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At this point, there are more additions than errors to report...
1.1. Pythagoras’ Constant. A geometric irrationality proof of

√
2 appears in

[1] and a curious recursion is studied in [2]. More references on radical denestings
include [3, 4, 5, 6].
1.2. The Golden Mean. The cubic irrational χ = 1.8392867552... is mentioned

elsewhere in the literature with regard to iterative functions [7, 8, 9] (the four-numbers
game is a special case of what are known as Ducci sequences), geometric constructions
[10, 11] and numerical analysis [12]. Another reference on infinite radical expressions
is [13]. See [14] for an interesting optimality property of the logarithmic spiral.
A mean-value analog C of Viswanath’s constant 1.13198824... (the latter applies
for almost every random Fibonacci sequence) has been estimated by Makover &
McGowan [15]; they deduce that 1.12095 ≤ C ≤ 1.23375. The Fibonacci factorial
constant c arises in [16] with regard to the asymptotics

− d
ds

∞X
n=1

1

f sn
∼ 1

ln(ϕ)s2
+
1

24

Ã
6 ln(5)− 2 ln(ϕ)− 3 ln(5)

2

ln(ϕ)

!
+ ln(c)

∼ 1

ln(ϕ)s2
+ ln(0.8992126807...)

as s→ 0, which gives meaning to the “regularized product” of all Fibonacci numbers.
1.3. The Natural Logarithmic Base. A proof of the formula

e
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2 · 4
3 · 3
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4

·
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4 · 6 · 6 · 8
5 · 5 · 7 · 7

¶ 1
8

· · ·

appears in [17]; Hurwitzian continued fractions for e1/q and e2/q appear in [18, 19, 20,
21]. Define the following set of integer k-tuples

Nk =

⎧⎨⎩(n1, n2, . . . , nk) :
kX
j=1

1

nj
= 1 and 1 ≤ n1 < n2 < . . . < nk

⎫⎬⎭ .
Martin [22] proved that

min
(n1,n2,...,nk)∈Nk

nk ∼
e

e− 1k
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as k →∞, but it remains open whether

max
(n1,n2,...,nk)∈Nk

n1 ∼
1

e− 1k.

Croot [23] made some progress on the latter: He proved that n1 ≥ (1+ o(1))k/(e−1)
for infinitely many values of k, and this bound is best possible. Also, define f0(x) = x
and, for each n > 0,

fn(x) = (1 + fn−1(x)− fn−1(0))
1
x .

This imitates the definition of e, in the sense that the exponent → ∞ and the base
→ 1 as x→ 0. We have f1(0) = e = 2.718...,

f2(0) = exp
³
− e
2

´
= 0.257..., f3(0) = exp

³
11−3e
24

exp
³
1− e

2

´´
= 1.086...

and f4(0) = 0.921... (too complicated an expression to include here). Does a pattern
develop here?
1.4. Archimedes’ Constant. Viète’s product
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has the following close cousin:
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where L is the lemniscate constant (pages 420—423). Levin [24, 25] developed analogs
of sine and cosine for the curve x4+ y4 = 1 to prove the latter formula; he also noted
that the area enclosed by x4 + y4 = 1 is

√
2L and that
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⎞⎟⎟⎠ · · · .
Can the half-circumference of x4 + y4 = 1 be written in terms of L as well? This
question makes sense both in the usual 2-norm and in the 4-norm; call the half-
circumference π4 for the latter. More generally, define πp to be the half-circumference
of the unit p-circle |x|p + |y|p = 1, where lengths are measured via the p-norm and
1 ≤ p < ∞. It turns out [26] that π = π2 is the minimum value of πp. Additional
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infinite radical expressions for π appear in [27, 28]; more on the Matiyasevich-Guy
formula is covered in [29, 30, 31, 32, 33]; see [34] for a revised spigot algorithm for
computing decimal digits of π and [35, 36] for more on BBP-type formulas.
1.5. Euler-Mascheroni Constant. De la Vallée Poussin’s theorem was, in

fact, anticipated by Dirichlet [37, 38]; it is a corollary of the formula for the limiting
mean value of d(n) [39]. Vacca’s series was anticipated by Nielsen [40] and Jacobsthal
[41, 42]. An extension was found by Koecher [43]:

γ = δ − 1
2

∞X
k=2

(−1)k
(k − 1)k(k + 1)

$
ln(k)

ln(2)

%

where δ = (1+α)/4 = 0.6516737881... and α =
P∞
n=1 1/(2

n− 1) = 1.6066951524... is
one of the digital search tree constants. Glaisher [44] discovered a similar formula:

γ =
∞X
n=1

1

3n − 1 − 2
∞X
k=1

1

(3k − 1)(3k)(3k + 1)

$
ln(3k)

ln(3)

%

nearly eighty years earlier. The following series [45, 46, 47] suggest that ln(4/π) is an
“alternating Euler constant”:

γ =
∞X
k=1

µ
1

k
− ln

µ
1 +

1

k

¶¶
= −

1Z
0

1Z
0

1− x
(1− xy) ln(xy)dx dy,

ln
µ
4

π

¶
=

∞X
k=1

(−1)k−1
µ
1

k
− ln

µ
1 +

1

k

¶¶
= −

1Z
0

1Z
0

1− x
(1 + xy) ln(xy)

dx dy

(see section 1.7 later for more). Sample criteria for the irrationality of γ appear
in Sondow [48, 49, 50, 51, 52]. Long ago, Mahler attempted to prove that γ is
transcendental; the closest he came to this was to prove the transcendentality of the
constant [53, 54]

πY0(2)

2J0(2)
− γ

where J0(x) and Y0(x) are the zeroth Bessel functions of the first and second kinds.
(Unfortunately the conclusion cannot be applied to the terms separately!) Diamond
[55, 56] proved that, if

Fk(n) =
X 1

ln(ν1) ln(ν2) · · · ln(νk)
where the (finite) sum is over all integer multiplicative compositions n = ν1ν2 · · · νk
and each νj ≥ 2, then

lim
N→∞

1

N

Ã
1 +

NX
n=2

∞X
k=1

Fk(n)

k!

!
= exp(γ0 − γ − ln(ln(2)) = 1.2429194164...
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where γ0 = 0.4281657248... is the analog of Euler’s constant when 1/x is replaced by
1/(x ln(x)) (see Table 1.1). See [57] for a different generalization of γ.
1.6. Apéry’s Constant. The famous alternating central binomial series for ζ(3)

dates back at least as far as 1890, appearing as a special case of a formula due to
Markov [58, 59, 60]:

∞X
n=0

1

(x+ n)3
=
1

4

∞X
n=0

(−1)n(n!)6
(2n+ 1)!

2(x− 1)2 + 6(n+ 1)(x− 1) + 5(n+ 1)2

[x(x+ 1) · · · (x+ n)]4
.

Ramanujan [61, 62] discovered the series for ζ(3) attributed to Grosswald. Plouffe
[63] uncovered remarkable formulas for π2k+1 and ζ(2k + 1), including

π = 72
∞X
n=1

1

n(eπn − 1) − 96
∞X
n=1

1

n(e2πn − 1) + 24
∞X
n=1

1

n(e4πn − 1) ,

π3 = 720
∞X
n=1

1

n3(eπn − 1) − 900
∞X
n=1

1

n3(e2πn − 1) + 180
∞X
n=1

1

n3(e4πn − 1) ,

π5 = 7056
∞X
n=1

1

n5(eπn − 1) − 6993
∞X
n=1

1

n5(e2πn − 1) + 63
∞X
n=1

1

n5(e4πn − 1) ,

ζ(3) = 28
∞X
n=1

1

n3(eπn − 1) − 37
∞X
n=1

1

n3(e2πn − 1) + 7
∞X
n=1

1

n3(e4πn − 1) ,

ζ(5) = 24
∞X
n=1

1

n5(eπn − 1) −
259

10

∞X
n=1

1

n5(e2πn − 1) −
1

10

∞X
n=1

1

n5(e4πn − 1) ,

ζ(7) =
304

13

∞X
n=1

1

n7(eπn − 1) −
103

4

∞X
n=1

1

n7(e2πn − 1) +
19

52

∞X
n=1

1

n7(e4πn − 1) .

1.7. Catalan’s Constant. Rivoal & Zudilin [64] proved that there exist in-
finitely many integers k for which β(2k) is irrational, and that at least one of the
numbers β(2), β(4), β(6), β(8), β(10), β(12), β(14) is irrational. More double inte-
grals (see section 1.5 earlier) include [65, 66, 67, 68]

ζ(3) = −1
2

1Z
0

1Z
0

ln(xy) dx dy

1− xy , G =
1

8

1Z
0

1Z
0

dx dy

(1− xy)
q
x(1− y)

.

Zudilin [67] also found the continued fraction expansion

13

2G
= 7 +

1040|
|10699 +

42322176|
|434871 +

15215850000|
|4090123 + · · · .
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where the partial numerators and partial denominators are generated according to
the polynomials (2n − 1)4(2n)4(20n2 − 48n + 29)(20n2 + 32n + 13) and 3520n6 +
5632n5 + 2064n4 − 384n3 − 156n2 + 16n+ 7.
1.8. Khintchine-Lévy Constants. If x is a quadratic irrational, then its

continued fraction expansion is periodic; hence limn→∞M(n, x) is easily found and
is algebraic. For example, limn→∞M(n,ϕ) = 1, where ϕ is the Golden mean. We
study the set Σ of values limn→∞ ln(Qn)/n taken over all quadratic irrationals x in
[69]. Additional references include [70, 71, 72].
1.9. Feigenbaum-Coullet-Tresser Constants. Consider the unique solution

of ϕ(x) = T2[ϕ](x) as pictured in Figure 1.6. The Hausdorff dimension D of the
Cantor set {xk}∞k=1 ⊆ [−1, 1], defined by x1 = 1 and xk+1 = ϕ(xk), is known to
satisfy 0.53763 < D < 0.53854. This set may be regarded as the simplest of all
strange attractors [73, 74].
1.11. Chaitin’s Constant. Ord & Kieu [75] gave a different Diophantine

representation for Ω; apparently Chaitin’s equation can be reduced to 2—3 pages
in length [76]. A rough sense of the type of equations involved can be gained from
[77]. Calude & Stay [78] suggested that the uncomputability of bits of Ω can be recast
as a uncertainty principle.
2.1. Hardy-Littlewood Constants. Green & Tao [79] recently proved that

there are arbitrarily long arithmetic progressions of primes. In particular, the number
of prime triples p1 < p2 < p3 ≤ x in arithmetic progression is

∼ Ctwin
2

x2

ln(x)3
= (0.3300809079...)

x2

ln(x)3

as x→∞, and the number of prime quadruples p1 < p2 < p3 < p4 ≤ x in arithmetic
progression is likewise

∼ D

6

x2

ln(x)4
= (0.4763747659...)

x2

ln(x)4
.

Fix ε > 0. Let N(x, k) denote the number of positive integers n ≤ x with
Ω(n) = k, where k is allowed to grow with x. Nicolas [80] proved that

lim
x→∞

N(x, k)

(x/2k) ln(x/2k)
=

1

4Ctwin
=
1

4

Y
p>2

Ã
1 +

1

p(p− 2)

!
= 0.3786950320....

under the assumption that (2+ ε) ln(ln(x)) ≤ k ≤ ln(x)/ ln(2). More relevant results
appear in [81]; see also the next entry.
Let L(x) denote the number of positive odd integers n ≤ x that can be expressed

in the form 2l + p, where l is a positive integer and p is a prime. Then 0.0868x <
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L(x) ≤ 0.49999991x for all sufficiently large x. The lower bound can be improved to
0.2893x if the Hardy-Littlewood conjectures in sieve theory are true [82, 83, 84].
LetQ(x) denote the number of integers≤ x with prime factorizations pα11 pα22 · · · pαrr

satisfying α1 ≥ α2 ≥ . . . ≥ αr. Extending results of Hardy & Ramanujan [85], Rich-
mond [86] deduced that

ln(Q(x)) ∼ 2π√
3

³
ln(x)

ln(ln(x))

´1/2 ³
1− 2 ln(π)+12B/π2−2

2 ln(ln(x))
− ln(3)−ln(ln(ln(x)))

2 ln(ln(x))

´
where

B = −
∞Z
0

ln(1− e−y) ln(y) dy = ζ 0(2)− π2

6
γ.

2.2. Meissel-Mertens Constants. See [87] for more occurrences of the con-
stants M and M 0, and [88] for a historical treatment. Higher-order asymptotic series
for En(ω), Varn(ω), En(Ω) and Varn(Ω) are given in [89]. While

P
p 1/p is divergent,

the following prime series is convergent [90]:

X
p

Ã
1

p2
+
1

p3
+
1

p4
+ · · ·

!
=
X
p

1

p(p− 1) = 0.7731566690....

Also, the reciprocal sum of products of two primes satisfies [91]

lim
n→∞

⎛⎝X
pq≤n

1

pq
− ln(ln(n))2 − 2M ln(ln(n))

⎞⎠ = π2

6
+M2

and we wonder about the numerical values ofX
p,q

∞X
k=2

1

(pq)k
=
X
p,q

1

pq(pq − 1) ,

X
p,q

∞X
k=2

1

k (pq)k
= −

X
p,q

Ã
ln

Ã
1− 1

pq

!
+
1

pq

!
.

The second moment of Im(ln(ζ(1/2+ i t))) over an interval [0, T ] involves asymp-
totically a constant [92, 93]

∞X
m=2

X
p

µ
1

m
− 1

m2

¶
1

pm
= −

X
p

Ã
ln

Ã
1− 1

p

!
+ Li2

Ã
1

p

!!
= 0.1762478124...

as T → ∞. If Qk denotes the set of positive integers n for which Ω(n) − ω(n) = k,
then Q1 = S̃ and the asymptotic density δk satisfies [94, 95, 96]

lim
k→∞

2kδk =
1

4Ctwin
= 0.3786950320...;
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the expression 4Ctwin also appears on pages 86 and 133—134, as well as the preceding
entry.
Define fk(n) = #{p : pk|n} and Fk(n) = #{pk+m : pk+m|n and m ≥ 0}; hence

f1(n) = ω(n) and F1(n) = Ω(n). It is known that, for k ≥ 2,
X
n≤x

fk(n) ∼ x
X
p

1

pk
,

X
n≤x

Fk(n) ∼ x
X
p

1

pk−1(p− 1)

as x → ∞. Also define gk(n) = #{p : p|n and pk - n} and Gk(n) = #{pm : pm|n,
pk - n and m ≥ 1}. Then, for k ≥ 2,

X
n≤x

gk(n) ∼ x
Ã
ln(ln(x)) +M −

X
p

1

pk

!
,

X
n≤x

Gk(n) ∼ x
Ã
ln(ln(x)) +M +

X
p

pk−1 − kp+ k − 1
pk(p− 1)

!

as x → ∞. Other variations on k-full and k-free prime factors appear in [97]; the
growth rate of

P
n≤x 1/ω(n) and

P
n≤x 1/Ω(n) is covered in [98] as well.

2.3. Landau-Ramanujan Constant. Define B3,j(x) to be the number of pos-
itive integers ≤ x, all of whose prime factors are ≡ jmod 3, where j = 1 or 2. We
have [99, 100, 101]

lim
x→∞

q
ln(x)

x
B3,1(x) =

√
3

9K3
= 0.3012165544...,

lim
x→∞

q
ln(x)

x
B3,2(x) =

2
√
3K3

π
= 0.7044984335....

Here is a more complicated example (which arises in the theory of partitions). Let

W (x) = #
n
n ≤ x : n = 2hpe11 pe22 · · · pehh , h ≥ 1, ek ≥ 1, pk ≡ 3, 5, 6mod 7 for all k

o
,

then the Selberg-Delange method gives [102, 103]

lim
x→∞

ln(x)3/4

x
W (x) =

1

Γ(1/4)

Ã
6√
7π

!1/4 Y
p≡3,5,6
mod 7

Ã
1 +

1

2(p− 1)

!Ã
1− 1

p

!1/4 Ã
1 +

1

p

!−1/4

=
1

Γ(1/4)

Ã
6√
7π

!1/4
(1.0751753443...) = 0.2733451113...

=
7

24
(0.9371832387...).
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Other examples appear in [103] as well. We mention that products like [104]

Y
p≡3 mod 4

Ã
1− 2p

(p2 + 1)(p− 1)

!
= 0.6436506796...,

Y
p≡2 mod 3

Ã
1− 2p

(p2 + 1)(p− 1)

!
= 0.1739771224...

are evaluated to high precision in [105, 106] via special values of Dirichlet L-series.
2.4. Artin’s Constant. Stephens’ constant 0.5759... and Matthews’ constant

0.1473... actually first appeared in [107]. Let ι(n) = 1 if n is square-free and ι(n) = 0
otherwise. Then [108, 109, 110, 111, 112, 113, 114]

lim
N→∞

1

N

NX
n=1

ι(n)ι(n+ 1) =
Y
p

Ã
1− 2

p2

!
= 0.3226340989... = −1 + 2(0.6613170494...)

=
6

π2
Y
p

Ã
1− 1

p2 − 1

!
=
6

π2
(0.5307118205...),

that is, the Feller-Tornier constant arises with regard to consecutive square-free num-
bers and to other problems. Also, consider the cardinality N(X) of nontrivial primi-
tive integer vectors (x0, x1, x2, x3) that fall on Cayley’s cubic surface

x0x1x2 + x0x1x3 + x0x2x3 + x1x2x3 = 0

and satisfy |xj| ≤ X for 0 ≤ j ≤ 3. It is known that N(X) ∼ cX(ln(X))6 for some
constant c > 0 [115, 116]; finding c remains an open problem.
2.5. Hafner-Sarnak-McCurley Constant. In the “Added In Press” section

(pages 601—602), the asymptotics of coprimality and of square-freeness are discussed
for the Gaussian integers and for the Eisenstein-Jacobi integers. Cai & Bach [117]
and Tóth [118] independently proved that the probability that k positive integers are
pairwise coprime is [119]

Y
p

Ã
1− 1

p

!k−1 Ã
1 +

k − 1
p

!
= lim

N→∞

(k − 1)!
N ln(N)k−1

NX
n=1

kω(n).

Freiberg [120], building on Moree’s work [121], determined the probability that three
positive integers are pairwise not coprime to be 1−18/π2+3P−Q = 0.1742197830....
More about sums involving 2ω(n) and 2−ω(n) appears in [122]. The asymptotics ofPN
n=1 3

Ω(n), due to Tenenbaum, are mentioned in [89]. Also, we have [123]

X
n≤N

κ(n)` ∼ 1

`+ 1

ζ(2`+ 2)

ζ(2)
N `+1,
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X
n≤N

K(n)` ∼ 1

`+ 1

ζ(`+ 1)

ζ(2)

Y
p

Ã
1− 1

p`(p+ 1)

!
·N `+1

as N → ∞, for any positive integer `. In the latter formula, the product for ` = 1
and ` = 2 appears in [122] with regard to the number/sum of unitary square-free
divisors; the product for ` = 2 further is connected with class number theory [69].
2.6. Niven’s Constant. The quantity C appears unexpectedly in [124]. If we

instead examine the mean of the exponents:

L(m) =

⎧⎪⎪⎨⎪⎪⎩
1 if m = 1,

1

k

kX
j=1

aj if m > 1,

then [125, 126]

X
m≤n

L(m) = n+ C1
n

ln(ln(n))
+ C2

n

ln(ln(n))2
+O

Ã
n

ln(ln(n))3

!

as n→∞, where [90]

C1 =
X
p

1

p(p− 1) =M
0 −M = 0.7731566690...,

C2 =
X
p

1

p2(p− 1) − C1M = C1(1−M)−N = 0.1187309349...,

using notation defined on pages 94—95. The constant C1 also appears in our earlier
entry [2.2]. We will report on [127] soon.
2.7. Euler Totient Constants. Let us clarify the third sentence: ϕ(n) is the

number of generators in Z n, the additive group of integers modulo n. It is also the
number of elements in Z ∗n, the multiplicative group of invertible integers modulo n.
Define f(n) = nϕ(n)−1 − eγ ln(ln(n)). Nicolas [128] proved that f(n) > 0 for

infinitely many integers n by the following reasoning. Let Pk denote the product of
the first k prime numbers. If the Riemann hypothesis is true, then f(Pk) > 0 for
all k. If the Riemann hypothesis is false, then f(Pk) > 0 for infinitely many k and
f(Pl) ≤ 0 for infinitely many l.
Let U(n) denote the set of values ≤ n taken by ϕ and v(n) denote its cardinality;

for example [129], U(15) = {1, 2, 4, 6, 8, 10, 12} and v(15) = 7. Let ln2(x) = ln(ln(x))
and lnm(x) = ln(lnm−1(x)) for convenience. Ford [130] proved that

v(n) = n
ln(n)

exp
n
C[ln3(n)− ln4(n)]2 +D ln3(n)− [D + 1

2
− 2C] ln4(n) +O(1)

o
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as n→∞, where
C = − 1

2 ln(ρ)
= 0.8178146464...,

D = 2C (1 + ln(F 0(ρ))− ln(2C))− 3
2
= 2.1769687435...

F (x) =
∞X
k=1

((k + 1) ln(k + 1)− k ln(k)− 1) xk

and ρ = 0.5425985860... is the unique solution on [0, 1) of the equation F (ρ) = 1.
Also,

lim
n→∞

1

v(n) ln2(n)

X
m∈U(n)

ω(m) =
1

1− ρ
= 2.1862634648...

which contrasts with a related result of Erdös & Pomerance [131]:

lim
n→∞

1

n ln2(n)2

nX
m=1

ω(ϕ(n)) =
1

2
.

These two latter formulas hold as well if ω is replaced by Ω. See [132] for more on
Euler’s totient.
Define the reduced totient or Carmichael function ψ(n) to be the size of the largest

cyclic subgroup of Z ∗n. We have [133]

1

N

X
n≤N

ψ(n) =
N

ln(N)
exp

"
P ln2(N)

ln3(N)
(1 + o(1))

#

as N →∞, where

P = e−γ
Y
p

Ã
1− 1

(p− 1)2(p+ 1)

!
= 0.3453720641....

There is a set S of positive integers of asymptotic density 1 such that, for n ∈ S,

nψ(n)−1 = (ln(n))ln3(n)+Q+o(1)

and

Q = −1 +
X
p

ln(p)

(p− 1)2 = 0.2269688056...;

it is not known whether S = Z + is possible.
2.8. Pell-Stevenhagen Constants. The constant P is transcendental via a

general theorem on values of modular forms due to Nesterenko [134, 135]. Here is a
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constant similar to P : The number of positive integers n ≤ N , for which 2n − 1 is
not divisible by 2p − 1 for any prime p, is ∼ cN , where

c =
Y
p

µ
1− 1

2p − 1

¶
= 0.5483008312....

A ring-theoretic analog of this statement, plus generalizations, appear in [136].
2.10. Sierpinski’s Constant. Sierpinski’s formulas for Ŝ and S̃ contained a few

errors: they should be [137, 138, 139, 140, 141, 142]

Ŝ = γ + S − 12
π2

ζ 0(2) +
ln(2)

3
− 1 = 1.7710119609... = π

4
(2.2549224628...),

S̃ = 2S − 12
π2

ζ 0(2) +
ln(2)

3
− 1 = 2.0166215457... = 1

4
(8.0664861829...).

In the summation formula at the top of page 125, Dn should be Dk. Also, the divisor
analog of Sierpinski’s second series is [143]

nX
k=1

d(k2) =
µ
3

π2
ln(n)2 +

µ
18γ − 6

π2
− 72

π4
ζ 0(2)

¶
ln(n) + c

¶
n+O

³
n1/2+ε

´

as n→∞, where the expression for c is complicated. It is easily shown that d(n2) is
the number of ordered pairs of positive integers (i, j) satisfying lcm(i, j) = n.
Define R(n) to be the number of representations of n as a sum of three squares,

counting order and sign. Then

nX
k=1

R(k) =
4π

3
n3/2 +O

³
n3/4+ε

´
for all ε > 0 and [144]

nX
k=1

R(k)2 =
8π4

21ζ(3)
n2 +O

³
n14/9

´
.

The former is the same as the number of integer ordered triples falling within the ball
of radius

√
n centered at the origin; an extension of the latter to sums of m squares,

when m > 3, is also known [144].
2.11. Abundant Numbers Density Constant. The definition of A(x) should

be replaced by

A(x) = lim
n→∞

|{k ≤ n : σ(k) ≥ x k}|
n

.
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If K(x) is the number of all positive integers m that satisfy σ(m) ≤ x, then [145]

lim
x→∞

K(x)

x
=

Y
p

Ã
1− 1

p

!⎛⎜⎝1 + ∞X
j=1

⎛⎝1 + jX
i=1

pi

⎞⎠−1
⎞⎟⎠

=
Y
p

Ã
1− 1

p

!⎛⎝1 + (p− 1) ∞X
j=1

1

pj+1 − 1

⎞⎠ .
2.12. Linnik’s Constant. In the definition of L, “lim” should be replaced by

“limsup”. Clearly L exists; the fact that L <∞ was Linnik’s important contribution.
2.13. Mills’ Constant. Let q1 < q2 < . . . < qk denote the consecutive prime

factors of an integer n > 1. Define

F (n) =
k−1X
j=1

Ã
1− qj

qj+1

!
= ω(n)− 1−

k−1X
j=1

qj
qj+1

if k > 1 and F (n) = 0 if k = 1. Erdös & Nicolas [146] demonstrated that there exists

a constant C 0 = 1.70654185... such that, as n→∞, F (n) ≤
q
ln(n)−C 0+ o(1), with

equality holding for infinitely many n. Further, C 0 = C+ln(2)+1/2, where [146, 147]

C =
∞X
i=1

(
ln

Ã
pi+1
pi

!
−
Ã
1− pi

pi+1

!)
= 0.51339467...,

∞X
i=1

Ã
pi+1
pi
− 1

!2
= 1.65310351...,

and p1 = 2, p2 = 3, p3 = 5, ... is the sequence of all primes.
It now seems that liminfn→∞(pn+1− pn)/ ln(pn) = 0 is a theorem [148, 149], clari-

fying the uncertainty raised in “Added In Press” (pages 601—602). More about small
prime gaps will surely appear soon; research concerning large prime gaps continues
as well [150, 151].
2.15. Glaisher-Kinkelin Constant. In the second display forD(x), exp(−x/2)

should be replaced by exp(x/2). Another proof of the formula for D(1) is given in
[47]; another special case is [152]

D(1/2) =
21/6

√
πA3

Γ(1/4)
eG/π.

The two quantities

G2
³
1
2

´
= 0.6032442812..., G2

³
3
2

´
=
√
πG2

³
1
2

´
= 1.0692226492...

play a role in a discussion of the limiting behavior of Toeplitz determinants and
the Fisher-Hartwig conjecture [153, 154]. Kraovsky [155] and Ehrhardt [156] proved
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Dyson’s conjecture regarding the asymptotic expansion of E(s) as s → ∞; a third
proof is given in [157]. Also, the quantities

G2
³
1
2

´−1
= 1.6577032408... = 2−1/24e−3/16π1/4(3.1953114860...)3/8

G3
³
3
2

´−1
= G2

³
1
2

´
G3

³
1
2

´−1
= 0.9560900097... = π−1/2(3.3388512141...)7/16

appear in [158]. In the last paragraph on page 141, the polynomial q(x) should be
assumed to have degree n. See [159, 160] for more on the GUE hypothesis.
2.16. Stolarsky-Harboth Constant. Given a positive integer n, define s21 to

be the largest square not exceeding n. Then define s22 to be the largest square not
exceeding n − s21, and so forth. Hence n =

Pr
j=1 s

2
j for some r. We say that n is a

greedy sum of distinct squares if s1 > s2 > . . . > sr. Let A(N) be the number of such
integers n < N , plus one. Montgomery & Vorhauer [161] proved that A(N)/N does
not tend to a constant, but instead that there is a continuous function f(x) of period
1 for which

lim
k→∞

A(4 exp(2k+x))

4 exp(2k+x)
= f(x), min

0≤x≤1
f(x) = 0.50307... < max

0≤x≤1
f(x) = 0.50964...

where k takes on only integer values. This is reminiscent of the behavior discussed for
digital sums. Two simple examples, due to Hardy [162, 163] and Elkies [164], involve
the series

ϕ(x) =
∞X
k=0

x2
k
, ψ(x) =

∞X
k=0

(−1)kx2k .

As x → 1−, the asymptotics of ϕ(x) and ψ(x) are complicated by oscillating errors
with amplitude

sup
x→1−

¯̄̄̄
¯ϕ(x) + ln(− ln(x)) + γ

ln(2)
− 3
2
+ x

¯̄̄̄
¯ = (1.57...)× 10−6,

sup
x→1−

¯̄̄̄
ψ(x)− 1

6
− 1
3
x
¯̄̄̄
= (2.75...)× 10−3.

The function ϕ(x) also appears in what is known as Catalan’s integral (section 1.5.2)
for Euler’s constant γ. See [165] as well.
2.17. Gauss-Kuzmin-Wirsing Constant. The preprint math.NT/9908043

was withdrawn by the author without comment; the bounds we gave for the Hausdorf
dimension of real numbers with partial denominators in {1, 2} remain unaffected.
2.18. Porter-Hensley Constants. Lhote [166, 167] developed rigorous tech-

niques for computing certain variances to high precision, for example, 4λ001(2). With
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regard to the binary GCD algorithm, Maze [168] confirmed Brent’s functional equa-
tion for a certain limiting distribution [169]

g(x) =
X
k≥1
2−k

Ã
g

Ã
1

1 + 2k/x

!
− g

µ
1

1 + 2kx

¶!
, 0 ≤ x ≤ 1

as well as the formula

2 +
1

ln(2)

1Z
0

g(x)

1− xdx =
2

κ ln(2)
= 2.8329765709... =

π2(0.3979226811...)

2 ln(2)
.

2.20. Erdös’ Reciprocal Sum Constants. A sequence of positive integers
b1 < b2 < . . . < bm is a Bh-sequence if all h-fold sums bi1 + bi2 + · · · + bih , i1 ≤ i2 ≤
. . . ≤ ih, are distinct. Given n, choose a Bh-sequence {bi} so that bm ≤ n and m is
maximal; let Fh(n) be this value of m. It is known that Ch = limsupn→∞ n

−1/hFh(n)
is finite; we further have [170, 171, 172, 173, 174, 175]

C2 = 1, 1 ≤ C3 ≤ (7/2)1/3, 1 ≤ C4 ≤ 71/4.

More generally, a sequence of positive integers b1 < b2 < . . . < bm is a Bh,g-sequence
if, for every positive integer k, the equation x1+x2+· · ·+xh = k, x1 ≤ x2 ≤ . . . ≤ xh,
has at most g solutions with xj = bij for all j. Defining Fh,g(n) and Ch,g analogously,
we have [175, 176, 177, 178, 179]

4
√
7
7
≤ C2,2 ≤

√
21
2
, 3

√
2
4
g1/2 + o(g1/2) ≤ C2,g ≤ min

n
7
2
g − 7

4
, 17g
5

o1/2
as g →∞.
2.21. Stieltjes Constants. If dk(n) denotes the number of sequences x1, x2, ...,

xk of positive integers such that n = x1x2 · · ·xk, then [180, 181, 182]

NX
n=1

d2(n) ∼ N ln(N) + (2γ0 − 1)N (d2 is the divisor function),

NX
n=1

d3(n) ∼
1

2
N ln(N)2 + (3γ0 − 1)N ln(N) + (−3γ1 + 3γ20 − 3γ0 + 1)N,

NX
n=1

d4(n) ∼ 1

6
N ln(N)3 +

4γ0 − 1
2

N ln(N)2 + (−4γ1 + 6γ20 − 4γ0 + 1)N ln(N)

+(2γ2 − 12γ1γ0 + 4γ1 + 4γ30 − 6γ20 + 4γ0 − 1)N
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as N →∞. More generally, PN
n=1 dk(n) can be asymptotically expressed as N times

a polynomial of degree k− 1 in ln(N), which in turn can be described as the residue
at z = 1 of z−1ζ(z)kNz. See [89] for an application of {γj}∞j=0 to asymptotic series for
En(ω) and En(Ω), and [183, 184, 185, 186, 187, 188] for connections to the Riemann
hypothesis.
2.23. Diophantine Approximation Constants. Which planar, symmetric,

bounded convex set K has the worst packing density? If K is a disk, the packing
density is π/

√
12 = 0.9068996821..., which surprisingly is better than if K is the

smoothed octagon:

8− 4
√
2− ln(2)

2
√
2− 1

=
1

4
(3.6096567319...) = 0.9024141829....

Do worse examples exist? The answer is only conjectured to be yes [189].
2.25. Cameron’s Sum-Free Set Constants. Erdös [190] and Alon & Kleitman

[191] showed that any finite set B of positive integers must contain a sum-free subset
A such that |A| > 1

3
|B|. See also [192, 193, 194]. The largest constant c such

that |A| > c|B| must satisfy 1/3 ≤ c < 12/29, but its exact value is unknown. Using
harmonic analysis, Bourgain [195] improved the original inequality to |A| > 1

3
(|B|+2).

Green [196, 197] demonstrated that sn = O(2n/2), but the values co = 6.8... and
ce = 6.0... await more precise computation.
Further evidence for the existence of complete aperiodic sum-free sets is given in

[198].
2.29. Fast Matrix Multiplication Constants. Efforts continue [199, 200] to

reduce the upper bound on ω to 2.
2.30. Pisot-Vijayaraghavan-Salem Constants. The definition of Mahler’s

measureM(α) is unclear: It should be the product of max{1, |αj|} over all 1 ≤ j ≤ n.
Breusch [201] gave a lower bound > 1 for M(α) of non-reciprocal algebraic integers
α, anticipating Smyth’s stronger result by twenty years.
Compare the sequence {(3/2)n}, for which little is known, with the recursion

x0 = 0, xn = {xn−1 + ln(3/2)/ ln(2)}, for which a musical interpretation exists. If
a guitar player touches a vibrating string at a point two-thirds from the end of the
string, its fundamental frequency is dampened and a higher overtone is heard instead.
This new pitch is a perfect fifth above the original note. It is well-known that the
“circle of fifths” never closes, in the sense that 2xn is never an integer for n > 0.
Further, the “circle of fifths”, in the limit as n → ∞, fills the continuum of pitches
spanning the octave [202, 203].
The Collatz function f : Z + → Z + is defined by

f(n) =

(
3n+ 1 if n is odd
n/2 if n is even

.
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Let fk denote the kth iterate of f . The 3x + 1 conjecture asserts that, given any
positive integer n, there exists k such that fk(n) = 1. Let σ(n) be the first k such
that fk(n) < n, called the stopping time of n. If we could demonstrate that every
positive integer n has a finite stopping time, then the 3x + 1 conjecture would be
proved. Heuristic reasoning [204, 205, 206] provides that the average stopping time
over all odd integers 1 ≤ n ≤ N is asymptotically

lim
N→∞

Eodd(σ(n)) =
∞X
j=1

j
1 +

³
1 + ln(3)

ln(2)

´
j
k
cj2

−b ln(3)ln(2)
jc = 9.4779555565...

where cj is the number of admissible sequences of order j. Such a sequence {ak}mk=1
satisfies ak = 3/2 exactly j times, ak = 1/2 exactly m − j times, Qm

k=1 ak < 1 butQl
k=1 ak > 1 for all 1 ≤ l < m [207]. In contrast, the total stopping time σ∞(n) of n,

the first k such that fk(n) = 1, appears to obey

lim
N→∞

E

Ã
σ∞(n)

ln(n)

!
∼ 2

2 ln(2)− ln(3) = 6.9521189935... =
2

ln(10)
(8.0039227796...).

2.32. De Bruijn-Newman Constant. Further work regarding Li’s criterion,
which is equivalent to Riemann’s hypothesis and which involves the Stieltjes con-
stants, appears in [183, 184]. A different criterion is due to Matiyasevich [185, 186];
the constant − ln(4π) + γ + 2 = 0.0461914179... = 2(0.0230957089...) comes out as
a special case. See also [187, 188]. As another aside, we mention the unbounded-
ness of ζ(1/2 + i t) for t ∈ (0,∞), but that a precise order of growth remains open
[208, 209, 210]. In contrast, there is a conjecture that [211, 212]

max
t∈[T,2T ]

|ζ(1 + i t)| = eγ (ln(ln(T )) + ln(ln(ln(T ))) + C + o(1)) ,

max
t∈[T,2T ]

1

|ζ(1 + i t)| =
6eγ

π2
(ln(ln(T )) + ln(ln(ln(T ))) + C + o(1))

as T →∞, where

C = 1− ln(2) +
2Z
0

ln(I0(t))

t2
dt+

∞Z
2

ln(I0(t))− t
t2

dt = −0.0893...

and I0(t) is the zeroth modified Bessel function. These formulas have implications
for |ζ(i t)| and 1/|ζ(i t)| as well by the analytic continuation formula.
2.33. Hall-Montgomery Constant. Let ψ be the unique solution on (0,π) of

the equation sin(ψ) − ψ cos(ψ) = π/2 and define K = − cos(ψ) = 0.3286741629....
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Consider any real multiplicative function f whose values are constrained to [−1, 1].
Hall & Tenenbaum [213] proved that, for some constant C > 0,

NX
n=1

f(n) ≤ CN exp
⎧⎨⎩−K X

p≤N

1− f(p)
p

⎫⎬⎭ for sufficiently large N,

and that, moreover, the constant K is sharp. (The latter summation is over all prime
numbers p.) This interesting result is a lemma used in [214]. A table of values of sharp
constants K is also given in [213] for the generalized scenario where f is complex,
|f | ≤ 1 and, for all primes p, f(p) is constrained to certain elliptical regions in C .
3.3. Landau-Kolmogorov Constants. For L2(0,∞), Bradley & Everitt [215]

were the first to determine that C(4, 2) = 2.9796339059... =
√
8.8782182137...; see

also [216, 217, 218]. Ditzian [219] proved that the constants for L1(−∞,∞) are
the same as those for L∞(−∞,∞). Phóng [217] obtained the following best possible
inequality in L2(0, 1):

1Z
0

|f 0(x)|2 dx ≤ (6.4595240299...)
⎛⎝ 1Z
0

|f(x)|2 dx+
1Z
0

|f 00(x)|2 dx
⎞⎠

where the constant is given by sec(2θ)/2 and θ is the unique zero satisfying 0 < θ <
π/4 of

sin(θ)4
³
e2 sin(θ) − 1

´2
(e−2 sin(θ) − 1)2 + cos(θ)4[2− 2 cos(2 cos(θ))]2

− cos(2θ)4[1 + e4 sin(θ) − 2e2 sin(θ) cos(2 cos(θ))][1 + e−4 sin(θ) − 2e−2 sin(θ) cos(2 cos(θ))]
−2 cos(θ)2 sin(θ)2[2− 2 cos(2 cos(θ))](1− e−2 sin(θ))

³
e2 sin(θ) − 1

´
.

We wonder about other such additive analogs of Landau-Kolmogorov inequalities.
3.5. Copson-de Bruijn Constant. More relevant material is found in Acker-

mans [220].
3.6. Sobolev Isoperimetric Constants. In section 3.6.1,

√
λ = 1 represents

the principal frequency of the sound we hear when a string is plucked; in section
3.6.3,

√
λ = θ represents likewise when a kettledrum is struck. (The square root was

missing in both.) The units of frequency, however, are not compatible between these
two examples.
The “rod ”constant 500.5639017404... = (4.7300407448...)4 appears in [221, 222,

223]. It is the second term in a sequence c1, c2, c3, ... for which c1 = π2 = 9.869... (in
connection with the “string” inequality) and c3 = (2π)

6 = 61528.908...; the constant
c4 is the smallest eigenvalue of ODE

f (viii)(x) = λ f(x), 0 ≤ x ≤ 1,
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f(0) = f 0(0) = f 00(0) = f 000(0) = 0, f(1) = f 0(1) = f 00(1) = f 000(1) = 0

and evidently is not known. Allied subjects include positive definite Toeplitz matrices
and conditioning of certain least squares problems.
More relevant material is found in [224, 225, 226].
3.10. Kneser-Mahler Constants. The constants ln(β) and ln(δ) appear

in [227]. Conjectured L-series expressions for M
³
1 +

Pn
j=1 xj

´
, due to Rodriguez-

Villegas, are exhibited for n = 4, 5 in [228].
3.12. Du Bois Reymond’s Constants. The constant (π/ξ)2 is equal to the

largest eigenvalue of the infinite symmetric matrix (am,n)m≥1,n≥1 with elements am,n =
m−1n−1 +m−2δm,n, where δm,n = 1 if m = n and δm,n = 0. Boersma [229] employed
this fact to give an alternative proof of Szegö’s theorem.
3.15. Van der Corput’s Constant. We examined only the case in which f is

a real twice-continuously differentiable function on the interval [a, b]; a generalization
to the case where f is n times differentiable, n ≥ 2, is discussed in [230, 231] with
some experimental numerical results for n = 3.
3.16. Turán’s Power Sum Constants. Recent work appears in [232, 233, 234,

235, 236, 237, 238, 239], to be reported on later.
4.3. Achieser-Krein-Favard Constants. While on the subject of trigonomet-

ric polynomials, we mention Littlewood’s conjecture [240]. Let n1 < n2 < . . . < nk be
integers and let cj, 1 ≤ j ≤ k, be complex numbers with |cj| ≥ 1. Konyagin [241] and
McGehee, Pigno & Smith [242] proved that there exists C > 0 so that the inequality

1Z
0

¯̄̄̄
¯̄ kX
j=1

cje
2πinjξ

¯̄̄̄
¯̄ dξ ≥ C ln(k)

always holds. It is known that the smallest such constant C satisfies C ≤ 4/π2; Stege-
man [243] demonstrated that C ≥ 0.1293 and Yabuta [244] improved this slightly to
C ≥ 0.129590. What is the true value of C?
4.5. The “One-Ninth” Constant. Zudilin [245] deduced that Λ is transcen-

dental by use of Theorem 4 in [246]. See also [247, 248].
4.7. Berry-Esseen Constant. Significant progress on the asymptotic case (as

λ→ 0) is described in [249, 250, 251]. A different form of the inequality is found in
[252].
4.8. Laplace Limit Constant. The quantity λ = 0.6627434193... appears in

[253] with regard to Plateau’s problem for two circular rings dipped in soap solution.
We hope to report on [254] at a later time.
5.1. Abelian Group Enumeration Constants. For a finite abelian group G,

let r(G) denote the minimum number of generators of G and let E(G) denote the
expected number of random elements from G, drawn independently and uniformly,
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to generate G. Define e(G) = E(G)− r(G), the excess of G. Then [124]

er = sup {e(G) : r(G) = r} = 1 +
∞X
j=1

Ã
1−

rY
k=1

ζ(j + k)−1
!
;

in particular, e1 = 1.7052111401... (Niven’s constant) for the cyclic case and

σ = lim
r→∞

er = 1 +
∞X
j=2

⎛⎝1− ∞Y
k=j

ζ(k)−1

⎞⎠ = 2.118456563...
in general. It is remarkable that this limit is finite! Let also

τ =
∞X
j=1

⎛⎝1− ³
1− 2−j

´ ∞Y
k=j+1

ζ(k)−1

⎞⎠ = 1.742652311...,
then for the multiplicative group Z ∗n of integers relatively prime to n,

sup {e(G) : G = Z ∗n and 2 < n ≡ lmod8} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ if l = 1, 3, 5 or 7,
σ − 1 if l = 2 or 6,
τ if l = 4,
τ + 1 if l = 0.

We emphasize that l, not n, is fixed in the supremum (as according to the right-
hand side). The constant A−11 = 0.4357570767... also appears as a “best probability”
corresponding to certain nonabelian groups.
5.4. Golomb-Dickman Constant. Let P+(n) denote the largest prime factor

of n and P−(n) denote the smallest prime factor of n. We mentioned that

NX
n=2

ln(P+(n)) ∼ λN ln(N)− λ(1− γ)N,
NX
n=2

ln(P−(n)) ∼ e−γN ln(ln(N)) + cN

as N →∞, but did not give an expression for the constant c. Tenenbaum [255] found
that

c = e−γ(1 + γ) +

∞Z
1

ω(t)− e−γ
t

dt+
X
p

⎧⎨⎩e−γ ln
Ã
1− 1

p

!
+
ln(p)

p− 1
Y
q≤p

Ã
1− 1

q

!⎫⎬⎭ ,
where the sum over p and product over q are restricted to primes. A numerical
evaluation is still open.
The longest tail L(ϕ), given a random mapping ϕ : {1, 2, . . . , n}→ {1, 2, . . . , n},

is called the height of ϕ in [256, 257, 258] and satisfies

lim
n→∞P

Ã
L(ϕ)√
n
≤ x

!
=

∞X
k=−∞

(−1)k exp
Ã
−k

2x2

2

!
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for fixed x > 0. For example,

lim
n→∞

Var

Ã
L(ϕ)√
n

!
=

π2

3
− 2π ln(2)2.

The longest rho-path R(ϕ) is called the diameter of ϕ in [259] and has moments

lim
n→∞E

⎡⎣ÃR(ϕ)√
n

!j⎤⎦ = √
πj

2j/2Γ((j + 1)/2)

∞Z
0

xj−1(1− eEi(−x)−I(x)) dx

for fixed j > 0. Complicated formulas for the distribution of the largest tree P (ϕ)
also exist [257, 258, 260].
A permutation p ∈ Sn is a square if p = q2 for some q ∈ Sn; it is a cube if p = r3

for some r ∈ Sn. For convenience, let ω = (−1 + i
√
3)/2 and

Ψ(x) =
1

3

³
exp(x) + 2 exp(−x/2) cos(

√
3x/2)

´
.

The probability that a random n-permutation is a square is [261, 262, 263, 264, 265]

∼ 21/2

Γ(1/2)

1

n1/2
Y

1≤m≡0mod 2

e1/m + e−1/m

2
=

s
2

π n

∞Y
k=1

cosh
µ
1

2k

¶

=

s
2

π n
(1.2217795151...) = (0.9748390118...)n−1/2

as n→∞; the probability that it is a cube is [264, 265]

∼ 31/3

Γ(2/3)

1

n1/3
Y

1≤m≡0mod 3

e1/m + eω/m + eω
2/m

3

=
35/6Γ(1/3)

2π n1/3

∞Y
k=1

Ψ
µ
1

3k

¶
= (1.0729979443...)n−1/3.

Two permutations p, q ∈ Sn are of the same cycle type if their cycle decompositions
are identical (in the sense that they possess the same number of cycles of length l,
for each l ≥ 1). The probability that two independent, random n-permutations have
the same cycle type is [265]

∼ 1

n2

∞Y
k=1

I0

µ
2

k

¶
= (4.2634035141...)n−2

as n→∞, where I0 is the zeroth modified Bessel function.
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More on the Erdös-Turán constant appears in [266, 267].
5.5. Kalmár’s Composition Constant. See [268] for precise inequalities in-

volving m(n) and ρ = 1.7286472389.... A Carlitz composition of size n is an additive
composition n = x1 + x2 + · · ·+ xk such that xj 6= xj+1 for any 1 ≤ j < k. We call k
the number of parts and

d = 1 +
kX
i=2

(
1 if xi 6= xj for all 1 ≤ j < i,
0 otherwise

the number of distinct part sizes. The number ac(n) of Carlitz compositions is [269]

ac(n) ∼
1

σ F 0(σ)

µ
1

σ

¶n
= (0.456387...)(1.750243...)n

where σ = 0.571349... is the unique solution of the equation

F (x) =
∞X
j=1

(−1)j−1 xj

1− xj = 1, 0 ≤ x ≤ 1.

The expected number of parts is asymptotically

G(σ)

σ F 0(σ)
n ∼ (0.350571...)n where G(x) =

∞X
j=1

(−1)j−1 j x
j

1− xj

(by contrast, an unrestricted composition has (n + 1)/2 parts on average). The
expected size of the largest part is

− ln(n)
ln(σ)

+

Ã
ln(F 0(σ)) + ln(1− σ)− γ

ln(σ)
+
1

2

!
+ε(n) = (1.786495...) ln(n)+0.64311...+ε(n)

where γ is Euler’s constant and ε(n) is a small-amplitude zero-mean periodic function.
The expected number of distinct part sizes is [270]

− ln(n)
ln(σ)

+

Ã
ln(F 0(σ)) + γ

ln(σ)
+
1

2

!
+ δ(n) = (1.786495...) ln(n)− 2.932545...+ δ(n)

where δ(n) is likewise negligible. (By contrast, an unrestricted composition has
a largest part of size roughly ln(n)/ ln(2) + 0.332746... and roughly ln(n)/ ln(2) −
0.667253... distinct part sizes on average: see [271, 272, 273], as well as the bottom
of page 340.) We wonder about the multiplicative analog of these results. See also
[274].
5.6. Otter’s Tree Enumeration Constants. Higher-order asymptotic series

for Tn, tn and Bn are given in [89]. Also, the asymptotic analysis of series-parallel
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posets [275] is similar to that of trees. See [276, 277] for more about k-gonal 2-trees,
as well as a new formula for α in terms of rational expressions involving e.
The generating function L(x) of leftist trees satisfies a simpler functional equation

than previously thought:
L(x) = x+ L (xL(x))

which involves an unusual nested construction. The radius of convergence ρ =
0.3637040915... = (2.7494879027...)−1 of L(x) satisfies

ρL0 (ρL(ρ)) = 1

and the coefficient of ρ−nn−1/2 in the asymptotic expression for Ln isvuut 1

2πρ2
ρ+ L(ρ)

L00 (ρL(ρ))
= 0.2503634293... = (0.6883712204...)ρ.

The average height of n-leaf leftist trees is asymptotically (1.81349371...)
√
πn and the

average depth of vertices belonging to such trees is asymptotically (0.90674685...)
√
πn.

Nogueira [278] conjectured that the ratio of the two coefficients is exactly 2, but his
only evidence is numerical (to over 1000 decimal digits).
For the following, we consider only unordered forests whose connected components

are (strongly) ordered binary trees. Let Fn denote the number of such forests with
2n− 1 vertices; then the generating function

Φ(x) = 1 +
∞X
n=1

Fnx
n = 1 + x+ 2x2 + 4x3 + 10x4 + 26x5 + 77x6 + · · ·

satisfies

Φ(x) = exp

Ã ∞X
k=1

1−
√
1− 4xk
2k

!
=

∞Y
m=1

(1− xm)−
1
m

³
2m−2
m−1

´
.

It can be shown that [265]

Fn ∼
Φ(1/4)√

π

4n−1

n3/2
=
1.7160305349...

4
√
π

4n

n3/2

as n → ∞. The constant 1.716... also plays a role in the asymptotic analysis of the
probability that a random forest has no two components of the same size.
5.7. Lengyel’s Constant. Constants of the form

P∞
k=−∞ 2

−k2 and
P∞
k=−∞ 2

−(k−1/2)2

appear in [279, 280].
5.9. Pólya’s Random Walk Constants. Properties of the gamma function

lead to a further simplification [281]:

m3 =
1

32π3

³√
3− 1

´ ∙
Γ
µ
1

24

¶
Γ
µ
11

24

¶¸2
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Consider a variation in which the drunkard performs a random walk starting from
the origin with 2d equally probable steps, each of the form (±1,±1, . . . ,±1). The
number of walks that end at the origin after 2n steps is

Ũd,0,2n =

Ã
2n

n

!d
and the number of such walks for which 2n is the time of first return to the origin is
Ṽd,0,2n, where [282]

2−nṼ1,0,2n =
1

n22n−1

Ã
2n− 2
n− 1

!
∼ 1

2
√
πn3/2

,

2−2nṼ2,0,2n =
π

n(ln(n))2
− 2π γ + πB

n(ln(n))3
+O

Ã
1

n(ln(n))4

!
,

2−3nṼ3,0,2n =
1

π3/2C2n3/2
+O

µ
1

n2

¶
as n→∞, where

B = 1 +
∞X
k=1

⎡⎣2−4kÃ2k
k

!2
− 1

πk

⎤⎦ = 0.8825424006...,
C =

∞X
k=0

2−6k
Ã
2k

k

!3
=

1

4π3
Γ
µ
1

4

¶4
= 1.3932039296....

It turns out that the constant σ, given by an infinite series, has a more compact
integral expression [283, 284]:

σ =
1

π

∞Z
0

1

x2
ln

"
6

x2

Ã
1− sin(x)

x

!#
dx = −0.2979521902... = −0.5160683318...√

3

and surprisingly appears in both 3D statistical mechanics [285] and 1D probabilistic
algorithmics [286].
5.10. Self-Avoiding Walk Constants. Hueter [287, 288] rigorously proved

that ν2 = 3/4 and that 7/12 ≤ ν3 ≤ 2/3, 1/2 ≤ v4 ≤ 5/8 (if the mean square
end-to-end distance exponents ν3, v4 exist; otherwise the bounds apply for

νd = liminfn→∞
ln(rn)

2 ln(n)
, νd = limsup

n→∞

ln(rn)

2 ln(n)

when d = 3, 4). She confirmed that the same exponents apply for the mean square
radius of gyration sn for d = 2, 3, 4; the results carry over to self-avoiding trails as
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well [289]. Burkhardt & Guim [290] adjusted the estimate for limk→∞ p
1/k2

k,k to 1.743...;
this has now further been improved to 1.74455... [291].
5.11. Feller’s Coin Tossing Constants. Additional references on oscillatory

phenomena in probability theory include [292, 293, 294]; see also our earlier entry
[5.5].
5.12. Hard Square Entropy Constant. McKay [295] observed the following

asymptotic behavior:

F (n) ∼ (1.06608266...)(1.0693545387...)2n(1.5030480824...)n2

based on an analysis of the terms F (n) up to n = 19. He emphasized that the form of
right hand side is conjectural, even though the data showed quite strong convergence
to this form.
Let L(m,n) denote the number of legal positions on anm×n Go board (a popular

game). Then [296]

lim
n→∞

L(1, n)1/n = 1 +
1

3

µ³
27 + 3

√
57
´1/3

+
³
27− 3

√
57
´1/3¶

= 2.7692923542...,

lim
n→∞

L(n, n)1/n
2

= 2.9757341920...

and, subject to a plausible conjecture,

L(m,n) ∼ (0.8506399258...)(0.96553505933...)m+n(2.9757341920...)mn

as min{m,n}→∞.
5.13. Binary Search Tree Constants. The random permutation model for

generating weakly binary trees (given an n-vector of distinct integers, construct T

via insertions) does not provide equal weighting on the
³
2n
n

´
/(n + 1) possible trees.

For example, when n = 3, the permutations (2, 1, 3) and (2, 3, 1) both give rise to
the same tree S, which hence has probability q(S) = 1/3 whereas q(T ) = 1/6 for
the other four trees. Fill [282, 297, 298] asked how the numbers q(T ) themselves are
distributed, for fixed n. If the trees are endowed with the uniform distribution, then

−E [ln(q(T ))]
n

→
∞X
k=1

ln(k)

(k + 1)4k

Ã
2k

k

!

= −γ −
1Z
0

ln(ln(1/t))
√
1− t

³
1 +

√
1− t

´2dt = 2.0254384677...
as n→∞. If, instead, the trees follow the distribution q, then
−E [ln(q(T ))]

n
→ 2

∞X
k=1

ln(k)

(k + 1)(k + 2)
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= −γ − 2
1Z
0

((t− 2) ln(1− t)− 2t) ln(ln(1/t))
t3

dt = 1.2035649167....

The maximum value of − ln(q(T )) is ∼ n ln(n) and the minimum value is ∼ c n,
where

c = ln(4) +
∞X
k=1

2−k ln(1− 2−k) = 0.9457553021....

5.14. Digital Search Tree Constants. The constant Q is transcendental via a
general theorem on values of modular forms due to Nesterenko [134, 135]. A correct
formula for θ is

θ =
∞X
k=1

k2k(k−1)/2

1 · 3 · 7 · · · (2k − 1)
kX
j=1

1

2j − 1 = 7.7431319855...

(the exponent k(k − 1)/2 was mistakenly given as k + 1 in [299], but the numerical
value is correct). The constants α, β and Q−1 appear in [300]. Also, α appears in
[301] and Q−1 appears in [280]. It turns out that ν and χ are linked via ν − 1 = χ;
we have [302, 303, 304]

∞X
j=1

(−1)j−1
j (2j − 1) =

∞X
k=1

ln
³
1 + 2−k

´
= 0.8688766526... =

7.2271128245...

12 ln(2)
.

Finally, a random variable X with density e−x(e−x − 1 + x)/(1 − e−x)2, x ≥ 0, has
mean E(X) = π2/6 and mean fractional part [304]

E (X − bXc) =
11

24
+

∞X
m=1

π2

sinh(2π2m)2
=
11

24
+ (2.825535...)× 10−16.

The distribution of X is connected with the random assignment problem [305, 306].
5.15. Optimal Stopping Constants. When discussing the expected rank Rn,

we assumed that no applicant would ever refuse a job offer! If each applicant only
accepts an offer with known probability p, then [307]

lim
n→∞

Rn =
∞Y
i=1

Ã
1 +

2

i

1 + pi

2− p+ pi

! 1
1+pi

which is 6.2101994550... in the event that p = 1/2.
When discussing the full-information problem for Uniform [0, 1] variables, we as-

sumed that the number of applicants is known. If instead this itself is a uniformly
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distributed variable on {1, 2, . . . , n}, then for the “nothing but the best objective”,
the asymptotic probability of success is [308, 309]

(1− ea) Ei(−a)− (e−a + aEi(−a))(γ + ln(a)− Ei(a)) = 0.4351708055...

where a = 2.1198244098... is the unique positive solution of the equation

ea(1− γ − ln(a) + Ei(−a))− (γ + ln(a)− Ei(a)) = 1.

It is remarkable that these constants occur in other, seemingly unrelated versions of
the secretary problem [310, 311, 312].
Suppose that you view successively terms of a sequence X1, X2, X3, ... of inde-

pendent random variables with a common distribution function F . You know the
function F , and as Xk is being viewed, you must either stop the process or con-
tinue. If you stop at time k, you receive a payoff (1/k)

Pk
j=1Xj. Your objective is

to maximize the expected payoff. An optimal strategy is to stop at the first k for
which

Pk
j=1Xj ≥ αk, where α1, α2, α3, ... are certain values depending on F . Shepp

[313, 314] proved that limk→∞ αk/
√
k exists and is independent of F as long as F has

zero mean and unit variance; further,

lim
k→∞

αk√
k
= x = 0.8399236756...

is the unique zero of 2x −
√
2π (1− x2) exp (x2/2)

³
1 + erf(x/

√
2)
´
. We wonder if

Shepp’s constant can be employed to give a high-precision estimate of the Chow-
Robbins constant 2(0.7929535064...) − 1 = 0.5859070128... [315], the value of the
expected payoff for F (−1) = F (1) = 1/2.
Also, consider a random binary string Y1Y2Y3 . . . Yn with P(Yk = 1) = 1−P(Yk =

0) independent of k and Yk independent of the other Y s. Let H denote the pattern
consisting of the digits

1000...0| {z }
l

or 0111...1| {z }
l

and assume that its probability of occurrence for each k is

P (Yk+1Yk+2Yk+3 . . . Yk+l = H) =
1

l

µ
1− 1

l

¶l−1
∼ 1

el
=
0.3678794411...

l
.

You observe sequentially the digits Y1, Y2, Y3, ... one at a time. You know the values
n and l, and as Yk is being observed, you must either stop the process or continue.
Your objective is to stop at the final appearance of H up to Yn. Bruss & Louchard
[316] determined a strategy that maximizes the probability of meeting this goal. For
n ≥ βl, this success probability is

2

135
e−β

³
4− 45β2 + 45β3

´
= 0.6192522709...
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as l→∞, where β = 3.4049534663... is the largest zero of the cubic 45β3 − 180β2 +
90β + 4. Further, the interval [0.367..., 0.619...] constitutes “typical” asymptotic
bounds on success probabilities associated with a wide variety of optimal stopping
problems in strings.
Suppose finally that you view a sequence Z1, Z2, ..., Zn of independent Uniform

[0, 1] variables and that you wish to stop at a value of Z as large as possible. If
you are a prophet (meaning that you have complete foresight), then you know Z∗n =
max{Z1, . . . , Zn} beforehand and clearly E(Z∗n) ∼ 1 − 1/n as n → ∞. If you are a
1-mortal (meaning that you have 1 opportunity to choose a Z via stopping rules) and
if you proceed optimally, then the value Z∗1 obtained satisfies E(Z

∗
1) ∼ 1 − 2/n. If

you are a 2-mortal (meaning that you have 2 opportunities to choose Zs and then
take the maximum of these) and if you proceed optimally, then the value Z∗2 obtained
satisfies E(Z∗2) ∼ 1− c/n, where [317]

c =
2ξ

ξ + 2
= 1.1656232877...

and ξ = 2.7939976526... is the unique positive solution of the equationÃ
2

ξ
+ 1

!
ln

Ã
ξ

2
+ 1

!
=
3

2
.

The performance improvement in having two choices over just one is impressive: c is
much closer to 1 than 2!
5.16. Extreme Value Constants. The median of the Gumbel distribution is

− ln(ln(2)) = 0.3665129205....
5.17. Pattern-Free Word Constants. Recent references include [318, 319,

320].
5.18. Percolation Cluster Density Constants. An integral similar to that

for κB(pc) on the triangular lattice appears in [321]. Older references on 2D and 3D
continuum percolation include [322, 323, 324, 325, 326]. See also [327, 328, 329].
Two infinite 0-1 sequences X, Y are called compatible if 0s can be deleted from X

and/or from Y in such a way that the resulting 0-1 sequences X 0, Y 0 never have a 1
in the same position. For example, the sequences X = 000110 . . . and Y = 110101 . . .
are not compatible. Assume that X and Y are randomly generated with each Xi, Yj
independent and P(Xi = 1) = P(Yj = 1) = p. Intuition suggests that X and Y are
compatible with positive probability if and only if p is suitably small. What is the
supremum p∗ of such p? It is known [330, 331, 332, 333] that 100−400 < p∗ < 1/2;
simulation indicates [334] that 0.3 < p∗ < 0.305.
5.19. Klarner’s Polyomino Constant. A new estimate 4.0625696... for α is

reported in [335] and a new rigorous lower bound of 3.980137... in [336]. The number
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Ā(n) of row-convex n-ominoes satisfies [337]

Ā(n) = 5Ā(n− 1)− 7Ā(n− 2) + 4Ā(n− 3), n ≥ 5,

with Ā(1) = 1, Ā(2) = 2, Ā(3) = 6 and Ā(4) = 19; hence Ā(n) ∼ u vn as n → ∞,
where v = 3.2055694304... is the unique real zero of x3 − 5x2 + 7x − 4 and u =
(41v2 − 129v + 163)/944 = 0.1809155018....
5.20. Longest Subsequence Constants. The Sankoff-Mainville conjecture

that limk→∞ γkk
1/2 = 2 was proved by Kiwi, Loebl & Matousek [338]; the constant 2

arises from a connection with the longest increasing subsequence problem. A deeper
connection with the Tracy-Widom distribution from random matrix theory has now
been confirmed [339]:

E(λn,k) ∼ 2k−1/2n+ c1k−1/6n1/3, Var(λn,k) ∼ c0k−1/3n2/3

where k →∞, n→∞ in such a way that n/k1/2 → 0.
Define λn,k,r to be the length of the longest common subsequence c of a and b

subject to the constraint that, if ai = bj are paired when forming c, then |i− j| ≤ r.
Define as well γk,r = limn→∞ E(λn,k,r)/n. It is not surprising [340] that limr→∞ γk,r =
γk. Also, γ2,1 = 7/10, but exact values for γ3,1, γ4,1, γ2,2 and γ2,3 remain open.
The Tracy-Widom distribution (specifically, FGOE(x) as described in [341]) seems

to play a role in other combinatorial problems [342, 343, 344], although the data is
not conclusive. See also [345, 346, 347].
5.21. k-Satisfiability Constants. On the one hand, the lower bound for rc(3)

was improved to 3.42 in [348] and further improved to 3.52 in [349]. On the other
hand, the upper bound 4.506 for rc(3) in [350] has not been confirmed; the preceding
two best upper bounds were 4.596 [351] and 4.571 [352].
5.22. Lenz-Ising Constants. The constant 4G/π = 1.1662436161... appears in

[353], as well as a new closed-form evaluation:

ln(2)

2
+

1

16π2

πZ
−π

πZ
−π

ln [7− 3 cos(θ)− 3 cos(ϕ)− cos(θ) cos(ϕ)] dθ dϕ

=
G

π
+
1

2
ln(
√
2− 1) + 1

π
Ti2(3 + 2

√
2) = 0.7866842753...

where Ti2(x) is the inverse tangent integral (discussed on p. 57).
5.23. Monomer-Dimer Constants. Friedland & Peled [354] revisited Baxter’s

computation of A and confirmed that ln(A) = 0.66279897.... They examined the
three-dimensional analog, A0, of A and found that 0.7652 < ln(A0) < 0.7863. See also
[355, 356].
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5.25. Tutte-Beraha Constants. For any positive integer r, there is a best
constant C(r) such that, for each graph of maximum degree ≤ r, the complex zeros
of its chromatic polynomial lie in the disk |z| ≤ C(r). Further, K = limr→∞C(r)/r
exists and K = 7.963906... is the smallest number for which

inf
α>0

1

α

∞X
n=2

eαnK−(n−1)n
n−1

n!
≤ 1.

Sokal [357] proved all of the above, answering questions raised in [358, 359]. See also
[360].
6.1. Gauss’ Lemniscate Constant. Consider the following game [361]. Players

A and B simultaneously choose numbers x and y in the unit interval; B then pays A
the amount |x− y|1/2. The value of the game (that is, the expected payoff, assuming
both players adopt optimal strategies) isM/2 = 0.59907.... Also, let ξ1, ξ2, . . ., ξn, η1,
η2, . . ., ηn be distinct points in the plane and construct, with these points as centers,
squares of side s and of arbitrary orientation that do not overlap. Then

s ≤ L√
2

⎛⎜⎜⎜⎜⎜⎝
nY
i=1

nY
j=1

|ξi − ηj|Y
i<j

|ξi − ξj| ·
Y
i<j

|ηi − ηj|

⎞⎟⎟⎟⎟⎟⎠
1/n

and the constant L/
√
2 = 1.85407... is best possible [362].

6.2. Euler-Gompertz Constant. The two quantities

I0(2) =
∞X
k=0

1

(k!)2
= 2.2795853023..., J0(2) =

∞X
k=0

(−1)k
(k!)2

= 0.2238907791...

are similar, but only the first is associated with continued fractions. Here is an
interesting occurrence of the second: letting [363]

a0 = a1 = 1, an = nan−1 − an−2 for n ≥ 2,

we have limn→∞ an/n! = J0(2).
6.3. Kepler-Bouwkamp Constant. Additional references include [364, 365,

366] and another representation is [367]

ρ =
310
√
3

27527 11π
exp

⎡⎣− ∞X
k=1

³
ζ(2k)− 1− 2−2k − 3−2k

´
22k

³
λ(2k)− 1− 3−2k

´
k

⎤⎦ ;
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the series converges at the same rate as a geometric series with ratio 1/100. A relevant
inequality is [368]

∞Z
0

cos(2x)
∞Y
j=1

cos

Ã
x

j

!
dx <

π

8

and the difference is less than 10−42! A prime analog of ρ is [369]

Y
p≥3
cos

Ã
π

p

!
= 0.3128329295... = (3.1965944300...)−1

and variations abound.
6.5. Plouffe’s Constant. This constant is included in a fascinating mix

of ideas by Smith [370], who claims that “angle-doubling” one bit at a time was
known centuries ago to Archimedes and was implemented decades ago in binary
cordic algorithms (also mentioned in section 5.14). Another constant of interest is
arctan(

√
2) = 0.9553166181..., which is the base angle of a certain isosceles spherical

triangle (in fact, the unique non-Euclidean triangle with rational sides and a single
right angle).
Chowdhury [371] generalized his earlier work on bitwise XOR sums and the logistic

map: A sample new result is

∞X
n=0

ρ(bnbn−1)

2n+1
=
1

4π
⊕ 1

π

where bn = cos(2
n). The right-hand side is computed merely by shifting the binary

expansion of 1/π two places (to obtain 1/(4π)) and adding modulo two without carries
(to find the sum).
6.6. Lehmer’s Constant. Rivoal [372] has studied the link between the rational

approximations of a positive real number x coming from the continued cotangent
representation of x, and the usual convergents that proceed from the regular continued
fraction expansion of x.
6.8. Prouhet-Thue-Morse Constant. Simple analogs of the Woods-Robbins

and Flajolet-Martin formulas are [47]

∞Y
m=1

µ
2m

2m− 1

¶(−1)m
=

√
2π3/2

Γ(1/4)2
,

∞Y
m=1

µ
2m

2m+ 1

¶(−1)m
=

Γ(1/4)2

25/2
√
π
;

we wonder about the outcome of exponent sequences other than (−1)m or (−1)tm.
6.9. Minkowski-Bower Constant. See [373, 374] for a generalization of the

Minkowski question mark function.
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6.10. Quadratic Recurrence Constants. The sequence kn+1 = (1/n)k2n,
where n ≥ 0, is convergent if and only if

|k0| < exp
⎛⎝ ∞X
j=2

ln(j)

2j

⎞⎠ = 1.6616879496....
Moreover, the sequence either converges to zero or diverges to infinity [375, 376].
A systematic study of threshold constants like this, over a broad class of quadratic
recurrences, has never been attempted. The constant 1.2640847353... and Sylvester’s
sequence appear in an algebraic-geometric setting [377]. Also, results on Somos’
sequences are found in [378, 379] and on the products

11/221/431/8 · · · = 1.6616879496..., 11/321/931/27 · · · = 1.1563626843...

in [47, 68].
6.11. Iterated Exponential Constants. Consider the recursion

a1 = 1, an = an−1 exp

Ã
1

ean−1

!

for n ≥ 2. It is known that [380]

an =
n

e
+
ln(n)

2e
+
C

e
+ o(1), (n!)1/n =

n

e
+
ln(n)

2e
+
ln(
√
2π)

e
+ o(1)

as n→∞, where

C = e− 1 + γ

2
+
1

2

∞X
k=1

k − eak
ekak

+
∞X
k=1

µ
eak+1 − eak − 1−

1

2eak

¶
= 1.2905502....

Further, an − (n!)1/n is strictly increasing and

an − (n!)1/n ≤
³
C − ln(

√
2π)

´
/e = 0.136708...

for all n. The constant is best possible. Putting bn = 1/(ean) yields the recursion
bn = bn−1 exp(−bn−1), for which an analogous asymptotic expansion can be written.
The unique real zero zn of

Pn
k=0 z

k/k!, where n is odd, satisfies limn→∞ zn/n =
W (e−1) = 0.2784645427... [381, 382]. Also, 3−1e−1/3 = 0.2388437701... arises in [383]
as a consequence of the formula −W (−3−1e−1/3) = 1/3. Note that −W (−x) is the
exponential generating function for rooted labeled trees and hence is often called the
tree function.
6.12. Conway’s Constant. A “biochemistry” based on Conway’s “chemistry”

appears in [384].
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7.1. Bloch-Landau Constants. In the definitions of the sets F and G, the
functions f need only be analytic on the open unit disk D (in addition to satisfying
f(0) = 0, f 0(0) = 1). On the one hand, the weakened hypothesis doesn’t affect the
values of B, L or A; on the other hand, the weakening is essential for the existence
of f ∈ G such that m(f) =M.
The bounds 0.62π < A < 0.7728π were improved by several authors, although

they studied the quantity Ã = π − A instead (the omitted area constant). Barnard
& Lewis [385] demonstrated that Ã ≤ 0.31π. Barnard & Pearce [386] established
that Ã ≥ 0.240005π, but Banjai & Trefethen [387] subsequently computed that Ã =
(0.2385813248...)π. It is believed that the earlier estimate was slightly in error. See
[388, 389, 390] for related problems.
The spherical analog of Bloch’s constant B, corresponding to meromorphic func-

tions f mapping D to the Riemann sphere, was recently determined by Bonk &
Eremenko [391]. This constant turns out to be arccos(1/3) = 1.2309594173.... A
proof as such gives us hope that someday the planar Bloch-Landau constants will
also be exactly known.
More relevant material is found in [226, 392].
7.2. Masser-Gramain Constant. Suppose f(z) is an entire function such that

f (k)(n) is an integer for each nonnegative integer n, for each integer 0 ≤ k ≤ s − 1.
(We have discussed only the case s = 1.) The best constant θs > 0 for which

limsup
r→∞

ln(Mr)

r
< θs implies f is a polynomial

was proved by Bundschuh & Zudilin [393], building on Gel’fond [394] and Selberg
[395], to satisfy

s · π
3
≥ θs >

⎧⎪⎨⎪⎩
0.994077... if s = 2,
1.339905... if s = 3,
1.674474... if s = 4.

(Actually they proved much more.) Can a Gaussian integer-valued analog of these
integer-valued results be found?
7.5. Hayman Constants. A new upper bound [396] for the Hayman-Korenblum

constant c(2) is 0.69472. An update on the Hayman-Wu constant appears in [397].
7.6. Littlewood-Clunie-Pommerenke Constants. The lower limit of sum-

mation in the definition of S2 should be n = 0 rather than n = 1, that is, the coefficient
b0 need not be zero. We have sharp bounds |b1| ≤ 1, |b2| ≤ 2/3, |b3| ≤ 1/2 + e−6

[398]. The bounds on γk due to Clunie & Pommerenke should be 0.509 and 0.83 [399];
Carleson & Jones’ improvement was nonrigorous. While 0.83 = 1− 0.17 remains the
best established upper bound, the lower bound has been increased to 0.54 = 1− 0.46
[400, 401, 402]. Numerical evidence for both the Carleson-Jones conjecture and Bren-
nan’s conjecture was found by Kraetzer [403]. Theoretical evidence supporting the
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latter appears in [404], but a complete proof remains undiscovered. It seems that
α = 1−γ is now a theorem [405, 406] whose confirmation is based on the recent work
of several researchers [407, 408, 409].
8.1. Geometric Probability Constants. Just as the ratio of a semicircle to

its diameter is always π/2, the ratio of the latus rectum arc of any parabola to its
latus rectum is [410, 411]

1

2

³√
2 + ln

³
1 +

√
2
´´
= 1.1477935746... =

1

2
(2.2955871493...)

Is it mere coincidence that this constant is so closely related to the quantity δ(2)? The
expected distance between two random points on different sides of the unit square is
[368]

2 +
√
2 + 5 ln

³
1 +

√
2
´

9
= 0.8690090552...

and the expected distance between two random points on different faces of the unit
cube is

4 + 17
√
2− 6

√
3− 7π + 21 ln

³
1 +

√
2
´
+ 21 ln

³
7 + 4

√
3
´

75
= 0.9263900551...

Also, the convex hull of random point sets in the unit disk (rather than the unit
square) is mentioned in [412].
8.4. Moser’s Worm Constant. Relevant progress is described in [413]. We

mention, in Figure 8.3, that the quantity x = sec(ϕ) = 1.0435901095... is algebraic of
degree six [415]:

3x6 + 36x4 + 16x2 − 64 = 0
and wonder if this is linked to Figure 8.7 and the Reuleaux triangle of width 1.5449417003...
(also algebraic of degree six [416]). The latter is the planar set of maximal constant
width that avoids all vertices of the integer square lattice.
8.5. Traveling Salesman Constants. The cavity method is applied in [417] to

matchings on sparse random graphs.
8.7. Hermite’s Constants. A lattice Λ in R n consists of all integer linear

combinations of a set of basis vectors {ej}nj=1 for R n. If the fundamental parallelepiped
determined by {ej}nj=1 has Lebesgue measure 1, then Λ is said to be of unit volume.
The constants γn can be defined via an optimization problem

γn = max
unit volume
lattices Λ

min
x∈Λ,
x6=0

kxk2

and are listed in Table 8.10. The precise value of the next constant 2 ≤ γ9 < 2.1327
remains open [418, 419, 420], although Cohn & Kumar [421, 422] have recently proved
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that γ24 = 4. A classical theorem [423, 424, 425] provides that γnn is rational for all
n. It is not known if the sequence γ1, γ2, γ3, . . . is strictly increasing, or if the ratio
γn/n tends to a limit as n→∞. See also [426, 427].
Table 8.10 Hermite’s Constants γn

n Exact Decimal n Exact Decimal
1 1 1 5 81/5 1.5157165665...
2 (4/3)1/2 1.1547005383... 6 (64/3)1/6 1.6653663553...
3 21/3 1.2599210498... 7 641/7 1.8114473285...
4 41/4 1.4142135623... 8 2 2

An arbitrary packing of the plane with disks is called compact if every disk D is
tangent to a sequence of disks D1, D2, . . ., Dn such that Di is tangent to Di+1 for
i = 1, 2, . . ., n with Dn+1 = D1. If we pack the plane using disks of radius 1, then the
only possible compact packing is the hexagonal lattice packing with density π/

√
12.

If we pack the plane using disks of radius 1 and r < 1 (disks of both sizes must be
used), then there are precisely nine values of r for which a compact packing exists.
See Table 8.11. For seven of these nine values, it is known that the densest packing
is a compact packing; the same is expected to be true for the remaining two values
[428, 429, 430].
Table 8.11 All Nine Values of r < 1 Which Allow Compact Packings

Exact (expression or minimal polynomial) Decimal

5− 2
√
6 0.1010205144...

(2
√
3− 3)/3 0.1547005383...

(
√
17− 3)/4 0.2807764064...

x4 − 28x3 − 10x2 + 4x+ 1 0.3491981862...
9x4 − 12x3 − 26x2 − 12x+ 9 0.3861061048...√
2− 1 0.4142135623...

8x3 + 3x2 − 2x− 1 0.5332964166...
x8 − 8x7 − 44x6 − 232x5 − 482x4 − 24x3 + 388x2 − 120x+ 9 0.5451510421...
x4 − 10x2 − 8x+ 9 0.6375559772...

There is space to only mention the circle-packing rigidity constants sn [414], their
limiting behavior:

lim
n→∞

n sn =
24/3

3

Γ(1/3)2

Γ(2/3)
= 4.4516506980...

and their connection with conformal mappings.
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8.10. Reuleaux Triangle Constants. In our earlier entry [8.4], we ask about
the connection between two relevant algebraic quantities [415, 416], both zeroes of
sextic polynomials.
8.15. Graham’s Hexagon Constant. Bieri [431] partially anticipated Gra-

ham’s result. A nice presentation of Reinhardt’s isodiametric theorem is found in
[432].
8.18. Rectilinear Crossing Constant. It is now known [433, 434, 435, 436,

437, 438, 439] that

ν̄(K13) = 229, ν̄(K14) = 324, ν̄(K15) = 447, ν̄(K16) = 603, ν̄(K17) = 798

and 0.37968 < ρ < 0.38058.
8.19. Circumradius-Inradius Constants. The phrase “Z-admissible” in the

caption of Figure 8.22 should be replaced by “Z-allowable”.
Table of Constants. The formula corresponding to 0.8427659133... is (12 ln(2))/π2

and the formula corresponding to 0.8472130848... is M/
√
2.
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46 (2001/02) B46i; MR1921679 (2003g:11118).
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[240] T. Erdélyi, Polynomials with Littlewood-type coefficient constraints, Approxi-
mation Theory X: Abstract and Classical Analysis, Proc. 2001 St. Louis conf.,
ed. C. K. Chui, L. L. Schumaker and J. Stöckler, Vanderbilt Univ. Press, 2002,
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