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Preface

The 15th European Conference on Mathematics for Industry was held in the
agreeable surroundings of University College London, just 5 minutes walk
from the British Museum in the heart of London, over the five warm, sunny
days from 30 June to 4 July 2008. Participants from all over the world met
with the common aim of reinforcing the role of mathematics as an overarching
resource for industry and business.

The conference attracted over 300 participants from 30 countries, most of
them participating with either a contributed talk, a minisymposium presen-
tation or a plenary lecture. ‘Mathematics in Industry’ was interpreted in its
widest sense as can be seen from the range of applications and techniques
described in this volume. We mention just two examples. The Alan Tayler
Lecture was given by Mario Primicerio on a problem arising from moving oil
through pipelines when temperature variations affect the shearing properties
of wax and thus modify the flow. The Wacker Prize winner, Master’s student
Lauri Harhanen from the Helsinki University of Technology, showed how a
novel piece of mathematics allowed new software to capture real-time images
of teeth from the data supplied by present day dental machinery (see ECMI
Newsletter 44).

The meeting was attended by leading figures from government, busi-
ness and science who all shared the same aim – to promote the application
of innovative mathematics to industry, and identify industrial sectors that
offer the most exciting opportunities for mathematicians to provide new
insight and new ideas. The finance day in the Lloyd’s building provided an
alternative venue and different talk themes. The panel discussions and the
conference dinner generated formal and informal interaction and wide ranging
discussions.

The organizing committee is grateful to all those who helped to make
the meeting so successful. We thank Professor Frank Smith and University
College London for the provision of the venue, Lord Hunt and Arren Ariel
of the Lighthill Institute of Mathematical Sciences, and David Youdan and
Amy Marsh of the Institute of Mathematics and its Applications for all their
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effort in organizing the smooth running of the conference. We are very grateful
to all our sponsors for their financial support (see: www.ecmi2008.org), and,
in particular, Dr Robert Leese and the KTN for Industrial Mathematics for
their help with the design work. The editors Alistair Fitt, John Norbury,
Hilary Ockendon and Eddie Wilson thank Anthony Lock for his invaluable
help with the publishing of these Proceedings.

Finally, a big thank you to all our participants who share the ECMI
vision of using mathematics to make a better future in Europe – we hope
this publication will help in the process of achieving this goal.

Oxford, John Norbury (Chair)
April 2009 On behalf of the Organizing Committee
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and R.J. Yáñez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Asymptotic Analysis of the Zeros of Hermite Polynomials
Diego Dominici . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



VIII Contents

The Error Function in the Study of Singularly Perturbed
Convection-Diffusion Problems with Discontinuous
Boundary Data
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Summary. Mechanical modeling of living tissues is currently one of the most crucial
challenges in research for mechanical engineers and mathematicians. Mechanics is a
key factor to understanding the mechanisms that regulate many biological processes,
such as mitosis, migration, and differentiation. This work aims to present the most
crucial aspects, in the authors’ opinion, to approach this challenge.

1 Introduction

“Classical science is a conversation between theory and experiment” [1]. How-
ever, nowadays, computer simulation has been recognized as a key tool for
scientific research. Some of the most useful applications of computational mod-
elling belong to Biology [2], and specifically to modelling living tissues with
a structural function, supporting and transferring loads and moving other
organs [3].

In fact, Mechanics has a strong influence on many biological processes
characteristics of living tissues, such as, regulation of different biological
processes (homeostasis), morphological and structural adaptation or tissue
damage and repair, and it is responsible directly or indirectly of many dis-
eases such as scoliosis, osteoporosis, malaria, etc. This fact has motivated that
a wide number of research works have been recently developed with the pur-
pose of modelling the active and passive behaviour of living tissues. Modelling
the functional mechanical behaviour of living tissues has historically followed
two approaches: (1) considering living tissues as inert structural materials,
only dealing with Mechanics and (2) considering the biological reaction of
living tissues to mechanical strains/stresses and the associated changes in
microstructure and therefore in the mechanical behaviour itself.

The first field corresponds to classical Biomechanics and applies the prin-
ciples of Mechanics to predict the mechanical behaviour (movement, strains
and stresses) of a tissue or an organ, taking into account the acting loads,
its microstructure and the external boundary conditions. The second one,
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known as Mechanobiology, tries to predict the evolution of the microstruc-
ture and biological constitution of a tissue or an organ as consequence of the
mechanical environment.

In both cases, however, computational modelling presents strong difficul-
ties that are necessary to keep in mind:

• We have to deal with very complex geometries that are sometimes evo-
lutive. Therefore, computational geometry, medical imaging and data
visualization are complementary tools.

• Most tissues involve large displacements and strains and internal mate-
rial constraints which require sophisticated computational and mechanical
models.

• Loads, boundary conditions and interactions are usually not known and
very complex, which imply the need of accurate and complex experimental
protocols to estimate them.

• Living tissues are regulated by multiple biophysical stimuli, thus, cou-
pled fields (Multiphasic Mechanics, Biology, Chemistry) with very different
time scales have to be modeled.

• Living tissues are hierarchically structurally composed materials, with
their macroscopic properties depending on the different spatial scales
involved. Therefore, a multiscale analysis is usually required.

• In contrast to usual engineering materials, living tissues have been opti-
mally designed by the blind force of natural selection and show the
remarkable ability to adapt not only their material properties and geom-
etry, but also their functionality to environmental changes. Consequently,
living tissues are evolving materials.

• Available experimental data present a strong variability that compli-
cates the estimation of the parameters of the model, sometimes requiring
stochastic approaches.

2 Biomechanical Tissue Modelling

Traditionally, Biomechanics in tissue modelling has been divided into two
main fields of application due to the main characteristics of each tissue: hard
and soft tissues.

On one hand, hard tissues typically undergo small deformations and
behave nearly elastically in the range of interest. The first rigorous mathe-
matical models for biological tissues that were introduced in the mid-1970s
mainly addressed hard tissues such as bone [4].

The first modelling works of bone were elastic. For example, several authors
try to model its mechanical behaviour through a mixture rule: Voigt’s model
[5] or Reuss’s model [6]. Wagner and Weiner [7] modelled bone consider-
ing a composed material defined by its microstructure. Several authors [8, 9]
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proposed experimental correlations that define the mechanical properties
assuming isotropic behaviour as a function of the apparent density. However,
bone is a porous and anisotropic material. Therefore, additional, correlations
have been proposed including the directional influence of the microstructure
through the so-called “fabric tensor” [10–14]. More recently, poroelastic mod-
els have been proposed to model the complex behaviour of bone and the
interaction with the fluid that flows within its pores, lacunae and canaliculi
[15–19].

On the other hand, biomechanics models for soft tissues needs a more
sophisticated theory involving geometrically non-linear approaches [20, 21].
Soft tissues have a non-linear stress-strain behaviour, and many of them
are viscoelastic and highly incompressible. Most models consider hyperelas-
tic anisotropic theories with different types of strain energy density functions
(polynomial, exponential, stochastically-based). Polyconvexity considerations;
internal constraints (incompressibility); linear and strain-dependent viscoelas-
ticity; residual stresses; damage; and in some case (muscular tissue) coupled
electro-mechanical active behaviour are only a few of the topics addressed
when dealing with the structural constitutive behaviour of soft tissues [20–25].

3 Mechanobiological Tissue Modelling

The main aim of mechanobiological models is to evaluate how a mechanical
stimulus can regulate biological mechanisms, such as, remodelling, healing,
etc. Therefore, these models allow improving our understanding of how tissues
react to changes in the mechanical environment. In this sense, there are two
main approaches: phenomenological and mechanistic.

Phenomenological models are able to predict the long-term behaviour
of a biological tissue under physiological and pathological loads by estab-
lishing direct relations between external causes (mechanical stimuli) and
external effects (internal microstructure or morphology) without considering
the intermediate actors as they are the cells.

Mechanistic models, on the other hand, try to unravel the mechan-
otransduction mechanisms that regulate tissue reactions, such as: how tissues
interact with cells; how cells sense strain (mechanosensing); how cells express
biochemical substances after sensing strain (mechanotransduction); and how
individual cells communicate with each other (signalling).

3.1 Phenomenological-Based Approaches

Phenomenological models are particularly useful to predict the adaptive tissue
changes regulated by mechanical factors without information of how cells actu-
ally do it. In this sense, these models have been used to solve some important
engineering problems like improving implant design [26,27], clinical therapies
evaluation [28] or tissue engineering applications [29].
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3.2 Mechanistic-Based Approaches

Mechanistic models try to incorporate the effect that cells exert on the evo-
lution of the microstructure, accounting for processes like cell proliferation,
differentiation, extracellular matrix production, etc. Although very difficult
to validate, they are much more bio-physical and allow checking different
hypotheses and design new experiments useful for a better understanding
of the specific problem analyzed. Multiphasic formulations are usually used,
including complex interactions between Mechanics, cells and volume growth
in the framework of open systems [30,31].

As for as the authors know, the most general mechanistic model that
considers coupled equations between multiphasic and multicellular tissue mix-
tures in a continuum setting has been proposed by Doblare and Garćıa-Aznar
[32]. This model incorporates different and crucial factors to achieve this goal:
multiple species and different types of cells; sources, sinks and diffusion of
both mass and cells; possible energy transfer between the different species and
cells; tissue growth, differentiation, remodeling and damage; cell proliferation,
migration, differentiation and necrosis.

This formulation has been particularized to different biological processes,
such as, bone tissue adaptation [33] (see Fig. 1), bone healing [34, 35] (see
Fig. 2) or cell migration [36].

Fig. 1. Numerical simulation of the long-term adaptation process of a 2D model of
a femur after implantation. Evolution of the bone volume fraction distribution for
different biological factors and for different periods of time: (a) 330, (b) 660 and (c)
990 days [32]
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Fig. 2. Cellular distributions at different times of the healing process [32]: numerical
results and histological sections (histologies taken from van der Meulen, Cornell
University, NY; Sarmiento and Russell http://www.hwbf.org/ota/bfc/index.htm,
2002)

4 Conclusions and Further Work

Computational models including multi-scale and multi-physics approaches are
a promising tool to better understand complex biophysical processes and
are also essential in the growing field of quantitative and “evidence-based”
Medicine. In fact, this kind of models allows exploring mechanotransduction at
the cellular level and carry the information all the way up to the organ scale [4].
While the cellular scale can provide new insight into the fundamental mech-
anisms and help to explain signalling pathways (closer to biologists), large
scale are essential to successfully address clinical and engineering problems.

Although these numerical techniques do already exists, their computa-
tional cost is still very high and the underlying biophysics is still not fully
understood, so we are not able yet to fully analyze with sufficient confidence
and accuracy a tissue at all the different scales incorporating all the relevant
biophysical stimuli.
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Summary. The problem of reconstructing images from measurements at the bound-
ary of a domain belongs to the class of inverse problems. Although in different
applications the techniques used to create the images work under different physical
principles and map different physical parameters, they all share similar mathematical
foundations. I will present here two mathematical approaches for image reconstruc-
tion. The first one is used to solve the so called history matching problem in the
oil industry, and the second one is specially designed for the application of optical
molecular imaging in biomedicine.

1 Introduction

Imaging is a broad field which covers all aspects of the analysis, modification,
compression, visualization, and generation of images. There are at least two
major areas in imaging science in which applied mathematics has a strong
impact: image processing, and image reconstruction. In image processing the
input is a (digital) image such as a photograph, while in image reconstruction
the input is the data gathered on the boundary of an object. In the latter
case, the data is limited, and its poor information content is not enough to
generate an image to start with.

Image processing techniques apply numerical algorithms to either improve
a given image or to extract information about the image [1]. Image seg-
mentation is typically used for the latter purpose. It refers to the process
of partitioning an image into multiple regions (locating objects and bound-
aries) in order to simplify its representation for its further analysis. Each
region shares the same properties or characteristics such as color, intensity or
texture. Different techniques have been applied for image segmentation. We
mention here, graph partitioning methods in which the image is modelled as a
graph; level-set methods in which an initial shape is evolved towards the object
boundary; and statistical methods in which we view a region of an image as
one realization of a random process (probability distribution functions and
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histograms are used to estimate the characteristics of the regions). We will
not discuss the mathematics of image processing here.

On the other hand, image reconstruction refers to the techniques used to
create an image of the interior of a body from data collected on its bound-
ary [2]. Mathematically, an image reconstruction can be seen as the solution
of an inverse problem in which the cause is inferred from the effect. We will
show here two different applications in the oil and medical industries. The
first application is the so called history matching problem where we want to
estimate the unknown properties of a reservoir, such as its porosity and per-
meability, from the production data. We will apply to this problem an adjoint
technique. The second application is the inverse fluorescent source problem
in optical molecular imaging. We obtain here explicit solutions for a point
source and a voxel source from which we estimate the location, size and total
strength of a general source.

The goal of this paper is to illustrate the role of the imaging techniques in
these applications. In the oil industry, for example, they improve our ability
to design a good management strategy to increase the productivity and life of
a reservoir. They help to better understand the reservoir behavior so that its
performance can be predicted and controlled with higher reliability. On the
other hand, in the biomedical application of optical molecular imaging they
are used to monitor cellular and structural changes associated with predisease
states such as dysplastic progression.

2 Reservoir Characterization

Oil fields typically extend over large areas, possibly several hundred kilome-
ters across and full exploitation entails multiple wells scattered across the
area. Initially, the natural differential pressure displaces hydrocarbons from
the reservoir, into the wellbore and up to the surface. This is the primary
recovery stage. As oil production takes place, the reservoir pressure declines,
and eventually, the primary recovery stage reaches its limit. Typically, only a
small fraction, around the 15% of the initial oil in place is produced during
the primary recovery stage. During the second stage, water is injected into
the production zone to sweep the oil from the reservoir. The secondary recov-
ery stage reaches its limit when the injected fluid is produced in considerable
amounts at the production wells and the production is no longer economical.
Around 40% of the field’s oil is produced during this stage. The third stage
of oil production uses sophisticated techniques that alter the original proper-
ties of the oil. Its purpose is to improve oil displacement or fluid flow in the
reservoir. It allows another 10% of the filed’s oil to be recovered.

We consider here the case of ‘secondary recovery’ where water is injected
through several injection wells conveniently located in order to enhance oil
production. Potential problems associated with waterflood techniques include
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inefficient recovery due to the unknown variable permeability, that is due to
the impact of the unknown geological heterogeneity on flow during oil recovery.
Therefore, there is a need to estimate the permeability distribution inside the
reservoir in order to optimize oil production. Proper characterization of the
reservoir heterogeneity helps to better understand the reservoir behavior so
its performance can be predicted and controlled with higher reliability.

2.1 The Direct Problem: Governing Equations

Secondary oil recovery techniques involve the simultaneous flow of up to three
fluid phases. It requires the solution of the equations of a multiphase flow in a
porous medium. We will consider here only water and oil, and we will neglect
gas. We will also neglect the effects of gravity and capillary pressure. For
describing the flow dynamics in the reservoir Ω ⊂ R

n (n = 2, 3), we use a
simplified Black-Oil model [3]:

−∇ ·
[
T∇p

]
= Q, in Ω × [0, tf ], (1)

φ
∂Sw
∂t
−∇ · [Tw∇p

]
= Qw, in Ω × [0, tf ], (2)

where p(x, t) and Sw(x, t) are the unknowns of the problem which represent
the pressure and the water saturation at position x and time t, respectively.
The water saturation Sw measures the volume fraction of water. φ(x) is the
porosity, and T and Tw are the transmissibilities, which are known func-
tions which depend linearly on the permeability K, the parameter to be
reconstructed, and nonlinearly on Sw,

Tw = K(x)
Krw(Sw)

μw
, To = K(x)

Kro(Sw)
μo

, T = Tw + To. (3)
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Krw(Sw), Kro(Sw), μw and μo denote the relative permeabilities and the
viscosities of each phase, respectively. Hereafter, the subscript ‘w’ stands for
‘water’, while the subscript ‘o’ stands for ‘oil’. Q(x, t) and Qw(x, t) define the
total flow and the water flow at the wells, respectively. They are given by

Q = c T

Ni∑
j=1

(p(i)
wbj
− p)δ(x− x(i)

j ) + c T

Np∑
j=1

(p(p)
wbj
− p)δ(x− x(p)

j ), (4)

Qw = c T

Ni∑
j=1

(p(i)
wbj
− p)δ(x− x(i)

j ) + c Tw

Np∑
j=1

(p(p)
wbj
− p)δ(x− x(p)

j ), (5)

where x(i)
j , j = 1, . . . , Ni, denote the locations of the Ni injector wells, x(p)

j ,

j = 1, . . . , Np, denote the locations of the Np production wells, and p(i)
wbj

, p(p)
wbj

are the imposed well bore pressures at the Ni injector wells and at the Np
production wells, respectively. Here, c is a constant that depends on the well
model. Since p(i)

wbj
(p(p)
wbj

) are larger (smaller) than the reservoir pressure at the
injector (production) wells, Q and Qw are positive (negative) at the injector
(production) wells.

Equation (2) is the conservation law for water in a porous medium and (1)
is obtained by combining the conservation laws for water and oil in order to
eliminate the time derivative term. It is assumed that the flow obeys Darcy’s
law (ul(x, t) = −K(x)Krl(Sw)

μl
∇p(x, t), l = w, o) which defines the velocity of

each phase in the medium. Equations (1) and (2) are solved with the following
initial and boundary conditions:

Sw(x, 0) = S0
w(x) in Ω, (6)

p(x, 0) = p0(x) in Ω, (7)
∇p · ν = 0 on ∂Ω, (8)

where ν is the outward unit normal to ∂Ω. The boundary condition (8) implies
no flux across the boundary.

Equations (1)–(8) define the direct problem for the dynamic production
history at the extraction wells. It refers to the resolution of the equations
describing the flow within the reservoir assuming that the properties of the
porous media, defined by K(x) and φ(x), are known. The properties of the
fluids are defined by μw, μo, Krw(Sw), and Kro(Sw). The well bore pressures
p
(i,p)
wbj

are known functions of time at the well’s positions.
The left side of Fig. 1 shows a five-spot layout with an injector well (o)

in the center (location x(i)
1 ) and four production wells (x) at the corners of

a two-dimensional reservoir (locations x(p)
j , j = 1 . . . 4, being j = 1 the well

in the upper left corner and numbered in the clockwise direction). Also shown
is the real permeability distribution in milli-Darcys (mD). The water injected
at the injection well displaces the oil in the reservoir towards the production
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wells. Time resolution of the flow equations provides the time evolution of
pressure and flow at each point of the reservoir. Of particular interest is the
oil and water flow rate at each production well. The right hand side of Fig. 1
shows the time history of water flow rate (Qw) at each well obtained by solving
the direct problem. Notice that water arrival occurs first at well four since it
is surrounded by a region of high permeability.

2.2 The Inverse Problem: The Adjoint Method

In the inverse problem we assume that the water flow rate at each well is
known but the permeability distribution is unknown. Hence, the unknown of
interest in the inverse problem is the permeability K that we want to estimate
from the water production rates. We will start with an initial permeability
guess (typically some constant distribution) and will iteratively modify it until
the actual water production rate at each well is matched by the simulator.

Adjoint techniques are particularly useful in large scale inverse problems
where relatively few independent experiments can be performed for gath-
ering data but many parameters need to be reconstructed. Since typically
only one experiment is performed in history matching due to the simulta-
neous production process, the adjoint technique is therefore much faster in
this application. Adjoint techniques have also been applied with great suc-
cess in other applications of geophysical and medical imaging (see [2], and
references therein). Other techniques have also been applied to the history
matching problem. Among them, we mention shape-based reconstructions
that use level-set techniques [4, 5].

The forward operator described in the previous section can be written in
abstract form as

M : P −→ D, M [K] = Qw[K]|Ω+×[0,tf ], (9)

where Qw is obtained by solving the direct problem for a given permeability
distribution K (1)–(8). Here, we denote the space of permeability distributions
K by P , the data space by D, and the set of measurement locations (‘well-
locations’) by Ω+ := {x(p)

1 ,x(p)
2 , . . . ,x(p)

Np
}. At each of these positions, the

water flow is measured during a time 0 ≤ t ≤ tf , such that the data space D
is given by D = (L2([0, tf ]))Np .

For some guess K of the permeability, and given the measured data G̃
(water flow rate) at these production wells, we also define the residual operator

R[K] = M [K]− G̃. (10)

Equation (10) describes the mismatch between the physically measured data
and the data corresponding to a guess K. In the inverse problem, we ideally
want to find a permeability distribution K̂ in P such that

R[K̂] = 0. (11)
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This equation has a solution in the situation where the data G̃ are in the range
of M . Most likely this is not the case if we use real data, so we generalize our
criterion for a solution defining the least squares cost functional

J (K) =
1
2
‖R(K)‖2, (12)

and searching for a minimizer of this cost functional. This cost functional
defines the differences between the predicted model (as described by K) and
the actual observed measurements in an L2 norm sense.

In order to find an ‘update’ δK for our permeability K we linearize (in a
Newton-type fashion) the nonlinear operator R (assuming that this linearized
operator R′[K] exists and is well-defined) and write

R[K + δK] = R[K] +R′[K]δK + 0(||δK||2), (13)

where the linearized operator R′[K] represents the Frechet derivative of R
at K, which is closely related to the ‘sensitivity functions’ of the parameter
profile with respect to the data. Using (13) we want to look for a correction
δK such that R[K + δK] = 0. Neglecting terms of order 0(||δK||2) in (13),
this amounts to solving

R′[K]δK = −R[K]. (14)

A classical solution to the ill-posed linear inverse problem (14) is the
minimum-norm solution

δKMN = −R′[K]∗ (R′[K]R′[K]∗)−1 R[K], (15)

where R′[K]∗ represents the adjoint operator of R′[K]. In our application, the
operator C = (R′[K]R′[K]∗)−1 is ill-conditioned and expensive to calculate, so
it will be replaced by the identity operator I (note that C ‘just’ maps vectors
from the data space back into the data space, so it can be considered as a
‘filtering operator’). Therefore, we end up with simply applying the adjoint
operator R′[K]∗ to the residuals R for calculating the update direction

δK = −R′[K]∗R[K]. (16)

Note that the operator R′[K]∗ maps the residuals back into the parameter
space for obtaining the update. Therefore, in order to determine δK in each
step from (16), we will need an efficient method for applying R′[K]∗ to a given
vector ρ of the data space. Next, we show how to compute it (the details can
be found in [6]).

Let us consider a small perturbation δK in the permeability distribution K
that leads to small perturbations W and q in the saturation and the pressure,
respectively. Here we assume that the pressure remains nearly unchanged
so that ∇q is negligible. This is so because the pressure is a smooth function
compared to the saturation. Using a heuristic approach to derive an expression
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for R′, we introduce K + δK and Sw +W in (2) and we neglect second order
terms. Then, W solves the initial value problem

φ
∂W

∂t
−∇ · [∂Tw

∂Sw
W∇p]− ∂Qw

∂Sw
W =

δK

K
Qw +∇ · [δK

K
Tw∇p

]
in Ω (17)

W (x, 0) = 0 in Ω (18)

where Sw and p are the solutions of (1)–(8). From the value of W we derive
the linearized response of the data to a perturbation δK in the permeability
distribution, which is given by

R′[K]δK =
∂Qw
∂Sw

W

∣∣∣∣
Ω+×[0,tf ]

. (19)

The adjoint operator R′[K]∗ is defined by

〈R′[K]δK, ρ〉
D

= 〈δK,R′[K]∗ρ〉
P
, (20)

where 〈 , 〉
D

and 〈 , 〉
P

denote the inner products in the data and parameter
spaces, respectively. We assume that the inner products in the parameter
space P and in the data space D are given by

〈f, g〉
D

=
Np∑
j=1

∫ tf

0

fj gj dt ; 〈A,B〉
P

=
∫

Ω

A B dx , (21)

where fj = f(xpj , t) and gj = g(xpj , t), j = 1, . . . , Np, are time functions
defined at the production well positions xpj . The following adjoint form of
the linearized residual operator has been derived in [6].

Let ρ ∈ D be an arbitrary function in the data space. Then R′[K]∗ρ is
given by

R′[K]∗ρ =
∫ tf

0

Tw
K
∇p∇z dt (22)

where z is the solution of the adjoint equation

− φ∂z
∂t

+
∂Tw
∂Sw
∇p∇z − (z −

Np∑
j=1

ρ δ(x− x(p)
j ))

∂Qw
∂Sw

= 0 in Ω (23)

z(x, tf ) = 0 in Ω, (24)

and Sw and p are the solutions of (1)–(8).
Note that, as typical for the adjoint scheme, the system (23)–(24) phys-

ically models some kind of backpropagation with respect to the linearized
forward model. The residuals are applied at the production wells as artificial
injectors, and propagated backward in time (notice the minus sign in front of
the time derivative in (23) and the prescribed final value conditions in (24),
compared to a plus sign in (17) and initial values in (18)) and in space by the
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Fig. 2. Example of a reconstructed permeability distribution. Left image: reference
profile. Center image: initial profile. Right image: reconstructed profile

system (23)–(24). Equation (22) uses these backpropagated fields to extract
an update direction by combining forward and adjoint fields at each location.

In Fig. 2 we show an example of a reconstruction applying the adjoint
method. The reference permeability distribution is shown in the left image.
The well configuration used in this example is the same shown in Fig. 1.
There is one injector well at the center of 600 × 600 m2 reservoir and four
producer wells at the corners. The reservoir is discretized by a 25 × 25 uni-
form spatial grid. Our initial model, shown in the center image, consists of
a uniform permeability distribution of 1,040 mD. The estimated permeabil-
ity distribution at the end of the 20th iteration is shown in the right image.
We can observe a very good agreement between the reference and estimated
permeability distributions.

3 Optical Molecular Imaging

Optical molecular imaging is showing great promise for monitoring several
cellular and structural changes associated with predisease states such as dys-
plastic progression [7–10]. In this application, near-infrared fluorescent probes
are used to mark specific cellular targets within the tissue that re-emit light
upon excitation by an external light source. These markers act as internal
sources that can be imaged from measurements of the light intensity at the
tissue surface. The goal of determining the internal fluorescent source dis-
tribution from boundary measurements can be stated as an inverse source
problem.

Several challenges arise in optical molecular imaging due to the mul-
tiple scattering of light in tissues. Physically, multiple scattering causes
severe image blurring and, therefore, one cannot make use of direct images.
Rather, one must develop methods to reconstruct images from scattered light
measurements.

To model diagnostic measurements we use the radiative transport equa-
tion. It describes accurately light propagation in tissues [11–13]. To study
the inverse fluorescent source problem we use the integral formulation of
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this equation in three dimensions. Using the point source and voxel source
solutions, we estimate the location, size and total strength of a general
source [14].

3.1 The Direct Problem: The Radiative Transfer Theory

Modeling fluorescence in tissues must account for the following stages: (1)
propagation of excitation light from the tissue’s surface into its interior, (2)
absorption by fluorophores, (3) conversion to fluorescence, (4) emission of
the fluorescent light from the fluorophores, and (5) propagation of that light
back up to the tissue surface. We assume here continuous illumination and
that the absorption and emission spectra of the fluorescent molecules do not
overlap. Hence, the excitation and emission processes take place at different
wavelengths denoted by λx and λm > λx, respectively. Accordingly, the for-
ward model describing the transport of excitation and emission light can be
written as:

Ω · ∇Ix + (μxa + μx→m
a )Ix − μxsLIx = 0, (25)

Ω · ∇Im + μma Im − μms LIm = Sx→m. (26)

In these equations, Ix (Im) is the specific intensity for the exciting (emission)
light at wavelength λx (λm). They depend on direction Ω ∈ S

2 (S2 denotes
the unit sphere) and position r ∈ R

3. At the excited (emission) wavelength
λx (λm), the absorption and scattering coefficients are denoted by μxa and μxs
(μma and μms ), respectively. The absorption by fluorophores in (25) is given by
the fluorophore absorption coefficient, μx→m

a . The isotropic source term

Sx→m(r) = ηUx(r)μx→m
a (r) (27)

is the product of the quantum efficiency η of the fluorophore, the average
excited intensity

Ux(r) =
1

4π

∫

S2
Ix(Ω, r) d Ω, (28)

and the fluorophore absorption coefficient μx→m
a . This average excited inten-

sity excites the fluorophore molecules from their ground state to an excited
state. The quantum efficiency η quantifies the conversion to fluorescence.

The scattering operations LIx,m in (25) and (26) are defined as

LIx,m(Ω, r) = −Ix,m(Ω, r) +
∫

S2
fx,m(Ω ·Ω′)Ix,m(Ω′, r) d Ω′. (29)

The scattering phase functions fx,m in (29) give the fraction of light scattered
in direction Ω due to light incident in direction Ω′ at wavelengths λx,m,
respectively.
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3.2 The Inverse Problem: A Semi-Analytical Method

The objective in optical molecular imaging is to reconstruct the fluorescent
source Sx→m(r) in the domain D using measured data taken from the bound-
ary surface ∂D. Since the coupling between (25) and (26) is only through
the source term in (26), and the goal of our inverse problem is precisely to
reconstruct it, we can consider only the second equation (26).

Because the only source of light in this problem is the fluorescent source,
we prescribe boundary conditions of the form:

Im(Ω,ρ) = 0, Ω · n(ρ) > 0, ρ ∈ ∂D, (30)

with n(ρ) denoting the inward normal at ρ ∈ ∂D. Moreover, we impose
that Im is bounded everywhere in the halfspace. Our measured data R is the
specific intensity at the boundary for all directions pointing out of D:

R(Ω,ρ) = Im(Ω,ρ), Ω · n(ρ) < 0, ρ ∈ ∂D. (31)

For the inverse fluorescent source problem, we wish to reconstruct the
fluorescent source S(r) with the measured data given by (31) and the direct
problem given by (26) subject to (30). Here, we focus on the case of planar
fluorescent reflectance imaging. The domain is modeled as a halfspace D =
{z > 0} bounded by the plane ∂D = {z = 0}. The halfspace is composed
of a uniform absorbing and scattering medium. The constant absorption and
scattering coefficients, denoted by μa and μs, respectively, are assumed to be
known. The scattering phase function f is also assumed to be known.

In the method introduced in [14] we use the Green’s function for the radia-
tive transport equation and the general representation formula to find key
properties of a fluorescent source such as its location an size. The Green’s
function is computed analytically as an expansion of plane wave solutions.
The plane wave solutions are computed numerically. Using the Green’s func-
tion for the radiative transport equation, we represent the measured data R
as the superposition of interior sources and surface sources. With this rep-
resentation, we can subtract off contributions from surface sources explicitly
from the measured angular data yielding a quantity that depends only on the
interior source of interest. Finally, we derive closed-form analytical solutions
to recover a point source and a voxel source. For more details we refer the
reader to [14].

We point out that the analysis in [14] relies on full angular measurements
at the tissue boundary. However, one does not always have access to this
data in general, but only to that given by the limited angular aperture of the
detector. An extension to this theory to treat limited angular data can be
found in [15].

In Fig. 3 we show the performance of our approach. We show results in
which we estimate the location and size of general a fluorescent source
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Fig. 3. Example of the estimation of the location and size of a general source. Left
plot: contour of the true source and outline of the recovered pixel source. Right plot:
slice of the source at x = −2.1 mm and the recovered pixel source. (From Kim and
Moscoso [14])

S(x, z) = S0 e
−(x−x0)

2/w2 ×
{−(z − a)2(z − b) z ∈ [a, b],

0 otherwise, (32)

by recovering the parameters of a pixel source. We consider a halfspace z > 0
composed of a uniform absorbing and scattering medium. The absorption and
scattering coefficients are μa = 0.01 mm−1, and μs = 1.0 mm−1, respectively.
We used the Henyey–Greenstein scattering phase function with asymmetry
parameter g = 0.8. Hence, μs(1− g)/μa = 20 which is in the range of optical
properties of tissues and tissue phantoms. The numerical simulations were
computed in two dimensions: x and z.

The parameters used in (32) for the fluorescent source are: S0 = 1.64,
x0 = −2.1, w = 0.43, a = 3.89 and b = 4.78. With these parameter values,
the total strength, defined as

Stotal =
∫ ∞

0

∫ ∞

−∞
S(x, z) dx dz, (33)

is Stotal ≈ 0.0654.
The left plot in Fig. 3 shows the contours of the true source and the outline

of the recovered pixel source. The middle plot shows the slice of the source at
x = −2.1 mm and the recovered pixel source. The right plot shows the source
at z = 4.335 mm and the recovered pixel source. The pixel that we recovered
has parameter values: S0 = 0.033, x1 = −2.9044, x2 = −1.3356, z1 = 3.7319
and z2 = 5.0862, so that the total strength recovered is Stotal = 0.0701. We
observe that the pixel source captures the correct location, the size, and the
total strength of the source very well. Figure 3 validates our theory.
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4 Conclusions and Further Work

In this paper we wanted to stress that imaging is more than showing that
an inverse problem may have a unique solution under circumstances that are
rarely satisfied in practice. Modern imaging approaches deal with understand-
ing the trade off between data size, the quality of the image, the computational
complexity of the forward model used to generate the measurements, and the
complexity and stability of the numerical algorithm employed to obtain the
images. One neither has all the data he wants, nor can solve a very general
forward model to invert the data. Finally, progress can hardly be carried out
without a deep understanding of the mathematical model with which we inter-
pret the data and without efficient and well designed numerical algorithms to
solve the mathematical model.
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Summary. This is a summary of a plenary talk given at ECMI 2008 emphasizing
the importance of applied mathematics to our economies, in particular the use of
continuum models to give insight and hence guide industrial developments. This is
illustrated using examples from industrial study groups, where collaboration between
mathematicians and industrial partners has yielded great insight.

1 Industrial Mathematics

Industrial mathematics is fundamental to the knowledge base of the economy
of every country, and by its very nature it is interdisciplinary. The number of
different types of applications is huge, and mathematicians have a vast array
of tools to apply to help understand these problems. However, as has been
discussed throughout this conference, currently it is not obvious where all
these industrial mathematicians are. Andreas Schuppert suggested in his ple-
nary talk, entitled “Mathematics in Industry – cost factor or key for profits”,
that industry structures are now project-based rather than subject-based. To
address this shift in strategy, industrial mathematicians must develop a wider
skill base, so that they can identify appropriate mathematics for different situ-
ations, be it continuum models, statistics, operations research, computational
models, etc. Since in-house research/development departments have all but
disappeared, opportunities are greater for mathematicians to provide exter-
nal consultancy services. One of the best ways to train and educate industrial
mathematicians is to exploit the study group workshops [16]. This format has
been exported all over the world, (ECMI, UK, Denmark, the Netherlands, Ire-
land, China and elsewhere), and has expanded to cover many different areas,
(industry, plant science, medicine, geoscience). Within the study group for-
mat, mathematicians learn how to approach completely new problems, and
how to collaborate with researchers from other disciplines.

A.D. Fitt et al. (eds.), Progress in Industrial Mathematics at ECMI 2008,

Mathematics in Industry 15, DOI 10.1007/978-3-642-12110-4 3,

c© Springer-Verlag Berlin Heidelberg 2010
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2 Continuum Models in Industry

Continuum models are a rather specialised field, but they have numerous
applications. However many continuum models have already been captured
in computer software, and we can give many examples, e.g. “finite element
analysis” of deforming solids, “CFD” of airflow over wings, heat flow in fur-
naces, chemical reactions in flames, and pollution dispersion in rivers. As a
result, the expertise of industrial mathematicians is not so important in these
areas. It is however, essential for “non-standard” problems. To identify these
problems is not trivial, as we cannot expect the person with the problem to
understand that mathematics would be useful. We need to be proactive and
search out the opportunities.

Below we present three study group problems where continuum models
have proved to be very useful. The emphasis is on simple mathematics and
we shall see that even simple models are able to give good insight.

2.1 Cosmetics (Collaborators: G. Pettet, R. Colasanti, J. Malda,
Z. Upton)

The manufacture of cosmetics is a multi-million dollar industry and there are
countless problems that need solving. It is an interesting fact that the skin
is the largest organ in the body, typically 1.5 m2 surface area, and it is a
very special sort of material. It provides many functions for the body such as
protection from external sources and cooling [17]. Typical problems that the
cosmetic companies are interested in include wrinkle reduction, moisturising
and drug delivery (through patches or injections). They are also interested in
the impact of products on the skin, such as irritation or damage caused by
washing up powders.

Recent legislation has made it illegal to test detergents or cosmetics on live
animals, so research is now focused on developing an artificial skin for testing.
A group in Brisbane is growing artificial skin and is interacting with applied
mathematicians as part of their efforts to understand how to improve their
procedures. A snapshot of the skin growing in vitro is displayed in Fig. 1.

Fig. 1. Artificial skin growing in vitro. Reproduced from [1]



Continuum Models: Helping to Guide Industry 25

DEDermis

Basement

Transit−Amplifying Layer

Cornified Layer

Fig. 2. Close-up photograph of artificial skin with the different layers labelled [2]

Fig. 3. Growth behaviour of human skin equivalent (HSE) [2]

Artificial skin, commonly referred to a human skin equivalent (HSE), is
grown from skin taken from people. The structure of artificial skin is displayed
in Fig. 2. Surplus skin is removed from the body and the top layer (the epi-
dermis including the cornified layer (CL)) is stripped off from the dermis. The
cells in the dermis are then all removed to create de-epithelised dermis (DED).
A single layer of epidermal cells is then placed onto the exposed dermis and
allowed to grow. The problem is to understand the resulting growth. The cells
grow in the transit-amplifying layer (TAL) until they reach a certain height,
where they differentiate to make the CL. In Fig. 3, we display snapshots of the
different stages of growth, along with a graph showing the thicknesses of the
TAL and the CL as time progresses. The first snapshot shows the TAL grow-
ing with a very thin CL on the top. As we progress to the second snapshot,
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the TAL and the CL have both increased in thickness, although the CL is
still much thinner than the TAL. However in the third snapshot, the TAL
has thinned a lot, while the CL has thickened. The measurements displayed
in the graph show how the thickness of the layers develops. This behaviour
is unusual, as we would expect everything to continue thickening. The three
main questions that the experiments raised were:

• Why does the TAL grow and then shrink?
• What controls the thickness of the final layers?
• Why is the interface between the TAL and the CL so flat?

To answer these questions, it is essential to understand the process of
growth. Enhanced levels of nutrients cause the cells to proliferate, while high
levels of calcium increase the rate of differentiation of cells from the TAL
to the CL. The hypothesis suggested by the experimentalists was that the
growth process depended on fluid flow. They argued that while there is no
CL, fluid flow (weeping) driven by evaporation keeps calcium levels low and
keeps nutrient levels high. Then as the CL recovers, the fluid flow reduces.
However calculation of the Peclet number suggested that fluid flow must be
irrelevant, and diffusion is more important.

An alternative theoretical approach was taken that exploited well-known
observations on calcium within the epidermis. Measurements (see Fig. 4) show
that there is more calcium near the CL than lower in the epidermis. It is well
known that cells differentiate faster when the calcium levels are high and
that differentiated cells appear to contain no calcium. Hence a model with
a self-sustaining calcium gradient was developed. Calcium levels remain low
initially so differentiation is slow. As the layer grows calcium at the upper
surface increases in concentration as calcium is dumped into the extracellular
region due to differentiation. Finally this creates the self-sustained calcium
gradient.

To model the growth process the following assumptions were made:

• Cells are created/proliferate only at the lower interface between the TAL
and the basement layer.

• Cells move vertically upward and are pushed from below.
• Calcium diffuses freely between cells.
• Cells take up calcium from their surroundings.
• Differentiation occurs when the concentration of calcium in the cells is

sufficiently large.

We programmed these assumptions in 2D using a cellular automata program
and ran simulations to visualise what happens [3]. We considered two scenar-
ios, letting the cells start to proliferate on a flat or a bumpy layer. In both
cases the cells grow upwards, the calcium concentration increases at the top
and then there is a wave of retreat as the cells differentiate and throw out
calcium. The process is self-sustaining.
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Fig. 4. Graph of calcium concentration versus distance from surface. Reproduced
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Fig. 5. A simple 1D model of the skin. The interface between the TAL and the
basement layer is at z = 0, while the interface between the TAL and the CL is a
free boundary at z = s(t). Based on [2]

The cellular automata simulations produced reasonable behaviour, so we
decided to write a continuum model using the same assumptions. To keep the
model simple, we considered 1D, as depicted in Fig. 5. The interface between
the TAL and the basement layer is at z = 0, while the interface between
the TAL and the CL is a free boundary at z = s(t). Letting B(z, t) be the
calcium bound in the cells and C(z, t) be the freely-diffusing calcium, then
the non-dimensional governing equations are
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μ
∂2C

∂z2
= T (C, B)

∂B

∂t
+
∂B

∂z
= T (C, B)

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
, 0 ≤ z ≤ s(t), (1)

with boundary conditions

C = C0, B = B0, on z = 0, (2)

∂C

∂z
= αB D(B)

1− ds

dt
= D(B)

⎫⎪⎪⎬
⎪⎪⎭
, on z = s(t), (3)

and initial conditions

C = C0, B = B0, s = 0, at t = 0. (4)

Here T (C, B) is the transfer rate between intra-cellular and extra-cellular cal-
cium, D(B) is the rate of differentiation to cornified cells, and α is a constant.
To progress we chose the following forms for T (C, B) and D(B),

T (C, B) = C −B, (5)
D(B) = ε+ λH(B − 1), (6)

where H(·) is the Heaviside function and λ and ε are constants. Equation
(5) assumes that the exchange of calcium between cells is linearly dependent
on concentrations. In formula (6) the ε term allows the cells to differentiate
slowly all the time, while the Heaviside function means that when B > 1 the
cells differentiate rapidly when the calcium level exceeds a critical value of
B = 1. The parameter ε is extremely important. If ε is taken to be zero, then
we obtain a trivial solution where the TAL simply grows and cornification
never occurs. Taking ε � 1 corresponds to growing a very thick TAL before
B = 1 and cornification occurs. Therefore ε is the trigger mechanism which
switches on the calcium gradient.

Examples of the behaviour of the model are shown in Figs. 6 and 7. In
both cases the model reproduces the gradient of the calcium concentration,
which increases towards the top of the TAL (z = s(t)). The graphs of layer
thickness versus time show that s(t) increases and then decreases, replicating
the observed growth and retreat of the TAL. The model also reproduces the
thickening in the CL which is shown between the curves of s(t) and the outer
surface η(t). Depending on the values chosen for ε and λ, the thickness of
the TAL may oscillate over time, as can be seen in Fig. 7. This oscillatory
behaviour has yet to be seen experimentally.

To summarize, the continuum model fits the observed experimental data,
although there is some data fitting due to lack of experimental evidence for
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the different parameters. Future work includes extending the model to 2D or
3D to see if the free boundary between the TAL and the CL remains flat.
We also need to consider more details of the flow of cells in the TAL, and we
should incorporate other mechanisms to understand the trigger (cell death,
potassium etc.).
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2.2 Optical Fibres (Collaborators: D. Abbott, P. Howell, A. Fitt,
C. Voyce, B. Tilley, D. Schwendeman, T. Monro and Others)

The second problem that we shall consider concerns optical fibres. Optical
fibres are used extensively in communications systems or optical detectors.
These fibres have spawned many areas of research including investigation of
their electromagnetic and mechanical properties. In this section we are inter-
ested in the actual manufacturing process. This problem was brought to a
study group by Corning Inc [5].

Optical fibres work by using changes in the refractive index to guide light
down the glass core of the fibre. Usually the glass is doped to provide the
change in refractive index, but an alternative is to make the fibre with an
array of holes down the centre, with cross-sections such as those as displayed
in Fig. 8. The transition from the air to the glass provides the required changes
in refractive index. One way to make the holey fibre is to take hollow straws
of glass ≈1 m long and pack them together into a bundle of diameter ≈3 cm,
with a solid straw in the middle, thereby creating a ‘blank’. The blank is put
in a furnace and drawn out into a fibre ≈100 km long with diameter measured
in μm. The aspect ratio of the blank therefore changes by order 105. Corning
are interested in what happens to the fibre in the drawing process, especially
as surface tension will try to close the holes off. They are also interested in
the behaviour of any bubbles within fibres, as these will cause problems. The
evolution of bubbles and holes may be described by identical equations. There
are a number of papers that study this problem including [7, 8] and [9] and
the work here follows these ideas closely. The precise problem is discussed in
more detail in the presentations available at [5].

To gain a basic understanding of the behaviour we take a simple case and
consider the behaviour of one hollow straw of glass. We assume that the straw

Fig. 8. Example cross-sections of ‘holey’ optical fibres [6]
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Fig. 9. Schematic of a fibre with a single concentric bubble or hole. Reproduced
from [5]

is axis-symmetric and that the glass is a Newtonian viscous fluid. A schematic
of the model is shown in Fig. 9. The radius of the hole is given by r = h1(z, t),
where z is the vertical coordinate measured from the exit of the furnace. The
radius of the glass is given by r = h2(z, t). Taking advantage of the long
thin aspect ratio to neglect appropriate terms, the governing equations for
the evolution of the fibre in the z-direction are

ρ(h2
2 − h2

1)
(
∂w

∂t
+ w

∂w

∂z
+ g

)
=

∂

∂z

(
3μ(h2

2 − h2
1)
∂w

∂z
+ γ(h1 + h2)

)
, (7)

∂(h2
2 − h2

1)
∂t

+
∂
(
w(h2

2 − h2
1)
)

∂z
= 0, (8)

∂h2
1

∂t
+
∂wh2

1

∂z
=
ph2

1h
2
2 − γh1h2(h1 + h2)
μ(h2

2 − h2
1)

. (9)

Here ρ and μ are the density and viscosity of the glass and γ is the surface
tension of the glass in air. Gravity is represented, as usual, by g. The vertical
velocity of the glass is denoted by w(z, t) and p(z, t) represents the pressure,
above atmospheric, of gas in the hole. Boundary conditions are prescribed on
the free surfaces r = h1(z, t) and r = h2(z, t), and also at the top z = 0 and the
bottom z = L. Equation (7) represents conservation of momentum in the z-
direction, (8) represents conservation of mass, and (9) represents conservation
of momentum in the radial direction. The coefficient of ∂w/∂z in the first
equation is known as the Trouton viscosity.

Suppose that we now consider the small hole limit, so that h1(z, t) �
h2(z, t). Then to leading order (7)–(9) reduce to
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ρh2
2

(
∂w

∂t
+ w

∂w

∂z
+ g

)
=

∂

∂z

(
3μh2

2

∂w

∂z
+ γh2

)
, (10)

∂(h2
2)

∂t
+
∂(wh2

2)
∂z

= 0, (11)

∂h2
1

∂t
+
∂(wh2

1)
∂z

= ph2
1 − γh1 . (12)

Note that in this case the last equation for the radius of the hole has decoupled.
This means that as we draw the blank, the glass acts as if there were no hole
and the hole is forced to change in response to the glass flow. We may rewrite
the last equation as

∂a

∂t
+
∂(wa)
∂z

= pa− γ√a, (13)

where a(z, t) is the cross-sectional area of the hole. The evolution of a depends
on the competition between the pressure p in the hole, which tries to keep the
hole open, and the surface tension γ, which tries to close the hole. Corning
want to keep the hole open, and tried changing the pressure in the hole to
achieve this. However this was not very successful, and this may be explained
by considering (13). This is a hyperbolic equation for a, and we can see that
if the term pa dominates, then a will grow exponentially, while if γ

√
a domi-

nates, then the hole will pinch off. It is therefore extremely difficult to use the
pressure to control the difference in these two terms and make the hole stay
at the unstable equilibrium point a = (γ/p)2.

Equation (13) also enables us to analyse how the shape and size of a bubble
changes as a fibre is drawn. Suppose that at t = 0, the top and bottom of the
bubble lie at zmin and zmax respectively. Then the bounding characteristics
generated by (13) will tell us within what range the bubble lies. The bounding
characteristics will have a profile similar to that depicted in Fig. 10, so that
the bubble elongates as drawing progresses, (as long as pinch-off does not
occur).

t

zmin

z
zmax

characteristics
h=0

Fig. 10. Typical bounding characteristics which determine bubble evolution during
the drawing process. Reproduced from [5]
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To allow us to solve (10)–(12) we may reasonably assume that the density
and surface tension of the glass are constant. However it is not so clear that we
can assume a constant viscosity as the temperature variations down the fibre
are large. We show typical temperature and viscosity variations in Fig. 11.
Perhaps surprisingly the variations in viscosity are not extreme and as an
approximation we may take it to be constant at around 106 Pa s. Imposing
appropriate boundary conditions and assuming a steady glass flow, we solved
(10) and (11) numerically for the velocity w, and the results are shown in
Fig. 12.

Using this solution for w(z), we may solve (12) for the evolution of a bub-
ble. In doing this we will assume that the pressure in the bubble is spatially
uniform, this assumes the gas can move easily inside it, that the mass of gas
is constant and that the gas is governed by the ideal gas law. In this way the
pressure varies both due to the changes in bubble shape and due to temper-
ature variations along the fibre. The numerical solution for the evolution of
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a bubble is shown in Fig. 13. The sharp peak at z ≈ 0.4 represents a bubble
near the top of the fibre with maximum radius 5 μm, with the top and bottom
of the bubble very close together (5 μm). The subsequent shapes represent the
evolution of the bubble as it progresses down the fibre, and we can see that
it elongates dramatically and the radius decreases. For example, the peak
at z ≈ 1 m shows that the maximum radius of the bubble has decreased to
approximately 0.25 μm, while the distance between the top and bottom of the
bubble has increased to approximately 0.2 m. Corning calls these elongated
bubbles threads, and would like to eliminate them.

The pressure within the bubble is shown in Fig. 14 and indicates that it
increases in the hot region and then decreases in the solidifying region. Note
also that, although the bubbles are elongated by the stretching of the glass
they can be shown to be shorter than the length that would be predicted by the
simple argument about bounding characteristics because the ends pinch-off.

Although many assumptions have been made, the continuum model pro-
posed above has been able to provide great insight into the control of holes and
the size of bubbles. A further item of interest would be to consider the effect
of gas leaving the bubble by diffusion into the surrounding glass, which would
affect the pressure. In addition, realistic fibres enclose thousands of bubbles,
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Fig. 14. Pressure in the bubble versus time (circles correspond to the times of the
bubble shapes in Fig. 13). Reproduced from [5]

not just one, so it would be interesting to apply homogenisation techniques
to extend the analysis for the single bubble.

2.3 Semiconductors (D. Schwendeman, P. Kramer, T. Witelski,
L. Borucki)

Years ago the field of semiconductor modelling was perfect for the use of
asymptotic analysis, as the important non-dimensional parameter, the ratio
of the Debye length to the device size, was O(10−10). However as technology
has advanced and the size of the devices has decreased, this number is now
approximately 10−1 or larger, and as a result the original asymptotic results
are less applicable! There are two main aspects to semiconductor modelling:

1. Manufacturing processes
• Etching
• Lithography
• Deposition
• Implantation

2. Electrical behaviour
• Quantum effects
• Solar cell efficiency

In particular, there are many opportunities for the use of mathematics in
modelling the quantum effects. Currently the engineers include these effects in
a very much empirical manner (for some interesting quantum analysis see [10]).

In this section we concentrate on manufacturing aspects of the devices.
The semiconductors are constructed from multiple layers, which are added
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in separate processes (deposition, lithography, etching). It is very important
to have a flat surface for each lithographic stage. As the multiple layers are
added, each layer becomes more bumpy, and this affects the focusing required
for accurate lithography. To avoid this difficulty, the surface is frequently
polished flat using Chemical Mechanical Polishing. This process is not only
abrasive, but also uses dissolving chemicals.

The Chemical Mechanical Polishing process uses three spinning discs. A
cartoon of the polisher is shown in Fig. 15. The semiconductor wafer to be
polished is stuck onto the bottom of the wafer carrier, which spins the wafer
round and presses it onto the polishing pad. The polishing pad revolves in
the opposite direction at the same angular speed (by having the same angular
speed the relative velocity of the wafer and the polishing pad is independent
of position so polishing will be quite uniform). A cross-section of this pad, as
shown in Fig. 16, is abrasive and provides the mechanical element of the pol-
ishing while its surface is sprayed with a slurry to provide the chemical element
of the polishing. There is a third spinning disc, which is the conditioning disc.
As the polishing pad spins round it wears down and the conditioner renews
the surface.

Conditioner
Track

Slurry

c

w

Pad

Platen

Wafer

Wafer Carrier

Conditioner

Ω

Ω

Ω

Fig. 15. Cartoon of Chemical Mechanical Polisher. Reproduced from [11]

Fig. 16. Cross-section through a polishing pad. Reproduced from [11]
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Fig. 17. Model of the surface of the polishing pad. Reproduced from [11]

The problem posed by Motorola at the study group was to investigate how
the rough surface of the polishing pad changes as it is subjected to both wear
and to conditioning. We were able to pose this as a continuum problem and a
more detailed description much of the following is given in [11] and the study
group report [12].

Let us first of all consider the wearing of the polishing pad. Before polish-
ing, the surface of the pad will have a jagged surface, which we may represent
by the function z = s(x, t) as displayed in Fig. 17(a). If we let φ(z, t) be the
probability density function of the height s(x, t), then a graph of φ(z, t) will
have a profile of the form depicted in Fig. 17(c). When the pad is used to
polish the semiconductor wafer, because the wafer is hard and the pad quite
compliant, the jagged surface will be flattened at a certain height z = d(t),
as shown in Fig. 17(b) and the flatten regions will then wear. Because of the
wear the amount of pad surface at height z = d(t) will increase and a spike
develops in the probability density function at this height, as we can see in
Fig. 17(d). This general behaviour will now be described mathematically.

The displacement of any point on the pad surface by the semiconductor
wafer pressing down on it is given by (z − d(t))H

(
z − d(t)

)
, where H(·) is

the Heaviside function. If we assume that the wear-rate of the surface is pro-
portional to the square root of the displacement (Hertzian indentor), then by
conservation of probability, we may write down
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∂φ

∂t
+

∂

∂z

(
β
√

(z − d(t)) H
(
z − d(t)

)
φ

)
= 0, (14)

where β is the constant of proportionality.
Letting q(z, t) be the fraction of solid pad in any plane z =constant, then

q(z, t) = Prob
(
z < s(x, t)

)
, which is the cumulative density function. We

therefore have the following relationship between q and φ:

φ(z, t) = −∂q(z, t)
∂z

, (15)

and (14) may be rewritten, after using conditions when z → −∞, as

∂q

∂t
+ β

√
(z − d(t)) H

(
z − d(t)

) ∂q
∂z

= 0. (16)

Now let us consider the conditioning process. The conditioner consists of a
circular plate on which a regular array of small sharp diamonds are adhered.
As the conditioner is pressed against the polishing pad the diamonds cut
grooves into the surface of the polishing pad. The cuttings from the pad are
removed in the slurry and the interwoven grooves create the new surface of
the polishing pad. As a simple model we shall assume that we need consider
only one diamond and that this moves randomly cutting grooves in a pre-
scribed spatial interval. A cartoon of this process is shown in Fig. 18. Where
the diamond is represented by the thin shaded triangle, and its endpoint is
assumed to be at a height z = h(t). The pad has a groove cut in it in the
region z− h(t) > 0, and if the cutter has straight sides, it may be shown that

∂q

∂t
= −γ(z − h(t)

)
H
(
z − h(t)

)
q, (17)

where q(z, t) is the cumulative density function mentioned above and γ is a
constant of proportionality which measures the sharpness, or more specifically
the steepness of the sides, of the cutter. Putting (16) and (17) together, for
simultaneous wearing and conditioning, q(z, t) satisfies the equation

∂q

∂t
= β

√
(z − d(t)) H

(
z − d(t)

) ∂q
∂z
− γ(z − h(t)

)
H
(
z − h(t)

)
q, (18)

z

z=h(t)

z=s(x,t)

x

Fig. 18. Conditioning process using a diamond (represented by the shaded triangle)
to cut a groove in the polishing pad below
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Fig. 19. Probability density function for wear of the polishing pad. The model
results are represented by the continuous line, and the experimental results by dots.
Reproduced from [11]

which is a linear hyperbolic partial differential equation. Usually the condi-
tioning plate and the wafer are pressed down at a given rate, c, so we consider
a “steady” problem where

h(t) = h0 − ct, d(t) = D + h(t) = D + h0 − ct. (19)

Looking for a travelling wave solution, q(η), where η is a moving variable
defined by η = z−h(t), (18) reduces to a linear ordinary differential equation:

c
∂q

∂η
= β

√
(η −D) H(η −D)

∂q

∂η
− γηH(η)q . (20)

Solving (20), with appropriate conditions at infinity, in the case when no
conditioning is applied and γ = 0 allows us to determine a probability density
function φ as shown in Fig. 19. Solving (20) to include both the wear and the
conditioning of the pad produces a probability density function as shown in
Fig. 20. In both graphs the experimental results are marked with dots, and
the model gives an excellent fit.

To conclude, the continuum model gives an excellent fit to the experimental
data with very little parameter fitting. There are of course improvements that
can be made to the model. We currently assume that the material of the
polishing pad is solid. In fact it actually contains many cavities, as can be
seen in Fig. 16. The initial data is not a delta function, representing a flat
surface, but has a distribution, representing the cavities in the pad, and each
new cut of the conditioner now exposes material with this distribution rather
than cutting solid material.

2.4 Wine Making

The last problem is to do with wine making, and, rather than demonstrat-
ing the effectiveness of continuum modelling, it serves as cautionary tale to
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Fig. 20. Probability density function for simultaneous wear and conditioning of the
polishing pad. The model results are represented by the continuous line, and the
experimental results by dots. Reproduced from [11]

modellers working with industry. There are many problems in the wine mak-
ing industry, for example how to spray the grapes to ensure total coverage
[13], but one particular problem was brought by an Australian company that
had problems with the labels starting to peel off their bottles [14, 15]. The
modellers at the study group duly went away and considered many interest-
ing problems, such as bubbles under the labels, the dynamics of the labelling
machine and the modelling of the glue on the paper. However, it was only
when someone did a simple experiment of actually trying to put a label onto
a bottle that the answer became apparent. Paper is not orthotropic and tries
to curve in one direction. To label bottles securely, the curvature of the label
must be at right angles to the curvature of the bottle. Then the curvatures
counteract each other and the label stays on. This fact has been well-known
for years, was assumed to have been accounted for, but has somehow been
overlooked in the quality assurance process. So the warning to modellers is
that, before leaping ahead with all sorts of complicated mathematics, ensure
that you have understood some of the basics first.

3 Overview

This article has reviewed several areas where continuum mathematics can
be applied to solve industrial problems. For many physical problems some
continuum models are relatively accessible to non-mathematicians as they
are already coded into usable software. To be effective industrial mathe-
maticians must therefore interact strongly with the industrialists to identify
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“non-standard” problems because these provide opportunities for mathemat-
ics to have a significant impact in understanding the problem. In seeking these
new problems it is important to note that although it is very motivating to
involve complicated mathematics, the complexity of the mathematics may not
always be correlated to the insight that it gives. The examples quoted show
that simple mathematics, suitably applied, can produce understanding that
allows problems to be solved. Finally the scope of continuum mathematics is
vast and hence it can guide industrialists in an extremely wide range of areas.
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Wax Segregation in Oils: A Multiscale Problem

Mario Primicerio

Department of Mathematics “Ulisse Dini”, University of Florence, v.le Morgagni
67/a, 50134, Florence, Italy, primicer@math.unifi.it

Preface

It is for me a great honour to be invited to deliver the Alan Tayler memorial
lecture during this conference.

I had the fortune of sharing a long friendship with Alan, started more than
forty years ago. But beyond the sincere friendship, we shared a common way
of looking at applied mathematics and its relations with industry.

Well before the nowadays popular slogans on “knowledge-based economy”,
Alan was deeply conscious that mathematics could (and should) be a funda-
mental driving force in promoting innovation in industry and more generally
in the society.

Alan put into this goal all of his enthusiasm and all of his effective action
as a leader and as an organizer.

His contribution to the foundation of ECMI, to its first activities, in obtain-
ing the first ECMI-contract from the EU it is well known to the ECMI “old
guard”. But it is up to us to act so that also our younger colleagues could
thank Alan Tayler for the momentum he gave to the development of industrial
mathematics in Europe.

This lecture is conceived in his spirit and not just in his memory.

1 Introduction

In the last few years our group was involved in a long-term research pro-
gram partially supported by the societies of the ENI group (Enitecnologie
and Agip), that is the main Italian holding in oil industry.

The program aims at understanding the behaviour of waxy crude oils sub-
ject to temperatures gradients. Indeed, this class of oils is characterized by
the fact that they contain a relatively large amount of heavy hydrocarbons

A.D. Fitt et al. (eds.), Progress in Industrial Mathematics at ECMI 2008,

Mathematics in Industry 15, DOI 10.1007/978-3-642-12110-4 4,

c© Springer-Verlag Berlin Heidelberg 2010



44 M. Primicerio

(paraffins, asphaltenes etc.) that – as we shall discuss in detail in the follow-
ing – may crystallize and eventually form gel-like structures thus influencing
the motion of the oil in the pipeline.

The experimental evidence is that when these oils are pumped in pipelines
crossing zones at relatively low temperature (as e.g. in the submarine pipelines)
a deposit is formed at the walls that grows and hinders the flow, so that peri-
odic “cleaning” operations are to be scheduled to keep a high efficiency of
the transportation and to avoid a possible total clogging of the line. The
research on the possible mechanisms responsible for the phenomenon and on
their mathematical modelling is very active (see e.g. some general papers and
reviews like [1–5]). The research program includes both an experimental part
and a section aimed at modelling and simulation. The former is implemented
in three laboratories: Eni Milano, the Istituto Donegani in Novara and the
Department of Chemistry of the University of Florence. The latter is mainly
done by our group: Antonio Fasano, Lorenzo Fusi and myself together with
Loredana Faienza and Alessandro Monti and some others co-workers (Alberto
Mancini, Fabio Rosso) who joined the team from time to time. A helpful
contribution also came from John Ockendon.

It has to be noted that the cooperation among the teams is very intense,
and this is witnessed by a number of papers in which experimental results are
discussed in the framework of the mathematical models presented (see e.g.
[6–8]).

To deal with a relatively simple situation, we will refer to an “ideal mix-
ture” that mimics the behaviour of a real oil. It is a mixture of a given standard
“wax” and a “solvent” (decane). The wax we chose has been characterized by
its spectrum obtained by gas chromatography.

2 Segregation/Dissolution of Wax

For any waxy crude oil, and in particular for our “ideal mixture” with a
given wax concentration c, a temperature TCL can be defined such that, for
T > TCL all wax is dissolved in the solvent while for T < TCL part of the
wax segregates. Temperature TCL is called cloud temperature or W.A.T.
(wax appearance temperature). We are supposing that the system is always
at thermodynamic equilibrium, a fact that is by no means granted.

Cloud temperature is usually determined by differential scanned calorime-
try (DSC), and the measure can be made by raising or lowering the temper-
ature of the sample: in the first case the temperature at which the peak in
the heat exchanged occurs is sometimes called wax disappearance tempera-
ture (WDT) while the term WAT is used for the result obtained when the
measure is performed with decreasing temperature.

Moreover, the determination of WAT and of WDT is influenced by the
rate at which the temperature is varied. Here, we report the data of a typical
experiment [9–11]:
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Table 1.

WDT 10◦C/min T1 = 29.3◦C
WDT 1◦C/min T2 = 26.5◦C
WAT 1◦C/min T3 = 21.3◦C
WAT 10◦C/min T4 = 20.2◦C

A few comments on these results are in order (for general theoretical
discussion see e.g. [12–22]):

1. The differences between T1 and T2 and between T3 and T4 show that the
process of dissolution (crystallization) is not instantaneous but that the
system takes some time to reach the thermodynamical equilibrium.

2. The difference between WAT and WDT shows that undercooling occurs
practically always, as it is rather usual in phase-change processes.

3. A difference of about 5◦C between T2 and T3 is commonly found in different
situations of concentration.

We note that in the literature the term “cloud temperature” or “cloud
point” is sometimes related to an optical determination. Of course the accu-
racy of this measurement is strongly dependent on the method used [23, 24],
since it is difficult to measure the variation of optical properties when only
micro-crystals are present (a possible colloidal transition state has been also
supposed to exist). Moreover, the method is applicable to our “ideal mixture”
that is optically transparent but practically useless when commercial oils are
concerned. Let us come back to the definition of TCL and assume we can
associate a value TCL to each value of the concentration c of wax in the mix-
ture. As it can easily be expected, it turns out that TCL is a monotonically
increasing function of c. For our purposes, it will be useful to consider the
inverse function of TCL(c) and to define cSAT (T ) as the maximum amount of
wax that can be added to a unit volume the solvent kept at temperature T
without producing any crystallization. It can be seen as the solubility of wax
in the solvent as a function of the temperature.

To model the phenomenon, we will use the following functions:

1. c(x, t): total wax concentration at point x at time t.
2. C(x, t): concentration of dissolved wax.
3. G(x, t): concentration of segregated (crystallized) wax.

Of course it is:
c(x, t) = C(x, t) +G(x, t). (1)
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2.1 Case of Thermodynamical Equilibrium

As we will see, the phenomenon we are studying is a typical multiscale phe-
nomenon, so that it is quite possible that in the time scale of the experiment
the process of dissolution/segregation can be considered to be instantaneous.
In this case we have

C(x, t) = min(c(x, t), cSAT (T (x, t))) (2)
G(x, t) = max(0, c(x, t)− cSAT (T (x, t))) (3)

so that (1) is automatically satisfied.

2.2 A Case of Macroscopic Kinetics

Consider the case in which the thermodynamical equilibrium is reached in
finite time with a characteristic time constant. If we still remain in the frame-
work of a macroscopic description, we should postulate the existence of a sort
of chemical potential acting as the driving force of the phenomenon.

The simplest assumption we can postulate is that the rate of segrega-
tion/dissolution is proportional to the deviation from the thermodynamical
equilibrium i.e.

∂G

∂t
= θβ(C(x, t)− cSAT (x, t)) (4)

where β > 0 is the inverse of the characteristic time and θ is a factor that
ensures that Gt vanishes if both (C − cSAT )+ and G are zero. Thus

θ = H(G+ (C − cSAT )+), (5)

where H is the Heaviside jump function

H(z) =
{

0, if z ≤ 0
1, if z > 0. (6)

A simple generalization consists in assuming different values of β for (C −
cSAT ) positive and negative and/or to include the possible dependence of β
on the temperature.

2.3 A Microscopic Description

A possible microscopic description of the process of segregation (crystalliza-
tion) is based upon two mechanisms: nucleation and growth. One defines ν̇
to be the rate of birth of new crystals per unit volume of the solution and ρ̇ as
the radial growth of the crystals that are assumed approximately spherical.

We will neglect the radius of the newborn crystals and we will assume that
ν̇ and ρ̇ (both depending on C and T ) are such that their ratio is constant.
This is the so-called isokinetic assumption that can be written as:
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⎧
⎨
⎩
ρ̇ = ρ̇0F (C, T ),

ν̇ = ν̇0F (C, T ).
(7)

Under these assumptions (and normalizing the quantities so that the
density is equal to one) we have:

∂G

∂t
= 4πρ̇(t)

∫ t

0

ν̇0
ρ̇0
ρ̇(τ)

[∫ t

τ

ρ̇(s)ds
]2
dτ, (8)

and after some simple manipulations we get

∂G

∂t
= 4

(
πν̇0ρ̇

3
0

3

)1/4

G3/4F (C, T ). (9)

Consequently, we can obtain the number of crystallites per unit volume

N(t) =
(

3
π

)1/4(
ν̇0
ρ̇0

)3/4

G1/4 (10)

and the average radius

R̄(t) = 4−1/3

(
3
π

)1/4(
ρ̇0

ν̇0

)1/4

G1/4. (11)

Of course, to complete the description of the process we have to specify
the form of the function F in (7). We note that, in any case, this picture can
only refer to the crystallization (of course it does not apply to dissolution)
and hence F has to vanish if and only if thermodynamical equilibrium has
been reached and thus if C reaches the value cSAT . The simplest choice leads
us to

∂G

∂t
= K(ν̇0ρ̇3

0)1/4[C(x, t) − cSAT (T (x, t))]G3/4, (12)

or, more generally to

∂G

∂t
= K(ν̇0ρ̇3

0)1/4[C(x, t) − cSAT (T (x, t))]qG3/4 (13)

for some q, in accordance with typical models for crystallization of polymer
melts (see [25, 26]).

We note that this model is based on concepts similar to the ones used in
[25–30], with the difference that the phenomenon of “impingement” among
growing crystals is much less relevant in the present case because concentration
of wax in solvent is very low.

In the literature of waxy oils an approach similar to the one illustrated
above has been adopted in [31–33], but just in spatially homogeneous cases
and when the cooling rate is constant. Under these assumptions the so-called
“Avrami thumb rule” [34] is applied.

We conclude this section showing a comparison between the approaches
illustrated under (2.1), (2.2) and (2.3) (see Fig. 1).
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Fig. 1. Comparison of function G for the three approaches of macroscopic kinetics
Gmacro(x), microscopic kinetics Gmicro(x) and thermal equilibrium Gtherm.equ.(x).
The picture refers to a simulation of a stratum 0 < x < L where the boundary x = L
is at a constant temperature T >WAT while the boundary x = 0 is being cooled at
a temperature T <WAT; we assume that saturation is linear in x and that G = 0
initially

3 Diffusion/Convection of Heat

Heat transfer turns out to be the driving force for the deposition of wax since
temperature is the key quantity in the process of change of state of wax.1

Conversely, one can ask how much the process of segregation/dissolution of
wax influences the thermal field.

Within the experimental uncertainty, one can claim that the state of aggre-
gation of wax (and even its concentration in the mixture) does not have an
important effect on the thermal diffusivity of oil (see [35, 36]).

Concerning the latent heat associated to the change of phase, it is around
10 J g−1. Since concentration of wax is below 10% and the heat capacity of oil
is about 5 J g−1 K−1 and the change of phase takes place across a few degrees,
we can claim that the effect of latent on the determination of thermal field

1Indeed, sedimentation by gravity is negligible since wax and oil have almost the
same density; indeed, the deposit on the walls of pipelines has the same thickness
at every point of a given cross section.
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can be neglected.2 This means that the latter can be found without knowing
C and G, as least as far as just conduction is considered. Of course this is
no longer true in general when convection has to be taken into account, since
the rheological properties of the mixture can be strongly influenced by the
state of aggregation of wax and since the presence of deposit determines the
motion.

4 Diffusion/Convection of Wax: Gelification

Let us turn our attention to the diffusion of segregated and dissolved wax in
the solvent. We assume the validity of Fick’s law and denote the diffusivity of
segregated and dissolved wax by DG and D respectively.

Of course, one expects that

DG � D. (14)

Moreover, the mobility of dissolved wax within the mixture is hindered by
the presence of wax crystals, at least if G is “large enough”. More precisely,
one can see that when G exceeds a threshold value G∗, crystallites tend to
aggregate and to entrap liquid (i.e. oil + dissolved wax) and form a gel. Process
of gelification is not instantaneous but follows a kinetics that we can model
by introducing a quantity g(x, t) characterizing the degree of gelification
whose evolution is governed by the following law

∂g

∂t
= Φ(G−G∗) (15)

where Φ is a nondecreasing function of its argument, Φ(0) = 0. In general, Φ
will also depend on temperature (and will be monotonically decreasing). Of
course (15) only refers to mixtures at rest since motion can strongly influence
in contrasting gelification.

Consistently with the description above, we will assume that D (and also
DG whenever it will be taken into consideration) is a given decreasing function
of K = G(1 + g), vanishing when K exceeds some critical value K∗.

The degree of gelification is also relevant to the phenomenon of adhesion of
wax aggregates to the pipe walls (deposition). In principle, in order to model
this phenomenon, one should also include the nature of the wall, its rugosity
and so on. For simplicity, we can assume that when G reaches the value G∗ at
the wall, then the deposit begins to form and grow; in other words we identify
the deposit with the region where g > 0.

Another phenomenon that is observed is the so-called ageing of the gel.
In our model, this fact is explained both by the diffusion of liquid wax within

2On the other hand, the mathematical problem to be solved if one takes this
coupling into account is far from being trivial (see [37]).
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the gel (although with lower diffusivity) and by the consequent additional
segregation that takes place whenever

G(x, t) < C(x, t)− CSAT (T (x, t)). (16)

When a mixture is brought at T1 � TCL and then put in a vessel whose
walls are kept at T2 < TCL the following facts are observed (see [36, 38] and
also [39, 40]):

1. A deposit is formed at the walls and its final thickness is reached in a short
time.

2. The concentration of wax in the deposit continues to increase.
3. In the deposited layer concentration of wax decreases when approaching

the walls.

An additional information we got from experiment and from literature is
that the mechanism of gelification – and hence its influence on diffusivity –
is strongly dependent on the nature of wax since the geometry of crystallites
plays an important role [11].

A Multiscale Problem

Summing up we have briefly discussed five processes that are relevant to the
phenomenon to be studied, and each of them has a corresponding time scale:

1. Thermal diffusion (t1).
2. Segregation of wax (t2).
3. Diffusion of dissolved wax (t3).
4. Diffusion of segregated wax (t4).
5. Gelification (t5).

Moreover, when the motion of the mixture is to be taken into account, we
have also

6. Motion of the fluid (t6).

Of course the model that can be used should take into account the prac-
tical cases to be studied. Since they span over a large variety of situations
(depending on the type of oil and of thermal conditions) in the following we
will consider different scenarios separately.

5 Thermodynamical and Thermal Equilibrium

A first scenario is studied in [41] where it is assumed that

t1, t2 � t3, t4 � t5, t6, (17)
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corresponding to a situation in which the fluid is at rest, the thermal field
attains its asymptotic (stationary) profile in a very short time interval and
phase equilibrium is instantaneously reached.

Under these assumptions, we will consider a one-dimensional geometry
having in mind the interpretation of experiments done on commercial oils
with a laboratory device called “cold finger” where a steady thermal gradient
is applied between two co-axial cylinders kept at constant temperatures T1

and T2 and the gap between the two cylinders is filled by oil with given wax
concentration c∗. Of course at least one of the two thermostats is maintained
at a temperature below TCL(c∗) [7, 8].

Just to simplify notation, we refer here to plane (rather than cylindrical)
symmetry, and for the same reason we will assume that TCL depends linearly
on concentration in the range of interest, so that

dcSAT

dT
= γ, γ > 0 constant. (18)

Since we have assumed that temperature reaches its stationary (linear)
profile, we have

cSAT(x) = A+Bx, x ∈ [0, l] (19)

where A = cSAT(T1) and B are positive constants assuming that T2 (i.e. the
temperature at the boundary x = l) is higher than the temperature T1 of the
wall x = 0 (B = γ(T2 − T1)/l).

But assuming that
c∗ > cSAT (l) = A+Bl,

the assumption of instantaneous thermodynamical equilibrium implies that

C(x, 0) = cSAT (x), G(x, 0) = c∗ − cSAT (x). (20)

As long as deposition is not taken into account, the boundary conditions
are of course

DCx(0, t) +DGGx(0, t) = DCx(l, t) +DGGx(l, t) = 0, t > 0. (21)

At this point we have to consider two different cases: first we will see what
happens if diffusion of segregated wax plays a role, then we will discuss the
case in which the crystallites can be thought to be immobile. We will start
assuming that diffusivities are given and constant.

5.1 The Case t3 ∼ t4 (Non-Negligible Crystal Diffusivity)

Starting from the initial situation (20) we can define t̂ as

t̂ = sup{t : G(x, t) > 0, x ∈ [0, l]}. (22)
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This means that in the time interval [0, t̂) the mixture is always saturated
(that means c > cSAT (x)). Therefore

C(x, t) = A+Bx, 0 < x < l, 0 < t < t̂ (23)

⎧
⎨
⎩
Gt −DGGxx = 0, 0 < x < l, 0 < t < t̂
G(x, 0) = c∗ −A−Bx, 0 < x < l,
Gx(0, t) = Gx(l, t) = − D

DG
B, 0 < t < t̂.

(24)

Of course, t̂ < +∞, if we exclude the unrealistic (and trivial) case
DG

D
>

c2 − c1
2c∗ − c1 − c2 where we have written ci = cSAT (Ti), i = 1, 2.

Since Gx is negative, by maximum principle, the definition of t̂ implies
G(l, t̂) = 0 and, for any t > t̂ a free boundary x = s(t), s(t̂) = l will exist
separating the saturated region (0, s(t)) whereG > 0, from the unsaturated
region (s(t), l) where c(x, t) = C(x, t) < cSAT (x).

More specifically,

C(x, t) = A+Bx, 0 < x < s(t), t > t̂, (25)

⎧
⎪⎪⎨
⎪⎪⎩

Gt −DGGxx = 0, 0 < x < s(t), t > t̂

G(x, t̂) = Ĝ(x), 0 < x < s(t̂) = l,
Gx(0, t) = − D

DG
B, t > t̂,

G(s(t), t) = 0, t > t̂,

(26)

where Ĝ(x) is found as G(x, t̂) from the solution of (24).3

On the other hand
⎧
⎨
⎩
Ct −DCxx = 0, s(t) < x < l, t > t̂
Cx(l, t) = 0, t > t̂
C(s(t), t) = A+Bs(t), t > t̂,

(27)

and
G(x, t) = 0, s(t) < x < l, t > t̂. (28)

Mass conservation, i.e. flux continuity across x = s(t) provides the free
boundary condition that completes the problem

DB +DGGx(s(t)−, t) = DCx(s(t)+, t). (29)

Problem (25)–(29) is an implicit two-phase free boundary problem. In [42]
it is proved that it can be immediately reduced to a form for which the results

3The latter exists and is unique within the class of bounded functions.
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of [42] and [43] can be applied and thus prove that a classical solution exists
globally.

The asymptotic profile (C∞, G∞, s∞) of the solution is the following:

G∞(x) =
{

D
DG

B(s∞ − x), x ∈ [0, s∞],
0, x ∈ [s∞, l]

(30)

C∞(x) =
{
A+Bx, x ∈ [0, s∞],
A+Bs∞, x ∈ [s∞, l]

(31)

and s∞ is found from the global mass balance as the unique positive solution
of the algebraic equation

B

2

(
D −DG

DG

)
s2∞ +Bs∞ − (c∗ −A)l = 0. (32)

As we anticipated, the model above does not include a specific mechanism
for deposition (i.e. for adhesion to the cold wall x = 0) and assumes that D
and DG are constant. In the spirit of Sect. 4 we can say that this implies that

G is always below the critical value G∗, i.e. when G∞(0) =
D

DG
Bs∞ < G∗.

The Deposit

A possible way of incorporating deposition in the model above is to assume
that all the wax4 arriving at the cold wall sticks to its surface and does not take
part in the diffusion process. This fact can be modelled introducing a second
free boundary x = σ(t) where σ(t) represent the thickness of the deposit or
assuming that such thickness is negligible and that the wax reaching x = 0
simply leaves the system; this corresponds to replacing the third condition in
(26) by Gx(0, t) = 0. This approach (with or without the free boundary σ(t))
has been used to interpret the data of the cold finger experiment (see [7]); in
[41] the difference of heat between the mixture and the deposit has been also
taken into account.

A basic difficulty of this approach is to evaluate the wax concentration in
the deposit i.e. the amount of oil (or, rather, of mixture) that is “entrapped”
and, if not, to estimate how much the displacement of the liquid caused by
the deposit is relevant to the process [44, 45].

A possible way of answering this question is to perform the experiment
until the asymptotic situation is reached and to weigh the total mass M∞

D

per unit surface of the deposit. Knowing the mass of wax initially present and
the quantity that is still in the solution (at a concentration equal to cSAT (0)),
the mass of the deposited wax M∞

w can be calculated. Hence the mass of
entrapped oil is given by M∞

D −M∞
w . Nevertheless, the experiment is delicate

since it lasts for several hours and its results are still not conclusive [7]. We add

4Or a given fraction of it.
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that, under the assumption of linear dependence of cSAT on T , the gradient
of solubility γ can be evaluated by means of two asymptotic measures M∞

D of
the deposited mass corresponding to two values of T2 (say T̄2 and ¯̄T2). Indeed

γ =
|M̄∞

D − ¯̄M∞
D |

l|T̄2 − ¯̄T2|
.

Hindered Diffusion

An alternative approach consists in prescribing the dependence of D (and of
DG) on G, as was discussed in Sect. 4, or even on G(1 + g).5

Some preliminary simulations have been done (not taking into account g)
and assuming that D is constant for G < G∗ and jumps to zero at G∗. Similar
results were obtained imposing the threshold G∗ not to G but to G+ C.

In all these simulations the deposit was defined as the region where G (or
G+ C) exceeds G∗.

5.2 The Case t3 � t4

If we assume that, in the time scale of the experiment, the segregated wax is
practically immobile the mathematical aspects of the model change totally,
since letting DG tend to zero is a singular perturbation of the problem.

Indeed, if we start from the same initial situation (20) with the natural
boundary condition

Cx(0, t) = Cx(l, t) = 0, (33)

The unsaturated region appears from the very beginning (i.e. t̂ = 0).
Moreover, in order to make the model consistent it is necessary either to
introduce a boundary layer close to x = 0 or to postulate a mechanism of
deposition as we did above.

Let us confine ourselves to the approach used in Sect. 5. More specifically
let us consider its simplest case in which the dissolved wax reaching x = 0 is
assumed to be simply leaving the system.

Thus, we have the following problem

G(x, t) =
{
G0(x) = c∗ − cSAT(x), 0 < x < s(t), t > 0
0, s(t) < x < l t > 0 (34)

C(x, t) = A+Bx, 0 < x < s(t), t > 0 (35)

5In the latter case, we have to assume t6 ∼ t3, t4.
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while, in the unsaturated region we have
⎧⎪⎪⎨
⎪⎪⎩

Ct −DCxx = 0, s(t) < x < l, t > 0
Cx(l, t) = 0, t > 0,
C(s(t), t) = A+Bs(t), t > 0,
s(0)) = l

(36)

with the free boundary condition

DB−DCx(s(t), t) = −G0(s(t))ṡ(t), t > 0. (37)

This is a free boundary problem formally similar to a Stefan-type problem
and its well-posedness in a classical sense is proved in [46].

6 Phase Equilibrium in a Transient Thermal Field:
No Gelification

In this section we will assume that

t2 � t1, t3, t4,� t5, t6

so that the dissolution/segregation of wax can be considered as instantaneous
while heat conduction and wax diffusion occur over the same time scale.

6.1 A General Problem: Weak Solution

Let Qt̃ ≡ Ω × (0, t̃) be a general smooth cylinder in R
3 × R and assume

that initial and boundary conditions are given for temperature on Ω × 0
and ∂Ω × (0, t̃). In the assumptions of Sect. 3 the function T (x, t) can be
found and we can define Q+ as the (so far unknown) subset of Qt̃ where
c(x, t) > cSAT(x, t), i.e. where G(x, t) > 0 and C(x, t) = cSAT (T (x, t)).

Assume that D and DG are constant and define

L1C = Ct −DΔC, L2G = Gt −DGΔC.

Mass conservation implies that

L1C + L2G = 0, in Q+. (38)

But C(x, t) = cSAT(T (x, t)) in Q+ and hence L1C is a known quantity
q(x, t)

q(x, t) =
∂

∂t
cSAT(T (x, t))−DΔcSAT (T (x, t)). (39)

Thus we have
L2G = −q(x, t), in Q+ (40)
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Now set Q− = Qt̃ \Q+ so that

G(x, t) = 0, L1C = 0, in Q−. (41)

If both Q+ and Q− are non-void and are separated by a smooth surface
S, then we have

G = 0, c = C = cSAT, on S (42)[
DG

∂G

∂n
+D

∂C

∂n

]

S+

=
[
D
∂C

∂n

]

S−
(43)

where n is the normal vector to S×{t} and [ ]S+ (resp. [ ]S−) denote the limit
of the quantity in brackets when (x, t) ∈ Q+ (resp. ∈ Q−).

Defining
U(x, t) = c(x, t)− cSAT(T (x, t)) (44)

the problem can be written formally as

Ut −∇ ·
(
D

[
1 +

(
DG

D
− 1
)
H(U)

]
∇U

)
∈ −q(x, t) (45)

where H is the Heaviside graph.
Weak solutions U ∈ Hj,j/2(Qt̃)∩W 1,0(Qt̃) for some j ∈ (0, 1) and for any

t̃ > 0 has been proved to exist in [45].

Remark 1. Note that U is positive in Q+ and negative in Q− and that the
(45) could be interpreted as the model for the diffusion of two immiscible
chemical substances (of concentration U in Q+ and −U in Q−) that diffuse in
a host medium and undergo, on the contact surface, a fast chemical reaction
whose products precipitate. In this picture the term −q(x, t) would represent
a volumetric source/sink.

6.2 One-Dimensional Classical Solutions

In one-dimensional cases, more information can be obtained. Once again we
refer for simplicity to planar symmetry x ∈ (0, l).

Let us fix the temperature at x = l at a value

T (l, t) = T2, t > 0, (46)

and let
T (0, t) = T2 − φ(t), t > 0 (47)

with φ(t) monotonically increasing, φ(0) = 0. To be specific we take φ(t) = λt.
Furthermore, we assume that

T (x, 0) = T2, 0 < x < l, (48)

c(x, 0) = c∗ < cSAT(T2), 0 < x < l, (49)
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so that in the initial situation all wax is dissolved (i.e. the slab is completely
unsaturated).

Of course, no segregation will take place until the time t̄ such that

cSAT(T2 − λt̄) = c∗. (50)

Recall that, in our assumption, the thermal field can be found independently
of the knowledge of C(x, t) and G(x, t).

For t > t̄ a region Q+ ≡ {(x, t) : 0 < x < s(t), t > t̄} will appear where
G > 0 and C(x, t) = cSAT(T (x, t)).

Within Q+ we have

∂G

∂t
−DG

∂2G

∂x2
= − ∂

∂t
cSAT(T (x, t)) +D

∂2

∂x2
cSAT(T (x, t)) (51)

and on x = 0 the following condition has to be fulfilled for t > t̄

[
DG

∂G

∂x

]

x=0

+
[
D
∂

∂x
cSAT(T (x, t))

]

x=0

= 0. (52)

On the other hand, the region Q− ≡ {(x, t) : s(t) < x < l, t > t̄} is such
that G = 0 and hence

∂

∂t
C(x, t) −D ∂2

∂x2
C(x, t) = 0, (x, t) ∈ Q− (53)

and [
∂C

∂x

]

x=l

= 0, t > t̄. (54)

Finally, the free boundary is characterized by the conditions

C(s(t), t) = cSAT(T (s(t), t)), i.e. G(s(t), t) = 0, t > t̄, (55)[
D
∂

∂x
C(T (x, t))

]

x=s(t)+
=
[
D
∂

∂x
cSAT(T (x, t)) +DG

∂G

∂x

]

x=s(t)+
. (56)

This free boundary problem is considered in [46] and its well-posedness in
the classical sense is proved.



58 M. Primicerio

7 Phase Equilibrium in a Transient Thermal Field
with Gelification

Here, we consider cases in which gelification takes place, but its characteristic
time t5 (as well as t2) is negligible with respect to t1, t3 and t4 so that the pro-
cess can be thought of as a change of phase, occurring at a given temperature
depending on temperature.

In this case a phase diagram for oil-wax mixtures can be drawn in the
(c, T ) plane in which (see Fig. 2) zone A corresponds to dissolved wax (T >
TCL(c), i.e. c < cSAT(T )), in zone B we have coexistence of dissolved and
segregated phases, while zones C and D correspond to gel and a TGEL(G) (or,
equivalently, G = GGEL(T )) can be defined. Zone D is separated from C by a
line where T = TDEP (G) (or G = GDEP (T )) and corresponds to a situation
in which diffusivity of wax vanishes. Thus, zone C is called the gel zone and
zone D is called the deposit.

In [47] a model problem in one space dimension is studied with initial and
boundary conditions as in (46)–(49). Thermal field is computed such that
Tt < 0, Tx > 0, Txt > 0.

Since the case DG = 0 is considered, the problem turns out to be a
hyperbolic-parabolic free boundary problem. Indeed the evolution of G in
the saturated zone and in the gel is governed by

T
s

Tcp

Liquid (unsaturated)

Gel
(deposit)

D

C

B

A

Solid E

Mushy
Tgel

ctot = cs(T)+ Ggel(T)

ctot = cs(T)

ctot = cs(T)+ Gdep

ctotc∗0

Gel

T

Fig. 2. Phase diagram for oil-wax mixtures
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∂G

∂t
= λ

∂T

∂t
(57)

if one assumes, for simplicity that cSAT is a linear function of T .
The problem exhibits several free boundaries and its analysis is rather

delicate; results on well-posedness in classical sense and on characterization
of the free boundaries can be found in [47]. As expected (see Fig. 3 where
the qualitative behaviour of the solution is illustrated), the saturated region
disappears in the long run and only an unsaturated region and the deposit
are eventually present.

8 Thermal Equilibrium with Crystallization Kinetics

In this section we will consider situations in which phase transition is not
assumed to occur instantaneously, i.e. we allow t2 to be of the same order of
t3. Hence we assume

t1 � t2, t3, t4, t5 � t6 (58)

and we consider both the macroscopic and the microscopic description of the
crystallization kinetics.
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8.1 A Problem with Uniform Temperature

This situation is elementary from the point of view of its mathematical
description, but provides a useful insight to interpret the experimental results.

Assume the mixture with wax concentration c∗ is initially at a uniform
temperature T0 > TCL. Assume that the boundary of the domain Ω occupied
by the mixture has a prescribed time dependent temperature, e.g.

T (x, t) = T0 − λt, x ∈ ∂Ω, t > 0, (59)

for some λ > 0. Since we are assuming that t1 is negligible w.r.t. the time scale
of the experiment and we disregard the effect of latent heat of crystallization
(see Sect. 2), we have

T (x, t) = T0 − λt, x ∈ Ω, t > 0. (60)

Therefore, starting from the time t∗ such that

T0 − λt∗ = TCL(c∗)

we will have that the segregation (and, eventually, gelification) starts and
G(x, t) will become positive and increasing (and independent on t) for t > t∗.

Its time evolution can be described by (4) or (12) according to the point
of view we want to assume. In both cases we have one parameter to fit the
experimental data (or two if we take (13)).

The results of numerical simulations [48] and the comparison with exper-
imental data, show that it is quite difficult to discriminate between the two
models. Investigation in this sense is still going on.

8.2 A Problem with Constant Thermal Gradient

This problem has been studied in [49] and in [46]. In both papers the kinetics
of crystallization is described by a macroscopic equation. We also note that
in [46] gelification is not taken into account (and thus, in (58), we would have
t5 � t2, t3, t4).

The temperature is stationary and, referring once more to planar symme-
try we will write

T (x, t) = a+ bx, 0 < x < l, t > 0. (61)

We also assume that both cSAT(T ) and cGEL(T ) are linear. Therefore,
they can be written as two linear function of x that we denote by c1(x) and
c2(x) respectively:

c1(x) = a1 + b1x, 0 < x < l, (62)
c2(x) = a2 + b2x, 0 < x < l, (63)
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and the positive constants ai, bi (i = 1, 2) are such that

c1(x) < c2(x), 0 < x < l. (64)

Recalling (4)–(6) and neglecting diffusion of the segregated phase, we have

∂G

∂t
= H(G+ (C − cSAT)+)β[C(x, t) − c1(x)], 0 < x < l, t > 0. (65)

As we noted in Sect. 2, dependence of β on T (x) could also be taken into
account.

Now, let us turn our attention to C(x, t). In [49] it is postulated that
diffusivity of dissolved wax jumps to zero in the gelified part. Hence C will
have to satisfy, in a suitable weak sense, the following equation

Ct − [DH(c2 − c)Cxx] = −Gt, 0 < x < l, t > 0, (66)

where
c(x, t) = C(x, t) +G(x, t), 0 < x < l, t > 0. (67)

Moreover

Cx(0, t) = 0, t > 0, (68)
Cx(l, t) = 0 t > 0, (69)

C(x, 0) = c1(x), 0 < x < l, (70)
G(x, 0) = c∗ − c1(x), 0 < x < l, (71)

assuming that, for t = 0, the mixture is everywhere saturated (c∗ > cSAT

(T (x, 0))).
It can be proved, [49], that

A. There exist two Lipschitz continuous functions s(t), σ(t) such that the half
strip K = (0, l)×(0,+∞) in the (x, t) plane is partitioned in three regions:
(1) The gel region G = {(x, t) : 0 < x < s(t), t > tg, s(tg) = 0}.
(2) The undersaturated region U = {(x, t) : σ(t) < x < l, t > tu, σ(tu) =

l}.
(3) The saturated region S ≡ K \ (U ∪ G).

B. In region G (no mass transfer).

c = c2(x) (72)

C. In region S, c and G ∈ C2, 1(S), and C, Cx, G ∈ C(S̄) and satisfy the
differential equations (65) and (66) with initial conditions (70) and (71),
while boundary conditions (68) and (69) are fulfilled for t < tg and tu
respectively.
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D. In region U , G = 0, C ∈ C2,1(U) and u, ux ∈ C(Ū). Moreover

Ct −DCxx = 0 (x, t) ∈ U , (73)

E. On x = σ(t) it is
G(σ(t), t) = 0, t > tu, (74)

[C]+− = [Cx]+− = 0, t > tu, (75)

where by [ ]+− we denote the jump of the quantity in bracket across the
curve x = σ(t).

F. On x = s(t) it is

C(s(t), t) +G(s(t), t) = c2(s(t)), t > tg, (76)

Cx(s(t), t) = 0, t > tg. (77)

Assuming the microscopic description of the crystallization process simply
consists in substituting (12) or (13)–(65). The results are quite similar as in
the case of uniform temperature.

9 Variable Thermal Fields and Crystallization Kinetics:
Is Diffusion Relevant?

When the domain occupied by the mixture is not “thin” and the waxes that
are contained in the oil are “heavy” enough, neither t1 nor t2 can be thought
to be negligible with respect to the time scale of the experiment. On the
other hand, some authors tend to disregard the influence of diffusion in the
interpretation of experimental results.

In any case, we still retain the assumption that the thermal field can be
determined independently of the knowledge of C(x, t), G(x, t).

Referring to the experimental situation, we consider a cylinder of radius
R, containing a mass M of oil (per unit axial length) at concentration c∗. The
initial temperature T0 is larger than TCL(c∗) while the surface of the cylinder
is maintained, for any t > 0 at a temperature TEXT that is less than TCL(c∗).

The thermal field is the solution of the following parabolic problem
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂T
∂t = D

{
∂2T
∂r2 + 1

r
∂T
∂r

}
, 0 < r < R, t > 0

T (r, 0) = T0, 0 < r < R
∂T
∂r

(0, t) = 0, t > 0
T (R, t) = TEXT , t > 0,

(78)

that can be expressed in series of Bessel functions (see e.g. [50, Chap. VII]).
Neglecting diffusion, we can compute G(x, t) according to the macroscopic

and microscopic crystallization kinetics (as well as to the assumption of phase
equilibrium (3)). The corresponding simulations seem to show that a model
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that does not take diffusion (at least of the dissolved wax) into account
cannot interpret the experimental results. Once again, it is difficult to discrim-
inate between macroscopic and microscopic crystallization kinetics, unless we
confine to the initial stage of the phenomenon.

10 Deposition in Moving Mixtures

As we said in Sect. 1, the final aim of the research is a descriptive and predic-
tive model for wax deposition on the walls of pipelines. There exists a huge
literature on this subject (see e.g. [51–59]) aimed at interpreting the results
on experimental loops and field experiments.

At the present stage of our research program, we can claim that our model
can actually be used in a quite large class of “field” conditions, i.e. in cases
in which quantities like temperature, mean axial velocity, wax concentration
can be thought to be independent of the radial coordinate r within a bulk
core 0 < r < R − δ, δ being the thickness of a boundary layer.

This problem has been studied in [60]. The basic assumption is that the
flow in the pipeline is turbulent and that molecular diffusion is a thin boundary
layer is the only mechanism responsible for deposition.

The model includes the mechanism of ablation that has the effect of
limiting the thickness of the deposit.

Just to give a rough idea of the model, the starting point is to write down
the quasi-steady profile of the temperature in the boundary layer

T (r, z, t) = −a(z, t)(R−δ) ln
(

r

R− δ
)

+Tc(z, t), R−δ < r < R, z > 0, t > 0

(79)
In (79) a(z, t) is a coefficient that has to be determined and Tc is the

temperature of the bulk of the fluids; in general the analysis may take into
account the variation of δ with z and t that will be ignored here to simplify
the discussion.

Imposing thermal balance allows us to find a(z, t) that represents the ther-
mal gradient in the boundary layer as a function of z and t. Since the model
applies to oils for which the characteristic time of crystallization is negligi-
ble w.r.t. the time scale of the experiment, the thickness of the deposit can
be found applying the techniques we used in Sect. 5. As long as the “core”
remains saturated, an explicit approximated formula for the thickness of the
deposit can be found

δ =
Rt

TCLt0

T0 − Tl
μ

exp
[
−2πDT

μQ
z

]
H(TCL − TW )6 (80)

6In (80), we did not write the ablation term.
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where Q is the volumetric flow rate, Tl is the temperature of the surroundings
and

μ =
k

hR
(81)

where k is the thermal conductivity of the mixture and h the heat transfer
coefficient between the pipe and the surroundings.

Since TW (z) is the temperature of the wall and H is the Heaviside function,
it is clear that the line will have a “deposit free zone” zF that can be easily
calculated.

For the case in which the core may desaturate, the analysis has some
additional difficulties and we refer the reader to the original paper.

As a conclusion, we report that the model is consistent with field exper-
iments made on two different pipelines, where the discrepancy between
measured and calculated quantities is below 10%.
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Summary. The functionalities of the chebfun and chebop systems are surveyed.
The chebfun system is a collection of Matlab codes to manipulate functions in
a manner that resembles symbolic computing. The operations, however, are per-
formed numerically using polynomial representations. Chebops are built with the
aid of chebfuns to represent linear operators and allow chebfun solutions of differ-
ential equations. In this article we present examples to illustrate the simplicity and
effectiveness of the software. Among other problems, we consider edge detection in
logistic map functions and the solution of linear and nonlinear differential equations.

1 Introduction

For a long time there have been two kinds of mathematical computation: sym-
bolic and numerical. Symbolic computing manipulates algebraic expressions
exactly, but it is unworkable for many applications since the space and time
requirements tend to grow combinatorially. Numerical computing avoids the
combinatorial explosion by rounding to 16 digits at each step, but it works
just with individual numbers, not algebraic expressions.

The chebfun system introduced in 2004 by Battles and Trefethen [1] aims
to combine the feel of symbolics with the speed of numerics. The idea is
to represent functions by Chebyshev expansions whose length is determined
adaptively to maintain an accuracy of close to machine precision. The system
has been significantly extended since its introduction. Among other develop-
ments, it now handles piecewise smooth functions on arbitrary intervals [2]
and linear operators [3]. The latter extension was made possible by T. A.
Driscoll who implemented the chebop class. In this article, we review the
main features of the software and demonstrate its effectiveness through many
examples, including solution of differential equations.
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The chebfun system is implemented in object-oriented Matlab. One of
the guiding principles in its design is the analogy of commands available for
vectors and those implemented in the chebfun package for functions. Once a
chebfun object has been created, commands like diff, sum and norm can be
used to compute its derivative, definite integral, and norm, respectively.

The simplicity of its use is illustrated in the following example, where the
number of roots, maximum and L1-norm of the function f(x) = J0(x) sinx
are computed in the interval [0, 100].

>> f = chebfun(@(x) besselj(0,x).*sin(x), [0 100]);
>> length(roots(f))
ans = 64
>> max(f)
ans = 0.644562281456927
>> norm(f,1)
ans = 6.295294435933753

Similarly, the chebop extension to linear operators relies on underlying
polynomial-based spectral methods. The analogy here, to some extent, is
between linear operators and matrices. With chebops, commands such as diff
and sum are used to define differential and integral operators, while “*” and
“\” are used to apply operators in forward and inverse modes. The following
commands, for example, can be used to differentiate f(x) = sin(x) in [−π, π]
using chebop notation.

[d,x] = domain([-pi,pi]);
D = diff(d);
df = D*sin(x);

One of the main strengths of chebops is how simple the syntax is for solving
differential equations. To solve the boundary value problem

u′′(x) + u′(x) + u(x) = sin(x), x ∈ (−π, π), u(±π) = 0,

for instance, one only needs to define the operator and appropriate boundary
conditions and type \,

L = D^2 + D + eye(d) & ’dirichlet’;
sol = L\sin(x);

This article is organized in two main sections. In Sect. 2 we review basic
aspects of the chebfun system, including piecewise polynomial representations
and apply the chebfun edge detector to locate break points of piecewise con-
stant functions that are limits of logistic map sequences. In Sect. 3 we briefly
describe the syntax of the chebop system and give examples to illustrate how
simple and effective it is.
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2 Chebfuns

In this section we give some insight into the underlying theory and imple-
mentation of the system. More detailed information can be found in [1]
and [4].

2.1 Funs: Smooth Representations on [−1, 1]

The original chebfun class implemented by Battles in 2004 for smooth func-
tions on [−1, 1] is now called fun. A chebfun object consists of one or more
funs. Each smooth piece is mapped to the interval [−1, 1] and represented by
an expansion in Chebyshev polynomials of the form

fN(x) =
N∑

j=0

λjTj(x), x ∈ [−1, 1], (1)

where Tj(x) = cos(j arccos(x)). When constructing a fun object, the system
computes the coefficients λj by interpolating the target function f at N + 1
Chebyshev extreme points,

xj = cos
πj

N
, j = 0, . . . , N.

The polynomial degree N is automatically determined so that the represen-
tation is as accurate as possible in double precision arithmetic.

Polynomial interpolation in Chebyshev nodes is known to be near-optimal
for approximating functions that are smooth, converging geometrically for
analytic functions [1]. Fast Fourier transforms (FFTs) can be used to map
function values f(xj) to coefficients λj , and vice versa, in O(N logN) opera-
tions. Figure 1 presents the polynomial representation of the Bessel function
J0 and its corresponding Chebyshev coefficients. The construction process
begins by sampling the target function at 2n + 1 points, with n = 3, 4, . . . .
The optimal degree N is then determined such that |λj | is close to zero,
relative to the coefficient of largest magnitude, for all j > N .

The left graph of Fig. 1 was obtained with the following commands:

f = chebfun(@(x) besselj(0,x),[0 100]); plot(f,’.-’)

and the coefficients were plotted using

c = chebpoly(f); semilogy(flipud(abs(c)),’.’)

The execution of the first command constructs the chebfun object from an
anonymous function evaluated in the specified interval. Once a chebfun object
has been created, there are a number of methods that can be used to operate
on it. The list of methods can be obtained by typing methods chebfun. The
syntax is, in most cases, the same as the usual Matlab calls for vectors. The
integral of f from 0 to 100, for instance, is obtained with the command sum.
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Fig. 1. Left: Chebfun representation by a polynomial of degree 88 of the Bessel
function J0 on the interval [0, 100]. The dots mark the 89 Chebyshev interpola-
tion points. Right: semilog plot of the magnitude of the corresponding Chebyshev
coefficients

>> sum(f)
ans = 0.922662556960163

All digits in this answer are correct except the last one. Integrals are computed
efficiently by Clenshaw–Curtis quadrature in O(N) operations once the coef-
ficients are obtained with the aid of the FFT. Similarly, cumsum(f) returns
the indefinite integral of the chebfun f.

Rootfinding plays a key role in the chebfun system. The method we use
makes use of a recursion proposed by Boyd [5]. The main idea behind this
approach is that the roots of a polynomial of the form (1) are the eigenvalues
of an N ×N colleague matrix [6]. To avoid the cubic growth of the number of
operations required by eigenvalue computations, the algorithm uses recursive
subdivision of intervals to bring the degree of the polynomial representation
to at most 100, improving the overall operation count to O(N2).

Here is an example where rootfinding is used to obtain all local maxima
of f.

df = diff(f);
xcrit = roots(df);
ddf = diff(df);
xmax = xcrit(ddf(xcrit)<0);
plot(f), hold on, plot(xmax,f(xmax),’o’)

The result is displayed in Fig. 2. Also shown in this figure is the global
minimum, which is computed in a similar way with just one function call:
[ymin,xmin]=min(f); plot(xmin,ymin,’*’).

The evaluation of a chebfun at arbitrary points is carried out using the
barycentric formula introduced by Salzer [7, 8]. The formula has been proved
to be stable by Higham in [9] and requires O(MN) operations to evaluate a
chebfun at M points. The plot command, for instance, relies on evaluations
at thousands of points.
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Fig. 2. Local maxima (opencircle) and global minimum (asterisk) of J0 in [0,100]

2.2 Piecewise Representations

The chebfun system also handles piecewise smooth functions [2]. Piecewise
representations can result from certain operations on smooth functions such
as

abs, sign, floor, ceil, round, fix, min, max

among others. They may also be defined using the chebfun constructor. In the
construction precess, each smooth piece may be explicitly defined or obtained
through an edge detection procedure.

The main components of a chebfun with several pieces are the endpoints
of the interval, the breakpoints, and the corresponding funs, which are objects
representing each smooth piece. When breakpoints are introduced by oper-
ations on chebfuns, they are, in most cases, obtained by rootfinding. In the
following code segment, for instance,

>> x = chebfun(@(x) x);
>> f = sin(4*x.^2).*floor(1.5*sin(5*x));
>> norm(f,1)
ans = 0.936713707137759

zerofinding is used twice. To find the breakpoints of the piecewise constant
chebfun floor(1.5*sin(5*x)), the system finds all values of x that satisfy
1.5 sin(5x) − n = 0 for n = −1, 0, 1. To compute the L1 norm of f , it first
obtains a piecewise representation of |f |, which also requires rootfinding.

Chebfun also comes with an efficient edge detector, since in many situa-
tions, one may want to construct a representation from samples of a function.
To this end, the constructor works in two splitting modes that may be selected
by the user: splitting on and splitting off – the current default is on.
The following example illustrates the edge detector in action:
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Fig. 3. Plot of the chebfun corresponding to f(x) = x2 round(cos x3)

splitting on
f = chebfun(@(x) x.^2.*round(cos(x.^3)),[-2 3]);
plot(f)

The result is shown in Fig. 3. The breakpoints are stored in the field
f.ends. The edge detection algorithm uses bisection and finite differences
to locate jumps in function values accurately to machine precision, as well as
jumps in first, second and third derivatives [2].

In splitting off mode, the system disables the splitting algorithm. This
mode is recommended when the target functions are smooth since in such cases
manipulating global approximations is often more efficient. Most operations
in the chebop system are restricted to this mode.

The Logistic Map

Simple examples of piecewise smooth functions arise throughout applied math-
ematics and are easily manipulated in the chebfun system. For one set of
examples, see the online chebfun guide [10]. Here, we shall push the system
harder with a more challenging example. Many chebfun computations finish
in a fraction of a second; the results we shall show have taken minutes.

We use the logistic map to illustrate some strengths and limitations of
piecewise polynomial representations. The map is given by the recurrence
formula

xk+1 = rxk(1− xk), (2)

with xk ∈ [0, 1] and r ∈ [0, 4], and is often used to model simple population
dynamics and to illustrate key properties of dynamical systems such as chaos.
The bifurcation diagram for the logistic map is shown in Fig. 4.

Suppose we are interested in representing the map functions, gk
r : x0 �→ xk,

and studying their convergence. For r = 4, it is possible to derive a simple
polynomial representation [11],
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Fig. 4. The famous bifurcation diagram for the logistic map, showing period
doubling as a route to chaos

gk
4 (x0) =

1− cos(2k arccos(1 − 2x0))
2

,

but in general, nonrecursive expressions are not available. The maps gk
r are

polynomials of order 2k, but their chebfun representations often have smaller
degrees. For 1 < r < 3, the functions gk

r converge to a constant, 1 − 1/r, if
we exclude the singular endpoints: x = 0 and x = 1 . Here are the degrees of
chebfuns for gk

2.5:

>> xk = chebfun(@(x) x, [0.001 .999]);
>> for k = 1:51

xk = 2.5*xk.*(1-xk); deg(k) = length(xk)-1;
end

>> deg
deg =
Columns 1 through 9

2 4 8 16 32 64 112 178 284
Columns 10 through 18
434 574 544 554 522 522 522 496 488

Columns 19 through 27
488 474 470 390 390 388 388 354 352

Columns 28 through 36
352 352 338 330 330 258 258 256 256

Columns 37 through 45
158 158 158 158 158 106 106 106 106

Columns 46 through 51
106 72 72 0 0 0

Despite the initial exponential growth in degree, the length of the chebfuns
reaches a maximum of 574, and for k ≥ 49, the chebfun representations of gk

2.5
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Fig. 5. Left: piecewise chebfun representation of gk
3.2, k = 2, 4 and 1,000. Right:

convergence plot of g2k
3.2 in the L2-norm

are constant functions with the correct value 0.6. In the exact arithmetic of
symbolic computing, for k = 49 the degree would be 562,949,953,421,312.

It is also interesting to look at the convergence of these functions in the
two-cycle region, 3 < r < 3.44 . . . , where the subsequences {g2k−1

r } and {g2k
r }

converge to piecewise constant functions. With the aid of the chebfun auto-
matic edge detection algorithm, we can represent these limiting functions and
compute the rates for convergence as follows for r = 3.2:

g1000 = chebfun(@(x) logistic(3.2,1000,x), [0 0.5]);
xk = chebfun(@(x) x, domain(g1000));
delta = zeros(40,1);
for k = 1:80

xk = 3.2*xk.*(1-xk);
if mod(k,2)==0, delta(k/2) = norm(xk-g1000); end

end
plot(g1000), figure, semilogy(delta,’.’)

The result is shown in Fig. 5 together with the graphs of g2
3.2 and g4

3.2. The
first line of the execution above requires the function logistic.m:

function x = logistic(r,n,x)
for k=1:n, x = r*x.*(1-x); end

Notice that the functions gk
r are symmetric about x = 0.5, so in the exam-

ple above we only considered the interval [0, .5]. The subsequences {g2k−1
r }

and {g2k
r } cannot converge uniformly because of the jumps in the limit. In

the (default) L2-norm, on the other hand, they converge very fast. The right
plot in Fig. 5 indicates exponential convergence. We point out that the cheb-
fun representation of g1000

3.2 has 31 break points, most of them near x = 0, with
the spaces between them decaying exponentially.

A similar cascade of break points can be observed in the 4-cycle region.
In fact, as the parameter r is increased, the number of jump locations also



Chebfun: A New Kind of Numerical Computing 77

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

x0

g 3
.5

  
 (
x

0
)

1
0
0
0

Fig. 6. Piecewise chebfun representation of g1000
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Fig. 7. Left: plot of g1000
3.5 near the unstable fixed point x = 1−1/3.5. Right: semilog

plot of the distance between breakpoints of g1000
3.5

increases. Figure 6 shows the chebfun representation for r = 3.5 and k = 1,000,
g1000 = chebfun(@(x) logistic(3.5,1000,x), [0.001 0.999]). Notice
that now there are several clusters of break points. A detailed plot of
g1000
3.5 around the unstable fixed point x = 1 − 1/3.5 = 0.714285 . . . is

presented in Fig. 7. The semilog plot on the right of this figure shows
that the distance between neighboring break points decreases exponentially
near some critical values. In this plot, ξk denotes jump locations which
were recovered from the field g1000.ends. This graph was generated with
semilogy(diff(g1000.ends)).

Because these subsequences of polynomials are converging to piecewise
constant functions, the pointwise convergence is slower near the location of a
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Fig. 8. Number of iterations needed to converge (to a tolerance of 10−5) to the
2-cycle and 4-cycle limits as a function of x0 and r. The grayscale map shows the
log10 of the number of iterations. The bifurcation diagram is superimposed (solid
lines). Figures 5 and 6 correspond to vertical sections through this plot at r = 3.2
and r = 3.5, respectively

jump in the limit function. Figure 8 shows a grayscale map of the logarithm
of the number of iterations required for a subsequence {gk

r (x0)} to converge
to its limit, to a tolerance of 10−5. This figure is not the result of a chebfun
computation; it is provided to give insight into the convergence of chebfun
computations. Notice that near bifurcation points, convergence is very slow,
regardless of the starting value. Away from these regions, convergence is fast
almost everywhere. The locations of slow convergence in this case seem to
coincide with the jump locations in the limiting function. Similar convergence
maps have been presented in [12].

Finally, the logistic map can also be used to illustrate some limitations
of piecewise polynomial representations. Near bifurcation points, for instance,
chebfun representations of the maps gk

r can only be obtained for very small
values of k, since the degree of the representations grows exponentially with
k and the limit is not achieved in thousands of iterations. Similarly, near or
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at the chaotic regimes, the maps are impossible to represent for large k due
to the complexity of these functions.

3 Chebops

The chebop system developed by Driscoll et al. [3] is an extension of the cheb-
fun system to handle linear operators. Here, the analogy is between matrices
and continuous operators rather than vectors and functions.

A chebop object is defined by a domain, a chebfun, or another chebop.
Identity, differentiation and integration operators, for instance, are defined
using the domain class:

[d,x] = domain(0,1);
D = diff(d) % differentiation
I = eye(d) % identity
S = cumsum(d) % integration

We point out that domain returns a domain object and a chebfun, in this
case x. The multiplication operator, on the other hand, is defined by a cheb-
fun and the exponential operator by a chebop. These operators can then be
combined to generate other chebops. For example, L = D^2 + 5*I defines the
operator L : u �→ ∂2u/∂x2 + 5u.

In chebops, multiplication has been overloaded to apply operators to
chebfuns and other chebops. This can be illustrated as follows:

u = sin(3*pi*x)
f = L*u

Now, suppose that we would like to solve the differential equation Lu = f
for u. Of course, the backward operation requires boundary conditions for
uniqueness. For example, if the desired boundary conditions are homogeneous
Dirichlet at x = 0 and Neumann at x = 1, we augment L with

L.lbc = ’dirichlet’ % left boundary condition
L.rbc = ’neumann’ % right boundary condition

and the solution of the differential equation can then be obtained using the
backslash command, which has been overloaded to invert chebops:

sol = L\f

The algorithms used in the chebop system are described in [3]. When invert-
ing these operators, as in the solution of differential equations, chebops rely
on adaptive spectral collocation methods that are also based on Chebyshev
polynomials [13,14]. Lazy evaluations of the associated spectral discretization
matrices are performed to compute the solution. As in the chebfun system,
the polynomial degree of the solution of a differential equation is determined
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by the relative magnitudes of Chebyshev coefficients. In the present imple-
mentation, most chebops operations are restricted to global representations,
i.e., to splitting off mode.

We give a number of examples that illustrate the use of chebops in the
solution of linear and nonlinear ODEs, PDEs, and eigenvalue problems. The
codes used to solve each problem are provided here, and more examples can
be downloaded from the chebfun website [10].

3.1 Linear Differential Equations with Variable Coefficients

Consider the hypergeometric equation

xy′′ + (5− x)y′ + y = sin(5x), x ∈ (1, 6), (3)

subject to homogeneous Neumann boundary conditions. The chebop syntax
to obtain a solution is

[d, x] = domain([1 6]);
D = diff(d);
L = diag(x)*D^2 + diag(5-x)*D + eye(d) & ’neumann’;
u = L\sin(5*x);
plot(u)

Here diag is used to define the multiplication operator and & to define the
boundary conditions. When this code is executed, the system adaptively deter-
mines that the desired solution can be represented to approximately machine
precision by a polynomial of degree 47. The plot is shown in the left of Fig. 9.
The maximum value of the residual in this calculation is

>> norm(L*u-sin(5*x),inf)
ans = 3.925115787950517e-11
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Fig. 9. Chebop solution of two boundary value problems. Left: the hypergeometric
equation (3). Right: the boundary layer problem (4) with ε = 0.02, 0.04, . . . , 0.2
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Our next example is the singularly perturbed problem [15],

εy′′ − xy′ + y = 0, x ∈ (−1, 1), y(−1) = −2, y(1) = −1. (4)

Chebops handle boundary layers well, as the clustering of Chebyshev nodes
provide good resolution near the endpoints of the interval. The following
commands generate plots for several values of ε:

figure, hold on
[d,x] = domain(-1,1);
D = diff(d);
for ep = 0.02:0.02:0.2

L = ep*D^2-diag(x)*D+eye(d);
L.lbc = -2; L.rbc = -1;
plot(L\0)

end

The solutions correspond to polynomials of degrees 64, 50, 42, 38, 36, 34, 34,
28, 28, 28, and are presented on the right of Fig. 9.

3.2 The Orr–Sommerfeld Eigenvalue Problem

The chebop system also overloads the command eigs to solve eigenvalue
problems. The eigenvalues of the 1D Laplacian operator on [0, π], for instance,
can be easily computed with

>> d = domain(0,pi);
>> L = -diff(d,2) & ’dirichlet’;
>> eigs(L,6)
ans =

0.999999999999991
3.999999999999823
8.999999999999659

15.999999999999831
25.000000000000089
35.999999999999893

The command eigs has been overloaded instead of eig because, in Matlab,
the latter is used to return all eigenvalues of a matrix, which is not possible for
differential operators. The details of which eigenvalues are returned by eigs
can be found in [3].

Our next example is an Orr–Sommerfeld generalized eigenvalue problem
arising in the eigenvalue stability analysis of plane Poiseuille fluid flow. The
Orr–Sommerfeld equation is given by

d4u

dx4
− 2α2 d

2u

dx2
+ α4u− iαR

[
(1− x2)

(
d2u

dx2
− α2u

)
− 2u

]
= λ

(
d2u

dx2
− α2u

)
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Fig. 10. Rightmost eigenvalues of the Orr–Sommerfeld operator in the complex
plane for R = 5772.22 and α = 1.02056

where R is the Reynolds number and α a wave number. Orszag showed in [16]
that R = 5772.22, α = 1.02056 are critical values, with one of the eigenvalues
crossing to the right half of the complex plane. We repeat his eigenvalue
computation using chebops.

[d,x] = domain(-1,1);
I = eye(d); D = diff(d);
R = 5772.22; alpha = 1.02056;
B = D^2 - alpha^2;
A = B^2/R - 1i*alpha*(2+diag(1-x.^2)*B);
A.lbc(1) = I; A.lbc(2) = D;
A.rbc(1) = I; A.rbc(2) = D;
e = eigs(A,B,50,’LR’);

We confirm Orszag’s result by showing these eigenvalues in Fig. 10 and
computing their largest real part:

>> max(real(e))
ans = 6.129513257887425e-09

3.3 Linear Partial Differential Equations

Certain linear partial differential equations can also be handled by chebops.
In the following example, we use the exponential operator expm to advance
in time. Writing a linear partial differential equation in the form ut = Lu, we
have u(t+Δt, x) = exp(ΔtL)u(t, x), assuming that exp(ΔtL) is well defined.
The following code solves the convection-diffusion equation,

ut = 0.05uxx − xux, x ∈ (−2, 2), (5)
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Fig. 11. Solution to the PDE (5) at several times t. The initial condition is shown
by a thick line

with homogeneous Dirichlet boundary conditions and initial condition

u(0, x) = −|x+ 0.5|+ |x− 0.5| − |x− 1|+ 2.

[d,x] = domain(-2,2);
splitting on
u = chebfun(@(x) -abs(x+0.5)+abs(x-0.5)-abs(x-1)+2, d);
splitting off
L = 0.05*diff(d,2)-diag(x)*diff(d);
dt = 0.2; expmL = expm(dt*L & ’dirichlet’);
plot(u,’k’, ’linewidth’,4), hold on
for t = 0:dt:3

u = expmL*u;
plot(u,’k’)

end

The result of this execution is presented in Fig. 11. Notice that despite the
lack of smoothness in the initial condition, chebops can be used in the solution
of this problem as u is smooth for all t > 0.

Chebops can also be used to solve nonlinear PDEs with implicit or semi-
implicit time-stepping schemes. One example, involving the nonlinear cubic
Schrödinger equation, is presented in [3].

3.4 Nonlinear Boundary-Value Problems

While linear equations can be solved with “\”, nonlinear problems require
iterative algorithms.1 In our next example we use Newton’s method together
with chebop technology to solve the boundary-value problem

1Solutions to nonlinear boundary value problems have been automated in
Chebfun Version 3 via automatic differentiation. The example in this section can
now be solved with “\”.



84 R.B. Platte and L.N. Trefethen

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

3

4

x

u
k
 (
x
)

Fig. 12. Newton’s method solution of (6). Intermediate iterates uk are shown
together with the initial guess (dashed) and the final solution (thick line) – cf.
Fig. 9.26 in [17]

εu′′ + 2(1− x2)u+ u2 = 1, x ∈ (−1, 1), (6)

with homogeneous Dirichlet boundary conditions. This equation, due to Car-
rier, is discussed at length by Bender and Orszag [17]. The problem has many
solutions, some of which can be approximated by boundary-layer theory. The
following code was used to generate the solution plotted in Fig. 12. The figure
also shows the intermediate Newton method iterates.

[d,x] = domain(-1,1);
D2 = diff(d,2); F = diag(2*(1-x.^2));
u = 2*(x.^2-1).*(1-2./(1+20*x.^2));
eps = 0.01; nrmdu = Inf;
plot(u,’--k’), hold on
while nrmdu > 1e-10

r = eps*D2*u + F*u + u.^2 - 1;
A = eps*D2 + F + diag(2*u) & ’dirichlet’;
A.scale = norm(u); delta = -(A\r);
u = u+delta; nrmdu = norm(delta)
plot(u,’k’)

end
plot(u,’k’, ’linewidth’,4)

3.5 Ground State Solution of the 3D Cubic Schrödinger Equation

Our final example, which comes to us from Roudenko and Holmer [20], is
related to radial solutions of the cubic Schrödinger equation in R

3,

iut +Δu + |u|2u = 0.
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Using the separation of variables u(x, t) = eitv(x), we obtain a nonlinear
equation for v,

− v +Δv + |v|2v = 0. (7)

This equation has an infinite number of solutions in H1(R3). The solution of
minimal mass is positive, radial, and exponentially decaying and is called the
ground state [18].

We shall seek a positive radial solution to (7) with exponential decay.
Because the current implementation of the chebfun and chebop systems is
restricted to bounded domains, we perform the change of variables r = r̃/(1−
r̃), r̃ ∈ [0, 1], and Q(r̃) = v(r̃/(1− r̃)). An equation for Q can then be written
as

r̃
[−Q+ (1− r̃)4Qr̃r̃ +Q3

]
+ 2(1− r̃)4Qr̃ = 0, r̃ ∈ (0, 1), (8)

with boundary conditions Qr̃(0) = Q(1) = 0. As in the previous example, we
use Newton’s method to find a solution.

[d,r] = domain(0,1); D = diff(d); D2 = D^2;
Q = chebfun(@(r) 4*sech(2*r./(1-r+eps)), d);
nrmdu = Inf;
while nrmdu > 1e-13

res = r.*(Q.^3-Q+(1-r).^4.*(D2*Q)) + 2*(1-r).^4.*(D*Q);
A = diag(r)*(diag(3*Q.^2)-eye(d)+diag((1-r).^4)*D2)+ ...

2*diag((1-r).^4)*D;
A.rbc = ’dirichlet’ ; A.lbc = ’neumann’;
A.scale = norm(Q); delta = -(A\res);
Q = Q+delta; nrmdu = norm(delta)

end
plot(Q)

The resulting plot is shown in Fig. 13.
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Fig. 13. The solution of (8) computed with Newton’s method
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4 Concluding Remarks

A brief review of the chebfun and chebop systems has been presented and
several examples provided to demonstrate how simple and effective the system
is. Some capabilities of the software have not been mentioned here, such as
quasimatrices [19]. The system is evolving and efforts are currently being
made to extend it to handle unbounded domains via mapped polynomial
representations. We hope that the change of variables performed in the final
example may be handled automatically in future releases.

The computations presented in this paper were carried out with the Octo-
ber 2008 release of chebfun Version 2. The code is freely available under a
BSD-type software license, and can be found together with a user’s guide and
other information at http://www.maths.ox.ac.uk/chebfun/.
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Minisymposium Asymptotic Analysis
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Many of the problems facing mathematicians and scientists involve such dif-
ficulties as non-linear governing equations and complex boundary conditions
that preclude their exact solution. Consequently, solutions are approximated
using numerical techniques, analytic techniques or combinations of both.
Foremost among the analytic techniques are the systematic methods of per-
turbations (asymptotic expansions) in terms of a small or large parameter or
coordinate.

The advantage of allowing parameters to become small or large is that in
surprisingly many cases, even when there do exist explicit expressions for the
functions we are interested in, this procedure does yield simple asymptotic
approximations, when the influence of less important factors falls off.

In recent years, asymptotic methods have been used extensively in sev-
eral fields of pure and applied mathematics including algebra, geometry,
analysis, differential and difference equations, probability theory, number
theory, special functions and combinatorics.

This section contains works by speakers in the Minisymposium MS10
Asymptotic Analysis. The articles cover a wide range of topics, including
singular perturbations, asymptotic inversion, special functions and entropic
measures.

Jesús Sánchez-Dehesa, from the Universidad de Granada, studies very
highly excited (Rydberg) states of hydrogenic atoms with energy levels

E = − Z2

2η2
, with η = n +

D − 3
2

, n = 1, 2, . . .

where Z is the nuclear charge and D is the dimension. He calculates their
Shannon information entropy S(ρ), defined by

S(ρ) = −
∫

ρ(r) log ρ(r)dr,

A.D. Fitt et al. (eds.), Progress in Industrial Mathematics at ECMI 2008,

Mathematics in Industry 15, DOI 10.1007/978-3-642-12110-4 6,

c© Springer-Verlag Berlin Heidelberg 2010



92 D. Dominici and R.B. Paris

where ρ(r) denotes the quantum-mechanical probability of finding an electron
in the volume element (r, r + dr), asymptotically as n → ∞. To accomplish
this, he uses asymptotic properties of Laguerre and Gegenbauer polynomials.

Diego Dominici from the State University of New York at New Paltz, ana-
lyzes the zeros of the Hermite polynomials Hn(x) asymptotically as n→ ∞.
Denoting by ζn1 > ζn2 > · · · > ζnn the zeros of Hn(x), enumerated in decreasing
order, he derives the asymptotic approximation ζnj ∼

√
2n sin(τnj ), where τnj

is given by the Kapteyn series

τnj =
π

2
− π

2
(4j − 1)N−1 −

∞∑
k=1

1
k

Jk[(1−N−1)k] sin
(

4j − 1
N

kπ

)
,

where N = 2n+ 1.
Ester Pérez Sinuśıa from the Universidad Pública de Navarra, studies the

importance of the error function in the approximation of the solution of the
singularly perturbed convection-diffusion equation

−εΔU +−→v · −→∇U = 0

with discontinuous boundary conditions, where ε > 0 is a small perturbation
parameter and −→v is a constant vector. She presents examples in two and
three dimensions, including a quarter plane, an infinite strip, a rectangle and
an octant.

Renato Spigler from the Università “Roma Tre”, discusses the singular per-
turbation of parabolic partial differential equations with or without boundary
layers. This type of problem is characterised by the presence of a parameter ε
that tends to zero to produce either a reduction in the order of the equation
or a change in its type. The usual treatment of such problems involves the
introduction of a boundary layer. However, there are cases where no bound-
ary layer is required during the passage to the limit. Simple model examples
are given in which conditions on the data are obtained for there to be no
boundary layer as ε→ 0+.

Nico Temme from the Centrum voor Wiskunde en Informatica, considers
the asymptotic inversion of cumulative distribution functions of the form

Fa(η) =
√

a

2π

∫ η

−∞
e−

1
2aζ

2
f(ζ) dζ,

where a > 0, η ∈ R, and f is analytic and real on R with f(0) = 1. In
particular, the normal distribution, the incomplete gamma function and the
incomplete beta function can be written in this form. As a particular example,
he analyzes the hyperbolic distribution, given by

F (y) = C

∫ y

−∞
e−α
√
δ2+(x−μ)2+β(x−μ) dx, y ∈ R,

where α > 0, |β| < α, δ and μ are arbitrary real constants and C is the
normalizing constant which gives F (∞) = 1.



Asymptotics of Orthogonal-Polynomial
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Summary. The asymptotics of entropic integrals of Laguerre and Gegenbauer poly-
nomials is used to calculate the Shannon information entropy of Rydberg atoms (i.e.
giant atoms of hydrogenic type), which provides a bulky spreading measure of their
charge density much more appropriate than the standard deviation or Heisenberg
measure. These systems are stepping stones from the quantum to classical worlds.
Indeed because of its exaggerated properties, a Rydberg atom is a good labora-
tory for investigating how quantum and classical physics correspond when the latter
involves irregular (chaotic) orbits.

1 Introduction

Rydberg atoms [1,2] are swollen atoms with energy, i.e. giant atoms of hydro-
genic type. They were theoretically predicted in the early days of Quantum
Mechanics and first detected in 1965 in the interstellar space, but they were
only produced in 1970 at Argonne National Laboratory. Nowadays, atoms in
Rydberg states mimic circular and elliptic classical orbits of specified eccen-
tricity by means of laser excitation in presence of perpendicular electric and
magnetic fields.

They present exaggerated properties such as long radiative lifetimes and
strong long-range interactions, which allow them to be good laboratories for
investigating how quantum and classical physics correspond when the lat-
ter involves irregular (chaotic) orbits. Indeed, they probe the shadowy realm
where the quantum world of the atom gives way to the familiar classical world.
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Moreover, they show evidence for chaos in which the motion of the Rydberg
electrons become hard, even impossible to predict. For these reasons, Ryd-
berg atoms are considered stepping stones from the quantum to the classical
worlds.

Here we investigate the spatial extension of the quantum-mechanical den-
sity of a D-dimensional Rydberg system in position space by means of the
Shannon information entropy given by

S(ρ) = −
∫
ρ(r) log ρ(r)dr (1)

This quantity not only controls the bulky spreading of the atomic charge
but also it is an uncertainty measure much more appropriate than the
renowned standard deviation or Heisenberg measure, mainly because the lat-
ter gives a large weight to the tails of the density. Moreover, the Shannon
entropy is a basic variable of the emerging information theory of quantum-
mechanical systems (see e.g. [3]) which is the foundational pillar of the modern
quantum information and computation [4].

Here we first express the Shannon entropy of general hydrogenic systems
in terms of entropic functionals of Laguerre and Gegenbauer polynomials, and
then we use their asymptotics to accurately determine the Shannon entropy
of the Rydberg states (i.e. highly excited states) of hydrogenic atoms.

This work is structured as follows. First, in Sect. 2, the Schrödinger wave
equations of a particle moving in a D-dimensional central potential is given and
its physical solutions (the wavefunctions of the allowed quantum-mechanical
states) are presented. In this section, the associated probability density is
shown to be separated out in two radial and angular parts, which are basically
controlled by the Rakhmanov densities of Laguerre and Gegenbauer polyno-
mials respectively. Then, in Sect. 3, the Shannon entropy of general hydrogenic
systems is expressed in terms of the entropic functionals of these orthogonal
polynomials. Finally, in Sect. 4, the asymptotics of these functionals is used
to obtain the Shannon entropy of the highly excited (Rydberg) atomic states
in terms of the quantum numbers, the nuclear charge and the dimensionality.

2 The Schrödinger Equation of a D-Dimensional
Central Potential

The quantum-mechanical motion of a particle (say, an electron) in the
D-dimensional Coulomb potential V (r)=−Z/r is governed by the Schrödinger
equation (

−1
2
∇2
D −

Z

r

)
Ψ(r) = E Ψ(r)

in the appropriate atomic units, where ∇D denotes the gradient operator
associated to the D-dimensional position vector r = (r, θ1, θ2, . . . , θD−1). The
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physical solutions of this equation, which correspond to the wavefunctions of
our system, are characterized (see e.g. [3, 5]) by the energy eigenvalues

E = − Z
2

2η2
, with η = n+

D − 3
2

; n = 1, 2, 3, . . . , (2)

and the eigenfunctions

Ψn,l,{μ}(r) = Rn,l(r)Yl,{μ}(ΩD−1), (3)

where η and (l, {μ}) ≡ (l ≡ μ1, μ2, . . . , μD−1) denote the radial hyperquantum
number and the angular hyperquantum numbers associated to the variables
(θ1, θ2, . . . , θD−1) ≡ Ω, which may have all values consistent with the inequal-
ities l ≡ μ1 ≥ μ2 ≥ · · · ≥ |μD−1| ≡ |m| ≥ 0. The radial part Rn,l(r) is given
by

Rn,l(r) =
(
λ−D

2η

)1/2 [
ω2L+1(r̂)
r̂D−2

]1/2

L̃2L+1
η−L−1(r̂), (4)

where L̃αk (x) denotes the orthonormal Laguerre polynomials of degree k
and parameter α, and the ground orbital angular momentum hyperquantum
number L and the adimensional parameter r̂ are

L = l+
D − 3

2
, l = 0, 1, 2, . . . and r̂ =

r

λ
, with λ =

η

2Z
. (5)

The angular part Yl,{μ}(ΩD−1) is given by the hyperspherical harmonics
[6]

Yl,{μ}(ΩD−1) =
1√
2π
eimϕ

D−2∏
j=1

C̃
αj+μj+1
μj−μj+1

(cos θj)(sin θj)μj+1 , (6)

with αj = 1
2 (D − j − 1) and C̃λk (x) denotes the orthonormal Gegenbauer

polynomials of degree k and parameter λ.
Then, the quantum-mechanical probability to find the electron in the

volume element (r, r + dr) is

ρn,l,{μ}(r)dr =
∣∣Ψn,l,{μ}(r)

∣∣2 dr = R2
n,l(r)r

2dr
∣∣Yl,{μ}(ΩD−1)

∣∣2 dΩ (7)

≡ Dn,l(r)r2dr ×Π(Ω)dΩ,

where Dn,l(r) ≡ R2
n,l denotes the radial probability density which gives the

probability per radial interval to find the particle between r and r + dr, and
Π(Ω) ≡ |Yl,{μ}(ΩD−1)|2 describes the spatial profile of our system.

3 The Shannon Entropy of Hydrogenic Systems

The intrinsic randomness or uncertainty of our system (i.e. a hydrogenic atom
with nuclear charge Z) is best defined by (1) and (7) which characterize the
Shannon entropy of the density ρn,l,{μ}(r).
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It turns out that

S(ρn,l,{μ}) = S(Rn,l) + S(Yl,{μ}) (8)

where the radial part is given by

S(Rn,l) = −
∫ ∞

0

rD−1R2
n,l(r) logR2

n,ldr

= A(n, l,D)− 1
2η
E1

(
L̃2L+1
η−L−1

)
−D lnZ (9)

and the angular part is

S(Yl,{μ}) = −
∫

SD−1

|Yl,{μ}(ΩD−1)|2 ln
∣∣Yl,{μ}(ΩD−1)

∣∣2 dΩD−1

= B(l, {μ}, D) +
D−2∑
j=1

E2

(
C̃
αj+μj+1
μj−μj+1

)
. (10)

Relations (4) and (6) were used in the second equality of (9) and (10),
respectively. We have obtained the values

A(n, l,D) = −2l
[
2η − 2L− 1

2η
+ ψ(η + L+ 1)

]
+

(ΩD−1)3η2 − L(L+ 1)
η

+ ln
[
(η − L− 1)!

(η + L)!

]
− ln

[
2D−1(η − L− 1)!
ηD+1(η + L)!

]

B(l, {μ}, D) = ln 2π − 2
D−2∑
j=1

μj+1

×
[
ψ(2αj + μj + μj+1)− ψ(αj + μj)− ln 2− 1

2(αj + μj)

]
,

for the terms A and B. The entropic functionals E1(ỹn) and E2(ỹn) of the
polynomials {ỹn(x)}, orthonormal with respect to the weight function ω(x),
are defined by

E1(ỹn) = −
∫ ∞

0

xω(x)ỹ2
n(x) ln ỹ2

n(x)dx, (11)

and

E2(ỹn) = −
∫ +1

−1

ω(x)ỹ2
n(x) ln ỹ2

n(x)dx, (12)

respectively. It is well known that the weight functions of Laguerre and
Gegenbauer polynomials, L̃αk (x) and C̃λk (x), are given by

ωα(x) = xαe−x; ω∗
λ(x) = (1− x2)λ−

1
2 ,
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respectively. The Gegenbauer entropic functional E2(C̃λk ) involved in the eval-
uation of the angular entropy given by (10) can be numerically computed quite
accurately by means of the recent algorithm of Buyarov et al. [7]. The Laguerre
entropic functional E1(L̃αk ) involved in the radial entropy given by (9) can be
analytically calculated only for the very few lowest degrees of the polynomial.
In the general case it is a formidable open task. Here, in the next section, we
solve this problem in the asymptotic case, i.e. for large value of the degree.

4 Shannon Entropy of Rydberg Atoms and Asymptotics
of Laguerre and Gegenbauer Polynomials

Here we calculate the Shannon entropy of highly and very highly excited (Ryd-
berg) states of hydrogenic atoms with nuclear charge Z and dimensionality
D, which is the main result of this work. To do that we have to determine
the value of S(ρn,l,{μ}) given by (8) for large n. Since the angular part does
not depend on n, everything reduces to the evaluation of the radial entropy
S(Rn,l) for large values of n. To solve this problem we need to use the following
asymptotical results [8] for the entropic integral E1(L̃αk ) of the orthonormal
Laguerre polynomials L̃αk for fixed α > −1 and k →∞:

E1(L̃αk ) = −
∫ ∞

0

xωα(x)
[
L̃αk (x)

]2

ln
[
L̃αk (x)

]2

dx

= −6k2 + (2α+ 1)k ln k + ln(2π)− 2α− 4 + o(1). (13)

The combination of (8), (9) and (13) have allowed us to obtain the value

S(ρ) = 2D lnn+ (2−D) ln 2 + lnπ+D− 3−D lnZ+S(Yl,{μ})+ o(1), (14)

for the position Shannon entropy of the Rydberg D-dimensional hydrogenic
state characterized by the angular hyperquantum numbers (l, {μ}) and a very
large radial quantum number n. The value of S(Yl,{μ}) is a fixed number,
which does not depend on n and can be numerically computed in an accurate
way as indicated previously.

In momentum space we can work in a similar manner with the correspond-
ing wavefunctions, which are basically controlled by Gegenbauer polynomials.
The use of the asymptotics for the entropic integralE2(C̃αk ) of the orthonormal
Gegenbauer polynomials C̃αk found [9–11] as

E2(C̃αk ) = −
∫ +1

−1

ω∗
α(x)

[
C̃αk (x)

]2

ln
[
C̃αk (x)

]2

dx

= lnπ + (1− 2α) ln 2− 1 + o(1), (15)
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has allowed us to obtain the value

S(γ) = −D lnn+(D+2) ln 2+ lnπ−D−2+D lnZ+S(Yl,{μ})+ o(1), (16)

for the momentum Shannon entropy of the Rydberg D-dimensional hydrogenic
state characterized by the angular hyperquantum numbers (l, {μ}) and a very
large principal quantum number n.

Finally, let us highlight that the net Shannon entropy sum S(ρ) + S(γ)
has the value

S(ρ) + S(γ) = D lnn+ 4 ln 2 + 2 lnπ − 5 + 2S(Yl,{μ}) + o(1),

which can be shown to fulfill the entropic uncertainty relation of Bialynicki-
Birula and Mycielski [12].
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8. Dehesa, J.S., Yáñez, R.J., Aptekarev, A.I., Buyarov, V.: J. Math. Phys. 39(6),

3050–3060 (1998)
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Asymptotic Analysis of the Zeros of Hermite
Polynomials
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Summary. We analyze the zeros of the Hermite polynomials Hn(ξ) asymptotically
as n→∞. Our formulas involve some special functions and they yield very accurate
approximations.

1 Introduction

The Hermite polynomials Hn(x) are defined by [1]

Hn(x) = n!
�n

2 �∑
k=0

(−1)k

k!(n− 2k)!
(2x)n−2k (1)

for n = 0, 1, . . . . They satisfy the orthogonality condition [2]

∞∫

−∞
e−x2

Hm(x)Hn(x)dx =
√
π2nn!δnm

and the reflection formula

Hn(−x) = (−1)nHn(x). (2)

The Hermite polynomials have been extensively studied since the pioneer
article of C. Hermite [3] in 1864 (they were previously considered by Fourier
and Chebyshev). They have many applications in the physical sciences and are
particularly important in the quantum mechanical treatment of the harmonic
oscillator [4]. We refer the interested reader to [5] for further properties and
references.

The zeros of the Hermite polynomials are very important in applied math-
ematics and related fields. Several authors have investigated their properties
and connections with the zeros of other special functions, see [6–10] and [11].
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In this article we analyze the asymptotic behavior of the zeros of Hn(x) as
n → ∞, using and the asymptotic results derived in [12]. We obtain asymp-
totic approximations that can be expressed in terms of Kapteyn series and
present some numerical computations showing the accuracy of our results.

2 Previous Results

In [12, Theorem 5], we studied the differential-difference equation satisfied by
the Hermite polynomials

Hn+1 +H ′
n = 2xHn,

and obtained, among other results, the asymptotic formula

Hn

[√
2n sin(θ)

]
∼

√
2

cos(θ)
exp

{n
2

[ln(2n)− cos(2θ)]
}

(3)

× cos
{
n

[
1
2

sin(2θ) + θ − π

2

]
+
θ

2

}
, n→∞,

with−π2 < θ < π
2 . This formula is valid in the interval

(−√2n,
√

2n
)

where the
zeros of Hn(x) are located and therefore can be used to study the asymptotic
behavior of the zeros.

In Fig. 1 we graph

Hn

[√
2n sin(θ)

]
exp

{
−n

2
[ln(2n)− cos(2θ)]

}

and √
2

cos(θ)
cos

{
n

[
1
2

sin(2θ) + θ − π

2

]
+
θ

2

}
,

with n = 20.
The approximation is very good throughout the interval

(
0,
√

2n
)

and it
breaks down when x approaches the value

√
2n, in the neighborhood of which

a new formula in terms of the Airy function needs to be considered (see [12,
Theorem 3]).

We note that writing
ξ =
√

2n sin(θ)

and considering the leading term of (3) as n→∞, we obtain

Hn(ξ) ∼
√

2 exp
{
n

2
[ln(2n)− 1] +

ξ2

2

}
cos

(
n
π

2
− ξ
√

2n
)
,

in agreement with formula (4.14.9) in [13].
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Fig. 1. A comparison of the exact (solid curve) and asymptotic (circle) values of
H20(x) in the interval

(
0,
√

2n
)

3 Zeros

Let us denote by ζn1 > ζn2 > · · · > ζnn the zeros of Hn(ξ), enumerated in
decreasing order. It then follows from (3) that ζnj ∼

√
2n sin(τnj ), where τnj

satisfies

n

[
1
2

sin(2τnj ) + τnj −
π

2

]
+
τnj
2

=
π

2
− jπ, 1 ≤ j ≤ n.

In general, we can rewrite an equation of the form

n

[
1
2

sin(2t) + t− π

2

]
+
t

2
= A

as Kepler’s equation
E − ε sin(E) = M, (4)

with
E = 2t, M = 2

2A+ nπ

2n+ 1
, ε = − 2n

2n+ 1
. (5)

It is well known [14] that the solution of (4) can be expressed as a Kapteyn
series

E = M + 2
∞∑
k=1

1
k

Jk(kε) sin(kM), (6)

where Jk(·) is a Bessel function of the first kind.
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Table 1. A comparison of the exact and asymptotic values of the positive zeros of
H20(ξ)

ζ20
j

√
40 sin(τ 20

j )

5.3875 5.3939
4.6037 4.6056
3.9448 3.9450
3.3479 3.3482
2.7888 2.7891
2.2550 2.2550
1.7385 1.7382
1.2341 1.2337
.73747 .73827
.24534 .24532

Thus, using (5) in (6) with A = π
2 − jπ, we obtain

τnj = π
1 + n− 2j

2n+ 1
+

∞∑
k=1

1
k

Jk

(
− 2n

2n+ 1
k

)
sin

(
2π

1 + n− 2j
2n+ 1

k

)
, (7)

for 1 ≤ j ≤ n. Using the reflection formula [15] Jk(−x) = (−1)kJk(x), we can
write (7) as

τnj =
π

2
− π

2
(4j − 1)N−1 −

∞∑
k=1

1
k

Jk
[
(1−N−1)k

]
sin

(
4j − 1
N

kπ

)
, (8)

where N = 2n+ 1.
Formula (8) is, to our knowledge, new and has not been considered before.

In Table 1 we compare the exact positive zeros of H20(ξ) with the asymptotic
approximation (8).

We note that the approximation is worse for j = 1 (largest zero) since (3)
breaks down as θ → π

2 . It would be interesting to see if there exists a Kapteyn

series which is exactly equal to arcsin
(
ζn

j√
2n

)
for all values of j and n.
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Summary. We show the importance of the error function in the approximation of
the solution of singularly perturbed convection-diffusion problems with discontinu-
ous boundary conditions. It is observed that the error function (or a combination
of them) provides an excellent approximation and reproduces accurately the effect
of the discontinuities on the behaviour of the solution at the boundary and interior
layers.

1 Introduction

We consider the model convection-diffusion problem −εΔU+−→v ·−→∇U = 0 in Ω
where Ω is an open set in R

2 or R
3, ε > 0 and −→v is a constant vector. Besides

the small perturbation parameter ε, other sources of singular behaviour for
the solution of singular perturbation problems are the discontinuities of the
boundary data. We consider for this problem Dirichlet boundary data piece-
wise constant: U |∂Ω = 0 or 1 with jump discontinuities (of height 1) at some
points in ∂Ω.

In [1–7], we have analyzed this problem in a number of two and three-
dimensional unbounded and bounded domains Ω with discontinuous boundary
data at ∂Ω. For all these problems, we have found that the solution in the
singular limit ε→ 0+ and away from the discontinuity points of the boundary
data can be approximated in the form

U = U0(1 + O(
√
ε)), (1)

where U0 is an error function or a combination of error functions. In the next
section we describe the asymptotic approximation and layer structure of the
solutions found in examples considered in our earlier papers. In the conclusion
section we discuss the (in our opinion) universality of the complementary error
function as basic approximant of the solution of this kind of problems.
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In what follows, we will consider the polar coordinates x = r sinφ, y =
r cosφ, −→r := (x, y), w := 1/(2ε) and ζ(x, y) :=

√
r − x sinβ − y cosβ. In

all the problems analyzed we consider U ∈ C(Ω̃) ∩ D2(Ω) and U bounded
on bounded subsets of Ω̃, where Ω̃ is the closed set Ω̄ indented at the
discontinuity points of the boundary conditions.

2 Examples in Two-Dimensional Domains

In this section we consider −→v = (sinβ, cosβ), with β ∈ [0, π/2).

2.1 A Quarter Plane

For (x, y) ∈ Ω̃1 := Ω̄1 \ {(0, 0)} and 0 ≤ β < π/2 the solution of the problem
{
−εΔU +−→v · −→∇U = 0, (x, y) ∈ Ω1 := (0,∞)× (0,∞),
U(x, 0) = 0, U(0, y) = 1,

(P1)

can be approximated in Ω̃1 by (1) with U0(x, y) = erfc[
√
wζ(x, y)] for β = 0

and
U0(x, y) =

1
2

erfc
[√

wζ(x, y)
]
, for 0 < β < π/2.

Then, the first order approximation is a complementary error function that
exhibits an interior layer of width O(

√
ε) and parabolic level lines of equation

r−−→v ·−→r = C · ε near the half-line t−→v , t > 0 (see Fig. 1b). For further details
we refer to [1].

2.2 An Infinite Strip

For (x, y) ∈ Ω̃2 := Ω̄2 \ {(a, 0), (b, 0)} and 0 ≤ β ≤ π/2, the solution of
{
−εΔU +−→v · −→∇U = 0, (x, y) ∈ Ω2 := (−∞,∞)× (0, 1),
U(x, 0) = χ[a,b](x), U(x, 1) = 0, a < b,

(P2)

(0,0)

r0

y

Ω*
1

0

1

x y

1

U0(x,y)

v

β

Fig. 1. (a) Indented region Ω̃1 (b) First order approximation U0
π/4(x, y) to the

solution of (P1) for ε = 0.1 and β = π/4. Near the half-line t−→v , t > 0 an internal
parabolic layer occurs
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in Ω̃2 is of the form (1) with

U0(x, y) =
1 + δβ,π/2

2

{
sign

[
β − arctan

(
x− a
y

)]
erfc

(√
wζ(x − a, y)

)

− e2(y−1)w cosβsign
[
β − arctan

(
x− a
2− y

)]
erfc
(√

wζ(x − a, 2− y)
)

− sign
[
β − arctan

(
x− b
y

)]
erfc

(√
wζ(x − b, y)

)

+ e2(y−1)w cosβsign
[
β − arctan

(
x− b
2− y

)]
erfc

(√
wζ(x − b, 2− y)

)}

+
1
2

[
χA(x, y) + χA0(x, y)− e2(y−1)w cosβ (χB(x, y) + χB0(x, y))

]
.

The region A is limited by the lines y = 0, y = 1, x = a + y tanβ and x =
b+ y tanβ. Region B is limited by the lines y = 0, y = 1, x = a+ (2− y) tanβ
and x = b+ (2− y) tanβ.

In this case, U0
β is a combination of four error functions plus step functions

multiplied by exponential functions of y, and it exhibits two interior layers of
width O(

√
ε) and level lines of equation ζ(x − c, y) = constant with c = a, b.

It presents a regular boundary layer of width O(ε) near the piece of the
outflow boundary situated between the points (a+ tanβ, 1) and (b+ tanβ, 1)
and it also exhibits two corner layers of area O(

√
ε) × O(ε) near the points

(a+ tanβ, 1) and (b + tanβ, 1) (see Fig. 2b). The reader is referred to [1] for
further information.

2.3 A Rectangle

For (x, y) ∈ Ω̃3 := Ω̄3 \ {(0, 0), (πa, 0)} and β ∈ (0, π/2], the solution of
⎧
⎪⎨
⎪⎩
−εΔU +−→v · −→∇U = 0, (x, y) ∈ Ω3 := (0, πa)× (0, π),∣∣∣∣
U(x, 0) = 1,
U(x, π) = U(0, y) = U(πa, y) = 0,

(P3)

y

x
1

−1
y=1

U0 (x,y)

x

y

(a,0) (b,0)

r0r0

1

0

00

Fig. 2. (a) Indented region Ω̃2 (b) Graph of the first order approximation, U0
β(x, y),

to the solution of the problem (P2) for ε = 0.1 and β = 0



108 J.L. López et al.

where 0 ≤ β < 2π and a > 0, can be approximated in Ω̃3 by (1) with

U0(x, y) = ewy cosβ sinh[(π − y)w cosβ]
sinh[πw cosβ]

×
{
χA(x, y)− e2w(x−πa) sin βχB(x, y)

+

(
1 + δβ,π/2

)
2

[
sign

(
β − arctan

(
x

y

))
erfc

√
wζ(x, y)

− e2(x−πa)w sinβsign
(
β − arctan

(
2πa− x

y

))
erfc

√
wζ(2πa− x, y)

+e2(x−πa)w sinβsign
(
β − arctan

(
πa− x
y

))
erfc
√
wζ(πa − x, y)

]}
.

The regions A and B are defined by A := {(x, y) ∈ Ω3, y < x cotβ} and B :=
{(x, y) ∈ Ω3, (πa− x) cotβ < y < (2πa− x) cotβ}.

Then, the first order approximation of the solution of (P3) is a linear
combination of error functions and elementary functions. The error functions
present interior/boundary layers of width O(

√
ε). The exponential factors are

giving boundary layers of width O(ε) (see Fig. 3b). For more details we refer
to [5].

3 Examples in Three-Dimensional Domains

3.1 An Octant

For (x, y, z) ∈ Ω̃4 := Ω4 ∪ {(x, y, 0);x, y > 0} ∪ {(0, y, z); y ≥ 0, z > 0} ∪
{(x, 0, z);x ≥ 0, z > 0} (see Fig. 4a), the solution of the problem
{
−εΔU + Uz = 0, in Ω4 := (0,∞)× (0,∞)× (0,∞),

U(x, y, 0) = 1, U(0, y, z) = U(x, 0, z) = 0, for (x, y, z) ∈ Ω̃4,

(P4)

can be approximated in Ω̃4 by (1) with

y

x

βU=0

U=1

U=0

U=0
1

Ub

x

u =0
u=1

u=0
u=0

y

Fig. 3. (a) Indented region Ω̃3 (b) First order approximation U0
β(x, y) to problem

(P3) for ε = 0.1 and β = 0
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x

y

z

1

0

0

U(x,y,4)

x

y

Fig. 4. (a) Domain Ω4 and Dirichlet conditions of problem (P4) (b) Graph of the
first order approximation for the solution of problem (P4) for ε = 0.1

(πa,πb,0)
(πa,0,0)

(0,0,π)

(0,0,0) (0,πb,0)

(0,πb,π)

(πa,0,π)
(πa,πb,π)

y

x

z

1

0

0

0
0

0

U(x,y,2)

x

y

Fig. 5. (a) Domain Ω5 and Dirichlet conditions of problem (P5) (b) Graph of the
first order approximation for the solution of problem (P5) for ε = 0.1

U0(x, y, z) = erf
√
wζ(x, z)erf

√
wζ(y, z).

The solution of this problem has boundary layers along the planes x = 0 and
y = 0 of size O(

√
ε) (see Fig. 4b). For further information consult [4, 6].

3.2 A Cuboid

For (x, y, z) ∈ Ω̃5 := Ω̄5 \
{{(0, y, 0), (πa, y, 0); 0 ≤ y ≤ πb} ∪ {(x, 0, 0),

(x, πb, 0); 0 ≤ x ≤ πa}} (see Fig. 5a), the solution of the problem
⎧
⎪⎨
⎪⎩

−εΔU + Uz = 0 in Ω5 := (0, πa)× (0, πb)× (0, π),

U(0, y, z) = U(πa, y, z) = U(x, 0, z) = 0,

U(x, πb, z) = U(x, y, π) = 0, U(x, y, 0) = 1,
for (x, y, z) ∈ Ω̃5.

(P5)

can be approximated in Ω̃5 by (1) with

U0(x, y, z) =
[
erfc
√
ωζ(x, z)− erf

√
ωζ(x− πa, z)

]

×
[
erfc

√
ωζ(y, z)− erf

√
ωζ(y − πb, z)

]

× eωz sinh[ω(π − z)]
sinh[ωπ]

.

Then, the first order approximation of the solution of problem (P5) is a
combination of products of error functions. See [7] for further information.
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4 Conclusions

It is clear from the above examples that the (complementary) error function
plays a fundamental role in the approximation of these problems in Ω̃ (away
from the discontinuities of the boundary conditions) as ε→ 0+. It seems that
the error function shows up as a universal approximant. But this fact is not
surprising: the complementary error function

u(x, y; x̃, ỹ) :=
1
2

erfc
[

1√
2ε
ζ(x− x̃, y − ỹ)

]
, (x̃, ỹ) fixed, (2)

is an exact solution of the 2D convection-diffusion partial differential equation
with constant convection vector −→v and satisfies approximately the Dirichlet
data: consider the line defined by the convection vector −→v emanating from a
discontinuity point (x̃, ỹ) ∈ ∂Ω defined by {(x, y) | ζ(x − x̃, y − ỹ) = 0}, then
u(x, y; x̃, ỹ) � 0 at one side of this line and u(x, y; x̃, ỹ) � 1 at the other
side, approximating in this way the boundary condition that only takes the
values 0 or 1. Moreover, this function always lies between the values 0 and 1
and those limiting values are approached rapidly. It exhibits a rapid transi-
tion from one value to another when −→r crosses the above mentioned line. A
“maximum principle” states that the solution of this problem must have its
values between 0 and 1, so function (2) reproduces this property of the exact
solution. Furthermore, the arguments of the complementary error function
describe approximately the shape and size of the singular layers as well as
their location. The singular parameter ε controls the incline of the singular
layers: the smaller ε is, the steepest the shape of U is on the singular layer.
The size of the transition region (singular layer) is O(

√
ε).

The layer structure of the solution of these problems is described by the
(complementary) error function or combinations of error functions. From a
numerical point of view, these functions can be very useful to design stable
numerical methods. For the construction of local grids their arguments give
an idea about the mesh size and location of refined meshes. Moreover, in the
analysis of any numerical method it is important to derive sharp bounds for the
derivatives of the solutions in terms of ε. The derivation of the approximations
obtained in [1–7] may be used to obtain those bounds.
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1 Introduction

Singular perturbations of partial differential equations (PDEs) are encoun-
tered due to the nature of certain physical models (e.g., small viscosity in
Navier–Stokes equations), or to analyze some asymptotic limiting behavior
(long time, long distances). In such cases, sometimes, certain usually nondi-
mensional groups of terms are first identified, e.g., electron to ion mass ratio.
Besides, singular perturbations are encountered for regularization purposes,
e.g., in the numerical treatment of hyperbolic or ultraparabolic PDEs, like the
Fokker-Planck equation, through parabolic regularization.

We should remind that by “singular perturbation” we refer to cases when
the order of a given PDE formally drops when, e.g., a certain parameter is set
to zero, hence the order of the PDEs or its type changes.

Applications are numerous. Just recall an industrial application, that to
industrial plasma – wall interaction in semiconductor etching [1]. This is only
to stress the importance of the boundary conditions (BCs) at the wall for
kinetic equations.

In both, regular and singular perturbation problems, only in few instances,
mostly with ordinary differential equations (ODEs), full asymptotic series
expansions in the (e.g.) smallness parameter can be obtained. In the ODEs
theory, we can identify two steps: a formal part and analytic validity part.

Most often, such expansions do not exist, and one should be satisfied
with “lowest order” information, i.e., just obtaining the limiting behavior of
solutions.

2 Boundary Layer or Not?

In singular perturbation problems, as a rule, boundary layers (and/or internal
layers) arise as the small parameter goes to zero. The solution behaves differ-
ently in some subdomains of the space domain, and this requires a different
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asymptotic treatment. This is due to a nonuniform behavior on the entire
space-domain. There are however cases when no boundary layer arises.

In [2], suitable approach was proposed for the search of conditions on data
of certain given singularly perturbed problems, under which no boundary
layer exists (i.e., is not required). In such cases, there exists a sequence of
regularized solutions, uεn , which converges uniformly to a solution, v, of the
corresponding limiting problem, as εn → 0+. Such conditions are suitable
“higher-order compatibility conditions” on the boundary data.

3 Boundary Layer

An example of this kind (indeed, the most frequent) is the linear Fokker-
Planck equation on a half-space, in the Kramers–Smoluchoswski limit [3],

ε2
∂f

∂t
+ εv

∂f

∂x
=
∂2f

∂v2
+
∂(vf)
∂v

for t > 0, x > 0, −∞ < v < +∞, ε > 0 small. Of course, here f = fε.
Another is given by the nonlinear analogue of the previous case [4],

ε2
∂f

∂t
+ εv

∂f

∂x
= δ(f)

∂2f

∂v2
+ θ(f)

∂(vf)
∂v

,

with f replaced by the number density

n = n(x, t) :=
∫ +∞

−∞
f(x, v, t) dv

in δ and θ. In fact, here f = fε and n = nε. Again, we have also the nonlinear
problem [5–7]

ε2
∂f

∂t
+ εv

∂f

∂x
=
∂(vf)
∂v

+
∂2f

∂v2
+ εα [F (n)f + S(x, v, t)],

where is the number density, and α = 0, 1, 2, . . ., e.g. Here f = f ε and n = nε.,
ε is related to the mean free path, and the kinetics of certain chemical reactions
can be described. According to the relative strength of the nonlinearity [α],
transport or chemical reaction effects dominate: the lowest-order density is
then governed by pure diffusion, reaction-diffusion, or chemical equilibrium.

4 No Boundary Layer

It was shown that no boundary layer is needed, deriving ultraparabolic equa-
tions of the Fokker–Planck type from their parabolic regularizations. The
explanation rests on the high regularity enjoyed by solutions in such problems.
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In [2], the conjecture was that, if a given singularly perturbed problem,
subject to certain initial condition (IC) and BCs, (1) has a unique solution,
uε(x, y, t), for every ε > 0, and (2) there exists a unique solution, v(x, y, t),
to the reduced equation, subject to the same IC and BCs, (that is to the
equation obtained setting formally ε = 0), then the passage to the limit as
ε→ 0+ does not require any boundary layer.

Simple model examples are:
1. A hyperbolic limiting equation,

ut = εuyy + uy, on Π := {(y, t) ∈ [0, 1]× [0,+∞)},
with

(u, uy)|y=0 = (u, uy)|y=1, u(y, 0) = ϕ(y),

being ϕ(y) ∈ C∞(R) and periodic with period 1.
Then, uε ∈ C∞(Π) and

‖uε(y, t)‖Ck(Π) ≤Mk,

for all k = 1, 2, . . ., and all ε ∈ (0, 1), Mk being independent of ε.
2. On Q∞ := {(x, y, t) ∈ [0, 1]2×[0,+∞), an ultraparabolic limiting equation,

ut = uxx + εuyy + uy,

with u|x=0 = 0, u|x=1 = 0, (u, uy)|y=0 = (u, uy)|y=1, u(x, y, 0) = ϕ(x, y).
Then, if the compatibility conditions

D2n
x ϕ|x=0 = 0, D2n

x ϕ|x=1 = 0

hold for y ∈ R and all n ∈ N0, then there exists a unique classical solution
uε(x, y, t) ∈ C∞(Q∞) with

‖uε(x, y, t)‖Ck(Q∞) ≤Mk.

for all k = 1, 2, . . ., and all ε ∈ (0, 1), Mk being independent of ε. Note
that here we have Dirichlet data in x and periodicity in y. The compatibility
conditions above are the necessary conditions in order to obtain a classical
smooth solution.
3. Three BV problems were considered, on QT := {(x, y, t) ∈ [0, 1]2 × [0, T ]},
for limiting ultraparabolic equations, like

vt + k(x, y, t)vy = a(x, y, t)vxx + b(x, y, t)vx + c(x, y, t)v + f(x, y, t),

using the notation: Γ := Γ1 ∪ Γ2, being Γ1 and Γ2 that part of the boundary
of QT where y = 0 and k(x, y, t) > 0, and where y = 1 and k(x, 1, t) < 0,
respectively (which can be empty).
3.1. Dirichlet BCs in x:

v|x=0 = 0, v|x=1 = 0, v|Γ = ψ(x, y, t), v(x, y, 0) = ϕ(x, y).
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3.2. Neumann BCs in x:

vx|x=0 = 0, vx|x=1 = 0, v|Γ = ψ(x, y, t), v(x, y, 0) = ϕ(x, y).

3.3. Mixed-type BCs in x:

[vx + β(x, y, t)v]x=0 = 0, [vx + γ(x, y, t)v]x=1 = 0,

v|Γ = ψ(x, y, t), v(x, y, 0) = ϕ(x, y).

There exists a unique (weak) solution to each of these problems.
Three singularly perturbed problems for the parabolic equation

ut + k(x, y, t)uy = εuyy + a(x, y, t)uxx

+ b(x, y, t)ux + c(x, y, t)u + f(x, y, t), (1)

with a(x, y, t) ≥ a0 > 0 (of course, here u = uε) were considered:
A) on the unbounded domain Q := {(x, y, t) ∈ R×[0, 1]×[0, T ]}, with periodic
BCs in y, (u, uy)|y=0 = (u, uy)|y=1, and IV u(x, y, 0) = ϕ(x, y);
B) on the bounded domain QT := {(x, y, t) ∈ [0, 1]2 × [0, T ]}, with homoge-
neous BCs in x and periodic BCs in y, u|x=0 = 0, u|x=1 = 0, (u, uy)|y=0 =
(u, uy)|y=1, and IV u(x, y, 0) = ϕ(x, y);
C) a Dirichlet problem on the bounded domain QT , with homogeneous BCs,

u|x=0 = 0, u|x=1 = 0, u|y=0 = 0, u|y=1 = 0,

and IV u(x, y, 0) = ϕ(x, y).
The purpose is to find conditions on the data under which no boundary

layer is needed, when ε→ 0+.
Hypothesis 1. – If all coefficients and source term in (1) are periodic in y, and
the IV satisfies the corresponding compatibility conditions, then the singular
perturbation problems (A) and (B) have no boundary layers. The same is true
for problem (C), if

k|y=0 = f |y=0 = 0, k|y=1 = f |y=1 = 0, (2)

which are the Dirichlet BCs (w.r.t. y) for k and f .
Hypothesis 2. – If all coefficients and source term in (1) satisfy the con-
ditions in (2), and if the IC, ϕ, satisfies the corresponding compatibility
condition, then the singular perturbation problem has no boundary layer.
These hypotheses have been proved to be true in precise theorems.

In [2], it was suggested that no boundary layers are required whenever
singularly perturbed and limiting problems both possess a unique solution,
subject to all the same boundary conditions. In that statement, absence of
boundary layers should be understood as having solutions uniformly bounded
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along with its first derivatives. However, “weak” boundary layers – so to
say – i.e., the occurrence of possible unboundedness of the second derivative
is not forbidden. This case was kindly pointed by Martin Stynes.

It may be considered remarkable that the previous phenomenon occurs
even with some nonlinear equations, namely the nonlinear integro-differential
equation

∂f

∂t
=
∂2f

∂ω2
+

∂

∂ω
[(ω −Ω −K(θ, t))f ]− ω∂f

∂θ
,

on the unbounded slab QT := {(θ, ω, t, Ω) ∈ [0, 2π] ×R × [0, T ]× [−G,G]},
where

K(θ, t) := K

∫ G

−G

∫ +∞

−∞

∫ 2π

0

g(Ω′) sin(θ′ − θ)f(θ′, ω′, t, Ω′) dθ′dω′dΩ′,

subject to the IC and BCs f |t=0 = f0(θ, ω,Ω), f |θ=0 = f |
θ=2π

, [2,8,11]. This
equation governs the time evolution of populations of nonlinearly coupled
random oscillators (a generalization of the Kuramoto equation). Indeed, we
observed the “phenomenon of no boundary layer” first when studying such
problem, and what is remarkable is, rather, that it occurs in linear problems.

Therefore we have the Cauchy problem

(Pε) Lεuε = f(x, y, t) in HT ∩ {t > 0},
uε(x, y, 0) = ϕ(x, y) for (x, y) ∈ R2,

where HT := R×R× [0, T ],

Lεuε := uεt + k(x, y)uεy − εuεyy − a(x, y)uεxx − b(x, y)uεx − c(x, y)uε,

and the “reduced problem”

(P0) L0u0 = f(x, y, t),

etc., formally obtained setting ε = 0 in Pε above.
First, ε-uniform estimates are obtained for bounded classical solutions of

the parabolic problem Pε in the anisotropic Sobolev space W 3,2,1
2 (QT ), where

QT := {(x, y, t) ∈ R × [0, 1]× [0, T ]}. Hence, no BL is required. Then, using
this fact, existence of global in time strong solutions to the ultraparabolic prob-
lem P0 has been established. Here, coefficients and r.h.s. are allowed to be
unbounded [9]. Results apply even to certain nonlinear integro-differential
PDEs, such as that above, generalizing the Kuramoto equation. Optimal
decay estimates for global in time strong solutions to such equations were
also established [10].
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Summary. The inversion of cumulative distribution functions is an important
topic in statistics, probability theory and econometrics, in particular for comput-
ing percentage points of the distribution functions. The numerical inversion of these
distributions needs accurate starting values, and for the standard distributions pow-
erful asymptotic formulas can be used to obtain these values. It is explained how a
uniform asymptotic expansions of a standard form representing several well-known
distribution functions can be used for the asymptotic inversion of these functions.
As an example we consider the inversion of the hyperbolic cumulative distribution
function.

1 Introduction

We consider functions of the form

Fa(η) =
√

a

2π

∫ η

−∞
e−

1
2aζ

2
f(ζ) dζ, (1)

where a > 0, η ∈ R, and f is analytic and real on R with f(0) = 1.
The special case f = 1 gives the normal distribution

P (η
√
a) =

√
a

2π

∫ η

−∞
e−

1
2aζ

2
dζ = 1

2erfc
(
−η
√
a/2

)
, (2)

where erfc z is the complementary error function

erfc z =
2√
π

∫ ∞

z

e−t2 dt. (3)

As shown in [1, 2] and [3, Chap. 10] the incomplete gamma functions
and the incomplete beta function – which are the basic functions for several
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distribution functions – can be written in this form. In these references we have
used uniform asymptotic expansions for inverting these distribution functions
for large values of one or two parameters.

We explain how the incomplete gamma function

P (a, x) =
1

Γ (a)

∫ x

0

ta−1e−t dt (4)

can be written in the standard form (1). Let λ = x
a and t = aτ . Then

Γ ∗(a)P (a, x) =
√

a

2π

∫ λ

0

e−a(τ−ln τ−1) dτ

τ
, (5)

where

Γ ∗(a) = Γ (a)a−aea
√

a

2π
= 1 +O(1/a). (6)

The transformation

τ − ln τ − 1 = 1
2 ζ

2, sign(τ − 1) = sign(ζ) (7)

gives the standard form

Γ ∗(a)P (a, x) =
√

a

2π

∫ η

−∞
e−

1
2aζ

2
f(ζ) dζ, f(ζ) =

1
τ

dτ

dζ
, (8)

with
λ− ln λ− 1 = 1

2
η2, sign(λ − 1) = sign(η). (9)

2 Asymptotic Representation of Fa(η)

By using Laplace’s asymptotic method (see [4, Chap. 2]) it is not difficult to
find the asymptotic estimates for large positive a and fixed values of η:

Fa(η) =

⎧
⎨
⎩
−f(η)/(η

√
2aπ)e−aη

2
[1 +O(1/a)], if η < 0;

1
2 +O(1/

√
a), if η = 0;

1 +O(1/a), if η > 0.
(10)

We see that the asymptotic behaviour of Fa(η) is completely different in
the three cases distinguished. Moreover, the asymptotic forms do not pass into
each other when η changes sign. By using an integration by parts procedure
we can obtain a single asymptotic representation of Fa(η) which is valid for
all η ∈ R. We write in (1) f(η) = [f(η) − f(0)] + f(0), where f(0) = 1, and
use (2). Then we obtain by repeating integration by parts steps:

Fa(η) = 1
2erfc(−η

√
a/2)Fa(∞) +

e−
1
2aη

2

√
2πa

Sa(η), (11)
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where, as a→∞,

Fa(∞) ∼
∞∑
n=0

An
an
, A0 = 1, Sa(η) ∼

∞∑
n=0

Cn(η)
an

, (12)

uniformly with respect to η ∈ R. The coefficients follow from the following
recursive scheme. Let f0(η) = f(η). Then, for n = 0, 1, 2, . . ., define

fn+1(η) =
d

dη

fn(η)− fn(0)
η

, (13)

and we have

An = fn(0), Cn(η) =
fn(0)− fn(η)

η
. (14)

3 The Asymptotic Inversion Method

Let p ∈ (0, 1) and a a large positive parameter. Then we are interested in the
value η that solves the equation

Fa(η) = Fa(∞) p. (15)

We use the representation in (11) and define a number η0 that solves the
reduced equation

1
2erfc(−η0

√
a/2) = p. (16)

Then for the requested value η we assume the expansion

η ∼ η0 +
η1
a

+
η2
a2

+
η3
a3

+ . . . , a→∞, (17)

and try to find the coefficients η1, η2, η3, . . .. To obtain the ηj we can substitute
the expansion for η into (11) and use formal power series manipulations. For
the asymptotic inversion of the incomplete gamma and beta functions we have
used techniques based on differential equations; see [1,2] and [3, Chap. 10]. In
the next section we consider a different example.

The method based on differential equations runs as follows. From (1), (15)
and (16) we obtain

dp

dη0
=
√

a

2π
e−

1
2aη

2
0 ,

dp

dη
=
√

a

2π
f(η)
Fa(∞)

e−
1
2aη

2
, (18)

from which we obtain, upon dividing,

f(η)
dη

dη0
= Fa(∞)e

1
2a(η

2−η2
0). (19)

Substituting (17) we obtain for η1 after perturbation analysis in first order
for large a
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f(η0) = eη0η1 =⇒ η1 =
1
η0

ln f(η0). (20)

For higher order terms ηj , j ≥ 2, we need in (19) more coefficients in
the asymptotic expansion of Fa(∞) (see (12), (30) and (31)) and we have to
expand

f(η) = f(η0) + (η − η0)f ′(η0) + 1
2 (η − η0)2f ′′(η0) + . . . . (21)

4 The Hyperbolic Cumulative Distribution

The hyperbolic distribution was introduced in [5] and is given by

F (y) = C

∫ y

−∞
e−α
√
δ2+(x−μ)2+β(x−μ) dx, y ∈ R, (22)

where α > 0, |β| < α, δ and μ are arbitrarily real constants, and C is the
normalizing constant which gives F (∞) = 1. The value of C is given by

C =
ω

2αδ2K1(ω)
, ω = δ

√
α2 − β2, (23)

where K1(ω) denotes the modified Bessel function of the third kind of order 1
(see [6, Chap. 9] or [7, Chap. 9]).

4.1 A Few Transformations

We transform the function F (y) into the standard form. Because |β| < α, we
can write β = α tanh θ. We substitute in (22) x = μ+δ sinh(θ+ t), and obtain

F (y) =
1

2K1(ω)

∫ τ

−∞
e−ω cosh t cosh(t+ θ)

cosh θ
dt, (24)

where ω is given in (23) and

τ = arcsinh
y − μ
δ
− θ, cosh θ =

α√
α2 − β2

. (25)

Next we use the transformation

cosh t = 1 + 2ζ2, =⇒ t = 2arcsinh ζ, (26)

which gives

F (y) =
e−ω

K1(ω)

∫ η

−∞
e−

1
2aζ

2
f(ζ) dζ, (27)
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where
a = 4ω, η = sinh 1

2τ, (28)

and

f(ζ) =
1 + 2ζ2 + 2 tanh θζ

√
ζ2 + 1√

ζ2 + 1
. (29)

We see that f(0) = 1 and it follows that we can write F (y) in the form

F (y) =
Fa(η)
Fa(∞)

, Fa(∞) =

√
2ω
π
eωK1(ω), (30)

where Fa(η) has the standard form (1). We have (see [6, Equation (9.7.2)])

Fa(∞) = 1 +
3

8ω
+O(1/ω2), ω →∞. (31)

It follows also that the inversion problem F (y) = p when a is large can be
written in the form (15). When we have found η from the expansion (17), we
compute τ = 2arcsinh η and finally (see (25))

y = μ+ δ sinh(θ + τ), θ = arctanh
β

α
. (32)

4.2 A Numerical Example

When a is large the function Fa(η) approaches the unit step function and the
numerical inversion needs accurate starting values for, say, Newton’s method,
in particular when in (15) p is very small or very close to unity.

In [8] analytic approximations for these p−values are constructed of the
inverse function F−1 of F (y) given in (22). With these approximations a
numerical algorithm from Mathematica is used to compute the inverse F−1

from the differential equation satisfied by this function.
We demonstrate our approach by taking α = 5, β = 3, μ = 0 and δ =

1, 10, 100. These values give ω = 4, 40, 400 and a = 16, 160, 1600, respectively.
First we compute η0 from (16) and next η1 from (20), with f(η) given in

(29). The computed value η then follows from (17) (with two terms). Next we
compute τ = 2arcsinhη (see (28)), and with τ we can compute y by inverting
the second equation in (25) with θ = arctanh(β/α).

In Table 1 we give for several values of p and δ the computed value y,
and the relative error |F (y)− p|/p. We observe that the approximations of y
become indeed better when the large parameter a = 4δ

√
α2 − β2 increases.

Also, the approximations are better when p ∼ 1.
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Table 1. Values y and relative errors Δ = |F (y) − p|/p of the inversion F (y) = p,
where F (y) is given in (22) for α = 5, β = 3, μ = 0, and several values of δ and p

δ 1 10 100
p y Δ y Δ y Δ

0.0001 −1.1087 0.43 10−1 1.2413 0.82 10−3 53.110 0.14 10−4

0.1 0.1646 0.10 10−1 5.2635 0.17 10−3 67.317 0.12 10−4

0.2 0.4071 0.22 10−2 6.0654 0.22 10−3 69.985 0.11 10−4

0.3 0.5963 0.25 10−2 6.6627 0.24 10−3 71.931 0.95 10−5

0.4 0.7708 0.54 10−2 7.1866 0.24 10−3 73.608 0.83 10−5

0.5 0.9465 0.70 10−2 7.6884 0.23 10−3 75.188 0.72 10−5

0.6 1.1361 0.76 10−2 8.2023 0.21 10−3 76.779 0.60 10−5

0.7 1.3565 0.74 10−2 8.7664 0.18 10−3 78.496 0.49 10−5

0.8 1.6397 0.62 10−2 9.4462 0.14 10−3 80.523 0.36 10−5

0.9 2.0826 0.40 10−2 10.426 0.90 10−4 83.367 0.21 10−5

0.9999 5.8365 0.79 10−5 16.767 0.28 10−6 99.863 0.57 10−8
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There has been recent intense activity in the study of the asymptotic character
of sequences of random processes arising e.g. in computer science, statistical
physics and mathematical biology. These may model the emergence of cer-
tain graph properties; load-sharing among links or servers; the survival and
extinction of species; co-operation and competition in a social context; spread
of epidemics; DNA, RNA and amino-acid sequences. Under appropriate con-
ditions, a sequence of processes converges to the solution of a differential
equation, which may be interpreted as a functional law of large numbers. Such
approximations are of great significance as a way to interpret the qualitative
behaviour of a complicated, multi-faceted structure in terms of a considerably
simpler one. Unfortunately, it is often difficult to prove their validity, espe-
cially when the random process has an unbounded number of components in
the limit. We would hope that over the coming years, the intense interest in
the field will produce a coherent and widely applicable theory. At present, it
often appears that each new problem defies the existing theory in an interest-
ing way. In organising the ECMI Minisymposium ‘Asymptotic properties of
complex random systems and applications’, our motivation was to bring these
problems into focus and highlight their importance in modelling of real-world
situations. Our aim was thus to generate interest among the applied mathe-
matics community, in the hope that interesting new insights and ideas may
result. The following sections summarise the contents of the four talks given.

Andrew Barbour’s talk. Andrew Barbour, from the University of
Zürich, talked on ‘Laws of large numbers for epidemic models with countably
many types’ (work joint with Malwina Luczak). We establish a quantitative
law of large numbers for a large class of stochastic epidemic models. It was
previously known that certain host-parasite systems can be approximated by
systems of differential equations, but rates of convergence were not available.
With such diseases, it is natural to distinguish hosts according to the num-
ber of parasites they carry. Since it is not usually possible to prescribe a fixed
upper limit for the parasite load, this leads to models with countably infinitely
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many types, one for each possible number of parasites. This causes difficulty
with many arguments which for finitely many types would be quite standard;
in particular, proving limit results is a much more delicate issue. A further
difficulty is that the operator driving the deterministic limit is non-Lipschitz.

Carl Graham’s talk. Carl Graham, from École Polytechnique, lectured
on ‘A multiclass mean-field model with graph structure for TCP flows’, based
on his joint work with Philippe Robert. TCP is one of the core protocols
used on the Web and other communication networks. Unlike previous studies
of TCP window evolutions, the authors consider interaction between diverse
kinds of TCP flows through the congestion they create along flow routes.
Resources may consist of switches, buffers, links or processors. Flow charac-
teristics include the route, utilisation of specific resources, and the round trip
time (influenced by congestion). A Markovian multi-class mean-field interact-
ing model for the window size evolution of a large number of TCP flows is
analysed. In the limit as the numbers of flows in different classes become large
while keeping the relative weight of each class fixed, the process converges to
a deterministic function solving a non-linear differential equation. Also, the
system is chaotic, i.e. different flows become approximately independent.

Petra Berenbrink’s talk. Petra Berenbrink, from Simon Fraser Uni-
versity, gave a talk entitled ‘Distributed selfish load-balancing’, based on joint
research with Tom Friedetzky, Iman Hajirasouliha, and Zengjian Hu. A con-
gestion game model is considered with n identical resources and m players
with weighted tasks. The system goal is to allocate every task to exactly one
resource, and the goal of each selfish player is to be allocated to a resource with
minimum total load. Agents migrate from overloaded to underloaded resources
in a distributed setting, until the allocation becomes balanced. An allocation
is a Nash Equilibrium if no player can benefit from changing their strategy.
The authors analyse a simple, decentralised protocol converging to a Nash
equilibrium, proving bounds on the rate in terms of n,m and Δ (maximum
task weight). Proofs involve analysing a suitable potential function.

Ilkka Norros’s talk. Ilkka Norros, from VTT, lectured on ‘Features of
power-law random graphs’ (joint work with Hannu Reittu). A power-law ran-
dom graph model is considered in a regime where the vertex degree has finite
mean and infinite variance. Power-law graphs are commonly used to model
inhomogeneous random networks, such as the Internet. These graphs have
some remarkable features: e.g. with high probability there are subgraphs with
arbitrary edge densities, and the typical distance between a pair of vertices in
the giant component of a graphs of size N is O(log logN). Also, the random
graph has a robust structure in that the deletion of highest-degree vertices
does not decrease the relative size of the giant, even though it does cause a
moderate increase in distances between vertices.
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Summary. A Markovian mean-field multi-class model for the interaction of sev-
eral classes of permanent connections in a network is analyzed. Connections create
congestion at the nodes they utilize, and adapt their throughput to the congestion
they encounter in a way similar to the Transmission Control Protocol (TCP).

1 Introduction

The Internet can be described as a very large distributed system for data
transmission, with self-adaptive capabilities to the different congestion events
that regularly occur. In this paper, a packet level model of the self-adaptive
behavior of data flows submitted to Additive Increase Multiplicative Decrease
(AIMD) algorithms, similar to Transmission Control Protocol (TCP), is estab-
lished and studied. Throughput grows linearly in the number of known
successful packet transmissions. When a loss is detected, the throughput is
sharply reduced by multiplication by some factor r < 1 (usually 1/2).

Studies up to now usually consider a single node carrying similar connec-
tions, see e.g. Ott et al. [1], Adjih et al. [2], Baccelli et al. [3], Dumas et al. [4],
and Guillemin et al. [5].

This proceeding announces without proof results in Graham and Robert [6],
still work in progress at the time of ECMI 2008, in which the interaction due
to the simultaneous transmission of several classes of permanent connections
is rigorously analyzed. A class of connections is characterized, in particular,
by the set of nodes it uses, and how, at those nodes, the connections create
some congestion and adapt to the total congestion encountered.

For mean-field limit proofs for systems of statistically indistinguishable
objects, assuming mean-field limit convergence of initial conditions, Sznit-
man [7] has developed compactness-uniqueness methods, as well as coupling
methods between the system and an i.i.d. system. Mean-field studies of sto-
chastic communication networks have been performed notably by Dobrushin
and his co-authors, see Karpelevitch et al. [8]. See also Graham [9].
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The model of interest here features dissimilar connections classified in
a finite number of classes according to their characteristics. Few conver-
gence proofs for such multi-class systems exist, and those in Graham and
Méléard [10] require a structure lacking here. So, Graham and Robert [6]
develop a coupling method which extends the methods in Sznitman [7],
yielding more tractable non-linear limit equations.

The scope is then to study the equilibrium behavior of the limit system,
and hopefully to establish that the equilibrium behavior for a finite number
of connections converges to it. This can be seen as the inversion of limits

lim
N→∞

lim
t→∞ = lim

t→∞ lim
N→∞

where t and N are time and size parameters.
We refer to Graham and Robert [6] for a more complete introduction with

a survey of the literature in the domain, and rigorous proofs.

2 The Markovian Network Model

The network has J ≥ 1 nodes and accommodates K ≥ 1 classes of sizes
Nk ≥ 1 for 1 ≤ k ≤ K of permanent connections (or flows, streams, etc.). Let

N = (N1, . . . , NK) , |N | = N1 + · · ·+NK .

We study the connection transmission rate, governed by the window size
restricting the quantity of data allowed to be in transit at one time.

An allocation matrix A = (Ajk, 1 ≤ j ≤ J, 1 ≤ k ≤ K) describes the
utilization of nodes by the connections. We have Ajk ≥ 0, and if wn,k ≥ 0 is
the state of the n-th class k connection, its utilization of node j is given by
Ajkwn,k. The total utilization uj of node j by the various connections is then

uj =
K∑
k=1

Nk∑
n=1

Ajkwn,k , 1 ≤ j ≤ J .

An example is Ajk = 1 if a class k connection uses node j and else Ajk = 0.
The quantity uj represents the level of congestion at node j, in particular

the loss rate of a connection going through it will depend on it. There are
functions ak : R+ × R

J
+ → R+ and bk : R+ × R

J
+ → R+ for 1 ≤ k ≤ K, such

that, when the resource utilization vector of the network is u = (uj , 1 ≤ j ≤ J)
and the state of a class k connection is wk then,

• This state increases linearly at rate ak(wk, u).
• A loss occurs at rate bk(wk, u) and causes a jump from wk to rkwk.
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A natural form for such functions (with slight abuse of notation) is

ak(wk, u) = ak(u), bk(wk, u) = wkβk(u), (1)

ak(u) =

⎛
⎝τk +

J∑
j=1

tjk(uj)

⎞
⎠

−1

, βk(u) = δk +
J∑
j=1

djk(uj), (2)

where τk > 0 can be interpreted as the round trip time (RTT) between source
and destination, and δk ≥ 0 as the loss rate, of class k connections in a
non-congested network, and tjk(uj) ≥ 0 as the additional RTT delay and
djk(uj) ≥ 0 as the additional loss rate at node j when its utilization is uj .

The SDE Representation and the Mean-Field Scaling

The Markov process describing the state of the connections is given by

WN (t) = (WN
n,k(t), 1 ≤ n ≤ Nk, 1 ≤ k ≤ K) , t ∈ R+ ,

where WN
n,k(t) is the state of the n-th connection of class k at time t. It can

be represented by the solution of a stochastic differential equation (SDE): for
1 ≤ k ≤ K and 1 ≤ n ≤ Nk,

dWN
n,k(t) = ak(WN

n,k(t−), UN(t−)) dt

−(1− rk)WN
n,k(t−)

∫
1{0≤z≤bk(WN

n,k(t−),UN (t−))}Nn,k(dz, dt) (3)

with UN (t) = (UNj (t), 1 ≤ j ≤ J) and

UNj (t) =
K∑
k=1

Ajk

Nk∑
n=1

WN
n,k(t) ,

where (Nn,k, 1 ≤ k ≤ K, 1 ≤ n ≤ Nk) are independent Poisson processes with
Lebesgue intensity measure on R

2
+. Existence and uniqueness of solutions is

classical if ak is Lipschitz and bk bounded, 1 ≤ k ≤ K.
A scaling is used to reduce the high dimensionality of (3) in order to

investigate its qualitative and quantitative properties. It is assumed that

Nk →∞ ,
Nk
|N | =

Nk
N1 + · · ·+NK

→ pk , 1 ≤ k ≤ K , (4)

where pk ≥ 0 and p1 + · · · + pK = 1. The capacity is accordingly scaled by
setting U

N
= UN/|N | in the functions ak and bk. We obtain the mean-field

scaled SDE: for 1 ≤ k ≤ K and 1 ≤ n ≤ Nk,

dWN
n,k(t) = ak(WN

n,k(t−), U
N

(t−)) dt

−(1− rk)WN
n,k(t−)

∫
1{0≤z≤bk(WN

n,k(t−),U
N

(t−))}Nn,k(dz, dt) (5)
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with U
N

(t) = (U
N

j (t), 1 ≤ j ≤ J) and

U
N

j (t) =
K∑
k=1

Nk
|N |AjkW

N

k (t) with W
N

k (t) =
1
Nk

Nk∑
n=1

WN
n,k(t) .

This multi-class mean-field system interacts through the scaled utilization
vector U

N
(t), or the scaled state vector W

N
(t) = (W

N

k (t), 1 ≤ k ≤ K).

3 The Non-Linear Limit Process

When N goes to infinity, in view of (5), mean-field behavior is expected: the
connection evolutions should become independent, and for class k connections
should converge in law to that of (Wk(t), t ≥ 0), where the stochastic process
(W (t), t ≥ 0) =

(
(Wk(t), 1 ≤ k ≤ K), t ≥ 0

)
solves the non-linear SDE

dWk(t) = ak (Wk(t−), uW (t)) dt

− (1− rk)Wk(t−)
∫

1{0≤z≤bk(Wk(t−),uW (t))}Nk(dz, dt) (6)

for 1 ≤ k ≤ K, with uW (t) = (uW,j(t), 1 ≤ j ≤ J) and

uW,j(t) =
K∑
k=1

AjkpkE(Wk(t)),

where (Nk, 1 ≤ k ≤ K) are i.i.d. Lebesgue intensity Poisson point processes.
In this non-linear SDE, the evolution of the process (W (t), t ≥ 0) depends

not only on its instantaneous value but also on the mean utilization vector
u(t), or on the mean value E(W (t)). Its infinitesimal generator depends at
time t on the law of W (t) itself, which thus solves non-linear equations.

We seek results valid for ak and bk of the form (1)–(2), where bk has a
quadratic behavior. To control the long-time evolution or the stationary
behavior of W (t), initial conditions cannot be assumed to be uniformly
bounded, so that exponential and Gaussian moment assumptions are intro-
duced.

Condition (C) Holds for a family of random variables {Xα
0 , α ∈ S} in R

K
+ ,

for (bk), and for ε > 0 when at least one of the two conditions is satisfied:

1. for 1 ≤ k ≤ K, the function bk : R+ × R
J
+ → R+ is Lipschitz, and

sup
α∈S

E
(
exp(ε‖Xα

0 ‖)
)
<∞ ,

2. for 1 ≤ k ≤ K, bk(w, u) = wβk(u) and βk : R
J
+ → R+ is Lipschitz, and

sup
α∈S

E
(
exp

(
ε‖Xα

0 ‖2
))
<∞ .
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Theorem 1. If the functions ak : R+ × R
J
+ → R+, 1 ≤ k ≤ K are bounded

and Lipschitz and if Condition (C) holds for W0, (bk) and ε > 0, then there is
pathwise existence and uniqueness of a solution (W (t), t ≥ 0) of the non-linear
SDE (6) starting at W0, with continuous dependence on the initial condition.

4 The Mean-Field Limit for Converging Initial Data

The fundamental notions of exchangeability and chaoticity, see Aldous [11]
and Sznitman [7], must be extended to such multi-class models. We use
the notation limN→∞ for the limit along an arbitrary subsequence of N =
(Nk)1≤k≤K ∈ N

K such that min1≤k≤K Nk goes to infinity.

Definition 1. The family of r.v. (Xn,k, 1 ≤ n ≤ Nk, 1 ≤ k ≤ K) is multi-
exchangeable if its law is invariant under permutation of the indexes within
the classes: for 1 ≤ k ≤ K and all permutations σk of {1, . . . , Nk}, we have

L(Xσk(n),k, 1 ≤ n ≤ Nk, 1 ≤ k ≤ K) = L(Xn,k, 1 ≤ n ≤ Nk, 1 ≤ k ≤ K) .
A sequence (XN

n,k, 1 ≤ n ≤ Nk, 1 ≤ k ≤ K) of multi-class random variables
indexed by N = (Nk)1≤k≤K ∈ N

K is P1 ⊗ · · · ⊗ PK-multi-chaotic if

lim
N→∞

L(XN
n,k, 1 ≤ n ≤ m, 1 ≤ k ≤ K) = P⊗m

1 ⊗ · · · ⊗ P⊗m
K , ∀m ≥ 1 ,

where Pk for 1 ≤ k ≤ K is a probability measure on R+.

The following theorem is the main result. It uses the topology of uniform
convergence on compact sets for the sample path spaces.

Theorem 2. In the mean-field scaling (4), if

1. The initial values (WN
n,k(0), 1 ≤ n ≤ Nk, 1 ≤ k ≤ K) are multi-exchangeable

and P1,0 ⊗ · · · ⊗ PK,0-multi-chaotic, and
2. The functions ak : R+×R

J
+ → R+, 1 ≤ k ≤ K, are bounded and Lipschitz,

and Condition (C) holds for {WN
1 (0), N ∈ N

K}, (bk) and ε > 0,

then, as N goes to infinity, the processes
(
(WN

n,k(t), t ≥ 0), 1 ≤ n ≤ Nk, 1 ≤ k ≤ K)

solving the SDE (5) with initial values (WN
n,k(0)) are multi-exchangeable and

PW -multi-chaotic, where PW = PW1 ⊗ · · · ⊗ PWK is the law of the process
(W (t), t ≥ 0) = ((Wk(t), t ≥ 0), 1 ≤ k ≤ K), the solution of the non-linear
SDE (6) with initial law P1,0 ⊗ · · · ⊗ PK,0.



130 C. Graham and Ph. Robert

5 Invariant Laws and a Fixed Point Equation

We consider the probability densities given for 0 < r < 1 and ρ > 0 by

Hr,ρ(x) =

√
2ρ/π∏+∞

n=0(1− r2n+1)

+∞∑
n=0

r−2n

∏n
k=1(1− r−2k)

e−ρr
−2nx2/2 , x ∈ R+ ,

which have first moment (expected value)

∫

x≥0

xHr,ρ(x) dx =
√
ρψ(r) , ψ(r) =

√
2
π

+∞∏
n=1

1− r2n
1− r2n−1

.

Theorem 3. If the functions ak and bk, 1 ≤ k ≤ K, are of the form (1)
with βk > 0, and ak and βk are Lipschitz functions and ak is bounded, then
the invariant laws for solutions (W (t), t ≥ 0) of (6) are in one-to-one
correspondence with the solutions u = (uj)1≤j≤J ∈ R

J
+ of the fixed point

equation

uj =
K∑
k=1

Ajkpkψ(rk)

√
ak(u)
βk(u)

, 1 ≤ j ≤ J ,

and the invariant law corresponding to such a solution u∗ has density w =
(wk)1≤k≤K �→

∏K
k=1Hrk,ρk

(wk) with ρk = ak(u∗)/βk(u∗), see above.
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Electronic transport is the basis of many nanotechnology applications. Spin
transport and spintronics are used to create better computer memories,
whereas basic science and many interesting device applications are being
actively pursued. In nanoelectronic devices, the interplay between charge,
spin and vibrational degrees of freedom determines their main electronic
and transport features. Moreover, the dimensionality and the number of
atoms determines the more suitable theoretical framework and numerical tech-
niques for each particular system. In this minisymposium, different models of
quantum charge and spin transport in low-dimensional nanostructures were
discussed.

Prof. V. Romano (U. of Catania, Italy) considers the problem of describing
electrons in a single band subject to an external electrostatic potential and in
equilibrium with a phonon bath. He analyzes the semiclassical limit in which
the electron wavelength is small compared to the scale of the potential (� → 0).
The method consists of writing an equation for the equilibrium density matrix,
transforming this equation via the Wigner transform in an equation for the
Wigner function, and expanding nonlocal terms thereof in powers of �. The
solution of the resulting equation is then approximately solved by regular
perturbation methods. Results are given for a band with a nonparabolic Kane
dispersion relation.

Dr. L. Barletti (U. of Florence, Italy) and collaborators discuss super-
lattices (SL) with Rashba spin-orbit effects. These structures are artificial
one-dimensional crystals (with finitely many periods). In materials with spin-
orbit effects, electrons with different spin have different energies and can
transport spin. The paper presents a simple quantum kinetic equation for
the SL. Using singular perturbations, Barletti et al. derive spatially nonlocal
equations for the electric field and the spin-up and spin-down electron pop-
ulations, and solve them numerically to show that this SL may behave as a
spin oscillator.

In another example of semiconductor-based spintronics, a different spin
oscillator can be achieved by applying a static magnetic field to a weakly
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coupled SL if at least one period contains magnetic impurities. Dr. M. Car-
retero (Carlos III University, Spain) and collaborators analyze and solve
numerically a spatially discrete model of this system, demonstrating its
behavior as an injector of spin polarized time-periodic current.

Prof. G. Platero (CSIC, Spain) discusses the use of double quantum dots
as spin-current rectifiers. Quantum dots (QD) are artificial atoms, two QD
separated by a barrier (double quantum dots, DQD) are artificial molecules.
Attaching contacts to a DQD, electrons with a precise value of spin can tunnel
through the barrier from one QD if there is an available state in the other
dot and appropriate voltage bias is held between the contacts. Otherwise the
Pauli principle precludes tunneling (spin-Coulomb blockade). Thus the DQD
acts as a nanoscale spin rectifier, blocking current in one bias direction and
allowing it in the other. Platero analyzes a simple transport model for this
system and compares it to available experiments.



The Equilibrium Wigner Function in the Case
of Nonparabolic Energy Bands

V. Romano
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Summary. By solving the Bloch equation the expression of the equilibrium Wigner
function is obtained up to first order in the scaled Planck constant for arbitrary
energy bands.

1 Introduction

Due to the extreme miniaturization of the electron devices, the simulation
requires advanced transport models that take into account also quantum
effects.

In [1] a model based on the maximum entropy principle has been proposed
by including the quantum corrections with a Chapmann–Enskog expansion
starting from the Wigner equation. In the drift-collision dominated regime an
explicit form of the Wigner function has been obtained up to first order in
the square of the scaled Planck constant in the effective mass approximation.
A key point is constituted by the equilibrium Wigner function. It has been
determined for the first time in [3] in the effective mass approximation while
in [2] a procedure based on the Bloch equation has been devised.

In the present paper we write the Bloch equation for an arbitrary energy
band assuming that it is defined in all the space, as appropriate for some
analytical approximations like Kane’s dispersion relation. The free streaming
pseudo-differential operator is defined as a multiplication operator in the space
of Fourier transforms. The general form of the solution up to second order
terms in the scaled Plank is determined. In the case of the Kane dispersion
relation an explicit formula is given and it shown that, at variance with the
parabolic band, a quantum correction is present even in the bulk case.

2 The Bloch Equation

The physical situation is represented by an electron gas which is in equilibrium
with a thermal bath of phonons at a constant temperature TL. We suppose
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that the energy bands are represented by a function E(p) defined in �3, which
depends only on the modulus of the crystal momentum p and it is even. Sev-
eral analytical approximation as the parabolic band and the Kane dispersion
relation satisfy the previous conditions. Moreover we will work in the single
electron approximation.

Under the previous assumptions the system is described by the density
matrix ρ(r, s) with r, s position vectors belonging to �3. If we denote by
H the Hamiltonian, the equilibrium is parametrized by the inverse of the
temperature β = 1

kBTL
and is defined, in the Boltzmann limit of the Fermi-

Dirac statistics, by ρ(eq)(r, s, β) = exp(−βH), where of course the exponential
must be intended in the operatorial sense. Expanding the exponential gives
an approximation of ρ(eq)(r, s, β) but the procedure is rather cumbersome.

An alternative way has been devised in [2]: starting from the Schrödinger
equation one derives the following equation for the equilibrium density matrix
ρ(eq)(r, s, β)

∂

∂β
ρ(eq)(r, s, β) = −1

2

(
Hρ(eq) + ρ(eq)H

)
, (1)

called the Bloch equation, augmented by the condition ρ(eq)(r, s, 0) = δ(r−s)
The Hamiltonian H is given for a general energy band E by

H(x, p) = E(p)− qV (x) − Φ (2)

with q absolute electron charge and V the electrostatic potential. Φ is the quasi
Fermi potential which is constant at equilibrium. In an operatorial sense E(p)
acts as E(−i�∇x), e.g. in the parabolic case E(p) = p2/(2m∗) the correspond-
ing operator is −(�2/2m∗)Δx, m∗ being the effective electron mass. In the
sequel in order to simplify the notation the same symbol will be used both for
the operator and its symbol.

After the change of variables
{
r = x+ �

2η,
s = x− �

2η

we introduce the Wigner function

w(x, p, t) = F−1[ρ(r, s, t)](x, p, t) =
1

(2π)3

∫

�3
η

ρ

(
x+

�

2
η, x− �

2
η

)
eip·η d η,

with F the Fourier transform and F−1 its inverse. In particular w(eq)(x, p, β)
is the equilibrium Wigner function given by F−1[ρ(eq)](x, p, β).

By substituting the expression of H into (1) and applying F−1 one has

∂

∂β
w(eq)(x, p, β) = −1

2
F−1

[
E(−i�∇r)ρ(eq) + E(−i�∇s)ρ(eq)

]

+
q

2
F−1

[
(V (r) + V (s)) ρ(eq)

]
+ Φw(eq). (3)
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By introducing the convolution operator f ∗ g =
∫
f(x− t)g(t)dt, we have

F−1
[
(V (r) + V (s)) ρ(eq)

]
(x, p, β)

= F−1 [(V (r) + V (s))] ∗ w(eq)(x, p, β)

=
∫

�3
q

F−1 [(V (r) + V (s))] (x, p− q, β)w(eq)(x, q, β) dq

=
1

(2π)3

∫

�3
q×�3

η

[V (x+
�

2
η) + V (x− �

2
η)]w(eq)(x, q, β)ei(p−q)·ηdqdη.

(4)

Similarly, since i�∇r = i�

2
∇x + i∇η and i�∇s = i�

2
∇x − i∇η, by taking into

account that p and η are conjugate variables, we define

F−1
[
E(−i�∇r)ρ(eq) + E(−i�∇s)ρ(eq)

]
(x, p, β)

= (2π)−3

∫

�3
ν×�3

x′

[
E

(
p+

�ν

2

)
+ E

(
p− �ν

2

)]

w(eq)(x′, p, β)ei(x−x
′)·ν dνdx′. (5)

By expanding up to first order in �
2, one has

E
(
p+

�ν

2

)
+ E

(
p− �ν

2

)
= 2E(p) +

1
4

∂2E
∂pi∂pj

νiνj�
2 + o(�2),

V (x +
�

2
η) + V (x− �

2
η) = 2V (x) +

1
4

∂2V

∂xi∂xj
ηiηj�

2 + o(�2),

where summation over repeated indexes is understood, and the Bloch equation
up to first order in �

2 reads

∂

∂β
w(eq)(x, p, β) = −E(p)w(eq)(x, p, β) +

�
2

8
∂2E
∂pi∂pj

∂2w(eq)(x, p, β)
∂xi∂xj

+qV (x)w(eq)(x, p, β)− q�2

8
∂2V

∂xi∂xj

∂2w(eq)(x, p, β)
∂pi∂pj

+ Φw(eq)(x, p, β), (6)

with initial condition w(eq)(x, p, 0) = 1.

3 The Equilibrium Wigner Function

We look for a solution of (6) of the form

w(eq)(x, p, β) = w(0)(x, p, β) + �
2w(1)(x, p, β) + o(�2).

At zero order (6) gives

∂

∂β
w(0)(x, p, β) = −E(p)w(0)(x, p, β) + qV (x)w(0)(x, p, β) + Φw(0)(x, p, β).

where from w(0)(x, p, β) = exp[−E(p)β + β(Φ+ qV (x))].
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At first order in �
2 (6) gives

∂

∂β
w(1)(x, p, β) = −E(p)w(1)(x, p, β) +

1
8

∂2E
∂pi∂pj

∂2w(0)(x, p, β)
∂xi∂xj

+ qV (x)w(1)(x, p, β)− q

8
∂2V

∂xi∂xj

∂2w(0)(x, p, β)
∂pi∂pj

+Φw(1)(x, p, β). (7)

We solve the last equation via separation of constants looking for solution of
the form

w(1)(x, p, β) = g(x, p, β)w(0)(x, p, β)

with the function g satisfying the equation

∂g

∂β
=

1
8w(0)

∂2E
∂pi∂pj

∂2w(0)(x, p, β)
∂xi∂xj

− q

8w(0)

∂2V

∂xi∂xj

∂2w(0)(x, p, β)
∂pi∂pj

(8)

and the initial condition
g(x, p, 0) = 0.

One finds

g(x, p, β) =
qβ2

8
∂2E
∂pi∂pj

∂2V

∂xi∂xj
+
q2β3

24

[
∂2E
∂pi∂pj

∂V

∂xi

∂V

∂xj
− ∂2V

∂xi∂xj
vivj

]
, (9)

where v = ∇pE(p) is the electron velocity. The equilibrium Wigner equation
is therefore given by

w(eq)(x, p, β) = exp [−E(p)β + β (Φ+ qV (x))]
{

1 +
qβ2

�
2

8
∂2E
∂pi∂pj

∂2V

∂xi∂xj

+
q2β3

�
2

24

[
∂2E
∂pi∂pj

∂V

∂xi

∂V

∂xj
− ∂2V

∂xi∂xj
vivj

]}
+ o(�2). (10)

In the particular case of a parabolic band

E(p) =
p2

2m∗ , v =
p

m∗

with m∗ electron effective mass, and one obtains the same results as in [3]

w(eq)(x, p, β) = exp
[
− βp

2

2m∗ + β (Φ+ qV (x))
] {

1 +
qβ2

�
2

8m∗ ΔV

+
q2β3

�
2

24m∗

[
|∇V |2 −m∗ ∂2V

∂xi∂xj
vivj

]}
+ o(�2).

It is convenient (see for example [1]) to parametrize w(eq)(x, p, β) in term of
the local density instead of the quasi Fermi potential Φ.
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By defining the density as

n(x, t) =
∫

�3
p

w(eq)(x, p, β)dp

and eliminating exp[β(qV + φ)], one has

w(eq)(x, p, β) =
n(x, t)e−βE exp
A0(β,m∗)

{
1 + �

2

[(
qβ2

8
∂2V

∂xi∂xj
+
q2β3

�
2

24
∂V

∂xi

∂V

∂xj

)

(
∂2E
∂pi∂pj

− Aij(β,m∗)
A0(β,m∗)

)
− qβ3

�
2

24
∂2V

∂xi∂xj

(
vivj − Bij(β,m∗)

A0(β,m∗)

)]}
+ o(�2)

(11)

where

A0(β,m∗) =
∫

�3
e−βE dp, Aij(β,m∗) =

∫

�3
e−βE

∂2E
∂pi∂pj

dp,

Bij(β,m∗) =
∫

�3
e−βEvivj dp.

4 The Case of the Kane Dispersion Relation

In the case of the Kane dispersion relation

p2

2m∗ = E (1 + αE)

with α nonparabolicity factor while

v =
p

m∗(1 + 2αE)

and
∂2E
∂pi∂pj

=
1

m∗(1 + 2αE)

[
δij − 2α

m∗(1 + 2αE)2
pipj

]
.

By expressing the elementary volume d p as

dp = m∗√2m∗E(1 + αE)(1 + 2αε) dEdΩ,
dΩ being the elementary solid angle, the coefficients appearing in the Wigner
function can be written as

A0(β,m∗) = 4πm∗√2m∗
∫ ∞

0

e−βE
√
E(1 + αE)E(1 + 2αE) dE

= 4πm∗√2m∗ d0(β),

Aij(β,m∗) = 4π
√

2m∗ δij
∫ ∞

0

e−βE
[√
E(1 + αE) − 4α [E(1 + αE)]3/2

3(1 + 2αE)2

]
dE ,

Bij(β,m∗) =
8π
3

√
2m∗ δij

∫ ∞

0

e−βE
[E(1 + αE)]3/2

(1 + 2αE)
dE ,
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obtaining the equilibrium Wigner function

w(eq)(x, p, β) =
n(x, t)e−βE

4πm∗√m∗d0(β)

{
1 + �

2

[(
qβ2

8
∂2V

∂xi∂xj
+
q2β3

24
∂V

∂xi

∂V

∂xj

)

[
δij

m∗(1 + 2αE)
− 2αpipj

(m∗)2(1 + 2αE)3
− δij
m∗d0(β)∫ +∞

0

e−βE
(√
E(1 + αE) − 4α

3
[E(1 + αE)]3/2

(1 + 2αE)2

)
d E

]

−qβ
3

24
∂2V

∂xi∂xj

(
vivj − 2δij

3m∗d0(β)

×
∫ ∞

0

e−βE
[E(1 + αE)]3/2

1 + 2αE dE
)]}

.

Remark 1. In the bulk case the �
2 correction vanishes in the parabolic band

approximation and w(eq)(x, p, β) reduces to the semiclassical Maxwellian.
Instead when the energy bands are described by the Kane dispersion relation,
w(eq)(x, p, β) in the bulk case is given by

w(eq)(x, p, β) =
n(x, t)e−βE

4πm∗√m∗d0(β)

{
1 + �

2 q
2β3

24
EiEj

[
δij

m∗(1 + 2αE)
− 2αpipj

(m∗)2(1 + 2αE)3
− δij
m∗d0(β)∫ +∞

0

e−βE
(√
E(1 + αE) −4α

3
[E(1 + αE)]3/2

(1 + 2αE)2

)
d E

]}
,

with Ei = −∂V/∂xi the components of the electric field. This implies that
the quantum correction affects all the transport parameters even in the bulk
case when more realistic approximations of the energy bands are used.
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Summary. Nonlinear charge transport in strongly coupled semiconductor super-
lattices is described by two-miniband Wigner–Poisson kinetic equations with BGK
collision terms. The hyperbolic limit, in which the collision frequencies are of the
same order as the Bloch frequencies due to the electric field, is investigated by means
of the Chapman–Enskog perturbation technique, leading to nonlinear drift-diffusion
equations for the two miniband populations. In the case of a lateral superlattice
with spin-orbit interaction, the corresponding drift-diffusion equations are used to
calculate spin-polarized currents and electron spin polarization.

1 Introduction

Semiconductor superlattices are essential ingredients in fast nanoscale oscil-
lators, quantum cascade lasers and infrared detectors. A superlattice (SL)
is a quasi-one-dimensional crystal originally proposed by Esaki and Tsu to
observe Bloch oscillations, i.e., the periodic coherent motion of electrons in
a miniband when an electric field is applied. Once the materials were grown,
many interesting nonlinear phenomena were observed, such as self-oscillations
of the current through the SL due to charge dipole motion, multistability of
stationary charge and field profiles, etc. See the review [1].

Nonlinear charge transport in SLs has been widely studied in the last
decade using balance equations for electron densities and electric field. These
equations are either proposed using phenomenological arguments or derived
ad hoc from kinetic theories [1]. Systematic derivations are scarce. For a single-
miniband SL, the Chapman–Enskog (CE) method applied to a semiclassical
Boltzmann–Poisson system whose collision term is of Bhatnagar–Gross–Krook
(BGK) type yields a generalized drift-diffusion equation (GDDE) [2], and a
quantum drift-diffusion equation (QDDE) when applied to a Wigner–Poisson–
BGK (WPBGK) system [3]. The quantum WPBGK system contains two
pseudo-differential operators, involving the band dispersion relation and the
electric potential. The leading order approximation in the hyperbolic limit

A.D. Fitt et al. (eds.), Progress in Industrial Mathematics at ECMI 2008,

Mathematics in Industry 15, DOI 10.1007/978-3-642-12110-4 16,

c© Springer-Verlag Berlin Heidelberg 2010



142 L.L. Bonilla et al.

balances collisions and electric potential, and its solution is not obvious
because the potential is an a priori unknown solution of the Poisson equation.
SLs are simpler because their Wigner functions are periodic in the reciprocal
lattice, the potential terms become multiplication operators in Fourier space,
and the leading order approximation is straightforward to solve [3].

For sufficiently high applied electric fields, electrons may populate higher
minibands, then be scattered to the lowest, etc. Moreover, SLs with diluted
magnetic impurities subject to a magnetic field may present spin polarization
effects whose understanding is crucial to develop spintronic devices [4]. Even
without magnetic impurities, spin polarization could appear due to Rashba
spin-orbit interaction [5]. Once we consider electron spin, each miniband is
split in two and single-miniband SLs become two-miniband SLs. We shall
systematically derive quantum balance equations by the CE method.

2 Wigner Description of a Two-Miniband Superlattice

We shall consider a 2× 2 Hamiltonian H(x,−i∂/∂x), in which

H(x, k) = [h0(k)− eW (x)]σ0 + h(k) · σ] (1)

≡
(

(α + γ)(1− cos kl)− eW (x) + g −iβ sin kl
iβ sin kl (α− γ)(1 − cos kl)− eW (x)− g

)
.

Then h0 = α(1− cos kl), h1 = 0, h2 = β sinkl, h3 = γ(1− cos kl) + g, and

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2)

The Hamiltonian (1) corresponds to the simplest 2× 2 Kane model in which
the quadratic and linear terms (kl)2/2 and kl are replaced by (1− coskl) and
sin kl, respectively. For a SL with two minibands, 2g is the miniband gap and
α = (Δ1 +Δ2)/4 and γ = (Δ1−Δ2)/4, provided Δ1 and Δ2 are the miniband
widths. In the case of a lateral SL, g = γ = 0, and h2σ2 corresponds to the
precession term in the Rashba spin-orbit interaction [5]. The other term, the
intersubband coupling, depends on the momentum in the y direction and
we have not included it here. Small modifications of (1) represent a single
miniband SL with dilute magnetic impurities in the presence of a magnetic
field B: g = γ = h2 = 0, and h1 = β(B) [4]. As in the case of a single miniband
SL, W (x) is the electric potential.

The energy minibands E±(k) are the eigenvalues of the free Hamiltonian
H0(k) = h0(k)σ0 + h(k) · σ and are given by

E±(k) = h0(k)± |h(k)|. (3)

The corresponding spectral projections are P±(k) = (σ0 ± ν(k) · σ)/2, with
ν = h/|h(k)|, so that we can write H0(k) = E+(k)P+(k) + E−(k)P−(k).
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We shall now write the WPBGK equations for the Wigner matrix written
in terms of the Pauli matrices σs:

f(x, k, t) =
3∑
s=0

fs(x, k, t)σs = f0(x, k, t)σ0 + f(x, k, t) · σ. (4)

The Wigner components are real and can be related to the coefficients of the
Hermitian Wigner matrix by f11 = f0 + f3, f12 = f1 − if2, f21 = f1 + if2,
f22 = f0 − f3. The populations of the minibands with energies E± are the
moments:

n±(x, t) =
l

2π

∫ π/l

−π/l

[
f0(x, k, t)± ν · f(x, k, t)

]
dk, (5)

and the total electron density is n+ + n−.
We shall restrict ourselves to the Rashba case, g = γ = h3 = 0, from now

on. Then ν = (0, 1, 0) and n± are the densities of electrons having spin ±.
After some algebra, we can obtain the following WPBGK equations for the
Wigner components

∂f0

∂t
+
α

�
sin klΔ−f0 +

β cos kl
�

Δ−f2 −Θf0 = Q0[f ], (6)

∂f
∂t

+
α sinkl

�
Δ−f +

β

�
[νΔ−f0 cos kl +Δ+(ν × f) sin kl]

−Θf = Q[f ], (7)

ε
∂2W

∂x2
=
e

l
(n+ + n− −ND), (8)

Θfs(x, k, t) =
∞∑

j=−∞

ejl

i�
〈F (x, t)〉jeijklfsj (x, t), (9)

where we have put fs(x, k, t) =
∑∞
j=−∞ fsj (x, t) eijkl and

〈u〉j(x, t) =
1
jl

∫ jl/2

−jl/2
u(x+ s, t) ds.

Our collision model contains two terms: a BGK term which tries to send
f0 ± ν · f to its (collision-broadened) Fermi–Dirac local equilibrium, and a
scattering term which tries to equalize n+ and n− [4]:

Q0[f ] = −f
0 −Ω0

τ
, Q[f ] = − f −Ω

τ
− f
τsc
, (10)

Ω0 =
φ+ + φ−

2
, Ω =

φ+ − φ−
2

ν, (11)
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where (see [6] for details and [7] for the numerical method employed)

φ±(k;μ±) =
∫ +∞

−∞

DΓ (E − E±(k))

1 + exp
(
E−μ±
kBT

) dE (12)

DΓ (E) =
√

2m∗

2π�Lz

∫ ∞

0

δΓ (Ey + E1 − E)√
Ey

dEy, δΓ (E) =
√

2Γ 3/π

Γ 4 + E4
(13)

l

2π

∫ π/l

−π/l
φ±(k;n±) dk = n±. (14)

In (12), μ± = μ±(n±) solve (14). Our collision model satisfies charge
continuity. In fact, from (6) to (8) we obtain:

∂

∂t
(n+ + n−) +Δ−

[
l

π�

∫ π/l

−π/l
(α sinkl f0 + β cos kl f2) dk

]
= 0. (15)

Since Δ−u(x) = l ∂〈u(x)〉1/∂x, (15) provides charge continuity. From (8) and
(15), we get Ampère’s law (J(t) is the total current density):

ε
∂F

∂t
+

〈
el

π�

∫ π/l

−π/l
(α sin kl f0 + β cos kl f2) dk

〉

1

= J(t). (16)

3 Quantum Drift-Diffusion Equations with Spin-Orbit
Interaction

In the simpler case of a lateral SL with the precession term of Rashba spin-
orbit interaction (but no intersubband coupling), we can obtain explicit rate
equations for n± by means of the CE method. First of all, we should decide
the order of magnitude of the terms in the WPBGK equations (6) and (7) in
the hyperbolic limit. In this limit, the collision frequency 1/τ and the Bloch
frequency eFM l/� are of the same order, and the scattering time τsc is much
longer than the collision time τ . Then, a suitable small parameter λ can be
introduced [2] such that the scaled Wigner equations read as follows:

λ
∂f0

∂t
+ λ

α

�
sin klΔ−f0 + λ

β cos kl
�

Δ−f2 −Θf0 = Q0[f ], (17)

λ
∂f
∂t

+ λ
α sinkl

�
Δ−f + λ

β

�
[νΔ−f0 cos kl +Δ+(ν × f) sin kl] (18)

−Θf = − f −Ω
τ
− λ f

τsc
, (19)
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To derive the reduced balance equations, we use the following CE ansatz:

f(x, k, t;λ) = f (0)(k;n+, n−, F ) +
∞∑
m=1

f (m)(k;n+, n−, F )λm, (20)

ε
∂F

∂t
+

∞∑
m=0

Jm(n+, n−, F )λm = J(t),
∂n±

∂t
=

∞∑
m=0

A±
m(n+, n−, F )λm. (21)

A±
m and Jm are related through the Poisson equation (8), so that

A+
m +A−

m = − l
e

∂Jm
∂x

. (22)

Following the CE procedure up to order 2 (see [6] for details) we obtain

∂n±

∂t
+Δ−D±(n+, n−, F ) = ∓R(n+, n−, F ), (23)

ε
∂F

∂t
+ e 〈D+ +D−〉1 = J, (24)

D± = −α
�

Im(ϕ0
1 ± ϕ2

1 + ψ0
1 ± ψ2

1)± β

�
Re(ϕ0

1 ± ϕ2
1 + ψ0

1 ± ψ2
1), (25)

R =
n+ − n−θ(μ−E+

min)
τsc

. (26)

Here, ϕ ≡ f (0) and ψ ≡ f (1) can be explicitly calculated and yield

D± =
(αϑ1 ± β)φ±1

� (1 + ϑ2
1)
∓ τ (φ+

1 − φ−1 ) [2αϑ1 ± β(1 − ϑ2
1)]

2�τsc(1 + ϑ2
1)2

(27)

+
[2αϑ1 ± β(1− ϑ2

1)]ατ
�2 (1 + ϑ2

1)2
∂φ±1
∂n±

[
Δ−

(
αϑ1 ± β

� (1 + ϑ2
1)
φ±1

)
± �

ατsc
(n+ − n−)

]

+
α (3ϑ2

1 − 1)± βϑ1(3− ϑ2
1)

�(1 + ϑ2
1)3

lτ2φ±1
�ε

(
J

e
−

〈〈
α (φ+

1 + φ−1 )ϑ1

�(1 + ϑ2
1)

〉

1

〉

1

−
〈〈

β (φ+
1 − φ−1 )

�(1 + ϑ2
1)

〉

1

〉

1

)
− (α2 + β2)τ

2�2(1 + ϑ2
1)
Δ−n±

+
τ

2�2(1 + ϑ2
1)

[
(α2 − β2 ∓ 2αβϑ1)Δ−

(
φ±2

1 + ϑ2
2

)

+ [(β2 − α2)ϑ1 ∓ 2αβ]Δ−
(
ϑ2φ

±
2

1 + ϑ2
2

)]
,

where φ±j are the Fourier components of the local Fermi–Dirac equilibrium
functions (12) and ϑj ≡ τejl

�
〈F 〉j .

The simulations shown below are based on the quantum drift-diffusion
equations (23)–(27). Figure 1a shows electric current vs. field in a spatially
uniform stationary state, for a Fermi–Dirac statistics, for different values of
the level broadening parameter Γ , and for the Botzmann statistics without
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Fig. 1. Electric current vs. field in the stationary case (a). Total current vs. time (b),
electric field profile (c) and polarization profile (d) during current self-oscillations

broadening. Figures 1b–1d illustrate (for different values of Γ and also for
the Botzmann case), a non-stationary behavior showing stable, self-sustained
current and spin oscillations. They are due to the periodic formation of a
pulse of the electric field at the cathode x = 0 and its motion through the
superlattice. Plot (b) is total current density vs. time while (c) and (d) show
the electric field (c) and spin polarization (d) profiles during current self-
oscillations. We have used the following values of the parameters: α = 8 meV,
β = 2.63 meV, Lz = 3.1 nm, T = 5 K, τ = 5.56× 10−14 s, τsc = 5.56× 10−13 s,
ND = 4.048 × 1010 cm−2, m∗ = 0.0992, V = 3 V. The plot units are the
following: FM = 23.42 kV/cm, x0 = 19.4 nm, t0 = 0.082 ps, J0 = 3.94 ×
104A/cm2.
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Summary. A semiconductor multiquantum well structure exhibits self-sustained
spin-polarized current oscillations if one or more of its wells are doped with Mn. Anal-
ysis and numerical solution of a nonlinear spin transport model yield the minimal
number of wells and the range of doping density needed to find oscillations.

1 Introduction

Spintronics is a multidisciplinary field whose central theme is the active manip-
ulation of spin degrees of freedom in solid states systems. Among the fields
that are involved in spintronics, magnetoelectronics has achieved important
results regarding magnetoresistive effects which are important since they can
be used for magnetic read heads in computer hard drives and non-volatile ran-
dom access memory [1]. Semiconducting materials offer the possibility of new
device functionalities not realizable in metallic systems. In particular, Diluted
Magnetic Semiconductors (DMS) with nonlinear current-voltage characteris-
tics can be associated with non-magnetic semiconductors to produce efficient
spin injectors [2, 3] or be used as spin oscillators [4, 5]. The present work
models a dc voltage biased II-VI semiconductor Multiquantum Well Struc-
ture (MQWS) attached to normal contacts with at least one quantum well
(QW) doped with Mn, thereby constituting a DMS. An external magnetic
field causes splitting of energy levels in the DMS and this induces spin polar-
ization in the MQWS. We find that MQWS with at least four QWs exhibit
Self Sustained Current Oscillations (SSCOs) that can be used to design spin
oscillators. There are interesting spatio-temporal patterns for long MQWS.
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2 Governing Equations

2.1 Theoretical Model

The sample under consideration consists of an n-doped ZnSe/(Zn,Cd,Mn)Se
weakly coupled MQWS. Under an external magnetic field B, the DMS in QWs
doped with Mn++ (with spin S = 5/2) have spin-dependent energy levels:
E±
j = Ej∓Δ/2 for electron spin s = ±1/2. The level splitting Δ is a function

of B and the Mn density [3], and we can consider it as a tunable parameter.
The governing equations describing our model [5], for a MQWS of N wells,

are:

Fi − Fi−1 =
e

ε
(n+
i + n−

i −ND), (1)

e
dn±

i

dt
= J±

i−1→i − J±
i→i+1 ±

n−
i − n+

i /Θi
τsf

, (2)

Θi = 1 + e
E

−
1,i

−μ
+
i

γμ , (3)

where i = 1, . . . , N . Here n+
i , n−

i and −Fi are the two-dimensional (2D) spin-
up and spin-down electron densities, and the average electric field at the ith
MQWS period, respectively. The voltage bias condition is

∑N
i=0 Fil = V for

an applied voltage V . We have denoted the spin-dependent subband energies
(E) by E±

j,i = Ej ∓ Δi/2, with Δi = Δ or 0, depending on whether the ith
well contains magnetic impurities. ND, ε, −e, l, τsf and −J±

i→i+1 are the
2D doping density at the QWs, the average permittivity, the electron charge,
the width of a MQWS period, the spin-flip scattering time, and the tunneling
current density across the ith barrier, respectively. For numerical convenience,
the right hand side of (2) contains a smoothed form of the scattering term
used in [3]. Time-differencing (1) and inserting (2) in the result, we obtain the
following form of Ampère’s law,

ε
dFi
dt

+ Ji→i+1 = J(t) =
1

N + 1

N∑
i=0

Ji→i+1, (4)
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Fig. 1. Minimal doping density ND for SSCOs vs the number of wells N for Δ =
15 MeV
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dashed (i = 3); long-dashed (i = 4)

0 5 10 15 20 25 30 35 40 45 50

Number of QWs (N)

0

5

10

15

20

25

A
pp

lie
d 

V
ol

ta
ge

(i
n 

un
it
s 

of
 V

0)

φω

φα

Fig. 3. Phase diagram of average electric field φ vs N for a MQWS containing Mn
in its first QW. The SSCOs begin at triangles φα and end at inverted triangles φω

where Ji→i+1 = J+
i→i+1 + J−

i→i+1. In (4), J(t) is the total current density.
Tunneling currents are calculated taking into account that spin up and down
electrons have different energies:

J±
i→i+1 =

e v(f)±(Fi)
l

{
n±
i − a ln

[
1 + e

− eFil

kB T

(
e

n
±
i+1
a − 1

)]}
, (5)

for i = 1, . . . , N − 1, with a = m∗kBT
2π�2 [6]. As boundary tunnelling currents

for i = 0 and N , we use (5) with n±
0 = n±

N+1 = κND/2 [3]. Initially, we set
Fi = V/[l(N + 1)], n±

i = ND/2, v(f)±(Fi) is the “forward tunneling velocity”,
see details in [6]. The currents J±

i→i+1 are functions of Fi, n±
i and n±

i+1. For
constant values n±

i = ND/2 and Fi = F , the tunneling current density at a
nonmagnetic QW has a maximum JM at a value FM of the field. In terms of
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FM , the voltage bias condition can be written as a condition for the average
field φ:

1
(N + 1)FM

N∑
i=0

Fi = φ ≡ V

V0
=

V

(N + 1)FM l
. (6)

3 Results

3.1 Short Devices: Spin Injector

Nonmagnetic MQWSs do not exhibit SSCOs: at least one QW has to contain
magnetic impurities (Mn). Let that QW be the first one, next to the injecting
contact. Figure 1 shows that the MQWS should have at least four QWs and
sufficient doping density (N > NDC) for SSCOs to exist. The critical doping
density is approximately given by NDC = 2

N−2 × 1010 cm−2.
Figure 2 shows the time evolution of the spin-polarized current densities,

the electric field and the spin polarization (defined as Pi = (n+
i − n−

i )/(n+
i +

n−
i )) at the different periods of a 4-well MQWS with normal contacts. SSCOs

are caused by repeated nucleation and motion of electric field pulses which
are charge dipole waves. During one oscillation period, the first QW is fully
polarized, the second QW is highly polarized and the third and the fourth
QWs are strongly polarized when the dipole wave is traversing them. These
results should be useful to build an oscillatory spin polarized current injector.

3.2 Long Devices: Spatio-Temporal Patterns

For typical values of the parameters (see [5]) our model exhibits a variety of
stationary states with electric file domains (EFD) and SSCOs.
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Fig. 4. Current-voltage characteristics for a 8-period MQWS. The maximum and
minimum of the SSCOs has been represented with circles in each voltage interval
where they exist
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Phase Diagram

For ND = 1010cm−2, SSCOs appear in several intervals of the average field
(6), φNα,k < φ < φNω,k, k ∈ [1, 2, . . .]. The number and width of these intervals
of oscillatory solutions depend on N , as shown in Fig. 3, where φNα,k and φNω,k
are marked with triangles and inverted triangles, respectively. We observe that
the sequence of φ at which oscillations appear can be approximated by the
formula φNα,k = 38k/(N + 1), which provides the solid lines in Fig. 3.

Current-Voltage Characteristics

As can be seen in Fig. 3, the first bias interval for which there are SSCOs
is the widest. For instance, for N = 8 this interval is 2.59 < φ < 5.04.
The current-voltage characteristics (I-V) for a 8-period MQWS is depicted in
Fig. 4, in which we show the maximum and minimum values of the current
during SSCOs for biases in the voltage intervals (φ8

α,k, φ
8
ω,k), k = 1, . . . , 5.

Stationary States

As a general rule, the stationary states for φ < φNα,1 and for φNω,kmax < φ are
spatially almost uniform. In the other stationary intervals of the I-V diagram,
the profiles of Fi, Pi and n±

i are not uniform and there are two EFDs, a low
field domain adjacent to the cathode and a high field domain that extends to
the anode, separated by a domain wall in which the field increases.

SSCOs

Examples of SSCOs for long MQWS are shown in Fig. 5 when only one well
is magnetic. We have found that if the only magnetic QW is the ith (with
1 ≤ i < N −3), the charge dipoles are emitted at this well, and dipole motion
is limited to the last N − i QWs.
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Fig. 6. Density plot of the electric field profile during SSCOs for N = 50 and DMS
QW at i2 = 30 and: (a) i1 = 2, (b) i1 = 9, (c) i1 = 13, (a) i1 = 20

MQWS with Two Magnetic Quantum Wells

MQWS with two QWs containing magnetic impurities exhibit a very rich
dynamical behavior. Figure 6 shows the density plot of the electric field profile
during SSCOs for a 50-well structure having two magnetic QWs. We have:
(a) and (d) inhibition of dipole triggering at the first magnetic QW; (b) short
and (c) long movements of the dipole waves.

4 Conclusions and Further Work

We have studied the dynamical behavior of MQWS with DMS in at least one
QW. Spin oscillators may be designed using the results for short devices while
long devices exhibit interesting patterns. Future work will explore switching
the magnetic field through Δ.
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1 Instituto de Ciencia de Materiales, CSIC, Cantoblanco, Madrid, 28049, Spain,
gplatero@csic.es
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Summary. Leakage current of double quantum dot systems in the spin blockade
regime has been attributed to hyperfine interactions. In this work electron transport
through double quantum dots is analyzed in the spin blockade regime, in the presence
of hyperfine interaction by means of rate equations. In agreement with experiment,
current hysteresis as a function of magnetic field is found. This behavior comes from
the interplay between dynamic nuclear spin polarization and the electronic energy
states renormalization due to the Overhauser shifts induced by the nuclei.

1 Introduction

The Pauli exclusion principle can play an important role in current rectifi-
cation [1, 2] in both molecular and semiconductor nano-structures transport.
Spin blockade (SB), which occurs in double quantum dots (DQDs) over cer-
tain ranges of gate voltage, external magnetic field, and bias voltage is one
important example. The interplay between Coulomb and spin blockade can be
used to block current in one direction of bias voltage while allowing it to flow
in the opposite one. Because of this property DQDs can function as exter-
nally controllable spin-Coulomb rectifiers that have potential application in
spintronics, as spin memories and transistors. Spin relaxation processes [3–5],
induced by spin-orbit (SO) scattering [6] or hyperfine (HF) interactions
[7–12], produce a leakage current which limits the SB resistance. Spin-flip
(sf) relaxation times in QDs are rather long however and the SB resistance is
large.

In this paper we report on a model for transport through two weakly
coupled vertical QD’s in the spin blockade configuration [13, 14]. Recent
experiments [1] show current leakage in the Spin Blockade regime which is
attributed to hyperfine interaction between the nuclei spins and the electronic
spins. On a spin blockade plateau, current flow between dots is possible only
when each dot has one electron and their spins are opposite. A finite bias
voltage allows an electron in the left dot to tunnel sequentially to the double
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occupied singlet state in the right dot and then to the collector. In this circum-
stance there is an approximately even chance that electrons in left and right
dots will have the same spin when the left dot electron is refreshed from the
source. When that happens, the Pauli exclusion principle prevents tunneling.
Current flow stops until a spin flip takes place. The time averaged current
is consequently strongly suppressed. The SB blockade regime is conveniently
tuned by an external magnetic field (B). Fields applied in the plane of the
quantum dots introduce a Zeeman energy splitting of the levels. Increasing
the field allows to tune the relative energy between states with antiparallel
spins and with parallel spins and bring them close to degeneracy. In this situa-
tion, it has been shown, both theoretically and experimentally that the current
presents instabilities and hysteretic behavior [15]. We explain this behavior by
accounting for the interplay between dynamic nuclear polarization and Over-
hauser shifts suffered by the electronic levels which are induced by the nuclei
spins. Recent experiments by Koppens et al. show similar instabilities and
bistable regions in the current as a function of magnetic field [16] through a
lateral DQD, which likely have a similar explanation. Also, current hysteresis
has been observed in InAs quantum dots by the group of Ensslin [17].

2 Electronic Transport Through Double Quantum
Dots: Role of Hyperfine Interaction

2.1 Theoretical Model

We consider the Hamiltonian: H = HL + HR +HLR
T +Hleads + H l,D

T , where
HL, (HR) is the Hamiltonian for the isolated left (right) QD modeled as one-
orbital Anderson impurity. HLR

T and H l,D
T describe tunneling between QDs

and between leads and QDs respectively, and Hleads is the Hamiltonian for the
leads. In the presence of an external magnetic field and hyperfine interaction
there is an additional contribution to the hamiltonian:

Ĥ = geμBS·B +
A

N

N∑
i=1

[
SzI

i
z +

1
2

(S+I
i
− + S−Ii

+)
]

(1)

where the average hyperfine coupling constant is A � 90 μeV for GaAs and B
is the external magnetic field. The basis considered consists on the eigenstates
for the isolated quantum dots.

Rate equations for the occupation probabilities ρss corresponding to the
electronic states become:

ρ̇(t)ss =
∑
m �=s

Wsmρmm −
∑
k �=s

Wksρss (2)

where Wij are transition rates for the tunneling through the contact barriers
and for the tunneling through the interdot barrier. We consider incoher-
ent interdot tunnel and we account for both elastic and inelastic inter-dot
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tunneling [13,14]. We consider as well transition rates which involve spin-flip
coming from hyperfine interaction, as we will describe below. We calculate
the electronic spin-flip scattering rate W sf

i,j using a microscopic model that
accounts for HF interactions: The HF interaction can then be separated into
mean-field and flip-flop contributions: Ĥ = Ĥz + Ĥsf where Ĥz = A〈Iz〉Sz

has an effective nuclear field BN = A〈Iz〉/geμB contribution which is added
to the external magnetic field contribution to produce an effective Zeeman
splitting of the levels and

〈Iz〉 =
1
N

N∑
i=1

(Ii
z) =

[
N↑ −N↓

N↑ +N↓

]
|Iz | = P |Iz | (3)

where P =
[

N↑−N↓
N↑+N↓

]
is the nuclear spin polarization where N↑(↓) is the num-

ber of nuclei with spin up(down), in a QD. Ĥsf = (A/2N)
∑

i

[
S+I

i
− + S−Ii

+

]
is the flip-flop interaction responsible for mutual electronic and nuclear spin
flips. Because of the mismatch between nuclear and electronic Zeeman energies
transitions must be accompanied at low temperature by phonon emission. We
approximate the spin-flip transition rate from parallel-spin to opposite-spin
configurations by:

1
τsf
� 2π

�
| < Ĥsf > |2 γ

ΔE2 + γ2
(4)

where γ is the electronic state life-time broadening which is of the order of
μeV , i.e., of the order of the phonon scattering rate [3,4]. ΔE is the difference
between the energy of a state with one electron in each dot with aligned spins
(| ↓, ↓〉/| ↑, ↑〉)and the energy of a state with one electron in each dot with
opposite spin orientation (| ↑, ↓〉/| ↓, ↑〉) (see Fig. 1). The latter are mixed
due to interdot tunneling with the intradot singlet state in the right QD
(|0, ↓, ↑〉). The energy of the mixed state with antiparallel spins is calculated
perturbatively and depends mainly on the interdot tunneling (t) and the right
and left dots level detuning.

In resonance, at B �= 0, ΔE depends on the Zeeman energy due to the
external field B and on the additional Zeeman splitting due to the magnetic
field induced by the nuclei:

ΔE = E(|↓,↓〉/|↑,↑〉) − E(|↑,↓〉/|↓,↑〉) = geμBB +
A

2
P (5)

The equations that describe the time evolution of the nuclear spin polarization
for both dots include the flip-flop interaction and the nuclear spin relaxation
time τrelax (that we include phenomenologically and that is much longer than
the electron-nuclei spin scattering time) become:

ṖL = W sf
6,3ρ3 −W sf

5,4ρ4 − PL

τrelax
(6)

ṖR = W5,3ρ3 −W sf
6,4ρ4 − PR

τrelax
(7)
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Here, for instance:

|4〉 ≡ | ↓, ↓〉 → |5〉 ≡ | ↑, ↓〉 ⇒ W sf
5,4 =

[
1
τsf

]

L

[
1 + PL

2

]
, (8)

where L and R mean left and right dot respectively. The system of time
evolution equations for the electronic states occupations ρi and nuclear polar-
ization of the left and right dot is self-consistently solved. From that we
calculate the total current through the system which is the physical observable
of interest.

For B = 0, experiments [1] show a weak peak in the current at low VDC

followed by a wide plateau, and then finally a very strong peak at VDC ≥ 6
MeV, in good agreement with the results plotted in Fig. 1. The leakage current
observed in the plateau is due to the finite probability for electrons in the QD’s
to flip their spin by interaction with nuclei.

In Fig. 2 we show I/B (B in-plane) for VDC near the center of the SB region.
When sweeping up and down the magnetic field, we find current hysteretic
behavior in agreement with experiment [15]. The source of this behavior is
the interplay between the induced nuclei polarization due to HF interaction
and the energy shift induced in the electronic states by the nuclear magnetic
field which modifies the spin-flip rate. At small B, for the DC voltage that
we have considered the | ↓, ↓〉 state has lower energy than the state with
antiparallel spins, and then, at low temperatures spin-flip has low probability.
Increasing B, the state | ↓, ↓〉 becomes higher in energy than the state with
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Fig. 1. Stationary I/VDC (B = 0). At low VDC, I takes place when one electron from
the (1, 1) state with two electrons, one in each dot, with opposite spins tunnels to the
singlet double occupied state in the right QD (0, 2). Once one electron tunnels from
the emitter contact to the left dot with the same spin polarization as the electron
in the right dot, the current drops abruptly due to spin blockade. A finite current
leakage is observed due to spin flip induced by HF interaction. At VDC ≥ 6 MeV the
chemical potential of the right lead crosses the (1, 1) state with parallel spins and
the right QD becomes suddenly discharged producing a large peak in I
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Fig. 2. I/B in the SB region for a DQD under in-plane B for different DC voltages.
The current shows hysteresis reflecting strong non-linearities induced by the inter-
play of electron and nuclear spin dynamics. Electronic levels energies depend on the
level detuning which depends on the source-drain voltage. This is the reason why
the hysteresis region shifts with voltage

antiparallel spins and then, electrons have a finite spin-flip rate and relax
to states with antiparallel spins, producing a small leakage current. In this
case, as the electronic spin flips from down to up the nuclei spin flips from
up to down and the effective field produced by the nuclei is aligned with the
external field. This feed-back mechanism between the nuclei polarization and
the electron state renormalization implies hysteresis in the electronic current
as a function of B as observed experimentally [15].

In conclusion we have proposed a model which describes charge trans-
port through double quantum dots in the spin-blockade regime including HF
interactions. The interplay between electronic charge occupation and spin
polarization of the nuclei is accounted for by solving coupled rate equations
self-consistently. We interpret current features seen experimentally [15] at the
SB regime as evidence for hyperfine interaction between electronic and nuclei
spins in the double quantum dot structure. At the SB plateau, electronic
spin flip from states with parallel spins to states with antiparallel spins states
produces a nuclear field which shift the electronic levels. This shift modi-
fies the spin-flip rate and therefore the nuclei polarization. This feed-back is
responsible of the strongly non linear current behaviour.
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Summary. A numerical study of domain wall relocation during voltage switching in
a semiconductor device whose current-voltage characteristic exhibits the alternation
of intervals of stationary states with intervals of oscillatory states is presented. Volt-
age switching between voltage intervals always induces the emission of a relocation
wave, but relocation can be permanent or not depending on the voltage increase.

1 Introduction

A II-VI semiconductor superlattice (SL) having its first quantum well (QW)
doped with magnetic ions and attached to normal contacts is studied numer-
ically when a sudden increase is applied to the external applied voltage. A
numerical study has been recently presented showing that, for a large range
of values of the physical parameters, the current-voltage characteristic curve
J–V representing the variation of the total current density J with respect to
the applied voltage V exhibits voltage intervals of stationary states alternat-
ing with voltage intervals of self-sustained spin-polarized current oscillations
due to the repeated triggering of charge dipole waves at the magnetic well
and their motion towards the collector. See Fig. 1.

The alternation of intervals of stationary and oscillatory solutions makes
this structure suitable to study the electric field domain wall relocation phe-
nomenon due to a sudden increase of the voltage across the SL, reported from
experiments by Luo et al. [1–5] and studied numerically in Bonilla et al. [6,7].

The J–V curve in Fig. 1 shows that four possible scenarios exist for apply-
ing the voltage jump, depending on if the initial and final values are located
in an interval of stationary or oscillatory states. These relocation scenarios are
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Fig. 1. J–V characteristic for a structure with N = 12 QWs (solid line), showing the
stationary states branches Bk, k = 1, . . . , N−2 = 10, and the intervals of oscillatory
states, where maximum and minimum current values are depicted. Dashed line is
Ji→i+1(V/V0, ND/2, ND/2). Inset: same for a larger range of voltage

described numerically in terms of two voltage absorption mechanisms. Also,
a minimum voltage increase for a relocation to be permanent is detected.

2 Governing Equations

The main variables are the two-dimensional (2D) spin-up and spin-down elec-
tron densities n+

i (t) and n−
i (t), the average electric field at the ith SL period

−Fi(t) and the applied voltage V (t). The ith SL period starts at the right
end of the (i− 1)th barrier and finishes at the right end of the ith barrier.

The model equations are, for i = 1, . . . , N ,

ε
dFi(t)

dt
= J(t)− Ji→i+1(t), (1)

e
dn±

i (t)
dt

= J±
i−1→i(t)− J±

i→i+1(t)± 1
τsf

(
n−

i (t)−A(μ+
i )n+

i (t)
)
, (2)

N∑
i=0

Fi(t)l = V (t). (3)

Here A(μ+
i ) =

(
1 + e

E
−
1,i

−μ
+
i

(t)

γμ

)−1

, (1) is the Ampère’s law obtained by time-

differencing the Poisson’s equation ε(Fi − Fi−1) = e(n+
i + n−

i − ND) and
inserting (2) in the result, and (3) is the voltage bias condition.

There Ji→i+1 = J+
i→i+1+J−

i→i+1 are the tunneling currents densities across
the ith barrier, calculated by the Transfer Hamiltonian method taking into
account that spin up and down electrons have different energies, and provided
that scattering-induced broadening of energy levels is much smaller than sub-
band energies and chemical potentials [8]: J±

i→i+1 = B(Fi, n
±
i , n

±
i+1) v(f)±(Fi),
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Fig. 2. Branches B2 and B3 (solid line) and second and third intervals of oscillatory
solutions corresponding to the J–V depicted in Fig. 1. Vertical lines denote onset
and end of voltage switchings: stationary states (dot-dashed) and oscillatory states
(dashed lines). Horizontal arrows denote the four scenarios: (A) from SS to SS, (B)
from SS to OS, (C) from OS to SS and (D) from OS to OS

where v(f)± is the spin-dependent “forward tunneling velocity” (which is a
sum of Lorentzians). The expressions of v(f)± and B can be found in [8].

The total current density J(t) is independent of i, as it can be written as

J(t) =
1

N + 1

[
N∑

i=0

Ji→i+1(t) +
ε

l

dV (t)
dt

]
(4)

by adding (1) for all i and time-differencing (3).
The rest of the parameters are the spin-dependent subband energies (mea-

sured from the bottom of the ith well) E±
j,i = Ej ∓Δi/2, with Δi = Δ or 0,

depending on whether the ith well contains magnetic impurities, and ND, ε,
−e, l = d+w, and μ±

i (t), which are, respectively, the 2D doping density at the
QWs, the average permittivity, the electron charge, the width of a SL period
(d and w are barrier and well widths), and the chemical potentials at the ith
SL period for electrons with spin ±1/2, related to the electron densities by
n±

i (t) = ρ ln[C(μ±
i (t))], whose detailed expression can be found in [8].

The tunneling current density Ji→i+1 is a function of Fi, n±
i and n±

i+1,
which has, for constant values n±

i = ND/2 and Fi = F at a nonmagnetic
QW, a maximum JM at a value FM of the field. In terms of FM , the voltage
bias condition (3) can be written as a condition for the average field φ(t):

φ(t) ≡ V (t)
(N + 1)FM l

=
1

(N + 1)FM

N∑
i=0

Fi(t). (5)

As boundary tunnelling currents (i = 0, N),B is evaluated at n±
0 = n±

N+1 =
κND/2 (identical normal contacts with κ ≥ 1) [9]. Initially, we set Fi(0) =
V (0)/[l(N + 1)] (i.e. φ(0) = Fi(0)/FM ), and n±

i = ND/2 (normal QWs).
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3 Results

A sample with d = 10 nm, w = 5 nm, m∗ = 0.16m0, τsf = 10−9 s (normal
QWs) and 10−11s (magnetic QWs), ε = 7.1ε0, T = 5 K, E1 = 15.76 MeV,
E2 = 61.99 MeV, γ = 1 MeV, γµ = 0.1 MeV and κ = 1 is considered [9]. Only
the first QW has magnetic impurities, yielding a spin splitting Δ = 12 MeV.
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Fig. 3. Total current density J(t) and electric field density plots for the four
relocation scenarios: (A) SS → SS, (B) SS → OS, (C) OS → SS and (D) OS → OS
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Figure 2 shows the four possible scenarios, depending on if the initial and
final voltages correspond to a stationary state (SS) or an oscillatory state
(OS).

Figure 3 shows the total current density J(t) (solid 2D curves) and the
corresponding electric field distribution {Fi(t)}Ni=0 (density plots) for the four
scenarios described in Fig. 2. Vertical dashed lines denote the time at which
the voltage switching is applied.

The current oscillations due to the repeated triggering of charge dipole
waves at the magnetic well i= 1 and their motion towards the collector i = N ,
together with the motion of these waves, can be observed in the three scenarios
involving voltage values in intervals of oscillatory solutions; see scenarios B,
C and D in Fig. 3.

The electric field profile outside these recycling waves consists of a domain
wall located at a quantum well ia, which separates a low field domain going
from i= 1 to ia and a high field domain going from ia to i = N . The sudden
increase of the applied voltage always induces the nucleation of a large wave
which travels towards the domain wall, where it is absorbed; this is the mech-
anism by which the electric field profile absorbs the increase of area imposed
by (5). The size of this relocation wave is always larger than the size of the
typical waves corresponding to current oscillations. When the relocation wave
arrives to the domain wall located at ia (here located near the collector), the
electric field accommodates itself to the stable solution corresponding to the
final voltage value. This accommodation induces the relocation of the domain
wall, which moves to the quantum well ia−1, except in scenario B, where the
domain wall remains pinned at QW ia. Why is this?

There are two mechanisms to absorb the voltage increase: one is by trig-
gering a recycling wave whose area accounts for the voltage increase, and the
other is by relocating the domain wall to a previous quantum well. In the first
case, the domain wall relocation takes place only during the recycling of the
electric field wave, whereas in the second case the relocation is permanent.

When the final state is an oscillatory state, both mechanisms can be
used. Scenario D corresponds to a permanent relocation, in which the voltage
increase (of size Δφ = 2.8) is absorbed both by triggering a recycling wave and
by moving back the domain wall. In turn, scenario B shows that the voltage
increase (of size Δφ = 1.8) can be absorbed by triggering a recycling wave
without moving the domain wall except when the wave has to recycle.

When the final voltage corresponds to a stationary state, only the second
mechanism is available: the voltage increase must be absorbed by the electric
field by moving back the domain wall to the previous quantum well ia − 1;
this is what happens in scenario A (in which the voltage increase is of size
Δφ = 2), and also in scenario C (where Δφ = 1), in which the resulting
stationary electric field must take into account both the voltage increase and
the voltage carried by the recycling waves. When the final voltage corresponds
to a stationary state, the domain wall relocation is permanent.
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It is not necessary to cross an interval of oscillatory solutions to induce the
triggering of a relocation electric field wave yielding a permanent relocation.
A relocation similar to the one obtained in scenario A can take place without
leaving a stationary branch, provided the voltage increase is large enough.

In the stationary branchB3, for a final voltage φend = 8.5, a critical voltage
φc = 6.65 exists such that if the initial voltage φini is lower than φc (i.e. a
voltage increase greater than Δφ = 1.85), a relocation wave is triggered and a
permanent relocation takes place, whereas if φini > φc, the voltage increase is
absorbed by the stationary field profile without relocation nor wave nucleation.

A similar behaviour has been found for other values of φend ∈ B3 around
8.5, for which a minimum voltage increase (Δφ)min = 1.8 is required to induce
the relocation scenario A without leaving the stationary branch B3.

4 Conclusions and Further Work

A numerical study of electric field domain wall relocation scenarios under
a sudden voltage increase in spin-polarized semiconductor structures has
been carried out. The current-voltage characteristic of these devices displays
voltage intervals with stable stationary states alternating with intervals of self-
sustained spin-polarized current oscillations which are due to the repeated
triggering of charge dipole waves at the magnetic well and their motion
towards the collector. The four different scenarios present the induction of
a large electric field wave which accounts for the voltage increase when the
voltage switching is applied. The scenarios have been described in terms of
the electric field distribution, and two mechanisms of voltage absorption have
been detected: the relocation of the domain wall of the electric field, which
moves back from quantum well ia to ia − 1, and the triggering of a recycling
electric field wave, which absorbs (part of) the voltage increase during its
travel inside the structure, but which is accompanied by the domain reloca-
tion during its recycling. When the final voltage is located in an interval of
oscillatory states in the current-voltage characteristic, both mechanisms may
appear at the same time. Finally, we have observed that a relocation can
take place without leaving a stationary branch during the voltage switching,
provided the voltage increase is greater than a critical value.

Future work include progressive (not sudden) voltage switchings along an
interval of time. This ramping time has proved to have an important influence
in relocation scenarios [1–7].
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The 1990s and early 2000s saw substantial research into the application of
nonlinear dynamical systems theory in the field of aerospace engineering. This
focussed principally on the flight mechanics behaviour of aircraft operating at
extremes of their flight envelopes, where aerodynamic and other phenomena
are significantly nonlinear. Useful results were obtained, and some practical
tools were developed, for example, for the analysis of underslung loads below
a helicopter, and the analysis of flight control law robustness. In spite of these
initial efforts, methods from nonlinear dynamics have not as yet entered the
industrial mainstream. On the other hand, there is today a growing realisation
that, for the industry to develop and improve its products, it must face the fact
that many of its problems are indeed nonlinear in nature. Hence, the necessary
advances require that this type of behaviour is properly accounted for.

The contributions for this minisymposium showcase examples of recent
nonlinear studies of aeronautical applications which are indeed being inte-
grated into industry. Specifically, these studies show how continuation meth-
ods and bifurcation analysis are incorporated into the investigation and
evaluation of a variety of aircraft systems – both from a vibration and a rigid-
body motion perspective. In each case, the approach brings a new extended
capability in the understanding of nonlinear engineering systems and the
papers show the promise offered by these techniques to the aerospace sector
in both analysis and design.

Rezgui et al. focus on the stability of a rotor in autorotation, which is inves-
tigated via the bifurcation analysis of a periodically forced system. Despite
the model being relatively simple and of low order, it yields multiple autorota-
tion solutions. At the same time an experimental rig of the system is utilised
to generate experimental bifurcation diagrams. The paper shows how a co-
ordinated implementation of both the numerical and experimental systems,
the latter used to tune the model and the former to help select test conditions
that are meaningful and achievable, provides a low-order model that is able
to generate a rich variety of verifiable results not previously achieved.
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The subject discussed by Rankin et al. is the nonlinear analysis of an
aircraft turning on the ground. A mathematical model of low order, developed
and verified with direct input from industry, reveals regions of instability of
turning that may be encountered in practice as certain parameters are varied.
The paper shows the results in a graphical manner intended to be accessible
and easy to interpret for engineers not well versed in nonlinear systems theory.
Hence, nonlinear modelling and analysis techniques become engineering tools
that can be used, for example, to evaluate new design concepts at an early
stage.

Shimmy in aircraft landing gear systems is a common problem encoun-
tered in design and operations, yet the methods for understanding and hence
eliminating shimmy are often inadequate. In the contribution by Krauskopf
et al. bifurcation analysis is applied to a mathematical model of an aircraft
nose landing gear with geometric nonlinearity, which takes the form of five
coupled first-order ordinary differential equations. The results clearly show
the parameter regions in which one or more shimmy modes exist. The prac-
tical use of such a stability map is illustrated by simulated take-off runs of a
light and a heavy aircraft.

The final contribution by Coetzee discusses the potential for nonlinear
dynamical systems theory from an aerospace industry perspective. Several
recent examples of their industrial use are cited, but the focus is on oppor-
tunities for the application of nonlinear methods in landing gear and related
systems. Apart from specific technical challenges, the paper also discusses
the need for providing the necessary framework and management support for
nonlinear modelling in an industrial context.

Taken together, the contributions to the minisymposium provide useful
lessons to aid in the adoption of nonlinear methods within the aerospace
industry. Engineers need to understand the value not only of the traditional
complex linear models, but also the power of reduced-order nonlinear models
to capture important behaviour. They need to learn how to generate such
models, how to analyse them with advanced tools, and how to interpret the
results properly. Certainly, software for continuation and bifurcation analy-
sis needs to be made more user-friendly for this community, and graphical
methods need to be developed for both inputting information and presenting
results.

In conclusion, we hope that the discussions presented here will contribute
to a growing recognition of the practical benefits of nonlinear modelling and
analysis in the aerospace industry and beyond.
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Summary. Presented with complex systems exhibiting nonlinear behaviour, engi-
neers in industry may face difficulties in understanding the system, both from a
mathematical modeling perspective and also when trying to set up representative
experiments. Here, a systematic approach combining numerical and experimental
parameter continuation is applied to the investigation of complex nonlinear rotor
behaviour. The aim is to show the benefits of co-ordinating numerical and physical
tests in order to build a mathematical model that adequately captures the system
dynamics. In this study the problem involves a dynamical system operating in a
nonlinear periodic manner, with constraints on its states and parameters. The sys-
tem is an autogyro rotor for which the approach generates a simple mathematical
model yielding multiple possible autorotative conditions not previously identified in
a systematic way; it also provides an explanation for unsafe operating scenarios.

1 Introduction

The aeromechanical stability of a rotor is a complex nonlinear problem, which
involves interactions between different sources of nonlinearity. We consider the
rotor of an autogyro which, unlike in a helicopter, is not driven by a power
source but is kept rotating by the air flow through it; an engine with propeller
provides forward thrust. It is known that when operating in autorotation at
high forward speeds, the rotor can undergo unstable flapping behaviour (which
has resulted in accidents) but the mechanisms at play are not well understood.

A number of methods have previously been applied to the stability of
helicopter blades, ranging from pure time history simulation (time integration
techniques) to parametric resonance analysis, Floquet stability theory and
perturbation methods. However, these depend on assumptions that may be
questionable for autorotating rotors (where rotation rate is variable, whereas
for a helicopter it can be considered fixed) and inadequate to cover their entire
stability picture.
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Fig. 1. Schematic view and photograph of autogyro rig in wind tunnel

Continuation and bifurcation methods have been successfully deployed
to study the stability and control of a helicopter model, represented as
a periodically forced nonlinear system with constant rotor speed [1]. The
approach has now been extended to autorotating rotors using a relatively low
order nonlinear mathematical model. These investigations using continuation
and bifurcation methods [2, 3] have confirmed that an autorotating rotor can
undergo unstable behaviour. This includes the scenario observed in practice
when the rotor is lightly loaded (i.e. at high speed).

To complement the numerical studies, an instrumented physical model of
an autogyro was constructed for testing in a wind tunnel. The experiments
were performed in the University of Bristol low-speed closed-return open-jet
wind tunnel, with a 1.1 m jet diameter and maximum attainable velocity is
about 33 m/s. Figure 1 depicts the rig in the tunnel.

The experimental rig [4] comprises a two-bladed teeter rotor of 1 m diam-
eter, free to flap about a hinge located at the rotor shaft axis. An airframe
similar to a production autogyro with an enclosed cockpit was constructed in
order to cover the rotor support frame with an aerodynamically faired shape.
The following measurements were taken from the rig: rotor blade flapping
angle, pitch of each blade, rotor speed and azimuthal position and forces and
moments acting on the rig. The signals measured on the rotating parts were
transmitted to a computer outside the tunnel by wireless telemetry.

The rotor is modeled mathematically as a dynamical system in the form
of a set of nonlinear ordinary differential equations. The rotor has two rigid
blades and a 2-D individual blade element approach is used to model the aero-
dynamic loads on each. The blades are assumed to be rigidly connected and
hence have one flapping degree of freedom. The lead-lag motion is captured in
the rotational degree of freedom around the shaft axis; the flapping coordinate
for the blades, β, is dependent on azimuth angle, ψ. The equations of motion
for the rotor in both the flapping and the rotation senses are second order,
giving a total of four rotor states (ψ, ψ̇, β and β̇); see for example [5].

The blades have no geometric twist or taper and the aerofoil profile is
considered to be a NACA0015 section. Aerodynamic loads for each individual
blade element are calculated numerically utilising nonlinear look-up tables
for lift and drag coefficients of this aerofoil, defined from experimental data
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for a 360◦ range of angle of attack [6]. The rotor inflow is captured via a
3-state Pitt–Peters dynamic wake model [7, 8], modified to account for the
rotor being in autorotation. The total number of states (rotor and inflow
dynamics) is seven. The parameters of interest here are the forward speed, V ,
and the longitudinal shaft angle, θshaft. Further details can be found in [4].

2 Experimental and Numerical Bifurcation Studies

The steady state periodic solutions and their stability are determined numer-
ically from the 7-state mathematical model as parameters are varied, using
the continuation and bifurcation software Auto [9]. Bifurcation diagrams gen-
erated from this model [3] have shown that unloaded rotors in autorotation
are prone to instability. This is due to the branches of stable and unstable
periodic orbits moving into closer proximity as the rotor shaft angle is reduced
– which would be the case at higher speeds.

The first experimental runs in the present study entailed taking mea-
surements at stable autorotative conditions over a range of wind speeds for
different shaft angles, with other parameters fixed. Since the data is periodic
with rotor azimuth position, average peak values for each cycle were com-
puted over several runs. These peak values for both the rotational velocity
and the flapping angle are plotted as filled circles in Fig. 2 for θshaft = 7◦; the
solid curve fitted through these points is a stable limit cycle branch in this
experimental bifurcation diagram. The multiple circles at each wind speed,
especially for flapping angle, reveal the scatter in the readings from different
runs.

5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000

Wind Speed (m/s)

R
ot

or
 V

el
oc

ity
 (

rp
m

)

Stable limit cycles
(Stable autorotation)

Unstable limit cycles
(Unstable autorotation)

Fold
Bifurcation

Point 

5 10 15 20 25
4

6

8

10

12

14

16

Wind Speed (m/s)

P
ea

k 
F

la
pp

in
g 

A
ng

le
 (

de
gr

ee
s)

Peak flapping angles
at the stable limit cycles

(stable autorotation)

Peak flapping angles
at the unstable limit cycle

(unstable autorotation)

Fold bifurcation
point

Fig. 2. Experimental bifurcation diagram of the rotational velocity (left) and the
flapping angle (right) for θshaft = 7◦. Solid circles denote stable steady autorotation;
the solid curve fitted to these points is the stable branch. Hollow circles represent
initial points from which a stable steady autorotation state was achieved; dots show
attempts where autorotation was not possible. The dashed curve represents the
unstable autorotation steady state
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Figure 2 illustrates that the rotational velocity increases almost linearly
with the forward wind speed, while the flapping angle has an inverse rela-
tionship with the wind speed. The same trends are found for the other shaft
angles tested. This shows that more flow goes through the rotor the faster it
rotates, increasing the centrifugal stiffening and hence lowering the flapping
angle. It is also clear that autorotation is not possible below a certain wind
speed value (indicated as a fold bifurcation); to the left of this point, the
rotor speed decays and the rotor flapping oscillation diverges until a safety
mechanism is activated.

Next, the experiment was run to test the ability of the rotor to autorotate
at wind speeds higher than the fold point but starting from low initial rotor
velocities. For every shaft angle setting, rotor speed thresholds were found
above which the rotor can achieve steady autorotation. The hollow circles
in Fig. 2 illustrate attempts where a steady autorotation state was achieved
from the initial condition (i.e. the trajectory evolved towards the solid circles).
The dots are attempts leading to unstable rotation, characterised by diverging
flapping and decaying rotational speed. By running a number of tests, it was
possible to define a rotor speed boundary that separates the two scenarios: the
dashed curve in Fig. 2. At this boundary, the behaviour of the rotor appears
to be steady but due to flow disturbances it will diverge – either to the stable
autorotation state or an unstable condition. This is interpreted as an unstable
autorotation branch in this experimental bifurcation diagram.

To develop a deeper understanding of the nonlinear mechanisms underly-
ing the rotor behaviour, we return to numerical continuation and bifurcation
analysis of the mathematical model; this allows parameter dependence to be
investigated beyond the limitations of the experiment (e.g. higher wind speed
or flapping angles). Initially this did not yield a bifurcation diagram of the
same shape as the experimental one, although stable and unstable branches
were located. The experimental bifurcation diagram was therefore used to
modify, or ‘tune’, the mathematical model with the aim of producing at least
qualitatively the same behaviour. The numerical model uses a simple aero-
dynamic representation, neglecting characteristics such as blade tip and root
losses, blade-to-blade interaction, unsteady aerodynamics, airframe and tun-
nel interaction effects, rotor downwash, etc. Also, friction acting on the rotor
shaft is ignored. For simplicity, the model was adapted by incorporating a
friction term in the rotation sense of the rotor to attempt to capture the
effects of all unmodelled phenomena. The frictional term is formulated as a
resisting torque assumed proportional to the rotational velocity; see [4]. The
tuning of the coefficients in this term was performed to match rotor speed to
experimental values.

Figure 3 depicts the bifurcation diagram obtained from the modified
numerical model at various shaft angles. The shape of the stable autorotation
branches are very similar to those obtained from experiment, although the
fold bifurcation points are located at slightly higher wind speed values. These
results illustrate how the essence of the stability of a rotor in autorotation can
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Fig. 3. Bifurcation diagram for the numerical rotor model at shaft angles of 4◦ to
10◦. Solid dotted curve is stable; curve with hollow diamonds is unstable

be predicted to a high level, when continuation and bifurcation techniques are
adapted, even though the numerical model is relatively simple. Furthermore,
the figure shows that the wind speed value at which the fold bifurcation points
exist increases as the shaft angle is reduced. Therefore, the boundary of rotor
stability can be constructed by 2-parameter continuation (not shown), yielding
the safe operating limits of the autogyro.

If the rotor flapping angles on both the stable and unstable branches are
compared to those obtained from experiment, it is seen that their overall
curve shapes are very similar. However, the amplitudes of the flapping angles
computed are smaller than those of the physical rotor, particularly close to
the bifurcation point. This is not unexpected since the model tuning was
performed only for the rotor velocity state. The quantitative aspect of the
analysis can be improved by incorporating a higher fidelity rotor model.

3 Conclusions

An example of a combined numerical-experimental approach to generating
bifurcation diagrams has been shown to yield powerful information on the
dynamics of a complex physical nonlinear system. The numerical results pro-
vide a qualitative framework to explain the experimental outcomes, which can
in turn be used to validate the predictions and tune the model. In this case, an
autorotating rotor was studied: a simple mathematical model was defined and
then tuned using results from an experimental bifurcation diagram. Numeri-
cal continuation of this model showed, for the first time, the presence of both
stable and unstable autorotation branches and their parameter dependence.

Results for other shaft angles (not shown) reveal that the smaller this angle
is, the higher the wind speed below which autorotation cannot be sustained,
i.e. the fold bifurcation occurs at higher forward speed. Thus a locus of fold
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bifurcation points denotes the minimum permissible shaft angle required for
autorotation at the corresponding wind speed: if the pilot reduces the shaft
angle to decrease the lift coefficient for high speed flight, the rotor may enter an
unstable condition where stable autorotation gives way to divergent flapping
behaviour. In this way the bifurcation diagrams provide an explanation for
high-speed autorotative instability as experienced in actual flight.

Future work will investigate following of unstable solutions directly in the
experiment, as has already been achieved in a simpler nonlinear system [10].
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Summary. Safety and economy are primary concerns in the study of ground
manoeuvres for commercial aircraft, the ultimate goal being automation and optimi-
sation of taxi operations. The application of mathematical and computer modeling
to this problem is beneficial due to the relative costs compared with actual tests. As
an example of utilising mathematical tools in the investigation of industrial problems
we make use of a computer model of a passenger aircraft to perform a bifurcation
analysis of turning solutions. In particular, we study how altering the longitudinal
centre of gravity position of an aircraft affects its ground dynamics.

1 Introduction

During the daily service of passenger aircraft there are operational parameters
that may vary considerably. Many of these parameters can have a significant
effect on the ground handling properties of the aircraft. Important parameters
include the loading of the aircraft in terms of passengers and fuel, runway and
taxiway conditions, and wear on important components such as the tyres. In
order to inform operational procedure it is important to understand how vari-
ation of these parameters affects the ground dynamics. Large costs associated
with performing ground (flight) tests motivates the use of mathematical and
computer modeling. In previous work a combination of flight test data and
low-order computer bicycle models were used to study the ground handling
properties of aircraft [1, 2], including the effect of tyre pressure on ground
handling [3]. A previous study by the authors utilised a SimMechanics model
to study the dynamics of aircraft on the ground under variation of thrust [4].
In this paper we use continuation analysis to perform a parameter study of
a mathematical model of a passenger aircraft. Specifically, we investigate the
effect that the aircraft’s longitudinal centre of gravity position has on its
ground handling.
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During taxiing to and from the airport terminal a passenger aircraft will
undertake various turning manoeuvres. Turns are made by applying a steering
angle to the wheel and tyres of the nose gear while thrust from the engines
remains constant. Our approach is to study the ensuing dynamics in terms
of turning circle solutions of the system; their stability dictates whether a
particular manoeuvre can be made safely. Depending on the loading of pas-
sengers, luggage and fuel levels, the centre of gravity position of the aircraft
can vary considerably in day-to-day use. It is therefore of interest to treat
the centre of gravity position along the longitudinal axis of the aircraft as a
system parameter and to investigate changes in the turning dynamics under
its variation.

We use a fully parametrised mathematical model of a typical medium
sized single aisle passenger aircraft implemented in Matlab. The aircraft is
modeled as a tricycle with the airframe having three translational and three
rotational degrees of freedom. The equations of motion were obtained via
balancing forces and moments in each degree of freedom. Nonlinear effects
are included in the tyre model, depending on tyre load and slip angle, and in
the aerodynamic model, depending on velocity, angle of attack and slip angle
of the airframe. The steering angle δ and the centre of gravity position CG are
the free parameters in our analysis. The centre of gravity position is measured
as the percentage along the mean aerodynamic chord (MAC), taken from the
leading edge; negative values represent a position in front of the leading edge.

The tool used here is numerical continuation; specifically, we perform
a bifurcation analysis with the software package AUTO [5]. Continuation
analysis is a powerful tool used to study steady-state solutions of dynami-
cal systems [6], which are tracked under the variation of system parameters;
during computations solutions are monitored to detect bifurcations, which
are qualitative changes in the dynamics [7, 8]. Identifying where bifurcations
occur is important because they may form boundaries of safe behaviour. The
use of continuation and bifurcation analysis to study ground manoeuvres is a
computationally inexpensive way of analyzing the dynamics under variation
of several parameters.

2 Bifurcation Analysis of Turning Solutions

We present a bifurcation analysis of aircraft turning solutions; the results are
represented as one-parameter and two-parameter bifurcation diagrams. In our
model fixed-radius turning circles correspond to steady-states of the system.
The analysis focuses on how (steady-state) turning circle solutions change
under variation of parameters. In the one-parameter study the CG position
is kept fixed and the steering angle δ is varied; solutions are plotted against
a state variable. In the two-parameter study we also vary CG and the results
are represented as a surface of solutions that describe the dynamics over the
entire range of δ and CG.
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Fig. 1. One-parameter bifurcation diagram in δ for CG = 35% with a single branch
of solutions; stable parts are black and unstable parts are grey. Changes in stability
occur at the bifurcation points L1−4 andH1−2. The maximum and minimum forward
velocity of a branch of periodic solutions between H1 and H2 are plotted in black.
Insets (a) and (b) show examples of the aircraft’s motion

2.1 One-Parameter Study

Figure 1 shows a one-parameter bifurcation diagram in δ for CG = 35%,
where the forward velocity Vx of the aircraft is used as a measure of the
solution. A single branch of solutions initiates in the top left of the figure
and terminates in the top right; changes of stability occur at the limit point
bifurcations L1−4 and Hopf bifurcations H1−2. On the branch of solutions,
stable parts are black and unstable parts are grey. Periodic solutions exist
between H1 and H2 and their maximum and minimum velocities are plotted
as black curves. Qualitatively different types of behaviour can be observed
at the labeled points (a) and (b). The respective insets in Fig. 1 show a top
down view of a CG-trace of the aircraft in the horizontal ground plane; in
(b) markers are drawn to scale and show the aircraft’s attitude along the
CG-trace.

At the initial point where δ = 0, the aircraft travels in a straight line
with a constant velocity of Vx = 70 m/s due to constant thrust from the
engines. As steering is applied (δ > 0), the solutions represent fixed large
radius turns. For example, at (a) the aircraft follows a stable turning circle of
radius r ≈ 1.7 km with a forward velocity of 63 m/s. This type of solution with
a small steering angle, large radius turn persists from the initial point up to
the bifurcation L1; the radius of the turn decreases as L1 is approached. At the
bifurcation the turning moment generated by the nose gear tyres overcomes
the stabilising aerodynamic force generated by the tail fin of the aircraft [4].
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Fig. 2. Panel (a) shows a surface plot of solutions in (δ, Vx,CG)-space; stable solu-
tions are black and unstable solutions are grey. The loci of limit point bifurcations L
is the thick black curve and the locus of Hopf bifurcations H is the thick grey curve.
Panels (b) and (c) show two-dimensional projections of the bifurcation curves onto
the (δ,CG)-plane and (Vx,CG)-plane, respectively

When the steering angle is increased beyond L1, the aircraft loses velocity
rapidly over a transient period and starts to follow a solution in the region
between the Hopf bifurcations H1 and H2. Hopf bifurcations are associated
with the onset of periodic motion [8]. In this case, passing a Hopf bifurcation
represents a change in which the aircraft attempts to follow a turning circle
that is too tight and, therefore, there is a loss of lateral stability associated
with the main landing gear tyres saturating. For example, at (b) the aircraft
attempts to follow an unstable turning solution with radius r ≈ 125 m but
loses lateral stability, enters a spin and briefly travels backwards before coming
to a halt. The aircraft then moves off under constant thrust, repeating the
motion periodically relative to the unstable turning solution with a maximum
and minimum velocity of 20 and −10 m/s, respectively. A detailed description
of this undesirable behaviour that persists between H1 and H2 is given in [4].
Between H2 and L4 high steering angle, small radius turns can be observed,
and between L3 and the end point at the top right high steering angle, large
radius turns can be observed for which the nose gear is almost perpendicular
to the direction of motion and, hence, is effectively dragged along the ground.

2.2 Two-Parameter Bifurcation Study

One-parameter continuation runs, as in Sect. 2.1, were computed over a range
of CG at discrete points. When plotted together in (δ, Vx,CG)-space the
individual bifurcation curves form a surface of solutions. Two-parameter con-
tinuation was used to compute the loci of bifurcations continuously under the
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variation of both δ and CG. Combining the results from these two computa-
tions into a single plot is an effective way of representing the behaviour over
the complete range of δ andCG in a single figure. Two-dimensional projections
of bifurcation curves show certain features more clearly.

Figure 2a shows the resulting surface plot of solutions in (δ, Vx,CG)-space;
again stable solutions are black and unstable solutions are grey. Changes in
stability occur at bifurcation curves on the surface. The curve L of limit point
bifurcations is represented by the thick black closed curves and the curve H
of Hopf bifurcations by the thick grey closed curve. The one-parameter case
discussed above represents a horizontal slice of Fig. 2a at CG = 35%. The
bifurcations in Fig. 1 lie on the locus curves in Fig. 2a, L1, L2, L3 and L4 on
L, and H1 and H2 on H .

Figures 2b and 2c show two-dimensional projections of the bifurcation
curves onto the (δ,CG)-parameter plane and the (Vx,CG)-plane, respectively.
In the (δ,CG)-parameter plane bifurcation curves bound regions with differ-
ent numbers of solutions, each with a specific stability. In the largest region,
not bounded by any of the bifurcation curves, a single stable turning circle
solution exists. In the region bounded by the Hopf bifurcation curveH a single
unstable turning circle solution exists and the attracting solution is a periodic
motion relative to this unstable turning circle, as was discussed in Sect. 2.1.
In the region bounded by the limit point bifurcation curve L two stable and
one unstable turning circle solutions exist. Figure 1 provides an example of
traversing each region in the parameter δ. A hysteresis loop results when
traversing the regions bounded by limit point curves in different directions.
The same data plotted in the (Vx,CG)-plane reveals the relative positions of
the bifurcation curves in terms of the forward velocity Vx.

Within the operational range of CG ∈ (10%, 40%), the laterally unstable
behaviour inside the region bounded by H in Fig. 2 persists. However, for
CG < 15% (a forward position) no limit point bifurcations will be observed
at low steering angles as seen clearly in Fig. 2b. This means that the region of
laterally unstable dynamics could be approached more suddenly and at lower
velocities. Taking values of CG outside of the operational range (an extreme
forward or aft position) results in uniformly stable behaviour at low steering
angles, where intersections with L and H are not possible. In Fig. 2b there
is a region for small δ < 3◦ to the left of L and H for which no bifurcations
occur. This bound does not change under variation of CG and could provide
a limit for steering angles used in high-velocity turns.

3 Conclusions

A comprehensive bifurcation analysis of a mathematical model of a typical sin-
gle aisle passenger aircraft was performed in terms of the steering angle and
the aircraft’s longitudinal centre of gravity (CG) position. A one-parameter
study in the steering angle illustrated different types of solutions and their
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bifurcations. These results were extended to a two-parameter study by com-
puting solution branches over a range of CG positions and tracking the loci of
the bifurcations continuously in the parameter plane. Combining the results
gives a complete account of the possible turning dynamics of the aircraft under
variation of both parameters.

The results presented here reveal how changing an aircraft’s CG position
can affect its ground dynamics. Over the operational range of the CG posi-
tion there is a region of laterally unstable dynamics existing between two Hopf
bifurcations. Depending on the CG position, this unsafe region of dynamics
can be approached in different ways at small steering angles. With an aft posi-
tion the region can be approached at high velocity by passing a limit point
bifurcation, but with a forward position the solutions can be approached more
suddenly at a lower velocity by passing one of the Hopf bifurcations. Addi-
tionally, a steering angle of 3◦ was identified as an upper bound independent
of CG position for making stable high-velocity turns.

Ongoing work focuses on the sensitivity of the results presented here to
variation of the additional parameters, for example, the mass and thrust of
the aircraft. However, there are many other parameters that are of interest,
including the track-width of the main landing gears, runway conditions and
tyre properties. Physical phenomena associated with changes in qualitative
dynamics are also the subject of ongoing studies.
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Summary. Nonlinearities due to geometric effects, in particular, via angular vari-
ables that are not small, are important for aircraft operation. Geometric nonlineari-
ties have a strong effect on the dynamics of the aircraft system under consideration,
and they are especially pronounced in aircraft ground operations. As a concrete
example we consider here the effect of a non-zero rake angle on the dynamics of a nose
landing gear. More specifically, we use tools from bifurcation theory to investigate
the stability of the straight-rolling motion during a take-off run.

1 Introduction

Many systems of an aircraft operate in such a way that nonlinearities need to
be taken into account to describe their dynamics correctly. Sources of nonlin-
earities include nonlinear properties of individual components (for example,
tyres and dampers), range limits of control surfaces and, in particular, geo-
metric nonlinearities due to the fact that angular variables are not small. As
a specific example, we consider the role that geometric nonlinearities play
in the phenomenon of shimmy oscillations in aircraft landing gears during
high-speed straight-line rolling. Due to their implications for passenger com-
fort, safety and maintenance costs, shimmy oscillations are an unwanted type
of dynamics. They may occur in any wheeled vehicle, including cars, pulled
trailers, motorcycles and indeed aircraft; see the overview papers [1–3].

We consider here shimmy oscillations of the nose landing gear of a mid-
size passenger aircraft, as sketched in Fig. 1. A nose landing gear consists of
a strut, attached to the aircraft body, to which a wheel is mounted with an
offset from the strut axis, called the caster length. The system’s dynamics are
dominated by the interplay between the two basic modes [4]: the torsional
mode of rotation around the strut axis, and the lateral mode of deflection
of the entire gear from side to side. These two modes are coupled via the
nonlinear interaction of the elastic tyre with the ground. The overall landing
gear system is characterised by geometric nonlinearities, because the torsional

A.D. Fitt et al. (eds.), Progress in Industrial Mathematics at ECMI 2008,

Mathematics in Industry 15, DOI 10.1007/978-3-642-12110-4 23,

c© Springer-Verlag Berlin Heidelberg 2010



182 B. Krauskopf et al.

lateral

torsional

Aircraft bodyAircraft body

Side view Front view

Fig. 1. A non-zero rake angle (of the strut with the vertical) of an aircraft nose
landing gear results in a tilt of the tyre plane; the two main modes are the torsional
mode of rotation around the steering axis, and the lateral mode of sideways motion
of the gear around its attachment point

and the lateral mode may show dynamics of considerable amplitude during
shimmy oscillations. An important feature of an aircraft nose landing gear is
the presence of a non-zero rake angle of the steering axis with the vertical,
typically in the range of 0◦–10◦. A positive rake angle introduces additional
geometric nonlinearities into the problem. First of all, it contributes to an
overall effective caster length, which in turn enters the coupling between the
two modes. Furthermore, steering results in a tilt of the wheel, meaning that
the wheel plane is not perpendicular to the ground; see the front view in Fig. 1.

We model the nose landing gear by equations for the torsional mode ψ, the
lateral mode δ and the lateral deformation λ of the tyre (for which we use the
well-established stretched string model [5]). Overall we obtain a mathematical
model in the form of five coupled nonlinear ordinary first-order differential
equations. The model depends on a number of parameters, including the
dimensions of the landing gear, stiffnesses and dampings of the two modes and
parameters specifying the tyre forces. The values of these parameters were
chosen to represent a midsize passenger aircraft (with a rake angle of 9◦);
see [6] for details of the model and the specific values of the modelling
parameters.

2 Bifurcation Analysis of Shimmy Oscillations

The landing gear moves at horizontal velocity V , subject to a vertical force Fz

that is exerted by the aircraft body (which is modelled as a block of mass). It is
therefore natural to study the dynamics of the nose landing gear in dependence
on the operational parameters V and Fz . Figure 2 shows how the operational
range of the (V, Fz)-plane is divided into regions of qualitatively different
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Fig. 2. Two-parameter bifurcation diagram in the (V, Fz)-plane, consisting of curves
Ht and Hl of Hopf bifurcations (grey) and curves Tt and Tl of torus bifurcation
(black). The straight-rolling solution is stable in the white region; torsional and
lateral shimmy oscillations occur in the regions of right-slanted and left-slanted
shading, respectively. The two thick black curves are two simulated take-off runs, of
a light and a heavy aircraft, respectively

dynamics. The boundaries between regions are given by curves of bifurcations,
which have been computed with the continuation software AUTO [7].

In the white region in Fig. 2 the straight-rolling motion is stable, that is,
the nose landing gear does not show shimmy oscillations. Stability is lost when
one of two Hopf bifurcation curves, Ht or Hl, is crossed. Specifically, crossing
Ht corresponds to an undamping of the torsional mode. The ensuing torsional
shimmy oscillations are stable in the region of right-slanted shading and they
are characterised by oscillations of the landing gear around the strut axis.
By contrast, crossing Hl corresponds to an undamping of the lateral mode,
meaning that the gear shows lateral shimmy oscillations in the plane perpen-
dicular to the direction of travel. This type of shimmy is stable in the region
of left-slanted shading. The curves Ht and Hl intersect at a double-Hopf point
HH, which gives rise to two curves, Tt and Tl, of torus (or Neimark-Sacker)
bifurcations [8]. Crossing these two curves corresponds to the undamping of
the second mode, which gives rise to the creation of an invariant torus. We find
that the bifurcating torus is unstable throughout. As a result the curves Tt

and Tl bound a large region where torsional and lateral shimmy oscillations
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Fig. 3. One-parameter continuations along the two simulated take-off runs of a
light (left column) and a heavy (right column) aircraft. The top panels show the
maximum of the torsion angle ψ and the bottom panels the maximum of the lateral
bending stroke δ∗; stable parts of branches are black and unstable parts grey

are both stable. In this region of bistability, it depends on the initial condition
which type of shimmy the landing gear performs.

3 Shimmy Dynamics During Take-Off

Figure 2 gives a comprehensive picture of the behaviour of the aircraft over
the relevant ranges of forward velocity V and downward force Fz. Each point
in the (V, Fz)-plane corresponds to a type of dynamics and it typically lies
in one of the regions that were identified. Hence, the bifurcation diagram in
Fig. 2 illustrates the robustness of a typical choice of V and Fz with respect
to small changes of their values. On the other hand, larger changes that result
in a crossing of bifurcation curves lead to qualitative changes of the behaviour
of the system.

To demonstrate how the information in Fig. 2 can be used in practice
we consider the dynamics of the nose landing gear during take-off. During a
take-off run the aircraft accelerates from zero velocity to its take-off speed,
during which the vertical force Fz on the nose landing gear decreases from its
maximal (static) value to zero. Hence, a take-off run corresponds to a one-
dimensional curve in the (V, Fz)-plane. Two examples of take-off runs (chosen
to feature shimmy oscillations), one for a light and one for a heavy aircraft, are
shown as bold black curves in Fig. 2. Owing to the quadratic dependence of lift
on velocity, they have been modelled as parabolas. One immediately notices
that the two take-off runs are qualitatively different, because they intersect
different regions of the (V, Fz)-plane. Notice further that the exact shape of
these curves is not crucial, as long as the same regions are encountered in the
same order.



Geometric Nonlinearities of Aircraft Systems 185

Figure 3 shows the results of two one-parameter continuations with AUTO
along the two take-off runs. Shown are the amplitudes of the torsion angle ψ
and of the lateral bending stroke δ∗ (the lateral stroke of the strut at ground
level). The take-off run for the light aircraft case, shown in the left column
of Fig. 3, starts at Fz = 150 kN and ends at a take-off speed of 70 m/s. The
straight-rolling motion is stable, but then loses stability when the curve Ht

is crossed in Fig. 2. The amplitude of the ensuing torsional shimmy oscilla-
tions increases rapidly up to a maximum of about 14◦. It then decreases as
the aircraft accelerates. Finally, at about 45 m/s the straight-rolling motion
regains stability and the torsional shimmy oscillations disappear. Notice that
the lateral bending stroke δ∗ shows small amplitude oscillations during tor-
sional shimmy; namely, it follows the torsional mode passively due to the
coupling via the tyre [6].

The take-off run for the heavy aircraft case is shown in the right column
of Fig. 3; it starts as a vertical force of Fz = 450 kN and ends at a take-off
speed of 80 m/s. This take-off run is such that the straight-rolling motion
is unstable from the very beginning. Instead at low speeds the nose land-
ing gear performs lateral shimmy oscillations with a lateral stroke amplitude
of around 5 cm; again due to the coupling via the tyre, the torsional mode
follows this motion with small amplitude. The lateral shimmy oscillations
are stable until the curves Tl is encountered in Fig. 2 at a velocity of about
50 m/s. This curve marks the boundary of the bistable region and the system
switches to the branch of torsional shimmy oscillations, as is indicated by
the arrows in Fig. 3 (right column). The torsional shimmy oscillations gradu-
ally decrease and finally disappear at around 70 m/s just prior to take-off. We
remark that during the switching from lateral to torsional shimmy oscillations
one may encounter quasiperiodic (two-frequency) shimmy oscillations as long
transients; see [6] for more details.

4 Conclusions

We presented a study of aircraft nose gear shimmy as an example of how geo-
metric nonlinearities influence the dynamics of aircraft systems. Specifically,
we performed a bifurcation analysis of a mathematical model that describes
the interaction of the torsional and lateral modes via the elastic tyre. Geo-
metric nonlinearities arise from the fact that the amplitudes of the torsion
angle and the bending stroke may be substantial – an effect that is further
enhanced by the geometric nature of the coupling between the two modes via
a non-zero rake angle. Torsional and lateral shimmy oscillations occur in large
regions in the plane of velocity versus vertical force, including in a region of
bistability. One-parameter continuations along take-off runs for a light and
a heavy aircraft demonstrated how shimmy oscillations are encountered in
practice when the different regions are crossed.
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An obvious question is how the bifurcation diagram presented here depends
on the parameters that specify the landing gear, especially on those that have
a bearing on geometric nonlinearities. The influence of the rake angle has been
considered in [6], where it was found that the region of torsional shimmy oscil-
lations shrinks with an increase of the rake angle. Our present work focuses on
the dependence of the bifurcation structure on other parameters, those that
determine the geometry of the nose landing gear as well as those that spec-
ify tyre properties. The study of additional effects, for example, dynamics of
vertical shock absorbers in the presence of a rough runway, can be addressed
via an expansion of the model of the nose landing gear. Furthermore, we also
intend to model and study the dynamics of main landing gears of different
geometries (with different numbers of wheels). In the longer term, our goal is
to couple the dynamics of individual gears via a flexible fuselage to obtain a
realistic, yet tractable model to describe aircraft ground dynamics.
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Application of Nonlinear Dynamics
in Civil Aerospace
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Summary. Nonlinear analysis techniques, especially methods from bifurcation the-
ory, have emerged as valuable tools over the last 20 years, particularly due to the
advent of the modern computer. Originally developed as part of dynamical systems
and chaos theory, they gradually are finding their way into applications areas from
all walks of life. As far as the aerospace industry is concerned, methods from non-
linear dynamics were used initially for the prediction of aircraft flight dynamics at
high angle of attack flight regimes, where traditional methods have failed. They
are now being used within Airbus to analyse aspects of the dynamics of aircraft
on the ground. Specific aerospace applications, where nonlinear dynamics tech-
niques are expected to make an impact, include the design of flexible structures
and mechanisms, and the dynamics of a braking wheel. Challenges related to the
industrialisation of such methods are also discussed.

1 Introduction

Landing gear engineers observe nonlinear phenomena such as hysteresis, back-
lash and stiction on a daily basis, without necessarily appreciating the full
meaning behind these observations. A wheel that locks up during braking is
a good example. Many conflicting requirements need to be considered during
the design, where the weight and pavement loading needs to be minimised,
and the shock absorption maximised. The lateral stability on the ground is
determined by the position of the gears, along with the tyre and oleo (shock
damper) characteristics. Experience has shown that the use of different tyres
can mean the difference between a stable and an unstable aircraft. Landing
gears contain highly nonlinear components, including tyres, brakes and oleos,
and therefore traditional analysis is usually done at some very specific design
conditions. There is a perceived need to characterise the behaviour of the
system over a wide variety of parameters, and this is the industrial domain
where methods from nonlinear dynamics can and should be brought to bear.
We discuss here some of the open avenues for this approach within the specific
context of ground dynamics of passenger aircraft.
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Fig. 1. Comparison of equal probability lateral load factors during ground turning
for five aircraft after [1]

2 Aircraft Ground Manoeuvres

Ground operations tend to be performed at constant thrust settings, because
the thrust is adjusted only occasionally by the pilot with the aim of alter-
ing the velocity. One issue is to find points (in terms of operational input)
where the aircraft becomes uncontrollable during a turn. A loss of stability is
dependant on several parameters, such as the steering angle, entry velocity of
the turn, tyre properties, and the runway condition. Mathematically, stability
loss corresponds to a limit point (or fold) bifurcation or a Hopf bifurcation,
which makes it possible to classify the dynamics of a turning aircraft on the
ground with the use of continuation methods. In this way, physical causes for
the loss of stability have been identified [2–4]. Specifically, limit points and
Hopf bifurcations bound regions in parameter space where the tyres are sat-
urated, so that they cannot provide enough side force to maintain a specific
manoeuvre.

An ongoing study by the FAA has been aiming to identify what type of
lateral loading conditions can be experienced by in-service aircraft. The goal is
to validate the conservative design factors that are currently required during
the design phase. Current regulations require an 0.5 g-level at the centre of
gravity, even though it is known from experience that such high g-levels are not
possible in larger aircraft. The results from the study indicates that the actual
g-levels experienced by airline operators are approximately 0.3 g for wide-body
aircraft, such as the Boeing 747, and 0.43 g for narrow-body aircraft, such as
the Airbus A320; Fig. 1 shows a summary of the expected peak g-levels as
extracted from the report [1]. It would be of great benefit if the influence of
the main parameters could be studied during the preliminary design phases
of a project, where some analysis is indeed already done by means of detailed
nonlinear simulations. Our experience with the bifurcation study of ground
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Fig. 2. An example of linear shimmy analysis

manoeuvres indicates that continuation methods may be used as a new tool
to provide a reasonable estimate of the maximum g-levels, as well as where
such operating conditions will occur.

3 Landing Gear Shimmy

Shimmy oscillations of a landing gear are undesirable due to the safety and
maintenance aspects involved with the occurrence of this phenomena. Linear
shimmy analysis is typically done at specific operating points for design pur-
poses, while detailed nonlinear simulations are usually performed only after
an incident occurred. Torsional and/or lateral motion can be observed during
shimmy oscillations, and the contribution of each mode may be dependant
on the initial conditions of the system. Linear shimmy methods calculate the
damping in the system while the velocity is varied to identify the onset of
shimmy as a point where either the torsional mode or the lateral mode has
zero damping. Figure 2 shows an example of such an analysis.

Pilots often report the onset and disappearance of shimmy oscillations
between certain velocities, indicating a trajectory across a boundary of Hopf-
bifurcations. There are still many differing opinions with regards to the
main parameters that influence shimmy, and they result in differing mainte-
nance actions that are recommended when shimmy occurs. Hydraulic shimmy
dampers are installed on some aircraft to prevent oscillations in the steering
system, but this adds weight.

The development of a nonlinear model of a nose landing gear, and its
subsequent bifurcation analysis, has demonstrated the coupled nature of the
torsional and the lateral modes via nonlinear tyre forces in the presence of
geometric nonlinearities [5, 6]. Future research will focus on the construction
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of a comprehensive map of all the types of shimmy under different operational
conditions, as well as the development of preliminary rules to avoid shimmy
already at the design phase of an aircraft.

4 Dynamics of a Braking Wheel

The longitudinal traction force of a braked wheel is a consequence of the
relative difference between the vehicle velocity and the velocity of the wheel
at the contact patch, which is also known as wheel slip [7]. It depends on
the normal force on the wheel, as well as the friction coefficient between the
wheel and the road surface. A free-rolling wheel is defined to have a slip-
value of 0, while a locked wheel has a slip-value of 1 [8]. It is known that
a hysteresis loop exists when a brake torque is applied [9]. This means that
the brake torque where lockup occurs and where control is regained could be
very different. Recent research on aircraft has also shown that the unstable
point after which lockup occurs, does not necessarily occur at the peak value
on the slip curve. In fact, braking is one of the most nonlinear processes in
aircraft, and understanding it fully will require the use of advanced methods
from dynamical systems theory.

5 Landing Gear Mechanisms

A mechanism is defined as a combination of parts, that are joined in a specific
way, to perform a certain function. Figure 3 shows an example of a latch that
contains several pinned arms and a spring. A relatively small force can be
applied to the handle of the latch, yet the clamping force on a component could
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Fig. 4. Suggested integrated environment for the nonlinear analysis of linked models
of aircraft components

become significant. A point could also be reached when the handle “jumps” to
a new position where no additional force is needed to hold the part in place.
This jump indicates the presence of a fold bifurcation as shown in Fig. 3. The
envelope of where this fold occurs can be calculated by varying the spring
stiffness and applied force. A landing gear effectively is a mechanism quite
similar to a latch. Importantly, the landing gear needs to reach a downlock
solution at a certain applied force. Nonlinear dynamics methods are being used
in ongoing research to map out the envelope of downlock solutions of different
types of landing gears as a function of gear spring stiffness and applied force
values.

6 Conclusions and Outlook

Several case studies have clearly demonstrated that methods from nonlin-
ear dynamics allow engineers to discover, and explain, the rich dynamical
behaviour that is observed during aircraft operations on a daily basis. Tra-
ditional linear methods are adequate for many engineering systems, but
nonlinear effects need to be considered if a system is to be used to its full
potential.

In spite of their huge potential, bifurcation theory methods are presently
being used only by small pockets of engineers in the aviation industry. In fact,
when one wants to introduce nonlinear dynamics into the engineers’ normal
toolsets one encounters both societal and technological challenges. Primarily,
the societal ones relate to management support and education. The technol-
ogy needs to be supported by all tiers of management, and a strong business
case needs to be made to gain this support. The technological challenge is
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one of education and development of the right tools. Training is needed to
familiarise engineers with the vocabulary and tools of dynamical systems the-
ory, which are still largely unknown to the average engineer. Indeed, there is
a need to learn how to formulate a problem in a way conducive to nonlin-
ear analyses, and how to interpret the results. A level of intuition similar to
that concerning, say, Bode diagrams, needs to be developed for the interpre-
tation of bifurcation diagrams. At the same time more emphasis should be
placed on the development of well-documented, industrial, integrated toolsets
for nonlinear analyses. Whilst several software tools are freely available, they
were developed primarily for research purposes. The overall goal is to develop
an integrated and user-friendly environment where validated models can be
studied with bifurcation software. Figure 4 shows an example of what such
an environment may look like at a high level.
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Minisymposium Global System Dynamics
and Policies

Steven Bishop

University College London, Gower St, London WC1E 6BT, UK

This Mini-Symposium highlighted some of the best ways in which global sys-
tem dynamics can assist policy makers in industry and government through
powerful applications combining many disciplines taken from physical, natural
and social sciences. This need for a multi-disciplinary approach has recently
been recognised by the European Commission by the funding of a Coordinated
Action award called GSD (see www.globalsystemdynamics.eu).

The event was opened by Ralph Dum (GSD’s EU Scientific Officer). He
explained that there was a considerable interest in seeing how a complex
systems approach could be used to improve our understanding when it comes
to setting policy.

Under the title Visualising Europe’s Future, Jacquie McGlade (Executive
Director of the European Environment Agency, EEA) gave an overview of
the EEA’s findings over recent years. She stated that science needs to pro-
vide clear evidence-based hypotheses on how we can tackle some of the local,
and increasingly global, challenges. Actions have only just started, and bet-
ter data and improved methods for data collection are required to monitor
effectiveness, which will also help us to account for the respective costs of any
such actions. One area where the EEA is at the forefront is monitoring urban
development. Better data means that decision makers have more information
to inform policy. Visualisation must be used to aid our understanding of the
spatial planning throughout Europe.

Julian Hunt (UCL/UK’s House of Lords) stated that a systems approach
is extremely useful when modelling problems that involve networks of groups
which may be operating at different scales but interact at certain points. In
particular such an approach can be applied when there is a sudden transition
in the network corresponding to a breakdown. Policy makers need to have
simulations of models at their fingertips in order to be able to make crucial
decisions, often in a very short time frame. The relationship between the
speed of operation and the speed in which they respond to external influences
is critical to system behaviour. These ideas work well on a conceptual level
but clearly need more refinement for specific problems.
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The focus of Klaus Hasselmann’s (founding Director, the Max Planck Insti-
tute of Meteorology) talk was specifically related to policy for climate change
taking into account the key socio-economic aspects. Aspects of globalisation
of our businesses and economy must be taken into account when trying to
develop truly effective policies. Agent-based models allow the effects of choices
made by different actors (e.g. governments) to be explored. A method was
presented for constructing computer-efficient coupled climate-socio-economic
models. This type of model may not yet be able to be used in a predictive
manner but rather as a tool for understanding how the various aspects are
inter-related. This has the additional advantage of being simple enough so as
to improve the interactions between the policy makers and the scientists.

Bert de Vries (Netherlands Environmental Assessment Agency and
Professor of Global Change and Energy at the Copernicus Institute for Sus-
tainable Development and Innovation of Utrecht University) explained that
scenarios are a useful way of exploring our increasing complex world, partic-
ularly the climate-energy issue. It is clear that opinions and values must be
taken into account. Science should offer novel, integrated ways to deal with the
sustainable management in social-ecological systems or human-environment
systems. Simulation and visualisation methods, such as gaming experiments,
must be used to explore situations which, in turn, will improve the interface
between scientific insights and uncertainties, on the one hand, and the policy
makers and public on the other.

Henri Berestycki (Ecole des Hautes Etudes en Sciences Sociales, Paris
and Director of the Centre d’analyse et de Mathématique Sociales of the
French CNRS) heads a multidisciplinary team that uses complex systems
modelling applied to problems from the social sciences. They apply methods
from mathematics, including techniques from nonlinear PDEs and reaction-
diffusion equations, and incorporate concepts and methods borrowed from
the statistical physics of disordered systems to provide a framework for their
studies. He explained that their modelling goals are two-fold. Firstly they
seek models that exhibit generic properties, but then they also model specific
problems, and confirm results by comparison with empirical data. In the past,
efforts have been directed at biodiversity, sustainable development and on
how people make a choice under social influence. Here models consider a large
number of agents which have to make a binary choice (to buy or not buy)
and link/compare this to the usual Nash equilibria when individual choice
depends on others choice. However, as is typical of nonlinear systems we now
have multiple equilibria. One particular problem discussed was the modelling
of crime patterns. This work considers the diffusion of illegal behaviour, the
analysis of crime time series, attempting to separate the global trend from
local fluctuations.

Carlo Jaeger (PIK and Chair European Climate Forum) gave a stimu-
lating talk based on a single figure of economic and social trends. It was a
masterclass in eclectic teaching since several of the points he wished to raise
had already been aired in discussions. His approach generally is to try and
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promote the development of a model that prevents confusion between the
various existing techniques which range from traditional economic equilib-
rium models to those which consider complex adaptive systems. He has been
invited to demonstrate these ideas to German decision makers. However on
the day, rather than discussing how any models, no matter which you choose,
can be used to model rapid changes in our society or economic growth, we
should first use these models to discover why our system remained stable for
apparently large portions of time. Only when we can understand this will be
able to consider the catalogue of inter-linked actions that lead to major shifts
in human socio-economic systems.
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Summary. In this paper three types of system analysis are considered at a con-
ceptual level which are relevant for decision making, namely: (a) breakdown in
connected transport or other networks, when a change in modelling may be needed
during critical transitions; (b) systems with dynamical boundary processes in smooth
and sudden transitions; (c) critical transitions and sensitivities of the throughput and
behaviour of systems depending on the relation between their ‘speeds’ of operation
and response to external influences.

1 Description of General Systems Dynamics (GSD)

Natural and artificial entities, or systems, from molecules all the way through
to whole societies, consist of many disparate elements operating simultane-
ously but with some level of connection between them [1]. In models of many
environmental, engineering, social and economic/financial systems [2] a choice
is made between statistical and quasi-deterministic methods. But an exclusive
choice between these two approaches may not be necessary [3]. For exam-
ple, in seasonal weather forecasts (www.metoffice.gov.uk) the two methods
are currently used simultaneously. Some applications are described below for
the conceptual application of a systems approach in making critical decisions
particularly when systems are undergoing significant transitions. They can,
perhaps, guide us how to operate systems so as to minimise the adverse effects
of external or unexpected internal influences.

2 Applications of GSD for Critical Decisions

2.1 Breakdowns in Connected Networks

Studying patterns of restricted paths in idealised mathematical networks is
a powerful method of studying the operation of real and virtual networks.
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Fig. 1. Breakdown in connected networks-showing the effect of a few disconnections
near nodes in a main network (e.g. underground) diffusing into other networks (e.g.
surface transport)

They are particularly revealing when elements of the networks are changed,
for example, by disruptions or improvements.

Following Euler, the key quantity describing paths is the connectedness
matrix Aij between n nodes, the magnitude of whose elements define the
quality of the connection (or lines), e.g. probability between 0 and 1, between
nodes i and j. For example, this defines the total number of significant con-
nections Ni at node i (the sum of all the values of j for which Aij �= 0 and
i �= j ). Consider the effects of Nb breakages in the connections of the net-
work (see Fig. 1). An assumption has to be made about whether the nodes at
either end of the broken connections also fail. If each of these has an average
of < Ni > connections (e.g.=5 for central London tube nodes), it means that
the total number of connections affected is about 2Nb < Ni >. So a certain
number of deliberate or accidental breakages (disconnections) can affect a high
proportion of the central part of a network [4].

However, the operation of the underground network with a finite number
of high capacity lines is closely connected to a much larger more diffuse net-
work, consisting of surface transportation and walkers etc. There are parallels
with movement of oil and water through porous rock and through connected
cracks in the rock, or urban networks of fractured water mains. For planning
changes, responding to breakdowns, one form of simplification is to reduce the
complexity the networks to fewer edges by averaging over many elements.

In a city with dense transport networks we may represent the movement of
people as a diffusive flux Fp equal to the spatial variation (or ‘gradient’) of the
number of people per unit area, and the diffusivities of the coupled networks
D1 and D2 for flow. These diffusivities vary greatly across the city especially
with breakdowns. The variations of the fluxes depend on local sources and
sinks in the network (i.e. the numbers of people entering and leaving unit
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area S, e.g. people entering or leaving activity areas (SA) and overwhelmingly
in emergencies by the movement of people away from areas of danger (SD) as
communicated and/or perceived. In dynamic situations the decision takers can
vary all these parameters through physical controls (e.g. road blocks reduc-
ing the value of D2) and communication. Simulations can solve the diffusion
equation and rapidly display results as different scenarios are tried.

2.2 Systems with Dynamical Boundaries

Many systems are defined in relation to a finite physical, or non-physical, space
which has boundaries (B) (e.g. a static organisation such as a city, or moving
human/animal groups, or abstract boundaries, such as defined by ‘areas’ of
activity and their scales in businesses or academia). Just as with networks,
analysis can provide guidance about these systems when the boundaries and
boundary processes undergo significant changes – drawing on the recent gen-
eral theories of complex evolving and disrupting surfaces in turbulent fluid
flow [5], and new concepts about how flooding patterns can change [6].

Richardson first showed the power of applying these concepts to social
systems in his analysis of the frequencies of conflicts between nations, which
he correlated with the lengths L of the boundaries B that separated them
[7]. This led him to the famous conclusion that the smaller the scale l of the
wiggles of the boundary shape the greater the length, according to the fractal
relation L ∝ [l]−d, where 0 < d < 1).

Consider a space within a continuous closed boundary B (Fig. 2). Outside
B the key variable A, say, is A0. Inside B, A = A0 + Δ. This changes when
the surface undergoes severe disruption. With an evolving boundary, B moves
outwards at an average boundary (or entrainment) ‘speed’ Vb. In many cases
the boundary is porous, so that there is a flux of external ‘activity’ that crosses
B in proportion to the flux (entrainment) ‘speed’ Vf .

One class of confined system with evolving boundaries is where the activ-
ity within the boundary is changing as the boundary spreads and exchange
processes occur across the boundary. In other types of system Δ protects the
system within B against an external activity A0, e.g. the reduced flood hazard
or lower wind damage in an urban area produced by deflection of water/wind
by the buildings, or the reduced threat or competition to people, animals
or organisations produced by joint defence against adversaries. In both cases
Δ < 0.

Within these boundaries, as the magnitude of the flux Vf of external activ-
ity crossing B (e.g. of fluid flow or of external bodies) grows, the protection
within B might decrease (e.g. greater competition) or increase (e.g. economic
advantage of immigration) in proportion to Vf and inversely with the length
LB of the boundary. The number of exchanges between insiders and outsiders
would increase with LB and this might trigger conflict [7].

Above a critical threshold, typically defined by the external action Acrit,
the external and internal processes inter-mingle. Typically the mean
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INTERNAL NETWORKS: a = C/C0 >>1

~B

A0 +D
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Vf
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coherent system

system in breakdown

Fig. 2. A system with dynamical boundary processes undergoing transitions. A
distortion and break up of the boundary produces large fluxes in and out, and large
fluctuation A′

differential activity Δ decreases while the fluctuations A′ and flux speed Vf

increase. This might be associated with change in the activity within a fixed
boundary (e.g. water/wind flow rising to high enough levels within an urban
area that it becomes more hazardous inside B with infrastructure collapse
than outside B). Or changes occur associated with the shape of the surface
B becoming highly distorted as it breaks up into smaller areas each with
surfaces denoted by dashed line, e.g. as a diseased population spreads or as
spatial systems (as clouds and organisations break up).

These are also generic features of systems defined within multiple, inter-
acting boundaries, such as when they merge or split, which applied to flow
systems and adjoining nations [7].

2.3 Critical Dynamics of System-Processes Affected by Non-Local
Influences

In many physical and non-physical systems there are various kinds of through-
put, Q say, which are made up of ‘movements’ or transfers of quantities A
(objects, activity, ideas etc). In changing conditions, the rate of accumulation
always has to be considered at the same time as throughput. The systems
involve large numbers of moving and evolving elements, which may include A
and also extend beyond A, such as frameworks, external controls etc. Typi-
cally the throughput is controlled by local interactions between elements (as
in transport/flow systems and in social organisations) and other ‘non-local’
influences or signals (Σ) coming from elsewhere in the system. Σ can be con-
sidered to be distinct from the quantity A. But Σ may be affected by large
changes in A, such as when sudden changes and ‘shocks’ occur. A system
dynamics approach also has to take into account its response process in order
to estimate the speed (c) at which A is affected by the ‘signals’.
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The processes of accumulation and throughput with varying external influ-
ences have characteristic patterns of gradual and sharp variations that are
common to many systems. Fluid flows provide a good example which show
how similar behaviour occurs in different liquid and gaseous systems. These
concepts have already been used to analyse and control non-fluid systems.
In fluids non-local signals are waves moving with a speed c that in general
differs from the speed of the flow V , though it may be affected by the flow at
distant points. The equation for the change of A affected by the wave moving
in one dimension shows how any arbitrary ‘activity’ moves at speed c. In river
flows or on water surfaces, A could be the flow speed or the heights of waves,
and c is ‘wave’ speed at which the current changes or the wave height moves.
Its magnitude depends partly on the form of A, as well as on the particular
system. In gases, which are compressible, c is proportional to the density –
for air this is the familiar sound speed of 300 m/s, very fast compared to long
waves of 3 m/s in a typical shallow river.

Where the flow has a speed V < c, it responds immediately to the any
variations elsewhere in the system (e.g. along a river). However when the
critical ratio V/c (the Froude number for liquids or Mach number for gases)
exceeds 1, the flow is faster than the speed of the waves or signals from
elsewhere and are less dependent of non-local influences (e.g. what happens
downstream). The responses to influences are quite different to those in sub-
critical systems. Typically the throughput is locally obstructed (e.g. a fast
flow of traffic being blocked) followed by a sudden change in the local and the
overall flow occur, such as a hydraulic jump (a frothy wave on a stream) or
shock wave (in front of an aircraft) in which there are intense local agitations
[8]. Downstream of the ‘shock’, the river level rises, and in gases the density
rises as in traffic density (‘waves’) on highways. As is well known there is a
bumper-to-tail slow flow where V/c < 1 and free flowing supercritical traffic
where V/c > 1. As V/c increases, the throughput of traffic increases gradually,
as the traffic responds to non-local influences e.g. controls or obstructed flow.
This understanding has led to traffic controls that maximise Q and reduce
the chance of large waves or shocks, by ensuring that V/c is below its critical
value. The patterns of mass movements of people in streets and buildings have
many of the same smooth/shock transitions, often with deadly results.

There are also social and intellectual systems with non-local influences
where the variation of throughput Q have similar characteristic variations
depending on the relation between the speed at which the system operates (V )
and the speed (c) with which information is considered or at which changes
to the system propagate through it. For example, organisations in a sub-
critical mode (V/c < 1) operate smoothly, but probably not very sensitively, in
response to external and non-local influences. In a super-critical mode (V/c >
1), they have to respond quickly to external influences, but they are at greater
risk of the whole organisation experiencing sudden changes in its activity A,
that are similar to shocks in flow and traffic systems. These ideas might also
guide research into how individuals operate in the modern world where a
certain imposed ‘speed’ V is required to deal with their activities (which they
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can choose to some extent). Their effectiveness is affected by how this imposed
speed V relates to each individual’s innate speed c of processing information
and responding to external influences. Probably greatest contentment comes
from operating close to the critical ratio; they might also be one component
of happiness [9].

3 Conclusions

Wilson [10] has commented that science is rich in concepts that have wide
potential application through the methodology of complex systems analysis.
But detailed modelling and measurement can greatly increase the value of
system studies for decision making, because component models differ con-
siderably between different systems. However, there are some generic issues
of complex modelling that need to be discussed and teased out before non-
technical policy makers will begin to use systems thinking and techniques
more widely, and use the results intelligently.
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Summary. To provide useful scientific advice to climate policymakers, a paradigm
shift in mathematical economics is needed from general equilibrium concepts to
agent-based system dynamics. For effective communication, the simulation models
should be simple. This can best be achieved by developing models as a hierarchy, pro-
gressing from simple to more complex versions. Examples are given of work currently
being carried out in the EU project “Global System Dynamics and Policies”.

1 Integrated Assessment of Climate Change

Through the persistent efforts of the UN Intergovermental Panel on Climate
Change (IPCC), [5], and the mounting observational evidence, the reality of
human induced climate change is today no longer seriously disputed. Govern-
ments worldwide are committed to implementing effective climate mitigation
policies. However, in contrast to the central role of IPCC in bringing the cli-
mate problem to the attention of the public and policymakers, the impact
of IPCC in developing effective policies to combat climate change has been
marginal [3]. This can be largely attributed to the reliance on general equi-
librium macroeconomic models in the assessment of climate policies [1]. The
general equilibrium approach is unable to capture the basic dynamic processes
that must be invoked to transform our present fossil-based socio-economic
system to a sustainable carbon-free system. It ignores also other important
aspects of globalization that cannot be separated from the problem of global
climate change, such as widespread poverty and growing rich-poor inequalities,
with associated migration pressures and increases in conflict potential. Sim-
ilarly excluded are shorter-term processes such as business cycles, recessions
and financial instabilities, which although traditionally disregarded in eco-
nomic growth models, represent important considerations in the unavoidable
short-term/long-term trade-off decisions of policymakers.

A central goal of the EU networking project “Global Systems Dynamics
and Policies” is to overcome these shortcomings by creating a network of
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researchers cooperating in the development of a new generation of integrated
assessment models based on dynamical agent-based models. The standard
general equilibrium paradigm of main-stream neo-liberal economics is based
on Adam Smith’s famous “invisible hand”: although the economy is governed
by the diverse actions of innumerable competing players, the net outcome
is nevertheless an optimal equilibrium state in which the integrated welfare
of all players is maximized. In contrast, the multi-agent paradigm views the
economy as a nonlinear system with many degrees of freedom that is inherently
chaotic, exhibiting random fluctuations and major instabilities (dramatically
exemplified by the most recent global financial crisis). An approximately stable
growth path can be maintained only if the instabilities are understood and
counteracted by appropriate government policies. The inherent dynamics of
the socio-economic system and the important role of governments becomes
particularly relevant in the context of climate change.

2 The Model Hierarchy MADIAMS

The attainable complexity of a multi-actor model is limited by two natural
constraints: the available data, and the difficulty of distinguishing between
competing hypotheses if the model contains too many free parameters. To
ensure that one remains within these limitations, it is useful to develop models
as a model hierarchy, beginning with the simplest model at the lowest level,
and successively introducing more processes at higher model levels, until one
reaches a limiting level of complexity determined by the data and parameter
constraints.

As illustration, we consider a model hierarchy MADIAMS (Multi-Actor
Dynamic Integrated Assessment Model System) developed from an earlier
single-level model MADIAM [8](see also [2]). The hierarchy is divided into
three model levels M1, M2 and M3, each of which can be further sub-divided
into sub-levels M1a, M1b, . . . , M2a, M2b, . . . , M3a, M3b, . . . depending on
the number and type of sectors, regions, actors, etc. The lowest-level model
M1 describes a macroeconomic system governed by the actions of three rep-
resentative actors: firms, households and banks. Governments are included in
the next model level M2, while the highest model level M3 contains also a
climate module.

The lowest model level M1 is similar to the core macroeconomic model
of the original MADIAM model, but with an important difference: instead of
filtering out faster variations in the supply and demand of consumer goods
by regarding these as equilibrated with respect to the slower time scales of
the mean growth of physical and human capital, all three production outputs,
including consumer goods, are treated in M1 as dynamic, non-equilibrated
stock variables. This enables a combined investigation of both fast and slow
dynamic processes. The model is thereby able to simulate business cycles,
recessions and the impact of the counteracting stabilization policies of a
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central bank. This provides the necessary background for the investigation
of the combined impact of long-term climate mitigation measures and short-
term monetary and fiscal stabilization policies in the higher model levels M2
and M3.

The inclusion of governments in model level M2 enables the consideration
of fiscal policy in addition to monetary policy in stabilizing economic growth,
thereby illuminating the different assumptions on actor behavior underlying
the long-standing debate between post-Keynsians and monetarists. On longer
time scales, various model sub-versions simulate the effects of government
climate policies in the form of a carbon price, subsidies, or direct emission reg-
ulations. Also included as an option at model level M2 is the role of the media
in influencing consumer preferences and public support for climate policies.

The third model level M3, finally, is completed to a fully coupled climate-
socio-economic integrated assessment model by incorporating the climate
sub-module NICCS (Nonlinear Impulse response coupled Climate-Carbon-
cycle System) [4] of the original MADIAM model. NICCS computes the
greenhouse gas forcing by CO2 emissions and the resultant climate change
in the form of regionally dependent changes in near-surface temperature and
sea-level (represented in both cases by the dominant first empirical orthog-
onal functions). The back-interaction of the computed climate change on
the macroeconomic system is expressed in terms of simple aggregate impact
functions. Not considered in the original MADIAM version of the model is
the interaction between different economic regions via trade, an important
extension that still needs to be implemented.

3 Simulation Examples

The following simulation examples illustrate two basic points: (1) long-
standing debates over the role of actor behavior in governing macroeconomic
dynamics can be readily quantified and illuminated by translation into simple
system-dynamics models, and (2) even for very simple models it is neverthe-
less often difficult to predict a priori the outcome of assumed actor behavior
(although this can normally be readily reconstructed a posteriori). Thus
system dynamics should be seen primarily as a learning and expository tool.

Figure 1, from a model M1 simulation, shows two different growth paths
resulting from two equally plausible supply strategies of firms in response to
changing demands for consumer goods. In simulation S, firms strive to main-
tain a chosen target level of the goods stock by adjusting the investments in the
consumer goods production sector at a rate proportional to the deviation of
the goods level from the target level. In simulation F, in contrast, the adjust-
ment rate was set proportional to the difference between the flows into and
out of the goods stock. Simulation S favors short term consumption over pro-
fits and long-term growth, while the reverse holds for simulation F. The point
here is not which of the two hypotheses is closer to reality (a question that
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Fig. 1. Growth paths of human capital h (left panel) and physical capital k (right
panel) for two different firm supply strategies S, F, in response to variable consumer
goods demand; S (full curves): maintainence of target consumer goods stock; F
(dashed curves): flow balance between consumer goods production and demand

can be decided only by comparisons with data and/or stakeholder interviews)
but the signicant differences in growth paths resulting from elementary dif-
ferences in actor behavior – features that cannot be captured in a traditional
actor-independent growth model.

A simple modification of the assumed behaviours of consumers and firms
in model M1 gives rise to business cycles (Fig. 2, right panel). The relevant
feedback interactions are indicated in the left panel1. A decrease in consump-
tion delcons (triggered, for example, by a decrease in consumer confidence)
induces a slow-down in production dely, with an associated reduction in
employment by firms, further reducing consumer confidence, and so on. This
positive feedback loop alone would result in exponential decay or growth (a
recession or boom, depending on the initial conditions). However, the expo-
nential instabilities are converted into a periodic cycle through a stabilizing
negative feedback loop (bottom two boxes), representing the willingness of
firms to employ more labor once wages delw have been sufficiently depressed
by the reduced employment level.

There exist, or course, many alternative explanations of business cycles,
with numerous associated proposals for their control through appropriate
monetary or fiscal policies [6]. The present example underlines the earlier
comment that macroeconomic hypotheses can be readily expressed in appro-
priate system dynamics terms, but the outcome of the model simulations, even
for the simple model shown in Fig. 2, is normally strongly dependent on the
details of the hypothesized actor behaviour and difficult to forsee. Thus, in the
present example, the cycles can have very different amplitudes and periods,
or can revert to exponential growth or decay, depending on the values of the
feedback coefficients (fac1, fac2, fac2a, fac3) characterizing the inter-actor
coupling.

1The diagram represent a stocks-and-flows sketch generated by the system-
dynamics graphic-modeling tool Vensim. Stocks are represented as boxed variables,
rates of change by closed-cross symbols, integrations by double arrows, sources and
sinks as clouds, and interdependencies by single-arrow connections.
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Fig. 3. Impact of various climate mitigation policies (left) on economic growth paths
(right). Significant differences in emissions for weak, medium and strong mitigation
policies are seen to have only a minor impact on long term economic growth

The last simulation example, from the third-level model M3 [8] (Fig. 3),
illustrates the impact of government climate policies on CO2 emissions and
economic growth. The simulations support the conclusions of the Stern report
[7] and other authors that the emissions responsible for global warming can
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be reduced to acceptable levels at only a minor long-term economic cost of
the order of 1% GDP. However, this result is again strongly actor dependent,
for example with respect to the assumed response of firms and consumers to
government policies.

4 Conclusions

An understanding of the interrelations between climate change and climate
change policies requires the application of dynamic models that simulate the
behavior of the key socio-economic actors. For an effective communication
between scientists and policymakers the models should be as simple as pos-
sible. This is dictated also by the inherent uncertainties of human behavior
and the unpredictability of future technological developments. Although nec-
essarily simple, simulation models nevertheless represent the only reliable tool
for deducing the implications of the assumptions regarding human behavior
and future technological developments that are unavoidable in making climate
policy decisions.
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Nowadays many different modalities are available in medical imaging, includ-
ing computed tomography (CT) scans, functional or dynamic contrast-
enhanced magnetic resonance imaging (fMRI) or (DCE-MRI), positron emis-
sion tomography (PET). The 2D/3D + time images produced by these
advanced devices are useful for cancer diagnosis, radiotherapy or surgery
planning, active study of human brain, tumour angiogenesis quantification,
etc. In addition, the most recent microscope systems in biomedical laborato-
ries are based on multi/hyper-spectral imaging for brightfield or fluorescence
microscopy.

High throughput exploitation of these multivariate and/or multidimen-
sional images requires advanced image processing methods and algorithms. To
take into account jointly the spatial and the temporal/spectral information as
well as the way to combine or to reduce the different temporal/spectral dimen-
sions need adapted mathematical models. Moreover, extension of standard
image processing approaches to 4D images leads to inefficient algorithms in
terms of computational requirements (memory overload, time of computation,
etc.).

In this framework, the aim of this minisymposium was to draw an overview
of some recent developments in the field by French and German teams. We
focus in particular on techniques which lie in mathematical morphology, mul-
tivariate data analysis, statistical classification, graph-based representations
and algorithms, stochastic modelling, optic fow estimation, etc.

G. Noyel, J. Angulo, and D. Jeulin, from Mines ParisTech (France), con-
sider automatic segmentation of DCE-MRI series in angiogenesis imaging.
The approach is based on stochastic watershed segmentation for hyperspectral
images and more specifically, the paper focuses on new methods to generate
random germs regionalized by a previous classification in order to use proba-
bilistic watershed on hyperspectral images. These germs are much more effi-
cient than the standard uniform random germs. The algorithms are illustrated
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to compare the obtained segmentation which is then needed for detecting the
eventual tumours.

J. Angulo, from Mines ParisTech (France), discusses individual nucleus
modelling and segmentation, from fluorescence labelled images, of cell popu-
lations growing in complex clusters. The proposed approach is based on models
and operators from mathematical morphology. Cells are individually marked
by the ultimate opening and then are segmented by the watershed transfor-
mation. A cell counting algorithm based on classical results of Boolean model
theory is heuristically used to detect errors in segmented clustered nuclei.

J. Stawiaski, E. Decencière, and F. Bidault, from Mines ParisTech (France)
and Institut Gustave Roussy (France), present a segmentation method of 3D
time-series images for radiotherapy planning. The aim of this study is to pro-
pose some techniques for the segmentation of tumors surrounding or contained
in the lungs. The 4D images are produced using a respiration gating procedure
and computed tomography. It uses a 4D watershed algorithm, combined with
graph-based techniques to delineate the tumors in the time-series.

K. Rohr, W.J. Godinez, N. Harder, S. Yang, I.-H. Kim, S. Wörz, and
R. Eils, from University of Heidelberg (Germany) and German Cancer
Research Center (DKFZ), summarise in their paper tracking and registration
approaches developed for automatic analysis of multidimensional biomedical
images. The tracking approach allows computing the trajectories of cells in
fluorescence microscopy image sequences. The registration approach enables
to geometrically align cell microscopy images by using elastic transformations.
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Summary. New methods are presented to generate random germs regionalized by
a previous classification in order to use probabilistic watershed on hyperspectral
images. These germs are much more efficient than the standard uniform random
germs.

1 Introduction

Probabilistic watershed was introduced by Angulo and Jeulin [1] to detect
the contours of the widest and the most contrasted regions in images. The
obtained contours are more regular and significant than these associated to
the deterministic watershed. Probabilistic watershed was then extended to
hyperspectral images by Noyel et al. [5].

The standard stochastic WS consists in starting from uniform random
points germs as sources to flood the norm of a gradient in order to obtain
the associated contours. After repeating the process a large number of times,
a probability density function of contours (pdf) is computed by the Parzen
kernel method [1]. The pdf is segmented by a hierarchical watershed according
to a morphological criterion such as the volume (i.e. integral of intensities) [3].
For hyperspectral images, a pdf is built for each channel of the image and the
flooding function is the weighted sum of the pdf of the channels. This function,
called a marginal probability density function, is based on spatial information
[5].

As, for hyperspectral images, a spectral classification can be computed
[4, 6], it is interesting to estimate the marginal pdf mpdf conditionally to
this previous spectral classification [6]. Therefore, this pdf represents jointly
spatio-spectral information.
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In the sequel, after presenting the results obtained using uniform random
germs, we compare several approaches to compute random germs regionalized
by a previous classification.

2 Prerequisites

Our results are presented on a medical image of DCE-MRI series (Dynamic
Contrasted Enhanced Magnetic Resonance Imaging) of mice. The image is a
series of 512 channels of size 128 × 128 acquired at a regular step of 1 s, in
time, on mice presenting tumors [2]. This image is filtered and represented
in a parameter space p of a smaller dimension [6]. A marginal pdf is built in
this space. The pdf is segmented by a hierarchical watershed according to a
volume criterion in 20 or 30 regions. An external marker is added during the
computation of the pdf. The results of the segmentation are presented on a
channel of the image space fλ. In Fig. 1, we notice that the pdf mpdf(p,mrki)
presents a lot of contours on the background of the image. Therefore the image
segmentation, sgvolR (mpdf(p,mrki)), leads to an over-segmentation especially
in the background.

In fact, for images presenting wide and low contrasted regions, several
germs (or markers) may fall in these regions during the pdf estimation with
uniform random germs. These uniform random germs create artificial contours
that do not corresponds to relevant contours.

That is the reason why random germs regionalized by a previous classifica-
tion are introduced. In order to do this, random germs are drawn in the classes
of the classification. However, to avoid that a germ may fall on the boundary of
a class, that would lead to a leak during the flooding process of the watershed
on the pdf, each class of the classification κ is reduced by an erosion (i.e. an
anti-extensive transformation) with a square structuring element (s.e.) with
size 3× 3 pixels. Therefore a new void class is introduced. Moreover the holes
in each class are filled by a closing by reconstruction (s.e. 3× 3 pixels). After
this morphological transformation, the classes are re-labelled with a differ-
ent label for each connected class. The transformed classification is written κ̂
and named pre-segmentation (Fig. 1 top). It is composed of connected classes,
κ̂ = ∪kCk with ∩Ck = ∅. The void class is written C0.

3 Random Points-Germs Regionalized by a Classification

Uniform random germs are drawn on the pre-segmentation κ̂. If a germ falls
in a connected class Ck not yet marked by a previous germ, k �= 0, then it is
kept otherwise it is rejected. As we have a pre-segmentation κ̂, we use it to
detect the background of the image by preventing germs from falling into the
background class (Algorithm 1). Therefore not all the germs are kept.

We notice that the resulting segmentations sgvolR (mpdf(p,mrkκ−pti )) are
much better than with uniform random germs sgvolR (mpdf(p,mrki)) (Fig. 1).
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κ κ̂

mpdf(p,mrki) sgvol
R=20(mpdf(p,mrki)) sgvol

R=30(mpdf(p,mrki))

mpdf(p,mrkκ−pt
i ) sgvol

R=20(mpdf(p,mrkκ−pt
i )) sgvol

R=30(mpdf(p,mrkκ−pt
i ))

mpdf(p,mrkκ−b
i ) sgvol

R=20(mpdf(p,mrkκ−b
i )) sgvol

R=30(mpdf(p,mrkκ−b
i ))

mpdf(p,mrkκ−∪b
i ) sgvol

R=20(mpdf(p,mrkκ−∪b
i )) sgvol

R=30(mpdf(p,mrkκ−∪b
i ))

mpdf(p, mrkκ−∪b−cx
i ) sgvol

R=20(mpdf(p, mrkκ−∪b−cx
i )) sgvol

R=30(mpdf(p, mrkκ−∪b−cx
i ))

Fig. 1. Top: classification κ by LDA in four classes in parameter space and its
transformed classification (or pre-segmentation) κ̂. Bottom: marginal pdf mpdf for
several kinds of germs and associated segmentations by a volumic watershed
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Algorithm 1 Random points-germs regionalized by a classification mrkκ−pt
i (x)

1: Given N the number of drawn germs m
2: Set the background class and the void class C0 to marked
3: for all drawn germs m from 1 to N do
4: if Ck, such as m ∈ Ck, is not marked then
5: Keep m
6: Set the class Ck to marked
7: end if
8: end for

4 Random Balls-Germs Regionalized by a Classification

One of the drawback of the point germs is to enhance the contours of the small
regions. With larger germs the probability of the small contours decreases. To
obtain random balls germs B(m, r), the centers m of the balls are drawn
according to a rule. If the center is kept, a random radius r is drawn in the
interval ]0, Rmax].

4.1 Each Connected Class May Be Hit One Time

The centers m of the balls are drawn as random points-germs regionalized by
the pre-segmentation κ̂. Only the intersection between the ball B(m, r) and
the connected class Ck, such as m ∈ Ck, is kept as a germ. We notice that each
connected class may be hit one time (Algorithm 2). The segmentations are a
bit better than with regionalized random points germs mrkκ−pti (x) (Fig. 1).

Algorithm 2 Random balls-germs regionalized by a classification (each connected
class may be hit one time) mrkκ−b

i (x)

1: Given N the number of drawn germs m
2: Set the background class and the void class C0 to marked
3: for all drawn germs m from 1 to N do
4: if Ck, such as m ∈ Ck, is not marked then
5: r = U [1, Rmax]
6: Keep as a germ B(m, r) ∩ Ck

7: Set the class Ck to marked
8: end if
9: end for

When a class can only be hit one time, the drawback is that only a small
number of germs are effectively implanted: forN = 100 germs, only an average
of 6 are really implanted.
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4.2 Each Connected Class May Be Hit Several Times

Increasing the number of really implanted germs leads to a better detection
of contours thanks to larger markers in each class. That is the reason why we
introduce the possibility that several germs may fall in the same connected
class.

Union of Germs in Each Connected Class

When several random balls germs fall in the same connected class Ck, their
intersection is made with the class Ck. Then their union is made to obtain
the germ of the class (Algorithm 3).

In Fig. 1, the regions of the segmentations sgvolR (mpdf(p,mrkκ−∪b
i )) are

almost the same whatever the number of regions R are.

Algorithm 3 Regionalized random balls-germs: each connected class may be hit
several times and the union of balls is made in each connected class of the pre-
segmentation mrkκ−∪b

i (x)

1: Given N the number of drawn germs m
2: Set the background class and the void class C0 to marked
3: for all drawn germs m from 1 to N do
4: if Ck, such as m ∈ Ck, is not marked then
5: r = U [1, Rmax]
6: mrk

Ck
old = mrkκ−∪b

i (x) ∩ Ck

7: mrk
Ck
new = (B(m, r) ∩ Ck) ∪mrkCk

old

8: Add mrkCk
new to mrkκ−∪b

i (x)
9: end if

10: end for

Union of Connected Germs in Each Connected Class

As for the previous germs, when several random balls germs fall in the same
connected class Ck, their intersection is made with the class Ck. Then the
union of the connected germs is made to obtain one of the germs of the class
(Algorithm 4).

We notice that the resulting segmentations may be a bit over-segmented
sgvolR (mpdf(p,mrkκ−∪b−cx

i )) (Fig. 1). It can be useful to make a thinner
analysis of each region.

5 Conclusion

We have shown that using regionalized random germs by a classification
is better than using uniform random germs in order to segment by means
of the probabilistic watershed. Moreover, the segmentations, in which all
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Algorithm 4 Regionalized random balls-germs: each connected class may be hit
several times and the union of connected balls is made in each connected class of
the pre-segmentation mrkκ−∪b−connex

i (x)

1: Given N the number of drawn germs m
2: Set the background class and the void class C0 to marked
3: for all drawn germs m from 1 to N do
4: if Ck, such as m ∈ Ck, is not marked then
5: mrkCk

old = mrkκ−∪b
i (x) ∩ Ck

6: mrk
Ck
new = (B(m, r) ∩ Ck) ∪mrkCk

old

7: Add mrk
Ck
new to mrkκ−∪b

i (x)
8: end if
9: end for

10: Label each connected regions in the image of markers

the germs fallen in a connected region of the pre-segmentation κ̂ have
the same label, have generally correct contours sgvolR (mpdf(p,mrkκ−pti ))
sgvolR (mpdf(p,mrkκ−bi )), sgvolR (mpdf(p,mrkκ−∪b

i )). When there may be sev-
eral germs in a connected region, sgvolR (mpdf(p,mrkκ−∪b−cx

i )), the image
is over-segmented and it can be useful to make a thinner analysis of the
segmented regions [6].
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Summary. This paper deals with individual nucleus modelling and segmentation,
from fluorescence labelled images, of cell populations growing in complex clus-
ters. The proposed approach is based on models and operators from mathematical
morphology. Cells are individually marked by the ultimate opening and then are
segmented by the watershed transformation. A cell counting algorithm based on
classical results of Boolean model theory is heuristically used to detect errors in
segmenting clustered nuclei.

1 Introduction

High content screening (HCS) refers to technological platforms for parallel
cells growing in multi-well plates (or in other supports as cell on chip) and fluo-
rescent labelling of proteins of interest (immuno-fluorescence with antibodies,
GFP-tagged proteins), together with image capture by automated microscopy
and subsequent cell image analysis [5]. HCS is of interest for the discovery of
new cellular biology mechanisms (i.e., using siRNA), new pharmaceuticals
(i.e., mass screening of potential active molecules) or for the development of
new tests for diagnostic/prognostic, for toxicology tests (i.e., evaluation of
different compounds at different concentrations). Cell image segmentation [3]
to define individual cells is the most critical step to achieve a robust high
throughput system which will be able to process thousands of cell images
without needing a manual interaction. Errors in segmentation process may
propagate to the feature extraction and classification.

Many image processing algorithms have been proposed for cell segmenta-
tion, however segmentation of cell populations which grow in complex clusters
is still a challenging issue [6]. This paper deals with individual nucleus mod-
elling and segmentation of cell clusters from fluorescence labelled images. The
proposed approach is based on models and operators from mathematical mor-
phology [7], a non-linear image processing methodology which is proven to be
a very powerful tool in biomedical microscopy image analysis. Cell images

A.D. Fitt et al. (eds.), Progress in Industrial Mathematics at ECMI 2008,

Mathematics in Industry 15, DOI 10.1007/978-3-642-12110-4 30,

c© Springer-Verlag Berlin Heidelberg 2010



218 J. Angulo

used in this study represent only the nuclear content (a DNA marker is used
for fluorescence labelling). This is the most interesting case study since once
the nuclei are detected and segmented the other cell markers can be easily
quantified.

2 Morphological Model of Cell Population

A cell population can be modelled as a realization I of Poisson points i ∈ I of
intensity θ in R

2, i.e., points implanted in the space independently one of the
others according to a constant density θ. Let us consider Ccell as a compact
random set, centred at the origin, which represents the “individual cell”. For
each point i ∈ I a realization of Ccell is generated and implanted at associated
point i, denoted Ccelli . The union Cpopul of the Ccelli :

Cpopul = ∪i∈ICcelli ,

is by definition a realization of a Boolean set where the different Ccelli are
mutually independent. They can touch each other and overlap, and conse-
quently can constitute cell clusters. In random set theory, the complement
Ccpopul is named “pores” set of the “grains” set Cpopul. The cell population
Cpopul is observed by an image associated to the microscopic field Z under
study. However, this model only involves binary images, and in practice, the
fluorescence images are scalar functions with values in the set T of grey lev-
els. Consequently the realization of a individual cell is a random function f celli

whose support is the random set Ccelli and the observed fluorescence image is

fpopul = ∨i∈If celli .

As it is shown below, the binary model Cpopul ∈ P(E) is used in a heuristic
way for counting the cells in segmented clusters, which are obtained by the
deterministic segmentation of the scalar model fpopul(x) (x ∈ E, where E ⊂
R

2 is the pixel space of the bounded field Z).

3 Individual Nucleus Segmentation

Figure 1a gives a typical example of cell nuclei population growing in over-
lapped clusters. Our purpose is to use automated watershed segmentation [1]
to build the contours of individual cells. For a precise segmentation, watershed
transformation wshed(g,mrk) needs a scalar function of contour energy g and
a marker for each cell mrk. The function g is calculated using the morphologi-
cal gradient, defined as the difference between the dilation and the erosion [7],
i.e., g = δB1(fpopul)−εB1(fpopul), where the structuring element B1 is an uni-
tary disk. The other required ingredient is the function providing the inner
markers.
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(a) (b)

(c) (d)

Fig. 1. Example of individual nucleus segmentation from a field Z of a fluores-
cence labelled cell population: (a) Original image fpopul, (b) Ultimate opening using
hexagons Ult-γB(fpopul), (c) Image of regional maxima Max (Ult-γB(fpopul)), (d)
Watershed segmentation using the maxima as inner markers (the outer marker is
the SKIZ of the inner markers) on the gradient of fpopul

As a first approximation, we consider that the cell are modelled by balls
and consequently the support of the realization f celli is a circular random
set of radius ri. According to their cell cycle phase, the nuclei have different
radius but their distribution can be bounded in an appropriate interval. The
size distribution of the image structures can be studied using the notion of
granulometry [4]. A granulometry is a one-parameter family of openings Γ =
(γBn )n≥0 according to the structuring element (i.e., shape probe) B of size
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n such that γBn follows the absorption law; i.e., ∀n ≥ 0, ∀m ≥ 0, γBnγBm =
γBmγBn = γBmax(n,m) . The opening γBn(f) = δBnεBm(f) is an increasing, anti-
extensive and idempotent operator [7]. Based on the notion of granulometry,
the ultimate opening Ult-γB operator has been recently introduced [2]. Let
us consider the numerical residual operator associated to a discrete family of
openings defined as follows

Ult-γB(f)(x) = sup
nmin≤k≤nmax

(
γBk

(f)(x) − γBk+1(f)(x)
)
.

It replaces the initial image f(x) by a union of the most significant cylinders
included in the sub-graph of the initial function. A significant cylinder is the
biggest and highest cylinder covering every point of the image. The applica-
tion of the ultimate opening to the image fpopul allows to adjust a maximal
cylinder for each cell of the clusters, Fig. 1b. The computation of the regional
maxima of Ult-γB(fpopul) provides an appropriate inner marker for individual
cells, mrki(x) = Max (Ult-γB(fpopul)), Fig. 1c. The outer markers mrko of
the nuclei, which constrain the segmentation, are defined as the skeleton by
influence zones [1,7] (i.e., the voronöı diagram) computed as the watershed of
the distance function of the complement of inner markers image. Using both
markers, mrk(x) = mrki(x)∨mrko(x), the application of the watershed lead
to the final cell contours, Fig. 1c. Note that from a practical viewpoint, the
balls used to approach the cells are a family of hexagons.

4 Stochastic Nucleus Counting

As we can observe from the example of Fig. 1, the algorithm described above
segments properly well separated cells and most of cells in the clusters. How-
ever, to avoid obtaining clusters of various cells instead of individual cells,
our approach loses some nuclei. We propose now a second alternative, which
involves to relax the watershed segmentation, replacing the SKIZ by the image
border as outer marker. The associated segmentation produces clusters of
nuclei and we consider by hypothesis that the cell population is determined
by the union of the detected clusters: Cpopul = ∪j∈JCcluster,j . A full quan-
tification involves an algorithm for counting cells in each segmented cluster
Ccluster,j .

Let us start by the following classical theorem [4] from the theory of
Boolean Random Closed Sets:

Pr{B ⊂ Xc} = e−θA(X′⊕B)

which characterises the probability that the compact set B is contained in
the pores Xc, where A(X ′ ⊕ B) is the average surface area of the primary
grain X ′ dilated by the set B. In particular, if B is reduced to a single point,
Pr{B ⊂ Xc} becomes the porosity q (proportion of pores) and the relation is:
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Fig. 2. Two examples of quantified population of nuclei (in yellow). The number
close to each cluster indicated the counted nuclei by the Boolean formula: NZj

q = e−θA(X′) ⇔ θ = − log q
A(X ′)

Even when the structure is not Boolean, the Central Limit Theorem suggests
to use this result a priori.

Considering our problem, a probabilistic algorithm for counting partly
covering nuclei in the binary set of cluster j, Ccluster,j , is given by the following
formula

NZj = {number of nuclei in Zj} = −| Zj |
Ccell

log(q)

where q is the porosity of set Ccluster,j (i.e., q = A(Cccluster,j)), | Zj | is the
area of the field Zj under study and Ccell mean area of individual nucleus.
The equation is valid specifically if θ is constant in each cluster j. To better
match the Boolean model, the image field Zj of each cluster is the bounding
box containing the set Ccluster,j . The mean area of an individual nucleus is
estimated from some isolated nuclei from the population. In fact, this value
can be learned and fixed from representative segmented cells of several popu-
lations. Figure 2 provides two examples of populations of segmented clusters
counted by the Boolean formula.

5 Conclusions and Perspectives

A full automated segmentation algorithm for clustered nuclei in fluorescence
labelled images has been presented. Any parameter is required since the appli-
cation of a granulometry is able to adaptively identify each region candidate
to be a nucleus, which is then segmented by watershed algorithm. In fact, the
single prior datum is the shape used for the size distribution, a circle in our
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case. For other cells presenting a more elongated nuclear shape, the ultimate
opening can be implemented using families of ellipses of variable orientation
and eccentricity, which will lead to a better nucleus adjustment.

A probabilistic algorithm for counting the number of nuclei in a cluster
has been also presented. From our results, we state that the number of nuclei
obtained by the Boolean model is more robust than a simple ratio of surfaces.
It can be used to verify the appropriateness of the segmentation for each
cluster and eventually, to detect the wrong segmented cluster.

The result of the ultimate opening, see Fig. 1b, produces a random func-
tion which describes each cell by a cylinder such as f celli (x) = ti if x ∈ Ccelli ,
otherwise f celli (x) = 0, where ti is the fluorescence intensity of nucleus i.
Indeed, we expect to introduce in forthcoming research a direct cell mod-
elling and counting, without passing by a binary image, using the theory of
Boolean functions [8]. However, this application need a more deep modelling
of scalar nuclei images, including the study of variation of the florescence
intensity which seems be dependent on the DNA nucleus status but also on
the effect of cell aggregation. The present algorithms are suitable for static cell
culture images. Spatial modelling which includes the time dimension should
be necessary for analysis of cell culture kinetics using time-lapse images. The
challenging issue is to model how are formed the clusters and how do they
evolved in time.
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Summary. This paper presents a segmentation method of 3D time-series images for
radiotherapy planning. The aim of this study is to propose some techniques for the
segmentation of tumors surrounding or contained in the lungs. The 4D images are
produced using a respiration gating procedure and computed tomography. The aim
of the segmentation is to follow the tumor movement while the patient is breathing,
so that he does not need to hold his respiration during the radiation treatment.
The proposed technique is based on mathematical morphology and graph cuts. It
uses a 4D watershed algorithm, combined with graph-based techniques to delineate
the tumors in the time-series. The differences between different classical spatio-
temporal segmentation algorithms will be highlighted, and conclusions on the related
trade-offs between speed and precision will be drawn.

1 Introduction

Lung cancer is a disease of uncontrolled cell growth in the lungs. This growth
may lead to metastasis, invasion of adjacent tissues and infiltration beyond the
lungs. Lung cancer is the most common cause of cancer-related death in men
and the second most common in women. This disease is responsible for 1.3
million deaths worldwide annually.1 Early detection of lung tumors remains
a challenging task of medical imaging. Radiotherapy and surgery treatments
of lung cancer are highly difficult and risky tasks due to the proximity of
the heart and numerous blood vessels. The presence of blood vessels leads to
an important risk of dissemination of tumoral cells in the whole body of the
patient which causes the apparition of multiple tumors in various locations of
the body. An early and accurate treatment of the lung cancer is thus necessary
to give a better chance of healing to the patient.

Selecting the best treatment for lung cancer depends on the clinician being
able to identify the precise borders of the tumors. Moreover the detection of

1World Health Organization 2006.
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(a) (b)

Fig. 1. Lungs 3D CT images. (a, b) The tumors are indicated by light circles. The
tumors present low contrasted boundaries with the surrounding tissues of the thorax

the tumors, in classical computed tomography (CT) images, is limited by
the breathing motion of the patient. In this scenario, spatio-temporal data
(time-series images) can be advantageously used to optimize the radiotherapy
treatment. We give in this paper some techniques for the segmentation of CT
times-series images to detect and track tumor borders during the breathing
motion. Our methods are based on the computation of a minimal graph cut in
the region adjacency graph of an unsupervised watershed transform [2,3,6,7].
In this scenario, the user has to roughly specify the location of the tumors
and the surrounding tissues. Our strategy aims to compute a minimal surface
separating the user defined markers and lying on the tumor boundaries. The
minimal surface method remains a leading technique for the segmentation of
low contrasted structures such as lung tumors as illustrated in Fig. 1.

2 General Description

We propose two strategies for the segmentation of tumors in 4D volumes. The
first one is a direct extension of the classical techniques used to segment 3D
volumes. We propose to build a 4D volume by concatenating all the 3D images.
Since watershed segmentation [2] can be computed on a gradient image of any
dimension, the method requires only the computation of a spatio-temporal
gradient image. The user has then to specify some markers on a 3D volume
of the time-series. A watershed segmentation is then computed according to
the spatio-temporal gradient and finally a minimal surface is extracted from
the region adjacency graph of the 4D watershed transform [6]. The main
advantage of this first strategy is that the whole 4D volume is segmented in
a single step and large motions are allowed by this procedure. However this
method requires a huge amount of memory since the whole 4D volume has
to be stored to compute the watershed transform and a large graph has to
be stored to compute the minimal surface representing the evolution of the
tumor boundaries. This first method is thus unusable on a classical personal
computer.

The second protocol is slightly different and aims at providing a faster seg-
mentation algorithm. We consider in this scenario a sequential segmentation
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of 3D images. The user has to provide markers of the tumor and healthy tis-
sues on the first image of the time-series. The result of the segmentation at
time t is then used to produce markers for the segmentation at time t + 1.
Since the motion of the thorax is relatively small, the new markers can be
easily obtained from the previous segmentation. In our approach, we eroded
each region of the segmentation to ensure that the resulting eroded image can
be used as markers for the next image. This procedure works because tumors
are mainly compact objects. For thin objects segmentation, this procedure
would fail because the erosion step will delete the thin structures and no
markers could be extracted from the first segmentation. The main advantage
of this protocol is that the method does not need more memory than a clas-
sical 3D segmentation technique since it is based on sequential segmentation
of 3D images. However this method does not allow large motion and does not
allow to segment thin structures. This second method has been chosen for our
experiments.

3 Approximate Minimal Surfaces for Tumor
Segmentation

We detail now how to extract the tumor boundaries by an approximate mini-
mal surface using a region adjacency graph [6]. The combination of graph-cuts
with a watershed low-level segmentation provides us with an explicit and effi-
cient way to compute approximate minimal surfaces. Our basic assumption
is that the minimal surface to be computed is embedded in the watershed
low-level segmentation contours. We propose thus to solve the following com-
binatorial problem: finding a surface composed of a finite union of watershed
contours such that the surface minimizes a given geometric functional. We
solve this problem by using graph-cuts optimization on a region adjacency
graph.

Following the formulation of Caselles et al. [4], we want to find a surface S
defined by a finite union of watershed contours that minimizes the following
energy function:

E(S) =
∫ ∫

S

g(‖∇I(x, y)‖)dxdy (1)

where g is a positive and strictly decreasing function and ‖∇I(x, y)‖ is the
modulus of the gradient of the image I (image contrast). Note that Cauchy–
Crofton formulae can be used to minimize the energy function E(S) by
computing a minimal graph cut as described by Boykov et al. in [3].

Let us consider G = (V, E, W ) as the pixel graph of an image I. Classically
V is the set of nodes and represents the pixels of I, E is the set of edges
representing neighborhood relations between pixels and W is a positive weight
assigned to each edge of E. In our terminology, an edge linking two nodes i and



226 J. Stawiaski et al.

a

r2

r1

b

Cr2

r1

c

Fig. 2. (a) A region adjacency graph. (b) The set of nodes of the pixel graph con-
sidered to compute boundary properties between two regions, with a V4 adjacency
system. (c) A curve crossing the edges of the boundary between two regions r1

and r2

j is written ei,j and the corresponding edge weight is denoted by wi,j . From
the pixel graph, we define the region adjacency graph GR = (VR, ER, WR) of
the watershed transform where VR is the set of nodes (i.e. the regions of the
watershed transform), ER is the set of edges (i.e. the neighborhood relation
between regions) and WR is the weights of the edges.

Let us define F(ri,rj) as the set of edges of the pixel graph connecting two
regions ri and rj of the low-level watershed segmentation:

F(ri,rj) = {em,n ∈ E | m ∈ ri, n ∈ rj} . (2)

Note that the set F(ri,rj) depends on the adjacency system of the pixel
graph G. The set of edges of the pixel graph describes also implicitly a set
of surfaces between the regions ri and rj as illustrated in Fig. 2. Let S(ri,rj)

denote the set of surfaces that could cross the edges of F(ri,rj). Following
Cauchy–Crofton formulas with the V6 adjacency system, the energy function
E(S(ri,rj)) can be approximated by:

E(S(ri,rj)) ≈
∑

(em,n∈F(ri,rj))

g(max (‖∇I(m)‖, ‖∇I(n)‖)) , (3)

where ‖∇I(m)‖ and ‖∇I(n)‖ are the gradient magnitudes of the end points
of em,n. In the following, we consider the strictly positive and decreasing
function g:

g(‖∇I(p)‖) =
(

1
1 + ‖∇I(p)‖

)k

. (4)

The parameter k ∈ R+ is a free parameter that can be used as a smoothing
term as shown by Allène et al. in [1]. In our application this parameter was
set to k = 2. The function g works as an edge indicator of the image I and
takes a small value if neighbors pixels m and n take different grey values pm

and pn. The energy E(S(ri,rj)) of the boundary between two regions is simply
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Table 1. Edge weights for approximate minimal surfaces

Edge Weight For

ws,ri +∞ ri ∈Mt

wri,t +∞ ri ∈Mh

wri,rj E(S(ri,rj)) ri ∈ VR, rj ∈ Nri

obtained by summing the local contrasts along the boundaries between two
regions.

The tumor boundaries are finally extracted by computing a minimal graph
cut of the region adjacency graph with weights given by Table 1. The minimal
cut is computed on the region adjacency graph with two additional nodes s
and t, respectively connected to the markers of the liver and the markers
of the external tissues. In the following, we denote the markers that specify
the healthy and tumoral tissues as the set of regions Mh and Mt. Note also
that additional markers can be used. In this last case a multi-terminal cut
algorithm [5] is used to compute a set of multiple minimal surfaces separating
each pair of markers. This last technique can be used to segment the lungs,
the tumor as well as the body of the patient in a single step.

4 Results

Figure 3 illustrates a segmentation result on a 4D CT image. The second
segmentation protocol was used to obtain the presented results. The segmen-
tation was obtained by using a multi-terminal cut algorithm. The user has
provided markers for the lungs, the tumor, as well as the surrounding tissues.
The tumor and the lungs have been correctly delineated by using this strat-
egy since the motion of the lungs is especially small on the upper part of the
lungs, where the tumor is located.

5 Conclusion

Minimal surfaces computed on the region adjacency graph provide stable and
robust segmentation results for the aimed application, the delineation of lung
tumors. The method is sufficiently fast and precise to be used on large data-
sets such as 4D images. In such conditions the analysis of all data-sets by a
radiologist cannot be realized by manual segmentation. The proposed method
is thus a first solution for the tracking of lung tumors. With the exponential
growth of medical image data, it is clear that such interactive methods are
good alternatives to fully manual segmentations. Up to now, fully automatic
methods also fail to achieve relevant segmentation results in all the cases and
often require manual corrections.
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Fig. 3. 4D CT images segmentation results at two different steps of a breathing
cycle. The segmentation was obtained with multi-terminal cuts
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Summary. Tracking and registration approaches have been developed for auto-
matic analysis of multidimensional biomedical images. The tracking approach allows
computing the trajectories of cells in fluorescence microscopy image sequences. The
registration approach enables to geometrically align cell microscopy images by using
elastic transformations.

1 Introduction

The analysis of high-content multidimensional biomedical images requires
the application of different techniques. In this contribution, we describe
approaches for tracking and registration, which are central tasks in image
analysis and have a wide spectrum of applications in the fields of biology and
medicine.

In cell biology, an important application is the analysis of the motion
of cellular structures. We have developed a tracking approach to determine
the trajectories of cells from fluorescence microscopy image sequences. The
approach can cope with splitting cells, which is important in our application.
In conjunction with segmentation and classification schemes the aim is to
study the influence of genes on the process of cell division and thus to iden-
tify gene function. In addition, we have introduced approaches for tracking
virus particles. We have also developed registration methods which enable the
geometric alignment of corresponding image data. Our approaches can cope
with elastic (non-rigid) deformations between images and have been applied
for the registration of cell microscopy images and gel electrophoresis images.
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Fig. 1. Original cell microscopy image (left) and example of a tracking result with
indicated splitting events (right)

2 Tracking of Cellular Structures in Fluorescence
Microscopy Image Sequences

2.1 Tracking of Cells

Tracking is a central task in biomedical image analysis and allows analyzing
the movement of objects (e.g., [11]). We have developed a tracking approach
which determines the trajectories of cells from 2D and 3D multi-cell time-lapse
images generated by high-throughput RNA interference (RNAi) experiments
(Harder et al. [5,6]). RNAi is an effective technology to identify the biological
function of genes by systematically knocking down genes and analyzing the
resulting phenotypes [2]. The general aim of our work is to understand the
process of cell division (mitosis) at a molecular level. To study the influence
of genes on cell division we quantify the duration of cell cycle phases to deter-
mine whether the knockdown of a certain gene leads to a delay of certain
phases. To this end we combine the tracking approach with segmentation and
classification schemes.

Given 2D and 3D fluorescence microscopy image sequences of live cells, we
first segment cell nuclei by an efficient region-adaptive thresholding scheme.
This scheme computes local intensity thresholds in overlapping image regions
using Otsu’s histogram-based threshold selection scheme. Based on the seg-
mented objects we use a tracking scheme which determines the temporal
connections between cells and can handle splitting objects. We have devel-
oped the following two-step tracking approach: First, initial, non-splitting
trajectories are established, and second, mitotic events are detected and the
related trajectories are merged. In the first step, the initial trajectories are
determined using a feature point tracking algorithm based on [1]. As feature
points we use the centers of gravity of segmented cell nuclei. For each frame of
an image sequence the algorithm considers the predecessor and the successor
frame. In these frames, object correspondences are determined by searching
for trajectories with maximum smoothness. For one feature point we deter-
mine all potential predecessor and successor feature points within a certain
Euclidean distance and compute the smoothness of trajectories based on a
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cost function. The cost function takes into account the angle defined by suc-
cessive feature points as well as the distance between the points. Changes in
direction and distance cause higher costs. In the second step, we detect mito-
sis events and merge related trajectories. All trajectories that do not start in
the first frame are taken into account as possible mitosis events. To determine
whether a mitosis event exists we exploit the distance and size of potential
parent and child objects. The result of tracking are tree-structured trajectories
which represent the ancestral relationships between cells (Fig. 1).

After tracking we classify cells based on a support vector machine (SVM)
classifier [14] using both static and dynamic image features. Our approach
distinguishes between seven cell cycle phases (interphase, prophase, prometa-
phase, metaphase, early anaphase, late anaphase, and telophase) and auto-
matically determines the duration of these phases. In our approach we make
use of a priori knowledge about the sequence of cell cycle phases repre-
sented by a finite state machine. The inclusion of this knowledge improves
the classification and quantification result.

2.2 Tracking of Virus Particles

Besides tracking of cells we have also been working on analyzing the movement
of virus particles. Viruses are much smaller than cells and appear as spots in
light microscopy images. To automatically track multiple virus particles in
time-lapse fluorescence microscopy images we have developed deterministic
and probabilistic approaches. Whereas the deterministic approaches rely on a
two-step paradigm comprising virus localization and correspondence finding,
the probabilistic approaches are based on a Bayesian paradigm and formulate
tracking as a sequential estimation problem.

For the probabilistic approaches, we assume that a virus particle is repre-
sented by a state vector xt, and that a noisy measurement yt reflects the true
state of xt. At time step t, the aim is to estimate the state xt of a virus given
a sequence of measurements y1:t. By modeling the temporal evolution using a
dynamical model p(xt|xt−1) and incorporating measurements derived from the
images via a measurement model p(yt|xt), a Bayesian filter estimates the pos-
terior distribution p(xt|y1:t) via stochastic propagation and Bayes’ theorem:

p(xt|y1:t) ∝ p(yt|xt)
∫
p(xt|xt−1) p(xt−1|y1:t−1) dxt−1.

An estimate of xt can be obtained from the posterior p(xt|y1:t), which, in
our case, is estimated using a particle filter [8]. The idea of this filter is to
approximate the posterior via a set {xi

t;wi
t}Ns

i=1 of Ns random samples xi
t

(the ‘particles’) that are associated with importance weights wi
t. In our case,

we have developed tracking approaches based on a mixture of particle filters
and based on independent particle filters (Godinez et al. [3,4]). We have suc-
cessfully applied the approaches to multichannel microscopy images of HIV-1
particles and have quantified the performance based on ground truth from
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manual tracking. It turned out that the probabilistic approaches outperform
the deterministic schemes.

3 Non-Rigid Registration of Cell Microscopy Images

Another central task in biomedical image analysis is the normalization of
image data, for example, the normalization of cell microscopy images for
subsequent quantification and statistical analysis. To this end a geometric
transformation needs to be computed. The task of finding an optimal geo-
metric transformation between corresponding image data is known as image
registration, and generally one has to use non-rigid or elastic deformation
models which allow coping with local shape differences (e.g., [7, 12, 17]). To
register 2D and 3D fluorescence microscopy images of different cell nuclei we
have developed an elastic registration approach which relies on optic flow esti-
mation (Yang et al. [16], Kim et al. [9]). This approach is based on the scheme
in [13] and is driven by symmetric forces. We use either segmented images or
directly exploit the image intensities. Assume that f and g are the source and
target images, respectively, for which we want to compute the deformation
vector field U. With f(x) and g(x) denoting the intensity values at position
x, the instantaneous deformation vector field at iteration k can be written as:

dUk(x) =
2[f(x)− g(uk−1(x))][∇f(x) +∇g(uk−1(x))]

p(x)

where p(x) = [∇f(x) +∇g(uk−1(x))]2 + [f(x)− g(uk−1(x))]2 and ∇ denotes
the nabla operator. The equation is computed if p(x) ≥ ε, where ε is a
small positive constant, which is used to prevent cases where the denomi-
nator p(x) is close to zero. If p(x) < ε, we set dUk(x) = 0. Furthermore,
uk(x) = x + Uk(x) is the transformed position x with the total deforma-
tion field, which is finally used to transform the source image, and Uk(x) =
Uk−1(x) + dUk(x), U0(x) = 0. With this optic flow-based approach the
deformation between two images is computed based on intensity differences
and the gradients of the images. Our experimental results showed that
this approach using symmetric forces yields better results compared to the
standard approach, where the forces are not symmetric. To speed up the
computation, we have proposed an adaptive step length optimization scheme
and also employ a multi-resolution scheme.

The approach has been successfully applied to multi-channel 3D confo-
cal images of different cells for shape normalization and analysis of the 3D
structure of cells and chromosomes (Fig. 2). We have also investigated the reg-
istration of dynamic cell microscopy images, i.e., 4D (3D+t) images of moving
cell nuclei. In this case, the task is the normalization of the shape of moving
cells over time to decouple the movement and deformation of cells from the
movement of protein particles for accurate determination of particle motion.
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Fig. 2. Four different nuclei of HeLa cells overlaid using different gray tones (left),
corresponding chromosome pairs without registration (middle), and after elastic
registration (right)

Besides optic flow-based registration schemes, we have also developed
spline-based registration approaches. In particular, we have introduced an
elastic registration approach, which relies on analytic solutions of the Navier
equation under Gaussian forces. The corresponding splines have been termed
Gaussian elastic body splines (Wörz and Rohr [15], Kohlrausch et al. [10]). The
approach has been successfully applied to register gel electrophoresis images
and medical tomographic images.

4 Conclusion

We have described tracking and registration approaches for automatic analysis
of multidimensional biomedical images. The tracking approaches allow ana-
lyzing the movement of cellular structures, and the registration approaches
enable to geometrically normalize the image data for subsequent accurate
quantification.
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Summary. We present a numerical method for solving Diffusion Reaction equa-
tions on two completely overlapping unstructured meshes which reduces the require-
ments on mesh generation software when strong local refinement is needed to capture
features of the solution that appear on different scales.

1 Introduction

Singularly perturbed Diffusion Reaction equations with non-smooth coeffi-
cients can exhibit thin internal and boundary layers where the solution varies
rapidly. Layer resolving methods for problems in one dimension are either
based on fitted difference operators or on fitted meshes. Among those of
the latter class, methods based on Shishkin-type meshes [2] are especially
attractive because of their simplicity. Their applicability to multidimensional
problems is, though, constrained by the difficulty of generating structured
conforming meshes for general domain geometries. We present a numerical
method for solving Diffusion Reaction equations on two completely overlap-
ping unstructured meshes which reduces the requirements on mesh generation
software when strong local refinement is required to capture features of the
solution that appear on different scales. To validate the proposed method we
present numerical results on a problem which can be seen as a 2d extension
of the problem derived in [1] to compute the capacitance of a Metal Oxide
Semiconductor (MOS) structure. In [1] it was shown, in the 1d case, that
a parameter fitted mesh gives a significant improvement in the accuracy of
the computed capacitance over a uniform mesh when the MOS bias is near
the threshold voltage. The results shown in Sect. 4 indicate that the method
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described below could be beneficial when dealing with modern MOS structures
of non trivial geometry for which a 1d model is not appropriate [4].

2 Continuous Problem

Let Ω ⊂ R
d, d = 1, 2 be a bounded open domain. Let Ω be partitioned

into two subdomains Ω1, Ω2 s.t. Ω1 ∩ Ω2 ≡ ∅, Ω1 ∪Ω2 ≡ Ω and define Γ :=
Ω\(Ω1∪Ω2). Let ∂Ω ≡ ΓN∪ΓD with ΓN∩ΓD ≡ ∅ and ΓD∩Ω1 �≡ ∅ �≡ ΓD∩Ω2.
We consider the problem

⎧
⎨
⎩
−div σ(u) + ru = f in Ω \ Γ
σ(u) = εκi∇u, κi > 0 in Ωi, i = 1, 2
u|ΓD

= gD, σ(u) · n|ΓN
= 0

r =

{
r1 ≥ β > 0 in Ω1

r2 ≡ 0 in Ω2

f =

{
f1 in Ω1

f2 in Ω2

(1)

with the constraint that u and the component of σ(u) along the direction
normal to Γ be continuous in all Ω. Here ε > 0 is a small perturbation
parameter, n denotes the outward unit normal to ∂Ω and ni the outward unit
normal to ∂Ωi. For the sake of simplicity and to prevent the appearance of
boundary layers occurring in u we impose the further boundary condition

gD|ΓD∩∂Ω1
=
f

r

∣∣∣∣
ΓD∩∂Ω1

2.1 Solution Decomposition

We restate problem (1) in a multidomain formulation as follows
⎧
⎪⎪⎨
⎪⎪⎩

−div σ(vi) + rivi = fi in Ωi, i = 1, 2
vi|ΓD∩∂Ωi

= gD|ΓD∩∂Ωi
, σ(vi) · ni|ΓN∩∂Ωi

= 0

vi|Γ =
f1
r1

∣∣∣∣
Γ

=: gΓ
(2)

{−div σ(w1) + r1w1 = 0 in Ω1

w1|∂Ω1∩ΓD
= 0, σ(w1) · np|∂Ωp∩ΓN

= 0 (3)

{−div σ(w2) = 0 in Ω2

w2|∂Ω2∩ΓD
= 0, σ(w2) · n2|∂Ω2∩ΓN

= 0 (4)

⎧⎨
⎩

∑
i=1,2

(σ(vi) + σ(wi)) · ni|Γ = 0

w1|Γ = w2|Γ =: wΓ
(5)
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The solution u of (1) is related to vi, wi by

u|Ωi
= vi + wi, i = 1, 2; u|Γ = gΓ + wΓ (6)

The case where d = 1 is of particular interest. In this case Ω reduces to an
interval (a, b) ⊂ R and without loss of generality we can assume a = 0, b = 1.
Furthermore Γ will be a single point in R s.t. 0 < Γ < 1 and we can write
Ω1 ≡ (0, Γ ), Ω2 ≡ (Γ, 1). Finally ∂Ω ≡ ΓD ≡ {0, 1}, ΓN ≡ ∅ and r(0)gD(0) =
f(0). Following the arguments in [1] we can state the following

Lemma 1. Let d = 1 and k be an integer satisfying 0 ≤ k ≤ 4. Then the
solution u of the problem (2)–(6) satisfies the pointwise bounds

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣
dkv1
dxk

(x)
∣∣∣∣ ≤ C + Cε1−

k
2 e−(Γ−x)

√
β/ε, ∀x ∈ Ω1

∣∣∣∣
dkv2
dxk

(x)
∣∣∣∣ ≤ C, ∀x ∈ Ω2

⎧
⎪⎪⎨
⎪⎪⎩

∣∣∣∣
dkw1

dxk
(x)
∣∣∣∣ ≤ Cε−

k
2 e−(Γ−x)

√
β/ε, ∀x ∈ Ω1

∣∣∣∣
dkw2

dxk
(x)
∣∣∣∣ ≤ C, ∀x ∈ Ω2

where C is a constant independent of ε.

Note that the term w1 in (6) is negligible at a distance to the left of Γ , which
is proportional to

√
ε.

3 Finite Element Discretization

To construct a parameter-uniform numerical method [2], we introduce the
quantity τε, which represents the width of the interior layer. Define the interior
layer region as the subdomain

Ωp(τε) :=
{
x ∈ Ω1, |min

y∈Γ
|x− y| ≤ τε

}

Following very closely the presentation of [3] we introduce the Galerkin/Finite
Elements discretization of problem (2), (3), (4), (5) as follows.
Define the following spaces

{
Si ≡

{
u ∈ H1(Ωi)| u|∂Ωi∩ΓD

= g|∂Ωi∩ΓD
, u|Γ = gΓ

}

Vi ≡
{
u ∈ H1(Ωi)| u|(∂Ωi∩ΓD)∪Γ = 0

} i = 1, 2
⎧
⎪⎪⎨
⎪⎪⎩

Z2 ≡
{
u ∈ H1(Ω2)| u|∂Ω2∩ΓD

= 0
}

Zp ≡
{
u ∈ H1(Ωp)| u|∂Ωp\ΓN\Γ = 0

}

Vp ≡
{
u ∈ H1(Ωp)| u|∂Ωp\ΓN

= 0
}

(7)
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Let T hi indicate a quasi-uniform, conforming triangulation of Ωi and Shi ⊂ Si,
i = 1, 2, Vhi ⊂ Vi, i = 1, 2, p and Zhi ⊂ Zi, i = 2, p be continuous finite element
spaces consisting of functions that are linear on each element of T hi .
Away from Γ we do not require any correspondence between the nodes of T hp
and those of T h1 , for sake of simplicity, though, we assume the triangulations
T hi to be constructed in such a way that T h1 ∪ T h2 be a globally conforming
triangulation of Ω and T hp ∪ T h2 be a globally conforming triangulation of
Ωp∪Ω2, so that the mesh nodes located on the interface Γ are the same in all
three meshes. A consequence of this assumption is that the traces on Γ of the
functions in any of the sets Zhi and Shi all belong to the same space T h; the
functions in T h are piece-wise linear functions defined on Γ .
The discretization of problem (2), (3), (4), (5) reads:
Find vhi ∈ Shi , i = 1, 2; wh1 ∈ Zhp ; wh2 ∈ Zh2 ; ΦhΓ,i, Ψ

h
Γ,i ∈ T h, i = 1, 2

such that
⎧
⎨
⎩
Bi(ν, vhi ) = Li(ν) ∀ν in Vhi
Bi(ν, v) = (∇ν, σ(v))Ωi + (ν, rv)Ωi − (ν, ΦhΓ,i)Γ
Li(ν) = (ν, f)Ωi

i = 1, 2 (2’)

{
Ap(ν, wh1 ) = 0 ∀ν in Vhp
Ap(ν, w) = (∇ν, σ(w))Ωp + (ν, rw)Ωp − (ν, ΨhΓ,1)Γ

(3’)

{
A2(ν, wh2 ) = 0 ∀ν in Vh2
A2(ν, w) = (∇ν, σ(w))Ω2 − (ν, ΨΓ,2)Γ

(4’)

⎧
⎨
⎩

∑
i=1,2

(ν, ΦΓ,i + ΨΓ,i)Γ , ∀ν ∈ T h

wh1
∣∣
Γ

= wh2
∣∣
Γ

(5’)

uh
∣∣
Ω1\Ωp

= vh1
∣∣
Ω1\Ωp

; uh
∣∣
Ω2

= vh2
∣∣
Ω2

+ wh2
∣∣
Ω2

; uh
∣∣
Ωp

= vh1
∣∣
Ωp

+ wh1
∣∣
Ωp

(6’)
The resulting algebraic problem consists in solving the following sequence of
linear systems

{
B1
IIv

1
I = f1

I −B1
IΓgΓ

B2
IIv

2
I = f2

I −B2
IΓgΓ

,

{
Φ1 = f1

Γ −B1
ΓIv

1
I −B1

ΓΓgΓ
Φ2 = f2

Γ −B2
ΓIv

2
I −B2

ΓΓgΓ
(8)

⎡
⎣
ApII ApIΓ 0
ApΓI A

p
ΓΓ +A2

ΓΓ A2
ΓI

0 A2
IΓ A2

II

⎤
⎦
⎡
⎣

wp
I

wΓ

w2
I

⎤
⎦ =

⎡
⎣

0
− (Φ1 + Φ2

)
0

⎤
⎦ (9)

Where the subscript I indicates the degrees of freedom relative to internal
mesh nodes while the subscript Γ denotes degrees of freedom relative to the
interface nodes. To complete the definition of the discretization algorithm we
need to prescribe a formula for τε. To this end, let us again focus our attention
on the case d = 1 and assume Ω ≡ (0, 1) as in Sect. 2.1. In such a case, if the
standard lumping technique is adopted for the matrices corresponding to the
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Fig. 1. Computational domain and mesh for the test case of Sect. 4: N = 117,
ε = 1.5e−3, τε = 0.0916

zero-order terms in (2’)–(4’), the algebraic equations in (8)–(9) become iden-
tical to those that would arise in a Centered Finite Difference discretization.
Using the methods of analysis in [1], one can establish the following.

Theorem 1. Let d = 1 and τε := min
{
d, 2

√
ε1
β lnN

}
. Then

‖u− uh‖∞ ≤ C lnN

N
‖uh′ − u′‖∞,Ω\Ωp

≤ lnN

N

√
ε‖uh′ − u′‖∞,Ωp

≤ C (lnN)2

N

where C is a constant independent of ε and N .

Although the bounds in Theorem 1 have only been established in the case
of d = 1, the numerical results in Sect. 4 suggest that similar error estimates
may also hold for d = 2.

4 Results

As a test case we consider a problem with d = 2 in the domain pictured
in Fig. 1 where we let r1 = f1 = 1 in Ω1, r2 = f2 = 0 in Ω2, gD = 1 on
ΓD ∩ Ω1 and gD = 0 on ΓD ∩ Ω2. Figure 2a, b show the solution of the test
problem as computed by the algorithm of Sect. 3 and by a standard piece-wise
linear Finite Element discretization on a single quasi-uniform triangulation
over the whole domain Ω, respectively. As anticipated in the introduction, we
see the algorithm of Sect. 3 as a viable extension to the two dimensional case
of the algorithm that in [1] was used to estimate the capacitance of a MOS
structure. Given the particular application we have in mind, the quantity
we are most interested in is the total flux through the Dirichlet portion of

the boundary of Ω2, i.e. Q :=
∫

ΓD∪Ω2

σ(u) · ν dγ. By comparing the plots

in Fig. 2c, d one may notice that, while the error produced by the standard
approximation has a non-trivial dependence on both the number of degrees of
freedom N and on the singular perturbation parameter ε, for the algorithm
proposed here the error, at least for small enough ε is a function of N alone.



240 M. Culpo et al.

(a) (b)

1

0.1

0.01
1e-06 1e-05 .0001

e
.001

N = 29
N = 117
N = 456
N = 1838

R
el

at
iv

e 
fl

u
x 

er
ro

r

(c)

1

N = 29
N = 117
N = 456
N = 1838

0.1

0.01
1e-06 1e-05 .0001

e
.001

R
el

at
iv

e 
fl

u
x 

er
ro

r

(d)

Fig. 2. (a) Computed solution u of the test problem of Sect. 4 for ε = 1.5×10−3 and
N = 456. (b) Computed solution of the test problem for ε = 1.5×10−3 and N = 456
with the algorithm described in Sect. 3, note that in Ωp both the solution u and the
regular component v1 are shown. (c) Relative error in the flux Q computed by the
algorithm of Sect. 3. (d) Relative error in the flux Q computed on a quasi-uniform
mesh
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Summary. There is currently much interest in upgrading the UK broadband infras-
tructure by connecting subscribers to their local exchanges by fibre optic cables. The
key to determining whether such an upgrade is feasible is cost. A method of cal-
culating an optimal upgrade, in the sense of maximising return on investment, is
described and results of its application to a test case are discussed.

1 Introduction

The topology of the UK’s broadband infrastructure is illustrated in Fig. 1.
Individual subscribers receive and transmit data using the asymmetric digi-
tal subscriber line technology (ADSL) through copper (or aluminium) cables
which are amalgamated at nodes and end at exchanges. At the exchanges
the signal is converted to optical pulses which are sent and received through
fibre-optic cables that form the transport network.

A number of factors have lead to an increase in Internet subscribers’
data transfer requirements with the result that the current infrastructure is
becoming inadequate. These include:

• An increased reliance on Internet connectivity in everyday life
• A tremendous rise in the consumption of bandwidth intensive multimedia

applications
• The popularity of Web 2.0 websites and related activities

The latter is significant since the interactivity encouraged by Web 2.0 appli-
cations requires large upload speeds. Current ADSL technology is designed to
increase download speeds at the cost of reducing upload speeds.

The bottleneck in data transmission lies between the subscribers and the
exchanges. Under optimal conditions, i.e. a subscriber lives within a few hun-
dred metres of the exchange, ADSL technology allows upload speeds of 1 Mbps
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Postcode

Node

Copper

Fibre

Exchange

Fig. 1. Topology of UK broadband infrastructure

and download speeds of 8 Mbps. There is a strong attenuation problem, mean-
ing that these speeds are halved for a subscriber who lives several kilometres
from an exchange.

There is a consensus that some form of network upgrade is required. The
extent of the upgrade is still a matter of debate. Should it be an upgrade of
equipment or a complete overhaul of the network infrastructure? One option is
an upgrade of ADSL technology to ADSL2+. This would introduce a moderate
gain in upload and download speeds, requiring little additional investment
since it would not change the underlying infrastructure. This has already been
applied in the UK and other OECD countries with limited success. Usually
only half of all copper access cables lend themselves to this sort of upgrade.

A more radical approach would be to replace the copper cables with fibre
optic cables: the subject of this paper. In this work we consider an upgrade
known as Fibre-to-the-Home (FTTH) in which all copper cables are replaced
by optical fibres, allowing upload and download speeds of 10–100 Mbps. Sev-
eral European operators are implementing hybrid schemes in which optical
fibre cabling is used to replace only part of the access network.

The main hurdle to upgrading the UK infrastructure to fibre optic cable
is cost. This is not entirely straightforward however: there is more than one
way in which the upgrade can be carried out. An upgraded network will not
require as many exchanges as the current network, since fibre optic cable does
not suffer from the rapid attenuation of copper cables. Therefore, as part of
the upgrade, a number of exchanges can be decommissioned, with a concomi-
tant reduction in the operating costs of the network. Also a limited upgrade
in which only some subscribers are upgraded is possible. We here present a
way of estimating the costs of a given upgrade and the revenue potential of
the upgraded network, and an algorithm based on Monte Carlo simulated
annealing for finding an upgrade which maximises return on investment.

Our approach differs from other modelling studies in this area in two
respects. Firstly, we use detailed small-area estimates of broadband sub-
scriber numbers at UK postcode resolution (a UK postcode typically describes
a single street), This data is taken from the Point Topic Broadband User
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Survey [1]. Secondly, previous studies have made a priori choices about
locations upgraded, deciding in advance which subscribers and exchanges to
upgrade. In our approach the algorithm chooses the scope of the upgrade in
order to maximise return on investment.

2 Cost Model

In order to find an optimal network we need a measure by which to compare
upgraded networks. We take this to be ΔP , the increase in profits due to
the network, summed over the number of years investors are willing to wait
for a return on their expenditure. ΔP can be broken down into contributions
from increased revenue from subscribers with a fibre connection R, savings
made due to the lower operating costs of a fibre network S, and the initial
investment needed to set up the network I.

ΔP = R+ S − I (1)

In calculating these quantities we take the perspective of the incumbent
operator BT Openreach, the owner of the current infrastructure.

2.1 Revenue

The increase in revenue due the provision of a fibre service is given as

R =
∑

i

npc
bb,ir (2)

where summation is over all postcodes i that have been upgraded to fibre, npc
bb,i

is the number of households in that postcode with broadband subscriptions
and r is the increased revenue per subscriber.

2.2 Savings

There are two possible sources of savings from an upgraded network. The first
is from the decommissioning of exchanges, the second is from the reduced
operating costs of exchanges that have been converted to fibre. Thus the
savings S are given by

S = Sex
dcN

ex
dc + Sex

ugN
ex
ug (3)

where Sex
dc is the saving made from decommissioning an exchange, N ex

dc is
the number of decommissioned exchanges, Sex

ug is the saving made from an
upgraded exchange and N ex

ug is the number of upgraded exchanges.
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2.3 Investment

A substantial amount of investment is needed to upgrade the network. This
can be categorised into four areas

• Exchanges must be upgraded to fibre (although there is a long term saving
associated with this there is also an initial investment that must be made).

• Tunnels must be dug to get the cables from the exchanges to the sub-
scribers.

• The cable itself must be bought.
• There is an additional cost in making the final connection to the sub-

scribers.

The investment, I, is described by the equation

I = Cex
ugN

ex
ug +

∑
i

[
Cdigdpc,i + Ccabledpc,in

pc
hh,i + Chh

ug,in
pc
bb,i

]
(4)

where Cex
ug is the cost of upgrading an exchange,N ex

ug is the number of upgraded
exchanges, summation is over upgraded postcodes i, Cdig is the cost per unit
length of digging tunnels, dpc,i is the total length of tunnels, Ccable is the
cost per unit length of cable, npc

hh,i is the number of households in upgraded
postcode i, Chh

ug,i is the cost of upgrading a single household.

3 Optimisation Algorithm

Finding the best possible arrangement of upgraded and decommissioned
exchanges and upgraded postcodes is a combinatorial optimisation prob-
lem. The Metropolis Monte Carlo algorithm excels at solving this type of
problem [2,3].

Figure 2 shows how the algorithm is used to decide whether to accept or
reject a proposed adjustment of the system. The probability test consists of
accepting a step in which ΔPnew is smaller than ΔPold with probability

exp
[
ΔPold −ΔPnew

T

]
(5)

where T is initially taken as a large quantity and then reduced to zero over
the course of the simulation. Thus, in the initial stages of the simulation,
steps which substantially reduce ΔP are often accepted; whereas, in the final
iterations, only those adjustments which increase ΔP are allowed.

The adjustments made to the network are shown in Fig. 3. These consist
of: upgrading an exchange and its surrounding postcodes to fibre; decommis-
sioning an exchange and attaching its surrounding postcodes by fibre to the
nearest upgraded exchange; reversing the previous processes.
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Fig. 2. The Metropolis Monte Carlo algorithm
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ADSL postcode

Fig. 3. Adjustments made to the network

4 A Test Case

To test the algorithm we conducted a case study: finding an optimal network
for the Isle of Wight. The Isle of Wight makes a good test case: it is a self
contained geographical unit and accommodates both urban and rural areas.
We apply the algorithm with the parameters shown in Table 1, and assume
that investors are willing to wait 5 years for a return on their initial outlay.
Figure 4 shows the optimised network. Under these conditions the algorithm
suggests only upgrading the exchanges and postcodes in the three largest
towns.

5 Conclusions and Further Work

Upgrading the UK broadband infrastructure to fibre optic cable is a com-
plex and expensive task. With the telecoms industry under pressure from
investors, stake-holders and competitors to perform well in financial terms
and to keep innovating their service applications, it is important carry out
network upgrades in as cost effective a manner as possible. We have here
presented an algorithm for calculating an optimal upgrade and demonstrated
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Table 1. Parameter values used in the simulation

Parameter Value Units

Sex
dc 200.0 103 $ year−1

Sex
ug 18.0 103 $ year−1

Cex
ug 150.0 103 $

Chh
ug 200.0 $ hh−1

Cdig 38.0 $ m−1

Ccable 1.5 $ m−1

r 15.0 $ hh−1 month−1

DSL postcode

Fibre postcode

Decommissioned exchange

DSL exchange

Fibreo exchange

Fig. 4. Optimal network for the Isle of Wight

its application in a test case. In future work we plan to scale up the calculations
to the whole of the UK.
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Summary. A multi-step version of the aircraft icing code ICECREMO2 is used to
simulate ice layers in cold and mild conditions. The models used are presented and
results are compared with available data. The modifications necessary to introduce
anti- or de-icing devices in the model are also discussed.

1 Aircrafts and Icing

Aircraft icing occurs in cold and wet conditions. Water droplets hitting the
plane may freeze instantaneously and form rime ice. Part of the droplets may
also remain liquid and form glaze ice [1]. Ice growing on key parts of a plane
is a major concern for aircraft manufacturers. Computer codes are used to
assist them with aircraft design and certification work. ICECREMO2 is one
of the most recent codes, developed by a number of companies in the United
Kingdom, see acknowledgements. Flow parameters necessary to simulate ice
growth must be evaluated during a flow calculation at the start of the simu-
lation. When ice accretes, flow-dependent parameters may vary significantly
and updates are necessary to improve the accuracy of the ice prediction. This
method known as multi-stepping will be detailed for ICECREMO2. Models
for anti- and de-icing devices that prevent or limit ice formation will also be
reviewed briefly.

2 Modelling Aircraft Icing

2.1 Icing Model

Ice grows in two phases, rime ice appears first and then glaze ice. ICECREMO2
uses its own icing model [6], this is now presented for both phases. Flow-
dependent parameters will also be identified.
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Rime Ice Growth

Rime ice grows in cold conditions; the impinging droplets freeze almost instan-
taneously when they reach the surface. The ice growth rate may then be
calculated using a mass balance:

∂b

∂t
=
β�wV∞
�i

, (1)

where b denotes the ice height and β�wV∞ represents the mass of water hitting
the surface. The catch or collection efficiency, β, is the ratio of the mass flux
hitting the surface and the mass flux that would hit if water droplets had
straight line trajectories. It must be computed using the results of the flow
calculation and is therefore likely to vary significantly when the ice layer
increases. This parameter should be updated when using multi-step methods.

Glaze Ice Growth

In milder conditions, when the ice layer is thick enough, some of the impinging
droplets may remain liquid and a water layer forms at the top of the ice
accretion. This layer will remain extremely thin but it is key to accurate
simulations. The mass balance (1) is then replaced by

�i
∂b

∂t
+ �w

(
∂h

∂t
+∇ ·Q

)
= β�wV∞ , (2)

where the fluid flux Q is defined by

Q =
(
−�wgh

3

3μ
g · ex +

Axh
2

2μ
,−�wgh

3

3μ
g · ey +

Ayh
2

2μ

)
, (3)

and h denotes the water height. The mass balance (2) accounts for the evo-
lution of the ice layer thickness and the movement of the water layer through
the flux. The shear stress (Ax, Ay) is highly dependent on the flow and should
be updated during multi-step calculations.

Equation (2) is not enough to determine both the ice growth rate, ∂b/∂t,
and the water growth rate, ∂h/∂t. It must be coupled with the Stefan
condition:

�iLf
∂b

∂t
= κi

∂T

∂z
− κw

∂θ

∂z
= κi

Tf − Ts

b
− κw

E − F Tf

1 + Fh
, (4)

where the temperature gradients in the ice and water layers, ∂T/∂z and ∂θ/∂z,
are calculated assuming that the layers are thin. The temperature of the
substrate is Ts and the temperature at the interface between the ice and
water layers is the freezing temperature Tf . The gradient at the top of the
water layer is Tz = E−Fθ(b+h) where E and F reflect the physics at the top
of the ice layer, see [5] for details. All the parameters involved in E and F are
constant except for the collection efficiency and the heat transfer coefficient.
These two coefficients must be updated when using a multi-step algorithm.
This completes the model and it may now be included in an icing algorithm.
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2.2 Icing Code Structure

Icing codes are generally split into four parts [4]. The flow around the body
is determined first, using computational fluid dynamics techniques. Water
droplet trajectories are then simulated to evaluate the collection efficiency.
This parameter reflecting the quantity of liquid impinging on the wing surface
is calculated during the third stage, together with the heat transfer coefficient.
Finally, the ice growth is calculated. This procedure is known as a one-step
calculation.

To improve the accuracy of the ice simulations the four parts of the one-
step algorithm are repeated as many times as necessary. A criterion defining
the start of a new cycle is specified and the corresponding ice growth rates are
determined. The initial geometry is then adjusted to account for the accreted
ice and a new flow field calculation is performed around the iced geome-
try. This procedure is iterated until the specified total icing exposure time is
reached but it is potentially time consuming: the criterion triggering the start
of a new cycle and a new flow calculation needs to be defined with care. Most
commonly, the total icing exposure time is divided into a given number of
equal time increments. This may not be the most appropriate method when
glaze ice is growing and calculating the ice growth rate is less straightfor-
ward. A criterion based on the ice height may be more effective: a new flow
calculation is started when the maximum ice height growing during a multi-
time-step reaches a value chosen by the user. Time-steps would be longer
when ice grows slowly and shorter for higher ice growth rates and this should
reduce the number of multi-time-steps. Both solutions will be tested in the
following.

3 Numerical Results

Ice shapes are simulated on a NACA0012 wing in rime ice conditions,
Tambient = −26◦C, and glaze ice conditions, Tambient = −7◦C.

3.1 Rime Ice Conditions

Figure 1 shows the experimental ice shape calculated by Shin and Bond [7],
the one step ice shape and ice shapes simulated using the step-by-step algo-
rithm with the time and ice criteria. All simulations over-estimate the ice
layer at the edge of the wing and slightly underestimate the accretion further
downstream. Using the multi-step algorithm reduces the excess of ice close to
the leading edge. For both multi-step criteria, convergence is reached after 5
flow calculations, corresponding to 72 s for the time criterion and a maximum
height bmax = 0.8% c for the ice height criterion where c is the chord length.
It appears that the criterion used does not make a significant difference here.
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Fig. 2. Ice shapes in glaze ice conditions: (a) numerical simulations; (b) comparison
with other icing codes

3.2 Glaze Ice Conditions

Figure 2 shows the experimental results [3] and the ice shape simulated for
both the time and the ice height criteria. As in the rime ice situation, the
accreted layer is overestimated. However, the two horns typical of glaze ice
growth appear very clearly. These difficulties to match experimental results
are due to the complexity of the ice shape and to the model that only allows
ice to grow orthogonally to the wing surface. Here, the model prevents an
accurate simulation of the lower horn.

Convergence is achieved after 12 iterations for the time criterion and the
maximum height bmax = 0.6% c for the ice height criterion, corresponding to
10 flow calculations. The results are of equivalent quality, as may be seen on
Fig. 2. As could be expected, when using the ice height criterion, the time-
steps are significantly longer at the beginning of the simulation and become
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shorter towards the end. For the present example, the ice height criterion is
clearly more efficient and should be preferred to the standard time criterion.

The ICECREMO2 results compare favourably with shapes calculated
using standard multi-step versions of the icing codes LEWICE, TRAJICE and
ONERA in their December 2000 version [3], see Fig. 2. All codes over-estimate
the ice layer and none of them matches the experimental shape perfectly. Over-
all, the step-by-step version of ICECREMO2 gives the best approximation for
the ice shape and the algorithm used here is a significant improvement from
the codes used in the NATO/RTO study [3]. The main difference between the
codes is the icing model. The improved ice shape is due to the icing model, the
carefully chosen criterion triggering the flow recalculation is key in reducing
the time required to reach this best possible shape [8].

4 Challenges of Anti-Icing and De-Icing Models

Various systems have been developed to combat aircraft icing. Action may be
taken before take off, but this will only be effective for a short period, or during
the flight. Two approaches may be used: anti-icing systems try to prevent ice
from accreting at all, working continuously from the start of ice growth. This
can become extremely energy consuming and instead de-icing devices may
be used that remove the ice accretion periodically. In this situation, a small
layer of ice is allowed to form before removal. A popular solution is to use
electro-thermal systems in the form of electrical heaters elements placed on
the airfoil to destroy the ice adhesion, so that aerodynamic forces can remove
the ice from the surface.

The model presented in Sect. 2.1 can be adapted to include heating pads.
In this situation, the surface temperature, Ts, is allowed to vary and heat
equations need to be solved inside the wing structure, as implemented in
ICECREMO2, see [2]. The objective is then to reach the freezing temperature
at the surface of the wing. The bottom of the ice layer will start melting
and the top of the layer will shatter before being removed by aerodynamical
forces. The geometry and position of the heating pads should be optimised
to guarantee maximum efficiency and the heating strategy should be adapted
to minimise the energy required to guarantee the fly safety. This enhanced
model will then have to be coupled with a multi-step algorithm to guarantee
a good level of accuracy.

5 Conclusions and Further Work

Ice layers were simulated using a multi-step version of the aircraft icing code
ICECREMO2. The icing model improved the accuracy of the simulation
while the algorithm reduced the time required to achieve this best possi-
ble shape. Extending the method to anti-icing and de-icing models requires
a modification of the existing model and finding an optimal energy saving
strategy.
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Summary. Photopolymers represent an attractive class of optical recording mate-
rials due to properties such as high refractive index modulation, dry film processing,
low cost, etc. Applications include holographic data storage disks, optical intercon-
nections, memories and filters. This paper addresses the dynamics of short-exposure
holographic grating formation; a new model is proposed to explain the experimental
observations of low diffraction efficiency in high spatial frequency gratings.

1 Introduction

The basic formulation of a dry photopolymer system consists of one or two
monomers, photoinitiator and sensitizing dye, all dispersed in a binder matrix.
Upon uniform illumination, a monomer polymerizes and the refractive index
of the system changes. When material is exposed to an interference pattern
more monomers are being polymerized in the bright regions than in the dark
ones. This sets up a concentration gradient and the monomer diffuses from
dark to bright areas. The recorded holographic grating (spatial distribution of
refractive index) is a result of changes in the relative density of components.

Grating evolution in photopolymers has been studied by several authors
([4, 6], etc.). However, the common feature of most theoretical models pro-
posed to date is that they cannot describe the experimental observation of
poor diffraction efficiency at high spatial frequencies. There are two theo-
ries explaining this poor response. The “nonlocal-response diffusion model”
of [5] assumes growth of polymer chains away from their initiation locations
and predicts that high frequency gratings can be improved if shorter poly-
mer chains are created during the recording. Despite the successful theoretical
model no supporting experimental evidence has been reported so far for spatial
frequencies higher than 3,000 lines/mm.

A second theory was proposed in [1] and [2]. It states that the counter
diffusion of short-chain polymer molecules away from the bright fringes is
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responsible for the reduction in diffraction efficiency and predicts that pro-
ducing short chains is not sufficient to achieve high spatial frequency resolution
but, in addition, their diffusion must be suppressed. In order to achieve theo-
retical validation for this theory, we propose here a new mathematical model
for hologram formation and compare numerical simulations of the refractive
index modulation after short exposures with experimental results.

2 Problem Formulation

The photopolymer is exposed to two coherent beams of intensities I1 and I2
which create the following illumination pattern

I(x) = I0 (1 + V cos(kx)),

where k is the grating wavenumber, I0 = I1 + I2 and V = 2
√
I1I2/(I1 + I2)

are the overall intensity and visibility of the interference pattern, respectively.
The holographic grating formation then proceeds in three steps: initiation,
propagation and termination. Upon illumination, the sensitizing dye absorbs
a photon and reacts with the electron donor to produce free radicals; in
the presence of monomer these free radicals initiate polymerization. During
the propagation step, free radicals and monomer molecules interact and pro-
duce growing polymer chains. At the termination step, two free radicals or
two polymer chains interact and the polymer chains stop growing. As stated
above, the faster consumption of monomer in the illuminated areas sets up
a concentration gradient so the free monomer diffuses from dark to bright
fringes; in addition we now assume that short-chain polymer molecules (or
radicals) can also diffuse during recording. All these processes modify the
spatial modulation of the refractive index and yield a phase grating.

The refractive index of a material consisting of a mixture of components
can be calculated with the well-known Lorentz–Lorenz equation:

n2 − 1
n2 + 2

=
∑
i

Φi
n2
i − 1
n2
i + 2

where n is the effective refractive index of the mixture, ni are the refractive
indices of the components (monomer, polymer and binder) determined sep-
arately from spectrophotometric measurements, and Φi are the normalized
concentrations of the components (e.g. Φm = m/(b+m+ p), where m, p and
b denote concentrations of monomer, polymer and binder, respectively). The
details of this calculation are not important so will not be included here.

The refractive index modulation determines the grating strength and is
calculated as the difference between the values in the bright and dark fringes,

Δn(t) = nmax(t)− nmin(t)

In short exposure conditions Δn(t) should ideally exhibit fast growth followed
by convergence to an equilibrium state.
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3 Proposed Model

We now propose a generalization to existing models which takes into account
monomer and polymer diffusion, creation of short polymer chains and intro-
duces a simple “immobilization” mechanism which mimics the growth of
polymer chains to the extent where they cannot diffuse any longer. The short
exposure régime is also reflected in the model, whereby all polymerization and
immobilization processes stop once the light beam is terminated.

In what follows, the spatial domain is assumed to be x ∈ [0, Λ], where
Λ = 2π

k is the grating period (or fringe spacing). The classical model (see, for
example, [6]) consists of a polymerization-diffusion equation for the monomer
molecules but assumes diffusion stops once monomer is polymerized,

∂m

∂t
= Dm

∂2m

∂x2
− F (x)m. (1)

Here m(x, t) denotes monomer concentration, Dm is the monomer diffusion
constant and the polymerization rate is proportional to the illumination

F (x) = F0 (1 + V cos(kx))a ≡ F0 f(x)

where F0 is the polymerization constant and a > 0. The initial concentration
of free monomer in the material is spatially uniform, m(x, 0) = m0.

In addition, we now assume that short polymer chains can diffuse and the
diffusion coefficient is also proportional to the illumination, D(x) = Dpf(x),
meaning that at high intensity, more short-chains are formed, which are more
mobile. We also assume that short chains are converted to long chains at a rate
proportional to monomer and polymer concentrations (Γ is the conversion rate
constant) and that the long chains are immobile once formed. The resulting
equations are

∂m

∂t
= Dm

∂2m

∂x2
− Φ(t)F (x)m, (2)

∂p1

∂t
=

∂

∂x

[
D(x)

∂p1

∂x

]
+ Φ(t) [F (x)m− Γmp1] (3)

∂p2

∂t
= Φ(t)Γmp1, (4)

where, p1(x, t) is the concentration of short polymer chains, p2(x, t) is the
concentration of long polymer chains, with initial conditions p1(x, 0) =
0, p2(x, 0) = 0. We assume these equations are supplemented by zero-flux
boundary conditions. To account for a short exposure régime in (2)–(4) we
have introduced the step function

Φ(t) =

{
1, if t ≤ te
0, if t > te
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where te is the exposure time. Note that this model is only valid for exposure
times which are much shorter than diffusion times, as otherwise diffusion
coefficients for both monomers and polymers are known to be time dependent.

With the choice of non-dimensional variables

x̄ =
x

Λ
, t̄ = tF0, m̄ =

m

m0
, p̄i =

pi
m0

(i = 1, 2),

the model becomes

∂m

∂t
= κ

∂2m

∂x2
− Φ(t) f(x)m (5)

∂p1

∂t
= εκ

∂

∂x

[
f(x)

∂p1

∂x

]
+ Φ(t) [f(x)m− γmp1] (6)

∂p2

∂t
= Φ(t) γmp1, (7)

where
κ =

Dm

F0Λ2
; ε =

Dp

Dm
� 1; γ =

Γm0

F0
. (8)

We also have the initial and boundary conditions

m(x, 0) = 1, pi(x, 0) = 0; (9)
∂m

∂x
(x, t) =

∂p1

∂x
(x, t) =

∂p2

∂x
(x, t) = 0, for x = 0, 1. (10)

On adding and integrating equations (5)–(7) we get the conservation law

∫ 1

0

[m(x, t) + p1(x, t) + p2(t)] dx = 1,

which is to be expected, since monomer is converted into polymer while the
total concentration of particles remains constant.

4 Results and Conclusions

The non-dimensional model (5)–(10) was integrated numerically using a stan-
dard finite difference method. The numerical values used for the diffusion
constants are Dm = 10−7 cm2/s, Dp = 10−9 cm2/s (close to the values deter-
mined in [3]), so ε = 0.01. The polymerization rate constant is assumed to be
F0 = 0.3 s−1, a = 0.5, and Λ is varied between 2 ·10−7 m and 1 ·10−5 m (corre-
sponding to a range of 100–5,000 lines/mm). The exposure time is te = 0.2 s,
unless otherwise specified. Numerical values for γ (the “immobilization” rate
constant) would be difficult to determine experimentally; however we found
that γ = 1 yielded qualitatively and quantitatively satisfactory results.
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Fig. 1. Relative concentrations of monomer (m/m0) and long polymer (p2/m0).
Here Λ = 5 · 10−6, te = 0.2 s

Fig. 2. Relative concentrations of monomer (m/m0) and long polymer (p2/m0).
Here Λ = 10−5 m and te = 4 s

Figures 1 and 2 show the evolution of the monomer and long polymer
concentrations for various values of the system parameters. The spatial mod-
ulation of these species is represented over two grating periods. After the beam
is stopped, the monomer and short polymer concentrations converge towards a
homogeneous state under the influence of diffusion, while the spatial profile of
the long polymer remains frozen. Note there is a departure from the expected
sinusoidal pattern occurring for a combination of low spatial frequency and
longer exposure time. A detailed analysis of how the ratio between diffusion
and polymerization rates, κ, and the exposure time, te, affect the grating
dynamics will form the subject of further study.

Figure 3 shows remarkable agreement between the qualitative behaviour
of the refractive index modulation obtained from experiment and model sim-
ulation, for three values of the spatial frequency (200, 350 and 500 lines/mm).
Figure 4 shows the time evolution of the refractive index modulation for a
wider range of spatial frequencies, between 100 and 5,000 lines/mm. Note
that the model simulations reflect the experimental observations of a drop in
refractive index modulation at high spatial frequencies.

In conclusion, the model validates the assumption that the poor high spa-
tial frequency response in photopolymers can be explained by the diffusion
of short polymer chains from bright to dark fringes. An improvement strat-
egy would require that the holographic recording conditions be chosen so as to
suppress the production of short polymer chains and low permeability binders
be used in order to prevent their diffusion. Based on this principle, a successful
experimental strategy for producing a high diffraction efficiency reflection
hologram in an acrylamide-based photopolymer was recently presented in [3].
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Fig. 3. Comparison of experimental (left) and numerical (right) results for the
refractive index modulation. The three curves correspond to Λ = 5 · 10−6 m, Λ =
2.9 · 10−6 m and Λ = 2 · 10−6 m
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Fig. 4. Refractive index modulation for several values of Λ. Note the deterioration
of the grating strength for high spatial frequencies
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1 Introduction

The theme of this symposium was the study of the evolution and dynamics of
interfaces that develop in flows between regions with contrasting levels of tur-
bulence, concentration of passive scalar, of indeed fluid properties. The focus
here was on high Reynolds number interfaces in inertially dominated flows.
In many industrial problems, such as mixing caused by jets or wake separa-
tion from aircraft wings, these interfaces determine important properties of
the flows such as entrainment mechanisms and lift/drag forces. In the natural
environment, the air/sea interface generates surface waves and solitary waves
with dangerous levels of energy when they interact with submerged bodies and
break on beaches. Within the atmosphere and ocean, the breaking of internal
waves supported on thermoclines causes vertical mixing. In these situations,
the usual Reynolds averaged approach [5] to modelling or analysing structure
is no longer appropriate.

In this minisymposium we invited a range of papers on recent research on
many types of interfacial processes in industrial and environmental flows. They
include new results, which have fundamental significance and applications
for persistence of coherent structures in turbulence, strongly inhomogeneous
turbulence, tsunamis, mixing at interfaces in step-stratified fluids [2] and
large-scale computational models to capturing subgrid scales processes. Many
common threads were identified in these presentations along with some major
gaps in our understanding of critical processes, which all made for an exciting
meeting.

It was clear that there was a gap in our current understanding of the
complex interfacial processes associated with turbulent flows (e.g. [3,4]). The
computational and analytical challenge appears to be formidable to explain
and interpret the much more developed body of experimental data. As recog-
nised in other research areas [1], a major challenge appears to be to develop
robust new concepts and diagnostic methodologies to classify and interpret
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the underlying physical processes. Some progress appears to being made in
the use of local and global conservation laws (for impulse/momentum) but
this is non-trivial for some problems (e.g. waves). This approach also leads to
improved modelling for practical industry and environmental problems.

The meeting was stimulating and led to long post symposium discussion on
the lawn outside the conference hall. There was a consensus that there should
be a follow-up meeting to discuss future progress and set out a strategy to
tackle these problems, and indeed a Euromech meeting on turbulent interfacial
processes will be run at University College London during the end of June
2010.

The organisers thank Qinetiq Plc for their financial support for this
minisymposium.
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Summary. When submerged self-propelled body makes a maneuver, it imparts net
momentum on the surrounding fluid. Using experimental observations and theoret-
ical arguments we show that in a stratified fluid this leads to impulsive momentum
wakes with large, long-lived coherent vortices in the late flows, which may be used
as a signature for identification of submarine wakes in oceanic thermocline. We also
show that in a strongly stratified fluid the drag on the body due to radiating internal
waves may be significant and cause the wake to receive an extra momentum.

1 Wake Classification and Theoretical Preliminaries

Wakes of self-propelled bodies in a stratified fluid continue to be of great
interest in detecting and stealth of underwater bodies in the ocean thermo-
cline. Although the information on wakes of towed bodies is voluminous, this
information has limited utility in self-propelled body applications, given that
there are fundamental differences between the ways where the momentum is
imparted into the fluid (see Fig. 1). The wide differences between the wakes
shown in Fig. 1 could be explained by the nature of the momentum forcing
resulting from the body-fluid interaction. The only study that has dealt with
these differences is [6], wherein a small submarine model with an externally
forced jet in the aft, that is equivalent to a water-jet submarine cruising in a
stratified fluid, was used. For steady motion the late wake signature was found
to be weak (Fig. 1b) compared to momentum (overthrusted) wake (Fig. 1c).
In some runs, the thrust (and body velocity) was rapidly increased, imparting
more momentum into the wake, and the authors of [6] noted the emergence of
large vortices. They agreed that these large long-lived vortices emerging dur-
ing maneuvering can be a cue of identifying self-propelled bodies in stratified
fluids. In our present study this concept has been explained theoretically and
verified experimentally, using an actual self-propelled body.

The body-fluid interaction leads to momentum exchange between the two,
which, as far as the late wake is concerned, can be considered as occurring

A.D. Fitt et al. (eds.), Progress in Industrial Mathematics at ECMI 2008,

Mathematics in Industry 15, DOI 10.1007/978-3-642-12110-4 38,

c© Springer-Verlag Berlin Heidelberg 2010



262 S.I.Voropayev and H.J.S.Fernando

(i) (ii) (iii)

1

1
c

U

UJ

u

J

J /2

J/2

u

U2J

J/2

J/2

a

b

u

Fig. 1. In columns (i-iii) we show: (i) top view schematics, (ii) velocity profiles
and (iii) wake patterns for three basic cases (a–c) of far wakes in a stratified fluid:
(a) momentum wake behind a towed body or a jet, (b) zero-momentum and (c)
momentum (overthrusted) wake behind a self-propelled body. Momentum fluxes J
and J/2 are used only for simplicity and more accurately they will be defined later

in a compact area compared to the wake size. A straightforward case is the
momentum wake of a towed body (Fig. 1a), where the momentum flux J
imparted into the wake becomes the same as the drag on the body, the effect
of which can be represented by a point momentum source [7]. When a self-
propelled body is cruising steadily and the internal wave drag is negligible,
the viscous and form drags and engine thrust are in balance and there is no
net momentum imparted to the wake (Fig. 1b), resulting in a zero momentum
wake. Forcing in such wakes is equivalent to a moving force doublet with
zero net momentum [4]. Such wakes (Fig. 1b) decay much faster than the
momentum wakes (Fig. 1a) and there are no large, persistent eddies formed
in this case. When the body is in unsteady motion, the thrust and drag are
not balanced (Fig. 1c), and forcing can be considered as a combination of a
momentum source and a force doublet, the former decaying slower and leaving
behind momentum wake with intense vortex street.

During a time interval�t, when the body accelerates, it acquires a momen-
tum I = J�t (J is the difference between the thrust reaction and drag forces
on body) and the same momentum I with the opposite sign is transported
to the fluid. The balance of (kinematic) momentum for a body of volume V
moving with velocity U is

(1 + k)V dU/dt = JT − JD = J, (1)

where k – virtual mass coefficient, JT – thrust reaction on the body, JD =
J∗

D + JW
D – net drag on the body that includes the viscous and form drag J∗

D

and the wave drag JW
D as a result of momentum flux radiated as internal waves

(which is not associated with narrow wake, in Fig. 2). For steady motion the
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Fig. 2. Schematic showing forces acting on: (a) accelerating self-propelled body
(circle), (b) surrounding fluid and (c) wake, shown by a dashed line

net momentum flux J applied to the fluid is zero. When the body accelerates,
e.g. from U− to U+, it acquires momentum

I =
∫ �t

Jdt = (1 + k)V (U+ − U−) = (1 + k)V�U. (2)

This gives the estimate J ≈ I/�t for the momentum flux transported to the
fluid. Note, that the history of the body acceleration is not important and the
flow momentum I can be estimated if �U is known.

By definition, the wake behind a body is a narrow conical region (Fig. 2c)
where the fluid motion is vortical, while outside this region the flow is prac-
tically potential. The wake intensity is characterized by the wake momentum
flux J∗ in this narrow region. The engine thrust JT that needs to be supplied
to overcome JD, however, has to be imparted into the wake, which acquires
a momentum flux

J∗ = JT − J∗
D = J + JW

D . (3)

Taking into account that J∗ conserves and neglecting details that become
unimportant at late times, one arrives at the conclusion that the action
of accelerating self-propelled body on a fluid is equivalent to the action
of momentum source of intensity (3) that acts impulsively during time
interval �t.

Numerous studies show that when a horizontal momentum source acts
impulsively in a stratified fluid, large (compared to the source size), long liv-
ing (compared to the duration of forcing) pancake-like dipolar (momentum)
eddies are formed. These eddies have been extensively studied and general
mechanisms of their formation and evolution explained in detail [5]. In par-
ticular, it was shown that such eddies develop in a self-similar regime and
their horizontal length scale increases with time t as D∗ ≈ I1/4N1/12t1/3

[8, 9]. To verify the analysis presented above, a series of experiments with real
self-propelled body was conducted.
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Fig. 3. In (a) – tank (8 × 4 × 0.8 m) with removable bridge (1) and device (2)
to produce a dyed spot (3). In (b) – submarine model (length 75 cm, diameter
D0 = 11 cm). In (c) – typical vertical distribution of the density (salinity, S), circle –
the body position, arrow – level where the dye spot or tracer particles (for PIV) were
seeded

2 Experimental Set-Up

Experiments were conducted using scaled radio-controlled model and tank
with linearly stratified (N = 1.1 − 2.6 s−1) by salt water (Fig. 3). Dye visu-
alization and PIV were used for flow diagnostics. For technical details see
[2,8].

3 Results and Interpretation

Three basic cases were studied in which the model: (a) moves steadily, (b)
starts from rest, and (c) moves steadily and then strongly/weakly accelerates.

In the experiment shown in Fig. 4, the model moves steadily. The flow
pattern obtained during our previous zero-momentum wake experiments with
small body [6] is shown in Fig. 1b, and one may expect a similar scenario
in the present case. Nevertheless, the late-wake in a strongly stratified fluid
demonstrated a different behavior, in that the PIV data show that the wake in
Fig. 4 is with momentum. This can be explained by noting that under certain
conditions the internal wave drag can become important [1]. Significant wave
generation occurs when the body Froude number is close to one, and for Fig. 4,
Fr = U+/D0N = 0.8, in which case the wave drag becomes comparable with
the form and viscous drag [3]. To maintain the steady motion, therefore, the
propulsion system should generate a thrust that is equal to the sum of the
form, viscous and wave drags. Since internal gravity waves radiate momentum
(related to the wave drag) away from the source region, the momentum flux
associated with form and viscous drag remains unbalanced. Thus, the wake
in accordance with (3) has a momentum flux J∗ = JW

D and a vortex street
(similar to that in Fig. 1c) is generated in the flow. Using the model [7], the
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a b

c d

Fig. 4. PIV data showing the momentum wake behind a steady moving (from left
to right) self-propelled body. Intense vortex street is clearly visible in the fields of
velocity (small arrows) and vorticity (different shades). Internal waves (large arrow)
are also visible in (a). Experimental parameters: Re=15,500, Fr =0.8, N=1.8 s−1,
Nt = 27 (a), 81 (b), 162 (c), 270 (d)

wake momentum flux (and thus the wave drag) can be estimated from the
data of Fig. 4, which give λ ≈ 60 cm for a typical wavelength of the primary
vortex street. The estimates show [2] that in the considered case the wave
drag is comparable (∼ 80 %) to the viscous and form drag. Note, that there
are no unusually large eddies in such momentum wakes. Situation, however,
changes drastically when a body makes a maneuver, e.g., acceleration. This
leads to generation of large eddies, which are illustrated below.

In the experiment shown in Fig. 5, the body starts from the rest, accelerates
and then moves with constant velocity (Fig. 5f). During this maneuver the
body deposits on the fluid a momentum of I. Initially, the propeller generates
an intense jet-like flow with a sharp vorticity front that propagates away from
the body. Soon, however, the buoyancy effects become important and the front
collapses in the vertical direction and expands horizontally forming a pancake
structure (Fig. 5b). The self-propagation velocity of the vorticity front is less
than that of the fluid velocity of the jet-like flow behind the front. As a result,
the (vertical) vorticity in this flow is advected to the front region, forming
patches of concentrated vorticity of opposite signs in the form of conjunct 2–3
dipoles (Fig. 5c), which move in the background potential dipolar flow induced
by the pressure forces and merge together (Fig. 5d) forming a large dipole of
the size D∗ ≈ 115 cm (Fig. 5e, g) that is much larger than the model diameter.
Similar results were obtained in the case when the body moves steadily and
then strongly/weakly accelerates (not shown).

Thus, in all considered cases the acceleration of a real self-propelled body,
moving with high Re number in a stratified fluid, leads to impulsive momen-
tum wake with a system of eddies, which merge and asymptotically form large
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Fig. 5. In (a) – the body (1) is at rest and positioned behind a dyed spot (2). In (b) –
the body (1) starts moving to the right, generating the vorticity front (3); as time
progresses, after a number of bifurcations (c), (d), a large dipolar eddy is forming in
the late wake (e). In (f) – the position X of the body as a function of time. In (g) –
an enlarged image of the resulting eddy at Nt = 630. Experimental parameters:
Re = 10,500, I = 110,000 cm3s−2, Nt = 0 (a), 16.5 (b), 140 (c), 230 (d), 630 (e)

and long-lived dipolar vortex. Comparison of measurements with the model
predictions show [2] that in all cases of the body acceleration, the size D∗ of
the resulting eddy at late times may be correctly calculated using the proposed
parameterization.
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Summary. Idealised models of eddy motion near sharp interfaces, such as shear
layers and density interface, are examined. Strong shear layers can block the vertical
motion of eddies with part of their impulse permanently transferred to the shear
layer. Eddies which pass through the shear layer communicate a fraction of their
impulse to the shear layer. Throughout these processes, the far field dipole moment
(and total impulse) is conserved. For sharp density interfaces, vertical impulse is
not globally conserved and the kinetic energy of the vortex goes towards generating
waves. Here, both blocking and sheltering occurs, since the eddy vertical motion
is constrained and the dipole moment is reduced. In straining flows, we show that
the rotation and rapid amplification/suppression of the vortex impulse leads to an
upscale transport in impulse, but the energy of the vortex hardly changes. Vorticity
annihilation caused by diffusion can partially or completely destroy the colliding
vortex patches causing the energy to decrease. The general relevance of these results
is discussed.

1 Introduction

Recent experimental measurements and numerical simulations are changing
our perceptions about the central mechanisms of turbulence. This affects how
turbulence might be described and modeled. Following Osborne Reynolds and
the influences of the kinetic theory of gases and statistical physics, the flow
field is usually divided into a mean and fluctuating component, the latter
being analysed as a perturbation to the former. However this is neither a
good physical description nor an accurate basis for mathematical analysis
of the key aspects of turbulence. These interfaces, which tend to lie at the
outer edges of inhomogeneous turbulent flows Hunt et al. [2] or intermittently
within turbulent flows Kaneda [6], or to be formed between layers of contrast-
ing density, are not like interfaces betweenscalar variables (temperature etc).
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This is because the intense vorticity in the layers, created by their distortion
or displacement, affects the flow on either side of them through two main
mechanisms: first kinematic blocking and distorting of the eddies tends to
impede their motion through the interfaces Hunt [3]. Second, the presence of
body forces tend to shield the region above the layer from turbulence beneath.

In this paper we first develop idealised models to study the interactions
between eddies and the interfaces that exist between regions of a fluid with
contrasting properties, such as mean velocity or density. These calculations
provide a clear mechanistic view of the processes that occur near interfaces
(using robust concepts such as integral invariants) or between vortices, and
is a different approach than the statistical methodology usually applied in
turbulence studies.

2 Vortical Structures Interacting with Thin Shear
Layers and Stratification

We consider a dipolar vortex or eddy of area A, velocity U moving near an
interface as shown in Fig. 1. Many of the processes that occur near interfaces
such as shear layers and density stratification can be broadly understood by
computing impulse and energy, especially if these quantities are invariant.
The vortex impulse is IM = ρ(1 + CM )AU where ρ is the fluid density and
CM ∼ 1 is the added-mass coefficient. The impulse of the system of vortices
is IM =

∫
A∞

ρ(y,−x)ωdA, where IM = (IMx, IMy). The vortex velocity has
two components arising from the local velocity of the flow and a self-induced
component. The dipole moment of the flow created by the vortex and the
perturbation to the vortex sheet is

2πD = IM/ρ+
∫

A∞−A
(X −X0)× ωdA, (1)

where the integration is taken over the region outside the vortex. The second
term on the right-hand side of (1) is the impulse of the interface (vortex sheet
or isopycnal surface) II/ρ expressed in terms of the Lagrangian displacement
of fluid elements X from their initial position X0. The kinetic energy, K, is
defined as K =

∫
V∞

ρ 1
2 |u|2dA. The interface is displaced locally by a vertical

distance Y and the deformation is characterised in terms of the area of dense
fluid lifted and the moment of area are defined by DY =

∫ ∞
−∞ Y dx, DY Y =∫ ∞

−∞
1
2Y

2dx respectively.
The interaction between a dipolar vortex and shear layer (with Γ circula-

tion per unit length), is characterised by S = Γ/R0U0. The dipole moment is
invariant even when the shear layer is unstable and viscous effects are present.
The velocity of the vortex below the shear layer is U = 1

2Γ x̂ + U I , where
U I is the self-induced velocity of the vortex. Hunt [4] studied the interaction
of a weak vortex with a strong shear layer (S � 1). The disturbance created
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by the vortex tends to decrease the local growth rate of perturbations on the
shear layer. For S � 1, the eddy is sufficiently strong that it can pass through
the vortex sheet and the change in the vortex impulse is

IM − IM0 = −DY Γρx̂. (2)

The velocity of the vortex and direction is changed by passing through the
layer. For long-time, the disturbance of the vortex sheet a component of the
impulse of the vortex and can combine with the vortex, moving aay.

The disturbance caused by a vortex impacting on a thermocline is strik-
ingly different from the case of shear layers because of the ability to store
potential energy, and the rapid propagation of waves on the interface. The
interaction between a vortex and a sharp density interface (where the density
contrast is Δρ) is characterised by a Froude number F = U0/

√
ΔρgR0/g.

The action of a baroclinic torque on thin density interfaces, increases the
distribution of circulation on the isopycnal surface, Γ (=

∫ +

− ωdn), at a rate
dΓ/dt = Δρ(t)gŷ × n̂/ρ. The impulse associated with the vorticity on the
interface is II . When the vortex moves towards the interface, II · ŷ < 0
because the interface is displaced upwards. This means that the total vertical
impulse decreases as the eddy approaches the interface and the dipole moment
in the far field is reduced. The total momentum or impulse of the flow, M ,
decreases at a rate, dM/dt = −DYΔρgŷ but the total energy is conserved,
so that d(K +ΔρgDY Y )/dt = 0.

For F < 1, the vortex is blocked by the interface. The maximum deflec-
tion H can be estimated by relating the initial kinetic energy of the vortex
to the potential energy of the deflection when the vortex has been brought
momentarily to rest:

1
2
ρ(α+ CM )U2

0A0 ∼ ΔρgDY Y = λ
1
2
ΔρgHnR2−n

0 , (3)

where the left-hand side represents the initial kinetic energy of the eddy and
α ∼ 1. For F ∼ 1, DY Y ∼ HR2

0 and H/R0 ∼ F2 as confirmed by Linden [7].
But as the strength of the stratification increases F → 0, DY Y ∼ H2R0 and
H/R0 ∼ F .

When F � 1, the vortex kinetic energy is reduced as it passes through the
interface and its vertical speed decreases by a fraction ΔU/U0 = −ΔρgDY Y /
(1 + CM )A0U

2
0 ∼ 0.5F−2. The vertical impulse of the deformed isopycnal

surface scales as −ΔρgR2
0/U0 ∼ −|IM |F−2 and leads to the generation of a

vertical vortex (traveling downwards). The vortex which passes through the
interface is now denser than the ambient fluid and decelerates. The rate of
decrease of the momentum of the vortex is dρ(1 + CM )UA0/dt = −ΔρgA0.
There is a flux of mass from the vortex which causes its area to decrease.
Maximum height the front reaches is H/R0 = U2

0 (1 + CM )/ΔρgR0/ρ ∼ (1 +
CM )F2. The final state is the conversion of the deformation of the isopycnal
surface to a series of waves which communicate energy to the far field and the
horizontal component of impulse.
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Fig. 1. Schematic of a dipolar vortex impacting on (a) thin shear layer and (b) a
sharp density interface
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Fig. 2. Schematic of vortex patches interacting in a straining flow. In (a) two differ-
ent signed vortices are squeezed together and diffusion leads to partial or complete
annihilation. (b) A vortex with positive vorticity is swept past a stagnation point
and partially cancels a vortex with negative vorticity

3 Vortical Interactions in Straining Regions

Decaying two-dimensional turbulence is characterised by upscale transport,
usually manifested by the emergence of a small number of large-scale vortices
which are well separated. The eventual impulse and angular momentum are
determined by statistical variations in the initial forcing (as shown by David-
son [1]). The upward transport of energy is accomplished by the merging of
like signed vorticity and the stretching and dissipation of weaker vortices.
The removal of weaker vortices is due to the interplay of intervortical strain-
ing accompanied by vorticity annihilation and the degradation of the impulse
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of vortex pairs is important as we shall show. This has important implications
for the persistence of dipolar vortices within a decaying two-dimensional
turbulent flow.

Consider an arbitrary distribution of vorticity in a straining field, uE =
(αx,−αy). In the absence of diffusion the rate of change of the impulse of
the vortical field (when the flow induced by the weak vortices is much smaller
than the external straining flow) is

dIM
dt

=
∫

A∞
ρuE × ωẑdA = α(−IMx, IMy). (4)

The impulse of the vortex changes according to

IM = (IMx(0)e−αt, IMy(0)eαt). (5)

The straining flow increases the vertical component of impulse, while decreas-
ing the horizontal impulse. The direction of impulse is rotated – this rotation
is compensated by an opposite rotation of the linear impulse of the exterior
flow to ensure impulse is globally conserved. Although the growth rate of
impulse is exponential for IMx(0) �= 0, the rate of change of kinetic energy is

dK
dt

=
∫

A

ρu · Du

Dt
A. (6)

When the flow induced by the vorticity field is small, dK/dt =
∫
A∞

ρuE ·
(uE ×ωẑ)dA = 0. So while the impulse of the flow can dramatically increase,
the change in energy is negligible.

The effect of diffusion introduces additional new physics. Fig. 2a shows two
patches of vorticity (of circulation Γ1 and Γ2) which are pushed together in
a linear straining flow. The initial horizontal impulse is large and the vertical
impulse is small. The total circulation in the flow, Γ =

∫
ωdA, is invariant

even when diffusive effects are important. The diffusive interaction between
these opposite signed patches of vorticity leads either to partial or complete
to vorticity cancellation.

When the vortices move in a straining flow created, for instance, at the
front of a large moving dipolar vortex. The straining flow below the y = 0
line contains vorticity (of two signs). Patches of vorticity impact the front
stagnation plane and are stretched. As incident patches impact on the plane,
their diffusion into the region adjacent to the stagnation plane leads either to
the cancellation or addition to the vorticity field.

4 Conclusions

We have studied the interaction between eddies and interfaces that occur
in inhomogeneous turbulence and environmental flows. By applying local
or global integral measures, such as impulse, circulation or energy, some of
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which are invariant (see [5]), we have been able to understand (from a new
standpoint) the complex processes that accompany two dimensional eddies
interacting with interfaces.

The analysis of two-dimensional vortices moving in a straining region has
shown that the change of the kinetic energy with time of the vortices is either
negligible or it decreases (when diffusive effects are important). This means,
generally, that kinetic energy moves upscale to larger eddies. But, for three-
dimensional flows, stretching of vortex tubes can lead to an increase of the
kinetic energy of small scale structures and that both upscale and downscale
transport of energy occurs.
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Summary. The evolution of a tsunami from generation, propagation to coastal
regions and beach run-up is studied. The effect of the initial profile on how a tsunami
evolves as it is propagating over uniform depth is studied numerically. As the wave
moves into shallower water its form changes and by applying momentum conserva-
tion and dimensional analysis, predictions for the speed, height and run-up of surges
up beaches can be made. Theoretical predictions are compared with laboratory
experiments and field observations.

1 Introduction

A tsunami is a series of waves created when a body of water is rapidly
displaced. The initial profile is dependant on what exactly has caused the per-
turbations in the sea surface. These processes include (a) when the ocean bed
is displaced due to an undersea earthquake which can give rise to elevated and
depressed components, (b) landslides (e.g. due to a volcano erupting) which
fall into the ocean which are associated mainly with an elevated sea surface
and (c) undersea landslides which result in mainly depressed sea surfaces (see
Hunt [7]). The Indian Ocean tsunami on Boxing Day 2004 was caused by
the Indian–Australian plate subducting under the Eurasian/Andaman plate
resulting in an elevation wave hitting Sri Lanka and a leading depression wave
hitting Thailand (i.e. (a) above).

The purpose of this paper is to explore new approaches to provide practical
estimates of how an initial disturbance evolves and propagates into shallow
waters and runs up beaches. The method of integral invariants is reviewed
and related to how long waves such as tsunamis propagate. The decay rate of
these waves is studied numerically by solving the Korteweg-de Vries equation.
Using conservation principles and scaling arguments, the characteristics of the
surge up the beach are estimated and compared with laboratory experiments
carried out in a wave tank and field observations.
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2 Integral Invariants

Integral invariants can be applied to analyse non-linear phenomena in iner-
tially dominated flows. In the context of vortical and turbulent flows, local
or global integral measures such as helicity, circulation and impulse may be
conserved (even for viscous flows) and can give insight into how the flow
evolves with time. For free surface waves with surface tension which gen-
erate a potential flow, Benjamin and Olver [1] established eight conserved
quantities including mass (3D)/ cross-sectional area (2D) (A), momentum
(M) and energy (E). For inviscid flows (with vorticity in the fluid inte-
rior), Longuet–Higgins [11] showed that the number of invariants reduced to
mass/cross-sectional area, momentum and energy. For viscous flows, the two
principle invariants are mass and momentum since kinetic energy is dissipated.
These are defined in terms of wave amplitude (y) and horizontal velocity (u)
as:

A =
∫ +∞

−∞
ydx, M =

∫ +∞

−∞

∫ y

−h0

ρudydx, (1)

where h0 is the uniform water depth. Evaluating A, M and E depends on the
manner in which the initial waves are generated. For rock falls or subsurface
landslips, M can be estimated from the impulsive force generated by such
movement, with A either determined from the volume of rock splashing into
the water or is zero for landslides.

3 Generation and Propagation of an Initial Disturbance

We analyse how a perturbation, of initial amplitude a0 and length L0, to a two-
dimensional free surface evolves as it propagates over the ocean. We simplify
the problem and use a long-wave approximation which includes dispersion
and wave steepening. The free surface disturbance y(x, t) moving with the
long-wave speed (c0 =

√
gh0) can be described by [10]:

ζτ + (3ζ2)X + ζXXX = 0, (2)

where the wave height, position (relative to a frame moving with the long
wave speed) and time are non-dimensionalised according to ζ = y/a0,
X = (3a0/2h0)1/2(x − c0t)/h0 and τ = (

√
3/2)(c0t/h0)(a0/2h0)3/2. In this

formulation α ≈ O(β) � 1, where α = a0/h0 and β = (h0/L0)2 are a mea-
sure of the non-linearity and dispersiveness respectively. Numerical solutions
to (2) were obtained using a finite difference scheme, [4].

The long-time evolution of a wave depends on its initial cross-sectional
area Ã = (A/a0h0)(2h0/3a0)1/2. For Ã>0, a soliton is always generated; for
Ã<0 no soliton is generated and the initial wave ultimately develops into
a dispersive wave train. It is not possible to predict a priori the long time
development of Ã = 0, Hammack and Segur [6]. These three cases were studied
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Fig. 1. Evolution of maximum depression for Ã = 0 (thick line), Ã>0 (thin line) and
Ã<0 (dashed line) with D = 3 for (a) ζ0=1 (non-linear regime) and (b) ζ0 = 10−6

(linear regime). The lines with slopes −1/3 and −1/2 are indicated in each figure

using a free surface deformation of (a) ζ(X, 0) = 2.3ζ0X/D exp(−X2/D2),
(b) ζ0 exp(−X2/D2), (c) −ζ0 exp(−X2/D2) for which Ã = 0, Ã>0 and Ã<0
respectively. Since the aim is to understand how the wave amplitude changes,
we follow the maximum positive and negative amplitudes defined by:

ζ+(τ) = max
−∞<X<∞

ζ(X, τ), ζ−(τ) =
∣∣∣∣ min
−∞<X<∞

ζ(X, τ)
∣∣∣∣ . (3)

When a soliton is present, the maximum positive amplitude tends to a
constant. The magnitude of the depression (ζ−) is a useful metric for the
dispersive wave component, particularly as we shall see, as the time before
the tsunami interacts with the coast may be so short that the soliton has not
had time to emerge. It takes a long time for this to emerge and is not generally
evident in reported wave surface signatures, Constantin and Johnson [3].

Two contrasting cases were investigated by fixing D = 3 and varying ζ0
with ζ0 = 1 (nonlinear regime, Fig. 1a) and ζ0 = 10−6 (linear regime, Fig. 1b).
In the non-linear regime, α ∼ O(β)� 1 and the numerical results show that
ζ− ∼ τ−1/2 for (Ã = 0, <0) while ζ− ∼ τ−1/3 for (Ã>0). In the linear regime,
ζ− ∼ τ−1/2 (for Ã = 0) and ζ− ∼ τ−1/3 (for

∣∣∣Ã
∣∣∣ �= 0).

The similarity solution to the linear KdV equation derived by Miles [12]
is:

ζ(X, τ) = Ãτ−1/3Ai(τ−1/3X)− 〈Xζ0(X, 0)〉 τ−2/3Ai′(τ−1/3X) + .... (4)

Here, Ai is the Airy function and 〈f(X)〉 =
∫ ∞
−∞ f(X)dX . Equation (4) pre-

dicts that the magnitude decreases as τ−1/3 for |Ã|>0 and τ−2/3 for Ã = 0.



276 C.A. Klettner et al.

Our numerical calculations support Miles’ analysis for long wave linear pro-
cesses but not for the case of Ã = 0, when the similarity method fails to pick
up the leading wave component.

It is more useful to look at the Fourier solution to the linear KdV equa-
tion, i.e. ζ =

∫ ∞
0 ζ̂(k)ei(kX+ωτ)dk. Using the method of steepest descents,

the dominant contribution arises from X/τ = −dω/dk = −3k2. The dis-
persive wave component propagates with a constant speed in the negative
X-direction. In the frame moving with the dispersive wave (where −X/τ is
constant), ζ ∼= ζ̂(k)

√
2πe−i2Xk/

√
6 |k| τ and ζ− ∼ τ−1/2. This explains why

the decay rate increases when Ã= 0.

4 Movement into Shallow Waters and Interaction
with the Beach

As the wave train moves into a shallow coastal region, of depth hc, conserva-
tion of energy requires that the amplitude of the wave increases by a factor
(h0/hc)1/4 (Green’s Law), Synolakis [13]. To link the wave dynamics in the
shallow water region, up to the beach run-up, we use conservation of momen-
tum. The momentum associated with a leading wave ML can be interpreted in
terms of an added-mass coefficient (CM ) and cross-sectional area AL through
ML = ρCMALc. For small amplitude waves on deep water, the added-mass
coefficient CM ∼ ac/L so that ML ∼ ρa2

cc. But for large amplitude waves on
shallow water, the amplitude is so large that CM ∼ O(1) and ML ∼ ρALc.

The momentum, ML, is approximately conserved during the generation
of the bore so that the initial bore height aBI and length LBI are related
by ML = MB = ρ

√
gaBILBIaBI (for both elevated and depressed waves).

Writing λ = aBI/LBI � 1, by dimensional analysis, the initial speed and
amplitude of the bore are:

uBI = λ1/5(ML/ρ)1/5g2/5, aBI = λ2/5(ML/ρ)2/5g−1/5. (5)

The component of gravity along the inclined beach (of slope αb) slow downs
the surge (amplitude aB, length LB and velocity uB), as it moves up the
beach (of slope αb):

dMB

dx
= −ραb(aBLB)g/uB = −αb(ML/ρ)1/3L2/3

B g1/3. (6)

The ‘run-up’ distance BR from where the bore was created to where the surge
stops (MB = 0) is:

BR =
5
3

(ML/ρ)2/5g−1/5/α
3/5
b . (7)

Similar studies have been undertaken by Carrier et al. [2] using the non-linear
shallow water equations.
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a

c d

b

Fig. 2. (a) and (b) showing a leading depression wave surge propagating up the
beach. (c) and (d) show an elevated wave just before breaking. Dotted lines indicate
the initial water level. The solid white line is 5 cm

A laboratory study was undertaken to test the relationships (5) and (7).
Experiments where performed in a wave tank as described in detail by Voro-
payev et al. [14]. Figure 2a, b shows the surge of a depression wave as it
moves up the beach. The surge is below the initial height of the free surface
(indicated by the dotted line) because a shoaling depression wave creates a
shoreline recession before breaking. In contrast, Fig. 2c, d show an elevation
wave just about to break. In this case there has been no shoreline recession
and the wave breaks very close to the original shoreline. Elevated waves typ-
ically break further up the beach than depressed waves. Measurements from
these experiments were favourable with the predictions given by (5) and (7)
(see Klettner et al. [9]).

5 Discussion

Post event estimates of the 2004 Indian Ocean tsunami suggest that the sea
bed had an uplift of a0 ∼ 6 m and subsidence of similar magnitude over a
length of ∼ 1, 200 km and a width of 100 − 150 km over a period of 500 s,
Grilli et al. [5].

The wave propagated ∼ 600 km to Thailand, in a time of ∼ 6, 000 s. The
characteristic timescale used in (2) is sensitive to h0; taking into account the
variation of h0 with distance to Thailand, we estimate that the wave evolves
over a time τ ∼ 10. During this time the wave amplitude decreases due to
radial spreading and dispersive decay. As the tsunami was generated along
a length of 1, 200 km and only travelled 600 km to Thailand the decay in
amplitude caused by radial spreading is negligible. The initial tsunami wave
length and height corresponds in dimensionless variables to Ã = 0, D = 3 and
ζ0 = 1, [5]. Figure 1a shows that the amplitude decayed to ∼ 0.3a0 in a time
τ∼10. Movement into shallower water of hc∼12 m increased the amplitude
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by a factor of 3. Taking these two factors into account the initial amplitude
will be ∼ 5.6 m. The yacht Mercator recorded an amplitude of approximately
3− 4 m for the leading wave train components, [5].

Using the invariants discussed in Sect. 2, we relate the properties in the
coastal regions to how the wave creates a bore and moves up the beach. The
leading wave component, estimated from the Mercator data, had a height
and length of approximately 3 m and 7.2 km respectively. The momentum
associated with the leading wave component is ML = ρALc ∼ 107 Nm−1s.
From (5), the initial surge velocity uBI ∼ 8 ms−1 which compares well with
the 6 − 8 ms−1 field estimates over land by Kawata et al. [8]. The estimated
vertical run-up distance of the surge (αbBR) is ∼ 11 m which is comparable
to field measurements of 3 − 11 m, [8]. [It should be noted that our run-up
estimate also includes the vertical distance from where the original shoreline
recedes to (due to shoreline recession) and the original shoreline.]
The use of invariants in linking together the evolution of a tsunami from
its generation to beach run-up provides a new method of making practical
estimates of the ultimate fate of a wave disturbance. We used volume/area
to classify the evolution of a tsunami, energy to link the change in height
between ocean/coastal regions and momentum during run-up.
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Summary. In this paper the entrainment rates of shear flows and turbulent Taylor
vortices are considered in the light of the mixed-layer deepening in oceans, seas and
lakes. The entrainment by Taylor vortices can be considered to represent a model for
entrainment by continuously driven horizontal vortices such as Langmuir circulation.
When the forcing is related to the surface wind stress, the interfacial entrainment
by Langmuir vortices can be estimated from the experimental results on turbulent
Taylor vortices, and compared with the entrainment rates in pure shear-flows. The
results indicate that mixing by Langmuir vortices is important for all Richardson
numbers, Ri∗ (based on wind-induced surface stress velocity), and that for Ri∗ > 80
Langmuir vortices dominate the mixed-layer deepening.

1 Introduction

The mixing of the surface layer of the ocean is of relevance for ocean-
atmosphere exchange of heat, mass and momentum, and has been a major
motivation for many studies on mixing of stratified fluids. The vertical fluid
exchange and mixing of the surface layer in water basins and lakes is also rel-
evant to the water quality in view of the transport of biological and chemical
compounds. The relevance of Langmuir circulation to the mixed surface layer
deepening is not fully understood (see Thorpe [11]). In this paper, experimen-
tal results on entrainment in turbulent shear flows and Taylor vortices are
compared. Details of this study can be found in Flór et al. [2].

Langmuir cells consist of an array of alternating horizontal vortices at the
ocean surface that are aligned with the wind direction. These cells establish
due to the combined action of wind-induced shear and of Stokes drift (see
reviews of Leibovich [6]; Thorpe [11]) and may have a depth between 2 and
300 m with an aspect-ratio close to 1. Typical velocities range from 10 to
20 cm/s for wind speeds of 3–5 m/s or larger (see e.g. Smith [9]; Weller and
Price [12]; Thorpe [11]).
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In order to estimate the relevance of the mixing process of shear turbulence
relative to Langmuir circulation, Li et al. [7] suggested that the mixing stops
for a critical Froude number given by

Fr =
wdn

(hΔb)1/2
= C (1)

where wdn is the maximum downwelling velocity, Δb = gΔρ/ρ the buoyancy
jump at the base of the mixed layer and h the mixed layer depth. Li et al. [7]
suggest for the value C, 0.9 for a two-layer and 0.6 for a linearly stratified
fluid. For the shear instability they employed the Price et al. model which
predicts static stability of the mixed layer when

Rib =
Δbh

(ΔU)2
≥ 0.65. (2)

with mean velocity difference across the density interface at the base of the
mixed layer ΔU . Then the transition from Langmuir mixing to shear mixing
was predicted to be

wdn/C ≥
√

0.65ΔU. (3)

As far as the measurement resolution allows, in situ measurements confirmed
that Langmuir vortices may dominate the dynamics when this criterion is
fulfilled.

This criterion is based on laminar vortices, for which the mixing is arrested
above the critical Froude number. For turbulent vortices, the mixing may con-
tinue on a smaller scale even for large Froude numbers because of the presence
of smaller scales. In order to know how relevant this mixing is compared to
shear turbulence it is essential to know the entrainment rates of both pro-
cesses. In this context we consider the entrainment rates measured in different
laboratory studies. A sketch of these different laboratory flows is presented in
Fig. 1.

2 Experiments on Shear- and Vortex-Induced Mixing

A Taylor-Couette device consists of two concentric cylinders with the inner
cylinder rotating and centrifugal instability leads to the formation of so-called
Taylor vortices of the size of the gap width (see Fig. 1). Supposing that the side
walls act as symmetry planes in the horizontal direction, the Taylor vortices
above the interface have essential aspects in common with Langmuir vortices.

In these measurements the entrainment rate was measured from the
vertical density flux (see Guyez et al. [3] for details)

F (z, t) =
∫ h

z

∂ρ(z, t)
∂t

dz.
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Fig. 1. Schematic diagram of the different experimental flows considered, with
(a) the Taylor Couette flow and Taylor vortices, (b) the shear flow in the Odell-
Kovasznay device (see Strang and Fernando [10]) (c) a wind induced shear flow and
(d) the shear flow driven by an annular disk at the fluid surface

At the boundaries z = 0 and z = h the flux is zero so that when the inter-
face is thin and is bounded above and below by mixed layers, the flux decreases
linearly above and below the interface. The flux can be expressed in terms of an
entrainment velocity ue across the interface in the form F (zint, t) = Δρ(t)ue(t)
from which the entrainment rate ue/um with maximum velocity um was cal-
culated. Figure 2 (lower curve) is the entrainment rate as a function of the
Richardson number here defined as Ri∗ = Δbd/u2

m and d the size of the
vortex.

To relate the entrainment rates of Langmuir vortices to that of Taylor
vortices, we use the estimations of Li et al. [7] for the surface friction-velocity,
u∗, induced by the wind at the surface, Uw, and the maximum down welling
velocity wdn. These relations are based on in situ measurements and are
u∗ = 1.3 · 10−3Uw, and wdn = 8.3 · 10−3Uw yielding for the maximum down-
welling velocity wdn = 6.4u∗. Relating the maximum down-welling velocity to
the maximum vertical velocity in the Taylor vortices, um ≈ wdn = 6.4u∗ one
obtains the upper curve in Fig. 2, showing the entrainment rate and Richard-
son number of the Taylor vortices relative to the wind friction velocity u∗.

In the Taylor–Couette flow the interface stays at approximately the same
height because of the forcing symmetry below and above the interface. Since
the mixing is invariant to forcing at both sides or a single side of the interface
(see Turner 1968) we may consider a single vortex above the interface. If the
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Fig. 2. Entrainment coefficient E versus Richardson number Ridn and Ri∗. Dashed
lines represent the lower and upper limits of the entrainment (see Flór et al. [2])

vortices could be generated only above the interface, the mixed layer would
deepen by the turbulent vortex near the interface with a rate F/Δρ over a
depth d. This entrainment rate is therefore comparable to the entrainment
rate based on the layer deepening as measured in the shear flows discussed
below (for a detailed discussion on the different entrainment rates see Hunt
et al. [4]).

In shear flows the fluid at the interface mixes due to shear instabilities
(Kelvin Helmholtz instability and for larger Richardson numbers Holmboe
instability, see Strang and Fernando [10]), and large scale motions continu-
ously homogenize the upper layer. A sketch of a shear flow in which the upper
layer is moving over a denser lower layer is shown in Fig. 1b. The entrainment
rate is measured from the increase in upper-layer depth and is scaled with the
rms velocity. This velocity is approximately equal to the surface friction veloc-
ity u∗. As typical length scale the integral length scale of the mixing eddies
L11 is taken (see Strang and Fernando [10]), so that one obtains a Richardson
number Ri∗ = ΔbL11/u

2∗.
The configuration of a boundary layer topped by a density interface con-

sidered by Piat and Hopfinger [8] is analogue to a wind induced shear flow in a
mixed surface layer limited by a pycnocline. The experiments were conducted
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in a wind tunnel, with the two-layer stratification set by temperature dif-
ference. The turbulent boundary layer was generated by roughness elements
at the bottom boundary so that with distance from the inlet of the tunnel,
the boundary layer increased in thickness until it mixed the interface and
thus increased the lower layer thickness. The entrainment velocity varied with
distance and was defined as ue = (dD(x)/dx)U0, with U0 the background
velocity and D(x) the mixed layer depth. The friction velocity here induced
by the bottom roughness was taken as typical velocity yielding a Richardson
number Ri∗ = Δbh/u2

∗ and entrainment rate E = ue/u∗.
Another type of shear flow is one that is driven by the rotation of an

annular disk at the surface of a two-layer salt-stratified fluid (see Fig. 1d)
(see Kantha et al. [5]). Because of the secondary circulation generated by
the fluid accelerated in the viscous boundary layer of the annular disk, later
studies rejected these results since essentially different from pure shear flows.
In the present context, however, these results can be considered as interme-
diate between a pure shear flow, and the pure vortex driven entrainment in
Taylor-Couette flow. The entrainment rate is again based on layer deepening
dh/dt, whereas the Richardson number is defined as Ri∗ = Δbh/u2∗ with u∗
the surface friction velocity.

3 Comparison of Results and Discussion

Figure 3 shows the different results for the entrainment rate dimensioned with
the surface friction velocity as a function of Ri∗. For Ri∗ < 80 shear induced
entrainment dominates over the Langmuir vortex induced entrainment by
approximately a factor 2 or less. At the crossover Ri = 80 shear instabilities
are arrested by the stratification and the entrainment rate drops off to very
low values whereas turbulent vortices continue the mixing on smaller scales,
thus explaining the higher entrainment rates for Langmuir circulation. The
entrainment rates obtained by Kantha et al. [5] follow the shear turbulence for
Ri < 80 and the Langmuir turbulence for Ri > 80 and are coherent with the
present findings. For higher Ri∗ numbers it drops of slightly faster than the
purely vortex driven flow because the secondary circulation in Kantha et al.’s
experiments must be relatively weak compared to the rather turbulent Taylor
vortices. Deardorff and Yoon [1], who considered the flow in an annular tank
driven by an annular disk that did not entirely cover the fluid surface as a mean
to reduce the secondary circulation. For Ri > 80, their results (not plotted in
the figure) fall in between those of Strang and Fernando [10] and Kantha et
al. [5], again in coherence with the relatively higher vortex-entrainment rates
for large Ri-numbers.

Observations confirm this tendency of an initial layer deepening due to
shear instability and subsequent deepening due to Langmuir cells. For a pyc-
nocline with typically Δb = 3 · 10−3 m s−2, 1 m depth and 5m/ wind speed
(i.e. u∗ = 0.65 10−2 m/s) this implies a Richardson number of Ri∗ ≈ 72 with
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Fig. 3. Entrainment rates dimensioned with the wind-induced surface shear-stress
u∗ as a function of Ri∗. The error bars in the data are estimated from the data sets

deepening mainly due to Langmuir vortex cells for larger layer depths. Lang-
muir cells typically obtain a depth of approximately 20 m or larger, suggesting
a dominant effect of Langmuir circulation on mixed layer deepening.
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The overall goal of this minisymposium is to document recent mathematical
developments in the field of inverse problems and signal processing that are
relevant for various scientific and industrial applications. The particular focus
is on scientific and industrial applications in which the desired information is
only given by indirect measurements. To this end, one is facedwith two prob-
lems: First, one needs to model the connection between the observed data and
the searched for information, and secondly the extraction or reconstruction
has to be done in a stable way. The main difficulty for this framework is that
the extraction process is rather ill-posed, and methods from regularization
theory have to be employed in order to control the influence of the data noise
in the extraction or reconstruction process.

In five presentations, very different scientific and industrial problems rang-
ing from life sciences, laser optics, rotational dynamics, and the analysis of
the ionosphere and atmosphere were discussed. The talk Sparse deconvolution
for peak picking and ion charge estimation in mass spectrometry presented by
T. Alexandrov was concerned with a new procedure for peak detection in mass
spectrometry data using sparse deconvolution. The essential ingredient is an
$p sparsity measure that lead to algorithms allowing sparse signal reconstruc-
tions. The authors show how this procedure can estimate the ion charges for
isotopic patterns of overlapping peaks. The evaluation is performed on the thy-
mosin β4 16–38 fragment measurements. In the talk Mathematical Imbalance
Determination from Vibrational Measurements and Industrial Applications,
presented by R. Ramlau, the focus was on the detection of imbalances in
rotating systems, e.g., aircraft engines, wind turbines or vacuum pumps. For
the reconstruction, a model that connects the imbalance distribution to the
vibration has to be derived. This can be done by using experimental data or
by an FEM discretization of the partial differential equation that describes the
vibration. For the inversion process, Tikhonov regularization is used. R. Pike
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presented A new approach to the analysis of scanning optical imaging systems
using singular function expansions, where he used the singular value decom-
position of the integral imaging operator in order to update the widely used
theory of optical transfer functions for scanning optical imaging systems. This
also leads to the design of optical masks to increase resolution of the imaging
system.

In the presentation The Application of Wavelet Analysis for the Detection
of Planetary Wave Type Oscillations in the Ionospheric Total Electron Con-
tent, given by C. Borries, Ionospheric Total Electron Content (TEC) maps
are analysed for detecting oscillations with typical periods of planetary waves
(PW). The Fourier transform and the continuous wavelet transform are com-
bined for the spectral analyses of the data set. A few ionospheric oscillations
found in TEC have typical properties of PW. However, most of the zonal mean
TEC variations, which dominate the ionospheric variability, are allocated to
the variability of the solar influence. Propagating and standing waves are sup-
posed to occur due to PW. The talk Statistical Signifcance of Gabor Frames
Expansions – Simple Filtering Principles for Radar Wind Profiler Data pre-
sented by G. Teschke has discussed a new signal processing method for the
suppression of intermittent clutter echoes in radar wind profilers. The tech-
nique presented makes use of discrete Gabor frame expansions in combination
with a statistical significance test. The rationale of this algorithm was out-
lined and an example using data obtained with an operational 482 MHz wind
profiler was given.

Summarizing, all presentations have shown relevant and very demanding
“real world” problems that are of great importance in the mentioned scientific
and industrial areas. It was demonstrated that with very recent developed
analysis tools from inverse problems, e.g. such as sparsity measures, and from
signal analysis, e.g. such as frame theory or wavelet theory, it is possible to
generate procedures to tackle the posed problems.
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Summary. In this paper we propose a new procedure for peak detection in
mass-spectrometry data using sparse deconvolution. We apply the procedure for
estimation of the ion charges for isotopic patterns of overlapping peaks. The evalu-
ation is performed on the thymosin β4 16-38 fragment measurements. Moreover, a
comparison with the Mexican hat based algorithm of peak picking is provided.

1 Introduction

For mass spectrometry (MS) the detection of m/z (i.e. mass over charge) peaks
is a vital step of the data processing pipeline. The purpose of a MS peak
picking algorithm is the transformation of a profile spectrum into a list of
peaks. For most instruments the profile spectra are obtained by digitalization
of a time dependent signal.

The main required properties of a peak detection algorithm are: (1) good
m/z precision and accuracy, (2) resolution of overlapping peaks, (3) selective
recognition of noisy peaks and (4) performance.

The resolution of overlapping isotopic peaks (for example see Fig. 1) is
important to resolve overlapping chemical compounds and to determine the
distance between the isotopic peaks of the same molecular ion. The distance
between two isotopic peaks in the pattern for the charge z is approximately
1.00235/z Th for peptides with deviations in the milli-Thomson range depend-
ing on the exact formula. Based on this distance it is possible to determine
the charge of an ion which is e.g. important for the real time selection of
the most promising ions for fragmentation experiments. This is especially the
case for ion trap instruments which have a typical full width half maximum of
0.2–0.5 Th depending on the measurement mode and the type of instrument.
Even though the peak resolution is rather limited, these instruments are still
of large interest especially due to their large sensitivity and comprehensive
fragmentation capabilities.
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Fig. 1. Mean isotopic patterns of overlapping peaks for ion charges z = 3 and z = 4
and two examples of spectra for the ion charge z = 3

1.1 Mathematical Formulation of the Problem

The problem under study is (1) detection and picking of overlapping isotopic
peaks and (2) estimation of the charge of the molecular ion using the distance
between the isotopic peaks found. The distance between two neighboring iso-
tope peaks can be assumed to be 1/z Th which allows a determination of the
charge z provided that the positions of the peaks are known.

For finding the actual positions of the peaks for one isotope pattern, the
model assumption is that the measured data f is composed of only few peaks
of a known shape Gσ, i.e.

f =
∑
i∈I

uiGσ,i .

We suppose Gσ,i to be a Gaussian peak at position i whose area has been
normalized to 1: Gσ,i(x) = cσ exp

(−σ(x − i)2). Its width can be tuned by σ
and is usually given by the characteristics of the utilized mass spectrometer
and resolution. Moreover, ui represent the corresponding coefficients and I is
the (finite) collection of positions we are considering for the peaks.

This model can be interpreted as a result of convolution of several Dirac
delta peaks (of heights ui) with the Gaussian kernel that happened in the
process of mass spectrometry measurements.

2 Proposed Method

2.1 Peaks Detection Through Sparse Deconvolution

For isotope patterns, it is important to suppose that the number of actual
peaks, i.e. the number of non-zero coefficients ui, is significantly less than the
number of available peaks in I. Such a model assumption can be mathemat-
ically implemented by taking so-called “sparsity constraints” into account.
Recovering a series of delta peaks from convolved data is known as “sparse
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deconvolution” and has been studied recently [3,4]. Moreover, sparsity assump-
tions can serve as a regularization to reduce the sensitivity with respect to
noisy data, see [6] and the references therein. Therefore, for the deconvolu-
tion of the isotope patterns, we are following a variational approach which
amounts to the solution of the following minimization problem:

min
u

‖∑
i∈I uiGσ,i − f‖2

2
+ α

∑
i∈I
|ui|

In the algorithm, I consists of equally sampled points covering the part of
the spectrum to be deconvolved. The sampling rate (Δi)−1 is chosen to be
significantly higher than the sampling rate of the spectrum, usually of the
factor 4. Additionally, the regularization parameter α is set to be a multiple
of the area of the data, i.e. α = τ

∑
j |fj | with a τ > 0. The solution of

the minimization problem was done by an iterative thresholding algorithm
from [2].

2.2 Charge Estimation

This part of the algorithm takes a deconvolved isotope pattern u and tries to
extract its charge z by examining the distances between the peak positions.
First, it extracts the N most significant peaks, i.e. an ascending sequence of i
for which the ui correspond to the N greatest values of u. In the implemented
algorithm, we chose N = 5. Each of the positions ik are corrected by fitting a
parabola to the coordinates (i −Δi, i, i+ Δi) and the corresponding values.
Then ik is replaced by the position of the parabola maximum. Subsequently,
all differences between the ik are collected and weighted according to how
many peaks are skipped, i.e.

D =
(

(ik+1 − ik)k, 1
2 (ik+2 − ik)k, 1

3 (ik+3 − ik)k, . . . , 1
N (iN − i1)

)
.

For D, the mean value m as well as the variance V are computed. The charge
z is then estimated by the integer closest to 1/m.

In order to make the charge estimation more robust, the following addi-
tional step is performed. Assuming that there is one outlier in the collection
of positions (ik)k, we compute the corresponding charge estimate as well as
the variance for the positions where

1. ik is left out for k = 1, . . . , N ,
2. ik is replaced by 1

2 (ik+1 + ik−1) for k = 2, . . . , N − 1.

Eventually, the charge which corresponds to the smallest variance for the
above test is returned.
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Algorithm
1. Given: isotope pattern f
• Create a set of positions I = istart : Δi : iend

• Compute α = τ
∑

j |fj|
2. Solve the minimization problem minu 1

2‖
∑
i∈I uiGσ,i− f‖2 +α

∑
i∈I |ui|

3. Extract most significant peaks
• Find the indices i1, . . . , iN of the N greatest ui
• Replace each peak ik by the maximum of the fitting parabola

4. Create reduced peak lists (Pp)p
• P0: original peak list
• P1, . . . , PN : peak list with ip left out
• PN+1, . . . , P2N−2: peak list with ip−N+1 replaced by 1

2 (ip−N +ip−N+2)
5. For each reduced peak list: extract charge zp
• Compute all differences (ik − il)/(k − l) for all k > l
• Calculate mean mp and variance Vp of differences
• Set zp = round(1/mp)

6. Return charge zp corresponding to the minimal Vp

3 Experiments

3.1 Data Set Description

To get spectra with known m/z values and multiple charge states a direct
injection measurement of the thymosin β4 16-38 fragment (Bachem No. H-
2926) was done using 200 fmol/μl in 50% acetonitrile, 0.1% formic acid at
3 μl/min. A HCT Ultra ETD II instrument from Bruker Daltonik was used for
these measurements. In total 462 spectra were accumulated in the enhanced
standard mode without moving average and prefiltering.

3.2 Peak Picking Using the Mexican Hat Wavelet

For the data set given, we compared our peak picking procedure (Algorithm
steps 1–3) with a procedure based on using the Mexican hat (MH) wavelet.

Traditional peak picking algorithms are looking for a zero crossing of the
1st derivative. The detection of peaks which do not give a maximum anymore
is not possible in that way. The detection of overlapping peaks also becomes
difficult.

One approach to overcome this problem is to use the 3rd derivative instead
of the 1st [8] to be able to detect shoulder peaks. Using higher derivatives
enhances the influence of noise. For Gaussian peaks and a normal distributed
noise assumption it can be shown [1] that smoothing with a Gaussian kernel
is the optimal filter. Combining the calculation of the 2nd derivative with
a Gaussian smoothing is equivalent to convolving the data with a Mexican
hat wavelet which is the 2nd derivative of a Gaussian. This approach was
successfully used by [5, 7] and exploited within the OpenMS framework.
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3.3 Comparison Results

The evaluation of the proposed algorithm (denoted SD hereafter) and the
comparison with the Mexican hat wavelet based procedure (MH) was orga-
nized as follows. For all the spectra we detected peaks positions in two m/z
regions I3 = [909, 911.5] Th and I4 = [681.5, 684.5] Th containing the isotopic
patterns for the charges z = 3 and z = 4, respectively. For each region the
distance between the peaks was calculated using our Algorithm (steps 4–6)
and converted to the charge value. Then, for each region (I3 and I4) the error
rate (E3 and E4, respectively) was calculated, i.e. the ratio (in percentage) of
the correctly evaluated charges to the number of spectra. The algorithms are
rated according to the mean rate E = (E3 + E4)/2.

Both SD and MH have parameters. SD, besides the number of iterations
(10,000 iterations are used), has the parameters σ (manages the supposed
width of the peaks) and τ (the regularization parameter). The MH algorithm
has the two parameters n and c. The parameter c is defining the width of the
Mexican hat function in units of the data point distance and is equal to the
standard deviation of the Gaussian function defining the Mexican hat function
(but not directly equal to σ in SD); 2n + 1 is the number of data points for
which the Mexican hat function is defined (0 beyond that range).

A grid search has been performed where for each pair of parameters the
mean error rate was calculated. The calculated mean rates are presented in
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Table 1. The minimum mean error rate E (in percentage, over all tested parameters)
of our algorithm (SD) and of the Mexican hat based algorithm (MH) calculated for
462 original spectra (“no averaging”), for 461 spectra resulting after averaging of
each two neighbor spectra (“2 spectra averaging”) and for 459 spectra after averaging
of each four neighbor spectra (“4 spectra averaging”)

No averaging 2 Spectra averaging 4 Spectra averaging

SD 14.8% 6.8% 2.5%
MH 27.2% 14.3% 4.8%

Figs. 2 (MH) and 3 (SD). Table 1 (column “no averaging”) contains the min-
imal values of the mean error rates over all tested pairs of parameters. The
SD algorithm significantly outperforms the MH peak picking algorithm.

The results can be enhanced by averaging several spectra previous to the
peak picking as the data is very noisy (see Fig. 1 for examples of spectra).
Though the averaging requires additional measurements (technical replicates),
this operation is often used in MS. We simulated the averaging by taking
means of two and four neighbor spectra that reduces the data set size to 461
and 459 spectra, respectively. Table 1 contains the mean error rates computed
after averaging. The averaging of four spectra for example improves the error
rates by the factor of 7. Both procedures (MH and SD) provide low error rates
but SD is significantly better than MH for all types of averaging used.

The only disadvantage of SD is its runtime which is 17 min versus 7 s for
MH (on an Intel 2.66 GHz PC, for fixed parameters).
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Summary. The paper focuses on the identification of imbalances from vibrational
measurements in rotating machinery and its application to industrial problems. Since
it is an ill-posed inverse problem the reconstruction is based on regularization tech-
niques. To handle the direct problem, a model of the rotor under consideration has
to be provided. We have employed the imbalance reconstruction principle to several
industrial applications of linear and nonlinear nature.

1 Introduction

Imbalances in rotating machinery are a major problem since they can lead to
an insecure operation and an early abrasion or even to the destruction of the
engine. A direct impact of imbalances are vibrations of the engine which also
are the only measurable information on imbalances. In most cases they are
only available at some positions at the bearing of the engine where sensors can
be mounted. In practice, the usual technique for balancing an engine consists
in several vibration measurements: one for the original run with the existing
unknown imbalance, and one or several runs with test weights which have to
be placed on defined balancing positions. Since the engine has to be at least
partly demounted for placing the test weights, this is an expensive and time
consuming issue.

Mathematically, imbalances and the resulting vibrations are connected via
an operator A acting between Hilbert spaces X and Y that maps an imbalance
f ∈ X to a vibrational signal g ∈ Y :

Af = g. (1)

The computation of an unknown imbalance distribution for given vibrational
data is called the Inverse problem. It is ill-posed since the solution f does not
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depend continuously on the data g. In fact, if we only have noisy data with
noise level δ, i.e., ‖gδ − g‖ ≤ δ, then the measured data gδ might not even
belong to the range of A, and standard algorithms for the computation of a
solution of (1) from gδ might produce an arbitrarily bad approximation to
the solution. To obtain a stable solution, one has to use regularization meth-
ods, see Sect. 3. Furthermore, we have to deal with incomplete data. That
is we can not obtain vibrational data for a frequency range that covers all
eigenfrequencies of the engine and additionally not for every point (or model
node) of the engine but only for a few positions where vibrational sensors can
be mounted. In practice, the number should be minimized due to the cost of
sensors and the data processing. Hence the solution of the problem might not
be unique.

The mathematical solution of this Inverse Problem enables us to recon-
struct the imbalances from vibration measurements without additional test
runs. In this way, a lot of money and time can be saved. We have applied the
method to several different engines during cooperation projects with indus-
trial companies, e.g. large generators of the Siemens AG Berlin, Germany,
Wind power plants (cooperation with Fielax GmbH Bremerhaven, Germany),
Vacuum pumps of the Oerlikon Leybold Vacuum GmbH Köln, Germany,
and Ultra precision machine tools (Research project with the University of
Bremen.

2 The Solution of the Direct Problem

So far we have used two ways of determining A in our applications:

2.1 Experimental Method

A is determined as the influence coefficient matrix. This method requires an
approximate linear behavior of the engine. In a first step the vibrational data
upr for the primary imbalance state ppr are measured. Afterwards a test mass
(imbalance) is attached at the first (balancing) plane. The resulting imbalance
is denoted by p1 + ppr. After the associated vibrations u1 are measured, the
weight will be placed under a different angle, and the measurement will be
repeated. Then the unit mass will be removed and attached in the same way to
the next balancing plane and so on. As an example, we have here four imbal-
ance states p1+ppr , · · · ,p4 + ppr and the associated vibrations u1, · · · ,u4.
Since upr(ω) = A(ω)ppr we have uj(ω) − upr(ω) = A(ω)pj , i.e. the vibra-
tional data for the primary imbalance state have to be subtracted from all
the other measurement vectors. The resulting data vectors are collected in a
matrix. If we have a sample of K frequencies the influence coefficient matrix
is computed as
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A =

⎡
⎢⎣

(u1 − uur)(ω1) · · · (u4 − uur)(ω1)
...

. . .
...

(u1 − uur)(ωK) · · · (u4 − uur)(ωK)

⎤
⎥⎦ [p1, · · · ,p4]−1

.

The experimental method is easier to apply but due to the noisiness of the
measurement process the matrixA is already subjected to errors. Additionally,
the measuring effort is very large.

2.2 Mathematical Method

The starting point for a mathematical construction of the system matrix is to
idealize a rotating system as a flexible shaft which is divided in sections. The
motion of each section can be described by a partial differential equation.We
transform this PDE in an ordinary differential equation (ODE) via the Finite
Element Method and arrive at

M ü(t) +Du̇(t) + Su(t) = p(t). (2)

Here u is the system displacement vector where the degrees of freedom of
each boundary points of the elements are collected, S is the system stiffness
matrix, D the damping matrix, M the system mass matrix, and p the system
load vector.

Now we have to describe how the imbalance is related to the load vector
p, and how we derive A from (2). A rotor imbalance originates from or can
be described as an inhomogeneous mass distribution, i.e. a mass Δm which
is eccentric with radius vector r from the barycenter and an angle ϕ from a
zero angle mark. Hence an imbalance f0 is described by f0 = Δm r exp(iϕ).

An imbalance rotating with the frequency ω causes a harmonic load

p = ω2 f0 exp(iωt) = ω2 Δm r exp(i(ω · t+ ϕ)). (3)

If there is more than one possible imbalance position, the load p becomes a
vector p. From physical reasons we assume a harmonic vibration with the
same frequency u(t) = u0 exp(iωt). Inserting this in (2) we arrive at

u0 = (−M + iω−1D + ω−2S)−1 f0. (4)

Let Q be a matrix that extracts u0 at the sensor positions where vibration
can be measured and let the measured data be denoted by g = Qu0. Now the
operator A is given by

g = A f0, (5)
A = Q (−M + iω−1D + ω−2S)−1.
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3 Inverse Problem Solution

The Inverse Problem was solved by using the well-known Tikhonov regular-
ization. The regularizer is defined as minimizing element of the Tikhonov
functional

Jα(f) = ‖gδ −Af‖2 + α‖f − f̄‖2. (6)

For the determination of the regularization parameter α, we can use the so
called Morozov’s discrepancy principle where α is chosen s.t.

δ ≤ ‖gδ −Af δα‖2 ≤ cδ (7)

holds. Details and convergence results for this method are given in [4, 7]. For
linear operators, the minimizer of the Tikhonov functional can be computed
by solving a linear system.

3.1 Imbalance Reconstruction Algorithm

For the numerical realization we have used the Tikhonov regularization in
combination with Morozov’s discrepancy principle. The minimizer f δα for a
linear operator is simply computed by solving the linear system

(A∗A+ αI)f = A∗gδ + αf̄ . (8)

This applies to all experimentally derived models (generators, vacuum pumps).
Here we assume linear behavior at least approximately. The wind turbine
problem is linear, too. In the case of a high precision cutting machine we have
to consider the damping behavior of an air bearing between shaft and housing.
This might be nonlinear.

We want to remark that due to the L2-Norm in the regularization term of
the Tikhonov functional (6), ‖f− f̄‖2, the solution with minimal L2-norm was
determined. It did not take into account the sparse character of an imbalance
distribution, like point imbalances at certain positions. We have solved this
problem with a multiple step algorithm. It is described in [1]. There is still
another possibility to avoid this problem: As the number of imbalance posi-
tions is finite, the L2 norm of the imbalance distribution is equivalent to the
l2 norm of the associated imbalance vector. Now, in order to obtain a sparse
imbalance distribution directly, we propose to replace the l2-penalty by an
lp-penalty with 1 ≤ p < 2 and consider the functional

Jα(f) = ‖gδ −Af‖2L2
+ α‖f − f̄‖plp (9)

instead. In particular, if p = 1 is chosen, then we can expect a sparse recon-
struction if the underlying solution is sparse, see e.g. [8]. The minimization
of the functional with p < 2 is more challenging than for the case p = 2, as
the penalty might not be differentiable. However, e.g. for p = 1, minimization
algorithms have been designed in [8] for linear operators, and for nonlinear
operators in [9,10], where also regularization results have been presented. The
application of these algorithms is currently under investigation.
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Fig. 1. Reconstruction of a 350 kgm imbalance at blade B with 10% data error
(dark) and computation of the balancing weights (light)

4 Application Examples

As one application we present an imbalance reconstruction for a wind energy
plant. A mathematical model was derived for a plant of the type Vestas V80-
2MW. We assumed an imbalance of 350 kgm at the blade B, which is a realistic
value. Most companies consider this amount as threshold for imbalances. The
vibration data for such an imbalance were produced by forward computation
and disturbed with a data error of 10%. The reconstruction and the related
balancing weights are shown in Fig. 1.

For the high precision cutting machinery we reconstructed given imbal-
ances setting at the two balancing rings of the machine using the experimental
method for the solution of the forward problem. One result is shown in Fig. 2.

5 Conclusion

The safely and economic operation of a rotating machinery requires a well
balanced system. Therefore the detection of imbalances and their removal is
an important point in the machine diagnosis. If we have to rely on vibrational
measurements at the casing of the engine, the problem is ill-posed and can not
be solved with common techniques. Presently, the balancing process requires
extensive and time consuming measurement procedures.
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Our new imbalance reconstruction method reduces the effort for balancing
significantly. It uses recently developed techniques for solving inverse ill-posed
problems in combination with a model of the rotating system which either has
to be developed or is provided by the client. The method was developed on the
basis of several practical examples and was successfully tested with artificial
and real data.
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Summary. In this paper we describe a new approach to the analysis of scan-
ning optical imaging systems which uses singular function expansions, rather than
Fourier optics, to update the well-known low-aperture treatment of Hopkins of 1979
(J. Opt. Soc. Am. 69:4–24). This new approach can also be used to update the widely
used theory of optical transfer functions for general imaging systems at arbitrary
numerical apertures.

1 Introduction

We consider an optical system with an illumination lens and an objective lens
combination as depicted schematically in Fig. 1.

The same lens serves for both illumination and imaging functions in a
reflective system. This is a special case of the general partially coherent optics
described, for example, in early work of Hopkins [3]. We will use x, k and y
as the two-dimensional disc-plane, pupil-plane and image-plane coordinates,
respectively. The action of each lens is described by a linear integral equation,
relating object f(x) to image g(y),

g(y) =
∫

dxW (y − x)f(x), (1)

where W is its point-spread function (PSF). Following Hopkins, even in
the reflective case, we allow the incoming and outgoing illumination to be
described using different PSFs, Win, and Wout, respectively, which can include
a non-uniform beam profile and aberration corrections, particularly on the
high-aperture side in an optical-disc system. It is normally adequate to use a
paraxial approximation on the detector side for Wout. The supports of both
object and image in x and y respectively are, in theory, infinite but in practice
will be defined by the rapid fall-off of the illumination or by a finite detector
aperture.
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Object plane 

x v y

Pupil plane Image plane 

Fig. 1. Object, pupil and image planes

In contrast to the theory of Hopkins, which only applies to low-aperture
(paraxial) scalar theory, our theoretical treatment will not depend formally
on the numerical apertures, which will occur simply as numerical parameters
in the calculation. Nevertheless, the cylindrical symmetry of paraxial systems
can be used to improve the numerical efficiency of our calculations when this
approximation may be made. The optics of scanning systems of high numerical
aperture are discussed in terms of singular function expansions in [4].

The description of the imaging process uses (1) twice, first with the illu-
mination of the disc surface as the image plane of Win, and then using the
reflected light from the disc using Wout to form the image seen by the detector.
Thus, using s for the scanning variable, the objective lens sees a (complex)
field, f(x), as its object, equal to Win(x)R(x − s), where R(x) is the disc
reflectance (or transmittance). The field in the image plane of the objective
(ignoring magnification) is thus defined by the linear integral operator, A,
where

g(y, s) = (AR)(y, s) =
∫
dxWout(y − x)Win(x)R(x− s)). (2)

2 Hopkins’ Analysis

Using Fourier optics, which is applicable in the paraxial approximation,
Hopkins writes the pupil-plane field amplitude as

E(k, s) = F [R(x− s).Win(x)] = R̂(k, s)⊗ Ŵin(k)

=
∫
dk′R̂(k′)Ŵin(k− k′)eik′.s, (3)

where F denotes the Fourier transform, ⊗ denotes convolution, the overhat
denotes Fourier-transformed functions and we have used the Fourier shift
theorem. The pupil-plane intensity is given by

I(k, s) = |E(k, s)|2
=

∫ ∫
dk′dk′′R̂(k′)R̂(k′′)Ŵin(k− k′)Ŵin(k− k′′)ei(k′−k′′).s (4)
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and the integrated intensity over the pupil-plane is

I(s) =
∫

pupil

dkI(k, s)

=
∫ ∫

dk′dk′′R̂(k′)R̂(k′′)ei(k′−k′′).sD(k′,k′′), (5)

where
D(k′,k′′) =

∫

pupil

dkŴin(k− k′)Ŵin(k− k′′). (6)

We put k′ − k′′ = μ so that

I(s) =
∫
dμeiµs

∫

pupil

dk′R̂(k′)R̂(k′ + μ)D(k′,k′ + μ)

=
∫
dμI(μ)eiµs, (7)

where
I(μ) =

∫

pupil

dkR̂(k)R̂(k + μ)D(k,k + μ). (8)

We normalise by
∫

pupil

dkD(0, 0) =
∫

pupil

dk|Ŵin(k)|2. (9)

To calculate the output signal from an extended image-plane square-law
detector we use Parseval’s theorem

∫

image

dyI(y) =
∫

pupil

dkI(k), (10)

so that it is given directly by (7). Calculations are performed by construct-
ing reflection functions for various periodic arrangements in two euclidean
local dimensions (along and across track) of specified pits on the disc surface,
with a sufficiently fine discretisation for numerical integration in those two
dimensions in the x and k planes.

3 Singular Function Analysis

To economise on notation from here on we will use the Dirac bra-ket notation
for wave-amplitude functions in the x, k and y planes and automatic summa-
tion on repeated indices. The image-plane amplitude is given by the operator
form of the imaging equation (2)

|g(s) >= A|R(s) >, (11)
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where the operator A maps the x plane into the y plane (considered as L2

function spaces). The singular value decomposition of A is

A = αi|vi >< ui|, (12)

where the singular values αi are real and the singular functions |ui > and
|vi > are orthonormal basis functions in the x- and y-planes, respectively.
Using this decomposition and the following singular function expansions of R
and g:

|R(s) > = < ui|R(s) > |ui >= Ri(s)|ui >
|g(s) > = < vi|g(s) > |vi >= gi(s)|vi >, (13)

we find that
|g(s) >= αiRi(s)|vi >, (14)

The integrated intensity over the image plane is then

I(s) = < g|g >= |αiRi(s)|2
= α2

iRi(s)R∗
i (s), (15)

When scanning we need to recover only the axial values of R(s).
In the paraxial approximation the calculation of the two-dimensional

singular system may be performed in one dimension by using the axial
symmetry of the optical system [1]; otherwise a full two-dimensional calcula-
tion is needed. The singular functions and singular values are precomputed
and the calculation then simply needs the scalar product of R(s) with the
desired very small number of uis over the disc plane. Column 1 of Table 1 of
Bertero et al. [1] shows that in the paraxial approximation the values of α2

i

fall off as shown in Fig. 2; it can be seen that the contribution of the second
function in the expansion is less than 4% and the third less that 1% of that
of the first.

In contrast to the Hopkins method, in which the R are all coupled together
by the functions D of (6), the object components are completely decoupled
from each other in our calculation due to the orthonormality of the singular
functions. This allows the simplification which may be seen between (15)
and (7). Of course, the small number of terms required in the new method is
also helpful.
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Summary. Ionospheric Total Electron Content (TEC) maps are analysed for
detecting oscillations with typical periods of planetary waves (PW). The Fourier
transform and the continuous wavelet transform are combined for the spectral anal-
yses of the data set. A few ionospheric oscillations found in TEC have typical
properties of PW. However, most of the zonal mean TEC variations, which domi-
nate the ionospheric variability, are allocated to the variability of the solar influence.
Propagating and standing waves are supposed to occur due to PW.

1 Introduction

Planetary waves (PW) are large scale waves, which emerge in the lower and
middle atmosphere. They contribute essentially to the atmospheric dynamics,
because they transport energy and momentum. In winter they dominate the
dynamics of the middle atmosphere. PW are able to penetrate upwards, but
due to strong changes in temperature and winds in the turbopause region at
about 110 km altitude, most of these waves break or dissipate in this region.
This is approved by numerical modelling [8, e.g.].

Nevertheless, PW type oscillations (PWTO) can be found in the iono-
sphere [7, e.g.]. Their contribution to the ionospheric variability was estimated
in [2] with 15–20%. The PWTO might be an indicator for a vertical coupling
between the middle atmosphere and ionosphere. In this case indirect processes
like the modulation of upward propagating tides or atmospheric gravity waves
through PW could be responsible for the vertical transport of the PW energy
[7, e.g.].

Regional hemispheric Total Electron Content (TEC) maps are a relatively
new data base characterizing the variability of the ionosphere. In this work
they are used to analyse oscillations in TEC with scales of PW. The Fourier
transform and the continuous wavelet transform are applied complementary
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for the spectral analyses. A typical occurrence of the PWTO in the ionosphere
is estimated by characterizing the waves found in the TEC maps referring to
their zonal wavelength, period and zonal propagation direction. Comparisons
to solar wind measurements and stratospheric analyses are used to investigate
the probable origin of the PWTO.

2 Data Base

Maps of the vertical TEC, which is the vertically integrated electron content
(estimated in electrons/m2), are used to investigate periodic variations in the
ionosphere. Regional TEC-maps are regularly produced by the DLR Neustre-
litz [5] using ground based GNSS measurements for the estimation of TEC.
After determining the slant TEC along a number of ray paths by using a
special calibration technique for the ionospheric delay on GPS signals [5], the
slant TEC is mapped to the vertical by using a single layer approximation of
the ionosphere at 400 km height. To ensure a high reliability of the TEC maps,
the measured data are combined with the empirical TEC model NTCM2. For
each grid point value a weighting process between nearest measured and model
values is carried out. The absolute accuracy of the so-generated TEC maps
has been estimated to lie in the order of a few 1016 electrons/m2 [5]. This
accuracy is high enough to monitor large scale perturbation processes.

The North Pole TEC-Maps covering the northern hemisphere from the
polar cap down to 50◦N with a regular grid (spacing is 2.5◦/7.5◦ in lati-
tude/longitude) and a time resolution of 1 h are available since 2002. These
maps are suitable for the analyses of large scale wave phenomena because
of their hemispheric coverage. It is useful to calculate relative differences
(ΔTECrel = (TEC − TECmed)/(TECmed)) to monthly median values
(TECmed) in order to reduce the major influence of the sun on the analysis
results [4].

3 Methods of Analyses

Spectral analyses will be applied on the ΔTECrel-maps in order to get infor-
mation about the horizontal scale and propagation of the waves. Because of
the relatively little meridional extent of the maps, a possible meridional wave
propagation will be neglected. This is suitable for the PW analyses, because
PW mainly propagate zonally in the middle and lower atmosphere.

Hence, a two dimensional spectral analysis is necessary. The frequency-
wavenumber-analyses, a well-known procedure for the space-time spectral
analyses, described in [3], is applied. The waves are assumed to be harmonic
plain waves with a pure zonal propagation f(x, t) =

∫ ∞
−∞ c(k, ω)ei(kx−ωt)dωdk.

At first, the Fourier transformation is applied in the space dimension on
the signal f(x, t)
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F (k, t) =
1√
2π

∫ ∞

−∞
f(x, t)e−ikxdx = C(k, x) + iS(k, x) (1)

The Fourier coefficients are decomposed into their real (C(k, x)) and imag-
inary (S(k, x)) part, in order to keep the phase information. The Fourier
analyses in time dimension is applied on C and S.

Pc(k, ω) =
1√
2π

∫ ∞

−∞
C(k, t)e−iωtdt (2)

Ps(k, ω) =
1√
2π

∫ ∞

−∞
S(k, t)e−iωtdt (3)

The two Fourier spectra Pc and Ps contain the information about the
present wavenumbers and frequencies. The power spectrum dependent on the
direction of the wave propagation can be calculated with

4P (k,±ω) = P ∗
c Pc + P ∗

s Ps ± 2Qcs (4)

(see [3]) where Qcs represents the quadrature spectrum (P ∗
c Ps = Kcs + iQcs)

and the asterisk indicates the complex conjugate. The power spectrum of
the eastward propagating waves is calculated with the positive sign and the
westward waves respectively with the negative sign. Two waves with the
same wavenumber and frequency propagating in opposite directions describe
a standing wave.

In order to get a better localization of the signal in time, the Fourier analy-
sis in time dimension can be replaced e.g. by a short time Fourier or a wavelet
analysis. Because the wavelet analysis has a better resolution concerning the
Heisenberg uncertainty principle, the continuous wavelet transform(CWT)
will be applied in this paper.

Wψf(s, τ) =
1√
cψ

∫ ∞

−∞
f(t)ψ∗

s,τ (t)dt (5)

The CWT is basically a convolution of the signal f(t) and the complex con-
jugate of a scaled and translated version of a mother wavelet (ψs,τ (t) =
|s−0.5|ψ0

(
τ−t
s

)
). The morlet wavelet (ψ0(η) = π−0.25eiω0ηe−η

2/2) with a
center frequency ω0 = 6 is used as mother wavelet because of its good cor-
respondence to a cosine oscillation. Equation 5 has to be modified to get the
true amplitudes W̃ψf(s, τ) = √cψ(2πs)−0.5Wψf(s, τ).

4 Results

To demonstrate the estimation of the ionospheric variability derived from the
North Pole TEC-maps, ΔTECrel is analysed along the 55◦N latitude for the
zonal mean variations and waves with wavenumber 1. The results of the CWT
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are not discussed for single wave events. Instead, a global wavelet spectrum
is calculated, which is the root of the integrated squared amplitudes (RMS).

RMS(s) =

√∫
W̃

(95)
ψ f(s, τ)2dτ

Because also noise may cause amplitudes in the wavelet spectrum it is nec-
essary to use only the 95% significant amplitudes (W̃ (95)

ψ f). Thus, the global
wavelet spectrum is a good representation of the dominant oscillations in
ΔTECrel. However, the results presented here have to be treated carefully,
because the relatively small number of available North Pole TEC-maps (avail-
able for 6 years, complete) is not appropriate to reliably represent the typical
PWTO in the ionosphere. The typical periods of the zonal mean variation of
ΔTECrel are shown in Fig. 1, separately for winter (upper left panel) and
summer season (upper right panel). Both demonstrate a very clear 27-day
period. Regarding the strong dependence of TEC on the solar radiation, this
periodicity can be assigned to the 27-day solar cycle, which occurs due to the
rotation of the sun. The correlation between the ionospheric electron content
and the 10.7 cm radio flux F10.7, which is a proxy of the solar EUV radiation,
is described in [4]. Furthermore, the 13.5-day period has to be allocated to
the solar cycle, too, as it is its second harmonic.

Disregarding the solar rotation periods, the spectra of winter and sum-
mer months differ a lot. While strong oscillations with periods of 5 and 9 days
occur during winter, there are only weak variations with periods between 2 and
10 days during summer. The high winter activity corresponds to the activity
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Fig. 1. Upper panels: zonal mean variation of ΔTECrel (55◦N, 2002–2007); lower
panels: global wavelet spectra of the absolute solar wind speed (SWE, 2002–2007)
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of PW in the middle atmosphere. Due to the wind systems, which act like a
filter for PW, in the middle atmosphere the PW mainly occur during win-
ter. However, the amplitude of the zonal mean variations in the stratosphere
is low.

The solar wind, which has a higher variability than the F10.7, has a sig-
nificant influence on the ionosphere, too. The global wavelet spectrum of the
absolute wind speed measured with the solar wind experiment (SWE) is shown
in Fig. 1 (lower panels). A dominant 9-day period, which correlates with the
9-day period in ΔTECrel, can be found in the variation of the solar wind.
This periodic variation was present at almost the same time in the solar wind
and ΔTECrel during several months in 2005. A 9-day period was also found
in [6] in the thermospheric infrared data derived from the SABER instrument
and was associated with the recurrence of coronal holes on the sun. A direct
coupling between the sun and the infrared energy budget of the thermosphere
was stated.

The origin of the dominant 5-day period in ΔTECrel during winter stays
an open question. The wavelet amplitude spectrum reveals that this wave
was very strong in the winter 2004/2005. Neither the solar signal nor the
stratospheric PW show a similar significant signal. Further investigations are
necessary to clarify its origin. The global wavelet spectra for the standing and
propagating waves with wavenumber 1 observed in ΔTECrel during winter
are shown in Fig. 2. In good agreement to stratospheric PW the wavenumber
1 PWTO-activity in ΔTECrel is almost absent during summer (not shown
here). During winter the wavenumber 1 PWTO contribute up to 7% to the
ionospheric variability. Significant peaks can be often found at typical periods
of PW which are at 5, 10, 16 and 30 days. Despite this similarity, concurrently
observed oscillation in the stratosphere and the ionosphere, as described in a
case study in [1], are seldom. Just like the results of numerical modelling, this
comparison can not approve a direct correlation between stratospheric PW
and ionospheric PWTO. But, it has to be considered that the wave properties
may change through non linear interaction with e.g. tides or gravity waves.
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Fig. 2. Analyses of the wavenumber 1 in ΔTECrel (55◦N, 2002–2007) for the winter
month (Dec–Feb). Left panel: eastward propagating waves; middle panel: standing
waves; right panel: westward propagating waves
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5 Summary and Conclusions

Regional hemispheric TEC maps have been analysed for the occurrence of
PWTO in the ionosphere. The frequency-wavenumber-analyses using a com-
bination of the Fourier and the wavelet analysis, which were applied for the
signal decomposition, have demonstrated to be very suitable for the derivation
of the wave parameters.

The zonal mean variations showed the highest amplitudes of all PWTO
found in ΔTECrel. Most of the observed zonal mean oscillations were allocated
to variations in the solar influence (EUV and solar wind), due to the rotation
of the sun. This emphasises the major influence of the sun on the ionospheric
variability, which includes the period range of PW.

The propagating and standing PWTO found in ΔTECrel revealed a few
typical properties of stratospheric PW. Nevertheless, a comparison could
not approve a direct correlation between stratospheric PW and ionospheric
PWTO. However, before dissipating at the turbopause height, the PW might
modulate other waves like gravity waves or tides, which are able to propagate
up to F2 Layer heights around 250 km. Indirect mechanisms like these might
be able to transport the PW energy to higher altitudes. Such mechanisms have
to be analysed in order to investigate the origin of the ionospheric PWTO.
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Summary. A new signal processing method is presented for the suppression of
intermittent clutter echoes in radar wind profilers. The technique presented makes
use of a discrete Gabor frame expansion in combination with a statistical significance
test. The rationale of this algorithm is outlined and an example using data obtained
with an operational 482 MHz wind profiler is given.

1 Introduction

Radar wind profilers (RWP) were developed from MST-Radars and have
meanwhile become standard instruments for measuring wind velocities in
the atmosphere. Overviews of the technical and scientific aspects of RWP
including its signal processing have been provided, among others, by e.g. [1].
Especially the routine application by weather services and the assimilation of
the data in Numerical Weather Prediction Models is an indicator for the degree
of maturation that this technology has achieved, see e.g. [6]. However, it is a
matter of fact that sometimes large and unacceptable differences are observed
between the profiler data and independent reference measurements. In many
cases these differences are clearly attributable to either clutter echoes or Radio
Frequency interference. Especially the problem of bird contamination has been
well-known for more than a decade and it still is a research topic in RWP
signal processing. There exist many attempts to reduce bird contamination,
e.g. [5]. However, the disadvantage of all these methods is that the mitigation
processing builds upon the Doppler spectra (either before or after spectral
integration). Given the highly non-stationary characteristics of the intermit-
tent clutter signal, it is necessary to deal with the problem before the Doppler
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spectrum is estimated, because Fourier methods are generally inadequate for
nonstationary signals. Further approaches that have tried to overcome these
deficiencies by using wavelet representations were suggested by [2] and fur-
ther by [4]. However, nonredundant wavelet filtering is in several cases also
not best suited and causes undesired artifacts leading to erroneous filtering
results. In this paper, we discuss a new signal-clutter separation method that
circumvents these problems. It is based on a Gabor frame decomposition of
the time series followed by the statistical filtering approach suggested by [5].
For an extensive description of the presented approach and a discussion in
much greater detail we refer the interested reader to [3].

2 Classical Signal Model and Its Limitations

The classical RWP signal model assumption can be written as

S[k] = I[k]eiωkΔt + N[k], (1)

where I[k] ∼ N(0, σ2
I ) and N[k] ∼ N(0, σ2

N) are independent complex zero-
mean Gaussian random vectors describing the atmospheric signal and the
receiver noise, Δt is the sampling interval of the sequence and ω the mean
Doppler frequency. Furthermore I[k] is narrowband compared to the receiver
bandwidth and |ω| ≤ π/Δt (Nyquist criterion). Because S[k] is the result of
the demodulation of a real valued zero-mean and stationary Gaussian random
process, the resulting Gaussian complex random process is also wide-sense
stationary and zero-mean. Furthermore, the sequence has a vanishing pseudo-
covariance, that is we have E(S[k]S[l]) = 0. Such a process is usually called
proper, circular or phase-invariant. Therefore,

(R)k,l = Cov(S[k],S[l]) = E(I[k]Ī[l])eiω(k−l)Δt + E(N[k]N̄[l])

= σ2
I�[k − l]eiω(k−l)Δt + σ2

Nδk−l,0,

where � is specified below. While this is a classical assumption in radar signal
processing, it is unknown for which maximal time series length this assump-
tion can be made safely. We found that bird clutter signals are significantly
nonstationary over typically used dwell times of about 30–60 s. The associated
autocovariance function can be expressed as follows

ACov(k) = σ2
I �[k]eiωkΔt + σ2

Nδk,0 = σ2ρ[k] , (2)

where we set σ2 := σ2
I + σ2

N and ρ[k] := σ2
I �[k]e

iωkΔt+σ2
Nδk,0

σ2
I +σ2

N
, while assuming

�[k] = e−2π2w2k2Δt2 . In reality, however, there is sometimes a third component
contributing to the signal, namely clutter [7], so that the signal model must
be written as:

S[k] = I[k]eiωkΔt + N[k] + C[k] . (3)
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Clutter is the totality of undesired echoes and interfering signals, therefore it
is impossible to generalize the properties of C[k]. In the case of RWP, clutter
includes in particular echoes from airborne objects such as aircraft and birds
as well as returns from the ground. Interfering signals may be caused by other
radio transmitters operating in the RWP receiver band. In the remainder of
the paper, we restrict ourselves to intermittent clutter signals and it removal
from S.

3 Gabor Frame Expansions for Discretely Sampled
Signals

Assume we are given some discrete and finite time (periodic) signal S̃ with
sampling points n = 0, . . . , N − 1, that is S̃[n] = S̃[n+N ]. We therefore have
to periodize the analysis and synthesis windows as well,

h̃[n] =
∑
l

h[n+ lN ], g̃[n] =
∑
l

g[n+ lN ].

Slightly abusing the notation, we omit the tilde denoting periodic (finite)
functions in the following. The signal S can be discretely represented by

S[n] =
M−1∑
m=0

K−1∑
k=0

am,khm,k[n], (4)

whereas the Gabor coefficients can be derived from

am,k =
N−1∑
n=0

S[n]ḡm,k[n]. (5)

Introducing integersΔM andΔK and the toral componentWN = exp[2πi/N ],
the discrete analysis and synthesis windows can be rewritten as

hm,k[n] = h[n−mΔM ]WnkΔK
N ,

gm,k[n] = g[n−mΔM ]WnkΔK
N .

As can be seen, ΔM denotes the time and ΔK the frequency step size. They
correspond to T and Ω. In our setting they are constrained by ΔM ·M =
ΔK ·K = N . The reconstruction formula becomes

S[j] =
M−1∑
m=0

K−1∑
k=0

am,khm,k[j] =
N−1∑
l=0

S[l]
M−1∑
m=0

K−1∑
k=0

ḡm,k[l]hm,k[j],

where we have assumed that the following biorthogonality relation is fulfilled,
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M−1∑
m=0

K−1∑
k=0

ḡm,k[l]hm,k[j] = δl,j.

It can be shown that the biorthogonality relation is satisfied if

N−1∑
j=0

h[j + qK]W−jpM
N ḡ[j] =

N

MK
δp,0δq,0 (6)

for 0 ≤ p ≤ ΔM − 1 and 0 ≤ q ≤ ΔK − 1. System (6) can be rewritten in
matrix form: Let v = (N/(MK), 0, . . . , 0)T be a vector of length ΔMΔK and
g = (g[0], . . . ,g[N − 1]) the vector representing the discretely sampled dual
frame, and let A be the matrix of size ΔMΔK × N with entries A(p,q),j =
h̄(j + qK)W jpM

N , then the dual frame atom g is the solution of the linear
system

Ag = v. (7)

For oversamplingΔMΔK < N , system (7) is under-determined, and the solu-
tion is no longer unique and therefore there is a variety of possible dual frame
atoms g. One suitable choice (beside optimal localizing window functions) is
given by the minimum norm solution gmin = AT (AAT )−1v.

4 Statistical Significance, Filtering and a Real Example

First, we observe that

|aλ|2 =
N−1∑
n=0

S[n]gλ[n]
N−1∑
l=0

S̄[l]ḡλ[l].

With ES[n] = 0 and ES[n]S̄[n+ l] = σ2ρ[l] we obtain E|aλ|2 = σ2〈ρ ∗ gλ,gλ〉
and Cov(|aλ|2, |aη|2) = σ4|〈ρ ∗ gλ,gη〉|2. The ‘∗’-symbol stands here for the
discrete convolution. Therefore,

Var|aλ|2 = σ4|〈ρ ∗ gλ,gλ〉|2 = (E|aλ|2)2 and thus
(E|aλ|2)2

Var|aλ|2 = 1 (8)

which holds true for independent as well as dependent samples S[n] that follow
a distribution which is determined by its moments. In order to construct a
statistical test that verifies property (8), we have to find optimal estimators
for E|aλ|2 and Var|aλ|2 that are based on a finite number of observations. To
this end, we introduce an index subset Ωλ ⊂ Λ containing λ and L−1 further
different indices η, i.e. |Ωλ| = L. As an estimator for E|aλ|2 = σ2〈ρ ∗ gλ,gλ〉,
which is based on L neighboring observation variables, we define

Ê(Ωλ) :=
1

CΩλ

∑
η∈Ωλ

|aη|2 with CΩλ
=

∑
η∈Ωλ

〈ρ ∗ gη,gη〉
〈ρ ∗ gλ,gλ〉 > 1. (9)
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Assuming there exists some small ε > 0 with
∑
η′,η∈Ωλ

|〈ρ∗gη′ ,gη〉|2 ≤ C2−ε
Ωλ

,
estimator (9) consistent, for details see [3]. By the same reasoning, we define
a consistent estimator for variance,

V̂ (Ωλ) := C
∑
η∈Ωλ

(|aη|2 − Ê(Ωλ))2, (10)

where the constant is defined by

C−1 := 2
∑
η∈Ωλ

c2η
c2λ

+ (L − 2CΩλ
)
(

1 +
1

(
∑

η cη)2
∑

ξ,α∈Ωλ

c2ξ,α

)
. (11)

To identify now intermittent clutter (the nonstationary signal component),
we proceed as follows: In a first step, define the index set representing the
k-th row, which we denote by Ωk = {(m, k) : m = 0, . . . ,M − 1}, and
sort for each k the sequence {|am,k|2}(m,k)∈Ωk

in decreasing order. That
is, we derive the order statistic of {|am,k|2}(m,k)∈Ωk

which we denote by
{|[a]m,k|2}(m,k)∈Ωk

([·] stands for the order statistic map). Therefore, we have
|[a]m,k|2 ≥ |[a]m+1,k|2 for all (m, k) ∈ Ωk . For l = 0, . . . ,M − 1, we define sub-
sets Ωk(l) = {(m, k) : m = l, . . . ,M − 1}. The largest coefficients are stepwise
discarded, which has the goal of eliminating the clutter signal component.
Using the quantities Ê(Ωk(l)) and V̂ (Ωk(l)) of the subset, the test statistics
ϑ is computed for l = 0, . . . ,M − 1 as long as ϑ(|[a]l,k|2) := (Ê(Ωk(l)))2

V̂ (Ωk(l))
< 1

holds. The largest coefficient of the first subset for which the test (posi-
tive for clutter) is not satisfied (a clutter-free subset) is then taken as a
threshold for a frequency-dependent identification of the clutter component.
All coefficients |am,k|2 greater than the threshold are regarded as clutter.
Based on this test, we introduce a clutter index set as Ωck := {(m, k) :
ϑ(|[a]m,k|2) < 1 , m = 0, . . . ,M − 1}. The coefficients am,k ∈ Ωck are finally
set to tkei arg am,k , where tk is the average value of the remaining coefficients,
tk = 1

|Ωk\Ωc
k|

∑
(m,k)∈Ωk\Ωc

k
|am,k|. Consequently, the filtered signal S is given

by

Φ(S)[n] =
K−1∑
k=0

{ ∑
(m,k)∈Ωk\Ωc

k

am,khm,k[n] +
∑

(m,k)∈Ωc
k

tke
i arg am,khm,k[n]

}
.

(12)
To show the performance of the proposed algorithm, we process data that
were obtained during routine operation of a 482 MHz wind profiler radar
of the Deutscher Wetterdienst at Bayreuth, Germany in the fall of 2005. We
consider data taken in the south beam of the radar wind profiler at range gate
9 (1.6 km height agl, dwell at 00:09:45 UTC). Figure 1 shows a time series in
which strong intermittent clutter (bird echo) can be recognized. The results
of the filtering procedure illustrate that the method completely eliminates the
nonstationary signal component.



316 G. Teschke and V. Lehmann

0 10 20 30

-2.E+004

0.E+000

2.E+004

R
e
(
s
[
t
]
)
,
 
[
a
r
b
.
 
u
n
i
t
s
]

0 10 20 30
Time [seconds]

-2.E+004

0.E+000

2.E+004

I
m
(
s
[
t
]
)
,
 
[
a
r
b
.
 
u
n
i
t
s
]

Bayreuth 13.10.2005,  Beam South, Height 1625 m  @ 00:09:45

40.

50.

60.

70.

80.

90.

100.

0 5 10 15 20 25 30 35

-60

-40

-20

0

20

40

60

0 10 20 30

-1.E+003

0.E+000

1.E+003

2.E+003

R
e
(
s
[
t
]
)
,
 
[
a
r
b
.
 
u
n
i
t
s
]

0 10 20 30
Time [seconds]

-1.E+003

0.E+000

1.E+003

2.E+003

I
m
(
s
[
t
]
)
,
 
[
a
r
b
.
 
u
n
i
t
s
]

Bayreuth 13.10.2005,  Beam South, Height 1625 m  @ 00:09:45

40.

50.

60.

70.

80.

90.

100.

0 5 10 15 20 25 30 35
-60

-40

-20

0

20

40

60

Fig. 1. Top left: real time series; top right: Gabor spectrum of this time series;
bottom right: filtered Gabor spectrum; bottom left: reconstructed time series
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Multiphysical1 and network modeling usually lead to coupled systems that
exhibit largely different timescales. In time domain it is called multirate,
in space multiscale. Efficient algorithms need to take these phenomena into
account. Such methods are specially requested by industry. As a practical
example one can think of a cellular phone, which consists of coupled digi-
tal and analog subcircuits that operate at vastly different frequencies. The
inclusion of memory cells extends the difference in dynamics even more. One
can find other examples in astrophysics; in multibody systems of vehicles [1];
in robotics (where multiple time scales and hierarchy in the dynamics may
exhibit); in coupling mechanical and electrical systems; in reaction and diffu-
sion processes involving multiple chemical components; in combustion engines
with chain drives. Similar effects have to be taken into account when designing
Integrated Circuits (ICs) [5] and Power Systems [2].

To speed up numerical integration of ordinary differential equations (ODEs),
three research directions have been followed in the last decades, all based on
exploiting multirate behaviour in time:

• Multi-method schemes (for systems containing both non-stiff and stiff
parts): here a partitioning is done on the level of the discretization scheme,
i.e., an explicit scheme is used for the non-stiff parts, and an implicit
method for the stiff ones.

• Multi-order schemes (for non-stiff problems only): here the same explicit
method, and the same step size is used for all parts, but the order of the
method is chosen according to the activity level of the subsystem.

• Multirate schemes (for both stiff and non-stiff problems): here the same
(implicit or explicit method) with the same order is applied to all subsys-
tems, but the step size is chosen according to the activity level.

1This minisymposium was an event of the ECMI Special Interest Group on
Scientific Computing in Electronics Industry
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Research on Multirate Time Integration (MTI) for DAEs for semiconduc-
tor industries started based on Backward Differentiation Formula and on
Rosenbrock-Wanner methods [5, 6]. For reaction diffusion equations and for
systems of hyperbolic conservation laws MTI was applied to the system of
ODEs that arise after semidiscretization of these PDEs – also starting with
Rosenbrock methods [3, 4]. The multirate time stepping caused deeper anal-
ysis in order to guarantee that stability, monotonicity, interface, stiff source
term and conservation law constraints are met.

This minisymposium addressed particular aspects of the various multirate
time integration methods

• A ROW-based hierarchical mixed multirate method that can deal with
an arbitrary amount of subcircuits for differential-algebraic equations of
index 1 [5] [Univ. of Wuppertal & Infineon AG & Qimonda AG].

• A self-adjusting multirate time stepping strategy, where the partitioning
into different levels of slow to fast components is performed automatically
during the time integration [4] [Univ. of Amsterdam & CWI Amsterdam].

• A multi-step multirate implementation, where the interpolation error and
the coarse discretisation error is controlled by the macro stepsize, while
the micro stepsize controls the fine discretisation errors for the fast state
part [6] [TU Eindhoven & Philips & NXP Semiconductors].

• Two families of explicit multirate time discretization methods based on
Adams–Bashforth and partitioned Runge–Kutta schemes for hyperbolic
conservation laws, which avoid the necessity to take small global time steps
restricted by the largest CFL number [3] [Virginia Tech, Blackburg, VA].
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Summary. Based on domain decomposition, multirate time integration takes into
account largely different timescales. In this class, a mixed multirate scheme and its
application to an arbitrary number of subsystems is outlined. Moreover, the matter
of activity change and the connection to model order reduction is discussed.

1 Domain Decomposition as Modular Modelling

In PDE domain decomposition, a domain is split into different sub-domains.
For the consistency of the overall problem, these sub-domains have to be
linked via artificial boundary conditions and Lagrangian multipliers to match
the solution at the boundaries. A similar approach is used naturally in circuit
simulation packages. Here complex circuits are decomposed into different parts
with respect to their function. This approach enables to model the sub-circuits
separately. In contrast to spatial (sub-)domains within the PDE case, we have
to deal here with (sub-)circuits described by their topology, and hence

• Matching boundary conditions are transferred to artificial voltage sources,
which match node potentials at the boundaries of the sub-circuits.

• Branch currents through artificial voltage sources play the role of Lagran-
gian multipliers linking the sub-domains.

Applying charge oriented modified nodal analysis [4, 9] to a decomposed
circuit with r ∈ N subsystems, the mathematical models yields the following
type of coupled differential-algebraic equations (DAEs):

0
0

=
=
Aλẏλ + fλ(xλ, t) + Awλ

w
yλ − qλ(xλ)

}
for λ = 1, . . . , r, (1a)

0 = At
w1
x1 + · · · + At

wr
xr . (1b)
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Here xλ ∈ Rnλ denotes the unknown node potentials and branch currents
of voltage defining elements, yλ ∈ Rmλ contains the unknown charges and
fluxes, and the functions qλ, fλ describe the contribution of the reactive
and nonreactive components of the λth subsystem, whose topology deter-
mines the incidence matrix Aλ ∈ {−1, 0, 1}nλ×mλ . The coupling quantity
w ∈ RM denotes the set of branch currents through artificial voltage sources.
These are implicitly defined by the coupling equation (1b), the constitutive
equations for the artificial voltage sources. Finally, the incidence matrices
Awλ

∈ {−1, 0, 1}nλ×M (λ = 1, . . . , r) relate w to the corresponding terminal
of the respective subcircuit as input source.

In the following, we restrict ourself to the case where (1) states an index-1
problem, in the sense that:

(C1) The overall system (1a,1b) has index 1 w.r.t. x1, . . . , xr, w.
(C2) All systems (1a) define index-1 systems w.r.t. xλ (given w).

The latter holds, if there are neither CV-loops nor LI-cutsets in the sub-
circuits [3]. Virtual voltage sources can be associated with the coupling and
we can show that (C1) holds if there are also no loops of capacitors, voltage
sources and virtual voltage sources in the overall circuit [1, 9].

Under these conditions (1) is equivalent [9] to the semi-explicit system:

ẏλ
0

=
=
fλ(zλ, w),
hλ(yλ, zλ, w),

}
for λ = 1, . . . , r, (2a)

0 = g(z1, . . . , zr) , (2b)

where fλ, hλ are linear in w and yλ, w, respectively and g is linear in z1, . . . , zr.
Notice the abuse of notation in yλ, fλ.

2 Mixed Multirate

The functional diversity in modularly modelled systems causes a heteroge-
neous distribution of activity. At each time the quantities “node potential”
and “element currents” may show the tendency to change rapidly in some
regions of the circuit whereas only minor fluctuation can be recognised in
other parts. Multirate methods accommodate this behaviour and reduce com-
putational expenses. The basic idea of these schemes is to prevent parts to
be integrated more often than necessary to meet prescribed error tolerances.
To this end, we associate activity levels to step size proposals and are able to
split large systems in subsystems which operate on different time scales with
differing optimal step sizes. Now, domain decomposition based multirating
means to use these (differing) optimal step sizes for the respective subsystems
to define an overall method.

For simplicity, we formulate the multirate method first for a coupled sys-
tem (of latent yL and active yA variables) for ordinary differential equations:
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ẏL = fL(yL, yA), ẏA = fA(yL, yA).

At the current time point t0 (with given y(t0) = (yL, yA)t = y0), we suppose
that the latent part (subscript L) can be integrated with one macrostep HL
whereas a sequence of q microstepsHA,1, . . . ,HA,q is needed for the active part
(subscript A) to reach t0 + HL. Numerically, a subset of systems proposing
a large individual step size is identified as latent; the others demand a small
step, and are therefore active.

Various approaches are being developed [4, 8, 11]. We concentrate on the
application of Rosenbrock-Wanner (ROW), i.e., one-step, methods. A detailed
discussion can be found in [9]. Here we just outline the basic principles. In its
most general way the one-step formalism of this procedure is given by:

yL,1 = yL,0 +
sL∑
i=1

bLi · lLi , (3a)

yA,μ = yA,μ−1 +
sA∑
i=1

bAi · lA,μi (μ = 1, . . . , q), (3b)

lLi = ΦL(HL; yL,0, Y Ai , l
L
1 , . . . , l

L
sL

) (i = 1, . . . , sL), (3c)

lA,μi = ΦA(HA,μ; yA,μ−1, Y
L,μ
i , lA,μ1 , . . . , lA,μsA

) (i = 1, . . . , sA), (3d)

where ΦL denotes an sL stage ROW scheme with coefficients bL, AL, BL, ΓL

(L = L,A). For ROW schemes, (3c,d) determine the increments lLi , lA,μi by
linear relations. The coupling of latent and active subsystems is performed by
the terms Y Ai and Y L,μi , which will be defined from the increments lL and lA,
respectively. Y Ai and Y L,μi signify the sampling of the fast variables on the
coarse grid and vice versa.

Mixed multirate [2] is characterised by a “compound step” and a series of
“later microsteps”. In the former, the macrostep (3a) and the first microstep
(3b) (μ = 1) are computed at once. Y Ai , Y L,1i are determined in RK-like man-
ner, which employs additionally: coupling coefficients DAL, DLA, NAL, NLA,
and scaling of increments lA,1i and lLi by the step size ratio m = HL

HA,1
and m−1,

respectively. For the later microsteps dense output formulae [6] are applied to
get reasonable values Y L,2i , . . . , Y L,qi .

2.1 Mixed Multirate for Circuit Simulation

In the case of coupled index-1 networks (C1-C2) with active and latent
variables, we have to solve the equivalent semi-explicit DAE:

ẏL = fL(zL, w)
0 = hL(yL, zL, w)

ẏA = fA(zA, w)
0 = hA(yA, zA, w)

0 = g(zL, zA),

(4)
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where the coupling quantity w is assumed to be latent, too. Using a ROW
scheme like (3) for (4), we have to add increments for the algebraic variables.
For s(=sL) stages, weights bL, and increments lL, kL, p, we have (sloppily):
⎛
⎝
yL,1
zL,1
w1

⎞
⎠ =

⎛
⎝
yL,0
zL,0
w0

⎞
⎠+ (bL)t

⎛
⎝
lL

kL

p

⎞
⎠,

(
yA,1
zA,1

)
=
(
yA,0
zA,0

)
+ (bA)t

(
lA

kA

)
. (5a)

According to (3c,d) the stage increments are defined by the linear system

M� · (lLi , kLi
∣∣ lAi , kAi

∣∣ pi
)t

= RHSi, for i = 1, . . . , s (5b)

with the system matrix M� =
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

IyL −HLγL ∂fL

∂zL
−HLγL ∂fL

∂w

−γL ∂hL

∂yL
−γL ∂hL

∂zL
−γL ∂hL

∂w

IyA −HAγA ∂fA

∂zA
− 1

m · HAνAL ∂fA

∂w

−γA ∂hA

∂ya
−γA ∂hA

∂zA
− 1

m · νAL ∂hA

∂w

−γL ∂g
∂zL

−m · νLA ∂g
∂zA

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and a right-hand side RHSi depending on stepsizes HL,HA, step size ratio m,
increments lLj , k

L
j , pj of the former steps j = 1, . . . , i− 1. As above, two ROW

coefficient sets (labels L,A) and additional coupling coefficients are employed.
In the later microsteps, it remains to solve [ẏA = fA, 0 = hA] for unknown

yA, zA, where w(t) enters the right-hand-side. As we introduced the coupling
quantity w as an additional latent unknown, it is already computed (in the
compound step) and a cheap approximation to w(t0 + θ · HL) is obtained via
dense output formulae. For a detailed definition, see [9].

The method’s coefficients have to be determined such that the accuracy of
the local approximation is of a prescribed order. To this end, B-series for ODEs
[5] are adapted to our coupled problem (2). As for mixed multirate methods,
the order conditions depend on the step size ratio m. Therefore, the coefficients
depend on this quantity and have to be computed during integration.

2.2 Hierarchical Mixed Multirate

Aiming a multirate method that can deal with an arbitrary amount of activity
levels, hierarchical mixed multirate seems to be the most feasible approach.
The main idea is to nest compound steps and later micro-steps in a way, that
at each time merely a two-level multirate scheme is engaged. At any time
point of integration each subsystem has either the status asleep or latent or
active. A part is asleep if the last time point at which an approximation is
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available is beyond the current one. The set of non-sleeping subsystems is split
into latent and active subsets. Due to this decomposition, a compound step
can be applied to the non-sleeping part. Otherwise (only active variables are
present) later microsteps are executed. The sleeping subsystems contribute to
the current step via dense-output.

2.3 Implementation and Trapping Events

For electric network descriptions (1), a hierarchical mixed multirate method
of order 2 has been embedded into Qimonda’s in-house simulator titan. Step
size control is performed with an embedded scheme of order 1. Linear trans-
formations are applied to this multirate algorithm (5) such that the resulting
method can be used for the network problem (1) directly.

Great importance is attached to the problem of traversing signals, which
can force sleeping subsystems to “wake up” during a macrostep (tn−1 to
tn = tn−1 + HL). This causes an a-posteriori rejection of that macrostep.
The detection of such situations is based on comparing pin voltages of con-
nected subsystems: any time point twup ∈ (tn−1, tn) where the difference of
the voltages computed from the non-sleeping part and the corresponding volt-
age computed by a dense-output formula applied to the sleeping part becomes
too large, is considered a wake up point. Moreover, not the whole macrostep is
restored, but a re-initialisation at twup is performed using again dense-output
formulae to get appropriate initial values. For a detailed description of an
industrial test case (chain of inverters), we refer to [10].

3 Connection of Multirate to Model Order Reduction

To quickly get evidence of the behaviour of complex circuits, simulation tech-
niques need to be adapted. Multirate tackles this task from an algorithmic
point of view by incorporating subsystems’ behaviour in the numerical pro-
cedure (sampling) for the overall system (1a)–(1b). Model order reduction
(MOR) starts on the modeling level. It seeks to replace the r subsystems (1a)
of presumably high order (large number of unknowns) with order reduced
models. This is achieved in the following way: given the input w, the λth sub-
stitute model with essential state variable x̂λ returns an output Âtwλ

x̂λ which
approximates the corresponding output Atwλ

xλ of the full system sufficiently
accurate. For nonlinear problems, MOR basically is done by scanning the full
system in a training phase and extracting dominant information that deter-
mines the reduced substitute model; this is realised, e.g., in the trajectory
piecewise linearisation approach (TPWL) [7].

There are some analogies of multirate and MOR that could be used to
improve or merge both strategies. In multirate the latent part contributes to
the later microsteps just in terms of the terminal quantities, i.e., the output
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Atwλ
xλ. The corresponding values on the fine time grid are derived from infor-

mation gathered on the coarse one. This can be viewed as training of a current-
or voltage source replacing the large latent subcircuit. If the latent part was
replaced by a reduced order model incorporating more dynamical effects, the
procedure could become more stable and we can hope to act out the full
multirate behaviour. Moreover, the combination of compound step and later
microsteps can be regarded as on-the-fly training. If this can be transferred
to MOR, it may pave the way to construct models that are less sensitive to
varying input signals and which could be produced whenever needed.

4 Conclusion

A multirate scheme for circuit simulation that can deal with an arbitrary
number of subsystems has been derived, where domain decomposition of large
electrical circuits is achieved by introducing extra variables. The hierarchical
multirate method has been embedded in a sophisticated industrial simulator.

Future tasks are a partitioning strategy and step size control tailored to
multirate needs. Step size control should be improved as we want to combine
very large with small steps. Higher order schemes and extensions to higher
index problems are desirable. The perspective is to use analogies of multirate
and model order reduction to combine and enhance both approaches.

References

1. Arnold, M., Günther, M.: Preconditioned dynamic iteration for coupled
differential-algebraic systems. BIT, 41(1), 1–25 (2001)

2. Bartel, A., Günther, M., Kværnø, A.: Multirate methods in electrical circuit
simulation. In: Anile, A.M., Capasso, V., Greco, A. (eds.) Progress in Indus-
trial Mathematics at ECMI 2000, Mathematics in Industry, vol. I, pp. 258–265.
Springer, Berlin (2002)
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Summary. This paper contains an overview of a self-adjusting multirate method.
A simple extension which allows the improvement of the efficiency of the method is
introduced. The performance of the extended and the original method is compared
for a test problem.

1 Introduction

For the numerical solution of systems of ODEs there are many methods avail-
able. These methods use time steps that are varying in time, but are constant
over the components. However, there are many problems of practical inter-
est, where the temporal variations have different time scales for different sets
of the components. For example, cellular phones consist of coupled digital
and analogue sub-circuits, which operate in nano- and micro-seconds, respec-
tively. The motion of the particles around a star, which attracts mass from
a secondary star, in astrophysics is described by a large system of ordinary
differential equations. In this system the components, that correspond to the
particles near the center, are much faster than those corresponding to the
distant ones. To exploit these local time scale variations, one needs multi-
rate methods that use different, local time steps over the components. In these
methods big time steps are used for the slow components and small time steps
are used for the fast ones.

Various multirate methods were developed for solving systems with differ-
ent time scales. The first descriptions of multirate schemes were given by Gear
and Wells [4] for multistep methods. Sand and Skelboe [9] studied the sta-
bility of backward Euler multirate methods. Multirate methods for non-stiff
problems have been examined by Engstler and Lubich [3]. A multirate scheme
based on the partitioned Runge–Kutta methods was introduced by Günther
et al. [5]. In [1,13,14] multirate methods have been applied to the modeling of
electrical networks. Multirate methods for hyperbolic conservation laws were
studied by Constantinescu and Sandu [2].

A.D. Fitt et al. (eds.), Progress in Industrial Mathematics at ECMI 2008,

Mathematics in Industry 15, DOI 10.1007/978-3-642-12110-4 50,

c© Springer-Verlag Berlin Heidelberg 2010



328 V. Savcenco and R.M.M. Mattheij

A multirate method based on the Rosenbrock methods, together with a
self-adjusting partitioning strategy was introduced and analyzed in [7, 10–
12]. In this paper we present an overview of this method and suggest a way to
improve it. The comparison of the numerical results obtained with the original
and extended strategy is presented.

The paper is organized as follows. In Sect. 2 we will introduce the Rosen-
brock methods which will be used as our basic numerical integration methods
and describe the multirate time stepping strategy. The performance of the
extended version of the multirate strategy for a test problem is discussed in
Sect. 3. Finally, Sect. 4 contains the conclusions.

2 A Multirate Time Stepping Strategy

We will consider multirate methods for solving systems of ODEs

w′(t) = F (t, w(t)), w(0) = w0, (1)

with given initial solution w0 ∈ R
m. The approximations at the global time

levels tn will be denoted by wn.
Our multirate time stepping strategy is based on local temporal error

estimation. For a given time stepΔtn = tn−tn−1, we compute a first, tentative
approximation at the new time level for all components. For those components
for which the error estimator indicates that the local temporal error is larger
than a given tolerance Tol, the computation is redone with smaller steps. The
refinement is recursively continued until the error estimator is below Tol for all
components. Schematically, with components horizontally and time vertically,
the multirate time stepping is displayed in Fig. 1.

In the original strategy [12], the refinement is performed by recalculating
the required components with halved steps. For many problems, the time
steps needed for the active components are much smaller than those needed
for the slow ones. In such cases it is more efficient to immediately recompute
the active components with more than two smaller steps instead of doing
several halving recursive refinements. Therefore in this paper we will extend
the original strategy and will assume that the number of smaller time steps
at the refinement stage can be also larger than two. Using ideas from [12], it
is possible to design an adaptive procedure of choosing the size of the time
slabs for the extended strategy.

tn−1

tn

Fig. 1. Multirate time stepping for a time slab [tn−1, tn]
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2.1 Main Time Integration Methods

In this paper we will use the Rosenbrock methods [6] as our basic numerical
integration methods. To proceed from tn−1 to tn = tn−1 + τ , an s-stage
Rosenbrock method calculates

wn = wn−1 +
s∑

i=1

biki , (2)

ki = τF

⎛
⎝tn−1 + αiτ, wn−1 +

i−1∑
j=1

αijkj

⎞
⎠+ τ

∂F

∂w
(tn−1, wn−1)

i∑
j=1

γijkj

+γiτ
2 ∂F

∂t
(tn−1, wn−1), i = 1, . . . , s , (3)

where αij , γij , αi, γi, bi are real parameters defining the method and τ denotes
the step size. For the local error estimation within the variable step size control
we use the embedded formula

wn = wn−1 +
s∑

i=1

biki , (4)

which uses the same ki-values as (2), but has different weights.

2.2 Interface Treatment

During the refinement stage, values at the intermediate time levels of compo-
nents which are not refined might be needed. These values can be obtained
by use of dense output built in the time integration method

wI(tn−1 + θτ) = wn−1 +
s∑

i=1

bi(θ)ki, 0 ≤ θ ≤ 1 . (5)

Proper interface treatment is very important for multirate schemes. Use of
dense output of order lower than the order of the main time integration
method can lead to order reduction.

It is well known that use of Rosenbrock methods for problems with stiff
source terms can lead to order reduction. During the refinement step, sub
problems with stiff source terms have to be solved. An easy applicable tech-
nique, to avoid the order reduction, was proposed in [11]. Assuming that g(t)
is a component of F (t, w(t)), this technique suggests that the source terms
g(tn−1 + αiτ) + γiτg

′(tn−1) in a Rosenbrock method (3) of order p shall be
replaced by gn−1,i with gn−1 = [gn−1,i] chosen as

gn−1 =
p∑

k=0

Bkeτkg(k)(tn−1) , (6)

where B = [αij + γij ] ∈ R
s×s and e = [1] ∈ R

s.
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3 Numerical Test

In this section we will present numerical results for a test problem. We consider
the behavior of both strategies: original [12] and extended (where refine-
ment with more than two steps is possible). The results are compared to the
single-rate approach, also using the same basic time integration method. As a
measure for the amount of work we consider the total number of components
at which solutions are computed over the complete time integration interval,
multiplied by the number of stages of the method. The fact that with the
multirate approach some solution components are computed several times at
certain time levels is taken into account. As the basic time integration method,
for solving this problem, we use the two-stage second-order Rosenbrock ROS2
method [8].

3.1 An Inverter Chain Problem

An inverter is an electrical sub-circuit which transforms a logical input signal
to its negation. The inverter chain is a concatenation of several inverters,
where the output of an inverter serves as input for the succeeding one. An
inverter chain with an even number of inverters will delay a given input signal
and will also provide some smoothing of the signal.

The model for m inverters consists of the equations
{
w′

1(t) = Uop − w1(t)− Υg(uin(t), w1(t)
)
,

w′
j(t) = Uop − wj(t)− Υg(wj−1(t), wj(t)

)
, j = 2, . . . ,m ,

(7)

where

g(u, v) =
(

max(u− Uthres, 0)
)2 − (max(u− v − Uthres, 0)

)2
. (8)

The coefficient Υ serves as stiffness parameter. We solve the problem for a
chain of m = 500 inverters with Υ = 100, Uthres = 1 and Uop = 5. The initial
condition is

wj(0) = 6.247 · 10−3 for j even, wj(0) = 5 for j odd. (9)

The input signal is given by

uin(t) =

⎧
⎪⎪⎨
⎪⎪⎩

t− 5 for 5 ≤ t ≤ 10 ,
5 for 10 ≤ t ≤ 15 ,
5
2 (17− t) for 15 ≤ t ≤ 17 ,
0 otherwise.

(10)

An illustration of the solution for some of the even components is given in
Fig. 2.
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0 30 60 90 120
0

2.5

5
w2 w126 w250 w374 w498

Fig. 2. Solution components wj(t), j = 2, 126, 250, 374, 498, for problem (7)–(10)

Table 1. Errors and work amount for problem (7)–(9)

Single-rate Multirate (extended) Speedup
Tol Error Work Error Work Original Extended

5 · 10−4 1.44 · 10−1 45649872 1.47 · 10−2 2846068 8.7 16.0
10−4 3.94 · 10−2 94524592 7.16 · 10−3 5512400 13.0 17.1

5 · 10−5 1.37 · 10−2 131413560 3.24 · 10−3 6980676 13.5 18.8
10−5 2.04 · 10−3 287207252 9.22 · 10−4 14332486 11.1 20.0

In Table 1 the errors at output time T = 130 (measured in the maximum
norm with respect to an accurate reference solution) together with the amount
of work are presented for several tolerances for the single-rate method and
the extended multirate strategy. The speedup for both original and extended
strategies is calculated.

It is seen from the table that a substantial improvement in amount of work
is obtained for this problem. For the single-rate scheme, the amount of work is
almost 18 times larger than for the extended multirate scheme. Moreover, the
error behavior of the multirate scheme is very good. We can also see that for
this problem we get a considerably larger speedup for the extended strategy
compared to the original strategy.

4 Conclusions

In this paper we made on overview and extended the multirate time stepping
strategy introduced in [7, 10–12].

As seen from the numerical tests, the efficiency of time integration methods
can be significantly improved by using large time steps for inactive compo-
nents, without sacrificing accuracy. Comparing the results obtained for the
original and the extended strategies, we do have preference for the extended
approach, where the values of the active components can be recalculated by
the use of more than two smaller time steps.
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1 Introduction

Multirate time-integration methods [3–5] appear to be attractive for initial
value problems for DAEs with latency or multirate behaviour. Latency means
that parts of the circuit are constant or slowly time-varying during a certain
time interval, while multirate behaviour means that some variables are slowly
time-varying compared to other variables. In both cases, it would be attractive
to integrate these slow parts with a larger timestep than the other parts. This
saves the computational workload while the accuracy is preserved. A nice
property of multirate is that it does not use any linear structure, in contrast to
MOR, but only a relaxation concept. If the coupling is sufficiently monitored
and the partitioning is well chosen, multirate can be very efficient.

In this paper we will show how multirate time integration can be applied
to hierarchical circuit models. Besides the classical interpolation variants, also
some new implicit variants are discussed.

2 Hierarchical Circuit Models

Integrated Circuits can be modeled by a hierarchical system of differential-
algebraic equations [1, 2]:

d

dt
[q(t,x)] + j(t,x) =

N∑
i=1

BT
(i)

[
d

dt
[q(i)(t,x(i))] + j(i)(t,x(i))

]
= 0. (1)

Clearly this circuit model with global state vector x ∈ R
d consists of N cou-

pled subcircuit models. Each local state vector x(i) ∈ R
di (voltages,currents)

consists of a terminal (x̂(i)) and an internal (x̌(i)) part:
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x(i) = B(i)x =
[
x̂(i)

x̌(i)

]
.

The matrices B(i) ∈ {0, 1}di×d, defined by

B(i) =
[
B̂(i)

B̌(i)

]
, (2)

are used to select the proper parts x̂(i) =
[
B̂(i)

]
x and x̌(i) =

[
B̌(i)

]
x of

x(i) from x. This even allows for a hierarchical structure.
Similarly, also the functions q(i) (charges, fluxes) and j(i) (currents, volt-

ages) have a similar structure: q(i) = B(i)q =
[
q̂(i)

q̌(i)

]
, j(i) = B(i)j =

[
ĵ
(i)

ǰ
(i)

]
.

We can rewrite (1) in a part consisting of the collected equations for the ter-
minal unknowns (3) and a part consisting of the remaining equations for the
internal unknowns (4):

N∑
i=1

B̂
T

(i)

[
d

dt
[q̂(i)(t,x(i))] + ĵ

(i)
(t,x(i))

]
= 0, (3)

d

dt
[q̌(i)(t,x(i))] + ǰ

(i)
(t,x(i)) = 0, i = 1, . . . , N. (4)

Each subcircuit model can again be further decomposed in this manner.

3 Multirate Transient Analysis

For single-rate time integration all equations are discretised simultaneously
by the same time step. If the time constants per subcircuits are quite dif-
ferent, it is attractive to perform multirate time integration. Then the fast
subcircuits can be integrated on a local, fine, time-grid. Especially when the
fast subcircuits are small in size, the additional costs for synchronisation and
partitioning can be overcome and the overall multirate procedure becomes
much more efficient than the single-rate time integration. An attractive mul-
tirate method is the Compound-Fast version [5,6,8], which first integrates the
whole system at the new coarse time gridpoint and after that re-integrates
only the active part at the fine time-grid. We will denote the coarse and fine
time gridpoints by {Tn, 0 ≤ n ≤ N} and {tn−1,m, 1 ≤ n ≤ N, 0 ≤ m ≤ qn}
with macro-steps Hn := Tn−Tn−1, and micro-steps hn,m := tn,m−tn,m−1 and
multirate factors qn such that tn−1,0 = Tn−1, tn−1,qn = Tn. For a partitioning
in a latent (slow) and an active (fast) part, x(L) ∈ R

dL and x(A) ∈ R
dA , we

typically get:
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B̂
T
(L)

[
d

dt
[q̂(L)(t, x(L))] + ĵ

(L)
(t, x(L))

]
+ B̂

T
(A)

[
d

dt
[q̂(A)(t, x(A))] + ĵ

(A)
(t, x(A))

]
= 0,

d

dt
[q̌(L)(t, x(L))] + ǰ

(L)
(t, x(L)) = 0,

d

dt
[q̌(A)(t, x(A))] + ǰ

(A)
(t, x(A)) = 0.

Voltage Interpolation A first approach is to integrate only the internal part
of the active subcircuit at the fine time-grid. Then we get the following active
circuit model for x̌(A)

d

dt
[q̌(A)(t,x(A))] + ǰ

(A)
(t,x(A)) = 0, x(A) =

[
x̂(A)

x̌(A)

]
. (5)

In practise x̂(A) will also behave latently, and in this case it is preferable to use
voltage interpolation of the terminal voltages x̂(A). From the hierarchical lin-
ear solver in Pstar (the in-house analogue circuit simulator provided by NXP
Semiconductors) [1] we know that (5) is solvable for x̌(A). However, stabil-
ity is now not automatically preserved from the original model. Furthermore
the DAE-index can be larger than one, which typically leads to sawtooth-like
shapes of x̌(A).

Current Interpolation A second approach is to integrate the complete active
subcircuit (i.e. using q(A) rather than q̌(A), etc) at the fine time-grid. Then
we get the following active circuit model for x(A)

d

dt
[q(A)(t,x(A))] + j(A)(t,x(A)) = −B̂(A)B̂

T

(L)

[
d

dt
[q̂(L)(t,x(L))] + ĵ

(L)
(t,x(L))

]
.

(6)

This leads to a more stable situation including the conservation of Kirchhoff’s
Current Law at the terminals and preservation of the DAE-index. In this case
it is preferable to interpolate the terminal currents

iL→A = −B̂(A)B̂
T

(L)

[
d

dt
[q̂(L)(t,x(L))] + ĵ

(L)
(t,x(L))

]
. (7)

This can be done by adding iL→A as unknown or by calculating it explicitly.
Direct interpolation of the slow voltages x(L) is not attractive because often
dL � dA. In Pstar for each subcircuit the corresponding terminal current
d
dt [q̂

(i)(t,x(i))]+ĵ
(i)

(t,x(i)) is stored. Then the vector iL→A can be constructed
for each multirate-partitioning.

4 Implicit Interpolation

Interpolation of the currents iL→A causes solvability problems for the active
part if the active subcircuits are not grounded (so one may have to ground the
most latent coupled terminal unknown). Stability and the differential index
are only preserved if all subcircuits are stable DAEs of index one. In general
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this property can not be assumed for a circuit simulator. An alternative could
be a modified BDF multirate algorithm with implicit interpolation.

In (7) we already introduced the terminal current iL→A from latent-to-
active. We also introduce the terminal current iA→L from active-to-latent.
Then one can also write the hierarchical circuit model of (6) like

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d
dt [q

(L)(t,x(L))] + j(L)(t,x(L)) = iA→L, i

iA→L = −B̂(L)B̂
T

(A)

[
d
dt [q̂

(A)(t,x(A))] + ĵ
(A)

(t,x(A))
]
, ii

iL→A = −B̂(A)B̂
T

(L)

[
d
dt [q̂

(L)(t,x(L))] + ĵ
(L)

(t,x(L))
]
, iii

d
dt

[q(A)(t,x(A))] + j(A)(t,x(A)) = iL→A. iv

(8)

Here iA→L and iL→A are the terminal currents that couple both subcircuits.
If the vector iL→A is given it is possible to perform the refinement for x(A).
For the Slow-Fast multirate method iL→A is approximated at the coarse time-
grid, based on x(L). However, it is also possible to approximate iL→A by a
different approach. Note that iL→A and iA→L are related by the Kirchhoff’s
Current Law

B̂
T

(L)iA→L + B̂
T

(A)iL→A = 0.

Variant I Let us discretise (8i) by Euler Backward with step Hn,m = tn−1,m−
tn−1,0, where tn−1,0 = Tn−1

q(L)(tn−1,m,x
(L)
n−1,m) − q(L)(tn−1,0,x

(L)
n−1,0) + Hn,m j(L)(tn−1,m,x

(L)
n−1,m)

= Hn,miA→L(tn−1,m).
(9)

We assume that just one Newton step is needed to correct the prediction
y(L)
n−1,m of x(L)

n−1,m, which is acceptable if x(L) behaves latently. Thus

J(L)
n−1,m

(
x(L)
n−1,m − y(L)

n−1,m

)
= Hn,miA→L(tn−1,m)− f (L)

n−1,m, where

J(L)
n−1,m = C(L)(tn−1,m,y

(L)
n−1,m) − C(L)(tn−1,0,x

(L)
n−1,0) + Hn,mG(L)(tn−1,m,

y(L)
n−1,m), fn−1,m = q(L)(tn−1,m,y

(L)
n−1,m) − q(L)(tn−1,0,x

(L)
n−1,0) +

Hn,mj(L)(tn−1,m,y
(L)
n−1,m), C(L) = ∂q(L)

∂x(L) , and G(L) = ∂j(L)

∂x(L) . The matrix

J(L)
n−1,m is invertible if the latent part (8i) is solvable, which is a reasonable

assumption. Hence

x(L)
n−1,m = y(L)

n−1,m + J−1
n−1,m

(
Hn,miA→L(tn−1,m)− fn−1,m

)
.

We do not want to compute J−1
n−1,mfn−1,m for all m, so we use linear inter-

polation of J−1
n−1,0fn−1,0 = J−1

n−1,0f(x(L)
n−1,0) and J−1

n,0fn,0 = J−1
n,0f(x(L)

n,0). Thus
we obtain

J−1
n−1,mfn−1,m := λmJ−1

n−1,0fn−1,0 + μmJ−1
n,0fn,0.
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Here λm = 1− m
q and μm = 1− λm = m

q . For m = 0 we have that x(L)
n−1,m =

y(L)
n−1,0 solves (9), hence we have that fn−1,0 = 0. After interpolating the

operator J−1 applied to Hn,miA→L(tn−1,m), we can approximate x(L)
n−1,m by:

x(L)
n−1,m ≈ y(L)

n−1,m + (λmJ−1
n−1,0 + μmJ−1

n,0)Hn,miA→L(tn−1,m)− μmJ−1
n,0fn,0

≈ a(tn−1,m) + A(tn−1,m)iA→L(tn−1,m),
(10)

where a(tn−1,m) = y(L)
n−1,m − μmJ−1

n,0fn,0 and A(tn−1,m) = (λmJ−1
n−1,0 +

μmJ−1
n,0)Hn,m. Hence, one can write:

⎧⎪⎪⎨
⎪⎪⎩

iA→L = −B̂(L)B̂
T

(A)

[
d
dt

[q̂(A)(t,x(A))] + ĵ
(A)

(t,x(A))
]
,

iL→A = −B̂(A)B̂
T

(L)

[
d
dt

[q̂(L)(t,a(t) + A(t)iA→L)] + ĵ
(L)

(t,a(t) + A(t)iA→L)
]
,

d
dt

[q(A)(t,x(A))] + j(A)(t,x(A)) = iL→A.
(11)

Next we can compute x(L) by evaluating formula (10). Thus we get a multirate
method of Fastest First type instead of Slowest First type. In contrast to the
Compound-Fast multirate method we do not need a compound step now to
predict iL→A.
Variant II In a similar way as for x(L), iL→A satisfies

iL→A(tn−1,m)=−B̂(A)B̂
T

(L)

[
d
dt [q̂

(L)(tn−1,m,x
(L)
n−1,m)] + ĵ

(L)
(tn−1,m,x

(L)
n−1,m)

]

=−P̂
[
d
dt [q

(L)(tn−1,m,x
(L)
n−1,m)] + j(L)(tn−1,m,x

(L)
n−1,m)

]
,

where P̂ = B̂(A)B̂
T

(L)

[
B̂(L) O

]
. In a similar way as for x(L) in (10) we can

derive the following feedback law for iL→A:

iL→A(t) ≈ b(t) + B(t)x(L)(t). (12)

Expressing x(L)(t) as in (10) we can derive c(t) and C(t) such that

iL→A(t) ≈ c(t) + C(t)iA→L(t).

This reduces the system (8) even further to the following system for iA→L,x(A):
{

iA→L = −B̂(L)B̂
T

(A)

[
d
dt [q̂

(A)(t,x(A))] + ĵ
(A)

(t,x(A))
]
,

d
dt [q

(A)(t,x(A))] + j(A)(t,x(A)) = c(t) + C(t)iA→L.
(13)

We can eliminate iA→L, which results in the following system for x(A)

d

dt
[q(A)(t, x(A))] + j(A)(t, x(A)) = c(t) − C(t)B̂(L)B̂

T

(A)

[
d

dt
[q̂(A)(t, x(A))] + ĵ

(A)
(t, x(A))

]
.

(14)

From its structure it can be seen that only the terminal active equations
that are directly coupled to the latent part are modified. In fact they are
multiplied by a linear transformation. This linear transformation is such that
the dynamical behaviour of the original system has been preserved. Again,
the vector-valued function c(t) is an interpolation-based current source.
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Variant III In a similar way as for iL→A we can derive the formula

iA→L(t) ≈ f (t) + F(t)x(A)(t). (15)

Combining all three formulae (10), (12) and (15) enables us to express iL→A

directly in terms of x(A):

iL→A(t) = g(t) + G(t)x(A)(t).

Then we get the following system for x(A):
{
d

dt
[q(A)(t,x(A))] + j(A)(t,x(A)) = g(t) + G(t)x(A). (16)

5 Conclusions

We described a multirate method for hierarchical IC models. It is analysed
and tested in [5, 7, 8]. For IC models with many slowly-varying unknowns it
is possible to achieve a good speed-up while the accuracy is maintained. We
also proposed a new implicit type of interpolation that can solve some typical
problems with solvability and stability for the active part. Variant I needs
to evaluate all terminal equations for the slow models and solves all terminal
currents, which leads to a second order system and can be expensive. But it can
also be applied for fast terminal currents iL→A, iA→L. Variant II only needs
to evaluate active elements but it still needs iA→L as additional unknown.
Therefore it still can be applied for active iA→L. Variant III really reduces to
a system for only the active part. It is only allowed if all terminal currents
behave slowly. For the third variant it is clear that iL→A is replaced by a
combination of current sources and resistors. In fact this is model reduction
of the large latent part.
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Summary. In this paper we construct extrapolated multirate discretization meth-
ods that allow to efficiently solve problems that have components with different
dynamics. This approach is suited for the time integration of multiscale ordinary
and partial differential equations and provides highly accurate discretizations. We
analyze the linear stability properties of the extrapolated multirate explicit and
linearly implicit methods. Numerical results with multiscale ODEs illustrate the
theoretical findings.

1 Introduction

In this study we develop multirate time integration schemes using extrapola-
tion methods for the efficient simulation of multiscale ODEs and PDEs via the
method of lines. In multirate time integration, the time step can vary across
the solution components and has to satisfy only the local stability conditions,
resulting in substantially more efficient overall computations.

Previous work in multirate methods includes [1,9,14]. Engstler and Lubich
[6] developed multirate schemes based on extrapolated forward Euler methods
(MURX). The components with slow dynamics are inactivated at certain time
levels, while the fast components are evaluated every time step. Our work
extends this strategy to extrapolated compound multirate explicit and implicit
steps. In this case the extrapolation procedure operates on multirate time
stepping schemes.

In this paper we investigate the following initial value problem

y =
(
y′(t)
z′(t)

)
=
(
f (x, y(x), z(x))
g (x, y(x), z(x))

)
; [y(x0) z(x0)]T = [y0 z0]T , x > x0,

(1)

where y is the solution vector partitioned into two components that have their
own particular time scales (y represents the slow component and z the fast
one). These types of problems occur naturally in electric circuit simulations [1].
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We seek to apply time discretization methods with a different time step length
for each dynamic characteristic to (1) and consider the extrapolation methods
[4, 10] with multirate explicit and implicit base schemes.

Extrapolation Methods

Consider a sequence ni of positive integers with ni < ni+1, 1 ≤ i ≤ E
and define corresponding step sizes hi = H/ni. Further, define the numer-
ical approximation of (1) at x0 + H using step size hi and a pth order base
method

Ti,1 := yhi(x0 +H), 1 ≤ i ≤ E. (2a)

By using E approximations to (2a) with different hi’s, one can eliminate the
truncation error terms by using Richardson extrapolation. In general, high
order approximations of (1) can be obtained by solving a linear system with
E equations, with the kth solution being a numerical approximation of order
p+ k − 1 [10, Chap. II, Theorem 9.1] using the Aitken–Neville formula [7]:

Tj,k+1 = Tj,k +
Tj,k − Tj−1,k

(nj/nj−1)− 1
, j = 1 . . . k. (2b)

Scheme (2) is called the extrapolation method. The most economical choice for
the sequence nj is the harmonic sequence, nj = 1, 2, 3, . . . [3].

A popular base method is the linearly implicit Euler [4, 5] which can be
derived from the implicit Euler method applied to problem (1) under smooth-
ness assumptions: (I − hJ) (yi+1 − yi) = hf (xi,yi), where J = ∂f

∂y (xi,yi).

2 Multirate Base Methods

We propose the following multirate base methods for solving (1). The multirate
explicit Euler method is given by

yn+1 = yn + h f(yn, zn) (3a)

zn+ i
m

= zn+ i−1
m

+
h

m
g

(
Yn+ i−1

m
, zn+ i−1

m

)
, i = 1, . . . ,m,

where m is a positive integer and Yn+ i
m

is an approximation of y at xn+ i
m
.

Forward Euler is first order accurate and hence the zeroth order interpola-
tion can be used to approximate Y , the first order interpolation can also be
considered:

Yn+ i−1
m

= yn, Yn+ i−1
m

= yn+1, or Yn+ i−1
m

=
m − i+ 1

m
yn

+
i− 1
m

yn+1, i = 1, . . . ,m.
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Linearly implicit Euler method can also be considered as a candidate for
the base methods used in the extrapolation procedure. The multirate linearly
implicit method is given by

[
I − hfy(0) −hfz(0)

− h
m
gy(0) I − h

m
gz(0)

]
·
[
yn+1 − yn
zn+ 1

m
− zn

]
=

[
h f (yn, zn)
h

m
g (yn, zn)

]
, (3b)

(
I − h

m
gz(0)

) (
zn+ i

m
− zn+ i−1

m

)
=
h

m
g

(
Yn+ i−1

m
, zn+ i−1

m

)
, i = 2, . . . ,m,

where the notation f{y ,z}(0) and g{y ,z}(0) denotes the derivatives evaluated
at x0, the initial extrapolation time in (2a).

Consistency of the Extrapolated Multirate Methods

In Henrici’s notation [12], one step methods are expressed as yn+1 = yn +
hΦ (xn, yn, h). It is easy to see that methods (3) can be represented in this
notation. It follows [8,10] that schemes (3) can be extrapolated using (2) (see
[2], [10, Chap. II, Theorem 3.6]). Next we illustrate this theoretical aspect on
a numerical example.

Numerical Consistency Investigation of the Extrapolated Multirate Methods

Consider the following initial value problem
(
y(x)
z(x)

)′
=

(
Γ ε
ε −1

) ( (−1 + y2 − cos(x)
)
/(2y)(−2 + z2 − cos(ωx)
)
/(2z)

)
−

(
sin(x)/(2y)

ω sin(ωx)/(2z)

)
,

(4)

with the exact solution [y(x) z(x)]T =
[√

1 + cos(x)
√

2 + cos(ωx)
]T

shown
in Fig. 1. This problem was adapted from [1] and the scalar Prothero–Robinson
[11]. We illustrate the theoretical findings by integrating (4) with 0 ≤ x ≤ H ,
ε = 0.5, Γ = −2.0, m = ω = 20.0 and schemes (3) with successively smaller
steps H using the extrapolation procedure (2). The observed orders based on
the numerical error both in L1 and L2 norms are presented in Table 1 and
confirm the theoretical expectations.

3 Linear Stability Analysis of the Extrapolated
Multirate Methods

Following the analysis done by [13], we investigate the extrapolated schemes
with base methods (3) applied to the scaled system

(
y(x)
z(x)

)′
=

(−1 ε
ω −m

) (
y(x)
z(x)

)
= A

(
y(x)
z(x)

)
=

(
f (y(x), z(x))
g (y(x), z(x))

)
, (5)
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Table 1. The local discretization order of the extrapolation method (2a), (2b) with
the multirate base methods

2
2 3
2 3 4
2 3 4 5
2 3 4 5 6
2 3 4 5 6 7
2 3 4 5 6 7 8
2 3 4 5 6 7 8 9
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
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Fig. 1. The exact solution of the modified nonlinear Prothero–Robinson equation
(4) with ε = 0.5, Γ = −2.0, ω = 20.0

where we assume that m is a fixed integer that represents the scale difference
between the slow and the fast components, and ε and ω represent coupling
parameters. System (5) is stable if the real part of the eigenvalues of A is
negative, which gives ωε ≤ m.

The stability function R(. . . hAij . . . ) for a numerical discretization of (5)
is defined by the quantity that verifies yn+1 = R(. . . hAij . . . )yn. The method
is stable if ρ(R(. . . hAij . . . )) ≤ 1. The stability functions of extrapolated (3)
can be easily calculated using (2b) as in [11, Chap. IV].

We take a practical approach and ask the following question: How does the
stability region of a multirate method with ratio m applied to (5) compare to
the stability region of the single-rate method with the time step length of the
fastest component (i.e., H/m)? We note that the multirate method is more
efficient in this case by taking fewer steps on the slow components.

Numerical Linear Stability Investigation of the Extrapolated Multirate
Methods

We next investigate the linear stability properties of the multirate extrapola-
tion method (2), (3) applied to problem (5) with fixed ratio m = 2.
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Fig. 2. The linear stability region for problem (5) using the explicit multirate
(m = 2) method (3a) (thin red line) and the corresponding single-rate explicit
method (thick dark line) for T32 and T44
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Fig. 3. The linear stability region for problem (5) using the implicit multirate
(m = 2) method (3b) (thin red line) and the corresponding single-rate explicit
method (m = 1) (thick dark line) for T44 and T55

In Fig. 2 we show the stability regions in the hω-hε plane for the extrapo-
lated multirate explicit method (3a) for the extrapolation terms in positions
T32 and T44 (see Table 1). The stability region of the multirate method is
slightly degraded; however, for practical purposes, it is acceptable.

In Fig. 3 we show the stability regions for the extrapolated multirate
implicit method (3b) for the extrapolation terms in positions T44 and T55.
Experimentally, we determine that on the first column of the extrapolation
tableau the multirate implicit methods preserve the “unconditional” stabil-
ity of the implicit base (single-rate) method; i.e., the stability region extends
to (∞,∞) and (−∞,−∞) in the hω-hε plane. However, when the multirate
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solution is extrapolated, the stability region shrinks in quadrants II and IV
(see Fig. 3). This aspect needs to be investigated further.

4 Concluding Remarks

In this manuscript we construct extrapolated multirate implicit and explicit
discretization methods that allow to efficiently solve problems that have mul-
tiple scales. We propose two methods that are based on multirate forward and
linearly implicit Euler schemes. The cost of implementing these methods is
very small and can easily reach very high orders of accuracy.

The proposed multirate extrapolation methods represent a sequence of
embedded methods which can be used for step size control and variable
order approaches due to their trivial extension to higher orders. Extrapolation
methods are less efficient than the popular Runge–Kutta or linear multistep
schemes; however, they can be parallelized very easily [15]. Each entry on the
first extrapolation tableau column (Ti,1) can be computed independently, and
are well suited for multiprocessor/multicore architectures.

The extrapolated multirate forward Euler method shows only a slight
degradation of the linear stability region. The multirate linearly implicit
method performs very well for nonstiff problems or for stiff problems with
relaxed component coupling. The linear stability region does not resemble the
unconditional stability of the single-rate counterpart. This aspect needs to be
investigated further.
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Summary. We examine the effects of cardiac geometry and architecture on the
excitable media paradigm, and illustrate the effect of cardiac structure on the
dynamics of arrhythmias by investigating scroll wave filament dynamics in two
biophysically-detailed heterogeneous models of the human left ventricular free wall.

1 Introduction

During ventricular fibrillation (VF), rapid, self-sustained and spatio-
temporally highly irregular electrical excitation waves in the ventricles results
in loss of their normal synchronised rhythmic beating (Fig. 1). Both exper-
imental [11] and computational [10] evidence supports the idea that VF is
sustained by re-entrant wave propagation, in which a wave of excitation prop-
agates through, away from, and back into, the same piece of tissue. Re-entrant
waves have been mathematically idealised in extensive homogeneous isotropic
excitable media by 2D spiral and 3D scroll waves [17]. Virtual cardiac tis-
sues have proved to be an effective tool for simulating cardiac propagation
patterns, and for proposing hypotheses that can be tested experimentally
[6]. This excitable medium paradigm provides a simple explanation for the
development of monomorphic ventricular tachycardia (VT) into VF: the nor-
mal sinus rhythm is a repetitive sequence of wavefronts propagating though
the myocardium; a wavebreak leads to VT (analogous to a spiral or scroll
wave), which breaks down into the spatio-temporal irregularity of VF. This
oversimplified and seductive cartoon is illustrated in Fig. 1, where arrhyth-
mogenesis is explained in terms of wave stability. This reaction diffusion
framework has been remarkably successful in providing simple mathemati-
cal explanations for arrhythmic behaviours, e.g. meander of spiral waves in
terms of Hopf bifurcations [1] and its control by resonant drift [5]. However, it
fails to address some details and major problems of the clinical phenomenol-
ogy. Clinicians talk of substrate for arrhythmias, not as the properties of the
cardiac tissue within which arrhythmias occur, but as their heterogeneity.
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Fig. 1. (a) Electrocardiogram showing degeneration into cardiac arrhythmia – from
normal sinus rhythm (NSR) to ventricular tachycardia (VT) then ventricular fibrilla-
tion (VF). (b) In two dimensions, propagation of a continuous wavefront (idealised
as a plane wave) represents one excitation of NSR, wavebreak leading to a pair
of re-entrant waves (idealised by a single spiral wave) underlies VT, while spatio-
temporal irregularity underlies VF. Excited tissue is lighter, resting tissue is darker.
Also shown are membrane potential recordings from the sites indicated by asterisks.
(c) In three-dimensional tissue with orthotropic (fibre and sheet) structure extracted
from a diffusion tensor imaged human heart, the qualitative dynamics of propagation
underlying the behaviours are the same, but quantitative differences exist

Clinically, re-entrant arrhythmias are more likely to occur when there is
an increase in spatial heterogeneity, in either the excitability (dynamics) or
coupling (geometry/architecture) components underlying propagation. Het-
erogeneities in excitability can be mapped by molecular mapping techniques
[21], and architectural heterogeneities by diffusion tensor magnetic resonance
imaging (DT-MRI) [3]. Mathematically, these heterogeneities emerge as space
scales, surface (endo- and epicardial) and internal (scar tissue and blood ves-
sels) boundary conditions, and as spatial changes in excitation and coupling
parameters.

2 Ventricular Wall Structural Models

Anisotropic fibre orientation and possible orthotropic sheet structure through-
out the ventricular myocardium [9], along with the tissue geometry and het-
erogeneous cell electrophysiology, underlie both the spatio-temporal pattern
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of the spread of electrical excitation, and the mechanical properties. Propa-
gation of electrical activity is orthotropically anisotropic [14], being fastest in
the direction of the long axis of the fibre due to the presence of gap junctions
that are principally located at the ends of the myocytes, and slowest across
any sheet planes due to the small number of muscle branches connecting oth-
erwise electrically-insulated muscle sheets [14, 16]. Contraction of myocytes
occurs in the long axis direction and, together with transmural shear along
sheet planes, results in transmural thickening and apex-base shortening. In
DT-MRI [2], theory suggests that the primary eigenvector of the measured
diffusion tensor will be along the predominant direction of myocyte long-
axis orientation [13, 15, 18] and that the secondary eigenvector will lie in the
cleavage plane between sheets [12].

3 The Human Virtual Ventricular Wall

One possible mechanism for the transition from VT to VF is when a single
re-entrant wave of excitation (a scroll wave) that rotates around a phase singu-
larity (a filament) with a high frequency breaks down into multiple wavelets.
We used the human ventricular electrophysiology model of Ten Tusscher et al.
[19] and constructed two heterogeneous models of the left ventricular free
wall in order to investigate the influence of tissue geometry and architec-
ture on filament dynamics: (1) a simple cuboid model with dimensions of
60 × 60 × 20 mm, where the fibre direction always pointed parallel to the
endocardial and epicardial surfaces and rotated 120◦ across the ventricular
wall at a rate of 6◦/mm; and (2) a wedge model with geometry and architec-
ture obtained from a DT-MRI data set of the human ventricles. The wedge
dimensions are similar to those of the cuboid. In all cases, we set the diffusion
coefficient in the fibre direction to give a conduction velocity for a solitary
plane wave of 0.7 m s−1. For isotropic propagation we set the diffusion coeffi-
cients in the fibre, sheet and sheet normal directions the same. To introduce
fibre orientation we set the diffusion coefficients with the ratio 4:1:1 such that
conduction velocity is twice as fast along the fibre as across it, i.e. cylindri-
cally anisotropic. To introduce sheet structure and orthotropic propagation,
the diffusion coefficients were set with the ratio 36:9:1 to give a conduction
velocity ratio of 6:3:1. For filament tracking and quantification we used the
method described by Fenton and Karma [8]. We integrated equations using a
Forward Time Centred Space method, with an operator splitting and adaptive
time step technique [20] utilising a minimum time step of Δtmin = 0.02 ms
and a maximum time step ΔT = 0.2 ms. Space steps in the cuboid model
were Δx = Δy = Δz = 0.33 mm. In the wedge model, space steps were
Δx = Δy = 0.425 mm and Δz = 0.5 mm as defined by the DT-MRI dataset,
to give approximately 4×105 nodes inside the tissue. See [4] for more detailed
information on the models.

Figure 2 shows snapshots at t = 2 s of membrane potential on the surface
of the model geometries and corresponding filament locations, for both models
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Fig. 2. Snapshots of membrane potential and filament locations after 2 s of re-
entrant activity in isotropic, anisotropic and orthotropic cuboid and wedge models.
For both models the snapshots are from an epicardial aspect, with the scroll wave
rotating clockwise
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Fig. 3. Filament trajectories on the epicardial surface of the cuboid and wedge
models during 1 s of simulation, under isotropic, anisotropic and orthotropic condi-
tions. The asterisk on the isotropic cuboid trajectory indicates where the filament
moved off the epicardial surface of the geometry

under isotropic, anisotropic and orthotropic conditions. For the isotropic
cuboid, the scroll wave dies out soon after as the filament reaches the bound-
ary. The multiple filaments for the orthotropic cuboid show the beginning of
scroll wave breakup – numerous wavelets form soon after and the activation
patterns in the tissue represent the complex patterns seen during VF. Note
the numerous filaments present in the wedge model under all three conditions.
Filament trajectories on the epicardial surfaces of the geometries are shown
in Fig. 3. For the cuboid model, changing from isotropy through anisotropy
to orthotropy has the effect of rescaling the meander of the filament in the
direction perpendicular to the fibre axis, which on the epicardial surface is the
sheet normal direction. Scroll wave filament length during 1 s of simulation
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Fig. 4. Scroll wave filament length during 1 s of simulation in the cuboid and wedge
models, under isotropic, anisotropic and orthotropic conditions. Note the different
scales on the ordinate for the cuboid and wedge models

is shown in Fig. 4. Note the different scales on the ordinate for the cuboid
and wedge models. For all conditions, the filament length in the cuboid is
longer than in the wedge, a result of tissue geometry (i.e. size) rather than
architecture. Oscillations of filament length are evident in all simulations, a
consequence of filament twist which is due to the heterogeneous excitation
kinetics in the models – see [7]. For both models, filament length increases
as anisotropy and then orthotropy are introduced. These effects – due to
rotational anisotropy – further increase the effects of the transmural exci-
tation heterogeneity. Although filament curvature increases with anisotropy
then orthotropy in the wedge model, the same pattern is not seen in the
cuboid. The maximum twist along a single filament increases in both models
as anisotropy and then orthotropy are introduced.

4 Conclusions

The normal sinus rhythm of the heart, re-entrant arrhythmias and fibrillation
can all be described by the propagation of nonlinear waves in an excitable
medium. Physiological and pathological patterns can be explained in terms
of nonlinear wave properties – the dependence of velocity on rate by nonlin-
ear dispersion, and breakdown from spatio-temporal patterned activity into
irregularity by interactions between waves and by changes in wave stability.
However, this emphasis on nonlinear wave dynamics neglects the overall archi-
tecture of the heart and its heterogeneities. By combining all these structural
(or parametric) heterogeneities into computational models of excitation, prop-
agation can be explored and the resultant functional heterogeneities, that are
produced by slow recovery processes, emerge. Although the types of possible
wave behaviours follow from the physics of excitable media, the details of the



354 A.V. Holden et al.

initiation and subsequent evolution of patterns of excitation in cardiac muscle
depends on the details of geometry, anisotropic and orthotropic architecture,
and heterogeneities.
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Summary. 3D numerical simulations of unipolar electrograms (EGs) and hybrid
monophasic action potentials (HMAPs) were performed by using the cardiac Bido-
main model with homogeneous and heterogeneous Luo–Rudy I membrane models.
While estimating local recovery times from EGs can be difficult in case of flat
T-waves or linear ST ramps, the HMAP signal always displays a monophasic down-
stroke as does the transmembrane action potential (TAP) and contains valuable
information for assessing repolarization time. The simulation results show that: (a)
the HMAP fast repolarization time is a reliable estimate of the TAP fast repo-
larization time; (b) the HMAP ending (90%) repolarization time is a less reliable
estimate of the TAP ending repolarization time; (c) analogous conclusions hold for
the associated action potential durations APD and APD90.

1 Introduction

While methods for determining cardiac activation times from electrographic
signals recorded directly from the heart have been firmly established, see e.g.
[11] and the references therein, there are still uncertainties and controversies
about the best method for determining cardiac recovery times. The repo-
larization time at a given point x of the cardiac domain is related to some
time markers associated with the downstroke of the transmembrane action
potential (TAP, considered to be the gold standard) recorded at x, or with
the T wave of the extracellular unipolar recording (EG) recorded at x. An
alternative extracellular technique is based on the downstroke of the hybrid
monophasic action potential (HMAP; see [6, 8]) at x, obtained by taking as
a reference the potential at a fixed permanently depolarized (PD) site and
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reversing its polarity. The HMAP is equivalent to the difference between the
EG at the PD site and the EG at the exploring site x. The HMAP infor-
mation content during the repolarization phase has been recently questioned
and the HMAP genesis has been a controversial subject. In this paper, we
present the results of a Bidomain – LR1 3D simulation study showing that
HMAPs contains valuable information for assessing both the fast and ending
TAP repolarization times, confirming our recent study [4].

2 Methods

2.1 The Bidomain: LR1 Model

Our simulation study is based on the macroscopic bidomain representation
of the cardiac tissue coupled with Luo–Rudy I [7] ionic membrane model.
This system allows us to compute the intra and extracellular potentials
ui(x, t), ue(x, t), the transmembrane potential v(x, t) = ui(x, t)− ue(x, t), the
gating variables w(x, t) and the ionic concentrations c(x, t), as the solutions
of the reaction-diffusion system
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cm
∂v

∂t
− div(Di∇ui) + iion(v, w, c) = −iiapp in H × (0, T )

−cm∂v
∂t
− div(De∇ue)− iion(v, w, c) = ieapp in H × (0, T )

∂w

∂t
−R(v, w) = 0,

∂c

∂t
− S(v, w, c) = 0 on H × (0, T )

nTDi,e∇ui,e = 0 in ∂H × (0, T )
v(x, 0) = v0(x), w(x, 0) = w0(x), c(x, 0) = c0(x) in H.

(1)

Here cm = χCm and iion = χIion denote the capacitance and the ionic
current of the membrane per unit volume, and ii,eapp the applied intra- and
extracellular currents per unit volume satisfying the compatibility condition∫

H iiapp =
∫

H ieapp. χ denotes the surface membrane area per unit volume. The
cardiac volume H is considered fully insulated, since we have imposed zero
normal fluxes of intra- and extracellular currents. The extracellular potential
ue, defined apart from an independent constant determined by the choice of
the reference potential, is determined by the condition

∫
H
ue(x, t)dx = 0.

2.2 Numerical Methods

The cardiac domain H considered in this study is a cartesian slab of dimen-
sions 1.92 × 1.92 × 0.48 cm3, modeling a portion of the left ventricular wall.
In all computations, a structured grid of 192 · 192 · 48 hexahedral isopara-
metric Q1 finite elements of size h = 0.1 mm is used in space, while the time
discretization is an Implicit-Explicit Euler method. The linear solver at each
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Fig. 1. Left: cardiac slab H , permanently depolarized sites PD1, PD2, PD3, ischemic
region, transmural needles. Right: unipolar electrograms EGx at the exploring site
x (bottom) and EGd at the PD site (middle), hybrid monophasic action potential
HMAPx at x (top)

time step is the conjugate gradient method, preconditioned by a hybrid multi-
level Schwarz preconditioner. We use the PETSc parallel library [1] in order to
ensure the parallelization and portability of our code, run on a Linux Cluster
with 56 Opteron AMD processors and Infiniband network. Each simulation
required about 8 h on 36 processors; further numerical details on our parallel
solver can be found in [2, 3, 9, 12].

2.3 Multi-Electrode Array

In our cardiac slab H , we consider a matrix of 12×12 exploring multielectrode
needles spaced 1.6 mm from each other and 0.8 mm from the slab boundary,
as shown in Fig. 1. Each needle carries 13 recording sites, spaced 0.4 mm along
the shank. We then have 12×12 sites on each of the 13 intramural planes, for
a total of 12× 12× 13 = 1,872 recording sites in the slab, each recording the
intra and extracellular potentials.

2.4 Potential Waveform and Repolarization Markers

At each recording site x we store the following waveforms:
EGx(t) = ue(x, t): unipolar electrogram at the exploring site x,
TAPx(t) = ui(x, t)− ue(x, t): transmembrane potential at x,
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HMAPx(t) = EGd(t)− EGx(t): hybrid monophasic action potential at x,
where EGd(t) is the unipolar electrogram at a permanently depolarized site
PD (see Fig. 1 and below). From these waveforms, we then compute the
following markers of fast repolarization time:

RTtap(x) = time of min ∂tTAPx(t) during downstroke,
RThmap(x) = time of min ∂tHMAPx(t) during downstroke,

and the following markers of ending repolarization time:
RT90tap(x): instant when TAPx(t) = 90% of its resting value during

downstroke,
RT90hmap(x): instant when HMAPx(t) = 90% of its resting value during

downstroke.

2.5 Transmural Heterogeneity

We consider three different types of transmural APD distribution, one homo-
geneous (H-slab) and the other two heterogeneous (3-slab and W-slab), while
in any plane parallel to the epicardium all cells have the same intrinsic APD.
In the heterogeneous slabs, the intrinsic APD of the cells is obtained by mul-
tiplying the potassium current IK in the LR1 model by a factor factIK , as
detailed in Table 1. In this way, we mimic the experimental transmural APD
profile with M-cell layers as in [13] (3-slab) or as in [14, Fig. 4], [10, Fig. 5]
(W-slab); see [3] for more details.

2.6 Subendocardial Ischemia

Two simulations with subendocardial moderate (MI-slab) and severe (SI-slab)
ischemic regions are performed. The ischemic region has dimensions 0.4×0.4×
0.16 cm3 and is located as shown in Fig. 1. In the LR1 model, the current IK
is scaled by a factor 2.325, yielding TAPs with APD90 = 250 ms. Inside the
ischemic region, the extracellular potassium concentration [K]o is increased
from 5.4 mM (control) to 10.5 mM (MI-slab) and 18 mM (SI-slab).

Table 1. Parameter calibration for modeling the transmural heterogeneities in the
three cardiac slabs H-slab, 3-slab, W-slab

H-slab 3-slab W-slab

# of layers 1 3 4
Endo Mid Epi Endo Sub-endo Mid Epi

thickness (cm) 0.48 0.16 0.16 0.16 0.058 0.096 0.254 0.072
fact IK 1 2.62 1.95 2.88 2.71 1.95 2.47 2.88
APD (ms) 266 235 272 225 232 272 242 225
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2.7 Permanently Depolarized (PD) Volume

In order to generate an almost constant TAP inside a small volume, denoted by
permanently depolarized (PD) volume, we assign the extracellular potassium
concentration equal to the intracellular one, i.e. IK1 is zero in the small PD
volume with dimensions 0.8 × 0.8 × 0.8 mm3. We considered three PD sites
labeled PD1, PD2, PD3 in Fig. 1, but for brevity we only report the results
with PD3.

2.8 Stimulation Site

Inside the PD volume the transmembrane potential values are above thresh-
old thus generating a first excitation-recovery TAP that sweeps the cardiac
slab H . We wait for 500 ms and take the steady state reached by the bidomain
system as the initial condition for our simulations. An extracellular stimulus
(ieapp = −250 mA/cm3 for 1 ms) is then applied in a small volume (3 mesh
points in each direction) at the locations A in Fig. 1 and an intracellular stim-
ulus iiapp = ieapp is also applied in order to satisfy the compatibility condition
for the solvability of the bidomain system 1.

3 Results

The results of Table 2 show a very high correlation coefficient (≥ 0.98) between
both the markers of fast repolarization RThmap and RTtap and the markers
of ending repolarization RT90hmap and RT90tap. This good global matching,
confirmed by the regression lines of Fig. 2, top, assures a high reliability of
the markers in terms of localizing regions that repolarize first and last and
in terms of repolarization patterns. RThmap provides good estimates of RTtap

with average discrepancy of about 2 ms, while RT90hmap provides less accu-
rate estimates of RT90tap with average discrepancy of about 4 ms. This lower
accuracy is also confirmed by the histograms reported in Fig. 2, bottom.

Table 2. Recovery times and action potential duration markers discrepancies

RThmap vs RTtap RT90hmap vs RT90tap ARIhmap vs APD ARI90hmap vs APD90

Mean Std Corr Mean Std Corr Mean Std Corr Mean Std Corr

H-slab 1.83 1.60 0.99 3.04 2.15 0.99 1.83 1.60 0.77 3.04 2.15 0.72

3-slab 2.39 2.22 0.98 5.27 2.45 0.98 2.39 2.22 0.94 5.27 2.45 0.92

W-slab 2.07 2.00 0.99 5.15 1.97 0.99 2.07 2.00 0.92 5.15 1.97 0.95

MI-slab 2.05 2.99 0.98 3.07 2.24 0.98 2.05 2.99 0.93 3.07 2.24 0.90

SI-slab 1.81 1.53 0.99 2.95 1.87 0.98 1.81 1.53 0.84 2.95 1.87 0.63

Global 2.03 2.15 0.98 3.90 2.40 0.98 2.03 2.15 0.92 3.90 2.40 0.88

Mean Average absolute difference between two markers, Std Standard deviation of
the absolute difference between two markers, Corr Correlation coefficient between
two markers
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Fig. 2. Top: regression lines of RThmap vs RTtap (left) and RT90hmap vs RT90tap

(right), for all 5 slabs of Table 2. Bottom: histograms of discrepancies RThmap−RTtap

(left) and RT90hmap−RT90tap (right) with 1 ms bins, for all 5 slabs of Table 2

Despite this qualitatively good global performance, the extracellular RT
markers do not always yield an accurate estimate of the spatial distribution of
TAP-based repolarization time, because some local large discrepancies might
ensue. A preliminary study of the reliability of EG-based RT markers has been
presented in our recent work [5], here extended to include also the presence
of ischemic regions. Nevertheless, HMAP-based markers represent a reliable
alternative for estimating RTtap (RT90tap) at recording sites located inside or
near the borders of the ischemic region where the classical EG-based markers
may fail because of linear ST ramp or absence of T wave.

References

1. Balay, S., et al.: PETSc home page. http://www.mcs.anl.gov/petsc, 2001
2. Colli Franzone, P., Pavarino, L.F.: Math. Mod. Meth. Appl. Sci. 14(6), 883–911

(2004)



Fast and Ending Repolarization Times in Monophasic Action Potentials 361

3. Colli Franzone, P., Pavarino, L.F., Taccardi, B.: Math. Biosci. 204, 132–165
(2006)

4. Colli Franzone, P., Pavarino, L.F., Scacchi, S., Taccardi, B.: Am. J. Physiol.
Heart Circ. Physiol. 293, H2771–H2785 (2007)

5. Colli Franzone, P., Pavarino, L.F., Scacchi, S., Taccardi, B.: FIMH07. In: Sachse,
F.B., Seemann, G. (eds.) LNCS, vol. 446, pp. 139–149. Springer, Berlin (2007)

6. Franz, M.R.: Monophasic Action Potentials: Bridging Cells to Bedside. Futura
Publishing Company, New York (2000)

7. Luo, C., Rudy, Y.: Circ. Res. 68(6), 1501–1526 (1991)
8. Nesterenko, V.V., Weissenburger, J., Antzelevitch, C.: J. Cardiovasc.

Eletrophysiol. 11, 948–951 (2000)
9. Pavarino, L.F., Scacchi, S.: SIAM J. Sci. Comp. 31(1), 420–443 (2008)

10. Poelzing, S., Rosenbaum, D.S.: Am. J. Physiol (Heart Circ. Physiol.) 286,
H2001–H2009 (2004)

11. Punske, B.B., et al.: Ann. Biomed. Engrg. 31(7), 781–792 (2003)
12. Scacchi, S.: Comp. Meth. Appl. Mech. Engrg. 197(45–48), 4051–4061 (2008)
13. Viswanathan, P.C., Shaw, R.M., Rudy, Y.: Circulation 99, 2466–2474 (1999)
14. Yan, G.X., et al.: Circulation 98, 1921–1927 (1998)



Framework for Modular, Flexible and Efficient
Solving the Cardiac Bidomain Equations Using

PETSc

G. Seemann1, F.B. Sachse2, M. Karl1, D.L. Weiss1, and V. Heuveline3,
and O. Dössel1
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Summary. In this work, a new framework is presented that is suitable to solve the
cardiac bidomain equation efficiently using the scientific computing library PETSc.
Furthermore, the framework is able to modularly combine different ionic channels
and is flexible enough to include arbitrary heterogeneities in ionic or coupling channel
density. The ability of this framework is demonstrated in an example simulation in
which the three-dimensional electrophysiological heterogeneity was adjusted in order
to get a positive T-wave in the body electrocardiogram (ECG).

1 Introduction

The cardiac electrophysiological modeling got more and more quantitative in
the last years. This is mainly based on new measurement results concern-
ing e.g. electrophysiology, heterogeneity, and fiber orientation. Furthermore,
additional complex approaches like Markovian models replace the traditional
Hodgkin–Huxley type formulations [3]. Cardiologists got interested in the
modeling. This implies the use of whole heart models of humans or even
ECG simulations. These interests lead to the necessity of a modular, flexible
and efficient framework which is presented in this work.

The system includes the individual integration of each channel equation to
consider time constants of the different processes. It is able to plug the differ-
ent channels flexible and modularly into new electrophysiological models. This
procedure can be done for a variety of tissue types and on arbitrary geome-
tries. Any fiber orientation can be considered to account for the intra- and
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extracellular anisotropy. Different modules exist to generate system matrices
within different methods (e.g. FDM, FEM) to solve them using PETSc.

2 Methods

In order to describe the electrophysiological processes in the heart by mathe-
matical models, several microscopic and macroscopic approaches exist. In this
work, the macroscopic reaction-diffusion system called bidomain model [2] was
used as basis for the developed framework. This approach consists of a reac-
tion part describing the electrophysiology of each mathematical cell and a
diffusion part responsible for the excitation conduction process in a tissue
model. Using the bidomain model, macroscopic electrophysiological processes
in the heart can be investigated.

The tissue model describes the geometrical basis for the modeling. It could
either be a schematic representation of the heart or based on segmented image
data. Fiber orientation can be integrated using diffusion tensor MRI data or
integrated with rule based methods. Figure 2 shows an example of a geometry
extracted from the MEET Man project (www.ibt.kit.edu/meetman.php). For
a realistic modeling, both the ventricles and the atria should be considered.

Cardiac electrophysiological models are capable to describe single cardiac
cell behavior. They describe the transmembrane voltage Vm, gating processes
and the change of ion concentrations with a set of non-linear, coupled ODEs.
The modeling is based on the Hodgkin–Huxley (HH) equations:

dVm

dt
= − 1

Cm

(∑
Iion − Im

)
(1)

Iion = gmax

∏
pi(Vm − Eion) with

dpi

dt
= α(1 − pi)− βpi (2)

whereas Cm the membrane capacitance, Iion ionic currents of different types,
Im the membrane current, gmax the maximum conductance of a channel,
Eion the Nernst potential and pi the gates describing the opening and closing
process of a gate with Vm dependent α forward and β backward rate constants.
Different ionic channel currents Iion have different gating properties leading
to the specific course of the action potential in cardiac cells.

The bidomain model that is based on two coupled Poisson’s equations can
describe tissue electrophysiology based on these single cell models:

∇ · ((σi + σe)∇Φe) = −∇ · (σi∇Vm) (3)

∇ · (σi∇Vm) +∇ · (σi∇Φe) = β

(
Cm

dVm

dt
+

∑
IIon

)
− Isi (4)

Here, σi and σe are the intra- and extracellular conductivity tensors describ-
ing anisotropic properties due to the fiber orientation, Φe the extracellular
potential and Isi the stimulus current. Equation 3 is an elliptical PDE which
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Fig. 1. Structure of the bidomain framework. (top) A matrix generator creates
the system matrix using different input information. (middle) The main program
(acCELLerate) calculates the bidomain equations. (left) The pre-conditioners and
solvers provided by PETSc can be combined. (right) The membrane models were
plugged together from different ion channel models and solved by ODE methods.
Arbitrary heterogeneity can be set for each ion channel for each computational cell

consumes the most time solving the bidomain model. The non-linear parabolic
PDE in (4) involves the HH equations. To consider different media like tissue
and blood, boundary conditions need to be included [2]. Under assumption
of equal anisotropy ratios between intra- and extracellular space, (3) can be
neglected and the approach reduces to the monodomain model.

3 Results

The bidomain framework consists of four components. The first is a general
system matrix generator. The second a library of channel models that can be
integrated into membrane models. A third that uses PETSc to pre-condition as
well as solve the LSE iteratively. Finally, the main component that integrates
modularly the other components and does the time stepping (see Fig. 1).

The system matrix generator is compiling a matrix into the PETSc format.
This matrix describes the operator ∇ · σ∇. The matrix generator considers
different tissue types like cardiac cell and blood. It can assign spatially vary-
ing conductivity values describing gap junction heterogeneity. Orthotropic
anisotropy is considered using arbitrary fiber orientation for each computa-
tional cell. At this stage, boundary conditions are inserted into the matrix.
Depending on the data format, the accuracy and the computational equip-
ment, finite differences or finite element methods were used to form the LSE.
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Solving the LSE of the left part of (3) is done by standard pre-conditioners
and solvers of PETSc (Portable, Extensible Toolkit for Scientific Compu-
tation, www.mcs.anl.gov/petsc). Computational tests have shown that pre-
conditioning with successive over-relaxation (SOR) in combination with solv-
ing the LSE using conjugate gradient (CG) with parameter adjustments lead
to the fastest solution [4]. Additional decrease in computational time can be
achieved when solving the LSE not for every time step than the ODE since
the extracellular processes are slower than those of the cell processes.

Most of the flexibility, modularity and efficiency is included in the third
component. With this part, the electrophysiological properties of cardiac cells
are reconstructed. Computational efficiency is achieved by several mecha-
nisms. Pre-calculating constants is performed only during the initialization
of the model. Additionally, look-up tables were generated for those variables
that are only dependent on Vm. During the calculation, the Rush–Larsen
scheme [6] is used reducing the number of mathematical functions signifi-
cantly. Each ion channel is calculated independently from the others. This
has the advantage that it’s ODEs can be treated separately by e.g. for-
ward Euler or more advanced and time adaptive methods provided e.g. by
CVODE (www.llnl.gov/CASC/sundials). Furthermore, this approach eases
the adaption of existing and the design of new electrophysiological models.
This is possible since each channel model can be plugged modularly into a
membrane model that only provides information about the membrane con-
ductance and the intra- and extracellular ion concentrations [12]. Another
important part that increases the flexibility is the strict division of parameters
and equations using these parameters. The advantage is that all parameters
can be changed without recompiling the code. A further important part to
generate a flexible framework is that each parameter of the channel model
can have arbitrary values spatially distributed in order to reconstruct electro-
physiological heterogeneity. This is achieved by over-loading the corresponding
parameter from outside the library.

The main component of the framework is “acCELLerate” (www.ibt.kit.
edu/acCELLerate.php). The software internally uses the so-called operator
splitting method [8,11]. The advantage of this process is that the cell models,
the solving of the LSE and the matrix-vector operations can be performed
sequentially and the software is more modular. The benefit is that only one
software for the bidomain model is necessary even if the data format is varying.
Additionally, the main component is responsible for IO, to communicate with
the user or additional software using the generated data and to parallelize the
process using the message passing interface (MPI) within PETSc.

To illustrate the features of this simulation framework an example simula-
tion was performed investigating the effects of different electrophysiological
heterogeneity on T-wave morphology. Heterogeneity was described three-
dimensional for several ionic channels in transmural, intraventricular and
apico-basal direction as summarized in [13]. The heterogeneity was assumed
to be distributed gradually so that almost each cell is calculated with different
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Fig. 2. Electrophysiological heterogeneity and ECG waves. (left) Distribution of the
maximum conductance gKs (blue: 0.049 nS/pF; red : 0.49 nS/pF). The density of
this channel is distributed heterogeneously in transmural, intraventricular and apico-
basal direction. (right) Resulting ECGs of different heterogeneous configurations.
The configuration “full heterogeneous” generates the most realistic T-wave

parameters. As an example, the distribution of the maximum conductance gKs

of the slow delayed rectifier potassium channel is shown in Fig. 2. For several
configurations from homogeneous over only transmural or only apico-basal
heterogeneity towards full heterogeneity simulations of the excitation prop-
agation in the heart were calculated. The corresponding body ECGs were
calculated using the bidomain model by extracting the extracellular field
at standard derivation points on the MEET Man surface. The most realis-
tic T-wave was generated only for the full heterogeneous configuration (see
Fig. 2).

To calculate these results 48 2.8 GHz Intel Xeon “Harpertown” CPUs in a
Xserve cluster were used. The heart model had 4.4 Mio. active ten Tusscher
models [10] with a spatial resolution of 0.4 mm. The temporal discretization
was 0.02 ms. The calculation of each heart cycle took approximately three
hours using SOR pre-conditioner and the CG solver. The ECG calculation
was performed on a tetrahedral mesh of the thoracic geometry consisting of
113,839 nodes. This calculation needed another hour.

4 Discussion and Conclusions

The new tool “acCELLerate” was developed solving large scale electrophysio-
logical reaction-diffusion problems. It has an extensible program structure. By
using PETSc including parallelization, time and memory efficient tools were
implemented. The modular structure discloses the potentialities of extension
and enables the integration of different cell models with variable parameters
to achieve highly realistic simulations of electrophysiological processes.

Other groups have also developed efficient bidomain frameworks [1, 5, 7–
9, 11, 14]. Mostly, they focused on optimizing the solution for (3) being the
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most time consuming part. The advantage of the presented framework is the
efficient solving of (4). The framework is modular and flexible enough to insert
a huge variety of measurement data. Thus, it is applicable for solving the
monodomain model and still has advantages for the bidomain model.

Further increase in computation time can be achieved by using spatially
adaptive grids [1, 14]. Here, the grid resolution can be lower in areas with
small variations of Vm. The disadvantage of this approach is that for each
time step the system matrix has to be recompiled. This could superimpose
the benefits of this approach, especially when simulating arrhythmia with only
few situations of small Vm changes. The use of specific pre-conditioners [5, 7]
could increase the calculation speed of the elliptical PDE. When using a large
amount of CPUs this approach seems to be inevitable.

In future work, the advantage of a linearly implicit solution for (4) [1] has
to be tested. At least the stability of the solution is higher with larger time
steps since the ODE of (4) is stiff. On the other hand, another PDE needs to
be solved inserting additional computation time. This procedure needs to be
investigated if this implicit scheme is applicable to the bidomain model.

Cardiac dysfunction is the most common reason for death. To understand
pathologies, insight into the electrophysiology is necessary. Additional to clin-
ical experiments, computer simulations of the heart will be used to gain this
knowledge. New measurement data has to be incorporated generating accurate
electrophysiological models of the diseases. The presented flexible program is
capable of using this data that is spatially and temporally varying. By this
the framework will be able to complement experiments and will help to better
understand the heart, as well as to support diagnosis and therapy.
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Summary. Reasons for the failure of adaptive methods to deliver improved effi-
ciency when integrating monodomain models for myocardiac excitation are dis-
cussed. Two closely related techniques for reducing the computational complexity of
linearly implicit integrators, deliberate sparsing and splitting, are investigated with
respect to their impact on computing time and accuracy.

1 Introduction

The excitation of myocardial cells is the basis for heart contraction and
thus has attracted research in modelling as well as simulation. The prop-
agation of a depolarization front of the transmembrane potential through
the myocardium ultimately leads to the release of Ca2+ and thus a contrac-
tion of the muscle fibers. The evolution of the transmembrane potential is
described by a set of reaction-diffusion equations modeling the ion trans-
port by anisotropic diffusion between cells as well as between intra- and
extracellular space (cf. [10–12]).

Under the simplifying assumption of identical intra- and extracellular
diffusion tensor, myocardial excitation is described by the monodomain equa-
tion linking the transmembrane potential v to gating variables w and ion
concentrations c:

cm∂tv = div(DM∇v) + Iion(v, w, c) (1)
∂tw = R(v, w) (2)
∂tc = S(v, w, c) (3)

The reactions Iion, R, and S are specified by membrane models. Here we
restrict our attention to a very small phenomenological model by Aliev and
Panfilov [1] and a physiological model by Luo and Rudy [7] of moderate
complexity.
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2 Adaptive Integration of Reaction-Diffusion Equations

The most common approach to spatial discretization of (1)–(3) is to use finite
element methods on a fixed, quasi-uniform mesh. Due to the small width of
the depolarization front relative to the heart geometry, rather fine meshes are
needed in order to obtain sufficiently accurate solutions. Recently, adaptive
FE methods have been proposed for simulating the myocardiac excitation [2,
3, 5, 13].

The results reported e.g. in [5] using the fully adaptive, linearly implicit FE
code KARDOS [6] are mixed. On one hand, error control works just as expected
and the number of vertices encountered in adaptive mesh refinement is a factor
150 below the number of vertices in a uniform mesh achieving the same local
resolution (see Fig. 1 for illustration). On the other hand, the reduction in
the number of degrees of freedom is not translated into savings of computing
time, which is unacceptably high.

There seem to be several reasons for this effect. First of all, as long as a
depolarization front is traversing the domain, the time step is limited by front
speed and width. Only when the whole domain is covered by the plateau
phase, the time step increases significantly. In the fibrillation example com-
puted in [5], at any point in time there is a depolarization front somewhere
in the domain, such that the time step remains small. Second, error control
and mesh adaptation require the computation of an error estimator, which
takes a significant part of the computational work. Third, mesh modifica-
tions require the frequent assembly of stiffness and mass matrices, up to a few
times each time step. Finally, mesh modifications themselves and the resulting
non-locality of data structures take their toll.

Fig. 1. Typical front of potential in ventricular fibrillation and the corresponding
adaptive mesh
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3 Deliberate Sparsing

Rosenbrock methods, which are linearly implicit Runge–Kutta methods, are
used in KARDOS for time stepping. The lowest order method is the linearly
implicit Euler scheme

(I − τ(J +∇ ·D∇))uk+1 = uk + τ(f(uk)− Juk) with J = f ′(uk) (4)

for solving ∂tu = div(D∇u) + f(u).
When applied to the monodomain equations (1)–(3), the linear system (4)

has to be solved with a nonsymmetric block matrix

JAP =
[
M − τ(∂vfv + A) −τ∂wfv

−τ∂vfw M − τ∂wfw

]
or JLR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for the Aliev–Panfilov and Luo–Rudy membrane models, respectively. A
denotes the stiffness matrix whereas M stands for the mass matrix. ∗ denotes
a non-zero matrix with the sparsity structure of M . One problem with Rosen-
brock methods is that their convergence order is reduced if the linear systems
corresponding to (4) is not solved exactly.

A subset of linearly implicit methods, so-called W-methods (cf. [4]), allows
to use arbitrary matrices J �= f ′ without affecting the order of convergence.
This enables deliberate sparsing [9], a technique to drop certain parts of f ′

in order to decrease the computational complexity in computing J and solv-
ing the system. Even though in principle the error constant is affected by
the approximation error J − f ′, in practice the step sizes depend mostly on
how well the large negative eigenvalues are captured. This is because stabil-
ity limits the step size for explicit methods. Numerical experiments indicate
that for normal heart beat cycle and both models, the system’s stiffness is
dominated by the diagonal blocks, such that dropping all off-diagonal blocks
is possible without decreasing step size. The remaining block diagonal B is
not only smaller, but also symmetric, which allows to use more efficient meth-
ods for symmetric matrices. Nevertheless, time savings given in Table 1 are
disappointing. The reason for this is not yet clear and under investigation.

4 Splitting and Mass Lumping

Another sparsing opportunity on the element level comes from the fact that no
spatial derivatives are involved in the reactions R and S. Instead of using the
FE framework for propagating the gating variables and ion concentrations,
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their values can be computed spatially decoupled by solving the ODE at each
mesh vertex. This is known as splitting [8], leaving just a 1 × 1 FE “block”
system to be solved.

From a different point of view, mass lumping by using quadrature rules
with nodes only at the element vertices when assembling the mass matrices is
an established method to obtain diagonal mass matrices. Of course, diagonal
mass matrices are easily stored and trivially inverted. A closer inspection
reveals that splitting leads to diagonal blocks in the notation of Sect. 3 as
well. Moreover, splitting and mass lumping are mathematically equivalent,
which permits a seamless interpretation of splitting in the framework of FE.
Due to the lower accuracy of the vertex-based quadrature, the a-priori error
estimates are worse for mass lumping than for Gaussian quadrature with nodes
in the interior of the elements. While the FE convergence order is the same,
the discretization error may be increased by a constant factor. In different
contexts, factors of 4–6 are usually observed. Since an L2-error reduction
of four requires one additional level of uniform refinement, splitting may be
expected to require an eight times larger discretization than using a full FE
approach with more accurate quadrature.

A closer look at the spatial discretization errors of the gating variables
and ion concentration reveals a more subtle influence of splitting on the total
accuracy. Variables with slow dynamics are spatially smooth, whereas fast
variables follow the depolarization front quickly and exhibit strong local fea-
tures. On the same spatial grid, the discretization error in the slow variables
is therefore very small, and an error increase by a factor of 4 has little effect
on the overall solution. In contrast, for fast variables the effect is clearly visi-
ble (see Fig. 2). Comparable results are obtained with adaptive computations
on 3D domains. Unfortunately, when mass lumping is only done for a subset
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Fig. 2. Depolarization front positions 0.1 s after ignition at the right hand side
boundary of the 1D domain for splitting of different groups of gating variables in
the Luo–Rudy model. Left : whole domain. Right : zoom. The full FE solution travels
faster than the exact solution. Mass lumping for the fastest gating variable w1 has
the largest effect and slows down the front even behind the exact solution



On Efficiency and Accuracy in Cardioelectric Simulation 375

Table 1. Wall-clock runtime reduction factors due to algorithmic improvements in
KARDOS

Alg. feature Aliev–Panfilov Luo–Rudy

Deliberate block sparsing 1.05 1.25
Splitting w1–w7 2 30
Splitting w2–w7 15
Splitting w3–w7 4

0.1

1

0.02 0.1 h [mm]

full FE
splitting w1-w7

quadrature propagation

0.1

1

0.02 0.1 h [mm]

full FE
Simpson

Newton’s 3/8
Milne

Fig. 3. Depolarization front position error on a 1D domain after 0.1 s of simulating
the Luo–Rudy model with different mesh sizes. Left : full FE, mass lumping, and
propagating at Gauß quadrature nodes. The errors, closely related to the front speed
errors, span a range of about factor 3. Right : Effect of different quadrature rules

of the gating variables, the runtime improvements are less pronounced (see
Table 1).

Surprisingly, the integration of gating variables without any spatial dis-
cretization error is actually possible – at least on fixed grids. The key
observation is that with a given quadrature rule for assembling the reaction
terms in (1), the gating variables are only evaluated at a finite set of points in
the domain Ω. Propagating the gating variables just at these spatial positions
yields exact values, up to time discretization, as far as the transmembrane
potential is affected. Even more surprisingly, the overall accuracy of the front
speed obtained with quasi-exact gating values can be worse than a full FE
approach using the same quadrature rule, see Fig. 3 left. Increasing the accu-
racy of the quadrature rule gives results which are quite similar to the full FE
approach, see Fig. 3 right, which indicates that the dominating discretization
error is due to the transmembrane potential.

5 Conclusions

Adaptive discretization of cardioelectric excitation yields reliable results with
a relatively small number of degrees of freedom, but the overhead of error
estimation, mesh adaptation and frequent assembly on modified grids out-
weighs the efficiency gains. Deliberate sparsing and splitting techniques can
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improve the situation to some extent, but their effect on accuracy needs to be
investigated in more detail.
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Summary. Two previously published algorithms for solving the bidomain equa-
tions are combined to yield an algorithm that efficiently computes an accurate
numerical solution of the bidomain equations. The first of these algorithms utilises
the multiscale nature of the governing equations by solving the more rapid processes
at a much higher resolution than the slower processes, and is ideal for use when a
steep action potential wavefront is propagating across tissue. The second algorithm
is suitable when no fast processes are taking place. This combined algorithm results
in a threefold increase in computational efficiency over the most efficient algorithm
that it is compared to for the simulation presented here.

1 The Bidomain Equations

The bidomain equations, or a simplification known as the monodomain equa-
tions, are the most commonly used mathematical model of tissue level cardiac
electrophysiology. The bidomain equations may be written as [2]:

χ
(Cm ∂Vm

∂t
+ Iion(u, Vm)

)−∇ · (σi∇(Vm + φe)) = Isvi , (1)

∇ · ((σi + σe)∇φe + σi∇Vm) = Isve , (2)

∂u
∂t = f(u, Vm), (3)

where Vm(x, t) is the transmembrane potential, φe(x, t) is the extracellular
potential, u(x, t) is a vector containing various gating variables and chemical
concentrations, σi is the intracellular conductivity tensor, σe is the extracellu-
lar conductivity tensor, χ is the surface to volume ratio, Cm is the membrane
capacitance per unit area, Iion is the ionic current, Isvi is the intracellular
stimulus current applied within the tissue volume, and Isve is the extracel-
lular stimulus current applied within the tissue volume. Functional forms for
Iion and f are prescribed by an electrophysiological cell model – see [3] for a
collection of these.
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Boundary conditions are required for (1) and (2) – these are given by

n · (σi∇(Vm + φe)) = Isai , n · (σe∇φe) = Isae , (4)

where n is the outward pointing unit normal vector to the tissue, Isai is
the intracellular stimulus current applied across the boundary, and Isae is
the extracellular stimulus current applied across the boundary. The system
(1)–(3) subject to boundary conditions (4) is then closed by specifying initial
conditions for Vm and u. We note that φe is only required to be defined up
to an additive constant.

Under certain conditions, φe may be eliminated from (1) and (2) – the
resulting equations are known as the monodomain equations [2]. The tech-
niques described here may be applied to the monodomain equations as well
as the bidomain equations.

2 Solving the Bidomain Equations Numerically

Computing an accurate solution of the bidomain equations on a realistic three-
dimensional computational geometry is a significant computational challenge.
This is mainly due to the multiscale nature of the problem – if one com-
putational mesh is used for all dependent variables then this mesh must be
sufficiently fine that it captures the fastest processes. Slower processes are
then computed at a much higher resolution than is needed. A further compli-
cation caused by the multiscale nature of the problem is numerical stability:
multiscale processes result in stiff differential equations, and the numerical
solution of stiff equations is notoriously prone to numerical instabilities [1].

We begin the description of our numerical algorithm by describing a semi-
implicit numerical algorithm for solving the bidomain equations that has good
stability properties. We then explain how this algorithm may be adapted to
efficiently handle the multiscale processes that are observed when an action
potential propagates across cardiac tissue. Finally, we discuss how both the
original algorithm and the multiscale modification to this algorithm may be
combined to increase the efficiency of simulations without compromising on
accuracy.

2.1 The Basic Numerical Algorithm

The semi-implicit algorithm on which this work is based is described in [5] – we
only describe it briefly here. The dependent variables Vm, φe, u are calculated
a collection of discrete times t0, t1, . . . , tN . We write

V nm(x) = Vm(x, tn), φne (x) = φe(x, tn), un(x) = u(x, tn).

We discretise the partial differential equations (1) and (2) by treating the
conduction terms implicitly and the reaction terms explicitly. This results in
the following discretisation in time:
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χCm
Δtn

V nm −∇ · (σi∇(V nm + φne )) =
χCm
Δtn

V n−1
m + Isvi

−χIion(V n−1
m ,un−1), (5)

∇ · ((σi + σe)∇φne + σi∇V nm) = Isve , (6)

where Δtn = tn − tn−1. Equations (5) and (6) may be discretised in space
using the finite difference method or finite element method, yielding a matrix
equation that must be solved on each timestep:

A

(
Vn

m

φn
e

)
=

(
bv

be

)
, (7)

where A is a matrix arising from the discretisation of (5), (6), Vn
m is a vector of

unknowns that arise from the discretisation of V nm, φn
e is a vector of unknowns

that arise from the discretisation of φne , bv arises from the right-hand-side of
(5), and be arises from the right-hand-side of (6). Note that A is the same on
every timestep, and so this matrix need only be computed once at the start
of the simulation.

Having solved (7) to compute Vn
m and φn

e , we then solve the ordinary
differential equations given by (3) using the backward Euler method to ensure
stability [1].

2.2 The Multiscale Algorithm

We now briefly describe the multiscale modification of the semi-implicit algo-
rithm described in Sect. 2.1. For more details see [7]. The key to this algorithm
is the use of two meshes as shown in Fig. 1. The fine mesh – denoted by thin
lines has a nodal spacing hfast, whilst the coarse mesh – denoted by thick
lines – has a nodal spacing hslow Rapidly varying quantities are computed
using the fine mesh shown in this figure, whilst other variables are computed
using the coarser mesh. When required, the variables calculated on the coarse
mesh may be interpolated onto the fine mesh.

When using many cardiac electrophysiological models – including the
model used in our simulations [4] – the most rapidly varying quantities are
those directly related to the fast sodium current INa, namely the transmem-
brane potential, Vm, the extracellular potential φe, the sodium m-gate and
the sodium h-gate. We therefore compute these variables on the fine mesh,
and all other variables on the coarse mesh. Splitting the right-hand-side of (5)
and (6) into quantities computed on the fine mesh and quantities computed
on the coarse mesh we have

χCm
Δtn

V nm −∇ · (σi∇(V nm + φne )) = Γ1 + Γ2, (8)

∇ · ((σi + σe)∇φne + σi∇V nm) = Γ3, (9)
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hfast hslow

Fig. 1. The two meshes used in the multiscale algorithm. The fine mesh is denoted
by thin lines, the coarse mesh is denoted by thick lines

where

Γ1 =
χCm
Δtn

V n−1
m + Isvi − χINa,

Γ2 = −χ(Iion − INa),
Γ3 = Isve .

Note that Γ1 and Γ3 are fast processes, and Γ2 is a slow process. This allows
us to write (7) as

A

(
Vn

m

φn
e

)
=

(
bfast

v

bfast
e

)
+

(
bslow

v

0

)
, (10)

where bfast
v arises from Γ1, bslow

v arises from Γ2 and bfast
e arises from Γ3.

We then compute the right-hand-side of (10) on each timestep as follows.
bfast

v and bfast
e are computed as usual using the fine mesh shown in Fig. 1.

The quantities required to calculate bslow
v are calculated at the nodes of the

coarse mesh and then interpolated onto the fine mesh. Equation (10) is solved
using a timestep Δtfast. However, as the quantities included in bslow

v vary
on a slower timescale, this vector is updated less frequently using a timestep
Δtslow. This results in a significant computational saving – computing bslow

v

is generally the most computationally expensive part of the right-hand-side
of (10), and so computing it less often will generate a significant saving in
volume of computing.

We now turn our attention to computing the numerical solution of the
ordinary differential equations given by (3). Fortunately we only have to com-
pute two of these – those for the sodium m-gate and the sodium h-gate – at
each node of the fine mesh. All other quantities are only required at the nodes
of the coarse mesh, and so the ordinary differential equations representing
these variables need only be solved at the nodes of the coarse mesh. We see
in Fig. 1 that there are many fewer nodes in the coarse mesh, thus allowing
yet another significant computational saving.
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2.3 Combining the Algorithms

The multiscale algorithm described in Sect. 2.2 has been shown to give an
increase in computational efficiency of two orders of magnitude with negligi-
ble loss of accuracy for a simulation of an action potential wavefront travelling
across tissue [7]. However, in many simulations the propagation of the steep
action potential wavefront occupies only a small portion of the whole simu-
lation. This has been utilised in [6] where, in the absence of a propagating
action potential wavefront, the whole problem is solved with all variables com-
puted on the coarse mesh shown in Fig. 1 and a longer timestep Δtslow using
the semi-implicit algorithm described in Sect. 2.1. In this study we combine
these algorithms – we use the multiscale algorithm described in Sect. 2.2 when
the steep action potential wavefront is propagating across the tissue, and then
switch to using the semi-implicit algorithm described in Sect. 2.1 on the coarse
mesh shown in Fig. 1 with timestep Δtslow at other times. In the next section
we demonstrate the performance of this combined algorithm.

3 Computational Results

In this section we verify the accuracy and efficiency of the algorithm described
in Sect. 2.3.

3.1 Description of Simulations

We perform an identical simulation to that used in an earlier study [7]. A
square occupying the region 0 < x, y < 20 mm, with fibres running per-
pendicular to the x-axis, was stimulated at one corner at time t = 0.001 s.
A period of time 0 < t < 0.35 s was simulated. Intracellular conductivi-
ties are 0.13 mS mm−1 along the fibre and 0.026 mS mm−1 perpendicular to
the fibre. Extracellular conductivities are 0.13 mS mm−1 along the fibre and
0.065 mS mm−1 perpendicular to the fibre. In common with [7] we use
hfast = 0.1 mm, hslow = 1.0 mm, Δtfast = 0.1 ms, Δtslow = 1.0 ms. We use
the multiscale algorithm described in Sect. 2.2 initially. In common with [6]
we switch to solving the equations on the coarse mesh with timestep Δtslow
when the fast sodium current has dropped below 10 pA pF−1 at all points in
the computational domain. Vm was recorded at the central point of the square.

To assess the accuracy and efficiency of the algorithm described in Sect. 2.3
the simulation described above was repeated: (a) using the basic algorithm
described in Sect. 2.1, the fine mesh and timestep Δtfast; and (b) the multiscale
algorithm described in Sect. 2.2.

3.2 Results of Simulations

The action potential at the central point of the square calculated using all
three algorithms is shown in Fig. 2. We see that the plots are visually indistin-
guishable, thus verifying the accuracy of the combined algorithm. We now turn
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Fig. 2. The action potential at the central point of the square calculated using all
three algorithms

our attention to the efficiency of the three algorithms. The basic algorithm
using a fine mesh required 13,784 s of computation time. The multiscale algo-
rithm required 786 s of computation time. The combined algorithm required
253 s of computation time. We therefore conclude that, for the simulation pre-
sented here, the combined algorithm described in Sect. 2.3 allows an increase
in computational efficiency by a factor of roughly 3.

4 Discussion

Two previously published algorithms have been combined, allowing a compu-
tational speedup by a factor of around three for the simulation considered here.
Although a physiologically detailed electrophysiological cell model [4] was used
the geometry was very simple, being a two-dimensional square with regular
fibre orientation. Future work is currently being directed towards implement-
ing this algorithm in a realistic, irregular three-dimensional cardiac geometry
with irregular fibre orientation.
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Data Assimilation is a general set of methods, of various complexities, for
computing the optimal estimate of the true state of a system over time. It uses
values obtained both from observations and a priori models, and information
about their errors. Its main improvements have resulted from its wide spread
use in meteorological and ocean models applied to weather forecast, although
its come originally from control theory.

An important aim of this symposium was to show that there are other fields
in science and technology, where the effective use of observed but incomplete
data is crucial. Applications in robotics and nuclear sciences, as well as meteo-
rology were featured in the symposium. Indeed Data Assimilation is becoming
a cross-domain tool. In this symposium, experts from various fields presented
Data Assimilation for specific applications, and compare recent advances and
new ideas emerging from their different points of view.

The goal of modern Data Assimilation methods is to make optimal esti-
mates of the initial or time developing state of variables in a model, by putting
together information from all available observations and from previous fore-
casts. Basically, Data Assimilation can be considered as an extension of the
least square method. The method of the Best Linear Unbiased Estimation
(BLUE) filter is the simplest, both theoretically and computationally. But
Data Assimilation is also valid for dynamical or time-varying data sets and
models. The Kalman Filter is one of the general methods that provides opti-
mal evaluation of data in relation to a model. Both BLUE and Kalman Filter
are very efficient as long as the space of observed data has a limited size,
but other methods need to be used for large set of data. Four-dimensional
Variational Data Assimilation (4DVAR) based on this principle is currently
the most widely used assimilation method for operational weather prediction.
Using 4DVAR in meteorology improves accuracy of the forecasts typically by
up to a few percent for 2–5 days. Instead of 4DVAR, it is equivalent applying
a Kalman Filter to the data as the observation window-length increases.
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As in many complex systems, some (but not all) dynamics of the atmo-
sphere are very sensitive to the initial state, and the model errors. It is
helpful that the dynamical equations limit the magnitude of errors in this case,
because the equations effectively correlate the variables. The errors and their
correlations can be further reduced by ensuring that the initial data, when
it is introduced into the processes, satisfies dynamic of balance relationships
given by previous equations.

These mathematical and computations procedures for making the best
evaluation of incomplete data are not limited to meteorology. An autonomous
robot needs to collect as much data as possible to evaluate its position and
status in real time. As explained, to build real-time precise representations
(maps) of its environment, it uses different filtering methods, and switches
from one to another to improve the overall system fault-tolerance. Data Assim-
ilation is applied in the same way as in meteorology and oceanography, but
here the technique is called filtering and/or data fusion.

A new application has emerged in the critical field of modelling and evalu-
ating of the core of a nuclear reactor. In this case, Data Assimilation improves
operational security and optimal utilisation of resources. Two kinds of applica-
tions have been demonstrated. The aim of the first one is to collect information
coming from several instruments, in order to estimate the state of the whole
system. The second one is to evaluate optimally the parameters of the nuclear
core model. In both applications the essential elements is to use data and mod-
elling to make optimal estimates of the required evaluations, and continually
reduce error on them.

The Data Assimilation techniques are evolving along time to new tech-
niques in operational computation, and in design. Striking examples are the
recent developments using ensemble methods for very large dimension mod-
els and for imprecise systems. Data Assimilation improves the reliability of
these models, including those where the models for the same process (e.g.
weather) are based on different parametrisation, and where many computa-
tion are performed simultaneously to allow for noisy predictions in highly non
linear processes. At the same time, Data Assimilation schemes are becoming
more accurate and faster by incorporating greater physical understanding into
the simpler models.

In all fields of science and technology the objectives are to make better
and faster use of the increasing volume of measured data, even though it
is always incomplete. In order to improve the accuracy of the models with
increasing power of computation, Data Assimilation is becoming progressively
more essential in computation and observation, and also in control and design
of complex systems.
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Summary. Popular methods used for the navigation of robots simultaneously eval-
uate the localization of the robot and map the environment. Most of these methods
are based on the well-known Kalman data fusion filter and its equivalents. Proposi-
tions for the evaluation and comparison of implementations of these techniques are
presented.

1 Introduction

Simultaneous Localization and Mapping (SLAM) techniques are one of the
tools that can be used by robots to navigate in poorly known environments:
simultaneously, these techniques map the environment with the robots sensors,
and the same map is used to improve the quality of the navigation.

For the moment, no widely accepted methodology exist to assess the per-
formance of SLAM methods, even if public data sets exist [1]. But, in order
to measure the progresses made by the scientific community and to normalize
the domain, quantitative measurements need to be defined. Our work is a step
in this direction: we use quantitative metrics to measure the quality of maps
produced by SLAM algorithms on given data sets and compare them.

We present the main mathematic tools that are used in SLAM techniques
and give criteria that can be used to specify these techniques for industrial
purposes and how these criteria can be evaluated.

2 SLAM Techniques

SLAM techniques can be of various natures [6]: different sensors can be used:
monocular cameras, stereo cameras, radars, lasers, . . . Several types of map
can also be produced: occupation grids, superposition of scans or positions of
beacons As maps built from single cameras are hard to read by a user, maps
built from telemetric sensors like the classical rotating LIDAR we have on our
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Fig. 1. Main steps of a SLAM technique

robots are easier to read and we have decided to mainly focus on them in our
study.

2.1 Principle

Most of the SLAM techniques go through the steps that are illustrated in
Fig. 1.

The position of the robot is predicted, according to the given command
and to the dynamic model of the robot. Note that these sensors drift and
cannot be used alone to navigate. Once the position has been predicted, it
is described by a probability distribution. The telemetric measurements are
acquired, and compared to the existing (probabilistic) world model. What is
seen is associated to what has been seen previously. The position of the robot
and the position of the world model are then re-estimated.

The structures used to model the probability distribution on the posi-
tion of the robot, and on the position of the features of the world, and the
equations used to predict and estimate these probability distributions are the
elements which change between two SLAM techniques: usually, the equations
of classical navigation/data fusion filters are used and the techniques differ by
implementation choices.

2.2 The Kalman Filter

Let Xk be the true state at time k: it contains a set of variables that describe
the position and attitude of the robot and all the variables that describe the
map being built (for instance, the position of environment landmarks).

One of the main filter used to solve the SLAM problem is the Kalman
filter. This filter uses a Bayesian assumption: the true state Xk at time k is
evolved from the state at k − 1 according to:
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Xk = FkXk−1 + Bkuk + wk

where Fk is the state transition model, which is a function of δt, the time
interval between times k − 1 and k.

Bk is the control input model applied to uk and wk is the noise, drawn
from a zero mean multivariate normal distribution with covariance Qk.

At time k an observation zk of the true state xk is made according to:

zk = Hkxk + vk

where Hk is the observation model which maps the true state space into the
observed space (which can include measurements from all the sensors), and
vk is the observation noise which is also assumed to be drawn from a zero
mean multivariate normal distribution with covariance Rk.

The state of the filter is represented by x̂k|k which is the estimate of the
state at time k given the initial prior and all the observations up to time k
and by Pk|k, which is the current error covariance matrix and an indicator of
the precision of the estimation.

At each time step, the state of the filter is updated according to the
following rules:

x̂k|k−1 = Fkx̂k−1|k−1 + Bkuk

Pk|k−1 = FkPk−1|k−1F
′
k + Qk−1

Kk = Pk|k−1H
′
k[HkPk|k−1H

′
k + Rk]−1

k

x̂k|k = x̂k|k−1 + Kk(zk −Hkx̂k|k−1)

Pk|k = (I −KkHk)Pk|k − 1

2.3 EKF

Note that we have here assumed that the state transition models and the
observation model were linear, which is rarely actually the case.

If we have xk = f(xk−1,uk) + wk and zk = h(xk) + vk
Let Fk = ∂f

∂x |x̂k−1|k−1,uk
and Hk = ∂h

∂x x̂k|k−1
. If we keep the update equa-

tions if the Kalman filter, we obtain the Extended Kalman Filter, which is
often used but lack theoretical optimality.
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2.4 Particle Filtering

Another solution that can be used when state transition models and observa-
tion models are not linear is to use a sampling based approach.

The principle of these approach is that we maintain P estimates of the state
of the environment. Each of these estimates is updated by sampling a value
for the noise in the evolution equation of the system. The following equation,
that becomes exact if each particle is drawn according to the true probability
distribution and if there is an infinite number of particles, is exploited:

E(f |k) � 1
P

P∑
i=1

f(wk(i))

However, it is not an infinite number of particle that is used. Furthermore,
each particle is associated to a weight, that is representative of the likelihood
of the hypothesis. The update rule for the weights is the following:

wk(i) = wk−1(i)
p(yk|xk(i)p(xk(i)|xk−1(i))∏

(xk(i)|x0:k−1, y0:k))

This update is followed by a normalization of all the weights. When
particles have very low weights, they are replaced by new particles. The
rules that decide when and how to replace particles often vary between two
implementations of the filter, along with the number of particle that is used.

2.5 FastSLAM

Many variations and combinations in the mentioned techniques exist. A popu-
lar method is FastSLAM [5] that combines particle filtering for estimating the
path of the robot and small Kalman filters for the estimation of the landmarks
of the map.

3 Assessment

Classical methods that assess the quality of the functions of robotics sys-
tems [4] and that are also used in the image processing and speech processing
fields involve:

• Defining the evaluation criteria: the metrics are defined according to these
criteria, as are the contents of the data set to build.

• Building the data set, that needs to include ground truth data that allows
the evaluation.

• Measuring the performance of the evaluated method on the data set, for
different set of parameters.
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The criteria we investigated to evaluate SLAM techniques are the follow-
ing:

• Processing time.
• Allocated resources (processors, memory).
• Precision of the localization (and drift).
• Precision of the produced map.
• Robustness to noise in the wheel encoders.
• Robustness to noise in the LIDAR scans.
• Ability to work in cluttered environments.
• Ability to correctly map loops.
• The pertinence of the estimated error with respect to the real error could

also be measured.

Assessing the precision of the localization brought by SLAM can be done
like this: the error between the real position and the estimated position is
measured [7], the drift being this error divided by the distance travelled. How-
ever, assessing the quality of the produced map is harder and no quantitative
approach exists yet.

We defined the metric Q to measure between 0 and 1 the quality of a
produced map. N control points are defined at every corner of the ground
truth map. The produced map is scaled and superposed to the ground truth
map, and the error on the position of each ground truth point di is measured
(as showed in Fig. 2). Let W be the width of the ground truth map and H be
its height; let k be a constant. Then,

Q = exp
(
− k√

W 2 +H2

1
N

∑
i = 1Ndi

)

Note that in order to measure Q, an operator has to designate, for each
produced map, the position of each of the control point. When two or more
produced points correspond to the same point on the ground truth map (which
happens in poorly mapped loops), the farthest point is selected, and we also
record the maximum distance between them, which is an indicator of the

M1

M2

M1´

M2´

d1

d2
CSlam

CVT

Fig. 2. Notations for the definition of Q
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poorness of the algorithm to map loops. When no corresponding point can be
found for one of the control points, Q = 0.

We have defined a user interface to do a systematic assessment of the
quality of the produced map.

To assess the robustness to noise in the wheel encoders, we recommend
adding several times on one of the simulated log a controlled noise. We have
added an additive Gaussian noise of standard deviation σ at each step for
heading and movement, and from one experiment to the following we have
increased the value of σ.

We also recommend the use of specific maps to assess the abilities to map in
cluttered environment and to correctly map loops. Maps of the public robotic
data repository website [9] can also be used for comparison.

4 Discussion and Conclusion

We have presented the main data fusion methods that are used for Simul-
taneous Localization and Mapping and presented a method that allows the
assessment of the performance of these techniques: the method we have used
is coherent with what has been written about the topic in the literature [1–3].

The European project RAWSEEDS [10] that develop a benchmark data
set should allow a good use of our proposed method and allow the comparison
of SLAM techniques that can use a whole array of sensors.
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Summary. Data assimilation estimates the initial conditions of a weather forecast
model by bringing together data from observations, and a forecast from a previ-
ously known atmospheric state. The forecast error covariance matrix is part of the
assimilation and is very important in the way that the assimilation treats the data.
This article shows how these error covariances for large-scale weather systems are
represented using balance relationships. An example of how this method can be
improved at large-scale is introduced, and contemporary issues are raised concern-
ing how it can be adapted to model error covariances of small-scale phenomena,
such as convection, where the balance approach breaks down.

1 Introduction

The motion of the atmosphere is well described by a set of prognostic momen-
tum, energy and moisture equations on a rotating sphere, e.g. [7]. These
equations allow the state of the atmosphere ‘tomorrow’ to be predicted provid-
ing that we know the state of the atmosphere ‘today’. This is a classic initial
value problem. These equations provide the basis of the forecast procedure,
but when reduced to a so-called ‘balanced’ form, also guide how the initial
conditions can be determined. The balanced form of the equations leads to
a set diagnostic equations called balance relations, and the process of deter-
mining accurate and useful initial conditions consistent with measurements of
the atmosphere is called data assimilation. This paper introduces the balance
relations used in Meteorology to describe the large-scale atmosphere (Sect. 2)
and shows how they are used in the data assimilation problem as it is solved
at many weather forecasting centres (Sect. 3). This conventional data assim-
ilation problem has its limitations and can be refined to help better solve
the large-scale atmospheric data assimilation problem (Sect. 4). A modified
approach, however, is being sought to tackle the small-scale data assimilation
problem required by new high-resolution weather forecasting models, where
the usual balance relations break down (Sect. 5).
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2 Balance Relations Between Meteorological Variables

A balance relation is a diagnostic equation linking Meteorological variables,
and under conditions that it is valid, describes a slowly evolving component
of the weather. There is a hierarchy of balance relations in geophysical fluid
dynamics [9] and each is approximate to a different order of accuracy, but
here we use the simplest. The essential parts of the two horizontal and one
vertical momentum equations are as follows

du
dt

= fv − secφ
ρa

∂p

∂λ
−Dλ,

dv
dt

= −fu− 1
ρa

∂p

∂φ
−Dφ,

dw
dt

= −1
ρ

∂p

∂z
− g −Dz,

(1)

where u, v are the horizontal components and w is the vertical component of
the wind, p is pressure, ρ is density, d/dt is Lagrangian derivative, λ, φ and z
are longitude, latitude and height, f ≡ 2Ω sinφ is the Coriolis parameter
(accounting for the Earth’s rotation where Ω is the Earth’s rotation rate), a
is the Earth’s radius, g is the acceleration due to gravity, and Dλ,φ,z are drag
forces in each direction. By defining characteristic values U , W , L, H and
P for horizontal wind, vertical wind, horizontal lengthscale, vertical length-
scale and pressure respectively, and the Coriolis parameter at a representative
midlatitude, f0, the variables can be scaled as follows: u = Uũ, v = Uṽ,
w = Ww̃, d/dt = U/Ld/dt̃, δp = Pδp̃, δλ = (L secφ/a)δλ̃, δφ = (L/a)δφ̃,
and δz = Hδz̃. Variables with a tilde are then of order unity and (1) become

Ro
dũ
dt̃

=
f

f0
ṽ − P

f0ρUL

∂p̃

∂λ̃
− Dλ

f0U
, Ro

dṽ
dt̃

= − f

f0
ũ− P

f0ρUL

∂p̃

∂φ̃
− Dφ

f0U
,

Ro
W

U

dw̃
dt̃

= − P

f0ρUH

∂p̃

∂z̃
− g

f0U
− Dz

f0U
,

(2)

where Ro ≡ U/f0L is the dimensionless Rossby number. For mid-latitude and
large-scale flow, Ro ∼ O(10−1) and W/U ∼ O(10−2). This scaling justifies a
balanced form of (1) by neglecting the Lagrangian derivatives since they scale
as Ro. Assuming that the drag terms may also be neglected gives

0 = fρv − secφ
a

∂p

∂λ
, 0 = −fρu− 1

a

∂p

∂φ
, 0 = −∂p

∂z
− ρg. (3)

The first two equations describe a balance between the Coriolis terms and hor-
izontal pressure gradients (called geostrophic balance), and the third describes
a vertical balance between gravity and vertical pressure gradients (called
hydrostatic balance). Forms of these equations more convenient to data assim-
ilation are found by writing (a) the horizontal divergence of the geostrophic
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equations and (b) the hydrostatic equations in terms of potential tempera-
ture, θ (θ is an adiabatically conserved form of temperature, T , θ = T/Π ,
where Π is exner pressure, Π = (p/1,000hPa)κ, and κ = 0.286)

∇2
hδp = ∇h · (fρ0∇hδψ), (4)

δθ = −θ0
(
∂Π0

∂z

)−1
∂

∂z

(
κΠ0

p0
δp

)
. (5)

Here ∇h is the horizontal differential operator and ψ is stream function (see
Sect. 3). The equation of state, p = RρΠθ (where R is the specific gas con-
stant), has been used in (5), and both (4) and (5) are expressed in perturbation
form and linearized about reference state variables (subscript 0).

3 Balance in Meteorological Data Assimilation

Meteorological data assimilation is the process of determining the best possible
set of initial conditions for a forecast model which are consistent with the
available observations, with the equations of motion (e.g. (1)) and with prior
information provided in the form of a short forecast started from a known state
at an earlier time. The initial conditions must also be close to a balanced state
to avoid spurious unbalanced modes disturbing the forecast quality. Currently
four-dimensional variational data assimilation (4D-VAR) is the method of
choice for large-scale weather prediction [10].

4D-VAR finds the initial conditions, represented by the meteorological
fields x = (u, v, p, θ) (w is missing because it can be diagnosed from u and v
via the continuity equation and in reality a humidity variable is included),
by minimizing a cost function, J , that measures the distance between the
‘model observations’ predicted by x and the actual observations, and between
x and the short forecast, denoted xb (the short forecast is sometimes called
a background state). Distances are measured with respect to error covariance
matrices, which play a very important role in 4D-VAR, and it is the appli-
cation of the balance relations to this problem that helps to define the error
covariance matrix that measures the departure from xb, denoted Bx. This
part of J is Jb

Jb[δx] =
1
2
δxTB−1

x δx, (6)

and an observation term is added to Jb to give J . In (6), δx is the depar-
ture from xb of the state to be determined, i.e. x = xb + δx. Bx is a large
matrix which contains multivariate covariances that account for the near bal-
ance between the incremental fields in δx. The method used to model these
covariances using (4) and (5) reformulates (6) in terms of new fields in δχ1

Jb[δχ1] =
1
2
δχT

1 B−1
χ1
δχ1, (7)
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where δχ1 = (δψ, δχ, δpr). Fields δψ and δχ represent the rotational and
divergent parts of δu and δv via the Helmholtz relation, i.e. (δu, δv) = k ×
∇hδψ + ∇hδχ (where k is the unit vector normal to the sphere), and δpr is
the residual pressure that is not in balance with δψ (see below). Bχ1 is the
error covariance matrix of these new variables; it is taken to be univariate
meaning that it is a block diagonal matrix, and so is thus simpler to represent
than Bx. Let δx and δχ1 be related via the linear transform K1 as follows

δx = K1δχ1⎛
⎜⎜⎝
δu
δv
δp
δθ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
−(1/a)∂/∂φ (secφ/a)∂/∂λ 0

(secφ/a)∂/∂λ (1/a)∂/∂φ 0
H 0 1

ΘH 0 Θ

⎞
⎟⎟⎠

⎛
⎝
δψ
δχ
δpr

⎞
⎠ , (8)

where Hδψ ≡ ∇−2
h ∇h · (fρ0∇hδψ) and Θδp ≡ −θ0(∂Π0

∂z )−1 ∂
∂z (κΠ0

p0
δp) are the

linear balance and hydrostatic operators (4) and (5). The first two rows give
δu and δv using the Helmholtz relation (see above), expanded in spherical
geometry. In (8) the winds are not affected by δpr. The third row gives δp as
a sum of a part that is in linear balance with δψ, Hδψ, and a residual, δpr.
The fourth line is the hydrostatic balance operator, Θ acting on this com-
bined pressure. In this formulation, geostrophic balance is applied weakly –
as a (geostrophically) ‘unbalanced’ pressure is allowed (δpr) – but hydrostatic
balance is applied strongly – as no (hydrostatically) unbalanced potential
temperature is allowed.

Equations (6) and (7) are equivalent representations of the same problem
where Bx = K1Bχ1K

T
1 . Thus, given the transform (8), and the given form of

Bχ1 (in this case block diagonal), minimizing the cost function whose Jb term
is given by (7) implies this Bx, even though it is not explicitly calculated. This
methodology is regarded as a way of modelling the Bx-matrix using such a
change of variables [6]. The remaining task is to determine the Bχ1 -matrix,
which may be done by analysing a sample population of estimated errors of
the atmosphere to find the error covariances within each field of δχ1, e.g. [3].
This matrix is usually static and so does not change from day-to-day.

4 Refining the Method for Large-Scale Meteorological
Systems

A transform similar to (8) is used for operational data assimilation (e.g.
[5, 8]), which makes the assumption that the first field in δχ1, δψ is a wholly
‘balanced’ field since it is used with H to calculate the balanced pressure.
Although, δψ is largely balanced, the assumption that it is wholly balanced is
not supported by theory which expects δψ to acquire an unbalanced compo-
nent in some dynamical regimes, namely those associated with large horizontal
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and small vertical scales [11]. Work is underway to account for this by making
modifications to (8) [1], which builds on earlier work [4].

The replacement for δχ1 is δχ2, which (a) replaces δψ with its balanced
component only, δψb, and (b) replaces δpr with a ‘true’ unbalanced pressure,
δpu. The replacement for K1 is K2, turning (8) into

δx = K2δχ2⎛
⎜⎜⎝
δu
δv
δp
δθ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
−(1/a)∂/∂φ (secφ/a)∂/∂λ −(1/a)∂/∂φ H̄

(secφ/a)∂/∂λ (1/a)∂/∂φ (secφ/a)∂/∂λ H̄
H 0 1

ΘH 0 Θ

⎞
⎟⎟⎠

⎛
⎝
δψb

δχ
δpu

⎞
⎠ . (9)

Elements of K2 are the same as those of K1 except for two new elements
which allow δpu to contribute to δu and δv. These work by first calculating
from δpu an unbalanced streamfunction (using the new ‘anti-balance opera-
tor’ H̄) and then using the standard Helmholtz operators to compute δu and
δv from this unbalanced streamfunction. The form of H̄ is outlined in other
works, [1, 4]. As is evident, these unbalanced winds are ignored in the stan-
dard implementation, but this new balanced/unbalanced partitioning of fields
allows the linear balance operator, H to act (now appropriately) with the
balanced field δψb. The forecast error covariance matrix for δχ2 is Bχ2 . Then
δχ2 and Bχ2 replace δχ1 and Bχ1 in (7), and will lead to the new refined
implied forecast error covariance matrix for model variables Bx = K2Bχ2K

T
2 .

5 Data Assimilation for High-Resolution
Model Forecasts

Weather forecasting models are now applied at high-resolution and are capable
of resolving features that have a horizontal lengthscale of a few km. These
features are small compared to the lengthscales of large-scale weather systems
of many hundreds of km. Additionally, the models are capable of resolving
convective storms which are associated with relatively fast vertical winds.
These modelling capabilities mean that for these features, Ro and W/U are no
longer expected to be small as they must be to justify (3). A new 4D-VAR data
assimilation system is being sought to find accurate initial conditions for such
high-resolution models. Such a system requires an appropriate forecast error
covariance matrix, but unlike the assimilation for large-scale weather systems
using (8) or (9), one cannot rely on the application of balance relations like
(4) and (5) in its formulation [2]. Important challenges relating to balance
issues that need to be overcome include the following:

• Following the change of variable formulation used above, a set of new
incremental fields needs to be chosen (i.e. in δχ3) that allow an appropriate
description of the small-scale flow. These should be largely uncorrelated
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(allowing the use of a block-diagonal Bχ3) and should not rely on balance
relations (4) and (5) holding in their version of the transform, K3.

• The new implied forecast error covariance matrix, Bx = K3Bχ3K
T
3 ,

must change from day-to-day (flow-dependency) since the nature of error
covariances at small-scales is expected to be more changeable than for
the large-scale flow. This may be modelled with a flow-dependent K3

transform and/or a Bχ3 -matrix that changes from day-to-day.
• Large-scale features will still remain even in a high-resolution model that

permits small-scale features. This means that the conventional (balance-
based) forecast error covariance modelling techniques of Sects. 3 and 4
should still apply for the large-scale part of the flow.

How such a forecast error covariance matrix can be realistically modelled is
an unsolved problem in Meteorology, but is the focus of current research.

6 Summary

Data assimilation is an essential part of the numerical weather forecasting
problem, which finds the initial conditions by finding the state that is most
consistent with observations and a forecast which had started from an ear-
lier time. The cost function, which is minimized in 4D-VAR, relies on a
realistic error covariance matrix which describes the uncertainty associated
with the earlier forecast. For large-scale flow, this matrix may be constructed
with the aid of geostrophic and hydrostatic balance relationships, which have
been reviewed in this article. The standard way of achieving this, by mak-
ing a change of variables, has been shown, together with a refinement of the
method that allows the geostrophic balance relation to be applied in a more
appropriate way. Issues that arise from the need to do data assimilation for
high-resolution models, where the balance relations are not appropriate, have
been discussed.
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Summary. The use of Data Assimilation is fairly recent in the field of nuclear core
modelling. This paper is focused on field reconstruction and parameters estimation,
based on the standard simulation of neutron fields which are already very accurate.
In one application, these methods are used to investigate how to gather information
coming from several instruments and to evaluate the impact of instrument loss. In a
second application, it leads to best parameter estimation through processing a large
set of data, with the aim of improving the simulation for upcoming nuclear core.

1 Introduction

This paper is a review of data assimilation applications in nuclear core physics.
In a first part, we will describe the context of the data assimilation in nuclear
core physics. Here we insist specifically on the core physics, data assimilation
basis and core instrumentation. Then a second part will be focused more
precisely on some industrial applications of data assimilation.

2 Data Assimilation in Nuclear Core

2.1 The Physics of Nuclear Core in a Power Plant

A key consideration for nuclear core physics in a power plant is the description
of neutron density inside the core. The neutrons are produced during uranium
fission process, induced by neutrons themselves. The aim of simulation is to
describe the neutron density, which must remain in a steady state, in each
configuration and in the whole domain. To ensure the critical steady state of
the core, neutrons are slowed down (moderated) in order to have an optimum
reaction with the uranium. Generally the material used for this moderation
(moderator) is water. At the same time, the water is used as a transportation
medium of the thermal energy produced in the core. As a consequence, the
temperature of the material has to be known everywhere inside the core.
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A real nuclear core is a very complex medium, including uranium fuel,
metals, mechanical frame of the core, fission products, moderator. . . More-
over, within the core some strong feedbacks between the various physical
phenomena exist. The basic example is the moderator temperature, that is
driven by the neutron density, itself driven by the temperature of the mod-
erator. All those effects have to be taken into account in the modelling in
order to reach the required simulation accuracy. To summarise, core physics
is a multi-physics problem involving, among others, nuclear reaction physics,
thermohydraulics, heat transfer physics and thermics.

2.2 Data Assimilation

The main goal of data assimilation is to find the true state, denoted xt, of
an observable system (see [4] for an introduction). However, this true state
cannot be determined. Thus data assimilation proposes to combine all the
system information, in order to obtain the “best-estimated true state”. The
information about the system can come from measurements as well as from
the simulation. All the available information on the system is stored in a vector
z. These data are uncertain, and can be estimated as a function of xt as:

z = Γxt + ξ (1)

where Γ is the transformation operator from the state space to the data space,
and ξ is the error in the data space. In a least square (LS) sense, the optimal
true state xt is the one that minimises the following objective function:

JLS(x) = [Γx− z]T[Γx− z] (2)

The uncertainties ξ can be characterised by a distribution for each compo-
nent and by a covariance matrix S. To use this information, a new objective
function can be written:

J(x) = [Γx− z]TS−1[Γx − z] (3)

When Γ is linear, the minimum value of the J function is called the BLUE
(for Best Linear Unbiased Estimator) and denoted xBLUE.

As quoted before, the system information z can be split in two distinct
parts: one from the observation yo, and another one coming from everything
else (for example the model), named background, and denoted xb. As a vector,
it can be denoted as z = (xb yo)T. In consequence, the Γ operator can be
rewritten as Γ = (I H)T, where I is the identity matrix, and H the matrix
associated to the observation operator H . If H is non-linear, H is the tangent
linear matrix associated to H . Assuming background and observation to be
independent, the covariance matrix S can be written as follows:

S =
(

B 0
0 R

)
, (4)
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where B is the background-error covariance matrix, and R the observation-
error covariance matrix. Finally, the objective function J is then:

J(x) = [x− xb]TR−1[x− xb] + [yo −H.x]TB−1[yo −H.x] (5)

In order to minimise this function, we can calculate the gradient ∇J of J
with respect to x. It can formally be written as follows:

∇J(x) = 2R−1x + 2HTB−1H.x (6)

The minimum of J is obtained when the required (but not sufficient) condition
∇J(x) = 0 is true, for one particular x. This minimising value is named the
analysis and denoted xa. It can be obtained either by a direct calculation or
by a minimisation procedure. In the direct case, the solution is:

xa = xb + K(yo −H.xb) (7)

with the linear operator K (the “gain” of the analysis, or the “Kalman gain”):

K = BHT(HBHT + R)
−1

(8)

This expression (8) represents the Kalman filter in the simplest static case.
More details on this could be find for example in reference [1].

We can make some interesting remarks to better interpret the equation (5).
If we assume background xb to be completely wrong (thus its covariance B
is infinity), then the best estimated value is given by x coming from observa-
tion, such that yo −H.x = 0. On contrary, assuming measurements yo to be
completely wrong (and then R to be infinity), the best estimated value is the
background xb.

2.3 Incore Measurement

The nuclear core plant is monitored along its entire lifespan. In order to do
that, several measurements are used. There are three kinds of instruments
that are used as standard to monitor nuclear power cores:

• Movable In-core Detector (MID), which are mobile fission chambers.
• Thermocouples.
• Fixed ex-core detector, which are named “external chambers”.

Those instrumentation can be found on any power plants used by Electricité
de France (EDF). Data coming from the ex-core detectors is very efficient for
security purpose, which is their main goal. Nevertheless, they are too crude for
being reliable in a fine evaluation of the neutron state. Thus, we will not use
in this study information coming from those devices. All other instruments
will be used for core state evaluation.

For the purpose of this study, we will add an artificial extra kind of detec-
tor, named Low granularity Movable In-core Detector (LMID): measurements
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coming from the LMID are artificially built. Evaluation of the LMID response
uses neutron flux calculation as for the MID, but assuming a different phys-
ical process and a lower granularity of the measure. The lower granularity
assumption induces a partial integration of the standard MID response over a
given area. Of course, the physical process assumed to make a measurement in
LMID being different, the resolution and the accuracy of LMID instruments
are different from the other ones.

3 Application of Data Assimilation

3.1 Multi-Instruments Data Assimilation Scheme

Multi-instruments data assimilation try to reconstruct the whole true state
using information coming from various kind of instruments, as described in
Sect. 2.3. The purpose is to obtain some state values (and errors on them) that
are more accurate than inputed ones. The increase of accuracy results from
combination of various available sources of information. A schematic view of
the method is presented on Fig. 1.

In this case, observation operator represents information given by an
instrument and to be compared to simulated data. This scheme represents
the BLUE method described in Sect. 2.2. In our case, equations can be solved
in a direct way because the size of the problem is fairly small (around 7,000–
8,000 points) by comparison to meteorological ones (more than 105). The
originality here is the use of heterogeneous information, as in meteorology,
coming from different in-core instruments.

The Fig. 2 displays the quality of the reconstructed neutron state, ver-
sus the measurements, as a function of the number of various instruments
taken into account for the analysis. Successive improvements of the RMS
(Root Mean Square) misfit are presented with respect to the number of instru-
ments used to build the analysis xa. This RMS is calculated in comparison to
reference measures that was not used to reconstruct the core state.

Observation operator

Measurement of the observed state
by each instrument

Calculated state
for each instrument

Calculation−measurement misfit
(aka "measurement errors")

Calculation−background misfit
(aka "background errors")

Direct calculation of
system state correction

Fig. 1. Schematic diagram of multi-instruments data assimilation
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Fig. 2. Improvement of the RMS misfit with respect to the addition of instruments

Observation operator

Calculation−measurement misfit
(aka "measurement errors")

Calculation−background misfit
(aka "background errors")

Parameters increments and
errors covariances correction

Calculated stateMeasurement of the observed state

Fig. 3. Schematic diagram of parameter identification with data assimilation

As expected, the reduction of the misfit is stronger when additional
informations are used for the reconstruction analysis. Taking into account
thermocouples measurements, that are fully integral measurements, with a
rather big representative error, only improves slightly the reconstruction. Then
going further with the LMID and MID, that have some good or very good
granularity, respectively, leads to a significant decrease of the RMS.

3.2 Parameter Identification Scheme

This method can be described as a multi-level BLUE method, as schematically
presented on Fig. 3. In this case, the purpose of the observation operator is to
give a linearised output of the model, with respect to some parameters. The
parameters we focused on, in this study, are related to the parametrisation of
the neutron reflector surrounding the core [3].

To obtain optimal parameters, several measurement campaigns are pro-
cessed. Thus this algorithm is multi-level in the sense that it is iterative on the
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parameters calculation. Moreover, there is an upper iterative level to optimise
the B and R matrix with a Desroziers–Ivanov method [2], in order to correct
the covariance matrices with the information coming from the observations.

Such a method leads to very interesting information on model parameters.
A detailed study, of the parameters and their fitting, put in light its depen-
dence with respect to the burning level (irradiation) of the nuclear fuel in
the core. These properties, already mentioned for studied parameters, can be
demonstrated using data assimilation. Another advantage is the capacity of
the method to use all measurements, in a coherent framework.

4 Conclusions and Perspectives

With data assimilation methods, we manage to build an efficient scheme for
two kinds of applications in nuclear core sciences.

In the multi-instrument processing, the main result is to be able to use
all available measurements from various instruments in a unique framework.
Moreover this method shows a slight but systematic improvement with respect
to standard interpolation method. For parameter evaluation, the used method
allows for an optimal identification of parameters in a single coherent scheme.
Moreover, a new kind of dynamic for these parameters was shown.

As a perspective, these methods can be applied to the study of whatever
model parameters, as long as their number still remains small (less than 100).
For more parameters, intensive computations will require high performance
computing (HPC). Thus, a wide use of Data Assimilation seems to be very
promising to take advantage of all available nuclear data.
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Summary. Treatment with high energy ionizing radiation is one of the main meth-
ods in modern cancer therapy that is in clinical use. During the last decades, two
main approaches to dose calculation were used, Monte Carlo simulations and semi-
empirical models based on Fermi–Eyges theory. A third way to dose calculation has
only recently attracted attention in the medical physics community. This approach
is based on the deterministic kinetic equations of radiative transfer. In this work, we
study a full discretization of the transport equation, whose solution is supposed to
serve as a benchmark for simplified methods. The computational challenge is that
scattering is forward-peaked, which makes a fine resolution and thus a very large
linear system of equations necessary. Traditional methods like source iteration are
inefficient or fail in this case. Therefore we propose a new method which combines
an incomplete factorization of the scattering matrix and several iterative steps to
obtain a fast and accurate solution. Numerical examples are given.

1 Introduction

The history of external beam radiation therapy starts with a remarkable
anecdote: Literally two weeks after their discovery, X-rays were already used
for cancer therapy. Röntgen discovered X-rays on December 28, 1895. Emil
Grubbe, an undergraduate student at a medical school in Chicago, heard of
Röntgen’s work and obtained a vacuum discharge tube. He started experi-
ments with the new rays, by producing X-ray images of himself. Obvious for
us today, he started to suffer from radiation dermatitis. He realized the harm-
ful effect of X-rays on tissue and on January 12, 1896, at the suggestion of one
of his colleagues, he used his experimental setup to treat previously untreat-
able carcinoma. In February of 1896, he founded the first radiation therapy
facility in Chicago.

Besides surgery and chemotherapy, the use of ionizing radiation is one of
the main tools in the therapy of cancer today. According to WHO data, in
the year 2007, there were about 11.3 million new cancer cases. More than half
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of the patients that are treated receive radiation therapy at one point during
their treatment.

There are many challenges facing an applied mathematician in this field.
One is optimal treatment planning which aims at ensuring that enough energy
is deposited in cancer cells so that they are destroyed, while at the same time
healthy tissue around the cancer cells should be harmed as little as possible
and some regions at risk should receive almost no radiation at all. In this
work, we focus on a different aspect, namely methods for dose calculation.

Most dose calculation algorithms in clinical use rely on the Fermi–Eyges
theory of radiation. In recent work [6], it has been shown that these can pro-
duce errors of up to 12% near inhomogeneities. In this work, we consider dose
calculation using a Boltzmann transport equation. Similar to Monte Carlo
simulations it relies on a rigorous model of the physical interactions in human
tissue that can in principle be solved exactly. Monte Carlo simulations are
widely used, but it has been argued that a grid-based Boltzmann solution
should have the same computational complexity [2]. Electron and combined
photon and electron radiation were recently studied in [5,7–9]. For a review on
neutral particle codes that have been applied to the dose calculation problem
we refer the reader to [4].

Here we study a full discretization of the transport equation, whose
solution is supposed to serve as a benchmark for simplified methods. The
computational challenge is that scattering is forward-peaked, which makes a
fine resolution in energy and angle and thus a very large linear system of equa-
tions necessary. Traditional methods like source iteration are inefficient or fail
in this case. Therefore we propose a simple iterative method which combines
an incomplete factorization of the scattering matrix and several iterative steps
to obtain a fast and accurate solution.

2 The Radiative Transfer Equation

The transport of particles that undergo inelastic scattering in a medium can
be described by a Boltzmann transport equation

μ∂xψ(x, ε, μ) = ρ(x)
∫ ∞

0

∫ 1

−1

s(x, ε′, ε, μ′, μ)ψ(x, ε′, μ′)dμ′dε′

− ρ(x)
∫ ∞

0

∫ 1

−1

s(x, ε′, ε, μ′, μ)ψ(x, ε, μ)dμ′dε′ + q(x, ε, μ)
(1)

Here, ψ can be thought of being the number of particles at x ∈ R
3 with energy

ε, and direction μ ∈ [−1, 1]. To simplify the following presentation, we have
written the radiative transfer equation in slab geometry (one-dimensional in
both space and direction). However, our method can be easily extended and we
show a two-dimensional (in both space and angle) result in the end. Scattering
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Fig. 1. Model Henyey–Greenstein scattering kernel (g = 0.8) as a function of μ
and μ′

is determined by the density ρ of the medium and by the scattering kernel
s, which can be seen as the probability that a particle with initial energy
ε′ and initial direction μ′ has energy ε and direction μ after the scattering
event. A model kernel is shown in Fig. 1. Note that the scale is logarithmic,
which means that small angle changes are very likely. In order to resolve these
small angle changes by a direct discretization, a large number of angles is
necessary. As is well known and as we will again demonstrate later, tradi-
tional source iteration methods are inefficient for large scattering coefficients.
Thus we propose a new iterative scheme. We should note that there exist sev-
eral approximate methods to treat forward-peaked scattering (cf. [3]). These,
however, introduce an additional approximation error. Our purpose here is to
show that the equations can be solved by a direct method whose error can be
controlled by the discretization only.

3 An Iterative Scheme

We discretize the unknown ψ in all variables. Let the index i denote direction,
j energy, l space and n time, i.e.

ψn
i,j,l ∼ ψ(tn, xl, εj, μi).

Here we have introduced an artificial time which we use as relaxation. Consider
an implicit discretization in time, an upwind discretization in space and some
discretization in energy and angle (e.g. finite differences or finite volume):
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ψn+1
i,j,l − ψn

i,j,l

Δt
+ μ+

i

ψn+1
i,j,l − ψn+1

i,j,l−1

Δx
+ μ−

i

ψn+1
i,j,l+1 − ψn+1

i,j,l

Δx

= ρl

⎛
⎝∑

i′,j′
σi,i′,j,j′ψ

n+1
i′,j′,l −

∑
i′,j′

σi,i′,j,j′ψ
n+1
i,j,l

⎞
⎠ .

We have neglected the source q and defined μ+ = max(μ, 0), μ− = min(μ, 0).
Write this as

⎛
⎝ 1
Δt

+
|μi|
Δx

+
∑
i′,j′

ρlσi,i′,j,j′

⎞
⎠ψn+1

i,j,l −
∑
i′,j′

ρlσi,i′,j,j′

=
1
Δt

ψn
i,j,l +

μ+
i

Δx
ψn+1

i,j,l−1 −
μ−

i

Δx
ψn+1

i,j,l+1.

The left hand side is a matrix-vector multiplication in the i, j variables, the
first term being a diagonal part. If we arrange the i, j in a suitable way into
a vector ψn

l , we can write this as

Mlψ
n+1
l =

1
Δt

ψn
i,j,l +

μ+
i

Δx
ψn+1

i,j,l−1 −
μ−

i

Δx
ψn+1

i,j,l+1.

The symmetric matrix Ml is strongly diagonal-dominant but it is not sufficient
to consider only its diagonal in an iterative scheme. The key idea is to factorize
it as

Ml = Al +Bl,

Bl containing the diagonal and a to be specified number of sub-/super-
diagonals, and Al containing the remainder. We want to invert the Bl part of
Ml, thus we write

Blψ
n+1
l =

1
Δt

ψn
l +

μ+
i

Δx
ψn+1

l−1 −
μ−

i

Δx
ψn+1

l+1 −Alψ
n+1
l .

This is an implicit equation for ψn+1, which we solve iteratively by sweeping
in the l variable. Let l run from 0 to lmax, i.e. from left to right. The new
iterate ψn+1,k+1

l is given by

Blψ
n+1,k+1
l =

1
Δt

ψn
l +

μ+
i

Δx
ψn+1,k+1

l−1 − μ−
i

Δx
ψn+1,k

l+1 −Alψ
n+1,k
l

and if we sweep from right to left

Blψ
n+1,k+1
l =

1
Δt

ψn
l +

μ+
i

Δx
ψn+1,k

l−1 − μ−
i

Δx
ψn+1,k+1

l+1 −Alψ
n+1,k
l .

For k →∞ this gives us ψn+1. It only remains to iterate over the time index
n→∞.
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Table 1. Number of iterations as a function of time relaxation parameter

Relaxation Δt 101 102 103 104 105 106 107

Iterations 605 78 19 10 9 9 8

Table 2. Number of iterations for 64 directions and different matrix decompositions

Diagonals 0 1 2 4 8 12 14 16 32

Iterations 124 108 93 67 31 14 11 9 8

4 Numerical Results

First we study the convergence of our method. To that end we vary the
relaxation time Δt and, more importantly, study the influence of the matrix
decomposition. As a test case we choose an example from the medical physics
literature [1]. It consists of a layered medium with depth 120 mm, consisting of
three layers of 40 mm each, out of which the first and third are optically thick
and the second is optically thin. It was sufficient to take 64 directions for the
angle discretization. Table 1 shows the number of external iterations as a func-
tion of the time relaxation parameter, which should be chosen to be greater
than 104. Table 2 shows how the performance of the algorithm depending
on the matrix decomposition. The traditional source iteration method corre-
sponds to the case of taking zero diagonals. We observe a significant decline
in external iterations of more than one order of magnitude when we take sev-
eral diagonals into matrix Bl. Of course the computational effort increases
with the number of diagonals, since a larger linear system has to be solved.
However, this increase is set off by the decrease in external iterations. Thus
taking 16 diagonals (a quarter of the matrix dimension) is a sensible choice
here.

We conclude with a test case in a two-dimensional quadratic domain which
contains a void-like layer, shown in gray in Fig. 2. The physical parameters are
detailed in [1]. An isotropic source of particles is placed on the left boundary.
The propagation into the medium, as well as the void-like layer are equally
well resolved in the numerical solution. The simulation used 64 directions and
ran for about 10 min on 32 processors.
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Summary. A radiotherapy treatment planning problem is formulated as a bound-
ary control problem constrained by the radiative transfer equation. Optimality
conditions for the radiative transfer equation as well as for the SP1 approximation
are stated. The latter are solved numerically.

1 Introduction

Mathematical methods play an increasing role in medicine, especially in cancer
therapy. Several special journal issues have been devoted to cancer model-
ing and treatment, cf. [2–4, 7] among others. While until recently, treatment
planning was done by an experienced physician “by hand”, computer-aided
treatment planning systems based on optimization algorithms currently enter
into clinical practice, cf. [14] and references therein.

The use of ionizing radiation is one of the main tools in the therapy of
cancer. The aim of radiation treatment is to deposit enough energy in cancer
cells so that they are destroyed. On the other hand, healthy tissue around the
cancer cells should be harmed as little as possible. Furthermore, some regions
at risk, like the spinal chord, should receive almost no radiation at all. Most
dose calculation algorithms in clinical use rely on the Fermi–Eyges theory of
radiation which is insufficient at inhomogeneities, e.g. void-like spaces like the
lung. We start with a Boltzmann transport model for the radiation which accu-
rately describes all physical interactions, and based on this model we develop a
direct optimization approach based on adjoint equations. Until recently, dose
calculation using a Boltzmann transport equation has not attracted much
attention in the medical physics community. This access is based on deter-
ministic transport equations of radiative transfer. Similar to Monte Carlo
simulations it relies on a rigorous model of the physical interactions in human
tissue that can in principle be solved exactly. Monte Carlo simulations are
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widely used, but it has been argued that a grid-based Boltzmann solution
should have the same computational complexity [5]. Electron and combined
photon and electron radiation were studied in the context of inverse therapy
planning cf. [17,18] and most recently [19]. Furthermore, several neutral par-
ticle codes have been applied to the dose calculation problem, see [12] for a
review.

This work is part of an ongoing project on dose calculation methods
and optimal treatment planning based on Boltzmann transport equations.
A consistent model of combined photon and electron radiation was devel-
oped [13] that includes the most important physical interactions. In [8], an
approximate partial differential equation model was designed. A step toward
time-dependent control in the case of moving patients was done in [9]. In
the present work we extend results from [10], where distributed control was
considered analytically and numerically, to boundary control.

2 Radiotherapy Planning as a Boundary Control
Problem

Consider a part of the patient’s body which contains the region of the can-
cer cells. We assume that this part of the body can be described as a convex,
open, bounded domain Z in R

3. Furthermore, we assume that Z has a smooth
boundary with outward normal vector n. The direction, into which the elec-
tron is moving is given by ω ∈ S2, where S2 is the unit sphere in three
dimensions. To formulate boundary conditions, we define the in- and outgoing
boundaries as

∂Z± := {(x, ω) ∈ ∂Z × S2 : n(x) · ω > (<)0}.
We consider particle transport modeled by the Boltzmann equation for the
particle density ψ(x, ω) as

ω · ∇xψ(x, ω) + σt(x, t)ψ(x, ω) = σs(x)
∫

S2
s(x, ω · ω′)ψ(x, ω′)dω′ (1)

with
ψ(x, ω) = q(x, ω) on ∂Z−.

For the sake of simplicity, we neglect the energy dependence of ψ. Here,
ψ(x, t, ω) cos θdAdω is the number of electrons that pass through an area dA
at point x into a solid angle dω around ω at time t. The angle θ is the angle
between ω and dA. The total cross section σt(x, t) is the sum of absorption
cross section σa(x, t) and total scattering cross section σs(x, t). The scattering
phase function is normalized,

2π
∫ 1

−1

s(x, μ)dμ = 1. (2)
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From the physical interpretation, we have that ψ, q, σt, σs and s are non-
negative quantities. The detailed interactions of electrons with atoms give rise
to complicated explicit formulas for the scattering coefficient, see e.g. [13].

The problem of external beam radiotherapy is to determine a boundary
condition q ≥ 0 in some optimal way. A number of functionals and methods
have been devised to describe the effect of radiation on biological tissue, cf.
the extensive lists of references in the reviews [6] and [16]. It is clear that the
amount of destroyed cells in a small volume, be they cancer or healthy cells,
is not directly proportional to the dose

D(x) =
∫

S2
ψ(x, ω)dω (3)

deposited in that volume. However, no single accepted type of model has
emerged yet. Moreover, current biological models require input parameters
which are not known exactly [16]. This is why the authors of [16] opted not
to investigate these models but rather to focus on some general mathemat-
ical cost functionals. A quadratic objective function together with nonlinear
constraints was identified as the most versatile model. Thus we try to find a
boundary value q such that the quadratic deviation from a prescribed dose D̄
becomes minimal. The ideal dose curve of course has a certain fixed value in
the tumour tissue and is zero elsewhere. We write

D̄(x) =
∫

S2
ψ̄(x, ω)dω (4)

and introduce a weight function α depending on space, which penalizes devi-
ations from the desired dose in normal tissue, tumour tissue and regions at
risk differently. We want to minimize

J1(D) =
∫

Z

α

2
(D − D̄)2dx (5)

Furthermore, we include a penalty term proportional to the applied external
source in the minimization process to prevent trivial solutions. We use a simple
penalization as

J2(q) :=
∫

∂Z−

β

2
(n · ω)q(s, ω)2dsdω. (6)

The problem of teletherapy reads then: Find q ≥ 0 such that

J1(D) + J2(q) (7)

is minimal, subject to the radiative transfer equation (1), and the relation (3)
between ψ and the dose. This is an optimization problem constrained by an
integro-differential equation.

Along the lines of [10], we can introduce a Lagrangian to this problem and
formally derive the following first-order optimality conditions: The radiative
transfer equation is
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Fig. 1. Boundary control q

ω∇xψ + σtψ = σs

∫

S2
sψdω′ in Z with ψ = q on ∂Z−. (8a)

The Lagrange multiplier λ satisfies a backward transfer equation

− ω∇xλ+ σtλ = σs

∫

S2
sλ+ α(ψ − ψ̄)dω in Z with λ = 0 on ∂Z+. (8b)

The gradient information, which is necessary for any efficient optimization
algorithm in this case, is encoded in λ. It can be used directly in the optimality
condition for q:

q =
(
q + λ− α

∫

Z−
n · ωqdω

)+

on ∂Z−. (8c)

Here, ξ+ = max(ξ, 0).

3 Numerical Results

We apply the optimize-then-discretize approach to the control law. In our 2D
simulations, we use the Simplified P1 (SP1) approximation [15]. The unknown
is the dose

D(x) =
∫

S2
ψ(x, ω)dω. (9)

The SP1 approximation for the radiative transfer equation [11] reads for
isotropic scattering
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Fig. 2. Contour plot of the optimal dose distribution

−∇ 1
3σt
∇D + (σt − σs)D = 0. (10)

The boundary conditions are

n · ∇D =
3
2
σt (l1(q)−D) , where l1(q) = −4

∫

∂Z−
nωq(s, ω)dsdω. (11)

From the SP1 approximation and the cost functional (5) and (6), we obtain
the optimality system using SP1 asymptotic as

∇ 1
3σt
∇λ(0)−(σt−σs)λ(0) = −4πα(D−D̄), with n·∇λ(0) = −3

2
σtλ

(0) on ∂Z+.

(12)
The gradient equation is

λ(0) − 2
3σt

n · ∇λ(0) = −2πβl1(q). (13)

To demonstrate the feasibility of our approach, we consider the unit square
[0, 1]2 with the parameters [1] σs = 0.05 and σt = 0.5. The domain contains an
L-shaped tumour (Fig. 1). We numerically compute the solution to the SP1-
approximation of the optimality system. We consider the functional given by
(5) and (6). When solving the optimal control problem we set β = 0 (no
regularization for the boundary control) and α = 1. All computations are
done on a 50× 50 grid. We solve the optimality system by using a projected
gradient method. The optimal boundary control and the dose in the optimal
state are shown in Figs. 1 and 2, respectively. Since the tumour is located
in the bottom left corner, both maxima of the control are reasonable. The
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dose basically falls off exponentially from the boundary, thus here a better
dose distribution cannot be expected. In terms of performance, because of the
high dimensionality of the optimization problem, we expect our adjoint-based
method to outperform all black box methods using numerical gradients.
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Summary. Optimal control problems in radiative transfer are solved by means of
the space mapping technique. Exploiting a hierarchy of approximate models, this
allows for the construction of fast numerical algorithms. The performance of the
algorithms is underlined by numerical experiments.

1 Introduction

We consider an optimal control problem in the realm of radiative transfer with
a tracking-type cost functional for given functions ϕ̄, Q̄ : D → R,

F (ϕ,Q) =
α1

2

∫

D

(ϕ− ϕ̄)2dx +
α2

2

∫

D

(Q− Q̄)2dx. (1)

Here, ϕ(x) =
∫
S2 I(x, ω)dω denotes total flux corresponding to the space and

direction dependent intensity I.
The intensity I(x, ω) : R

d × S2 → R is computed by solving the radiative
transfer equation,

εω · ∇I + (σs + σa)I =
σs

4π

∫

S2
I dω′ + Q(x), (2a)

where d is the space dimension of the underlying domain, S2 is the sphere in R
3

and σs and σa are problem dependent scattering and absorption parameters
and ε is a scaling factor of the equation, i.e. ε = xref/(σref

a + σref
s ). This

equation is supplemented with appropriate Dirichlet data

I(x, ω) = A, n · ω < 0, (2b)

for ingoing directions. The equation contains the source term Q(x), which can
be interpreted as an exterior source or sink of radiation energy. This external
source is the control variable of our problem.
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The corresponding optimisation problem for determining a distributed
control Q(x) reads

min
ϕ,Q

F (ϕ,Q) subject to (2). (3)

This optimisation problem was first analysed in [4], where the existence
and uniqueness of an optimal controlQ is proved. Here, we exploit the approx-
imate SPN model hierarchy [6] and the space mapping technique [2, 3] to
construct a fast optimisation algorithm. This model hierarchy was already
used studied in the context of optimal control in radiative transfer in [5], where
an asymptotic analysis of the first order optimality system is performed.

In the following we describe the approximate model hierarchy and the
space mapping technique and discuss some numerical results.

2 The SPN Models

The SPN approximations for the radiative transfer equation (2) are derived
in a formal manner applying the Neumann series to an unbounded operator
when the medium is assumed to be optically thick, i.e. the mean free path ε
is small (for a detailed derivation see [8]). The continuous SP1 approximation
of (2) is given by

− ε2

3(σ + κ)
∇2φ+ κφ = 4πQ, (4a)

and the corresponding SP2 approximation is

− ε2 5(σ + κ) + 4κ
15(σ + κ)

∇2ξ + κξ = 4πQ, (4b)

where ξ = φ+ 4κ
5(σ+κ) (φ − 4πQ/κ), and the SP3 equations are

− ε2

3(σ + κ)
∇2(φ+ 2φ2) + κφ = 4πQ, (4c)

− 9ε2

35(σ + κ)
∇2φ2 + (σ + κ)φ2 − 2

5
κφ = −2

5
4πQ. (4d)

In all cases, φ approximates the mean intensity given by (2). For the validity
of the SPN approximations we refer to [8]. This model hierarchy yields the
so-called coarse models, which are used in the setup of the following space
mapping algorithm.

3 Aggressive Space Mapping

The solution of the full optimisation problem (3) is rather time consuming,
since it requires the discretisation of the spatial and of the angular variable.
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Now, we want to define a algorithm which only requires solves of the fine
radiative transfer problem (2) and not the solution of the full optimisation
problem. Instead, we will only solve optimisation problems based on the coarse
SPN models, for which one can easily implement an optimisation algorithm
using the adjoint information for the computation of descent directions (for
details we refer to [5]).

In particular, we want to approximate the solution of the fine model by an
appropriate solution of the coarse model for which we define the misalignment
function (here we follow [3])

r(R,Q) = ‖φ(R)− ϕ(Q)‖,
where φ(R) is the coarse model output of a SPN model for a given source R
and ϕ(Q) is fine model output computed by (2) for a given source Q. For a
given Q we look for R such that r(R,Q) is minimal, i.e., we define the space
mapping function

p(Q) = argminRr(R,Q).

Since we want to evaluate p only a few times, we assume ϕ(Q∗) ≈ φ(R∗),
such that

p(Q∗) = argminRr(R,Q
∗) ≈ R∗.

Hence, we first determine R∗ and then solve for p(Q∗) = R∗. But in general
it holds p(Q∗) �= R∗, such that we solve instead for

Q∗ = argminQ‖p(Q)−Q∗‖.
This is done iteratively and the space mapping p is updated using a Broyden–
rank–1 update yielding the so–called ASM (aggressive space mapping) algo-
rithm (for details we refer to [3]):

1. Evaluate Q0 = R∗ = argminR‖c(R)‖2 and let B0 be the identity matrix.
2. While ‖p(Qk)−R∗‖/‖ζ∗‖ > tolerance

a) Evaluate ϕ(Qk) by solving the fine model (2)
b) Determine Rk = p(Qk) = argminR‖c(R)− f(Q)‖2
c) Solve Bkhk = −(p(Qk)−R∗) for hk
d) Set Qk+1 = Qk + hk

e) Update Bk+1 = Bk + (p(Qk+1)−R∗)hT
k

hT
k hk

f) Set k → k + 1.

Here, we have rewritten the cost functional (1) by defining

c(R) =
(√

α1
2

(ϕ(R)− ϕ̄)√
α2
2 (R− Q̄)

)
, and f(Q) =

(√
α1
2

(φ(Q)− ϕ̄)√
α2
2 (Q− Q̄)

)
.

Remark 1. On each iteration level we need one evaluation of the fine model
and one solve of the optimal control problem for the coarse model. That is, it
is sufficient to implement an adjoint code for the coarse model [5].
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4 Numerical Results

We implemented test cases in 1D using the DSA iterative scheme for the
transport equations of the forward and adjoint equations on the fine level [1,7].
The radiative transfer equation was discretised on an equidistant space grid
using the diamond differencing scheme by evaluating intensity I and source q
at the nodes xi = iΔx, i = 0, . . . ,M and using averages Ii+ 1

2
= (Ii+1 + Ii)/2

and qi+ 1
2

= (qi+1 +qi)/2. The iteration is started by choosing an initial iterate

I0
ij and computing the flux ϕ0

i =
∑N

j=1 I
0
ijwj . Then, for k ≥ 0, the iteration

proceeds in two substeps. First, the following transport equation with given
right side is solved for the intermediate intensity Ik+

1
2

ij

εμj
I
k+ 1

2
i+1,j − Ik+

1
2

ij

Δx
+ σtI

k+ 1
2

i+ 1
2 ,j

=
σs
2
ϕki+ 1

2
+ qi+ 1

2
,

with b.c. I
k+ 1

2
0,j = A, μj > 0, I

k+ 1
2

M,j = A, μj < 0.

This corresponds to the transport sweep in the source iteration method. Note
that the sweep is done from left to right when μj > 0, and from right to left

when μj < 0. Then the flux difference ϕk+
1
2

i =
∑N

j=1(Ik+
1
2

ij − Ikij)wj is taken
as source term for the computation of the correction δϕk+

1
2 :

− ε2

3σt

δϕ
k+ 1

2
i+1 − 2δϕk+

1
2

i + δϕ
k+ 1

2
i−1

Δx2
+ σa

δϕ
k+ 1

2
i+1 + 2δϕk+

1
2

i + δϕ
k+ 1

2
i−1

4

= σs
ϕ
k+ 1

2
i+1 − ϕki+1

2
+ σs

ϕ
k+ 1

2
i − ϕki

2
,

with homogeneous boundary conditions on the left and right of the interval.
The new iterate for the flux is eventually updated

ϕk+1
i = ϕ

k+ 1
2

i + δϕ
k+ 1

2
i .

After the iteration has stopped, we obtain a numerical solution for the inten-
sity by performing an additional sweep with the final flux. The coarse level
SPN approximations corresponding to the one-dimensional transfer equation
were discretised using standard finite differences.

In the examples presented in the following, the radiative transfer problem
had an absorption cross section σa = 1 and a scattering cross section σs = 1,
and the non-dimensional parameter ε = 1 was used. The equation was dis-
cretised with Nx = 51 nodes xi = i/Nx in space. For the angular variable,
Ng = 32 nodes given by the quadrature points of double Gaussian quadra-
ture on [−1,+1] were used. The RTE equation was solved for homogeneous
Dirichlet boundary conditions A = 0 for ingoing directions at the left and
right, respectively. The tracking part of the functional had the weight α1 = 1
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Table 1. Comparison of the optimisation methods

Iterations Evals Runtime [s] FEnd

Gradient 12 44 0.7 5.3540 · 10−8

Trust region 14 15 0.5 7.5886 · 10−6

ASM 3 3(40) 0.3 2.9682 · 10−6

Table 2. Comparison of the optimisation methods

Iterations Evals Runtime [s] FEnd

Gradient 11 42 0.8 7.2731 · 10−3

Trust region 4 5 0.2 7.2733 · 10−3

ASM 2 2(14) 0.2 7.4130 · 10−3

and the regularisation the weight α2 = 1. The same functional was also used
for the coarse model.

The performance of a classical gradient and a trust region algorithm for
the fine model was compared with aggressive space mapping based on the SP1

model. The space mapping p(Q) was evaluated using a trust region method
for the coarse functional optimisations [3]. We used a stopping criterion based
on the functional values and the size of the gradient of the functional. These
parameters were also used for the standard trust region method. The standard
gradient method included an Armijo line search.

4.1 Box-Shaped Source

In the first numerical test we use a prescribed reference source qref as shown
in Fig. 1, for which ϕref is computed. Then, we seek the optimiser start-
ing from a vanishing source. The performance of the algorithms can be seen
from Table 1 and the corresponding final results are depicted in Fig. 1. The
aggressive space mapping needs just three evaluations of the fine model and
40 function evaluations on the coarse level. Hence, we get comparable results
with less numerical effort.

4.2 Unknown Reference Source

In the second test case we want to reconstruct an unknown source and set
qref = 0. The reference intensity belongs to a Gaussian source term (center
0.5, std. dev. 0.1) and we start the algorithms again from a vanishing source.
The performance of the algorithms can be seen from Table 2. Again, the
aggressive space mapping needs just very few evaluations of the fine model
and yields results comparable to the full optimisation.
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Fig. 1. Left : Control after optimisation using space mapping. The results of aggres-
sive space mapping and a trust region solve are compared with the reference solution
Right : The corresponding state given by the flux, i.e., the angle-integrated intensity
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Fig. 2. Left : Control after optimisation using space mapping. The results of
aggressive space mapping and a trust region solution are compared. Right : The
corresponding state given by the flux, i.e., the angle-integrated intensity and the
reference intensity
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Minisymposium Optimization and Model
Order Reduction in Circuit Design
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While during the last decades the great enhancements in the field of digital
design methodologies and tools have allowed to design larger digital circuits in
less time, the analog circuit design methods have not progressed at the same
rate. The design of analog electrical circuits needs electronic engineers with
a long experience and a wide knowledge of the theories that rule this kind
of circuits. However, experimental optimization tools exist; they search the
space of solutions for optimal configurations of variables sets, given a circuit
netlist provided by the designers. Typical analog integrated circuit optimiza-
tion problems are computationally hard and require the handling of multiple,
conflicting, and non-commensurate objectives having strong nonlinear inter-
dependence. In general it is possible to reformulate integrated circuit design
as constrained multi-objective optimization problems defined in a mixed inte-
ger/discrete/continuous domain. The hereby employed traditional numerical
techniques are becoming too much time-consuming for circuits of industrial
complexity. The long computation time required for the optimization of a
complete circuit cannot be tolerated especially in the early design stages. For
tackling this complexity problem model reduction methods are a promising
approach in order to achieve a faster performance evaluation in order to obtain
more robust devices within a more efficient design process.

The minisymposium focused on the usage of model reduction techniques in
combination with optimization methods. The results are developed in the EU
Marie Curie projects SymTecO (Symbolic Techniques for Circuit Optimiza-
tion) and O-Moore-Nice! (Operational Model Order Reduction for Nanoscale
IC Electronics). Both projects address Transfer of Knowledge on Mathematics
for Industry.

Paola Barrera from STMicroelectronics in Catania, with Thomas Halfmann
and Jochen Broz from the Fraunhofer Institute (ITWM) in Kaiserslautern,
presented a talk from SYMTECO on “A Netlist Reduction Algorithm to
Symbolic Circuit Analysis”, in which new reduction algorithm in the area
of symbolic circuit analysis was described. The reduction of a netlist as well
as of the model order complexity are important modelling issues which help
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to speed up the process of integrated circuit design [5]. The proposed method
eliminated nodes from a netlist topology assuring a user-given accuracy mar-
gin. The algorithm was based on the decision diagram derived from the circuit
topology and considered low memory storage issues in order to efficiently carry
out the simplification. Starting from the application of a spiral inductor test
case [1] efficiency was evaluated. The reduced system complexity in terms of
netlist nodes and model order encouraged the application to other industrial
test cases.

Alberto Venturi from the Fraunhofer Institute (ITWM) in Kaiserslautern,
with the contribution of A. Ciccazzo, S. Rinaudo from STMicroelectronics
in Catania (Italy) gave a talk from SYMTECO on “Application of optimiza-
tion and model order reduction techniques” in which he explained how given
the computation time required for the analysis of a complete circuit can be
too long for an adequate use of optimization methods in industrial circuit
design, the use of symbolic analysis together with model order reduction tech-
niques could reduce the computational cost and hence make optimization a
practicable way in the circuit design. To evaluate the possibilities offered by
this technique, a linear test case had been considered: the problem of an
inductor simulation had been analyzed by introducing simplified analytical
expressions and different optimization algorithms in the fitting/optimization
process. Then the technique was applied to a real circuit, a voltage reference,
trying to improve the stability of the reference over the temperature.

Jan ter Maten of NXP Semiconductors presented “Parameterized Model
Order Reduction for nonlinear IC models”. This work was in cooperation
with Joost Rommes (NXP) and Michael Striebel (TU Chemnitz) of the O-
MOORE-NICE! project and with Tamara Bechtold(NXP), Kasra Mohaghegh
(Univ. of Wuppertal) and Zoran Ilievski (TU Eindhoven) of the COMSON
RTN-project. He demonstrated Model Order Reduction for a nonlinear sys-
tem of differential-algebraic equations of a diode chain. While the Trajectory
PieceWise Linear method (TPWL) is very fast it also is very sensitive to
the change of input signals. The weighting procedure of linear models was
pointed out as a key ingredient that needs further research in order to further
improve the method. Proper Orthogonal Decomposition (POD) much bet-
ter preserves nonlinearity, but needed significant adaptions (called Adapted
Missing Point Estimation) to become comparable in speed to TPWL [7]. The
resulting method also is much more accurate than TPWL and behaves better
to changes of the input. The snapshots collected in POD can also be used to
efficiently obtain a first impression of sensitivities of objective functions [6].

Luciano De Tommasi from Antwerp and Ghent University – IBBT,
Belgium, gave a talk entitled “Optimization in surrogate model building for
RF circuit blocks” (joint O-MOORE-NICE! project work with D. Gorissen,
J. Croon and T. Dhaene). Surrogate models, also known as response sur-
face models, have become a cost effective alternative for replacing expensive
computer simulations when exploring the design space, performing what-if
analysis, optimization and sensitivity analysis. Relevant aspects which have
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been investigated include model type selection [2, 3], adaptive sampling [2]
and optimization of model parameters [2–4] (adaptive modeling).
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Summary. A new reduction algorithm in the area of symbolic circuit analysis is
presented. The reduction of a netlist as well as of the model order complexity are
important modeling issues which help to speed up the process of integrated circuit
design. The proposed method eliminates nodes from a netlist topology assuring a
user-given accuracy margin. The algorithm is based on the decision diagram derived
from the circuit topology and considers low memory storage issues in order to effi-
ciently carry out the simplification. Starting from the application of a spiral inductor
test case, the efficiency is evaluated. The reduced system complexity in terms of
netlist nodes and model order encourage the application to other industrial test
cases.

1 Introduction

Analog and mixed-signal design is of great importance in microelectronics
applications, like automotive and telecommunication. The traditional design
of analog integrated circuits is based on a mixture of expertise, some manual
calculations, and numerical circuit simulations [4]. In order to improve a faster
performance evaluation as well as a deeper understanding of complex circuits,
the symbolic analysis and simplification techniques have been introduced in
the electronic design community. Symbolic analysis is a formal technique to
calculate the behavior of a circuit, writing and solving the circuit equations,
in which the variables and the circuit parameters are represented by symbols.
Symbolic analysis is complementary to the numerical analysis (where the vari-
ables and the circuit elements are represented by numbers), that even if allows
an accurate simulation of the circuit is not able to carry out which elements
are critical for the circuit behaviour [2]. If several evaluations of the circuit
with different sets of parameters are necessary, for example to handle an opti-
mization problem, the process is time consuming. So an alternative could be
to solve once the circuit equations symbolically and verify which terms are rel-
evant or need to be optimized. On the other hand the exact symbolic analysis
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yields expressions which increase in complexity with the increase of the com-
ponents in the circuit. For example, even a simple common-emitter amplifier
consisting of only one BJT transistor already results in a symbolic transfer
function for the small-signal voltage gain with more than 130 terms [4]. It
appears clear that in order to use the advantages of the symbolic analysis it
is necessary to simplify the generated expressions by keeping the dominant
terms only. In this way it is possible not only to simplify the solutions and
put in evidence which parts or parameters are dominants but also to speed
up the optimization and evaluations time of the circuit behaviour. To achieve
this goal a symbolic simplification or symbolic approximation which uses a
whole family of hybrid symbolic/numeric algorithms for expression simplifi-
cation is taken into account. An user-fixed error, evaluated on the base of the
neglected terms, is introduced with this approach, but the reduction of the
complexity of the symbolic expression is obtained [2, 3]. However the simpli-
fication algorithms, are applied to the equations of the circuit obtained by
standard analysis technique, like the MNA (Modified, Nodal, Analysis) and
the Sparse Tableau, which give rise to a matrix constructed on the basis of
the circuit netlist. So the proposed approach, is based on the netlist reduction
of the circuit under test, in order to obtain a simplified equations representa-
tion. The developed symbolic/numeric algorithms can be then applied to the
simplified equations. In the next section, the technique of symbolic circuit rep-
resentation is first introduced with the illustration of a practical example. The
basic methodology of how symbolic analysis works is explained, then an indi-
cation of the advantages of the application of the netlist reduction algorithm
is given. The description of the algorithm flow and the preliminary results
are also introduced. Finally, concluding remarks and points out directions for
future research.

2 Principles of Symbolic Analysis

2.1 Circuit Equations Analysis

With increasing frequencies and faster signal transition times, on chip induc-
tive effects, which describe the interconnection of one macro circuit to another
one, are critically important in the design and verification of integrated
circuits. On-chip interconnects are typically modeled by linear elements. Con-
sequently, many commercial extraction tools, generate RLC circuits for high
performance designs. These circuits together with the non-linear drivers are
then analyzed by fast timing simulators or tools using linearized models of
the drivers. The extraction tools generate a large amount of data, and as a
consequence the analysis tools require significant resource in term of CPU
calculation time and memory occupation [1]. On the other hand, as well as
for numerical analysis tools, the input of symbolic analysis, is an extracted
netlist which describes the circuit under test. In order to speed up together



A Netlist Reduction Algorithm to Symbolic Circuit Analysis 431

the symbolic and the numerical simulations, a netlist reduction algorithm has
been developed. The netlist of a circuit is a list which contains the name,
the node connections, the symbolic and the numerical value of each element.
Following the example illustrated in Fig. 1 the element R1 of the list can be
represented like: [A,(1,2), R1, 10]. In order to apply the symbolic analysis
algorithms, the first step is to set up the equations associated to the circuit,
using e.g. the MNA or the Sparse Tableau representations. If the MNA rep-
resentation is used, for the circuit in Fig. 1, the result is a 4 × 4 matrix. It is
possible to observe that each resistance (not connected to the node labeled
as zero) introduces in the matrix four terms and two corresponding equations
(in order to calculate the potentials at the nodes at which it is connected).
If the circuit under test is more complex, if are present controlled source,
for example, or in industrial applications, the number of terms and equation
in the matrix increase drastically. In a symbolic circuit analysis, the second
step is the output calculation and its simplification with a user-given error, or
the simplification of the matrix with a fixed error and the consequent output
evaluation. It appears clear that a reduced matrix can help the simplification
process, in either cases. The basic idea, of the developed algorithm is: starting
from the netlist which describes the circuit under test, take into account the
series and parallel connections and reduce at first the circuit topology and
then according with the numerical values of the element simplify the circuit
topology. In either case the number of elements in the matrix will be reduced.
In the first case the resulting output will be exact, in the second case, there will
be an user-given error. In the following section it is introduced the algorithm
flow.

2.2 Netlist Reduction Algorithm

The developed algorithm is based on the analysis of the circuit topology. From
a circuit point of view, components connected in series or in parallel can be
replaced with unique elements. As a result there will be the deletions of the
nodes that the elements in series have in common and the compression in one
branch of all the components which are in parallel. The effect of the appli-
cation of these simplifications will preserve the exact circuit behavior as well
as the number of parameters, but a significant reduction in the number of
variables and so in the equations and in the matrix terms which describe the
circuit is obtained. We will refer to this topological reduction like a series
and/or parallel reduction. As the designer knows the range of variations of
the circuit parameters, it is possible not only to apply a topological reduc-
tion but also operate circuit simplification with a user-given error. We will
refer to this simplification like a netlist reduction. To better explain the algo-
rithm flow the circuit depicted in Fig. 1 is considered. So looking at it, if the
question is the evaluation of the voltage across the resistance R1 it is possi-
ble to replace the resistances R3 and R4, with an unique element RA, equal
to the sum of the components R3 and R4, because they are in series. The
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obtained resistance RA is now in parallel with the resistance R2, so they can
be replaced by an unique element RB evaluated with the classical topologi-
cal rules. The resulting circuit and the corresponding matrix are depicted in
Fig. 2. Due to the topology reduction the circuit and so the netlist associated
to it, is reduced of two components, the corresponding matrix has a row and
a column less (a variable less), however, the solution will be still exacts. Look-
ing at the components in series, on the base of the knowledge of the order
of magnitude of the components, all the elements less than a fixed value can
be described by a short circuit whereas all components connected in parallel
having a value higher than the fixed one can be replaced with an open circuit.
If a component can be represented like a short circuit the nodes at which it
is connected will be compressed in a unique node which connects directly the
components linked to it. Because the component disappears it disappears also
the parameter associated to it. An open circuit imply instead only the deletion
of the parameter associated to it. The obtained circuit will have a reduced
number of branches and nodes but also of parameters. As a result not only
the order and complexity of the analytical model will be reduced but also the
number of parameters to be analyzed, like in a sensitivity analysis.

3 Results

The algorithm has been applied to the equivalent circuit of the inductor con-
sidered in Fig. 3. If the MNA representation is used, it yields a 25×25 matrix
and 27 parameters. After the application of the algorithm, it is obtained an
8× 8 matrix and a number of parameters equal to 4. A more complex circuit,
used in industrial application, which represents the interconnection of one
macro to another macro-circuit has been then considered (see Fig. 3). The
original number of components which are resistances and capacitances, from
about 8,900, thanks to the application of the short circuit concept has been
reduced to about 5,400, applying the open circuit definition from 5,400 to
4,500 and after the compression of series and parallel in an unique elements
to 4,100. The obtained reduction is about 55.

4 Conclusions and Further Work

It has been proposed a netlist reduction algorithm based on the elimination
of nodes and branches of a circuit, assuring a user-given accuracy margin.
It is based on the decision diagram derived from the circuit topology. After
the application of the algorithm the matrix which describes the circuit has a
number of parameters as well as of variables and so of equations drastically
reduced. The application to different industrial test cases has been introduced,
resulting in a reduced system complexity in terms of netlist nodes and model
order. The obtained results encourage the application to other industrial test
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cases. Other electric circuit properties (such as the T and delta connections,
for example)are in implementation and the application to non-linear elements
will be exploited.
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Summary. The computation time required for the analysis and optimization of a
complete circuit can be too long. The use of symbolic analysis together with model
order reduction techniques can reduce it and make the optimization a practicable
way in the circuit design. To evaluate the possibilities offered by the technique,
firstly a linear test case has been considered. The problem of an inductor simulation
has been analyzed by introducing simplified analytical expressions and different
optimization algorithms in the fitting/optimization process. Then the optimization
technique has been applied to a real circuit, a voltage reference, trying to improve
the stability of the reference over the temperature.

1 Introduction

Optimization techniques, symbolic analysis and simplification techniques have
been applied to two examples of electronics circuits: firstly to an equivalent
lumped circuit of a micro inductor, and then to a band voltage reference. Both
of them are important circuital blocks really employed in the nowadays elec-
tronics. A band voltage reference (BVR) is a voltage reference that gives an
output proportional to the band gap energy of a transistor. The BVR circuit
balances the negative temperature coefficient of a pn junction with the posi-
tive temperature coefficient of the “thermal voltage”: Vt = kT\q. Integrated
inductors improve both reliability and efficiency of silicon-integrated RF cells;
they can offer circuit solutions with superior performance and contribute to
a higher level of integration The inductance of an integrated inductor can
be computed exactly by solving Maxwell’s equations [1] but to facilitate the
design of such components, significant work has gone into modelling spiral
inductors using lumped circuit models that takes into account the parasitic
resistors and capacitors. Generally, the adopted method to extract model
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Fig. 1. Inductor Simulation Flow diagram

parameters from an event, is based on the Least Squares Method, that is,
minimizing the l2 norm of the difference between the output and the measured
(or required) value, and consists in an optimization problem. In our research
work six different optimization methods, both deterministic and stochastic
have been tested, in combination with symbolic analysis and simplification
techniques, for the fitting of inductor Y parameters. Symbolic analysis is a
formal technique to write and solve equations describing circuits behaviour
without introducing the numerical value of variables which are symbolically
represented. Dimensions of symbolic expression of a circuit actually increase
rapidly with the complexity of the network, and in order to make use of the
symbolic technique not limited to small circuits, it is necessary to simplify
generated expressions by keeping the dominant terms only.

2 Inductor Simulation Flow

A flow to permit designers to apply precise inductor model in their integrated
circuits simulations was developed by the STMicroelectronics CAD group [8].
Following Fig. 1 it is possible to see how the simulation flow has been modified
by introducing the use of Jexemplar, Mathematica and Analog Insy-
des software in order to obtain and employ an approximated Y parameters
symbolic expression. This expression is used by the fitting process in order to
find the appropriate set of circuit component values and to reproduce the tar-
get curves. Now the employed optimization software is Jexemplar; it reads
the file with the numerical expression of Y parameters and compares it with
the target file, then it generates a new set of component values or ends the
process if the fixed approximation is rejoined. Mathematica has the duty
to calculate and save the numerical value of Y parameters using the approx-
imated symbolic Y parameters expression obtained by Analog Insydes.
Analog Insydes, making use of the Mathematica calculus routines and,
receiving as input the description of the inductor lumped circuit, provides the
approximated Y parameters expressions. The approximation software offers
the possibility to approximate equation systems both before and after the sym-
bolic solution of the systems [10], and both these approximation techniques
have been applied.
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Fig. 2. Inductor layout

Table 1. Lower and upper bounds of the Inductor problem variables

Var. Lower bound Upper bound Var. Lower bound Upper bound

Rb1 1.00 × 10−8 1.00 × 10−4 Cox1 1.00 × 10−17 1.00 × 10−13

Rb2 1.00 × 10−4 1 Cox2 1.00 × 10−17 1.00 × 10−13

Rox1 1.00 × 10−6 1.00 × 10−2 Rl 1.00 × 10−4 1
Rox2 1.00 × 10−4 1 LL 1.00 × 10−13 1.00 × 10−9

Cb1 1.00 × 10−26 1.00 × 10−22 Cl 1.00 × 10−21 1.00 × 10−17

Cb2 1.00 × 10−25 1.00 × 10−21

The structure of the lumped circuit is fixed, the inductor is represented
as an equivalent distributed inductor model with a variable cell number to
better describe the inductor behaviour at high frequencies [1,9]. The complete
inductor model has the layout illustrated in Fig. 2.

The computer platform used was based on Xeon 3.2 Ghz Intel processor 32
bit, RedHat Enterprise Linux release 3 update 4 operating system. We have
tested six of the state-of-the-art optimization algorithms for real world appli-
cations; in particular, we use Controlled Random Search (CRS) [4], Controlled
Random Search Enhanced (CRS-E) [5], the immune algorithm (optIA) [6]
Powell’s algorithm [2], Direct method (Direct) [3] and Differential Evolution,
DE [7].

3 Simulations

3.1 Inductor

The optimization process has been executed with both approximated and not
approximated Y parameter expressions. Our black box function takes as input
11 variables which bounds are presented in Table 1.

Three different simplified expressions of the Y parameters obtained with
a maximum relative error of 10−1, 10−4 and 10−6 have been tested. For each
algorithm, we fixed the number of objective function evaluation to 104 and a
tolerance factor value of ε = 10−12; if the algorithm find a configuration with a
Y value that differs less than ε from the target, it will be stopped. In addiction,
for the Direct algorithm, we stop the algorithm if the volume of the hyper
rectangle is less than 10−12. Moreover, for the optIA algorithm, we use a
population of ten candidate solutions, d = 10, a duplication parameter value
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equal to two, dup = 2, and the elitist selection operator. For DE algorithm,
after a series of test to individuate the best option, we set the real factor
which controls the amplification of the differential variation to 0.2 and the
crossover probability to 0.5. Finally, for Direct and Powell algorithms, we
set a initial point where each variable is centred into the given lower and upper
bound, instead for CRS, CRS-E and optIA we start totally from random
points.

By inspecting the results we can note that the best found solution for
the circuit using no approximation is clustered at Y = 4.86× 10−3; excluding
Direct, every algorithm reaches this solution and the difference between each
algorithm is negligible.

Analyzing the results using the approximated function at different level
of tolerance, Table 2, we can observe that the algorithms are robust and
the results scale accordingly to the fixed tolerance; in Fig. 3, we show the
convergence plot. Each algorithm found a solution that generally differs from
the one obtained using a non approximated model of 0.8 × 10−3 and this
suggests that the model is accurate enough to perform a complete optimization
of the sizing of the circuit using only the symbolic model.

From an optimization point of view, we can infer that the produced approx-
imated expression can be optimized with both deterministic and stochastic
algorithms obtaining comparable results; instead, by inspecting the conver-
gence plots, we can note that the stochastic approach guarantees a better
speed of convergence than the deterministic ones.

3.2 Band Voltage Reference

The objective of the optimization with the BVG circuit was to stabilize,
working on the project parameters, the reference voltage to 650 mv over a
temperature interval between −40 and +125◦C, and with two different values
of the voltage supply 0.9 and 1.2 V. The optimization variables are the physi-
cal dimensions of the circuit components; designers suggested a first list of 32
parameters, then a sensitivity analysis made with the functionalities of Eldo
by Mentor Graphics highlighted the three most important variables to set
the output voltage. The variables have been considered continuous. The result
of the sensitivity analysis is a consequence of the circuit structure: the voltage

Table 2. Performance of the optimization algorithms using the symbolic model with
different tolerance settings

Algorithm 10−6 10−4 10−1

Crs 4.871 × 10−3 5.111 × 10−3 5.621 × 10−3

Crs-E 4.871 × 10−3 5.113 × 10−3 5.621 × 10−3

Powell 4.871 × 10−3 5.137 × 10−3 5.624 × 10−3

Direct 9.828 × 10−3 8.477 × 10−3 9.144 × 10−3

optIA 4.872 × 10−3 5.134 × 10−3 5.616 × 10−3

DE 4.875 × 10−3 5.308 × 10−3 6.016 × 10−3
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Fig. 3. Left : Inductor convergence plot with the error set to 10−6. CRS algorithm
obtains the best convergence curve. Right : BVR convergence plot

Table 3. Inductor : performance of the optimization algorithms without approxi-
mations

Algorithm Best Residual Algorithm Best Residual

DE 2.402 × 10−5 CRS 6.9564 × 10−5

optIA 6.0517 × 10−5 Direct 1.1019 × 10−4

reference is generated by injecting a controlled current on the resistors. In this
configuration the role of the resistors is crucial.

By inspecting the results, Table 3, it is possible to see that the perfor-
mances of all the algorithms, with the exception of Direct, are good; DE
showed to be able to get a results slightly better. In Fig. 3.1 is showed the
convergence plot for the algorithms tested. In Fig. 4 is plotted the curve volt-
age vs temperature for the circuit both optimized that not optimized. It is
possible to see how the The optimization has reduced the peak to peak value
of the curve but has also moved maximum versus lower temperature, instead
of keeping it at 27◦C.

4 Conclusion

The possibility to introduce simplification techniques in the optimization flow
of an inductor simulation has been evaluated; as a test case was used the
spiral inductor. The symbolic circuit simulator Analog Insydes was linked
with an optimization framework, which take into account deterministic and
stochastic optimization algorithms. The results show that it has been possible
to find solutions using the simplified parameter expressions comparable to the
solutions obtained without approximated expressions. It has been proved that
the time is dramatically decreased. In order to extend the same strategy to
more complicate circuits, we started by verifying the utility of the application
of optimization techniques to a band voltage reference circuit. The result
obtained has showed the possibility to improve the designers job; future works
are led to complete the flow by applying the symbolic analysis also to similar
circuits.
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Summary. We demonstrate Model Order Reduction for a nonlinear system of
differential-algebraic equations of a diode chain by Proper Orthogonal Decompo-
sition with Adapted Missing Point Estimation. The collected time snapshots also
allow for an efficient impression of the sensitivity of objective functions.

1 Introduction

Future simulation for nanoelectronics requires that circuit equations can be
coupled to electromagnetics, to semiconductor equations, and to heat trans-
fer. The consequence is that one has to deal with large systems. Model Order
Reduction (MOR) is a means to speed up simulation of large systems. Exist-
ing MOR techniques mostly apply to linear problems and even then they
have to be generalized to become applicable to a resulting system of (Partial)
Differential-Algebraic Equations (DAEs, PDAES). To make MOR applicable
to industrial applications one has to address nonlinearity and parameteriza-
tion. Here we consider Proper Orthogonal Decomposition (POD) to reduce
the system size. An adaption is presented to also reduce the complexity in
evaluating functions and Jacobian matrices.

The problem of reducing nonlinear systems can be described as follows.
Given a, possibly large-scale, nonlinear time-invariant dynamical system Σ =
(g, f ,h,x,u,y, t)

Σ =
{

dg(x(t))
dt

= f(x(t),u(t))
y(t) = h(x,u)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p, f(x(t),u(t)),g(x(t)) ∈ R

n,
h(x(t),u(t)) ∈ R

p, find a reduced model Σ̃ = (g̃, f̃ , h̃, x̃,u, ỹ, t)
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Σ̃ =
{
dg̃(x̃(t))

dt = f̃(x̃(t),u(t))
ỹ(t) = h̃(x̃,u)

where x̃(t) ∈ R
r, u(t) ∈ R

m, ỹ(t) ∈ R
p, f̃ (x̃(t),u(t)), g̃(x̃(t)) ∈ R

r,
h̃(x̃(t),u(t)) ∈ R

p, such that ỹ(t) can be computed in much less time than
y(t) and the approximation error y(t) − ỹ(t) is small.

In the context of circuit simulation the dynamical systems we are dealing
with are circuit blocks or subcircuits. Connection to and communication with
a block’s environment is done via its terminals, i.e. external nodes. Therefore,
we can assume that the currents or voltages are always injected linearly into
the circuit under consideration. A similar reasoning applies for the determi-
nation of the output signal y(t), which is also assumed to be not explicitly
dependent on the input u(t). Hence, in the remainder of this document, we
assume the dynamical systems to be of the form

Σ =
{
dg(x(t))

dt = f(x(t)) + Bu(t)
y(t) = CTx

where B ∈ R
n×m and C ∈ R

n×p.
The two best-known methods for reduction of nonlinear systems are

Proper Orthogonal Decomposition (POD), and Trajectory PieceWise-Linear
techniques (TPWL) [4, 6, 7] (and references cited there).

2 Proper Orthogonal Decomposition (POD)

Proper Orthogonal Decomposition extends the Petrov–Galerkin projection
based methods that are used for linear systems to nonlinear system. By choos-
ing a suitable V ∈ R

n×r and a test matrix W ∈ R
n×r, where W and V are

biorthonormal, i.e., WTV = Ir×r, r ≤ n, the reduced system is given by
{

WT dg(Vx̃(t))
dt = WT f(Vx̃(t)) + (WTB)u(t)
ỹ(t) = (CTV)x̃

Similar to linear model order reduction, the idea is that V captures the dom-
inant dynamics, i.e., the states of the original system are approximated well
by Vx̃ ≈ x. The test matrix W is chosen such that the Petrov–Galerkin
condition r = dg(Vx̃(t))

dt − f(x̃(t))−Bu(t) ⊥W is met.
POD constructs the matrix V as follows. A time domain simulation of the

complete system is done and snapshots of the states at suitably chosen times
ti are collected in the state matrix X

X = [x(t0), x(t1), x(t2), · · ·x(tN−1)] ∈ R
n×N ,

where N is the number of time points ti. To extract the subspace that rep-
resents that dominant dynamics, the singular value decomposition of X is
computed X = UΣT where U ∈ R

n×n, Σ = [diag(σ1, . . . , σn) 0n×(N−n)] ∈
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R
n×N (if N > n), and T ∈ R

N×N . Let the singular values σ1 ≥ σ2 · · ·σr �
σr+1 > · · · > σn be ordered in decreasing magnitude. POD chooses the matrix
V to have as its columns the left singular vectors corresponding to the r � n
largest singular values

V = [u1, u2, · · · ,ur] ∈ R
n×r.

The number k of vectors to choose can depend on a tolerance based criterion
like σk+1 < ε, or on the relative difference between σk and σk+1. The test
matrix W is taken as W = V, i.e., the residual is orthogonal to the reduced
state space.

We stress that the reduction obtained from POD and similar projection
based methods is solely in the number of states: r for the reduced systems
vs. n for the original system and r � n. However, the costs for evaluating
nonlinear terms such as WT f(Vx̃(t)) (and associated Jacobian matrices) will
be larger than for the original system. Hence with respect to simulation times
no reduction may be obtained unless additional measures are taken.

3 Missing Point Estimation/Adapted POD

We will present some results computed with the Missing Point Analysis/Adap-
ted POD approach described in [3–5]. We reflect the basic idea with the case
of a simple ODE

d

dt
x = f(x),

of dimension n with nonlinear right hand side f : R
n → R

n. The singular
value decomposition X = UΣVT of a matrix X ∈ R

n×N of N snapshots
is computed, giving n singular values σ1 ≥ σ2 ≥ · · · ≥ σn. The orthogonal
matrix L = U · diag(σ1, . . . , σn) ∈ R

n×n is introduced, with its columns
l1, . . . , ln spanning the complete space R

n. Hence, one can change to the new
basis, i.e., x = Ly and apply a Galerkin-like projection to the system

LT
d

dt
(Ly) = LT f(Ly). (1)

Strictly speaking we do not apply Galerkin projection as the columns of L are
orthogonal, but not orthonormal.

Classical POD reduction acts on x = Ly in the sense that the expansion
of x in the basis l1, . . . , ln where (l1, . . . , ln) = L = (σ1 · v1, . . . , σn · vn) with
(v1, . . . ,vn) = U is truncated with respect to the magnitude of the singular
values σ1, . . . , σn:

x= Ly = (σ1v1) · y1 + · · ·+ (σrvr) · yr + (σr+1vr+1) · yr+1 + · · ·+ (σnvn) · yn
≈ (σ1v1) · y1 + · · ·+ (σrvr) · yr + 0 · yr+1 + 0 · yn
= (l1, . . . , lr, 0, . . . , 0) · y
= (LPT

r Pr) · y, with Pr =
(
Ir×r 0r×(n−r)

) ∈ {0, 1}r×n
= (LPT

r ) · (Pry) = (LPT
r ) · zr with zr = (y1, . . . , yr)T ∈ R

r
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where r usually is chosen in such a way that σr+1 < TOL or σr+1 � σr.
This procedure can also be interpreted as keeping the r most “dominant”

columns of L and neglecting the rest, where a column’s norm is taken as a
criterion. That means, L is approximated by

L ≈ LPT
r Pr, with Pr ∈ {0, 1}r×n. (2)

where Pr =
(
Ir×r 0r×(n−r)

)
selects these columns. By construction of L =

U ·diag(σ1, . . . , σn), where UTU = In×n, we have ‖vi‖2 = σi for i = 1, . . . , n.
In this respect the r most dominant columns are therefore l1, . . . , lr.

In the adapted POD presented in [4] this perception is carried over to the
transposed LT . That means, one selects, again based on the norms, the g ∈ N

most dominant columns {̃lμ1, . . . , l̃μg} of LT = (̃l1, . . . , l̃n) and neglects the
rest:

LT ≈ LTPT
g Pg, with Pg ∈ {0, 1}g×n. (3)

First, these approximations to L and LT from (2) and (3), respectively, are
inserted into (1):

LTPT
g Pg

d

dt
(LPT

r Pry) = LTPT
g Pgf(LPT

r Pry) (4)

From (2) and (3) it follows that

LT ≈ PT
r PrLTPT

g Pg,

and multiplying with Pr (consider PrPT
r = Ir×r), the system (4) turns into

PrLTPT
g Pg

d

dt
(LPT

r Pry) = PrLTPT
g Pgf(LPT

r Pry)

As LPT
r = (σ1v1, . . . , σrvr) = UrΣr (for Ur = (v1, . . . ,vr), Σr = diag(σ1, . . .-

. . . , σr)) we get

ΣrUT
r PT

g

d

dt
[PgUrΣrPry] = ΣrUT

r PT
g Pgf(UrΣrPry), Ly = x.

The above equation states a system of dimension r for y ∈ R
n. Therefore,

we introduce the reduced state vector yr = ΣrPry ∈ R
r from which we can

approximately reconstruct the coefficients of the full state in the basis spanned
by the columns of L by y ≈ PT

r Σ
−1
r yr. This in turn lets us approximate the

full state in the original basis x ≈ Uryr, because x = Ly ≈ LPT
r Σ

−1
r yr =

UrΣrΣ
−1
r yr. This part is consistent with the classical POD.

In addition to the reduction in the state space the adapted POD downsizes
f(·) by considering that the term Pgf(·) corresponds to just including the g
components fμ1(·), . . . , fμg (·) of f(·) = (f1(·), . . . , fr(·))T . Hence, it suffices to
evaluate the g-dimensional function

f̄ : R
n → R

g : x �→ (fμ1(x), . . . , fμg (x))T .
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After scaling with Σ−1
r the reduced system for the reduced state vector yr ∈

R
r becomes

UT
r PT

g

d

dt
[PgUryr ] = UT

r PT
g f̄(Uryr), x = Uryr (5)

For the general case of having not an ODE (1) but a DAE

d

dt
g(x) = f(x) + Bv

to deal with, one gets a reduced problem

UT
r PT

g

d

dt
ḡ(Uryr) = UT

r PT
g f̄(Uryr) + UT

r Bv. (6)

with ḡ : R
n → R

g : x �→ (gμ1(x), . . . , gμg(x))T .
We end this section with the observation that the collected time snap-

shots for POD also allow for an efficient first impression of the sensitivity of
several objective functions (like consumed power) even in the case of many
parameters [2].

4 POD Testcase: Diodechain

We consider the diode chain model shown in Fig. 1 (with the parameters
Is, VT , R, C). Here the diode functionality is modelled by the current function
g(Va, Vb) and the input function by Uin(109t), for t ≤ 70 ns, see [3–5],

g(Va, Vb) =

{
Is(e

Va−Vb
VT − 1) if Va − Vb > 0.5
0 otherwise

Uin(τ ) =

⎧⎨
⎩

20 if τ ≤ 10
170 − 15τ if 10 < τ ≤ 11

5 if τ > 11

The state of the diode chain model consists of 302 elements but there is a lot
of redundancy. The numerical solution (nodal voltage in each node) on the
time interval [0, 70 ns] is computed by the Euler Backward method with fixed
stepsizes of 0.1 ns. The full system was run in 42.01 s. Classic POD needed
35.51 s. The POD with Adapted MPE (reducing the state space to r = 30 and
downsizing evaluations to g = 35), only required 5.12 s. No visible error can
be seen in the approximative results (Fig. 2 (left)).

If the input changes to 7.5 cos( 2πt
60·10−9 ) + 12.5 this impression is confirmed

(full system 40.22 s, Classic POD even 45.34 s, POD with Adapted POD 6.28 s;
Fig. 2 (right)). This makes POD ca five times slower then TPWL, but much
more accurate and more robust [3]. If we further increase the amplitude of
the cosine to 9.5 POD is not able to properly recover the regions with higher
amplitudes (but neither is TPWL) [5].
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Fig. 1. Schematic of diode chain
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Summary. Surrogate models are a cost-effective replacement for expensive com-
puter simulations in design space exploration. Literature has already demonstrated
the feasibility of accurate surrogate models for single radio frequency (RF) and
microwave devices. Within the European Marie Curie project O-MOORE-NICE!
(Operational Model Order Reduction for Nanoscale IC Electronics) we aim to inves-
tigate the feasibility of the surrogate modeling approach for entire RF circuit blocks.
This paper presents an overview about the surrogate model type selection problem
for low noise amplifier modeling.

1 Introduction

Design space exploration of RF circuit blocks involves the solution of con-
strained multiobjective optimization problems in order to fulfill the perfor-
mance specifications and perform what-if and sensitivity analysis. Optimiza-
tion demands a large amount of circuit simulations so making the whole
process very expensive.

We aim to develop scalable (parametrized) models of (non-linear) RF cir-
cuit blocks. This problem is too hard to be addressed applying model order
reduction techniques. Furthermore, model order reduction is a model-driven
approach: it needs the mathematical description of the system, which is not
available when model equations are embedded into the circuit simulator. On
the other hand, surrogate modeling is a data-driven approach, which does not
make any analytical assumptions upon the model which has to be reduced.
The simulator is seen as a ‘black box’ which accepts input samples and
provides output samples, see Fig. 1. Basing upon such samples, a cheap-to-
evaluate surrogate model is trained. The surrogate has to be able to predict
the outputs given by the simulator when a new input (which has not been
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output
input output

out = f(in)

input1

input2

output

input1

input2

Fig. 1. Surrogate modeling approach

used in the model training) is applied. This means that surrogate modeling
is equivalent to construct the surface which fits the samples in Fig. 1 (in fact,
surrogate models are also known as response surface models).

Accurate surrogate models for single RF and microwave components have
been already developed (e.g. using ANNs [1]). In this research activity, we
aim to model complete RF circuit blocks. The first considered circuit block is
a low noise amplifier (LNA) [2]. Other RF circuit blocks (e.g. mixers, VCOs,
etc) can be analyzed following the same approach.

The behavior of an LNA is described by means of the admittance and noise
functions, which are evaluated via accurate transistor-level simulations. Such
functions are used to compute the performance figures (gain, input impedance,
noise figure and power consumption) used by designers.

Each circuit simulation typically requires 1–2 min, which is a too long time
to effectively explore how performance figures of LNA scale with key circuit-
design parameters, such as the dimensions of transistors, passive components,
signal properties and bias conditions. Therefore, the transistor level model can
be usefully replaced with an accurate surrogate model (based on transistor
level simulations) which is much cheaper to evaluate.

As first step towards an effective surrogate modeling process, the user of
a modeling software environment has to find out which model type (among
those ones available [3]) work better with his problem.

In this paper we summarize the results of a surrogate model type compar-
ison for the LNA modeling problem.

2 Software Environment

The surrogate modeling approach developed in this paper, is based on the
SUrrogate MOdeling (SUMO) Matlab Toolbox [6]. The modeling flow is shown
in Fig. 2. It is based on adaptive modeling and adaptive sampling loops.

The surrogate modeling process starts with the evaluation of an initial
design (e.g. Latin hypercube, Box–Behnken, etc) which uniformly fills the
design space (the number of samples is specified by the user). Based on this
initial set of samples, one or more surrogate models are constructed. Adaptive
modeling [7] implies that a suitable optimization algorithm (e.g. hill climb-
ing, particle swarm, genetic algorithm, DIRECT, etc) is used to tune relevant
model hyperparameters, in order to minimize the error between model and
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Fig. 2. Surrogate modeling flow

data. Model error is evaluated according to one or more measures and func-
tions. Afterwards, the models are ranked according to their score, and the
best model is selected.

In order to improve the accuracy, an adaptive sampling algorithm selects
new samples based on the best performing models and the behavior of the
reference function. In this work we applied the gradient-based method [6]
because it has shown good performances with the LNA modeling problem.

After each sampling iteration, an adaptive modeling iteration including
the new samples is started, and the whole process repeats itself until one of
the following three conditions is satisfied: (1) the maximum allowed number
of samples (specified by the user) has been reached, (2) the maximum allowed
modeling time has been exceeded, or (3) the user required accuracy has
been met.

3 Surrogate Model Type Selection

Our feasibility study about surrogate modeling of low noise amplifiers aims
to determine how many design variables can be included in a model and how
many samples (number of simulations) are needed to generate the model.

A model is considered sufficiently accurate when its root relative square
error is lower than 0.05. The maximum number of samples allowed is 1,500.

Several surrogate model types have been compared (as implemented in the
SUMO Toolbox): artificial neural networks, rational functions, radial basis
functions, least squares support vector machines and kriging [4, 5].

In order to reduce the computational cost of such comparison, transistor
level simulations have been replaced with an analytical model of the LNA4 [4].
Although the accuracy of such analytical model is obviously not sufficient to
replace the circuit simulator in the design process, it satisfactorily reproduces
the shape of the simulator outputs.

4Moreover, a cluster of PC has been used to build the surrogates.
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Design parameters (input parameters) are, in order of importance: tran-
sistor width W , source inductance Ls, frequency f , transistor length L,
gate threshold voltage VGT , gate series inductance Lm. The modeling soft-
ware works with the following normalized parameters (characterized by the
subscript ‘n’) which lie in the interval [−1,1]: W = 100 · 10−6 · 10Wn m,
Ls = 0.5 · 10−9 · 10Lsn H , f = (11 + 10 · fn) · 109 Hz, L = (90 + 30 ·Ln) · 10−9

m, VGT = 0.275+0.2·VGTn V , Lm = 1·10−9 ·10Lmn H . As output parameters,

we consider the admittances y11, y12, the input/output noise currents
√
i2in,√

i2out and their correlation ρ. If a (normalized) input parameter is not taken
into account in the modeling, it is clamped to 0, the exception being L which
is clamped to −1.

Examples of accurate surrogate models are shown in Figs. 3, 4 and 5.
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Table 1 and Figs. 6 and 7 summarize the results5. Models which reach the
accuracy level RRSE < 0.05 are highlighted in bold. It is seen that accurate
surrogate models of LNA can be obtained using at most four input parameters.
Best model types are rational functions for admittances and ANNs for noise.

As future work, the best model types identified in this study will be
used with transistor level simulations. In addition, further investigations will
be aimed to improve the accuracy of models including five and six input
parameters.
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Table 1. Best model type and hyperparameter optimization algorithms

N y11 y12 Input noise Output noise Noise correlation

2 Rational HC Rational GA ANN GA Rational HC Rational GA, ANN GA
3 Rational HC Rational HC ANN GA ANN GA Rational HC, ANN GA
4 Rational GA Rational GA ANN GA ANN GA ANN GA
5 Rational GA RBF GA ANN GA ANN GA ANN GA
6 RBF GA RBF GA ANN GA ANN GA ANN GA
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In many industrial processes, particles transported by gas flows may deposit
on confining walls due to different mechanisms. Often times, heterogeneous
condensation of vapors on particles transported by the flow or homogeneous
condensation of vapors occurs and the resulting droplets move towards cold
walls. The inertia of larger particles carried by turbulent flows may also be
important in deposition processes. Examples include vapor deposition from
combustion gases, fouling and corrosion in biofuel plants, chemical vapor
deposition, vapor condensation and aerosols capture by cold plates or rejec-
tion by hot ones, deposition of particles in the lungs during breathing, etc.
In this minisymposium, several important examples of deposition processes
were presented, modeled and their governing equations analyzed and solved
numerically.

The paper by J.L. Castillo et al. studies the structure of granular deposits
formed by aerosol particles transported by fluid streams. Aerosols are solid
particles carried by gas streams which are present in many practical applica-
tions, such as heterogeneous nucleation of vapors on pre-existing particles,
evolution of clouds and production of artificial rain, pollution dispersion,
chemical vapor deposition processes, etc. Understanding aerosol dynamics is
needed to control such processes. Deposition of aerosol particles often gives
rise to granular materials whose structure is important to characterize and
control because it affects the chemical, optical and mechanical properties of
the product. The main morphological features of these granular deposits are
their bulk properties (density, porosity and structure) and their interface prop-
erties (roughness and thickness of the active region). These features depend on
the way that new particles arrive to form the deposit and should be tailored
for new materials applications: nanostructured deposits, catalytic surfaces,
layered materials and others. The paper presents dynamical Monte Carlo
simulations of particle deposit growth relating the structure of the granu-
lar deposit to the characteristics of particle motion near the surface. The
control parameter in these simulations is the Péclet number which measures
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the relative importance of deterministic motion (characterized by an average
particle velocity towards the wall) and random motion characterized by the
diffusion parameter divided by particle size. The authors simulate deposits
on attracting or slightly repelling surfaces (positive or small negative Péclet
numbers, respectively) and compare their results to experiments.

The paper by Y. Farjoun considers the homogeneous nucleation and
growth of clusters in a progressively cooled vapor. Typically, temperature is
considered to be constant in this type of problems and then the homogeneous
condensation of vapor in droplets and their later growth are analyzed. In this
paper, Y. Farjoun assumes that the system is cooled uniformly at a constant
rate and that there is no flow of the carrier gas. The nucleation rate is given
by Zeldovich’s formula and cluster growth is described by the Becker–Döring
equations. The clusters interact only through the chemical potential and the
temperature of the carrier gas and the diluted vapors (both considered to be
ideal gases) is not affected by the condensation process. He then derives the
governing equations of the model comprising and advection equation and an
integral constraint (conservation of vapor) plus a boundary condition. In this
model, the undercooling increases linearly with time. An asymptotic analysis
of the mathematical model yields a simple ODE problem which is then numer-
ically solved. The study of homogeneous nucleation in this simple setting is an
important first step to understand more complex phenomena of homogeneous
condensation in hydrodynamic flows.

The paper by J. Neu et al. studies heterogeneous condensation of vapors on
small particles mixed with a carrier gas and their motion by thermophoresis
towards a cold wall. The paper explains a simplified model in which vapors are
diluted and the concentration of suspended particles is so small that the flow of
the carrier gas is not affected. The carrier gas is incompressible and the vapor
is in local equilibrium with the condensate on the wall and on the surface of
the vapor coated droplets, whose growth is diffusion limited. This model gives
rise to a free boundary problem for the dew point interface: there is a region
far from the wall in which there is no vapor condensation and a condensation
region close to the wall in which vapor condenses on suspended particles.
Once the free boundary problem is solved, the deposition rates of droplets
and vapor condensation at the wall can be calculated. The paper presents the
condensation model, explains how to obtain the free boundary problem and
interprets the governing parameters and illustrates how the position of the
dew point interface is shifted due to the flow according to the solution of the
free boundary problem.
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1 Introduction

Aerosols (particles carried by gas streams) appear in many practical appli-
cations and the understanding of their dynamics [1, 4] is needed to control
processes such as, for instance, heterogeneous nucleation of vapors on pre-
existing particles, evolution of clouds, pollution dispersion and production of
new materials from powders [3]. In this area, there is a need of controlling
and characterizing the structure of granular materials formed by depositing
aerosol particles. The main morphological features of these granular deposits
as their bulk properties (density, porosity and structure) and interface proper-
ties (roughness and thickness of the active region) depend on the way that new
particles arrive to form the deposit. The granular structure affects the chemi-
cal, optical and mechanical properties of the product and it should be tailored
for new materials applications: nanostructured deposits, catalytic surfaces,
layered materials and others.

The goal of this work is to relate the structure of the granular deposit to
the characteristics of the particle motion near the surface.

2 Monte Carlo Simulation of Particle Motion

The method employed is an on-lattice dynamical Monte Carlo simulation
[8,9] for the growth of particle deposits by advection and diffusion of particles
towards a (initially clean and flat) surface. The model allows to follow the
evolution of deposit formation and to determine the main morphological and
structural properties of the generated deposits, depending on the transport
properties of the arriving particles.

The Monte Carlo method is used to simulate the particle motion over
the deposits until the particle reaches the deposit (becomes in contact with
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any previously deposited particle). Then the new particle attaches there and
contributes to the deposit growth. Sintering or restructuring of the deposited
particles is precluded so that the analysis focuses on the relevance of the
mechanism of particle arrival. For the Monte Carlo simulation, the motion
of an aerosol particle is split in two contributions: a mean deterministic
velocity (normal to the flat surface) and a random motion. The determin-
istic contribution can be due to any transport phenomena [1, 4] that drives
the particle along well defined trajectories, such as inertia, advection, some
phoretic motions (thermophoresis, electrophoresis), particle sedimentation or
external fields, whereas the random motion accounts for the particle diffu-
sive motion (Brownian diffusion, turbulent diffusion or the effect of random
fields). The Péclet number is the dynamical parameter that measures the
relative importance of the deterministic motion to the random contribution,

Pe ≡ va

D (1)

relating the average particle velocity toward the wall, v, the particle diffusion
coefficient, D, and the particle diameter, a. In these simulations the average
particle velocity, v, is considered to be normal to the (initially clean) surface
where the deposit builds up. Time and space are discretized and a cubic
lattice is used as the basic domain in the simulation with periodic boundary
conditions on the lateral walls. A particle is introduced above the deposit
structure at a random horizontal location and its motion is tracked until the
particle either reaches the deposit or it moves far away from it. Then, a new
particle is introduced and the process is repeated until the deposit height
reaches a given maximum height.

The purpose of this work is to analyze the structure of deposits formed
on attracting surfaces (positive values of v) and on slightly repelling surfaces
(negative values of v); that is, when the Péclet number can be taken as neg-
ative, in the sense that the particle mean velocity pushes the particles away
from the surface, but this repulsion is weak and Brownian diffusion is still
able to bring some particle to deposit on the wall.

3 Deposits on Attracting Surfaces

The formation of deposits collected from aerosol particles which are attracted
toward a wall (positive values of v in our simulations) has been extensively
studied [5,8–10]. The arriving particles form layered granular deposits with a
density profile which depends on the particle Péclet number. Figure 1 shows
the density profile for Pe = 0.1 and different deposit heights, hmax (which
is related to the total number of deposited particles, i.e. to the total growth
time). The collected deposits have a (frozen) denser region in contact with
the clean wall, a (frozen) middle region of mean porosity and constant mean
density, and an (active) upper region where new particles still deposit [8].
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Fig. 1. Density profile versus height for different values of the maximum height, for
particles with Pe = 0.1

In this active region, the mean density decreases from the middle density,
vanishing at the top, h = hmax.

The average deposit density in the frozen middle region (relative num-
ber of lattice sites occupied by particles in this consolidated region) shows a
dependence with the Péclet number given by [8, 9]

ρ̄(Pe) = ρ∞

(
1 +

Pe0
Pe

)−B

(2)

With ρ∞ = 0.302, Pe0 = 4.8, and B = 0.52. This region presents a fractal-like
structure on the short length scales [8], up to a Pe-dependent scale given by
the quantity inside the brackets in (2), with a fractal dimension DF = 3−B.
The limit of large Péclet numbers corresponds to ballistic deposition when
particles drift towards the wall and Brownian diffusion is absent. Then, the
deposits are denser and the porosity is low. However, for small values of Pe,
the deposits are fractal with “particle trees” of all the allowed sizes being
limited by lattice size, growth time or the Pe-dependent scale.

Moreover, the pure diffusion limit (vanishing Pe) when the particle motion
is purely diffusive and the mean velocity vanishes, corresponds to a singular
limit as indicated by (2) because the fractal structure of the deposit extends
to all scales and the fractal cut-off (Pe-dependent) scale goes to infinity. The
open but highly branched structure of the deposit restricts the penetration
of new incoming particles deep into the deposit. In this limit, although some
reminiscence of the three regions for attracting surfaces still remains, the
deposit density decreases continuously with height.
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4 Deposits on Weakly Repelling Surfaces

Even in the case of a mean (weak) particle motion away from the wall, diffusion
may bring some particles to the surface [2, 4, 7] and form a granular deposit.
A negative value of the Péclet number characterizes these deposits, with the
minus sign indicating that the mean particle velocity v is directed away from
the deposit.

In the limit of small (and negative) Péclet numbers, the formed deposits are
initially fractal (as in the pure diffusion limit, Pe = 0). But, as the deposit
evolves in time the dispersion in the deposit height increases, and a new
structure appears dominated by the presence of relatively large particle trees.
The larger trees are more effective in collecting the particles that approach
to the surface by diffusion, avoiding the growth of the shorter trees. Finally,
isolated trees emerge from a fractal deposit baseline.

Therefore, at long times, these deposits present two characteristic regions
(Fig. 2): a base region which retains the same structure of the pure diffusion
deposits, and a second region with spikes emerging from the base. The baseline
structure is shorter for stronger repulsion fields, thus the height of the base
region decreases as |Pe| increases, according to the law

hc =
(

1 +
4.8
Pe

)1/4

(3)

Indicating that the same crossover length (the bracketed quantity) remains
for repelling surfaces, see (2). On the other hand, the spike becomes thinner
as |Pe| increases.

Pe= 0 Pe= −0.1 Pe= −0.2 Pe= −0.5

Fig. 2. Side view of the granular deposit, for weakly repealing surfaces and different
Péclet numbers (a grey scale is used to represent the distance from the frontal wall)



Structure of Granular Deposits 459

5 Comparison with Experimental Results

In the laboratory, granular deposits are grown using the technique of electro-
hydrodynamic atomization [6] to disperse a liquid. The liquid is a suspension
of carbon nanoparticles in ethanol with a small amount of dispersant to reduce
the agglomeration of the nanoparticles. The liquid is pumped through a nee-
dle at a fixed flow rate, whereas a high voltage is applied between the needle
and a flat collector located below the needle. The electrosprayed liquid forms
a quite monodisperse cloud where the size of the primary droplet depends on
the liquid properties and flow rate [6]. In our experiments the mean droplet
size is of the order of 10 μm, and each droplet includes ∼ 103 carbon nanopar-
ticles. The fragmentation and evaporation of the charged droplets leaves dry
carbon nanoparticles which retain the electrical charge and the nanoparticles
are attracted by the collector and form a granular deposit. The charge of the
particles in the cloud contributes to the particle dispersion and promotes an
effective particle diffusion.

SEM images of the deposit are used to measure the surface roughness as
a function of the applied voltage (proportional to the particle Péclet num-
ber). A Shape-from-Focus (SFF) technique is used to obtain a reconstruction
of the deposit surface that can be treated by image processing. The mea-
sured roughness decreases with increasing applied voltage, in accordance with
the numerical simulations that predict denser deposits as the Péclet num-
ber increases. The larger particle agglomerates (with larger inertia and Péclet
number) deposit on the central part of the collector whereas at the collector
edge some smaller particles deposit. Then, the characteristic particle size is
not uniform and a direct comparison with the numerical simulation is not
yet possible. To this end, new experiments are being conducted to get sprays
containing fewer particles per droplet.

6 Conclusions

The structure of granular deposits formed by the deposition of aerosol particles
has been related to the characteristic of the particle motion near the collecting
surface. A Monte Carlo method has been implemented to simulate the particle
motion [8,9] and the main features of the growth deposits were obtained as a
function of the particle Péclet number which measures the relative importance
of the mean particle velocity normal to the surface with respect to the particle
Brownian motion, see (1).

For attracting surfaces (mean particle velocity towards the wall), the
deposit is structured in three differentiated regions: a denser bottom layer
in contact with the collecting wall, a middle region with mean constant den-
sity and the active region at the top where new particles may still attach. The
deposit density decreases as the importance of Brownian diffusion increases
(Pe decreases), with the density in the middle region correlated by (2). In the
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ballistic limit (large Pe), the deposit is denser, whereas when Pe is reduced
the deposit becomes lighter, very porous and highly branched.

In the pure diffusive limit, the branches at the top of the deposit are very
effective in collecting particles. Then, the penetration of the incoming particles
into the deposit is reduced and longer times are needed to achieve the fractal
limited deposits. The deposits grow taller but fragile with open structures,
leading to materials which are suitable for some applications where the ratio
of area to volume plays a relevant role.

Furthermore, for weakly repelling surfaces the particle Brownian motion
is able to bring some particles against the mean drift and a deposit is still
formed on this surface. These deposits present two different regions: a base
region with the same density profile as the pure diffusive deposit (as the
growing mechanism is the same, Brownian diffusion) and large isolated spikes
that emerge from this base region. The thickness of the base regions is reduced
and the spikes become thinner as the repulsion intensity increases.

Experiments with atomized liquid suspensions are being performed to
check the results of the simulations and the preliminary results shows a good
qualitative agreement.

The simulation and experimental procedure used in his work open the
possibility of making tailored granular materials for specific applications with
defined bulk and surface morphologies.
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Summary. The nucleation and growth of clusters in a progressively cooled vapor is
studied. The chemical-potential of the vapor increases, resulting in a rapidly increas-
ing nucleation rate. The growth of the newly created clusters depletes monomers,
and counters the increase in chemical-potential. Eventually, the chemical potential
reaches a maximum and begins to decrease. Shortly thereafter the nucleation of new
clusters effectively ceases. Assuming a slow quench rate, asymptotic methods are
used to convert the non-linear advection equation of the cluster-size distribution
into a fourth-order differential equation, which is solved numerically. The distribu-
tion of cluster-sizes that emerges from this creation era of the quench process, and
the total amount of clusters generated are found.

1 Introduction

While studying a simplified model of nucleation the temperature is often
assumed to be held constant (see, e.g., the review papers by Wu [6] and
Oxtoby [5]). However, time dependence of the temperature can play an impor-
tant role in the aggregation process. In this paper we study the effect that a
thermal quench has on aggregation. Together with J. Neu, we previously stud-
ied [3] a similar problem with constant temperature. For a less terse literature
summary, the reader is referred to the review articles cited above.

Our system comprises a dilute, condensable vapor in a carrier gas. Start-
ing from a temperature corresponding to zero chemical-potential, the system
is cooled uniformly at a constant rate. We assume a quench rate that is slow
relative to the molecular timescale. This implies that the maximal chemical-
potential is small and therefore the nucleation rate and cluster growth can
be assumed to follow the Zeldovich formula [7] and the Becker–Döring (BD)
equations [1] respectively. We use the BD equations and not diffusion limited
growth, as per Lifshitz–Slyozov [4], since the final size of the clusters is rela-
tively small. To find the value of the chemical-potential we use conservation
of particles and the Clausius–Clapeyron relation together with the ideal-gas

A.D. Fitt et al. (eds.), Progress in Industrial Mathematics at ECMI 2008,

Mathematics in Industry 15, DOI 10.1007/978-3-642-12110-4 72,

c© Springer-Verlag Berlin Heidelberg 2010



464 Y. Farjoun

law. To simplify the model and calculation, we assume that the latent heat of
evaporation is large relative to the thermal energy, kBT .

Initially, there are very few clusters and so the chemical-potential increases
as the temperature drops (through the resulting reduction of the equilibrium
monomer density). As the chemical-potential increases, so does the nucleation
rate. Eventually, enough clusters have been created that their growth causes
a large enough combined drain on the monomer density so that the increase
in chemical-potential is stopped. After this, the nucleation rate drops quickly
and approaches zero.

The paper is organized as follows: In Sect. 2 we present a short derivation
of the aggregation model we use. In Sect. 3 we solve the resulting non-
linear advection PDE using an asymptotic approximation, the method of
characteristics, and a numerical solver.

1.1 Assumptions

Throughout the paper we make the following assumptions.

1. Nucleation occurs at the Zeldovich rate.
2. The clusters that form are small, and grow according to BD dynamics.
3. The process is spatially uniform.
4. The only interaction between clusters is via the chemical-potential.
5. The temperature is not affected from the condensation of clusters.
6. The carrier gas and the condensable gas are ideal gasses.

2 The Model

We briefly derive the constituent equations of the quenching process. We
assume basic familiarity with standard nucleation, BD growth, and the
monomer conservation argument that leads to the determination of the
chemical-potential from the distribution of cluster sizes. For these we fol-
low the notation in Wu’s review article [6]. First, we derive the relationship
between the chemical-potential and the undercooling.

2.1 Chemical-Potential and the Undercooling

The chemical-potential η is the free energy of a monomer in condensed liquid
relative to that in vapor:

η = kBT log
c

ce
. (1)

Here, kB is the Boltzmann constant, T is the temperature, c is the ambient
monomer concentration, and ce is the equilibrium monomer concentration.

The dependence of ce on the temperature can be found through the
Clausius–Clapeyron relation and the ideal-gas law as in [2].
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ce
c0

=
T0

T
e

Λ
kBT0

− Λ
kB T , (2)

where Λ is the latent-energy of condensation (per monomer.) In (2), T0 and
c0 are the initial equilibrium temperature and monomer-concentration. That
is, at concentration c0 and temperature T0 the vapor phase is in equilibrium
with the liquid phase. Thus, setting T = T0 gives ce = c0.

We assume that Λ � kBT0 and define 1
ε ≡ Λ

kBT0
. The non-dimensional

versions of c, T , and η are:

c̃ =
c

c0
, T̃ =

T

T0
, η̃ =

η

kBT0
. (3)

Equations (1) and (2) now are as follows

η̃ = T̃ log
c̃

c̃e
, c̃e = 1

T̃
e

1
ε− 1

εT̃ . (4)

The undercooling is defined as τ ≡ 1−T̃
ε

.
Using the above definition of τ we find an asymptotic approximation of c̃e

for small ε:
c̃e = e−τ +O(ετ), (5)

and the leading order approximation of η̃:

η̃ ≈ log c̃+ τ, for ε� 1. (6)

2.2 The Zeldovich Nucleation Rate and the Growth Rate
of Clusters

Two important components of our model are the rate at which new clusters
come into existence, and the rate at which existing clusters grow. The BD
equations of growth specify that the size n of a cluster follows the growth
“law” for clusters much larger than the critical size:

ṅ = ωη̃n
2
3 . (7)

Where η̃ is as in (1), and ω is a “escape rate” constant so that ωn2/3 is the
rate at which monomers leave the cluster.

The Zeldovich formula give the nucleation rate of new clusters:

j = ωc0c̃e

√
σ

6π
e−

T0
T

σ3

2η̃2 . (8)

Where σ is the “surface energy” constant of a cluster,

surface energy
kBT0

=
3
2
σn

2
3 . (9)

Using the definition of τ and (5) we have

j = ωc0

√
σ

6π
e−

1
1−ετ

σ3

2η̃2 −τ (10)
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2.3 Growth Dynamics via Advection PDE

We are interested in finding the evolution of the density of cluster sizes. Let
r(n, t) be the density of clusters of size n at time t (also referred to as the
“distribution of cluster-sizes”). From (7) we derive an advection PDE for the
distribution of clusters in the space of their size,

∂tr + ωη̃∂n

(
n

3
2 r

)
= 0, in n > 0. (11)

The flux of clusters ωη̃n
2
3 r asymptotes to the Zeldovich rate as n→ 0, thus

ωη̃n
2
3 r → j = ωc0

√
σ

6π
e−

σ3

2η̃2 −τ as n→ 0. (12)

2.4 Determination of the Chemical-Potential

The chemical-potential can be inferred from the distribution of cluster sizes
and the initial concentration c0.

c+
∫ ∞

0

nr(n, t) dn = c0. (13)

For small values of η̃ we have from (6) that c = c0e
η̃−τ . Thus

eη̃−τ +
∫ ∞

0

nr̃(n, t) dn = 1, where r̃ =
r

c0
. (14)

3 The Mathematical Problem

We now drop all tildes and refer only to non-dimensional variables. The
mathematical problem is therefore,

∂tr + η∂n(n
2
3 r) = 0, (15)

ηn
2
3 r →

√
σ

6π
e−

σ3

2η2 −τ
, as n→ 0, (16)

eη−τ +
∫ ∞

0

nr dn = 1. (17)

Here, time t is non-dimensionalized with the scaling unit 1/ω.
In the current paper we consider an undercooling which increases linearly

with time t:
τ = Ω(t+ t0). (18)

The parameter Ω is externally specified, and t0 is a time-lag needed so that
the “interesting” behavior happens near t = 0.
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3.1 Asymptotic Solution of the Creation Era

The equations needed to find the relevant scales of the creation era are mostly
straightforward dominant balances of (15)–(17). There is one that is not: The
change in chemical-potential must be such that the reduction in the nucleation
rate is comparable to the nucleation rate itself. This implies that the change
in chemical-potential is small (relative to η itself) and we use δη ≡ η(0)−η(t)
to follow the change in the chemical potential. To save space, we omit the
derivation and proceed to the resulting scales. They are

[δη] =
(
Ωt0
σ

)3

[n] = Ω3t30

(
1

σ3E

) 3
4

[t] =
(

1
σ3E

) 1
4

[r] =
(
σE

Ω2t20

) 3
2

.

While t0 and Ω are connected by Ω2t30E
1
4 = σ

9
4 . We introduced E, a measure

of nucleation rate: E ≡ √
σ
6π e−

σ3

2(t0Ω)2
−Ωt0 . Using these scales results in the

following system for r(n, t) and η:

∂tr + ∂n(n
2
3 r) = 0, (19)

n
2
3 r→ eδη as n→ 0, (20)

δη(t)− t+
∫ ∞

0

nr dn = 0. (21)

Since n
2
3 r is constant along the level curves of 3n

1
3 − t, we can write

r(n, t) = n− 2
3 eδη(t−3n

1
3 ). (22)

Substituting this into (21) yields an integral equation for δη, and using the
change of variable t′ = t− 3n

1
3 we arrive at

δη(t)− t+
∫ t

−∞

(
t− t′

3

)3

eδη(t
′) dt′ = 0. (23)

From here we derive a fourth-order ordinary differential equation (ODE) for
δη, by differentiating four times:

....
δη = −2

9
eδη, where δη(t) ∼ t, as t→ −∞. (24)

To solve this ODE (numerically), we start with δη(ti) = ti, δ̇η(ti) = 1,
δ̈η(ti) = 0,

...
δη(ti) = 0, and ti = −10.

By integrating eδη we get the (scaled) density of clusters ρ that were
formed, ρ ≈ 5.1. The resulting density is shown in Fig. 1.
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Fig. 1. The cluster size distribution r(n, t) for t ranging from 0 to 9 and, inset, the
nucleation rate as a function of (shifted and scaled) time

4 Conclusions

Thermal quench is a standard trigger for nucleation. However, normally the
quench process itself is ignored and only the outcome (i.e., a super-saturated
monomer solution) is considered. In this paper we have shown that during
a slow quench, enough clusters nucleate so that no more nucleate after the
quench. Presumably, the clusters that have nucleated simply grow after the
quench and eventually coarsen.
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Summary. Hot gas containing condensible vapor and small particles “blows”
against a “cold” wall. The model computes the rate at which liquefied vapor accu-
mulates on the wall due to direct condensation plus a “rain” of liquid-covered
particles. The latter results from heterogeneous nucleation in undercooled vapor near
the wall.

1 Physical Background

Figure 1 is a cartoon of the surface deposition process. In explaining the figure,
we set forth the physical ideas of the simplest model. First, the whole process
is steady state, so all the state variables are time-independent. Dilute vapor is
transported by convection-diffusion in the carrier gas with velocity field u(x).
We have in mind boundary layer flows whose streamlines asymptote to the
wall. Far from the wall, the vapor has ambient uniform concentration c∞. The
temperature field T (x) has an ambient uniform value T∞ far from the wall,
and a fixed value Tw < T∞ at the wall. We assume that the vapor is so dilute
that the velocity and temperature fields are decoupled from condensation.
In particular, the latent heat of vaporization has a negligible effect on the
temperature field. If we also neglect thermal expansion of the carrier gas, we
further decouple the velocity and temperature fields from each other. Hence,
the boundary layer flow u(x) satisfies incompressible Navier–Stokes equa-
tions, and the temperature field T (x) satisfies the usual convection-diffusion
boundary value problem in the given incompressible flow u(x).

Next, the input from thermodynamics: There is a local equilibrium vapor
concentration ce(x) determined from the local temperature T (x) by the
Clausius–Clapeyron formula,
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Fig. 1. Physical picture of surface deposition

ce(x)
c∞

=
Td
T (x)

exp
(

Λ

kBTd
− Λ

kBT (x)

)
. (1)

Here, Λ is the latent heat of vaporization and Td is the dew temperature so that
ce = c∞ when T = Td. The vapor is locally undersaturated if c(x) < ce(x),
and oversaturated if c(x) > ce(x). If T∞ > Td, we have c∞ < ce(x = ∞)
and the vapor far from the wall is undersaturated. If the wall temperature is
sufficiently low, there is a condensation layer near the wall of oversaturated
vapor, bounded by a dew surface where c(x) = ce(x).

Small particles entering the condensation layer are the “seeds” for het-
erogeneous nucleation. Our kinetic model of the heterogeneous nucleation is
the simplest possible: a diffusion-limited condensation, neglecting capillary
effects. As mentioned above, liquid accumulates on the wall by direct conden-
sation, and also as a “rain” of liquid-covered drops. There is an important
piece of physics governing the “rain”. If droplets are simply convected by the
carrier gas, they (in principle) never reach the wall because the streamlines
of u(x) asymptote to the wall and never ‘dive in.” What really happens is
thermophoresis: Small droplets actually have a velocity relative to the carrier
gas in the direction of decreasing temperature. The model of thermophoresis
is that the velocity field of droplets is

v(x) = u(x)− α∇T (x)
T

, (2)

where α is a constant, typically some small fraction of the kinematic viscosity.
The streamlines of the droplet velocity field do dive into the wall, and the
“rain” happens.
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2 Model

We present a quantitative model based on the aforementioned physics in a
specific geometry: The velocity field of the carrier gas is the Blasius stagnation
point flow in the half-space x > 0 bounded by the wall x = 0. The streamlines
are incoming from x = +∞ and diverge to z = +∞ or z = −∞ as x→ 0, as
depicted in Fig. 1. The state variables are the x-velocity u of the carrier gas,
the temperature field T , the droplet concentration ρ, the vapor concentration
c, and n, the volume of droplet in units of monomer volume in the condensed
phase. All are functions of x only.

Nondimensionalization is based on units in the scaling table:

[x] =
√
ν

γ
, [u] =

√
ν γ, [T ] = T∞ = 1713 K,

[ρ] = ρ∞ = 105 cm−3, [n] = n∗ = 4.72× 1010,

[c∞] = 1.9× 1013 cm−3.

Here, ν is the kinematic viscosity of the carrier gas, and γ is the strain rate
of the Blasius flow at x =∞, a control parameter. Units with actual numbers
come from Castillo and Rosner’s work [1, 2] on the fouling of a chimney by
coal smoke containing sodium sulfate (the condensible vapor) and soot (the
particles). In particular, ρ∞ = 105 cm−3 is the incoming concentration of soot
particles at x =∞. The unit n∗ = 4.72×1010 is the number of vapor monomers
required to make a pure liquid drop the same size as incoming soot particles, 1
μm in radius. The ambient vapor concentration c∞ = 1.9×1013 cm−3 derives
from the Clausius–Clapeyron formula (1) assuming the dew temperature to be
1400 K, less than T∞ = 1713 K. The wall temperature in Castillo and Rosner’s
example is Tw = 1000 K < Td, and this forces the existence of a condensation
layer.

In dimensionless variables, u(x) is the parameter-free solution of the classic
Blasius boundary value problem. Given u(x), the dimensionless temperature
field is the solution of the ODE

Pr u T ′ − T ′′ = 0

in x > 0, subject to boundary conditions T = T∞ at x = ∞ and T = Tw at
x = 0. Here Pr = 0.7 is the Prandtl number, the ratio of kinematic viscosity
and thermal diffusivity.

Given u(x) and T (x), the droplet concentration ρ(x) is computed: The
steady-state continuity equation for conservation of droplets is ∇ · (n v) = 0,
where v is the droplet velocity field in (2). In the Blasius flow case it reduces
to an ODE whose dimensionless form is

(
u− αT

′

T

)
ρ′ = αρ

(
T ′

T

)′
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in x > 0, subject to dimensionless boundary condition ρ→ 1 as x→∞.
The remaining state variables n(x), c(x) quantify the condensation kinet-

ics. Their ODEs are
(
u− α T

′

T

)
n′ =

[
N n1/3 (c− ce) in x < x∗,
0 in x > x∗,

(3)

Sc u c′ − c′′ =
[−Rρn1/3 (c− ce) in x < x∗,

0 in x > x∗.
(4)

Here, ce is the dimensionless equilibrium concentration determined by the
dimensionless Clausius–Clapeyron formula,

ce(x) =
Td
T

exp
[

1
ε

(
1
Td
− 1
T (x)

)]
, (5)

and x = x∗ marks the dew surface where c = ce. x > x∗ is the “dry” region
of undersaturated vapor where c < ce, and 0 < x < x∗ is the oversaturated
condensation layer where c > ce.

The dimensionless parameters in (3-5) are

α = 0.1 (dimensionless thermophoresis coefficient)
1
ε

=
Λ

kB T∞
= 19.42 (dimensionless latent heat)

Sc =:
ν

D
= 1.8 (Schmidt number, kinematic viscosity/vapor diffusivity)

R =:
ν l ρ∞ n

1/3
∗

γ
(control parameter)

N =:
c∞

ρ∞ n∗ Sc
R = 0.0022362R.

In the formula for R, l is a length constant proportional to the effective radius
of monomer in the condensed phase.

We explain the physical content of (3,4). The convective derivative in the
LHS of (3) is the time rate of growth of n as the droplet moves with (dimen-
sionless) x-velocity u−αT ′/T . In x > x∗, no condensation and no growth. We
assume n(x) ≡ n∗ = positive constant in x > x∗, so the particles which serve
as seeds of heterogeneous nucleation have no liquid covering. In 0 < x < x∗,
droplet growth is diffusion limited, so rate of growth is proportional to linear
size (proportional to n1/3) times the local oversaturation (c− ce).

The LHS of (4) represents convection-diffusion of vapor in the carrier gas.
The support of the sink term on the RHS is confined to the condensation layer
0 < x < x∗ where nucleation is happening. There, the sink per unit volume is
the individual droplet growth rate n1/3(c−ce) times the droplet concentration
ρ. Two obvious boundary conditions on c are c → c∞ far from the wall, and
c = cw on the wall, where cw is the equilibrium vapor concentration at wall
temperature Tw, as given by the Clausius–Clapeyron formula (1). In addition,
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c = ce on the dew surface, and the derivative c′ is continuous across the dew
surface x = x∗. If we take the dew surface as given then there are unique
solutions for n(x) and c(x) with n→ n∞, c→ c∞ away from wall, and c = cw
on wall. Hence, the derivatives c′ on “dry” and “wet” sides of the dew surface
are functions of x∗. It remains to adjust x∗, so continuity of the derivative is
achieved. In this sense, we have a free boundary problem to determine n(x),
c(x), and the location x∗ of dew surface.

Given the solutions for ρ(x), n(x), and c(x), we may compute the rate
of accumulation of condensed vapor on the wall. Direct condensation from
vapor at the wall is given by the usual diffusive flux. Using c∞

√
νγ as the

unit of flux (recall
√
νγ is the unit of velocity of the Blasius flow), the direct

condensation flux is

Jν =
c′(0)
Sc

. (6)

The rain of liquid drops contributes flux

Jc =
R

N Sc

(
ρ (n− 1)

αT ′

T

)
(0). (7)

3 Results

Numerical approximation to solutions of the free boundary value problem is
elementary, and serves as a benchmark for asymptotic analysis. That asymp-
totic analysis is presented in our expanded paper “Surface deposition inhibited
by heterogeneous condensation,” submitted to the Journal of Fluid Mechanics
[3]. One point of interest: To obtain the good agreement with the numerical
results, it is necessary to go beyond the obvious matched asymptotic expan-
sions, and deal skillfully with strong exponentials that greatly influence the
predicted deposition rates on the wall.

Here, we concentrate on physical results, starting with the net deposition
rate J =: Jν + Jc which is, after all, the “bottom line” of the whole modeling
effort. To see the effect of heterogeneous nucleation, we can look at J as a
function of the control parameter R. Since R is proportional to ρ∞, we see
that R → 0 is the limit of no heterogeneous nucleation, and R → ∞ is the
limit of strong heterogeneous nucleation. In fact, we think of R → ∞ as the
“equilibrium limit” since it is clear from (4) that R →∞ enforces c(x) very
close to ce(x) in the condensation layer. The table below shows preliminary
numerical results on deposition rates:

R J (in units of c∞
√
ν γ)

0 (no particles!) 0.38
4.93 0.2285
739.5 0.0929
∞ (equilibrium limit) 0.0523
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Fig. 2. Illustration of the dew point shift

These results demonstrate that lots of soot in the smoke is really your friend,
if you want to reduce deposition on the wall.

Another significant point of the free boundary problem is the displacement
of the dew surface away from the T = Td isotherm and closer to the wall.
Figure 2 shows a rather dramatic example (using a higher wall temperature
Tw = 1250 K). Here is the physical explanation: On the dew surface, c(x) < c∞
because the condensation layer is a vapor sink and diffusion induces a “vapor
deficit” c(x) < c∞ on the “dry” side of the dew surface. Hence, c(x) = ce(x) <
c∞ on the dew surface, and the Clausius–Clapeyron formula (a monotone
increasing relation between ce and T ) implies T < Td on the dew surface.
Hence, the dew surface is closer to the wall than the T = Td isotherm.
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Summary. Recently, most clubs in the highest Belgian football division have
become convinced that the format of the league should be changed. Moreover, the
TV station that broadcasts the league is pleading for a more attractive competi-
tion. This paper discusses the current league format, and two other formats that are
presently being considered by the Royal Belgian Football Association. The attrac-
tiveness of each of the formats is measured by the number of unimportant matches:
the less unimportant matches, the more attractive the competition.

1 Introduction

For decades, the first (and highest) division in Belgian football has been orga-
nized as a double round robin tournament, i.e. a tournament in which each
team plays each other team twice, once at home and once away. During the
last years, most clubs in the first division have become convinced that changes
in the way the competition is played are needed. There is however little agree-
ment on what these changes should be, since arguments and preferences of
the teams depend on their (aspired) role in the competition. Apart from the
clubs, the TV station that broadcasts the competition is looking for a league
format that is as attractive as possible. In other words, the TV station wants
to avoid matches that have no importance at all, since these are the games
that don’t attract viewers. Given the fact that the money from the broadcast-
ing contract is the main source of income for many clubs, the wishes of the
TV station carry a considerable weight.
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In Sect. 2, we discuss a number of league formats that are currently
being considered to be adopted for the first division. Our measure of match
unimportance is detailed in Sect. 3, and in Sect. 4, we compare the various
league formats using this measure.

2 Reforming the Belgian Football League

Currently, the highest Belgian football league is played as a straightforward
double round robin tournament with 18 teams, spread over 34 rounds. The
winner of this league is the champion, and qualifies for the (qualification stage
of the) Champions League. The second and third in the league also qualify
for European football. The team that ends up last relegates to the second
division. The one but last team can however remain in the highest division
if it wins a double round robin tournament with three second division clubs.
This means that 12 additional games are played after the regular competition,
resulting in 318 matches in total (see [2]). In the remainder of this section, we
discuss two formats that are under consideration by the Royal Belgian Soccer
League to be used for the season 2009–2010.

The first alternative that we consider is loosely based on the competition in
The Netherlands (see e.g. [4]). The format is a double round robin tournament
with 16 teams, where the first in the league is the champion, and the last
relegates to the second division. Two post-season play-off tournaments decide
which teams qualify for European football, and which teams relegate. The
European play-offs are played with the teams ranked 2–5 in the league; the
relegation play-offs are played with the teams ranked 14th and 15th, and six
teams from the second division. Both play-offs are organized as a direct knock-
out tournament, with a home and an away game in each stage. The regular
competition, together with the two play-offs results in 260 games per season.
Since almost all outcomes in this competition are decided by a play-off stage,
we will refer to it as the play-off league.

The second league format splits the competition into two parts: an autumn
competition and a spring competition. Each of these competitions consists of
two series, A and B, of ten teams each, that play a double round robin tourna-
ment. The competition starts with the autumn competition, consisting of 18
rounds. The winner of the A series of this competition qualifies for European
football. The best five teams of the B series replace the worst five teams in
the A series of the subsequently played spring competition, which is again a
double round robin tournament for both the A and the B series. The winner
of the A series in the spring competition is the league champion, and also
qualifies for European football. The two worst teams in the B series relegate
to the second division. The final ticket for European football is awarded to the
winner of a direct knock-out tournament with a single game per stage, played
with the 4 teams that were second in the A series or first in the B series in the
autumn or the spring competition. For the next season, the worst five teams of
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the A series are again replaced by the best five teams of the B series, and two
teams promote from the second division, replacing the two last of the spring
B series. This league format has 363 games in total, and is referred to as the
Wijnants league, named after its inventor Herman Wijnants, chairman of the
football club Westerlo VV. With his league format, Wijnants attempted to
find a compromise, reconciling the various clubs with conflicting interests. We
refer to [3] for more details on the Wijnants league.

3 Measuring Match (Un)Importance

The concept of match importance has been discussed before in a number
of papers, but the most commonly accepted measure for match importance
is what Schilling [7] calls the conditional importance Si(X)t,t+k of match
scheduled to be played at time t + k for a team i at time t with respect to
outcome X , and is defined as follows.

Si(X)t,t+k = p(Xi|Wi,t+k, Ht)− p(Xi|Li,t+k, Ht) (1)

We use the notation Xi for an outcome X that is achieved by team i.
This outcome may be the league championship, but just as well qualification
for European football or relegation. The event where team i wins its game
scheduled at time t+k is represented by Wi,t+k; the event of team i losing this
game by Li,t+k. Finally, Ht represents the history of games that have already
been played up to time t. Note that this measure does not take into account
a draw; extending this definition to include draws is not straightforward.

We propose to measure the attractiveness of a competition format through
match unimportance. We define a match as unimportant for a team and with
respect to some outcome, if it can have no influence on the outcome for that
team. The underlying idea is that a game between two teams that have nothing
to gain or to lose is no longer interesting for a TV station to broadcast, and
will attract less fans to the stadium. Bojke [1] confirms that this is the case
in the English Premier League. Thus, we suggest that the lower the number
of unimportant games in a league is, the more attractive this league is.

In order to know whether a game still matters for a team t with respect to
some outcome, we need to know the highest and the lowest ranking that team
can still reach at the end of the season, before the game is played. We use
the following notation. We define T as the set of teams in the competition,
and G(m) as the set of games that are yet to be played, given that there are
m rounds remaining. We define the variable wij to be 1 if i wins its home
game against j, and 0 otherwise. Furthermore, we say that lij is 1 if i loses
its home game against j, otherwise lij = 0. The remaining decision variables
are pi, the number of points that a team i has at the end of the season, and
ri, which is 1 if team i is ranked higher than team t at the end of the season.
The highest position a team t can possibly reach, given that m rounds remain
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to be played, and that team t collected at points from rounds already played
is given by an optimal solution of the following formulation.

Minimize
1 +

∑
i∈T\{t}

ri (2)

subject to

ai + m +
∑

j∈T\{i}:ij∈G(m)

(2.01wij − lij)

+
∑

j∈T\{i}:ji∈G(m)

(2.01lji − wji) = pi, ∀i ∈ T (3)

wij + lij � 1, ∀ij ∈ G(m) (4)
pt � pi −Bri, ∀i ∈ T \ {t} (5)
wij , lij ∈ {0, 1}, ∀ij ∈ G(m) (6)
ri ∈ {0, 1}, ∀i ∈ T \ {t} (7)

The goal function minimizes the number of teams that are ranked before
team t, and is scaled with the term 1 to indicate that the highest ranking
it can obtain is the first place. The first set of constraints states that the
number of points a team i has at the end of the season equals the points this
team already has, plus 3.01 points for each win and 1 point for each draw
in the games that are yet to be played. Since in case of an equal number of
points, the team that won the highest number of games is to be ranked first,
3.01 points are added instead of 3. Notice that in case of a draw, both wij

and lij equal 0. The situation where both wij and lij equal 1 is not allowed
by the second set of constraints. Finally, we need to make sure that a team
i will be ranked higher than t, if it obtained more points than t. When the
parameter B is chosen equal to the total number of points that can be won
in the competition, the final set of constraints will do just this.

With a limited number of changes, the above formulation can be used to
determine the lowest ranking that this team t could still end up with. This
allows us to determine whether a game is important for some team for some
outcome or not. For instance, a game is important for the league title, if the
highest position this team can still reach is the first, and if the lowest position
this team can still drop to is lower than the first. Indeed, if the former was not
the case, the team would no longer be able to win the championship, and if
only the latter was not the case, the league title could no longer escape them.
A similar reasoning can be made for the other relevant outcomes: qualification
for European football and relegation.

We point out that our approach is in line with the Schilling measure (1),
since when we find through optimization that a match is unimportant, this
means that p(Xi|Wi,t+k, Ht) = 0 and thus Si(X)t,t+k = 0. The probabili-
ties in the Schilling measure are however usually determined using a Monte
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Carlo simulation (see [6]). Notice also that matches for which Si(X)t,t+k = 0
according to a Monte Carlo simulation need not be unimportant using our
optimization approach.

4 Results

For each of the three league formats discussed in Sect. 2, we developed sched-
ules and simulated match results for 10 series of 5 consecutive seasons. In
Belgium, a calendar committee is responsible for collecting the wishes of the
various stakeholders (e.g. clubs, police, TV station) and creating an acceptable
schedule. As the number of wishes is considerable and sometimes conflicting,
finding such a schedule is quite a hard nut to crack. Our schedules were devel-
oped according to calendar committee guidelines using a two-phase method
for which we refer to [2]. In order to simulate match results, we estimated
a trinomial probability distributions starting from 10 years historical data. If
the result of a particular match, let’s say a home game of team A against
team B, was five times a win for team A, two times a draw, and three times
a win for team B, the resulting probability distribution for that match would
be: 50% chance team A wins, 20% chance of a draw, and 30% chance team B
wins. In order to test the accuracy of these probability distributions, we used
the results of the first half of season 2007–2008 (151 matches), and predicted
the result corresponding with the highest probability in the trinomial distri-
bution. For instance, in the example above, we would predict team A to win.
This allowed us to correctly predict for the result of 51.0% of the matches.
Compared to the more complex models presented in literature where accu-
racies between 40% and 50% are reported (see e.g. [5]), our simple approach
based solely on historical match results performs remarkably well. When pos-
sible we have used the same match results in the various league formats (i.e.
common random numbers).

Table 1 shows the percentage of unimportant games for each outcome and
each of the league formats. The current league has a low number of unim-
portant games with respect to the league title and relegation. The Wijnants
league offers the teams many ways to take part in the play-off for European
qualification, which results in a very low percentage of unimportant games for

Table 1. Percentage of unimportant games

Outcome Current league(%) Play-off league(%) Wijnants league(%)

League Champion 12.17 16.15 28.55
European football 9.05 8.45 4.82
Relegation 4.65 8.34 27.69
A series – – 3.34
Any outcome 1.51 1.25 0.53
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this outcome. On the other hand, the number of unimportant games for the
league title and relegation are quite high, which can be explained by the fact
that teams in the A series of the spring competition cannot relegate to the
second division, and that teams in the B series of the spring already lost their
chances on the league title half-way the season. This alone results in almost
25% unimportant games for these outcomes. The Wijnants league however
offers an extra objective to play for, namely promotion to (or maintaining
a place in) the A series. This explains why the number of games that don’t
matter for any outcome is very low in this league format. The play-off league
scores in between the other leagues for all outcomes. In general, the results
show that both new leagues can increase the attractiveness, since overall less
games will be unimportant, which is the main concern for the TV station.

5 Conclusions and Future Work

In this paper, we compared the current league format in Belgium’s first divi-
sion with two formats under consideration. We have presented a tool to
evaluate the attractiveness of these league formats by measuring the num-
ber of unimportant games that is to be expected. We hope this paper can
contribute to a well-founded choice for a league format and help to overcome
the fear for change.

This topic leaves space for quite some future research. It would be very
interesting to use our optimization approach to develop a measure for match
importance (instead of unimportance), and compare it with other measures,
as e.g. the one by Schilling [7]. Linking this research to the expected number of
spectators would make the financial aspects of adopting a new league format
more tangible.
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Summary. During the third innings, we suppose that the batting team selects a
run-rate and target to optimise the match outcome probabilities. Outcome proba-
bilities are calculated using a model for the outcome given the end of third innings
position, and a model for the target set given the current position and the chosen
run-rate. While the run-rate is not wholly in the control of the batting side, the
approach described may allow a decision-maker to consider outcome probabilities
if the team is able to bat the remainder of its third innings at a particular run-
rate. This can then indicate whether an aggressive or defensive batting strategy is
desirable.

1 The Decision Problem

During the third innings of a test match, a batting captain whose team is in a
strong position will be thinking about how large a target to set his opponents
and the ideal time for his opponents to begin their final innings. The captain
is thus faced with a decision problem: what is the optimum target and what
is the optimum time to set it. Because test match cricket is time-limited, if
the target is large and the time it is set is late in the match, a draw is likely.
Furthermore, the batting side is faced with the problem about how it should
bat during the remainder of its innings: quickly with a high run-rate in order
to set a competitive target with sufficient time to win the match, or slowly at a
lower run rate in order to ensure that the match is not lost. Thus, in the third
innings, taking a simple view of the problem, the match outcome depends on
the values of the target aimed for, T , and the batting strategy, S (aggressive
or defensive), in the third innings. Mathematically, we may attempt to choose
T and S to maximise some objective such as the probability of a win. We
consider this problem in the paper.

The problem is not straightforward. Firstly, generally speaking, the win
and loss probabilities tend to move together, and maximising the probability
of a win may also maximise the probability of a loss. Secondly, batting strategy
is not observed. We therefore assume that the run-rate in the remainder of the
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third innings is a surrogate for the strategy. To model the decision problem,
we describe two sub-models: 1. for the match outcome probabilities given the
end of third innings position, 2. for the runs scored in the remainder of the
third innings. Target setting has been considered in one-day matches [3, 11].
However, test matches are different because, in one-day matches, there is no
notion of playing out the time remaining for a draw.

2 A Decision Model for Third Innings Batting Strategy

We label the team batting third as the reference team. Suppose the reference
team aims to set a target for their opponents who bat last in the match.
Call this target aimed for T . We assume that when this target is reached, the
batting side declare-that is, they forfeit the remainder of the innings as allowed
within the rules of cricket [7]. Further, suppose the reference team aims to bat
towards this target at run-rate X . Thus, T and X are the decision variables in
this formulation. The probability of a win (for the reference team) will depend
on T , X and the current position.

Denote the current position by P = (s, Vs, w), where s is the lead (for
the reference team), Vs the overs remaining in the match and w the third
innings wickets lost. Let t be the actual target set. This will be at most the
target aimed for, and less if the reference team are all out before they reach
their desired target. Thus t ≤ T . Let Y denote the match outcome. Then,
using prob(Y = y|P,X, T ) to denote the match outcome probabilities given
the current position P and the choice of the decision variables, it follows that

prob(Y = y|P,X, T ) =
T∑

t=s+1

prob(Y = y|W )prob(t|P,X, T ), (1)

where prob(t|P,X, T ) is the probability distribution of the target established
given the current position P and choice of the decision variables, and prob(Y =
y|W ) is the probability of outcome Y given the covariates W that describe the
match state at the end of the third innings and which include the target set, t,
and overs remaining at the end of the third innings, Vt. Thus W = (t, Vt,W

′
),

where W
′

denotes other covariates that do not vary over the remainder of the
third innings. Note Vt is determined by Vs, t and X : Vt = Vs−{(t−s−1/X}.

In order to proceed with the probability calculation in (1), we require
suitable models for prob(Y = y|W ) and prob(t|P,X, T ). The first of these is
developed in the next section. For the second, we consider the distribution of
the further runs added in the third innings, and we suppose that the mean
of this distribution depends on X . Then, we can determine the probability
distribution of the actual target set t given the chosen target aimed for T and
run-rate, X . The overs remaining in the match at the end of the third innings
is a deterministic function of the overs remaining at the current position and
t and X , and so prob(Y = y|P,X, T ) can be calculated. Of course, factors
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other than just the current position and batting strategy in the remainder
of the third innings will influence match outcome. The model developed can
therefore only guide captains as they make decisions about batting strategy,
and we expect the model outcomes to be modified in the light of experience
regarding local conditions.

2.1 Outcome Probabilities Given the End of Third Innings
Position

Scarf and Shi [15] develop a model for match outcome probabilities given the
end of third innings position. Denoting the set of outcomes (win, draw, loss)
by (1, 0,−1), the covariates by W , and taking a draw as a reference category,
nominal logistic regression assumes

prob(Y = y|W ) =

⎧
⎨
⎩
eA1/(1 + eA1 + eA−1), y = 1
1/(1 + eA1 + eA−1), y = 0
eA−1/(1 + eA1 + eA−1), y = −1

(2)

where A1 = α1 + βT1 W , A−1 = α−1 + βT−1W . The win and loss proba-
bilities depend on the covariate W in different ways through β1 and β−1

respectively. This model is equivalent in a sense to fitting two binary logistic
regression models, the first for the win-draw probability comparison, the sec-
ond for the loss-draw probability comparison. This model can be contrasted
with the ordinal logistic regression model or proportional odds model [8].

The factors which impact on outcomes in cricket are extensive [1, 2, 14].
We are concerned principally with match state covariates, and data on the
end of third innings position and match outcome for 301 test matches over
the period 1998− 2007 have been collected (Table 1). This is a larger dataset
than considered by Scarf and Shi [15]. Outline model statistics for various
fitted models are shown in Table 2. Estimates for the highlighted model are
shown in Table 3. With the run-rate in the first two innings, RR12, we are
attempting to capture the quality of the batting conditions. A covariate that
represents the deterioration of a pitch would be of interest, and further work
and perhaps more data would be beneficial to consider this. The pre-match
strength of teams is considered through a variable that measures the difference
in win percentage for the two teams over the last 10 years. The explanatory
power of the declaration indicator variable is good and not surprising since
it may well incorporate many factors, possible unmeasured, which lead to a
captain declaring or otherwise. However, it would not make sense to use it
as a covariate in a model to support decision making regarding declaration.
Figure 1 shows the win probability from the fitted model as a function of
target set and overs remaining. Note that the win probability increases to a
peak and then decreases-if a very large target is set, the team batting last will
not attempt to play for a win and a draw becomes more likely.
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Table 1. Test match data (extract of 301 test matches, Feb 1998–Dec 2007)
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13-2-98 WI 2 E 6 Port of Spain, Trinidad 159 145 WI N 225 0 207 108 −1
27-2-98 WI 2 E 6 Georgetown, Guyana 352 170 WI N 380 0 152 62 1
12-3-98 WI 3 E 6 Bridgetown, Barbados 403 262 E N 375 1 109 37 0
30-1-98 A 1 SA 3 Adelaine 517 350 SA N 361 1 109 108 0
07-1-98 SL 7 Z 9 Kandy 469 140 Z Y 10 0 77 2 −1

Table 2. Results of fitting nominal logistic regression model to 301 test match
outcomes (Feb 1998–Dec 2007) for various sets of predictors

Model Parameter Likelihood AIC Nag. R2(%)

T +OR +RR12 +W%D +D 12 −125.35 274.70 81.58
T +OR +RR12 +W%D 10 −131.31 282.62 80.26

T +OR +RR12 8 −138.87 293.73 78.51
T +OR +W%D 8 −137.37 290.74 78.87

T +OR 6 −142.13 296.27 78.24
T +OR(ordinal) 4 −198.08 404.16 61.32
T +OR + T 2 8 −140.65 297.30 78.10
T +OR +OR2 8 −140.57 297.15 78.12
T +OR + T ∗ OR 8 −140.42 296.84 78.14
T +OR +D 8 −134.86 285.71 79.45

Akaike information criterion (AIC) and Nagalkerke’s R2 [9] shown. with covariates
lead (T), overs remaining (OR), run-rate in first two innings (RR12), win

percentage difference (W%D), and declaration indicator (D)

2.2 The Distribution of Target Set

To model prob(t|P,X, T ), we proceed as follows. Let Z|P,X be the total
further runs added by the reference team in their third innings from the
current position, P , if they complete each remaining partnership and bat
at run-rate X . (For notational convenience we let Z = Z|P,X). Then t =
min(Z+s+1, T ). That is, Z+s would be the lead if the reference team batted
until all ten wickets were lost. So, given the distribution of Z, we can determine
the distribution of t|P,X, T . At the current position, there are w wickets down,
and so the further runs added is given by Z = Z

′
w+1|X+

∑10
k=w+2 Zk|X , where

Z
′
w+1|X is the additional runs added in the current partnership and Zk|X is
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Table 3. Fitted parameter estimates for minimum AIC nominal logistic regression
model (2) with covariates lead (T), overs remaining (OR), run-rate in first two
innings (RR12), and win percentage difference (W%D), with standard errors and
p-values

Coefficient s.e p-value

Win/draw Intercept −4.8841 1.6633 0.003
(1/0) Over remaining (OR) 0.0518 0.0087 0.000

Target (T) −0.0069 0.0033 0.037
run− rate12 (RR12) 0.7260 0.4947 0.142
win%diff (W%D) −0.0167 0.0122 0.170

Loss/draw Intercept −2.0650 1.9776 0.296
(−1/0) Over remaining (OR) 0.0538 0.0093 0.000

Target (T) −0.0290 0.0038 0.000
run− rate12 (RR12) 1.6975 0.6258 0.007
win%diff (W%D) −0.0276 0.0156 0.077
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Fig. 1. Win probability for the team batting third as a function of target established
and overs remaining: bottom curve 60 overs remaining; next 80 overs; 100 overs; 120
overs; 150 overs; top 200 overs. 301 test matches (Feb 1998–Dec 2007). RR12 = 3.12,
W%D = 0

the runs scored in the kth partnership, k = w + 2, . . . , 10. Now we require a
model for the distributions of Zk|X and Z

′
w+1|X .

Two distributions offer themselves naturally as candidates: the geometric
and the negative binomial [5,10,13]. Scarf et al. [16] proposed the zero-inflated
negative binomial distribution to explain the excessive number of zero scores,
and found a reasonable fit. Kimber and Hansford [6], on the other hand, argue
that no simple parametric distribution provides a wholly convincing fit. The
zero-inflated negative binomial distribution, denoted ZINB(π, θ, p0), is given
by:
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prob(Z = z) =
{
p0 z = 0,
(1− p0)Γ (z + π)θπ(1− θ)y/{z!Γ (π)(1− θπ)} z ≥ 0 (3)

(0 < p0 < 1). This implies that E(Z) = μz = (1 − p0)π(1 − θ)/{θ(1 − θπ)}.
We assume that Zk|X ∼ ZINB(πk(X), θk, P0,k), that is, the parameters vary
by partnership number, and π is a function of the run-rate, X . It then follows
that the mean partnership score is a function of partnership number and X .
A gamma function for πk(X) allows a maximum mean score for a finite value
of X , as suggested by Fig. 2. Various forms for πk(X) are shown in Table 4.
The parameterisation (3) ensures that p0,k does not depend on X . If such a
dependence existed it could not be estimated. The run-rate is zero (no runs
scored) in approximately 8% of partnerships. We use the minimum AIC model
in Table 4 for the calculation of match outcome probabilities.

If a partnership is some way through, we assume a lack-of-memory prop-
erty, so that Z

′
w+1 = Zw+1 - equivalent to the notion that the current

position is at the fall of a wicket. We approximate the distribution of Z by
ZINB(πz , θz, pz), with πz and θz and pz obtained by equating moments.
Thus, setting E(Z) = μz =

∑10
k=w+1 μk, V ar(Z) = σ2

z =
∑10
k=w+1 σ

2
k, and

prob(Z|P,X = 0) = pz =
∏10
k=w+1 p0,k, we can solve for (πz, θz , pz). As pre-

viously stated, since t = min(Z + s+ 1, T ), we can determine prob(t|P,X, T )
from the distribution of Z. The approximations that we use imply that the
match outcome probability calculations are not exact, but we would anticipate
only a small error arising here.

Table 4. AIC for various models of the distribution of run scored in a partnership,
Zk ∼ ZINB(πk(X), θk, p0,k)

Models LL NP AIC

πk = αk, θk = θ, p0,k = p0 −6017.771 12 12059.542

πk = αk, x
βexp(−γx), θk = θ, . −5797.870 14 11623.740

πk = αk, x
βexp(−γx), θkvarying, p0,k = p0 −5768.538 23 11583.076

πk = αk, x
βexp(−γx), θkvarying, p0,kvarying −5762.722 32 11589.444

πk = αk, x
βexp(−γx), θk = θ, negative binomial −5993.870 13 12013.740

πk = αk, x
βexp(−γx), θk = θ, P0,k = p0 −5866.749 5 11743.498

Data comprise all partnerships in third innings (n = 1412). NP number of
parameters, LL log-likelihood

3 Example

For brevity, we present just one example, Table 5. It can be seen here that,
with South Africa trailing in the series, if they wanted to maximize their win
probability, and throw caution to the wind, they should bat recklessly and aim
to set a target between 280 and 300. Ultimately, they batted more cautiously
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Fig. 2. Scatter plots of runs scored vs. run-rate in a partnership by partnership
number

and still lost. Note, the entries in these tables have been implemented on a
spreadsheet that allows for the updating of the calculations as the current
position changes. Thus, it is implied that the decision support is provided
continuously; this allows for ‘over-by-over’ and ‘run-by-run’ updating.

4 Discussion

The aim of this paper is to model optimum batting strategy in the third
innings in test cricket. We would like to be able to model strategy given any
match position. Looking at the third innings has two benefits. Firstly, some
progress can be made with the mathematical problem. Secondly, batting is
perhaps more strategic during this innings than in others. In the second and
first typically teams will just try and score as much as possible, and in the
final innings a team will be either trying to win or save a game. We approach
the mathematical problem by supposing that the third innings run-rate and
the target that the side batting third aims to set its opponent are decision
variables. That is, we suppose that these are within the control of the batting
side, and the batting side will, given the current match state, choose a run-
rate and a target that are most desirable, be it to maximise the probability
of a win or to minimise the probability of a loss, or some combination of the
two. Of course, the run-rate is not strictly in the control of the batting side.
The run-rate is merely a random variable that depends to some (unknown)
extent on the batting strategy. Therefore, the output from the decision support
model that we propose should be used, by a team batting third, to consider
how match outcome probabilities vary with run-rate in the remainder of the
third innings and target aimed for, broadly indicating how the side should try
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Table 5. Match outcome probabilities (as percentages) given current position as a
function of target aimed for, T , and (projected) run-rate, X

Projected Run-Rate, X
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220 16 36 48 17 30 53 18 27 55 18 26 56 18 25 57 19 23 58
240 15 58 27 18 48 34 20 42 38 21 39 40 22 37 41 23 34 44
260 11 75 14 17 64 19 20 57 23 22 53 25 23 50 27 25 44 31
280 8 84 8 14 77 10 18 70 13 21 65 15 23 61 17 25 52 22
300 6 88 6 10 85 5 15 79 6 18 74 8 21 69 10 24 58 18
320 5 89 5 8 90 3 12 85 3 16 80 5 19 75 6 23 61 15
340 5 90 5 6 92 2 9 89 2 13 84 3 16 79 4 22 63 14
360 5 90 5 5 94 1 8 91 1 11 87 2 15 82 3 22 64 14
380 5 90 5 4 94 1 6 93 1 9 89 2 13 84 3 21 65 14
400 5 90 5 4 95 1 5 94 1 8 90 1 12 85 3 21 65 14

Australia vs South Africa, 2006, 3rd test of 3, Australia leading series 1− 0. South
Africa 1st innings 451 in 155 overs, Australia 1st innings 359 in 95 overs

(RR12 = 3.24, W%D = −18), current position (start of final day, South Africa
94/3): reference team South Africa; lead 186; overs remaining 90; 3rd innings

wickets down 3. SA added 100 in 20 overs, setting Australia a target of 287 in 68.
Australia reached 288/2 in 61 to win by eight wickets

to bat. A captain would of course take account of other factors such as the
state of the series, the state of the pitch, and possibly the weather. Since test
matches are always played as part of a series, typically comprising three or five
matches between the same two teams, the attitude of the side batting third
to risk will depend very much on the state of the series. Generally, declaring
captains act conservatively.

The problem addressed is a special case of the general problem of determin-
ing playing strategy given the match state. To date, the most general approach
to this problem is described in the context of one-day internationals [11, 12].
The problem can be stated generally as follows: if X(t) is the match state at
time t, and Y is the match outcome, what is prob(X(t1)|X(t0), S)(t0 < T ), and
so what playing strategy S should be adopted in the period (t0, T )? The run-
rate is used as a surrogate for S in this paper. In football, one might attempt to
use the positions of players on the pitch, and modern data collection systems
may allow the calculation of the “centre of gravity” of a team over time
[4]. Alternatively, the decision maker might explore different X(t1) scenarios
(which are plausible given X(t0) and S) by considering prob(Y |X(t1)) and
the decision maker’s own subjective transition probabilities if strategy S is
adopted. Opponents also make strategic choices, and so modelling matches as
dynamic games would be interesting.
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It remains an open question as to whether a quantitative approach can pro-
vide a competitive edge. Perhaps decision-makers possess an intuition about
match outcomes that is more than sufficient for their purpose, and perhaps
factors that are not quantified, such as the state of the pitch, and weather
conditions, are so influential that they render our analysis too simple to be
useful. On the other hand, the analysis in this paper might provide a tool that
allows a decision-maker to explore various options quickly, while subjectively
adjusting the model outputs to accommodate local conditions.
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Minisymposium Interactions
between Structure and Process

in Manufacturing Systems

D. Hömberg

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117
Berlin, Germany, hoemberg@wias-berlin.de

The goal of this mini-symposium was to shed light on the interactions between
processes and structures in modern production facilities. The knowledge of
these interactions will enable a reliable and reproducible process control
including ramp-up and the systematic design of production equipment – tasks
that currently involve a high amount of empirical knowledge. The reason for
this is the close connection of the properties of the (machine) structure and
the (manufacturing) process with regard to the result of the manufacturing
process. This connection has not yet been investigated in detail.

The applications considered in the minisymposium range from metal chip-
ping, milling, and grinding to robot-guided laser material treatments. The
mathematical tasks covered are important modelling issues arising in the cou-
pling of process and structure, including mechanical interactions and the role
of heat production and release, numerical methods for an efficient simulation
of the arising coupled systems and, last but not least, their optimal control.

The talk by Matthias Maischak from Brunel University dealt with the
simulation of metal chipping. Here, the focus lay on the efficient numerical
simulation using a boundary element and finite element coupling procedure for
the elastoplastic thermo-mechanical contact problem with a linear elastic work
tool and an elastoplastic work piece. Unfortunately, Matthias’ presentation is
not included in the proceedings. Further information about his research can
be found on his webpage.1

Oliver Rott from the Weierstrass Institute, Berlin, studies the influence of
machine and structure on the stability of milling processes. The model consists
of a harmonic oscillator equation for the dynamics of the cutter and a linear
viscoelastic workpiece model. The coupling through the cutting force adds
delay terms and further nonlinear effects. Numerical results show that the
model is capable of predicting instabilities due to a lack of workpiece stiffness.

1www.brunel.ac.uk/about/acad/siscm/maths/people/acad/matthiasmaischak

A.D. Fitt et al. (eds.), Progress in Industrial Mathematics at ECMI 2008,

Mathematics in Industry 15, DOI 10.1007/978-3-642-12110-4 76,

c© Springer-Verlag Berlin Heidelberg 2010
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In the long run this work may lead to a more precise prediction of stability
charts.

The contribution by Heribert Blum and Andreas Rademacher from Tech-
nische Universität Dortmund is related to the NC-shape grinding process.
They use an empiric force model in conjunction with a geometric kinemati-
cal simulation to model the process. The machine model is based on a finite
element simulation, in which the spindle and the grinding wheel are explic-
itly considered. The remaining parts of the grinding machine are modelled
by elastic bearings. The simulations are coupled by the exchange of the pre-
dicted grinding force, which is used as Neumann type boundary condition in
the finite element simulation, and of the displacement of the grinding wheel,
which changes the contact conditions in the geometric-kinematical simulation.
Because of the varying length scales, the diameter of the grinding wheel is
about 100 mm and the depth of cut is less than 1 mm, adaptive finite element
algorithms are an appropriate tool to obtain an efficient simulation. The main
focus of their paper is the derivation of a goal-oriented error estimation for
the linear wave equation and a corresponding adaptive refinement algorithm.

Andreas Steinbrecher from Weierstrass Institute, Berlin, considers robot-
guided laser material treatments. Up to now, mathematical models for laser
treatments usually assume the path of the laser on the workpiece to be known.
However, depending on the workpiece geometry and the desired production
goal the necessary laser path can not always be realized. To this end Andreas
studies different strategies of coupling the optimal control of the laser heat
treatment with the path-planning of the laser-guiding industrial robot.



Modelling, Analysis and Stability of Milling
Processes Including Workpiece Effects

D. Hömberg and O. Rott

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117
Berlin, Germany, hoemberg@wias-berlin.de, rott@wias-berlin.de

Summary. A common model for milling dynamics, i.e. a harmonic oscillator,
was extended by a continuous, linear thermo-elastic model describing the dynamic
behaviour of the workpiece. A widely studied, empirical cutting force model is used
to describe the coupling of both systems. Finally, a numerical solution strategy for
the coupled system is outlined and complemented by numerical simulations that
show the work piece effect on the stability of the cutting process.

1 Introduction

A milling machine is a machine tool for the shaping of metal or other solids. Its
basic components are a rotating cutter, a spindle, a z-slider that is attached
to a moving portal and a table on which the workpiece is mounted. The
modelling of milling dynamics, the determination of stable cutting conditions
and the design of more efficient milling machines are important research fields
in production technology. Effective methods to predict stable processes have
been developed in recent years [2, 6]. An essential part of these methods is
an abstract dynamical model that reproduces the local characteristics of the
actual milling system in terms of the dynamics at the tip of the cutter. In
combination with a process model to describe the cutting forces it leads to
a delay-differential equation (DDE), whose stability characteristics have been
widely studied in the last decades [6, 8].

The focus of this paper is a detailed study of the machine work piece
interactions. Hence, in addition to the DDE model for the cutter the workpiece
is accounted for by a visco-elastic material model. The coupling is realised
through the cutting force. This approach allows for a refined stability analysis
and will eventually lead to a refined prognosis of stable cutting conditions.

The paper is organised as follows: In Sect. 2 we derive the model equations.
An algorithm for the numerical approximation of the new milling model is
outlined in Sect. 3. Numerical results for different scenarios corresponding to
stable and unstable cutting conditions are included. The last section is devoted
to some concluding remarks.

A.D. Fitt et al. (eds.), Progress in Industrial Mathematics at ECMI 2008,

Mathematics in Industry 15, DOI 10.1007/978-3-642-12110-4 77,

c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Schematic representation of the milling process

2 Modelling

2.1 Model Equations

To avoid technicalities we represent the machine dynamics by an harmonic
oscillator equation for the centre of mass q = (qx, qy, qz)T , of the cutter with
mass mc, written in the inertial reference frame (x, y, z), cf. Fig. 1. Note that
this model reproduces at least one relevant mode of the milling machine.
Furthermore, the cutter oscillates only in the x, y-plane. The additional z-
component has been introduced to ease the coupling with the workpiece
model. The coordinates in the oscillator reference frame are related to those
of the workpiece reference frame by a linear, time dependent transformation
(x, y, z) = (X,Y, Z)− b(t), where b(t) = (X0 − fz

t
τ , Y0, Z0) denotes the trans-

lation vector given in the workpiece frame. Hence, the equation of motion for
the cutter model reads:

mcq̈ +Dq̇ +Kq = [Fx, Fy, 0]T , (1)

where D denotes the damping and K the stiffness matrix. The right hand side
of (1) takes into account the cutting force, a sum of the forces acting on each
tooth in cut.

We assume that the largest part of the workpiece behaves like a visco-
elastic solid. Only in the vicinity of the cutting edge, visco-elasto-plastic
effects have to be taken into account. To some extend, these effects are already
included in the empirical cutting force model. Therefore, we focus here on the
visco-elastic behaviour of the workpiece, which we model with the standard
equations of linear visco-elasticity with Kelvin–Voigt damping (see, e.g., [5])
assuming small strains.
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2.2 Coupling

Boundary Conditions

The basis for the coupling of workpiece and machine model is the cutting
force. Usually, the latter is computed in terms of the so-called uncut chip
thickness (see, e.g., [1]), which describes the thickness of the material to be
removed by the tooth which is in cut . Here we use the following algebraic
relation between uncut chip thickness and the cutting forces due to Weck [9]:

F̂ =
(
F̂R, F̂T , F̂Z

)T
= aP K̂(vC) max(h, 0), (2)

where K̂(vC) denotes the vector of cutting constants which can be a function
of the cutting speed vC [6]. Note that the precise form of K̂(vC) has to be
found experimentally.

An expression for the uncut chip thickness h can be derived by consider-
ing a two dimensional, independently vibrating work-piece-cutter system, for
details we refer to [3]:

h = −fz cosϕj + (q(t) − q(t− τ)) · ejr − (u(t, RP ) − u(t− τ, RQ)) · ejr. (3)

Here, RP and RQ denote the two work piece material points being currently
machined. We notice that the uncut chip thickness consists of three different
parts. The first one represents just the cutter displacement due to the given
feed fz. Projected on the radial direction, it yields the stationary uncut chip
thickness. The second part represents the machine oscillations and produces
the modulation of the chip thickness that has been identified to be the main
reason for chatter. The third contribution to the uncut chip thickness is related
to the workpiece deformation.

On the cutting edge the forces act in three directions: perpendicular to the
cutting velocity, in opposite direction to the cutting velocity and parallel to
the rotation axis of the cutter. Note that the z-component of K̂(vC) vanishes
for orthogonal cutting. We transform (2) into the workpiece reference frame
and sum up for all teeth to obtain:

F = (Fx, Fy, Fz)
T = −

Nz∑
j=1

g(ϕj(t))O(ϕj(t))F̂ . (4)

Here, g = 1 if the corresponding tooth ‘j’ is in cut and g = 0, otherwise. The
orthogonal matrix O(ϕj) transforms the forces F̂ into the workpiece reference
frame. Nz denotes the number of cutter teeth.

Now we define the boundary condition for the momentum balance equa-
tion as:

u = 0 on ΓD,

σ · n =

{
F

|Γ (t)| on Γ (t) × (0, te).

0 otherwise.
(5)



496 D. Hömberg and O. Rott

| Γ (t) | denotes the measure of the area, where the cutting force acts on the
workpiece (cf. Fig. 1).

3 Numerical Simulations

3.1 The Algorithm

We present a straightforward numerical algorithm to compute an approximate
solution of the coupled system in time domain. Recall that in a milling process
with nonzero feed material is removed from the workpiece. Since we use a
visco-elastic work piece representation that cannot take the chip removal into
account directly, we introduce the following approximation of this process.
At first we divide the time interval [0, te] into subintervals with the length
τ , tacitly assuming te to be a multiple of τ . Based on these subintervals, we
construct a sequence of space-time-cylinders Ql = Ωl × (kτ, (k+ 1)τ ] with an
update of the work piece shape according to the theoretical tooth path given
by the static chip thickness (i.e. the first term in (3)).

This approach allows us to use the methods of steps to solve the coupled
PDE/DDE system: For given initial data on the interval [−τ, 0] we solve the
system in [0, τ ]. Then iteratively, we use the solution in ((l− 1)τ, lτ ] as initial
data for the following tooth period and perform the analysis for the interval
(lτ, (l + 1)τ ]. With the help of this technique we proved the existence of a
unique weak solution of the coupled system in the entire time interval [0, te],
see e.g. [3].

With the above considerations we may now introduce a time integration
scheme for an arbitrary tooth period (lτ, (l + 1)τ ]. To this end, we discre-
tise the pde part of the coupled system with linear finite elements in space.
Thus, we obtain a system of ordinary differential equations with delay. In
our time stepping strategy we make use of an incremental decoupling such
that the momentum balance can be solved in each time step with a Newmark
scheme [7]. We integrate the remaining DDE with a standard ode-solver, i.e.
Runge–Kutta-54 [4]. All retarded and coupling terms are provided by means
of interpolation. The data transfer from one tooth period to another is also
carried out by interpolation.

Note that the presented method is restricted to cutting conditions where
only one tooth is in cut. However, form a practical point of view this poses
no severe limitation.

3.2 Simulation Results

The system of equations has unstable and stable solutions depending on the
parameters rotation speed n, number of teeth Nz, axial depth of cut ap and
radial depth of cut. For the simulations we fix the cutting parameters fz =
0.2 mm, Nz = 4, D = 15 mm and n = 7,500 rpm. For the first example the
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Fig. 2. x,y-component of the cutter vibrations (qx, qy), mean workpiece deforma-
tions (ux) at the cutting edge and the uncut chip thickness (h)

axial depth of cut is ap = 1 mm, the entry and exit angles are ϕs = π/2,
ϕE = π and we have chosen a rather rigid workpiece geometry, corresponding
to the work piece depicted in Fig. 1. We set te = 50τ , i.e., for the choice of
n and Nz, te = 0.1 s. In Fig. 2, we see the results of the first simulation run.
Since the uncut chip thickness converges to a stationary state, we identify
this milling process as stable. The induced deformations do not interfere with
the stable cutting conditions. The workpiece deformations are one order of
magnitude smaller than the cutter vibrations.

The second example shows the work piece effect on the stability of milling
process. The cutter was assumed to be rigid, which means that only the work
piece may cause unstable cutting conditions. We performed the simulations
for a rather rigid work piece geometry, as shown in Fig. 1 and a beam-like
work piece which has a low bending stiffness. The cutting parameters are
ap = 15 mm, ϕs = π/2 and ϕE = 3π/4 and we simulated 20 tooth periods,
i.e. for the choice of n and Nz, te = 0.04 s. While the uncut chip thickness
converges for the stable workpiece geometry to the stationary evolution, we
observe for the beam like, unstable workpiece geometry a divergence of the
uncut chip thickness indicating the occurrence of unstable cutting conditions,
i.e. chatter.
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Fig. 3. Uncut chip thickness for a stable and an unstable work piece

4 Conclusions

The goal of this paper was to enhance existing models of the milling process
to allow for the consideration of the workpiece influence. The simulations in
Sect. 3 show that the model is capable of reproducing instability effects due
to a lack of workpiece stiffness.

The results are promising and open up various directions for future
research, such as the development of an efficient numerical tool for the
systematic derivation of stability diagrams for the coupled system.
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Summary. In the simulation of the NC-shape grinding process, a finite element
model of the grinding machine is included. To enhance the accuracy and efficiency of
the finite element computation, a posteriori error estimation and resulting adaptive
mesh refinement techniques are used. In this note, a dual weighted a posteriori error
estimate for a linear second order hyperbolic model problem is derived. Numerical
results illustrate the performance of the presented approach.

1 Introduction

To model the interaction between the grinding process and the machine
structure is indispensable in the simulation of the NC-shape grinding pro-
cess. The coupling of separate machine and process simulations is a common
simulation approach. We use an empiric force model in conjunction with a
geometric-kinematical simulation to model the process [7]. The machine model
is described in [15]. It is based on a finite element simulation, in which the
spindle and the grinding wheel are explicitly considered. The remaining parts
of the grinding machine are modelled by elastic bearings. The simulations
are coupled by the exchange of the predicted grinding force, which is used as
Neumann type boundary condition in the finite element simulation, and of
the displacement of the grinding wheel, which changes the contact conditions
in the geometric-kinematical simulation. Because of the varying length scales,
the diameter of the grinding wheel is about 100 mm and the depth of cut is
less than 1 mm, adaptive finite element algorithms are an appropriate tool to
obtain an efficient simulation.

In general, a posteriori error estimates for second order hyperbolic prob-
lems are possible for two different discretisation approaches. One of them uses
space time Galerkin methods for discretisation and applies similar techniques
for error control as in the static case [2, 3, 10, 12]. The other one is based on
finite differences in time and finite elements in space. Here, separate error esti-
mators are used for the space and time direction [9, 11, 16] or error estimates
for the whole problem [1,6] are derived.
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Starting from the weak formulation of the wave equation, a space time
Galerkin discretisation is introduced in Sect. 2. In Sect. 3, the goal-oriented
a posteriori error estimate is derived and an adaptive refinement algorithm
based on it is discussed. Numerical results, which illustrate the performance
of the developed approach, are presented in Sect. 4. The article concludes with
a discussion of the results and an outlook.

2 Continuous Formulation and Space Time Galerkin
Discretisation

Based on the weak formulation of the linear wave equation, a space time
nonconforming Petrov Galerkin scheme with continuous basis functions in
time is introduced. We consider the linear wave equation

ρü− div(κ∇u) = f (1)

on the domain Ω ⊂ R
2 and the time interval I = [0, T ] with the initial

conditions u(0) = us and u̇(0) = vs as well as homogeneous Dirichlet boundary
conditions. For notational simplicity, the density ρ is set equal to 1. The
parameter κ describes the elasticity coefficient.

Rewriting (1) as a first order system, multiplying by suitable test functions,
and spatial integration by parts lead to the weak formulation:

∀ϕ = (ψ, χ) ∈ U × V : A(w,ϕ) = 0 (2)

Here, w = (u, v) ∈ U × V is the weak solution and

U :=
{
u|u ∈ L2(I;H1

0 (Ω)), u̇ ∈ L2(I;L2(Ω))
}
,

V :=
{
v|v ∈ L2(I;L2(Ω)), v̇ ∈ L2(I;H−1(Ω))

}

are the appropriate trial spaces, which are continuously embedded into
C

(
I;L2(Ω)

)
. The bilinear form A is given by

A(w,ϕ) := ((u̇ − v, ψ)) + ((v̇, χ)) + (a(u)(χ))− ((f, χ))
+ (u(0)− us, ψ(0)) + (v(0)− vs, χ(0))

with ((ψ, χ)) :=
∫ T
0

∫
Ω

(ψχ) dx dt and a(u, χ)) :=
∫ T
0 (κ∇u,∇χ) dt.

The time interval I is decomposed into M subintervals Im := (tm−1, tm]
with 0 = t0 < t1 < . . . < tM−1 < tM = T and km := tm − tm−1. The finite
element trial space in time step m, V mh , is based on the spatial mesh T

m
h and

on bilinear basis functions. In time, piecewise linear continuous basis functions
are used for the trial space and piecewise constant functions for the test space:

Vkh :=
{
vkh ∈ C(I;H1

0 (Ω))
∣∣∣vkh|Im

∈ P̃1(Im, Vmh ), vkh(0) ∈ V 0
h

}

Wkh :=
{
vkh ∈ L2(I;H1

0 (Ω))
∣∣vkh|Im

∈ P0(Im, V mh ), vkh(0) ∈ V 0
h

}
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The space P̃1(Im, V mh ) is a slight modification of the space of linear polyno-
mials (see [14]). Eventually, the discrete problem is to find wkh = (ukh, vkh) ∈
Vkh × Vkh with

∀ϕkh = (ψkh, χkh) ∈ Wkh ×Wkh : A(wkh, ϕkh) = 0. (3)

3 A Posteriori Error Estimation

In this section, the a posteriori error estimate is derived. In the first step
an abstract result from [5] is applied on the present situation. Then, the
error estimate is transformed into a computable estimate by well-tested
approximations. Afterwards, it is used as basis for an adaptive refinement
process.

Functionals of interest of the form J(w) :=
∫ T
0 J1(w(t)) dt are considered,

where J1 is an arbitrary three times continuously differentiable functional.
The Lagrangian is defined by L(w, z) := J(w) − A(w)(z). We say (w, z) ∈
(U × V )× (V × U) is a stationary point of L, if

∀(δw, δz) ∈ (U × V )× (V × U) : L′(w, z)(δw, δz) = 0.

The discrete stationary point (wkh, zkh) ∈ (Vkh × Vkh) × (Wkh × Wkh) is
given analogously. Following the results in [5,13], we obtain the abstract error
representation

J(w) − J(wkh) =
1
2
L′(wkh, zkh)(w − w̃kh, z − z̃kh) +Rkh

=
1
2
ρ(wkh)(z − z̃kh) +

1
2
ρ�(wkh, zkh)(w − w̃kh) +Rkh,

with arbitrary w̃kh ∈ Vkh×Vkh and z̃kh ∈Wkh×Wkh. In the proof, we have to
pay attention to the fact that a nonconforming Petrov Galerkin discretisation
scheme is used. Here, the primal and the dual residual are given by

ρ(w)(ϕ) := L′z = −A(w,ϕ)
ρ�(w, z)(ϕ) := L′w = J ′(ϕ)−A(ϕ, z),

respectively. The remainder term Rkh is bounded above by the third power
of the error.

The weights, which represent the interpolation error, are approximated by
w − w̃kh ≈ Πkhwkh and z − z̃kh ≈ Πkhzkh. Here, the operator Πkh is given
by Πkh := ikh − id, where ikh is a patchwise interpolation of higher order
[4]. The operator Πkh approximates the interpolation error in space and time.
The spatial counterpart is defined by Πh := ih − id and the temporal one by
Πk := ik − id. Eventually, we obtain the computable error representation

J(w)− J(wkh) ≈ 1
2

[ρ(wkh)(Πkhzkh) + ρ�(wkh, zkh)(Πkhwkh)] .
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Using the identity

Πkhϕkh = ikΠhϕkh +Πkϕkh,

which holds true for tensor product trial functions, the error estimate is split
into a temporal part ηk and a spatial part ηh:

J(w) − J(wkh) =
1
2

[ρ(wkh)(Πkzkh) + ρ�(wkh, zkh)(Πkwkh)]

+
1
2

[ρ(wkh)(ikΠhzkh) + ρ�(wkh, zkh)(ikΠhwkh)]

=: ηk + ηh.

The spatial residual terms are integrated by parts to localise the error estimate
as basis for an adaptive refinement process. This process consists of several
steps. In the first step, a space time refinement strategy decides, whether a
refinement in spatial or temporal direction or in both directions is performed.
We use an equilibration strategy, which was developed in [14]. The temporal
refinement strategy is a simple fixed fraction strategy [4]. In space, a more com-
plex global fixed fraction strategy [14] is used. There, all refinement indicators
of all mesh cells are compared. After the adaptive refinement, the meshes are
regularised to ensure a suitable structure, which includes only single hanging
nodes in space and time and a patch structure property [8].

4 Numerical Results

The domain of the spindle grinding wheel system contains several re-entrant
corners. Furthermore, the material is varying throughout the domain. A model
example for this difficulties is an L-shape domain with varying material, which
is considered here. The data of the example is chosen as:

Ω × I := ([−0.5, 0]× [−0.5, 0.5])∪ ([0, 0.5]× [−0.5, 0])× [0, 1]
κ := 1 + min{1, 10(x1 − 0.05)+}
f := 100Ix1≥ 1

4∧t∈([0, 14 ]∪[ 12 ,
3
4 ])

J(w) :=
1
|I||B|

∫

I

∫

B

u(x, t) dx dt, B := B∞
1
8

(
−1

4
,

1
4

)T

In Fig. 1, the spatial meshes of different time steps are depicted. In the begin-
ning, the cells in the area of the acting force are refined. Along the outgoing
wave, the mesh is refined. The inner edge of the L-shape domain is especially
well resolved. At the end, the domain of interest B gets more and more refined.
The second impulse is not considered, since the arising wave does not reach
B. In Fig. 2, the development of the error in the functional of interest is shown
over the complete number of mesh cells. The calculation with dynamic meshes
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Fig. 1. Meshes for different time steps (n = 1, n = 50, n = 100, n = 150)
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is most efficient, followed by the calculation with an adaptively refined mesh,
which is kept constant during one refinement cycle. The graph of the calcula-
tion without temporal mesh regularisation shows the need of the algorithm to
ensure the proper convergence of the adaptive method. The effectivity indices
are in the range of 1.

5 Conclusions and Further Work

In this article, we have presented a new approach to goal-oriented error esti-
mation for the linear wave equation. It leads to well adaptively refined meshes
and enhances the efficiency of the finite element discretisation.

The extension of the presented approach to nonlinear second order hyper-
bolic problems will be considered in a separate article. The mesh refine-
ment and regularisation algorithms will be enhanced further and elaborately
analysed.
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1 Introduction

Laser material treatments such as harden-
ing or welding have become a basic part
of the process chain for sophisticated metal
workpieces. Mounted on industrial robots,
laser treatment devices become increas-
ingly important in automated manufactur-
ing, especially in automotive industry.

For the employment of single robots a
number of planning tools is available, con-
sidering issues like path-planning, control,
collision detection, etc. but disregarding the
specific task the robot has to perform. Up
to now it is always assumed that the track
along which the laser light impinges on the
workpiece surface is precisely known. But the most natural criterion to decide
whether the employment of a robot has been successful is not the tracking of
a prescribed path but the question if the robot has achieved its production
goal.

In this article we will consider the optimal control of robot guided laser
material treatments, where the multibody system model of a robot is coupled
with a PDE model of the laser treatment. We will present and discuss several
optimization approaches in view of a robust and suitable numerical solution.
We will illustrate the approaches in an application to the surface hardening
of steel.
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Fig. 1. (a) target curve γ and target region ω, (b) target region ω and desired
temperature profile θ∗

2 The Mathematical Model

The production goal in the case of surface hardening is to achieve a desired
temperature profile θ∗ inside a moving target region described by ω in a solid
body Ω. This target region is given as moving flat cylinder sliding under the
surface Γ with constant velocity along the target curve γ with γ(ξ) ∈ Γ for
all ξ ∈ [0, 1]. The parameter ξ = ξ(t) depends on the time t ∈ I = [0, T ] and
determines the movement of the target region ω (Fig. 1).

The heat conduction on Ω× I will be modeled by use of the heat equation

ρc ∂
∂tθ − κΔθ = F with θ(x, 0) = θ0 on Ω and ∂

∂ν θ(x, t) = 0 on Γ × I. (1)

The temperature distribution is denoted by θ, the mass density by ρ, the
specific heat by c, and κ denotes the heat conductivity. The laser is modeled
as a distributed heat source in the right-hand-side F = F (x, t, l, ul) of the
heat equation and depends on the laser position l (to be specified later) and
the laser power ul. Furthermore, the motion of the robot in general will be
modeled by use of the equations of motion in descriptor form, see [3]. Since
our considerations are based on serial robots the equations of motion have the
form ṗ = v and v̇ = f(p, v, t) + ur in I with p(0) = p0, v(0) = v0. which can
be written as

q̇ = k(q, ur, t), q(0) = q0 (2)

with qT = [pT , vT ] and qT (0) = [pT0 , v
T
0 ]. Here, p denotes the position (joint

angles, joint displacements), v the according velocity, and ur the control of
the robot. For more details in the modeling we refer to [1–3].

For the numerical solution of the state equations (1) and (2) and its adjoint
equations we use FEM tools and grid generator provided by pdelib1 combined
with Runge-Kutta methods. The right-hand-side k of the model equations (2)
of the used robot are provided by INVISION2.

1pdelib is a collection of software components for solving PDEs. In particular
finite volume and finite element methods are supported. pdelib is developed by
Weierstrass Institute for Applied Analysis and Stochastics (WIAS) in Berlin.

2INVISION is a software package for the real-time simulation of manufacturing-
plants developed and supported by Rücker EKS. Its data base includes all relevant
industrial robots currently used in industry.
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In the following we will consider several approaches for the optimization
problem to minimize the objective functional of the form J = Jθ + JR, where

Jθ =
1
2

T∫

0

∫

Ω

(ω(x, t)(θ(x, t) − θ∗(x, t)))2dx dt

evaluates the obtained temperature profile θ within the moving target region
ω and JR represents some regularization and/or penalty terms which vary
depending on the approach. The optimization is done using the gradient
method.

3 Optimization Approaches and Numerical Results

Laser Power and Laser Position Optimization:
ul(t)

Laser

Laser track

Target Curve

Workpiece

l(t)

In this approach we let the laser follow the
target curve γ such that the laser track l is
given by l(t) = γ(s(t)). Then for t ∈ I we want
to find an optimal laser power ul(t) and laser
position s(t) ∈ [0, 1] achieving the production
goal by minimizing

J(ul, s) = Jθ +
α

2

T∫

0

||ul(t)||2 dt+
β

2

T∫

0

||s̈(t)||2 dt (3)

subject to the heat equation (1). Using the Lagrange approach we can derive
the first order optimality conditions consisting of (1), (4), (5), (6):

−ρc ∂
∂t
μθ − κΔμθ = ω2(θ − θ∗) on Ω × I with μθ(x, T ) = 0 on Ω (4)

and
∂

∂ν
μθ(x, t) = 0 on Γ × I,

T∫

0

(
αul +

∫

Ω

μθ
∂

∂ul
F (x, t, l, ul) dx

)
(ul − ūl) dt ≥ 0 for all ūl ∈ Uul

ad, (5)

T∫

0

(
βs(4) +

∫

Ω

μθ
∂

∂l
F (x, t, l, ul)

∂

∂s
γ(s) dx

)
(s− s̄) dt ≥ 0 for all s̄ ∈ Usad,

(6)

where Uul

ad and Usad are the admissible sets of ul and s, respectively.
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Fig. 2. (a) laser control ul, (b) laser position s along the target curve γ, (c) laser
acceleration s̈ along the target curve γ, (d) temperature in target region ω(t), (e)
laser track l , (f) laser acceleration l̈, (g) laser treatment result in the target curve γ
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Fig. 3. (a) laser control ul, (b) laser position s along the target curve γ, (c) laser
acceleration s̈ along the target curve γ, (d) temperature in target region ω(t), (e)
laser track l , (f) laser acceleration l̈, (g) laser treatment result in the target curve γ

The numerical results of the optimization are illustrated in Fig. 2. The
achieved temperature in the target region (Fig. 2d) matches the desired one
very well. But the use of β = 0 allows large oscillating acceleration s̈ of the
laser within the target curve because large values of s̈ are not penalized in
the objective functional. In general, this laser path is not realizable by an
industrial robot.

To reduce the oscillations in s̈ and to improve the realizability we increase
the parameter β to 100 and get the results shown in Fig. 3. Although the high
acceleration of the laser is reduced as long as the target curve is smooth, the
acceleration of the laser passing the corners in the target curve is still infinitely
large (Fig. 3f) and therefore, again not realizable.
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This approach is suitable as long as the curvature of the target curve
remains in certain bounds depending on the acceleration bounds of the robot.

Laser Power and Laser Track Optimization:
ul(t)

Laser

Laser track

Target Curve

Workpiece

l(t)

In this approach we will use the laser track
l = [lx, ly] on the workpiece surface itself
as optimization variables in addition to the
laser power ul. Therefore, we want to deter-
mine optimal functions ul and l satisfying the
production goal by minimizing

J(ul, l) = Jθ +
α

2

T∫

0

||ul(t)||2 dt+
β

2

T∫

0

||l̈(t)||2 dt

subject to the heat equation (1). We obtain the first order optimality condi-
tions (1), (4), (5), (7):

T∫

0

(
βl(4) +

∫

Ω

μθ
∂

∂l
F (x, t, l, ul) dx

)
(l − l̄) dt ≥ 0 for all l̄ ∈ U lad. (7)

The numerical optimization result is shown in Fig. 4. The obtained tem-
perature in the target region (Fig. 4c) fits almost the desired one, such that
the production goal is reached. Note that the additional freedom in the choice
of the laser track yields a smoother laser track (Fig. 4f and g). Furthermore,
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the acceleration of the laser (Fig. 4d) is smoother and smaller than in the
previous example, cf. Fig. 3f).

Hence, we may conclude that this laser track is realizable by indus-
trial robots even in the case of nonsmooth target curves. The β acts as a
regularization parameter to achieve realizable laser tracks l.

Laser Power and Robot Control Optimization: In the following we
are looking for the robot control ur and the laser power ul satisfying the
production goal, i.e., we consider the minimization of

J(ul, ur) = Jθ +
α

2

T∫

0

||ul(t)||2 dt+
β

2

T∫

0

||ur(t)||2 dt

subject to (2), describing the robot, coupled with (1), describing the laser
treatment. The laser track is given as function of q, i.e, l = l(q). Then, the
first order optimality conditions are given by (1), (2), (4), (8), (5), (9):

μ̇Tq = − ∫
Ω

μθ
∂
∂qF (x, t, l(q), ul) dx− μTq ∂

∂qk(q, ur, t) with μTq (T ) = 0, (8)

T∫
0

(
βuTr + μTq

∂
∂ur

k(q, ur, t)
)
(ur − ūr) dt ≥ 0 for all ūr ∈ Uur

ad . (9)

The numerical results are depicted in Fig. 5. As shown in Fig. 5c) the
desired temperature θ∗ is reached in the middle of the time interval I, but
it close to its starting and end points. In the beginning, first the robot has
to be accelerated such that the laser hits the moving target region in an
appropriate way. Unfortunately, the gradient method reacts too sensitive on
changes in the robot control. Small changes in the control in the beginning of
the interval I have great influence on the laser track at the end of I. Therefore,
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the gradient method has to perform very small gradient steps to improve the
objective functional over the whole interval I leading to an extremely slow
convergence. For more details we refer to [1].

4 Summary

We introduced and discussed several approaches for the optimal control of
robot guided laser material treatments. The laser power and laser position
optimization is suitable for smooth target curves since the laser position is
restricted to the target curve. The laser power and laser track optimization is
suitable for arbitrary target curves since the laser position is freely choosable
on the surface. The relation to a robot guiding the laser is possible by use of
the acceleration penalty term. Furthermore, the gradient method applied to
the laser power and robot control optimization converges too slowly since the
model reacts too sensitive on perturbations/changes of the robot control.

We suggest a hybrid optimization approach, the laser power and laser track
optimization followed with a standard path planning approach to compute the
robot control.
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Modeling of supply chains covers a broad mathematical spectrum which allows
for application-oriented as well as more theoretical results. Nowadays, where
simulation and optimization issues are of interest, mathematicians, engineers
and economists focus on the computational validation of those models. From a
mathematical point of view, one can mainly distinguish two classes of models:
continuous and discrete ones. The latter are either common in particle-based
simulations of complex production systems or optimization problems. How-
ever, continuous models are used for the simulation of large-scaled supply
chains where not only feasible solutions and predictions come first but also
fast computing times. The following articles exactly pick up all these features
and contribute new and current results in this direction.

Ute Ziegler, from RWTH Aachen University, presents a discrete opti-
mization model which supports the decision-making process in planning new
production lines. The objective therein is to minimize investment, production
and transportation costs while a multiple set of time-dependent constraints
must be fulfilled. To find feasible and optimal solutions, several starting
heuristics are implemented and efficiently tested on sample examples.

Simone Göttlich et al. describe a continuous model based on a coupled set
of ordinary differential equations involving customer demands, order policies
and money flows. The reformulation as an ODE-restricted optimization model
has been proposed to determine suitable order and distribution strategies. It
is furthermore shown that maximizing the profit of liquid suppliers in this
model is independent of internal pricing and does not effect any policies.

Kathrin Padberg, from TU Dresden, and her co-workers focus on rate equa-
tions propagating material flows in push or pull (supply or demand-oriented)
supply chains. The performance of a stability analysis provides the well-known
Bullwhip effect (oscillating demand blow-up) as a mathematical instability
which can be only prevented by a mixed push-pull-strategy.

Laurent Navoret, from the Université Paul Sabatier of Toulouse, and
his collaborators concentrate on the interdisciplinary issue of economics and
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biology. The idea is to analyze the limiting procedure from microscopic (fine
scale) to macroscopic (coarse scale) congestion models. Using the movement
of sheep herds as example, where transition regimes from dilute to gregarious
phases play an important role, the authors point out possible links for ongoing
research in the field of supply chains.

Marco Laumanns, from ETH Zurich, describes a stochastic optimization
model for transshipments of goods under uncertain demand in inventory-
distribution networks. The question is how to choose a cost-effective alter-
native of either additional transportation costs or high inventory costs. One
way to quantify this relation is to determine optimal control policies for each
alternative and to compute the resulting average cost savings under these
policies as the value of the transshipment option.
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Summary. A mixed-integer model based on a coupled system of differential equa-
tions is presented in order to optimize design and material distribution of production
networks. Due to many binary variables arising in this model and in order to guar-
antee feasible solutions several starting heuristics, which provide incumbents for the
branch and cut algorithm, are developed and compared.

1 Introduction

In general, the manufacturing of goods requires a multitude of different
operations accomplished by a vast number of miscellaneous suppliers and pro-
cessors. The system of all feasible consecutive production steps is comprised by
a production network, describing the manufacturing of goods, either starting
from the required raw material or from semi-finished parts that pass through
several processors until the finished product is obtained. Each processor is
specified by a set of several properties, including a limited production capac-
ity. This causes the need of a buffer where arriving parts queue up until they
can be treated. On this scale we work with a continuous approach where the
evolution inside the network is described as a continuous flow. This is advan-
tageous for large scale problems, since the computation time is independent
of the number of parts in the system as described in [1], amongst others. The
task of finding the optimal dynamic distribution of flow through the network
due to a certain objective function leads to a PDE-& ODE-constraint opti-
mization problem, see [4]. After several discretization and linearization steps
we end up with a linear mixed-integer programming formulation (MIP) which
has been derived in [2]. Finding the optimal network design is a typical ques-
tion in the context of planning and managing production systems. Hence, the
original MIP model is expanded by the task of selecting optimal processor
configurations out of a prescribed set. The resulting enlarged MIP uses a spe-
cific objective function where the focus is on minimizing diverse costs, see
Sect. 2. Further details are explained in [3]. Instances of the model are solved
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by Cplex developed by ILOG, see [5], a commercial solver using a LP-based
branch and cut algorithm, which is the currently most reliable solving method
for mixed integer programming problems. Due to the vast number of binary
variables the design model is highly complex which means that the compu-
tation time explodes already for small sized instances. The solver often runs
several hours without finding a single feasible solution. Consequently, the use
of fast heuristical algorithms that provide feasible starting solutions for the
branch and cut algorithm is advisable. Several approaches are suggested in
Sect. 3. In Sect. 4 the typical course of the optimization algorithm with and
without prepended heuristics is compared using some sample instances.

2 Design Model

A production network is described by a directed graph G = (V,E), where V
denotes the set of vertices and E the set of edges. Each vertex v possesses a
set of incoming edges, denoted by δinv , and a set of outgoing edges δoutv . We
assume the network to have exactly one inflow edge ein, where the material
is induced into the system. All remaining edges represent locations where a
processor possibly can be installed. The set of valid processor configurations
for each edge is denoted by Ce, ∀e ∈ E. Every processor is described by several
properties concerning the production capacity μe,c, the production velocity
ue,c, the length Le,c, setup costs ζsetupe,c and running costs ζrune,c , ∀c ∈ Ce, e ∈ E.
After discretization of time and space of the material flow we end up with the
following variables for each edge. The flow entering an edge at timestep t is
denoted by zte. The entering material either has to be stored in a queue, which
is referred to as qte, or it enters the processor. The flow entering the processor
is denoted by xte and the flow leaving a processor is referred to as yte. The
timestep is denoted by t going from 0 to nt, and the timestep size is given by
Δt. As initial condition we assume the network to be empty at t = 0. In the
sequel, the design model is stated and shortly explained. All constraints hold
for all e ∈ E. c ∈ Ce and t = 0, . . . nt:

minwsetup · psetup + wrun · prun + wqueue · pqueue − wout · pout (obj) (1)
subject to

yte
≤
≥ y

t−1
e +

Δt

Le,c
ue,c · (xt−1

e − yt−1
e )±Be · (1− γe,c) (flow inside pr.) (2)

qte = qt−1
e +Δt(zt−1

e − xt−1
e ) (queue) (3)∑

e∈δout
v

zte =
∑

ẽ∈δin
v

ytẽ (coupling constraints) (4)

μe,cκ
t
e − μe,c(1− γe,c) ≤ hte,c ≤ μe,c · γe,c (flow entering processor) (5)

xte =
∑
c∈Ce

hte,c (flow entering processor) (6)
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qte
ε
−Mκte ≤ xte ≤

qte
ε

(flow entering processor) (7)

0 ≤ zte ≤ De ·
∑
c∈Ce

γe,c (configuration selection) (8)

∑
c∈Ce

γe,c ≤ 1 (configuration selection) (9)

0 ≤ xte ≤ μmaxe , 0 ≤ yte ≤ μmaxe , 0 ≤ qte (box constraints) (10)

κte, γe,c ∈ {0, 1} (integrality constraints) (11)

The binary variable γe,c is a flag indicating whether configuration c is selected
for edge e or not, by setting γe,c to one or to zero respectively. Constraint (9)
ensures, that at most one processor may be selected for each edge. In (8) it is
requested that one processor has to be activated as soon as material is lead
to the corresponding edge. Constraint (2) originates from a linear advection
equation discretized by a one-sided Upwind scheme and describes the trans-
port of flow inside a processor. The boundary condition is given by the induced
material flow at the inflow edge, xtein

, which is given in advance. The evolu-
tion of the queue in front of each edge is discretized with the explicit Euler
method and stated in (3). The flow distribution at branching points is indi-
rectly formulated in (4) by demanding that the amount of material arriving at
vertex v must be equal to the amount of material leaving this vertex at every
timestep. In order to avoid unnecessary queuing costs, we want the processor
to work at full capacity as soon as the corresponding queue is not empty.
To avoid a discontinuous dependence of the inflow xte from the queue size, a
relaxation parameter ε ≤ 1 is introduced as proposed in [2]. Constraints (5)–
(7) result from linearizing the equation xte = min(μe,c,

qt
e

ε ) and generalizing it
for all active and inactive configurations. The objective function of the design
model consists of four weighted cost terms which are given by setup costs
psetup :=

∑
e,c γe,cζ

setup
e,c , running costs prun :=

∑
t,e,cΔt · ζrune,c γe,cx

t
e,c, queu-

ing costs pqueue :=
∑
t,eΔt · qte and outflow benefit pout :=

∑
tΔt · yteout

,
where eout denotes the outflow edge, i.e. the edge without successor. For
most of the constraints, the big-M formulation has been used for lineariza-
tion, which is a very popular technique in discrete optimization issues. That
means μmaxe , Be, M andDe must be set to sufficiently large constants. Further
details are described in [3].

3 Starting Heuristics

Due to the fact, that the branch and cut algorithm often takes a long time
(� 1 h) to find an incumbent, heuristical algorithms that find good feasi-
ble solutions within a short computation time are required. To generate a
feasible solution, at most one configuration has to be selected for each edge
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and the distribution rates at all branching points of the network have to be
fixed. In this section several heuristic approaches are shortly raised.

3.1 Shortest Path Heuristic

The idea of the shortest path heuristic is to find the cheapest path through the
system due to certain heuristical cost values, which typify estimates of pro-
duction costs arising when the corresponding processor is active. The material
flow is then exactly restricted to this path. For the calculation of the heuristical
cost values, processor properties as well as an estimation of the flow amount
possibly entering the processor are required. More details can be found in [3].
The algorithm works as follows.

1. Compute heuristical cost values of each processor and select the cheapest
processor of all available configurations for each edge.

2. Use Dijkstra’s algorithm to compute the cheapest path from inflow to
outflow edge.

3. Set the distribution rates in a way that solely the cheapest path is used
for the flow.

Since one single path is active in the heuristical solution, setup and running
costs are quite low. Consequently, this heuristic gives quite good results, as
long as the queuing cost weight of the objective function is small enough.
Otherwise it would be more convenient to activate more edges for the evolution
of flow, such that queues in front of low capacitated processors are reduced.
For such instances an alternative heuristic is developed.

3.2 Flow Simulation Heuristic

The so-called flow simulation heuristic distributes flow amongst all edges of
the network. The distribution rates, depending on the heuristical cost values
of the corresponding processors, are set in such a way that cheaper edges are
used more intensely than more expensive ones. The algorithm executes the
edges of the whole graph in a specific order which allows for a more exact
estimation of the arriving flow and therewith a more precise heuristical cost
value. In short, the algorithm can be described as follows:

1. Choose the vertex whose incoming edges are already checked (start with
the end vertex of the inflow edge).

2. Compute heuristical cost values of its outgoing edges using the flow
estimation value of their predecessors.

3. Select the cheapest configuration for all outgoing edges.
4. Set rates depending on the heuristical cost values of the selected configu-

rations for all outgoing edges.
5. Compute flow estimates of all outgoing edges using the flow estimates of

the predecessors and the distribution rates.
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Due to the distribution of flow amongst all edges of the network, the appear-
ance of queues is reduced. However, since the algorithm lacks an anticipatory
component concerning the computation of distribution rates, there can still
be found instances, where unnecessary queues arise. For these cases an addi-
tional algorithm can be appended which changes the distribution rates of the
heuristical solution leading to a stronger queue reduction.

3.3 Modified Flow Simulation Heuristic

The modification mainly compares the flow estimates with the capacities of
the corresponding processors and solves local linear optimization problems
which reduce the queues by redistributing the flow in certain regions of the
network where the emergence of queues is significant. Therefore the so-called
accumulation value is computed for each vertex, which is nothing else than
the difference between the sum of flow estimates traversing the vertex and the
sum of processor capacities of all outgoing edges. A negative accumulation
value means that queues can be avoided by redistributing the flow over all
outgoing edges. At vertices with positive accumulation value, the flow already
has to be redistributed at the predecessor nodes by simultaneously taking
care that no new accumulation values arise at the neighbor vertices. Control
parameters work as balances between the conservation of the original rates
and the reduction of accumulation points.

4 Computational Results

As already mentioned in the previous section the quality of heuristical solu-
tions mainly depends on the choice of cost term weights. Figure 1 shows the
typical behaviour of the optimization algorithm when different heuristics are
prepended.

The two figures originate from a highly interconnected network with 90
edges and 5 configurations per edge. In Fig. 1(a) the emphasis of optimization
is put on the setup and running costs. As supposed, the shortest path heuristic
provides by far the best incumbent. In Fig. 1(b) the same instance is used,
but this time the queuing cost weight and the outflow benefit dominate. In
this case the flow simulation heuristics provides a better incumbent than the
shortest path heuristic which can even be slightly improved by the distribution
rate modification. This is an example, where the branch and cut algorithm is
not able to find a feasible solution during the entire runtime of 5 h when no
heuristic is used.

In general, even though the results concerning the optimization time and
the quality of the incumbents by the use of different starting heuristics differ
heavily from one instance to another, some observations can be pointed out
for certain network constellations. Especially for instances with a vast number
of configurations per edge it often takes the commercial optimization software
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Fig. 1. Primal and dual bounds in the course of a 5 h capped optimization algorithm
with different starting heuristics prepended

several hours to find the first feasible solution, whereas the heuristical algo-
rithms take less than a second. Furthermore, the use of starting heuristics for
instances with a fine timescale is recommendable, since rounding error often
lead to the fact, that the optimization algorithm terminates without finding
any feasible solution.
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Summary. The dynamic of a production network is modeled by a coupled system of
ordinary differential delay equations. Distribution and order policies are determined
by an optimization problem for maximizing the profit of the production line.

1 Introduction

We consider a network of suppliers which order goods from each other, process
a product according to orders, and receive payments according to a pricing pol-
icy. The dynamics of supply chains has been investigated in recent years (see
cf. [1–3,5,7]) and extended to include money flows and bankruptcy, e.g. [2]. We
extend existing results in the following ways: We consider general networks,
represented by an arbitrarily connected graph. Each node in the network has
a finite production or cycle time and a finite production capacity, as well as
a front-end and back-end inventory. It is therefore possible that a supplier
orders more than can be produced and stockpiles supplies. It is also possible
that a supplier produces more than is ordered and stockpiles the output. Each
supplier receives payments according to a dynamically determined pricing pol-
icy. Bankruptcy occurs if payments made exceed payments received beyond
a certain available credit limit. Distribution and order policies are chosen in
order to maximize the total profit. Mathematically, this problem is formulated
as a mixed–integer programming problem.

2 The Model

The supply chain is modeled as a network of S1, . . . , SJ nodes (suppliers)
which order and deliver goods according to given (dynamic or static) policies,
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and receive payments according to certain pricing policies. We suppose that
each supplier can choose his own policy. We furthermore assume that each sup-
plier Sj has two inventories, a front-end (or input) inventory with an inventory
position pj(t), and a back-end (or output) inventory with inventory position
qj(t). Items are taken from the input inventory, processed by a given time
τj , put into the output inventory and instantaneously delivered according to
demand. Each supplier cannot take more than μj dt items in every infinites-
imal time interval dt, i.e., the supplier has a maximal capacity of μj on the
production process. There is no restriction on the inventories. This allows for
storing overproduction and buffering for shortages in the supplies. Adjacent
suppliers are directly connected by the rate of orders and flow, respectively.
That means, supplier k orders products from supplier j at a rate Ωkj and
supplier k sends products to supplier j at a rate Φjk.

2.1 The Inventory Model

We turn to the mathematical equations describing the above model. We model
the input inventory position pj by a simple ordinary differential equation
(ODE) and put a constraint such that the inventory cannot become negative.

dpj
dt

=
(
f inj − μj for pj > 0

0 for pj = 0

)
. (1)

The ODE (1) has a discontinuous right hand side and is therefore not
guaranteed to have a solution. We replace (1) by the smooth dynamics

dpj
dt

=
(
f inj − μj for pj > εμj
f inj − pj

ε
for pj ≤ εμj

)
= f inj − gj (2a)

where
gj = min{μj, pj

ε
}, 0 < ε << 1. (2b)

It is easy to see that (2) exhibits, for small ε, asymptotically the same behavior
as (1) and the differential equation (2) has a Lipschitz continuous right hand
side, and has therefore a well defined solution.

The evolution of the output inventory position qj is modeled in the same
way, where the influx into the output inventory is the time delayed outflux of
the input inventory, i.e. f inj (t)→ gj(t−τj) holds, where τj is the time it takes
the supplier to process an item. The capacity μj is replaced by the demand
wj , i.e. the supplier cannot ship at a rate greater than the current demand
from the output inventory. Therefore, the output inventory position qj will
satisfy dqj

dt = g(t − τj) −min{wj , qj

ε }. So, in summary, the dynamics of each
supplier Sj, j = 1 : J, are given by

(a) p′j(t) = f inj (t)− gj(t), (b) gj(t) = min{μj , pj
ε
}, (3)

(c) q′j(t) = gj(t− τj)− fj(t), (d) fj(t) = min{wj , qj
ε
}.
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For notational convenience we include external suppliers of raw materials and
final customers as suppliers in the network by formally defining raw mate-
rial suppliers as suppliers with an infinite output inventory and customers as
suppliers with zero production capacity.

It remains to connect the dynamics of the individual suppliers through the
fluxes fj and f inj in (3). This is done by Kirchhoff’s law. We define a J × J
distribution matrix A with nonnegative entries Ajk, and set

f inj =
J∑
k=1

Ajkfk, j = 1 : J. (4)

So the product flux Φjk from Sk to Sj is given by Φjk = Ajkfk, and Ajk is the
percentage of the output of supplier k sent to supplier j. We denote the column
sums of the matrix A by a and by ak the percentage of product shipped back
into the system by supplier Sk; hence ak =

∑J
j=1 Ajk, a

T = 1TA. If there is
no loss of product during shipping (which assumed to be instantaneous), then
the column sums ak will equal unity, except for those nodes Sk corresponding
to final customers.

The demand wj on supplier Sj in (3)(d) is given by the orders placed.
The modeling is analogously as for the distribution rates. Assuming that the
supplier Sk places orders to supplier Sj at a rate Ωkj , i.e.,

dj =
J∑
k=1

Ωjk, j = 1 : J, w = Ω1. (5)

The matrix Ω defines the topology of the network, since each supplier will
only place orders to a limited number of other suppliers. The elements of the
matrices A and Ω are the distribution and order policy decision variables.
However, the distribution policy cannot be chosen independently of the order
policy: Supplier Sk cannot ship more from the output inventory than the total
demand wk (as enforced by the form of the outflux function f in (3)(d)). He
also cannot ship to the individual supplier Sj at a rate greater than Sj is
ordering. That is, we have the additional constraints

Φjk = Ajkfk ≤ Ωkj , j, k = 1 : J. (6)

The constraint (6) is a dynamic and nonlinear constraint, since all terms in
(6) depend on time and the fluxes fk are given by (3). The constraint can be
satisfied by choosing an a priori rule for the distribution policy (which is not
dependent on the dynamics): Ajk = 1

wk
Ωkj , This reduces (6) to fk ≤ wk which

is enforced by (3) automatically. This choice can be understood as follows.

1. If the output inventory is non-empty (qk = O(1), fk = dk): Satisfy all
demands Φjk = Ωkj .

2. If the output inventory is empty qk < εdk, fk = qk

ε ≈ gk(t − τk) < dk:
Distribute the output proportionally to the demand. Set Φjk = Ajkfk =
fk

dk
Ωkj .
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Given a certain order policy, any other distribution policy will have to use
information about the current state of the system (the values of fk(t) and
dk(t)) to enforce the constraint (6).

Remark 1. Up to this point we assumed that, if supplier Sj cannot satisfy
all orders at any point in time, these orders are lost. A more realistic model
allows for the orders to be filled at a later point in time (incurring a penalty
which has to be included in a cost functional for optimization). We remove
the constraint that the output inventory position qj(t) in (3) remains non-
negative, and define the inventory position as qj for positive qj and the backlog
as −qj for negative qj . In this case (3)(c)(d) have to be replaced by

q′j(t) = gj(t− τj)− fj(t), fj = H(qj)wj

for H being the Heaviside function.

2.2 The Money Flow

One of the purposes of the model developed so far is the study of the evolution
of bankruptcies in a given network. To this end, it is necessary to include cash
flow into the model. Money flows run in the opposite direction of product
in the network, and are weighted by a price. We denote by rj the price per
product unit supplier Sj charges to deliver. Therefore, the flow of money ψjk
from supplier Sk to supplier Sj is given by ψjk = Φkjrj . Furthermore, we
assume that each supplier Sj has certain production costs for delivering the
product. The production costs per product unit supplier Sj are denoted by rj .
Hence, the money supply σj of supplier Sj evolves according to

σ′
j(t) =

J∑
k=1

ψjk − ψkj −
J∑
k=1

rkfk = ajfjrj −
J∑
k=1

Ajkfkrk −
J∑
k=1

rkfk. (7)

If we assume that no credit is extended, i.e. the supplier Sj has to stop ordering
once its money supply is exhausted, we obtain the condition

Ωkj = 0 if σj = 0. (8)

The above model allows for the simulation of the flow of product and payments
on arbitrary complex networks, given a certain order and pricing policy, i.e.
once the order rates Ωkj(t) and the prices rj(t) are chosen. Choosing optimal
policies by solving a constrained optimization problem is subject of Sect. 3.

3 Computing Optimal Order and Distribution Policies

We are interested in an optimal choice of the given order policies Ωkj and
distribution policies Ajk. We consider the choice to be optimal, if the profit
of the supply chain

∑J
j=1 σj(T ) at some final time T is maximal. Constraints
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to this optimization problem are the dynamics of the supply chain as well
as constraints on order flows, production capacities, inventories and possible
bankruptcy.

This is described by the following maximization problem for Ωkj and Ajk :

max
Ωkj ,Ajk

J∑
j=1

σj(T ) subject to (3), (4), (5), (6), (7), (8). (9)

Numerically, this problem is solved using a mixed–integer programming for-
mulation as derived e.g. in [4,6]. We now study some analytical properties of
the maximization problem.

Lemma 1. As long as there is no bankruptcy, the internal pricing has no
influence on the order Ωkj and distribution policy Ajk.

In fact, due to (4), we have
∑

j Ajk = 1 and hence Ajkfk = 0 ∀k, for cus-
tomers j, and Ajkfj = 0 ∀j, for raw material suppliers k, respectively. We
introduce the index sets AC ,AM andAS for customers, raw material suppliers
and the remaining suppliers. Then, we obtain

∑
j,k

Akjfjrj −Ajkfkrk =
∑
j∈AC

fjrj −
∑
j∈AM

fjrj .

For an initial money supply of σj(t = 0) = 0 we obtain by integrating (7)

∑
j

σj(T ) =
∫ T

0

⎛
⎝∑

j

−rjfj +
∑
j∈AC

fjrj −
∑
j∈AM

fjrj

⎞
⎠ dt. (10)

Hence, only the production costs but not the internal pricing effect the cost
functional (as long as there is no bankruptcy).

Second, we reformulate (3) in order to obtain a partial differential equa-
tion. This approach is analogously to the presentation in [6]: We assume each
supplier as unit length. The delay in τj is then modeled by a function ρ(x, t)
satisfying

p′(t) = f in − ρ(0, t), q′(t) = ρ(1, t)− f(t),

ρt +
1
τ
gx = 0, ρ(0, t) = min{μ, p

ε
}, f = min{w, q

ε
},

g(t) = ρ(0, t).

The latter set of equations is in fact an Upwind discretization of a partial
differential equation for the part densities ρ given by

∂tρ+ ∂x min{ν, vρ} = 0, g(0, t) = f in (11)
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and where ν(x) = μ χx≤ 1
2

+ w χx≥ 1
2
, v = 1

τ and p = ερ(0−, t) and q =
ερ(1+, t). This equation has to be solved for ρj , i.e., the part density for
supplier Sj.

Third, if we denote by ψj := min{νj , vjρj}, we obtain fj = ψj(1, t) and
f inj = ψj(0, t). Assuming an initially empty supply chain ρj(x, 0) = 0 for all
suppliers j, and equal prices per product rj ≡ r, we obtain from (11) upon
integrating

J∑
j=1

σj(T ) = −
∫ T

0

J∑
j=1

rjfjdt+
∫ T

0

∑
j∈AC

fjr −
∑
j∈AM

fjrdt

= −
∫ T

0

J∑
j=1

rjψj(1, t)dt+
∫ T

0

r

⎛
⎝ ∑
j∈AC

ψj(1, t)−
∑
j∈AM

ψj(1, t)

⎞
⎠ dt

= −
∫ T

0

J∑
j=1

rjψj(1, t)dt+
J∑
j=1

∫ T

0

r (ψj(0, t)− ψj(1, t)) dt

= −
∫ T

0

J∑
j=1

rjψj(1, t)dt− r
J∑
j=1

∫ 1

0

ρj(x, T )dx.

Summarizing, we proved:

Lemma 2. If rj ≡ 0, then maximizing the costs at time T using cost func-
tional (10), is equivalent to minimizing the load in the complete network at
time t = T where the load is the number of parts

∫
ρj dx in supplier Sj .
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Summary. This contribution focusses on the dynamics of material flows in supply
chains under pull, push and mixed production strategies. For this purpose, a mathe-
matical input–output model of commodity flows is generalised and analysed in some
detail for the case of linear supply chains. In particular, it is investigated under
which conditions the effect of instabilities like the Bullwhip effect can be minimised.
The presented results allow some new insight into the dynamics of manufacturing
systems, which will be of importance for the development of new approaches for
production planning and control.

1 Introduction

Logistics is one of the fastest growing economic sectors today. In connection
with this development, the optimisation of interacting production and trans-
portation processes has become a problem of increasing relevance, as it offers
the possibility to gain efficiency and reduce costs by a sophisticated planning
and control of the corresponding networks. During the last years, increasing
efforts have been made to mathematically model and analyse the dynam-
ics of supply chains and similar logistic systems [1, 5]. Apart from external
factors like demand and supply variations, it has been revealed that the par-
ticular strategies for producing and ordering goods are of major importance
for the stability of commodity flows between manufacturers organised in a
supply network. In this work, we study analytically how purely demand- or
supply-driven production strategies lead to an amplification of initial varia-
tions along a supply chain, a phenomenon known as the Bullwhip effect [3].
A combination of traditional push and pull mechanisms is suggested for min-
imising this effect. Based on a simple mathematical input–output model,
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we use a graph-theoretical framework for studying the dynamics of supply
chains under mixed push-pull strategies and briefly describe the emergence of
additional instabilities in case of an improper choice of strategic parameters.

2 Description of the Model

In order to describe the flow of commodities in a supply chain, we adapt a
recently introduced fluid-dynamic input–output model [6]. For convenience,
we make a number of assumptions simplifying the mathematical formulation
and analysis: (a) We neglect the influence of price variability on production
and order strategies of firms, which may however have considerable effects
in real-world systems. (b) Every manufacturer is able to produce only one
specific kind of product, which may be either sold on an external market or
supplied as a commodity to other manufacturers. (c) For every commodity j,
there is exactly one producer which also gets the index j.

2.1 Pull and Push Strategies

In their original work, Helbing et al. [6] formulated the input–output model
only for a pull strategy, i.e. a production that is exclusively determined by
the demand of the respective customers. This relationship is described by the
production rates Qj(t) and the available stocks Nout

j (t) of the corresponding
finished goods. The total demand for the associated product j is given by the
sum of the external market demand Dj(t) and the demand of other manufac-
turers k. These work with production rates Qk(t) and need a certain relative
fraction Cjk ≤ 1 of the commodity produced by manufacturer j for their own
production. Therefore, C = (Cjk) is referred to as the input–output matrix of
commodities. The change of the available stocks of a product j is then given by

dNout
j

dt
= Qj(t)−

∑
k

CjkQk(t)−Dj(t). (1)

In contrast to a pull strategy, with a push strategy, the production rate is
exclusively determined by the supply of commodities. Hence, the quantities
of interest for the individual manufacturers are the locally available stocks of
the commodities N in

j (t). Given the total supply being the sum of a factory-
specific external supply Sj(t) and the supply of other members of the network,
the changes of the corresponding inventories read

dN in
j

dt
= Sj(t) +

∑
k

TjkQk(t)−Qj(t), (2)

where the matrix T = (Tjk) is called production matrix and determines the
fraction of different products j that are produced by a manufacturer k. In the
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case of more complicated production strategies, the separate consideration of
in- and output buffers may be necessary, whereas both types of buffers can
be usually identified with each other in a linear supply chain configuration.

2.2 Adaptation of Production Rates

The factors that determine the adjustment of the production rates are specific
for every production strategy. A general observation is that manufacturers
typically want to avoid strong fluctuations in the available commodities as well
as in the finished goods storages. Moreover, there are desired levels N̂ in,out

j

for all inventories (incoming and outgoing material) as well as production
rates Q̂j corresponding to an optimal use of machine capacity. A general
production strategy Qj(t) realising the successive adaptation of production
rates to changing economic conditions can then be formulated as

1
Qj(t)

dQj
dt

= ν̂outj

(
N̂out
j

Nout
j (t)

− 1

)
− μ̂outj

1
Nout
j (t)

dNout
j

dt

− ν̂inj
(

N̂ in
j

N in
j (t)

− 1

)
+ μ̂inj

1
N in
j (t)

dN in
j

dt
+ αj

(
Q̂j
Qj(t)

− 1

)
, (3)

with adaptation rates ν̂in,outj , μ̂in,outj , αj ≥ 0. For example, ν̂inj = μ̂inj = 0
corresponds to a pull strategy, while ν̂outj = μ̂outj = 0 is characteristic for a
system subject to a push principle.

3 Linear Stability of Supply Chains

A basic production unit is composed of a production line and its associated
in- and output buffers, which are filled and cleared by the different suppliers
and customers. In order to study the dynamics of a linear supply chain, i.e.
a sequential alignment of n ≥ 1 production units where each commodity is
produced and consumed by only one manufacturer, we may identify the supply
and demand terms for every unit with the production rates of the previous
and subsequent units, respectively. This means that the production matrix T
(input–output matrix C) has non-zero entries only on the first lower (upper)
subdiagonal. Moreover, the output buffer of producer j can be identified with
the input buffer of the production unit j+ 1, i.e. Nj(t) := Nout

j (t) = N in
j+1(t),

and we set Q0(t) := S(t) and Qn+1(t) := D(t) for the external demand and
supply. Under the assumption of material conservation, we may linearise all
quantities about their optimal values (X(t) = X̂ + x(t)) yielding

dnj
dt

= qj(t)− qj+1(t), (4)

dqj
dt

= −μoutj

dnj
dt
− νoutj nj(t) + μinj

dnj−1

dt
+ νinj nj−1(t)− αjqj(t). (5)
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These equations describe the dynamics of n+1 buffers and n producers, where
the strategic parameters reduce to

νin,outj := Q̂j ν̂
in,out
j /N̂ in,out

j , μin,outj := Q̂j μ̂
in,out
j /N̂ in,out

j .

In particular, deriving the equations for qj with respect to t, we obtain the dif-
ferential equation of a forced and damped harmonic oscillator for the dynamics
of the residual production rate of each producer j:

d2qj
dt2

+ 2γj
dqj
dt

+ ω2
j qj(t) = fj(t) (6)

with
γj =

1
2

(
α+ μinj + μoutj

)
, ω2

j = νinj + νoutj (7)

and
fj(t) = μinj

qj−1

dt
+ μoutj

qj+1

dt
+ νinj qj−1(t) + νoutj qj+1(t). (8)

This relationship clearly demonstrates that in a linear approximation, pull and
push strategies lead to essentially the same kind of dynamics. In particular,
in the case of a single autonomous production unit with constant external
forcing (i.e. q0(t) = q2(t) ≡ 0), the production is generally stable for push,
pull as well as mixed strategies, as the associated eigenvalues of the damped
oscillator have negative real parts due to the positivity of γ1.

3.1 Linear Stability for General Production Strategies

For the linear stability analysis of the supply chain we use a graph-theoretic
ansatz. Let J be the Jacobian matrix of the system consisting of n production
units as introduced above. The supply chain is stable iff all eigenvalues of J,
i.e. the roots of the characteristic polynomial P (λ) = λm + a1λ

m−1 + a2λ
m−2

+ . . . + am, m = 2n + 1, have negative real part. A necessary condition for
P (λ) to have exclusively stable roots is that the coefficients ai > 0 for all
i = 1, . . . ,m [4]. J has a graph-theoretic interpretation (a weighted directed
graph, [7]) that corresponds to the linearised dynamics of the supply chain, see
Fig. 1. Based on the results in [7], it is possible to derive expressions that relate
the coefficients ai to cycles (or feedback loops, i.e. paths connecting a node
with itself) in the digraph (see [8] for an application to biochemical networks).
A feedback loop is positive if the product of edge weights belonging to the cycle
is positive, else negative. Positive feedback loops may destabilise the system
as they can contribute negative terms when computing the coefficients. For a
single production unit the characteristic polynomial reads

P (λ) = λ(λ2 + (α1 + μin1 + μout1 )λ + (νin1 + νout1 ))

where the term (α1 + μin1 + μout1 ) is related to the negative 1-cycle and
(νin1 + νout1 ) to the two negative 2-cycles. Note that for structural reasons,
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Fig. 1. Network and linearised dynamics of a linear supply chain with two producers

all characteristic polynomials of our supply chains derived in this way have a
zero root, which however does not influence the stability properties of the sys-
tem. For pure pull systems the concatenation of production units in a linear
supply chain does not produce any additional cycles in the underlying graph.
One can show that the characteristic polynomials are given by

P (λ) = λ · p1(λ) · p2(λ) · · · pn(λ)

where pi(λ) = λ2 +(αi+μouti )λ+νouti . Equivalently, for a linear chain of push
systems we obtain pi(λ) = λ2+(αi+μini )λ+νini , respectively. As the positivity
of the coefficients of quadratic polynomials is sufficient for the roots to have
negative real parts, a pure-strategy system is linearly stable. Mixed strategies
may however cause instabilities resulting from positive feedback loops. In the
case of two production units with the same mixed strategy, the contributions
of positive feedback loops cancel out and we obtain P (λ) = λ · p(λ), where
p(λ) is a polynomial of degree four with positive coefficients. As this is not
sufficient for its roots to lie in the left complex half-plane, the Routh–Hurwitz
criterion [4] may be used to derive conditions on the parameters to guarantee
stability. In fact, it turns out that in a certain parameter range, the system
may undergo a Hopf bifurcation [2].

3.2 The Bullwhip Effect

Although pure push or pull systems are linearly stable we can often observe
an undesired amplification of the production rates along the supply chain. For
the following considerations, let us assume that the production process of the
j-th unit in the chain is weakly periodic as qj(t) = q0j cos(βt+ θj). In the case
of a pull strategy, only demand terms matter in (8). Evaluating these terms,
one may easily see that the production rate qj−1(t) of the previous unit then
varies as

qj−1(t) = q1j−1e
−γj−1t cos(

√
ω2
j−1 − γ2

j−1t+ ψj−1) + q0j−1 cos(βt+ θj−1) (9)
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where q1j−1, ψj−1 and θj−1 depend on the initial conditions and

q0j−1 = q0j

{
1 +

β4 − 2β2ω2
j−1

ω4
j−1 + 4β2γ2

j−1

}−1/2

. (10)

After a suitably long transient time t � γ−1
j−1, the production rate is then

completely determined by forced oscillations due to the periodic demand.
Equation (10) describes an amplification of short-term variations with β2 <
2ω2

j−1, with a maximum factor at

β2
max =

ω4
j−1

4γ2
j−1

(√
1 +

8γ2
j−1

ω2
j−1

− 1

)
. (11)

This convective instability can be identified as the Bullwhip effect that has
been known in management science for about 50 years [3]. Due to the sym-
metry between supply and demand terms in (6), all above statements remain
true under a push strategy if the previous unit j − 1 is replaced by the sub-
sequent one j + 1. Hence, while for a pull strategy, initial demand variations
propagate and amplify upstream, a push strategy causes an amplification of
supply variations downstream with the material flow. In contrast to these
pure strategies, it is possible to prove that under certain conditions, systems
with mixed push-pull strategies may suppress the corresponding amplification
significantly [2].

4 Conclusions and Outlook

In this work, we have summarised some fundamental results from an analytical
study of a simple fluid-dynamic input–output model for supply networks.
The model introduced in [6] has been extended to allow the incorporation of
push, pull and mixed strategies. We have shown that a linear supply chain
managed by a push or a pull principle is generally linearly stable. However,
these pure-strategy systems can exhibit a convective instability known as the
Bullwhip effect, which causes an undesired amplification of supply or demand
variations along the chain. This amplification can be suppressed by allowing
heterogeneous strategies, which however may induce linear instabilities under
some circumstances. A detailed analytical and numerical treatment, where
we consider general supply networks as well as an application to a real-world
production system is in preparation [2].
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Congestion is a major issue in the modeling of both animal aggregation and
supply chains. Indeed, both systems face obvious physical limits : capacities of
machine in supply chains [1] and non-overlapping constraints between individ-
uals in social groups. As a paradigm of crowding and social group movement,
we are interested in sheep herds. The behaviour of this gregarious species is
experimentally studied [5]. Let us focus on the displacement period of a sheep
herd, where all animals move with the same speed.

A macroscopic model for herds including speed and congestion constraints
is derived from an individual-based model. In order to enlight the congestion
part in the dynamics, a singular limit of this macroscopic model is taken and
leads to two phases in the herd : a congested and a non-congested one. We
finally analyse the spatial transition between these two phases. Such a study of
the congestion in self-organized systems could be translated to supply chains
context.
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1 Derivation of a Macroscopic Model with Speed
and Congestion Constraints

1.1 Microscopic Model

The following microscopic model aims to describe the interactions of N par-
ticles labeled by k ∈ {1, . . . , N} and with position Xk ∈ R

2 with two main
constraints.

The first constraint consists in supposing that all the particles have
the same magnitude of velocity, here equal to 1. In first approximation,
this assumption is satisfied by the sheep in a moving herd [5] (or schools
of fish [4]). Thus the velocity of the k-th particle is given by ωk, where
ωk ∈ S

1 =
{
ω ∈ R

2, |ω| = 1
}

is an unitary vector. Therefore the time deriva-
tive of ωk is orthogonal to ωk. The second constraint is the congestion one.
The particles are supposed to have a finite volume (equal to πd2) and can
not overlap, hence the existence of a maximal density �∗. So the repulsive
interaction has to be singular so as to prevent the density from exceeding �∗.

We propose here a simple continuous model for the evolution of positions
and velocities via attractive-repulsive binary interactions :

dXk

dt
= ωk, (1)

dωk

dt
= νak (Id− ωk ⊗ ωk)ξak − νrk(Id− ωk ⊗ ωk)ξrk , (2)

where ξa,rk are the attractive-repulsive forces, νa,r their respective interaction
frequencies. The matrix (Id − ωk ⊗ ωk) is the orthogonal projector on the
orthogonal direction to ωk and enables to satisfy the speed constraint. The
attractive force is chosen to drive the particles to the centre of mass inside
an interaction disc of radius Ra, while the repulsive force is chosen to drive
them to the opposite direction of the centre of mass inside an interaction disc
of radius Rr (lower than Ra):

ξak =

∑
j,|Xj−Xk|≤Ra

Xj −Xk

∑
j,|Xj−Xk|≤Ra

1
, ξrk =

∑
j,|Xj−Xk|≤Rr

Xj −Xk

∑
j,|Xj−Xk|≤Rr

1
. (3)

The attractive interaction is a constant νak = νa and νr is taken so as to satisfy
the congestion constraint:

νrk = νr

(
πd2

∑
j,|Xj−Xk|≤Rr

1

πR2
r

)
, νr(�) = �p′(�) , p(�) =

(
1
�∗
− 1
�

)−k
.

(4)
Note that p(�) tends to +∞ when � goes to �∗. The form of the function νr
is explicitly given only for the convenience of the following study.
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1.2 Kinetic Model, Hydrodynamic Rescaling and Macroscopic
Model

Mean-field Limit: N → +∞

To describe the dynamics of a large number of particles, it is usual in math-
ematical physics to introduce a distribution function f(x,v, t) defined on
the phase space: f(x,v, t)dxdv is the number of particles in the volume
[x,x + dx]× [v,v + dv]. From the equations satisfied by the empirical distri-
bution fN (x,ω, t) = 1

N

∑N
k=1 δ(x−Xk(t))δ(ω,ωk(t)), we can formally derive

the limit equation satisfied by f = lim fN as the number of particles tends to
+∞ :

∂tf + ω · ∇xf +∇ω · ((Fa − Fr) f) = 0 ,
Fa,r(x,ω, t) = νa,r(Id− ω ⊗ ω)ξa,r,

ξa,r(x, ω, t) =
∫
Ka,r(y − x)(y − x)�(y, t)dy∫

Ka,r(y − x)�(y, t)dy
, (5)

νr = νr

(∫
Kr(y − x)�(y, t)dy
α

∫
Kr(y − x)dy

)
,

where �(x,v, t) =
∫
f(x,v, t)dv is the density and Ka,r are the characteristic

functions of the discs of radius Ra and Rr.

Hydrodynamic Scaling

To determine now the large time and space dynamics, we perform an hydro-
dynamic scaling. Let us introduce the new time and space variables: x̃ = ηx,
t̃ = ηt, with η << 1. With this rescaling, the repulsive terms become local:
νηr (x) = νr(�(x))+o(η), ξηr (x,ω, t) = R2

r

4 ∇x�
η(x, t)/�η(x, t)+o(η). As regards

the attractive term, we suppose that it remains non local as η tends to 0 and
weaker than the repulsive force: the scaled attractive kernel Kη

a and the scaled
interaction frequency νηa satisfy Kη

a (z) = Ka(ηz), νηa = η2νa. Under all these
model assumptions, the limit distribution function f we obtain as η tends to
0 in the new variables satisfies the system

∂tf + ω · ∇xf +∇ω · ((Fa − Fr) f) = 0 ,

Fa(x, ω, t) = νa(Id− ω ⊗ ω)ξa, ξa(x, t) =
(∫

Ka (|y − x|) (y − x)�(y, t)dy∫
Ka (|y − x|) �(y, t)dy

)
,

Fr(x,ω, t) =
R2
r

4
(Id− ω ⊗ ω)∇xp(�(x, t)) .

Macroscopic Model

The last step of our derivation of models is to find the equation satisfied by
the two first moments of the distribution function f : the density � =

∫
fdω
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and the momentum �Ω =
∫
fωdω. Supposing that f is regular enough and

tends quickly enough to zero at infinity, then it can be checked that � and �Ω
satisfy

∂t�+∇x · �Ω = 0, (6)

∂t�Ω +∇x ·
(∫

fω ⊗ ωdω

)
=

∫
(Id− ω ⊗ ω)fdω

(
νaξa − R2

r

4
∇xp(�)

)
.

(7)

where ξa is always given by (5). Unfortunately this system is not closed. We
have to make new assumptions to express in term of the two first moments
the quantities where f still appears. Here we assume that f is a monokinetic
distribution: f(x,ω, t) = �(x, t)δ(ω,Ω(x, t)), with |Ω(x, t)| = 1. Finally, we
obtain the following macroscopic system

∂t�+∇x · �Ω = 0 , (8)

∂t (�Ω) +∇x · (�Ω⊗Ω) = �(Id−Ω⊗Ω)(νaξa − R2
r

4
∇xp(�)) . (9)

2 Study of the Dilute-Congested Transition

These macroscopic equations (8)–(9) combine the congestion constraint embo-
died by p and the speed constraint embodied by the projection operator
(Id − Ω ⊗ Ω). It leads to two difficulties: the singularity of the pressure p
and the non-conservativity of the (9). The first point has already been tack-
led in a one dimensional traffic jam model [2]. The goal of the following study
is the treatment of the conjunction of the two in a 2 dimensional case. Since
attractive and repulsive forces operate at different scales, we consider there-
after the attraction term as a source term and focus on the case νa = 0 and
Rr << 1.

2.1 Asymptotic Model

So as to study the singularity of the pressure, the principle is to enhance it
by changing p into εp, ε << 1 (Rε2r = εR2

r). By this way, the pressure term
becomes negligible unless the density is near the maximal one. Let us denote
by (�ε,Ωε) the solution of the ε-system

∂t�
ε +∇x · �εΩε = 0 , (10)

∂tΩε + Ωε · ∇xΩε +
R2
r

4
(Id−Ω⊗Ω)ε∇xp(�ε) = 0 , (11)

If (�ε,Ωε) is a sequence of solutions converging to a solution (�,Ω) when ε
tends to zero, then the limit p̄(x) = limε→0 εp(�ε(x, t)) is equal to zero unless
�ε tends to �∗. We assume that p̄ is always finite. Thus, two interacting phases
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with different dynamics appear at the limit: the phase of maximal density
� = �∗, called congested phase, and the phase of density lower than �∗, called
the dilute phase. The limit (�,Ω) fulfills the system

∂t�+∇x · �Ω = 0 , (12)

∂tΩ + Ω · ∇xΩ +
R2
r

4
(Id−Ω⊗Ω)∇xp̄ = 0 , (13)

(�∗ − �)p̄ = 0 , (14)

where the last equality expresses the dichotomy � = �∗ or p̄ = 0.
In the dilute phase, where the density is lower than �∗, we get a pressureless

gaz dynamic model. Let us now investigate the system in the congested phase.

2.2 In the Congested Phase

In the congested phase � = �∗, the limit of (10)–(11) leads to an incompressible
Euler system with speed constraint

� = �∗, ∇x ·Ω = 0 , (15)

∂tΩ + Ω · ∇xΩ +
R2
r

4
(Id−Ω⊗Ω)∇xp̄ = 0 , (16)

where the pressure p̄ is the Lagrange multiplier of the incompressibility
constraint.

The only incompressibility constraint (15) coupled with the speed con-
straint provide us enlightening ideas of the structure of clusters. Indeed, we
can prove that if the vector field Ω on the sphere (|Ω| = 1) satisfies the incom-
pressibility constraint (15), then Ω is constant on straight lines and orthogonal
to these lines. Concerning the pressure p̄, it satisfies an elliptic equation on the
congested domain (easily obtained by taking the divergence of the momentum
equation (16)).

As a result of these two last remarks, the only knowledge of the velocity Ω
and the pressure p̄ on the border of the congested domain would enable us to
find out the whole solution inside the congested zone. So given the interface
dynamics, the whole problem could be solved.

2.3 The Interface Dynamics

So as to study the interface dynamics, we consider that our problem at the
interface reduces to a one dimensional problem in the normal direction to
this interface. Let us focus on the Riemann problem: the initial condition is a
discontinuity between two constant states on both sides of the interface. The
strategy is here to come back to the finite ε-system (10)–(11) and to extract
the limit solutions of the Riemann problem as ε tends to zero with a left or a
right state converging to �∗.
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By introducing θ with respect to the x1 axis and assuming that the problem
is uniform with respect to the x2 axis, the non-conservative system (10)–(11)
can be put for θ ∈ ]0, π[ in the form of the following conservative one

∂t�+ ∂x1(� cos(θ)) = 0 , (17)

∂tΨ(cos(θ)) + ∂x1

(
φ(cos(θ)) +

R2
r

4
εp(�)

)
= 0 , (18)

where Ψ(u) = 1
2 log

(
1+u
1−u

)
and φ(u) = log

(
1√

1−u2

)
. The new conserved

variables are � and Ψ(cos(θ)).
This system is strictly hyperbolic and its associated fields are in the limit

ε = 0 genuinely nonlinear. Therefore, classical results [3] provide us the en-
tropic solution of the Riemann problem. For a non-congested left state (��, θ�)
and a congested right state (�∗, θr, p̄r), the two main possibilities are given by:

• In case of separating velocities cos(θ�) < cos(θr), vacuum appears between
two contact discontinuities and there is an instantaneous declustering (the
pressure becomes zero inside the congested domain);

• In case of incoming velocities cos(θ�) < cos(θr), the limit solution con-
sists of one shock and a pressure jump in the congested domain. The new
pressure is computable since it is the solution of an explicit non-linear
equation.

The detailed study provides us also the interface dynamics in other cases
(cos(θ�) = cos(θr), �� = �r = �∗, etc.). It will be displayed in future papers.

3 Conclusion

In this paper, new tools for congestion modeling have been presented in the
context of sheep herds modeling. We hope that it could be usefully adapted to
supply chains modeling. The study of the congested/non-congested transition
will be the ground of further challenging simulations taking into account both
constraints (constant speed and maximal density).
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Computing the Value of Transshipment
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Summary. In inventory/distribution systems, lateral stock transshipments might
lead to cost savings by effectively sharing inventory on the same echelon level. An
approach is presented to quantify the value of this additional flexibility by deter-
mining the corresponding optimal control policies, and the resulting cost, in supply
networks with transshipments under uncertain demand via stochastic dynamic pro-
gramming. The minimum guaranteed cost reduction of the discounted expected cost
compared to the base case without transshipment is proposed as the value of this
flexibility option.

1 Introduction

In supply chain optimization, one typically distinguishes between decisions
regarding the design and decisions regarding the operation of a system. Supply
chain design concerns structural aspects, such as the choice and configuration
of components, for example the nodes and links in a network. Supply chain
operation, on the other hand, relates to the processes that take place on
a given structure. This involves repeated decisions and actions over time,
mainly to control the flow of material and to deploy the existing resources.
Since structural design decision have long ranging effects, they are taken with
a correspondingly long planning horizon on a strategic planning level, while
supply chain control belongs to the shorter, operational planning level.

For both supply chain design and control, a multitude of methods and
models exist in the literature [5] that mainly address each topic in isolation.
But despite their differences with respect to time horizon, type of decisions
to be taken and existing models, both aspects are obviously interrelated. Any
design decision places constraints on how a system can be operated, and the
value of a particular design alternative depends on how well the resulting
structure can be utilized in operation. Thus, it is desirable from a conceptual
standpoint to treat design and control simultaneously.

One approach for a simultaneous treatment of supply chain design and
operation would be to formulate a bi-level optimization problem, where the

A.D. Fitt et al. (eds.), Progress in Industrial Mathematics at ECMI 2008,

Mathematics in Industry 15, DOI 10.1007/978-3-642-12110-4 85,

c© Springer-Verlag Berlin Heidelberg 2010



542 M. Laumanns

different design alternatives are represented by the upper level variables and
the control problem constitutes the lower level. Bi-level optimization prob-
lems are normally non-convex and non-differentiable and thus hard even for
simple instances where both the upper and lower level problems are linear pro-
grams [4]. Even more difficulties can be expected when the lower level problem,
as assumed here, is a stochastic control problem, hence an infinite-dimensional
optimization problem.

As a first step towards addressing design and control decisions in supply
chains simultaneously, we assume here a scenario where we only have a few
design alternatives that can essentially be enumerated. The focus is therefore
on evaluating each design alternative with respect to the operational costs they
incur. This cost is given by operating the supply chain optimally under each
setting, i.e., by applying an optimal control policy that is of course constrained
by the chosen design.

We demonstrate the approach for valuating design options for the particu-
lar case of inventory transshipments in distribution networks. Inventory trans-
shipments are lateral movements of goods on the same echelon level that can
be used to effectively ‘share’ inventory that is spatially distributed in a supply
chain [1, 2]. Inventory transshipments usually involve additional transporta-
tion and handling cost, but have the potential to reduce the total inventory
level, and hence the bound capital, within the network. We show, on a simple
example, how these potential savings arise and how they can be quantified.

2 Inventory Control Model

We assume that the inventory system can be described as a state-based
discrete-time controlled dynamical system with uncertainty,

xk+1 = Axk + Buk + Cdk (1)

where xk ∈ X ⊆ R
n denotes the state of the system, uk ∈ U(xk) ⊆ R

nu

the control input, dk ∈ D ⊆ R
nd the (uncertain) disturbances, and k is the

time index. In this case, the state variables represent the inventory levels at
the different nodes in the inventory system, and the control inputs describe
the controllable material flow (inventory replenishment orders and inventory
shipments). The disturbance is given by the external customer demand that
must be served by certain designated nodes. The matrices A ∈ R

n×n,B ∈
R
n×nu , and C ∈ R

n×nd express the connectivity structure between the nodes.
Consider the example shown in Fig. 1. Here, the customer demand d1 is

served from inventory x1 and demand d2 is served from x2. New material
can be ordered via the control variables u1 and u2, each with a time delay
of 1 time step, which requires the auxiliary state variables x3 and x4. The
control variables u3 and u4 represent the (optional) inventory transshipments
between the inventories x1 and x2. The dynamics with the transshipment
option is given by
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x1

x2

x3

x2

d1

d2

u1

u2

u3

u4

Fig. 1. Network structure of the inventory system

xk+1 =

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
A

xk +

⎡
⎢⎢⎣

0 0 1 −1
0 0 −1 1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
B

uk +

⎡
⎢⎢⎣
−1 0
0 −1
0 0
0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
C

dk.

Without the transshipment option the control input is only two-dimensional
(the components u3 and u4 are not present), and the dynamics is given by
simply deleting the last two columns of B. In the following we assume that
the disturbance has finite support. For the example let �k be drawn uniformly
from D = {(8, 0)T , (4, 4)T , (0, 8)T}.

The task is to solve the stochastic control problem optimally for both
cases with and without the transshipment option. We assume linear inventory
holding costs, which can be modeled as linear state costs pTx, and linear trans-
shipment and ordering costs qTu. The objective is to minimize the average
cost per time step. Thus we have to compute explicit state-feedback control
policies, that is, control laws as functions of the current state of the sys-
tem. In our setting it is sufficient to consider stationary policies [3]. Therefore
let π : X → U be a stationary control policy and Π the set of all feasible
stationary policies where π(x) ∈ U(x) for all x ∈ X .

The objective is now to minimize the expected average cost per time, when
starting from a given initial state x0,

Jπ(x0) := lim
K→∞

1
K
E

[
K−1∑
k=0

pTxk + qTπ(uk)

]

over the set of feasible policies Π , where the expectation is taken with respect
to the random sequence (dk) and xk+1 = Axk + Bπ(xk) + Cdk.

The common approach for solving this stochastic infinite-time control
problem is to use value iteration or policy iteration [3], usually on a discrete or
discretized state space. Here, we slightly depart from this standard procedure
and work with a continuous state space, by formulating the value iteration as
a parametric optimization problem in the control variable vector u as
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Jk+1 (x) = min
u∈U(x)

pTx + qTu + E[Jk(Ax + Bu + Cd)] (2)

s.t. Ax + Bu + Cd ∈ Xk ∀d ∈ D (3)

with initial values J0 ≡ 0 and X0 = X . The sets Xk represent the sets of
feasible states, i.e., the states where a feasible control action exists such that
the next state is guaranteed to be feasible as well.

Assuming now that the control constraints U(x) are polyhedral and can
thus be specified as a system of linear inequalities

Fx + Gu ≤ g,

it can be seen that the sets of feasible states Xk will remain polyhedral under
the iteration and the value function will be a piecewise affine convex function.
Consequently, the above problem will remain a parametric linear program in
all iterations.

Using a solver for multi-parametric linear programs [6] we can now execute
the value iteration (2) for the example until the sequence of value functions
divided by the iteration counter, {Jk(x)/k}, converges to the limit cost J∗(x).
We can then extract the optimal policy π∗ as the optimizer u∗ in the last
iteration, which will be a piecewise affine function of x, hence a state-feedback
control policy.

For our example we assume linear state cost p = (1, 1, 0, 0)T , control cost
q = (0, 0, 0, 0)T and constraints

0 ≤ xi ≤ 40, i ∈ {1, 2, 3, 4},
0 ≤ ui ≤ 8, i ∈ {1, 2, 3, 4},

u3 ≤ x2, u4 ≤ x1.

The resulting optimal policy with transshipment option is

π∗
T(x) =

⎛
⎜⎜⎝

max{12− (x1 + x2 + x3 + x4)/2, 0}
max{12− (x1 + x2 + x3 + x4)/2, 0}

max{8− x1 − x3, 0}
max{8− x2 − x4, 0}

⎞
⎟⎟⎠ .

Without the transshipment option, the resulting optimal policy is

π∗
N(x) =

(
max{16− x1 − x3, 0}
max{16− x2 − x4, 0}

)
.

3 Option and Policy Evaluation

Next, the optimal average cost per time step has to be computed for both
settings. This can be done by the following steps:
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Table 1. Recurrent states, control actions, state- and control cost and stationary
probability distribution for the transshipment case under the optimal policy π∗

T

x π(x) State cost qT x Control cost pTπ(x) μπ∗
T

(0,8,4,4) (4,4,4,0) 8 0 1
3

(8,0,4,4) (4,4,0,4) 8 0 1
3

(4,4,4,4) (4,4,0,0) 8 0 1
3

1. Determine the stationary probability measure of the stochastic dynamical
system induced by the optimal policy

2. Use the stationary measure to integrate the state and control cost over the
state space.

For determining the stationary probability measure we note that there are
only have a finite number of possible transitions in each state. This property,
together with the special structure of the optimal policies, leads to only a finite
number of recurrent states, which can easily be determined by straightforward
construction of the transition graph from a given initial state. Consequently,
the chosen policy induces a Markov chain on the set of recurrent states, whose
stationary probability distribution can be computed by standard methods.

For the case with transshipment, there are only three recurrent states.
Table 1 lists the set of recurrent states XT together with the control action,
the state- and control cost, and the stationary probability distribution μπ∗

T
on

XT under the policy π∗
T . The expected average cost per time step is given by
∑

x∈XT

μ(x)
(
qTx + pTπ(x)

)
= 8.

For the case without transshipment we obtain the set XN of recurrent
states nine elements

(0, 16, 8, 0), (8, 8, 8, 0), (4, 12, 8, 0)
(8, 8, 0, 8), (16, 0, 0, 8), (12, 4, 0, 8),
(4, 12, 4, 4), (12, 4, 4, 4), (8, 8, 4, 4),

Again the stationary distribution is uniform. The optimal average cost per
time step without transshipment is therefore

∑
x∈XN

1
9

((1, 1, 0, 0)Tx + (0, 0)Tπ(x)) = 16.

As the result, the value of the transshipment option in terms of its reduction
of the expected average cost is 16− 8 = 8 units per time step.

It is also possible to study the sensitivity of this value for the chosen policy
by considering hypothetical transportation and capacity reservation costs. If
we assume that we have to pay c units per time step for providing the capacity
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plus a linear transportation cost of r per unit to be transported, the value of
the transshipment option reduces to

16−
(

8 + c+
8
3
r

)
= 8− c− 8

3
r

This way, the range of acceptable parameter combinations for the transship-
ment option can be easily characterized.

4 Conclusion

We have presented a way to valuate different supply chain configurations,
or design options, with respect to their effect on the operational cost. The
approach requires to compute the optimal operational (control) policy for
each alternative design, and then to determine the resulting optimal average
cost, by stochastic dynamic programming. For solving the stochastic control
problems, an explicit discretization of the state space was avoided and replaced
by an implicit enumeration via a sequence of parametric linear programs. It
remains to be seen whether the approach is also practicable for larger problems
than the small example considered here, as general parametric linear programs
cannot be solved efficiently.

An important next step towards integrated supply chain design and con-
trol would be to find ways to incorporate the upper level decisions into the
lower-level control problem and thus to formulate the bi-level problem as a
true simultaneous optimization problem. The approach presented here is only
applicable when the number of alternatives is small such that it searched
exhaustively or as an evaluation method in iterative schemes, for example
when using local search methods on the upper level.
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During the last decades, computer assisted modeling and analysis of different
industrial processes have increased in importance. Computers help to reduce
the design and development time for new products and to substitute low cost
virtual tests for expensive experiments on real life prototypes. However, the
results are often unreliable due to errors that are generated either by the
underlying computer arithmetic or by inaccuracy resulting from idealization
of the mathematical model of the considered process. In this minisymposium,
we focus on validated methods as a means to solve such problems.

A method is called validated if it guarantees the correctness of its output.
In this context, intervals and Taylor models are widely used approaches to
verifying results obtained on a computer. For example, the former provides a
(multidimensional) box described in terms of floating point arithmetic which
is guaranteed to contain the exact result. Besides, validated methods are able
to allow for uncertainty in parameters, which helps to generate more realistic
mathematical models or to take into account measurement errors.

The goal of this minisymposium is to make such techniques known to a
broader circle of researchers and industry representatives. For this purpose,
we outline their potential by presenting selected applications in medicine and
engineering.

We begin the minisymposium by introducing validated methods and cor-
responding software libraries. Nathalie Revol, INRIA, Université de Lyon,
France presented an overview focused on comparative advantages of different
verified techniques. She highlighted slight but important differences in the def-
initions of basic interval concepts adopted by the modern libraries and gives
insight on the current strivings for interval standardization.

After giving a general outline, we turn to the actual topic of the minisym-
posium – application of validated techniques to real life problems.
Mathematical models describing static or dynamic processes are the basis of all
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applications. These models are given by sets of algebraic equations, ordinary
differential equations (ODEs), or differential-algebraic equations (DAEs). In
all cases, there is an uncertainty in system parameters with a priori known
bounds. In each application presented in this minisymposium, we use validated
techniques to provide essential information about the parameter dependency,
robustness, and safety of technical and medical systems in terms of guaranteed
bounds for the quantities of interest. In contrast to non-validated techniques
relying in most cases on grid-based or stochastic procedures for uncertainty
quantification, interval methods, Taylor model approaches, and other val-
idated techniques allow us to verify the worst-case influence of bounded
uncertainties on mathematical system models almost as a by-product. In that
sense they supplement traditional numerical techniques for modeling, analysis,
and design of real life systems.

Andreas Rauh from the University of Rostock, Germany, discusses verifica-
tion techniques for sensitivity analysis and design of controllers. He describes
interval-based approaches for the analysis of reachability and observability of
states of (nonlinear) dynamical systems with uncertainties and the validated
simulation of sets of DAEs.

Mark A. Stadtherr, Department of Chemical and Biomolecular Engineer-
ing, University of Notre Dame, USA, analyzes the impact of infections within
a population using epidemiological models with uncertainties by a method
based on interval Taylor series to represent dependency on time and Taylor
models to account for uncertainties in parameters and initial conditions.

Furthermore, Mareile Freihold, Institute of Measurement, Control, and
Microtechnology, University of Ulm, Germany, discusses possibilities to reduce
overestimation with the help of physical constraints. The potential of the
approach is demonstrated for the validated ODE solver ValEncIA-IVP and
an uncertain model of human blood cell dynamics.

Martin Tändl, Faculty of Engineering, University of Duisburg-Essen, Ger-
many, presents applications of MOBILE, a software environment for modeling
and simulation of multibody systems, to biomechanics. He accurately recon-
structs bone motion from marker trajectories obtained in gait lab experiments
using kinematical loops and functional human skeleton features. His approach
is verified in SmartMOBILE by Ekaterina Auer, Faculty of Engineering,
University of Duisburg-Essen, Germany. SmartMOBILE is a version of
MOBILE which verifies kinematics and dynamics of various mechanical sys-
tems including closed loop ones and can additionally compute their sensitivity
to parameters.

Finally, Michel Kieffer, Laboratoire des Signaux et Systèmes, Univer-
sité Paris-Sud, France, focuses on applications of guaranteed computation in
robotics with respect to robot localization and tracking, simultaneous local-
ization and map building, and path planning under consideration of obstacles.
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Summary. Controllers for nonlinear dynamical systems are often based on prop-
erties such as differential flatness or exact input-output as well as input-to-state
linearizability. However, these approaches are limited to specific classes of system
models. To generalize design procedures and to account for parameter uncertainties
as well as modeling errors, an interval arithmetic approach for validated simulation of
both ordinary differential equations and differential-algebraic equations is extended
to the synthesis and sensitivity analysis of open-loop and closed-loop controllers.
Furthermore, interval arithmetic routines for evaluation of criteria for reachability
and observability of states are implemented using automatic differentiation.

1 Modeling, Analysis, and Design of Control Systems

In this paper, modeling, analysis, and design of open-loop as well as closed-
loop controllers for nonlinear dynamical systems described by sets of ordinary
differential equations (ODEs)

ẋ(t) = f(x(t), p(t), u(t), t) with x ∈ R
nx , p ∈ R

np , u ∈ R
nu (1)

are discussed. For that purpose, two different scenarios are distinguished.
First, the sensitivity of the controlled systems’ trajectories x(t) is ana-

lyzed with respect to uncertainties of the initial conditions x(t0) and the
parameters p(t). In this case, either open-loop control laws u(t) or closed-
loop control laws u(x(t)) are assumed to be given. The numerical solution
approach is based on calculating guaranteed enclosures of all reachable states
using validated ODE solvers such as ValEncIA-IVP. In Sect. 2, an overview
of ValEncIA-IVP which has been developed to solve initial value prob-
lems (IVPs) for ODEs is given. Furthermore, extensions for computing partial
derivatives of the states x(t) with respect to (uncertain) parameters p using
libraries for automatic and algorithmic differentiation (AD) are described.
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Second, basic steps of a validated IVP solver for differential-algebraic equa-
tions (DAEs) are highlighted in Sect. 3. In addition to sensitivity analysis,
open-loop control sequences u(t) are determined such that a specific output
variable matches a predefined time response. Finally, relations to differential
geometric criteria for analysis of reachability and observability of states and
their potential for inclusion in ValEncIA-IVP are pointed out in Sect. 4.

2 Validated Sensitivity Analysis Using ValEncIA-IVP

In the following, ODEs ẋ(t) = f(x(t), p, t) are considered which describe both
open-loop and closed-loop systems. The vector p consists of all time-invariant
system and controller parameters. The differential sensitivities si(t) of the
solution x(t) with respect to the parameters p are defined by

ṡi(t) =
∂f(x(t), p, t)

∂x
· si(t) +

∂f(x(t), p, t)
∂pi

for all i = 1, . . . , np. (2)

The new state vectors si(t) in (2) are given by

si(t) :=
∂x(t)
∂pi

∈ R
nx with si(t0) =

∂x(t0, p)
∂pi

. (3)

If the initial states x(t0) ∈ [x(t0) ; x(t0)] are independent of p ∈ [p ; p
]
, the

equality si(t0) = 0 holds. In ValEncIA-IVP, the ODEs (2) do not need to
be derived symbolically, since all required partial derivatives w.r.t. x and p
are computed using AD provided by FADBAD++ (www.fadbad.com) [1, 2].

As for the case of solving an IVP for the ODEs ẋ(t) = f(x(t), p, t) using
ValEncIA-IVP, guaranteed state enclosures

[x(t)] := xapp(t) + [Rx(t)] (4)

are determined in a first stage. In (4), the approximate solution xapp(t) for
the IVP is determined numerically using a non-validated ODE solver. The
guaranteed error bounds [Rx(t)] are calculated iteratively, see e.g. [4]. In a
second stage, after convergence of the iteration for the interval bounds [x(t)],
suitable approximate solutions si,app(t) and additional enclosures

[si(t)] := si,app(t) + [Rs,i(t)] with si,app(t) ∈ R
nx and i = 1, . . . , np (5)

are determined for the sensitivities. For both exactly known and uncertain
values of p and x(t0), the intervals [si(t)] are determined such that the par-
tial derivatives of all reachable states w.r.t. all possible pi are included. For
time-varying parameters p(t), the sensitivities si(t) are computed w.r.t. time-
invariant variables εi ≈ 0 after substituting p(t) + ε with ε ∈ R

np for p(t).
The calculation of the differential sensitivities si(t) using a validated ODE

solver provides useful information for the design of controllers. Guaranteed
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bounds of sensitivities of the state variables can be obtained for uncertain
parameters p ∈ [p] using a single evaluation of the state equations even
for non-monotonic relations between the parameters p and the state vari-
ables x. Techniques for the reduction of overestimation are available which
combine consistency tests and exponential state enclosures to avoid growth
of the diameters of the state enclosures especially for asymptotically stable
systems [5].

3 Application of ValEncIA-IVP to Sets of DAEs

In previous work, ValEncIA-IVP has been extended to determine guar-
anteed state enclosures also for DAEs [5]. In the following, semi-explicit
DAEs

ẋ(t) = f (x(t), y(t), t) with f : D �→ R
nx (6)

0 = g (x(t), y(t), t) with g : D �→ R
ny , D ⊂ R

nx × R
xy × R

1 (7)

and the consistent initial conditions x (0) and y (0) are evaluated. These DAEs
may further depend upon uncertain parameters p. To simplify the notation in
the Sects. 3 and 4, the dependency upon p is not explicitly denoted. However,
all presented criteria are also applicable to p ∈ [p ; p

]
with p < p.

For validated DAE solvers, there are two important applications. First, as
for validated simulation of ODEs, the influence of uncertainties is analyzed by
calculating guaranteed state enclosures. Second, open-loop control strategies
are determined such that the system’s output signal matches a predefined
time-response. This task is often referred to as the inverse control problem.
E.g., for nonlinear exactly input-to-state linearizable sets of ODEs, this task
can be solved symbolically by expressing u (t) (as one component of y (t)
in (6),(7)) in terms of the state variables of the exactly linearized system.
However, numerical design approaches based on interval analysis are more
flexible since uncertainties and robustness requirements can be taken into
account directly. For that purpose, sets of ODEs and DAEs are extended
by time-dependent algebraic constraints to specify the desired output. The
corresponding solution provides both the desired control and an enclosure of
all reachable states.

3.1 Solving DAE Systems Using Interval Arithmetic

The approach for solving DAEs using ValEncIA-IVP is based on substitut-
ing state enclosures xi (t) ∈ [xi (t)] and yi (t) ∈ [yi (t)] defined by

[xi (t)] := xapp,i (tk) + (t− tk) · ẋapp,i (tk) + [Rx,i (tk)] + (t− tk) · [Ṙx,i (t)]
for i = 1, . . . , nx and t ∈ [tk ; tk+1] , t0 ≤ t ≤ T

[yi (t)] := yapp,i (tk) + (t− tk) · ẏapp,i (tk) + [Ry,i (t)] for i = 1, . . . , ny

(8)
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for the differential and algebraic state variables x (t) and y (t), resp. In (8),
tk and tk+1 are two subsequent points of time for which guaranteed state
enclosures are determined. For t = t0, the conditions [x (t0)] = xapp (t0) +
[Rx (t0)] and [y (t0)] = yapp (t0) + [Ry (t0)] have to be fulfilled.

However, the information provided by (6) and (7) is not always sufficient
to solve for [Ṙx (t)] and [Ry (t)] using validated methods such as the Krawczyk
iteration. E.g., the equations (10) are singular for small step sizes tk+1 → tk.
Then, additional hidden constraints are necessary to restrict the set of feasible
solutions and to verify the consistency of initial conditions x (t0) and y (t0).
For that purpose, those constraints gi (x) are considered, which do not depend
explicitly upon y. Differentiation w.r.t. time leads to

djgi (x)
dtj

=

(
∂Lj−1

f gi (x)
∂x

)T
· f (x, y) = Ljfgi (x) = 0 , L0

fgi (x) = gi (x) . (9)

The Lie derivatives Ljfgi (x) are computed by FADBAD++ providing AD
and automatic calculation of Taylor coefficients up to the smallest order j > 0
for which Ljfgi (x) depends upon at least one component of y (i.e., up to
the differentiation index of DAEs). The computation of Lie derivatives and
Lie brackets in the Sects. 3 and 4 is inspired by [6]. To our knowledge, the
author of [6] has not used this approach in an interval arithmetic framework to
account for uncertainties in ODEs and DAEs and to design robust controllers.

A suitable extension for solving sets of DAEs in ValEncIA-IVP is to
treat the intervals [Ry (t)] as constant interval parameters in a first stage
and to solve the non-algebraic equations for [Ṙx (t)]. In a second stage, the
consistency of the solution has to be proven with the help of the algebraic
equations and their time derivatives by showing that feasible solutions are
guaranteed to be contained in the interior of [Ry (t)].

3.2 Example

To demonstrate the use of the hidden constraints (9), the pendulum example
from [3] which is rewritten as a set of first order differential equations

ẋ1 = x3

ẋ2 = x4

ẋ3 = −x1y

ẋ4 = −x2y + 1
g (x) = x2

1 + x2
2 − 1 = 0

(10)

is considered. For this system, symbolic evaluation of (9) gives

dg (x)
dt

= 2 (x1ẋ1 + x2ẋ2) = 2 (x1x3 + x2x4) != 0 and

d2g (x)
dt2

= 2 (ẋ1x3 + x1ẋ3 + ẋ2x4 + x2ẋ4) = 2
(
x2

3 − x2
1y + x2

4 − x2
2y + x2

) != 0

for the first and second derivatives with respect to time.
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These expressions can be used to verify the results obtained by AD which
show that x (t0) =

[
1 0 0 1

]T and y (t0) = 1 represent consistent initial
values, while certainly no consistent initial conditions are included in x (t0) ∈[
[−0.5 ; 0.5] [−0.5 ; 0.5] [−0.5 ; 0.5] [−1.0 ; 1.0]

]T for y (t0) = 1.

4 Relations to Exact Feedback Linearization

In the remainder of this paper, nonlinear input-affine dynamical systems

ẋ (t) = f (x (t)) + g (x (t)) · u (t) with output equations y (t) = h (x (t))
(11)

are considered. Non-input-affine systems ẋ = f(x, u) can be transformed using
artificial control inputs ũ according to ẋ = f(x, u), u̇ = ũ, y = h(x). The goal
is to convert the input-affine dynamical system into a set of linear ODEs

ż (t) = A · z (t) + B · v (t) with y (t) = C · z (t) (12)

using a coordinate transformation z = τ (x) : D ⊂ R
nx �→ R

nx and a control
law u = r (x) + V (x) · v for exact input-to-state linearization. Let δi be
the relative degree of the output yi, i = 1, . . . ,m, i.e., the smallest order
of the derivative dδiy/dtδi which explicitly depends on u. Then, the state
transformation

z = τ(x) =
[
τ1
1 (x) . . . τδ11 (x) τ1

2 (x) . . .
]T

(13)

can be computed using the Lie derivatives τri

i = Lri−1
f hi(x), ri = 1, . . . , δi.

The feedback control law u = r(x) + V (x) · v is given by

r(x) = −D−1(x)ϕ(x) and V (x) = D−1(x) (14)

with
ϕ(x) =

[
Lδ1f h1(x) Lδ2f h2(x) . . . Lδm

f hm(x)
]T
x(t)=τ−1(z)

(15)

and the decoupling matrix

D(x) =

⎡
⎢⎢⎢⎢⎣

Lg1L
δ1−1
f h1(x) Lg2L

δ1−1
f h1(x) · · · LgmL

δ1−1
f h1(x)

Lg1L
δ2−1
f h2(x) Lg2L

δ2−1
f h2(x) · · · LgmL

δ2−1
f h2(x)

...
...

...
...

Lg1L
δm−1
f hm(x) Lg2L

δm−1
f hm(x) · · · LgmL

δm−1
f hm(x)

⎤
⎥⎥⎥⎥⎦
. (16)

Linear feedback controllers can be designed for (12) if rank{D (x)} = nx
and δ = δ1+. . .+δm = nx hold for the trajectories of all desired states x (t), all
p ∈ [p], and all x (t0) ∈ [x (t0)]. This is verified by evaluation of D(x) for inter-
val boxes containing all x (t). All derivatives in (15) and (16) are computed
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by FADBAD++ as in the preceding section. If the sensitivity analysis, see
Sect. 2, is successful and if D (x) is regular for all desired states, reachability
and observability have to be guaranteed to implement robust controllers. The
corresponding criteria for nonlinear systems are generalizations of Kalman’s
criteria for state controllability and observability of linear systems.

With the help of P0(x) = g(x), P1(x) = [f(x), g(x)], and Pk(x) = [f(x),
Pk−1(x)], k = 2, . . . , nx − 1, i.e., the Lie brackets of f(x) and g(x) which are
defined by [f(x), g(x)] = ∂g(x)

∂x f(x) − ∂f(x)
∂x g(x), the state-dependent reach-

ability matrix P (x) =
[
P0(x) P1(x) . . . Pnx−1(x)

]
can be determined. The

observability matrix is defined accordingly by

Q(x) =

[(
∂h(x)
∂x

)T (
∂Lfh(x)
∂x

)T
. . .

(
∂Lnx−1

f h(x)
∂x

)T]T
.

Using a validated LU-decomposition of interval matrices, the rank of D(x) ∈
R
nx×nx , P (x) ∈ R

nx×nxnu , and Q(x) ∈ R
nxny×nx is determined. Routines for

trajectory planning have to make sure that these matrices have full rank nx.

5 Outlook on Future Research

Further general purpose strategies will be developed to make use of the results
obtained by interval evaluation of the criteria in Sect. 4 to generate reference
signals for controllers such that reachability and observability are guaranteed.
Additional extensions will be the proof of asymptotic stability of closed-loop
controllers if the relative degree δ is smaller than nx. In this case, instabilities
of the internal dynamics have to be detected and avoided in a guaranteed
way. Finally, combinations with feedforward control strategies (e.g. control
sequences determined by the presented DAE approach) and other techniques
for the design of nonlinear controllers will be investigated.
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Summary. Epidemiological models can be used to study the impact of an infectious
disease within a population. These models often involve parameters that are not
known with certainty. A method is described for bounding the disease trajectories
that are possible for given bounds on uncertain parameters and/or initial states. The
method is based on the use of an interval Taylor series to represent dependence on
time and the use of Taylor models to represent dependence on uncertain quantities.
The use of this method in epidemiology is demonstrated using the SIRS model.

1 Introduction

Ordinary differential equations (ODEs) are the basis for many mathemati-
cal models in the sciences, including population models used in epidemiology.
Specifically, the Kermack-McKendrick model [5] was one of the first devel-
oped to simulate the spread of infectious diseases such as bubonic plague and
cholera. This model, and other compartmental models in epidemiology, par-
tition the population into classes and describe the rate of population change
in each class. Our focus here is on continuous epidemiological models that
are systems of ODEs and formulated as initial value problems (IVPs). Thus,
the model is integrated over time, starting with specified initial values for the
different population classes.

Of interest here is the verified (i.e., mathematically and computationally
guaranteed) solution of such systems of ODEs, especially systems that involve
uncertainty in initial conditions or model parameters. Accounting for uncer-
tainties is particularly important in the context of epidemiological models,
since in many, if not most, cases, initial populations and model parameters
(e.g., rate constants) may not be known exactly. We will assume that, for
such uncertain quantities, only upper and lower bounds are available. That
is, uncertain quantities will be represented by intervals. Since this implies
that there are infinitely many possible values for the uncertain quantities, the
underlying ODE system will have infinitely many possible solutions. To solve
such a system, we seek rigorous, verified bounds on the possible trajectories.
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For determining rigorous bounds on the solution of an ODE system, with
or without uncertainties, the use of interval methods (also called validated or
verified methods) is a natural approach, as computations with intervals, as
opposed to real numbers, can provide both mathematically and computation-
ally guaranteed enclosures. Excellent reviews of interval methods for IVPs are
available in the literature [9,11]. There are several available software packages
that treat interval-valued initial conditions, including AWA [7], VNODE [10],
and COSY VI [1]. These packages can also deal indirectly with interval-valued
parameters. An approach that deals directly with interval-valued parameters
(and initial states) has recently been described by Lin and Stadtherr [6],
who implemented this approach in a solver called VSPODE (Verifying Solver
for Parametric ODEs). Both COSY VI and VSPODE use Taylor models [8],
though in different ways, to deal with the uncertain quantities (parameters
and initial values). In this paper, we propose the use of Taylor-model methods,
specifically VSPODE, for propagating uncertainties through nonlinear ODE
models in population epidemiology.

2 Problem Statement

We consider epidemiological models that can be represented as systems of
ODEs, for which an IVP must be solved. In general mathematical form, this
problem may be written

y′(t) = f(y, θ), y(t0) = y0 ∈ [y0], θ ∈ [θ], (1)

where t ∈ [t0; tm] for some tm > t0. Here y is the n-dimensional vector of state
variables with initial value y0, and θ is a p-dimensional vector of time-invariant
parameters. The vectors [y0] and [θ] are intervals that enclose uncertainties in
the initial states and parameters, respectively. If the ODE system is nonau-
tonomous, or if the parameters have a known dependence on time, then such
a model can be put into the form of (1) by the introduction of one or more
new state variables. Our specific goal is to obtain a guaranteed enclosure of
the state variables y at all times of interest.

3 Background

3.1 Interval Analysis

The real interval vector [x] = [x;x] is an enclosure of the real vector x =
[x1, . . . , xn]T, n ≥ 1. The real vectors x = [x1, . . . , xn]T and x = [x1, . . . , xn]T

provide the lower and upper bounds, respectively, on the components of x.
That is, xi ≤ xi ≤ xi or xi ∈ [xi;xi]. Basic arithmetic operations are defined
on interval scalars according to [x] ◦ [y] = {x ◦ y | x ∈ [x], y ∈ [y]}, ◦ ∈
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{+,−,×,÷}, with division in the case of [y] containing zero allowed only in
extensions of interval arithmetic [4]. Addition and multiplication are com-
mutative and associative but only subdistributive. Interval versions of the
elementary functions can also be defined.

For a real function f(x), an interval extension f I([x]) encloses the range
of f(x) for x ∈ [x]. That is, f I([x]) ⊇ {f(x) | x ∈ [x]}. When f(x) can
be written as a series of arithmetic operations and elementary functions, an
interval extension can be obtained by substituting [x] into f(x) and evaluating
using interval arithmetic. In this case, f I([x]) = f([x]), which is referred to as
the natural interval extension. Computing the interval extension in this way
may result in overestimation of the function range due to the “dependency”
problem. While a variable may take on any value within its interval, it must
take on the same value each time it occurs in an expression. However, this
type of dependency is not recognized when the natural interval extension
is computed. Another source of overestimation that may arise in the use of
interval methods is the “wrapping” effect. This occurs when an interval is used
to enclose (wrap) a set of results that is not an interval. If this overestimation
is propagated from step to step in an integration procedure for ODEs it can
quickly lead to the loss of a meaningful enclosure. Both of these sources of
overestimation can be addressed through the use of Taylor models.

3.2 Taylor Models

Makino and Berz [8] have described a remainder differential algebra (RDA)
approach for bounding function ranges and control of the dependency problem
of interval arithmetic. In this method, a function is represented using a model
consisting of a Taylor polynomial and an interval remainder bound. Such a
model is called a Taylor model.

One way of forming a Taylor model of a function is by using the Taylor
theorem. Consider a real function f(x) that is (q+ 1) times partially differen-
tiable on [x] and let x0 ∈ [x]. The Taylor theorem states that for each x ∈ [x],
there exists a real ζ with 0 < ζ < 1 such that

f(x) = pf (x− x0) + rf (x − x0, ζ), (2)

where pf is a q-th order polynomial (truncated Taylor series) in (x − x0)
and rf is a remainder, which can be quantitatively bounded over 0 < ζ < 1
and x ∈ [x] using interval arithmetic or other methods to obtain an inter-
val remainder bound [rf ]. A q-th order Taylor model Tf = pf + [rf ] for
f(x) over [x] then consists of the polynomial pf and the interval remainder
bound [rf ] and is denoted by Tf = (pf , [rf ]). Note that f ∈ Tf for x ∈ [x] and
so Tf encloses the range of f over [x].

In practice, it is more useful to compute Taylor models of functions by per-
forming Taylor model operations. Arithmetic operations with Taylor models
can be done using RDA operations [8], which include addition, multiplication,
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reciprocal, and intrinsic functions. Using these, it is possible to start with sim-
ple functions such as the constant function f(x) = k, for which Tf = (k, [0; 0]),
and the identity function f(xi) = xi, for which Tf = (xi0 + (xi − xi0), [0; 0]),
and then to compute Taylor models for very complicated functions. Therefore,
it is possible to compute a Taylor model for any function representable in a
computer environment by simple operator overloading through RDA opera-
tions. It has been shown that, compared to other rigorous bounding methods,
the Taylor model often yields sharper bounds for modest to complicated
functional dependencies [8, 12].

4 Solution Procedure

In this section we briefly summarize the method used by VSPODE for solving
the problem described in Sect. 2. A fully detailed description of this method
has been given by Lin and Stadtherr [6].

At each integration step j in VSPODE, there are two phases in the compu-
tation. In the first phase, existence and uniqueness of the solution are proven
over a time step t ∈ [tj ; tj+1] using the Picard-Lindelöf operator and the
Banach fixed point theorem, and a rough enclosure [ỹj ] of the solution over this
time step is computed. This is done using a high-order interval Taylor series
(ITS) with respect to time, in a procedure similar to that used in VNODE [10].

In the second phase, a tighter enclosure [yj+1] ⊆ [ỹj ] of yj+1 = y(tj+1) is
computed. This is done by using an ITS approach to compute Tyj+1(y0, θ),
a Taylor model of yj+1 in terms of the initial values y0 and parameters θ,
and then bounding this Taylor model over y0 ∈ [y0] and θ ∈ [θ]. To control
the wrapping effect, the state enclosures are propagated using a new type
of Taylor model consisting of a polynomial and a parallelepiped (as opposed
to an interval) remainder bound. In performance comparisons [6], VSPODE
provided tighter enclosures on the state variables than VNODE, and required
significantly less computation time.

5 Example: SIRS Model

The basic SIRS model [2] is similar to the constant-population model first
studied by Kermack and McKendrick [5]. There are three population classes,
namely Susceptible, Infected and Recovered, with populations s, i and r,
respectively. Unlike the original Kermack–McKendrick model, however, immu-
nity is not permanent, so Recovered individuals can become Susceptible again.
Assuming a constant total population n = s+ i+ r, the model equations are

ds

dt
= −βsi+ γr = −βsi+ γ(n− s− i) (3)
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Fig. 1. VSPODE enclosure of Susceptible and Infected population trajectories of
simple SIRS model

di

dt
= βsi− νi. (4)

For this simple example, we have chosen a total population of n = 500,000
individuals (indv), with an initial Infected population of i0 = 2,000 indv and
initial Susceptible population of s0 = 498,000 indv. We also set the suscep-
tibility rate constant to be γ = 50 yr−1. Uncertain values are assumed for
the recovery rate constant, ν ∈ [0.125; 0.250] yr−1, and for the infection
probability, β ∈ [2; 2.5]× 10−5 yr−1indv−1.

VSPODE was applied to determine a verified enclosure of all possible
solutions to this model for t = 0 to t = 10 yr. The results, out to t = 2 yr, are
shown for s(t) and i(t) in Fig. 1. The curves shown in these figures are upper
and lower bounds, which are mathematically and computationally guaranteed,
on the possible trajectories of the Susceptible and Infected populations.

Since interval methods have a reputation of often producing only very
loose bounds, we checked the tightness of the VSPODE bounds by com-
parison to the results of a Monte Carlo simulation with 100,000 trials. For
each trial, real values of ν and β were selected at random from within
their specified interval bounds. Bounds obtained from Monte Carlo analy-
sis are not guaranteed and in general will yield an inner estimate of the
true bounds (the guaranteed VSPODE bounds represent an outer estimate).
Results for the Infected population are shown in Table 1, which provide
a direct numerical comparison of the bounds obtained from VSPODE and
from Monte Carlo analysis. The true bounds on the trajectories will be
between the VSPODE bounds (outer estimate) and the Monte Carlo bounds
(inner estimate). The closeness of these two sets of bounds demonstrates
that the method used in VSPODE is capable of determining verified bounds
that are in fact very tight. For the final time of t = 10 yr, the VSPODE
bounds converge to a solution of s ∈ [4,373; 12,501] and i ∈ [485,073; 494,389].
This numerical result can be compared to exact interval bounds obtained
from the analytical steady-state solution, ss = ν/β = [5,000; 12,500], and
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Table 1. Numerical comparison of VSPODE enclosure and Monte Carlo simulation
(MC) for Infected population i in simple SIRS model

t i (VSPODE) i (MC) i (MC) i (VSPODE)

0.2 13,612 13,728 22,751 22,761
0.4 80,385 82,448 180,048 180,898
0.6 282,559 286,360 430,625 434,961
0.8 440,344 441,604 487,722 490,957
1.0 477,942 478,411 493,240 494,764
1.2 483,989 484,123 493,713 494,565
1.4 484,904 484,945 493,753 494,436
1.6 485,045 485,062 493,756 494,400
1.8 485,068 485,079 493,757 494,391
2.0 485,072 485,080 493,757 494,389

is = (γn−ss)/(ν+γ) = [485,074; 493,766]. The method employed by VSPODE
accurately and tightly bounds the true solution. Several additional examples
of the use of this technique will be presented elsewhere [3].
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Summary. Interval arithmetic techniques such as ValEncIA-IVP allow one to
calculate guaranteed enclosures of all reachable states of dynamical systems under
consideration of bounded uncertainties of both initial conditions and system param-
eters. Considering the fact that in naive implementations of interval algorithms,
overestimation might lead to unnecessarily conservative results, suitable consistency
tests are essential for obtaining tightest possible enclosures. In this contribution
physically motivated constraints are derived to implement a consistency test for a
high-dimensional model of granulopoiesis in human blood cell dynamics.

1 Introduction

ValEncIA-IVP is an interval arithmetic solver which calculates guaranteed
enclosures of all reachable states for initial value problems (IVPs) for sets of
ordinary differential equations (ODEs). Through the use of interval arithmetic
it allows for uncertainty in the initial conditions and system parameters [6].
Using only naive implementations, the resulting state enclosure might be too
conservative. In order to obtain the tightest possible enclosures, overestima-
tion has to be detected and reduced. A tighter enclosure of the exact solution
is achieved by defining physically motivated constraints which allow to iden-
tify regions in the state space that are physically meaningless. The constraints
are implemented in a Branch and Bound consistency test [1, 2] that confines
the state enclosure with the aid of the constraints to physically meaningful
areas. The goal is to enclose the exact solution as precisely as possible.

The applicability of the Branch and Bound algorithm is demonstrated
on a dynamic system with uncertainties, a high-dimensional biomathemati-
cal model of blood cell growth according to Fliedner and Steinbach [4]. The
constraints are based on decoupling of cell compartments, such that internal
exchange of cells does not influence the input and output variables explicitly.
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2 Human Blood Cell Dynamics: Granulopoiesis

In this paper, a biomathematical model describing the growth of human blood
cells is analyzed. Since initial conditions and parameters of such mathemat-
ical models are subject to significant uncertainties, interval arithmetic can
be applied to determine the worst-case influence of selected parameters on
the state variables which correspond to the concentrations of cells in differ-
ent compartments of the model [3]. Fliedner and Steinbach came up with
a model consisting of a set of nonlinear coupled ODEs, see Fig. 1, express-
ing granulopoiesis in terms of cell and information flow [3]. Granulopoiesis
is categorized into seven compartments representing the proliferation stages
of granulocytes. All blood cells originate from the stem cell compartment (S)
from which the cell grows until it reaches the circulating blood, represented
by the function compartment (F). The stages in between are the compartment
bone marrow (CBM) and the compartment blood (CBL), then the precursor
(P), the mature (M), and the reserve cells (R). The state variables

x1 = S x33 = R

x2 = CBM1 , . . . , x11 = CBM10 x34 = F

x12 = CBL1 , . . . , x21 = CBL10 x35 = RegI (1)
x22 = P1 , . . . , x31 = P10 x36 = RegII

x32 = M

together with the abbreviations

u1 = γ1 exp(−ν1x1) + γ2 exp
(− ν2 · (x2 + . . .+ x11 + x22 + . . .+ x33)

)
+ γ3

u2 = γ4 − γ5 exp(−ν3x35) u6 = γ6 − γy exp(−ν4x35)
u3 = 2(1− ρ)u1x1 u7 = λpx31

u4 = β u8 = γ8 − γ9 exp(−ν5x36) (2)
u5 = λcx11 u9 = u8x33

u10 = γ10 exp
(− ν6 ·

(
g1x1 + g2 · (x2 + . . .+ x11) + g3 · (x22 + . . .+ x34)

))

u11 = γ11 exp(−ν7x34)

lead to a state-space model, which is described by the coupled nonlinear ODEs

ẋ1 = (2ρ− 1)u1x1

ẋ2 = u3 − λcx2 + u2x2 − u4x2 + Φx12

ẋi = λcxi−1 − λcxi + u2xi − u4xi + Φxi+10 for i = 3, . . . , 11
ẋi = u4xi−10 − Φxi for i = 12, . . . , 21
ẋ22 = u5 + u6x22 − λpx22 (3)
ẋi = λpxi−1 + u6xi − λpxi for i = 23, . . . , 31

ẋ32 = u7 − λMx32, ẋ33 = λMx32 − u8x33, ẋ34 = u9 − λFx34

ẋ35 = u10 − λRegIx35, ẋ36 = u11 − λRegIIx36.
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Fig. 1. The model of granulopoiesis according to Fliedner and Steinbach

In order to quantify the influence of parameter uncertainties on the state
variables xi as precisely as possible, suitable constraints are introduced which
allow to detect and to reduce overestimation that is caused by interval
simulations. In this application, the two compartments CBL and CBM are
coupled directly. Constraints HV are introduced that are independent of the
parameters φ and β, which express the exchange of cells between CBL and
CBM.

Physical constraints are calculated in two mathematically different ways
in the ODE solver ValEncIA-IVP, see Sect. 3. The first method is to
directly evaluate the constraints using a guaranteed state enclosure for x =
[x1, . . . , x36]T according to

HH,l := x36+l = xl+1 + xl+11 (4)

with l = 1, . . . , 10, by substituting the interval enclosures [xl+1], [xl+11] for
the state variables. This constraint is denoted by HH . The second way is to
calculate the constraint by integration of the corresponding time derivatives.
The ValEncIA-IVP constraint HV is the solution of the additional ODEs

ḢV,l :=

{
ẋ37 = u3 − λcx2 + u2x2 for l = 1
ẋ36+l = λcxl+1 − λcxl+2 + u2xl+2 for l = 2, . . . , 10.

(5)

The initial conditions HV,l(0) = HH,l(0) for l = 1, . . . , 10 are determined for
the given enclosure [x(0)] of the initial states x(0) using equation (4). Con-
sidering these two compartments, up to m = 10 constraints can be identified
for the blood cell system. Since the expressions (4) and (5) are two different
mathematical formulations for the same physical quantities, however evalu-
ated with different types of overestimation, they can be applied to detect and
to reduce overestimation by the procedure described in Sects. 3 and 4.

3 ValEncIA-IVP

ValEncIA-IVP is a validated solver for IVPs for ODEs [6]. It has the abil-
ity to work with interval variables which result from propagation of uncertain
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initial conditions and uncertain parameters. ValEncIA-IVP calculates guar-
anteed state enclosures

[xencl(t)] := xapp(t) + [R(t)] for t ∈ [t0; tf ] with x(t0) ∈ [x0 ; x0] (6)

via a two-stage approach. First, a suitable approximate solution xapp(t) is
computed using arbitrary non-validated ODE solvers, e.g. relying on explicit/
implicit Euler methods or Runge–Kutta methods. Then, validated error
bounds [R(t)] are determined using an iteration procedure which can be
derived using Banach’s fixed-point theorem. A detailed derivation and proof
of this two stage approach is found in [6].

Overestimation which is contained in the guaranteed state enclosure
[xencl(t)] is to be reduced by consistency tests. The quantification of the influ-
ence of uncertainties and parameter variations on the dynamics of the blood
cell system is better, the tighter the exact solution is enclosed.

4 Branch and Bound Algorithm

The constraints that have been identified for the blood cell model in equations
(4) and (5) are used to exclude subdomains of the state enclosure computed by
ValEncIA-IVP that are physically meaningless since they result from over-
estimation. A modified Branch and Bound algorithm has been implemented
in this work as a consistency test. The Branch and Bound algorithm identifies
intervals that are conform with the ValEncIA-IVP constraint HV , which
can be viewed as an optimization function. For each subdomain, the con-
straint HH is re-evaluated using subintervals of the state enclosures to test
if they are either within, partially outside, or completely outside the allowed
range which is given by the guaranteed enclosure [HV ]. These intervals are
distinguished as true, undecided, or false branches. The branches that are
undecided or true are written in a list L, so that at any time the list L is a
validated solution of the problem [2].

In the case of multiple constraints m > 1, a branch is discarded if at
least one constraint leads to a false interval. It is classified as an undecided
interval if the constraints corresponds to a mixture of true intervals and at
least one undecided interval, but no false ones.

An optimal time to apply the Branch and Bound algorithm has to be
defined to detect and reduce as much overestimation as possible. The area
expressed in terms of the constraints that is caused by overestimation is called
reduction area

RA := diam{[HH ]} − diam {[HH ] ∩ [HV ]} !≥ 0 . (7)

The goal is to calculate an optimal point of time t∗ ∈ [t0; tf ] such that the
reduction area RA is maximized. To simplify the optimization problem, the
first local maximum of RA is used for t∗.
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Several different subdivision strategies have been implemented in
ValEncIA-IVP, they can be found in detail in [5]. The subdivision occurs at
the midpoint for a single component xj∗ , j∗ ∈ {1, . . . , n}, of the state vector x,
while all other components are identical to the original box. In the following
application, the component j∗ is determined according to

j∗ = arg max
i=1,...,n

(
max

l=1,...,m

{
abs

{ ∂Hl

∂xi

∣∣∣∣
x=[x]

}
· diam

{
[xi]

}})
. (8)

5 Simulation Results for the Blood Cell Model

For the dynamic system of granulopoiesis, simulations of both the nominal and
uncertain system model are investigated. The nominal values for the initial
states and parameters can be found in [4]. In order to identify overestima-
tion efficiently, the constraints have to be chosen such that they are sensitive
toward the parameters that introduce overestimation. The following simula-
tion investigates uncertainties of ±10% for both parameters φ and β on which
the constraint HH depends through xl+1 and xl+11, l = 1, . . . , 10.

The optimal time t∗ is calculated to t∗ = 6.0 h at which the subdivision
strategy is evaluated for 1,000 subdivisions. In Fig. 2 the state enclosure of
x2(t) is shown for both nominal and uncertain parameters. Especially for
uncertain parameters, the consistency test significantly reduces overestimation
at t = t∗. This leads to tighter interval bounds if the simulation is continued
for t > t∗. In Fig. 3 it is depicted that the dependency of the number of
blood cells in the function compartment with respect to uncertainties in the
parameters φ and β is negligible in the time horizon under consideration.
Therefore, techniques to simplify the system model or to reduce its order can
be studied in future work to derive a mathematical description with identical
input/output behavior which can be evaluated with less computational effort.
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Fig. 2. Interval enclosure of x2(t), cell count of the CBM1 compartment
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6 Conclusion

In the preceding sections, newly implemented physically motivated tech-
niques for detection and reduction of overestimation in interval simulations
of dynamic systems with uncertainties were introduced, analyzed, and dis-
cussed. ValEncIA-IVP is extended with a Branch and Bound algorithm
which is based on the computationally efficient evaluation of physical con-
straints. Future work will deal with an automatic identification of suitable
physically motivated constraints from the dynamical system model. The goal
is to maximize the sensitivity of the constraints toward variables that intro-
duce overestimation. This step will help to improve routines which are capable
of accurately enclosing state variables of uncertain dynamical systems. This is
the prerequisite for a software environment in which parameters of mathemat-
ical system models are identified. A further application is the quantification
of approximation errors that arise in the reduction of the order of dynamical
systems in a guaranteed way.
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Summary. Accurate reconstruction of bone motion using marker tracking is still
an open issue in biomechanics. In this paper a novel approach for gait motion
reconstruction is presented that is based on the analysis of kinematical loops and
the reconstruction of functional skeleton features from segmented MRI data. The
method uses an alternative path for concatenating relative motion, starting at the
feet and closing at the hip joints. The discrepancies between predicted and geo-
metrically identified functional data, such as knee axis and hip joint centers, gives
rise to a cost function, which is the basis for model addaptation. Computations are
performed with the object-oriented library M � �

� �

BILE.

1 Motivation

The Vicon motion capture systems (www.vicon.com) is a widely used tool
for the determination of motions of body segments upon the motion of skin-
mounted markers. The “Plug-in-Gait marker model” is the marker setup used
in the current version of the Vicon analysis software Nexus. Figure 1(a) shows
the right leg with the markers used for this leg motion reconstruction model.
For this model, a pelvis-fixed frame Kp is defined using the hip markers RASI,
LASI, RPSI, LPSI, such that the z-axis is aligned with the line connecting the
markers RASI and LASI, and the centroid of the RPSI and LPSI markers lies
in the xz-plane. For the pelvis, the position of hip joint centers is estimated
using the Newington-Gage model [2] making use of the inter-ASI distance. The
motion of the other leg segments is reconstructed starting at the hip joints,
advancing down to the foot, sequentially computing new segment orientations
using joint centers already determined and markers fixed to the next body
part, according to the algorithm described in [8].

In the application of this procedure, accuracy problems can occur mani-
festing in wrong hip joint center positions and large (axial) rotations of tibia
and femur. These errors result from inaccurate marker placement, skin motion
at knee and ankle or soft tissue artifacts of the thigh marker (RTHI). These
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Fig. 1. Kinematic structure of the Plug-in-Gait model and the proposed model

errors could be reduced by careful marker placement and performing new
measurements with improved marker positions, but this is hardly possible in
routine measurements with patients.

Approaches for reducing these errors after the measurement are presented
in [1], and in [5], where the latter reduces model bone length variations by
identifying the unknown constant offsets between the joint centres delivered
by the motion capture system (prediction) and the anatomical joint centres.

In the approach presented in this paper the axes of the ankle joint and
the knee joint are computed starting at the foot markers, and proceeding
upward to the knee, using foot- and knee markers, which are subject to less
(or at lest more predictable) soft tissue motion. It is assumed that the ankle
joints Rankle and the knee joints Rknee can be represented by revolute joints.
Another assumption is that the line connecting the heel and the toe marker
(unit vector ufoot) is perpendicular to both the ankle joint axis and the knee
joint axis (Fig. 2a). An approximation of the hip joint center position is com-
puted at the end of the procedure in a way that the relative motion of one
femur point with respect to the pelvis is minimized. The segment motion is
determined with respect to an inertially fixed frame K0, usually coinciding
with the reference frame of the motion capture system. For describing vectors
using cartesian coordinate frames, the notation k

i bj is used, where k denotes
the frame of decomposition, i denotes the frame with respect to which the
motion is measured, and j denotes the target frame. For motion measured
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with respect to K0, the index i = 0 is omitted. Likewise, for decompositions
in the target frame k = j, the index k is omitted. Hence b1 is equivalent 1

0b1.

2 Simulation Environment

The core component of the integrated simulation environment MobileBody c©

[7] is the mechanical model of the musculoskeletal system. Its implementation
using object oriented programming makes it easy to combine it with image
processing code or visualization libraries. Furthermore, by using the multibody
simulation library M � �

� �

BILE [4], model components (e.g. joints, muscles) can
be easily replaced with more complex and realistic implementations.

3 Segment Motion Estimation Procedure

Having measured the anthropometric distances dknee and dankle between knee
joint centre and ankle joint centre, and the corresponding marker (see Fig. 2b),
the following simple procedure is used to determine estimates of tibia- and
femur-fixed coordinate frames. By computing the distance between the ankle-
and knee marker, the angle α between the connecting line of the tibia markers
and the tibia joint centers is computed using the formula

α = arcsin
dknee − dankle

d
. (1)

With the unit direction vector utibma of the line connecting the tibia markers,
the axis direction of knee- and ankle joint becomes

0u = cosα
0ufoot × 0utibma
‖ 0ufoot × 0utibma ‖

+ sinα 0utibma . (2)

RKNE

RHEE

RANK

RTOE

u

ufoot

utibma

knee joint center

ankle joint centerankle marker

knee marker

utibma

u

d

dankle

dknee

�

α

a) Direction of foot and tibia markers b) Estimation of tibia joint centers

Fig. 2. Reconstruction of the knee joint axis
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Next, with 0u and the position 0rknema of the knee marker, the location of
the knee joint center is calculated as

0rknee = 0rknema − dknee
0u (3)

and a coordinate system can be aligned with the femur by setting

0e3,f = 0u

0e1,f =
(0rtibma − 0rknee)× 0u

‖ (0rtibma − 0rknee)× 0u ‖
0e2,f = 0u × 0e1,f .

This leads to the rotation matrix

0Rf =
[

0e1,f ,
0e2,f ,

0e3,f

]
(4)

corresponding to the femur frame Kf displayed in Fig. 3. For estimation of the
hip joint centre, let the position of the femur head (≡ hip joint centre) be
given relatively to the femur frame Kf by the vector

f
frhj =

⎡
⎣
x1

x2

0

⎤
⎦ (5)

which lies in the thigh-shank plane Fig. 3. Relatively to the pelvis frame, the
coordinates of the femur-fixed point H representing the hip joint centre are

p
prhj,i = Ri

f
prf,i + R12,i x (6)

e2,p

e2,f

e1,f

rhj,C

C

κp

p

κf

H

f

e3,p

e3,p

e1,p

thigh–shank planethigh marker

knee marker

rhj

rf

Fig. 3. Estimation of the hip joint centre location in the thigh-shank plane
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where Ri = pRf,i is the rotation matrix between the estimated pelvis frame
Kp and the estimated femur frame Kf at time ti. Likewise, R12,i is the matrix
of the first two columns of Ri and x = [x1 , x2 ]T. The position of the femur
frame relative to the pelvis frame at time ti is given by f

prf,i. According to the
“centre transformation technique” [3], the coordinates x1 and x2 are chosen
such that the squared norm of errors

f(x) =
m∑
i=1

(pprhj,i − p
prhj,C)2 (7)

between the points Hi of this trajectory and their centroid C (visualized as
“cup” in Fig. 3)

prhj,C =
1
m

m∑
i=1

(Rifprf,i + R12,i x) = a+ Bx (8)

is minimized over all m measured poses summing over i = 1, . . . ,m. By
summing up and factoring out x one obtains

prhj,C = a+ Bx (9)

with a and B being constant. The first order conditions for the optimum
become

∂ f
∂ x

(x) =
m∑
i=1

(R12,i−B)T
(
(Rifprf,i−a)+(R12,i−B)x

)
= a1 +B1 x = 0 (10)

with shortcuts a1 and B1, leading to the optimal point

x� = −B−1
1 a1. (11)

When choosing the position of the hip joint relatively to the femur frame as

f
fr
�
hj =

⎡
⎣
x�1
x�2
0

⎤
⎦, (12)

the oscillation of the hip joint center with respect to the pelvis frame is min-
imized. This vector and the positions of the hip joint relatively to the pelvis
frame are used to define the segment lengths of an open-chain kinematic model
of the leg such as that described in [5]. The joint coordinates of the hip joint
are obtained from the relative rotation matrix pRf,i. Analogously, the seg-
ment lengths of the shank and the joint coordinates in knee and ankle are
computed.
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4 Discussion

The described model displays a simplified kinematic model of the knee- and
ankle joint, neglecting any axial rotation in these joints. This restricts its
application to gait motion with low knee flexion angles, since larger exter-
nal/internal rotation (up to 37◦) in the knee are possible for large flexion
angles according to a survey in [6]. In standard gait analysis, the model avoids
huge, unrealistic internal/external rotations of the tibia and the femur, with-
out requiring more markers than when using the “Plug-In-Gait model”. On
the other hand, the actual rotations in knee and ankle are not reflected in
this model, which may lead to an inaccurate identification of the hip joint
center if the distance between knee marker and knee joint center is not known
precisely or in the case of valgus/varus deformities. If the distance between
the hip joints is known from X-Ray or MRI images, this information can
be exploited to improve the estimation of the hip joint centre in transversal
direction, which is the focus of ongoing work.

Measurements are currently being produced and will be published in
future.
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5. Kecskeméthy, A., Stolz, M., Strobach, D., Saraph, V., Steinwender, G., Zwick,
B.: Improvements in measure-based simulation of the human lower extremity. In:
Proceedings of the IASTED Conference on Biomechanics, pp. 155–160. Rhodes,
Greece, June 30–July 2 2003

6. Piazza, S.J., Cavanagh, P.R.: Measurement of the screw-home motion of the knee
is sensitive to errors in axis alignment. J. Biomech. 33(8), 1029–1034 (2000)
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Summary. Software for modelling and simulation (MSS) of mechanical systems
helps to reduce production costs for industry. Usually, such software relies on
(possibly erroneous) finite precision arithmetic and does not take into account uncer-
tainty in the input data. The program SmartMOBILE enhances the existing MSS
MOBILE with verified techniques to provide a guarantee that the obtained results
are correct and measure the influence of data uncertainty. In this paper, particular
attention is paid to the current strivings toward verified modelling and simulation
of closed loop systems.

1 Introduction

Three major phases during modelling and simulation process are analysis,
implementation (verification) and simulation (validation) [5]. The first step is
to analyze the real world problem and to design a formal model of the system
under consideration. The second is to implement this model. Usual tasks at
this stage include code verification (finding logical and programming errors in
the code) and numerical verification (minimizing numerical errors in results).
The final step is validation during which model fidelity is established.

Modern numerical modelling and simulation software (MSS) such as
MOBILE [2] automatizes parts of this cycle and in this way accelerates the
development process for a product reducing production costs. However, some
of the tasks are not covered. For example, MSS usually relies on floating point
arithmetic, which either shifts the task of result verification into the validation
stage of the cycle or leaves that question unanswered.

Development of methods for numerical result verification is the research
area of the whole branch of numerics also known as “interval”, “validated”
or “verified” arithmetic. Such methods not only provide a guarantee that the
obtained results are correct but also propagate initial data uncertainty almost
as their by-product. A recently developed tool SmartMOBILE [1] interfaces
libraries for result verification with MOBILE to be able to cover more tasks
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from the modelling and simulation cycle. At the stage of analysis, it offers tech-
niques helping to take into account model errors and to perform uncertainty
analysis in general. At the implementation stage, it provides result verifica-
tion for kinematics and dynamics of various mechanical systems. Finally, the
use of algorithmic differentiation and newly developed methods for sensitiv-
ity analysis identifies critical parameters and in this way makes the stage of
validation easier.

In this paper, we focus on the uses of SmartMOBILE for accurate (and,
in some cases, verified) simulation of kinematics and dynamics of closed loop
systems. We begin by describing main features of SmartMOBILE which
include free choice of underlying arithmetic. Further, we demonstrate options
for result verification for models of closed loop systems. Such simulations are
especially difficult since they have differential-algebraic equations (DAEs) as
their basis. Finally, we recapitulate the main results.

2 Main Features of SMARTMOBILE

SmartMOBILE is an object-oriented software for verification of mechanical
systems based on MOBILE which employs floating point numerics. Models
in both tools are executable C++ programs built of the supplied classes for
transmission elements such as rigid links, for scalar or spatial objects such as
reference frames and for solvers such as those for differential equations.

SmartMOBILE is one of the first integrated environments providing
result verification for kinematical and dynamic simulations of mechanical sys-
tems. The advantage of this environment is its flexibility due to its template
structure: the user can choose the kind of (non)verified arithmetics according
to his task. Intervals and Taylor model arithmetics are currently available in
SmartMOBILE. However, advanced users are not limited to them and are
free to plug in their own implementations.

Although switching from MOBILE to SmartMOBILE is easy, users are
assisted by converters in this process. However, automatically generated ele-
ments might require a heuristic improvement by the user, if they contain
code fragments transformation of which cannot be algorithmized, for example,
non-verified equation solvers.

For most kinematical problems, it is sufficient to use the supplied basic
data types (e.g. intervals) as parameters to all the template classes for a par-
ticular model. The main idea for dynamic and special kinematical tasks such
as finding of system equilibria is to use pairs basic data type/corresponding
solver. Here, the basic data type should be constructed in such as way as to
allow us to apply the given solver. That is, it should automatically deliver,
for example, all the derivatives the solver requires.
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3 Options for Simulation of Closed Loop Systems
in SMARTMOBILE

There are several options in MOBILE to simulate kinematics and dynamics
of closed loop systems. We single out an aspect of this complicated process
which is important for the following considerations.

Mathematical models behind this type of problems are systems of DAEs.
Since the index of such systems is usually equal to three, common IVP solvers
for DAEs such as Dassl cannot handle them as they are. This fact is one of
the reasons why the original system of DAEs is automatically transformed into
an equivalent system of ODEs in MOBILE. Two transmission elements are
developed for this purpose. MoExplicitConstraintSolver handles systems
with one or two constraints of a certain form where explicit solution of the
corresponding algebraic system is possible. MoImplicitConstraintSolver
uses Newton’s method to obtain solutions to arbitrary (nonlinear) systems
of algebraic equations.

As reported in [1], it is possible to verify the kinematics and dynamics of
closed loop systems in SmartMOBILE by using TMoExplicitConstraint-
Solver. As for the second element, there exists a version of it called MoIImpli-
citConstraintSolver using Newton-Gauss-Seidel or Krawczyk methods to
verify kinematics of systems modelled with it. The implementation of the
latter element for dynamics seems impracticable since all iterations of a
verified zero-finding method would have to be taken into the algorithmic dif-
ferentiation graph for computing derivatives, which still cannot be handled
satisfactorily by the software.

An alternative is to solve the DAE system directly. Unfortunately, verified
solution of IVPs to DAEs is a very new research area. One tool available to us
is an extension of ValEncIA-IVP which is still under development. However,
the first results [4] are promising. Since this solver requires an approximation
of the DAE solution in its first stage, an accurate solver for this purpose should
be integrated into SmartMOBILE.

4 Equations of Motion for a Spatial Four Bar
Mechanism with Result Verification

Four bar mechanisms are simplest closed loop systems relevant for real life
applications. In this section, we consider the one shown in Fig. 1, left side.
This closed system consists of two revolute joints R1 and R2, a double-revolute
joint modelled by two joints R3 and R4, a spherical joint S1, and four rigid
links base, link 1, link 2, and coupler between them. To model this task,
the loop is dissected at the body coupler (cf. Fig. 1, right side). The closure
condition core is the equality of the corresponding displacements and rota-
tions for the reference frames K7 and K10. Usually, core is an instance of the
measurement object MoChord3DPose.



580 E. Auer

coupler

coupler_a
coupler_b

core

base

base

z

x

link_1 link_1

link_2
link_2

S1

R2

R1

R2

S1
R3,R4

R3,R4

K10
K7

Fig. 1. The iconic model of a spatial four bar mechanism

For this type of closure conditions, we employ TMoIImplicitConstraint-
Solver in SmartMOBILE. The task is to find the mass matrix and the
force for this system with result verification. However, this example shows
more than just the possibility of verification. Using it, we can compare the
method of obtaining derivatives of a function by algorithmic differentiation to
the one based on physical considerations.

If we compute the Jacobian of the goal function in the interval version by
using the force-based method supplied by MOBILE, the enclosure is equal
to
⎛
⎜⎜⎜⎜⎜⎜⎝

[±10−2] [−1.1;−0.9] [±10−4] [±10−3] −[1.1] [0; 0]
[−0.8; 1.8] [±10−3] [−0.7;−0.2] [−1.3;−0.5] [±10−3] [0; 0]
[0.5; 3.1] [0; 0] [0.9; 1.1] [0.2; 1.0] [±10−3] [0; 0]
[±10−3] [0.2; 0.6] [±10−3] [±10−3] [0.0; 1.1] [0.3; 1.4]
[±10−3] [0.8; 1.0] [±10−3] [±10−3] [−1.4;−0.3] [0.0; 1.1]
[0.3; 1.4] [±10−3] [−1.4;−0.3] [0.3; 1.4] [±10−3] [±10−3]

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Here, the numbers are rounded up to the first digit after the decimal point.
For the same parameter values, the enclosure of the Jacobian obtained with
algorithmic differentiation is much tighter:

⎛
⎜⎜⎜⎜⎜⎜⎝

[0.0] −[1.0] [0.0] [0.0] −[1.1] [0.0]
[1.5] [0.0] −[0.5] −[0.5] [0.0] [0.0]
[1.0] [0.0] [1.0] [1.0] [0.0] [0.0]
[0.0] [0.5] [0.0] [0.0] [0.0] [1.0]
[0.0] [0.9] [0.0] [0.0] −[1.0] [0.0]
[1.0] [0.0] −[1.0] [1.0] [0.0] [0.0]

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The notation [number] means that an enclosure of a number with a diameter
of at most 10−12 is obtained. Since this Jacobian is important not only for
the zero-finding method but also for correct computation of velocities and
accelerations inside the implicit solver, it is crucial to obtain its tight enclosure.

It was possible to enclose the mass matrix and the force in the spatial four
bar mechanism, used later to obtain equations of motion, in tight intervals
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[1.03043; 1.03043] and [−0.05104;−0.05104], respectively (rounded, the diam-
eter is at most 10−12). However, these are results for the case in which all
parameters are chosen to be point intervals. In general, this model is prone
to overestimation. This is confirmed by the relatively narrow search intervals
which both Krawczyk and Newton-Gauss-Seidel methods require to be able
to compute zeros.

5 An Accurate Direct DAE Solving Method
in SMARTMOBILE

In this Section, we show how the DAE system underlying closed loop models
can be solved directly in SmartMOBILE. For this purpose, the integra-
tor TMoDAETSIntegrator has been implemented recently. It is based on the
solver DAETS which computes accurate floating point solutions to IVPs for
DAEs [3]. One advantage of DAETS is that it solves the problem as it is without
the user having to transform it into an ODE problem or eliminating higher
order derivatives, regardless of the problem’s index.

A new element TMoMechanicalSystemDAE (Martin Tändl) was developed
to provide equations of motion in the form g(q, q′, t) = 0 required by DAETS.
Note that the mass matrix does not have to be inverted for this representation.

The four bar mechanism we consider as an example is simpler than
that from Sect. 4. Now the system consists of two simple pendulums mod-
elled with two revolute joints and two rigid links with masses. They are
connected by the third rigid link. The instance of the measurement class
TMoChordPointPointQuadratic helps to formulate closure conditions for the
loop.

Note that the DAE-based system cannot be solved in MOBILE because
it uses Dassl for DAE solving. Besides, the solver DAETS can be employed
only in SmartMOBILE because this MSS version, as opposed to the usual
one, supplies the necessary derivatives.

We simulated the above system in SmartMOBILE with the help of the
usual ODE-based floating point method using the explicit solver and the Adams
integrator, the accurate DAE-based method with TMoDAETSIntegrator, and
the verified ODE-based method using the explicit solver and TMoValencia-
Integrator. The solutions for the consistent initial conditions supplied by
TMoDEATSIntegrator are shown in Fig. 2. The trajectories coincide as
expected. Both of the non-verified solutions lie inside the obtained verified
bounds. For this simple example, it is not possible to decide if the DAE-based
method is more accurate than the ODE-based one, although the solver DAETS
is reported to be so in more complicated cases [3].
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Fig. 2. The first angle of a four bar mechanism

6 Conclusions

In this paper, we presented the tool SmartMOBILE for guaranteed mod-
elling and simulation of kinematics and dynamic of mechanical systems. With
its help, the behavior of different classes of systems can be obtained with
the guarantee of correctness, the option which is not given by tools based on
floating point arithmetics. SmartMOBILE is flexible and allows the user to
choose the kind of underlying arithmetics according to the task at hand.

A recent development concerned modelling and simulation of closed loop
systems. New types of them were verified and a different kind of modelling
was made possible.

Our short term task is the verification of the DAE-based approach to
modelling and simulation of closed loop systems in SmartMOBILE using
Valencia-IVP for DAEs as the basis. Almost all auxiliary components are
already prepared for this purpose. First, TMoMechanicalSystemDAE gener-
ates the equations of motion in the required form. Next, a solver to compute
the approximate solution is given by TMoDAETSIntegrator. Further, a veri-
fied zero-finding routine as required by ValEncIA-IVP for DAEs is already
present in SmartMOBILE. Finally, a program for testing and computing
consistent initial values is at the final stage of implementation. With these
preparations, only the main DAE solving algorithm will have to be transferred.
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Summary. This paper is devoted to path planning when the safety of the system
considered has to be guaranteed in the presence of bounded uncertainty affecting its
model. A new path planner addresses this problem by combining Rapidly-exploring
Random Trees (RRT) and a representation of uncertain states by vectors of intervals.
The resulting path planner is used for nonholonomic path planning in robotics.

1 Introduction

Robotics is a challenging and important field of application for validated
numerical methods. Problems are often solved in this context by using local
and random search algorithms, with no guarantee as to their results. A definite
advantage of interval analysis is that it provides tools to obtain approximate
but guaranteed results that take into account the uncertainty in the data and
errors resulting from the finite nature of the representation of real numbers
on a computer, see, e.g., [6].

This paper focuses on reliably safe path planning [9] using interval analysis.
In robotics, our aim is to find a path for driving a vehicle (or, more generally,
a robot) from an initial (potentially uncertain) state or configuration to a
final desired configuration, despite the presence of uncertainty related to the
model of the vehicle, to badly charted obstacles in the environment, etc. The
control input and the corresponding paths (succession of states) that achieve
this goal while eliminating the risk of collision are said to be safe.

Path planners involving Rapidly-exploring Random Trees (RRT) [10, 12]
are widely used, since they allow an efficient exploration of configuration space.
To the best of our knowledge, however, they do not provide any robustness
to uncertainty. When taken into account, configuration uncertainty is usually
described probabilistically, e.g., by a multivariate Gaussian probability den-
sity function [3, 8, 16]. The main drawback of path planners based on such a
description is that the reliability of the path obtained may be guaranteed at
best up to a given confidence level.
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Path planning may be facilitated by the presence of relocalization zones, in
which the configurations become much more accurately known [2, 4, 13]. The
price to be paid is the preparation of these relocalization zones, which are not
a prerequisite here.

The problem is formalized in Sect. 2. A reliably safe path planner, Box-
RRT, is then presented in Sect. 3. Starting from some uncertain initial confi-
guration (represented by a vector of intervals or box [6,14]), Box-RRT aims at
driving the vehicle to a final configuration set. Provided that the assumptions
on the error bounds are not violated, if a path is found using this new path
planner, it will be guaranteed to be safe. Section 4 applies Box-RRT to path
planning for non-holonomic vehicles. Some conclusions are drawn in Sect. 5.

2 Reliably Safe Path Planning

Consider a vehicle described by the state equation

ds(t)
dt

= f(s(t), u(t), w(t)), (1)

where s(t) ∈ S ⊂ R
n is the configuration of the vehicle, u belongs to

UΔt[u] , the set of piecewise-constant input functions over intervals of the form
[kΔt, (k + 1)Δt[, and bounded in [u], with Δt > 0, and w belongs to W[w],
the set of random perturbation functions with values in [w].

The configuration space S is partitioned into Sfree, to which the configu-
ration is allowed to belong, and Sobs = S \ Sfree, to which it is not. At time
t = 0, s(0) ∈ [sinit] ⊂ Sfree. The vehicle has to be driven to a given box of
goal configurations [sgoal] ⊂ Sfree. Safe path planning amounts to determining
K > 0 and a control input u ∈ UΔt[u] such that ∀s ∈ [sinit] and ∀w ∈ W[w],
one has s (KΔt) ∈ [sgoal] and ∀t ∈ [0,KΔt], s (t) ∈ Sfree, where s(t) is the
solution of (1).

The main difficulty is that for a given u ∈ UΔt[u] , the values of s(t) consistent
with all s ∈ [sinit], w ∈ W[w], and (1) belong to a set St, the shape of which
may be quite complex.

3 Box-RRT

To cope with an uncertain initial configuration and bounded state pertuba-
tions, the classical RRT path planner [10, 12] has to be adapted to deal with
sets. Dealing with general sets of R

n would be exceedingly difficult, even for
the simplest uncertain state equations, so here, boxes will be used to wrap
uncertain configurations sets St at each instant of time t. Boxes are quite sim-
ple sets, which may provide a very coarse description of complex-shaped sets.
Using more accurate wrappers (ellipsoids, zonotopes, or union of interval vec-
tors) may increase the number of problems to which solutions may be found,
see [15].
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Algorithm 5 Box-RRT([sinit] ⊂ Sfree, [sgoal] ⊂ Sfree, Δt ∈ R
+, K ∈ N)

1: G.init([sinit])
2: i← 0
3: repeat
4: [srand]← random box(Sfree)
5: [snew]← Box-RRT extend(G, [srand], Δt)
6: until i++> K or ([snew] �= ∅ and [snew] ⊂ [sgoal])
7: return G

Algorithm 6 Box-RRT extend(G, [srand], Δt)
1: [snear]← nearest neighbor(G, [srand])
2: u← select input([srand], [snear])
3: [snew]← prediction([snear], u, Δt)
4: if collision free path([snear],[snew],u,Δt) then
5: G.add guaranteed node([snew])
6: G.add guaranteed edge([snear], [snew], u)
7: return [snew]
8: end if
9: return ∅

The principle of Box-RRT is given in Algorithms 5 and 6. Box-RRT aims
at generating iteratively a graph G consisting of nodes associated with boxes
in configuration space. At each iteration, a box [srand] ⊂ Sfree is chosen at
random. The node [snear] of G that is the closest to [srand] according to some
metric d, here the Hausdorff distance [1], is then selected by the function
nearest_neighbor. Assume that [snear] is associated with time kΔt. A con-
trol input uk ∈ [u] is chosen (for instance at random, in a finite set of options).
A box [snew] = [sk+1] containing all possible configurations at time (k+ 1)Δt
if the configuration was in [snear] at time kΔt for a constant input uk over
[kΔt, (k + 1)Δt] and a perturbation w that can take any value in W[w] is
computed by the set prediction function involving guaranteed numerical
integration for uncertain systems, see, e.g., [7] and the references therein.
Finally, the collision test that guarantees the reliability of every path between
[snear] and [snew] implemented in collision_free_path requires all possible
state trajectories between [snear] and [snew] to be wrapped in a box. This is
again performed using guaranteed numerical integration. Once all configura-
tions along trajectories between left[snear] and [snew] have been proved to lie
in Sfree, [snew] is deemed safe, added to G, and connected to [snear].

A new random box is chosen to start the next iteration of the algorithm.
A path is found when [snew] ⊂ [sgoal]. The algorithm also stops when the
number of nodes generated reaches its limit K.
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4 Application in Robotics

The proposed Box-RRT algorithm is now applied to path planning for non-
holonomic vehicles in a structured 2D environment, where obstacles are
described by polygons.

4.1 Model of the Vehicle and Specific Difficulties

A model based on the classical simple car model [11] evolving in a 2D environ-
ment is considered. This model incorporates nonholonomic constraints and is
given by ⎧

⎪⎨
⎪⎩

ẋ = v(1 + wv) cos θ
ẏ = v(1 + wv) sin θ
θ̇ = v(1+wv)

L tan(δ(1 + wδ))
, (2)

where the state vector s = (x, y, θ)T specifies the position (x, y) and orien-
tation θ of a frame V attached to the vehicle with respect to a world frame
W attached to the environment. The control input vector is u = (v, δ)T,
with v the longitudinal speed and δ ∈ [−δmax, δmax] the steering angle. Here,
u is assumed to belong to a set U with finite cardinality. L is the distance
between the front and rear wheels. The noise components wv ∈ [−verr, verr]
and wδ ∈ [−δerr, δerr] account for the slipping of the vehicle and for steering
imprecision.

One of the difficulties of path planning in this context is the characteri-
zation of Sfree, which may be quite complex. In [5], Sfree is characterized first
or constructed iteratively. Here, Sfree is not determined explicitly: only the
constraints of the environment are used to determine whether a set of paths
is safe. For more details, see [15].

4.2 Results

Figures 1a–d present some results obtained with the Box-RRT algorithm;
walls and obstacles to be avoided are represented by polygons. In Figs. 1a,
b, no model error is considered (verr = 0 and δerr = 0). The width of each
component of [sinit] is 20 cm for the x and y components and 0.1 rad for θ.
A box [sgoal], with size 10 m × 10 m ×2π rad, has to be reached in Fig. 1a. Its
size is 15 m × 15 m ×2π rad in Fig. 1b. In both cases, a safe path is found,
which is robust to uncertainty in the initial configuration.

If the size of [sgoal] is reduced, a path may no longer be found (see Fig. 1c),
even if it may still exist. Since only prediction is used, and considering the
form of the dynamical equation describing the motion of simple car, the size
of the box describing the uncertain state always grows along the path. Thus,
as soon as the size of [s] at the end of a path exceeds that of [sgoal], there is
no chance to reach [sgoal] from this box.
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[sinit]

[sgoal]

(a) Few obstacles and large goal
area

[sinit]

[sgoal]

(b) Labyrinthic environment

[sinit]

[sgoal]

(c) Box-RRT fails to find a path
(the goal area is too small)

[sinit]

[sgoal]

(d) Box-RRT fails to find a path
(skidding errors are too large)

Fig. 1. Some path-planning problems considered with Box-RRT

The same problem appears when the skidding error is too large. This
problem is illustrated in Fig. 1d, where the size of [sinit] is 10 cm× 10 cm
× [1, 1.05] rad, the size of [sgoal] is 10 m× 10 m× 2π rad, verr = 10−2 and δerr =
10−3. Uncertainty then becomes exceedingly large and the vehicle no longer
passes through the corridor. Thus, this problem cannot be solved using the
present version of Box-RRT, unless some exteroceptive measurements are used
at some points along the path to reduce uncertainty and the planning is
restarted from time to time.

5 Conclusions

This paper has presented Box-RRT, an algorithm based on RRT able to per-
form robust and reliable path planning tasks for uncertain models of systems.
Uncertain quantities are assumed to belong to sets. Albeit rather preliminary,
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Box-RRT shows the potential of interval analysis to provide paths and prove
that they are safe. Current work is on extending this approach to reachability
analysis, see [15].
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Minisymposium Models and Methods
for Viscous Jets, Break-up and Drop Forming

Nicole Marheineke
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D-67653 Kaiserslautern, Germany, nicole@mathematik.uni-kl.de

The understanding of the dynamics of viscous jets, break-up behaviour and
drop formation is of interest in many industrial applications, including the
drawing, tapering and spinning of polymer and glass fibres ([1, 4–7] and
references within), sewing [2, 8, 9], pellets manufacturing [3, 10, 11], fuelling
processes etc. In spinning or prilling processes for example, fluids of various
properties are ejected from an orifice to form thin jets/fibres that might be
subjected to surface tension, gravity, rotation and aerodynamic forces. These
grow and break up into drops/filaments due to the growth of surface tension
driven instabilities.

For industry the quality of the resulting goods (e.g. yarn, non-woven mate-
rial, glass wool, pellets) counts. Manufacturing materials with desired specific
properties requires the control of the production processes by choosing appro-
priate design parameters in the process. This task proposes a wide range
of interesting challenges to mathematicians, natural scientists and engineers.
The optimal control of the free boundary flows is based on the modelling
and simulation of the motion and shape of the viscous jets due to the acting
forces. Moreover, instabilities causing shape changes and rupture as well as
transitions to other material behaviour (e.g. crystallisation) must be analysed.

Up to now, various aspects have been considered in numerous theo-
retical, numerical and experimental studies. In the minisymposium, Nicole
Marheineke, from TU Kaiserslautern, Jamal Uddin, from University Birming-
ham, and Neil M. Ribe, from Institut de Physique du Globe, Paris, discuss
string and rod models for viscous jets, their stability, applicability and validity
in comparison to experimental data. Asymptotic one-dimensional models are
derived via slender body theory, starting from cross-sectional averaging of the
three-dimensional balance laws under systematic regular expansions and/or
certain assumptions on geometry, velocity and stress profiles. String and rod
models differ from each other in that a string model describes mass and linear
momentum while a rod model consists additionally of a fully coupled equation
for the angular momentum. The coupling of twist with the motion of the jet
axis is very important for the coiling of a fibre falling on a rigid substrate,

A.D. Fitt et al. (eds.), Progress in Industrial Mathematics at ECMI 2008,
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but not so relevant for the spinning of a fibre whose end is free. Finally, the
asymptotic techniques can be also applied to formulate two-dimensional mod-
els for thin viscous films and sheets whose consideration by Thomas Goetz,
from TU Kaiserslautern, follows similar optimisation aspects.
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Summary. This work deals with the asymptotic derivation and numerical investi-
gation of a model for the dynamics of curved inertial viscous fibres under surface
tension, as they occur in rotational spinning processes. The resulting string model
accounts for the inner viscous transport and places no restriction on either motion or
shape of the fibre centre-line. The boundary conditions for the free end of the fibre
yield a description for its temporal evolution, depending on the ratio of viscous and
surface tension (capillary number). The behaviour of the fibre is studied numerically
as function of the effects of viscosity, gravity, rotation and surface tension.

1 Introduction

In rotational spinning processes of highly viscous fibres, the unrestricted
motion and shape of a non-stationary centre-line is an important feature,
see Fig. 1. In this work, we derive and investigate an asymptotic string model
that is suitable for simulating the spinning of slender curved inertial viscous
Newtonian fibres subjected to surface tension. Accordingly, we extend the
slender body theory of [5] by including surface tension and deducing asymp-
totically appropriate boundary conditions for the free fibre end. For details
we refer to [4].

2 Asymptotic Derivation

2.1 Three-Dimensional Free Boundary Value Problem

Let the fibre flow domain at time t ∈ R
+ be Ω(t) ⊂ R

3 and its boundary
∂Ω(t) = Γfr(t) ∪ Γin with Γfr(t) ∩ Γin = ∅, where Γfr(t) and Γin prescribe
the time-dependent free surface and the time-independent planar inlet (spin-
ning nozzle), respectively. Non-dimensionalising the underlying Navier–Stokes
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Fig. 1. Left : rotational device in glass wool production processes (photo by
industrial partner). Right : centre-line of an extruded viscous fibre at different times

equations with the fluid density ρ, the mean velocity V at the nozzle and a
typical length � of the spun fibre, the small ratio between the nozzle width
and the length � is the slenderness parameter ε. Due to the scaling with V ,
the dimensionless inflow velocity profile vin at the nozzle satisfies

|Γin|1/2 = ε� 1,
∫

Γin

vin · τ 0 dA =
∫

Γin

dA = ε2,

where |Γin| =
∫
Γin

dA and τ0 is the inner normal vector of Γin. The model
for the boundary value problem (BVP) reads

∇r · v(r, t) = 0

∂tv(r, t) +∇r · (v ⊗ v)(r, t) = ∇r · ST (r, t) + f(r, t) r ∈ Ω(t)

S = −p I +
1

Re
(∇rv + (∇rv)T )

(v · n)(r, t) = w(r, t), (S · n)(r, t) = − ε

We
(Hn)(r, t) r ∈ Γfr(t)

v(r, t) = vin(r) r ∈ Γin
with Reynolds Re = �ρV/μ and Weber number We = (ε�/2)ρV 2/σ, dynamic
viscosity μ and coefficient of surface tension σ. Apart from the unknown field
variables for velocity v and hydrodynamic pressure p, the BVP determines the
geometry Ω(t) specified by the outer normal vectors n and the scalar speed
w of Γfr(t). By choosing inhomogeneous dynamic boundary conditions for
the stress tensor S the effects of surface tension are incorporated with mean
curvature H deduced from the geometry. Body forces f complete the BVP.

The slenderness parameter ε enters the problem via the inflow domain.
For the asymptotic reduction, we follow the concept of [5] and formulate
the BVP in scaled curvilinear coordinates. These coordinates can be under-
stood as generalisation of cylindrical ones along an arbitrary curve which
is identified as fibre centre-line. Scaling leads to inflow conditions indepen-
dent of the slenderness parameter ε, the corresponding balance laws are
ε-dependent and form the basis for the rest of the asymptotic derivation.



General String Theory for Dynamic Curved Viscida with Surface Tension 593

Concretely, we define a bijective, time-dependent scaled curvilinear coordinate
transformation r̆(·, t) : Ω̂(t) ⊂ R

3 
→ Ω(t) ⊂ R
3

r̆(x, t) = γ(s, t) + ε x1η1(s, t) + ε x2η2(s, t) with s = x3

with respect to the slenderness parameter ε and the arc-length parameterised
fibre centre-line γ. The normal vectors η1, η2 together with the tangent τ =
∂sγ constitute a local orthonormal basis along the curve. We specify the flow
domainΩ(t) in terms of the associated domain Ω̂(t) in coordinates, i.e. Ω(t) =
r̆(Ω̂(t), t). Therefore, we assume that Ω̂(t) is given by the fibre length L(t)
and a 2π-periodic radius function R(·, t) : [0, 2π)× [0, L(t)) 
→ R

+ such that

Ω̂(t) = {x = (x1, x2, s) ∈ R
3 | (x1, x2) ∈ A(s, t), s ∈ [0, L(t))}

with cross-sections

A(s, t) = {(x1, x2) ∈ R
2 |x1 = 
 cos(ψ), x2 = 
 sin(ψ),

 ∈ [0, R(ψ, s, t)], ψ ∈ [0, 2π)}.

Then, the fibre domain is described by L, γ, R.
In addition to the geometrical quantities, we introduce the following char-

acteristic quantities related to r̆: coordinate transformation matrix F = ∇xr̆,
functional determinant J = det(F), inverse matrix G = F−1 and coordinate
velocity q = ∂tr̆. Then, the governing equations of the free BVP in curvilinear
coordinates x ∈ Ω̂(t) read

∂tJ(x, t) +∇x · (Ju)(x, t) = 0

∂t(Jv)(x, t) +∇x · (u⊗ Jv)(x, t) = ∇x ·TT (x, t) + (Jf)(x, t)
u = (v − q) ·G
T = JS ·G.

The physical and geometrical properties of the observables are preserved
under the above transformation. The intrinsic velocity u describes the rate
of convective transport of the unknowns in the coordinates, whereas the
momentum-associated velocity v represents one of these transported quan-
tities. Their relation is expressed in the coupling condition. See [4] for more
details.

2.2 Asymptotic Analysis

The derivation of an asymptotic 1d model from the 3d free BVP is based
on the cross-sectional averaging of the balance laws. Thereby, regular power
expansions in the slenderness parameter to zeroth and first order, e.g. vε =
v(0) + εv(1) + O(ε2), yield the necessary cross-sectional profile properties of
the unknowns. We abbreviate 〈f〉Aε(s,t) =

∫
Aε(s,t)

f(x1, x2, s, t) dx1dx2 and
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〈f〉∂Aε(s,t) =
∫
∂Aε(s,t)

f/
√
n2

1 + n2
2 dl for any integrable function f on Ω̂(t)

and components ni of the normal vector n. The cross-sectionally averaged
balance laws are

∂t〈Jε〉Aε(s,t) + ∂s〈Jεu3,ε〉Aε(s,t) = 0
∂t〈Jεvε〉Aε(s,t) + ∂s〈Jεu3,ε vε〉Aε(s,t)

= ∂s〈Tε · e3〉Aε(s,t) −
ε

We
〈JεHεGε · nε〉∂Aε(s,t) + 〈Jεfε〉Aε(s,t).

From the BVP we derive at zeroth and first order [4]

u(−1) = 0, u(0)
3 = u

(0)
3 (s, t), 〈v(0)〉A0 = u

(0)
3 ∂sγ

(0) + ∂tγ
(0)

T(0) = T(1) = 0, 〈T(2) · e3〉A0 =
(

3
Re
|A0|∂su(0)

3 −
√
π

2We

√
|A0|

)
∂sγ

(0)

〈JHG · n〉(0)∂A = 0, 〈JHG · n〉(1)∂A = −√π∂s(
√
|A0|∂sγ(0)).

The evaluation of the boundary integrals is based on the intuitive assumption
of circular cross-sections at leading order which stands in accordance to the
fact that the cross-sectional shape tends to a circle under surface tension.
Abbreviating u = u

(0)
3 , A = |A0| and dropping the superscripts of leading

order, we obtain the following asymptotic result.

Theorem 1 (Fibre String Model). The spinning of a slender curved
inertial viscous fibre subjected to surface tension is modelled by

∂tA+ ∂s(uA) = 0

∂t(Av) + ∂s(uAv) = ∂s

(
(

3
Re
A∂su+

√
π

2We

√
A)∂sγ

)
+Af

∂tγ + u∂sγ = v

dL(t)
dt

= u(L(t), t), L(0) = 0, A∂su(L(t), t) =
√
π

6
Re
We

√
A(L(t), t)

A(0, t) = 1, u(0, t) = 1, γ(0, t) = γ0, ∂sγ(0, t) = τ 0, ‖∂sγ‖ = 1.

In rotational spinning processes the body densities f arise due to gravity and
rotation with Froude Fr and Rossby number Rb

f = Fr−2eg − 2Rb−1(eω × v) − Rb−2(eω × (eω × γ)).

The boundary conditions for the free end of the fibre come from a global
balance of the volume-averaged 3d and the line-averaged 1d balance laws at
leading order. We see that the viscous stresses balance the surface tension.
Moreover, combining the boundary conditions with the conservation of mass
yields a simple differential equation describing the evolution of the area at
the fibre end, dA(L(t), t)/dt = −(A∂su)(L(t), t) = −√π/(6Ca)

√
A(L(t), t),

A(0, 0) = 1. Its unique solution is
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A(L(t), t) =
{

(1− t/tc)2, t ≤ tc,
0, t > tc

, tc =
12√
π

Ca

with capillary number Ca = Re/We, since A ≥ 0. Our model ceases to be valid
when A(L(t), t) = 0 due to the definition of our fibre domain. Accordingly,
the numerical simulations are performed for t < tc.

3 Numerical Investigation

Our model places no restrictions on either the motion or shape of the fibre
centre-line, and account for both the inner viscous transport and surface ten-
sion. Thus, it includes most of those previously derived for nearly straight
(e.g. [2]) and curved centre-lines [1, 5] and can be regarded as a generalised
theory of viscous strings. Moreover, our balance laws coincide with those of [3],
considering ∂su = ∂svτ −κvη with vτ = v ·τ , vη = v ·η, τ = ∂sγ, η = ∂ssγ/κ
and κ = ‖∂ssγ‖. Supplemented with an additional angular momentum equa-
tion that is decoupled from the string part, the approach of [3] describes a rod
model. A rod model with fully coupled equations for mass, linear and angular
momentum is derived in [6], choosing a non-stationary material centre-line
as reference curve in contrast to our geometrical one. However, twist is not
relevant for rotational spinning.

For the simulation of a rotational spinning process (Fig. 1), we consider a
situation in which a fibre is ejected horizontally from a spinning nozzle located
on the curved face of a cylindrical drum with unit dimensionless radius that
rotates about its vertical symmetry axis. This implies eω = −eg = e3 and
γ0 = τ 0 = e1 in the rotating reference frame. Figure 2 shows the temporal
evolution of the cross-section A, the intrinsic velocity u and the projection of
the fibre centre-line onto the e1–e2-plane for different parameter combinations.
Our results for high Reynolds number (small viscosity) agree well with those
of [1,7]: the smaller the Rossby number, i.e. the faster the rotation, the more
pronounced is the curling of the fibre in the e1–e2-plane. The curling is also
influenced by the surface tension. Moreover, decreasing the Weber number,
i.e. increasing the surface tension, accelerates the thinning of the fibre end.
The critical time tc when the fibre end shrinks to a point is observed in the
simulations. In contrast to the stationary centre-line approach of [1], our model
allows the numerical simulation of a non-stationary fibre centre-line which
is a significant feature in rotational glass spinning processes (Rb,Re → 0)
when the fibre centre-line is displaced during recoiling after drop detachment
(cf. “dynamic break-up mode 4” [7]), for visualisation of this effect see Figs. 1,
2 and [4, 5].
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Fig. 2. Left to right : A(s), u(s), γ in e1–e2-plane at t ∈ {2.5, 5, 10}. Top to bottom:
(Re, Rb, We) ∈ {(1, 10, 10), (1, 2, 10), (1, 2,∞), (10, 2,∞)} for fixed Fr = 2
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Instability of Non-Newtonian Liquid Jets
Curved by Gravity
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Summary. A slender jet model is used to describe the instability of a curved liquid
jet falling under gravity. The fluid is modelled as an inelastic non-Newtonian fluid
obeying the Carreau model. A linear instability analysis is performed to examine
the behaviour of the most unstable wavenumber and growth rate of instabilities.

1 Curved Liquid Jets

The breakup of a liquid jet into droplets is ubiquitous in many industrial and
engineering applications (see [2] for a review). After emerging from an orifice
or nozzle a liquid jet may be distorted by the influence of gravity or wind
with the result being a liquid jet with a curved centreline. In such cases the
interplay between the centreline of the jet and dynamics within the jet can
affect the resulting instability and drop formation.

2 Governing Equations

Let us consider a liquid jet of density ρ emerging from a nozzle of radius a
with speed U and falling under the influence of gravity. Upon leaving the
nozzle the jet moves solely in the x-y plane and the centreline of the jet
in the Cartesian plane can be described by (X(s, t), Y (s, t)) where s is the
arc length along the jet and t is time (see Fig. 1). Any analysis of the jet
in Cartesian coordinates leads to algebraic equations which are tedious and
opaque. It is more amenable to describe the dynamics of the liquid jet in
a coordinate system which has one coordinate vector along the axis of the
jet with the remaining unit vectors as plane polar coordinates in any cross
section of the jet. A similar coordinate system has been used by [3] but our
system is based on those derived by [7] to investigate spiralling liquid jets in
prilling. The derivation of the resulting system of unit vectors in this curved
coordinate system can be found elsewhere (see for example [7]) and so we
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Fig. 1. A sketch of a liquid jet curved by the action of gravity. The centreline of
the jet is shown as a dashed line and can be written an (X(s, t), Y (s, t))

will not repeat the derivation here. It suffices for our purposes to state that
the unit vectors along the axis, along the radial direction and the azimuthal
direction are denoted by es, en and eφ respectively. They have the associated
scale functions given by hs = 1 + n(XsYss − YsXss), hn = 1 and hφ = n.

We make our equations dimensionless by scaling velocity components with
U and radial length scales with a. The jet curves over a length scale s0 given
by the ratio s0 = U2/g where g is the acceleration due to gravity. Hence, we
make lengths along the X and Y axis dimensionless with regards to U2/g and
time we scale with U/g. The pressure within the liquid jet is scaled with ρU2.
We assume that the aspect ratio a/s0 = ε is small (i.e., ε� 1 whence we have
slender jets) and thus we are able to utilise a lubrication type approximation
in the foregoing analysis. In order to have ε � 1 we require U2/a � g. The
velocity components in the axial, radial and azimuthal directions are given by
u, v and w respectively.

In the present study we take the emerging liquid to be non-Newtonian,
and in particular, we examine the case of a shear thinning liquid jet which
has a constitutive equation governed by the Carreau model

μ = μ̃0μ̃ = μ̃0(1− ξ)[1 + (hγ̇)2]
f−1
2 + μ̃0ξ. (1)

In this case, μ is the shear rate dependent viscosity, γ̇ =
√E : E/2 is the

second invariant of the deformation tensor E = ∇u + (∇u)T , μ̃0 is the zero-
shear rate viscosity, h is a constant, ξμ̃0 is the viscosity in the limit of infinite
shear and finally f is the flow index number such that 0 ≤ f ≤ 1.

The equations governing the flow within the jet are given by

∇ ·u = 0 and ρ
Du
Dt

= −∇p+∇ · (μE) = −∇p+ μ∇2u +∇μ ·E, (2)

where u = (u, v, w) is the velocity vector, ρ is the density of the liquid, t is
time and p is the pressure.
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These equations are supplemented by a number of boundary conditions at
the liquid jet interface. Firstly, we have a kinematic condition

D

Dt
(n−R(s, t)) = 0, (3)

where R(s, t) is the position of the free surface. We also have normal and
tangential stress conditions at the liquid jet interface such that

μn · E · n = σ · κ and ti · E · n = 0, (4)

where n and ti for i = 1 and i = 2 are the unit normal and tangential
vectors (note that the free surface has two tangential vectors) and σ is the
surface tension of the liquid-gas interface. Furthermore, we have the additional
constraint upon the centreline equation given by the arc length condition

X2
s + Y 2

s = 1. (5)

Expanding our variables using a slender jet model, with ε as our small term,
the resulting leading order one dimensional equations are given in [6].

3 Steady State Solution

In order to determine steady trajectories of the curved liquid jet we now
consider the steady state of this set of equations. This is given by the solution
to the following set of equations (see [6])

u0u0s = − 1
We

(
1
R0

)

s

− Y0s

F2
. (6)

u0s

2
R0 + u0R0s = 0. (7)

X2
0s + Y 2

0s = 1. (8)
(
u0

2 − 1
R0We

)
(X0sY0ss −X0ssY0s)− X0s

F2
= 0. (9)

where the Weber number We = ρU2a
σ and the Froude number F = U√

s0g
.

In the limiting case of zero surface tension (i.e., infinite Weber number) the
centreline of the jet corresponds to the motion of a projectile released from
the nozzle and falling under the influence of gravity. For finite values of the
Weber number, our nonlinear ordinary differential equations must be solved
using some suitable numerical method (like Runge–Kutta for example). The
initial conditions we use are u0 = R0 = X0s = 1 and Y0s = X0 = Y0 = 0 at
s = 0. Steady trajectories for different Froude numbers are shown in Fig. 2.
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Fig. 2. Steady state trajectories for different Froude numbers. The centreline is seen
to curve less when the Froude number is increased. (We = 20.0)

4 Linear Stability Analysis

In this section we consider the linear stability of disturbances about our lead-
ing order steady state solution obtained in the previous section. We should
note that if the centreline of the falling jet is assumed to curve over a length-
scale of s = O(1) and perturbations along the jet are of order a (which is
comparable to ε when s = O(1)) then travelling wave modes of the form
exp(iks̄ + t̄) must be considered, where s̄ = s/ε and t̄ = t/ε, in order to
have k = k(s) = O(1) and λ = λ(s) = O(1), which are the wavenumber
and growth rate of disturbances along the jet respectively. We therefore have
a multiple scales formulation with perturbations having wavelength of O(ε)
as required. We now add small disturbances to the steady state solutions
(obtained in the previous section) having the form δ exp(iks̄+ λt̄) where δ is
some small dimensionless constant. In this case the symbols with a subscript
denote steady state solutions and k is a real wavenumber with λ being com-
plex, so that λ = λr + iλi where λr is the growth rate of disturbances and
λi is the wavenumber of disturbances along the jet. The eigenvalue relation-
ship between the growth rate and wavenumber of disturbances is given by the
following equation

(λ+ iku0)− k2R0

2We(λ+ ku0)

(
1
R2

0

− k2

)
+
k2μ̂

R̄e = 0, (10)

where μ̂ = (1 − ξ)[1 + (
√

3hu0s)2]
f−1

2 + ξ and R̄e = ρUa
μ̃0

is the Reynolds
number. We now write λ = λr + iλi and after substitution into (10) we find
λi = −ku0 (so that disturbances are simply convected with the liquid jet) and

λr = − k
2μ̂

2R̄e +
k

2

[
k2μ̂2

R̄e2
+

2
R0We

(1 − (kR0)2)
] 1

2

(11)
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Fig. 3. The growth rate λr of the most unstable wavenumber k� plotted against the
arc length s along the jet for different flow index numbers f . (F = 0.5, Oh = 0.30,
We = 9.0, h = 1.0 and ξ = 0.1)

For unstable disturbances we require that λr be positive (otherwise distur-
bances decay along the jet). This necessitates that 0 < kR0 < 1, which for
a straight jet where the radius along the jet remains a constant agrees with
the classical result of [5]. Equation (11) may be differentiated to find the most
unstable wavenumber k = k� for which the growth rate λr attains a maximum,
this is found to be given by

k�(s) =
1

(2R3
0)

1
4

1
[μ̂Oh+

√
2R0]

1
2
, (12)

where the Ohnesorge number Oh =
√
We/R̄e is a measure of the relative

importance of viscous effects to surface tension. Since both R0 and μ̂ are
determined from the steady state solutions, and both vary along the arc length
s of the jet, the most unstable wavenumber k� will also be a function of s.

5 Results and Conclusion

We find that the most unstable wavenumber increases along the jet and that
larger values of k� are seen to correspond to smaller values of the flow index
number f (i.e., as we increase the shear thinning properties of the liquid we get
larger values of k�). This pattern is also true for the growth rates of the most
unstable mode as shown in Fig. 3. In the context of linear theory this shows
that increasing shear thinning properties of a liquid jet lead to smaller droplets
(since the most unstable wavenumber k� is related to disturbance wavelengths
Λ by the relationship k� = 2π/Λ) and shorter breakup lengths. The behaviour
of the most unstable mode for changes in the Froude number for a highly
shear thinning liquid (f = 0.1) is shown in Fig. 4. In this case increasing the
importance of gravity (which corresponds to reducing the Froude number)
leads to higher values of the most unstable mode.
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Fig. 4. The most unstable wavenumber k� plotted against the arc length s along
the jet for different Froude numbers F . (f = 0.3, Oh = 0.144, We = 12.0, h = 1.0
and ξ = 0.2)
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Summary. We present an optimal control approach for the isothermal film casting
process with free surfaces described by averaged Navier–Stokes equations. We control
the thickness of the film at the take-up point using the shape of the nozzle and the
initial thickness. The control goal consists in finding an even thickness profile.

1 Introduction

Polymer films for video and magnetic tapes are produced by film casting. The
molten polymer emerging from a flat die is first stretched a short distance
between the die and a temperature controlled roll. The film shows a lateral
neck-in as well as an inhomogeneous decrease of the thickness. The formation
of edge beads surrounding a central area of constant thickness is generally
called the dog bone defect or edge bead defect. In this paper we develop a
mathematical model to predict the shape of the die which minimizes the edge
bead defect.

2 Governing Equations

We consider the stationary, isothermal three-dimensional Newtonian model
for the film casting process derived earlier by Demay and co-workers [2, 3, 8]
or in [1]. The geometry of the film casting process is shown in Figure 1.

The polymer is pressed through the die (located in the yz-plane) with a
velocity u0 and wrapped up with velocity uL > u0 by a spindle at x = L.
The die has a width of W0 in the y-direction and a thickness of e0 in the
z-direction. For typical film casting processes, the thickness of the film at
the nozzle is small compared to both the length and the width of the film
i.e. e0/W0 � 1 and e0/L � 1.

Averaging the mass and momentum equations describing the polymer flow
over the z-direction, see [2, 8], leads to
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∇ · (eU) = 0 (1a)

(U · ∇)U =
1

Re
(ΔU + 3∇ (∇ · U)) . (1b)

Here U = (u, v) denotes the velocity field in the x- and y-directions and e
denotes the thickness of the film in the z-direction. The Reynolds number Re =
LuL

ν is based on the length of the film, the take-up velocity and the viscosity of
the fluid. Using the notations of Fig. 1, the system (1) has to be solved inside
the two-dimensional film domain Ω = {(x, y) : 0 < x < L , −W (x) < y <
W (x)}. Note that the width W (x) of the film is a free boundary and not
known a priori. The boundary of the domain consists of the extrusion line
γ1 = {0}× (−W (0),W (0)), the take-up line γ2 = {L}× (−W (L),W (L)) and
the lateral boundaries γ3 = (0, L)× {−W (x)} and γ4 = (0, L)× {W (x)}. At
the inflow and outflow flow boundary, we prescribe Dirichlet data

(u, v, e) = (u0, 0, e0) at γ1, (1c)
(u, v) = (uL, 0) at γ2. (1d)

The ratio D = uL/u0 > 1 between the winding and the extrusion velocity is
called draw ratio. Due to the hyperbolic nature of (1a), there is no boundary
condition for the thickness on γ2. The treatment of the lateral boundaries
γ3, γ4 is more sophisticated, since they are free boundaries. Their location is
not known in advance and evolves with the width W = W (x) of the film. The
dynamic and kinematic conditions at the free boundary read as

σ · n = 0 at γ3, γ4, (1e)
u∂xW − v = 0 at γ3, γ4. (1f)

Here n denotes the unit outer normal to γi, i = 3, 4. The stress tensor σ is

given by σ = (∇U) + (∇U)T + 2 (divU) I =
(

4∂xu+ 2∂yv ∂yu+ ∂xv
∂yu+ ∂xv 2∂xu+ 4∂yv

)
,

where I is the 2× 2 identity matrix.
The following typical parameters are used throughout the paper: stretching

distance L = 0.4 m, film width W0 = 1 m, draw ratio D = 10 and Reynolds
number Re = 3.

3 Optimal Control

The model (1) is capable to predict the final thickness e(L, y) of the film.
This thickness profile depends on the geometry e0 of the nozzle as well as the
draw-ratio D. Using a rectangular nozzle, i.e. a uniform initial thickness e0,
one obtains the well-known effect of edge beads, see Fig. 2. In this case the
final film is thinner in the middle than at the lateral surfaces; an undesired
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Fig. 2. Thickness profile of the film casting process with edge bead defect

result. In contrast to that, industrial applications aim to produce films with
a uniform thickness profile at the take-up roll.

The parameters that can be modified are the initial thickness profile e0
and the velocity at the die u0 as well as the velocity of the take-up roll uL.
However, for simplicity, we focus on controlling the initial thickness e0 and
the initial velocity u0 of the film.

To model the requirement of an even film thickness at the take-up roll, we
consider the following tracking-type cost functional

J(z, φ) = ‖e(L, y)− ed‖2 + α‖φ‖2 (2)

where ed is the desired thickness, z = (u, v, e) are the state variables and φ =
(e0, u0) are the control variables of the problem. The question of minimizing
our cost functional J(z, φ) belongs to the class of constrained optimization
problems [5,6], where the cost functional (2) is minimized with respect to the
constraint given by the state system (1),

minimize J(z, φ) with respect to φ subject to (1). (3)

In the sequel, we will formally introduce the Lagrangian for the problem (3).
Let Z denote the space of the state variables and C be the set of admis-

sible controls, i.e. admissible nozzle shapes e0 and possible input velocity
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profiles u0. To shorten the notation, we write the state system (1) together
with its boundary conditions shortly as P (z, φ) = 0, where P : Z × C → W ∗

is called the state operator. Using a set ξ = (ξu, ξv, ξe) ∈ W of Lagrangian
multipliers, we introduce the Lagrangian L : Z × C ×W → R by

L(z, φ, ξ) = J(z, φ) + 〈P (z, φ), ξ〉W∗,W . (4)

Here 〈p, ξ〉W∗,W ∈ R denotes the duality pairing between p ∈ W ∗ and ξ ∈ W .
Now, as a standard result from nonlinear optimization, the Karush–

Kuhn–Tucker (KKT) system is a necessary first-order optimality condition.
Assuming enough regularity, the Lagrangian is Fréchet-differentiable and the
first-order optimality condition reads as DL(z, φ, ξ) = 0 or componentwise

P (z, φ) = 0 in W ∗, (5a)
∂zP

∗(ξ)[z, φ] + ∂zJ(z, φ) = 0 in Z∗, (5b)
∂φP

∗(ξ)[z, φ] + ∂φJ(z, φ) = 0 in C∗. (5c)

In the system (5), we can easily identify the state (5a), adjoint (5b) and
gradient (5c) in operator form.

4 Numerical Simulations

The KKT-system (5) corresponding to the first-order optimality conditions
for the minimization problem (3) is a system of coupled, nonlinear PDEs.
Hence, we will apply an iterative algorithm to solve them [7].

1. Given an initial controls e00 and u0
0. Set k = 0.

2. Solve the state equations (5a), i.e. (1) with its boundary conditions to
obtain the new state variables zk+1.

3. Given the state zk+1 corresponding to the controls ek0 and uk0 , solve the
adjoint problem (5b) to obtain ξk+1.

4. Given ξk+1, update the control by

ek+1
0 (y) = ek0(y)− ξk+1

e (0, y)uk0(y) (6a)

uk+1
0 (y) = uk0(y)− ξk+1

e (0, y) ek0(y) +
4
Re

∂ξk+1
u

∂x
(0, y) (6b)

5. Calculate the cost functional Jk+1 = J(zk+1, φk+1).
6. If Iteration has converged

then Stop
else set k = k + 1 and go to step 2.

Since the boundaries γ3 and γ4 are free surfaces, it is difficult to implement
the free boundary condition σ · n = 0. To overcome the free surface, we
transform the domain into a square domain by mapping the coordinates (x, y)
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to (x, ỹ) where ỹ(x) = y
W (x) . Then, the new coordinates belong to a square

domain (x, ỹ) ∈ [0, L]× [−1, 1].
For the numerical simulations we use standard finite differences on a uni-

form grid with equal mesh widths in the x- and ỹ-direction resp. The same
grid is used for the state as well as for the adjoint equation. For the hyperbolic
continuity equations we apply upwind methods. In the momentum equations
the nonlinear terms are handled by iteration and centered differences are used
to discretize the derivatives.

5 Simulation Results

Figure 2 on page 605 shows the thickness of the film for a given, constant
initial thickness e0. Figure 3 plots the transversal velocity v(x, ·) at different
lateral cuts y = yi. Negative velocities imply that the fluid moves towards the
centerline y = 0; this yields the neck-in of the film. This neck-in is also clearly
visible in Fig. 4 showing the evolution of the width of the film.

Finally, we investigate the result of the optimization problem (3). The aim
was to find an initial velocity profile u0 and the shape of the nozzle, i.e. an
initial thickness e0 of the film, such that we obtain a uniform thickness ed at
the position of the spindel. Figure 5 shows the initial velocity profile u0 before
and after optimization. It is obvious that the velocity at the edge of the film
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should be less compared to the center part of the film, so that the flux in the
edge part will be less and it results in stopping the accumulation of fluid in
the edge and removes the edge bead.

Figures 7 and 8 show a comparison of the un-optimized (left) and optimized
situation (right). The initial thickness corresponding to the shape of the nozzle
is shown in the upper part and the final film thickness is given below. In
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the optimized situation the close-to ellipsoidal shape of the nozzle with the
modified initial velocity u0 given in Fig. 5 counterbalances the edge-bead effect
resulting in a uniform film thickness.

At the take-up point we obtain a constant film thickness of ed = 0.1
corresponding to the draw ratio D = 10.

Figure 6 shows the decrease of the cost functional versus the iteration
number. A rigorous justification of the observed convergence to the minimum
based on space-mapping techniques is left open for future research. A more
detailed discussion of the presented problem and the optimal control approach
to its solution can be found in [4].
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Summary. The effect of an atmosphere of nitrogen on the evaporation of pinned
sessile droplets of water is investigated both experimentally and theoretically.

1 Introduction

When liquid droplets are deposited on a solid substrate in an unsaturated
atmosphere they will experience some degree of evaporation. This apparently
simple phenomenon is encountered in everyday life as well as in a wide range
of physical and biological processes. During the last decade renewed interest
in droplet evaporation has been sparked by new developments in applica-
tions such as cooling technologies, desalination, painting, DNA synthesis and
patterning technologies.

Many studies of the evaporation of sessile droplets have been undertaken,
notably those by Picknett and Bexon [6], Bourges-Monnier and Shanahan [1],
Deegan [3], Hu and Larson [5], and Popov [7]. The standard theoretical model
(hereafter referred to as the “basic model”) assumes that the rate-limiting
mechanism for evaporation is the diffusive relaxation of the locally saturated
vapour at the free surface of the droplet. The basic model decouples the con-
centration of vapour in the atmosphere from the temperature of the droplet
and the substrate, and hence does not account for the effect of the thermal
properties of the droplet and the substrate on the evaporation rate. Recently
Dunn et al. [4] developed an improved mathematical model for the evapora-
tion of a thin droplet on a thin substrate taking into account the temperature
dependence of the saturation concentration of vapour at the free surface of
the droplet, and found that its predictions are in reasonable agreement with
the experimental results of David et al. [2]. The purpose of the present paper
is to build on the progress made by David et al. [2] and Dunn et al. [4] by
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Fig. 1. Typical examples of the experimentally measured evolutions in time of the
volume (left hand axis) and the base radius (right hand axis) of a droplet of water
on an aluminium substrate evaporating into an atmosphere of nitrogen

investigating the effect of an atmosphere of nitrogen on the evaporation of
pinned sessile droplets of water both experimentally and theoretically.

2 Experimental Procedure

The essence of the experiment consisted of depositing a liquid droplet of con-
trolled volume on a substrate and allowing it to evaporate spontaneously. All
of the experiments reported here were realised with droplets of pure deionised
water resting on four different substrates chosen for their wide range of ther-
mal conductivities, namely aluminium (Al), titanium (Ti), Macor and PTFE.
The substrates had dimensions of 10×10×1mm (length × width × thickness),
and their thermal conductivities are given by David et al. [2, Table 2]. In order
to contain the ambient gas and to vary the atmospheric pressure, the droplet
and the substrate were placed in a “low pressure” chamber. The chamber was
cylindrical in shape (105 mm diameter and 95 mm height) with two observa-
tion windows and was connected to a gas supply and a vacuum pump. The
experimental setup used a DSA100TM Droplet Shape Analysis (DSA) system
from KRÜSS GmbH to monitor the evolutions in time of the volume, contact
angle, height and base radius of the droplet. Typical examples of the exper-
imentally measured evolutions of the volume and the base radius are shown
in Fig. 1. All of the experiments were carried out in a laboratory in which
the room temperature was controlled at 295 K with an air-conditioning unit
with a precision of ±1 K. Before each experiment, air was removed from the
chamber and replaced with the chosen ambient gas. The pressure of the gas
was varied in the range 40–1,000 mbar. Various ambient gases were used, but,
for brevity, only results for an atmosphere of nitrogen are reported here.
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Fig. 2. Geometry of the mathematical model

3 Mathematical Model

The mathematical model used in the present work represents the quasi-steady
diffusion-limited evaporation of an axisymmetric droplet of Newtonian fluid
with constant viscosity, density ρ, surface tension γ, and thermal conductivity
k resting on a horizontal substrate of constant thickness hs with constant
thermal conductivity ks. Referred to cylindrical polar coordinates (r, θ, z) with
origin on the substrate at the centre of the droplet with the z axis vertically
upwards, the shape of the free surface of the droplet at time t is denoted by
z = h(r, t), the upper surface of the substrate by z = 0, and the lower surface
of the substrate by z = −hs, as shown in Fig. 2.

For a sufficiently small droplet whose base radius R is much less than
the capillary length

√
γ/ρg, the droplet shape can be approximated as a

simple quasi-static spherical cap, and hence the relation between the volume
V = V (t) and the contact angle θ = θ(t) is given by

V =
πhm(3R2 + h2

m)
6

, (1)

where hm = hm(t) = h(0, t) = R tan(θ/2) is the maximum height of the
droplet. The total evaporation rate is given by

− dV
dt

=
2π
ρ

∫ R

0

J

√
1 +

(
∂h

∂r

)2

r dr, (2)

where J = J(r, t) (≥0) is the local evaporative mass flux from the droplet.
The atmosphere in the chamber surrounding the droplet and the substrate

is assumed to be at constant atmospheric temperature Ta and atmospheric
pressure pa. The temperatures of the droplet and the substrate, denoted by
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T = T (r, z, t) and T s = T s(r, z, t), respectively, satisfy Laplace’s equation
∇2T = ∇2T s = 0. The mass flux from the droplet satisfies the local energy
balance LJ = −k∇T · n on z = h for r < R, where L is the latent heat
of vaporisation and n is the unit outward normal to the free surface of the
droplet. We assume that the temperature and the heat flux are continuous
between the droplet and the substrate, T = T s and −k∂T/∂z = −ks∂T s/∂z
on z = 0 for r < R, and that the temperature is continuous between the
substrate and the atmosphere, T s = Ta on z = 0 for r > R and on z = −hs.

Assuming that transport of vapour in the atmosphere is quasi-static and
is solely by diffusion, the concentration of vapour, denoted by c = c(r, z, t),
satisfies Laplace’s equation ∇2c = 0. At the free surface of the droplet we
assume that the atmosphere is saturated with vapour and hence c = csat(T ) on
z = h for r < R, where the saturation value of the concentration csat = csat(T )
is an increasing function of temperature, approximated quartically in Ta − T
by

csat(T ) =
4∑

i=0

αi(Ta − T )i, (3)

where the coefficients αi for i = 0, . . . , 4 were chosen to fit experimental
data given by Raznjevic [8], leading to α0 = 1.93 × 10−2, α1 = 1.11 × 10−3,
α2 = 2.78× 10−5, α3 = 3.78× 10−7 and α4 = 2.59× 10−9 in units of kg m−3

K−i. Note that while a simple linear approximation is sufficient for situations
with a relatively small evaporative cooling of a few degrees K, such as those
considered by David et al. [2] and Dunn et al. [4], the quartic approximation
(3) is necessary for situations with a larger evaporative cooling of up to 20 K,
such as those considered in the present work. On the dry part of the substrate
there is no mass flux, ∂c/∂z = 0 on z = 0 for r > R, and, since the chamber
is much larger than the droplets used in the experiments, far from the droplet
the concentration of vapour approaches its far-field value of zero, c → 0 as
(r2 + z2)1/2 → ∞. Once c is known the local evaporative mass flux from
the droplet is given by J = −D∇c ·n on z = h for r < R, where D is the
coefficient of diffusion of vapour in the atmosphere. A standard result from
the theory of gases is that D is inversely proportional to pressure, and hence
we write D = Drefpref/pa, where Dref denotes the appropriate reference value
of D at the reference pressure pref = 1 atm. Note that the diffusion coefficient
is the only parameter in the model that depends on either the nature of the
ambient gas or its pressure pa.

In the special case csat ≡ csat(Ta), corresponding to αi = 0 for i = 1, . . . , 4
in (3), the saturation concentration is constant and we recover the basic
model in which the problem for the concentration of vapour in the atmo-
sphere is decoupled from the problem for the temperature of the droplet and
the substrate.

The model was solved numerically using the MATLAB-based finite ele-
ment package COMSOL Multiphysics. The value of Dref used to obtain the
present numerical results was fitted by comparing the experimental results for
evaporation on an aluminium substrate with the corresponding theoretical
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Fig. 3. Experimentally measured evaporation rates of droplets of water in an atmo-
sphere of nitrogen on various substrates for different atmospheric pressures, together
with the corresponding theoretical predictions of the mathematical model and the
basic model

predictions. Specifically, for an atmosphere of nitrogen the fitted value of
Dref = 2.15 × 10−5 m2 s−1 differs by less than 15% from the value of
Dref = 2.47 × 10−5 m2 s−1 given by Reid et al. [9], i.e. the difference is
comparable with the uncertainty in the theoretical value.

4 Results

As the typical experimentally measured evolutions in time of the volume and
the base radius of a droplet shown in Fig. 1 illustrate, typically the evaporation
process can be divided into two stages. In the first stage, the droplet is pinned
and so the base radius is constant while the volume decreases approximately
linearly with time. In the second stage, the droplet depins and so the base
radius and the volume decrease until complete evaporation. The experimental
and theoretical results presented here are for the first stage only, for which
the basic model and previous experimental studies (such as, for example, that
by David et al. [2]) indicate that the evaporation rate is proportional to the
perimeter of the base of the droplet.

Figure 3 shows both the experimental results and the corresponding the-
oretical predictions of the mathematical model for all four substrates studied
for an atmosphere of nitrogen, and shows that the theoretical predictions of
the mathematical model using the value of the diffusion coefficient fitted for
an aluminium substrate are in reasonable agreement with the experimental
results for the other three substrates studied. Figure 3 also shows the corre-
sponding prediction of the basic model, which are independent of the thermal
properties of the droplet and the substrate, which consistently over-predicts
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the evaporation rate. In particular, Fig. 3 shows that for all four substrates
studied reducing the atmospheric pressure increases the evaporation rate. Fur-
thermore, Fig. 3 also shows that droplets on substrates with higher thermal
conductivities evaporate more quickly than those on substrates with lower
thermal conductivities. Close inspection of Fig. 3 reveals that the agreement
between theory and experiment is poorest for the substrate with the lowest
thermal conductivity (namely PTFE).

5 Conclusions

An investigation into the effect of an atmosphere of nitrogen on the evapora-
tion of pinned sessile droplets of water has been described. The experimental
work investigated the evaporation rates of sessile droplets at reduced pressure
using four different substrates with a wide range of thermal conductivities.
Reducing the atmospheric pressure increases the diffusion coefficient of water
vapour in the atmosphere and hence increases the evaporation rate. A math-
ematical model that takes into account the effect of the atmospheric pressure
and the nature of the ambient gas on the diffusion of water vapour in the
atmosphere was developed, and its predictions were found to be in encouraging
agreement with the experimental results.

The present work was supported by the United Kingdom Engineering
and Physical Sciences Research Council (EPSRC) via joint research grants
GR/S59444 (Edinburgh) and GR/S59451 (Strathclyde).
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Summary. Similarity solutions representing unsteady gravity-driven flow of thin
slender non-uniform rivulets down an inclined plane are described.

1 Introduction

Rivulets occur in a wide range of geophysical, biological and industrial con-
texts, ranging from the flow of lava to the flow of complex fluids in industrial
devices such as condensers and heat exchangers; as a consequence there have
been many studies of both steady and unsteady flows of thin rivulets.

Smith [6] obtained a similarity solution describing steady gravity-driven
flow of a slender non-uniform rivulet of a Newtonian fluid down an inclined
plane when surface-tension effects are negligible, and several papers concern-
ing other steady rivulet flows have been written in the spirit of Smith’s [6]
analysis, including those by Duffy and Moffatt [1], Wilson and Duffy [8] and
Wilson, Duffy and Hunt [9].

A similarity solution representing unsteady heat conduction from an
instantaneous point source when the diffusivity is temperature dependent was
obtained by Zel’dovich and Kompaneets [10] (and independently by Pattle [5]
in another context). Smith [7] adapted this solution to the spreading of a thin
drop of constant volume over a horizontal plane, and Huppert [2] generalized
it to the case when the fluid is supplied from a time-dependent source. Hup-
pert [3] obtained a similarity solution describing unsteady two-dimensional
flow of a fluid film down an inclined plane, and Lister [4], in an extensive study
of unsteady thin-film flow down an inclined plane from a point or line source,
obtained similarity solutions valid for short times and long times. As part
of his study, Lister [4] gave the asymptotic form of the appropriate thin-film
equation for flow from a point source at large times (his equation (2.10b)); it
is solutions of this equation that we investigate in detail in the present paper,
in which we obtain similarity solutions for unsteady gravity-driven flow of a
thin slender rivulet of Newtonian fluid down an inclined plane.
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Fig. 1. Sketch of the geometry of the problem

2 Problem Formulation

Consider unsteady flow of a thin rivulet of Newtonian fluid with constant
density ρ and viscosity μ driven by gravity g down a plane inclined at an
angle α (0 < α < π) to the horizontal. Cartesian coordinates Oxyz with the
x axis down the line of greatest slope and the z axis normal to the substrate
z = 0 are adopted, and we denote the (unknown) free surface of the rivulet
by z = h(x, y, t), where t denotes time. We restrict attention to flows that
are symmetric about y = 0, with (unknown) semi-width a = a(x, t). The
geometry of the problem is sketched in Fig. 1.

With the familiar lubrication approximation the velocity and pressure of
the fluid are determined in terms of h, which, for the case in which the rivulet
is slender, satisfies the partial differential equation

3μht = ρg cosα
[
h3hy

]
y
− ρg sinα

[
h3

]
x
, (1)

which is Lister’s [4] (2.10b). The conditions of zero height and of zero mass
flux at the contact lines y = ±a lead to

h = 0 at y = ±a, h3hy → 0 as y → ±a. (2)

We seek an unsteady similarity solution to (1) in the form

h = h0|x|p|t|qH(η), y = y0|x|r |t|sη, (3)

where p, q, r, s, h0, y0 and the dimensionless function H = H(η) (≥ 0) are
to be determined. With (3), the terms in (1) balance provided that p = 1

2 ,
q = − 1

2 , r = 3
4 and s = − 1

4 , and if we therefore write (3) in the form



Similarity Solutions for Unsteady Rivulets 619

h =
(

μ|x|
ρg sinα|t|

) 1
2

H(η), y =
(

4μ cos2 α|x|3
9ρg sin3 α|t|

) 1
4

η, (4)

then (1) reduces to a second-order ordinary differential equation forH , namely

St

[
1
2
ηH ′ −H

]
= Sg

[
H3H ′]′ + Sx

[
1
2
η

(
H3

)′ −H3

]
, (5)

where a dash denotes differentiation with respect to η, and we have introduced
the notation St = sgn(t) = ±1, Sg = sgn(cosα) = ±1 and Sx = sgn(x) = ±1.
For a symmetric rivulet, regular at y = 0, appropriate boundary conditions
are

H = H0, H ′ = 0 at η = 0, (6)

where the parameter H0 (> 0) is to be determined. The position where H = 0
is denoted η = η0 (corresponding to the contact-line position y = a), so that

H = 0 at η = η0, H3H ′ → 0 as η → η0. (7)

At any time t the rivulet widens or narrows according to |x|3/4 and thickens
or thins according to |x|1/2, and at any station x the rivulet widens or narrows
according to |t|−1/4 and thickens or thins according to |t|−1/2. The ‘nose’ of
the rivulet remains fixed at the origin O for all t.

3 Solution of the System (5)–(7)

A closed-form solution of the ordinary differential equation (5) is not avail-
able, and so it must, in general, be solved numerically for H subject to the
boundary conditions (6) and (7), where H0 and η0 are (positive) parameters
to be determined. Without loss of generality, we may choose St = 1 (i.e. t ≥ 0)
when solving (5). (The case St = −1, i.e. t < 0, has a different physical inter-
pretation from the case St = 1; this will be discussed briefly in Sect. 4.) Thus,
in principle, with two choices for each of Sg and Sx, there are four cases to
consider; however, it turns out that the system (5)–(7) has solutions in only
one of these cases, namely the one with Sg = −1 and Sx = 1, and so from
now on we shall consider only that case.

Equation (5) with St = 1, Sg = −1 and Sx = 1 was solved numerically for
H subject to (6) for a given value of H0 by means of a shooting technique,
the value of η0 being determined as the point where H = 0, by (7a). It was
found that there is a solution for all H0 > 0 except in a narrow ‘window’ near
H0 = 1 given by H01 < H0 < H02, where H01 � 0.9995 and H02 � 1.1059, in
which there is no solution.

The relation between H0 and η0 is not monotonic: for any given value of
H0 outside the interval H01 < H0 < H02 there is a corresponding unique
value of η0, but for any given η0 there can be zero, one, two or three solutions,
depending on the value of η0.
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Fig. 2. Plot of C as a function of H0 (full line), together with the leading order
asymptotic solutions (11) in the limit H0 → 0+ (dashed line) and (12) in the limit
H0 → ∞ (dashed-dotted line); here H01 � 0.9995 and H02 � 1.1059

It is found that H satisfies

H = H0 +
1−H2

0

2H2
0

η2 +O
(
η4

)
(8)

as η → 0, and either

H ∼
[

3
2
η0 (η0 − η)

] 1
3

(9)

or
H ∼ C (η0 − η)

1
4 (10)

as η → η−0 , where C is a positive constant. In the limit H0 → 0+ the solution
comprises an outer region in which H =

(
3η2/5

)1/3 at leading order, together
with two boundary layers, one near η = 0 of width O(H3/2

0 ) in which H =
O(H0), and another near the contact line η = η0 → ∞ of width O(η−1/3

0 ) in
which H = O(η2/3

0 ); in particular, it is found that η0 ∼ (−K logH0)3/4 →∞
as H0 → 0+, where K � 0.8498. In the limit H0 → ∞ we have H = O(H0)
and η0 = O(H1/2

0 )→∞.
Thus far we have obtained a one-parameter family of solutions of (5),

(6) and (7a), parameterised by H0, and with η0 determined in terms of H0.
However, this does not yet answer the problem of determining all physically
sensible solutions of (1) of the form (3); to do this we must also impose
condition (7b), or equivalently the condition C = 0. Figure 2 shows a plot
of C as a function of H0, together with appropriate leading order asymptotic
forms of C, given by
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Fig. 3. Three-dimensional plot of the free surface z = h of a pendent rivulet rep-
resented by the similarity solution (4) in which H satisfies (5)–(7) with St = 1,
Sg = −1, Sx = 1 and H0 = H01, at times t = 1, 10 and 100. The inset shows the
cross-sectional profile H

C ∼ (
6
5

) 1
4 (−K logH0)

9
16 � 0.9551 (− logH0)

9
16 →∞ (11)

in the limit H0 → 0+, and

C ∼ 1.3205H
7
8
0 →∞ (12)

in the limit H0 → ∞. Figure 2 shows that C = 0 at H0 = H01 and at
H0 = H02, and is non-zero for all other values of H0. We thus arrive at our
main conclusion: there are similarity solutions of the type sought only for
H0 = H01 � 0.9995 and H0 = H02 � 1.1059.

4 Conclusions

We have obtained similarity solutions of the form (4) (where H(η) satisfies
the system (5)–(7)), describing the free-surface profiles of thin slender rivulets
undergoing unsteady gravity-driven flow down an inclined plane.

The choice St = 1, Sg = −1, Sx = 1 corresponds to pendent rivulets
in x > 0 with t > 0. Figures 3 and 4 show three-dimensional plots of the
free-surface profile z = h (suitably non-dimensionalised) in the two cases for
which solutions exist, namely H0 = H01 � 0.9995 and H0 = H02 � 1.1059,
respectively, at various times. As shown in the insets, for H0 = H01 the cross-
sectional profile is (barely discernibly) ‘double-humped’, and for H0 = H02 it
is ‘single-humped’, in agreement with (8). At any time t (> 0) the rivulets
widen according to x3/4 and thicken according to x1/2, and at any station x
(> 0) they narrow according to t−1/4 and thin according to t−1/2.
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Fig. 4. As in Fig. 3, but with H0 = H02

The alternative choice St = −1, Sg = 1, Sx = −1 leads to exactly the same
mathematical problem as that discussed above, but the physical interpretation
is rather different, since it corresponds to sessile rivulets in x < 0, with t < 0.
At any time t (< 0) the rivulets become thinner and narrower with increasing
x (< 0), but at any x (< 0) they become wider and thicker as time elapses.
In fact, in this interpretation the solutions exhibit a finite-time singularity, at
t = 0, with h becoming infinite everywhere then.

There remains the question of whether rivulet solutions of the above types
could occur in practice. In particular, the stability of the solutions is, of course,
crucial, but it seems that even a restricted linear stability analysis is likely to
be a formidable task.
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Summary. On non-ideal real substrates the onset of droplet motion under lateral
driving is strongly influenced by substrate defects. A finite driving force is necessary
to overcome the pinning influence of microscale heterogeneities. The dynamics of
depinning two- and three-dimensional droplets is studied using a long-wave evolu-
tion equation for the film thickness profile in the case of a localized hydrophobic
wettability defect. It is found that the nature of the depinning transition explains
the experimentally observed stick-slip motion.

1 Introduction

Both steady states and the evolution in time of droplets or liquid films on
solid substrates in the limit of small contact angles and surface slopes are
described well by the thin film or lubrication equation [13, 19]

∂th = −∇ · [m(h)∇p(h) + μ(h)ex] , (1)

where h(x, y, t) is the thickness profile, m(h) is the mobility, and μ(h)
represents a lateral driving force.

For a droplet on an incline this force might be due to gravity. In other sit-
uations similar forces arise as the result of rotation (centrifugal force), or gra-
dients in wettability, although temperature and electrical field gradients can
also introduce lateral forces into the problem. The pressure p(h) may contain
several terms, e.g., curvature pressure (capillary) or a thickness-dependent dis-
joining pressure Π(h) modeling the effective molecular interactions between
substrate and film surface (wettability), for example, due to van der Waals
interactions [5, 12]. Other contributions may arise from electrostatic fields
[16, 18, 38], thermal effects [2, 20, 37] or hydrostatics [4, 6, 9].
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Fig. 1. (a) Bifurcation diagram for a droplet that depins via a sniper bifurcation.
The localized hydrophobic defect with s = 6, ε = 0.4 and b = 0.1 pins the droplet
until depinning occurs at the lateral driving force μc ≈ 0.014. For details see main
text. (b) Thickness profiles of pinned droplets for μ < μc for ε = 1. The lower panel
gives the profile of the heterogeneity ξ(x). The domain size is L = 25 and the liquid
volume is V = 37.5

The system behavior is well studied for smooth homogeneous substrates.
Without lateral driving force, an unstable film may structure via a long-wave
instability resulting in patterns of holes, drops or labyrinths. The emerging
structure sizes depend on the mean film thickness and the type of destabilizing
influence [2, 23, 26, 27, 29]. One finds a similar situation for systems involving
lateral driving forces such as gravity for a film on an incline [11,21]. The lateral
driving gives rise to phenomena like transverse front instabilities [8,11,28,31].
A few studies focus on films and drops on heterogeneous substrates without
lateral driving [3,14,30]. However, relatively little is known about the interplay
of lateral driving and substrate heterogeneities. This is an important problem
as such heterogeneities may cause stick-slip motion [25] or roughening [10,24]
of moving contact lines, and are thought to be responsible for contact angle
hysteresis [5, 15, 22].

Recently, [32, 33] studied the problem employing a dynamical systems
approach based on thin film theory. In particular they use a wettability
(disjoining pressure) that depends on the location on the substrate. In this
way localized hydrophilic or hydrophobic substrate defects can be modeled.
Constructing an idealized periodically heterogeneous substrate one can then
employ tools of dynamical systems theory to study steady droplet constel-
lations under small driving and the dynamics of the depinning process at a
larger lateral driving. The dynamical approach has the advantage over static
variational methods [17] in that it allows one to investigate the evolution of
droplet shapes and stability as a function of the driving and the dynamics
of the depinning process itself. In the following we will present a selection of
results on the depinning of 2d droplets [33] and add material for the depinning
of 3d droplets pinned by a line defect. As an example we use a hydrophobic
defect that blocks the droplet at its front. For the case of a hydrophilic defect
we refer to [1, 32, 33].
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Fig. 2. The droplet dynamics beyond depinning is shown as space-time plot for one
period in space and time (a) close to depinning at μ = 0.013 with a temporal period
of T = 1119.9, and (b) far from depinning at μ = 0.02 (T = 212.6). The remaining
parameters are as in Fig. 1a

2 Model

To model a wettability defect we let the short-range part of the disjoining
pressure Π depend on the coordinate x (using expressions as in [33]). The
resulting film evolution equation in dimensionless form for 3d droplets is

∂th = −∇ · {h3 [∇ (Δh+Π(h, x)) + μex]
}
, (2)

where
Π(h, x) =

b

h3
− [1 + εξ(x)] e−h (3)

is the dimensionless disjoining pressure (for details see [33, 35]). We chose
ξ(x) = {2 cn[2K(k)x/L, k]}2−Δ with K(k) being the complete elliptic inte-
gral of the first kind and Δ is either zero or chosen in such a way that the
average of ξ(x) is zero. L is the system size. For k = 0 the profile is sinusoidal
whereas for k → 1 one obtains for ε > 0 localized hydrophobic defects. We
further introduce the logarithmic measure s ≡ − log(1− k).
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Fig. 3. (a) Bifurcation diagram for a 3d droplet for increasing lateral driving force μ
and ε = 0.3. The steady droplet solutions are characterized by their L2 norm ||δh||.
(b) Shown are snapshots of height contour lines characterizing the droplet dynamics
beyond their depinning via a sniper bifurcation for μ = 8.0 × 10−3. From top left
to bottom right droplets are shown at times t = 0, 1160, 1240, 1340, 1680, 2930. The
position of the line defect is indicated by a straight horizontal line. The domain size
is 40× 40, V = 1600, and the distance between the contour lines Δh = 0.4

3 Results

Under lateral driving (μ > 0) no droplet remains at rest on a homogeneous
substrate (ε = 0), i.e., a substrate without lateral variation or defect. All
such droplets will (in the lubrication limit) slide with a constant velocity
that is determined by the driving force, the properties of the liquid, and
the wettability [34, 36]. The situation is very different on a heterogeneous
substrate. There drops are pinned for small driving, and depin at a critical
driving μc. For larger driving the droplets slide with a profile that is modulated
when passing a defect.

Figure 1a presents the corresponding bifurcation diagram. It gives as solid
line the L2 norm for steady droplet solutions obtained by continuation [7],
selected steady solutions as obtained by time integration (circles) and the
time-averaged L2 norm for the unsteady sliding droplet solutions beyond
depinning (triangles). The inverse time period for the latter is given as inset.
Its (μ− μc)1/2 dependence indicates that the bifurcation represents a Saddle
Node Infinite PERiod (SNIPER) bifurcation. Selected steady profiles before
depinning (μ < μc) are shown in Fig. 1b. The time evolution beyond depinning
is represented in the form of space-time plots for a typical stick-slip motion
close to the sniper bifurcation (Fig. 2a) and for a larger force where droplet
motion is more continuous (Fig. 2b).

Recently a path-following algorithm has been developed for three-
dimensional droplets [1]. It has been shown that all main results on depin-
ning obtained for 2d droplets hold as well for 3d droplets. Figure 3a shows
the bifurcation diagram for a single droplet on a square domain blocked by a
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hydrophobic stripe-like defect. It strongly resembles the corresponding result
for the 2d case (Fig. 1a). Time simulations show that depinning occurs via a
SNIPER bifurcation in this case as well. An example of a time series for a
stick-slip motion of a single droplet is given in Fig. 3b as a series of snapshots.
Note that the times at which the snapshots are taken are not equidistant. It
takes the droplet about 1200 time units to slowly let an advancing ‘protru-
sion’ creep over the defect (snapshot 1–2). Then within 500 units it depins and
slides to the next defect (snapshot 2–5), where it needs another 1300 units to
reach again the same state as in snapshot 1 (snapshot 5–6). All together for
the chosen value of μ the ratio of stick phase to slip phase is about 5:1. The
ratio becomes larger if one approaches the bifurcation point.

4 Conclusion

We have reviewed recent work on the depinning dynamics of the depinning
of two- and three-dimensional droplets under lateral driving. Here, we have
focused on one type of defect (hydrophobic, localized) and one type of depin-
ning transition (SNIPER). For results on hydrophilic defects and for larger
drops see [1, 32, 33].

We have found that the depinning behavior is very similar for 2d and 3d
droplets: Droplets are pinned up to a critical driving strength μc where they
depin via a SNIPER bifurcation characterized by a square-root dependence of
the inverse time scale of depinning on the distance μ− μc. Slightly above the
bifurcation the unsteady motion resembles the stick-slip motion observed in
experiment: The advancing motion is extremely slow when the drop ‘creeps’
over a hydrophobic defect, and very fast once the drop breaks away from the
defect and slides to the next one. The difference in time scales for the stick-
and the slip-phase can be many orders of magnitude.

Note that at very large driving depinning might as well occur via a Hopf
instead of a SNIPER bifurcation [32]. It is thought that then the depinning
is actually caused by the flow in the wetting layer, an effect that will for
realistic forces not be observed for partially wetting nano- or micro-droplets
on an incline with wettability defects. However, for dielectric liquids a thick
wetting layer of 100 nm to 1μm stabilized by van der Waals interaction can
coexist with micro-droplets generated by an electric field [16, 18], and both
depinning mechanisms should be observable using gravity as the driving force
(see appendix of [33]).

We acknowledge support by the EU [MRTN-CT-2004005728 PATTERNS]
and the DFG [SFB 486, project B13].
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10. Golestanian, R., Raphaël, E.: Europhys. Lett. 55, 228–234 (2001)
11. Huppert, H.E.: Nature 300, 427–429 (1982)
12. Israelachvili, J.N.: Intermolecular and Surface Forces. Academic, London (1992)
13. Kalliadasis, S., Thiele, U. (eds.) Thin Films of Soft Matter. Springer, Wien

(2007)
14. Konnur, R., Kargupta, K., Sharma, A.: Phys. Rev. Lett. 84, 931–934 (2000)
15. Leger, L., Joanny, J.F.: Rep. Prog. Phys. 55, 431–486 (1992)
16. Lin, Z., Kerle, T., Baker, S.M., Hoagland, D.A., Schäffer, E., Steiner, U., Russell,
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Mathematics as a scientific field in conjunction with its large variety of appli-
cations turns out to be one of today’s key skills. Products and processes of
different kind are more and more developed and designed by means of math-
ematical modelling starting from the initial concept up to manufacturing and
service. Hence, interaction with industry in the widest sense is a desirable aim
for European studies in applied mathematics.

ECMI was founded with the aim to strengthen the collaboration between
mathematical departments at European universities and the European indus-
try and to promote the use of mathematical models in industry. The advantage
is obvious for both sides: industry provides interesting real-life problems to
train the student’s skills in mathematical modelling and programming and on
the other hand benefits from the expertise of the mathematicians in modern
mathematical modelling methods and numerical solving techniques. As a feed-
back these collaborations generate demands for new methods, give impulse
to new areas of research, and the industrial partners become aware what
mathematics can do for them and, perhaps, start creating new tasks.

Interested in an appropriate education of students who in the future intend
to work as mathematicians in industry, in the late 80s ECMI created a two-
year postgraduate programme in Industrial Mathematics. The programme
prescribes a number of core courses forming the basic knowledge every student
of industrial mathematics should have and thus obligatory for them. Further it
includes modelling activities and a study abroad at another ECMI university
for at least one term. The modelling activities comprise a modelling seminar
and the International ECMI Modelling Week. The remaining courses of the
study can be chosen freely among a offered list of specialization courses. The
programme finishes with a project placed in industry which is completed by
a report written in English on the level of a master thesis. Graduates of this
programme receive a certificate.

Up to now the implementation of the ECMI study programme varied con-
siderably from ECMI node to ECMI node. Some universities implemented it
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as part of their two years master study, some as additional programme during
the diploma study, others after the masters degree, e.g. as initial part of the
Ph.D. study. At present the ECMI educational system certifies too few stu-
dents, i.e. too few accomplish the complete programme. Reasons are several:
the extra work load, too hard common core requirements, not enough aware-
ness of the certificate in the European world of science and industry, and
therefore not enough advantage for the student.

The aim of the new EU project “ECMI Model Master in Industrial Math-
ematics”, a common project of 10 ECMI partners under the leadership of the
University Carlos III of Madrid, is to establish an innovative model of a Euro-
pean master programme in industrial mathematics. The model curriculum
shall prescribe the general structure of the master programmes on the basis of
the existing ECMI study programme. All partners of the project implement
their own local master programmes during the next years in such a way that
they fit the general model curriculum but let special strengths of each uni-
versity flow in. Via dissemination activities the idea of this common model
master will be spread all over Europe to encourage other universities, in par-
ticular other ECMI nodes, to join this programme and establish corresponding
master programmes.

The partners expect that such a master programme will much more attract
students than the ECMI study programme could do sofar since it does not
imply additional work load and is finished by an official degree with some
international attribute. The compatibility of the local programmes under the
cover of the model curriculum allows a fluent exchange of students. All part-
ners can benefit from common expert knowledge by interchange of lecturers
and a common e-course concept.

One essential part of the master curriculum is mathematical modelling.
Hence, an important point of discussion forms the question about the educa-
tional concepts that are favorite to equip the students with

– Skills in the development of mathematical models and in analyzing them.
– Knowledge of numerical methods.
– Training in advanced programming and simulations.
– Experience in tackling real-life problems coming from industry.
– Experience in team work, in the communication with engineers and the

presentation of results for mathematicians and people from industry.

The aim of the minisymposium was to discuss such concepts of mathematical
modelling. Topics of the minisymposium were the concept of modelling com-
petence, the importance of teaching continuous modelling during the study,
in particular via e-courses, and the cooperation of universities and industry
by forming common study groups.
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Summary. Research on the teaching and learning of mathematical modelling has
attracted an increasing interest during the last 20 years. One concept of special
significance in this field of research is the modelling competence, related to and
intertwined with other mathematical sub-competences. In this paper some results
from the research on the teaching and learning of mathematical modelling are pre-
sented and discussed and an example of an introductory course in mathematical
modelling for engineers is presented.

1 Introduction

The overall goal of mathematics in primary, secondary and tertiary education
is that the students become able to use mathematics in a variety of situations.
Everybody needs to understand mathematical applications as a citizen as well
as in the private life. For many, the use of mathematics is essential also in the
working life. Phil Davis [7] reflected in 1991 on the use and limitations of
mathematical descriptions at the ICTMA 4 (Fourth International Conference
on the Teaching of Mathematical Modelling and Applications):

Each age has preferred modes of prediction. Each mode opens up charac-

teristic possibilities and creates realities. Mathematical modelling is today’s

high prestige way of predicting. It is the expression of our age, and it is likely

to be around for a long while. However, we must watch it. We must watch

it because mathematical descriptions tend to drive out all others. (p 1)

Today technology makes it easier to use advanced mathematics and there-
fore it is even more necessary to be able to exert a critical view on the
results. Such a critical view may develop through an understanding of the
entire process of applying mathematics to an extra-mathematical situation.

A.D. Fitt et al. (eds.), Progress in Industrial Mathematics at ECMI 2008,

Mathematics in Industry 15, DOI 10.1007/978-3-642-12110-4 101,

c© Springer-Verlag Berlin Heidelberg 2010



634 G. Brandell

2 Modelling and the Modelling Competence

In any application of mathematics a mathematical model is involved. There
are many definitions of a mathematical model in the literature. Here we fol-
low Blomhøj and Jensen [2]. In short a mathematical model consists of the
following: an extra-mathematical (real-world) domain, the perceived reality,
a mathematical system describing some aspects of the perceived reality, and
mathematical model results that may be applied to the real situation. See
Fig. 1. During the modelling process the real system is delimited to a domain
of inquiry, then reduced to a well defined system and translated into mathe-
matical symbols and relations. Empirical data and mathematical theory give
structure and content to the mathematical model. The results appear as solu-
tions to the equations and relations in the mathematical system and are
interpreted as insight into the reality or actions possible to carry out.

Mathematical ability is described in terms of competences by Niss [12].
The ability to carry out the modelling process is viewed as one specific math-
ematical competence among eight sub-competencies that together form what
is called mathematical competence. The mathematical modelling competence
is the ability to perform the processes that are involved in the construction
and investigation of mathematical models [1]. According to Niss it includes
among other things the following:

• Identify relevant questions, variables, relations and assumptions in a given
real world situation.

• Simplify the real system and leave out factors of supposedly minor
influence.

• Translate into mathematics.

Fig. 1. The modelling process according to Blomhøj et al. [2]
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• Work within the mathematical domain.
• Interpret and validate the solution of the model.
• Analyse and compare given mathematical models.
• Check properties and scope of a given model.

3 The Role and Place of Mathematical Modelling
in Mathematics Education

Researchers in mathematics education have discussed reasons for modelling
and applications in the mathematical curriculum at secondary and tertiary
level and a number of aims have been put forward [5,10]. According to Blum [3]
there are four types of arguments for including mathematical modelling in edu-
cation. The pragmatic argument refers to the usefulness in extra-mathematical
situations. A formative argument is that modelling develops general qualifi-
cations, such as translation between real-world and a description of reality.
The cultural argument refers to knowledge of the role of mathematics in soci-
ety. Finally the psychological argument is that modelling may be helpful for
learning mathematics. However it is still open to discussion and research to
which extent each of these arguments is valid in specific contexts.

Traditionally mathematical modelling is not included or made explicit in
the mathematics school curriculum. Applications in other school subjects are
polished and neat (physics, chemistry) and give no information of the mod-
elling cycle. However, transfer of learning and knowledge to a new context is
problematic and a classical educational issue both in practice and in research
[9]. In general, transfer is only possible when the new context is quite similar
to the old one. An important result from research in mathematics education
seems to be that teaching and learning must address each specific mathe-
matical competence that students should develop. If we wish students to
reach some competence in mathematical modelling, then we have to teach
mathematical modelling and make it explicit.

Different levels of understanding of the modelling process are required
at various levels and for various groups of students. Students at higher lev-
els ought to develop perspectives on mathematical modelling according to
their future specialisation. Engineers use models constructed by others, modify
existing mathematical models, and in some cases develop new mathematical
models in cooperation with other specialists. Therefore – I claim – engineer-
ing students ought to develop a mathematical modelling competence. The
same argument is relevant for students specialising in applied mathematics.
The students need to experience that application of mathematics requires
understanding and knowledge of the pertinent subject area, the relevant
mathematics and the modelling process.



636 G. Brandell

4 Sense-Making and Classroom Norms

One aspect of the modelling competence relevant already in primary education
is the evaluation of a result in view of a real situation. A few examples of
problems for which this competence is needed are the following:

• Carl has five friends and George has six friends. Carl and George decide to
give a party together. They invite all their friends. All friends are present.
How many friends are there at the party?

• Alice and Bruce go to the same school. Alice lives at a distance of 17 km
from the school and Bruce at 8 km. How far do Alice and Bruce live from
each other?

• John’s best time to run 100 m is 17 s. How long will it take for him to run
1 km?

These problems have been used in several research studies, replicating an
original study in the Netherlands and Northern Ireland. In the original inves-
tigation 90–95% of the pupils tested (upper elementary and lower secondary
level) gave the answers 11 friends, 9 or 25 km and 170 s [8]. So why do students
seem to avoid making sense in the mathematics classroom even if it would be
possible for them to judge their result in view of a well-known reality?

The norms and values of a mathematics classroom influence the students’
actions. According to Brousseau [6], a didactical contract shapes a student’s
beliefs and strategies in a teaching and learning situation. The teacher is
responsible for making the learning meaningful for the student, and the stu-
dent creates meaning for her- or himself by giving the right answers, following
the instructions and so on. The implicit rules for mathematical problem solv-
ing implies that problems are not authentic, that any problem presented is
solvable with one exact answer and that violations of your knowledge about
everyday world may be ignored. An attitude is created that (school) mathe-
matics forms a universe of its own – mathematics does not exist in a context
where it is allowed or helpful to use common sense. Students bring this atti-
tude with them to tertiary level. These attitudes and beliefs are probably most
efficiently influenced and changed when students experience the full modelling
cycle in an meaningful context.

5 Introductory Course in Mathematical Modelling

Traditionally the mathematical modelling process is not present in engineering
programmes or enters at a late stage of the education, e.g. in a final exam-
ination project. However at some universities a different strategy is applied.
Students get an early introduction into mathematical modelling, building on
those mathematical tools at hand.

Courses in mathematical modelling may be designed in various ways. Two
alternatives are to put more emphasis on mathematics through modelling
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or on modelling through mathematics. It is easier to be explicit about the
modelling process if the students work with well-known mathematics, as in
the second alternative. However, also in the latter case, working with mathe-
matical models has a potential to deepen the understanding of mathematical
concepts already known to the students.

At two Swedish universities introductory courses in mathematical mod-
elling for engineering students have been given according to the ideas pre-
sented above. At Lule̊a University of Technology a course has been given as
part of the basic mathematics course of the engineering master programme
since the 1980s. At Lund University a similar course is included in the first
year of the engineering mathematics master programme since its start in 2002.

The purpose of the course in Lund is that the students change their atti-
tudes towards the usefulness of mathematics and learn about the modelling
process. More specifically the goals are to let the students

• Become aware of the meaning of mathematical modelling.
• Increase their self reliance when it comes to use mathematics in various

contexts.
• Acquire modelling competence at an introductory level.
• Learn to handle computer support (Matlab, LaTeX).
• Acquire communication competence specifically about mathematics and

modelling [11].

The course is given during seven weeks and corresponds to 4.5 ECTS-
points. Students work with independent project work in co-operative groups
of 3–4 persons. The projects are given by the teachers as open-ended prob-
lems in non-mathematical language and students have full responsibility for
their model. All projects admit several valid models in reach of the students’
capacity. Three projects are given with increasing complexity and several col-
leagues participate as supervisors. The students report on the projects in
written reports and oral presentations. A peer review system is used to let
the students learn from the experience of other students. However, the peer
reviews are examined and supplemented by the supervisor. Only a few lectures
are given. The students’ evaluation is overwhelmingly positive. Generally the
quality of the model improves through the sequence and the great majority
of students raise the level of the presentation.

6 Issues in Research About Mathematical Modelling

Three phases may be discerned in the development of research about appli-
cations and modelling in mathematics education since the 1960s [13]. During
the first phase (roughly 1965–1975) the main focus was on developing the
arguments for including modelling in school curricula and educational pro-
grammes at universities. During the second phase (roughly 1975–1990) the
development of courses in mathematical modelling and course materials were
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brought into the focus. Much activity was reported from e.g. UK, US, Den-
mark and the Netherlands. During the last decades these strands have been
further developed and complemented by empirical studies that give insight
into the results of the teaching and learning of mathematical modelling. For
those interested in the on-going research in this area there are a number of
international conferences and publications. See a bibliography in [4].

7 Conclusion

In this article I have shown that mathematical modelling and applications has
been a theme within research in mathematics education for decades, address-
ing among other issues the modelling competence and the various aims of
modelling. However, it is still rare to include courses in mathematical mod-
elling in programs for engineering students. In the article such courses are
described that successfully meet the goal of teaching modelling as a spe-
cific competence and influence the students’ beliefs about the usefulness of
mathematics in applications.
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Summary. A model is an analog of the object under consideration which replaces
this object in human cognition. The main field of activity of the specialists of indus-
trial mathematics is mathematical modelling and differential equations of all types
are the main tools of continuous modelling. Because of that various courses con-
nected with differential equations have an important place in the study programs
on industrial mathematics, although there are differences in the proportions of those
courses in the mandatory part of master programs among ECMIMIM partner uni-
versities. We also notice changes in historical development of the ECMI philosophy
and execution of the curriculum of master on mathematics in industry from the
establishment of ECMI in 1986. An additional conclusion to be taken into account
for common online courses is that these need not be very large and expensive in
the sense of ECTS assessment, compact teaching tools concentrated on a few fixed
topics and which give 2–3 ECTS points to learner would be better.

1 Introduction

During the studies on industrial mathematics students have to learn to pose
their own questions about the world, to understand the questions given by
other people, particularly by the specialists of various human activities and
to use mathematics to answer those questions. In other words, this means to
develop the skills of students to understand real situations and then establish
mathematical models, i.e. to use mathematical modelling to illustrate, explain
and predict the behaviour of the object or phenomenon under consideration.
Industrial innovation is increasingly based on the results and techniques of
scientific research and that research, in turn, is both underpinned and driven
by mathematics [7].

In this paper, at first, the general meaning of model is explained. The
short overview of partner institutions master programs and development of
ECMI viewpoint to industrial mathematics curriculum shows that the courses
of differential equations have a significant place there. It is important that the
individualities of partner universities are valuated, although there is enough
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similarity to go on together in ECMIMIM community. From the modelling
point of view some requirements arise for designing web-tool on differential
equations.

2 Model and Modelling

Model by general definition is an analog, prototype of the object under consid-
eration which replaces this object in human cognition. There are many types
and classes of models in use in all human action fields, also several classifica-
tion bases for these models. A model in science is a physical, mathematical,
or logical representation of a system of entities, phenomena, or processes, so
mathematical models are subclass of scientificals.

The replacement process of the object with its analog, the process of con-
structing models, is called modelling. In the case of mathematical modelling
this replacement is done using mathematical means and tools, this building
schedule is clearly explained in book [5]. Although there is no point to be too
precise in defining the term “mathematical modelling”, there is quite clear
understanding of the types of these. Some models are explicative explaining
a phenomenon in terms of simpler, more basic processes. All useful models,
whatever type, are predictive in the sense that they allow us to make quanti-
tative predictions that can be used either to test and refine the model, should
that be necessary, or for use in practice [4].

The act of creating a model, mathematical included, forces the modeler to
think deeply about the settings and conditions which must be fulfilled in the
model. Translating an imprecise, complex, multivariate real-world situation
into a simpler, more clearly defined mathematical structure such as functions,
equations or a system of rules for a simulation can yield several properties
or benefits of object [1]. Specialists of mathematics in industry must be able
to do these kinds of “cuttings”, they must be ready to discover that in many
concrete cases, mathematical modelling and simulation have revealed unex-
pected behaviour of the relevant system and this presupposes the good enough
knowledge of mathematics to where this translating is realized.

The main modelling stages which might be covered by courses on dif-
ferential equations are: identification of the problem to be convinced that
differential equations are applicable; formulation of the problem, including
the choice of significant parameters; choice of type of differential equation
depending on essence of phenomenon under investigation; choice of methods
of research of the model in different stages – qualitative and quantitative,
i.e. numerical methods; final elaboration of model, included to make clear
the computer resource needed; application of model, simulations and numer-
ical experiments; interpretation of results and solutions. For real differential
equations modelling the first and last stages are quite complicated to teach
as they contain enough heuristics, here presence of industrial specialists is
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necessary. Success can be achieved by supporting the education with suffi-
cient examples, case studies and interactive training possibilities. Other stages
would be taught and trained in known ways.

The importance of simulation with differential equations models should
be mentioned separately. Simulation is the implementation of a model over
time, the act of imitating the behavior of some situation or some process by
means of something suitably analogous. Results of numerical simulations can
be tested with experimental data, and discrepancies resolved by improving
the mathematical model [7].

3 Overview of the Master Programs

From the point of view of the university, mathematics has been an indepen-
dent discipline for a long time. But new ideas develop either independently
within the discipline or under the stimulus of applications. Thus, strengthen-
ing the ties between mathematics and industry will stimulate the development
of mathematical sciences. Teaching of differential equations is already today
often based on the modelling perspective. Workbooks are designed with
accompanying software packages for solving and investigating differential
equations and connected results [3]. Less and less we find pure theoretical
courses, particularly on the undergraduate and master level. Applicational
output is underlined as a very significant aspect of theory.

Ideas of industrial mathematics have begun to develop since 1986 when the
ECMI was established. The exact history is not written yet, but we can say
that during the academic year of 1986–1987, representatives of ten universities
belonging to the European Consortium for Mathematics in Industry (ECMI)
designed a two year postgraduate programme and reported the results in
accounts dated February 20, 1987 and March 20, 1987. As intended, an educa-
tional programme which includes exchange of students, exchange of teachers,
central international courses and cooperation with industry became opera-
tional. The experiences from the first few years of this ECMI-educational
system have been discussed in detail by its partners and together with certain
new insights they have led to an agreement on small changes in the philosophy
and execution of the Programme. The resulting description, dated August 8,
1990, has been the guideline for the Programme for a period of about five
years in which the educational system of ECMI was consolidated and gradu-
ally extended. After a long discussion, the final result has been approved in
the meeting of the Council of ECMI on July 8, 1995.

In this curriculum the common core was fixed and this was obligatory to be
taught at all educational centres. This mandatory part contained the follow-
ing courses: analytical methods for ordinary differential equations; analytical
methods for partial differential equations; numerical methods for ordinary
differential equations; numerical methods for partial differential equations;
nonlinear optimization; linear systems theory; regression analysis; discrete
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optimization. The whole curriculum was divided into two parts: technomath-
ematics and economathematics, the course list above is from the first branch.
Notice that five courses out of eight are connected with differential equations.
This shows the attention paid to those.

By the beginning of the 21th century the position of ECMI had changed.
In 2002 there were only five topics fixed to be presented in the common core
of master program for mathematics in industry: modelling seminar, scien-
tific computing, optimization and statistics, ordinary differential equations,
partial differential equations. The goals of education were clearly formulated:
to produce trained students who can formulate a mathematical model from a
description given by a non-mathematical industrial or specialist; carry out rel-
evant mathematical analysis of an established model; select and implement an
appropriate numerical method; use modern computation and communication
tools; realize simulation and numerical experiments; interpret and improve
results in consultation with the user; integrate all parts of the problem solving
process; communicate on non-academic level; formulate the obtained results
and reports.

These goals have been followed by ECMIMIM partner universities, but
also in several other universities in Europe as well, where the master and
even undergraduate programmes of mathematics in industry are working per-
fectly. At the same time academic institutions kept freedom to express their
individualities and local strengths. From the point of view of continuous mod-
elling we can find different obligatory courses in study programs which touch
differential equations more or less directly. Some examples: differential equa-
tions, ordinary differential equations, partial differential equations, equations
of mathematical physics, numerical methods in general and separately for ordi-
nary and partial differential equations, modelling seminar, case study seminar,
linear systems etc. In all of these the accent on the possibilities of using differ-
ential equations to construct models of real world is of great importance. The
topics are taught in a way that the students understand the essence and nature
of differential equation models and outputs of modelling and simulations.

4 Designing of a Web-Tool on Differential Equations

Computer, the most modern tool, is a very good teacher of differential equa-
tion models bridging numerical and continuous solutions and because of this
it is reasonable to offer e-courses in the education of industrial mathemati-
cians. Web makes it possible to also increase synergy and efficiency of the
corresponding resources. For learners, online learning knows no time zones,
and location and distance are not an issue. In asynchronous online learning,
students can access online materials at any time, while synchronous online
learning allows for real time interaction between students and the instructor.
Learners can use the Internet to access up-to-date and relevant learning
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materials, and can communicate with experts in the field in which they are
studying. Situated learning is facilitated, since learners can complete online
courses while working on the job or in their own space, and can contextualize
the learning [2].

Differential equation courses are classical in theoretical sense and one can
find a lot of materials online: lecture notes, exercises, assessment files etc. Open
web-based study sources are useful for everybody. Though ECMIMIM part-
ners need their own web-tools and online study sites due to the aim to reach,
with ECMIMIM project a new model curriculum oriented to best practical
solutions, which is intended to deliver an innovative set of European mas-
ter programmes in industrial mathematics to be implemented through double
degree agreements among the participants. Because of this it is important for
partner universities to have common knowledge management.

The main parts of web-tools are official documents, texts or lecture notes
with theory, overview with examples of methods and algorithms to solve exer-
cises, bases of modelling with differential equations physical laws, demos and
case examples and assessment materials [6]. To understand mathematics, its
logic and beauty it is important for students to listen to live presentations, live
lectures and for that purpose the web tool might also include video materials
and lectures. For teaching mathematics the blended learning, where individ-
ual work with an e-course is accompanied by classwork, lectures, seminars
and tutorial lessons seems useful. In general, adequate learning support for a
student must be provided. Additionally it would be useful to supply web tools
with short software manuals with orientation to applications using differential
equations and with links to other resources and communication means as well.

Often e-teaching materials are not interactive, but are read-only. One sig-
nificant feature which has been included in the web tool used in ECMIMIM
community to teach industrial mathematicians is interactive modelling envi-
ronment. It is important that student can “play” with their own problem, can
change parameters and conditions and then visualize the result. This helps
to promote student’s creativity and demonstrate the link between theoreti-
cal concepts and applications. Interactive online learning can better create
challenging activities that enable learners to link new information to old and
acquire really meaningful and applicable knowledge. However, it is not the
computer per se that makes students learn, but the design of real-life models
and simulations, and the students’ interaction with those models and sim-
ulations. The computer is merely the vehicle that provides the processing
capability and delivers the instruction to learners [2].

The whole field of differential equations is very wide and it is hard to
imagine that this would be placed into one only web-environment. There is
also no need for such a colossal tool in the common curriculum. Even ordinary
differential equations separately form too large area to be drawn together
into one e-course. Another reason to be sceptical is that the one and only
comprehensive tool can be too rigid to satisfy all the study programs of the
partners as well as students who maybe want to study only some selected
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topic of differential equations. Therefore the content of the whole field might
be divided into reasonable parts. A good measure for this is the study credit
system. As a rule, for example, the ordinary differential equations are included
into curriculum as one classical course with up to 7.5 ECTS points. If we start
to design and construct e-courses it is reasonable to think carefully about
the volumes of components and instead of 7.5 credits e-course maybe it is
better to prepare several e-courses with less credit points. For example, design
separately the part of linear differential equations. The construction process of
very huge web-tools may take too much time, instead of this we can complete
a smaller course with more reasonable time and it might be finished and
started. The final splitting of the field and also the programs of the courses on
differential equations is a topic for consultations between partner universities.

The web-tool on differential equations must support high-quality studies of
high levels of interactivity centred on the student, but also the involvement of
new target groups. The online developer must know the different approaches
to learning in order to select the most appropriate instructional strategies.
Learning strategies should be selected to motivate learners, facilitate deep
processing, build the whole person, cater for individual differences, pro-
mote meaningful learning, encourage interaction, provide feedback, facilitate
contextual learning, and provide support during the learning process [2].

One appropriate methodological basement of the web-tool design is
ADDIE, (Analyze, Design, Develop, Implement, Evaluate), which is in use
in several universities. The course materials and tools are created according
to the needs of the target group of students and essentials of the discipline, i.e.
differential equations, ordinary or partial. Different design stages bring along
different necessary activities and approaches [2].
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During their meeting in February 2008, the ECMI Educational Committee
decided to propose minisymposia focusing on educational aspects for ECMI
2008. The main objective for the ECMI Educational Committee is to promote
education of industrial mathematicians by collaboration on the development
of course curriculum in mathematical disciplines relevant for applications in
industry and commerce, and by exchange of students and teachers between the
ECMI partner universities. Most of the committee’s activities are directed to
students at the master level. However, the following citation from the PISA
2006 survey, emphasize the importance of motivating students at the high
school and undergraduate level as well:

“In today’s technology-based societies, understanding fundamental scien-
tific concepts and theories and the ability to structure and solve scientific
problems are more important than ever. Yet the percentage of students in
some OECD countries who are studying science and technology in universi-
ties has dropped markedly over the past 15 years. The reasons for this are
varied, but some research suggests that student attitudes towards science,
may play an important role (OECD, 2006a).”

The minisymposium aims to cover different aspects of teaching of applied
and industrial mathematics not only at a bachelor or master level, but also
at a high school level. The common divisor of all these aspects is the art of
mathematical modeling. The ultimate goal is to train students to apply and
develop mathematical methods and have the computational skills to solve
industrial and engineering problems.

The presentation of Martin Bracke, (Technische Universität Kaiserslautern)
covers how mathematical modeling activities have been introduced for high
school students, as well as for students in teachers education. K. Schmidt
(Technical University of Denmark) presents how Maple has been introduced in
the introductory math courses at DTU in order to e.g. be able to introduce stu-
dents to realistic problems at an early stage. He also discusses how technology
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changes the student’s use of textbooks and other knowledge resources in dif-
ferent study activities. Usually, to learn mathematical modeling is a process
of doing by trial and error. By means of a wide range of examples one tries to
build up competencies in the design of mathematical models. In his presen-
tation, K. van Overveld (Technische Universiteit Eindhoven) shows that an
overall systematic approach will give better insight in the modeling process
and could lead to better results.



Modelling Reality: Motivate Your Students!

M. Bracke

Department of Mathematics, University of Kaiserslautern, P.O. Box 3049, 67653
Kaiserslautern, Germany, bracke@mathematik.uni-kl.de

Summary. Many universities have established modelling activities like special lec-
tures on modelling, seminars or project work for math students; the Ecmi Modelling
Week is a nice example on a European level. In the past years there is a strong (and
growing) interest in the integration of modelling activities at high school level: From
the results of the Pisa studies we know that students as well as their teachers need
to enhance their modelling literacy.

In this paper we first motivate our strong focus on real world problems when
conducting modelling activities and briefly summarise the general framework of our
projects. Then we introduce three examples of modelling tasks we have presented to
different groups of students at high school level as well as at university level. Finally,
there is a short conclusion of our experiences made during the last 20 years.

1 Introduction – Motivation: The Hidden Component
in Mathematical Modelling

Many modelling projects at university as well as at high school level have been
conducted by the Department of Mathematics of the University of Kaisers-
lautern during the last 20 years. All of them have shown a big benefit for
the participating students: they recognise that they can use the mathematical
tools which are taught in school (or university, respectively) to understand
and solve real world problems – and this insight gives a lot of motivation to
learn mathematics! The logical consequence is to look for ways to incorporate
mathematical modelling of real world problems (and there is a big emphasis
on real world, for several reasons!) into standard mathematical education in
high schools and universities.

Of course the concept of mathematical modelling is by no means a new one!
Nor is it the idea of letting students deal with problems where they have to
use at least some techniques of modelling in order to obtain a mathematical
question to be solved. At the latest from publication of the results of the
Pisa studies [2] various activities to introduce mathematical modelling into
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standard math education have been started. There are many good ideas but
from our experience quite a lot of them miss a very important point: the
problem in focus has to be realistic and the modelling process should be
complete!1 In order to save time many teachers simplify the problem. This
can be done in several ways, among them:

• All information which is needed to solve the problem – and only that
information! – is provided from the beginning.

• Some steps of the modelling process have been done before handing the
problem to the students; as a consequence the students already start with
a mathematical problem or obtain such a mathematical formulation of the
original question from the pre-modelled parts without having a choice.

• Data is chosen in a way which simplifies the computations – with a possible
loss of realism.

In certain situations there are reasons for introducing some simplifications
either way, but from our point of view the experience of a complete mod-
elling process without simplifying the original problem is worth all the effort
and time. Especially those students who have a poor interest in mathematics
as they know it from school gain a lot of motivation from such an expe-
rience. Very often it shows the interdisciplinary character of mathematical
modelling and the usefulness of mathematical tools which are taught in school
but rarely applied in a real context. From the feedback we have got from
many participants of modelling projects in schools we learned that especially
the ‘soft features’ like correspondence to reality, applicability of mathematics,
non-uniqueness of solutions or allowance to follow wrong ideas which are to
be improved later make the difference.

Hence our conclusion is to offer modelling projects which show a high
degree of realism. Most of these projects are done in a compact form (1.5
up to 2.5 full days). They start with the presentation of the projects, then
the participants choose a project they like to work on and form teams with
4–5 students; at the end of the whole project all teams present their results
to the others and the important point is that they have to find explanations
which can be understood by the problem poser – hence these presentations
usually do not contain a lot of deep mathematics! In between the students try
to really understand the original problem, obtain missing information/data,
set up different mathematical models and try to solve them using the tools
they have learnt before. Almost all projects have in common that a computer
is necessary to solve the mathematical problems the students are facing. In
an ideal setting there is a supervisor for each of the modelling groups who
simulates the behaviour of the problem poser (since usually we do not have
those people with us all the time). The supervisor is supposed to answer the

1These observations have been made in German schools and universities – and
even here we do not claim them to be representative – but might be similar in other
countries.



Modelling Reality: Motivate Your Students! 649

questions of the students in the way the problem poser (i.e. an engineer, a
biologist, someone from administration) would do. In many situations the
answer is again a question to the students – hence it is really them who
determine the model and the solution process. In [1] we explain our framework
for doing modelling projects with students in detail.

2 Examples: Three Real World Problems
of Different Type

In this section we introduce three different problems which all have a real
world character. The idea of this section is not to discuss various models and
solutions of these problems (there is by far not enough space to do this even
for one of the projects) but to present them as we usually do for the students:
using the language of the problem poser, i.e. a darts player, an alpinist or
a biologist, we describe a problem to be solved. There is no mathematics in
these descriptions, some terms and notions might be new for the reader and
a lot of information is missing for sure. Let’s start!

2.1 How to Play an Optimal Darts Game?

In some parts of the world – and many European countries can be considered
to belong to them – the game of darts is known and many people have even
played the game. In Fig. 1 a dartboard is shown. The line behind which the
throwing player must stand is generally 2.37 m from the face of the dartboard
measured horizontally; the centre of the board should be at a distance of
1.73 m from the floor. The dartboard is divided into 20 numbered sectors
scoring from 1 to 20 points. Moreover, there are several rings with a different
meaning for the scores: The outermost ring (double ring) doubles the score
of the corresponding sector, hitting the next ring (triple ring) gives you three
times the number of points of the corresponding sector and the centre (bull)
which is again divided into two areas gives 25 and 50 (for the innermost circle)
points.

The rules of the game – in the standard variant – are quite simple (cf.
wikipedia): The sport of darts is usually contested between two players who
take turns in throwing up to three darts. Starting from a set score, usually
501 or 301, a player wins by reducing his score to zero. The last dart in the
leg must hit either a double or the inner portion of the bullseye, which is the
double of the outer bull, and must reduce the score to exactly 0.

Now the question sounds simple but nevertheless it is hard to grasp for
some people: How to play an optimal darts game, i.e. where should a player
aim in order to win the game? For sure this depends on his or her abilities to
hit certain points on the board, the corresponding abilities of the opponent
and the actual score. . . but how does this dependence look like?
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Fig. 1. Darts in a dart board (left) and different sectors of a dartboard (right)
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Fig. 2. Wank (1780m absolute altitude) near Garmisch-Partenkirchen, Germany

Most professional players aim at the triple 20, since three times 60 points
would give the optimal result of 180 points per leg. But clearly, most amateur
players are not able even to come close to 180! And this rises the question if
the triple 20 is the optimal point to aim at – why not triple 19 or triple 14 or
even the bull’s eye (the central circle)?

2.2 The Optimal Way to the Top of a Hill

In Fig. 2 you can see a photo of mountain Wank near Garmisch-Partenkirchen
together with an altitude profile (digital data based on a 1 m × 1 m grid is
available). The simple question is: What is the best way in the sense of energy
consumption to reach the top of the Wank?

Besides the high resolution contour data of the mountain there is some
additional information regarding the relation between energy consumption
when climbing a mountain and inclination of the path which was published
by Italian physiologists (see Fig. 3) – but that’s all the information given to
the students!
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Fig. 3. Possible relation between inclination of a path (horiz. axis, angle in degree)
and energy consumption of an alpinist (vert. axis, kJoule per meter height difference)

Fig. 4. Plastron & carapax of testudo kleinmanni

2.3 Design of an Identity Card for Turtles

How to identify a turtle using non-invasive methods (i.e. no transponder or
other electronic devices being used)?2 This question is motivated by Cites
which is accepted by 173 countries (by October 2008). The aim of Cites is
to ensure that international trade in specimens of wild animals and plants
does not threaten their survival and hence it is necessary to be able to check
the identity of animals! Fig. 4 shows photos of the plastron and carapax of an
individual of testudo kleinmanni.

At first glance, there seem to be enough features in the images which
allow for an identification of an individual. On the other hand, some animals
clearly differ a lot while there are also some which are quite similar. . . But if
you want to distinguish between 1,000,000 animals you clearly have to identify
some appropriate features and determination of quantitative values has to be
somewhat robust against various kinds of perturbations. Different models and
solutions of student teams are discussed in [1].

2.4 It is Your Choice!

Having presented three different problems it is now your choice: which one
would you like to think about or even to work on with your students? For the

2Original research project by biologist Dr. Carolin Bender (Kaiserslautern).



652 M. Bracke

students it is very important to be able to choose a project. At the beginning
of our activities we built the modelling teams based on various information
about the abilities and interests of the participants. But over the years we have
learnt that ‘having the choice’ has quite a big influence on the motivation of
the students to work on a project for a longer period of time.

For all three problems various approaches exist – which will of course
influence the solution and the final answer to our original question. But the
very nice thing about modelling is that the solution does not exist (in the
sense that there is only one model resulting in a certain answer)! The time
you can spend for the whole process as well as the mathematical tools are
going to have a very strong influence on the results.

3 Conclusions and Outlook

From our some twenty years experience of modelling with students, we can
formulate two main consequences:

• The most important aspect concerning organization and implementation
of modelling projects is learning by doing. Nobody would expect to become
a good driver or even a pilot just by reading some books at this, quality
is more or less proportional to the amount of practice (at least at the
beginning. . . ).

• Mathematical modelling should be integrated into teacher training includ-
ing the learning by doing component, training of the supervisor role and
learning how to find problems to the same extent. To achieve this one
idea is to include student teachers in organization and implementation of
modelling events in schools; we started to test this concept at TU Kaiser-
slautern some time ago and results are quite promising. A similar approach
can be followed in advanced teacher trainings.

It is not our claim that the above consequences are completely new or partic-
ularly original but we have met many people thinking that having a collection
of modelling problems at hand together with a good book on mathematical
modelling is all they need to successfully do modelling projects with their
students – and this is definitely not the case!

To conclude this paper we would like to appeal to all teachers interested
in mathematical modelling of real world projects: just start modelling with
your students – it is a lot of fun and it is worth one’s while!
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Summary. In this paper we describe and discuss the way the usual challenges of
CAS use has been met with in a first year engineering mathematics course which is
based on a thorough and experienced implementation of the advanced CAS program
Maple. The intensive use of Maple seems to cause a decrease in the students’ prepa-
ration for the lessons and in their use of the classic textbooks. Not all of the students
seem to fully utilize the experimental benefits of the software program and some of
the students do not avoid pitfalls like doing exercises just by changing the variables
in the provided Maple examples. In our conclusion we suggest an upgrading of the
Maple Demos in a way that strengthens the interactive and conceptual potentials
at the expense of the repetitive ones.

1 Introduction

Since 2001 the CAS tool, Maple, has been a fully integrated part of the first
year introductory mathematics course at The Technical University of Den-
mark (DTU). Maple supports both symbolic and numeric computations, as
well as visualizations. In a recent paper the authors of this paper has presented
selected results from a broad survey study of the mathematics study habits
of the students at DTU, see [1]. In the present paper we will focus on how
the students experience the extensive use of Maple, and how Maple influences
their working methods and use of the teaching resources. It is of special inter-
est to describe how the attitudes and behavior of the students change in the
course of the first study year, and to see if the hopes and expectations that
normally are linked to the use of CAS are reflected in the students’ evaluation
of the study program. To embed our results in the right context our paper
starts with a discussion on how DTU hitherto has met the usual challenges
of implementing CAS use in a university study program.
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2 Potentials and Pitfalls in the Use of CAS

A study in an early experiment in the use of Maple in introductory univer-
sity mathematics [3] uses the following two archetypical statements from two
classical papers on the subject to set up the potential benefits and dangers.
In the first one the computer acts as a helper and in the second one as an
obstacle on the road towards understanding: (1)“The idea is for students to
operate on a high conceptual level; in other words, they can concentrate on the
operations that are intended to be the focus of the attention and leave the lower
level operations to the computer.” (2)“Computers present particular problems
to those who favour more work with deduction. Because of their ability to dis-
play example after example, computers encourage induction as a valid method
of argument.” (p. 4 in [3]).

Of course these positions do not necessarily have to be strictly opposite, a
modern CAS supported education have to try to utilize the potentials and at
the same time to find methods to avoid the pitfalls.

In a following paper one of the authors of [3] has divided the known pro et
cons more precisely from a semiotic point of view [5]. The two above mentioned
positions are here named the lever potential and the particularity problem.
Two further dangers treated in the paper are of a special interest in our
context: The black box effect refers to the risk that the student is satisfied
when the CAS tool jumps from the problem to the solution without him or
her controlling, or at least trying to understand, the intermediate steps. And
conflicting intentions indicate that the contentment of the students might
be motivated by primarily pragmatic reasons, e.g. minimizing the time spent
while still passing the exam.

3 Trying to Utilize the Potentials

When the course Mathematics 1 (20 ECTS points, 600 students) was provided
for the first time in the year 2000, the implementation of Maple was done
through out economically, logistically and pedagogically, so that the software
program from the beginning became an important part of teaching, as well
as a tool for demonstrations at the lectures and as a key device offered for
group exercises and for a mandatory (and credit giving) big project exercise
which typically demands comprehensive calculations and visualisations. The
philosophy (and hypotheses) at DTU is that a CAS tool with support for
analytical as well as numerical computations ideally further the abilities and
enjoyments of the future engineers in modelling the technical and scientific
problems by using mathematics:

95% of every engineering model contains – and must be naturally based
upon – kernels of precisely formulated physical, chemical, and constitutive laws
and assumptions. The mathematical crux of these laws and assumptions can
most effectively be fully understood, analyzed, modified, developed and unfolded
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by applying analytical CAS tools like Maple to sufficiently small ‘toy’ versions
of the model in question. In parallel the corresponding numerical tool (like
Maple or Matlab) must be applied to solve and simulate solutions to the full
scale real problems. None of the two types of attack can substitute the other.
(p. 4 in [4]).

We will refer to this as the toy model potential and present an example of
the DTU attempts to utilize the CAS potentials which seems to display the
toy model potential on several levels: In a typical mathematics exercise in vec-
tor analysis there is given a vector field and a surface and with given formulas
the students are able to calculate the flux of the field through the surface. It
is an open question if this necessarily leads to a deeper understanding of the
subject or to the ability later on to transfer the related methods to engineer-
ing tasks. By the support of a CAS tool the exercise can be lifted to a higher
conceptual level (the lever potential): In a 2007 DTU homework exercise there
are given two sunroofs, a hemisphere (cut from a sphere along the equator)
and spherical cap (cut from a sphere along a small circle), respectively. The
students are asked to calculate the total energy absorption in one day for each
of the two sunroofs (p. 29 in [2]). The students are guided to model the light
rays from the sun in the form of a parallel vector field and the energy absorp-
tion as a flux of the vector field through the surfaces. But then they have to
think through the concept of flux, since it only seems relevant to calculate the
flux through the time dependent illuminated parts of the roofs. By 2D and
3D visualizations they have to figure out and parametrize the related limiting
geometric models. Following a students paper it was possible in the case of
the hemisphere (placed on the equator) to express the absorption to a given
time in a simple analytical way E(t) = π · (sin(t) + 1)/2 and thence also to
calculate an exact result for the whole day absorption: π+π2/2 . In the more
difficult case of the spherical cap it was still possible for the clever student to
obtain a symbolic Maple output for the time dependent absorption. But this
formula, including heavy square roots and several composed trigonometric and
arcus functions, was not easy to cope with and certainly not of the type of
“a beautiful answer” as in a classical standard exercise. Furthermore the stu-
dent had to give up his attempt to force Maple to calculate an exact result
for the whole day absorption, and therefore he exactly at this point experi-
enced the limit of the toy model and turned over to numerical Maple methods,
satisfied with displaying a decimal number as his final result.

4 Trying to Avoid the Pitfalls

At DTU the known dangers and problems are on the one hand been dealt
with by current upgrading of that part of the teaching and curriculum, which
makes visible the advantages of Maple: The number of experimental exercises
have been increased, thematic exercises have been introduced, and new project
based exercises with reference to recent research in diverse applications have



656 K. Schmidt et al.

been developed. On the other hand the students and teachers at Mathemat-
ics 1 are carefully instructed in two rules of Maple use: (1) It is essential to
teach the students to choose those Maple commands and Maple styles that
support the present learning objective the best, and (2) Any Maple output
must be provided with relevant and sufficient explanations and interpreta-
tions. One example: A Maple Demo concerning the subject of systems of linear
equations exposes three different Maple commands: LinearSolve, RowRe-
ducedEchelonForm and RowOperation. The first one immediately presents the
solution, without revealing anything about the used method (with the risk of
the black box effect), the second one displays the result of a completed Gauss–
Jordan elimination from where the solution has to be extracted, whereas the
third one requires that the user himself performs the eliminations step by step
only leaving elementary arithmetic to the computer, a method that we call
“simulated paper and pencil calculations”. When systems of linear equations
is the subject being introduced, the student is expected to document through
his Maple report that he fully has understood the basic concepts and methods
in this field, while in other (later) cases, when this subject is subordinate, his
finding of the most direct way to obtain the solution can be even laudable.

5 The Survey Study 2007–2008 at DTU

Our survey study in the academic year of 2007–2008 investigated how the
Mathematics 1 students used the different study resources in relation to the
different types of study activities. By study resources is understood primar-
ily the three classic DTU textbooks1, the Maple Demos2, the Internet and
diverse materials from the course homepage. By study activities is here meant
one ordinary week of studies (that is: not working with project based exer-
cises) consisting of two times a lecture followed by classroom teaching/group
exercises supported by TAs and also non-scheduled activities: weekly quizzes
and mandatory homework exercises (ten sets during the academic year).

The students were asked to fill out an online questionnaire three times
during the academic year: in the weeks 3, 10 and 19 of the two semesters (a
total of 26 weeks).

As initially the acts of reading the textbooks and listening to the teachers
seemed fundamental in the way the students understood learning, a definite
change seemed to happen during the academic year. While the part of the
students who report that they have attended both group exercises is constant
(89, 89 and 89%) during the three stages of the survey, and the amount of
time spent on homework exercises is a bit increasing (305, 360, and 350 min.),

1Concerning Linear Algebra, One Variable Analysis and Multivariable Analysis.
2Exemplary Maple worksheets which by use of short explanations and examples

provides an alternative introduction to the subject of the day, which the students
can use in their own further work.
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then the part of the students attending both lectures is a bit decreasing (94,
87, and 85%), but the part of the students who have been prepared for the
classes is most definitely decreased (65, 48, and 30%).

The decrease in preparations seems closely connected with a change in
the way the students experience the value of the textbooks for the learning
process. A definite decrease among those who is reading contiguous text in the
textbooks can be observed (23, 12, and 6%), while there is a lesser decrease
among those who are skimming the subjects of the week in the textbooks (43,
44, and 38%).These numbers display the behavior during the group exercises,
but they are typical for all the types of study activities.

While the use of the textbooks is decreasing during the academic year,
the students use of Maple and especially their use of the Maple Demos is
increasing. When asked to rank the study resources, the part of the students
who gave the highest ranking to the textbooks was decreasing (33, 38, and
17%), while the ranking of the Maple Demos were increasing (7, 15, and 40%).
These changes are also reflected in the students working methods. For instance
is the part of the students who have used Maple shorter or longer time during
the group exercises increasing (89, 90, and 95%), while the part who have
used paper and pencil is decreasing (77, 75, and 51%). Correspondingly there
is a decrease in that part of the students who respond that they have worked
“with understanding concepts and proofs” during the group exercises (55, 42,
and 30%), which might indicate the particularity problem.

A didactic evaluation of these changes of course depends on how Maple
and the Maple Demos is actually used. The following are some typical answers
which document that the attitudes of the students are very diverging:

Using the maple-demos is more fruitful as it leaves room for experiments
through which you learn to understand how different components may affect a
result.

I prefer the Maple Demo as it enables you to pick up promptly the tools
to apply when doing math, thus preparing you to do your homework exercises
and pass the course. Understanding the math itself comes second and, what is
more, the books are very hard to get a grasp of.

I miss learning math. I think that the main focus is on how to use Maple.
The understanding is lacking.

The first statement indicates a use of Maple according fully to the intended
potentials. The next one is more ambiguous, although favourably disposed
towards Maple it displays disquieting elements of conflicting intentions. The
last one is definitely negative towards Maple, because the black box effect
seems to block the understanding.

The students’ actual use of the Maple Demos in relation to the three most
important types of activity is shown in this diagram:

The diagram shows that a large part of the student read the Maple Demos
in order to acquire a better understanding of the subject, while a lesser part
use the experimental interactive potentials of the Maple Demos. The most
typical use of the Demos is copy and pasting the Maple commands to their
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Table 1. The use of Maple Demos

Prep.(%) Group ex.(%) Home ex.(%)

To read through to understand 11 59 57
To play and experiment with 5 38 30
To copy commands from 9 78 72
To do exercises by changing variables 6 49 39

own worksheets. Finally a special variant of the particularity problem seems to
be a disquieting important factor as a considerable part of the students report
that they obtain some of their solutions just by changing some variables in
the examples included in the Maple Demos.

6 Conclusions and Recommendations

The above mentioned survey study of the study habits of engineering students
during the introductory DTU mathematics course shows the following facts
about their attitudes to the use of the CAS tool Maple and their actual use
of it:

1. The students do certainly not make up a homogeneous group. Maple sup-
ports that a mathematics course can be planned broadly with various
co-ordinated teaching offers so that it is possible for the individual student
to find his own learning styles.

2. There is a positive tendency towards a decrease in the importance of the
classic textbooks during the course, while they seem to be in some respect
compensated by the corpus of the Maple Demos.

3. Many students are utilizing the potentials, but some students do not avoid
the pitfalls. We propose an upgrading of the corpus of Maple Demos in a
way that strengthens the interactive and conceptual potentials on behalf
of the repetitive ones.

4. A genuine evaluation of the impact of Maple on the changes in the mathe-
matics learning processes would presuppose a throughout didactic study of
the teaching materials and a parallel study of the actual benefits obtained
by the students.

5. The changes of study habits during the mathematics course might be sum-
marized in one single quote made by an unknown student. Referred in its
entirety: “reading less, learning more.”
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In this minisymposium we discussed the challenge of web based solutions in
organizing education in modelling and applied mathematics. The cutting edge
knowledge in the art of mathematical technology is located in small nodes,
research groups on applied mathematics, mathematical physics, scientific com-
puting etc. Web-technologies are a viable media for innovative processes and
knowledge transfer. Virtual educational environments enable novel solutions
to training and education, they help to facilitate distributed processes and
provide access to educational resources. Interactive cross-media allows easy
time- and location-independent access and portability, flexible updates and
the benefits of media technology, hypertext properties, animations etc. An
evolution of educational methods, materials and means of delivery is taking
place.

In this article we also draw attention to the possibility of creating added
value for the knowledge repository of applied mathematics and computational
methods via remote access educational modules. We suggest that we make a
web portal for this. It will pool together and demonstrate the special knowl-
edge and expertise in industrial math available in the network and create
added value for European Masters Education in Industrial Mathematics.

This minisymposium wanted to give ideas on how to build up net based
courses and environments. We discussed the challenge of distributed web based
solutions in organizing education in applied mathematics and statistics. New
ways for activating the students using the computer was presented and we
discussed international and third world perspective on distance education.

Many pathfinder projects are underway. Time is mature for launching
international collaboration. The minisymposium talks represented examples
of ongoing e-learning projects which when brought together under a common
portal could provide an important learning environment.

The first talk presented a versatile learning environment for design of
experiments where the interactive system is intended to give the learner a feel-
ing of the decisions in real industrial R&D situation. The second presentation
described a net based master programme in applied statistics emphasizing the
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modular approach of learning objects and special attention to the possibility
of distant learners from business and working life. The third talk presented
the benefits of providing access to demanding special courses in less favoured
regions where lack of specialist academic skills is a severe handicap. Finally
the possibility to use national academic potential more efficiently by pooling
courses and teachers via network connecting several campuses was suggested
in the last talk.

This article wants also to bring forward a vision of a European e-learning
portal in applied mathematics. Such e-learning environment would be suitable
for students in applied mathematics and engineering programmes in advanced
BS and MS level. It would be designed also for persons who are already in
their working life and are looking for continuing education and professional
development.

For university use the courses would be especially suitable for those offer-
ing a specialization in Industrial Mathematics, Technomathematics etc. The
courses would also be intended for continuing education of people work-
ing in industrial R&D. Some of the courses might represent more standard
mathematical methods with high demand. The courses would be based on
customised content for a special applications area that is active in the current
European research and technology arena. The asset feature being the design
and the usability for a certain target group of users.

The courses would create a learning environment for mathematical mod-
elling, optimization and data analysis, business statistics and operations
analysis. A natural base for such e-learning portal would be ECMI which
represents a network of European universities and collaboration with indus-
try in mathematical technology transfer, has a mission in European knowledge
sharing and an educational programme in industrial mathematics.

The pooled expertise of the consortium provides a good foundation for
a versatile, high quality and up-to-date content production representing
forefront-knowledge in Europe. Some of the course topics would be based on
current research and knowledge having relevance and demand in the industrial
R&D and in educating industrial mathematicians or research scientists. The
value of the product for the R&D community is the unique material, which is
not yet available in abundance in commercial media.

The goal should be to create courses so that they can be used by stu-
dents in several European countries and universities. A course addressed for
a multi-campus audience is a viable possibility where the benefits of sharing
expert knowledge are obvious. The e-course menu means pooling and sharing
of expertise and it will strengthen the curriculum co-development in European
Higher education.
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Summary. An interactive web based teaching tool, Statlab, for Design of Exper-
iments is presented. In this tool, the student is introduced to practical strategies
for experimenting through virtual case studies. Statlab forces students to think
about practical details since it hides options that students do not ask for. Engineer-
ing students as well as industrial participants in our courses consider Statlab as a
stimulating learning environment. Statlab can be freely used through the web site
www.win.tue.nl/statlab/.

1 Introduction

A good working knowledge of DOE (Design of Experiments) is essential for
both industrial statisticians and engineers. It is therefore essential that statis-
tics courses pay sufficient attention to this topic. However, a distinctive feature
of DOE is that it is pro-active, unlike many other statistical techniques that
are focused on extracting useful information after data has been collected.
Hence, this requires a teaching approach that forces students to actively think
about several aspects of setting up an experimental design, without steering
the student too much. An additional feature required by us is that there
should be room for the student to make mistakes and learning from them. In
order to create such a teaching environment to be used in statistics courses at
various departments of the Eindhoven University of Technology, a web based
tool called Statlab has been developed. This tool adapts itself to the student,
who is being led through one of several possible case studies. In this paper
we describe the teaching philosophy behind this tool, as well as its technical
implementation. The tool has been receiving positive reactions from students,
who generally consider using Statlab as a stimulating teaching environment.
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2 Philosophy of Teaching DOE

Experimental design is a pro-active activity, unlike many other statistical
methods. We feel that teaching experimental design should include confer-
ring feeling for required choices in designing experiments. This should include
learning from the consequences of omissions. Standard statistical packages are
not suitable for these teaching tools, because they present many options to
the student, who either accepts the default settings or simply chooses options
that the software offers. We require a teaching environment that forces stu-
dents to actively think about the construction of an experimental design, as
well as analyzing data collected from such a design. In order to stay close to
practice, the students should go through the following phases (see [4] for lots
of useful advice and [1] for an example of an implementation in a physical
experiment):

• Gather information about the goal of the experiments.
• Gather information about the experimental facilities.
• Construct an appropriate design.
• Analyse data collected from the chosen design.
• Formulate conclusions and recommendations.

Since statistical software often has an interface to a catalogue of experi-
mental designs, we require that students are able to intelligently choose a
design rather than have to construct designs themselves like fractions of
factorial designs. We thus have the following requirements for our teaching
environment:

• Ability to adapt to student behaviour.
• Ability to answer questions about the experiment.
• Hide options unless asked for.
• Force students to make choices.
• Create designs.
• Ability to simulate data from chosen design (including steepest ascent

optimization, see Fig. 1).
• Ability to analyse simulated data (including determination of stationary

points of response surfaces).

We implicitly assume that students have been introduced to the basics of DOE
by lectures or self-study. The environment should help students to transfer
their theoretical knowledge to practical situations, as well as develop a feeling
for practical issues. These requirements, as well as our wish to teach large
groups (over 100 students) led us to the choice of developing a dedicated
software program for performing virtual experiments. The same conclusion has
been reached by others (see e.g., [2] and [3]). We refer to [5] for a discussion
on advantages and disadvantages of virtual experimentation environments,
including a list of common pitfalls. In order to be flexible, the current version
of Statlab is web based, but can also be run as a stand-alone application (see
Sect. 3 for technical details).
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Fig. 1. A screenshot of a response optimization assignment

Statlab currently contains 15 case studies with an indication of its difficulty.
The difficulty of a case study depends on a number of issues listed below
(between parentheses we list the corresponding statistical notions):

• Restrictions on number of runs (fractions, replications).
• Restrictions on number of experiments under similar circumstances

(blocks).
• Restrictions on experimental region (factor level settings, step size).
• Irregularities in the collected data (outliers).
• Knowledge of interactions.
• Curvature of response surface (centre points, lack-of-fit tests).
• Stationary points of the response surface that are not optima (saddle-

point).

Of course, there are also issues like randomization that are always part of the
case study. Each case study begins with an assignment letter that describes the
problem in general engineering terms. We took this idea from the DOE case
study in the German on-line statistics tool EMIL@A-stat (www.emilea.de).
Students have to determine what kind of design is appropriate for this assign-
ment. We currently offer the choice between screening designs, response
surface designs and robust (Taguchi) designs.

Questions about the assignment may be asked to the process engineer
through key words (see Fig. 2). The tool has a long list of synonyms. The
process engineers knows how many experiments may be executed, sometimes
has knowledge about interactions, knows whether experiments may be carried
out under similar circumstances etc. She has no background in statistics, so
she cannot (and is also not willing to) answer questions about randomization
or centre points. A statistical expert is available if students wish to get a
brief explanation about statistical concepts (again through key words entered
by students). In order to teach students that time is limited in industry,
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Fig. 2. The student should ask questions about the assignment to the process
engineer

the process engineer display increasing levels of irritation when the student
keep asking questions. The standard list of possible designs does not contain
blocked designs or fractional designs. Students do not get a larger list of
designs, unless they enter appropriate key words in the Design options field.
The current version of Statlab has the following additional features:

• Adds a trend if the student forgets to randomize.
• Adds outliers to simulated data.
• Has a Design Wizard that creates and visualizes blocked fractional factorial

designs (including the alias structure).
• Gives students feedback on their work by mentioning possible mistakes.
• Allows students to add explanation to their choices when needed.
• Implements an automatic grading system of student work that provides

relevant feedback to the student.

Outliers should be noted by students and reported to the process engineer,
who will ask the lab to investigate the suspicious observations. Currently the
students get the answer that the observation was indeed wrong and obtain a
corrected measurement. The feedback to students only gives possible mistakes,
in order to avoid students to push some extra buttons without understand-
ing their omissions. The Design Wizard is also separately available through
www.win.tue.nl/statlab/designApplet.html and may support lectures on
construction of fractional factorial designs.

3 Technical Implementation

Statlab is a freely accessible Java program. It is freely available through the
URL www.win.tue.nl/statlab. The minimum required Java version is 1.4.
The latest Java version can be downloaded freely from java.com. In order to
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use Statlab during official examinations, the Java security settings must allow
Statlab to save the results to the user’s hard disk, and send an email to the
teacher. When Statlab is started for the first time, the user is prompted to
grant these permissions. But even when the Java security settings are correct,
firewalls or virus scanners might prohibit Statlab to send email messages. This
is why the opening page of Statlab contains a “Detect Java Security” button
that checks whether the right Java version is installed and whether Statlab
is allowed to save results to disk and send an email. Students should always
run this security check on the system that they will use during the exams. By
using Java Webstart, the tool can also be used off-line. When the tool is used
on-line, automatic updates of the software will be installed without bothering
the user. In this way we circumvented managing updates with users of our
tool.

Currently, our tool supports two languages (Dutch and English), but the
software architecture has been set up in such a way that we can support more
languages. The tool automatically detects browser and language settings of
the user.

4 Experiences

Throughout the years we have using our tool in various courses. These
courses were mainly for Bachelor and Master’s students of the Mathematics,
Chemical Engineering, Industrial Engineering and Mechanical Engineering
Departments, but we also used Statlab in industrial DOE courses. We used
our tool both for instruction during lectures, as for official examinations. Using
our tool during lectures usually gave rise to lively discussions about experi-
mental design. Initially, students find it difficult to ask simple questions about
designs. It is often an eye-opener that in practice the number of experiments
that can be executed is restricted. A class demonstration together with the on-
line student manual has proved to be sufficient for students to get acquainted
with Statlab. Part of the case studies can be accesses freely so that students
can practice. Case studies that we use for official examinations are password
protected. We specifically ask questions about student experiences with Stat-
lab in the standard course evaluation forms. Most students indicate that they
feel that Statlab made statistics more attractive to them because it made
them experience the practical sides of statistics. Furthermore, they indicated
that using Statlab enhanced their understanding of applying DOE in practice.
A minority adapts a minimalist approach by trying to work through the case
studies using pre-defined lists of design options and questions to the process
engineer.

Since at our university all students possess a personal notebook, it is the
responsibility of the students to ensure that Statlab runs well on their note-
books. Over the years we had several hundreds of students using Statlab
during official exams, but we only had very few cases where Statlab did not
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work during an official examination. For such emergency cases, we always
have one or two spare notebooks available. In order to prevent students from
communicating via internet with each other during examinations, an ICT
expert in our department developed a tool that prevents any communication
between notebooks until the assignment has been submitted officially through
the internet. Grading of examinations is easy since Statlab generates an easy-
to-use, extensive grading report for each student where errors and omissions
are marked in red. Instructors have the ability to overrule the grading results
of Statlab.

5 Future Developments

Statlab is in continuous development. Although the number of case studies
is large compared to other tools that we are aware of, we would like to have
more case studies so that users with different backgrounds can choose case
studies with context that appeal to them. We welcome feedback and ideas for
new case studies from other instructors. There is a teacher manual that will
be sent on request to persons that identify themselves are being involved in
teaching. We plan to add more complexity in the initial and reporting phases
of the assignment, to add functionality in communication with the virtual
process engineer in order to imitate real-life situations more closely. Finally,
we would like to add other types of designs like mixture designs and optimal
designs.
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Summary. With the increasing focus on life-long learning, and with the con-
venience and accessibility of the Internet, the market for web-based courses has
expanded vastly in recent times – in particular in connection with continuing edu-
cation. However, teaching web-based courses presents various technical as well as
pedagogical challenges. Some of these challenges are addressed, and means to deal-
ing with them are suggested. A second generation of web-based courses is comprised
of learning objects, which allows for tailoring courses for specialized groups of stu-
dents, and accommodate individualized learning. The concept of learning objects
and how they are used to form new courses are discussed.

1 Introduction

The first part of this paper, Sect. 2, considers some of the challenges in connec-
tion with teaching web-based courses; the second part, Sect. 3, is concerned
with the evolution of web-based courses into a second generation of courses
based on learning objects. The paper builds on practical experiences from
Statmaster: a web-based master degree in applied statistics established in 2002
by four Danish research- and educational institutions: University of South-
ern Denmark, Technical University of Denmark, The Royal Veterinary and
Agricultural University (now Faculty of Life Sciences at University of Copen-
hagen), and The Danish Institute of Agricultural Sciences (now Faculty of
Agricultural Sciences at Aarhus University). The purpose of the Statmaster
programme was to offer professionals, working with – or using results from –
statistical analyses in their daily routine, a 2 1/2 year part-time master degree
in applied statistics as a part of the Danish continuing education scheme. The
material from some of the courses constituting the Statmaster programme has
since been developed further into learning objects, which have been used to
construct a new type of web-based courses that allow for individual students’
different learning styles.
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2 Teaching Web-Based Courses

A major strength of e-learning is its flexibility: students can work when and
where they want, and at the pace that is most suitable for them. The flexibility
is a particular advantage in part-time continuing education, as the students
often have families and jobs to mind besides their studies. In the Statmaster
programme, we extended the flexibility further by offering print-out versions
of the course material, allowing students to study off-line when preferred, e.g.
while commuting, and by offering instructor sessions at times convenient for
the students for example in the evenings and/or at weekends.

The lack of face to face communication is one of the main weaknesses of
e-learning – for some students this can be a barrier to taking active part in
the course work. Establishing an atmosphere of a class-room or a student-
community can break down the barrier and increase the students’ motivation
and their engagement in the course. There are various ways to stimulate such
a sense of community. For example by including at the e-learning platform
an informal discussion forum open for conferences not related to the course
work – such as personal introductions of everyone, colloquial conversations,
holiday greetings, etc. An additional (or alternative) option to is to arrange
a number of assembly days during the course where students and instructors
meet in person. A different way to strengthen interaction between students is
through group work and group assignments. Our experience from Statmaster
suggests that classes with lively colloquial activities in general also participate
actively in the course work.

Diversity of the student-body is another potential challenge in contin-
uing education: not only may the students have different professional and
educational backgrounds, but also their interests and motivations regarding
depth of understanding and complexity of applications may differ widely. To
some extent, the flexibility and detached nature of e-learning can be used
advantageously by incorporating multiple learning styles and supporting indi-
vidualized learning. For some students it is sufficient having reading material
and a discussion forum; but other students need more direct interaction with
the instructor and through for example chat-room sessions, telephone- or video
meetings, and/or group work. In addition, video lectures and slide presen-
tations can be employed to provide overviews, and case studies to facilitate
coherence and understanding of complex relationships. And, as the Statmaster
programme showed us, a very popular motivating factor is to allow students
to use their own data or problems in assignments and projects. The tailoring
of courses for individual students or specialized groups of students can be
taken even further by introducing learning objects as discussed in Sect. 3.

2.1 Technical Solution

The basic requirements of an e-learning platform are that it must be easy
to access and easy to use, and it must contain an electronic forum where
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Fig. 1. Blackboard c© E-learning platform

students and instructors can discuss the course work. Most e-learning plat-
forms offer various useful additions to the bare basic requirements, such as
notice boards, group sub-platforms, virtual meeting rooms, electronic drop-off
boxes for assignments, video player, electronic multiple choice revision tests,
etc. There exists several e-learning platforms answering to these needs, in Stat-
master we used Blackboard c© (http://www.blackboard.com) another example
is JoomlaLMS c© (http://www.joomlalms.com). An example of a course in
Blackboard c© is shown in Figure 1; here the students can choose between vari-
ous options e.g. Discussion Board, Assignments or access to Course Documents
via the left-hand menu.

3 Non-Linear Learning Using Learning Objects

Our experiences with Statmaster gave us ideas on developing a new concept for
e-learning. Students nowadays – whether university students or other kinds –
differ much more than before. Some are very good, and some have substantial
difficulties even with basic concepts. Moreover, they have very different learn-
ing styles. Some learn best by first being exposed to theory and afterwards
seeing examples, while others prefer the opposite order of presentation. Some
prefer visual and graphical learning, some like to see theory written down in
formulas, while others get most out of listening to oral presentations. Using
“Leaning Objects” enables each student to design her own course, and ensures
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that she gets course material at the right level and in the style that suits her
best.

Learning objects represent a relatively new method of subdividing courses
into smaller modules. According to David Wiley’s contribution to the Educa-
tional Workshop in the 16th APAN Meeting (http://www.apan.net/meetings/
busan03/materials/ws/education/articles/encyc-DavidWiley.pdf) a learning
object is defined as follows: “Any digital resource that can be reused to sup-
port learning. The term “Learning Objects” generally applies to educational
materials designed and created in small chunks for the purpose of maximizing
the number of learning situations in which the resource can be utilized”.

Traditional learning – e.g. reading a book or following a lecture – is linear.
You start at page 1 or on the first slide and continue on – hopefully under-
standing a little bit more for every page or slide. To learn in this way is one
example of a learning style among many. However, experience and theory sug-
gest that different people learn in different ways. Another way of learning –
which is not supported by reading a book – is by obtaining a lot of informa-
tion before suddenly understanding the whole. For a discussion on different
learning styles see [1]. Books and lectures can be good instruments for learn-
ing but should not stand alone. To combine them with a more “anarchistic”
and non-linear kind of material can improve learning by individualizing it and
making it more fun. With learning objects you can build your own course to
suit your individual learning style, providing you with optimal learning.

Another reason for proposing a new generation of courses is that we are
now faced with a generation of students who are used to exploiting the pos-
sibilities of the computer. Thus, a new type of education that will reflect a
rethinking of content, form and duration is needed. In the future, education
will be in the form of “voucher systems”. As a student, you get a set of vouch-
ers and use them to attend the specific chunks of a study programme you
need – whenever and wherever it suits you. If the providers of education are
to meet the requirements of such systems, the task of developing new courses
and tailoring them to individual students has to be easy to manage.

Working with learning objects offers a wide range of flexibility for both
the course providers and, as described, for the users. Creating new courses
is much easier and more fun if there is a bank of learning objects where you
can find most of the topics you need. It is a lot more manageable to make
new learning objects, when you have new ideas on how to explain something
better or just different than you did before, than rewriting your old book.

The course system we have developed for the second generation courses is
called HEROS (Higher Education Re-usable Objects in Statistics). A course
in HEROS consists of a collection of learning objects glued together using the
e-learning authoring system “Lectora” – a tool made by Trivantis (http://
www.trivantis.com). The heart of the system is a hyperbolic graph or a
map (http://www.hypergraph.sourceforge.net) which gives an overview of the
course, and makes it possible to navigate around in the system – see Figure 2.
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Fig. 2. HEROS: Course graph

The topics are arranged in different “clouds”. One cloud consists of dif-
ferent introductions to the system, one is the company’s motivations for the
course, one is examples from the company, one is an exam, and further clouds
consist of statistically oriented topics. When you click on a learning object you
enter it and are able to play around e.g. listening to presentations, watching
videos, reading, playing with applets and much more.

So far, we have created an introductory course in statistics using HEROS.
The course has run twice as a continuing education course for engineers in a
global company – the first run was for a Danish audience and the second run
for an European audience. The course starts with an introduction – face to
face when this is possible; when there are students from abroad we start with
a video meeting instead. The students then play around with the system for
one month. During that time they work in groups, receive supervision from
coaches, and have e-mails from the coaches on things they have to do – all to
keep them on track. The course ends with a multiple choice exam and an oral
presentation – in person or on the web – of their group work.
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4 Conclusion

Despite the lack of face to face communication, e-learning can accommodate
many different learning styles by exploiting the diversity of web-based interac-
tion. Indeed, second generation web-based courses using the HEROS system
can be shaped to suit individual students with regard to their particular
interests, abilities and learning styles.

Sharing our experiences and maybe sharing learning objects could help us
making better courses – and make some of the challenges concerning e-learning
more manageable.
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Summary. A network of virtual education is being established among four main
state universities in Serbia, in the field of mathematics and natural sciences. It is
being made following experiences of similar (more developed) networks in Finland
and Spain, and using experiences of virtual education in Slovakia, under the frame-
work of EU financed Tempus project SCM C024B06. The basic idea is to prepare
electronic version of a certain number of courses (several of them in applied mathe-
matics), so that students of each university can choose these as optional courses in
their curriculum. It is planned to construct a web-site from which the courses can
be accessed.

1 E-learning: Situation and Constraints

Like elsewhere in Europe, Universities in Serbia are adopting changes com-
monly known as ‘Bologna suggestions’, among which network education has
a particular role. The challenge of new ways of studying, including e-learning
and Web based courses, is more and more recognized by participants in high
education. Still, there are many factors influencing these new trends: tradi-
tion, present Law of higher education, general situation in high education in
the country etc.

In the sequel we analyze the situation, we present our investigation in the
field and some results that are obtained in connecting our universities by new
ways of teaching. We also stress the relevant connection of high education and
industry, mostly in fundamental disciplines as they are applied; in our case it
is applied mathematics.

There are four main state universities in the country, several private ones,
all are presently under accreditation procedure. Universities consist of facul-
ties, faculties of departments or institutes and chairs. Universities and faculties
are legal entities, departments are not. Faculties have considerable indepen-
dence within universities; connection among faculties is rather weak. Further,
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fundamental disciplines are distributed over faculties. For instance, there are
chairs for mathematics not only at faculties of science and mathematics, but
also at faculties of technical engineering, agriculture etc., wherever mathe-
matics is the subject. Similar is with computer science, physics, biology etc.
Additional argument concerning independence and lack of connection among
faculties: it is almost impossible to have students enrolling studies at one
faculty and choosing a course at another (even at the same university).

Institutions involved in high education are well equipped with electronic
and computational devices. Students are not. Our investigation (by particular
questionnaires) has shown that less then 50% of students at two universities
in central and southern Serbia do not use computers for learning purposes,
they do not regularly (or not at all) have access to Internet. The situation at
two northern universities (in particular in Novi Sad) is different. Students do
use computers, have access to Internet, and communicate by e-mail with their
teachers.

As we pointed out above, there are tendencies to improve teaching and
learning methods using Internet and other electronic ways. However, tradi-
tional ways of education are still considered to be the most suitable. Either
some teachers (or students) are not trained to use the relevant equipment, or
they relay to the classical education, considering it unchangeable.

Considering applied mathematics at the university level, the situation is
highly connected with our transition economy. Students are mostly interested
in financial mathematics, since banks and other financial institutions do show
interest for graduated mathematicians. Study programs for industrial math-
ematics are still not considered to be attractive. In one hand, there is no
tradition in such education: the majority of mathematical courses usually use
academic examples of ‘applications’ (this situation is changing presently). On
the other hand, enterprises, companies, industry in general, they do not show
much interest for young educated mathematicians, ready to solve practical
problems. They are still more interested to pay for already developed pro-
grams, patents etc. It was so up to now, but also in this field, (slow) changes
are visible.

2 Why Virtual Education?

In our opinion, Web based connection among faculties should be concentrated
to special courses. Namely, on the higher years of studies (mostly at master
level) there are courses with rather low number of students; we have in mind
courses in applied mathematics, but also at other study programs in natural
sciences. By the new rules, these are optional courses and it may happen that
less than five students choose such a course at the beginning of the semester,
at one faculty. This is in our opinion one reason for the network. Another is
that for some special field (courses) there is no expert at each university in
the country. Still the topic might be important.
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Particular reason for e-learning approach is also connected to the profile
of courses. Namely, in applied sciences special software is usually needed.
It should be additionally developed and adopted by the teacher. Then the
electronic (and Web) presentation offers convenient possibilities for students
in all centers to access the teaching material and to use it in the interactive
way. We have also in mind teachers in applied (fundamental) sciences which
have well established connections with some company (e.g., industry – applied
mathematics, or some medical institution – biology, physics etc.). Then their
teaching material is specific and the best way to distribute it to students in
other centers is over Internet.

Finally, it is obvious that virtual education in the above sense is not
bounded to the region, not even to the particular country. Web supported
course could be offered by the best expert at one university to students of any
other university, anywhere in Europe.

3 Network of Faculties: Future and Present Status

What do we mean by a network of faculties? Our goal is not reached yet; we
intend to develop it in time, step by step. Our vision is related to the existing
situation in some other, more developed countries (e.g., Finland). Namely, fac-
ulties (of natural sciences and mathematics in our case) should be connected
by an educational network which functions almost as a study program (or sev-
eral study programs): a kind of virtual (part of the) faculty. Each course should
be prepared electronically: teaching material, tutorials, exercises, using mul-
timedia (video and text simultaneously) and a suitable interactive programs,
together with regular (e.g., once a week) video conferences and permanent
e-mail connections with the teacher and teaching assistants. The teacher is an
expert from one faculty and students from all (four) centers can choose the
course. The exam could be performed either at each faculty (distant exam-
ination) or at the faculty of the teacher; there are also other possibilities.
Classical direct communication is also a part of education: students should
have a possibility to meet the teacher and discuss problems they encounter as
they learn.

Next we present our achievements up to now. We have mentioned the con-
straints. These are reasons for the difference of our network and the above
‘ideal’ situation. Precise data are given in the next section. We here explain
the most important aspects. Four universities, through faculties in natural
sciences and mathematics, participate in the network. Courses are chosen
among applied fundamental disciplines, mostly from higher years of studies.
In addition, most of these courses existed in the study program of only one of
the universities. Now they are offered to students in all centers. Each course
is prepared electronically and placed on the Web page of the network. Mul-
timedia are present only as an introductory part of the course. Due to the
regulation at our faculties (as mentioned above), it is not possible that the
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same teacher leads the course and maintain the exam for students in different
centers. Therefore, the formal responsibility for the course is distributed over
faculties. In each of these, one teacher is responsible and leads (also signs)
the final exam together with the teacher who offered the course. There are
also hard copies of the teaching material, which are distributed to all students
as text-books. Interactive ways for exercises for some of the courses are also
possible [1–5].

Our plans for the future improvements of the network are connected with
the overall changes in high education in our country. Namely, the more uni-
versities become centers for distribution of knowledge over faculties, the less
constraints will we have in offering courses to the broad auditorium of stu-
dents. In addition, we hope to get support from the industry: if companies
show interest for particular knowledge in applied fundamental sciences, then
relevant teachers as well as students in all centers will be motivated for such
special courses. Obviously, the network is the best way for the preparation of
some special course and its distribution over centers.

In addition, due to connection among universities in Europe, we plan to
prepare some common special courses together with colleagues in other coun-
tries: each center will contribute to the course with the topic for which there is
a specialized teacher. In our opinion this is also an advantage of Web supported
study programs: several experts preparing a single course.

4 Results of the Tempus Projects

4.1 Mathematics Curricula for Technological Development
and Accreditation of the Applied Mathematics Program

First Tempus project that influenced a lot the situation at Department of
Mathematics and Informatics at University of Novi Sad was CD JEP 17017-
2002 project “Mathematics Curricula for Technological Development”. The
main project objective was: “Post graduate curricula in Mathematics in indus-
try and credit transfer system developed according to EU standards and
University of Novi Sad inclusion to ECMI Educational System prepared.”

Consortium consisted of University of Novi Sad (coordinating and bene-
ficiary university), TU Dresden (contracting university) Germany, Lappeen-
ranta University of Technology Finland, University of Milan Italy, Belgrade
Stock Exchange, Commerce Chamber of Vojvodina, and 2 individual experts
from Austria and Poland.

It was a 3 year project (Oct. 2003–Sept. 2006), first phase consisting of
the preparation of curriculum and the second phase of introduction of the
program at University of Novi Sad in coordination with ECMI.

The main idea of the new introduced program in Applied Mathematics
was interdisciplinary, applicable mathematics within the model 3+2 (Bache-
lor + Master). Master thesis consisted of a real-world problem and intensive
cooperation with other departments was planned.
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On 12 April, 2008 the Quality Control Commission of Republic of Serbia
approved the accreditation of Faculty of Science, University of Novi Sad in the
first round: among other programs also the accreditation of the new program
of Applied Mathematics was approved.

Approved curricula in Mathematics are within the model 3+2+3 (Bach-
elor + Master + Doctoral) with two programs in Mathematics on bachelor
level: BSc in Mathematics and BSc in Applied Mathematics and also two on
master level: Master in Mathematics and Master in Applied Mathematics.

4.2 Network education at Faculties of Science in Serbia

The main objective of this Tempus Structural and Complementary Measures
SCM C036A06 Project was “to contribute to the actual changes in high edu-
cation in Serbia, by improving specific contemporary aspects of teaching,
communication and studying possibilities”.

EU project partners of this project were University Mateja Bela, Faculty
of Natural Sciences, Banska Bystrica, Slovakia (Grant holder), Lappeenranta
Technical University, Finland and University of Oviedo, Spain.

Project partners from Serbia were University of Novi Sad (coordinating
institution), University of Belgrade, University of Kragujevac and University
of Nǐs.

Duration of the project was 1 year, from 15 June 2007–14 June 2008
Main project outcomes were:

1. Establishing Internet based network framework among faculties of sciences
in Serbia.

2. Preparing joint courses for all universities in Serbia (about 10 in this pilot
phase).

3. Preparing Internet based network framework for joint courses EU – Serbia.

Main activities were preparation of 11 joint courses and of teaching mate-
rial and implementation of courses and also training visits of teachers from
Serbia to Slovakia, Spain and Finland.

The aim of the project could be also defined as a transfer of good practice
from EU universities:

From LUT Finland it was a transfer of good practise from Teaching
Mathematical Modelling National Network Project.

University of Oviedo, Spain belongs to Group 9 of Spanish universities,
which have joint Internet-based study programmes.

Faculty of Sciences and Mathematics, University Matej Bel Banska
Bystrica has developed teaching and communication with students through
Moodle.

Minimum requirements for such a network (we produced under the project)
are:
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Video cameras (with microphones and tripods), software for making inter-
net presentations (Microsoft producer or Adobe premier,) and also at each
university computer specialist trained to technically prepare courses.

Teachers should be trained for some basics methods on preparing lectures
for Web, teachers and students should learn basic elements of Moodle (or
other similar course management system) and such platform should exist at
the university.

Methodology of preparing courses:
Introductory lectures for every course were prepared consisting of mixed

video and power point presentations. For every lecture the following material
was prepared: power point presentation and written teaching material (text
books).

Students from one university can chose a course from another university.
They can access the course material through Web. Communication teacher-
students and students-students is done by Moodle as well as by e-mail, forums,
chats etc.

Courses from higher years of studies are chosen because of smaller number
of students at each center, lack of teachers for specialized courses and also
since students of higher years are more familiar with communication through
computer.

Still some open questions are left to be resolved in future:

1. Formal aspects (recognition of courses chosen at other university).
2. Distance knowledge evaluation.
3. Practical question (in Serbia): Does every student have a computer OR

whether there are computers at the department at the students’ disposal?
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Summary. Many efforts have been undertaken by African countries to promote
the use of eLearning in Higher Education Institutions (HEIs), however, it is noted
that the uptake of that little which is available is extremely poor. Although it is
largely claimed by many that this dismal state is due to economic and technolog-
ical circumstances, this presentation argues that most efforts have been invested
in infrastructure improvement, increased band width provision, hardware and sup-
porting software technologies acquisition and very minimum investment has been
put into training and re-training of educators in eLearning delivery modes. This is
the major contributor to poor utilisation of eLearning opportunities in most HEIs
in Africa. Examples from Tanzania and Rwanda are presented giving good prac-
tice approaches for addressing the challenge of poor uptake of eLearning in HEIs
mathematics education. Existing opportunities for Africa’s eLearning

1 Political Will and Investment

At continental level, many efforts and resources have been invested in ICT
infrastructure improvement, increased bandwidth and hardware supply [1].
In this regard, numerous regional efforts are being implemented by individual
HEIs, regional networks such as the Association of Africa Universities (AAU),
Inter University Council for East Africa (IUCEA), African Union etc in part-
nership with donor agencies [3]. Recent surveys on eLearning in Africa suggest
that expertise and management skills of the practitioners are vital to the suc-
cess of eLearning on the continent [7]. A survey presented at the eLearning
Africa conference held in Accra, Ghana, on 28–30 May 2008, established that
many respondents to the survey were unaware of how to manage eLearning
programmes and, furthermore, did not feel that they were involved in the
development of eLearning content [6]. Other respondents said the only use of
eLearning was in accessing information from the Internet. Training and human
capacity building should be emphasised alongside developing infrastructure,
the survey concluded.
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1.1 Networks

UbuntuNet Alliance

Numerous efforts have been initiated in Africa to use distance learning and
ICTs to promote higher education in Africa. The AAU for example continues
to struggle to address the issues of ICT policies, infrastructure and increased
cost effective bandwidth for its member universities. In issues of pedagogy and
research, national networks of research and education institutions of higher
education are being formed and linked to one umbrella network called the
UbuntuNet. The UbuntuNet is an alliance of National Research and Education
Networks (NRENs) aiming to cover the whole of Africa. It is a new initiative
since 2007 and already some African Countries have formed NRENs. These
are Democratic Republic of Congo, Kenya, Malawi, Mozambique, Rwanda,
Sudan, South Africa, Tanzania, Uganda and Zambia. Others in formation
stage are Botswana, Burundi, Ethiopia, Lesotho, Namibia, Somalia, Swaziland
and Zimbabwe.

The Alliance has been established to capitalise on the emergence of optical
fibre and other terrestrial infrastructure opportunities and thus become the
Research and Education Network (REN) backbone of Africa. Tertiary educa-
tion and research institutions throughout the rest of the world are connected
to the Internet using fast low-cost fibre. The UbuntuNet Alliance plans to
link NRENs in Africa through Géant, the EU academic and research fibre
network, to other academic and research fibre networks around the globe.

The Africa Virtual University (AVU)

AVU initiated in 1997 with World Bank funding is the largest network of
Open Distance and e-Learning institutions in Africa. AVU is Established in
more than 27 countries with 53 partner Institutions has the ability to work
across borders and languages in Anglophone, Francophone and Lusophone
Africa. AVU delivers degrees, Diploma Programmes, and short professional
courses in Computer Science, Languages & Journalism. AVU has received
heavy funding and has been working with existing HEIs in Africa in collab-
oration with External HEIs to deliver eLearning using modules developed
external to Africa. AVU programmes remain un-integrated into ongoing pro-
grammes where they are offered. Lecturers, who use eLearning mode in AVU
programmes, continue to use the conventional mode of delivery in their HEIs.
Obviously the existence of AVU has not permeated the teaching and learning
cultures of Africa’s HEIs.

The NetTel@Africa

NetTel@Africa [5] is a transnational network for capacity building and knowl-
edge sharing in the information communication technologies (ICT) and
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telecommunications (telecom) policy, regulation, and applications whose aim
is to build the capacities of policy makers, regulators, private sector oper-
ators, consumer advocates, and academic institutions. The NetTel@Africa
runs a Postgraduate Training Programme in ICT Policy and Regulation, an
International Peer-to-Peer Network, a Research Programme in ICT Policy
and Regulation an International Community-to-Community ICT Application
Network NetTel@Africa.

NetTel is operational in 18 African partner institutions and offers postgrad-
uate degrees in ICT Policy and Regulation with the engagement of academics
from five Universities from the USA and six African and American policy mak-
ers and regulators of ICT. The consortium of African universities mentioned
above with the active support of the international and continental stakehold-
ers offer the programmes. The programme structure, modules and systems of
course offerings and evaluations were developed centrally and monitored by
the Academic Board of the NetTel@Africa Network. The Academic Board is
constituted by the Deans of the respective faculties of the member universities
and the invited experts in the field. It is having a chairperson, vice-chairperson
and the committees to monitor the quality issues.

1.2 Wireless Campuses Projects

Currently, most of the Local Area Networks (LANs) in Higher Education
Institutions (HEIs) are fixed and most eLearning take place in computer lab-
oratories, lecture halls, libraries, and other structures especially constructed
for this work. Most institutions are running short of such facilities. Laboratory
space for eLearning is so limited that many classes either do away with eLearn-
ing as components of their mode of instruction or just leave it to the individual
students or participants to cover on their own outside the normal class hours.
Some HEIs have introduced wireless LANs. These have helped do away with
the problems listed above; these institutions have adopted to change quite
easily. For example at Strathmore University in Kenya, wirelesses LANs with
laptops have transformed every lecture hall into an eLearning place. Students
of Strathmore are truly learning anytime and anywhere: in the cafeteria, at
the recreational areas, in their hideouts, and wherever they spend their time
on campus. They do their assignments even when eating in the cafeteria. Stu-
dents do assignments anywhere even when eating and get immediate feedback
[2]. This self-paced learning is restricted to the digital (wireless) campus for
Africa this is far from being an ideal situation.

1.3 Mobile Phones Learning Projects

Mobile phone learning (mLearning) provides new avenues for distance and
open learning. In Africa, most of our communities are still rural and usually
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without basic infrastructure for eLearning. Fixed or land phones are non-
existent or next to impossible to get working in such remote and rural com-
munities. The beauty of wireless communication is that with Internet-enabled
devices such as laptops with mobile telephone subscription, it is possible to
take mLearning into most African rural communities.

At a workshop for Science, Mathematics and Technology teachers held
in Ghana in September 2007, a facilitator, Mr. Fred Kofi de Heer-Menlah
demonstrated that with a mobile-phone Internet subscription line running
the GPRS/EDGE technology, it was possible to introduce the teachers to the
Internet and eLearning. MLearning is the future of education in Africa, par-
ticularly for the less privileged HEIs and those with spread out campuses. The
mobile phone technology is improving and wireless connection is a necessity in
most institutions of learning today and in the future, we need to explore the
use of wireless technologies to promote mLearning. Diverse eLearning prac-
tices are currently being used across the continent. Recent trends show that
students in Africa are using mobile phones as part of eLearning. Some projects
are being implemented on mLearning; for example the Maths for Girls (M4G)
is a project in South Africa whose aim is to teach mathematics to girls using
technologies that are not usually permitted in the classroom. In this project,
South African female secondary school pupils have made extensive use of
videos on cellular phones. In Nigeria, due to Internet connection constraints,
mobile phones tutorials are a great help to part-time students at the Nnamdi
Azikiwe University. Several projects have been recently launched, such as a
Ghana-wide e-learning project for mathematics and science curriculum for pri-
mary and secondary school by Intel’s World Ahead programme, which is test-
ing similar efforts in Nigeria and South Africa. Although some successful and
useful projects on mLearning are being implemented, there is a need to move
into sustainable large-scale, long-term implementation of this eLearning mode.

2 eLearning in Applied Mathematics in Tanzania
and Rwanda

Rwanda and Tanzania HEIs have been at the forefront of eLearning initia-
tives in Africa through AAU, IUCEA, hosting the AVU programmes and
recently the NREN. HEIs in Tanzania and Rwanda are collaborating with
HEIs in Finland in training postgraduate students (masters’ level and PhD)
and retraining academic staff into the field of industrial mathematics. The
recent collaboration needs to reach-out to as many as possible cost effectively,
necessitating the use of eLearning.

2.1 eLearning at the University of Dar es Salaam (UD), Tanzania

UD uses the conventional mode of delivery. She instituted an ICT Policy
in 1995 and has managed to implement the eLearning platform since 1997
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using WEBCT and Blackboard, which are eLearning proprietary software. UD
has participated in AVU and has a well established virtual learning centre.
UD implemented the eLearning system through the financial support from
the Flemish University Council. The major problem that UD faced in the
implementation of the project is the issue of software license. It is from this
fact that the University of Western Cape (UWC) in South Africa initiated a
KEWL (Knowledge Environment for Web-Based Learning) project for devel-
oping eLearning platform. Currently the UWC has started another project
called KEWL – NextGen project under AVOIR (African Virtual Open Initia-
tives and Resources). AVOIR is a network of African universities working on
Open Source applications. Their primary work at the moment is in develop-
ing a next-generation of the KEWL learning management software originally
developed at the University of the Western Cape in South Africa. UD is a
partners in this project. Currently, UD has replaced the commercial plat-
form Blackboard with KEWL Next Generation Learning Management System
(KNG LMS).

2.2 eLearning at the Open University of Tanzania (OUT)

OUT is a purely distance and Open learning University which offers aca-
demic degrees, diploma and certificate programmes in diverse fields. The
University serves a broad spectrum of local and foreign communities by
means of distance education which has made it possible to reach students
in their communities. Educational delivery is attained through various means
of communication such as broadcasting, telecasting, Information and Commu-
nication Technologies (ICT), correspondence enhanced face to face, seminars,
contact programmes. In 2004, OUT received funding from SPIDER for the
establishment of Tanzania’s first eLearning centre, located in Dar es Salaam.
With support for SIDA, and collaboration with the Open Polytechnic of New
Zealand, OUT has made improvements in eLearning using the open source
software Moodle. OUT staff got trained in Moodle administration and how
to use Moodle to create and deliver courses. Because of Moodle’s low cost,
OUT is now able to deliver eLearning using this platform to reach a greater
number of students more cost-effectively. The university conducts its opera-
tions through Provincial Centres and Study Centres. Currently there are 25
Provincial Centres and 69 Study Centres scattered all over the country. At
each Regional centre there are study centres to service distance study students.
Within each Province several institutions with adequate facilities have been
identified to serve as study centre. For example Secondary schools, Colleges
and Institutes.

Also OUT serves students residing in neighbouring countries of Uganda
and further North (e.g. Sudan), Kenya, Rwanda and Burundi, Democratic
Republic of Congo, Zambia and further South, Mozambique and Indian Ocean
Islands (e.g. Seychelles, Comoros) and some students from other countries as
far as Europe in Diplomatic Missions. Study centres serve as general points for
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project work, interaction with other students, attending seminars and tuto-
rials, practical work and demonstrations and of using reference materials.
They also provide counselling and tutoring services for the Open University
students as well as physical facilities such as classrooms, libraries and labora-
tories. Students from outside Tanzania are affiliated to one of the Provincial
Study centre. Also OUT has a Centre at Egerton University in Kenya ser-
vicing students living in Kenya. While currently UD is the African academic
coordinator of the NetTel@Africa network, OUT hosts the Tanzania NREN
secretariat.

2.3 eLearning at the National University of Rwanda

The National University of Rwanda (NUR) started the NetTel Post Grad-
uate Diploma in ICT Policy and Regulation in July 2005. NetTel Program
at NUR are fully integrated in to the normal management process the finan-
cial administration of NetTel is also integrated with the NUR’s department
of finance. NUR has a unit managed by two staff that takes care of eLearn-
ing. NUR is the University earmarked by Rwanda to deliver PhDs and other
Research graduate programmes to generate the national highly needed higher
level cadres.

3 Challenges

Besides the infrastructure, power supply and hardware problems that have
been widely pointed out, the main challenges are lack of experts in the
field and the negative attitude towards eLearning by the systems, policies,
teachers and learners [4]. There have been many opportunities that remain
untapped. For example the Virtual Africa University (operating in 27 Coun-
tries of Africa) is running own programmes. UD, OUT and NUR hosted AVU.
Mathematics departments did not take up the opportunities mainly because
of lack of the know-how in eLearning by academic staff and importation
of foreign programmes that could not fit the local needs. Existence of the
NetTel project remains within the areas where funding collaboration is avail-
able. Mathematics departments are not tapping into this opportunity either.
Most arguments for low or non-use of eLearning in Africa is attributed to
infrastructure, hardware, cost of technology and attitudes towards eLearning
quality and standards. Except for HEIs whose delivery mode is pure open and
distance learning, and besides some small projects to retrain practicing teach-
ers, Mathematics has not made use of eLearning efforts and opportunities
such as those of AVU and NetTel programmes. Same goes for institutional
efforts. Many programmes are in IT related courses, Business studies and
to a small extent languages and Journalism. Mathematics has the potential
to tap into some existing good practices with collaborations with partners
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from experienced countries. Rwanda and Tanzania intend to use the exist-
ing infrastructure, facilities and networks to introduce eLearning in Applied
Mathematics in collaboration with Finland Universities.

4 Way Forward

UD is running two Masters programmes in Mathematics, one of them is on
Mathematical Modelling which is regional programme for the Eastern and
Southern Africa region supported by NOMA (Norway). NUR is running Mas-
ters Degree in Applied Mathematics focusing on Inverse problems and remote
sensing supported by Sida/ SAREC Sweden. Both UD and NUR are collab-
orating with Finland Universities – Lappeenranta University of Technology
and Tampere University of Technology focusing on postgraduate training and
academic staff re-training in Industrial Mathematics. The collaboration plans
to re-train secondary school teachers in industrial mathematics content and
pedagogy. This collaboration can work with the Open University of Tanzania
and the NetTel network which is operating in both NUR and UD to introduce
eLearning in Industrial Mathematics starting with Financial Mathematics
and Mathematics for Policy and Decision Makers. The Open University of
Tanzania can also play a major role in re-training of secondary school teach-
ers. Since teachers are scattered in rural areas, the use of eLearning (with
mLearning) could be explored.
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Summary. In this paper we deal with a parabolic multi-objective optimal control
problem related to the management of a wastewater treatment system. The problem
is studied from a non-cooperative point of view (looking for a Nash equilibrium),
and also from a cooperative point of view (looking for Pareto solutions “better” than
the Nash equilibrium). Numerical results for a real world situation in the estuary of
Vigo (NW Spain) are presented.

1 The Multi-Objective Optimal Control Problem

We consider a shallow water domain Ω located in an urban area with a
wastewater treatment system consisting of several purifying plants. We assume
that each of the plants is controlled by a different organization and we sup-
pose that each of them has to take care of some sensitive areas, in such a way
that a penalty is imposed on the plant if the water pollution levels in one
of its associated zones is greater than a threshold level. In each plant there
is a purification cost associated to the purification process, and the prob-
lem consists of finding the discharge strategy in each plant minimizing costs
(purification cost and penalties) at every plant.

In this paper we assume NE purifying plants discharging wastewater in
points P1, . . . , PNE ∈ Ω, take faecal coliform bacteria (FC) as indicator of
the water quality and denote by mj(t) the mass flow rate of coliform dis-
charged in Pj (with low and up bounds, respectively 0 < mj < mj). If
we define Mj = {mj ∈ L∞(0, T ) : mj ≤ mj(t) ≤ mj , a.e. in (0, T )} and
M =

∏NE

j=1 Mj, then the problem can be formulated (see [1]) as the follow-
ing multi-objective optimal control problem (P): Find the discharge strategy
m(t) = (m1(t),m2(t), . . . ,mNE (t)) ∈ M which, for j = 1, . . . , NE , minimizes
the functionals
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Jj(m) =
∫ T

0

fj(mj(t)) dt+
nj∑
i=1

1
2εji

∫

Aj
i×(0,T )

(
ρ(x, t) − σji

)2

+
dxdt, (1)

where fj represents the purification cost at j plant, Aj1, . . . , A
j
nj
⊂ Ω are the

sensitive areas associated to that plant, σji is the FC threshold in Aji , ε
j
i is a

penalty parameter, (.)+ denotes the positive part function, and ρ(x, t) is the
FC concentration given by:

∂ρ

∂t
+ u · ∇ρ− βΔρ+ κρ =

1
h

NE∑
j=1

mj(t)δ(x − Pj) in Ω × (0, T ),

ρ(x, 0) = ρ0(x) in Ω,
∂ρ

∂n
= 0 on ∂Ω × (0, T ).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2)

In this system δ(x − Pj) denotes the Dirac measure at Pj , n is the unit
normal outward vector and h(x, t) (height of water), u(x, t) (depth-averaged
horizontal velocity of water), ρ0(x) (initial FC concentration), β (viscosity
coefficient collecting turbulent and dispersion effects) and κ (experimental
coefficient related to the loss rate of FC) are known data.

2 A Non-Cooperative Study: Nash Equilibria

First we recall that each plant is controlled by a different organization which
looks for its own discharge strategy (mj ∈ Mj) in order to minimize its own
objective functional Jj . So, we look for a whole discharge strategy (vector
m ∈ M) accepted by all of the plant managers in the sense that none can
change its strategy without increasing its cost functional, if the others do not
change their strategies. This vector m ∈M is known as a Nash equilibrium:

Definition 1. We say that m = (m1, . . . ,mNE ) ∈ M is a Nash equilibrium
of problem (P) if it verifies that, for all j = 1, . . . , NE,

Jj(m1, . . . ,mj , . . . ,mNE)= min
m∗

j∈Mj

Jj(m1, . . . ,mj−1,m
∗
j ,mj+1, . . . ,mNE) (3)

Nash equilibria can be characterized by using classical optimal control
theory of partial differential equations: For each j = 1, . . . , NE we introduce
the j-th adjoint problem:

−∂qj
∂t
− βΔqj − div(qju) + κqj =

nj∑
i=1

1
εji
χAj

i
(ρ− σji )+ in Ω × (0, T ),

qj(x, T ) = 0 in Ω,

β
∂qj
∂n

+ qj u · n = 0 on ∂Ω × (0, T ),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4)

where χAj
i

denotes the characteristic function of the set Aji , i.e. χAj
i
(x) = 1

only if x ∈ Aji . Then we have the following very useful result (see [2]):
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Theorem 1. A vector m = (m1, . . . ,mNE) ∈ int(M) is a Nash equilibrium
of the problem (P) if and only if it verifies the optimality system given by:

State system (2),
Adjoint systems (4), for j = 1, . . . , NE.

f ′
j(mj) +

1
h(Pj , t)

qj(Pj , t) = 0 in (0, T ), for j = 1, . . . , NE.

⎫
⎪⎪⎬
⎪⎪⎭

(5)

Then, to obtain a Nash equilibrium we introduce a time discretization: we
take N ∈ N, Δt = T

N , and tn = nΔt, for n = 0, . . . , N . We define MΔt =∏NE

j=1[mj ,mj ]N , and consider the discrete control

mΔt = (m1(t1), . . . ,m1(tN ), . . . ,mNE(t1), . . . ,mNE(tN )) ∈MΔt.

The optimality system (5) is now approximated by:

Find mΔt ∈MΔt verifying F (mΔt) = 0, (6)

where the function F : MΔt ⊂ R
N×NE −→ R

N×NE is given by:
Algorithm 1. (Computation of F (mΔt) )

Initial inputs: Polygonal approximation Ωh of Ω, admissible triangulation
τh of Ωh, and mΔt ∈MΔt.

– Step 1.1: Numerical resolution of the state system:
Taking mΔt ∈MΔt as data, we solve system (2) by using a characteristic-
Galerkin method (see [3]) and obtain, for n = 0, . . . , N , functions ρnh(x)
verifying ρnh(x) ≈ ρ(x, tn) in Ωh.

– Step 1.2: Numerical resolution of the adjoint systems:
Taking approximations ρnh(x) as data, we solve systems (4) by using the
previous characteristic-Galerkin method and obtain, for n = N, . . . , 0 and
j = 1, . . . , NE, functions qnjh(x) verifying qnjh(x) ≈ qj(x, tn) in Ωh.

– Step 1.3: Time discretization of the optimality condition:

We compute F (mΔt) = ((f ′
j(mj(tn)) +

1
h(Pj , tn)

qnjh(Pj))Nn=1)NE

j=1

Finally, a discrete approximation of a Nash equilibrium is obtained from
solving problem (6) by any standard numerical method for nonlinear systems.

3 A Cooperative Study: Pareto Solutions

Once we have already obtained a Nash equilibrium, we wonder if it is an
optimal solution. That is, the Nash equilibrium is a discharge strategy (m)
accepted by all plant managers because if one of them (j plant) changes its
particular strategy (mj), then its particular cost functional (Jj) necessarily
increases. But now the question is: If all plant managers are ready to cooper-
ate, can we obtain a better strategy which brings off a simultaneously decrease
of all cost functionals? According to this we introduce the concept of Pareto
solution:
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Pareto-optimal frontier

Fig. 1. Geometrical interpretation of Pareto solutions and Pareto-optimal frontier

Definition 2. We say that m = (m1, . . . ,mNE ) ∈ M is a Pareto solution of
problem (P) if there does not exist any m∗ ∈M such that Jj(m∗) ≤ Jj(m), for
all j = 1, 2, . . . , NE, and for at least one j ∈ {1, 2, . . . , NE}, Jj(m∗) < Jj(m).
If m ∈ M is a Pareto solution, the objective vector (J1(m), . . . , JNE (m)) is
called Pareto-optimal and the set of Pareto-optimal objective vectors is called
Pareto-optimal frontier.

Figure 1 shows the geometrical interpretation for two plants. An admissi-
ble set and its image are illustrated. The fat line is the Pareto-optimal frontier
and, for a non Pareto solution m∗ ∈M , dashed lines bound objective vectors
corresponding to strategies m ∈ M better than m∗. Strategies m ∈ M with
image on the arch bounded by dashed lines are Pareto solutions better than
m∗.

Pareto solutions can be characterized by means of the weighting method.
For each vector λ = (λ1, λ2, . . . , λNE ) ∈ R

NE such that λi ≥ 0, for all i =
1, . . . , NE , and

∑NE

i=1 λi = 1, we introduce the weighting problem:

minimize J(m) =
NE∑
j=1

λjJj(m) subject to m ∈M. (7)

We can prove the following very useful result (see [1]):

Theorem 2. Let fj ∈ C1([mj ,mj ]) be strictly convex in [mj ,mj ], for all
j = 1, . . . , NE. For each vector λ = (λ1, λ2, . . . , λNE ) ∈ RNE , λ ≥ 0 and∑NE

k=1 λk = 1, the weighting problem (7) has only one solution. Moreover,
m ∈ M is a Pareto solution of problem (P) if and only if there exists λ =
(λ1, λ2, . . . , λNE ) ∈ RNE , λ ≥ 0 and

∑NE

k=1 λk = 1 such that m is a solution
of (7).

From this result, Pareto solutions can be obtained by solving (7) for every
weight vector λ. From a computational viewpoint, it is divided in two stages:
Stage 1. We must fix the number imax+ 1 of Pareto solutions we are inter-
ested in, and we have to choose their corresponding weights {λ0, λ1, . . . , λimax}.
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In this paper we use an algorithm generating the family of weight vectors by
splitting the interval [0, 1] in a regular way, as given by Caballero et al. [4].
Stage 2. For each i = 0, 1, . . . , imax, we have to solve the problem (7) taking
λ = λi. In order to do it, we recall the time discretization introduced in section
2, and approach the problem (7) by the discrete problem:

minimize JΔt(mΔt) subject to mΔt ∈MΔt, (8)

where

JΔt(mΔt) =
NE∑
j=1

λjΔt

N∑
n=1

(fj(mj(tn)) +
nj∑

i=nj−1+1

1
2εi

∫

Ai

(ρnh(x)− σi)2+ dx),

and, for n = 1, . . . , N , ρnh(x) is the approximation of ρ(x, tn) obtained as
described in Step 1.1 of algorithm 1. The gradient of JΔt at mΔt can be also
approximated by a discretization of adjoint systems (4). To be exact,

∇JΔt(mΔt) ≈ ((f ′
j(mj(tn)) +

NE∑
k=1

λk
1

h(Pj , tn)
qnkh(Pj))Nn=1)NE

j=1,

where, for n = N, . . . , 1 and k = 1, . . . , NE , qnkh(x) is the approximation of
qk(x, tn) obtained as described in Step 1.2 of algorithm 1. The discrete problem
(8) can now be solved by any method for convex differentiable optimization.

4 Numerical Results

Problem (P) has been solved in a realistic situation posed in the ŕıa of Vigo
(NW Spain). We have considered two sewage purifying plants, and two sensi-
tive areas, each one associated to its corresponding plant. For the numerical
simulation we considered a complete tidal cycle (T = 12.4 h), chose N = 120,
supposed ρ0 = 0, and used the height/velocity obtained by solving the shal-
low water equations on this domain. Related to purification characteristics we
have assumed that area associated to plant 1 is more sensitive than area asso-
ciated to plant 2 (σ1

1 < σ2
1), we have taken the same purification cost function

for both plants (f1 = f2) and also same penalty parameters (ε11 = ε21).
First we have looked for a Nash equilibrium in this situation and the

result can be seen in Fig. 2a. Next, we have looked for Pareto solutions:
Figure 3 shows the Pareto-optimal frontier. Cost for plant 1 is represented
in the abscissa axis and cost for plant 2 is represented in the ordinate axis.
An empty circle represents the cost associated to the Nash equilibrium given
in Fig. 2a. As we can see, the Nash equilibrium is not a Pareto solution,
and discharge strategies with cost inside the dashed lines are better that the
discharge strategy given by the Nash equilibrium. Plant managers have to
negotiate to choose one of them (for instance, a reasonable option is that
giving a similar improvement – in cost reduction – for both plants). That
discharge strategy, with cost pointed out in Fig. 3, is represented in Fig. 2b.
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Summary. Semivalues form a wide family of solutions for cooperative games that
assign to each player a weighted sum of its marginal contributions to the coalitions.
The Shapley value and the Banzhaf value belong to the family of semivalues. In this
work, all semivalues that admit a basis related with the concept of potential are
determined, obtaining an explicit expression for its games. Also, for each semivalue
whose potential basis has been found, a method to construct all cooperative games
with a predefined payoff vector is offered.

1 Introduction

Probabilistic values as solution concept for cooperative games were intro-
duced in [11]. The payoff that assigns a probabilistic value to each player is a
weighted sum of marginal contributions to the coalitions, where the weighting
coefficients form a probabilistic distribution over the coalitions he/she is a
member.

A type of probabilistic values is formed by the semivalues that were defined
in [5]. In this case the weighting coefficients are independent of the players
and they only depend on the coalition size. Semivalues represent a natural
generalization of both the Shapley value [10] and the Banzhaf value [2, 9].
Many properties of these solutions can extend to the set of semivalues. For
instance, the potential, which was introduced in [7] for the Shapley value.
The potential of the Shapley value assigns to each game and all its restricted
games a number recursively obtained, so that the marginal contribution of
each player to the potential coincides with the payoff to the player by the
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Shapley value. In a similar way, Dragan [3] defines a potential for the Banzhaf
value, as well as a potential for every semivalue on cooperative games [4].

Indeed in [3], it is obtained for the Banzhaf value a series of new concepts
and properties already known for the Shapley value. Among these concepts
we find a particular basis for the vector space of cooperative games whose
determination is directly related with the potential. This basis allows to solve
an inverse problem for the Banzhaf value: find all games with a predefined
payoff vector. For each vector space of cooperative games, this basis is know
as potential basis.

The main purpose of this work consists in finding all games with a pre-
established allocation for the greater possible number of semivalues. In a
similar way to the Banzhaf value, the process passes through the potential
basis, but now it has two levels: (1) determine the semivalues for which a
potential basis can be obtained and (2) construct the games of the basis
according to the weighting coefficients of each semivalue.

Our inverse problem for semivalues coincides with the resolution of a non-
homogeneous system of linear equations. In a classical way, we obtain the
solution as a sum of the general solution for the homogeneous system, the so-
called null space, and a particular solution for the non-homogeneous system,
the short game. In both cases, the potential basis plays an essential role,
since its games are {0, 1}-valued for the potential; these values easily allow to
modulate the payoff vector according to predefined allocations.

2 Preliminaries

A cooperative game with transferable utility is a pair (N, v), where N is a finite
set of players and v : 2N → R is the so-called characteristic function, which
assigns to every coalition S ⊆ N a real number v(S), the gain or worth of
coalition S, and satisfies the natural condition v(∅) = 0. With GN we denote
the set of all cooperative games on N . For a given set of players N , we identify
each game (N, v) with its characteristic function v.

With the usual operations, addition (v1+v2)(S) = v1(S)+v2(S), and prod-
uct (λv)(S) = λv(S), λ ∈ R, the set GN has structure of real vector space.
For every nonempty coalition T , the unity game 1T is defined by 1T (S) = 1
if S = T and 0 otherwise. The family of unity games {1T | ∅ �= T ⊆ N} forms
a basis in GN and the dimension of GN as real vector space is 2n − 1.

A function ψ : GN → R
N is called a solution and it represents a method

to measure the negotiation strength of the players in the game. The payoff
vector space R

N is also called the allocation space. In order to calibrate the
importance of each player i ∈ N in a cooperative game (N, v), we can look
at his/her marginal contribution to the coalitions, v(S) − v(S \ {i}). If these
contributions are weighted by means of identical weights according to the
coalition size, we obtain the solution concept known as semivalue, introduced
and axiomatically characterized in [5].
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The payoff to the players in a game v ∈ GN by a semivalue ψ is an average
of marginal contributions of each player:

ψi[v] =
∑
S�i

pns [v(S)− v(S\{i})] ∀i ∈ N (s = |S|),

where the weighting coefficients (pns )ns=1 verify
∑n

s=1

(
n−1
s−1

)
pns = 1 and pns ≥ 0

for 1 ≤ s ≤ n. With Sem(GN ) we denote the set of all semivalues on GN .
Given a semivalue ψ ∈ Sem(GN ), |N | = n, with weighting coefficients

(pns )ns=1, the recursively obtained numbers

pms = pm+1
s + pm+1

s+1 1 ≤ s ≤ m < n,

define a induced semivalue ψm (see [4]) on the space of cooperative games
with m players. Adding the own semivalue, the so-called family of induced
semivalues by ψ in spaces of cooperative games with less than or equal n
players is formed by ψm ∈ Sem(GM ) with 1 ≤ m ≤ n.

If the initial semivalue on GN is the Shapley value, pns = 1/[n
(
n−1
s−1

)
], the

Banzhaf value, pns = 1/2n−1, or binomial semivalues as they are defined in [1],
pns = αs−1(1 − α)n−s, α ∈ (0, 1), then the induced semivalues are also of the
same initial types.

Definition 1. Let us suppose ψ ∈ Sem(GN) with weighting coefficients
(pns )ns=1. The potential of game v restricted to coalition T ⊆ N , T �= ∅,
according to semivalue ψ is defined by

Pψ(T, v) =
∑
S⊆T

ptsv(S) ∀T ⊆ N.

We find this definition in [4]. It generalizes the potential for the Shapley
value introduced in [7] and also the potential for the Banzhaf value in [3]. The
above definition verifies the condition of potential, i.e.,

Pψ(T, v)− Pψ(T \ {i}, v) = ψti [T, v] ∀T ⊆ N, |T | ≥ 2,

and, for |T | = 1: Pψ({i}, v) = v({i}) = ψ1
i [{i}, v] ∀i ∈ N .

3 Potential Basis for Semivalues

A basis in the game space GN is potential basis with respect to a solution
concept that has a potential if the components of every game v ∈ GN in this
basis agree with the potentials of game (N, v) and its restricted games (T, v),
T ⊂ N , T �= ∅. We find the potential basis for the Banzhaf value in [3]. Now,
we rewrite this definition for any semivalue.
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Definition 2. Let ψ be a semivalue on GN . A basis in GN {vS ∈ GN |S ⊆ N,
S �= ∅} is potential basis with respect to semivalue ψ iff:

∀v ∈ GN , v =
∑
S⊆N

αSvS ⇒ αS = Pψ(S, v).

Lemma 1. A basis in the game space GN {vS ∈ GN |S ⊆ N, S �= ∅} is
potential basis with respect to semivalue ψ on GN if and only if for every
S ⊆ N , S �= ∅, Pψ(S, vS) = 1; Pψ(T, vS) = 0 ∀T ⊆ N, T �= S.

Proposition 1. Let us suppose ψ ∈ Sem(GN) with weighting coefficients
(pns )ns=1. Every game v ∈ GN can be recursively reconstructed from the
potential Pψ if and only if pnn > 0. Then, the recursive expression is:

v(T ) =
1
ptt

[
Pψ(T, v)−

∑
S⊂T

ptsv(S)
]
∀T ⊆ N, 2 ≤ |T | ≤ n,

and v({i}) = Pψ({i}, v) ∀i ∈ N .

According to Lemma 1, the games in the so-called potential basis are
characterized by the potentials of their restricted games. By means of Propo-
sition 1 we can reconstruct these games from their potentials and obtain an
explicit expression for them.

Proposition 2. [6] Let ψ be a semivalue on GN whose last weighting coeffi-
cient is pnn > 0. If Pψ denote the potential of ψ, for every S ⊆ N, S �= ∅, there
exists a unique game cψ,S ∈ GN with Pψ(S, cψ,S) = 1 and Pψ(T, cψ,S) = 0
∀T ⊆ N , T �= S, which has like explicit expression:

cψ,S(T ) =

⎧
⎪⎨
⎪⎩

(−1)t−s
t−s∑
h=0

(
t− s
h

)
(−1)h

pt−ht−h
if T ⊇ S,

0 otherwise.

Theorem 1. [6] If ψ is a semivalue on GN with last weighting coefficient
pnn > 0, then the family of games Cψ = {cψ,S ∈ GN | S ⊆ N, S �= ∅} is
potential basis in the vector space GN with respect to the semivalue ψ.

4 Inverse Problem for Semivalues

The potential for the games in a potential basis only takes values 0 and 1; it
leads to simple allocations for these games, as we can see in the next Lemma.

Lemma 2. Let us suppose ψ ∈ Sem(GN ) with last weighting coefficient pnn >
0. If ej, 1 ≤ j ≤ n, are the unit vectors in the standard basis for R

n, for the
games of a potential basis cψ,S , S ⊆ N, S �= ∅, we have:
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(a) ψ[N, cψ,N ] =
n∑
j=1

ej ;

(b) ψ[N, cψ,N�{j}] = −ej ∀j ∈ N ;

(c) ψ[N, cψ,S ] = 0 ∀S ⊂ N, 1 ≤ |S| ≤ n− 2.

Definition 3. Let ψ be a semivalue on GN . We call null space by ψ to the
vector subspace of games in GN that obtain payoff vector 0 according to
semivalue ψ.

NS(ψ) = {v ∈ GN | ψ[N, v] = 0}.
Games in a null space are a solution for our inverse problem in a par-

ticular case. By means of a vector treatment, for semivalues with non-null
last weighting coefficient, the next property shows the solution for the homo-
geneous inverse problem and, as a result, we can solve the general inverse
problem.

Proposition 3. Let us suppose ψ ∈ Sem(GN) with last weighting coefficient
pnn > 0, then dim(NS(ψ)) = 2n − n− 1 and a basis for NS(ψ) is formed by

{
cψ,N +

∑n

j=1
cψ,N\{j} , cψ,S | 1 ≤ |S| ≤ n− 2

}
.

Corollary 1. For a given semivalue ψ ∈ Sem(GN ) with last weighting coef-
ficient pnn > 0 and a given payoff vector η = (η1, . . . , ηn) ∈ R

N , the solution
for the equation

ψ[N, v] = η, (1)

has by expression:

v =
∑

S⊆N, 1≤|S|≤n−2

λS cψ,S + λN

[
cψ,N +

∑
j∈N cψ,N\{j}

]
−
∑
j∈N

ηj cψ,N\{j},

where λN , λS, 1 ≤ |S| ≤ n− 2, are freedom degrees of the set of solutions; for
every selection, the numbers λN , λS are the potentials of game v on N and
games v restricted to S, 1 ≤ |S| ≤ n− 2, respectively.

Definition 4. We call short game that verifies equation (1) to the particular
solution obtained by imposing λN = 0 and λS = 0 for 1 ≤ |S| ≤ n − 2; we
denote it by vψ.

vψ = −
∑
j∈N

ηj cψ,N\{j}.

Game vψ is a linear combination of games cψ,N\{j}, j ∈ N , that only take
non-null values on the coalitions N \ {j} and N . An explicit expression for
the short game vψ is:

vψ =
1

pnn−1 + pnn

[
−
∑
j∈N

ηj 1N\{j} +
pnn−1

pnn

(∑
j∈N

ηj

)
1N

]
.
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Theorem 2. For a given semivalue ψ defined on game space GN with last
weighting coefficient pnn > 0 and a given vector η = (η1, . . . , ηn) ∈ R

N , the
general solution of the non-homogeneous equation ψ[N, v] = η is obtained as
a sum of the general solution of the homogeneous equation ψ[N, v] = 0 and
one particular solution of the non-homogeneous equation, i.e.,

v = NS(ψ) + vψ.
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Summary. An oriented structure can model the feasible coalitions according to the
sequences of nodes obtained by means of its oriented edges. As an extension of the
Shapley value for the classical cooperative games, a solution for games modified by
oriented structures is considered in this work. In addition, if a game is symmetric, the
allocations only depend on the geometry imposed by the oriented structure. Then,
to obtain a measure among the nodes without a predefined game, an exogenous
procedure based on a family of symmetric games is proposed.

1 Introduction

A central problem of Game Theory consists of distributing the total utility by
using acceptable allocation rules. One of the most important solution concepts
for cooperative games is the Shapley value [3], whose payoff to each player
is a weighted sum of his/her marginal contributions to the coalitions. This
solution verifies symmetry and efficiency – the sum of payoffs to all players
equals the utility of the grand coalition N .

In a classical cooperative game, every coalition can form. Nevertheless,
a directed graph on N can model the feasible coalitions according to the
sequences of nodes obtained by means of its oriented edges. The cooperation is
only possible when the players are related by means of the directed graph. This
idea directly leads to our solution concept for a game modified by a directed
graph: cooperation is possible when there exists accessibility. The introduced
solution for games modified by directed graphs is an extension of the Shapley
value. If a game is symmetric – the utilities only depend on the coalition size
– the Shapley value assigns the same payoff to all players. Thus, according to
our introduced solution, the allocations to the players in a symmetric game
will only depend on the geometry imposed by the directed edges.
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2 Accessibility in a Digraph

A directed graph or digraph is a pair (N,D) where N is a finite set of nodes
and D is a binary relation defined on N . The visual interpretation of pair
(i, j) ∈ N × N corresponds to an oriented edge that links node i to node j.
We consider digraphs without loops. Thus, the complete digraph is (N,DN )
with DN = N×N \{(i, i) / i ∈ N}. Fixed N , we identify each digraph (N,D)
with the binary relation D. In this way, all digraphs on N are the subsets
D ⊆ DN .

A cooperative game with transferable utility is a pair (N, v), where N is
a finite set of players and v : 2N → R is the so-called characteristic function,
which assigns to every coalition S ⊆ N a real number v(S), the worth of
coalition S, and satisfies the natural condition v(∅) = 0. With GN we denote
the set of all cooperative games on N . For a given set of players N , we identify
each game (N, v) with its characteristic function v. A cooperative game v ∈
GN is superadditive if v(S1 ∪S2) ≥ v(S1) + v(S2) for every coalitions S1, S2 ⊂
N with S1 ∩ S2 = ∅.

Following the formal development for games in generalized characteristic
function form in Nowak and Radzik [2], for each nonempty subset S ⊆ N ,
we denote by H(S) the set of all orders of the elements in S. The elements
T ∈ H(S), ∅ 
= S ⊆ N, will be called ordered coalitions. A game in generalized
characteristic function form is a pair (N, v) where N is a finite set of players
and v is a function that assigns to every T ∈ H(S), ∅ 
= S ⊆ N, a real number
v(T ) with v(∅) = 0.

For a nonempty ordered coalition T = (i1, i2, . . . , is) ∈ H(S), we say that
i1 and is are, respectively, the first and the last element in T . As well, ij+1 is
the consecutive element of ij in T , for 1 ≤ j ≤ s− 1 (or ij is the previous ele-
ment of ij+1). And we will say that a subset of consecutive elements in T , Q =
(ip, ip+1, . . . , ip+u) with 1 ≤ p ≤ p+ u ≤ s, is a consecutive subcoalition of T .

Definition 1. Given a digraph D defined on N , a consecutive subcoalition
Q = (ip, ip+1, . . . , ip+u) of T is a connected consecutive subcoalition according
to the digraph D if, and only if, u = 0 or (ij , ij+1)∈D for j = p, . . . , p+u− 1.
If, in addition, (i) p = 1 or (ip−1, ip) 
∈ D and (ii) p+u = s or (ip+u, ip+u+1) 
∈
D, we say that Q is a maximal connected consecutive subcoalition according
to D.

Note that the individuals T = (ip), 1 ≤ p ≤ s, are connected consecutive
subcoalitions.

Definition 2. Let v and D be a cooperative game and a digraph respectively
defined on N . The game v modified by digraph D is the game in generalized
characteristic function form defined by

vD(T ) =
∑

Q∈T/D

v(Q′) ∀T ∈ H(S), ∀S ⊆ N, S 
= ∅,
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where T/D denotes the set of maximal connected consecutive subcoalitions of
T according to digraph D, and Q′ denotes the (non-ordered) coalition in N
formed with the elements of the ordered subcoalition Q.

Example 1. Let v be the symmetric game defined on N = {1, 2, 3, 4} where
v({i}) = 1 for all i ∈ N , v(S) = 3 if |S| = 2, v(S) = 6 if |S| = 3 and v(N) = 9.
Let us consider the digraph D = {(1, 2), (1, 3), (2, 1), (2, 3), (4, 2)} on N . The
game v modified by digraph D is defined on the set of all ordered coalitions
H(S) with ∅ 
= S ⊆ N . For instance,

vD(2, 3, 4) = v({2, 3}) + v({4}) = 4,
vD(1, 2, 3, 4) = v({1, 2, 3}) + v({4}) = 7,
vD(1, 2, 4, 3) = v({1, 2}) + v({4}) + v({3}) = 5,
vD(4, 2, 1, 3) = v({1, 2, 3, 4}) = 9.

Definition 3. Fixed N , let v and D be a cooperative game and a digraph
defined on N . The accessibility of node i according to v and D is

αi[v;D] =
1
n!

∑
T∈H(N)

[vD(T |i, i)− vD(T |i)],

where T |i denotes the consecutive subcoalition of T with the same first element
as in T and whose last element is the previous one to element i in T , and
(T |i, i) is the consecutive subcoalition obtained from T |i adding element i at
its end.

Example 2. We return to the game and the digraph introduced in Example 1.
In order to obtain the accessibility, we consider the 4! ordered coalitions in
H(N) and compute the marginal contributions of each node.

α1[v;D] =
1
4!
{

18v({1})+4[v({1, 2})−v({2})]+2[v({1, 2, 4})−v({2, 4})]}=
4
3

For the remaining nodes: α2[v;D] = 3/2, α3[v;D] = 7/4, α4[v;D] = 1.

The symmetric game v has been modified according to the non-symmetric
digraph D. The concept of accessibility gathers this circumstance and offers
diverse allocations to the different nodes. In addition, we can see that the sum
of allocations to the nodes is 67/12 = 5.5833 and this value does not agree
with the utility that the grand coalition could obtain. The restrictions to the
cooperation imposed by digraph D have reduced the sum of allocations to the
nodes with respect to the global utility.

Proposition 1. The notion of accessibility according to a game v ∈ GN and
a digraph D ⊆ DN verifies:

(a) Linearity. For all v, w ∈ GN and all λ, μ ∈ R, α[λv + μw;D] =
λα[v;D] + μα[w;D] ∀D ⊆ DN .
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(b) Dummy player. If i is a dummy in game vD (vD(T |i, i) = vD(T |i) +
v({i})∀T ∈ H(N)), then αi[v;D] = v({i}).

(c) Average efficiency. The sum of the accessibilities coincides with the aver-
age utility obtained by all ordered coalitions in H(N):

∑
i∈N αi[v;D] =

1
n!

∑
T∈H(N) vD(T ).

(d) For the complete digraph DN , the accessibility of every node i equals the
Shapley value of player i in game v: α[v;DN ] = Sh[v].

(e) If a node i is inaccessible in the digraph D, then αi[v;D] = v({i}).
(f) The accessibility of a node i does not vary by addition of an oriented edge

leaving i: αi[v;D ∪ (i, j)] = αi[v;D].
(g) If game v is superadditive, the accessibility of a node i does not decrease

by addition of an oriented edge arriving at i: αi[v;D] ≤ αi[v;D ∪ (j, i)].

An oriented path is a pair (N,P ) where N is a finite set of nodes and the
binary relation is

P = {(i1, i2), (i2, i3), . . . , (il−1, il)} with ij 
= ik for j 
= k.

Proposition 2. If v ∈ GN is a convex game,

v(S1) + v(S2) ≤ v(S1 ∪ S2) + v(S1 ∩ S2) ∀S1, S2 ⊆ N,

the accessibility of the last node of an oriented path does not decrease by the
addition of nodes previous to the first node in the oriented path.

Proposition 3. Let v be a cooperative game defined on N :

(a) For every oriented path P on N , if an oriented edge with the opposite
direction is added, then the accessibility of the subsequent nodes do not
vary.

(b) For every pair of oriented paths P, P ′ on N with last node i, if P ∩P ′ also
is an oriented path with last node i, then

αi[v;P ∪ P ′] = αi[v;P ] + αi[v;P ′]− αi[v;P ∩ P ′].

(c) Reduction to oriented paths. The accessibility of node i in a digraph D ⊆
DN equals its accessibility in the digraph Di formed by the union of all the
oriented paths in D with last node i,

αi[v;D] = αi[v;Di].

3 Oriented Structures Without Cooperative Games

We want to study the importance of each node in the system of directed
connections of a digraph D without a predefined game.
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3.1 Classical Solution

The importance of each node in an oriented structure is proportional to the
sum of the importances of all nodes that link to it. The importances are the
unknowns of a system of linear equations and the solutions are the components
of an eigenvector of matrix A = (aij),

aij =

{
1 if (j, i) ∈ D,
0 otherwise.

According to the idea due to Wei [4] and Kendall [1], the ranking system
is based on the eigenvector of matrix A whose components are all positive.

3.2 Exogenous Procedure Based on Game Theory

For every coalition S ⊆ N , the unanimity game uS is defined by uS(T ) = 1 if
T ⊇ S and 0 otherwise.

Definition 4. From the unanimity games, we construct the so-called test
games:

v1 =
∑

S: |S|=2

uS ; v2 =
∑

S: |S|≥2

uS .

Test games v1 and v2 are symmetric and convex. Game v1 – the pairs
game – orders the nodes according to each paired comparison. Game v2 –
the conferences game – orders the nodes according to its relevance in each
coalition formed by two or more elements (conference).

We obtain rankings for the nodes of an oriented structure based on the
accessibility by using symmetric and convex test games as v1 and v2.

Example 3. Let D = {(1, 2), (1, 5), (2, 4), (2, 5), (3, 2), (4, 1), (5, 3), (5, 4)} be a
digraph on the set of nodes N = {1, 2, 3, 4, 5} without no cooperative game
defined on N .

The ranking for the nodes according to the accessibility is

α[v1;D] =
1

120
( 42, 65, 42, 77, 71 ),

α[v2;D] =
1

120
( 80, 96, 80, 126, 108 ).

The classical solution for the ranking requires the matrix

A =

⎛
⎜⎜⎜⎜⎝

0 0 0 1 0
1 0 1 0 0
0 0 0 0 1
0 1 0 0 1
1 1 0 0 0

⎞
⎟⎟⎟⎟⎠
.
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To compare with eig+(A), we normalize both accessibilities:

nor{α[v1;D]} = ( 0.3069, 0.4750, 0.3069, 0.5627, 0.5189 ),
nor{α[v2;D]} = ( 0.3594, 0.4312, 0.3594, 0.5660, 0.4851 ),

eig+(A) = ( 0.3656, 0.4267, 0.3132, 0.5814, 0.4981 ).

Both normalized accessibilities are quite close to the classic solution, parti-
cularly the one that offers test game v2.
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Summary. Breaking tensile test of ductile materials starts with the formation, in
the test material central area, of a choking followed by the nucleation of several cavi-
ties at nanoscopic scale. Nanovoids growth and coalescence give rise to a crack which
propagates towards the surface in the perpendicular direction to the applied charge.
This work is focused in the study of the evolution of these nanovoids for face cen-
tered cubic (fcc) crystals. The Quasicontinuum (QC) method at finite temperature
has been performed to carry out such an analysis.

1 Introduction

In metals, at room temperature, fracture process entails plastic deformation
that the material undergoes before fracture occurs [2]. The failure of many
ductile materials occurs in stages that initiate after necking begins. First,
small nanovoids form inside the material. Next, deformation continues and
the nanovoids enlarge to form a crack. The crack continues to grow and it
spreads laterally towards the edges of the specimen. Finally, crack propagation
is rapid along a surface that makes about a 45◦ angle with the tensile stress
axis. The new fracture surface has a very irregular appearance [1, 4].

It is, therefore, of great interest for the study of metals behaviour under
stress, to understand the growth and the evolution of these, initially nanoscopic
size, cavities when stress is applied. This is the aim of this work. The Qua-
sicontinuum (QC) method at finite temperature has been modified to carry
out such study. This method is framed inside the multiscale modelling tech-
niques and it is based on a mixed approximation of the system, continuum
and atomistic.
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2 QC Method at Finite Temperature

The static theory of the QC model, at zero temperature, was originally devel-
oped by Tadmor et al. [13, 15] to solve quasi-static deformation of single
crystals in two dimensions. Subsequently, Knap and Ortiz developed the static
version of the code in three dimensions [6]. Kulkarni and Ortiz [7], developed
a non-equilibrium finite temperature extension of the QC method using a
variational formulation based on the maximum entropy principle.

The key idea of QC method is the use of a full atomistic description of the
material near the region of interest (nanovoid in this study) while a coarse-
grained finite element model is used as we move away from this region and the
displacement field becomes slow varying on the scale of the lattice (hetero-
geneity where the lattice is not highly distorted). In the atomistic area, as a
first approach, Lennard-Jones potential has been considered for the interaction
between atoms.

A crystal with N atoms is considered in reference configuration occupying
a subset L of a simple Bravais lattice. Denoting the basis vectors by ai, the
reference coordinates of the atoms are:

X(l) =
3∑

i=1

liai, l ∈ L ⊂ Z
3

where l are the lattice coordinates associated with individual atoms. q(X) is
defined as the array of atomic positions in the deformed configuration, where
X denotes the configuration space of the ensemble. Total potential energy in
the deformed configuration (Φ(q)) is the sum of the atomic interaction energy
and the possibility of an external potential. Then, the problem of determin-
ing the equilibrium configurations of the system (the main objective of this
method) is a problem of seeking the local minima of the energy functional
consistent with the boundary conditions.

For systems with a very large number of atoms, this minimization problem
presents a significant computational difficulty. To solve this, there are three
key components of the QC framework that impart the method its capabili-
ties: constrained minimization problem, lattice summation rules and adaptive
refinement.

The essence of the QC theory lies in replacing the former minimum equa-
tion, by an approximate minimization problem over a suitable chosen subspace
Xh of X . Xh is constructed by selecting a reduced set Lh of Nh representa-
tives atoms or nodes. Minimization problem is defined now as a minimization
over only the representative atoms.

min
qh ∈ Xh

Φ(qh)

Sampling the behavior of the crystal over clusters of atoms around the
representative atoms, the equations of equilibrium are reduced to the form:
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fh(lh) ≈
∑

l′h∈ Lh

nh(l′h)
[ ∑
l′h∈ Lh

∂Φ

∂q(l)
ϕ(l|lh)

]

where ϕ(l|lh) denotes the continuous and piecewise linear shape function and
nh(lh) are the clusters weights associated with the representative atoms lh.

The third key component is the use of mesh adaptation in order to tailor
the computational mesh to the structure of the deformation field. It has been
adopted, as empirical adaptation indicator, the measure of the displacement
field variation ε over a simplex K.

ε(K) =
√
|IIEd |h(K)

where IIEd denotes the second invariant of the Lagrangian strain tensor for
simplex K and h(K) is the size of K. The element K is deemed acceptable if
when you divide ε(K) by the smallest Burgers vector of the crystal, the results
is lower than a tolerance (TOL) value, where TOL is less than 1. The value
of TOL involves a compromise between conflicting demands on accuracy and
computational efficiency.

The formulation of the QC method at finite temperature is based on the
principle of maximum entropy [8]. This principle provides a way to analyze
the available information in order to determinate an unique probability distri-
bution function. The principle states that the least biased function maximizes
the entropy of the system subject to all the imposed constraints. As in statis-
tical mechanics, the basic idea is to account for the energy contained in the
thermal oscillations of the atoms to obtain effective macroscopic thermody-
namic potentials while circumventing the treatment of all the atomic degrees
of freedom. This goal is achieved by constructing a probability distribution
function for the system by way of a mean field approximation. The task of
determining the metastable configurations of the crystal, when it is in thermal
equilibrium at a uniform temperature T , may be enunciated as follows,

min
q∈ X

min
w∈ R3

Φ(q, T, w), Φ(q, T, w) = F (q, T, w) + Φext(q)

F (q, T, w) is the Helmholtz free energy of the crystal and w approximates the
averages of the local frequencies and establishes a link between the energet-
ics of the microscopic dynamics and the effective macroscopic energy of the
system. Using the framework of the static theory of QC, described above, the
reduced equilibrium equations are of the form:

∑
l′
h
∈ Lh

nh(l′h)
[ ∑
l∈ C(l′h)

∂Φ

∂q(l)
ϕ(l|lh)

]
= 0

∑
l′h∈ Lh

nh(l′h)
[ ∑
l∈ C(l′h)

∂Φ

∂ w(l)
ϕ(l|lh)

]
= 0

where C(lh) represents a cluster of lattice sites within a sphere of radius r(lh)
centered at the node lh.



712 C. Arévalo et al.

3 Results

The main parameters needed in this study to define a nanovoid deformation
problem at finite temperature were based on the study made by Knap and
Marian [11,12] for nanovoid in Al with the static method.

Recent experiments data suggest that the material response to a strong
shock is essentially volumetric [10]. We therefore drive the void expansion by
prescribing pure dilatational displacements over the extension boundary of
the computational cell. If ε is the normal axial strain imparted on the sample,
we increase ε steadily from ε = 0 to ε = 3% by 0.1% increments. At each
loading step, a new stable equilibrium configuration is obtained using the
Polak-Ribiere variant of the conjugate gradient algorithm [14].

Computational cell is a cube of size 162a0×162a0×162a0 (a0 = 0.5312)nm
corresponding to a size of 86 nm. Solid Argon is used as a test material since it
can be modelled using the Lennard-Jones pair potential. The cell is oriented
along cubic lattice directions. A 4.25 nm radius void is initially created in the
centre of the cell with full atomistic resolution being provided ab initio within
an 8a0×8a0×8a0 region surrounding the void. This system contains 1.5×106

atoms reduced to 4,530 nodes in this model. The temperature in the system is
42 K, corresponding to half the melting temperature of solid Ar. As boundary
conditions, free surfaces are considered.

For our nanovoid study at finite temperature, the QC simulation was run
in two parts: We first allow thermal expansion of the crystal at the specified
temperature (42 K) under isothermal conditions. Then, we subject this relaxed
crystal to the tri-axial deformation described before. Figure 1 shows (a) the
initial simulation mesh with the void in the centre of the box and (b) the
initial thermal expansion in z-direction.

X Y

Z

(a)

X Y

Z

w

2.8
2.6
2.4
2.2
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2

(b)

Fig. 1. (a) Initial triangulation with the void in the centre of the simulation box.
(b) Thermal expansion in z-direction (w)
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Fig. 2. Snapshots at several deformation steps 0, 1, 2 and 3% respectively, showing
the temperature profile of the cross-section Z = 0

Figure 2 represents several snapshots showing the temperature profile of
the system for four different deformation steps: 0, 1, 2 and 3% deformation
respectively. The unit of temperature is the melting point of the material,
Tm = 83 K. Several aspects must be taken into account: The initial mesh com-
prises atomistic region only in the vicinity of the nanovoid. When deformation
increases, remeshing is clearly observed in the region around the nanovoid in
order to capture the microscopic evolution. As the nanovoid expands, the local
temperature decreases. At 3% strain, the T drops by 25% around the void.

4 Conclusions and Further Work

In this study, fundamental aspects of the multiscale modelling technique QC
have been shown. This technique has been applied to the study of growth and
behaviour of nanovoids in order to understand ductile fracture mechanism at
finite temperature. Results for Solid Ar at 42 K have been presented, showing
temperature profile.
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Simulations are now in progress to consider 10.5% deformation to study
elastic and plastic regimes. In order to reliable identify the defects and the
dislocations in the crystal, centrosymmetry deviation parameter [5] will be
used in our calculations. Studies considering bigger domain and higher tem-
peratures will be carried out for fcc aluminium crystal using Ercolessi-Adams
interatomic potential [3, 9]. Then we will be able to make a comparison to
results obtained at zero temperature with the static model by Marian and
co-workers [11].
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Summary. We derive the second-order asymptotic expansion of an eigenvalue prob-
lem for the Laplace eigenfunction with Dirichlet boundary conditions set in a domain
corresponding to two cavities linked by a small iris. Several convergence rates are
obtained and illustrated by numerical experiments.

1 Introduction and Motivation

In a turbo engine, the temperature of the combustion chamber can reach
2,000◦. In order to protect the structure, small holes are perforated throw the
wall linking the combustion chamber to the casing and fresh air is injected.
These small holes give rise to disturbance of the acoustic resonance frequencies
and modes of the combustion chamber. This has often a negative impact on
the combustion but a positive impact on the noise generated by the engine. As
a result, a sharp numerical modeling of the effects of these holes has to be per-
formed in order to fulfil two contradictory requirements: ensure a correct func-
tioning of the engine and prevent it from emitting a two high level of noises.

Unfortunately, a direct numerical approach is nowadays technically not
feasible due to two main reasons:

• A refined mesh cannot be avoided due to the small characteristic length
of the holes.

• The mesh generation of a perforated structure is a hard task, especially
when there are a large number of small holes.

This contribution presents a part of a bigger project which aims in providing
efficient numerical procedure to take into account the small holes. The desired
methods should fulfil the following requirements:

• Mesh refinement are avoided in the neighborhood of the holes.
• Only quantities that can be easily computed have to be used in the

numerical procedure.
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Two natural approaches can be considered. The first one consists in replacing
the effect of the wall by an equivalent transmission condition based on a
surface homogenization technique, see for example [2]. The second approach
consists in replacing each hole by an equivalent source whose intensity is
obtained from a multiscale analysis.

Direct numerical simulations (see for example [4, 7]) do not clearly deter-
mine which of these approaches has to be preferred. In this study, we
investigate the performance of the equivalent point source method to deal
with this kind of problem.

The acted full-wave problem is too complicated to be considered at this
stage of the study. Rather a 2-D “toy” model is used to disjoint the main
features of the dominant modes and their associated eigenfrequencies, spe-
cially their asymptotic behavior related to the size of a characteristic hole.
The asymptotic expansion involves a located boundary layer the vicinity of
the hole which is dealt with the method of matched asymptotic expansion,
see for example [3, 6].

2 Governing Equations

Let Ωint (the combustion chamber) and Ωext (the casing chamber) be two
open subsets of R

2 with

Ωint ∩Ωext = ∅ and ∃a > 0 :
(
{0}×]− a; a[

)
∈ ∂Ωint ∩ ∂Ωext. (1)

We consider the domain Ωδ consisting of Ωext and Ωint linked by an iris of
width δ

Ωδ := Ωint ∪Ωext ∪
(
{0}×]− δ

2
;
δ

2
[
)
⊂ R

2 (2)

which goes to
Ω := Ωint ∪Ωext ⊂ R

2, (3)

if δ tends to 0.
The eigenvalue problem has the following statement

⎧⎪⎪⎨
⎪⎪⎩

Find uδ ∈ Ωδ → R, uδ 	= 0; and λδ ∈ R satisfying

−Δuδ(x, y) = λδuδ(x, y) in Ωδ,

uδ(x, y) = 0 on ∂Ωδ,

(4)

⎧
⎪⎪⎨
⎪⎪⎩

Find u ∈ Ω → R, u 	= 0 and λ ∈ R satisfying

−Δu(x, y) = λu(x, y) in Ω,

u(x, y) = 0 on ∂Ω.

(5)

These problems have both a countable set of eigenmodes and associated
eigenvalues (Fig. 1):
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Ωint

Ωext

Ωδ Ω

δ Ωint

Ωext

Fig. 1. Geometry of the domain of propagation

• (uδn, λ
δ
n)n≥0 (resp. (un, λn)n≥0) chosen in such a way that (uδn)n≥0 (resp.

(un)n≥0) is an orthogonal basis of L2(Ωδ) and H1(Ωδ) (resp. L2(Ω) and
H1(Ω))

λ0 ≤ λ1 ≤ λ2 ≤ . . . and lim
n→+∞λn = +∞, (6)

λδ0 ≤ λδ1 ≤ λδ2 ≤ . . . and lim
n→+∞λδn = +∞. (7)

Derived questions are in order:

• Does the eigenvalue λδn converge to λn?
• Is it possible to obtain an asymptotic expansion of λδn relatively to δ?
• With this asymptotic expansion, is it possible to construct a numerical

method to compute an approximation of λδn at a small computational
cost?

For simplicity, we assume that

The eigenvalues (λn)n∈N of the limit problem are all distinct.
(
A
)

3 Matching of Asymptotic Expansions

In this study we determine a second-order asymptotic expansion of the
eigenvalue λδn defined by (4) with respect to the size of the iris:

λδn = λ0
n + δλ1

n + δ2λ2
n + o

δ→0
(δ2). (8)

The obtention of (8) is achieved in parallel to the derivation of the asymp-
totic expansion of the eigenvector uδn. The method of matching of asymptotic
expansions is used to deal with the boundary layer which arises in this kind
of problems. We give here a quick overview of the technique.

An Asymptotic Domain Decomposition. The matching of asymp-
totic expansions consists in expanding the eigenvector uδn with respect to δ
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in different scalings. To take care of the propagative phenomenon and of the
boundary layer having respectively as a characteristic length O(1) and O(δ),
we will write with the two scalings (x, y) outside a near zone of the iris and
(x/δ, y/δ) in the vicinity of the iris of asymptotic expansions of the eigenvec-
tor uδn.

The Far-Field Expansion. The far-field expansion is defined as the
asymptotic expansion of uδn(x, y) where here (x, y) is varying in the limit
domain Ω with no holes.

Looking for a second-order asymptotic expansion, we assume that the follow-
ing asymptotic expansion

uδn(x, y) = u0
n(x, y) + δu1

n(x, y) + δ2u2
n(x, y) + o

δ→0
(δ2) (9)

is holding.

When restricted to a subset of Ω excluding a small neighborhood of the
iris, the far-field expansion should provide a good approximation of uδn.

The Near-Field Expansion. The near-field expansion is defined as the
asymptotic expansion of uδn(x/δ, y/δ).
Denoting by (X,Y ) = (x/δ, y/δ) the so called test variables, we assume that
uδn(δX, δY ) has the following the second-order asymptotic expansion

uδn(δX, δY ) = Π0
n(X,Y ) + δΠ1

n(X,Y ) + δ2Π2
n(X,Y ) + o

δ→0
(δ2). (10)

When used in a small neighborhood of iris, the near-field expansion should
provide a good approximation of uδn.

The Matching. The matching zone consists in an intermediate zone
between the far-field zone and near-field zone. In the matching zone, both
the far and near field asymptotic expansions can be used to approximate the
same function uδn, and they expressed exactly the matching procedure.

Asymptotic Expansion of λδn. Under hypothesis
(
A
)
, the second-order

asymptotic expansion (8) of λδn is given by

λ0
n = λn, λ

1
n = 0 and

⎧
⎪⎪⎨
⎪⎪⎩

λ2
n = − π

16
|∂xu0

n|Ωint(0, 0)|2
‖u0‖20

, if u0
n|Ωext = 0,

λ2
n = − π

16
|∂xu0

n|Ωext(0, 0)|2
‖u0‖20

, if u0
n|Ωint = 0,

(11)

(see [1] for the details).
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Fig. 2. The left plot describes the first eigenvalue of (4) with respect to δ, obtained
respectively by the present algorithm (M.A.E.), the direct problem, and limit prob-
lem, using a FE of degree 2 in each triangle. In the right, we report the error resulting
from the second-order asymptotic expansion using the direct numerical procedure
as the reference solution

4 Error Estimates

In the previous section, the second-order asymptotic expansions of λδn has
been obtained by means of a formal procedure based on the technique of
matching asymptotic expansion. There is no evidence that λ0

n + δλ1
n + δ2λ2

n

yields an approximation of the eigenvalue λδn.
The following theorem provides a theoretical basis for this approximation

procedure (for the proof see [1]).

Theorem 1. Let λδn (resp. λn) the nth eigenvalue of Ωδ (resp. Ω). Under the
hypothesis (A), we have

∣∣∣λδn − (λn + δ2λ2
n)
∣∣∣ ≤ C δ3 | ln(δ)|. (12)

with λn and λ2
n given by (11).

5 Numerical Experiments

This section is devoted to numerical validation of the previous second-order
asymptotic expansion of λδ. The geometry is chosen so that an explicit expres-
sion for λδn is available. The eigenvalue λδn is computed by using a high order
finite element method on a refined triangular mesh. The effective implemen-
tation has been done using the GETFEM library [5]. Let Ωδ be the domain
reported in Fig. 1 with Ωext and Ωint given by (Figs. 2 and 3)

Ωint =]− 2, 0[×]− 2, 1.5[ and Ωext =]0, 2.5[×]− 2.5, 1[. (13)
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Fig. 3. The left plot presents the second eigenvalue of (4) with respect to δ, obtained
respectively by the asymptotic expansion, the direct procedure and the problem
obtained by neglecting the effect of the iris using the FE in order 2 in each triangle.
The right plot depicts the error computed in the same way in Fig. 2

6 Conclusion

We have obtained a second-order asymptotic expansion of an eigenvalue
problem on a domain consisting of two cavities linked by a small iris (see
problem (4)). This expansion yields very sharp approximation of the eigen-
modes that can be practically use without any mesh refinement the small iris.
The theoretical results are in good agreement with numerical tests.
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Summary. Fuel cells are electrochemical energy conversion devices that hold great
promise to enable a move towards a low-carbon energy economy. However, sev-
eral technological and scientific obstacles impede their commercialisation, namely,
weight, cost, durability and power density issues. This paper discusses what role
mathematical modelling plays in fuel cell R&D, and briefly describes four selected
topics, as presented in this minisymposium.

1 Fuel Cells

For climate change and energy security reasons, there is a growing need to
diversify the energy supply mix of our economy and boost the efficiency of
energy conversion devices.

Fuel cells (FCs), which convert chemical energy of fuels efficiently into
electrical energy, have the potential to play a key role in this endeavour.
These devices circumvent the widely used Carnot cycle by making use of
electrochemical reactions which allow for better control of the reaction rate.
Because they are not subject to the thermodynamic limit of the Carnot cycle,
they exhibit higher efficiency [5].

There are several types of FCs defined by what fuels they convert and
how. Among the most popular to-date are (1) proton exchange membrane
(PEM) and (2) solid oxide (SO) fuel cells. In both types, hydrogen (H2), the
fuel, reacts with oxygen (O2) to produce water, separated into two half-cell
reactions at anode (a) and cathode (c)

PEMFC : H2 → 2H+ + 2e− (a), O2 + 4H+ + 4e− → 2H2O (c) (1)
SOFC : H2 + O2− → H2O + 2e− (a), O2 + 4e− → 2O2− (c) (2)

Ions, namely protons in PEMFC and oxide ions in SOFC, flow between the
anode and the cathode in the respective electrolyte; electrons flow through an
external circuit, driven by a potential gradient, that can power a load.
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Fig. 1. Cross section of a PEM fuel cell membrane electrode assembly (courtesy of
Prof. Keith Promislow, Michigan State University, USA)

Figure 1 shows a cross section of a PEMFC membrane electrode assembly
(MEA) perpendicular to the gas flow through the channels. It consists of
current collector plates, gas channels, gas diffusion layers (GDLs) which supply
the gases to the catalyst layers (CLs) where the reactions take place, and the
electrolyte, a proton exchange membrane.

Each domain has its own specific purpose related to mass, charge and
heat transfer and, therefore, its own specific scientific and technological chal-
lenges [5]. Fundamental materials science is at the core of FC advances,
particularly designing, modelling and optimising complex porous media.

2 Mathematical Modelling of Fuel Cells: Key Issues

Fundamental fuel cell research aims at improving critical characteristics, such
as costs, power density and durability, related to their commercialisation [2].
Since only a few in situ FC measurement techniques are available, mathemat-
ical modelling can greatly help in understanding transport processes which
are difficult to observe in detail experimentally. The ultimate goal is to lead
the design process through the application of predictive models, resulting in
optimised performance.
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Some of the most common features and challenges in fuel cell modelling
are [5]:

• Aspect ratios, multiple scales. While the length of gas channels is typically
on the order of centimetres, a catalyst layer can be as thin as 5 μm. This
poses challenges when defining numerical grids but, at the same time, it
also allows for simplified fuel cell models.
Moreover, mass transport processes take place at a variety of scales (nm
to cm). Processes at the micro or nano level need to be scaled up to derive
predictive macroscopic models.

• Complex porous media. The GDL, CL and PEM are porous media which
consist of two or three phases and they each have a different, yet char-
acteristic pore size distribution. To establish effective macroscopic trans-
port parameters for each domain, homogenisation techniques need to be
employed (see Sect. 2.4).

• Multi-component, two-phase flow (PEMFC). The gas flow at both anode
and cathode consists of more than one species. While SOFCs operate at
above 500◦C, PEMFCs typically run at 80◦C and a pressure of about
2 atm. Since water is produced, this results in two-phase flow in the CL,
GDL and channels. The corresponding models are very stiff, owing to the
source/sink terms that describe evaporation/condensation. Consequently,
numerical convergence often becomes a challenge and the results are quite
sensitive to certain boundary conditions.
In addition, capillary pressure functions are used to describe the flow of liq-
uid water, yet they are difficult to measure experimentally (see Sect. 2.4).
Also, the GDL can likely not be modelled as an isotropic domain with
uniform characteristics.

• PEM. The membrane is a dynamic porous medium whose morphology
changes with its water content. PEM water and proton transport is not
fully understood, including their related interface phenomena.

• Optimisation. Maximising the reaction rate and platinum utilisation in
catalyst layers while minimising their degradation, are critical goals. For
given materials, these three aspects depend mainly on the choice of the
geometry and morphology of the layer (see Sect. 2.3).

2.1 3-D Simulation of a Rolls-Royce SOFC Stack

The first talk, presented by Dr. Ben Haberman [3] (Imperial College, UK),
dealt with a 3-D simulation of a Rolls-Royce SOFC stack, containing several
unit cells connected in series. The novelty of the design lies in the cathode gas
channel which is just bulk air flow, a simple and cost effective solution that
also serves as the coolant.

Two key issues which are addressed in this work, are the convective cooling
(radiative losses are neglected) provided by the bulk air flow through the
stack and the electrical coupling of the unit cells. This simulation tool aids
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Rolls-Royce engineers in the design process, resulting in improved cooling and
reduced Ohmic losses.

It is vital for R&D staff to have fast solvers at their disposal, something
that commercial software often fails to deliver. Dr. Haberman accomplished
an order of magnitude decrease in computational (CPU) time by developing
his own code, employing parallel computing. The latter is based on domain
splitting for which SOFC stacks are well suited, owing to their modular struc-
ture, namely unit cells which, in turn, consist of several domains (channels,
diffusion layers, catalyst layers, electrolyte).

2.2 Simplified Models for Fuel Cell Stacks

Dr. Andrei Kulikovsky [4] (Research Center Jülich, Germany) pointed out that
the lifetime of a unit cell in a stack can be lower than 5,000 h while a single,
isolated unit cell can easily operate past 5,000 h. The reason must lie in the
impact that thermal and electrical coupling in stacks have on degradation. In
order to investigate each, two simplified models are analysed.

Assuming that the cell cooling is mainly provided by the channel flow, a
simple heat transfer model for PEMFC unit cells is derived that allows for
analytical steady-state solutions for the channel temperature profile, using
perturbation methods. It reveals that a balance of (1) water cross-over, (2)
liquid water evaporation in the GDL and/or channel, and (3) reaction heat can
result in a constant temperature down the channel. In addition, an eigenvalue
problem was presented to gauge whether the steady-state solutions are stable.
It was concluded that direct methanol fuel cells (DMFCs) should be stable at
high temperature.

The second modelling effort addressed how electrically resistive spots in a
unit cell, where the through-plane current density might even drop to zero,
affect adjacent unit cells through electrical coupling and, hence, impact the
stack performance. The conductivity plays a key role in determining how
far the perturbation spreads, i.e. how many neighbouring cells are affected.
Since Ohm’s law results in a Laplace equation for the electrical potential,
the voltage distribution within a thin unit cell can be approximated by its
boundary values. In principle, this provides an in situ method during fuel cell
operation.

2.3 PEMFC Catalyst Layers: Porous Structure and Water
Accumulation

Water management and platinum utilisation in PEMFC catalyst layers are
critical issues in understanding and optimising these domains, and are driven
by their morphology. Dr. Michael Eikerling [6] (Simon Fraser University,
Canada) focussed on water flow and reaction kinetics at several scales (nano,
micro, macro), trying to assess what role the membrane plays in CLs and how
to define the active catalyst surface area.
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There is experimental evidence for a bi-modal gas pore distribution in
CLs which gives rise to two prevailing values for the capillary pressure within
the domain, determined by the local pore size. It was shown that for two-
phase (liquid, vapour) flow within the domain, there exists the potential for
bi-stability, meaning non-unique steady-state solutions for the same operating
conditions. If these steady-state solutions are unstable, this might result in
voltage fluctuations of a unit cell for a prescribed, fixed current density. Some
experimental results indicate that such fluctuations exist.

This type of research which is currently related to random CL structures,
might lead to the design of more rational, ordered morphologies. The goal is
to make design and manufacturing serve the functionality of the layer, rather
than having functionality limited by the manufacturing process.

2.4 Two-Phase Behaviour in PEMFC Gas Diffusion Layers

In the last talk, Dr. Jürgen Becker [1] (Fraunhofer ITWM, Germany) intro-
duced the novel concept of virtual material design. In particular, his group
simulates two-phase flow in GDLs by creating a 3-D model whose fibre mor-
phology is based on synchrotron tomography images, as shown in Fig. 2a. The
goal is to extract two-phase mass transport parameters (permeability, diffu-
sivity and capillary pressure) numerically, since they are difficult to measure
experimentally.

The first step is to compute the liquid water distribution in the GDL. In
this process, pore sizes need to be determined numerically by use of an efficient
algorithm that defines a distance for each pore grid point (350 × 350 × 100
volume pixels, or voxels, corresponding to about 1 μm3 each) to the pore
wall. The capillary pressure distribution, based on the resulting pore size
distribution and using the Young-Laplace equation, will determine the liquid
water saturation, thereby yielding the much desired capillary pressure function
P = P (s) when simulating drainage and imbibition (see Fig. 2c).

The second step is to solve for the fluid flow of the gas phase only,
given the microscopic, steady liquid water distribution. Macroscopic transport
parameters (permeability, K, and diffusivity, D, in Fig. 2b, d) as functions of
saturation are then derived via up-scaling. The resulting functional depen-
dencies, K(s) and D(s), exhibit power laws which can be compared to those
in the literature to-date, e.g. the Bruggemann correction.

Specifically, for the permeability the Stokes equation is solved at the micro
level and the up-scaling takes place by use of Darcy’s law. For the diffusivity,
the Laplace equation is solved and the up-scaling uses Fick’s law.

3 Outlook

With the increase in computational power, further advances in fundamental
modelling of fuel cell processes can be expected, particularly at the micro
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and nano scale. Currently, there exists a push towards developing predictive
capabilities that can actively guide the design process, thereby replacing the
status quo of “passive” research which follows the design process. A key role in
advancing PEM fuel cells will be the replacement and/or optimisation of plat-
inum as a catalyst, but it remains an open question whether a breakthrough
in this area will emerge from computational research.
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Summary. In Computational Fluid Dynamics (CFD) it is critical that the numer-
ical solution preserves the total mass of incompressible flows, without introducing
spurious sources or sinks. Weak formulations such as the Finite Element Method
(FEM) are often preferred, because they implicitly enforce the harmonicity of the
approximation. However, these methods typically possess algebraic convergence only
and require that a mesh be generated over the computational domain, which may
be an expensive task in the event of an expanding fluid.

For that reason, meshless radial basis function (RBF) collocation methods are
an appealing alternative to FEM in CFD. We show how to modify the basic setting
so that problems involving boundary singularities can also be successfully tackled
with RBF collocation. Focussing on an engineering problem (injection molding) we
show that RBF collocation can outperform FEM on both simple and non-trivial
domains.

1 Introduction

The motivation for this paper is the simulation of plastic injection molding
(PIM), a process of industrial interest whereby molten polymer is fed into
a thin cavity through an injection machine in order to manufacture plastic
parts. The flow is driven by the pressure field p(x, y) modeled by the Hele-Shaw
approximation [4], under which the average velocity field may be regarded as
two-dimensional and incompressible. In order to simulate the evolution of the
flow into the cavity, the following algorithm is used [5]:

1. Solve p at the filled portion of the plan view of the mold at time t, Ω(t).
2. Compute the velocity field along the front.
3. Update the position of the front according to the velocity at time t + &t.
4. Go back to 1 until the mold is entirely flooded.

In this paper we will be concerned only about the first stage of the algo-
rithm, i.e. the elliptic PDE which yields p. Under certain assumptions [1]
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the velocity field v(x, y) can be regarded as potential, v ∝ ∇p, and the
instantaneous pressure p(x, y) obeys the following Laplace PDE:

∇2p = 0 if x ∈ Ω (1)

p = pI if x ∈ ∂ΩI , p = 0 if x ∈ ∂ΩF , ∂p

∂n
= 0 if x ∈ ∂ΩW (2)

where we have dropped the argument t, and ∂ΩI , ∂ΩF , and ∂ΩW are the
portions of the boundary corresponding to the injection gate(s), the fluid
front, and the mold walls, respectively. The pressure exerted by the injection
machine, pI , is assumed constant along the injection segment. Notice that
a similar singularity to that of the Motz’s problem arises [10], with the BCs
changing abruptly from ∂p

∂n = 0 to p = pI at both ends of the injection segment
∂ΩI . As a result, the pressure surface is nonsmooth at those points and the
straightforward application of RBF collocation fails, as will be explained next.

2 RBF Collocation

In order to illustrate the mechanics of RBF collocation (also known as Kansa’s
method [6, 7]), we will solve the above PDE on the semicircular domain
depicted in Fig. 1. The idea is to discretize it into N −NB collocation nodes
xk scattered over Ω and NB nodes along ∂Ω, and to find an approximate
solution in the form

p(x) =
N∑
k=1

αkφk(x) +
N+NB∑
k=N+1

αkφk(x) (3)

where φk(x) = φ(‖ x − xk ‖) is the chosen RBF. There are NB more RBF
centers than nodes, because on theNB boundary nodes we will want to enforce
both the BC and the PDE in order to improve results (the so-called PDEBC
strategy, discussed in [3]). Such points xj , j = N + 1, . . . , N +NB are placed
outside Ω and not collocated on. Therefore the number of RBFs must be
enlarged to match that of collocation equations – which render the coefficients
{αk}. They are:

N+NB∑
k=1

αk∇2φk(xi) = 0 if xi ∈ Ω ∪ ∂Ω, i ≤ N (4)

N+NB∑
k=1

αkφk(xi) = 0 if ‖ xi ‖= 0.6, i ≤ N (5)

N+NB∑
k=1

αk
∂φk
∂n

(xi) = 0 if xi = 0 and |yi| > 0.2, i ≤ N (6)



Meshless Solution of Singular Potential Flows in Strong Formulation 729

N+NB∑
k=1

αkφk(xi) = 1 if xi = 0 and |yi| ≤ 0.2, i ≤ N (7)

As RBF we have chosen the multiquadric (MQ),

φk (x) =
√
‖ x− xk ‖2 +c2 (8)

As c → ∞, the approximation error steadily drops until numerical blow-up
occurs – for the MQ becomes more and more flatter, causing a large condition
number κ and numerical instability.

The meshless approximation for N = 281, NB = 56, and c = 0.1 is shown
on the left side of Fig. 1 (top row), where ε is the error. Gibbs’ oscillations
are noticeable at both ends (X1, Y1) = (0, 0.2) and (X2, Y2) = (0,−0.2) of
the injection gate, where the pressure field is nonsmooth. The right column of
Fig. 1 shows the residual to the PDE, R (minus the Laplacian in this problem).
It is apparent that the amplitude of the oscillations has grown by orders
of magnitude. In a potential-flow problem such as this, R is the amount to
which mass (or area) is locally not conserved, and represents non-physical
mass sources or sinks, depending on the sign. The crucial drawback for fluid-
mechanical simulations is that in the general case – as well as it happens
here – oscillations will not cancel out, resulting in a net integral of R over the
domain, thus preventing the simulation of the flow evolution from conserving
mass at each iteration. We remark that this kind of BVP and the associated
difficulties are representative of a wide class of fluid-mechanical problems. For
instance, it also appears in the context of seepage flow [8], or as the first
stage of a linearization procedure for solving the full nonlinear Hele-Shaw
equation [2].

3 Enrichment of the RBF Interpolant
with Singularity-Absorbing Terms

The reason why Kansa’s method fails to provide a good approximation is that
the solution exhibits nonsmooth features which do not belong in the interpo-
lation space spanned by translates of an infinitely smooth RBF. Therefore,
we enrich the interpolant with analytical functions which effectively remove
the singularity for the RBFs, as was done in [9]. Consider polar coordinates
(r, θ) centered at each of the singularities and seek f(r, θ) such that

∂2f

∂r2
+

1
r

∂f

∂r
+

1
r2
∂2f

∂θ2
= 0 (9)

∂f

∂θ
(r, θ = 0) = 0 f(r, θ = π) = 0 (10)

Because the BCs are missing, (9)–(10) is not well posed and its solution
is not unique:
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Fig. 1. Conservation of mass in the RBF interpolant: only MQs (top row) and
enriched (bottom row). In both cases c = 0.1 and κ = O(1011)

fk(r, θ) = r(2k−1)/2 cos
[(2k − 1

2
)
θ
]

k ≥ 1 (11)

From this set we pick f1(rθ) which reproduces the derivative discontinuity at
the origin. Therefore, the enriched interpolant is

p =
N+NB∑
k=1

αkφk(x)+αN+NB+1

√
r(1) cos

θ(1)

2
+αN+NB+2

√
r(2) cos

θ(2)

2
(12)

where (r(i), θ(i)), i = 1, 2 are the polar coordinates centered at either singu-
larity. In order to keep a square system, two further equations are needed. We
follow [9] in requiring

N+NB∑
j=1

αj

√
r
(i)
j cos

θ
(i)
j

2
= 0, i = 1, 2 (13)

4 Numerical Example on a Nonconvex Domain

The ‘elbow’ domain is shown on the left side of Fig. 2. It is inscribed in the
square [−1, 1]× [−1, 1] with the centers of the upper and lower circular arcs at
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Fig. 2. ‘Elbow’ domain (left). Notice the injection gate (dashed line) and the front
(thick line). Right : MQ solution (c =

√
40/NMQ)

Table 1. Comparison of vanilla and enriched RBF interpolant for the elbow domain

RMS(ε) RMS(R) �Φ
c/ < h > n=0 n=1 n=0 n=1 n=0 n=1

3.16 0.15 0.0012 10.21 0.193 −1.285 −0.0195
4.47 0.21 0.0025 14.93 0.216 −1.549 −0.0243
5.48 0.24 0.0034 17.55 0.247 −1.670 −0.0302
6.32 0.14 0.0015 8.62 0.123 −0.881 −0.0176
7.07 0.15 0.0014 8.67 0.105 −0.947 −0.0169
7.75 0.04 0.0014 1.73 0.106 −0.357 −0.0180
8.37 0.03 0.0016 0.74 0.043 −0.322 −0.0007
8.94 0.04 0.0018 0.52 0.027 −0.310 0.0009
9.49 0.06 0.0017 0.11 0.013 −0.259 −0.0003

10.00 0.06 0.0015 0.02 0.009 −0.254 −0.0012
10.95 0.06 0.0013 0.016 0.005 −0.257 −0.0026
11.40 0.06 0.0013 0.018 0.004 −0.262 −0.0033
11.83 0.06 0.0013 0.019 0.004 −0.265 −0.0044
12.25 0.06 0.0016 0.022 0.004 −0.274 −0.0054

(0, 0) and (−1,−1) respectively. The left straight side of the domain therefore
has length 1 with the injection gate centered on it and having length 1/2.
The injection pressure is pI = 10. The adaptive finite element mesh holding
the reference solution is made up of N = 25,034 vertices. The RBF point set
consists of 599 evenly distributed nodes (including the outlying ones), plus
2× n, n = {0, 1} enriching functions.

For increasing values of c/ < h > (where < h > is the average distance
between collocation nodes), the results yielded by the vanilla RBF method
(n = 0) are compared with those obtained with the enriched interpolant n = 1
(Table 1). Let us define the flow balance as

�Φ =
∫

∂ΩF

∂p

∂n
dl −

∫

∂ΩI

∂p

∂n
dl (14)

It is apparent that all the estimators RMS(ε), RMS(R), and �Φ, drop by at
least one order of magnitude from n = 0 to n = 1. For comparison purposes,
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the reference FEM inflow and outflow were −4.599 and 4.585, respectively,
thus yielding �ΦFEM = −0.014. On the other hand, if the collocation nodes
in the RBF point set were the vertices of a mesh, the resulting value of the
flow balance for that FEM approximation would be 1.322. FEM requires a
much larger number of vertices for obtaining similar results to those of the
enriched RBF scheme, as well as the generation of a mesh. Therefore, the
enriched version of RBF collocation outperforms FEM in this problem.
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Summary. In the last decade, the use of level-set functions has gained increasing
popularity in solving inverse problems involving the identification of a piecewise con-
stant function. Normally, a fine-scale representation of the level-set functions is used,
yielding a high number of degrees of freedom in the estimation. In contrast, we focus
on reparameterization of the level-set functions on a coarse scale. The number of
coefficients in the discretized function is then reduced, providing necessary regular-
ization for solving ill-posed problems. A coarse representation is also advantageous
to reduce the computational work in solving the estimation problem.

1 Level-Set Representation of a Piecewise Constant
Parameter Function

The identification of a piecewise constant parameter function is an inverse
problem arising in various applications. Examples are image segmentation
and identification of electric or fluid conductivity in reservoirs. Three features
of the function can potentially be unknown: the number of regions of different
constant value, the geometry of the regions, and the constant values of the
parameter function.

For representing piecewise constant functions in a manner suitable for
identification, the level set approach [6] has become popular as it provides
a flexible tool to represent region boundaries. The first approach related to
inverse problems is due to Santosa [7]. Recent reviews are given by Tai and
Chan [8], Burger and Osher [2], and Dorn and Lesselier [3]. The main idea is
that the boundary between two regions can be represented implicitly as the
zero level set of a function – the level-set function. If we consider a domain Ω
consisting of two regions Ω1 and Ω2, the level-set function is defined to have
the following properties:
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φ(x) > 0 for x ∈ Ω1;
φ(x) < 0 for x ∈ Ω2;
φ(x) = 0 for x ∈ ∂Ω1 ∩ ∂Ω2.

Hence, the boundary between the regions Ω1 and Ω2 is incorporated as the
zero level-set of φ(x). A parameter function p(x) taking different constant
values c1 in Ω1 and c2 in Ω2 can now be written as

p(x) = c1H(φ(x)) + c2[1−H(φ(x))],

where H is the Heaviside function. Commonly, the level-set functions are
initialized as signed distance functions. For representation of a partitioning
with more than two regions, Vese and Chan [9] provide an extension of the
above idea, which enables representation of up to 2l regions with l level-set
functions.

2 Coarse-Scale Level-Set Representation

Usually, level-set functions are represented with one degree of freedom for
each grid cell of the computational grid. We apply an approach based on a
coarse-scale representation, where each level-set function is reparameterized
by a few coefficients only. This approach has several advantages: the reduced
number of coefficients makes sensitivity computations less demanding; the
need for regularization is diminished since the possible variations in the region
boundaries are more limited; and, we can achieve convergence in a low number
of iterations. The latter is particularly important in solving inverse problems
requiring computationally demanding forward computations and sensitivity
calculations. A prime example is the inverse problem of fluid conductivity
estimation for oil reservoirs [1, 5].

A reparameterization of the level-set function is written

φ(x) =
n∑

i=1

aiθi(x),

where {θi} denotes the set of basis functions and {ai} denotes the set of coef-
ficients in the discretization. A coarse representation of the level-set functions
enables fast identification of coarse-scale features of the parameter function
with a low number of estimated coefficients. In addition, the approach provides
regularization as the boundaries are confined to certain shapes based on the
chosen representation. For fine-scale solutions of inverse problems, the coarse
representation can enhance convergence by serving as a preconditioner for
more fine-scale updates. Another strategy is to apply a sequential estimation,
where the detail in the representation of the level-set functions is successively
refined. The number of degrees of freedom in the estimation is then gradually
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increased, and we can achieve estimates more in correspondence with the
information content of the data.

When it comes to the choice of basis in the representation of the level-
set functions, various alternatives are possible. However, once a set of basis
functions is chosen, the reparameterized functions are restricted with respect
to which shapes they can take. In the following, we discuss two different
choices: a piecewise constant representation and a continuous representation.

A piecewise constant representation of the level-set functions [1, 5] is well
suited in combination with adaptive multiscale estimation [4], which provides
a rough identification of the number and geometry of the regions of different
constant value for the parameter function. In Berre et al. [1], reparameter-
ization by characteristic basis functions in combination with a narrow-band
approach is proposed. The representation of the region boundaries is grad-
ually refined during estimation. In Lien et al. [5], a sequential approach is
developed, where the number of regions of constant parameter value is sought
found as part of the estimation. Through successive estimations with increas-
ing resolution in the representation of p(x) identification of rather general
parameter functions can be achieved.

The choice of characteristic basis functions yields piecewise constant level-
set functions. This leads to updates of the boundaries between the constant
states of p(x), where the jumps are determined by the spatial support of the
basis functions for φ(x), regardless of the resolution of the computational grid
for the forward problem. The two plots to the left in Fig. 1 illustrate this
situation in 1-D with n = 2, supp θ1 = [0, 1/2), and supp θ2 = [1/2, 1].

A continuous representation of the level-set functions enables more gradual
updates of the region boundaries, depending on the resolution of the compu-
tational grid for the forward problem. Hence, the number of possible updates
of the region boundaries is greatly enhanced. The two plots to the right in
Fig. 1 illustrate this situation in 1-D with n = 2 and θ1 and θ2 being the
standard linear basis on [0, 1].

As a simple example of a continuous reparameterization of φ(x) with a low
number of coefficients in 2-D, we consider a bilinear basis. The computational
domain is partitioned into a coarse quadrilateral grid of rectangular elements.
A bilinear reparameterization of a level-set function on a reference element
Dr = [0, 1]× [0, 1] is given by

φ(x1, x2) = a1(x1 − 1)(x2 − 1)− a2(x1 − 1)x2 − a3x1(x2 − 1) + a4x1x2.

By increasing the resolution of the quadrilateral grid, the boundaries can have
more complex shapes.

A numerical example illustrating the potential of applying a coarse-scale
reparameterization of the level-set functions is given below; see Figs. 2 and 3.
We consider the inverse problem of fluid conductivity estimation for an oil
reservoir based on a level-set representation with bilinear basis functions. The
forward problem describes horizontal, two-phase, immiscible, and incompress-
ible fluid flow in porous media. The available data for the inversion consist
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Fig. 1. Coarse representation of φ with two coefficients, a1 and a2, by characteristic
(top left) and linear (top right) basis functions. Optimizing with respect to a1 cause
φ to change sign in some area. The resulting updates of the parameter function are
shown in the lower figures. The initial states are drawn by solid lines and the final
states by dashed lines
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of time series of pressure data d logged in the injection wells. There are nine
injection (I) and four production (P ) wells; hence, the data are very sparsely
distributed. The data are obtained from a forward simulation with the ref-
erence fluid conductivity, where normally distributed errors are added to the
calculated pressures.

To illustrate the regularizing effect of the coarse level-set representation,
we minimize a weighted least squares objective function with no additional
regularizing terms:

J(p) = [m(p)− d]TC−1[m(p)− d].

Here m(p) denote the calculated pressures given a parameter function p(x),
and C denotes the (diagonal) covariance matrix of the measurement errors in
the data.

The reference fluid conductivity describes a channel with areas of low
conductivity on both sides where the coarse-scale features are contaminated
with fine-scale conductivity variation; see Fig. 2 (left). The initial guess for
p(x) was a constant value for the whole reservoir. The estimation was started
with a coarse level-set representation on a grid of only one element before we
continued with a quadrilateral grid of four elements. With our coarse level-
set approach, we are able to recover the main trends in the conductivity
distribution. The data are not reconciled by the coarse estimate though the
objective function is greatly reduced. Hence, in this case, the coarse-scale
estimate can serve as a good starting point for more fine-scale estimations.
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Summary. The trajectory of rockets in the atmosphere, e.g. a multi-stage rocket
launcher, are specified by ordinary differential equations which involve (1) the rocket
mass, varying with time due to the burning of the propellant; (2) the aerodynamic
forces, (lift and drag) which are non-linear functions of velocity; and (3) the aero-
dynamic forces are proportional to the atmospheric mass density which varies by
several orders of magnitude from the ground level to the near vacuum of space. Thus
the differential equations of rocket trajectories in the atmosphere are non-linear with
variable coefficients depending on time and altitude. Three methods of calculating
trajectories are presented, which can be combined to determine the maximum orbital
capability of a rocket, in terms of payload and velocity.

1 Introduction

The calculation of rocket trajectories in the atmosphere is considered tak-
ing into account the following effects: (1) the time variable mass, associated
with propellant consumption; (2) the effect of thrust vectoring at an angle to
the rocket axis; (3) the lift and drag for flight at an angle-of-attack; (4) the
proportionality of the aerodynamic forces on the square of the velocity and
on the atmospheric mass density; and (5) the dependence of the atmospheric
mass density on altitude. This combination of effects has not been considered
in some of the literature on rocket trajectories (cf. [1–8]). The equations of
motion in an earth-fixed Cartesian frame, are solved for a gravity turn by
three methods: direct expansion of the coordinates as a Taylor series of time
(Sect. 2); use of the atmospheric mass density as direct (Sect. 3) or inverse
(Sect. 4) altitude variable. The combination of there methods can be used to
address both single and two point boundary value problem (Sect. 5).

2 Iterative Use of Initial Conditions in Taylor Series

The equations of motion of a rocket take the form:
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[m0 − c(t− t0)]
[

ẍ
z̈ + g

]
= |ẋ2 + ż2|−1/2

[
T11 T12
T21 T22

] [
ẋ
ż

]

− 1
2Sρ0 exp[(z − z0)/�]|ẋ2 + ż2|1/2

[
F11 F12
F21 F22

] [
ẋ
ż

]
(1)

in an earth-fixed reference frame where (a) the variation of mass with time,
first equation in (2), corresponds to a constant fuel rate; (b) the acceleration
of gravity is assumed to be uniform, and the altitude coordinate z is taken
opposite to it; (c) the thrust matrix, first equation in (3) is involves the thrust
T , angle-of-attack α and angle ε of the thrust with the rocket axis:

m(t) = m0 − c(t− t0) ρ(z) = ρ0 exp[(z − z0)/�], (2)

Tij =
[
cos(α+ ε) − sin(α+ ε)
sin(α+ ε) cos(α+ ε)

]
Fij =

[
cosα sinα
sinα − cosα

] [
CD CL

CL −CD

]
, (3)

(d) the aerodynamic matrix, second equation in (3) involves the angle-of-
attack α and lift CL and drag CD coefficients; (e) the aerodynamic forces
are proportional to the square of the velocity and to the atmospheric mass
density; and (f) the latter decays exponentially on the scale height � for an
isothermal atmosphere (second equation in (2)).

The equations of motion (1) and (2) are to be solved subject to initial
conditions specifying the coordinates and velocity components (4) at initial
time

t = t0 : {x(t0), z(t0)} ≡ {x0, z0}, {ẋ(t0), ż(t0)} ≡ {u0, w0}. (4)

Instead of {u0, w0} in (4), the initial speed v0 and flight path angle γ0 could
be specified:

v0 =
√
u2

0 + w2
0, tan γ0 = w0/u0; (5)

the flight path angle γ0 is indeterminate for zero initial velocity v0 = 0 (5),
whereas the initial conditions, second equation in (4) are always determinate.
Substituting the initial conditions (4) in the equations of motion (1) specifies

m0v0

[
ẍ0

z̈0 + g

]
=

[
T11 T12
T21 T22

] [
u0
w0

]
− 1

2ρ0Sv
2
0

[
F11 F12
F21 F22

] [
u0
w0

]
, (6)

the initial accelerations (ẍ0, z̈0).
Differentiating the equations of motion (1) and (2) with regard to time

and setting t = t0 specifies the O(t3) coefficients

m0

[...
x 0...
z 0

]
= c

[
ẍ0

z̈0 + g

]
+ v−3

0 (w0ẍ− u0z̈)
[
T11 T12
T21 T22

] [
w0
−u0

]

− 1
2Sρ0v

−1
0

[
F11 F12
F21 F22

] [
2u2

0ẍ0 + w2
0 ẍ0 + u0w0z̈0 − v20u0w0/�

2w2
0 z̈0 + u2

0z̈0 + u0w0ẍ0 − v20w
2
0/�

]
, (7)

in the Taylor series expansion

[
x(t)
z(t)

]
=

[
x0
z0

]
+ θ

[
u0
w0

]
+
θ2

2

[
ẍ0
z̈0

]
+
θ3

6

[...
x 0...
z 0

]
+O(θ4), (8)
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of coordinates of the trajectory versus time, with θ ≡ t − t0. Thus cubic
approximation can be applied step-by-step along the trajectory, allowing the
thrust T (t) and its angle with the rocket axis ε(t) and angle-of-attack α(t) to
vary at each step, as well as the scale height �(z) in the mass density.

3 Mass Fraction of Burned Fuel as the Time Variable

The equations of motion (1) may be put in a dimensionless form (9) using as
dimensionless time variable τ , the mass of burned fuel as a fraction of lift-off
mass, and making both altitude z and downrange distance x dimensionless,
respectively ζ and χ, dividing by the atmospheric scale height, viz.:

τ ≡ c(t− t0)/m0, ζ ≡ (z − z0)/�, χ ≡ (x− x0)/� : (9)

(1− τ)
[

χ′′

ζ′′ + a

]
=

1√
χ′2 + ζ′2

[
bij

] [
χ′

ζ′

]
− e−ζ

√
χ′2 + ζ′2

[
fij

] [
χ′

ζ′

]
, (10)

where [xij ] ≡
[
x11 x12
x21 x22

]
, xij = {bij , fij}, and: (1) the gravity parameter a and

(2) the thrust parameter b appears in the matrix bij (11).

a ≡ m0

c2�
, b ≡ m0T

c2�
, bij ≡ m0

c2�
Tij = b

[
cos(α+ ε) − sin(α+ ε)
sin(α+ ε) cos(α+ ε)

]
(11)

(3) the drag parameter f appears in the aerodynamic matrix Fij (12):

m∗ = ρ0S�, f ≡ c0ρ0S�

2m0
, fij =

ρ0S�

2m0
Fij =

m∗
2m0

[
cosα sinα
sinα − cosα

] [
CD CL

CL −CD

]
,

(12)
involving both the drag CD and lift CL coefficients, and the reference mass
m∗. Using as dimensionless altitude variable η the atmospheric mass density at
the initial altitude divided by that at arbitrary altitude, the exponential non-
linearity in the equations of motion (10) is replaced by algebraic non-linearities
of degree up to three in (13):

η ≡ eζ = ρ(0)/ρ(z) : (1− τ)η
[

χ′′η
η′′η2 + aη2

]

=
(
η′2 + η2χ′2)−1/2

η3
[
bij

] [
χ′

η′

]
− (

χ′2η2 + η′2
)1/2 [

fij
] [

χ′

η′

]
. (13)

Note that if x − x0 = const, or χ′ = 0, then (13) reduces to the case of
a vertical climb. The solution of (13) is taken in (14) for down-range and
altitude, respectively η and χ:

v∗ ≡ c�

m0
: η(τ) =

w0

v∗
τ +

∞∑
n=2

Znτ
n, χ(τ) =

u0

v∗
τ +

∞∑
n=2

Xnτ
n, (14)

since (a) the initial position in (4) corresponds to χ = 0 in (9) and η = 1
in (13) and (b) the initial velocities in (4) are divided by v∗ defined in (14)
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in the coefficient of τ , as shown in for ż and likewise for ẋ. The remaining
coefficients (Xn, Zn) in (14) for n = 2, 3, . . . are obtained by substitution in
the equation of motion (13) and equating to zero the coefficients of successive
powers τ2, τ3 . . .

This process is illustrated by substituting the trajectory (14) in the equa-
tion of motion (13) up to order τ3, viz. the first and second equations
becomes

(1− τ)(1 + w0τ/v∗)2(2X2 + 6X3τ)

=
{
G−1/2(1 + w0τ/v∗)3

[
b11 b12

]−G1/2
[
f11 f12

]} [
u0/v∗ + 2X2τ
w0/v∗ + 2Z2τ

]
, (15)

(1− τ)(1 + w0τ/v∗)2(2Z2 + 6Z3τ)
− (1 + w0τ/v∗)(w0/v∗ + 2Z2τ)2 + a(1 + w0τ/v∗)3

=
{
G−1/2(1 + w0τ/v∗)3

[
b21 b22

]−G1/2
[
f21 f22

]} [
u0/v∗ + 2X2τ
w0/v∗ + 2Z2τ

]
, (16)

where

G ≡ (η′)2 + η2(χ′)2 = (w0/v∗ + 2Z2τ)2 + (1 + w0τ/v∗)2(u0/v∗ + 2X2τ)2

= (v0/v∗)2 + 2
[
(w0/v∗)(u0/v∗)2 + (X2u0 + Z2w0)/v∗

]
τ (17)

using v0 from (5). Equating powers of τ0 in (15) and (16) yields:

2X2 = b12 + b11u0/w0 − w0(f11u0 + f12w0)/v2
∗, (18)

2Z2 = −a+ b22 + b21u0/w0 − w0[f21u0 + (f22 − 1)w0]/v2
∗, (19)

and equating powers of τ yields the next pair of coefficients (omitted for
brevity). The solution (14) converges best for small τ , i.e. short time or mass
of fuel burned a small fraction of initial mass.

4 Atmospheric Mass Densities as Altitude Variable

A faster convergence close to burn-out conditions is obtained by (a) using the
residual mass fraction μ in (20) as dimensionless independent variable instead
of time; (b) replacing altitude as dependent variable by ζ from (9) the ratio of
atmospheric densities at arbitrary and initial altitudes ξ in (20); and (c) using
as the other dependent variable the same downrange distance normalized to
the scale height χ. The equation of motion (10) becomes:

μ = −c(t− t0)/m0, ξ = e−ζ = ρ(z)/ρ0 : μ
[

χ′′χ
−ξ′′ξ + ξ′2 + aξ2

]

=
(
ξ′2 + ξ2χ′2)−1/2 [

bij
] [

χ′

η′

]
− ξ (

ξ′2 + ξ2 + χ′2)1/2 [
fij

] [
χ′

η′

]
. (20)

The solution is sought as power series similar to (14) viz.:
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χ(μ) =
∞∑
n=0

Pnμ
n+p, ξ(μ) =

∞∑
n=0

Qnμ
n+q, (21)

where the initial conditions t = t0 imply (a) for the coordinates in (4), then
μ = 1 and ξ = 1 in the first and second equations of (20), respectively, and
χ = 0 in the third equation of (9), viz.:

0 =
∞∑
n=0

Pn, 0 =
∞∑
n=0

Qn; (22)

(b) for the initial velocities (16), then μ = 1 in the first equation of (20),
implies χ′ = u0m0/c0� = u0/v∗ in and also ξ′ = w0/v∗, viz:

u0 = v∗
∞∑
n=0

Pn(n+ p). wo = v∗
∞∑
n=0

Qn(n+ q). (23)

If the coefficients (Pn, Qn) are known for n = 0, 1, . . . , N , then (22) and (23)
can be used to determine them for n = N + 1, N + 2.

The trajectory is specified by (21), where the coefficients (Pn, Qn) and the
exponents (p, q) are to be determined. The exponents (p, q) can be determined
from the lowest powers in the trajectory (21), viz. χ and ξ in (24):

χ ∼ P0μ
p, ξ ∼ Q0μ

q, H ≡ ξ′2 + ξ2χ′2, (24)

which imply that H in (24) is given to lowest order by (25)

p ≥ 1 : H = (Q0μ
q−1)2

[
1 + (pP0μ

p−1)2
] ∼ (Q0μ

q−1)2 (25)

if p ≥ 1. Taking also the lowest powers in (20) leads to
[
P0Q0p(p− 1)μq+p−2

Q2
0μ

2q−2(q + aμ3)

]
= Q0

{
μq+1

[
bij

]−Q0μ
2q−2

[
fij

]} [
P0pμ

p−1

Q0qμ
q−1

]
; (26)

on the l.h.s. the term μ2q+1 is of higher order than μ2q−1 and can be omitted,
and on the r.h.s. μq+1 is of higher order than μ2q−2 for q+1 > 2q−2 or q ≤ 2,
and can also be omitted, simplifying (26) to

[
P0p(p − 1)μq+p−2

Q0qμ
2q−2

]
= −Q0μ

2q−2
[
fij

] [
P0pμ

p−1

Q0qμ
q−1

]
. (27)

This can be satisfied by choosing the exponents p = q = 1

p = 1 = q :
[

0
Q0

]
= −Q0

[
fij

] [
P0
Q0

]
, (28)

leading to the system of equations (28), which can be solved

{f12, f11} = {P0,−Q0}(f11f22 − f12f21), (29)
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to determine the lowest order coefficients in (21).
The leading terms of the trajectory (21) are determined by (29), viz.:

χ(μ) = μ(P0 + P1μ+ . . .), ξ(μ) = μ(Q0 +Q1μ+ . . .) (30)

and substituting in the equation of motion (20) up to order μ2, specifies the
next coefficients, viz.

μ
[

2P1Q0μ
−2Q0Q1μ +Q2

0

]
=

(Q0μ)2√
H

[
bij

] [
P0
Q0

]
−
√
Hμ(Q0 +Q1μ)

[
fij

] [
P0 + 2P1μ
Q0 + 2Q1μ

]
,

(31)
which involves (24), calculated to order μ

H ≡ (Q0 + 2Q1μ)2 + (Q0P1μ)2 = Q0(Q0 + 4Q1μ) (32)

Equating to zero the coefficients of μ in (20), the system (29) is regained, and
equating to zero the coefficients of μ2 leads to the system of equations:

[
2P1

−2Q1

]
=

[
bij

] [
P0
Q0

]
− 2Q0

[
fij

] [
P1
Q1

]
− (Q0 + 3Q1)

[
fij

] [
P0
Q0

]
, (33)

which determines the coefficients (P1, Q1). The next two pairs of coefficients
follow from (22) and (23), viz.:

P0 + P1 + P2 + P3 = 0 = Q0 +Q1 +Q2 +Q3, (34)
{u0, w0}/v∗ = {P0, Q0}+ 2{P1, Q1}+ 3{P2, Q2}+ 4{P3, Q3}; (35)

this specifies the trajectory (21) up to order four:

{
(x − x0)/�, e[−(z−z0)/�]

}
=

∞∑
n=0

{Pn, Qn}[1− c(t− t0)/m0]n+1 (36)

with exponents p = q = 1, and coefficients (29) and (33)–(35).

5 Discussion

All of the preceding three methods can be used to show the effect on a
rocket trajectory of a non-zero angle-of-attack and non-zero thrust angle; this
specifies the burn-out altitude and speed for a powered first stage, and the
downrange and peak altitude for a ballistic stage; they can be combined for a
multi-stage rockets. The methods also apply to (1) the single-point boundary-
value problem (SPBVP) of finding the trajectory of a rocket given the initial
conditions and (2) the two-point boundary-value problem (TPBVP) of achiev-
ing a given orbital velocity from a given launch condition. The TPBVP is the
most important, but may have no solution, e.g. if the rocket does not have the
required orbital capability. The three methods indicated can be used to solve
the TPBVP and to determine the maximum orbital capability of a rocket.
The methods of calculation of rocket trajectory are usually numerical, but
may use analytical solutions for initialization.
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Summary. In this paper the exact analytical solution of the airplane response to
a wake encounter appears as a power series of a damping factor, whose coefficients
are exponential integrals of time. It is shown that in the absence of control action,
the roll response tends to an asymptotic bank angle.

1 Introduction

The separation between aircraft due to wake effects determines aircraft spac-
ing at take-off and landing, and hence runway and airport capacity. This is
the motivation for the current research on the topic [1], which can be grouped
under four broad headings: (a) measurement, calculation and prediction of
the evolution of wake vortices in the atmosphere, including wind and ground
effects [2]; (b) determination of the effect of a wake vortex encounter in terms
of aircraft response, control, load factor and other dynamical aspects [3]; (c)
identification of possible measures to reduce or mitigate the effect of the wake
vortex encounter [4]; and (d) classification of the consequences of the wake
vortex encounter into hazard classes [5]. The response to wakes is affected by
the application of controls and damping effects, which are considered in the
present paper, as an extension of an earlier analytical theory [6].

The roll motion of the airplane will consist of (a) a free response to an
arbitrary initial condition as regards bank angle and roll rate; (b) plus a
forced response to the wake encounter and aileron deflection. Both responses
will be affected by the aerodynamic damping, especially for longer times. This
is illustrated for an example of identical leading and following aircraft of the
same type (Boeing 757), considering the wake vortex effects alone and in
combination with aileron control deflection.
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2 Roll Equation with Damping and Controls

In this model the roll dynamics equation, with one degree-of-freedom [6] in
the form:

φ̈− 1
2
ρU2S2

W2/g

(
b2
r2

)2

Cφ̇ φ̇ =

=
ρS2b2
W2/g

(
U2

r2

)2

Cδ δ(t)− 2h
1 + λ

CLα

2π
W1

W2

S2

S1

U2

U1

(
a

r2

)2
cr1g

ηt
exp

(
− a2

2ηt

)
,

(1)
where ρ is the atmospheric mass density and g the acceleration of gravity. The
weight W , velocity U and wing area S have subscript “1” for the leading air-
craft (W1, U1, S1) that creates the wake impinging on the following aircraft,
for which the subscript “2” is used (W2, U2, S2). The following aircraft has
wing span b2, taper ratio λ (ratio of tip to root chord), and radius of gyra-
tion r2 in roll; the leading aircraft has wing root chord cr1. Its trailing wind
tip vortices have core radius a, and decay with time t with total kinematic
viscosity η. For the following aircraft (with subscript “2” omitted) CLα is the
slope of the lift coefficient, Cδ the aileron rolling moment coefficient and the
corresponding damping coefficient; the dimensionless encounter parameter h
defined in [6] is of order unity.

The case of an aileron control law which compensates the wake vortex
encounter is the only situation in which there is no aircraft roll response,
because the forced response to the ailerons (b) exactly balances the response
to the wake vortex (c), leaving only the free response (a), which is zero if
there are no initial perturbation. The three terms of the response (a,b,c) are
calculated next in turn, starting with the free response φ1(t), which is the
solution of the roll equation (1) without forcing terms on the r.h.s., viz.:

φ̈1 + μ̄φ̇1 = 0, (2a)

where the overall damping coefficient is specified by:

μ̄ ≡ −1
2
ρU2S2

W2/g

(
b2
r2

)2

Cφ̇, (2b)

and the damping time by 1/μ̄. The damping increases with (a) the ratio of
span to gyration radius squared; (b) the roll damping coefficient Cφ̇; and (c)
the air density (lower altitude), airspeed and wing area divided by the mass.

It follows that the free response is given by:

φ1(t) = φ0 + (φ̇0/μ̄)[1− e−μ̄t], (3)

for arbitrary initial bank angle φ0 and roll rate φ̇0.
The forced response to the ailerons φ2(t) is even simpler, since it is a

particular solution of the roll dynamics equation (1), omitting the last term
on the r.h.s. side representing wake vortex effects:

φ̈2 + μ̄φ̇2 = ν, (4)
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where the aileron deflection was taken to be maximum:

ν ≡ ρS2b2
W2/g

(
U2

r2

)2

Cδ δmax. (5)

The forcing term increases with (a) the air density times span and wing
area (which is the mass of a parallelepiped of air, with base area equal to
the wing area and height equal to the span) divided by the aircraft mass,
specifying a relative density; (b) the square of airspeed divided by the radius
of gyration; (c) the aileron rolling moment coefficient; and (d) the aileron
deflection taken at maximum value for fastest response. The forced response
to constant aileron deflection is a bank angle varying linearly with time:

φ2(t) =
ν

μ̄
t ≡ −2

U2

b2

Cδ
Cφ̇

δmaxt. (6)

3 Response Forced by Wake Encounter

Taking into account the dependence of the induced rolling moment on time
leads to a less simple response φ3(t), specified by a particular integral of the
roll dynamics equation (1), without the first term on the r.h.s.:

φ̈3 + μ̄φ̇3 = −ξ̄t−1 exp(−a2/2ηt), (7a)

where the vortex wake effect is specified by:

ξ̄ ≡ 2h
1 + λ

CLα

2π
W1/S1

W2/S2

U2

U1

(
a

r2

)2
cr1g

η
, (7b)

and increases for (a) larger encounter factor h and smaller taper ratio λ; (b)
larger ratio of wing loading of the leading aircraft to the wing loading of the
following aircraft; (c) larger ratio airspeed of following aircraft (catches wake
sooner) to the airspeed of the leading aircraft (leaves stronger wake for lower
airspeed); (d) larger square ratio of vortex core radius to radius of gyration;
(e) larger root chord of leading aircraft; and (f) smaller viscosity leading to
slower vortex decay.

It is convenient to introduce a dimensionless time divided by the time of
peak vorticity [6]:

τ ≡ t/t∗ = 2ηt/a2, Φ(τ) = φ3(t), (8a,b)

so that the roll response forced by the wake vortex satisfies (7a) in the form:

Φ̈+ μΦ̇ = −(ξ/τ) e−1/τ , (9)

where the dimensionless aerodynamic damping and vortex effect are given
respectively by:
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μ ≡ μ̄a2

2η
= −1

4

(
b2
r2

)2
ρS2a

W2/g

U2a

η
Cφ̇, (10a)

ξ ≡ ξ̄a2

2η
=

2h
1 + λ

CLα

2π
W1/S1

W2/S2

U2

U1

(
a

r2

)2
cr1a

2g

2η2
. (10b)

The forced solution of (9) is found by the method of variation of parame-
ters, i.e. as the free solution (3) with non-constant coefficients, leads the forced
response:

Φ(τ) = −ξ
∫
e−μτdτ

∫
τ−1e−1/τeμτdτ, (11)

to the wake vortex.

4 Time Evolution of the Forced Response

The total roll response is the sum of the free response with the forced responses
to the ailerons and the wake vortex:

φ(t) = φ1(t) + φ2(t) + φ3(t). (12)

Assuming that the initial bank angle and the roll rate are zero there is no free
response φ1(t) = 0, and the total forced response

φ0 = 0 = φ̇0 : φ(t) = φ2(t) + Φ(2ηt/a2) (13)

consists of (a) the response to the ailerons and (b) the response to the
wake vortex, which in the absence of damping is expressed in terms of the
exponential integral [7]:

T = 1/τ : En(T ) ≡
∞∫

T

T−1−ne−TdT =

1/τ∫

0

τn−1e−1/τdτ =En(1/τ), (14)

of order zero n = 0 by (11) with μ = 0:

μ = 0 : Φ0(τ) = −ξ
∫
dτ

∫
dτ e−1/ττ−1 = −ξ

∫
E0(1/τ) dτ , (15)

in agreement with [6].
Since the dimensionless roll rate in the absence of damping is specified by

an exponential integral of order zero:

− ξ−1Φ̇0(τ) = E0(1/τ) =
∫
τ−1e−1/τdτ , (16)



On Aircraft Response and Control During a Wake Encounter 751

the comparison with the dimensionless roll rate in the presence of damping
(11):

− ξ−1Φ̇(τ) = e−μτ
∫
τ−1e−1/τeμτdτ , (17)

leads to the solution:

Φ̇(τ) = −ξe−μτ
{
E0(1/τ) +

∞∑
n=1

μn

n!
En(1/τ)

}
, (18)

which specifies the dimensionless roll response:

Φ(τ) = −ξ
∞∑
n=0

μn

n!

∫
e−μτEn(1/τ) dτ , (19)

as a series of powers of the damping, with exponential integrals of order n as
coefficients (14). If the damping is weak, only the first terms of the series are
needed, e.g. the first two for μ2 � 1.

5 Numerical Results

As an example, the case of two Boeing 757 flying one behind the other is
considered. The data needed is available from open sources [8]. Table 1 has
shown the bank angle response for the same aircraft, replacing the actual roll
damping μ̄ = 0.45, by larger and smaller hypothetical values, up to more than
the double. Table 2 shows the sum of the first N + 1 terms of the series, viz.:

φN3 (t) ≡ ΦN (τ) = −ξ
N∑
n=0

μn

n!

∫
e−μτEn(1/τ) dτ , (20)

for several values of N .

Table 1. Effect of increasing or decreasing roll damping

Roll Asymptotic bank angle Time to within 1%
damping (◦) (s)

μ φ∞ 1− φ3/φ∞ < 0.01
0.25 50.13 t ≥ 5.71
0.375 21.7 t ≥ 3.95
0.5 14.89 t ≥ 3.34
0.75 5.24 t ≥ 2.08
1 2.99 t ≥ 1.66
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Table 2. Asymptotic bank angle reached during wake encounter

Number of terms Peak bank angle Relative error
of series (◦)

N+1 φN
∞ ≡ φ(n)

3 (∞) 1− φN
∞/φ∞

1 12.7237 1.76 × 10−2

2 14.6418 1.74 × 10−3

3 14.8657 1.45 × 10−4

4 14.8875 1.61 × 10−5

5 14.8893 8.04 × 10−6

∞ 14.8895 0

6 Conclusion and Further Work

The first two terms N = 1 of the series solution (20) to O(μ) gives an error of
less than 2% in the bank angle response. This can be confirmed from Table 2,
which indicates the asymptotic bank angle φN∞ ≡ φ

(N)
3 (∞) calculated with

N + 1 terms of the series (20), and shows rapid convergence for N ≥ 2.
The value φ∞ = 14.89◦ is above the threshold φmax = 10◦ for which airline

procedures regarding passenger comfort require a go-round on approach to
land. Since the asymptotic bank angle does not include the effect of aileron
deflection, it is clear that roll control could be used to keep the bank angle
below the threshold, which will be the object of future work.
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Summary. This paper examines several safety metrics: (1) the one-dimensional
cumulative probability of coincidence P1 along the line joining the two aircraft; (2)
the three-dimensional probability of coincidence P3 over all space; and (3) a two
dimensional probability of coincidence, defined in the present paper P2.

1 Introduction

The safety of air traffic is based on separation rules [1], and when they fail
to be observed, on conflict resolution measures [2] to avoid a collision. The
chosen separation can be reduced to increase air traffic capacity [3] if the risk
of collision remains below the threshold set by International Civil Aviation
Organization (ICAO) Target Level of Safety (TLS), which is an example of a
safety metric [4]. The pioneering work on the calculation of collision proba-
bilities [5] is based on the penetration of a safety volume around an aircraft,
by another aircraft. It can be shown that in the particular but important
case of air corridors, the probability of coincidence is an upper bound for the
probability of collision [6].

The value of the probability of collision depends on the statistical distri-
bution of aircraft position errors [7]. It can be argued that the Gaussian is
suited to frequent events like small flight path deviations; collisions are due
to large deviations [5,7], which are rare events [8] modeled by Laplacian or
generalized error distributions [9].

The simplified model of collision probability used makes six assumptions.
The first assumption is that the three dimensional position error is decom-
posed into horizontal along track and across track errors and vertical error;
in this way only a one-dimensional collision problem needs to be considered
at a time. The second assumption is that the aircraft are treated as a mass
points located at centers of mass. It can be shown [6] that the aircraft size
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Fig. 1. Aircraft flying along the same flight path at a minimum separation distance

affects collision probability if it is comparable to the r.m.s. position error.
The third assumption is that the aircraft are assumed to move in unbounded
space. The fourth assumption is that the position errors are specified by a
Gaussian probability distribution. It is known from flight data records and
radar tracks that the Gaussian underestimates the probability of large flight
path deviations and collision [3], and whereas the Laplace distribution is an
improvement [5]; a more accurate representation is provided by the general-
ized error distribution [9]. These probability distributions can be extended to
a combined Gamma and generalized error distribution [10] to model the whole
range of flight path deviations from small to large [11]. These distributions
can be introduced [12] as a correction to the Gaussian. The fifth assumption,
allows the calculation of the probabilities of collision as a function of position if
aircraft dynamics do not appear explicitly; since aircraft dynamics would limit
the possible displacements, the probabilities of collision calculated in this way
are upper bounds. The sixth assumption concerns the geometry considered.

In the present paper two simple but important cases are considered, both
with aircraft flying at the same speed, on: (case I) the same flight path at a
given distance; (case II) on parallel flight paths at given distance.

2 Comparison of Probabilities of Coincidence
in Several Dimensions

The calculation of maximum coincidence probabilities is made for the case
of two aircraft flying on the same straight flight path at a distance L. A
coincidence occurs if the first aircraft deviates by r1 and the second by r2

such that r2 = r1 +Lex in Fig. 1. The coincidence occurs on a plane through
the flight path, and thus it is possible to introduce polar coordinates in this
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plane, with origin at aircraft one, and axis along the flight path:

r1 = (−r cos θ, r sin θ) , r2 = (L− r cos θ, r sin θ) . ( 1a,b)

The probability distributions are initially assumed to be Gaussian:

P (ri) =
[
1/

(
σ1

√
2π

)]
exp

[
− (‖ri‖ /σi)2 /2

]
, i = 1, 2 (2)

with r.m.s. position errors respectively σ1 and σ2, which may or may not be
equal. Exactly the same formulas (1,2) will apply (case II) for two aircraft on
parallel flight paths at a distance L, using polar coordinates with origin on
the first aircraft and axis perpendicular to the flight paths as shown in Fig. 2.
Assuming that the position errors are statically independent, the probability
of coincidence is the product of (2):

P (r, θ) = P (r1)P (r2) , (3)

and depends only on (r, θ) in both cases I and II. From (3) can be defined
a one-dimensional cumulative probability of coincidence, by integrating along
the polar axis θ = 0:

P̄ ≡
+∞∫

−∞
P (r, 0) dr ≡ P1, (4a)

viz.: (case I) the integration is along the flight path; (case II) the integration
is along a line perpendicular to the flight paths. Substitution of (3) into (4a)
leads [6] to the one-dimensional probability of collision:

P1 =
[
1/

(
2σ̄
√
π
)]

exp
{
− [L/ (2σ̄)]2

}
, ( 4b)

which involves the r.m.s. position error σ̄ corresponding to:

σ̄ ≡
√[

(σ1)2 + (σ2)2
]
/2. ( 4c)

The three-dimensional cumulative probability of coincidence involves an inte-
gration over all space in spherical coordinates:

P ≡
∫ 2π

0

dϕ

∫ π

0

dθ sin θ
∫ ∞

0

drr2P (r, θ) ≡ P3, (5a)

and leads via a broadly similar integration to:

P3 =
√
π

2
σ̄

f2
exp

{
−

(
L

2σ̄

)2
}
, ( 5b)
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Fig. 2. Aircraft flying on parallel flight paths at the minimum lateral distance

involving σ̄ in (4c) and the aircraft dissimilarity function:

f ≡ (σ1/σ2 + σ2/σ1) /2. ( 5c)

The only case of dimensionless probability of coincidence is the two-
dimensional case:

P2 ≡
∫ 2π

0

dθ

∫ ∞

0

drrP (r, θ) =
2
f

exp
{
− [L/ (2σ̄)]2

}
. (6)

which may be interpreted as the collision probability integrated over: (case I)
a plane passing through the trajectory; (case II) a plane perpendicular to the
trajectories passing through both aircraft.

3 Comparison with the ICAO TLS

The ICAO TLS specifies a probability of collision S1 = 5×10−9 per hour flown,
which can be converted in probability of collision per nautical mile S1/V by
dividing by the speed V in knots. Thus the ICAO TLS is directly comparable
to the one-dimensional cumulative probability of coincidence P1V ≤ S1. To
apply the three-dimensional cumulative probability of coincidence P3/V ≤ S3

would need the introduction of another safety metric or modified ICAO TLS
with the dimensions of hour flown.

Taking as reference case aircraft with identical r.m.s. position errors, the
ratio to the minimum separation distance which typically meets [6] the cur-
rent ICAO TLS, is indicated in the first line of Table 1. Taking in this
table the geometric mean of (a) the least strict condition for dissimilar air-
craft

(
1.26× 10−12

)
and (b) the intermediate condition for similar aircraft
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Table 1. Two-dimensional probability of coincidence

L/σ̄ 10 11 12

P2 6.95 × 10−12 3.64 × 10−14 1.16 × 10−16

P2/f 1.26 × 10−12 6.62 × 10−15 2.11 × 10−17

Table 2. One-dimensional probability of coincidence

m 1 2 3 4

Lm 60 nm 5 nm 1,000 ft 2,000 ft
σm 5.61 nm 0.468 nm 93.6 ft 187 ft
P1m (per nm) 2.01 × 10−14 2.41 × 10−13 7.33 × 10−12 3.66 × 10−12

Vm < S1/P1m 2.48 × 105 kt 2.07 × 104 kt 6.82 × 102 kt 1.36 × 103 kt

(
3.64× 10−14

)
leads to

√
1.26× 10−12 × 3.64× 10−14 = 2.14 × 10−13, which

suggests:
P2 ≤ S2 = 2× 10−13, (7)

as the alternative absolute ICAO TLS, which will be checked next.
In order to asses the implications of this choice of absolute safety standard,

it is applied to the following four typical Air Traffic Management (ATM)
cases: (a) lateral separation in transoceanic airspace L1 = 60 nm; (b) lateral
separation in controlled airspace L2 = 5 nm; (c) Reduced Vertical Separation
Minima (RVSM) L3 = 1,000 ft in controlled airspace at lower flight levels
(above FL 290); and (d) vertical separation L4 = 2,000 ft elsewhere. For these
four values Lm with m = 1, 2, 3, 4, the proposed absolute TLS (8) corresponds
by (7) to Lm/σm = 10.7 and thus to a r.m.s. position error σm indicated in
Table 2 together with the one-dimensional probability of coincidence (4b) per
nautical mile, which satisfies the ICAO TLS:

S1 = 5× 10−9 per hour (8)

for airspeeds up to Vm. Since Vm exceeds the speed capability of all current
subsonic airliners, the absolute alternative ICAO TLS (8) is safe in all these
conditions. The values of Vm suggest that the absolute ICAO TLS (7) is
stricter than the original ICAO TLS (8) in the four cases considered. This is
the price to be paid for having an ICAO TLS which is absolute, i.e. applies
to all separation conditions, not just the four examples given.

The suggested alternative TLS is dimensionless for all probability dis-
tribution of aircraft deviations. The preceding examples using the Gaussian
distribution can be extended to other distributions in future work.

4 Discussion

In conclusion the ICAO TLS of S1 = 5 × 10−9 per hour is comparable to
the one-dimensional probability coincidence P1V ≤ S1. For the maximum
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probability of coincidence P0V
2 ≤ S0 a modified TLS S0 = 5× 10−9 per hour

squared is needed, if the same value is chosen. For the three-dimensional prob-
ability of coincidence P3/V another modified TLS S3 = 5× 10−9 times hour
would be needed. Of course, the value of S0 and S3 need not be numerically
equal to S1. Since the two-dimensional probability of coincidence P2 ≤ S2 is
dimensionless, the modified TLS S2 = 5× 10−9 would also be dimensionless.
The numerical value of S2 need not equal S1 or S0 or S3. The procedure
indicated has lead to a value (7) of S2 consistent with S1, justifying the fol-
lowing reasoning (a) the original ICAO TLS (8) has been applied to three
of the most common ATM traffic situations and (b) for these situations it is
comparable to the absolute level of safety (7). The latter is preferable to the
former, because it is dimensionless, and thus independent of flight time or
speed. Thus the Absolute Level of Safety (ALS) in (7) can be proposed as a
more general dimensionless substitute to the original ICAO TLS in (8).
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Summary. A model of homogeneous explosions due to Kapila is analyzed by sin-
gular perturbation methods. The results are compared with those obtained by the
method of self-adjusting multiple scales.

1 Introduction

A distinctive characteristic of combustion processes is the self-accelerating
nature of their associated chemical reactions. In chain-branching processes [6],
the accelerating factor is the autocatalytic character of the chain-branching
reactions. Chain-branching explosions are observed for instance in hydrogen-
oxygen mixtures when the initial temperature is above the so-called crossover
temperature. Branched-chain explosions are examples of problems termed
jump phenomena, that are characterized by large amplitude dynamic res-
ponses to small amplitude disturbances and typically involve different time
scales: the system may evolve slowly during long time intervals which are sep-
arated by fast transition layers during which the system changes abruptly [3,5].
In [2], we introduced a method of self-adjusting time scales to describe homo-
geneous branched-chain explosions, whose main ingredient is a fast time scale
which is a nonlinear function of one of the system variables. This method is
not standard in that it requires two different solvability conditions depending
on whether time is smaller or larger than the very large induction time. An
approximate solution valid for all times was obtained by patching two dif-
ferent approximations at the induction time. Here we present an overview of
an alternative singular perturbation method detailed in [1]. This method is
based on an exact relation between the fuel concentration and a slowly vary-
ing combination of fuel and radicals. Therefore, it is possible to approximate
the solutions of the explosion problem before and after the induction time,
and match them to find an uniform approximation.
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2 Governing Equations

2.1 Two-Step Chemistry Model

A model of homogeneous explosions with competing branching and recombi-
nation processes due to Kapila [4] is based in the following two-step chemical
reaction scheme:

F + X B→ 2X branching reaction,

X R→ P recombination reaction.

Where F, X and P are the reactant, radical and product of the chemistry
description, respectively. The previous scheme does not have an initiation
reaction, therefore we assume that there is a small amount of radical X from
the beginning. All the heat is generated through the recombination reaction.

2.2 Non-Dimensional Equations

Manipulation of the kinetic rate equations for a homogeneous branched-chain
explosion at constant pressure, similar to that presented in [4], leads to the
following dimensionless problem [1,2].

dx

dt
= exp

[
βθ

1 + θ

]
x f − ε x, (1)

df

dt
= − exp

[
βθ

1 + θ

]
x f, (2)

dθ

dt
= q ε x, (3)

to be solved with the initial conditions

x(0) = ν, f(0) = 1, θ(0) = 0. (4)

where f(t), x(t) are the normalized concentration of fuel and of radical, respec-
tively and θ is the temperature at time t. The nondimensional parameters
satisfy, in realistic applications, q = O(1), β = O(1), and 0 < ν � ε� 1, see
details in [2].

3 Solution by Singular Perturbation Methods

Introducing the variable y = x + f and the result of a linear combination of
(1)–(4) that gives θ = q(1 + ν − y), the problem reduces to:

df

dt
= −(y − f) f ea(y), (5)

dy

dt
= −ε (y − f), (6)

a(y) =
βq(1 + ν − y)

1 + q(1 + ν − y)
(7)
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with f(0) = 1, y(0) = 1 + ν. The previous equations lead to the relation

f(y) = exp
(
−1
ε

∫ 1+ν

y

ea(y)ds

)
(8)

Using (8) in (6), we obtain the following integro-differential equation for y(t):

dy

dt
= −ε

[
y − exp

(
−1
ε

∫ 1+ν

y

ea(y)ds

)]
. (9)

Its solution with y(0) = 1 + ν is given by

ε t = −
∫ 1+ν

y

ds

s− exp
(
− 1
ε

∫ 1+ν

s ea(r)dr
) . (10)

y(t) can be obtained evaluating numerically the integral in (10), however, the
asymptotic forms of y, both for t large, and for ε small and t finite, can be
determined analytically.

3.1 The Outer Expansion

The outer expansion (see [1]) is given by y(t) ∼ (1 + v)e−ε(t−to) , t� 1, ε� 1,
where to is the induction time defined by

εto = −
∫ 1+ν

y∞

[
1

s− f(s)
− (s− y∞)−1

1− f ′(y∞)

]
ds, (11)

and the stationary state y∞ = exp
(
− 1
ε

∫ 1+ν

y∞
ea(s)ds

)
is reached when t→∞.

The integral (11) for to can be evaluated for ε small:

to ∼ to,0 =
ln ν−1

1 + ν
, ε� 1. (12)

3.2 The Inner Expansion

For ε small and t = O(1), the inner expansion (see [1]) is

y(t) = 1 + ν + ε ln
[

1 + ν

1 + νe(1+ν)t

]
+O(ε2). (13)
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3.3 Matching and the Composite Expansion

For t� 1, the inner expansion becomes y(t) ∼ 1+ν−ε(1+ν)(t−to), ε� 1. For
ε(t− to)� 1 the outer expansion becomes y(t) ∼ 1+ν− ε(1 +ν)(t− to), 0 ≤
(t− to)� 1. Thus the composite expansion for ε� 1 is

yc(t) ∼ 1 + ν − ε ln
(

1 + e(1+ν)(t−to)

1 + ν

)

+ H(t− to)
[
(1 + ν)e−ε(t−to) − {1 + ν − ε(1 + ν)(t− to)}

]
. (14)

We have used the Heaviside function H because the outer expansion only
works for ε(t− to) > 0. Finally the approximations for f , x and θ are

fc(t) = exp

(
−1
ε

∫ 1+ν

yc(t)

ea(s)ds

)
, xc(t) = yc(t)−fc(t) , θc(t) = q[1+ν−yc(t)] .

(15)

4 Results

4.1 Results with the Approximation of the Induction Time

As can be seen in Fig. 1 the approximate solutions given by (14)–(15) capture
rather well the behavior of the solution of the model equations (1)–(4). The
differences are due to the fact that the induction time given by (12) is not a
good approximation to the real value.
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Fig. 1. (a) Time evolution of x, f , and θ, for ε = 0.1, ν = 10−5, β = 5, q = 1,
obtained by numerical integration of (1)–(4) (solid lines), and using (15) (dot-dashed
lines) with the induction time given by (12). (b) Errors
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4.2 Improving the Induction Time

Our analysis points up that the accuracy of the approximations (14)–(15)
are deeply related with the value of the induction time. Figure 2 shows that
we obtain more satisfactory results because we calculate a better value of to
integrating numerically the integral (11). The differences are now of order ε2.

4.3 Comparison with the Method of Self-Adjusting Multiple Scales

With the ideas of the our singular perturbation method we have improved the
method of self-adjusting multiple scales by matching two terms of the expan-
sion valid before the induction time to one term of the expansion for later times
(see details in [1]). Of course, the quality of the composite expansion depends
on the accuracy with which we calculate the induction time. Figure 3 shows
the good agreement of the approximations with f , x and θ. It is very similar to
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Fig. 2. (a) Same as in Fig. 1 but now the induction time is given by numerical
evaluation of (11). (b) Errors

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50
t (time)

–0.1

–0.05

0

0.05

0.1

a

b

f

x

θ

e
e
e

x[  ]
[  ]
[  ]
f
θ

Fig. 3. (a) Same as in Fig. 1 but now the approximations (dashed lines) are obtained
improving the method of self-adjusting time scales with the ideas from the boundary
layer method. (b) Errors
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Fig. 4. Same as in Fig. 1 but now the dashed lines are the leading-order
approximations given by the method of self-adjusting time scales, see [2]

the results shown in Fig. 2. If we compare Fig. 4 with Fig. 1, we observe, that
to leading order, the method of self-adjusting scales gives approximated x and
f that are somewhat better than fc and xc, but this method uses patching
of two different asymptotic expansions at the induction time. This patching
implies that the approximation of θ is a worse approximation than θc.

5 Conclusions and Further Work

We have found a composite of two matched asymptotic expansions and the
approximations for the radical, the fuel and the temperature providing very
good agreement with the numerical solution. We have investigated the influ-
ence of the induction time to obtain better agreement with the numerical
solution of the model. With the ideas of the boundary layer method we have
improved the method of multiple self-adjusting time scales described in [2],
finding another composite expansion, although the greater simplicity of the
boundary layer method makes it preferable. Future work will try to apply our
methods to other jump phenomena problems.
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Summary. We present two new challenges related to the stochastic downscaling
method (SDM) that we applied to wind simulation refinement in Bernardin et al.
(Stoch. Environ. Res. Risk Assess. 23:851–859, 2009). After setting the framework,
we introduce the boundary forcing issue, and propose a numerical scheme adapted
to Particle in Cell methods. Then we turn to the uniform density constraint raised
by SDM and propose some new methods that rely on optimization algorithms.

1 The Stochastic Downscaling Method

We are interested in the behaviour of an incompressible fluid in a domain D
of R

3; D is such that the mass density ρ is supposed constant. We decompose
the unknown functions as the sum of a large-scale component and a turbulent
one. Rather than solving the Reynolds Averaged Navier Stokes (RANS) equa-
tions on the mean velocity 〈U〉 and pressure 〈P〉, we consider some stochastic
differential equations (SDEs) that describe the stochastic dynamics of a fluid
particle with state variables (Xt, Ut)t�0:

dXt = Utdt, (1a)

dUt = − 1
ρ
∇x〈P〉(t,Xt)dt−

(
1
2

+
3
4
C0

)
〈ω〉(t,Xt) (Ut − 〈U〉(t,Xt)) dt

+
√
C0ε(t,Xt)dWt (1b)

−
∑

0≤s≤t

2Us− ll {Xs∈∂D} +
∑

0≤s≤t

2 Vext(s,Xs) ll {Xs∈∂D},

where ε is the turbulent kinetic energy dissipation rate, 〈ω〉 the turbulent fre-
quency, and (Wt)t≥0 is a three dimensional Brownian motion. The foundation
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of such a model can be found in [1] and was inspired from [7]. The last two
terms of (1b) model a Dirichlet condition (see [3]):

〈U〉(t, x) = Vext(t, x), x ∈ ∂D, (2)

Vext denoting a known external velocity field (provided e.g. by measures,
large scale simulations, or statistics). In the general RANS equations, 〈P〉
is recovered thanks to the following Poisson equation:

− 1
ρ
Δx〈P〉 =

3∑
i,j=1

(
∂xj 〈U (i)〉 ∂xi〈U (j)〉+ ∂2

xixj
〈u(i)u(j)〉

)
, (3)

which requires the knowledge of the second order moments of the velocity;
this can be done thanks to turbulent closures, see [5] for a review of these
models.

Assume that there exists a Lagrangian density fL, such that at every time t
the measure fL(t;x, V )dxdV is the law of the random process (Xt,Ut) solution
of (1); a fluid particle satisfying (1) and (3) also satisfies (at least formerly),
for almost all x ∈ D

∫

R3
fL(t;x, V ) dV = ρ, (4a)

∇x · 〈U〉(t, x) = 0. (4b)

The method that we define, called the Stochastic Downscaling Method (SDM),
is of a totally new type: its consists in simulating a solution of (1), (2), (4)
with a given Vext.

2 Numerical Description of SDM

2.1 The Stochastic Particle Method

The time is discretized with a sequence tk = kΔt,k = 0, . . . ,K, Δt = T/K.
The stochastic dynamics is approximated at time tk by the discrete random
variables (Xn

k ,Unk , 1 ≤ n ≤ N) associated to N fluid particles dropped inside
D. The statistics on these variables are defined using a local approximation,
as in the Particle in Cell method (see [8]). More precisely, in the Nearest
Grid Point method, a partition of D into Nc cells is defined: D = ∪Nc

i=1Ci,
associating Ni particles to each cell Ci. A statistics Q(U) is defined on each
cell Ci by

〈Q(U)〉k(x) =
1
Ni

Ni∑
n=1

Q (Unk ) , x ∈ Ci. (5)

Notice that the method we construct is not hybrid. In particular, inside D the
pressure gradient term − 1

ρ∇x〈P〉 is not computed by mean of a PDE solver.
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Moreover, the computation of the right-hand-side of (3) is far too costly since
it requires a very fine cell subdivision. Instead, we proceed to a fractional step
algorithm inspired from Pope (see [7]): at each step, we solve (1b) without
the term − 1

ρ∇x〈P〉. We simulate the pressure effect by solving the constraints
(4), more adapted to a particle method [4].

2.2 Two New Numerical Challenges

In this paper, we focus our work on two issues: first, the confinement scheme
required by (2). To the best of our knowledge, the case of (inhomogeneous)
imposed boundary conditions in the framework of stochastic particle methods
has not been formerly studied in the literature. Second, we focus on the trans-
portation problem raised by (4a) (see [4] for some first studies in the SDM
context).

Solving the Boundary Condition (2)

The external velocity Vext is imposed at the boundaries of D. The guid-
ance is modelled by the two last terms of (1b). For robustness considerations
(see [6]), we introduce the exponential version of the explicit Euler scheme.
Hereafter, we sketch the main steps of the algorithm. After a prediction step,
the dynamics of the outgoing particles is treated by the following reflection
scheme:

At time tk, for each particle n:

1. Prediction. Predict the position X̃n
k = Xn

k−1 + Δt Unk−1 and the velocity
Ũnk using an exponential scheme [10]:

dUn
t = −

(
1

2
+

3

4
C0

)
〈ω〉k−1 (Un

t − 〈U〉k−1) dt+
√
C0εk−1dWt, t ∈ [tk−1, tk],

(6)

where 〈U〉k−1, 〈ω〉k−1 and εk−1 are evaluated in the cell containing Xn
k−1.

If X̃n
k ∈ D, then set Xn

k = X̃n
k and Unk = Ũnk .

2. Reflection. When X̃n
k /∈ D; let δout = λΔt be the boundary hitting time,

and xout = Xn
k−1 + δoutUnk−1 be the hitting position, then the reflected

position reads

Xn
k = xout + (Δt− δout)

(
2Vext(tk−1, xout)− Unk−1

)
. (7)

The reflected velocity is constructed by two successive steps. First, we
simulate Equation (6) between tk−1 and tout− with an exponential scheme
to obtain the velocity Utout− . Then, in order to match the boundary
conditions, a jump is imposed to the velocity at t = tout, leading to
Utout+

= 2Vext(tk−1, xout)−Utout− .Thesecondadvancement isdonebetween
tout+ and tk.
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3. Kill-Build Procedure. It may happen that the reflected position (7) does not
belong to D. In this case, the particle is killed, and created in a boundary
cell with incoming velocity Vext.

The linear equation (6) is exactly solved in step 1; the same holds for the two
velocity advancements in step 2, knowing the boundary hitting time tout, and
the velocity jump.

Solving the Constant Mass Density Constraint (4a)

We come now to the second difficulty of this paper. The condition (4a) implies
that the number of particles per cell has to be constant: for each cell Ci,
Ni = Npc, and thus the total number of particles is N = NcNpc. After steps
1–3 above, this condition may not hold anymore. Let us denote xi the particle
locations at the end of step 3. When Ni < Npc, locations are randomly created
in Ci, and the set {qj}1≤j≤N is constructed by taking Npc particles per cell.

At this point, the constant mass density problem can be interpreted (at
least formally) as an optimal transport problem (see [1, 4]): defining the cost
pij = ‖xi−qj‖2L2

of transporting a particle from xi to qj , the problem consists
of finding an element σ of the set of permutations SN of {1, . . . , N} which
minimizes the overall transport cost:

(P ) Find σ∗ ∈ SN such that D∗ :=
N∑
i=1

piσ∗(i) = min
σ∈SN

N∑
i=1

piσ(i). (8)

This so-called Assignment Problem has been tackled by D. Bertsekas in [2],
introducing the Auction Algorithm, where the optimality condition (8) is
ε-relaxed:

D∗ �
N∑
i=1

piσ∗(i) � D∗ +Nε. (9)

The overall cost of the final assignment is within Nε of being optimal. Numer-
ical tests (see [4]) have shown that in our specific configuration, the optimal
solution is obtained when ε � C

N , with a complexity of order N2. Such a
computational cost involves a very slow execution of SDM, since we need a
large number of particles N for the Monte Carlo method to converge.

Hereafter, in the SDM framework, we present our strategies to reduce the
number of objects involved in the Auction Algorithm.

3 Benchmarks

In order to decrease the number of particles involved in the Auction Algo-
rithm, we consider the supernumerary particles and possibly a set of particles
coming from tanks, defined in each cell. Let be the sets X, containing the
particles to be transported, and Q, the final locations, constructed as follows:
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Table 1. Comparison of several transportation algorithms: Auction Algorithm with
Tank (AAT), for several tank sizes, and Triangular Transport (TT)

Run time (s) D cmax cmove

AAT α = 1 467,183 8.8 1.5 4,846
AAT α = 0.01 1,646 66 1.7 3,012
AAT α = 0 557 85 2.3 2,414
TT 0.38 110 1.4 9,843

Initialization: X = Q = ∅, and the tank size Ntank = αNpc ∈ N, 0 ≤ α ≤ 1.
For all Ci:

If Ni > Npc: add Ni −Npc particles to X, and add Ntank other particles of
Ci to X and Q.

If Ni < Npc: create Npc − Ni particles in Ci, and add them to Q. If
Npc −Ni < Ntank then add Ntank − (Npc −Ni) other particles to X and Q.

If Ni = Npc then add Ntank particles to X and Q.

The Auction Algorithm with Tank (AAT) is applied to (X,Q), and by
then the particles of X are assigned to the final locations of Q, leading to the
global transport cost D =

∑|X|
i=1 piσ∗(i).

In a previous work [9], the triangular transport procedure (TT) was pre-
sented as a competitive method for the uniformization of the mass density: in
the case of dimension one, the transport cost is known to be optimal, with a
very cheap complexity of O(n logn).

Table 1 compares the AAT procedure with several tank sizes to the TT
procedure. The initial locations {xi}1≤i≤N are randomly created inside D, and
D is partitioned into 6×6×6 cells, with Npc = 800 particles per cell. The four
columns correspond to the mean of the following quantities: the computational
time on a work station (run time (s)), the transport costD, the largest number
cmax of cells crossed by the particles during their transportation (expected to
be close to 1), and finally the number cmove of particles which have leaved their
initial cell. The variable cmax plays a crucial role in SDM: particles transport
physical information, and hence we look for an optimization procedure that
preserves the physics inside each cell.

When Ntank = Npc (AAT with α = 1, full tank), the Auction Algorithm
is applied to the N particles: an optimality condition can be written (see
(9)). This test is taken as a reference in terms of transport cost D and cmax.
Nevertheless the computational time is far too large, and unsuitable for SDM
since the mass density uniformization has to be done at every time step. Set-
ting α = 0 in AAT (empty tank) consists in transporting the supernumerary
particles towards the cells that miss particles. With 1% particles in the tank,
we obtain a satisfying trade-off between computational and transport costs
(see Table 1). Although this procedure does not lead to an optimal transport
cost, the number cmax of crossed cells is surprisingly small; this is precisely
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what matters in our application. The introduction of a better-adapted metric
to define piσ∗(i) for our application is still an open problem. Meanwhile, our
preferred method remains TT as it both minimizes the computational cost
and the number of crossed cells.

4 Conclusion

We have introduced a new numerical scheme which ensures that the Dirichlet
condition (2) is satisfied. Then, we have presented a new adaptation of the
Auction Algorithm, that improves the resolution of the optimal transport
problem in the context of SDM: the computational cost is reduced, involving
few particles in the process, with a satisfying transport cost.
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Summary. ParSol library is applied to implement the finite difference scheme
used to solve numerically a system of PDEs describing a nonlinear interaction
of two counter-propagating laser waves. Results of computational experiments are
presented.

1 Problem Formulation

The interaction of counter propagating laser beams is of great practical
interest. We mention only few applications, including development of opti-
cal switches with short response time and creation of optical processors. Then
the new types of optical bistability are important and this problem is actively
studied (see [6, 7] and references given in these papers).

Since in practical applications the greatest interest is given to nonlinear
response of medium, we shall consider the Kerr nonlinearity. In the domain
D(z,X) = (0 ≤ z ≤ Lz) ×D(X), D(X) = {0 ≤ xk ≤ Lx, k = 1, 2} dimen-
sionless equations and boundary conditions describing a nonlinear interaction
of two counter propagating laser beams are given by the system of equations

∂A+

∂t
+
∂A+

∂z
+ i

2∑
k=1

Dk
∂2A+

∂x2
k

+ iγ
(
0.5|A+|2+|A−|2)A+ = 0, (1)

∂A−

∂t
− ∂A−

∂z
+ i

2∑
k=1

Dk
∂2A−

∂x2
k

+ iγ
(
0.5|A−|2 + |A+|2)A− = 0, (2)

and the boundary conditions

A+(t, z = 0, x1, x2) = A0(t) exp
(
−

2∑
k=1

(xk − xck)mk

rpk

)
,
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A−(t, z = Lz, x1, x2) = A+(z = Lz, x1, x2, t)R0 (3)

×
(

1− exp
(
−

2∑
k=1

(xk − xmk)qk

Rak

))
exp

(
i

2∑
k=1

(xk − xmk)2

Rmk

)
. (4)

Here A± are complex amplitudes of counter propagating pulses, γ character-
izes the nonlinear interaction of laser pulses, xck are coordinates of the beam
center, rpk are radius of input beam on the transverse coordinates and A0(t)
is a temporal dependence of input laser pulses. In the boundary conditions,
R0 is the reflection coefficient of the mirror, Rak are the radius of the hole
along the transverse coordinates, xmk are coordinates of the hole center, Rmk
characterize curvature of the mirror.

At the initial time moment the amplitudes of laser pulses are equal to zero
A±(0, z, x1, x2) = 0, (z, x1, x2) ∈ D. Boundary conditions along transverse
coordinates are equal to zero.

It is well known that the solution of the given system satisfies some impor-
tant invariants [1, 9]. In this paper we consider only two main invariants. Let
us introduce new local space coordinates η± = z ± (t − t0) and define new
functions a±(t, η∓, x1, x2) = A±(t, z, x1, x2). It follows from (1) and (2) that
these functions satisfy the following system of equations

∂a±

∂t
+ i

2∑
k=1

Dk
∂2a±

∂x2
k

+ iγ
(
0.5|a±|2+|a∓|2)a± = 0. (5)

Multiplying differential equations (5) by (a±)∗ and integrating over (t0 −
h/2, t0 + h/2)×D(X) we prove that

‖a±(η∓, t0 + h/2)‖2 = ‖a±(η∓, t0 − h/2)‖2.
Taking t0 = t̄ − h/2 and denoting z± = z ± h/2, we get that the full energy
of each laser pulse is conserved during propagation along the directions of
characteristics:

‖A+(z+, t̄)‖2 = ‖A+(z−, t̄− h)‖2, ‖A−(z−, t̄)‖2 = ‖A−(z+, t̄− h)‖2. (6)

Here the L2 norm is defined as ‖A(z, t)‖2 =
∫ Lx

0

∫ Lx

0
|A|2 dx1dx2 .

Multiplying differential equations (5) by ∂(a±)∗

∂t and integrating over (t0−
h/2, t0 + h/2)×D(X) we prove that

I2(t0 + h/2) :=
2∑

k=1

Dk

(∥∥∥∂a
+(η−, t0 + h/2)

∂xk

∥∥∥
2

+
∥∥∥∂a

−(η+, t0 + h/2)
∂xk

∥∥∥
2)

− γ
∫ Lx

0

∫ Lx

0

(1
4
|a+(η−, t0 + h/2, X)|4 +

1
4
|a−(η+, t0 + h/2, X)|4

+ |a+(η−, t0 + h/2, X)|2|a−(η+, t0 + h/2, X)|2
)
dx1dx2 = I2(t0 − h

2
).

Taking t0 = t̄− h/2 and denoting z± = z ± h/2, we get the second invariant
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2∑
k=1

Dk

(∥∥∥∂A
+(z+, t̄)
∂xk

∥∥∥
2

+
∥∥∥∂A

−(z−, t̄)
∂xk

∥∥∥
2)
− γ

∫ Lx

0

∫ Lx

0

(1
4
|A+(z+, t̄, X)|4

+
1
4
|A−(z−, t̄, X)|4 + |A+(z+, t̄, X)|2 |A−(z−, t̄, X)|2

)
dx1dx2

=
2∑

k=1

Dk

(∥∥∥∂A
+(z−, t̄− h)
∂xk

∥∥∥
2

+
∥∥∥∂A

−(z+, t̄− h)
∂xk

∥∥∥
2)

− γ
∫ Lx

0

∫ Lx

0

(1
4
|A+(z−, t̄− h,X)|4 +

1
4
|A−(z+, t̄− h,X)|4

+ |A+(z−, t̄− h,X)|2 |A−(z+, t̄− h,X)|2
)
dx1dx2. (7)

These two invariants (6) and (7) describe very important features of the solu-
tion and therefore it is important to guarantee that the discrete analogous
are satisfied for the numerical solution. In many cases this helps to prove
the existence and convergence of the discrete solution. Conservative discrete
schemes for problems of nonlinear optics are investigated in many papers, see
e.g. [4, 5, 8, 9], where a comparison of conservative and non-conservative dis-
crete schemes is done for the nonlinear Schrödinger problem and systems of
such equations.

In this paper we develop a conservative finite difference scheme, solution
of which satisfies both discrete invariants. The given mathematical model
depends on three space coordinates (z, x1, x2) thus the computational com-
plexity is much larger than in the case of 2D models used previously. We
propose a parallel version of the numerical algorithm and implement it using
ParSol tool of parallel numerical objects [2,3]. Some results of computational
experiments are presented.

2 Finite Difference Scheme

In the domain [0, T ] × D we introduce a uniform grid Ω = Ωt × Ωz × Ωx,
where

Ωt = {tn = nht, n = 0, . . . , N}, Ωz = {zj = jhz, j = 0, . . . , J},
Ωx = {(x1l, x2m), xkm = mhx, k = 1, 2, m = 0, . . . ,M}.

In order to approximate the transport part of the differential equations by
using the finite differences along the characteristics z ± t we take ht = hz.
Let us denote discrete functions, defined on the grid Ω by E±,n

j,lm = E±(zj , x1l,
x2m, t

n). We also will use the following operators:

Ē+ =
E+,n
j + E+,n−1

j−1

2
, Ē− =

E−,n
j−1 + E−,n−1

j

2
, β(E,W ) = γ(

1
2
|E|2 + |W |2),

DEj,kl = D1
Ej,l+1,m− 2Ej,lm+ Ej,l−1,m

h2
x

+D2
Ej,l,m+1− 2Ej,lm+ Ej,l,m−1

h2
x

.
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Then the system of differential equations is approximated by the following
finite difference scheme

E+,n
j − E+,n−1

j−1

ht
+ iDĒ+

j + iβ(Ē+
j , Ē

−
j )Ē+

j = 0, (8)

E−,n
j−1 − E−,n−1

j

ht
+ iDĒ−

j + iβ(Ē−
j , Ē

+
j )Ē−

j = 0

with corresponding boundary and initial conditions.
We shall prove that this scheme is conservative, i.e. two discrete invariants

are satisfied for its solution. Let us define the scalar product and the L2

norm of the discrete functions as (U, V ) =
∑M−1
l=1

∑M−1
m=1 UlmV

∗
lmh

2
x, ‖U‖2 =

(U,U). Taking scalar products of equations (8) by Ē+ and Ē− respectively and
considering the real parts of the equations, we get that the discrete analogs
of the invariants (6) are satisfied

‖E+,n
j ‖2 = ‖E+,n−1

j−1 ‖2, ‖E−,n
j−1‖2 = ‖E−,n−1

j ‖2, j = 1, . . . , J.

Taking scalar products of (8) by (E+,n
j − E+,n−1

j−1 ) and (E−,n
j−1 − E−,n−1

j )
respectively, adding the obtained equalities and considering the imaginary
part of the equation, we get the discrete analog of the second invariant (7):

(DE+,n
j , E+,n

j ) + (DE−,n
j−1 , E

−,n
j−1)− γ

(1
4
(|E+,n

j |2, |E+,n
j |2)

+
1
4
(|E−,n

j−1|2, |E−,n
j−1 |2

)
+

(|E+,n
j |2, |E−,n

j−1 |2
))

= (DE+,n−1
j−1 , E+,n−1

j−1 ) + (DE−,n−1
j , E−,n−1

j )− γ
(1

4
(|E+,n−1

j−1 |2, |E+,n−1
j−1 |2)

+
1
4
(|E−,n−1

j |2, |E−,n−1
j |2) +

(|E+,n−1
j−1 |2, |E−,n−1

j |2)
)
.

3 Parallel Algorithm

The finite difference scheme (8) uses the structured grid and the complex-
ity of computations at each node of the grid is approximately the same (it
depends on the number of iterations used to solve a nonlinear discrete prob-
lem for each zj). The parallelization of such algorithms can be done by using
domain decomposition paradigm and ParSol is exactly targeted for such algo-
rithms. In this paper we apply the 1D block domain decomposition algorithm,
decomposing the grid only in z direction. Such a strategy enables us to use a
sequential version of the FFT algorithm for solution of the 2D linear systems
with respect to (x1, x2) coordinates.

This parallel algorithm is generated semi-automatically by ParSol. The
parallel vectors, which are used to store discrete solutions E±, are created by
specifying three main attributes:
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(a) The dimension of the parallel vector is 3D.
(b) The topology of processors is 1D and only z coordinate is distributed.
(c) The 1D grid stencil is defined by the points (zj−1, zj , zj+1).

Thus in order to implement the computational algorithm the kth processor
(k = 0, 1, . . . , p) defines its subgrid as well its ghost points Ω(k), whereΩ(k) =
{(zj , x1l, x2m), zj ∈ Ωz(k), (x1l, x2m) ∈ Ωx}, Ωz(k) = {zj : j̃L(k) ≤ j ≤
j̃R(k)}, j̃L(k) = max(jL(k)− 1, 0), j̃R = min(jR(k) + 1, J). At each time step
tn and for each j = 1, 2, . . . , J the processors must exchange some information
for ghost points values. Since the computations move along the characteristics
z ± t only a half of the full data on ghost points is required to be exchanged.
The kth processor (a) sends to (k+1)th processor vector E+,n

jR,· and receives
from him vector E−,n

j̃R,· , and sends to (k− 1)th processor vector E−,n
jL,· and

receives from him vector E+,·
j̃L,·. Obviously, if k = 0 or k = (p− 1), then a part

of communications is not done. In ParSol, such an optimized communication
algorithm is obtained by defining temporal reduced stencils for vectors E+

and E−, they contain ghost points only in the required directions but not in
both.

Let assume that p processors are used. The total complexity of the parallel
algorithm is given by

Tp = γ max
0≤k<p

K(k)
(�(J + 1)/p�+ 1

)
(M + 1)2 logM + 2

(
α+ β(M + 1)2

)
,

where γ estimates the CPU time required to implement one basic operation
of the algorithm, α is the message startup time and β is the time required to
send one element of data, K is the averaged number of iterations done at one
time step. We assume that communication between neighbour processors is
done in parallel.

The parallel code was tested on the cluster of PCs at Vilnius Gediminas
Technical University. It consists of 16 Intel Quad Core nodes intercon-
nected via Gigabit Smart Switch (http://vilkas.vgtu.lt). Some results of
computational experiments are presented in Table 1. Here coefficients of the
algorithmic speed up Sp = T1/Tp and efficiency Ep = Sp/p are presented.
p1 × n denotes that p1 nodes with n tasks per node are used, thus the total
number of processors is p = p1n. The size of the discrete problem is M = 123
and J = 640.

More applications of the developed parallelization tool ParSol are described
in [2, 3].

Table 1. Results of computational experiments on Vilkas cluster

2 × 1 1 × 2 4 × 1 2 × 2 1 × 4 8 × 1 4 × 2 2 × 4

Sp 1.85 1.82 3.20 3.23 3.18 5.13 5.12 4.94
Ep 0.92 0.91 0.80 0.81 0.79 0.64 0.64 0.62
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Modelling Burglaries in Streets
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Department of Mathematics, UCL, Gower Street, London WC1E 6BT, UK
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Summary. Basic modelling of the evolution of burglary probabilities along a street
or system of streets is described. The central cases investigated are for a single street,
a system of streets in series, a system of streets in parallel, and the effects of security.

1 Introduction

Interest in understanding and modelling certain aspects of crime has been
growing significantly in recent times. Studies include those in [1–6]. The
present work arose from a workshop in 2007 and is motivated by links estab-
lished with the Jill Dando Institute at UCL which in turn is linked closely
with the London Metropolitan Police in research terms.

The modelling here is described in Sect. 2 for a single street, then extended
in Sect. 3 to two or more streets in series and to junctions. This is followed by
Sect. 4 which is on special interactions concerned with streets in an in-parallel
configuration. Section 5 addresses the modelling of security or watchfulness
effects. The investigation is concentrated on the discrete versions of models
rather than continuum ones. Also the methodology was tested for analytical
cases and compared with limit continuum calculations. Section 6 provides
further comments.

2 Basic Model for One Street

This is a simple first model for a rectilinear street consisting of K houses or
other dwellings. The reasoning here is that the probability pk of a burglary
at the kth house of the street evolves according to the differences between the
probability at that house and those at its nearest neighbours. The integer k
runs from 1 to K, and in addition superscripts i, i+1 are to be used, standing
for the values at the current time level and at the next time level in turn.
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The typical time step in mind is one day say. Thus the normalised evolution
equation has the form

p
(i+1)
k = p

(i)
k + μ(p(i)

k+1 − p
(i)
k ) + μ′(p(i)

k−1 − p
(i)
k ). (1)

The coefficients μ, μ′ are taken as constants and are expected to be positive,
such that if the probability at k + 1 (or at k − 1) is higher than that at k
then the latter is likely to increase in proportion during the next time step.
For definiteness we then suppose the coefficients μ, μ′ to be equal, effectively
yielding a diffusivity of crime through the relation

p
(i+1)
k = p

(i)
k + μ(p(i)

k+1 − 2p(i)
k + p

(i)
k−1). (2)

The case of unequal coefficients is also of interest however and is mentioned in
the final section of the paper. Next we note that (2) is of course the diffusion
equation in discretised form, controlling heat conduction for example; that is,
the continuum limit of (2) for many houses is

∂p

∂t
= κ

∂2p

∂x2
(3)

where the coefficient κ = μ(Δx)2/(Δt), subject to the appropriate limiting
process involving the effective step lengths Δx,Δt in space x and time t
respectively. Development in space here corresponds to movement from one
house to the next. Most of our concern in this article is with the form (2).

Initial conditions (set at i = 0 for all k) and boundary conditions (usually
at k = 1,K for all positive i) are imposed appropriately on (2). In addition
a refined model of the single street case is currently under investigation in
which the burglar is modelled as an agent. In brief, the probabilities evolve as
above (and below) in the absence of a burglary. Concerning the probability of
a burglary on day i (as a first step only one burglary is envisaged), the agent
proceeds down the street from house 1 to 2, . . . k . . . and commits a crime
with a certain probability which is a function of security etc, as considered in
Sect. 6. The crime itself acts to produce new initial conditions for the evolution
in (2). An object-oriented C++ code for this is under development.

Figure 1 shows a sample solution of (2), in which the diffusive effect is clear
as the discrete time i increases. The probabilities of crime are initially zero in
all the houses, save House 6, where we model a crime having just occurred by
raising the probability to the value of 0.5. This value may be artificially high,
but it serves to illustrate the diffusion of probability of crime in a manner
directly analogous to thermal diffusion. It can be seen how the probability of
crime in neighbouring houses rises rapidly in close proximity to the burgled
house and more slowly and steadily further away. It is worth remarking that,
in the present discrete setting, if the initialised p values are set as nonzero
only towards the middle of the street with p imposed as zero at the two ends
then p remains zero near those ends for a finite time.
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Fig. 1. The evolution of probability of crime in a street of 11 houses is shown

3 Two or More Streets in Series or with Junctions

The first extension now to two streets in series, say street P (with Kp houses)
leading in to street Q (with Kq houses), has the corresponding probabilities
being p, q. Here p evolves in the form (2) with a coefficient now written μp

and q evolves in a similar form, namely

q
(i+1)
k = q

(i)
k + μq(q(i)k+1 − 2q(i)k + q

(i)
k−1), (4)

where k now runs from 1 to Kp in (2) but from 1 to Kq in (4). The junction
of the streets is at k = Kp in P street, k = 1 in Q street. The un-joined ends
are taken to have zero probability conditions,

p
(i)
1 = 0, q(i)Kq = 0, for all (i), (5)

whereas a modelled interaction condition applies at the junction. This is

(q(i)2 − q
(i+1)
1 ) = α3(p(i+1)

Kp − p
(i)
Kp−1). (6)

Here α3 is a prescribed constant, reflecting proportionality between the prob-
ability rates on either side of the junction, with pKp, q1 being taken to be
identical purely for convenience in these first studies. For certain situations,
e.g. involving a change in housing type, it can be argued that α3 should be
the ratio of the μ values but other situations such as at crossroads suggest a
wider range of α3 values can hold; again, taking continuity of p, q is open to
some debate. The junction condition allows a type of leakage to occur from
one street to the other.

Examples have been calculated for particular values of the coefficients
involved and will be in [6]. For the scenario of all the q′s initially being zero
and the p′s likewise except at a finite number of houses in the middle, we
observe that Q street remains at zero probability until the diffusion in P
street makes the p values near the junction become nonzero. Further, even
after such a delay, an extreme value for the leakage coefficient in (6) can make
the response in Q street grow dramatically.
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A similar description holds (second) for more streets, say P,Q,R, S, . . . , in
series: P leading in to Q, then Q in to R and so on. The evolution equation in
each street is as in (2), (4), while the interaction conditions at each junction
are (6) between p, q, then q, r, etc. Examples are in [6].

A similar account can also be made of junctions in which several streets
join together, for instance with street P leading in to both Q and R at the
same junction, or with a crossroads. Here again interaction of the kind in (6)
seems reasonable as a first step.

4 Streets in Parallel

When two streets P,Q are in effect in parallel it is considered that there is not
necessarily any interaction of the above type directly between them; however
interaction may occur at a finite number of special positions, corresponding
to an alleyway or parkland for instance offering possibly enhanced access. At
such a position k the probability pk at the house in P street is taken to be
influenced positively by the probability qk at the corresponding house in Q
street and likewise for the effect of P street on Q street. In consequence the
evolution system has the form

p
(i+1)
k = p

(i)
k + μp(p(i)

k+1 − 2p(i)
k + p

(i)
k−1) + βp(q(i)k − εp

(i)
k ), (7)

q
(i+1)
k = q

(i)
k + μq(q(i)k+1 − 2q(i)k + q

(i)
k−1) + βq(p(i)

k − εq
(i)
k ), (8)

at such k values, where the access factors βp , βq are constants which are
generally positive.

The constant factor ε plays an interesting role. If ε is unity then the evolu-
tion remains as before dependent on various differences between probabilities,
whereas if ε is zero then there is a stronger linkage between the two streets. In
fact exponential growth in time arises whenever ε is between zero and unity.
This can be seen readily if there is no significant diffusion in the system, so
that the μ values are negligibly small, since then (7) and (8) give the property
that at large times

p
(i)
k , q

(i)
k grow as bi, with b− 1 = [−ε(βp + βq) +

{
ε(βp − βq)2 + 4βpβq

} 1
2 ]/2,

(9)
at the access positions k. Hence exponential growth is encountered (b > 1)
except when ε is unity; the unit case is associated with all previous interactions
addressed, by the way. Even if there is significant diffusion essentially the same
conclusion is reached, by virtue of a single or double summation over all k
values, depending on the end conditions, although the exponent is then altered
from that in (9).

Numerical studies support the result (9) and its extension to three or more
streets in parallel when they interact in the special access way. An example
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Fig. 2. For two in-parallel streets

is presented in Fig. 2. This and other cases examined allow for special access
occurring at a number of locations; thesis studies are being conducted by
XY . It might be argued that the accesses for the current in-parallel situations
should merely be treated as crossroads as in the previous section, but against
that these accesses are believed to have a special status.

5 Effects of Security

Extending the model to allow for security or watchfulness sk in the same
simple-minded way we first have the system

p
(i+1)
k = p

(i)
k + μp(p(i)

k+1 − 2p(i)
k + p

(i)
k−1) − a3s

(i+1)
k , (10)

s
(i+1)
k = s

(i)
k + b1p

(i)
k − b2, (11)

where a3, b1, b2 are non-negative constants. The main idea is that security put
in at the typical kth house reduces the crime probability there, as reflected in
(10), while any increase in crime probability tends to induce further security as
represented in (11) but subject to security being reduced if there is negligible
probability.

An example is presented in Fig. 3. It shows crime probability decreasing
when security is imposed, along with neighbouring probability levels which
may decrease or increase relatively depending on the parameters present. We
note that under some circumstances the system can produce apparently unre-
alistic negative values for the pk and /or the sk at certain positions although
this feature can be prevented by sensible adjustments of the model, one of
which is discussed in the next section.

6 Final Comments

• According to the modelling the crime probabilities mostly diffuse with
time for the single street and multiple street cases, with the diffusion rates
depending sensitively on the parameters involved. A possible exception
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is for the in-parallel scenarios described in Sect. 3 which admit temporal
growth of the probabilities.

• In the multiple street cases the junctions between streets can play a key
role, as is well known in other network settings. We see this aspect in all
the models of Sects. 3 and 4.

• For the most part linear effects have been addressed so far. An excep-
tion should probably be made in future studies for the setting of Sect. 5
concerning security effects. The relations in (10) and (11) could be better
treated as giving growth or decay rates, which would make the interactions
nonlinear in addition to ensuring that the probabilities and security levels
remain sensibly non-negative.

• In the conference itself there were several interesting points made by audi-
ence members at the talk associated with this article. Most had already
been accommodated in the research, including (first) the continuum ver-
sion (3) and its solution properties and (second) the possibility of unequal
coefficients in (1) which provokes a directional preference corresponding
to a convective effect proportional to (μ-μ′) in (2). Other comments are
covered by this text or will be covered in later research including [6]. There
are indeed many further issues to be studied.
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Summary. This work discusses the construction of approximate solutions for the
initial matrix problem Y ′′(x) = f(Y (x), Y ′(x)) using cubic matrix splines.

1 Introduction and Review

Autonomous matrix initial value problems are frequently encountered in
diverse fields of physics and engineering, see e.g. [1] and references therein.
Usually, initial matrix problems of the type Y ′′(x) = f(Y (x), Y ′(x)) can be
recast as an extended first order matrix problem [2]. This standard approach,
however, comes with an increase of additional computational cost due to the
higher dimensionality of the problem. Cubic splines were used in the scalar
case to obtain approximations for first-order differential equations [3], who
have the advantage to be of class C1 in a given approximation interval.
Furthermore, scalar splines are easy to program on the computer and the asso-
ciated approximation errors are only of the fourth order of the chosen step size
in the iteration algorithm. This method has also been used in the resolution
of linear matrix problems [4], first-order matrix differential equations [5], and
for the particular cases of second-order problems in [6].

In the present work, we extend this scheme to the resolution of second-
order initial matrix problems Y ′′(x) = f(Y (x), Y ′(x)) without recurring to
any additional increase in dimensionality of the problem. Note that after the
presentation of this work, the more general case was accepted for publication
in [7]. Throughout, we will adopt the common notation for norms and cubic
matrix splines as in [5]. The paper is organized as follows: Sect. 2 develops the
proposed method; in Sect. 3 an algorithm is given; and finally, in Sect. 4, an
example is provided.

A.D. Fitt et al. (eds.), Progress in Industrial Mathematics at ECMI 2008,

Mathematics in Industry 15, DOI 10.1007/978-3-642-12110-4 126,

c© Springer-Verlag Berlin Heidelberg 2010



786 E. Defez et al.

2 Construction of the Method

The autonomous initial-value problem under consideration is given by the
following system of equations

Y ′′(x) = f(Y (x), Y ′(x)) , Y (a) = Y0 , Y
′(a) = Y1, a ≤ x ≤ b, (1)

where Y0, Y1, Y (t) ∈ C
r×s and f : C

r×s × C
r×s �−→ C

r×s, f ∈ C0 (T ), with
T = {(Y, Z); Y, Z ∈ C

r×s} . To guarantee the existence and uniqueness of
the continuously differentiable solution Y (x) of the system (1), we impose the
following Lipschitz conditions on function f so that [8, p. 99]

‖f (Y1, Y )− f (Y2, Y )‖ ≤ L1 ‖Y1 − Y2‖ , ‖f (Z, Z1)− f (Z, Z2)‖ ≤ L2 ‖Z1 − Z2‖ ,
(2)

for Y1, Y2, Z1, Z2, Y, Z ∈ C
r×s. We also split the interval [a, b] into subintervals

according to

Δ[a,b] = {a = x0 < x1 < . . . < xn = b} , xk = a+ kh, k = 0, 1, . . . , n,
(3)

where h = (b−a)/n is the step size for any positive integer n. In each of these
subintervals [a+kh, a+ (k+ 1)h], our objective is to find cubic matrix splines
approximating the solution of (1). For the first interval [a, a+ h], we simply
assume that the spline is of the form

S|[a,a+h]
(x) = Y (a) + Y ′(a)(x−a) +

1
2!
Y ′′(a)(x−a)2 +

1
3!
A0(x−a)3, (4)

where the matrix A0 ∈ C
r×s is an unknown to be determined. Given this

definition of the initial spline (4), it is straightforward to check that for k =
0, 1, one gets

S
(k)

|[a,a+h]
(a) = Y (k)(a) and S′′

|[a,a+h]
(a) = Y ′′(a) = f(S|[a,a+h]

(a), S′
|[a,a+h]

(a)),

(5)
and hence (4) satisfies (1) at x = a. For a full determination of the spline in
subinterval [a, a+h], it is still necessary to solve for A0. By requiring that (4)
is a solution of problem (1) at x = a+ h, we obtain

S′′
|[a,a+h]

(a+ h) = f
(
S|[a,a+h]

(a+ h), S′
|[a,a+h]

(a+ h)
)
, (6)

and thus find the matrix equation for the remaining unknown matrix

A0 =
1

h

[
f

(
Y (a)+Y ′(a)h +

Y ′′(a)h2

2
+

A0h
3

6
, Y ′(a) + Y ′′(a)h +

A0h
2

2

)
−Y ′′(a)

]
.

(7)

With the uniqueness of solution A0 given by (7), the matrix spline of the first
subinterval [a, a+ h] is finally fully determined.

Now, we move on to the next subinterval [a+ h, a+ 2h], where the cubic
matrix spline takes the following form
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S|[a+h,a+2h]
(x) = S|[a,a+h]

(a+h)+S′
|[a,a+h]

(a+h)(x− (a+ h))

+
1
2!
S′′
|[a,a+h]

(a+h)(x−(a+h))2+
1
3!
A1(x−(a+h))3. (8)

Hence, it becomes obvious that S(x) is of class C2([a, a+ h]∪ [a+ h, a+ 2h]),
and again all of the coefficients of the spline S|[a+h,a+2h]

(x) are determined

with exception of matrix A1 ∈ C
r×s. Following the same procedure as before

for the first subinterval, we consider a spline of the form (8) which fulfills
the differential equation (1) at point x = a + h. Then, it is possible to find
the expression of A1, imposing that the differential equation (1) also holds at
x = a+ 2h:

S′′
|[a+h,a+2h]

(a+ 2h) = f
(
S|[a+h,a+2h]

(a+ 2h), S′
|[a+h,a+2h]

(a+ 2h)
)
.

It is now straightforward to identify the matrix equation for the only unknown
quantity A1:

A1 =
1
h

[
f

(
S|[a,a+h]

(a+h) + S′
|[a,a+h]

(a+ h)h+
1
2
S′′
|[a,a+h]

(a+h)h2+
1
6
A1h

3,

S′
|[a,a+h]

(a+ h) + S′′
|[a,a+h]

(a+h)h+
1
2
A1h

2

)
−S′′
|[a,a+h]

(a+h)
]
. (9)

Assuming again that the matrix equation (9) has only the solution A1, the
spline of subinterval [a + h, a + 2h] is fully determined. From the explana-
tion of the previous steps, it should be clear how to generalize this iteration
process for all subsequent subintervals up to the last interval of the parti-
tion. Without any loss of generality, let us consider the cubic matrix spline
in an arbitrary subinterval [a+ (k − 1)h, a+ kh]. Then, for the subsequent
subinterval [a+ kh, a+ (k + 1)h], we can define the corresponding spline in
analogy to the steps before:

S|[a+kh,a+(k+1)h]
(x) = βk(x) +

1
3!
Ak(x− (a+ kh))3, (10)

where βk(x) =
2∑

l=0

1
l!
S

(l)

|[a+(k−1)h,a+kh]
(a+ kh)(x− (a+ kh))l. With definition

(10), the cubic matrix spline is of class C2

(
k⋃

j=0

[a + jh, a + (j + 1)h]

)
and sat-

isfies the differential equation (1) at point x = a+kh. Additionally, we require
that S(x) is a solution of the differential equation (1) at point x = a+(k+1)h,
so that the equation for the unknown matrix Ak is

Ak =
1
h

[
f

(
βk(a+ (k + 1)h) +

1
6
Akh

3, β′
k(a+ (k + 1)h) +

1
2
Akh

2

)

− β′′
k (a+ (k + 1)h)] . (11)
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Note that (11) is a general result for Ak and reduces to (7) and (9) for k = 0
and k = 1, respectively. It remains to be shown that (11) yields a unique
solution Ak of the problem. Existence and uniqueness can be demonstrated
by a fixed-point argument (see [5] for the first-order case). For this purpose,
we consider the matrix function g : C

r×s → C
r×s for a fixed step size h defined

by

g(T ) =
1
h

[
f

(
βk(a+ (k + 1)h) +

1
6
Th3, β′

k(a+ (k + 1)h) +
1
2
Th2

)

− β′′
k (a+ (k + 1)h)] . (12)

Obviously (11) will only be valid if and only if Ak = g(Ak), and as a conse-
quence Ak is the fixed-point solution of function g(T ). Applying Lipschitz’s
conditions (2)–(12) yields

‖g(T1)− g(T2)‖ ≤
(
L1h

2

6
+
L2h

2

)
‖T1 − T2‖ .

For h <
(√

24L1 + 9L2
2 − 3L2

)
/2L1, it follows

(
L1h

2/6 + L2h/2
)
< 1 and

hence g(T ) is a contractive matrix function. Therefore (11) has unique solu-
tions Ak for k = 0, 1, . . . , n − 1. This completes the uniqueness proof and
the cubic matrix spline is completely determined. In summary, the following
result can been established (see also [3]):

Theorem 1. Let L1, L2 be Lipschitz constants defined by (2). If step size
h <

(√
24L1 + 9L2

2 − 3L2

)
/2L1 is chosen, then there exists a matrix-cubic

spline S(x) for each subinterval [a+ kh, a+ (k + 1)h], k = 0, 1, . . . , n− 1. If
f ∈ C1(T ), then ‖Y (x) − S(x)‖ is, at least, of global order O(h2) ∀x ∈ [a, b],
where Y (x) is the theoretical solution of (1).

3 Algorithm

The following algorithm implements the approximate solution of system (1)
in the interval [a, b] with an error, at least, of global order O(h2).

• Step 1. Let L1, L2 be Lipschitz constants defined by (2). Take

n >
2(b− a)L1√

24L1 + 9L2
2 − 3L2

, h = (b− a)/n, (13)

and the partition Δ[a, b] given for partition (3).
• Step 2. For k = 0, solve the matrix equation (7). Compute S|[a,a+h]

(x) as
defined in (4).

• Step 3. For k = 1, . . . , n − 1, solve the matrix equation (11). Compute
S|[a+kh,a+(k+1)h]

(x) as defined in (10).
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Only for some exceptional cases (7) and (11) can be solved analytically [9].
Otherwise they can be tackled with standard iterative methods (see e.g. [10])
using T q

l+1 = g(T q
l ), where T q

0 is an arbitrary matrix in C
r×s and q =

0, 1, . . . , n− 1. Note that matrix function g(T ) is given by (12).

4 Example: Incomplete Second-Order Differential
System

It is well known that the initial problem

Y ′′(t) +A2Y (t) = 0, Y (0) = Y0, Y
′(0) = Y1 , (14)

has the exact solution Y (t) = cos (At)Y0 + (A)−1 sin (At)Y1. A major disad-
vantage of this formal solution is the non-trivial computation of cos (At) and
sin (At). Our proposed method avoids these difficulties. In this example we

choose the parameters A =
(

1 2
0 1

)
, Y0 =

(
1 0
0 1

)
, Y1 =

(
0 0
0 0

)
, t ∈ [0, 1], so

that the exact solution of (14) is Y (t) = cos
[(

1 1
0 1

)
t

]
=

(
cos (t) −t sin (t)

0 cos (t)

)
.

In this case, we have L1 ≈ 2.82843 and L2 = 0, and according to Theorem 1
we need to take h < 1.45647. As in [6], we choose h = 0.1. To obtain solutions
for the algebraic equations which arise from the algorithm, we employ Math-
ematica. Table 1 displays the corresponding numerical estimates (rounded to
the fourth relevant digit). The maximum error for each subinterval is indicated
in the third column of the table. In Fig. 1, we list the maximum error margins
of the incomplete second-order differential system (14) for the interval [0, 1]
with step sizes h = 0.1, h = 0.01 and h = 0.001, respectively.

Table 1. Approximation for the incomplete second-order differential system (14) in
the interval [0, 1] with step size h = 0.1

Interval Approximation Error

[0, 0.1]

(
1.−0.5x2+0.0083x3 −1.x2+0.0333x3

0 1. − 0.5x2+0.0083x3

)
1.7601×10−5

[0.1, 0.2]

(
0.999983+0.0005x−0.5050x2+0.0249x3 −0.00006+0.0020x−1.0198x2+0.0993x3

0 0.99998+0.0005x−0.5050x2+0.0249x3

)
6.9897×10−5

[0.2, 0.3]

(
0.999853+0.0025x−0.5148x2+0.0412x3 −0.0006+0.0097x−1.0585x2+0.1638x3

0 0.9999+0.0025x−0.5148x2+0.0412x3

)
1.5537×10−4

[0.3, 0.4]

(
0.9994+0.0067x−0.5291x2+0.0571x3 −0.0023+0.0265x−1.1144x2+0.2258x3

0 0.9994+0.0067x−0.5291x2+0.0571x3

)
2.7154×10−4

[0.4, 0.5]

(
0.9984+0.0141x−0.5475x2+0.0724x3 −0.0060+0.0546x−1.1848x2+0.2845x3

0 0.9984+0.0141x−0.5475x2+0.0724x3

)
4.1500×10−4

[0.5, 0.6]

(
0.9966+0.0251x−0.5694x2+0.0870x3 −0.0128+0.0954x−1.2663x2+0.3389x3

0 0.9966+0.0251x−0.5694x2+0.0870x3

)
5.8146×10−4

[0.6, 0.7]

(
0.9937+0.03989x−0.5941x2+0.1007x3 −0.0235+0.1486x−1.3550x2+0.3881x3

0 0.9937+0.03989x−0.5941x2+0.1007x3

)
7.6589×10−4

[0.7, 0.8]

(
0.9893+0.0586x−0.6208x2+0.1135x3 −0.0383+0.2124x−1.4461x2+0.4315x3

0 0.9893+0.0586x−0.6208x2+0.1135x3

)
9.6259×10−4

[0.8, 0.9]

(
0.9833+0.0809x−0.6486x2+0.1251x3 −0.0572+0.2831x−1.5345x2+0.4683x3

0 0.9833+0.0809x−0.6486x2 + 0.1251x3

)
1.1653×10−3

[0.9, 1]

(
0.9758+0.1060x−0.6766x2+0.1354x3 −0.0788+0.3551x−1.6145x2+0.4980x3

0 0.9758+0.1060x−0.6766x2+0.1354x3

)
1.3674×10−3
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Fig. 1. Maximum error margins for the incomplete second-order differential system
(14) in the interval [0, 1] with step size h = 0.1, h = 0.01 and h = 0.001
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Summary. One of the most important aspects in urban agglomerations is to find
the right way to monitor the sound polluters, such as the surface traffic. The paper
presents the geometric and kinematic model of the Pan-Tilt Unit (PTU) used as
an orientation device of a digital camcorder, in urban noise measurements. Using
programs written in Matlab, the authors find the symbolic equations of the mathe-
matical model, useful in the motion control of the PTU, with the purpose of orienting
the camera according to the environmental requirements.

1 Introduction

The environmental noise becomes a worldwide problem in the last years. It is
estimated that over 250 million European people live or work in areas where
the surrounding noise has an unacceptable level [1]. No matter the source of
this noise (road traffic, airports, building sites, industrial plants), the efforts
to diminish or eliminate these sound polluters are increasing.

One of the methods used to measure the sound level in connection to the
urban traffic is to record the flux of vehicles in well established points of the
artery, in the principal moments of the day, using a camera. The recorded
sounds and images can be online or offline analyzed, resulting key data about
the traffic and the noise level it generates.

2 The Pan-Tilt Unit and the Camera

The camera orientation device, Pan-Tilt Unit PTU-46-17.5 [2] is supplied
by Directed Perception, Inc., California and it is suitable for the following
applications: computer vision and robotics, security and surveillance, indus-
trial automation, tracking, laser ranging, teleconference and distance learning,
antenna support, photo, video and special effects. It has the following gen-
eral features: precise on-the-fly control of position, speed and acceleration,
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Fig. 1. The Pan-Tilt Unit PTU-46-17.5 [2] and its kinematic diagram

small form factor, self calibration upon reset. The Pan-Tilt characteristics
(for the model PTU-46-17.5) are: speeds to 300◦/s, resolution to 0.0051428◦,
load capacity to 1.81 kg, tilt range (approx): minimum 31◦ up and 47◦ down
with option of 80◦ down, pan range (approx): ±159◦ with option of ±180◦.

3 The Robot Symbolic Application

The Robot Symbolic software package [3] is a generalized application for sym-
bolic modelling of robots and manipulators of any structure and number of
degrees of freedom. It is written in Matlab, exploiting its symbolic computa-
tion libraries and it consists of the following main modules: Robot definition,
Robot geometry, Robot kinematics and Robot dynamics. They represent a
Matlab implementation of the following methods and algorithms [4]: the
rotation matrices method, the iterative method of kinematics and the Newton-
Euler formulation.

4 The Mathematical Model of the Pan-Tilt Unit

The kinematic diagram of the Pan-Tilt Unit is represented in Fig. 1, along
with the following notations:

l0, l1, l2 – the geometrical parameters of the unit
q1, q2 – the generalized coordinates from the joints of the unit
q̇1, q̇2 – the generalized velocities
q̈1, q̈2 – the generalized accelerations
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The Pan-Tilt Unit can be regarded as a manipulator with two degrees of
freedom. The first step in using the Robot Symbolic application is defining the
mechanical structure of the unit. The name of the device (PTU), the number
and the type of joints (2R), the position and orientation of the attached frames
are defined, by calling the Robot definition function from the General Model
menu. The program generates the position vectors and the rotation matrices
relating two adjacent frames {i} and {i− 1}.

4.1 The Geometrical Model

The equations of the geometric model are determined by calling the Robot-
geometry function, yielding (1) and (2) which express the position and the
orientation of the frame attached to the mobile platform of the unit, with
respect to the base frame 0.

p̄3 =

⎡
⎣

l2sq1sq2
−l2cq1sq2

l0 + l1 + l2cq2

⎤
⎦ (1)

0
3[R] =

⎡
⎣
cq1 −sq1cq2 sq1sq2
sq1 cq1cq2 −cq1sq2
0 sq2 cq2

⎤
⎦ (2)

The Euler angles, as generated by the Robot Symbolic application and con-
sidering the set of rotation angles about mobile axes (αz − βx − γz), are the
following:

αz = q1; βx = q2; γz = π/2. (3)

Therefore, (1) and (2) or (1) and (3) express the geometric model of the PTU,
namely the position and orientation of the mobile platform with respect to
the generalized coordinates q1, q2.

4.2 The Kinematic Model

The equations of the kinematic model of the PTU are generated using the
Robot kinematics function, obtaining the linear and angular operational veloc-
ities (4) and (5), also the linear and angular operational accelerations (6)
and (7).

0v̄3 = l2 ·
⎡
⎣
cq1sq2q̇1 + sq1cq2q̇2
sq1sq2q̇1 − cq1cq2q̇2

−sq2q̇2

⎤
⎦ (4)

0ω̄3 =

⎡
⎣
cq1q̇2
sq1q̇2
q̇1

⎤
⎦ (5)
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0 ˙̄v3 = l2 ·
⎡
⎣
cq1sq2q̈1 + 2cq1cq2q̇1q̇2 + sq1cq2q̈2 −

(
q̇21 + q̇22

)
sq1sq2

sq1sq2q̈1 + 2sq1cq2q̇1q̇2 − cq1cq2q̈2 +
(
q̇21 + q̇22

)
cq1sq2

−sq2q̈2 − cq2q̇
2
2

⎤
⎦ (6)

0 ˙̄ω3 =

⎡
⎣
cq1q̈2 − sq1q̇1q̇2
sq1q̈2 + cq1q̇1q̇2

q̈1

⎤
⎦ . (7)

Equations (4)–(7) express the kinematic model of the PTU. They charac-
terize the motion of the mobile platform with respect to the fixed frame {0}.

5 The Simulation of the Pan-Tilt Unit Behaviour

In order to simulate the Pan-Tilt Unit, the symbolic data of the geometric
and kinematic models are loaded (file PTU kin.mat). The geometric elements
of the device are defined numerically as follows:

l0 = 45.72 mm
l1 = 46.23 mm
l2 = 39.12 mm

(8)

To establish a sequence of orientations of the unit, a number ncfg = 5 distinct
configurations were considered, defined by relative displacements in the two
joints (pan and tilt). To each configuration a moment in time (expressed in
seconds) was associated, as shown in Table 1.

The generalized variables were cubically spline interpolated and numer-
ically derived, resulting the generalized velocities and accelerations. The
symbolic data of the mathematical model was furthermore processed by
numerical substitutions with data from the technical documentation of the
device [2], resulting vectors representing the position of the characteristic
point of the mobile platform on each three Cartesian axes, the module of the
operational velocities (linear and angular) and the module of the operational
accelerations (linear and angular). The following results were graphically
represented:

• The generalized coordinates qi and velocities qidot (Fig. 2)

Table 1. Distinct configurations by relative displacements in joints

Nr. cfg. Time t(i) Pan Tilt

i = 1, ncfg (s) (degree) (degree)

1 0 0 0
2 30 −15 −10
3 50 45 25
4 80 −30 5
5 100 15 −10
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Fig. 3. The generalized accelerations and the position of the characteristic point

• The generalized accelerations qiddot and the position of the characteristic
point of the platform, on each of the three axes (p3x, p3y, p3z ) with respect
to the time and in the 3D space (Fig. 3)

• The operational velocities and accelerations, linear and angular (Fig. 4)

6 Conclusions

The paper presents the mathematical model of the Pan-Tilt Unit PTU-46-17.5
used as an orientation device for a Sony HDD Handycam DCR-SR30 with
the purpose of measuring the urban traffic noise. Using the Robot Symbolic
application, the authors determine the geometric and kinematic models of
the PTU, necessary to simulate the behaviour of the PTU-camera assembly.
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Fig. 4. The operational velocities and accelerations

Given the geometrical elements of the PTU, a sequence of five orientations
of the device was imposed, associated with a time vector, whose numerical
values were substituted into the symbolic equations of the models, generating
numerical and graphical results about the geometric and kinematic behaviour
of the PTU.
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Summary. We propose a simple model of infection that enables to study the coinci-
dence time of two random walkers on an arbitrary graph. By studying the coincidence
time of a susceptible and an infected individual both moving in the graph we obtain
estimates of the infection probability. The main result of this paper is to pinpoint
the impact of the network topology on the infection probability.

1 Introduction

In much of the literature on mathematical epidemiology, the members of the
population are assumed to occupy fixed locations and the probability of infec-
tion passing between a pair of them in a fixed time interval is taken to be some
function of the distance between them. Mean-field models are a special case
in which this function is a constant [5]. In this work, we consider a different
model in which the agents are mobile and can only infect each other if they are
in sufficiently close proximity. The model is motivated both by certain kinds of
biological epidemics, whose transmission may be dominated by sites at which
individuals gather in close proximity (e.g. workplaces or public transport for
a disease like SARS, cattle markets for foot-and-mouth disease, etc.) and by
malware spreading between wireless devices via Bluetooth connections, for
example.

To our knowledge the first attempts to model virus spreading in mobile
networks relies on the use of a non-rigorous mean-field approximations that
incorporate the mobility patterns of users. In [10], the authors derive a thresh-
old for the persistence of the epidemic by computing the average number
of neighbours of a given node. Using a similar approach but with different
mobility patterns, Nekovee et al. [11, 13] explore the evolution of the number
of devices that are infected in terms of the contact rate between users. A
related line of work studying the dissemination of information in opportunis-
tic networks [3] focuses on the following analogous problem: Suppose that all
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individuals are interested in a piece of information that is initially held by one
user. The information is transmitted between users who happen to be close
to each other. As in the case of static networks [12], one may be interested
in the time it takes for the rumour to be known to all users. To this end we
need to understand how information is transmitted between an informed and
an ignorant user. Our work gives some insight on the impact of the network
structure on the likelihood of successfully transmitting the rumour.

2 Models and Results

We consider a simple mathematical model of the spread of infection as follows.
There is a finite, connected, undirected graph G = (V,E) on which the indi-
viduals perform independent random walks: they stay at each vertex for an
exponentially distributed time with unit mean, and then move to a neighbour
of that vertex chosen uniformly at random. The infection can pass from an
infected to a susceptible individual only if they are both at the same vertex,
and the probability of its being passed over a time interval of length τ is
1− exp(−βτ), where β > 0 is a parameter called the infection rate. We shall
consider a single infected and a single susceptible individual and ask what the
probability is that the susceptible individual becomes infected by time t. This
probability has been studied in the case of a complete graph in [6]. Here, we
extend their results to a much wider class of graphs.

It is simplistic to consider just a single infective and a single susceptible
individual. Nevertheless, insights gained from this setting are relevant in the
“sparse” case, where the number of both infected and susceptible individuals
is small and inter-contact times are fairly large.

We now describe the model precisely. Let Xt, Yt ∈ V denote the positions
of the susceptible and infected individuals respectively at time t. We model
(Xt, t ≥ 0) and (Yt, t ≥ 0) as independent continuous-time Markov chains
(CTMCs) on the finite state space V , with the same transition rate. We define
the coincidence time up to time t, denoted τ(t), as the total time up to t during
which both walkers are at the same vertex, i.e.,

τ(t) =
∫ t

0

1(Xs=Ys)ds. (1)

Let γ(t) denote the probability that the initial susceptible becomes infected
by time t. Then, conditional on τ(t), we have

γ(t) = 1− exp(−βτ(t)), (2)

where β > 0 is the infection rate. We are interested in estimating the coin-
cidence time τ(t) and the infection probability γ(t) for different families of
graphs. Observe that the Markov chains Xt, Yt have invariant distribution π
given by
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πx =
degree(x)∑
v∈V degree(v)

(3)

and that they are reversible, i.e., πxqxy = πyqyx for all x, y ∈ V . We con-
sider the case when these chains are started independently in the stationary
distribution and provide estimates on the coincidence time and the infection
probability, for arbitrary graphs. A direct computation yields

Theorem 1. Suppose X0 and Y0 are chosen independently according to the
invariant distribution π. Then, we have

E[τ(t)] =
∑
v∈V

π2
vt, and E[γ(t)] ≤ 1− exp

(
−βt

∑
v∈V

π2
v

)
.

3 Examples of Graphs

We present models of networks of interest to which we are going to apply the
result of Theorem 1.

3.1 Complete Graphs

Consider the complete graph on n nodes, namely the graph in which there
is an edge between every pair of nodes, degree(v) = n − 1 and πv = 1/n
for all v ∈ V , so we have by Theorem 1 that E[τ(t)] = t/n. This result
should be intuitive by symmetry. Theorem 1 also gives us an upper bound on
the infection probability, E[γ(t)] ≤ 1 − exp(−βt/n). Roughly speaking, this
says that it takes time of order n/β for the susceptible individual to become
infected; for t� n/β, the probability of being infected is vanishingly small.

3.2 Regular Graphs

A graph G = (V,E) is said to be r-regular if degree(v) = r for all v ∈ V , so
that πv = 1/n for all v ∈ V if G is for any r ≥ 2. Hence, if G is connected, we
have the same estimates for τ(t) and γ(t) as for the complete graph, which is
a special case corresponding to r = n− 1.

The next examples we consider will be families of random graphs widely
used in practice to model networks.

3.3 Erdős-Rényi Random Graphs

The Erdős-Rényi graph G(n, p) is defined as a random graph on n nodes,
wherein each edge is present with probability p, independent of all other edges.
Let p to be a function of n chosen so that np > c logn for some constant
c > 1 ensuring that the graph is almost surely connected. In this model, the
node degrees concentrate around the mean value np, and have exponentially
decaying tails away from this value. Thus, while Erdős-Rényi graphs are not
exactly regular, they exhibit considerable homogeneity in node degrees.
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3.4 Power Law Random Graphs

In contrast to the above graph models, many real-world networks exhibit
considerable heterogeneity in node degrees, and have empirical degree dis-
tributions whose tails decay polynomially; see, e.g., [1, 8]. This observation
has led to the development of generative models for graphs with power-law
tails [1, 2] as well as random-graph models possessing this property [4]. For
definiteness, we work with the model proposed in [4], but we believe that
similar results will hold for the other models as well.

In the model of [4], each node v is associated with a positive weight wv,
and edges are present independently with probabilities related to the weights
by

P((u, v) ∈ E) =
wuwv
W

where W =
∑
x∈V

wx. (4)

We assume that W ≥ w2
max, so that the above defines a probability. It can

be verified that E[degree(v)] = wv and so this model is also referred to as
the expected degree model. If the weights are chosen to have a power-law
distribution, then so will the node degrees. The following 3-parameter model
for the ordered weight sequence is proposed in [4], parametrised by the mean
degree d, the maximum degree m, and the exponent γ > 2 of the weight
distribution:

wi = m
(

1 +
i

i0

)− 1
γ−1

, i = 0, 1, . . . , n− 1, (5)

where

i0 = n
( d(γ − 2)
m(γ − 1)

)γ−1

. (6)

Note that W =
∑n−1

i=0 wi ∼ nd, for n large.
We consider a sequence of such graphs indexed by n. The maximum

expected degree m and the average expected degree d may, and indeed typ-
ically will, depend on n. In models of real networks, we can typically expect
d to remain bounded or to grow slowly with n, say logarithmically, while m
grows more quickly, say as some fractional power of n. In this paper, we only
assume the following:

d ≥ δ > 0, d = o(m), m ≤
√
nd,

m

d
= o
(
n

1
γ−1

)
. (7)

Here, δ is a constant that does not depend on n. In other words, the average
expected degree is uniformly bounded away from zero. The third assumption
simply restates the requirement that w2

0 ≤W , so that (4) defines valid prob-
abilities. The last assumption ensures that i0, defined in (6), tends to infinity.
We now describe our results about these models.

Theorem 2. Consider a sequence of graphs G = (V,E) indexed by n = |V |.
On each graph, consider two independent random walks with initial condition
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X0, Y0 chosen independently from the invariant distribution π for the random
walk on that graph.

We have E[τ(t)] = t/n for regular graphs, including the complete graph,
on n nodes.

For Erdős-Rényi random graphs G(n, p) conditioned to be connected, and
having np ≥ c logn for some c > 1, we have E[τ(t)] ∼ t/n, as n tends to
infinity.

Finally, consider a sequence of power law random graphs defined via (4)
and (5), and satisfying the assumptions in (7). Then, we have the following:

nE[τ(t)]
t

∼

⎧
⎪⎨
⎪⎩

c1, if γ > 3,
c2(logm), if γ = 3,
c3(m.d)3−γ , if 2 < γ < 3,

where c1, c2, c3 > 0 are constants that do not depend on n, m or d.

The proof is rather long involving the computation of moments of the
degree distributions and using concentration results. For lack of space it is
omitted (see [7]).

4 Conclusion and Further Work

In this work we have presented a simple model for the spread of epidemics
where individuals are mobile. In this framework we were interested in the
setting where there are two individuals one infected and one healthy both
performing random walks on the network. Our preliminary investigation high-
lights the effect of the topology on the spread of an epidemic, motivated by
networking phenomena such as worms and viruses, failures, and dissemination
of information. Under this natural model, we provided an explicit relationship
between the structure over which the walks are performed and the coincidence
time of the two walkers. To this end we analysed both homogeneous (regular,
complete and Erdös-Rényi graphs) and heterogeneous (power-law graphs) net-
works. We pinpointed the existence of a phase transition for the coincidence
time in the case of power-law networks depending on the parameter of the
power-law degree distribution. We also derived bounds on the probability of
infection.

As a final remark, we propose some several interesting directions to pur-
sue the work presented here. In our present model individuals are supposed
to start their walks in stationary regime. This can be relaxed since the net-
works we study are expanders and thus random walks on such networks have
nice mixing properties as illustrated in [9] through the computation of the
isoperimetric constant of the underlying graphs. We also anticipate that sim-
ilar results can be derived when considering k walkers as long as k is small
with respect to n the number of sites in the network.
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Summary. The objective of this study is to examine the Baldwin-Lomax turbu-
lence model in a finite volume solver to introduce a computer code for complex
two-dimensional flows in turbomachinery. The turbulent model was tested with
investigating the turbulent flow over a flat plate and other test cases. Three test
cases are presented and the computed results are compared with experimental data.
The calculated velocity profile agreed well with the experimental data in plate test
case and the solver is validated in test case of flow over a semi NACA-0012 airfoil.
The solver is used for flow through a multi-blade cascade of an axial compressor in
design condition to show its capability of multi-block solution.

1 Introduction

The development of CFD methods has resulted in very useful analysis tools
that are able to provide detailed information to enhance the understanding
of complex flow physics at design and off-design conditions in compres-
sor/turbine design [3]. The flow calculations have to be carried out on the basis
of the averaged Navier-Stokes equations completed with transport equations
for turbulence models. One of the groups of statistical turbulence models is the
algebraic one or two-layer turbulence closure, but they require the determina-
tion of boundary layer parameters to calculate the eddy viscosity. In complex
flow such as the flow through a turbine or compressor cascade, the calculation
of e.g. shear layer thickness in a CFD code is difficult, because no realistic
criterion can be used to define the edge of the boundary layer [2]. That is the
specially the case when flow separation exists within the domain.

An algebraic model, which is not written in terms of the boundary layer
quantities and is very robust in separated regions, is the standard Baldwin-
Lomax (BL) model [1]. The model was modified by Granville [4] and used by
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He [5] for pressure gradient effects. The objective of the present computational
study was to examine the BL model in a finite volume solver to introduce a
computer code for 2-D flows in turbomachinery studies based on Van Leers
flux splitting methods with using of high order limiters.

2 Governing Equations

The integral form of the quasi-three dimensional unsteady Navier-Stokes
equations over a moving finite area A is

∂
∂t

∫ ∫
�A Udxdy +

∮
s
[(F − Uug − Vx)nx + (G− Uvg − Vy)ny]

=
∫ ∫

�A Sdxdy
(1)

where

U = h [ρ ρu ρvr ρρe]T ,

F = h [ρ ρuu+ p ρuvr (ρe + p)u]T ,

G = h [ρ ρuv (ρvv + p)r (ρe + p)u]T ,

S = [0 p∂h/∂x 0 0]T .

and MT denotes the transpose of a matrix M .
The quasi-three dimensional effects are introduced by allowing specified

variations of r and h in the axial direction. Both ug and vg are the moving
mesh grid velocities, to rotor blades and blade vibration [6, 7]. In present
work, only the former is considered, thus ug is zero and Vg is equal to the
blade rotation velocity. Vx and Vy are the viscous terms:

Vx = h [0 τxx rτxy − qx + uτxx + vτxy]T , (2)
Vy = h[0 τxy rτyy − qy + uτxy + vτyy]T (3)

where

τxx =
2
3
μ

(
2
∂u

∂x
− ∂v

∂y

)
, τyy =

2
3
μ

(
2
∂v

∂y
− ∂u

∂x

)
,

τxy =
2
3
μ

(
2
∂u

∂y
− ∂v

∂x

)
, qx = −k∂T

∂x
, qy = −k∂T

∂y
.

Flow calculations have to be carried out on the basis of the above aver-
aged Navier-Stokes equations in conjunction with transport equations for BL
turbulence closure.

2.1 Baldwin-Lomax Turbulence Model

The Baldwin-Lomax turbulence model is a relatively simple algebraic model
that makes use of a two-layer diffusivity formulation
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μt =

⎧
⎨
⎩
μtinner if yn ≤ ycrossover

μtouter if yn > ycrossover

where yn is the normal distance to the wall and ycrossover is the minimum value
of the yn at which μtinner = μtouter. In the inner layer, the eddy viscosity
coefficient is defined as μtinner = ρl2Ω where l = kyn [1− exp (y+/A+)] is
the length scale of the turbulence in the inner region, k and A+ are model
constants, Ω is the magnitude of the vorticity,

Ω =
∣∣∣∣
∂v

∂x
− ∂u

∂y

∣∣∣∣

The wall factor is given by y+ =
√
ρwτw

μw
yn where, ρw, μw and τw are the

density, molecular viscosity and laminar shear stress at the wall.
In the outer layer, the eddy viscosity is defined by μtouter=KCcpFwakeFkleb

where K and Ccp are the model constants, and the function Fwake is taken by

Fwake = min
(
ymaxFmax, CwkymaxU

2
max/Fmax

)

and

Fkleb =

[
1 + 5.5

(
Ckleby

ymax

)6
]−1

Here, Fmax is determined by the maximum value of the function F =
ynΩ [1− exp(−y+/A+] and ymax is the value of yn at which this maximum
occurs. Also, Umax is the maximum difference of the magnitude of the velocity
in the profile.

The model constants are given by

k = 0.4, A+ = 26, K = 0.0168

Ccp = 1.6, Cwk = 1.0, Ckleb = 0.8

Transition to turbulence can be modeled by setting a cut off value for the com-
puted eddy diffusivity. The suggested criterion is μt = 0, if μmax < Cmutm,
Cmutm = 14. For use with multigrid, the turbulence viscosity is evaluated
only on the fine mesh and frozen on all coaster meshes.

3 Numerical Schemes and Results

The Van-Leer’s method is used for splitting the convective fluxes and central
differencing is used for viscous terms. To improve the accuracy of convective
terms the Universal Van Leers limiter is used in mid points of computa-
tion area and first order accuracy is used for boundary cells. The numerical
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equations are used with explicit scheme because of its faster convergence
history. The stability criteria, is based on characteristic values of Jacobian
matrices of convective terms. The non-reflective boundary condition is used
for downstream of computational domain to speed up the convergence process,
especially in low Mach number flows. A multi-block algorithm is implemented
for complicated geometries, to divide the area to multi-channels. Each chan-
nel is solved with using neighborhood channel boundary condition in jointed
boundaries of channels to give the influence of adjacent zones in being solved
area. All channels are solved alternatively form bottom to up and then time
increases to new time step of solution. To minimize the convergence history the
non-reflective boundary condition [9] is used for downstream of computational
domain.

The validation of the implemented turbulence model is first done for the
turbulent flow over a flat plate. The calculation are carried out with inviscid
inlet boundary conditions located 100% of the plate length upstream of the
leading edge with a Mach number of 0.2. The transition point is set to close
to the leading edge. The Reynolds number for flow around flat plate is set
to 106 based on plate length scale. The results give good agreement with
experimental data of Wieghardt [10].

In the next test case, the subsonic viscous flow over a semi NACA-0012
airfoil is considered. The Reynolds number is set to 106 and the free upstream
Mach number is set to 0.4. In the next test case, the transonic viscous flow over
NACA-0012 airfoil with a 2◦ angle of attack is considered and the free stream
Mach number is set to 0.82. Figure 1 illustrates the comparison of pressure
coefficient distribution for upper and lower surface of airfoil with experimental
results. The good agreement of computed results and the experimental data,
gives the adequate assurance about the solver, which implements the Van
Leers flux splitting scheme and the related high ordering limiter and the BL
turbulence model in compressible flows in presence of pressure gradients and
shock induced cases.

As the final case study, a two- dimensional cascade of an axial compressor
with NACA-65(10) airfoil geometry for rotor and stator blades is considered.
Figure 2 shows the pressure contours, of the stage when the rotor is located
in face to face situation with respect to stator location. The Mach number
is set to 0.2, because many instability phenomenas happens in low Mach
numbers for transonic compressors, for example during starting process of a
gas turbine engine. Figure 3 shows the pressure contours when the rotor is
moved in rotation direction for a half pitch of blades row. The mesh points
are clustered for boundary layer capturing. The mesh resolution is such set
to have at least a numerical cell in viscous sub-layer of boundary layer in all
test cases. This means the mesh resolution is adequate to capture turbulent
behavior. The transition point is set at the near of leading edge of the blades
in stage problem.
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Fig. 1. Computed pressure coefficient over a NACA0012 airfoil at M = 0.82, Re =
106 and 2◦ angle of attack, compared with experimental results [8]

M=0.2
Re=7*10∧5
Pressure Contours

Stator

Rotor

Fig. 2. Pressure contours for a 10-passage-stage of an axial compressor (no. of cells
= 320,000)
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Fig. 3. Pressure contours for a 10-passage-stage of an axial compressor when the
rotor is moved about half pitch of cascade

4 Conclusions

A computer code for numerical simulation of the 2-D inviscid and viscous
flow in turbomachinery blade channels was presented. The turbulent model
was tested with investigating the turbulent flow over a flat plate and other test
cases. The calculated velocity profile agreed well with the experimental data
in plate test case and the solver is validated in test case of flow over a semi
NACA-0012 airfoil. The good agreement of pressure distribution with experi-
mental data, in turbulent flow around NACA-0012 airfoil with angle of attack,
gives the robustness of the code and the implemented schemes in transonic
flows with the existence of adverse pressure gradients and the interaction of
shock and boundary layer. Consequently, a solver with an algebraic turbulent
modeling for compressible viscous-inviscid flows in complicated geometries is
achieved, which may be useful in 2-D unsteady studies of turbomachinery
investigations in off-design conditions.
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Summary. Stall control and pitch control are the most commonly used methods
of regulating power. However, through the opportunities presented by the flexible
(or teetered) hub of a two-bladed teetered rotor one can also utilize yaw control
to regulate power. This paper presents the aerodynamic and aeroacoustic results
obtained from theoretical models for such a rotor when is yawed to the undisturbed
flow. Some comparisons between calculated and measured noise spectra of a yaw
controlled wind turbine show good agreement over all angles up to 60◦ of yaw.

1 Introduction

Small wind turbines, with rated power values in the 0.5–20 kW range, mainly
utilize furling (or yawing) as their mechanism for power regulations. This
is achieved by adjusting the capture area of the rotor disk relative to the
dominant wind direction. A modified strip theory approach has been used to
determine the effects of non-axial flow on the power performance and sound
pressure level.

2 Aerodynamics Analysis

Blade element momentum (BEM) theory is the standard computational tech-
nique for the prediction of power curves of wind turbines; it is based on the
2-D aerodynamic characteristics of airfoil blade elements and some corrections
accounting for 3-D wing aerodynamics. Before being able to calculate the force
and moments on a blade, it is necessary to derive the velocity components of
the air flow relative to any point on the blade and also the induced velocity
components.

2.1 Velocity Components at the Blade

The following analysis has been applied to upwind horizontal axis wind turbine
(HAWT) as shown in Fig. 1. The undisturbed flow can be expressed in the

A.D. Fitt et al. (eds.), Progress in Industrial Mathematics at ECMI 2008,
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Fig. 1. Coordinate systems describing HAWT: (a) (X, Y, Z) – ground based coor-
dinates; (b) (x, y, z) – rotor based coordinates; and (c) (x1, y1, z1) – blade based
coordinates

coordinate system, defined in Fig. 1a as

−→
V w = Vw cos γ

→
i −Vw sin γ

→
j . (1)

Transforming the rotor coordinate system in the blade coordinate system we
have −→

V w = Vw cos γ
→
i1−Vw sin γ cosψ

−→
j 1 + Vw sin γ sinψ

→
k1 . (2)

The rotational motion of the blade will add a velocity component Ωr in the
direction

−→
j 1, so that the total velocity vector relative to the blade,

→
W is

−→
W = Vw cos γ

→
i1 + (Ωr − Vw sinγ cosψ)

→
j1 +Vw sin γ sinψ

→
k1 . (3)

If the blade is additionally allowed to flap through angle β about y1, and the
induced velocities are included, then the total velocity vector

→
W transformed

into the final coordinate system, (
−→
i 2,
−→
j 2,
−→
k 2), becomes

−→
W i = [Vw cos γ cosβ − va cosβ − (Vw sin γ sinψ sinβ

−va tan(χ/2) sinψ sinβ)]
−→
i 2

−→
W j = [Ωr cosβ + vt − (Vw sin γ cosψ − va tan(χ/2) cosψ]

−→
j 2

−→
W k = [Vw sin γ sinψ cosβ − va cosβ − va tan(χ/2) sinψ cosβ

+Vw cos γ sinβ − va sinβ]
−→
k 2,

where χ is the wake skew angle. Further on we define the non-dimensional
velocities: a = va/(Vw cos γ), a′ = vt/(Ωr cosβ), λ = ΩR cosβ/Vw,
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X = Ωr cosβ/Vw, Ci=Wi/(Vw cos γ), Cj=Wj/(Vw cos γ) and Ck = Wk/
(Vw cos γ), and substitute them into above equations to obtain

Ci = (1− a) cosβ − (tan γ − a tan(χ/2)) sinψ sinβ, (4)

Cj = X/ cosγ [1 + a′ − (sin γ cosψ)/X + (a cos γ tan(χ/2) cosψ)/X ] , (5)

Ck = tan γ sinψ cosβ − a tan(χ/2) sinψ sinβ + (1− a) sinβ]. (6)

2.2 Aerodynamic Loads

The basic idea of BEM models is to balance both the linear and angular
momentum changes of the air masses flowing through the rotor disc with the
axial force and torque generated on the rotor blades respectively. This balance
is carried out in a detailed fashion, considering the flow through annular strips
of width dr and the aerodynamic forces on blade elements of the same width;
the forces are obtained from 2D wind tunnel data for the lift coefficient CL (α)
and the drag coefficient CD (α). Both coefficients depend mainly on the angle
of attack and Reynolds number. By using an average for an annular ring the
elemental values of axial force and moment integrated around the ring are:

dFb =
∫ 2π

0

1
2
ρW 2σrCx cos2 β rdrdψ, (7)

dMb =
∫ 2π

0

1
2
ρW 2σrCyr

2 cos2 βdrdψ, (8)

and from the momentum theory we also have

dFm =
∫ 2π

0

2ρV 2
W cos2 γaf (1− a) cos2 β r drdψ, (9)

dMm =
∫ 2π

0

2ρVW cos γa′f (1− a)Ωr cos4 β r2drdψ, (10)

where Cx = CL cosφ+CD sinφ, Cy = CL sinφ−CD sinφ, σr = Bc/2πr cosβ
is the solidity parameter, c is the chord length, B is the number of blades and
f is the tip loss factor.

It has been assumed that any radial flow corresponding to (6) and
the expansion of wake can be neglected and that (4) can be reduced to
Ci = (1− a) cosβ. The flow angle φ is then determined by the components of
velocity Ci and Cj

tgφ =
(1− a) cos γ cosβ

X (1 + a′) + cosψ cos γ
(
a tan χ

2 − tan γ
) . (11)

Now equating (7), (9) and (8), (10), by means of the flow angle φ, we
obtain



814 H. Dumitrescu et al.

a

1− a =
σr cos2 β

8πf

∫ 2π

0

Cx

sin2 φ
dψ,

a′

1 + a′
=

σr
8πf

∫ 2π

0

Cy

sinφ cosφ
[
1− tanφ tan γ cosψ

(1− a) cosβ

] dψ.

The non-dimensionalized resultant velocity relative to a blade element is given
by

W 2

V 2
W cos2 γ

= [(1− a) cosβ] 2 +
[
X (1 + a′)

cos γ
+ cosψ

(
a tan

χ

2
− tanγ

)]2

(12)

Once the induction factors a and a′ are known as a function of the radial
variable r, the power coefficient for the complete blade can be calculated from
CP = 8λ2 cos γ

∫ 1

0

(
r
R

)3
a′(1−a) d

(
r
R

)
. The elemental lift and drag forces per

unit length are: L = 1/2ρW
2cCL and D = 1/2ρW

2cCD, with W 2given by (12).

2.3 Results

A rotor of fixed pitch and two bladed configurations, one designed to operate
at an optimum tip speed ratio of nine. Figure 2 shows the torque coefficients as
a function of the tip speed ratio (λ) and yaw angle (γ), with zero coning angle
(β = 0). A negative value of the torque (CMZ ) indicates that the operating
turbine will veer in a direction which restores axial flow.
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Fig. 2. Effect of yaw on the restoring torque
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3 Aeroacoustic Analysis

The aerodynamic noise prediction method combines a model for predicting
aerodynamic noise due to the effects of inflow turbulence upon on airfoil sec-
tion, with prediction schemes for airfoil self-noise. The method is integrated
into a program which averages the noise of the previous two bladed rotor over
one revolution and gives as output a 1/3 octave A-weighted spectrum at a
user selectable location. Output spectra are predicted at a downwind location
for various yaw angles and comparisons with experiment are presented.

3.1 Inflow-Turbulence Noise (INT)

The adopted prediction model for turbulence inflow noise is based on the semi-
empirical model of Amiet [1] derived for a single airfoil section under turbulent
inflow and extended to the case of rotating blade by Lowson [4].This model can
be applied for both high and low frequency, with smooth transition between
the two regions:

Lp,INF = LHp,INF + 10 log10

Kc

1 +Kc
,

where LHp,INF is the sound pressure level for high frequency region and Kc is
the low frequency correction [1].

3.2 Turbulent Boundary Layer-Trailing Edge Noise (TBLTE)

As its name implies TBLTE noise is caused by the flow of a turbulent boundary
layer over the impedance discontinuity existing at the trailing edge (TE) of
the airfoil. The effect of the edge is to radically increase the efficiency of the
acoustic radiation of the turbulence, particularly at lower speeds. The noise is
described as a function of local Mach number M, displacement thickness, δ∗,
length of blade segment, ΔS, angle of attack, α and the distance of the source
to observer position r. The total sound pressure level, in 1/3 octave band, is
given by Brooks, Pope, Marcolini model as [2]:

Lp,TBLTE = 10log10(10LP,α + 10LP,s + 10LP,p)

with LP,α representing the effect of angle of attack, LP,s, the contribution of
the suction side and LP,p the contribution of the pressure side of the airfoil.

3.3 Blunt-Trailing Edge Noise (BTE)

The total sound pressure level caused by a blunt trailing edge is also modeled
by a scaling law proposed by Brooks et al. [2]:

Lp,BTE = 10 log10

[(
t∗M5.5ΔsDh

)
/r2 +G3

(
t∗/δ∗avg, ψTE

)

+G4

(
t∗/δ∗avg, ψTE , St

′
/St

′
peak

)
],

with the Strouhal number based on the TE thickness t∗, St′ = ft∗/U.
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Fig. 3. Comparison between total predicted noise levels and experimental data

3.4 Results

The aerodynamic code is coupled with the aerodynamic noise prediction
model. For HAWT’s operating at certain yaw angle, the velocity field is accu-
rately computed taking into account the skew angle of vortex cylinder wake.
Also, for each airfoil, the boundary layer displacement thicknesses are calcu-
lated at both pressure side and suction side using the airfoil code XFOIL [3].
The acoustic analysis is based on a 10 kW HAWT for which some measure-
ments have been performed in steady yaw state [5]. The noise from all sources
(INT, TBLTE, BTE) are plotted together with experimental data in Fig. 3
for the yaw angles of 30◦ (not shown here for 0◦ and 60◦). In all cases there is
an overprediction of the noise levels at frequencies above 7,000 Hz, probably
due to the incomplete input data.

4 Conclusions

An aerodynamic BEM model and aeroacoustic method were developed to
predict the power output and noise from a HAWT rotor in yaw. The yawed
rotor is less efficient than non-yawed rotor and so it is vital to assess the
efficiency for purposes of energy production estimation and power control.
The noise prediction model developed in conjunction with the aerodynamic
model captures the key features of the noise produced by such a rotor. Some
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comparisons between predicted and experimental data show good agreement
over all yaw angles up to 60◦. The model accurately predicts that the noise
of the rotor is dominated by the tonal noise due to the TE bluntness and this
form of noise is controllable by simply sharpening of TE.
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Summary. A new family of flux-continuous finite-volume methods are presented
for the full-tensor pressure equation with general discontinuous coefficients. Full
pressure continuity that is built into the new methods leads to a quasi-positive
formulation that minimises spurious oscillations in discrete pressure solutions for
strongly anisotropic full-tensor fields.

1 Introduction

Approximation of the pressure equation resulting from Darcy’s law requires
that key physical constraints of continuity in normal flux and pressure be
imposed at control-volume interfaces, across which strong discontinuities in
permeability can occur.

In this paper a new family of flux-continuous, locally conservative, finite-
volume schemes is presented for solving the general tensor pressure equation.
The new schemes have full pressure continuity imposed across control-volume
faces, in contrast to the earlier families of schemes with point-wise continuity
in pressure and flux.

For strongly anisotropic full-tensor cases where M -matrix conditions are
violated, the earlier flux-continuous schemes e.g. [1–5] cannot avoid decoupling
of the solution [6], which leads to severe spurious oscillations in the dis-
crete solution. The new schemes are shown to be quasi-positive and minimize
spurious oscillations in discrete pressure solutions.

Section 2 gives the formulation of the single phase flow problem. The family
of Full-Pressure Support (FPS) schemes is introduced in Sect. 3. M-matrix and
Quasi-positive QM-matrices are presented in Sect. 4. Results are presented in
Sect. 5. Conclusions follow in Sect. 6.
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2 Flow Equation and Problem Description

The pressure equation is formulated in a general curvilinear coordinate sys-
tem defined with respect to a uniform dimensionless transform space with a
(ξ, η) coordinate system. Choosing Ω to represent an arbitrary control vol-
ume comprised of surfaces that are tangential to constant (ξ, η) respectively,
where ∂Ω is the boundary of Ω. Resolving the Darcy velocity −K∇φ along
the surface normals to (ξ, η) gives rise to the general tensor flux components
F = − ∫

(T11φξ+T12φη)dη and G = − ∫
(T12φξ+T22φη)dξ where general ellip-

tic (Piola) tensor T =| J | J−1KJ−T , elements are given in [1]. The tensor K
can be discontinuous across internal boundaries of Ω. The closed integral of
velocity divergence is written as

∫ ∫

Ω

(∂ξF̃ + ∂ηG̃)
J

Jdξdη = �ξF +�ηG = m (1)

where e.g.�ξF is the difference in net flux with respect to ξ and F̃ = T11φξ+
T12φη, G̃ = T12φξ+T22φη. For incompressible flow pressure is specified at least
at one domain point. Full tensors can arise from upscaling, unstructured grids
and local orientation of the grid and permeability field.

3 Family of Flux-Continuous FPS Schemes

Here we introduce the continuous full pressure support (FPS) schemes.
Cell-centred and cell-vertex formulations are developed. A cell-centred quadri-
lateral formulation is outlined (details in [6]). The support is shown in Fig. 1a,
where flow and rock variables are assigned to the grid cells. A dual-cell
(dashed) is introduced by connecting the primal nodes, partitioning the pri-
mal cells into sub-cells. Local flux continuity conditions are imposed over the
subcell faces in the dual-cell to handle jumps in permeability. First interface
pressures are introduced at the indicated positions (n, s, e, w) in Fig. 1b, these
will be determined in terms of the primary cell centred pressures via four
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Fig. 1. (a) Nine-node support, cell-centered control-volume i, j, with dual-cell
(dashed line) at i + 1/2, j + 1/2, (b) FPS dual cell and auxiliary pressure nodes
n, s, e,w,m, and (c) fluxes in dual cell: solid arrow = primal-flux N,S,E,W , hollow
arrow = auxiliary-flux
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local flux continuity conditions Fig. 1c. Full sub-cell face pressure continuity
is achieved by introducing a further interface pressure at the common corner
m of the four subcells as indicated in Fig. 1b, i.e. at the dual-cell centre. This
enables bilinear support in pressure to be introduced over each subcell so that
full pressure continuity is achieved over the faces of each control-volume. The
bilinear support retains a degree of freedom in position of flux continuity on a
sub-face, leading to a new family of flux-continuous schemes with linear flux
in the transverse direction and full pressure support. The additional degree
of freedom at m is defined by imposing the discrete integral form of diver-
gence (1) to hold over an auxiliary control-volume surrounding the dual-cell
centre, as indicated in Fig. 1c. The four flux continuity conditions, imposed
per dual-cell, together with the auxiliary discrete divergence condition lead to
the local algebraic system

FN = −(T11φξ̃ + T12φη̃)|3N = −(T11φξ̃ + T12φη̃)|4N ,
FS = −(T11φξ̃ + T12φη̃)|1S = −(T11φξ̃ + T12φη̃)|2S ,
FE = −(T12φξ̃ + T22φη̃)|2E = −(T12φξ̃ + T22φη̃)|3E ,
FW = −(T12φξ̃ + T22φη̃)|1W = −(T12φξ̃ + T22φη̃)|4W ,

−∑
∂ΩAUX

(K∇Φ) · n̂Δs = 0

(2)

from which the interface pressures (φn, φs, φe, φw, φm)T are eliminated, lead-
ing to fluxes expressed in terms of primal node pressures, which are assembled
to form a divergence approximation over each primal cell.

4 M-Matrices and QM-Matrices

Conditional M-Matrix: Any single η-parameter family of consistent locally
conservative schemes on or within the 9-point stencil applied to a constant
full-tensor field has an M-matrix if

| T12 |≤ η(T11 + T22) ≤ min(T11, T22) (3)

where η defines quadrature point [1, 6]. This theorem applies on a uniform
quadrilateral grid of rectangles or parallelograms. Note: FPS schemes are exact
for piece-wise linear and bilinear fields since the pressure basis functions are
piecewise bilinear.
Triangular Grids A (cell-vertex scheme) M-matrix will be obtained on a
triangle grid if | T12 | < T11 and | T21 | < T22. For a symmetric tensor
| T12 | < min(T11, T22) [5,6], which is consistent with the quadrilateral optimal
support (4 below) and M-matrix condition.

4.1 Variable Support and 7-Point Schemes

If we choose a quadrature point with

η =| T12 | /(T11 + T22) (4)
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then an M-matrix is obtained subject to a sufficient condition for ellipticity,
i.e. if | T12 |≤ min(T11, T22) for a triangle grid . This quadrature point reduces
a 9-point scheme to a 7-point (triangle) scheme with upward support if tensor
cross-term T12 > 0 over the supporting dual cells or downward support if
T12 < 0. We refer to this as an optimal support condition with η = ηOS (Fig. 2).
However, in the general case approximate optimal support will be obtained
via quadrature [6]. Optimal support may still be achieved by triangulation
according to anisotropy angle [7] or by special case construction [8].

4.2 Quasi-Positive QM-Matrices

Definition. A Quasi-M-matrix (QM-matrix) is a matrix that has the min-
imum of only one unique positive off-diagonal coefficient that violates the
M-matrix conditions, where the matrix would otherwise be an M-matrix. Here
QM-matrices are considered for | T12 | > min(T11, T22) (Fig. 3). The optimal
support condition of (4) (ηOS) leads to an optimal QM-matrix scheme with
7-points (Fig. 2) [6]. An anisotropy favoring triangulation of a quadrilateral
grid will also lead to a QM-matrix since the same optimal support is obtained.

Note on Decoupled Approximation. The quadrature point η = 1/2 is sin-
gular and results in a discretization that has a checker board solution that is
strongly oscillatory and decoupled [6]. The earlier pointwise continuous TPS
schemes have a limited quadrature range for highly anisotropic full tensors
that remains close to η = 1/2 [6], leading to a decoupled approximation.
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5 Numerical Results

A comparison is now presented between the new full pressure support (FPS)
formulation and the earlier pointwise triangular pressure support (TPS)
formulation for a strong discontinuous full-tensor (zigzag) field.

The boundary conditions for the unit domain involve a source and sink
placed at opposite mid-points of the first and last thirds of the domain
together with zero pressure prescribed on all boundary walls. The perme-
ability principal axes change direction in anisotropy at one third and two
thirds the way across the domain (i.e. minus, plus, minus 25◦). The discontin-
uous full-tensor permeability field is defined in sections varying from Sect. 1
K = [2,464.360020,−1,148.683643,−1,148.683643, 536.6399794] Sect. 2 with
K = [2,464.360020,+1,148.683643,+1,148.683643, 536.6399794] and Sect. 3
with the tensor of Sect. 1, with principal anisotropy ratio of 3,000:1, violating
the M-matrix conditions in each section.

Results are presented for TPS with q = 1 (Fig. 4a), there are very strong
oscillations in the solution with violation of the maximum principle. The
(FPS) quadrature of (4) leads to optimal support away from the discon-
tinuities, according to local orientation of the full-tensor field. The FPS
formulation yields oscillation free results (compare to TPS) with a QM-matrix
solution (Fig. 4b). Solution resolution is seen to sharpen with η increasing. The
cell-vertex scheme with triangulation favoring the anisotropy (Fig. 4c) also
shows very good resolution (Fig. 4d), again leading to a QM-matrix optimal
support scheme.

6 Conclusions

New families of locally conservative flux-continuous, finite-volume schemes
are presented for solving the general tensor pressure equation on quadrilat-
eral and triangular grids. The new schemes have full pressure continuity and
flux continuity imposed across control-volume faces and are quasi-positive
yielding solutions essentially free of spurious oscillations. An optimal support
scheme is identified via quadrature which adapts the discretization accord-
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ing to anisotropy. An optimal support scheme is also obtained by anisotropy
favoring triangulation.
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Summary. Exact analytic solutions and various numerical results for the rewiring
of bipartite networks are discussed. An interpretation in terms of copying and
innovation processes make this relevant in a wide variety of physical contexts.

1 Introduction

There are many situations where an ‘individual’ chooses only one of many
‘artifacts’ but where their choice depends in part on the current choices of
the community. Names for new babies and registration rates of pedigree dogs
often reflect current popular choices [10, 11]. The allele for a particular gene
carried (‘chosen’) by an individual reflects current gene frequencies [8]. In
Urn models the probabilities controlling the urn chosen by a ball can reflect
earlier choices [9]. In all cases copying the state of a neighbour, as defined by a
network of the individuals, is a common process because it can be implemented
without any global information [7]. At the other extreme, an individual might
pick an artifact at random.

2 The Basic Model

We first consider a non-growing bipartite network in which E ‘individual’ ver-
tices are each attached by a single edge to one of N ‘artifact’ vertices. At each
time step we choose to rewire the artifact end of one edge, the departure arti-
fact chosen with probability ΠR. This is attached to an arrival artifact chosen
with probability ΠA. Only after both choices are made is the graph rewired as
shown in Fig. 1. The degree distribution of the artifacts when averaged over
many runs of this model, n(k, t), satisfies the following equation:-

n(k, t + 1) = n(k, t) + n(k + 1, t)ΠR(k + 1, t) (1 −ΠA(k + 1, t))
−n(k, t)ΠR(k, t) (1 −ΠA(k, t)) − n(k, t)ΠA(k, t) (1 −ΠR(k, t))
+n(k − 1, t)ΠA(k − 1, t) (1 −ΠR(k − 1, t)) , (E ≥ k ≥ 0) , (1)
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Fig. 1. The bipartite network of E individual vertices, each connected by a single
edge (solid lines) to any one of N artifacts. The dashed lines below the individuals
are a social network. In the event shown individual 3 updates their choice, making
B the departure artifact. They do this by copying the choice of a friend, friend of
a friend, etc., found by making a random walk on the social network. Here this
produces A as the arrival artifact so edge 3B is rewired to become edge 3A

where n(k) =ΠR(k) =ΠA(k) = 0 for k= −1, (E+1). If ΠR or ΠA have terms
proportional to kβ then this equation is exact only when β = 0 or 1 [5]. We
will use the most general ΠR and ΠA for which (1) is exact, namely

ΠR =
k

E
, ΠA = pr

1
N

+ pp
k

E
, pp + pr = 1 (E ≥ k ≥ 0) . (2)

This is equivalent to using a complete graph with self loops for the social
network at this stage but these preferential attachment forms emerge naturally
when using a random walk on a general network [7]. This choice for ΠA has
two other special properties: one involves the scaling properties [5] and the
second is that these exact equations can be solved analytically [3–6]. The
generating function G(z, t) =

∑
k z

kn(k, t) is decomposed into eigenmodes
G(m)(z) through G(z, t) =

∑E
m=0 cm(λm)tG(m)(z). From (1) we find a second

order linear differential equation for each of the eigenmodes with solution [5]

G(m)(z) = (1− z)m2F1(a+m,−E +m; 1− E − a(N − 1); z) , a =
pr
pp

E′

N
,

λm = 1−m(m− 1)
pp
EE′ −m

pr
E
, 0 ≤ m ≤ E , (3)

where E′ = E. These solutions are well known in theoretical population genet-
ics as those of the Moran model [8] and one may map the bipartite model
directly onto a simple model of the genetics of a haploid population [5].

The equilibrium result for the degree distribution [3, 5] is proportional to
Γ (k+a)
Γ (k+1)

Γ (E+a(N−1)−1−k)
Γ (E+1−k) . This has three typical regions. We have a conden-

sate, where most of the edges are attached to one artifact p(k = E) ∼ O(N0),
for pr � (E+ 1−〈k〉)−1 . On the other hand when pr � (1 + 〈k〉)−1 we get a
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peak at small k with an exponential fall off, a distribution which becomes an
exact binomial at pr = 1. In between we get a power law with an exponential
cutoff, p(k) ∝ (k)−γ exp{−ζk} where γ ≈ (1 − pr

pp
〈k〉) and ζ ≈ − ln(1 − pr).

For many parameter values the power γ will be indistinguishable from one
and this is a characteristic signal of an underlying copying mechanism seen in
a diverse range of situations (e.g. see [1, 12]; Fig. 2).

One of the best ways to study the evolution of the degree distribution
[5,6] is through the Homogeneity Measures, Fn. This is the probability that n
distinct edges chosen at random are connected to same artifact, and is given
by Fn(t) := (Γ (E + 1 − n)/Γ (E + 1))(dnG(z, t)/dzn)z=1. Further, each Fn
depends only on the modes numbered 0 to n so they provide a practical way to
fix the constants cn in the mode expansion. Since F0 = E and F1 = 1, we find
c0 = 1 and c1 = 0 while equilibration occurs on a time scale of τ2 = −1/ ln(λ2)
(Fig. 3).
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3 Communities

Our first generalisation of the basic model is to consider two distinct commu-
nities of individuals, say Ex (Ey) of type X (Y). The individuals of type X can
now copy the choices made by their own community X with probability ppxx,
a different rate which is used when an X copies the choice made by somebody
in community Y, ppxy. An X individual will then innovate with probability
(1 − ppxx − ppxy). Another two independent copying probabilities can be set
for the Y community. At each time step we choose to update the choice of a
member of community X (Y) community with probability px (1− px). Com-
plete solutions are not available but one can find exact solutions for the lowest
order Homogeneity measures and eigenvalues using similar techniques to those
discussed above. The unilluminating details are given in [6].

4 Complex Social Networks

An obvious generalisation is to use a complex network as the Individual’s
social network [6]. When copying, done with probability pp, an individual
does a random walk on the social network to choose another individual and
finally to copy their choice of artifact, as shown in Fig. 1. The random walk is
an entirely local process, no global knowledge of the social network is needed,
so it is likely to be a good approximation of many processes found in the
real world. It also produces an attachment probability which is, to a good
approximation, proportional to the degree distribution [7]. The alternative
process of innovation, followed with probability pr, involves global knowledge
through its normalisation N in (2). However when N � E this can represent
innovation of new artifacts as it is likely that the arrival artifact has never
been chosen before. However this process could also be a first approximation
for other unknown processes used for artifact choice.

Results shown in Fig. 4 show that the existence of hubs in the Scale Free
social network enhances the condensate while large distances in the social
networks, as with the lattices, suppress the condensate.

An interesting example is the case of N = 2 which is a Voter Model [13]
with noise (innovation pr �= 0) added. One can then compare the probability
that a neighbour has a different artifact (the interface density) ρ(t), a local
measure of the inhomogeneity, with our global measure (1 − F2(t)). These
coincide when the social network is a complete graph. However as we move
from 3D to 1D lattices, keeping N , E and pr constant, we see from Fig. 5
that both these local and global measures move away from the result for the
complete graph but in opposite directions [6].
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5 Different Update Methods

Another way we can change the model is to change the nature of the update.
Suppose we first select the edge to be rewired and immediately remove it.
Then, based on this network of E′ = (E − 1) edges, we choose the arrival
artifact with probability ΠA = (pr/N) + (1 − pr)k/E′. The original master
equation (1) is still valid and exact. Moreover it can still be solved exactly
giving exactly the same form as before, (3), but with E′ = (E−1) not E. This
gives very small differences of order O(E−1) when compared to the original
simultaneous update used initially.
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Instead we will consider the simultaneous rewiring of X edges in our bipar-
tite graph at each step. We will choose the individuals, whose edges define the
departure artifacts, in one of two ways: either sequentially or at random. The
arrival artifacts will be chosen as before using ΠA of (2).

The opposite extreme from the single edge rewiring case we started with
(X = 1) is the one where all the edges are rewired at the same time, X = E.
This is the model used in [2,10,11] to model various data sets on cultural trans-
mission. It is also the classic Fisher-Wright model of population genetics [8].
From this each homogeneity measure Fn and the n-th eigenvector λn may be
calculated in terms of lower order results Fm (m < n). Non trivial information
again comes first from F2(t) = F2(∞) + (λ2)t (F2(0)− F2(∞)) where

F2(∞) =
p2
p + (1− p2

p)〈k〉
p2
p + (1 − p2

p)E
, λ2 =

p2
p(E − 1)
E

. (4)

Comparing with the results for X = 1 we see that there are large differences in
the equilibrium solution and in the rate at which this is approached (measured
in terms of number of the rewirings made). For intermediate values of X we
have not obtained any analytical results so for these numerical simulations
are needed, as shown in Fig. 6.
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Summary. An option pricing method for European options based on the Fourier-
cosine series, called the COS method, is presented. It can cover underlying asset
processes for which the characteristic function is known, and in this paper, in
particular, we consider stochastic volatility dynamics.

1 Introduction: The COS Method

Efficient numerical methods are required to rapidly price complex contracts
and calibrate financial models. During calibration, i.e., when fitting model
parameters of the stochastic asset processes to market data, we typically need
to price European options at a single spot price, with many different strike
prices, very quickly. Particular examples of where this is important would be
processes with several parameters, like the Heston model [4] or the infinite
activity Lévy processes, since there the pricing problem (for many strikes) is
used inside an optimization method.

The integration methods are used for calibration purposes whenever the
characteristic function of the asset price process is known analytically. State-
of-the-art numerical integration techniques have in common that they rely on
a transformation to the Fourier domain. The Carr-Madan method [1] is one
of the best known examples of this class.

In this paper we will focus on Fourier-cosine expansions in the context of
numerical integration as an alternative for methods based on the FFT. We
will show that this method, called the COS method [2, 3], can improve the
speed of pricing plain vanilla options.

The point-of-departure for pricing European options with numerical inte-
gration techniques is the risk-neutral valuation formula:

v(x, t0) = e−rΔt
E

Q [v(y, T )|x] = e−rΔt

∫

R

v(y, T )f(y|x)dy, (1)
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where v denotes the option value, Δt is the difference between the maturity,
T , and the initial date, t0, and E

Q[·] is the expectation operator under risk-
neutral measure Q. x and y are state variables at time t0 and T , respectively;
f(y|x) is the probability density of y given x, and r is the risk-neutral interest
rate.

Since the density rapidly decays to zero as y → ±∞ in (1), we truncate the
infinite integration range without loosing significant accuracy to [a, b] ⊂ R,
and we obtain approximation v1:

v1(x, t0) = e−rΔt
∫ b

a

v(y, T )f(y|x)dy. (2)

Since f(y|x) is usually not known whereas the characteristic function is,
we replace the density by its cosine expansion in y,

f(y|x) =
∑′+∞

k=0
Ak(x) cos

(
kπ
y − a
b− a

)
(3)

with

Ak(x) :=
2

b− a
∫ b

a

f(y|x) cos
(
kπ
y − a
b− a

)
dy, (4)

so that

v1(x, t0) = e−rΔt
∫ b

a

v(y, T )
∑′+∞

k=0
Ak(x) cos

(
kπ
y − a
b− a

)
dy. (5)

∑′ indicates that the first term in the summation is weighted by one-half.
We interchange the summation and integration, and insert the definition

Vk :=
2

b− a
∫ b

a

v(y, T ) cos
(
kπ
y − a
b− a

)
dy, (6)

resulting in

v1(x, t0) =
1
2

(b− a)e−rΔt ·
∑′+∞

k=0
Ak(x)Vk. (7)

The Vk are the cosine series coefficients of payoff function v(y, T ) in y.
We have analytic solutions for Vk for several contracts. As we assume

the characteristic function of the log-asset price to be known, we represent
the payoff as a function of the log-asset price, x := ln(S0/K) and y :=
ln(ST /K), with St the underlying price at time t and K the strike price.
Focusing on a put option, we obtain

V putk =
2

b− aK (−χk(a, 0) + ψk(a, 0)) . (8)
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where χk and ψk are given by

χk(c, d) :=
1

1 +
(
kπ
b−a
)2

[
cos
(
kπ
d− a
b− a

)
ed − cos

(
kπ
c− a
b− a

)
ec

+
kπ

b− a sin
(
kπ
d− a
b− a

)
ed − kπ

b− a sin
(
kπ
c− a
b− a

)
ec
]

(9)

and

ψk(c, d) :=

⎧⎪⎨
⎪⎩

[
sin
(
kπ d−ab−a

)
− sin

(
kπ c−ab−a

)]
b−a
kπ k �= 0,

(d− c) k = 0.
(10)

For a call we find a similar expression.
Due to the rapid decay rate of the Vk, we further truncate the series

summation in (7) to obtain approximation v2:

v2(x, t0) =
1
2

(b− a)e−rΔt ·
∑′N−1

k=0
Ak(x)Vk. (11)

Coefficients Ak(x), defined in (4), can be approximated by Fk(x) defined
as

Fk(x) :=
2

(b− a)
Re
{
φ

(
kπ

b− a ;x
)
· e−i kaπ

b−a

}
(12)

with φ(ω;x) the characteristic function:

φ(ω;x) :=
∫

R

eiωyf(y|x)dy.

This gives

v(x, t0) ≈ v3(x, t0) = e−rΔt
∑′N−1

k=0
Re
{
φ

(
kπ

b− a ;x
)
e−ikπ

a
b−a

}
Vk, (13)

where Re{·} denotes taking the real part of the argument.
Equation (13) can be improved for the Lévy and the Heston models, so

that options for many strike prices can be computed simultaneously. In the
Heston model [4], the volatility, denoted by

√
ut, is modeled by an additional

stochastic differential equation,

dxt =
(
μ− 1

2ut
)
dt+

√
utdW1t,

dut = λ(ū− ut)dt+ η
√
utdW2t

(14)

where xt denotes the log-asset price variable and ut the variance of the asset
price process. Parameters λ ≥ 0, ū ≥ 0 and η ≥ 0 are the speed of mean
reversion, the mean level of variance and the volatility of volatility, respec-
tively. Furthermore, the Brownian motions W1t and W2t are assumed to be
correlated with correlation coefficient ρ.
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For the Heston model, we have φ(ω; x, u0) = ϕhes(ω;u0) ·eiωx, with u0 the
volatility of the underlying at the initial time and ϕhes(ω;u0) := φ(ω; 0, u0).
The characteristic function of the log-asset price, ϕhes(ω;u0), reads

ϕhes(ω;u0) = exp
(
iωμΔt+

u0

η2

(
1− e−DΔt

1−Ge−DΔt
)

(λ− iρηω −D)
)
·

exp
(
λū

η2

(
Δt(λ− iρηω −D)− 2 log(

1−Ge−DΔt
1−G )

))
,

with

D =
√

(λ − iρηω)2 + (ω2 + iω)η2 and G =
λ− iρηω −D
λ− iρηω +D

.

Recalling the Vk-formula for a European options, like (8), we now define them
as a vector multiplied by a scalar, Vk = UkK, where

Uk =
{ 2
b−a (−χk(a, 0) + ψk(a, 0)) for a put
2
b−a (χk(0, b)− ψk(0, b)) for a call. (15)

We then find

v(x, t0, u0) ≈ Ke−rΔt · Re
{∑′N−1

k=0
ϕhes

(
kπ

b− a ;u0

)
Uk · eikπ

x−a
b−a

}
. (16)

This is the COS formula, pricing European options under Heston dynamics
very efficiently. The convergence rate of the Fourier-cosine series depends on
the properties of the functions on the interval [a, b]. From the error analy-
sis in [2], we can summarize that, with a properly chosen truncation of the
integration range, the overall error converges either exponentially for density
functions, with nonzero derivatives, belonging to C

∞([a, b] ⊂ R).
We define the truncation range by

[a, b] := [c1 − 12
√
|c2|, c1 + 12

√
|c2|].

in which the cumulants, cn, are given by the derivatives, at zero, of g(t) =
log(E(et·X)),

c1 = μT + (1− e−λT )
ū− u0

2λ
− 1

2
ūT,

c2 =
1

8λ3

(
ηTλe−λT (u0 − ū)(8λρ− 4η) + λρη(1 − e−λT )(16ū− 8u0) +

2ūλT (−4λρη + η2 + 4λ2) + η2((ū − 2u0)e−2λT + ū(6e−λT − 7) + 2u0) +
8λ2(u0 − ū)(1 − e−λT )

)

Cumulant c2 may become negative for sets of Heston parameters that do not
satisfy the Feller condition, i.e., 2ūλ > η2. We therefore use the absolute value
of c2.

The Greeks, like Delta, Gamma and also Vega can be obtained, basically
at no cost, by differentiating the COS formula (16).
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2 Numerical Results

We perform a numerical test on European options under the Heston process
to evaluate the efficiency and accuracy of the COS method. We compare
our results to the Carr-Madan method [1], in which the FFT has been used.
Parameter N , in the experiments to follow, denotes for the COS method the
number of terms in the Fourier-cosine expansion, and the number of grid
points for the Carr-Madan method. Some experience is helpful when choosing
the correct truncation range and damping factor in Carr-Madan’s method. A
suitable choice appears to be α = 0.75 for the Heston experiments.

The computer used has an Intel Pentium 4 CPU, 2.80 GHz with cache size
1,024 KB; The code is written in Matlab 7-4.

2.1 The Heston Model

We choose the Heston model and price puts with the following parameters:

S0 = 100,K = 100, r = 0, q = 0, λ = 1.5768, η = 0.5751,
ū = 0.0398, u0 = 0.0175, ρ = −0.5711, T = 1. (17)

In this test, we compare the COS method with the Carr-Madan method.
The option price reference values are obtained by the Carr-Madan method
using N = 217 points, and the truncated Fourier domain is set to [0, 1,200]
for the experiment with T = 1.

We mimic the calibration situation and price several strikes simultane-
ously. We choose T = 1 and 21 consecutive strikes, K = 50, 55, 60 , . . . , 150,
see the results in Table 1. The maximum error over all strike prices is pre-
sented. Note the very different values of N , that the two methods require
for satisfactory convergence. With N = 160, the COS method can price all
options for 21 strikes highly accurately, within 3 ms. The COS method appears
to be approximately a factor 20 faster than the Carr-Madan method for the
same level of accuracy.

Table 1. Error convergence and cpu time for puts under the Heston model by the
COS and Carr-Madan method, pricing 21 strikes, with T = 1, parameters as in (17)

N 32 64 96 128 160
COS cpu time (ms) 0.85 1.45 2.04 2.64 3.22

max. abs. err. 1.43 × 10−1 6.75 × 10−3 4.52 × 10−4 2.61 × 10−5 4.40 × 10−6

N 512 1,024 2,048 4,096 8,192
Carr-Madan cpu time (ms) 7.44 12.84 20.36 37.69 76.02

max. error 4.70 × 106 6.69 × 101 2.61 × 10−1 2.15 × 10−3 2.08 × 10−7
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3 Conclusions and Discussion

In this paper we have discussed an option pricing method based on Fourier-
cosine series expansions, the COS method, for European-style options. The
method can be used as long as a characteristic function for the underlying price
process is available. The COS method is based on the insight that the series
coefficients of many density functions can be accurately retrieved from their
characteristic functions. The computational complexity of the COS method is
linear in the number of terms,N , chosen in the Fourier-cosine series expansion.
Very fast computing times were reported here for the Heston model.
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Summary. Methods of algebraic topology are used to analyze the structure of
motion planning algorithms in robotics. Navigational complexity of a mechanical
system is measured by a numerical invariant TC(X) depending on the homotopy type
of the configuration space X. Computations of TC(X) use various topological tools
including cohomology algebras and cohomology operations. This paper is a brief
survey introducing these topics to the community of applied and industrial math-
ematicians. The method is illustrated by applications to problems of simultaneous
control of multiple moving objects.

1 Introduction

Algorithmic motion planning in robotics is a well established discipline which
provides a wide variety of general-purpose efficient algorithms as well as algo-
rithms designed for a number of fairly involved special scenarios, see [13,14,16].
One considers a moving system S with k degrees of freedom and a two or three-
dimensional workspace W . The geometry of S and W is given in advance
which determines the configuration space of the system, X . The latter is a
subset of Rk consisting of all admissible placements (or configurations) of the
system S, each represented by a tuple of k real parameters. Being a subset of
the Euclidean space X ⊂ Rk, the configuration space X naturally inherits its
topology.

A motion planning algorithm takes as input the present and the desired
states of the system and produces as the output a continuous motion of
the system from its current state to the desired state. The topology of the
configuration space X of the system imposes important restrictions on the
discontinuities of the robot motion viewed as a function of the input data,
see [3, 4]. The complexity of motion planning algorithms is measured by a
numerical invariant TC(X) which has at least three different appearances
in robotics applications [6]. Firstly, it is the minimal number of domains of
continuity of any motion planning algorithm for a system having X as its
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configuration space; this can also be understood as the minimal number of sub-
programs (operating only with continuous functions) in any motion planning
algorithm for the system. Secondly, it is the minimal order of instability [4]
which have motion planning algorithms in X . The third interpretation allows
to measure TC(X) while dealing with random motion planning algorithms:
TC(X) is the minimal integer n such that there exists an n valued random
motion planning algorithm for the system [5].

The phenomenon described in this work may have a significant impact
only in situations when the dimension of the configuration space X is large.
Since we are mainly concerned with systems operating in three-dimensional
space, the high-dimensionality happens when the system contains many inde-
pendently moving parts. We study in detail several specific examples of this
kind: these are problems of simultaneous control of multiple moving objects
which are either totally independent or have to perform their tasks avoiding
collisions with each other and with obstacles.

2 The Concept TC(X)

Let X denote the configuration space of a mechanical system. States of the
system are represented by points of X , and continuous motions of the system
are represented by continuous paths γ : [0, 1] → X . Here the point A = γ(0)
represents the initial state and γ(1) = B represents the final state of the
system. We assume that X is path connected, i.e. the system can be brought
to an arbitrary state from any given state by a continuous motion. We are
interested in algorithms producing such motions.

Denote by PX = XI the space of all continuous paths γ : I = [0, 1]→ X.
The space PX is supplied with the compact - open topology [2]. Let

π : PX → X ×X

be the map which assigns to a path γ the pair (γ(0), γ(1)) ∈ X × X of the
initial–final configurations. The map π is a fibration in the sense of Serre.

Definition 1. A motion planning algorithm is a section of fibration π. In
other words it is a (not necessarily continuous) map s : X × X → PX
satisfying π ◦ s = 1X×X.

A motion planning algorithm s : X × X → PX is continuous if the
suggested route s(A,B) of going from A to B depends continuously on the
states A and B, for all A,B ∈ X . It is not difficult to see that a continu-
ous motion planning algorithm in X exists if and only if X is contractible.
This explains why motion planning algorithms in most real life applications
are discontinuous. One wants to measure and minimize discontinuities of such
algorithms.
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Definition 2. A motion planning algorithm s : X ×X → PX is called tame
if X ×X can be split into finitely many sets X ×X = F1 ∪F2 ∪ · · · ∪Fk such
that (i) the restriction s|Fi : Fi → PX is continuous for all i = 1, . . . , k, (ii)
Fi ∩ Fj = ∅ for i 	= j and (iii) each Fi is an ENR (see [2]).

Definition 3. The topological complexity of a tame motion planning algo-
rithm s : X ×X → PX is defined as the minimal number k appearing in all
possible decompositions of Definition 2.

Definition 4. The topological complexity TC(X) of a path-connected finite-
dimensional polyhedron X is defined as the minimal topological complexity of
tame motion planning algorithms for X.

The topological complexity TC(X) can be also defined for more general
path-connected spaces which are not necessary polyhedra. For such spaces one
defines TC(X) to be the genus in the sense of A. Schwarz [15] of the path-
fibration π : PX → X ×X . More explicitly TC(X) is the minimal integer k
such that X ×X admits an open cover X ×X = U1 ∪U2 ∪ · · · ∪Uk such that
for each i = 1, . . . , k the projections X ← Ui → X on the first and the second
factor are homotopic to each other.

The notion of Schwarz genus was used by Smale [17] and Vassiliev [18] to
study complexity of algorithms for solving polynomial equations.

3 Upper and Lower Bounds for TC(X)

In many instances calculation of TC(X) is based on a combination of upper
and lower bounds; also the homotopy invariance of TC(X) plays a role [7].

Theorem 1. If X is an r-connected polyhedron where r ≥ 0 then

TC(X) <
2 dim(X) + 1

r + 1
+ 1.

The simplest lower bound uses cohomology classes u ∈ H∗(X × X ;R)
satisfying

u|ΔX = 0 ∈ H∗(X ;R′);

such cohomology classes are called zero-divisors. Here R is a local coefficient
system on X ×X , ΔX ⊂ X ×X denotes the diagonal and R′ denotes R|ΔX .

The following simple construction of zero-divisors is quite useful: for an
abelian groupR and a cohomology class u ∈ Hj(X ;R) one has the zero-divisor
(Fig. 1)

ū = 1× u− u× 1 ∈ Hj(X ×X ;R).

Theorem 2. One has TC(X) > k assuming that there exist k zero-divisors
ui ∈ H∗(X ×X ;Ri) where i = 1, . . . , k, whose cup-product is nonzero.
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Fig. 1. Robot arm with n = 4 bars

Applying these results one easily finds that the topological complexity of
spheres is given by TC(Sn) = 2 for all odd n and TC(Sn) = 3 for all even n.

If Σg denotes a compact orientable surface of genus g then TC(Σg) = 5
for all g ≥ 2 although TC(Σg) = 3 for g = 0, 1.

The planar robot arm with n bars has as its configuration space the n-
dimensional torus T n = S1 × S1 × · · · × S1. The topological complexity of
T n equals TC(T n) = n+ 1. The configuration space of an n-bar robot arm in
R3 is the product of n spheres S2× S2× . . . S2 whose topological complexity
is 2n + 1, see [3]. Explicit motion algorithms use the methods of navigation
functions [7].

For an aspherical space X (i.e. assuming that πi(X) = 0 for all i ≥ 2) the
topological complexity depends only on the fundamental group π1(X). Cohen
and Pruidze [1] found explicitly the topological complexity of Eilenberg–
MacLane spaces of right-angled Artin groups.

4 Simultaneous Control of Multiple Objects

Suppose that one controls simultaneously n systems S1, . . . , Sn. The total
configuration space in the case of centralized control is the Cartesian product
X1 × X2 × · · · × Xn where Xi denotes the configuration space of Si. For
simplicity we will assume that the spaces Xi are all homeomorphic to each
other Xi � X ; this assumption is valid if we control several systems having
identical properties. From the product inequality [3] one obtains the inequality

TC(X1 ×X2 × · · · ×Xn) ≤ n · [TC(X)− 1] + 1.

Denote by zcl(X) the zero-divisors cup-length of X , i.e. the longest nontrivial
cup-product of zero-divisors. Then

TC(X1 ×X2 × · · · ×Xn) > n · zcl(X).

Comparing these two inequalities we see that the topological complexity of
centralized control is bounded above and below by functions linear in n.
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Fig. 2. Two (black and white) configurations of n = 5 moving objects in Rm

Let us now consider algorithms of distributed control, i.e. when each of
the controllable objects has its own motion planning algorithms and behaves
independently of the others. The motion planning algorithm of the ith object
is given by a splitting F i

1∪F i
2∪· · ·∪F i

si
= X×X and by defining a continuous

section σi
j : F i

j → PX for j = 1, . . . , si. Here clearly si ≥ TC(X). The domains
of continuity for the system of n objects are of the form F 1

r1
×F 2

r2
× · · · ×Fn

rn

where 1 ≤ ri ≤ si. We see that any distributed motion planning algorithm
has at least s1s2 . . . sn ≥ TC(X)n domains of continuity.

Corollary 1. The topological complexity of centralized control of n identical
objects growths as a linear function of n as n→∞. However, any distributed
motion planning algorithm has exponential in n topological complexity (which
is bounded below by TC(X)n).

Thus, the centralized control has significant advantages compared to the
distributed control. It is important to emphasize that specific motion planning
algorithms for centralized control with complexity linear in n can be designed
using the technique developed in the proof of the product inequality [3]
(Fig. 2).

5 Collision Free Motion Planning

Next we consider the problem of controlling n objects moving in Rm without
collisions. We will assume that the objects are represented by points A ∈ Rm.
An allowed configuration of n objects is labeled by n distinct points in Rm,
and the configuration space in this case is

F (Rm, n) = {(A1, A2, . . . , An); Ai ∈ Rm, Ai 	= Aj for i 	= j}.

A motion planning algorithm for this problem decides how to move one con-
figuration to another so that no collisions occur in the process of motion. The
topological complexity of F (Rm, n) was computed in [10] using the theory of
hyperspace arrangements:
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TC(F (Rm, n)) =
{

2n− 1 for any odd m,
2n− 2 for any even m.

The case when m ≥ 4 even was resolved in a recent preprint [8]. It is a
challenging problem to find explicit motion planning algorithms in F (Rm, n)
having linear in n topological complexity. In [6] we suggested an algorithm
which has complexity quadratic in n.

Paper [9] studies collision free motion planning algorithms for multiple
moving objects in the presence of moving obstacles.

Consider now the case when the controlled objects move along a graph
Γ . The study of configuration spaces F (Γ, n) was initiated by Ghrist and
Koditschek [11, 12]. The topological complexity of this configuration space
satisfies

TC(F (Γ, n)) ≤ 2m(Γ ) + 1,

see [5]. Here m(Γ ) denotes the number of essential vertices of Γ , i.e. vertices
incident to at least 3 edges. We conclude that the complexity of collision
free control of multiple objects moving along a graph is bounded above by a
constant independent of n. This result contrasts greatly the computation of
TC(F (Rm, n)) (see above) which is linear in n.
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Summary. Some ideas for selecting the most important component(s) in a system,
from a reliability point of view, are given. This is done using algebraic tools and
taking only into account the structure of the system and the ranking of component
reliabilities. Three measures of component importance are considered: Birnbaum,
Improvement Potential and Risk Achievement Worth.

1 Introduction

The aim of this paper is to present some hints for finding the component(s) in
a system that have the highest reliability importance (under some measure),
when only the structure function of the system, and the ranking of component
reliabilities (but possibly not their exact values) are known. To help identifying
these (most important) components, we use some binary relations defined on
the set of nodes of the system, i.e., binary relations that do not depend on the
nature of the components, but only depend on the structure of the system.
The reliability importance measures considered in the paper are: Birnbaum,
Improvement potential and Risk achievement worth.

Some work has previously been done in similar contexts. In particular, the
binary relation called the “criticality relation” was introduced in [1] as a tool
to find an optimal component arrangement that maximizes system reliability
when all components have identical reliability. Other relations between nodes
have also been considered in the literature [2, 5]. These relations were used
in [7–9] to compare Birnbaum measures of system components.

Two new pre-orderings between nodes (stronger than the criticality rela-
tion) were introduced in [3,4], and it was proved there that they are useful to
compare component reliability importance, not only for Birnbaum’s but for
other importance measures, when components reliabilities are not all equal.

We consider binary systems, i.e., systems in which there is a random
Boolean variable associated to each node which takes the value 1 if the compo-
nent placed on it is functioning and 0 otherwise. These random variables are
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assumed to be statistically independent. The structure function of the system
is a boolean function of these random variables that takes the value 1 if the
system is functioning and 0 otherwise. The systems we consider are coherent,
i.e., systems with nondecreasing structure function and with all components
being relevant. The reliability of a system, i.e., the probability of it being
functioning, is given by the expectation of its structure function but it can
also be expressed in terms of its path sets. This is why we usually denote a
system by (N, π), where N = {1, 2, . . . , n} is the set of nodes and π is the
collection of path sets. Recall that a path set is a subset of nodes such that if
all of them are operative then the system is functioning.

From now on we assume that (N, π) is a coherent system with n compo-
nents, p = (p1, p2, . . . , pn) ∈ (0, 1)n is a vector of component reliabilities, and
h(p) is the reliability of the system, with 0 < h(p) < 1.

Along the paper we will consider three reliability measures of component
importance. The formal definitions of these measures are given next.

Definition 1 (Reliability Importance Measures). For a component i∈N
the following measures are considered:

• IB
i (p) = h(1i,p)− h(0i,p) =

∂h

∂pi
(p) (Birnbaum)

• IIP
i (p) = h(1i,p)− h(p) (Improvement Potential)

• IRAW
i (p) =

1− h(0i,p)
1− h(p)

(Risk Achievement Worth)

The organization of the paper is as follows. In the next section, three
pre-orderings in the set of nodes are defined and their properties are given.
The main results are included in Sect. 3, where we compare the importance of
two components linked by the some of the pre-orderings, for each one of the
reliability importance measures considered in the paper. The results in this
section allow us to describe systems in which the most important components
can be identified independently of the values of their component reliabilities
and depending only on their ordering. Some final comments end the paper in
Sect. 4.

2 The Algebraic Tools

We are going to introduce three binary relations between nodes. The first one
of them is known as the desirability relation in game theory (see, e.g., [6,10]),
or as the criticality relation in reliability theory (see [1]). The other two binary
relations (the external and the internal domination relations) were introduced
in [3]. The three considered binary relations are pre-orderings, i.e., they are
reflexive and transitive.
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Definition 2 (Pre-Orderings on the Set of Components).

• The criticality relation
i � j iff [S ∪ {j} ∈ π ⇒ S ∪ {i} ∈ π, whenever S ⊆ N\{i, j}].
If i � j we say that component i is at least as critical as component j.

• The external domination relation.
i � j iff i = j, or [S ∈ π, j ∈ S, i /∈ S ⇒ S\{j} ∈ π ].
If i � j, we say that component i externally dominates j.

• The internal domination relation.
i� j iff i = j, or [S ∈ π, i, j ∈ S ⇒ S\{j} ∈ π ].
If i� j, we say that component i internally dominates j.

Other binary relations defined from the former ones will also be used in
this paper, and they are put together in the following definition.

Definition 3 (Strict and Equivalence Relations).
i � j iff i � j and j � i ; i ≡ j iff i � j and j � i.
i 	 j iff i � j and j � i ; i �
 j iff i � j and j � i.
i� j iff i� j and j � i ; i �� j iff i� j and j � i.

The following proposition states that the external and the internal domi-
nation relations extend to (imply) the criticality relation.

Proposition 1.
i � j ⇒ i � j and i 	 j ⇒ i � j
i� j ⇒ i � j and i� j ⇒ i � j.
In general the three pre-orderings are neither antisymmetric (i.e., they are

not ordering relations) nor total (i.e., there exist incomparable elements). The
following example illustrates most of these properties.

Example 1. Let N = {1, 2, 3, 4, 5, 6} be the set of components of the system
in Fig. 1. The minimal path sets are: {1, 2, 3}, {1, 4}, {5}, {6}.

In this system the relations between components are:
6 ≡ 5 � 1 � 4 � 2 ≡ 3 ; 1 	 2 �
 3, 1 	 4 ; 6 �� 5 � 4 � 3, 4 � 2.
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Fig. 1. System in Example 1
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3 Ranking of Component Importance

The results in this section provide useful hints for comparing the importance
(for the different measures) of two components linked by some of the consid-
ered binary relations. As a consequence, they allow us to identify the most
important components in some systems independently of the values of their
reliabilities and depending only on their ordering.

Criticality relation has been used to compare the Birnbaum measure
between system components in [7–9], and the results are reproduced here
for the sake of completeness. We proved the results for the Birnbaum mea-
sure based on the external or the internal domination relations, and also all
statements referring to the other reliability importance measures in [3, 4].

Theorem 1 (Birnbaum Measure). Let i, j be different elements in N .
Then,

i � j and pi = pj ⇒ IB
i (p) ≥ IB

j (p)
i � j and pi = pj ⇒ IB

i (p) > IB
j (p)

i � j and pi = pj ⇒ IB
i (p) = IB

j (p)
i � j and pi < pj ⇒ IB

i (p) > IB
j (p)

i� j and pi = pj ⇒ IB
i (p) = IB

j (p)
i� j and pi > pj ⇒ IB

i (p) > IB
j (p)

Theorem 2 (Improvement Potential). Let i, j be different elements in N .
Then,

i � j and pi ≤ pj ⇒ IIP
i (p) ≥ IIP

j (p)
i � j and pi ≤ pj ⇒ IIP

i (p) > IIP
j (p)

i � j, i � j and pi < pj ⇒ IIP
i (p) > IIP

j (p)
i �� j ⇒ IIP

i (p) = IIP
j (p)

Theorem 3 (Risk Achievement Worth). Let i, j be different elements in
N . Then,

i � j and pi ≥ pj ⇒ IRAW
i (p) ≥ IRAW

j (p)
i � j and pi ≥ pj ⇒ IRAW

i (p) > IRAW
j (p)

i � j, i � j and pi > pj ⇒ IRAW
i (p) > IRAW

j (p)
i �
 j ⇒ IRAW

i (p) = IRAW
j (p)

Example 1 revisited. Let’s consider again the system in Example 1 to see how
these results apply. Assume, for example, that p = (p1, p2, . . . , p6) is such that
p6 < p1 = p4 = p5 < p3 < p2 and that we are looking for the most important
components in this case. To alleviate the notation we will write Ii instead of
Ii(p) throughout the example, for the different measures considered.

For the Birnbaum measure (using Theorem 1): Taking into account that
5 � 1 � 4 and p5 = p1 = p4 we have IB

5 > IB
1 > IB

4 . The fact that 1 	 2 �
 3
and p1 < p3 < p2 implies IB

1 > IB
3 > IB

2 . Finally, since 6 �� 5 and p5 > p6 then,
IB
5 > IB

6 . Consequently, the most important component for this measure is 5.
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For the Improvement Potential measure (using Theorem 2): Since 5 �
1 � 4 and p5 = p1 = p4 then IIP

5 > IIP
1 > IIP

4 . Moreover, 4 � 3 and
p4 < p3 implies IIP

4 > IIP
3 . The fact that 3 � 2, 3 � 2 and p3 < p2 ensures

that IIP
3 > IIP

2 , and, finally, 6 �� 5 implies IIP
5 = IIP

6 . The most important
components for this measure are 5 and 6.

For the Risk Achievement Worth measure (using Theorem 3): The fact
that 5 � 1 � 4 and p5 = p1 = p4 implies IRAW

5 > IRAW
1 > IRAW

4 . Since
5 � 6 , 5 � 6 and p5 > p6 it is IRAW

5 > IRAW
6 , and, finally, 2 �
 3 implies

IRAW
2 = IRAW

3 . The most important components for this measure belong to
the set {2, 3, 5}. In this case we would need to know the values of p2, p3 and
p5 to decide which one of them is the most important for this measure.

4 Some Final Comments

In this section we summarize the main results in the paper. They illustrate
the influence of the different pre-orderings on the ranking of components
importance, for the three measures considered in it.

Under the assumption of identical reliabilities of components, Theorems 1–
3 tell us that the ordering of the components by all the reliability importance
measures considered coincides with the ranking given by the node criticality
relation. Moreover, if two components are related by either the internal or the
external domination relations, their Birnbaum measures coincide.

If component reliabilities are not the same, Theorem 1 states that if two
components i, j are comparable by one of the domination relations, and their
reliabilities pi, pj satisfy the adequate (in)equality, then we can determine the
ordering between their Birnbaum measures without computing them. Similar
results are shown in Theorems 2 and 3 using the node criticality relation and
referring to the other considered measures. All these results can be useful in
the case that the reliabilities of components could be modified (for redundancy
or other reliability actions) to increase system reliability, and a component has
to be selected according to some importance measure.

For nodes equivalent by the criticality relation, it is clear from Theorem 1
that their Birnbaum measures are the same if their reliabilities coincide. The
same happens for the other two considered measures, as shown in Theorems 2
and 3. But if the component reliabilities are not equal then the lack of dom-
ination relation between the components is decisive. More precisely, i � j
and pi < pj imply IIP

i (p) > IIP
j (p), and, similarly, i � j and pi > pj imply

IRAW
i (p) > IRAW

j (p). These results are applicable, among others, in k-out-
of-n systems, and they prove that in general k-out-of-n systems the ordering
of component reliabilities completely determines the ordering of component
importance for the three measures considered.
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Summary. In this paper an advanced aeroelastic numerical tool for horizontal axis
wind turbines is presented. The tool is created by non-linear coupling an unsteady
aerodynamic model based on the lifting-line approximation with an elastodynamic
model based on the beam approximation. The aero-to-elastic interface defines the
loads exercised on the structure, whereas the elastic-to-aero interface transmits the
rates of deformations. The aeroelastic model is evaluated through comparisons of its
predictions with experimental data as well as with predictions obtained by simpler
models.

1 Introduction

The design problem of horizontal axis wind turbines (HAWT) is related to two
dominant model problems: the aerodynamic problem and the elastodynamic
one. Their combination leads to the aeroelastic problem of a horizontal axis
wind turbine. Input to this problem is the wind inflow conditions.

In this work, the authors present a non-linear advanced aeroelastic model
based on a lifting line model as regards the aerodynamics, and a beam
structural model adapted to this problem, useful to a number of design
problems.

2 The Numerical Method

The key point of the approach adopted herein is based on the formulation
of the aeroelastic problem as an appropriate coupling of two different prob-
lems: the aerodynamic and the elastodynamic.
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2.1 The Aerodynamic Model

The response of an horizontal axis wind turbine to dynamic excitation is a
special case of the aerodynamic performance problem. In this connection,
a computational environment based on a lifting line method [2, 3], and a
semiempirical dynamic stall model of Leishman and Beddoes [4] has been
developed. This method is an unsteady model based on the vorticity filament
approximation of the vorticity on blades.

For the classical prescribed wake-lifting line blade model, the unknown
quantity is the spanwise bound circulation distribution. The relationship for
the section bound circulation (Γ ) can be shown to be related to the local
velocity (U), section chord (c), and section lift coefficient (CL) through the
Kutta-Joukowski theorem,

Γ =
1
2
c CL (α) U (1)

The local velocity and effective angle of attack (α) are functions of the tan-
gential velocity (UT ), the local axial and azimuthal induced velocities (u,w),
wind velocity (Vw), and blade pitch angle (θp) ,

U =
[
(UT + w)2 + (Vw − u)2

]1/2
, α = −θp + tan−1

(
Vw − u

UT + w

)
, UT = Ω r

(2)
The components of the induced velocity for a given wake geometry, at control
point (i) and at any time kΔt, can be shown to be a function of the bound
circulation distribution and individual vortex filament influence coefficients
(GC ) as

u
(k)
i =

1
4πR

N∑
j=1

GC
(k)
u,ij Γ

(k)
j , w

(k)
i =

1
4πR

N∑
j=1

GC
(k)
w,ij Γ

(k)
j (3)

where N is the number of blade inflow solution stations [3]. The total lift
force coefficient is given by sum of circulatory and noncirculatory components
under attached flow conditions

CβL (t) = CLI (t) + CLC (t) (4)

and by sum of nonlinear separation and vortex components under dynamic
stall conditions [4]

CsL (t) = CLF (t) + CLV (t) (5)

The nonlinear solution is based on the linearization of the relationships given
above ((1), (2), (3), and (4) or (5)) to form a system of linear equations which
can be corrected for the actual nonlinearities of the problem by a lagged
iteration procedure. Since the induced velocities are also functions of the cir-
culation distribution (3), the equation at the ith blade segment (1) can be
reformulated as
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Γi =
1
2
c a

⎛
⎝UT θ − 1

4πR

N∑
j=1

GCu,ijΓj

⎞
⎠+

1
2
c aCf,i (6)

where a is the linear lift curve slope, θ̄ = −θp − α0 + Vw/UT , α0 is the zero
lift offset angle, and Cf is the correction to the linearized equations for the
nonlinearities of the actual problem,

Cf = U (CL/a) − UT (−θp − α0 + (Vw − u)/UT )

This equation can be written for each blade segment, and thus, a system of
simultaneous linear equations results if the correction term (Cf ) is assumed
known. In matrix form, this can be expressed as

[A] [Γn] = [B] − [C Γn−1
]

(7)

where [A] is the matrix of influence coefficients and
[
C Γn−1

]
is a correction

vector calculated based on the circulation solution from the previous iteration.
Once (7) has been solved, the circulation distribution on blades is known
at the present time and the foregoing procedure may be repeated to obtain
the solution at future times. The last phase of the computations consists of
calculations of blade forces and the performance.

2.2 The Elastodynamic Model

The aspect ratio of wind turbine blades is, usually large and, therefore, beam
theory can be used to describe, the elastodynamic behaviour of the blade.
Let O [Xe, Ye, Ze] denote the beam coordinate system, and it is assumed that
the elastic axis is straight and coincides with axis Ye. In this model three
types of deformations are introduced: δx(y) – the bending deformation along
Xe direction (flapwise bending), δz(y) – the bending deformation along Ze
direction (leadwise bending) and θy(y) – the spanwise torsional deformation.

The first step in structural computation is to calculate beam cross-sectional
properties of thin-walled beam, multicell, nonhomogeneous, closed sections,
within the framework of Bernoulli’s bending theory and St. Venant torsion
theory [5, 7]. The key idea is the approximation of the airfoil’s shape by ne
straight, homogeneous elements. The thickness of every element is considered
constant and is evenly distributed across the two sides of its midline.

At the beginning, the element coordinates can be given with respect to any
coordinate system, but after the calculation of the elastic centre coordinates,
we switch to the elastic coordinate system.

The finite element technique. By using Lagrange equations the follow-
ing linear equations of motion are obtained [1, 8]

M D̈n + C Ḋn + K Dn = Rext
n (8)
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where M = ρ
∫
V

NTN dV is the mass matrix, C =
∫
V

NTC∗Nd dV is the
structural damping matrix, K =

∫
V

NT
dE Nd dV is the stiffness matrix, Rext

is the load vector, D is the displacement vector, which contain the degrees
of freedom, Nd – the derivative matrix of shape functions, and N – the
matrix of shape functions (for the beam element the shape functions most
commonly used are the third-degree polynomials and the first degree in the
case of torsion) [8].

The time advancement of (8) with the appropriate initial conditions is
performed with the specialized algorithm (Crank-Nicolson) method [3]. This
is an unconditionally stable implicit one-step method, which is second order
accurate in time.

2.3 Coupling Models

The solution of the aeroelastic problem requires the coupling of an aerody-
namic and an elastodynamic model. In previous paragraphs a brief description
of each part was done separately. In this paragraph the basic principles of the
communication between the two parts will be discussed.

As regards the elastodynamic part, the load vector must be input. This
vector is calculated by superimposing the gravitational forces on the aerody-
namic loads. The quantities that have to be transferred from the aerodynamic
part are, therefore, the aerodynamic forces that act on the blade.

The solution of (8) yields the vector D of the deformations, the vector Ḋ
of the deformation rates and the vector D̈ of the accelerations at the nodes
of the beam that simulates the blade.

The main modules can be summarized in the following flowchart Fig. 1.
The flowchart of the aeroelastic code has the following steps: (a) Initialize

code; (b) Perform same pure aerodynamic steps for the calculation of the
circulation distribution; (c) Time marching scheme. For every time step: (c.1)
start time step; (c.2) calculate the circulation distribution; (c.3) calculate the
force and the velocity distribution on the blades; (c.4) perform elastodynamic

Fig. 1. The flowchart of the coupling between aerodynamic and elastodynamic
models
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Table 1. Comparison between experiment and numerical results

Case 1 Case 2
Experiment Aeroelastic code Experiment Aeroelastic code

U∞ (m/s) 12.5 12.5 8.7 8.7
t1,st (s) 4.70 14.0 2.0 21.0
t1,end (s) 6.00 15.3 2.5 21.5
t2,st (s) 34.58 24.0 32.0 34.0
t2,end (s) 35.7 25.12 32.7 34.7
θ1 (deg) −1.164 −1.164 −0.07 −0.07
θ2 (deg) −3.19 −3.19 −3.716 −3.716

steps for a period of time equal to aerodynamic time step; (c.5) circulation
calculation step; (c.6) go to next time step. The only communication between
the two parts is in step (c.4) where the aerodynamic forces are imposed on
the beam and the elastodynamic problem is solved.

3 Results

The results presented in the sequel concern the two cases of double pitch steps
for the Tjaereborg HAWT, for which experimental data are available [6]. The
parameters used for each case are (Table 1) : the inflow velocity – U∞(m/s),
the starting time of first pitch step t1,st (s), the ending time of first pitch step
t1,end (s), the starting time of second pitch step t2,st (s), the ending time of
second pitch step t2,end (s), the initial pitch angle θ1 (deg), the pitch angle
after the first pitch step θ2 (deg). The numerical results are shown in Fig. 2.

4 Conclusions

A complete aeroelastic tool has been presented together with its self consis-
tency tests and some results. In this stage, we cannot conclude on its accuracy.
However, the experience suggests that this could be expected.

There are three points that must be underlined: (1) in some tests it
appeared necessary to introduce artificial damping; (2) the coupling, within
the context of approach described, must be non-linear and (3) the computa-
tional effort required to couple the aerodynamics with the structural part, is
small compared to the whole.

Prospective work: we will make a most elaborate model based on the
coupling of the aerodynamic model with a structural code based on the shell
model and composite materials.
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Case 1

Case-2

Fig. 2. Comparison between experiment and aeroelastic code
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Summary. Evaluation of non-stationary nucleate boiling can be done on the basis
of solving hyperbolic heat conductivity equation with the nonlinear boundary con-
dition responsible for the process of nucleate boiling. Results of calculations can be
used for modification of IQ-2 method of quenching, which is environment friendly,
less expensive process, which significantly improves service life of steel parts.

1 Mathematical Statement of the Problem in General
Form and Its Solution

As it is well known there is intensive IQ-2 quenching method, which is based
on non-stationary, nucleate boiling (self-regulated thermal process) [1, 5].
At present time there are some questions, which are discussed between
mathematicians: what kind of equations (namely, the parabolic equation or
hyperbolic heat equations) should be used to get the best results of calcula-
tions conformed to experimental data? In [2–4] the following direct problem
was considered: it is necessary to determine the function u (x, t) that satisfies
the hyperbolic heat transfer equation:

∂u (x, t)
∂t

+ τr
∂2u (x, t)

∂t2
= a2 ∂

2u (x, t)
∂x2

+ f (x, t) , (1)

0 < x < l < ∞, 0 < t ≤ T < ∞,

where a2 = k
c·ρ , k, c, ρ, τr ≡ const > 0, the initial conditions:

u (x, t)|t=0 = u0 (x) , 0 ≤ x ≤ l, (2)
∂u (x, t)

∂t

∣∣∣∣
t=0

= u1 (x) , 0 ≤ x ≤ l, (3)
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the boundary conditions:

−k∂u (x, t)
∂x

∣∣∣∣
x=0

+ βm {u (x, t)|x=0 − θ (t)}m = 0, (4)

∂u (x, t)
∂x

∣∣∣∣
x=l

= 0, 0 ≤ t ≤ T, (5)

where m = 10
3 , β ≡ const > 0, θ (t) is are given function, and with

corresponding consistency constrains.
It was shown by authors [2–4] that (1)–(5) can be reduced to the problem

of finding the unknown function h (ϕ) from the following nonlinear integral
equation:

h (ϕ) = g (ϕ) ·
⎧
⎨
⎩1−

ϕ∫

0

G (ϕ, ψ) · h (ψ) dψ

⎫
⎬
⎭

m

, (6)

where the functions h (ϕ), g (ϕ), G (ϕ, ψ) and the variables ϕ = βma2

kτr
t, ψ =

βma2

kτr
τ have the following meaning if we consider the corresponding problem

for the hyperbolic heat equation (1):

h (ϕ)
def≡ k · β−m · ϑ2

(
k · τr
βm · a2

· ϕ
)
, g (ϕ)

def≡ g

(
k · τr
βm · a2

· ϕ
)
, (7)

G (ϕ, ψ)
def≡ G

(
0, 0,

k · τr
βm · a2

· (ϕ− ψ)
)
, g (t)

def≡ e−
m−1
2τr

tV m (t) , (8)

ϑ2 (t)
def≡ ∂ϑ (x, t)

∂x

∣∣∣∣
x=0

, ϑ (x, t)
def≡ e

t
2τr {u (x, t)− θ (t)} , (9)

V (t)
def≡

l∫

0

∂G (x, ξ, t)
∂t

∣∣∣∣
x=0

ϑ0 (ξ) dξ +

l∫

0

G (x, ξ, t)|x=0 ϑ1 (ξ) dξ +

t∫

0

dτ

l∫

0

G (x, ξ, t− τ )|x=0 F (ξ, τ) dξ �= 0, (10)

F (x, t)
def≡ e

t
2τr

{
1
τr
f (x, t)− 1

τr
θ′ (t)− θ′′ (t)

}
, (11)

G (x, ξ, t) |ξ=0,x=0

def≡ 4τr
V (t)

⎛
⎜⎜⎜⎜⎝

N∑
n=1

sinh

(
t

√
|(2aπn√τr)2−l2|

2lτr

)

√∣∣∣(2aπn√τr
)2 − l2

∣∣∣
+

∞∑
n=N+1

sin
(
t

√
(2aπn

√
τr)2−l2

2lτr

)

√(
2aπn

√
τr
)2 − l2

+
2τr
l

sinh
(

t

2τr

)
⎞
⎟⎟⎠ . (12)
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Without loss of generality in the expression for the Green functionG(x, ξ, t)
we have assumed the existence of such natural number N , that for all n = 1, N
the following inequality is valid: τr ≤

(
l

2aπn

)2
, but for the natural numbers

n = N + 1, N + 2, ... the following inequality is valid: τr >
(

l
2aπn

)2
.

Having designated the solution of the nonlinear integral equation (6) as
hhyp.heatexact (ϕ), the solution of the original problem (1)–(5) is the function:

u (x, t) = θ (t) + e−
t

2τr

⎧⎨
⎩

l∫

0

∂G (x, ξ, t)
∂t

[u0 (ξ)− θ (0)] dξ +

l∫

0

G (x, ξ, t)
[
u0 (ξ)
2τr

+ u1 (ξ)− θ (0)
2τr
− θ′ (0)

]
dξ+ +

t∫

0

e
τ

2τr dτ

l∫

0

G (x, ξ, t− τ)
[
f (ξ, τ)
τr

− θ′ (τ)
τr
− θ′′ (τ)

]
dξ −

a2βm

τrk

t∫

0

G (x, ξ, t− τ )|ξ=0 h
hyp.heat
exact

(
a2βm

τrk
τ

)
dτ

⎫
⎬
⎭ . (13)

Thus, the last formula determines a desired solution of the general prob-
lem (1)–(5) if only we will solve the integral equation (6). For solving the
nonlinear Volterra integral equation of the second kind (6) we will introduce
the following definition:

Definition 1. The functional H (ϕ, h) (ϕ > 0) will be said to be Volterra
functional if the value of H is the number that depends on parameter values
and depends on values of function h (ψ) in the half-open interval 0 ≤ ψ < ϕ.

Now let us consider the functional equation:

h (ϕ) = H (ϕ, h) . (14)

It is obvious that our integral equation (6) belongs to such type functional
equation, where

H (ϕ, h)
def≡ g (ϕ)

⎧
⎨
⎩1−

ϕ∫

0

G (ϕ, ψ) h (ψ) dψ

⎫
⎬
⎭

m

. (15)

Let us assume that the above defined functional H (ϕ, h) satisfies the
following conditions:

A. If h (ψ) ∈ C [0, ϕ) then the functional H (ϕ, h) is well defined and
H (ϕ, h) is continuous function on variable ϕ;
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B. If h1 (ψ) and h2 (ψ) are continuous functions on variable ψ and if
|h1 (ψ)| < M , |h2 (ψ)| < M for 0 ≤ ψ ≤ ϕ0 then the following inequality is
valid:

|H (ϕ, h1)−H (ϕ, h2)| ≤
ϕ∫

0

K (ϕ, ψ;M,ϕ0) |h1 (ψ)− h2 (ψ)| dψ, (16)

for ∀ϕ ∈ [0, ϕ0], where K (ϕ, ψ;M,ϕ0)
def≡ K1(M,ϕ0)

K2(ϕ,ψ)
, K1 (M,ϕ0) is some

constant depending of M and ϕ0, K2 (ϕ, ψ)
def≡ (φ− ψ)α , α ∈ [0, 1).

Remark 1. By immediate verification we can make sure that these two propo-
sitions are valid for our functional H (ϕ, h) defined by (6).

Theorem 1. Let some functional (not merely our functional (15)) satisfies
the above-enumerated conditions A and B. Then the functional equation (14)
has unique solution in some segment 0 ≤ ϕ ≤ ϕ0.

We will prove this theorem by a step-by-step method. Therefore let us consider
the functional transformation S (ϕ) = H (ϕ, h), which transforms the function
h (ϕ) to S (ϕ).

Our main task is the following: we must determine such ϕ0 so that the
continuous function h (ϕ) with the property |h (ψ)| < M, 0 ≤ ψ ≤ ϕ0 has
been transformed to a function possessing the same property. We can reach

this in the following way: we assumeH (ϕ)
def≡ H (ϕ, h)|h=0. Evidently H (ϕ) is

a continuous function (by the property A). We assume L
def≡ max

0≤ϕ≤ϕ0

∣∣H (ϕ)
∣∣.

Then for the function h (ϕ), where |h (ϕ)| < M and M > L, we have the

following inequality: |H (ϕ, h)− H (ϕ, h)|h=0| ≤ M
ϕ∫
0

K (ϕ, ψ;M,ϕ0) dψ =

MK1 (M,ϕ0) ϕ
1−α

1−α . From here |S (ϕ)| = |H (ϕ, h)| ≤ L+MK1 (M,ϕ0) ϕ
1−α

1−α .
It is clear that for ∀M > L it is possible to find such ϕ1 (ϕ1 < ϕ0) that

L+M ·K1 (M,ϕ0) ϕ
1−α
1

1−α = M . From here we obtain the final value of unknown
number ϕ1 as:

ϕ1 =
(

(M − L) · (1− α)
M ·K1 (M,ϕ0)

) 1
1−α

. (17)

Thus, we establish the following fact: if |h (ϕ)| < M for 0 ≤ ϕ ≤ ϕ1 then
|S (ϕ)| < M for 0 ≤ ϕ ≤ ϕ1.

Now let us take any function h0 (ϕ) that |h0 (ϕ)| < M in the segment 0 ≤
ϕ ≤ ϕ1. For the sake of definiteness we take, for example, h0 (ϕ) = 0. Then we
can construct the successive approximations h1 (ϕ) , h2 (ϕ) , . . . , hn (ϕ) , . . .
by principle:

hn (ϕ) = H (ϕ, hn−1) . (18)
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Then owing to (17) it is clear that |hn (ϕ)| < M for ∀n ∈ N . From here
we can write:

|hn (ϕ)− hn−1 (ϕ)| = |H (ϕ, hn−1)−H (ϕ, hn−2)| ≤

K1 (M,ϕ0) ·
ϕ∫

0

hn−1 (ψ)− hn−2 (ψ)
K2 (ϕ, ψ)

dψ. (19)

Here it is significant that in the inequality (19) the constant K1 (M,ϕ0) is
identical for all n ∈ N .

Thus, we receive the following estimations:

h0 (ϕ) = 0,
|h1 (ϕ)− h0 (ϕ)| = |H (ϕ, h)|h=0| ≤ L,

|h2 (ϕ)− h1 (ϕ)| ≤ LK1ϕ
1−α

1∫

0

dψ

(1− ψ)α
= LK1

Γ (1− α)
Γ (2− α)

ϕ1−α, ...,

|hn (ϕ)− hn−1 (ϕ)| ≤ LKn−1
1

Γn−1 (1− α)
Γ (1 + (n− 1) (1− α))

ϕ(n−1)(1−α). (20)

Using the so-called Stirling’s formula

Γ (β) =
√

2π
β

(
β

e

)β (
1 +O

(
1
β

))
>

√
2π
β

(
β

e

)β
,

from (20) we will obtain:

|hn (ϕ)− hn−1 (ϕ)| ≤ L {K1 (M,ϕ0)Γ (1− α)}n−1

(
e

1 + (n− 1) (1− α)

)(n−1)(1−α)
√

1 + (n− 1) (1− α)
2π

ϕ(n−1)·(1−α).(21)

From (21) follows that the successive approximations h1 (ϕ) , h2 (ϕ) , ... , hn (ϕ)
are uniformly convergent to some function h (ϕ) in the open-interval (0, ϕ1),
at which |h (ϕ)| < M .

On the other hand we have |H (ϕ, h)−H (ϕ, hn)| <
ϕ∫
0

|h(ψ)−hn(ψ)|
Kn

2 (ϕ,ψ) dψ.

Consequently,H (ϕ, hn)
n→∞
⇒ H (ϕ, h). From here we obtain the final result

(14): h (ϕ) = H (ϕ, h) , 0 ≤ ϕ ≤ ϕ1. The theorem is proved.
Thus, we offer the following recurrence formula for solving of nonlinear

integral equation (6):

h0 (ϕ) = 0, hn (ϕ) = g (ϕ)

⎧
⎨
⎩1−

ϕ∫

0

G (ϕ, ψ)hn−1 (ψ) dψ

⎫
⎬
⎭

m

, n = 1, 2, 3, ...
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Moreover, having designated the exact solution of (6) as the function hexact(ϕ),
then we have:

hn (ϕ)
n→∞⇒ g (ϕ)

⎧⎨
⎩1−

ϕ∫

0

G (ϕ, ψ) · hexact (ϕ) dψ

⎫⎬
⎭

m

,

i.e. the functional sequence hn (ϕ) converges uniformly to the desired solution

hexact (ϕ): hn (ϕ)
n→∞
⇒ hexact (ϕ).

Remark 2. In the proof of theorem we have used the constraint 0 ≤ ϕ ≤ ϕ1

only for proofing the fact |hn (ϕ)| < M ∀ϕ. If the successive approximations
h1 (ϕ) , h2 (ϕ) , ... , hn (ϕ) , ... are uniformly bounded in some segment [0, ϕ2]
or in the semi-infinite interval [0,∞) then these successive approximations
h1 (ϕ), h2 (ϕ), . . . hn (ϕ) , ... will converge in all area and give us the solution
of the functional equation (14).

By using the non-degenerate transformations

τ = t̄, ξ =
x̄c1

t̄
, u (x̄, t̄) = τc2 · U (ξ, τ) ,

where c1 and c2 are some constants, it can be shown that (1) has zero
approximation

uzero (x, t) =
|a|√τr

x− |a|
√

1
τr
t
− |a|√τr
x+ |a|

√
1
τr
t
,

which describes a wave with a growing amplitude. This zero approximation is
a solution of the wave equation

∂2uzero (x, t)
∂t2

=
a2

τr
· ∂

2uzero (x, t)
∂x2

,

i.e. the term ∂u
∂t in hyperbolic heat equation characterizes damping of the

temperature waves.
In the future works it will be investigated some order approximate solutions

for determining solutions character at large value of time.
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Designing a Cover for a Tank
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Summary. Our research group is working on the design of a rigid cover over a tank
or a cavity. Usually, swimming pools, wells or drainage channels are protected with
high resistance plastic sailcloth and fences. Such security measurements block the
access to dangerous areas. We have designed a roof allowing the use of the covered
zones.

The system consists of a set of pieces made of high density polyethylene than can
be joined as in a puzzle whose junctions are reinforced with bolts. The pieces have
been designed using MicroStation and SolidWorks. The system is easily assembled
and disassembled, in fact, it is not necessary to have skilled labour to do this.

1 Introduction

Usually (see [2], [5], [10]) we can consider the following steps in designing
mechanical pieces:

1. Fixing the function.
2. To analyze the stress that these pieces are going to support.
3. Choosing the material.
4. Determining the shape and size of the pieces.
5. To analyze if the material and the shape are adequate to the required

conditions and, if necessary, to introduce modifications to the design.

Moreover, we have to consider the marketing and the maintenance.
Nowadays, the software tools have made things easier for designers (see

[6]). CAD packages have a lot of automated features available and they are
really useful for steps 4 and 5 in the previous list. The main advantage is that
we can model in such a way that the model easily adapts to future changes.

2 A Cover System for a Tank

In order to avoid accidents it is usual the protection of tanks and cavities with
sailcloth and fences. In this way, the protected zones become isolated areas.
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Our objective is the design of a solid roof allowing the passage of people over
it. So there is no risk of accident and it is possible to make use of these zones.

One of the most important requirements is that the system must be easily
assembled and disassembled. Bearing that in mind we have designed a system
made up of a set of pieces that can be joined as in a puzzle.

Once we have fix our objective of designing a rigid cover for a tank, we
present in Sect. 3 the analysis of the requirements (the stress that the pieces
support), we show the pieces we have designed and how do the fit together
in Sect. 4 and we analyze the warp of the pieces even in extreme conditions
(Sect. 5)

3 Analysis of the Requirements

We have considered the worst load conditions of the Spanish Building Techni-
cal Code ([3]), using the appropriate security factors (sf). For this reason we
will use the following load combinations:

∑
j≥1

γ
G,j

·G
k,j

+ γ
p
· P +A

d
+ γ

Q,1 · ψ1,1 ·Qk,1 +
∑
i>1

γ
Q,i

· ψ2,i
·Q

k,i

where

• G
k

denotes permanent loads (In our case it is the total weight).
• P denotes permanent prestressed (it is not necessary because we use

homogeneous material).
• A denotes occasional loads (In our case are not necessary).
• Q

k
denotes variable loads (In our case is the used load).

• Finally, γ represents security factors and ψ represents simultaneity or
synchronized coefficients.

Using the Spanish Building Technical Code over this equation we obtain
the following values:

• Permanent weight:

10 kg/m2 × 1.35 (sf for weight)

• Uniform load in public zones:

500 kg/m2 × 1.5 (sf most unfavourable)
× 1.4 (sf for syncronized loads)

• Snow load:

100 kg/m2 × 1.2 (sf for climatic zone)
× 1.5 (sf most unfavourable)
× 0.7 (sf for syncronized loads)
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Using all these formulae, we obtain that the total load is 1189.5kg/m2 and
so we have used 1,200 kg/m2 as applied load.

4 Designing and Assembling the Pieces

In this section we show the pieces that we have designed using an adequate
software. The pieces are designed to fit as in a puzzle. We also justify that
high density polyethylene is the most adequate material for our system.

4.1 The Modeling Tools

The software tools have allowed us to build and test models through auto-
mated techniques. Our pieces have been designed using both MicroStation
and SolidWorks. More specifically, we have used MicroStation for the design
phase and SolidWorks to analyze the deformation that the pieces suffer when
they bear a weight (see [7], [9]).

We have chosen these CAD platforms because they are extremely powerful
and interoperable modeling tools. Secondly, the interface with the user is very
flexible and intuitive.

In fact, the software allows us to create sketches and edit them. This is
very useful when experimenting with changes to the sketch because we can
see both the new and the old states of the sketch and decide on possible
modifications to the design. In this way, we can also create different versions
of a piece.

Moreover, when using the view tools we can visualize the prototypes in a
very realistic way. The software offers many options to manipulate the view,
for instance rotating the point of view or changing the projection plane.

We can also apply the material properties to the pieces. The materials
define certain properties (density and resistance as example) that are associ-
ated to Finite Element Analysis (FEA) (see [1], [8], [11], [12], [13]). According
to the material, we can see a textured display.

4.2 The Pieces and the Assembly

The pieces are 2 mm thick. The size of each one in approximately 1 m2, its
height is 0.3 m and the weight is less than 10 kg. The size and weight of the
pieces make transport and storage easy.

Each piece is inserted into surrounding ones. The shape of the pieces allows
a perfect fit between them. Moreover, the junctions are reinforced with bolts.
In this way, we have a rigid roof allowing that the weight applied over a point
in the surface can be transmitted to the edge of the tank (Figs. 1 and 2).

We have also designed special pieces for the borders of the tank. These
pieces are fixed with bolts and they allow the roof to fit to the size of the
tank.
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Fig. 1. Outside and inside perspectives

Fig. 2. Detail of inside perspective

In the case of big gaps we have considered the inclusion of fixing bars.
If the tank is full of liquid (for example, a swimming pool) the pieces float.

In this case, by Archimedes’s Principle, the resistance of the system increases.
In addition, each piece is itself a tank that can be empty (if we want to increase
the flotation) or may contain some liquid (if we want to increase the rigidity).
The mass of liquid into the pieces is limited by the fact that it can become
frozen if the environment temperature is cool enough (see [4]).

4.3 Choosing the Material

The pieces are made of high density polyethylene (HDPE). We have chosen
HDPE because its properties are really adequate to our project: low density
and very high mechanical and chemical resistance. In fact, the resistance to
the more usual chemical products in a swimming pool is excellent. Moreover,
HDPE is a suitable material for outside equipment (it can resist a big gap of
temperatures, there is not a problem with the environmental humidity and it
has an acceptable resistance to solar radiation). Of course, we have also taken
into account the economical questions (HDPE is a very cheap plastic, there
are not problems with the supplying, it is easy to shape in a factory) and the
fact that it is non toxic, recyclable and easy to clean.
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Nombre de modelo: p0
Nombre de estudio: COSMOSXpressStudy
Tipo de resultado: Desplazamiento estatico Plots2
Escala de deformacion: 4.02774

URES (mm)

2.731e+001

2.503e+001

2.276e+001

2.048e+001

1.821e+001

1.593e+001

1.366e+001

1.138e+001

9.104e+000

6.828e+000

4.552e+000

2.276e+000

1.000e+030

Fig. 3. Displacement results

5 Analysis of the Strain

In the picture we can see the effects of the applied loads over the pieces. It is
obvious than even with a load of 1,200 kg/m2, the deformation is imperceptible
(Fig. 3).

6 Design Optimization

At the moment we are working in a variable design that let us to obtain the
optimal shape. With this philosophy we impose the following conditions:

1. The thickness is variable from 1 to 4 mm.
2. The height is variable from 15 to 45 cm.
3. Deformations are limited to 5 mm.

and we will choose the minimum weight solution.
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5. Félez, J., Mart́ınez, M.L., Cabanellas, J.M., Carretero, A.: Fundamentos de
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Summary. This paper presents an overview of a simple advection-dispersion model
for the transport of spray drift from orchard spraying, including droplet interception
by a shelterbelt. Solutions to the model provide an estimate of the drift deposition
profile on the ground.

1 Introduction

Advection-dispersion models are widely-used in analysis of particle transport,
and often analytic solutions are possible. Whilst analytical models usually
involve simplifying assumptions, they are always useful as an initial esti-
mate, and also allow for efficient analysis of parameter variations. This paper
presents an overview of an advection-dispersion model for the transport of air-
borne spray drift from orchard spraying, including the interception of spray
droplets by a shelterbelt.

Studies have shown that shelterbelts can reduce spray drift by as much as
90 % [6]. While there has been some analysis of the droplet capture efficiency
of a shelterbelt [5], there is little information available with which to predict
the deposit downwind, particularly for a fully-sheltered orchard block.

The objective here is to develop a simple analytical model to capture
the major features of spray drift transport, including droplet capture by a
shelterbelt. We apply an advection-dispersion equation, based on the approach
of [4] in modelling particle transport in a forest canopy.

2 Model Formulation

Drifting spray droplets are advected by the wind and dispersed by turbulence,
all whilst falling under the influence of gravity and losing mass by evaporation.
Within a shelterbelt some of the droplets may be intercepted by the foliage,
and we refer to this as trapping.
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2.1 Droplet Trapping

Conceptually, the rate at which droplets are trapped will depend upon how
many are within the shelterbelt. We model the trapping by

T = kbRc, (1)

where T is the rate of droplet mass removal by trapping per unit volume
(kg s−1 m−3),R = R (x, y, z) is a dimensionless function which is non-zero only
within the shelterbelt, and c = c (x, y, z, t) is the droplet mass concentration
per unit volume (kg m−3). The proportionality constant kb (s−1) is called the
background trapping rate; it is defined as the fraction of droplets removed per
unit time, and is related to the physical properties of the shelterbelt (see [3]).
We treat kb as being constant throughout the shelterbelt.

2.2 Advection-Dispersion Model Without Evaporation

It is more straightforward at first to consider the case where there is no
evaporation. Our advection-dispersion model, including trapping within the
shelterbelt, is then

∂c

∂t
+ u

∂c

∂x
− S ∂c

∂z
= DL

∂2c

∂x2
+DT

∂2c

∂y2
+DV

∂2c

∂z2
+ q − T, (2)

where u is the mean wind speed (the positive x-axis is aligned to point directly
downwind), S is the downward droplet settling speed, and DL, DT and DV are
the dispersion coefficients alongwind, crosswind and vertically. These param-
eters are all assumed to be constant. The source is represented by q (kg s−1

m−3), and T is the trapping term as given by (1).
We solve the model for a cohort of droplets which are all of the same size.

Assuming that mass Q is released instantaneously at time t = 0 from the
point (X0, Y0, H), the source term q may be written

q = Qδ (x−X0) δ (y − Y0) δ (z −H) δ (t) . (3)

The distribution of droplet sizes produced by a sprayer would be simulated
by superposing solutions to the model, each for a different droplet size. Other
source types, such as a line release, can also be constructed from the results
for the point release [4].

The initial and far-field boundary conditions are

c = 0 at t = 0−, and c→ 0 as x, y → ±∞ and z → +∞. (4)

The ground is approximately horizontal – it is assumed to be impervious to the
droplets, so that they cannot disperse through it and the boundary condition
on the ground is

∂c

∂z
= 0 on z = 0. (5)
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Needless to say, the actual dynamics of the spraying process and the air-
flow through and around the shelterbelt are very complicated. The model is
intended to capture the main features of the droplet transport, yet be simple
enough to enable an analytic solution; some points to note are:

• The mean wind speed is assumed to be uniform in speed and direction.
• Turbulence in the airflow is modelled as having some dominant length

scales alongwind, crosswind and vertically. These would be typical mean
values for the flow, since turbulence has a variety of scales.

• The dispersion coefficients are represented as the dominant turbulence
length scales multiplied by the mean wind speed.

3 A Point Representation for Trapping

To solve the model (2) analytically, we introduce a mathematical simplifica-
tion whereby the effect of continuous trapping in a small block is represented
as occurring at a single point. As shown in Fig. 1, the shelterbelt is then dis-
cretised by dividing it into an N × L ×M array of blocks, each of the same
size, with the trapping in each block represented as occurring at the point in
its centre.

The blocks each have dimensions Δx × Δy × Δz and are labelled by
alongwind, crosswind and vertical indices n = 1, . . . , N , l = 1, . . . , L and
m = 1, . . . ,M respectively. For each block, we concentrate the trapping to
the point at its centre by defining

Rnlm = ΔxΔyΔzδ (x−Xn) δ (y − Yl) δ (z − Zm) . (6)

Next we introduce an effective trapping rate for the point; denoted by k, this
is the background trapping rate scaled by the block size:

k = kbΔxΔyΔz. (7)

Fig. 1. A rectangular shelterbelt discretised using a 3-D array of trapping points
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Note that k is the same for each trapping point. The total rate of droplet
mass removal per unit volume for the discretised shelterbelt is the summed
effect of all of the points, so that T in (1) and (2) becomes

T =
N∑

n=1

L∑
l=1

M∑
m=1

kc (Xn, Yl, Zm) δ (x−Xn) δ (y − Yl) δ (z − Zm) . (8)

4 Model Solution

By taking Fourier transforms (in x and y) and applying a Green function, we
obtain a solution to the model which is embedded in a convolution equation
of the form

c (x, y, z, t) = Qf (x, y, z, t;X0, Y0, H)

−
N∑

n=1

L∑
l=1

M∑
m=1

∫ t

0

kc (Xn, Yl, Zm, τ) f (x, y, z, t− τ ;Xn, Yl, Zm) dτ .

(9)

Due to its length, the expression for the function f is not included here but
may be found in [2] and [3]. Of particular interest is the total amount trapped
and the deposit on the ground; these quantities may be conveniently evaluated
using Laplace transforms, by noting that

∫ ∞

0

c (x, y, z, t) dt =
[∫ ∞

0

e−ptc (x, y, z, t) dt
]

p=0

= c (x, y, z, 0) , (10)

where c (x, y, z, p) is the Laplace transform of c (x, y, z, t) with respect to t.
The total mass trapped by the discretised shelterbelt, MTT (kg), is the

integral of (8) with respect to space and time. Using (10) this becomes

MTT =
N∑

n=1

L∑
l=1

M∑
m=1

kc (Xn, Yl, Zm, 0) . (11)

Note that the concentration at each trapping point depends upon the concen-
tration at all of the others. Thus, to evaluate (11) we must solve the system
of simultaneous equations formed by the Laplace transform of (9) at each
trapping point.

The density of deposit on the ground, MD (kg m−2), is the integral of the
downward mass flux per unit area at z = 0 with respect to time:

MD = Sc (x, y, 0, 0) . (12)

An example of the percentage reduction in the density of deposit caused
by trapping is shown in Fig. 2. The parameters used are u = 1 m s−1, S =
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Fig. 2. An example of the percentage reduction in the density of deposit as a result
of trapping. See the text for parameter values

0.2 m s−1, (DL, DT , DV ) = (2, 2, 1) m2 s−1, Q = 1 kg, (X0, Y0, H) = (0, 0, 4)
and kb = 0.5 s−1. The shelterbelt, shown shaded in grey, is 4 m wide × 8 m
long × 8 m high; it is divided into 2 × 4 × 40 blocks, so there is a total of
320 trapping points. The strongest reduction is immediately downwind of the
shelterbelt, and there is also some effect upwind and around the sides.

5 Advection-Dispersion Model with Evaporation

Droplets in the air evaporate at a rate proportional to the ambient temper-
ature and relative humidity [1]. Here we give a brief discussion of the model
with evaporation; for more detail see [3].

The droplets become lighter as they evaporate, so their settling speed
decreases; this tends to increase the distances over which the droplets travel. It
is more convenient to use the droplet number concentration, since all droplets
count as the same in the number concentration no matter their mass; therefore
evaporation only appears in the model via the non-constant settling speed.
The model is

∂C

∂t
+ u

∂C

∂x
− S (t)

∂C

∂z
= DL

∂2C

∂x2
+DT

∂2C

∂y2
+DV

∂2C

∂z2
+ q − T, (13)

where C = C (x, y, z, t) is the number concentration (# m−3), q is the same
as in (3) and T is the same as in (8) but with c replaced by C. The initial
and boundary conditions are the same as in the previous model. The non-
constant settling speed combined with the boundary condition on the ground
makes it very difficult to solve the model analytically; the solution we obtain
is embedded in an integral equation which must be evaluated numerically.
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The total mass trapped and the density of the deposit on the ground can
be found using the numerically evaluated values for C:

MTT =
∫ ts

0

N∑
n=1

L∑
l=1

M∑
m=1

m (t) kC (Xn, Yl, Zm, t) dt, (14)

where m (t) is the mass of an individual droplet and ts is the time at which
the droplets evaporate completely, and

MD =
∫ ts

0

S (t)m (t)C (x, y, 0, t) dt. (15)

Expressions for m (t), S (t) and ts are given in [3]. Though not ideal, as they
require numerical evaluation, these expressions can still be used to observe
the effects of parameter variations.

6 Summary

We have used an advection-dispersion model to simulate the transport of air-
borne drifting spray droplets, including a trapping term to represent droplet
interception by a shelterbelt. In order to solve the model analytically we dis-
cretised the shelterbelt using a point representation for trapping. Without
evaporation, the total amount trapped and the deposit on the ground could
be explicitly evaluated from the model by using Laplace transforms; with
evaporation, however, these quantities had to be evaluated numerically.
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Summary. Numerical modelling of pulse combustors may give important guide-
lines on how design parameters should be chosen. This paper gives a mathematical
analysis of a simple model for thermal pulse combustion and determines conditions
under which this model can describe stable pulse operation.

1 Introduction

Compared to conventional combustion, pulse combustion has significant
advantages in terms of thermal efficiency, energy savings and environmen-
tal impact. The high heat transfer rate makes it particularly attractive for
applications such as heating, particle drying, waste incineration, etc. Areas
for which industrial application of pulse combustion can be beneficial include
heating, drying, calcinating, gasification, and waste incineration.

The operation of a pulse combustor is based on a coupling between inter-
mittent (pulse) combustion and resonant acoustics in the burner system.
Self-sustained pulse combustion and high-intensity sound waves result if the
system’s acoustics and the combustion process are in phase (i.e. if Rayleigh’s
criterion [2] is satisfied).

The pulse combustion characteristics are determined by complex inter-
actions between physical and chemical processes, which depend on many
parameters (e.g. fuel supply, mixing processes, reaction rates, tailpipe length).
This severely complicates the design process.

Numerical modelling may give important guidelines on how the design
parameters should be chosen in order to achieve an optimal performance of
the pulse combustion process. To gain insight into the role of various design
parameters, we study a simple model of a so-called thermal pulse combustor.
By integrating the model equations in time it is possible to predict whether
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stable pulse operation for a given set of design parameter values is possi-
ble. Such an analysis, however, is very time consuming if many combinations
of design parameter values have to be considered. In order to make a com-
putationally less demanding analysis we perform a stability analysis on the
model equations. We will show that the stability analysis provides insightful
information by comparing it with the results of a time integration analysis.

2 Thermal Pulse Combustion: A Mathematical Model

Richards et al. [3] introduced a mathematical model that describes pulse com-
bustion in a system with a continuous fuel supply, which they call thermal
pulse combustion. Figure 1 gives a schematic representation of such a thermal
pulse combustor. Thermal pulse combustion is different from ordinary pulse
combustion, where fuel periodically enters the combustion chamber because
of time-dependent pressure differences over valves. However, Richards et al.
show that pulsating combustion can occur even in the case of a continuous
fuel supply.

Richards et al. model this device with a simple lumped parameter model,
taking the combustion chamber as a control volume. The amount of energy
in the combustion chamber is changed by inflow of reactants, combustion,
outflow of combustion products, and heat transfer to the chamber wall. The
combustion process is modelled by a one-step Arrhenius law for a bimolecu-
lar reaction between fuel and oxidizer. The gases in the combustion chamber
are assumed to be well-stirred. The tailpipe flow is modelled as a plug flow,
i.e. with a uniform density over its volume and driven by the pressure differ-
ence over the tailpipe. Flow from the combustion chamber into the tailpipe
is assumed to be isentropic. Wall friction of the tailpipe gases is taken into
account. It is assumed that the gases are perfect, and that all mixtures of
reactants and products have the same (constant) specific heats. By applying
conservation of mass, energy and species to the control volume, and coupling
this to the tailpipe dynamics by conservation of momentum, Richards et al.
derived a system of four ordinary differential equations. It can be written as

Fig. 1. Control volumes and variables of the thermal pulse combustor model
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dP

dt
= γ(A+B ·RR+ CD − (C +GZe)T ), (1)

dT

dt
= γ(A+B ·RR+ CD)

T

P
− (A+ γC + (γ − 1)GZe)

T 2

P
, (2)

du

dt
= E(Pe − 1)

Te

Pe
− F u |u|, (3)

dYf

dt
= (A(Yf,i − Yf ) −RR)

T

P
. (4)

where RR, Pe, Te and Ze are functions of P , T , u and Yf , and A, . . . , G, γ
and Yf,i are constants that depend on the system’s design parameters and the
fluid properties. The (non-dimensionalized) variables are: the pressure (P ),
temperature (T ), and fuel mass fraction (Yf ) in the combustion chamber and
the fluid velocity (u) in the tailpipe. The system of equations can be expressed
in vector form by

dy
dt

= f (y), where y = (P, T, u, Yf )�.

3 Parameter Study

3.1 Numerical Time Integration

Through numerical time integration it is possible to study the stability of the
combustion process for given sets of parameters.

Figure 2 shows how the pressure evolves in time for three different val-
ues of the wall temperature (Tw) of the combustion chamber. The top figure
shows steady combustion for Tw = 1,200 K. The middle figure shows pulse
combustion for Tw = 1,000 K. The bottom figure shows that flame extinction
occurs for Tw = 750 K.
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Fig. 2. Pressure signals in combustion chamber from numerical simulations for three
wall temperatures
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Fig. 3. Peak-to-peak pressure amplitudes (in kPa) obtained from numerical
simulation for various combinations of wall temperature and flow time

Figure 3 shows how the peak-to-peak amplitude of the pressure oscillations
depends on the wall temperature Tw and the flow time τf , which is inversely
proportional to the fuel mass inflow rate. The figure indicates for which com-
binations of these two parameters stable pulse operation occurs.

3.2 Stability Analysis

This two parameter analysis is already very time consuming. In order to
explore the parameter space in an insightful and computationally inexpen-
sive way, we perform a stability analysis of the steady-state solutions. These
are found by solving f(y) = 0.

Several steady-state solutions may exist for any given set of parameter
values. Figure 4 shows the steady-state temperature(s) for given wall temper-
atures. Clearly either one, two, or three steady-state solutions exist, depending
on the wall temperature.

The stability of the steady states can be determined by calculating the four
eigenvalues of the corresponding Jacobian matrices. If all four eigenvalues have
a negative real part, the steady state is stable and no pulse combustion can
occur in its neighbourhood.

Figure 5 shows the largest of the real parts of the eigenvalues corresponding
to the steady-state solution with the highest temperature. It indicates for
which pairs of the parameters Tw and τf the steady-state solution is stable or
unstable. The boundary for flame extinction results from bifurcation of the
steady state, while the boundary for steady combustion results from a sign
change of the real part of the eigenvalue. Note the qualitative correspondence
with Fig. 3.
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4 Concluding Remarks

4.1 Discussion

The stability analysis provides a useful tool for the parameter study. For state
variables close enough to a stable steady state, the stability analysis gives us
definitive information that pulse combustion is not possible. In general, the
stability analysis gives a strong indication for which system parameters pulse
combustion is not possible. For other system parameter values the stability
analysis is not conclusive. Figure 3, for example, shows regions where flame
extinction occurs, while the corresponding regions in Fig. 5 show unstable
steady states. However, the stability analysis always gives good guidelines
to determine which values of the design parameters should be investigated
further for obtaining stable pulse operation.
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4.2 Validity

The model in [3] describes thermal pulse combustion. The model can be
adapted for valved pulse combustion, see for example [1] and [4], but then
only one steady state exists: flame extinction. The model of Richards et al.
also has serious limitations, see our analysis in [6]. Despite its limitations,
experiments with different heat release rates in the model, and extending it
with variable air/fuel ratio and stochastic noise, suggest that good agreement
with experimental data for valved combustion can be obtained.

4.3 Future Research

The stability analysis has provided useful insight into the behaviour of a pulse
combustor as modelled by Richards et al. As a next step in our research, we
want to extend this stability analysis to more advanced models, and we also
hope to gain more insight into its relation with Rayleigh’s criterion. Further-
more, the model of Richards et al. can be improved by including additional
physics (non-stoichiometric and pressurized combustion, combustion noise).
Finally, we want to use the resulting model to study chaotic behaviour in
pulse combustion operation, as for example in [5].
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Summary. This paper shows the effects of a boundary control on pattern formation
in a Rayleigh–Bénard problem with temperature-dependent viscosity. In particular,
a rectangular domain infinite in one of the horizontal dimensions is considered. The
conductive state bifurcates to a stationary pattern for the constant viscosity case.
And the boundary control hinders instability up to the point where it is inhibited for
the value of the control at which the gradient disappears. For the variable viscosity
case, the conductive state bifurcates to a different stationary pattern, and the critical
threshold is lower. The boundary control changes the critical wave number and favors
instability up to the point where it is inhibited for the value of the control at which
the gradient disappears.

1 Introduction

Thermoconvective flows often appear in nature. For instance, thermoconvec-
tive instabilities are responsible for the development of many geophysical
phenomena like mantle convection, plate tectonics, etc. Classically, the prob-
lem is stated as a fluid layer heated uniformly from below [2,3]. A conductive
state becomes unstable at temperature gradients beyond a certain threshold.
Two different effects are responsible for the onset of motion: these are grav-
ity (Rayleigh–Bénard problem) and capillary forces (Marangoni problem).
Most studies consider a constant viscosity [5], although interest in convection
problems with temperature dependent viscosity has increased [6, 9] since this
dependence is a fundamental feature of mantle convection. Optimal control
techniques are useful for finding ways to avoid convection [1]. Navarro and
Herrero [7] proves that an optimal boundary control consists of heating at the
top with the same shape as at the bottom.

In this paper we propose the numerical study of a Rayleigh–Bénard prob-
lem in a rectangular domain that is infinite in one of the horizontal dimensions.
Viscosity depends exponentially on temperature. And we apply a boundary
control with constant heating at the top. We then compare the influence of

A.D. Fitt et al. (eds.), Progress in Industrial Mathematics at ECMI 2008,

Mathematics in Industry 15, DOI 10.1007/978-3-642-12110-4 141,

c© Springer-Verlag Berlin Heidelberg 2010



882 H. Herrero and F. Pla

the control on the instabilities to problems with constant and variable viscosi-
ties. The conductive state bifurcates to a stationary pattern for the constant
viscosity case. And the boundary control hinders instability up to the point
where it is inhibited for the value of the control at which the gradient dis-
appears. For the variable viscosity case, the conductive state bifurcates to a
different stationary pattern, and the critical threshold is lower. The bound-
ary control changes the critical wave number and favors instability up to the
point where it is inhibited for the value of the control at which the gradient
disappears.

2 Formulation of the Problem

The physical setup consists of a horizontal fluid layer in a rectangular container
l wide (x coordinate), d deep (z coordinate) and infinite in the y direction.
The upper surface is free and the bottom plate is rigid. At z = 0 a constant
temperature is imposed Tmax. The upper surface temperature is Tmin. We
define �T = Tmax − Tmin.

In the equations governing the system, ux, uy and uz are the components
of the velocity field u, T is the temperature, p is the pressure, x is the space
coordinate, and t is the time. The magnitudes are expressed in dimensionless
form after rescaling in the following way: x′ = x/d, t′ = κt/d2, u′ = du/κ,
p′ = d2p/ (ρ0κν0) , Θ = (T − Tmin) /�T . Here κ is the thermal diffusivity, ν0
the kinematic viscosity of the liquid at temperature Tmin, and ρ0 is the mean
density at the temperature Tmin. After rescaling the domain Ω1 = [0, l] ×
[0, d] × IR is transformed into Ω2 = [0, Γ ] × [0, 1] × IR where Γ = l/d is the
aspect ratio, which we set at Γ = 2.891 since it is a good representation of
the general behavior shown in [8].

The system evolves in accordance with the momentum and the mass bal-
ance equations and the energy conservation principle, which in dimensionless
form are (the primes in the corresponding fields have been dropped),

∇ · u = 0, (1)
∂tΘ + u · ∇Θ = ∇2Θ, (2)
∂tu + (u · ∇)u = Pr

(−∇p+ div
(
ν(Θ) · (∇u + (∇u)T

))
+ RΘez

)
, (3)

where the Oberbeck–Boussinesq approximation has been used [8]. Here ez

is the unit vector in the z direction. The following dimensionless numbers
have been introduced: the Prandtl number Pr = ν/κ, which accounts for the
characteristics of the fluid and can be considered infinite as an approximation
to the mantle property, and the Rayleigh number R = gα�Td3/κν0, which
represents the buoyancy effect. In these expressions α is the thermal expansion
coefficient and g is the gravity constant. The viscosity, ν(Θ), is assumed to be
exponentially dependent on temperature,

ν(Θ) = exp(−γRΘ), (4)



Optimal Control of Buoyant Flows with Temperature-dependent Viscosity 883

where γ is the exponential rate. Only the values γ = 0 (constant viscosity
case) and γ = 0.0862 (variable viscosity case) will be considered. This may be
considered a large viscosity variation across the fluid layer [8].

We now turn our attention to the boundary conditions (bc). The bound-
aries are rigid at the bottom plate and free at the upper and lateral surfaces,
so

ux = uy = uz = 0 on z = 0, (5)
∂zux = ∂zuy = uz = 0 on z = 1, (6)
ux = uy = ∂xuz = 0 on x = 0 and x = Γ. (7)

For temperature we consider a constant value at the upper surface, C, that
will be used as boundary control; the lateral walls are insulating and at the
bottom a constant temperature is imposed,

Θ = C on z = 1; ∂xΘ = 0 on x = 0 and x = Γ ; Θ = 1 on z = 0. (8)

Additional boundary conditions due to pressure are included as explained
in [4].

3 Basic States and Linear Stability Analysis

Of the hydrodynamic equations the conductive solution is the simplest. The
temperature only depends on the vertical component and the fluid is at rest,

Θb(z) = 1− z, pb (z) = p0 +Rz − R

2
z2, ub = 0. (9)

Here the superscript b indicates basic state. The stability of the basic states
is studied by perturbing them with a vector field depending on the x, y and z
coordinates, in a fully 3D analysis: ux(x, y, z) = ub

x(x, z) + ūx(x, z) exp(iky +
σt), and similarly for the rest of the fields. The bar refers to the perturbation.
We considered Fourier mode expansions in the direction y, because in this
direction the boundary conditions are infinite. Expressions for the perturbed
fields are replaced in the basic equations (1)–(3) and the resulting system is lin-
earized. Boundary conditions for the perturbations (ūx, ūy, ūz, Θ, p) are found
by substituting the perturbed fields in (5)–(8) and the additional boundary
conditions due to pressure.

The resulting problem is an eigenvalue one in σ. If Re(σ) < 0 for any
eigenvalue the basic state is stable, but if there exists a value of σ such that
Re(σ) > 0 then the basic state becomes unstable. The condition Re(σ) = 0
may be satisfied for certain values of the external parameters, (R, γ, C), which
define the critical threshold. At the critical threshold, a stationary bifurcation
takes place if Im(σ) = 0, whereas it is a Hopf bifurcation if Im(σ) �= 0.

The eigenvalue problem is discretized by expanding any unknown pertur-
bation field x in a truncated series of orthonormal Chebyshev polynomials,
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Table 1. (kc1 Rc) for different order expansions in chebyshew polynomials for r =
0.0862, Γ = 2.891 and c = 0.996

L = 14 L = 16 L = 18 L = 20 L = 22

N = 12 (1,93.360) (2,93.368) (2,93.369) (2,93.370) (2,93.371)
N = 14 (1,93.355) (2,93.367) (2,93.369) (2,93.369) (2,93.370)
N = 16 (1,93.359) (2,93.367) (2,93.369) (2,93.369) (2,93.370)
N = 18 (2,93.368) (2,93.368) (2,93.369) (2,93.370) (2,93.370)
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Fig. 1. Critical Rayleigh number depending on the control parameter C for γ = 0.
The critical wave number is indicated above the circles

x =
N−1∑
n=0

L−1∑
l=0

axnlTn(x)Tl(z). (10)

For computational convenience the domain Ω2 = [0, Γ ]× [0, 1]× IR is trans-
formed into Ω = [−1, 1]× [−1, 1]× IR. This change of coordinates introduces
scaling factors in equations and boundary conditions which are not explicitly
given here. There are P = 4 × N × L unknowns, which are determined by
a collocation method. In particular, expansions (10) are replaced in the lin-
earized, stationary, axisymmetric equations and boundary conditions (1)–(8),
and these are posed at the Gauss–Lobatto collocation points according to the
rules explained in [8]. The problem is then transformed into its discrete form
and a generalized eigenvalue problem is obtained,

Aw = σBw, (11)

where w is a vector that contains P unknowns and A and B are P ×P matri-
ces. The discrete generalized eigenvalue problem (11) has a finite number of
eigenvalues σi. The stability condition explained above must now be imposed
on σmax, where σmax = maxRe(σi).

The convergence of the numerical method is tested by comparing the
differences in the value of the critical Rayleigh number Rc and the critical
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wave number kc for different orders of expansions in Chebyshev polynomials.
These critical wave number and Rayleigh number values for γ = 0.0862 and
C = 0.996 are shown in Table 1 for several consecutive expansions on varying
the number of polynomials taken in the x (N) and z (L) coordinates. Con-
vergence is reached within a relative degree of precision for Rc in the order of
10−4. Convergence is satisfactory from N = 14 and L = 18, and these are the
orders used in the numerical computations throughout the paper.

4 Numerical Results

We analysed the linear stability of those states for four cases, constant and
variable viscosity and without and with control.

4.1 Constant Viscosity Case

The conductive state bifurcates to a stationary pattern with wave number
kc = 2 at the critical Rayleigh number threshold Rc = 1146.50. By applying
the boundary control, i.e. increasing the value of C, the critical wave number
does not change, kc = 2, and the critical Rc increases until it becomes infinity
for C = 1 (Fig. 1). The value C = 1 is the same for the temperatures at
the bottom and at the top, so there is no temperature gradient; the fluid has
constant temperature and hence buoyancy has no effect and the instability
disappears.

4.2 Variable Viscosity Case

For the variable viscosity case with γ = 0.0862 (Fig. 2) the conductive state
bifurcates to a stationary pattern with wave number kc = 0, and the critical
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Fig. 2. Critical Rayleigh number depending on the control parameter C for γ =
0.0862. The critical wave number is indicated above the circles
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threshold is lower: Rc = 73.51. The boundary control has more influence on
the instabilities. There are three scenarios. For 0 < C ≤ 0.6 the critical wave
number is the same, kc = 0, and the critical Rayleigh number decreases until
Rc = 57. For 0.6 < C ≤ 0.97 the critical wave number increases, kc = 1, and
Rc increases but is less than 73.51 (Rc without control). For C > 0.97, kc = 2,
and Rc tend to infinity at C = 1. This situation is similar to the constant
viscosity case. So the control tends to equalise both cases with constant and
variable viscosities.

5 Conclusions

In this paper we proposed a numerical study of a Rayleigh–Bénard problem
in a rectangular domain infinite in one of the horizontal dimensions, with
temperature dependent viscosity and a boundary control. Viscosity depends
exponentially on temperature, and the boundary control is constant heating
at the top. We compared the influence of the control on the instabilities of
problems with constant and variable viscosities. The models with constant
and variable viscosities behave differently with respect to the control. In the
constant viscosity case the bifurcation does not change with the control: kc = 2
for all C. But in the variable viscosity case it does: kc changes with C. These
results could be applied to planets, so that in a planet with the aspect ratio
considered here and with variable viscosity, the mantle convection could be
influenced by heating on the lithosphere, but the states could only be changed
by strong heating.
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Summary. This work studies the minimum rendezvous time of two space vehicles.
The target vehicle is on a given circular or elliptical orbit and the surveyor vehicle
is equipped with a low thrust motor. Optimal control variables are the magnitude
and direction of the acceleration of the surveyor vehicle. This problem is solved by
applying the Pontriagin maximum principle. By means of the Second-Order Opti-
mality Conditions, it is demonstrated that the formulated optimization problem is
indeed a maximum problem. The calculations are performed both for circular and
elliptical orbits around the Earth.

1 Introduction

An interception problem [5] is solved in the planar case, with time constrained,
single impulse return trajectories followed by low thrust, power limited return
trajectories that minimize the total propellant consumed. This problem is an
extension of problems [2,3] in which in these problem was solved the problem
minimum fuel optimal rendezvous

2 Problem Formulation: Motion Equations of the State

Considering the OXZY inertial planocentric system of axes and the Axzy
system (the z axis in the direction of the vectorial radius r0 – position vector
of target, the x axis is counter rotating, and the y axis perpendicular on them)
related to the A target which evolves on an already known circular or elliptical
orbit (Fig. 1), starting from Newton’s 2nd law (because the motion takes place
out of the atmosphere the aerodynamic forces are neglected, and we divided
by the mass),

d2 (r0 + r)
dt2

= g + a,

where g is the gravity acceleration in the Axzy axis system, a – the acceler-
ation due to the thrust and r – position vector of the surveyor in the Axzy
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Fig. 1. Motion geometry

(also, in Fig. 1, r1 – position vector of the surveyor in the OXZY and r0i –
initial position of r0) the motion equations of the surveyor P are [2, 3]:

dx

dt
= Vx, (1)

dVx
dt

= −2με sinϕ
r30

z +
μp

r40
x+ 2

√
μp

r20
Vz − μ x

[x2 + (r0 + z)2 + y2]3/2
+ ax, (2)

dz

dt
= Vz , (3)

dVz
dt

=
μ

r20
+

2με sinϕ
r30

x+
μp

r40
z−2

√
μp

r20
Vx−μ r0 + z

[x2 + (r0 + z)2 + y2]3/2
+az, (4)

dy

dt
= Vy, (5)

dVy
dt

= −μ y

[x2 + (r0 + z)2 + y2]3/2
+ ay, (6)

dϕ

dt
=

√
μ

p3
(1 + ε cosϕ)2 , (7)

where μ – gravitational parameter, p – focal parameter, ε – eccentricity orbit
(ε = 0 for circular orbit), ax, az, ay – control variables (the accelerations due
to the thrust) and (the state variables) are: x, z, y – coordinates, Vx, Vz, Vy –
velocities, ϕ – elliptical anomaly, with the initial conditions at the time t = 0:

x(0) = x0, z(0) = z0, y(0) = y0,
Vx′(0) = Vx0 , Vz′(0) = Vz0 , Vy′(0) = Vy0 , ϕ(0) = 105 degrees (8)

and final conditions at t = tf :

x(tf ) = z(tf ) = y(tf ) = 0. (9)

The values Vx(tf ), Vz(tf ), Vy(tf ), ϕ(tf ) are free. The control variables are α
and β – angles acceleration direction, from:
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ax = a cosβ cosα, az = a cosβ sinα, ay = a sinβ, (10)

where a is the module of acceleration and for orbits in around of Earth,
a = 10−3g, g – the gravity acceleration.

The problem which may be stated is: Let us find a control function

u = (α, β) : [0, tf ]→ R
3

and a state function

x = (x, z, y, Vx, Vz, Vy) : [0, tf ]→ R
6

for the circular orbits and

x = (x, z, y, Vx, Vz , Vy, ϕ) : [0, tf ]→ R
7

for elliptical orbits, which minimize functional J (u) =
∫ tf
0
dt subject to the

differential equations of motion (1)–(7) with the initial conditions (8) and the
final conditions (9).

3 Optimizing Problem: Boundary Value Problem

Optimizing the problem by the minimum principle. The above defined problem
of optimal control is transformed in a well-known [1, 4, 6] into a two point
boundary problem. For this, the Hamiltonian is:

H = −1 + pxfx + pVxfVx + pzfz + pVzfVz + pyfy + pVyfVy + pϕfϕ,

where px, pVx , pz, pVz , py, pVy , pϕ are the adjoint variables corresponding of
the state variables x, Vx, z, Vz , y, Vy, ϕ and, also, fx, fVx , fz, fVz , fy, fVy , fϕ
are the functions defining the motion equations system of the state variables
x, Vx, z, Vz , y, Vy , ϕ, respectively. By means of the Hamiltonian, the canonic
equations that is the differential equations of the state variables (the above
mentioned equations), the differential equations of the adjoint variables. The
equations of the controls (the optimality conditions) are deduced for (α, β)
the interior point. For H from Hu = 0,

α = a tan
λVx

λVz

, 0 ≤ α ≤ π

2
, β = a tan

λVy√
λ2
Vx

+ λ2
Vz

, − π
2
≤ β ≤ π

2
. (11)

Therefore,
ax = aλVx

/√
λ2
Vx

+ λ2
Vz

+ λ2
Vy
,

az = aλVz

/√
λ2
Vx

+ λ2
Vz

+ λ2
Vy
,

ay = aλVy

/√
λ2
Vx

+ λ2
Vz

+ λ2
Vy

(12)

and must fulfill the Legendre–Clebsch condition (the Second-Order Optimality
Conditions), that is Huu > 0.
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4 Solving of the Problem: Numerical Application

Practically, the analytical solution could not be determined due to the non-
linear structure of the equations which form this system, so because of this
we shall also solve this problem using the shooting type numerical method
[3]. Calculations were performed for circular and elliptical (ε = 0.005) orbits
around the Earth, the final time being deduced.

4.1 Circular Orbits (Figs. 2–4)
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4.2 Elliptical Orbits (Figs. 5–7)
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5 Conclusions

The calculations performed using based on the non-linear theory presented in
this work show that the differences between the results obtained for circular
orbits and the elliptical ones are small if the eccentricity of them are also
small.
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Summary. Calibration and leak identification in Water Distribution Networks are
of paramount importance in Water Industry. In this paper, Particle Swarm Opti-
mization (PSO) is applied to tackle these problems. Standard PSO’s main drawback
is that it is difficult to keep good levels of population diversity and to balance local
and global searches. The formulation proposed, however, is able to find optimum
or near-optimum solutions efficiently with considerably low computational effort
because of the richer population diversity it introduces. Requiring only a low number
of generations is a major advantage in real systems, where costs and time constraints
prohibit too many iterations and hydraulic evaluations.

1 Introduction

Many problems in the Water Industry can be cast in the form of optimiza-
tion problems. Before, we have considered the design of Water Distribution
Networks (WDN) and Wastewater Systems [1–3]. But, taking into account
the uncertainty of data (especially in existing configurations), it is frequently
necessary to solve difficult inverse problems where optimization techniques are
also of paramount importance. The calibration, identification and detection of
leaks in a WDN can be reformulated as optimization problems. In fact, these
problems are of essential interest in the Water Industry due to the great con-
cern for finding mechanisms of sustainable water supply at a reasonable cost.

Classical methods of optimization involve the use of gradients or higher-
order derivatives of the fitness function. But they are not well suited for many
real world problems since they are not able to process inaccurate, noisy, dis-
crete and complex data. Thus, more robust methods of optimization are often
required to generate suitable results.

For the last decade, many researchers in the water field have embarked
on the implementation of Evolutionary Algorithms: Genetic Algorithms [4–6];
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Ant Colony Optimization [7]; Simulated Annealing [8]; Shuffled Complex Evo-
lution [9]; and Harmony Search [10], among others. One of the evolutionary
algorithms that has demonstrated a great potential for the solution of various
optimization problems is PSO. The PSO algorithm was developed by Kennedy
and Eberhart [11] and is a multi-agent optimization system inspired by the
social behavior of a group of migrating birds trying to reach an unknown
destination. This algorithm, with several modifications, is used in the present
work to find solutions for calibration and leak detection problems in water
systems. We provide the results of an application to a selected case-study.

2 PSO and Diversity-Increasing Variant

All evolutionary algorithms share two prominent features. First, they are all
population-based. In PSO, each bird of the flock (swarm or population) rep-
resents a potential solution and is referred to as a particle. Second, there
exists communication and therefore information exchange among the indi-
viduals. In this framework, the birds, besides having individual intelligence,
also develop some social behavior and coordinate their movement towards
a destination [11]. Initially, the process starts from a swarm of particles, in
which each of them contains a candidate solution to the problem that is gen-
erated randomly, and then one searches the optimal solution by iteration.
The performance of each particle is measured using a predefined fitness func-
tion, according to the problem at hand. The i-th particle is associated with
(a) its current position, Xi = (xi1 . . . xiD), where D is the number of vari-
ables involved in the problem; (b) its best position, Yi = (yi1 . . . yiD), reached
in previous cycles; and (c) its flight velocity Vi = (vi1 . . . viD), which makes
it evolve. In each cycle, the position of the best bird in the swarm, Y �, is
updated. Then, the swarm is manipulated according to the equations

V ′
i = ω Vi + c1 rand( ) (Yi −Xi) + c2 rand( ) (Y ∗ −Xi) , (1)

X ′
i = Xi + Vi, (2)

where the prime denotes the new values. Here, c1 and c2 > 0 are two positive
constants called learning factors or rates; rand( ) creates two independent
random numbers between 0 and 1; ω is a factor of inertia suggested by Shi
and Eberhart [12] which controls the impact of the velocity history into the
new velocity. The ω factor permits to balance out global and local searches. It
was suggested to have it decrease linearly with time, usually in a way to first
emphasize global search and then prioritize local search. Equation (1) is used
to calculate the i-th particle’s new velocity, a description which considers three
main ingredients: the particle’s previous velocity, the distance of the particle’s
current position from its own best position, and the distance of the parti-
cle’s current position from the swarm’s best experience (position of the best
particle). Thus, each particle or potential solution moves to a new position
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according to (2). For each dimension, particle velocities are constrained by
minimum and maximum velocities

Vmin ≤ Vj ≤ Vmax, (3)

which are user defined parameters to control excessive roaming of particles
outside of the search space. These important parameters determine the reso-
lution with which regions between the present position and the target (best so
far) positions are searched. If Vj is too big, particles might fly through good
solutions. If Vj is too small, particles may not explore sufficiently beyond
locally good regions and could easily be trapped in local optima.

PSO’s main drawback is that it is difficult to maintain acceptable levels
of population diversity and to balance local and global searches, and hence
suboptimal solutions are prematurely obtained. In general, the random char-
acter, a typical feature of evolutionary algorithms, adds a degree of diversity
to the manipulated populations. Nevertheless, in standard PSO these random
components are unable to add a sufficient amount of diversity. As shown in
[3], frequent collisions of birds occur in the search space, especially onto the
leader. This, in fact, caused the effective population size to be lower and con-
sequently produced a loss in the algorithm’s effectiveness. The study in [13]
presents a PSO variant in which a few of the best birds are selected to check
collisions. Additionally, birds are re-generated completely at random when
collision occurs. This random re-generation of the many birds which tend to
collide with the best birds avoids premature convergence as it prevents clone
populations from dominating the search. The inclusion of this procedure into
PSO greatly increases diversity and improves convergence and quality of the
final solutions.

The parameters have been selected after preliminary tuning following some
suggestions [12, 14]:

• c1 = 3, c2 = 2; ω = 0.5 +
1

2(ln k + 1)
, where k is the iteration number;

• Vmax = 7% and Vmin = −Vmax.

The termination condition stopped the process, if after 200 iterations no
improvement in the solution had been obtained. A population of 300 particles
was used.

3 Calibration of a WDN and Leak Identification

In the past, various optimization techniques have been considered to deal with
the calibration and the identification of leaks in a WDN (see e.g. [15]). In this
section, we show how the PSO algorithm can be used to tackle this problem.

Computational modeling of WDN is of great importance for WDN author-
ities. The complete set of equations for one of the models may be written using
block matrix notation [16, 17]:
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(
A11(q) A12

At12 0

) (
q
H

)
=

(−A10Hf

Q

)
, (4)

where A12 is the so-called connectivity matrix describing the way demand
nodes are connected through the lines. Its size is L × Np, with L being the
number of lines and Np the number of demand nodes. Furthermore, q is the
vector of the flowrates through the lines, H the vector of unknown heads at
demand nodes; A10 is an L×Nf matrix, Nf being the number of fixed head
nodes with known head Hf , and Q is the Np-dimensional vector of demands.
Finally, A11(q) is an L×L diagonal matrix. System (4) is a non-linear problem,
whose solution is the state vector x = (q,H)t of the system.

In real-life applications, however, it is a very difficult task to create precise
conditions for WDN hydraulic models. To be really useful, any such model
should first be calibrated. Calibration is the process in which a certain number
of model parameters are adjusted until this model closely mimics the behavior
of the real system. Typical WDN parameters with significant uncertainty are
pipe roughness and leaks.

For new pipes, roughness can be assessed directly through lab tests. But
for an already existing WDN, these old manual methods are not accurate at
all. Also, in order to obtain good values for the system losses, the flowrates
through the pipes must be known with sufficient accuracy [18]. But these
flowrates cannot be accurately determined, if there are leaks in the system
(leaks can be considered as unknown demands). Frequently, leak identification
can only be carried out globally through lumped audits. Much better results
can be achieved, if the calibration of the analyzed WDN model is formulated
via optimization problems using an objective function. The objective function
attempts to reconcile the differences between the actually measured pressures
and the predicted pressures of the hydraulic simulation which the computer
model yields for a set of predefined system parameters. Roughness coefficients
and leak magnitudes will be the variables of the fitness function. The discrep-
ancy among measured and theoretical (given by the model) pressure heads is
then minimized by using the following fitness function:

F =
N∑
j=1

pj ·
∣∣Hm

j −Hc
j

∣∣. (5)

Here, N denotes the number of demand junctions where pressure measures
were taken (a limited number of all the junctions), and pj the penalty for the
discrepancy between the measured piezometric head Hm

j at node j and the
calculated piezometric head Hc

j at node j. Furthermore, the penalty factor
is taken as 105, if

∣∣Hm
j −Hc

j

∣∣ is bigger than the tolerance threshold allowed
for node j, and otherwise 0. In the process of minimizing (5), the problem
variables approach the values of their corresponding real parameters.

The proposed procedure has been applied to the Hanoi network [19]. The
network topology uses the design data given in [19] for the length of the
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pipes and the demand at the junctions. As stated in [19], pipe diameters were
unknown, since it was a design problem. Here, we have assigned design values
to the diameters of the pipes obtained in [3]. Also, a roughness coefficient of
130 (C of Hazen–Williams) has been assigned to all the pipes. Additionally,
five new demand nodes have been considered in order to mimic the system
leaks. By using EPANET2 [20], the network was analyzed and the computed
head values at the junctions were stored. These pressure heads, together with
the assigned Hazen–Williams coefficient and the localization and magnitude
of the leaks, represent synthetically the real (measured) values of the network.
To measure the performance of the algorithm for the original network with
the identification of leaking pipes, roughness coefficients were allowed to vary
between 80 and 140, and leak exponents between 0 and 1.5. Running the
algorithm 100 times, the difference between measured and calculated pressure
heads was always found to be smaller than 0.15 mca.

4 Conclusions

Optimization problems in the field of urban hydraulics are complex in nature
and difficult to solve by conventional optimization techniques. In particular
for large WDNs, the optimization process of construction and maintenance
needs the allocation of many resources every year. Also, a growing concern has
arisen nowadays over water loss in existing WDNs, quite common with many
aging elements, so that the calibration of friction and leakage is of paramount
importance in drinking water systems.

In this work, PSO has been applied to the problem of calibration and
leak identification in WDNs. Good solutions have been found for the case-
study considered. A new feature which effectively increases the diversity of
the population of birds has been included. This feature makes the algorithm
converge with lesser iterations, and thus saves time, something of primary
concern in real WDN problems.

The same approach should be extended to other networks, since this is a
problem that has only received minor attention in the literature. In addition,
parametric studies should be carried out in order to fine-tune the behavior of
PSO. On the other hand, the results we have shown here are very promising
and show that PSO is a reliable algorithm that must be considered as an
excellent alternative to face optimization problems in water systems.
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Swarm Optimization with Enriched Diversity, Mathematical and Computer
Modelling (2010) (submitted for publication)

14. Shi, X.H., Liang, Y.C., Lee, H.P., Lu, C., Wang, Q.X.: Inf. Process. Lett. 103(5),
169–176 (2007)
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Summary. The Method of Auxiliary Sources is used for characterisation of grating
defects. Grating profiles are characterised by best fit matching of a library of diffrac-
tion efficiencies with numerical simulated diffraction efficiencies with defects. It is
shown that the presented method can solve the inverse problem with an accuracy
usually thought to require rigorous electromagnetic theories.

1 Characterisation of Micro and Nano Structures
Embedded in Materials

Functional materials with embedded micro and nano structures find appli-
cation in such diverse areas of technology as optical telecommunication
components, self-cleaning windows, medical equipment, and the technology of
mass production of electronics and digital watermarks. The main useful prop-
erties of such materials are not intrinsic, but rather stem from the introduced
modifications on or just beneath the surface of the material. The modifications
are, e.g., insertion of particles or air holes of micro or nano scale under the
material surface, and alterations of the topology of the surface, such as the
introduction of surface gratings or deposition of particles, on micro and nano
scale. The design process and industrial use of functional materials require
rapid and non-destructive techniques of characterisation of the embedded
micro and nano structures. Among several physically distinct methods, we
focus on the combined spectroscopic and angular resolved scatterometry tech-
nique called Optical Diffraction Microscopy (ODM) [1, 2, 5–7]. Here, specific
features of the sample under investigation are reconstructed from the mea-
sured optical power in the scattered far field. The method thus requires the
solution of an inverse scattering problem, and ultimately of a nonlinear opti-
misation problem; however, in an industrial context such as quality control,
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the principal features of the scatterer may be well-known, and one needs rapid
interpretation of measurement results to identify only relatively small pertur-
bations, e.g., manufacturing errors, in these features. The structures of interest
are typically small in terms of the wavelength of the illuminating light, and it
is therefore relevant to address the inverse scattering problem using the full
classical electromagnetic model, rather than asymptotic formulations. The
Method of Auxiliary Sources (MAS) is an efficient numerical, non-asymptotic
technique of solution of boundary problems; see [4, 8] and references therein.
In the following, the method is used to approximate the solution of example
inverse problems which arise in Optical Diffraction Microscopy.

2 The Method of Auxiliary Sources

In the context of two-dimensional, time-harmonic forward electromagnetic
scattering, the Method of Auxiliary Sources (MAS) is a variational method
characterised by the choice of fundamental solutions of the Helmholtz equa-
tion in R

2 for the expansion vectors of the scattered field, and the Dirac delta
functions for the test vectors. Recall that, for every positive k, an outgoing1

fundamental solution of the Helmholtz equation (Δ+k2)u = 0 in R
2, with sin-

gularity at x′ ∈ R
2, is the Hankel function H(2)

0 (k|x−x′|) of order zero and of
second kind. Figures 1 and 2 show a model time-harmonic Dirichlet scattering
problem in R

2 and a corresponding MAS formulation. The constant k is the
wave number 2π/λ, where λ is the operating wavelength. In MAS, all employed
fundamental solutions have singularities in the interior of the scatterer.
The current sources of the approximation of the exact scattered field –
the so-called auxiliary sources – are hence Delta functions in R

2 with sin-
gularities in the interior of the scatterer, and, in the transverse electric (TE)
case, the scattered field Es is approximated in the exterior Ω by a finite linear
combination of the form EMAS(x) =

∑N
j=1 CjH

(2)
0 (k|x − x′j |), x ∈ Ω. The

weights (complex numbers Cj) occurring in the linear combination are deter-
mined by enforcing the boundary condition at selected points xl, l = 1, . . . , N ,
on the scatterer boundary Γ . The classical inverse scattering problem which
arises in the ODM consists in finding a surface Γ and a surface current dis-
tribution J on Γ such that the corresponding radiated far field has the same
power pattern as the measured field. Evaluation of the objective function of
this nonlinear optimisation problem necessarily involves the evaluation of the
intermediate scattered far fields. In this context, the MAS representation of
scattered fields holds two major advantages over the traditional surface inte-
grals which originate from boundary layer potential formulations of scattering
problems. First, with the MAS formulation, there is no need for numerical inte-
gration of surface currents, whereas the electric field radiated by a z-directed,

1That is, satisfying the outgoing radiation condition.
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Fig. 1. The geometry of a scattering problem in a subset Ω of R
2

Fig. 2. A MAS setup used to approximate the solution of the considered boundary
problem

time-harmonic electric current distribution J on a boundary Γ in R
2 is pro-

portional to the integral
∫
Γ
H

(2)
0 (k|x − x′|)J(x′)dΓ (x′), for x in the exterior

of Γ . The second major advantage of the MAS is that the scatterer topology
is identified only with the auxiliary sources, rather than with the sources and
with a supporting boundary Γ . In the above-mentioned integral, the domain
of integration Γ is, in general, a parameter of optimisation, and hence needs
to be changed with each iteration. In conclusion, when MAS is used, the
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optimisation problem involves an objective function which is simply a finite
sum independent of the actual geometry of the scatterer surface, as opposed
to an integral taken over a generally variable surface. In our implementation,
described in Sect. 3, a number of scattered far field power patterns are stored in
a library, together with the corresponding sets of auxiliary sources. (The latter
are represented by the locations x′j , j = 1, . . . , n, and the complex amplitudes
Cj , j = 1, . . . , n; these sources radiate suitable approximations of the stored
far field patterns.) Each far field power pattern corresponds to a well-defined
perturbation of the basic topology of the scatterer. With elements x and x′ of
R

2 represented by (|x|, φ) and (|x′|, φ′), respectively, in the usual cylindrical
coordinates, the function 1+i√

πk|x−x′|e
−ik|x−x′|eik|x

′| cos(φ−φ′) is the asymptotic

form of the Hankel function H
(2)
0 (k|x− x′|) of order zero and of second kind,

valid for |x−x′| � λ. We use the phase function eik|x
′| cos(φ−φ′) of this asymp-

totic form for the auxiliary sources in our implementation. The procedure first
compares the measured far-field power pattern with the direct samples in the
library, using a distance function of the form

∑∣∣|Elibrary(φl)| − |Em(φl)|
∣∣2,

where |Em(φl)| is the measured magnitude of the far field at angle φl. After
the best match is found, simple interpolation is used to refine this solution
of the inverse scattering problem. The auxiliary sources corresponding to the
best match, as well as those corresponding to the two entries in the library
which are closest to the best match, are fetched; these sources are represented
by complex amplitude vectors C0, C−1 and C1 in C

N , respectively. The objec-
tive function, which is a finite sum of the form

∑∣∣|EMAS
t (φl)| − |Em(φl)|

∣∣2, is
then minimised with respect to the parameter t ∈ [−1, 1]; the field EMAS

t is
radiated by the auxiliary sources represented by the complex amplitude vector
C(t) = −tC−1 + (1 + t)C0 when t ∈ [−1, 0], and by C(t) = (1 − t)C0 + tC1

when t ∈ [0, 1]. It is here assumed that the library entries are sufficiently
close such that the error is, to a good approximation, a linear function of the
perturbation of the scatterer geometry. The optimum value of the parameter
t is therefore directly interpreted as a normalised deviation of the measured
geometry from the library entries.

3 Results

Figure 3 shows the two-dimensional scattering problem considered here, and
the type of the measured deviations in the scatterer topology. The scatterer,
a piece of corrugated silicon, is immersed in air and illuminated by a time-
harmonic, uniform plane wave of transverse electric (TE) polarisation and
unit amplitude. The incident field propagates in the negative x direction. The
operating wavelength is denoted λ. We want to measure the elongation of a
specific protrusion on the scatterer. Our numerical experiment does not use
actual field measurements; rather, the amplitude of the scattered electric far
field is calculated using the COMSOL software [3, 9]. The library entries are
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Fig. 3. The type of grating defects to be characterised

samples of the magnitude of the scattered electric far field, taken over the angle
of 30◦ symmetrically with respect to the x-axis. A total of only 12 auxiliary
sources are used for the interpolation of the far fields. Table 1 shows the
results of the numerical experiment. The actual and the estimated elongations
in the table are shown normalised with respect to the operating wavelength.
Negative (positive) elongations correspond to the specific protrusion being
shorter (longer) than the nominal one wavelength λ. Relative error 1 and
relative error 2 show the error in the estimate relative to the actual elongation
and relative to the nominal protrusion length, respectively. For the results in
Table 1, the average absolute value of relative error 1 is 14.7%, and the average
absolute value of relative error 2 is 5.4%. Of course, the elongations already
represented in the library are measured with zero error, which improves the
overall accuracy estimate for the method. However, it also turns out that the
elongations of 0.2λ, 0.4λ and 0.6λ match well the library entries of 0.875λ and
1λ, which suggests that, in general, an appropriate a priori estimate is needed
of the possible range of the elongation under measurement. After forcing the
correct initial (library) values for the three above-mentioned elongations, the
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Table 1. Accuracy of the estimates of the protrusion elongation

Actual elongation Estimated elongation Relative error 1 (%) Relative error 2 (%)

−0.9 −0.9206 −2.3 −2.1
−0.3 −0.1800 40.0 12.0
−0.2 −0.1800 10.0 2.0
−0.1875 −0.1800 4.0 0.75

0.1 0.0681 −31.9 −3.2
0.3125 0.3250 4.0 1.3
0.8125 0.6681 −17.8 −14.4
0.9 0.9713 7.9 7.1

interpolation produces estimates with relative error 2 at 12.5%, −18.8% and
−6.0%, respectively.

4 Conclusions and Further Work

It was demonstrated that the Method of Auxiliary Sources can be used for
efficient numerical approximation of solution of certain inverse scattering
problems occurring in two-dimensional monochromatic Optical Diffraction
Microscopy. The method was tested on a number of relevant two-dimensional
inverse problems involving the elongation of a specific protrusion in a grat-
ing. Future work includes the generalisation of the presented method to
three-dimensional measurement, and to polychromatic measurement (in time
domain).
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Summary. The Motz problem can be considered as a benchmark problem for test-
ing the performance of numerical methods in the solution of elliptic problems with
boundary singularities. In this work, we address the solution of the Motz problem
using the Radial Basis Function (RBF) method. We show that the accuracy of the
solution can be significantly increased by using special functions which capture the
behavior of the singularity.

1 Introduction

Standard numerical methods (finite element, boundary element, finite differ-
ence, spectral methods) are very efficient in solving elliptic partial differential
equations, except for problems containing singularities, when their high-order
convergence rates deteriorate. Unfortunately, these singularities are often
present in problems of engineering interest, either due to an abrupt change in
the boundary condition, or due to the presence of re-entrant corners.

Motz’s problem can be considered as a prototype to check the efficiency of
numerical schemes in solving this type of problems. It was first proposed by
Motz [9] in 1947 and later modified by Wait and Mitchell [12]. It consists in
finding a solution to the Laplace equation in a rectangular domain with the
following boundary conditions,

u|x<0,y=0 = 0 , u|x=1 = 500
uy|y=1 = uy|y=0,x>0 = ux|x=−1 = 0

The solution has a singularity at the origin due to the change from Dirichlet
to Neumann boundary conditions. It is representative of many problems of
engineering interest containing this type of boundary conditions which lead
to singularities in the first derivatives at the origin.
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In fact, the solution can be expressed as,

u =
∞∑

i=1

Ai r
(i − 1/2) cos

[(
i − 1

2

)
θ

]
(1)

where r and θ are polar coordinates centered at the singular point. Since
the convergence radius of (1) is 2 [11], the above expansion is valid in the
entire solution domain. The coefficients Ai have been accurately computed by
several authors [7, 11].

In this paper, we use the Radial Basis Function (RBF) [5, 6] method to
compute the solution of Motz’s problem. We show that the accuracy of the
solution is significantly improved by using singular functions which capture
the behavior of the solution near the discontinuity. To this end, we enlarge
the functional space spanned by the RBF basis functions by adding singular
functions which capture the behavior of the local singular solution. Similar
ideas have been used in the past by Platte and Driscoll [10] in the solution
of an eigenvalue problem, and by Hu et al. [4] using inverse multiquadrics
(IMQRB) and Gaussian (GRB) radial basis functions.

2 Global RBF Solution

To solve Motz’s problem with the RBF method, we look for a solution in the
space spanned by the RBF multiquadric functions,

u (x) =
N∑

i=1

αi φi (x) , φi (x) =
√
‖ x − xi ‖2 + c2 , i = 1 . . . N (2)

where c is the shape parameter. The RBF nodes xi are located in an equi-
spaced grid. The coefficients αi are computed by collocation of the PDE in
the interior nodes and collocation of the boundary conditions at the boundary
nodes. To characterize the accuracy of the solution we use a fine grid of 5,000
evaluation nodes, and compute the mean square error, ε, on those nodes.

The left side of Fig. 1 shows the RBF solution obtained with a grid of
21× 41 RBF nodes (N = 861) and an optimum value of the shape parameter
c = 0.3. Notice the oscillations occurring in the vicinity of the singular point.
Inaccuracy of the RBF solution at the boundaries has been often reported in
the past [3]. This degradation is especially severe in the presence of discontin-
uous boundary conditions. In fact, the exact solution exhibits a sharp feature
that does not belong to the interpolation space of the smooth RBFs.

The right side of Fig. 1 shows the dependence of the mean square error on
the shape parameter, c, and on resolution. Notice that the error decreases with
increasing shape parameter until for a certain value of c the system becomes
ill-conditioned leading to a significant increase in error.
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Fig. 1. Left : RBF solution. Right : Mean square error as a function of c
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Fig. 2. Left : RBF centers (open circle) and Collocation nodes (asterisk). Right :
Mean square error as a function of c. RBF solution (thin), PDE collocation at
boundary (thick)

The accuracy of the solution, can be improved by enforcing collocation of
the PDE also in boundary nodes [2]. However, since the number of equations
increases, it is necessary to introduce additional RBF centers to match the
number of unknown coefficients αi. The left side of Fig. 2 shows the set of
RBF centers (open circle) and the set of collocation nodes (asterisk).

The right side of Fig. 2 compares the dependence of mean square error as
a function of c, using collocation of the Laplace equation at boundary nodes
(thick lines), with that obtained with the standard RBF method (thin lines).
A significant increase in the accuracy of the solution is observed.

3 Use of Singularity Capturing Functions

The errors in the RBF solution are concentrated in the vicinity of the singu-
larity, and are due to the inability of the RBF expansion to capture them.
To improve the accuracy of the numerical solution it is convenient to enlarge
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Fig. 3. Left : solution with 1 special function (21×41, c = 0.3). Right : Mean square
error as a function of shape parameter c

the functional space spanned by the RBFs, by including a new function which
captures the discontinuity in the boundary condition. Thus, we include as
additional function the first term in the asymptotic expansion (1), namely

φN+1 (x) =
√
r cos

(
θ

2

)
, θ = arctan

(y
x

)

where φN+1 is the first function in (1). Notice that φN+1 satisfies the Laplace
equation and the boundary conditions at y = 0.

Since there are N+1 unknowns, αi, and N collocation nodes, an additional
equation is required. We follow [10] in requiring the compatibility condition,

N∑
i=1

αi φN+1 (xi) = 0

The left side of Fig. 3 shows the solution obtained with the RBF method
enhanced with a special function to capture the singularity. Notice that the
oscillations occurring in the vicinity of the singular point have completely dis-
appeared. The right side of Fig. 3 compares the dependence of mean square
error on c, using collocation of the Laplace equation at boundary nodes plus
one special singularity capturing function (thick lines), with that obtained
without special functions (thin lines). Significant improvements in accuracy
are observed for all three grid resolutions. Including additional special func-
tions leads to further improvements in accuracy but these are significantly
lower than those obtained when adding the first special function.

However, the main result that appears in Fig. 3, is that the exponential
convergence of the RBF method is recovered. Madych [8] gave an error esti-
mate for multiquadrics as O(eac λc/h), where h is the mesh size. This result
has a great impact in the numerical solution of PDEs, because it implies that
solution accuracy can be increased either by refining the mesh (and increasing
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the computational cost), or by simply increasing the shape parameter c. How-
ever, as c increases the multiquadric functions become flat and the resulting
system becomes ill-conditioned. This is shown in Fig. 3; accuracy increases
with c until it reaches the breakdown point caused by machine roundoff error.

Although Madych [8] results were derived for the interpolation problem,
several authors have have also found exponential convergence in the solution
of PDEs. However, there is no agreement in the exact form of the dependence
of the error on c and h. Hu et al. [4] follow Madych in considering that the
error is O(λc/h), while Cheng et al. [1] results converge as O(λ

√
c/h).

To check the dependence of the error on c and h for our data, we car-
ried out several numerical experiments. The left side of Fig. 4 shows the mean
square error of these experiments as a function of

√
c/h. The exponential

convergence of the error is readily apparent. However, the experiments for
different resolutions fail to collapse into a single curve. Therefore, the error
convergence is not simply O(λ

√
c/h), as was the case in Cheng et al. [1] exper-

iments, but an additional dependence on h is apparent. In fact, if we plot
our results as a function of

√
c / h − 0.1478 / h the error of all the different

numerical experiments coalesce into a single curve (see right side of figure 4),

ε = 6.54 · 0.5
(√
c/h − 0.1478 / h

)

4 Conclusions

We analyze the performance of the RBF method in the solution of Motz’s
problem. However, the results obtained are applicable to a wide range of prob-
lems with boundary conditions that lead to singularities in the first derivatives
of the solution. We show, that the exponential convergence which is typical
of the RBF method, is lost in this type of problems containing singularities.
The accuracy of the solution can be increased by collocation of the PDE at
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boundary nodes. However, in order to restore the exponential convergence of
the RBF method, it is necessary to use special functions which capture the
behavior of the solution near the discontinuity.
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Summary. Bilevel optimal control problems are presented as an extension of clas-
sical optimal control problems. Hereby, additional constraints are considered for
the primary problem, which depend on the optimal solutions of secondary optimal
control problems.

The numerical solution of the bilevel approach is illustrated by an application
of a container crane. Time and energy optimal trajectories are calculated under
the terminal condition that the crane system comes to be at rest at a predefined
location. Additional bilevel constraints ensure that the crane system can be brought
optimally to a rest position at a free location from any state of the trajectory. 1

1 Container Cranes in Warehouses

Container cranes are an efficient alternative to commonly used forklift trucks
if looking for special automated solutions in high rack warehousing.

A trolley at the top of a rack performs the horizontal movement. A payload
is attached to it with wire ropes for vertical movement. After fixing the payload
to the rack, the goods can be loaded or unloaded with a fork-like construction.
As the trolleys can be attached to different heights in the rack, the usage of
more trolleys in one rack can increase the overall performance.

When moving the trolley, however, the payload will start to swing. The
task of trajectory planning is to move the whole system from one position
in the rack to another and to ensure that there will be no oscillation when
reaching the terminal point.

To make this system work in industrial facilities, further safety require-
ments have to be considered.

If using several cranes in one rack, the trajectories have to be generated
avoiding collision between the cranes. If there is only one trolley, it still has
to consider walls or corridors.

1This paper is based on a cooperation project with Westfalia, Borgholzhausen.

A.D. Fitt et al. (eds.), Progress in Industrial Mathematics at ECMI 2008,

Mathematics in Industry 15, DOI 10.1007/978-3-642-12110-4 146,

c© Springer-Verlag Berlin Heidelberg 2010



914 M. Knauer and C. Büskens

If in case of a power failure, the system switches off immediately, the
swinging payloads must not collide neither.

Finally, the user might want to invoke a controlled braking. Here, the
crane system has to stop fast without any oscillation remaining, no matter
where the final position is. This means, that alternative trajectories have to
be already available online, such that the control unit can switch to these.

The calculation of the original trajectory and its so-called safety stop
trajectories can be interpreted as a bilevel problem:

The existence of an alternative trajectory is required at each point of
the main trajectory. On the other hand the initial points of the safety stop
trajectories depend on the main trajectory.

2 Bilevel Optimal Programming

In optimal programming, the task is to minimize a function under some
constraints. When considering bilevel optimal programming, additional opti-
mization problems also occur in the constraints:

min
x∈X

F (x, y)

subject to C(x, y) ≥ 0,

for each fixed x, y = y(x) is a solution to

min
y∈Y

f(x, y)

subject to c(x, y) ≥ 0

(1)

In game theory, this is interpreted as two decision makers or two players.
The player on the upper level is called the leader, the player on the lower
level is the follower. Both follow different objectives F and f and both have
their own set of parameters x and y, influencing both objective functions. The
constraints for the players are C and c, respectively.

The solution of a bilevel programming problem (1) is generally NP-hard.
There exist methods for special cases or some heuristics to get approximate
solutions.

If differentiability properties hold, the first-order necessary conditions for
the lower-level problem of (1) can be used to replace it, such that a single-level
problem remains:

min
x∈X

F (x, y)

subject to C(x, y) ≥ 0

∇y�(x, y, λ) = 0,
c(x, y) ≥ 0,

λT ≥ 0,
λT c(x, y) = 0,

(2)

with the Lagrange multiplier vector λ, and �(x, y, λ) = f(x, y)− λT c(x, y).
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3 Bilevel Optimal Control Problem

To generate a trajectory for a crane system, an optimal control problem has
to be solved. This can be extended to a bilevel optimal control problem,
whose solution consists of a trajectory calculated at the upper level and an
alternative trajectory calculated at the lower level:

min
x,u

G(x(0), x(tf ), y, v) +

tf∫

0

F0(x(t), u(t), y, v) dt

subject to ẋ(t) = F (x(t), u(t), y, v), for all t ∈ [0, tf ],
xi(0) = Ai, for i ∈ I ⊂ {1, . . . , n},
xj(τf ) = Ωj , for j ∈ J ⊂ {1, . . . , n},
C(x(t), u(t), y, v) ≤ 0, for all t ∈ [0, tf ],

for each fixed x and u,
y(τ) = y(τ ;x, u) and v(τ) = v(τ ;x, u) are a solution to

min
y,v

g(x, u, y(0), y(τf )) +

τf∫

0

f0(x, u, y(τ), v(τ)) dτ

subject to ẏ(τ) = f(x, u, y(τ), v(τ)), for all τ ∈ [0, τf ],
yi(0) = αi, for i ∈ ι ⊂ {1, . . . , n},
yj(τf ) = ωj , for j ∈ φ ⊂ {1, . . . , n},
c(x, u, y(τ), v(τ)) ≤ 0, for all τ ∈ [0, τf ].

(3)

The upper-level problem is to optimize the control vector u depending
on time t, such that an objective function is minimized. The state vector x
holds the system of differential equations F . Initial conditions A and terminal
conditions Ω as well as constraints C can be included.

On the lower level, a similar problem is given. Both problems are coupled
via the information in state vectors x and y and the control vectors u and v.

Similarly to (2), the first-order necessary conditions for the lower-level
problem of (3) can be formulated as

λ̇(τ) = −Hy,
Hv = 0,

λi(0) = 0, if yi(0) free,
λj(τf ) = 0, if yj(τf ) free,

c(x, u, y(τ), v(τ)) ≤ 0, for all τ ∈ [0, τf ],

with the Hamiltonian H = l0f0 + λt(τ)f.
In this formulation, only one follower is considered, and for that reason

only one alternative trajectory is calculated. This means, that only at one
point in time a safety stop can be requested.

Ideally, a bilevel problem with an infinite number of followers for every
point in time of the upper-level problem has to be formulated. To solve this
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Fig. 1. Velocity of the optimal trajectory. From left to right : bilevel problem with
one follower, bilevel problem with infinite number of followers, bilevel problem with
reduced number of followers

problem numerically, memory requirements and calculation times have to be
reduced, and hence the problem is restricted to a finite number of followers.
A transformation of all problems to one fixed time scale finally allows the
simultaneous calculation of the upper- and all lower-level problems, see Fig. 1.

The k lower-level problems, invoked from the upper-level at the discrete
points in time T1, . . . , Tk, can be put together to one large lower-level problem
by combining the control vectors vTi and the state vectors yTi to

Y (t) =

⎛
⎜⎝
yT1

...
yTk

⎞
⎟⎠ , V (t) =

⎛
⎜⎝
vT1

...
vTk

⎞
⎟⎠ .

By using the first-order necessary conditions, a bilevel problem with several
followers can be reduced to the single level problem

min
x,u,Y,Λ

G(x(0), x(1), Y, V ) +

1∫

0

F0(x(t), u(t), Y, V ) dt (OCP+)

subject to ẋ(t) = F (x(t), u(t), Y, V ), for all t ∈ [0, 1],
Ψ(x(0), x(1), Y, V ) = 0,
C(x(t), u(t), Y, V ) ≤ 0, for all t ∈ [0, 1],

Λ̇(τ) = HY ,
HV = 0,
Λi(0) = 0, if Yi(0) free,
Λj(1) = 0, if Yj(1) free,
C(x, u, Y (t), V (t)) ≤ 0, for all t ∈ [0, 1].

This optimal control problem – now in standard formulation – can be trans-
formed by direct transcription methods (e.g. NUDOCCCS [1]) into a nonlinear
programming problem, solvable with SQP methods.
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4 Numerical Results

The model of a container crane, which was used for these numerical results is
represented by the following system of differential equations:

s̈ = u1

l̈ = u2

d̈ = u1 − g−u2
l · d

(4)

The absolute position of the trolley in the rack is denoted by s, and the length
of the wire rope by l. The relative position of the payload with respect to the
trolley is d. The control variables u1 and u2 represent the motor accelerations
for the trolley and the wire rope. g is Earth’s gravity.

The differential equations (4) are used in the optimal control problem for
container cranes (5), where the crane has to move from one position at rest
(s0, l0) to another position at rest (sf , lf ) minimizing process time and energy
consumption:

min
u,tf

I[u] = tf +
tf∫
0

‖u(t)‖22 dt
subject to s̈ = u1, l̈ = u2, d̈ = u1 − g−u2

l · d
C(states(t), u(t)) ≤ 0, t ∈ [0, tf ]

s(0) = s0, ṡ(0) = 0,
l(0) = l0, l̇(0) = 0,
d(0) = 0, ḋ(0) = 0,

s(tf ) = sf , ṡ(tf ) = 0,
l(tf) = lf , l̇(tf ) = 0,
d(tf ) = 0, ḋ(tf ) = 0.

(5)

The problem at the lower level is to find an alternative trajectory from the
current state at time t reaching an unknown position in fixed time τf without
any oscillation remaining:

min
vt

It[vt] =
τf∫
0

‖vt(τ)‖22 dτ
subject to s̈t = vt,1, l̈t = vt,2, d̈t = vt,1 − g−vt,2

lt
· dt

ct(states(τ), vt(τ)) ≤ 0, τ ∈ [0, τft ]

st(0) = s(t), ṡt(0) = ṡ(t),
lt(0) = l(t), l̇t(0) = l̇(t),
dt(0) = d(t), ḋt(0) = ḋ(t),

st(τf t) = free, ṡt(τf t) = 0,
lt(τf t) = free, l̇t(τf t) = 0,
dt(τf t) = 0, ḋt(τf t) = 0.
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Fig. 2. Optimal solution of the main trajectory and ten alternative trajectories.
The grey isolated line is the solution of the single-level problem

Figure 2 shows the optimal trajectory from the initial position s0 = 0,
l0 = 5 to the terminal position sf = 20, lf = 4, considering ten safety stop
trajectories, such that the system comes to be at rest within 4 s.

5 Conclusions

Bilevel optimal control problems combine optimal control theory and direct
methods.

In our example, considering the lower-level problems, a reduction of the
average amplitude of the main trajectory could be observed. For a fast cal-
culation of stoppable trajectories, a simple criterion reducing the average
amplitude can be used instead of the lower-level problem formulation.
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Summary. Constellations of satellites are used for a steady and efficient monitoring
of selected regions of the Earth.

The orbit parameters for each satellite in a constellation define its flight path and
the area covered by its swath. An optimal choice of the parameters could maximize
the covered area, or find uniform coverages over time.

In order to use sequential quadratic programming methods to find the best
constellation, a differentiable formulation of the coverage depending on the orbit
parameters of each satellite has been developed. The areas monitored by the
satellites’ sensors are modelled as unions of convex polygons on a sphere.1

1 Satellite Mission Analysis

Satellites are used as a reliable source of data for global monitoring for environ-
ment and security. Depending on the types of sensors installed on a satellite,
different kinds of data can be recorded.

In order to ensure the availability of recent data over a short period, con-
stellations of more satellites are used which, once established, keep on their
prearranged orbits for their whole lifetime. The control unit on the satellites
is only available to compensate errors in the model or to avoid collisions with
space debris.

A common task of satellite mission analysis is to find a constellation of
satellites, such that a given target on Earth can be monitored at least once
within a fixed repeating time frame with as few satellites as possible.

2 Optimization Problem

To find such a constellation, trajectories of the satellites have to be calculated.
From orbital mechanics it is well known, that a satellite moves on an elliptical

1This paper is based on a cooperation project with OHB System AG, Bremen.
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Fig. 1. Orbital elements: longitude of ascending node Ω, inclination i, argument of
perigee ω, semimajor axis a and mean anomaly M . Eccentricity e is not shown

orbit where the Earth is at one focus. Its current position is generally noted
by the six orbital elements (see Fig. 1).

Using Kepler’s Second Law

Ṁ = const,

the flight path of a satellite around a point mass can be calculated. However, in
order to consider the oblateness of Earth and its inhomogeneous geopotential a
more complex system of differential equations has to be solved with a Runge–
Kutta method. For the detailed system of the Klinkrad trajectory generator
see [1].

In our model each satellite is equipped with left and/or right looking
sensors with fixed opening angles. As the satellites follow their paths, the
monitored region of the Earth’s surface, the so-called swath, is continuously
growing.

For satellite mission analysis, a constellation has to be determined such
that the union of the swaths of all satellites after a given time is maximized.

Formulated as an sequential quadratic programming problem (SQP), this
can be stated as

min
x
−Area(x)

s.t. g(x) ≤ 0,

where x is a vector of free orbit parameters of m satellites, and g(x) denotes all
constraints. These include e.g. box constraints for useful settings of allowed
parameter intervals or constraints for coupling of satellites. The objective
function Area(x) for the SQP method, which evaluates the area covered by
the constellation’s satellites, has to be continuously differentiable.

A straightforward attempt for such an objective function would be to
implement a discrete grid over the surface of the Earth and to count the
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Fig. 2. Two methods for measuring the area. On the left, the approximative result
is based on a discrete grid, on the right an exact result is found with the polygon
method

grid points covered by the swaths. By increasing the number of grid points, a
higher precision can be reached. The necessary differentiability properties with
respect to the orbit parameters will not be fulfilled, unless a lot of memory is
used.

Additionally it is not guaranteed that the region between adjacent covered
grid points has really been covered (Fig. 2).

3 Polygon Coverage

In order to get an area function with the required differentiability properties,
the area covered by the satellites’ sensors is stored as a set of convex disjoint
polygons.

As the swath increases, new polygons are added to the set, which reuse
existing corners, and automatically remove overlapping parts.

In order to keep memory usage small, the set of polygons is simpli-
fied permanently, as unused corners are removed, and adjacent polygons are
merged.

Every time the set of convex polygons is changed, a lot of corner points
have to be tested for convexity. The following lemma provides an efficient
method.

Lemma 1. The corner Ci(xi, yi) of a polygon is convex if and only if
∣∣∣∣∣∣
xi−1 xi xi+1

yi−1 yi yi+1

1 1 1

∣∣∣∣∣∣
≥ 0,

where Ci−1(xi−1, yi−1) and Ci+1(xi+1, yi+1) denote its previous and next
corner in counterclockwise order.
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3.1 Polygon Coverage on Sphere

To apply the polygon coverage on a sphere S, or more generally to a manifold,
an atlas A = {(Uj , ϕj)} has to be chosen, such that the domains of its charts
(Uj , ϕj) cover S. A chart is defined as a homeomorphism

ϕj : Uj ∈ S → Vj ∈ IRn.

For a polygon on a plane, a border connecting two adjacent corners
Ci(xi, yi) and Ci−1(xi−1, yi−1) is the line segment Ci−1Ci:

Ci−1Ci =
{
λ

(
xi
yi

)
+ (1 − λ)

(
xi−1

yi−1

)
| λ ∈ [0, 1]

}

For a polygon on a two-dimensional manifold, the boundary curve B(Ci−1,
Ci) connecting two corners Ci, C̃i−1 ∈ S can be calculated as

B(Ci−1, Ci) =
{
ϕ−1
j (ξ) | ξ ∈ ϕj(Ci−1) ϕj(Ci)

}

using the linear interpolation in the plane. The chart (Uj , ϕj) has to be
selected, so that the line segment ϕj(Ci−1) ϕj(Ci) is a subset of the codomain
Vj .

For our application, an atlas of three charts is enough to construct reason-
able polygons on a unit sphere. One chart is selected for each region around
the two poles of the sphere, a third chart is provided for the remaining part
of the surface.

The standard chart for the last case consists of the domain

U3 = S ∩ {x ∈ IR3 | |x3| ≤ α}

with a fixed parameter α ∈ (0, 1), and the function ϕ3 : U3 → V3. As ϕ3 is a
homeomorphism, it can also be explained by its inverse

ϕ−1
3 : (ζ, ν) �→

⎛
⎝

sin ν cos ζ
sin ν sin ν

cos ζ

⎞
⎠ .

In the region of the sphere representing the area around the north pole, a
chart can be constructed using polar coordinates as follows:

U1 = S ∩ {x ∈ IR3 | x3 ≥ α}

ϕ−1
1 : (ζ, ν) �→

⎛
⎝

ζ
ν√

1− ζ2 − ν2

⎞
⎠

A similar chart can be declared for the region around the south pole.
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Ci−1

Ci

Ci−1

Ci

Di−1

Di

Fig. 3. For each border of the polygon (left) a trapezoid can be constructed
(middle). The sum of all areas of the trapezoids is the area of the polygon (right)

3.2 Area of Polygon on Sphere

The set of polygons represents the region covered by the satellites’ sensors.
During the optimization process the area of large sets of polygons have to be
calculated several times. Hence, a fast and efficient calculation of the area of
a polygon is needed.

The surface integral Area(P ) of a polygon P on the sphere with corners
Ci, i = 1, . . . , n which is in the domain of the chart (U3, ϕ3) can be calculated
as the sum of the surface Area(Ti) of trapezoids Ti with corner points

Ci−1, Ci, Di = ϕ−1
3 ((ϕ3(Ci))1, τ), Di−1 = ϕ−1

3 ((ϕ3(Ci−1))1, τ)

with any constant parameter τ , e.g. τ = 0 (Fig. 3).
The surface integral on the sphere for each trapezoid Ti results in

Area(Ti) =
∫∫
Ti

dσ =
∫∫
ϕ3(Ti)

sinu dudv

=
νi∫

νi−1

ζi−1+
ζi−ζi−1
νi−νi−1

(u−νi−1)∫
0

sinu dvdu,

where (ζi, νi) = ϕ3(Ci) and (ζi−1, νi−1) = ϕ3(Ci−1). Note that these tuples
are simply the latitude and the longitude of the corner points on the sphere.

Here the value of Area(Ti) is positive if the direction of the polygon border
which induces the trapezoid shows upwards, or negative otherwise.

The sum of the signed areas of these trapezoids is the area of the polygon
on the sphere, which can be simplified to

Area(P ) =
n∑
i=1

Area(Ti)

=
n∑
i=0

(sin νi+1 − sin νi)
ζi+1−ζi

νi+1−νi
.

4 Results

As a simplified numerical test example, the coverage of two satellites during
one day should be optimized. Only the inclination angles of both satellites
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Fig. 4. Objective function for problem with two parameters

Fig. 5. Initial, intermediate and final state of optimization process

are used as free parameters. The objective function for this two-dimensional
problem is shown in Fig. 4.

The initial values for the two optimization parameters are chosen so that
the orbits of the satellites are close to the equator (Fig. 5). During the opti-
mization process, the orbit of the satellites is rotated fast towards the poles
so that – in this case – a complete coverage can be found.

5 Conclusions

For a proper formulation of the satellite optimization problem as a nonlinear
optimization problem, we start with a parameter vector x defining a satellite
constellation. Integration over time and projection of trajectory data results
in the swath data. The polygon coverage module transforms this to a set of
polygons. The objective function sums up the areas of all polygons and can
be used with efficient SQP methods, as it is now differentiable with respect to
the parameter vector x. The result is a satellite constellation with an optimal
coverage.
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Summary. An adaptive penalty technique to find feasible solutions of mixed integer
nonlinear optimal control problems on networks is introduced. This new approach
is applied to problems arising in the operation of gas and water supply networks.

1 Introduction

The operation of gas and water supply networks causes high costs. Likewise,
the desire for cost-efficient control of those networks whereas all consumers’
demands are satisfied is present. But the task of transient technical optimiza-
tion results in complex mixed integer nonlinear problems. While the gas and
water dynamics in the pipes of the network introduce partial differential equa-
tions (PDEs) as constraints, there are also combinatorial aspects concerning
discrete processes like switching compressor stations and pumps on or off.
Even finding a single feasible solution is a difficult task.

There are different approaches to solve such a kind of problems.4 Our
approach is based on a sequential quadratic programming (SQP) algorithm
to solve nonlinear continuous optimization problems. Therefore, the discrete
processes/variables have to be fixed, like in a branching algorithm, or relaxed.
To enforce the relaxed variables to the feasible set, we introduce an adaptive
penalty technique.

4A comparison of different approaches to the solution of optimal control problems
for gas networks can be found in [1].
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2 Modelling

We model gas and water supply networks as directed graphs, where the edges
of the graph correspond to the various components of the network, like pipes,
compressor stations, pumps and valves. The vertices are inner/coupling or
boundary nodes.

For both types of networks, the governing equations in the pipes are hyper-
bolic PDEs. In the gas networks, we apply the isothermal Euler equations
supplemented by a suitable equation of state:

∂tρ+ ∂x(ρv) = 0 (1)

∂t(ρv) + ∂x(ρv2) + ∂xp = −gρ∂xh− λ

2D
ρ|v|v (2)

ρ =
p

z(p, T̄ )R0T̄
. (3)

For the water dynamics, we apply the so-called water hammer equations:

gA

a2

∂h

∂t
+
∂q

∂x
= 0 (4)

∂q

∂t
+ gA

∂h

∂x
= −f q|q|

2DA
. (5)

Gas and water supply networks are operated in the subsonic flow region,
that is, the velocity of the gas/water is smaller than the speed of sound in
the considered medium. In this case, implicit box schemes are known to work
very effectively. They are conservative and usually stable under mild con-
ditions. Therefore, we apply a spatially symmetric implicit box scheme for
the discretization of the isothermal Euler equations and the water hammer
equations. For a general balance law of the form ut + f(u)x = g(u), our
discretization scheme reads as follows:5

un+1
j−1 + un+1

j

2
=
un

j−1 + un
j

2
− Δt

Δx

(
fn+1

j − fn+1
j−1

)
+Δt

gn+1
j−1 + gn+1

j

2
. (6)

In addition to the gas/water dynamics inside the pipes, our main focus
lies on the controllable elements, particularly compressor stations in the gas
networks and pumps in the water supply networks. Both have in common that
the feasible domain of the associated control variables consists of two disjoint
sets. A compressor station can be switched off (the control variable equals
zero), and when it is switched on/active, it has to run with a minimum power
and below the technical maximum. Thus, the feasible domain is of the form

{0} ∪ [minCtrl,maxCtrl ] (7)

with minCtrl > 0. Water pumps operate in a similar way. For pumps with
fixed speed, the control variable is even binary since minCtrl equals maxCtrl.

5A stability and convergence analysis of our scheme can be found in [3].
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Thus, in the gas network setting as well as the water supply networks, we
are dealing with mixed integer optimal control problems. Here, the objective
function typically consists of the costs caused by the controllable elements.
These are the accumulated fuel gas consumption of the compressor stations
and the power consumption of the pumps.

Besides the pipes and the controllable elements, there is a multitude of
other components in gas and water supply networks, which are modelled by
algebraic or ordinary differential equations.6 For the numerical solution, these
are discretized at the same time steps as the PDEs and the control variables.
Altogether, this results in a coupled system of nonlinear equations, which
we solve with an adapted version of Newton’s method. Especially, we take
advantage of the sparse structure of the Jacobian matrix of the underlying
equations by using a particular solver [2].

3 Moving Penalty Functions

As we have seen in the previous section, the optimal control task for gas
and water supply networks consists of discrete and continuous control deci-
sions. The combination of discrete decision variables with a highly nonlinear
PDE-constrained continuous task makes the entire problem very difficult to
solve. The presented approach begins with the relaxation of the mixed inte-
ger problem: The feasible domain (7) of each control variable is expanded to
[0,maxCtrl ]. Here, we have to take care of a consistent extension of the equa-
tions describing the controllable elements. Afterwards, we solve the relaxed
continuous optimal control task with a state-of-the-art SQP method [5].

Usually, the solution of the relaxed problem is not feasible for the original
problem. Here, we apply our approach of “moving penalty functions” (MPF).
The basic idea of MPF is to add a variable penalty term to the cost function
of each relaxed switchable element, that is, each controllable element where
switching decisions have to be made and the corresponding control variables
have been relaxed for the optimization process. A prototype of our penalty
functions, which are introduced for each binary variable, is plotted in Fig. 1.
In the course of the optimization process, the position and the height of the
peak are varied, giving this technique its name.

The basic algorithm from the view of a single penalty term is the following:
When the penalty function is initialized, the position xm of the peak of the
penalty function is set to x0 and the maximum value ym to y0. After each
run of the optimization tool, we check whether the relaxed control variable x
is within a so-called fixing region, that is, x ≤ xoff or x ≥ xon. In this case,
the switching decision is fixed. Otherwise, we increase the penalty term and
move the position of the peak in the direction of the current control (plus

6A detailed description of the modelling of the main components of a gas supply
network can be found in [1] and [4].
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Fig. 1. Plot of a penalty function

βr or minus βl).7 Then, the optimization tool is run again until all switching
decisions are fixed or a maximum number of iterations is reached.

Although our basic algorithm already yields useful results, there are lots
of challenges depending on the given task. One very important aspect is the
choice of the parameters. Just as an example, consider the parameters xoff

and xon. On the one hand, we would like to have large regions where the
binary decisions get fixed as fast as possible. But on the other hand, fixing
the wrong variables too early might lead to an infeasible remaining task.
As an improvement of our basic algorithm, we tackle the latter problem by
introducing some kind of active set strategy, that is, if we cannot find a feasible
solution of the remaining (relaxed) problem, we release some previously fixed
binary variables which have influence on the violated constraints.

Another improvement of our basic algorithm deals with the parameters βl

and βr for the moving of the position of the penalty peak. Small values for βl

or βr can result in lots of iterations of the algorithm. On the other hand, large
parameters for the moving can result in jumping around the current solution
without the penalty functions being able to affect the control in neither direc-
tion. Such situations typically occur if two or more control variables have to
be influenced in opposite directions to get a feasible solution of the original
(not relaxed) problem. Our strategy is to resize the moving parameters βl

and βr after a specified number of steps into the same direction (xm is always
increased or decreased) or when xm jumps from one side of x to the other
and back for a certain number of times. In the first case, either βl or βr is
increased and in the second case, βl and βr are decreased.

7It is possible and also intended that xm overtakes x.
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C1

C2

sinksource

Fig. 2. Example gas network

Table 1. Optimization results for the gas network example

t0 t1 t2 t3 t4
Power of compressor C1 0 0 0 500 891
Power of compressor C2 0 0 532 733 1154

4 Results

4.1 Gas Network

Figure 2 shows one of our example gas networks. It consists of four pipes and
two compressor stations. While the pressure is constant at the source node,
there is an increasing flow demand at the sink. This causes higher friction
losses, which the two compressor stations have to compensate for due to a
minimum pressure constraint at the sink. The optimization horizon is four
hours and it is equally discretized into four parts.

For both compressor stations, we have minCtrl = 500 and maxCtrl = 1500,
but compressor C2 has a higher efficiency. Therefore, we expect the second
compressor to do most of the necessary work. Table 1 shows the results of the
optimization process.

4.2 Water Network

Figure 3 shows a water supply network with 20 pipes, three pumps, ten surge
vessels and two water tanks. The four consumers on the right hand side have
varying demands and obtain water from the two tanks, which are located
on a hill. The (identical) fixed speed pumps on the other side of the hill are
responsible for keeping certain stage constraints at the water tanks.

Here, the optimization horizon is 12 h and it is equally discretized into
24 parts. Table 2 shows the results of the optimization process. The bullets
indicate time steps in which the pump is switched on, the dashes indicate
switched off pumps, respectively.
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pumps
surge vessels

water tanks

sinks

Fig. 3. Example water network

Table 2. Optimization results for the water network example

t0 until t24
Pump P1 – – – • • – • • • – – • • – • • • – • • – • • – •
Pump P2 – – – – • • • – – • – • – • • – • • – • • – • – •
Pump P3 – – – – – – – – – – • • – – • – • – – • – • – • -

5 Conclusions and Further Work

We have introduced a new approach to find feasible solutions of mixed integer
nonlinear optimal control problems on networks. First, we have relaxed the
mixed integer problem and solved the resulting continuous optimization task
with an SQP method. The feasibility of the obtained solution is enforced by
adding variable penalty terms in further runs of the optimization tool. Here,
we fix control variables which are within a so-called fixing region around the
feasible discrete values. Additionally, previously fixed variables can be released
again if necessary and the parameters of the applied MPF are adjusted in the
course of the optimization process. Finally, we tested our new algorithm on
problems arising in the operation of gas and water supply networks.

The next steps of our work will be the analysis of further strategies for
the solution of mixed integer nonlinear optimal control problems on networks
and the integration of the presented algorithm as heuristic in a branch and
bound framework.
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Summary. In industrial practice it is often necessary to obtain information regard-
ing the geometrical characteristics of machine elements whose documentation does
not exist or is unavailable. One way to obtain such information is by applying reverse
engineering methods. This paper presents the process of digitization on a numer-
ically controlled coordinate measuring machine CMM. An important problem is
performing a correct numerical analysis of points obtained as a result of scanning of
profiles having small radii of curvature, to be used for drawing parametric curves.
Interpolation methods are necessary to obtain correct information about geometrical
characteristics of machine parts.

1 Introduction

Product formation always is preceded by its design. For obtaining of cor-
rect feedback between designer and process engineer there is necessary the
unequivocal and readable record of a design that is information about mate-
rial, geometrical and strength features. For that reason there is necessary using
of rules of design classical recording and creating of three-dimensional model.
However sometimes product design form is difficult or impossible to unequivo-
cal characterization. There exists some products of which geometrical features
are not commonly and fully described. Such products are elements created
with usage of free surfaces, hybrid models and others. Sometimes lack of full
information about geometrical features may preclude the widening of prod-
ucts usage spectrum. The example of that may be semicircular and involute
profiles of belt pulleys. In order to use these profiles for making non-typical
(out-of-round) wheels there is necessary determining of full geometrical fea-
tures characteristics. The possible solution of that task is making models with
usage of Reverse Engineering methods. It involves usage of coordinate mea-
suring machines CMM or so called digitizers (with contact and contact-less).
Obtained data, as a result of measurements, most often in form of points or
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triangles network are always burdened with errors. Values of obtained differ-
ences determine the way of designing, manufacturing and final inspection of
the product.

2 Measurements on Coordinate Measuring Machine

One of the measurement methods of machine elements is scanning on Coordi-
nate Measuring Machines (Fig. 1). During this process there are recorded the
sequential positions of centre of contact tip which is moving along the pro-
file being measured. Recorded coordinates describe the geometrical features of
elements which are not on actual profile but are on equidistant curve. The dis-
tance between measured curve and actual profile is equal to radius of spherical
gauging point. Professional CMM are equipped with software for automatic
exchange of measured curve into curve of actual profile. The significant prob-
lem is correctness of execution of this transformation. It is recommended to
elaborate the smooth procedures of object profile. One of the methods can be
the application of spline curve or approximation to close tangent arcs (circles)
(Fig. 2).

Fig. 1. Measurements with CMM

a

b

c

Fig. 2. Tooth profile obtained as a result of digitization: (a) involute profile,
(b) semicircular profile, (c) enlarges profile of semicircular tooth
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In presented example there were digitalized the semicircle and involute
profiles of belt pulleys. After determination of equidistant curve the designed
tooth profiles will be spaced in a proper way on wheels with non-circular
profile of wheel rim. For curve generation on the basis of measurement point
there was used Newton’s interpolation formula of n-th order. In Cartesian
system it takes the form:

Wn(x) = f(x0) + f(x0, x1)ω0(x)+
+ f(x0, x1, x2)ω1(x) + . . .+ f(x0, x1, . . . , xn)ωn−1(x), (1)

where: the divided difference

f(xi, xi+1, . . . , xi+n) =
f(xi+1, xi+2, . . . , xi+n) − f(xi, xi+1, . . . , xi+n−1)

xi+n − xi

(2)
for n = 1, 2, . . . and i = 0, 1, 2, . . .

ωk(x) = (x− x0)(x − x1) . . . (x− xk−1), (3)

where k = 0, 1, . . . , n−1. Reproducibility error can be determined on the basis
of

εi =
Δ3(yi−1)

3!(xi − xi−1)3
(x− xi−1)(x− xi)(x − xi+1) (4)

where (xi −xi−1) – increment of independent variable, Δ3(yi−1) – progressive
difference of third order in point (xi−1, yi−1).

From workshop practice of manufacturing of belt pulleys teeth there results
that their profiles should be described not with points’ coordinates, but with
curves segments (arc, involute, etc.). Therefore there is necessary determining
of proper curves keeping tangency conditions. For that there is possible to use
osculating curve (circle) definition and plane curve curvature.

For plane curve determined in parametric form with equations x = ϕ(t),
y = ψ(t). Coordinates xC , yC of their centre of curvation C and curvature k
and radius R of curve K curvature in point M1(x1, y1) may be determined
with the following formulas [4]

xC = x1 − (x1
′2 + y1

′2) · y1′
|x1

′y1′′ − x1
′′y1′| , yC = y1 +

(x1
′2 + y1

′2) · x1
′

|x1
′y1′′ − x1

′′y1′| , (5)

k =
|x1

′y1′′ − x1
′′y1′|

(x1
′2 + y1′2)3/2

, R =
1
k

=
(x1

′2 + y1
′2)3/2

|x1
′y1′′ − x1

′′y1′| , (6)

where: x1 = ϕ(t1), y1 = ψ(t1), x1
′ = ϕ′(t1), y1′ = ψ′(t1), x1

′′ = ϕ′′(t1),
y1

′′ = ψ′′(t1)
After determination of nominal profile there is necessary determination of

real profile from teeth. It can be carried out using offset curves – parallel to
curves. Offset curves profile for ellipse and noncircular wheel are shown in
Fig. 3.



936 P. Krawiec

a b

Fig. 3. Offset curves (a) for ellipse, (b) for noncircular wheel

R55.41
R56.5314
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Fig. 4. Determined geometrical shape of tooth space

An offset curve is the set of all points that lie in a perpendicular distance
d from a given curve in C2. The scalar ρ is called the offset radius. If the
parametric equation of the given curve is

P (t) =
(
x(t), y(t)

)
. (7)

Then the offset curve with offset radius ρ is given by formula [2, 3]

Ω(ρ, P (t)) = P (t) + ρ
(y′(t)) − x′(t)√
x′2(t) + y′2(t)

. (8)

If P is an offset of Q , the reverse is generally true, as long as the offset radius
is everywhere less than the radius of curvature of both curve segments:

Ω(−ρ,Ω(ρ, P (t))) = P (t). (9)

In general, offset curves cannot be represented in Bezier form because
contains a square root of a polynomial. The obvious exceptions are circles
and straight lines. A non-obvious exception is that the offset of any parabola
can be represented as a degree eight rational Bezier curve [1].

Demonstration semicircular and involute profile shapes (simplified to arc
segments) presented in Fig. 4.

3 Manufacturing of Wheels with Rapid Prototyping
Methods

Since introducing stereolithography in 1987 as the first method of Rapid Pro-
totyping there was elaborated many others methods but the most often used
is the principle of incremental laminar creating of model. Referring to their
universality, in technique, there are commonly used the following methods:
SLA (stereolithography), SGC (Solid Ground Curing), SLS (Selective Laser
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Fig. 5. Demonstration tooth profiles and non-circular wheel manufactured by
Selective Laser Sintering SLS method

Sintering), LOM (Laminated Object Manufacturing), 3D Painting and oth-
ers. For manufacturing of wheel presented in Fig. 5 there was used method
SLS referring to that there is no necessity to use supporting and fixing ele-
ments and referring to that manufactured with this method products are full
valuable elements of structure referring to strength of materials. Next very
important advantage of this method is high accuracy of reproduction of given
model CAD.

4 Verification of Elaborated Profiles on Measuring Stand

After wheels group manufacturing there was necessary the experimental veri-
fication of correctness of taken tooth profile shape, used interpolation method
of coordinates describing wheel profile and taken manufacturing method. For
this task there was used measuring machine of company Zeiss with diamond
gauging point of diameter 1.8 mm (Fig. 6a). In measuring process there was
put model CAD in format .sat to measuring machine’s software (Fig. 6b), and
then there was carried out measurement of profile envelope in three paral-
lel planes (Fig. 6c). Results of measurements shows that maximal differences
between measured values in reference to model CAD geometrical features are
0.01 mm. From this results that wheels manufactured with this method may
be successfully used in uneven-running transmissions.

5 Summary

In this elaboration presented process of machine elements geometrical char-
acteristics numerical analysis obtained with CMM scanning. There shown
basic mathematical relationships used for interpolation of data obtained from
measurements carried out on coordinate machine. And there was given the
procedure of getting offset curves for obtaining wheels real profile. There were
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Fig. 6. Numerical analysis of manufactured non-circular wheels (a) measurement of
wheel profile, (b) model CAD in measuring software, (c) measured profiles of wheel

included methods of noncircular wheels manufacturing with usage of systems
CAD and CAD/CAM. In the end of this work there illustrated process of
wheels geometrical features verification with usage of professional equipment
and software in accordance with measuring method elaborated by author.

References

1. Bezier, P.: Numerical Control: Mathematics and Applications. Wiley, London
(1972)

2. Klass, R.: Comput. Aided Des. 20, 471–474 (1988)
3. Pham, B.: Comput. Aided Des. 15, 297–299 (1983)
4. Niczyporowicz, E.: Krzywe plaskie. Wybrane zagadnienia z geometrii analitycznej

i rozniczkowej. PWN, Warszawa (1991)



Plastic Yield of Particulate Materials Under
the Effect of Temperature

I. Malujda

Poznan University of Technology, Chair of Machine Design Fundamentals, Poland,
60-965 Poznan, Piotrowo 3, ireneusz.malujda@put.poznan.pl

Summary. The parameter of primary importance for modelling the compression
of particulate materials, in particular sawdust, is the critical stress which initi-
ates plastic flow of the material. This value depends on the thermo-mechanical
parameters of the material and the fundamental parameters of the process, namely
compression pressure in the chamber, forming time and temperature. Compression
of sawdust involves increase of temperature, which significantly reduces the com-
pressive strength of the material. The focus of this paper is on the distribution of
temperature in the superficial layer of briquette. It will enable to allow for the effect
of temperature on the yield point, which is the strength criterion and the main
element of a mathematical model describing the process of briquetting.

1 Strength Criterion in Compression of Particulate
Materials

In the process described in this paper briquettes are formed in an open
chamber in binderless process (Fig. 1). Cohesion and sufficient consolidation
depends on the plastic flow state, which in the thin outer layer (crust) depends
on heat. The work of friction related to pushing of sawdust through the main
chamber and through the forming sleeve (Fig. 1) results in an increase of tem-
perature in the outer layer of briquette. The highest temperature is noted at
the forming sleeve surface and it drops quickly towards the centre of briquette.
At depths at which the temperature has risen to ca. 130◦C plasticisation of
wood lignin occurs. On the briquette surface a crust is formed, which after
cooling to ambient temperature provides a uniform and smooth consolidating
structure.

Plastic flow in a thin layer of wood was analysed on the basis of the
hypothesis of limit energy of shape deformation formulated by Huber-Mises-
Hencky [2, 4, 5, 9].

A solution of this problem has been presented in the referenced publi-
cations [1, 2, 8, 9]. The theory of plasticity has been applied, specifically its
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Fig. 1. Kinematic diagram of the pressing unit: 1 – main chamber, 2 – initial
densification chamber, 3 – main piston, 4 – initial pressing piston, 5 – forming
sleeve, 6 – pressing resistance adjustment control, F1 – main pressing force, F2 –
initial pressing force, F3 – pressing resistance adjustment force, T – friction force

p

S

B

A

1

F

23

C

D

Fig. 2. Change of briquetting pressure p as a function of piston travel s during
uniaxial compression of briquette in an extruder barrel with adjustable taper, where:
1 – start of piston travel, 2 – end of piston travel, 3 – pressure relief phase (withdrawal
of piston) resulting in undesirable decompression of briquette. Curve BC illustrates
pushing of briquette with characteristic drop of pressure due to friction-generated
temperature

limit theorems. The yield point defining the critical stress has been determined
empirically from the compressive strength test as the strength criterion for the
mathematical model describing the process under analysis [1, 7, 8]. The intent
here was to determine the force defining the stress causing plastic flow of the
compressed material. It was assumed that area ABCD defining the actual
pressing work (Fig. 2) can be replaced with an equivalent rectangular work
area.
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One of its sides shall have the length equal to
√

3kT corresponding to
the equivalent yield point of an ideally plastic body and the second largest
deformation εk was determined from the actual material curve. kT stands
for the average stress of plastic flow – depending on the influence of heat –
equivalent to the yield point on shearing of the material in briquettes.

Subsequently the briquette pressing work determined from the actual
diagram was compared with the work defined by the area of the rectangle
[1, 6]:

√
3kT εk =

εk∫

0

σεdε, (1)

where: εk – final deformation determined from the actual material curve, σ –
temperature dependent yield point, determined from the actual material curve
during compression. This relation was used to determine the value of kT the
average plastic flow stress, which was equivalent to the yield point of the
compressed material.

Finally, we obtain the following equation for calculating the value of critical
pressing force P in the conical main chamber (Fig. 3) and in the forming sleeve:

P = 3πkTR2
1

[√
3 ln

R1

R2
+

2
3

(
f1

√
1 + (tgα)2

cosα
ln
R1

R2
+ f2

l

R2

)]
. (2)

The value of critical stress kT drops with the increase of temperature. As
a direct measurement of temperature, especially during operation of the

R2
R1

V1

dx

x

1 b

dRs(x)

α

RS

Fig. 3. Geometrical characteristics of the pressing channel, where: R1 – radius of
the opening on the entry into the main chamber, R2 – radius of the opening on the
exit from the main chamber, R3 – radius as a function of the main chamber’s length,
l – length of the forming sleeve, α – half of main chamber’s taper angle, b – length
of the main chamber’s
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machine, is very difficult, an attempt was made to determine the distribution
of temperature as a function of time in a layer of briquette by calculations.

2 Mathematical Model of Heat Transfer

The temperature has been the key parameter in formulation of the constitutive
equations describing the analysed process. There are various ways in which
heat penetrates inside a body. Here, we will briefly describe two of them,
which are relevant to the process under analysis due to the actual transfer of
heat between the hot wall of the forming sleeve and closely abutting side of
briquette. Unsteady heat conduction (which is the case here) is described by
the second Fourier’s law [3]:

∂T

∂t
= α∇2T, a =

λ

cpγ
, (3)

where: a – thermal diffusivity, T – temperature, t – time,γ – specific gravity,
cp – specific heat, λ – thermal conductivity.

It is highly relevant to the process under analysis to consider convective
transfer of heat, described by the following equation:

Q = α(Tp − T0), Bi =
αd

λ
< 1, (4)

where: Tp – surface temperature, T0 – temperature of the boundary layer,
α – heat transfer coefficient, Bi – Biot number, d – layer thickness.

Convection is more appropriate than conduction in describing the heat
transfer when the Biot number is less than one (4), and for Bi > 1 heat is
transferred by conduction. Transfer of heat by unsteady conduction is the
closest approximation of the actual transfer of heat between the hot wall of
the forming sleeve and the briquette. The hot wall of the forming sleeve is
in contact with the surface of the formed briquette, and thus we can assume
that the heat transfer coefficient α tends to infinity, and consequently the Biot
number (4) is greater than 1. Thus, the criterion for conductive heat transfer
is met. Therefore, the analysis of the constitutive relations describing the heat
transfer between the wall of forming sleeve and the briquette will be related
to conduction only.

Subsequent transformations yield the following differential equation

∂T

∂t
= α

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
. (5)

The above term is known as Fourier’s law describing the change of tempera-
ture in time and as a function of temperature gradient variation in 3D space.
With correct boundary and initial conditions it allows for determination of
time dependent temperature at any point throughout the analysed layer of
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material. The transformed (5) draws our attention to the importance of the
temperature conduction coefficient α (and, specifically, to the three parame-
ters describing it, namely: cp,γ, λ) for accuracy of the result. For solving the
problem of heat conduction in the layer of briquette the approximate solutions
method was used. Following the spatial digitisation of (5) selection of appro-
priate initial and boundary conditions and approximation of the temperature
field with the finite element shape function a system of simple differential
equations was obtained as a function of node temperatures and their time
derivatives. The system of equations may be expressed with the following
differential equation:

[C]
d

dt
{T }+ [K]{T } = {F}, (6)

where: [C] – heat capacity matrix, [K] – conductivity matrix, {F} – thermal
force vector, {T } – nodal temperature vector.

3 Numerical Analysis of Heat Conduction in a Layer
of Briquette

I-DEAS software program has been used to determine the distribution of
temperature in the layer of briquette. The input data were the geometri-
cal characteristics, process parameters and the sawdust properties, as used
on the briquetting machine actually operating in a furniture factory. Dirich-
let boundary condition has been adopted, assuming known briquette surface
temperature and Cauchy initial conditions, i.e., at the time t = 0 the sample
temperature is equal to the ambient temperature. For more accurate solution
of the temperature distribution in the briquette crust the grid density has
been increased at the point of contact between the hot forming sleeve and the
surface of plasticized material. As the laminar representation of the spatial
distribution of temperature does not allow for qualitative evaluation of the
calculation results, they have been presented as curves (Fig. 4b), related to
the flat cross-section of a briquette, representing the increase of temperature
as a function of time in the subsequent layers (1,2,3,4) in the direction inwards
the briquette.

The calculated temperature distribution inside the briquette shows that for
the adopted input data the temperature increases in the respective layers to
ca. 130◦C (0–0.5 mm depth) and ca. 110◦C (2 mm depth). We can assume that
to ca. 1 mm depth the layer of sawdust becomes plasticized and at the same
time overheated to the plastic flow point of lignin. Briquetting of sawdust
requires its densification thorough and plasticization in the thin superficial
layer under the effect of temperature.
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Fig. 4. Calculation result: (a) A fragment of grid showing temperature layers, (b)
Curves representing the change of temperature as a function of time and depth of the
respective layers, where the temperatures at the respective depths are: 1 – 0.5 mm,
2 – 1 mm, 3 – 1.5 mm, 4 – 2 mm
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Summary. Improvements in crop spray methods can result in great environmental
and cost benefits. By developing a greater understanding of the physical processes
involved, it should be possible to tailor spray formulations to maximise retention
by plant foliage. This would enable the reduction of the chemical active required
to achieve agrochemical efficacy. In the present paper one important aspect of the
retention process is considered: a droplet-leaf impaction model is presented allowing
for bounce, shatter or adhesion of the droplets by the leaf surface.

1 Introduction

During the process of spraying crops, there is usually some off-target loss of
the spray. This can occur due to processes such as drift on the wind, droplet
evaporation or the spray passing through the leaf canopy to reach the ground
in the sprayed area. The spray droplet can also bounce from the plant sur-
face after impaction. The off-target component due to these processes can be
greater than the actual crop retention. This can be costly, both environmen-
tally and financially. It is necessary to ensure that the correct quantity of the
spray formulation reaches the plants to achieve the intended purpose.

This paper does not consider the probability that spray droplets hit or
miss the plant, but rather considers the impaction process when droplets do
hit the plant. Adhesion is the “stickability” of droplets on initial impact.
Retention is the overall capture by plant surfaces of spray droplets either on
initial or subsequent impact, and after loss due to run-off. Although adhesion
may be low, retention may be much higher due to re-capture of bouncing or
shattered droplets. Empirical models of individual spray performance can be
constructed from field trial data [2]. However, in order to obtain more robust
and transferable models, there is a need to incorporate the physical processes
involved.
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incoming
droplet

spreading

fully
spread

shatter

recoiling

bounce

OR

adhere

Fig. 1. The processes involved in the impact between a spray droplet and a leaf
surface showing the three possible outcomes

We consider a single aspect of crop spraying: the immediate result of a
collision between a spray droplet and the surface of a leaf. The current dis-
cussion will be restricted to where the leaf surface is horizontal and the spray
droplet, falling vertically, impacts it at 90◦. It will also be assumed that the
interaction remains within the edges of the leaf. (If the interaction extends
beyond this boundary or if the leaf is tilted there can be further complications
such as the run-off of the spray droplet from the leaf [3].) Three outcomes of
the initial collision are possible (Fig. 1):

• Adhesion, where the droplet spreads out on the leaf surface and remains
there.

• Bounce, where the droplet after spreading on the leaf rebounds to leave
the surface.

• Shatter, where the droplet is broken into a number of smaller droplets
which then may leave the surface.

In practice it may be challenging to distinguish among interactions that
are at the borderlines of these different initial outcomes. For instance they may
lead to the same final result: a droplet that initially bounces can return under
gravity and be retained on the leaf surface through secondary impaction. Even
for cases where initial adhesion is low, re-capture of bouncing or shattered
droplets may produce high retention.

2 Physical Parameters, Contact Angles and Their
Measurement

Previous work has led to a number of models for the dynamics of a droplet
impacting with a solid surface [1]. From these a number of key physical
parameters have been identified. These can be measured in the laboratory
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θR

θA

Fig. 2. A droplet flowing down a slope indicating advancing (θA) and receding (θR)
contact angles

and incorporated into the model. Properties of the droplet fluid include its
dynamic viscosity μ, surface tension σ and density ρ. The droplet itself can
be taken to be initially spherical of diameter D0, with a downward verti-
cal velocity V0. Characteristic dimensionless parameters can be constructed
from these physical parameters: the Weber, Ohnesorge and Reynolds num-
bers (We = ρD0V

2
0 /σ, Oh = μ/

√
ρσD0, Re =

√
We/Oh). In addition to these

parameters, the advancing contact angle (θA) and the receding contact angle
(θR) characterise the interaction of the droplet with the surface.

The contact angles for various formulations, on the leaves of each of the
plant species studied, were measured using a KSV CAM 200 optical contact
angle instrument with an automated tilting stage and Basler digital video
camera. On a horizontal surface a resting droplet has the equilibrium contact
angle all around its edge. However, as the surface is tilted the downslope and
upslope contact angles begin to differ. For a wide range of tilts it was found
that the difference between front and rear contact angles remains relatively
constant. Finally, the tilt may be reached for which the droplet flows down the
surface and the downslope and upslope contact angles may be taken as the
advancing and receding contact angles, respectively (cf. Fig. 2). In practice,
for some formulations, it is not obvious that the droplet has begun to run
down the slope, and an alternative strategy is used to estimate the advancing
and receding contact angles. The model described in Sect. 4 is comparatively
insensitive to the exact value of the advancing contact angle and it is adequate
to take the advancing contact angle to be equal to the equilibrium contact
angle. The receding contact angle is computed by subtracting the relatively
constant difference between upslope and downslope angles on a tilted surface
from the equilibrium contact angle. For both of these angles a number of
measurements were made and there was found to be a natural statistical
variation between individual droplets of only a few percent. The effect of this
variability is illustrated when the theory is compared with the results (Sect. 6).
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3 Experimental Determination of Adhesion or Bounce

An impulse-jet droplet generator was used to produce monosized droplets.
These were individually fired straight down onto a horizontal leaf surface. It
was noted whether the initial outcome of the collision was that the droplet
remained on the surface (adhesion) or alternatively left the surface (either
as a bounce or through shatter). The experiment was repeated (ten droplets
onto each of five replicate leaves, i.e. 50 droplet impactions) for each set of
conditions for statistical robustness. The study utilised different plant species,
covering a range of leaf surface roughness characteristics (50% acetone droplet
contact angles varied from 0◦ to 108◦); formulations to provide a range of
surface tensions (33–72 mNm−1); droplet sizes (ca. 300–900 μm) and droplet
impact velocities (ca. 1–3.5 ms−1).

4 The Bounce Model

Assuming for the present that a droplet does not shatter (this process is
considered in Sect. 5), the process of collision between droplet and surface is
modelled using conservation of energy. The falling droplet contains kinetic
energy, due to its vertical velocity, and potential energy, which is mainly due
to its surface tension. As the droplet impacts a leaf, spreads out and flattens
on the leaf surface, some of the initial kinetic energy is converted into potential
energy through increases in droplet surface area. The droplet reaches a point
of maximum spread from which it then recedes back towards a more spherical
shape returning under the force due to the surface tension. During both the
expansion and recession phases the droplet loses energy by friction. If the loss
is small enough then sufficient energy remains for the droplet to leave the
leaf surface (bounce) as it retreats from its spreading phase. If friction energy
losses are larger the droplet is retained (adhesion).

We use the Attané–Girard–Morin (AGM) model [1] to describe the drop-
let’s behaviour on the leaf surface. The spreading (or receding) droplet is
modelled by a rimmed cylinder that satisfies the conservation of energy
equations:

1
12

d

dt

[(
2
3

+
1
45

1
r6

) (
dr

dt

)2
]

+
d

dt

[
r2(1− cos(θ)) +

1
3r

]

+ 4 Oh
(

3r4 +
2
3

1
r2

+ sr

) (
dr

dt

)2

= 0. (1)

There is only one free parameter, s = 1.41Oh−2/3, that has been fitted empir-
ically [1]. The cylinder radius (r) and time (t) have been nondimensionalised,
and θ is the advancing contact angle when the droplet is spreading (dr/dt > 0)
and the receding contact angle when the droplet is receding (dr/dt < 0). The
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initial conditions arise by replacing the falling spherical droplet with a cylinder
on the leaf surface which has the same potential and kinetic energies:
[
r2(1− cos(θ)) +

1
3r

]

t=0

= 1 and
[
dr

dt

]

t=0

=
√

We
[

2
3

+
1
45

1
r6

]−1/2

t=0

. (2)

However, for θ > 109◦, the pragmatic approach of assigning r(0) = 0.39 is
taken as in this range r(0) ceases to have a real positive root [1].

For the spreading phase it is appropriate to take θ to be the advancing
contact angle, however, the equilibrium contact angle is an adequate estimate
of this. In the subsequent phase of recession, the same model is valid, providing
we modify the angle θ so that it is now the receding contact angle. (The
estimation of these angles in practice is described in Sect. 2.)

We extend the AGM model to include a new criterion for bounce: if the
receding droplet returns to the original cylinder radius r(0) then bounce
occurs. This approximation mimicks the initialisation (as justified for the
AGM model [1]). Here, again, the droplet on the leaf has the same surface
energy as a spherical droplet above the leaf surface and the remaining kinetic
energy can be converted into vertical motion. If, instead, the droplet comes
to rest at r > r(0) then adhesion will occur. The final oscillatory motion of
the droplet can be studied by allowing the droplet to continue to expand and
contract further, changing the angle θ from the receding contact angle to the
advancing contact angle and vice versa, as appropriate.

5 The Shatter Model

The AGM model is invalid if the droplet shatters. Then, during the spreading
phase, the droplet breaks into smaller droplets which may leave the leaf. Mod-
elling of this process is at a more preliminary stage [3]. Again by considering
the energy balance, Mundo et al. [4], obtained a criterion for shatter

Oh (Re)1.25 > K (3)

where K is a constant. Their analysis found a value of K = 57.7 was valid
over a wide range of surface roughnesses, however, Yoon et al. [5] observed
that there should be some further variability and obtained K = 152 for water
on a paraffin wax surface. At present, for individual cases, K can be deter-
mined by experiment in the laboratory. However, in the future it is planned
to incorporate surface roughness and the contact angles into the formula. For
comparison with the experimental results (Sect. 6), the present criterion has
been used with an approximate value K = 100.

6 Results

Figure 3 illustrates the accuracy of the model predictions for the plant species
Pisum Sativum (pea). Experimental results are shown with symbols: the
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Fig. 3. Comparison of experimental results (symbols) with the model (lines). Plant
species: Pisum Sativum (pea). Water (σ = 72) and formulations: F1 (σ = 49), F2
(σ = 42), and F3 (σ = 33)

‘rebound’ symbol indicates that the droplet did not adhere (i.e. it bounced
or shattered) and the ‘marginal’ symbol indicates that in some trials the
droplet adhered and in others it did not. Solid lines show the theoretical value
(obtained from the AGM model) above which bounce can occur. Associated
dashed lines enclose a borderline region due to natural variability and are com-
puted using the variation in the contact angle determination. The dot-dashed
lines represent the model value above which shatter occurs.

The water (σ = 72) results are above the bounce threshold and no droplets
adhere. Variation of the receding contact angle for water is very small and
the borderline region is not plotted. The formulation F1 droplet (σ = 49)
outcomes are marginal near the borderline region and rebound above. The
formulation F2 droplets (σ = 42) adhere below the bounce threshold and
have marginal outcomes in the borderline region until non-adhesion occurs
above the shatter threshold. Finally, the formulation F3 droplets (σ = 33) are
below the bounce threshold (not shown as it is off the graph scale) and adhere
until the shatter threshold is crossed where there is first a marginal outcome
and then rebound.
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7 Discussion and Conclusions

The current model shows excellent agreement with experimentally obtained
values for adhesion when applied to one particular plant species (Pisum
Sativum). Although not shown here similar good correlations have been found
with other plant species. Currently the results for shatter are fitted with a free
parameter K. The method will be further extended to include a more physical
reason for the choice of this parameter to enable the model to be used as a
predictive tool for both droplet adhesion and shatter.
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Summary. There is clearly a need for optimising traffic systems in order to reduce
congestion and improve network reliability. A system optimal assignment is a traf-
fic flow pattern that minimises total network costs. In reality, travellers are not
under any centralised control, but instead choose routes in order to minimise their
own individual travel costs, which in general does not lead to a system optimal
assignment. Travellers may be induced to choose routes that are closer to yielding
a system optimal assignment through the use of tolls and signal control. The paper
considers both approaches within a static traffic model (where flows and costs stay
constant over time) and within a dynamic traffic model (where flows and costs vary
over time).

1 Introduction

Traffic engineers wish to optimise flows in a network; generally they want to
minimise travel costs through the use of signals and tolls. The system optimal
problem is to route traffic through the network in such a way that the total
cost summed over all travellers is minimised. Since travellers seek to minimise
their own travel cost, the traffic network must be optimised subject to user
equilibrium, where more costly routes are unused. In the static model detailed
in Sect. 2, the system optimal flows can be achieved at user equilibrium by
appropriate choice of tolls (assuming signals are fixed), but in the dynamic
model the problem is much more complex. Optimising the network by sig-
nal control is preferable to using tolls because of the additional cost to local
authorities to collect and enforce tolls. Also, to make tolls practicable they
are usually kept uniform across areas or cordons rather than being link spe-
cific, meaning that they are more effective at reducing overall travel demand
than affecting route choice. Allsop [1] first suggested that traffic engineers
should take explicit account of the long run influence that their signal setting
policies have on the pattern of traffic flow, and that this could be achieved
by iterative optimisation assignment (i.e. alternately updating the signal set-
tings for fixed flows and then solving the traffic equilibrium problem for fixed
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signals) although Dickson [2] showed that this process does not necessarily
reach an optimal point. Alternatively, both steps can be combined by spec-
ifying a dynamical system that incorporates both responsive signal control
and travellers’ rerouting as in Mounce [5]. In order for such a system to be
at equilibrium, it must be at equilibrium with respect its own rules and with
respect to travellers’ rerouting. Section 2 details several signal setting policies
for the static model. Section 3 details a dynamic queueing model and various
signal policies, which are counterparts of the policies in Sect. 2.

2 The Static Traffic Model

The traffic network is considered to be a directed graph consisting of a set
of nodes and a set of links. Suppose that a set K of origin-destination (OD)
pairs is given and that there is a fixed (positive) demand for travel between
each of these OD pairs; let ρk be the demand for travel between OD pair k.
A route is defined to be any acyclic path connecting an OD pair. Denote the
flow on route r by Xr and the route flow vector by X = (X1, X2, . . . XN)
where N is the number of routes in the network. Let Rk denote the set of all
routes connecting origin-destination pair k. Then the set of feasible route flow
vectors, denoted D, is given by

D =

{
X ∈ R

N
+ :

∑
Γ∈Rk

XΓ = ρk ∀‖ ∈ K
}
. (1)

If the route-link incidence matrix is denoted A (where Aij = 1 if route j
traverses link i and 0 otherwise) then the link flow vector, denoted x, can be
specified in terms of the route flow vector by x = AX. Suppose that at each
node there is a given compatibility matrix, which gives all the sets of approach
links along which traffic may simultaneously flow, called stages. Suppose also
that there is a stage green time vector λ specifying the green time proportions
assigned to each stage. A green time vector is feasible if each component is
bounded below by λmin and stage green times sum to 1 at each node, i.e. if
there are M stages in total, the set of feasible green time vectors is given by

G =

{
λ ∈ R

M : λm ≥ λmin > 0 &
∑
m∈Sn

λm = 1 ∀n
}

where Sn is the set of stages at node n. For each link i, suppose that the
link cost ci is given as a function of link flow vector x and the green time
vector λ. These link cost functions determine the link cost vector c(x, λ) =
(c1(x, λ), c2(x, λ), . . . cn(x, λ)) where n is the number of links in the network.
Then the route cost vector C(X, λ) = (C1(X, λ), C2(X, λ), . . . CN (X, λ)) is
given by C(X, λ) = ATc(AX, λ). At user equilibrium, more costly routes are
unused, i.e. ∀k ∈ K , ∀r, s ∈ Rk , Cr(X, λ) > Cs(X, λ) =⇒ Xr = 0, whereas
a system optimal assignment minimises

∑
rXrCr(X).
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2.1 Optimisation Through Pricing

In this section it is assumed that λ is fixed, so that costs are a function of
flow only. If the total cost f(X) =

∑
rXrCr(X) is minimised over the feasible

set D subject to the constraints gk(X) =
∑

r∈Rk
Xr − ρk = 0 for each OD

pair k ∈ K, then by the method of Lagrange multipliers, ∇f =
∑

k∈K λk∇gk.
Notice that (gk(X))r = 1 if r ∈ Rk and 0 otherwise. Also,

(∇f)r =
∂

∂Xr

(∑
s

XsCs(X)

)
= Cr(X) +

∑
s

Xs
∂Cs(X)
∂Xr

.

This implies that if r and s connect the same OD pair (OD pair k say),

Cr(X) +
∑
u∈Rk

Xu
∂Cu(X)
∂Xr

= Cs(X) +
∑
u∈Rk

Xu
∂Cu(X)
∂Xs

. (2)

Certainly in general (2) is not satisfied at a user equilibrium. However, if the
toll Tr to traverse route r is chosen to be Tr(X) =

∑
sXs

∂Cs(X)
∂Xr

(giving a new
tolled cost CTr (X) = Cr(X) +Tr(X)) then for a user equilibrium of the tolled
system, CTr (X) = CTs (X) for each pair of used routes r and s connecting the
same OD pair, which reduces to (2). Therefore any user equilibrium of the
tolled system is system optimal.

2.2 Optimisation Through Signal Control

By introducing the concept of the pressure of a stage, several signal policies
can be incorporated into the same framework. Let PXλm denote the pressure
of stage m when the route flow vector is X and the green time vector λ.
Equilibrium of the signal control policy occurs when less pressurised stages
receive minimum green time, i.e. if for all stages k and m at the same node,

PXλk < PXλm =⇒ λk = λmin.

For the equisaturation policy, PXλm = maxi∈m xi

λisi
. For other policies, the

stage pressures can be defined in terms of the link pressures pXλi by

PXλm =
∑
i∈m

pXλi . (3)

The delay-minimisation policy, which minimises the total delay at a junction,
chooses pXλi = −xi ∂di

∂λi
where di is the delay on link i. Although delay-

minimisation performs best at a single junction, it may not perform best over
a network. Policy P0 in Smith [6] chooses pXλi = sidi = qi

λi
where si is the

saturation flow on link i. Properties and solution methods for these policies
are discussed in Smith and Van Vuren [7].
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3 A Dynamic Traffic Model with Signals and Queues

The underlying network is the same as in Sect. 2. However in the dynamic
model flows and costs vary over within-day time, which is considered to
be continuous and represented by the interval [0, 1]. The inflow rate to
route r, denotedXr, is considered to be a real-valued, non-negative, essentially
bounded and measurable function (which may or may not be continuous).
The null sets are then quotiented out (i.e. Xr = Yr means that Xr and Yr
agree for almost all time t ∈ [0, 1]) so that each route inflow is in L∞[0, 1].
All of these route inflow functions are components in the route flow vector X.
Demand for travel between OD pair k ∈ K is considered to be a fixed function
ρk ∈ L∞[0, 1]. The set of feasible route flow vectors is therefore

D =

{
X ∈ ⊕Ni=1L

∞[0, 1] : Xr ≥ 0 ∀ r&
∑
r∈Rk

Xr = ρk ∀ k ∈ K
}

with norm on ⊕Ni=1L
∞[0, 1] being the supremum norm on the space of cumu-

lative inflows as in Mounce [4] (and the metric on D will be the metric induced
by this norm). It is assumed that link saturation flows si are fixed (and posi-
tive), but that at signalised junctions the green times assigned to each stage
can vary. The green time allocated to stage m at time t will be denoted
λm(t) and it will be supposed that λm is a Lipschitz continuous function of
within-day time (with Lipschitz constant k1). λ will be said to be feasible if
each component is bounded below by some constant λmin > 0 and if for each
signalised node the stage green times sum to one at each within-day time.
Therefore the set G of feasible green time vectors is given by
⎧
⎨
⎩λ ∈ ⊕

M
i=1C[0, 1] : ∀mλm∈Lip(k1)&λm(t)≥λmin,

∑
m∈Sn

λm(t)=1∀n∀t∈[0, 1]

⎫
⎬
⎭.

The norm on G will be the supremum norm as in Mounce [5] and the distance
on G will be the metric induced by this norm. Given a green time vector λ,
the exit capacity for link i at a signalised node at time t ∈ [0, 1], denoted
κλi (t), is given by κλi (t) = si

∑
m:i∈m λm(t). For links at unsignalised junctions,

the exit capacity is assumed to be fixed but is similarly denoted by κλi (t).
Given any link inflow function xi, suppose that the cost to traverse link i
if entered at time t, denoted cxλi (t), is the sum of a constant (congestion-
free) travel time ci , a constant toll ti (which will be converted into a cost
in time units) and a bottleneck delay dxλi (t). The cost to traverse route r,
denoted CXλr (t), can then be found by summing all of the link costs at the
respective times that each link is reached, i.e. CXλr (t) =

∑
i∈r c

xλ
i (AXλir (t))

where i ∈ r means that link i is a link on route r and AXλir (t) is the arrival
time at link i when route r is entered at time t if the route flow vector is X
and the green time vector is λ. Queueing occurs vertically at link exits when
traffic flow exceeds capacity. If link i is congested at time t, then the queue
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on link i, denoted qxλi (t) is given by qxλi (t) =
∫ t
bxλ

i (t)
(xi(u − ci) − κλi (u))du

where bxλi (t) = sup
{
u ∈ [0, t] : qxλi (u) = 0

}
. The bottleneck delay dxλi at link

i is connected to the bottleneck capacity κλi and the bottleneck inflow xi by
the equation ∫ t−ci

t0−ci

xi(u)du =
∫ t+dxλ

i (t)

t0

κλi (u)du (4)

for all t in some congested period [t0, t1]. Now let xi be the inflow to link i,
which depends on the route flow vector X and the green time vector λ. Let
x be the vector consisting of all these link flow functions. If xir denotes the
inflow at link i of traffic on route r, then clearly

∑
r:i∈r xir = xi. If Oxλir

represents the outflow from link i of traffic on route r when the route flow
vector is X and the green time vector is λ, then

∫ t

0

xir(u)du =
∫ t+ci+d

xλ
i (t)

0

Oxλir(u)du (5)

since traffic entering at time t exits at time t+ ci + dxλi (t). Given a particular
route flow vector X and green time vector λ, the associated link flow vector
x is defined to be the solution of the integral equations (4) and (5). c(x, λ)
is in ⊕ni=1C[0, 1] and C(X, λ) is in ⊕Ni=1C[0, 1] (Mounce [4]). The norm on
⊕ni=1C[0, 1] and on ⊕Ni=1C[0, 1] will be the supremum norm. At dynamical
user equilibrium, more costly routes are unused for all within-day time, i.e.
for all routes r and s connecting the same OD-pair and for all t ∈ [0, 1],

CXλr (t) > CXλs (t) =⇒ Xr(t) = 0. (6)

3.1 Optimisation Through Tolling

In the dynamic model, the system optimal problem is to minimise

∑
r

∫ 1

0

Xr(u)CXr (u)du

over the feasible set D. Ghali and Smith [3] showed that in the dynamic
model route marginal costs are not simply sums of link marginal costs. Hence
the problem of determining optimal tolls for a general network is not so
straightforward as in the static model.

3.2 Optimisation Through Signal Control

Stage pressures are defined as in the static model (but now are time-varying)
and any responsive policy seeks to approach a time-varying stage green time
vector λ such that less pressurised stages receive minimum green time for all
within-day time, i.e.
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∀t ∈ [0, 1]&∀n∀k,m ∈ Sn, PXλk (t) < PXλm (t) =⇒ λk(t) = λmin. (7)

In order for a network incorporating responsive signal control to be at equi-
librium, it must satisfy both (6) and (7). For the equisaturation policy
PXλm (t) = maxi∈m

qxλ
i (t)
siλi(t)

. For the delay-minimisation policy, since delays on
link i accumulate over time at rate qxλi (t), total delays are minimised by
defining the link pressure as

pxλi (t) =

{
si if qxλi (t) > 0
0 if qxλi (t) = 0

and let the link pressures sum to give stage pressures as in (3). For policy
P0, pxλi (t) = qxλ

i (t)
λi(t)

and then (3) is applied. Mounce [5] shows existence of
equilibrium when the signal policy is equisaturation and P0 (but not for delay-
minimisation as is mistakenly claimed).

4 Conclusion

The paper considered the optimisation of traffic networks subject to equilib-
rium constraints through signal control and pricing, both in a static and in
a dynamic traffic model. In the static model, optimal tolls can be calculated
from the route marginal costs. In the dynamic model, difficulty in calculating
route marginal costs makes it difficult to determine optimal tolls. A variety of
signal control policies were outlined for both the static and dynamic models.
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Summary. A systematic approach to developing mathematical models is presented.
The approach applies to problems where (optimal) decisions should be found that
lead to maximized benefit or yield, and/or minimized loss or disadvantage. The
approach is characterized in that all occurring relations are regarded as func-
tional relationships; the model is developed in the form of a non-cyclic, directed
graph of variables where the edges represent functional dependency. Next, Genetic
Programming can be used to obtain (approximate) optimal decisions.

1 Context: The Didactics of Applied Mathematics vs.
Mathematical Modeling

Over the last decades a clear distinction developed between curricula for pure
mathematics and curricula for applied or industrial mathematics. The purpose
of pure mathematics is, to produce insights, to understand structures and
to prove theorems within the realm of formal mathematical reasoning; in
applied mathematics problems are solved that come from an external context.
The starting point for a project in pure mathematics is a set of axioms and
perhaps some conjectures; a successful result takes the form of a proven – and
preferably deep – theorem. The success of an exercise in applied mathematics,
to the contrary, is invariably measured with respect to its usefulness in a
non-mathematical context: the solution must be translatable e.g. in terms of
increased benefits or yields, or reduced risk or disadvantage.

This means that as a part of a project in applied mathematics, there is
always a phase of modeling. ‘Modeling’ means: start with the original, non-
mathematical version of a problem, take its industrial, commercial and/or
social context into account, and propose a set of variables, relations, equa-
tions and/or constraints that in some sense adequately represent the problem
situation at hand. Next, apply formal mathematical manipulations with these
variables and equations to produce some mathematical results (say, numerical
values), guided by needs inherent to the problem. Finally, these results need
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to be interpreted in terms of the original problem setting: they are mapped
back to the problem domain. The entire endeavor is successful if the process
of (1: modeling, 2: manipulating, and 3: mapping) leads to some advantages
in the original problem domain.

The first and third phases of this process are not governed by mathematical
logic nor rigor. There is no provable correct formal way for building a model,
nor for interpreting the mathematical result in terms of the original problem.
Whereas the mathematical manipulations in phase 2 are governed and taught
by the standard conventions of mathematics and mathematical didactics, the
process of devising a set of meaningful variables, relations and equations is
left entirely to the common sense, the intuition and the experience of the
mathematical practitioner.

Junior and less experienced mathematicians and students in applied math-
ematics often feel uncomfortable with this lack of systematic techniques for
phases 1 and 3. But even for senior applied mathematicians the ad-hoc nature
of these phases may prove an obstacle to transparent communication with
customers or colleagues regarding the followed route.

This paper aims to partially overcome this omission.

2 Design Situations: A Broad Class of Problems
for Mathematical Modeling

In the literature on design methodology, numerous definitions of design can be
found, ranging from quite confined (say, the design of the shape a mechanical
component, involving mainly geometrical representations and spatial con-
straints) to the very broad (the design of a business model, perhaps involving
marketing, socio-demographic arguments and logistics). For the scope of this
expose, a design situation in general is defined as “the process of taking deci-
sions such that the happiness of stakeholders increases”. ‘Taking a decision’
here, means: assigning a value to some variable – assuming that the value is
within the range of admissible values for that variable, and that the designer
has sufficient mandate to decide that the variable shall attain the chosen value.
In the terminology of this paper, such variables will be called category-I vari-
ables. Category-I variables can be ordinal or nominal; ordinal variables can
be numeric; their types can be closed (e.g., a finite range of values, such as
components from a catalogue) or open. Examples are: the choice of material
for some component (= a nominal variable; closed); the geometrical dimension
of some feature of the designed artifact (open or closed), or the selling price
of some commodity (open). The term ‘happiness’ in the definition occurs to
stress that design always starts with the observation that somebody wants
something. There is a desire to obtain or achieve something – hence the title
of this paper. The design process should be set up such that this desire will
become close(r) to realization. Therefore, it is paramount that the degree of
fulfillment of the desire is expressed in terms of ordinal variables- to be called
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category-II variables. Category-II variables have to be ordinal: indeed, the
success of the design process must be comparable – at least with the status
quo, but the consequences of various sets of choices of category-I variables
also must be comparable; there must at least exist a partial ordering, with
respect to each category-II variable.

3 A Systematic Procedure for Constructing
Mathematical Models for Design Situations

With the notion of category-II variables as a starting point, the process of
constructing a mathematical model proceeds as follows. Suppose that a, for
the start, a relatively small numbers (2 or 3, say) of category-II variables is
given. One of them is taken, say profit, and an analysis is performed which
mechanism is believed to be responsible for the value of profit. This mecha-
nism will involve one or more variables, and first a qualitative statement about
the kind of dependency. For instance, suppose profit represents the expected
profit of a company to be set up (obviously, the profit is an ordinal variable:
profit should be preferably high – the more the better!). The mechanism that
causes the value of profit is (1) money comes in , and (2) money goes out. So
it is plausible to introduce two new variables, inc (for ‘income’) and exp (for
‘expenses’), both expressed in Euro’s per year. Next we need a computable
expression that relates profit to inc and exp. Notice that, in many cases,
there is a variety of computable expressions that can be chosen. For instance,
small contributions can be ignored or not – does a linearized relationship suf-
fice or should higher order terms be taken into account? As another example,
an asymptotic behavior can be obtained either by means of a rational func-
tion, a tangent or a negative exponential function – beforehand it may not be
obvious to pick out the ‘right’ one (or: ‘a right one’). It is advisable therefore
to give a qualitative specification of the behavior first, and next choose the
(mathematically) simplest formal realization of this behavior. In the present
example, this could be as simple as

profit = inc− exp,

thereby first ignoring e.g. inflation, savings, and tax. Such ‘second order
effects’ can easily be accounted for once a first version of the model has been
completed. With the introduction of this first function, profit = f1(inc, exp),
the variable profit is formally and functionally defined; it is removed from the
‘to-do’ stack. Two new variables have been ‘pushed on the stack’, however: inc
and exp next must be defined. None of the two is in category-I: it is unlikely
that the designer can freely choose what the income will be; moreover, it is
implausible that (s)he will make a free and independent decision how much
(s)he is going to spend. Rather, the expenses depend, say on the number of
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products that is going to be bought (nrProd) and the price of these products
(pricePP ). So:

exp = nrProd × pricePP.

Again notice that this formula, however trivial it may seem, is merely one
possibility: it assumes, for instance, that no discount is given for larger quan-
tities, that there is only one type of product, and that payments are not
delayed to a next booking period! During the process, every step of defin-
ing the precise, functional meaning of a variable is an excellent opportunity
to ponder about these alternatives and to make the assumptions explicit –
this improves the transparency of the entire modeling process. With stating
exp = nrProd × pricePP another variable has been ‘popped off’ the stack
(namely exp), and two new ones have been pushed onto the stack (nrProd and
pricePP ). The categories of the new variables, nrProd and pricePP merit
some attention: nrProd, indeed, is presumably a category-I variable. The
designer (or the shop owner) is free to make any choice for nrProd. pricePP
is not in category-I, neither in category-II: its value is given from the context,
and it does not depend on any choice the designer can do. This defines a
third category, to be called category-III. Now the question can be answered
to which category exp belongs: it is clearly not in category-II (indeed, reduc-
ing expenses is not going to make the shop owner happy: it is the difference
between income and expenses that matters, not the expenses per se.) It is also
not in category-III, since its value is not independent to category-I variables.
It is a so-called intermediate or auxiliary variable. It serves to couple the vari-
ous functions, while still allowing to study one function at the time. Variables
of this kind reside in category IV.

Now the entire modeling process can be summarized:

• Initially, the to-do stack is empty.
• While there are still category-II variables that have not been pushed onto

the to-do stack, or the to-do stack is not empty:
– Push a new category-II variable onto the to-do stack, or
– Take a variable, say y from the stack (this is category-II or category-IV)
– In the latter case, identify the simplest possible mechanism that

determines y’s value
– Find a minimal set of variables, say x1, x2, ... that are needed to explain

or describe this mechanism (these variables may have been defined
earlier in the process)

– Choose an appropriate computational expression that models the
dependency y = f(x1, x2, ...)

– Establish the categories of the xi. If they are in categories I or III, they
can be removed from the to-do stack. Otherwise they are in category-IV
and they are pushed onto the to-do stack.

• Once the to-do stack is empty, every category-II variable is expressed, per-
haps by means of a network of functions of category-IV variables, in terms
of category-I variables (choices) and/or category-III variables (constants).
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The to-do stack being empty is the stopping criterion for the process. The
resulting network of functions is the mathematical model sought for; in
Sect. 4 it is demonstrated how the model is used to find ‘optimal’ solutions.

We conclude this section with some remarks:

• During the construction of the model, in every step the focus is on only one
variable at the time, and on the mechanism that determines the value of
that single variable. This stimulates separation of concerns [1] – considered
as good engineering habit in computer science;

• The resulting model is an a-cyclic graph of functional dependencies. This
means that any issues regarding ‘what depends on what’ need to be explic-
itly resolved beforehand. This is possible in virtue of the nature of the
problems: in design problems, there is the assumption that the resulting
happiness of the stakeholder ultimately depends on the values of category-I
variables. In ad-hoc modeling, circular reasoning is a notorious pitfall!

• Since every simplification and simplifying assumption is encountered (and
hopefully annotated) together with the variable in which it occurs, expand-
ing the model to account for more detail can also done in an incremental
and systematic way, thereby leaving the directed a-cyclic nature of the
graph in tact;

• During the construction of the model, discussions may occur about the
nature of a variable (category-I or category-III?) These questions are
highly relevant: all too often a design situation is of limited use since
too many (unnecessary) implicit assumptions are used – in other words,
the systematic approach as outlined above helps to exploit the full design
space.

4 Solution Methods

In the a-cyclic, directed graph that results from the procedure in Sect. 3,
arbitrary functions can occur. These functions need not be differentiable or
even continuous: indeed, they will often contain conditional expressions, or
the calculation may involve database table access. Moreover, there will be, in
general, more than one category-II variable. That means that standard math-
ematical optimization techniques, geared towards finding stationary points in
a single function f , such as solving for ∇f = 0 won’t often work. Similar,
numerical techniques such as simplex methods or local descent methods or
even combined continuous and discrete methods are usually too limited.

Fortunately, there is a practical alternative: the SPEA (=Strength Pareto
Evolutionary Algorithm) technique as proposed by Ziztler et al. ([2]). It hinges
around the notion of Pareto Optimality, ([3]) and dominance. A solution,
i.e., a set of values for category-I variables, {x1, x2, x3, ...} with correspond-
ing category-II variables, {y1, y2, y3, ...} is said to dominate an other solution
{x′

1, x
′
2, x

′
3, ...} with {y′

1, y
′
2, y

′
3, ...} iff ∀i : yi ≥ y′

i – assuming that all yi need to
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be maximized1. The collection of non-dominated solutions is called the Pareto
Front. An exact calculation of the Pareto Front is in all but trivial cases infea-
sible. However, a practical approach to obtain an approximate Pareto Front
has been proposed in [2]. There, genetic optimization is used: an initial pop-
ulation of random solution sets is allowed random mutations and cross-over
interbreeding against a fitness criterion, where the fitness for a solution X
is defined2 as minus the number of solutions that dominate X . This fitness
function is called ‘Strength’- hence the name of the algorithm. A software
system, aimed at supporting the process of mathematic modeling, which fea-
tures the interactive, incremental construction of the directed a-cyclic graph
cf. Sect. 3, together with a generic implementation of the SPEA algorithm,
has first been described in [4]. In various courses on modeling by the author,
a more recent version of a similar software system has been used in a variety
of design projects.

5 Conclusions and Further Work

For a large class of practical problems, a systematic modeling procedure has
been proposed that consists of incrementally building a directed, a-cyclic
graph of variables and functional relationships. A mathematical model is
obtained that represents the problem at hand in the form of a network of exe-
cutable functions – perhaps represented in terms of a spreadsheet or (other)
computer program. The mathematical manipulations for the actual resolution
of the original problem either amount to algebraic or (more often) numeri-
cal techniques such as SPEA. Over the last few years, ample experience has
been gained with this approach in classroom settings; currently, the method
is being used in more realistic small-to-medium sized real life business cases.
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Summary. A mathematical model for the case hardening of steel is presented.
Carbon is dissolved in the surface layer of a low-carbon steel part at a temperature
sufficient to render the steel austenitic, followed by quenching to form a martensitic
microstructure. The model consists of a nonlinear evolution equation for the tem-
perature, coupled with a nonlinear evolution equation for the carbon concentration,
both coupled with two ordinary differential equations to describe the evolution of
phase fractions. Existence and uniqueness of solutions are investigated and some
numerical simulations are presented.

1 Case Hardening in the Metallurgical Industry

Steel is still the basic material for a modern industrial society. A distinct
feature of steel is that one can change its physical properties by thermal
interference. The reason for this behavior lies in the occurring solid-solid phase
transitions. It is indeed utilized in the heat treatment of steel, which is a
process of controlled heating and cooling to achieve a desired distribution of
metallurgical phases corresponding to locally varying, heterogeneous physical
properties.

Case hardening is a special heat treatment of steel. It is a widely used
process in industry aimed to obtain a special sort of steel with a hard case
and soft and ductile core.

There are many types of case hardening, the most widely used is called
carburizing and we will concentrate on this one. The process can be shortly
described as follows: steel is heated up to austenitizing temperature, where the
solubility of carbon in iron is high, subsequently it is immersed in a carbon-
rich atmosphere for hours in order to allow the diffusion of carbon into the
workpiece and finally it is rapidly cooled down to obtain the desired hardening
effect.

Many important processes in the metallurgical industry rely on this heat
treatment. Hence, there is a special demand for its mathematical modeling and
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simulation. Regarding carburizing, despite its worldwide application, the cur-
rent process performance faces some challenges regarding the process control.
The industrial approach to solving such problems often involves trial and
error methods and empirical analysis, both of which are expensive and time
consuming. With the present work we aim to derive and analyze a mathe-
matical model, in order to understand the mechanism of case hardening and
to predict the carbon concentration profile and case depth during the heat
treatment process.

2 The Mathematical Model

The mathematical description of solid-solid phase transitions in steel started
with the works of Avrami and Kolmogorov (see, for instance [1]) in the 1930s.
Since then the subject has been widely studied and, stimulated by the devel-
opment of ever-faster computer hardware, numerous papers were published on
the numerical simulation of the diffusion controlled phase transitions in steel.
The first analytical investigation of phase transitions in steel, concerned with
the austenite-pearlite transformation, dates back to the 1980s [4]. The model
we propose here is a phenomenological model which takes into account all
the relevant parameters and the physical quantities, which are: temperature,
carbon concentration and phase fractions which form during the heating and
cooling process.

2.1 Kinetics of Phase Transitions in Steel

The kinetics of the phase change can be briefly described as follows. Depending
on temperature, two different lattice structures can occur: a body-centered-
cubic (b.c.c.) and a face-centered-cubic (f.c.c) lattice. Above a certain temper-
ature As steel is in the austenitic phase, a solid solution of carbon in f.c.c. iron.
Below As this lattice is no longer stable. But before the lattice can change
its configuration to form a b.c.c structure, carbon atoms have to diffuse, due
to the higher solubility of carbon in the f.c.c lattice. The result is pearlite, a
lamellar aggregate of ferrite and cementite, soft and ductile. Upon high cool-
ing rate carbon has no time to diffuse and is trapped, forming a tetragonally
distorted b.c.c. lattice, called martensite.

The transformation diagrams of interest for the modelling of the phase
fractions evolution (see (1a,b) below), during the cooling process, are called
indeed continuous cooling transformation (CCT) diagrams and describe the
transformation of austenite as a function of time for a continuously decreas-
ing temperature. In other words a sample is austenitized and then cooled
at a predetermined rate and the degree of transformation is measured. The
start of transformation is defined as the temperature at which 1% of the new
microstructure has formed. The transformation is completed when only 1%
of the original austenite is left.
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Fig. 1. Equilibrium diagram of the system iron-carbon (right) as limit of the CCT-
diagram with infinite low cooling rate

In carburized steels the process is strongly influenced by the carbon con-
tent, which varies from the carbon-enriched superficial layer to the core. Thus,
it cannot be described by only one continuous-cooling-transformation dia-
gram. Figure 1 shows a continuous cooling diagram describing, for a given
austenitizing condition, the transformation at all carbon levels in a carburized
specimen. The cross sections for fixed carbon percentages give CCT diagrams
of the type of the one plotted in Fig. 1 on the left. To avoid unnecessary
technicalities for the modelling, we assume that the cooling takes place from
the high temperature phase austenite with phase fraction a to two different
product phases, pearlite with fraction p and martensite with fraction m. A
more elaborate model accounting for all the phases occurring during the heat
treatment of steel can be found in [3].

The evolution of the phases p and m can be described by the following
system:

ṗ = (1− p−m)g1(θ, c) (1a)
ṁ = [min{m(θ, c); 1− p} −m]+g2(θ, c) (1b)

p(0) = 0 (1c)
m(0) = 0 (1d)

where c is the concentration of carbon. Here the bracket [ ]+ denotes the pos-
itive part function [x]+ = max{x, 0} and the dot means the derivative with
respect to t. While the growth rate of pearlite ṗ is assumed to be proportional
to the remaining austenite fraction, the rate of martensite growth ṁ is zero if
m exceeds either the non-perlitic fraction 1−p, or the threshold m depending
on both temperature and carbon concentration. Indeed martensite is pro-
duced at temperatures less than a value Ms but complete transformation to
martensite can be obtained only below some other temperature threshold Mf .
Both these temperatures depend on the local value of carbon concentration.
The quantity m(θ, c) represents the maximum attainable value of martensite
fraction and can be defined as:
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and by interpolation for intermediate temperatures. Since there is no phase
transition from pearlite to martensite, the term min{m(θ, c); 1−p} represents
the maximal fraction of martensite that can be reached at time t. The func-
tions g1 and g2 are positive given functions that can be identified from the
time-temperature-transformation diagrams described before. The process of
carbon diffusion is governed by the following nonlinear parabolic equation:

∂c

∂t
− div((1 − p−m)D(θ, c)∇c) = 0.

The factor (1− p−m) in front of the diffusion coefficient D(θ, c) reflects the
fact that enrichment with carbon only takes place in the austenite phase. The
difference in carbon potential between the surface and the workpiece provides
the driving force for carbon diffusion into the piece. The carbon potential
of the furnace atmosphere must be greater than the carbon potential of the
surface of the workpiece for carburizing to occur. Hence we have the following
boundary condition:

−(1− p−m)D(θ, c)
∂c

∂ν
= β(c− cp)

where β, the mass transfer coefficient, controls the rate at which carbon is
absorbed by the steel during carburizing and cp is the carbon concentration
in the furnace, usually named carbon potential of the gas. ∂c

∂ν
denotes the

outward normal derivative. The evolution of temperature during the entire
process is described by the following nonlinear problem

ρα(θ)
∂θ

∂t
− div(k∇θ) = ρLp(θ)ṗ+ ρLm(θ)ṁ

−k ∂θ
∂ν

= h(θ − θΓ )

θ(x, 0) = θ0.
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Here ρ is the mass density, α the specific heat, k the heat conductivity of
the material. Lp and Lm denote latent heats of the austenite-pearlite and
the austenite-martensite phase changes, respectively. θΓ is the temperature
of the coolant and θ0(x) is the temperature at the beginning of the process.
In the technical process, we have three different time stages:

• Stage 1: carburization in a furnace, hence β �= 0 and h = 0.
• Stage 2: diffusion period, with β = 0 and h �= 0, serving as a linearized

radiation law.
• Stage 3: quenching with β = 0 and h �= 0.

From the mathematical point of view, without loss of generality, we will
assume that β and h are time independent functions. Then, the mathematical
result to be formulated in the following section can be applied subsequently
to the three process stages, covering the complete case hardening process.

2.2 System of Governing Equations

Let Ω ⊂ R
3 be an open bounded set with C2-boundary ∂Ω and QT :=

Ω × (0, T ) the corresponding time cylinder. After the considerations made in
the previous paragraph, we come to consider the following system of equations
governing our process:

ρα(θ)
∂θ

∂t
− div(k∇θ) = ρLp(θ)pt + ρLm(θ)mt in QT (2a)

∂c

∂t
− div((1 − p−m)D(θ, c)∇c) = 0 in QT (2b)

pt = (1 − p−m)g1(θ, c) in QT (2c)
mt = [min{m(θ, c); 1− p} −m]+g2(θ, c) in QT (2d)

−k ∂θ
∂ν

= h(θ − θΓ )on ∂Ω × (0, T ) (2e)

−(1− p−m)D(θ, c)
∂c

∂ν
= β(c− cp) on ∂Ω × (0, T ) (2f)

θ(x, 0) = θ0, c(x, 0) = c0, p(0) = 0, m(0) = 0 in Ω. (2g)

3 Results

Under standard assumptions on the data, the following theorems hold:

Theorem 1 (Existence of a weak solution). There exists a weak solution
(θ, c, p,m) to problem (2a-g) such that θ ∈ H2,1(QT ), c ∈ W (0, T ), p,m ∈
W 1,∞(0, T ;L∞(Ω)).

Theorem 2 (Uniqueness). Assume moreover that α is constant, D = D(θ),
h, β ∈ W 1

5 (∂Ω), θ0, c0 ∈W 2
5 (Ω). Then the solution to (2a-g) is unique.

For details about assumptions, the definitions of the respective Sobolev spaces
and proofs, we refer to the paper [2].
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Tc = 20000 s. Tc = 3000 s.
T = 20100 s. T = 3100 s.

Fig. 3. Phase fractions of martensite, pearlite and carbon percentage curve, plotted
against the radius of the circle, for different carburizing times Tc and end times T ,
after a quenching time of 100 s

4 Some Numerical Results

As a sample configuration, we consider the cross section of a cylinder of radius
50 mm. Material parameters are taken from the data tables for the low-carbon
steel AISI 4130. An example of the simulation work can be seen in Fig. 3,
where we can observe the distribution of phase fractions at the end of a
cycle of carburizing and quenching. In the same figure we can see how the
formation of martensite depends on the carbon concentration, in accordance
with the graphic of Fig. 2 of the first section, obtained from experimental
data. The simulations were performed with the finite element software Comsol
Multiphysics.

5 Conclusions and Further Work

In the present work we have discussed a mathematical model of case hard-
ening. From a mathematical point of view, we have proved the existence of
a unique solution. First numerical results confirm qualitative agreement with
experiments. A more detailed comparison requires more precise data. To this
end a cooperation with some engineering institutes has been started. The
development of an optimal control strategy is also under study.
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Summary. After the first report concerning the invasive recording of the His bun-
dle activity, several efforts have been conducted in order to identify His-Purkinje
potential from body surface. The problem of achieving an adequate signal-to-noise
ratio, however, is not yet resolved. Only recently the Wavelet Transform System
(WTS) has been suggested to bridge the gap. The purpose of the present study is
to employ such a method for recording His potentials in the atrial fibrillation and
flutter in order to deeply evaluate these arrhythmias.

1 Background

High-frequency components of ECG, including His bundle activity, can be ana-
lyzed by signal averaging (SA) or by beat-to-beat recording of High-Resolution
ECG. However, the SA method has three major limitations: (1) it is not able
to detect dynamic (beat-to-beat) change in the signal; (2) the SA ECG can-
not be recorded during complex cardiac arrhythmias; and (3) SA tends to
blunt deflections, even with the most precise trigger mechanism [1,2]. On the
other hand, even if traditional beat-to-beat recording (TBR) overcomes these
limitations, it implies high noise level that, at the moment, is eliminated by
Fourier based digital filters. Nevertheless, these filters, may produce a phase
shift of atrial signals and, at times, may cause ringing at the end of the atrial
waveform [11]. Recently the WTS of one-beat signal has been proposed and
validated as a method to overcome these limitations [9]. The aim of this study
is to employ such a method for recording the His signal in the atrial fibrillation
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and flutter in order to deeply evaluate these arrhythmias (e.g., to distinguish
the premature ventricular contraction from the aberrant beat).

2 Methods

A number of 12 patients (mean age of approximately 48 years) were studied.
Seven subjects had atrial fibrillation, and five had atrial flutter. Every patient
was taking digitalis.

2.1 Surface Recording and Analog-Digital Signal Converting

All the subjects, after careful skin preparation and application of silver/silver
chloride electrodes, were studied by orthogonal X , Y , Z leads recording and
by three unipolar precordial leads with electrodes positioned as follows: lead
I at the third intercostal space and right sternal border, lead II at the third
intercostal space and left sternal border and lead III at the fifth intercostal
space and left sternal border. The ECG was amplified, sampled at 1,000 Hz
and digitised with resolution of 1 mV by a 12-bit analog to digital converter.

2.2 Digital Signal Processing

Several mathematical methods are used to record micropotentials. Among
these, SA and TBR of High-Resolution ECG, both subsequently processed
by Fourier based digital bandpass filters, are the most commonly chosen [2].
However, as mentioned above, the SA method has three major limitations: (1)
it is not able to detect dynamic (beat-to-beat) change in the signal; (2) the
SA ECG cannot be recorded during complex cardiac arrhythmias; and (3) SA
tends to blunt deflections, even with the most precise trigger mechanism. On
the other hand, traditional beat-to-beat recording (TBR), even if it overcomes
these limitations, it means high noise level. At the moment, some researchers
[5, 7] try to eliminate this noise, without any appreciable result, by high-pass
filters of 80 and 100 Hz [5] or by the so-called “Spatial averaging” [7].

It must be taken into consideration that the averaging process reinforces
the identical potentials and attenuates the different ones. Therefore, the aver-
aging technique consists in averaging simultaneous recorded ECG signals from
two electrodes placed at a distance small enough that the ECG potentials are
similar and, hence, reinforced and ample enough that the noises are different
and then attenuated. Obviously such a compromise is not easily attainable.
Furthermore, with the two above mentioned methods, SA and TBR, there
is the common problem of distinguishing late atrial depolarization and atrial
repolarization, from His bundle signals. As atrial waveforms contain a greater
representation of the lower frequencies, a high-pass filter of 30 Hz has been
used to overcome such a problem. Some portion of His-Purkinje signal, how-
ever, is eliminated with this high-pass filter, which, however, may produce a
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phase shift of atrial signals and, at times, may cause ringing at the end of
atrial waveform. Obviously same limitations are present in all of the Fourier-
based filters, even in the band-pass ones which, as above mentioned, are used
with both methods in the electrocardiogram for the identification of the His
bundle potentials. Therefore, we propose Wavelet Transform Systems (WTS)
of one-beat signal as a method to overcome all these limitations. We have used
such mathematical model for two purposes: (1) to de-noise the signal achiev-
ing high signal/noise ratio, and (2) to extract the characteristic frequencies,
or specific oscillations, of the de-noised signal.

2.3 De-Noising the Signal

For such aims wavelet transform offers two complementary interesting features
[12]. First, the wavelet transform allows for a temporary localized sliding anal-
ysis of the signal, thus giving access at any time to its analysis. Second, the
shape of the basis elements used in the wavelet transform differ from the fixed
sinusoidal shape of the Fourier transform and can be designed to better fit
the shape of the analyzed signal. This allows for a better quantitative mea-
surement. By means of the first feature, wavelet analysis allows to follow the
temporal evolution of the spectrum of the frequencies contained in the signal.
Such feature is demonstrated by a comparative experiment (see [10, pp. 301–
311]) where a signal is analyzed performing both the Fourier and Wavelet
transform on two pairs of electrocardiogram of different morphology but of
same duration (250 msec). For both methods the signal is decomposed in basic
components (harmonics and levels respectively) whose sum reconstructs the
original signal. In the case of Fourier analysis the difference of morphology of
the two electrocardiograms has no influence in the frequency of the harmon-
ics. Indeed, such frequency, F , is given only by signal duration in accordance
with the formula F = 1/D Hz, where D is the signal duration in seconds. For
both the electrocardiographic signals, the first harmonic has a frequency of
4 Hz, the second one has a frequency of 8 Hz, the third has a frequency of
12 Hz and so on. The unique difference concerns the magnitude and the phase
of the harmonics. Therefore there is no reference to the temporal evolution of
the signal. Instead, in the case of Wavelet transform analysis, the same dif-
ference determines a distinct appearance of the levels of the decomposition.
This yields the evidence of temporal evolution of the signal, while the defini-
tion on the frequency domain is limited, even if not fully abrogated, as it will
be specified on the discussion. Such concepts are summarized and elucidated
as follows. Assume we have two signals composed by two sine waves of dif-
ferent frequency, say, of 50 and 100 Hz (or, 10 and 20 periods, respectively).
Assume signal S1 contains the low-frequency sinusoidal signal first and then
the high-frequency signal; whereas, signal S2 contains the same waves but
with inverted order. The FFT of both S1 and S2 have an identical spectrum
which is flat except for two peaks representing the two above mentioned fre-
quencies. Conversely to Fourier, wavelet analysis displays a different result
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for the two signals, clearly showing the exact location in time of where the
two frequencies change (by showing a peak), and where they are too. There-
fore, by allowing the temporal evaluation of the spectrum, wavelet analysis is
capable of revealing frequency breakdown, breakdown points, discontinuities
in higher derivatives, proximal discontinuity and so on. Hence, WT analysis is
particularly effective for the extraction of very low magnitude signals such as
His potential. Moreover, wavelet analysis can often de-noise a signal without
appreciable distortion. The de-noising of the signal has been achieved by fixed
and minimax form using a wavelet called “Symlet 3” [4] and then the best de-
noised signal was chosen. Signal processing performed by the WTS de-noising
method differs from one used by the Fourier based digital filters. With the
first method the signal is studied to achieve some statistical parameters (cor-
relation, spectrum, and distribution) and then is de-noised by using frequency
bands deducted by the above-mentioned parameters [5]. Conversely, with the
second method the frequency bands are chosen a priori regardless from the
statistical parameters, with the risk of eliminating some portion of His signal.

2.4 Extracting of the Characteristic Frequencies

To extract the characteristic frequencies, or specific oscillations, the signal was
analyzed performing a three level, rarely four level, decomposition by using
a wavelet function called “Daubechies 7” [4]. Such a wavelet has been chosen
because, in accordance with the second above mentioned WTS feature, it
seemed to be the most similar to the His bundle signal. The above mentioned
high-pass filter of 30 Hz has not been used because distinguishing late atrial
depolarization and repolarization, from His bundle signals is not a problem
in this case. A deflection in the PR segment was considered as a His bundle
potential provided it satisfied two criteria. First, it had to be at least 2 V
in amplitude. Second, a relatively isoelectric segment of at least 10 msec was
required between the terminal atrial activity and the deflection [6].

3 Results

By wavelet de-noising we have achieved a good removal of the noise, which
has been reduced from 6 to 1 V , and a best preservation of the shapes of
very sharp peaks. Furthermore, in all of the cases His bundle potential could
be recorded. Often it was best identified at 2 and 3 levels and rarely at 3
and 4 levels of the wavelet decomposition, it was 15–25msec in duration and
2–12 mV in amplitude. The H-Q interval ranged from 30 to 65 m sec. Often,
the simple inspection of the de-noised ECG allows to detect the His bun-
dle potential which looks as a monophasic (positive or negative) or biphasic
deflection between P and QRS waves of 15–25m sec. Often, the His bundle
potential detection is followed by a notch which, in our opinion, is identifiable
with the right bundle-branch potential. Indeed it is absent in right bundle
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branch block. However the wavelet decomposition leads to an easier, safer,
more constant and reliable identification of His bundle potential.

His bundle recordings were obtained in all seven cases of atrial fibrillation,
in which a single His bundle deflection preceded each QRS complex (except for
ventricular premature beats). The H-Q intervals were constant from beat to
beat during atrial fibrillation. In the case of premature ventricular contraction,
the second complex is not preceded by His bundle deflection. Therefore it
represents a ventricular extrasystole. Block below the His bundle was not
observed in any of the cases. The findings in all five cases of atrial flutter
were similar. Each QRS complex was preceded by a single His deflection, and
the absence of His deflections in the nonconducted beats indicates that the
level of block was proximal to the common bundle. In a case of ventricular
extrasystole, the first QRS complex is wide and is not preceded by a His
deflection. This it is due to a premature ventricular contraction. Conversely,
in a case of aberrantly conducted beat the second complex is of wide duration
and is preceded by a His deflection. In this case, the signal was previously
submitted to a high-pass filter of 25 Hz to eliminate the f wave which obscured
the His deflection. Our data are in accordance with invasive study [8].

4 Discussion

The wavelet transform enables noise reduction by allowing elective use of
frequency bands with high signal-to-noise ratio for time feature extraction;
therefore automatic estimation of time parameters is robust. The noise reduc-
tion from 6 to 1 mV, performed without averaging, is very effective because
performing the next step wavelet decomposition also means further filtering of
the signal. This filtering occurs because the different frequencies predominate
at different levels. That is, with sampling at 1,000 Hz of analogic signal, the
frequencies of 500–1,000 Hz predominate at the first level, frequencies of 250–
500 Hz predominate at second level, 125–250Hz at third and 62.5–125Hz at
fourth. Performing both wavelet de-noising and decomposition, in our opin-
ion, is crucial for the identification, without averaging, of very low amplitude
signals. Up to now for such a purpose only the de-noising or only the decom-
position have been used [6]. With our method a His bundle potential could
be readily identified in all of the 12 patients. Hence, the method can be used
as a valid tool for recognition of aberrant conduction in atrial fibrillation and
flutter. Aberrant conduction may be mistaken as premature ventricular con-
traction and no rule has been proposed for differentiating the two pathologic
conditions [3]. Note that the diagnosis is difficult in the absence of recogniz-
able P waves, as in atrial fibrillation. Therefore our method appears to be the
easiest one for the diagnosis of aberrant conduction and for the resolution of
the consequent therapeutic problems. Moreover the procedure is very simple
to be performed and can therefore find a large clinical application. Indeed, in
our opinion, the clinical application of our noninvasive method can be very
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large including acute alterations of AV conduction, arrhythmias secondary to
acute myocardial infarction, sudden changes in AV conduction after previously
mild chronic abnormality, long term follow-up, study of the natural history of
cardiac conduction system diseases and so on. On synthesis, all indications for
internal His bundle recording may apply to our method which, on the other
hand, can be extended to all diseases in which an invasive investigation is
contraindicated.
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Summary. The conventional designing process of axial-symmetrical connections
does not take into consideration the manufacturing errors of connection elements.
Here we take measurements of elements that are parts of pin and spigot joints, show-
ing the incomplete contact of surfaces of interlocking parts. Computational models
are used to analyse the cooperation of elements of axial-symmetrical connection.
We make use of the engineering system I-DEAS with FEM and contact element
modules. The resulting parametric computational models enable us to correct the
experimental values and to evaluate the contact stresses more accurately.

1 Introduction

Axial-symmetrical joints are ones of basic methods of machines elements
connections. Quality of the whole machine depends on their manufacturing
accuracy. Issues of their designing are integrally connected to geometrical char-
acteristics recording in technical documentation, to manufacturing of elements
and metrology measuring possibilities.

At present standards are solely recommendations concerning manufactur-
ing of particular joint elements, and their usage by a designer is not necessary
connected to technical premises. If a designer does not make use of their rec-
ommendations then he should be conscious of significant strength, functional
and exploitation changes resulted of inadequate choosing of tolerances and
fit [1]. In this article there is presented the attempt of evaluation of contact
stresses in spigot joint for wide range of fittings.
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Fig. 1. Pin joint, dimensions of connection and computational model FEM grid
with boundary conditions

2 Research Object and Computational Model

There was chosen the spigot joint free fitted characterized with wide tolerance
range.

• Connecting rod φ38, 075+0,030.
• Gudgeon pin φ38, 025−0,010.
• Clearance 0, 050÷ 0, 090mm.

There were elaborated the set of geometrical models corresponding to lim-
iting values of the hole and shaft tolerances. Geometric models were the basis
of elaboration of FEM models, which were formed by putting finite elements
mesh connections on simplified geometry. As the finite elements there were
taken the linear element type ‘brick’ (Fig. 1). Referring to accessibility and
simplicity of finite elements mesh generating as well as rich base of finite
elements there were chosen system I-DEAS [3]. On the created topology of
finite elements there were defined boundary conditions (Table 1). System gen-
erated contact elements on cooperating surfaces. Outer surface of a hole (outer
ring) has taken away all degrees of freedom, whereas a shaft (inner ring) can
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Table 1. Parameters of computational model FEM

Node Label Range 1 - 49518, 49140 Total
Element Label Range 1 - 41600, 41600 Total
Element Types solid linear brick : 41600
Physical Properties 1 - SOLID1 : 41600
Materials 1 - GENERIC ISOTROPIC STEEL : 41600
Solution Set 1 - SOLUTION SET1

1 - BOUNDARY CONDITION SET 1
Restraint:
1 - RESTRAINT SET 1
Contact:

Boundary Conditions 1 - CONT
Global contact search distance lower bound : -1
Global contact search distance upper bound : 1
Global friction : OFF
Load:
1 - LOAD SET 1

Model/Analysis Type Structural / Static
1 - B.C. 1,DISPLACEMENT 1,LOAD SET 1
2 - B.C. 1,REACTION FORCE 2,LOAD SET 1
3 - B.C. 1,STRESS 3,LOAD SET 1

Results 4 - B.C. 1,STRAIN ENERGY 4,LOAD SET 1
5 - B.C. 1,CONTACT STRESS 5,LOAD SET 1
6 - B.C. 1,CONTACT FRICTION STRESS 6,LOAD S
7 - B.C. 1,CONTACT PRESSURE 7,LOAD SET 1

move in vertical direction only. In vertical direction on the inner surface of a
shaft there was imposed a load. The purpose of computational models elab-
oration was estimating of spigot joint stress state for assumed dimensional
tolerances. There were evaluated the influence of a hole and a shaft diame-
ters on contact stresses distribution for boundary tolerations dimensions at
assumed constant load conditions. Smaller diameter of inner ring was loaded
with pressure 80MPa.

3 Results of Computer Simulation

As the result of computer simulation there obtained coloured charts of stresses
distribution acc. to Huber-Misses-Hencky Hypothesis and distribution of dis-
tortions and values of restrain forces, pressures and contact stresses. For
further analysis there were used results and contact stresses charts (Fig. 2).
For results evaluation facilitation all contact stresses charts were presented in
equal scale (460 MPa). Results analyses were done and there were established
maximal and average values of contact stresses for particular values of diam-
eters. Also there was proposed parameter Ne determining quotient of general
nodes quantity to quantity of nodes having non-zero values of stresses.
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Table 2. Stress results for parameter Ne

Connection[mm]

Chosen results Hole
φ38,105,
Shaft
φ38,015

Hole
φ38,105,
Shaft
φ38,025

Hole
φ38,075,
Shaft
φ38,015

Hole
φ38,075,
Shaft
φ38,025

Max. values of contact stresses [MPa] 459,1 451,3 430,9 416,4
Average value of contact stresses [MPa] 52,41 52,56 51,56 51,85
Value of parameter Ne 0,1864 0,1921 0,1957 0,2027
Number of nodes above 400 MPa 344 271 110 64
with values of above 300 MPa 608 698 836 671
contact stresses above 200 MPa 511 553 618 898
properly grouped above 100 MPa 428 415 420 409

Up to 100 MPa 144 161 154 172

Fig. 2. Top and bottom views of results of contact stresses distributions of pinjoint:
(a,b) for deviations, hole φ 38,105, shaft φ 38,015; (c,d) for deviations, hole φ
38,105, shaft φ 38,025; (e,f) for deviations, hole φ 38,075, shaft φ 38,015; (g,h) for
deviations, hole φ 38,075, shaft φ 38,025
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This parameter correlates to contact surface (Table 2). For assumed
changes of diameters values there occurred 10% increase of maximal value
of contact stresses, 2% increase of mean value, but also the change of contact
stresses distribution character that could be seen in particular charts. For
assumed method of load there is changing a contact cooperation from outer
edges in models of bigger values of clearances to more complete cooperation
in middle zone for smaller values of clearance.

4 Conclusions

Carried out analysis has shown the purposefulness of usage of finite elements
method and special contact elements as a tool enabling for evaluation of con-
tact stresses values. Made set of computer simulations enabled for evaluation
of cooperation of important machine connections. Considerations were focused
on the influence of dimensional tolerance of particular connection elements
on contact parameters. There evaluated the changing of maximal and mean
values of contact stresses.

Nodes of non-zero contact stresses values were grouped. From this grouping
arises conclusion that there are changing quantities of nodes in particular
groups with tendency to decreasing of maximal values and increasing of nodes
quantities in ranges 200–400MPa for decreasing value of connection clearance.
With the decreasing of clearance value there increased the quantity of non-
zero nodes increases of contact surface. There also drops maximal value of
contact stresses.

In the future there should be enlarged the range of analysis on simulation
of connection elements cylindricity because these factors additionally decrease
real contact surface.
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Konferencja nt. Metody i Środki Projektowania Wspomaganego Komputerowo,
Kazimierz Dolny, 2005

2. Podolski, T.: Walidacja stanu napreżeń kontaktowych w po�laczeniach
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Summary. Starting from the Cauchy problem associated with a Feller semigroup,
some expressions of solutions of the fractional Cauchy problem are presented. The
fractional Cauchy problem is applied in physics for modeling anomalous diffusion,
in which particles spread slower than is predicted by the classical diffusion model.

1 Introduction

An anomalous diffusion is the phenomenon, met in disordered or fractal media,
according to which the displacement variance is no longer linear in time but
proportional to a power α of time with 0 < α < 2. The particles spread in
a different manner than the prediction of the classical diffusion equation. A
known model for an anomalous diffusion is the fractional diffusion equation,
where the usual second derivative in space is replaced by a fractional derivative
of order α, 0 < α < 2,

∂u

∂t
(x, t) = D

∂αu

∂xα
(x, t), u(x, 0) = f(x).

We can extend this equation to the fractional Cauchy problem

∂βu

∂tβ
(x, t) = (Au(·, t)) (x), u(x, 0) = f(x),

where A is a pseudodifferential operator. In [1] was shown that the solution of
this problem can be expressed as an integral transform of the solution to the
usual Cauchy problem. In this paper, starting from this integral transform we
give some formulae for the solution of the fractional Cauchy problem.
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2 Integral Representation of the Operators
which form a Feller Semigroup

Let (X, ‖ ·‖) be a Banach space. {T (t)}t≥0 is a strongly continuous semigroup
on X. u(t) = T (t)f solves the abstract Cauchy problem

d

dt
u(t) = Au(t), u(0) = f,

for f ∈ D(A).
A continuous negative definite function a is described by Lévy-Khinchin

formula

a(ξ) = c+ ib · ξ + q(ξ) +
∫

Rn\{0}

[
1− e−iξ·y − i ξ · y

1 + |y|2
]

1 + |y|2
|y|2 dμ(y)

with c ≥ 0, b ∈ Rn, q a continuous non-negative definite quadratic form on
Rn and μ a non-negative finite measure on Rn \ {0}.

In the following, we denote by C∞(Rn) the Banach space of all continuous
functions on Rn vanishing at infinity with the supremum norm ‖ · ‖∞ and by
C∞

0 (Rn) the set of all C∞-functions on Rn with compact support. S(Rn)
will be the Schwartz space, i.e. the set of all functions ϕ ∈ C∞(Rn) such that
supx∈Rn |xβ∂αϕ(x)| < ∞ for all multi-indices α and β. S(Rn) is dense in
C∞(Rn).

The general form of a pseudo-differential operator is

p(x,D)ϕ(x) = (2π)−(n/2)

∫

Rn

eix·ξp(x, ξ)ϕ̂(ξ)dξ,

for ϕ ∈ C∞
0 (Rn), where

∧
ϕ(ξ) = (2π)−(n/2)

∫
Rn

e−ix·ξϕ(x)dx is the Fourier

transform. p(x, ξ) is called the symbol of the operator p(x,D) (see [3]).
Let A : D(A) → C∞(Rn) be a linear operator, where D(A) is a linear

dense subspace of C∞(Rn). A satisfies the positive maximum principle on
D(A) if for all u ∈ D(A) and x0 ∈ Rn such that supx∈Rn u(x) = u(x0) ≥ 0 it
follows that Au(x0) ≤ 0.

Theorem 2.1.[2] Let A : C∞
0 (Rn)→ Cb(Rn) be a linear operator satisfying

the positive maximum principle. Then

Au(x) = −(2π)−(n/2)

∫

Rn

eix·ξa(x, ξ)û(ξ)dξ,

where a : Rn×Rn → C is a locally bounded function such that for any fixed
x ∈ Rn, ξ → a(x, ξ) is a continuous negative definite function.

The convolution semigroup on C∞(Rn) generated by a is defined by the
formula
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T (t)u(x) = (2π)−(n/2)

∫

Rn

eix·ξpt(ξ)û(ξ)dξ,

for each t > 0 and u ∈ S(Rn), where pt(ξ) = e−ta(ξ). In this case, we observe
that for any t > 0 the symbol is pt (note that there is no x-dependence).
The function ξ → pt(ξ) is a positive definite function and the infinitesimal
generator of {T (t)}t≥0 is

Au(x) = −(2π)−(n/2)

∫

Rn

eix·ξa(ξ)û (ξ) dξ,

for all u ∈ C∞
0 (Rn), x ∈ Rn.

Let {T (t)}t≥0 be a strongly continuous semigroup on C∞(Rn).

If ‖T (t)u‖ ≤ ‖u‖ for all u ∈ C∞(Rn) and t ≥ 0, then {T (t)}t≥0 is
a contraction semigroup. A strongly continuous positive contraction semi-
group on C∞(Rn) is called a Feller semigroup on Rn. We have an integral
representation of the operators which form a Feller semigroup (see [4]).

Theorem 2.2. Let {T (t)}t≥0 be a Feller semigroup on Rn. For any t ≥ 0
there exists a unique function pt : Rn×Rn → C measurable, locally bounded
and such that for any fixed x ∈ Rn, ξ → pt(x, ξ) is a continuous positive
definite function with the property that for any u ∈ S(Rn),

T (t)u(x) = (2π)−(n/2)

∫

Rn

eix·ξpt(x, ξ)û(ξ)dξ.

For u ∈ S(Rn), the infinitesimal generator A of {T (t)}t≥0 is

Au(x) = (2π)−(n/2)

∫

Rn

eix·ξa(x, ξ)û(ξ)dξ,

where
a : Rn ×Rn → C, a(x, ξ) =

d

dt
pt(x, ξ) |t=0.

Moreover, we deduce the following result.

Theorem 2.3. Let {T (t)}t≥0 be a Feller semigroup on Rn. For any t ≥ 0
and u ∈ C2

b (Rn), T (t)u(x) = C(t)u(x) +D(t)u(x), with

C(t)u(x) =
n∑

i,j=1

a
(t)
ij (x)

∂2u

∂xi∂xj
(x) +

n∑
i=1

b
(t)
i (x)

∂u

∂xi
(x) + γ(t)(x)u(x)

and

D(t)u(x)=
∫

Rn

N (t)(x, dy)

{
u(y)−σ(t)

x (y)

[
u(x) +

n∑
i=1

∂u

∂xi
(x) · (yi−xi)

]}
,
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where γ(t)(x) = c(t)(x)+d(t)(x)+1, a(t)
ij , b

(t)
i , c(t), d(t) are continuous functions,

a
(t)
ij = a

(t)
ji ,

n∑
i,j=1

a
(t)
ij (x)ξiξj ≥ 0, c(t) ≤ 0, σ(t)

x is a certain cut-off function and

N (t)(x, dy) is a certain Lévy kernel such that d(t)(x) +
∫

Rn

N (t)(x, dy){1 −

σ
(t)
x (y)} ≤ 0, for all x ∈ Rn.

Proof. Indeed, T (t)− I satisfies the positive maximum principle on C∞(Rn)
for every t ≥ 0.The above formula follows from the last assertion of Lemma 3.3
([2], pp. 2–34) and Corollary 3 ([2], pp. 2–10). �

3 Fractional Cauchy Problem

We consider the fractional Cauchy problem

∂β

∂tβ
u(x, t) = Au(x, t), u(x, 0) = f(x),

where 0 < β < 1, t ≥ 0 and A is the generator of bounded continu-
ous semigroup {T (t)}t≥0 on the Banach space X. For a function g with
g̃(s) :=

∫ ∞
0
e−stg(t)dt the Laplace transform, ∂β

∂tβ
g(t) is the Caputo frac-

tional derivative in time, which can be defined as inverse Laplace transform of
sβ g̃(s)− sβ−1g(0). We observe that p(t, x) = T (t)f(x) is the unique solution
to the abstract Cauchy problem ∂

∂tp(x, t) = Ap(x, t), p(x, 0) = f(x), for any
f in the domain of A.

We note that the fractional Cauchy problem can be written in several
equivalent forms (see [1]).

Proposition 3.1. Assume 0 < β < 1. Let A be the generator of a strongly
continuous semigroup {T (t)}t≥0 on the Banach spaceX and g ∈ C([0,∞]×X)
be Laplace transformable. Then for all h ∈ X the following are equivalent:

(1) For all t > 0, the Riemann-Liouville derivative of g exists, g(t) ∈ D(A),
the Laplace transform of Dβ

t g(t) exists, and

Dβ
t g(t) = Ag(t) +

t−β

Γ (1− β)
h.

(2) For all t > 0, the Caputo derivative of g exists, g(t) ∈ D(A), the
Laplace transform of ∂β

∂tβ
g(t) exists, and

∂β

∂tβ
g(t) = Ag (t) , g (0) = h.

(3) For all t > 0, the function g is differentiable, g(t) ∈ D(A), the Laplace
transform of ∂

∂tg(t) exists, and
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∂

∂t
g(t) = D1−β

t Ag(t), g (0) = h.

(4) The function g(t) is analytic on 0 < t <∞, satisfies ‖g(t)‖ ≤Meωt on
0 < t <∞ for some M,ω ≥ 0 and

g(t) =
∫ ∞

0

t

βs1+1/β
gβ

(
t

s1/β

)
T (s)hds,

where gβ is such that
∫ ∞
0 e−λtgβ(t)dt = e−λ

β

.

In the above proposition Dβ
t g(t) = dm

dtm

∫ t
0

(t−u)m−β−1

Γ (m−β) g(u)du, m = [β], is
the Riemann-Liouville fractional derivative of order β. On the other hand,

∂β

∂tβ
g(t) =

∫ t

0

(t− u)m−β−1

Γ (m− β)
g(m) (u) du, m = [β].

If β is a positive integer then Dβ
t = ∂β

∂tβ
is the usual derivative operator.

In the framework of Proposition 3.1, we define the family of bounded,
strongly continuous linear operators on X,

S(t)h(x) :=
∫ ∞

0

t

βs1+1/β
gβ

(
t

s1/β

)
T (s)h(x)ds, t ≥ 0.

In view of (4) the function g(t) = S(t)h defines a solution to the fractional
Cauchy problem for any initial condition h ∈ X and this solution depends
continuously on the initial condition h.

In the sequel we consider X = C∞(Rn).

Proposition 3.2. Let A be the generator of a Feller semigroup {T (t)}t≥0 on
Rn. Then for any t ≥ 0 and h ∈ S(Rn),

S(t)h(x)=(2π)−n/2
∫ ∞

0

∫

Rn

∫

Rn

t

βs1+1/β
gβ

(
t

s1/β

)
ei(x−y)·ξps(x, ξ)h(y)dydξds,

where ps : Rn ×Rn → C is measurable, locally bounded and such that for
any fixed x ∈ Rn, ξ → ps(x, ξ) is a continuous positive definite function.

If ks(x, y) := (2π)−n/2
∫

Rn

ei(x−y)·ξps(x, ξ)dξ is finite, then

S(t)h(x) =
∫ ∞

0

∫

Rn

t

βs1+1/β
gβ

(
t

s1/β

)
ks (x, y) h(y)dyds, t ≥ 0.

Proof. In the formula of the definition of S(t)h(x) we apply Theorem 2.2 for
the semigroup {T (t)}t≥0 on Rn. �
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Remark 3.3. Using the relation from Theorem 2.3, we obtain the “structure”
of each operator S(t), t ≥ 0. Since T (t)h(x) = C(t)h(x) +D(t)h(x), we have

S(t)h(x) =
∫ ∞

0

t

βs1+1/β
gβ

(
t

s1/β

)
C (s)h(x)ds+

+
∫ ∞

0

t

βs1+1/β
gβ

(
t

s1/β

)
D(s)h(x)ds.

Thus we can interpret the solution g(t) = S(t)h of the fractional Cauchy
problem for the initial condition h as the sum of “diffusion part” and “Lévy
part”.

Example 3.4. We consider an anomalous diffusion given by the equation

∂βu

∂tβ
(x, t) = DΔu(x, t), u(x, 0) = h(x), x ∈ Rn, t ≥ 0.

where Δ =
∑n

i=1

∂2

∂x2
i

and D is a constant.

We denote with | · | the norm in Rn. For ps(x, ξ) := e−D|ξ|2s, we have

ks(x, y) = 1
(2

√
πDs)n

e−
|y−x|2
4sD and we deduce

S(t)h(x) =
t

β
(

2
√
πD

)n
∫ ∞

0

∫

Rn

1
s1+1/β+n/2

gβ

(
t

s1/β

)
e−

|y−x|2
4sD h(y)dyds.

Example 3.5. For the equation

∂βu

∂tβ
(x, t) =

1
2

(Δ− x · grad)u(x, t), u(x, 0) = h(x), x ∈ Rn, t ≥ 0,

we have ps(x, ξ) = ei(e
−s/2−1)x·ξ−(1−e−s)·|ξ|2/2.

Indeed, the Ornstein-Uhlenbeck semigroup is defined, for each t > 0, by

Utf(x) =
∫

Rn

f(xe−t/2 + y
√

1− e−t)μ(dy),

where μ is the Gaussian measure on Rn, whose Fourier transform is μ̂(u) =
e−|u|2/2. On S(Rn),

Utf(x) = (2π)−n/2
∫

Rn

eix·ξpt(x, ξ)f̂ (ξ)dξ,

with ps(x, ξ) as above. Then S(t)h(x) is equal with

1
(2π)n

∫ ∞

0

∫

Rn

∫

Rn

t

βs1+1/β
gβ

(
t

s1/β

)
e−iy·ξ+ie

−s/2x·ξ−(1−e−s)·|ξ|2/2h(y)dydξds.
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Summary. Models for heavy-tailed data with applications to the study of multi-
scale behaviour of the interplanetary magnetic field are presented. Numerical aspects
are given in the case of the data obtained by Ulysses mission (magnetometer
VHM/FGM). This approach yields probabilistic predictions of the dynamics and
multiscale behaviour of the interplanetary magnetic field.

1 Models for Heavy-Tailed Data

The study of statistical properties of the interplanetary magnetic field fluctu-
ations represents an important topic in space research. These fluctuations are
related to acceleration processes and energy transport in the solar wind, and
can provide an important insight into the solar wind turbulent cascade.

The fractional diffusion equations, which are used to represent the com-
plexity, provide a suitable mathematical framework for the multiscale behav-
ior. A space-time fractional diffusion equation is obtained from the standard
diffusion equation by replacing the second order space-derivative by a frac-
tional Riesz derivative of order α > 0 and skewness θ, and the first order
time-derivative by a fractional derivative of order β > 0 in Caputo or
Riemann–Liouville sense. In the cases 0 < α < 2, β = 1 or α = 2, 0 < β < 2
or 0 < α = β ≤ 2, the fundamental solution (or Green’s function) Fα,β (x, t)
of the equation can be interpreted as a spatial probability density function
(PDF) evolving in time. It is well known that for the standard diffusion (α = 2,
β = 1) the Green’s function is the Gaussian PDF. The scaling property of the
Green’s function allows to express it in terms of a function of a single variable,
the reduced Green’s function Rα,β (x) (see [2]). We observe that Rα,1 (x) are
the stable distributions. Some computational forms of Rα,β (x) are as follows:

(a) if α = β then

Rα,α (x) = 1
πx

∑∞
n=0 (−xα)n sin

[
nπ
2 (θ − α)

]
, 0 < x < 1 (1)
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and
Rα,α (x) = 1

πx

∑∞
n=0 (−x−α)n sin

[
nπ
2 (θ − α)

]
, x > 1; (2)

(b) for α < β we have

Rα,β (x) = 1
πx

∑∞
n=1 (−x−α)n Γ (1+nα)

Γ (1+nβ) sin
[
nπ
2 (θ − α)

]
, x > 0; (3)

A purpose of this study is to show that the PDF’s are well adapted to model
the random characteristic of the interplanetary magnetic field in different cases
of configurations.

2 Statistical Scaling Properties of the Magnetic Field
Intensity Fluctuations

Using the interplanetary magnetic field data provided by the Ulysses mission
(magnetometer VHM/FGM) for 3 years 2002–2004, we analyze the changes in
the magnetic field intensity, B(t), at different scales. In this interval of time
Ulysses mission, being at the beginning of its third solar orbit, was situated
at heliocentric distances between 2.5859 and 5.4044 AU (the maximum helio-
centric distance reached by the mission). At this distance, Ulysses obtained
information on the Jupiter’s magnetosphere. Also, we consider the Ulysses
Solar Wind Plasma Investigation data (SWOOPS) for analyzing the distribu-
tion of proton number density and solar wind velocity for the years 2002–2004.
In Figs. 1 and 2 are presented the magnetic field intensity profile (top panel)
and solar wind velocity profile bottom panel) during 2002–2003, respectively
2003–2004 (a total of 1,096 days of data recorded by Ulysses).

Fig. 1. Time series of magnetic field intensity B (top panel); solar wind velocity v
(bottom panel) during 2002–2003 years of data recorded by Ulysses
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Fig. 2. Time series of magnetic field intensity B (top panel); solar wind velocity v
(bottom panel) during 2003–2004 years of data recorded by Ulysses

2.1 Finite Size Scaling Technique

We apply the finite size scaling technique on Ulysses data in order to study
the scaling and intermittency of the magnetic field intensity. Although inter-
mittency refers to the statistical behavior of the fluctuations in the spatial
domain, time differences are equivalent to space differences when the Taylor
hypothesis is valid (see [3]) – i.e. a turbulent structure transits the space craft
at a time which is small in comparison with its own evolution.

In our study the considered technique is based on differencing of the origi-
nal time series over a range of temporal scales τ . The fluctuations on temporale
scale τ can be captured by a set of differences dS(t, τ) = S(t+τ)−S(t), where
S(t) represents a given time series (see [1]). The basic quantity considered in
this section is the change in the magnetic field intensity B, at different scales
(time lags τn = 2n days, n = 0, 1, 2, . . .).

First step in our calculation is represented by the determination of
magnetic field intensity increments at a given scale τn through:

dBn = dBn(ti, τn) = [B(ti + τn)−B(ti)] , (4)

where ti is the time (days of the year); B(ti) is the daily average of B.
The second step consists in the normalization of these quantities (which

represent characteristic fluctuations across eddies at the scales τn) to their
variance, σ2, obtaining data sets of normalized fluctuations of the magnetic
field intensity.

2.2 Results: Magnetic Field Fluctuation Analysis

Figure 3 presents the magnetic field strength signal observed by Ulysses dur-
ing 2002–2004 at heliocentric distances between 2.5859 and 5.4044 AU. We
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Fig. 3. The determined dBn for the scales n = 0, . . . , 6

considered scales ranging from τ0 = 1 day to τ6 = 26 = 64 days, and obtained
seven normalized data sets dBn(ti, τn).

At scales of 1, 2, and 4 days, the fluctuations dB0(t), dB1(t) and dB2(t)
are intermittent with spikes (pulse of extremely short duration), superposed
on a signal with bursts (abrupt increase in the amplitude of the signal) of
fluctuations, especially for the year 2002 (days 1–365). At larger scales the
fluctuations are less intermittent (fewer bursts and spikes).

We have to mention that the intermittency (which is connected with sud-
den occurrence of large amplitude variations of magnetic field intensity) is
usually pointed out as a departure of the PDFs from a Gaussian distribution.
The intermittency is the triggering process for increased probabilities of large
amplitude fluctuations at smaller scales.

Magnetic field intensity fluctuations at different time scales are quanti-
tatively described by the PDFs. These are represented by the normalized
histograms of dBn(ti, τn). In Fig. 4, from top to bottom, are presented the
PDFs (denoted fdBn) of the normalized fluctuations of the magnetic field
intensity, dBn, measured by Ulysses, on time scales of 1, 2, 4, 8, 16, 32 and
64 days. In order to reveal the shape of fdBn, these are separated by 0.1
differences in Fig. 4. The presence of heavy tails is obvious for all time scales.

Figure 5 presents the observational (points) and theoretical PDFs (contin-
uous lines) for 1, 8, 32 and 64 days time scales. The theoretical PDF fdB0 is
obtained for α = 0.35, β = 0.55, θ = −0.35 with formula (3). The theoretical
PDFs fdB3 and fdB5 are obtained for α = β ≤ 0.2 using the formulae (1) and
(2). In order to point out the heavy tails, the logarithmic scale is considered.
At large scales the PDFs are almost Gaussian, and the tails of the distribu-
tions grow up as the scale becomes smaller. The presence of intermittency
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Fig. 4. The observational PDFs – fdBn – for the scales n = 0, 1, 2, . . . , 6
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Fig. 5. The observational (points) and theoretical PDFs – fdBn – for the scales
n = 0, 3, 5, 6

is obvious for fdB0 and fdB3), where the PDFs of fluctuations increasingly
depart from a Gaussian distribution with decreasing temporal scale.

2.3 Proton Number Density Distribution

The proton number density distribution can be fitted with the formula
(3) from the previous subsection, for α = 0.4, β = 1. In Fig. 6 are pre-
sented the observed proton number density distribution (histogram), and the
representation of the stable distribution for data recorded by Ulysses.



996 N.A. Popescu and E. Popescu

0

0

0.1

0.2

0.3

1 2 3 4

Protons Number Density/cubic cm

F
ra

ct
io

n 
(n

um
be

r/
26

01
7)

SWOOPS data (26017)

5 6 7 8 9 10

Fig. 6. Proton number density distribution for 26017 data in the interval 2002–2004

3 Conclusions

Analysis of the probability distribution functions of the magnetic field inten-
sity fluctuations has underlined their non-Gaussian properties on small time
scales, and uncorrelated features at large scale. Numerical solutions of space-
time fractional diffusion equations have been used to analyze the presence or
absence of heavy tails, typically associated with multiscale behaviour, in the
case of the interplanetary magnetic field data obtained by Ulysses mission (for
the years 2002–2004). At larger scales the fluctuations are less intermittent
than at small scales, where the fluctuations present spikes and bursts indicat-
ing intermittency. The changes of B at different scales have been studied by
means of PDFs, good fits of the observational PDFs being obtained. In this
mode, probabilistic predictions can be done for the dynamics and multiscale
behaviour of the interplanetary magnetic field.
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Summary. A wave equation, that governs finite amplitude acoustic disturbances in
a thermoviscous Newtonian fluid, and includes nonlinear terms up to second order,
is proposed. The equation preserves the Hamiltonian structure of the fundamental
fluid dynamical equations in the non-dissipative limit. An exact thermoviscous shock
solution is derived. This solution is, in an overall sense, equivalent to the Taylor shock
solution of the Burgers equation. However, in contrast to the Burgers equation, the
model equation considered here is capable to describe waves propagating in opposite
directions. Studies of head-on colliding thermoviscous shocks demonstrate that the
propagation speed changes upon collision.

1 Introduction

The “classical” equation of nonlinear acoustics, the so-called Kuznetsov equa-
tion [7], governs finite amplitude acoustic disturbances in a Newtonian,
homogeneous, viscous, and heat conducting fluid. This equation arises in the
modelling of biomedical ultrasound [5] and modelling of jet engines [2], to
mention a few examples. The derivations of the Kuznetsov equation [7] and
related model equations [8] are based on the complete system of the equations
of fluid dynamics. It has been demonstrated that this system of equations is of
Hamiltonian structure in the absence of dissipation [9]. However, in the non-
dissipative limit, the Kuznetsov equation does not retain the Hamiltonian
structure.

A.D. Fitt et al. (eds.), Progress in Industrial Mathematics at ECMI 2008,

Mathematics in Industry 15, DOI 10.1007/978-3-642-12110-4 159,

c© Springer-Verlag Berlin Heidelberg 2010



998 A.R. Rasmussen et al.

In this paper we propose a nonlinear wave equation, which, in the non-
dissipative limit, preserves the Hamiltonian structure of the fundamental
equations. We present the derivation and analysis of an exact thermoviscous
shock solution. The derivation of the exact solution is based on a generalized
travelling wave assumption, which leads to a wider class of exact solutions
compared to the one reported by Jordan [6] for the Kuznetsov equation.
Furthermore, the introduction of the generalized assumption is necessary in
order to interpret the results of numerical simulations of head-on colliding
thermoviscous shocks presented in this paper.

2 Nonlinear Wave Equations

Equations governing finite amplitude acoustic disturbances in a Newtonian,
homogeneous, viscous and heat conducting fluid may be derived from four
equations of fluid dynamics. Namely, the equation of motion, the equation of
continuity, the heat transfer equation and an equation of state.

To obtain a nonlinear wave equation all dependent variables except one
are eliminated from this system of equations, resulting in a nonlinear wave
equation for that single variable. Retaining nonlinear terms up to the second
order, we obtained a nonlinear wave equation, which we write here for the
case of one-dimensional plane fields

ψtt − c20ψxx = ψtψxx +
∂

∂t

(
bψxx + (ψx)2 +

B/A− 1
2c20

(ψt)
2

)
. (1)

From the velocity potential ψ = ψ(x, t) one can obtain the fluid particle
velocity as u = −ψx and the acoustic pressure as p ≈ ψt. The parameter b is
the diffusivity of sound (or thermoviscous dissipation parameter) [4], c0 is the
small-signal sound speed, and B/A is the fluid nonlinearity parameter [1]. In
the first order approximation (1) reduces to ψtt = c20ψxx. Introducing this in
the first term on the right hand side of (1), the Kuznetsov equation [7]

ψtt − c20ψxx =
∂

∂t

(
bψxx + (ψx)2 +

B/A

2c20
(ψt)2

)
, (2)

is obtained.
The Euler equations of fluid dynamics possess Hamiltonian structure [9].

This property is, however, not retained in (2) with b = 0, i.e. the non-
dissipative limit of the Kuznetsov equation is not Hamiltonian. In con-
trast, (1) does retain the Hamiltonian structure in the non-dissipative limit.
Accordingly, the equation may be derived from the Lagrangian density

L =
(ψt)

2

2
− c20

(ψx)2

2
− B/A− 1

6c20
(ψt)

3 − ψt (ψx)2

2
, (3)
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using the Euler–Lagrange equation. Using the Legendre transformation the
corresponding Hamiltonian density can be obtained

H =
∂L
∂ψt

ψt − L. (4)

3 Exact Thermoviscous Shock Solution

Recently, a standard travelling wave approach was applied to the
one-dimensional approximation of the Kuznetsov equation (2) to reveal an
exact travelling wave solution [6]. In this section we extend the standard
approach by introducing the following generalized travelling wave assumption

ψ(x, t) = Ψ(x − vt)− λx+ σt

≡ Ψ(ξ) − λx+ σt,
(5)

where λ and σ are arbitrary constants, v denotes the wave propagation veloc-
ity, and ξ ≡ x−vt is a wave variable. The inclusion of −λx+σt in (5) leads to a
wider class of exact solutions, compared to the one obtained from the assump-
tion ψ = Ψ(x− vt), which is the standard one. Furthermore, the introduction
of the generalized assumption is necessary in order to interpret the results of
numerical simulations of head-on colliding thermoviscous shocks presented in
Sect. 4. Inserting (5) into the nonlinear wave equation (1), integrating once
and introducing Φ ≡ −Ψ ′ we obtain the ordinary differential equation

C = vbΦ′ −
(

3
2

+
B/A− 1

2c20
v2

)
vΦ2

+
{(

1− B/A− 1
c20

σ

)
v2 − 2λv − c20 − σ

}
Φ, (6)

where prime denotes differentiation with respect to ξ and C is a constant of
integration. Requiring that the solution satisfy Φ′ → 0 as ξ → ±∞, and either

Φ→
{
θ, ξ → +∞
0, ξ → −∞ or Φ→

{
0, ξ → +∞
θ, ξ → −∞ , (7)

where θ is an arbitrary constant, lead us to C = 0 and

B/A− 1
2c20

θv3 −
(

1− B/A− 1
c20

σ

)
v2 +

(
3
2
θ + 2λ

)
v + c20 + σ = 0. (8)

In order to obtain our travelling wave solution we solve (6) subject to C = 0
by separation of variables, and by invoking (8) we find the solution to be

Φ =
θ

2

{
1− tanh

(
2 (ξ − x0)

l

)}
, (9)

l ≡ 4b(
B/A− 1

2c20
v2 +

3
2

)
θ

, (10)
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where x0 is an integration constant, |l| is the shock thickness, and 0 < Φ < θ.
Finally, using Φ = −Ψ ′ and inserting (9) into (5) we obtain (apart from an
arbitrary constant of integration)

ψ(x, t) = −θ
2

{
ξ − l

2
ln

(
cosh

2(ξ − x0)
l

)}
− λx+ σt, (11)

which is the exact solution for the velocity potential.
Travelling tanh solutions, such as the solution (9), are often called Taylor

shocks or thermoviscous shocks. The existence of an exact solution of this
type to the classical Burgers equation is a well known result [3]. However, the
Burgers equation is restricted to wave propagation either to the left or to the
right. The model equation considered in this paper does not suffer from this
limitation, as shall be illustrated in Sect. 4.

Taking the partial derivatives of (11), we find that the fluid particle
velocity, u = −ψx, and the acoustic pressure, p ≈ −ψt, are given by

−ψx = Φ+ λ and ψt = vΦ+ σ. (12)

Note that, according to (7) and (12), the asymptotic boundary conditions for
−ψx and ψt are determined by v, θ, λ, and σ, which must satisfy (8).

4 Head-on Colliding Thermoviscous Shocks

The numerical simulation presented in Fig. 1 shows the result of a head-on
collision between two thermoviscous shocks.1 From the simulation we observe
that two new waves emerge upon the collision. The contour plot reveals that
these travel at a higher speed, compared to the speed of the waves before
the collision. For other choices of initial condition, we found the outcome of
similar head-on collisions to be two thermoviscous shocks travelling at lower
speed, compared to that before the collision.

In order to analyze solutions of (1) that comprise two thermoviscous
shocks, we assume that each of these belong to the class of exact solutions
derived in Sect. 3. Investigations of the thermoviscous shocks that emerge upon
a head-on collision have made it clear that this assumption is true, only when
the generalized travelling wave assumption is used, in contrast to the standard
travelling wave assumption. For each of the two thermoviscous shocks in the
solution we introduce four new parameters, v, θ, λ, and σ, which must satisfy
(8) as

B/A− 1
2

θiv
3
i − (1− (B/A− 1)σi) v2

i

+
(

3
2
θi + 2λi

)
vi + σi + 1 = 0, i = 1, 2, (13)

1Non-dimensional variables x̃ = c0x/b, t̃ = c20t/b, and ψ̃(x̃, t̃ ) = ψ(x, t)/b were
introduced prior to the numerical computation.
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Fig. 1. The initial condition (bold lines in the two topmost plots) corresponds to
two thermoviscous shocks that travel at v = ±1.19 and make a head-on collision at
t = 42. The nonlinearity parameter was set to B/A = 5. Lowermost : contour lines
given by −ψx = Z, where Z takes four equidistantly spaced values across each wave

where subscript 1 and 2 denote parameters associated with waves positioned
to the left and right, respectively. Furthermore, we require that solutions
comprising two waves are (I) continuous and (II) satisfy the following set
of arbitrary boundary conditions

−ψx →
{
P, x→ −∞
Q, x→ +∞ , ψt →

{
R, x→ −∞
S, x→ +∞ . (14)
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Assuming that l1 > 0 and l2 < 0, we find (using the boundary conditions
for each of the two waves) that the two requirements lead to the following
conditions

λ1 = λ2, σ1 = σ2, (15a)
P = θ1 + λ1, Q = θ2 + λ2, (15b)
R = v1θ1 + σ1, S = v2θ2 + σ2, (15c)

Finally, we substitute the boundary values of −ψx and ψt at x = ±100 in
Fig. 1 for P , Q, R, and S in (15), substitute the value of B/A into (13), and
solve the resulting system of equations for v1, θ1, λ1, σ1, v2, θ2, λ2, and σ2.
Following these steps we find that the waves after the collision travel at the
velocities −v1 = v2 = 1.76 compared to v1 = −v2 = 1.19 before the collision.
This finding is fine in agreement with the velocities determined from the slope
of the contour lines in Fig. 1.

5 Conclusions

An exact thermoviscous shock solutions has been obtained using a general-
ized travelling wave assumption. This generalized assumption leads to a wider
class of exact solutions compared to the one obtained from a standard trav-
elling wave assumption and in turn this enable us to predict the outcome of
two head-on colliding shocks. Analytical results for the wave speeds after the
collision was in fine agreement with numerical observations. In future studies,
it would be rewarding to further investigate interacting thermoviscous shocks,
e.g. collisions between shocks travelling in the same directions.
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Summary. This paper tries to find an appropriate structure of human model, which
can better represent the characteristics of the real human body, using the apparent
mass (APMS) and head transmissibility (STHT) in vertical vibrations. The model
parameters were identified through minimizing an error function comprising the
measured and model response in terms of magnitude and phase characteristics of
APMS and STHT.

1 Introduction

In sitting posture the vibration, exciting the hip and thigh, is transmitted to
the head through the entire body. In this way, the vibration transmissibility
to the head and driving point mechanical impedance or apparent mass of the
human body are important characteristics to express the vibration character-
istics of a body. The apparent mass can show the driving point characteristics,
while the head transmissibility can show the end point characteristics of the
body. The apparent mass at the head and the head transmissibility are related
to the comfort feeling.

2 Development of Human Driver Model

The development of complex models of the human body response requires an
understanding of the modes of the body oscillation . Since the proposed human
body model is to be used in the study of seating dynamics, the structure should
be simple and the number of degrees-of-freedom should be low for its conve-
nient use. Various biodynamic models have been developed to depict human
motion from single DOF to multi-DOF models. These models can be divided
into lumped parameter and distributed models. The lumped parameter models
consider the human body as several rigid bodies and springs-dampers.
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Fig. 1. 4-DOF linear biodynamic model

Considering the human body as a mechanical system, at low frequencies
(less than 100 Hz) and low vibration levels, it may be roughly approximated by
linear lumped parameter systems. For this study we used a mechanical model
with 4 DOFs [2], corresponding to the following segments of the human body:
pelvis, upper torso, viscera and head, respectively (Fig. 1).

The response of this system is given by:

M2ÿ2 +K2(y2 − ys) + C2(ẏ2 − ẏs)−K3(y3 − y2)− C3(ẏ3 − ẏ2) = 0
M3ÿ3 +K3(y3 − y2) + C3(ẏ3 − ẏ2)−K4(y4 − y3)

−C4(ẏ4 − ẏ3)−K5(y5 − y3)− C5(ẏ5 − ẏ3) = 0 (1)
M4ÿ4 +K4(y4 − y3) + C4(ẏ4 − ẏ3) = 0
M5ÿ5 +K5(y5 − y3) + C5(ẏ5 − ẏ3) = 0

The apparent mass response is derived from the resultant force at mass mo

and the driving-point acceleration . The resultant force F at the lower mass
can be computed from the equation of motion for mass m0.

F (t) = m0ÿs +K2(ys − y2) + C2(ẏs − ẏ2) (2)

The solution of (1) and (2) yields

F (t) = m0ẍs +m2ẍ2 +m3ẍ3 +m4ẍ4 +m5ẍ5 (3)

Using the Laplace transforms, the (1) become written in the frequency
domain. The APMS response of the model can then be derived as follows:

M(s) =
F (s)

s2(Xs(s))
= m0 +m2

X2(s)
Xs(s)

+m3
X3(s)
Xs(s)

+m4
X4(s)
Xs(s)

+m5
X5(s)
Xs(s)

(4)

The STHT response of the model is computed from:

T (s) =
X5(s)

(Xs(s))
(5)
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Fig. 2. The normalized apparent mass of subjects measured under ENS posture at
1m/s2 rms (a) and 2m/s2 rms (b) acceleration excitation

3 Experimental Set-Up

A rigid seat structure was designed to mimic typical automotive seat geometry
and the sitting posture. The seat assembly was installed on a vertical vibration
simulator (VVS) through a force platform, with a maximum displacement of
20 cm. A resonance search test was performed at excitation frequencies below
20 Hz. An accelerometer was attached to the seat pan to measure the accel-
eration transmitted to the human body. The VVS generated two acceleration
levels: 1 m/s2 rms and 2 m/s2 rms. The vertical vibration of the head was
measured using a bite-bar located at the corner of the mouth. The posture
is defined as erect seated when only the lower back is in contact with the
backrest – ENS posture. The foot is on the foot-plate and the hands held in
driving position. The duration of vibration exposure did not exceed 90 s. The
analysis is limited to the 0.4− 20 Hz frequency range.

3.1 Characteristics of the Test Subject Population

Subject Age Height Mass(kg) Mass(kg) % of the weight
(years) (m) standing sitting supported by the seat

A 31 1.70 77.8 57.0 73.26
G 39 1.76 98.7 77.3 78.31
D 40 1.80 75.9 54.1 71.27
P 41 1.83 105.33 78.5 74.52
F 38 1.90 81.17 72.1 88.82
S 32 1.68 54.0 39.6 73.33

3.2 Analysis of the Measured APMS Data

An increase in the mass parameters tends to reduce the primary resonant
frequency, while an increase in the stiffness parameters tends to increase the
primary resonant frequency for the APMS. An increase in the damping coef-
ficients tends to decrease the primary resonant frequency derived from the
APMS. The APMS can be conveniently normalized to the static mass sup-
ported by the seat to reduce the extent of variations attributed to the body
mass (Fig. 2).
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Fig. 3. The measured seat-to-head transmissibility of subjects under 1m/s2 rms
(a) and 2m/s2 rms (b) acceleration excitation

3.3 Analysis of the Measured STHT Data

Some studies have concluded that increased mass or increased body size can be
associated with lower STHT magnitude over a wide frequency range. From the
data, it can be observed that the ENS posture yields larger variations among
different subjects. Under an ENS posture, however, the STHT magnitudes for
several subjects tend to fall below unity at all frequencies above 5 Hz, while
others show values constantly in excess of unity up to 20 Hz with the exception
of a dip in the 4− 4.5 Hz frequency range (Fig. 3).

4 Model Parameter Identification Methodology

A parametric optimization technique [1] was used to determine the model
parameters. An objective function was defined to minimize the error between
the computed and the measured values of the two biodynamic response func-
tions over a specific frequency range. The objective function is defined as the
weighted sum of the squared magnitude and phase errors associated with the
APMS or STHT functions, respectively, and expressed as:

U(χ) = minimize [αUM (χ) + βUT (χ)] (6)

where UM (χ) and UT (χ) are sums of squared errors resulting from APMS and
STHT, respectively, given by:

UM (χ) = λ1

N∑
i=1

[|M(ωi)| − |Mt(ωi)|]2 + λ2

N∑
i=1

[|ΦM (ωi)| − |ΦMt (ωi)|]2 (7)

UT (χ) = ψ1

N∑
i=1

[|T (ωi)| − |Tt(ωi)|]2 + ψ2

N∑
i=1

[|ΦT (ωi)| − |ΦTt(ωi)|]2 (8)

where: – M(ωi) and φM (ωi) are the magnitude and phase of the APMS
response of the model corresponding to excitation frequency ωi; – Mt(ωi)
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and φMt(ωi) are the corresponding measured values; – T (ωi) and φT (ωi) are
the magnitude and phase of the STHT response of the model; – Tt(ωi) and
φTt (ωi) are the corresponding measured values; – N is the number of discrete
frequencies selected in the 0.4–20 Hz frequency range; – χ is a vector of model
parameters to be identified, expressed as:

χ = {m0,m2,m3,m4,m5, c2, c3, c4, c5, k2, k3, k4, k5}T ;

−λ1,λ2 and ψ1, ψ2 are weighting factors used in the APMS and STHT error
functions, respectively, to ensure somewhat comparable contributions of mag-
nitude and phase errors in the objective function; -α and β weighting factors
– are chosen to emphasize the contributions due to either apparent mass or
seat-to-head transmissibility functions to the total error function.

The minimization problem expressed in the (6) is solved subject to
constraints applied on the total model mass. Since the mean measured
data is related to mean body mass of 63.1 kg, supported by the seat, the
limit constraints are expressed as 10% variations about the mean segment
masses, while the total body mass is expressed as an equality constraint:
26.1 kg ≤ m2 ≤ 31.9 kg; 19.62 kg ≤ m3 ≤ 23.98 kg; 6.12 kg ≤ m4 ≤ 7.48 kg;
4.95 kg ≤ m5 ≤ 6.05 kg and

∑5
i=2mi = 6.31 kg. The optimization function is

further subject to have the positive parameters.
The development of a human body model involves complexities associated

with identification of its restoring and dissipative properties.

5 Numerical Model: The Solution of the Constrained
Optimization Problem

The optimization problem defined in (7) and (8) is solved using the optimiza-
tion software MATLAB based on sequential search. The differential equations
of motion (1) are solved for unit displacement excitation to derive the appar-
ent mass magnitude and phase and seat-to-head transmissibility magnitude
and phase respectively. Different optimization runs corresponding to differ-
ent starting values converged to similar values of model parameter and the
error function. The model parameters, thus identified, are summarized below:
m0 = 2 kg; m2 = 29 kg; c2 = 108.42Ns/m; k2 = 16.21 e4N/m; m3 = 21.8 kg;
c3 = 199.72 Ns/m; k3 = 3.78 e4 N/m; m4 = 6.8 kg; c4 = 138.74 Ns/m; k4 =
0.28 e4 N/m; m5 = 5.5 kg; c5 = 210.95 Ns/m; k5 = 20.22 e4 N/m.

The analytical model of the seated body is evaluated to derive the response
characteristics in terms of STHT and APMS, using equations of M(s) and
T (s) respectively. The computed response, as shown in following figures and
characteristics are compared with the measured to examine the effectiveness
of the proposed model.
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Fig. 4. Comparison of the computed APMS with the measured data
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Fig. 5. Comparison of the computed APMS with the measured data

6 Results and Discussion

The computed APMS function reveals two resonant peaks in the vicinity
of 5 Hz and 10 Hz, which are quite consistent from the measured data. The
resonance in the vicinity 5 Hz is primarily associated with the deflection modes
of the coupled subsystem comprising m5 and m4, while the resonance near 10
Hz is associated with the deflection mode for the mass m2. The apparent mass
is more closely related to the seat to head transmissibility than the mechanical
impedance in yielding the primary resonant frequency of the body (Fig. 4).

The STHT is solely attributed to the dynamic response due to subsystem
comprising m4 and m5. Similarly to the measured data, the computed STHT
function reveals a resonance peak near 5 Hz and near 10 Hz for the second
(Fig. 5).

7 Conclusions

These results suggest that if a model is to be based on both driving-point
force-motion relation transfer function and vibration transmission function,
APMS and STHT functions should be selected. The results also suggest that
it is possible to develop a seated body model with relatively lower degrees-of-
freedom, on the basis of analytical functions and measured data. The optimum
form of the 4 DOFs model was determined by curve fitting to the experimental
data obtained. After minimizing the objective function U(χ), comprising mag-
nitude and phase components of both response functions APMS and STHT,
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using the measured data in range of frequency 0.4− 20 Hz the parameters in
the equations of the model were redefined.
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Summary. A new approach for optimizing the nuclear geometry of an atomic
system is described. Instead of the original expensive objective function (energy
functional), a small number of simpler surrogates is used.

1 The Problem

We consider the problem of finding a configuration or geometry that mini-
mizes the total energy of an atomic system. We use the Born–Oppenheimer
approximation [4] which considers the motion of the (heavier) nuclei and of
the (lighter) electrons separately. Therefore, in this work, atomic configuration
or geometry refers to configuration or geometry of the atomic nuclei.

Configurations with minimum energy determine the electronic structure
of an atomic system. In turn, the electronic structure determines all proper-
ties of materials including elastic, magnetic and optical properties. Therefore,
the computational study and design of materials often begins by finding an
equilibrium geometry: one that yields a minimum of the energy (hyper)surface.

For a system of N atoms, our problem can be formulated as the following
unconstrained minimization problem:

min E(X) (1)
X

where E is the energy, and X = (X1, X2, . . . , XN) denotes the geometry: the
spatial coordinates of the N nuclei.

The Xi’s are either Cartesian coordinates or so-called internal coordinates
(angles and distances) which are often preferred in practice. Once symmetries
and other properties are taken into account, the number of variables in (1) is
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significantly smaller than 3 ×N (when working with Cartesian coordinates).
The typical dimension of (1) is approximately 20 for a system of 40 atoms.

Unfortunately, no expression exists for the energy in terms of the nuclear
coordinates only. In most models, the energy depends on both the nuclear
geometry and the electronic wave functions or orbitals. For a system with N
atoms and M electrons, the problem that we need to solve is:

min E(X ;Ψ) (2)
X,Ψ

where X is as before and Ψ = (Ψ1, Ψ2, . . . , ΨM ) denotes the electronic wave
functions.

One of the most popular and successful models for the energy is the total-
energy functional from Density Functional Theory (DFT) [11,12] which offers
a good compromise between complexity (cost) and accuracy. In this model, the
expression for the energy is known as the DFT Total-Energy Functional which
depends on the nuclear geometry and the charge density of the system. Since
the charge density depends on the electronic wave functions, the total-energy
functional can be written, albeit in simplified form, as:

E(X ;Ψ) = Ekinetic(Ψ) + ECoulomb(X ;Ψ) + Exc(Ψ) (3)

where Ekinetic denotes the kinetic energy; ECoulomb denotes the Coulomb
energy involved in the interaction between nuclei and electrons (attraction)
and among electrons (repulsion); and Exc is the Exchange-Correlation energy
due to quantum-mechanical effects. Note that Exc is unknown and must be
approximated. The Local Density Approximation (or LDA) is a common
choice.

In this work, we use (3) as objective function and transform problem (2)
into the following two-step minimization problem:

min {min E(X ;Ψ)}
X Ψ (4)

The solution of (4) requires at least the evaluation of (3) and possibly of its
derivatives. The evaluation of the DFT total-energy functional and its deriva-
tives at a given geometry is usually done by means of the Self-Consistent-Field
(SCF) method [7,9,10,21]. SCF is a lengthy procedure that may require weeks
of computations to evaluate the total-energy functional at a single geome-
try. Therefore, classical optimization techniques such as Quasi-Newton and
Nonlinear Conjugate Gradients Methods [16] applied to (4) are usually very
expensive. Moreover, these techniques cannot take advantage of previously-
computed energy values. An alternative is the molecular-dynamics approach
or Car-Parrinello (CP) Method [5] in which both the geometry and the elec-
tronic structure are computed simultaneously. The CP method is very efficient
for some systems. However, the method is not robust and can be very expen-
sive for large systems. Moreover, it cannot make use of previously-computed
energy values.
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In the next section, we describe an approach for finding an approximate
solution to (4) that makes use of previously-computed function values and
requires a low number of evaluations of the total-energy functional.

2 Proposed Approach

We propose to use surrogate modeling [3] (see also [2]) for solving (4). In sur-
rogate modeling, we construct a simple and inexpensive model (surrogate) of
an expensive, sometimes unknown, objective function. Classical optimization
techniques can then be applied to the surrogate and the resulting information
can be used to construct a more accurate, but still inexpensive surrogate.
Surrogate modeling for geometry optimization was first used in [1].

Constructing a surrogate requires an initial set of true function values.
Some approaches also require derivative values at those points. Spline inter-
polation (see, for example [6]) and statistical interpolation such as kriging [15]
are popular techniques for constructing surrogates. In [1] and in this work, we
used both splines and kriging interpolation.

Our approach consists of first, building an energy surrogate from an initial
set of points (design sites), then minimizing the surrogate, and finally, adding
the minimizer and the true energy value at this point to the design sites to
build a new surrogate. These steps are repeated until a satisfactory geometry
is found. The procedure is presented in Fig. 1. The approach has the advantage
of making use of energy values previously (and costly) calculated.

The procedure in Fig. 1 usually yields reasonable approximations after
few evaluations of the total-energy functional (typically, 1 or 2 iterations are
needed).

Input: design sites < X�, E� >, � = 1, . . . ,m

Output: X∗ (geometry)
1. k = 0; convergence = false;

2. while not convergence

2.1 Construct surrogate e(X)

2.2 Compute minimizer X∗
k of e

2.3 Compute E∗
k : energy value at X∗

k

2.4 Add < X∗
k , E

∗
k > to design sites

2.5 k = k + 1; update convergence;

end

3. X∗ = X∗
k

Fig. 1. Procedure for geometry optimization using surrogates
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3 Results

All our experiments were conducted in Matlab [19] on a SUN Blade sta-
tion running Solaris. The spline surrogates were computed with Matlab’s
interpn function for n-dimensional spline interpolation. The kriging sur-
rogates were computed with the DACE package [15]. The minimization of
the surrogates was accomplished by means of the direct-search Nelder–Mead
algorithm [14] as implemented in Matlab’s fminsearch function.

The proposed strategy produced very good results on simple test prob-
lems including the Lennard–Jones (1D) and Gaussian (2D) potentials. Splines
surrogates for these cases are shown in Figs. 2 and 3, respectively.
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Fig. 2. Spline surrogates for the Lennard–Jones potential: E(r) = 1
r12 − 1

r6
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Fig. 3. A spline surrogate (bottom) for the Gaussian potential E(r1, r2) =

(1 − e−(r2
1+r2

2))2 (top)
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Fig. 4. A kriging surrogate for a 2D diamond sheet

We have also tested our approach on a real material. The goal was to
optimize the geometry of a 2D diamond sheet. The plot in Fig. 4 shows the
kriging surrogate constructed with DACE after nine evaluations of the total-
energy functional, when we fixed all but two variables.

In all our tests, and in particular in the case of the real material, the
kriging surrogates computed with DACE outperformed the spline surrogates.

4 Concluding Remarks

We have presented a surrogate-modeling approach for optimizing the geom-
etry of atomic systems. Our approach takes advantage of available energy
values which are expensive to compute and produces satisfactory results for
practitioners at a lower cost than conventional techniques.

Future work includes the use of improvements on SCF such as [8,13,17,18,
20,22] for solving the inner minimization problem in (4), and the development
of an automatic stopping criterion.
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Summary. Variational optimization is applied to simulation and modeling of
dynamical energy converters, in particular thermal and solar engines. Basic ther-
modynamic principles lead to expressions for converter’s efficiency and limiting
work. Work generated is a cumulative effect obtained in a system of a resource
fluid, engines, and an infinite bath. The limiting work function depends on thermal
coordinates and a dissipation index, h, in fact the Hamiltonian of the optimization
problem of minimum entropy production. Bounds on work delivery implied by the
limiting function are stronger than those predicted by the reversible work potential.

1 Introduction

Power limits in dynamical energy systems are determined by flows and prop-
erties of propelling fluids which play the role of resources. A power limit is an
upper (lower) bound on power produced (consumed) in the system. A resource
is a valuable substance or energy used in a process; its value can be quantified
by specifying its availability function, a maximum work that can be obtained
when the resource relaxes to the equilibrium. Reversible relaxation of the
resource is associated with classical availability; when dissipative phenomena
are allowed generalized availabilities emerge which quantify deviations of the
system’s efficiency from the Carnot efficiency. An availability is obtained as
the value function to the variational problem of extremum work. Other com-
ponents of the variational solution are optimal trajectory and optimal control.
In thermal systems the trajectory is characterized by the temperature of the
resource fluid, T (t), whereas the control is Carnot temperature T ′(t) defined
in our previous work [4]. For the reader’s convenience basic properties of T ′

are outlined in the Appendix. Whenever T ′(t) differs from T (t) the resource
is downgraded or upgraded with a finite rate, and with an efficiency different
from the Carnot efficiency. Only when T ′(t) = T (t) the efficiency is Carnot,
but this corresponds with an infinitely slow relaxation rate of the resource to
the equilibrium.

A.D. Fitt et al. (eds.), Progress in Industrial Mathematics at ECMI 2008,

Mathematics in Industry 15, DOI 10.1007/978-3-642-12110-4 162,

c© Springer-Verlag Berlin Heidelberg 2010
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In this paper work functionals are formulated and extremized to find the
optimal resource temperature, power output, and controls. Recent expres-
sions for efficiency of imperfect converters [6, 7] are used to derive and solve
Hamilton–Jacobi equations describing upgrading and downgrading of the
resource fluid. Optimal trajectories and controls which maximize work yield
are evaluated by various optimization methods.

2 Finite Resources and Dynamical Problems of Power
Optimization

From the optimization viewpoint the dynamical process is every one in which
one can distinguish sequential changes of state, either in the chronological
time or in (spatial) holdup time. Power yield during the resource’s relaxation
to the environment is such a sequential process which is accompanied by the
decrease of the resource’s temperature in time.

The great deal of research on power limits published to date deals with
stationary systems, in which case both reservoirs are infinite. To this case
refer steady-state analyses of the Chambadal-Novikov-Curzon-Ahlborn engine
(CNCA engine; [2]), in which energy exchange is described by Newtonian
law of cooling, or the Stefan–Boltzmann engine, a system with the radiation
fluids and the energy exchange governed by the Stefan–Boltzmann law [3].
Because of their stationarity (caused by the infiniteness of both reservoirs),
controls maximizing power are represented by fixed points in the control
space. Yet, the prediction of a dynamical energy yield requires the evalu-
ation of an extremal curve rather than an extremum point. This leads to
variational methods (to handle functional extrema) in place of static opti-
mization methods (to handle extrema of functions). For example, the use of a
pseudo-Newtonian model to quantify the dynamical energy yield from radia-
tion, gives rise to an extremal curve describing the radiation relaxation to the
equilibrium. This curve is non-exponential, the consequence of the nonlinear
properties of the relaxation dynamics. Non-exponential are also other curves
describing the radiation relaxation, e.g. those following from exact models
applying the Stefan–Boltzmann equation (symmetric and hybrid; [3]).

Analytical difficulties associated with the dynamical optimization of non-
linear systems may be severe; this is why diverse models of power yield and
diverse numerical approaches are applied. Various control variables may be
used in modeling since the process analysis using a particular control can be
substantially easier than the analysis in terms of another one.

Optimal (i.e. power-maximizing) relaxation curve T (t) is associated with
the optimal control curve T ′(t); they both are components of the (dynamic)
optimization solution to a continuous problem. In the corresponding discrete
problem, formulated for numerical purposes via a suitable discretization, one
searches for optimal temperature sequences {T n} and {T ′n}; optimization
methods lead to optimal sequences {T n} and {T ′n}.
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Minimum work supplied to the system is described in a suitable way
by function sequences Rn(T n, tn), whereas maximum work produced – by
functions V n(T n, tn). Profit-type performance function V and cost-type per-
formance function R describe, respectively, optimal work production and
consumption. They both differ by sign, i.e. V n(T n, tn) = −Rn(T n, tn). A
beginner may find the change from symbol V to symbol R and back unnec-
essary and confusing. Yet, each function is positive in its own, natural regime
of control variables (V is positive in the engine range and R is positive in the
heat pump range).

To obtain the classical availability from a work function it is sufficient to
assume that the thermal efficiency of the system is identical with the Carnot
efficiency. On the other hand, non-Carnot efficiencies lead to generalized
availabilities.

3 Two Modes of Control and Finite Rate Availabilities

For appropriate boundary conditions, the principal function of the variational
problem of extremum work coincides with an availability function, a quantity
that characterizes the quality of finite resources.

Two different works, the first associated with the resource downgrading
during its relaxation to the equilibrium and the second – with the reverse pro-
cess of resource upgrading, are essential (Fig. 1). The resource is downgraded
during the approach to the equilibrium; then T ′(t) < T (t) and the engine
mode of the system takes place in which work is released. The resource is
upgraded during the departure from the equilibrium; then T ′(t) > T (t) and
the heat-pump mode occurs in which work is supplied. WorkW delivered in the
engine mode is positive by assumption (“engine convention”). A sequence of
irreversible engines (CNCA or Stefan–Boltzmann) serves to determine a rate-
dependent availability that extends the classical availability for irreversible,
finite rate processes. Before the work maximization, process efficiency η has
to be expressed as a function of state T and a control variable, i.e. energy
flux q or rate dT/dτ , to assure the functional property (path dependence)
of the work integral. The optimal work is sought in the form of a potential
function that depends on the end states and duration. Each small step is a
work-producing (consuming) CNCA stage with the energy exchange between
two fluids and the thermal machine through finite “conductances” (products
of transfer coefficients and related areas). For radiation engines, it follows
from the Stefan–Boltzmann law that the effective transfer coefficient αl of
the “driving” (radiation) fluid is necessarily temperature dependent, αl = T 3

l .
The optimizer’s task is to find an optimal temperature of the resource fluid
along the path that extremizes the work consumed or delivered. For tradi-
tional fluids (constant cv) an optimal path is known to be exponential [4].
Yet, no exponential decay of temperature occurs for nonlinear fluids.
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work supplied
heat-pump mode

work released
engine mode

battery mode

maxW problem

electrolyser mode

min(-W) problem

W < 0

1 mole

W > 0

Camot
heat pump

Camot
engine

(-W)>0

Sc

T1,

T1

T2 environment (infinite bath)
T2 = Te, µi2= µe

T T

T2, T2,

T1,

Sc

W>0

Te ,µe
1 Te ,µe

i

T, µ1

Fig. 1. Limiting works produced and consumed are different in an irreversible
process

Total power obtained from an infinite number of infinitesimal engines is
determined as the Lagrange functional of the following structure

Ẇ [Ti,Tf ] =
∫ tf

ti
f0(T, T ′) dt = −

∫ tf

ti
Ġc(T )η(T, T ′)Ṫ dt (1)

where f0 is power generation intensity, Ġ is resource flux, c(T ) is specific
heat, η(T, T ′) is efficiency in terms of state T and control T ′, further T is
enlarged state vector comprising temperature and time, t is the time variable
(residence time or holdup time) for the resource contacting with heat transfer
surface. Often one uses a non-dimensional time τ , identical with the so-called
number of the heat transfer units. For a constant mass flow Ġ of a resource,
one can extremize power per unit mass flux (the quantity of work dimension).
In this case (1) describes a problem of extremum work at flow. Integrand f0 is
common for both modes, yet the numerical results it generates differ by sign
(positive for engine mode; “engine convention”). Power generation function
f0 can be replaced by power consumption function l0 = −f0. Formally, l0
plays the role of a process Lagrangian. f0 in (1) contains thermal efficiency, η,
described by a practical counterpart of the Carnot formula. Whenever T > T e,
efficiency η decreases in the engine mode above Carnot ηc and increases in
the heat-pump mode below ηc. At the limit of vanishing rates, dT/dt = 0
and T ′ → T and we obtain the integral of the classical availability. Thus, (1)
leads to a generalized availability for finite rate processes. In problems with
a constant specific heat, fluid’s specific work at flow, w, is described by an
equation

w[Ti,Tf ] =
Ẇ

Ġ
= −

∫ T f

T i

c(T )
(

1− T e

T

)
dT−T e

∫ tf

ti
c(T )

(T ′ − T )2

T ′T
dτ, (2)
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where

τ ≡ x

HTU
=
α′avF
Ġc

x =
α′avFv
Ġc

t =
1
χ

(3)

is non-dimensional time of the process. The functional (2) has two additive
parts: the classical (potential) part and a non-potential, dissipative part which
depends on the history of the process. Equation (3) assumes that a resource
fluid flows with velocity v through cross-section F and contacts with the heat
transfer exchange surface per unit volume av. Quantity τ is identical with the
so-called number of the heat transfer units.

Solutions to work extremum problems are obtained by:

(a) variational methods, i.e. via Euler–Lagrange equation of variational
calculus

∂L

∂T
− d

dt

(
∂L

∂Ṫ

)
= 0 (4)

In the example considered above, i.e. for a thermal system with linear
kinetics

T
d2T

dτ2
−

(
dT
dτ

)2

= 0 (5)

which corresponds with the optimal trajectory

T (τ, τf , T i, T f) = T i(T f/T i)τ/τ
f

. (6)

(τ i = 0 is assumed in (6).) However, the solution of the Euler-Lagrange
equation does not contain any information about the optimal work func-
tion. This property is assured by solving the Hamilton-Jacobi-Bellman
equation (HJB equation).

(b) dynamic programming via HJB equation for the ‘principal function’ (V
or R), also called extremum work function. For the example described by
(2)

∂V

τ
+ min

T ′

{(
∂V

∂T
+ c

(
1− T e

T ′

)
(T ′ − T )

)}
= 0. (7)

The extremal work function V is a function of the final state T and total
duration. After evaluation of optimal control and its substitution into one
obtains a nonlinear equation

∂V

∂τ
− c

{√
T e −

√
T

(
1 + c−1

∂V

∂T

)}2

= 0 (8)

which is the Hamilton-Jacobi equation of the problem. Its solution can be
found by the integration of work intensity along an optimal path, between
limits T i and T f . A reversible (path independent) component of V is the
classical availability A(T, T e, 0).
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Details of models of multistage power production in sequences of infinites-
imal engines are known from our previous publications [4,6,7]. These models
provide both power generation functions f0 (or thermal Lagrangians l0 = −f0)
and dynamical constraints. Numerical methods apply discrete models for rates
f0 (or l0) and f . With discrete models the theory can be restated and live with
its own life in the realm of difference equations, sums, recurrence relations,
etc., often achieving a form dissimilar while still equivalent to the original
HJB theory [5].

4 Analytical Solutions in Systems with Linear Kinetics

In the HJB formalism Hamiltonians are defined in the enlarged state space
(T, τ) or (T, t) rather than in the phase space (T, z, τ) or (T, z, t). Yet, the
Pontryagin’s Hamiltonian of the linear system (for the Newtonian energy flow
in time τ rather than t) is

H =
[
z − c

(
1− T e

T ′

)]
(T ′ − T ) =

[
z − c

(
1− T e

T + u

)]
u. (9)

In fact, z = ∂R/∂T , i.e. the temperature adjoint is the gradient of R (or
negative gradient of V ). Optimal driving temperature T ′ is obtained as a
quantity maximizing Hamiltonian (9) with respect to T ′ at each point of the
path. The maximization of H leads to an equation

∂R

∂T
− ∂l0(T, T ′)

∂T ′ =
∂R

∂T
− c

(
1− T eT

T ′2

)
= 0 (10)

that expresses the optimal control T ′ in terms of T and z or ∂R/∂T and holds
along with the original HJB equation (7) without extremizing operation. In
terms of R rather than V

∂R

∂τ
+
∂R

∂T
(T ′ − T )− c

(
1− T2

T ′

)
(T ′ − T ) = 0 (11)

To obtain optimal control function T ′(z, T ) one should solve the second equal-
ity in (10) in terms of T ′. The result is optimal Carnot control T ′ in terms of
T and z = ∂R/∂T ,

T ′ =

[
T eT

(
1− c−1 ∂R

∂T

)−1
]1/2

. (12)

This is next substituted into (11); the result is the nonlinear Hamilton–Jacobi
equation

∂R

∂τ
+ cT

(√
1− c−1

∂R

∂T
−

√
T e

T

)2

= 0 (13)
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which is related to H of (9) for z = ∂R/∂T . Assuming a numerical value of
H = h,

cT
(√

1− c−1z −
√
T e/T

)2

= h (14)

one can exploit the constancy of autonomous H to eliminate adjoint z. Next,
combining (14) with optimal control (12), yields optimal rate u = Ṫ in terms
of T and constant h

Ṫ = ξ(h, T e)T, (15)

where
ξ(h, T e) ≡ ±

√
h/cT e(1−±

√
h/cT e)−1 (16)

is a process intensity index. Positive ξ refer to heating of the resource in
heat-pump mode, and the negative to cooling in engine mode. Equation (15)
describes the optimal trajectory in terms of state variable T and constant h.
The corresponding Carnot control is

T ′ = [ξ(h, T e) + 1]T. (17)

Now one can find the (solution to the problem of) Hamiltonian repre-
sentation of extremal work. Substituting temperature control (17) into work
functional (2) and integrating along an optimal path yields the extremal work
function

V (T i, T f , h) = c(T i − T f)− cT e ln
T i

T f
+ cT e ξ(h)

1 + ξ(h)
ln
T i

T f

= c(T i − T f)− cT e ln
T i

T f
− cT e

√
h

cT e
ln
T i

T f
(18)

This expression is valid for every process mode. Integration of (15) subject to
boundary conditions T (τ i) = T i and T (τf ) = T f allows us to express (18) in
terms of the process duration

V (T i, T f , τ i, τf ) = c(T i − T f)− cT e ln
T i

T f
− cT e[ln(T i/T f)]2

τf − τ i − ln(T i/T f)
. (19)

5 Final Remarks

Applications of HJB theory lead to solutions which describe finite-rate general-
izations of the standard availability. Generalized availabilities are irreversible
extensions of the reversible work potential including minimally irreversible
processes. Limits for energy yield or consumption provided by generalized
availabilities are stronger than those defined by the classical availability. An
essential decrease of the maximum work received from an engine system and
an increase of the minimum work added to a heat pump system has been
shown in the high-rate regimes and for short durations. Finite rates increase a
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minimum work that must be supplied to the system and decrease a maximum
work that can be produced by the system. These results help an engineer in
better evaluation of energy limits in practical processes, especially in those
undergoing in thermal engines and solar driven heat pumps.

6 Appendix: Carnot Temperature Control

For the reader’s convenience we recall here the definition of Carnot tempera-
ture whose derivation and applications are presented in our previous work [4].
For brevity we restrict ourselves to a steady endoreversible cycle characterized
by reservoir temperatures T1 and T2 and temperatures of circulating fluid T ′

1

and T ′
2. In engine mode T1 > T ′

1 > T ′
2 > T2. Evaluating entropy production

σs as the difference of outlet and inlet entropy fluxes yields

σs =
q2
T2
− q1
T1

=
(1− η)q1

T2
− q1
T1

=
q1
T2

(
1− η − T2

T1

)
(20)

where η is the first-law efficiency. Since η = 1− T2/T1, we obtain in terms of
the temperatures of fluids circulating in the engine

σs =
q1
T2

(
T2

′

T1
′ −

T2

T1

)
. (21)

Therefore after introducing an effective temperature called Carnot tempera-
ture

T ′ ≡ T2
T1

′

T2
′ (22)

endoreversible entropy production (21) takes the following simple form

σs = q1

(
1
T ′ −

1
T1

)
(23)

This form is identical with the familiar expression obtained for the process
of purely dissipative heat exchange between two bodies with temperatures T1

and T ′.
The endoreversible efficiency η = 1 − T2

′/T1
′ takes in terms of T ′ the

classical Carnot form
η = 1− T2

T ′ (24)

which substantiates the name “Carnot temperature” for T ′. Moreover, power
produced in the endoreversible system also takes the classical form

p = ηq1 =
(

1− T2

T ′

)
q1 (25)

It is essential that the derivation of (20)–(25) does not require any specific
assumptions regarding the nature of heat transfer kinetics. Kinetic aspects of
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Carnot temperature are discussed elsewhere [4, 5]. Abandoning the endore-
versibility assumption requires the knowledge of the experimental data of
internal entropy production [1].
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Summary. A dynamic model of a network of coupled populations is developed. In
each of the n sites in the network a local demographic model of Leslie type is used.
Connection between locations is modeled through density-independent migration
which is a function of age and also on the connecting sites. We perform a simulation
illustrating a policy of reduction of excessive migration.

1 The Model

The model is divided in two parts. The first considering only the local
dynamics while the second part deals with migratory aspects.

1.1 The Local Dynamics

We model the population of a region, state or province as a dynamic network
of local populations. The local populations can be thought as being cities or
villages. Within a local population, individuals are subject to survival and
reproduction processes encompassing what we call local dynamics. Typical
human demographic data based in life tables contain information about these
two processes since the survivorship function l(x) (the probability of survival
from birth to age x) and the maternity function m(x) (mean number of off-
spring per individual aged x per unit time) are basic entries in life tables.
After the local dynamics the individuals are allowed to move to another loca-
tion in the network and the cycle continues. We assume there are n local
populations labeled as 1, 2, . . . , n. Within each city or village the population
is divided into age classes of the same duration. Let Xt

j = [xt
1jx

t
2j . . . x

t
kj ]T be

the population vector of city j at time t. The entries xt
ij , i = 1, 2, . . . , k rep-

resent the number of female individuals of age class i living in the location j
at time t. The whole dynamical system, often called metapopulation model,
consists of nk equations describing the time evolution of each cohort at each
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location of the network. We will use discrete time equations, thus the time
step (t = 0, 1, 2, . . .) has the same duration of an age class.

For a while assume there is no migration between local populations. The
local dynamics will be assumed to be described by a projection matrix model
of Leslie type [5]. Individuals in any age class except the first at time step t+1
must be the survivors of the previous age class at time t. Thus the ageing of
individuals in site j are accounted by

xt+1
ij = pi−1jx

t
i−1j , i = 2, 3, . . . , k, (1)

where pi−1j is the transition probability from age class i− 1 to age class i in
location j. In terms of the survivorship function, the transition probabilities
are given by

pij =
li+1j

lij
=

∫ i+1

i
lj(x)dx∫ i

i−1 lj(x)dx
, i = 1, 2, . . . , k − 1, (2)

where lj(x) is the probability of survival from birth to age x in the local
population j. Newborns enter the population at the age class 1, thus for a
fixed j

xt+1
ij =

k∑
i=1

fijx
t
ij , (3)

where the fertility coefficients fij , give the number of daughters per female
in age class i at the location j that survive through the time step in which
they were born. Since births occur continuously over the time step, according
to [4] and [1], the fertility coefficients assume the form

fij = lj(0.5)(
mij + pijmi+1j

2
), (4)

where mij =
∫ i

i−1
mj(x)dx, and mj(x) is the maternity function the site j.

The discrete dynamical system given by (1) and (3), describe the time
evolution of the population at site j in the absence of migration. These k
scalar equations can be written in vector form

Xt+1
j = LjX

t
j , j = 1, 2, . . . , n, (5)

with the projection matrix of site j written as

Lj =

⎡
⎢⎢⎢⎢⎢⎣

f1j f2j f3j · · · fkj

p1j 0 0 · · · 0
0 p2j 0 · · · 0
...

. . . . . .
...

...
0 · · · 0 pk−1j 0

⎤
⎥⎥⎥⎥⎥⎦

, (6)

Equations (5) and (6) describe the local dynamics of an isolated local pop-
ulation j. Interesting properties of (5) are extensively discussed in [1] while
nonlinear version of (5) are studied in [6, 7] and [8].
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1.2 The Metapopulation Dynamics

We now incorporate movement into the model. During each time step, fol-
lowing the local dynamics, individuals are allowed to move to other locations
in the network. The migration process has two basic components. The first
is based only on the decision to leave the current city or village and it is
described by the k × k diagonal matrix Mj given by

Mj =

⎡
⎢⎢⎢⎢⎣

m1j 0 · · · 0

0 m2j · · ·
...

...
. . . . . . 0

0 · · · 0 mkj

⎤
⎥⎥⎥⎥⎦

, (7)

where mij , i = 1, 2, . . . , k, represent the probability of an individual of age
class i to leave location j. Thus, at time step t, the components of the vector
MjLJXt

j ∈ R
k list the number of individuals of each age class leaving location

j at time t. The second basic component of the migration process is based on
the decision of choosing where to go. Individuals leaving site location j have to
distribute among the other n− 1 locations and their preferences is expressed
in the numbers cij , i = 1, 2, . . . , n, representing the percentage of individuals
that left location j and decided to establish themselves in the location i.
Of course, cij > 0, and cii = 0 for all i, j = 1, 2, . . . , n. This approach was
considered in [2]. The n × n matrix C with entries cij , i = 1, 2, . . . , n is the
interaction matrix of the network of n local populations. This implies that
choosing where to settle does not depend on age. It may be reasonable for
certain special cases of animal dispersal, but is certainly unrealistic in human
demography. For example, some cities could be industrial towns therefore
more attractive to adults, while college towns are more attractive to young
people, while other cities could be more attractive to retired people and so
forth. In fact, the entries cij depend on the age class, thus we write cij as a
k × k diagonal matrix

Cij =

⎡
⎢⎢⎢⎢⎣

cij(1) 0 · · · 0

0 cij(2) · · · ...
...

. . .
. . . 0

0 · · · 0 cij(k)

⎤
⎥⎥⎥⎥⎦

, i �= j, (8)

where the (1), (2) . . . , (k) represent the age classes, furthermore Cii is the
zero k× k matrix. Assuming that are no loss of persons during the migration
process, we require that

∑n
j=1 Cij = Ik, j = 1, 2, . . . , n, where Ik is the k × k

identity matrix. The components of the vector CijMjLjX
t
j ∈ R

k list the
number of individuals in each age class that left location j to settle at location i
at time t. Clearly,(Ik −Mi)LiX

t
i list the number of persons in each age class

that did not leave location i at time t. Thus the evolution equations are
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Xt+1
i = (Ik −Mi)LiX

t
i +

n∑
j=1

CijMjLjX
t
j , j = 1, 2, . . . , n. (9)

Equation (9) can be written in more concise way if we consider the metapop-
ulation vector Xt =

[
Xt

1 Xt
2 · · · Xt

n

]T ∈ R
nk, the diagonal block matrix

L =

⎡
⎢⎢⎢⎢⎣

L1 0 · · · 0

0 L2 · · ·
...

...
. . . . . . 0

0 · · · 0 Ln

⎤
⎥⎥⎥⎥⎦

, (10)

where each k × k block Lj is given by (6) , and the block matrix A, with the
k × k block entries given by

Aij =
{

Ik −Mi, i = j
CijMj, i �= j

(11)

The matrix L contains all the information on the survival and reproduction
in each local population while the matrix A has the information about the
movement of the individuals. Clearly we have

Xt+1 = ALXt (12)

2 Simulations

Next we perform numerical simulations to obtain a projection of the network
of populations in a realistic context. As an example, we use a network com-
posed of six sites and divide the each population in fourteen age classes. First
we assume the migration matrices according to the characteristics of each
location. In a second stage we apply a reduction factor to reflect a policy of
diminishing undesirable migration.

2.1 Computational Considerations

Despite the fact that (12) represents the dynamics in a rather simplified way,
it is not very efficient for simulation purposes. We observe that in the jth
block column of the product AL, the product MjLj appears n times which
means that in the ith block row LiX

t
i also occurs n times. In order to avoid

unnecessary computations we developed an algorithm composed of 3 stages.

Algorithm

For t = 0, 1, . . . , p and initial data X0
i , i = 1, 2, . . . , n, do:

1. Y t
i = LiX

t
i , i = 1, 2, . . . , n

2. Ni = MiY
t
i , i = 1, 2, . . . , n

3. Xt+1
i = Y t

i −Ni +
∑n

j=1 CijNj , i = 1, 2, . . . , n
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Fig. 1. Time evolution of the total population in each location considering all
locations with same initial population. In the first two locations the population
increases while in the other sites it decreases, specially in the last one where it is
about to go extinct
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Site 5 − Population Evolution by Age Class

Fig. 2. Time evolution of all age classes. We observe travelling wave along the age
classes due to the fact that the net reproductive rate is larger than one

2.2 Results

In our example n = 6, that is, we consider six locations classified as follows:
1-Large Metropolitan Area, 2- Industry Municipality, 3- University Munici-
pality, 4- Medium Size Municipality, 5- Small Municipality I, and 6- Small
Municipality II. The difference between locations 5 and 6 is that later con-
sists of a population in danger of extinction due to excessive migration. For
simplicity we assume that the fertilities and transition probabilities are loca-
tion independent, which means we have only one Leslie matrix for the whole
network, that is, Lj = L, j = 1, 2, . . . , 6. We choose parameter values such
that the net reproductive rate is R0 =

∑14
i=1 fili = 1.1309. Each of the 14 age

classes consists of 5 year groups (0 : 4, 5 : 9, . . . , 65 : 69). We assume p = 10,
therefore the projection is made for 50 years. In Fig. 1 the evolution of the
total population in each of the 6 locations is shown while in Fig. 2 we depict
the time evolution of each age class of location 5 for the 50 years.
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Fig. 3. Time evolution of the total population in each location after the reduction
migration policy is applied

The policy of reducing migration is incorporated in the model by con-
sidering a factor q0

i = 1 and in each iteration we let qt+1
i = qt

i − 0.1, and
M t+1

i = qt
iM

t
i . The results are illustrated in Fig. 3. Comparing with Fig. 1 we

notice that the reducing migration policy can be very effective in preventing
dangerous population reduction in certain locations.

3 Final Remarks

We presented the main aspects of the coupled population network dynamical
cohort model framework. This can serve as basis for more complex models that
include more realistic features as density-dependent migration and sex ratio
different than 1:1. Metapopulation dynamical models involving age classes are
of great importance in studies related to demographic projections, e.g. [3].
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Summary. Equations are presented that describe two superposed shallow layers of
inviscid fluid flowing over topography in a rotating frame, with a complete treatment
of the Coriolis force. Motivated by applications to the Earth’s equatorial oceans,
these equations offer a physically reasonable alternative to the empirical friction
currently used to regularise existing shallow water models at the equator.

1 Introduction

Layered shallow water equations describe the behaviour of several superposed
layers of inviscid fluid of different, constant densities flowing over bottom
topography, as illustrated in Fig. 1. This structure captures something of the
density stratification of the oceans, which makes it a useful idealised setting
for studying the interactions between stratification and rotation that govern
the large-scale dynamics of the oceans [2, 4, 10].

Shallow water equations may be derived from the three-dimensional Euler
equations by averaging the horizontal fluid velocity across each layer. The
standard approach neglects the Coriolis terms due to the horizontal compo-
nents of the Earth’s rotation vector, and also the vertical acceleration. These
are referred to as the ‘traditional’ and ‘hydrostatic’ approximations respec-
tively [10,12]. Both may be justified in the limit of a vanishingly small ocean
depth. However, recent work [4] includes the ‘nontraditional’ components of
the rotation vector in a single-layer shallow water model, and suggests that
there may be significant effects associated with these components. This is
consistent with the findings of the UK Meteorological Office, who in 1992
abandoned the traditional approximation in their unified model [3, 12].

This paper presents a set of two-layer shallow water equations that
incorporate the nontraditional Coriolis terms, but omit the vertical accel-
eration. They thus correspond to a layered analogue of the quasihydrostatic
approximation for a continuously stratified fluid [11, 12]. These equations are
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Fig. 1. Structure of the two-layer ocean model

particularly relevant for the study of deep ocean currents, such as the Antarc-
tic Bottom Water, whose behaviour in equatorial regions is not well described
by traditional models [2].

2 Formulation and Derivation

We begin our derivation by writing down the Euler equations for two fluid
layers, each of constant density �i, in a rotating frame,

∂ũi
∂t̃

+
(
ũi · ∇̃

)
ũi + w̃i

∂ũi
∂z̃

+ 2 Ω̃zz̃× ũi + 2 Ω̃× ẑ w̃i +
1
�i
∇̃p̃i = 0, (1a)

∂w̃i

∂t̃
+ ũi · ∇̃w̃i + w̃i

∂w̃i
∂z̃

+ 2
(
ṽiΩ̃x − ũiΩ̃y

)
+

1
�i

∂p̃i
∂z̃

+ g = 0, (1b)

∇̃ · ũi +
∂w̃i
∂z̃

= 0. (1c)

Here i = 1,2 denotes the upper and lower layers respectively, and the super-
script tildes (̃ ) indicate dimensional variables. The horizontal velocity within
each layer is ũi = (ũi, ṽi)T , the vertical velocity is w̃i, and the pressure is p̃i.
These quantities all depend on x̃, ỹ, z̃ and t̃, but ∇̃ = (∂x̃, ∂ỹ) is a horizontal
derivative. The gravitational acceleration is g, and Ω̃ = (Ω̃x, Ω̃y)T and Ω̃z are
the horizontal and vertical components of the rotation vector.

In applying this model we approximate the curved surface of the Earth
using a flat plane. The Cartesian coordinates are constructed such that
the combination of centrifugal acceleration and gravity acts vertically [10],
as represented by the g term in (1b). However, we allow for the spatial
variation of the rotation vector with latitude, the so-called β-plane approxima-
tion [7, 10]. We thus consider Ω̃ = Ω̃(x̃, ỹ) and Ω̃z = Ω̃z(x̃, ỹ, z̃). In general,
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Ω̃z must depend on z̃ to make the three-dimensional rotation vector non-
divergent, ∇̃ · Ω̃ + ∂zΩ̃z = 0. This ensures conservation of potential vorticity
[7]. Integrating with respect to z̃ yields the following expression for Ω̃z, where
Ω̃z0 = Ω̃z |z̃=0,

Ω̃z(x̃, ỹ, z̃) = Ω̃z0(x̃, ỹ)− (∇̃ · Ω̃)z̃. (2)

We assume that the upper surface is stress-free ( p̃1 = 0 on z̃ = η̃1) and
that the pressure is continuous at the internal surface ( p̃1 = p̃2 on z̃ = η̃2).
However, we allow for a discontinuous horizontal fluid velocity between the
layers, so the kinematic boundary conditions become,

w̃2 = ũ2 · ∇̃B̃ on z̃ = B̃, w̃1 =
∂η̃1

∂t̃
+ ũ1 · ∇̃η̃1 on z̃ = η̃1,

w̃2 − ũ2 · ∇̃η̃2 =
∂η̃2

∂t̃
= w̃1 − ũ1 · ∇̃η̃2 on z̃ = η̃2.

(3)

We now derive the two-layer shallow water equations by averaging the
Euler equations over each layer. We follow a procedure similar to that
described in [1, 4], nondimensionalising the governing equations and intro-
ducing δ = H/L, the ratio of the vertical to horizontal length scales. We shall
take δ � 1 below. The resulting set of dimensionless equations is

Ro

(
∂ui
∂t

+ (ui · ∇) ui + wi
∂ui
∂z

)
+Ωzẑ× ui + δΩ× ẑwi +∇pi = 0, (4a)

δ2Ro

(
∂wi
∂t

+ ui · ∇wi + wi
∂wi
∂z

)
+ δ(viΩx−uiΩy) +

∂pi
∂z

+Bu = 0, (4b)

∇ · ui +
∂wi
∂z

= 0. (4c)

Here Ro = U/(2ΩL) and Bu = gH/(2ΩUL) are the Rossby and Burger
numbers respectively, which we assume are both O(1). Exploiting δ � 1 for
shallow layers, we pose asymptotic expansions of ui, wi and pi in the form
ui = u(0)

i + δu(1)
i + · · · . Equation (4b) implies that the leading-order pressure

p(0) is hydrostatic, so (4a) is satisfied at leading order by a z-independent
u(0)
i . We may thus obtain expressions for w(0)

i and p
(0)
i + δp

(1)
i from (4c) and

(4b) respectively. The lower layer acquires a contribution to its pressure from
the upper layer, which we find from the boundary condition at the interface,
p
(0)
2 + δp

(1)
2 = (�1/�2)(p(0)

1 + δp
(1)
1 ) z = η2. Similarly, the vertical velocity in

the upper layer acquires a contribution from the vertical velocity in the lower
layer, w(0)

1 = w
(0)
2 − u(0)

2 · ∇η2 + u(0)
1 · ∇η1 on z = η2.

Applying the layer averaging formula from [13] to the continuity equation
(4c), we derive evolution equations for the layer depths,

∂hi
∂t

+∇ · (hiui) = 0, (5)

where an overbar ( ) denotes a layer average,
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u1 =
1
h1

∫ η1

η2

u1dz, u2 =
1
h2

∫ η2

B

u2dz. (6)

The depths of the two layers are h1 = η1 − η2 and h2 = η2 −B.
Averaging (4a) over each layer, as described in [1, 4], we obtain

Ro

(
∂

∂t
(hiui) +∇ · (hiuiui)

)
+ hiẑ×Ωzui

+ δΩ× ẑhiw
(0)
i + hi∇

(
p
(0)
i + δp

(1)
i

)
= O(δ2).

(7)

The average pressure gradient may be computed from p
(0)
i + δp

(1)
i , as found

above. To complete the derivation, we note that we may factorise the averages
of products of quantities that are z-independent to leading order [1, 9]. Since
ui = u(0)

i + O(δ), uiui = uiui + O(δ2). Similarly, Ωzui = Ωzui + O(δ2), we
may evaluate Ωz using (2), and u(0)

i = ui + O(δ). Neglecting terms of O(δ2)
and above, we obtain the following averaged momentum equations,

Ro

(
∂u1

∂t
+ (u1 · ∇)u1

)
+

[
Ωz0 − δ∇ ·

((
B + h2 + 1

2h1

)
Ω

)]
ẑ× u1

+∇ [
Bu (B + h2 + h1) + 1

2δh1(v1Ωx − u1Ωy)
]

− δΩ× ẑ∇ · (h2u2 + 1
2h1u1) = 0, (8a)

Ro

(
∂u2

∂t
+ (u2 · ∇)u2

)
+

[
Ωz0 − δ∇ ·

((
B + 1

2h2

)
Ω

)]
ẑ× u2

+∇[
Bu (B + h2 + �rh1) + 1

2δh2(v2Ωx − u2Ωy)

+ δ�rh1 (v1Ωx − u1Ωy)
]− δΩ× ẑ∇ · (1

2h2u2) = 0. (8b)

Here we have dropped the overbars on averaged velocities, and introduced
the density ratio �r = �1/�2. We thus obtain the traditional two layer shallow
water equations [10] plus several additional terms proportional to Ωx and Ωy.

3 Conservation Properties

The ‘nontraditional’ two-layer shallow water equations inherit the conserva-
tion laws of the full three-dimensional equations. In particular, there are two
materially conserved potential vorticities, ∂tqi + ui · ∇qi = 0 for i = 1,2, with

qi =
1
hi

{[
Ωz0 − δ∇ ·

((
ηi − hi

2

)
Ω

)]
+Ro

(
∂vi
∂x
− ∂ui

∂y

)}
. (9)

These qi differ by terms proportional to Ωx and Ωy from the traditional poten-
tial vorticities given in [10]. This modification may provide useful insight into
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the dynamics of cross-equatorial ocean currents. The contributions from Ωz0
change sign at the equator, which severely constrains the ability of fluid parcels
to cross the equator [8]. This constraint may be at least partly alleviated by
the additional contribution to the qi from the interaction of topography and
nontraditional rotation.

Conservation laws for the energy and momentum of the fluid may also be
obtained. The energy density is unchanged by rotation, whilst the energy flux
and momentum density acquire additional terms containing nontraditional
components of the rotation vector.

4 Linear Plane Waves

Some important properties of the extended shallow water equations may be
highlighted by considering linear plane wave solutions. Taking the usual GFD
axes (y pointing north, x pointing east) and a non-traditional f -plane approx-
imation [10], such that Ωx = 0 and Ωy and Ωz are constants, we linearise (8a),
(8b) and (5) by assuming that the dependent variables are small perturba-
tions to a state of rest: u1 = u′

1, u2 = u′
2, h1 = H1 + h′1 and h2 = H2 + h′2.

By neglecting products of these variables and seeking solutions of the form
exp (i(kx+ ly − ωt)), we obtain a dispersion relation for the waves.

This dispersion relation is plotted in Fig. 2. We have taken the layers to
be of equal mean depth (H1 = H2), and the aspect ratio to be δ = 0.2, a
little larger than typical for long internal waves (0.02 � δ � 0.14). Our den-
sity ratio is �r = 0.9. The realistic value �r = 0.98 makes it impossible to
show the two wave branches on the same plot. We have also set Ro = Bu = 1
for the purpose of illustration. The waves with higher frequency propagate
on the internal and upper surfaces simultaneously. The lower frequency waves
propagate primarily on the interface between the layers, with the upper sur-
face remaining approximately flat. The nontraditional Coriolis effects cause a
distinct shift in the frequencies, creating a left/right asymmetry. More impor-
tantly, nontraditional effects create a range of waves with frequencies below
the inertial frequency, the smallest allowable frequency under the traditional
approximation. These so-called subinertial waves have been observed in pre-
vious studies of nontraditional Coriolis effects in continuously stratified fluids
[5,6], and provide an additional source of energy for mixing in the deep ocean.

5 Conclusions

We have derived two-layer shallow water equations that include additional
terms arising from the nontraditional components of the Coriolis force. They
may be shown to retain the expected conservation laws for energy, momentum,
and potential vorticity. We have illustrated some deviations from traditional
behaviour, such as the existence of subinertial waves, caused by the additional



1038 A.L. Stewart and P.J. Dellar

Fig. 2. Dispersion relation for waves propagating zonally at a latitude of 20◦ North
in the traditional (dashed line) and nontraditional (solid line) two-layer shallow
water equations. Left : all wave modes. Right : internal wave modes. Notice the band
of internal waves with frequencies below the inertial frequency (dotted line)

part of the Coriolis force. These equations will serve as a useful prototype for
investigating the dynamics of cross-equatorial ocean currents over topography.
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Summary. This paper is based on a Mathematics-in-Industry Study Group project
from MISG 2007 in Wollongong. This project considered management issues for a
national electric power grid that may arise as a result of using larger amounts of
wind power generation. The variability of this power source has implications for both
the maintenance of power supply and its transmission upon finite capacity power
lines. A number of approaches and simple models were used to study these aspects
of production and transmission.

1 Introduction

Wind power generation in New Zealand is anticipated to rise over the next
decade in response to the demands for renewable energy and low carbon
emissions. This will introduce a number of challenges due to the variability
and degree of uncertainty in this power source. A Mathematics-in-Industry
Study Group at MISG 2007 in Wollongong, sponsored by Transpower and
the Energy Efficiency and Conservation Authority, New Zealand, considered
several aspects of the problem [2]. Here, we summarise some approaches using
simple models to explore the effect of variability on first production and sec-
ondly transmission. The problems are treated as being essentially economic
in nature, we are seeking an optimum solution.

2 Optimising Generation Across Three Different
Sources

To explore the effect of variability on power production, we consider three
power generators in close proximity to a constant load so that there are no
significant transmission losses. The generators consist of a wind farm whose
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power cost is taken to be zero with fluctuations that take immediate effect; a
low-cost (thermal) generator with cost c� per unit time that can only adjust
at ramp rate r to new power levels, and a fast-ramping but high-cost (hydro)
generator with cost ch per unit time and essentially instantaneous ramping.
The power outputs of the generators are adjusted to meet the load while at
the same time attempting to minimise the cost of the long-term operation. In
general, it is assumed that changes in the wind are not anticipated although
this could be added to the models.

If wind-power was constant then the sourcing of power would be straight-
forward, however, in practice we anticipate change and alternative strategies
may be more cost effective. The operation of the power generators can be
divided into three main states:

• Adjustment to an increase in wind-power.
• Adjustment to a decrease in wind-power.
• Steady state.

Increases and decreases in potential wind power are fundamentally different:
it is possible to spill additional wind without altering the combination of
power sources, however, if wind-power is fully-utilised and then decreases, the
difference must be met from somewhere else. Using additional low-cost power
can provide a buffer for sharp decreases at the expense of not using the full
potential wind power. Using high-cost power to replace some low-cost power
enables more rapid utilisation of increases in wind power.

2.1 The Initial Model

As a simple model to illustrate some of the effects of wind-power variability,
the potential wind-power generation Pw is taken to fluctuate between the
values where it can meet the entire load L and zero. We consider a single
upwards change in wind power followed by a downwards change during a
time period T :

Pw(t) =

{
L for 0 < t < β

0 for β < t < T
(1)

Although focused upon this single time interval T , for further simplicity we
treat the pattern as if it were periodic (Pw(t) = Pw(t + T )), i.e. a square
wave. Supplies of low-cost and high-cost power are taken to be sufficient to
meet the load. This model captures the effect that the wind-power generation
varies rapidly and will only be available for a proportion of the time.

Depending upon the prices of the different sources of power it may not
be cost effective to use all potential wind power. We take h to denote the
maximum amount of wind-power that is used and seek to optimise this.

Denoting wind power used Pu, low-cost power P� and high-cost power Ph,
for relatively expensive high-cost power and a relatively rapid slow-ramping
rate, the solution is
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[Pu, P�, Ph] (t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

[rt, L− rt, 0] , if 0 < t < h/r

[h, L− h, 0], if h/r < t < β

[0, L− h+ r(t − β), h− r(t− β)], if β < t < β + h/r

[0, L, 0], if β + h/r < t < T

[Pu, P�, Ph] (t) = [Pu, P�, Ph] (t+ T ). (2)

Initially, the entire load is met by the low-cost generator. This is ramped down
and replaced with wind power on the onset of the wind. On the cessation of
wind the high-cost power must meet the immediate demand until the low-cost
generator can ramp up. The total cost over the time period T is

c�(LT − hβ) + chh
2/(2r), (3)

with a minimum at h = rβc�/ch, corresponding to a total cost:

c�LT − c2�β2r/(2ch). (4)

If the difference between low- and high-cost generators is too small (specif-
ically c�T < ch(T − β)) then it is cheaper to switch directly between wind
and high-cost power with no use of low-cost power. If the slow ramping is
too slow (i.e. either h/r > β or h/r > T − β, or both), then the total cost
becomes a linear function of h and reaches its extreme values at the limits of
the domain. For no ramping r = 0, the optimum value of h will be either 0 or
L corresponding to per period costs of c�LT or chL(T − β), respectively.

The simple square-wave model can also be used to illustrate savings if
changes in wind generation can be predicted. Excluding the cases considered
above where the slow-ramping is too slow or the high-cost power too cheap,
suppose that the rises in wind power are anticipated (but not the falls). Then
high-cost power can be used to replace h2 of the low-cost power prior to the
onset of the wind so that h2 of wind power can be used immediately. The
modified cost function is

c�(LT − hβ − hh2/r) + ch(h2 + h2
2)/(2r) (5)

with a minimum at a higher value h = rβc�/(ch−c2�/ch) with h2 = c�h/ch and
total cost c�LT−c2�β2r/(2(ch−c2�/ch)). This is a saving of c4�β

2r/(2ch(c2h−c2�))
per period T over not anticipating the wind.

2.2 Optimum Settings for More General Wind-Power Forms

Now we consider changes in wind power which occur as a random process.
Initially we assume a single step change in wind power ΔPw in a period T .

If high-cost power is sufficiently expensive then using additional low-cost
power (ΔP�) to replace some wind power is advantageous as it provides a
buffer for sudden drops in wind power(ΔPw < 0). In this case, the total
cost is
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c�

∫ T

0

P�(t)dt+ c�ΔP�T +
ch
2r

(−ΔPw −ΔP�)2. (6)

This has a minimum value when

ΔP� = −ΔPw − rT c�/ch. (7)

The optimum ΔP� must always lie between zero and |ΔPw| and also depends
on the time interval T . For longer time intervals between drops in wind power,
less excess low-cost power is justified.

Generalising this case for different sizes of step change over the time inter-
val T , we assume that for step changes such that ΔPw < −ΔP� the size is
determined by the probability: P(ΔPw(u) : ΔPw(u) < −ΔP�;T ) . Instead of
(6), the total cost is now:

c�
∫ T
0
P�(t)dt+ c�ΔP�T +

ch

2r

∫ 1

0 P(ΔPw(u) : ΔPw(u) < −ΔP�, T )(−ΔPw(u)−ΔP�)2du. (8)

To obtain an approximate minimum cost, the probability term is assumed
essentially constant, whence by differentiation with respect to ΔP�, and
equating to zero, we obtain:

ΔP� =
− ∫ 1

0 P(ΔPw(u) : ΔPw(u) < −ΔP�, T )ΔPw(u)du− rT c�/ch∫ 1

0
P(ΔPw(u) : ΔPw(u) < −ΔP�, T )du

. (9)

The first contribution on the right-hand side is the average size of the larger
step changes, while the second adjusts to account for the likelihood of a down-
wards step change. For specific cases, this implicit equation for ΔP� is readily
solved numerically.

To take advantage of the rapid increases in wind-power generation (ΔPw >
0), some low-cost power may be replaced with high-cost power ΔPh if the price
difference is not too large. For ΔPh < ΔPw the total cost is:

c�

∫ T

0

P�(t)dt− c�ΔPhT + chΔPhT − ch
2r
ΔP 2

w +
ch
2r

(ΔPw −ΔPh)2. (10)

Using differentiation, the value of ΔPh at the minimum is:

ΔPh = ΔPw − r(ch − c�)T/ch. (11)

This always gives ΔPh < ΔPw when ch > c�.
Now consider a cycle of a step up followed by a step down. Suppose in

both cases that there is time for the low-cost power to adjust (T > 2ΔPw/r).
From (11)

ΔPh < ΔPw(2c�/ch − 1). (12)

This implies that for a positive ΔPh we require ch < 2c�.
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When ΔPw(u) is given by a probability distribution we have:

ΔPh =

∫ 1

0 P(ΔPw(u) : ΔPw(u) < ΔPh, T )ΔPw(u)du− r(ch − c�)T/ch∫ 1

0
P(ΔPw(u) : ΔPw(u) < ΔPh, T )du

(13)

and so ΔPh is always bounded above by a weighted sum of the ΔPw values.
The quantity ΔPh gives the target for the low-cost generator power reduc-

tion. The low-cost generator moves towards this at its limited slow ramp
rate.

In [2], an illustration is given of how these formulae may be combined
with numerical simulations of wind-power generation to estimate the opti-
mum strategies for power production. This work used models from [3] and
a standard wind-power relationship, however, more recent models for wind-
power generation are presented in [1]. The probability distribution of wind
power over the time interval T is estimated. From this, (9) and (13) are
solved to obtain target values of ΔP� and ΔPh. As the low-cost generator
may need to be ramped towards the target, any deficit is made up first by
wind power, if available, and then by high-cost power. The effect of T can be
determined by using a number of repeats with the same random wind profile.

3 Optimal Dispatch on a Network of Finite Capacity

Apart from the problem of providing electric power generation, there is also
the issue of ensuring its transmission across the power grid network which has
a limited capacity. As before, it is assumed that there are three kinds of power
generation: wind, fast-ramping and slow-ramping. The cost of wind power is
again taken as zero, however, in this model the other power generators offer
power in tranches with different prices. Changes in the output of wind power
and fast-ramping generators are again taken to be instantaneous, however,
the slow-ramping power stations are taken to have zero ramp rate r = 0 and
their dispatch is maintained constant during the time period T considered.

For illustration we consider a two-node network connected with a lossless
transmission line of capacity M . (Further examples are contained in [2].) At
node NL, time-varying wind power Pw(t) is offered at zero price (marginal
cost), and a slow-ramping station (Thermal 1) offers unlimited power at
price ca. On the other side of the transmission line, a load L is met at node
NR. Other generators also supply power directly at node NR: a fast-ramping
(hydro) station offers a relatively cheap tranche (H1) of quantity PH at price
cb, and a more expensive tranche (H2) at price ce. Another slow-ramping sta-
tion (Thermal 2) offers unlimited quantities at price cd. We assume M < L,
0 < ca < cd, and 0 < cb < cd < ce.

If the wind were constant, the least-cost solution would dispatch the gen-
erators in the order of their offer prices, starting with the cheapest. Once all
the wind power had been allocated, Thermal 1 could be used to the extent
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allowed by the transmission capacity and the remaining balance is met from
the cheaper hydro power (H1) and then by Thermal 2, both of which are
located next to the load.

However, we should consider possible rises in wind power. If the transmis-
sion capacity is fully used and the wind output subsequently rises then the
excess cannot be used and the wind must be spilt. To allow for this possibility
it may be more cost-effective to leave some unused capacity or headroom x
in the transmission line, by reducing the dispatch from Thermal 1 (by x) and
instead using power from Thermal 2 (which is located adjacent to the load).
A subsequent rise in potential wind power may then be used to displace hydro
generation H1.

Decreases in wind-power are also possible. However, for the network illus-
tration here, this problem does not involve the transmission line and is
essentially of the same kind as considered in Sect. 2. (To avoid increased hydro
generation from the expensive H2 tranche, one may reserve spare capacity
directly within the H1 hydro tranche, using extra power from Thermal 2 if
necessary.)

Suppose there is a headroom x ≥ 0 in the transmission line. Then the
ongoing additional cost (per unit time) is (cd − ca)x, relative to the constant
wind solution (x = 0). At a time t > 0, the instantaneous additional cost is

f(t) = ce(Pw(0)− Pw(t))+ − cb min(x, (Pw(t)− Pw(0))+), (14)

where the notation z+ denotes max (z, 0). At time 0, the expected average
cost (per unit time) over the time interval 0 ≤ t ≤ T is:

C(x) = E

[
1
T

∫ T

0

((cd − ca)x+ f(t)) dt

]

= E [(cd − ca)x + ce(−δ)+ − cb min(x, δ+)] ,

where δ = Pw(τ) − Pw(0), with τ a random variable independent of (Pw(t))
and distributed uniformly on [0, T ].

For simplicity Pw(t) is chosen to have a continuous probability distribution.
Then, for x > 0,

d

dx
C(x) = (cd − ca)− cb E

[
d

dx
min(x, δ+)

]
= (cd − ca)− cb P(δ > x).

If P(δ > 0) ≤ (cd− ca)/cb then C(x) increases with x for all x > 0, and so the
cheapest option is to have zero headroom (x = 0). Otherwise, the optimal x
is given by the solution to

P(δ > x) = (cd − ca)/cb. (15)

In some situations it may be reasonable to assume that the wind-power
has a similar likelihood of rising as of falling (P(δ > 0) = 1

2 ). It is only worth
reserving headroom then if cd − ca < cb/2 as the first unit of headroom costs
cd − ca to create, whereas, for half of the time, the average cost of not having
this headroom is cb.
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4 Conclusions

In the early part of this paper (Sect. 2) we consider a simple model of power
generation to meet a load using different sources. These include a wind farm
taken to have negligible relative cost and a power output with sudden changes,
a high-cost generator that can change its output as rapidly, and a low-cost
generator that can only ramp slowly to a new power output. For a sufficiently
large gap between high-cost and low-cost prices, there can be a significant
benefit in scheduling a margin of low-cost power to buffer for possible drops
in wind-power generation. Preparation to better utilise a possible increase in
wind power by the replacement of some low-cost power with high-cost power,
is only of an advantage when the prices are close.

In Sect. 3, we instead consider the effect of limited capacity in the trans-
mission network. An illustration is used to show how variation in wind-power
output may be planned for by reserving spare capacity in the transmission
line.
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Summary. Turbulence is thought to play a key role in the transport of particles and
energy within thermonuclear plasmas, and a number of codes have been developed
to study the phenomena involved. A novel algorithm for calculating the force balance
within such a code is presented. This involves the solution of a non-linear elliptic
boundary value problem by considering it as a steady-state limit of a parabolic
(heat) equation.

1 Introduction

One of the grand scientific challenges of our time is the understanding and
control of electromagnetic turbulence in thermonuclear plasmas typically
encountered in tokamak experiments. Spherical tokamaks (e.g. the Mega
Ampère Spherical Tokamak, MAST [7] in the UK) in particular have uncov-
ered fascinating new insights and regimes, with the potential of providing
new and efficient approaches to building practical fusion power plants and
associated materials testing/development [4]. The fluid approach to plasma
turbulence simulations seeks to evolve a set of conservation equations (simi-
lar in form but differing in detail from the classic compressible Navier–Stokes
equations of neutral gas dynamics) together with the Maxwell equations in
three spatial dimensions and time. The fluid models are similar in charac-
ter and akin in their computational philosophy and techniques to studies of
long term (on time-scales of decades or even centuries) climatic dynamics and
changes over the whole globe. Experimental measurements suggest that elec-
tromagnetic turbulence must play a vital role, and advances in computing
are enabling rapid strides in modelling the basic underlying mechanisms. Suc-
cess in this venture will facilitate improvements to the prospects for economic
fusion power.
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2 The CENTORI Plasma Turbulence Code

The CENTORI code is a fully toroidal, two-fluid (ions + electrons) electro-
magnetic turbulence simulation code, and has been developed by CCFE in
collaboration with colleagues at the University of Edinburgh (EPCC) [3].
It is designed to simulate tokamak plasma turbulence in realistic geome-
tries and conditions such as those found in the present day machines MAST
and the European flagship Joint European Torus experiment (JET) [2], and
in the forthcoming international fusion experiment ITER [1]. CENTORI self-
consistently co-evolves the global plasma equilibrium and the electromagnetic
turbulence driven by sources of particles, heat, momentum and currents via
the gradients generated thereby in plasma quantities like the pressure and
temperature. Powerful parallel processing techniques allow CENTORI to use
sufficiently high spatial and temporal resolutions to enable the modelling of
scales varying from the system size to the experimentally relevant ion-gyro
radius scales. Here, we describe the algorithm used to solve the force balance
within the code.

3 Equilibrium Force Balance

3.1 The Grad Shafranov Equation

CENTORI models a toroidal plasma confined by magnetic fields due to external
coils and by driving a toroidal current in the plasma. The equilibrium (force
balance) equation relating the magnetic field B (the sum of external coil fields
and the plasma generated one) and the plasma pressure gradient, in Gaussian
units, is:

J×B
c

= ∇p (1)

where p is the sum of the electron and ion pressures, c is the speed of light
and J is the current density within the plasma, given by Ampère’s Law:

4π
c

J = ∇×B (2)

We use a right-handed cylindrical coordinate system (R,Z, ζ), where R is
the major radius, or distance from the machine’s vertical axis of symmetry,
Z defines the vertical direction, parallel to the machine’s axis, and ζ is the
azimuthal/toroidal angle. This is shown in the left-hand plot of Fig. 1.

The equilibrium magnetic field is azimuthally symmetric and is described
by two functions, ψ(R,Z), F (ψ):

B = (∇ζ ×∇ψ) + F ∇ζ (3)

The flux function ψ(R,Z) describes the poloidal magnetic field. The level
curves of ψ in the (R,Z) plane form nested, closed contours in the region
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Fig. 1. Left : A typical plot of ψ contours over the poloidal (R,Z) plane as calculated
by the GRASS equilibrium solver, showing diagrammatically the laboratory coordi-
nates (R,Z, ζ) and the plasma coordinates (ψ, θ, ζ) used within CENTORI. Middle:
Schematic diagram of the computational domain of GRASS, showing the main solution
grid and the plasma mask. Right : A typical set of (ψ, θ) grid points, superimposed
on the original ψ(R,Z) grid

containing the plasma. These form toroidal flux surfaces. The minimum value
of ψ within these closed surfaces lies at the centre of the plasma, and defines
the location of the so-called magnetic axis, along the circle (R0, Z0, ζ).

The function F depends only upon ψ and defines the toroidal mag-
netic field in (3). Using the standard definition of the gradient operator, the
gradients in the ψ and ζ directions are:

∇ψ =
∂ψ

∂R
eR +

∂ψ

∂Z
eZ, ∇ζ =

1
R

eζ (4)

where (eR, eZ, eζ) are the unit vectors in the coordinate directions.
Combining (1)–(4) we obtain the simplest version of the Grad–Shafranov

equation for equilibrium force balance:
[
R

∂

∂R

(
1
R

∂ψ

∂R

)
+
∂2ψ

∂Z2

]
= −4πR2p′ − FF ′ =

4π
c
RJtor (5)

where the left hand side operator is denoted byΔ∗ψ, and ′ is the usual notation
for ∂/∂ψ. We next outline a novel algorithm for solving this equation for
ψ(R,Z), given p′(ψ) and FF ′(ψ). These are determined by solving appropriate
transport equations (not described here).

3.2 The GRASS Equilibrium Solver

The CENTORI source code includes the free boundary Grad Shafranov equi-
librium solver, named GRASS which solves (5) subject to Dirichlet conditions,
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taking into account currents in the coils located in the vicinity of the plasma.
Figure 1 (middle plot) shows the layout of the computational domain of GRASS.
The solver uses two rectangular grids:

1. The main solution grid, within the domain (Rmin, Zmin) to (Rmax, Zmax).
The plasma and the coils are assumed to lie wholly within this grid, and
the ψ values on the grid boundaries are supplied by the user.

2. The plasma mask represents the rectangular sub-region (Rpmin, Zpmin)
to (Rpmax, Zpmax). The (hot) plasma is assumed to lie wholly within the
plasma mask, but no coils must be present inside it.

Each coil current density, Jc (which can, of course, vary between coils), is
assigned to a number of grid cells, to approximate the coil location and cross-
sectional area. The following equation is solved over the main solution grid:

Δ∗ψ =
4π
c
RJtor

where Jtor is a function of ψ,R in the plasma, and Jtor = Jc at the coil
locations. That is, we can rewrite the equation as:

Δ∗ψ =
4π
c

(RJt(ψ,R)H +RJc)

where H =
{

1 inside plasma mask
0 elsewhere

and Jt(ψ,R) = −cR2p′ − c
4πFF

′ is the toroidal component of J within the
plasma. The functional forms of p′(ψ) and FF ′(ψ) are evolved externally by
CENTORI to include the effects of turbulence, with suitable averaging over the
flux surfaces. The physics ensures that these functions fall off fast enough
with ψ so that there is only a negligible amount of residual plasma current
outside of the chosen edge plasma contour.

We use a tridiagonal matrix algorithm and “imbed” the above elliptic
equation in a parabolic equation, as described below. A preliminary transfor-
mation makes the operator symmetric and increases the diagonal dominance
of the matrix equation, by setting, ψ = R

1
2u ⇐⇒ u = ψ

R
1
2

and applying
the boundary conditions in terms of u instead of ψ. Now, let the total ψ
be written as the sum of two components: ψ1, which is defined to have zero
boundary conditions at Z = Zmin and Z = Zmax; then ψ2, which “absorbs”
the rest of ψ. Thus, ψ = ψ1 + ψ2, where, ψ2 ≡ Z−Zmin

h ψtop + Zmax−Z
h ψbot

and h = Zmax − Zmin which, by inspection, has the desired behaviour. The
transformation of u follows. Note that, Δ

∗ψ1

R
1
2

= Δ∗ψ

R
1
2
− Δ∗ψ2

R
1
2

and we can define

a new operator Δ∗
uu (note the subscript u):Δ∗

uu ≡ 1

R
1
2
Δ∗ψ. It follows that,

Δ∗
uu = ∂2u

∂R2 + ∂2u
∂Z2 − 3

4R2 u, leading to,

∂2u1

∂R2
+
∂2u1

∂Z2
− 3

4R2
u1 =

4π
c

(
RJt(ψ)H

R
1
2

+R
1
2Jc

)
−Δ∗

uu2 (6)
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Note that Δ∗
uu2 can be evaluated using finite differences straightforwardly,

once at the beginning of the calculation. From the definition of u2 there is no
∂2u2/∂Z

2 term.
The novel approach in GRASS is to use a heat-like equation to solve this

equation. Consider:
∂u1

∂τ
= ε (Δ∗

uu1 −G) (7)

where G represents the right hand side of (6), and τ is a pseudo-time variable.
At steady-state, ∂u1/∂τ = 0, so the quantities inside the parentheses become
equal, as desired. We convert (7) into a finite difference equation in Fourier
space using the sine transform in the Z direction to maintain the zero bound-
ary conditions, denoting the kthZ sine transform coefficients by .̂ . ., with i
labelling the ith grid point in the R direction and N the iteration count. This
leads to a 1-D tridiagonal matrix equation in the R direction, of the form:

Ai û
N+1
1 i−1 +Bi û

N+1
1 i + Ci û

N+1
1 i+1 =

(
ûN1 i −Δτ.ε Ĝi

)

where

Ai = Ci = − Δτ.ε

(ΔR)2

Bi = 1 +Δτ.ε

{
2

(ΔR)2
+
π2k2

Z

h2
+

3
4R2

i

}

This is readily solved to obtain ûN+1
1 ; the inverse sine transform is used to

obtain u1 and thereby ψ1. The total ψ is recovered by adding back ψ2, and the
process is repeated until ψ over the grid does not change significantly between
successive iterations. Typically, convergence is achieved after a few hundred
iterations, depending on the initial FF ′ and p′ profiles specified.

The final stage of GRASS is to redefine the ψ within the plasma mask for
convenience, so that the edge of the plasma (determined using an algorithm
that takes into account the presence or absence of saddle (“X-”) points in
the ψ(R,Z) contours) is defined to be the ψ = 0 contour; modifying ψ by an
additive constant everywhere does not affect its gradients, i.e. the magnetic
field. CENTORI is passed only this modified ψ(R,Z) within the masked region
(thus excluding the coils), interpolated using Chebyshev fits in R and Z.

The plasma quantities that CENTORI evolves to model the turbulence are
stored in arrays at a set of computational grid points chosen for their physical
and numerical convenience. The method used to form the plasma coordi-
nate system based on these grid points will be described in detail elsewhere.
It involves the use of Chebyshev polynomial approximations to accurately
represent the ψ contours. The coordinate system and a suitable choice of
Jacobian is made to produce a mesh system which is optimal for the turbulence
evolutionary dynamics (cf. Fig. 1, right-hand plot).
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4 Conclusions and Further Work

In this brief description we have only touched upon the method of solving
the non-linear elliptic equations of plasma equilibria in the absence of signif-
icant flows in the system. Modern tokamaks often have large sheared toroidal
and poloidal flows which can modify the equilibrium. In earlier analytical
work [5,6] we have investigated such effects in detail and found extensions of
the Grad-Shafranov equations involving rigid or Keplerian toroidal rotation.
The methods we have described in this paper are now being adapted to include
these important effects. The ultimate aim of our research is to co-evolve the
plasma equilibrium given the experimental sources of current, particles, energy
and momentum and compute on the time-scales of interest. This can only be
accomplished with the use of a robust and accurate scheme to obtain the
equilibrium and construct the curvilinear plasma coordinates needed to for-
mulate the turbulence evolution equations. The scheme described in this paper
enables us to carry out this process in a reliable and effective manner.
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A Differential-Geometric Approach to Model
Isotropic Diffusion on Circular Conic Surfaces

in Uniform Rotation
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Summary. We outline a differential-geometric approach to analytically solve the
diffusion equation on a static circular conic surface assuming isotropic and sourceless
diffusion. We also extend the proposed technique to find general solutions for a cone
in arbitrary axisymmetric and uniform rotation.

The new, analytical expressions for these solutions rely on the construction of
the kernel function for the diffusion operator on the corresponding Riemannian
manifold. Given particular boundary conditions, the resulting series expansions may
for practical purposes be approximated numerically, providing a valuable tool for
diffusion models.

1 Introduction and Review

Diffusion phenomena are an essential ingredient in mathematical models and
simulation techniques for particle and fluid dynamics, or heat transport pro-
cesses. Many industrial devices take particularly simple shapes, such as the
form of circular cones.

In a classic work, Carslaw and Jaeger have studied the heat flow in a
sphere and cone [2]. Further examples of analytical solutions for diffusion on
a sphere are found in Zwillinger’s standard reference [8].

In this work, we follow the differential-geometric approach outlined in [7]
to analytically solve the diffusion equation on a static circular conic sur-
face assuming isotropic and sourceless diffusion. We also extend the proposed
technique to find general solutions for a cone in arbitrary axisymmetric and
uniform rotation.

The diffusion-advection equation is a non-homogeneous parabolic partial
differential equation which can be derived from a Lagrangian function via a
variational principle [7]. This inherently covariant approach makes it possible
to tackle diffusion processes on smooth manifolds, such as the surface of a
circular cone.
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Contrary to classical mechanics, for the diffusion case we require the
partial derivatives of a configuration with respect to all spacetime coordinates.
Therefore, the corresponding Lagrangian function will be a mapping

L : J1N → R,

where L : J1N is the jet bundle with coordinates (C,C∗, Ċ, Ċ∗, C;i, C
∗
;i) �

R
10 and N is the configuration space with parameters (x1, x2, x3, t, C, C∗). As

usual, xi for i = 1, 2, 3 denote the spatial components in a local coordinate
frame of point p ∈ M , where (M,g) is a smooth 3-dimensional Riemannian
manifold with a given metric g. Time is represented by t ∈ R+ and its corre-
sponding derivatives by dotted symbols. All covariant derivatives with respect
to xi are denoted by the common semicolon notation.

Following the terminology of Marsden et al. [5], we further introduce base
space B = M × R+, which constitutes standard spacetime, and ambient
space P , given by the two concentrations C,C∗ : B → R+.1 Thus, N = B×P .

Within this framework, any particular configuration of the system is
described by a mapping B → N . Provided with the explicit form of the
diffusion Lagrangian [7], we will be in the position to study isotropic diffusion
on the cone.

2 Lagrangian Formalism

For diffusion, the equation of motion, i.e. the diffusion equation itself, is
obtained from the following action integral over a bounded and closed set
V ⊂M

L =
∫

V

L√g dτ, (1)

where
√
g dτ =

√
g dx1dx2dx3 is the invariant volume element with g = det g,

and [7]
L = −DijC ;iC

∗
;j − 1

2

(
ĊC∗ − CĊ∗)+ S

(
C + C∗). (2)

Here, the molecular diffusion tensor D is of type Dp : (T ∗
pM)2 → R for p ∈M ,

and a general source/reaction term is a scalar defined by S : M → R.
Then, the stationary solution of the action (1) under any variation of the

generalized coordinate C yields [7]

δL

δC
= 0 ⇒ Ċ =

(
DijC ;i

)
;j

+ S, (3)

which is the all-inclusive (not necessarily isotropic and with arbitrary sources)
diffusion equation in covariant form.

1Note that C∗ is a mirror symmetry which has to be introduced to satisfy energy
conservation [6].
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3 Diffusion on a Static Cone

For isotropic diffusion the molecular diffusion tensor reduces to

Dp = D gp ∀p ∈M with D ∈ R+. (4)

Hence, the fundamental differential equation which governs sourceless isotropic
diffusion (S = 0, D = 1) becomes

Ċ = ΔMC, (5)

where ΔM is the Laplace–Beltrami operator on the given manifold (M,g).
For an open cone with its peak located at the origin and a constant radius-

to-height parameter a > 0, the metric is

(gij) =
(

1 + a2 0
0 a2z2

)
with

√
g = a

√
1 + a2 z, (6)

where z ∈ ]0,∞[ and ϕ ∈ [0, 2π[ are the local coordinates on the surface
referring to i, j = 1, 2, respectively. Note that there are only two independent
Christoffel symbols, Γ 1

22 = −a2z/(1 + a2) and Γ 2
12 = 1/z, which produce after

a short calculation

ΔMC = gijC;ij = gij
(
C,ij − Γ kijC,k

)

=
1

1 + a2

1
z

∂

∂z

(
z
∂C

∂z

)
+

1
a2z2

∂2C

∂ϕ2
. (7)

3.1 Formal Self-Adjointness

To investigate further properties of ΔM , we introduce the following inner
product

〈f1, f2〉(M,g) =
∫

M

f1(x)f2(x)
√
g dτ(x), ∀f1, f2 ∈ {f : M → R; f ∈ C∞}.

(8)
Then, by applying integration by parts, one can show that

〈ΔMf1, f2〉(M,g) = 〈f1, ΔMf2〉(M,g), (9)

i.e. the operator ΔM is formally self-adjoint. As a consequence the time-
independent eigenvalue problem

(ΔM + λ)Φ(λ, x) = 0, ∀x ∈M, (10)

has a continuous non-negative spectrum with a complete and orthogonal set
of eigenfunctions Φ(λ, x). Continuity follows from the unbound integration
domain of the differential equation [3].

Thus, we may expand the solutions of the diffusion equation in terms of
normalized eigenfunctions Φ̂(λ, x):

C(x, t) =

∞∫

0

a(λ) e−λtΦ̂(λ, x) dλ. (11)
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3.2 Formal Solutions for the Circular Conic Surface

Normalization for the eigenfunction system
{
Φ̂(λ, ·)} solving (10) is chosen

such that
〈Φ̂(λ, x), Φ̂(μ, x)〉(M,g) = δ(λ− μ), (12)

and given a continuous boundary function C(x, 0) : M × [0,∞[→ R, the
expansion coefficients of the solution are

a(λ) = 〈C(x, 0), Φ̂(λ, x)〉(M,g). (13)

Inserting the coefficients a(λ) into the solution expansion readily yields the
full solution as an evolution equation:

C(x, t) = 〈K(x, y, t), C(y, 0)〉(M,g). (14)

Here, K(x, y, t) is the kernel function of the diffusion operator (∂t +ΔM ) on
M ×M× ] 0,∞ [ and is given by the expression

K(x, y, t) =

∞∫

0

e−λtΦ̂(λ, x) Φ̂(λ, y) dλ. (15)

3.3 Explicit Solutions for the Circular Conic Surface

Explicit solutions for the circular conic surfaceM may be obtained by employ-
ing the separation-of-variable method (see e.g. [4]) to determine the diffusion
kernel (15). A lengthy but straightforward calculation produces the following
two solutions for the eigenvalue problem

Φ
(1)
m (λ, z, ϕ) ∼ cos(mϕ)J√

1+a2
a m

(√
1 + a2 z

√
λ
)
,

Φ
(2)
m (λ, z, ϕ) ∼ sin(mϕ)J√

1+a2
a m

(√
1 + a2 z

√
λ
)
,

(16)

where m ∈ N0. The functions Jβ(αz) with α =
√

1 + a2
√
λ and β =

m
√

1 + a2/a > 0 are the Bessel functions of the first kind. The solutions
J−β(αz) have been discarded, since they behave like z−β at z = 0 and are
unbounded.

The normalized eigenfunctions will have to satisfy

〈Φ̂(i)
m (λ, x), Φ̂(j)

m (μ, x)〉(M,g) = δij δ(λ− μ), m = 0. (17)

and the Bessel closure relation [1]. Furthermore, the standard transformation
formulae for the δ-distributions help to determine the normalization constants.

In summary, given the boundary problem

Ċ = ΔMC,

B(x) = lim
t→0+

C(x, t) ∀x ∈M and B ∈ C(M), (18)
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Eulerian frame Lagrangian frame

M M̃
u = −ω

∂

∂ϕ
∈ TpM

ω

Fig. 1. Schematic view of diffusion on a cone in different frames

we obtain the corresponding solution for an infinitely extended cone using the
kernel K ∈ C2,2,1(M ×M× ] 0,∞ [ ):

C(x, t) = 〈K(x, y, t), B(y)〉(M,g). (19)

Here, the explicit form for the fundamental solution (15) is

K(x, y, t) =

∞∫

0

e−λt
∑

i,j=1,2

∞∑
m=0

Φ̂(i)
m (λ, x) Φ̂(j)

m (λ, y) dλ, (20)

where the normalized eigenfunctions are for a > 0:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ̂
(1)
0 (λ, x) =

(1 + a2)1/4

2
√
πa

J0

(√
1 + a2 z

√
λ
)

Φ̂
(2)
0 (λ, x) = 0

Φ̂
(1)
m (λ, x) =

(1 + a2)1/4√
2πa

cos(mϕ)J√
1+a2
a m

(√
1 + a2 z

√
λ
)
, m ∈ N

Φ̂
(2)
m (λ, x) =

(1 + a2)1/4√
2πa

sin(mϕ)J√
1+a2
a m

(√
1 + a2 z

√
λ
)
, m ∈ N

(21)
For approximate boundary conditions, this general solution can be evaluated
analytically or approximated by suitable numerical schemes.

4 Diffusion on a Uniformly Rotating Cone

We now consider diffusion with axisymmetric and uniform rotation of the cone
(see Fig. 1). In the Eulerian frame the isotropic diffusion equation will contain
a transport term u = 0 such that

Ċ = ΔMC − uiC;i (22)
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with u = −ω ∂/∂ϕ ∈ TpM in local coordinates for all p ∈ M , and ω > 0.
We cannot proceed with a solution for (22) as outlined in Sect. 3, since the
operator (

ΔM − u · ∇M
)

(23)

is not self-adjoint.2 However, moving to the Lagrangian frame with M̃ (see
Fig. 1), the global transformation becomes

ϕ = ϕ̃+ ωt, (24)

which effectively removes the influence of the transport field, and one only
has to solve

˙̃C = ΔM̃ C̃, (25)

where C̃ = C(x̃, t) and B̃(x̃) = B(x), with x ∈ M and x̃ ∈ M̃ . Hence, the
rotating solution is given in terms of the already known, static result of Sect. 3:

C(z, ϕ, t) = 〈K(x, y, t), B(y)〉(M̃,g) = 〈K(z, ϕ+ ωt; z̃, ϕ̃; t), B(z̃, ϕ̃)〉. (26)

5 Conclusion and Outlook

We have presented a differential-geometric approach to deal with diffusion pro-
cesses on curved surfaces using a general Lagrangian on smooth manifolds. The
fundamental solutions for diffusion on a static and a rotating cone are derived
by constructing the kernel function for the corresponding Laplace–Beltrami
operator and adopting an appropriate reference frame. These solutions may
provide the foundation for future diffusion models with related geometry.
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Summary. A limiting factor for the effective delivery of radiotherapy to lung
tumours is the tumour motion as the patient breathes. If the tumour position is
known at all times then treatment parameters may be adjusted accordingly. We
formulate a general approach to model the spatial relationship between an external
respiratory signal and the tumour position. The model treats the tumour as a point
mass attached to a spring-dashpot system driven by abdominal motion. We present
the model and show results of numerical computations based on clinical data.

1 Introduction

Cancer of the respiratory tract is a common disease with relatively poor prog-
nosis. Respiratory-induced tumour motion is a major cause of unfavourable
treatment responses to radiation therapy, since the motion necessitates rela-
tively large treatment margins [4]. Consequently, a larger volume of healthy
tissue is irradiated, thereby considerably increasing side effects from the treat-
ment. This forces a treatment dose lower than that required for adequate
tumour control.

An accurate knowledge of the tumour position at all times during irra-
diation would enable treatment parameters to be adjusted and therefore a
more effective dose to be delivered [2, 5]. In this fashion, higher overall doses
could be given to the tumour without significantly increasing the side effects.
However, in practice it is difficult to directly and non-invasively determine the
tumour position in real-time during treatment [1, 6, 8, 9, 11, 12, 14].

This technical difficulty has led most non-invasive approaches to resort to
measuring only the respiratory signal of the patient. Accurate and reliable
models are required to relate respiratory motion to that of the lung tumour,
in order that the position of the tumour can be known at all times. Previous
“grey box” type models of this relationship [7] have been successfully applied
to clinical cases, but intrinsically do not have the ability to model certain
behaviours, such as when the tumour trajectory exhibits a hysteresis [11].
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Fig. 1. The spring-dashpot system. The coordinate axes, spring and dashpot labels,
and the position of the tumour (subscript T ), diaphragm (D), and abdomen (A) are
shown. Degrees of freedom are indicated by arrows

Here we present a novel 3D model aimed at physically modelling the spatial
relationship between an external abdominal breathing signal and the motion of
a lung tumour. The approach uses a system of springs and dashpots arranged
to model tumours at a general lung location. While the mathematical model is
general for any lung tumour, the model parameters are patient- and tumour
location-specific. The model is analysed by means of computer simulations
and validated against real clinical tracking data.

2 The Model

With reference to Fig. 1, the tumour is modelled as being attached to three
springs and three dashpots, one spring-dashpot pair for each room coordinate,
reflecting the mechanical and dynamical properties of human anatomy. At a
general time t∗, where a superscript star indicates a dimensional quantity,
the tumour lies at position p∗

T (t) = (x∗T (t∗), y∗T (t∗), z∗T (t∗)) where (x∗, y∗, z∗)
forms a right-handed triad as shown, with corresponding unit vectors i, j, k.
The superior-inferior (head-foot, or sup-inf) spring is additionally attached to
a point representing the diaphragm, which in turn is attached by a rigid rod
to a point representing the abdomen. This abdomen point is free to move in a
fully three-dimensional way. The springs are assumed to follow Hooke’s law,
while the dashpots provide friction proportional to velocity.
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In more detail, spring sX is of natural length l∗X and has a pivot point
free to move in the plane x∗ = l∗X . Dashpot dX damps the x∗-motion, and is
also free to move in a (y∗, z∗)-plane to track the (y∗, z∗)-components of the
tumour position. A similar arrangement holds for spring sZ . On the other
hand, spring sY of natural length l∗Y connects the tumour to the diaphragm
point p∗

D(t∗), which we assume is constrained to the line x∗ = 0, z∗ = 0. This
point drives the tumour motion by means of being connected by a rigid rod of
length R∗ to the point p∗

A(t∗), which models the abdominal position in three
dimensions. The dashpot dY damps the y∗-motion, and is free to move in an
(x∗, z∗)-plane to track the (x∗, z∗)-components of the tumour motion.

Next, the three coupled equations of motion are formulated and non-
dimensionalised, yielding the 3D-3D model: three coupled equations describing
the 3D motion of the system forced by a 3D abdominal breathing signal. The
input to this model is a three-dimensional breathing signal; the parameters of
the model need to be optimised for each patient; and the output is a predicted
lung tumour motion.

3 Governing Equations

The angle which sY makes with the plane x = 0 is denoted θX , and that which
sY makes with the plane z = 0 is denoted θZ . Then for a tumour of constant
mass m∗, Newton’s second law gives the governing dimensional equations

m∗ẍ∗T = k∗Xx
∗
T + k∗Y ξ

∗
Y sin θX cos θZ − β∗

X ẋ
∗
T , (1)

m∗ÿ∗T = −k∗Y ξ∗Y cos θX cos θZ − β∗
Y ẏ

∗
T , (2)

m∗z̈∗T = k∗Zz
∗
T + k∗Y ξ

∗
Y sin θZ − β∗

Z ż
∗
T , (3)

where

ξ∗Y =
{
x∗2T +

[
y∗A − y∗T +

(
R∗2 − x∗2A − z∗2A

) 1
2
]2

+ z∗2T

} 1
2

− l∗Y , (4)

and where β∗
X , β

∗
Y , β

∗
Z are the friction coefficients in the x∗-,y∗-, and z∗-

directions, respectively, and a dot denotes differentiation with respect to
time.

We now non-dimensionalise these equations (non-dimensional variables
will be written without a superscript star). A representative length is taken
to be l∗Y , while τ∗ denotes a general representative time scale. The non-
dimensional equations are

ẍT = ω2
XxT + ω2

Y ξY sin θX cos θZ − 2λX ẋT , (5)

ÿT = −ω2
Y ξY cos θX cos θZ − 2λY ẏT , (6)

z̈T = ω2
ZzT + ω2

Y ξY sin θZ − 2λZ żT , (7)
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Fig. 2. Spatial distribution of clinical respiratory data (squares) and corresponding
tumour data (stars). The data are also projected onto the (x, y)-, (x, z)-, and (y, z)-
planes (dots)

where we have formed the six dimensionless groups

ω2
X,Y,Z =

τ∗2k∗X,Y,Z

m∗ , 2λX,Y,Z =
τ∗β∗

X,Y,Z

m∗ , (8)

and where

ξY =
{
x2

T +
[
yA − yT +

(
R2 − x2

A − z2
A

) 1
2
]2

+ z2
T

} 1
2

− 1. (9)

4 Numerical Solutions

4.1 Numerical Method and Clinical Data

Typically, the main component of tumour motion is in the sup-inf direction,
along the y-axis. In the limit of small lateral and transverse motion, asymp-
totic analysis reveals that the equations decouple, to leading order [13]. This
leading-order equation for yT was solved numerically using MATLAB, subject
to the 3D breathing signal shown as squares in Fig. 2. We called this the 1D-3D
system, since the breathing signal is still fully three-dimensional. Governing
parameters were optimised iteratively based on a cost function to fit results
to the clinical data. The numerical scheme was validated by comparison to
limit-case analytical results [13].
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Fig. 3. Calculated and measured tumour signal yT as a function of time. The
stars and solid line correspond to the measured data and the dots and dashed line
correspond to the calculated data

4.2 Results

The stars and solid line in Fig. 3 show the normalised and zeroed y-component
of the tumour data in Fig. 2 versus time. Also plotted in Fig. 3 is the model
output (dots and dashed line) for this data set, likewise normalised and zeroed.
Excellent agreement can be seen at points between local extrema. These parts
of the tumour motion are of greatest clinical relevance for real-time adjust-
ment of treatment parameters. Small differences apparent close to some local
extrema are likely due to experimental noise and sampling frequency (see the
discussion in [13]), and even if genuine are likely to have minimal impact
[3, 10].

5 Conclusions and Further Work

These results in the limiting case of small lateral and transverse motion have
shown that it is indeed possible to use this spring-dashpot approach to model
the spatial relationship between abdominal and lung tumour motion on a
patient-specific basis. The 1D-3D model parameters can automatically be
optimised using a simple cost function.

Our belief is that such models will be superior to more common grey box
approaches, such as least-square models. Further work will include full 3D
simulations of different breathing patterns using clinical data, and will also
address the practical aspects of implementing such an approach in a clinical
environment.
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Summary. A new model of inter-molecular interactions is introduced into a con-
tinuum paradigm for the lipid bilayer membrane. The model promotes the hydrogen
bond network responsible for the hydrophobic effect. Physically-realistic numerical
bilayers are obtained from the model.

1 Lipid Bilayers

Every cell in the human body is defined, internally divided, and has its con-
tents maintained by membranes composed of a double layer of lipid molecules
[7]. These lipid bilayer membranes, or simply lipid bilayers, have a dual nature.
Seen from a continuum point of view as elastic solids, they are soft materials
which yet have great strength despite being only two molecules in thickness.
However, from a molecular viewpoint, the individual lipid molecules are free
to drift past one another in their own layer – the membrane can also be seen
as a quasi-two dimensional viscous fluid.

Lipid molecules (“lipids”) in solution will spontaneously aggregate into
forms dependent on a variety of factors, of which lipid geometry and concen-
tration are the two most important [2]. The aggregates form not by strong
molecular bonding but by a “soft” entropic force, the hydrophobic force.
Since the bilayer molecules are only weakly bound to one another, it is the
hydrophobic force which is responsible for giving the bilayer integrity [3].

The aim of the current work is to extend a continuum paradigm of the
lipid bilayer by modelling the hydrophobic force in a more physical way. This
is important not only for our first-principles understanding of lipid bilayers
and their emergent properties, but also for multiscale simulations which must
pass data between the different scales of the simulation. Indeed, we work at
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what is loosely termed the mesoscale, being for the purposes of this paper a
length and time scale at which both molecular and continuum descriptions of
the bilayer are valid.

2 The Modelling

2.1 The Paradigm of Blom & Peletier

Reference [1] introduces a continuum paradigm of the lipid bilayer based on
the mesoscopic dynamics framework of [4]. The aim is to minimise the intrin-
sic free energy of a system of water and lipid molecules with respect to the
constraint that the molecular distribution gives rise to the continuous volume
fractions, the variables of the paradigm. The underlying assumption is that
the (unobservable) microstate relaxes to equilibrium over the relatively long
time scale of the continuous description. We work in one dimension, which is
more amenable to analysis and computation.

Figure 1 shows the general setup of the system in one dimension. Lipids
are represented by a head and tail bead of zero dimension, connected by a
rigid rod of length ε. Water molecules are represented by points. The single
direction x is normal to the plane of the membrane, and the lipids fall into
one of two classes: those whose tails, having density u(x), point towards pos-
itive x, and those whose tails, having density v(x), point towards negative x.
The total tail density is u+v, while the total head density is τ−εu+τεv, where
τ−εu(x) = u(x+ ε) and so on.

Fig. 1. Cartoon of the setup, showing the basic lipid structure, the parameter ε, the
direction x normal to the bilayer plane, and the water molecules (hatched circles).
The densities u, v of the two tail groups are sketched, along with total tail (solid
line) and head (dashed line) densities
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The total (Gibbs) free energy of the system of lipids and waters has
three terms, modelling the entropy, compressibility, and intermolecular inter-
actions in turn. In the next subsection, we outline the physical nature of the
hydrophobic force, before formulating the free energy functional in Sect. 2.3.

2.2 The Hydrophobic Force

Liquid water is a dynamic hydrogen bond network in which each water
molecule forms up to four hydrogen bonds with its neighbours. The non-
zero dipole moment of lipid heads enables them to accept hydrogen bonds
from waters (but unable to bond to one another): they are hydrophilic. By
contrast, the hydrophobic lipid tails are unable to form hydrogen bonds. Any
thermodynamic or electrostatic interactions between molecules are ignored
here, since in liquid water at room temperature the hydrogen-bond energy is
typically an order of magnitude stronger [5, 7].

Introducing a hydrophobic moiety creates a cavity with a structured “sur-
face” in the hydrogen bond network, causing a decrease in the system entropy
[6]. An entropic “force” acts to gather together hydrophobic moieties so as to
minimize the disruption to the hydrogen bond network. However, the physical
origin of this hydrophobic effect is that water molecules close to a sufficiently
large hydrophobic moiety no longer participate in four hydrogen bonds; with
no attractive force towards the hydrophobic moiety, these molecules’ remain-
ing bonds now draw them away from the moiety. The basis of the model is
this fact that lipids aggregate because lipid heads can be, and tails cannot be,
nodes in the hydrogen bond network.

Moreover, first principles arguments and molecular-level simulations fea-
ture only attractive forces (other than at very small distances), making
preferable a model dealing with attractive forces between molecules. In [1], the
original model of the hydrophobic interaction moved tails away from heads
and waters by penalising proximity between them, mimicking the effect of the
hydrophobic force but not the underlying cause, which ultimately rests on the
attractive forces of the hydrogen bond network. By contrast, our approach
is to promote water-water and water-head (but not head-head) proximity,
modelling the hydrogen bond network, and effectively to ignore the hydropho-
bic tails. The relative strength of the water-water bonding preference to the
water-head bonding preference is controlled by a parameter γ.

2.3 The Free Energy Functional

The ideal part of the free energy, roughly corresponding to the Helmholtz
free energy, deals with connectivity interactions, and is given by the first two
integrals in (1) which are the same as those in [1]. The new non-ideal term,
here modelling the hydrophobic force, is the final term in (1).
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E = T

∫
[η(u) + η(v) + η(w)] dx+

p

2

∫
(1− u− v − τ−εu− τεv − w)2 dx

+α
∫
wκ̂ ∗ [w + γ(τ−εu+ τεv)] dx. (1)

The first integral is an entropic term which encourages mixing, where
η(s) = log s for s > 0 and η(s) = ∞ otherwise, and T is the system temper-
ature. The second integral, in which p is the system pressure, is a potential
energy due to compressibility. Herein we take p = ∞, corresponding to an
assumption of incompressibility. This requires the integrand of the second
term to be zero, which we later use to eliminate w.

In the third term, being our model of the hydrophobic force, ∗ represents
convolution of the form

(fκ̂ ∗ g)(x) =
∫
f(x)κ̂(x− y)g(y) dy,

and the interaction kernel κ̂ is given by

κ̂(s) = κ0 − 1
2β
e−

|s|
β , (2)

for a constant κ0. Since, according to our earlier discussion, the free energy is
minimised subject to certain constraints, this third term promotes water-water
proximity wκ̂ ∗ w and water-head proximity wκ̂ ∗ γ(τ−εu+ τεv).

The next step is to formally apply a variational calculus approach to
minimise the free energy of the water-lipid mixture.

2.4 Calculus of Variations

To simplify the analysis, we first neglect the entropy of the water molecules,
since its effect on the solvation of lipid molecules is small [6]. Next, using
the assumption of incompressibility and a maximum normalised total den-
sity of unity, we rewrite the water density w as a linear combination of the
lipid densities. Finally, we scale T into α, such that α represents (the inverse
of) temperature effects, and set γ = 1, meaning that heads can be seen as
“attached waters”. This can be generalised in future work.

Choosing κ0 = (2 − e−L/β)/2L in (2), where the integration interval is
[−L,L], the energy functional becomes

EI =
∫

[η(u) + η(v)] dx+ α
(

1− 2c0 − m

2L

) ∫
(1− u− v − τ−εu− τεv) dx

− α
∫

(1 − u− v − τ−εu− τεv)κ ∗ (1− u− v) dx. (3)
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Fig. 2. A sample “bilayer” for the parameter set α = 3, ε = 2, β = 1, c0 = 0.024, m =
0.05 ∗ 2L

We use the method of Lagrange multipliers to rewrite this as

ET = EI +
K

2

∫
μ2 dx+ λ+

(
m−

∫
u+ v − 2c0 dx

)

+λ−

(∫
u+ v − 2c0 dx−m

)
, (4)

where K and λ± are Lagrange multipliers and μ = (u+ v+ τ−εu+ τεv− 1)+,
with (·)+ = max{·, 0}. The second term on the right hand side is the condition
of non-negative water density, and the final two terms represent the mass
conservation condition.

We apply formal methods of variational calculus to derive the Euler-
Lagrange equations

0 = log u− ακ ∗ (2u+ 2v + 2τ−εu+ τ−εv + τεv) +Kμ+Kμ(x+ ε) + λ, (5)

0 = log v − ακ ∗ (2u+ 2v + τ−εu+ τεu+ 2τεv) +Kμ+Kμ(x− ε) + λ, (6)

where λ = λ− − λ+ + 1 + 3α− 2α(1− 2c0 −m/2L).

3 Numerical Results

We solve the Euler–Lagrange equations numerically by replacing them with
evolution equations based on gradient flows, namely ut = −(δE/δu) and vt =
−(δE/δv), respectively. The resulting equations are solved on a quasi-periodic
domain of period 2L.

A sample numerical result is shown in Fig. 2. The lipids have formed a
well-defined bilayer structure, with a central hydrophobic tail zone from which
water is excluded, separated from a water zone by two clear peaks in the head
density.
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4 Discussion

4.1 The Physical Nature of the Results

In a physical system, the ratio of the thickness of the head zone to that of
the tail zone depends on the choice of lipid molecule (other factors such as
temperature being equal) and so characterizes the bilayer properties for our
purposes. In [8] we show that by varying the model parameters we can find
a solution corresponding closely to a desired physical bilayer, and summarise
the method of doing so. Indeed, our model is shown to behave physically in
terms of the temperature effects, in contrast to the original model of [1].

4.2 Analytical Tool

A “short-range” interaction approximation takes β → 0, so that the interac-
tion kernel (2) approaches κ0− δ(s), where δ(s) = 1 if s = 0 and 0 otherwise.
The Euler–Lagrange equations (5,6) can then be solved analytically, and gen-
eral existence conditions derived. Furthermore, β is a useful tool for smoothly
adjusting numerical results to match with experimental data. More detail can
be found in [8].

5 Conclusions and Further Work

We introduced a more general model of the hydrophobic effect into the con-
tinuum paradigm of [1]; the resulting one-dimensional numerical solutions
resemble physical lipid bilayers. The new model is based on a consideration of
the physical nature of the hydrogen bond network. A brief discussion of the
physical nature of the model and analytical approximations was given. For
example, the new parameter β introduces a short-range interaction approxi-
mation. The main aim of future work is to consider higher dimensions, and
include compressibility effects by allowing p to vary. Other parameters can
also be studied, and their underlying physical significance explored, leading if
possible to a priori values.
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M. Zió�lko,1 J. Ga�lka,1 and T. Drwiega2

1 Department of Electronics, AGH University of Science and Technology, Kraków,
Poland, ziolko@agh.edu.pl, jgalka@agh.edu.pl

2 Faculty of Applied Mathematics, AGH University of Science and Technology,
Kraków, Poland, drwiega@wms.mat.agh.edu.pl

Summary. A non-uniform speech segmentation method based on discrete wavelet
transform is used for the localization of phoneme boundaries. A vector of real values
representing the digital speech signal is decomposed into phone-like units by placing
segment borders according to the result of the multiresolution analysis. The final
decision on localization of boundaries is taken by analysis of the energy flow among
the decomposition levels. Distribution-like event functions indicate events, regarded
as the segment boundaries.

1 Introduction

Many speech segmentation algorithms (see [1, 2]) have been used in systems
built for the speech technology, but only a few use the wavelet spectra [1, 5].
Wavelet methods are known to be very useful in the time-frequency analysis
of signals. Wavelet transform combines the best properties of classic frequency
and time analysis in a common tool.

Most of the segmentation methods utilise some kind of statistical modelling
of the signals and use optimisation methods (Viterbi decoding or dynamic
time warping (DTW))(see [4]). These methods can only be used if the proper
models of the language are known. This assumption leads to the necessity of
preparing such models what usually is rough and time-consuming task. The
algorithm proposed in this paper is feature-driven and thus does not need
any additional language models. Phonetically annotated database of spoken
Polish – Corpora’97 was used for tuning and testing the method.

2 Wavelet Decomposition

The discrete wavelet transformation (DWT) belongs to the group of frequency
transformations and is used to obtain a time-frequency spectrum (see [3, 8])
of signal {s (n)}. This encourages us to use the DWT as an artificial method
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Fig. 1. Spectrum (left figure) and its Meyer scale function with N = 33 samples
(right figure)

of speech analysis. Dyadic frequency division makes the DWT much more
compatible with the principles of the operation of human hearing system,
equipped with subsystem for frequency analysis (to reveal the information
important for speech recognition ability), than other methods.

In order to obtain the DWT, the coefficients cm+1,i of series

s (n) =
∑

i

cm+1,iφm+1,i (n) (1)

are computed for m = M,M − 1, . . . , 1, where

φm,i (n) = 2
m
2 φ (2mnΔt− i) (2)

is the ith wavelet function at the mth resolution level and Δt is the sampling
density. An example of wavelet function φ(t) and its spectrum is presented in
Fig. 1. Due to the orthogonality of wavelet functions {φm+1,i}i we obtain

cm+1,i = 2
m+1

2

+∞∫

−∞
sa (t)φ

(
2m+1t− i) dt

= 2
m+1

2

+∞∑
n=−∞

sa (n)

+∞∫

−∞
φ

(
2m+1t− i) sin (π (t− nΔt) /Δt)

π (t− nΔt) /Δt dt, (3)

where sa (t) is an analog signal and its samples create the digital signal,
i.e. sa (nΔt) = s (n).

Formula (3) has two disadvantages which are very important from the com-
putational point of view. Firstly, it is difficult to compute integrals numerically
when wavelet supports are unlimited. Secondly, the numerical computations of
integrals are time-consuming, because the high quality standard needs 16,000
series (1) for each second of the recorded speech signal. Therefore instead of
formula (3), we used approximation

cm+1,i =
∑

n∈Di

s (n)φm+1,i (n), (4)

where Di are compact supports of φm+1,i.
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The support of scale function φ (t) must be compact to provide the fast
calculations in the real time. It is common feature of the scale functions that
φ (t) −→ 0 very fast as |t| −→ +∞. In practice the support can be limited to
the segment [−T, T ] where

T = max {t ∈ R : |φ (t)| ≥ h}. (5)

The threshold h should depend on the extreme value of the scale function.
We choose condition h = α ·max

t
|φ (t)|, where α can be taken arbitrary, e.g.

α = 0.001. In that way, the support of scale function was bounded to obtain
the reasonable compromise: fast computations in real time and relatively small
errors.

The number of samples should be the smallest integer value N which
satisfies inequality (N − 1)Δt ≥ 2T , that is N ≥ 1 + 32, 000T because
the sampling frequency fs = 1/Δt = 16, 000 Hz. The sampling density in
the frequency domain Δf = 0.5/T and (N − 1)Δf ≥ 16, 000Hz because the
whole frequency band is spread from −8, 000 to 8, 000 Hz.

The coefficients of the lower level are calculated by applying the well known
(see [3, 9]) formulae

cm,n =
∑

i

hi−2ncm+1,i (6)

dm,n =
∑

i

gi−2ncm+1,i (7)

where {hi} and {gi} are the coefficients which depend on the assumed pair:
scale function φ and wavelet ψ. In other words, the speech spectrum is decom-
posed using digital filtering and downsampling procedures defined by (6) and
(7). It means that given the wavelet coefficients cm+1,i of the (m + 1)th res-
olution level, (6) and (7) are applied to compute the coefficients of the mth
resolution level. The coefficients of next resolution levels are calculated recur-
sively by applying formulae (6) and (7). The multiresolution analysis gives a
hierarchical and fast scheme for the computation of the wavelet spectrum for
a given signal s.

The undertaken experiments show that the speech signal decomposition
into six levels is sufficient (see Table 1) to cover the frequency band of voice.
he energy of the speech signal above 8 kHz and below 125 Hz is very low and
can be neglected.

The above presented wavelet decomposition leads to series

s (n) =
∑

i

c1,iφ1,i (n) +
M∑

m=1

∑
i

dm,iψm,i (n) (8)

where

φ1,i (n) = 2(1−M)/2

{
φ

((
21−Mn− i)Δt) if 0 ≤ 21−Mn− i ≤ N − 1

0 for other 21−Mn− i
(9)
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Table 1. Frequency division obtained for M = 6 levels of dyadic wavelet decom-
position. Sampling frequency fs = 16 kHz

Decomposition level m Frequency band [Hz]

6 4,000–8,000
5 2,000–4,000
4 1,000–2,000
3 500–1,000
2 250–500
1 125–250
Approximation 0–125

and

ψm,i (n) = 2(m−M)/2

{
ψ

((
21−Mn− i)Δt) if 0 ≤ 2m−Mn− i ≤ N − 1

0 for other 2m−Mn− i
(10)

The elements of the DWT for a mth level may be collected into a vector
dm = (dm,1, dm,2, . . .)

T . In this way the values of DWT for M + 1 levels can
be obtained. It means that discrete wavelet spectrum

DWT (s) = {dM ,dM−1, . . . ,d1, c1} (11)

is created from the coefficients of series (8).

3 Segmentation Scheme

The role of the segmentation algorithm is to detect significant transitions of
the energy among the wavelet sub-bands. When significant enough transition
is found, it is marked and scored as a spectral-phonetic event. It is assumed
that events occur when the energy transition changes the order of the power-
sorted bands.
The non-uniform segmentation algorithm consists of the following steps:

1. Decompose signal s into the six levels of DWT = {d6,n,d5,n, . . . ,d1,n}.
2. Calculate the sum of power samples in all frequency sub-bands according

to rule

Bm,k =
k·26−m∑

n=(k−1)·26−m+1

d2
m,n. (12)

3. Calculate the power envelopes as a running mean values

Benv
m,k =

1
2 · ⌊K

2

⌋
+ 1

k+�K
2 �∑

n=k−�K
2 �
Bm,n, (13)
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where K = 2−MΔtµ · fs for expected mean duration Δtµ of the segment
of speech. For the given Δtµ = 100 ms, fs = 16 kHz and M = 6 we obtain
K = 25 samples.

4. Generate importance matrix M = [Mm,k] ∈ R
6×L of frequency bands by

sorting the envelopes in each time k position i.e.

Mk = {mi}6i=1 : Benv
m1,k ≥ Benv

m2,k ≥ Benv
m3,k ≥ Benv

m4,k ≥ Benv
m5,k ≥ Benv

m6,k

where L depends on the length of the speech signal.
5. Compute event-function

f (k) =
6∑

m=1

|Mm,k+1 −Mm,k|
m

. (14)

6. Segment border’s locations can now be extracted from f (k) by choosing
its local maxima, which fulfill two conditions:
• Each of the chosen maximum has to be the highest value within

the neighborhood of Δtmin milliseconds, which is related to minimal
assumed segment duration,

• Local maximum is greater than specified threshold ftr.

Time-range condition rejects multiple changes related to the same border
and segments shorter than Δtmin. Threshold adjusts sensitivity of the seg-
mentation. By increasing its value we reduce the number of chosen events. It
is reasonable to set its value on-line, according to

ftr (k) =
β ·

P∑
n=−P

f (k − n)

2P
, (15)

where P is adaptation range corresponding to 100 ms.

4 Conclusions

Presented algorithm was tested using Polish annotated speech database –
Corpora’97. The speech of five different persons, with 1825 utterances were
used for evaluation. These utterances include all of the 37 phonemes of Polish
language and its natural concatenations. Reference phonetic annotation of
speech was known, since it had been prepared earlier. Various values of the
detection parameters Δtmin and β were used in order to find the combination
producing the less number of errors.

The best results were obtained for parameter Δtmin set in the range
10–20 ms. In this range phone recognition, insertion and deletion rates are
taking their best values. Threshold adaptation factor β does not affect men-
tioned rates when is set within 0–1. When β obtains the values greater than
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1, results degrade considerably because of increase the rate of deletions, which
are the most corrupting errors in speech segmentation (see [6]).

It must be mentioned, that segmentation procedure uses acoustic, not
phonetic features of speech. It will result in increased level of insertion rate
because some phonemes are not acoustically uniform . This feature, however,
does not affect overall performance of speech recognition systems (see [6, 7]).

The use of wavelet analysis turns out to be an effective tool in finding
the boundaries between two phonemes. The use of non-uniform segmentation
reduces total number of segments to be processed by higher-level parts of
ASR systems (HMM modeling). The effect is a significant decrease of Viterbi
decoding search-space and computational cost.
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Garćıa-Ybarra, P.L., 455–460
Gautrais, J., 535–540
Gil, A., 117–122
Gilbert, S.H., 349–354
Gil, P.J.S., 739–744
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Höfener, J., 527–532
Hofer, E.P., 549–554, 563–568
Holden, A.V., 349–354
Holzwarth, N.A.W., 1011–1015
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