standard deviations are increased, which tends to smooth
out the f-I curve. Thus changes in spontaneous activity can dynamically change the input–output characteristics of a
neuron.

17.5 SUMMARY AND SOURCES

This chapter has provided an introduction to membrane noise, starting from single channels and up to the noise
experienced in vivo by neurons due to embedding in large networks of neurons. In particular, we have seen that
membrane noise is central to the biophysics of single ion channels and that it affects the integrative properties of
single neurons. The patch-clamp technique played a crucial role in the study of membrane noise and was pioneered
by Neher and Sakmann who were awarded the 1991 Nobel Prize in Medicine (http://nobelprize.org). The theory
of Markov processes developed in this chapter has allowed us to elegantly characterize the stochastic properties of
single ion channels. In addition, the simple algorithm of Gillespie (1977) enables one to efficiently simulate many such
channels simultaneously. Taken together, this makes Markov processes an invaluable tool to model many random
phenomena in neuroscience. Hawkes (2004) contains additional information on the stochastic modeling of single
ion channels and many useful references. See Hille (2001) for further experimental examples. We also recommend
the review of White et al. (2000). The potential impact of channel noise on single neuron computation has been
investigated in Steinmetz et al. (2000) and its effects on axons in Faisal et al. (2005). Section 17.3 follows the presentation
of Gillespie (1996). Section 17.4 is based on Destexhe et al. (2001) and Fellous et al. (2003), which should be consulted
for further details. For a biophysical explanation of the results presented in Figure 17.7, see Holt and Koch (1997)
and Doiron et al. (2001). The review by Destexhe et al. (2003) contains further references to much of the relevant
literature.

17.6 EXERCISES

1. Compute the solutions of the differential equations for p11, p12, p21, and p22, as given in Eq. (17.1). Hint: Use the
fact that p11 +p12 =1 and p21 +p22 =1.

2. Show that PQ =QP, where P and Q are defined in Eq. (17.2). Hint: Show that I+�tQ =P(�t), then use the Markov
property to compute P(t)(I+�tQ) and (I+�tQ)P(t).

3. †Compute, by hand, the eigenvalues and eigenvectors of the Q matrix of Eq. (17.2). Assemble exp(tQ) per Eq. (17.3)
and confirm that it agrees with Eq. (17.4). Hint: Use the results of Exercise 5.3 to compute U−1.

4. Simulate the sample time course history of a single two-state channel with α=100 1/s and β=500 1/s. Carry
out the same simulation for 200 channels, starting with 100 open channels to reproduce Figure 17.2. Hint: You
don’t need to keep track of each channel individually, only the number of open and closed ones. If Nc channels
are closed and No are open, the total rate of transition is λ=Ncα+Noβ. Compute the time of the next transition
by selecting an exponentially distributed random variable with mean 1/λ. If a transition occurs, the probabilities
of C → O and O→ C are, respectively

λ1 = Ncα

λ
and λ2 = Noβ

λ
.

Therefore, for each transition you need to draw a second random number r between zero and one and decide
on a C → O transition if r ≤λ1 and O→ C otherwise. Update Nc and No accordingly and proceed to compute the
random time of the next transition.

5. †Show by a direct calculation that the Fourier transform of C(h) is given by Eq. (17.6).
6. †Show that to first order in p∞, σ 2

I ≈ni2p∞ and use this approximation to derive the formula γ =σ 2
I /Ī(V −Vrev).

7. Detailed balance. Let Q = (qnm) be the transition matrix of a multistate model and π e the corresponding equilib-
rium vector: QTπ e =0. Assume that the following equation holds for all n,m:

πenqnm =πemqmn
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(detailed balance). Define C=diag
(
π

1/2
e1 , . . .π1/2

en

)
. Show that R=CQC−1 is symmetric. Express the eigenvalues

and eigenvectors of Q in terms of those of R. Compute from this exp(tQ). This exercise is a direct analog of our
proof, in §8.2, of the fact that the Hines matrix was similar to a symmetric matrix.

8. †Compute the equilibrium vector for the two-state channel of §17.1, verify detailed balance and compute the
associated matrix R.

9. Compute numerically the maximal steady-state open probability of the Hodgkin–Huxley sodium channel and
the corresponding membrane potential. Show that they are equal to 0.0077 and −37.94 mV, respectively.

10. At V =−37.94 mV, compute the mean open and closed times of the “activation” gate, m, of the sodium channel,
as well as the mean time between transitions. Carry out the same calculation for the “inactivation” gate, h.

11. Compute numerically the equilibrium vector of the m gate at V =−37.94 mV and verify detailed balance within
numerical error by computing its relative deviation from zero,

(πe1q12 −πe2q21)/(0.5(πe1q12 +πe2q21)).

Repeat for the h gate.
12. Using the results of the previous exercise, predict the equilibrium vector for the eight-state sodium channel model

of Figure 17.3 at V=−37.94 mV. Compute numerically the transition matrix for the eight-state model of the sodium
channel as well as the associated equilibrium vector; compare with your prediction.

13. Simulate a single sodium channel at V =−37.94 mV using the following two methods.
(i) Simulate three independent m gates and one h gate. Then use the gate states to compute the state of the

associated sodium channel.
(ii) Use the transition matrix computed in Exercise 12 and the Gillespie algorithm of §17.3. Arrive at a figure

similar to Figure 17.8.
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FIGURE 17.8 Simulations of a single sodium channel. A. Sample random openings (state 1) and closings (state 0) of three independent m
gates and an h gate. B. Top: resulting derived state of the corresponding sodium channel. Bottom: direct simulation of the eight-state model.
(na_chan.m)

14. †Simulate 200 sodium channels, all starting in the open state at a membrane potential of −37.94 mV. Generate a
figure similar to Figure 17.9. Hint: Just as in the case of the two-state channel, you do not need to keep track of
each channel individually. The transition matrix of the sodium channel has 20 distinct nonzero transitions, q12,
q15, etc . . . Renumber them from 1 to 20 and call the corresponding rates ri, i =1, . . . ,20, e.g., r1 =q12, r2 =q15, etc . . .
For each transition, let i(j), j =1, . . . ,20 be the corresponding start state and Ni the number of channels in state i,
i =1, . . . ,8. Following a transition, compute:

λ=
20∑

j=1

Ni( j )rj and λj =Ni( j )rj/λ.
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Draw a random number x1 uniformly distributed between 0 and 1 and set the time to the next transition as
(1/λ) log(1/x1). Then draw a random number x2 uniformly distributed between 0 and 1 and determine the tran-
sition l such that

l−1∑
k=1

λk<x2 ≤
l∑

k=1

λk.

Decrease the number of channels in state i(l) by one and increment the final state accordingly. Repeat the iteration.
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FIGURE 17.9 Simulations of 200 sodium channels, all starting in the open state at t = 0. (multnachan.m)

15. Show that the variance of the OU process is given by

v(t)= (cτ/2)(1−exp(−2(t− t0)/τ )).

Hint: Square Eq. (17.7) and keep terms of order dt or lower. Show that, with f (t)=E[X2(t)], the following differ-
ential equation holds: f ′(t)= (−2/τ)f (t)+c with f (t0)=x0. Solve this differential equation and use the solution to
compute v(t).

16. Simulate three OU processes with the parameters given in the legend of Figure 17.4 and reproduce the plots of
that figure.

17. Compute analytically the autocovariance function of the OU process. Hint: Define h(t1, t2)=E[X(t1)X(t2)].
Compute h(t1, t2 +dt2) using Eq. (17.7) and show that h satisfies the following differential equation:

d
dt2

h(t1, t2)=−1
τ

h(t1, t2)

with the boundary condition h(t1, t1)= f (t1). Solve this differential equation and use the solution to compute the
autocovariance function of X.

18. Simulate two OU processes with the parameters given in the legend of Figure 17.5 and reproduce the plots of that
figure.

19. Simulate the model of Eq. (17.8) and reproduce Figures 17.6 and 17.7. The various currents are given by

IK = gKn4(V −VK), gK =10, VK =−90,

INa = gNam3h(V −VNa), gNa =51.6, VNa =50,
IM = gMp(V −VK), gM =0.5,

IL = gL(V −VL), gL =0.045, VL =−80
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with conductances in mS/cm2 and reversal potentials in mV. The associated gating variables n, m, h, and p are
governed by the following forward and backward rate functions

αn = −0.032(V −VT −15)
exp(−(V −VT −15)/5)−1

and βn =0.5 exp(−(V −VT −10)/40), VT =−58,

αm = −0.32(V −VT −13)
exp(−(V −VT −13)/4)−1

and βm = 0.28(V −VT −40)
exp((V −VT −40)/5)−1

αh =0.128 exp(−(V −VT −VS −17)/18) and βh = 4
1+exp(−(V −VT −VS −40)/5)

αp = 0.0001(V +30)
1−exp(−(V +30)/9)

and βp = −0.0001(V +30)
1−exp((V +30)/9)

, VS =−10.

Steady state, without synaptic background activity is at V =−80.3935 mV. In Eq. (17.8), the total dendritic area a is
equal to 34636×10−8 cm2. The synaptic reversal potentials Ve and Vi are equal to 0 and −80 mV, respectively. The
membrane capacitance is Cm =1 μF/cm2.
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The last chapter has illustrated the usefulness of power spectra to describe the frequency characteristics of stochastic
processes. In this chapter, we generalize the power spectrum to characterize the frequency-dependent relation between
two stochastic processes. This leads us to define first the cross spectrum of two stochastic processes and then their
coherence. Next, we tackle the problem of estimating numerically power and cross spectra from experimental data.
§18.2 makes some basic preliminary observations on the properties of estimates arising from random data samples.
§18.3 then tackles the numerical power spectrum estimation problem. As we will see in the forthcoming chapters, the
tools introduced here are basic workhorses that play a central role in the analysis of neural data.

18.1 CROSS CORRELATION AND COHERENCE

If X and Y are two stochastic processes, the covariance of X and Y is defined as

CXY(t1, t2)=E[(X(t1)−mX(t1))(Y(t2)−mY(t2))]

and is a measure of the degree of dependence between X(t1) and Y(t2) since its normalized value,

γ (t1, t2)= CXY(t1, t2)√
CXX(t1, t1)

√
CYY(t2, t2)

is the correlation coefficient between X(t1) and Y(t2), with −1 ≤γ ≤1.
We now define an analogous quantity in the frequency domain for two jointly stationary processes X and Y. For

notational simplicity we will assume that X and Y have zero mean, or equivalently consider the centered processes
X−mX , Y −mY . If t2 = t1 +τ, stationarity implies that the covariance and autocovariance of X and Y depend only
on τ :

CXY(τ )=CXY(t1, t1 +τ)=E[X(t1)Y(t1 +τ)]
and similarly for CXX , CYY. The Fourier transforms of CXY(τ ), CXX(τ ), and CYY(τ ) (which we assume to exist) are the
cross spectrum SXY(ω) and the power spectra SXX(ω), SYY(ω). Define the coherence function as

γ (ω)= SXY(ω)√
SXX(ω)

√
SYY(ω)

.
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Note that in general the coherence function is a complex function (with nonzero imaginary part) since CXY(τ ) �=
CXY(−τ). The mean squared coherence MXY(ω)=|γ (ω)|2 lies in the range 0 ≤MXY(ω)≤1 (Exercise 3).

The coherence is a measure of the relative linearity of two stochastic processes at each frequency. In particular, let
Y be obtained from X by convolution,

Y(t)=h�X(t)=
∫

h(t− t0)X(t0)dt0,

then,

CXY(τ )=h�CXX(τ ), CYY(τ )= (h� h̃)�CXX(τ ) (18.1)

where h̃(t)=h(−t) (Exercise 4). From Eq. (18.1) we conclude that

SXY(ω)= ĥ(ω)SXX(ω), SYY(ω)=|ĥ(ω)|2SXX(ω)

and therefore when SXX(ω) �=0,

γ (ω)= ĥ(ω)

|ĥ(ω)| =eiφ, φ ∈ [0,2π).

Therefore the mean squared coherence is equal to 1 when X and Y are linearly related.
Conversely, if X and Y are not linearly related, we may approximate Y by h�X, where the filter h is selected so

as to minimize the mean square error between Y and h�X, e(t)=Y −h�X(t). Equivalently, we minimize the power
spectrum of e since it integrates to the mean square error, or variance of e(t). The autocovariance of e can be computed
to yield

E[e(t1)e(t1 +τ)] =CYY(τ )− h̃�CXY(τ )−h�CYX(τ )+(h� h̃)�CXX(τ ) (18.2)

(Exercise 5). Fourier transforming, we obtain the power spectrum of the error,

See(ω)=SYY(ω)− ĥ∗(ω)SXY(ω)− ĥ(ω)S∗
XY(ω)+|ĥ(ω)|2SXX(ω).

If we add and subtract |SXY|2/SXX we can complete the square contained in the above expression and obtain

See(ω)=SXX(ω)

∣∣∣∣ĥ(ω)− SXY(ω)

SXX(ω)

∣∣∣∣2 +SYY(ω)(1−MXY (ω)),

where MXY(ω)=|γ (ω)|2. Hence, the optimal filter is ĥopt(ω)=SXY(ω)/SXX(ω). Furthermore, if we define Ylin =hopt �X,
it is not difficult to see that when the error is minimized

SYY =See +SYYMXY and SYY =SYlinYlin +See.

Therefore the mean squared coherence, MXY, is the fraction of the power spectrum of Y that can be accounted for by
the linear approximation provided by Ylin.

Figure 18.1B shows the mean square coherence between an OU process and the same process with broad band
white noise added to it (Figure 18.1A). In Figure 18.1C, a narrower band white noise, W, is mapped nonlinearly
through a sigmoid function g (Figure 18.1D, top right inset). The coherence between W and g(W) is depicted in the
main panel of Figure 18.1D.

18.2 ESTIMATOR BIAS AND VARIANCE

In the next section we will want to estimate numerically the power spectrum of a stochastic process given a long
sample function. This will raise two questions about the bias and variance of the estimate. We introduce these concepts
in a much simpler setting.
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FIGURE 18.1 A. Sample path of an OU process, XOU , illustrated in red and with white noise added to it, XOU +W, in black (cut-off frequency:
1000 Hz). B. Mean squared coherence between XOU and XOU +W. The black trace is computed numerically (Welch method, see §18.3) and the red
curve is obtained analytically. C. White noise, W, in red (cut-off frequency: 100 Hz) and the same white noise passed through a static nonlinearity,
g(W), in black. D. Mean squared coherence between W and g(W) computed numerically (black) or analytically (red). The three insets illustrate
the probability distribution of the white noise (top, left), the static nonlinearity (top, right), and the probability distribution of g(W) (bottom, left),
respectively. (coherence_est.m)

Suppose that we want to estimate the mean, μ, of a Gaussian random variable, X, and that we are given only
n samples from its distribution, x1, . . . ,xn. We could of course use any sample xi as our estimate, discarding the other
ones, but this would not be a wise strategy. Instead, we form the sample mean, m̆X = (1/n)∑n

i=1 xi. The average value
of the sample mean (assume we are given several distinct sets x1, . . . ,xn) can easily be computed

E[m̆X ] = 1
n

n∑
i=1

E[xi] = 1
n

nμ=μ.

Thus, the sample mean is an unbiased estimator of the mean, since on average its value equals μ. This is a desirable
property for an estimator based on random variables. Since each sample xi is assumed to be given independently, we
can also compute the variance of m̆X , also called the standard error of the mean,

var(m̆X)=E[(m̆X −μ)2] = 1
n2

n∑
i=1

E[(xi −μ)2] = σ 2

n
.

Therefore m̆X has the desirable property that its variability decreases as the number of samples increases.
Let us now define a second, slightly different estimator of the mean,

m̃X = 1
n+1

n∑
i=1

xi = n
n+1

m̆X .

This estimator is clearly biased: E[m̃X ] = (nμ/(n+1)) and its variance is given by

var(m̃X)= n2

(n+1)2
E[(m̆X −μ)2] = n

(n+1)2
σ 2.
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Clearly, the variance of m̃X is lower than that of m̆X . Thus, we have decreased the variance at the expense of bias, a
common trade-off when considering different estimators of the same quantity.

18.3 NUMERICAL ESTIMATE OF THE POWER SPECTRUM∗

We would now like to estimate the power spectrum of a random process X(t) from discrete samples, xj =x(−T/2+
tj), tj = j	t, j =0, . . . ,N −1, where x(t) is a sample of X. In this section, we will use −T/2 as the reference time point
since this allows us to transition more easily from continuous to discrete time. Estimating the power spectrum also
yields an estimate of the autocovariance function by Fourier transform. Additionally, the cross spectrum or coherence
function is estimated in exactly the same manner. For simplicity, we assume X to be zero mean, weakly stationary
and ergodic. Our starting point is the Wiener–Khinchin theorem (§16.5),

S(ω)= lim
T→∞

1
T

E[|x̂T(ω)|2]. (18.3)

This formula suggests the initial approximation

S(ω)≈ 1
T

∣∣∣∣∣∣∣
T/2∫

−T/2

x(t)e−2π iωt dt

∣∣∣∣∣∣∣
2

. (18.4)

With	ω=1/(N	t), ωk = k	ω, k =0, . . . ,N −1,

S(ωk)≈ 	t
N

∣∣∣∣∣∣
N−1∑
j=0

xje−2π ikj/N

∣∣∣∣∣∣
2

.

If the units of x are, e.g., meters, then S(ωk) has units of m2/Hz. Note that the factor	t/N ensures the normalization

∞∫
−∞

S(ω)dω≈
N−1∑
k=0

	ωS(ωk )= 1
N

N−1∑
j=0

|xj|2 ≈E[X(t)2 ]. (18.5)

The middle equality follows by Parseval’s identity (Eq. (7.10) and Exercise 7). Next, we drop the factor	t and consider
the periodogram estimate of the power spectrum,

S̆(p)k = 1
N

∣∣∣∣∣∣
N−1∑
j=0

xje−2π ikj/N

∣∣∣∣∣∣
2

(18.6)

so that S(ωk)≈S(p)k 	t. One naturally inquires about the bias and variance of this estimator. Although detailed answers
to both of these questions are known, a full exposition would require material beyond the scope of this chapter. We
therefore only present a summary of the most salient points.

Bias. In general, the estimator S̆(p)k turns out to be biased when T is finite. However, the bias is typically not very
significant, unless the signal has a high dynamic range. This can be understood in terms of Eq. (18.4) which states
that we approximate the Fourier transform by multiplying the infinitely long sequence x(t)with a window function

pT(t)=1[−T/2,T/2](t).

Because this function abruptly turns on and off at ±T/2 it contains high frequency components. Since in the frequency
domain (p̂T � x̂)(ω)= x̂T (ω) the frequency content of x̂(ω) could likely be spread over many frequency bins after
convolution with p̂T . To make this argument rigorous, consider the continuous estimate of the power spectrum before
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discretizing, i.e., the right hand side of Eq. (18.4),

STx(ω)=

∣∣∣∣∣∣∣
T/2∫

−T/2

x(t)e−2π iωt dt

∣∣∣∣∣∣∣
2

.

The bias of STx(ω) is

E[STx(ω)] =ST (ω)=
T∫

−T

(1−|τ |/T)C(τ )e−2π iωτ dτ =
∞∫

−∞
gT(τ )C(τ )e−2π iωτ dτ

where we used Eq. (18.4) to derive the second equality and gT(τ )= (1−|τ |/T)p2T (τ ). On recalling the definition of the
Fourier transforms of g and C we obtain

E[STx(ω)] =
+∞∫

−∞
ĝT(ω1)S(ω−ω1)dω1.

Thus, the true power spectrum is convolved with ĝT . A simple calculation shows that

ĝT(ω)= sin2(πωT)
Tπ2ω2 (18.7)

(Exercise 8). Since gT(τ )→ 1 as T →∞ it follows that ĝT → δ as T →∞. Therefore the periodogram estimate is unbiased
as T →∞. For a finite T, this is, however, not the case. Figure 18.2A plots ĝT when T =32 on a logarithmic scale. After
convolution, S(ω) will usually spread across a broad frequency range, corresponding to the side lobes of ĝT . This
phenomenon is illustrated in Figure 18.2B and C for two cosine waves discretely sampled over the interval [0,T)
with	t =1 and N =32. The first example (Figure 18.2B) illustrates the exceptional case were the bias is exactly equal
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FIGURE 18.2 A. The top panel depicts a rectangular window, gT , of length N = 32 (black) and the window corresponding to the discrete
prolate spheroidal sequence (dpss) of order zero with N = 32 and NW = 1 (red). The bottom panel illustrates the Fourier transform of ĝT and of the
discrete spheroidal sequence shown on top, on a logarithmic scale (i.e., dB(x)= 10 log10(x)). B. The top panel shows the time domain representation
of cos(2π ft) at integer sampling points t = 0,1, . . .,31, f = 1/4. The power spectrum (black squares, middle, and bottom panels) computed from
Eq. (18.6) has two nonzero peaks at ±f , as expected. The middle panel is on a linear scale and the bottom one on a logarithmic scale. The red crosses
illustrate the windowed periodogram computed with the zeroth order dpss of A. In the middle panel only the three largest values are shown for
clarity. C. Same as B for ω= 1/4+0.5	ω. (fleak.m)
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to zero. The top panel shows a cosine wave and its sample points with an oscillation frequency ω0 =1/4 =8/32 that
corresponds to a multiple of the sampling frequency interval	ω=1/N =1/32. The bias contributed by frequency ω0
to frequency bin k is equal to zero, since it is weighted by ĝT(8−k/32)=0. Accordingly, the periodogram illustrated in
the middle and bottom panels of Figure 18.2B has only two nonzero components at ±ω0. The frequency of the cosine
wave illustrated in Figure 18.2C is increased by half of	ω. Accordingly, the power is equally divided between the two
immediately adjacent frequency bins, as illustrated in the middle panel. This local bias corresponds to multiplication
with the value of ĝT at ±0.5/N on the main lobe of the function (dashed lines in the bottom panel of Figure 18.2A).
However, the power is not exclusively distributed over these two bins: as illustrated in the bottom panel of Figure 18.2C,
there is a long range bias that affects all the other bins. It is most visible on a logarithmic scale as it is much smaller
than the peak value of the periodogram. This bias is often called leakage because power “leaks” to adjacent bins.

To reduce the long range bias, we multiply x by a data window function, h, and obtain a windowed estimate of the
power spectrum,

Shx(ω)=
∣∣∣∣∣∣

∞∫
−∞

h(t)x(t)e−2π iωt dt

∣∣∣∣∣∣
2

,

with the following bias,

E[Shx] =
∞∫

−∞
|ĥ(ω1)|2S(ω−ω1)dω1 (18.8)

(Exercise 9). The corresponding discrete windowed periodogram is

S̆(w)k = 1
N

∣∣∣∣∣
N−1∑
l=0

xlhle−2π ikl/N

∣∣∣∣∣
2

.

We impose the normalization
∑N−1

k=0 |hk|2 =1 which ensures that on average the integrated power is equal to the
variance of x:

E

[N−1∑
k=0

S̆(w)k

]
=σ 2.

To minimize the long range bias of the windowed periodogram, we consider a data window, vk,0, k =0, . . . ,N −1, such
that its Fourier transform

v̂0(ω)=
N−1∑
k=0

vk,0e−2π ik	tω

has maximal energy in the frequency band [−W,W] ⊂ [−1/2	t,1/2	t]. That is, v̂0 maximizes, with respect to f̂

β2(W, f̂ )=
∫ W
−W | f̂ (ω)|2 dω∫ 1/2	t

−1/2	t | f̂ (ω)|2 dω
(18.9)

Note that by a simple rescaling we may assume that	t =1 and ω∈ [−1/2,1/2]. In the case of the specific example of
Figure 18.2, we are interested in N = 32 and W =1/32 (NW =1). The solution to this maximization problem is the zeroth
order discrete prolate spheroidal sequence, or dpss, illustrated on the top panel of Figure 18.2A (Exercise 15). Multiplying
xk by vk,0 causes the resulting values to smoothly taper towards the boundaries of the interval [0,T), therefore limiting
the high frequency leakage attributed to the rectangular window. The Fourier transform of vk,0 is illustrated on the
bottom panel of Figure 18.2A. Indeed, we see that the side lobes are reduced compared to those of the rectangular
window. Accordingly, the long range leakage is decreased in Figure 18.2C (bottom panel, red crosses). Note, however,
that some leakage is introduced in the case of the frequencies coinciding with multiples of	ω (Figure 18.2B, bottom).
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This is due to the fact that minimizing the long-range leakage of vk,0 causes the main lobe of v̂0 to slightly broaden
(Figure 18.2A, bottom). As a consequence, the sampling points k/N do not coincide with the zeros of v̂0 any more.
This broadening means that by windowing with vk,0 we lose some of the fine resolution in the estimate of the power
spectrum: this is the trade-off incurred by imposing minimal long-range leakage.

Higher order dpss. The maximization problem of Eq. (18.9) can be considered on the N −1 dimensional space orthog-
onal to (v0,0, . . . ,vN−1,0)

T . This yields the first order dpss, vk,1, k =0, . . . ,N −1, which, by definition, has a concentration
smaller than that of vk,0: β2(W, v̂0)>β

2(W, v̂1). Proceeding in the same way, we can generate a sequence of N dpss with
decreasing concentration that together spanRN . Typically, nNW of these sequences have a concentration β2(W) close
to 1, where nNW is the largest integer smaller than 2NW −1 (with W<1/2). We will put these additional sequences to
use in the multitaper method of power spectrum estimation described below.

Variance. The variance of S̆(p)k turns out to be on the order of S(ωk)
2, independent of N. This severe problem is not

entirely surprising: when N is increased, it generates additional frequency samples in Eq. (18.6) and therefore a finer
frequency grid, not a better estimate of a fixed number of frequency samples. In addition, we have dropped the
averaging operation when transitioning from Eqs. (18.3) to (18.4). There are two simple solutions to this problem:
the first one, the Welch method, consists in splitting the interval T in m subintervals [0,T/m), [T/m,2T/m), . . . and
computing an estimate S̆(p)lk , l =1, . . . ,m on each subinterval separately followed by averaging,

S̆(w)k = 1
m

m∑
l=1

S̆(p)lk .

This will reduce the variance by approximately 1/m. Since S̆(p)k is typically replaced by the windowed periodogram
which smoothly tapers the sample values towards the boundaries of each subinterval, this estimate can be improved
by overlapping the segments, i.e., by adding the intervals [T/(m/2),T/(3m/2)), etc. The second method consists in
averaging directly S̆(p)k over several frequency bins by convolving with an appropriate window function G in the
frequency domain, S̆(c)= S̆(p) �G. Such a window G is called a smoothing or spectral window. Many different types of
spectral windows have been proposed, with various trade-offs depending on the particular situation considered. The
simplest example of a spectral window consists in averaging over n adjacent frequency values, e.g., for n=3,

S̆(c)k = (S̆(p)k−1 + S̆(p)k +S(p)k+1)/3,

corresponding to G= (1/3,1/3,0, . . .,0,1/3)T . Of course, both methods sacrifice frequency resolution for a decrease
in variance. Figure 18.3A and B depict the periodogram and Welch power spectrum estimates of the OU process
describing the excitatory synaptic conductance in §17.4, respectively.
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FIGURE 18.3 Numerical estimation of the power spectrum of the OU process illustrated in Figure 17.5, top. A. Periodogram estimate (4096
sample points, dt = 0.5 ms). The red line is the analytical value derived in §17.3. Note the decrease in variance as the analytical value decreases with
frequency. B. Welch estimate with a Hamming data window (inset, default window used by MATLAB) based on 2048 sample long subsegments.
C. Multitaper estimate with N = 4096, NW = 14. (power_spec.m)
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Multitaper method. The multitaper method is computationally more intensive, but often yields more accurate results
than those described above, particularly when the available data are short. It relies on the simultaneous use of multiple
independent data windows, also called tapers, hence the name. These data windows are the nNW discrete prolate
spheroidal sequences of length N that have high concentration, β2(W), on the frequency interval W, as discussed
above. We obtain in this way nearly independent estimates of the power spectrum,

S̆(mt)l
k =

∣∣∣∣∣∣
N−1∑
j=0

xjvj,le−2π ikj/N

∣∣∣∣∣∣
2

, l =0, . . . ,nNW −1.

These estimates are then combined either by simple averaging, S̆(mt)
k = (1/nNW)

∑m−1
l=0 S̆(mt)l

k or by using more sophis-
ticated, nonlinear combinations to obtain an estimate S̆(mt)

k that simultaneously minimizes bias and variance. The
number nNW of dpss increases with W (and N). For example, if NW =4 then l =0, . . . ,6. This allows for additional
averaging and decreases the variance of the estimate S(mt)

k . On the other hand, it also smoothes out details of the
spectrum, as explained above. A multitaper power spectrum estimate of the OU process describing the excitatory
synaptic conductance in §17.4 is illustrated in Figure 18.3C.

18.4 SUMMARY AND SOURCES

The techniques developed in this chapter to compute power spectra, cross spectra, and coherence are basic
workhorses that play a fundamental role in the analysis of neural data from the level of single ion channels up
to the behavior of whole organisms. The properties of the coherence function derived in §18.1 make it for instance the
method of choice to characterize the relation between two stochastic processes. We will encounter several concrete
applications of these tools in subsequent chapters. Section 18.1 is based on Carter (1987, §1). The material in §18.3 is
classical and has been covered in many books and review articles. A comprehensive reference is Percival and Walden
(1993). See in particular their §3.9, Chapters 6–8 for further details on the dpss defined by Eq. (18.9) and in Exercise 15.

18.5 EXERCISES

1. Show that the following inequality holds:

|CXY(τ )|≤CXX(0)CYY(0). (18.10)

Hint: Clearly, the following inequality holds independent of the value of a∈R: E[(aX(t)+Y(t+τ))2 ] ≥0. Argue
that equality holds when Y(t+τ)=−aX(t)with probability 1, in which case equality also holds in Eq. (18.10). In the
“>” case, derive a quadratic equation for a (i.e., a2x+ay+z>0) and conclude that its discriminant, 	=y2 −4xz,
has to be negative, which leads to Eq. (18.10) with strict inequality (<).

2. Argue, along the lines of §16.5, that

lim
T→∞SXYT(ω)=SXY(ω) where SXYT(ω)= E[X̂T(ω)

∗ŶT(ω)]

T
.

3. Prove that the mean squared coherence lies between 0 and 1. Hint: Taking into account the previous exercise, it is
sufficient to show that

|SXYT(ω)|2 ≤SXXT(ω)SYYT (ω). (18.11)

This latter inequality can be proven as in Exercise 1, by starting from E[|X̂T(ω)+aŶT (ω)exp(iφ)|2] ≥0 for a∈R and
an arbitrary phase φ. Derive again a quadratic equation for a and compute its discriminant. Then select the phase
φ appropriately to obtain Eq. (18.11).

4. Prove Eq. (18.1).
5. Compute the autocovariance of the error, Eq. (18.2).
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6. †Under the same assumptions as in §18.2, show that

σ̆ 2 = 1
n−1

n∑
i=1

(xi − x̆)2

is an unbiased estimator of the variance, σ 2.
7. †Prove Eq. (18.5).
8. Derive Eq. (18.7).
9. Compute the bias of the windowed periodogram, Eq. (18.8). Hint: First write

Shx(ω)=
∞∫

−∞
h(t1)x(t1)e−2π iωt1 dt1

∞∫
−∞

h(t2)x(t2)e2π iωt2 dt2. (18.12)

Taking the expectation leads to a double integral with the product of the covariance of X and h (twice) in the
integrand. By Fourier transforming C and h the integral can be simplified to the form given in Eq. (18.8).

10. One method to generate correlated Poisson spike trains is to “thin” a “mother” spike train. If the sample mother
spike train, xm, has rate �m, we generate a new spike train by keeping each spike with probability β. Clearly,
the new spike train is again Poisson and has rate �=β�m. If this process is repeated N times, we obtain Poisson
spike trains x1, . . . ,xN with pairwise covariance Cxixj(τ )=�βδ(τ) or, equivalently, with correlation coefficient β
(i, j =1, . . . ,N, i �= j). Generate 10 such spike trains from a mother spike train with rate �m =200 spk/s, β=0.1 and
plot them together with the mother spike train to arrive at a plot similar to Figure 18.4A. Compute numerically
the covariance between the two spike trains, normalized by their standard deviations to arrive at a plot similar to
Figure 18.4B, with a peak at time zero whose numerical value is ≈β. Hint: Generate two correlated spike trains
with the above method, 32768 (=215) ms long with a sampling step dt =0.5 ms, and compute their cross spectral
density with the MATLAB function cpsd. Use the default Hamming window, 2048 samples long and an overlap
of 1024 samples. Compute the inverse Fourier transform of the result, correct for the time shift and divide by the
standard deviations of the spike trains.
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FIGURE 18.4 A. The mother spike train is plotted in red on top and 10 derived spike trains, �m = 200 spk/s and β= 0.1. B. Cross correlation
between two derived spike trains, computed numerically. (cross_poiss.m)

11. Compute analytically the coherence between an OU process, X and Z =X+Y, where Y is an independent white
Gaussian noise, up to a cut-off frequency fN . The OU process is assumed to have parameters σOU and τ , while
the white noise is assumed to have variance σ 2

w. Compare this theoretical result with the numerical one, and
reproduce Figure 18.1A and B. Use the following parameters for the OU process: σOU =0.55μS and τ =2.7 ms. Use
a sampling step dt =0.5 ms, corresponding to a cut-off frequency fN =1000 Hz for the white noise and σw =1 μS.
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Hint: Use 65536 (216) samples and the function mscohere with a standard Hamming window of 2048 samples
and an overlap of 1024 samples.

12. In this exercise, we develop a method to generate Gaussian random noise samples that are white up to a
cut-off frequency fN , but that are sampled at a frequency higher than 2fN . For this purpose consider first N
Gaussian random variables x0, . . . ,xN of zero mean, identical variance and such that E[xnxm] =Cn−m (mod N), with
Ck =C−k (mod N). Set

x̂j =
N−1∑
k=0

xke−2π ikj/N and x̂jr =�(x̂j), x̂ji =(x̂j).

(i) Show that x̂−j = x̂∗
j = x̂jr − ix̂ji. Hint: This is the discrete version of Exercise 7.13.

(ii) Show that both x̂jr and x̂ji are Gaussian random variables with zero mean.
(iii) Show that E[x̂j x̂l] = δj−lNSj, where δ is the Kronecker delta of Eq. (1.4) and

Sj =
N−1∑
k=0

Cke−2π ikj/N.

(iv) Show that x̂ji is independent of x̂jr and that

E[x̂2
jr] =E[x̂2

ji] = 1
2

E[|x̂j|2].

Hint: It is sufficient to show that E[x̂jrx̂ji] =0. Use the result derived in (iii) with l = j and l =−j.
(v) Show that x̂jr, x̂ji are independent of x̂lr, x̂li for l �= j. Hint: Proceed as in (iv) by considering the result derived

in (iii) for j and ±l(�= j).
(vi) Show that to approximate the power spectrum of white noise with variance σ 2 between −fN and fN

(Exercise 16.22) requires

E[|x̂j|2] = Nσ 2

2fN	t
,

where 	t is the time domain discretization step.
(vii) Use the previous results to generate Gaussian white noise with a cut-off frequency of fN =100 Hz, σ =1, and

a sampling step of 1 ms. The resulting Gaussian white noise sample should be similar to that depicted in
Figure 18.1C. Hint: Generate at each frequency independent Gaussian random samples with the appropriate
variance and inverse Fourier transform to obtain a sample in the time domain.

13. Define the static nonlinearity

gα, l(x)=α
√

2
π

1
l

x∫
0

e−t2/2l2 dt. (18.13)

(i) Show that gα, l(x)∈ (−α,α) for x ∈ (−∞,∞) and that gα, l(x)=α erf(x/
√

2l) (see §11.5).
(ii) Plot g1,1/10(x) and arrive at a plot similar to the second inset in Figure 18.1D.

(iii) Compute the coherence between a Gaussian white noise stimulus, X(t), with cut-off frequency fN =100 Hz
sampled at 	t =1 ms with σ =1 and g1,1/10(X(t)). Arrive at a plot similar to that depicted in Figure 18.1D.
Hint: Use the function mscohere with a Hamming window of 1024 samples, an overlap of 512 samples and a
sample, x(t), of total length 32768 ms. (See Exercises 22.7 and 22.8 for further results relevant to this exercise.)

14. †Compute numerically the power spectra and the autocovariance functions of gamma renewal processes of orders
2 and 10 to arrive at Figure 18.5. Assume a mean firing rate of 80 spk/s and compare the results to Figures 16.5 and
16.3. Hint: Use a time step dt =0.5 ms and approximate the δ-function for each spike by 1/dt. Use a data stretch
32768 ms long. To estimate the power spectrum, use pswelch with a Hamming window 2048 samples long and
an overlap of 1024. To estimate the autocovariance function, compute the inverse Fourier transform of the power
spectrum. Compare the value of the autocovariance function at zero lag with the discretized prediction, χ/dt,
obtained from Eq. (18.11).
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FIGURE 18.5 A. Numerical estimate of the power spectrum of a gamma order 2 process with mean rate of 80 spk/s. B. Numerical estimate
of the power spectrum of a gamma order 10 process with mean rate of 80 spk/s. C. Autocovariance function of the gamma order 2 process.
The inset compares the theoretical prediction for C(0) (red cross) with the numerical estimate (black cross). D. Same as C, but for a gamma
order 10 process. (power_auto_g2_g10.m)

15. (i) Set 	t =1 in Eq. (18.9) and show that it may be rewritten as

β2(W, f̂ )=
∑N−1

j,k=0 fjAjk fk∑N−1
j=0 f 2

j

= fT Af
fTf

(18.14)

with f = ( f0, . . . , fN−1)
T .

(ii) Show that A is symmetric positive semidefinite and that its largest eigenvalue is ≤1. Thus, A has a complete
set of orthogonal eigenvectors with eigenvalues in [0,1]. Hint: Use Exercises 6.1 and 6.8 and use Parseval’s
identity, Eq. (7.10).

(iii) Show that the vector f that achieves the maximum in Eq. (18.14) is an eigenvector associated with the largest
eigenvalue of A. Hint: The gradient with respect to f of β2 vanishes at the maximum.
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The first step in processing signals from the outer world is to transduce them into membrane potential changes
in receptor cells at the periphery of the nervous system. In the case of light, this process is called phototransduction.
Light is absorbed in photoreceptors by specialized molecules called rhodopsins that initiate a biochemical cascade of
reactions resulting in a photocurrent across the membrane of the photoreceptor that leads either to depolarization
or hyperpolarization of the membrane potential (depending on the photoreceptor type) and synaptic release of
neurotransmitter onto postsynaptic cells. Before describing in more detail these mechanisms, we need to describe the
most salient properties of light in the natural world as this has an important impact on its processing by the visual
system.

19.1 WAVELENGTH AND INTENSITY

Light is electromagnetic radiation with a wavelength between 360 and 830 nm (Figure 19.1A). Phototransduction
depends on the wavelength of light because rhodopsin molecules have specific absorption spectra. An example is
illustrated in Figure 19.2A.

Irradiance and illuminance. Phototransduction also depends on the intensity of light impinging on a photoreceptor.
This can be measured by the number of photons crossing a unit surface per unit time (Figure 19.3A). This number
corresponds to the amount of energy crossing the unit surface per unit time, since at a given wavelength λ or equiva-
lently, frequency ν= c/λ, the energy of a photon is E(ν)=hν, where h is Planck’s constant (≈6.63×10−34 joule·s) and
c is the speed of light. Thus, if the flux of photons per unit surface and unit time is Nph, then the equivalent energy
flux (per unit area and time) is W(λ)=NphE(ν). The international units for W(λ) are joule/(s·m2) or watt/m2 since
power is given in joule/s=watt. W(λ) is called the irradiance impinging on the surface. A corresponding quantity that
is more directly related to human vision is called the illuminance and is obtained by scaling W(λ) by the normalized
absorption characteristics of the human eye, V(λ) (Figure 19.2B). Illuminance is measured in lumen/m2 or lux. The
peak value of V(λ) (at λ=555 nm) is normalized to one and a scaling constant C =683 lumen/watt converts from
watt/m2 to lumen/m2. Thus, illuminance is obtained from irradiance by scaling light power according to the absorp-
tion properties of the human visual system. This procedure converts radiometric (physical) quantities into photometric
ones, subjectively adapted to the human visual system.

291
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FIGURE 19.2 A. Spectral sensitivity of human rod photoreceptors and spectral sensitivity of human subjects at low light levels (adapted from
Wandell, 1995). B. Standardized spectral luminous efficiency V(λ) of human subjects at daylight levels. CIE (1931). (stdobs_plot.m)
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FIGURE 19.3 A. The irradiance and the corresponding spectrally corrected photometric quantity, the illuminance, characterize the power and
luminous flux, impinging on a unit surface, respectively. B. Radiance and luminance characterize the light power and luminous flux emitted by
an object per unit solid angle and per unit surface of the emitter. C. The luminance of a gray cross on a white background can change by an
order of magnitude or more depending on the ambient light conditions (e.g., sunny vs. cloudy day; or indoors vs. outdoors). Yet, we perceive
it as unchanged because our visual system encodes primarily the contrast or relative luminance change between the white background and the
gray cross.
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Radiance and luminance. Typically, light that enters photoreceptors originates from objects in the environment that
partially reflect sunlight impinging on them. The light intensity emanating from an object is given by the amount
of power radiated per unit of emitting surface and per unit of solid angle, so that its units are in watt/m2 · sr
(Figure 19.3B). It is a radiometric quantity called the radiance. The corresponding photometric quantity is obtained
by scaling the light power according to the properties of the visual system, i.e., multiplying by CV(λ). This is called
the luminance and has units of lumen/m2· steradians, or candela/m2, where the candela (= lumen/steradian) char-
acterizes the luminous flux of a point source per unit solid angle. Typical values of object luminances under various
illumination conditions are given in Figure 19.1B. As may be seen from the figure, one of the most challenging aspects
of phototransduction is that the light intensity, or more precisely the luminance of objects in the environment, can
vary by 10 orders of magnitude. This means that photoreceptors need to change their operating point or adapt to the
ambient lighting conditions. In vertebrates, the entire dynamic range of light is covered by two types of photorecep-
tors, rods, and cones, with rods used at low light levels (approximately from night up to room light levels) and cones
at high light levels (from room to daylight levels). In invertebrates, a single photoreceptor type can typically cover
the entire range.

Contrast constancy. An important characteristic of the visual system is that at high illumination levels, it is usually
more sensitive to relative changes in luminance than absolute ones. Consider, e.g., a white card with a gray cross at
its center (Figure 19.3C). The luminance of the gray cross can be described in terms of the background luminance of
the white card as I0 +cI0, where −1< c<0 and I0 is the background luminance. Although we will encounter several
ways of defining contrast depending on the stimuli used, the quantity c is the contrast of the cross relative to the
background in the present context. If the card is viewed under a bright sun, both the luminance of the white card
and the cross will be much stronger than if the card is viewed under a cloudy sky. Yet, we perceive the gray cross
in the same way, irrespective of the illuminance. This is due to the fact that our visual system codes for the contrast
of the cross, i.e., how much light it reflects relative to the white background irrespective of the absolute luminance
level. In the above description, a change in lighting conditions would change I0 and thus the luminance of the white
background and gray cross identically, whereas the contrast remains unchanged.

19.2 SPATIAL PROPERTIES OF NATURAL LIGHT SIGNALS

By studying the characteristics of natural images (i.e., images encountered in day-to-day life), we can gain a bet-
ter understanding of the tasks that the visual system faces in transducing light signals into electrical ones. Figure
19.4A shows a typical image from a natural outdoor scene in daylight. The distribution of luminances derived from
10 similar images is illustrated in Figure 19.4B, after shifting the mean luminance to zero. The distribution covers
more than three orders of magnitude and is quite skewed with a long tail at large luminance values. Typically,
contrast varies over a much smaller range than luminance, since even the darkest black object will reflect about
2 percent of the light compared to 100 percent for a white one, or a 50-fold range. As illustrated in Figure 19.4C, taking
the logarithm of the luminance results in a considerably more symmetric distribution that is also more compact.
Figure 19.4D illustrates the power spectrum as a function of spatial frequency. The power spectrum decays rapidly
and approximately as a second power of spatial frequency, ω−2

s , over two logarithmic units, as illustrated in
Figure 19.4E. Therefore, in contrast to images that are fully random representing spatial white noise, natural
images possess substantial correlations across pixels, with higher frequencies largely suppressed compared to
lower ones. This is due to the fact that luminance varies only slowly over extended objects, leading to long-range
correlations.

19.3 TEMPORAL PROPERTIES OF NATURAL LIGHT SIGNALS

In principle, the time series of luminance values registered by a single photoreceptor in a natural environment
could be derived from its velocity distribution, due to body, head, and eye movements and the spatial properties
of natural images described in the previous section. Such time series can also be measured directly as illustrated in
Figure 19.5A. As in the case of natural images, they are heavily skewed with long tails towards large luminance values
(Figure 19.5B). Taking the logarithm leads again to a much more compact and symmetric distribution (Figure 19.5C).
The power spectrum is illustrated in Figure 19.5D and E, and is approximately inversely related to frequency (ω−1

t ).
Therefore, time series of luminance values also possess strong correlations.
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FIGURE 19.4 A. A natural image obtained from van Hateren’s image database (1998). B. Average distribution of luminance over 10 similar
natural images. Note the skew and long tail at high luminances. C. The same mean distribution plotted in logarithmic units is more symmetric.
D. Mean power spectrum along horizontal and vertical directions in 10 natural images. E. Mean ± standard deviation of the same power spectrum
plotted on a double logarithmic scale (solid and dotted black lines, respectively). The red line is a linear fit to the data, and has a slope of −2.04.
(disp_hist.m, disp_im.m, scene_2d.m)

19.4 A MODEL OF PHOTOTRANSDUCTION

The previous two sections show that at high light levels, photoreceptors face the challenging task of transducing
highly skewed and broad distributions of luminance. As illustrated in Figures 19.4C and 19.5C, a logarithmic mapping
of light intensity into membrane potential would result in a compressed and symmetric distribution and therefore
a good use of the photoreceptor dynamic range. It turns out that, to a first approximation, this is the case in fly
photoreceptors, as illustrated in Figure 19.6. Similar results also hold for vertebrate cones at high light levels. Rods
and cones hyperpolarize in response to light increments and depolarize in response to light decrements. In contrast,
insect photoreceptors depolarize in response to light increments and hyperpolarize in response to light decrements.
Just as with rods and cones, insect photoreceptors are graded potential neurons that usually lack spike generating
conductances. In both vertebrate and invertebrate photoreceptors, a strong compression of light signals is characteristic
of high light levels, but the situation is reversed at low light levels, when photoreceptors need to amplify weak light
signals instead of compressing them (§25.1).
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FIGURE 19.5 A. Top: A time series of natural luminances lasting 45 minutes is depicted at increasingly high temporal resolution. Obtained
from van Hateren’s time series database (1997). B. Histogram of luminance values for the time series depicted in A. C. Histogram of the logarithm
of luminance values. D. Power spectrum of the time series. E. Power spectrum plotted on a double logarithmic scale (mean ± sd; solid and dotted
lines, respectively). The red line is a linear fit to the data, and has a slope of −1.21. (disp_ts2.m)
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A logarithmic mapping of luminance into the membrane potential of photoreceptors represents a simple method
of implementing contrast constancy at high light levels. If luminance is encoded logarithmically relative to a reference
background luminance I0 and an object has contrast c, then the response will be proportional to log(I0 +cI0)− log(I0)=
log(1+c) which is independent of I0.
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FIGURE 19.8 Response of blowfly photoreceptors to light pulses delivered in the dark (black dots) or from different background luminance
values (black triangles). The corresponding background luminances are indicated by the arrows on the abscissa. The red dots correspond to the
steady-state adaptation of the membrane potential to varying background intensities. The abscissa is the logarithm of the light intensity (background
or background plus pulse) relative to a fixed reference level. The ordinate is the membrane potential deflection normalized relative to the maximal
deflection, VMax, that could be elicited by a light pulse. Adapted from Laughlin and Hardie (1978).

Photoreceptors do not only logarithmically compress light signals. They also adjust their mean membrane potential,
the gain of their response as well as their integration time depending on the light level (Figures 19.7 and 19.8).
In particular, longer integration times at lower light levels counter the effects of noise in the photoreceptor response.
Figure 19.9 illustrates a model that reproduces well the response of fly photoreceptors at high light levels. A model
with a similar structure reproduces vertebrate cone responses as well. The incoming light intensity, I(t), is first low-
pass filtered (LP1). Next, two feedback loops dynamically adjust the gain of the response. The first feedback loop
divides the output, x(t), of the filter LP1 by a low-pass filtered version of it (LP2). In response to light steps, this causes
the initial decrease of the response after a delay since LP2 has a slower dynamics than LP1 (Figure 19.9B, solid arrow).
At steady state, the output satisfies

y(t)=x(t)/y(t) or y(t)=√
x(t).

Asimilar quadratic dependence of visual sensitivity on light intensity is typically observed at low light levels (De Vries–
Rose law), in contrast to the logarithmic dependence observed at high light intensities (Weber’s law).

The second feedback loop divides y(t) by an exponential of the output of the third low-pass filter, LP3. Thus,
at steady state,

z(t)=y(t)/exp z(t) or logz(t)+z(t)= log y(t).

When z(t)� logz(t), the second term on the left hand side dominates and z(t)≈ log y(t). In contrast, at small values
of z, the first term dominates and the gain control mechanism is inactivated: z(t)≈y(t). The low-pass filter LP3
decays slowly, on a time scale matched to the correlations observed in natural scenes, thus adjusting the gain control
mechanism over the natural range of temporal luminance fluctuations. This causes the slow decay of the response to
light intensity steps in Figure 19.9B (dashed arrow). The final nonlinearity NL1 is given by P(t)= z(t)/(1+z(t)) and
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the theoretical maximum that may be achieved, showing that the model is close to it. Adapted from van Hateren and Snippe (2001).

implements the saturation of the photoreceptor response. P(t) is convolved with a final, linear filter to fit its values to
experimental photoreceptor responses (not shown in Figure 19.9A).

The performance of the model is quantified in Figure 19.10, which shows the mean squared coherence between the
model output and an experimentally measured photoreceptor response. The thin gray line is obtained by computing
the photoreceptor mean squared coherence between different responses to the same stimulus and therefore sets an
upper limit to the coherence determined by the trial-to-trial variability of the response.

19.5 SUMMARY AND SOURCES

In this chapter, we have introduced the basic characteristics of natural light. Because all visual systems initially
have to cope with the same light signals, they have often evolved very similar algorithms to process these stimuli at
early stages of their visual systems, such as those described in §19.4. We will study an example of how the properties
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of natural light inform our understanding of the temporal processing of visual information in the next chapter (§20.6).
As visual processing becomes more refined at later stages of visual systems, these basic properties progressively lose
their importance relative to more refined and specialized aspects of visual scenes that are specific to the animal’s
natural environment. For example, some areas of our visual system are specialized to process faces, while honey bees
need to recognize the flowers they pollinate. Similar rules apply to other sensory systems, like audition for instance.
Neuroscientists have often debated how useful natural stimuli are to understand early vision. Indeed, much of the
research and results described in the subsequent chapters have been obtained with artificial visual stimuli such as
those described in §§20.2 and 21.1. See Rust and Movshon (2005) for a critical review of these issues in the context of
the monkey visual system and O’Carroll et al. (1996) for an example of how natural light signals are related to motion
detection across insect species.

Many papers have been published on natural image statistics, with Laughlin (1981) being one of the earliest. We
also recommend Srinivasan et al. (1982) for the relation between natural image statistics and neural processing, as
well as van Hateren (1997) and Dong and Atick (1995) for a description of the properties of natural images. Mante
et al. (2005) considers simultaneously luminance and contrast in natural scenes. Hyvärinen et al. (2009) is a recent
book surveying the subject. Further details on the photoreceptor model of Figures 19.9 and 19.10 may be found in
van Hateren and Snippe (2001). See van Hateren and Snippe (2006) for a direct comparison of phototransduction in
blowflies and primate cones.

19.6 EXERCISES

1. Compute a mean subtracted, average histogram of the luminance of 10 natural scene images both in linear and
logarithmic (base 10) coordinates to reproduce Figure 19.4B and C. Hint: Use the following code to read each of the
images (imk00001.iml – imk00010.iml, obtained from the book’s web site or van Hateren’s time series database):

f1=fopen(‘filename’, ‘rb’, ‘ieee-be’);
w=1536;h=1024;
buf=fread(f1, [w,h],‘uint16’);
fclose(f1);

Use 101 bins equally spaced between −1200 and 5000 in linear coordinates and −0.5 and 4 in logarithmic coordi-
nates. For each bin, average the bin values over the 10 images.

2. Compute, for each image of Exercise 1, the power spectra along vertical and horizontal dimensions, respectively.
Average the resulting 20 power spectra to arrive at Figure 19.4D and E. Fit the power spectrum in logarithmic
coordinates to a straight line. Hint: Use the central 1024 bins from each horizontal line of each image. Use pwelch
with a window size of 256 and an overlap of 128 pixels, respectively. The maximal (two-sided) frequency is
60 cycle/deg as each pixel represents 1 min of arc.

3. Compute a histogram of luminance values in linear and logarithmic coordinates for the time series ts001.bin
(obtained from the book’s web site or van Hateren’s time series database) to arrive at plots similar to Figure 19.5B
and C. Hint: Do not subtract the mean, use 100 bins.

4. Compute an estimate of the power spectral density of luminance values for the same time series as in Exercise 3.
Hint: The sampling rate is 1200 sample/s and the time series is 45 mins long or 3,240,000 samples. Split the data in
4.5 min data chunks, 324,000 samples long. Compute the power spectrum on each data chunk using pwelch with
a 4096 samples long window and an overlap of 2048. After taking the logarithm, resample in 100 equally spaced
bins between the smallest and largest positive frequency values using spline. Average over the 10 data chunks.
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In many cases, neuronal responses at early stages of sensory systems can be described as linear transformations of
their inputs. This makes it possible to characterize their properties in terms of the frequency content of the stimulus by
use of Fourier transforms. In the following, we will concentrate on single cells in the visual system of higher vertebrates
such as cats and monkeys that have been extensively studied. However, similar methods have been applied to the
visual system of invertebrates and to other sensory modalities like audition. As will be clear from a comparison
of the predictions made by the models described in this chapter and the figures illustrating experimental data, the
following description of neuronal responses is in many respects schematic. Nerve cells recorded experimentally rarely
fit unambiguously or perfectly in simple categories.

20.1 DEFINITION OF MEAN INSTANTANEOUS FIRING RATE

When stimuli are repeatedly presented to the eye of an animal such as a fly, a cat, or a monkey, the responses
recorded from visual neurons are usually variable from trial to trial. We have learned in Chapter 15 some methods to
characterize variability of neuronal spike trains. The origin of variable neuronal responses to identical stimuli is not
well understood. A simple explanation is that noise at the level of the photoreceptors and ion channels is responsible
for it. This would be consistent with variability in spontaneous activity that is observed in the same neurons. It could
also be that part of the variability observed in response to sensory stimuli is due to specific causes that we do not
understand, reflecting the processing of sensory information by neurons. Neurophysiologists usually average out
this variability by repeating the same stimulus and computing the resulting mean instantaneous firing rate. The most
common procedure consists in taking a spike train in response to the stimulus and to convolve it with a smoothing
filter such as a Gaussian profile, φ(t)= exp(−t2/2τ 2)/

√
2πτ 2. In this equation, τ represents the time window over

which spike times are averaged. There is no fixed rule to choose τ and usually its value is set in relation to the typical
interspike interval observed during stimulus presentation so as to average over a few spikes. For interspike intervals
of 10–20 ms, τ would be chosen to be around 20–50 ms. Of course longer time windows will average over more spikes
at the expense of temporal resolution. Let j =1,2, . . . denote the index for the trial number and let δ(t− tj

i), i =1, . . . ,Nj

denote the ith spike of trial j so that the jth response to the stimulus is given by rj(t)=
∑Nj

i=1δ(t− tj
i). We define an
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300 20. FIRING RATE CODES AND EARLY VISION

estimate of the instantaneous firing rate during trial j via the convolution

fj(t)= rj(t)�φ(t)=
∞∫

−∞
rj(s)φ(t−s)ds=

Nj∑
i=1

φ(t− tj
i). (20.1)

This simply corresponds to placing a filter function φ(s) around each spike. The convolution in Eq. (20.1) can be
computed efficiently using the fast Fourier transform algorithm (Chapter 7). The estimated instantaneous firing rate
is then obtained by averaging across trials:

f (t)= 1
N

N∑
j=1

fj(t).

20.2 VISUAL SYSTEM AND VISUAL STIMULI

We will focus on describing the responses of a subset of nerve cells belonging to the first three visual processing
stations of the cat or monkey visual system to a simplified set of visual stimuli.

Early visual processing. The first three visual processing stations and the cells of interest in each one of them may be
briefly described as follows (Figure 20.1A).

1. At the back of the eye, visual signals are transduced into electrical signals by photoreceptor cells (Chapter 19) and
processed by a complex multilayered circuitry called the retina. The output neurons of the retina are called retinal
ganglion cells. They are the first spiking neurons in the light processing pathway and their axons form the optic nerve.

2. Retinal ganglion cells project to the lateral geniculate nucleus (LGN) of the thalamus. There, they make synaptic
contacts with LGN relay neurons. We have already encountered these cells during our investigation of bursting
neurons (§10.3).

3. LGN relay neurons in turn send their axons to the intermediate layers of the first cortical visual area (denoted by
V1 in monkeys and sometimes by area 17 in cats).

From V1, visual information is sent to many different areas that are organized in a hierarchical manner
(Figure 20.1B). These areas are connected by hundreds of feedforward and feedback pathways. Two of the best
studied cortical areas are V1 and MT, which will be the only ones mentioned in this book. All of these visual stations
are organized in a two-dimensional array perpendicular to the depth of the neural tissue. Neurons at each position
in this array process signals from a specific position in the visual field that varies smoothly across the array. Thus, the
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FIGURE 20.1 A. Side view of the right hemisphere of the macaque cortex. Visual information originates in the retina and is first sent to the
LGN of the thalamus by the axons of retinal ganglion cells. The LGN is a deep brain structure not visible in the picture. From there information is
sent to area V1 of visual cortex, located close to the occipital pole. B. A flattened view of the cortex with the approximate boundary of visual areas
denoted in black. Each area has its own abbreviation. Shades of gray correspond to the depth of the tissue within the foldings of the brain (called
sulci). Adapted from VanEssen (2005).
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FIGURE 20.2 Spatial density of cone photoreceptors as a function of the angular distance to the center of the fovea (eccentricity) in four species.
The peak density is thought to be on the order 200,000 cells/mm2 for all three primates. Adapted from Goodchild et al. (1996).

retina, the LGN, V1, and MT all form maps of the two-dimensional visual space (§27.7). In the following we will ignore
the fact that both eyes provide slightly different viewpoints and that this information can be used by neurons in V1
to retrieve depth information. The density of photoreceptors and the coverage of visual space is typically highest at
the fovea in the retina and decreases towards the periphery (Figure 20.2). Our visual system generates the illusion of a
large, high resolution field of view by moving the fovea rapidly (several times per second, §26.6) at different positions
in the visual field, thus providing a patchy, high resolution map. In the following, we will ignore eye movements and
assume that the eyes remain steady in their orbits. Experimentally, this assumption holds true during experiments in
anesthetized animals. It holds approximately in awake subjects that are required to fixate on a specific point in the
visual field during an experiment.

Visual stimuli. We restrict our attention to the processing of gray scale visual stimuli and ignore the fact that neurons
respond to color as well. Thus, a visual stimulus at a given point in space and time can be described by a single number,
the intensity of light (or luminance) ranging between 0 (dark, black), and a maximal intensity imax (bright, white). An
important aspect of visual processing is that neurons in general modulate their firing rate mainly in response to
changes in the contrast of a stimulus rather than light intensity (§19.1). Of course, information about light intensity is
required and transmitted as well along visual pathways, since otherwise we could not distinguish an outdoor scene
from an indoor one for example. Let i(x,y, t) be the spatio-temporal distribution of light intensity of a stimulus. If the
stimulus is a stationary sinusoidal wave of intensity in the x direction, then i(x,y, t)= i(x) and

i(x)= imean
(
1+cmax cos(2πωxx)

)
. (20.2)

We denote by imean the mean light intensity and by cmax cos(2πωxx) the fluctuation around the mean, or contrast
variation. The (maximal) contrast of the pattern is cmax. In experimental situations, the contrast is often defined as
(imax − imin)/(imax + imin), which is equal to cmax for the stimulus of Eq. (20.2). The encoding mainly in terms of contrast
is a necessity for visual neurons because light intensity varies by more than seven orders of magnitude from dim night
light to bright outdoor light (Figure 19.1) while the dynamic firing range of neurons comprises at most two orders
of magnitude. Relative variations around the mean, i.e., contrast variations, are typically much smaller (§§19.2, 19.3).
In the following we will therefore almost always assume a fixed mean intensity and only specify the contrast of the
stimulus.

20.3 SPATIAL RECEPTIVE FIELD OF RETINAL GANGLION CELLS

The definition of receptive fields. The response properties of mammalian visual neurons have been investigated
since the 1950s starting with retinal ganglion cells. Such recordings typically reveal that only changes in contrast in
a restricted portion of visual space affects the firing of a neuron. The area that directly affects the firing rate of a retinal
ganglion cell (or of other visual neurons) is called its (classical) receptive field. For retinal ganglion cells, receptive
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302 20. FIRING RATE CODES AND EARLY VISION

field sizes are smallest at the fovea, where photoreceptors are most densely packed and their size increases with
the eccentricity, i.e., the distance from the fovea. Both the size of receptive fields and their eccentricity are measured
in degrees of visual angle and in minutes of arc (1 arc min = 1/60 of a degree). At the fovea, receptive field sizes
can be estimated to be on the order of a few minutes of arc, based on anatomical data and the acuity thresholds of
experimental subjects. The size increases to a few degrees at higher eccentricities (i.e., at 20–40 degrees from the fovea
center). These numbers refer to the center region of the receptive field defined below.

Center-surround organization. The receptive fields of retinal ganglion cells are circular in shape and can be subdivided
into two distinct regions:

1. a circular center region where an increase in luminosity causes an increase of the firing rate above its spontaneous
level.

2. a circular annulus surrounding the center region where an increase in luminosity causes a decrease in firing rate.

Such a receptive field is said to possess a center-surround organization and retinal ganglion cells that respond as
described above are called ON ganglion cells. OFF retinal ganglion cells have the same center-surround organization
but an increase of luminosity in the center causes a decrease in firing rate and vice-versa for the surround annulus as
illustrated in Figure 20.3.

Superposition and homogeneity. For a subclass of retinal ganglion cells called X-cells, the presentation of two different
contrast patterns at different positions in the receptive field (e.g., two bars or two spots) causes a response that is
approximately the algebraic sum of the responses to the two patterns presented in isolation. This property is called
the superposition property and can be summarized by the following equation:

Rc1+c2(t)=Rc1(t)+Rc2(t), (20.3)

where Rc(t) denotes the change in firing rate as a function of time relative to spontaneous activity. In other words, the
firing rate is Rspont +Rc(t) in response to pattern c. Pattern c1 +c2 is simply the sum (superposition) of the two patterns
c1 and c2.
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FIGURE 20.3 Average firing rate in response to a spot of light for an ON-center (A) and OFF-center (B) retinal ganglion cell of the cat as a
function of the distance from the center of the receptive field. The dashed line represents the spontaneous activity level. Note that inhibitory regions
do not exactly counterbalance excitatory ones. Therefore these neurons convey some information about the average luminance of stimuli in their
receptive fields, in addition to their spatial contrast. Adapted from Maffei (1968).

MATHEMATICS FOR NEUROSCIENTISTS



20.4 CHARACTERIZATION OF RECEPTIVE FIELD STRUCTURE 303

Similarly, if the contrast of a pattern is doubled then the response of the cell is also doubled. This property is called
homogeneity and typically holds for a restricted range of contrast values (typically for contrasts less than 0.45). We
may write this in an equation as follows:

Rλc(t)=λRc(t). (20.4)

The response of a neuron possessing these two properties for arbitrary patterns can be described by a linear filtering
operation:

Rc(t)=
∫ ∞∫
−∞

w(x,y)c(x,y, t)dxdy, (20.5)

where c(x,y, t) is the stimulus contrast pattern and w(x,y) is a weighting function that fully characterizes the spatial
receptive field of the cell. Since the receptive fields and their weighting functions are effectively localized and different
from zero only on a small area of the visual field, we can use integration boundaries of ±∞ in Eq. (20.5) without
affecting any of the following arguments. Clearly a neuron whose responses are described by Eq. (20.5) will satisfy
the homogeneity and superposition equations above. Conversely, the two equations (20.3) and (20.4) imply that a
representation of the type of Eq. (20.5) exists, as may be seen by using Eq. (20.6) below to define w(x,y). In Eq. (20.5)
we have assumed that the cell’s response follows perfectly the temporal modulations of the contrast pattern (after
weighting with the spatial receptive field function w(x,y)). This is of course an idealization that will be addressed
in §20.5.

20.4 CHARACTERIZATION OF RECEPTIVE FIELD STRUCTURE

Two methods have classically been used to determine experimentally the structure of neuronal receptive fields,
i.e., the function w(x,y) characterizing the linear filtering performed by the cell. The two methods are complementary
and based on the equivalence of the spatial and frequency characterization of linear transformations.

Spatial domain stimuli. The first method consists in flashing small dots or bars at various positions in the visual
field and recording the response of the neuron. If we approximate the brief flashing of a dot stimulus by a δ-function
in space,

cdot(x,y, t)= δ(x−x0)δ(y−y0)cdot(t),

where cdot(t) is the time course of contrast activation of the dot, then the response of the cell is given by

Rcdot(t)=
∫∫

w(x,y)cdot(x,y, t)dxdy =w(x0,y0)cdot(t). (20.6)

For simplicity, in this and subsequent equations we drop the integration boundaries whenever they equal ±∞. Thus,
the response to a localized stimulus such as a dot will be directly proportional to the spatial receptive field weighting
function w(x,y) at the point where the dot is presented.

Receptive field symmetry. In the case of retinal ganglion cells, the spatial structure of the receptive field is well
described by a difference of Gaussians, or “Mexican hat,” model (Figure 20.3),

w(x,y)= kc exp(−(r/rc)
2)−ks exp(−(r/rs)

2), with r2 =x2 +y2. (20.7)

In this equation, the factors kc and ks determine the gain and relative weighting of the center and surround, whereas
rc and rs control the extent of the center and surround regions, respectively. Such receptive fields are of course radially
symmetric. Thus, if we present a stimulus whose contrast varies only along one dimension, e.g., a sinusoidal grating,
the response of the neuron will be independent of the orientation of the grating. In the case of a one-dimensional
pattern oriented along the x-axis, we can replace Eq. (20.5) by a one-dimensional equation:

Rc(t)=
∫

u(x)c(x, t)dx where u(x)≡
∫

w(x,y)dy. (20.8)
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For the receptive field of Eq. (20.7) we obtain

u(x)= kcrc
√
π exp(−(x/rc)

2)−ksrs
√
π exp(−(x/rs)

2) (20.9)

(Exercise 1). Note that in the case of a stationary, flashed sinusoidal grating, the response depends on the grating
phase with respect to the center of the receptive field. By symmetry, a grating of the type sin(2πωxx)will cause a zero
response when placed in Eq. (20.8), whereas a grating shifted 90 degrees in phase, cos(2πωxx)= sin(2πωxx+π/2)will
cause a nonvanishing response. This point is illustrated in Figure 20.4.

Frequency properties of spatial receptive fields. Let us consider a one-dimensional spatial receptive field u(x) as in
Eq. (20.8). The spatial Fourier transform of the receptive field is given by,

û(ωx)=
∫

e−2π iωxxu(x)dx.

For each frequency, ωx , the spatial Fourier transform is a complex number and can be written as

û(ωx)=η(ωx)e2π iψ(ωx)=η(ωx)(cos(2πψ(ωx))+ i sin(2πψ(ωx))), (20.10)

with modulus η(ωx)≥0 and phase ψ(ωx). The value of the modulus and phase at different frequencies are not all
independent. They are constrained by the properties of u(x). First, because u(x) is real, û(−ωx)

∗ = û(ωx), where ∗
denotes complex conjugation (Exercise 7.13). Thus,

η(ωx)=η(−ωx) and ψ(ωx)=−ψ(−ωx ). (20.11)

If, in addition, the spatial receptive field is symmetric about the x-axis, u(x)=u(−x), the Fourier transform also satisfies
û(ωx)= û(−ωx) (Exercise 7.14). Combining these two results, we obtain û(ωx)=u(ωx)

∗, i.e., the Fourier transform is
real and ψ(ωx)=0. This last property can be directly verified in the case of the Mexican hat model of retinal ganglion
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FIGURE 20.4 Response of an OFF-center X-cell in the cat to the introduction and withdrawal of a stationary sinusoidal grating pattern. The
pattern had a contrast of 0.32 and its spatial frequency was 0.13 cycle/degree. The angular position (in degrees) of the cosine grating, relative to the
midpoint of the receptive field center, is given at the right of the figure and is illustrated by the sketches. The downward deflection in the lowest
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Robson (1966).
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cell receptive fields by computing the Fourier transform from Eq. (20.9):

û(ωx)= kcr2
cπe−(rcπωx)

2 −ksr2
sπe−(rsπωx)

2
(20.12)

(Exercise 3).

Frequency domain stimuli. The second type of stimuli used to study neuronal receptive fields are drifting sinusoidal
gratings, such as

cdrift(x, t)= cmax cos
(
2π(ωxx−ωtt−φx)

)
.

At time t =0 this represents a grating with spatial frequency ωx and phase φx with respect to the origin. For t>0 the
grating drifts in such a way that for a fixed spatial point the time frequency of contrast change is ωt. The speed of the
drifting grating is v =ωt/ωx as may be seen by rewriting

cdrift(x, t)= cmax cos
(
2π(ωx(x−vt)−φx)

)
.

The reason behind the use of such stimuli is that they provide a characterization of the spatial frequency response
of the neuron: for a sinusoidal grating of spatial frequency ωx drifting at frequency ωt the response after neuronal
filtering will be characterized by a gain η(ωx) and a phase shift ψ(ωx), as in Eq. (20.10). To see this, we compute the
response to such a drifting grating,

Rdrift(t)=
∫

u(x)cdrift(x, t)dx = cmax

∫
u(x)cos

(
2π(ωxx−ωtt−φx)

)
dx.

Since the receptive field u(x) is a real function and since cos
(
2π(ωxx−ωtt−φx)

)=�(
e−2π i(ωxx−ωtt−φx)

)
, we may rewrite,

Rdrift(t)= cmax�
∫

u(x)e−2π i(ωxx−ωtt−φx)dx

= cmax�
(
e2π i(ωtt+φx)û(ωx)

)
= cmaxη(ωx)cos

(
2π(ωtt+φx +ψ(ωx))

)
.

(20.13)

For a “Mexican hat” ganglion cell model, ψ(ωx) will be zero and we see that the response is modulated in time just
as the stimulus is, with a peak amplitude determined by cmaxη(ωx). The responses of a retinal ganglion cell to drifting
sinusoidal gratings are shown in Figure 20.5. On the left side the spatial frequency (ωx) of the drifting sinusoidal
grating was varied, while on the right hand side the contrast (cmax) was varied.

Contrast sensitivity. According to Eq. (20.13), the peak modulation in firing rate elicited by a drifting grating is given
by Rpeak = cmaxη(ωx). Thus, η(ωx)=Rpeak/cmax may be measured by two different methods:

1. Measure the peak rate modulation (Rpeak) elicited by drifting gratings of fixed contrast (cmax) and varying spatial
frequency (ωx).

2. Determine for each spatial frequency (ωx) the contrast value c0
max needed to elicit a fixed target peak firing rate

modulation R0
peak. The inverse, 1/c0

max, is proportional to η(ωx) and is called the contrast sensitivity. This method is
expected to be accurate over a wider range of spatial frequencies if η(ωx) varies by several orders of magnitude.
The target peak modulation R0

peak is usually chosen to be relatively small (e.g., R0
peak =10 spk/s) so as to guarantee

a linear contrast response.

The left panel of Figure 20.6 plots the contrast sensitivity of a retinal ganglion cell measured with horizontal and
vertical drifting gratings (filled and open circles, respectively). As expected from the rotational symmetry of the
receptive field, contrast sensitivity is independent of motion direction. The solid line is a fit with Eq. (20.9).

Dependence on mean luminance. The contrast sensitivity depends on the mean luminance, imean, of the stimulus
(see Eq. (20.2)). This is illustrated on the right panel of Figure 20.6. At low mean luminances the contrast sensitivity
resembles more a low-pass filter than at high mean luminances. This may be interpreted from fits with Eq. (20.9) as a
decrease in the influence of the surround over the center of the receptive field at low mean luminances.

MATHEMATICS FOR NEUROSCIENTISTS



306 20. FIRING RATE CODES AND EARLY VISION

Time (s)

F
iri

ng
 r

at
e 

(s
pk

/s
)

�x ( /°) 

100

0

100

0

100

0

100

0

100

0
0 1

mfr

70

80

80

70

70

Time (s)

F
iri

ng
 r

at
e 

(s
pk

/s
)

100

0 0.32

100

0 0.16

100

0 0.08

100

0

c

0.04

0

mfr

80

80

78

78

0.12

0.36

1.10

2.0

(A) (B)

c

1

FIGURE 20.5 A. Response of an ON-center retinal ganglion X-cell in the cat to sinusoidal gratings of different spatial frequencies (indicated on
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of an ON-center retinal ganglion X-cell to sinusoidal gratings of constant spatial frequency (0.36 c/deg) but different contrasts (c, given on the left
of each trace) drifting across the receptive field at a constant temporal frequency (4 c/s). The mean firing rate (mfr) is indicated on the right of each
trace. Adapted from Enroth-Cugell and Robson (1966).
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20.5 SPATIO-TEMPORAL RECEPTIVE FIELDS

Up to now we have assumed that our retinal ganglion cells follow temporal variations in the stimulus perfectly.
This is of course not the case. The notion of receptive field therefore needs to be extended to the temporal domain
by assuming that the neuron also filters the temporal variations in the stimulus. We therefore generalize Eq. (20.5) as
follows:

Rc(t)=
∫∫ t∫

0

w(x,y, t0)c(x,y, t− t0)dt0dxdy. (20.14)

This new equation simply states that the response at time t can be influenced by stimuli presented at that time or
earlier, since t0 varies from 0 to t. Stimulation is also assumed to start at time 0 and earlier times are not considered.
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Finally, Rc(t) cannot depend on future stimuli (since t0 is not allowed to be negative). Alternatively, just as in the
case of the spatial weighting function, Eq. (20.5), we can replace the time integration boundaries by ±∞ by defining
w(x,y, t0)=0 for t0<0 and assuming the stimulus started much earlier than t, since the weighting function w(x,y, t0)

is effectively localized in time.

Space-time separability. When the spatial and temporal contributions to the receptive field are independent of each
other we may write

w(x,y, t0)=ws(x,y)wt(t0).

In such a case, the receptive field is said to be space-time separable and the spatial weighting is globally modulated
by wt as time evolves. Note that Eq. (20.5) can be recovered from Eq. (20.14) by setting w(x,y, t0)=ws(x,y)δ(t0), and
therefore the space-time receptive field corresponding to Eq. (20.5) is separable and instantaneous at t0.

A typical temporal response is biphasic in the time domain. We give an example that fits well the responses of
X-type LGN relay cells in the cat, the targets of X-type retinal ganglion cells in the lateral geniculate nucleus of the
thalamus:

wt(t0)= t0(1−αt0/2)e−αt01(t0) (20.15)

where α=2πνc and νc =5.5 Hz (Figure 20.7D). To gain insight into the temporal processing implemented by filtering
with wt, we compute the Fourier transform of Eq. (20.15),

ŵt(ωt)= 2π iωt

(α+2π iωt)3
(20.16)
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FIGURE 20.7 A. Measured temporal power spectrum from natural images at low spatial frequencies. The temporal decay follows a ≈ 1/ω2
t law.

The dotted line indicates the noise floor. B. Predicted LGN temporal filter (curve I) which whitens the temporal power spectrum of natural images
at low temporal frequencies (curve II) and acts as a low-pass filter at higher frequencies (curve III). C. Comparison between predicted temporal
tuning curve (solid curve) and experimental cat LGN data. D. Temporal impulse response corresponding to the filter shown above. Adapted from
Dong and Atick (1995).
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(Exercise 4). From this equation, the gain can easily be computed at each temporal frequency,

|ŵt(ωt)|= 2πωt

(α2 +(2πωt)2)3/2
.

The gain increases from zero frequency to reach a maximum around 5 Hz and then decreases towards higher frequen-
cies: it therefore represents a band-pass filtering of the contrast signal, emphasizing temporal frequencies around 5 Hz
and filtering out higher and lower frequencies (Figure 20.7C). Band-pass filtering is also characteristic of the temporal
response of retinal ganglion cells, although it is usually less pronounced than in LGN cells. In the cat, peak frequencies
are typically around 1–4 cycles/s (or Hz). One explanation for the band-pass properties of LGN cells is illustrated in
Figure 20.7. As we noted in §19.3 the temporal power spectrum of natural images decays as a power law of frequency,
ω−α

t (Figure 19.5E). The exponent α typically lies between 1 and 2 and also depends on spatial frequency. At spatial
frequencies below 0.5 c/deg its value is α≈2 (Figure 20.7A). To optimally encode the range of temporal frequencies
between 0.1 and 10 Hz thus requires the cell to boost the gain of higher frequencies (curve II in Figure 20.7B) up to the
point where noise becomes significant (dotted line in Figure 20.7A) requiring low-pass filtering at higher frequencies
(curve III in Figure 20.7B). The resulting filter is the combination of these two operations (curve I in Figure 20.7B) and
is compared with experimental data in Figure 20.7C.

While in general the spatio-temporal receptive fields of both retinal and LGN X-cells are separable, a fraction of
cells exhibits nonseparable spatio-temporal receptive fields. We will postpone a discussion of nonseparable spatio-
temporal receptive fields until the next chapter, as their role is more evident in visual cortex.

20.6 STATIC NONLINEARITIES*

We have up to now assumed that the output of Eqs. (20.5) and (20.14) remain positive when added to the sponta-
neous firing rate:

R(t)=Rspont +Rc(t)≥0.

In some cells such as X-retinal ganglion cells, the spontaneous activity is often high and the changes in firing rate Rc(t)
due to changes in contrast remain above −Rspont (Figures 20.3–20.5). But this is not always the case, particularly when
the spontaneous firing rate is low or null as is often the case in cortical neurons. Similarly, the contrast gain response
of a cell is usually linear only over a restricted range of values and tends to saturate at high contrast because firing
rates cannot exceed a maximal rate Rmax set by the refractory period. The usual model used to take into account these
two observations consists in passing Rc(t) through a static (i.e., time-independent) nonlinear function. Let us assume
for simplicity that the spontaneous activity is equal to zero. The simplest nonlinearity that will ensure a positive firing
rate is half-wave rectification:

R+(t)=	Rc(t)
+ =Rc(t)1(Rc(t)). (20.17)

Of course this discards half of the information originally present about the contrast modulation. Because usually
visual cells come in ON and OFF types we can assume that a second neuron with opposite polarity receptive field
encodes the second half of the contrast modulation, i.e., R−(t)=	−Rc(t)
+ .

While equation (20.17) takes care of negative firing rates it does not implement saturation of firing rates. A model
that fits well the responses of many visual neurons is

R+(t)=Rmax
	Rc(t)
2+

σ 2 +	Rc(t)
2+
. (20.18)

Note that if the contrast is much lower than σ , Eq. (20.18) is an expansive nonlinearity while for contrasts much larger
than σ it is compressive.

20.7 SUMMARY AND SOURCES

In this chapter, our presentation follows closely Enroth-Cugell and Robson (1966). Because of its simplicity, the
description of neurons’ receptive fields in terms of linear weighting functions and their Fourier transforms has become
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a sort of universal language for much of neuroscience research carried out at the level of whole organisms, i.e., Systems
Neuroscience. Yet, as emphasized in the introduction to this chapter, not all neurons fit that scheme, even at early stages
of the visual system, and much of the interesting visual processing is nonlinear. For example, the Y-cells also described
by Enroth-Cugell and Robson (1966) present distinct nonlinear properties. We will encounter another specific example
in §21.3, the complex cells of primary visual cortex. In other sensory systems like olfaction, the linear system approach
has been fairly unsuccessful thus far, as reviewed in the introduction of French and Meisner (2007).

A good exposition from a computational perspective of the topics covered in this chapter and the next one is given
by Abbott and Dayan (2001, Chapters 1 and 2). See Dan et al. (1996) for an experimental test of the results summarized
in Figure 20.7. The static nonlinearity of Eq. (20.18) is an example of the Naka–Rushton function which is often used
to model the transformation between stimulus contrast and firing rate: R =Rmaxcn/(cn +σn), where n is positive and
we assume that the response is equal to zero at zero contrast (i.e., no spontaneous activity). We have reformulated the
equation in terms of the firing rate of the neuron since under the assumptions of this chapter it depends linearly on
contrast. The article by Duong and Freeman (2008) provides fits of the Naka–Rushton function to LGN neurons as
well as references to earlier work. The Naka–Rushton function also fits the contrast–response functions of V1 neurons
quite well, see Albrecht and Hamilton (1982). At high contrasts, the saturation in Eq. (20.18) is commonly thought to
reflect some sort of inhibitory normalization mechanism implemented at the level of cell networks.

20.8 EXERCISES

1. Show that the two-dimensional receptive field function w(x,y) given in Eq. (20.7) reduces to u(x) as given in
Eq. (20.8) after integration over the y variable. Hint: Use the following formula,

∞∫
0

exp(−q2x2)dx =
√
π

2q
. (20.19)

This latter formula can be derived from Eq. (7.39) by using the symmetry of the integrand around 0 and a change
of integration variable.

2. †Show that in general a two-dimensional, rotationally symmetric receptive field w(x,y)=w(r), r =
√

x2+y2 can
be reduced to a one-dimensional one given by the following equation:

u(x)=2

∞∫
|x|

w(r)r√
r2 −x2

dr.

3. †Compute the Fourier transform of u(x) (Eq. (20.9)). Hint: Use the Fourier transform of a Gaussian computed in
Exercise 7.15.

4. Show that the Fourier transform of Eq. (20.15) is given by Eq. (20.16). Hint: Find a function g such that ŵt(ωt)=
L(g)(s), where s=α+2π iωt. Then use the result derived in Exercise 3.5.

5. †The contrast sensitivity function depicted in Figure 20.6 belongs to a retinal ganglion cell whose spatial receptive
field is described by the following parameters: rc =0.24 deg, rs =0.96 deg, ks/kc =0.06, kc =1.

(i) Plot the Fourier transform of the receptive field in the frequency domain using Eq. (20.12). Scale the Fourier
transform so as to have a peak value of 50, as in Figure 20.6A. The result is illustrated in Figure 20.8A. Hint:
Use �f =0.01 cycles/deg in the frequency domain and loglog to plot in double logarithmic coordinates.

(ii) Plot the corresponding spatial receptive field using Eq. (20.9) and the scaling factor determined in (i). Hint:
Use �x =0.006 deg in the space domain, N =2048 points (N/2−1 negative spatial positions, x =0 and N/2
positive spatial positions).

(iii) Compute the Fast Fourier transform of the spatial receptive field and verify that it matches the theoretical
result by plotting them, as in Figure 20.8A. Hint: The spatial receptive field values at negative positions
(x<0) should be placed in wrap-around order by exploiting the periodicity of the discrete Fourier transform,
u(x−1)=u(xN−1). Argue that the imaginary part of the fast Fourier transform should be equal to zero and
plot only the real part at positive frequencies.
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(iv) Generate three one-dimensional cosine gratings (maximal contrast ±1) with spatial frequencies ωx =0.1,1,2
cycles/deg drifting over the receptive field for 1000 ms (sampled at 1 ms resolution) at a temporal frequency
ωt =3 cycles/s. Compute numerically the response of the LGN cell to the drifting grating from the spatial
receptive field using Eq. (20.8). Verify that the maximal amplitude modulation matches the theoretical pre-
diction by plotting it as in Figure 20.8A. What is the translation speed of the three gratings? Hint: Generate
the moving gratings by filling an array of 1000×2048 points (the first dimension is time and the second
dimension is space). Use MATLAB matrix multiplication to compute the response of the LGN cell.
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FIGURE 20.8 A. Receptive field of a retinal ganglion cell computed directly from Eq. (20.12) (black dashed line) or computed numerically
by fast Fourier transform of Eq. (20.9) (red dashed line). The three black dots are obtained by computing the peak response of the spatial filter
illustrated in B to sinusoidal gratings with spatial frequency fx = 0.1, 1, and 2 c/deg and temporal frequency ft = 3 c/s. B. Spatial receptive
field of a retinal ganglion cell computed from Eq. (20.9). See Exercise 5 for model parameters. (rgc_rf1.m)

6. †(i) Plot the contrast sensitivity as a function of frequency for the retinal ganglion cell model of Exercise 5, together
with the following contrast sensitivity model, which is more appropriate for low light conditions. Peak contrast
sensitivity value: 30, rc → 1.5rc, rs → 1.5rs, kc → kc/1.5, and ks → ks/1.53. Plot the two corresponding spatial
receptive fields.

(ii) A stationary contrast edge with high contrast to the left (c =1 for x ≤x0) and low contrast to the right (c =0 for
x>x0) is flashed in the cell’s receptive field. Compute and plot the change in firing rate of the retinal ganglion
cell model as a function of the position x0 of the edge in the cell’s receptive field both at high and at low light
levels.
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The receptive field properties of neurons in the retina and LGN are fairly similar both in their spatial center-
surround organization and in their temporal band-pass structure. What happens at the level of primary visual cortex
where LGN axons project? The first systematic investigations of cortical visual responses were made by Hubel and
Wiesel at the end of the 1950s and early 1960s, taking advantage of newly engineered tungsten electrodes that permitted
stable extracellular recordings from nerve cells over long periods of time in awake animals. Similar electrodes are still
in use today for extracellular recordings in cats and monkeys. Hubel and Wiesel soon discovered that the responses
of cortical neurons are much richer than what had been described at earlier stages of visual processing and reported
the existence of two major types of cells called simple and complex in the primary visual cortex of the cat. They went on
to characterize many other aspects of the representation of visual information by cortical neurons and cell assemblies
in primary visual cortex. We will focus here on describing the linear and nonlinear properties of simple and complex
cell receptive fields as well as some aspects of the transformation of neural signals occurring at the cortical level.

21.1 SIMPLE CELL MODELS

Spatial characteristics of simple cell receptive fields. Simple cells are similar to retinal ganglion cells and LGN relay
neurons in possessing well-defined ON and OFF regions where increase and decrease in contrast cause an increase and
decrease in firing rate, respectively. Furthermore, stimuli presented in these regions show summation of responses,
with antagonistic effects of ON and OFF regions, consistent with a linear receptive field structure. Spontaneous
activity is typically low and therefore responses are half-wave rectified as explained in §20.6. The main difference
with retinal and LGN relay cells is the spatial structure of the ON and OFF regions: instead of being circular they are
elongated along a principal axis and therefore the boundary is linear rather than circular (Figure 21.1). One important
consequence is that simple cells respond best to elongated bars with an orientation parallel to their boundary. The
bars need to be placed at the right position in the receptive field to maximally overlap with the corresponding ON
or OFF regions, depending on their contrast. Presentation of moving bars or sinusoidal gratings gives rise to strong
responses, provided that the orientation of the grating or the bar matches the receptive field orientation.

311
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FIGURE 21.1 Typical simple cell receptive fields described by Hubel and Wiesel with even symmetric and odd symmetric spatial profile.
Excitatory regions are marked by pluses and inhibitory regions by minuses.
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FIGURE 21.2 Contrast sensitivity for six cortical cells of area V1 in the macaque. Note the fairly sharp and symmetrical tuning of the response
on both sides of the peak. Adapted from DeValois et al. (1982a).

Thus, the spatial receptive field properties of simple cells can be described by the size of the receptive field and its
elongation as well as its orientation with respect to the coordinate axes. A further important characteristic of simple
cells is their tuning to the spatial frequency of sinusoidal stimuli. Experiments show that simple cells are typically
much more sharply tuned to spatial frequency than retinal or LGN cells. When responses are quantified as a function
of spatial frequency, they fall off sharply on each side of a peak value (Figure 21.2; compare with Figure 20.6). In
macaque monkeys, the peak spatial frequency tuning is typically located between 0.5 and 20 cycles/deg.

Gabor receptive field model. To describe the two-dimensional spatial receptive field of simple cells, we will assume
that the elongated boundary between ON and OFF regions lies parallel to the y-axis of a two-dimensional Cartesian
coordinate system, with the origin (0,0) at the center of the receptive field. With this convention, the spatial receptive
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fields of simple cells are well described by a Gabor function:

w(x,y)= 1
2πσxσy

exp

(
− x2

2σ 2
x

− y2

2σ 2
y

)
cos(2π(kxx−φx)). (21.1)

Along the x-axis, this function describes a sinusoidal wave that is dampened with distance from the center of the
receptive field. The spatial extent in the x-direction is determined by the standard deviation σx . Typically σx<σy
and the oscillatory sinusoidal wave is aligned perpendicular to the elongated axis of the receptive field, with the
parameter σy controlling the elongation of the receptive field. The number of oscillatory lobes, and therefore the
number of positive (ON) and negative (OFF) regions, is determined by the spatial frequency, kx for a fixed value of σx .
In general, it is determined by the ratio of kx andσx . The parameter kx also determines the optimal spatial frequency for
which the cell is tuned and φx is the spatial phase of the receptive field. If φx =0 then the receptive field is symmetric
around x =0 (an even function of x), whereas for φx =−1/4 we have cos(2πkxx+π/2)= sin(2πkxx) and the receptive
field is an odd function of x.

Thus the Gabor function describes a localized spatial frequency filter (Figure 21.3). This can also be seen by inspec-
tion of the Fourier transform of the Gabor filter,

ŵ(ωx ,ωy)= 1
2

(
e−2π iφxe−σ 2

x (2π)
2(ωx−kx)

2/2 +e2π iφx e−σ 2
x (2π)

2(ωx+kx)
2
)

e−σ 2
y (2π)

2ω2
y/2,
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FIGURE 21.3 Receptive field profile in the spatial (A) and frequency (B) domain of a cat simple cell that is fairly narrowly tuned in frequency.
Adapted from Webster and DeValois (1985).

MATHEMATICS FOR NEUROSCIENTISTS



314 21. MODELS OF SIMPLE AND COMPLEX CELLS

which has two peaks at (±kx ,0) (Exercise 2). Note also that the tuning width in both spatial frequency directions ωx
and ωy is inversely related to the spatial tuning width in the x and y directions.

Parameters of the Gabor model. The complete Gabor receptive field model depends on nine parameters. We explicitly
describe them here and give representative values for some of them. Additional information follows in subsequent
sections. Five of the parameters in Eq. (21.1) have been suppressed: three are related to the spatial location of the
receptive field and its orientation. We have assumed in Eq. (21.1) that the origin of our coordinate system coincides
with the center of the receptive field. Furthermore, we have assumed that the y-axis is parallel to the elongated axis of
the receptive field whereas the x-axis lies along the narrow axis of the receptive field. This requires two translational
parameters to match receptive field center with the origin of the coordinate system and one rotational parameter to
align the coordinate axes with the receptive field axes. Another parameter that is suppressed in Eq. (21.1) is a global
scaling factor needed to convert the output w(x,y) into firing rate. The last parameter that has been ignored is the
relative orientation of the cosine wave with respect to the main axes of the Gaussian envelope: we have namely
assumed that the cosine wave is perfectly aligned with the narrower axis of the receptive field. This turns out to be
the case for about 50 percent of the cells encountered, the remaining half typically has a different alignment, within
±45 degrees of the minor axis.

The spatial size of simple cell receptive fields is controlled by the parameters σx and σy of the Gabor function.
Spatial size varies over a wide range close to the fovea (1:30 range) and receptive field size also typically increases
towards the periphery of the visual field. The aspect ratio λ=σx/σy of the receptive field is much more constrained
with a typical value of 0.6. The receptive field in the frequency domain consists of a linear superposition of two
Gaussian centered at (kx ,0) and (−kx ,0), respectively. The overlap between these two Gaussian envelopes is typically
insignificant (Figure 21.3).

The spatial phase φx of the receptive field ranges uniformly in the range 0–90 deg. Odd and even receptive fields
(i.e., phases of 0 deg and 90 deg corresponding to a cosine and a sine in Eq. (21.1)) were among the first ones described
by Hubel and Wiesel.

In the macaque monkey, the range of preferred spatial frequencies kx typically lies between 0.5 and 16 cycles/deg
(Figure 21.4).

Parametrization of two-dimensional moving gratings. In contrast to the receptive fields of retina and LGN neurons
analyzed in the previous chapter, the receptive field model for simple cells is not rotationally symmetric. We therefore
need to consider the response to a two-dimensional grating instead of a one-dimensional one. A two-dimensional
moving sinusoidal grating has the functional form

cdrift(x,y, t)= cos(2π(ηxx+ηyy−ηtt−η0)). (21.2)

Note that we have suppressed the contrast cmax in this equation (see Chapter 20). The parameters (ηx,ηy) determine
the spatial frequency of the grating and its orientation with respect to the x-axis. This is most easily seen by rewriting

(ηx ,ηy)=η(cos ξ ,sinξ ), with η=
√
η2

x +η2
y , and ξ = tan−1(ηy/ηx).
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FIGURE 21.4 Peak spatial frequency tuning of foveal (A) and parafoveal (B) cells in macaque V1 neurons. Adapted from DeValois et al. (1982a).
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FIGURE 21.5 A. Schematic illustration of a grating and the vector (ηx ,ηy) used to characterize it. B. The components ηx and ηy determine
the angle ξ = tan−1(ηy/ηx). The top inset shows how the angle varies (gray shaded area) as the orientation of the grating varies. The length of the
vector, η is the spatial frequency of the grating (in cycle/degree). The dashed line illustrates points having the same contrast at any given time.

The parameter η is the spatial frequency of the grating and the unit vector (cosξ ,sinξ ), with ξ ∈ (−π/2,π/2] or equiv-
alently ηx>0, gives the direction of contrast change: at a fixed moment in time contrast is always constant along
points joined by a line perpendicular to this vector (Figure 21.5). The factor η0 determines the phase of the grating at
time t =0. The speed of motion is ηt/η, as in the case of the one-dimensional moving grating. Both Gabor filters and
sinusoidal gratings are parametrized in terms of spatial and temporal frequencies (kx , ηx, and ηt).

Response to moving gratings. The response of a Gabor filter to the sinusoidal grating of Eq. (21.2) is given by

Rdrift(t)= 1
2

cos
(
2π(ηtt+η0 −φx)

)
exp(−σ 2

x (2π)
2(ηx −kx)

2/2−σ 2
y (2π)

2η2
y/2)

+ 1
2

cos
(
2π(ηtt−η0 +φx)

)
exp(−σ 2

x (2π)
2(ηx +kx)

2/2−σ 2
y (2π)

2η2
y/2) (21.3)

≈ 1
2

cos
(
2π(ηtt+η0 −φx)

)
exp(−σ 2

x (2π)
2(ηx −kx)

2/2−σ 2
y (2π)

2η2
y/2)

(Exercise 3). The last approximation is valid because of the negligible overlap between the two Gaussians
(Figure 21.3B) and since ηx is assumed to be positive. Thus, we see that the response oscillates at the same tem-
poral frequency as the moving grating, independent of the direction of motion (ηt>0 is rightward motion and ηt<0
is leftward motion).

Spatial frequency tuning. We can rewrite Eq. (21.3) in terms of the spatial frequency η and orientation ξ of the grating:

Rdrift ≈ 1
2

cos(2π(ηtt+η0 −φx))e−σ 2
x (2π)

2(ηcosξ−kx)
2/2e−σ 2

y (2π)
2η2 sin ξ2/2. (21.4)

The spatial frequency tuning of the response is obtained by varying the spatial frequency (η) of the drifting grating
around the optimum (η= kx) positioned in its optimal orientation, i.e., ξ =0. Since the second Gaussian remains equal
to 1, the peak response is proportional to exp(−σ 2

x (2π)
2(η−kx)

2/2).
The bandwidth, b, of the cell is defined as the difference between the highest frequency, ηh, and the lowest frequency,

ηl, that yield half of the maximal response in octaves (i.e., in base 2 logarithmic units):

b= log2ηh − log2 ηl.

The reason for choosing a logarithmic scale is that the tuning response is fairly symmetrical (Figure 21.2) and therefore

log2 ηh = log2 kx + b
2

, log2 ηl = log2 kx − b
2
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FIGURE 21.6 Distribution of spatial frequency bandwidths for a large sample of cortical V1 neurons in the macaque monkey. Adapted from
DeValois et al. (1982a).

or equivalently

ηh = kx2b/2, ηl = kx2−b/2.

Thus a cell that has a peak spatial frequency tuning at 1 cycle/deg and a bandwidth of 1 octave (b=1) would have
half maximal responses at 0.7 and 1.4 cycle/deg, respectively. A cell with the same bandwidth but peak tuning at
10 cycle/deg would have half-maximal responses at 7 and 14 cycle/deg. The bandwidth of simple cells is fairly
constant with a typical value of 1.4 octaves (range: 0.4–2.6; Figure 21.6). The bandwidth can be computed in terms of
the product kxσx as

b= log2
kxσx +√

2 log2

kxσx −√
2 log2

, kxσx =√
2 log2

2b +1
2b −1

(21.5)

(Exercise 4). In the case b=1.4 we obtain kxσx =2.614. A consequence of this equation is that the parameter σx tends
to be inversely related to kx (since bandwidths are fairly constant, irrespective of peak frequency tuning).

Orientation tuning. Orientation tuning is usually determined at the optimal spatial frequency (η= kx) by changing
the angle ξ of the drifting grating. The orientation bandwidth is defined as the difference in orientation 	ξ = ξh −ξl
from the peak orientation (which is 0 deg by definition of our coordinate axes) for which the response has declined
to half of its peak value. The prediction obtained from Eq. (21.4) is

	ξ =2 sin−1λ

√
2 log2
kxσx

=2 sin−1 λ
2b−1
2b+1

, (21.6)

where λ is the aspect ratio of the receptive field (Exercise 5). For an aspect ratio of 0.6 and a bandwidth of 1.4 we obtain
	ξ =31 deg (Figure 21.7). This equation predicts a positive correlation between orientation and spatial frequency
tuning that is consistent with experimental observations (Figure 21.8).

Response to stationary gratings. Stationary gratings can be obtained by superposing two gratings moving in opposite
directions. If we set for simplicity z=ηxx+ηyy−η0, we obtain:

1
2

(
cos(2π(z+ηtt))+cos(2π(z−ηtt))

)= cos(2πz)cos(2πηtt),
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FIGURE 21.8 Scatterplot of orientation bandwidth as a function of spatial frequency bandwidth for 168 cells in V1 of the macaque monkey.
There is a positive correlation of 0.5 between the two variables. Adapted from DeValois et al. (1982a).

which is a standing wave. Superposing two such moving stimuli yields

Rstat(t)≈ 1
4

cos(2πηtt)cos(2π(η0 −φx))e−σ 2
x (2π)

2(ηx−kx)
2/2e−σ 2

y (2π)
2η2

y/2,

where we have used the same approximation as in Eq. (21.3).

Spatial phase dependence. Just as in the case of retinal and LGN cells, the Gabor model predicts a dependence of
the response of a simple cell to the spatial phase of a stationary grating, depending on the alignment of ON and
OFF regions with the respective oscillatory regions of the grating. This prediction has been verified experimentally
(Figure 21.9).
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receptive field. Note the spatial dependence of the response with two peaks 180 degrees apart and phase shifted in time by the same phase.
B. Same experiment for a complex cell. Note the frequency doubling of the response and position independence. Data from area V1 in the macaque
monkey. Adapted from DeValois et al. (1982a).

21.2 NONSEPARABLE RECEPTIVE FIELDS

Temporal responses. The temporal impulse response of simple cells is typically biphasic, like the one of LGN neurons
described in the previous lecture, but simple cells also exhibit triphasic responses. Thus, it is not surprising that simple
cells also act as band-pass filters in the temporal domain. Typically, peak temporal frequency tuning is around 8 Hz,
with bandwidths of ≈2.5 octaves and thus less sharp than in the spatial domain. To simplify subsequent calculations,
we will use the following two-model response functions:

fte(t)= 1√
2πσt

e−(t−t	)2/2σ 2
t cos(2πkt(t− t	)),

(21.7)
fto(t)= 1√

2πσt
e−(t−t	)2/2σ 2

t sin(2πkt(t− t	)),

with kt =8 cycle/s, σt =31 ms, and t	=86 ms (Figure 21.10A). In the following, the delay t	 will often be set to zero
as it simply implies a shift of the time axis.

Nonseparable receptive fields. The receptive fields of simple cells are often nonseparable, i.e., they cannot be described
as a product of spatial and temporal responses (Figure 21.11). A simple method to generate nonseparable receptive
fields is to add two separable spatio-temporal receptive fields together. If we define even and odd one-dimensional
Gabor filters,

gse(x)= 1√
2πσx

e−x2/2σ 2
x cos(2πkxx) and gso(x)= 1√

2πσx
e−x2/2σ 2

x sin(2πkxx), (21.8)
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FIGURE 21.11 Sketch of a separable spatio-temporal receptive field. Adapted from Adelson and Bergen (1985).

(Figure 21.10B) we can define two nonseparable receptive fields as follows:

g−
e (x, t)=gse(x)fte(t)+gso(x)fto(t)= 1

2πσxσt
e−x2/2σ 2

x −t2/2σ 2
t cos(2π(kxx−ktt)),

g−
o (x, t)=gso(x)fte(t)−gse(x)fto(t)= 1

2πσxσt
e−x2/2σ 2

x −t2/2σ 2
t sin(2π(kxx−ktt)).

An important property of nonseparable receptive fields is that they are selective to the direction of motion of a
sinusoidal grating. Direction selectivity to moving stimuli is a new property that emerges at the level of visual cortex.
To see why nonseparable receptive fields are direction selective, we need to look at the spatio-temporal structure of
the receptive field (Figure 21.12). Since it is oriented in space-time it will favor a specific orientation of a stimulus in
space-time which corresponds to a specific speed of propagation. In the case of a one-dimensional sinusoidal grating,

c(x, t)= cos
(
2π(ηxx−ηtt−φx)

)
,

we obtain the response of the cell by convolution of the stimulus with the receptive field,

R(t)=
∫∫

g−
e (x, t0)c(x, t− t0)dt0dx =�

{
e2π i(ηtt+φx)

∫∫
g−

e (x, t0)e−2π i(ηxx+ηtt0)dt0dx
}

.

In this equation, both the spatial and temporal integration boundaries can be set equal to ±∞ since g−
e is effectively

localized in space and time. The Fourier transform of g−
e is real,

ĝ−
e (ωx ,ωt)= 1

2

(
e−σ 2

x (2π)
2(ωx+kx)

2/2e−σ 2
t (2π)

2(ωt−kt)
2/2 +e−σ 2

x (2π)
2(ωx−kx)

2/2e−σ 2
t (2π)

2(ωt+kt)
2/2

)
, (21.9)
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FIGURE 21.12 Schematic illustration of the motion-energy model. Adapted from Adelson and Bergen (1985).

(Exercise 6) and therefore

R(t)= ĝ−
e (ηx,ηt)cos

(
2π(ηtt+φx)

)
. (21.10)

Because Eq. (21.9) is nonzero only around (kx ,−kt) and (−kx ,kt) the response is most sensitive to a negative preferred
speed of −kt/kx .

21.3 RECEPTIVE FIELDS OF COMPLEX CELLS

Complex cells form the second major class of cells originally described by Hubel and Wiesel. Like simple cells,
complex cells are selective for bars presented at a preferred orientation in the receptive field and they are tuned
for spatial frequency. In contrast to simple cells, they will respond irrespective of the particular position at which
a bar is flashed in the receptive field and are largely insensitive to the polarity (ON or OFF) of the stimulus. Two
other important differences with simple cells are also observed in response to moving and to counterphase gratings,
respectively: (i) the response to moving gratings is sustained and lacks the modulation in time seen in simple cells,
(ii) the response to counterphase gratings exhibits frequency doubling (Figure 21.9).

These properties can be explained by assuming that the response of complex cells is obtained by squaring and
summing the responses of two Gabor receptive fields 90 degrees out of phase, like the ones defined in Eq. (21.8):

Rcc(t)=R2
se(t)+R2

so(t),

where

Rse(t)=
∫

gse(x)c(x, t)dx, Rso(t)=
∫

gso(x)c(x, t)dx,

and c(x, t) is the stimulus. Note that we have neglected temporal filtering for simplicity. Because the responses of
simple cells are half-wave rectified this squared sum can be implemented only with a minimum of four simple cells,

Rcc(t)=�Rse(t)�2+ +�R−
se(t)�2+ +�Rso(t)�2+ +�R−

so(t)�2+ ,

where the responses R−
se and R−

so are to the same receptive field profile but of opposite polarity: −gse and −gso,
respectively. The pair of receptive fields gse and gso is called a quadrature pair and squaring and summation over such
a pair is an efficient way of implementing phase independence of the responses.

Response to moving gratings. We compute the response to a moving grating c(x, t)= cos
(
2π(ηxx−ηtt−η0)

)
. Just as

in the case of Eq. (21.10) we know that,

Rse(t)= ĝse(ηx)cos(2π(ηtt+η0))= 1
2
(α+β)cos(2π(ηtt+η0)),
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where we have used the abbreviations α=exp(−σ 2
x (2π)

2(ωx −kx)
2/2) and β=exp(−σ 2

x (2π)
2(ωx +kx)

2/2). Similarly,

Rso(t)= 1
2
(α−β)sin(2π(ηtt+η0)),

and the complex cell response is obtained from

Rcc(t)= (α2 +β2)/4+αβ{cos2(2π(ηtt+η0))−sin2(2π(ηtt+η0))}/2 ≈α2/4,

where the approximation is valid for a spatial frequency ωx around the optimal frequency kx . Thus we see that the
response to a moving grating is approximately unmodulated.

Response to stationary gratings. To obtain the response to counterphase gratings we can use the results obtained
above for moving gratings and the superposition property

cos(2π(ηxx−η0))cos(ηtt)= 1
2
{cos(2π(ηxx−ηtt−η0))+cos(2π(ηxx+ηtt−η0))}.

This implies that

Rse(t)= 1
2
(α+β)cos(2πηtt)cos(2πη0), and Rso(t)= 1

2
(α−β)cos(2πηtt)sin(2πη0).

Squaring and summing yields

Rcc(t)= cos2(2πηtt){α2 +β2 +2αβ(cos2 2πη0 −sin2 2πη0)}/4 ≈ cos2(2πηtt)α2/4.

In the last line we have used the same approximation as in the case of a moving grating. This represents a doubling
of the frequency since cos2(2πηtt)= (cos(4πηtt)+1)/2, see Figure 21.9.

21.4 MOTION-ENERGY MODEL

If we apply the quadrature model of the previous section to space-time oriented receptive fields we obtain a complex
cell model that is selective for the direction of motion and whose responses are independent of the phase of a drifting
sinusoidal grating:

R−
me(t)=R2

e−(t)+R2
o−(t)

where

Re−(t)=
∫∫

g−
e (x, t0)c(x, t− t0)dtodx, Ro−(t)=

∫∫
g−

o (x, t0)c(x, t− t0)dtodx,

for the stimulus c(x, t). This model is called the motion-energy model (Figure 21.12) and resembles the definition of
kinetic energy in some physical systems. The motion-energy model is thought to describe the responses of neurons
projecting to area MT of macaque monkeys, as well as the responses of a subset of MT neurons (component cells). Area
MT is specialized in detecting motion. Formally, the motion-energy model is equivalent to the Reichardt correlation
model describing the extraction of motion information in insect visual systems.

21.5 HUBEL–WIESEL MODEL

The original work of Hubel and Wiesel proposed a purely feedforward model describing the emergence of simple
cell receptive fields from a superposition of LGN receptive fields as well as the generation of phase invariant responses
in complex cells by averaging over simple cells with different phases (Figure 21.13).
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FIGURE 21.13 A. Hubel and Wiesel model describing the emergence of simple cell receptive fields from LGN center-surround receptive fields
by convergence of responses. B. Model for the emergence of complex receptive fields from simple cell receptive fields by summation of several
simple cell responses staggered in space. Adapted from Hubel and Wiesel (1962).
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FIGURE 21.14 A. Receptive field of an LGN relay neuron with gray lines indicating ON and black lines OFF regions. B. Receptive field of a
simple cell in V1 recorded simultaneously. C. The cross correlation between spontaneous spike trains of the two cells has a peak slightly offset from
zero indicating that whenever the LGN cell fires, the V1 simple cell has an increased probability of firing after a short delay of a few milliseconds.
This suggests that the two cells are synaptically connected. Adapted from Alonso et al. (2001).

In agreement with this model, the receptive fields of synaptically connected LGN and V1 neurons are indeed
spatially in register (Figure 21.14). Yet, details of the model have been surprisingly difficult to confirm at an anatomical
and physiological level and are still under debate today. Alternative models explain the emergence of simple cell and
complex cell receptive fields based on intracortical connections. These models often rely on anatomical data showing
that 95% of the synapses onto cortical neurons are of intracortical origin. It has also been shown theoretically that
complex receptive fields can be generated directly from LGN inputs, provided neurons are endowed with active
membrane conductances.

21.6 MULTISCALE REPRESENTATION OF VISUAL INFORMATION

The representation of visual information at the level of primary visual cortex appears to have some characteristics of
multiscale representations used in image analysis such as wavelet transforms. Simple cell receptive fields are localized
in space and frequency. Furthermore their receptive fields vary over a range of scales. This analogy has been used
both in image analysis as a motivation for investigating multiscale representations and in theoretical work on primary
visual cortex to explore how cortical neurons might encode information about natural images (Figure 21.15). There
is at present no comprehensive theory that can explain what kind of processing cortical neurons do on visual inputs,
but several theories can explain in part the properties of visual cortical neurons based on a multiscale representation
of natural images.
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FIGURE 21.15 A. Original image of “Lena.” B. Reconstruction of “Lena” based on the activity associated with Gabor receptive field functions
sampling visual space at discrete locations over seven different scales (octaves) and with eight different orientations. Adapted from Lee (1996).

21.7 SUMMARY AND SOURCES

This chapter presented the basic receptive field properties of neurons in primary visual cortex. While simple
cell receptive fields can be conceived as a fairly straightforward elaboration of the receptive fields encountered
at earlier stages of the visual system, complex cells present genuinely different properties. Remarkably, we have
learned that a simple combination of linear and static nonlinear operations can account for much of the experimental
data. Hubel and Wiesel shared half of the Nobel Prize in Medicine in 1981. Since their original work, the properties
of visual neurons in area V1 have been studied in many laboratories. The book by DeValois and DeValois (1990)
summarizes results pertinent to this chapter up to its publication. For more recent results, see the reviews of DeAngelis
et al. (1995) and Ringach (2004). Our model of simple cell temporal response properties in §21.2 allows us to carry
out analytical calculations, but is oversimplified. The temporal profiles of real neurons are typically skewed, as
schematically illustrated in Figure 21.11, so that a time domain Gabor does not fit well. We explore a more realistic
model in Exercise 12 based on Emerson et al. (1992). See DeAngelis et al. (1999) for a discussion of quadrature pairs
and Mel et al. (1998) for further discussion of the Hubel and Wiesel model.

21.8 EXERCISES

1. Compute, by hand, the Fourier transforms of

f (x)= 1√
2πσx

e−x2/2σ 2
x cos

(
2π(kxx−φx)

)
and h(x)= 1√

2πσx
e−x2/2σ 2

x sin
(
2π(kxx−φx)

)
.

2. †Compute the Fourier transform of a two-dimensional spatial Gabor filter, Eq. (21.1).

3. Compute the response of the simple cell model to a drifting grating, Eq. (21.3).

4. Compute the bandwidth of the Gabor receptive field model, Eq. (21.5).

5. †Compute the orientation tuning width of the Gabor receptive field model, Eq. (21.6).

6. Compute the Fourier transform of g−
e , Eq. (21.9), and of g−

o .

7. Plot the temporal and spatial one-dimensional Gabor functions of Eqs. (21.7) and (21.8) to arrive at Figure 21.10.
Hint: For the temporal receptive field, use dt =1 ms and plot over the interval [−25,250] ms. For the spatial one,
use dx =0.004 deg, with 128 points centered at 0.

8. †Plot the three-dimensional spatio-temporal profile of the following two Gabor filters:

ge(x, t)=gse(x)fte(t), and g−
e (x, t)=gse(x)fte(t)+gso(x)fto(t).

Plot the corresponding Fourier transforms ĝe(ωx ,ωt) and ĝ−
e (ωx ,ωt) to arrive at Figure 21.16. Hint: For simplicity,

set the delay t	 equal to zero, use dt =2 ms and 128 points centered at 0. In the frequency domain, consider spatial
frequencies between ±10 c/deg and temporal frequencies between ±25 c/s evenly sampled at 128 points.
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FIGURE 21.16 A. Spatio-temporal receptive field profile of ge. B. Spatio-temporal receptive field profile of g−
e . C. Fourier domain profile

of ĝe. D. Fourier domain profile of ĝ−
e . (gabor3dex.m)

9. †Compute numerically (using MATLAB) and plot the responses as a function of time of the filters ge(x, t) and g−
e (x, t)

(Exercise 8) to a one-dimensional sinusoidal grating drifting in their receptive field. Use a grating moving to the
right with spatial frequency ηx =4 cycle/deg and temporal frequency ηt =8 cycle/s. Simulate 2000 ms with a step
	t =2 ms. Compute numerically and plot the response of the same filters to the grating moving to the left to yield
Figure 21.17. Interpret the results in relation to the plots of Figure 21.16C and D. Hint: Represent the grating as a
matrix with columns and lines corresponding to different space and time values, respectively. Take advantage of
the fact that ge is separable, which allows you to compute the spatial and temporal components of the responses
successively. Use matrix multiplication to compute the spatial component first and convolution, i.e., the MATLAB
function conv to compute the temporal component.
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FIGURE 21.17 A. Response of ge(x, t) to left and right moving gratings. B. Response of g−
e (x, t) to left and right moving gratings.

(gab3dresp.m)
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10. †Compute and plot the responses as a function of time of the following two complex cell models to a one-
dimensional sinusoidal grating drifting in their receptive field.
(i) The response of complex cell 1 is obtained by squaring the response of ge(x, t) and adding the squared response

of the corresponding odd filter go(x, t)=gso(x)fto(t) (Exercise 8).
(ii) The response of complex cell 2 is obtained in the same way, but using g−

e (x, t) and the corresponding odd
filter g−

o (x, t)=gso(x)fte(t)−gse(x)fto(t). Use the same grating (right or left motion) and simulation parameters
as in Exercise 9. Compare the results with those of Exercise 9 and explain the differences.

11. †The response of a directionally selective simple cell to moving gratings is described by

Rrect(t)=Rmax
�R1(t)�2+

σ 2 +�R1(t)�2+
where �R�+ =R1(R)

and

R1(t)=Rspont +Rc(t) with Rc(t)=
∫∫

g−
e (x, t0)c(x, t− t0)dxdt0.

The parameters are: Rspont =10 spk/s, σ =60 spk/s, and Rmax =120 spk/s. The spatio-temporal receptive field is
given by

g−
e (x, t)= 1

2πσxσt
e−x2/2σ 2

x −t2/2σ 2
t cos(kxx−ktt)

with σx =0.1 deg, kx =4.2 c/deg, σt =31 ms, and kt =8 c/s.
(i) Plot Rrect as a function of R1. Use values of R1 between 0 and 150 spk/s.

(ii) Compute and plot the response Rrect(t) for a grating given by c(x, t)= cos(ηxx±ηtt) moving either to the left
or to the right. Use the parameters ηx =4 c/deg and ηt =8 c/s and a time interval of motion of 2000 ms.

12. †A more realistic model of nonseparable receptive fields assumes the following temporal weighting functions:

f1(t)=α(kt)n1 e−kt

(
1

n1!
−β (kt)2

(n1 +2)!

)

f2(t)=α(kt)n2 e−kt

(
1

n2!
−β (kt)2

(n2 +2)!

)

with α=100 an arbitrary scale factor, β=0.9, n1 =6, n2 =9, and k =120 s−1. The nonseparable receptive field is
given by

g(x, t)=gse(x)f1(t)+gso(x)f2(t),
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FIGURE 21.18 A. Plot of the temporal weighting functions f1 (black) and f2 (red). B. Spatio-temporal receptive field of g(x, t). Lighter and
darker shades of gray indicate firing increase and decrease, respectively (scale arbitrary). C. For comparison, spatio-temporal receptive field
of the Gabor filter g−

e . (ts_rfs.m)
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where gse and gso are given by Eq. (21.8) with the same parameters as in Exercise 7.
(i) Plot the two temporal weighting functions f1 and f2 between 0 and 200 ms to arrive at Figure 21.18A.

(ii) Plot the spatio-temporal receptive field of g(x, t) to arrive at Figure 21.18B. Hint: Use the function meshc and
a view angle of (0,90) as well as a colormap set to “gray.”

(iii) Plot the nonseparable spatio-temporal filter obtained from Gabor functions (see Exercise 8) in the same way
to obtain Figure 21.18C and compare it to the one plotted in (ii).

(iv) Compute the response of the filter g(x, t) to leftward and rightward drifting gratings, with the same param-
eters as in Exercise 9.

MATHEMATICS FOR NEUROSCIENTISTS



C H A P T E R

22
Stochastic Estimation Theory

O U T L I N E

22.1 Minimum Mean Square Error Estimation 327

22.2 Estimation of Gaussian Signals* 329

22.3 Linear Nonlinear (LN) Models* 331

22.4 Summary and Sources 332

22.5 Exercises 332

Although the stimuli used in the previous two chapters to characterize the receptive fields of visual neurons were
deterministic, random stimuli can be used as well for this purpose. In this chapter, we derive the general solution to
the problem of recovering the mapping between stimulus and firing rate using random stimuli, which is given by
the conditional expectation or mean. We then show how to recover the mapping from stimulus to firing rate when the
underlying neuron’s receptive field is characterized by a linear weighting function. The linear case turns out to be
optimal when the stimuli and firing rates are jointly Gaussian. Finally, we show how simple nonlinear transformations
can be recovered using Gaussian random stimuli.

22.1 MINIMUM MEAN SQUARE ERROR ESTIMATION

We consider the situation where we are given the instantaneous firing rate of a neuron, Y0(t), in response to a
random stimulus, X0(t). Here X and Y are assumed to be two stochastic processes and X0(t)=X(ω0, t), Y0(t)=Y(ω0, t)
are two realizations corresponding to an event ω0 ∈� (see §16.1). Our goal is to describe the relation between X0(t)
and Y0(t). In other words, we want to find a function g such that g(X0(t)) approximates Y0(t) as well as possible,
independent of ω0. The function g could be as simple as a convolution of X0 with a filter h, i.e., g(X0(t))=h�X0(t),
or a static nonlinear transformation, e.g., g(x)=x3 or a combination of several such functions. A natural measure of
error is the time-averaged squared error,

ε2(g)= lim
T→∞

1
2T

T∫
−T

(Y0(t)−g(X0(t)))2dt.

If we assume the pair of stochastic processes (X,Y) to be stationary and ergodic, we can replace the time average by
an ensemble average. If, for a fixed t = t1, we set Y(t1)=Y1, then

ε2(g)=E[(Y1 −g(X(t1)))
2|X] =

∫
(y1 −g(X(t1)))

2 p(y1|X)dy1

where p(y1|X) is the conditional distribution of Y1 given X and y1 represents a specific value of Y1. Note that ε2 is
independent of the particular choice of t1 by stationarity. If we now formally take the derivative of the quadratic term
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with respect to g,

∂ε2

∂g
=−2

∫
(y1 −g(X(t1)))p(y1|X)dy1,

and set it equal to zero to obtain a local extremum, gopt, we find that

gopt(X(t1))=
∫

y1 p(y1|X)dy1 =E[Y(t1)|X].

Furthermore, ∂2ε2/∂g2 =2 and therefore the optimal estimate of Y (resp. Y0) given X (resp. X0) is the conditional mean
or expectation of Y given X.

Linear estimate. In practice, the conditional mean is difficult to compute since it requires an estimation of the condi-
tional density of Y given X. A simpler approach consists in constraining the form of the estimator g. For example, we
may try to estimate Y linearly from X after subtracting their respective means,

Yest(t)−mY =
∫

g(t− t0)(X(t0)−mX)dt0 =g � (X(t)−mX ).

We computed the optimal g in §18.1 by using Fourier transforms,

ĝ(ω)= SXY(ω)

SXX(ω)
.

In particular, if Y is a linear function of X, Y(t)−mY = k � (X(t)−mX )+N(t) with k(t)=0 for t<0 implementing
causality, and the noise N(t) is independent of X, then k can be recovered from the cross correlation between X and
Y, and the power spectrum of X.

Figure 22.1A–C illustrates the reconstruction of the LGN filter of Eq. (20.15) from a white noise contrast stimulus
and the corresponding firing rate vector obtained by linear convolution. In this case, negative firing rates correspond
either to decreases relative to the mean firing rate or to the response of a second neuron characterized by an inverted
transfer function (i.e., OFF instead of ON). The red line in Figure 22.1C illustrates the case when the firing rate is
passed through a nonlinear function after the convolution, see Figure 22.1D, and will be dealt with in §22.3.
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FIGURE 22.1 A. Sample path of the white noise stimulus. B. Firing rate vector (black) obtained by convolving the stimulus with the LGN
filter (illustrated in C or D, dashed red line) and after transformation (red) using the static nonlinearity g illustrated in D (inset, dashed red line,
see §22.3). C. Reconstruction (black) of the original LGN filter (dashed red line) from the linearly filtered stimulus. D. Reconstruction from the
nonlinear transform. Inset shows the reconstruction (black) of the nonlinear function g (dashed red line, see §22.3). (lgn_est3.m)
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22.2 ESTIMATION OF GAUSSIAN SIGNALS*

The results of the last section raise the question of when linear estimation is optimal in the mean square sense.
This turns out to be the case for Gaussian random signals. To illustrate this point, we will for simplicity assume the
stimulus X to be sampled at discrete times tk = k�t, k =1, . . . ,n, so as to form a random vector vX = (X1, . . . ,Xn)

T and
similarly for the firing rate vector vY = (Y1, . . . ,Yp)

T (see §11.9). Since the following results hold for vectors vX and
vY of different length, we allow n �=p. For example, the vector vY could represent the firing rates of two or more
neurons in response to the stimulus vX . A neuron’s firing rate will be well approximated by a Gaussian vector if its
mean is well above the variance, so that the firing rate will not be negative, or alternatively if we combine the firing
rates, f1, f2 of two neurons responding to the positive and negative parts of the signal according to f1 − f2. Next, we
assume that vX and vY are jointly Gaussian with means mX = (mX1 , . . . ,mXn)

T , mY = (mY1 , . . . ,mYp)
T , and covari-

ances CXX =E[(vX −mX)(vX −mX)
T ], CYY =E[(vY −mY)(vY −mY)

T ] of dimensions n×n and p×p, respectively.
Let us define Z1 =X1, . . . ,Zn =Xn,Zn+1 =Y1, . . . ,Zn+p =Yp, and form the concatenated vector vZ = (Z1, . . . ,Zn+p)

T .
Clearly, vZ ∼N (mZ,CZZ), where mZ = (mX1 , . . . ,mXn ,mY1 , . . . ,mYp)

T . The covariance, CZZ, is composed of four
submatrices,

CZZ =
(

CXX CXY

CYX CYY

)

where CXY =E[(vX −mX)(vY −mY)
T] ∈Rn×p and CYX =E[(vY −mY)(vX −mX)

T ] ∈Rp×n. By subtracting mZ from vZ,
we may assume that vZ has zero mean. If x = (x1, . . . ,xn)

T and y = (y1, . . . ,yp)
T are specific instances of the random

vectors vX and vY, and z = (xTyT)T is their concatenation then the conditional density p(y|x) is given by

p(y|x)= p(x,y)
p(x)

= (2π)p/2 |det CXX|1/2 exp(xTCXXx/2)

(2π)(n+p)/2 |det CZZ|1/2 exp(zTC−1
ZZz/2)

.

We now use the following identity for the inverse of CZZ:

C−1
ZZ =

(
C−1

XX 0

0 0

)
+

(
−C−1

XXCXY

I

)
Q−1 − CYX C−1

XX I,

where the matrix I is a p×p identity matrix and

Q =CYY −CYXC−1
XXCXY

(Exercise 1). This implies that

zTC−1
ZZz =xTCXX x+(y−CYX C−1

XXx)TQ−1(y−CYX C−1
XXx).

Furthermore, since det CZZ =det CXX det Q (Exercise 2) we can write

p(y|x)= (2π)−p/2 |det Q|−1/2 exp (−(y−CYX C−1
XXx)TQ−1(y−CYXC−1

XXx)/2).
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We therefore infer that vY given vX is Gaussian with conditional mean CYXC−1
XXvX and covariance Q. We may hence

write

vY =HvX +vN ,

with H =CYXC−1
XX . The noise vN has covariance Q and is uncorrelated and therefore independent of vX (Exercise 3). We

have thus decomposed vY into a linear component dependent of vX and an independent noise term vN = (N1, . . . ,Np)
T ,

as summarized by the following equations:

(
vX
vY

)
=

(
I 0
H I

)(
vX
vN

)
,

(
vX
vN

)
=

(
I 0

−H I

)(
vX
vY

)

with

E
[(

vX
vN

)
(vX vN)

]
=

(
CXX 0

0 Q

)
. (22.1)

Figure 22.2 illustrates an example of this reconstruction method using again a white noise stimulus (panel A) and a
firing rate vector obtained by convolution with the LGN filter of Eq. (20.15) (panel B). Note that the matrix H illustrated
in panel C is banded along the main diagonal, as expected from the joint stationarity of the stimulus and firing rate.
Taking into account time-invariance allows to recover the LGN filter, as illustrated in panel D.
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FIGURE 22.2 A. Sample path of the white noise stimulus (sampling interval: 10 ms). B. Firing rate vector (black) obtained by convolving
the stimulus with the LGN filter (illustrated in D, black line) and prediction obtained by convolving the stimulus with H (red line). C. Matrix H,
obtained by computing the cross correlation between firing rate and stimulus and the inverse of the stimulus autocovariance matrix. Gray scale
bar to the right of D. D. The black line illustrates the LGN filter (sampling interval: 10 ms). The gray dots are the values of H plotted as a function
of their distance to the main diagonal, i.e., matrix element Hii+k is plotted at abscissa k�t. The red dashed line is the average of all matrix elements
for a fixed abscissa value. (lgn_est5.m)
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We now consider a simple linear, nonlinear model for the neuron’s firing rate in response to the stimulus X:

Z(t)=g(Y(t))+N(t), Y(t)= (k � X)(t),

where g is a static nonlinearity, i.e., a function g(y) independent of t, such as g(y)=y2. The noise term N(t) is assumed
to be independent of X and therefore Y. The stochastic process X is assumed to have zero mean. Our goal is to recover
k and g from the input X and the firing rate Z(t). First, we note the following result.

Theorem (Bussgang). Let Y(t) be a stationary Gaussian stochastic process with autocovariance function CYY(τ ) and
Z0(t)=g(Y(t)) be obtained by passing Y through a static nonlinearity g. Then the cross correlation between Z0 and Y
is given by

CYZ0(τ )=αCYY(τ ) where α= E [Yg(Y)]

σ 2
Y

.

Proof. Exercise 4.

In other words, the presence of the static nonlinearity cannot be detected in the time dependence of the cross correlation
as it is identical to the autocovariance of Y. Only the value of the constant α depends on g. This result allows us to
compute the cross correlation between X and Z in two steps. Since N is independent of X and Y, we first note that
according to Bussgang’s theorem

CYZ(τ )=E[Y(t)Z(t+τ)] =αCYY(τ )=α(k � k̃) � CXX(τ ), (22.2)

with k̃(t)= k(−t) (see Exercise 18.4 for the last equality). Second, since Y(t)= (k � X)(t),

CYZ(τ )=
∫

k(t− t0)E[X(t0)Z(t+τ)]dt0 = k̃ � CXZ(τ ). (22.3)

Fourier transforming Eqs. (22.2) and (22.3), and equating them yields

k̂(ω)= 1
α

SXZ(ω)

SXX(ω)
,

provided α �=0 and k̂(ω) �=0. Thus, we recover k from the cross correlation of the firing rate with the input stimulus
and its power spectrum, just as in the linear case. To recover g, we estimate numerically the cumulative distribution
functions

F1(y)=
y∫

−∞
p1(y0)dy0, and F2(z)=

z∫
−∞

p2(z0)dz0

where p1 and p2 are the probability densities of Y and Z, respectively. Clearly, F2(g(y))=F1(y), under the assumption
that g is smooth and one-to-one (§11.8). Since X is Gaussian, Y is as well, and its cumulative distribution function is
given by

F1(y)=�((y−μY )/σY), �(x)=
x∫

−∞
e−y2/2dy.

The cumulative distribution of Z is obtained by numerically estimating p2(z) through a histogram and subsequent
numerical integration. This yields g(y) numerically through

g(y)=F−1
2 (�((y−μY )/σY)).
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The entire reconstruction procedure is illustrated in Figure 22.1A, B, and D for a LGN model neuron endowed with
the static nonlinearity illustrated in the inset of Figure 22.1D.

22.4 SUMMARY AND SOURCES

The use of random stimuli to characterize the transformation between stimulus and firing rate as presented in
this chapter originates from the engineering field of system identification. Marmarelis and Marmarelis (1978) is a
comprehensive reference surveying early applications to neuroscience. More recent applications of these methods
usually assume a specific model describing the transformation between stimulus and firing rate, enabling further
progress in its identification. See, e.g., Paninski (2004) and Schwartz et al. (2006). In practice, the use of broad band
random stimuli works best to characterize neurons close to the sensory periphery. Often, as one progresses deeper
within a sensory system, neurons become much more sharply tuned and less responsive to broad band, random
stimuli. The application of system identification methods to experimental data should always be coupled with an
error analysis to assess how well the derived model captures the data. We illustrate this point in §23.2. The derivation
of the optimal linear estimator in the Gaussian case (§22.2) is modeled on Scharf (1991, §7.5). Banded matrices like H
in Figure 22.2 are called Toeplitz matrices and generalize the circulant matrices already encountered in Chapter 7. For
further details, see Gray (2006). Our proof of Bussgang’s theorem in Exercise 4 below follows Bendat (1990, §2.5). The
result stated in Eq. (22.4) below is due to Price (1958).

22.5 EXERCISES

1. Let

M =
(

A B
C D

)

with the submatrices A, B, C, and D having, respectively, dimensions equal to n×n, n×p, p×n, and p×p. Assume
that there exist matrices F, G, and H with

AF=−B, GA=−C, H =D−CA−1B.

Show that

M−1 =
(

A−1 0
0 0

)
+

(
F
I

)
H−1 (

G I
)

,

under the assumption that all inverses exist.
2. Verify the following two identities

(
I 0
H I

)(
CXX 0

0 Q

)(
I HT

0 I

)
=CZZ

and (
I 0

−H I

)(
CXX CXY
CYX CYY

)(
I −HT

0 I

)
=

(
CXX 0

0 Q

)
.

Hint: Use Exercise 5.4. Conclude that

det CZZ =det CXX det Q.

3. Use the identities of Exercise 2 to prove Eq. (22.1).
4. Prove Bussgang’s theorem.
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(i) Assume for simplicity that Y has zero mean and set Y1 =Y(t), Y2 =Y(t+τ). Show that

p(y1,y2)= 1

2πσ 2
√

1−ρ2
e− 1

2σ2 y2
2 e

− 1
2σ2(1−ρ2 )

(y1−ρy2)
2

where σ 2 =CYY(0) and ρσ 2 =CYY(τ ). Hint: Use the identity derived in Exercise 1.
(ii) Use this result to compute

E[Y1g(Y2)] =
∞∫∫

−∞
y1g(y2)p(y1,y2)dy1dy2

by integrating first over y1 and then over y2.
5. Replicate the results illustrated in Figure 22.1.

(i) Generate Gaussian white noise with a sampling step of 1 ms and standard deviation of 0.25 over 32768 ms
and plot the first 1000 ms (Figure 22.1).

(ii) Compute the LGN temporal weighting function of Eq. (20.15) and scale it such that it peaks at 50 spk/s. Use
conv to convolve the stimulus with the temporal weighting function. Plot the resulting model’s response as
in Figure 22.1B (black trace).

(iii) Estimate the temporal weighting function from the model’s response and the stimulus (Figure 22.1C). Hint:
Use the “two-sided” version of tfestimate with a window of 1024 points and an overlap of 1/2 the window
length to estimate the transfer function in the frequency domain. Then use ifft to revert to the time domain.

(iv) Pass the model’s response through the static nonlinearity y =100x/(10+x) to obtain the modified model’s
response as in Figure 22.1B (red trace).

(v) Use the modified model’s response to compute the parameter α (§22.3) and recover the temporal weighting
function as in (iii). Finally, follow the steps outlined in §22.3 to recover the static nonlinearity (Figure 22.1D).

6. Replicate the results illustrated in Figure 22.2.
(i) Generate white noise with a time step of 10 ms. Use the same standard deviation as in Exercise 5, 0.25, at each

time point and generate 128 ·64 points (Figure 22.2A).
(ii) Store these data in a 128 by 64 matrix and convolve each row with the same LGN temporal weighting function

as in Exercise 5, but sampled at 10 ms intervals (32 points) to obtain the corresponding firing rate samples
(Figure 22.2B).

(iii) Now compute the inverse of the white noise covariance matrix and the cross covariance with the firing rate
to obtain H (Figure 22.2C).

(iv) Compute the mean of the elements on the main diagonal and repeat this operation up to the 32nd diagonal
below it. Plot these mean values as well as the corresponding individual diagonal elements as a function of
the time interval difference associated with the respective diagonals to obtain Figure 22.2D.

(v) Use H to estimate the stimulus (Figure 22.2B, red trace).
7. Use Bussgang’s theorem to show that the cross correlation between a Gaussian, zero mean, stationary stochastic

process X and Y =gα, l(X) is given by

CXY(τ )=
√

2
π

1
σ 2

X

1√
1+ l2

CXX(τ ),

where the static nonlinearity gα, l is defined in Eq. (18.14).
8. Additionally, the autocovariance of Y is given by

CYY(τ )= 2α2

π
sin−1

(
CXX(τ )

σ 2
X + l2

)
. (22.4)

Use this result and Exercise 7 to derive numerically the coherence between X and Y when X is white noise with
a cut-off frequency of 100 Hz. Show that this allows you to reproduce the red curve in Figure 18.1D. Hint: Fast
Fourier transform CXY and CYY after discretizing with a resolution dt =1 ms and using 256 points centered at zero.
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Reverse-Correlation and Spike Train Decoding
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23.3 Summary and Sources 340

23.4 Exercises 340

We have seen in the previous chapter how random stimuli allow one to characterize the receptive fields of neurons
in terms of their instantaneous firing rate. In this chapter, we first extend these results to spike train responses. Next,
we quantify the ability of single spike trains to encode sensory stimuli by using them to reconstruct the stimulus.
These two related techniques are often called reverse-correlation and spike train decoding, respectively.

23.1 REVERSE-CORRELATION

For simplicity, we will only explain how reverse-correlation allows one to determine the temporal receptive field
of a neuron. The fundamental principle remains the same for spatio-temporal receptive fields. Let us first define the
firing rate modulation due to the random stimulus X(t) as,

f (t)=E[Y(t)− fmean |X], (23.1)

where Y(t)=∑N
i=1δ(t− ti) represents the spike train in response to a single presentation of the waveform X(t). The

average, E[ · |X], is taken over repeated presentations of the same waveform X(t). The number fmean =E[Y(t)] is the
mean firing rate of the cell.

We assume that time-varying stimulus changes are encoded linearly by firing rate changes. In terms of Eq. (23.1)
above this means that,

E[Y(t)− fmean |X] =
∫

wt(t− t0)X(t0)dt0.

If we multiply both sides of this equation by X(t1) and take expectations with respect to X, we arrive at

E[X(t1)(X(t)− fmean)] =
∫

wt(t− t0)E[X(t1)X(t0)]dt0.

Setting t = t1 +τ yields

CXY(τ )=wt �CXX(τ ), or ŵt(ω)= SXY(ω)

SXX(ω)
. (23.2)

This formula is formally identical to that obtained in the previous chapter from the neuron’s firing rate.
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336 23. REVERSE-CORRELATION AND SPIKE TRAIN DECODING

We now assume that the stimulus, X, is Gaussian white noise. Recall from Chapter 16 that Gaussian white noise has
an autocovariance function that is a Dirac delta function, Eq. (16.6). Thus, Gaussian white noise is totally uncorrelated
in time and each frequency is equally well represented since its power spectrum is constant, independent of frequency,
Eq. (16.15). Such stimuli allow us to determine the receptive field weighting function of a neuron directly from the
time of occurrence of single spikes. To see how this arises, first note that since CXX(t)=σ 2δ(t), the right hand side of
Eq. (23.2) reduces to σ 2wt(τ ). To obtain from the left hand side an expression that depends explicitly on the time of
spike occurrences, we first observe that

E[(Y(t+τ)− fmean)X(t)] =E[Y(t+τ)X(t)],

because E[X(t)] =0. We can now replace the average over the Gaussian white noise ensemble by a time average,
assuming that the ergodicity property holds:

E[Y(t+τ)X(t)] = 1
T

T∫
0

Y(t+τ)X(t)dt.

If we evaluate the right hand side when Y is a spike train, we see that

1
T

T∫
0

Y(t+τ)X(t)dt = 1
T

T∫
0

N∑
i=1

δ(t+τ − ti)X(t)dt = 1
T

N∑
i=1

X(ti −τ)= fmean

N

N∑
i=1

X(ti −τ).

Summing up,

wt(τ )= fmean

σ 2

(
1
N

N∑
i=1

X(ti −τ)
)

. (23.3)

In other words, the transfer function wt at time τ is given by the spike-triggered average of the random stimulus
values τ ms prior to each spike. Because of the time reversal between the left and right hand side of Eq. (23.3), this
method is called reverse-correlation. In practice, the frequency domain formulation of Eq. (23.2) is more practical to
use than Eq. (23.3).

Figure 23.1 illustrates the implementation of the reverse-correlation method using either a broad band white noise
stimulus with a cut-off frequency of 500 Hz, or a narrower band one, with a cut-off frequency of 50 Hz (black and red
traces in panel A, respectively). The corresponding temporal receptive fields computed by reverse-correlation from
the spike trains illustrated in panel B are plotted in panels C and D, respectively.

Generalization and equivalence with other receptive field mapping techniques. The reverse-correlation method can
be extended to determine the spatial structure of a neuron’s receptive field in addition to its temporal structure. This
is accomplished by presenting spatio-temporalwhite noise and by keeping track of where the stimulus was presented
in space as well as in time. The reverse-correlation technique was first developed to characterize the properties of
auditory neurons, and has by now been successfully used to estimate the weighting functions of many types of
neurons, including retinal, LGN, and cortical simple cell receptive fields, for example. An example of a simple cell
receptive field obtained by reverse-correlation is illustrated in Figure 23.2.

Three assumptions have to be kept in mind when reverse-correlation is applied to determine the receptive field of
a neuron: (i) ergodicity, (ii) stationarity, and (iii) linearity of the response. If, e.g., the response properties of a neuron
depend on the specific frequency content of the stimulus, then the receptive field mapped by presenting sinusoidal
stimuli at various frequencies could turn out to be very different from that obtained with white noise, in which all
frequencies are presented simultaneously. Of course, this is ruled out by the assumption of linearity. In practice, the
receptive fields obtained with different stimuli (e.g., sine waves or white noise) have yielded comparable results in
several cell types. One advantage of using white noise is simplicity: only a single stimulus type is used throughout the
experiment. The frequency content ( fNyquist) of the white noise stimulus should be chosen high enough to exceed the
maximal frequency to which a neuron is sensitive. This does not pose substantial problems in the visual system where
both spatial and temporal cut-off frequencies are usually low. On the other hand, high cut-off frequencies will increase
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FIGURE 23.1 A. Sample path of white noise stimuli with cut-off frequencies of 500 Hz (black) and 50 Hz (red), respectively. B. Firing rate vector
obtained by convolving the 500 Hz and 50 Hz cut-off frequency stimuli with the LGN filter (black and red lines, respectively). The corresponding
spike trains (black and red at bottom and top, respectively) are sample paths of an inhomogeneous Poisson process. C. Reverse-correlation between
the 500 Hz cut-off frequency stimulus and spike train (black line) and LGN filter (red dashed line). The inset shows the estimate from the firing
rate (black line) and the LGN filter (dashed red line). D. Reverse-correlation between the 50 Hz cut-off frequency stimulus and spike train (black
line). The LGN filter is shown by the dashed red line. (lgn_revcor_wn3.m)

(A) (B)

1� 1�

FIGURE 23.2 Two-dimensional spatial response profiles of two different simple cell receptive fields. A. This cell had a strong bright (ON)
excitatory region and a weaker dark (OFF) inhibitory region with a somewhat longer extent. B. In this cell, the bright excitatory region is stronger
than the dark inhibitory region but their sizes are comparable. Adapted from Jones and Palmer (1987).

the noise in the estimate of the transfer function, as illustrated in Figure 23.1C and D. However, it should be pointed
out that typically as one progresses deeper within the nervous system, white noise mapping works increasingly less
well. This is due to the fact that neurons become increasingly specific in their responses the farther they are from the
sensory periphery and, accordingly, highly artificial stimuli like white noise become increasingly less effective and
relevant.

Just as derived in §22.3 using Bussgang’s theorem, Eq. (23.2) can be applied to obtain the linear weighting function
of a receptive field even in cases where linear processing is followed by a static nonlinearity, such as those described
in Chapter 20. This is, e.g., the case in simple cells, where the firing rate is thought to be described by linear weighting,
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followed by half-wave rectification. Other nonlinear transformations such as the one required to model the response
of complex cells as in the motion-energy model of §21.4 will cause the basic reverse-correlation method to fail. The
characterization of such receptive fields through random stimuli is still possible, but requires more sophisticated
techniques.

23.2 STIMULUS RECONSTRUCTION

Up to now we have used random stimuli to describe the mapping from stimulus to neuronal firing rate. The firing
rate can in turn be converted into a spike train by assuming that spikes are generated according to an inhomogeneous
Poisson process. The converse problem consists in using the spike train of a neuron to estimate the stimulus. This
technique allows one to evaluate how much “information” a single neuron’s spike train conveys about a random,
time-varying stimulus. Of course, we could also present a stimulus several times to estimate the firing rate of the
neuron and carry out the reconstruction from the instantaneous firing rate (Exercise 2). This will in general improve
the reconstructions by averaging out noise from single spike trains.

If we denote by X(t) a zero mean random stimulus and by Y(t) the corresponding spike train with the mean firing
rate subtracted, the optimal linear reconstruction filter minimizing the mean square error, ε2, between the stimulus
and its estimate is given in §18.1 by

ĥ(ω)= SYX(ω)

SYY(ω)
.

In other words, it is obtained by computing the Fourier transform of the cross correlation between the spike train and
the stimulus, as well as its power spectrum. If we define the noise in the reconstructions as the difference between
the stimulus and its estimate, N(t)=X(t)−(h�Y)(t), then the mean square error is equal to the variance of the noise
ε2 =E[N(t)2 ]. In the worst case, where the spike train does not provide any information about the time-varying
stimulus, the best estimate is the stimulus mean, which is equal to zero. Therefore, in this case the mean squared error
is equal to the variance of the stimulus, σ 2. We can thus define the normalized error, εn =ε/σ , which characterizes the
accuracy of the reconstruction as a fraction of the stimulus standard deviation. The coding fraction γ =1−εn is the
fraction of the stimulus encoded in units of the stimulus standard deviation. In the frequency domain, the signal-to-
noise ratio is defined from the power spectrum of the stimulus and noise as

SNR(ω)= SXX(ω)

SNN(ω)
≥1. (23.4)

The signal-to-noise ratio is identically equal to one when the normalized error is equal to 1. The spike train will carry
information about any frequency ω for which SNR(ω)>1.

Figure 23.3 illustrates the reconstruction of white noise with a cut-off frequency of 10 Hz (panel A, top) from two
spike trains encoding the positive and negative part of the stimulus, respectively (panelA, bottom). The spike trains are
inhomogeneous Poisson processes obtained after low-pass filtering the stimulus. In panel B, the signal-to-noiseratio is
illustrated as a function of frequency. Low-pass filtering causes a decrease in the SNR as frequency increases. Typically,
the quality of the reconstructions will depend on the firing rate of the neuron in relation to the cut-off frequency of
the stimulus, because higher and more rapid changes in firing rate allow one to better encode fast stimulus changes,
as illustrated in panel C. Panel D shows that as spike trains become more regular, the quality of the reconstruction
increases. This was achieved in this example by increasing the order of the gamma distribution determining the
neuron’s random threshold (Exercise 3). Figure 23.4 illustrates the reconstruction of random amplitude modulations
of an electric field from the spike train of a first order sensory neuron in weakly electric fish. In this case, a very
high estimation accuracy is obtained from a single spike train. The neuron can track with high accuracy the stimulus
because the typical interspike intervals are much shorter than the time scale of the stimulus fluctuations.

The optimal reconstruction filter can be computed analytically under the following two assumptions. First, we
assume that the firing rate and the stimulus are linearly related,

E[Y(t)−mY |X] =
∫

k(t− t0)X(t0)dt0 = (k�X)(t)

meaning that

E[(Y(t)−mY )X(t+τ)] =E[k�X(t)X(t+τ)] = k̃ �RXX(τ ).
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FIGURE 23.3 A. The top panel illustrates a sample path of a white noise stimulus with a cut-off frequency of 10 Hz (black) and its estimate
(red), obtained from the spike trains of two neurons encoding the stimulus positive and negative parts, respectively (mean firing rate: 50 spk/s).
The bottom panel illustrates the instantaneous firing rates of the two neurons, obtained by low-pass filtering the stimulus (exponential filter with
a time constant τ = 20 ms). The firing rate of the neuron encoding the negative part of the stimulus has been multiplied by −1 for clarity. The
corresponding spike trains above and below the instantaneous firing rates are sample paths of an inhomogeneous Poisson process with the depicted
instantaneous firing rates. B. Corresponding signal-to-noise ratio as a function of frequency computed from the stimulus and noise power spectra,
respectively. C. Normalized error as a function of the Poisson neurons’ mean firing rate. The black squares are obtained from simulations and
red circles analytically. D. Normalized error for random spike train models with decreasing spike train variability (n= 1 is a Poisson neuron and
n= 100 approximates an integrate and fire neuron). (rec_wn8.m)
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FIGURE 23.4 A. Example reconstruction from the spike train of a P-receptor afferent in weakly electric fish. These receptors encode ran-
dom amplitude modulations of an external electric field (stimulus) which, in this case is white noise with a cut-off frequency of ≈ 10 Hz
and a standard deviation equal to 0.24 of the mean stimulus amplitude. The neuron fires 314 spk/s (bottom spike train) and the estimated
stimulus is shown on top. The coding fraction equals 0.83 in this example. B. Signal-to-noise ratio computed as in Eq. (23.4). Adapted from
Gabbiani and Metzner (1999).

Second, we assume that for τ �=0,

E[(Y(t)−mY)(Y(t+τ)−mY) |X] =E[(Y(t)−mY) |X]E[(Y(t+τ)−mY) |X].

In other words, the correlation between single spikes is entirely determined by the stimulus since they are uncorrelated
given the stimulus. After averaging over the stimulus, we obtain for τ �=0

RYY(τ )= (k� k̃)�RXX(τ ),
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and hence

RYY(τ )=λδ(τ)+(k� k̃)�RXX(τ ).

Therefore the optimal filter is given by

ĥ(ω)= k̂∗(ω)SXX(ω)

λ+|k̂(ω)|2SXX(ω)
. (23.5)

This formula is formally identical to that obtained from the mean instantaneous firing rate (Exercise 2).

23.3 SUMMARY AND SOURCES

The reverse-correlation technique is a natural extension of the stochastic estimation techniques covered in
Chapter 22, since it is based on spike trains rather than instantaneous firing rates. It was originally developed for
auditory system neurons in the early seventies, see the review of Eggermont et al. (1983). Since then, it has been
rapidly extended to other sensory systems and is now part of the standard toolbox to characterize the receptive field
properties of neurons. The framework of stimulus reconstruction from spike trains of neuronal populations was pro-
posed by Gielen et al. (1988). Since then, it has been applied to many sensory systems. The stimulus reconstruction
method described in §23.2 is known as a Wiener–Kolmogorov filter in the engineering literature and was introduced
in Bialek et al. (1991). It allows one to assess how accurately the spike train of a single neuron conveys the dynamics of
a time-varying stimulus based on changes in its instantaneous firing rate. The analytical result, Eq. (23.5), is derived
in Gabbiani and Koch (1996) and Gabbiani (1996). For further results, see also Gabbiani and Koch (1998). The example
stimulus reconstruction illustrated in Figure 23.4 has an exceptionally high signal-to-noise ratio, the highest ever
reported in any sensory system to the best of our knowledge. For more typical values in the electrosensory system of
weakly electric fish, see Wessel et al. (1996).

23.4 EXERCISES

1. Replicate the results illustrated in Figure 23.1.
(i) Generate a white noise stimulus with a sampling step of 1 ms (yielding a cut-off frequency of 500 Hz) as in

Exercise 22.5.
(ii) Convolve this white noise stimulus with the same LGN filter as in Exercise 22.5, but with a peak at 20 spk/s.

(iii) Add a mean rate of 100 spk/s and clip the resulting firing rate below zero to obtain a positive rate.
(iv) Use this rate to drive an inhomogeneous Poisson process (time step dt =1 ms) and the resulting spike train to

estimate the optimal reconstruction filter (using tfestimate and ifft, as in Exercise 22.5).
(v) Repeat the same procedure, but use Exercise 18.12 to generate a white noise with a cut-off frequency of 50 Hz

sampled at dt =1 ms.
2. Given a random, zero mean stimulus X(t), assume that the changes in the instantaneous firing rate Y(t) of a neuron

are given by Y(t)= k�X(t)+N(t), where the noise term N(t) is zero mean and independent of X. Show that the
optimal reconstruction filter is

ĥ(ω)= k̂∗(ω)SXX(ω)

SNN(ω)+|k̂(ω)|2SXX(ω)
. (23.6)

3. Replicate the results illustrated in Figure 23.3.
(i) Generate a white noise stimulus with a cut-off frequency of 10 Hz sampled at dt =0.5 ms and consisting of

524,288 sample points (see Exercise 18.12).
(ii) Low-pass filter the white noise using an exponential filter, exp(−t/τ), with τ =20 ms.

(iii) Scale the resulting waveform so that on average its positive and negative portions yield a mean firing rate
of 50 spk/s.

(iv) Use the resulting positive and negative portions to drive two inhomogeneous Poisson processes.
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(v) Combine the resulting spike trains, Xcomb(t)=
∑

i δ(t− ti pos)−∑
j δ(t− tj neg), where ti pos and tj neg are the spike

times of the two inhomogeneous Poisson processes encoding the positive and negative part of the stimulus,
respectively. Use Xcomb(t) to estimate the optimal reconstruction filter using tfestimate with a window of
8192 points and an overlap of 1/2 the window length.

(vi) Set to zero the filter components that are above/below ± the cut-off frequency of the white noise, since they
are irrelevant to the reconstruction.

(vii) Recover the optimal estimation filter in the time domain using ifft.
(viii) After “unwrapping” the filter (§7.2), use fftfilt to estimate the stimulus.

(ix) Finally, use pwelch, with an 8192 point window and 1/2 overlap, to estimate the power spectrum of the
stimulus and of the reconstruction noise. Derive the signal-to-noise ratio and plot it as in Figure 23.3B.

(x) Repeat for various firing rates to replicate Figure 23.3C.
(xi) Replace the exponentially distributed random threshold of the inhomogeneous Poisson process by a gamma

distributed random threshold (see Exercise 16.16) to arrive at Figure 23.3D.
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Signal detection theory, as its name implies, is the mathematical theory used to optimally detect signals embedded
in noise. If the noise is a random variable with a known probability distribution, then it is possible to exploit this
knowledge to determine an optimal method of detecting the signal. More generally, we may think of signal detection
in noise as the testing of a hypothesis with two alternatives: is the signal present or absent in the noisy background?
Under this formulation the theory is broadly applicable to neuroscience to quantify the information conveyed by
neurons or ensemble of neurons about sensory stimuli. In §§24.1–24.3 we introduce the basic concepts and results of
signal detection theory. In §§24.4 and 24.5 we generalize them to multidimensional signals, a step that allows us to
analyze the coding of information in populations of neurons and in the time-varying firing rate or membrane potential
of single neurons.

24.1 TESTING HYPOTHESES

We consider information encoded in spike trains under two noise models: Poisson and Gaussian.

Poisson noise model. Assume that a neuron responds with a mean number of spikes m1 in a given time interval
following a stimulus and a mean number m0 if no stimulus is present. The neuron could, e.g., be a retinal ganglion cell
and the stimulus a brief light flash, as considered in the next chapter. On a given trial when the stimulus is present,
the number of spikes will typically be variable and may follow a Poisson distribution, as assumed here. If we denote
the stimulus by s1, we may then write down the probability of observing k spikes given the stimulus:

P(k | s1)= mk
1

k!
e−m1 , k =0,1 . . .

Similarly, if no stimulus is present we call this condition s0 and,

P(k | s0)= mk
0

k!
e−m0 , k =0,1 . . .

(see Figure 24.1A). The questions that we are interested in addressing are the following: given that we observe k spikes
in a given trial, should we guess that the stimulus was present or absent and how should we decide between the two
alternatives? Given a decision rule, how accurate will our decision be?

343
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FIGURE 24.1 Signal detection using Poisson and Gaussian noise models. A. Distribution of the number of spikes for m0 = 2 (circles) and m1 = 4
(squares). B. Corresponding probabilities of detection as a function of the probability of false-alarm (triangles). The number next to each symbol
indicates the corresponding threshold in the number of spikes. As the threshold increases, the false-alarm rate decreases but so does the detection
rate. The asterisks correspond to the case m0 = 4 and m1 = 10. C. When the number of spikes is large a Gaussian approximation may be appropriate.
In this case n0 = 30, n1 = 50, and σn = 10. The vertical red line illustrates a possible threshold value and the corresponding probability of detection
(PD, hatched black) and false-alarm (PFA hatched red). D. Probability of detection as a function of the probability of false-alarm corresponding to
C (black trace). The red trace corresponds to the case d = 1. (poiss1.m)

For a fixed number of observed spikes, k, the probabilities P(k|s0) and P(k|s1) can be thought of as the likelihood
of observing k under conditions s0 and s1, respectively. Thus, a natural quantity to consider is the likelihood ratio,

lr(k)= P(k|s1)

P(k|s0)
= (m1/m0)

ke−(m1−m0).

The ratio lr(k) will be large when k is much more likely to originate from s1 than from s0 and vice-versa. Thus, a
plausible decision rule is to opt for s1 when lr(k) exceeds a threshold η, i.e.,

lr(k)≥η⇒ s1,
lr(k) <η⇒ s0.

We will now see that the choice of a particular value for the threshold η entails a trade-off between two types of error
that may arise in this detection task. But first, we note that one may consider the threshold logη on the log-likelihood
ratio l = loglr since the logarithm is monotone increasing. Because l = k(log m1 − logm0)−(m1 −m0) this decision rule
is equivalent to imposing a threshold on the number of spikes,

k ≥ kth ⇒ s1

k< kth ⇒ s0

with

kth = log(η)+m1 −m0

logm1 − logm0
.

This decision rule will result in two possible types of error:

1. Calling the stimulus present when it was not, i.e., a false-alarm.
2. Calling the stimulus absent when it was present, i.e., a miss.
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We denote the probability of false-alarm by PFA and the miss probability by PM . Of course, the probability of miss is
equal to 1−PD, where PD is the probability of correct detection of the stimulus. The probabilities of correct detection
and false-alarm are given by

PD =
∑

k≥kth

mk
1

k!
e−m1 , and PFA =

∑
k≥kth

mk
0

k!
e−m0 . (24.1)

Thus, fixing a threshold kth = k0 gives a probability of false-alarm PFA0 and a corresponding probability of correct
detection PD0 as determined by Eq. (24.1). If kth = k1 = k0 +1 then PFA1<PFA0 and PD1<PD0. Therefore, as we increase
the threshold, we decrease our probability of false-alarm at the expense of decreasing our probability of correct
detection. A plot of the probability of detection (PD) as a function of the probability of false-alarm (PFA) is called a
receiver-operating characteristic (ROC) curve, an arcane term that originated in the initial application of signal detection
theory to radar signals during World War II. The ROC curve fully characterizes the performance of the decision rule
based on a threshold number of spikes (Figure 24.1B).

Randomized decision rules. What if we would like to obtain a probability of correct detection between PD1 and PD0,
say (PD1 +PD0)/2? This can be achieved by the following strategy: if k ≥ k0 +1 choose s1 and if k< k0 choose s0. If k = k0
choose s0 with probability 1/2 and s1 with probability 1/2. This corresponds to using the decision rule determined
by k0 and the one determined by k0 +1 with probability 1/2 and yields a probability of correct detection that is the
average of those two decision rules, i.e., (PD1+PD0)/2. Such a decision rule is called a randomized decision rule.Although
this may seem rather artificial at this point, we will see in §24.2 how this example helps one understand a fundamental
result of optimal decision rules called the Neyman–Pearson lemma. Two ROC curves for such a decision rule are
plotted in Figure 24.1B.

Gaussian noise model. We now consider the situation where the observed random variable is continuous. This
could, e.g., be the peak membrane potential of a neuron following the stimulus. Alternatively, in a spiking neuron
this situation will occur if the distribution of spikes can be approximated by a Gaussian density. We thus assume

p(n|s0)= 1√
2πσn

e−(n−n0)
2/2σ 2

n and p(n|s1)= 1√
2πσn

e−(n−n1)
2/2σ 2

n . (24.2)

In this case the log-likelihood ratio l is given by:

l = n1 −n0

σ 2
n

(
n− n1 +n0

2

)
(24.3)

(Exercise 2). Just as in the Poisson case, imposing a threshold on the likelihood ratio is equivalent to imposing a
threshold on the number of spikes n. Moreover, since l is a linear transform of n, it will be a Gaussian random variable
when n is Gaussian. This is of course the case under assumptions s0 and s1 and after defining d2 = (n1 −n0)

2/σ 2
n it

follows that

p(l | s0)∼N (−d2/2,d2) and p(l | s1)∼N (d2/2,d2) (24.4)

(Exercise 3). From this result we can compute the probability of false-alarm and detection given the threshold ξ

imposed on l. The probability of false-alarm and correct detection are given by

PFA =
∞∫
ξ

p(l | s0)dl and PD =
∞∫
ξ

p(l | s1)dl

and a change in integration variables shows that

PFA =1−�(ξ0) and PD =1−�(ξ0 −d) (24.5)
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with ξ0 = (ξ+d2/2)/d and

�(x)= 1√
2π

x∫
−∞

exp(−y2/2)dy.

This last expression is the cumulative probability function of the unit Gaussian random variable, see Exercise 4. The
minimum error is achieved for ξ =0 and the corresponding probability of correct response, PC, is given by

PC =1−�(−d/2). (24.6)

Note also that d2 plays the role of a “signal-to-noise ratio” since it measures the squared distance between the means
of the likelihood distributions normalized by their variance (Eq. (24.4)). This example is illustrated in Figure 24.1C
and D.

24.2 IDEAL DECISION RULES

We are now ready to define more precisely the decision rules introduced above and to state the basic result asserting
that optimal (ideal) decisions are always based on the likelihood ratio. Let X be the set of values that can be taken by
the observed variable under s0 and s1, irrespective of whether stimulus 0 or 1 is presented. In the first example above,
X =N (positive integers) and in the second example, X =R (real numbers). A decision rule (or equivalently a test) is a
map φ : X →{0,1} assigning to each possible observation x ∈X either stimulus s0 or stimulus s1.

There are many ways of defining ideal or optimal decision rules depending on the optimality criterion chosen. We
focus on the Neyman–Pearson and minimum error criteria. A Neyman–Pearson ideal observer is one that maximizes
the probability of detection PD for a fixed value, say α, of the probability of false-alarm, PFA. Such a decision rule
is called the most powerful test of size α. The achieved probability of correct detection, β, is called the power of the
test. A minimum error ideal observer is one that minimizes the probability of error ε or equivalently maximizes the
probability of correct decisions, PC. If the stimulus is presented in one half of the trials, then ε= (PFA +1−PD)/2.
Clearly, the minimum error ideal observer will be most powerful of size α, where α is equal to the probability of false-
alarm corresponding to the minimum error. Thus, characterizing the ideal, Neyman–Pearson observer also yields a
characterization of the ideal, minimum error observer. The fundamental result is the following:

Neyman–Pearson lemma. Let P0 and P1 be two probability distributions with densities p0 and p1 corresponding to
two conditions s0 and s1. A test of the form

φ(x)=

⎧⎪⎨
⎪⎩

1 if p1(x)> k p0(x),

γ if p1(x)= k p0(x),

0 if p1(x)< k p0(x),

for some threshold k ≥0 and a number 0 ≤γ ≤1 is the most powerful test of size α>0. When φ(x)=0 choose s0 and
when φ(x)=1 choose s1. If φ(x)=γ flip a “γ -coin” and choose s1 with probability γ (the probability that the coin
turns up heads). The test defined above is essentially unique (up to changes on a subset of values x ∈X with zero
probability of occurrence).

The test may also be formulated in terms of the likelihood ratio, i.e.,

φ(x)=

⎧⎪⎨
⎪⎩

1 if lr(x)> k,

γ if lr(x)= k,

0 if lr(x)< k.

Proof.∗ First we note that if α is the size of the test φ, and β its power, then

α=PFA =E[φ(x) | s0], and β=PD =E[φ(x) | s1].
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Next, define

D>={x : p1(x)−kp0(x)>0}, D<={x : p1(x)−kp0(x)<0}.

Consider a test φ�(x), 0 ≤φ�(x)≤1, with a smaller size than φ:

α�=E[φ�(x) | s0] ≤E[φ(x) | s0] =α. (24.7)

Then the following inequality holds:

∫
X

(φ(x)−φ�(x))(p1(x)−kp0(x))dx ≥0. (24.8)

This follows by writing the integral in Eq. (24.8) as a sum of two integrals over the domains D> and D<. On D>, we
have (1−φ�(x))≥0 and (p1(x)−kp0(x))>0 so that their product in Eq. (24.8) is positive. Similarly, on D< we have
(0−φ�(x))≤0 and (p1(x)−kp0(x))<0, thus establishing the inequality. By carrying out the multiplication on the left
hand side of Eq. (24.8) we obtain (β−β�)+k(α�−α)≥0 and combining this with Eq. (24.7)

β−β�≥ k(α−α�)≥0.

This shows that the power of φ� cannot be larger than that of φ. To choose the threshold, write the size α as follows:

α=E[φ(x) | s0] =1−P
(

p1(x)≤ kp0(x) | s0
)+γP

(
p1(x)= kp0(x)

)
.

If there exists a k0 such that

P
(

p1(x)≤ kp0(x) | s0
)=1−α (24.9)

then we select it as the threshold and set γ =0. Otherwise, select k0 such that

P
(

p1(x)< k0p0(x) | s0
)
<1−α≤P

(
p1(x)≤ k0p0(x)|s0

)
.

Then use k0 to solve for γ from the following equation:

γP
(
p1(x)= k0p0(x) | s0

)=P
(
p1(x)≤ k0p0(x) | s0

)−(1−α).

In most cases, the probability that lr(x)= k is effectively zero, which implies γ =0. In the Gaussian noise model of
the previous paragraph for example, both probability densities are Gaussians and thus probabilities are only nonzero
over intervals of finite length. In such cases, Eq. (24.9) tells us that the threshold k is determined by

α=P(lr> k | s0)=
∞∫

k

q(lr | s0)dlr, (24.10)

where q(lr|s0) is the probability distribution of the likelihood ratio when s0 is in effect. The probability of correct
detection is similarly given by

PD =
∞∫

k

q(lr | s1)dlr. (24.11)

In the case of the Poisson noise model, the probability of false-alarmαmay lie between two valuesα0 andα1 determined
by discrete thresholds k0 and k1. When this occurs, one sets k = k1 and a randomized test is needed.
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Minimum error test. Assume that s0 and s1 are presented with equal probability (1/2). In the Gaussian model of the
previous section, the minimum error test is a likelihood ratio test with threshold k =1 (Exercise 4). In the next section,
we will show that this holds independent of the Gaussian assumption. The minimum error test can also be determined
directly from the ROC curve by computing (PFA +1−PD)/2 as a function of PFA and selecting the minimum value.

24.3 ROC CURVES*

ROC curves have some important properties. First note that the diagonal PD =PFA corresponds to chance perfor-
mance while perfect performance essentially means PD =1 independent of PFA. In addition, ROC curves are concave
and their slope determines the threshold value of the corresponding optimal test.

Concavity of ROC curves. The fact that ROC curves are concave follows by an argument similar to that used in the
first example of §24.1. If we have two points (tests) (PFA1,PD1) and (PFA2,PD2) on a ROC curve, the randomized tests
built as linear combinations of these two tests yields a straight line connecting the two points. The most powerful
tests of the Neyman–Pearson lemma have to be at least as performant as the randomized tests, i.e., they have to lie
above the straight line connecting (PFA1,PD1) and (PFA2,PD2). By definition, this means that an ROC curve is concave.

Slope of ROC curves. The slope of an ROC curve is the threshold value of the corresponding Neyman–Pearson test.
This means that

dPD

dPFA

∣∣∣∣
α

= k, (24.12)

where k is determined by Eq. (24.10). Since the likelihood ratio is greater than or equal to zero, k is as well, and
Eq. (24.12) implies that the ROC curve cannot decrease.

Proof. To derive Eq. (24.12) first note that

E[lnr (x) | s1] =
∫

p1(x)
pn

1(x)
pn

0(x)
dx =

∫
p0(x)

pn+1
1 (x)

pn+1
0 (x)

dx =E[ln+1
r (x) | s0].

This result may also be written as

∫
lnr q(lr |s1)dlr =

∫
ln+1
r q(lr|s0)dlr, for n=0,1, . . .

and implies that

lrq(lr|s0)=q(lr |s1). (24.13)

We can now compute

dPD

dPFA
= dPD

dk
dk

dPFA
= q(k|s1)

q(k|s0)
= k.

Eq. (24.13) can be used to show from Eqs. (24.10) and (24.11) that the minimum error always occurs for k =1
(Exercise 5).

24.4 MULTIDIMENSIONAL GAUSSIAN SIGNALS*

We now generalize the one-dimensional Gaussian model of §24.1 to the multidimensional case. This will allow us
to treat two examples: (i) signal detection using neuronal populations and (ii) signal detection using time-varying
neuronal responses.
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Assume a population of k neurons whose spikes number vX = (X1, . . . ,Xk)
T follow a multidimensional Gaussian

distribution under assumptions s0 and s1, with the same covariance matrix C:

p(x|s0)= 1
(2π)k/2

1
|det C|1/2 exp(−(x−n0)

T C−1(x−n0)/2),

p(x|s1)= 1
(2π)k/2

1
|det C|1/2 exp(−(x−n1)

T C−1(x−n1)/2).

The log-likelihood ratio is given by

l(x)= (n1 −n0)
TC−1(x−x0), x0 = 1

2
(n0 +n1) (24.14)

(Exercise 6). Therefore l(x)=wT(x−x0) with w =C−1(n1 −n0). Thus the maximum likelihood decision rule assigns
an observed set of firing rates to s0 or s1 depending on whether its scalar product with w is greater or smaller than a
fixed threshold η. Geometrically, this corresponds to assigning firing rate vectors on either side of a line perpendicular
to w to the alternatives s0 and s1, respectively. This is illustrated in Figure 24.2 for the threshold value η=0 which
corresponds to the minimum error test.

Note that since l(x) is a linear function of x, it is a Gaussian random variable whenever x is Gaussian. Under s1,
x ∼N (n1,C) and

l1 =E[l | s1] = 1
2

wT(n1 −n0) (24.15)

(Exercise 7). Similarly,

E[(l− l1)2 | s1] = (n1 −n0)
T C−1(n1 −n0) (24.16)

(Exercise 8). If we define d2 = (n1 −n0)
T C−1(n1 −n0) then l1 =d2/2 and l ∼N (d2/2,d2) under s1 (Exercise 9). The

corresponding equations for s0 show that l ∼N (−d2/2,d2) under s0. Therefore d2 is again the “signal-to-noise ratio”
for this signal detection task, just as in the one-dimensional case.

We first consider the example of a population of k uncorrelated neurons that respond to s0 and s1 with mean
firing rates n0 and n1, respectively. If the noise has uniform variance, σ 2

n , we have C=σ 2
n I. Therefore C−1 = I/σ 2

n ,
w = (n1 −n0)/σ

2
n , and d2 =‖n1 −n0‖2/σ 2

n . For each neuron i let νi =n1i −n0i be the mean difference in firing rate
between conditions s0 and s1 (ν =n1 −n0). The average firing rate difference and its variance across the population
are given by

μν = 1
k

k∑
i=1

νi, σ 2
ν = 1

k

k∑
i=1

(νi −μν)2. (24.17)

w

n0

n1

x0

x x�x0

FIGURE 24.2 The dashed red line that lies perpendicular to the vector w and intersects with x0 corresponds to the set of vectors x such that
l(x)= 0. Other values of the log-likelihood threshold η correspond geometrically to lines parallel to the red line.
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The signal-to-noise ratio for a single neuron is given by d2
si =ν2

i /σ
2
n and its average across the population is

E[d2
s ] = 1

k

k∑
i=1

d2
si =

1
σ 2

n
(μ2
ν +σ 2

ν ). (24.18)

We may now rewrite the signal-to-noise ratio for the population in terms of the mean signal-to-noise ratio for single
neurons:

d2 = kE[d2
s ].

Therefore, the signal-to-noise ratio rises linearly with the number of neurons. If the neurons are uniformly correlated,
the covariance matrix is given by

C= (Cij), Cij =σ 2
n (δij +c(1−δij)), i, j =1, . . . ,k,

where δij is the Kronecker delta and c is the correlation coefficient between any two neurons of the population. The
inverse of C is

C−1 = (C−1
ij ), C−1

ij = 1
σ 2

n
(aδij +b(1−δij)), (24.19)

with

a= −(1+(k−2)c)
(k−1)c2 −(k−2)c−1

, b= c
(k−1)c2 −(k−2)c−1

(24.20)

(Exercise 10). We may now compute the signal-to-noise ratio

d2 =νTC−1ν = 1
σ 2

n

⎛
⎝a

k∑
i=1

ν2
i +b

k∑
i=1

νi

k∑
j=1,j �=i

νj

⎞
⎠. (24.21)

After some algebra we obtain

d2 = μ2
ν

σ 2
n

(
k

kc−c+1
+ k

1−c
σ 2
ν

μ2
ν

)
(24.22)

(Exercise 11) and by using Eqs. (24.17) and (24.18) above we can rewrite this expression in terms of the mean single
neuron signal-to-noise ratio E[d2

s ] and the squared coefficient of variation of the firing rate difference across the
population, ρ=σ 2

ν /μ
2
ν ,

d2 =E[d2
s ]

k
1+ρ

(
1

kc−c+1
+ ρ

1−c

)
(24.23)

(Exercise 12). If the population response is homogeneous (ρ=0) then d2 saturates for large k, d2 → E[d2
s ]/c (k →∞).

In contrast, if there is variability in the population response (ρ �=0) the signal-to-noise ratio still grows linearly with
the number of neurons:

d2 → kE[d2
s ]

ρ

1+ρ
1

1−c
as k →∞,

albeit more slowly than for independent neurons. Thus we are led to the important conclusion that inhomogeneities
in the population response improve coding in this case (Figure 24.3).
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FIGURE 24.3 Plot of the signal-to-noise ratio of a population (d2) normalized by the average single neuron signal-to-noise ratio (E[d2
s ]) as a

function of the number of neurons in the population. The dashed line is the case where c = 0. The other curves are for c = 0.1 and three values of ρ
(0, 0.5, and 1, respectively). The case ρ= 0 corresponds to a uniform population. (sdpop.m)

The multidimensional Gaussian result, Eq. (24.14), also allows us to consider the detection of signals based on a
time-varying firing rate rather than its mean over a fixed interval of length T. For concreteness, we assume a fixed
sampling interval �t =10 ms and describe the time-varying firing rate x(t) by its samples (x(�t), . . . ,x(n�t)) over
[0,T]. In condition s1, a stimulus presented at time zero elicits a response in a neuron that consists on average of a
time-varying increase in firing rate above baseline, followed by a smaller and longer lasting decrease. The average
response, f (t), under s1 is illustrated by the red line in Figure 24.4A, while the baseline firing rate ( f0) in condition s0 is
illustrated by the dashed black line. We also assume that the firing rate samples x(i�t), i =1, . . . ,n are independent and
Gaussian distributed, with a standard deviation of 5 spk/s. Thus, the covariance matrix between firing rate samples
along the trial is diagonal. Since the average firing rate over the entire interval (T =250 ms) is nearly the same under
both conditions, using the total number of spikes from a single trial to detect the stimulus leads to a poor performance
(Figure 24.4D, dashed line): the minimum error amounts to 0.49, only 1% better than chance, which lies at 0.50. A
better strategy is to use the mean firing rate or the number of spikes over the first 50 ms of the trial, since the firing
rate difference between the two conditions is highest there. As illustrated in Figure 24.4B and D, this leads to a better
performance (error: 0.25). According to Eq. (24.14), optimal detection is obtained by correlating the time-varying firing
rate sample relative to baseline, x(t)− f0, with the vector f (t)− f0. This is often called a matched filter, a concept already
encountered in §14.3 and Exercise 14.7. As illustrated by the red line in Figure 24.4C and D, this leads to the best
performance (error: 0.17).

24.5 FISHER LINEAR DISCRIMINANT*

If the Gaussian distributions characterizing the observed data under the two stimulus conditions s0 and s1 have
different covariances, i.e.,

p(x|s0)∼N (n0 ,C0), p(x|s1)∼N (n1 ,C1)

then the log-likelihood ratio has a quadratic dependence on x, leading to a complicated optimal decision rule that
cannot be expressed in closed form. An alternative is to project x onto a vector w so that its assignment to s0 or s1 is
based on the condition

l̃(x)=wTx≷ ξ ,

just as in Eq. (24.14). The function l̃(x) is called a linear discriminant function. Of course the decision rule is not
optimal in the sense of §24.2 and its performance will depend on the choice of an appropriate vector w. To motivate
the selection of w, first note that l̃(x) is Gaussian under s0 and s1, i.e., p(l̃|s0)∼N (μ0 ,σ 2

0 ) and p(l̃|s1)∼N (μ1 ,σ 2
1 ),

with

μi =wTni and σ 2
i =wTCiw, i =0,1.
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FIGURE 24.4 A. Simulated mean firing rate of a neuron in response to a brief stimulus at time zero (red line) and in response to no stimulus
(black dashed line). The corresponding dots were obtained by assuming that in a single trial the firing rate follows a Gaussian distribution centered
around its mean with a standard deviation of 5 spk/s. At each sampling point i�t, ten different samples are depicted for s0 and s1 and have been
slightly shifted in time for better visibility. B. Distribution of the mean firing rate averaged over the first 50 ms after stimulus presentation in the
absence (blue) and presence of the stimulus (red). C. Distribution of the log-likelihood ratio obtained by projecting each trial onto the matched
filter associated with the neuron’s response. D. ROC curves computed for the mean firing rate on the first 50 ms of the trial (black) and using the
matched filter (red). The dashed line is the ROC curve computed with the mean firing rate over the 250 ms of the response and is close to chance
level. (matched.m)

We can therefore look for a vector w that maximizes the squared distance betweenμ0 and μ1. However, an increase in
(μ1 −μ0)

2 is only meaningful if the scatter of the distributions is not increased in the process. For example, multiplying
w by λ>0 will increase the squared difference between μ0 and μ1, but since σ0 and σ1 are increased proportionally,
this does not improve classification. Thus, only the direction of w matters. A natural measure of scatter is the average
of the variances of the projected distributions, (σ 2

0 +σ 2
1 )/2, and we therefore maximize

f (w)= (μ1 −μ0)
2

(σ 2
0 +σ 2

1 )/2
= wT(n1 −n0)(n1 −n0)

Tw

wT(1
2 C1 + 1

2 C0)w
.

Note that f (λw)= f (w) and therefore f depends only on the direction of w, as expected. Note also that when σ1 =σ2
the first equality shows that f (w) is equal to the signal-to-noise ratio d2 of §24.1. The vector w that maximizes this
quotient can be obtained as in Exercise 14.7. Alternatively, if we define Sn = (n1 −n0)(n1 −n0)

T and SC = (C1 +C0)/2
then f (w)= (wTSnw)/(wTSCw) and the vector w that maximizes f must satisfy the following equation:

Snw =λSCw or, equivalently S−1
C Snw =λw where λ= f(w) (24.24)

(Exercise 13). Note that the matrix Sn is simply a projection onto the vector n=n1 −n0 since Snw = (nT w)n. Therefore,
a solution to Eq. (24.24) is given by w =S−1

C (n1 −n0). If C0 =C1 this reduces to the solution of Eq. (24.14). An example
is illustrated in Figure 24.5 below.

We illustrate the use of a Fisher linear discriminant in Figure 24.6. Panel A shows the spike train of a pyramidal
cell in the electrosensory lateral line lobe (ELL) of weakly electric fish in response to a random electric field amplitude
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FIGURE 24.6 A. Random electric field amplitude modulation (top) and simultaneous recording of an I-type pyramidal cell in the ELL of weakly
electric fish. This neuron fires isolated spikes and short spike bursts in response to downstrokes in the amplitude modulation (indicated by *’s).
B. Fisher linear discriminant (feature) allowing to distinguish stimuli preceding spikes and no-spikes after simultaneous binning of the stimulus
and spike train (10 ms bins). C. Distribution of the stimuli projected on the feature vector split in three categories depending on whether no-spike,
an isolated spike or a burst occurred in the associated bin. These distributions correspond to distributions projected on the optimal discrimination
direction of Figure 24.5. D. Corresponding ROC curves for an ideal observer based on the distributions in C. Adapted from Gabbiani et al. (1996).
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modulation. These neurons receive input from the P-receptor afferents discussed in Figure 23.4. In contrast to the
P-receptor afferents, however, pyramidal cells fire at fairly low rates. Thus, they are unable to encode the detailed
time course of a random amplitude modulation as carried out at the sensory periphery by the afferents. By discretizing
the time axis in 10 ms bins, we can consider the two distributions of stimuli preceding each bin that contains a spike
or not. A Fisher linear discriminant applied to these two distributions (Figure 24.6B and D) reveals that the pyramidal
cells encode well the occurrence of downstrokes or upstrokes in the electric field amplitude modulation, depending
on the particular pyramidal cell under consideration. The occurrence of these features is particularly well encoded
by short bursts of spikes. Thus, pyramidal cells act as feature detectors, extracting information that is behaviorally
relevant to the animal while discarding much of the detailed time-varying information originally sampled at the
periphery. The mode of operation of pyramidal cells (bursting vs. nonbursting) is actually controlled by feedback
pathways, as illustrated in Figure 10.6. This example illustrates that “information” is a relative concept in the context
of the nervous system. It may have different meanings at different stages of a sensory pathway and may even be
dynamically modulated depending on the activation of feedback pathways.

24.6 SUMMARY AND SOURCES

Signal detection theory, as introduced here, is one of the most versatile tools used by neuroscientists to analyze
experimental data and formulate theoretical models. It has been applied in countless cases, from the analysis of ionic
currents to that of cognitive systems. In this chapter, we have seen how it can be used to analyze single neuron spike
counts, the time-varying firing rate of a neuron in response to a stimulus, and population activity. We will encounter
further applications of signal detection theory in the next chapter. Most of the material covered in this chapter can
be found in many textbooks on statistical signal processing. We recommend Scharf (1991) and Duda et al. (2000) for
the material covered in §24.5. The derivation leading to Eq. (24.23) follows Sompolinsky et al. (2001). The variable ρ
in Eq. (24.23) corresponds to κ/(1−κ) in Sompolinsky et al. (2001). See Borghuis et al. (2009) for an application of the
matched filter illustrated in Figure 24.4. In deriving Eq. (24.13) we have assumed that both distributions q(lr|s0) and
q(lr|s1) are determined by their moments, the so-called moment problem. For further information, see, e.g., Billingsley
(1995, §30).

24.7 EXERCISES

1. Reproduce Figure 24.1.
2. Prove Eq. (24.3).
3. Show that the mean and variance of l under the assumptionthat n is Gaussian with mean n0 (resp. n1) and variance
σ 2

n are given by −d2/2 (resp. d2/2) and d2.
4. Compute PFA and PD under the Gaussian model, Eq. (24.5). Use these results to show that the minimum error occurs

for a log-likelihood ratio ξ =0 or equivalently a likelihood ratio k =1. Compute the correct response probability,
PC, when the error is minimum.

5. Prove that ε(k)= (PFA (k)+1−PD(k))/2 has a minimum at k =1 under the assumption that q(lr|s0) �=0 for lr �=0. In
this equation, PFA(k) and PD(k) are defined through Eqs. (24.10) and (24.11), respectively. Hint: Differentiate with
respect to k and use Eq. (24.13).

6. †Prove Eq. (24.14).
7. †Prove Eq. (24.15).
8. Prove Eq. (24.16).
9. †In the context of Eqs. (24.15) and (24.16), show that l1 =d2/2 and l0 =−d2/2 under s1 and s0, respectively.

10. Prove Eqs. (24.19) and (24.20).
11. Derive Eq. (24.22) from Eq. (24.21).
12. Derive Eq. (24.23) from Eq. (24.22).
13. Prove Eq. (24.24). Hint: Argue that the matrix SC is positive definite, given that C0 and C1 are, and use its Cholesky

decomposition, SC =UT U to rewrite

f (w)= xT(U−1)T SnU−1x
xTx

where x =Uw. Now use the result derived in Exercise 18.15.
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Studying how sensory perception and behavior arise from the encoding and processing of information by nerve
cells and neuronal networks is one of the most fascinating and challenging aspects of neuroscience. The sensory stimuli
to which animal species respond and the behaviors that they elicit are so diverse that a multitude of approaches and
techniques have been devoted to this goal. We will focus on a very restricted set of sensory perception tasks involving
the detection of signals embedded in noise. These tasks have been studied at the level of individual human subjects, a
field called psychophysics. Many of the methods used in psychophysics are closely related to those originally developed
in signal detection theory. We will see how these methods can also be applied to study perception in animals and to
analyze neuronal signals, thus opening a way to relate perception and behavior to neuronal processing.

25.1 SINGLE PHOTON DETECTION

A series of experiments first reported in 1942 investigated the threshold of human subjects for detecting brief, weak
light flashes. The experimental conditions were carefully optimized to maximize the sensitivity of human subjects.
Prior to the task, the subjects were kept in the dark for at least 30 mins to ensure full dark-adaptation of their visual
system. The flashes were delivered at a horizontal distance 20 degrees away from the fovea in a region where the
density of rod photoreceptors is high. The area covered by the stimulus (10 mins of arc) was also optimized to yield
the highest sensitivity. Stimuli were presented for 1 ms and the wavelength of the light stimulus was 510μm (green,
Figure 19.1), a value at which the eye is known to be most sensitive for dim vision (Figure 19.2A). In the experiments,
the energy of the light flash or equivalently the mean number of photons delivered at the cornea was varied and the
frequency at which the observers detected the flashes was recorded.

The results of the experiments are illustrated in Figure 25.1. Typically, the number of photons at the cornea needed
to detect 60% of the flashes ranged between an average of 54 and 148 light quanta. Based on the data available at
the time, the authors estimated that 4% of the light would be reflected by the cornea, 50% of the remaining photons
would be absorbed by the ocular media before reaching the retina, and 80% of the light would pass through the retina
without being absorbed by photoreceptors. Thus, only about 9.6% of the photons available at the cornea could be
responsible for light detection in these experiments. This corresponds to an average of 5–14 light quanta. This number
is surprisingly small and suggests that absorption of two photons by the same photoreceptor is highly improbable.
In particular, if the area covered by the light stimulus contains, say, 500 photoreceptors then the likelihood of 2 out

355
Mathematics for Neuroscientists. DOI: 10.1016/B978-0-12-374882-9.00025-3
Copyright © 2010 Elsevier Inc. All rights reserved.



356 25. RELATING NEURONAL RESPONSES AND PSYCHOPHYSICS

(A) (B)

1 2 3
0

0.5

1 k0� 7

D
et

ec
tio

n 
P

ro
ba

bi
lit

y

1 2 3
0

0.5

1 k0� 6

(C) (D)

0.5

1 2 3
0

0.5

1

D
et

ec
tio

n 
P

ro
ba

bi
lit

y

Log10 (Mean nphotons/Flash)

k0� 5

�1 0 1 2
0

1

Log10 (Mean nphotons/Flash)

k0� 1 � 8

FIGURE 25.1 A–C. Experimental data from three subjects and corresponding fits using Eq. (25.1). D. Cumulative Poisson distribution for
k0 = 1−8. (hsp.m)

of 7 quanta being absorbed by the same photoreceptor is (7 ·6/2)/500 ≈0.04. Thus, one predicts that rods should be
sensitive to single photons and that the simultaneous absorption of a small number of them leads to conscious sensation.

Because the average number of absorbed photons is so small, one expects considerable fluctuations in the number
of photons absorbed from trial to trial. Thus, it is conceivable that a large fraction of the subject’s response variability
is caused by fluctuations in the absorbed photon number. If we assume that photon absorptions are independent
random events of constant probability, we expect their distribution to follow a Poisson distribution, just as the number
of photons emitted by the light source and observed at the cornea. Let a be the average number of absorbed photons for
a given average flash intensity. The authors assumed that a=αn, where n is the average number of photons measured
at the cornea and α is an attenuation factor related to the optical properties of the eye and retina. Let P(k) denote the
probability of k photons being absorbed, then

P(k)= ak

k!
e−a.

If a human observer sees the experimental light flash only when a fixed threshold number of photons k0 is absorbed,
we expect a probability of seeing the stimulus given by

PD(a)=
∑
k≥k0

ak

k!
e−a. (25.1)

The curves PD are plotted as a function of log10(a) for various values of k0 in Figure 25.1D. The average number of
absorbed photons (a) for a given average number of corneal photons (n) is of course unknown. If the probability
of seeing PD is plotted as a function of log10(n), the curve becomes identical in shape to that determined by PD
as a function of log10(a) except for a shift along the horizontal axis, since log10(a)= log10(n)+ log10(α). Fitting the
appropriate value of k0 to the experimental data then becomes very easy: it simply amounts to matching the curve’s
shape to that of the cumulative Poisson distributions of Eq. (25.1). Thus, the two parameters of the model, k0 and α,
are determined by the slope of the frequency of seeing the curve and its shift along the abscissa, respectively. The fits
obtained in Figure 25.1A and C for the probability of seeing as a function of the average number of corneal photons
matches well this expectation for values of k0 between 5 and 7.
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The dark light hypothesis. The experiment discussed above suggests that most of the variability in the observers’
responses is due to noise in the physical stimulus rather than biological noise. As pointed out a decade later, the
experimental design and its interpretation have, however, several shortcomings:

1. If rods are indeed sensitive to single photons, why would observers not be as well, given that biological noise is
assumed to be nonexistent?

2. The experiment described above is by itself somewhat ambiguous: an observer could always lower its threshold
and thus give the appearance of “seeing” better.

A solution to these two problems is obtained by interpreting the results differently and by proposing a modified
model of photon absorption. Although rods may be sensitive to single photons, it could be that several rods must be
activated simultaneously when a weak flash is detected to overcome biological noise. One plausible source of noise
is the random spontaneous decay of the rod photopigments (rhodopsin) in the absence of light. This decay would
give the illusion of photon arrival and thus the registration of a single photon would in turn be unreliable to signal
the presence of weak light flashes. Other sources of noise might result from central nervous system processing and
can be lumped together with spontaneous rhodopsin decay for modeling purposes.

Let us assume that in the absence of light the mean number of absorbed photons (dark light) is x and follows a
Poisson distribution. When presented with “blank” trials where no flash occurs, an observer is expected to report a
light flash (even if none occurred) in a fraction of the trials because of this noise. If we call PFA the probability of such
“false-alarms,” it is given by

PFA(x)=
∑
k≥k0

xk

k!
e−x. (25.2)

It depends both on the amount of noise (x) and the detection threshold (k0) of the observer. In the presence of a light
flash, the mean number of absorbed photons will be due both to absorption related to the light flash, αn, and to the
noise, x. If both processes follow independent Poisson distributions, their sum is also Poisson with mean a=αn+x
(Exercise 11.22). Thus,

PD(a)=
∑
k≥k0

(αn+x)k

k!
e−(αn+x). (25.3)

The model has three parameters (instead of two in the formulation of the previous section): the threshold level, k0,
the fraction of absorbed photons, α, and the “dark light level” x. Formally, Eqs. (25.2) and (25.3) are identical to
(24.1). Fitting the model to the data now becomes more complex because the parameters cannot be simply interpreted
geometrically. The additional parameter can be fit to the data by using the false-alarm rate obtained from presenting
“blank” trials. As illustrated in Figure 25.2A, the model offers good fits to the data collected in the experiments
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FIGURE 25.2 A. Example fit of the data taken from the same experiments as in Figure 25.1 with the dark noise model (the parameters are as
follows: α= 0.13, x = 8.9, k0 = 21). B. Fit of the dark noise model for one subject asked to be very conservative in detecting the flashes (crosses and
red curve, probability of false-alarms equal to zero) and less conservative (pluses and black curve, probability of false-alarms equal to 0.1). The
parameters are as follows: α= 0.13, x = 9.8, k0 = 19,17. (darknoise.m)
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described above. Typically, the fraction of absorbed photons α is predicted to be higher in the presence of noise x �=0;
this is consistent with later estimates of the probability of photon absorption (predicted to be higher, ≈20% than
at the time of the original experiment). Furthermore, by encouraging subjects to report less probable stimuli, the
threshold is observed to decrease in parallel with an increase in the probability of false-alarms (Figure 25.2B). This is
in agreement with point 2 above and emphasizes the needs to monitor thresholds with independent data.

Detection of light in dark-adapted retinal ganglion cells. How does the performance of neurons in detecting weak
light flashes compare with the observer’s performance? Since retinal ganglion cells are the first spiking neurons that
convey information to the central nervous system, it is natural to investigate their responses to such weak light flashes.
The experiments were performed in the cat using ON-center retinal ganglion cells and a representative experimental
result is illustrated in Figure 25.3. The stimulus consisted either of a weak light flash (five photons on average) of 10 ms
duration or of a “blank” trial. The spiking response of the retinal ganglion cell was recorded during a time window of
200 ms starting at flash onset. In the absence of light, the cell was spontaneously active with an average of 4.14 spikes
whereas in the presence of light the mean spike count was increased to 6.62. Does the distribution of spike counts
match the model described above? If this were the case, one would expect the spike counts to be Poisson distributed
both for the spontaneous and evoked response with a difference in means equal to the mean number of absorbed
photons,�m=qa =αn and a difference in variance �σ 2 =qa so that the Fano factor would be �σ 2/�m=1. However,
the experimentally measured difference in variance is usually larger than that expected from a Poisson distribution.
Let us assume that for each absorbed photon an average of λ spikes are produced. Then �m=λqa and�σ 2 =λ2qa so
that�σ 2/�m=λ. The variance in the evoked spike count distributions is consistent with the assumption that between
2 and 3 spikes are fired in response to each absorbed photon (i.e., 2 ≤λ≤3). Thus, the response of retinal ganglion
cells is consistent with a process of amplification of the absorbed photons at low light levels.

The performance of retinal ganglion cells at detecting light can be assessed by choosing a fixed threshold spike count
λthres and computing the corresponding probability of detecting the light flash in the above experiment. According to
§§24.1 and 24.2 this procedure is optimal in the case of Poisson spike trains. In a trial that consists with equal probability
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FIGURE 25.3 Responses of a single retinal ganglion cell to 5 quanta (average) of light. A. Poststimulus time histogram, 10 ms bin width, 100
repetitions. B. Spike count distributions in the presence (red outline) and absence (gray area) of the stimulus. C. ROC curve, i.e., probability of λthres
or more spikes in the presence of “dark light” only, PFA, vs. probability of λthres or more spikes in the presence of the flash plus “dark light”, PD.
Arabic numerals and black dots indicate different threshold values λthres . Roman numerals and crosses in red indicate values for an ideal detector
assuming α= 0.18, x = 6.5, and k0 = 14, respectively. Adapted from Barlow et al. (1971).
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of a light flash or a “blank,” the observer will report that a light flash occurred if λthres or more spikes are counted.
Otherwise the observer reports that no flash occurred (“blank” trial).As pointed out above, the probability of detection,
PD =P(λ≥λthres|flash) will of course depend on the selected threshold: decreasing λthres leads to higher probabilities
of detection. This is, however, offset by an increase in the probability of false-alarms, PFA =P(λ≥λthres|blank), i.e., the
probability of reporting a flash in a “blank” trial. A plot of PD as a function of PFA (i.e., an ROC curve) is illustrated in
Figure 25.3C for the retinal ganglion cell of Figure 25.3A. Each labeled dot (1,2,3, . . .) represents the performance for a
spike count threshold λtresh =1,2,3, . . . . Plotting PD as a function of PFA (instead of using directly the threshold λthres) is
a better representation of the data because this fully characterizes the performance of the observer and is independent
of the particular way in which the classification decision was made. This allows one to compare performance with that
of an observer based on the model in Eqs. (25.2) and (25.3): the Roman numerals correspond to the (PFA,PD) values
obtained from the model with parameters α=0.18, x =6.5 at detection thresholds of 1, 2, and 3 absorbed quantas,
respectively. Because this model accurately describes the psychophysical performance of human observers, it suggests
that the performance of single retinal ganglion cells is comparable to that of humans. This conclusion is based on the
assumption that cats would report light flash occurrences in a similar manner to humans or vice-versa, that human
retinal ganglion cells respond like cat retinal ganglion cells to light flashes.

Single photon sensitivity in rods. Do rods really respond to single light quanta? The answer to this question had been
known to be affirmative for invertebrate photoreceptors since the mid 1960s. The same answer was obtained for rods
at the end of the 1970s when a technique was developed for recording responses of single rods isolated from the retina
of salamanders to weak flashes of light. The results unambiguously demonstrated responses to single photons, thus
verifying the claim, about 40 years after the original experiment of Figure 25.1, that dark-adapted rod photoreceptors
are highly sensitive detection devices.

25.2 SIGNAL DETECTION THEORY AND PSYCHOPHYSICS

Psychophysics is the subfield of psychology devoted to the study of physical stimuli and their interaction with sen-
sory systems. Psychophysical tasks have been extensively used to draw conclusions on how information is processed
by the visual and other sensory systems. These tasks often resemble the one described in the previous section and use
weak visual stimuli or stimuli embedded in noise. The subject’s performance can then be analyzed using the signal
detection theory methods introduced in the previous chapter. In this section, we present some of the additional formal
framework used to describe and analyze psychophysical experiments. We start with a description of task design.

Yes-no rating experiments. Experiments like those described in §25.1 are called yes-no rating experiments. In these
experiments, either one of two stimuli (s0 and s1) is randomly presented with equal probability. An observer is to
report after each stimulus presentation which one of s0 or s1 was presented. The time course of the task is illustrated
in Figure 25.4A. In a typical situation s0 is “noise” and s1 corresponds to a signal presented simultaneously with the
noise (“signal plus noise”). In §25.1 the noise condition would correspond to the “blank” stimulus and the “signal
plus noise” condition to the flash stimulus. The responses are denoted r =0 or 1 depending on whether “noise” or
“signal plus noise” is chosen by the observer.

Two-alternative forced-choice experiments. A two-alternative forced-choice (2-AFC) experiment is one in which the
subject is required to respond only after two successive stimulus presentations, as illustrated in Figure 25.4B. Both s0
and s1 are presented exactly once with equal probability in the two presentation intervals.After the second interval, the
subject is asked to report in which interval s1 (“signal plus noise”) was presented. In the flash detection experiments
described above, this corresponds to presenting the “blank” stimulus in one interval and the flash in the other interval
and subsequently asking the subject to report in which of the two intervals the flash appeared. In this case, responses
r =0 or 1 indicate the first or second interval, respectively.

Correct detection and false-alarm probabilities. In a yes-no rating experiment, the probability of correct detection, PD,
is the probability of reporting the signal when it was indeed present, i.e., PD =P(r =1 | s1) and the probability of
false-alarm is the probability of incorrectly reporting the signal when it was absent, i.e., PFA =P(r =1 | s0). The total
error rate of the observer is given by averaging both types of errors by their probability of occurrence,

ε= 1
2

PFA + 1
2
(1−PD).
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FIGURE 25.4 A. Schematic representation of the yes-no experiment. B. Schematic of the 2-AFC experiment. Black arrows trace the correct
trials and red arrows incorrect ones. In some (but not all) psychophysical experiments, a feedback may be given following the subject’s response,
as depicted schematically for both tasks.

The corresponding probability of correct response is PC =1−ε. In a 2-AFC experiment, the probability, PC, of correct
response is defined similarly (i.e., probability of r =0 when s1 was presented in the first interval and r =1 when s1
was presented in the second interval).

Psychometric functions. When the strength of the signal is continuously varied over a range of values in a yes-no
rating task, a plot of the detection probability as a function of signal strength is called a psychometric function (e.g.,
Figures 25.1 and 25.2). The term psychometric function is also applied to the probability of correct response in a 2-AFC
task as a function of signal strength and sometimes to the same quantity in a yes-no rating task. It is usual to define
from a psychometric function a detection threshold to be able to compare the responses of subjects across different
conditions. Typically, detection thresholds are defined as 50% correct performance for yes-no rating experiments and
75% correct performance for 2-AFC experiments. These definitions are somewhat arbitrary and some authors define
detection thresholds using different values (such as 68% correct performance for 2-AFCs).

ROC curves. For a yes-no rating experiment, the ROC curve is a plot of PD as a function of PFA for a fixed signal
strength. In psychophysical experiments, ROC curves are often plotted for a signal strength equal to the psychophys-
ical threshold. As explained above, such ROC curves fully characterize the performance of the observer for a fixed
set of physical stimulus conditions.

Statistical distribution of responses. If we have access to some physiological variable such as the number of spikes
fired by a neuron in response to “noise” and “signal plus noise” the question then arises as to how that information
can be used to “optimally” decide which of the two stimuli was presented. This question has been addressed in the
previous chapter for the yes-no rating experiments. We address it here for the 2-AFC experiment.

Minimum error in a 2-AFC experiment. If the observer’s response is not biased towards one of the two presentation
intervals, the minimum error test in a 2-AFC experiment is to compare the likelihood ratio based on the outcome
of the two presentations (x1,x2) and select response r =1 for the presentation interval with the highest likelihood
ratio:

lr(x1)> lr(x2)⇒ r =0, lr(x1)< lr(x2)⇒ r =1 (25.4)

This result can be immediately derived by computing the Neyman–Pearson test corresponding to a threshold k =1,
assuming that the presentations are independent (Exercise 3). Note that no threshold is needed, in contrast to the
yes-no rating experiments considered previously. This can be understood intuitively from the fact that one presentation
interval effectively serves as the threshold for the other one.
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Area under an ROC curve. The area under an ROC curve for a yes-no rating task equals the expected ideal observer
performance in the corresponding 2-AFC task, i.e.,

PC =
1∫

0

PD(PFA)dPFA (25.5)

(Exercise 4). The area under an ROC curve in a yes-no experiment is thus often used as a measure of discrimination
performance, since it is independent of the chosen threshold and since it predicts performance in the corresponding
2-AFC task, under the assumption that the observer treats both intervals identically.

2-AFC Gaussian model. The correct response probability for the Gaussian noise model is given by

PC =1−�(−d/
√

2) (25.6)

(Exercise 5). Comparing this equation with the equivalent one for the yes-no rating task, Eq. (24.6), shows that the
parameter dYN characterizing correct detection in the yes-no rating task is related to the equivalent parameter d2AFC

by d2AFC =√
2dYN .

25.3 MOTION DETECTION

We now discuss electrophysiological and psychophysical experiments aimed at understanding the relation between
the activity of single neurons and perception in the context of a motion detection task. These experiments are similar in
spirit to the ones described in §25.1. An important difference is that both electrophysiological recordings and behavior
were performed simultaneously in trained awake behaving monkeys, thus allowing a direct comparison of the single
neuron responses with behavior.

Experimental configuration. Monkeys were trained to perform a two alternative discrimination task in which dots
moved within a circular window on a video screen (Figure 25.5). A fraction of the dots were updated from frame to
frame in such a way as to move coherently in a specified direction while the remaining dots were updated randomly.

Random Motion 25% Coherent
Motion

(A)

100% Coherent
Motion

(B)

Fixation Point

Neuron’s Receptive
Field and Preferred

Motion Direction

Preferred Motion
Target

Null Motion
Target

FIGURE 25.5 Schematic representation of the MT motion detection experiments. A. Three motion coherence levels. B. The gray disc illustrates
the receptive field of the neuron, where the stimuli shown in A are presented. The fixation point maintained by the animal during the trial is
indicated by a cross, and the two LEDs to which the animal makes an eye movement following the stimulus presentation, by the two black dots.
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After the stimulus presentation started, the animal could report his guess of the dots’ direction of motion by making
an eye movement towards one of two lights. If the response was correct, the animal was rewarded. By changing the
level of coherent motion, the difficulty of the task could be varied from easy (100% coherence) to difficult (close to 0%
coherence, i.e., random motion of the dots in any possible direction). Note that the structure of the task is equivalent
to that of a yes-no rating task (Figure 25.4A) and should not be confused with the 2-AFC task described in the previous
section.

The activity of neurons in the middle temporal area (MT) was recorded simultaneously during the task. MT neurons
receive inputs from V1 and most of them (≈ 90%) are directionally selective. Their responses are thought to be well
described by variants of the motion-energy model described in §21.4. The receptive fields of MT neurons are typically
considerably larger than those of V1 neurons, suggesting a convergence of information from V1 cells with different
receptive fields. During the recordings, the direction of preferred motion of the recorded cell was first determined
and the stimulus was displayed in a circular region optimally covering the cell’s receptive field. The direction of
dot motion was matched to the preferred or antipreferred direction of the cell, to maximize the likelihood that the
recorded cell contributed to the motion detection task.

Comparison of neuronal and behavioral performance. Figure 25.6A and B illustrates typical distributions for the
number of spikes generated by MT neurons during motion in the preferred and null direction at two coherence levels.
On average, the firing rate (in spk/s) in response to the stimulus was equal to

fpreferred =0.265c+23.32 and fnull =0.072c+23.32, (25.7)

where “preferred” and “null” denote the neuron’s optimal motion direction and its opposite, respectively. The number,
c, is the coherence level of the stimulus, ranging from 0 to 100 (in percent). The typical time used by monkeys to make
their decision amounted to T ≈ 500 ms. This allows us, together with Eq. (25.7), to compute the mean number of
spikes in a single trial: mpreferred = fpreferredT and mnull = fnullT. These numbers were variable and well fit by a Gaussian
distribution, a situation similar to that of the second example in §24.1. However, the variance of the distribution scaled
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FIGURE 25.6 Summary of experimental results. A. Typical distribution of spike number for preferred (red) and null (black) motion directions
at a coherence of 12.8%. B. Same as A, but for a coherence of 51.2%. C. ROC curves derived from A and B. D. Typical probability of correct detection
as a function of coherence for the animal (solid black line). The dashed black line is the probability of correct detection of an ideal observer based
on the distribution of spikes obtained in a single trial from a single MT neuron. The red line is the probability of detection based on two, identical
neurons, with opposite preferred directions (area under the ROC curves in C). (mt_perf.m)
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linearly with the mean number of spikes (see Figure 15.4):

σ 2
preferred =1.5mpreferred and σ 2

null =1.5mnull.

Therefore the variance was different for the null and preferred distributions, in contrast to Eq. (24.2). As the coherence
of dot motion increased, the two distributions of spikes became better separated, thus conveying more information
about the presence of preferred vs. null motion stimuli. A representative example of the animal’s performance in
detecting motion direction as a function of coherence is illustrated in Figure 25.6D (solid black line). This curve
corresponds to

pc =1−0.5 exp((c/α)β ),

with α=20 and β=1.2.
To compare the neuron’s performance with the observer’s performance, we compute the ideal, minimum error

observer based on distributions such as those of Figure 25.6A and B. Because the variance of the two distributions
differ, the simple results of the previous chapter do not hold. However, the ideal observer for a fixed false-alarm rate
can nonetheless be computed numerically, based on the Neyman–Pearson lemma (Exercise 6). The corresponding
ROC curves are illustrated in Figure 25.6C for the two coherence levels of Figure 25.6A and B. From such ROC curves,
we then derive the minimum error ideal observer, based on a single neuron. The corresponding correct probability
is plotted as a function of coherence in Figure 25.6D (dashed black line). Comparing with the monkey’s performance
(solid black line), we see that a single neuron performs considerably less well than the animal, in contrast to the
result suggested by Figure 25.3. What would the ideal performance be, if we had access not only to the number of
spikes of the recorded neuron, but also to that of a perfectly mirror-symmetric one, tuned to the opposite motion
direction? This assumption is equivalent to recording the response of the same neuron to two stimulus presentations,
one in the neuron’s preferred and one in the neuron’s null direction, respectively. Hence, the two mirror-symmetric
neurons yield the same information as in a 2-AFC task (Figure 25.4B) and thus, optimal performance is equal to the
area under the ROC curve characterizing the single neuron’s performance. The performance of the mirror-symmetric
pair of neurons is illustrated by the solid red line in Figure 25.6D. Not surprisingly, it is better than that of a single
neuron, but still worse than that of the animal. Thus, the animal’s performance can only be explained by pooling
information across multiple neurons. Here, the results of §24.4 are relevant: if the pool of neurons used to make
the decision are correlated and have identical mean responses to the preferred and null stimuli, then discrimination
performance will saturate as the size of the pool increases (see Figure 24.3, ρ=0). If, however, the neuron’s properties
are inhomogeneous, performance will increase with pool size (Figure 24.3, ρ �=0).

Brain lesion studies. The visual cortex consists of a large number of areas besides V1 and MT and neurons sensitive
to motion stimuli are found in many of these areas (Figure 20.1). Thus, it is entirely possible that the correlation
between average neuronal performance and behavior described above is not due to a causal relation. An alternative
possibility is that behavior is determined in another brain area and that MT neurons merely reflect the outcome of
computations carried out in that area. This can be ruled by making a brain lesion restricted to area MT and measuring
the behavioral performance of the animal before and after the lesion. The threshold for 82% correct performance in
the motion coherence task before and immediately after the lesion to MT typically increases by about a factor 10. The
effect is specific: if the motion stimulus is presented in the opposite half of the visual field motion information will
be represented in the MT area located on the opposite side of the brain. Since that area was not lesioned, one would
expect unchanged performance if the effect of the lesion were specific to the lesioned area. This is indeed the case.
Thus area MT is necessary to perform the psychophysical motion task. Over the course of several weeks following
the lesion, the ability of the monkey to carry out the task recovers to levels comparable to those achieved before the
lesion. Thus other areas of the brain are indeed able to take over the role of MT in motion detection.

25.4 SUMMARY AND SOURCES

This chapter has highlighted the main issues in relating neuronal activity to perception and behavior: how many
neurons are involved in carrying out a specific task, what is the algorithm used by nervous tissue to extract the
necessary information and convert it into motor commands, and what is the impact of neuronal response variability?
The answers clearly depend on the level at which each system is analyzed (e.g., closer to the sensory periphery or
to the motor output). In very special cases, single neurons often called command neurons may determine a specific
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behavior by themselves, see, e.g., Korn and Faber (2005). In most cases, however, networks or populations of neurons
are thought to determine perception and behavior. We will present some of the theoretical tools used to analyze
population activity in Chapters 26 and 27 and an example of how population activity is related to behavior in §26.6.
Heiligenberg (1991) reviews a particularly well worked out case. The exact mechanisms linking neuronal activity to
perception and behavior are still the focus of intense debate across species and sensory modalities. In most studied
higher vertebrate cases, the relation between the activity of single sensory neurons and perceptual decisions has
proven elusive. See Nienborg and Cumming (2009) for a perspective in the context of monkey visual cortex and
Houweling and Brecht (2008) in the barrel cortex of rats.

Our discussion of single photon detection follows closely the original papers of Hecht et al. (1942) and Barlow
(1956). In particular, Figure 25.1 is directly adapted from table V of Hecht et al. (1942), see also their Figures 6 and 7.
Figure 25.2 corresponds to Figures 1 and 2 of Barlow (1956). In rods, single photon detection was reported by Baylor
et al. (1979). This article also references the earlier invertebrate literature. At intermediate light levels, both rod and
cone pathways contribute to light detection. See Borghuis et al. (2009) for a discussion of how retinal neurons from
photoreceptors to ganglion cells are involved in this process. A classical reference on signal detection theory and
psychophysics is Green and Swets (1966). See also, e.g., Wickens (2001). Section 25.3 is based mainly on Cohen and
Newsome (2009), which also provides references to much of the earlier literature. See Maunsell and VanEssen (1983)
for a characterization of MT neuron tuning properties. The lesion experiments described at the end of §25.3 were
reported in Newsome and Paré (1988). Exercise 7 is derived from Saleh and Teich (1985).

25.5 EXERCISES

1. Reproduce Figure 25.1. For A, use the following data set:

{(46.9 0.0)(73.1 9.4)(113.8 33.3)(177.4 73.5)(276.1 100.0)(421.7 100.0)}.
Each pair represents the mean number of photons per flash and their probability of detection. For B use,

{(24.1 0.0)(37.6 4.0)(58.6 18.0)(91.0 54.0)(141.9 94.0)(221.3 100.0)}
and for C,

{(37.6 6.0)(58.6 6.0)(91.0 24.0)(141.9 66.0)(221.3 88.0)(342.8 100.0)}.
2. Reproduce Figure 25.2. For A, use the following data set:

{(23.5 0.0)(37.1 0.0)(58.5 12.0)(92.9 44.0)(148.6 94.0)(239.3 100.0)}.
As in Exercise 1, each pair represents the mean number of photons per flash and their probability of detection. For
B use

{(1.63 0.15)(1.76 0.27)(1.93 0.58)(2.07 0.88)(2.23 0.95)}
and

{(1.63 0.29)(1.76 0.51)(1.93 0.79)(2.07 0.93)(2.23 0.98)}
where the first column is the base 10 logarithm of the number of photons.

3. Show that the minimum error test for the 2-AFC task consists in comparing the likelihood ratios obtained from the
responses in the two intervals, as in Eq. (25.4). Hint: Consider the vector x = (x1,x2)

T where x1 is the value of X in
the first presentation interval and x2 the value of X in the second presentation interval. Compute the associated
likelihood ratio of x and then apply the Neyman–Pearson lemma.

4. Prove Eq. (25.5). Hint: Show first that

PC =
∞∫

0

q(k | s0)

∞∫
k

q(lr | s1)dlrdk. (25.8)
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Then carry out the change of variables PFA → k in Eq. (25.5) by using Eqs. (24.10) and (24.11) to show that it is equal
to the right hand side of Eq. (25.8).

5. Show that PC in the 2-AFC Gaussian model is given by Eq. (25.6). Hint: Argue that the decision variable is ls − ln
where ls is the log-likelihood ratio in the case of stimulus and ln in the case of noise. Compute the distribution of
ls − ln in the Gaussian case.

6. Compute the ideal observer for the case of two Gaussian distributions with unequal variance considered in §25.3.
Hint: Consider the transformed variable Y = (X−mnull)/σnull and show that selection of the optimal threshold for
logp(y | s)/p(y |n) leads to a quadratic equation for y with two solutions, y±. This allows us to write

PD =P(Y>y+ | s)+P(Y<y− | s) and PFA =P(Y>y+ |n)+P(Y<y0 |n).

These two equations can be solved numerically, given the distribution of Y under the two hypotheses.
7. †A model describing the discharge of retinal ganglion cells in response to weak light flashes assumes that photons

are absorbed according to a Poisson process and filtered through an exponential low-pass filter,

f (t)=Ce−t/τ1(t)

with a time constant τ=30 ms. The resulting continuous waveform is then used to drive an inhomogeneous Poisson
process that represents the ganglion cell spike train. The constant C is chosen such that

∞∫
0

f (t)dt =2.

This implies that, on average, two spikes are generated per absorbed photon.

(i) Generate a 500 ms long Poisson train (each event represents the absorption of one photon) with a mean value of
10 absorbed photons per second. Filter this sequence with f (t) and plot five samples of the resulting continuous
waveform.

(ii) Use this waveform to drive an inhomogeneous Poisson process. Plot a sample spike train for each of the
corresponding waveforms in (i). Compute and plot from 1000 such sample spike trains (obtained from 1000
different waveforms) the corresponding distribution of spike number over the 500 ms period.

(iii) Compute the mean spike number and the Fano factor of the spike count distribution. How does the distribution
compare to a Poisson distribution with the same mean number of spikes?

(iv) Assume that spontaneous activity is described by the same model but with a mean number of absorbed
photons equal to 6 per second. Compute and plot the corresponding spike count distribution. Plot the ROC
curve based on a spike count threshold. Compute the minimum error of an observer based on a spike threshold.

Hint: Use a time step of 0.1 ms for (i) and (ii). For (iii), use bins centered at integer values from 0 to 30 to compute
the ROC curve.
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In many instances, sensory and motor information is encoded by mean firing rates across a population of neurons.
Although this is by no means the only way sensory information is encoded in neural populations and networks, it is
the best understood. In this chapter, we introduce the tools used to describe the encoding of information across neural
populations. We start with a simple example: the encoding of wind direction in sensory neurons of the cricket cercal
system (§26.1). From there, we work our way towards a general theory applicable to large neuron populations in the
presence of neuronal noise (§§26.2–26.5). Finally, in §26.6 we describe experimental results demonstrating population
coding in the superior colliculus, one of the best understood examples in monkeys.

26.1 CARTESIAN COORDINATE SYSTEMS

Two simple and well-studied examples of population codes are found in the central nervous system of crickets
and leeches. In crickets, wind stimuli are encoded in the mean firing rate of four interneurons that receive informa-
tion gathered by receptors located on two specialized sensory organs called the cerci (Figure 26.1). Together, these
four interneurons form a Cartesian coordinate system representing information about wind stimuli. We number
these four neurons with indices 1,2,−1, and −2, respectively. If 0 degrees represents the animal’s front, each neuron
responds best to the wind direction θi , i =1,2,−1,and−2, that is equal to 45, 135, −135, and −45 degrees, respectively.
The neurons are broadly tuned with substantial responses over a range of wind directions spanning approximately
90 degrees (Figure 26.2A). In addition, their responses vary linearly with the logarithm of wind velocity over a ten-fold
range (Figure 26.2B). These neurons can also be characterized by the corresponding unit vectors φi , i =1,2,−1,−2 that
lie orthogonal to each other in the two-dimensional wind plane (inset of Figure 26.2B). Let e1, e2 be an orthonormal
basis of the vector space used to describe wind direction and speed. Each wind vector v is characterized by its direc-
tion, θv, and length, ‖v‖, which we take to be equal to the logarithm of the wind speed. For a given wind stimulus
vector v =v1e1 +v2e2, each neuron responds with a mean firing rate

fi =C�vTφi�+ =C‖v‖cos(θv −θi)1(vTφi). (26.1)

The constant C converts the logarithm of wind speed to firing rate, within its linear range. In the following, we will
normalize wind speed such that C is equal to 1 to simplify the notation. Equivalently, the length of v determines the

367
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FIGURE 26.1 The cricket cercal system. A. The two cerci can be seen extending from the rear of the abdomen (white arrowheads). They
resemble antennas and are covered with fine hairs. B. Scanning electron micrograph of a cercus showing more closely the hairs. C. Reconstruction
of three primary sensory afferents conveying signals from the cerci (1–3) and a primary sensory interneuron (approximate outline in red, black
arrowhead). The top inset shows a section through the cricket nervous system, that consists of a chain of ganglia connected together by nerve
bundles. The terminal ganglion (red arrow) is where sensory neurons and interneurons processing wind information are located. Adapted from
Jacobs et al. (2008).
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FIGURE 26.2 A. Wind direction tuning curves for four identified interneurons of the cricket cercal system (left, L, and right, R, 10-2 and 10-3
neurons). B. Wind speed tuning curve for the same neurons. The inset on the right shows the definition of the vectors e1, e2 (basis vectors for wind
direction and intensity) and the four preferred direction vectors (φ1, φ−1, φ2, φ−2) corresponding to the neurons’ tuning curves depicted in A.
Adapted from Miller et al. (1991).
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FIGURE 26.3 A. Tuning curve as function of stimulus angle for a neuron obeying Eq. (26.1). The angle value of 0 degree corresponds to the
neuron’s preferred orientation. The mean and standard deviations are obtained over 100 trials. The mean peak firing rate elicited by the stimulus
at the neuron’s preferred orientation is 30 spk/s and the standard deviation is 5 spk/s. B. Vector representation of the stimulus (in red) and of 10
firing rate vectors corresponding to the responses of two neurons with orthogonal preferred orientations. C. Root mean square error (RMSE) in
estimating the stimulus as a function of its orientation. The stimulus elicits a mean response of 30 spk/s when aligned with a neuron’s preferred
orientation (standard deviation 5 spk/s). The RMSE is normalized by the average peak response elicited by the stimulus (30 spk/s). D. Equivalent
mean angular error. (tuning_rec.m)

corresponding peak firing rate of a neuron best tuned to its direction. A similar encoding scheme is found in leeches,
where four sensory neurons encode the location and strength of touch stimuli around the body wall of the animal.

Since neurons 1 and −1 are tuned to opposite wind directions, they never fire together to a directional wind
stimulus and the same holds true for neurons 2 and −2. We can therefore represent their activity by the single variable
g1 = f1 − f−1 and g2 = f2 − f−2, with the understanding that g1 = f1 when g1>0 and g1 =−f−1 when g1<0. Hence, the
neural activity vector (g1,g2) allows one to reconstruct wind direction, v =g1φ1 +g2φ2 with gi =vTφi, i =1,2. In other
words, φ1 and φ2 or equivalently the pairs of neurons ±1 and ±2 build an orthonormal basis representation of wind
stimuli. The example of two such pairs of neurons with peak firing rates of 30 spk/s and zero mean Gaussian noise
with standard deviation σ =5 spk/s added to gi, i =1,2, is illustrated in Figure 26.3.

26.2 OVERCOMPLETE REPRESENTATIONS

What happens if we have more than two pairs of neurons representing a two-dimensional stimulus? Such a situation
is encountered, e.g., in the motor cortex of monkeys where neurons encode the direction of arm movements when
one of their arms is restricted to move in a two-dimensional plane. Each neuron has a preferred direction and is tuned
broadly to movement direction, with a tuning curve that approximates a cosine, as in Eq. (26.1). Typically, many
neurons encode the arm movement, with preferred directions distributed roughly evenly in the two-dimensional
plane.

To illustrate this case, we start by considering a set of m neuron pairs with neurons 1, . . . ,m having preferred
directions φ1, . . . ,φm equally spaced in the plane, as illustrated in Figure 26.4 for m=3. As above, the preferred
direction of the second neuron of each pair is given by φ−i =−φi . For example, in the case m=3, we have φ1 =e1,
φ2 =−(1/2)e1 +(√3/2)e2, and φ3 =−(1/2)e1 −(√3/2)e2. For a given stimulus v, the activity associated with each
neuron pair is given by gi =vTφi, i =1, . . . ,m. Therefore each stimulus is uniquely associated with an activity vector
(g1, . . . ,gm)

T . Clearly, many different activity vectors could represent the same two-dimensional stimulus vector v
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FIGURE 26.4 A. Preferred direction tuning of three neuron pairs encoding two-dimensional stimuli. B. Corresponding normalized cosine
tuning curves as a function of stimulus angle. C. RMSE for reconstruction of the stimulus from the neurons’ firing rates, normalized by the firing
rate standard deviation for each neuron pair (σ = 5 spk/s) as a function of the number of neuron pairs. The plot shows mean and standard deviation
over 1000 simulated stimuli, with uniformly distributed angles and with lengths uniformly distributed between 0 and 3 times the neurons’ peak
firing rate (30 spk/s). The red line is the theoretical value obtained from Eq. (26.3). D. Example firing rates in the case of a stimulus with angular
direction indicated by the red line for 15 neuron pairs (30 neurons total). The stimulus would evoke an average response of 30 spk/s when aligned
with the preferred direction of one of the neurons. The inset on the right shows the preferred directions for each neuron pair. (over_rep.m)

since φ1, . . . ,φm are not linearly independent. Thus the representation is redundant. The formula for reconstructing v
from (g1, . . . ,gm)

T is

v = d
m

m∑
i=1

giφi (26.2)

with d =2, as may be easily verified by direct computation in the case m=3 (Exercise 1).
Redundancy is useful to minimize the effects of noise on the reconstruction from the neurons’ firing rates. This can

be simply illustrated by assuming that the firing rate coefficients gi , corresponding to the activity of the neuron pairs
φ±i with i =1, . . . ,m, are affected by Gaussian noise having zero mean and variance σ 2, independent of each other. The
reconstruction formula is then contaminated by the noise term w = (d/m)∑m

i=1 wiφi , where the wi are independent
Gaussian random variables with zero mean and variance σ 2. A simple calculation shows that

E(‖w‖2)= (d2/m)σ 2 (26.3)

(Exercise 2). Therefore, increasing the number m of neurons encoding stimulus direction reduces the noise in its
reconstruction from their firing rates.

26.3 FRAMES

We now consider the general case of m vectors φi, i =1, . . . ,m, not necessarily of the same length, corresponding to
neurons that may have different peak firing rates. For a given stimulus vector v the firing rate of the corresponding
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m neuron pairs determines a matrix U∈Rm×2 with gi = (Uv)i =vTφi . In matrix notation v =v1e1 +v2e2 and

Uv =

⎛
⎜⎜⎜⎝

u11 u12
u21 u22

...
...

um1 um2

⎞
⎟⎟⎟⎠

(
v1
v2

)
(26.4)

with ui1 =eT
1 φi and ui2 =eT

2 φi. For example, if φ1 =e1, φ2 =−e1 +e2 and φ3 =−(1/2)e1 −e2, then

Uv =
⎛
⎝ 1 0

−1 1
−1/2 −1

⎞
⎠(

v1
v2

)
. (26.5)

Reconstructing v from the neuronal activity vector Uv amounts to finding a matrix V∈R2×m such that VUv =v. In
other words, V is an inverse of U for the vectors in Rm that belong to its range. To construct V we first note that UT U
is symmetric and positive semidefinite. If we denote its two eigenvalues by 0 ≤λ2 ≤λ1 we may invoke Exercise 6.8 to
conclude that

λ2vTv ≤vTUT Uv ≤λ1vTv. (26.6)

If λ2>0 then UT U is invertible and the reciprocated form of Eq. (26.6) holds. That is,

1
λ1

‖v‖2 ≤vT(UT U)−1v ≤ 1
λ2

‖v‖2.

As (Uv)i =vTφi, we may express Eq. (26.6) in terms of the preferred directions, {φi}, as

λ2‖v‖2 ≤
m∑

i=1

(vTφi)
2 ≤λ1‖v‖2. (26.7)

The two inequalities in Eq. (26.7) define a frame {φi}m
i=1. We can now show that V= (UT U)−1UT since for v ∈R2,

VUv = (UT U)−1UTUv =v. For U given by Eq. (26.5), this yields

V= 4
17

(
2 −3/2 −3/2

1/2 7/4 −10/4

)

and it is easy to show directly that VUv =v in this case.

Pseudoinverse. If R�ST =U is the singular value decomposition of U (Chapter 14), then UT U=S�2ST and (UT U)−1 =
S(�+)2ST so that

V= (UT U)−1UT =S(�+)2STS�RT =S�+RT =U+

which is the pseudoinverse of U. Therefore, for any g∈Rm, v0 =Vg=U+g is a solution that minimizes ‖Uv−g‖2

(Exercise 14.4).

Dual frame. If we define the dual frame vectors through φ̃i = (UT U)−1φi, then the following equation holds for any
v ∈R2

v =
m∑

i=1

(vTφi)φ̃i . (26.8)
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Thus, the dual frame allows one to reconstruct v from its coefficients. To see how Eq. (26.8) arises, let fi , i =1, . . . ,m be
the standard basis of Rm. Since (UT fi)

Tv = fT
i Uv = (Uv)i =vTφi it follows that UT fi =φi. Consequently,

UT g=
m∑

i=1

giφi

and therefore

Vg= (UT U)−1
m∑

i=1

giφi =
m∑

i=1

giφ̃i .

If g=Uv we obtain immediately Eq. (26.8). A frame is tight if its frame bounds λ2 and λ1 coincide. In this case,
UTU=λ1I, (UT U)−1 = I/λ1, and so each φ̃i =φi/λ1.

26.4 MAXIMUM LIKELIHOOD

For a given stimulus vector v, assume that the neurons’ firing rates are given by g=Uv+n with the noise n∼
N (0,σ 2I). This means that E[ni] =0 and E[ninj] =σ 2δij. Therefore the noise for each pair of neurons, φ±i, is independent
of that of other neuron pairs,φ±j, for i, j =1, . . . ,m. The conditional probability density of observing g given v is therefore
given by

p(g |v)=
m∏

i=1

(2π)−1/2σ−1e−(gi−(Uv)i)2/2σ 2

= (2π)−m/2σ−m exp(−‖g−Uv‖2/(2σ 2)).

(26.9)

According to the maximum likelihood principle, we select the estimator v̆ that maximizes p(g |v) for a given observed
firing rate g. In other words,

p(g | v̆)=max
v

p(g |v). (26.10)

As the logarithm is a monotone increasing function, maximizing p(g |v) is identical to maximizing the log-likelihood,
L(v,g)= log p(g |v). In the present case,

log p(g |v)= −m
2

log2π−m logσ − 1
2σ 2 ‖g−Uv‖2.

Therefore maximizing the log-likelihood is equivalent to minimizing ‖g−Uv‖2. If the neurons’ firing rates are still
Gaussian, but are correlated with each other, the noise will be distributed as n∼N (0,C). The covariance matrix of the
noise, C, is assumed to be invertible. The conditional probability density is given by

p(g |v)= (2π)−m/2|det C|−1/2 exp(−(g−Uv)T C−1(g−Uv)/2) (26.11)

thus, maximizing the log-likelihood is equivalent to minimizing

(g−Uv)T C−1(g−Uv). (26.12)

Since C is symmetric it is diagonalizable and � =WCWT has positive diagonal elements. Therefore C−1 =
WT�−1/2�−1/2W which means that minimizing Eq. (26.12) is equivalent to minimizing ||�−1/2W(g−Uv)||2. With
f =�−1/2Wg and V=�−1/2WU we obtain the solution by computing the pseudoinverse of f, as in the previous
section:

(VTV)−1VTf = (UT WT�−1/2�−1/2WU)−1UT WT�−1/2�−1/2Wg

= (UT C−1U)−1UT C−1g.
(26.13)
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FIGURE 26.5 A. Exponentially decaying correlation between neuron pairs whose preferred directions are indicated by the circles at bottom
(95 pairs). The red trace corresponds to c = 0.38 and ρ= 0.125 radians in Eq. (26.14). The black trace depicts ρ= 1 rad (≈ 57 degrees). B. Normalized
RMSE in estimating randomly distributed stimuli as a function of the correlation coefficient c for ρ= 1. The dots indicate the optimal solution,
Eq. (26.13), and the crosses the optimal solution for uncorrelated neurons (C = I). C. Normalized RMSE for c = 0.38 as a function of ρ (symbols
have the same meaning as in B). D. Sample firing rate distribution for a stimulus directed at 180 degrees that elicits a maximal average firing rate
of 30 spk/s (red line) as a function of the neurons’ preferred directions. The black line depicts uncorrelated neurons and the gray line exponentially
decaying correlations with c = 0.38, ρ= 1 rad. (pop_corr.m)

This last result allows us to investigate the effect of correlations on the encoding of a two-dimensional stimulus vector.
We assume that the correlation matrix among m neuron pairs is given by C= (Cij)i,j=1,...,m, with

Cij =σ 2(δij +C(φi −φj)(1−δij)) and C(φ)= cexp(−|φ|/ρ). (26.14)

The firing rate variance of each neuron is equal to Cii =σ 2 and the correlation between neurons i and j decays expo-
nentially with the angular difference, |φi −φj|, in their preferred directions. The results are illustrated in Figure 26.5.
As the correlation coefficient c increases, the RMSE increases as well (Figure 26.5B). The RMSE in the reconstructions
is lower with the optimal algorithm (dots) than with the suboptimal algorithm of Eq. (26.2) (crosses) when c �=0, as
expected. Figure 26.5C shows that increasing the spatial extent of the correlations among neurons initially increases
the RMSE up to ρ=1 but somewhat counterintuitively, beyond that point the reconstructions improve rapidly with ρ.

Maximum likelihood is not the only way of selecting an estimator for a given variable, such as stimulus direction
and strength, from noisy observations. We introduce two popular alternatives.

Maximum a posteriori estimator. If p(v) is nonuniform, then p(g |v)p(v)=p(g,v). Integration over v yields p(g) and
we may define p(v |g) through

p(v |g)= p(g,v)
p(g)

for p(g) �=0.

The function p(v |g) is the posterior probability of v given g. The maximum a posteriori estimator is the vector, vMAP,
that maximizes this posterior probability. Since

logp(v |g)= logp(g |v)+ logp(v)− logp(g)

and the last term is independent of v, this is equivalent to maximizing logp(g |v)+ logp(v).
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Conditional mean. We may also minimize the mean square error of the estimator v̆(g),

∫
‖v− v̆‖2p(v |g)dv.

By taking the derivative ∂/∂v̆i with respect to each of the components of v̆ we obtain

−2
∫
(vi − v̆i)p(v|g)dv =0

and this yields

v̆ =
∫

vp(v |g)dv.

This is precisely the conditional mean of v given g, also denoted E[v |g], see §22.1.

26.5 ESTIMATION ERROR AND THE CRAMER–RAO BOUND*

Given an estimator of v like that derived in Eq. (26.13) of the previous section for correlated neuron pairs,
v̆=Fg, F= (UT C−1U)−1UT C−1, the question arises of how well it performs compared to other possible estimators.
In Figure 26.5 we have, e.g., compared its performance to that of Eq. (26.2). We now address the same question from
a more general point of view. First we observe that for different random values of g, v̆ is a random variable. We can
therefore define the covariance error matrix as

Ce =E[(v̆−v)(v̆ −v)T] =
(

E[(v̆1 −v1)
2] E[(v̆1 −v1)(v̆2 −v2)]

E[(v̆1 −v1)(v̆2 −v2)] E[(v̆2 −v2)
2]

)
,

where the expectation is taken over g. The covariance error matrix can be written as follows:

Ce =E[(v̆−E[v̆])(v̆−E[v̆])T]+(E[v̆]−v)(E[v̆]−v)T (26.15)

(Exercise 3). The first term describes the covariance of the estimator and the second one its bias (§18.2). The estimator
is unbiased if E[v̆] =v, in which case the second term in Eq. (26.15) vanishes. In the case of v̆=Fg, with g=Uv+n
and E[n] =0 as in the previous paragraph, it follows immediately that E[v̆] =v (Exercise 4).

Fisher information matrix. Assume that p(g|v)= fv(g) is a differentiable function of v. Then at the optimal (maximum
likelihood) value of v, Eq. (26.10), the gradient, with respect to v, of fv(g) vanishes. Equivalently,

∇v log fv(g)=
(

∂
∂v1

log fv(g)
∂
∂v2

log fv(g)

)
=0.

The function s(v,g)≡∇v log fv(g) is called the score function. By taking its expectation with respect to g given v and
exchanging this operation with the derivative, we can show that the score function has zero mean: E[s(v,g)] =0
(Exercise 5). The covariance matrix of the score function,

J=E[s(v,g)s(v, g)T ]

is called the Fisher information matrix. Note that J is symmetric and that its eigenvalues are nonnegative, since
it is the covariance of a random vector. For an unbiased estimator, E[v̆] =v, the Fisher information matrix has the
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following property:

E[s(v,g)(v̆ −v)T ] = I (26.16)

(Exercise 6).

Cramer–Rao bound. If J∈Rn×n is positive definite then J−1 exists and Eq. (26.16) allows us to establish the following
bound on the covariance error matrix of an unbiased estimator (E[v̆] =v):

xTCex ≥xTJ−1x for all x ∈Rn, (26.17)

(Exercise 7).
To illustrate the significance of this result, let us start by assuming that we want to estimatea one-dimensional quan-

tity, e.g., the direction, θ , of the vector v with respect to the first coordinate axis rather than v itself, as in the following
§27.6. In this case, the Fisher information matrix is actually a scalar. Let fθ(g)=p(g|θ) and J =E[

(
d fθ(g)/dθ

)2] then the
Cramer–Rao bound states that E[(θ̆−θ)2] ≥ J−1 for any unbiased estimator θ̆ of θ . Similarly, in the multidimensional
case the diagonal elements, J−1

ii , of J−1 provide lower bounds on the variance of any estimator for the components of
v = (v1 v2)

T :

E[(v̆i −vi)
2] ≥ J−1

ii , for i =1,2.

The Fisher information matrix is thus a useful quantity to study population coding since it gives an absolute lower
bound on the error that any estimator based on experimental data may achieve, provided a model of the probability
distribution p(g|v) exists.

In the case of a Gaussian noise vector, g=Uv+n, n∼N (0,C), fv(g) is given by Eq. (26.11) so that

s(v,g)=∇v log fv(g)=−1
2

∇vtr(C−1(g−Uv)(g−Uv)T )=UT C−1(g−Uv), (26.18)

(Exercise 8). In this equation, tr is the trace of the matrix, i.e., the sum of its diagonal elements (Exercise 5.6). Conse-
quently, the Fisher information matrix is given by

J=E[UT C−1(g−Uv)(g−Uv)T C−1U] =UT C−1U.

On the other hand, since v̆ =Fg=FUv+Fn=v+Fn we have

Ce =E[(v̆−v)(v̆−v)T ] = (UT C−1U)−1 = J−1 (26.19)

(Exercise 9). Therefore the maximum likelihood estimator is efficient, since it saturates the Cramer–Rao bound.

26.6 POPULATION CODING IN THE SUPERIOR COLLICULUS

The superior colliculus is a small bilaterally symmetric nucleus located at the top of the midbrain of mammals
(Figure 26.6A). It is involved in the generation of rapid eye movements called saccades that are used several times per
second to shift the gaze to different parts of the visual field. Neurons in the superior colliculus fire a high frequency
burst of action potentials just before each saccade (Figure 26.6B). Each neuron fires maximally before a specific eye
movement, but will typically fire to a broad range of eye movements (Figure 26.6C). The superior colliculus is organized
into a two-dimensional map of eye movements, with amplitudes coded along one axis and angles with respect to the
horizontal along the other (Figure 26.6D). The direction of eye movement is thought to be determined by the vector
average of the neurons’ activity weighted by their preferred eye movement as in Eq. (26.2).

Because of the orderly two-dimensional mapping of eye movement amplitude and angle with respect to the
horizontal in the superior colliculus, this population coding hypothesis can be tested by chemically inactivating a
specific location in the map. This makes the prediction that some eye movements will overshoot or undershoot their
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FIGURE 26.6 A. Vertical section of the human brain through the midline. The superior colliculus is indicated by the white arrowhead.
B. Trajectory of an eye-movement (top horizontal, H, and vertical, V, traces) in the horizontal plane as well as action potential firing of a superior
colliculus neuron (raw discharge trace shown in the middle) and histogram of firing rates (bottom). C. Relative peak firing frequency of the neuron
as a function of the amplitude and direction of the eye movement. D. Two-dimensional map of saccadic eye movements in the superior colliculus.
The amplitude is roughly mapped from front to back (rostral to caudal) and the direction relative to the horizontal from medial to lateral. Adapted
from Sparks and Nelson (1987).

intended targets, depending on their position relative to the inactivated spot (Figure 26.7A). Such predictions can be
verified experimentally (Figure 26.7B).

26.7 SUMMARY AND SOURCES

This chapter has presented the basic mathematical tools used to investigate neural population codes. The main
idea is to estimate a stimulus given the firing rate of a population of neurons encoding its strength and direction.
We started by considering neurons that form a Cartesian coordinate system for wind stimuli in the cricket cercal
system. In this case, stimulus reconstruction amounts to a simple addition of weighted orthonormal basis vectors
as in Cartesian geometry. Next we looked at oversampled representations, where many more neurons sample the
stimulus than the minimal number required for an orthonormal decomposition. The general case was treated in
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FIGURE 26.7 A. Predictions of the population vector hypothesis. If spot A in the map is inactivated, the eye movements to the corresponding
location in space will not be affected (middle row) because summating the activity of the surrounding neurons yields the same population vector
(top row). In contrast an eye movement towards position B will lead to an overshoot towards D, since neurons flanking B are inactivated (bottom
row). B. Experimental validation in two examples. The arrow indicates the eye movement corresponding to the inactivated region (approx. 6
degrees horizontal on the left panel). Note that movements beyond that amplitude result in an overshoot (−9 degrees) and smaller eye movements
result in an undershoot compared to those elicited when inactivation is absent (white squares). Eye movements to the opposite side are unaffected,
because they are encoded by the superior colliculus on the opposite side of the brain. Adapted from Lee et al. (1988).

§26.3 where sensory neurons have heterogeneous properties, which from the mathematical point of view correspond
to frames. For simplicity, our treatment always considered pairs of neurons that have equal and opposite response
properties. Although this assumption considerably simplifies the mathematical exposition, it does not affect the
concepts presented here. Finally, we introduced the maximum likelihood method to estimate the stimulus in the
presence of neural noise and the general bounds on the resulting estimation error that can be derived using the Fisher
information matrix. The last section on the superior colliculus illustrates how these concepts make specific predictions
that can be tested experimentally, at least qualitatively.

We recommend the following two reviews on population codes: Sanger (2003) and Zhang and Sejnowski (2001). The
first one includes a discussion and references on population coding in motor cortex. The second one reviews theoretical
papers and summarizes additional theoretical results. For population coding in the leech, see Lewis and Kristan (1998).
A recent review that places the results of §26.6 in a more general context is Sparks (2002). For additional results on
frames, see Daubechies (1992, Chapter 3) or Mallat (2008, Chapter 5). We recommend Scharf (1991) for additional
reading on the material of §§26.4 and 26.5.
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26.8 EXERCISES

1. Derive Eq. (26.2) by direct computation in the case m=3. To generalize the result to arbitrary positive values of
m, first note that φj = (�(zj−1) �(zj−1))

T with zj = exp(2π ij/m), j =1, . . . ,m. Start by showing that

UTU=
⎛
⎜⎝

∑m−1
j=0 cos2 2π j

m
∑m−1

j=0 cos 2π j
m sin 2π j

m

∑m−1
j=0 cos 2π j

m sin 2π j
m

∑m−1
j=0 sin2 2π j

m

⎞
⎟⎠

where U is the frame operator defined in Eq. (26.4). Next, show that

m−1∑
j=0

z2
j =0

and derive the identities

cos2α= cos2 α−sin2α, cos2 α= 1+cos2α
2

sin 2α=2 sinα cosα, sin2α= 1+cos2α
2

.

Hint: Use Euler’s formula for the complex exponential, exp iα= cosα+ i sinα. Use these two results to conclude
that

m−1∑
j=0

cos2 2π j
m

=
m−1∑
j=0

sin2 2π j
m

= m
2

m−1∑
j=0

cos
2π j
m

sin
2π j
m

=0.

Finally, apply Eq. (26.8).
2. †Derive Eq. (26.3).
3. Prove Eq. (26.15). Hint: Replace v̆−v by (v̆−E[v̆])+(E[v̆]−v) in the original definition of Ce.
4. Show that if v̆=Fg with g=Uv+n and E[n] =0 then E[v̆] =v.
5. Show that the score function satisfies E[s(v,g)] =0. Hint: Start from the definition of the expectation

E[s(v,g)] =
∫

s(v,g)p(g|v)dg.

Plug in the definition of s, compute the derivative and exchange it with the integral.
6. Prove Eq. (26.16). Hint: Since the estimator is unbiased,

0 =E[(v̆−v)T ] =
∫

fv(g)(v̆ −v)T dg.

Now take the gradient, ∇v, exchange with the integral sign and compute it using the product rule for derivatives.
Use also the following equality: ∇v log( fv(g))=

(∇vfv(g)
)
/fv(g).

7. Prove Eq. (26.17) by proceeding as follows. First show that the vector

q=
(

v̆−v
s(v,g)

)
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has zero mean and covariance matrix

Q =
(

C I
I J

)
.

Then show that ATQA is diagonal, where

A=
(

I 0
−J−1 I

)
.

Use now the fact that Q ≥0 (since it is a covariance matrix) and J>0 to conclude that C−J−1 ≥0.
8. Prove Eq. (26.18) as follows. First show that

∇v log( fv(g))=−1
2

∇v
(
(g−Uv)T C−1(g−Uv)

)
.

Then show that for two vectors a, b

aTb= trbaT . (26.20)

Use this result to rewrite

∇v log( fv(g))=−1
2

∇vtrC−1(g−Uv)(g−Uv)T .

Now show that

−1
2
∂

∂vi
trC−1(g−Uv)(g−Uv)T = (Ufi)

TC−1(g−Uv),

where fi ∈Rm is the vector of zeros save a 1 in position i. Hint: Use again Eq. (26.20). This last result will allow
you to complete the proof.

9. †Prove Eq. (26.19).
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The human brain is comprised of over 100 billion neurons, each of which receives on average 10,000 “inputs”
from neighboring neurons. To tackle such complexity we naturally restrict ourselves to well-defined subnetworks
of the brain. Even then, however, we are far from constructing (for lack of data as well as computational resources)
detailed models that capture network architecture, cell morphology, cell biophysics, and synaptic plasticity. Most
existing strategies fall into one of four large subfields; Hopfield networks, conductance based networks, rate based
networks, and self-organized maps. The rate at which these areas are growing would quickly obsolete any attempt at
a systematic survey. For the reader who wishes to gain hands-on experience we therefore present a guided tour, via
representative examples, of the methods of each subfield.

In Hopfield networks, §27.1, each cell, at a given instant, can take on but two values, e.g., ±1. Furthermore, time
evolves in discrete steps. The activity of N cells is therefore abstracted to discrete time dynamics on the vertices of the
N-dimensional cube. One marches from one instant to the next by applying a threshold to a weighted sum of inputs
at each cell. This permits experimentation, and often analytical treatment, with relatively large networks, but suffers
in translation to biology.

The modeling of conductance based networks retains continuous time, membrane conductances, and potential,
but typically sacrifices ionic machinery and/or cell morphology. The simplest approach adopts the leaky integrate-
and-fire (LIF) cell model of Chapter 10 and so sacrifices both, but in a way that makes it relatively straightforward to
reincorporate ion channels and/or dendrites. In §27.2 we carefully formulate and illustrate the full set of conductance
and voltage equations for networks of excitatory and inhibitory LIF cells. We augment this system, in §27.3, with a
learning rule that updates the synaptic weights between cells in a fashion that is spike time-dependent.

We generalize this approach, with a focus on synchrony and rhythmogenesis, to multicompartment cells with
Hodgkin–Huxley type ion channels and calcium-dependent learning rules in §§27.4 and 27.5. During rhythmic net-
work activity, a cell’s firing rate typically agrees with the average firing rate of the network. In §27.6 we formulate
and analyze a simple model for evolving a network’s average firing rate in response to average synaptic input.

In the final section we transcend spikes and rates and consider learning rules associated with self-organized maps
for evolving the weights between parametrized activity patterns. Although this ignores the bulk of the biophysics
developed in the previous chapters, it nonetheless reproduces a number of the brain maps that appear during early
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382 27. NEURONAL NETWORKS

learning, or development, of the nervous system. We concentrate here on the maps of orientation and direction
preference in visual cortex.

27.1 HOPFIELD NETWORKS

The state of a Hopfield network with N cells is specified by s∈RN where each si ∈{−1,1}. These two values could
represent, e.g., high and low activity states of the corresponding neurons. We advance, from time j to time j+1, for
j =1,2, . . . , by thresholding a linear combination of state elements. In particular, state s j is advanced to

s j+1 =Hop(Ws j) where Hop(x)≡
{

1 if x>0
−1 if x ≤0

(27.1)

is applied to each component of Ws j in the Hopfield net. Here W ∈RN×N is the synaptic weight matrix. This net can
be trained to remember an input pattern p∈{−1,1}N by setting the weights to W =ppT . In this case, proceeding from
an arbitrary state s, we find

Ws=ppT s=p(pT s)= (pT s)p

and so

Hop(Ws)=

⎧⎪⎨
⎪⎩

p if pTs>0
−e if pTs=0,
−p if pTs<0.

where e ≡ones(N,1).

In particular, both p and −p are fixed points of the associated Hopfield net in the sense that

Hop(Wp)=p and Hop(W(−p))=−p.

Furthermore, these are the only fixed points unless p is balanced in the sense that pTe =0, in which case, −e is the only
other fixed point. These fixed points are attractors in the sense that the Hopfield trajectory, Eq. (27.1), will terminate
(rapidly) in one of these fixed points regardless of the initial state.

All of this generalizes nicely to multiple training patterns. In fact, if p1 and p2 are two such patterns, we set
P= (p1 p2) and W =PPT . Arguing as above, we find

Ws=PPTs= (sT p1)p1 +(sT p2)p2.

Evaluating Hop of this is now a much more interesting affair. If p1 and p2 are orthogonal, i.e., pT
1 p2 =0, then it is not

hard to see that both ±p1 and ±p2 will be fixed points. In the nonorthogonal case the input patterns may combine to
form phantom fixed points. As a simple example we consider the binary visual stimuli of Figure 27.1.

We reshape each input pattern of Figure 27.1 into a long vector and lay these into the columns of P= (p1 p2) and
assemble the weight matrix W =PPT as above. We then present the network with noisy copies of “I” and “O,” as in
Figure 27.2, and record the next state.

FIGURE 27.1 Binary visual patterns to be learned by a Hopfield network. Each of these letters is comprised of a 67-by-71 rectangular field of
pixels, where black= 1 and white=−1. (hop.m)
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(A) (B)

FIGURE 27.2 A. Nine noisy copies of “I” that the Hopfield network successfully identified. In other words, iterated application of Hop
converged towards the left pattern in Figure 27.1. B. Nine noisy copies of “O” that the Hopfield network successfully identified. (hop.m)

1

2

3

4

FIGURE 27.3 A four-cell network with bidirectional synapses between nodes 1 and 3, 1 and 4, 2 and 3, and 2 and 4.

We should note that fixed points are not the only possible attractors. Indeed, it is quite possible that the network
may “oscillate” by periodically bouncing between several states. As a concrete example we consider the network
of Figure 27.3. If we assume reciprocal unit weights along each of the edges in Figure 27.3 then we arrive at the
symmetric weight matrix

W =

⎛
⎜⎜⎝

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

⎞
⎟⎟⎠.

If initially we excite cells 1 and 2 then s1 = (1 1 −1 −1). It then follows that s2 =−s1 and s3 =−s2 = s1 and we say
that the network has an attractor of period 2. We shall see in Exercise 2 that this example captures the general result,
in the sense that no undirected Hopfield net may have an attractor with period greater than 2.

27.2 LEAKY INTEGRATE-AND-FIRE NETWORKS

We now move from one discrete, on/off, variable to three continuous variables per cell: voltage as well as synaptic
excitatory and inhibitory conductances. We begin with the simple two-cell network of Figure 27.4.

The circuit in Figure 27.4 is comprised of two cells driven by two excitatory conductances. We denote the membrane
potentials by V1 and V2 and conductances by gE,1 and gE,2. The circuit is driven by an excitatory input train that spikes
at Tinp ≡{Tn

inp : n=1,2, . . .}. Each such spike increments gE,1, the excitatory conductance at cell 1, by a fixed amount,

winp/τE. Between such spikes we assume that gE,1 returns to zero at the fixed rate τE. In other words, we suppose that

Input
1 2

FIGURE 27.4 The smallest network, consisting of two cells driven by two excitatory conductances.
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gE,1 is governed by the differential equation

τEg′
E,1(t)=−gE,1(t)+ winp

∑
n

δ(t−Tn
inp). (27.2)

Similarly, the excitatory conductance at cell 2 is driven by the spikes of cell 1, at times T1 ≡{Tn
1 : n=1,2, . . .} and with

weight w21. It follows that gE,2 is governed by

τEg′
E,2(t)=−gE,2(t) + w21

∑
n

δ
(
t−Tn

1
)
. (27.3)

These conductances in turn supply synaptic current to the potential equations

CmV ′
i(t)=gL(VL −Vi(t)) + gE,i(t)(V

syn
E −Vi(t)), while Vi(t)<Vthr (27.4)

and cell i is not refractory. When Vi(t) exceeds Vthr we augment the spike time sequence, Ti, and we reset Vi(t) to
a fixed reset potential, Vres, for a set refractory period, tref . These spike times couple the conductance and potential
equations. We decouple this system by choosing a time step, dt, and specifying an order of operation. In particular,
we adopt the marching scheme:

1. check for an input spike at the current time, t, and for network spikes from the previous time, t−dt,
2. update conductances based on the input spikes and network spikes recorded in (1),
3. update potentials, record spikes, and return to (1).

In our graphical representation of the potential, e.g., Figure 27.5, the presence of a spike can be inferred from the hard
reset to Vres . Accordingly, if cell 1 receives an input spike in the interval (jdt, [ j+1)dt) then the trapezoid rule on (27.2),
applied to g

j
E,1 ≈gE,1(( j−1)dt), requires

τE
(
g

j+1
E,1 −g

j
E,1

)=−(
g

j+1
E,1 +g

j
E,1

)
dt/2+winp

which may be rearranged to read

g
j+1
E,1 = aEg

j
E,1 +bEwinp
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FIGURE 27.5 Response of the two-cell net to a low frequency periodic input with period, P= 5 ms, and a high frequency, P= 2 ms, stimulus.
Voltage is in mV and conductance in mS/cm2. The stimuli and cell are parametrized in Eqs. (27.6) and (27.7). In each case we see that cell 1
fires following every second input spike. In the low frequency case the resultant spike rate of cell 1 is not sufficient to bring cell 2 to threshold.
(twocell.m)
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where

aE = 2τE −dt
2τE +dt

and bE = 2
2τE +dt

.

Similarly, if cell 1 was found to spike in the previous interval, i.e., in [( j−1)dt, jdt), then we update the conductance
via

g
j+1
E,2 = aEg

j
E,2 +bEw21.

If cell 1 did not fire in that interval then simply g
j+1
E,2 = aEg

j
E,2. Regarding the potentials, when cell i is nonrefractory,

i.e., when

( j+1)dt− T́i> tref (27.5)

where T́i is the last time that cell i spiked, the trapezoid rule in Eq. (27.4) requires

V
j+1
i =

(
2Cm/dt−(

gL +g
j
E,i

))
V

j
i +2gLVL +(

g
j+1
E,i +g

j
E,i

)
Vsyn

E

2Cm/dt+gL +g
j+1
E,i

.

If Eq. (27.5) is not satisfied we enforce V
j+1
i =Vres . We have coded this update procedure in twocell.m and illustrate

our findings, see Figure 27.5, for periodic input trains that spike at

Tn
inp =nP, n=1,2, . . . (27.6)

where P is the period (in ms). Throughout we shall use

τE =2 ms, Vsyn
E =0 mV, gL =0.3 mS/cm2, VL =−68 mV, Cm =1 μF/cm2,

winp =0.5 mS ms/cm2, w21 =0.5 mS ms/cm2, tref =3 ms, Vthr =−50, Vres =−70 mV.
(27.7)

As most cells receive input from more than one neighbor we move on to the three-cell net of Figure 27.6. We
retain periodic input and add to the parameter set above w32 =w31 =0.5. We have coded the subsequent model in
threecell.m. This code is a considerable refinement of the two-cell version. In particular, we have laid the weights in
a weight matrix, W, and we have “vectorized” the computations of both gE and V. We illustrate its use in Figure 27.7.

We next suppose, see Figure 27.8, that cell 3 inhibits cell 1. This new conductance is governed by

g
j+1
I ,1 = aIg

j
I ,1 +bIwinhs

j
3

where s
j
3 ≡1(V

j
3 −Vth) is one if cell 3 spiked at time j, and is zero otherwise (recall the definition of the Heaviside

function, 1, Eq. (1.6)). In addition, as in the excitatory case,

aI = 2τI −dt
2τI +dt

and bI = 2
2τI +dt

.

3
Input

21

FIGURE 27.6 A three-cell network.
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FIGURE 27.7 Response of the three-cell net to low frequency, P= 5 ms (A), and high frequency, P= 2 ms (B), periodic stimulus. Observe in the
lower right panel that the third conductance receives a double kick (arrowheads) as cell 2 fires just after each second spike of cell 1. (threecell.m)
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FIGURE 27.8 A three-cell network with feedback inhibition.

The potential at cell 1 now follows

V
j+1
1 =

(
2Cm/dt−(

gL +g
j
E,1 +g

j
I ,1

))
V

j
1 +2gLVL +(

g
j+1
E,1 +g

j
E,1

)
Vsyn

E +(
g

j+1
I ,1 +g

j
I ,1

)
Vsyn

I

2Cm/dt+gL +g
j+1
E,1 +g

j+1
I ,1

.

We set

τI =2 ms, Vsyn
I =−70 mV, and winh =3 mS ms/cm2,

and arrive at the trajectories of Figure 27.9.
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FIGURE 27.9 Response of the network in Figure 27.8 to high frequency, P= 2 ms, periodic stimulus. We note that cell 3 now staggers the firing
of cell 1. (threecellI.m)
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In the simulation of large networks, one computes, but does not typically report, the conductances and poten-
tials at each time step. Rather one reports the times at which each cell spikes. We have trimmed threecell.m and
threecellI.m down to threecellrast.m and threecellIrast.m and illustrated their use in Figure 27.10.

Proceeding to larger networks, we suppose that W ∈ Rn×n denotes the matrix of weights between n excitatory
cells and Winp ∈ Rn×n denotes the weight of input spikes upon excitatory cells, then, arguing as above, the network
equations take the form

g
j+1
E = aEg

j
E +bE

(
Wsj +Winps

j+1
inp

)
Vj+1 =

(
2Cm/dt−(

gL +g
j
E

))
Vj +2gLVL +(

g
j+1
E +g

j
E

)
Vsyn

E

2Cm/dt+gL +g
j+1
E

(27.8)

sj+1 =1(Vj+1−Vthr)

where all operations in the voltage update are elementwise. Here sj and s
j
inp are vectors with binary, i.e., {0,1}, ele-

ments. We set sj
inp,i =1 if cell i receives an input spike at time jdt. Similarly, via the Heaviside function1, we set sj

i =1 if
cell i spiked (exceeded threshold) at time jdt. We have coded this in Enet.m with the help of MATLAB’s sprand function,
which generates sparse matrices from the uniform distribution on [0,1] with a prescribed fraction of nonzeros.
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FIGURE 27.10 Raster plots of spike times of the three-cell net without (black plus) and with (red circle) inhibition, subject to the same high
frequency, P= 2 ms, periodic stimulus. (threecellrast.m and threecellIrast.m)

(B)(A)

50 100 150 200

2

4

6

8

10

12

14

16

18

20

Time (ms)

C
el

l

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

Cell

C
el

l

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FIGURE 27.11 Weight matrix (A) and spikes (B) in a 20-cell excitatory net with 15% connectivity subject to a periodic train, P= 50 ms, with
Winp = 1, delivered to the first 20% of the cells. The red dashed lines in A indicate the three rows and single column with vanishing weights.
(Enet.m)
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FIGURE 27.12 Weight matrix (A) and spikes (B) in a 40-cell excitatory net with 7% connectivity subject to a periodic train, P= 50 ms, with
Winp = 1, delivered to the first 20% of the cells. (Enet.m)

Regarding the weight matrix of Figure 27.11A, note that cell 15 has no squares in its column and hence has no
impact on the behavior of the net. Every row has a nonzero entry, except for rows 13, 17, and 20. So in fact every cell
except those three receives input from at least one neighbor. We have stripped the diagonal clean and hence no cell
excites itself. These nets are capable of generating rich patterns, see Figure 27.12B.

We now introduce a population of inhibitory cells. We denote their potentials by VI and those of the excitatory cells
by VE. Now each cell has two conductances; gEE and gIE will denote the excitatory and inhibitory conductances on an
excitatory cell while gEI and gII will denote the excitatory and inhibitory conductances on an inhibitory cell. Coupling
occurs through the weight matrices; WEE which connects E cells to E cells, WEI which connects E cells to I cells, WIE
which connects I cells to E cells, and WII which connects I cells to I cells. The subsequent network equations are

g
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We have coded this system in EInet.m with

τI =1 ms and Vsyn
I =−70 mV

and illustrate its findings in Figure 27.13.
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FIGURE 27.13 Weight matrices (A) and spikes (B) in an EI net with 80 E cells and 20 I cells. A. WEE , WEI, and WIE each have 25% connectivity
while WII has 5%. Red lines differentiate the respective weight matrices. B. The spikes (black for excitatory and red for inhibitory cells) associated
with simultaneous input delivered to the excitatory conductances of the first 16 E cells, causing them to fire synchronously 10.9 ms after the
beginning of the simulation. (EInet.m)

27.3 LEAKY INTEGRATE-AND-FIRE NETWORKS WITH PLASTIC SYNAPSES

Spikes not only increment transient synaptic conductances, but also impact the associated elements of the synaptic
weights. In §§12.6, 12.7, and 13.4 we discussed a number of biophysical mechanisms that are suspected to underlie
such synaptic plasticity. In this section we will implement and analyze a Hebbian rule that goes by the name spike
time-dependent plasticity, or STDP, which has been characterized in several experimental preparations. More precisely,
if Wi,j is the weight of cell j upon cell i then STDP dictates that we increment Wi,j when cell j spikes before cell i and
that we decrement Wi,j when cell i spikes before cell j. The size of the weight change is a function of the time between
spikes and the current weights. Let us begin with the simple four-cell net of Figure 27.14.

We excite cell 1 every 40 ms. This activity propagates quickly to fire cells 2 and 4 and eventually cell 3. As 1 fires 4
we expect this weight, W4,1, to increase, and as 3 does not fire 4 we expect W4,3 to decrease. To do this, when a cell fires
we potentiate the weights from presynaptic cells that have recently fired and depress the weights to postsynaptic cells
that have recently fired. We quantify “recent” by adopting a scheme that is in line with observations that the degree of
both potentiation and depression decays exponentially with the interval between the presynaptic and postsynaptic
spikes, see Figure 27.15.

As a concrete example, we denote by T1 and T3 the most recent times at which cells 1 and 3 fired, respectively. If
cell 2 is the next to fire, at time T2, we update the associated conductances via

W2,1(T
+
2 ) = W2,1(T

−
2 )+AP exp((T1 −T2)/τP)

W3,2(T
+
2 ) = W3,2(T

−
2 )−AD exp((T3 −T2)/τD).

(27.9)

When called repeatedly these increments may lead to runaway weight loss and gain. There are a number of remedies,
e.g., Oja’s Rule of Eq. (14.14), for this. The simplest is to set to zero any weights that become negative and to set to Wmax
all weights that exceed this specified maximum. Asmoother way of enforcing these bounds is to replace Eq. (27.9) with

W2,1(T
+
2 )=W2,1(T

−
2 )+AP exp((T1 −T2)/τP)(Wmax −W2,1(T

−
2 )) (27.10)

W3,2(T
+
2 )=W3,2(T

−
2 )−AD exp((T3 −T2)/τD)W3,2(T

−
2 ).
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3
Input

21

FIGURE 27.14 A four-cell net.
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FIGURE 27.15 Spike time-dependent plasticity in cultures of dissociated rat hippocampal neurons. The change in the (peak) amplitude of the
Excitatory Postsynaptic Current (EPSC), at subthreshold glutamatergic synapses 20–30 minutes after repetitive correlated spiking, is plotted as a
function of �t, the time interval (see inset) between the onset of the EPSC and the peak of the postsynaptic action potential. Correlated spiking
was produced by stimulating the presynaptic cell with 60 suprathreshold pulses at 1 Hz and stimulating the postsynaptic cell at a set time within
each cycle. The scale bars in the inset denote 10 ms and 50 mV. These data suggest potentiation of the form AP exp(−�t/τP) when pre precedes
post, i.e., when �t> 0, and depression of the form AD exp(�t/τD) when post precedes pre, i.e., when�t< 0. From Bi and Poo (1998).

Another advantage of this procedure is that now the maximum adjustments, AP and AD, are dimensionless. Regard-
ing the implementation of these general rules, if our marching scheme determines that cell k fires in the interval
[ jdt,( j+1)dt) we potentiate its presynaptic weights and depress its postsynaptic weights via

W
j+1
k,kpre

=W
j
k,kpre

+AP exp
((

Tkpre −( j+1)dt
)
/τP

)(
Wmax −W

j
k,kpre

)
W

j+1
kpost ,k

=W
j
kpost ,k

−AD exp
((

Tkpost −( j+1)dt
)
/τD

)
W

j
kpost ,k

.

We have coded these rules for the four-cell net, with

AP =AD =0.3 and τP = τD =10 ms (27.11)

and initial weights

W2,1 =W3,2 =W4,1 =0.75 and W4,3 =0.7 mS ms/cm2, (27.12)

and illustrate our findings in Figure 27.16. We next apply this learning rule on E-to-E connections of the large net
studied in Figure 27.13A. We suppose

τE =2, τI =1, τP =5, τD =5 ms, AP =0.1, AD =0.3, WEE,max =0.2 mS ms/cm2,

and as above drive the first 20% of the E cells with the same synchronous input delivered to their excitatory conduc-
tances and repeated with a period of 100 ms. We permit STDP to act on the E-to-E connections and arrive at the new
weights in Figure 27.17. Since the gray-scale weight plots of Figures 27.13 and 27.17 are not the best means of tracking
weight shifts over time, we report in Figure 27.18 the running weight distribution. To the question, “What has the
network learned?” we answer that it has learned to associate the “input pattern,” comprised of simultaneous firing
of cells

in ≡{1 : 16},
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FIGURE 27.16 Spike (A) and weight (B) evolution via STDP in the four-cell net parametrized by Eqs. (27.11) and (27.12). We see indeed that
the direct connection, W4,1, is strengthened (up to Wmax = 1) while the indirect connection, W4,3, is diminished. (fourcell.m)
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FIGURE 27.17 Weights (A) and spikes (B) after 5 seconds of STDP learning with dt = 0.02 ms. A. On comparing to the initial weights in
Figure 27.13A we notice a striking depression in the weights between input cells (for they are firing independently of their network neighbors)
and a striking potentiation of the input to output connections (columns 1:16 and selected rows between 20 and 80). B. The resulting spike pattern
associated with input at t = 3.4 seconds. (EInetH.m)
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FIGURE 27.18 Running histogram of E-to-E synaptic weights for the network of Figure 27.13. As in the four-cell example, we see that most
weights shift to the two extremes over time. (EInetH.m)
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with the output pattern of Figure 27.17B, i.e., the firing of cells

out ≡{22 : 24,26,31 : 33,39,41,42,44,48,49,51,55,64,66,77 : 79}

within the next few milliseconds. In order to test the strength of this association we measure the learned network’s
ability to complete incomplete input. In particular, we systematically drop input spikes and count the average number
of dropped output spikes. We implement this test in EInetComp.m and find that dropping one input spike produces
no loss in output fidelity. Dropping two input spikes produces an average loss of 4% of the output spikes and
dropping three input spikes produces an average loss of 34% of the output spikes. Each average is computed over
16!/(d!(16−d)!) random trials of d dropped input spikes. We see no loss when d =1 and substantial loss when d =3.
At the intermediate stage we note that d =2 produces 12.5% input error and yet our output is only off by 4%. In that
sense, STDP has endowed the random network of Figure 27.13A with the power of “pattern completion.”

27.4 HODGKIN–HUXLEY BASED NETWORKS

The leaky integrate-and-fire setting provides a close to minimal model of the salient properties of a network.
In instances where there remain large gaps in our understanding of network architecture, cell morphology and
electrophysiology, this approach allows one to probe hypotheses concerning the behavior of large ensembles of cells.
In settings where data are available it makes sense to consider more detailed models. The literature is vast and
growing and so we restrict ourselves here to the study of rhythmic behavior in two canonical situations, namely,
mutual inhibition and mutual excitation.

Oscillations via reciprocal inhibition. We consider, see Figure 27.19, a pair of driven Morris Lecar cells that inhibit
one another. Recall from Exercise 5.11 that each cell possesses a leak, potassium and calcium current and that the
latter is fast activating and so only the potassium current requires a gating variable, n. The cells are mutually coupled
through inhibitory synapses activated in a voltage-dependent manner specified by the instantaneous gating functional
s∞(V). The four equations that govern the dynamics of the two cells are

CmV ′
i(t)+gCam∞(Vi)(Vi −VCa)+gKni(Vi −VK)+gCl(Vi −VL)

+wis∞(Vp(i))(Vi −Vsyn)= Istim (27.13)

n′
i(t)= (n∞(Vi)−ni)/τn(Vi) i =1,2.

Furthermore p(1)=2 and p(2)=1, and, for simplicity, we assume that the gating functionals of the potassium and
calcium currents as well as the synaptic one are all identical sigmoids, n∞(V)= s∞(V)=m∞(V). The synaptic weights
and reversal potential are

w1 =w2 =30 μS/cm2 and Vsyn =−80 mV, (27.14)

and the remaining constants and functionals are as specified in Exercise 5.11. Although this model exhibits complex
action potentials, its synaptic conductances are in a sense simpler than those used in our leaky integrate-and-fire model.
More precisely, the synapses in Eq. (27.13) are graded and instantaneous in the sense that the presynaptic potential
Vp(i) is merely passed through a sigmoid, s∞, rather than thresholded and then delayed via integration through a
conductance equation, like that of Eq. (27.2). Thus, graded synaptic transmission does not require presynaptic action
potentials. It is ubiquitous in invertebrate nervous systems and plays an important role in vertebrates as well, e.g.,
at the synapses made by photoreceptors with their target neurons, the bipolar cells of the retina.

Input

1 2

FIGURE 27.19 Using reciprocal graded inhibition to build an oscillator.
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We approximate Eq. (27.13) via the hybrid Euler scheme

n
j
i =

τn
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V

j−1
i

)
n

j−1
i +n∞

(
V

j−1
i

)
dt

dt+τn
(
V

j−1
i

)
(27.15)

V
j
i =

(Cm/dt)Vj−1
i +gCam∞
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)+gKn
j
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(
V
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)
and illustrate first, see Figure 27.20, that each cell, in isolation, oscillates when driven by current in a particular interval.
That interval corresponds to the values of Istim for which the gating nullcline, n=m∞(V) (black dashed “sigmoid” in
Figure 27.20B) intersects the voltage nullcline,

n= f (V)≡ Istim −gCam∞(V)(V −VCa)−gCl(V −VCl)

gK(V −VK)
(27.16)

(black dotted “cubic” in Figure 27.20) on the increasing branch of f . In analyzing network behavior it will be useful
to consider the inhibited nullcline

n=F(V)≡ Istim −gCam∞(V)(V −VCa)−gCl(V −VCl)−w(V −Vsyn)

gK(V −VK)
. (27.17)

Figure 27.21 depicts the membrane potential trajectories of two coupled Morris Lecar cells under low current stimu-
lation. In the subsequent three Figures 27.22–27.24, we illustrate that slight changes in Istim are sufficient to switch the
network between four quite distinct regimes. Each of these oscillatory patterns are highly dependent on the coupling
weights, w1 and w2 specified in Eq. (27.14). In §27.5 we will investigate means for the self-tuning of these weights.

The Pinksy–Rinzel CA3 network. We construct a network comprised of N two-compartment E cells of Eq. (10.8). We
denote the network adjacency matrix by A. It is a binary, {0,1}, matrix for which Aij =1 if cell j is presynaptic to cell i.
For the small circuit of Figure 27.25, e.g.,

A=
(

0 0
1 0

)
.

We suppose that each dendritic compartment has both AMPA and NMDA receptors. The vector representing total
synaptic current is then

Isyn = IAMPA +INMDA

0 1 2 3 4 5

(A) (B) (C)

6 7 8
�60

�40

�20

0

20

40

60

80

Time (ms)

V
 (

m
V

)

�80�60�40 �20 0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

V (mV)

n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

100

200

300

400

500

600

700

Istim (�A/cm2)

F
iri

ng
 F

re
qu

en
cy

 (
sp

k/
s)

FIGURE 27.20 A, B. The response of a single Morris Lecar cell to constant current injection, Istim = 0.55 μA/cm2. The voltage trace is plotted
in A and the full phase trajectory (solid red) in B. Also in B we have plotted the gating nullcline, n= m∞(V) (black dashed “sigmoid”), and the
voltage nullcline, Eq. (27.16) (black dotted “cubic”). The cell responds in an oscillatory fashion to those Istim for which the nullclines intersect on
the increasing branch of f . We quantify this in panel C. (ml1pp.m and ml1.m)
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FIGURE 27.21 The voltages responses (A), and phase plane (B) of the coupled system with Istim = 0.55 μA/cm2 delivered to each cell. The
time and voltage scales in A are the same as in Figure 27.20A. The two solid traces in B are the respective trajectories of cell 1 and cell 2. The dashed
and dotted curves are the two nullclines of Figure 27.20B, while the dash-dot curve is the inhibited nullcline of Eq. (27.17). We note that cell 1
fires first. Its voltage then declines gradually until the phase trajectory nears the maximum of f , at which point the voltage declines rapidly, hence
releasing cell 2 from inhibition. Skinner et al. (1994) refer to this mechanism as “intrinsic release.” (ml2.m)
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FIGURE 27.22 As we increase Istim we enter a regime of bistability with one cell resting at a high state and the other resting at a low state.
Here, the voltages responses (A), and phase plane (B) of the coupled system are depicted for Istim = 1.55μA/cm2. (ml2.m)
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FIGURE 27.23 Voltages responses (A), and phase plane (B) of the coupled system with additional current, here Istim = 2.55 μA/cm2. We see
that network oscillation resumes and, as the inhibited cell slowly depolarizes, the phase trajectory nears a minimum of the inhibited nullcline, F,
and escapes its inhibition. Skinner et al. (1994) refer to this mechanism as “intrinsic escape.” (ml2.m)
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FIGURE 27.24 Voltages responses (A), and phase plane (B) of the coupled system as we inject still more current, here Istim = 3.05μA/cm2. We
find that the lower branch of the inhibited nullcline, F, crosses the synaptic threshold, Vth = 0. Hence, as the voltage of the inhibited cell increases
past Vth it forces the trajectory of the free cell to follow the inhibited nullcline, and so permit the former to escape from inhibition. Skinner et al.
(1994) refer to this mechanism as “synaptic escape.” (ml2.m)
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Vd, 1

Vd, 2

FIGURE 27.25 A pair of two-compartment cells, with current injection into the somatic compartment of cell 1 and an excitatory synaptic
connection to the dendritic compartment of cell 2 from the somatic compartment of cell 1. Compare with Figure 10.10A.

where the AMPA current into the ith cell is

IAMPA,i(t)=gAMPAxi(t)(Vd,i(t)−Vsyn), x′ =A1(Vs (t)−Vθ ,x)−x/τx, Vθ ,x =20 mV, τx =2 ms (27.18)

and the associated NMDA current is

INMDA,i(t)=gNMDAyi(t)M(Vd,i(t))(Vd,i (t)−Vsyn), y′ =A1(Vs (t)−Vθ ,y)−y/τy, Vθ ,y =10 mV, τy =150 ms.
(27.19)

The function M encodes the voltage-dependent magnesium block via

M(V)= 1
1+0.28 exp(−0.062(V −60))

,

a simple variant of Eq. (9.20). The parameters that govern the time course of the AMPA and NMDA conductances,
Eqs. (27.18) and (27.19), are chosen to mimic a rapid rise and rapid fall in the former as opposed to a slow rise and
slow fall in the latter. We suppose that each yi in Eq. (27.19) saturates, i.e., may not exceed, 125. In addition we set

gAMPA =0.0045, gNMDA =0.014 mS/cm2, and Vsyn =60 mV, (27.20)

and, as in §10.3, we deliver a tonic current of −0.5 μA/cm2 to each soma. Into the first soma we inject an addi-
tional short current pulse and illustrate the response in Figure 27.26. We now consider large random networks of
such cells.
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FIGURE 27.26 Response of the two-cell net of Figure 27.25 to transient current injection, 101(10,13)(t) μA/cm2, into the soma of cell 1. The
single cell parameters are as specified in Exercise 10.8 and the synaptic parameters in Eq. (27.20). The time step dt = 0.01 ms. A. The two soma
potentials. B. The AMPA and NMDA currents in the dendritic compartment of cell 2. The AMPA current is confined, in time, to the burst in cell
1 while the NMDA current, also activated by this burst, is then further amplified by the subsequent burst in cell 2. Compare with Figure 9.11.
(hyEprnetdemo.m)
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FIGURE 27.27 Response of a random 100-cell, 20% dense, network of Pinsky–Rinzel cells to transient current injection, 301(10,13)(t) μA/cm2,
into the soma of cell 1. The single cell parameters are as specified in Exercise 10.8 and the synaptic parameters as in Eq. (27.20), except gNMDA = 0.007
in (A) and gNMDA = 0.005 mS/cm2 in (B). (hyEprnet.m)

Application to epileptic rhythmic activity. Rhythmic activity across populations of neurons is thought to play an
important role in the processing of sensory information (see Figure 10.6) as well as in diseases such as epilepsy.
During epileptic seizures for instance, neurons of the hippocampus tend to fire rhythmic bursts of action potentials
synchronized across a large neural population. Rhythmic activity is also well documented in the olfactory system
of vertebrates and invertebrates for instance. We now investigate, in Figures 27.27 and 27.28, the roles played by
the AMPA and NMDA conductances in rhythmogenesis in large random networks. In each case we suppose that
there are N =100 cells and that each cell receives input from approximately 20 of its neighbors. Rather than tracking
individual spikes we instead record the fraction of bursting cells, i.e., the fraction of cells with soma potential in excess
of 20 mV. We see that both the network frequency and its ability to sustain rhythms is highly dependent on the NMDA
conductance. We next exhibit the impact of blocking AMPA receptors after rhythmogenesis. We note that the rhythms
of Figures 27.27 and 27.28 emerge from the cell and synapse models and the number, but not the pattern, of E-to-E
connections. Rhythms are, of course, also initiated and modulated by inhibition. In Exercise 7 we investigate the role
of inhibition on burst duration and composition.
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FIGURE 27.28 The setting of Figure 27.27A with gAMPA set to zero for t> 400 ms. (hyEprnet.m)

27.5 HODGKIN–HUXLEY BASED NETWORKS WITH PLASTIC SYNAPSES

We return to the two-cell inhibitory network of Eq. (27.13) and investigate a learning rule that leads to rhythmic
behavior. We append to Eq. (27.13) equations that govern the evolution of synaptic weights, wi, in terms of the
concentration of intracellular calcium, ci(t), in cell i. As Faraday’s constant permits us to tie coulombs to moles and as
calcium enters through membrane currents in amperes per unit area, we choose to represent concentration in units
of μC/cm2. We pose the simplest possible dynamics,

τww′
i(t)=

ci(t)−C
C

wi(t)
(27.21)

c′
i(t)=−gCam∞(Vi)(Vi −VCa)−ci(t)/τCa.

The first equation serves to steer wi to that configuration in which its calcium concentration hits the target value, C.
The latter equation dictates that calcium enter through calcium channels and that it decays at rate τCa. We adopt the
parameters

τw =35 s, C =9000 μC/cm2, and τCa =10 s, (27.22)
and functionals

m∞(V)= (1+ tanh((V +10)/20))/2, τn(V)=125/cosh(V/30), (27.23)

n∞(V)= (1+ tanh((V +10)/5))/2, s∞(V)=1/(1+exp(−(V +58)/10)),

and demonstrate in Figure 27.29 that each uncoupled cell is tonically depolarized to approximately 5.6 mV. We now
couple two such cells, as in Eq. (27.13), and permit the weights to evolve according to Eq. (27.21). The results of

�80 �60 �40 �20 0 20 40 60 80

V (mV)

0

0.2

0.4

0.6

0.8

1

n

FIGURE 27.29 The phase plane and individual trajectories (solid) associated with uncoupled (w1 = w2 = 0) Morris Lecar cells, commencing
from V1(0)=−80 mV (black) and V2(0)=−20 mV (red), that each obey Eqs. (27.13), (27.22), and (27.23). The dashed and dotted curves are the
respective n and V nullclines. Compare with Figure 27.22B. (soto.m)
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FIGURE 27.30 Convergence of cell calcium levels (A), and synaptic weights (B), in accordance with the learning rule, Eq. (27.21). Evolution
of the oscillator is traced in panels (C) early, (D) middle, and (E) late. Initial values were, V = (−80 −40)mV, n= n∞(V), c = (4000 5000) μC/cm2,
and w = (1 2)mS/cm2. The time step dt = 1 ms. (soto.m)

one such simulation are presented in Figure 27.30. Commencing from distinct calcium levels, i.e., c1(0) �= c2(0) as
well as distinct weights, w1 �=w2, this figure reveals the convergence of c1(t) and c2(t) onto their target level and the
convergence of w1(t) and w2(t) to a common value and subsequent antiphase oscillation in the membrane potentials.

27.6 RATE BASED NETWORKS

As pointed out earlier, the instantaneous firing rate captures a substantial fraction of the information conveyed
either by single neurons (Chapters 20 and 25) or neuronal populations (Chapter 26). Thus, network models are
often formulated in terms of instantaneous firing rates. Here f (t) will denote the average firing rate, at time t, of a
population of cells, in response to its average synaptic input, u(t). The spike generating machinery of the individual
cells is collapsed into a single threshold. In particular, we will assume that

f (t)=σ(u(t)) (27.24)

for some sigmoidal function σ . The mean synaptic input is then assumed to evolve in a manner reminiscent of the
conductance equations (27.2) and (27.3). In particular

τu′(t)=−u(t)+w(t)f (t), (27.25)

where w(t) is the average synaptic weight at time t. We will now consider a specific example that will yield insight
into the firing rate dynamics of a network of head direction cells in the rat’s brain.

Head direction cells. Animals moving in a complex environment need to keep track of their head direction if they
are to navigate successfully towards a desired target location, such as a source of food. In the rat brain, cells whose
firing rates are strongly correlated with a fixed head direction during locomotion have been discovered in numerous
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regions of the brain, see Figure 27.31 for two examples. For a preferred direction θ0 it is common to fit the rate curves
of Figure 27.31 to functions of the form

f (θ−θ0)=A+Bexp(K cos(θ−θ0)). (27.26)

Here A and Bexp(K) specify the respective background and peak rates, and K determines the width of the distribution.
We proceed with the concrete choice in Figure 27.32A. For the threshold function we use

σ(u)≡ a(log(1+exp(b(u+c))))β (27.27)

with parameter values as specified in Figure 27.32B.
To consider the interaction of head direction (HD) cells, we denote, respectively, by u(θ , t) and f (θ , t) the average

synaptic input and firing rate over all HD cells with preferred direction θ . We continue to assume that f is determined
by u via the static threshold f (θ , t)=σ(u(θ , t)) and now assume that HD cells with distinct preferred directions, say θ1
and θ2, influence one another through synaptic weights that depend solely on the difference, θ1 −θ2. In particular, we
suppose that u obeys

τut(θ , t)=−u(θ , t)+w(θ , t) �σ(u(θ , t)), (27.28)

where w�σ denotes the angular convolution

w(θ , t)�σ(u(θ , t))≡ 1
2π

2π∫
0

w(θ−φ, t)σ(u(φ, t))dφ. (27.29)
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FIGURE 27.31 Firing rates of a head direction cell from (A) the anterior thalamus, and (B) the postsubiculum. Here, θ is the head direction of
the rat moving in the environment, while θ0 is the cell’s preferred direction. Adapted from Zhang (1996).
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FIGURE 27.32 A. The graph (black) of Eq. (27.26) when A = 1 spk/s, K = 8, Bexp(K)= 39 spk/s, and θ0 = 0. The red curve is the result of
regularized deconvolution, σ(W � f ), where W is the (black) weight function in C and f is the desired tuning curve. B. The sigmoid threshold
function, Eq. (27.27), with parameters a = 6.34, b= 10, c = 0.5, and β= 0.8. C. The stationary weight function, W, (black) computed from Eq. (27.33)
with λ= 10−3max| f̂n|2. The dynamic weight function, w = W +γW′, (red) computed from Eq. (27.34) with γ = 0.063 rad. (hdnet.m)
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We now discuss how to choose the synaptic weight function, w, in order to reproduce two fundamental behaviors of
the observed HD network:

HD1. When the rat is stationary the HD population behavior simply mirrors the single HD cell behavior. More
precisely, when stationary, cells of preferred direction θ spike at rates described by Figure 27.32A, where θ0
is the current head direction with respect to a fixed reference frame. We will assume θ0 =0 in the following,
corresponding to the head aligned with the body.

HD2. In a controlled environment, the rotation of a single salient visual cue associated with the animal’s reference
frame leads to a near equal rotation of the preferred direction of every HD cell. Equivalently, as the rat rotates
its head, the spike rate of the population shifts in a rigid fashion.

Regarding HD1, in the stationary case we presume in response to an initial disturbance σ(u0(θ)), that u(θ , t) converges
over time to U(θ). If the weight function, w(θ , t), likewise converges to some W(θ), then Eq. (27.28) yields

U(θ)=W(θ)�σ(U(θ)). (27.30)

As we expect the limiting firing rate to coincide with the known f , we recognize that Eq. (27.30) is

U(θ)=W(θ)� f (θ), (27.31)

where f and U(θ)=σ−1( f (θ)) are both known and so W, the limiting weight distribution, may be determined via
deconvolution. From the Convolution Theorem, Eq. (7.11), we recognize that their Fourier coefficients obey

Ûn =Ŵn f̂n, n=0,±1,±2, . . . (27.32)

and so, formally, Ŵn = Ûn/f̂n. Unfortunately, given our choice of f and σ , this quotient does not produce a suitable W.
More precisely, as |n|→∞ we find that f̂n → 0 faster than Ûn → 0 and so Ŵn →∞. In Exercise 8 we will derive a
“regularized” solution

Ŵn = Ûnf̂ ∗
n

λ+| f̂n|2
, (27.33)

where the regularization parameter, λ, is chosen by hand, to insure that the firing rate σ(u(θ , t)) indeed converges to
f (θ)when the initial state u(θ ,0) is close to σ−1( f (θ)) and w(θ , t)=W(θ). We have coded this in hdnet.m and illustrate
it in Figure 27.32B. For the stationary weight choice, w(θ , t)=W(θ), in Eq. (27.29), we expect that any initial disturbance
will settle into a translate of f . We illustrate this in Figure 27.33A with a noisy combination of two competing head
directions.

We now take up HD2 and argue that the dynamic shift in firing rate may be achieved by a dynamic weight of the
form

w(θ , t)=W(θ)+γ (t)W ′(θ) (27.34)

where γ (t)/τ (rad/ms) is the angular velocity of the rat’s head, and we will assume that τ , the time constant governing
the dynamics of the synaptic input, Eq. (27.28), is equal to 10 ms. In the case that u(θ ,0)=U(θ) we may write the exact
solution to Eq. (27.28), see Exercise 9,

u(θ , t)=U(θ +(t)) where (t)= 1
τ

t∫
0

γ (s)ds (27.35)

in terms of the steady solution, U, and the antiderivative of γ . We recognize Eq. (27.35) as a traveling bump. If given
general initial conditions, we discretize knowns and unknowns,

uj(θ)≈u(θ ,( j−1)dt) and wj(θ)=w(θ ,( j−1)dt)

MATHEMATICS FOR NEUROSCIENTISTS



27.7 BRAIN MAPS AND SELF-ORGANIZING MAPS 401

�3
�2

�1
0

1
2

3

0
100

200
300

400
500

600
0
5

10
15
20
25
30
35
40

�

Time (ms)

f (
sp

k/
s)

�3
�2

�1
0

1
2

3

0
100

200
300

400
500

600
0
5

10
15
20
25
30
35
40

�

Time (ms)

f (
sp

k/
s)

(A) (B)

FIGURE 27.33 The evolution of the population firing rate, f =σ(u), where u is the solution to Eq. (27.28), obtained via Eq. (27.36) with dt = 1 ms,
of the synaptic input equation, Eq. (27.28), with initial data corresponding to a noisy sum of two shifted copies of the desired f in Figure 27.32A.
A. The stationary case, w = W. By symmetry every translate, f (θ +θ0), of f (θ), is a steady solution of Eq. (27.28) when the rat is stationary. The
resulting peak firing rate direction, θ0, is the direction in which the initial population firing rate was strongest. B. The dynamic case, w = W+γW′
with γ = 0.063 rad and τ = 10 ms. We observe that the population response shifts, with the rat’s head, at approximately 2π rad/s. (hdnet.m)

and solve Eq. (27.28) via the hybrid Euler rule

(τ/dt)(uj+1(θ)−uj(θ))=−uj+1(θ)+wj+1(θ)�σ(uj(θ))

or

uj+1(θ)=
τuj(θ)+dtwj+1(θ)�σ(uj(θ))

τ +dt
. (27.36)

We plot in Figure 27.33B the spike rate of the population of head direction cells during a head rotation at speed
γ (t)/τ ≈2π rad/s (achieved by setting γ =0.063 rad since the time constant τ =10 ms). We have plotted the associated
shifted weight function, W +γW ′, in Figure 27.32C.

27.7 BRAIN MAPS AND SELF-ORGANIZING MAPS

A fascinating feature of visual cortex is that it is organized in an orderly manner with nearby neurons sharing many
common features that vary relatively smoothly as one travels along the cortical surface. This leads to the concept of
topographic maps that underlies the organization of both sensory and motor areas of the brain. Thus, in visual cortex
nearby neurons will usually have nearby receptive fields in visual space, but the topographic organization is more
refined than that. Usually, nearby neurons will also share the same orientation preference, the same direction of motion
preference, as well as preference for the same eye. Thus, multiple features are jointly represented in topographic maps.
Figure 27.34Aillustrates the map of orientation preference in the primary visual cortex of the tree shrew. In most regions
of the map, orientation preference varies smoothly (Figure 27.34B, left), except for singular points close to which all
possible orientation preferences are found (Figure 27.34B, right). These points are called pinwheels. A central question
of developmental neurobiology is how such maps arise. Two broadly defined mechanisms are thought to be at play.
The first one is based on molecular guidance cues, which are thought, e.g., to help growing axons find the appropriate
subregion where they should be making synapses with target neurons. The second mechanism is visual experience
which is thought to trigger learning, allowing maps to be refined over time.

Here, we examine a high level approach to the problem of development of maps of orientation and direction
preference in visual cortex using a learning rule based on visual experience. To begin we suppose that a retinal
square, [0,L]× [0,L], is mapped (fairly regularly) onto a square grid of N2 cortical cells. In particular, we suppose that
the center of the receptive field of cortical cell Cij lies at

xij = iL/N +U(0,σr), yij = jL/N +U(0,σr), i =1,2, . . . ,N, j =1,2, . . . ,N (27.37)
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FIGURE 27.34 A. Map of orientation preference in the primary visual cortex of the tree shrew obtained by intrinsic imaging. The local
orientation preference is coded in gray scale according to the key shown below. B. Three enlarged portions of the orientation preference map of A
illustrate linear zones (left) and pinwheel arrangements (right). Adapted from Bosking et al. (1997).
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FIGURE 27.35 Initial cortical map. A. Lines of constant x (red, x = 1,2, . . .,14) and constant y (black, y = 1,2, . . .,14) determined by Eq. (27.37)
with L= 15, N = 128, and σr = 0.5. B. Random preferred orientations (red) and directions (black arrows) of the first 32-by-32 block of cortical cells.
(codpm.m)

where U(0,σr) is the uniform distribution with mean 0 and width σr . This leads to a retinotopic map like the one of
Figure 27.35A. We next denote the preferred orientation of cell Cij by (aij bij) and its preferred direction by (cij dij)

and commence from the random distribution of preferred orientations and directions depicted in Figure 27.35B. The
receptive field of cell Cij is thus parametrized by

wij ≡ (xij yij aij bij cij dij)
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FIGURE 27.36 Final cortical map achieved after 7 ×105 stimulus presentations. A. Lines of constant x (red, x = 1,2, . . .,14) and constant y
(black, y = 1,2, . . . ,14). B. Preferred orientations (red) and directions (black arrows) of the first 32-by-32 block of cortical cells. Line lengths reflect
vector magnitudes. A pinwheel is indicated by the gray asterisk and a linear fracture by the dashed gray line. (codpm.m)

and we investigate a simple learning rule that adapts w to stimuli. Given a visual stimulus, v = (x y a b c d), centered
at (x y), with orientation (a b) and direction (c d), we find the cell, CIJ , with the closest receptive field, wIJ , by solving

‖v−wIJ‖=min
ij

‖v−wij‖. (27.38)

We then bring the receptive fields of those cells close to CIJ into alignment with the stimulus v via the update rule

wij =wij +εe−((i−I)2+( j−J)2)/(2σ 2)(v−wij). (27.39)

This two-step process, Eqs. (27.38) and (27.39), when applied to a large and varied set of stimuli, has the power to
organize the highly disordered map of Figure 27.35 in a fashion that agrees with experimental findings. The result is
known as a self-organized map, and the process itself is often interpreted in broad physiological terms as a competitive
mechanism that detects, via Eq. (27.38), the cortical region that responds maximally to a given stimulus followed by
enhancement, Eq. (27.39), of the neighboring active synapses. Its application to the problem at hand, with

ε=0.02 and σ =2.5

results in the map of Figure 27.36. We note that Figure 27.36B concurs with several key experimental findings. In
addition to orientation being orthogonal to direction, we observe (i) in regions of small orientation magnitude the
orientation varies by 180◦ around a “singularity,” or pinwheel, and (ii) regions of small direction magnitude are
separated by “linear fractures” that run either vertically or horizontally.

27.8 SUMMARY AND SOURCES

As recently as ten years ago, simultaneous recordings from large populations of neurons were still fairly rare. Thus,
most models of network activity are either higher level abstractions (e.g., Hopfield networks), or have been inferred
indirectly through repeated single neuron recordings and anatomical data. Nowadays, technical advances such as
multielectrode arrays and optical imaging techniques have rendered population recordings fairly common, opening
the way for a more refined understanding of neuronal networks. Yet, these new techniques also have substantial
limitations. For instance the synaptic connections between simultaneously recorded neurons are usually unknown,
and although many cells are recorded simultaneously, this is often at the expense of a detailed characterization of
individual ones. For a glimpse at this rapidly growing experimental literature, we recommend Zochowski et al. (2000),
McLean et al. (2007), Perez-Orive et al. (2002), Ohki et al. (2006), and Airan et al. (2007).

Hopfield networks go back to Hopfield (1982). See Amit (1992) for a thorough treatment. Exercise 2 is drawn
from Goles-Chacc et al. (1985). STDP was first observed by Levy and Steward (1983). In weakly electric fish,
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its role is particularly well understood. See, e.g., Bell et al. (1997). Song et al. (2000) is an excellent theoretical
counterpart to the experimental work of Bi and Poo (1998). We demonstrate in Exercise 5 that STDP in an LIF
model may produce the backward shift in hippocampal place fields observed by Mehta et al. (1997). Our work
on Hodgkin–Huxley based networks is based on Skinner et al. (1994), Soto-Treviño et al. (2001), and Pinsky and
Rinzel (1994). We consider the extension of the latter by Booth and Bose (2001) in Exercise 7. The important ques-
tion of the degree to which the dynamics of Hodgkin–Huxley based networks may be approximated by those
of Hopfield-like networks is addressed by Terman et al. (2008). Our exposition of rate based networks, includ-
ing Exercises 8–10, is drawn from Zhang (1996). For a review of head direction cells, see Taube (2007). Shriki
et al. (2003) establish conditions under which Hodgkin–Huxley based networks may be approximated by rate
based networks. The section on self-organizing maps is based on Swindale and Bauer (1998). Self-organizing
maps are due to Kohonen, see Kohonen (2001) for a comprehensive overview. For further neuronal application of
self-organizing maps see Ritter et al. (1992). Traub and Miles (1991) discuss synchronization mechanisms in the hip-
pocampus. For synchronization mechanisms based on electrical synapses in the cortex, see Mancilla et al. (2007).
Synchronized oscillatory activity across a broad range of olfactory systems is reviewed by Gelperin (2006). For a
broader perspective on synchronization in biological and other systems, see Pikovsky et al. (2003). For an experi-
mental approach to the role of network architecture in synchronization see Bonifazi et al. (2009). For the theory, in a
neurobiological context, behind such scale-free networks we recommend Freeman and Kozma (2009).

27.9 EXERCISES

1. Argue that, for a given weight matrix, W, we may sharpen the Hopfield threshold function by showing that there
exists a b∈RN such that if

Hop�i (x)≡
{

1 if x>bi

−1 if x<bi ,
(27.40)

then in fact Hop(Ws)=Hop�(Ws) for all s∈{−1,1}N .
2. †In a Hopfield net with undirected edges, we observe that W =WT. Use this symmetry, the b vector of the previous

exercise and the “energy” functional

E( j)≡−(s j−1)T Ws j +bT (s j +s j−1) where s j =Hop�(Ws j−1),

to argue that the energy difference �E≡E( j+1)−E( j) is simply

�E=−(s j+1 −s j−1)T (Ws j −b).

Use this to show that if s j+1 �= s j−1 then �E<0 and so conclude that no attractor of an undirected Hopfield net
can have period greater than 2.

3. †In the case of periodic input, Eq. (27.6), for the two-cell network we may solve Eq. (27.2) for gE,1 by hand. In
particular, please show that

gE,1(t)=
winp

τE
exp((P− t)/τE)

1−exp(Pt/P�/τE)

1−exp(P/τE)
(27.41)

where x� denotes the largest integer less than x. First show that gE,1(P+)= winp/τE, then gE,1(t)= exp((P− t)/
τE)winp/τE for P≤ t<2P, then gE,1(2P+)= (1+exp(−P/τE))winp/τE and so

gE,1(t)= exp((P− t)/τE)(1+exp(P/τE))winp/τE, 2P≤ t<3P.

Continuing in this fashion you will find a (summable) finite geometric series.

MATHEMATICS FOR NEUROSCIENTISTS



27.9 EXERCISES 405

4. Experiment with threecell.m to further delay the spiking of cell 3. In particular, retain P=2 but set W3,1 =W3,2 =
w and find the smallest w (to two decimal places) such that cell 3 fires once for every two spikes of cell 2.

5. †The rat hippocampus is known to contain cells that fire when the rat is near a particular place within a given
environment. For this exercise we will suppose that the rat is running clockwise, at a fixed velocity, along a circular
track.As the rat traverses the track the associated “place cell” receives input. We consider a ring, Figure 27.37, of 120
leaky integrate-and-fire cells with reciprocal excitatory connections among immediate neighbors and excitatory
input into each cell. We suppose that the rat spends 100 ms in each place field and that the associated cell receives
a kick, winp =10, every 20 ms. The cell parameters are

τm =20, τgE =5, tref =5, Vrest =−70, Vthr =−54, Vreset =−60,

where times are in ms and voltages in mV.

120

1

2

FIGURE 27.37 A segment of a ring of 120 “place cells.”

We set the plasticity parameters

wmax =5, winit =0.5, τ+ =20, τ− =20, A+ =8, A− =8.4

and note that as the rat travels clockwise and excites cell j then the connection to cell j+1 will increase for
when the rat enters the place field of cell j+1 its presynaptic cell will have just fired. Conversely, as cell j fires
independently of cell j+1 we expect to see a decrease in the associated weight. The effect of this weight change
is a slight backward shift in all of the place fields.

Please illustrate this by coding the small ring and tracking the spikes in cell 2 and the weights between cells
1 and 2, as in Figure 27.38, as the simulated rat completes 20 laps of the ring with a time step of dt =1 ms. With
120 place cells, each receives external input over a 3 degree window.
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FIGURE 27.38 A. The angle at which cell 2 fires as a function of lap number. B. The forward and backward weights as a function of time.
(bkwshift.m)

6. Show that the calcium target, C, determines the oscillator frequency by adapting soto.m and producing
Figure 27.39.
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FIGURE 27.39 The calcium target, C, in Eq. (27.21) determines the oscillator frequency. (sotofreq.m)

7. †We investigate, following Booth and Bose (2001), the effect of inhibition on the burst shape of the two-
compartment Pinksy–Rinzel CA3 cell. We presume, see Figure 27.40, that the inhibitory cell is isopotential and
that it is driven by the somatic compartment of the excitatory cell and that it in turn inhibits that cell’s dendritic
compartment.

Vs

Vi

ge gi

Is
Vd

Ii

FIGURE 27.40 The simple EI net of Booth and Bose (2001).

We suppose that the inhibitory cell follows Morris Lecar dynamics and that the full network is described by

CmV ′
s =−gL(Vs −VL)− INa(Vs)− IK,DR(Vs)+ gc(Vd −Vs)+ Is

p

CmV ′
d =−gL(Vd −VL)− ICa(Vd)− IK,AHP(Vd)− IK,C(Vd)+ gc(Vs −Vd)

1−p
−gisi(Vd −Vinh)

CmV ′
i =−gL,i(Vi −VL,i)− ICa,i(Vi)− IK,i(Vi)+ Ii −gese(Vi −Vexc),

with functionals

ICa,i(V)=gCa,im∞(V)(V −VCa,i), m∞(V)= (1+ tanh((V +1.2)/18))/2

IK,i(V,w)=gK,iw(V −VK), w′ = (w∞(Vi)−w)/τw(Vi)

w∞(V)= (1+ tanh((V +25)/11))/2, τw(V)= (25/4)/cosh((V +25)/22),

and parameters

gCa,i =4.4, gK,i =8, gL,i =2, ge =5 mS/cm2

VCa,i =120, VK,i =−84, VL,i =−60, Vinh =−80, Vexc =0 mV

Is =0.3, and Ii =88 µA/cm2,

and synaptic kinetics

s′
e =21(Vs +10)(1−se)−1(−10−Vs)se

s′
i =21(Vi +10)(1−si)−1(−10−Vi)si ,
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and initial conditions, Vd(0)=Vs(0)=0 mV, Vi(0)=−35 mV, w(0)=w∞(−35), and q(0)=0.1. Code this system
and investigate (by reproducing Figure 27.41) the impact of the inhibitory weight, wi, on the burst frequency and
shape in the somatic compartment, Vs, of the excitatory cell.
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FIGURE 27.41 The effect of inhibition on frequency and burst shape. (A) gi = 0. (B) Zoom on (A). (C) gi = 0.0315 mS/cm2. (D) Zoom on (C).
(E) gi = 0.034 mS/cm2. (F) Zoom on (E). (hyprEInet.m)

8. †Recall that the naive solution, Ŵn = Ûn/f̂n, to the deconvolution problem Eq. (27.31), led to infinite growth in
the high frequencies of W. One means of controlling this growth is to introduce a regularization, or penalization,
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parameter into an associated minimization problem. In particular, rather than attempting to minimize the average
squared distance of W(θ)� f (θ) from U(θ), we minimize

E(W)=
2π∫

0

(W(θ)� f (θ)−U(θ))2 dθ+λ
2π∫

0

W(θ)2 dθ (27.42)

for some λ>0. We see that λ mediates a trade-off between fidelity and size. Use Parseval’s identity, Eq. (7.10), to
arrive at

E(W)=
∞∑

n=−∞
|Ŵnf̂n −Ûn|2 +λ|Ŵn|2. (27.43)

Do not be dismayed by these infinities, for this is simply a sum of independent squares, and as such we can
minimize them one at a time. In particular, argue that the choice of Ŵn that minimizes |Ŵnf̂n −Ûn|2 +λ|Ŵn|2 is
the one featured in Eq (27.33).

9. Confirm that Eq. (27.35) is indeed a solution to Eq. (27.28) when w is of the form Eq. (27.34). Hint: Use Exercise 7.4.
10. †Given the even tuning function, f (θ)= f (−θ), of Figure 27.32(A), argue that

(i) f̂n = f̂−n.

(ii) As U(θ)=σ−1( f (θ)) then U is also even and so Ûn = Û−n.
(iii) Eq. (27.33) now implies that W is even.
(iv) As W is even W ′ must be odd, i.e., W ′(−θ)=−W ′(θ).
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28.1 CHAPTER 2

Exercise 1. Setting V ′(t)=0 in Eq. (2.12) yields Istim −AgCl(Vmax −VCl) and so

Vmax =VCl + Istim

AgCl
=−68 mV + 10 pA

4π10−6 cm2 ·0.3 mS/cm2 ≈−65.35 mV.

Exercise 2. Without loss we set t1 =0 and study gsyn(t)=gmax(t/τα)exp(1− t/τα). We note that

g′
syn(t)= (gmax/τα)exp(1− t/τα)(1− t/τα)

409
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410 28. SOLUTIONS TO SELECTED EXERCISES

vanishes only at t = τα. As gsyn is positive and decays at both ends its only critical point must be a maximum. Next,

∞∫
0

gmax(t/τα)exp(1− t/τα)dt =−gmax(τα+ t)exp(1− t/τα)
∣∣∣∣∞
t=0

=gmaxτα exp(1).

Exercise 3. For constant gsyn Eq. (2.15) reads

CmV ′(t)+(gCl +gsyn)V(t)=gClVCl +gsynVsyn

and so we arrive at Eq. (2.22) with

τeff = Cm

gCl +gsyn
and Vss = gClVCl +gsynVsyn

gCl +gsyn
.

Note that the membrane time constant is decreased relative to its original value of Cm/gCl since the membrane is more
leaky as a result of the opening of the synaptic channels. On setting Vsyn =0 and ce =gsyn/gCl in Vss we arrive at

Vss = VCl

1+ce
.

This is graphed in Figure 2.8 by sse.m.

Exercise 4. We rearrange Eq. (2.23) to Eq. (2.24) with

τeff ,2 = τ

1+c1+c2
and Vss = VCl +c1Vsyn1 +c2Vsyn2

1+c1 +c2
. (28.1)

Exercise 5. Setting Vsyn1 =Vsyn2 =0 and c1 = c2 = ce in Eq. (28.1) gives Eq. (2.25). Figure 2.9 is generated by ss2e.m.

Exercise 7.

(i) Use Kirchhoff’s Current Law and follow the arrows on Figure 2.11A.
(ii) With regard to Eq. (2.29), the derivatives vanish for constant conductances, and, with vp ≡Vp −VCl, we arrive at

the pair of algebraic equations,

(gp +gi)vp =gc(Vd −VCl −vp)

gd(Vd −VCl)+ge(Vd −Ve)=gc(vp +VCl −Vd).

We rearrange the former to

(gp +gi +gc)vp =gc(Vd −VCl) (28.2)

and solve the latter for

Vd = gdVCl +geVe +gc(vp +VCl)

gd +ge +gc
.

On its substitution into Eq. (28.2) we find

(gp +gi +gc)vp =gc
gdVCl +geVe +gc(vp +VCl)−VCl(gd +ge +gc)

gd +ge +gc

=gc
ge(Ve −VCl)+gcvp

gd +ge +gc
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and, upon clearing the fraction, find

((gp +gi +gc)(gd +ge +gc)−g2
c )vp =gcgeve,

from which the desired form, Eq. (2.30), immediately follows.
(iii) Substitute into Eq. (2.30) and divide top and bottom by g2

d. For graph code see Comp2syn.m.
(iv) Apply l’Hôpital’s rule to Eq. (2.30) to arrive at (2.32).

Exercise 9. We define R ≡O/(O+C) and note that R′ =O′/(O+C) because O+C is constant. Hence, dividing
Eq. (2.20) by O+C brings

R′(t)= k+T (t) C(t)
O+C −k−

O(t)
O+C = k+T (t)(1−R(t))−k−R(t),

on account of

C
O+C =1− O

O+C .

28.2 CHAPTER 3

Exercise 1. Substituting Istim = te−t into Eq. (3.2) yields

V(T)=VCl + 1
ACm

e−T/τ

T∫
0

tect dt

where c =1/τ−1. On integrating by parts we find

V(T)=VCl + e−T/τ +e−T(cT −1)
ACmc2 .

Exercise 3.

L(c)(s)=
∞∫

0

e−stcdt =−c

∞∫
0

(exp(−st)/s)′dt

=−(c/s) lim
t→∞(exp(−st)−1)= c/s,

L(e−ct)(s)=
∞∫

0

exp(−(s+c)t)dt =−
∞∫

0

(exp(−(s+c)t)/(s+c))′ dt

=−1/(s+c) lim
t→∞(exp(−(s+c)t)−1)=1/(s+c),

L(sin(ct))(s)=
∞∫

0

sin(ct)exp(−st)dt = −exp(−st)
c2 +s2 (s sin(ct)+ccos(st))

∣∣∣∣
t=∞

t=0

= c
s2 +c2 .
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Exercise 4. Applying Eq. (3.16) with V(t)= t, and since V ′(t)=1, V(0)=0 we obtain

L(1)(s)= sL(t)(s) or L(t)(s)= 1
s2 ,

using L(1)(s)=1/s (Eq. (3.14)). Similarly, with V(t)= t2, V ′(t)=2t, V(0)=0, we obtain

2L(t)(s)= sL(t2)(s) or L(t2)(s)= 2
s3 .

Exercise 6.

(i) If g(t)= f (t−a) then, with y = t−a,

L(g)(s)=
∞∫

0

f (t−a)exp(−st)dt =
∞∫

0

f (y)exp(−s(y+a))dy =e−asL( f )(s).

(ii) If g(t)= f (t/a) then, with y = t/a,

L(g)(s)=
∞∫

0

f (t/a)exp(−st)dt =
∞∫

0

f (y)exp(−say))ady = aL( f )(as).

Exercise 7. For n=1,

L(p1)(s)=
∞∫

0

�e−�xe−sx dx =�
∞∫

0

−1
�+s

d
dx

e−(�+s)x dx = −�
s+�e−(�+s)x

∣∣∣∣∞
0

= �

�+s
.

For n>1,

L(pn)(s)=
∞∫

0

�
(�x)n−1

(n−1)!
e−�xe−sx dx.

Integration by parts,
∫ b

a udv = uv|ba −∫ b
a v du with

u= (�x)n−1

(n−1)!
and dv =e−(�+s)x dx

so that

du
dx

= (n−1)
(�x)n−2

(n−1)!
�=� (�x)n−2

(n−2)!

and

dv
dx

=e−(�+s)x = −�
�+s

d
dx

e−(�+s)x so that v = −1
�+s

e−(�+s)x
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yields

L(pn)(s)= uv|∞0 −
∞∫

0

v du

=� (�x)n−1

(n−1)!

( −1
�+s

)∣∣∣∣∣
∞

0

−�
∞∫

0

�
(�x)n−2

(n−2)!

( −1
�+s

)
e−(�+s)x dx

= �

�+s

∞∫
0

�
(�x)n−2

(n−2)!
e−�xe−sx dx

= �

�+s
L(pn−1)(s).

Exercise 9. The marching scheme that arises from backward Euler is

Vj = (Vj−1+dtfj)/(1+dt/τ)=Vj−1/(1+dt/τ)+dtfj/(1+dt/τ).

Commencing from V1 =b, we get

Vj =b/(1+dt/τ)j−1 +
j−1∑
i=1

dtfi/(1+dt/τ)i .

This remains finite so long as fi is bounded and (1+dt/τ)>1. As the latter is true for every dt ≥0 we conclude that
backward Euler is absolutely stable.

If we examine the trapezoid rule, we see that

Vj =
(

2−dt/τ
2+dt/τ

)j−1

b+
j−1∑
i=1

(
dt

2+dt/τ

)i−1

(fi−1+fi).

This remains finite so long as fi is bounded and 2−dt/τ <2+dt/τ . As the latter is true for every dt ≥0 we conclude
that the trapezoid scheme is absolutely stable.

Exercise 10. be_vs_trap.m.

Exercise 11. curvssyn.m.

28.3 CHAPTER 4

Exercise 1. See clamp.m.

Exercise 2. See stErefracdrive.m.

Exercise 3. See stEfreq.m.

Exercise 4. See molifreq.m.

Exercise 5. See stEKstimdrive.m.

Exercise 6. See stE2d.m.
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Exercise 7.

(i) If m(t)=m∞(V(t)) and h(t)=0.7 −n2(t) then the Hodgkin–Huxley system takes the form

CmV ′(t)=−gNam3∞(V)(0.7 −n2)(V −VNa)−gKn4(V −VK)−gCl(V −VCl)+ Istim/A

n′(t)=αn(V)(1−n)−βn(V)n.

We write the right hand side of the V equation as a biquadratic a(V)n4 +b(V)n2 +c(V)+ Istim/A by defining

a(V)≡−gK(V −VK), b(V)≡gNam3∞(V)(V −VNa),

c(V)≡−0.7 gNam3∞(V)(V −VNa)−gCl(V −VCl).

Two applications of the quadratic formula takes one from Eq. (4.32) to Eq. (4.33).
(ii) If t is such that (V(t),n(t)) lies on the n nullcline the tangent vector to the solution trajectory is (V ′(t),n′(t))=

(V ′(t),0) hence the crossing is horizontal. Similarly if (V(t),n(t)) lies on the V nullcline then the tangent vector
to the solution trajectory is (V ′(t),n′(t))= (0,n′(t)) and the crossing is vertical.

(iii) From (ii), if t is such that (V(t),n(t)) lies on both nullclines then (V ′(t),n′(t))= (0,0) and the system is at rest. To
be on the n nullcline requires n=n∞(V). On substituting this into Eq. (4.32) we arrive at Eq. (4.34).

For graphs use fhpp.m.

28.4 CHAPTER 5

Exercise 1. See getVrJacfull.m.

Exercise 2.

(i) Multiply E1 by this putative E−1
1 and arrive at I.

(ii) In a similar fashion, as

E2 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 b 0 1

⎞
⎟⎟⎠ and E3 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 c 1

⎞
⎟⎟⎠

we find

E−1
2 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 −b 0 1

⎞
⎟⎟⎠ and E−1

3 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −c 1

⎞
⎟⎟⎠.

(iii) Given U=E3E2E1A we multiply each side by E−1
3 and find E−1

3 U=E2E1A. Next, multiply through by E−1
2 , and

finally by E−1
1 .

(iv) If C=AB where A and B are lower triangular then

Cii =
n∑

j=1

AijBji =AiiBii

because Aij =0 for j> i and Bij =0 for j< i. If Aii =Bii =1 then of course Cii =1.

(v) It follows from (iv) that L≡E−1
1 E−1

2 E−1
3 is lower triangular and has only ones on its diagonal. It follows from (iii)

that A=LU.
(vi) From U=E2P2E1P1A and F1 ≡P2E1P2 we use P2

2 = I to write

U=E2P2E1P2P2P1A=E2F1P2P1A
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and so A=PLU where L=F−1
1 E−1

2 . To see that F1 is lower triangular note that as E1 is diagonal save for
column 1, P2E1 exchanges row 2 for row j the only violation of triangularity is the rise of the one at ( j, j) to
(2, j) (coupled with the fall of the one at (2,2) to ( j,2)). Now the action of P2 from the right serves to exchange
the associated columns of P2E1. This will serve to shift (left) the offending one in slot (2, j) to safe haven on the
diagonal at (2,2) while shifting (right) the benign one at ( j,2) back to the diagonal at ( j, j).

Exercise 6. The eigenvalues are roots of the quadratic given by Eq. (5.15), (−2−z)(−2−z)−1. These are z1 =−3 and
z2 =−1. The associated eigenvectors, wj, obey (B−zjI)wj =0, i.e.,

(
1 1
1 1

)(
w11
w12

)
=
(

0
0

)
and so w1 =

(
1

−1

)
,

and (−1 1
1 −1

)(
w21
w22

)
=
(

0
0

)
and so w2 =

(
1
1

)
.

Figure 5.8 was achieved by distort.m.
The ellipse in Figure 5.8A has a major axis of length |z1|=3 and a minor axis of length |z2|=1. The area of an ellipse

is π times the product of the lengths of its minor and major axes, and so is 3π in our case.
We divide the parallelogram in Figure 5.8B into 2 equal isosceles triangles. The base of each triangle is the diagonal

of the square. The length of this diagonal is
√

2. The height of each triangle may be computed directly as 3/
√

2. It
follows that the area of the parallelogram is 3.

In the 2-by-2 case the eigenvalues are roots of the quadratic equation, Eq. (5.15),

(z−z1)(z−z2)= z2 −(B11 +B22)z+B11B22 −B12B21 =0.

It follows immediately from this that z1z2 =B11B22 −B12B21 and z1 +z2 =B11 +B22.

Exercise 9. We use the symbolic toolbox

>> syms tm th tn z1 z2 z3 z4 I
>> W = [1/(1+z1*tm) 1/(1+z2*tm) 1/(1+z3*tm) 1/(1+z4*tm)

1/(1+z1*th) 1/(1+z2*th) 1/(1+z3*th) 1/(1+z4*th)
1/(1+z1*tn) 1/(1+z2*tn) 1/(1+z3*tn) 1/(1+z4*tn)

1 1 1 1];
>> f = [0; 0; 0; I];
>> c = simple(W\f)

Exercise 10. See fhpp3.m.

Exercise 11. The rest potential, Vr , is a root of

gCam∞(V)(V −VCa)+gKw∞(V)(V −VK)+gCl(V −VL)

while the quasi-active system is governed by

B =
(

−1/τw(Vr) w′∞(Vr)/τw(Vr)

−(Vr −VK)/τK −(m′∞(Vr)(Vr −VCa)+m∞(Vr))/τCa −w∞(Vr)/τK −1/τL

)
.

Using the stated parameters, we find, see mlsym.m, Vr =−51.84,

B =
( −0.7 0.001
−1453 −21.5

)

and eigenvalues z1 =−0.8 and z2 =−21.4. As both have negative real part we find the rest state stable.
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Exercise 13.

(i) Thanks to the Laplace derivative identity Eq. (3.16) the Laplace transform of the m equation in Eq. (5.2) reveals

sLm̃= (m′∞LṼ −Lm̃)/τm

which yields Eq. (5.53) once rearranged.
(ii) In a similar fashion, the Laplace transform of the potential equation reveals

CmsLṼ =−gNa{m3hLṼ +(3m2hLm̃+m3Lh̃)vNa}−gK{n4LṼ +4n3vKLñ}−gClLṼ+LĨ/A.

On substituting for Lm̃, Lh̃, and Lm̃ from (i) we may solve for LṼ as a multiple of LĨ. On dividing this into LĨ
we achieve the stated Gin.

(iii) The derivatives in Eq. (5.54) follow from the fact that

dj

dsj
1

1+sτ

∣∣∣∣
s=0

= (−τ)j .

The derivatives in Eq. (5.55) follow from

Mj( f )= (−1)j
dj

dsj (Lf )(s)
∣∣∣∣
s=0

.

(iv) See Cox and Griffith (2001).

28.5 CHAPTER 6

Exercise 1. Given the S of Eq. (6.9) and u∈RN we find

dx2uT Su=
N∑

i=1

ui

N∑
j=1

Sijuj

=u1(u2 −u1)+
N−1∑
i=2

ui(ui−1 −2ui +ui+1)+uN(uN−1 −uN)

=u1(u2 −u1)+u1u2 −u2
2 −

N−2∑
i=2

(ui −ui+1)
2 −u2

N−1 +uN−1uN +uN(uN−1 −uN)

=−
N−1∑
i=1

(ui −ui+1)
2.

Exercise 2.

(i) (zu)∗ = z∗u∗ = (Au)∗ =Au∗ .
(ii) uHAu= z‖u‖2 and uT Au∗ = z∗‖u‖2. As uHAu is scalar it must coincide with its transpose. As such, recalling

Eq. (1.3),

uHAu= (uH Au)T =uT AT (uH)T =uT Au∗.

It follows that z‖u‖2 = z∗‖u‖2, and, as ‖u‖>0 that z= z∗ .

Exercise 6. From qT
mqn = δmn and Q = (q0 q1 · · ·qN−1) follows

QTQ =
⎛
⎜⎝

qT
0 q0 · · · qT

N−1q0
...

. . .
...

qT
0 qN−1 · · · qT

N−1qN−1

⎞
⎟⎠= I

from which we can conclude that QT =Q−1.
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Exercise 7.

(i) From Exercise 5.2 we know A=LT where L is lower triangular with ones on its diagonal and T is upper triangular.
If D is the diagonal of T and U is derived by dividing each row i of T by Tii then T =DU and so A=LDU.

(ii) If A=AT then LDU= (LDU)T =UT DLT . On multiplying this by L−1 on the left and L−T on the right we find
L−1UT D =DUL−T .

(iii) On following the Gauss–Jordan method of Exercise 5.3 we conclude that the inverse of a lower triangular matrix
is lower triangular. From Exercise 5.2 we learned that products of lower triangular matrices are lower triangular.
Hence, L−1UT D is lower triangular. By the same reasoning, DUL−T is upper triangular. As these two coincide
they must each be diagonal. By Exercise 5.2 L−1UT is lower triangular with ones on its diagonal, hence the
diagonal of L−1UT D is the diagonal of D. As both are diagonal it follows that L−1UT D =D. Multiplying this by
D−1 reveals U=LT and A=LDLT .

(iv) If A is positive definite then, for each x ∈Rn,

0<xTAx =xTLDLTx = (LT x)TD(LT x)=
n∑

j=1

Djj(LT x)2j

and so each Djj>0. It follows that D =D1/2D1/2 and A= (LD1/2)(LD1/2)T .

Exercise 9. The key identities, Eqs. (6.65), (6.68), and (6.71) follow from setting x =0 in Eq. (6.45) and integrating in
time precisely as in Eqs. (3.9) and (3.11).

Exercise 11.

(i) v∞(x)= cexp(αx) into Eq. (6.32) brings λ2α2cexp(αx)= cexp(αx) and so α=±1/λ and v∞(x)= c1 exp(x/λ)+
c2 exp(−x/λ).

(ii) The boundary conditions, Eq. (6.33), impose

v′∞(0)= (c1 −c2)/λ=−RaI0/(πa2),
v′∞(	)= c1 exp(	/λ)/λ−c2 exp(−	/λ)/λ=0,

and so c2 = c1 exp(2	/λ) and c1(1−exp(2	/λ))=−RaλI0/(πa2).
(iii) It follows that

v∞(x)= RaλI0

πa2(exp(2	/λ)−1)
{exp(x/λ)+exp((2	−x)/λ)}

= RaλI0 exp(	/λ)

πa2(exp(2	/λ)−1)
{exp((x−	)/λ)+exp((	−x)/λ)}

= RaλI0

πa2
cosh((x−	)/λ)

sinh(	/λ)

as desired.

Exercise 13. The first inequality in Eq. (6.73) uses only the fact that exp is nonnegative. The second inequality follows
from direct integration and the fact that ζn =−(1+(λnπ/	)2)/τ . Eq. (6.66) demonstrates that such Mn are explicitly
summable.

Exercise 14. We proceed, as above, from Eqs. (6.41) and (6.44). In this case, Eq. (6.43) reads (with r ≡1/(2πagCl)),

τp′
n(t)= τ

	∫
0

qn(x)
∂v
∂t
(x, t)dx =

	∫
0

qn(x)

(
λ2 ∂

2v
∂x2 (x, t)−v(x, t)+rI(x, t)

)
dx

=λ2

	∫
0

qn(x)
∂2v
∂x2 (x, t)dx−pn(t)+rIn(t)

= (λ2ϑn −1)pn(t)+rIn(t),
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where In(t) is as in Eq. (6.77) and we have used the fact that the cable is sealed at both ends. This establishes Eq. (6.76).
On solving this for pn and substituting it into Eq. (6.41) we arrive at Eq. (6.78). Now, if I(x, t)=−q1(x)(e−t −e−2t)/500
then In(t)=−δ1,n(e−t −e−2t)/500 and so

v(x, t)= q1(x)
Cm2aπ

t∫
0

I1(s)exp((t−s)ζ1)ds.

Evaluation of the integral yields Eq. (6.80). For the graph see pfibexact.m.

Exercise 15.

(i) For x<xs we integrate Eq. (6.52) in time and find

0 = τ
∞∫

0

∂v
∂t
(x, t)dt+

∞∫
0

v(x, t)dt−λ2

∞∫
0

∂2v
∂x2 (x, t)dt

=v(x,∞)−v(x,0)+ML(x)−λ2M′′
L(x).

As v(x,0) begins and returns to rest we find v(x,∞)=v(x,0)=0 and so ML obeys ML(x)=λ2M′′
L(x). By the same

reasoning MR obeys the same equation.
(ii) The left seal imposes M′

L(0)=0 and so ML(x)= cL cosh(λx) for some cL.As ML(0)= cL it follows that cL =M0(v(0, ·)).
By the same reasoning, MR(x)=M0(v(	, ·))cosh((	−x)/λ).

(iii) As x �→ v(x, t) is continuous at x =xs so too must be its zero order moment, i.e., ML(xs)=MR(xs). Given the forms
achieved in (ii) we find

M0(v(0, ·))cosh(xs/λ)=M0(v(	, ·))cosh((	−xs)/λ),

or

cosh((	−xs)/λ)

cosh(xs/λ)
= M0(v(0, ·))

M0(v(	, ·)) .

The right hand side is constant while the left side, call it σ(xs), has the slope

− sinh(	/λ)

λcosh2(xs/λ)
.

As this is strictly negative it follows that Eq. (6.81) uniquely determines xs.

Exercise 16. From the fact that Fqn =γnqn we discern (Fq0 · · ·FqN−1)= (γ0q0 · · ·γN−1qN−1) and recognize that this
may be expressed FQ =Q�. On multiplying each side by QT we arrive at F=Q�QT . Next

F2 =FF=Q�QTQ�QT =Q�I�QT =Q�2QT .

Multiplying by subsequent powers of F shifts those powers onto �. It follows that F j remains bounded so long
as the largest eigenvalue of F has magnitude less than one. Recalling the ordering of the θn, stability requires that
(dt/τ)(λ2θN−1−1)>−2. That is

dt<
2τ

1+4(N/	)2 sin2((N −1)π/(2N))
.

For large N the right hand side becomes prohibitively small.
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28.6 CHAPTER 7

Exercise 1.

1+2
N∑

n=1

cos(2πnx)=1+
N∑

n=1

(exp(i2πnx)+exp(−i2πnx))=
N∑

n=−N

exp(i2πnx)

=e−2π iNx
2N∑

n=0

exp(i2πnx)=e−2π iNx 1−exp(i2π(2N+1)x)
1−exp(i2πx)

=e−2π i(N+1/2)x 1−exp(i2π2Nx)
exp(−iπx)−exp(iπx)

= sin((N +1/2)2πx)
sin(πx)

.

Exercise 3. We proceed exactly as in Eq. (7.9)

1/2∫
−1/2

f (x)g(y−x)dx =
1/2∫

−1/2

f (x)
∞∑

n=−∞
ĝne2π in(y−x)dx =

∞∑
n=−∞

ĝne2π iny

1/2∫
−1/2

f (x)e−2π inx dx

=
∞∑

n=−∞
f̂nĝne2π iny.

Exercise 4. On differentiating Eq. (7.3) we find

f ′(x)=
∞∑

n=−∞
2π inf̂ne2π inx

and so, (̂ f ′)n, the nth Fourier coefficient of f ′, is 2π inf̂n. Hence,

f ′ �g=
∞∑

n=−∞
2π inf̂nĝne2π iny = d

dy

∞∑
n=−∞

f̂nĝne2π iny = ( f �g)′.

Exercise 6. The eigenvectors are simply the four columns of the Fourier matrix, Eq. (7.15), with N =4 and w=
exp(2π i/N)= i. The eigenvalues lie in the discrete Fourier transform of the first column of B,⎛

⎜⎜⎝
1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 i

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

2
0
2
0

⎞
⎟⎟⎠.

Now take the real part of the eigen-equation Bxj =λjxj,

(Bxj)=(λjxj)⇒B(xj)=λj(xj)

as B and λj are real. It follows that the real parts of each of the vectors in Eq. (7.38), i.e.,

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
0

−1
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
−1

1
−1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
0

−1
0

⎞
⎟⎟⎠ (28.3)

comprise an orthogonal basis of eigenvectors of B.
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Exercise 8. The Fourier transform of the derivative of u is, via integration by parts,

û′(ω)=
∞∫

−∞
e−2π iωtu′(t)dt =u(t)e−2π iωt∣∣∞

t=−∞+2π iω

∞∫
−∞

e−2π iωtu(t)dt =2π iωû(ω),

so long as u vanishes at ±∞.

Exercise 10. Both assertions follow from the commutativity and associativity of the multiplication operation, namely

û�v = ûv̂ = v̂û= v̂�u

and

u� ̂(v�w)= û ̂(v�w)= û(v̂ŵ)= (ûv̂)ŵ= ̂(u�v)ŵ= ̂(u�v)�w.

Exercise 11. We use the fact that cosx = 1
2 (e

ix +e−ix) with Eq. (7.27),

∞∫
−∞

cos(2πat)e−2π iωt dt =
∞∫

−∞

1
2
(e2π iat +e−2π iat)e−2π iωt dt

= 1
2

∞∫
−∞

e−2π i(ω−a)tdt+ 1
2

∞∫
−∞

e−2π i(ω+a)tdt

= 1
2
(δ(ω−a)+δ(ω+a)).

Since sin x = (eix −e−ix)/(2i), we conclude that its Fourier transform is

1
2i
(δ(ω−a)−δ(ω+ a)).

Exercise 13. If v(x) is real, then v(x)∗ =v(x). We use this fact and
(
eix)∗ =e−ix to show that,

v̂(−ω)∗ =
⎛
⎝ ∞∫

−∞
v(t)e−2π i(−ω)tdt

⎞
⎠

∗
=

∞∫
−∞

v(t)∗
(
e2π iωt)∗dt =

∞∫
−∞

v(t)e−2π iωtdt = v̂(ω).

Exercise 20. The linearity of the Dirac distribution follows immediately from its definition. The second assertion
follows from the change of variables t → s= t−τ in the following integral

∞∫
−∞

δ(t−τ)f (t)dt =
∞∫

−∞
δ(s) f (s+τ)ds= f (τ ).

The linearity of Dg follows immediately from the linearity of the integral.

Exercise 21.

D
′
g( f )=Dg(−f ′)=−

∞∫
−∞

g(t)f ′(t)dt =
∞∫

−∞
g′(t) f (t)dt =Dg′( f ).

The first equality is the definition of the derivative, and the second one the definition of Dg . The third equality is
obtained by integration by parts and using the fact that f (t) is equal to zero outside a bounded interval. The last
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equality is again the definition of Dg . The equation 1′( f )= δ( f ) follows from

1′( f )=−1( f ′)=
∞∫

0

f ′(x)dx =−( f (∞)− f (0))= f (0),

since f (∞)=0. Furthermore, f (0)= δ( f ).

28.7 CHAPTER 8

Exercise 1. We find

(DH)ij =
N∑

k=1

DikHkj =DiiHij and (DH)ji =
N∑

k=1

DjkHki =DjjHji.

We must now show that DiiHij =DjjHji . We follow the block structure of D and H and do this in pieces.
If 1 ≤ i, j ≤N1 then Dii =Djj = a1 and Hij =Hji . The same argument holds in the other safe diagonal blocks,
N1 +1 ≤ i, j ≤N1+N2 −1, and N1 +N2 +1 ≤ i, j ≤N1 +N2 +N3, where D is constant and H symmetric.

In the far-off diagonal place, i =N1 +N2 +1 and j =N1 we find Dii = a3, Djj = a1, Hij = a1λ
2
1/a3, and Hji =λ2

1, and so
DiiHij =DjjHji .

Similarly, at the off-diagonal asymmetry, i =N1 +N2 +1 and j =N1 +N2, we find Dii = a3, Djj = a2, Hij = a2λ
2
2/a3, and

Hji =λ2
2 and so DiiHij =DjjHji.

Finally, at the somatic asymmetry, i =N and j =N −1, Dii = a3/ρ, Djj = a3, Hij =ρλ2
3, and Hji =λ2

3 and indeed DiiHij =
DjjHji .

Next, given DH = (DH)T =HTD we multiply on the right by D−1 and find DHD−1 =HT . We now place this HT in

AT = (D1/2HD−1/2)T = (D−1/2)T HT(D1/2)T = (D−1/2)TDHD−1D1/2 =D1/2HD−1/2 =A,

as desired.

Exercise 5. f is periodic and unbounded and so crosses the line, g, at infinitely many points. For large n, the crossings
approach the asymptotes of tan(zL). These occur at the zeros of cos(zL), i.e., zn = (n+1/2)π/L.

Exercise 6. We use Eq. (8.21) and integration by parts

ϑn

L∫
0

qn(X)qm(X)dX =
L∫

0

q′′
n(X)qm(X)dX

=q′
n(X)qm(X)

∣∣L
0 −

L∫
0

q′
n(X)q

′
m(X)dX

=−ϑnqn(X)qm(X)/h−
L∫

0

q′
n(X)q

′
m(X)dX

=−ϑnqn(L)qm(L)/h−qn(X)q′
m(X)|L0 +

L∫
0

qn(X)q′′
m(X)dX

=−ϑnqn(L)qm(L)/h+ϑmqn(L)qm(L)/h+ϑm

L∫
0

qn(X)qm(X)dX

=qm(L)qn(L)(ϑm −ϑn)/h+ϑm

L∫
0

qn(X)qm(X)dX.

Simple rearrangement brings Eq. (8.24).
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Exercise 8. In this case Eq. (8.20) takes the form

∂U
∂T

(X,T)+U(X,T)= ∂2U
∂X2 (X,T)+1(0,L1)(X)Istim(X,T),

∂U
∂X

(0,T)=0,

∂U
∂T

(L,T)+U(L,T)+h
∂U
∂X

(L,T)=0,

U(X,0)=0,

where the stimulus is removed from the soma condition and inserted into the partial differential equation with the
help of the characteristic function of the daughter.

Exercise 9. See trapforkd.m.

Exercise 11. The symbolic toolbox reveals the four eigenvectors via

>> syms b1 b2 b3
>> c = sqrt(b1ˆ2+b2ˆ2+b3ˆ2);
>> A = [0 0 0 b1; 0 0 0 b2; 0 0 0 b3; b1 b2 b3 0]/c;
>> I = eye(4);
>> null(A)
>> null(A-I)
>> null(A+I)

The splittingϑ=−n2π2 or cos(
√−ϑ)= zj corresponds precisely with our splitting sin(

√−ϑ)=0 or cos(
√−ϑ)=0, with

L=1 and zj =0.

28.8 CHAPTER 9

Exercise 1. See stEcabsdriver.m and stEcabgNadriver.m.

Exercise 3. See myelins.m.

Exercise 5. See demyelin.m.

Exercise 6. See drfsenoper.m.

28.9 CHAPTER 10

Exercise 1. See lif_rand_inp.m.

Exercise 2. See lif_rand_inp.m.

Exercise 3. See lif_rand_inp.m.

Exercise 4. See lif_rand_inp.m.

Exercise 5. See thresh_fatigue.m.

Exercise 6. See wang_ss.m.

Exercise 7. See wang_mod.m.

Exercise 8. See pr_sodca_spike.m, pr_modes.m, and pr_complex.m.
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28.10 CHAPTER 11

Exercise 1. The probability pk represents the probability of k successes among n synaptic release trials. The probability
that sites 1, . . . ,k are successful and sites k+1, . . . ,n fail is pkqn−k. Because we are not interested in which particular
synaptic release site is successful, this probability has to be multiplied by the number of different ways to obtain
exactly k successes among n different sites. This number is

n!
k!(n−k)!

.

To see why this is so, we decide on a fixed strategy: draw from 1, . . . ,n at random and assign the first k draws to
releases and the last n−k draws to failures. There are n! ways of doing such draws, but of course any permutations in
each of the success and failure sets leads to the same assignment of failures and successes. Since there are respectively
k! and (n−k)! such permutations we need to divide by the product of these factors.

Exercise 2. Let X and Y be two random variables that take values x1, . . . ,xn and y1, . . . ,ym and denote by P(xi ,yj) their
joint probability distributions. Then

n∑
i=1

P(xi ,yj)=P(yj) and
m∑

j=1

P(xi,yj)=P(xi)

so that

E[X+Y]=
n∑

i=1

m∑
j=1

(xi +yj)P(xi ,yj)

=
n∑

i=1

xi

m∑
j=1

P(xi,yj)+
m∑

j=1

yj

n∑
i=1

P(xi ,yj)

=
n∑

i=1

xiP(xi)+
m∑

j=1

yjP(yj)=E[X]+E[Y].

The same argument generalizes to several variables and shows that taking expectations is a linear operation.
The random variables X and Y are independent if and only if the probability P(X =xi,Y =yj) factors to

P(X =xi) ·P(Y =Yj)=piqj. We can then compute

E[(X+Y −mX −mY)
2]=E[(X−mX )

2 +(Y −mY)
2 +(X−mX)(Y −mY )]

=E[(X−mX )
2]+E[(Y −mY)

2]+E[(X−mX)(Y −mY )]

=σ 2
X +σ 2

Y +E[(X−mX)(Y −mY )].

The next step is to show that E[(X−mX )(Y −mY)] =0:

E[(X−mX )(Y −mY)] =E[XY −XmY −mXY +mXmY]

=E[XY]−mXmY −mXmY +mXmY

=E[XY]−mXmY.

But

E[XY] =
n∑

i=1

m∑
j=1

xiyjpiqj =
( n∑

i=1

xipi

)⎛⎝ m∑
j=1

yjqj

⎞
⎠=mXmY .
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Exercise 3. We set λ=n ·p and assume n large, p → 0 for λ fixed. We start by an approximation of p0 in this limit:

p0 = (1−p)n =
(

1− λ

n

)n

.

Taking the logarithm on both sides yields:

log(p0)=n log

(
1− λ

n

)
.

For x small, log(1−x)∼=−x− 1
2 x2 −· · · and plugging this approximation in the previous equation, we see that the

leading term is −λ and therefore,

p0 ∼=e−λ

(up to terms of order 1/n). We can also compute

pk

pk−1
= n−k+1

k
· p

q
= λ−(k−1)p

k(1−p)
∼= λ

k
,

for p small. This last equation allows us to compute p1 from p0, p2 from p1, etc. We obtain

p1 =λe−λ, p2 = λ2

2
e−λ, . . . pk = λk

k!
e−λ, . . .

Exercise 4. We compute

mS =
∞∑

k=0

k
λke−λ

k!
=e−λ

(
λ+ λ2

1!
+ λ3

2!
+· · ·

)
=e−λλ

(
1+ λ

1!
+ λ2

2!
+· · ·

)
=λ,

since the infinite sum in the inner parenthesis is the power expansion of the exponential, eλ.
We now compute eλE[S2], to cancel out the factor e−λ that arises just as in the previous computation:

eλE[S2]=
∞∑

k=0

k2λk

k!
=λ+2

λ2

1!
+3

λ3

2!
+· · ·

=λ+ λ2

1!
+ λ3

2!
+· · ·+ λ2

1!
+2

λ3

2!
+3

λ4

3!
+· · ·

=λ
(

1+ λ

1!
+ λ2

2!
+· · ·

)
+λ2

(
1+ λ

1!
+ λ2

2!
+· · ·

)

=λeλ+λ2eλ=eλ(λ+λ2).

Therefore, E[S2] =λ+λ2.

Exercise 5. Proof of the identity, Eq. (11.28), follows exactly as for Exercise 1. Next according to the discrete convolution
formula, Eq. (11.12),

P(Z = k)=
k∑

n=0

e−λ λn

n!
e−μμn

n!
=e−(λ+μ)

k∑
n=0

λn

n!
μn−k

(n−k)!
= (λ+μ)k

k!

which completes the proof.

Exercise 6.

(i) The mean of the standard normal distribution,

p(x)= 1√
2π

e−x2/2,
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is clearly equal to zero since p(x) is symmetric around zero. The variance is obtained by integrating by part,∫ b
a vdu=uv|ba −∫ b

a udv with u=e−x2/2 and v =−x, so that

1√
2π

+∞∫
−∞

x2e−x2/2 dx = 1√
2π

⎛
⎝−xe−x2/2|+∞−∞+

+∞∫
−∞

e−x2/2 dx

⎞
⎠

= 1√
2π

(
0+√

2π
)=1.

The last integral has been computed in Exercise 7.15.

(ii) According to §11.8, if X has density p(x)=√
2π −1 exp(−x2/2) and y =g(x)= ax+b then Y =g(X) has density

p(y)=p(g−1(y))/|g′(g−1(y))|. Since g′(x)= a and g−1(y)= (y−b)/a we obtain

p(y)= 1√
2πa

e(y−b)2/2a2

and thus Y ∼N (b,a2). The converse argument follows at once.
(iii) By definition, the expectation E[·] is linear. Thus E[Y] =E[aX+b] = aE[X]+b. Furthermore, E[(Y −mY)

2] =E[(aX−
amX)

2] =E[a2(X−mX )
2] = a2E[(X−mX )

2].

Exercise 8. If X ∼N (μ,σ 2), then

pX(x)= 1√
2πσ

e−(x−μ)2/2σ 2 = 1√
2πσ

u((x−μ)/σ),

where u(t)= exp(−t2/2). Using Exercises 7.12 and 7.15,

p̂X(ω)= 1√
2πσ

¤u((x−μ)/σ)(ω)= 1√
2π
ÿu(x−μ)(σω)= 1√

2π
e−2π iμωû(σω)=e−2π iμωe−(2πωσ)2/2.

Since

p̂Z(ω)= p̂X(ω)p̂Y (ω)=e−2π iω(m1+m2)e−(2πω)2(σ 2
1 +σ 2

2 )/2

we conclude that Z ∼N (m1 +m2,σ 2
1 +σ 2

2 ).

Exercise 11. After replacing x1 by x1 −m1 and x2 by x2 −m2, it is sufficient to consider the case where x1 and x2 have
zero mean. The density p(x1,x2) is obtained from Eq. (11.18) by inverting C. According to Eq. (5.39),

C−1 = 1
1−ρ2

(
σ−2

1 −ρσ1σ2

−ρσ1σ2 σ−2
2

)
.

Plugging this result in Eq. (11.18), we obtain

p(x1,x2)= 1

2πσ1σ2
√

1−ρ2
exp

(
− 1

2(1−ρ2)

(
x2

1

σ 2
1

− 2ρ
σ1σ2

x1x2 + x2
2

σ 2
2

))
.

Since

p(x1)= 1√
2πσ1

exp(−x2
1/2σ1)
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it follows that

p(x2|x1)= 1√
2πσ2

√
1−ρ2

exp

(
−1

2(1−ρ2)

(
x2

1

σ 2
1

− x2
2

σ 2
2

− 2ρx1x2

σ1σ2

)
+ x2

1

2σ 2
1

)

= 1√
2πσ2

√
1−ρ2

exp

(
−1

2σ 2
2 (1−ρ2)

(
x2 − ρσ2x

σ1

)2
)

.

Exercise 12. If Z =X1 +X2 and p(x1,x2) is the joint density of (X1,X2)
T , then the density q(z) of Z is given by

q(z)=
∞∫

−∞
p(x,z−x)dx.

Since Z = (X1 −m1)+(X2 −m2)+(m1 +m2), it is sufficient to consider the case of zero mean Gaussian variables with
correlation matrix

C=
(
σ 2

1 σ1σ2ρ

σ1σ2ρ σ 2
2

)
.

The density p(x1,x2) was obtained in the previous exercise:

p(x1,x2)= 1

2πσ1σ2
√

1−ρ2
exp

(
− 1

2(1−ρ2)

(
x2

1

σ 2
1

− 2ρ
σ1σ2

x1x2 + x2
2

σ 2
2

))

which implies

q(z)= 1

2πσ1σ2
√

1−ρ2

∞∫
−∞

exp

(
− 1

2(1−ρ2)

(
x2

σ 2
1

− 2ρ
σ1σ2

x(z−x)+ (z−x)2

σ 2
2

))
dx.

To “complete the square,” we rewrite

x2

σ 2
1

− 2ρ
σ1σ2

x(z−x)+ (z−x)2

σ 2
2

= σ 2
1 +2ρσ1σ2 +σ 2

2

σ 2
1 +σ 2

2

(
x− ρσ1σ2 +σ 2

1

σ 2
1 +2ρσ1σ2 +σ 2

2
z

)2

+ 1−ρ2

σ 2
1 +2ρσ1σ2 +σ 2

2
z2.

This leads to

q(z)= 1

2πσ1σ2
√

1−ρ2
exp

(
−1

2
z2

σ 2
1 +2ρσ1σ2 +σ 2

2

)
I2 (28.4)

where

I2 =
∞∫

−∞
exp

⎛
⎝−1

2
σ 2

1 +2σ1σ2 +σ 2
2

(1−ρ2)σ 2
1 σ

2
2

(
x− ρσ1σ2 +σ 2

1

σ 2
1 +2ρσ1σ2 +σ 2

2

z

)2
⎞
⎠dx.

After a shift in the integration variable to recenter the Gaussian at zero, we recognize that this integral is of the form
(see Exercise 7.15),

∞∫
−∞

exp

(
−1

2
x2

α2

)
dx =√

2πα, with α2 = (1−ρ2)σ 2
1 σ

2
2

σ 2
1 +2ρσ1σ2 +σ 2

2
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and so

I2 =√
2π

√
1−ρ2σ1σ2√

σ 2
1 +ρσ1σ2 +σ 2

2

.

Plugging this result in Eq. (28.4),

q(z)= 1√
2π

1√
σ 2

1 +2ρσ1σ2 +σ 2
2

exp

(
−1

2
z2

σ 2
1 +2ρσ1σ2 +σ 2

2

)
.

Thus Z is Gaussian with variance σ 2
Z =σ 2

1 +2ρσ1σ2 +σ 2
2 .

Exercise 13.

∞∑
n=0

T∫
0

T∫
t1

· · ·
T∫

tn−1

p(0,T](s1, . . . ,sn)ds1 · · ·dsn =
∞∑

n=0

T∫
0

T∫
t1

· · ·
T∫

tn−1

e−�T�n ds1· · ·dsn

=e−�T
∞∑

n=0

�n

T∫
0

T∫
t1

· · ·
T∫

tn−1

ds1· · ·dsn.

The multiple integral is 1/n! times the integral over the hypercube [0;T]n since we need to carry out all possible
permutations of the lower boundary indices to fully cover it,

T∫
0

T∫
t1

· · ·
T∫

tn−1

ds1 · · ·dsn = 1
n!

T∫
0

T∫
0

· · ·
T∫

0

ds1 · · ·dsn = 1
n!

Tn.

The infinite sum is therefore equal to

∞∑
n=0

1
n!
�nTn =e�T ,

completing the proof.

Exercise 14. With

A=
(

a b
c d

)
,

AT A= I implies

a2 +b2 =1, c2 +d2 =1, and ac+bd =0.

We set a= cos θ , b= sinθ , c = sinφ, d = cosφ, for θ ,φ ∈ [0;2π) to satisfy the first two equations. The last equation
leads to

sinθ

cosθ
=− sinφ

cosφ
(28.5)

provided cosθ , cosφ �=0. If cosθ=0 then sinθ=1 and cosφ=0 so that sinφ=1. Therefore A=R(π/2), the same
argument holds for cosφ=0. The solutions to Eq. (28.5) are φ=π−θ and 2π−θ (mod 2π). In the first case,
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c = sinπ−θ = sinθ and d = cosπ−θ =−cosθ . The corresponding matrix has, however, det A=−1, while in the second
case sin2π−θ=−sinθ and cos2π−θ= cosθ , which leads to det A=1.

Exercise 15. By definition, Cij =E[(Xi −mi)(Xj −mj)], i, j =1, . . . ,n and

yTCy =
n∑

i=1

n∑
j=1

yiE[(Xi −mi)(Xj −mj)]yj =E

⎡
⎣( n∑

i=1

(Xi −mi)yi

)2
⎤
⎦≥0.

The remainder of the proof proceeds as in Exercises 6.2 and 3.

Exercise 16. ρ is the off-diagonal element of the covariance matrix of the centered and normalized variables Z1 and Z2,
Eq. (11.23). Since the covariance matrix is symmetric and positive semidefinite, we have det CZ =1−ρ2 ≥0, which
implies −1 ≤ρ≤1. When ρ=±1 it is easy to see that E[(Z1 ∓Z2)

2] =0 which implies Z1 =±Z2 or equivalently

X1 −m1

σ1
=±X2 −m2

σ2

which implies that

X2 =±σ2
X1 −m1

σ1
+m2.

Exercise 20. The result follows from

L(q)(s)=
∞∫

0

e−sxq(x)dx =E[e−sY] =E[e−sX1 e−sX2]

=E[e−sX1 ]E[e−sX2] =L(p1)(s)L(p2)(s),

where the fourth equality results from the independence of X1 and X2. Clearly the generalization is

L(q)(s)=L(p1)(s) · · ·L(pn)(s).

Exercise 21. See plot_pp.m.

Exercise 22. The result follows immediately from Exercise 5 by verifying the two properties defining the Poisson
process. (i) The probability of two events occurring at the same time is zero for N1 and N2 and is therefore also zero for
N3 =N1 +N2. (ii) Since N3(a,b)=N1(a,b)+N2(a,b), it will be Poisson with rate �1 +�2, according to Exercise 5. Finally,
N3(a,b) and N3(c,d) are independent when (a,b]∩ (c,d] =∅ since this property is true for each of N1 and N2, and since
N1 and N2 are independent.

28.11 CHAPTER 12

Exercise 1. See boyd_martin2.m.

Exercise 2. See mt_mod6.m.

Exercise 3. According to Eq. (12.12), between two action potentials the resources relax exponentially towards their
steady-state value of 1 from the initial condition rinit:

r(t)= rinite−�t/τrec +(1−e�t/τrec).
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Immediately after the nth action potential, the resources are reset according to r+
n = (1−u0)rn. Therefore, if rn denotes

the resources at the time of the nth action potential,

rn+1 = (1−u0)rne−�t/τrec +(1−e�t/τrec).

At steady state, rn+1 = rn = rss which leads to

rss = (1−u)rsse−�t/τrec +(1−e−�t/τrec)

or

rss = 1−re−�t/τrec

1−(1−u0)e−�t/τrec
and qss =qmaxu0rss. (28.6)

Similarly, Eq. (12.13) implies

vn+1 =
(

vn +qn
Rin

τm

)
e−�t/τm

and at steady state

vss =vsse−�t/τm +qss
Rin

τm
e−�t/τm .

Rearranging,

vss =qss
Rin

τm

1
1−e−�t/τm

and during two pulses,

v(t)=qss
Rin

τm

1
1−e−�t/τm

e−t/τm.

The average over the interpulse interval is

v̄ = 1
�t

�t∫
0

v(t)dt

= qssRin

τm�t
1

1−exp(−�t/τm)

�t∫
0

e−t/τm dt

= qssRin

τm�t
1

1−exp(−�t/τm)
(−τm) e−t/τm

∣∣�t
0 = qssRin

�t
.

If �t � τrec and τm then

e−�t/τrec ≈1− �t
τrec

and 1−e−�t/τrec ≈ �t
τrec

so that

qss ≈ qmaxu0�t/τrec

1−(1−u0)(1−�t/τrec)
≈ qmaxu0�t/τrec

u0

(
1+�t/τrec

(
1+u0

u0

)) .
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Since

1
1−x

=1+x+x2+· · ·

we obtain

qss = qmaxu0

u0

�t
τrec

(
1− �t

τrec

1+u0

u0
+· · ·

)
≈ qmax�t

τrec
.

For vpeak, ss we have

vpeak, ss =qss
Rin

τm

1
1−e�t/τm

≈ qmax�t
τrec

Rin

τm

1
�t/τm

≈ qmaxRin

τrec
.

For vav, ss we have

vav, ss =qss
Rin

�t
≈qmax

�t
τrec

Rin

�t
=qmax

Rin

τrec
.

Exercise 4. See mt_mod12.m.

Exercise 5. According to the facilitation model, if an action potential occurs at time t, r(t) is updated to r(t+)= r−u · r
and u(t+)=u+u0(1−u). For a regular train,

r1 = r(t1)=1, u1 =uss, r+
1 = r(t+1 )= (1−u1)r1, u+

1 =u1 +u0(1−u1), q1 =qmaxu1r1.

Thereafter, both r(t) and u(t) relax exponentially to their steady state so that

r2 = (1−u1)r1e−�t/τrec +(1−e−�t/τrec),

u2 = (u1 +u0(1−u1))e−�t/τfacil +u0(1−e−�t/τfacil)

=u1e−�t/τfacil +u0(1−u1e−�t/τfacil).

Similarly,

rn+1 = (1−un)rne−�t/τrec +(1−e−�t/τrec),

un+1 =une−�t/τfacil +u0(1−une−�t/τfacil).

At steady state, rss = rn = rn+1 and uss =un =un+1 so that

uss =usse−�t/τfacil +u0(1−usse−�t/τfacil)= u0

1−(1−u0)e−�t/τfacil
,

rss = (1−uss)rsse−�t/τrec +(1−e−�t/τrec)= 1−e−�t/τrec

1−(1−uss)e−�t/τrec
.

28.12 CHAPTER 13

Exercise 1. See hyEcabCa3traindrive.m.

Exercise 3. See haircell1.m and haircell2.m.
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Exercise 4. The system Eq. (13.61) is a direct translation of Figure 13.10. The exponents on c correspond to the requisite
number of binding sites. If the a and b pathways are fast then C1 and O1 are in relative equilibrium, as are O1 and O2.
More precisely, we set C′

1 =O′
2 =0 in Eq. (13.61) and arrive at Eq. (13.62) where

Ka = k−
a /k

+
a and Kb = k−

b /k
+
b .

Equations (13.63) and (13.64) now follow by direct substitution. Regarding w′,

w′ =−C2
′ = k−

c C2 −k+
c O1

= k−
c (1−w)−k+

c (c/Ka)
4C1 = k−

c (1−w)−k+
c (c/Ka)

4(w−O)

= k−
c (1−w)− k+

c w
1+(Ka/c)4 +(c/Kb)

3

= k−
c −w

k−
c (1+(Ka/c)4 +(c/Kb)

3)+k+
c

1+(Ka/c)4 +(c/Kb)
3

and so, with Kc = k−
c /k

+
c ,

1
k−

c

1+(Ka/c)4 +(c/Kb)
3

1+(Ka/c)4 +(c/Kb)
3 +1/Kc

w′ = 1+(Ka/c)4 +(c/Kb)
3

1+(Ka/c)4 +(c/Kb)
3 +1/Kc

−w,

in agreement with Eqs. (13.19) and (13.20).

Exercise 7. See camk2.m.

Exercise 8.

(i) The scheme Eq. (13.68) dictates that b obey b′ = k1cB−k2b and so at rest, where b′ =0, we find b= cB/Kd. Clearly,
if c =Kd then b=B and we see that half of the available buffer is indeed bound.

(ii) We substitute Eq. (13.70) into Eq. (13.69) and find F1 = (Sf1 +Sb1 c/Kd)B and F2 = (Sf2 +Sb2 c/Kd)B and so their
ratio is

R = F1

F2
= Sf1 +Sb1 c/Kd

Sf2 +Sb2 c/Kd
. (28.7)

Solving this for c produces Eq. (13.71).
(iii) For small c in Eq. (28.7) we find R ≈Sf1/Sf2 ≡Rmin while for large c, R ≈Sb1/Sb2 ≡Rmax. Substituting these ratios

back into Eq. (28.7) yields the desired Eq. (13.72).

28.13 CHAPTER 14

Exercise 1. As the nonzero eigenvalues of AAT and AT A must coincide it follows that

� =
(√

2 0 0 0
0

√
2 0 0

)
.

We now use Eq. (14.3) to find that x1 and x2 must obey

Ax1 =√
2 (1 0)T , Ax2 =√

2 (0 1)T , and xT
i xj = δij.

It follows that

x1 = (1 0 1 0)T/
√

2 and x2 = (0 1 0 1)T/
√

2.
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Next, we need an orthonormal pair of solutions to Ax =0. The simplest seems to be

x3 = (1 0 −1 0)T/
√

2 and x4 = (0 1 0 −1)T/
√

2.

Finally, as Y = I,

Y�XT =�XT = 1√
2

(√
2 0 0 0

0
√

2 0 0

)⎛⎜⎜⎝
1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎞
⎟⎟⎠=

(
1 0 1 0
0 1 0 1

)
=A

as desired.

Exercise 2.

(AT A)A+b=X�nXTX�+YTb by (14.4)
=X�n�+YTb because XTX = I

=X�T��+YTb by (14.6)

=X�TYTb because �T��+ =�T

=AT b by (14.7).

Exercise 5. Given vj =wT
j xj we define

F(γj)≡ 1
‖wj +γjvjxj‖

={(wj +γjvjxj)
T (wj +γjvjxj)}−1/2

={‖wj‖2 +2γjv2
j +(γjvj)

2‖xj‖2}−1/2,

and develop F in the MacLaurin series F(γj)=F(0)+γjF′(0)+O(γ 2
j ). The F(0) term is immediate. We compute

F′(γj)= (−1/2)={‖wj‖2 +2γjv
2
j +(γjvj)

2‖xj‖2}−1/2(2v2
j +2γjv

2
j ‖xj‖2)

and so F′(0)=−v2
j /‖wj‖. If we now use this in Eq. (14.14), with ‖wj‖=1, we find

wj+1 = wj +γjvjxj

‖wj +γjvjxj‖ = (wj +γjvjxj)
(
1−γjv2

j +O
(
γ 2

j
))

=wj +γj(xjxT
j −wT

j xjxT
j wjI)wj +O(γ 2

j )

where we have used vj =wT
j xj.

Exercise 8. We differentiate Eq. (5.30) and find

d
dt

exp(tB)= d
dt
(I+ tB+(tB)2/2+(tB)3/3!+· · ·)

=B+ tB2+ t2B3/2+· · ·=B(I+ tB+(tB)2/2+(tB)3/3!+· · ·)
=B exp(tB)= exp(tB)B.

As the identical result holds for BT we may differentiate Eq. (14.26) and find

E′(t)=B exp(tB)CCT exp(tBT)+exp(tB)CCT exp(tBT)BT

as claimed. The equation for F′(t) is obtained in exactly the same fashion.
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Exercise 9. The zeros in column 1 of Eq. (14.40) derive from the simple fact that

By1 =λy1 = (y1 y2 · · · yN)(λ 0 · · · 0)T =Y
(
λ

0

)
.

To show that X is unitary we use the fact that Y and Z are unitary.

XHX =
(

1 0
0 ZH

)
YHY

(
1 0
0 Z

)
=
(

1 0
0 ZH

)(
1 0
0 Z

)
=
(

1 0
0 ZHZ

)
= I.

To show that XHBX is upper triangular we note that W =ZHVZ is upper triangular.

XHBX =
(

1 0
0 ZH

)
YHBY

(
1 0
0 Z

)

=
(

1 0
0 ZH

)
YHY

(
λ v
0 V

)(
1 0
0 Z

)

=
(

1 0
0 ZH

)(
λ v
0 V

)(
1 0
0 Z

)

=
(
λ vZ
0 ZHVZ

)
=
(
λ vZ
0 W

)
.

Exercise 13. See stEQcabBT2.m.

28.14 CHAPTER 15

Exercise 4. See neg_corr.m.

Exercise 5. Since for a Poisson process f (x)=� exp(−�x), integration yields F(x)=1−exp(−�x) and f1(x)=
(1−F(x))/m�t =� exp(−�x) which is identical to f (x). The cumulative distribution function of a gamma process was
computed in Eq. (15.1). This yields

1−F(x)=
n−1∑
r=0

e−�x (�x)r

r!
.

Plugging in this equation n=2, m�t =n/� and using the formula f1(x)= (1−F(x))/m�t , we obtain

f1(x)= �

2
(�x+1)e−�x .

The numerical implementation is in gamma_frect.m.

Exercise 6. Since f1(x)= (1−F(x))/m�t

L( f1)(s)=L
(

1−F(x)
m�t

)
=L

(
1

m�t

)
− 1

m�t
L(F)(s)= 1

m�ts
− 1

m�t
L(F)(s).

But F(0)=0 and F′(x)= f (x), so that L(F)(s)= (1/s)L( f )(s) and plugging this result in the previous equation yields

L( f1)(s)= 1−L(F)
m�t

.

Exercise 8. Since

P(N(0, t)< l)=P(Sl > t)=1−Kl(t), and K0(t)=1
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we have

P(N(0, t)= l)=P(N(0, t)< l+1)−P(N(0, t)< l)

=1−Kl+1(t)−(1−Kl(t))=Kl(t)−Kl+1(t).

Consequently,

E[N(0, t)] =
∞∑

l=1

l(Kl(t)−Kl+1(t))=
∞∑

l=1

lKl(t)−
∞∑

l=1

lKl+1(t)

=
∞∑

l=1

lKl(t)−
∞∑

l=2

(l−1)Kl(t)=
∞∑

l=1

Kl(t).

Exercise 9. We use the fact that the Laplace transform of Kl(t) is given by

L(Kl)(s)= 1
s
L(kl)(s)−Kl(0)= 1

s
L(kl)(s)

(see Eq. (3.16)). Furthermore, L(kl)(s)=L(pn)(s)l by a straightforward generalization of Exercise 11.20. Plugging these
results in Eq. (15.7) we obtain

L(mN(0,t))(s)=
∞∑

l=1

L(Kl)(s)= 1
s

∞∑
l=1

L(kl)(s)= 1
s

∞∑
l=1

L(pn)(s)l = 1
s

L(pn)(s)
1−L(pn)(s)

.

The last equality follows from the identity
∑∞

l=1 xl =x/(1−x) for |x|<1.

Exercise 10. For n=2, pn(x)=�2x exp(−�x) and L(pn)(s)=�2/(�+s)2. Therefore,

L(mN(0,t))(s)= 1
s

�2

(�+s)2
1

1−�2/(�+s)2
= 1

s
�2

(�+s)2 −�2

= 1
s

�2

(�+s−�)(�+s+�)= �2

s2(σ +2�)
.

The partial fraction expansion

�2

s2(s+2�)
= A

s2 + B
s

+ C
s+2�

= A(s+2�)+Bs(s+2�)+Cs2

s2(s+2�)

= (C+B)s2 +(A+2�B)s+2�A
s2(s+�)

leads to: 2�A=�2 or A=�/2, A+2�B=0 or B=−A/2�=−1/4, and C =−B−1/4. Summing up,

L(mN(0,t))(s)= �

2
1
s2 − 1

4s
+ 1

4
1

s+2�

which implies

mN(0,t)= �

2
t− 1

4
+ 1

4
e−2�t.
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Exercise 11. Since

σ 2
N(0,t)=E[N(0, t)2 ]−E[N(0, t)]2 and ξ(t)=E[N(0, t)2 ]+E[N(0, t)]

the result is immediate.

Exercise 12. By definition of ξ(t),

ξ(t)=
∞∑

l=0

l(l+1)P(N(0, t)= l)=
∞∑

l=0

l(l+1)(Kl(t)−Kl+1(t)).

Taking the Laplace transform yields

L(ξ )(s)=
∞∑

l=0

l(l+1)
1
s
(L(kl)(s)−L(kl+1(s))

= 2
s

∞∑
l=1

lL(kl)(s)= 2
s

∞∑
l=1

lL(pn)(s)l = 2
s

L(pn)

(1−L(pn))2
.

Exercise 14. For a stationary renewal process with interspike interval distribution density f (x), the distribution of the
first interval W1 is given by f1(x)=1−F(x)/m�t (the forward recurrence time, Exercise 5). Consequently, the lth interval
Sl is the sum W1 +X2 +· · ·+Xl of l−1 identically distributed random variables and W1. According to Exercises 6
and 11.20, the Laplace transform of the corresponding density is

L(kl)(s)= 1−L( f )(s)
m�t

L( f )(s)l−1.

In Exercise 9 we showed that

L(mN(0,t))(s)= 1
s

∞∑
l=1

L(kl)(s)= 1−L( f )(s)
m�ts2

∞∑
l=1

L( f )(s)l−1 = 1
m�ts2 ,

where we used the identity
∑∞

l=0 xl =1/(1−x) for |x|<1. Taking the inverse Laplace transform immediately yields
mN(0,t)= t/m�t .

Exercise 15. Using the results derived in Exercises 12 and 14, we have

L(ξ )(s)= 2
s

∞∑
l=1

lL(kl)(s)= 2
s

∞∑
l=1

lL(pn)(s)l−1 1−L(pn)(s)
m�ts

= 2
m�ts2 (1−L(pn)(s))L(pn)(s)−1

∞∑
l=1

lL(pn)(s)l = 2
m�ts2

1
1−L(pn)(s)

.

Exercise 16. Since L(p2)=�2/(�+s)2, we have

L(ξ )(s)= 2
m�ts2

(�+s)2

(�+s)2 −�2 = 2
m�ts2

(�+s)2

s(s+2�)
= 2

m�ts3
(�+s)2

(s+2�)
.

We carry out the partial fraction expansion

1
s3

(s+�)2
(s+2�)

= A
s3 + B

s2 + C
s

+ D
s+2�
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with the numerator on the left hand side being given by (s+�)2 = s2 +2�s+�2 and that on the right hand side by

A(s+2�)+Bs(s+2�)+Cs2(s+2�)+Ds3 = s3(C+D)+s2(B+2�C)+s(A+2�B)+2�A.

This yields the following equations:

1. C+D=0 ⇒C =−D.
2. 2�A=�2 ⇒A=�/2.
3. A+2�B=2�⇒2�B+2�−�/2, or B=3/4.
4. B+2�C =1 ⇒3/4+2�C =1 or C =1/(8�).
5. D=−C =−1/(8�).

Summing up,

L(ξ )(s)= �2

2s3 + 3�
4s2 + 1

8s
− 1

8(s+2�)
,

which can be immediately inverted

ξ(t)= �2t2

4
+ 3�t

4
+ 1

8
− 1

8
e−2�t.

Combining this result with mN(0,t)= t/m�t we arrive at Eq. (15.10).

Exercise 17. For the numerics, see gamma_char.m. Practically, the two graphs coincide. Thus it is very difficult to
distinguish an ordinary gamma two process from a stationary one based on the first two moments of spike counts.

28.15 CHAPTER 16

Exercise 1. By definition,

CX(τ )=E[(X(t)−mV )(X(t+τ)−mV )]

CX(−τ)=E[(X(t)−mV )(X(t−τ)−mV )].

By stationarity and interchange of the order of the multiplication terms,

E[(X(t)−mX )(X(t+τ)−mX )] =E[(X(t−τ)−mX)(X(t)−mX )]

=E[(X(t)−mX )(X(t−τ)−mX)].

Combining these two sets of equations, we obtain the desired result.

Exercise 2. See rand_fig2.m for the associated numerics.

Exercise 3. According to Eq. (16.4),

p(w1,w2)= 1
2π

1√
t1(t2 − t1)

e
− 1

2

(
w2

1
t1

+
(
(w2−w1)

2

t2−t1

))
.

By definition

E[W(t1)W(t2)] =
∞∫∫

−∞
p(w1,w2)w1w2dw1dw2

= 1√
2πt1

∞∫
−∞

w1e− w2
1

2t1

⎛
⎝ 1√

2π(t2 − t1)

∞∫
−∞

w2e
(w2−w1)

2

2(t2−t1 ) dw2

⎞
⎠dw1.
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The integral in parentheses is equal to the mean of the integrated Gaussian distribution, w1. This results in

E[W(t1)W(t2)] = 1√
2πt1

∞∫
−∞

w2
1e− w2

1
2t1 dw1 = t1.

Exercise 4. We first show E[MP(t)] =�. Since MP(t)=0 when n=0,

E[MP(t)] =
∞∑

n=1

T∫
0

T∫
t1

· · ·
T∫

tn−1

p(0,T](t1, . . . , tn)MP(t)dt1 . . .dtn.

Using the argument presented in Exercise 11.13 we may replace the lower integration boundaries by 0 if we divide
each term by 1/n! since the integrand is totally symmetric in (t1, . . . tn). This leads to

E[MP(t)] =
∞∑

n=1

1
n!

T∫
0

T∫
0

· · ·
T∫

0

p(0,T](t1, . . . , tn)MP(t)dt1 . . .dtn

=
∞∑

n=1

1
n!

T∫
0

· · ·
T∫

0

�ne−�T
n∑

i=1

δ(t− ti)dt1 . . .dtn

=
∞∑

n=1

1
n!
�ne−�Tn

T∫
0

δ(t− t1)dt1 ·Tn−1

=
∞∑

n=1

1
(n−1)!

�ne−�TTn−1 =�
( ∞∑

n=1

1
(n−1)!

�n−1Tn−1

)
e−�T =�.

Similarly,

E[MP(ta)MP(tb)] =
∞∑

n=1

1
n!

T∫
0

· · ·
T∫

0

p(0,T](t1, . . . , tn)MP(ta)MP(tb)dt1 · · ·dtn

=�e−�T

T∫
0

δ(ta − t1)δ(tb − t1)dt1 +
∞∑

n=2

1
n!
�ne−�T

T∫
0

· · ·
T∫

0

n∑
i,j=1

δ(ta − ti)δ(tb − tj)dt1 · · ·dtn

=�e−�Tδ(tb − ta)+
∞∑

n=2

1
n!
�ne−�T

⎛
⎝∑

i �=j

T∫
0

· · ·
T∫

0

δ(ta − ti)δ(tb − tj)dt1 · · ·dtn

+
n∑

i=1

T∫
0

· · ·
T∫

0

δ(ta − ti)δ(tb − ti)dt1 · · ·dtn

⎞
⎠ .

Since

n∑
i=1

T∫
0

· · ·
T∫

0

δ(ta − ti)δ(tb − ti)dt1 · · ·dtn = δ(tb − ta) ·Tn−1 ·n

∑
i �=j

T∫
0

· · ·
T∫

0

δ(ta − ti)δ(tb − tj)dt1 · · ·dtn =Tn−2 ·n(n−1)
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we obtain

E[MP(ta)MP(tb)] =�e−�Tδ(tb − ta)

∞∑
n=2

1
n!
�ne−�T(δ(tb − ta)Tn−1n+Tn−2n(n−1)

)

= δ(tb − ta)e−�T

(
�+

∞∑
n=2

�n

(n−1)!
Tn−1

)
+

∞∑
n=2

1
(n−2)!

�nTn−2 = δ(tb − ta)�+�2.

Exercise 5. See gamma_corr.m.

Exercise 6. See rand_fig3.m.

Exercise 7. According to the results of Exercises 7.13 and 7.14,

S(ω)=S(−ω)=S(ω)∗ ,

which completes the proof.

Exercise 8. See gamma_powersp.m.

Exercise 9. Starting from Eq. (16.20),

P(spike in (t+τ , t+τ+�t)|spike at t)=E[N(t+τ +�t, t)−N(t+τ , t)]+o(�t2 )

=E[N(t+τ +�t, t)]−E[N(t+τ , t)]+o(�t2).

Now divide by �t on both sides and take the limit �t → 0 to arrive at

χc(τ )= d
dτ

E[N(t+τ , t)],

where a spike is assumed to have occurred at t. Since the process is stationary, the right hand side is independent of
t and we arrive at

χc(τ )= d
dτ

E[N(τ ,0)],

where a spike is assumed to have occurred at t =0.

Exercise 10. According to Exercise 9, χc(τ )=dmN(0,τ )/dτ , with the notation mN(0,τ )=E[N(0,τ)] introduced in §15.3.
Since mN(0,0)=0, application of Eq. (3.16) yields L(χc)(s)= sL(mN(0,τ ))(s) and the result follows immediately from
Exercise 15.9.

Exercise 11. Since L(pn)(s)=�n/(�+s)n,

1−L(pn)(s)=0 ⇔ (�+s)n −�n =0

or

(�+s)n =�n ⇒�+s=�zk,

where zk = exp(2π ik/n), k =0, . . .n−1 is an nth root of unity. This implies sk =�(zk −1).
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Exercise 12. The roots of 1−g(s) are clearly simple as may be seen by a geometric drawing. Multiplying the right
hand side of Eq. (16.21) by (s−si) and letting s→ si yields αi. On the left hand side we obtain

lim
s→si

(s−si)g(s)
1−g(s)

= 0
0

.

According to l’Hôpital’s rule,

lim
s→si

(s−si)g(s)
1−g(s)

= lim
s→si

g(s)+(s−si)g′(s)
−g′(s) = −1

g′(si)

since g(si)=1 and

g′(si)= �n

(�+si)
n

−n
�+si

= −n
�+si

�=0.

Since

αi = −1
g′(si)

= 1
n
(�+si)= 1

n
�zi ,

plugging this result in Eq. (16.21) completes the exercise.

Exercise 13. According to Exercise 10

L(χt)(s)= �

n

(
1
s

+
n−1∑
i=1

�zi

s−si

)
.

The result is immediate by applying Eq. (3.14).

Exercise 17. According to Eq. (16.24),

x1 +· · ·+xl =
t1∫

0

�s(y)dy+· · ·+
tl∫

tl−1

�s(y)dy =
tl∫

0

�s(y)dy.

This implies that P(Ns(0, t)≥ l)=P(Sl ≤ s(t)) where Sl =X1 +· · ·+Xl is the sum of the l successive random thresholds.
Just as in Exercise 15.8, this implies

P(Ns(0, t)= l)=P(Sl ≤ s(t))−P(Sl+1 ≤ s(t)).

From this we obtain E[Ns(0, t)] =∑∞
l=1 Kl(s(t)). Taking the time derivative, we obtain

d
dt

E[Ns(0, t)] =
∞∑

l=1

d
dt

Kl(s(t))=
∞∑

l=1

d
ds

Kl(s(t))
ds
dt

=
( ∞∑

l=1

kl(s(t))

)
ds
dt

=χc(s(t))�s(t),

which completes the proof.

Exercise 18. With λm =10 spk/s, we first need to compute

s(t)

t∫
0

�s(y)dy =
t∫

0

λm
(
sin(2π fst−π/2)+1

)
dy

=λmt− 1
2π fs

cos(2π fsy−π/2)
∣∣∣∣t
0
=λm

(
t− 1

2π fs
cos(2π fst−π/2)

)

since dcos(t)/dt =−sin(t). For the numerics, see rand_gamfit.m.
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Exercise 19. If the process started in the infinite past, the threshold sequence is a stationary gamma process and
consequently its rate is time independent: χc(t)=χ . The result is immediate by plugging this result in Eq. (16.23).
Alternatively, the transformed spike times, s(ti), are distributed as the random threshold sequence, therefore their rate
is time independent, since the random threshold sequence is stationary, and given by χ , the random threshold rate.
Since χ�s=χsc(t)�t we have χsc(t)=χ ·ds/dt =χ�s(t).

Exercise 21.

E[N(0, t)] =E� [E[N(0, t)|�(t)]] =E�

⎡
⎣ t∫

0

�(s)ds

⎤
⎦=

t∫
0

E[�(s)]ds= �̄t.

Since

E[(N(0, t)−E[N(0, t)])2 ] =E�[E[N(0, t)2|�]]−E[N(0, t)]2

we need only compute the first term. Now, just as for a homogeneous Poisson process,

E[N(0, t)2 |�]=
∞∑

k=0

k2P(N(0, t)= k)=e−κ
∞∑

k=1

k2 κ
k

k!

=e−κ
∞∑

k=1

(
(k−1)

κ

(k−1)!
+ κk

(k−1)!

)
=e−κ(κ2eκ +κeκ

)
=κ2 +κ

where κ=∫ t
0 �(y)dy. This leads to

E�[E[N(0, t)2|�]]−E[N(0, t)]2 =E

⎡
⎣ t∫

0

�(y1)dy1

t∫
0

�(y2)dy2

⎤
⎦+E

⎡
⎣ t∫

0

�(y)dy

⎤
⎦−(�̄t)2

=
t∫

0

t∫
0

E[(�(y1)− �̄)(�(y2)− �̄)]dy1dy2 + �̄t

=
t∫

0

t∫
0

C�(y2 −y1)dy1dy2 + �̄t.

The integration variable y2 −y1 ranges between −t and +t. However, since C�(−y)=C�(y) we can multiply by a
factor two and consider only values between 0 and t. For each fixed value of u=y2 −y1 ∈ [0, t] there are t−u distinct
combinations of y1, y2 values in [0, t]. Hence,

t∫
0

t∫
0

C�(y2 −y1)dy1dy2 =
t∫

0

(t−u)C�(u)du

and

E[(N(0, t)−E[N(0, t)])2 ] =
t∫

0

(t−u)C�(u)du+ �̄t.
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Exercise 22. Since

σ 2 =C(0)=
∞∫

−∞
S(ω)1(−fN ,fN )(ω)dω=

∫ fN

−fN
S(ω)dω

and S(ω) is independent of ω we obtain

σ 2 =2fNS(ω)⇒S(ω)= σ 2

2fN

between −fN and fN and zero otherwise. Furthermore,

C(τ )=
∞∫

−∞
S(ω)e2π iωτ dω =

∞∫
−∞

σ 2

2fN
1(−fN ,fN)e

2π iωτ dω

= σ 2

2fN

fN∫
−fN

e2π iωτ dω= σ 2

2fN

fN∫
−fN

1
2π iτ

d
dω

e2π iωτ dω

= σ 2

2fN

1
2π iτ

(e2π ifNτ −e−2π ifNτ )=σ 2 sin 2π fNτ
2π fNτ

.

Exercise 23. According to §11.10, for a gamma distribution of order 2,

p2(t)=�2texp(−�t).

The corresponding cumulative distribution is

F(t)=�2

t∫
0

xe−�x dx.

Integration by parts, with u=x, du/dx =1, dv/dx = exp(−�x), v = (−1/�)exp(−�x), yields

t∫
0

xe−�x dx =x
(

−1
�

e−�x
)∣∣∣∣

t

0
−

t∫
0

(−1
�

)
e−�x dx

= −t
�

e−�t − 1
�2 e−�t

∣∣∣∣
t

0
= 1
�2 − 1

�2 e−�t − t
�

e−�t.

Therefore F(t)=1−exp(−�t)−�texp(−�t). From this we deduce that

h(t)= p2(t)
1−F(t)

= �2te−�t

e−�t +�te−�t = �2t
1+�t

.

Exercise 24.

(i) According to Eq. (16.27),

s(tj)= s(tj−1)+
tj∫

tj−1

�i(t|tj−1)dt
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and

tj∫
tj−1

�i(t|tj−1)dt =
tj∫

tj−1

h(t− tj−1)dt =
tj−tj−1∫

0

h(t)dt =
tj−tj−1∫

0

�2t
1+�t

dt.

Setting y =�t so that dy =�dt, we obtain

tj∫
tj−1

�i(t|tj−1)dt =
�(tj−tj−1)∫

0

y
1+y

dy

= y− log(1+y)
∣∣�(tj−tj−1)

0 =�(tj − tj−1)− log
(
1+�(tj − tj−1)

)
.

(ii) See time_rescaling.m.

28.16 CHAPTER 17

Exercise 1. Since p′
11 =−αp11 +βp12 and p11 +p12 =1 we have

p′
11 =−αp11 +β(1−p11)=−(α+β)p11 +β (28.8)

and steady state, p′
11 =0, implies p11 =q∞, with q∞ =β/(α+β). Now set τ =1/(α+β) and p11(t)=q∞ +C exp(−t/τ).

Plugging this “Ansatz” on both sides of Eq. (28.8) shows that it indeed solves the differential equation:

p′
11 =C · (−(α+β))e−t/τ

−(α+β)p11 +β=−(α+β)Ce−t/τ .

The initial condition p11(0)=1 means that

β

α+β +C =1 ⇒C =1− β

α+β = α

α+β .

Define p∞ =α/(α+β). By symmetry,

p11(t)=q∞ +p∞e−t/τ ,p12(t)=1−p11(t)

p22(t)=p∞ +q∞e−t/τ ,p21(t)=1−p22(t).

Exercise 2. First compute

I+�tQ =
(

1−α�t α�t
β�t 1−β�t

)
=
(

p11(�t) p12(�t)
p21(�t) p22(�t)

)
.

We conclude from the Markov property that

P(t)(I+�tQ)=P(t+�t)

and

(I+�tQ)P(t)=P(t+�t).
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Equating the left hand sides of the last two equations yields

P(t)Q =QP(t).

Exercise 4. See twostatechan.m.

Exercise 7. Let π e be the equilibrium state of Q, π eQ =0,
∑n

i=1πei =1 and assume that

πenqnm =πemqmn.

Multiplying both sides by π1/2
en π

−1/2
em we obtain

π
1/2
en πenqnmπ

−1/2
em =π−1/2

en πemqmnπ
−1/2
em . (28.9)

By definition of R, Rij =π1/2
ei qijπ

−1/2
ej , therefore Eq. (28.9) implies Rij =Rji or R=RT . Let Rvi =λivi be the eigenvalues

and eigenvectors of R. If we define wi =C−1vi, then

Qwi =C−1RCC−1vi =λiC−1vi =λiwi.

If V and � are the corresponding matrices of eigenvectors and eigenvalues of R, then

R=V�V−1, V−1 =VT , and Q =C−1V�V−1C

and

exp(tQ)=C−1Vexp(t�)V−1C.

Exercise 9. See na_openmax.m.

Exercise 10. See na_detbal.m.

Exercise 11. See na_detbal.m.

Exercise 12. If we denote by πm
e1, πm

e2 the equilibrium distribution of the m gate and by πh
e1, πh

e2 the equilibrium dis-
tribution of the h gate, we obtain the equilibrium distribution of the eight state sodium channel model by the same
combinatorial argument used to derive Figure 17.3. The corresponding states and equilibrium distributions are as
follows. State 1, m0h0: (πm

e1)
3πh

e1; State 2, m1h0: 3(πm
e1)

2πm
e2π

h
e1; State 3, m2h0: 3πm

e1(π
m
e2)

2πh
e1; State 4, m3h0: (πm

e2)
3πh

e1;
State 5, m0h1: (πm

e1)
3πh

e2; State 6, m1h1: 3(πm
e1)

2πm
e2π

h
e2; State 7, m2h1: 3πm

e1(π
m
e2)

2πh
e2; State 8, m3h1: (πm

e2)
3πh

e2. See
na_detbal.m.

Exercise 13. See nachan.m.

Exercise 15. According to Eq. (17.7),

X(t+dt)2 =X(t)2 − 1
τ

X(t)2dt+c1/2X(t)N(t)(dt)1/2 − 1
τ

X(t)2dt+ 1
τ 2 X(t)2(dt)2

+ c1/2

τ
X(t)N(t)(dt)3/2 +c1/2X(t)N(t)(dt)1/2 − c1/2

τ
X(t)N(t)(dt)3/2 +cN(t)2dt.

To order (dt)1 and smaller,

X(t+dt)2 =X(t)2 − 2
τ

X(t)2dt+2c1/2X(t)N(t)(dt)1/2 +cN(t)2dt.
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Averaging,

E[X(t+dt)2] =E[X(t)2]− 2
τ

E[X(t)2] dt+2c1/2E[X(t)N(t)](dt)1/2 +cE[N(t)2)] dt.

But E[N(t)2 ] =1 and E[N(t)] =0. In addition, X(t1) and N(t2) are independent for t1 ≤ t2. Therefore, E[X(t1)N(t2)] =0
for t1 ≤ t2. Hence,

E[X(t+dt)2] =E[X(t)2]− 2
τ

E[X(t)2] dt+c dt

or

E[X(t+dt)2]−E[X(t)]2

dt
= −2
τ

E[X(t)2]+c.

By taking the limit dt → 0 and with f (t)=E[X(t)2] we have

f ′(t)=−2
τ

f (t)+c

with the initial condition f (t0)=E[X(t0)
2] =x2

0, since X(t0)∼N (x0,0). Set g(t)= f (t)−τc/2 so that dg/dt =df /dt and
g′(t)=−2g(t)/τ . This differential equation is solved by the “Ansatz” g(t)=C exp(−2t/τ). To determine C we turn to
the initial condition:

g(t0)= f (t0)− τc
2

=x2
0 − τc

2

which implies

Ce−2t0/τ =x2
0 − τc

2

or C = (x2
0 −τc/2)exp(2t0/τ). This in turn means that

f (t)=g(t)+τc/2 = (x2
0 −τc/2)e−2(t−t0)/τ +τc/2.

From this we conclude that

v(t)= f (t)−m(t)2 =
(

x2
0 − τc

2

)
e−2(t−t0)/τ + τc

2
−x2

0e−2(t−t0)/τ

= τc
2

− τc
2

e−2(t−t0)/τ = τc
2
(1−e−2(t−t0)/τ ).

Exercise 16. See ou_f1.m.

Exercise 17. With h(t1, t2)=E[X(t1)X(t2)], C(t1, t2)=h(t1, t2)−m(t1)m(t2). We multiply the stochastic differential equa-
tion, Eq. (17.7), for X at t = t2 with X(t1)

X(t1)X(t2 +dt2)=X(t1)X(t2)− 1
τ

X(t1)X(t2) dt2 +c1/2X(t1)N(t2) dt1/2
2

and average, taking advantage of the fact that E[X(t1)N(t2)] =0 for t1 ≤ t2

E[X(t1)X(t2 +dt2)] =E[X(t1)X(t2)]− 1
τ

E[X(t1)X(t2)] dt2
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or

E[X(t1)X(t2 +dt2)]−E[X(t1)X(t2)]

dt2
=−1

τ
E[X(t1)X(t2)]

and taking the limit dt → 0

d
dt2

h(t1, t2)=−1
τ

h(t1, t2).

This differential equation is solved by the “Ansatz” h(t1, t2)=C(t1)exp(−t2/τ) and C(t1) is determined by the initial
condition h(t1, t1)= f (t1) which implies

C(t1)e−t1/τ =
(

x2
0 − τc

2

)
e−2(t1−t0)/τ + τc

2

or

C(t1)=
(

x2
0 − τc

2

)
e−2(t1−t0)/τet1/τ + τc

2
et1/τ .

This means that

h(t1, t2)=
((

x2
0 − τc

2

)
e(−2t1+2t0+t1)/τ + τc

2
et1/τ

)
e−t2/τ

=
(

x2
0 − τc

2

)
e(−t1+2t0−t2)/τ + τc

2
e(t1−t2)/τ ,

which in turn implies that

C(t1, t2)=h(t1, t2)−m(t1)m(t2)

=
(

x2
0 − τc

2

)
e(−t1+2t0−t2)/τ + τc

2
e(t1−t2)/τ −x0e(−t1+t0)/τx0e(−t2+t0)/τ

=x2
0e(−t1+2t0−t2)/τ − τc

2
e(−t1+2t0−t2)/τ + τc

2
e(t1−t2)/τ −x2

0e(−t1+2t0−t2)/τ

= cτ
2

(
e(t1−t2)/τ −e(−t1+2t0−t2)/τ

)
= cτ

2
e−(t2−t1)/τ (1−e−2(t1−t0)/τ ).

When t0 →−∞, m(t)→ 0, v(t)→ cτ/2, and

C(t1, t2)= cτ
2

e−(t2−t1)/τ for t2 ≥ t1.

Hence, with h = t2 − t1, C(h)= (cτ/2)exp(−h/τ) for h ≥0 or C(h)= (cτ/2)exp(−|h|/τ).

Exercise 18. See ou_f2.m.

Exercise 19. See destex_f1.m and destex_f2.m.

28.17 CHAPTER 18

Exercise 1. If E[(aX(t)+Y(t+τ))2 ] =0 then Y(t+τ)=−aX(t) with probability 1. In this case,

CXY(τ )=E[X(t)Y(t+τ)] =−aE[X(t)X(t)] =−aCXX (0)
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so that |CXY|2 = a2CXX(0)2. Similarly, CYY(0)=E[Y(t)Y(t)] = a2CXX(0), and therefore CXX(0)CYY(0)= a2CXX(0)2, which
verifies Eq. (18.10) in this case. When the inequality is strict,

0<E[(aX(t)+Y(t+τ))2 ]

<E[a2X(t)2 +2aX(t)Y(t+τ)+Y(t+τ)2]

< a2CXX(0)+2aCXY(τ )+CYY(0).

This implies �=4CXY(τ )−4CXX(0)CYY(0)<0 since the quadratic equation in a has no real solution.

Exercise 2. This result follows by repeating step by step the proof of the Wiener–Khinchin theorem in §16.5 but
replacing

X̂T(μ,ω)∗ =
T/2∫

−T/2

XT(μ, t1)e2π iωt1dt1, and X̂T(μ,ω)=
T/2∫

−T/2

XT (μ, t2)e−2π iωt2dt2,

by

X̂T(μ,ω)∗ =
T/2∫

−T/2

XT(μ, t1)e2π iωt1dt1, and ŶT(μ,ω)=
T/2∫

−T/2

YT(μ, t2)e−2π iωt2dt2,

respectively.

Exercise 3. When E[|X̂T(ω)+aŶT (ω)exp(iφ)|2] =0 we have X̂T(ω)=−aŶT (ω)exp(iφ) with probability 1. Therefore
E[X̂(ω)∗YT(ω)] =−aE[ŶT (ω)

∗ŶT(ω)] exp(−iφ) and the left hand side of Eq. (18.11) is equal to a2E[|ŶT(ω)|2]2. Since
E[X̂T(ω)

∗X̂T(ω)] = a2E[ŶT(ω)
∗ŶT(ω)] the right hand side has the same value as well. We now compute

E[|X̂T(ω)+aŶT (ω)eiφ |2] =E[(X̂T (ω)+aŶT (ω)eiφ)(X̂T (ω)
∗ +aŶT(ω)

∗e−iφ)]

=E[X̂T(ω)X̂T (ω)
∗ +aŶT(ω)eiφX̂T(ω)

∗ +aŶT(ω)
∗e−iφX̂T(ω)+a2ŶT(ω)

∗ŶT(ω)]

=E[|X̂T(ω)|2]+a(E[X̂T (ω)
∗ŶT(ω)]eiφ+E[X̂T(ω)ŶT (ω)

∗]e−iφ)+E[|ŶT(ω)|2].

With E[X̂T(ω)
∗ŶT(ω)] =|E[X̂T (ω)

∗YT(ω)]|eiψ we have

0<E[|X̂T(ω)|2]+2a|E[X̂T(ω)
∗ŶT(ω)]|cos(ψ+φ)+a2E[|ŶT(ω)|2].

This implies

�=4|E[X̂T(ω)
∗ŶT(ω)]|2 cos(ψ+φ)2 −4E[|ŶT(ω)|2]E[|X̂T(ω)|2]<0

and setting ψ=−φ we obtain Eq. (18.11).

Exercise 4.

E[X(t)Y(t+τ)] =E[X(t)
∫

h(t+τ − t0)X(t0)dt0] =
∫

h(t+τ − t0)E[X(t)X(t0)]dt0.

Set t0 = t+ t1 or t1 = t0 − t so that

CXY(τ )=
∫

h(t+τ− t− t1)E[X(t)X(t+ t1)]dt1

=
∫

h(τ − t1)CXX(t1)dt1 =h�CXX(τ ).

MATHEMATICS FOR NEUROSCIENTISTS



28.17 CHAPTER 18 447

Similarly,

CYY(τ )=E[Y(t)Y(t+τ)] =E
[∫

h(t− t0)X(t0)dt0

∫
h(t+τ − t1)X(t1)dt1

]

=
∫∫

h(t− t0)h(t+τ − t1)E[X(t0)X(t1)]dt0dt1

=
∫∫

h(t− t0)h(t+τ − t1)E[X(0)X(t1 − t0)]dt0dt1.

For t0 fixed set y = t1 − t0 so that −t1 =−t0 −y. Hence,

CYY(τ )=
∫

h(t− t0)

∫
h(t+τ −y− t0)E[X(0)X(y)]dydt0

=
∫

h(t− t0)(h�CXX)(t+τ − t0)dt0.

Set h̃(z)=h(−z) so that

CYY(τ )=
∫

h̃(t0 − t)(h�CXX)(τ −(t0 − t))dt0, set t =0

= h̃� (h�CXX)(τ ).

We now apply the result of Exercises 7.10 and 7.13 to derive the corresponding Fourier transforms.

Exercise 5. The autocorrelation of the error is, with t1 = t0 +τ ,

E[e(t0)e(t1)] =E[(Y(t0)−h�X(t0))(Y(t1)−h�X(t1))]

=CYY(τ )−e[h�X(t0)Y(t1)]−E[Y(t0)h�X(t1)]+E[h�X(t0)h�X(t1)]

=CYY(τ )−E
[∫

h(t)X(t0 − t)Y(t1)dt
]
−E

[
Y(t0)

∫
h(t)x(t1 − t)dt

]
+(h� h̃)�CXX(τ ).

But,

E[X(t0 − t)Y(t1)] =E[X(0)Y(t1 − t0 + t)] =CXY(t+τ)

and

E[Y(t0)X(t1 − t)] =E[X(t1 − t)Y(t0)] =E[X(0)Y(t0 − t1 + t)] =CXY(−τ + t).

Therefore the first term is

E
[∫

h(t)X(t0 − t)Y(t1)dt
]

=
∫

h(t)CXY(t+τ)dt =
∫

h(−t)CXY(τ − t)dt = h̃ �CXY(τ )

and

E
[

Y(t0)

∫
h(t)x(t1 − t)dt

]
=
∫

h(t)E[Y(t0)X(t1 − t)]dt

=
∫

h(t)CXY(−τ + t)dt =
∫

h(−t)CYX(τ − t)dt

=h�CYX(τ ).
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Since CXY(t)=CYX(−t). Finally,

E[e(t0)e(t1)] =CYY(τ )− h̃�CXY(τ )−h�CYX(τ )+(h� h̃)�CXX(τ ).

Exercise 8. First,

ĝ(ω)=
∞∫

−∞
p2T(τ )(1−|τ |/T)e−2π iωτ dτ =

T∫
−T

(1−|τ |/T)e−2π iωτ dτ

=
T∫

−T

e−2π iωτ dτ − 1
T

T∫
−T

|τ |e−2π iωτ dτ =A−B/T.

(28.10)

We compute A and B separately,

A=
T∫

−T

1
(−2π iω)

d
dτ

e−2π iωτ dτ = 1
(−2π iω)

e−2π iωτ
∣∣∣∣
T

−T
= 1

2π iω
(e2π iωT −e−2π iωT),

and

B=
T∫

−T

|τ |e−2π iωτ dτ =
0∫

−T

(−τ)e−2π iωτ dτ+
T∫

0

τe−2π iωτ dτ =B1 +B2.

For B2, we use integration by parts,

b∫
a

udv = uv|ba −
b∫

a

v du

with u= τ ⇒du=dτ and

dv
dτ

=e−2π iωτ ⇒v = 1
(−2π iω)

e−2π iωτ

we obtain

B2 =
T∫

0

τe−2π iωτ dτ = τ

(−2π iω)
e−2π iωτ

∣∣∣T
0

−
T∫

0

1
(−2π iω)

e−2π iωτ dτ

= Te−2π iωT

(−2π iω)
− 1
(−2π iω)2

T∫
0

d
dτ

e−2π iωτ dτ

= T
(−2π iω)

e−2π iωT − 1
(−2π iω)2

e−2π iωT
∣∣∣T
0

= −T
2π iω

e−2π iωT + 1
(2πω)2

(e−2π iωT −1).
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After changing the integration variable from τ to −τ and using integration by parts as above, we obtain

B1 =
0∫

−T

(−τ)e−2π iωτ dτ =
0∫

T

τe2π iωτ dτ =
T∫

0

τe2π iωτ dτ

= τ

2π iω
e2π iωτ

∣∣∣T
0

−
T∫

0

1
2π iω

e2π iωτ dτ

= T
2π iω

e2π iωT − 1
(2π iω)2

T∫
0

d
dτ

e2π iωτ dτ

= T
2π iω

e2π iωT − 1
(2π iω)2

e2π iωT
∣∣∣T
0

= T
2π iω

e2π iωT + 1
(2πω)2

(e2π iωT −1).

Plugging the values of A, B1, and B2 in Eq. (28.10),

ĝ(ω)= 1
2π iω

(e2π iωT −e−2π iωT)−
(

e2π iωT

2π iω
+ 1

T(2πω)2
(e2π iωT −1)

)
−
(

e−2π iωT

−2π iω
+ 1

T(2πω)2
(e−2π iωT −1)

)

= 1
T(2πω)2

(2−(e2π iωT +e−2π iωT))= 1
T(2πω)2

2(1−cos2πωT)= sin2(πωT)
T(πω)2

since sin2 x/2 = (1−cosx)/2.

Exercise 9. By taking the expectation of Eq. (18.12) and plugging in the definition of the covariance, we obtain

E[Shx(ω)] =
∫ ∞∫

−∞
h(t1)h(t2)e−2π iωt1e2π iωt2C(t2 − t1)dt1 dt2.

We now use the definition of the Fourier transform of h and C:

E[Shx(ω)] =
∫ ∫ ∫ ∫ ∞∫

−∞
e2π i(ω1−ω−ω3)t1e2π i(ω2+ω+ω3)t2 ĥ(ω1)ĥ(ω2)S(ω3)dt1 dt2dω1 dω2 dω3

=
∫ ∫ ∞∫

−∞
δ(ω1 −ω−ω3)δ(ω2 +ω+ω3)ĥ(ω1)ĥ(ω2)S(ω3)dω1 dω2 dω3.

The first δ function implies ω1 −ω−ω3 =0 or ω3 =ω1 −ω. The second δ function implies ω2 =−ω−ω3. Using the first
result, ω2 =−ω−ω1 +ω=−ω1. Plugging this in the last equality yields

E[Shx(ω)] =
∞∫

−∞
ĥ(ω1)ĥ(−ω1)S(ω1 −ω)dω1

=
∞∫

−∞
|ĥ(ω1)|2S(ω1 −ω)dω1 =

∞∫
−∞

|ĥ(ω1)|2S(ω−ω1)dω1.

Exercise 10. See cross_poiss.m.
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Exercise 11. We have E[Z(t1)X(t2)] =E[X(t1)X(t2)] since Z =X+Y and X is independent of Y. This implies

γ (ω)= SZX(ω)√
SXX(ω)

√
SZZ(ω)

=
√

SXX(ω)√
SZZ(ω)

and SZZ(ω)=SXX(ω)+SYY(ω). With SXX(ω)=2σOU/(1+(2πτω)2) and SYY(ω)=σ 2
w/2fN we obtain

γ (ω)=
√

2σOUτ√
1+(2πτω)2

1√
2σOUτ

1+(2πτω)2 + σ 2

2fN

.

See coherence_est.m for the numerical implementation.

Exercise 12.

(i) Follows immediately from

x̂−j =
N−1∑
k=0

xke2π ijk/N =
(N−1∑

k=0

xke−2π ijk/N

)∗
= x̂∗

j .

(ii) Since both xjr and xji are linear combinations of Gaussian random variables they are Gaussian as well, according
to §11.9. Furthermore,

E[xjr] =
N−1∑
k=0

E[xk] cos2πkj/N =0, E[xji] =
N−1∑
k=0

E[xk] sin2πkj/N =0.

(iii)

E[x̂j x̂l] =
N−1∑

k,m=0

E[xkxm]e−2π ikj/Ne−2π iml/N =
N−1∑

k,m=0

Ck−me−2π ikj/Ne−2π iml/N

=
N−1∑

m,n=0

Cne−2π i(m+n)j/Ne−2π iml/N =
(N−1∑

n=0

Cne−2π inj/N

)(N−1∑
m=0

e−2π im( j+l)/N

)
=SnNδj−l.

(iv) Applying (iii) to l = j, we obtain

0 =E[x̂jx̂j] =E[x̂2
jr]−E[x̂2

ji]+2iE[x̂jix̂jr]

which implies E[x̂jix̂jr] =0 and E[x̂2
jr] =E[x̂2

ji]. Setting l =−j, we obtain E[|x̂j|2] =E[x̂2
jr]+E[x̂2

ji] =NSj .

(v) For j �=±l the result of (iii), E[x̂jx̂l] =0, implies

E[x̂jrx̂lr] =E[x̂jix̂li], E[x̂jrx̂li] =−E[x̂jix̂lr].

Similarly, since x̂−l = x̂lr − ix̂li, we obtain

E[x̂jrx̂lr] =−E[x̂ji x̂li] E[x̂jix̂lr] =E[x̂jrx̂li].

Taken together these equations imply E[x̂jrx̂lr] =0, E[x̂jix̂li] =0, E[x̂jix̂lr] =0, and E[x̂jrx̂li] =0.
(vi) For a frequency ωj = j/(N�t)∈ [−fN , fN] we have

σ 2

2fN
=S(ωj)≈ �t

N
E[|x̂j|2]
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which implies

E[|x̂j|2] = Nσ 2

2fN�t
.

(vii) See coherence_est.m.

Exercise 13.

(i) Since gα, l =αg1, l, it is sufficient to show that g1, l(x)∈ (−1,1), which follows from

1√
2π l

∞∫
0

e−t2/2l2 dt = 1
2

.

If we set y = t/
√

2l, dy =dt/
√

2l, we obtain

g1, l(x)=
√

2
π

1
l

x/
√

2l∫
0

e−y2 √
2ldy = 2√

π

x/
√

2l∫
0

e−y2
dy =erf

(
y√
2l

)
.

(ii) and (iii) See coherence_est.m.

Exercise 15.

(i) Since fk is real,

| f̂ (ω)|2 =
N−1∑
j,k=0

fk fje2π i( j−k)ω.

Hence,

W∫
−W

| f̂ (ω)|2 dω=
N−1∑
j,k=0

fk fj

W∫
−W

e2π i( j−k)ωdω.

When W =1/2 the last integral is equal to 1 and otherwise

W∫
−W

e2π i( j−k)ωdω=
W∫

−W

1
2π i( j−k)

d
dω

e2π iω( j−k)dω

= 1
2π i( j−k)

e2π i( j−k)ω
∣∣∣W−W

= 1
2π i( j−k)

(
e2π i( j−k)W −e−2π i( j−k)W

)
= 1

2π i( j−k)
2i sin

(
2π( j−k)W

)

= sin
(
2π( j−k)W

)
π( j−k)

.

These results immediately lead to Eq. (18.14), with A= (Ajk),

Ajk = sin
(
2π( j−k)W

)
π( j−k)

, j,k=1, . . . ,N

and f = (f0, . . . , fN−1)
T .
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(ii) Since the sine function is odd,

Ajk = sin
(
2π( j−k)W

)
π( j−k)

= −sin
(
2π(k− j)W

)
π( j−k)

= sin
(
2π(k− j)W

)
π(k− j)

=Akj

and therefore A=AT . Furthermore,

fTAf =
W∫

−W

| f̂ (ω)|2 dω≥0

implying positive semidefiniteness. According to Parseval’s identity,

fTAf ≤
1/2∫

−1/2

| f̂ (ω)|2 dω= fTf.

According to Exercise 6.8, this implies that the highest eigenvalue of A is ≤1.
(iii) We compute

∂

∂fk

fT Af
fTf

= 1
fTf

N∑
i,j=1

∂fi−1

∂fk

{
Aij fj−1+ fi−1Aij

∂fj−1

∂fk

}

− fTAf(
fTf

)2

N∑
i=1

2fi−1
∂fi−1

∂fk
.

Since the gradient is equal to zero at the maximum, this implies

0 = fTf
N∑

i,j=1

{
∂fi−1

∂fk
Aij fj−1+ fi−1Aij

∂fj−1

∂fk

}
−fTAf

N∑
i=1

2fi−1
∂fi−1

∂fk

= fTf
N∑

i,j=1

{δi−1,kAij fj−1+ fi−1Aijδj−1,k}−fT Af
N∑

i=1

2fi−1δi−1,k

= fTf

⎛
⎝ N∑

j=1

A(k+1)j fj−1+
N∑

i=1

fi−1Ai(k+1)

⎞
⎠−fTAf2fk

=2fTf(Af)k+1 −2fTAf(f)k+1.

This implies

Af = fTAf
fTf

f

or equivalently f is an eigenvector of A. Clearly an eigenvector to the largest eigenvalue will yield the largest
value of β2(W, f̂ ).

28.18 CHAPTER 19

Exercise 1. See disp_hist.m and scene_2d.m.

Exercise 2. See disp_im.m and scene_2d.m.
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Exercise 3. See disp_ts2.m.

Exercise 4. See disp_ts2.m.

28.19 CHAPTER 20

Exercise 1. Since the receptive field is described by a difference of two Gaussians, we treat first the case of a single
Gaussian, corresponding to either the center or the surround of the receptive field,

w(x,y)= ke−(r/r0)
2
, with r =

√
x2 +y2.

The one-dimensional receptive field u(x) is obtained from w(x,y) by integrating over y,

u(x)=
∫

ke−(x2+y2)/r2
0 dy = ke−x2/r2

0

∫
e−y2/r2

0 dy.

Using Eq. (20.19), we have

∞∫
−∞

e−y2/r2
0 dy =2

√
π

2 ·1/r0
= r0

√
π .

Therefore,

u(x)= kr0
√
πe−x2/r2

0 .

This result immediately generalizes to Eq. (20.9) by subtracting a second Gaussian corresponding to the receptive
field surround.

Exercise 4. If we define fn(t)= tne−αt1(t) we may write,

wt(t)= f1(t)− α

2
f2(t).

If we define s=α+2π iωt, the Fourier transform of fn can be computed as follows:

f̂n(ωt)=
∞∫

0

e−2π iωtttne−αt dt =
∞∫

0

tne−st dt.

According to Eq. (3.34),

ŵt(ωt)= 1
(α+2π iωt)2

− α

2
2

(α+2π iωt)3
= 2π iωt

(α+2π iωt)3
.

28.20 CHAPTER 21

Exercise 1. Let f (x)= f1(x)f2(x), h(x)= f1(x)f3(x) with

f1(x)= 1√
2πσx

e−x2/2σ 2
x , f2(x)= cos

(
2π(kxx−φx)

)
, f3(x)= sin

(
2π(kxx−φx)

)
.
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Using the results derived in Exercises 7.11 and 7.15 and the convolution theorem, Eq. (7.29), yields,

f̂ (ωx)= 1
2

e−2π iφx

∫
e−σ 2

x (2π)
2(ωx−η)2/2δ(kx −η)dη+ 1

2
e2π iφx

∫
e−σ 2

x (2π)
2(ωx−η)2/2δ(kx +η)dη

= 1
2

(
e−2π iφxe−σ 2

x (2π)
2(ωx−kx)

2/2 +eiφxe−σ 2
x (2π)

2(ωx+kx)
2)

.
(28.11)

Similarly,

ĥ(ωx)= 1
2i

(
e−2π iφxe−σ 2

x (2π)
2(ωx−kx)

2/2 −eiφx e−σ 2
x (2π)

2(ωx+kx)
2)

. (28.12)

Exercise 3.

Rdrift(t)=
∫

w(x,y)cdrift(x,y, t)dxdy

=
∫

w(x,y) cos
(
2π(ηxx+ηyy−ηtt−η0)

)
dxdy

=
(∫

w(x,y)e−2π i(ηxx+ηyy−ηtt−η0)dxdy
)

=
(

e2π i(ηtt+η0)

∫
w(x,y)e−2π i(ηxx+ηyy)dxdy

)

=
(

e2π i(ηtt+η0)ŵ(ηx,ηy)
)

=
(

e2π i(ηtt+η0)
1
2
(e−2π iφxe−σ 2

x (2π)
2(ηx−kx)

2/2 +e2π iφx e−σ 2
x (2π)

2(ηx+kx)
2/2)e−σ 2

y (2π)
2η2

y/2
)

= 1
2

cos(2π(ηtt+η0 −φx)e−σ 2
x (2π)

2(ηx−kx)
2/2e−σ 2

y (2π)
2η2

y/2+
1
2

cos(2π(ηtt−η0 +φx))e−σ 2
x (2π)

2(ηx+kx)
2/2e−σ 2

y (2π)
2η2

y/2.

Exercise 4. We are looking for the values of ηx such that,

e−σ 2
x (2π)

2(ηx−kx)
2/2 = 1

2
holds. Taking logarithms on both sides of this equation and rearranging we obtain:

σ 2
x (2π)

2(ηx −kx)
2 =2 log2

±σx(ηx −kx)=
√

2 log2/2π

ηx = kx ±√
2 log2/2πσx.

The corresponding bandwidth is b= log2ηh/ηl with ηh = kx +√
2 log2/2πσx and ηl = kx −√

2 log2/2πσx. This gives

b= log2
2πkxσx +√

2 log2

2πkxσx −√
2 log2

, or 2πkxσx =√
2 log2

2b +1
2b −1

.

Note that the logarithm in base 2 is obtained from the natural logarithm as follows: log2(x)= log(x)/ log(2).

Exercise 6. By definition,

ĝ−
e (ωx ,ωt)= ĝse(ωx)f̂te(ωt)+ ĝso(ωx)f̂to(ωt),

ĝ−
o (ωx ,ωt)= ĝso(ωx)f̂te(ωt)− ĝse(ωx)f̂to(ωt).
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The Fourier transform of each component has been derived in Exercise 2. Plugging in this result yields the formula
given in the main text for ĝ−

e , Eq. (21.9). For ĝ−
o we obtain:

ĝ−
o (ωx ,ωt)= 1

2i

(
e−σ 2

x (2π)
2(ωx−kx)

2/2e−σ 2
t (2π)

2(ωt+kt)
2/2 −e−σ 2

x (2π)
2(ωx+kx)

2/2e−σ 2
t (2π)

2(ωt−kt)
2/2).

Exercise 7. See temp_space_rfs.m.

28.21 CHAPTER 22

Exercise 1. First, from AF=−B we deduce F=−A−1B and plugging this in H =D−CA−1B we obtain H =D+CF.
Second, from GA=−C we have G =−CA−1 and plugging this in H =D−CA−1B we obtain H =D+GB. We can now
compute MM−1 and M−1M:

MM−1 =
(

A B
C D

)((
A−1 0

0 0

)
+
(

F
I

)
H−1 (G I

))

=
(

A B
C D

)(
A−1 0

0 0

)
+
(

A B
C D

)(
F
I

)
H−1 (G I

)
=
(

I 0
CA−1 0

)
+
(

AF+B
CF+D

)
H−1 (G I

)
=
(

I 0
CA−1 0

)
+
(

0
CF+D

)
H−1 (G I

)
=
(

I 0
CA−1 0

)
+
(

0
(CF+D)H−1

)(
G I

)
=
(

I 0
CA−1 0

)
+
(

0
I

)(
G I

)
=
(

I 0
CA−1 0

)
+
(

0 0
G I

)

=
(

I 0
CA−1 +G I

)

=
(

I 0
0 I

)
,

M−1M=
((

A−1 0
0 0

)
+
(

F
I

)
H−1 (G I

))(A B
C D

)

=
(

A−1 0
0 0

)(
A B
C D

)
+
(

F
I

)
H−1 (G I

)(A B
C D

)

=
(

I A−1B
0 0

)
+
(

F
I

)
H−1 (GA+C GB+D

)
=
(

I A−1B
0 0

)
+
(

F
I

)(
0 H−1(GB+D)

)
=
(

I A−1B
0 0

)
+
(

F
I

)(
0 I

)
=
(

I A−1B
0 0

)
+
(

0 F
0 I

)

=
(

I A−1B+F
0 I

)

=
(

I 0
0 I

)
.
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Exercise 2. For the first identity,

(
I 0
H I

)(
CXX 0

0 Q

)(
I HT

0 I

)
=
(

CXX CXXHT

HCXX HCXXHT +Q

)
. (28.13)

Since H =CYXC−1
XX , CXX is symmetric, and CT

YX =CXY , we have HT =C−1
XXCXY . Hence,

HCXX =CYX , CXXHT =CXY, (28.14)

and

HCXXHT +Q =CYXC−1
XXCXXC−1

XXCXY +CYY −CYXC−1
XXCXY =CYY .

Plugging these results in Eq. (28.13) shows that the right hand side is equal to CZZ. For the second identity,

(
I 0

−H I

)(
CXX CXY
CYX CYY

)(
I −HT

0 I

)
=
(

I 0
−H I

)(
CXX −CXXHT +CXY
CYX −CYXHT +CYY

)

=
(

CXX −CXXHT +CXY
−HCXXCYX −HCXXHT −HCXY −CYXHT +CYY

)
.

The off-diagonal terms vanish according to Eq. (28.14) and the lower diagonal term is equal to

−HCXXHT −HCXY −CYXHT +CYY =CYXC−1
XXCXY

−CYXC−1
XXCXY −CYXC−1

XXCXY +CYY =Q.

Exercise 3.

E
[(

vX
vN

)(
vX vN

)]=E
[(

I 0
−H I

)(
vX
vY

)(
vX vY

)(I −HT

0 I

)]

=
(

I 0
−H I

)
E
[(

vX
vY

)(
vX vY

)](I −HT

0 I

)

=
(

I 0
−H I

)
CZZ

(
I −HT

0 I

)
=
(

CXX 0
0 Q

)
.

Exercise 4.

(i) Since Y(t) is a Gaussian stochastic process,

p(y1,y2)= (2π)−1|det CYY|−1/2 exp

(
−1

2

(
y1 y2

)
C−1

YY

(
y1
y2

))
(28.15)

with

CYY =
(
σ 2 σ 2ρ

σ 2ρ σ 2

)
=σ 2

(
1 ρ

ρ 1

)
=σ 2C1.

Note that the variances of Y1 and Y2 (i.e., σ 2) are equal since Y(t) is stationary. Furthermore, det CYY =σ 4(1−ρ2).
The constant ρ is the correlation coefficient between Y at time t and t+τ . We use the identity derived in Exercise 1
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to write

C−1
1 =

(
1 0
0 1

)
+
(−ρ

1

)
1

1−ρ2

(−ρ 1
)

=
(

1 0
0 1

)
+ 1

1−ρ2

(
ρ2 −ρ
−ρ 1

)
.

By symmetry between y1 and y2 and after multiplying by σ−2,

C−1
YY =σ−2

((
1 0
0 1

)
+ 1

1−ρ2

(
1 −ρ

−ρ ρ2

))
,

so that

(
y1 y2

)
C−1

YY

(
y1
y2

)
=σ−2

(
y2

2 + 1
1−ρ2

(
y1 y2

)( 1 −ρ
−ρ ρ2

)(
y1
y2

))

=σ−2
(

y2
2 +(1−ρ2)−1

(
y2

1 −2ρy1y2 +ρ2y2
2

))
=σ−2

(
y2

2 +(1−ρ2)−1(y1 −ρy2)
2
)

.

Plugging this result in Eq. (28.15) we obtain the desired formula.
(ii)

CYZ0(τ )=E[Y1g(Y2)] =
∞∫∫

−∞
y1g(y2)dy1dy2

= 1

2πσ 2
√

1−ρ2

∞∫
−∞

g(y2)e
− 1

2σ2 y2
2

⎛
⎝ ∞∫

−∞
y1e

− 1
2σ2 (1−ρ2 )

(y1−ρy2)
2

dy1

⎞
⎠ .

The integral in parenthesis is the mean of the Gaussian density integrand, up to a scaling factor equal to
√

2π
times the standard deviation of the Gaussian integrand. Hence, it is equal to ρy2

√
2πσ

√
1−ρ2. Therefore,

CYZ0(τ )=ρ
1√
2πσ

∞∫
−∞

g(y2)y2e− 1
2σ2 y2

2

=ρE[yg(y)].

Since σ 2ρ=CYY(τ ), we obtain the desired result.

Exercise 5. See lgn_est3.m.

Exercise 6. See lgn_est5.m.

Exercise 7. According to Bussgang’s theorem,

CXY(τ )= 1
σ 2

X
CXX(τ )

∞∫
−∞

xgα, l(x)p(x)dx.

We therefore need to evaluate

A=
∞∫

−∞
xgα, l(x)p(x)dx =

∞∫
−∞

x

⎛
⎜⎝ 2√

π

x/
√

2l∫
0

e−z2
dz

⎞
⎟⎠ 1√

2π
e−x2/2 dx.
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We integrate by parts,

A=
b∫

a

udv = uv|ba −
b∫

a

v du

with

u=g(x)⇒du= 2√
π

e−x2/2l2 1√
2l

dx =
√

2√
π

1
l

e−x2/2l2dx

and

dv =x
1√
2π

e−x2/2dx ⇒v = −1√
2π

e−x2/2.

This yields

A= g(x)
( −1√

2π
e−x2/2

)∣∣∣∣∞−∞
+

√
2√

2π

1
l

∞∫
−∞

e−x2(1+1/l2)/2 dx = 1
π

1
l

∞∫
−∞

ex2(1+1/l2)/2 dx.

Set 1/σ 2
1 =1+1/l2 or σ 2

1 = l2/(1+ l2) and since

1√
2πσ1

∞∫
−∞

e−x2/2σ 2
1 dx =1

we obtain

CXY(τ )= CXX(τ )

σ 2
X

√
2
π

√
l2

1+ l2
1
l
= CXX

σ 2
X

√
2
π

1√
1+ l2

.

Exercise 8. See coherence_est.m.

28.22 CHAPTER 23

Exercise 1. See lgn_revcor_wn3.m.

Exercise 2. The optimal filter is given by

ĥ(ω)= SYX(ω)

SYY(ω)
.

But since X and N are independent,

CYX(τ )=E[(k�X(t)+N(t))X(t+τ)]
=E[k�X(t)X(t+τ)] = k̃ �CXX(τ ).
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The last equality follows from

E[k�X(t)X(t+τ)] =E
[∫

k(t− t0)X(t0)dt0 X(t+τ)
]

=
∫

k(t− t0)E[X(t0)X(t+τ)]dt0

=
∫

k(t− t0)E[X(t0)X(t0 + t− t+τ)]dt0

=
∫

k(t− t0)CXX(t− t0 +τ)dt0

=
∫

k̃(t0 − t)CXX(t− t0 +τ)dt0, t1 = t0 − t

=
∫

k̃(t1)CXX(τ − t1)dt1 = k̃�CXX(τ ).

Similarly,

CYY(τ )= (k� k̃)�CXX(τ )+CNN(τ ).

Fourier transforming these two results immediately leads to Eq. (23.6).

Exercise 3. See rec_wn.8.

28.23 CHAPTER 24

Exercise 1. See poiss1.m.

Exercise 2. From Eq. (24.2) we compute

p(n|s1)

p(n|s0)
=e

(
(n−n0)

2−(n−n1)
2)/2σ 2

n

=e(n
2−2nn0+n2

0−n2+2nn1−n2
1)/2σ

2
n =e−(n0−n1)n/σ 2

n e−(n2
1−n2

0)/2σ
2
n

which implies

l(n)= log
p(n|s1)

p(n|s0)
= (n1 −n0)

n
σ 2

n
− (n2

1 −n2
0)

2σ 2
n

= (n1 −n0)

σ 2
n

n− (n1 −n0)(n1 +n0)

2σ 2
n

= n1 −n0

σ 2
n

(
n− n1 +n0

2

)
.

Exercise 3. Under hypothesis s0, n∼N (n0,σ 2
n ) and

l0 =E[l|s0] = (n1 −n0)

σ 2
n

(
n0 − n1 +n0

2

)
= n1 −n0

σ 2
n

n0 −n1

2
.

Define d2 = (n1 −n0)
2/σ 2

n so that l0 −d2/2. Furthermore,

E[(l− l0)2|s0] = (n1 −n0)
2

σ 4
n

E[(n−n0)
2] = (n1 −n0)

2

σ 4
n

σ 2
n = (n1 −n0)

2

σ 2
n

=d2.

The second assertion under s1 follows in the same manner.
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Exercise 4. According to Eq. (24.4),

PFA =
∞∫
ξ

p(l | s0)dl =
∞∫
ξ

1√
2πd

e−(y+d2/2)2/2d2
dy

set z= (y+d2/2)/d, dz=dy/d and with y = ξ , z= ξ0 = (ξ+d2/2)/d, we obtain

PFA =
∞∫
ξ0

1√
2π

e−z2/2 dz=1−�(ξ0).

Similarly,

PD =
∞∫
ξ

1√
2πd

e−(y−d2/2)2/2d2
dy

and with z= (y−d2/2)/d, ξ1 = (ξ −d2/2)/d = ξ0 −d, we obtain

PD =
∞∫
ξ1

e−z2/2 dz=1−�(ξ1)=1−�(ξ0 −d).

The error is

ε(ξ0)= 1
2

PFA + 1
2
(1−PD)= 1

2
(1−�(ξ0)+�(ξ0 −d))

and its derivative with respect to ξ0 has to vanish at the minimum, ξ0 min,

dε
dξ0

∣∣∣∣
ξ0=ξ0min

=−1
2

d�(ξ0)

dξ0

∣∣∣∣
ξ0=ξ0min

+ 1
2

d�(ξ0 −d)
dξ0

∣∣∣∣
ξ0=ξ0min

=−1
2

1√
2π

e−ξ2
0 /2 + 1

2
1√
2π

e−(ξ0−d)2/2.

This implies

ξ 2
0 = (ξ0 −d)2 ⇔±ξ0 =±(ξ0 −d).

Case 1: ξ0 = ξ0 −d ⇒d =0 and ξ0 is arbitrary, this leads to 100% error.
Case 2: −ξ0 =−(ξ0 −d)⇒d =0, as in Case 1.
Case 3: ξ0 =−(ξ0 −d)⇒2ξ0 =d or ξ0 =d/2.
Case 4: −ξ0 = (ξ0 −d)⇒2ξ0 =d or ξ0 =d/2, as in Case 3.

The corresponding value of ξ given ξ0 =d/2 is

d
2

=
(
ξ+ d2

2

)/
d ⇔ d2

2
= ξ+ d2

2
⇒ ξ =0.

This means that the likelihood ratio threshold is exp(ξ )=1. Since �(d/2)=1−�(−d/2),

PC = PD

2
+ 1−PFA

2
= 1

2
(1−�(−d/2))+ 1

2
�(d/2)

= 1
2
(1−�(−d/2))+ 1

2
(1−�(−d/2))=1−�(−d/2).
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Exercise 5. According to Eq. (24.10) and Eq. (24.11),

PFA =
∞∫

k

q(lr | s0)dlr,
dPFA

dk
=−q(k | s0)

PD =
∞∫

k

q(lr | s1)dlr,
PD

dk
=−q(k | s1)

ε(k)= 1
2
(PFA(k)+1−PD(k))

dε
dk

= 1
2

(
q(k | s0)+q(k | s1)

)= 1
2

(−q(k | s0)+kq(k | s0)
)= 1

2
q(k | s0)(k−1).

Assuming q(k | s0) �=0 we have dε/dk<0 for k<1, dε/dk>0 for k>1 and dε/dk =0 at k =1 which is therefore the
minimum. Maximum errors on each side of this minimum occur at k =0 and k =∞.

Exercise 8.

E[(l− l1)2 | s1] =E

[(
wT(x−x0)− 1

2
wT(n1 −n0)

)2
]

=E

[(
wT

(
x− 1

2
(n0 +n1)− 1

2
(n1 −n0)

))2
]

=E

[(
wT

(
x− 1

2
n0 − 1

2
n1 − 1

2
n1 + 1

2
n0

))2
]

=E
[
(wT(x−n1))

2
]
=E

[
wT(x−n1)(x−n1)

T w
]

=wTCw = (n1 −n0)
T C−1CC−1(n1 −n0)

= (n1 −n0)
TC−1(n1 −n0)=d2.

Exercise 10. The requirement CC−1 = I and C−1C= I, where C−1 is defined through Eq. (24.19), is equivalent to:

a+(k−1)bc =1 (diagonal terms),
b+(a+(k−2)b)c =0 (off-diagonal terms).

To solve this system of equations for a and b we rearrange as follows:

ca+(1+(k−2)c)b=0
a+(k−1)cb=1.

The first equation leads to a=−(1+(k−2)c)b/c and multiplying the second equation by c and subtracting the first
one yields

(k−1)c2b−(1+(k−2)c)b= c or b((k−1)c2 −(k−2)c−1)= c

which implies

b= c
(k−1)c2 −(k−2)c−1

and a=−(1+(k−2)c)
c

b.

Note that b=0 when c =0 and a=1.
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Exercise 11. Since

k∑
i=1

νi

k∑
j=1,j �=i

νj =
⎛
⎝ k∑

i=1

νi

⎞
⎠

2

−
k∑

i=1

ν2
i

we may rewrite Eq. (24.21) as follows

d2 = 1
σ 2

n

⎛
⎜⎝a

k∑
i=1

ν2
i +b

⎛
⎝ k∑

i=1

νi

⎞
⎠

2

−b
k∑

i=1

ν2
i

⎞
⎟⎠

= 1
σ 2

n

⎛
⎜⎝(a−b)

k∑
i=1

ν2
i +b

⎛
⎝ k∑

i=1

νi

⎞
⎠

2
⎞
⎟⎠

= 1
σ 2

n

⎛
⎜⎝(a−b)k

1
k

k∑
i=1

ν2
i +bk2 1

k2

⎛
⎝ k∑

i=1

νi

⎞
⎠

2
⎞
⎟⎠

= 1
σ 2

n

⎛
⎝(a−b)k

1
k

k∑
i=1

ν2
i +bk2μ2

ν

⎞
⎠ .

Since

σ 2
ν = 1

k

k∑
i=1

(νi −μν)2 = 1
k

k∑
i=1

ν2
i −μ2

ν

we have

1
k

k∑
i=1

ν2
i =μ2

ν +σ 2
ν

and

d2 = 1
σ 2

n

(
(a−b)k(μ2

ν +σ 2
ν )+bk2μ2

ν

)

= μ2
ν

σ 2
ν

(
(a−b)k+bk2 +(a−b)k

σ 2
ν

μ2
ν

)

= μ2
ν

σ 2
ν

(
k(a+b(k−1))+(a−b)k

σ 2
ν

μ2
ν

)
.
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We now compute the two factors

k(a+b(k−1))= k
( −(1+(k−2)c)
(k−1)c2 −(k−2)c−1

+ c(k−1)
(k−1)c2 −(k−2)c−1

)

= k
(−1−(k−2)c+(k−1)c

k(c2 −c)−c2 +2c−1

)

= k
( −1+2c−c

kc(c−1)−(c−1)2

)

= k(c−1)
(c−1)(kc−c+1)

= k
kc−c+1

→ 1
c

(k →∞)

and

(a−b)k =
( −(1+(k−2)c)
(k−1)c2 −(k−2)c−1

− c
(k−1)c2 −(k−2)c−1

)
k

= (−1−kc+2c−c)
(c−1)(kc−c+1)

k

= (−kc+c−1)k
(c−1)(kc−c+1)

= −k
c−1

= k
1−c

.

Plugging these two results in the last expression for d2 yields Eq. (24.22).

Exercise 12. Since σ 2
ν =ρμ2

ν , we have from Eq. (24.18),

E[d2
s ] = μ2

ν

σ 2
n

+ρμ
2
ν

σ 2
n

= μ2
ν

σ 2
n
(1+ρ)

or μ2
ν/σ

2
ν =E[d2

s ]/(1+ρ). Plugging these results in Eq. (24.22)

d2 = E[d2
s ]

1+ρ
(

k
kc−c+1

+ k
1−c

ρ

)

=E[d2
s ]

k
1+ρ

(
1

kc−c+1
+ 1

1−c
ρ

)
.

Exercise 13. Clearly,

wTSCw = 1
2

wTC0w+ 1
2

wTC1w = 1
2
(σ 2

0 +σ 2
1 )>0

and therefore SC is positive definite. If C=UT U and x =Uw then

wTCw =wTUT Uw = (Uw)T x =xTx

and since w =U−1x,

wTSnw = (U−1x)TSnU−1x =xT(U−1)T SnU−1x.
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According to Exercise 18.15,

(U−1)T SnU−1x =λx

Snw =λUT Uw

Snw =λSCw.

28.24 CHAPTER 25

Exercise 1. See hsp.m.

Exercise 2. See darknoise.m.

Exercise 3. Call the first presentation interval I0 and the second presentation I1. Let s0 be the hypothesis that the
stimulus is presented in interval I0 and s1 the hypothesis that the stimulus is presented in interval I1. Denote by
x the vector (x1,x2)

T , where x1 is the value of X in interval I0 and x2 the value of X in interval I1. Let also p0 be
the probability density of X given noise and p1 the probability of X given the stimulus. Since the random variable
X is selected independently in I0 and I1 (except that one is selected from the noise and the other from the signal
distribution), we have the following expression for the probability densities q0, q1 of x under s0 and s1, respectively:

s0 : q0(x)=p0(x1)p1(x2)

s1 : q1(x)=p1(x1)p0(x2).

The likelihood ratio for x is

lr(x)= q1(x)
q0(x)

= p0(x1)p1(x2)

p1(x1)p0(x2)
= lr(x2)

lr(x1)
.

According to the Neyman–Pearson lemma, the optimal test statistics is

lr(x2)� klr(x1)

and the minimum error test compares the likelihood ratios directly with k =1.

Exercise 4. According to Eq. (24.10),

PFA =
∞∫

k

q(lr | s0)dlr or
dPFA

dk
=−q(k | s0).

We also have k =∞ when PFA =0 and k =0 when PFA =1. Therefore,

PC =
1∫

0

PD(PFA)dPFA =
∞∫

0

PD(k)q(k | s0)dk.

Plugging in Eq. (24.11) for PD(k), we obtain

PC =
∞∫

0

⎛
⎝ ∞∫

k

q(lr | s1)dlr

⎞
⎠q(k | s0)dk. (28.16)

MATHEMATICS FOR NEUROSCIENTISTS



28.24 CHAPTER 25 465

To see that this expression is equal to the probability of correct performance in the 2-AFC task, first note that if the
likelihood ratio takes the value k when noise is present (s0), then correct performance will be achieved only if the
value of the likelihood ratio is larger than k for s1,

PC(k | s0)=
∞∫

k

q(lr | s1)dlr.

The probability of correct performance is obtained by multiplying by the probability density of k given s0, i.e., q(k | s0)

and integrating over all possible values of k, which yields Eq. (28.16).

Exercise 5. In the 2-AFC model the decision variable is ls − ln, where ls is the log-likelihood ratio in the case the
stimulus is present and ln in the case the noise is present. A correct decision will be made when ls − ln>0. Hence
PC =P(ls − ln>0). Since ls ∼N (d2/2,d2), ln ∼N (−d2/2,d2), and these two variables are assumed to be independent,
we have �l = ls − ln ∼N (d2,2d2) and

PC =
∞∫

0

1√
2π

1√
2d

e−(x−d2)2/2·2d2
dx.

With y = (x−d2)/
√

2d, x =0 ⇒y =−d/
√

2 and

PC =
∞∫

−d/
√

2

1√
2π

e−y2/2 dy =1−�
(
− d√

2

)
.

Exercise 6. For notational simplicity, set mn =mnull, ms =mpreferred , σn =σnull, and σs =σpreferred and let x denote the
firing rate. Then

pn(x)= 1√
2πσn

e−(x−mn)
2/2σ 2

n and ps(x)= 1√
2πσs

e−(x−ms)
2/2σ 2

s .

With Y = (X−mn)/σn we have Y ∼N (0,1) under n, and Y ∼N (μY ,σ 2
Y) under s, where μY =E[Y | s] = (ms −mn)/σn and

σ 2
Y =E[Y2 | s]−E[Y | s]2. We compute first

E[Y2 | s]=E

[
X2

σ 2
n

− 2X
σ 2

n
mn + m2

n

σ 2
n

| s

]

= 1
σ 2

n
E[X2 | s]− 2

σ 2
n

E[X | s]mn + m2
n

σ 2
n

= 1
σ 2

n
(σ 2

s +m2
s )−

2
σ 2

n
msmn + m2

n

σ 2
n

= σ 2
s

σ 2
n

+ (ms −mn)
2

σ 2
n

,

which implies

E[Y2 | s]−E[Y | s]2 = σ 2
s

σ 2
n

+ (ms −mn)
2

σ 2
n

− ms −mn)
2

σ 2
n

= σ 2
s

σ 2
n

.

We have σY>1 since σs>σn. Now

p(y |n)= 1√
2π

e−y2/2 and p(y | s)= 1√
2πσy

e−(y−μY)
2/2σ 2

Y
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so that

log
p(y | s)
p(y |n)

= log
exp(−(y−μY )

2/2σ 2
Y)/

√
2πσY

exp(−y2/2)/
√

2π

=− logσY + log exp(−(y−μY )
2/2σ 2

Y +y2)

=− logσY +
(

−(y−μY )
2

2σ 2
Y

+ y2

2

)

=− logσY + 1
2σ 2

Y

(
(σ 2

Y −1)y2 +2yμY −μ2
Y

)
.

We solve this equation for y, given a fixed value, lth, of the log-likelihood ratio. Since

lth =− logσY + 1

2σ 2
Y

(
(σ 2

Y −1)y2 +2yμY −μ2
Y

)

or, equivalently,

2σ 2
Y(lth + logσY)=

(
(σ 2

Y −1)y2 +2yμY −μ2
Y

)
we define ρ=2σ 2

Y(lth + logσY) which leads to the quadratic equation

(σ 2
Y −1)y2 +2μYy−μ2

Y −ρ=0.

With a=σ 2
Y −1, b=2μY , c =−μ2

Y −ρ we have

�=4μ2
Y −4(σ 2

Y −1)(−μ2
Y −ρ)

=4μ2
Y +4σ 2

Yμ
2
Y +4σ 2

Yρ−4μ2
Y −4ρ

=4(σ 2
Y(μ

2
Y +ρ)−ρ)>0, since σY>1.

This leads to

y± =
−μY ±

√
σ 2

Y(μ
2
Y +ρ)−ρ

σ 2
Y −1

.

28.25 CHAPTER 26

Exercise 1. With respect to the standard basis, {e1 e2}, of R2,

φ1 =
(

1
0

)
, φ2 =

(−1/2√
3/2

)
, φ3 =

( −1/2
−√

3/2

)
, and v =

(
v1
v2

)
.

Furthermore,

g1 = (
v1 v2

)(1
0

)
=v1,

g2 = (
v1 v2

)(−1/2√
3/2

)
=−1

2
v1 +

√
3

2
v2,

g3 = (
v1 v2

)( −1/2
−√

3/2

)
=−1

2
v1 −

√
3

2
v2
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and

3∑
i=1

giφi =v1

(
1
0

)
+
(

−1
2

v1 +
√

3
2

v2

)(
−1/2√

3/2

)
+
(

−1
2

v1 −
√

3
2

v2

)(
−1/2

−√
3/2

)

=
⎛
⎝v1 + 1

4 v1 −
√

3
4 v2 + 1

4 v1 +
√

3
4 v2

−
√

3
4 v1 + 3

4 v2 +
√

3
4 v1 + 3

4v2

⎞
⎠

= 3
2

(
v1
v2

)
.

Hence,

2
3

3∑
i=1

giφi =
(

v1
v2

)
=v.

To derive the general result, first note that

U=

⎛
⎜⎜⎜⎜⎝

1 0
cos 2π

m sin 2π
m

...
...

cos 2π(m−1)
m sin 2π(m−1)

m

⎞
⎟⎟⎟⎟⎠

which immediately implies that

UT U=
⎛
⎜⎝

∑m−1
j=0 cos2 2π j

m
∑m−1

j=0 cos 2π j
m sin 2π j

m

∑m−1
j=0 cos 2π j

m sin 2π j
m

∑m−1
j=0 cos2 2π j

m

⎞
⎟⎠.

Next, we show that

m−1∑
j=0

z2
j =

m−1∑
j=0

(e2π ij/m)2 =
m−1∑
j=0

e4π ij/m

=
m−1∑
j=0

wj , w=e4π i/m

= 1−wm

1−w
=0.

Taking the real and imaginary part of the left hand side, this implies

m−1∑
j=0

cos
4π j
m

=0 and
m−1∑
j=0

sin
4π j
m

=0. (28.17)

To derive the four identities, we start by computing

cos2α+ i sin2α= exp(2αi)= exp(αi)exp(αi)

= (cosα+ i sinα)(cosα+ i sinα)

= (cos2α−sin2α)+2i sinα cosα
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from which we immediately deduce the two identities on the left. Furthermore,

cos2α= cos2 α−sin2α+cos2α+sin2 α−1 =2 cos2 α−1 (28.18)

proving the top right identity. The bottom right identity follows from

sin2 α=1−cos2α=1− 1+cos2α
2

= 1−cos2α
2

. (28.19)

We may now plug the product formula for sin 2α in the second equality of Eq. (28.17) to find

0 =
m−1∑
j=0

sin
4π j
m

=2
m−1∑
j=0

sin
2π j
m

cos
2π j
m

.

Therefore the off-diagonal terms of UT U vanish. To compute the diagonal terms use Eq. (28.18),

m−1∑
j=0

cos2 2π j
m

=
m−1∑
j=0

1+cos4π j/m
2

= m
2

+ 1
2

m−1∑
j=0

cos
4π j
m

= m
2

,

where we used the first equality of Eq. (28.17). Finally, using Eq. (28.19)

m−1∑
j=0

sin2 2π j
m

=
m−1∑
j=0

1−cos4π j/m
2

= m
2

− 1
2

m−1∑
j=0

cos
4π j
m

= m
2

.

From this we conclude that the frame determined by {φj}, j =1, . . .m, is tight with λ1 =λ2 =m/2. Therefore, according
to Eq. (26.8)

v = 2
m

m∑
j=1

giφj .

Exercise 3.

E
[(
(v̆−E[v̆])+(E[v̆]−v)

)(
(v̆−E[v̆])+(E[v̆]−v)

)T]=E
[
(v̆−E[v̆])(v̆−E[v̆])T

]+(E[v̆]−v)(E[v̆]−v)T

+E
[
(E[v̆]−v)(v̆−E[v̆])T

]+E
[
(v̆−E[v̆])(E[v̆]−v)T

]
.

However,

E[(E[v̆]−v)(v̆−E[v̆])T] =E[v̆]E[v̆]T −E[v̆]E[v̆]T −vE[v̆]T +vE[v̆]T =0.

The last term can be shown to vanish in the same manner.

Exercise 4. Since E[n] =0 it follows that E[g] =Uv. Therefore, we immediately see that

E[v̆] =FE[g] = (UT C−1U)−1UTC−1Uv =v.
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Exercise 5.

E[s(v,g)] =
∫

s(v,g)p(g|v)dg

=
∫ (∇v log( fv(g))

)
p(g|v)dg

=
∫

1
fv(g)

∇v
(
fv(g)

)
p(g|v)dg but fv(g)=p(g|v) and so

=∇v

∫
p(g|v)dg=∇v1 =0.

Exercise 6.

0=∇v

∫
fv(g)(v̆ −v)T dg

=
∫

∇v
(

fv(g)(v̆ −v)T
)
dg

=
∫ (∇vfv(g)

)
(v̆−v)Tdg+

∫
fv(g)∇v

(
v̆−v)Tdg

=
∫

fv(g)
(∇v log( fv(g))

)
(v̆−v)T dg−

∫
fv(g)Idg

=E[s(v,g)(v̆ −v)T]−I,

where we have used ∇v log( fv(g))=
(∇vfv(g)

)
/fv(g) to derive the second to last equality.

Exercise 7. By assumption E[v̆−v] is equal to zero since the estimator v̆ is unbiased. In addition, according to
Exercise 5, E[s(v,g)] =0, which implies E[q] =0. For the covariance,

Q =E[qqT ] =E
[(

v̆−v
s(v,g)

)(
(v̆−v)T s(v,g)T

)]

=
(

E[(v̆−v)(v̆ −v)T] E[(v̆ −v)s(v,g)T ]
E[s(v,g)(v̆ −v)T ] E[s(v,g)s(v,g)T ]

)

=
(

C I
I J

)
,

where we have used the definition of J and Eq. (26.16). Straightforward matrix multiplication yields

AT QA=
(

I −J−1

0 I

)
Q =

(
C I
I J

)
.
(

I 0
−J−1 I

)

=
(

C−J−1 0
0 J

)
.

With x = (
x1 0

)T we have

0 ≤xTAT QAx =xT
1 (C−J−1)x1

and therefore

xT
1 J−1x1 ≤xT

1 Cx1.
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Exercise 8. First, according to Eq. (26.11),

s(v,g)=∇v log fv(g)=∇v

(
−m

2
log2π− 1

2
log |det C|− 1

2

(
(g−Uv)T C−1(g−Uv)

))

=−1
2
∇v

(
(g−Uv)T C−1(g−Uv)

)
.

Second, the matrix D =baT has elements Dij =biaj, i, j =1, . . . ,n. Therefore

trbaT = trD =
n∑

i=1

Dii =
n∑

i=1

biai =aT b.

From this we deduce that

(g−Uv)T C−1(g−Uv)= trC−1(g−Uv)(g−Uv)T

which immediately implies the third assertion. Next observe that

∂

∂vi
(g−Uv)(g−Uv)T =−((Ufi)(g−Uv)T +(g−Uv)(Ufi )

T)
so that

−1
2
∂

∂vi
trC−1(g−Uv)(g−Uv)T = 1

2
trC−1((Ufi)(g−Uv)T +(g−Uv)(Ufi )

T)
= 1

2
trC−1((Ufi)(g−Uv)T + 1

2
trC−1(g−Uv)(Ufi )

T)
= 1

2
(g−Uv)T C−1(Ufi)+ 1

2
(Ufi)

TC−1(g−Uv)

= (Ufi)
T C−1(g−Uv),

since C−1 is symmetric. This means that

s(v,g)i = fT
i UT C−1(g−Uv)

and therefore s(v,g)=UT C−1(g−Uv).

28.26 CHAPTER 27

Exercise 1. As there are 2N distinct s∈{−1,1}N there are at most 2N distinct values taken by the action of the ith row
of W onto the admissible s, i.e., by

N∑
j=1

Wijsj.

As a result, this set has a smallest strictly positive element. If we denote that number by 2bi and insert the associated
b into Eq. (27.40) then if (Ws)i>0 then in fact (Ws)i>bi and so Hop((Ws)i)=Hop�((Ws)i)i =1. Next, if (Ws)i ≤0 then
clearly (Ws)i<bi and so Hop((Ws)i)=Hop�((Ws)i)i =−1.

Exercise 4. w=0.27.

Exercise 6. See sotofreq.m.
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Exercise 9. If u(θ , t)=U(θ +�(t)) then

τut(θ , t)= τU′(θ+�(t))�′(t)=U′(θ+�(t))γ (t)
=W ′(θ+�(t)) � f (θ+�(t))γ (t)
= (w(θ+�(t), t)−W(θ+�(t))) � f (θ+�(t))
=w(θ+�(t), t) � σ(U(θ +�(t)))−W(θ+�(t)) � f (θ+�(t))
=w(θ , t) � σ(u(θ , t))−u(θ , t)

as claimed.
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discrete prolate spheroidal sequence,

284, 286
dissociation constant, 221

E
eigenfunction
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Schur decomposition, 233, 235
singular value decomposition, 225,

371
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second difference matrix, 69, 78, 81,
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LN model, 331
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M
MAP estimator, 373
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MATLAB

contributed
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rand_fig2.m, 254
rand_fig3.m, 255
rec_wn8.m, 339
ref_period2.m, 239
rgc_rf1.m, 310
Rinxs.m, 77
scene_2d.m, 294
sdpop.m, 351
soto.m, 397, 398

MATHEMATICS FOR NEUROSCIENTISTS



INDEX 485

sotofreq.m, 406
spikepca.m, 227, 228
ss2e.m, 17
sse.m, 16
ssEI.m, 17
stdobs_plot.m, 292
stE.m, 38, 44–46
stE2cab.m, 124, 125, 136
stE2cabthresh.m, 137
stE2d.m, 46
steady.m, 71
stEcab.m, 137
stEcabgNadriver.m, 124, 136
stEcabnon.m, 127
stEcabQandA.m, 131
stEcabResdrive.m, 134
stEcabsdriver.m, 137
stEcabspine.m, 130
stEcabthreshloc.m, 121
stEdemo.m, 38, 39
stEdemo2.m, 39
stEerr.m, 40
stEfork.m, 134
stEforksyn.m, 135
stEforksyndrive.m, 135
stEforksyngain.m, 135
stEfreq.m, 44
stEKstimdrive.m, 45
stEperdrive.m, 54
stEqa.m, 53, 65
stEqafreq.m, 53
stEqah.m, 60
stEQcab.m, 131
stEQcabBT.m, 232, 235
stEQcabBT2.m, 235
stErefracdrive.m, 44
stEtreesyn.m, 135, 136
stmolidemo.m, 41, 44
stmolierr.m, 42
stmolisyn.m, 42
swcconverter.m, 135
temp_space_rfs.m, 319
threecell.m, 385, 387, 404
threecellI.m, 387
threecellIrast.m, 387
threecellrast.m, 387
thresh_fatigue.m, 146
thvsvth.m, 78
trapcab.m, 72
trapcabspine.m, 81
trapcabsyn.m, 79
trapcabsyninv.m, 97
trapfork.m, 108, 117
trapforkd.m, 117
trapforksyn.m, 108, 116
trapforksynclamp.m, 116
trapforksyngain.m, 109
trapsyn.m, 29, 30
trapsyndrive.m, 15
treeplot.m, 135, 139

ts_rfs.m, 325
tuning_rec.m, 369
twocell.m, 385
twostatechan.m, 269
wang_mod.m, 150
wang_ss.m, 150

function
chol, 172
circshift, 90
colormap, 326
conv, 324, 333
cpsd, 287
cumsum, 173
diag, 86
eig, 56, 70
fft, 90
fftfilt, 341
fftshift, 91
fsolve, 37, 61, 126
gamrnd, 266
hist, 266
ifft, 91, 333, 340
lsqcurvefit, 31
lu, 61, 72
lyapchol, 232
mesh, 85
meshc, 326
meshgrid, 85
mscohere, 288
pinv, 234
pwelch, 288, 298, 341
round, 72
speye, 72
spline, 298
sprand, 387
svd, 225
tfestimate, 333, 340
view, 326

maximum likelihood, 372, 374
mean squared coherence, 280, 297
method of failures, 180
Mexican hat, 303–305
Michaelis constant, 211
minimum error, 346, 348, 360, 363
miss, 344
mod, 31
moment, 23, 65, 82, 354
Morris Lecar model, 64, 397
motion energy model, 321
MT, 301, 321, 362–364
multi-taper method, 286
myelin, 136

N
Naka–Rushton non-linearity, 309
Nernst Potential, 11
Nernst–Planck equation, 11, 195
neuromuscular junction, 159, 175–178,

180–183, 190

Newton’s Method, 61
Neyman–Pearson test, 346, 360, 363
nodes of Ranvier, 137, 138
nullcline, 46
Nyquist

frequency, 90, 95
rate, 91

O
octave, 315
Ohm’s Law, 11
Oja’s Rule, 233
Ornstein–Uhlenbeck process, 271, 272,

277, 280, 285, 287
oscillations, 149
overcomplete representation, 369

P
Parseval’s Identity, 282
parvalbumin, 198, 221
patch–clamp technique, 181, 267, 275
periodogram, 282
phase plane, 46
phosphatase, 211, 212, 220
phosphorylation, 209
point process, 254
Poisson process

doubly stochastic, 265
homogeneous, 168, 240, 246, 256, 260
inhomogeneous, 257

posterior probability, 161
power spectrum, 259, 279, 328, 338

natural scenes, 293, 308
numerical estimate, 282

psychometric function, 360
Purkinje cell, 3, 104, 125, 182, 186

Q
quadrature pair, 320, 323
quantal content, 178, 180, 181
quasi–active

cable, 130, 230
cell, 50

R
radiance, 293
random variable

binomial, 157, 178
definition, 156
degenerate, 165
exponential, 167, 169, 172
gamma, 167, 241
Gaussian, 159, 178
independence, 157
Poisson, 159, 178

randomized decision rule, 345, 348
rapid buffer approximation, 222
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receptive field, 149, 301, 335, 337
non-separable, 318
separable, 307

Receptor
AMPA, 14, 127
GABA, 14
IP3, 204
metabotropic glutamate, 176, 204,

217
NMDA, 127
ryanodine, 202

refractory period, 44
Reichardt correlation model, 321
releasable pool

rapid, 187, 214–216
slow, 187, 215

renewal process, 240, 246–248, 257,
263, 265

resonance, 53, 57, 131
resonant, 219
retinal ganglion cell, 300, 301, 311, 312,

358, 364, 365
reverse–correlation, 335
ROC curve, 345, 348, 359, 360

S
sample

mean, 281
variance, 287

sarco-endoplasmic reticulum calcium
ATPase, 203

Schwarz inequality, 5, 234

score
function, 374

second difference matrix, 200
signal-to-noise ratio, 338, 340, 346,

349, 350
simple cell, 311, 318, 320–323, 325,

336, 337
siz, spike initiation zone, 126
SNARE, 213
space clamp, 34, 132
space constant, 68, 71
spike time-dependent plasticity, 389,

403
spine, 79
standard error of the mean, 281
stationarity, 246, 247, 252, 253, 256,

259, 262, 327, 331
superior colliculus, 367, 375
synaptic

depression, 184
facilitation, 183, 185, 188, 190
plasticity, 209
potentiation, 183

synaptotagmin, 213

T
tapered cable equation, 86
thalamic relay neuron, 147, 152, 300,

307–309, 311, 322
threshold fatigue, 145, 245, 246
time constant

channel, 270

effective, 16
exponential filter, 339
membrane, 13, 21, 70

Time Marching Scheme
Backward Euler, 28
Forward Euler, 27
Hybrid Euler, 41
Staggered Euler, 38
Trapezoid, 28

time rescaling, 262, 266
topographic map, 438

V
V1, 301, 312, 323, 362
voltage clamp, 34, 116

W
wavelets, 322
weakly electric fish, 3, 149, 246,

338–340, 352, 353
Weber’s law, 296
Weierstrass M-test, 84
white noise, 253, 288, 333, 336
Wiener process, 252, 259, 263
Wiener–Khinchin theorem, 260, 262, 282
Wiener–Kolmogorov filter, 340
window

data, 284
spectral, 285

wrap-around order, 91, 309
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